Loading...
HomeMy WebLinkAboutHydrology for Henry Kaiser HS - Revised 10-20-94 HENRY J. KAISER HIGH SCHOOL ULTIMATE HYDROLOGY AND HYDRAULIC STUDY 100 YEAR STORM PREPARED BY: THIENES ENGINEERING 14150 VINE PLACE SUITE 100 CERRITOS, CA. 90701 (310) 926-2296 MARCH 15, 1994 Re V i S l o/2 6/94 •I VA V : ; VI 1 I : VD '"°° I I I '1)6. r"..- g: 1 I '-. _ ---- S144':,\_-'' •*..4 ROLN 0 1.''' 1mi j 4 on ,,.; i 1 141ffirclo, -- Stepi, r I- 1 I 11111011_. - —-- ---'--- ---- - 1 ' .. --.. I I V21.(AY I 'I .1 Kiva I ....„ , I A., , .-\ , ; I 111-6 7 , 1 , , I ,,• 6 SA BERNARD/N. ;.,CO. . i hi 1 Z' IL :I i 1 1 1 .4... , 1 , 1 "-- , 1 I1 1 2 1 • 1 I t I T E .2 • I , Ct I 1 ' I 'CL' ,II, E : I .... 1 ...?.„. -;....;, r F- + - --- -az I- .--i A t':rzlv--'" —4.5 '0410 ---- . 4-- 1,, * _ I = •----- $ 4 ‘-k. . '1% I ' 4,. . 1060 0 M 1 Al Pi" :''' I ----,-.--......... ..- 1 I*4 m.- '.. ." - i .- .. ''' ' '' .. .. _ =7• " •' -I - .'•''':;" '" -----.,, r ', •----::::-:. - !' r...„; ---i-----t - ;t41-1._ - 1 . • -.1, • Li - ' - ,-.ii... . .. . . . . .• • _,.. . _ IN frigrt .... 1 , .-.2,.v.I.,,, . ,-_, . 1 .-. -..-.,.. 1 07-: . 'Ilk -- ; ;4 . . . - 0.1..4„,,,, .. ,.,-..,:. -.1 ,:,;:.,.L.:...,, _ g Iry 14VAT : ..., ,....:.,!: s vo, . I ....„, -... , I - - - Wore' ' ' '114 ''."..... -.• I . I • bil_ I ,. ."'.-.1 'r.01/00.' ,AW_AIIIN I .i' I " . .. 1 ; .: . -. -i -;iLle....,4 4 PrZ.." e• ''''‘,W ' .'',W.! , e;15i,, ---••4'. 1 1 f.",' ' ' 1 ' ' - 'e' --- ."Ili,400. . 40'; r ..:' ..:1 1 ,... • --- . .- -. , t... ' -!....,.__•-•2 .'..." __. .4 s — — ". --."--- ' A.:..,,' „, ,. -iimvik ...• ,.ir,7 1 ! . - - . 1. ----. r: • = .••6,°.^.'" .Loirk; .; , 11 in i t1 .,- ---1-1.--. - --- :•,:- _., ° -06111- -. Itur.°,°,11....- 1 •z. . -v-,-- , ..fr :: i 101in. '"> - ,.••-"44 ^ ' .4'''''.' i '*----- qp,itfaitOE --C-5- 1 - 1 - --- --- 9 .9k, , .TN. I 1 1 •••,- I ... I . •. 1..40 5 I : A., ffel'gRSIDE CO. - . VICINITY MAP . • NO SCALE . . ., . PURPOSE The purpose of this hydrological study is to investigate and evaluate the ultimate offsite drainage impact on Henry J. Kaiser High School. SITE CONDITION The site is located between Almond and Cherry Avenues, North of Jurupa Avenue in the City of Fontana. The subject site is squarely shaped, approximately 1,350 feet by 1,350 feet in size and relatively flat terrain slopping to the Southwest low point by less than 2%. The natural drainage is by sheet flow to the Southwest corner of the property. GENERAL DISCUSSION The offsite ultimate drainage area is divided into two drainage networks (per master drainage study). Almond and Cherry Avenues drainage areas. Portion of flood runoff emanating from these watersheds of approximately 194 and 193 acres enter the project site from Northwest and Northeast corners respectively. These two runoffs traversing the project site to the low point at Jurupa Avenue which is located at about 500 feet East of Almond Avenue. HYDROLOGY The method used to determine the 100 year offsite and onsite storm runoff tributary to the proposed school site is based on Rational Method of 1986 San Bernardino County Flood Control District Hydrology Manual. CONCLUSIONS Based on the studies and investigations made for this report it is concluded that: 1. The offsite 100 year flow rate tributary to the proposed Almond Avenue and Cherry Avenue storm drain system are 297 c.f.s. and 289 c.f.s. respectively. 2. Proposed street and storm drain improvements will provide the 100 year flood protection. 3. The storm drain facilities are planned to carry 25 year storm. During the 100 year storm the streets will contain considerable water, but will not prevent passage of vehicles. 4. Almond Avenue and Cherry Avenue storm drain systems will intercept 95% and 70% of 100 year run off respectively. _ ONSITE AND OFFSITE HYDROLOGY STUDY YDR OLo sru Fo (2 A L !r \ i Avg , 25 jL/ -P-- dzmigAiD 1q-V sr o DAN 7i*:**7K**************************K7K******W.71oI*** :**************K.7K7K*%*jk7k******* RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1966 SAN BERNARDINO CO. HYDROLOGY CRITERION) .*** PRELIMINARY/EXPERIMENTAL VERSION *** Copyright 1983,86,87 Advanced Engineering Software (aes) Ver. 4.16 Release Date: 2/20/67 Serial # BETA06 Especially prepared for: K BETA TEST SITE EVALUATION ONLY 1: ***.r******************a*** DESCRIPTION OF STUDY **::******a********»:mx:***** * HYDROLOGY' STUDY .FOR ALMOND AVE. STORM DRAIN AT NORTH WEST CORNER * OF HENRY J. KAISER HIGH SCHOOL O F F M IT I" IA- L 0 *******:3::i:** 1:*&3***Y At C:^'1': , r.1..7.1"„'..!.Y'P':.. ;.'k"4'3:.Z*01R:**1:k».: FILE TI`1E OFi E .: -11-i0''r 8::... 8/23/194 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---*TIME-OF-CONCENTRA:i'ION MODEL*-- USER SPECIFIED STORM EVENT(YEAR) = 25.00 SPECIFIED MINIMUM PIPE SIZEi INCH) = 36.00 SPECIFIED PERCENT OF GRAOIE?ITS(DECIMAL) TO USE FOR FRICTION SLOPE = .95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE = .6000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) 1.0600 :x**********1=***:K**Y'.:i***********K7::K*=.****;X=K-K'Y-.R:KX****.%=k'Y:*****=*****ac*****:X** FLOW PROCESS FROM NODE 625.00 TO NODE 625.10 IS CODE 2AT:L'NAL 7IETI- D I N I I IAL SUBAREA ANALYSIS.:‹-, - - NAL,„I • ,E'•'r_OPr.E? ; IS SINGLE FAMIL'( RESIDENTIAL . , DWELLINGS/ACRE ,E = :< .C;'_E±;STHx* 7.:0)/(EI.l`.ATION CNANGE)]*.K .20 SUOAREA F LC;w-LENGTh = 1000.00 LF STR-EAM ELEVATION - 1020.00 COAINSTREAK' ELE''iATIG1v = 1002.00 ELE/ATIGN DI rCr NLE .- 12.00 TC = _k0_:_i 1000-'70'x- 3.00),`( 10.00)]** .20 = 13.76'7 25 YEAR RAINFALL INTE)ISITY(INCH/HOUR) = 2.564 S I'_ C:R'==IF:CATIL4k1 .5 'A' RES:DENT:AL- S-i SWELLINGS/ACRE SUBAREA LOSS RATE. imt INCIVI.R) ,4050 SUBAREA PL4'IOFFt CFS = 16.71 TOTAL AREA(ACRES) = 10.00 PEAK FLOW RATE(CFS) 10,71 • ***a******iiia. t.:*x.s>;***************.=:r****K********************.****A'*.*-**K**:i: FLOW PROCESS FROM ){OOE 625.10 10 NODE 626.10 IS CODE = 6 >):, CCk'1JTE STREETFLOW TRAVELTIME THRU SUBAREA(«« LPSTREr 1 ELEVATION = 1002.00 DOWNSTREAM ELEVATION = 1000.00 STREET LENGTH(FEET) = 450.00 CURB HEIGTH(INCHES) = 6. yrW1t`T lr FEET) _•2().a0. x r r DISTANCE FROM CROWN TO CROSSFALL ERADEEREAK = 1.4.00 '.._ INTERIOR STREET CROSSFALL(DECIMAL) _ -020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 25.99 ***STREET FLOWING FULL*** STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB_ THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT :IS. ALL FLOW ALONG THE PARKWAY. ETC.. IS NEGLECTED. STREET FLOWDEPTH(FEET) .67 HALFSTREET FLOODWIDTH(FEET) = 20.00 AVERAGE FLOW VELOCITY(FEET/SEC.) 2.64 PRODUCT OF DEPTH&VELOCIT-f w 1.76 STREETFLOW TRAVELTIME.(MIN) = 2.85 TC(MIN) = 16.61 25 YEAR RAINFALL INTENSITY(INCH/HOUR) :- 2.290 SOIL CLASSIFICATION TS 'A" RESIDENTIAL- 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE. Frill INCH/HR) = .4860 SUBAREA AREA(ACRES) = 9.00 SUBAREA RUNOFF(CFS) m 14.62 EFFECTIVE AREA(ACRES) = 19.00 AVERAGED Frn(INCH/HR) _485 TOTAL AREA(ACRES) = 19_00 PEAK FLOW RATE(CFS) = 30.37 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .71 HALFSTREET FLDODWIDTH(FEET) = 20.00 FLOW VELOCITY(FEET/SEC.) = 2.70 DEPTHS*VELOCITY = 1.91 a..V1.1% :6;'k:irgett=k:1,.*Ik*:1:R::r::r,L3 :-W 4.4,16;?k4:4=t**t** *5r,:L'ocr{.x .k.k: aosim***7::MX:lr `:K'k. FLOW N Et ESS FROM NODE 626.10 TO NODE 627.10 IS CODE = 6 > '>COMPUTE STREETFLOW TRAVELTIME THRU SU3AREA«<<<. UPSTREAM ELEVATION . 1000.00 DOWNSTREAM ELEVATION :=- 998.00 STREET LENGTH(FEET) = 400_00 CURB HE.IGTH(INCHES) = 6. STREET HALFW.IDTH(FEET) = 20.00 CRf:4UT TO cRIISSLALL- 17,RAOCERE%:K - 12_00 I!: c SFi•;EE( .:FO'ESFELL(DECIMAL) .. .020 4:ROS S. (I L€iDEL[P'IAL) .040 SPECIFIED NUMBER OF HALFSTREET'E CARRYING RUNOFF W 4 kwTRAVELTIME COMPUTED USING MEAN FLOWCFS) = 37.53 ***STREET FLOWING FULL**'* STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. [NE FOLLOWING a1RE!ETFLOO RESULTS ARE EASED ON THE ASSUMPTION T1.AT NEGLIBLE FLOW OCCURS OUTSIDE 01 1HE STREET CHANNEL. HAT IS. ALL FLOW ALONG 'HIE PARKWAY. ETC.. IS NEGLECTED. STREET F LOWDEPTH(FE ET) ,. .72 HALFSTREET FL OODWIDTT (FEET) = 20.00 AVERAGE FLOW VELDCITY(FEET/SEC. ) zr 3.06 PRODUCT OF DEPTH&VELOCITY = 2.23 STREETF1. W 1RAVELTIME(MIN ) = 2.17 TC(MIN) - 18_76 25 YEAR RAINFALL INTENSITY(TNCH/HOUR) = 2.12.3 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA AREA(ACRES) = 9.00 SUBAREA RUNOFF(CFS) = 13.31 EFFECTIVE AREA(ACRES) = 28.00 AVERAGED Frn(INCH/HR) = .4€5 GNU WI- -DVIDriMICM I'ITL -1ULAI.J. .; DEPT-1(FEET) a .74 HALFSTREET FLOODWIDTH(FEET) = 20.00 FLOW VELOCITY(FEET/SEC:) = 3.19 DEPTH*VELOCITY = 2.37 FLOW PROCESS FROM NODE 627.10 TO NODE 628.10 IS CODE = 6 »"->COMPUT= STREETFLOW TRAVELTIME THRU SUBAREA««< UPSTREAM ELEVATION -x 998.00 DOWNSTREAM ELEVATION = 985.00 STREET LENGTH(FEET 1 a 900.00 CURB HEIGTH(INCHES) = 3. STREET I-IALFWIDTH(FEET) 24.00 DISTANCE FROM CROWN TO CROSSFALI._ ORADEEREAK = 16.00 INTERIOR STREET CFOSSFALL(DEC.IiMAL) -- .020 t1UTSIOE ITRcET CROSSFALL(DECIMAL) = .040 :;P'ECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFI - 2 kTF E 7ELTIME ;OM 1Ji;:O MEAN FLOM(CF ) •• I`).11 TRE E1 FL.'4 MODEL i E[ULTC- NOTE: STREETFLOW EXCEEDS TOP OF CURD. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT 'IEGLIBLE FLOW OCCURS OUTSIDE OP THE STREET CHANNEL. THAT IS. ALL FLOW ALONG THE PARKWAY, ETC.. IS NEGLECTED. STREET FLOWCE_PTH(FEET) = .75 HALFSTREET FLOODWIDTH(FEET) = 23.50 AVERAGE FLOW VELOCITY(FEET/SFC_) = 4.68 PRODUCT OF DEPTH&VELOCITY = 3.50 STREETFLOW TRAVELTIME(MIN) = 3.20 TC(MIN) = 21.99 2E YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.96 SOI:_ CLASSIFICATION IS "A" C;ESICENTIAL-: S-7 DWELLINGS/ACRE SUBAREA LOSS RATE. Frn(INCH/HR) = _4850 SUBAREA AREA(ACRES) = 27.00 SUBAREA RUNOFF(CFS) = 35.26 EFFECTIVE P-REA(ACRES) = 55.00 AvEAGEO ;n(INCH/HR) _ .485 AREA(ACRES) = 55.00 PEAK FLOW RATE(CFS) = 71.32 =r:;'• CF 7J8AREA 'STREETFLOW HYDRAULICS: HALFSTREET FLLll DW[OIHi FEET I = 24.00 c_CCI •i FEET:;CC. ) _ 5.29 CEPTH*VELOCI TY =• 4.07 z_x= :c.xs.x xr x:l:kx=k'k*****:K*i r.1 kx 1: 7=c:Y.c t-J::'k:t:k'X.Y:i::t-K:t.:k.k:?'i Y R1.'Y•Y::Y.:J::Y•'l:Y::K:K:K=X:�*.R:-K:k:Y.;k FROM NODE 628.1'D CO NODE 629..10 IS CODE = 3 . ,;=2 JTE PIPEFLOW TRAVELTIME THRU SUOAREA«« • :TING -=CMPUTER-ESTIMATE, PIFCSIZE (NON-PRESSURE i LOW)<<<<:< CE?TH CF FLEA) [N 36.0 INCH PIPE IS 27.0 INCHES PIF==LEY %'CLOCITY(FEET/SECC. i 12.6 LI -'=.E:M NCOE ELEVATION = ?0 Ci1..N STREAM NODE ELEVATION = 960.00 FLO,_ENG`:'.i( FEET) = 1700.00 MANN[MOO N = _1013 EST:.-SATES PIPE DIft)ETER(INCH) = 36.00 NUMBER OF PIPES ,r 1. P IPE ,.CLi T-R{J SUBAREA(CFS) = 71.82 T•r' '.E'_ TINE1MIN. I = 2.24 TC(MIN_ r . 24.23 r x.....%,..sxex..•KY*. *:t*.K*Y:*:Kx.* .k***.t** ::K**7c**:*x:*:w. ::R**:R**:**..*****:f:**1K*:#** FLOW PF CESS FROM NODE 628.10 TO NODE 629.10 IS CODE = 8 »»)1,ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<. SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4650 SUBAREA AREA(ACRES) = 55.00 SUBAREA RUNOFF(CFS) = 66.40 EFFECTIVE AREA(ACRES) = 110.00 AVERAGED Fm(INCH/HR) _ .465 TOTAL AREA(ACRES) = 110.00 PEAK FLOW RATE(CFS) = 132.80 TC(MIN) = 24.23 FLOW PROCESS FROM NODE 629.10 TO NODE 630.20 IS CODE = 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<c«c »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<«<. ------------------- DEPTH OF FLOW IN 18.0 INCH PIPE IS 36.7 INCHES PIPEFLOW VEL.00ITY(FEET/SEC.) = 12.9 UPSTREAM NODE ELEVATION = 960.00 DOWNSTREAM NODE ELEVATION = 946_00 FLCWLENGTH(FEET) = 1350.00 MANNINOS N = .013 ESTIMATED PIPE OIAMETER(INCH1 = 40_00 NUMBER OF PIPES = _ PIPEFLOW THRU SUBAREA(CFS) = 1:2.80 TRAVEL TIME(1•iIN. ) = 1.75 TC(MIN. ) . 25.97 x*T**'K**'********* *:J**3,Y*******:K*:*:Ic*=f:****:K**:-X=**:k*=l::K :*x:=k*****:l:* *.W.*X.*: *****:'K* FLOW PROCESS FROM NODE 629.10 TO NODE 630.20 IS CODE = 8 ----------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<< 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.752 =OIL CLASSIFICATION IS "A" RES_DENTIAL 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE. Prn(INCH/HR) = .4850 SUBAREA AREA(ACRES) - 30.00 SUBAREA RUNOFF(CFS) = 34.20 EFFECTIVE AREA(ACRES) = 140.00 AVERAGED Fm(INCH/HR) - .405 CI AREA(ACRES) = 140.00 P x< FLOW RATE(CFS) = 159.51 = 25.97 ENC _IF '.,TUOY SUMMARY: TOTAL `F A(ACRE ) • 1-10.00 :V AREA(ACRES) - 110.0;✓J =E�r FLOW "ATE(CFS) - 159.61 Er+G RATIONAL METHOD ANALYSIS I a7' r# r`x 4:+ W a iZreg•r`+i 'fc1[vr * r it l 4`3`ittWaae4U A;"`): r 7: **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) *** PRELIMINARY/EXPERIMENTAL VERSION *** Copyright 1983,86,87 Advanced Engineering Software (aes) Ver. 4.18 Release Date: 2/20/87 Serial # BETA06 Especially prepared for: * BETA TEST SITE EVALUATION ONLY * *.*** :**********k****** *** DESCRIPTION OF STUDY *.k*****;k***************:k** HYDROLOGY STUDY FOR ALMOND AVE.. STORM DRAIN SYSTEM ( ) * 0iJ c ( rc- 411b /_-0 L cc y 2s' y#c ,*********k**#**:k;'T*********'k****:k'* *******K*************„***4:**k.**** -_LE .4AME'. :S 5 .0AT :_gi l E OF ._ ;UOY: .LJ.l3 8/25/l994 USER 'SPECIFIC.: HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---#TIME-OF-CONCENTRATION MODEL4-- USER SPECIFIED STORM EVENT(YEAR) = 25.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 4 .00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE = .6000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 1.0600 sXX:kit*t***************.**:*************************:k***********************1 * OW =ROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE - 2 ,'.TIONAL METHOD INITIAL SUE=AREA ANALYSIS<«« = E _ TENT IS PUBLIC PARK ix[( LENGmH** 3.00)/(ELEVATION CHANGE)] ** .20 SUBAREA FLOW--LENGTH = S00.00 -R.STREAM ELEVATION = 962.00 3OwNS-SEAM ELEVATION = 942.70 ELEVATION DIFFERENCE = 19.30 .483*[( 800.00** 3.00)/( 19.30)1* k .20 = 14 .747 2S YEAR RAINFALL INTENSITY( INCH/HOUR) _ 2.460 C.J SSIFICATION IS "E” D' ELIC PARK SUBAREA LOSS RATE, Frn(INCH/HR) _ .6375 EuBAREA RUNOFF(CFS) = 10.66 ICS-AL AREA(ACRES) = 6.50 PEAK FLOW RATE(CFS ) 10.66 x***x***t***-***t***********:k******&*********k******K*********************** • FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE w: 3 >>>»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA(<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< DEPTH OF FLOW IN 18.0 INCH PIPE IS 14 .0 INCHES . _-. P , FLOW VELOCITY FEETl:.t c, l - WV,VIINOtI\Lnii iivur.. Li..rTrI .'.II ,.+. ..... FLOWLENGTH(FEET) = 35.00 _MANNINGS N = .011 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 10.66 TRAVEL TIME(MIN.) _ .08 TC(MIN.) = 14.83 **************************************************************************** FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 1 »»>DES.Ii3NATE INDEPENDENT STREAM FOR CONFLUENCE<<<« -------------- CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 14.83 RAINFALL INTENSITY (INCH../HOUR) = 2.45 EFFECTIVE STREAM AREA(ACRES) == 6.50 TOTAL STREAM AREA(ACRES) = 6.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.66 k*.* ;< C ** k*kx********kk**k********* k* :******:k*:k:k:k *.k:k:k:k****k*******.k FLOW PROCESS FROM NODE 14 .00 TO NODE 15.00 13 CODE = 2 >>>>>RAIIONAL METHOD INITIAL SUBAREA ANALYSIS<<K<< DEVELOPMENT IS SCHOOL TC = K*L(LENGTH** 3.00)/(ELEVATION CHANGE)]40* .20 INITIAL SUBAREA FLOW-LENGTH = 210.00 UPSTREAM ELEVATION = 949.50 DOWNSTREAM ELEVATION = 945.20 ELEVATION DIFFERENCE = 4.30 TC = .412*[( 210.00** 3.00)/( 4.30)]** .20 = 7.613 25 YEAR RAINFALL INTENSITY( INCH/HOUR) 7 3.658 SOIL CLASSIFICATION IS "B" SCHOOL SUBAREA LOSS RATE, Fm(INCH/HR) == .4500 SUBAREA RUNOFF(CFS) = 1.30 TOTAL AREA(ACRES) = .45 PEAK FLOW RATE(CFS) = 1 .30 *:Um *:x*.k**. ,k*;;:k14 :k.,,:f:**'k:Fm•k*;k*.,.. ,y:r;k;x:R:k*,.x:;k*'k:k*r*�::x:k.. .;x*.,:•.x*:k*:k*k:k;•* •*:k. . FLOW PROCESS FPOM M'::)DE 15.00 TO NODE 16.00 IS CODE ._ 3 ?[PEFLOW TRAVELTIME THRU SUBAREAK<< ' >>IJSING COMPUTER--ESTIMATED PIPESILE (NON-PRESSURE FLOiW)< < < DEPTH OF FLOW IN 9.0 INCH PIPE IS 6.1 INCHES PIPEFLOW VELOCITY( FEET/SEC, ) = 4 .1 UPSTREAM NODE ELEVATION = 942.10 DOWNSTREAM NODE ELEVATION = 940.90 FLOWLENGTH( FEET) = 165.00 MANNINGS N = .011 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES - 1 PIPEFLOW THRU SUBAREA(CFS) = 1.30 TRAVEL TIME(MIN.) = .67 TC(MIN, ) = 8.28 **************************'*****************.*********************:************ FLOW PROCESS FROM NODE 15.00 TO NODE 16.00 IS CODE = 8 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.477 SOIL CLASSIFICATION IS "B" SCHOOL SUBAREA LOSS RATE, Frn(INCH/HR) = .4500 SUBAREA AREA(ACRES) .. i3 SUBAREA RUNOFF(CFS) 735 TOTAL AREA(ACRES) = .58 PEAK FLOW RATE(CFS) = 1.58 TC(MIN) = 8.28 *************.K*************************Ic****************:K******************* FLOW PROCESS FROM NODE 16.00 TO NODE 13.00 IS CODE = 3 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<«« DEPTH OF FLOW IN 9.0 INCH PIPE IS 4 .9 INCHES PIPEFLOW VELOCITY(FEET/SEC. ) = 6.5 UPSTREAM NODE ELEVATION = 940.90 DOWNSTREAM NODE ELEVATION = 939.30 FLOWLENGTH(FEET) = 75.00 MANNINGS N = .011 ESTIMATED PIPE DIAMETER( INCH) = 9.00 NUMBER OF PIPES = 1 P1PEFLOW THRU SUBAREA(CFS) = 1.58 TRAVEL TIME( MI ' . ) - TC( rif ) = 8.48 r *,:. a::k*** **Ic:;:.K:K*•k***k F*** * ** K********** =*****.r****** ***************** FLOW PROCESS FROM MODE 16.00 TO NODE 13.00 IS CODE -- 8 >>>>>AOD1TION OF SUBAREA TO MAINLINE PEAK FLOW«<<< 25 YEAR RAINFALL INTENSITY( INCH/HOUR) = 3.430 SOIL CLASSIFICATION IS "8" SCHOOL SUBAREA LOSS RATE, Fm(INCH/HR) _ .4500 SUBAREA AREA(ACRES) _ .06 SUBAREA RUNOFF(CFS) _ .16 EFFECTIVE AREA(ACRES) _ .64 AVERAGED Fm(INCH/HR) _ .450 TOTAL AREA(ACRES) _ .64 PEAK FLOW RATE(CFS) = 1.72 TC( MIN) = 8.48 *******:k******n.K********:k***.* *********K***:k****k****:K***:k*:K**************** FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 1 ' : '> ;1:.::T�;P•1i11"E I JEFF Dc. ; STREAM FOR OCLUEE <<K �N0 COMPUTE= VARIDUS CONFLUENCE° STREAM VALUES««K VALUES USED FOR INDEPENDENT STREAM 2 ARE : C' CONCENTPATION(MINUTES) -- 8.48 RAINFALL INTENSITY ( INCH./HOUR) _ 3.43 EFFECTIVE STREAM AREA(ACRES ) -= .64 ;CJAL STREAM AREA(ACRES) = .64 PEAK FLOW RATE(CFS') AT CONFLUENCE = 1.72 NFL_U:ENCE INFORMATION: 3TREAr1 PEAK FLOW TIME INTENSITY FM EFFECTIVE NL iBEP RATE(CFS ) (MIN. ) (INCH/HOUR) ( IN/FIR) AREA(ACRES) 10.66 14.83 2.452 .64 6.50 2 1.72 3.48 3.130 .45 .64 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) 1 11.82 7.14 .__ ; .�fi7�:s Ai GJ7 Ck.a+ u�wuku we'a'a" ' �s 3 �b2k}i`..:•...._ PEAK FLOW RATE(CFS) = 11.82 TIME(MINUTES) 14.827 EFFECTIVE AREA(ACRES) = 7.14 TOTAL AREA(ACRES) = 7.14 **************************************************************************** FLOW PROCESS FROM NODE 13.00 TO NODE 40.00 IS CODE = 3 -- ----------- > >:>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA«<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ---- -- ---------------- DEPTH OF FLOW IN 18.0 [NCH PIPE IS 13.8 INCHES PIPEFLOW VELOCITY(FEET/SEC- ) = 8.1 UPSTREAM NODE ELEVATION = 939.30 DOWNSTREAM NODE ELEVATION = 935.90 FLOWLENG I H( FEET) = 310.00 MANNINGS N = .011 ESTIMATED PIPE DIAMETER( INCH ) =- 18.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 11.82 TRAVEL TIM,_(iMI M. ) = .63 TC(MIN. ) = 15.46 k*:i:* *****.*** K*'K***r*'; ****:*****ki ***;:*k* **M******************k** **** FLOW PROCESS FROM NODE 13.00 TO NODE 40.00 IS CODE = 8 >»»ADDITIO. OF SUBAREA TO MAINLINE PEAK FLOW< <<<< 25 YEAR RAINFALL INTENSITY(INCH/HOUR) =. 2.391 SOIL CLASSIFICATION IS "8" SCHOOL SUBAREA LOSS RATE, Frn(INCH/HR) _ .4500 SUBAREA AREA(ACRES) = 4.80 SUBAREA RUNOFF(CFS) = 8.39 EFFECTIVE AREA(ACRES) 11.94 AVERAGED Frn(INCI-I/HR) _ .552 TOTAL AREA(ACRES) = 11.94 PEAK FLOW RATE(CFS) _• 19.76 TC(MIN) = 15.46 *****:It*******KA•il* *.KM.i`M* . ' *.ih*:k:*:i;** *********************r****'** FLOW PROCESS FROM NODE 17.00 TO NODE 18.00 IS CODE = 2 >. : RA riONAl_ M:THO0 SUBAREA ANALYST S< . . << DEVELOPMENT 13 COMMERCIAL TC = K*[( LENGTH-*i, 3.ohl )/( .LEVAT ION CHANGE)]CHANGE)U, k .20 INITIAL SUBAREA FLOW-LENGTH = 170.00 UPSTREAM ELEVAIION = 9.46.80 DOWNSTREAM ELEVATION 943.50 ELEVATION DIFFERENCE = 3.30 TC = .304*[( 170.00** 3.00)/(. 3.30))" .20 = 5.217 25 YEAR RAINFALL [MIENSI IY(( INCH/HOUR) = 4 .589 SOIL CLASSIFICATION IS "8" COMMERCIAL SUBAREA LOSS RATE, Fm( INCH/HR) _ .0750 SUBAREA RUNOFF(CFS) _ 1.71 TOTAL AREA(ACRES) = .42 PEAK FLOW RATE(CFS) = 1.71 ********k*********t kk******k****************************************k******* FLOW PROCESS FROM NODE 18.00 TO NODE 19.00 IS CODE = 3 >>>»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »> >USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)«<« DEPTH OF FLOW IN 12.0 INCH PIPE 15 7. 1 INCHES • 4�s ._..i a rE 2,-:UPtTIE15.01 NODE ELEVATION-=, 941.81 T-DOWNSTREAM NODE ELEVATION = ``941.17 F . TH(FEET) c 110,00 MANNINGS N 7: .011 ESTIMATED PIPE DIAMETER(INCH) = 12'00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 1.71 TRAVEL TIME(MIN.) c .52 TC(MIN.) = 5.74 *************************************************m**********m*****m*******w* FLOW PROCESS FROM NODE 18.00 TO NODE 19.00 IS CODE = 8 ----_-_- _-----_-- - - >>>/>ADOlTI0N OF SUBAREA TO MAINLINE PEAK FLOW<<<(< --_- - ---__--�����-----�-_---' �--_---�==�����-_ 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.335 SOIL CLASSIFICATION IS ^B^ COMMERCIAL SUBAREA LOSS RATE, Fm( INCH/HR) = .0750 SUBAREA AREA(ACRES) = .58 SUBAREA RUNOFF(CFS) = 2.22 EFFECTIVE AREA(ACRES) 7 l'OO AVERAGED Fm(THCH/HR) = '075 TOTAL AREA(ACRES) = 1,00 PEAK FLOW RATE(CFS) = 3.83 TC(MIH) = 5. 74 **4:*`***;-11**********************=*****m**** *** K*****************t*********** FLOW PROCESS FROM NODE 19'00 TO NODE 20'00 IS CODE = 3 - »..,»C0nPUT[ PlP6Fu]W TRAV2LTlME THRU 3UBAREA<<«< »,//USING COMPUTER-ESTIMATED PIPESILE (NON-PRESSURE FLOW)((“( �------'-���---_-----�-__-_-���=_-'----= _--_--__ DEPTH OF FLOW IN 16'0 INCH PIPE IS 8.8 INCHES PIPEFLOW VELOCI [Y(FEE7/SEC' ) = 5.1 UPSTREAM NODE ELEVATION = 941.17 O0'vMSTREAM MODE ELEVATION = 940.00 FLOWLEHGTH(FEET) : 185.00 MANHINGG N = .011 ES71MATEO PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 3.83 TRAVEL TIMC(HIi1' ) = .60 TC(iilH ) = 6 .34 itt^*, ******io:** ;:*******«**o4 **** * ***4t******************t*********** FLOW PROCESS FROM NODE 19 .00 TO NODE 20'00 IS CODE = 8 ; :.? Ai-,OITION OF SUBAREA TO MAINLINE PEAK FLDW<<(« ----- �=������-----��z���������c���������c����������������������� 25 YEAR RAINFALL [NTEN3ITY( INCH/HUUR) = 4'083 SOIL CLASSIFICATION IS ^B^ COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = '0750 SUBAREA AREA(ACRE3) = .36 SUBAREA RUNOFF(CFS) = 1'30 EFFECTIVE AREA(ACRES) = 1.36 AVERAGED Fm([NCH/HR) .075 TOTAL AREA(ACRE3) = l'J^ PEAK FLOW RATE(CFS) = 4'91 TC( MIN) = 6.34 `***t***v***************************v*****v********************************* FLOW PROCESS FROM NODE 20'00 TO NODE 20.00 IS CODE = l --------- -----____----__---___-__--_-_--_'--_------_-- ›»»DESlGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ----_- - ---- - -----_-- CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) 6.34 RAINFALL INTENSITY ( INCH./HOUR) 4.08 EIFfCI[VE STREAM ARFA(ACRE8 ___�� ' rLnr�. ' LAITY IlnlL'VI vJ *****A*A AAA******A*****AAA**A***AA****A*.kik*A***AAAAA*A****AAA**A***A****A*A FLOW PROCESS FROM NODE 21.00 TO NODE 22.00 IS CODE = 2 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<(< DEVELOPMENT IS COMMERCIAL TO = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH .= 150.00 UPSTREAM ELEVATION = 944.00 DOWNSTREAM ELEVATION = 942 .40 ELEVATION DIFFERENCE = 1.60 TC = .,304A[( 150.00* k 3.00)/( 1..60)]1* .20 = 5.594 25 YEAR RAINFALL INTENSITY( INCH/HOUR) = 4.401 SOIL CLASSIFICATION IS "8" COMMERCIAL SUBAREA LOSS RATE, Frnf INCH/HR) _ .0750 •UBAREA RUNI:OFF(Cf S) = rcT iL .1PEAt ACRES ) - .45 PEAK FLOW RATE(CFS) z 1.75 K*k K_k'**i** I:**.*k k***:I:.i**'***A*k*AA*41c**.k k*rA** n**A*'KA*****10:**k*************A FLOW PROCESS FROM NODE 22.00 TO NODE 20.00 IS CODE = 3 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<< < DEPTH OF FLOW IN 9.0 INCH PIPE IS 5.9 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 5.7 UPSTREAM NODE ELEVATION = 941.00 DOWNSTREAM NODE ELEVATION = 940.00 FLOWLENGTH(FEET) = 70 .00 MANNINGS N 7 .011 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 1.75 TRAVEL TIME(MIM. ) _ .21 TC(MIN.) = 5.80 :M“.ttl4 tmmkkt**"F**** *******•k*:kT'k*;k**k*.k******AAA*A******'AAA**'1(*********,k*A* FLOWPROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 1 !SEST. i�(�TE TNOEPENDENT STREAM FOR CONFLUENCE<<<<: ANO. CON-UTE VARIOUS CONI=LU :CED STREAM VALUES<<<<:< TONF L IE 10E VALUES USED FOR INDEPENDENT STREAM 2 ARE _ TIME OF CONCENTRATION(MINUTES) -_ 5.80 RAINFALL IN IENSI TY (INCH. /'HOUR) = 4 .31 EFFECTIVE SIiEAM AREA(ACRES) = .45 TOTAL STREAM AREA(ACRES) _ .45 PEAK FLOW RATE(CFS) AT CONFLUENCE _ 1.75 CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN. ) ( INCHlk UR) (IN/HR) AREA(ACRES) 4 . 91 6.34 1 .063 .08 1.36 2 1. 75 5.80 1 . 307 .08 .45 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS. PEAK FLOW RATE(CFS) = - 6.57 TIME(MINUTES) = 6.339 EFFECTIVE AREA(ACRES) = 1.81 TOTAL AREA(ACRES) = 1.81 ********************.*****************=K.************************************** FLOW PROCESS FROM NODE 20.00 TO NODE 23.00 IS CODE = 3 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.9 INCHES PIPEFLOW VELOCITY(FEET/SEC. ) = 5,3 UPSTREAM NODE ELEVATION = 940.00 DOWNSTREAM NODE ELEVATION = 939.40 FLOWLENGTH(FEET) = 122.00 MANNING3 N = .011 ESTIMATED PIPE DIAMETER( INCH ) = 13.00 NUMBER OF PIPES ' 1 PIPEFLOW THRU SUBAREA(CFS) =• 5.57 TR;-,VEI. TIME(MIN. ) _ .38 TC(MIN. ) - 6.72 '41tI4 Kt:t:ti 1.** ktg**** **K*1:** **n*itAl t*4** KK*******4*t**t* .A*** ***Y *«t< KF FLOW PROCESS FROM NODE 20.00 TO NODE 23.00 IS CODE -= 8 >>>>>AODITION OF SUBAREA TO MAINLINE PEAK FLOW«<« ------------------------ 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.942 SOIL CLASSIFICATION IS "8" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0750 SUBAREA AREA(ACRES) _ .64 SUBAREA RUNOFF(CES) = 2.23 EFFECTIVE AREA(ACRES) = 2.45 AVERAGED Fm(INCH/HR) _ .075 TOTAL AREA(ACRES) = 2.45 PEAK FLOW RATE(CFS) = 8.53 TC(MIN) = 6.72 Kt* *** K***'K*************:; **'l*"* **mi.*''K *'***'KK*'nk'K'K*'K*-K*tc*,K***'K'KK'K F'_OW PROCESS FROM NODE 23.00 TO NODE 23.00 IS CODE _ 1 ) m0ESIGMATE INDEPENDENT STREAM FOR CONFLUENCE< <I:< OONFLUEN:E VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OFCONCENTRATION(MINUTES) 6.72 PAIN ALL INTENSITY (INCH./HOUR) = 3.94 EFFECTIVE STREAM AREA(ACRES) - 2 .45 TOTAL STREAM AREA(ACRES) = 2.45 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.53 ************************•' K***********t.K***'K**;K:K**********''*********-K**'T**** FLOW PROCESS FROM NODE 17.00 TO NODE 24 .00 IS CODE = 2 >> 'RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH** 3.00)/(ELEVATION CHANCE)]** .20 INITIAL SUBAREA FLOW-LENGTH = 102.00 UPSTREAM ELEVATION = 946.80 DOWNSTREAM ELEVATION = 946.10 ELEVATION DIFFERENCE _ .70 TC = .304*1 ( )02.00$* 3.00)/( 70)]** .20 = 5.236 .. .. _ ' - ply Citi• 'S•'`i. .y I.-.' . SOIL. CLASSIFICATION IS B COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) _ .0750 SUBAREA RUNOFF(CFS) 1.05 TOTAL AREA(ACRES) = .26 PEAK FLOW RATE(CFS) = 1.05 ******************************************1K***:****************************** FLOW PROCESS FROM NODE 24.00 TO NODE 25.00 IS CODE = 3 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<"<< DEPTH OF FLOW IN 9.0 INCH PIPE TS 5.1. INCHES PIPEFLOW VELOCITY(FEET/SEC. ) = 4.1 UPSTREAM NODE ELEVATION = 945.25 DOWNSIREAM NODE ELEVATION = 945.00 FLOWLENGTH( FEET) = 30.00 MANNINGS N _. .011 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIKE-LOW THRU SUBAREA(CFS) = 1.05 iR,= :EL fIMf_(M.1N. ) - .12 TC(MIN. ) - 5.36 t**;;t*a kit r*:K:K k:k**:K:K**'k:kt K*K*******.*:K******K*K * K:K*:KFC****KK*1K*K**DK K X K* ***** FLOW PROCES: FROM NODE 24.00 TO NODE 25.00 IS CODE 7. 8 >; > >> 100I I [ON OF SUBAREA TO MAINLINE PEAK FLOW<<<« 25 YEAR RAINFALL INTENSITY(INCH/HOUR) _. 4.517 SOIL CLASSIFICATION IS "8" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) _ .0750 SUBAREA AREA(ACRES) _ .05 SUBAREA RUNOFF(CFS) =. .20 EFFECTIVE AREA(ACRES) = .31 AVERAGED Fm(IHCH/HR) = .075 TOTAL AREA(ACRES) _ .31 PEAK FLOW RATE(CFS) 1.24 TC(MIN) = 5.36 *K K *"$: t *.i(:(*Kt *4:**4:*****-**:K******,K********;K F** . KFC{;:K K K Kit r"***:K•n*K *K'k*** FLOW F00533 FROM NODE 25.00 TO NODE 26.00 13 CODE = 3 >CCMPUTE P1PEFLO'4J TRAVELTIME THRU SUBAR.EA<< <<:< > >U3[NO COMPUTER-ESTIMATED PIPESIZE ( NON-PRESSURE FLOW)<<<<< DEPTH OF FLOW IN 9.0 INCH PIPE IS 6. 1 INCHES PIPEFLOW VELOCITY( FEET/SEC. ) = 3.9 UPSTREAM NODE ELEVATION = 94,00 DOWNSTREAM NODE ELEVATION 7 944.80 FLOiWLENGTH( FEET) = 30.00 MANNINGS N = .011 ESTIMATED PIPE DIAMETER( INCH ) = 9.00 NUMBER OF PIPES :.. 1 PIPE_FI_OW THRU SUBAREA(CFS) = 1.24 TR„VEL TIME( MIN. ) = .13 TC(MIN. ) = 5.49 **K*.***;;*****K**K************ K****** K*******i,:K'k*k•k** **:KIK*it**i:*.*************** FLOW PROCESS FROM NODE 25.00 TO NODE 26.00 IS CODE = 8 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«<<< R^T^25 YEAR RAINFALL INTENSITY(INCH/HOUR) =- 4 ,453 SOIL CLASSIFICATION IS "B" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0750 SUBAREA AREA(ACRES) = .13 SUBAREA RUNOFF(CFS) _ .51 EFFECTIVE AREA(ACRES) _ .44 AVERAGED Fm( INCH/HR) = .075 `�� TC(M(N) = 5.49 ******************** C*******************K*********************************** FLOW PROCESS FROM NODE 26„00 TO NODE 27.00 IS CODE = 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA«(<< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<«< DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.4 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 4.1 UPSTREAM NODE ELEVATION = 944.80 DOWNSTREAM NODE ELEVATION = 944.60 FLOWLENGTH(FEET) .. 35.00 MANNINGS N = .011. ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES 1 PIPEFLOW THRU SUBAREA(CFS) = 1.73 TRAVEL TIME(MIN.) _ .14 TC(MIN.) = 5.63 Tn*4.*kT'k k;K kic*:k k******K*K*****************4ft*#*K*****K**1(**m***K K * KKK* 'K k FLOW PROCESS FROM NODE 26.00 TO NODE 27.00 IS CODE = 8 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK ELOWc«<< 25 YEAR RAINFALLINTENSITY(INCH/HOUR) = 4.385 SOIL CLASSIFICATION IS "B" COMMERCIAL SUBAREA LOSS RATE, Frn( INCH/HR) = .0750 SUBAREA AREA(ACRE3) _ .06 SUBAREA RUNOFF(CFS) = .23 EFFECTIVE AREA(ACRES) _ .50 AVERAGED Fm(INCH/HR) _ .075 TOTAL AREA(ACRES) _ .50 PEAK FLOW RATE(CFS) = 1,94 TC(MIN) = 5.63 T***************`-K****n*.F****'F**.K***K******************%K**-K*****************:k FLOW PROCESS FROM NODE 27.00 TO NODE 28.00 IS CODE _ 3 >>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< : ::›:USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE F!_OW)<"<< DEPTH OF FLOW [N 1.2.0 INCH PIPE IS 6.1 INCHES PIPEFLOI4. VELOCITY( FEET/SEC. ) = 4 .9 UPSTREAM NODE ELEVATION = 944 .60 DOWNSTREAM NODE ELEVATION = 944.00 FLOWLENGTH(FEET) = 70.00 MANNINGS N = .011 ESTIMATED PIPE. DIAMETER(INCH) = 12.00 NUMBER OF PIPES PIPEFLOW THRU SUBAREA(CFS) = 1 .94 TRAVEL TIME(MIN. ) _ .24 TC(MIN. ) = 5.87 *a*:K*:k******mt***K***;K**********:K***** **:K*******'K**K*4:**k******K***** FLOW PROCESS FROM NODE 27.00 TO NODE 28.00 IS CODE = 8 >:>>>ADDTTION OF SUBAREA TO MAINLINE PEAK FLOiiJ<«« 25 YEAR. RAINFALL INTENSITY(INCH/HOUR) = 4.276 SOIL CLASSIFICATION IS "8" COMMERCIAL SUBAREA LOSS RATE, Fm( INCH/HR) _ .0750 SUBAREA AREA(ACRES) _ .47 SUBAREA RUNOFF(CFS) = 1.78 EFFECTIVE AREA(ACRES) = .97 AVERAGED Fm(INCH/HR) _ .075 TOTAL AREA(ACRES) _ .97 PrAK FLOW RATE(CFS) - 3.67 *************************** *************************** ****g*****k';**** *** FLOW PROCESS FROM NODE 28.00 TO NODE 31.00 IS CODE = 3 >>>»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA«<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.6 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 4.4 UPSTREAM NODE ELEVATION z 944.00 • DOWNSTREAM NODE ELEVATION = 943.80 FLOWLENGTH( FEET) = 45.00 MANNINGS N = .011 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 3.67 TRAVEL TIME(MIN. ) _ .17 TC(MIN. ) = 6.04 ***** ** *** ******Xt**:k*********K *:K **„***•K****n*** *****************'K*** FLOW PROCESS FROM NODE 28,00 TO NODE 31.00 IS CODE = 8 >>. r )ADOITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<'. 25 YEAR RAINFALL IN1ENSITY( INC / OUR) :_. 4.204 SOIL CLASSIFICATION IS "0" COMMERCIAL SUBAREA LOSS RATE, Fm( INCH/HR) _ .0750 SUBAREA AREA(ACRES) _ .39 SUBAREA RUNOFF(CFS) x 1.45 EFFECTIVE AREA(ACRES) = 1.36 AVERAGED Fm(INCH/HR) _ .075 TOTAL AREA(ACRES) = 1.36 PEAK FLOW RATE(CFS) = 5.05 TC(MIN) = 6.04 ***************** k*****k ******* **t******************k*****1<*`T':***K: ****** FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS CODE = 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<< <« >>>>>USING COMPUTER-ESTIMATED P[PESIZE ( NON--PRESSURE FLOW)««< DEPTH OF FLOW IN .7.5..0 INCH PIPE IC 10.6 INCHES PrPLIFLO'H VELOCITY(FEET/SEC. ) - 5.: UPSF L ON NODE ELEVATION - 943.50 DOWNSTREAM NODE ELEVATION = 943.40 FLOWLEiNGTH( FEET) 7 62.00 MANNIN03 N _ .011 ESTIMATED PIPE DIAMETER(INCH) = 15.00 HUMBER OF PIPES = 1 PIPEFLOW TI•IRU SUBAREA(CFS) = 5 .05 TRAVEL T1ME(MIN. ) _ .1? TC(MIN. ) = 6.23 ***********'k*i(** *4***'6kyr:*k* ******k=k****Kk*g* *k*** *** **K********* K**** FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS CODE = 8 >>>>>•ADOITIOH OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4 .127 SOIL CLASSIFICATION IS "3" COMMERCIAL SUBAREA LOSS RATE, Fin(INCH/HR) = .0750 SUBAREA AREA(ACRES) = .15 SUBAREA RUNOFF(CFS) _ .55 EFFECTIVE AREA(ACRES) = 1.51 AVERAGED Fm(INCH/HR) _ .075 TOTAL AREA(ACRES) = 1.51 PEAK FLOW RATE(CFS) = 5.51 TC(MIN) = 6.23 TTTTTTT-mm _ rnmmm•n ., _ _ m . � rm � rr.rn . . _ _ FLOW PROCESS FROM NODE 32.00 TO NODE 33.00 IS CODE = 3 >>»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<«< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<[<<( DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.2 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 7.0 UPSTREAM NODE ELEVATION = 943.40 DOWNSTREAM NODE ELEVATION = 943.00 FLOWLENGTH(FEET) = 35.00 MANNINGS N = .011 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 5.51 TRAVEL TIME(MIN. ) _ .08 TC(MIN.) = 6.31 *:k =*k**********************4***4**********-k***'k***4.4:4.4.*:.**k*******4k*4.4.44.4.**:k FLOW PROCESS FROM NODE 32.00 TO NODE 33.00 IS CODE = 8 >>> >>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 25 YEAR RAINFALL INTENSIT'Y( INCI /HOUR) = 4.094 SOIL CLASSIFICATION IS "B" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) _ .0750 SUBAREA AREA(ACRES) _ .21 SUBAREA RUNOFF(CFS) -. .76 EFFECTIVE AREA(ACRES) = 1.72 AVERAGED Fm( INCH/HR) _ .075 TOTAL AREA(ACRES) = 1.72 PEAK FLOW RATE(CFS) = 6.22 TC(MIN) = 6.31 **4*4K**********:k****:k*4k**k*******...4*;E****:k***- I:k*********:k*************:k:.*'k FLOW PROCESS FROM NODE 33.00 TO NODE 23.00 IS CODE = 3 >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA«<<< »>»USING COMPUTER-ESTIMATED PIPESIZE (NON -PRESSURE FLOW)<<. DEPTH OF FLOW IN 12.0 INCH PIPE IS 9.3 INCHES PIPEFLOW VELOCITY(FEET/SEC. ) = 9.5 UPSTREAM NODE ELEVATION = 943.00 DOWNSTREAM NODE ELEVATION = 939.50 FLOWLENGTH(FEET) = 137.00 MANNING3 N = .011 ESTIMATED PIPE DIAMETER( INCH) _= 12.00 NUMBER OF PIPES := 1 PIPEFLOW THRU SUBAREA(CFS) = 6.2: TRAVEL TIME(MIN. ) M .24 TC( MIN. ) ' 6.55 K****:k******* y*.k4*4k**k****'k**:t*•h*.4.444.* 4.4.***********44.*4*4.****:k**4K**i *k**** FLOW PROCESS FROM NODE 23.00 TO NODE 23.00 IS CODE = 1 >>>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<t CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 6.55 RAINFALL INTENSITY ( INCH./HOUR) = 4,.00 EFFECTIVE STREAM AREA(ACRES) = 1.72 TOTAL STREAM AREA(ACRES) = 1.72 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.22 CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN. ) (INCH/HOUR) (IN/HR) AREA(ACRES) .r . Vi + ,3� , "$' { •'• ' , 4. RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) 1 14.65 4.17 2 14.66 4.11 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 14.66 TIME(MINUTES) = 6.552 EFFECTIVE AREA(ACRES) = 4.11 TOTAL AREA(ACRES) = 4.17 K *******:K****:K******:K**************'k*****:k***' -k******'K******************** FLOW PROCESS FROM NODE 23.00 TO NODE 34 .00 IS CODE = 3 >>>> >COMPUTE PIPEFLOW TP.AVELTIME THRU SUBAREA<<<;<( . .) -,USING COMPUTER-ESTIMATED PIPESIZE ( NON-PRESSURE FLOW)«<<< DEPTH OF FLOW IN 24.0 INCH PIPE 13 15 .9 INCHES PIPEFLOW VELOCITY( FEETISEC. ) = 6.6 UPSTREAM NODE ELEVATION = 939.50 DOWNSTREAM NODE ELEVATION = 939.20 FLOWLENGTH(FEET) = 57.00 MANNINOS N =: .011 ESTIMATED PIPE DIAMETER( INCH) = 24.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 14.66 TRAVEL TIME(MIN.) _ .14 TC(MIN. ) = 6.69 *:K ****r**:K ***************************************-K*********************** FLOW PROCESS FROM NODE 34.00 TO NODE 34.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< -CONFLUENCE VALUES USED FOR. INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 6.69 RAINFALL INTENSITY (INCH./HOUR) = 3.95 EFFECTIVE STREAM AREA( ACRES ) ._ 4 . .i-1 TOTAL STREAM APED( ACRES) - 1 . 17 PEAK FLOW PATE(CFS) AT CONFLUENCE = 14 .66 .,.. 4< **********m:K:;*(K** ** :K*.K*=KW:K*i Ict K H****.1*:{: K:K M r*:K**:0c1:T* k K***-k********T FLOW PROCESS FROM NODE 35 .00 TO NODE 36.00 13 CODE = 2 »>>>RDTIONAL METHOD INITIAL SUBAREA ANALYS: IS<<<<K DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH = 170,00 UPSTREAM ELEVATION _= 947.00 DOWNSTREAM ELEVATION = 943.30 ELEVATION DIFFERENCE = 3.70 TO = .304*[( 170.00** 3.00)/( 3.70)]** .20 = 5.099 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4 .653 SOIL CLASSIFICATION IS "B" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) _ .0750 SUBAREA RUNOFF(CFS) = 1.90 TOTAL AREA(ACRES) _ .46 PEAK FLOW RATE(CFS) = 1.90 . »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<(«< »>>>USING COMPUTER-ESTIMATED PIPESIZE (NON=PRESSURE FLOW)<<«< DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.6 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 4.3 UPSTREAM NODE ELEVATION = 941.90 DOWNSTREAM NODE ELEVATION = 941.20 FLOWLENGTH(FEET) = 110.00 MANNINGS N = .011 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 1.90 TRAVEL TIME(MIN. ) .42 TC(MIN. ) = 5.52 ********.K******;K** *******************************************;************** FLOW PROCESS FROM NODE 36.00 TO NODE 37.00 IS CODE = 3 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 25 RAINFALL INTENSITY( INCHIHOUR) ::. 4 .435 SOIL CLASSIFICATION IS "3" COMMERCIAL SUBAREA LOSS RATE, Ftn(INCH/HP) = .0750 SUBAREA AREA(ACRES) _ .58 SUBAREA RUNOFF(CFS) == 2.28 EFFECTIVE AREA(ACRES) r 1.04 AVERAGED Frn(INCH/HR) = .075 TOTAL AREA(ACRES) _ 1.04 PEAK FLOW RATE(CFS) = 4.08 TC(MIN) = 5.52 ********#*•1' ***************************************************************** FLOW PROCESS FROM NODE 37.00 TO NODE 34.00 IS CODE - 3 >>>»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< DEPTH OF FLOW IN 12.0 INCH PIPE IS 8.3 INCHES PIPEFLOW VELOCITY( FEET/SEC. ) -= 6.6 UPSTREAM NODE ELEVATION = 941.20 DOWNSTREAM NODE ELEVATION = 939.15 F LO W L E NG T H(F E E T) = 165 .00 MANN I N G S N .011 ESTIMATED PIPE DIAMETER( INCH) = 12.00 NUMBER OF PIPES = 1 PIPEFLN. THRU SUBAREA(CFS) - 4.08 TRAVEL TTME(HTN. ) _ .42 TC(MIN. ) .= 5.94 **•K*********;K**********'*******.*************.**********;K*****;K'K*************.** FLOW PROCESS FROM NODE 34 .00 TO NODE 34.00 IS CODE = 1 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« >>>>>ANO COMPUTE VARIOUS CONFLUENCEO STREAM VALUES«<« CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 5.94 RAINFALL INTENSITY (INCH./HOUR) _' 4.24 EFFECTIVE STREAM AREA(ACRES) w 1.04 TOTAL STREAM AREA(ACRES) = 1.04 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4 .08 CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN. ) (INCH/HOUR) (IN/HR) AREA(ACRES) --------------- 1 14.66 6.69 3.952 .08 4.11 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) 1 18.46 5.15 2 18.08 4.69 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CF3) = 18.46 TIME(MINUTES) = 6.694 EFFECTIVE AREA(ACRES) = 5.15 TOTAL AREA(ACRES) m, 5.21 k********************:k*******************************************fit*******4K* FLOW PROCESS FROM NODE 34.00 TO NODE 38.00 IS CODE = 3 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<«< >>>>>USING COMPUTER-.-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)< '<<< DEPTH OF FLOW IN 18.0 INCH PIPE IS 1.2.3 INCHES PIPEFLOW VELOCITY( FEET j SEC. ) = 11 .3 UPSTREAM NODE ELEVATION = DOWNSTREAM NODE ELEVATION - 935.90 FLOWLENGTH(FEET) = 92.00 MANNINGS N = .011 ESTIMATED PIPE DIAMETER( INCH) = 18.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 18.46 TRAVEL TIME(MIN. ) = .11 TC(MIN.) = 6.80 **************************************************************************** FLOW PROCESS FROM NODE 34.00 TO NODE 38.00 IS CODE = 8 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<« y _ 25 YEAR RAINFALL INTEN;SITY(INCH/HOUR) = 3.914 SOIL CLASSIFICATION 13 "3" COMMERCIAL SUBAREA LOSS RATE, Fin(INCH!HR) .0750 SUBAREA AREA(ACRES) = .25 SUBAREA RUNOFF(CFS) _ .36 EFFECTIVE AREA( ACRE`S) = ").40 AVERAGED Frn( I NCH/HR) _ .075 TOTAL AREA( ACRES) _ 5.46 PEAK FLOW RATE(CFS) = LB.65 TO( MIN) = 6.80 ***** ****.k*k'a:k*-K*Y:k:k*•k****:-k*i(*:k"`•:k:K.k:v * r rkkk* .gg* f:k ****gni v*ik*k***;k****vk* FLOW PROCESS FROM NODE 38.00 TO NODE 39,00 IS CODE = 3 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«<< >>>>>USING COMPUTER- ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< DEPTH OF FLOW IN 2.4 .0 INCH PIPE IS 18.9 INCHES PIPEFLOW VELOCITY(FEET/SEC. ) = 7.0 UPSTREAM NODE ELEVATION = 938.70 DOWNSTREAM NODE ELEVATION = 938.30 FLOWLENGTH( FEET) z 72.00 MANNINGS N = .011 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES 1 PIPEFLOW THRU SUBAREA(CFS) = 18.65 TRAVEL TIME(MIN. ) _ .17 TC(MIN.) 6.97 **************************************************************************** FLOW PROCESS FROM NON 38.00 10 t100L 39. 00 13 0001 £� p • .>»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW(<<<< 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = .85b- SOIL CLASSIFICATION IS "B" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0750 SUBAREA AREA(ACRES) = .25 SUBAREA RUNOFF(CFS) W .85 EFFECTIVE AREA(ACRES) = 5.65 AVERAGED Fm(INCH/HR) = .075 TOTAL AREA(ACRES) = 5.71 PEAK FLOW RATE(CFS) = 19.22 TC( MIN) =, 6.97 **************K***************:KIK******************************************* FLOW PROCESS FROM NODE 39.00 TO NOOE 40.00 IS CODE = 3 >> ?%>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA«<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<K< DEPTH OF FLOW [N 18.0 INCH P[PE IS 14.6 INCHES PIPEFLOW VELOCITY( FEET/SEC. ) = 12.:; UPSTREAM NODE ELEVATION = 938.30 DOWNSTREAM NODE ELEVATION = 935.90 FLOWLENGTH(FEET) = 93.00 MANNINGS N = .011 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES == 1 PIPEFLOW THRU SUBAREA(CFS) = 19.22 TRAVEL TIME(MIN. ) = .12 TC(MIN. ) = 7.10 *****:K*k****K*****k**********.****** ******:K K*** :****************-K*K*******K* FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 IS CODE = 1 >>>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ----- -------- CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 7.10 RAINFALL INTENSITY (INCH./HOUR) = 3.82 EFFECTIVE STREAM AREA(ACRES) = 5.65 TOTAL STREAM AREA(ACRES) = 5.71 PEAK FLOW RATE(CFS) ATCONFLUENCE = 19.22 y**-it***K :* K **************** K:,'**t***************:Kt ******* :************** FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 IS CODE -- 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 15.46 RAIN INTENSITY( INCH/HOUR) = 2.39 EFFECTIVE AREA(ACRES) = 11.94 TOTAL AREA(ACRES) = 11.94 PEAK FLOW RATE(CFS) ._ 19.76 AVERAGED LOSS RATE, Fm( [N/HR) 7 .450 *: *ERROR: SPECIFIED LOSS RATE, FM IS LESS THAN MINIMUM POSSIBLE VALUE OF .55( INCHES/HOUR) **********************************:K*************:KFC************************** FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 IS CODE = 1 >» DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 15.46 RAINFALL INTENSITY (INCH /HOUR) = - 2.39 ILI 1 PEAK FLOW RATE(CFS) AT CONFLUENCE = 19,76 CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN.) (INCH/HOUR) (IN/HR) AREA(ACRES) 1 19.22 7.10 3.816 .08 5.65 2 19.76 15.46 2.392 .45 11.94 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER 4Q(CFS) AREA(ACRES) 1 34.94 11.13 2 31.66 17.59 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFa) = 3-4 .94 TIME( MINUTES) = 7.095 EFFECTIVE AREA( ACRES ) :: 11.13 TOTAL AREA(,)CRES) 17.63 *****;K****;K*IC:K•K.K'K* F K:**:K*****1:****.+F***r***i:**43o********************IK**:****** FLOW PROCESS FROM NODE 40.00 TO NODE 41.00 IS CODE = 3 >»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<(< DEPTH OF FLOW IN 27.0 INCH PIPE IS 19.8 INCHES PIPEFLOW VELOCITY(FEET/SEC. ) = 11.2 UPSTREAM NODE ELEVATION = 935.90 DOWNSTREAM NODE ELEVATION = 932.00 FLOWLENGTH(FEET) = 320.00 MANNINGS N = .011 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 34 .94 TRAVEL TIME(MIN. ) _ .48 TC(HJN. ) 7.57 *41(4 4*n**K'K*44**K**4*;k;y.* K•K*;K4K** *m****1:K1K*** ***`K* �***.Km******n***iK**** K* FLOW PROCESS FROM NODE 40.00 TO NODE 41.00 I' CODE = 8 >>>>>ADf.)ITION OF SUBAREA TO MAINLINE PEAK FLOW<< <<< 25 YEAR RAINFALL INTENSITY( INCH/HOUR) = 3.670 SOIL CLASS[F.ICAT ION IG "8" PUBLIC PARK SUBAREA LOSS RATE, Fm(INCH/HR) = .6375 SUBAREA AREA(ACRES) = .91 SUBAREA RUNOFF(CFS) 2.48 EFFECTIVE AREA(ACRES) = 12.0.4 AVERAGED Fm(INCH/HR) _ .288 TOTAL AREA(ACRES) 7 18.56 ?LAK. FLOW RATE(CFS) == 36.64 TC(MIN) == 7.57 *********:K*4*i********IK*IKK*IKKK*k*****4 44*.KK *********'K*1<*IK**********I****,KK FLOW PROCESS FROM NODE 41.00 TO NODE 42.00 IS CODE = 3 »>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< »>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< DEPTH OF FLOW IN 27.0 INCH PIPE IS 20.2 INCHES PIPEFLOW VELOCITY(FEET/SEC. ) = 11.5 UPSTREAM NODE ELEVATION = 932.00. :: 1 I..LJ*VL.y11V111\1 1..y1 / .vv _ ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES - 1 PIPEFLOW THRU SUBAREA(CFS) = 36.64 TRAVEL TIME(MIN.) _ .12 TC(MIN.) = 7.70 *fit**:k**:k***:KFC:K*K*****************************K*************************:K**** FLOW PROCESS FROM NODE 41.00 TO NODE 42.00 IS CODE = 8 >>>»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<«< 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.635 SOIL CLASSIFICATION IS "B" PUBLIC PARK SUBAREA LOSS RATE, Fi(INCH/HR) = .6375 SUBAREA AREA(ACRES) = .70 SUBAREA RUNOFF(CFS) = 1.89 EFFECTIVE AREA(ACRES) :: 12.74 AVERAGED Fm(INCH/HR) _ .307 TOTAL AREA(ACRES) = 19.26 PEAK FLOW RATE(CFS) = 38.14 TC(MIN) = 7.70 K**.x*********:K*******k*:k*.**K*** Ki:*k**Krn***********,r********"*********4k *** FLOW PROCESS FROM NODE 42.00 TO NODE 43.00 IS CODE = 3 >>>>>COMPUTE PIPEFLOW TRAVELIIME THRU SUBAREA<<<<< »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<«« DEPTH OF FLOW IN 27.0 INCH PIPE IS 20.9 INCHES PIPEFLOW VELOCITY(FEET/SEC,) = 11.5 UPSTREAM NODE ELEVATION = 930.92 DOWNSTREAM NODE ELEVATION = 929.96 FLOWLENGTH(FEET) = 75.00 MANNING'S N = .011 ESTIMATED PIPE DIAMETER(INCH) r 27.00 NUMBER OF PIPES 7 1 PIPEFLOW THRU SUBAREA(CFS) = 38.14 TRAVEL TIME(MIN.) _ .11 TC(MIN. ) = 7.80 :k rk**4 4:4.4..4:****4k***:T*K44: K4*k,K-k: 4:44k****'K44$G*:k;:*:**;K********4i**.************-k ** FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = 1 - ------ ------------------------------ >:.>>:DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<KC.<< CONFLUENCE VALUESUSED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRA'FION( H INUTE>) = 7.80 RAINFALL INTENSITY ( INCH./HOUR) = 3,60 (FFECTIVE STREAM AREA(ACRES) = 12, 74 TOTAL STREAM AREA(ACRES) 19.26 PEAK FLOW RATE(CFS) AT CONFLUENCE = :38. L4 ********'Y4I':k4*************4;k****4k*4**ik:K**************4:**4K****4:K*4K*:K******** =ILIA PROCESS FROM NODE 44.00 TO NODE 45 .00 IS CODE = 2 >»>>R-ATIONAL METHOD INITIAL. SUBAREA ANALYSIS<<.<<< DEVELOPMENT IS PUBLIC PARK TC == K*E(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH = 85.00 UPSTREAM ELEVATION = 937.80 DOWNSTREAM ELEVATION = 936.50 ELEVATION DIFFERENCE = 1.30 TC = .483*[( 85.00** 3.00)/( 1.30)]** .20 = 6.589 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.989 IvkIILti/ **************44*** ******kik**** *********** ******** *****: ********:kik****** FLOW PROCESS FROM NODE 47.00 TO NODE 48.00 IS CODE .. 3 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< DEPTH OF FLOW IN 12.0 INCH PIPE IS 8.6 INCHES PIPEFLOW VELOCITY(FEET/SEC. ) = 4.0 UPSTREAM NODE ELEVATION = 934.10 DOWNSTREAM NODE ELEVATION = 933.70 FLOWLENGTH(FEET) = 85.00 MANNINGS N = .011 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 2.42 TRAVEL TIME('MIN. ) = .35 TC(MIN. ) = 7.61 **.K*K*********`•k******. *****4,**.(4***.k*'K****************:*********************•'K FLOW PROCESS FROM NODE 47.00 TO NODE 48.00 IS CODE :: 3 >>>>>ADDITTON OF SUBAREA TO MAINLINE PEAK FLOW«<<< 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.659 SOIL CLASSIFICATION IS "8" PUBLIC PARK SUBAREA LOSS RATE, Fm(INCH/HR) = .6375 SUBAREA AREA(ACRES) _ .29 SUBAREA RUNOFF(CFS) _ .79 EFFECTIVE AREA(ACRES) = 1.15 AVERAGED Fm(INCH/HR) = .638 TOTAL AREA(ACRES) = 1.15 PEAK FLOW RATE(CFS) = 3.13 TC(MIN) = 7.61 ***********************kik********************I*******1k*I**********CZ*******ICI FLOW PROCESS FROM NODE 48.00 TO NODE 49.00 IS CODE = 3 >>»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA«<<< »>>>USING COMPUTER--ESTIMATED PIPESIZE (NON-PRESSURE FLOW)«<<< DEPTH OF FLOW IN 15.0 INCH PIPE IS 8 .5 INCHES PIPEFLOW VELOCITY( FEET/SEC. ) = 4.4 UPSTREAM. NODE ELEVATION = 933. 70 DOWNSTREAM NODE ELEVATION ._ 933.30 FLOWLENGTH( FEET) = 85.00 MANNINGS N .T .0.11 ESTIMATED PIPE DIAMETER( INCH) = 15.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 3.13 TRAVEL TIME(MIN. ) _ .32 TC(MIN. ) _: 7.94 ************************-k*********'****II**********************************I:* FLOW PROCESS FROM NODE 48.00 TO NODE 49.00 IS CODE - S >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<«< 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.568 SOIL CLASSIFICATION IS "B" PUBLIC PARK SUBAREA LOSS RATE, Fm(INCH/HR) = .6375 SUBAREA AREA(ACRES) = .33 SUBAREA RUNOFF(CFS) = .87 EFFECTIVE AREA(ACRES) = 1.48 AVERAGED Fm(INCH/HR) _ .638 TOTAL AREA(ACRES) = 1.48 PEAK FLOW RATE(CFS) = 3.90 TC(MIN) 7 7..94 . SUBAREA RUNOFF(CFS) " .69 TOTAL AREA(ACRES) _ .23 PEAK FLOW RATE(CFS) = .69 **************************************************************************** FLOW PROCESS FROM NODE 45.00 TO NODE 46.00 IS CODE = 3 >>»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA(«< >>»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<«« EE DEPTH OF FLOW IN 9.0 INCH PIPE IS 3.8 INCHES • PIPEFLOW VELOCITY(FEET/SEC.) = 3.9 UPSTREAM NODE ELEVATION = 934.83 DOWNSTREAM NODE ELEVATION = 934.10 FLOWLENGTH(FEET) = 75.00 MANNINGS N = .011 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) _ .69 TRAVEL TIiME(MIN.) = .32 TC(MIN. ) = 6.91 *****.Kt*i<**'k************* K******�*** ** ,:** r****;K** ** ***************i< FLOW PROCESS FROM NODE 45.00 TO NODE 46.00 IS CODE = 8 >>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<.<< 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.878 SOIL CLASSIFICATION IS "B" PUBLIC PARK SUBAREA LOSS RATE, Fm(INCH/HR) _ .6375 SUBAREA AREA(ACRES) _ .36 SUBAREA RUNOFF(CFS) = 1.05 EFFECTIVE AREA(ACRES) _ .59 AVERAGED Fm(INCH/HR) _ .638 TOTAL AREA(ACRES) _ .59 PEAK FLOW RATE(CFS) = 1.72 TC(MIN) = 6.91 *****:K* **********************1* ******************************************* FLOW PROCESS FROM NODE 46.00 TO NODE 47.00 IS CODE = 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<«< >>>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW )<<«< _._DEPTH OF. FLOW IN I2.0 INCH PIPE I3 7 .1 INCHES PIPEFLOW VELOCITY( FEET/SEC. ) == 3.5 UPSTREAM NODE ELEVATION :_ 934A0 X60 DOWNSTREAM NODE ELEVATION -= 934 .10 FLOWLENGTH(FEET ) = 75.00 MANNINGS N - .011 ESTIMATED PIPE DIAMETER( INCH) = 12.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 1.72 TRAVEL TIME(MIN. ) = .35 TC(MIN. ) =. 7.26 **•K*****************************K*************I<*****'K'k**'K'****K********'*** FLOW PROCESS FROM NODE 46.00 TO NODE 47.00 IS CODE z 8 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 25 YEAR RAINFALLINTENSITY(INCH/HOUR) = 3.764 SOIL CLASSIFICATION IS "B" PUBLIC PARK SUBAREA LOSS RATE, Fm(INCH/HR) _ .6375 SUBAREA AREA(ACRES) = .27 SUBAREA RUNOFF(CFS) = .76 EFFECTIVE AREA(ACRES) _ .86 AVERAGED Fm(INCH/HR) _ .638 TOTAL AREA(ACRES) = .86 t*** :*****kph**************************************************************** FLOW PROCESS FROM NODE 449.00 TO NODE 50.00 IS CODE = 3 )»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<«< DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.2 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 5.7 UPSTREAM NODE ELEVATION = 933.30 DOWNSTREAM NODE ELEVATION = 932.60 FLOWLENGTH(FEET) = 85 ,00 MANNINGS N = .011 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPEFL.OW THRU SUBAREA(CFS) - 3.90 TRAVEL TIME(MIN. ) = .25 TC(MIN.) = 8.18 ****t *K***:* ****:K K*:K%K-K K 4.%K`K%K Sc****K k K n K:K KFC*:K***:K:*k K*% f.*K K*:*-K*:** *KFC K***1: :**** FLOW PROCESS FROM NODE 49.00 TO NODE 50.00 IS CODE = 8 >>>-,:ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 25 YEAR RAINFALL INTENSITY( INCH/HOUR) = 3.503 SOIL CLASSIFICATION IS "8" PUBLIC PARK SUBAREA LOSS RATE, Fm(INCH/HR) =_ .6375 SU8AREA AREA(ACRES) = .29 SUBAREA RUNOFF(CFS) .75 EFFECTIVE AREA(ACRES) = 1.77 AVERAGED Frn(INCH/HR) _ .638 TOTAL AREA(ACRES) = 1.77 PEAK FLOW RATE(CFS) = 4.56 TC(MIN) = 8.18 * :********%K%*:K**-K**********:**********'k:***********************r'**'{t********.**** FLOW PROCESS FROM NODE 50.00 TO NODE 43.00 IS CODE = 3 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SU'BAR.EA<«« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< DEPTH OF FLOW IN 9.0 INCH PIPE IS 5.6 INCHES PIPEFLOW VELOCIT'Y(FEET/SEC. 1 = 15.7 UPSTREAM NODE ELEVATION = 932.60 DOWNSTREAM NODE ELEVATION 930.00 FLOWLENGTH( FEET) = 23.00 MANN INGS N = ,011 ESTIMATED PIPE DIAMETER( INCH) 7 9.00 NUMBER OF PIPES 1 PIPEFLOW THRU SUBAREA(CFS i = 4 ,56 TRAVEL TIME(MIN. ) 7 .02 TC( MIN!. ) = 8.21 :K:KT K*K**********-*'I:*;K**`K*********:K* *K!.:*4f** :****************************4:*is FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE _ .L >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<« CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 8.21 RAINFALL INTENSITY (INCH./HOUR) = 3.50 EFFECTIVE STREAM AREA(ACRES) = 1.77 TOTAL STREAM AREA(ACRES) = 1.77 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.56 **************************************************************************** FLOW PROCESS FROM NODE 51.00 TO NODE 52.00 IS CODE = 2 DEVELOPMENT IS PUBLIC PARK TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH = 85.00 UPSTREAM ELEVATION : 937.80 DOWNSTREAM ELEVATION = 936.50 ELEVATION DIFFERENCE = 1.30 TC = .483*[( 8.5.00** 3.00)/( 1.30)]** .20 = 6.589 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.989 SOIL CLASSIFICATION IS "B" PUBLIC PARK SUBAREA LOSS RATE, Fm(1NCH/HR) = .6375 SUBAREA RUNOFF(CFS) _ .57 TOTAL AREA(ACRES) _ .19 PEAK FLOW RATE(CFS) = .57 ******* c.K:k:1******************************.k*********:K********:K************** FLOW PROCESS FROM NODE 52.00 TO NODE 53.00 IS CODE = 3 --- ----------- >>>>›COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<« >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON--`PRESSURE FLOW)<<<« -- ---------------------------- ------- --------- DEPTH OF FLOW IN 6.0 INCH PIPE IS 4.6 INCHES PIPEFLOW VELOCITY(FEET/SEC. ) = 3.6 UPSTREAM NODE ELEVATION = 933.80 DOWNSTREAM NODE ELEVATION = 933.10 FLOWLENGTH(FEET) = 78,00 MANNINGS N = .011 ESTIMATED PIPE DIAMETER(INCH) 6.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = .57 TRAVEL TIME(MIN.) = .36 TC(MIN. ) = 6.95 :************************M***********************:K**************************:K FLOW PROCESS FROM NODE 52.00 TO NODE 53.00 IS CODE = 8 »>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLO «<<< 25 YEAR RAINFALL INTENSITY(INCH/HOUR) ::. 3.863 SOIL CLASSIFICATION IS "8" PUBLIC PARK SUBAREA LOSS RATE, Fm( INCH/HR) = .6375 SUBAREA AREA(ACRES) =- .27 SUBAREA RUNOFF(CFS) = .78 • EFFECTIVE AREA(ACRES) = .46 AVERAGED WINCH/MR) = .638 TOTAL AREA(ACRES) = .46 PEAK FLOW RATE(CFS) = 1.34 TC(MIN) = 6.95 *:*'*************************:************'************;K***********"*******:K***** FLOW PROCESS FROM NODE 53.00 TO NODE 43.00 IS CODE = 3 >>»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<«< >>>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<«< DEPTH OF FLOW IN 6.0 INCH PIPE IS 4 .6 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 8.4 UPSTREAM NODE ELEVATION = 933 .10 DOWNSTREAM NODE ELEVATION = 930.00 FLOWLENGTH(FEET) = 62.00 MANNINGS N = .011 ESTIMATED PIPE DIAMETER(INCH) = 6.00 NUMBER OF PIPES z 1 PIPEFL.OW THRU SUBAREA(CFS) = 1.34 TRAVEL TIME(MIN. ) M .12 TC(MIN.) = 7.08 *kik*******'k#"k'!******* t K* **`k**:fit** c**.*t** c******** t******do*Yc:K*****'f:Y****** `1 THOEPEi\IOEI•11 : RErfll NO Hiijic: Vi).P.1('..1„1:.•.. cN l..1.![..ii!"..•;[..F.) USED FOR Ii10117.PF. NOEH . :H:'1"..1.1H IONHil [FS .1.-J3 ••; ; • . • : , • . . • • 7.... 7 ' 11 - . • • • .1_ 410 • • • ' i: .011 NODE 54.00 TO NODE 63,00 ID CODE 7 4 — • — • _ PiPE COhPUTE TROELIIME THRLI <<< LIS I i•kil USIER—SPEC F :70 PPE3JZE< K< < ;1; DEN LHDH P[PE C I?. 1 H.CAES . • L..AN I I ( • [El() I I 'H 927..90 - 922_00 ;.Jc.' 1 ; ) ,•,[! DC; MANNIMG:=• - ; • ,T.610 NI.11'3E1'. LA- i --WI: - • . . - ..•1 I . ) .7. • • s,: 0 II. [1 .rig •" P I-.17 • . . . • L , ;-; A . . • • T _ _ _ _ . • ... HI_ HE ;. OA< • 't INCL`l'IOUP 105 . _ ' ' . • I i r . . • . r ' • • ' •• I 0 • • t : - P.-)0 : J - 1C0 .011 . . .01.j , - I . 20 1 : ! !.., TY( I NC;1/110UF,... 3 • . Fin( , '30 • ' • • I-UOW COM How: 00 ','() MOUE A .00 Ec CODE • — . .ler : .1.W.AREA ANALP3r3((«e. fl, . •, • t t tr •tO .11 L.:•••••,:`11 t: t7, 4r.1 :11 t .P1., • • • • '• • - : •• . • - • . . . . . • • • .• . • -7. . . _ ,; " PT•ti. . .. r ' ::• _ . 1.1 •1 -.; •• i • - . 1 • . . , • • , . • . . L • . 1•..11.•? • • P,-1;•";.) ) TPA\ILA_ TKEN 11 .35 t % % t !I* rr.*•-•.;•.* *,* 1 jj )[j[2. OC . • - _ _ _ I :IL HH, •- ) . .":. , , • - 4., ' 7 '", '1,1; ":" •-• ••"; •'•• ..2_•;',') • ;:••••; ; I • • • i. •; , . " • I -• ;! . .„,„ On , :• ' ' • P. I I'":•• j. i fisic.-1 " r .;7. . )1": • • • • - . • ' •' • `k., . - t , .'.• •I. ; 7 • ; I.. • 1. 1 "7 I 1 • • -. 0 , 1.• 1,1 1 " I I ,',1 1 ) 1 I i I I I I i I I )N I I ii 11 i I I ) El ) I F;f).../1`. I1 iI rc,i: - r.r:: - ()1 G . T 1 'f.•1. I , ;.1.13 E 1) .11J'r! 1,1(11'12 1-1 [.1 T I 1 [ f I'11,ir jxh's, III 1-1,[:.s.! Id ,`" , . • _ 1[1. 111. [ • , 1 (2, ..,[-:[[-) I 1 . i 3 • [["[:) 1, 7 - 0 ,w • : ; •A [.:-J„: ' ,1•1'1.1 1, ` ' • • • ..1• ••• _ 1:: ;1.11 • [• [ — ' _ : . _ _ . . .1' , [ . - • • [1_ . . • . [ • • - t t. - . " . - • . • • • • . _ - . , - i• ;‘. ;•• !; i; ;!'• 4; !", 4.; f 7CCEFLCM NOiE .CO '10 NOUE 70 00 10: 0.000 - r.."R!...J--.1_ (..1 -••• ! !!: 11 C10; ., t2K. . ;:. •:;1 ; -• . . •• . • . • —. r1 • I . 'o01 0i-•! 7 '0 . : " 7 c: .4:;;;• !! :Y.:7.i; •-- • ,]; . . . -FL:I, • - - ;-L_• ; • ‘21) • 1 • ; • ' . : . • : ) • , • ; • !! •- ! -!•• • • t . -"&„ . P.3 ' Lit 7 . • ; t rl F . 7 -1 . • -- : ) :";".;)'., 17 "1" i , ;Thi( i 1 ) - Hurr. m ;')!•; -..17) IT; :1_11::)r-it7.1-„: • _ . ;'• _ ; ti _ . . r . . . • • • - r . - . . „.. : ..; : • : : L - • I • j • • - • • • • - • • • • • l• • .1, 1.4 1 , . . 1 . • 1 UUjNC.hU1:10 11.117.:H/HR) ..0715a HU01:J: CiC1)11;..; ) , 1.0 : (11 ..f) R1,1111.71F17(1:::::FS - • 1"I\ )1 k HC • 1', • :01 • H • •- • - . . • . _ . • • : : - 7 " . . . - _.1.• • L. T'i;. : TIi UI1! 1 _ ..L . . : E . IS I.IEJ:11..E" !1)-'. 4 . V II :r - t : I ' , H . . ....• !`J - . I .: _ . . : 1 ,,t. . I . . . : • _ • .1V V1, 11:1-• • ,.t 7,17H5 .. (:7 _ . . . - •.‘ • 1;";is!(••••.147 i.:10r:71-3r.:NDE't•IT • 5 1:r1.1PU Tr V()R1(1)1.6 .f)NFLU:.:HCF: 1.,1"..,',7.0 FOR INocrEHT,TiiI :::TRE:)M 2 Lr,I.YM(.17:,.:I I ION". •.; f ; •.;)'- ; ; I ). . •:( • 7: ,..1. 11.111i,111! 111: 1:1 • 1 :.'• • ." . • 0. . I ! t ,1 -12 ,1 . • • • . ••"; I • • 7- 7.7 4-_, 0 .: .'cr 0 ; . : ..' ? • •1 ! I .J7. • H • " . 00 : •; ; . I .7: . .• 1 • ." . • 4-•:, . .• 41 . .• : . I r :u I 10 2 _:• . 4,) 14,;1 , __ ) 11 I L* t !1 1`t ' 1 J: "" '!"`j "" j- '" 1: !:'1: 1:11":1: 1.; 1'I1iI , :;11 ''. 1111, H1 .111[. 21:1"11 ''',1,1,1" ; LIH[:I1 1:f Lu %/i)1.1JF::::3 ñF.E 26 Ri)-1 0 lHftNITY( 1 [VC7. ) Ic.)9 ()cm-is lc)? , ill( I ) • t i" •;: 4.• t P4. % ;: :;: 4; ;; ‘;1. :4 ;4. ;;4. • : • ;;; ; A•J ;-;; cr • - .1' : I : ' • • 45; •.• 7 1 . ..1 ..4 ; . • ; ; ; • . • • • •• / _ . . - • ,-- ; : _ _ . • _ . _ • ‘.1 . ; •,1 : - * . 77 - • • • • • ; P : ; : • ; . • • • • ; • -• • •••4 .....F1-5 • I 4. 5: : • 414 '. • •:: :-; ; •;5. 1• : 1. 1: i453 •• 53 ; % ' i. ;7 " •••":1 • fi . . L +F" 1- • • .0, • t :-.2 . ';4 FLOW PROCESS FROM NODE 630 .20 TO NOOE 630.20 IS CODE 7-1 7 _ - - . »USER SPECIFIED HYDROLOGY INFORMATION AT NODE..« K‹ l.r..:LR-SPECIFIE0 VALUES ARE AS FOLLOWS: 1!,N ) 26.00 RAIN 1NFENOITY( INCH/HOUP ) AREA( ACRES) 7 15.30 AREA(ACRES ) 15.30 Pr..7:,1F. FLOW RATE(CF3 ) 7 17 .50 :IVLP:.:03L0 LOS3 RCITE, FmIN/HP ) ' 1. 35r RCM (7..A 0 . i!Ori E .7;1 00 GOOF C;:41PUTLI 1HRU PO", CRCWN S EE TLL 1")[1:.1 Mr,: - 01.] NER CCMPUPZD CLOg( 5Ff.!, !. 12 1- EXGECO...... TO!' 01 HE J-PLCTILC,W r.)r TWAT Hint LS. AU_ ni.1 y.4- THir. ° :IC •• • • _ • . , - • IT 5 : 7,1( PUPuFFr. CF-. I ".• riVa,HGED ICH/HR1c0 E.IAK 7 END OF SUBAREA 'ARI:EfrtiN NYORA1LF.:3:-. OL'TH( FET ) ? 1 HALflTREEF FLoopwrom( Fr_cr ) VELOCITY( FFH /Sr.1 1 3 '6 DEPIH*VELOCHY , FLDW PF,'.0CES'S FROM NODE 6,30.20 10 NODE 93.00 LT; COOL 1110N OF SUBA;-..EA TO MATNLINE PEAK 13 ITAP RAINFf'ILL ITIT(INSITY( INCHIHO)JR) ' 1.556 SOIL A.,LA3'..:,IFICATION 13 Ti COMMEPCIAl SUBAREA LOSS RATE, Fm(INCH/HR) .0470 SUBAREA AREA(ACRES) 1.50 SUBAREA RUNOFHCFS) 2. EFFECTIVE (REO(OGRES) = 17.80 AvERW;FO Fm( INCH/HP) - 121 T01: 111N) 31.65 :•••1:•4: :i••• 'A.- ::: K K K :K ;t: K :24 A: i;* ,,,:********),(.**1;••.; FLOW ::1; 0(2.17. FROM HOD E ?3.00 TO MODE "21. 00 IS CODE 7 1 • I 1:; (11 F" I 3TF:J.;- FOP - •nr,1,0 :311:).17.•;‘111 f)1.1.1[3 : !!:;."_;•!T i •:"!;- :"2:0 • 1, . • •••„;- ' 1' !:- • - -- • r • ! ," • , • , • . , i • .j11 I;•!''.i ri • •: JHL• tj:Ti 0 1(17' ": 1;,r::: f..2LA•1"TLVENCE: 01F1.1121-1 %."11 :i2Li‘11: ! - - - - . ,„77 -a__ i 7 I / !:•.:1 .I;• •.. Hirlf[1:3: •.-;C:';;" ;;i7( Li-2 ; ; •ir!1;:,, ..t1.1";11.1 •",•., _-.'.. . 1" I I. H.!! ! ‘r: I -; ! 1 . t 1 ; , " : • : 1! • 1.1U Oil,1 I LI...Y:0 1 Cll.', I Nr.....41i H11 I r)PC. 1 -10 ON _,1 R0 HU IT. . • ::: •,';0L 1 ;'[7-0rt.,I TY f. u1cH . ,/I1o..ro •• ."!(. 1 k ;tt t '44•4 ;‹ !, *11 .4;1; t *!.V. t t t ;7r2.1.‘11 HOUL 3L.iO . 3 C000 - 7 1 ! T ‘- • • .1! 1 .• , ; • . - I . . . • . f.• '2: . • '`• 0;-; Cc!.77 :-. • : : I itlilf2.1 '11 ; i•1.. ,•i• - I _ I . . • ! t • 0. • 0 i-;$1 ; ' _ ! ' : . . ! • -.. ' • I . .! • I ;! ;. . 1.; . 1 L.L.: Ira Er:LI I 1:11).•1 I ; ; ) I ` LTNL. IOTAL ARFA( CRE3) 197 .27 EFFECTIVE AREA(ACES ) L7S,36 PEAK FLOW RnTE(CFS ) 2L .39 3N0OF RAT (ONAL METHOD ANALY313 H-Y,j)g J L_ o c t) STu Fo �2 LrnoAj �. UI sysr6�1 Ion Yc6-1L- /4146:: 6 raedl D RATIONAL METHOD HYDROLOGY COMPUTER PROGI,',AM PACKAGE Bei r en ra? 190E: liii4 BERNARDINO 1.0. 11 YORO L 0;IY 12RITERION 7W4t PRO.IMINARY/EXPERIMEN TAL YE REI r ;St qht 86.077 Ad van ceri Enytitet.ri- 'Al twai fz. aes . I.LB Pe I Date: 2Q/;37 J.1 ItEi ii':, t 1.I." P1 epai id 1 t EVALUATION ONI t , ilt:VTI I or: :-T")-1".11,!!IP ').1-7 is4 S *VC:— Ac1 FF 0 GI 00 • : -t! • - ••-• : LE MODEL NI , - - : 1, AT TON 'C1J O XI•--.IPFD :0 MINIMUM P E 1.T.Zr•:( !MOH J2.6.0c) 7-.:Pt121%.-71E-2, I 411:- 1:117-ADIC:ti 0 T:sr, 1-:01•R 1-1011 • , F INL) LOGAR.1 T IC INITIRI--`0LAT 17,,- I ODA -..1,,,T1-1/110%.JI: . " ;•; , ; :- • • •._ •• ' ! , . • ' • !: • 'Lis! • ; • ) • = - :• .7141 •%(:: 1 1000. ,t 7.QC ' I 001 : 'LH 1 EN-7-,1 I 1 r. it.60 -;() P1:01' F1,,-)44 CI ) • : ).• 4 4 4 44414 ;•3 1—,qt. t1-1 , Vt.1141144 4 IA,41 4.1.*14' 1'1 4.4.44.1 4.414;4-1 P4 1 11::.1 ;•• ",1,1•11. 4 4 11 ; '114•'; ;1.% TO NOOT: 626. I 0 IS . • -- ,COtf LI TT: Si r=!DIA LT IME IFIRL) E,L1BAREA-:_ r L EVAT ION --.-- 14t0 2,_00 DOWNSTREPM ELEVAT LON 1000.CO '.-:ITREET LENGTH(FEET) 450 )0 CURB HET:GIN( 1:NCHE'i; CA "AID II II -PEI 3 ?(-.'.00 • • • - - - _ - I.)I LT, ;:f•DM :NL.\IH 10 _ :o:FOLL 0pU0REo1< 12.-,)0 I • 000 .020 1)(n ED OF f?, I 1.11W r •I 11:1 ;;... 4„J; : . .11 ;.• ,, •: 1,1 ; , , a . • Y!!L v:'° •• '! PIlL I - • ••!,) :;:, ;I: 1 : . 1 .6 7 1 r s •••••••••,1,i- • ; ; 1, , ." • • s••:,•• •P. , s . , I: . ; P. • • . 77 ....r77.1 7 .1% :1• 1pp • •" ;311, - _ . •• , •• • _.• . . _ . • 1 .• •,)(! 21 : • - , • . _ . - . t- • , . . . , CA-4 • 1 • -1,1 • , • • „ • i•t 1 •.• ;;I• • • • .' • ' ; : : !IC. 1:1 ' 1. 1 . • . •ty • .L•11'0: .tr ; :1 {1:0 Ho, , • • • DID OF SURE( STREETF LOW HYDRAULICS: DEPTH(FEET = .80 HAL FSTREET FLOODWIDTH(FEET) = 2O00 FL OW VELOCITY(FEET/SEC_ ,-,•• 3.73 D EPTH*VE LOC ITY v.-; 2.99 L0 PPOC I ROM :101); 62/_10 10 NODE 620.10 18 CUDE COMPIfT2 I RE ET FLOW RAVE I..T IM E THRL' SUBAREA - < (IT'.• ;TT, CJIk! . DOWN'SVF:-.FAM L E',4ATIUN 9ES.00 _2111H( ) coo CURB iEIoni( INC I VU FiAl;r2Tli ;1E1 ; I:: !•-•:Giq ; -,PkADEf:i•lr:E . : ! 1..r.• •FC; t D MAL • !•Itir.11-;61 ;;/' I .T. ; I : : • i I,.I_:_ %. t I.OW .9:.•CEi. ; 61'PEET• L•DW 2f 20 f OP 1:11: iRE• tTOLIC:4111.: T.I E T HAT( IBL:i F LOW Oil'-URS OU O6-1(...T_ OF NE :;11';'-::'ET C.1 IANN EL I)IA I 1:2- tiIJ ALSNG INS PARIWAY, Ii. . (6 t: ED STREET LUWDEPTI-I(FEET) _ I I AL I:STREET ;TI-CO0W10 ET) 24.00 AVERAGE: FLOW VELOCITY(FEET/SEC. - .32 PRODUCT OF D'-',U--111a:v E.!.pc 4-29 ;•-•(R EE IF LOW TROVE LT I ME(MIN-3 2.02 'T C(N .M 10 • .,-; 11r r „: 1 ;•[,; • - L:1-) I - . ;I .•1_,1,3 •, • • ..W t , ' • • I.g• -• ;' • : i!1 . . . _ c:01,1PUTE P I PCI LOW I Pc-NE•. Rt.) US Il-IA C.011Pl JT CR r i..- r. (NI)1--I r. , LOW) ; L.)4 CP: _IV(; 030E E I. LOU 00 00Wr;Tr.: .-.11 MULE i:LEvrolul I HOT;it t'E ET ,700.,)t.) NOS 11 ill!! 0 70(.1 C.) 42 00 NUMB p ,• I' ;:LOU TI i:OBC-If;;E.1)( 1,01.IC; ;RAvEl TIME(MTN - 2.04 TEEMIM. 3:3, 14 tz.t.tt.1,4 **.-ri,..v.t*.1(4_,Kt*x40;**4-*.tt-s-K,Nit*P-1,.*****P*t*************....*-t(*-**-1,-**,*t4,w4'1,1;1.40, FLOW PROCESS FROM NODE 628.10 TO NODE 629.10 IS CODE _ _ •-- -• , — . , _ -— .>»ADD r T TON OF SUBAREA TO MAINLINE PEAK rLow«,x, 100 YEAR RAINFALL INTENSITY(INCH/HOUR) _ 2.391 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Frn(INCHIOR) .4850 SUBAREA AREA(ACRES) = 55.00 SUBAREA RUNOFF(CFS) = 94.35 EFFECTIVE AREA(ACRES) = 110.00 AVERAGED Fm(INCH/HR) = .485 TOTAL AREA(ACRES) 110.00 PEAK FLOW RATE(CFS) = 168.70 TC(MIN) = 23.14 **** :k****V.aK:K:i_ **********Yc:k*****.Ic:X****=K'#*****7'K%KA:***K *******'#*:K**%K****.K** FLOW PROCESS FROM NODE 629.10 TO NODE 630.20 IS CODE = 3 :,. >> .COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<._• LiS INS:; COMPUTER-ESTIMATED P IPE N I7_E (NON-PRESSL Rc OEP i-4 OF 'FLC:W IN 54.0 INCH PIPE IS 42.7 INCHES PIPE:LW _C!CI" r•(FEET,SEC. ) ., 14.0 ..s. ..=i tON - '360 00 1 E.wY'i GE _L S'JA'( ON = 94h. OO FET, = ;350,00 i•IAiNN IN!.S i'1 -= .01 :Tii^F1T:'.D PIE DiA ETET?(INCH: - i4.00 NUMBER OF PIPES = :i=-SFL O!W -'.HF,U SUBAREA(CFS) = 150.70 - AVEL TIME(NIH. ) _ 1 .6.1 TC(IIIN. . _ 21_75 -x,r...* :K'K**1R:#:r:# *** *;K******:*:*`X*** ****,g****'K>K=Y•:K=K:K**_1:**:kiK:K:K".M..Y-* **-x*-A K:X* F'_OW PROCESS FROM NODE 629.10 TO NODE 630_20 IS CODE = 6 )))> ADDITION OF SUBAREA TO MAINLINE. PEAK FLOW<'<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2_297 • 'LASSIFICATICN IS -A" PEEMENTIA:L-> 7 CWEL.LINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) - .4820 SUBAREA AREA(ACRES) _ 30.00 SUBAREA RUNOFF(CFS) = 48-91 EFFECTIVE AREA(ACRES) = 140.00 .ERAGED Fm(INCE(/HR) - _48S • AREA(ACRES) = 140.00 =LC4 PATE(CF=) = 220.25 • _.- _ _I. :uNMARY: .:.RE,:f(. i RES) = 140.00 _--E::I E AREA(ACRES) FLOW 0A E' CFS, _ «3-.--. =?-0, CF RATIONpL METHOD ANALYSIS ) *****************************************************************M********** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) *** PRELIMINARY/EXPERIMENTAL VERSION *** Copyright 1983,86,87 Advanced Engineering Software (aes) Ver. 4.1.B Release Date: 2/20/87 Serial # BETA06 Especially prepared tor: * BETA TEST SITE EVALUATION ONLY * *t************************ DESCRIPTION OF STUDY ************************** * ONSITE .-,ND OFFSITEHYDROLOGY STUDY FOR ALMOND AVE. STORM DRAIN 00 YEAR FRIQUENCY * •k i***'t****** **t********:c***:K********* k****=,`•***.k**'*****k k***'A********:k** ** =ILL= N A M E KS+..O'•lf 1 TIME /DATE OF STUDY: 16; 4i '22/I99. ;SEP SPECIFIED HYDROLOGY AND HYORAI LIC MODEL INFORMATION: --*TIME-OF--CONCENTRAT ION MODEL*--- i:SE SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 4.00 SPECIFIED PERCENT OF DRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .95 xUSER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL), SLOPE OF INTENSITY DURATION CURVE _ .6000 USER SPECIFIED 1-HOUR INTENSITY( INCH/HOUR.) = 1.3500 i x.**ix*************:kk******** *k k***k*:k ***:**k*.***:!:*******X:***'k*;k*** k*" * =LOW PROCESS FROM NODE 11.00 TO NODE 12.00 13 CODE = 2 RATIONAL METHOD INITi L SUBAREA ANALYSIS<<;<: « TE ELOPMENT IS PUBLIC P' RK _ -0.1 ( LENG IH*k 3.00 :/f E LEV,II ION CHANi3L) j t* .20 I' : TIAL SUBAREA FLOW-LENGTH = 800.0U _DSTREAM ELEVATION N - '462 .00 wNSTTREAM ELEVATION = 942. 70 _LE iATI'ON DIFFERENCE = 19.30 4833:1 ( 800.00** 3.00 )/( 19.30)1** .20 = 14.747 :OO YEAR RAINFALL INTENSITY( INCH/HOUR) = 3 .133 :LASSIFICATION 13 'B' =UE.i PARK SUBAREA ).OSS RATE . Fin( IN(;H/HR) = .6375 SiBREA RUNOFF(CFS) _ 14.60 TOTAL AREA( ACRES ) = 6.50 PEAK FLOW RATE(CFS) = 14.60 reii;***.tf******************************************* Y**** ***************** FLC-W PROCESS FROM NODE 12.00 TO NODE 13.00 13 CODE = 3 ? >?COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA«<<< ?>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< DEPTH OF FLOW IN 21.0 INCH PIPE IS 15.1 INCHES F'IPEFi,f�W ,'IELQCiTY.(_FEET/S�C�...�._�--- .:-�•9 -•- ---• -••--� - - - - - - -- -- - UUWINOIRCNII IYIJWC CLCVN11WI1 7VI.Vu FLOWLENGTH(FEET) = 35.00 MANNINGS N = .011 ESTIMATED PIPE OIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 14.60 TRAVEL TIME(MIN. ) = .07 TC(MIN. ) = 14.82 ***********************'k**'4*k*********'***********************4************* FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 1 >>>.>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« CONFLUENCE VALUES USED FOR INDEPENDENT STREAM L ARE- TIME OF CONCENTRATION( MINUTES ) = 14 .82 RAINFALL INTENSITY ( INCH.;HOUR) = 3. 12 EFFECTIVE STREAM AREA(ACRES ) = 6.50 TOTAL STREAM AREA( ACR.C3 1 = 6. 50 PEAK FLOW RATE(CFS ) AT '.::ONFLUENCE .14.60 kK*.f*x*****1:****n%**y:*::*y ,::h:k r;i:*:. { R'y*** ki.***1(***.g*******'i **:kK**44**4*'4 FLOW PROC•E 3 FROM NODE 14 .00 TO NODE 13.00 IS CODE = 2 >>> >>RATIONAI METHOD J.k1TIAL_ SUBAREA ANALYSI:.S<tt<<. DEVELOPMENT 15 SCHOOL TC = K*1( LENGTK** 3.00)/( ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH = 210.00 UPSTREAM ELEVATION = 949.50 DOWNSTREAM ELEVATION = 945.20 ELEVATION DIFFERENCE = 4.30 TO = .412*Ii( 210.00** 3.00)/( 4.30)1** .20 ,_ 7.613 100 YEAR RAINFALL I.NTEN SI TY( INCH/HOUR) = 4.659 SOIL CLASSIFICATION IS "B" SCHOOL SUBAREA LOSS RATE, Fm( INCH/HR) _ .4500 SUBAREA RUNOFF(CFS) = 1.70 TOTAL AREA( ACRES) = .45 PEAK FLOW RATE(CFS) _ 1.70 *�,: *: **X:%*t:**T; y:tnrX•Rkw* x .K** **n *****k*)Y..k** ;*********** :***** **** '. nFOCE Fes':M o!00- 1.5 .00 10 NOM 16_00 13 CODE 7 3 >I ONPUTE PI:)EFLOW THRU S(1BAR.EA<<<:t< > U =NC 'COMP:UlcR-ES?IMiED PIPESIZE ( NON-PRESSURE FLOW)<<<<< DEPTH OF FLOW IN 12.0 INCH PIPE IS 5.9 INCHES ?[PEFLOW ELOCI [Y( FEET/'SEC. ) = 4.4 UPSTREAM NODE ELEVATION = 942.10 DOWNSTREAM NODE ELEVATION = 940.90 FL':'WLENGTH( FEET ) = 163.00 MANNINGS N = .011 EST I MATFD °[PE ][AME TER( INCH) = 12.00 NUMBER OF PIPES = 1 ?I°`FLOW THRU :UBPREArCFS ) = 1 .70 TRAVEL TIME( MIN. ) _ .62 TC(MIN. ) = 8.23 *:***t*T**********4*****************'4****************************'F*********.4 FLCW PROCESS FROM NODE 15.00 TO NODE 16.00 IS CODE = 8 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLQW<«<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.445 SOIL CLASSIFICATION IS "B" SCHOOL SUBAREA LOSS RATE, Fm(INCH/HR) _ .4500 SUBAREA AREA(ACRES) = .13 SUBAREA RUNOFF(CFS) = .47 nvuen'L.0 TOTAL AREA(ACRES) _ .58 PEAK FLOW RATE(CFS) = 2.09 TC(MIN) = 8.23 **************:•K*********.**************************************************** FLOW PROCESS FROM NODE 16.00 TO NODE 13.00 IS CODE = 3 >>:>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA«<<< >>'•>>USING COMPUTER--ESTIMATED P[PESILE (NON-PRESSURE FLOW)<<«< DEPTH OF FLOW (N 9.0 INCH PIPE IS 5.8 INCHES PIPEFLOW VELOCITY( FEET/SEC. ) = 6.9 UPSTREAM NODE ELEVATION = 940.90 DOWNSTREAM NODE ELEVATION = 939.30 LCWLENGTH( FEET ) = 75.00 MANN[NG: N = .011 ESTIMATED PIPE DIAMETER( INCH ) = 9.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 2 .09 .}MVEi- TIME. MIN. ) _ .18 TC( NIH. ) 8.42 t,,g.;.kt%t**-Alcx***.gr.I(**'K*** **** ;kt**** ************K.******:*****4K:**'************ =L.› PROCESS FROM NODE. 16.00 TO NODE 13.00 IS CODE -- 8 • F1DDiTI�ii1 OF SUBAREA TO MAINLINE PEAK FLOW<<<< < 100 YEAR RAINFALL )NTENSITY( 1NCH/HOUR) = 4 .387 SOIL CLASSIFICATION IS "8" SCHOOL SUBAREA LOSS RATE. Fm( INCH/HR) _ .4500 SUBAREA AREA( ACRES) - .06 SUBAREA RUNOFF(CFS) _ .21 EFFECTIVE AREA(ACRES) _ .64 AVERAGED Fm( .INCH/HR) = .450 TOTAL AREA(ACRES ) _ .64 PEAK FLOW RATE(CFS) = 2.27 TC(MIN) = 8.42 t.a.crGx*****x******** *****************************=4 **t*****************4K***-K F_Ci% PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 1 • ' DES:sN IE INOE 'ENOENT STREAM FOR CONFLUENCE‹<<“ • -'-AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<t < << TC =LUENCE :AL'!E': USED FOR INDEPENDENT STREAM 2 ARE: ,E OF CONCENTRATION( MINUTES ) = 8 .42 _.A:'(FALL INTER` I TY ( INCH. /HOUR) = 4 ,39 -.TIVE STREAM AREA(ACRES) _ .64 TOTAL STREAM AREA(ACRES) _ .64 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.27 CONFLUENCE INFORMATION: EAPi PEAK FLOW TIME INTENSITY FM EFFECT;VE W...4n5ER RAIE(CrS ) ( MIN. ) ( INCH/HOUR) ( 114/HR) AREA( ACRE5 14 .60 14 .82 3. 124 -64 6.50 2.27 8.4 2 4 .A87 .45 ,64 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) 1 16.14 7.14 VVIIrVILu VVI{I LVLIItrM I..vI AlIrlii...v rllSL. rl. PEAK FLOW RATE(CFS) = 16. 14 TIME(MINUTES) = 14.820 EFFECTIVE AREA(ACRES) = 7.14 TOTAL AREA(ACRES) = 7. 11 ******:********************k************************************** ****** ** FLOW PROCESS FROM NODE 13.00 TO NODE 40.00 IS CODE = 3 >>>»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA< << > »))USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<«<< DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.8 INCHES PIPEFLOW VELOCITY(FEET/SEC. ) = 8.9 UPSTREAM NODE ELEVATION = 939.30 DOWNSTREAM NODE ELEVATION = 935.90 FLOWLENGTH( FEET) = 310.00 MANNINt3S N = .0.1.1 ESTIMATED PIPE DIAMETER( INCH) = 21.00 NUMBER OF PIPES = 1 PIPEFLIOW THRU SUBAREA(CFS) = 16.14 IRAvEL TIME(M11 ) _ .58 TC(M1N. ; = Knx* ax ************K*- **-k;** K**4(*k****4:* k* K* **** K*A** KICK******* K***:**** PROCESS FROM NODE 13.00 TO NODE 40.00 IS CODE = 8 >,A00ITION OF SUBAREA 10 MAINLINE PEAK FLOW<<<<< 1.0 'FEAR RAINFALL INTENSITY( .INCH/HOUR) = 3.053 SOI''_ CLASSIFICATION IS "8" SCHOOL SUBAREA LOSS RATE, Fm( INCH/HR) _ .4500 SUBAREA AREA(ACRES) = 4.80 SUBAREA RUNOFF(CFS ) = 11.24 EFFECTIVE AREA(ACRES) = 11.94 AVERAGED Fm(INCH/HR) _ .552 . TOTAL AREA(ACRES) = 11.94 r=EAK FLOW RATE(CFS) = 26.87 TO( MIN) = 15.40 -txzzaz.x* ****x******.**:KM*****1:;K'rr* <*****4****k***. ***********-*****ic********* F_Cw PROCESS FROM NODE .17 .00 TO NODE 18.00 IS CODE = 2 K. �id,ll THO[i INITIAL SUBAREA !`INALYSIS<;:< << C:vE_OPYENT IS COMMER C; 'AL ( _ENO T;-i*- 3 .00 )/( ELEVA l [ON CHANGE )] ** .20 _TIS._ SUBAREA FLOW-LENGTH = 170.00 rS-SEAM ELEVATION = 946.80 OCUNSTREAM ELEVATION = 943.50 ELEVATION 0[FFERENCE = 3.30 IC _ .304*[( 170.00** 3.00)/( 3.30)1** .20 = 5.217 YE-+R RAINFALL INTENSITY( INCH/HOUR) = 5.845 =3i _ CLASSIFICATION IS "B" .t_m'9BRCIAL SUBAREA LOSS RATE, Frn( INCH/HR) _ .0750 ='E-REA RUNOFF(CFS) = 2.18 t�TYL AREA(ACRES ) _ .42 PEAK FLOW RATE(CFS) = 2.18 xxicx*axyYzx*******************************************************-K********* FLOW PROCESS FROM NODE 18.00 TO NODE 19.00 IS CODE = 3 >)>?)COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< )))»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< DEPTH OF FLOW IN 12.0 INCH PIPE IS 8.4 INCHES UPSTREAM NODE ELEVATION = 941.61 DOWNSTREAM NODE ELEVATION = 941.17 FLOWLENGTH(FEET) = 110.00 MANNINGS N = .011 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 2.18 TRAVEL TIME(MIN. ) = .49 TC(MIN. ) = 5.71. **************************************************%cit***:KFC****************** FLOW PROCESS FROM NODE 18.00 TO NODE 19.00 IS CODE = 8 >>> ADD[TION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY( INCH/HOUR) = 5.535 SOIL_ CLASSIFICATION IS "B" COMMERCIAL SUBAREA LOSS RATE, Fm( INCH/HR) _ .0750 ?'TRAREA AREA( ACRES) == . 58 SUBAREA RUNOFF(CFS) = 2.85 :FFECT IVE AREA( ACRES ) = 1.00 AVERAGED i=m( INCH/l P.) = .07.5 T �L )REA(ACRE:S) = 1 .00 =rt'. FLOW RATEICF,-; ) = 4 .91 N• - J. 71. Kg;:41 11*1:***KK ***Kg*g**1:** ** K*k** *vi(RN*icK* crf:* K*KK*' **4(#-k* :1*1:4 :kK*.it 1 O PROCESS FROM NODE 19.00 TO NODE 20. 00 IS CODE = 3 )COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<(< % '> )USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<:< DEPTH OF FLOW IN 15.0 INCH PIPE IS 10.4 INCHES PIPEFLOW VELOCITY(FEET/SEC. ) = 5.4 UPSTREAM NODE ELEVATION = 941.17 DOWNSTREAM NODE ELEVATION = 940.00 FLOWLENGTH( FEET ) = 185.00 MANNINGS N = .011 ESTIMATED PIPE DIAMETER(INCH ) _ 15.00 NUMBER OF PIPES = 1. PIPEFLOW THRU SUBAREA(CFS ) = 4 .91 TRAVEL TIME(MIN. ) .57 TC(MIN. ) = 6.25 xx *x*** z*a*k*:K*t**k************ k**%****'K*;**********4********* ** k****K :ROCSS3 FROM NODE 19.00 TO NODE 20.00 IS CODE - 8 -------------------- ` • >ADD_ITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ICC YEAF. RAINFALL INTENSITYI" INCH/HOUR) = 5.228 SOIL CLASSIFICATION IS "B" :COMMERCIAL SUBAREA LOSS RATE, Fin( INCH/HR) _ .0750 SUBAREA AREA(ACRES) = .36 SUBAREA RUNOFF(CFS ) = .1.67 EFFECTIVE AREA(ACRES ) = 1.36 AVERAGED Fm( INCH/HR) = .0/5 TOTAL AREA ARES ) = 1.36 FLOW RATE(CFS ) = 6.31. TCvIIN) = 6.23 **xx******x******k444444444*******4*****k******444******:K*************4***** FLJ' PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 6.28 RAINFALL INTENSITY (INCH./HOUR) = 5.23 EFFECTIVE STREAM AREA(ACRES) = 1,36 PEAK FLOW RATE(CFS) AT CONFLUENCE = e .31 ******************************** ** *** ****** ***************************** FLOW PROCESS FROM NODE 21.00 TO NODE 22.00 IS CODE = 2 >>>»RATIONAL METHOD INITIAL 'SUBAREA ANALYSIS<«« DEVELOPMENT IS COMMERCIAL TC = K*[( LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH = 150.00 UPSTREAM ELEVATION = 944 .00 DOWNSTREAM ELEVATION = 942.40 ELEVATION DIFFERENCE = 1.60 TC = ,304*L( 1.50.00** 3.00)1( 1.60 ) 1** .20 = 5. i1 100 YEAR RAINFALL INTENSITY( INCH/HOUR) = 5.605 SOIL CLASSIFICATION IS "B" COMMERCIAL SUBAREA LOSS RATE, Fin( INCH/HR) _ .07.50 SUBAREA RUNOFF(CFS ) = 2.24 ICTAL AREA( ACRES ) - .45 PEA1'. FLOW RATE(CFS ) . ; ****4* **** k**t*44 *** k.*4* **i(*.k**%** *K*“<****4*K:%*4***44*4* **4**4*4**4**4 FLOW PROCESS FROM NODE 22.00 TO NODE 20.00 IS CODE = 3 >>>. >COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« >>>>>USING COMPUTER-ESTIMATED PIPESILE ( NON-PRESSURE FLOW)<« DEPTH OF FLOW IN 9.0 INCH PIPE IS 7 .3 INCHES PIPEFLOW VELOCITY( FEET/SEC. ) = 5.9 UPSTREAM NODE ELEVATION = 941.00 DOWNSTREAM NODE ELEVATION = 940.00 FLOWLENGTH( FEET) = 70.00 MANNINGS N = ,.011 ESTIMATED PIPE DIAMETER( INCH) = 9.00 NUMBER OF PIPES = 1. PIPEFLOW THRU SUBAREA(CFS) = 2 .24 TRAVEL TIME(MIN_) _ .20 TC(MIN. ) = 5.79 ******C*******.4***1(4***n.k*****K **-4 .K*#:k**4**4*4****4**4********4***4****.K* :LOW PROCESS FROM NODE 20.00 TO NODE 20.00 13 CODE - 1 > ,); DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE(.<c )» >AND'COMPUTE VARIOUS CONFLUENCE:D STREAM VALUES<<«s CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTE3 ) = 5.79 RAINFALL INTENSITY ( INCH./HOUR) = 5.49 EFFECTIVE STREAM AREA(ACRES) = .45 TOTAL STREAM AREA( ACRES) _ .45 PEAK FLOW RATE(CFS ) AT CONFLUENCE = 2.24 CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS ) ( MIN. ) ( INCH/HOUR) ( IN/HR) AREA( ACRES) 1 6.31 6.28 5.228 .08 1.36 2 2.24 5E /9 5,489 .00 .45 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 8.44 TIME(MINUTES) = 6.284 EFFECTIVE AREA(ACRES ) = 1.81 TOTAL AREA(ACRES) = 1.81 k******************:k**: ******************k********************************** FLOW PROCESS FROM NODE 20.00 TO NODE 23.00 IS CODE = 3 •>>:>>COMpIJTE PIPEFLOW TRAVELT (ME THRU SUBAREA <<<< >>)>>US[NG COMPUTER-ESTIMATED PIPIESIZE ( NON-PRESSURE FLOW )<<<< DEPTH OF FLOW IN 18.0 INCH PIPE [5 14 .7 INCHES PIPEFLOW VELOCITY( FEET SEC:. ) = 5.5 UPSTREAM NODE ELEVATION = 940,00 (COWNIS IPEAM NODE EILE'JA T 'ON = 539. 40 FL.CWLENG1H( FF_ET) .-. 122,00 i'1ANN NGS N = .011 ESTIMATED PIPE DIAMETER( INCH ) = 18.00 NUMBER OF PIPES - 1. THRU SUBAREA( F`) ) = 8..44 � F : r. w4.K-.. *...k......y *_* **T . .**4:***** K****,I;********r**,K****.****:****n*:}: FLOW ?CE'33 FFCM NODE 20.00 10 NODE 23.00 IS CODE _ 8 OF SUNAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY( INCH/HOUR) = 5.050 SOIL CLASSIFICATION IS "8" COMMERCIAL SUBAREA LOSS RATE, Fm( INCH/HR) _ .0750 SUBAREA AREA(.ACRES) _ .64 SUBAREA RUNOFF(CFS) = 2.87 EFFECTIVE AREA(ACRES) = 2.45 AVERAGED Fm( INCH/HR) = .075 TOTAL AREA( ACRES ) = 2.45 P os. FLOW RATE(CFS) = 10.9/ TC(MIN ) = 6.66 xxT..,.. �x**xt*******t:*fi * * ********1**: ***4(* *** *************: :r;******;** PROCESS FROM NODE 25.00 TO NODE 23.00 IS CODE = 1 DES;.,NATE I NDEPi=E ENI STREAM FOR CONFLUENCF_<<< << - -,.=_'UENCE VALLE= USEL OR INDEPENDENT STREAM I ARE: - I _ 2F lONCENTRAT IONi '[NUTES) = 6.66 =..a?NFA:-_ INTENSITY ( .INCH. !HOLR) = 5.05 E.-EECCT:vE STREAM AREA( ACRES ) = 2.65 T�_TAL STREAM AREA( ACRE 3 ) = 2.45 PEAK FLOW RATE(CFS ) AT CONFLUENCE _ 10.97 xxaxs:xxttxtx*** #*k****mT*1*K** ********t****** **-t** k********************** PROCESS FROM NODE 1.7 .00 TO NODE 24.00 IS CODE = 2 )%>RATIONAL METHOD INITIAL SUBAREA ANALYS[S<«<< G-Ev'EL OPMENT IS COMMERCIAL Tt. = K;:( LENGTH** 3.00 )/( ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH = 102.00 UPSTREAM ELEVATION = 946.80 DOWNSTREAM ELEVATION = 946.1.0 ELEVATION DIFFERENCE _ .70 TC = . 3004*!( .'02.00*i 3.00)1( .70) 1** .20 = 5.236 JWAL ,,LNS)vlr1k..miluA 10.7 U COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) _ .0750 SUBAREA RUNOFF(CFS) = 1.35 TOTAL AREA(ACRES) = .26 PEAK FLOW RATE(CFS) = 1.35 ************* C******************************************************:K******* FLOW PROCESS FROM NODE 24.00 TO NODE 25.00 IS CODE = 3 >>>»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< » *>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< DEPTH OF FLOW IN 9.0 INCH PIPE IS 6.0 INCHES PIPEFLOW VELOCITY( FEET/SEC. ) = 4.3 UPSTREAM NODE ELEVATION = 945.25 DOWNSTREAM NODE ELEVATION = 945.00 FLOWI_ENGTH( FEET) = 30.00 MANNING''S N _ .011 ESTIMATED PIPE DIAMETER( INCH) = 9.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = L.35 TR;':vFL TIME( MiIN. ) 7 .12 TC(MIN. ) = 5.35 x***;**� **•K****t**.kik*;k**t*:K******** ****** **g**:k'K********k******:K**4:k* ** FLOW PROCESS FROM NODE 24.00 TO NODE 25.00 IS CODE = t3 > >> : >ADDITION OF SUBAREA TO MAINLINE PEAK. FLOW««< 100 YEAR RAINFALL INTENSITY( INCH,/HOUR) = 5.756 SOIL CLASSIFICATION IS "B" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) _ .0750 SUBAREA AREA(ACRES ) _ .05 SUBAREA RUNOFF(CFS) _ .26 EFFECTIVE AREA(ACRES) = .31 AVERAGED Fm( INCH/HR) _ .075 TOTAL AREA(ACRES) = .31 PEAK FLOW RATE(CFS) = 1,59 TC(MIN) = 5.35 K*** ***************************'g*****************************;K************ FLOW PROCESS FROM NODE 25.00 TO NODE 26.00 IS CODE = 3 '(COMP F J <E PIPEFLOW TPAVEI_T TME THRU 3UBAREff C«: `USIN(Ii COMPUTER---ESTIMATED PIPE.SIrE ( NON-PRESSURE FI_.OW)<<<<:< 'SETH OF FLOW IN 12.0 INCH PIPE IS 5.8 INCHES UIFEFLOW VELOCITY'. FEEL/SEC. ) = 4 .2 UP:_TREAM NODE ELEVATION = 945.00 DOWNSTREAM NODE ELEVATION = 944.80 FL OWLENGTH( FEET) = 30.00 MANNING3 N = .01L ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = J. PIPEFLOW THRU SUBAREA(CFS ) = 1.59 TR;7 EL TIME(MIN. ) = 12 FC( MIN. ) = 5.47 ** *%******.K**********************:K***. ***********'k********'K-K************** FLOW PROCESS FROM NODE 25.00 TO NODE 26.00 IS CODE = 8 > >>>`ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.681 SOIL CLASSIFICATION IS "B" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) _ .0750 SUBAREA AREA(ACRES) _ .13 SUBAREA RUNOFF(CFS) _ .66 EFFECTIVE AREA(ACRES) = .44 AVERAGED Fm( INCH/HR) _ .075 PEAR 1-LOW NAIL(U1-3) _ '1.•LL TC(MIN) = 5.47 ******************************************************:********************** FLOW PROCESS FROM NODE 26.00 TO NODE 27.00 IS CODE = 3 >>»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA«<<< >>>>)USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)«<« DEPTH OF FLOW IN 12.0 INCH PIPE IS 7.5 INCHES PIPEFLOW VELOCITY( FEET/SEC. ) = 4.3 UPSTREAM NODE ELEVATION 944,80 DOWNSTREAM NODE ELEVATION = 944.60 LOWLENGTH( FEET ) _ 35.00 MANNINGS N = .011 ESTIMATED PIPE DIAMETER( INCH) = 12.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SHBAREA(CFS) = 2 .22 TRAVEL T IME(MIiN. ) _ .14 TC(MIN. ) .= 5.61 k r.*:k;. **-I ;: K*4: 4*:{;K.;ti l * k** K4:* 0.‹** :{e:K*g4::K',* *4( Kk*** k.Y.:Q:•K*****k***** *,K =LC,V PROCESS FROM NODE 26.00 TO NODE 27.00 IS CODE -- 8 • >; ;4001 ION OF SUBAREA TO MAINLINE PEAK FLOW««< LOC YEAR RAINFALL 1NTENSITY(INCH/HOUR) = 5.598 SOIL CLAS; IFICATION IS 8" COMMERCIAL SUBAREA LOSS RATE, Fm( INCH/HR) = .0750 SUBAREA AREA(ACRES) = .06 SUBAREA RUNOFF(CFS) _ .30 EFFECTIVE AREA(ACRES) _ .50 AVERAGED Fm( INCH/HR) _ .075 TOTAL AREA(ACRES) _ .50 PEAK FLOW RATE(CFS) = 2.49 TCi MIN) = 5.61 ********** *********.*********:K*****K*******************.****.**************** FLOW PROCESS FROM NODE 27.00 TO NODE 28.00 IS CODE = 3 >; =)COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >:'USI;.G COMPUTER--ESTIMATED PIPESIZE ( NON-PRESSURE FLOW)<<.«( C=L OF =LOW I ! 12.0 INCH PIPE IS Y .1 INCHES PI -EFLOW IELOCI1 '( FEETISEC. ) - 5. 2 -SEAM NODE ELEVATION = '944.60 000STRE: M NODE ELEVATION = 944.00 `=LOWLENG---I( FEET) = 70.00 MANNINGS N = .011 ESTIMATED PIPE DIAMETER( INC_ H) = 12.00 NUMBER OF PIPES == 1 PIPEFLOW THRU SUBAREA(CFS) = 2 .49 TRA+EL TIME(MIN. ) _ .23 TC(MIN. ) = 5.83 x=Xxx:x*%*xx:** t*****************t***** *****K********k***********k******** FLOW PROCES; FROM NODE 27.00 TO NODE 28.00 IS CODE = 6 >>>> >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<"<< 100 YEAR RAINFALL INTENSITY( INCH/HOUR) = 5.466 SOIL CLASSIFICATION IS "8" COMMERCIAL SUBAREA LOSS RATE, Fm( INCH/HR) _ .0750 SUBAREA AREA(ACRES) = .47 SUBAREA RUNOFF(CFS) = 2.28 EFFECTIVE AREA(ACRES) = .97 AVERAGED Fm(INCH/HR) _ .075 TOTAL AREA(ACRES) _ .97 PEAK FLOW RATE(CFS) = 4.71 ****** *********************%**k**********K********************************* FLOW PROCESS FROM NODE 28.00 TO NODE 31.00 IS CODE = 3 »»”COMPUTE PIPEFI_OW TRAVELTIME THRU SUBAREA<<<<< >?»>US.ING COMPUTER-ESTIMATED PIPESIZE ( NON-PRESSURE FLOW)<<<<( DEPTH OF FLOW IN 15.0 INCH PIPE IS 1..1.7 INCHES PIPEFLOW VELOCITY(FEET/SEC. ) = 4.6 UPSTREAM NODE ELEVATION = 944 .00 DOWNSTREAM NODE ELEVATION = 943.80 FL0WLENGTH( FEET ) = 45.00 MANNINGS N = .011 E�IIMATED PIPE OIAMETER( .INCH) = 15.00 NUMBER OF PIPES = 1 P Io- : FLOW THRU SUBAREA(CE 5 ) = 4.71 TRAVEL IIME( MIN. ) .1C TC(MIN. ) = 6.00 **K*-K *x***K K*K*:K****K'A**: K**•K*tK******KK****:K*K*.K****K*****Kik*;Kv6K"*K* F OW P000503 FROM NODE 28.00 10 NODE 31.00 IS CODE = 8 000_ Tii_N CF SUBAREA TO MAINLINE PEAK FLOW<<<KK +EA AINFALL INTENSIIi ( INCH/HOUR) - 5.377 CLASSIFICATION IS ",3' COf ME_RCIAL SUBAREA LOSS RATE, Fin( INCH/HR) = .0750 SUBAREA AREA( ACRES) _ .39 SUBAREA RUNOFF(CFS ) = 1.86 EFFECTIVE AREA(ACRES) = 1.36 AVERAGED Fm( INCH/HR) _ .075 TOTAL AREA(ACRES) _ 1.36 PEAK FLOW RATE(CFS) = 6.49 TC( MIN) = 6.00 *k*a.; **;*KK********:K:K*i<**K* K**t**** K** ***:K**K**'K*******K*K******C****** FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS CODE = 3 ' ' ,)COMPUTE PIPEFLOW TRAVELTIME THRU S(JBAREA<<.<<< > ' )">USING COMPUTER-ESTIMATED PIPESIZE ( N0N-PREESSURE FLOW)<<<<< = i OF FLOW IN 18.0 INC.!' PIPE IS .10,8 INCHES P:•=EFLOW tELOCITY( EEI .SEC. ) = 5.9 ._-. _,,M `iCDE ELEVATION -- 943 .80 DO,.4S;RE ,N NODE ELEVATION = 943.40 ._LT-iLE:'i;f-i( FEET ) - 62 .00 MANNINGS N = .011 ES-_mATE0 = IPE DIAMETER° INCH1 = 18.00 NUMBER OF PIPES = 1 FnRU SUBAREA(CFS) = 6 ,49 TIiMEiMIN. a = .18 TC(MIN. I = 6.17 tx“*.xx*xK'Ftx>;**R*************:K#:k************************:****************i :K F:21:4 Pi�w.. FROM NODE 31.00 TO NODE 32.00 IS CODE = 8 ?> '•A00ITION OF SUBAREA 10 MAINLINE PEAK FLOW<<<<< :-3 YEAR Rei INFALL INTENSITY( INCH/HOUR) = 5.285 CLASSIFICATION IS "8„ COI-1ERCIAL SUBAREA LOSS RATE, Fm( INCH/HR) _ .0750 • S'UE1.REA AREA(ACRES) _ . 15 SUBAREA RUNOFF(CFS) _ .70 EFFECTIVE AREA(ACRES ) = AVERAGED Fri( INCH/HR) _ .075 TOTAL AREA(ACRES) = 1.51 PEAK FLOW RATE(CFS) = 7.08 TC(:TIN) = 6.17 FLOW PROCESS FROM NODE 32.00 TO NODE 33.00 IS CODE = 3 »>»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< >>>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)«<<< DEPTH OF FLOW IN 15.0 INCH PIPE IS 11.0 INCHES PIPEFLOW VELOCITY(FEET/SEC. ) = 7.3 UPSTREAM NODE ELEVATION = 943.40 DOWNSTREAM NODE ELEVATION = 943.00 FLOWLENGTH(FEET) = 35.00 MANNINGS N = .01]. ESTIMATED PIPE DIAMETER( INCH) = 15.00 NUMBER OF PIPES = 1. PIPEFLOW THRU SUBAREA(CFS) = 7 .08 TRAVEL TIME(MIN. ) .- .08 TC(MIN. ) = 6.25 ***'K********************.**k*****.K* K***'*****W'k'K**'*:K'K***'k****'K***t**,K'*''*K** FLOW PROCESS FROM NODE 32.00 TO NODE 33.00 IS CODE = 8 >>>>>AODITION OF SUBAREA TO MAINLINE PEAK FLOW <<:<< 100 YEAR RAINFALL INTEN1ITY( INCH/HOUR) 5 .244 SOIL CLASSIFICATION IS "8" COMMERCIAL SUBAREA LOSS RATE, Fm( INCI-1/HR) _ .0750 SUBAREA AREA( ACRES) = .21 SUBAREA RUNOFF(CFS ) = .98 EFFECTIVE AREA( ACRES) = 1.72 AVERAGED Fm(INCH/ISR) _ .075 TOTAL AREA(ACRES) = 1.72 PEAK FLOW RATE(CFS) = 8.00 TC(MIN) = 6.25 *****************'K'K***=K****'**:K'K*************'K***********************'k**'K**** FLOW PROCESS FROM NODE 33.00 TO NODE 23.00 IS CODE ` 3 >>>>>COMPIJTE PIPEFLOW TRAVELTIMF THRU SUBAREA««< »>>>USING COMPUTER-ESTIMATED PIPE.SIZE (NON-PRESSURE FLOW)<<<<< DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.0 INCHES PIPEFLOW VELOCITY(FEET/SEC. ) = 10.4 UPSTREAM NODE ELEVATION = 943„00 DOWNSTREAM NODE ELEVATION :• 939. 50 FLOWLENGTH( FEET ) = 1.37 .00 MANNINGS N = .011 ESTIMATED PIPE DIAMETER( INCH ) = 15.00 NUMBER OF PIPES = .l PIPEFLOW THRU SUBAREA(CFS) 8 .00 TRAVEL TIME(MIN. ) _ .22 TC( MIN. ) = 6.47 **-x*-K***********<K***'K******K**********•K*t' .K<K*****'K******.**************K***** FLOW PROCESS FROM NODE 23.00 TO NODE 23.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« >>>> >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 6.47 RAINFALL INTENSITY ( INCH./HOUR) = 5.14 EFFECTIVE STREAM AREA(ACRE3) = 1.72 TOTAL STREAM AREA(ACRES) = 1.72 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.00 CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INIEN>IIY FM EFFECTIVE NUMBER RATE(CFS) (MIN. ) ( INCH/HOUR) ( IN/HR) AREA(ACRES) RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) 1 18.84 4.17 2 18.85 4.10 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 18.85 TIME( MINUTES) = 6.470 EFFECTIVE AREA( ACRES) = 4.10 TOTAL AREA(ACRES) = 4 . 17 4k***********'****.*K*K*********it********************************************** FLOW PROCESS FROM NODE 23.00 TO NODE 34.00 IS CODE = 3 : •)COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >USING COMPUTER-ESTIMATED PIPESILE (NON-PRESSURE FLOW)<<<< < DEPTH OF FLOW iN 24 .0 INCH PIPE IS 19 .6 INCHES VELOCITY( FEET/:SEC. ) = 6.9 LIPS T REAM NODE ELEVATION = 939.50 DOWNSTREAM NODE ELEVATION = 939.20 FLOWLENGTH(FEET) = 57.00 MANNINGS N = .011 ESTIMATED PIPE DIAMETER( INCH ) = 24.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 18.85 TRAVEL TIME(MIN. ) _ .14 TC(MIN. ) = 6.61 *'s***********************************K************* ******************n***fit* FLOW PROCESS FROM NODE 34.00 TO NODE 34.00 IS CODE = 1 > >>>>OESIGNATE INDEPENDENT STREAM FOR CONFLUENCE< <<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 6.61 RAINFALE INTENSITY ( INCH. %HOUR) = 5.07 EF-ECTIVE STREAM AREA(ACRES) = 4.10 -.1)7:d._ STREAM AREA(ACRES) = 4 .17 = FLOW RATE(0F3) AT CONFLUENCE = 18.85 :x :xzx***s***=*******:**** 4x******************%kik**********"• ***K****:******* !__Old PROCESS FROM NODE 35.00 TO NODE 36.00 IS CODE = 2 RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< DEVELOPMENT IS COMMERCIAL T, = K* ( LENGTH** 3.00)/i ELEVATION CHANGE)1** .20 INI-IAL SUBAREA FLOW-LENGTH = 170.00 :Jc.S'REAM ELEVATION = 947.00 COtoSTPEAM ELEVATION = 943.30 ELE ATION DIFFERENCE = 3.70 IC = .304*(( 170.00** 3.00)/( 3.70))** .20 = 5.099 1.00 YEAR RAINFALL INTENSITY( INCH/HOUR) = 5.925 SOIL CLASSIFICATION IS "B" COMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) _ .0750 SUBAREA RUNOFF(CFS) = 2.42 TOTAL AREA(ACRES) _ .46 PEAK FLOW RATE(CFS) w 2.42 rLVW rrV4C:).7 rrVIl IIVULT. .,1V.VV IV '.1? .vv ...r VWuL. »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA«< < >>>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< DEPTH OF FLOW IN 12.0 INCH PIPE IS 7.7 INCHES PIPEFLOW VELOCITY(FEET/SEC. ) = 4.6 UPSTREAM NODE ELEVATION = 941.90 DOWNSTREAM NODE ELEVATION = 941.20 FLOWLENGTH( FEET) = 110.00 MANNINGS N :. .011 ESTIMATED PIPE DIAMETER( INCH ) 12.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 2.42 TRAVEL TIME(MIN. ) _ .40 TC(MI.N. ) = 5.50 *****************************'*******K*************************************** FLOW PROCESS FROM NODE 36.00 TO NODE 37.00 IS CODE = 8 >> ,>>,ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<< < 100 YEAR RAINFALL INTENS.IT'f( INCH/HOUR) = 5.662 SOIL CLASSIFICATION IS '8' COMMERCIAL SUBAREA LOSS RATE . Fm( INCH/HR) = .0750 SU3REA AREA(ACRES) .__ . ? SUBAREA RUNOFFI CFS ) - 2.92 EFFECTIVE AREA( ACRES ) = 1 .04 AVERAGED Fm( INCH/HR) = .075 TOTAL AREA( ACRES) = 1.04 PEAK FLOW RATE(CFS) = 5.23 TC(MIN) = 5.50 ** :*****t********************************.****:***.K*************************** FLOW PROCESS FROM NODE 37.00 TO NODE 34.00 IS CODE = 3 >>»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >»»USING COMPUTER-ESTIMATED PIPESIZE (NON -PRESSURE FLOW)<<< < DEPTH OF FLOW IN 15.0 INCH PIPE 13 8.6 INCHES PIPEFLOW VELOCITY( FEET/SEC. ) = 7.1 JPSTREAM MODE ELEVATION = 941.20 L-OWNSTREAM NODE ELEVATION = 939.15 =LCWLE^+.GTH( FEET ) = 165.00 MANNIN03 N _ .011 ESTIMATED PIPE DIAMETER( 1NCH = 15.00 NUMBER OF PIPES = 1 D =EFLOW THRU SUBAREA. CFS ) = 5.23 RAVEL TIKE( ilii. ) = .38 TC(M N. ) = 5.89 xk.*k***:******************************** k k*** :***k*****K*k K****k*******K*** FLOW PROCESS FROM NODE 34 .00 TO NODE 34.00 IS CODE = 1 >>>>' DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>' >>A'4C COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: 3IrE CF CONCENTRATION(MINUTES ) = 5.89 RAINFALL INTENSITY ( INCH./HOUR) = 5.44 EFFECTIVE STREAM AREA(ACRES ) = 1.04 TOTAL STREAM AREA(ACRES) = 1.04 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.23 CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN.) ( INCH/HOUR) ( IN/IIR) AREA(ACRES) 1 18.85 6.61 5.072 _08 4.10 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) 1 23.73 5.14 2 23.25 4.69 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 23.73 TIME(MINUTES) = 6.609 EFFECTIVE AREA(ACRES) = 5.14 TOTAL AREA(ACRES) = 5.21 R l-K mKK*********K*****'(4 K*K****:KIK********k.44******44**4*4444**44**4-K***KIK*4 FLOW PROCESS FROM NODE 34.00 TO NODE 35.00 13 CODE = 3 >>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<c<<< USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<«<< .)EL H -.DF FLOW IN 21.0 INCH PIPE TS L2 .8 INCHES _PEFLOW VELOCITY( FEET/SEC. ) _ .1.5.4 'PST:SEAM NODE ELEVATION =- 939.15 DOWNSTREAM NODE ELEVATION = 935.90 aOWL`NGTH(FEET) _ - 92.00 MANNINOS N = .011 ESTIMATED PIPE DIAMETER( INCH) = 21.00 NUMBER OF PIPES = 1. PIPEFLOW THRU SUBAREA(CFS) = 23.73 TRAVEL TIME(MIN. ) _ .10 TC( MIN. ) = 6.71 x*************************4****4*4*****4*4*********44***************4*****44 FLOW PROCESS FROM NODE 34.00 TO NODE 38.00 IS CODE = 8 >;'>> >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<«< 100 YEAR RAINFALL INTENSITY( INCH/HOUR) = 5.026 SOIL CLASSIFICATION IS "B" CCMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0750 AUBARE AREA(ACRES) _ .25 SUBAREA RUNOFF(CFS) = 1.11. =E:TI VE AREA(ACRES) = 5.39 a'cRAGED Fm( INc:H/HR) _ .075 G �L AREA( ACRES) = 5.46 F_OW RATE(CFS) - 24.03 = 6.71 xxxxr*#xxtx***4********k*********:K**K**:K-K*'K*'K**'K4******:K***:K*:K***4***#'K***** =LDW PROCESS FROM NODE 38.00 TO NODE 39.00 IS CODE = 3 ' ») COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<« % )!JSING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<«<< DEPTH OF FLOW IN 27.0 INCH PIPE IS 20.1 INCHES 'I=EFLOW VELOCITY(FEET/SEC. ) = 7.6 UPS i REAM NODE ELEVATION = 938.70 DO+4NST.REAM NODE ELEVATION = 938.30 FLOWLENGTH(FEET) = 72.00 MANNING. N = .011 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS ) = 24.03 TRAVEL TIME( MIN. ) _ .16 TC(MIN. ) .Y 6.87 *44*4***************************.***********************fit******************** FLOW PROCESS FROM NODE 38.00 TO NODE 39.00 IS CODE = 8 »»>AUUIIIUN Ur nJtJAKEA IU MAINLINE PEAK bLUW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.956 SOIL CLASSIFICATION IS "8" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0750 SUBAREA AREA(ACRES) _ .25 SUBAREA RUNOFF(CFS) = 1.10 EFFECTIVE AREA(ACRES) = 5.64 AVERAGED Fm(INCH/HR) _ .075 TOTAL AREA(ACRES) = 5.71 PEAK FLOW RATE(CFS) = 24.79 TC(MIN) = 6.87 ***t**** K*;K**************:K*****.*K****K**** * k*K*******t**:K1****M**'KIK***** FLOW PROCESS FROM NODE 39.00 IO NODE. 40„00 IS CODE = 3 >>> OMPUTE PIPEFLOW 1RAVELTIME THRU SUBAREA«<<< >>:'>>US[NG COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW )<<:<:<< OEP;H OF FLOW IN 21.0 INCH PIPE IS 14.8 INCHES PIPEFLOW VELOCITY( B=EET/SEC. ) = 13.7 UPSTREAM NODE ELEVATION =- 938 .30 DOWNSTREAM NODE ELEVATION -- 935.90 FLOWLENGTH( FEET) = 93.00 MANN1NGS N = .011 ESTIMATED PIPE DIAMETER( INCH ) t 21.00 NUMBER OF PIPES 1 PIPEFLOW THRU SUBAREA(CFS) = 24 .79 TRAVEL TIME(MIN. ) = .11 TC(MIN_ ) = 6.98 **** *********************************************************************** FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 IS CODE t 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 6.98 RAINFALL_ INTENSITY ( INCH./HOUR) = 4.91 EFFECTIVE STREAM AREA(ACRES) = 5 .64 TOTAL STREAM AREA(ACRES) = 5.71 PEAK FLOW RATE(CFS) AT CONFLUENCE = 24 .79 **.K******:*K**-i k**** **:K*:K ***.***** ****.**** Y' ***%i ***"*%K*:K:KX:•k- ** K*X.****** FLOW PROCESS FROM NODE 40.00 TO NODE .40 .00 IS CODE - 7-c :.>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN ) -- 15.46 RAIN INTENSITY( INCH/HOUR) = 3.05 EFFECTIVE AREA(ACRES) = 11.94 TOTAL AREA(ACRES) = 11.94 PEAK FLOW RATE(CFS) 19. 76 AVERAGED LOSS RATE , Fm(IN/HR) _ .450 ***ERROR; SPECIFIED LOSS RATE, FM IS LESS THAN MINIMUM POSSIBLE VALUE OF 1.21( INCHES/HOUR) *************************************************** K*:K********************** FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 IS CODE = 1. >>>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< >>>> AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<« CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 15.46 RAINFALL INTENSITY (INCH./HOUR) .e 3.05 10IHL JII'! HII MLHk.HLI'CC.]) PEAK FLOW RATE(CFS) AT CONFLUENCE = 19.76 CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN. ) ( INCH/HOUR) (IN/HR) AREA(ACRES) 1 24 .19 6.98 4 .908 .08 5.64 2 L9.76 15.46 3.046 .45 11.94 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) 1 40.11 11.03 35 .00 17 .58 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: ;'_AK FLOW RATE(CFS) = 40.11 TIME:( MINUTE3 ) = 6 .980 E =ECT1VE AREA( ACRES ) = L1,03 -0 ,_;L AREA(ACRES) - 17.65 x: .Yxt'K :FX^**'m*** K* .**"*************k************'I:*** * K**m***************gy m** FLOW PROCESS FROM NODE 40.00 TO NODE 41.00 13 CODE = 3 >: >COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA‹ <<« >>: %>USING COMPUTER-ESTIMATED PIPESIZE (NON--PRESSURE FLOW)««< DEPTH OF FLOW IN 30.0 INCH PIPE IS 19.7 INCHES PIPEFLOW VELOCITY( FEET/SEC. ) = 11.7 UPSTREAM NODE ELEVATION = 935.90 DOWNSTREAM NODE ELEVATION = 932.00 FLOWLENGTH( FEET) = 320.00 MANNINGS N = .011 ESTIMATED PIPE D1AMETER( INCH ) = 30.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS ) = 40. 1.1 TRi'aEL TIME(MIN. ) _ .46 TC(MIN. ) = 7.44 xz:-cz*x*t******* *4:** : kTx*k-KX ***** K.KiKK***..;**** * ;*<*******.;**K*******,;: ** PROCESS FROM NODE i-0.00 70 NODE 41.00 IS CODE = 8 -:OIIION JF SUF!AREA TO MAINLINE PEAK FLOW<<<<.< YEAR RAINFALL INTENSITY( INCH/HOUR) = 4.725 SOIL CLASSIFICATION IS "B" PUBLIC PARK SUBAREA LOSS RATE, Fm( INCH/HR) _ .6375 SiUEAREA AREA(ACRES) _ .91 SUBAREA RUNOFF(CFS) 7 3.35 EFFECTIVE AREA(ACRES) = 11.94 AVERAGED Fm( INCH/HR) _ .287 T' 'AL AREA- ACRES) = 18.56 PE='w. FLOW RATE(CFS) = 47. 71 :C'MINi = 7.44 x1ctm;ttt=*****x#x*****************************t****************************K FLC4 PFOCESS FROM NODE 41.00 TO NODE 42.00 IS CODE = 3 --- ------------------ ) > COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA«<<< > > ' >USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)«<<< DEPTH OF FLOW IN 30.0 INCH PIPE IS 22.2 INCHES PIPEFLOW VELOCITY(FEET/SEC. ) = 12.3 UPSTREAM NODE ELEVATION = 932.00 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES w 1 PIPEFLOW THRU SUBAREA(CFS) = 47.71 TRAVEL TIME(MIN.) _ .12 TC(MIN.) = 7.55 ***************c***************************: **c*********:********************** FLOW PROCESS FROM NODE 41.00 TO NODE 42.00 IS CODE = 8 >>>>>ADDITTON OF SUBAREA TO MAINLINE PEAK FLOW<<«< 100 YEAR RAINFALL INIENSITY(INCH/HOUR) = 4.682 SOIL CLASSIFICATION IS "8" PUBLIC PARK SUBAREA LOSS RATE, Ffn( INCH/HR) _ .6375 SUBAREA AREA(ACRES) _ . 0 SUBAREA RUNOFF(CFS) = 2.55 EFFECTIVE AREA( ACRES) = 12,64 AVERAGED Fin( INCH/HR) _ .307 TOTAL AREA(ACRE3) = L9.26 PEAK FLOW RATE(CFS) = 49. 79 TC( iIN) = 7 . 55 L** a: K**** :K;K*1K*** ****'k**************:k.K**t!:: *Tkg****:c**:k:kk** :************* LCW PrOCESS FROM NODE 42.00 10 NODE 43,00 IS CODE = 3 > >>COMPU•TE PIPEFLOW TRAVELTIME THRU SUBAREA<<«< >>?>>USIMG COMPUTER-ESTIMATED PIPESILE (NON-PRESSURE FLOW )<<<« DEPTH OF FLOW IN 30.0 INCH PIPE IS 22.9 INCHES PIPEFLOW VELOCITY(FEET/SEC. ) = 12.4 UPSTREAM NODE ELEVATION = 930.92 DOWNSTREAM NODE ELEVATION = 929.96 FLOWLENGTH( FEET) = 75.00 MANNINGS N = .011 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1. PIPEFLOW THRU SUBAREA(CFS) = 49.79 TRAVEL TIME(MIN. ) _ .10 TC(MIN. ) = 7.65 ** :*% ***************K********************x**********************'K*********** FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = J_ >>>>>DESIGi- ,TE INDEPENDENT STREAM FOR CONFLUENCE<r<<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM .i. ARE: TIME OF CONCENTRATION(MINUTES) = 7.65 RAINFALL INTENSITY ( INCH./HOUR) = 4.64 EFFECTIVE STREAM AREA(ACRES) = 12.64 TOTAL STREAM AREA(ACRES) = 19.26 PEAK FLOW RATE(CFS) AT CONFLUENCE = 49.79 *i.* ***************m***** ***** ******* :******** k************************ : FLOW PROCESS FROM NODE 44 .00 TO NODE 45.00 IS CODE = 2 ..>?RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< DEVELOPMENT IS PUBLIC PARK TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)** .20 INITIAL SUBAREA FLOW-LENGTH = 85.00 UPSTREAM ELEVATION = 937 .80 DOWNSTREAM ELEVATION = 936.50 ELEVATION DIFFERENCE = 1.30 TC = .483*[( 85.00** 3.00)/( 1.30)]** .20 = 6.589 100 YEAR RAINFALL INTENSITY( INCH/HOUR) _ rUULlu rril\I\ JVUf l\LrI L.AlVV I\rlIL] Allillsullf III\/ vvr .1 SUBAREA RUNOFF(CFS) _ .92 - TOTAL AREA(ACRES) = .23 PEAK FLOW RATE(CFS) = -92 *********************************** :**************************************** FLOW PROCESS FROM NODE 45.00 TO NODE 46.00 IS CODE = 3 >>>»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA(<<<< >»»USING COMPUTER--ESTIMATED PIPESIZE ( NON-PRESSURE FLOW)<<<<< DEPTH OF FLOW IN 9.0 INCH PIPE IS 4.4 INCHES PIPEFLOW VELOCITY( FEET/SEC. ) = 4.2 UPSTREAM NODE ELEVATION = 934.83 DOWNSTREAM NODE ELEVATION = 934.10 FLOWLENGTH( FEET ) = 75.00 MANNINGS N = .011 ESTIMATED PIPE DIAMETER( INCH) = 9.00 NUMBER OF PIPES 1 PIPEFLOW THRU SUBAREA(CFS) _ .92 TRAVEL TIME(MIN. ) _ .29 TC(MIN. ) = 6.88 -4*En..*- **** v*t14***.A-*******:s;*itI:T***•tv********'* ***:1:***4:**** :k***rnk**“.* FLOW PROCESS FROM NODE 45.00 TO NODE 46.00 IS CODE = I., >>,+OOITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 •:EAR RAINFALL INTENSITY(INCH/HOUR) = 4.949 SOIL CLASSSIFICATION IS "8" PUBLIC PARK SUBAREA LOSS RATE, Fm( INCH/HR) = .6375 SUBAREA AREA(ACRES) _ .36 SUBAREA RUNOFF(CFS) = 1.40 EFFECTIVE AREA(ACRES) _ .59 AVERAGED Fm(INCH/HR) = .638 TOTAL AREA(ACRES) = .59 PEAK FLOW RATE(CFS) = 2.29 TC(MIN ) = 6.88 -#z***** *X*k*: ******** ****K***K***4t :*tt ******k*************-i:***k****.*K**k FLOW PROCESS FROM NODE 46.00 TO NODE 47.00 IS CODE = 3 =MPUTE PIPEFLOW TR:AVELTIME THPU SUBAREA<<<<< • USING ',COMPUTER-ESTIMATED PIPESIZE ( NON-PRESSURE FLOW)<<<<< • _PTH DF FLOW IN 12 .0 INCH PIPE IS 8.8 THCHE3 _= ?EFLOI VELOCI T Y( FEE I ISEC. ) = 3.7 oPSTPEAM NODE ELEVATION = 934 .40 DOWNSTREAM NODE ELEVATION = 934.10 FLOWLENGTH( FEET) = 75.00 MANNINGS N = .011 ESTIMAT=D PIPE DIAMETER( INCH) = 12.00 NUMBER OF PIPES 1 PIPEFLOW THRU SUBAREA(CFS) = 2.29 TRAVEL TTME(MIN. ) = .34 TC(MIN. ) = 7.22 ...xx*.z******************* K*****************k***K'k****-K'k**k****************-K** FLOW PROCESS FROM NODE 46.00 TO NODE 47.00 IS CODE = 8 > > ,»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.810 SOIL CLASSIFICATION IS "B" PUBLIC PARK SUBAREA LOSS RATE, Fm(INCH/HR) = .6375 SUBAREA AREA(ACRES) _ .27 SUBAREA RUNOFF(CFS) = 1.01 EFFECTIVE AREA(ACRES) = .86 AVERAGED Fm(INCH/HR) = .638 TOTAL AREA(ACRES) _ .86 ._- ....' _.•-- _ _ - .. .. __ - _ _ _ __.. r• "_.._ ._ _ '. .. s.. _• _i?.i7t..+.�'.y�+C,,�C1�Srr1�R{i�z'�G'.da1� -. - ry\rur / + .i•. ****%K***CI*****+*************`.K k*****"KIC****K**********%k**C****************I'*** FLOW PROCESS FROM NODE 47.00 TO NODE 48.00 IS CODE = 3 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.7 INCHES PIPEFLOW VELOCITY( FEET/SEC. 1 = 4.4 UPSTREAM NODE ELEVATION = 934.10 DOWNSTREAM NODE ELEVATION = 933.70 FLOWLENGTH( FEET) = 85.00 MANNINGS N = .011 ESTIMATED PIPE OIAMETER( INCH) = 15.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 3.23 TRAVEL IIME(MIN. ) z .32 TC(MIN. ) = 7.54 ** ;:**.k*.k**•K*K*k*** *K.K****I***k***:k**_*******T*******:K**********'k**K**.****.k* I.r'll PRLcE33 FOM NODE 47 .00 TO NODE 48.00 13 CODE _ S }> ,ADDI TION OF SUBAREA TO MAINLINE PEAK FLOW<< << 100 YEAR RAINFALL INTENSITY( INCH/HOUR) 4 4.686 SOIL CLASSIFICATION IS "8" PUBLIC PARK SUBAREA LOSS RATE, Fm( INCH/IHR) = .6375 SUBAREA AREA(ACRES) = .29 SUBAREA RUNOFF(CFS) = 1.06 EFFECTIVE AREA(ACRES) = 1.15 AVERAGED Fm( INCH/HR) _ .638 TOTAL AREA(ACRES) = 1.15 PEAK FLOW RATE(CFS) z 4.19 TC(MIN) = 7.54 *******************:C*********%**-K**'K************m******IK*********IK*C**IKIk* FLOW PROCESS FROM NODE 48.00 TO NODE 49.00 IS CODE = 3 > >COMPUTE PIPEFLOW TRAVELTIiME THRU SUBAREA<<<<< >>:>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< DEPTH OF FLOW IN 15.0 INCH PIPE IS 10.3 INCHES PIPEFLOW VELOCITY( FEET/SEC. ) = 4.6 UPSTREAM NODE ELEVATION = 933 . 70 0;OWNSTREM NODE ELEVATION = 933.30 FLOWLENGTH( FEET) = 85 .00 MANNINGS N = .011 ESTIMATED PIPE DIAMETER( INCH) _ 15.00 NUMBER OF PIPES - 1 PIPEFLOW THRU SUBAREA(CFS ) = 4.19 TRAVEL TIME( MIN. ) _ .31 TC(MIN. ) = 7.85 *##x:********KkICk*Ik*****k*K**************I*.*:K**************:K**:k********IK**** FLOW PROCESS FROM NODE 48.00 TO NODE 49.00 IS CODE = 8 > >>>AODITION OF SUBAREA TO MAINLINE PEAK FLOW<«<< 100 YEAR RAINFALL INTENSITY( INCH/HOUR) = 4 .576 SOIL CLASSIFICATION IS "B" PUBLIC PARK SUBAREA LOSS RATE, Fm(-INCH/HR) = .6375 SUBAREA AREA(ACRES) = .33 SUBAREA RUNOFF(CFS) = 1. 17 EFFECTIVE AREA(ACRES) = 1.48 AVERAGED Fm(INCH/HR) _ .638 TOTAL AREA(ACRES) = 1.48 PEAK FLOW RATE(CFS) = 5.25 TC(MIN) = 7 85 - - - _ __ ************************ *********K***************************************** FLOW PROCESS FROM NODE 49.00 TO NODE 50.00 IS CODE = 3 >>>>»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<«< DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.9 INCHES PIPEFLOW VELOCITY(FEET/SEC. ) = 6.1 UPSTREAM NODE ELEVATION = 933.30 DOWNSTREAM NODE ELEVATION = 932.60 FLOWLENGTH( FEET) = 85.00 MANNINGS N = .011 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 P[PEFL.OW THRU SUBAREA(CFS) = 5.25 TRAVEL. TIMEiMIN. ) _ .23 TC(MIN. ) = 8.08 *:K•i.K'K**t: . ******1(:k*k******'K**KY.******K%K#%K%K*****K**K.*:K*K* ::KK*******:K** Km*** FLOW PROCESS FROM NODE 49.00 TO NODE 50.00 IS CODE = 8 >r,LDITION OF SUBAREA TO MAINLINE PEAK FLON<<<<,. 1CO YEAR RAINFALL INTENSITY( INCH/HOUR) = 4.496 OiL CLASSIFICATION IS "S" PUSL1:. PARK SUBAREA LOSS RATE, Fm( INCH/HR) _ .6375 SUBAREA AREA( ACRES) _ .29 SUBAREA RUNOFF(CFS) = 1.01 EFFECTIVE AREA(ACRES) = 1.77 AVERAGED Fm(INCH/HR) _ .638 TOTAL AREA(ACRES) = 1.77 PEAK FLOW RATE(CFS) = 6.15 TC(MIN) = 8.08 x**** **********k**************.***********K******************************* FLOW PROCESS FROM NODE 50.00 TO NODE 43.00 IS CODE = 3 >>>>»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA«<(< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< )E?TH OF FLOW [N 9.0 INCH PIPE [3 7 .1 INCHES DT0E FLOW VELOCITY( FEET/SEC. ) = 16.5 ::PSTRE)M NODE ELEVATION = 932.60 2C4NST,<EAM NOSE ELEVATION = 930.00 !_OWLENGTH( FEET ) _ 23.00 MANNINGS N 7 .011 ESTI ^rTED PIPE DIAME[ER( INCH) - 9.00 NUMBER OF PIPES = 1 PIPEFLOW TI1RU SUBAREA(CFS) = 6.15 TRAVEL TIME( MIN. ) = .02 TC(MIN. ) = 8.10 a.*Tt ****k*******************K****:K******K***K ******'******K K**k*******-KIK FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = 1 ) - -DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<:<<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 8.10 RAINFALL INTENSITY ( INCH./HOUR) = 4.49 EFFECTIVE STREAM AREA(ACRES) = 1.77 TOTAL STREAM AREA(ACRES) = 1.77 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6. 15 ****g*********************************************************************** FLOW PROCESS FROM NODE 51.00 TO NODE 52.00 IS CODE = 2 _ _ _- .. .. - - '•-\ "'tea- '`.. �'b .1„ _«+5�•'.. DEVELOPMENT IS PUBLIC PARK TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH = 85.00 UPSTREAM ELEVATION = 937.80 DOWNSTREAM ELEVATION = 936.50 ELEVATION DIFFERENCE = 1.30 TC = .483*t( 85.OQ** 3.00)/( 1.30)J** .20 = 6.589 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.081 SOIL CLASSIFICATION IS "B" PUBLIC PARK SUBAREA LOSS RATE, Fm( INCH/HR) = .6375 SUBAREA RUNOFF(CFS) = .76 TOTAL AREA(ACRES) _ .19 PEAK FLOW RATE(CFS) = .76 K***K***********************.K*********************** **********************'K FLOW PROCESS FROM NODE 52.00 TO NODE 53.00 IS CODE = 3 >> ; >COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USINC COMPUTER.-ESTIMATED PIPESIZE ( NON-PRESSURE FLOW)<<<< < DEPTH OF FLOW N 4.0 INCH PIPE IS 4.1 INCHES PIPEFLOW VELOCITY( FEET/SEC. ) = 3.9 UPSTREAM NODE ELEVATION = 933.80 DOWNSTREAM NODE ELEVATION = 933.10 FLOWLENGTH(FEET) = 78.00 MANNINGS N = .01.1 ESTIMATED PIPE DIAMETER( INCH ) = 9.00 NUMBER OF PIPES =- 1 PIPEFLOW THRU SUBAREA(CFS) = .76 TRAVEL TIME(MIN. ) _ .33 TC(MIN.) = 6.92 ****4:***************: ***************h******i **4:*** *******k********:it******** FLOW PROCESS FROM NODE 52.00 TO NODE 53.00 IS CODE = 8 > >>>ADDILION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.933 SOIL CLASSIFICATION IS "8" PUBLIC PARK SUBAREA LOSS RATE, Fm(INCH/HR) = .6375 SUBAREA AREA(ACRES) = .27 SUBAREA RUNOFF(CFS) = 1_04 EF ECT IVE AREA( ACRES ) = .46 AVERAGED Fin( INCH/HP ) _ .638 Ti_TAL AREA(ACRES ) _- .46 PEAK FLOW RATE(CFS) = 1.78 TC( MIN ) = 6.92 K**Kx**.K**K**K***•K**************K*****,K****:K***KK-K K**********K**KKK********* FLOW PROCESS FROM NODE 53.00 TO NODE 43.00 IS CODE = 3 ----------------------- -- ----------- ---------- > >>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA«<<< >>= >USING COMPUTER--ESTIMATED PIPESIZE (NON -PRESSURE FLOW)< <<<< DEPTH OF FLOW IN 9.0 INCH PIPE IS 4.1 INCHES PIPEFLOW VELOCITY( FEET/SEC. ) = 9.2 UPSTREAM NODE ELEVATION = 933. 10 DOWNSTREAM NODE ELEVATION = 930.00 FLOWLENGTH( FEET) = 62.00 MANNINGS N = .011 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 1.78 TRAVEL TIME(MIN. ) = .11 TC(MIN. ) = 7.03 **************************************************************************** >>»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES«<« CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MINUTES) = 7.03 RAINFALL INTENSITY (INCH./HOUR) = 4.89 EFFECTIVE STREAM AREA(ACRES) _ .46 TOTAL STREAM AREA(ACRES) _ .46 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.78 CONFLUENCE .INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN. ) ( INCH/HOUR) (IN/HR) AREA(ACRES) 49.79 7.65 4.645 _31 12.64 6.15 8. 10 4 .483 .64 1 .77 1_78 7.03 4 .885 .64 .46 RAINFALL INTE,1SITY ANO TIME OF CONCENTRATION RATIO CONFLUENCE Ff'C.MULA USED FOR 3 STREAMS. SU,IMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER c.:1(CFS) ARE,( ACRES) 1 57.51 14 . 77 2 55.75 14.87 3 55.97 13.62 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 57.51 TIME(MINUTES) = 7.652 EFFECTIVE AREA(ACRES) = 14.77 TOTAL AREA(ACRES) = 21.49 ************:K**************:kik**** **.***:K"**K***************************** CT* FLOW PROCESS FROM NODE 43.00 TO NODE 54.00 IS CODE = 3 >»>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA«<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< DEPTH OF FLOW IN 33.0 INCH PIPE IS 24 .8 INCHES PIPEFLOW 'VELOCIIY( FEET/SEC. ) = 12.0 UPSTREAM NODE ELEVATION = 930.00 DCWNSTrEAM NODE ELEVATION = 927.90 :-LOWLENGTH( FE=T ) = 197.00 MANNINGS N = .011 ESTIMATED PIPE DIAMETER( INCH) = 33.00 NUMBER OF PIPES = 1. PIPEFLOW THRU SUBAREA(CFS) = 57 .51 TRAVEL TIME( MTN. ) = .27 TC(MIN.) = 7.93 *x**xx***k*t****k*********************************** K* K****K*********:K*.m** FLOW PROCESS FROM NODE 43.00 TO NODE 54 .00 IS CODE _ 8 >>>> >AODITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY( INCH/HOUR) = 4.548 SOIL CLASSIFICATION IS "B" PUBLIC PARK SUBAREA LOSS RATE, Fm( INCH/HR) _ .6375 SUBAREA AREA(ACRES) = 1.83 SUBAREA RUNOFF(CFS) = 6.44 EFFECTIVE AREA(ACRES) = 16.60 AVERAGED Fm(INCH/HR) _ .385 TOTAL AREA(ACRES) = 23.32 PEAK FLOW RATE(CFS) = 62.20 TC(MIN) = 7.93 •.. - n .. _ FLOW PROCESS FROM NODE 54.00 TO NODE 63.00 IS CODE = 4 >>»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »>»USING USER-SPECIFIED PIPESIZE««< DEPTH OF FLOW IN 36.0 INCH PIPE IS 23.2 INCHES PIPEFLOW VELOCITY(FEET/SEC. ) = 12.9 UPSTREAM NODE ELEVATION = 927.90 DOWNSTREAM NODE ELEVATION = 922.00 FLOWLENGTH(FEET) = 360.00 MANNINGS N = .013 GIVEN PIPE DIAMETER( INCH) = 36.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 62.20 TRAVEL TIME( MIN. ) _ .46 TC(MIN. ) = 8.39 ** ************1(**** k***:K**k*********K*********************DKK**',K':N:K*.'K.***** FLOW PROCESS FROM NODE 54.00 TO NODE 63.00 IS CODE = 8 >>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<« 100 YEAR RAINFALL INTENSITY( INCH/HOUR) = 4.395 SOIL CLASSIFICATION IS "B" COMMERCIAL SUBAREA LOSS RATE, Fm( INCH/HR, _. .0730 SUBAREA AREA(ACRES) -- 6.04 SUBAREA RUNOFF(CFS) = 23.48 EFFECTIVE AREA(ACRES) = 22.64 AVERAGED Fm(INCH/HR) _- .303 TOTAL AREA(ACRES) = 29.36 PEAK FLOW RATE(CFS) = 83.40 TC(MIN) = 8.39 *****K'K'****-K*'**'K***'K'*****'K***'K''*'***'K'*********************:K*'****'******** FLOW PROCESS FROM NODE $44.00 TO NODE 63.00 IS CODE = 8 >>>>>ADOITION OF SUBAREA TO MAINLINE PEAK FLOW«<<< 100 YEAR RAINFALL INTENSITY( INCH/HOUR) = 4 .395 SOIL CLASSIFICATION IS "B" COMMERCIAL SUBAREA LOSS RATE, Fm( INCH/HR) = .0750 SUBAREA AREA(ACRES ) = 1.32 SUBAREA RUNOFF(CFS) = 7.08 EFFECTIVE AREAi ACRES ) = 24.46 AVERAGED Fm( IN Cl- /HR ) _ .286 TOTAL AREA( ACRES) _ 31.18 PEAK..-_ 1)i FLr. W RATE(CFS) - 90.48 7C(MIN) = 8 39 • ******'K**-*****KKK'*K****K'K'k****K*K*'K'K'*******'*************K*'k****'k****'k*:K*** FLOW PROCESS FROM NODE 56.00 TO NODE 57.00 IS CODE = 2 >:>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH = 400.00 UPSTREAM ELEVATION = 937.90 DOWNSTREAM ELEVATION = 933.00 ELEVATION DIFFERENCE = 4.90 TC = .304*[( 400,00** 3.00)/( 4 .90)]'K* .20 8.055 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.504 SOIL CLASSIFICATION IS "B". COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0750 SUBAREA RUNOFF(CFS) = 13.87 **************************************************************************** FLOW PROCESS FROM NODE 58.00 TO NODE ec40.00 IS CODE = 2 > >>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< DEVELOPMENT IS COMMERCIAL TC = K*[( LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH = 880.00 UPSTREAM ELEVATION = 943.50 DOWNSTREAM ELEVATION = 933.70 ELEVATION DIFFERENCE = 9.80 TC = .304*[( 880.00** 3.00)/( 9.80)]** .20 = 11 .254 100 YEAR RAINFALL INTENSITY( INCH/HOUR) = 3.685 SOIL CLASSIFICATION 13 "0" COMMERCIAL SUBAREA LOSS RATE, Fm( INCH/HR) _ .0750 SUBAREA PUNOFF(CFS) = 15 .53 TOTAL AREA(ACRES) •4.78 PEAK FLOW RATE(CFS) .:- 15.53 *********vx K K***********K***K*:K*********m************k*******K**K*****KIK** FLOW PROCESS FROM NODE 60.00 TO NODE 61.00 .IS CODE = 3 >>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESILE (NON-PRESSURE FLOW)<<«< DEPTH OF FLOW IN 21.0 INCH PIPE IS 13,4 INCHES PIPEFLOW VELOCITY(FEET/SEC_ ) = 9.6 UPSTREAM NODE ELEVATION = 930.50 DOWNSTREAM NODE ELEVATION = 930.10 FLOWLENGTH(FEET) = 30.00 MANNINGS N = .011 ESTIMATED PIPE DIAMETER(INCH ) = 21.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 15.53 TRAVEL TIiME(MIN. ) _ .05 TC(MIN. ) = 11.31 *****K********** ******V******.***Kik K,4***'K**************k*********K*******.**:K FLOW PROCESS FROM NODE 60.00 TO NODE 61.00 IS CODE = 8 >>AODITION OF SUBAREA TO MAINLINE PEAK FLOW<<«< 100 YEA: RATAFALL INTEN: 1TY( INCH/HOUR) = 3.675 SOL CLASSIFICATION IS "8„ PUBLIC PARK SUBAREA LOSS RATE- Fm( INCHI/HR) _ .6375 SUBAREA AREAi .ACRE3 ) = . 13 SUBAREA RUNOFF(CFS) _ .36 EFFECTIVE AREA( ACRES) •: 4 .91 AVERAGED Fm( INCH/HR) _ .090 TOTAL AREA(ACRES) = 4 .91 PEAK FLOW RATE(CFS) = 15 .84 TC(MIN) - 11.31 *******************************K*****************.**********:************:K**** FLOW PROCESS FROM NODE 65.00 TO NODE 66.00 IS CODE = 2 >>>>)RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«<< NATURAL POOR COVER TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH = 1000.00 UPSTREAM ELEVATION = 970.00 DOWNSTREAM ELEVATION = 955.00 } IL _ .3L04"Ll V VW^ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.668 SOIL CLASSIFICATION IS "B" NATURAL POOR COVER "BARREN" SUBAREA LOSS RATE, Fm(INCH/HR) _ .2700 SUBAREA RUNOFF(CFS) = 12.30 TOTAL AREA(ACRES) = 5.70 PEAK FLOW RATE(CFS) = 12.30 *****************************************:K********.K************************* FLOW PROCESS FROM NODE 66.00 TO NODE 67.00 IS CODE = 9 ---------------------------------- >>>>COMPUTE "V" GUTTER FLOW TRAVELTIME THRU SUBAREA<<<< UPSTREAM NODE ELEVATION = 954 .00 DOWNSTREAM NODE ELEVATION = 942.60 CHANNEL LENGTH THRU SUBAREA( FEET) _ 400.00 "V" GUTTER WIDTH(FEET) = 10.00 GUTTER HIKE(FEET) = 1 .000 PAVEMENT L.IP( FEE1 ) _ .001 MANNINGS N = .0400 PAVEMENT CROSSFALL(DEC[HAL NOTATION) _ .05 MAX[MUM DEPTH( FEET ) = 2.00 NOTE_TRAVELTIME ESTIMATES BASED ON NORMAL DEPTH [N A FLOWING-•FULL AUTTER(NORMAL DEPTH = GUTTER HIKE ) NOTiE:TRAVELTIME ESTIMATES BASED ON NORMAL DEPTH IN A FLOWING-FULL GUTTER(NORMAL DEPTH = GUTTER HIKE ) 100 YEAR RAINFALL INTENSITY( INCH/HOUR) = 2. 536 SOIL CLASSIFICATION IS "B" PUBLIfC PARK SUBAREA LOSS RATE, Fm(INCH/HR) _ .6375 TRAVELTIME THRU SUBAREA BASED ON VELOCITY( FEET/SEC) = 3 .90 AVERAGE FLOWOEPTH( FEET) = 1.00 FLOODWIDTH(FEET) _ 10.00 "V" GUTTER FLOW TRAVEL T IME(MIN) = 1.71 TC( MIN) = 20.98 SUBAREA AREA(ACRES ) = 5.22 SUBAREA RUNOFF(CFS ) = 8.92 EFFECTIVE AREA(ACRES) = 10.92 AVERAGED Fm( INCH/HR) _ .446 TOTAL AREA(ACRES ) = 10.92 PEAK FLOW RATE(CFS ) = 20. 54 END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = 1 .01. FLOOOWIDIH( FEET ) ,. 10 .31 FLOW 'JELOCIT'Y( FEET/SEC. ) _ 4.04 DEPTH*VELOCITY = 4 .07 ***;1:*t4: K•K**$.kk:k**4 * k .Ki•'K***** *** K'K1::K:K*1<:kk:K=r*******-:K*K:Kt:K:K *:K**K**Km1:** FLOW TROCESS FROM NODE 67 .00 TO NODE 68.00 13 CODE = 9 > > COMPUTE "V" GUTTER FLOW TRAVEL[IME THRU SUBAREA<<<<C UPSTREAM NODE ELEVATION = 942.60 0O'WNS 1 REAM NODE ELEVATION = 941_80 CHANNEL LENGTH THRU SUBAREA( FEET) = 170.00 V' GUTTER WIOTH( FEET) = 20.00 GUTTER HIKE( FEET ) 7 .500 PAVEMENT LIP( FEET ) _ .001 MANNINGS N _ .0150 PAVEMENT CROSSFALL(OECIMAL NOTATION) _ .04 MAXIMUM DEPTH( FEET ) = 1.00 100 YEAR. RAINFALL INTENSITY( INCH/HOUR) =• 2.475 SOIL CLASSIFICATION IS "B" COMMERCIAL SUBAREA LOSS RATE, Fm( [NCH/HR) _• .0750 TRAVELTIME THRU SUBAREA BASED ON VELOCITY( FEET/SEC ) ' 3.24 AVERAGE FLOWOEPTH(FEET) _ .57 FLOOOWIDTH( FEET) 7 24 .01 "V" GUTTER FLOW TRAVEL TIME(MIN) = .87 TC(MIN) = 21.86 SUBAREA AREA(ACRES) _ .70 SUBAREA RUNOFF(CFS) = 1.5L EFFECTIVE AREA( ACRES) = 11_62 AVERAGED Fm(INCH/HR) _ .423 TOTAL AREA(ACRES) = 11.62 PEAK FLOW RATE(CFS) = 21.45 . tr:•. UtNlFil rttl l = .:57 rLUWW1u1Mlr=.1 s.a+. 7U FLOW VELOCITY(FEET/SEC.) = 3.09 DEPTH*VELOCITY = 1.81 **********************************:K******:k*********************fit************ FLOW PROCESS FROM NODE 68.00 TO NODE 69.00 IS CODE = 3 ' »>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< DEPTH OF FLOW IN 24.0 INCH PIPE IS 18.1 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 8.4 UPSTREAM NODE ELEVATION = 938.32 DOWNSTREAM NODE ELEVATION = 937.00 FLOWLENGTH( FEET) = 165.00 MANNINGS N = .011 ESTIMATED PIPE DIAMETER( INCH) = 24.00 NUMBER OF PIPES = ]. PIPEFLOW THRU SUBAREA(CFS) = 21.45 TRAVEL TIME(MIN . ) _ .33 TC(MIN. ) „ 22.18 l.,*'k *M: *k**.*** *****'k*k*:K * **:k*::** **_*********:k***:k41***** *****:k FLOW PROCESS FROM NODE. 68.010 10 i100C 69.00 IS CODE = 5 ,> '>'AODITION OF SUBAREA TO MAINLINE PEAK FLOW<<«< 100 YEAR RAINFALL INTENSITY( INCH!HOUR.) = 2.453 SOIL CLASSIFICATION IS "B" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) _ .0750 SUBAREA AREA(ACRES) = 1.52 SUBAREA RUNOFF(CFS) = 3.25 EFFECTIVE AREA(ACRES). = 13.14 AVERAGED Fm(INCH/HR) _ .383 TOTAL AREA(ACRES) = 13.14 PEAK FLOW RATE(CFS) = 24.47 TC(MIN) = 22.18 ** :*G****x* ::k :*3:p*k.k:kk*irk***: t****k:k1*Yk **;*k*******:k F**;k:kRF*(cm********-1* FLOW PROCESS FROM NODE 69.00 TO NODE 70.00 IS CODE = 3 .'COmPUCTE :PEFLOW TRAVELTIME FHRI.I SUBAREA«<<< Lf'' ;':c: COMPU;ER.-E 5 T IMATE D 1'I Y ES I ZE (NON-PRESSURE FLOW )<<:c< DEPTH OF FLOW 1N 21 .0 INCH PIPE IS 11 .3 INCHES FI':FLOW 'VELOCIT ;t FEET %SEC. ) 14.0 UPSTREAM NODE ELEVATION = 37 .00 OOwNSTREAM NODE ELEVATION = 931.00 FLOWLENGTH( FEET ) = 218.00 MANNING M = .01.1. ESTIMATED PIPE OIAMETER( INCH ) : 21.00 NUMBER OF PIPES = . 1 PIPEFLCW THRU SUBAREA(CFS) = 24 .47 TRAVEL TIME(MIN. ) _ .26 TC(MIN. ) 22.44 *****k************x****************k* ***************************:k********** (il. FLOW PROCESS FROM NODE 81.00 TO NODE 82.00 IS CODE = 2 >›>, RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« DEVELOPMENT IS PUBLIC PARK TC = K*[(' LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 . INITIAL SUBAREA FLOW-LENGTH = 780.00 UPSTREAM ELEVATION = 949.00 DOWNSTREAM ELEVATION = 937.20 ELEVATION DIFFERENCE = 11.80 TO -- .483*( ( 780.00** 3.00)/( 11.80)1** 26 _ 20 16. OV1L '. L.H.7Jlr.I..HI lLIY 1J D PUBLIC PARK SUBAREA LOSS RATE, Fm(INCH/HR) = .6375 SUBAREA RUNOFF(CFS) = 4.64 TOTAL AREA(ACRES) = 2.20 PEAK FLOW RATE(CFS) = 4.64 ********* *****************.************************************************* FLOW PROCESS FROM NODE 83.00 TO NODE 84.00 IS CODE = 2 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<«< DEVELOPMENT IS PUBLIC PARK TO .ry K*( ( LENGTH** 3.00)/(ELEVATION CHANGE)I** .20 INITIAL SUBAREA FLOW-LENGTH = 220.00 UPSTREAM ELEVATION = 937.70 DOWNSTREAM ELEVATION = 935.50 ELEVATION DIFFERENCE = 2.20 TC = .4S3,q( 220.00*°K 3.00 )/( 2.20 )1** .20 = 10.493 100 YEAR RAINFALL INTENcITY( INCH/HOUR) : 5.843 SOIL CLASSIFICATION IS "F" PU3LI':; PARK SUBAREA LOSS ROE _ Fm( INCH/HR) = .6375 SUBAREA RLJNOFF(CF3) = 1.9Q TOTAL AREA( ACRES ) =_ .69 PEAK FLOW RATE(CFS) = 1.99 'h**K******_k********'k**** ** N.*** *K h k. * c**I* **4K:**K*********************:k"*" , FLOW PROCESS FROM NODE 630.20 TO NODE 630.20 IS CODE = 7 t,- >>>>>IJSER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<.< 1 , - USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 24.75 RAIN INTENSITY(IiNCH/HOUR) = 2.30 EFFECTIVE AREA(ACRES) = 54 .70 TOTAL AREA(ACRES) = 54 .70 PEAK FLOW RATE(CFS) = 82.00 AVERAGED LOSS RATE, Fm(IN/HR) = .485 ***ERROR: SPECIFIED LOSS RATE, FM IS LESS THAN MINIMUM POSSIBLE VALUE OF .63( INCHES/HOUR) 'K*********** :k.r K.K*****.'F.k:k:K*:K** S:k is Y*'� *:K k K'k*. ***:k k**** *****.****K***'K**"***:{**'4* FLOW PROCESS FROM NODE 930.20 TO NODE 90.00 IS CODE r 6 .> • .COM6LITE STPEE.[FLOW TRAVEl T IME THRU 3UTIARFCVse<< UPSTREAM ELEVATION 1 945.50 DOWNDIREAH ELEVATION = 939.60 STREET L.EHOF'H( FE} T) = 680.00 `CURB HE:.IGTH( INCHES) S. STREE I HALFW I9OTIM FEET ) = 28.00 DISTANCE FROM CROWN TO CROSSFALL. ORADEBRE:AK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) - .020 OUTSIDE STREET CROSSFALL( DECIMAL) - .042 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) _ 83.04 ***STREETFLOW SPLITS OVER "STREET-CROWN*** FULL DEPTH( FEET) = .94 FLO00WIDTH(FEET) = 28.00 FULL HALF•-STREET VELOCITY( FEET/SEC. ) = 4.44 SPLIT DEPTH(FEET) _ .93 SPLIT FL00DWIDTH( FEET) = 27.50 SPLIT VELOCITY(FEET/SEC. ) = 4.37 STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. . rLUWWCr If1.0rLLI ) . 7'* HALFSTREET FLOODWIDTH(FEET) = 28.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.44 PRODUCT OF DEPTH&VELOCITY = 4.16 STREETFLOW TRAVELTIME(MIN) = 2.56 TC(MIN) = 27.31 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.165 • SOIL CLASSIFICATION IS "B" COMMERCIAL SUBAREA LOSS RATE , Fm(INCH/HR) _ .0750 SUBAREA AREA(ACRES) = 1.11 SUBAREA RUNOFF(CFS) = 2.09 EFFECTIVE AREA(ACRES) = 55.81 AVERAGED Fm( INCH/HR) _ .477 TOTAL AREA(ACRES) = 55.81 PEAK FLOW RATE(CFS ) = 4.80 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) _ .94 HALFSTREET FLOODiWIDTH( FEEI ) _• 28.00 FLOW VELOCITY(FEET/"SEC. ) = 4.44 DEPTH*VELOCITY = 4.16 **k*.i*K* :***********:k******K**.**:Kk****k**-**k ( ******t*****1:**-k************ FLOW PROCESS FROM NODE 76.00 TO NODE 90.00 IS CODE :: 8 > > »ADDITION OF SUBAREA TO MAINLINE PEAK FLOW“«< 100 YEAR RAINFALL INTENSITY( INCH/HOUR) = 2.16. SOIL CLASSIFICATION 13 "8" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) _ .07510 SUBAREA AREA( ACRES) -= 1.10 SUBAREA RUNOFF(CFS) - 2.07 EFFECTIVE AREA( ACRES) = 56.91 AVERAGED Fm(INCH/HR) _ .469 TOTAL AREA(ACRES) = 56.91 PEAK FLOW RATE(CFS) = 86.87 TC(MIN) = 27.31 ******-*********:k**************** *******k************************:k******* FLOW PROCESS FROM NODE 90.00 TO NODE 62.00 IS CODE = 6 >>»,COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< R UPSTREAM ELEVATION = 939.60 DOWNSTREAM ELEVATION = 933.20 STREET LENGTH( FEET) = 630.00 CURB HEIGTH( INCE ES) = 8. 31REET HALFWIDTH(FEET) : 30.00 DISTANCE FROM CROWN TO O OS3FALL GRADEBREAK = 1.8..00 INTERIOR STREET CR.OSSFOLL( DECIMAL. ) = .020 OUTSIDE STREET CRO'SSFALL( DECIMAL) - .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRA'VEL.TIME COMPUTED USING MEAN FLOW(CFS ) = 87. 79 *:**STREETFLOW SPLITS OVER STREET--CROWN*** FULL DEPTH(FEET) '_ .96 FLOODWIDTH( FEET) = 30.00 FULL HALF-STREET VELOCITY( FEET/SEC. ) = 4 .91 SPLIT DEPTH( FEET ) 7 .86 SPLIT FLOODWIDTH( FEET) = 25.22 SPLIT VELOCITY(FEET/SEC. ) = 4.50 STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC. , IS NEGLECTED. STREET FLOWDEPTH(FEET) _ .96 HALFSTREET FLOODWIDTH(FEET) = 30.00 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 4.91 PRODUCT OF DEPTH&VELOCITY = 4.70 STREET ..OW TRAVELTIME(MIN) = 2.14 TC(MIN)._= 29.44 4.JU IL.ni♦ Isr,an TIAs. .I, �. ,vy ...`. .) .. .. SOIL CLASSIFICATION IS "B" COMMERCIAL SUBAREA LOSS RATE, Fni(INCH/HR) _ .0750 SUBAREA AREA(ACRES) = 1 .03 SUBAREA RUNOFF(CFS) = 1. 35 EFFECTIVE AREA(ACRES) = 57,94 AVERAGED Fm(INCH/HR) _ .462 TOTAL AREA(ACRES) = 57.94 PEAK FLOW RATE(CFS) = 86.87 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) _ .96 HALFSTREET FLOODWIDTH( FEET) = 30.00 FLOW VELOCITY(FEET/SEC. ) = 4 .91 DEPTH*VELOCITY = 4.70 * ********************K**************.KKK************************************ FLOW PROCESS FROM NODE 62.00 TO NODE 62.00 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<«<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TCI MTN) = 29.44 RAIN INTENSITY( INCH/HOUR) = 2.07 EFFECTIVE AREA( ACRES) ' 29 00 [Crm_ AREA( ACRES) _ 29.00 PEAK FLOW RATECCFS) - a 3 ,4 AVEACED LOSS ;i [E . Fin( IN;'HR) _ .462 k*****r* kkk************* K****,K****'k.**K*****` *****k*K** ** **** ********** * FLOW PROCESS FROM NODE 58.00 TO NODE 62.00 IS CODE = 8 > >: >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<(< 100 YEAR RAINFALL INTENSITY( INCH/HOUR) -= 2.069 SOIL CLASSIFICATION TS "8" COMMERCIAL SUBAREA LOSS RATE, Fm( INCH/HR) _ .0750 SUBAREA AREA(ACRES) = 4.91 SUBAREA RUNOFF(CFS) = 8.81 EFFECTIVE AREA(ACRES) = 33.91 AVERAGED Fr( INCH/HR) _ .406 TOTAL AREA(ACRES) = 33.91 PEAK FLOW RATE(CFS) = 50.77 TC(MIN) = 29.44 x** K*•Kok*k**********.%ki **tk*******K***k*kk*********k** ******'T* K*T*kKt**** * F-LOw POCESS FROM NODE 62.00 TO NODE 91.00 IS CODE = 1 >DESIGNATE INOEPEHDENI STREAM FOR CONFLUENCE(<<<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM I ARE: TIME OF CONCENTRATIUN(MINUTES) = 29.44 RAINFALL INTENSITY (INCH./HOUR) _ 2.07 EFFECTIVE STREAM AREA(ACRES) = 33.91 TOTAL STREAM AREA( ACRES) = 33.91 PEAK FLOW RATE(CFS) AT CONFLUENCE = 50.77 =*** kt*k*******x***x***************************k*************** *********** FLCW PROCESS FROM NODE 630.20 TO NODE 630.20 IS CODE = 7 > >>>,USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< L1 USER-SPECIFIED VALUES ARE AS FOLLOWS: C TC(MIN) = 24 .75 RAIN INTENSITY(INCH/HOUR) = 2.30 'INl EFFECTIVE AREA(ACRES) = 97.30 Com„ 0 ' TOTAL AREA(ACRES) = 97.30 PEAK FLOW RATE(CFS) == 166.00 AVERAGED LOSS RATE, Fm(IN/HR) _ .485 FLOW PROCESS FROM NODE 630.20 10 MOUE /u.uu 1s uuu . = 5 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< >>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< DEPTH OF FLOW IN 51.0 INCH PIPE IS 37.9 INCHES PIPEFLOW VELOCITY(FEET/SEC, ) = 14.7 UPSTREAM NODE ELEVATION = 945.50 DOWNSTREAM NODE ELEVATION = 942.50 FLOWLENGTH( FEET ) = 240.00 MANNINGS N - .013 ESTIMATED PIPE DIAMETER(.INCH ) = 51.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 166.00 TRAVEL TIME(MIN. ) _ .27 TC(MIN. ) = 25.02 *********** *** ************ :***K**K K K****** ******* *:k****************K * FLOW PROCESS FROM NODE 65.00 TO NODE 70 .00 IS CODE _ 8 >>>AUDTT:ION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY( [NCH/HOUR) = 2 .232 SOIL CLASSIFICATION IS "E" COMMERCIAL.. SUBAREA LOSS RATE, Frn( INCH/1HR) ..0750 SUBAREA AREA( ACRES) = 13.14 SUBAREA RUNOFF(CFS) = 26.09 EFFECTIVE AREA(ACRES) = 110.44 AVERAGED Fin(. INCH/HR) 7 .436 TOTAL AREA( ACRES) = 110.4.4 PEAK FLOW RATE(CFS) = 183.42 TC(MIN) = 2.5.02 *********:k.***********:K*.K********** k***** (*********************************** FLOW PROCESS FROM NODE 70.00 TO NODE 91.00 IS CODE M 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >. >>>USING COMPUTER--ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<«< DEPTH OF FLOW IN 54.0 INCH PIPE IS 39 .0 INCHES PIPEFLOW VELOCITY(FEET/SEC. ) 14.9 UPSTREAM NODE ELEVATION =• 929.. 10 DOWNSTREAM NODE ELEVATION - 916.27 FLOWLENGTH( FEET) = 1..1.10.0C1 MANNINGS N =. .013 ESTIMATED PIPE DIAMETER( INCH) = 54 .00 NUMBER OF PIPES =- I. PIPEFLOW' THRU SUBAREA(CFS ) = 183.42 TRAVEL TIME(MIN. ) = 1.24 TC(MIN. ) = 26.26 *************'k*******-k*******************************K**** k*:K*K*****K******* FLOW PROCESS FROM NODE 91.00 TO NODE 91.00 IS CODE _ .1 >>?>>OESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<« >>>>:>r�N0 COMPUTE VARIOUS CONFLUENCED STREAM VALUES< <<<=. CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 26.26 RAINFALL INTENSITY ( INCH./HOUR) = 2.22 EFFECTIVE STREAM AREA( ACRES) = 1.10.44 TOTAL STREAM AREA( ACRES) = 110.44 PEAK FLOW RATE(CFS) Al CONFLUENCE = 183.42 CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN.) ( INCH/HOUR) (IN/HR) AREA(ACRES) 1 50.77 29.44 2.069 .41 33.91 FLOWLENOTH(FEEI ) _ 31U.UU MHNN1NU N = .UES ESTIMATED PIPE DIAMETER(INCH) = 45.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 90.63 TRAVEL TIME(MIN.) _ .79 TC(MIN. ) = 9.18 *****K*********** :*********************************************kik*********** FLOW PROCESS FROM NODE 92.00 TO NODE 92.00 IS CODE = 1 >>>>>DESICNATE INDEPENDENT STREAM FOR CONFLUENCE<<< >> >>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 9.18 RAINFALL INTENSITY ( INCH. /HOUR) = 4.17 EFFECTIVE: STREAM AREA(ACRES) = 24 .48 TOTAL STREAM AREA(ACRES) = 31.18 PEAK FLOW RATE(CFS) AT CONFLUENCE = 90 .63 CONFLUENCE INFORMATION: STEAM PEAK FLOW T[ME INTENSITY FM EFFECTIVE NUMBER RAFE(0F3) (MIN . ) ( INCH/HOUR) [iii/IIP) AREAtACRE.;) 1 232.70 26.43 2.208 .43 140.W 90 .63 9.1S 4 . 165 .29 24 .48 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER O(CFS) AREA(ACRES ) 1 277.60 165.17 2 260.35 73-.32 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 277.60 TIME(MINUTES) = 26.434 EFFECTIVE AREA(ACRES) = 165.17 TOTAL AREA(ACRES) = 175.53 END OF STUDY SUMMARY: TOTAL AREA(ACRES) _ 175.53 EFFECTIVE AREA( ACRE ) 165.17 PEAK FLOW R+TEt CFS) = 277.6: END OF RATIONAL ME [HGD ANALYSIS RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER 6I(CFS) AREA(ACRES) 1 219.06 144.35 2 232.70 140,69 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 232.70 TIME(MINUTES) = 26.261 EFFECTIVE AREA(ACRES) = 140.69 TOTAL AREA(ACRES ) = 144.35 K*****KK*****.*************************************************'K************* FLOW PROCESS FROM NODE 91.00 TO NODE 92.00 IS CODE = 3 )>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< > >>.->USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< DEPTH OF FLOW IN 60.0 INCH PIPE 15 49,0 INCHES PIPEFLOW VELOCITY( FEET/SEC. ) = 13.6 UPSTREAM NODE ELEVATION 916.26 DOWNSTREAM NODE ELEVATION = 915.07 FLOWLENGTH( FEET) A 140.58 MANNINGS N - .013 ESTIMATED PIPE DIAMETER( INCH) = 60.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 232.70 TRAVEL TIME(MIN.) = .17 TC(MIN. ) = 26.43 *****************:K**************:KIK*******:*********************************** FLOW PROCESS FROM NODE 92.00 TO NODE 92.00 IS CODE = 1 »»)DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 26.43 RAINFALL INTENSITY (INCH./HOUR) = 2.21 EFFECTIVE STREAM AREA(ACRES) = 140.69 TOTAL STREAM AREA(ACRES) = 144 .35 PEAK FLOW RATE;CFS) AT CONFLUENCE 7 232.70 *k***:k******* k*:k**********:K'K**** K k***n********************* KIK*************** FLOW PROCESS FROM NOOE 63.00 TO NODE 63.00 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE«<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN ) = 8.39 RAIN INTENSITY(INCH/HOUR) = 4 .40 EFFECTIVE AREA(ACRES) = 24.43 TOTAL AREA(ACRES) = 31.18 PEAK FLOW RATE(CFS) z AVERAGED LOSS RATE, Fm(IN/HR) = .286 **************************************************************************** FLOW PROCESS FROM NODE 63.00 TO NODE 92.00 IS CODE = 3 >>>»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA«<« >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<«<< DEPTH OF FLOW IN 45.0 INCH PIPE IS 31.4 INCHES PIPEFLOW VELOCITY(FEET/SEC. ) = 11.0 UPSTREAM NODE ELEVATION = 922.00 \-\-Y DRAUU C C 4-(.CI S r©9- A-LV1fl, 1m Ave- SYS rc— M 2vYz aro a-M lot NI) CA-PA-CO-1/ C 5 F012- ,ninon 6 A-kt�- I)ca 1k) C) tOo YC---A--12- sTog /11 • ] urdit�+"nit 11wu4 t..a.4.rni x�.n -- .x.r..wv - .. .. .... - fa - Ol —I"--- \ M It. r. C�'l�zi � a 11 f AS- v�tc, rr-J?� ` cam 0 cs\ Y 'DRi 7-0 _ •=r___ E- -_ _,D , ity _s_,-, . jr„_ s __ __ 'DRi,, , A+1, mid 6 ib. w 3is,L 5 v cJ vi o l� .2AN9 0NOA -1 lisi Project : ALMOND AVE. STORM DRAIN HYDRAULIC CALCS FOR 25 YEAR Date: 5/11/1980 Tile: 23:15:30 INPUT DATA LISTING CO L2 MAYA A03 A LENGTH FL 1 FL 2 CIL/TW 0 W I KJ KE KM LC L1 L3 L4 Al A3 04 1 N 3 I 918.50 2 2 212,0 212.0 50.00 914.50 915.01 .00 66. 0, 3 .00 .20 .00 1 3 7 0 0. 45. 0. 4.00 .313 2 3 177.3 177.0 :11.00 115.07 916.26 .00 t . 0. 3 .00 .20 .00 0 4 8 9 0. 45. 39. 4.00 .013 1-3.0 149,0 1095.00 916.26 129.30 .CO i3, :. 3 .00 .20 .00 0 5 10 0 0. 45. 0. 4.00 .013 125.0 10 929.50 932.51 .00 3 .00 .20 .00 0 6 11 12 0. 45. 45. 4.00 .013 .1 50,00 932.50 933.00 .00 43. 1, 1 .00 .50 .00 0 0 0 0 0, 0. 0. .00 .011 35.0 520.00 917.60 921.90 .00 56. 0. 1 .00 .20 .00 3 0 0 0 0. 0. 0. .00 .013 2 ,0 23.0 68.00 918.00 926.10 933.20 30. 0. 1 .00 .20 .00 4 0 0 0 0. 0. 0. .00 .013 313.0 18.0 40.00 919.10 926.80 934.00 24. 0. 1 .00 .20 .00 4 0 0 0 0. 0. 0. .00 .013 10 13.0 18.0 218.00 930,50 936.50 941.50 36. 0. 1 .00 .00 .00 5 0 0 0 0, 0. 0. .00 .013 11 35.0 35.3 50,00 932.00 938.00 945.00 24. 0. 1 .00 .20 .00 6 0 0 0 0. 0. 0. .00 .013 2 1_ =0.0 90.0 30.00 933.50 937.90 945.50 36. 0. 1 .00 .10 .00 6 0 0 0 0. 0. 0. .00 .013 Project : ALMOND AVE. STORM DRAIN HYDRAULIC CALCS FOR 25 YEAR Date: 5/11/1980 Tile: 23:15:30 STORM DRAIN ANALYSIS RESULTS Line 0 0 N On Dc Flow Sf-full V 1 V2 FL 1 FL 2 HG 1 HG 2 D 1 02 1W TW No icfs) (in) (in) (ft) (ft) Type (ftlft) (fps) (fps) (ft) (ft) Calc Calc (ft) (ft) Calc CO 1 Hydraulic grade line control : 918.50 2 212.0 64 0 3.04 4.07 Part .00398 11.5 11,2 914.50 915.07 910.50 919.14 4.00 4.07 .00 .00 3 :77.0 66 0 2.98 3.71 Part .00218 7,5 16.3 915.07 916.26 920.46 913.83 5.39 2,57 .00 .00 NJ '{ _ .00 X1H) : .00 :i,2h : 30.10 Fit) : 96.36 0181) : 2.11 0(41) : 5.00 45 0o t9: 12.2 916 92� 30 1� 22 933,33 2.96 3.53 .00 .00 . .. sg 0 .. G ,., 3 Part .�J04 _ i4 1U.2� c .� 9...x2 .00 ;IH} . 711.31 1:5.:' 43 0 2.69 3,55 Seal .20151 9.9 11.1 729.20 932.50 934.52 935.85 4.72 3.35 .00 .00 HI 163.05 't;(N) _ ,00 X.:1 : 199.09 FIJI = 61.44 0(60; : 3.03 0(81) : 3.70 .1 48 0 .03 .09 Part .00000 .0 .0 931.50 933.00 735.37 935.31 2.87 2.37 935.31 .00 3 Hydraulic grade line control : 919.80 7 69.0 36 0 3.00 2.64 Seal .01070 10.3 9.8 911.60 921.90 920.24 925.91 2.64 4.01 927.68 .00 4 : 106.23 X(N) _ .00 4,crau1_ic grate line control : 119,02 22.2 30 3 .67 :, ?art .2831A 12.2 ? 911.00 926.73 7199,02 922.33 1.02 1.63 929.19 933.20 . yrro 7o-1° line :on?rcl : 319.12 13.4 24 3 .58 1.53 Part .30633 20.2 7.0 919,10 926.80 919.15 920.33 .65 1.53 929.24 934.00 7 „dra lic grave line centro: : 933,13 .9 13.3 36 .3 .82 :,35 Seal .10013 2.3 5.8 930.50 936.50 933.93 931.85 3.43 1.35 938.38 941.50 H1 : .5.94 4(N) : .00 X1:1 = 15.30 F11) : 6.98 0(8J) : .82 0(81) : 2.13 5 Hydraulic grade line control : 935,61 11 35.0 24 0 .94 1.92 Part .02393 20.0 11.3 932.00 938.00 933.09 939.92 1.09 1.92 942.30 945.00 Project : ALMOND AVE, STORM DRAIN HYDRAULIC CALCS FOR 25 YEAR Date: 5/17/1980 Time: 23:15:30 STORK DRAIN ANALYSIS RESULTS Line U 0 W Dn Dc Flow Sf-full V 1 V 2 FL 1 FL 2 HG 1 HG 2 d 1 0 2 TW TW No (cfs (in) (in) (.ft) (ft) Tyne iftlftl (fps) (fps) (ft) (ft: Calc Cain (ft) (ft) Cain CS Srdrauli:. grade line control = 935.61 12 "1'.) 36 D 1.23 2.34 'art ,01321 16,? 13.0 933.5E 33 ,32 235.61 '2;O.14 2.11 2.64 993,63 25.30 LIST OF ABBREVIATIONS V 1, FL 1, D 1 and HG 1 refer to downstream end V 2, FL 2, D 2 and HG 2 refer to upstream end % - Distance in feet from downstream end to point where KG intersects soffit in seal condition 101 - Distance an feet from downstream end to point where water surface reaches normal depth by either drawdown or backwater X1J; - Distance in feet from downstream end to point where hydraulic jump occurs in line ;J) - The computes force at the hydraulic jump i!9, - Depth cf water before the hydraulic jump (upstream side) - Vena :.f water after the hydraulic :ann ('downstream side) ..,.. indicates flow charges f,om oart to fill or from full to part indicates that flew changes from supercritical to subcritical through a hydraulic jump _: indicates that hydraulic jump occurs at the junction at the upstream end of the line ai indicates that hydraulic jump occurs at the junction at the downstream end of the line AL MoNt) 4v6:. C%/4 / ri tc%21/4J6 /00 yE%-,2 SJ Dk-`l 40 — Z77 '1,00,- Z33 (go=2 VE 2Z:) -`Zi h- A% ` ' \rs Q- /7•JS :6-, P � o Q : ,.1a' - /__2. /. 0,-7/ P/0 D, 3 9P/0 /./4°/ :117=' 143 ce-s Q— ,0.5- z4 `� Qic _ Q - Z77- /77= 100 C 'S AC Z33- 14-3 — 90epsQno' 25 = Qioo- Qzs _ Z2e— � IZs CA-RRifrl s.TeF ei C/}RQ.`c IN ST{ZC- 1- = 103 eF.S Ar R Pi/ I N STf=��r. STRL -r 9 PA-cl r-r 269 PI'S T. C elPA-ctTy — 1 3,5-eF.s aiz_ lci er s ,Si C4-PA-Pit-r_ /73 e/ZS 100eFS, e = ll CPQ = '9 ": gi = 2G9crS �acqS"_ c�S, c - 173 = 143 s,c, loo- O _tr ff-L 51-9_6----01- e 6Qeke 4 y`; r4-Le ••--:----or ____. ; , ,!‘ ." h,\2 C-; r TRACT No. gT& ne4 & 1nee/Uni CIVIL ENGINEERING • LAND SURVEYING survey of by date job no. sheet of 1 chliworr (2-4-tc cs Fog /Lie' 0 L (OND A-1 i qv) ____i_Fii_t_ .... l — Z1.1 6 7."` i l'I'i Q,\ App Al .4z 7 �\� 1� ` x.`90 FT rad' oli /Nl 043q- O' ltri) 4 32 F z . AZ _(0,11+ o, 63_)(0(,)_3,6 FTZ � Z 43_ (043460)2 ; 1 . 4-2. F2- 2 Zz ,44 = 0, 33 FTI , 4S= 0. z(5o9 - 10 fk- r©r9--t /5-'6 J i Q= 1. 4 ( 4 )( & '3 s 1'L `}., I� s .ZS, 7 12�3 �j�z Q= 14 0CS) I�Z 0, 0f5- ' 5 .34 / S = 0. 003 = to / c F S _ p 0r `7 1 q = /3S ei-s s = 0, 0 l l c., Q =113 cis S = 0, p2f Q .=: z 4 eFS 1 14150 Vine Place, Suite 107 • Cerritos, California 90701 • (213) 926-2296 •44,4.--,,---- - _.,.....:. n .N `n..-� so•�Y;:^;�++t .�;,, .+a,..r..�++. 3 ,,.i�+-`�'7�1t-r�aE .. �:,�.. � w,.t*�r�.-•��-.` , .ti � .... ... .. ...... • .. , 14 .,.. a .. e. .. ".. ,•., - ;'., r a � ' t:1*-' cil:ativ: 3 4-,.sldetQ:ia . ,. /7')-'L /a,4 / /C egC r 'S X02 ONs�rc= sro01) .0,4k) SYSTc M Project : HYDRAULIC CALLS FOR KAISER HIGH SCHOOL STORK DRAIN Date; -3/1111994 - Tire: 16:11: 4 /,' ',A1/0 C CA-Lc.S f -INPUT DATA LISTING too g D eAl 57Di2/n pre/i4) 5ysr -/'' CD L2 MAX Q ADJ Q LENGTH FL 1 FL 2 CTL/TW D W S KJ RE RN LC L1 L3 L4 Al A3 A4 J N 8 1 918.50 2 2 277.0 277.0 50,00 914,50 915.07 .00 66. 0. 3 ,00 .20 .00 1 3 7 0 0. 45. 0. 4.00 .013 / 2 3 232.0 232.0 141.00 915,07 916.26 .00 66, 0. 3 .00 .20 .00 0 4 45 0 0. 45, 0. 4.00 .013 2 1 185.0 185.0 1095.00 316.26 929,80 .00 48. 0. 3 .00 .20 .00 0 5 48 0 0. 45, 0. 4.00 .013 2 166.0 9 22` 0 92 3' 50 PO 48. 0. 3 .00 .20 .00 0 0 50 51 0. 45. 0. 4.00 .013 66,E J,�O 9.'0 9��,� ,� :1 156.2 :56.0 19.00 932.50 323.00 AC 43. 0, 1 .00 .20 .00 0 0 0 0 0, 0. 0. .00 .013 45.0 522,10 917.50 921.90 94.340 20. 0. 2 .00 .20 .00 2 8 20 21 0. 90. 90. 4.00 .013 62.3 62.3 360.00 922.40 927.90 936.00 36. 0. 3 .00 .20 .10 0 9 22 23 0, 90. 90. 4.00 .013 2 9 57.6 57.8 197.00 928.00 930.00 336.60 36. 0. 3 .00 .20 .00 0 10 24 25 0. 90. 90. 4.00 .013 2 10 49.5 43.3 74.00 930.00 931.00 943.60 36. 0, 3 .00 .20 .05 0 11 26 0 0. 90, 0, 4.00 .013 2 11 47.3 47.8 83.00 931.00 932.00 942.50 36. 0. 3 .00 .20 .05 0 12 0 0 0, 0. 0. 4.00 .013 2 :2 45.6 45.6 318:00 932.00 935.90 941.00 36. 0, 3 .00 .20 ,00 0 13 27 0 0. 90. 0. 4.00 .013 2 12 21.3 24.3 31.00 935.90 936.80 942.80 36. 0. 3 .00 .20 .00 0 14 0 0 0, 0. 0, 4.00 .013 :4 24.0 24.0 70.00 936.80 937.50 942.70 36. 0. 3 .00 .20 .00 0 15 0 0 0, 0. 0. 4.00 .013 20.7 93. 0 927.50 338.50 942,90 24. 0. 3 .00 .20 .00 0 16 31 0 0. 60, 0. 4,00 .013 .: 1..2 50.00 229.50 233.00 342.30 24. 0. 1 .00 .20 .00 0 17 33 0 0. 70. 0. 4,01) .013 :" ; 913.:0 910._0 942.70 24, I. 'S .00 .20 .00 0 13 44 0 0, 45. .0. 4."0 .011 34:,10 341.2" 343,1) 18. 1. H .00 .20 .00 O 13 0 9 0. 0. 0. 4.00 .Oil 2 .. :17.:;? 911-2:) 342.00 943.50 12. 0. 1 .00 .20 .00 0 0 0 0 0. 0. 0. .00 .011 "3.:9 222. 9 924,30 327.31 3. 0. i .00 .20 .00 8 0 0 0 0. O. 0. .00 .013 :. 322.33 324.75 927,80 9. 0. 1 .00 .20 .00 8 0 0 0 0. 0. 0, .00 ,013 _. 4.5 11.5 00.)0 338.00 3.2.10 936.60 12. 0. 1 .00 .20 .00 9 0 0 0 0. 0. 0. .00 .011 :: .2 52.00 323.70 933.10 .00 12. 0. 1 .00 .20 .00 9 0 0 0 0, 0. 0. .00 .011 21 ..: 5.1 2.2.00 330.10 932.40 936.60 12. 0. 1 .00 .20 .00 10 0 1 0 0. 0. 0. .00 .011 1 25 1.4 63. 0 930.10 933.10 336.50 12. 0. 1 .00 .20 .00 10 0 0 0 0. 0. 0. .00 .011 Iro;ec: : H1 RAULIC CALLS FOR KAISER HIGH SCHOOL STORM DRAIN Date: 3/11/1994 Time: 16:11: 6 INPUT DATA LISTING CD L2 !{A1 Q ADJ Q LENGTH FL l FL 2 CTL/Tli D W S KJ KR KN LC Li L3 L4 Al A3: A4 J 14 2 26 2,6 2.6 20.00 931.00 940.80 943.60 8, 0. 1 .00 .20 .00 11 0 0 0 0. 0. 0. .00 .011 2 27 16.1 12.5 300.00 935.90 939.30 943.00 24. 0. 3 .00 .20 .00 13 28 29 0 40, 0. 0. 4.00 .011 2 28 14.0 14.0 40.00 939.30 939.60 942.70 24. 0. 1 .00 ,20 .00 0 0 0 0 0. 0. 0. .00 .011 2 29 2.1 2,1 90.00 939.30 940.20 943.40 12. 0. 3 .00 .20 .00 28 30 0 0 0. 0. 0. 2.00 .011 2 30 1.7 1.7 142.00 940.20 942.10 944.40 8. 0. 1 .20 .00 .00 0 0 0 0 0, 0. 0. .00 .011 3 31 5.2 4.9 183.00 939.20 941.20 943.10 18. 0. 3 .00 .20 .10 16 32 0 0 0. 0. 0, 2.00 .011 32 2.4 2.4 110.10 343.10 945.50 946.50 12. 0. 1 .00 .20 .00 0 0 0 0 0. 0. 0. .00 .011 33 3.3 7.9 140.00 939.50 943.00 346.31 18. 0. 3 .00 .20 .00 17 34 0 0 30. 0. 0. 2.00 .011 2 14 23,00 343,01 943.10 345.10 13. 0. 3 .00 .20 .00 0 35 0 0 0. 1. 0. 2.00 .011 35 5,5 0.6 51.00 141.30 243.70 346.200 18. .00 .20 .00 0 36 0 0 0. 0, 0. 2.00 .011 2 39 4,7 4.7 13.00 143.70 944.04 346.00 18. .00 .20 .00 0 37 0 41 50. 1. 90. 2.00 .011 2 37 2.4 2.1 16.00 244.04 944.60 946.90 18. 0. 3 .00 .20 .00 0 38 0 0 70. 0, 0. 2.00 .011 2 38 2.2 2.2 37.00 944.60 944.90 .00 12. 0. 3 .00 .20 .00 0 39 0 0 0. 0. 0. 2.00 .011 2 39 1.6 1.6 40.00 944.90 945.20 945.70 12. 0. 3 .00 .20 .00 0 40 0 0 0, 0. 0. 2.00 .011 2 40 1.4 1.4 30.00 945.20 945.30 946.10 12. 0. 1 .00 .20 .00 0 0 0 . 0 0. 0. 0. .00 .011 2 4i 1.8 1.8 70.00 944.00 944.40 .00 12. 0. 3 .00 .20 .00 37 42 0 0 60. 0. 0. 2.00 .011 2 42 1.5 1.5 73.00 944.40 944.30 .00 12. 0. 2 .00 .20 .00 0 43 0 0 85. 0. 0. 2.00 .011 2 41 1.4 1.4 25.00 944.80 945.20 946.70 8, 0. 1 .00 .20 .00 0 0 0 0 0, 0. 0. .00 .011 2 44 2.1 2.2 70.00 940.11 340.50 702.40 12, 0. 1 .00 .20 .00 17 0 0 0 0. 0, 0. .00 .011 1 15 10.. 43.0 .3.00 213.00 316..0 331.20 30. O. .00 .20 .00 4 19 0 0 0. 0. 0. ..00 .013 ..3 13.00 326.'0 2223.50 034.11 24. 0. 3 .00 .20 .00 0 47 3 0 0, 1. 0. 2.00 .011 323.50 230.20 233,71 24. 0. . .00 .20 .30 0 0 0 0 0. 0. 0. .00 .011 1 21.5 13.9 213.)0 331,500 219.50 311.50 36. 0. 3 .00 .20 .00 5 49 0 0 90. 0. 0. 4.00 .011 2s3 21.5 21.5 .05.:10 936.70 239.20 242.10 24, 0. 5 .00 .20 .00 9 0 0 0 0. 0. 0. .00 .011 2 5. 1..0 10.0 50.00 332.00 233.00 945.00 24. 0. 1 ,00 .20 .00 6 0 0 0 0. 0. 0. ,00 .013 HYDRAJLI CAL-1'S FOR KAISER 61111 SCHOOL STORK DRAIN Date: 3/11/1994 Time: 16:11: 7 INPUT DATA LISTING CD L2 MAX ti ADJ Q LENGTH F1 1 FL 2 CTL/TN D 14 S KJ KR KN LC LI L3 L4 AI A3 A4 J N .. _ _ .. - .Y �4.rnisaiY'' -` fi �17S3STe:' a'.r ..x�`�N�' t•_ STORK DRAIN ANALYSIS RESULTS Line Q D W On Dc Flow Sf-full V 1 V 2 FL 1 FL 2 HG 1 HG 2 D 1 D 2 TW TW No (cfs) (in) (in) (ft) (ft) Type (ft/ft) (fps) (fps) (ft) (ft) Calc Calc (ft) (ft) Calc CR 1 Hydraulic grade line control = 918.50 2 277.0 66 0 3.63 4.61 Part .00680 14.7 13.0 914.50 915.07 918.57 919.68 4.07 4,61 .00 .00 2 222,0 66 0 3.56 1,25 Full .0047? 9.3 9.8 915.07 916.26 921,25 921.92 6.18 5.66 .00 .00 4 135.0 48 0 4,00 3.79 Full .01653 14,7 14.7 916.26 929.80 920.88 939.05 4.62 9.25 .00 .00 168.0 43 0 4.00 3,70 Full .01335 13.2 13.2 929.80 932.50 941.00 944.01 11.20 11.51 .00 .00 ,� 3 7 5 ,13^ 945.1? 945.76q 7 .;6.. '=.3 0 4.00 3.64 Full ,�.1°9 i'2.4 12.4 F�2, 0 ,.100 1 .G 12.76 948,64 .00 B; raulic grade line control = 91.8.54 36 0 3.00 2.72 Seal .01264 11.1 10.6 917.61 821,90 920.32 927.02 2.72 5.12 .00 .00 ._ = 34.55 XIN) _ .00 2.3 36 13 1.95 2.54 Full .00872 8,3 8.8 922.40 927.90 928.11 931.37 5.71 3,47 .00 .00 X : .00 X(111 = 105.24 36 0 2.14 2.45 Full .00746 8.1 8.1 928.00 930.00 931.99 933,46 3.99 3.46 .00 .00 4:.. 36 7 1,75 2.30 Full .00543 7.1 7.1 930.00 931.00 934.21 934.66 4.21 3.66 .00 .00 11 17.2 36 0 1,77 2.25 Full .00514 6.8 6.8 931.00 932.00 934.97 935,43 3,97 3.43 .00 .00 15.. .. 1.71 2.20 Seal .00467 6.5 8.2 932.00 935,30 935.72 938.10 3.72 2.20 .00 .00 HJ ._ _ :4.33 Xii) = .10 X:J) = 114.53 F(J1 - 18.60 DIN] = 1.71 DiAJ) = 2.78 7 ..277 1.63 Sea_ ..313S 3.5 3.6 125.90 926.80 939.51 233.63 3.61 2.83 .00 .02 1.12 X.N = .1 9 _.''_il:29 J 376,19 237.50 932.66 229.59 2.30 1.01 .00 .39 9; -- ' :f'Vl = .00 = 53,?'. = 3,63 DIBJ1 = 1.10 -AA31 - 1.19 22.' 240 2.30 1.72 :art ..1094 3.2 7.6 237.50 938.50 939.22 340.44 1,72 1.34 .00 .330 HJU 14 0 1.44 1.55 Full .00593 6.0 6.0 938.50 939.00 941.04 941.43 2,54 2.43 .00 .00 : .00 XIN) : 22,74 21 J .79 1..2.2 F 11 ..1 r 2 7 2.7 0940.102 '� 7 .90 _ 101;5 .� 239. 0 94 ,34 4 .46 7.34 ,3G .00 1.3 10 0 .16 .85 F.:11 .00156 2.8 2.8 340.10 941.20 942.54 942.83 2.44 1.63 ,00 .00 X : .30 X111 : 163.10 13 2.2 12 0 .56 .63 Full .00263 2.8 2.8 941.20 942.00 943.05 943.34 1.85 1.34 943.49 943.50 I - .00 X1N1 = 96.14 8 Hydraulic grade line control = 927.57 .... . - ,. • . . - _ ?',F,�w^r' S!' �ha Vis,✓..hUa+,.:elih4C ..-` r1_`.... • tk ,:; �y k '+'-'y& - . r {S f! k,U h # 4 1F : .. J .; 1,$; t g �G 4 f'"� ,,, z `', g '`.1f.. $8S a , a ,, a iP f `yk .,d °' _ 'x f d ' d u u as''� ::aNs" , i' � rfrAz. .::� `'A'',iwt`"Y. 'fS ,,, zn''< t; 'a ; r }v4 ,,, ,..4.....i',.4§ „!'''. ..,,,...'3',.-...'..,.,.,:,.!,....,0.4,...,,,,,,i;,,,,-:,,,-..:3,,,, ,` J i , p A ii i az ' fi * - n o � �m r * _, k ✓� •• r4x y '' � ;� • F aF ° ,� ' e" } e :r sY"ar;� t ,� 1 ;. _ " r msp ,.. ,s � •$ -w •.ir s,' aaF7 w : ., whi, !,.a S• sy :":•- STORK DRAIN ANALYSIS RESULTS Line Q D W Dn Dc Flow Sf-full V 1 V 2 FL 1 FL 2 HG 1 HG 2 0 1 D 2 TW TW No (cfs) (in) (in) (ft) (ft) Type (ft/ft) (fps) (fps) (ft) (ft) Calc Calc (ft) (ft) Calc CK 8 Hydraulic grade line control = 927.5? 21 1.7 9 0 ,28 .60 Full .01190 4.0 4.0 922.39 924.75 927.57 927.30 5.18 3.05 928.11 927.80 9 Hydraulic grade line control = 931.68 22 4.5 12 0 .31 .39 Seal .01142 5.7 6.1 928.00 932.90 931.48 933.79 3.68 .89 934.48 936.60 HJ X = 6.23 X(N) = ,00 X(JI = 6.23 FIJI = 2.16 DIBJI = .41 DIAJI = 2.22 9 Hydraulic grade line control = 931.68 23 .2 12 0 .09 .18 Seal .00002 .3 2,0 928.00 933.10 931.68 933.28 3.68 .18 933.36 .00 HJ X = 33,12 X(N) = 48.42 XIJI = 41.21 FIJI : .04 D(BJ) : .09 DIAJ) = .33 10 Hydraulic grade line control = 933.84 24 6.1 12 0 .43 .96 Full .02099 7.8 7.3 930.10 932.90 933.84 934.26 3.74 1.35 935.38 936,60 :H7^raalic _rade line control = 933.84 25 _.4 12 0 .23 .51 Seal .30144 2.0 2.1 330.10 333.10 933.84 233.20 3,74 .30 934.01 336.50 X = 52.24 X(NI = .00 ii Hydraulic grade line control = 934.31 26 2.6 8 0 .23 .65 Seal .03314 7.4 7.5 931.00 940.80 934.31 941,45 3.81 .65 942,50 943.60 HJ X : .30 X(N) _ ,00 XIII = .30 F(J) = 1.77 D(BJ) _ .25 DiAJI : 3,6? 13 Hydraulic grade line control : 338.81 27 16.1 24 0 1.08 1.45 Seal .00363 5.1 6.6 935.90 939.30 938.81 940.15 2.91 1.45 ,00 .00 HJ X = 117.59 X(N) : .00 X(J) = 127,36 F(J) = 5.46 D(BJ) = 1.08 D(AJ) : 1.90 28 14.0 24 0 1.12 1.34 Seal .00274 4.5 4.7 939.30 939,60 941.34 941.41 2.04 1.81 941.82 942.70 X : 8.75 X(N) = .00 STORK DRAIN ANALYSIS RESULTS Line Q D W Dn Dc Flow Sf-full V 1 V 2 FL 1 FL 2 HG 1 HG 2 D 1 D 2 TW TW No (cfs) (in) (in) (ft) (ft) Type (ft/ft) (fps) (fps) (ft) (ft) Calc Calc (ft) (ft) Calc CK 23 Hydraulic grade line control = 941.04 29 2.1 12 0 .50 .62 Full .00249 2.7 2.7 939.30 940.20 941.04 941.27 1.74 1,07 .00 .00 30 1.7 3 0 .67 .60 Full .01417 4.9 4.9 940.20 942.10 941,16 943.46 .96 1.36 943.82 944,40 ?;,ra'.li_c grade line control = 940.74 5.2 .33 Seal .00172 3.0 3.5 339.29 911.20 940.74 941.7 1.54 .5 .00 .00 HJ :1.6 : 117.36 :{)) - 27.99 FIJI = 1,37 EN. : .64 DIAJI = 1.17 .2 3.: .36 Par; .100131 7.4 4.4 943.10 945.50 643.53 946.16 .43 .36 946.52 346.50 X = 45.53 17 Hydraulic grade line control = 941.88 8.0 19 0 .67 1.10 Seal .00415 4.5 5.8 939.50 913.00 941.88 944.09 2.38 1.09 .00 .00 HJ X : 33.43 X(5) : .00 X(J) : 33.43 FIJI = 2.78 D(BJ) : .68 DEAJI = 1.68 34 7.1 16 .84 1.03 Seal .00325 4.0 4.5 943.00 943.30 944.53 944.56 1.53 1.26 .00 .00 X : 4.42 MI = .00 12 0 .33 .98 Part .00273 3.3 5.3 943.30 943.70 344.69 944.63 1.39 .98 .00 .00 HJ - .30 0' : .18 xfJ) = 52,52 FIJI = 1.60 DI531 = 9 . NAJI : 1.02 .63 .23 Part .10141 2.7 3.4 943.70 944.34 945.14 945.13 1.41 1.39 .00 .00 .53 .59 3art .3'0033 2.0 944.04 944.60 945.41 345.39 1.37 .79 .00 .00 - 3 .55 .64 Par. .362'3 2.3 3.6 944.60 944.3 145,51 945.63 .93 .73 . i0 .00 HJU .. ._ 3 .16 .53 ?arc .00143 2.1 3.0 944.90 945.20 345.85 945.13 .95 .61 .00 .00 .52 .49 Part .10113 2.2 2.5 945.20 945.30 945.331 345.36 .74 .66 346.0? 946.10 Hy.lra..:11,-. grade line .cntr,_ : 945.27 .1 ..3 :2 0 .55 .58 Fuji 02131 2.3 2.3 344.10 944.40 345.27 945.40 1.27 1.00 .00 .00 (2 1.5 12 0 .49 .52 Seal .91125 1.9 2.2 944.40 944.34 945.54 945.60 1.14 .80 .00 .00 X - 32.26 LH) : .30 43 1.4 2 0 .44 .56 Full .00361 4.0 1.0 944.80 945.20 945.77 946.01 .97 .81 946.31 946.70 STORK DRAIN ANALYSIS RESULTS Line Q D W Dn Dc Flow Sf-full V 1 V 2 FL 1 FL 2 HG 1 HG 2 D1 D2 TW TW No (cfs) (in) (in) (ft) (ft) Type (ft/ft) (fps) (fps) (ft) (ft) Calc Calc (ft) (ft) Calc CK 17 Hydraulic grade line control : 941.88 44 2.2 12 0 .62 .64 Full .00283 2.9 2.9 940.10 940.50 941.88 942.08 1.78 1.58 942,23 942.40 Hydraulic grade line control = 920,46 ,v 49,) 30 3 .39 2.28 Part .01427 22.6 10.4 918.00 926.70 919.14 928.98 1.14 2.28 .00 .00 6.3 2f 0 .44 .92 Full .00065 2.2 2,2 926.70 928.50 932.11 112.24 6.2'. 4,44 .00 .00 ..0 24 0 .42 .36 Full .00060 1.2 1.9 928.50 930,30 3222.9E 300.00 4.48 2.70 335.77 333.70 Hydraulic grade line control = 340.02 113 24.5 36 0 .38 1.59 Full .00097 3.5 3.5 930.50 936.50 940.02 940.23 9.52 3.73 .00 ,00 13 21.5 24 0 1.18 1.66 Full ,006177 41.3 6.8 936.70 939.20 940.80 941.87 4.10 2.67 942.74 942.10 7.1 ydraulic grade line control = 144.59 :. _'.) 21 0 .48 1.13 Full .00195 3.2 3.2 332.00 938.00 944.59 944.62 12.59 6.69 944.88 945.00 HY P2AULK C #LCS FeR. ALMO N I) AVE, eE A-S) TRACT No. Yhüme4 &z ,we'thi9 CIVIL ENGINEERING • LAND SURVEYING survey of by date job no. 'sheet of cii°4-C/r Y c'4-4 C '0/2 ,v*D/6/AJ C 1' ALM 0 eoiwele op Sire:. . 4 5: rc 51DG OPS N+�tC� -P, �5�_ 94, ) ,0�r 'cl> 1111 P Z rt R_ = 2 03 .14-) (-0 FT e 04 ri _ l0-17 Z 174_ 1 11 F'r/?-G. d, 'l-rvii1( (/z"x 71) x.(10,7� \ _ (, z BPr 4 el ZE-7-k '7 , Z 3) V /Z.)01) 1= 45S C S Z.) C4-M-C/ T Y /Al2-c=t TDTf}-L ofkC=A/ ARC"-4- = /n 7 1.77-1- S. 31 rZS. 3 -1 A- 141/ Z H- - 614 00,7) (0. (,)// .1,. (Vc, 41 .5: TD%�-L DA CP/N r1-- 3.0 c F-1„C OA-PAC i r P&es Fel Z �, , �r �.k N.S ,j-/ M I2N O A-/ ws21 � 1 . 0 F12-0^ eJi D -I o 1.3 e c u nir r �= 3 $ FS 14150 Vine Place, Ste. 100 • Cerritos, California 90701 • (310) 926-2296 • Page G-24 EPRESSION 4° GUTTER DEPRESSION 7,711!,_ f i, r igirliffimedi'E" ..”..'. '..."".'..."'''''. .-......"".110 A iigiiiggitim " 'l!g,s i.--7-7,—:—.- i 47 ,-17 , ,Il • . .- -- .4 1 - t . : : !.; i j rt , ral , , , ___ : .. . , , ____,_,..,_,,, ,,, • 4 ..,. .,. ...t. ,_ , , - trt .. , , .0 ... , , i. ‘44 titt 1 1,TP 60 razi= , 17.tpliFf --ammas•iii • .. ..... .... ....::1,61i. , ' ': CD • ' 1 i ;is k, i ' , , . 1- -50 ir_, 4. ririll..l���� i j .40 1111.11MIEMEM----4 Ili:IT • ' 4° 30 _ _ i 30 - Eno, ra awry....: iw a a . RAFE ir) 4,, _ . / .0 . ii,,,,,i..„4, 20 Fis0 - ., , r i ' r 6.„ 1 ---i ilEkAil c., —7-7'4141111ffii is , , . 41 (p.• . . , - :ir L 10 0 ' - .i r.' • iii001 10 `41211.._..., Mr TAME SWIM___11 .-, _,,r ' gi ' •..-.: - . . . i A ,,,, = ►Jf`�/■ 7 ,. . 7 iAllil 6 CA 6 • 0 [rill; -,. 1 - , I 44445111611. , e Ey �ir f . - _ � � 1.. 1.11.1,1FArAMIVAMM114111 " ' - r a■iraitliiiME er• ili� ' Norm+ rdow-121 f . „ Pr ,l slit w ..0; de .!.. ,e °, 0 .4 .5 .6 .7 .8 .9 1.0 .1 .2 .3 .4 .5 .6 .7 .• .! L O PTE-D (FEET) GUTTER FLOW DEPTH -D (FEET) C 71 and 1.0' are t cita and will be : vaen additional o.a.ailable. CURB OPENING CATCH BASIN CAPACITIES 4- ii lTRFFT -!! ADC e -fl i- r, -- - . _. - :-Page • DEPRESSION 4' SUTTER DEPRESSION =" _: 11 . ill1n101111111MilEwiIIilii __ M M11 . 11 t El liw,11%3 a *,.r : --Tl— ` wM .a . „r7 ......r.aa ........- ' ......m.. .Mr aaMw wwwwawMOM• 111111014,em Maw www MINIM Miin INEIS _ - wra.Mwwwnw+nwa 11aa0rawawsawNAM i 4 17 ' ■ . Mg!l !!III WPM ITII: -so a roar,wti we � �.:,.-- WINWlW M11111110415111a i inlllllli 1 �� H.:L. 4li, -F.0 So • i + ` II t`t-7 a , 4p .:40 • 3p t� e '30 0. - - --1- itio r i1A 'ir., .. _ . A.. 7l $ 'to .., �. ro 0 ,., .. 4 1 x0 1 lig 1111I# 1 P • . _ _ _ ],I I• t 1111 11 -{ 1111 '•l { F R 1111 1 i fr f.....I . r ,T { r 1 : 11111 a , ii 1 —1—f • . 10 `0 r, 10 / t • I - 11. 111.1 F ; Fr _ 7 11.11 .: i-1,_ � i 7 II - .fit / 4 ." i S . ' 4 9 V l v 0 ii‘ - i At 3 — • l-- ---- - r - f i airAdii i - t a 7!f t 4.10 & 7' .414 . A ._ k EI iilit!�!�MIN�! 11.7.:11111116 '. CP 1111.. TA1IIPEjE'! r I ,f, •1 1 _ 1 I .4 .5 .i .7 .• .1 1.0 .1 .2 .3 .4 .5 .6 .7 .• .! 1.0 DEPTH—D (FEET) GUTTER FLOW DEPTH—D (FEET) )= a67' and 1.0' are e: Iota and will be ire xhen additional are available. - CURB OPENING CATCH BASIN CAPACITIES STREET SLOPE ■ .0 3 - 0-10 C r ,- •=_ . 1.',. : r': ... ,i-.-_1111 - - . ,, k .. : , TRACT No. eywhielie6 & #'tee/u!n CIVIL ENGINEERING • LAND SURVEYING survey of by date job no. sheet of 8 I A9 CA-104n r /4T- NOoc= 93 cia. sr. S r'4 ' 1406- kL/no/vD �tc ��mo N Vv= lot Ept u OF FLOW , �. � .. _ • = Jia g = 4 3(61,7;50°) (6 Rik) c = - 1 cE cr-DIC c'&P '/elf s CRTC/1 MJ/ Pik-c /y (I ((S /4)-I- A 06z Dl2 S%• ST/9. . 0-1- 3°,51 , M vv 4 c: W= 14/ Dc= l+ or- fiunt_ti _ , 55 FROM b _ ioc. = f e (=S 2;5 :3 3 — k 4 = 9, 3 e (=s ®/c=iz To -1-1-f&` e6--rcrt- 8 (3-SIA) A-i si A , k-91 . Gg of- tMok,.) - �x/= F(10w = 4 ` \ ov5iL 14150 Vine Place, Ste. 100 • Cerritos, California 90701 • (310) 926-2296 HYDRAULIC ELEMENTS - I PROGRAM PACKAGE <<«<<<«<<“<<<“<<“<<<<<“<<<<<<<“>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> (C) Copyright 1982,1986 Advanced Engineering Software [AES] Especially prepared for: “<<<<<<«<<««<<«<<<«<<«<<«««<>»»>>>>>>>>>>>>>>>>>»>>>>>>>>>>>»> < :-1dvanced EncilmeerIng Scitware I AF_S 3ERTAL No. 100956 VER. 2,.3C RELEW3E DAIE : 2/20/86 <<‹.<< <<<<<<<<<<<<<<<<<<<<<<<<<< ,.<< (< <<>>)>>>>>>>>>>>>>,>>>>>>>>>>>>>>> >>>>>> PE- pi-4- OP FLOW --(--c-t .rt9t2_ e4-ro,4- I a 09-&1A) -r , os ).+ 1Lmonn A-4(70 ***************************** »»STREETFLOW MODEL INPUT INFORMATION“« -------- -------- CONSTANT STREET GRADE( FEET/FEET) .028200 CONSTANT STREET FLOW(CFS) 23.30 AVERAGE STREETFLON FRICTION FACTOR(MANNING) = .015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH( FEET) = 38.00 CONSTANT SYMMETRICAL STREET CROSSFALL(DECIMAL) = .020000 CONSTANT SYMMETRICAL CURB HEIGTH( FEET ) = .67 CONSTANT SYMMETRICAL GUTTER-WIDTH( FEE1 ) --: 2.00 CONSTANT SYMMETRICAL GUTTER-LIP( FEET ) .03125 CONSTANT 2YMMETR1CAL GUTIER-HIKE( FEFT ) = .16700 FLOW ASSUMED TO FILL STREFI ON ONE SIDE. AND THEN SPLIF2 34<EFFFLOW MODEL RESUUS . 3TRFE1 FLOWDEPTH( FFE-fl -7 . 5E HALF'31RECT FLOODWIDIH( FEET ) AVERAGE FLOW VELOCITYCFEET/SEC ) 5. 71 PRODUCT OF DEPIH&VELOCITY • HYDRAULIC ELEMENTS - I PROGRAM PACKAGE <<<<<<<<<KKK<<K<<<<<KKK<<<<<<<<<K<KK<< >:.o>>>>>>>>>>>>>>>>>>>>»»>>>>>>»» (C) Copyright 1982, 1,986 Advanced Engineering Software [AES] Especially prepared for: , C c;<<<<<♦ .f <•< i .< « . �< Vie.«<Ci. .<<<< . `7 >?>>>>>>>. . >>> >, ?>»»>>>>>»»>>. l_;u "_i1f`i' 3i i I::i ?f'f:!.L„ . I Iii';:i I 3E_R1 AL No, 000'756 VER. 2 .3C RELEASE M.-1TE:: x/20/06 < , ,. .<<< .<' ,< . . , . ‹.«(:<< . . << .<:< . <<«< >>» :,> >>>, . )- >, >>; >>>>>»»>>>>>>>>> DEPTH OF F LO #( �D FOR- I<*K*** k'K ** r **J**k� *'K'*** K:Y'k/��.�K 4410 :**,K* :�- ""c * *;K: *************K* >>>>STREETFLOW MODEL INPUT INFORMATION<<<< CONSTANT STREET GRADE( FEET!"FEET) = ..030000 CONSTANT STREET FLOW(CFS) TM 18:,20 AVERAGE STREETFLOW FRICTION FACTOR( MANNING) m .015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH( FEET) - .1.8.00 CONSTANT SYMMETRICAL STREET CROSSFAI_L( DECIMAL) ": .020000 CONSTANT SYMMETRICAL CURD HEIOTH( FEE T) = .67 CONSTANT SYMMETRICAL GUTTER-WIDTH( FEET ) = .10 CONSTANT .`SYMMETRIC,AL. CUTTER-LIP( FEET) 7 .01000 CONSTANT ;'YMMETRII, GUTTER-HIKE( FE i.) •- .01000 FLOW A<S..UM` R TO FT i. i,_ 3TCEF F ON ONE. TDC. i''iN0 THEN OPLI T'.:, 'KSTF:EE.TFL.O',') fF:PL1 . :. OVER SIRE I--C[ OHN* * FiJI_! DEPTii( {FET ) 313 TI 'OF"JIOTHC F ET) 18.00 FULL HALF- STREET , E LOCITY( FEI.T/SE::T. ) = 5.41. SPLIT DEPTH( FEET ) •= . I.3 -S0LIT FLOO'JW[DTH( FEET ) = 5. 41 SPLIT VELUCITY( FEET /SEC. I = 2 . 24 • STRFi TFLOW MODEL RESUI Tu. STREF I FLOWfDEPTH( FE E T ) HALESTREE T FLi.;ODWIOTII( FF :T ) :: 12 .00 AVERAGE FLOW VELOCITY( FEET/SES:. ) 5.41 PRODUCT OF DEPTH&VELOC1 T'Y := 2.05 OFFSITE HYDROLOGY FOR CHERRY AVENUE STORM DRAIN R•-(DROLoGcr Si u D F012-- s ) . enc 'Y ,4Ye -. b' Yehtie,s �4::rw�7i:X4c?KW.'kiK*4:W-Y-�;:>i�nK:#:k*:XK•Yc#:l:.W.:k*.Y.:to:�k�Y.'*:#rXc r��:4:k:IfkvxXeaN�:KW�F�;'k�lc:k**aK**�::i.k:F:�K�F:�K�:#N:)K K:k RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) ** PRELIMINARY/EXPERIMENTAL VERSION *** Copyright 1383,86,87 Advanced Engineering Software (aes) Ver. 4.18 Release Date: 2/20/87 Serial t BETA06 Especially prepared for: * BETA TEST SITE EVALUATION ONLY * ******.r***********************.ic** DESCRIPTION OF STUDY *>,Kx*****:K**:K:r.*****p:***;Kz:* HYCROLOGY STUDY 1''OR CHERRY AVE. STORM DRAIN K X=-c:*x rY ****)Tx *%*,r***-;(**:;:*:F= *:I****: X:****Xcx:X:;K****** K::1****Xc*:X:'******:K* (ITE AME: KH5-OCN.OAT TIkE,'I�Al c Cf' STUDY: :Q: 0.23/199e) U E ":PECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*f IME-Oi--CONCENTRATION MODEL*-- USER SPECIFIED STORM EVEi'IT('YEAR i = 25.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 36.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE w .95 *USER--DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE = _6000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR:) = 1.0600 *****='K%:.:********:r•******:K=K'K:K=t ** =K**K.:**,*****`K:*Y*'K,1:****'Y.**!:**=.1:**.** ** * FLOW PROCESS FROM NODE 519.00 TO NODE 619.10 IS CODE = 2 .>RATIONAL METHOD INITIAL- SUBAREA ANALYSIS, <<: :)EV1:Lt_li-'f°I:aN1 IS S1NOL_ FAIL'',' RESIDENTIAL _-> 5-7 DWELLINCT/AC:RE IC = KH (LEi'IGIH rx E .OU),'(ELEVAITCV CHANGE)]*-* .20 INITIAL SUBAREA FLOW-LENGTH n 000.00 IJPITR AM fL5VAFI.CN = 1025.00 DOWNSTREAM ELEVATION =- 1015.0:0 ELEVATION DIFFERENCE = 10.00 lC = .389"1( 000.00** 3..00)/( LO.00)]** .20 = 13.5446 25 YEAR RAINFALL INTENSITY( INCH/HOUR) = 2.509 SOIL CLASSIFICATION(ION IS "A" RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm( ENCH/HR) _ .48SC SUBAREA RUNOFF(CFS) = 13.2; TOTAL AREA(ACRES) = 7.00 PEAK FLOW RATE(CFS) = 15.25 *****X',k**4:*4.x*,*************************:*,**********:r.********4:**:*********.***aa FLOW PROCESS FROM NODE 6:19.10 TO NODE 620.10 IS CODE .= 6 »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< �.-...„J.......___..:.. �....�..��_�Y[�.�..,�f wA.��S.',^"«.w^TS�.3."".N.a2�:S���«".-':C.�.»Tl..T•......,..�.�....�5��::..�..�.....'e'SX�F.'1A�u�� UPSTREAM ELEVATION = 1015.00 DOWNSTREAM ELEVATION = 1013.00 STREET LENGTH(FEET) = 650.00 CURB HEIGTH(INCHES) = 6. STPr:E( HALIWIOTH(FEET' 20 00 ' DISTANCE FROM CROWN TO-CROSSFALL GRADEBREAK - 12.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 18.40 S TREETFLOW MODEL RESULTS: NOFE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC.. IS NEGLECTED. STREET FLOWDEPTH(FEET) = .65 I•CALFSTREET FLOOOW[OTHI FEET) = 19.53 AVERAGE FLOW VELOCITY(FEET/SEC.) . 2.01 (ROOUCT OF DEPTH8:VELOC[T`r = 1.30 S I F;::ETF LCW TRAVELTIME(MIN) = 5.40 TC(MIH) . 13.9E. • :Ats A[NFALL INTENSITY(INCH/HOUR) = 2.117 1LATION IS 'A" CWELL[NOS/ACRE SUBAREA LOSS OArC.. Frai INCH/HR) - .A%3.r.o AF..VAL.Rr_::,1 7.00 SUBAREA RUNOFF(CFS) = 10.28 AR.=,;(ACRsSi - 1.-I00 ;:WERA1:.E0 =- C [MCH,1,R) .<.1SI:. = 14-00 P&,1<. FLOW RATE('CFS) = 20.56 END ;:!F SUE4,,REA 'ST;;.CETFLOW HYDRAULIC': DEPT;LFEET) = HALFST EET FLODOWIDTH(FEET) = 20.00 FLL0 VELOCIT''(F'EET/SEC. ) - 2-06 DEPTH*VELOCITY -- 1.39 x **«*:z**x*:x*:xm.g********'K.K****.1=**'kx*:***********%K*** *:****:X;K:a.'********:KN:.XY,* FLOW PROCESS FROM NODE 620.10 TO NODE 621.10 IS CODE = 6 >• :COUSU T E STREETFLOW TRAVEL T IME THRU SLJBAREA<- !, UPSTREAM __E\ATION = 1013.00 DOWNSTREAM ELEVATION - 1004.00 :TREE-- LENGTH(FEET) _ 450.00 CURB 1-IEIGTH( INCHES) = B_ 'LE, 1:=LdIDTf1(FEET) _ 47_00 ':7.7,.NCE - -1`1 :R WN TO C,'":O _.FALL 0PADE.CREAE - n.00 ..:.C'. = ES. ..,.__SFLL(BECIMALJ .020 ,'_,FP .IACs=`;T,= ":' CARF'YINC RUNOFF FUTED USING MEAN FLOW(CFS) - 30.27 +*OGCL .ESULTS: L-REIT :,LCLVEPTH(FEET) .56 H,Lr_TRE 1 FLOOOWIDTH(FEET ) = 11.5 cE FLOW VELOCIT'I(FEET/EC.) = :5.39 F ::_c*XT OF DEPTH&VELOCITY = 3.12 =L .W 1-:= V=L T IMF(MIN) '- 1 TC(MIN ; 20.3'1 ▪ (E's RAINFALL INTENSITY: INCH;HOUR) ,: 2.029 SO i! CL:.c=IF ICATIOH IS "A" .E.::DENTL L-• 5-7 DWELL INGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) c 4350 51'...64PEA A;:EA(ACRE` ) - 11.00 SUBAREA RUNOFF(CFS) = 19-4S EFFFE=T:VE PREA(AC:ES) _ .28.00 AVERAGED Fm(INCH/HR) = .405 TOTAL AREA(ACRES) = 26.00 PEAK FLOW RATE(CFS) = 38.90 END OF SUBAREA STREETFLOW HYDRAULICS: ?EAT=)(FEET} = .64 HALFSTREET FLO WIDTH(FEET) = 13.91 F��1 VELOCITY(FEET/SEC. ) = 5.52 DEPTH*VELOCITY = 3.51 ' FLOW PROCESS FROM NODE 621.10 TO NODE 622.10 IS CODE = 6 »»>COMPUTE STREETFLOW TRAVELT1MF THRU SUBAREA' <" UPSTREAM ELEVATION = 1004.00 DOWNSTREAM ELEVATION = 991.00 STREET LENGTH(FEET) = 950.00 CURET HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 47.00 DISTANCE FROM CROWN TO CROSSFALL GRADEEREAK = INTERIOR STREET CROSSFALL(DECIMALI T .020 OUTSIDE STREET CROSSFALL(OECIMAL) = .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = -*.*TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 56.17 SIREETFLOW MODEL RESULTS: NOTE_ STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLCW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT I ALL FLOW AL.-11G THE PARKWAY. ETC., IS NEGLECTED. .;rREEF TLCWOEPTi-,: '=EET - .77 HALFS1RC__, F LOOOWIOTHCEEE i = 20.43 AVERAGE FLOW VELOC I Y i(TET/SEC. i :m 4.26 PRODUCT CF DEP fHSVE'LOCI fY = 3.73 STREETFLOW TP AVELT IME(i'T RN 1 = 3.36 TC(MIN) = 23.60 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.855 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Frn(INCH/HR) _ .4650 SUBAREA AREA(ACRES) = 28.00 SUBAREA RUNOFF(CFS) = 34.54 EFFECTIVE AREA(ACRES) = 56.00 AVERAGED Frn(INCH/HR) = .465 TOTAL AREA(ACRES) = 56.00 PEAK FLOW RATE(CFS) = 69.07 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) _ .31 HALFSTREET FLOODWIDTH(FEET) = 22.66 FLOW VELOCITY(FEET/SEC.) = 5.13 DEPTH*VELOCITY = 4.17 m-.K :r.* -1.1::A:z:xX:t:K: `*3k:x*** :K:K'K*'Fk::K**:K:X**.'KM::k:.K.^-1::X*:Y.*;l:* :***:K****kM****:YKK***.***. M::k FLOW PROCESS ;ROM NODE 622.10 TO NODE 623.10 IS CODE = 3 Oi iF"_TC =TPEF LOW TRAVELTIT'E THRU SUBAREAi:<<•. G:MPUTER-ESTIMATED PIFESIZE c HON-PRESSURE FLOW)<« <: CEPTH '3F LCW IN .1.0 INCH PIFE IS 27.3 INCHES PIPEFLOW 'vELOCIT'i'( ET/SEC. l 10.9 UPSTREAM NODE ELEVATION - 991.:0 DO.41SIREAM NODE ELEVATION = 974.00 FLOWLENGTH(FEET) = 1700.00 MANNING( N = .013 ESTIMATED PIPE DIAMETER( INCH) = 39.00 NUMBER OF PIPES = l PIPEFLOW THRU SUBAREA(CFS) = 69.07 TRAVEL T::1ECMIN. ) = 2.50 TC(MIN. ) = 26.20 t_tict . .*'kY-3... .**x * *****'*"'F**R.**...K**:**..k****=*** ::K*****:*4--**:**':*-K'k***.**** FLOW PROCESS FROM NODE 622.10 TO NODE 623.16 IS CODE = 6 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.743 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA AREA(ACRES) = 55.00 SUBAREA RUNOFF(CFS) = 62.26 EFFECTIVE AREA(ACRES) = 111.00 AVERAGED Fm(INCH/HR) = .485 F PEAK FLOW RATE(CFS) 125,65 TC(MIN) : 26.20 ********Ac4e******************** **********:*******e:K%KSK*oK* ******%k*********** FLOW PROCESS FROM NODE 623.10 TO NODE 623.20 IS CODE = 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »>»USING COMPUTER-ESTIMATED PIPES:IZE (NON-PRESSURE FLOW)««< DEPTH OF FLOW IN 45.0 INCH PIPE IS 31.4 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 15.2 UPSTREAM NODE ELEVATION = 974.00 DOWNSTREAM NODE ELEVATION = 952.00 • FLOWLENOTH(FCET) = 1350.00 MANNINGS N = -013 ESTIMATED PIPE DIAMETER(INCH) = 45.00 NUMBER OF PIPES = 1 rIPEFLOW THRU SUBAREA(CFS) = 125.65 TRAVEL TIME(MIN_ ; := 1.40 TC(MIN.) = 27.67 ti:i:w*..,:_x:k;;.; x:*'K= ;**:.'k•l:•Y *:x**k:K:K**:*** *W.::1**:k***.K:K**--v*****-wv..:K*xY:Y: :k:r.'K • ,:'DOSS ,ROS. NODE 623.10 TO NODE 623.20 IS CODE - S ':ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<::.'- 25 YEAR RAINi'ALL INTENSITY(INCH/HOUR) = 1.68.: SOIL CLASSIFICATION IS '•A•' RESIDENTIAL- 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA AREA(ACRES) = 42.00 SUBAREA RUNOFF(CFS) = 45.41 EFFECTIVE AREA(ACRES) = 153_0() AVERAGED Fm(INCI-I/HR) = .485 TOTAL AREA(ACRES) = 153.00 PEAK FLOW RATE(CFS) = 165.44 TC(MIN) = 27.67 K*r" s=K* **4,*****:K: * :**k:K=Y:X:K�::.aK'*****:K*1k***:**111**k:k%k%K=K *A*****:K:**********%% FLOW PROCESS FROM NODE 623.20 TO NODE 624.10 IS CODE _ 3 ::CDNP_'TE PIPEFLOW TRAVELTIME THRU 5UCAREA«<:< EOTIMA t EO P PrESI»E (NON-PRESSURE PLOW),<< :E:-t1 CF .UW :N 51.0 INCH PIPE IS 41_2 INCHES .ELOCTT.+_FET/SEC. ) - 13.5 C.CA1 i NIDE ELEVATICN - 952.00 :17..;4161; EAM NODE ELEVATION = 933.00 :L_'7:LENCH( FEED = 1350.00 - MANNINGS N = .013 IMA i SL PIPE DIAI'(ETEP(INCH ) = 51.00 NUMBER OF PIPES '= 1 PIPEFLOW THRU SUBAREA(CFS) = 165.44 •F,;VEL TI ME(MIN. ) = 1.67 TC(MIN.) = 29.34 x,-.x.=.•t_x t.i.*x k k*F-*.F r:,**:*=k=Y.**'k**4:**.****:x:t****Kie.*:k***X*.t Y.:1*.-X X•X.Y.*X'****i.*.**':K t X 1:t1:F FLOW PROCESS FROM NODE 623.20 TO NODE 624.10 IS CODE :_ S , -,,:,ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<- 25 YEAR RAINFALL INTENSIT•f(INCH/I•IOUR) = 1.626 SOIL CLASSIFICATION IS '•A'• RESIOENTIi;L-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Frit(INCH/HR) _ .4850 SUBAREA AREA(ACRES) = 41.00 SUBAREA RUNOFF(CFS) = 42.18 EFFECTIVE AREA(ACRES) = 194.00 AVERAGED Fm(INCH/HR) _ .485 TOTAL AREA(ACRES) = 194.00 PEAK FLOW RATE(CFS) = 199.59 - , ., , . ., ...:.wYS49.• sefG�+^mak-ai ;.,_. 4 �:_ ___ _.w._.__.._.._ _._.__..._.____.__._ .. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 194.00 EFFECTIVE AREA(ACRES) = 194.00 PEAK FLOW RATE(CFS) 199.59 END OF r'.ATIONAL METHOD ANALYSIS 17k * t� 4 - . ._. n /PRY 4 -. leo 'C= **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) *** PRELIMINARY/EXPERIMENTAL VERSION *** Copyright 1983,86.87 Advanced Engineering Software (aes) Ver. 4 .16 Release Date: 2/20/87 Serial # BETA06 Especially prepared for: BETA TEST SITE EVALUATION ONLY * ************************** DESCRIPTION OF STUDY ************************** * 100 YEAR STORM FOR KHS-OCH * * *********** :***************'********t ************************************ 1=I LE NAME: KHS-CCH.OA TIME/DATE OF STUDY: .0:46 8/22/1994 USER SPECIFIE:D HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TIME-OF-CONCENTRATION MODEL*--- USER SPECIFIED STORM EVENT(YEAR) 7 100.00 SPECIFIED MINIMUM PIPE SIZE( INCH ) = 36.00 SPECIFIED PERCENT OF GRADIENTS( DECIMAL) TO USE FOR FRICTION SLOPE _ .95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE _ .6000 USER SPECIFIED 1-HOUR INTENSITY( INCH/HOUR) = 1„3500 ***.v*'**********'********-***********.***.**'*****:k***K******4******************** FLOW PROCESS FROM NODE 619.00 TO NODE 619.10 IS CODE = 2 - ,> >FAI ZONAL METHOD INITIAL 'SUBAREA ANALYSIS':<<<': DE'aELC'- -ENT IS SINGLE FAMILY RESIDENT IAL -> 5-7 DWELLINGS/ACRE TC = F :( L.EiNG TH** 3.00 ), (ELEVATION CHANGE )) ** .20 1) ri�L SUBAREA FLOW-LENGTH = 800.00 UPS FREAM EL.EVA I CON = L025.00 DCWNSTREAM ELEVATION = 1015.00 ELEVATION DIFFERENCE = 10.00 TC = .389*[( 800.00** 3.00 )h 10.00)1** .20 = 13.546 100 YEAR RAINFALL INTENSITY( INCH/HOUR) = 3.297 SOIL CLASSIFICArION 15 "A” RESIDENTIAL.-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm( INCHIBR) _ .4850 SUBAREA RUNOFF(CFS ) = 17.72 TOTAL AREA(ACRES) = 7 .00 PEAK FLOW RATE(CFS ) = 17. 72 ****tt*********************4*************************,*********************** FLOW PROCESS FROM NODE 619 . 10 TO NODE 620.10 IS CODE = 6 >> >)COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< UPSTREAM ELEVATION = 1015.00 DOWNSTREAM ELEVATION = 1013.00 STREET LENGTH(FEET) = 650.00 CURB HEIGTH(INCHES) = 6. STRLET HALFWIDTH(FEET ) = 20.00 + bISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 - INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 24.89 :***STREET FLOWING FULL*** STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY„ ETC. , IS NEGLECTED. STREET FLOWDEPTH( FEET ) _ .69 HALFSTREET FLOODWIDTH( FEET ) = 20.00 AVERAGE FLOW VELOCITY( FEET/SCC. ) = 2.34 PRODUCT OF DEPTH&VELOCITY = 1.60 STREETFLOW TRAYELTIME(MIN) = 4.63 TC(MIN) = 18.18 100 YEAR RAINFALL INL-ENSITY( INCH/HOUR) = 2.764 SOIL CLASSIFICATION I5 "A' RESiDENTIAL-> 5--7 DWELLINGS/ACRE 3IJB;REA UJSS RATE, , m( INCHJHR) -• .4850 SUBAREA AREA(ACRES) - 7.00 SUBAREA RUNOFF(CFS) = 14.36 EFFECTIVE AREA(ACRES ) = L4 ,00 AVERAGED Fm( INCH/HR) _ .485 TOTAL AREA( ACRES ) = 14.00 PEAK FLOW RATE(CFS) = 28. 71 ENO OF SUBAREA STREETFLOW HYDRAULICS: OEPTH( FEET ) _ .72 HALFSTREET FLOODWIDTH( FEET ) = 20 .00 FLOW VELOCITY( FEET/SEC. ) = 2.35 DEPTH*VELOCITY = 1. 70 *******.******************* ;**'*******************************************KIK*.* FLOW PROCESS FROM NODE 620.10 TO NODE 621.10 IS CODE = 6 »>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA< <<( UPSTREAM ELEVATION = 1013.00 DOWNSTREAM ELEVATION = 1004.00 STREET LENGTH( FEET € = 450 .00 CURB HEIGTH( INCHES) = 8. STREET HALFWIOTH( FEET) = 47.00 `D I sT)NCE =ROM CROW .0 CROESFALL GRADEF>REAK _. 3.00 ;NTERIOR. STREET CROSSFALL( DECIMAL) _ .0 :0 OUTSIDE 3 RFET CROSSFALLt DECIMAL) - .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) _ 42.34 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH( FEET) = .66 HALFSTREET FLOODWIDTH( FEET ) = 15.01 AVERAGE FLOW dELOCITY( FEE.T%SEC ) = 5.51 PROFUCT OF DEPTH&VELOCITY = :.63 STREETFLOW TRAVELTIME( MIN) = 1.36 TC( IIN) = 19 .54 100 YEAR RAINFALL INTENSITY( INCH/HOUR) = 2.647 SOIL CLASSIFICATION IS "A• RESIDENTIAL-> 3-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm( INCH/IHR) = .4850 SUBAREA AREA(ACRES) = 14.00 SUBAREA RUNOFF(CFS) = 27.24 EFFECTIVE AREA(ACRES) = 28.00 AVERAGED Fm( INCH/HR) _ .485 TOTAL AREA(ACRES) = 28.00 PEAK FLOW RATE(CFS) = 54 .47 END OF SUBAREA STREETFLOW HYDRAULICS: OEPTH(FEET) _ .71 HALFSTREET FLOODWIDTH(FEET) = 17.74 FLOW VELOCITY(FEET/SEC. ) = 5.75 DEPTH*VELOCITY = 4.10 • .. •• FLOW PROCESS FROM NODE 621.10 TO NODE 622..10 IS CODE = 6 »>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< UPSTREAM ELEVATION = 1004.00 DOWNSTREAM ELEVATION = 991.00 STREET LENGTH( FEET) = 950.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 47.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 35.00 INTERIOR STREET CROSSFALL( DECIMAL) = .020 OUTSIDE STREET CROSSFALL( DECIMAL) - .040 SPECIFIED NUMBER OF HALFSIREETS CARRYING RUNOFF = 2 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 78.96 STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB:. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT i5. ALL FLOW ALONG THE PARKWAY. ETC. . IS NEGLECTED. STREET ELOWOEP 1 H( B=EET ) _ .34 HALFSTREET FLCODWIOTH( FEET l = 24.30 AVERAGE FLOW VELOCITY( FEET/'SEEC. ) - 5 .27 PRODUCT OF DEPTH&VELOCITY = 4.45 STREETFLOW TRAVELTIME(MIN) = 3 .01 TC( MIN) = 22.55 100 YEAR RAINFALL INTENSITY( INCH/HOUR) = 2.429 SOIL CLASSIFICATION IS "A" RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm( INCH/HR) _ .4850 SUBAREA AREA(ACRES) = 28.00 SUBAREA RUNOFF(CFS) = 48.98 EFFECTIVE AREA(ACRES) = 56.00 AVERAGED Fm( INCH/HR) = .485 TOTAL AREA(ACRES) = 56.00 PEAK FLOW RATE(CFS) = 97 .96 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) _ .90 HALFSTREET FLOODWIOTH( FEET ) = 27.04 FLOW VELOCITY(FEET/SEC. ) = 5.50 DEPTH*VELOCITY = 4 .95 ***K*K***:K****4*: ***:K******K************'*****************K***************** FLOW PROCESS TROM NODE 622.10 10 NODE 623.10 IS CODE = 3 >COMPUTE P1PEFLOW TRAVELTIME THRU : UE: REAt<<<i >>>USING COMPUIEP-EST [MiATED PIPESIZE (NON--PRESSURE FLOW ) <<<( DEPTH OF F'LO•.J IN 42 .0 INCH PIPE IS 34.4 INCHES PIPEFLOW VELOCITY( FEET/SEC. ) = 11.6 UPSTREAM NODE ELEVATION = 991 .00 DOWNSTREAM NODE ELEVATION = 974.00 FLOWLENGTH( FEET) _; 1700.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER( INCH) _ 42.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SURAREA(CFS) = 97 ,96 [RAVEL TIME( MIN. ) = 2.44 TC(M[N. ) = 24.98 m**************k****************. ***:K'K K*****'R***K**.K*******.****.********** FLOW PROCESS FROM NODE 622.10 TO NODE 623.10 IS CODE = 8 ' >> >>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW(<<<< 100 YEAR RAINFALL INTENSITY( INCH/HOUR) = 2.284 SOIL CLASSIFICATION IS "A" RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm( INCH/HR) _ .4850 SUBAREA AREA(ACRES) = 55.00 SUBAREA RUNOFF(CFS) = 89.03 EFFECTIVE AREA(ACRES) = 111,00 •- -mow-, !VIM- .IIMMMlNumcol - -__ PEAK FLOW RATE(CFS) _: 179.68 TC(MIN) = 24..98 **************************************************************************** FLOW PROCESS FROM NODE 623.10 TO NODE 623.20 IS CODE = 3 >>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< >»»USING COMPUTER-ESTIMATED PIPE-SIZE (NON-PRESSURE FLOW)<<<« DEPTH OF FLOW IN 51.0 INCH PIPE IS 36.3 INCHES PIPEFLOW VELOCITY(FEET/SEC. ) = 16.6 UPSTREAM NODE ELEVATION 974.00 DOWNSTREAM NODE ELEVATION = 952.00 FLOWLENGTH( FEET) = 1350.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER( INCH) = 51.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 179.68 TRAVEL TIME(MIN. ) = 1.35 TC(MIN_ ) = 26.34 (**:k * :Ktt*k**'xk4tk=k:K*1(* ********'kk;c;kk***********11**11*:k****k'k•:k:k* K:N**#***kKKK FLOW PROCESS FROM NODE 623.10 TO NODE 623.20 .IS CODE = 8 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<< 100 YEAR RAINFALL INTENSITY( INCH/HOUR) = 2.213 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA AREA(ACRES) = 42.00 SUBAREA RUNOFF(CFS) = 65.30 EFFECTIVE AREA(ACRES) = 153.00 AVERAGED Fm( INCH/HR) _ .485 TOTAL AREA(ACRES) = 153.00 PEAK FLOW RATE(CFS) = 237.88 TC(MIN) = 26.34 *******IK********Kik*********k:K*:kh****:k**'K* k************II;***I****:k*II****** FLOW PROCESS FROM NODE 623.20 TO NODE 624.10 IS CODE - 3 >>; >:>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<< <<< . • >>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW )< <<<<: OE?TH OF FLOW IN 60.0 INCH PIPE IS 45.4 INCHE'. PIPEFLOW VELOCITY( FEET/SEC. 1 = 14.9 UPSTREAM NODE ELEVATION = 952.00 DOWNSTREAM NODE ELEVATION = 938.00 FLOWLENGTH( FEET) = 1350.00 i•1ANNING3 i = .013 ESTIMATED PIPE DIAMETER( INCH ) = 60.00 NUMBER OF PIPES = L PIPEFLOW THRU SUBAREA(CFS) = 237.88 TRAVEL TIME(M1N. ) = 1.51 TC(MIN. ) = 2/ .84 ***IC*******k*******IK*I**.*:K**V:*:KIK*********ICI************•k***C**IC*:k*********'k* FLOW PROCESS FROM NODE 623.20 TO NODE 624.10 IS CODE = 8 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«<< 100 YEAR RAINFALL INTENSITY( INCH/HOUR) = 2.140 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm( INCH/HR) _ .4850 SUBAREA AREA(ACRES) = 41.00 SUBAREA RUNOFF(CFS) = 61.07 EFFECTIVE AREA(ACRES) = 194.00 AVERAGED Fm( INCH/HR) _ .485 TOTAL AREA(ACRES) = 194.00 t ::as?� rsaCiva�#ia% t# +;3�htii'' +rt IC( MIN) = Ll .?S4 END OF STUDY SUMMARY: TOTAL AREA(ACRES) - 114.00 EFFECTIVE AREA(ACRES ) = 194.00 PEAK FLOW RATE(CFS) 288.95 END OF RATIONAL. METHOD ANALYS [S 14YD12AttLIC_ C' rL& S -C) 12 14-64 2:11 Avef,, s , cy r M CA-PA-c I 7-`r e_Atc' S e 1*► ' he , . Project : CHERRY AVE. 51000 GRAIN HYDRAULIC CALCS Date: 5(20/1980 Tile: 19:45:33 INPUT DATA LISTING CD L2 NAK Q ADJ Q LENGTH FL 1 FL 2 CTL/TW D N S KJ KE KN LC Ll L3 L4 Al A3 04 J H 8 1 922.20 2 2 200.0 200.0 110.60 918.70 920.80 .00 48. 0. 3 .00 .20 .00 1 3 5 6 0. 55. 75. 4.00 .013 2 3 98.0 98.0 1248.00 921.20 938.30 .00 45. 0. 3 .00 .20 .00 0 4 1 8 0. 45. 45. .00 .013 2 4 1.0 1.0 45.00 939.30 944.10 .00 30. 0. 1 .00 .20 .00 0 0 0 0 0. 0. 0. 4.00 .013 2 5 51.0 51.0 20.00 922.50 930.80 938.30 24. 0. .00 .20 .00 2 0 0 0 0. 0. 0. .00 .013 2 6 51.0 51.0 40.00 922,20 930.30 933.00 24. 0. 1 .00 .20 .00 2 0 0 0 0. 0. 0. .00 .013 2 7 62.0 62.0 70.00 922.30 931.40 938.30 30. 0. 1 .00 .20 .00 3 0 0 0 0, 0. 0. .00 .013 2 8 36.0 36.0 15.00 939.30 944.80 951.50 30. 0. 1 .00 .20 .00 3 0 0 0 0. 0. 0. .00 .013 'z'#i��..�C�.`.Z'ht r e.�.4•<i!"�5,.�.'l�'ad�.�.°S. :1.Y¢�.;.,.]r4' ::[°.a�` ` ,r�3*yrr.:%e, '7�:�. invxa�sn�*�irh�sL. Y..�.,a. i;.,;. ..Y -„Ws- .-3�.. Project : CHERRY AVE. PORN DRAIN HYDRAULIC CALCS Date: 5/20/1980 Tile: 19:45:33 STORM DRAIN ANALYSIS RESULTS Line 0 D N On Oc Flow Sf-full V 1 V 2 FL 1 FL 2 HG 1 HG 2 0 1 D 2 TN TN No (cfs) (in) (in) (ft) (ft) Type (ft/ft) (fps) (fps) (ft) (ft) Calc Calc (ft) (ft) Calc CK 1 Hydraulic grade line control : 922.20 2 200.0 48 0 4.00 3.35 Seal .01938 16.1 15.9 918.70 920.80 922.55 925.95 3,85 5.15 .00 .00 X = 8.18 X(N) = .01 3 98.0 45 0 2.30 3.03 Seal .00657 9.9 10.2 921.20 938.30 927,64 941.33 6.43 3.03 .00 .00 Hi X : 358.63 Ani = 345,76 XIJi = 358.63 F(J) : 49.13 0(01) : 2.30 0(01) = 3.97 A 1.0 30 9 .14 .32 ?art .00001 .3 2.7 939.30 944.70 941.02 945.02 1.72 .32 945.16 .00 Hi X = .00 Xi HI : 21.7? 0(J) : 9.00 Fiii : .28 0(81) = .14 0(82) _ .62 2 Hydraulic grade line control = 922.37 5 51.0 24 0 .82 1.98 Part .05082 27.1 16.3 922.50 930.80 923.65 932.78 1.15 1.98 937.71 938.30 2 Hydraulic grade line control = 922.37 51.0 24 0 .99 1.98 Part .05082 25.6 16.3 922.30 930.80 923.51 932.78 1.21 1.98 937.71 938.00 Hydraulic grade line control : 726.79 2.0 30 • 0 1.13 2.40 Part .02.85 24,1 12.3 922.30 131.40 923.60 933.80 1.30 2.40 936.35 938,30 Hydraulic grade line control = 926.79 3t..0 30 0 .98 2.03 Part .00770 17.7 3.4 939.30 944.90 940,38 946.33 1.08 2.03 948.15 951.50 . . -.-rs�•-,+-. - --.�.�.'v....'?T'q+r!i't-vim.-."�.. ',�_._:. -.. .. .-.:'" .::"'._. ..�:":i't R... ,.K.+?�-�.' LIST OF ABBREVIATItONS V 1, Ft 1, 0 1 and NG I refer to downstrea: end V 2, Ft 2, 0 2 and KG 2 refer to upstrea: end % - Distance in feet fro: dornstreaa end to Point where BC intersects soffit 15 seal condition 1(11T - Distance in feet frac downstreaa end to Point where water surface reaches norsal depth by either drawdown or backwater XIJI - Distance in feet fros dounstrea: end to point where hydraulic MD occurs in line !:(1) _ The coitlivted force at the hydraulic ivao r1iEdi - leoth of Qatar before the hydraulic (ubstreaa sine :Jeb7.h :i :ater afle7 the hydraulic juco (dc,nstre s 11:ii:ates flow :hanger froa part tofoil or fiO3 full to cart I& .'dicates that flow :hanaes Fro supercritical to subcritical through a hydraulic ;um aaK indic tes tat hycraulic luso occurs at the junction at the uostreaa end of the line 115 indicates that hydraulic ivap occurs at the ;unction at the downstreaa end of the line Ch'fR� Y /4-Ve . CEJ-P,4-eI rj c74-6 e Du/L1N G /ad) _ dtlz- 5 Fp ii/11 �J _ 2 _ B — Qts- = 23?_ g8- 140Ct— -Q = Zig - �� = l4oe z89 0-0 9eP Q,°° ..Q146-'Q� _ goo ZS C'f9-RdLy IA) Sraz�c-7' 140 cA-i -y l A) sr� cz�T CPS 2-c=&--r cA--pA-ci i r_ 14 cp S 14 0 eA-R R.Y 1 N s rgcRYr- 'r2-c---Gi C' frr tr-r ei 0 c(LS RBR S - 0, 00 3Z STP-Gc=1 e(9-Pel-CIPr -_-_-4.1 0 e-F-S 17-0 e_ S o . 0 1 �.� r-9 R- S= 0.00-1 01{ Q100 =Z8.5 PS �/�/�Y �/ �t'�oa =Z3/3 C Ave-, q j iJ / 4)=5e f-� 3���CFS D. cii �, //c / eFS f� — (off - /` 4=3. L._ I --- , 5,,s•D. 7' ._.3 QZ5 = 98CFS Q% Qts _. Oa z5'= 204 eFS �\ \--NAG gi \ it Cfi/E/e/e r 4v5- . 0 \ T.\ Q- 5/eFS Q - 34.3--eP_I r------\I.--__-77-1___; i TRACT No. gTIUne4.ejme4 � ntif;neejein, CIVIL ENGINEERING • LAND SURVEYING survey of by date job no. sheet of IN /41 i C6) 1,3 _ 7 re 50� sal /.2,) � - -- 6)/c13) 9, O 1sq). Ai z 4,1 At = /4.44 Az :: 2.0 A5' .--, 1• 4:l A-3 = 25' A-(0 = I.44 Fr'- 1c ar = IT 55— A ----- 45 . 21= x} 5 . 31 \• 4) Q ( 43 ( I 119. 3 6= 0. 00 CA Q_,.. 210 eFS 6 = 0, moa Q - I4$ cFS s = 0, 04f Cp= 694 CFS p o2 � _ 303 c- F. s = 0 , 01 4 _ z—U CF= S 141 50 Vine Place, Ste. 100 • Cerritos, California 90701 • (310) 926-2296 12A-U L I C S F D 12- C E-R `-C . eATe- a 4-S1 Os TRACT No. T/une4 & n43e/U9 CIVIL ENGINEERING • LAND SURVEYING survey of by date job no. sheet of Zv Yc Z rota4 CHER Y A.V . C2 Tcl. ,&99A/ ?, 4 ear y (74z c'1 cr sr4+ 5D• ° ° l� ATC// "5 - /��/ 4/- . 30 4Z O. Z FLoc.J .PC PT1-4 = 0, 91 rRoM C14�RT- b - JC Q�,4r� `� = 36 eFS \A1,_ 2/! ST• sr6 2/G t 1/• G CA-TC-' ,Q -s//v A-r 54), ,5779-. Z9'+ Sl , 21 FG Oco = D, 3 I 2on� e/44-12 r u - ioB FOR W_ i4 ec) 204e/ry Lc-r/)-ZG 2l6fi21. 7� sr• '3) C,4)-Tc Y 84-Ss/A/ /4--T S D. /'' • E3+ 2 , 0 F - --' Dc AT/f = fAOM Chi-7'912r l) -/J 3 /=O/Z V/= 2/ e/9-7,0c/r5- _ 3 G e/=s 4) EN TIA/() 8,) 74a N c,;ie=A)'i , VCr, rc & &-=/),T/71 — 0. 73 _ �n ARC M e// ?i ,v- 10 3 /`'a// IA/-. ` /4.. 4�A-P�cc rY ' I. W= Zi 5) 5XIST'/,)4 C(51-7-c-A4 B SI r� �f>� C-��95lsive= m r= c.�����y /9-ve . -= /•4 (vs eoP) ir°(z W= Z/ / Q«-pdeff y= 70.o cf • F6 `v cr7-)r/� = t, S( uM P) Foy/ yu — !¢ 4/P, /r - cA. . FReml eft -f r, / _ Z,6 141 50 Vine Place, Ste. 100 • Cerritos, California 90701 • (310) 926-2296 t Page G-33 joi 1 ' LA-, 4U Ai i`r r----(-00 L.) a( TRO-L. SUMP FORMULA Q = 4.3AD°•6(COMPLETE SUBMERGENCE) A= AREA OF OPENING (W x 0.656). 1 400 W. LENGTH (FEET) OF CATCH BASIN FAI ".: ?' OPENING ' D= DEPTH (FEET) OF FLOW ABOVE �► 300 e NORMAL GUTTER GRADE ,3;``, 8" NORMAL C.F. , 9 C.F AT C.B. 200 Cr ;..1 :• :Mal •. - Ora Ail r =MEI AMMA , 6_ C1:3 1 60 4 =1,,InFr.iiidir„. .= 'wy — - = r = ' 30 Zrte " wmwr.... aiiM3=WO-=mai tawm � ei mama = ==i1MinsMIEN < "' Eme. = i 20 16 =i, - MI gldirMingnin :-1--:i, :-.:. 1-��0 -lime Mining U • : C/ MC , L _. . u ' • i ' : go?, _1T 11111111 111- .3 4 .5 .6 .7 .8 .9 LO 2 3 4 5 r4 ;.: D= DEPTH OF FLOW (FT.) ABOVE NORMAL GUTTER GRADE t f-- Los Angeles County Flood Control District s ' CATCH BASIN CAPACITIES „ . FOR SUMP CONDITION TO BE USED FOR C.B. NOS. 1, 2 a 3 , .f Y. D-26 . • - Page 0 2{: ._ -a-0.- DEPRESSION 4' GUTTER DEPRESSION ---===,=__::..................._,: ....L' l —=------r-.----=,E2--,--11_ ! "'m::::::.: C O ,...= o:= lrlaG�r aiiilli111l6ydHI iiiis iiiii*1iil.IflI111it pmlittM1iR11I1i.:if ....::w. .:7M:.»i...:w..«.1.....w uI:»ItiMOMS 1L�.�"�ii7} I m.�N.1i���1y1�w7i IK/M M111 i1 ar.l 1...M.I MW I. MM 11..x11 rr11MM ., Bli N��F�iM! ���EMIL y�,�I ..M N..rw.wwrnw..r........... WNWM lin .1141...14.14.01.01.....P. � 1(}r1FI�MVl11n�jn rt753y�'�'1�/.lMM. WNW Melina Warq 1.■ ..1•6010111.11110111,91 issmm ��ItlriiliMilili'Iiilil �i.�i 1�i� 1 �� Wier r..rrrrll War 114.1r If i.i,1......#M.1... .�......MM{M�MM1...lf.AfM..Aa IMO s0 - s = .. 40 .---: Imo:: z --_ = -:Mui` 1.W t=! `, rri l..i\.Y'..Y.EV/-.rnMMll"MlnRlMy� .'-, '413f..Ai.....MN.V.M I1M.r•Mrr.NI..AIr�I M.MI 11011141,.1 r.Ml>r.,1.MOW..mer.M M ii�r1f1a1AMi.a1 M. MNI,M1.•.111•' _ rrris Mrrm AM.m ;A Ar•wi1.r1 I -✓ 11111:11 aim arruri ._. r' 1'3^'" _ ,ham r''".._fie . '°"i-' - 3�#'�t°wa- 1 •y�� ... ..rr «..3^JC���.'"S1' _3:�Ti...3 .- II331' �r.,� =�- -- - �'-...5 """•"° w1"'^ 's_�_ ' HYDRAULIC ELEMENTS - I PROGRAM PACKAGE ==== ======= ----- _-=-==='-------========== <<«<«««<<««««< <<<<<<<>>>`»>:•»>»>»>»>»»»»»»»»> (C) Copyright 1982.1986 Advanced Fogineerinq Software CAES] Especially prepared for: • • �<•'.. .. .:«>.>,.. . •?>>?. .>>'>;. »>. '>,»:e. •>>> . Advancod Crs'yln-ering Software '-AE31 SERIAL No_ 100956 VER. 2.7C RELEASE DATE: 2/20/36 25 yC1/a s & rangy , . **********DESCRIPTION OF RESULTS******************************************** • * CHARM? AVE. CAPACITY CALLS -' W=40 */i / �� *6 roe-fr.-7- C'f9-I�r C '� r�T iva2711---/>t EF,4 . STA 21( - S� *****:K*****W.****:K**.. .Y::K***...*:KIK********************W.*K7Kk*******W***** )»>STREETFLOW MODEL INPUT INFORMATION«« CONSTANT STREET GRADE(FEET/FEET) = .010600 + ' CONSTANT STREET FLOW(CFS) = 16.00 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = .015000 CONSTANT SYMMETRICAL STREET HALF-WIOTN(FEET) = 40.00 (1` CONSTANT SYMMETRICAL STREET CROS:,IALL(GECIMAL) = .018'000 ' �f CONSTANT SYMMETRICAL CURB IIEIGTH(FEET) =- .6 M.l' CONSTANT SYMMETRICAL GUTTER--WEDTII(FEET) .1.50 I• #} CONSTANT SYMMETRICAL GUTTER-LIP(FEET) = .03125 CONSTANT SYMMETRICAL GUTTER--HIKE(FEET) = _12E00 FLOW ASSUMED TO FILL STREET EVENLY ON 80TH SIDES 4v • ***STREET FLOWING FULL*** w7 f6{6 % STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RE':ULTS ARE GASED ON THE ASSUMPTION FHAT NEGLIGLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. • THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) = .86 HALFSTREET FLOODWIDTH(FEET) = 40.00 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 5.57 PRODUCT OF DEPTHBVELOCITY = 4.78 `.....Misr.= &1' Y.=Cil=^..i6-R.SC,"%xF.•9C====ir•F[RR�W cC =-C=" .=g====.-. :'^1S'dlII=='3.'TL"'SYS�.i.-l=== _.., - _ - +S Y-"'� ."A" Y-''� ..,. .. x.z - .t„ [,..». .,...� :.ifs-i RHt�'+ ""fY^!�i+" _ 2 *****:****CESCRIPT.ION OF RESULTS&=*-*Ackx a*m: ****%**** »:7 r*****K*********** * CAPACITY CALCS FOR EAST SIDE OF CHERRY AVE. — W=40 • ‘112-e(5-1- e�Pr�-e I ridd10 -r srA- 3©H-o o Ear s ( D 2 1,6 t zl . 1 9 K****-K**3:****x:K:x*****:Y*:K*4*:K`K'K:R*********:ic**Y****:r. **'k:K%K *A**`IVI*****:K*****:K —' STREETFLOW MODEL INPUT INFORMATIONc<c‹ CONSTANT STREET GRADE(FEET/FEET) = .00200 CONSTANT STREET FLOW(CFS) = 81.00 AVERAGE STREETFLOW FRICTION FACTOR(MANNING; = .0L5D00 CONSTANT SYMMETRICAL STREET TIAL -WXOTH(FEET) = 40.00 CONSTANT SYMMETRICAL STREET '=P l SSFALL(DECIMAL) _020000 CONSTANT SYMMETRICAL CURB i 1EIGTH(FEET) = .57 CONSTANT ",YMI"iET�`I:_AL GU 1TEIY-WTOTH(F EET) - I.50 CONSTANT SYhME 7F LL"-iI_ ;u I T R-!.(P(F EET) . .03L.2.5 LUNSIAN 11If'lliC.,.._... .�..1TTEti-.:L!•..',( _ET) _12'5X) FLOW ASSUMED ID I'._'_ .TRCE T :31-; i"_HE 3:OE. ONO THEM 'i;I_(T S 'K;.*STREETFLCW SPLITS OVER ':i I iii."_ CROWN*x-- FULL OEPTH(FEET) = .93 FLOODWIDTH(FEET) - 40.00 FULL HALF-STREET VELOCITY(FEET/SEC.) = 0.00 SPLIT DEPTH(FEET) = .52 SPLIT FLOODWIDTH(FEET) c 74.89 SPLIT VELOCITY(FEET/SEC.) = 2.72 - STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE EASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC_, IS NEGLECTED. STREET FLOWDEPTH(FE'ET) 93 HALFSTRcE"T FLOOCWIOI'H(1=EET'; -. AVERAGE FLOW VELOCITY(FE:T/SEE'. ; - 3_Ca PROOUC1 OF OF PII R::'EL ICIT'Y 2.35 prYDPitt Li e C Le_ S FO �Z- A .—(1',( I E i.x 2S�" STEEL RODS, I NUT ON N t feris 1." EACH ENO AFTER ASSEMBLY, PEEN 3"J` TA19 t+ THREADS TO HOLD NUTS TIGHT. �` /� lit y C `'. —1-- I —� r lr ems- r P treze4 1 A � i _..Z�� 1 rr. i 1 1 1 it e 7 C5 B L_ _- 7 1 --- 11 1 iB Q00 v LI f I n /� f f IT: t 1 tuZ � BO A6 Y 5 u --J7i 1' V t.." lk L� 1 11 N 10 L7 f LL - - 1 { li 11 1^ -'N g+ 1 t '"X R 1" Fr- � g• .1• 11 E7 7-J E �. li ap N ..-. I/ " �'r IN � I I EI 7 EX PCZ S I IIII----r..r - �a 4- 1 I. T S LI 11 'J -�-- 7 S df7 `..- ALL }"V I" <CORp rM X22 O I- I L 3.410 Z"x 3"x a-x 40 e "(TYP) /]" A PLAN 41 8- _—.. I . 408 A _ . _— IEI I,_ _t 134"(TYPI � g e ♦ : ill: N --____:177 _I 3•1_ I INTERIOR SPACERS END SPACERS loll' 20- 2"x 3i.x 40" OARS SECTION B-B FR oft, ,MA-n 0 G _ oa 5' Z•A_ etilelivr71 ,eo.90 Pn'''• f4 ', 6 ' 6 42 fa Ng& 4441The - /Z CC cacs 0PgCoTr 4) (if .5-s--) 3 .co,. CIDGC, /A/C, .. s9. s.C`c 3 Z7 ? co,= z I epS ole- Tor,4L } Z AMERICAN PUBLIC WORKS ASSOCIATION — SOUTHERN CALIFORNIA CHAPTER STANDARD PLAN BYJOWTULGATED COOPERATIVEECOMM EE FRAME AND GRATING FOR CATCH BASINS , 311-0 1964 1 USE WITH STANDARD SPECIFICATIONS FOR PUBLIC WORKS CONSTRUCTION ' SHEET 1 Of 2 A _ I;� 6- Z x 25 9" STEEL ROOS, I NUT ON N #Y 'z 'C c ZC,is . _El 4 I EACH ENO. AFTER ASSEMBLY, PEEN 3. f y ���JJJ 'J� - I THREADS TO HOLD NUTS TIGHT. L vpog � / i -f-701 01 Ate2ser/44 Saw : i �r ,.. 1f _ _ - 17 1:1 O BL rl 11 11 11 xs - �, C FS yC II 7 7 1 L El I, }1 ICy __ - 11 -- 1 1- 11 T. `oO ��O . it _ i t - i t 1[ i E u r r r a II 1s /^� 10 r ii -r 1 J S {r 1w y �N In 6LL'1 11 T 1rZ r 1 I1 )- N x f 11T t ! r 1[ =f .~.. N Q/p^ 3.0 VI /2 -1N [! I I 11 u J,., rn1,, x .) 11 I r it - 11 J 1 �S • n 1 11 1 [ [ 1 11 11 x Z II E 1 -- i 1 11 11 � [1� 1 1 T[ fl � �,pi w. 1 kl <ALL j' ..e.-----3"V RS I" CO7 16 Z2 . I L 32•x 3"x e_ x 40e"(TYP) y LOC 9 ' A 1-4 36-4.& PLAN Z.94�=,A� 4. D� B��GD. �B _- -- NOT A4 ufGO • C I 403"- 418 i W / o, a _II-1.1_1 II 14" - I 134"(TYP) I Lziotti;. ! _1 �1 INTERIOR SSP-AC� 47 --1 3"1f�- ERS END SPACERS 41v 20-Z+x 3Z:x 40" BARS SECTION B-B ? Z (z. 94 ÷ Z•OZ) = 9 . 9Z FROM PLATE 2. 6 065'g 1... 1A. coaNT7' {COAD tEP. Q/ C. 75' 1 P, yy — 44 c5 FOR oifre." GR-14-TC Qc�r°R�rY ,p'g rev o Giear t/rz Er /s 14. 0 CSS 5Oto C4oGc/alb mT Q l ff/2 7447 CCO:: 7v cK cps __ _...,. AMERICAN PUBLIC WORKS ASSOCIATION — SOUTHERN CALIFORNIA CHAPTER I STANDARD PLAN POIN7 LLGATERATIYEECOMukAGEE FRAME AND GRATING FOR CATCH BASINS 311-0 198 -, USE WITH STANDARD SPECIFICATIONS FOR PUBLIC WORKS CONSTRUCTION ' SHEET 1 OF 2 A �, // 4 rpe, /c e�Lcrs in6•i"x 231 STEEL ROOS, I NUT ON N /� _ El [I4" I EACH END. AFTER ASSEMBLY, PEEN -I 3" I p4/i' /2' 2 1AlL1 �fl I THREADS TO HOLD NUTS TIGHT. �.r e-195r Bf �I.�a���� In -If S LI LI fr _ II f' �B Its O. -6 ' B L- If - II- T I '1f J • 17 TS l I I T II is II - -_ i1 11 11 11i l4 CFS T u I f t r LIT 1 II r y 1.0 = d I II r t I I - if-1 k ff > rat I 1 I a il. !J I F I I 1�I N \J ID 1 11 T-T T r u.'4 F: -1N l� 2 A 4 _.. 1-1 r/ ET 1. Y N x y-Tr -- f-I- 1 T II `t. N 3 -IN :l IT—._.. I C I I R LT eflf '}.1� I L x TI -TI TEr I, I p .o / 7 ^ ii i U ' —lL i1 x I ❑ - - LI l f IT I t I T ll Y Il 1 l I r ji til 7 J 11 I 1 I I I IL I, IF' I v ... I_t.. L '� ALL • 1i' -r"`- 3"V I" <C O R I% L 32•x3"x a x400"(TYP) —I! 'If]`h�` V5 22 1. LIXIFJ A PLAN t 3. qr.• e94 ale , iI 40 3. 1 " —;I 14 — 134ITYP)_ wJ` gr L N / „4, _I 3.1___ I INTERIOR SPACER t-ENOSPACERS 1I ' 20-- x 3cx 40" BARS SECTION B-B per, 2 (z.04+ 2. oz) 0.92 Z. o G5�' 61. nBU�'y 244-D DEQ. FRo im PLATE 9--,..„ = 2. D c� ,d-ciT Fv2 6416.-. o , . Tao 4a� 1NLFrl =/9.ft' ) 969.10/1e/7 y 1,4 6) . ice PI fidg e-2496 4 ,Z�19. 8° ._-. 19. 8 o cps cF�� q `° rrrrz qoI °kehry01c- 7.4 AMERICAN PUBLIC WORKS ASSOCIATION - SOUTHERN CALIFORNIA CHAPTER STANDARD PLAN PROMAPW JOINT UCOO ERATIVELGATED BY THECOM"nEE FRAME AND GRATING FOR CATCH BASINS 311 -0 1961 - - I USE WITH STANDARD SPECIFICATIONS FOR PUBLIC WORKS CONSTRUCTION SHEET 1 Of 2 6.0 s i r 4.0 _ • t:t — --1 !r r� _r».--....— • -- ----Ia ..-...ter-=-- - ;- 1 ...6 =e.....�. .. 3.0 �— _ c t -'---- —-- . klitt .._ 141 M ---.-— =mem= Mtlis!k. 1011111111111 NM TWT r !..rwwwrrrrrwwr wrrrrrwr •'.w .. i U rwwrrlawai i t nMigO�fw�rw mMaline wrwrl wwc Z rwwwrr�nrrrrrrrrrr rr=r rr TM1 _ _ www— �wr�ww�w���►.r���r wrrirw�+lrrr��r w�w� _ rwrwww S •• M�rM ��w� —mow—, N� 1 I; Ni i Min ,'Ii, Mini Z 0.9 _I i _ . _� ��..� w, _ r— =S=.... =.1=•.: .- ,...ioa4umsiausu••raiaw.;==N 0.7 il-- _ ■■1 1Ni�=_— J swrrrrMwrw w r rwr � �1 AMMO! _rurw== 0.6 5: _ � - -I - •-'.._' ter— _= _^_�_. � moire -_ LI- 0.5 _ ....._.... _ _ M -1 Zsss � W a��www�aaww Q ... tX 0.4 == = -.r.► *`Ml...r_ .�w= 3 .�wn...r.1 w..ti.rw.rrr..� .�..�.....r. iiiimmin 0.3 - Fi .-._ffi �. 1-ter �^ It� �� - ;: F 'wrwnr■�� 1mosarais mos Nen j ._......0 l "== 0.1 � i MaNr �.. 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 STORM DURATION (MINUTES) DESIGN STORM FREQUENCY = /OO YEARS ONE HOUR POINT RAINFALL = /•3 INCHES LOG-LOG SLOPE = O. , PROJECT LOCATION = NIW CA167;RfYAV6 r JURUPµ '4V6' C/7 Y oi= Fon/,,4Af' INTENSITY - DURATION 1 SAN BERNARDINO COUNTY 1 CURVES HYDROLOGY MANUAL CALCULATION SHEET D-8 FIGURE D-3 y 3.5 - 3.5 3 3 2.5 2.5 cn WI _ _. U Z „ Z 2 2 Z 1— et. w 0 J -J u_ L51.5 Z �.f / s--- o• -T it, �o.89" 0.5 ‘e°°. _ 0.5 0 0 2 5 10 25 50 100 RETURN PERIOD IN YEARS NOTE' I. FOR INTERMEDIATE RETURN PERIODS PLOT 10-YEAR AND 100-YEAR ONE HOUR VALUES FROM MAPS, THEN CONNECT POINTS AND READ VALUE FOR DESIRED RETURN PERIOD. FOR EXAMPLE GIVEN 10-YEAR ONE HOUR■0.95" AND 100-YEAR CNE HOUR •I.60",25-YEAR ONE HOUR$LIR". REFERENCE'NOAA ATLAS 2,VOLUME II-CAL.,I9T3 RAINFALL DEPTH VERSUS SAN BERNARDINO COUNTY RETURN PERIOD FOR HYDROLOGY MANUAL PARTIAL DURATION SERIES D-7 FIGURE D-2 . . lc, _._r__— ./0 F WY . _ . rtr,61,0C-...-ri . . J `V lk 1,0W Dr545tri J (�pvSTRy4L. iteS‘OerrTI At. /Z-Z °ufAG `,90) tr r f RO,rfcr . .4 ''`t Sire--. L . 0,°°: 4 _ J Lal1'f'9 A Vt. `4 [ o . .to . .5, e ..4 * Gra _ 0r . 0 o ). tis n , S �° B+tR3�, 4{ #4,..„ Ro UC i)P .1.4 . .C. S° . CO. L/NELAW gp{t;,rl, god_ ft. )' o WI 'e'' a'P LAND USE kgA-P Le LA s R8 I R7W R&W ` r R5 + • i .'' i=. -_ — r r _ t— rt g ra . 4N .�' I A t•F, f I ! 4W �r� t; i R2W RIW - R2E .,., .— 1.--� ' V I 4 moil I.t rims„,,m,.. ..„ 16141 , __ , , I. 7 hal J _ — T4N I. 01110p, i Iiillo 1110,7400.011101 . r -t.s...."%v..„1.7 -......;4 a )i . 4k:if =WO milsok '► til , _ +, •• wn. - - I . ' 1 f i� I --t-'"i"lk7t...,,- it,,,,. NI; -r- -1 - 911'- t -' 1-- t 411 5 i4\ N, iir • • 4 44,110 '-' , - . I . 1 - ' . 111 1_ 1( 1. i f" AW 001";t::171- "hiki` : ' ..„ ,,, ,, i ... Narlilly ArOdPiltor,iikt _ - . 1 il, ,, _„..,„., , _ .___ ... _... _ _ _,_ . _ • 1 , .,-- -h, -I --:r- ' --"t.t ' 4r:1--- • M1 - � �4� �- L0.___ .' f � I� • 1.4 t4' --.I - , , rr t�+•. ~ .i „...4k:••••." '-\ w� fL�lri L I- - -- — I. - '1'r� s 14 `1 L�cR . p. 1.! - �_ v ERIKA L sa• ilk ) _a p.-- . ri, -.4,,,,,,,,,„„......-..jimip- lif ON Z,/C \^ yi► QNist �'' -t)..... - ” - - LANE L a rt • s . A, if_ _4(....‘ •• f.� r—ir . rL. lv�' hot, 11 i• r - / ..,.._ fi, I I/ 1 r j _ i i ifur , ,;,,,,,,,,,,- , -.... . 3 wirapptinpar p NT „4. , 5.NI, i '''' -.4.•‘,11!'=-- N, 7"1?***214147.- 117 7 I III I I 411 11 I I I°I WI 14 LI%.44.7 1..4: L . °.1 .a- '‘' h---- 1 1 .,..._.,,,_,_7(,,,L,71/4, _ r T la 1 r �� r �{ - — "-- . �lw.° .. _ - _I— .., -_ �x .t•� .r r L � � ,J. ii_ IIV 7:Wits••4 • ': • I ^4a tt- .z -len y`c J gt ��* ✓ `� \ -1. — t- --r --4.--d ri = 7;...r. am immt...iiigni - ,::,.;,k-•__ 'At' ,,,_.e t `^ Sa g1:ASM Kp \ 11111115kittillillir "Allrr411%111k/kllIl il lip1, 4,.m, !lige! .�rRA1II �� =A i R I A L.TO_ 1± Fralra m'T r �- �� , ---1 I — ,4,-. e' er ai + ON TAN 2roIrl • MUl1491. r7 , _ + pilligragiii! „., Y ,'ilit OH TA.IGIr'•' ..art. L r . COLTON' 1.4 - \ 1 �iiYi' • i�� Itio, it ! w-r . _ _ REOLANO *I r I. t~ r _ — ia'.-IVI iNS _stilt„=.1 ri ..._ r ▪ - - t reu-11111111 - 1.1015,11.. . .,".r , , -• ,, ,.. _ . ., _i I is,/ . .. iffil ..... r 1 -...J.A111111Wilitaki- NM. -:\ ...‘ ' -Th..' '1 . 4 ilit- �� lallik 11 IN of t I 1.8 T _.• r I�..,Kt3+I+!/ I M �1�■ I - IMIll —r- ,„ ,� 1 , I _ } --i!• 1PMN mei" 4. . , _.. • 1111 •940.4 l 4M r MN !'F� 0 R I R2` �6�.3 ' IVO Mt. souN,r �. 4 l.lpipi...gill V. . I �� ERSIDE /11W e. 1, ,.• ..,.. r -•• • ‘ lijakillir \ "N \I. hik,‘ , '�'�• mer. 011 •.•••. •,V11117/1 '' .0 i {+ _ LikR 4W Al 1 - —i _ • ri � , ,. I SAN SERrr� NO COUNTY FLOQO CO ,O1,, IIIISTBST ' , 7.4q1•111 R5v+ ADO"' I• • VALLEY AREA ISe ,pro . T3S— - , N REDUCED DRAWING IstoHrETAis �•� •• SCALE I" = 4 MILES 1. , •7.a 1a "' iii• �,U SAN BERNARDINO COUNTY Y�'�,�,YEAR I HOUR ` .. ;: •• M!®011 MASA.ARAI!r WS •it ' — ,17 015 � � ' f' I W i• W .worm K .. .1--' -r.r e HYDROLOGY MANUAL - " 'r C8 ISOLIMEf PRECIPITATION (INCHES) EWE .,OMB �% Mn I$12 M1444 4 d 1! - 1111. •�."%;T4�.0: - . ' B-12 FIGURE 8-4 LLICIINE v. `LI f , . f • + 1 r i• I' r r.-!� ._ . .. — _�-- R2W — . r_- 'r '�,� R2E IA 'W R W4r R6W R5W Ahmai, 4W RIW ' .°'{ gil I 'r T4N —I — ` — rT ��.frT I ... `; : . _ Frr s — T4N MI I 77 T T . ,„,„. 0__ _ .-- — -, -: `!�'�y� # , I I _ • cw ', '''''-r-• .0 hv.•Ti?"�. { ,r I:St q L i• �.. 1 1 .r ,"-' i — i —�.. - , "-1�'' " S I v_ — — ,,., v■€: I. 'I•ti . .3 • r H '! '` * { I e �` 8 ii, �-1.t I 4 `I• -. 1- I '� c I- i- -1- IA `_ `/-' .t--)r %r. y - °t. +` -' - I f ..1rSJ + '` h r ._i — I —O - } I +► ,y h i'YM • �rt - '� -. ._ �, _ — 1 .,1.. �-�. a II °i• - Jr___. . , +- __ f1• QL4w,� '_ ♦1 \I �i1.. �. EH�K •d ••`•}.� .6 rs.rrT Y 17 M1 •-- -t �. r PP, hl.•.. 1, i ` ! ' 4 4;, r I 1 r -t•• *� .i 1_ tiiL__- ----s y. L 'c ' , I. t N , .r '' I . e t ; —IIftirrr zz1. — — , rt3 IA °...� `IL y-,a ,, +- _* T `.'{ . ti w• • it r ) L � Mii -- T Ad nillhkikmdi I IA 1. I I, �- ift F N. (11: I I r r r.- I . Q 1• _ - ,r• .) • - --'1-:-..,.-T/ n•7 :rY • -r r•.14 s+ +- }� y— *� -R r • r At L.AR1R07 44(.O R els--��, R 1� 'C' •LDWIh L �' .r - - - - yii _ ,,..I,_ •— +r_ J i— _ - — •@ -'� �'• LJIE AR!i. . I! AO -i .~ ,ly lDPrl 1 T2N -- .•1 — — — - ea ii! "'• _ - '.. :.x.• .,._ Aug- ,--I �m - , b '' eT I I.1� `1 - :: 6RL6 •..... — — - '• r '_ k IN r!ti LS II I - 4 _ _ DAL'[ i, yam. . CRta7L )ION6 o:.e� 7r' •d• ,A,7 r H F k \•• I.0_ f +.. i r._ "1+1 [a•"�+� vx w[rres i 'Vr a I� - a I ,MI_ j .i' ri. fir •._. r I �{ _ ,� ' o•ailligl • a• '1..4.1-2- T (d. --.1,'.5- _1.9` dlir�. _ !� �'"ba ',1 '' +IRIIIN AI-! ('1 1.2p s►RiNas1111." 1 1 • a�e'yLmar I / fF a I I. 1� I' - }.�', ;ys. • 7 1_ _ _L 4,1 • . . d - _ — Tw L3 _ •',-,'''''''''''''-___I ...ice 'i ,4 . oRkkN • / " • % �r-- - eYC;- �-- 9 L eA �^" 1= -,,,-: .,1 Y — �+ , ''.', a 9 _ — •ASL e'-`.. N — rT �s1 - L \ a s l �s ` rlp d 'r� eI r t rLAT y — IN f t :: : I _ _ I 1.1 y} .a. +�,7y, , . r 0 — '1--r`1 _ - _�-li ■��11 4`r. w•b 11 • ,1 1 l'r.._-!..#y ,r J -T ii ^�' '"'CI-_ ►+., _ ,li i UI'LMb w "• iii • ' I r I - . � - r Mill�,illllwfr '.nes 1� _ ' ice „ R1 A4.T0_ ,, - 'F' "1111171‘11" ..__ -._ d. 1 — - www -i- -- — _,. ..._ lillitivalif R�iw cuc • —... • ,.:' .-. FON TAN ' ���� llil ..s, :. rr I I.r v. TIS r� ,. ++. j # — —� i. �T` � TOW' • •• , ..• • •r �"� � OH T LCA;'• 1 � �„ �NI►�i� alMEM , •�••gia. .I .,I r Y r a — �.15 Migia r! a1F . PIE . IE r a1P L" 4RI PA �IFT41��. ` ^ rr ti1.'`- :f' :.4- - 1.- �.-� iiik- ;:"AII., •.;••• - -; '' •FK + ,d • 01,�� rill aRR1/a SCR t ..zwilia...lian-- .iaingH., _/. . lib lill CHINO Iii � ` * 7 'w4� • a i. t • _ _ 1111 , ,rael -' -a - + '- _ •- A — '- I I EPPIIH. Iq. rTT" - , +1 - y — � / NSIJo RIE I I R E 1. juil• - - � -. A N ....':ma '' /' RSIDEi NRFAN BERNARDINO COINTYy� , ii • �I•.�• .., �D w y R4W• 11 11 ! 15J • r t - , _, _,..__ ,...._ __r . .. ..,;.,:tt. .,. _ ._ � _ 1, *'r.. ++ •�;0 ' Or REDUCED DRAWING VALLEY AREA T 3 S - AS,.r. r.. ' 1 SCALE I"= 4 MILES )soferErALs ~•� ,,,, " :� CPI YIo - 10 YEAR I HOUR .� - .•. . V SAN BERNARDINO COUNTY NAMED I =oma NpJAdT1A5 2,1973 1 i'•Raw I I R7W '''•. R6 • HYDROLOGY MANUAL � `� " ` LAA r .•A• • / •1 ISOLINES PRECIPITATION(INCHES) DATE 9CAIE fILE NO. 0124.11. NO. V I962 f•ENI. wno-1 3 N 12 S-II FIGURE 8-3 K,(....:..,J1 (�c�r � :kW. 'r ,l-r:i:�r :m: •Irx- -. ISI 1 .: •�,,. •- {•, e! I T. @- ,,7.,..--• •�° 0v- I IC:17-1 ;' f_-.. '� M J'W'� 3 •kyr• `^ ., 7 (. 7 ...1.-C 1-i ,gym x. r j _ rL ;4�liy "J•. y6 "` IFQ{` _ to ..ila[iii:r 1.7....E ':..r. _w ,� •,... », .. ��„ ., rt-.- ' 3f.,�.,. 'i"-'.. - , f : � 1',.s..' ,1� "` ..� �.'ilR.•-� M, 1.....,9-_,9'.� • JV � -•' ;9T, c, rsCM-. l ,fYY._: _ .. 1. IP n _ 6 -. �..n 1tr`i " w i' .^[- - � r94. ~'t II • f - s i t: ;• ., �r ::ir+11,.„..,4;,.."05[' '^^ •, r 14 ! : - . : s• �i..,.+w�ter- 1,it' .. F ..y _ ...., B �' iT .j :�.- '�. , F'0. K. JL. -_�'•[ rs �'1 1 ► 1, w • • • r - //11�. f 4.• 3 ' .. • r • '�1°k , JI (�lI}. -. T • �r. sw'R ■- •! 1: • ! '� �+• ' 'I r - 7 • pp -...,:71,44., '". ` r` �•- I ©�lf , .,.. �- I t �a11„1�-"��' �'Ie „ ••� _. 6 f �. _{ Y� _ ; t�, y , =�{ �. yam- 31'31 MIL lA 1 - =�- - ~re. % ''" yr _ 1 ..i - _.,. ilk 'fit �1 r,J��.,yJJ r Y rte,-_ ill y.,rl rE'- � �TI q1.1 . _ { fY�. {.. :• 1w -. �i 1.+ .I ,"�' •�d ", ,.,�. S I ,S r�.,--t��: y. I" i - mg , r. _ .d, �; -._:.:.• �., :, ' »r- -e - `-I .t. - +.i-+fl t,, "";i•� . ',1 Z •r1, 4. r'7t`, •;:i+ .. • !.: ., '�. \� ll1 l °t'.'�r . • P :I.•� •'� - .I:. 3 "°.'f • _.\ e • ..; . .. , - I i ,B 'f(s r\ "ly. 'tsr � •`!i>-,..3.: -. `T' Ln',f1 • •. _f`!"k 1, _ ` - -' , - .. - :' • �"rw , err r - _ _ _ Ix.- r '--- Ir3 ,•� -illi•. „. ._ „l ' 1'-^� - -. - ..� ...� - '4�{l., .'.,! ~til ,*�,'' �'� _ 7 = y{ 41■Y I s [, _- _ y I ;R' �"+: s ' - .- rv., ,y"3 `AL^ -,h 7,414;- • ' n' iv' I i 1,1141- ., - Y.3 ' - - .,µ,r.•• - 'v,• [�J �Krl tit•Y.. �r ' �: k, S1 .RIS - --. e, -f,..-t..-.+,1;,,,..„0.-:, Mx :'f A r iii , f f'',�i1 .'t- �,..'.` .�! '^- • _•,.,. ` (!� ,m� Rn 1 .�'. �:, „t t1.� i 13'.. ,_ �.B'� _ ,'.[ r •- ,, .. i, ., :; ( + .,'r" - • t-1 • ° -• + R"' i.�l�l�r' r11�A A2s:l .�.ir,'L,_ * - - . ,, 1 r• '-(•' - 'o! .- a 1... 'i' W rk . �, .. 1 -: ,.- ,• il,12 •L•...+v� wL,-. „..1••� - _ -- -. °•tr [ `ti,(Y: �:-. ;,'. • fF r r.�#�, `''� t . r .9 ... `L t "rr ,, -,s - !•^ : f R _ r` I FSI• r ._ fi=r` y'r - _ ( �: "' r. �e..'k•: f}c nAl Litt,1 kr {:$ '3'>v RI. _ - .., �7 , .:L-1 4� •i --. ! # - .' f'��� y. t1 " f, ! :• .. 1- � �. .rr' - w 4,.. 'f� ..,. .0431 p•• . V' .' .•,� L .*. .--t• h • �J- �._- `'•".,r` y '•r ` • ..c .A1 .y.- i'-6 ,� � re _ �:'` „r•'.'. r• -''.- L•"'.a. ,r' t�. }'f5r'- •ti.. •'I....1. .r , ' , +, �i' ice. ' 'r 1..1.11•3•31" ,s .y •�1 ilA' .f^ - , ',- -..r.. - '4.7.- ".0 - ''5..; t ,i! y. • - '� $ ., _ `. --.30 .1 - . - • 13.>,z . . 1 " TiS ' � ' r'•ti F• r ['' r ` � .�-. ar.rA.r '��� �I •. •`�.: YI, -ti t .�"-� .,�"- --.,•. ti-•^:'"f' '.r.--.. .-1,,,- / ,„.`f,f l�t' / .rk. t ,° ;� '' • �',y. • sa • 71.31!6 1 .ai1[d•-Ir: t' } r_ cil i IS 1 ! x,,14 - :x. ` ,- * t� :'ti •,, ..-*". •t re .ZC, ��+ i1/41 .4 SI ..F.t• _ ,ea'.IItY►' "A 3 f,,1S ..- :1,• + J s .t _ t _,.F"a' i, b ` �' irk c . .ar • •r. r Ir,,.,!'t 4 '%'. i' s•, r.. '... 4 4 ,, `1,, .,_ ,. , . 'r•-?Ci.''- 1 .-.M 4 "ry' +F7+- S a ' } ;e:+!.,:k-. •. . •-_ .. ,... :,x ... ,T. .. :h, ii�, _-":1"7/• r _• ,�'-" _ ��rl / ,� a --e.. ..124-1,,=,..:',..'",..4",,-.17 . 'iS3 n ,e-•. `,Cr'',L'r' `....,;'.J;, .°j$�-s.M• r- ._ .. ..,'4 .T ' S.. .w;'.ar '. ,,r •i.�-•1- • 1 ;k 'x:- `1,` ..-f.'.r�1 } •Q r • Z° ]•d' 4a 1"...r.,- s 'r V� `t g • _ +L. i _ .�,..� `4 a1".'^"'1 `1wn'n.' v"+•^111' ''•. ,i b°, { �1 �I • u C 0 . -t / �° *.„--,nl'' a-.•e� - ^ I .4.'. ,. F _• 31 -n, ,s! IB' ,!;n ':i.. r . 1- , a _ .' ' , y{ �R `i T^''+tif .• '�• `-,.,•.-.••."�'t, • ,rT F`-`�,•.. $.-' I"w •.:1 i ...:111,---... I - '.i. :, -.'t.. _ .l. �,1.' Ir 4.[31 +1-.. s� ae •+.• • :.�4• ',Li.--4- r' y !°••I , I ,s - „ i ,�•w y,.k,,,i• s- : p 'C, ,r. -,r. • l:r: ^ filf +. I. -Yr r•IWN _ - - • 4,‘,":-.-.; ' e Y-x µa rC. .�•. �- af,_ .-a'hv�-s. ' �.rti,r` .r?. • • • • _ v n j y dad �►` ,..4_ --- -� 7,'"t .�., _�. 4 ` .IA �.:i ,`iS r" �` '�- ={r v ,•.3y4......} y.�' ��jj'��''.� ,Sr r•4..- r.,rti � • i I ti� ,i;� r t' 1•.. �. { .r �•- t • 3 _ 1 { I 'r"''Y, t'i l .:11.,11:::; ;;,..,„:,..:-:""�! L. R • 1, ...* 10* t t, ,/' V I dt 6. ' _ l• 6 '-- .rl, t .,-••'---,J _1 W• �h 0/Z_ `//,eV`^'/ >" � r' *....-,-k:;.,_ �K --..-,,,,.":•,•).. r✓�1At 4i.-,.8Z.� ..�I B E r� t • 1" {I w. I 1'1.4:.,,i4 �1 t IBJ. �1 i �. '^ •, �6 I ..,1,01.,_f- r, tui_. •. , 1 g_ _ . tL� r'r -'�. _s§.' ,,,, ,.��. ," ,s.�"Lt_� - �.#"",�` ' ,Sr-,, ,''''€'2.,78,; l .� - •'�y} ------ •s r B i��• # 4 A [[[. is '� - Cl 1.47•-:;'-'. - ,�:y' { `{, [,3.i R:•1• ` .± •} `,.4--Z.1 t� Air 114 ;rA : la a y x+ �j h^ B v �'�) o I , r • t°( ; f y. S a 1'. r. r�. tR • .�_i ...-. - ,--air- 1. t • r s.a• fy r• • t `Y • ,_^.`:r lr'L 1 Ay. ti 1IY. I' A y ...IL!,c r°ti-t' ' /r CP- ,3, '� D-'. 'lam -t1� a't.,` \ .,,a• "s 't ! .r *+ •- ' ,�" •„q„,e,....„'1„,,...%...._.14.,,r311-. 4.- } 4• ,,, lit ;r r 'I x [testi .T. _ I 6 � aS "` 1 zy t' r. fr t - : 7ar.a• yiw ,,,,•, ,`' ,.- '1•:31 d 'r0 fl. k r t r,d •1, r - r' i i +x [ .w=., ZR 31:.. "--3„ " tYY, ,"Ie {' 1'� - # '... k • - J.'+{ 1,:_ -,..‘•---,-,..1-i. .7.` 17c'4 • L . 1..• ', I 4 f"---•_ r•^ ,ri•", °f �,'Y * w- ;•.•rye . • � - 'r "�,,"g� • � !• ri'1'•:`1.,:p74 -. -7:..1*-',...-.-....------,{ , ^li r -;A^I•. +� 4 k. • E r:+::-.9-3-,•.t '0 y . ,- ' °r-7•. 11 1.`.' ,J r s .r! �_...w.•'1 N . t AY I( O` `,. ,' .. - ' ' = tf•.,r` r. '''tf �-,t"° �!` ''"? >(.+ �' �.,.'F' Y, ti ,i4''� . r'{•a yr 'C'•,` f --""";�,P, n:l �-.�... 7�-. '`a• �-=-..117-, .a. • � i'''71- z./' .�;4z� , `� i i.ts*r ,./� . .h a •:: .•` 'r, < x S:•- s 1, E i.. I .. if s' :`w, 14. rr ,1,.f.,•„.. .1-'-' ` ••;,,,,0 7, `"' `k. • e r� ISR_-•r. 'C� w.�rC" ~ Y ,r �e.1 t. �� - ,� i.` • r".2- `•y-_ _��. i' ��vv;y-.� t,.r -T: pi:. .4...s 'w'�" k'� • �k.,,.� "' � •}.oVl.7p-co._. +"-_�� „z4.:'f� ..-r; n , � �_:t .-e . fT` ., . 7.. 1' ty' . •, - `s1 ....,, .. , ."� `'� ",+. ' . `'�, r .. _ '�• 4 ,g •} • y _� ; i. y,� 31-.31 �+'.,'•. �'Y*-. i ;N, li_! tr :' 4. • •e'r-L`: .`.k" f 'R. 3 r: n :+ _ ..J'_4'-r ,r`• '�±s-. ' - .Fe_F• '�..,. rry ' p '� .c?: 81 . 1 -=',4_ •• _ .4., . -A,A r 31.'431 + ' +. .�,. Ir, a r: ., r 1. .`• 1 .. .d ' 1 •, �' yx ' w e,- ,sr'v if - ,, -.1- 'i e y�..7'�i r:r „r�,, . w ( r' ;- rF' ,1_ "6 t . ,o, t , r £cvZ� k rt I a . ' 1 ,1• .1'31 • +I ,. Q^+ Li'ae >ir , ! E Ear 4;fY rr' • } m i n..r It r .'� .v ,,,-2;..;;;.• _: + - ;{� x. t�L raP. " s. *`..`eg-� -.6. ,.i ,r • ^lf - _ 4.1:71-, I �- r. r hi S* a••'a'• �'I.. .k _S ,+ , tme.,-,,..„-,......,`;‘.;'..'+'. , ,.-.4.131,.. s rasr. _. .ie ' .'C..-•. • • -----;'-e-- • •r {• „'.r-L s. ,. �,.1p ,+$:.t-•. i•f. ` , ..• �.,, t.- ..`•, .,_ ,,, r-� '`'!�( p� '•.. - id , ,. .I n. �: r'(+ s4�;.,Q 1• - rt1: : '�' a,; - t:' �•® „r'.� .'. 1 �.% �,� �I� S ,. ., i ',� ;,{• ;N°, +3,,,�Y 1l p��dP�,� S'� '�;'a ' jF r '';: :kf °. • "sD6RtF, r'scs to r •s v Y';^• p0 ''Z' .56 ,`I. '� F, h'..',+ :r ' � l�j• t r.N J• S- , r s GF['.�r- _ r" �r K d..:•-.-_{',`•'u "'°F 'A -ti ... •r.' ;c if! -- •. r, .,,� ,.R .:;, 4 • ...• I "a-F !,. - �. _,.I -,.. - s r,'., .•.?l. r,- -•, �.; to jr�• k_ }.' , h''t - _ '4., - .• .ti_- ;r W.. .-,, ., }. '', r,, _ �r-r t, �C: rt T . T r�' d k ti 5�.�r,� 'F Sri F ;,,-".0.:. : '�- . l yr. '° •cr'^ .' •_,✓r �.` F •- A"1%+P: _ `• �;: }'° - bt •:r . -I, 1.- [. � •s�t� ,4..r� .a: ;^rr-.. • ,l•:,' tF..v �.� ' '��.�1,,.. ��y r r _�.a _ {�'�`^-,'��. � �` 4! a �+�.•a: �if r �-.f:,P :J t; rhr: �, -3' ,l• .g... '.. ',�' 'v,.. ; : T: LE \ 1r,d • 31,.•1 ''R. � '{ '� . YYI.,f"'Ei,� -� ..._'' rr•• 4. ''t 1 41k?s Fir EI'wi - • J:.,_ K,ii•',:. r te.:' v ._ ' �t'' S ••;�` } .s.F,[x, try,a, `� ".,... •. ',, 'YZ1 t >aa�:- fr •{ Y y`J 1 t r -t t Sw .r ` 3 aS :4�!?•,1'......7•••:1, �;c}•,....1 r - r'L '1 .E. a .-.,•,..4r/. �Ir '. • ,a . n/.b -" " rc+•. 1. .l _r.-�`' •. �, - _ "'_ - ^';%..,, _ .t ,ii `x A1- :j,r--;,c..,,.•,v••• f` i•-•, -1-'N -✓ '{: �y+gr • • res ... i AI ;#.,.. r+, .. _}�..,, t. Y' • '�F,!'. .� •./.v/ r:--.r ti - •.+y.. ° i a !' s ° ~ 9s;�. • g� ,.:34--','' t - 4" i.-n '�ty/� i' -••.{ ...h'� -v__ t rgirr w • ,, -1'A•'x0 �+{_- 1 I .c,.,--.115_,N _ , ,. °r«. -, ILL „`�+..,r-E.1=•,r.� . i_'F r.e: - +.a r k'.3+'' .7} 'V, ,"4i. ,t 1.:G'' h ...••••••.--- -:,••••••_„,..,"yl _ •.,r, . ,�c,_��. '•..••. "r-' r.. r •• 'i 7..r._ . , .. `•-! =f.l F1 n k + r . �� ��' a.° • r. -s 6 ye�h '~u�',t •r..• ' ', ,• ♦ 'r...-.,,,•9,4•.. SS r 'f •A`. I+;Jrs• {• ,�.r ' ' 41,..a -... �r ""► . ? .' .f{` > tp • ....: . 1•• _ .r r .4:::„.1.:,-:„. r • • .:,..--- ,,,,1:„--.4.-- �� .A;- �-'Z5. '_v:� S* ��,-,L•,'_ .n•• t ��4!r, { _ •� .•.-':ilk 4'�• .."_''' ,':y ei"� �:�, .'(: �t: i Rt"-�rw.•,''^..„4,,,,,, 314 [ 'c. � �}� t "ir�r '` �! '� ... �""` ;.. • • r i .r,•5'",k•.. 'fy,r.Y-#` .M��€. ...,-,3,...„--._,:_:-.4,,_ t r.1,* . 1 tr ,��, ,", `" e v: k�=- .- ''�'� '�_ _.-" _J.'.r� 71 .- ' •• ,,,,,,,.„:3-,._, I rz* Y-« _ .. . ^ .. r ' . . ✓ 1 + 4 .; I•; r'i3 "r- '-r .',1.:-...••••,,,,,, til -�l" + .L .7 a[ , y7 ! "'- ^t.. r,,, 1..'..; u i,,f .47,110•4.- f ..i fir"7. r},kv. � " _ 1ar.. ::rY7.' 2°^ L.. �i.4 `4c h' t '4 ':.re f,'_' i• 'rri-• _ _ t: A-, • 'T Pj, . ..-.��, py, `+ •4'; t, -; 'T 6 _.......„•-t, • ,. --. -.�' f~•�•�,•� .ti Pr' y �... `/ ..ids :-. J • 'd 'yY �. r .., j:3+..� I'^.4 A e L •i V y.. • --.2.-- . t-i�s_y 4 .-. •y.-�...... 4` ,w� 1 L �(`,1y n a ti • - ` 4k uxr,o p]� --•`---. \l, - SOIL GROUP BOUNDARY !/ -'4 SCALE'1,4Bj)0.... A e-'I ? e I HYDROLOGIC SOILS GROUP MAP SAN BERNARD WO COUNTY �- A SOIL GROUP DESIGNATION SAN BERNARDINO COUNTY >, -•-'--- BOIMIDARYOFINDICATEDSOURCE SCALE REDUCED BY 1/2 FOR HYDROLOGY MANUAL ,344 � 3w.�' - C-; SOUTHWEST-C AREA INDEX NAP C-29 FIGURE C-I5 '. I (0 REPORT OF FOUNDATION INVESTIGATION PROPOSED HENRY J. KAISER HIGH SCHOOL ' NORTH SIDE OF JURUPA AVENUE BETWEEN CHERRY AVENUE AND ALMOND AVENUE FONTANA, CALIFORNIA FOR THE FONTANA UNIFIED SCHOOL DISTRICT (2670.30739.0001) DECEMBER 7, 1993 jai LAWI�RANI7A.I�L, ENGINEERING AND ENVIRONMENTAL SERVICES ONE OF THE LAW COMPANIES LAW/CRANDALL, INC. ENGINEERING AND ENVIRONMENTAL SERVICES December 7, 1993 Fontana Unified School District 9680 Citrus Avenue P.O. Box 5090 Fontana, California 92334 (2670.30739.0001) Attention: Mr. Carl B. Coleman, Jr. Director, Planning and Research Our"Report of Foundation Investigation, Proposed Henry J.Kaiser High School,North Side of Jurupa Avenue between Cherry Avenue and Almond Avenue, Fontana, California, for the Fontana Unified School District" is herewith submitted. The investigation was performed in conformance with our proposal dated September 8, 1993, which was authorized on October 28, 1993. The results of our investigation and design recommendations are presented in the report. Please note that the owner or his representative should submit copies of this report to the appropriate governmental agencies for their review and approval prior to obtaining a building permit. It has been a pleasure to be of professional service to you on this project. Please call if you have any questions or require additional information. Respectfully submitted, LAW/CRANDALL,INC. if / a QTxV FESS/04, Paul '' Schade _� \ Marshall Lew �' ��,oFEss/o�,'Mi0/140$ � ... . . '� �' �' en t Senior Engineer Vice President cr`� SHA(l „, * No.49679 Principal Engineer * No. 522 4 -' Exp.9/30/96 /14 " L ym Exp. 3.31.45 670/ymc /Vik. s � (2 copies subm ttcd) ' of CAI k0p?:. ' rer. rECIIN� cc: (2) HMC Grow -. F ofCALie Attn: Mr. Bob Jacob (1) Taylor & Gaines Attn: Mr. Frank Chia 200 CITADEL DRIVE LOS ANGELES,CA 90040-1554 213-889-5300 FAX 213-721-6700 �f b n4 Uxw tU..+xiES 2670.30739.0001 Page 1 REPORT OF FOUNDATION INVESTIGATION PROPOSED HENRY J. KAISER HIGH SCHOOL NORTH SIDE OF JURUPA AVENUE BETWEEN CHERRY AVENUE AND ALMOND AVENUE FONTANA, CALIFORNIA FOR THE FONTANA UNIFIED SCHOOL DISTRICT 1.0 SUMMARY We have performed a foundation investigation for the proposed Henry J.Kaiser High School for the Fontana Unified School District. The proposed development will consist of one- and two-story steel and concrete buildings: The soil conditions were explored by drilling 15 borings. The natural soils consist of silty sand, sand, and silt; the silty sand and sand are medium dense and the silt is medium stiff. Water was not encountered within the depth explored. If the grading recommendations presented in this report are followed, the proposed buildings may be supported on shallow footings established in properly compacted,fill. Floor slabs may be supported on grade. i 2670.30739.0001 Page 2 2.0 SCOPE This report presents the results of a foundation investigation of the site of the proposed Henry J. Kaiser High School. The locations of the proposed buildings and our exploration borings are shown on Plate 1, Plot Plan. This investigation was authorized to determine the static physical properties of the soils at the site, and to provide recommendations for foundation design and for support of floor slabs and paving. More specifically, the scope of this investigation included the following objectives: • Evaluation of the existing surface and subsurface conditions, including soil and ground water conditions within the area of proposed construction; • Recommendations for design of feasible foundation types along with the necessary design parameters, including the estimated settlement due to the anticipated loadings; • Recommendations regarding frictional and passive values for the resistance of lateral forces; • Recommendations for grading,including site preparation,the placing of compacted fill,and quality control measures relating to earthwork; • Recommendations for design of retaining walls and walls below grade; • Recommendations for floor slab support; and • Recommendations for design of asphalt paving. In addition, corrosion studies were to be performed by MJ. Schiff& Associates, Consulting Corrosion Engineers. The corrosion study is not complete at this time and will be submitted separately upon completion. 2670.30739.0001 Page 3 The assessment of general site environmental conditions for the presence of contamination or hazardous materials beneath the site was beyond the scope of this investigation. Also, the scope of this investigation did not include geologic or seismic studies for the site. Accordingly, our conclusions and recommendations are for static loading conditions only;however,this does not imply that there is a geologic or seismic hazard affecting the site. Our recommendations are based on the results of our field explorations, laboratory testing, and appropriate engineering analyses. The results of the field explorations and laboratory tests are presented in the attached Appendix. Our professional services have been performed using that degree of care and skill ordinarily exercised,under similar circumstances, by reputable geotechnical consultants practicing in this or similar localities. No other warranty, expressed or implied, is made as to the professional advice included in this report. This report has been prepared for the Fontana Unified School District and their design consultants to be used solely in the design of the proposed school. The report has not been prepared for use by other parties, and may not contain sufficient information for purposes of other parties or other uses. 3.0 PROJECT DESCRIPTION The proposed high school will consist of nine buildings and two parking areas located on about 38 acres on the north side of Jurupa Avenue, between Cherry Avenue and Almond Avenue in Fontana, California. The proposed buildings will be one and two stories in height and of steel and concrete frame; basement construction is not planned. Concrete floor slabs will be supported on grade. The anticipated maximum column loads are as follows: • 2670.30739.0001 Page 4 Bu0ding Interior Column Exterior Column Exterior Wall (kips) (kips) (kit) A 85 30 1.0 B 40 55 1.0 C & F 210 140 1.0 D & E 25 20 1.0 G & I 110 80 1.0 Fl 35 25 1.0 4.0 EXPLORATIONS AND TESTS The soil conditions were explored by drilling 15 exploratory borings at the locations shown on Plate 1. Details of the explorations and the logs of the borings are presented in the Appendix. Laboratory tests were performed on selected samples obtained from the borings to aid in the classification of the soils and to determine their engineering properties. The following tests were performed: moisture content and dry density determinations,direct shear,consolidation, and compaction. Details of the laboratory testing program and results are presented in the Appendix. 5.0 SITE CONDITIONS The site is bordered to the north by a maintenance yard, to the south by Jurupa Avenue, to the east by Cherry Avenue, and to the west by Almond Avenue. The site slopes gently to the north with a differential ground surface elevation of 18 feet. The site is currently vacant and was previously used for agriculture. 2670.30739.0001 Page 5 6.0 SOIL CONDITIONS Disturbed soils, up to 1 foot in thickness, were encountered in our exploration borings. The disturbed soils consist of loose silty sand and are probably the result of the prior agricultural land use. Deeper and/or poorer quality soils, including till soils, could occur between our boring locations. The natural soils consist of silty sand and sand with some sandy silt layers; the silty sand and sand are medium dense and the sandy silt is medium stiff. The upper soils would become weaker and more compressible when wet. Moderate to heavy caving was encountered in our borings. Ground water was not encountered within the 51-foot depth explored. 7.0 RECOMMENDATIONS 7.1 FOUNDATIONS General The upper natural soils are medium dense and medium stiff but would become weaker and more compressible when wet. If the disturbed soils and upper natural soils are excavated and replaced as properly compacted fill, the proposed buildings may be supported on shallow footings established in properly compacted fill. Recommendations for grading are presented in a following section. Bearing Value Spread footings underlain by at least 2 feet of properly compacted fill may be designed to impose a net dead plus live load pressure of 2,500 pounds per square foot. Exterior footings should extend at least 2 feet below the adjacent final grade. Interior footings should extend at least 2 feet below the adjacent floor level. A one-third increase in the quoted value may be used for wind or seismic loads. The recommended bearing value is a net value, and the weight of concrete in the footings may be taken as 50 pounds per cubic foot. The weight of the soil backfill may be neglected when determining the downward loads. 2670.30739.0001 Page 6 While the actual bearing value of any required fill will depend on the material used and the compaction methods employed, the quoted bearing value will be applicable if acceptable soils are used and are compacted as recommended. The hearing value of the fill should be confirmed during grading. Settlement The settlement of the proposed buildings, supported on shallow footings as recommended, is estimated to be less than 3/4-inch. Differential settlement is estimated to he less than '/a-inch. Lateral Loads Lateral loads may be resisted by soil friction and by the passive resistance of the soils. A coefficient of friction of 0.4 may be used between the building footings and the floor slab and the supporting soils. The passive resistance of properly compacted till soils may be assumed to be equal to the pressure developed by a fluid with a density of 250 pounds per cubic foot. A one-third increase in the passive value may be used for wind or seismic loads. The frictional resistance and the passive resistance of the soils may be combined without reduction in determining the total lateral resistance. Backfill All required footing backfill and utility trench backfill in the building and paved areas should be mechanically compacted to at least 90% of the maximum dry density obtainable by the ASTM Designation D1557-78 method of compaction. Flooding should not be permitted. The exterior grades should be sloped to drain away from building to minimize ponding of water adjacent to foundations. Footing Observation To verify the presence of satisfactory soils at building footing design elevations, excavations for footings should be observed by personnel of our firm. The excavations should be deepened as necessary to extend into the satisfactory soils. a• 2670.30739.0001 Page 7 Inspection of footing excavations may also be required by the appropriate reviewing governmental agencies. The contractor should be familiar with the inspection requirements of the reviewing agencies. 7.2 RETAINING WALLS For design of retaining walls and any walls below grade where the surface of the retained earth is level,it may be assumed that properly drained soils will exert a lateral pressure equal to that developed by a fluid with a density of 30 pounds per cubic foot. All required backfill should be mechanically compacted in layers not more than 8 inches in thickness to at least 90% of the maximum dry density obtainable by the ASTM Designation D1557-78 method of compaction. Flooding should not be permitted. Proper compaction of the backfill will be necessary to reduce settlement of the backfill and consequent settlement of overlying walks and paving. Care should be taken to assure proper compaction around utilities. The on-site soils may be used in the required fills. Even at 90% compaction, some settlement may occur within the backfill. Accordingly, provisions should be made for some possible settlement of utilities. Drains or weep holes should be provided at the base of the walls below grade to prevent accumulation of water. 7.3 GRADING General To provide support for shallow spread footings, floor slabs at grade, and paving, any existing fill soils and the upper natural soils should be excavated and replaced with properly compacted fill, and the planned additional fill should be properly compacted. The natural soils within the building areas and areas to be paved should be excavated to a depth of at least 2 feet below the existing grade. Next,within footing areas and 3 feet beyond in plan, the natural soils should be excavated as necessary to allow the placement of at least 2 feet of compacted fill beneath the footings. If desired, this excavation could be made throughout the building areas rather than just within the footing areas. 2670.30739.0001 Page 8 In areas where at least 4 feet of till placement is planned, overexcavation of the undisturbed natural soils would not be required. However, reworking of the upper disturbed soils as recommended will be required prior to fill placement. Where the required excavation will be more than 5 feet deep, the sides of the excavation should be sloped back at 1:1 or flatter. All applicable safety requirements, including OSHA requirements, should be met. Compaction After excavating as recommended, the exposed soils should be carefully observed for proper removal of all deposits unsuitable for foundation, floor slab, or paving support and further excavation should be performed as necessary. Next, the exposed soils should be scarified to a depth of 6 inches,brought to within 2%of optimum moisture content,and rolled with heavy compaction equipment. The upper 6 inches of the exposed soils should be compacted to at least 90%of the maximum dry density obtainable by the ASTM Designation D1557-78 method of compaction. After compacting the exposed soils, any required fill should be placed in loose lifts not more than 8 inches in thickness and compacted to at least 90%. The moisture content of the soils at the time of compaction should vary no more than 2% below or 2% above optimum moisture content. Material for Fill The on-site soils, less any debris or organic matter, may be used in compacted fills. Any required imported fill should consist of relatively non-expansive soils; the Expansion Index for any import materials should be less than 35. The imported materials should contain sufficient fines (binder material) so as to result in a stable subgrade. All proposed import materials should be approved by our personnel prior to being placed at the site. 2670.30739.0001 Page 9 For estimating earthwork quantities, shri(F.'nka1c`of abo t 15% shy, Id be anticipated when excavating and compacting the on-site soils to 90%; that is, it will require 1.15 cubic yards of excavated soils to make 1 cubic yard of 90% compacted fill. Field Observation The reworking of the upper soils and the compaction of all required fill should be observed and tested during placement by a representative of our firm. The governmental agencies having jurisdiction over the project should be notified prior to commencement of grading so that the necessary grading permits may be obtained and arrangements may be made for the required inspection(s). 7.4 FLOOR SLAB SUPPORT If the subgrade is prepared as recommended, the building floor slabs may be supported on grade. Construction activities and exposure to the environment may cause deterioration of the prepared subgrade. Therefore, we recommend our field representative observe the condition of the final subgrade soils immediately prior to slab-on-grade construction and, if necessary, perform further density and moisture content tests to determine the suitability of the final prepared subgrade. If vinyl or other moisture-sensitive floor covering is planned, we recommend that the floor slabs in those areas be underlain by a capillary break consisting of a 10-millimeter-thick impermeable membrane or a 4-inch-thick layer of gravel. A suggested gradation for the gravel would be as follows: Sieve Size Percent Passing 3/4" 90 - 100 No. 4 0 - 10 No. 100 0 - 3 • 2670.30739.0001 Page 10 If a membrane is used, a low-slump concrete (slump not to exceed 4 inches) should be used to minimize possible curling of the slabs. A 2-inch-thick layer of coarse sand may be placed over the impermeable membrane to reduce slab curling. The concrete slabs should be allowed to cure properly before placing vinyl or other moisture-sensitive floor covering. 7.5 PAVING Compaction of the subgrade, including trench backfills, to at least 90%. and achieving a firm. hard, and unyielding surface will be important for paving support. The preparation of the subgrade should be done immediately prior to placement of the base course. Proper drainage of the paved areas should be provided, since this will reduce moisture infiltration into the subgrade and increase the life of the paving. Careful inspection is recommended to verity that the recommended thicknesses, or greater, are achieved and that proper construction procedures are used. Assuming the paving subgrade will consist of the on-site soils or imported soils with a CBR value of at least 10, compacted to at least 90% as recommended, parking areas with a Traffic Index of 4.5 may be paved with 3 inches of asphalt paving and 4 inches of base course. Drive areas with a Traffic Index of 6.0 may be paved with 3 inches of asphalt paving and 6 inches of base course. The suitability of the supporting soils should be checked during grading. Paving thicknesses for other Traffic Index values can be provided if desired. The base course should meet specifications of Class 2 Aggregate Base as defined in Section 26 of the latest edition of the State of California, Department of Transportation, Standard Specifications. Alternatively, the base course could meet the specifications for untreated base as defined in Section 200-2 of the latest edition of the Standard Specifications for Public Works Construction. The base course should be compacted to at least 95%. 2670.30739.0001 Page 11 8.0 BASIS FOR RECOMMENDATIONS The recommendations provided in this report are based upon our understanding of the described project information and on our interpretation of the data collected during the subsurface exploration. We have made our recommendations based upon experience with similar subsurface conditions under similar loading conditions. The recommendations apply to the specific project discussed in this report; therefore, any change in the building configurations, loads, locations, or site grades should be provided to us so that we may review our conclusions and recommendations and make any necessary modifications. The recommendations provided in this report are also based upon the assumption that the necessary geotechnical observations and testing during construction will be performed by representatives of our firm. The field observation services are considered a continuation of the geotechnical investigation and essential to verify that the actual soil conditions are as anticipated. This also provides for the procedure whereby the client can be advised of unanticipated or changed conditions that would require modifications of our original recommendations. In addition, the presence of our representative at the site provides the client with an independent professional opinion regarding the geotechnically related construction procedures. If another firm is retained for the geotechnical observation services, our professional responsibility and liability would be limited to the extent that we would not be the geotechnical engineer of record. rte\ n� A 2670.30739.0001 Page 3 2 The following Plates and an Appendix are attached and complete this report. Plate 1 Plot Plan Plates A-1.1 - A-1.15 Logs of the Borings Plate A-2 Unified Soil Classification System Plate A-3 Direct Shear Test Data Plate A-4 Consolidation Test Data Plate A-5 Compaction Test Data 2670.30739.0001 Page A-1 APPENDIX EXPLORATIONS The soil conditions beneath the site were explored by drilling 15 borings at the locations shown on Plate 1. The borings were drilled using 16- and 18-inch diameter bucket-type and 8-inch diameter hollow stem auger-type drilling equipment. The boring walls caved during drilling as noted on the logs; casing or drilling mud was not used to extend the borings to the depths drilled. Borings 1-A and 5-A were drilled due to heavy caving in Borings 1 and 5. The soils encountered were logged by our field technician, and undisturbed and bulk samples were obtained for laboratory inspection and testing. The logs of the borings are presented on Plates A-1.1 through A-1.15; the depths at which undisturbed samples were obtained are indicated to the left of the boring logs. The number of blows required to drive the sampler 12 inches is indicated on the logs. The soils are classified in accordance with the Unified Soil Classification System described on Plate A-2. LABORATORY TESTS The field moisture content and dry density of the soils encountered were determined by performing tests on the undisturbed samples. The results of the tests are shown to the left of the boring logs. Direct shear tests were performed on selected undisturbed and remolded samples to determine the strengths of the soils. The tests were performed after soaking to near-saturated moisture content and at various surcharge pressures. The yield-point values determined from the direct shear tests are presented on Plate A-3, Direct Shear Test Data. Confined consolidation tests were performed on three undisturbed samples and one remolded sample to determine the compressibility of the soils. Water was added to two of the samples • 2670.30739.0001 Page A-2 during the tests to illustrate the effect of moisture on the compressibility. The results of the tests are presented on Plate A-4, Consolidation Test Data. The optimum moisture content and maximum dry density of the upper soils were determined by performing a compaction test on a sample obtained from Boring 7. The test was performed in accordance with the ASTM Designation D1557-78 method of compaction. The results of the tests are presented on Plate A-5, Compaction Test Data. i AL 1 z W W t • 8 BORING 1 4 _ z z w DATE DRILLED: November 10, 1993 a > a " ' o N 30 a EQUIPMENT USED: 16"- Diameter Bucket w z � v� o v m N ELEVATION 946.8" SM DISTURBED SOIL-SILTY SAND-fine, brown 945— 1.6 111 4 x SM SILTY SAND-fine, about 15%Gravel, brown irr :: SP SAND-fine to medium, about 20%Gravel and Cobbles 0.8 135 6 (to 6"in size),brown 5 . ‘\ m 0.9 123 3 * 940— SW SAND-well graded,some Gravel,brownish grey o c 1.2 126 4 *.i*,;;* = is U ML SANDY SILT-brown c ° `° E — 10 I o 3.2 110 6 3 a 935— b::: SP SAND-fine to medium, some Gravel and few Cobbles N brownish grey c' ui 'c • O � ° —15 1.6 111 7 c NOTE: Water not encountered. Raveling from 4'to 7'(to 4'in mid r diameter) c d >.v •Number of blows required to drive the Crandall sampler o o 0 12 inches using a 1590 pound hammer falling 12 inches. cri y U • cs Elevations refer to datum of reference drawing; see CC 03 c Plate 1. Q c . C4ul ` N F L O C O f0 H CCD N N C a' ° 0- "C3 C 2 O • .- U co O (b• 13 W .0 C9 Q O O Opp O — O — v, O CD ' O .0 = Di 1— C7 ., o Ch 0 O z n CO CD 0 LOG OF BORING LAW/CRANDALL , INC. PLATE A- 1.1 • z v = c cn LL �; BORING 1-A 4 = a z H . w 3 w DATE DRILLED: November 16, 1993 > a > a 52 c a H Os a EQUIPMENT USED: 8'-Diameter Hollow Stem Auger IL; w Z a > . w2 w 0 a v m N ELEVATION 946.7 :�1 SM DISTURBED SOIL-SILTY SAND-fine, brown 945- SSM SILTY SAND-fine,some Gravel and Cobbles, brown v m A. v ::P.:, SP SAND-fine to coarse, about 25%Gravel, light brown - 5 m v 940- 15 ' v - Layer of Sandy Sift . m c El 1 `° E —10 c -_, 0 35 -",:.9:.-. 1 2 o as 935- .'. 0) c 'q :;•; c 0 O .0v •' .� o 27[ ' c m�i 930- sY C 0 0 :. ; - 20 CC CO c 0 925- 100 cc o c " `�'SM SILTY SAND-fine to coarse, about 35%Gravel, some m Cobbles, light brown F to LL = > y : 25 ML SANDY SILT-brown 0 y 23E[ cf) c w 920- °' F. 0 4.' : Sp SAND-fine to coarse, about 35%Gravel, light brown (1 :i i T3ei c3 0 _, w t I- A 915- 52[ Lense of Sift 3 g c :Q:' O - to a I---- -- 35 ML SANDY SILT-some Clay, brown ch n 31[ o Z 910-^ L N. N CO O' - 40 i L (CONTINUED ON FOLLOWING PLATE) LOG OF BORING LAW/CRANDALL, INC. A a PLATE A- 1.2 ' • w W g BORING 1-A (Continued) z f- 2 N November 16, 1993 g w z z W DATE DRILLED: < C > w N_ p = a EQUIPMENT USED: 8' -Diameter Hollow Stem Auger w o ? oR e > " 0° can w cn ► 1 r SM SILTY SAND-fine to coarse, about 15%Gravel, brown 905- 48 L r.m - 45 c .; .= SP SAND-fine to coarse, some Gravel, layers of m 83LSilty Sand, light brown 900- x '=p o To t • -- 50 - i .. ML SANDY SILT-some Clay, reddish brown 2 c y 895- 37 C g NOTE: Water not encountered. Caved back to a depth of 23'. u4 -5 'a 0 U — f 55 ` RS r . m f0 C L-. C To O CC O 0 • U O. cd • 'C RS 7 CC C Q OID 7 co LL C O 76 L G m cr) V1cn w ° E, ✓ C O2 V m O RS m Q N C o t VS 113 O 0 C O O' _ cn O r Oi 1- 0) 0 O• O z c'J N 0 LOG OF BORING LAW/CRANDALL , INC. / \ • PLATE A- 1.2b E w •. 9 BORING 2 v J ~ ? Z FZ = a Z F w wDATE DRILLED: November 10, 1993 a a > a c o > o- EQUIPMENT USED: 16'- Diameter Bucket wZpocr w N o v m ELEVATION 946.7 DISTURBED SOIL-SILTY SAND-fine,brown SM SILTY SAND-fine, about 20%Gravel,few Cobbles, 945- 5 1.3 109 2 brown m 1.4 116 5 0.9 118 2 U is SP SAND-fine to coarse, about 20%Gravel, brownish grey m ° .; io :• o cr. 940- 2 0 121 5 pl SW SAND-well graded, about 30%Gravel, some Cobbles, j�. brownish grey io v �; 4°''q Some Silt • E — 10- 1 P _ .2 .0 2.1 105 3 SP SAND-fine to medium,brownish grey c : • . :• . o `° 935 Some Gravel w o ° SW SAND-well graded,some Gravel,brownish grey O • c 2.6 132 14 ' • r 15 c NOTE: Water not encountered. Raveling throughout boring(to a 2'in diameter). iC —t0, C C O N U U O- c0 a_*c f0 O < O � N F L O O n c N � N cn Ch O CO C m ✓ 2 O r U m O R w t o y .r 3 O . O O — Ul p m ' O .c O1 �-- C7 . N m O C7 0 o Z cG N CO 0 LOG OF BORING LA W/G R A N D ALL , INC. A PLATE A- 1.3 • '' • d BORING 3 z v � � C O Q > z• z w DATE DRILLED: November 11, 1993 aN c p a EQUIPMENT USED: 16"- Diameter Bucket W z 20 } a_ - p v m N ELEVATION 944.0 SM DISTURBED SOIL-SILTY SAND,fine,brown 1.5 111 1 4/ 1SM SILTY SAND-fine, some Gravel and Cobbles,brown moa 940- 1.2 126 7 i4 j'=': SP SAND-fine to coarse, about 20%Gravel and 15%Cobbles, _ light brown 5 1.0 115 5 1 ••.' i Brown CI r c 1.6 123 7 1✓'. ; vc �. 935- 'r` Layer of Sandy Silt •'o E - 10- 0- 0-o 1.4 125 8 ‘4;, : Brownish grey p W • C ui ••... SW SAND-well graded, about 20%Gravel and 15%Cobbles, p 0 930- 2.6 127 14 •'4'). brownish grey _ 1S NOTE: Water not encountered. Raveling throughout boring (to c -c2 1-1/2'in diameter). _ O 0 c c 0 y U U a co a.= cc co N < O CD co ►. co O LL c O ca .0 C N N rn ° Q. CO 13 c 0 ,S U co O co w t I- c N 7 f2 3 O .. — O — cn O m ._ O .c = Of ~ C') .. N m COQ) 0 O z n CO N 0 LOG OF BORING LAW/CRANDALL , INC. PLATE A- 1.4 r BORING 4 4 a i v z a w DATE DRILLED: November 11, 1993 > a% kn o p H > a EQUIPMENT USED: 16"-Diameter Bucket w W ? G � � � m a w o N o kn ELEVATION 940.5 940-r q SM' DISTURBED SOIL-SILTY SAND-fine, brown 1.4 110 2 SM SILTY SAND-fine, about 15%Gravel,some Cobbles,brown r� m 0.0 128 4 �AP Fine to medium c 935_— 5 .: SP SAND-fine to coarse, about 25%Gravel, and m 1.2 125 4 Ipclsa brownish grey v Y Y 14.7 113 3 ML SANDY SILT-few rootlets, brown I — I U c m ss E — 10 , _ g -,.= 930— 1.4 117 8 0.1' SW SAND-well graded,some Gravel,brownish grey c g 0: LU O U c O O -CIa 1.7 115 10 :• -CI, `• m _15 a S NOTE: Water not encountered. Raveling from 4'to 7' c s N (to 3'in diameter). c o c o O V COU d R O-' Q O N < cA • 7 m N H 217, u: C j O Iii .c C N m N y C) O Cr' 8 lo 2 I-- = c Q � ro O y T w O «- Fc C O — N O m ._ O . = OI 1— e) .. N m O C) 0 O z r` N CO 0 7 LOG OF BORING LAW/CRANDALL , INC. PLATE A- 1.5 , U BORING 5 Q = a z v ZLu • 0 W 1 DATE DRILLED: November 11, 1993 R.a a > a D c p y 0 a EQUIPMENT USED: 16'- Diameter Bucket ili III Z 29 >' 42 J w `- o m ELEVATION 942.5 5M DISTURBED SOIL- SILTY SAND-fine, brown co 1.5 116 2 SILTY SAND-fine,some Gravel and Cobbles, brown 940- ' r m 1.8 123 3 r Fine to medium 5 '" SP SAND-fine to coarse, about 20%Gravel and 15% vrti m 0.8 118 7 I .• ; �,q; Cobbles,greyish brown 19 m 935 1.5 120 4 I ';a: Brown U `ti 2,3 41 10 eK'l.'1 SW SAN ow-n well graded, about 20%Gravel and 15%Cobbles, E = o v2.9 127 9 4, }0 o . q �---E4. Lenses of Silt • o, c 930- ,, a;:: : • C O • 7. :'rte: V0 ° 4. 'ro 2.6 121 10 1 •,Q.: • 4-) 15 ,, • �L ,L ::g. c m E c 925- a I is i � (BORING TERMINATED DUE TO HEAVY CAVING) Q ›..v p c c m 20 NOTE: Water not encountered. Caving below 13'(to 5 in a diameter). CI.cc CCI N < O A E y CD '73F.. L L %9 y c H m N C,, O m co a CO '5 m c - O op0 O O co0 V W t m I- m c Q D CC1 o , t y a O z O c O — V, O CD •- O L = Oi I-- cc) ., n CD O C7 0 O Z N. 01 N CD 0 7 LOG OF BORING LAW/CRANDALL , INC. A PLATE A- 1.6 . � BORING 5-A W Q �' LIJZ 1 0. w DATE DRILLED: November 10, 1993 = az � a a > a ...L-- c p 30 d EQUIPMENT USED: 18"- Diameter Bucket W .Z 2v r -, J -. w y ° C v m ELEVATION 942.5 `T SM SILTY SAND-fine,brown cn r 1.9 113 2 ` 7 940- m 1.7 128 2 I , About 30%Gravel and Cobbles(to 12"in size) S2 ra 'v -_ 5 5 �''' SP SAND-fine to coarse, about 30%Gravel,brown m 1.3 120 2 1 •'t w ,;�' (BORING TERMINATED DUE TO HEAVY CAVING) Y « 935, U v NOTE: Water not encountered. Caving throughout boring(to c cn2'in diameter). `° E — 10 .- z .2v 0 c o, c 930-I c ._ w o: 11 - 15 • -c C cd 0 c C O V N4) m O- c D.= u) is N J c .c O c LO u: c m L• c y c N m • N Off O d -0 m 0 U m O co -0I- t m Q = c o 7 f``0 O 3 pO -- O O � O — N o O t = 0 H co .. n m M 0 o z n co N rd 0 LOG OF BORING LAW/CRANDALL , INC. A4 PLATE A- 1.7 BORING 6 = <-1z. z 3 W DATE DRILLED: November 10, 1993 4 a >• a o p y > a EQUIPMENT USED: 16"- Diameter Bucket >LiJ w Z O � )" a w w o v m U' ELEVATION 942.6 SM DISTURBED SOIL-SILTY SAND-fine, brown - 1 SM SILTY SAND-flne, about 15%Gravel,some 2.0 119 2 15g, Cobbles, brown 940— 1 "• 1.4 117 3 113. I d;'. SP- SAND-fine to coarse, about 25%Gravel,and 15%Cobbles, v - 5 1 04 brown m 1.1 112 3 11;,.'-,.01 SW SAND-well graded, about 25%Gravel and 15% CO' . Cobbles,greyish brown Y 2 935- 2.6 130 9 1 0'..::'.. About 30%Gravel = — 13 ui 0:0 c E ..._ _ c 1.4 128 12 1 p'. About 20%Cobbles(to 13"in size) 2 8m •o- co 930— c W _v Q n c r o 1.5 . r � -- E15s c NOTE: Water not encountered. Raveling throughout boring 3 t - (to 2'in diameter). c m z 2 2:.v O c o O fl < O C . m , H L O Li c O f� -cc N as N N Cl O m o) « 0- 8 C m - c 2 JO U mO U as 13 w Lm Q C0 = " t 3 o) o c C.- C , o m o .c = of l— e) .. n m C 0 o+ Z N CO O LOG OF BORING LAW/CRANDALL , INC. A PLATE A- 1.8 • Z ,, W w W 8 BORING 7 •Q £ ~ = Z' z •• 3 W DATE DRILLED: November 10, 1993 2 QZ 1- v a f- > u."12 c 0 a EQUIPMENT USED: 16"- Diameter Bucket > w Za ' i ° } �_ OJ 2 w �" p v m Cl) ELEVATION 939.5 2 SM DISTURBED SOIL-SILTY SAND-fine, brown 2.1 112 24. SM SILTY SAND-fine, about 15%Gravel,brown 1.1 — 4 ` About 10%Cobbles 935-_ 1 r' la m 5 0.8 128 8 j SW SAND-well graded, about 30%Gravel and 20%Cobbles, ;� ..:47 brown Y _ 1. 7 121 6 i !.......:... Brownish grey g 930-- 10 i = o 2.0 116 4 1 ', 2 8 c0 .0:.. co o� 1a di c •cl •il' . O v 925- 1.5 116 8 1 ?Q?;: y : m "'15 - _it ; O 7 C ;- c m C :�: ce S+= o o 920- 20 _ 1.7 134 10 ] 0,•: Brown m• 8 Ts. NOTE: Water not encountered. Raveling throughout boring a c N (to 1-1/2'in diameter). o m u, t O O Li c > O c .cC h m to y M o m o) a CO 0 m c 0 v m o 0 e0 W t m F. o C < A N 0 7 CO CO O «- 3 O C O to O' t • r 0 1- M .. O m C Z n N m O 7 LOG OF BORING LAW/CRANDALL , INC. A\ PLATE A- 1.9 BORING 8 Z WET2 EQUIPMENT EUSED: November 6 VeD�me Diameter Bucket Q 2 � Z ' � W DATE W W Zp 2 � OD OJ 2 w • N o v °° cr); ELEVATION 940.0 SM DISTURBED SOIL-SILTY SAND-fine, brown 1.8 111 4 I SM SILTY SAND-fine to medium, some Gravel,brown 5 7.3 108 2 Layer of Sand 935-- � �1 m1.9 120 5 .*:::•iff SAND-fine to coarse, some Gravel,greyish brown is muue 3.3 119 5 Layer of Sandy Sift p• .•. Ti vi :.. E 930— 10 SAND-well graded, about 25%Gravel and 10%Cobbles I 2 = 2.1 (to 8"in size),greyish brown cLenses of Sandy Silt ) C :: C 0 W ;'i i 0 Zji 925---15 • ''• Some Silt L H y� m lti C rk;4 o 0 3.0 124 14 p. Brown m m .1-920-20 at NOTE: Water not encountered. Raveling throughout boring a c y (to 2'in diameter). o E _H c lL C O i L C Cr) V) y CIL- 0�0 C E C r' U m O 0 o c3 3 O O r O — N O m ._ O L r 01 F-- C) n Cr* O Cl 0 O Z N. t0 N 0 LOG OF BORING LAW/CRANDALL , INC. A PLATE A- 1.10 T w w -� o BORING 9 . N w � 4 Z J ~ 1 Z z 0. w DATE DRILLED: November 10, 1993 a > a N c p 91 O a EQUIPMENT USED: 16--Diameter Bucket LIJ W Z Z 0 } g J ‹ w p v m N ELEVATION 937.6 SM DISTURBED SOIL-SILTY SAND-tine, brown 2.7 119 1 SM SILTY SAND-fine to medium,some Gravel,few 935- Cobbles,brown v 2.2 108 2 ; 5 q 7 SAND-fine to coarse, about 25%Gravel,greyish brown elm 1.5 110 5 NQo-. Layer of Sandy Silt • 0 m 930- 1.8 121 4 35% 15% _ SW SAND-well graded, about Gravel and Cobbles, 0 co 4, greyish brown co as E - 10 ► ' c - 1.9 127 11 I' TO c me 925- x} 0 c o ui o 4:•; O 1.7 128 9 0 E ti —15 L co � C 2 r c 920- l0 0 0: a . 0 c 2.5 126 10 �,-:D: � U wU . 20 _ a'C NOTE: Water not encountered. Raveling throughout boring a c H (to 2-1/2'in diameter). o . E a f'- L O u: c j O co .c C N m IA y M O m 0) �. o. co v 2 o` 2 U U o c0 t 7 < D co 0 7 C N co � 3 O «.. O O � C O — u, O e • O z = co )-- c.) .. n O, 0) el OI 0Z N1 CO 0 LOG OF BORING LAW/CRANDALL , INC. PLATE A - 1.11 JOB 2670.30739.0001 DATE 11/18/93 _ F.T. LS DR. Ik/nh O.E. MWH CHKD /1 Note : The log of subsurface conditions shown hereon applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times. (0 t0 (0 CO cc '„ 8 ELEVATION(ft.) I 1 I I , w a co DEPTH(ft.) , 'N'VALUE STD.PEN.TEST v MOISTURE en o (%of dry wt.) DRY DENSITY coo a c.nn (lbs./cu.ft.) N N BLOWS/FT.' r- 0 0 SAMPLE LOC. ,n 011 Z . -- -, , z-1 m m D m r- M < � rn 07 m -1 M v o Z r Z q r - m v crn no co it my m H - j . Of p m o 3 m' , m 07 D ao ET w 0 p3 m - o 1 13 n 5 Q 3 CI3i 0 ID D 0 f o W .a Z ' 0 v > w r a m r o —1 - 3 0 M — o f z ri D C') A Ni._.N --- SOB 2670.30739.0001 DATE 11/18/93 F.T. LS DR. Ik/nh O.E. MWH CHKD Note : The log of subsurface conditions shown hereon applies only at the specific boring location and at the date indicated. t1 is not warranted to be representative of subsurface conditions at other locations and times. No IQ wo ELEVATION(ft.) criI I 1 - �, ul DEPTH(ft.) 'N'VALUE STD.PEN.TEST -6o MOISTURE o is 'v (%of dry wt.) DRY DENSITY aoo (lbs./cu.ft.) BLOWS/FT.' iv N r SAMPLE LOC. , Oz , L, , , . , Y , m ma 1'1 — m CA m I. -u 0 -I m0 at COID tu b 2m m �m Z m f CO cov G) Cl) • m 0 m w Z o o m 0 camZ 0 0o O I-- a o 0-13 w Z < C m O 0 m 3 co l) ro a x w o z o Z 3 f a Cq. D o r a -i - o M — z D � (7 Ca JOB 2670.30739.0001DATE 11/18/93 F.T. LS DR. Ik/nh O.E. MWH CHKD /77 . ___ Note : The log of subsurface conditions shown hereon applies only at the specific boring location and at the date Indicated. It is not warranted to be representative of subsurface conditions at other locations and times. I CO (0 CD 1 c ELEVATION(ft.} I I T. 8 i„ DEPTH(ft.) 'N'VALUE STD.PEN.TEST P MOISTURE iv o c) ((Ye of dry wt.) 0 0 o DRY DENSITY CO v 0 (lbs./cu.ft.) N N BLOWS/FT.' I— _ Q SAMPLE LOC. Q Z p D m r CO m K < cm Q -I m0 to 33 33 la co F z -Zi z n' m C 0 Q 0a 'o - cn' UI m > to g n o 0 C v -, J m C O crit o 3 = • < r m m coo o Q V w F m Z 0 m 3 w • 0 w o ro D io o m W. .i Z .. IV 0 p 3 0 D ! w 13 r o m I— - A o- -4 " o m — f z o D n IL 0‘A r JOB 2670.30739.0001 DATE 11/18/93 F.T. LS DR. Ik/nh O.E. MWH CHKD Note : The log of subsurface conditions shown hereon applies only at the specific boring location and at the date Indicated. It is not warranted to be representative of subsurface conditions at other locations and times. o N CO ELEVATION(ft.) I I I I I �;, q v, DEPTH(ft.) 'N'VALUE STD.PEN.TEST _ MOISTURE in iv CCCo (%of dry wt.) i DRY DENSITY m A (lbs./cu.ft.) ivBLOWS/FT.' f- 0SAMPLE LOC. p — m c -+ < m 0 mDi m v 0 33 c * c z Zai Z , c ^�- �C) o � mnN n ' D • •s'A op 2c O a a' o r m ' ® 03 mm m _ 0 O D y 76 w lU ! > coZ 3 2 CO v D w if r g < m_ c m — z D p j J MAJOR DIVISIONS GROUP TYPICAL NAMES SYMBOLSc 1 , T4404r Well graded grovels, grovel-sand mixtures. GW little or no fines. CLEAN ia,1(ia' GRAVELS .e (Little or no fines) 1....:6 GP Poorly graded gravels or grovel-sand mixtures, t GRAVELS ;.'•;::; little or no fines. 6 e.�:o i (More than 50%of a . coarse fraction is LARGER than the GM Silty gravels, gravel-sand-silt mixtures. No 4 sieve size) GRAVELS WITH FINES i COARSE (Appreciable amt. • of fines) at.:iGc Clayey grovels, gravel-sand-cloy mixtures. GRAINED SOILS ' (More than 50% of SW Well graded sands, gravelly sands, little or material is LARGER no fines. than No.200 sieve CLEAN SANDS size) (Little or no fines) •. $P Poorly graded sands or gravelly sands, little SANDS or no fines. (More than 50% of coarse fraction is SMALLER than the SM Silty sands, sand-silt mixtures. No.4 sieve size) SANDS WITH FINES (Appreciable amt. SC Clayey sands, sand-clay mixtures. of fines) ' Inorganic silts and very fine sands,rock flour, e ML silty or clayey fine sands or clayey silts with slight plasticity. • r ,+j SI LTS AND CLAYS ,,/,{ Inorganic clays of low to medium plasticity, (Liquid limit LESS than 50) if/ CL gravelly clays, sandy clays, silty clays, leen c OL Organic silts and organic silty clays of low F INE plasticity. GRAI NED SOILS w Inorganic silts, micaceous or diatomaceous (More than 50 y. of MH material is SMALLER tine sandy or silly soils,elastic silts. than No.200 sieve size SILTS AND CLAYS CH Inorganic clays of high plasticity,fat clays. (Liquid limit GREATER than 50) PP OH Organic clays of medium to high plasticity, fA organic silts. HIGHLY ORGANIC SOILS Pt Peat and other highly organic soils Il SI BOUNDARY CLASSIFICATIONS: Soils possessing characteristics of two groups ore designated by combinations of group symbols. PARTICLE SIZE LIMITS SAND GRAVEL 4 I SILT OR CLAY i -- COBBLESI BOULDERS FieE MEDIUM COARSE TINE I COARSE I i NO.200 NO.40 NO.10 NO.4 %I A. 30. ll 2 n.) u. S. STANDARD SIEVE SIZE 2 UNIFIED SOIL CLASSIFICATION SYSTEM Reference: The Unified Soil Classification System,Cape of Engineers,U.S. ArmyTechnical Memorandum No. 3-357, Vol.I, Mach,1953. (Revised April, 1960) :—Z LAW / CRANDALL, INC. PLATE A-2 r SHEAR STRENGTH In Pounds per Square Foot I 0 1000 2000 _ 3000 4000 5000 6000 0r % 04@3 It_ 7°1-4 @ 1 4�t 5@5.7@5 *. 4074, • 3@7 1000 ‘% •t@to •e@to tt► hr i Y LL ;% d C 3 2000 '` g ,, ► a M+ % BORING NUMBER & t t SAMPLE DEPTH (FT.) 13 c i ui O a 3000 II C r‘ W s 0 4@3 D 7@14wA 02@5 '� Cl) %�, 05@5 •7@5 W ,* 4@7• • 3�°7 da. 4000 �,, DI C �t •t@10 •6@10 Q ►, cn U I, l D *, i N 5000 +////1 t 4' 1 �� W o VALUES USED IN ANALYSES ,* o. • o! 6000 1 N' KEY: 0 • Samples tested at field moisture content o; LOAD IN KIPS PER SQUARE FOOT 0.4 0.5 0.6 0.7 0.8 0.9 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 0 Boring 4 at T, ..`�44SANDY SILT 0.01 �~"••• • ., Boring 1 at 5' .' SAND .. .,, = Z 0.02 r • `ti 0 • LL! = 0.03 —�_ --�,. ,�'•, Ci 0Z Z Y Z Q 0.04 \' O Q 0 J f N Z O 0.050 V w 0 0 0.06 1 J 0 0. eln 0 0 co a 0.07, co O NOTE: Water added to sample from Boring 1 after consolidation under a load of 1.8 kips per square foot. '� The other sample tested at field moisture content. CONSOLIDATION TEST DATA L AW/CRANDALL INCA PLATE A-4.1 LOAD IN KIPS PER SQUARE FOOT 0.4 0.5 0.6 0.7 0.8 0.9 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0. 0 Boring 7 at 1'to 4' SILTY SAND • ( REMOLDED SAMPLE COMPACTED TO 90%) ...../7 0.01 �� Boring 5 at 10' 46,- SAND = Z 0.02 . _ ..,� Z 111 ,...•`- CI' •- CO — _ ••.- ui = 0.03 — �• -.. o U - Z Z Y Z 0 0.04 Q r_- ---,........khk 0 0 J rn ' o N N Z 0 0.05 0 Lu I— < 0 . O 0.06 0 0. el r. 0 co 0 N. co N 0.07 - - 00 O NOTE: Water added to sample from Boring 7 after consolidation under a load of 1.8 kips per square foot. The other sample tested at field moisture content. CONSOLIDATION TEST DATA LAW/CRANDALL , INC. /k\ PLATE A - 4.2 BORING NUMBER AND SAMPLE DEPTH : 7 at 1' to 4' 0 SOIL TYPE : SILTY SAND 2 MAXIMUM DRY DENSITY ; 122 ( Ibs./cu. ft. ) 0 OPTIMUM MOISTURE CONTENT : 10 (% of dry wt. ) cdTEST METHOD : ASTM Designation D1557- 78 w 0 0 0 Ci C 0 COMPACTION TEST DATA m O LAW/CRANDALL , INCA PLATE A- 5