Loading...
HomeMy WebLinkAboutHydrology for Henry Kaiser HS - 3-15-94 HENRY J. KAISER HIGH SCHOOL ULTIMATE HYDROLOGY AND HYDRAULIC STUDY 100 YEAR STORM PREPARED BY: THIENES ENGINEERING 14150 VINE PLACE SUITE 100 CERRITOS, CA. 90701 (310) 926-2296 MARCH 15, 1994 stof ESS 04,4 44 �pK 1 'SGA„, 9 rn R No. 043293 Exp. 3/3// !"\ble Vi90k14 CIU1 oL4:7r GABS` * VA V : V' A .. I . .4100 w , 11 I d4 $ I . • .1 ; •j lk'S.III(,CA 011 • #n R9 I -- I ~~ I 1 merit,Y 1 t.. wit! 1 I i 3 ` I iI i I L "'1' 111.1 I I 1 SA BERNAR PIN* ;CO. I 1 , •.wa0. I I I I1 1 ' 1 r -....3'Y!_ e.. I a .ha -- - --i- - 3 Y I1 ,2. ,, ' � ' ._2. ali j 0 I • I 1 g q S. N.6. .. I I I ..- I . . i I I AiNUPc 1 NO .. -- MO 4Y III I " r- wt sw I w •, ,,r. J, Y 4.i7. •�.":L / ••4117L'S;1...} .• , •• 1 .,. ,. -,--, ; • .. mt.' 511t_11.46-1/4:4V :, :,", : • . .. I T r' sem• . . .. I '.- - . . -.AN.47-.' .. 7:41e"37R-..''"# • •:. .wi--7.x.,impatt,: , ., '..6,--- i _ ,...„1111 - — Pa 'VT I seov co. :a�w a Ijf� 16,111 I ,,, n, I14 I j ' 'ERSIDE •CO. 'I;:.. VICINITY MAP . NO SCALE PURPOSE The purpose of this hydrological study is to investigate and evaluate the ultimate offsite drainage impact on Henry J. Kaiser High School. SITE CONDITION The site is located between Almond and Cherry Avenues, North of Jurupa Avenue in the City of Fontana. The subject site is squarely shaped, approximately 1,350 feet by 1,350 feet in size and relatively flat terrain slopping to the Southwest low point by less than 2%. The natural drainage is by sheet flow to the Southwest corner of the property. GENERAL DISCUSSION The offsite ultimate drainage area is divided into two drainage networks (per master drainage study). Almond and Cherry Avenues drainage areas. Portion of flood runoff emanating from these watersheds of approximately 194 and 193 acres enter the project site from Northwest and Northeast corners respectively. These two runoffs traversing the project site to the low point at Jurupa Avenue which is located at about 500 feet East of Almond Avenue. HYDROLOGY The method used to determine the 100 year offsite and onsite storm runoff tributary to the proposed school site is based on Rational Method of 1986 San Bernardino County Flood Control District Hydrology Manual. CONCLUSIONS Based on the studies and investigations made for this report it is concluded that: 1. The offsite 100 year flow rate tributary to the proposed sterol dream # Almond Avenue and Cherry Avenue storm drain system are 297 c.f.s. and 289 c.f.s. respectively. 2. Proposed street and storm drain improvements will provide the 100 year flood protection. 3. The storm drain facilities are planned to carry 25 year storm. During the 100 year storm the streets will contain considerable water, but will not prevent passage of vehicles. 4. Almond Avenue and Cherry Avenue storm drain systems will intercept 95% and '10% of 100 year run off respectively. ONSITE AND OFFSITE HYDROLOGY STUDY 4rc / s4 **************************************** ********************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION ) *** PRELIMINARY/EXPERIMENTAL VERSION *** Copyright 1983 , 86 , 87 Advanced Engineering Software (aes ) Ver . 4 . 15. Release Date : 2/20/87 Serial # BETA06 Especially prepared for: ** ** ** *. z ******** DESCRIPTION OF STUDY *.K***= * -:k*****t.**:K*****-*.* * ULTIMATE HYDROLOGY STUDY - .100 YEAR STORM * * FOR. HENRY J . KAISER HIGH SCHOOL e e94 06 y re/1).r pog .fays11-6:- /37-Alv sf-For6:-("Pz7464/1) .46/65j FILE NAME : ..<HC..) T TIME/DATE OF STUDY . 10.33 3/ 9/1994 - -- - - - -- -- - - - - USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION : --*TIME-OF-CONCENTRATION MODEL*--- USER SPECIFIED STORM EVENT( YEAR ) = 100. 00 SPECIFIED MINIMUM PIPE SIZE( INCH ) = 4 .00 SPECIFIED PERCENT OF GRADIENTS( DECIMAL ) TO USE FOR FRICTION SLOPE m .95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE - .6000 USER SPECIFIED 1-HOUR INTENSITY( INCH/HOUR ) - 1 . 3500 ****"**********.* :********=*** **:***********:* {-. ***: **** **1‹********=F*****'*"***r'*** FLOW PROCESS FROM NODE 11 .00 TO NODE 12 . 00 IS CODE = 2 •RA T If:NAL. METHOD INITIAL SUBAREA ANALIS I . 1DEVELOPMENT IS PUBLIC PARS< • TC = K�;: 11 ( LENGTH* 3 . 00 )/ (ELEVATION CHANGE ) 1 .K .20 INITIAL SUBAREA FLOW-LENGTH = 800.00 UPSTREAM ELEVATION = 962 .00 DOWNSTREAM ELEVATION w 942 . 70 ELEVATION DIFFERENCE = 19. 30 TC : . 483*[ ( 300.00: a: 3.00 )/( 19 .30 ) J** .20 = L d . ;4' 100 YEAR RAINFALL IiNTEN S:ITY( INCH/HOUR ) _. 3. 133 SOIL CLASSIFICATION IS "B" PUBLIC PARK SUBAREA LOSS RATE, Fri( INCH/HR ) = .6375 • SUBAREA RUNOFF( CFS ) 14 . 60 TOTAL AREA(ACRES) = 6. 50 PEAK FLOW RATE( CFS) 14 .60 *:***************'k_#**#:******#:****•**:*::**#'**:************'X **'4.****k************ FLOW PROCESS FROM NODE 12 . 00 TO NODE 13. 00 IS CODE = 3 »»;•COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<«< >»»USING COMPUTER-ESTIMATED PIPESIZE ( NON-PRESSURE FLOW )««< DEPTH OF FLOW IN 21 . 0 INCH PIPE IS 15. 1 INCHES DOWNSTREAM NODE = ELEVATION - 93930 FLOWLENGTH(FEET) _ - 35.00 MANNINGS N =,-- .011 ESTIMATED PIPE DIAMETER(INCH) = 21 .00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 14.60 TRAVEL TIME(MIN . ) _ . 07 TC(MIN . ) = 14 .82 ******#***********************.,K*?K******************************************* FLOW PROCESS FROM NODE 13 .00 TO NODE 13 . 00 IS CODE = 1 >»>.DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION( MINUTES ) = 14. 82 RAINFALL INTENSIT`( ( INCH . /HOUR ) 7 3. 12 EFFECTIVE "STREAM AREA( ACRES ) = 6 . 50 TOTAL S FREAM AREA( ACRES ) _ 6. 50 PEAK FLOW RATE( CFS ) AT CONFLUENCE = 14 .60 trK** Fl- KK , 1 t Kti :h.YIK1 * 1,** 'KS 'K`Y ******* KKk* KK**' }*`K *. K • T. P t r : t: FLOW F'Rrlc E ,:: MOM NOD :: 1,i .00 TO NODE 15.00 IS CODE _ >> >>. RATIONAL METHOD INITIAL SUBAREA ANALYSIS< -'r`".•' DEVELOPMENT IS ECHOOL TO = K;`[( LENGTH** .3 .00 )/ ( ELEVATION CHANGE )] .20 INITIAL SUBAREA FLOW-LENGTH = 210.00 UPSTREAM ELEVATION = q4°,) , 50 DOWNSTREAM ELEVATION = 945.20 ELEVATION DIFFERENCE _ 4 .30 TO = . 412 : 1 ( 210 .00*.; ? . 0O )/( 4 .30)1* .20 = 7.613 100 YEAR RAINFALL CNTENSIT"r s INCH/HOURR. ) = 4 . 659 SOIL CLASSIFICATION IS "E" SCHOOL SUBAREA LOSS RA rE. Fm( INCH/HR) _ .4500 SUBAREA RUNOFF(CFS ) _ 1 _70 TOTAL AREA( ACRES ) - , 15 PEAK FLOW RATE( 1 FS ) = 1 .70 *4..1 i f:k •}'i sm-.:I t$ ;.* L:K 4 t'*. f. v K #1 `1,*4.Y'**': - K'r.# 4 t 1: k J. I' t t-*1.,K.t,'P'.1.*-* d d,t s .i.;: . FLOW F ' CE.3S FROM NODE t5 .0 TO NODE 1.6.00 IE =.00E = '-, -= -COMP(tTE PTPEFLOW TPn CLTfi"I=: THRU 3t) :'cRE.', . 1 SING COMPUTE-EElIMATEC, PIPE'CILE ( NON-PRESSURE FLOW )• DEPTH OF FLOW IN 12 .0 INCH PIPE IS . 5 . 9 INCHES PIPEFLOW ,. :ELOCITY( EET/SES,;, , = 4 . 4 UPSTREAM NODE. ELEVATION = 942. 10 DOWNS T REAM HOIJE ELEVATION v 940.90 FLOM ENc TH1 'FET ) - 165.00 MANNINGS M . 011 ESriiArE.o_a PL €_ I:)TAMirTER( INCH ) 12 .00 NUMEER OF PIPPEE = 1. PIPEFLOW THRU SUBAREA( CFS) 1 . 70 TRAV[ L T ImE( mIN . ) 7 .62 TC( MI I. ) - 3. 2f. ********* ** k k. ;8:.******** *******:**'k ***$ **.***.*;K**** Y-****"*%k ;k**K.****.**i' FLOW PROCESS FROM NODE 15 .00 TO NODE L6 . 00 IS CODE _ B : >>>>ADDL I I:oN OF SUBAREA TO MAINLINE PEAK FLOW:«« 100 YEAR RAINFALL INTENSITY( INCH,/HOUR) = 4.445 SOIL CLASSIFICATION IS "B" SCHOOL SUBAREA LOSS RATE, Ftn( INCH/HR) = . 4500 AVERAGEDFm(INCH/HR) = . 450 TOTAL AREA(ACRES) = .58 PEAK FLOW RATE(CFS) = 2.09 TC(MIN) _ 8.23 • **1C**********.k**********=k-1**** *** *****K*** *************-K=K%K******* c******* FLOW PROCESS FROM NODE 16 . 00 TO NODE 13.00 IS CODE = 3 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« »»>USING COMPUTER—ESTIMATED PIPESIZE ( NON—PRESSURE FLOW ) <<<<< • DEPTH OF FLOW IN 9 . 0 INCH PIPE IS 5.3 INCHES PIPEFLOW VELOCITY( FEET/SEC . ) 6 .9 UPSTREAM NODE ELEVATION =: 940.'90 DOWNSTREAM NODE ELEVATION = '939. 30 F LOWLENGTH( FEET) = 75 .00 MANNINGS N 7 .011. ESTIMATED PIPE DIAMETER( INCH ) = 9 .OG NUMBER OF PIPES = PIPEFLOW THRU SUBAREA( CFS ) _ 2 . 09 TRAVEL TIME(MIN . .) = . 1S TC( MIN . ) = S 42 ******:ac******:i *t:*. '#.'k'K***'v*:i.*.k.r.:I'**.ri ic'k k''1 ** k k• Y t' t t ,k*r **' t t*--.K'x^Kic.xg•; r.K(mY*,*ic FLOW PROCESS FROM NODE 16,00 TO NODE 7.5. 00 IS CODE = 8 >.•>>:•ADDITION OF SUBAREA TO MAINLINE PEAK ;=LOSd,,«•::< 100 YEAR RAINFALL INTENSITY( INCH/(-YOUR) = 4 .387 SOIL CLASSIFICATION IS „B„ SCHOOL SUBAREA LOSS RATE , Fm( INCH/HR ) =- . 4500 SUBAREA AREA(ACRES) _ .06 SUBAREA RUNOFF(CFS) _ .21 EFFECTIVE AREA( ACRES ) _ .64 AVERAGED Fm( INCH/HR) = .450 TOTAL AREA( ACRES ) .64 PEAK FLOW RATE( CFS ) _ 2 .27 TC( MIN ) = 8. 42 :t** : **** K***(r-c k<:k rt• . t- v p. r4* r..s`- K v** rs.: *1*.k* ct.f:_kk=i, *:: g FLOW PROCESS FROM NODE 1.:' 00 TO H O[,_ 13.00 IS CODE - 1 >;->> •DESI+: NATE INDEPENDENT STPEM FOR C,-',W-I_UENCE_••. • HI`fL� (:.OMPUTE T'E VARIOi.J.. .Oh1,='I-. 6ENC D : (REAM ';AI.)JES•. t< • (.,LJW LUENCE VALUES UbEn FOR =NDC E )(ak'I " 'LT,'.EAM 2 ARE . TIME Of CONC.ENTRATI Oa( M IN'.'Tc°L: ) RAINFALL_ INTENSITY ( INCH . /HOUR ) EFFECTIVE STREAM APEA( ACF `S ) . �,y TOTAL STREAM AREA( ACRES )a ) •• .64 PEAK FLOW. RATE( CFS ) AT CONFLUENCE 7. . 27 CONFLUENCE INFORMATION : STREAM PEAK FLOW TIME INT' NSI TY FM EFFEC IVL NUMBER RATE( CFE ) ( M1N . ) ( INCH/HOUR ) ( Iii/I-I(-( ) AREA( ACRE.3 ) 1 11 .60 14 .82 3. 121 . 6I t. . 50 2 2 . 27 3 .42 1 .537 . 45 .a RAINFALL INTENSITY AND TIME OF COI\IC:ENTRATION RATIO CONFLUENCE FORMULA USED ;'OR 2 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA( ACRES) COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 16. 14 TIME(MINUTES ) = 14 .820 EFFECTIVE AREA(ACRES) = 7. 14 TOTAL AREA(ACRES) = 7 . 14 ***********?Y***;K=K=K:'k***%k**** KIK*****=K*=K*=K*.K*Yc***=K**Xc**********:k*****;K* K-K* * K,K* FLOW PROCESS FROM NODE 13 . 00 TO NODE 40 .00 IS CODE = 3 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA«« >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< DEPTH OF FLOW IN 21 . 0 INCH PIPE IS 14.8 INCHES PIPEFLOW VELOCITY( FEET/SEC . ') = 89 UPSTREAM NODE ELEVATION = 939 ..30 DOWNSTREAM NODE ELEVATION ` 935.90 FLOWLEiNG IH( FEET ) - 310. 00 MANNINGS N = .011 ESTIMATED PIPE DIAMETER( INCH ) = 21 . 00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA( CFS ) 1.0 . 14 TRAVEL TIME( MIN , ) = . 58 TC( MIN . ) = 15 . 40 *** .****'k=4 ***`k K l *t*K*****•'t***: **:f;::K***V***:4<-K-*=K=K-;=K=K,K.k**-K T***_K**-K*'it**'f****t K FLOW PROCESS FROM NODE 13 .00 TO NODE 40 . 00 IS CODE = 8 >> >>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<«< 100 YEAR. RAINFALL. INTENSITY( INCH/HOUR ) = 3 .053 SOIL CLASSIFICATION IS "8" SCHOOL SUBAREA LOSS RATE, Fm( INCH/HR ) = .4500 SUBAREA AREA(ACRES) = 4 . 80 SUBAREA RUNOFF( CFS) = 11 .24 EFFECTIVE AREA( ACRES ) = 11 . 94 AVERAGED Fm(INCH/HR ) = . 552 TOTAL AREA(ACRES ) = 11 . 94 PEAK FLOW RATE( CFS ) = 26 .87 TC(MIN) = 15.40 *-k.k r:K�. f4:�.K-K'** * K* tr_ *=K 4'r P K k.€'. 'F*:til: k1- KI.:k't*'k:f:' * krk ;:'K*: **ak:K`K:R'K: .7c k-1 K g FLOW PROCESS FROM NODE 10 .00 TO NODE 40 . 00 IS CODE •DESIGN T; INDEPENDENT STREAM FOP CONFLUENCE' ':.<«. CONFLUENCE VALUES USE-C) FOR .INDEPENDENT STREAM I ARE: TIME OF (.0Ns=ENTRATI:ON( MINUTESt m 15, 40 RAINFALL [NTENSITY ( INC-Al./HOUR ) 3 .05 EFFECTIVE STREAM AREA( ACRES ) = 11 .94 TOTAL STREAM AREA( ACRES ) 11 .'94 PEAK FLOW RATEIC S) AT CONFLUENCE - 26.87 4.* r.i:* K 4K R•F;:K k*.t* I 'K*'#;#:**t°#:* . K 4 F:*i 'r•I 1' l '!'t 4 •t:,k. K :8t*** 'K*M t r 4Th 4 6••!,iz k 4 FLOW PROCESS FROM NODE 17 ,00 TO NODE 18.00 IS CODE _ 2 • • > t>: >RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< • DEVELOPMENTIS COMMERCIAL IC = K* [ ( LENGTH*-4 .x. 00 ) /( ELEVATION CHANGE) )** .20 INITIAL SUBAREA FLOW-LENGTH : 170.00 UPSTREAM ELEVATION = 946.80 DOWNSTREAM ELEVATION = 943. 50 ELEVATION DIFFERENCE = 3.30 TC = .304*[( 170 . 00** 3.00 )/( 3 . 30)7** .20 = 5 .217 COMMERCIAL SUBAREA LOSS RATE, Fm( INCH/HR) _ .0750 SUBAREA RUNOFF( CFS) = 2 . 18 TOTAL AREA( ACRES ) = . 42 PEAK FLOW RATE(CFS) = 2. 18 *****.K*****;k- *** ************** K***********"***********-K*********;K*********** FLOW PROCESS FROM NODE 18 . 00 TO NODE 19.00 IS CODE = 3 > >> >.COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER•-ESTIMATED PIPESIZE ( NON-PRESSURE FLOIW )<<<‹.. . DEPTH OF FLOW IN 12 . 0 INCH PIPE IS 8 .4 INCHES PIPEFLOW VEL_OCITY( FEET/SEC . ) = 3 . 7 UPSTREAM ANODE ELEVATION - 941 . 61 DOWNSTREAM NODE ELEVATION = 941 . 17 FLOWLENGTH ( FEET ) = 110 .00 MANN ING'S N = .011 ESTIMATED PIPE DIAMETER( INCH ) = 12 . 00 NUMBER OF PIPES = ]. PIPEFLOW THRU SUBAREA( CEO ) 2 . 18 TRAVEL TIME( MIN . ) _ . 49 TC( MIN . ) W 5 . 7' ****"K'(** 'K:# t*** K1<*******.K****,r*#':k'=K k h'k ** 'h.* K *'k* K*****'K=K*********** **T FLOW PROCESS FROM NODE 18 . 00 TO NODE 19 . 00 IS CODE = B . > >ADDITI0N OF SUBAREA TO MAINLINE PEAK FLOW - <.« : 100 YEAR RAINFALL INTENSITY( INCH/'HOUR ) - 5 ,:535 SOIL CLASSIFICATION IS "B " COMMERCIAL. SUBAREA LOSS RATE, Fmi INCH/IHR ) - . 0750 SUBAREA AREA(ACRES) = . 58 SUBAREA RUNOFF( CFS ) = 2. 85 EFFECTIVE AREA(ACRES) = 1 . 00 AVERAGED Fm( INCH/HR ) - . 075 TOTAL AREA( ACRES ) = 1. . 00 PEAK FLOW RAIE( CFs ) = 4 .91 TC( MIN ) = 5 , 71 ****** *=K=K*'k*:k:K.k K**.K-k **•KT ,=** **** K :K***:K*****.k.*************** ********** FLOW PROCESS FROM NODE 19 . 00 TO NODE_` 2000:. IS CODE - > : > :>0C MP'.JTE P CPEFLOW TRAVELTIME THRU CUBAREA<=:. COMPUTER- VI.M .T TC PT.:PEE,:LZF ( NON-PRESSURE I I, FLOW ), « DEPTH OF FLOW IN 15 0 'MOH i PT:PE-; f.3 10 . 4 INCHES PIPEFL0k VEELOCITY. E=EFT/SE+:: ) - 5 . 4 UPSTREAM NODE ELEVATTOi'•! -- 941 . 17 D0WNSTR.EAM NODE. ELEVATION 7 940 . 00 . FLOWLEN';LTH ( FEET ) = 185 . 00 NIOiNi'!T.NGs'S N = . 01. 1 ESTIMATED PIPE DIAMETER( INCH ) 7 15 . 00 NUMBER OF PIPES = 1 PIPEFLOW T-HRU (:,lJE3c"'3FREA( CF'_ i 4 . 91 TRAVEL TINT$ ( M1iN . ) 1 C: ( EMIiN . ) - 6.28 ********* k*.K* K** k'*'.k** K******•k *`K.*'* * K*'k''****-k'*-KK*.K* k' K***'k***,* :**:K'K'KK*:**:K* k**** f FLOW PROCESS FROM NODE 19. 00 TO NODE 20 . 00 IS CODE 7 8 >>»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«<K 100 YEAR RAINFALL INTENSITY( INCH/HOUR ) - 5. 228 SOIL CLASSIFICATION IS "B " COMMERCIAL SUBAREA LOSS RATE . Frn( INCH/HR ) _. . 0750 SUBAREA AREA( ACRES ) _ . 36 SUBAREA RUNOFF( CFS ) = 1 .67 EFFECTIVE AREA( ACRES ) = 1 . 36 AVERAGED Fm( INCH/HR ) 7 . 075 rG11M O ...).i. TC(MIN ) 6.28 *********************.*****************************************************fit*. FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 1 >>>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION( MINUTES ) µ 6 . 28 RAINFALL INTENSITY ( INCH . /HOUR) = 5.23 EFFECTIVE STREAM AREA( ACRES ) = 1 .36 TOTAL STREAM AREA( ACRES ) = 1 .36 PEAK FLOW RATE( CFS ) AT CONFLUENCE = 6. 31 **-K:k****:***:****'i:,k* :***:T*K**r**:*****.k*****r*******'T****'*****'****** k****'* ** FLOW PROCESS FROM NODE 21 . 00 TO NODE 22.00 IS CODE = 2 - --- --- - ---- RATIONAL METHOD INITIAL SUBAREA AiNALYSI S<<< K DEVELOPMENT IS COMMERCIAL. TC = K* C (LENGTH*;: 3 .00)/ ( ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH :: 150 . 00 UPSTREAM ELEVATION = 944 . 00 DOWNSTREAM ELEVATION = 542 . 40 ELEVATION DIFFERENCE = 1 . 60 TC = .304*[( 150. 00** 3 . 00 )/ ( 1 , 60 )]** .20 = 5 . 594 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5 .605 SOIL CLASSIFICATION IS "8" COMMERCIAL SUBAREA LOSS RATE, Fm( INCH/HR ) _ .0750 SUBAREA RUNOFF( CFS ) -- 2.24 TOTAL AREA( ACRES) = . 45 PEAK FLOW RATE( CFS ) 2. 24 **************Kk*:*:k.******:rk`K:K**** <'k**=k*=K******* k*********-k *k**********:** .K FLOW PROCESS FROM NODE 22.00 TO NODE 20. 00 IS CODE = 3 :>> :•>COMPUTE PI:PEFLON IRAVELTIME THRU SUBAREA«:<<. > >=•>USINEJ COMPUTER--ESTIMATED PIPE-SIZE ( NON-PRESSURE FLOW ):,. -:<•: -- -- ------- -- --- -- - - - -- ------- ----- ---- - - ---- ---- - - --- -- ----- ---- - -- ----- --- DEPTH OF FLOW I N 9. 0 INCH PIPE IS 7 . 3 INCHES P`i.PEFLOW VELOCITY( FEE"[/SEC . ) = 5 .9 UPSTREAM NODE ELEVATION = 941 . 00 DOWNSTREAM NODE ELEVATION = 940 . 00 FLOWLENGTH ( F EET ) = 70 . 00 MANNING: N = .011 ESTIMATED PIPE DIAMETER( INCH ) - 9 .00 NUMBER OF PIPES N 1 PIPEFLOW THRU SUBAREA( CFS ) = 2.24 TRAVEL TIME(MIIN . ) = .20 TC(MIN . ) = 5. 79 * k**** ****;K-k.:Ac K* k k* k k** K****** K*********** K**********#:* k****:k** k***K* k* k*x a FLOW PROCESS FROM NODE 20 . 00 TO NODE 20.00 IS CODE = 1 .>» »DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE‹.(K‹,. =•>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUE a<.<«< • CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION( MINUTES ) = 5 . 75 RAINFALL INTENSITY ( INCH ./HOUR ) = 5 . 49 EFFECTIVE STREAM AREA( ACRES ) = . 45 TOTAL STREAM AREA(ACRES) = . 45 PEAK FLOW RATE( CFS ) AT CONFLUENCE = 2.24 - __ - - STREAM PEAK FLOW TTIME - . INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN . ) (INCH/HOUR) ( IN/HR) AREA(ACRES) 1 6.31 6.28 5.228 .08 1 .36 2 2.24 -5.79 5.489 .08 . 45 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER Q( CFS) AREA( ACRES ) 1 8 . 44 1 .21 3 .55 1 . 70 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PE iK FLOW PATE( CFS ) = 8. 44 TIME( MINUTES ) = 6.284 EFFECTIVE AREA(ACRES ) - 1 .81 TOTAL AREA( ACRES) - 1 . 81 Is-K*r*c'k** `K**:K*KK=K=k=K-K= **-K-K*:k•K k K K'K-K.k*=K'.K-K.K k'K'k:k•K**-1(: ** *'k*'K* k***-* K'k*k***** FLOW PROCESS FROM NODE 20 .00 TO NODE 23 .00 IS CODE = 3 r>>»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA«<<.- >> >USING COMPUTER-ESTIMATED PIPESILE ( NON-PRESSURE FLOW ) «,«< DEPTH OF FLOW IN 18.0 INCH PIPE IS 14 .7 INCHES PIPEFLOW VELOCITY(FEET/SEC . ) = 5 . 5 UPSTREAM NODE ELEVATION = 940 .00 DOWNSTREAM NODE ELEVATION = 939. 40 FLOWLENGTH( FEET) = 122.00 MANNINGS N = .011 ESTIMATED PIPE DIAMETER(INCH ) = 18.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS ) = 8 .44 TRAVEL TIME(MIN . ) = . 37 TC( MIN . ) = 6. 66 k K`k: *** ****'k* K* ' ****'K:ic:k,k,: *****=4** k*k***, **:K*:k*t******** :'K**.k*,K**kik; *** FLOW PROCESS FROM NODE 20.00 TO NODE 23 .00 IS CODE = B .ADDi.TiON OF SUBAREA TO MAINLINE PEAK FLOW,,, - - • RAINFALL :[NTENSITY( INCH/HOUR ) - 5.050 - -Y OIL C I_A rF!:CATION IS "8" i;'Gh:1E7-1., ". c+_ '3t.Jf:SAREA LOSS R111 E . Fe1i( INCH/HR ) = .0750 AK.:A( ACRES ) -- .64 SUBAREA RUNOFF ( CFS) - 2.87 i7iR`1(ACRF_J ) ^ 2 . 45 A}iERACED rm( £NCH/HR ) .075 TOVAl.. AREA( ACRES) r 2.45 PEAK FLOW RATE( CFS ) = 10 .97 TC(MIN ) = 6.66 K*K** KIK*`K K* K,k::K K*** K***=K-K;K****k k****:K******** t*1<*YA=K**,**** *** KV **** * t** K*** FLOW PROCESS FROM NODE 23.00 TO NODE 23. 00 IS CODE - 1 >>> DE3ICNATE INDEPENDENT STREAM FOR CONFLUENCE««< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM I ARE: TIME OF CONCENTRATION( MINUTES ) = 6.66 RAINFALL INTENSITY ( INCH ./HOUR ) - 5.05 EFFECTIVE STREAM AREA(ACRES ) = 2.45 TOTAL STREAM AREA(ACRES) = 2. 45 PEAK FLOW RATE(CFS ) AT CONFLUENCE = 10.97 _ r r n -rrm+rm-n-n-nTTTTR!Tm+nTTTTTTTTTTTTTT-TTTTTT.T-TTT4TT4TTTTTfiTTTTTTTTTTT?•-?-4. .4.4.4. - FLOW PROCESS FROM NODE 17 .00 TO NODE 24 .00 IS CODE = 2 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< DEVELOPMENT IS COMMERCIAL TC = K* [: ( LENGTH** 3.00)/( ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH = 102.00 UPSTREAM ELEVATION = 946 . 80 DOWNSTREAM ELEVATION = 946 . 10 ELEVATION DIFFERENCE _ .70 TC = . 304q( 102 . 00*:K 3 .00 )/ ( . 70 ) 1** . 20 _ 5.236 100 YEAR RAINFALL INTENSITY( INCH/HOUR ) = 5 . 832 SOIL CLAS I,=.ICATION IS "B " C:OMI"IERCIAL SUBAREA LOSS RATE Frn( INCH/HR ) -- . 0750 SUBAREA RUNOFF(CFS) = L . 35 TOTAL AREA( ACRES ) = . 26 PEAK FLOW RATE(CFS ) 1 . 35 :f(*:+,r;k:k•k=k*:,:;::k* :k:* k-k•k*-K:**4 kK:k:i::K* KM**:k K*•K1k ,K:#*:*1--le .k.k*4:K*.K K k.y'K*-:K K-K:Y• ;: FLOW PROCESSFROM NODE 2.1 . 00 TO NODE 25, 00 IS CODE _ S >> iCOMPLJTE PIPET-LOW TRAVEI...TIME THRU SUBAREA << ; >>-> >USING COMPUTER.-ESTIMATED P:EPESIZE ( NON-PRESSURE FLOW )•.r<<< _- DEPTH OF FLOW IN 9 .0 INCH PIPE IS 6.0 INCHES PIPEFLOW VELOCITY(FEET/SEC . ) ._ 4 . 3 UPSTREAM NODE ELEVATION = 945 . 25 DOWNSTREAM NODE ELEVATION = 945 . 00 FLOWLENGTH ( FEET) = 30 . 00 MANNINGS N = .011 ESTIMATED PIPE DIAMETER( INCH ) = 9 . 00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA( CFS ) = 1 . 35 TRAVEL TIME( MIN . ) _ . 12 TC( MIN . ) - 5. 35 *-K********;K-***:r-;K=K-K=K:K'K;k-K=1 .K:K * KKK;K*=KX:*-kms =K;K***'K**.**.**4***4******** FLOW PROCESS FROM NODE 24-00 TO NODE 25 . 00 IS CODE = E2 >ADDITION OF SUBAREA T•O MAINLINE PEAK FL_OWK•< <: - -- ---- ----- - -------- 100 YEAR RAINFALL. INTENSITY( IN!CH/HOUR ) 5 . 756 SOIL CLASSIFICATION I "0 " COr MFRC IAL SUBAREA LOSS RATE Frri( INCH./HP ) = . 0750 SUBAREA AkEAi ACRES) . 0c, SUBAREA A RUNOFF(CFS ) - . 55 EFFECTIVE. ARE,-)( ACRES ) _ . 31 AVERAGED Fin( .LrION/I-iP ) -• . 075 7 TOTAL.. AREA( ACRES ) . 31 PEAK FLOW RATE=.( CFS ) 1 .5q TC( MIN ) = 5 . 35 K* K** 10( 4.k#: k K '.k* K: *'k* k'K*'k*-K:k*;k K *4 ******.*'**•K-K k*=*:*r***** K%k• k* k:-k-k :k**:k# *`K * FLOW PROCESS FROM NODE 25 . 00 TO NODE 26 . 00 IS CODE = >COMPUTE_ PIPEFLOW TRAVEL:TIME THRU SUBAREA«<< .< > >'• :•U`SI`C '7OMPUTER-ESTIMATED PIPESIZ_E ( NON-PRESSURE FLOW ) -::<<•. DEPTH OF FLOW IN .120 INCH PIPE IS 5 . 8 INCHES PIPEFLOW VELOCITY( FEET/SEC. ) = 4 . 2 UPSTREAM NODE ELEVATION = 945 .00 DOWNSTREAM NODE ELEVATION = 944 .80 FLOWLENGTH( FEET ) = 30 . 00 MANNINGS N = .011 ESTIMATED PIPE DIAMETER( INCH ) = 12 .00 NUMBER OF PIPES -. 1 PIPEFLOW THRU SUBAREA( CFS ) = 1 .59 k*}k**;K********* *************************'********************************** FLOW PROCESS FROM NODE 25.00 TO NODE 26 . 00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY( INCH/HOUR) = 5.681 SOIL CLASSIFICATION IS "B" COMMERCIAL SUBAREA LOSS RATE, Fm( INCH/HR) _ . 0750 SUBAREA AREA(ACRES) _ . 13 SUBAREA RUNOFF( CFS ) _ .66 EFFECTIVE AREA( ACRES) _ , 44 • AVERAGED Fm( INCH/HR) _ .075 TOTAL AREA( ACRES ) _ .44 PEAK FLOW RATE( CFS ) = 2 .22 TC(MIN ) = 5 . 47 *-**** 'k** K1c fz** K**** k,k*********'k"; ****************'K*********'.k****** �****r*.*'K* FLOW PROCESS FROM NODE 26 . 00 TO NODE 27 . 00 IS CODE _ 3 >> >COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA.« >> USING COMPUTER-ESTIMATED PIPESIZE ( NON -PRESSURE FLOW)«<<< DEPTH OF FLOW IN 12 .0 INCH PIPE IS 7 .5 INCHES PIPEFLOW VELOCITY( FEET/SEC. ) = 4 . 3 UPSTREAM NODE ELEVATION = 944.80 DOWNSTREAM NODE ELEVATION = 944. 60 FLOWLENGTH(FEET) = 35.00 MANNINGS N _ .011 ESTIMATED PIPE DIAMETER( INCH ) = 12 .00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA( CFS) = 2.22 TRAVEL TIME( MIN . ) = . 14 TC(MIN . ) = 5 . 61 *******************************-K>K*********:K********************************* FLOW PROCESS FROM NODE 26 . 00 TO NODE 27 . 00 IS CODE = 8 >>>>>ADDI I ION OF SUBAREA TO MAINLINE PEAK F LOW<<<<< 100 YEAR RAINFALL INTENSITY( INCH/HOUR ) _ 5 . 5';)6 SOIL CLASSIFICATION IS "C" COMMERCIAL SUBAREA LOSE: RATE, Fm( INCH/HR ) _ . 0750 SUBAREA AREA( ACRES ) - .06 SUBAREA RUNOFF( CFS ) .30 EFFECTIVE AREA( ACRES ) _ . 50 AVERAGED Fm( INC:H/HR ) _ . 075 TOTAL AREA(. ACRES ) = . 30 PEAK FLOW RATE( CFS ) _ 2 . 49 TC( MIN ) = 5 . 61 • -K****.i: K* i *.$ -r i< K******* *************"******is****'K K k K k K*****'K*****'K********k K FLOW PROCESS FROM NODE 27 . 00 TO NODE 28. 00 IS CODE _ > PIPEFLOW TRAVELTIME THRU SUBAREA< <<< >:> :,USING COMPUTER-ESTIMATED PIPESIZE ( NON -PRESSURE FLOW ).:<<<< DEPTH OF FLOW IN 12. 0 INCH PIPE IS 7. 1 INCHES PIPEFLOW VELOCITY(FEET/SEC. ) = 5. 2 UPSTREAM NODE. ELEVATION -- 944. 60 DOWNSTREAM NODE ELEVATION = 944.00 FLOWLENGTH ( FEET ) = 70.00 MANNINGS N -- . 011 ESTIMATED PIPE DIAMETER(INCH ) = 12.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS ) = 2. 49 TRAVEL TIME( MIN . ) _ .23 TC(MIN . ) = 5.83 rLuw I-rh<UUESS FROM NODENODE IS CODE 27.00TO NODE ::__ :-2800 IS 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5. 466 SOIL CLASSIFICATION IS "B " COMMERCIAL SUBAREA LOSS RATE, Fm( INCH/HR ) = . 0750 SUBAREA AREA(ACRES ) _ . 47 SUBAREA RUNOFF(CFS ) _ EFFECTIVE AREA( ACRES ) - . 97 2. 28 AVERAGED Fm( INCH/HR ) = . 075 TOTAL AREA(ACRES ) = . 97 PEAK FLOW RATE( OFF ) ,= 4 . 71 TC(MIN ) 5. 83 ******* ****:K***:K*#**,k*:,:.:K K K.K***'K*** :;K •***'****:K:K***is K;k:K: **=k:K*=K.K:K,K-**** K.K:r'.k= **k _FLOW PROCESS F R(1M NODE 23 . 00 TO NODE 31 . 00 i C� I,aS. CODE = 3 = >.>>CUNIP(J'TE PIPEFLOW TRAVEE_TINIE THRU r-i BAP_._ COMPUTER--ESTIMATED PIP55LZ5 ( iNON...,PRi= UF.E FLOW ) •.«K PTH 1 r c,LOW IN . INCH PIPE IS 1. 1 . ! INCHES r-r FLOW VELOOT TY( FEET/SEC. ) = 4 E,PSTc.E, ,ii NODE ELEVATION 7 94. . 00 DOWNSTREAM NODE ELEVATION = 943 . 80 P=L O W L E N O, F E•)( F E E T ) = 45 . 00 M�. hI ESTIMATED� _� I , N T hd r'i.. N = . 011 ESTIMATECD PIPE DIAMETER( INCH ) = 15 . 00 NUMBER OF PIPiEC r PIPEFLOW THRU SUE AREA( CFS ) - 1. TRAVEL TIME( MINI . ) r 4 - 7_l . 16 TC( MIN . ) = 6. 00 *** ******* ::*** K-K:K,K*.K:K** **:K********** K ***:K'- *#**:-K***#;***.KK=K*'KIK*:k r:K:K :***# r*4 FLOW PROCESS FROM NODE 28. 00 TO NODE __-_ 31 . 00 IS CODE = 8 >>»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«« ' 100 YEAR RAINF:ALE.. INTENSITY( INCH/HOUR ) SOIL CLASSIFICATION 5,. 77 IS "E3�� I ; aSCOMMERCIAL SUBAREA LOSS RATE, Fn( IPC- ; E ? ) � " r ' 5r51B- ZE^ AREA( ACRES ) 7 . 39 SBlpEA RUNOFF( CFS ) F _MCTIVE AREA( ACRES )1 : r: A i ii SSE ) Fm( [NCI-C HP ) 7 . 075 TO TAI- AREA( ACRS ) - PEAK FLOW PATE( =F ':i ) _. ,I9 EC( MIN ) = 6 . 00 i **'* K'K :k-'** k*J: i:-k. k: k K* *: K - ***'K***'K'*** k4.*** :**********t:**=k..K*:K** K***'K*** •*--K FLOW PROCESS FROM NODE 31 . 00 TO NODE 32. 00 IS C(.��1PlJTE PIPEFLOW TRAVEE-_TINIE THRU SURAREA< USING COMPUTER--F STIMATED PIP(.SITE ( NON -PRESSURE FLOW ) <K < DEPTH OF FLOW IN 18 . 0 INCH P EPE IS . L0 . :3 INCHES PIPEFLOW VELOCIT•i( FEET!SEC. ) = r . 9 UPSTREAM NODE ELEVATION - 943 . 80 DOWNSTREAM NODE ELEVATION = 943 . 40 FLOWLEN(:;TH( FEE_T ) .. E,�.3 , 00 MANN :ChIG3;3 N .- . 011 ESTIMATED PIPE DIAMETER( INCH ) -- 18 . 00 NUMBER OF PIPES = PIPEFLOW THRUSUBAR.EA( CF S ) - 1 TRAVEL TIME( �MIN " 1 = . 18 TC:( MI1NN .. ) = 6. 17 ***************;K************** K***=K..****'K k*********- *****%K**:K=K****=K:K******* »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOWE<E<LL_ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.285 SOIL CLASSIFICATION IS "B" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) _ . 0750 SUBAREA AREA(ACRES) _ . 15 SUBAREA RUNOFF(CFS) _ .70 EFFECTIVE AREA(ACRES) = 1 .51 AVERAGED Fm( INCH/HR) :: .075 TOTAL AREA(ACRES) = 1 . 51 PEAK FLOW RATE(CFS ) = 7.08 TC(MIN ) = 6. 17 -K'K******** K Kk*.K%K=K:K%k* .K'# =k -K1'*=K*;k-K****;K*:K**;K*-k%K=k**`K* k**=k=K*%K*:FK=K:K;k**'K* *-K*** FLOW PROCESS FROM NODE 32 .00 TO NODE 33 . 00 IS CODE =- 3 -COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<:<<« 1J!;T1IG COMPUTER-EU.TIMATEL PIPECIZE ( NON PRESSURE FLOW ) ;E.‹. . DEPTH OF FLOW IN 1'4 ,0 INCH PT?E TS 1 1 .0 INCHES PIPEFLOW VELOCITY: F. ETJ SCC. J = 7 3 UPSTREAM NODE ELEVATION _ 943 .40 DOWNSTREAM NODE ELEVATION = 943 .00 FLOWLENGTH(FEET ) _ O5.00 MANNTNGS N _ .011 ESTIMATED PIPE DIAMETER( INCH 1 15.00 NUMBER OF PIPES _ 1 PIPEFLOW THRU SUBAREA( CFS ) = 7 .08 TRAVEL TIME( MIN. ) •_ .08 TC( MIN. ) = 6.25 .0****:*****`K K** k***=k*. *51c* :1.*:K K* k****g****-***:*-K*=K .te* K******:{e*** KIK:'*:k******' FLOW PROCESS FROM NODE 32.00 TO NODE 33 .00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<«< 100 YEAR RAINFALL INTENSITY(INCH/HOUR ) = 5. 244 SOIL CLASSIFICATION IS "8" COL MERC:IAL SUBAREA LOSS RATE , Fm( INCH/HP 1 = . 0750 SUBAREA AREA( ACRES ) - .21 SUBAREA I .UNOFF( CFS) :. .98 EFFECTIVE AREA( ACRES ) = 1 .72 AVFSAGEO f-m( INCH/HR ) _ .075 TOTAL AREA( ACRES ; = 1 . ,2 PEA), FLOW RATE(MS) . .00 TOt M iN ) - b. .21 • t; k t L.pr F A K Kf: Y t k. F: p* t s, e.:K let:Y.:3:t•k t: .s : k k' v k K'k.�**.t t°*•fir.fie•k.* p:; ! `k -*.k F_ i,f t l- FLOW PROCESS FROM NODE 33.00 TO NC:DE 23. 00 1S CODE = 3 'COMPUTE PIPEFLOW IR VEL`riME THRU SUBAREA<<<; c =USING COMPUTER t_., i [ WiTED PIPCSIZ E ( NON-PRESSURE FLOW ) _:.- •: DEP CH OF FLOW IN I.".; o INCH C:I1 PIPE 15 '2 .0 INCHES P1PEFLOW VEL0CIT'r'( i=EE"1-, SEC. ) = 10. 4 1JPS1 4LAM NODE ELEVATION _ 943.00 . }C±kINS TREAM NODE ELEVATION - 939. 50 50 i=LOWLENGTH( FEET ) 7 137 .00 MANNING. N = .011 ESTIMATED PIPE DIAP•JETCR( INCH ) = 15. 00 NUMBER OF PIPES = 1. PI1 'EFLOW THRU SUrAREA( CF' ) = 8 .00 TIME( MTN. ) •• .2' TC( MIN . ) = 6. 47 ***'K=K*******fit*************-K**;K*=k*****KIK*************************=K****k****#At FLOW PROCESS FROM NODE 23. 00 TO NODE 23.00 IS CODE = 1 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM _ 2 .ARE: -- . - -TIME OF CONCENTRATION(MINUTES) W 6.47 RAINFALL INTENSITY (INCH ./HOUR) = 5. 14 EFFECTIVE STREAM AREA(ACRES) = 1 . 72 TOTAL STREAM AREA( ACRES) = 1 .72 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.00 CONFLUENCE INFORMATION : STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN . ) ( INCH/HOUR ) ( IN/HR ) AREA( ACRES ) 10.97 6. 66 5 .050 .08 2 .45 ti 8.00 6 .47 5 . 137 _08 .1 . 72 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS ) AREA( A rRES ) - ------ ---- -- ---- ---- ---------- --- -- -- - - - -- -- 1 18.84 4. 17 2 13„85 4 . 10 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS ) = 18 . 85 TIME( MINUTES) = 6 . 470 EFFECTIVE AREA( ACRES ) = 4 . 10 TOTAL AREA(ACRES) = 4. 17 **************************************************************************-K* FLOW PROCESS FROM NODE 23. 00 TO NODE 34.00 IS CODE = 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>USING COMPUTER-ESTIMATED PIPESIZE ( NON-PRESSURE FLOW)<<<<< DEPTH OF FLOW IN 24 . 0 INCH PIPE IS 19 . 6 INCHES PIPEFLOW VELOCITY( FEET/SEC. ) = 6 .9 UPSTREAM NODE ELEVATION = 939 . 50 DOWNSTREAM NODE ELEVATION = 939.20 FLCWLENGTH( FEET ) _ 57 , 00 MANNING. N = .011 ESTIMATED PIPE DIAMETER( INCH ) 24 . 00 NUMBER OF PIPES = 1. PIPEFLOW THRU SUBAREA( CFS) 7 18 .35 TRAVEL TIME( MIN . ) M . 14 TC( MIN . ) 7 6. 61 ***********1(* *.***K* ',***-1,.*** :** . K*#* ("k*#• k** **A* * K *4kk: k; ** k*k=4c*4 k** k-k FLOW PROCESS FROM NODE 34. 00 TO NODE 34 . 00 IS CODE M 1 »>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION( MINUTES ) = 6 . 61 RAINFALL INTENSITY ( INCH ./HOUR ) = S. 07 EFFECTIVE STREAM AREA( ACRES ) 4', 10 TOTAL STREAM AREA( ACRES ) - 4 . 17 PEAK FLOW RATE( CFS ) AT CONFLUENCE -. 18 .85 Kik************FIs*#:.****************** ***t************************************ FLOW PROCESS FROM NODE 35 . 00 TO NODE 36.00 IS CODE ti 2 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< DEVELOPMENT IS COMMERCIAL Il = N'Y' Ll,LtINlaIr1 6.VV)/ ltLLVHIIUIN LfHINIaC.)JTm . GW INITIAL SUBAREA FLOW-LENGTH = 170.00 UPSTREAM ELEVATION = 947.00 DOWNSTREAM ELEVATION = 943.30 ELEVATION DIFFERENCE = 3 . 70 IC = . 304*[( 170 . 00** 3 .00)/( 3. 70) ]** . 20 = 5. 099 100 YEAR RAINFALL INTENSITY(INCH/HOUR ) = 5. 925 SOIL CLASSIFICATION IS "B" COMMERCIAL SUBAREA LOSS RATE , Fm( INCH/HR) = . 0750 SUBAREA RUNOFF( CFS ) 2 . 42 TOTAL AREA(ACRES ) = . 46 PEAK FLOW RATE( CFS) - 2 . 42 *** ********* ****.*:K=K****************=K *********** ***********-k=K****** K*** FLOW PROCESS FROM NODE 36 .00 TO NODE 37 . 00 IS CODE -- 3 >> >COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>'-•US.INIO COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW ) •(<<-._: DEPTH OF FLOW IN [2 . 0 INCH PIPE IS 7 . 7 INCHES PIPEFLOW VELOOITY( FEC:T:'SEl: ) = 4 .6 UPSTREAM NODE ELF:VATICN 4 I. , DOWNSTREAM NODE: ELEVATION - 941 . 20 FLOWI-E.NGTH ( FEET ) = 110 _ 00 i'"iPNIII:[ lIs3 i'I z . 011 ESTIMATED PIPE L IAM _T"ER( INCH ) = 12. 00 NUMBER OF PIPES 7 I PIPEFLOW THRU SUBAREA( CFS ) _ 2. 42 TRAVEL TIME(MIN . ) . 40 TC( MIN . ) = 5 . 50 =K*************=K:K**:: ** K***k**** K*:K.K* K * *** = *.k* :******** k**,K*******:K;K*** ` ' FLOW PROCESS FROM NODE 36.00 TO NODE 37 . 00 IS CODE ;. B >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY( INCH/HOUR) = 5. 662 SOIL CLASSIFICATION IS "B " COMMERCIAL SUBAREA LOSS RATE , Fm( INCH/HR ) . 0750 SUBAREA AREA( ACRES ) z . 58 SUBAREA RUNOFF( CFS ) d 2 . 92 EFFECTIVE AREA( ACRES ) = 1 . 04 AVERAGED VE - J:D Fm( IN :H :H; ) - _ 07 J TOTAL AREA( ACRES ) _ . 0 PEAK FLOW RATE( CFS ) z 5 . 93 TC( MIN) 7 5 . 00 ' ; : t,* **=*-K'k K K'k•R y:K t k "k K*:K'k':K *tt:Kt k k -,::Ktt* K*:-*i *:K K K k 'k** K***:F * FLOW PROCESS FROM NODE 37 . 00 TO NODE 34 . 00 TS CODE . . . .•I:_OMPUTE PIPEFLOW TRAVELTIME THRU 3UBAREAK : '< . >USINC: COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW ) • ." •' DEPTH OF FLOW Iii1 15 . 0 INCH PIPE IS 8 .6 INCHES PIPEF LOW VELOCITY( (FEET/3EC . ) - 7 1. UPSTREAM NODE ELEVATION - 941 . 20 DOWNSTREAM NODE ELEVATION = 939 . 15 FLOWLENG TH ( FEET ) = 165 .00 MANNING N = . 011 ESTIMATED PIPE DIAMETER( INCH ) = 10 . 00 NUMBER OF PIPES 1. PIPEFLOW THRU SUBAREA( CFS ) -- 5 .23 TR =1VEL. TIME' ( MIN . ) - . 38 TC( MIN . ) - 5 . 89 ***:K*********** K**.K**=K:::K**:K*-K*************:***'K********:K.*******'K*********** :k FLOW PROCESS FROM NODE 34 . 00 TO NODE 34 . 00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE TIME OF CONCENTRATION(MINUTES) = 5.89 RAINFALL INTENSITY (INCH./HOUR) _ 5.44 EFFECTIVE STREAM AREA(ACRES) = 1 .04 TOTAL STREAM AREA(ACRES ) = 1 . 04 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5 .23 CONFLUENCE INFORMATION STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) ( MIN . ) ( INCH/HOUR) ( IN/HR ) AREA( ACRES ) 1 18.85 6 .61 5,072 . 08 4 . 10 5. 23 5.59 5. 437 .08 1 .04 RAINFALL INTENSITY AND TIriE OF CONCENTRATION RATIO CONFLUENCE FORMULA USED `OE 2 STREAMS. SUMMARY RESULTS: S IR.EAM CONFLUENCE EFFECT ,VE NUMBER WOES ) AREA( ,'ACRES ) 2 5 L rJ =OMRUT[.E<' CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW PATI'.( CFS ) = 23 . 73 TIME( MINUTES ) = 6.609 EFFECTIVE ARE ( ACRES ) = 5. 14 TOTAL AREAu ACRES ) = 5.21 *#c**********,-.****-tt* K****1s*k**,'k******: **:b:*****-X ^k; *`It* K*t*.tK*`K*'k ****.***Y:.k***4 FLOW PROCESS FROM NODE 34 .00 TO NODE 38.00 IS CODE = 3 ‘›COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<K > >>USING COMPUTER-ESTIMATED PIPESIZE ( NON-PRESSURE FLOW) < DEPTH OF FLOW IN 21 .0 INCH PIPE IS 12 .8 INCHES PIPEFLOW VELOCITY( FEET/SEC. ) = 15.4 UPSTREAM NODE ELEVAT [ON = 939 , 15 DOWNSTREAM NODE ELEVATI01N = 935.90 FLOWLENt=,TH( EET ) = 92 .00 MANNINGS N = .011 E3TI: f,=,TED PIPE DTAME T ER( IN :[ ! Y 21 .00 NUMBER OF PIPES = 1. P L'PI_FLO14 TH U FAJBARC'€=tt CC.F2 ) 25.73 TRA . F�_ TImE" i'1IH . ) . 10 TC( MIN . ) _ 6 -71. k 4.1 - . 1, R Y r, o , tz p,p;K t.. i • 'k i `k �. t t 't # k # ; .¢*:p• •t t< ti'N• I e t ;;;*`k"k *"k# k`k 'Y'k* p-** k k K :t•1' FL') ' OF".)OE=S FP.JM NODE 34 . 00 TJ NODE S9 .00 IS CODE = 8 ADDITIDN OF SUBAREA TO MAINLINE 'PEAK FLOW:<:� 100 YEAR RAINFALL INTENSITY( INCH/HOUR ) = 5 . 026 SOIL CLASSIFICATION IS "5" COMMERCIAL SUBAREA L0SS RA rE , Fm( INCH/HR ) - . 0750 SUBAREA AREA( ACRES ) _ . 25 SUBAREA RUNOFF( CFS ) - 1 . 1 1 EFFECTIVE AREA( ACRES ) 5 .39 • AVERAGED Fm( INCH/'HR ) = . 075 TOTAL AREA(ACRES ) = 5 . 46 PEAK FLOW RATE( CFS) = 24 . 0S TC(MIN ) = 6 . 71 *******- :>;*: ***************: : *= **********:K***- ***************** ************. FLOW PROCESS FROM NODE 38 .00 TO NODE 39_00 IS CODE = 3 >>»>COMPUTE PIPEFLOW TRAVELTIME THRU SUL3AREA««< DEPTH OF FLOW IN 27 .0 INCH PIPE IS 20. 1 INCHES PIPEFLOW VELOCITY(FEET/SEC. ) = 7 .6 UPSTREAM NODE ELEVATION = 938.70 DOWNSTREAM NODE ELEVATION = 938.30 FLOWLENGTH ( FEET ) = 72 .00 MANNINGS N = .011 ESTIMATED PIPE DIAMETER( INCH ) = 27. 00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA( CFS) = 24 .03 TRAVEL TIME( MIN . ) - . 16 TC(MIN . ) - 6 . 87 :K***** ***** *'K:K:K* k=K;K-K=K**=K**:K:K**-K*'K*;K*:K:K:K=K:K k'K*=K.K-'K K'k*;K*****%K::K*'K**;h* k=K***1 *** FLOW PROCESS FROM NODE 38.00 TO NODE :=9 . 00 IS CODE = E� >ADDITiON OF SUBAREA TO MAINLINE PEAK. FLOW :c': 100 YEAR RAINFALL INTENSITY( INCH/HOUR ) _ 4 _956 SOIL CLASSIFICATION IS 0 " COMMERCIAL SUBAREA LOSS RATE . Fm( INCH/HR ) - . 3750 SUBAREA rR _ ( WCRES ) �5 SUBAREA RUQ )_- ( : __ ) - 1 . 10 EFFECTIVE AREA( ACRES ) = b AVERAGED i-m INt.:H! HR ) ._ . 075 TOTAL AREA( ACRES ) - 5 . 71 PC k (=LOU`. RATE( CFS ) z 24 . 79 TO( MIN ) -- 6 . R7 7 k;*:*****.:i‹*:****=K** K***,K**************?K****:* **.***.K***********:* **************b k FLOW PROCESS FROM NODE 39. 00 TO NODE 40 . 00 IS CODE = 3 > »: ✓COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« >= ✓'•✓ USING COMPUTER.-ESTIMATED PIPE SIZE (NON-PRESSURE FLOW) <<<« DEPTH OF FLOW IN 21 . 0 INCH PIPE IS 14 . 3 INCHES PIPEFLOW VELOCITY( FEET/SEC . ) - 13.7 UPSTREAM NODE ELEVATION = 938. 30 DOWNSTREAM NODE ELEVATION '- 933 . 90 F Li_iALFiN!caTH( 1=EET ) -• 93 . 00 MANNINGS N = . 011 . ESTIMATE=D PIPE DIAMETER( INCH ) -- 21 . 00 NUMBER OF PIPES = ]. PIPEFLOW "HP.ILJ SUBAREA( CFS ) -•• 24 . 79 TTME ( i'IIN . ) = . 11 TC( MIN . ) - E . 98 , , „ .. Ki.-kk k*' ;.;****:K-h*** K:*-K***--K* **.**** x *.* r **IRI(*:*'F*- rg--*-***:*:*.**'KAT`:* . FL W PROCSS FROM NODE 40 .00 TO NODE 40 . 00 IS CODE = 1 DESIGNATE INDEPENDENT STREAM FOR ClONFLUENC'E< .<< : CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION ( MINU IES ) - 6 . 98 RAINFALL INTENSITY ( INCH . /HOUR ) = 4 . 91 L =(::1 I:VL STREAM OREA( ACRES ) _: 5 .64 TOTAL STREAM AREA( ACRES ) = 5 . 71 • PEAV FLOW RATE( CFS ) AT CONFLUENCE 7.. 24 . 7'' *** ** ****** *:* I:***•*:*:**********************x. * k:*: kk K *****:***'K*:***:*; ****.1:*'* =t FLOW PROCESS FROM NODE 40 .00 TO NODE 40 . 00 IS CODE = 7 ">>> >USER SPECIFIED HYDROLOGY INFORMATION AT NODE':<.<« USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN ) = 15.40 RAIN INTENSITY(INCH/HOUR ) = 3.05 EFFECTIVE AREA(ACRES) = 11 .94 TOTAL AREA( ACRES ) = 11 , 94 PEAK FLOW RATE( CFS ) = 26 . 87 POSSIBLE VALUE OF .55( INCHES/HOUR) *=K************ K****=K************ :******************************************* FLOW PROCESS FROM NODE 40. 00 TO NODE 40. 00 IS CODE M 1 »>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<..<<< >>>»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<< < CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION( MINUTES ) = 15 . 40 RAINFALL INTENSITY ( INCH . /HOUR ) _ 3 . 05 EFFECTIVE STREAM AREA( ACRES ) - 11 . 94 TOTAL STREAM AREA( ACRES ) = 11 . 94 PEAK FLOW RATE( CFS ) AT CONFLUENCE -• 26 . 87 CONFLUENCE INFORMATION : TREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUHE,ER RATE( CFS ) ( MIN . ) ( INCH/HOUR ) ( IN/HR ) ARA( ,)iCRE 6 . 98 4 . ')03 . 0 I'e.t 26 , 7 C r: RAIN !ALL_ INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR STREAMS . SUMMARY RESULTS:. STREAM CONFLUENCEEFFECTIVE NUMBER Q( CF S ) AREA( ACRES ) 1 45. 65 11 . 05 2 42 . 14 17 . 58 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE( CFS ) = 45 . 65 TIME( MINUTES ) z 6 . 980 EFFECTIVE AREA( ACRES ) - TOTAL AREA( ACRES ) 17 . 65 t: k*****n'*.K **' .K•I: :'n** :*:;::K u* : F• n..k,.I, k K***-K-K* k:x :k ; K*** K k***::K k.k* k= -X -,_OW PROCESS FROM NODE 40 . 00 "r0 NODE 41 . 00 IS CODE = w J - - - --- -- - -------- - - - •COMPiU i= P_. IPEELOW TRAVEI_TIME THI'U :3UBAREA<< . " . 1 �:I ,:I J1 I, E 1 Ii''IATEC'", n1 r:,, . s7 ._E :.I I P - „E R ' .... ..f f.a �.:_.I I c.I^: ' i .i l i (_1 I _�I ,I::_;_�,.. _ .E. Or I L_f.iEJ THCH : f : F... 1,, :..- L . 7 ] Ni.H i-S ESE LE Ui VF1_6I FY ( FFE:T SEC ) t2 . 0 S T EE.E ,r HOOF :ELEVATION = 5ij''WN3TRFF'E''I NODE ELEVATION - 932 . Cc:., FLOWLENGTH ( FEET ) 320. 00 MCNN ENDS N = . 0.1 1. ESTIMATED PIPE DIAMETER( INCH ) -- 30 „ 00 NUMBER OF PTPE`_S 1. F EREEFLOW THRU SURAREA( CFS ) - 15 . 65 a TRAVEL TIME( MIN . ) - . 45 TC ( mII`I _ ) = 7A3 4:r a K k'k* t=* K=k***-*:k;K*:k.*:k=K** 1=-k * K* K k'*-K t" K K"K K*;k:k**k 'KK*t K K"K k K K'K. K K.K* i,k k* f k':t k k K FLOW PROCESS FROM NODE 40 , 00 TO NODE 71 . 00 IS CODE ; 8 » . > 'ADDITION OF SUE3RETMA TO MAENLINE PEAK FLOW < ,. 100 YEAR RAINFALL INTENSITY( INCH/HOUR ) _. 4 . 729 SOIL CLASSIFICATION TS "B " PUBLIC PARK SUBAREA LOSS RATE , Flrl( INCH/HR ) - .6375 SUBAREA AREA(ACRES ) z . 91 SUBAREA RUNOFF(CFS ) = 3.35 EFFECTIVE AREA( ACRES) - 11 .96 AVERAGED Fm( INCH/HR ) = . 287 IUMIN) = / .45 ************************* **************************:kYc**************** ***** FLOW PROCESS FROM NODE 41 .00 TO NODE 42.00 IS CODE = 3 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA«« >>>>>USING COMPUTER-ESTIMATED PIPESIZE ( NON-PRESSURE FLOW)««< DEPTH OF FLOW IN 30. 0 INCH PIPE IS 22 .2 INCHES PIPEFLOW VELOCITY( FEET/SEC. ) = 12 .3 UPSTREAM NODE ELEVATION = 932.00 DOWNSTREAM NODE ELEVATION = 930 .92 FLOWLENGTH ( FEET ) z 85 .00 MANNINGS N = . 011 ESTIMATED PIPE DIAMETER( INCH ) = 30. 00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA( CFS ) _ 47 . 83 TRAVEL TIME( MIN . ) = . 12 TC( MIN . ) = 7. 54 ********-**** f(**** *******.***** K****************** *************4t***,K* K* FLOW PROCESS FROM NODE 4 . . 00 TO NODE 42 . 00 IS CODE = 8 :',ADDITION OF SUBAREA TO MAINLINE PEAK FLOWc<< 100 YEAR RAINFALL INTENSITY( INCH/HOUR ) - 4. 686 SOIL CLASSIFICATION IS "8 " PUBLIC PARK SUBAREA LOSS RATE, Fm( INCH/HR) _ .6375 SUBAREA AREA(ACRES) _ . 70 SUBAREA RUNOFF(CFS) = 2 . 55 EFFECTIVE AREA( ACRES) = 12.66 AVERAGED Fm( INCH/HR) = .307 TOTAL AREA(ACRES ) = 19.26 PEAK FLOW RATE(CFS) = 49.91 TC(MIN) = 7.54 **********=K;K,k k:K******************* K*****************************=K***=K*=K***** FLOW PROCESS FROM NODE 42.00 TO NODE 43. 00 IS CODE = 3 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >» ' 'USING, COMPUTER-ESTIMATED PIPESIZE ( NON-PRESSURE FLOW )«<<;< DEPTH OF FLOW IN 30 . 0 INCH PIPE IS 23 .0 INCHES PIPEFLOW VELOCITY( FEET/SEC. 12, 4 UPSTREAM NODE_. ELEVATION = '930. 92 DOWNSTREAM NODE ELEVATION = 929 . 96 FLOWLENGTH( FEET ) - 75 .00 MANNIiNGS N = . 011 ESTIMATED PIPE DIAMETER( INCH ) = 30 . 00 NUMBER OF PIPES == 1 PIPEFLOW THRU SUBAREA( CFS) - 49 . 91 TRAVEL i TME( MIN . ) = . 10 TC( MIN . ) = 7 . 64 k****K=k*t** K k* kK'K K.K:KK** ****'K*=K**'*** K******** *** ;<*k **********=K***** ****** FLOW PROCESS FROM NODE 43 . 00 TO NODE 43. 00 IS CODE = 1 >>».•DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES ) z 7. 64 RAINFALL INTENSITY ( INCH ._/HOUR ) = 4 .65 EFFECTIVE STREAM AREA( ACRES) = 12 .66 TOTAL STREAM AREA(ACRES ) = 19.26 PEAK FLOW RATE( CFS) AT CONFLUENCE = 49 . 91 »»>RATIONAI_ METHOD INITIAL SUBAREA ANALYSIS<<«< DEVELOPMENT IS PUBLIC PARK TC = K*[( LENGTH** 3. 00)/(ELEVATION CHANCE) ]** .20 INITIAL SUBAREA FLOW-LENGTH = 85 .00 UPSTREAM ELEVATION = 937.80 DOWNSTREAM ELEVATION = 936.50 ELEVATION DIFFERENCE = 1 .30 TC = .483*[( 85. 00** 3.00 )/( 1 .30) ] ** . 20 = 6.5€ 9 • 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.081 SOIL CLASSIFICATION IS "8" PUBLIC PARK SUBAREA LOSS RATE, Fm( INCH/HR) = .6375 SUBAREA RUNOFF(CFS ) .. . 92 TOTAL AREA(ACRES ) = .23 PEAK FLOW RATE( CFS) _ .92 * k K K' **=1, -K-K* *** K **-K*4‹.k k K K K **14=k,k;K*;k;K *****=K-K=k=K**********-t='kk-Kt***'k=1:=1r* * FLOW PROCESS FROM NODE 45 .00 TO NODE 46. 00 IS CODE -7 3 > > > •COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< >USING COMPUTER-ESTIMATED PIPESIZE ( NON-PRESSURE FLOW ) < DEPTH OF FLOW IN 9, 0 INCH PIPE IS 4 . 4 INCHES PIPEFLOW VELOCITY( FEET/SEC . ) = 4 .2 UPSTREAM NODE ELEVATION = 934.83 DOWNSTREAM NODE ELEVATION = 934 . 10 FLOWLENGTH(FEET ) = 75, 00 MANNINGS N = . 011 ESTIMATED PIPE DIAMETER( INCH ) = 9 .00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS ) _ .92 TRAVEL TIME(MIN , ) = . 29 TC( MIN . ) = 6. 88 ******=K* ****=K*******.** K**********.****:K*********`K************************** FLOW PROCESS FROM NODE 45. 00 TO NODE 46.00 IS CODE = �B >>> >>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<< < 10.) YEAR RAINFALL INTENSITY( INCH/HOUR ) 4 . 949 SOIL CLASSIFICATION IS ';a" PUBLIC PARK SUBAREA LOSS RATE , Fm( INCH/HR ) = . 6375 SUBAREA AREA( ACRES ) - . 36 SUBAREA IR.UNOFF( CF S ) = 1 . 40 E = _CTIVE AREA( ACRES ) .39 P.€GED Fm( tNCH/I-IF? ) - . 633 TOTAL AREA(ACRES ) . •furyi PEAK FLOW RATE( CFS) = 2. 29 TC_( MIN )) = 6. 88 t**********:K*******-K'K *****=K****.K*:********;*%********=K'K'K****=* K*********t***k FLOW PROCESS FROM NODE 46 .00 TO NODE 47 . 00 IS CODE = 3 >>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER.-ESTIMATED PIPESIZE ( NON-PRESSURE FLOW ) <• < :< DEPTH OF FLOW IN 12 . 0 INCH PIPE IS 8 .8 INCHES - _- PIPEFLOW VELOCITY( FEET/SEC. ) - 3 . 7 UPSTREAM NODE ELEVATION = 934 . 40 DOWNSTREAM NODE ELEVATION = 934 . 10 FLOWLENGTH(FEET) = 75. 00 MANNINGS N = . 011 ESTIMATED PIPE DIAMETER( INCH ) = 12.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 2.29 TRAVEL TIME(MIN . ) _ . 34 TC(MIN . ) = 7.22 *****************************;K******************************************:KIK** FLOW PROCESS FROM NODE 46.00 TO NODE 47 .00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<, 100 YEAR RAINFALL INTENSITY( INCH/HOUR ) = 4 .810 SOIL CLASSIFICATION IS "B" PUBLIC PARK SUBAREA LOSS RATE, Fm( INCH/HR) _ .6375 SUBAREA AREA(ACRES ) = . 27 SUBAREA RUNOFF( CFS) = 1 . 01 EFFECTIVE AREA( ACRES ) = .86 AVERAGED Fm( INCH/HR ) = . 638 TOTAL AREA( ACRES ) _ . 86 PEAK FLOW RATE(CFS ) __ 3 .23 TC(MIN ) = 7 . 22 :K**'K'K:K,K*=K*,K;K=K***K'K******* K=k=K*** :*:K K*** K*rK****** K=K****µK'=K'K K** KIK** K Ic'K ry**** FLOW PROCESS FROM NODE 47 . 00 TO NODE 48 . 00 IS CODE = 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA <<<< »»>USIING COMPUTER--ESTIMATED PIPESIZE ( NON-PRESSURE FLOW ) <<:<< DEPTH OF FLOW IN 15 .0 INCH PIPE IS 8 . 7 INCHES PIPEFLOW VELOCITY( FEET/SEC . ) _ 4 . 4 UPSTREAM NODE ELEVATION = 934 . 10 DOWNSTREAM NODE ELEVATION = 933. 70 FLOWLENGTH( FEET) = 85. 00 MANNINGS N = . 011 ESTIMATED PIPE DIAMETER( INCH ) = 15.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 3.23 TRAVEL TIME(MIN . ) = .3') TC( MIN . ) = 7. 54 ***************`*%K* K*****:K****1 K K'K*'K%K r%n%K;k`-K-K%K::K**-K=n**::K*':K:KW`K***%K=K:K******** **** FLOW PROCESS FROM NODE 47 . 00 TO NODE 48 . 00 IS CODE = 8 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FL0ki<< << 100 YEAR. RAINFALL INTENSITY( I:INCH/HOUR )) = 4 . 686 SOIL CLASSIFICATION IS "B " PUBLIC PARK SUBAREA LOSS RATE . E n ( Ii,!OH/HR. ) . 4375 SUBAREA AREA( ACRES ) = . 29 SUBAREA RUNOFF( CFS ) .. 1 .06 EFFECTIVE AREA( ACRES ) 1 . 15 AVERAGED Fm( :LINCHI/F R ) . 632 TOTAL AREA( ACRES ) = 1 . 15 PEAK F LOW RATE( CFS ) -• 4 , 19 d TO(MIN) _ 7 , 54 K r:K K**** K:K* K-K=K*,K:K:K-K.K=K%K**** *-K#**4444 k'K** k:*#***'k-K r•-K-K 1 k*=K4*4-K'4-k 'k FLOW PROCESS FROM NODE 45 . 00 1 O NODE 49 . 00 IS CODE= >>COMPUTE PIPEFLOW TPAVELTJME THRU SUBAREA•' >>>>>USING COMPUTER-ESTIMATED PIPESIi_'E ( NON -PRESSURE FLOIA ) ,' K < DEPTH OF FLOW IN 15 . 0 INCH PIPE IS 10 . 3 INCHES PIPEFLOW VELOCITY(FEET/SEC . ) X1 . 6 UPSTREAM NODE ELEVATION =:. 933 . 70 DOWNSTREAM NODE ELEVATION _. 933 . 30 FLOWLENGTH( FEE:T) = 85. 00 MANN INGS N = . 011 ESTIMATED PIPE DIAMETER( INCH ) -. 15. 00 NUMBER OF PIPES = 1. PIPEFLOW THRU SUBAREA(CFS) _. 4 . 19 TRAVEL.. TIME( MIN . ) = . 31 TC( MIN . ) = 7 . 85 FLOW PROCESS FROM NODE 48.00 TO NODE 49 . 00 IS CODE = 8 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY( INCH/HOUR) - 4 .576 SOIL CLASSIFICATION IS "I3 " PUBLIC PARK SUBAREA LOSS RATE , Fm( INCH/HR) = .6375 SUBAREA AREA(ACRES ) -. .33 SUBAREA RUNOFF( CFS) = 1 . 17 EFFECTIVE AREA( ACRES) = 1 . 48 AVERAGED Fm( INCH/HR) _. . 638 TOTAL AREA( ACRES ) =- 1 . 48 PEAK FLOW RATE( CFS ) = 5 .25 TC( NIIN ) = 7 .85 :k***:k =k :k****-1(** {=******* r.:k*'*.:{<********:******:k**:k***-r*******:k-k** k****** FLOW PROCESS FROM NODE 42. 00 TO NODE 50. 00 IS CODE = 3 :.»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<K >>: .> >'.J SINS COMPUTER-ESTIMATED PIPE SIZE ( NON-PRESSURE FLOW )<<' :. DEPTH OF FLOW IN 15 . 07 INCH PIPE IS 9.9 INCHES PIPEFLOW VELOCITY':. EET/CEO . ) - 6. 1 UPSTREAM NODE ELEVATION z 933. 30 DOWNSTREAM NODE ELEVATION = 932 . 60 FLOWLENGTH(FEET) r 85 . 00 MANNINGS N = .011 ESTIMATED PIPE DIAMETER( INCH ) - 15. 00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA( CFS ) = 5 . 25 TRAVEL TIME(MIN . ) = . 23 TC( MIN . ) w 8 .08 *******************=k=k,k,k*:k k=K'k***********;l***,k.k:k=k=k*,k**K::k**********;k********=k* FLOW PROCESS FROM NODE 49 . 00 TO NODE 50 . 00 IS CODE = 8 »»>ADDITION OF SUBAREA 10 MAINLINE PEAK FLON«`< 100 YEAR. RAINFALL INTENSITY( INCH/HOUR ) = 4 . 496 SOIL CLASSIFICATION IS "B" PUBLIC PARK SUBAREA LOS:', RATE. Fm( INCH/HR ) = . 6375 SUBAREA AREA( ACRES) - . 29 SUBAREA RUNOFF( CFS ) 1 . 01 EFFECTIVE ARE A( ACRES ) 1 . 77 AVERAGED i:m( 7:NCIH/HES ) . 638 TOTAL AREA( ACRES ) _ 1 . 77 PEAK FLOW kA{1 E( (_:F S ) i . 1. TC( MIN ) _- 8 . 08 *******'i arm k** k .k*** k k:k** *******;k>{='k:k****':k { * :k:k;# :k:k* k:k :k t*.t' :*:k:F FLOW PROCESS FROM NODE 50. 00 TO NODE 43 . 00 IS CODE: : 3 ------- -- - -- >>>> >COMPEJTE PTPEFLOW TR lVEL.TIME THRU SL'BAP.E =i' < ' . > >>EJS1N'l COMPUTER-ESTIMATED PIPESIZE ( NON - PRESSURE FLOW ) , DEPTH O F FLOW I N 9 . 0 INCH PIPE. IS' 7 . 1 INCHES PIPEFLOW VELOCITY( FEET/SEC . ) 16 . 5 UPSTREAM NODE ELEVATION :.. 932 .60 DOWNSTREAM NODE ELEVATION . 930 . 00 FLOiWLENS1 H( FEET ) 23 . 00 MANNING;' N - . 01. 1. ESTIMAFED PIPE DIAMETER( INCH ) = 9.00 NUMBER OF PIPES z 1 PIPEFLOW THRU SUBAREA(CFS ) = 6 . 15 TRAVEL TIME(MIN . ) = . 02 TC(MIN . ) = 8. 10 k***;K**.*.***:k***************** .*******************************:***********.**** FLOW PROCESS FROM NODE 43 . 00 TO NODE 43 . 00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 8. 10 RAINFALL INTENSITY ( INCH ./HOUR) = 4 . 49 EFFECTIVE STREAM AREA( ACRES ) = 1 .77 TOTAL STREAM AREA(ACRES) = 1 .77 PEAK FLOW RATE(CFS ) AT CONFLUENCE _ 6 . 15 K ;** *** K-g-r* Kk**** K'K*.K*;K- ***********=KIK********-K**********-k :** ******** : FLOW PROCESS FROM NODE 51 .00 TO NODE 52. 00 IS CODE = 2 '•>RAT IONAL METHOD [NITIAL SUBAREA ANALYSIS<<::<<< DEVELOPMENT IS PUBLIC PARK. TO Kq ( LENGTH't<'f( 3 , C0.)/ ( ELEVATION CHANGE) ] ** . 20 TH E I IRL SUBAREA FLOW-LENGTH = 85 . 00 UIPSTr:.E, ivl ELEVATION -- 937 , 80 DOWNSTREAM ELEV, TION 936. 50 :. ELEVATION DIFFERENCE = 1 . 30 O _ . 4R3*[( 85 , ,)01<* 3 . 00 )/ ( 1 . ., 0 ) -K* . 20 •- 6 . 589 100 YEAR RAINFALL IN!TENSITY( INCH/'HOUR ) = 5. 081 SOIL CLASSIFICATION IS "8" PUBLIC PARK SUBAREA LOSS RATE, Fm( INCH/HR ) = . 6375 SUBAREA RUNOFF( CFS ) _ . 76 TOTAL AREA( ACRES ) _ . 19 PEAK FLOW RATE(CFS) - . 76 ********************:K*********;*'*****)K********-K******=K***=K*1K=K************%K*'k FLOW PROCESS FROM NODE 52 . 00 TO NODE 53 . 00 IS CODE = 3 > > >>COMPUTE PIPEFLOW TRAVELTIME THRU SUB,AREA<«« >>>:>>US_ING COMPUTER - ESTIMATED PIPESIZE (NON-PRESSURE FLOIW )<<•;.<< DEPTH OF FLOW IN 9 . 0 INCH PIPE IS 4 . 1. INCHES PIPEFLOW VELOCITY( FEET/SEC. ) = 3 . 9 UPSTREAM NODE ELEVATION - 933 . 80 DOWNSTREAM NODE ELEVATION = 933. 10 F i._OWSJLE_i`IGG,TH( FEET ) .. 78 . 00 WINNINGS i`i , 01. 1 E•2,T .CMATJi PIPE D:f VETER( INCH ) 9 . 00 NUMBER OF PIPES = 1. P1:PEi= Low THRU SUH',:1P :• i( CFS ) _ . 76 T:EMF_( I.1INI i . 33 TC ( MIN . ) = 6 . 92 i- K- - -K.It rK**:K* K k-k* l: :i- K: :*'K*;Kk::K** K:K**_Kt.*; :K'K* K k: I K* K*W:+_* 1:: 1- k k k k FLOW PROCESS FROM HOE 52 . 00 TO NODE 53 . 00 IS CODE .: 'ADDITION OF ; UDAP,EA TO MAINLINE PEAK FLOW<<•:<: 100 'YEAR. RAINFALL IiHTEiNSITY( INCH/HOUR ) -= 4 , 933 OIL [_:I_r=iLSIFIi_:HI I.COLI FS "B" • PUC=;LIC PARK SUBAREA LOSS RATE , Fin( INCH/HR ) ,.. . 6375 UJL IP.EFi AREA(ACRES )) .2l 1 SUBAREA RUNOFF(CFS ) = 1 . 04 f T y L R ( R r ` 4 6 AVERAGED Fm( IN( H/HR ) . 63(3 TOTAL 1REr ( ACRES ) . 46 PEAK FLOW PATE(DFS ) -- 1 . 78 TO( M I i'•! ) =- 6 . 92 *******'K*********-K-K******=K*********=K** K***************=K***'**-K**************:k FLOW PROCESS FROM NODE 53 . 00 TO NODE 43.00 IS CODE = 3 >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< DEPTH OF FLOW IN 9. 0 INCH PIPE IS 4. 1 INCHES PIPEFLOW VELOCITY(FEET/SEC. ) = 9 . 2 UPSTREAM NODE ELEVATION M 933 . 10 DOWNSTREAM NODE ELEVATION = 930. 00 FLOWLENGTH(FEET ) = 62 . 00 MANNINGS N = .011 ESTIMATED PIPE DIAMETER( INCH ) = 9 . 00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA( CFS ) = 1 . 78 TRAVEL TIME( MIN . ? . 11 TC( MIN . ) 4 7 .03 ***********.%** K K* k*4: k t'k* K******'KKK-k.K-K* *:k-K:K*=K-K:K-K-K-K*;K.kk'K4K'-K%K=k *=k*-K-KK=K-Kk:K FLOW PROCESS FROM NODE. 43 . 00 TO NODE 43 . 00 IS CODE - 1 ,'DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<:<<, . >AND COMPUTE VARIOUS CON!i L..E.JE!NCrD STREAM VALUE < << C..ON F L.UENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE : T EME OF CONCENTRATION ( MINUTES ) 7 . 03 RAINFALL INTENSITY ( .i:NCH . /HOUR ) 4 , 29 EFFE_C.TIVE STREAM AREA( ACRES ) _. . 46 f OT L STREAM OPERA ACRES ) _ PEAK FLOW R.:ITE( CFS ) AT CONFLUENCE = 1 . 78 CONFLUENCE INFORMATION : STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS ) ( MINI . ) ( INCH/HOUR) ( IN/HR ) AREA( ACRES ) 1 49 . 91 7 .64 4. 648 .31 12 . 66 2 6 . 1.5 8 . 10 4 . 488 . 64 1 .77 3 1 .78 7 . 03 4 . 885 .64 . 46 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS . SUMMARY RESULTS : STREAM CONFLUENCE EFFECTIVE NUMBER O( CFS ) AREA(ACRES1 1 57 . 63 I<4 . 79 14 , 39 2,6 11 5 COMPUTED CONFLUENCE ESTIMATES APE AS FOLLOWS : PEAK. FLOW (p;=, 4Ew( (.::i' ) 57 6 T IML( M!.LMUTES ) =E;' EFFECTIVE OPERA ACRE:+ ) 1.4 _ 79 TOTA!_ AREA] A::R :: ) 21 . !9 *444*4 ; %-k K,k' * kk=k'1e,k**=k:K*'K'Kk:kk k: K „**:{, ****Kk4(1, :K* t****'K*-YK .k. 1='i' ; N:K=3 1 FLOW PROCESS mom NODE 4.3 . 00 TO NODE 54 . 00 IS CODE - -..COMPUTE PIPEFLOW TRAVELTI!ME_ IHPU OUBAREA<<:<<= > ,> ,,USING; COMPUTER- ESTIMATED PIP'EEILE ( NON-PRESSURE FLOW ) ('< _ DEPTH OF FLOW IN so . o INL_H PIPE .10 24 . 9 INCHES PTPEFLOI''J VELOC:ITY( E-EET;SEC:_ ) =• 17, 0 UPSTREAM NODE ILL EVAT I:OE*E 9210 O DOWNSTREAM NODE ELEVATION = 927 . 9u u • FLOWL ENGTF!( FEET ) - 197 . 00 E''lf ij lhl.l.P.I "i`..> N = . 011 ESTIMATED PIPE DIAMETER( INCH ) - 33 . 00 NUMBER OF PIPES 1 PIPEFLOW THRU SUBAREA(CFS ) _ 57 . 63 TRAVEL TIME( MIN . ) = . 27 TC( MIN . ) = 7 .92 =K,K*'K***********%**:k*'K:k*'k*******;K*'k:K K*;ic:k*'K:*********** K***%*-K***********-K***4% FLUW PRUCESS FRUM NUUL 4.5. UU IU NUUt 04 VU 10 LUUt - 0 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY( INCH/HOUR) = 4 .551 SOIL CLASSIFICATION IS "B" PUBLIC PARK SUBAREA LOSS RATE , Fm( INCH/HR) = . 6375 SUBAREA AREA( ACRES) = 1 .83 SUBAREA RUNOFF(CFS ) = 6 . 45 EFFECTIVE AREA( ACRES) = 16 . 62 AVERAGED Flr( INC'HI/HR ) . .336 TOTAL AREA( ACRES ) = 23 . 82 PEAK FLOW RATE( CFS) = 62 . 33 TC(MIN ) = 7 . 92 **,K**** ******:K****;K*'K** K***'A K:K 6::r: =K;e:I;:K*. ****;K** K*:K::K:K r** ***-K*********=*** FLOW PROCESS FROM NODE 54 . 00 TO NODE 63 . 00 IS CODE = 4 • ::.COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA << (<. • 1J': ] USE-SPECI.FIE.D PIS'[ ` IZE' . . ‹ DEPTH OF , I_UW IN 36 . 0 INCH PIPE. IS 3. 2 INCHES PIPEFLOW VELOCITY FEET/SEC. ) - 12 . 9 UPSTREAM NODE ELEVATION _ 927 . 90 DOWNSTREAM NODE ELEVATION = 922..00 FLOWLENGTH( FEET ) - 360 .00 MANNINGS N w . 013 GIVEN PIPE DIAMETER( INCH ) = 36 . 00 NUMBER OF PIPES = 1 PIPEFLOW THRLJ SUBAREA( CFS ) _ 62 .33 TRAVEL T.IME(MIiN . ) = . 46 TC(MIN . ) = 8 . 38 ***********_*****************:K*- ************K*;K***************-K***=K*k*******:K FLOW PROCESS FROM NODE 54. 00 TO NODE 63 . 00 IS CODE ` 8 >>>ADD:tTIc:'N OF SUBAREA TO MAINLINE PEAK FLOW«<<< 100 YEAR RAINFALL INTENSITY( INCH/HOUR ) = 4 . 398 SOIL CLASSIFICATION IS "8" COMMERCIAL SUBAREA LOSS RATE , Fm( INCH/IHR ) - . 0750 SUBAREA AREA! ! rR E S ) = 6 . 04 ' J3AFCF RUNOFF( CFS ) 23 . 50 EFFECTIVE ,1REA( AiCRES ) -- 22 . 66 AVERAGED Fm( INCH HP, ) . 303 TOTAL AREA( ACRES ) -- 29 . 36 PEAK FLOW RATE(CFS ) = 33 . 54 TC( MIN ) - 3 . 38 **-K'KK-K*-k= 1 ' KK** K**'k*** k:KKk'KK**.***** **4(1,.:K-+ K }_* 'n:I - 'K-KI: #: r** K* +:;KrKkr; K* KK* K**- FLOW PROCE.SS FROM NODE 64 . 00 T O NODE 68 . 00 IS CODE - 3 • >000ITTON OF SUBAREA TO MAINLINE PEAK FLOW 1.00 YEAR RAINFALL INTENS. CH( .CINCH/HOUR ) -- 4 . 3.9:: • SOIL CLAS`.3IF-Ir:STI:QINC IS "B" COMMERCIAL 'SUBAREA LOSS RATE , Fm( INCH/HR) -- . 0750 SUBAREA AREA( ACRES ) I . 32 SUBAREA RUNOFF( CFS ) 7 . 08 EFFECTIVE AREA( ACRES ) _ 24 . AVERAGED Fm! I N C H/H R ) = . 236 TOTAL. AREA( ACRES ) = 31 . L8 PEAK FLOW RATE( CFS ) 90 , 62 TC(MIN ) 2. 8 . 38 ********** **=K* ***** k=K**-K**.*************,K***'K'K**-K*******,K*'K*%K*=KK*=K:K=K******* FLOW PROCESS FROM NODE 56 . 00 TO NODE 57 . 00 IS CODE 2 VtVtl_UWMtN I l4UfftKUiAL TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE ) )= * .20 INITIAL SUBAREA FLOW-LENGTH = 400.00 UPSTREAM ELEVATION = 937.90 DOWNSTREAM ELEVATION = 933.00 ELEVATION DIFFERENCE = 4 . 90 TC = .304*[( 400 .00** 3. 00)/( 4.90)7** .20 = 8.055 100 YEAR RAINFALL INTENS.ITY( INCH/HOUR) = 4 . 504 SOIL CLASSIFICATION IS "8" COMMERCIAL. SUBAREA LOSS RATE, Fm( INCH/HR) _ .0750 SUBAREA RUNOFF( CFS ) = 13.87 TOTAL AREA(ACRES ) = 3. 43 PEAK FLOW RATE( CFS) = 13.87 ** **4(t** ** '* k*******"*** * T*'k k** *** K*-'K* **************** -**k:*;k=k:K:{; : k**=K*** FLOW PROCESS FROM NODE 53 .00 TO NODE 59.00 IS CODE >> •,RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< DEVELOPMENT IS COMMERCIAL TO = K* [ ( LENGTH -* ,3 . 00 ) / ( ELEVATION CHANGE)]** .20 INITIAL. SUBAREA FLOW-LENGTH = 230..00 UPSTREAM ELEVATION = 943 . 50 DOWNSTREAM ELEVATION 933 .70 ELEVATION DIFFERENCE 9 .80 TC = . 304*[( 880. 00** 3 .00 )/ ( 9 .80)]** . 20 = 11 .254 100 YEAR RAINFALL INTENSITY( INCH/HOUR) = 3.685 SOIL CLASSIFICATION IS "B" COMMERCIAL SUBAREA LOSS RATE, Fm( INCH/HR) _ .0750 SUBAREA RUNOFF(CFS) = 15 .53 TOTAL AREA( ACRES) = 4 . 78 PEAK FLOW RATE(CFS) = 15 . 53 **-k***-K K=K******=K****K*********************************-K********************* FLOW PROCESS FROM NODE 60 .00 TO NODE 61 . 00 IS CODE :- 3 > .>>>COMPE_JTE PIPE FLOW TRAVELTIME THRU SUBAREA<<<< >USING COMPUTER- ESTIMATED PIPESIZE (NON-PRESSURE FLOW )<«<< DEPTH OF FLOW IN 21 .0 [NCH PIPE tS 13 . 4 INCHES P LPEFLOH 'S'%ELOCIT'Y( FEET/SEC . ) = 9. b UPSTREAM NODE ELEVATION 1, 930 . 50 DOWNTRAM NODE ELEVATION 930. 10 PLtOWLENC IH ( FEET ) J,0 . 00 MANNINGS N = . 011 ESTIMATED PIPE DIAMETER.( INCH ) = 21 .00 NUMBER OF PIPES = PIPEF(..DIPJ THRU SUBAREA( CFS ) = 15. 53 TRAVEL TIME( I fIN . ) :- 0 TC( MINl . ) = 11 .31 **-t K., k*-k K* * K****'-k** 1= kk• K K***4: K* * K**************`K K******-t=*****=K******* FLOW PROCESS FROM NODE $0 .00 TO NODE 61 . 00 IS CODE M- 8 -:>: • ••ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<«( 100 YEAR RAINFALL INTENSCTY( INCH/HOUR) = 3 .675 SOIL CLASSIFICATION IS "B " PUBLIC PARK SUBAREA LOSS RATE. Fm( INCH/HR) _ . 6375 SUBAREA AREA( ACRES) _ . 13 SUBAREA RUNOFF(CFS) - . 36 EFFECTIVE AREA(ACRES ) = 4. 91 AVERAGED Fm( INCH/HR) = . 090 TOTAL AREA(ACRES) = 4. 91 PEAK FLOW RATE(CFS) = 15.84 . ' ` --- _ _ --- TC(MIN) = 11 .31 *************************m***********************************************mp* FLOW PROCESS FROM NODE 65' 00 TO NODE 66 ' 00 IS CODE c 2 ------------------ --------------- -'------ -------------------- � }>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS�/ ' '� NATURAL POOR COVER TC 7 K*[(LEN8TH** 3' O0)/( EL[VATION CHANGE ) ]** '20 INITIAL SUBAREA FLOW-LENGTH m 1600. 00 UPSTREAM ELEVATION z 970 ' 00 DOWNSTREAM ELEVATION = 955 . 00 ELEVATION DIFFERENCE m 15' 00 TO = .525*[ ( 10O0 ' 00** 3' 00 )/ ( 15 ' 0O ) 1 ** . 20 = 19 .273 100 YEAR RAINFALL INTENSZTY( INCH/HOUR ) = 2 ' 668 SOIL CLASSIFICATION IS ^8^ NATURAL POOR COVER "BARREN" SUBAREA LOSS RATE. Fn/( INCH/HR ) = . 2700 SUBAREA RUNOFF( CFS ) = 12'30 TOTAL AREA( ACRES ) = 5'70 PEAK FLOW RATE( CFS ) = 12 . 30 **4.*4,1,****-4 *** t:*1,***t*A.*t 4:****-* 4:***** Cant* t*/ *�� x*, t :1 **:o**4 ** FLOW PROCESS FROM NODE 66. 00 TO NODE 67 '00 IS CODE - q -_--- _ __-_ - --_ _-----_-- --_-_----- ---_ '------- . ' >:..» COMPUTE ^V° GUTTER FLOW TRAVELTIME THRU Sg8AREA</../‹. -_-- - UPSTREAM NODE ELEVATION = 954 .00 DOWNSTREAM NODE ELEVATION = 942-60 CHANNEL LENGTH THRU SUBAREA( FEET ) = 400. 00 ^V^ GUTTER WIDTH( FEET) = 10. 0{) GUTTER HIKE( FEET) = 1 .000 PAVEMENT LIP( FEET) = .001 MANNINGS N = '0400 PAVEMENT CROSSFALL(DECIMAL NOTATION) = .05 MAXIMUM DEPTH(FEET) = 2'00 NOTE:TRAVELTIME ESTIMATES BASED ON NORMAL DEPTH IN A FLOWING-FULL GUTTER( NORMAL DEPTH z GUTTER HIKE ) NOTE : TRAVELTIME ESTIMATES BASED ON NORMAL DEPTH IN A FLOWING- FULL G0TTEP(NDRMAL DEPTH = GUTTER HIKE ) 100 YEAR RAINFALL ]HTEN8ITY( INCWHOUR ) 7 2 ' 536 SOIL CLASSIFICATION IC ^B^ PUBLIC PARK SUBAREA LOSS RATE, Fm/ 3NCH/\:R ] �375 TRAVELTIME THRU SUBAREA BASED ON YELOCITY( FEET/][C ) = 3-90 AVERAGE FLOkV[`8PTH( FEET ) = 1 . 00 FLODDWTDTH( F[[T ) 10. 00 ^V^ GUTTER FLOW TRAVEL TIME( MIN ) - 1 . 71 TC( MZN) 7 20-98 SUBAREA AREA( ACRES ) : 5'22 SUBAREA RUNOFF (CFS ) EFFECTIVE AREA(ACRES) = 10 . 92 AVERAGED Fm( INCH/HB ) = '44b TOTAL AREA( ACRES) = 10'92 PG\K FLOW RATE( CFS ) = 20. 54 END OF SUBAREA ^V^ GUTTER HYDRAULICS: DEPTH( FEET ) = 1 . 01 FLOODWIDTH( F[ET ) = 10'31 FLOW VELOC]TY( FEET/SEC^ ) = 4 . 04 DEPTH*VEL[]CZTY = 4 .07 **************************************************************************** FLOW PROCESS FROM NODE 67 '00 TO NODE 68'00 IS CODE = 9 >>>»COMPUTE "V" GUTTER FLOW TRAVELTIME THRU SU8AREA<«« `� - � ---- - UPSTREAM NODE ELEVATION 942'80 ' �� � ��__ � DOWNSTREAM NODE ELEVATZ�N � 941 .80 � ���`� �� -_���' `� '-F"F1KC.1'IGIY I L11'A1 LLL ! PAVEMENT CROSSFALL(DECIMAL NOTATION) = . 04 MAXIMUM DEPTH(FEET) = 1 .00 100 YEAR RAINFALL INTENSITY( INCH/HOUR) = 2. 475 SOIL CLASSIFICATION IS "B" COMMERCIAL SUBAREA LOSS RATE , Fm( INCH/HR) = . 0750 TRAVELTIME THRU SUBAREA BASED ON VELOCITY( FEET/SEC ) = 3.24 AVERAGE F1_OWDEPTH( FEET) = .57 FLOODWIDTH(FEET ) FLOW PROCESS FROM NODE 81 .00 TO NODE 82.00 IS CODE = 2 >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< DEVELOPMENT IS PUBLIC PARK TO = K* [(LENGTH** 3 . 00 )/ (ELEVATION CHANGE ) ]** .20 INITIAL SUBAREA FLOW-LENGTH = 780 . 00 UPSTREAM ELEVATION - 949 . 00 DOWNSTREAM ELEVATION = 937 .20 ELEVATION DIFFERENCE x 11 .80 • TO = . 483*[( 780 . 00** 3. 00 )/( 11 . 80 ) 1 ** .20 = 16 . 026 • 100 YEAR RAINFALL INTENSITY( INCH/HOUR) = 2 . 981 SOIL CLASSIFICATION IS "B" PUBLIC PARK SUBAREA LOSS RATE , Fm( INCH/HR ) = . 6375 SUBAREA RUNOFF(CFS ) = 4 . 64 TOTAL AREA(ACRES ) = 2 . 20 PEAK FLOW RATE( CFS ) 7 4 . 64 ** ***;***********4. K ****;;********:r;4-, *,K:K KT*.K* ***** *:g t.{; K:!- K*:.-K**r 4..:: 1 FLOW PROCESS FROM NODE 83. 00 TO NODE 34 . 00 IS CODE -- 2 >RATIONAL METHOD INITIAL SUBAREA ANOLYSI S<<:< DEVELOPMENT IS PUBLIC PARK. TO = K* [(LENGTH* : 3 . 00 )/ ( ELEVATION CHANGE) J ry * . 20 INITIAL SUBAREA FLOW-LENGTH = 220 . 00 UPSTREAM ELEVATION = 937 . 70 DOWNSTREAM ELEVATION =- 935 . 50 ELEVATION DIFFERE!N!CE = 2.20 TO = . 483*[ ( 220-. 00*;K 3 .00 )/ ( 2 . 20 ) 1 ** .20 = 10 . 493 100 YEAR RAINFALL INTENSITY( INCH/HOUR ) = 3 . 843 SOIL CLASSIFICATION IS "B" PUBLIC PARK SUBAREA LOSS RATE , Frn( INCH/iHR) = .6375 SUBAREA RUNOFF(CFS ) = 1 .99 TOTAL AREA(ACRES ) - . 69 PEAK FLOW RATE(CFS) - 1 . 99 ** 1,.***** ;=***i:'4::K**:K:kkT: k'K. **'*:,;:KK1( *** :r*4 :K** •K'K:;`**;i;:I;,r::;; K ::f; i;.K:f:,,::K:K:i; FLOW PROCESS FROM NODE 630 . 20 TO NODE 630 . 20 IS CODE 7 . . . U S E R SPECIFIED HYDROLOGY INFORMATION A T NODE , USER-SPECIFIED VALUES ARE n3 FOLLOW:: : TC( MIN ) _ 24.75 RAIN I!NTEN ITY( INCH/!HOUR ) 2 .30 EFFECTIVE AREA( ACRES ) := 54 . 70 1O I AE AREA( ACRES ) = 54 . 70 PEAK FLOW RATE( CFS ) AVERAGED LOSS RATE , Fm( IN/HR ) .-• . 465 K.K ERROR.; SPECIFIED LOSS RATE , FM IS LESS THAN MINIMUM POSSIBLE VALUE. OF .63( IN!C:HE ;/HOl_)n ) :K** K s. :*-K************** K*=k"-K: ,K**:K*-k:***:k':K :k* K*'K*****'K*:k.K* K'y*k:K*^Ki:****** * K KIK FLOW PROCESS FROM NODE 930 . 20 TO NODE 90 . 00 IS CODE 7 6 -., .›;, ›COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA:<.<<< UPSTREAM ELEVATION = 945_ 50 DOWNSTREAM ELEVATION 939 . 60 STREET LENGTH( FEET) _ 680 .00 CURB HEIGTH( INCHES) 8 . STREET HALFWIDTH( FEET ) - 28 . 00 DISTANCE FROM CROWN TO CROSSFALL GRADEE3REAK = 16 .00 INTERIOR STREET CROSSFALL( DECIMAL ) = . 020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 83.04 ***STREETFLOW SPLITS OVER STREET-CROWN*** FULL DEPTH(FEET) _ . 94 FLOODWIDTH(FEET) = 28 .00 FULL HALF--STREET VELOCITY(FEET/SEC. ) = 4 .44 SPLIT DEPTH( FEET) = . 93 SPLIT FLOODWIDTH (FEET) = 27 . 50 SPLIT VELOCITY(FEET/SEC . ) = 4.37 STREETFLOW MODEL RESULTS : NOTE STREETFLOW EXCEEDS TOP OF CURB . THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL . THAT IS, ALL FLOW ALONG THE PARKWAY , ETC . , IS NEGLECTED , STREET FLOWDEPTH ( FEET ) - .94 HALFSTREET FLOODWIDTH ( FEET ) _ 28 .00 AVERAGE FLOW VE.LOCI fl ( FEET/SEC. ) - 4 . 44 PRODUCT OF DEPTH&V El_Or::I TY = 4 . 16 STREETFLOW TRAVELTIME( MIN ) 7 256 TC(MIN ) 27 . 31 100 YEAR. RAINFALL INTrENSITY( "CNC!-I/HOUR. ) z 2. 165 SOIL CLASSIFICATION ES "B" COMMERCIAL SUBAREA LOSS RATE , Fm( INCH/HR ) _• . 0750 SUBAREA AREA( ACRES ) - 1 . 1 1 SUBAREA RUNOFF(CFS ) -- 2 . 09 EFFECTIVE AREA( ACRES ) _. 55 . 81 AVERAGED Frn( INCH/HR ) = . 477 TOTAL AREA(ACRES) = 55 .81 PEAK FLOW RATE( CFS ) = 84 . 80 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH ( FEET) _ .94 HALFSTREET FLOODWIDTH( FEET ) = 28 . 00 FLOW VELOCITY( FEET/SEC . ) = 4 . 44 DEPTH*VELOCITY = 4. 16 *******-K::K********=*********:K:*:K * **************=K*************.r*.************** FLOW PROCESS FROM NODE 76 . 00 TO NODE 90 . 00 IS CODE = 8 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK F LOVJ<. . :< 100 YEAR RAINFALL INTENSITY( INCH/HOUR ) -- 2 . 165 SOIL CLASSIFICATION IS ''B " COMMERCIAL SUBAREA LOSS RATE . ( rn( INCH/HR ) z . 0750 SUBAREA AREA( ACRES ) v 1 . 10 SUBAREA RUNOFF( CFS ) - 2 . 07 EFFECTIVE AREA(ACRES ) '36 , 91 AVERAGED Fm( INCH/HR ) w . 469 TOTAL AREA( ACRES ) -- 56 . 91 PEAK FLOW RATE( CFS ) 86 . 87 Tr. ( MIN ) 27. :1 ****'*****'k K*.K*****:K is*.k *t.K:K*'I::Kik*****:K*******:K*********** K* y Y i ** K s. FLOW PROCESS FROM NODE 90 . 00 TO NODE 62 . 00 IS CODE -- 6 .›.)': »COMPUTE STREETFLOW rROVELTIME THRU SUBAREA -.<' UPSTREAM! ELEVATION = 939 .60 DOWNSTREAM ELEVATION = 933 . 20 STREET I...LNGTH( FEET ) - 630 . 00 CURB HEIrGTH ( INCHES ) = 8 . STREET H ALFWIDTH( _FEET ) - 30 . 00 DISTANCE FROM C:ROWI'`! ro C805SFALL GRADEOREAK .1.8 .00 INTERIOR STREET CROSSFA!..L( DECIMAL ) . 020 OUTSIDE STREET CRO;SS(=ALL ( !:EC:IMAL ) . 040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF -- 1 **TRAVE.LTI!ME COMPUTED USING MEAN FLOW( CFS ) = 87 . 79 ***STREETFLOW SPLITS OVER STREET"-CROWN*** I VLL nFIL1 ".:.v I r.GC I YLLWI.l I I 1 GC I / JGI.. ) - .+. 71 SPLIT DEPTH(FEET) _ .86 SPLIT FLOODWIDTH( FEET) = 25.22 SPLIT VELOCITY( FEET/SEC. ) = 4 .50 STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB . THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS , ALL FLOW ALONG THE PARKWAY, ETC. , IS NEGLECTED. STREET FLOWDEPTH( FEET ) = . 96 HALFSTREET FLOODWIDTH( FEET ') _ 30. 00 AVERAGE FLOW VELOCITY( FEET/SEC. ) -- 4 . 91 PRODUCT OF DEPTH&VELOCITY ::: 4. 70 STREETFLOW TRAVEL IIMIE( MIN ) = 2. 14 TC( MIN ) = 29 . 44 100 YEAR RAINFALL INTENSITY( INCH/HOOP. ) - 2 .069 SOIL CLASSIFIC '3TION IS "B" COMMERCIAL SUBAREA LOSS RATE , Fm) INCH/HR ) - . 0750 SUBAREA AREA( ACRES ) 7 1 . 03 - SUBAREA RUNOFF( CFS) = 1 .85 J J EFFECTIVE AREA( ACRES ) -. 57 . 94 AVERAGED Fm( INCH/'HR ) . 462 TOTAL AREA(ACRES ) - 57 . 94 PEAK FLOW RATE( CFS ) - 3u .37 END OF SUBAREA STREETFLOW HYDRAUILIlC`. DEPTH( FEET ) _ . 96 HALFSTREET FLOODWIDTH( FEET ) 30 . 00 FLOW VELOCITY) FEf T /SEC. ) _ 4 . 91 DEPTHVELOCITY -. 4 . 70 ******%*********'#=:r".::1 I: k**** k=K=r;4:=k:K*-1<-r-r** ****)K:K=ii::k*;K****=r=K*****k=i<.K.k*;n*** <** *** FLOW PROCESS FROM NODE 62 . 00 TO NODE 62 . 00 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS : TC(MIN ) -• 29 .44 RAIN INTENSITY) INCH/HOUR) z 2 . 07 EFFECTIVE AREA( ACRES ) _ 29,00 TOTAL AREA( ACRES ) - 29 . 00 PEAK FLOW RATE(CFS ) -. 43. 44 AVERAGED LOSS RATE , Fin( IN/HR) = . 462 T*********•K* ***:**t:K:K.*.***:i'::1•:ice*:fin K �.1`*•-:**: *****.:#;** **.n1:*M****; ;K-K*:K*KT* iK*: * FLOW PROCESS FROM NODE 55 . 00 TO NODE 62. 00 IS CODE - 8 • - , ADDITILN OF SUBAREA TO MAINLINE PEAK 'FLOW < '. 100 YEAR RAINFALL. IiNTENSIT'r ( IINCH/HOUR ) z 2. 069 OIL CLASSI.E- 1.I..:AI.I.i=ilN! IS "0 COMMERCIAL JUL - 1LrLOSS RATE , En ) ICl/FR ) - . 0750 SUBAREA =RCh ; F _R ;F1 i rlSUBAREA RUNOFF( CFS ) : 8 . 81 EFFECTIVE AREA( ACRES)ES ) - 33 . 91 • AVERAGED Fm) INICHI/HP, ) " . 406 TOTAL AREA( ACRES ) 35 . 91. PEAK FLOW RATE( CFS ) 50 . 77 TC( MIN ) = 29 . 44 t-1: K* **:I:***-K*v*.KK'Kk- K*•K K#' k**.'' **'K **'K-K****t"*** KKK* K* K* **'i:**.K*********** FLOW PROCESS FROM NODE 62 . 00 10 NODE 91 . 00 IS CODE 1 >.> = :>DEOIONATE INDEPENDENT STREAM FOR CONFLUENCE.•' <«‹. CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE. TIME OF CONCENTRATION(MINUTES ) 29 . 44 ... RAINFALL INTENSITY ( INCH . /HOUR ) -- 2 . 07 EFFECTIVE STREAM AREA(ACRES) _ 33 . 91 TOTAL STREAM AREA( ACRES ) = 33. 91 PEAK FLOW RATE( CFS ) AT CONFLUENCE 27 50 . 77 • ************************************************************************** FLOW PROCESS FROM NODE 630 . 20 TO NODE 630 .20 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER.-SPECIFIED VALUES ARE AS FOLLOWS; TC( MIN ) = 24 .75 RAIN INTENSITY( INCH/HOUR ) = 2 .30 EFFECTIVE AREA(ACRES ) = 97 . 30 TOTAL AREA( ACRES ) = 97 . 30 PEAK FLOW RATE(CFS) = 166 .00 AVERAGED LOSS RATE, Fm( IN/FIR ) - . 485 k**r* :**:k*********-* ******:r*:-r********:***:k*.K r** k*************:( K*********:K**** FLOW PROCESS FROM NODE 630 . 20 TO NODE 70 . 00 IS CODE _ > >,•CONIPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< > >>USING COMPUTER- ESTIMATED PIPESIZE ( NON -PRESSURE FLOW ) <«« DEPTH OF FLOW IN 51 . 0 INCH PIPE IS 37 . 9 INCHES PIPEFLOW VELOCITY( FEET/SEC . ) = 14 . 7 UPSTREAM NODE ELEVATION = 945 . 50 DOWNSTREAM NODE ELEVATION = 942 . 50 FLOWLEiNGTFI ( FEET ) _ 240 . 00 MANNINGS 4 . 01: ESTIMATED PIPE DIAMETER( INCH ) = 51. . 00 NUMBER OF PIPES = l PIPEFLOW THRU SUBAREA( CFS ) = 166 . 00 TRAVEL TIME(MIN . ) = .27 TC(MIN . ) = 25 . 02 *=K*****:*'K-k* k*-k****.,;.-k***:;::p:: *************; ***K*: :**-**=K**=K*******-k,K****KK=K******* FLOW PROCESS FROM NODE 65 . 00 TO NODE 70 . 00 IS CODE = 8 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY( INCH/HOUR ) -. 2.282 SOIL CLASSIFICATION IS "5" COMMERCIAL SUBAREA LOSS RATE , Ffn( INCH/HR ) = .0750 SUBAREA AREA(ACRES ) - 13 . 14 SUBAREA RUNOFF(CFS) = 26 . 09 EFFECTIVE AREA( ACRES ) 110 .44 AVERAGED Fm( INCH/HR ) __ . 436 TOTAL AREA( ACRES ) = 110 , 14 PEAK FLOW RA T E(C F S ) .= 183 . 12 TC(MIN ) = 25. 02 :'r.*:,.-Y.F* a: .i,********_K****=k%1 i ..;- n 1: r*M * kir K**=k**** *:, : :;::;**.****:K* FLOW PROCESS FROM NODE 70 . 00 TO NODE 91 . 00 IS CODE _ 2>.-COMPUTE PIPEFLOW TRA'VELTIf1E THRU GUBAREA<<<<‹. >»>>USING COMPUTER-ESTIMATED C7IPE.SIZE ( NON --PRESSURE FLOW ) <-:_.< DEPTH OF FLOW IN 54 . 0 INCH PIPE: IS 39 . 0 INCHES PIPEFLOW VELOCITY( FEET/Si- C . ) z 14 . 9 UPSTREAM NODE ELEVATION = 929 . 70 DOWNSTREAM NODE ELEVATION = 9.16 . 27 r I_ONLENGTH ( -i. E'T) - 1110 . 00 MANN INGS N = . 013 ESTIMATED PIPE DIAMETER( INCH ) = 54 . 00 NUMBER OF PIPES - 1. PIPEFLOW THRU SUBAREA( CFs ) -: 183 . 42 TRAVEL 1':IME( M I ISI . ) 1 . 2-1 TC( MIN . ) 26. 26 *************;k*•.***** K*-t****-'k:***************(.R-k****.K**?K_-K*****************:k*** FLOW PROCESS FROM NODE 91 . 00 TO NODE 91 .00 IS CODE = 1 > ';'DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 26 .26 RAINFALL INTENSITY (INCH . /HOUR) = 2 . 22 EFFECTIVE STREAM AREA(ACRES) = 110 . 44 TOTAL STREAM AREA(ACRES ) = 110. 44 PEAK FLOW RATE(CFS) AT CONFLUENCE = 183. 42 CONFLUENCE INFORMATION : STREAM PEAK FLOW TIME INTENSITY . FM EFFECTIVE NUMBER RATE( CFS ) ( MIN . ) ( INCH/HOUR ) ( IIS!/HR ) AREA( ACRES ) 1. S0 .77 29 , 44 2. 069 .41 33 . j1 2 L83. 42 26 , 26 . 44 110 , 44 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUE!NIC:E. FORMULA USED FOR 2 STREAMS . SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER Q( CFS ) AREA( ACRES ) 1 219 . 06 144 . 35 2 232 . 70 140 . 69 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS PEAK FLOW RATE(CFS ) 232 . 70 TIME( MINUTES ) 26 . 26.1. EFFECTIVE AREA( ACRES ) 140 . 69 TOTAL AREA(ACRES ) " 144 . 35 **************** *=* *K**r':K******* %K*** k'k* K*=K*=K=k::k*** -k'K** K*=;<-k*;K-k`K=K****; :k:k FLOW PROCESS FROM NODE 91 . 00 TO NODE 92 . 00 IS CODE z 3 >>>CO1'1PUTE PIPEFLOW TRAVELTIME THRU SUBAREA««K >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) «<:« DEPTH OF FLOW IN 60 . 0 INCH PIPE IS 49 .0 INCHES PIPEFLOW VELOCITY( FEET/SEC. ) = 13 . 6 UPSTREAM NODE ELEVATION • 916. 26 DOWNSTREAM NODE ELEVATION -. 915 . 07 FLOWLENG T H ( FEET ) 1. 10 . 58 MANNINC`E N . 013 ESTIMATED PIPE DIAMETER ( INCH ) 60 . 00 NUMBER OF PIPES _ 1 PIPEFLOW THRU SUBAREA( CFS ) 232 . 70 TRAVEL AVEL. TIME( MIN . ) . 17 TC( MIN . ) 7 26 . 43 -. k F* k** Kt* {:* .r v* f: k r'.p r-.k*,k.:;r**t.k* k. ..k. k**-k:*** k*_ Y;�.k:f K.;t-i(* k.:1,.Ic : FLOW PROCESS FROM NODE 92 .00 TO NODE 92 .. 00 IS CODE 1 >DESIGNATE INDEPENDENT STREAM FOR CCONFLUENCE :«<. '. CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE. TIME OF CONCENTRATION ( MINUTES ) 26 . 43 RAINFALL INTENSITY ( INCH . /HOUR ) 2 . 21 EFFECTIVE STREAM AREA( ACRES ) _• 140 . 60 TOTAL STREAM AREA( ACRES ) .. 144 . 35 ' PEAK FLOW RATE( CFS ) AT CONFLUENCE 2.32 . 70 t:* 1-i *i,.*******:****** { * :I: f::k:i'*:•k*** *:i::k ,r*:k•k: ***_***:*****:**** 4::P ;.**;,:.** K1:k*:*:.k*:y`.; ` =l..OW PROCESS FROM NODE 63 . 00 TO NODE 63 . 00 IS CODE. = 7 . > > >U ER SPECIFIED HYDROLOGY INFORMATION AT NODE««<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC( MIN ) = 8. 39 RAIN INTENSITY( INCH/HOUR ) = 4 . 40 II.J I riL rir%LN9t,I-i4I,L«.Jf dl . r.cJ ..Yii♦ w_w..,rw wa .w :_ .+ ., ,.. AVERAGED LOSS RATE, Fm(IN/HR) = _236 ******************* ******** x*********** :*********************************** FLOW PROCESS FROM NODE 63.00 TO NODE 92.00 IS CODE = 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<«< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< DEPTH OF FLOW IN 45 .0 INCH PIPE IS 31 . 4 INCHES PIPEFLOW VELOCITY( FEET/SEC. ) = 11 .0 UPSTREAM NODE ELEVATION = 922 .00 DOWNSTREAM NODE ELEVATION = 917 .57 FLOWLENGTH( FEET ) = 520 . 00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER( INCH ) = 45 . 00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA( CFS) = 90 .63 TRAVEL TIME(MIN . ) = . 79 TC( iMIN . ) = 9. 18 . FLOW PROCESS FROM MODE W2 . 00 TO NODE 92.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««f >>>»AND COMPUTE VARIOUS CONT LUENCED STREAM VALUEa<<<<.: CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION( MINUTES) _ 9. 18 RAINFALL INTENSITY ( INCH ./HOUR ) = 4. 17 EFFECTIVE STREAM AREA( ACRES ) _ 24 .48 TOTAL STREAM AREA( ACRES) = 31 . 18 PEAK FLOW RATE( CFS) AT CONFLUENCE = 90.63 CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS ) ( MIN . ) ( INCH/HOUR ) ( IN/HR ) AREA(ACRES) 1. 232. 70 26 .43 2.208 .43 140.69 2 90 .63 9. 18 4 . 165 .29 24 .4 RAINFALL INTENSITY ANC TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA UE.,EO FOR 2 STREAMS • SUMMARY RESULTS STREAM CONFLUENCE EFFECTIVE NUMBER ID( C:F 'r AREA(ACRES ) 1 277 .60 165. 17 2 260 . 35 7,1; .32 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS : PEAK FLOW RATE(CFS ) = 277 .60 TIME( MINUTES) = 26. 434 EFFECTIVE AREA( ACRES ) = 165 , 17 TOTAL AREA(ACRES ) 175 . 53 END OF STUDY SUMMARY: TOTAL AREA( ACRES ) - 175 . 53 ' EFFECTIVE AREA(ACRES) = 165 . 17 PEAK FLOW RATE(CFS ) _ 277. 60 -- ------- ---- --- END OF RATIONAL METHOD ANALYSIS OFFSITE HYDROLOGY FOR ALMOND AVENUE STORM DRAIN **************************************w************************************* {� RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE ( Reference: 1986 SAN BERNARDINO CO ' HYDROLOGY CRITERION ) *** PRELIMINARY/EXPERIMENTAL VERSION *** Cooyr1ght 1983 , 86 `87 Advanced Engineering Software ( aes ) Ver ' 4 . 18 Release Date : 2/20/87 Serial # BETAO6 EmPially prepared for : ***TA. * | * * sxt.** f 0E�CRIPTIUM OF sTUDf *************** **«*******A * HYDRULOG'; QrUUY EOR ALMOND AVE . STORM DRAIN AT NORTH �»�� u�z» �� . +-+ /���'/ � ~/'�^_-r' * WEST CORNER OF HENRY J . KA]3[K HIGH SCHOOL 7-�l �/�x/ * ' '' ' ,yr' `~e,` 4 *****�**4********** *************************************************** FILE NAME: KHS-O .DAT TIME/DATE OF STUDY: 12:44 3/ 2/ 1994 - USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION : -~*TIME-OF-COMCENTRATION MODEL*-- USER SPECIFIED STORM EVENT( YEAR ) = 25-00 SPECIFIED MINIMUM PIPE SIZE( INCH ) 36'00 SPECIFIED PERCENT OF GPAETENTS( OEOL4AL ) TO USE FOR FRICTION SLOPE = .95 *USER-DEFINED LQGARITHM [C INTERPQLP“ 7ON USED FOR RAINFALL* SLOPE OF INTENSITY DURATION cURVE = `000 USER SPECIFIED 1-HOUR INTENE,lTY( INCH/H�, 'R ) : 1 . 0640 ' * - * v *^ ^ k * rf ***x* 11 ` r / / / *,m *w *�*.* ** ** , ~ ***�* *w *f* /� m ;, v1 ° xtt -r+ FLyW PrO_�EE, FROM NODE 62'5-OO TO NODE �„75- lD IS CODE = 2 -------- -- ---- -- ---- - -------- ---- '----'-- - '--- --- » , >:RATIONAL METHOD METHOD ZNITIAL SUBAREA ANALYSIS <«< __-- - -- ---- -- ���� ----- --- ---�c������c��������_--_ -- z- - -DEVELOPMENT IS IS 3INGLE FAMILY RESIDENTIAL -/ 5-7 DWELLINGS/ACRE TC = K*[( LENGTH** 3. 00 )/ ( ELEVATION CHANGE ) ] ** .20 INITIAL SUBAREA FLOW-LENGTH = 1000'00 UPSTREAM ELEVATION = 1020 '00 DOWNSTREAM ELEVATION = 1002 '00 ' ELEVAT [ON DIFFERENCE 18 . 00 / TO = .389*[( 1000 . 00** 3 -O0 )/( 18 .O0 ) ] * . 20 = 13 ' 769 2S YEAR RAINFALL ZNTENSITY( INCH/HOUR) = 2. 573 SOIL CLASSIFICATION IS ^A^ RE3IOENTZAL-/ 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm( TNCH/HR ) 7 -4850 SUBAREA RUNOFF(CFS) = 18 . 79 TOTAL AREA( ACRES) = 10 .00 PEAK FLOW RATE(CFS) = 18. 79 ***************************************************************m************ . »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< UPSTREAM ELEVATION = 1002 .00 DOWNSTREAM ELEVATION = 1000 .00 STREET LENGTH( FEET ) = 450 . 00 CURB HEIGTH( INCHES) = 6. STREET HALFWIDTH( FEET ) = 20 .00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK 12 .00 INTERIOR STREET CROSSFALL( DECIMAL ) _ . 020 OUTSIDE STREET CROSSFALL( DECIMAL ) _. . 040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 **TRAVELTIME COMPUTED USING MEAN FLOW( CFS ) = 26 . 11 ***STREET FLOWING FULL K *-K STREETFLOW MODEL RESULTS . NOTE : .TTREETFLOW EXCEEDS TOP OF CURB . THE FOLLOWING STREETFLOW RESULTS ARE BASED ON TI-IE ASSUMPTION THAT NECL_ r ?L E FLOI^J OCCURS OUTSIDE OF THE STREET CHANNEL . THAT IS , ,.i LCL- FLOW ALONG THE PARKWAY . FTC _ I S NEGLECTED . STREET FL.Lj..1C?EI::'T- i ( i .-i`T ) .. HALFSTREET I_ ODFJIDiH ( FEET ) _ 20 . 00 AVERAGE _ : v VS lOC - F 1 ( ==rr/S ry . ) - 2 . 65 PRODUCT OF 1:!L/HTHDVELOCTTY = STREETFLOW TRAVEL.TII''ilf: MN 1 -• 2 . 83 TCLMIN ) - 16.60 25 YEAR RAINFALL .IN I ENSiTY( INCH/HOUR ) -- 2 . 300 SOIL CLASSIFICATION IS A ' RESIDENTIAL- > 5-7 DWELLI. IGS/ACRE SUBAREA LOSS RATE, Fm( IiNCH/HR ) _ .4850 SUBAREA AREA( ACRES ) - 9 . 00 SUBAREA RUNOFF(CFS) = 14 . 70 EFFECTIVE AREA( ACRES ) = 19 . 00 AVERAGED Fm( INCH/HR ) -- . 485 TOTAL AREA( ACRES ) = 19 . 00 PEAK, FLOW RATE( CFS) _ 31 . 04. END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH ( FEET ) = . 71 HALFSTPEWET FLOODWIDTH( FEET ) = 20 . 00 FLOW VELOCITY( F EET /:SEC . ) -- 272 DEPTH*VELOCITY = 1 . 92 *4' ,1(* K*:**-* * K****:* ** K 4=K K.*'8 K*-K.K :k:***=**.I: :*='r•* '*********:k:* k- * :* **:* * FLOW r I h R iO R NODE NODE 2 7 1 0 IS CODE 6 I . P ) E C _ _ F= _OH1CFJ E _l I ' _ THRU _ J a rREA ; ':< K Up17F= .,-;I"l ELEVATION = 1000 . 00 DOWNSTREAM ELEVATION = i:i ) H ( F F T ) -• 100 . 00 (CURL H E I'TTH I. INCHES' ) e 6 . II J STREET HALFWIDTH ( FEET ) -• 20 . 00 DISTANCE FETCH (;:P)JW'JN TO CROSSFALL CR.AD :_E )TEAK 7 12 . 00 INTER.IOP:. STREET CROSSFALL ( DECIMAL ) •= . 0 '-0 OUJTSIDE STREET CROSSFALL( DECIMAL ) _. 040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 t•„ I .AVELTTME COMPUTED USING MEAN FLOW( CFS ) = 37 . 7d k =KSTRE:ET FLOWING FULL f' A * STREETFLOW MODEL RESULTS : NOTE : S CREST FLOkI EXCEEDS TOP OF CURB . THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOUT OCCURS OUTSIDE OF THE STREET CHANNEL-. , - THAT IS , ALL FLOW ALONG THE PARKWAY . ETC . , IS NEGLECTED . STREET FLOWDEPTH ( FEET ) = . 72 HALFSTREET FL-.00DWIDTH( FEET ) = 20 . 00 AVERAGE FLOW VELOCITY(FEET/SEC . ) -- 3. 09 PRODUCT OF DEPTH&VELOCITY = 2.24 STREETFLOW TRAVELTIME( MIN ) = 2. 16 TC( MIN ) = 18.76 « LJ i .HK KHJNrHLL 1N I tN i I i ttiNl.rl/ r1UUK ) - 4. 100 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ . 4850 SUBAREA AREA(ACRES) = 9.00 SUBAREA RUNOFF(CFS) = 13.39 EFFECTIVE AREA( ACRES ) = 28 .00 AVERAGED Fm( INCH/HR) = . 485 TOTAL AREA( ACRES ) z 28 .00 PEAK FLOW RATE( CFS) = 41 . 65 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH ( FEET ) - .74 HALFSTREET FLOODWIDTH ( FEET) = 20 . 00 FLOW VELOCITY(FEET/SEC. ) = 3 . 21 DEPTH*VELOCITY = 2 . 39 ***** K**-K=K*****:K'K-K:K*****K=K'K• 'K***1(**:K*****=K.i; K r** **- ********=k=k.K K=K**-K*****:-KW4 FLOW PROCESS FROM NODE 627 . 10 TO NODE 628 . 10 IS CODE = 6 ; COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA <<K UPSTREAM ELEW:1TIOiN = 998.00 DOWNSTREAM ELEVATION = 925 . 00 STREET LENGTH( ETI - 900 .00 CURB HEIGTH ( INCHES ) _ 8 . REE-'i i-IA!._FWIDTiHi FEET ) 24 . 00 013 I, NUE FROM CROWN TO C:POS:SFALL GRADEBREAK - 16 . 00 INTERIOR STREET CF;L).:_3FALL.I DECIMAL ) = . 020 OUTSIDE STREET CRIES FF',LI_ ( DECIMAL ) ._ . 040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF •- 2 r*TRAVELTIME COMPUTED USING MEAN FLOW( CFS ) = 59 . 47 STREETFLOW MODEL RESULTS: NOTE : STREETFLOW EXCEEDS TOP OF CURB . THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL , THAT IS, ALL FLOW ALONG THE PARKWAY , ETC . , IS NEGLECTED . STREET FLOWD~PT•H ( FEET ) . . 75 HALFSTREET FLOODWIDTH( FEET ) -- 23 , 50 AVERAGE FLOW VELOCITY( FEEli /SEC . ) = 4 . 71 PRODUCT OF [?EPTH&VIELOCITY = 3 . 52 STREETFLOW TRAVELTIME( MIN ) _ 3 . 13 ICC NIIN I - 21 . 94 25 YEAR RAINFALL INTENSITY( INCHiHLUR ) ... 1 . 946 :SIL CLAS= .I i0ATICN T.S A„ RESIDENTIAL -2 E_T; t � -I rL 5 - 7 DWELLINGS/ACRE a J'' _ = LOSS RATE ., F rl / J . 4850 .~;Ur.ARF:, , Ar_,_F'il' AC ..E ) - 27 . 00 aUBAr.E:! RUNOFF( CFS ) :- 35 . 19 EFFETIVE ! R E ! R E ) 53 . 00 NE'?iir:EE Fn's( INCH/HIT ) ,4e5 ARF.Fi( AC:RE.:. ) - 53 . 00 PEAK FLOW r. :TE( CFS ) 72 .30 E_N( OF S JBAR.EA STREETFLOW HYDRAULICS: DSPHI FE ET ) _ . 79 HALESIRF_ET FLOODWIDI ( FEET ) -z 24 . 00 FLOW VELOCIT`i ( FEET/SEE: , ) 4 . 98 DEPTH*VELOCITY = 3 . 93 K'K* k K t. K K.# KKK******** K:K-K**:***:K***************.* K.*'K K::K**** K**:* *:K K*:K-KK'k .K****'K*S FLOW PROCESS FROM NODE 628 . 10 TO NODE 629 . 10 IS CODE - > •' >CO MUTE PIPEFLOW TRAVELTIME THRU SUBAREA . ; = >USING COMPUTER-ESTIMATED PIPES IZE ( NON--PRESSURE F LOW ) <<:<•.- DEPT-H OF FLOW IN : 6 . 0 INCH PIPE III 27 . 1 INCHES PIPEFLOW VELOCITY( FEET/SEC.. ) = 12 . 6 UPSTREAM NUDE ELEVATION = 985 . 00 DOWNSTREAM NODE ELEVATION = 960. 00 FLOWLENGTH( FEET ) = 1700, 00 MANNINGS N - . 013 ESTIMATED PIPE DIAMETER( INCH ) = 36 . 00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA( CFS ) = 72.30 TRAVEL TIME( MIN . ) = 2 . 24 TC(MIN . ) = 24. 18 •*******:K********** *********** :*** i*�c*�c****************%K**********%K*�lc******* FLOW PROCESS FROM NODE 628 . 10 TO NODE 629. 10 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 25 YEAR RAINFALL INTENSITY(INCH/HOUR ) 1 .835 SOIL CLASSIFICATION IS 'IA" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS PATE , Fm( INCH/HR) - . 4850 SUBAREA AREA( ACRES) = 55 .00 SUBAREA RUNOFF(CFS ) = 66.85 EFFECTIVE AREA( ACRES ) = 110 .00 AVERAGED Fm( INCH/HR) -- . 485 TOTAL AREA( ACRES ) = 110. 00 PEAK FLOW RATE( CFS ) - 133. 70 IC:( MIN ) _ 24 . 18 k.k* ***:k ** rr•**=k k * K** -.**-k****=k**=k***-k****** *:** *-k******'K* ************'k FLOW PROCESS FROM NUDE 629 . 10 TO NODE 630 . 20 IS CODE = 3 i>>P'ii=i.'TE PIPEFLOW TRAVELTIME THRU SUBAREA, <<.K r OMPUTER- c IIMATED PIPESI:E ( NON-PRESSURE FLOW ) ' _ . DEPTH OF FLOW IN 48. 0 : 'ICH PIPE IS 36 . 9 INCHES PIPEFLOW VELOCITY( FEET;I:CC, ) -- 12. 9 IJPSTRE_AM! NODE ELEVATION 960 . 00 DOWNSTREAM NODE ELEVATION 946 . 00 FLOWLENGTH ( FEET ) = 1350 . 00 MANNINGS N = .. 013 ESTIMATED PIPE DIAMETER ( INCH ) = 48 . 00 NUMBER OF PIPES = 1. PIPEFLOW THRU SUBAREA( CFS ) = 133 . 70 TRAVEL TIME(MIN . ) = 1 . 74 TC( MIN . ) = 25 . 93 ********.k'k=k***;k;k*=k.* K****-*****:#:=k•;K *=k**.k****;:***: ********=k***=k************r" FLOW PROCESS FROM NODE 629 . 10 TO NODE 630 . 20 IS CODE = S >>.>»ADDITION ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<K<•:< ------------ 25 YEAR RAINFALL .INTENSITY( INCH/HOUR ) = 1 . 760 ' SOIL CLASSIFICATION IE "A" RESIDENTIAL- ;• 5-7 DWELLINGS/ACRE S B FR =A LOSS RATE , Fn ( 7 \ CH; - R ) w . 4850 SUBAREA AREA( ACRES ) - 42 . 00 SUBAREA UBARcFUJJFF ( CrS ) - 48 . 21 EFFECTIVE AREA( ACRES ) _ 152 . 00 (9VERA1.1;1C; Fm( INCH/H!R ) _ . 48 TOTAL AP A( ;'i(=:;?.I:3 ) _ .1.52. 00 �Y fir i,I�� - PEAK FLOWRATE( CFS ) = 174 . 47 _ / � /- TC( MIN , _ :5 , 93 ZJ k******* **** k k* -*********.k*** 4.*************** i * ***4:;k****'k:k**-':(*•k*=k******- FLOW PROCESS FROM NODE 630. 20 TO NODE £U , 10 IS CODE :_ 3 .• (-,O PIJTE PIPEFLOW TRAVELTIME THRU SUBAREA- ::<< lJr Ti*Ii COMPUTER-ESTIMATED PIPESIIE ( NON -PRE3 URC DEPTH OF FLOW IN 54 . 0 INCH PIPE IS 38 . 9 INCHES PIPEFLOW VELOCITY( FEET/SEC: . ) = 14 .2 UPSTREAM! NODE ELEVATION = 946 . 00 DOWNSTREAM NODE ELEVATION = 930 . 60 F LOWLENCTH ( VEEET ) = 1.400,. 00 MANNINGS N :: . 013 ES1 IMATED PIPE DIAMETER( INCH ) = 54.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA( CFS ) = 174 .47 TRAVEL TIME( MIN . ) = 1 . 64 TC(MIN . ) = 27 . 57 1 W.J. . u. 1 , ., f. .f, I. I. I. Y_• L..L,.L, ... ...1. I •.. L 4. Y..1....I,.Y,._, .I, .... . Y 1.a. .. .-Y. .. .. •. .•... ... ... . ...•. .. t'LUW VMYkoC00 rrcuri NULIC. OY.,4V _ I V_ NUVG c, >v. ter .L 4.UIJC — 0 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<“<< 25 YEAR RAINFALL INTENSITY( INCH/HOUR) 1 .697 SOIL CLASSIFICATION IS "A" SCHOOL SUBAREA LOSS RATE, Fm(INCH/HR) _ . 5820 SUBAREA AREA(ACRES ) = 41 :00 SUBAREA RUNOFF(CFS) = 41 . 13 EFFECTIVE AREA( ACRES ) = 193. 00 AVERAGED Fm( INCH/HR) _ . 506 TOTAL AREA(ACRES ) = 1.93. 00 PEAK FLOW RATE( CFS : = 206.90 Qz = 207 /51-r sCIT. - t.r TC( MIN ) = 27 .57 ('e/,A!['/Z END OF STUDY SUMMARY: TOTAL AREA( ACRES ) = 193.00 EFFECTIVE AREA( ACRES ) - 13. 00 PEAK FLOW RATE( CFS ) _ 206.90 END OF RATIONAL METHOD ANALYIS **********************************:****************************************;ass RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION ) *=* K PRELIMINARY/EXPERIMENTAL VERSION *** Copyright 1983 ,86 . 87 Advanced Engineering Software ( aes) Ver . 4 . 1B Release Date : 2/20/87 Serial # BETA06 Especially prepared for : FILE NAME ` KHS--G . DAT TIME/DATE OF STUDY . 12 : 49 3/ 2/ 1q9=4 USER SPECIFIED IHYLROLOCYAND I HYDRAULIC MODEL INFORMATION : 100 Y54g. W - - *TIME -OF .-CONOENTRATION MODEL k-•-- USER SPECIFIED STORM EVENT( YEAR ) ._ 100 . 00 SPECIFIED MINIMUM PIPE ':SIZE( INCH ) 36 . 00 SPECIFIED PERCENT OF GRADIENTS( DECIMAL ) TO USE FOR FRICTION SLOPE = .9 *USER --DEF INED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE = . 6000 USER SPECIFIED 1-HOUR INTENSITY( INCH/HOUR ) = 1 . 3500 **********: **** :*:x k: :r.************: r: **:K********:e;**> **: : :r.l;** I :K****.**: *****4 FLOW PROCESS FROM NODE 625 . 00 10 NODE 625 . 10 IS CODE = 2 >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL. -> 5-7 DWELLINGS/ACRE TO = K* L( LENGTH** 3 . 00 )/ ( ELEVATION CHANCE ) 1** . 20 INITIAL SUBAREA FLOW-LENGTH = 1000 . 00 UPSTREAM ELEVATION -- 1020 . 00 DOWNSTREAM ELEVATION _ 1002 . 00 ELEVATION DIFFERENCE = 18 . 00 TO = . :89K1 ( 100000** 3 . 00 ) / (( 1`"' . 000 ) I K# 20 12: . 769 100 YEAR RAINFALL IiNTEN ITY( :[INC. i,F Oi.JP. ) _ 3 _ 26S SOIL CL.A'SSIF .L:ATIHN IS -i RESIDENTIAL--> 5 - 7 :SWELLINGS/ACRE SUBAREA LOSS Ri` T-_. Fm( INCH/HR ) = . 'Ja`;o SUBAREA Ri.JINOF F ( CF C ) 2E3 . 02 TOTAL AREA( ACRES ) - 10 ,00 PEAK FLOW RATE( CF ; ) = 25 ,02 ,r*r.*:**-4(* I,*: p k K'i:$*** =K* *******{r ..* .v******* 4..****4,,g** ::4(tg*********** **T i-:*.* a, FLOW PROCESS FROI'1 NODE 625 . .1.0 TO NODE 626 . 10 IS CODE = 6 > >: .>C.UNIrUTE STPEETFLOW TRAVELTIMF; THRU SUBAREA<<.<<< UPSTREAM ELEVATION = 1002_00 DOWNSTREAM ELEVATION ` 1000 . 00 STREET LENGTH ( FEET ) = 450 . 00 (. URB HEIGTH ( INCHES ) = 6 . STREET HALFWIDTH( FEET ) = 20 . 00 DISTANCE FROM CROWN TO CROSSFAL.L GRADEBREAK = 12 . 00 INTERIOR STREET CROSSFALL(DECIMAL ) = . 020 OUTSIDE STREET CROSSFALL( DECIMAL ) - . 040 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 35.01 ***STREET FLOWING FULL*** STREETFLOW MODEL RESULTS: NOTE : STREETFLOW EXCEEDS TOP OF CURB . THE. FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE .FLOW OCCURS OUTSIDE OF THE STREET CHANNEL . THAT IS , ALL FLOW ALONG THE PARKWAY , ETC . , IS NEGLECTED . STREET FLOWDEPTH ( FEE 1- ) __ .72 HALFSTREET FLOODWIDTH ( FEET ) = 20 . 00 AVERAGE FLOW VELOCITY( FEET/SEC . ) = 2 . 87 PRODUCT OF DEPTH&VELCJCITY -= 2 . 08 STREETFLOW TR,?VELTIME( MIN ) _ 2 .. 6i TC( MIN ) - 16 .38 100 YEAR RAINFALL INTENSITY ( IiNCH/HOUR ) -- 2 . 942 SOIL CLASSIFICATION IS A RESIDENTIAL- -• 5-7 DWELLINGS/ACPE SUBAREA LOSS RATE , Fm( INCH HR ) -• . 4850 SUBAREA RREAi . ACRES ) _ 9 . 00 SUBAREA RUNOFF( CFE ) = 19 . 90 EFFECTIVE AREA( ACRE'S ) = 19 , 00 AVERAGED - m( INCH/HR. ) . :iS_. 1OTAL.-. p:F^,' :fRE ) _ 19 . 00 PEAK FLOW RATE( CFS )iFS ) _ 42 , 01 END OF SUBAREA STREEFLOW HYDRAULICS: DEPTH ( FEET ) = . 76 HALFSTR.EET FLOODWIDTH ( FEET ) = 20 . 00 FLOW VFLC.:C:I i Y ( FEET/SEC ) _ .'. . 05 DI PTH*VELOCITY z 2 . 33 ****** ** k * *- *l r***- *** K; k*****1<*** ** K*;K;K** IK********** **;;<;k*'k:K. =k:K; *** FLOW PROCESS FROM NODE 62.6. .10 TO NODE 627 . 10 IS CODE _ 6 >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< UPSTREAM ELEVATION = 1000 . 00 . DOWNSTREAM ELEVATION = 998 . 00 STREET LENGTH( FEET ) = 400 . 00 CURB HEIGTH( INCHES ) = 6 . STREET HALFWIDTH( FEET ) = 20. 00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12 . 00 INTERIOR STREET CROSSFALL( DECIMAL ) _ . 020 OUTSIDE STREET CROSSFALL( DECIMAL ) = . 040 SPECIFIED NUMBER OF HALFSTPEETS CARRYING RUNOFF ... 2 r. TR.,=i'• F L_T IME COMPUTED I,!`C INC MEAN FLOW( CFS ) = 51 . 21. ** :5TREEf FLOWING FULL. * S TREE FF LOW MODEL RESULT.`=. . NOTE :: STREETFi_.0W r:.X1.:E.CDS TOP OF CUR VHF FOLLOWING TRE T TLiOW RESULTS ARE 3ASED ON THE ASSUMPTION THAT N E c L I j E_E FLOW OCCURS OUTSIDE O F T H E. STREET CHANNEL. T H A 1- IS , A L.L FLOW AL O N:_< T i-I E PARKWAY , ETC . , I S NEGLECTE=D STREET E=LOWDEPTH ( F L ) z . 78 HALFSTREET F LOODWIDT!H IFE_E T ) _ 20 . 00 JERRCE FLOW VELOCITC`( FEET/SEC . ) -- 3 . 52 PRODUCT OF DEEP TH&VEI._O,C 1- TY -- 2 . 76 STPEE:TFLOW TRAVELTIME(MIN ) = 1 . 89 TC( M1N ) = 10 . 28 100 YEAR. RAINFALL. INTEND LTY( INCH/HOUR ) -- 2 . 755 SOIL CLASSIFICATION IS "i".. RESIDENTIAL_. ; 3-7 DWELL IN! S/AC:RE= SUBAREA LOSS RATE , Fm( INCH/HR. ) = . 4850 SUBAREA AREA( ACRES ) - 9 . 00 SUBAREA RUNOFF(CFS ) 18 . 38 EFFECTIVE AREA( ACRES ) = 28 . 00 AVERAGED -m( .INCH/HR ) -- . 485 TOTAL AREA( ACRES ) = 28 . 00 PEAK FLOW RATE( DES ) = 57.20 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH( FEET ) = .80 HALFSTREET FLOODWIDTH ( FEET ) = 20.00 FLOW VELOCITY( FEET/SEC. ) 7 3. 73 DEPTH*VELOCITY = 2.99 ****MMMIsm .T.fiM*MMMMMM*MM****:<M*MMM*MM*MMMM*MMMMM*MMMMMMMMMMMMMMMMMMMMMMMM FLOW PROCESS FROM NODE 627. 10 TO NODE 628 . 10 IS CODE = 6 >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< UPSTREAM ELEVATION = 998. 00 DOWNSTREAM ELEVATION = 985 .00 STREET LENGTH( FEET) = 900 . 00 CURB HEIGTH( INCHES) = 8. - STREET HALFWIDTH( FEET ) = 24 . 00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16 .00 INTERIOR STREET CROSSFALL( DECIMAL ) _ . 020 OUTSIDE STREET CROSSFALL( DECIMAL ) - . 040 SPECIFIED NUMBER OF HAL.FCTREETS CARRYING RUNOFF = 2 TRA\;E=LI IME COMPUTED USING MEAN FLOW( CFS ) = 8209. * 1-. STREET FLOWING FULL'* `K STS<:E::ETFl..OW MODEL. RESULTS : NOTE STREE FFL_OW EXCEEDS TOP OF CURB . FOLLOWING: STREE I FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT iIECLIBLE FLOW OCCURS OUTS.:IDE. OF THE STREET CHANNEL . 1110V 13, ALL. FLOW ALONG THE PARKWAY , ETC . , IS NEGLECTED , STREET FL_OWDEP I H ( FEET ) = . 81 HALES T REE T I=L-O=iLW.ID TH ( FEET ) = 24 . 00 AVERAGE FLOW VELO LTY( FEET!SEC . ) -- 5 . 32 PRODUCT OF DEPTH&VELOCITY z 4 .2"9 STREETFLOW TRAVELTIME( MIN 7 2 . 82 TC( MIN) = 21 . 10 100 YEAR RAINFALL INTENSITY INCiH/HOUR. ) = 2 . 527 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm( :INCH/LIR ) = . 4850 SUBAREA AREA( ACRES ) = 27 . 00 SUBAREA RUNOFF ( CFS ) = 49 . 63 EFFECTIVE AREA( ACRES ) = 55 . 00 AVERAGED Fm( INCH/HR ) = . 485 TOTAL AREA( ACRES ) = 55 . 00 PEAK FLOW RATE( CFS ) 101 . 10 END OF SUBAREA STREETFLOW HYDRAULICS : DEPTH( FEET ) _ .85 HAL_F STREET FL_O00WIDTH ( F EET ) -, 24 . 00 FLOW VELOCITY( FEET/SEC . ) 5 . 84 DEPTH*VELOCITY -- 4 . 94 .* K k:} k ;:.l, *.* *****. K '' *'*_ -K'**'K k:*'- :* Y;k;r:�. f k *::k * .k 'k* k k* * *;='kk E 7 ' -k -k-4 k * * FLOW PROCESS FROM NODE 6'2`8. 1 1K:rO NODE 629 .. 10 IS CODE - . •C:OMPUTE PIPEFLOW TRAVELTIME T'-IRS._! SIJBAF.. :_ ,USING COMPUTER-ESTIMATED PIPESI:,,.E ( NON - PESSUPL. DEPTH OF FLOW IN 42 , 0 INCH PIPE. IS 29 . 7 INCUS PIPEFLOW 'VELOC:ITY( FEET/SEC' . ) - 13 . 9 . UPSTREAM NODE ELEVATION _ 985 . 00 DOWNSTREAM NODE ELEVATION = 960 . 00 F LOWLEiNOTH( FEET ) - L700 . 00 MANNINGS N 7 . 012 ESTIMATED PIPE DIAMETER( INCH ) = 42 . 00 NUMBER OF PIPES = 1. PIPEFLOW THRU SUESARFA( CFS ) - 101 . 10 TRAVEL_ TIME( MIN , ) -- 2 . 04 TC( MIN . ) = 23 . 14 * K *:*-K *- kKkikkK Yi,**** K1+'* .K**.********* *** tf* t'•Kk:kk*.F.,K'k*** k x-*'k.* Kk'k k*** ;<*K**4 "i' FLOW PROCESS FROM NODE 628 . 1.0 TO NODE 629 . 10 IS CODE -- 8 >>- - ADDITION OF SUBAREA TO 'MAINLINE PEAK FLOW<<_ (<< 100 YEAR RAINFALL INTENSITY( INCH/HOUR ) = 2 . 391 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE , Fm( INCH/HR ) = .4850 SUBAREA AREA( ACRES) = 55 . 00 SUBAREA RUNOFF( CFS) = 94.35 • AVERAGED Fm(INUM/HF() = . 4db ' TOTAL AREA(ACRES) = 110 .00 PEAK FLOW RATE(CFS) = 188.70 TC(MIN ) = 23 . 14 • ::k*=K-k=K*:k:k:k:k K* k K*;K=K*****;k,k #:.k '•K;k'K*=Kik*-K*-K****-K******:K K;K-K*>K%K**:K*%k**'K*,K**=k*****=K*K FLOW PROCESS FROM NODE 629 . 10 TO NODE 630 .20 IS CODE = 3 >>>>COP1PUTE PIPEFLOW TRAVE LTIME THRU SUBAREA«<.« > •USING COMPUTER•-ESTIMAFED PIPESIZE ( NON -PRESSURE FLOW )«<•.,, DEPTH OF FLOW IN 54 .0 INCH PIPE IS 42.7 INCHES PIPEFLOW VlELOCITY( FEET/SEC . ) = 14 , 0 UPSTREAM NOD' ELEVATION = 960 . 00 DOWNSTREAM NODE ELEVATION = 946 . 00 FLOWLENGTH i FEET. , _ .1.>50 . :i: MANNINGS N = . 013 ESTIMATED PIPE 0iAMETER( INOH ) - 54 . 00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA( CFS ) - 188 . 70 l'RAV L TIME( NIIN . ) - ]. r.:1. TC( MIN . ) •- 24 . 75 k* k.k *'k-k**,.*******-#:y-k** k:k:,;•K *:k k:********* *=k'k:#;-K** K**-k**.k*-k*,k**'K * 'K****:k6tk FLOW PROCESS FROM NOD!, 629 . 10 TO NODE 630 . 20 IS CODE -_ 8 . . . ,•),-ADD1TION OF SUBAREA TO MAINLINE. PEAK FLON<, <,. 100 YEAR RAINFALL INTENSITY( INCH/HOUR ) _ 2 . 297 SOIL CLASSIFICATION IS "A" RESIDENTIAL-•> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm( INCH/HR ) -• . 4850 SUBAREA AREA( ACRES ) = 42 , 00 SUBAREA RUNOFF( CFS ) - 68 . 48 EFFECTIVE AREA( ACRES ) - 152 .00 AVERAGED !Fm( INCH/HR ) = . 485 TOTAL AREA(ACRES ) = 152 .00 ' PEAK FLOW ROTE( CFS ) = 247. 82 _ 248 TC(MIN ) :: 24 . 75 *** K***3:***k K*=k'k r**•k'** k' **'k K*%K.K'k:K K k„ k I::k:k;k:k:#:;K k'k**=K-# ;: K.k:' k;k'k-K #'#:'k.k`k-(* -:k* k.K`.: FLOW PROCESS FROM NODE 630 . 20 TO NODE 630 . 10 IS CODE -.. 3 l_r'1PlJTF PIPET LOW TRAVE!_TIME THRU 51..JEAAEA< OOMPHrE_P-ESITN)ATE.D PIPESIZE ..\10N- PRESSURE FLOW ) . ( < DEPTH OF FLOW IN 60 0 INCH PIPE IS 45 . ... INCHES PIPE'F1 (3W 'V'EL1ITCITY( FEEFiSEC . ) - 15 .4 UPSTREAM NODE ELEVATION 946 . 00 DOWNSTREAM NODE ELEVATION 7 9 0 . 60 FLOWLENKIH t FEET ) = 1400 . 00 MANNINGS N .:)13 ESTIMATED PIPE DIAMETER( INCH ) - 60 . 00 NUMI,T:ER OF PIPES -- PIPEFLOW THRU SUBAREA( CFS ) 247 . 82 TRAVEL TIME( MIN . ) = 1 . 51 7C( MIN . ) 26 . 21 k:k*** *•k•k .** *4kk** kk' *-k•K'kk**•* Kr** k** KK* ** #( *= **-4(*:********* KK.* k* **'k #'+ 1L FLOW PROCESS FROM NODE 630. 20 TO NODE 630 . 10 IS CODE = r3 >>>> ADD [TION OF SUBAREA TO MAINLINE PEAK FLOW<..;< << 100 YEAR RAINFALL INTENSI flr'( INCH/HOUR. ) - 2 . 216 SOIL CLASSIFICATION IS •"A' SCHOOL SUBAREA LOSS RATE , Frn( INCH/HR ) = .5820 SUBAREA AREA( ACRES ) = 41 . 00 SUBAREA RUNOFF( CFS) = 60 . 30 EFFECTIVE AREA(ACRES ) = 193 . 00 AVERAGED Fm( INCH/HR ) . 506 PhAK KHI C4,L r.7f Lw . 1J. �] • TC(MIN) - 26.27 1`/am- 2.97 'cS END OF STUDY SUMMARY: 4-7-S9c%Tft ,► i ?14Aroi� TOTAL AREA(ACRES)- - 1.93.04 EFFECTIVE AREA(ACRES ) _ ' L93.00 PEAK FLOW RATE( CFS) = 297. 11 END OF RATIONAL METHOD ANALYSIS e. - __ OFFSITE HYDROLOGY FOR CHERRY AVENUE STORM DRAIN • **)K************************************************************************, RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE ( Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION ) *** PRELIMINARY/EXPERIMENTAL VERSION *** Copyright 1983 , 86 87 Advanced Engineering Software ( aes ) Ver . 4. 18 Release Date: 2/20/87 Serial # BETA06 Especially prepared for: =K.K*******;K-K*******=K****.*.*.+ DESCRIPTION OF STUDY - -K*:r.**;k* ********** K*****•;4 K HYDROLOGY STUDY FOR CHERRY ST . STORM DRAIN AT NORTH * WEST CORNER OF HENRY J . KAISER HIGH SCHOOL. K * K* Kd - :4 '4:t*•K-i -K*** K.**** 4.* k l' *******::k:**:k! r K****:4:***:K***********I I L NAW: ;<HS--OCH .DAT ,- � G TIi"I:_/D:'.-E ,r: 'STUDY: 14. 14 2/ 1994 �;�•. AT _di USER CPE:CI -LED HYDROLOGY AND HYDRAULIC MODEL INFORMATION : -•-*"TIME••-OF-CONCENTRATION MODEL*--- USER SPECIFIED STORM EVENTt YEAR ) 25 . 00 SPECIFIED MINIMUM PIPE SIZE( INCH ) = 36.00 SPECIFIED PERCENT OF GRADIENTS( DECIMAL ) TO USE FOR FRICTION SLOPE - 5 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE _ .6000 USER SPECIFIED 1-HOUR INTENSITY( INCH/HOUR) = 1 .0640 *****=;***`k;*****t*** K*=1 ***** ;* -K*=K***%Y****-k**** K*=F*****=K**=K***:KIK' *** K*****flk FLOW PROCESS FROM NODE 6.1900 TO NODE 619 . 10 IS CODE = 2 , Rnric)NAL METHOD INITIAL- SUEAREA ANALYSIS ' • . DEV, ! fP1`'1EHT tS SINGLE F:'P'iLL RET,IDENTIriL - . a- ? DWELLINGS/ACRE • IC K K f- ( LENGTH K* ._. .00 )/ ( EEL.E:'VA f IOiN HANGE ) 1 * K . 20 INITIAL ShaAREA FLOW-LENGTH 800 .00 UPSTREAM _EVATIOi l 7 1025 . 00 DOWNSTREAM ELEVATION = 1.015. 00 ELEVATION DIFFERENCE = 10 .00 TC - 800 .00** 3, 00 )/ ( 10 , 00 ) 110 . 2c FL. 5,16 25 YEAR RAINFALL .INTENSLTY( INCH/HOUR ) 2 . 5'w) SOIL CLASSIFICATION IS "A'• RESIDENTIAL--.. 5-7 DWELLINGS/ACRE SUBAREA LOSSRATE, Fm( INCH/HR ) = . 4850 SUBAREA RUNOFF( CFS ) 15 . 32 TOTAL AREA( ACRES ) 7 . 00 PEAK FLOW RATE( CFS ) -- 13 .32 * :*****. K***** #'*`4:* *****-***•K* t # * k :K* k'*t***:**1* k:* *#* :i'*k*:K**** ****'k*4K********aa FLOW PROCESS FROM NODE 61R . LE TO NODE 620 . 10 IS CODE = 6 >>>>cOMPUrE STREETFLOW TRAVELTIME THRU SUBAREA<«« UPSTREAM ELEVATION = 1015 . 00 DOWNSTREAM ELEVATION = 1013 .00 STREET LENGTH( FEET ) = 650. 00 CURB HEIGTH( INCHES) = 6. STREET HALFWIDTH( FEET ) = 20.00 171 I ANL I-KUI`'1 UKUWN IU UK J 1- - LL UKAULIJKLAK = INTERIOR STREET CROSSFALL( DECIMAL) = .020 OUTSIDE STREET CROSSFALL( DECIMAL) - .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 K*TRAVELTIME COMPUTED USING MEAN FLOW( CFS ) = 18. 49 STREETFLOW MODEL RESULTS : NOTE : STREETFLOW EXCEEDS TOP OF CURB . THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL . THAT IS , ALL FLOW ALONG THE PARKWAY , ETC . , IS NEGLECTED . STREET FLOWDEPTH ( FEET ) = .65 HALFSTREET FLOODWIDTH( FEEET ) = 1.9 . 63 AVERAGE FLOW VELOCITY ( FEET/SEC . ) _ 22 ,. 02 PRODUCT OF DEPTH&VEL.00ITY = 1. . 51 STREETFLOW TRAVELTIME( MIN ) - 5 . 37 TC(MIN) = 18 . 92 25 YEAR RAINFALL INTENS ITY( .INCH/HOUR ) - 2 . 127 SOIL CLASSIFICATION IS "A" RESIDENTIAL- ;' �-7 DWELL INI : i 2-RE SUBAREA r `T . F f ( ] N ; _ -R ) rt350 SUBAREA AREA( ACRES ) 7 , 00 SUBAREA RUINO'i ( iF`._ 1 - 10 . 34. EFFECTIVE AREA( ACRES ) = :.4 00 A % _F - Sr ) rm( CNCr ! - R ) . 485 TO-(.AL AREA( ACRES ) - L4 .. 00 PEAK FLOW RATE(CFE ) - 20 ,62 END OF SUBAREA STREETFLOW HYDRAULICS DEPTH( FEET ) 7 . 67 HALFSTREET FLOODWIDTH ( FEET ) = 20. 00 FL0W VELOCITY( FEET/SEI: . ) 2 . 10 DEPTH*VELOCITY 17 1 .40 4K******** k. ****==K;,*** K"*:K=K** K*:K ********= *** ****-K***************%K;K** K ***** FLOW PROCESS FROM NODE 620 . 10 TO NODE 621 . 10 IS CODE = 6 >> >•>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA< <<< UPSTREAM ELEVATION = 1013. 00 DOWNSTREAM ELEVATION = 1004 . 00 STREET LENGTH ( FEET ) 450 . 00 CURB HEIGTH ( INC:HES ) ` 8 . STREET HALFWIDTH ( F EET ) 47 . 00 • DISTANCE IRU' CROWN TO CFO rSG " _ , .R nD _B R' " i - 35 . 00 INTERIOR STREET i • ALL( I.- E EMAIL 1 z . 020 OUTSIDE STREET CRIJS;SFAE..L. ( (:?':::I: ,:jIAL ) 040 sps' T 1 E LNUMBER O F rAF. 1P 1 - _ CARRYING RUNOFF 2 KISAVEL.TIMI.-: COMPUTsc: USING MEAN F LOH( CF ; ) _ 30 . 45 C. TREE T F L O W MODEL RErSUL_T STREET FLONDEPTH ( FE: T ) . 52 HALFSTREET FLO00W:I:D TH ( FE ET ) - 11 . 53 AVERAGE FLOW VELOCET'Y ( 'EET/SEC . ) 5 . 42 PRODUCT OF C.IEPTH&VELOCITY 3 . 14 STREET-FLOW TRAVELTIME( MIN ) 1 .33 1-01N1IN 1 = 20 .30 25 YEAR RAINFALL INTEN I T ,"( LNC-H;/HOUR ) 2 . 038 SOIL CLASSIFICATION IS "A" RESIDENTIAL - 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE , Fm( INCH/HR ) .4850 SUBAREA AREA( ACRES ) =. 14 , 00 SUBAREA RUNOFF( CFS ) 19 . 57 EFFECTIVE AREA( ACRES ) 28 . CI0 AVERAGED Fm( INCH/HR ) µ . 425 TOTAL AREA( ACRES ) = 28 . 00 PEAK FLOW RATE(CFS ) _ 39 . 15 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH( FEET ) _ . 64 HALFSTREET FLOODWIDTH( FEET ) = 13 . 91 FLOW VELOCITY( FEET/SEC . ) = 5 . 55 DEPTH*VELOCITY = 3.53 FLUW WKUUt�O I-KUM NUUt 6L1 . JU IU NUUt bLL. 1U 1.7 LLJLJ . - o »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<«< UPSTREAM ELEVATION = 1004 . 00 DOWNSTREAM ELEVATION = 991 .00 STREET LENGTH( FEET) = 950 .00 CURB HEIGTH( INCHES ) = 8. STREET HALFWIDTH( FEET ) 47 .00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 55 .00 INTERIOF: STREET CROSSFALL( DECIMAL ) = . 020 OUT S::i E :S 0 EET CROSSFALL( DECIMAL ) -- . 040 SPECtF1 :::C? NUMBER OF HALF=STREETS CARRYING RUNOFF :_ 2 T'(�A'iEL_ T'Ii1E COMPUTED IJ:SING MEAN FLOW( CFS ) = 56 . 5: STFEE I FLOW MODEL RESULTS : OTE : STREETiF L_OW E:C' E C'u3 TOP OF CURB . THE FOLLOWING '•TREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBL E FLOW (OCCURS OUr'S:[DL OF THE STREET CHANNEL, . TW=IT IS , ALL FLOW Al ONG THE PARKWAY . ETC. , IS NEGLECTED . 3IRE1 T FlL. lOFJDEPTH ' i=l:.:i:_T ) -• 77 r C. i I F E r-- - I 'il_r rR�_F:T i''!_Ol-:!h�l"J1:C�1"iil i ��_ i - 2C -IS OVERAGE FLOW VELOCI: TY( FFEr,' 3EC , ) 4 , ;;'3 PRODUCT OF DEPTI-'I�&VEI_iOC:I:TY = ;' -'-REE TFLOW TRAVELT1:MEi MIiN1 ) - ; . _.4 FC(NIH ) _ 2 . '5•I 25, YEAR RAINFALL INTEMSITY( INrCH/ROUP ) = 1 , 565 SOIL CLASSIFICATION IS A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LD~5:3 RATE , Frn( INCH/HR. ) -• . 4850 SUBAREA AREA( ACRES ) = 28.00 SUBAREA RUNOFF ( CFS ) = 34 . 78 EFFECTIVE AREA( ACRES ) = 5=: . 00 AVERAGED Fm( INCH/'HR ) _ . 485 TOTAL AREA( ACRES ) = 56 . 00 PEAK FLOW RATE(TEs ) _. END OF SUBAREA STREE1 LOW HYDRAULICS DEPTH ( FEET ) _• , 82 HAL_FSTPEET FLOODWIDTH ( FEET ) = 23 . 21 FLOW VELOCITY( FEET/SEC : ) = '1 .99 DEP'TW=VELOCITY = 4 . 10 K r ',10• -K* K � ** **4'T.* K'K*-- k. K K *** k* Kk k ** r* K 1,1= K K k*I**t it*:K'*:<-k'k. I 'i: K* K 'K V4--- FLEW' PROCESS FROM NODE 622 . 10 TO NODE 623 . 10 T.S CODE = ' . 10W-UTE PIF'Er LOb'J TRAVELTIME -rH,-•.IJ .1.) ; THG [._:OI'"iPUFER--1:(:ST.f:1''IATED PIPE3ILf- ( HON - PRESURE FLOW ) . oI FLOW) IN .:,` . CJ INCH PTP( 1 C' !:i` I IIE .-Li ' • VELOCITY FSiET /3E(: . ) 1.0 . 0 Ji-", . - -X1 NODE EL.L_VA 11.0i'I 991 . 00 rDOWN3TP..F_TIN) NODE ELE'VATIOI•! "- 974 . 00 FI_OW:_I_iN ,TH1 EET) - 1700 . 00 MANNINOT N = . 01..., EST ,TTED PIPE DIAMETER) INCH ) = 39 . 0.) HUMBER OF PIPE::. = 1. PT PE FL. IW THRU SUBAREA( Ci - 69 . 5b TFAV'=L TIME( MIN . ) 7 2 . iDO TC( MINI . ) - f V k 4 x:K k* k k K****'-K* k-k K:k K K.=k'K* K'•k k K'kk 'K'K K K k K'K*=K "K * k 1. k k * r k k k k ! j.k Lobi PROCESS FROM NODE 622 . 10 10 NODE:. 62:1: . 10 IS CODE = S ADDITION OF SUE:BARF.A TO MAINLINF PEAK 25 YEAR RAINFALL INT ENSI iY( INCH/HOUR ) SOIL CLASSIFICATION IS "A" RESIDENTIAL-•> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE. Fm( INCH/HR ) = . 4850 SUBAREA AREA( ACRES ) = 53 . 00 SUBAREA RUNOFF ( CFS ) = 62. 70 EFFECTIVE AREA( ACRES ) = 111 .00 AVERAGED Fm( INCH/HR ) . 485 NtAK FLUVJ KA I t[LI ) 116. b TC(MIN) = 26. 14 **************************=K******K***************************Xc************og FLOW PROCESS FROM NODE 623 . 10 TO NODE 623.20 IS CODE = 3 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<,<K >>>»USING COMPUTER-ESTIMATED -PIPESIZE ( NON-PRESSURE FLOW )«<<< DEPTH OF FLOW IN 45. 0 INCH PIPE IS 31 , 6 INCHES PIPEFLOW VELOCITY( FEET/SEEC . ) = 15 . 3 UPSTREAM NODE ELEVATION = '774 . 00 DOWNSTREAM NODE ELEVATION = 952.00 FLOWLENGTH( FEET ) = 1350 . 00 MANN INGS N = . 01,3 ESTIMATED PIPE DIAMETER( INCH ) _ 45 .00 NUMBER OF PIPES - :1. PIPEFLOW THRU SUBAREA( CFS ) = 126.55 TRAVEL TIME( MIN . ) -_ 1 . 47 TCi MSN . ) - 27.61. **k K.* KK* K K* •k K y. k k sc:K:K*-k:* K K r k k x K r r r K*=k ; K K:k K r t k.r K. k lr'K•K•K•k kk k Sf::K W FLOW PROCE'ti:..., FROM NODE C . 1 i TO NODE 623 2J IS CODE M. Aor T _ON OF SUBAREA TO 1.1:1Tt`! . I `:E: P FLOW . 25 YE; .r INTENS:1 'T't'( F.cICHI:-(OUR ) = 1 .61 t IL UL,'ISSIF1 ::ATION IS "A' RL^IGEN TIAL- • :5-7 DWELLINGS/ACRE SUBAREA LOSS RATE . Fm( INCH/HR ) = . 4850 SUBAREA AREA( ACRES ) = 42.00 SUBAREA RUNOFF( CFS ) = 45 . 74 EFFECTIVE AREA( ACRES ) -- 1.33.00 AVERAGCD Fm( INOH/HR ) .455 TOTAL AREA( ACRES ) = 153 .00 /} PEAK FLOW RATE( CFS ) = 1.66_e ' Q25 = /47 C-FS c°C:12rA1='Z- TCiMIN ) = 27 .61 kyKx1.*.F. K.K:tc:K K 1 9::K-k g k:k%'k`le:k:K:k* :k4 k K 6• X S k K'K .K.F •k kK'i ;K'x:'k K-K:[c k:K=K ':K: :K:K*:k **-k K'k*ic*'k:#:k,w FLOW PROCESS PROM NODE 62.3 TO NODE 624 . 10 :IS CODE - 3 PTF'1 FLOW TRAVELTIME THRU S,U ARE S ,. .'.'11'! 'TER-E TEMA's SO PIPESIZ_[ NON ..P! E 6UPE FLOW )-.< : .:. .- rri- OF 7LOO IN 61 .0 iNL!, :' I;' . 13 41 . INCHE; P:PE-(..OW :'EL;i' I T ,•( FEET 'S1:'_ i 5 ELEVA T [CE'•.! = ..L•WN 1 "....AM tLEVAT [;-iH _sJw L3S .01) !''IAi' i'! I •!(:.._ N _ c ; T••,;�"-}'I!'AT r`L' 1:T='�- CIAME IER( ', i•E(.., ! _ 21 N!JM >FP OF PIPES = 1 RIPEFLOUBAR.EA( (:.F.:, + ': 7 ( ! IFN . ; = 241.28 * k s' t• x *' k# x* K k x*.K k* * K**:k•K I k 1: # P K k k#•K* K****"K**:# K.k:k:K.K.K K K -k'K**=K* K*** $''K P='K k: K- 1 K LOW PROCESS FROM NODE 6,20 TO NODE 624 . 10 IS CODE = S >>ADDITI;ON OF SUBAREA TO MAINLINE PEAK. FLOW,. 25 YEAR F:, INFALL IN T ENSI r '( INCH/HOUR ) = 1 . 636 SOIL CLASSIFICATION IS "A" RESIDENT IA[-- • 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE . Frn( INCH/HR ) - . 4850 SUBAREA AREA( ACRES) - 41 . 00 SUBAREA RUNOFF (CFS) = 42.48 EFFECTIVE AREA( ACRES) = 194 . 00 AVERAGED Fm( INCH/HR) _ . 485 TOTAL AREA(ACRES) = 194. 00 PEAK FLOW RATE( CFS ) = 201 . 02 END OF STUDY SUMMARY: TOTAL AREA( ACRES) = 194.00 EFFECTIVE AREA(ACRES) = 194. 00 PEAK FLOW RATE(CFS) - 201 .02 END OF RATIONAL METHOD ANALYSIS *****'K K***'K* *********-***** *y: k**•K•K'K*******"*: k. ** :***********.K***.#:* k* **** M4 RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE ( Reference : 1986 SAN BERNARDINO CO . HYDROLOGY CRITERION ) .K** PRELIMINARY/EXPERIMENTAL VERSION *** Copyright 1983 , 86., 87 Advanced Engineenino Sottware ( aes ) Ver . 4 . 1B Release Date: 2/20/87 Serial 4 BETrA0 Especially prepared tor : FILE E Ni-'il''11_ }Ci`I:- -f:li.ii I,jF{'r TIME/DATETIME/DATE 07 STUDY : 14 . 16 ._/ 2/ 1994 4-r NYC- USER SPECIFIED HYDROLOGY AND HYDRAULIC L''IODEL INFORMATION : --_*TIME-OF--CONCENTRATIOP! MODEL -- USER SPECIFIED STORM EVENT( YEAR ) = 100 . 00 SPECIFIED MINIMUM PIPE SIZE( INCH ) -. 36 . 00 SPECIFIED PERCENT OF GRADIENTS( DECIMAL ) TO USE FOR FRICTION SLOPE - . 95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL: • SLOPE OF INTENSITY DURATION CURVE = 6000 USER SPECIFIED 1-HOUR INTEiN 'ITY( INCH/HOUR ) = 1 . 5500 ****'K*.K*'K-k**:K* K:r'k******* 1“:'*- * Kk'K******** ***3* K--K,.K.t :#, K..K..KK.:K:K 'K*:K:k' t FIOW PROCESS FROM NODE 619 . 00 TO NODE. 619 . 10 10 I ; CODE _ 2 Al ON:-1L METHOD INITIAL SUBAREA ANALYSIS, . - -- - -- -- . - DEVEEOPIENT IS SINGLE FAMILY RESIDENTIAL - , 5- 7 DWELLINGS/ ACRE T= = , ( LLI'!iGT'ri K.k3 . 00 ) / C ELL''•, AT ION CHANGE ) W- . 20 IN iT S' .': AREA FLOW- LENGTH -= 800 . 00 UPS T=E=AM ELEVATION .- 1025 . 00 DOWN:FT[EAM ELEVATION _ 1015 . 00 ELEVATION DIFFERENCE _ 10 . 00 TC• _ . 78'R.t i ( 800. 00** 3 . 00 )/ ( 10. 00 ) I .k . 20 = 15 . 54E 100 YEAR. RAINFALL INTENF'ITY( .INCH/HOUR ) _- 5. 297 SOIL CI ASNILICOTION IS "A" RESIDENTIAL- > 5-7 DWELLINGS/ACRE SUBAREA LOS PAVE , Em( 1N'.H/HR ) - . 4050 SUBAREA RUNOFF( CFS ) - 17 . 72 • TOTAL AREA' ACRES ) = 7 . 00 PEAK FLOW RATE( CFS ) •- 17 . 72 %* *** * *. - K#. k* k*****:*********#.*:K**:**:***********.K•t- i' *****'****':K:K-I:.k#::j*::K4:**.*** ir: FLOW PROCESS FROM NODE 619 . 10 TO NODE 620 . 10 IS CODE = 6 >>'>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA: .:<< UPSTREAM ELEVATION = 1015. 00 DOWNSTREAM ELEVATION = 1013 .00 STREET LENGTH( FEET) = 650 . 00 CURB HEIGTH( INCHES ) = 6. DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) -- .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 "TRAVELTIME COMPUTED USING MEAN FLOW( CFS ) = 24 .89 ***STREET FLOWING FULL*** STREETFLOW MODEL RESULTS NOTE : STREETFLOW EXCEEDS TOP OF CURB . THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC . , IS NEGLECTED. STREET FLOWDEPTH ( FEFT ) -- .69 HALFSTREET FLOODWIDTH( FEET ) = 20 , 00 AVERAGE FLOW 'VELOCITY( FEET/SEC .. ) -• 2 . 34 PRODUCT OF DE 'TH&'VEL-OICITY -- 1 . 60 STREETFLOW TRAVELTIME( MIN ) _. p 4 . 6.S TC( MIN ) .• 18 . 18 t:1 T 7, L I ( . 1.4"!4 H/H O U P ) - 2 . -64 L :I f L. 'i r'- A �:" i l;� ,Lt�r�l •,�. `i C r ; .N ' : 'ICP F SUBAREA . OEa TE , Fmi T " r/H - .4850 S ;EIEU,,'•i • RUd0F . ( CTG ) = 14 , 36 AVERAC_C+ F : Ti sCl i, HR = TOTAL AF iP'I( AOR:T` . - 14 .00 PEAR FLOW RAIL CFS ) = 28. 71 END OF CU AREA S`;RE€ Ir _OW HYDRAULICS: DEPTH( FEET ) - 72 NAt.,FSTREET FLOODWIDTH( FEET ) = 20 .00 FLOW VEI_UC tTY( FEET/SEC. ) = 2 . 35 DEPTH*VELOCITY = 1 .70 1..* ;a4#c K x'k**,*4 la.-***;#:k^ie>k;#k:Y-t F:* -# k.#:k:k:K%k:#** #-F'#-k*:#,#"k'*=# :I F-.#q,:#* #:. * #:#:#**'k'R FLOW PROCESS FROM NODE 620. 10 TO NODE 621 . 10 IS CODE = E > :C..;.iw1PUTE STREETFLOW TRAVELTIME TI-IRU S(J8ARE.A<.' ` UPy TRE11M E ..EV. 11 IQI-t = 1013 .00 DOWNSTREAM ELEVATION - 1004 00 00 : URB HEIGFH( :NCHE: ) 3- 'T _:=i: ( `i:ii.(' �i' . iii i" l=_�- 1 •:1 ': _0(;t : -..,.•�� .. - , -`'i ..":LII,"lf I -:' ( t'i.i-IDLTDHE ii _,'•l,l _ _ 1-.. t (.'1A-3:3F, • !'I i. L.." C11. " 11`1 f .. . ')40 lM!E':.P OF HALFST;- FT':' r. ARR'(INS RUNOFF 2 :•'d'v'EI NNE . bMFUT •C 1t;-;I4.: MEAN F LQW( r1=`_; ) 42.J4 ( �`W f,O,Arl. FCIJt_1 , 11 OWOEPTH( F EE I ) _ ,fi,b F ! I:JC:iDWLI-I;'t.l( i"EE 4' ) _ 15.01 .'i:•1Y I FLOW V !MOC 6, TY( FEET (C( O. ) .-4.i.1-I..i ! Cll' Df P1H&Vi_LO( ITY - 3. a' 1 h+-I u t-_L- T E M i_( 1''I I H ) t «.J T C( I fl I P I ) = 19. 54 100 'r E:,IR -AINFALL INTEN: 1 r ( _INCH/HOUR ) 7 2. 6)47 SOIL L,"i Lr'.CATION IS "A" RESIDE?I IAL_-- .• 5--7 DWELLINGS/ACRE SUBAREA LOSS RATE , Fm( INCH/HR) _ . 4)350 SUBAREA AREA( ACRES ) _ .14 .00 SUBAREA RUNOFF( CFS ) -• 27 . 24 EFFECTIVE AREA( ACRES ) -- 28 . 00 AVERAGED Frii( INCH/HR ) •- . 485 TOTAL AREA( ACRES ) .= 28. 00 PEAK FLOW RATE( CFS ) _ 54.47 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH( FEET ) _ .71 HALFSTREET FLOODWIDTHIFEET) = 17.74 FLOW VELOCITY( FEET/SEC . ) = 5. 75 DEPTH*VELOCITY = 4 . 10 ************************************************************************4*** FLOW PROCESS FROM NODE 621 ' 10 TO NODE 622. 10 IS CODE = 6 --_- - - - - --- >>)>)COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA(<<<< UPSTREAM ELEVATION = 1004 ' 00 DOWNSTREAM ELEVATION 991 . 00 STREET LENGFH ( FEET) 7- 950. 00 CURB HEIGTH ( INCHES ) : 8 . STREET HALFWIDTH( FEET ) = 47 ' 00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 35 . 00 INTERIOR STREET CROSSFALL( DECIMAL ) ' 020 OUTSIDE STREET CROSSFALL( DECZMAL ) . 040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 7: 2 TRAVELTIME COMPUTED USING MEAN FLOW( CFS ) 7: 73 ' 96 STREETFLOW MODEL RESULTS: NOTE : STREETFLOW EXCEEDS TOP OF CURB . THE FOLLOWING STREETFLOW RESULTS ARE BWZ,[D UN [HE A5'2UMPT [Ord THAT NEGLIBLE FLOW OCCURS OUTSIDE O;: THE � FHEF : C_H6]NE| Ti.W.T IS ' ALL FLOW ALONG THE PARKWAY ' ETC . ' IS NEGiEI:TE'� STREET FLOWDEPTH ( FEET ) = . 34 H::1LFSTREET FLOOOW]DTH ( FEET ) 24 . 30 �VERAGE FLOW VELOCITY( FEET/S[C' ) 5 . 27 PRODUCT OF DEPTH&YELOCITY 4 ' 45 STREETFLOW TRAVELTIME� MIN ) 7- 3 .01 TC(MIN ) .= 22 _ 53 100 YEAR RAINFALL INTENSITY� INCH/HOUR ) 2 . 429 SOIL CLASSIFICATION IS ^A^ RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE' Fm( INCH/HR ) . 4850 SUBAREA AREA( ACRES) = 23 ' 00 SUBAREA RUNOFF(CFS) = 48 . 98 EFFECTIVE AREA( ACRES ) = 56 . 00 AVERAGED Fm( INCH/HR ) = . 483 TOTAL AHEAIACRE3 ) 7: 36 . 00 PEAK FLOW RATE( CFS ) = 97 . 96 END OF SUBAREA STREETFLOW HYDRAULICS : DEPTH( FFE [ ) 7 .90 HALFSTREET FLOODWIDTH( FEET ) = 27 . 04 FLOW VELCCTTY( FEET/BEC ' ) z OEPTH'tVELOCITY = 4 . 95 *�� � ' r��+Tht—r* **41,, V:Kt* ** t **�* *31v*ttx� �* * 1, t* t * ** * K*4(* 4 **tt:* � , FP,OM NODE 322 10 TO NODE 62: , ] 0 IS CODE 7 3 _ _ _ ���rUFE F] PEFLOW TRAVELT[ME THRU COMPUTER -ESTIMATED PTPESI[E ( NCU PRE�SUHE FLOW ) __' ' '- _- - --- - - ' ' --- - _ _ _ _ = - ' ' - - - _ _ _ - . _ � , �� F L. )!/‘) IN O IHC|| PLPE L5, 34 . 4 INCH S PIPEF _CW VELO�ZTY( F[ET/S[C ) ' 11 . 6 UPSTREAM NODE ELEVATION 7- '19 | -00 DOWNSTREAM NODE ELEVATION := 974 00 FLJWLEN6TN ( FFET ) = 1700 . 00 MANN [HGS N '015 ESTIMATED PIPE DIAMETER( INCH ) = 42 . 00 NUMD[C OF PIPES 7 l PIPEFLOW THRU SUBAREA( CFS ) = 97 .96 TRAVEL TIME( MIN ' ) 2 ' 44 TC( MIN ' ) := 24 ' 98 t: ^ **_tw+ ****** k* tt t Kp******** ** r* t t K* Yle* t'* *tic^* ' t t t � �� * ^ � FLMW PRO' FROM NODE 622 . 10 TO NODE 623 . 10 IS CODE 5 :, / ':,/ADDITION OF SUBAREA TO MAINLINE PEAK FLOW.- < ,-K< ' ' - ' _ ' - - ' --- - 100 YEAR RAINFALL IMTEN3ITY( INCH/HOUR ) = 2 . 284 SOIL CLASSIFICATION IS ^A^ RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm( INCH/HR) = .4850 SUBAREA AREA( ACRES ) = 55 '00 SUBAREA RUNOFF( CFS ) = 89. 03 ` ^` WVU.TULI). .k TQTAL AREA(ACRES) = 111 .00 PEAK FLOW RATE(CFS) = 179.68 TC(MIN ) = 24.98 **'K***-k* k=k**;*****************.k***********************,-k*********************4 FLOW PROCESS FROM NODE 623 . 10 TO NODE 623 . 20 IS CODE = 3 >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<«<: > >> USING COMPUTER-ESTIMATED PIPESIZE ( NON-PRESSURE FLOW )«<<f DEPTH OF FLOW IN 51 .0 INCH PIPE IS 36.3 INCHES PIPEFLOW VELOCITY( FEET/SEC. ) = .16 . 6 UPSTREAM NODE ELEVATION = 971 . 00 DOWNSTREAM NODE ELEVATION = 952 . 00 i=LOWLENGTH( FEE.T ) = 1350 .00 MANNENGS N = .013 ESTIMATED PIPE DIAMETER( INCH ) = 51 _00 NUMBER OF PIPES = 1. PIPEFLOW THRU SUBAREA( CFS ) = 179 . 08 TRAVEL TIME MIN . ) = 1 . 35 TC( IMIN . ) = '--KA( ** k **:xK,lc**k******.'k k* k:k-k:r.:k* K****. **k'k'p**:y*:r• ***'k**=k:** k**:k**:kk,kkk=kkxk*:, F LC.W PROCESS FROM NODE 623 . 10 TO NODE 023 . 20 IS CODE = 8 •:•>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW, <•:<, 100 YEAR RAINFALL INTENSITY( INCH/HOUR ) - 2.,213 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE. SUBAREA LOSS RATE , Fm(INCH/HR ) = .4850 SUBAREA AREA( ACRES ) = 42.00 SUBAREA RUNOFF( CFS) = 65. 30 EFFECTIVE AREA( ACRES ) _ 153.00 AVERAGED Fm( INCH/HR ) = . 485 TOTAL AREA( ACRES ) = 153.00 PEAK FLOW RATE( CFS ) = 237 .88 () G 3 r''�. TC(MIN ) = 26 .34 MO xi, *T=k=k•Y.:C*.t*.'k'K'k:k ** ***rK**'k:'k:k:* K:} kk4.* !+ II #';Kie ***ki ,1- k„. =krk #.1 risl .1 .i _aj PROCESS FROM NODE 623 . 20 TO NODE 62/1 . 10 1'3 CODE 3 •COMPU`i E PIPEFLOW TRAVELTIME THRU US:TNT:, c(:MPUT•:R-•E i 1:MATED PIPESIZE ( NON-PRESSURE FLOW ) . . c ,T LE FLOW IN 60 . 0 INCH PIPE IS 45 . •1 INCHES -T,-LOIS. VE OCITY( FEEI/EEC:. ) - ')P5TRL._AM NODE ELEVATION = 952 .00 DOwNSTF;FAM NOCUE ELEVATION -. 938. 00 F._l74•JLEiNc FH( FEET ) _• 1350 . 00 MANNING. N = . 013 E57EMATED PIPE DIAMETER( INCH ) = 60.00 NUMBER OF PIPES = 1 PIPEFLOW I HP.0 SUBAREA( CFS ) - 237 . 88 TRAVEL T :IME( MIN . ) = 1 . 51 TC( MIN . ) = 27 . 84 K'K# * /,K=K*'k.xF= k' K:k:kK'#"k* * k'K** ***** 414`Kk**•K-K* kK* Kk :KK** k*** kK********** kkk'kt FLOW PROCESS FROM NODE 623. 20 TO NODE 624 . 10 IS CODE = 8 =- .ADDITION OF SUBAREA TO MAINLINE PEAK FLOW< .:<<< 100 YEAR RAINFALL INTENSITY( INCH/HOUR ) = 2. 140 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR ) = . 4850 SUBAREA AREA( ACRES) = 41 .00 SUBAREA RUNOFf ( CFS) = 61 .07 EFFECTIVE AREA(ACRES) = 194 . 00 AVERAGED Fm( INCH/HR ) _ . 485 a._t�n_ ._ .. .. YCHr r LUW TC(MIN) = 27 .84 END OF STUDY SUMMARY: TOTAL AREA(ACRES ) = 194 . 00 EFFECTIVE AREA( ACRES) = .194 . 00 PEAK FLOW RATE( CFS ) 288 . Q5 END OF RATIONAL METHOD ANALYSTS HYDRAULIC CALCULATION FOR ONSITE AND OFFSITE STORM DRAIN SYSTEMS Project : HYDRAULIC CALCS FOR KAISER HIGH SCHOOL STORK DRAIN Date: 3/11/1994 Time: 16:11: 4 g) p, /vac r4-ccS ,02 -INPUT DATA LISTING , /40/1/I 4-YC A-di) o,ISIr- uc ri"k4-TL- e0/1/41,0. 6TDfZ/y2 v/2/41") $rsr =ofrJ CD L2 MAX Q ADJ Q LENGTH FL 1 FL 2 CTL/TW D W S KJ KE KH LC L1 L3 L4 Al A3 A4 J N 8 1 918.50 2 2 277.0 277.0 50.00 914,50 915.07 .00 66. 0. 3 .00 .20 .00 1 3 7 0 0. 45. 0. 4.00 .013 2 3 232.0 232.0 141.00 915.07 916.26 .00 66. 0. 3 .00 .20 ,00 0 4 45 0 0. 45. 0, 4.00 .013 2 4 185.0 185.0 1095.00 912.26 929.30 .00 48. 0. 3 .00 .20 .00 0 5 48 0 0. 45, 0. 1,00 .013 2 5 166.0 166.0 225.00 929.50 932.50 00 48. 0, 3 .00 .20 .00 0 6 50 0 0. 45. 0. 4.00 .012 2 6 154.0 156.0 50.)0 932.50 933,00 .00 13. ), 1 .00 .20 .00 1 0 3 0 0. 0. 0. .00 .013 2 7 75.3 45.0 520.00 917,60 921.90 .00 36. 0. 2 .00 .20 .00 2 8 20 21 0. 90. 90. 1.00 .013 3 62.3 62,3 360,00 922.40 927.90 936.00 36. 2. 3 .00 .20 .10 0 9 22 23 0. 90. 90. 4.00 .013 2 9 57.6 57,6 197.00 978.00 930.00 336.60 36. 0. 3 .00 .20 .00 0 10 24 25 0. 90. 90, 4.00 .013 2 10 49.9 49.9 74,00 930.00 931.00 943.60 36. 0. 3 .00 .20 .05 0 11 26 0 0. 90. 0. 4.00 .013 2 11 47.8 47.8 83.00 931.00 932.00 942.50 36. 0. 3 .00 .20 .05 0 12 0 0 0. 0. 0. 4.00 .013 2 12 45.6 45.6 318.00 932.00 935.90 941.00 36. 0. 3 .00 .20 .00 0 13 27 0 0. 90, 0. 4.00 .013 2 13 24,8 24.8 31.00 935.90 936.80 942.80 36. 0. 3 .00 .20 .00 0 14 0 0 0, 0. 0. 4,00 .013 2 :4 24.0 24.0 70.00 936.80 937.50 942.70 36. 0. 3 .00 .20 .00 0 15 0 0 0. 0. 0. 4.00 .013 23.7 23.7 38.00 937.50 938.50 942.90 24. 0. 3 .00 .20 .00 0 16 31 0 0. 60. 0. 4.00 .013 2 13 10.9 18.3 53.987 939.50 933.00 942,10 24. 0. 3 .00 .20 .00 0 :7 33 0 0. 70. 0. 4,010 ,013 ..4 5.4 ?. 910.10 942.70 24, 2. 3 .190 .20 .00 3 :3 44 0 0. 15. 0. 4.00 .011 2 _s 4.9 4.9 1195. )0 94 .1; 941,20 343.1'1 18, 1, 3 .00 .20 .00 3 13 19 3 0, 0. 0. 4.190 .011 2.2 2,2 _13,03, 3'1.20 342.00 943.50 12. 0. 1 .00 .20 .00 0 0 0 0 0. 0. 0. .00 .011 2 _. 5,7 5, '3,00 922.39 924.80 927.30 3. 3. 1 .00 .20 .00 3 0 0 0 0. 0. 0. .00 .013 20.00 922.33 924.75 927.20 9. 0. 1 .00 .20 .00 2 0 0 0 0. 0. 0. .00 .013 2 22 4.5 4.5 20.00 929.00 932.90 936,60 12. 0. 1 .00 .20 .00 9 0 0 0 0. 0. 0. .00 .011 2 2. .2 .2 03.00 923.00 933,10 .00 12. 0. '1 .00 .20 .00 9 0 0 0 0. 0. 0. .00 .011 2 244 6.1 6.1 20.00 930.10 932.90 936,60 12. 0. 1 .00 ,20 .00 10 0 :) 0 0. 0. 0. .00 ,011 2 25 1.6 1.6 63.00 930.10 933.10 936.50 12. 0. 1 .00 .20 .00 10 0 0 0 0. 0. 0. :00 .011 Project : HYDRAULIC CALCS FOR KAISER HIGH SCHOOL STORK DRAIN Date: 3/11/1994 Time: 16:11: 6 INPUT DATA LISTING CD L2 HAI Q ADJ Q LENGTH FL 1 FL 2 CTL/TA D W S KJ KE KH LC L1 L3 L4 Al A3 A4 J N 2 36 2,6 2.6 20.00 931.00 940.80 943.60 8. 0. 1 .00 .20 .00 11 0 0 0 0. 0. 0. .00 .011 2 27 16.1 12.5 300.00 935.90 939.30 943.00 24. 0. 3 .00 .20 .00 13 28 29 0 40. 0, 0. 4.00 .011 2 28 14,0 14.0 40.00 939.30 939.60 942.70 24. 0. 1 .00 .20 .00 0 0 0 0 0. 0, 0. .00 .011 2 29 2.1 2.1 90.00 939.30 940.20 943.40 12. 0. 3 .00 .20 .00 28 30 0 0 0. 0, 0. 2.00 .011 2 30 1.7 1.7 162.00 940.20 942.10 944.40 8. 0, 1 .20 .00 .00 0 0 0 0 0, 0. 0. .00 .011 2 31 5.2 4.9 163.00 939.20 941.20 943.10 18. 0. 3 .00 .20 .10 16 32 0 0 0. 0. 0. 2.00 .011 2 32 2.1 2.4 110.00 943.10 945.50 946.50 12. 0. 1 .00 .20 .1)3 0 0 0 0 O. 0. 0. .00 .011 2 33 7.9 140.00 939.50 943.00 946.31 18. 0. 3 .00 .23 .00 17 34 0 0 30. 3, 0. 2.00 .011 2 34 7.1 .1 33.00 943.09 343,30 345,19 13. 0. 3 ,09 .20 .0.) 3 35 0 0 0. ,. 0. 2.00 .011 2 35 ..5 6.5 61.00 942.30 341.79 946.2. 18. 0, 3 .90 .20 .00 G 36 0 0 0. 0, 0. 2.00 .011 2 36 4,7 4.7 43.00 943.70 944.04 943.30 18. 1. 3 .00 .20 .00 0 3? 3 41 50, 1. 90. 2.00 .011 2 37 2.4 2.1 85.00 344.04 944.60 946.90 18. 0. 2 .00 .20 .00 0 38 0 0 70. 0. 0. 2.00 .011 2 33.3 2.2 2.2 37.00 944.60 944.90 .00 12. 0. 3 .00 .20 .00 0 39 0 0 0. 0. 0. 2.00 .011 2 39 1.6 1.6 40.00 944.90 945.20 945.70 12. 0. 3 .00 .20 .00 0 40 0 0 0. 0. 0. 2.00 .011 2 4+) 1.4 1.4 30.00 945.20 945.30 946.10 12. 0. 1 .00 .20 .00 0 0 0 0 0. 0. 0. .00 .011 2 41 1.8 1.8 70.00 944.00 944.40 .00 12. 0. 3 .00 .20 .00 37 42 0 0 60. 0. 0. 2.00 .011 2 42 1.5 73.00 944.40 944.30 .00 12. 0. 3 .00 .20 .00 0 43 0 0 85. 0. 0. 2.00 .011 2 441 1.4 1.4 25.00 944.80 945.20 946.70 8, 0. 1 .00 .20 .00 0 0 0 0 0. 0. 0. .00 .011 2 41 2.2 2.2 70.00 140.10 949.50 942.11 12. 0. 1 .00 .20 .00 17 0 0 9 0. 0. 0. .00 .011 2 1.543.2 39.30 ' 13.00 223.70 333.2. 30. 0. 3 .00 .2 .10 4 46 0 0 0, 0. 0. 7.00 .013 243 ..9 13..:0 326. 9 323.5; 134.0') 24. 0. 3 .00 .20 .00 0 47 0 0 0. 0. 0. 2.00 .011 0 33.23 92.53 330. .0 333. : 24. 0. 1 .00 .20 .00 0 0 0 0 0. 0. 0. .CC .011 24.5 13.1. 1:3._9 93:.50 330.57 941.5) 30. 0. 3 .00 .20 .00 5 49 0 0 90. 0. 0. 4.00 .011 21.5 3 5. ,3 2, ? .10 21. .2 r 13 ':3- . . ;� 336.'0 9''9. 42 0. .00 0 .00 0 0 �. 11 22 5 1..0 50.00 932.00 938.00 945.90 24. 0. 1 .00 .20 .00 6 0 0 0 0. 0. 0, .00 .013 . HDRAULI.0, CAICS FOR KAISER HIGH S'IHOOL STOR4 DRAIN Date: 3/11/1994 Time: 16:11: 7 INPUT DATA LISTING • :: La MAX 4 ADJ Q :ENGTH FL 1 FL 2 CTL/TW D W S KJ KE KH LC LI L3 L4 Al A3 A4 J N 20 5.7 9 0 73 ,73 Full .13383 13,5 13.5 9n.39 0 4,8U 927.57 938 14 18 13,54 941.53 RIAU STORK DRAIN ANALYSIS RESULTS Line Q D W Dn Dc Flow Sf-full V 1 V 2 FL 1 FL 2 HG 1 HG 2 D 1 D2 TW TW No (cfs) (in) (in) (ftl (ft) Type (ftlft) (fps) (fps) (ft) (ft) Calc Calc (ft) (ft) Calc CR 1 Hydraulic grade line control : 918.50 2 277,0 66 0 3.63 4.61 Part .00680 11.7 13,0 314.50 915.07 918.57 919.68 4.07 4.61 .00 .00 3 232,0 66 0 3.56 4.25 Full .00177 3.3 9.3 915.07 916.26 921.25 921.92 6.18 5.66 .00 .00 4 135.1 48 0 4.00 3.72 Full .01853 14.7 14.7 916.26 929.30 920.88 939.05 4.62 9.25 .00 .00 5 166.0 43 0 4.00 3.70 Pull .01235 13.2 13,2 929.30 932.50 941.00 944.01 11,20 11.51 .00 .00 8 158.0 48 ) 4.30 3.04 Full ,31173 :2.1 12.1 932.50 933.00 945.1? 945.76 12.67 12.76 943.64 .09 2 Hydraulic grade line control : 913.54 7 75.0 36 0 3.00 2.72 Seal .01264 11.1 113.6 317.60 921.90 920.32 927.02 2.72 5.12 .00 .00 X : 34.65 X(N( = .00 3 62.3 36 0 1,95 2.54 Full .00872 8.3 3.8 922.40 927,90 928.11 931,37 5.71 3.47 .00 .00 X = .00 XIN( : 105.24 51.0 36 0 2.14 2.45 Full .00746 3.1 8.1 928.00 930.00 931,99 933.46 3.99 3.46 .00 .00 11 4 .2 36 0 1.75 2.30 Full .00560 .1 ?.1 920.00 931.00 934.21 934.66 4.21 3.66 .00 .00 :1 47.3 36 0 1.77 2.25 Full .00514 6.3 6.8 931.00 932.00 934.97 935.43 3,97 3.43 .00 .00 12 4'. 1 1.71 2.20 Seal .09467 6.5 8.2 932.00 935.90 935.72 938.10 3.72 2.20 .00 .00 HJ : 94.33 '1N) : .00 X;J( : 111.13 F(J) : 18.60 DiBJI = 1.71 D(AJ) : 2.78 2 1.03 "Seal .00128 3.1 3.6 935.00 936.80 539.51 939.53 3.61 2.83 .00 .00 :4 ; 1.2; Part .40129 3.5 11.3 226.20 937.60 939.66 933.59 2.86 1.09 .00 .00 HJ :44.41 - .90 :( :. = 62.04 6 J' = 3.63 8)80) : 1.10 O(111 : 2.19 -. 20." 24 2.1; 1.72 Part .011093 ..2 7.3 931.50 938.50 939.22 940.44 1.72 1.94 .00 .00 10 24 :.4^ 1.56 Full .00699 8.0 6.0 938.50 939.00 941.04 941.43 2.54 2.43 .00 .00 _ - 32.71 :- 0.4 24 .73 1. )3 Full .00100 2.7 2.7 939.00 940.10 942.34 942.46 3.34 2.36 .00 .00 X : .00 X;NI : 9.99 • 16 4.3 13 0 .76 .85 Full .00156 2.8 2.8 940,10 941.20 942.54 942.83 2.44 1.63 .00 ,00 X = .00 ;V' - 163.10 :3 2.2 12 .56 .63 Full .00268 2.3 2.8 941.20 942.00 943.05 943.34 1.85 1.34 943.49 9-43.50 X - .00 %1N, - 36.14 B Hpiraulic grade line control = 927.57 STORK DRAIN ANALYSIS RESULTS Line Q D W1111 Dc Flow Sf-full V1 V2 FL 1 FL 2 HG 1 HG 2 D1 D2 TW TW No (cfs) (in) (in) (ft) (ft) Type (ft/ft) (fps) (fps) (ft) (ft) Calc Calc (ft) (ft) Calc CX 8 Hydraulic grade line control = 927,57 21 1.7 9 0 .28 ,60 Full ,01190 4.0 4,0 922.39 924.75 927.57 927.80 5,18 3.05 928.11 927.80 9 Hydraulic grade line control = 931,68 22 4.5 12 0 .31 .39 Seal ,01142 5.7 6.1 928,00 932,90 931.68 933,79 3.68 .89 934.48 936.30 HJ X = 6.23 X:N: = .00 X(j) = 6.23 FIJ) = 2,16 DI BJ! = .41 D(AJI = 2.22 3 Hydraulic grade line control : 931.68 12 .2 12 0 .09 .18 Seal .00002 .3 2.0 928,00 933.10 931,68 933.28 3.68 .18 933.36 .00 HJ X = 33.12 X(N) = 48.42 X(J) = 41.21 F(J) = ,04 D(BJ) = ,09 D(AJ) : .33 10 Hydraulic grade line control = 933.84 4 6,1 12 0 .43 .96 Full .02099 7.8 7.8 930.10 932.90 933.84 934.26 3.74 1.35 935.38 936.60 Hydraulic grade line control = 933.84 25 1.i 12 0 .23 .54 Seal .00144 2,0 2.4 330.10 933.10 923.84 933.90 3,74 .30 124.01 336.50 X = 53.24 ._:NI = ,00 Hydraulic grade line control = 334.31 3 0 .23 .65 Seal .03314 7,4 7.5 931.00 940.80 934.81 941.45 3.81 .65 942.50 943.60 HJ X = .30 X(N) = .00 XIJI : .30 F(J( : 1.77 D(BJ) = .25 D(AJ) = 3.6? 13 Hydraulic grade line control : 938.81 1" 16.1 24 0 1.08 1.45 Seal .00363 5.1 Si, 935.90 939.30 938.81 940.15 2.91 1.45 .00 .00 NJ X : 117.59 X(N) _ .00 X(J) = 127.36 FIJI : 5.46 D(9J) _ 1.08 D(AJ) = 1.90 23 14.0 24 0 1.12 1.34 Seal .00274 4.5 4.7 339.30 939,60 941.34 941.41 2.04 1,81 941.82 942.70 I = 8.75 I(N) = .00 STORK DRAIN ANALYSIS RESUliTS Line Q D W Dn Dc Flow Sf-full V 1 V 2 FL 1 FL 2 HG 1 HG 2 D 1 D 2 TW TW No (cfsl (in) (in) (ft) (ft) Type (ftlft) (fps) (fps) (ft) (ft) Calc Calc (ft) (ft) Calc CK 09 Hydraulic grade line control = 941.04 29 2.1 12 0 .50 .62 Full .00249 2.7 2.7 939,30 940.20 941.04 941.27 1.74 1.07 .00 .00 30 1.7 8 0 .37 .60 Full .01417 4.9 4.9 940.20 942.10 941.16 943.46 .96 1.36 943.82 944.40 3 draul`c grade line control = 940.74 :3 ..34 .38 Seal .00178 3.0 3.5 339.20 341.20 940.74 941.77 ..54 .57 .00 .00 NJ = 3,. ', X.4; - 117.16 X(J) = 27.99 = 1.37 DIBJ. - .64 DIAJI = 1.17 32 12 1 .43 .36 Part .00330 1.4 4,4 343.10 945.50 943.53 946.16 .43 .66 946.52 946.50 X = .3O X NI = 45.53 17 Hydraulic grade line control = 941.88 33 8.0 19 0 .67 1.10 Seal .00415 4.5 5.8 939.50 943.00 941.88 944.09 2.38 1.09 .00 .00 HJ X = 33.43 X(N) = .00 X(J) = 33.43 FL') = 2.78 DIBJ) _ .68 DIAJ) = 1.68 24 7.1 13 0 .84 1.03 Seal .00325 4.0 4.5 943.00 943.30 944.53 944.56 1.53 1.26 .00 .00 X = 4.42 X!N) = .00 13 0 .38 .98 Part .00273 3.8 5.3 943.30 943.70 344.69 944.68 1.39 .98 .00 .00 HJ .30 siN; - .00 X(J) = 52.52 ?;J' = 1.60 D(BJi - .95 D(AJ) - 1.02 1.- 1. ' .63 .33 Part .00114 2,7 3.1 943.70 941.04 945.14 945.13 1.41 1.09 .00 .00 -• 9 .59 .59 Part .00033 1.4 2.9 244.04 944.60 945.41 945.39 1.37 .79 .00 .00 .. 2.2 .55 .34 Part .00273 2.9 3.4 944.60 941.97 945.53 945.63 .93 .73 .30 .00 HJU .44 .52 Part .00:42 3.7 214.90 945.20 945.85 945.83 .95 .63 .00 .00 1: 1.4 12 .53 .43 Part .00103 2.2 2.5 345.20 945.30 945.94 945.96 .74 .66 946,07 946.10 • 0 rauli: grace line control - 945.27 ?: 12 0 .55 .59 Full .00191 2.3 2.3 944.70 944.40 945,27 945.40 1.27 1.00 .00 .00 42 1.5 12 3 .49 .52 Seal .00125 1.9 2.2 944.40 944.80 945.54 945.60 1.14 .80 .00 .00 = 32.26 X{N) - 4: 1.4 3 0 .44 .56 Full .00961 4.0 4.0 344.30 945.20 945.77 946.01 .97 .81 946.31 946.70 STORK DRAIN ANALYSIS RESULTS Line Q D V On Oc Flow Sf-full V 1 V 2 FL 1 FL 2 HG 1 HG 2 D 1 D 2 TV T14 No (cis) (in) (in) (ft; It t} Type fftlft) (fps) (fps) (ft) (ft) Calc Cale (ft) (ftl Calc CK 17 Hydraulic grade line control = 941.88 44 2.2 12 0 .62 .64 Full .00283 2.9 2.9 940,10 940.50 941.88 942.08 1.78 1.58 342.23 242.40 Hydraulic grade line control = 920.46 45 49.0 30 0 .99 2.28 Part .01427 22.6 10.4 313.00 925.70 319'.14 929.33 1,14 2.28 .00 .00 .. 6.3 24 0 .44 .92 Full .00065 1.2 2.2 923.?4 928.50 111.11 :1.32,31 r,_. 4.44 .40 .00 6.0 24 0 ,42 .86 Full .00050 1.3 1,9 128.50 930.10 332.9E 913.3 1.48 2,70 333.07 333.70 5 Hydraulic grade line control : 340.02 48 24.5 36 0 ,88 1.59 Full .40697 3.5 3.5 930.50 936.50 940.02 940.23 9.52 3.73 .00 .00 43 21.5 24 0 1.18 1.66 Full .00647 6.8 6.8 936.70 939.20 943.80 941.87 1.10 2.67 342.74 942.10 Hydraulic grade line control : 344.59 51 10.1 24 0 .48 1.17 Full .00135 1.1 3.2 332.00 938,00 944.59 944.63 12.53 6.69 944.88 945.00 // /t--/ t- r r1 L k)y 4-Y5 STP/214 )I241, S Y. r fl1 Project : CHERRY AVE. STORM DRAIN HYDRAULIC CALCS Date: 3/17/1994 Time: 13:28:24 INPUT DATA LISTING CD L2 MAX Q ADJ Q LENGTH FL 1 FL 2 CTL,'TW 0 W S KJ KE KM LC LI L3 L4 Al A3 A4 J N 9 1 722.20 2 2 247.0 2477,0 170.0) 918.70 920.30 .00 43. 0. 3 .00 .20 .00 1 3 6 7 0. 55. 75. 4.00 .013 2 3 137,0 137.0 402.00 921.22 926.93 .00 45. 0. 3 .00 .20 .00 0 4 0 0 0. 0. 0. .00 .013 1 137,1: 137.0 34o.30 926.37 939.30 .00 45. 0. 3 .00 ,:0 .00 0 4 8 0 0. 45. D. 4.00 .013 132.) 24.00 933.:. =40.00 9:1.00 43, 0. . .00 .2C .00 0 0 0 0 0. 0. 0. .00 .012 4' 0 47.0 40.00 922,30 930.90 939.00 24. O. 1 .00 .20 .00 3 0 0 0 0. O. 0.21.00 .013 7 47.0 47.0 70,00 922.30 921.40 939.30 24. 0. 1 .00 .20 .00 3 0 0 0 0. 0. 0.21.00 .013 2 3 5.0 5.0 70.00 339.30 945.50 952,00 24. 0. 1 .00 .20 .00 5 0 0 0 0. 0. 0. .00 .013 Project : CHERRY AVE. STORM DRAIN HYDRAULIC CALCS Date: 3/17/1994 Time: 13:28:24 STORM DRAIN ANALYSIS RESULTS Line Q D W Dn Dc Flow Sf-full V 1 V 2 FL 1 FL 2 HG 1 HG 2 D 1 D 2 TW TW No (cfs) (in) (in) (ft) (ft) Type (ft/ft) (fps) (fps) (ft) (ft) Calc Calc (ft) (ft) Calc CK 1 Hydraulic grade line control = 922.20 2 257.0 48 0 4.00 3.93 Seal .02957 19.7 19.7 918.70 920.80 922.63 927.72 3.93 6.92 .00 .00 X = 1.45 X(N) = .00 3 127.0 45 0 2.94 3.44 Full .01283 12.4 12.4 921.20 926.83 934.48 939.64 13.28 12.E1 .00 .00 X = .00 X(N) = 144.;,9 4 :57.0 45 0 2.97 3.44 F.:11 .01293 12.4 12.4 926.33 3'39.20 ?40.12 950.97 13.29 11.67 .00 .00 = .00 X(Ni = 435.16 122.0 45 0 3.75 3.40 ,!11 .11191 12.0 12.0 939.30 940.00 951.83 952.83 12.53 12.33 955.49 951.00 3 Hydraulic grade line control = 931.10 6 17.0 24 0 .94 1.97 Full .04316 15.0 15.0 922.30 930.80 931.10 932.83 8.80 2.03 937.00 938.00 3 H draulic grade line control : 931.10 - 4'.0 24 0 1,09 1.97 Full .04316 15.0 15.0 922.30 931.40 931.10 934.12 8.80 2.72 938.29 938.30 race ':_ne :on:... = I 21 1 .37 .79 F-11 ,0004: 1.6 1.6 939.30 945.50 951.40 951.44 12.10 3.94 951.43 352.00 LIST OF ABBREVIATIONS V 1, FL 1, D 1 and HG 1 refer to downstream end V 2, FL 2, D 2 and HG 2 refer to upstream end X - Distance in feet from downstream end to point where HG intersects soffit in seal condition MN) - Distance in feet from downstream end to point where water surface reaches normal depth by either drawdown or backwatzr X(J) - Distance in feet from downstream end to point where hydraulic jumo occurs in line F(J) - The computed force at the hydraulic jump D(3J) - Depth of water before the hydraulic jump (upstream side) - Depth of water after the hydraulic jump (downstream side) SEAL icoicates flow changes from part to full or from full to part HJ indicates that flow changes from supercritical to subcritical through a hydraulic jump HJU indicates that hydraulic jump occurs at the junction at the upstream end of the line HJD indicates that hydraulic jump occurs at the junction at the downstream end of the line 1 r - 3.5 3.5 3 - 3 _ r 2.5 2.5 to W Z - U z - z 2 2 S I- 0 W J u. 1.5 - /°` 1.5 -yr=0.89' 0.5 -° 0.5 0 0 2 5 10 25 50 100 RETURN PERIOD IN YEARS NOTE' 1. FOR INTERMEDIATE RETURN PERIODS PLOT 10-YEAR AND 100-YEAR ONE HOUR VALUES FROM MAPS, THEN CONNECT POINTS AND READ VALUE FOR DESIRED RETURN PERIOD. FOR EXAMPLE GIVEN I0-YEAR ONE HOUR■0.99"AND 100-YEAR CNE HOUR 21.60",25-YEAR ONE HOUR•I.Ie". REFERENCEuNOAA ATLAS 2,VOLUME XC-CAL.,I973 RAINFALL DEPTH VERSUS SAN BERNARDINO COUNTY RETURN PERIOD FOR HYDROLOGY MANUAL PARTIAL DURATION SERIES D-7 FIGURE D-2 4 /o F ' I-"or:.'is:,-, ii.t. ! . I 14 Ilia (AW 0Q.15LT( . (µ�vSTR�M. itEStoecNTtA{i yz_2 .0 WAG `.10) .t511 ` kkj ckrAFOr c,...) pRo,r6cr 7i,„ . 1 .46 r ..4 .0 ;$ /7 .*:: - ''''''''' ' \-:-:‘ �' BRRY�i \\,.. .64 404, 5° 4, � I S Col t\ iii. .3'4 5:_. ..-— - ....'..' CD. L/NE - ww9 �Rick To • " o 0.1.1 ,...'' cone LAND aS5 /fA-P Ls LU '- - r RB -i 1S1i 1 1.01 45 i 1 , NINE - - -I 4- , '- s 7 '''Siiii4. oprzoir ,., primo_..7,-7-16,44,44.....-4---.4.-- - ..... _. _ _ _ __ _ 1. i . , -_-_-r*,...i..........i_7 - Almill savosi,110 ell �„1R % 4ttil I . ralRte�; 1101 -c !1I i r r _ p ''�. A ?•1 ki . 1 ` x.`-"�.e _ �� Y �P S 4 1.6 'i I I wain • + ^ �' ...11,71.4!-LA ...,,,:e /ft \-+ - - r j - .H aa•4 — - 7 1.7 .., -� 4 w N111. I T -I - el \ \ �• - ('fin ... ...r r 5� , �_ax _ f— .= �-�F ;",; 60011 t: ' -`'''-- N ,r,,,( _ _ _ 4_ _. _h_ ,f, ., :I, ,_, _ iv....„,. ..... .:: --- LI mo �I f � � � '• ,�1I�. 'wF1! yM - J _,::;..,,:e4,1"70:: 4^ �I ty •1 k.._ 4 / I I � �� 1.-_ I� 1 Alf ,l-+►,R• 1IN�+ ti rc' P o• 1 1.. I I-.y r i. _ c' 111110 � A I_ ov! It -4- : vi• _ Ntw "N AO, � Yj :F JrIw 11 r ori,:,: ..1---- '21-,--I, I i, pi:.; :-:;" /___ , ill '..c,.. . f ,.. ■��„ „,_ -herr. • ••-r :: -,04,.. .„:,,,,, • Li 1 I Fes` è 7 a I.� r 7 �'— ■ -T 4` �_ �'I! J. � .. :\., 1F*Y +-r�L 4.IRPr• "Ilial T �'''' 'S _ _ _ I_ - ,. a .k r 1 !'� 'k 21"i,I -ref '- _�� I 15 .� ..— -- 1 — r Y_•1--, mow 4. IyrF� �„ _ - - - ,rTN kr NIl 40% �I•�. 111441 •___L CF !lrk{ ,srr1 ` 'al.t YL[ML •7r,T4 iv �..�'Ir•- - AV lAlli L la k Albak46' : I. .1 Militil 181111111"1 141111111 * ' An. I walk Alf I I rf t. ' spy '� / �•�1i il — awr I //1- 2 i 7 .a i' OM 7 1,;..�a•1�i��w i A - f 1 rcr_ 1 {[}} 1 ill --1- . - - 'a . L. i 4 .VS\1 TIN - u - - f — — !L ' \\ ,�, • r �+-4,...,0.•' f— ► . ” ''L 1 I '+. '� '+ \ V - F • �iy- _ `� 4, •Y�.7 .L�a - - f .` •►i. I[Feraf[ '� — I I rig I'r " r" . 1111M rt - --� - •s.r'7i15.:• I'. 4 i � �"ak.' �' I `�-�v _ . 1�±c., �¢ �\ p„'TI�I` ) , JO 41' tirVa a : i•u.. ._ _ _ __ _.... _ :5,,i4mipt -..voul-iimall • I I I ' _� p' �immiaw 1` ,` r .T _X� ( - " I _ u... H. It Mali IIIIIMILP-A ■ •I I����ttl1. • .....tr+,xl7'Tur" --y.• - ah I ' - P = M1111. =- ME RIALTO_ Il l i�awral - -111150. • - lar5111;7"41 }-.- ON TAN`'" ' Ir iLIIY'�I�tllNO RiS - e'� + —. TIS � i �rr� ••.. , ' -1 . f ,, �` - - • M��. lI ON TA.IQ h,•!*• �� j COtTON� t ( tttt �l_ il .r __ Le- ti + lTilil�ilti I ,I� Fi {� `"lim ��of),...-1rfinellREDL ANf} .` r 114 ,...i I r.% 1 1.-. / \ _ - �.♦S /�► , �. , Sulw ' it - . . L. ( _ . . _L , I 1._1. ' U! Aida -,4"11 • gala& '';':, - -1,..- ' mi f 41 . ilimilik‘ 'm•ilLit4 i Ill %. I 1.i ei'""\\ - -- Vii' Imo ` F c II . 1•`' i ,..�. 'L° - -� -I ii R ��s ' 1 '16L. CPVMX \ T2S .7-7 IMF '1.-: 1- ill -Y 01.1 1161111110. +� ERSIDE , "�.. �• � ; `.�• R4W• w•, «rrr rnf \ Ilk,, MO • � R3 R2W ti •\ .. RI • ., iloro•••• 1+ - i -r _ i -1 + '�" , SAN m ax QIS yr '", r•oa� R 5 tOo= I� VALLEY AREA Tis I I REDUCED DRAWING •. ISONYETALS ��••� SCALE I�f = 4 MILES - �•2• , •, [ r_ 1.6. �,^v, • _r.i r�R,.:• �• ,P - SAN BERNARDINO COUNTY - . Y. 100rE" ,.,".° ws elle /MOM.. W - -W HYDROLOGY MANUAL °' • Ce ISOLINES PRECIPITATION (INCHES) wit [ " Ont Pa LA Ml�rw on 1N2 I rem ww+ i el It • 8-12 FIGURE B-4 • ' j '- r T-_W I I R R6W R5W 4W � pE ' R2W RIW ,..\...'t' --'''."1"-91111111R2-E- T4N .,. � 1�— - Illillimpr .7 ! --L. R14•041 .....1 ' .. :::;ir. . . ? 1.111.111111111.1111. , I Y t _.. T. ' 1 - wolip.:00011101111111111 . , 1_1_,„ 1 - - - 7 -' - 1- -i- :OIL 1-',. r , s liiiir } X3••4 * I impoio ♦ I ! \ _._ __i ___ __ _t_ _,101_44.,„,,,”_... Id_ . -Y -I- ,�4.a� t 3. A I I 10 ..) Si �.•+� L. •••••PaPi-i -••••••7...\--.4.1.;;..i.: �Y - r a "I '' 4 j t . RR TSM' •! t kiiiii.....4 ., „__ .. __ _, (._ A _ _1 _ 7,4., - I. Jr/ IA _ Yx xx • le,. I „r �P - ''' —F— •'-f '-. . l -4� .... 1 a "'fr y " r r'�,•446. 1il I -�t4116.10:11; f 1111111111111 iris `1'• . • Illaso 1. a� -I.7 J t' L I •i ir ,,,,,3_, _ 0 .. , r,nil r a,,,O° 1, t 113 is, A1 .,./ ,, C olio..:-ampitio r LV ' I74110:;._. f_r_ it, . , ..... , ..,_ . .,‘„at . 4.40, 1Prilli 41151.F rr T2N - - I -1 ` i �C3 '° - y -_ 1,,!-, ..._ T .n . _ �:�y.:*�.BE RINA _. IWO 4% � - ./, ern- .._ - ., '- -LFi,-,„,....,, • _._L .- - �� r - ,< .', ter,. -. - � ',..r i.1 :.a- �, 410,4** "''r`^. ... •4.. '1 ��A'1 `'_ t� :,...1 - t '7satidTN ' f. - 4 ' lqlfY° °' Iiiiit, ICT. �. -- _ i_ —. 1 -- a. • r. - `_ u i. ! r�1 tj l.�i ivll.0 .4J f/ /Vs �.;�'�4 7 r.4. flt "" 41116111111511111k viiisiro.4.L...„40, ....iegiaill _ _i_ _ _. _ _ ir • i IL i S' '.77 ler S 7 { f 6 Y i �1'.{.. lS' _ / � 1 Sw..r :".` MRIMNI r , i ill .{R�I Wr I _,,,,,titi\... . ) •AtaiiimalliiiHrftir . ai • r 1 ti. 1'_ d - iFw r-1!i i" - _, ' , '"T �•' e �•ir k. � _ 1 ' ' ,.rl- ' !'a• •+. , r ��1 _Y t �/ - O . � F , 4 • 1 . wP� { .; a" "�,I • • l p 1 �!- "+ i -4.-•...",.. f lRff 1� I.. — :::- r I. Iniiiirig tt- ray' I tea .• . `` i1 l y� .001, -I .- _T, 17\- - 4<.• 4.... t— -, - r �� w ° �N� UPL NQ a� . - ` '' ' ,ilim;`„. , 1.•r , i ..` , f 1 J i - - • _ �r ��� iair'mumm iPm .emit fir. I `,' „..,.._„,,.,3,,,„,„.,,........,.... RIALTO _ w �rorz I ...,. tltl �. _._ iiii,,,,,, A�iw '._. ':,•-rac:•.` FON TAN r T�� � . . ••s. . f ` •--..L . �_ .� :---_ �� : -.... 1, °S.r1_ r 1 4.5. .;TIS Lma.Offill111 . .... :' X41P4. TON .. `er.;rjt - ' � 's train. Itt: CZ t a+ � r �r �.�S _ _REpLAN[ � '� a r I. \+ •t.'i 'RC' �Orri. ViRIMMLIEN _. ' 'r-- T`' -.4 \ � rr• • � _ � ' ' ':4 ' r'Dws wu " MIME L. ' in& li-I M • lIllIllffAiliai,MMI 1 CHINO � 12� ' W.11101... +'., 4 , '�►► r- �•• •. 1. :1'• :. 1.d ! Dip. 4- , - -, t,� IIIRtirlok ;r RIE I R E i a L.- 111141011 a COW •'.., .... .• ' 'IF . • -i.3••00 • T 2 S - 7' Illik 1 • RSIDEI '-ik , 111 w 1 .....tR' F.Se. 1151_ st'. lila • ilk r 0 . popr .,' 5 aKur on s ti %o , 0"__,( \ R4W R3 ' -R 2- 2W . "�°R{'' ' 0 '.k'' SAN- t` t -I -- -r .NitI FLOOD CONTROL DI: 1 - _ I _ I � M 'la.74°%mo, (' R5W �� - REDUCED DRAWING VALLEY AREA T3S — SCALE I4�:4 MILES aowrETALs Ya - 10 YEAR I HOUR .... . /. ''t. .:4 -..I A,, . : '''.--'-'.4r,‘,...4.. .. .�so : SAN BERNARDINO COUNTY ...m�N �>t� 14044.117144 4.1473 i -- �Irlx'rvlo w I # +' I•ReW i RTW •-•• R6 R6 HYDROLOGY MANUAL �, �OLIN[SPII[CIPITATION(INCNES)asuzu FL+ iyR] Js+J E�a1Lii �J IOU r•sla ■-11 FIGURE 11-3 • ` t • - • _ x _.. +wy ... ,,+•..' �_.'��---'• I , rl �,.r .... s Y sIRO�' -`-� f. '° » J•_ �� ��r: =r,a 9 tlia =: w.= d-lti2rc-ut.va.,1 ,.,ar.z •' ' -w'r. ��: [ _ te7,....`Kci511..,_ �...44 ^ .A11 S�� -3. - + `� ' � :�� 1 .yj,',i�i4 �_+yllr J«.wM^-•• rN .-,wraN.rr^ , � � I' »,' _. •.:fin ,l�t i �, .....c.„,ra�. '��7 t-a �'. '"" - .l �v' p SP: ,.. • - : .N'- i ,.. -. i ry" -s.� *iY i•el •"-k i.. .ter .:.i•-`rL i _ s r ■ .-....1. •��r ... •. t r _�• '� 7s,,:. " "T�+�...iu ,r�'� - :�!''� _ ./ m r y° r w -..-_., 4'f' J ' .'.4 .-4 1r � . ' I 'C. .;1.1•i -.»�. •/Qii-.. i • , icy:,' 1 i ,.�u NO [" '!~ _ .8 - ?. �., .r 3 a.'- " �` f / .�' ' .. r �1 g A war A-j1,� 'i' , r 11.+� � ;ly r•Ni.' .. q1 INP. 1 +.., i1..4�;*. i.v i ..* .'' a-. 7.r _ I !'i ,/ .. �. -' •.w,. �. S'41° ii.': i �'1•., f :". e 6''' -:j��a.r"S.1j44�r . ."tla -. •.S it'it 'ill ,4 ,. ,,4. e. M`: - .-,: _-.1:1 r,7.. -%9% _- . 7 �S nI `11 �+y�, r» ,vT.rS '‘''1,,?...'-"' n... ° �+ 1'ri �wr...�'r rzip .:,..1.,,_.r�. Krie,' _ t Ly •-, �:.. .. I•- �T "-{"• -•r. • pf � r } .'" i fs� r�'y� ter, 11 _ � ., � � ' ,�'" �!„ w.t" , .. �, '� -_. .0. ''1",'• ,, n`" 5, .'ri ' • 7 ,,. . '72.A... w 'l1 +[ll i..y,,;w 7 r,' =r..# !r-.1 r1- . i'ti ', {IL--l. Y �y u Iw firs 11 r T rorL a P. !i F- �J . t., 4 -;:•. Lpy1 _• s.I •kf ,•.r ;y r ;,e t y.�- -�� .�.� t z-31:1-41 `+ -° ''��• i_ ' ' .r D. -4'. 4..•L'-':,., I - .L `•r••- •I.... i f �',... 4. . `\'-- ',:',..-410,,;,,..A.' ,,"1! 7 . r"'.� / li . +1' + r i r. 1: R y ''a- "�•- a-: _ a 5 \''---..„" :L7 'SI. ' .-..1..0 / ' `yi. �, - ° �[� ,..- .' ' it .?5 t.: y �, _ � e.�"rrt I. r • f r. �. io A 4 t - 11..r _ ` r ,., ir... '.,., _ ti -.: y '�. _,...,;;t5•1: s �.11: ,. ,. ••a. '�.... r ,y.,- f, �L+r [ l Yy.. 7.. y � r/ ..nom • ' ` 1� i a a �.• +....+w`;1 - 1 I5 -:`�» i -i l .ia; ,". .. w �ti:a Ir �9 .4,,,:t I y 1.. a � �:T+} �� '.: � •i '-3 P^"frt 71.. • ,'l••'1CP 1:1 -la ' i,•r� -- r w, ...P.,----.,.- �, .+;•,' �..r. ;5. , y•.,_ 1•• ..''',�"' t r, .. _ .I. r �� iF it1)171fL1 �.[ '.:i'�., / _a*Iri •-'7' l 4:C Lll R .,+rl, -w. �. < '� ..."--.4, 'E • io .2 .j..r.yl� � ' y, y . •r f �s- i .. 4;I .�.r .m,' _ .[f=� .y, .:.,• • - . f ',I • r.- � ,..r x i.. we'' r �: i' f , +w' ;„5.:•1_,L•-•••,:t.,--44,.",; . .� � ' .q. •• }ar..sir I [I --; l:} t ..,,,,,,,,-.iiiI'� ..� _ � � 1=f}l. - * ,t M.�++ f :1 ,}rx 1- fi. ' ,. ;i , R. :tib:-� T11iF4 1'E.. � t _ , , r�'•ir ti '7 +'.-.. .+„ H>. .r+ 71 , • n;,.•� },;,, ,. ,.. . . Com !s i f"'+l7 r. • Vit : * ?z t •.,- .. 'i. i In - 1�,,,,, ......037,7C..0-...- .t ` + = Ili. �,.. * } yA:^�.'iY. _ v•. •;;2,-", ,r .. y w x:._ `• • i� 6fi r^ i° - •.r'.. _ C _,,.'.. ..f„,„,•. °1 �r�� s ,# .'I ,•. .,. - T_ 414 44...,„..... .. j. rf i•`v+__ , _ !'r •.".. • � e :Irk 1•r # T� { • ^••• ,t. moi, .1 - ` r,L.--.-,_-,�'r•."-, .:.. . r .,- ' ,rf y.•{ir'Wn p ,., t •_ •''''-T'` '.'I t ti�. + �4, i. ^'r�M1.f' gni , y.," 1 '. I.,-•. ,`5i �.`f ``fie -•r •i y - �Il• p ..R! �w t .-.- - "- q "''' .. .1 - - - .e F 1 x a L r q _ r_ c. 5l 1.3.,...5,,,..__., ....�r \r,_.•„ 'r '��h :r '..! ` ; i L't' 1 , " , - A D,,.4• I .:.:1 } ., r . / ' •r. l � '.++n• 1.. 'b ,.„T.l• •_ .'1 .` `-'ham s - r.; .4 +��r �, �•' t _ _ ..`s �, ." :.n� ,• %..,r i:.1 . ,,--ti�' -'�r ,fir . " - ! _ `,�" L. _'+� ° :rcr t.,. y + - _ra, h '/'�•rr�s 'l i +a :r Pmax.,,... ' ik r I .y ` ..c -P- •a• .� x, y ,.flF r +,,` i'k' ';'`5.L�'!'CkV e.?r' V +..'.# 1":y ..-:"' '-'•.`=;°r0,,. �l., f';I il 1., } ,...,:i, �r 4•��4 1 Lr:1.a...::i '•." •'y �.,r '� - ' .�'" ' o 1 '-' l _ ,` .c rsF ' , , ,.'�+"y" %:ttx -,--,--14,7. r - }i 'V I T7" v' • . 1� :A I4•1--, I .1‘ L .....7'.,`:'1' iii l yr v i • :-�'' I .3y ...s',+'Si g. r`f.4?/-,:.r.•-; ••�' r 1'`a �-.*xra_. _ '7.'� _ - :, �, : '-'1 w'. r .". '` _"�-�� i'',.a�r:. `� �� &e c.c/ c,....,..,:: f^` r " atio� ::r - ��.r.. a �. 1 • P. :.z _.. •'i I , } /il y,1x +sOt, r ` ' j M1 1_ �1 24, a 41,0, •ej ,>� t„>~- .,,,, _4, ': r. f,...17:.-1•1..:31.., .,r,,. ".x+ 1` , "� %•-h� r,S.7/ ;t} 7",Y ", � �• `� _ 'L.. '.' •1�J �U 1f �'1• f1 "� " "� 4 7" . • y� •rte.'_.-..: 5. .. rte e?r. ro .;� ,I ;`s,� 7p 8 d .-- E • _' - -' ,rf�,•� :, - .T . .:i M •J. h1Cir Y .1-.1'1,_ �-ibpwf_r� --. 1N Fi•'� 'F,� 1A .-;._, •:e _ . �� 11 .at`-� rr ••.8i4-- .,'s,e. _ --x. p"�� ��c:„ -���.�..r j'r 'r 1 , ., L * �,+•�, ��'°1 •_-•- r 4 J, },, Y_,.".n. . i r. q I !,. /4. /~ ,is,, °....,,•••••,-..._Y 1' ' - !- p Y• ,}r"C 4 ; w. .ri ;� ,r•. � � .-- L riz pS'r i541t i r^r . I •E �• ryeit - � •ix! - u P . �;.1 w n'r' #.+e, "'- if ' crf '�c; '&�' \t ■ .`P ., j _s ,-,--!"+.. .,� -1 1 ti.r__. . ,,}: � »•• • --�`C�tj1y -.i. r-,a+��i+ • _ - j . 1~+ ^.. y /-'-'7.3! '�.+.1_ .1 _ 3'{ a ' fv. - 1 iA. + •_7TTiii.�+... _ ' +5 �/ ITSin4 "9/ 1�.``^ • f -1.i -� a • - ,�'� r•-- �17r^{4` , r ,'Jim. `� L ' a � r, _ l •„' , 'isL". __ i . • y *! 11 wry 'Z•'G le�l\r=- • t, -•V"•' ' 4-- { -_ r { q , r 11 � j ti. L _ f- }: 7 k> ,� .. ';A !.` eq.•.. 'a �Cti •-(� {e r+Y +`', ' _ -- - - r• - `r• T. r. ,••,:--,,... .`:Fi R �i �'..',54.'*4 ,'„;,"V''� �i ��w, 4 /J' •'4 � +' � • 1"j3 � c � .. _ 1 e �'` • �'rt. f,0,-6__•41-P' 'y r.�,.. 1::-F Y .,w+ n 4' ...e-...0,•, fh }` ,•,,,,,, ,.', it Y9� r f•i•' 'i"' 4`► ^t.. '- r•� rtd '/' • • y f' {5 r. • •ytii . ''''k mar x 1. }' ,iM '44! !4 1 •ya .n �.i`. A. � r.- :r .. _ i, 4� i• • - en.:: ,; •f r ' M .' r $-a all , ;e .�; s ., +' y + � °y,i• E 1. . •: m tit. \, f i _ r`-1 --:„.•,:-.1•-••• . '.,, o: /"N„. i, R J'l , a•.2,-r: �i,.4�c• I ,...,..:s -- .,, ,:. ""'1: "iii -'•4.,......, • I{ .;.k;yr 4 •t woa!R 1 v-_, .•,?',,, R •{fig -,•-i.,,.., i',.., -,%. r r. _ • -�.. t n x", �.rta?Yii .l:7.3 :9, S -.0' *,,..•••••;.: rd d.- :,3' • v L r.. K--✓c'" tL 'ilu� 1 •'." :T'Is''! " ;.f-' •. k . .'r.°t" 4S . J r .•t'Kk" i s tw� .,,,,,,... .?..4e-... nM't. e- 11-•' .,a• A;