Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Tract 18657 Drainage Study
_ f"*; ,n aA+ 414 1^1 ',..;w.°aw.. .-'r t... y`'7 Fv 'w ",uf.,:u�w:u:e.mwY._. ,.;'"`e.•5W rw1F r78+dl".�.^d, +- —. *, w � • : cy .. m iT aroma . N=om,., -TT'�" -' o- I w a +r, ' —. .'''' ri— tiAll - A'4, i ' .1 r ' i TIM , 1 ' 1 _ .' _ Google earth feet 700 A eters 200 m AERIAL MAP 4 O „I.v„ Rylp co 4- t0 ; C )b0 gll�l rn I I01 02 m n ca o O .ri Q v V C § O t•> N Cl) Q O 8 O 0 'a 4 ld f a3 'A W a7 A OD - 8 ��t O Q C 3 Z 2i Y a . O Q m .g., '� A 1 co O A :es c m o ♦♦ w a' Z es Co J J W rA V ' "w ,c W • ! aft v "" .. :.. ,' ., .70 us C {._ :•e ' .__..... µ 3..._..._ ._.,. ai ,=t . . ,' f" '• E , f . .. . 1c o ' W Z w ro cQc ...__ ' c v -.' - i0 ¢.? ' P S Riverside AVe ` re V t Z is ¢ u - U S Willow Ave I- O o.c 2"I"; I V. N Ldac Ave I _< S Lilac Ave 3D (n z Z - ¢U N Cactus Ave ,o- E S Cactus Ave i Cactus Ave--'--._-••• W L> ro ''(1 etCrb 3 c u a ' '' 1.2 , o, N N Cedar Ave S Cedar Ave - 'El ,Q ••Cedar Ave-'-' __ 2 N W 'y Pe' y..®t f O LL. g N F D&5 Z _III-> EZ .7 i o Q l3. .Alder Ave m a�� = O c • �? U LL t m ""'� C e C Palmetto Ave `: . �°""" 2Q C < Ts tp; N Sierra Ave f - 5,erra j al T �� p u LL. Q V LL 1t ro y 2: `' Z > N eci } C./ : Z. V .'� Citrus Ave- 4 Citrus Ave - -Citrus Ave , u • .".,.iiitfrI— 2 IL 5 ,.-%. . ISL '� ...�. 7 •!'-'c ar P u a U O , ',X --<,-' I"''‘,6, ELL y , , > E 4 •a to -beech Ave'- g.- la I c %" ' t G I ..-. a-a4 t)t V Z ce 3 W :_S a. i � 0 C '1'1.- k u Cherry Ave _... ..... _.cherry Ave- Cl) `r m Ct is ✓ .-. fEasl Ave E� �J "-t N :" m y . t y_ ,�.�,,, a , Z .0 o a ;V5 G ° G t1 Z N t v`=c.,--.QB U` W e Z CO 43,1 acI - N � Z ° Hg e,"" MzoV . : 0. zi >m NEEt N Psi . n3 .. � yv .. a W G W cc d ,• 3 . p ss am. �, S Wy -:.fl="'..', s ,� d_ Haven Ave Q S Haven Ave• E Ti ' a W W ` N � Q L L 3 o 0 0 co r N cO 0 c,a ^'r 13 a , E°- h w gr. c0. a u. is c m R - b c - c >,,,, ` & a, : D >. crY US E o u m 9 i N >5-, rsy m wm q y % f1m o At m m ` v o rs.s, C c 2 t m G1 t,1 ,c a s m .a a u'z;, � h 's N j; • c O p Q ZY a u- t.. is. es is LL LL SI el E LS W a> U #.4 , N S U U. U m d a a. a, i- 1- a s O i a N a C tr a. C ..I """t 0 a u. a.a 0 RV N l ' • CV en • Cy p� x a a . • \... • ' VD C44\1, eNi 1 i'' kur t4. (srf -4) Ir • R • 4 c.; i N. I a I N _ � M 0 11 N „,e41%,-4.1/4V1 1 VI en ' -4- ; • ..., . Ne ,.., ,,,,,,,„ „„ W •1” \ „ • .„,„,,, . arm N a ..,,® ,, 0 n M Mm O a •� 4t I. N k � a '"� Z LO �.�w� " .. N N , .. r--i 9 ar . t f ..,i ei, — �w NI gF, ••-+IN M" e, O kri ,N "....-.1 < Sr' 1 *., ,, 00 ; vr w - kr) . g �� .am ,, € ,--4 N W • 00 d V) , --+ i ?r 00 ` 1t'Y Pt 24 GEOTECHNICAL EVALUATION AND INFILTRATION STUDY FOR PROPOSED RESIDENTIAL DEVELOPMENT TRACT 18657 CITY OF FONTANA, SAN BERNARDINO COUNTY, CALIFORNIA PREPARED FOR FRONTIER ENTERPRISES 8300 UTICA AVENUE, SUITE 300 RANCHO CUCAMONGA, CALIFORNIA 91730 PREPARED BY GEOTEK, INC. 710 EAST PARKRIDGE AVENUE,SUITE I05 CORONA, CALIFORNIA 92879 PROJECT No. 1134-CR3 FEBRUARY 13,2014 GEOTEK GeoTek, ra 92879-1097 - - (9s|)nm'/|mmOffice (9s/)no'||»7Fax °nwmgeotekurucom G E O l[ E K February 13, 2014 Project No. 1 |34-CR3 Frontier Enterprises 8300 Utica AvenueSuite 300 Rancho Cucamonga, California 91730 Attention: Mr. Adam Collier Subject Geotechnical Evaluation and Infiltration Study Proposed Residential Development Tract 18657 City of Fontana, San Bernardino County, California Dear Mr. Collier: We are pleased to provide herein the results of our Geotechnical Evaluation and Infiltration Study for the subject project located in the City of Fontana, San Bernardino County, California. This report presents the results of our evaluation and discussion of our findings. In our opinion, site development appears feasible from a geotechnical viewpoint. Site development and grading plans should be reviewed by this firm as they become avai|ab|e, as it will benecessary to provide appropriate recommendations for intended specific site development as those plans become refined. The opportunity to be of service is sincerely appreciated. If you should on� quaotions, please do not hesitate to call our office. cogoEs S104,4 1,13 45,00e,.% Respectfully submitted, GeoTm&, Unc, tg No.56992:5- 1,0 4itif 0, I tto .E\:. �r �� �� 1� im� 4/ mp'�m�� :� �n.--- clolic t '^' �� � 2'! ' Edward H. LaMont Edmond Vardeh CEG |824. Exp. 0JY3|/14 RCE 56992, Exp. 06/3[V|5 Principal Geologist Project Engineer Distribution: (I)Addressee via email GAPn8:cts\//O/ to //jV\//34C8J Frontier Enterprises Tract 18657 FontaooVGev\//34CR3 Geotechnical Evaluation and /nhIva tion Study Tract /8a37doc GEOTECHNICAL I ENVIRONMENTAL I MATERIALS FRONTIER ENTERPRISES Project No. 1134'CR3 Geotechnical Evaluation and Infiltration Study February 13. 2014 Tract 18657. Fontana. California Page | I. PURPOSE AND SCOPE OF SERVICES The purpose of this study was to evaluate the general geotechnical conditions on the site. Services provided for this study included the following: • Research and review of available geologic and geotechnical data, and general information pertinent to the site, • Site exploration consisting of the excavation, logging and sampling of five (5) exploratory trenches by a geologist from our firm, • Laboratory testing of soil samples collected during the field investigation, • Evaluation of near-surface water infiltration potential at the project site, • Review and evaluation of site ueisnnicity, and • Compilation of this geotechnical report which presents our findings and a general summary of pertinent site geotechnical conditions relevant for site development. 2. SITE DESCRIPTION AND PROPOSED DEVELOPMENT 2,1 SITE DESCRIPTION The subject project site is located southwest of the intersection of Walnut Street and Juniper Avenue in the City of Fontana, San Bernardino County, California (see Figure I). The square- shaped property is comprised of roughly 10 acres of vacant land. The property is bounded by Walnut Street followed by an existing residential development to the north, Juniper Avenue followed by vacant land to the east, and existing residential developments to the west and south. The site is relatively flat with total relief across the site on the order of roughly fourteen feet, with surface drainage generally directed toward the south. Topographically, the property ranges from approximately 1.451 to approximately 1,465 feet above mean sea level (nisi). Figure 2, to the rear of the text of this report, shows historic topographic contours of the site and site area. 2.2 PROPOSED DEVELOPMENT It is our understanding that proposed development will consist of 53 single-family residential structures, associated streets and a water quality basin. For this evaluation it was assumed that G-` eEOTEK FRONTIER ENTERPRISES Project No. 1134-CR3 Geotechnical Evaluation and Infiltration Study February 13, 2014 Tract 18657, Fontana, California Page 3 More specific to the subject property, the site is located in an area geologically mapped to be underlain by Quaternary age alluvial deposits (Dibblee, 2003). No faults are shown in the immediate site vicinity on the maps reviewed for the area. 4.2 GENERAL SOIL CONDITIONS A brief description of the earth materials encountered during our subsurface exploration is presented in the following section. Based on our site reconnaissance, field observations, our exploratory excavations and review of published geologic maps the subject site area is locally underlain by alluvial deposits. Localized accumulations of undocumented artificial fill materials were also encountered in one (I) of our exploratory excavations. 4.2.1 Unengineered Fill Undocumented artificial fill materials were encountered in one of our exploratory excavations (Trench T-2) to a depth of approximately one (I) foot. These materials generally consist of gravelly silty sand, which is mostly gray brown, dry, and loose (see logs in Appendix A). 4.2.2 Alluvial Deposits Alluvial deposits were observed to underlie the project site at the explored locations, below the undocumented fill materials encountered on the site. The alluvial deposits encountered generally consist of gravelly silty sand and sandy gravel, which is mostly gray brown to yellow brown, dry to slightly moist, and medium dense to dense (see logs in Appendix A). Based on the results of the laboratory testing performed on a sample of the near surface onsite materials, these near surface alluvial materials indicated a "very low" expansion potential (0<EI<20) when tested and classified in accordance with ASTM D 4829. It is likely that most of the onsite materials encountered during grading and construction will have a "very low" expansion potential. Test results are shown in Appendix B. 4.3 SURFACE WATER AND GROUNDWATER 4.3.1 Surface Water Surface water was not observed during our site visit. If encountered during earthwork construction, surface water on this site is the result of precipitation or possibly some minor surface run-off from immediately surrounding properties. Overall site area drainage is generally in a southerly direction, as directed by site topography. Provisions for surface drainage will need to be accounted for by the project civil engineer. GEOTEK A3Z FRONTIER ENTERPRISES Project No. I I 34-CR3 Geotechnical Evaluation and Infiltration Study February |3. I0|4 Tract 18657. Fontana, California Page 4 4.3.2 Groundwater Groundwater was not encountered in any of our exploratory trenches excavated for the herein evaluation. Perched groundwater or localized seepage can occur due to variations in rainfall, irrigation practices, and other factors not evident at the time of this investigation. 4.4 FAULTING AND SEISMICITY The geologic structure of the entire southern California area is dominated mainly by northwest-trending faults associated with the San Andreas system. The site is in a seismically active rbgion. No active or potentially active fault is known to exist at this site nor is the site situated within an ')4/ouist-Prio/o^ Earthquake Fault Zone or a Special Studies Zone (CGS, 1974; Bryant and Hart, 2007). No faults are identified on geologic maps readily available and reviewed by this firm for the immediate study area. The County of San Bernardino has designated the site as having a "no" potential for liquefaction not within a San Bernardino County designated fault zone. 4.4.1 Seismic Design Parameters The site is located at approximately 34.1278 Latitude and -117.4414 Longitude. Site spectral accelerations (Ss and Si), for 0.2 and 1.0 second periods for a Class '`D" site, were determined from the USGS VVebuitw, Earthquake Hazards Program, U.S. Seismic Design Maps for Risk- Targeted Maximum Considered Earthquake (MCER) Ground Motion Response Accelerations for the Conterminous 48 States by Latitude/Longitude. The results are presented in the following table: GEOTEK �� FRONTIER ENTERPRISES Project No. I I 34-CR3 Geotechnical Evaluation and Infiltration Study February I 3, 2014 Tract 18657, Fontana, California Page I6 relief point for the stresses that develop. These joints are a widely accepted means to control cracks but are not always effective. Control joints are more effective the more closely spaced they are. GeoTek suggests that control joints be placed in two directions and located a distance apart roughly equal to 24 to 36 times the slab thickness. 5.6 INFILTRATION STUDY Percolation testing was performed in a test trench located in the southeastern portion of the site, where the proposed storm water infiltration system is proposed to be located. The infiltration testing was completed in general conformance with ASTM D 3385 using a double ring infiltrometer device in the excavation. A representative from our firm conducted the actual infiltration testing. The slowest/most conservative infiltration rate of four (4) inches per hour was measured for the test hole, after the infiltration rate had generally stabilized. A copy of the infiltration test field data is included in Appendix C. Over the lifetime of the disposal area, the infiltration rates may be affected by silt build up and biological activities, as well as local variations in near surface soil conditions. Additionally, both remedial and design cut and/or fill grading will be required to construct the proposed improvements. Consideration should be given to re-evaluating the site infiltration rates at the completion of grading. 5.7 POST CONSTRUCTION CONSIDERATIONS 5.7.1 Landscape Maintenance and Planting Water has been shown to weaken the inherent strength of soil, and slope stability is significantly reduced by overly wet conditions. Positive surface drainage away from graded slopes should be maintained and only the amount of irrigation necessary to sustain plant life should be provided for planted slopes. Controlling surface drainage and runoff, and maintaining a suitable vegetation cover can minimize erosion. Plants selected for landscaping should be lightweight, deep-rooted types that require little water and are capable of surviving the prevailing climate. Overwatering should be avoided. The soils should be maintained in a solid to semi-solid state as defined by the materials Atterberg Limits. Care should be taken when adding soil amendments to avoid excessive watering. Leaching as a method of soil preparation prior to planting is not recommended. An abatement program to control ground-burrowing rodents G EOTEK A FRONTIER ENTERPRISES Project No. I I 34-CR3 Geotechnical Evaluation and Infiltration Study February |3. 2O|4 Tract 18657, Fontana, California Page 17 should be implemented and maintained. This is critical as burrowing rodents can decreased the long-term performance of slopes. It is common for planting to be placed adjacent to structures in planter or lawn areas. This will result in the introduction of water into the ground adjacent to the foundation. This type of landscaping should be avoided. If used, then extreme care should be exercised with regard to the irrigation and drainage in these areas. Waterproofing of the foundation and/or subdrains may be warranted and advisable. We could discuss these issues, if desired, when plans are made available. 5.7.2 Drainage The need to maintain proper surface drainage and subsurface systems cannot be overly emphasized. Positive site drainage should be maintained at all times. Drainage should not flow uncontrolled down any descending slope. Water should be directed away from foundations and not allowed to pond or seep into the ground. Pad drainage should be directed toward approved area(s) and not be blocked by other improvements. It is the owner's responsibility to maintain and clean drainage devices on or contiguous to their lot. In order to be effective, maintenance should be conducted on a regular and routine schedule and necessary corrections made prior to each rainy season. 5.8 PLAN REVIEW AND CONSTRUCTION OBSERVATIONS We recommend that site grading, specifications, retaining wall plans and foundation plans be reviewed by this office prior to construction to check for conformance with the recommendations of this report. Additional recommendations may be necessary based on these reviews. We also recommend that GeoTek representatives be present during site grading and foundation construction to check for proper implementation of the geotechnical recommendations. The owner/developer should have GeoTek's representative perform at least the following duties: • Observe site clearing and grubbing operations for proper removal of unsuitable materials. • Observe and test bottom of removals prior to fill placement. • Evaluate the suitability of on-site and import materials for fill placement, and collect soil samples for laboratory testing when necessary. • Observe the fill for uniformity during placement including utility trenches. GExmTEK gym' ,.. Y4F4 . 4 11 V Jag T-3 T-I e r_ g-{1a x 01> pat i T-2 r t ' s T-4 . ka ,4 T-5 ' ate' -- -41 - 0 xf� eY , w F. I � t f i i fi I D ' , 1-' 4 f""411 i , tit.... !I' 1 ,'._ t. , , . ._ ,i r.„1,,,in I'.1.0-1 t LEGEND --5,y T-5 Mil Approximate Location of Exploratory Trench _ 4I !_ 1L , gp - Frontier Enterprises Tract 18657N Figure 3 / Cc City of Fontana County of San Bernardino, California 111,' IV Trench A 'al Location *_ Map GEOTEK. GeoTek Project No. 1134-CR3 GeoTek, Inc. LOG OF EXPLORATORY TRENCH PROJECT NO.: 1 134-CR3 LOGGED BY: AMS PROJECT NAME: Tract 18657 EQUIPMENT: Rubber Tire Backhoe CLIENT: Frontier Enterprises DATE: 1/23/2014 LOCATION: See Trench Location Map SAMPLES Field Testing Laboratory Testing `w d sTRENCH NO.:T-5 y C N d Z r. V �^ (] C U d I E E j m 0 O MATERIAL DESCRIPTION AND COMMENTS 3 0 Older Alluvium: SM Gravelly silty f-c SAND,gray brown,dry,loose,rootlets SP Sandy GRAVEL to gravelly f-c SAND,yellow brown,slightly moist,dense, numerous cobbles and trace boulders 5 TRENCH TERMINATED AT 5 FEET No Groundwater Encountered Slight to Moderate Caving Backfilled with Trench Spoils 10 - 15 - ZSample Type: ■—Ring Sample —Large Bulk Sample \\_l —Water Table Laboratory Testing: AL=Atterberg Limits El=Expansion Index MD=Maximum Density SA=Sieve Analysis SR=Sulfate/Resistivity Test SH=Shear Testing RV= R-Value Test CO= Consolidation Pal APPENDIX C INFILTRATION TEST DATA Tract 18657 City of Fontana, County of San Bernardino, California Project No. 1134-CR3 GEOTEK PRO I-r-r(C(z i( 34 - G23 DOUBLE RING INFILTROMETER TEST DATA Project Nano and Tett Location: Liquid Used T lJJ psT .(Z Trench No, Loi- ) Ground Temperature: Tested br DvG Liquid towel Mainted by Using Dace of Tatting: Z/i I/14 1Penetration of Rings Inco Soil(in.): _4 6 Water Table Depth: USCS Classification: •r• N --v Au FLOW READINGS INFILTRATION RATE RING SPACE STARTiE ELAPSED INNER FLOW ANNULAR FLOW UQUID ANNULAR TRIAL NO. TIME RING (water READING (water TEMP. ( INNER(inihr.) NO TIME(Mi.) On.iTr.) (in.) added in (in.) added in F) ml) ml IIEU :09 o to Mil 11111111111111 ®MI °o d 3loS 6z2 A0 12.0 24, o 0 10 ©® I0 8.S 2-7:0® 'tl2o 9.0 12.0 1111111INIZU 0 (o .rs 231 Ip'/e :347° `!•SIo,S NMIOIt2 © `l,®� 09 (SSS, o '/� 6 1111 G'.0-7 /9, (6Z2 l0 ' Su S.2S IINal 6:u9 0 (© 12 10 IIIEI t o q `/K 1612 10�/ 6255 S.Z� IIIIIIIIIIIIImimmm • /o tz O 6' r MOM 6 3 1111=12 19 5.0 7.0 Millirgal o lial ® .9 Oro NM 3c� II" 3 8.5 :: :,�. S.a o Lz ;$r(o5 H 1:ST 30IN 4b33 5./5.g S,U IIIIM 6.1 Q.00 b 17- o 111 © : © 10 5-0 Milli Hx'.03 30 r: 7 5/v 44oz �/4 !Y�07. 4.`15 G. 01a b t o 12. 1111 9:36 30 15s� 4407- • '1 !737 12. , 4.7s- (0.7.5S !i :;a e ,o _ 101 '0:0c1 30 7 /�, 'llcz- 81/S 113?5 Q•75 G.2- O.It 7 (b 1.. © '0:4-z_ 1111111111021 Oto ®{6630 '4-s 6.0 © 16:4 M Io © !t:tr, 30 7% 4t- q Y t59gS 4 S © tl:tg 0 (0 12 B !I:a9 30 1'/ 3931? ISZgo 4.Z5 S. III 1 BEI 0 0 ® )z:tl 30 � � 393€3 3/A 459 4-Zi; 5.z5- 2 z4 o I v 12 mom 37c1 °! '!z t39oo 4.0 5.o z, 3o E. 3107 `l /i 13)o0 501. Z0 ! %30 l . 3107 t' 13900 4.0 5.0 . E 2.:00 3 3 0 /Z "I AsS c. Capacity of Standard :nlet The capacity .c).) of a curb opening (standard curved face plate inlet) when intercepting 100 percen: of the flow in the gutter is given by the formula: Q = 0 .7 I (a + 3/2 y) where y - depth of flow in approach gutter a = depth of depression of curb at inlet L length of clear opening d. 5iz.ing Length of Inlet To size an opening length the following information must be known; o. Heig'nt cf th b. Depth (a) of flow-line depression, if any, at he inlet . c. Design discharge (Q) in the gutter (drainage area, rainfall intensity and runoff coefficiern.s are included in the hydrology design discharge analysis) . Any carryover from a previous inlet mus'_. be incLuCed. d. Depth of flow in nclmmi gutter EL]: longitudinal and cross-slopes at the inlet in question. This may be deternined from street capacity charts. 5. Design Procedure for Continuous Grad Thc oopacity anci Lonat'n of a cuzb opozing inlat may t..c docroose4 by allowing part of flow to pass the opening. A nazirmim of fifteen percent is recommended to be bypassed. CUB9I -411,111Pr.. Adr .-4111111' Definition Figure for :nlets Figure 5-9 5-37 A39 . 7 , Capacity of Curb Opening inlets is a Low Point cr Surno The capacity of a curb opening inlet in a sump or low point varies with the length cf the inlet (I) and the depth of water at she entrance (E = a + y) . The inlet will operate as a weir Ufltil the watcr oubrIcrgcatcentr=n,7,-.t. Whcrx t'ae depLL about twice the height of the entrance or more, it will operate as an orifice. Between these two depths the inlet will operate somewhere between a weir and orifice. 8. Nomograph Figure 5-13 Parameters a. Physical basis of Nomograph • The curb opening inlet may be located on a continuous grade or at a low point in the grade. Low point is created by depressed gutter on continuous grade street. 2-• '1:1 flow coming to the inlet must eventually enter the inlet and will pond until sufficient head is built up so the flow through the inlet will equal the peak inflow from the g:.itters. Thc bi c thc lic•mc-ezeph 3-5 cl.m ' For heals (depth of water) less then the height of opening (i.e., H/h less then 1 .C) , the inlet acts as a weir with the flow passing through critical depth at the entrance per the formula: 3/2 = 3.087 LH NOTE: This condition assumes no pressure flow in storm drain to case a head to restrict a critical depth flaw at entrance. o For heads with lila between 1 and 2, a transition was used as the operation of the inlet is not defined. • For head equal to DI greater than twice the height of opening ti.e. , H/h greater than 2) , the inlet acts as an nrifi-9 p9t. the formul . 3/2 • Q h (E' /h) - "" L wt h E' equal to the head on the middle of the inlet opening (E' H h/2) . 5-41 MC) . __ Ii/A • 'y 44. ( -- Ti. liv S _ r Al.._i r I w Pr;Pi 7 I,/ 7 / t , F. / 1 N • ter. • -- ` - H 3 GA laH a /y ".":..° PO I 6,1 Oa Cues 0.6 y ft w •9.3 f . All &,_ p, Adtgligi === , 0 0000, l Iv as P. ZW+ L (Wl1'H MIRE • • P ■24W+I.) (wir►movr 0.IMI Q., - 1 1 I t f ' 0 ! t r 1 1 I I 2 a i 6 i a ae 20 aC 48 60 tC sisoust a tFT 3151 GRATE INLET CAPACITY IN SUMP CONDITIONS (Table assumes no ogginy. ) 5-51 Figure 5-18 A4 APPENDIX B RATIONAL METHOD HYDROLOGY CALCULATIONS FOR EXISTING PRE-DEVELOPED CONDITION 8\ DESIGN 100-YEAR STORM EVENT 132_ San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering software, (c) 1989-2005 Version 7.1 Rational Hydrology Study Date: 05/31/13 Tract No. 18657 - Madison square Single Family Residential Development Rational Method Hydrology - Existing Pre-Developed Condition watershed included Onsite Drainage Area & Tributary Street Frontages Design 100-year Storm Event Program License Serial Number 6143 ********* Hydrology Study Control Information ********** Rational hydrology study storm event year is 100.0 Computed rainfall intensity: Storm year = 100.00 1 hour rainfall = 1.500 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.000 to Point/Station 2.000 **** INITIAL AREA EVALUATION **** UNDEVELOPED (poor cover) subarea Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 67.00 Adjusted SCS curve number for AMC 3 = 84.60 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.290(In/Hr) Initial subarea data: Initial area flow distance = 688.000(Ft.) Top (of initial area) elevation = 1465.100(Ft.) Bottom (of initial area) elevation = 1451.500(Ft.) Difference in elevation = 13.600(Ft.) Slope = 0.01977 s(%)= 1.98 TC = k(0.525)*[(lengthA3)/(elevation change)]A0.2 Initial area time of concentration = 15.704 min. Rainfall intensity = 3.353(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.822 Subarea runoff = 11.328(CFS) Total initial stream area = 4.110(Ac.) Pervious area fraction = 1.000 Initial area Fm value = 0.290(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.000 to Point/Station 4.000 **** INITIAL AREA EVALUATION **** UNDEVELOPED (poor cover) subarea Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil (AMC 2) = 67.00 - Adjusted SCS curve number for AMC 3 = 84.60 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.290(In/Hr) Initial subarea data: Initial area flow distance = 617.000(Ft.) Top (of initial area) elevation = 1465.600(Ft.) Bottom (of initial area) elevation = 1450.700(Ft.) Difference in elevation = 14.900(Ft.) Slope = 0.02415 s(%)= 2.41 TC = k(0.525)*[(lengthA3)/(elevation change)]A0.2 Initial area time of concentration = 14.444 min. Rainfall intensity = 3.525(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.826 Subarea runoff = 9.666(CFS) Total initial stream area = 3.320(Ac.) Pervious area fraction = 1.000 Initial area rm value = 0.200(zn/*r) +*+ +*+ Process from Point/station 5.000 to point/station 6.000 °°°» INITIAL AREA EVALUATION °°*° UNDEVELOPED (poor cover) subarea oecimal fraction soil group A = 1.000 oecimal fraction soil group B = 8.000 Decimal fraction soil group C = 0.000 oecimal fraction soil group D = 0.000 SCS curve number for snil (4wc 2) = 67.00 Adjusted SCS curve number for AMC 3 = 84.60 Pervious ratio(Ap) = 1.0008 Max loss rate(Fm)= 8.290(zn/*r) Initial subarea data: Initial area flow distance ~ 630.000{Ft.} Top (of initial area) elevation = 1465.000{Ft.} aottom (of initial area) elevation = 1452.400{Ft'} Difference in elevation = I3.200(Ft.) Slope = 0.03095 s(%)= 2.10 TC = k{0.525}°[(lenGth«3}/(elavation change)]A0.2 znitial area time of concentration = 14.985 min, nainfall intensity = 3.448(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (V~Kczv) is C = 0.824 subarea runoff = 4'088([Fs} Total initial stream area = I.410(Ac.) Pervious area fraction = I.000 Initial area Fm value = 0.200(zn/xr) Process from Point/Station 7.000 to Point/Station 8.000 **** INITIAL AREA EVALUATION »°** COMMERCIAL subarea type oecimal fraction soil group A = I.000 oecimal fraction soil group B = 0.000 oecimal fraction soil group c = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.079{zn/nr} Initial subarea data: Initial area flow distance = 466.000(Ft') Top (of initial area) elevation = I466.000(pt.) opttom (of initial area) elevation = I463.300(Ft') Difference in elevation = 3.600(Ft.) slope = 0.00773 s(%)= 0.77 TC ~ k{0.]04)»[{length«]}/(elevation change)]A0.2 znitial area time of concentration = 9.390 min. nainfall intensity = 4.565(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C ~ 0.885 Subarea runoff = 1.898{cFs} rotal initial stream area = 0.470(Ac.) Pervious area fraction ~ 0'100 Initial area Fm value = O.O79(zn/nr) + ++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 8.000 to Point/Station 9.000 °*°° STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ^°°* Top of street segment elevation = I463.300(Ft.) End of street segment elevation = 1452.400(Ft') Length of street segment = 580.000{Fr.} Height of curb above gutter flowline = 8.0(In.) width of half street (curb to crown) = 22.000(rr') Distance from crown to crossfall grade break = 20.000{Ft.} slope from gutter to grade break (v/hz) = 0.020 slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street oistance from curb to property line = I2.000(Ft.) slope from curb to property line (v/hz) = 0.020 sutter width = 2.000{Ft.} Gutter hike from flowline = I.E00(zn.) Manning's N in gutter = 0.0I30 Manning's N from gutter to grade break = 0.0150 manning's N from grade break to crown = 0.0I50 Estimated ean flow rate at midpoint of street = 2.587(cFs) oepth of flow = 0'263(pt.)' Average velocity ~ 2.936(Ft/s) streetflow hydraulics at midpoint of street travel : *alfstreet flow width = 8.922(pt.) Flow velocity = 2.94(Ft/s) Travel time ~ 3.29 min. TC = 12.68 min. Adding area flow to street COMMERCIAL subarea ype Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 oecimal fraction soil group C = 8.000 oecimal fraction soil group D = 0.000 s[s curve number for soil (AMC 2) ~ 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.079(zn/*r) Rainfall intensity = 3.8I1(zn/*r) for a 100.0 year storm Effective runoff coefficient used for area, (total area with modified rational method)(Q=KCIA) is C = 0.881 subarea runoff ~ 1.294(cFs) for 0.480{Ar.} Total runoff = 3.I92{cFs} Effective area this stream = 0.05(xc.) Total study Area {wain stream mo' 1) ~ 9.79(Ac.) Area averaged Fm value = 0.079{zn/xr} Street flow at end of street ~ 3.192(cFs) nalf street flow at end of street = ]'192([Fs} Depth of flow ~ 0.280(Ft.), *»erape velocity ~ 3.077{pt/s} Flow width (from curb towards crown)= 9.757(Ft.) Process from Point/Station 10.000 to Point/Station 11.000 COMMERCIAL subarea type oecimal fraction soil group A ~ 1.000 oecimal fraction soil group B = 0.000 oecimal fraction soil group C = 0.000 oecimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) ~ 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.I000 Max loss rate(Fm)= 0.079{Zn/*r} znitial subarea data: Initial area flow distance = 212.000(Ft.) Top (of initial area) elevation ~ I466.000(Ft.) Bottom (of initial area) elevation = 1465.000(Ft.) Difference in elevation = 1.900(Ft.) slope = 0.80896 s(%)= 0.90 TC = k(0.304)^[{length«3)/{elevatinn change)]A0.2 znitial area time of concentration = 6.652 min. Rainfall intensity ~ 5'613{zo/*r} for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.887 Subarea runoff = 1.046(CFS) Total initial stream area ~ 0.210(Ac.) pervious area fraction = 0.100 Initial area Fm value = 0.079(zn/*r) End of computations, roral study xrea = 10'00 (Ac.) The following figures may be used for a unit hydrograph study of the same area. wote: These figures do not consider reduced effective area effects caused by confluences in the rational equation. Area averaged pervious area fraction(Ap) = 0.896 xrea averaged SCS curve number = 62.9 BS 10-YEAR STORM EVENT San oernardinn County national Hydrology Program (Hydrology Manual oare - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) I089-2005 version 7.1 national Hydrology study Date: 05/31/13 rract wo. 18657 - Madison Square single Family Residential Development Rational method Hydrology - Existing pre-oeveloped condition watershed included Onsite Drainage Area & Tributary Street Frontages 10-year Storm Event Program License Serial Number 6143 ^**^***^* Hydrology Study Control Information *+*****+** national hydrology study storm event year is 10.0 Computed rainfall intensity: Storm year year ~ 10.00 1 hour rainfall = 1'000 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.000 to Point/Station 2.000 *^*» INITIAL AREA EVALUATION ^*»* UNDEVELOPED (poor cover) subarea oecimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 oecimal fraction soil group C = 0.000 oecimal fraction soil group D = 0.000 SCS curve number for soil (AMC 2) ~ 67.00 pervious ratio(Ap) ~ 1.0000 Max loss rate(Fm)= 0.578(In/Hr) znitial subarea data: znitial area flow distance ~ 688.000(Ft.) Top (of initial area) elevation ~ I465.I00{pt.} oottom (of initial area) elevation = 1451.500(Ft') Difference in elevation = 13.600(Ft.) slope = 0.01977 s(%)= 1.98 TC = k(0.525)°[{length«3}/{elevation change)]A0.2 Initial area time of concentration = 15.704 min. Rainfall intensity = 2.235{zn/nr} for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.667 subarea runoff = 6.128(CFS) Total initial stream area = 4.1I0(Ac.) Pervious area fraction = 1.000 Initial area Fm value = 0.578(zn/*r) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.000 to Point/Station 4.000 *^*^ INITIAL AREA EVALUATION °**^ UNDEVELOPED (poor cover) subarea oucimal fraction soil group A = I.000 oecimal fraction soil group B = 0.000 Decimal fraction soil group C ~ 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 67.00 Pervious ratio(Ap) = I.0000 Max loss rate(Fm)= 0.578(zn/xr) znitial subarea data: Initial area flow distance ~ 617.000(Ft.) Top (of initial area) elevation = 1465.600{Ft'} oottom (of initial area) elevation = I450.700{pt'} Difference in elevation = 14.900(Fr.) Slope = 0.02415 s{%}~ 2.41 TC = k{0.525}*[[lenQth«3)/(elevatien change)]A0.2 Initial area time of concentration = 14.444 min. nainfall intensity = 2.350(In/*r) for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.679 . Subarea runoff = 5.204([F3} Total initial stream area ~ 3.320(Ac.) Pervious area fraction = 1.000 Initial area Fm value = 0.578(zn/*r) r�~T �°� � Process from Point/station 5.000 to Point/Station 6.000 UNDEVELOPED (poor cover) subarea oecimal fraction soil group A = 1.000 oecimal fraction soil group B ~ 0.000 oecimal fraction soil group c = 0.000 oecimal fraction soil group D = 0.000 sCS curve number for soil (AMC 2) = 67.00 Pervious ratio(Ap) ~ I.0000 Max loss rate(Fm)= 0.578{zn/nr} Initial subarea data: Initial area flow distance = 630.000(Ft.) Top (of initial area) elevation = 1465.600(Ft.) mottom (of initial area) elevation = 1452.400(Ft.) Difference in elevation ~ 13.200(pt.) slope = 0.02095 s(%). 2.I0 TC = k{0.525}*[{length«3}/(elevation change)]A0.2 Initial area time of concentration = 14.985 min. nainfall intensity - 2.299(zn/*r) for a 10.0 year storm Effective runoff coefficient used for area (0~xczA) is C ~ 0.674 Subarea runoff = 2.183(CFS) Total initial stream area = 1.410(xc.) Pervious area fraction = 1.000 Initial area Fm value = 0.578(zn/*r) Process from Point/Station 7.000 to Point/station 8.000 COMMERCIAL subarea type oecimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 oacimal fraction soil group c = 0.000 oecimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) ~ 0.1000 Max loss rate(pm)~ 0.008{zn/*r} znitial subarea data: znitial area flow distance = 466.000(Ft.) Top (of initial area) elevation ~ 1406.900(Ft.) Bottom (of initial area) elevation = I463.300(Ft.) Difference in elevation = 3.600(Fr.) slope = 0.00773 s(%)= 0.77 TC = k(0.304)+[{length»3}/(elevation change)]«0.2 Initial area time of concentration = 9.390 min. � aainfall intensity ~ 3.043(zn/nr) or a 10.0 year storm Effective runoff coefficient used for area (0~w[IA} is C = 0.87I subarea runoff = I.246([Fs} Total initial stream area = 8.470(Ac.) Pervious area fraction = 0.100 Initial area Fm value = 0.008(zn/*r) +++++++++++ +++++ Process from Point/Station 8.000 to Point/station 9.000 **°* STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 146].]00{Ft.} snd of street segment elevation = I452'400(Ft.) Length of street segment = 580.000(Fr.) oeight of curb above gutter flowline = 8.0{zn.} width of half street (curb to crown) = 22.000(pt.) Distance from crown to crossfall grade break = 20.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street nistance from curb to property line ~ 12.000(Ft.) Slope from curb to property line (v/hz) = 0.820 Gutter width = 2.000(Ft.) Gutter hike from flowline = I.500(zn.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 sstimated mean flow rate at midpoint of street = 1.681(CFS) Depth of flow = 0.232(Ft.) , Average velocity = 2.675(Ft/s) srreetflow hydraulics at midpoint of street travel : *alfstreet flow width = 7.372(Ft.) Flow velocity ~ 2.68{Ft/s} Travel time = 3.61 min. TC = 13.00 min. Adding area flow to street COMMERCIAL subarea type oecimal fraction soil group A = 1.000 oecimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 oecimal fraction soil group D = 0.000 scs curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(zn/*r) nainfall intensity ~ 2.503{zn/xr} for a 10.0 year storm Effective runoff coefficient used for area,(total area with modified rational methnd}(0=xczA) is C = 0.865 Subarea runoff = 0.81I(cps) for 0.480(Ac.) Total runoff = 2.056{cFs} Effective area this stream = 0.95(uc.) Total Study Area {main stream No. 1) = 9.79(Ac.) Area averaged Fm value = 0'098(In/*r) street flow at end of street = 2.055(cFs) Half street flow at end of street = 2.056{cFs} oepth of flow = 0.246(Ft.) . Average velocity = 2.792{Ft/s} Flow width (from curb towards crown}~ 8.071(pr.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/station 10.000 to Point/Station 11.800 **** INITIAL AREA EVALUATION °**^ COMMERCIAL subarea type Decimal fraction soil group A = I.008 oecimal fraction soil group B ~ 0.000 oacimal fraction soil group C = 0.000 oecimal fraction soil group D = 0.008 scs curve number for soil(AMC 2) - 32.00 Pervious ratio(Ap) = 0.I000 Max loss rute{Fm}~ 0.098{zn/*r} Initial subarea data: znitial area flow distance = 212.000{Ft.} Top (of initial area) elevation ~ 1466.000(Ft.) onttom (of initial area) elevation = 1465.000(Ft.) Difference in elevation = 1.000{Ft.} slope ~ 8.00896 s(%)= 0.90 TC = k{0.]04)^[{length^])/(elevation change)]»0.2 Initial area time of concentration = 6.652 min' nainfall intensity = 3.742{In/*r} for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C ~ 0.876 subarea runoff = 0.689([ps) Total initial stream area = 0.210{Ac.} Pervious area fraction = 0.100 Initial area Fm value = 0.098{zn/nr} End of computations, Total Study Area = 10.00 (Ac.) The following figures may be used for a unit hydrograph study of the same area. wote: These figures do not consider reduced effective area effects caused by confluences in the rational equation. Area averaged pervious area fraction(Ap) = 0.896 Area averaged 5[s curve number = 62.9 Bat 25-YEAR STORM EVENT 8t0 San sernardino County Rational Hydrology Program (Hydrology Manual Date - August I986) CIVILCADD/CIVILDESIGN Engineering software, (c) I989-2005 Version 7.1 Rational Hydrology Study Date: 0]/0]/14 Tract No. 18657 - Madison square Single Family Residential oevalopment Rational Method Hydrology - Existing Pre-Developed Condition Watershed included Onsite Drainage Area & Tributary Street Frontages 25-year Storm Event Program License Serial Number 6143 ***+*«**» Hydrology study Control Information ***^**+*** Rational hydrology study storm event year is 10 year storm 1 hour rainfall = l.UOO In.] 100 Year storm 1 hour rainfall = 1'500[In.] Computed rainfall intensity: Storm year = 25.08 1 hour rainfall = 1.I99 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1'000 to Point/Station 2'000 **** INITIAL AREA EVALUATION **** UNDEVELOPED (poor cover) subarea Decimal fraction soil group A = 1'000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0'000 Decimal fraction soil group D = 0'000 SCS curve number for soil (AMC 2) = 67.00 Pervious ratio(Ap) = I.0000 Max loss rate(Fm)= 0. 578(In/Hr) Initial subarea data: Initial area flow distance = 680'000(Ft') Top (of initial area) elevation = 1465.100[Ft'] Bottom (of initial area) elevation = 145I- 500(Ft') Difference in elevation = I].600(Ft.) Slope = 0.0I977 s(%)= 1.90 TC = k(0. 525)*[{length«3]/(elavation change)]A0.2 Initial area time of concentration = 15.704 min. Rainfall intensity = 2.680(In/Hr) for a 25'0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0'706 Subarea runoff = 7.773{CFS} Total initial stream area = 4.1I0(Ac') Pervious area fraction = 1'000 Initial area Fm value = 0. 578(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.000 to Point/Station 4.000 **** INITIAL AREA EVALUATION **** UNDEVELOPED (poor cover) subarea Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0'000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil (AMC 2) = 07'00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0' 578(In/Hr) Initial subarea data: Initial area flow distance = 817.000(Ft') Top (of initial area) elevation = I465.600(Ft') Bottom (of initial area) elevation = I450'700(Ft') eS 1 Difference in elevation = I4.900{Ft.} Slope = 0'02415 s(%)= 2.41 TC = k{0. 525}*[(length«3)/(elevation change)]A0.2 Initial area time of concentration = 14.444 min. Rainfall intensity = 2.818[In/Hr] for a 25.0 year storm Effective runoff coefficient used for area (Q~K[IA] is c = 0.715 subarea runoff - 6'69l(rFs). Total initial stream area = 3 . 320(Ac.) Pervious area fraction = 1.000 Initial area Fm value = 0.578(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5'000 to Point/Station 6.000 ***+ INITIAL AREA EVALUATION ***» UNDEVELOPED (poor cover) subarea Decimal fraction soil group A = I'000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0'000 5[S curve number for soil(AMC 2) = 67'00 Pervious ratio(Ap) = 1.0000 max loss rate(Fm)= 0' 578(In/Hr) Initial subarea data: Initial area flow distance = 830'000(Ft.) Top (of initial area) elevation = I405.600(Ft.) Bottom (of initial area) elevation = I453'400(Ft.) Difference in elevation = 13.200[Ft.] slope = 0.02095 s(%)= 2.10 TC = k(0' 525)*[{length»3}/(elevation change)]«0.2 Initial area time of concentration = 14.985 min. Rainfall intensity = 3'756(In/Hr) for a 25.0 year storm Effective runoff coefficient used for area (Q=K[IA] is C = 0'711 Subarea runoff - 2'764([FS] Total initial stream area = 1.4I0(xc.) Pervious area fraction = 1'000 Initial area Fm value = 0. 578(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 7'000 to Point/Station 8'000 *^** INITIAL AREA EVALUATION **** COMMERCIAL subarea type Decimal fraction soil group A = I.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0'000 Decimal fraction soil group D = 0'000 SCS curve number for soil (AMC 2) = 33'00 Pervious ratio(Ap) = 0'1000 max loss rate(Fm)= 0'098(zn/Hr) Initial subarea data: Initial area flow distance = 466'000(Ft') Top (of initial area) elevation = 1466'900(Ft.) Bottom (of initial area) elevation = 1463'300(Ft.) Difference in elevation = 3'600(Ft.) slope = 0.00773 s(%)= 0.77 TC = k(0.304)*[(length«3)/(elevatimn change)]A0.2 Initial area time of concentration = 9.390 min. Rainfall intensity = 3.848(In/Hr) for a 25.0 year storm Effective runoff coefficient used for area (0=K[IA] is C = 0.876 Subarea runoff = , 1. 502(CFS) Total initial stream area = 0.470(Ac.) Pervious area fraction = 0.100 Initial area Fm value = 0.090(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 8'000 to Point/Station 9.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION *^** Top of street segment elevation = 1463.300(Ft.) End of street segment elevation = I452.400(Ft.) L_���� k �.~�� — Length of street segment = 580.000(Ft.) Height of curb above gutter flowline = 8J0(In') Width of half street (curb to crown) = 22'000(Ft.) Distance from crown to crossfall grade break = 20.000(Ft') Slope from gutter to grade break (v/hz) = 0'020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = I2.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2'000(Ft') Gutter hike from flowline = 1'500(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0'0I50 Manning's N from grade break to crown = 0'0150 Estimated mean flow rate at midpoint of street = 2.O FS) Depth of flow = 0.346(Ft') ' Average velocity = 2.786(Ft/s) Streetflmw hydraulics at midpoint of street travel : Halfstreet flow width = 8'035(Ft') Flow velocity = 2.79(Ft/s) Travel time = 3.47 min' TC = I2'06 min' Adding area flow to street COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0'000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for so 2) = 32.00 Pervious ratio(Ap) = 0'I000 Max loss rate(Fm)= 0'090(In/Hr) Rainfall intensity = 3.021(In/Hr) for a 25.0 year storm Effective runoff coefficient used for area, (total area with modified rational method)(Q=KCIA) is C = 0'87I Subarea runoff = 0.990([FS) for 0.480(Ac.) Total runoff = 3. 500([F5} Effective area this stream = 0.95[Ac.] Total Study Area (Main Stream No. 1) = 9.79(Ac.) Area averaged Fm value = 0.098(In/Hr) Street flow at end of street = 2. 500([FS} Half street flow at end of street = 2'500[CFS] Depth of flow = 0.26I(Ft.) , Average velocity = 2.914(Ft/s) Flow width (from curb towards crown)= 8.791(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/Station 11.000 **** INITIAL AREA EVALUATION **** COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 oecimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil (AMC 2) = 33.00 rervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In/Hr) Initial subarea data: Initial area flow distance = 212'000(Ft.) Top (of initial area) elevation = I466'900(Ft') Bottom (of initial area) elevation = 1465'000(Ft.) Difference in elevation = 1.900(Ft') Slope = 0.00090 s(%)= 0.90 TC = h{0.304}*[(langth»3)/(elevation change)]A0.2 Initial area time of concentration = 6.652 min. Rainfall intensity = 4.487(In/Hr) for a 25.0 year storm Effective runoff coefficient used for area (0~K[IA) is C = 0'880 Subarea runoff = 0.8]0([FS) Total initial stream area = 0'2I0{Ac'} Pervious area fraction = 0.100 Initial area Fm value = 0'098(In/Hr) End of computations, Total Study Area = I0.00 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation. Area averaged pervious area fraction(Ap) = 0.896 Area averaged ScS curve number = 62.9 B\ APPENDIX C RATIONAL METHOD HYDROLOGY CALCULATIONS FOR PROPOSED DEVELOPED CONDITION c\ DESIGN 100-YEAR STORM EVENT C2 san aernardino County national Hydrology Program (Hydrology manual oate - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1080-2005 versinn 7.1 narional Hydrology Study oate: 06/05/I3 Tract wo. 18657 - Madison square single ramily Residential nevelopment national method Hydrology - Proposed Developed Condition watershed included Onsite Drainage Area & Tributary Street Frontages 100-vear Storm Event Program License serial wumber 6143 »*^^»^»^^ Hydrology Study Control Information ^*«*^»***^ Rational hydrology study storm event year is I00.0 computed rainfall intensity: Storm year = 100.00 1 hour rainfall = 1'500 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.000 to Point/Station 2.000 °»*° INITIAL AREA EVALUATION °°°^ RESIDENTIAL(8 - 10 dwl/acre) Decimal fraction soil group A = 1.000 oecimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted Ks curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.4000 Max loss rate(Fm)= 0.314{zn/*r} Initial subarea data: Initial area flow distance = 733.000{Fc.} Top (of initial area) elevation = 1467.000(pt.) Bottom (of initial area) elevation = 1453.780{Ft.} Difference in elevation ~ 13.220{Ft.} Slope = 0.0I804 s(%)= 1.80 TC = k{0.]74)*[{lenWth«]}/{elevation change)]A0.2 Initial area time of concentration = 11.687 min. nainfall intensity = 4.003{In/*r} for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.829 Subarea runoff = 7.669[[F5l Total initial stream area = 2.310{4c.} Pervious area fraction = 0'400 Initial area Fm value ~ 0.314{zn/xr} ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2.000 to point/station 3.000 °°°° PIPEFLOW TRAVEL TIME (User specified size) ^°** upstream point/station elevation = 1449.780(Ft.) oownstream point/station elevation = 1449.280{Ft.} Pipe length = 27.50(Ft.) manning's N = 0.013 NO. of pipes = 1 Required pipe flow = 7.669(CFS) oiven pipe size = 24.00{zn.} Calculated individual pipe flow = 7.669([F5} wormal flow depth in pipe = 8.20(In.) Flow top width inside pipe = 22.77{zn.} Critical Depth = 11.81(zn.) Pipe flow velocity = 8.08(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) ~ 11.74 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2.000 to Point/Station 3.000 **°^ CONFLUENCE OF MINOR STREAMS **** Along main Stream number: 1 in normal stream number 1 stream flow area ~ 2.310(Ac.) Runoff from this stream = 7.669(cps) Time of concentration = 11.74 min. Rainfall intensity ~ 3.991(In/Hr) Area averaged loss rate (Fm) ~ 0.3141(zn/*r) Area averaged Pervious ratio (Ap) = 0.4000 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4.000 to Point/Station 5.000 °°°° INITIAL AREA EVALUATION °°»* RESIDENTIAL(8 - 10 dwl/acre) Decimal fraction soil group A = 1.000 oecimal fraction soil group B = 0.000 oecimal fraction soil group C = 0.000 oecimal fraction soil group o = 0.000 SCS curve number for soil(*wc 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.4000 Max loss rate(Fm)= 0.314{zn/nr} Initial subarea data: Initial area flow distance = 686.000{Ft.} Top (of initial area) elevation ~ 1464.300(Fr.) onttom (of initial area) elevation = I453.780{Ft.} Difference in elevation = 10.520{Ft.) Slope = 8.01534 s(%)= 1.53 TC = k{0.374}w[{length»3}/{elevation change)]A0.2 Initial area time of concentration ~ 11'756 min. Rainfall intensity = 3.989(In/Hr) for a I00.0 year storm Effective runoff coefficient used for area (V=KczA) is C = 0.829 Subarea runoff = 6.317(cFs) Total initial stream area = I.9I0(Ac.) Pervious area fraction = 0.400 Initial area Fm value = 0.314(zn/*r) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from vnint/stariun 5.000 to Point/Station 3.000 ^*** PIPEFLOW TRAVEL TIME (User specified size) +°°* Upstream point/station elevation = I449.780(Ft.) Downstream point/station elevation = I449.280{Ft.} Pipe length = 17.30(Ft.) manning's N = 0.013 NO. of pipes = 1 Required pipe flow = 6.317(cFs) Given pipe size ~ 24.00{zn.} calculated individual pipe flow = 6.3I7{cps} Normal flow depth in pipe = 6.58(In.) Flow top width inside pipe = 21.4I{zn.} Critical Depth = 10.67(zn.) Pipe flow velocity = 0.04(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (Tc) = 11.79 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5.000 to Point/Station 3.000 a*^« CONFLUENCE OF MINOR STREAMS °°^° Along main Stream number: 1 in normal stream number 2 stream flow area = 1.9I0{Ac.} nunoff from this stream = 6.317{CFs} Time of concentration ~ I1.79 min' uainfall intensity = 3.982{zn/*r} Area averaged loss rate (Fm) = 0.3I41(zn/*r) xreu averaged Pervious ratio (Ap) = 0.4000 summary of stream data: Stream Flow rate xrea TC Fm Rainfall Intensity ' No. (CFS) (Ac.) (min) (In/Hr) (In/Hr) 1 7.67 2.310 I1.74 0.3I4 3.991 2 6.32 I.0I0 11.79 0.314 3.982 Qmax(1) = I.000 * 1.000 * 7.669) + 1.002 * 0.996 * 6.]17} + = 13.977 Qmax(2) = . 0.998 * I.000 * 7.669) + I.000 * 1.000 * 6.317} + = 13.967 Total of 2 streams to confluence: Flow rates before confluence point: 7.669 6.3I7 maximum flow rates at confluence using above data: 13.977 13.967 Area of streams before confluence: 2.310 1.910 Effective area values after confluence: 4.213 4.220 Results of confluence: Total flow rate = I3.977{cFs} Time of concentration = 11.743 min. Effective stream area after confluence = 4.213(xc.) Study area average Pervious fraction(Ap) = 0.400 Study area average soil loss rate(Fm) = 0.314(zn/xr) study area total (this main stream) = 4.22(Ac') ++++++++++++++++++++++++++++++++++++++++ +++++++++++++++++ Process from point/statinn 3.000 to point/station 6.000 °^a* PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = I448.780(pt') oownstream point/station elevation = 1447.200(Ft.) Pipe length = 217.50(Ft.) manning's N = 0.013 No. of pipes = 1 nequired pipe flow = 13.977(cFs) Given pipe size = 30.00(zn.) Calculated individual pipe flow = 13.977(cFs) Normal flow depth in pipe = I3.20{zn.} Flow top width inside pipe = 29.78{zn.} Critical Depth = 15.II(zn.) Pipe flow velocity = 6.73{pt/s} Travel time through pipe = 0.54 min. Time of concentration (TC) = I2.28 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.000 to Point/Station 6.000 **** CONFLUENCE OF MINOR STREAMS *°*^ Along Main stream number: 1 in normal stream number 1 stream flow area = 4.2I3{Ac.} Runoff from this stream ~ 13.977([FS) Time of concentration ~ 12.28 min. Rainfall intensity = 3.885(In/Hr) xrea averaged loss rate (Fm) = 0.314I{zn/*r} Area averaged Pervious ratio (Ap) ~ 0.4000 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 7.000 to point/starion 8.000 **^^ INITIAL AREA EVALUATION ^^** RESIDENTIAL(8 - 10 dwl/acre) oecimal fraction soil group A = I.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group c = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) ~ 32.00 Adjusted SCS curve number for AMC 3 = 52'00 Pervious ratio(Ap) ~ 0'4000 Max loss rate(Fm)= 0.3I4{zn/*r} znirial subarea data: Initial area flow distance = 667.000{Ft.} Top (of initial area) elevation = 1463.000{Ft'} Bottom (of initial area) elevation = I453.690(pt.) Difference in elevation = 9.3I0{rt.} Slope = 0.01396 s(%)= 1.40 TC = k{0'374}*[{length«3}/{elevation change}]«0.2 ' znitial area time of concentration = 11.846 min. aainfall intensity ~ 3.971{In/*r} for a 100'0 year storm Effective runoff coefficient used for area (Q=KCIA) is [ ~ 0.820 subarea runoff = 5.858(CFS) Total initial stream area = 1.780(xc.) pervious area fraction = 0.400 Initial area Fm value = 0.314{zn/*r} . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ rrocess from Point/Station 8.000 to Point/station 6.000 °*+^ PIPEFLOW TRAVEL TIME (User specified size) +*** ^. ���� ' } Upstream point/station elevation ~ I449.690(rt.) Downstream point/station elevation = 1447.950(Ft.) Pipe length = 20.80(Ft.) manning's N = 0.013 wo. of pipes = 1 nequired pipe flow = 5.858(CFS) Given pipe size = 24.08(zn.) calculated individual pipe flow = 5.858(crs) wormal flow depth in pipe = 4.85(In.) Flow top width inside pipe = 10.28{In.} Critical Depth = 1O.26(zn.) Pipe flow velocity = 12.89(pt/s) Travel time through pipe = 0.03 min. Time of concentration (TC) ~ 1I.87 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 8.000 to Point/Station 6.000 *^*° CONFLUENCE OF MINOR STREAMS °°^° Along Main stream number: 1 in normal stream number 2 stream flow area = 1.780(^c.) Runoff from this stream = 5.858{cFs} Time of concentration = 11.87 min. nainfall intensity = 3.965(In/Hr) xrea averaged loss rate (Fm) = 0.3I41(zn/*r) Area averaged Pervious ratio (Ap) = 0.4000 summary of stream data: stream Flow rate Area TC Fm nuinfall zntensity No. ([FS} (Ac.) (min) (In/Hr) (In/Hr) 1 I3.98 4.213 I2.28 0.314 3.885 2 5.86 1.780 1I'87 0.314 3.965 Qmax(l) ~ I.000 * 1.000 * 13.977} + 0.978 * 1.000 * 5.858) + = 19.707 Qmax(2) = 1.022 * 0.967 * 13.977} + 1.000 * I.000 * 5.858} + = 19.671 Total of 2 streams to confluence: Flow rates before confluence point: 13.977 5.858 Maximum flow rates at confluence using above data: 19.707 19.671 Area of streams before confluence: 4.213 1.780 Effective area values after confluence: 5.993 5.852 nesults of confluence: Total flow rate ~ I9.707([FS) Time of concentration ~ I2.282 min. Effective stream area after contluence = 5.093{Ac.} Study area average Pervious fraction(Ap) = 0.400 Study area average soil loss rate(Fm) = 0.314(zn/nr) Study area total (this main stream) 5.99(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 6.000 to Point/Station 9.000 °°** PIPEFLOW TRAVEL TIME (User specified size) °°»° Upstream point/station elevation ~ 1447.700(Ft.) oo*nstream point/station elevation = 1447.500(rt.) Pipe length = 39.28{pt.} manning's N = 0.013 wo. of pipes = 1 nequircd pipe flow = 19.707(cpS) Given pipe size = ]O.00{Zn.} Calculated individual pipe flow = 19.707([FS) wormal flow depth in pipe = 18.02(zn') Flow top width inside pipe = 29.38(zn.) Critical Depth = I8.07(zn.) Pipe flow velocity = 6.40(Ft/s) Travel time through pipe = 0.10 min. Time of concentration {TC} ~ 12.38 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/station 6.000 to Point/Station 9.000 *^a+ CONFLUENCE OF MINOR STREAMS **»* Along main stream number: 1 in normal stream number 1 stream flow area = 5.993(Ac.) nunoff from this stream ~ 19.707(cFs) Time of concentration = 12.38 min. nainfall intensity = 3.866(In/Hr) Area averaged loss rate (Fm) = 0.314I(zn/*r) xrea averaged Pervious ratio (Ap) ~ 0.4000 Process from Point/Station 10.000 to Point/Station I1.000 **** INITIAL AREA EVALUATION °*^^ RESIDENTIAL(8 - 10 dwl/acre) oecimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 oecimal fraction soil group C ~ 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted scs curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.4000 Max loss rate(Fm)= 0.314{zn/*r} Initial subarea data: znitial area flow distance = 718.000(pt.) Top (of initial area) elevation ~ 1464.000(pt.) Bottom (of initial area) elevation = 1453.300(Ft.) Difference in elevation = 10.700(Ft.) Slope ~ 0.0I490 s(&)~ 1.49 Tc ~ k(0.374)*[(lengthA3)/(elevation change)]«0.3 Initial area time of concentration = 12'041 min. nainfall intensity ~ ].9]2{zn/*r} for a I00.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C ~ 0.828 subarea runoff = 7.912([ps} Total initial stream area = 2.430(xc') Pervious area fraction = 0.400 znitial area pm value = 0.3I4(zn/*r) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 11.000 to Point/Station 9.000 *°+° PIPEFLOW TRAVEL TIME (User specified size) °°^° Upstream point/station elevation = I447.500(Ft.) oownstream point/station elevation = 1447.350{Ft.} Pipe length = 3.90{Ft.} Manning's N = 0.013 NO. of pipes = 1 Required pipe flow = 7.012(cFs) Given pipe size = 24.00(zn') calculated individual pipe flow = 7.9I2(cFs) wormal flow depth in pipe = 6.86(In.) Flow top width inside pipe ~ 21.50(In.) Critical Depth ~ I2.02(zn.) Pipe flow velocity = 10.67{pz/s} Travel time through pipe = 0.01 min. Time of concentration (Tc) ~ I2.05 min' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1I.000 to Point/Station 0.000 °°*° CONFLUENCE OF MINOR STREAMS °°*» Along Main Stream number: 1 in normal stream number 2 Stream flow area ~ 2.430{Ac.} Runoff from this stream = 7.912([Fs) Time of concentration = 12.05 min. mainfall intensity = 3.931(rn/*r) Area averaged loss rate (Fm) = 0.314I{zn/*r} Area averaged Pervious ratio (Ap) = 0'4000 Summary of stream data: Stream Flow rate Area TC Fm Rainfall Intensity NO. (CFS) (Ac.) (min) (In/Hr) (In/Hr) 1 I9.71 5.093 I2.38 0.3I4 3.866 2 7.91 2.430 12.05 0.314 3.931 Qmax(1) = 1.008 * 1.000 * 19.707) + 0.982 * I.000 * 7.9I2} + = 27.477 Qmax(2) = 1.018 * 0.973 * 19.707} + 1.080 * 1.000 * 7.9I2} + = 27.430 ��7 ~�-- Total of 2 streams to confluence: Flow rates before confluence point: 10.707 7.912 maximum flow rates at confluence using above data: 27.477 27.430 Area of streams before confluence: 5.993 2.430 Effective area values after confluence: 8.423 8.260 nesults of confluence: Total flow rate = 27.477(cFs) Time of concentration = 12.384 min. Effective stream area after confluence ~ 8'42](xc.) Study area average Pervious fraction(Ap) = 0.400 study area average soil loss rate(Fm) = 0.314(In/Hr) Study area total (this main stream) = 8.42(xc.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 0.000 to Point/station 12.000 **°^ PIPEFLOW TRAVEL TIME (User specified size) ^^+* Upstream point/station elevation = I447.350{Ft.} onwnstream point/station elevation = 1447.000(Ft.) Pipe length = 42.00(Ft.) manning's N ~ 0.013 No. of pipes = 1 Required pipe flow = 27.477(CFS) Given pipe size = 30.00{zn.} calculated individual pipe flow = 27.477(CFS) wormal flow depth in pipe = I9.I0(zn.) Flow top width inside pipe = 28.86(In.) Critical Depth = 2I.45(zn.) Pipe flow velocity = 8.34{Ft/s} Travel time through pipe = 0.08 min' Time of concentration (TC) = 12.47 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station I3.000 to Point/Station I2.000 +^** SUBAREA FLOW ADDITION °°*° PARK subarea oecimal fraction soil group A = 1.000 oecimal fraction soil group B = 0.000 oecimal fraction soil group C = 0.000 occimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.8500 Max loss rate{pm}= 0.667{zn/*r} Time of concentration = 12.47 min nainfall intensity = 3.850{zn/*r} for a I00.0 year storm Effective runoff coefficient used for area. (tntal area with modified rational method)(Q=KCIA) is C = 0.824 Subarea runoff = 0.074{cFs} for 0.260(Ac.) Total runoff = 27.551(cFs) Effective area this stream = 8.68{Ac'} Total Study Area (Main Stream No. 1) ~ 8'69{Ac.} Area averaged Fm value = 0.325(zn/*r) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 12.000 to Point/Station 12.000 **^* CONFLUENCE OF MINOR STREAMS *°** Along wain Stream number: 1 in normal stream number 1 szream flow area ~ 8.683(Ac.) Runoff from this stream ~ 27.551([Fs) Time of concentration = I2.47 min. Rainfall intensity = 3.85O{In/Vr} Area averaged loss rate (Fm) ~ 0.3246(zn/Vr) Area averaged Pervious ratio (Ap) = 0.4I35 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 14.000 to Point/Station I5.000 **** INITIAL AREA EVALUATION **** COMMERCIAL subarea type Decimal fraction soil group A = I.800 oecimal fraction soil group B = 0.008 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.079(In/Hr) Initial subarea data: Initial area flow distance = 466.000(Ft.) Top (of initial area) elevation = 1466.900(Ft.) Bottom (of initial area) elevation = 1463.300(Ft.) Difference in elevation = 3.600(Ft.) Slope = 0.00773 s(%)= 0.77 TC = k(0.304)*[(lengthA3)/(elevation change)]A0.2 Initial area time of concentration = 9.390 min, Rainfall intensity = 4.565(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.885 Subarea runoff = 1.898(CFS) Total initial stream area = 0.470(Ac.) Pervious area fraction = 0.100 Initial area Fm value = 0.079(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 15.000 to Point/Station 16.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1463.300(Ft.) End of street segment elevation = 1452.660(Ft.) Length of street segment = 576.000(Ft.) Height of curb above gutter flowline = 8.0(In.) width of half street (curb to crown) = 22.000(Ft.) Distance from crown to crossfall grade break = 20.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.025 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(in.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.812(CFS) Depth of flow = 0.309(Ft.), Average velocity = 2.932(Ft/s) Streetflow hydraulics at midpoint of street travel : Halfstreet flow width = 9.125(Ft.) Flow velocity = 2.93(Ft/s) Travel time = 3.27 min. TC = 12.66 min. Adding area flow to street COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.079(In/Hr) Rainfall intensity = 3.814(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area, (total area with modified rational method)(Q=KCIA) is C = 0.881 Subarea runoff = 1.734(CFS) for 0.610(Ac.) Total runoff = 3.631(CFS) Effective area this stream = 1.08(Ac.) Total Study Area (Main Stream No. 1) = 9.77(Ac.) Area averaged Fm value = 0.079(In/Hr) Street flow at end of street = 3.631(CFS) Half street flow at end of street = 3.631(CFS) Depth of flow = 0.331(Ft.), Average velocity = 3.106(Ft/s) Flow width (from curb towards crown)= 10.209(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 16.000 to Point/Station 16.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.080(Ac.) Runoff from this stream = 3.631(CFS) Time of concentration = 12.66 min. Rainfall intensity = 3.814(In/Hr) Area averaged loss rate (Fm) = 0.0785(In/Hr) Cq Area averaged Pervious ratio (Ap) = 0.1000 Summary of stream data: stream Flow rate Area Tc Fm Rainfall Intensity No. (CFS) (Ac.) (min) (In/Hr) (In/Hr) 1 27.55 8.683 12.47 0.325 3.850 2 3.63 1.080 12.66 0.079 3.814 Qmax(1) = 1.000 * 1.000 * 27.551) + 1.010 * 0.985 * 3.631) + = 31.161 Qmax(2) = 0.990 * 1.000 * 27.551) + 1.000 * 1.000 * 3.631) + = 30.903 Total of 2 streams to confluence: Flow rates before confluence point: 27.551 3.631 Maximum flow rates at confluence using above data: 31.161 30.903 Area of streams before confluence: 8.683 1.080 Effective area values after confluence: 9.746 9.763 Results of confluence: Total flow rate = 31.161(CFS) Time of concentration = 12.468 min. Effective stream area after confluence = 9.746(Ac.) Study area average Pervious fraction(Ap) = 0.379 Study area average soil loss rate(Fm) = 0.297(In/Hr) Study area total (this main stream) = 9.76(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 17.000 to Point/Station 18.000 **** INITIAL AREA EVALUATION **** COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.079(In/Hr) Initial subarea data: Initial area flow distance = 212.000(Ft.) Top (of initial area) elevation = 1466.900(Ft.) Bottom (of initial area) elevation = 1465.000(Ft.) Difference in elevation = 1.900(Ft.) Slope = 0.00896 s(%)= 0.90 TC = k(0.304)*[(lengthA3)/(elevation change)]A0.2 Initial area time of concentration = 6.652 min. Rainfall intensity = 5.613(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.887 Subarea runoff = 1.146(CFS) Total initial stream area = 0.230(Ac.) Pervious area fraction = 0.100 Initial area Fm value = 0.079(In/Hr) End of computations, Total study Area = 10.00 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation. Area averaged pervious area fraction(Ap) = 0.372 Area averaged SCS curve number = 32.0 Co 10-YEAR STORM EVENT c< < San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2005 Version 7.1 Rational Hydrology Study Date: 06/05/13 Tract No. 18657 - Madison Square Single Family Residential Development Rational Method Hydrology - Proposed Developed Condition watershed included Onsite Drainage Area & Tributary Street Frontages 10-year Storm Fven.t Program License Serial Number 6143 ********* Hydrology Study Control Information ********** Rational hydrology study storm event year is 10.0 Computed rainfall intensity: Storm year = 10.00 1 hour rainfall = 1.000 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.000 to Point/Station 2.000 **** INITIAL AREA EVALUATION **** RESIDENTIAL(8 - 10 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.4000 Max loss rate(Fm)= 0.391(In/Hr) Initial subarea data: Initial area flow distance = 733.000(Ft.) Top (of initial area) elevation = 1467.000(Ft.) Bottom (of initial area) elevation = 1453.780(Ft.) Difference in elevation = 13.220(Ft.) Slope = 0.01804 s(%)= 1.80 TC = k(0.374)*[(lengthA3)/(elevation change)]A0.2 Initial area time of concentration = 11.687 min. Rainfall intensity = 2.669(In/Hr) for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.768 Subarea runoff = 4.735(CFS) Total initial stream area = 2.310(Ac.) Pervious area fraction = 0.400 Initial area Fm value = 0.391(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2.000 to Point/Station 3.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1449.780(Ft.) Downstream point/station elevation = 1449.280(Ft.) Pipe length = 27.50(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 4.735(CFS) Given pipe size = 24.00(in.) Calculated individual pipe flow = 4.735(CFS) Normal flow depth in pipe = 6.39(In.) Flow top width inside pipe = 21.22(In.) Critical Depth = 9.19(In.) Pipe flow velocity = 7.05(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 11.75 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2.000 to Point/Station 3.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 2.310(Ac.) Runoff from this stream = 4.735(CFS) C.ta Time of concentration = 11.75 min. Rainfall intensity = 2.660(In/Hr) Area averaged loss rate (Fm) = 0.3911(In/Hr) Area averaged Pervious ratio (Ap) = 0.4000 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4.000 to Point/Station 5.000 **** INITIAL AREA EVALUATION **** RESIDENTIAL(8 - 10 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil (AMC 2) = 32.00 Pervious ratio(Ap) = 0.4000 Max loss rate(Fm)= 0.391(In/Hr) Initial subarea data: Initial area flow distance = 686.000(Ft.) Top (of initial area) elevation = 1464.300(Ft.) Bottom (of initial area) elevation = 1453.780(Ft.) Difference in elevation = 10.520(Ft.) slope = 0.01534 s(%)= 1.53 TC = k(0.374)*[(lengthA3)/(elevation change)]A0.2 Initial area time of concentration = 11.756 min, Rainfall intensity = 2.659(In/Hr) for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.768 Subarea runoff = 3.899(CFS) Total initial stream area = 1.910(Ac.) Pervious area fraction = 0.400 Initial area Fm value = 0.391(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5.000 to Point/Station 3.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1449.780(Ft.) Downstream point/station elevation = 1449.280(Ft.) Pipe length = 17.30(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.899(CFS) Given pipe size = 24.00(In.) calculated individual pipe flow = 3.899(CFS) Normal flow depth in pipe = 5.16(In.) Flow top width inside pipe = 19.72(In.) Critical Depth = 8.31(In.) Pipe flow velocity = 7.86(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 11.79 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5.000 to Point/Station 3.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.910(Ac.) Runoff from this stream = 3.899(CFS) Time of concentration = 11.79 min. Rainfall intensity = 2.654(In/Hr) Area averaged loss rate (Fm) = 0.3911(In/Hr) Area averaged Pervious ratio (Ap) = 0.4000 Summary of stream data: Stream Flow rate Area TC Fm Rainfall Intensity No. (CFS) (Ac.) (min) (In/Hr) (In/Hr) 1 4.73 2.310 11.75 0.391 2.660 2 3.90 1.910 11.79 0.391 2.654 Qmax(1) = 1.000 * 1.000 * 4.735) + 1.002 * 0.997 * 3.899) + = 8.629 Qmax(2) = 0.998 * 1.000 * 4.735) + 1.000 * 1.000 * 3.899) + = 8.622 Total of 2 streams to confluence: Flow rates before confluence point: 4.735 3.899 C13 Maximum flow rates at confluence using above data: 8.629 8.622 xrea of streams before confluence: 2.310 1.9I0 Effective area values after confluence: 4.2I3 4.220 Results of confluence: Total flow rate = 8.629(cFs) rime of concentration = 1I.751 min. Effective stream area after confluence = 4.21](xc.) Study area average Pervious fraction(Ap) = 0.400 Study area average soil loss rate(Fm) = 0.391{zn/*r} Study area total (this main stream) = 4.22(Ac.) Process from Point/Station 3.000 to Point/Station 6.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1448.780(rt.) oownstream point/station elevation = 1447.200{pt.} Pipe length = 217.50(rt.) manning's N = 0.013 wo. of pipes = 1 nequired pipe flow = 8.620(cps) Given pipe size = 30.00(zn.) calculated individual pipe flow = 8.629(cFS) wonnal flow depth in pipe = 10.16{zn.} Flow top width inside pipe = 28.40(In.) critical Depth = I1.74(zn.) pipe flow velocity = 5.90(Ft/s) Travel time through pipe = 0.61 min. Time of concentration (TC) = 12.37 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/statiun 3.000 to Point/Station 6.000 *+«^ CONFLUENCE OF MINOR STREAMS *^^* Along Main Stream number: 1 in normal stream number 1 Stream flow area = 4.21](\c.) Runoff from this stream = 8.629([F5) Time of concentration = 12.37 min. nainfall intensity ~ 2.580{zn/xr} Area averaged loss rate (Fm) = 0.39I1{zn/yr} Area averaged Pervious ratio (Ap) = 0.4000 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/Station 7.000 to poinz/5ration 8.000 ^^^* INITIAL AREA EVALUATION °°°* RESIDENTIAL(8 - 10 dwl/acre) oecimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 oecimal fraction soil group D = 0.000 scs curve number for soil(AMC 2) = 32.00 pervious ratio(Ap) = 0.4000 Max loss rate(Fm)= 0.391{zn/*r} Initial subarea data: Initial area flow distance = 667.000(Ft.) Top (of initial area) elevation = I463.000{Ft.} Bottom (of initial area) elevation = 1453.690(Ft.) Difference in elevation ~ 0.310(Ft.) slope ~ 0.01396 s(%)= 1'40 TC ~ k{0.374)+[(length«3)/(elevation change)]«0.2 Initial area time of concentration = 1I.846 min. xainfall intensity = 2.647(zn/Hr) for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.767 Subarea runoff = 3.6I4(cFS) Total initial stream area = 1.780(Ac.) pervious area fraction = 0.400 Initial area Fm value = 0.391{zn/Hr} ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ process from Point/Station 8.000 to Point/Station 6.000 *«** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1449.690(Ft.) oownstream point/station elevation = I447.958{Ft.} Pipe length = 20'80{Ft.} Manning's N = 0.013 C\4- �� �� No. of pipes = 1 nequired pipe flow = 3.0I4(cFs) Given pipe size = 24.00(In.) calculated individual pipe flow = 3.614(cpS) wormal flow depth in pipe = 3.83{zn.} Flow top width inside pipe = 17.58{In.} Critical Depth = 7.97(In.) Pipe flow velocity = 11.18(Ft/s) rravel time through pipe = 0.03 min. Time of concentration (TC) = 11.88 min. + +++++ Process from Point/Station 8.000 to Point/Station 6.000 °**» CONFLUENCE OF MINOR STREAMS °^°° Along Main stream number: 1 in normal stream number 2 Stream flow area = 1.780(4c.) nunoff from this stream = 3.614(CFS) Time of concentration = 11.88 min. Rainfall intensity = 2.643{zn/*r} Area averaged loss rate (Fm) = O.391I(zn/nr) Area averaged Pervious ratio (Ap) ~ 0.4000 Summary of stream data: Stream Flow rate Area TC Fm nuinfall Intensity No. ([Fs} (Ac.) {min} (In/Hr) (In/Hr) 1 8.63 4.213 12.37 0.391 2.580 2 3.61 I.780 I1.88 0.39I 2.643 Qmax(1) = 1.000 * 1.000 * 8.629} + 0.972 * 1.000 * 3.614) + = 12.142 Qmax(2) = I.020 * 0.960 * 8.629) + 1.000 * 1.000 * 3.614} + = I2.141 Total of 2 streams to confluence: Flow rates before confluence point: 8.629 3.614 maximum flow rates at confluence using above data: I2.142 I2.I41 xrea of streams before confluence: 4'2I3 1.780 Effective area values after confluence: 5.993 5.827 Results of confluence: Total flow rate = 13.I42([Fs) Time of concentration = I2.366 min` Effective stream area after confluence ~ 5.993{Ac.} Study area average Pervious fraction(Ap) = 0.400 Study area average soil loss rate(Fm) = 0.30I(zn/*r) Study area total (this main stream) = 5.99(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ rrncess from Point/Station 6.000 to poinr/starion 9.000 °°** PIPEFLOW TRAVEL TIME (User specified size) *°^° Upstream point/station elevation = 1447.700(Ft.) oownstream point/station elevation = I447.500(Ft.) Pipe length = 39.20(Ft.) Manning's N = 0.0I3 wu. of pipes = 1 Required pipe flow = 12.142{cFs} Given pipe size = 30.00(zn.) Calculated individual pipe flow = 12.142([F5) mormal flow depth in pipe = 13.46(zn.) Flow top width inside pipe = 29.84(In.) Critical Depth = I4.04{zn.} Pipe flow velocity = 5.69(Ft/s) Travel time through pipe ~ 0.I1 min. Time of concentration {Tc} = 12.48 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 6.000 to Point/Station 9.000 w*** CONFLUENCE OF MINOR STREAMS **+* Along wain stream number: 1 in normal stream number 1 stream flow area = 5.993(Ac.) Runoff from this stream = I2.I42(cFs) Time of concentration = 12.48 min. Rainfall intensity = 3.565(in/*r) Area averaged loss rate (Fm) = 0.3911(zn/*r) xrea averaged Pervious ratio (Ap) = 0.4000 Process from Point/station 10.000 to Point/station 11.000 RESIDENTIAL(8 - 10 dwl/acre) oecimal fraction soil group A = I.000 oecimal fraction soil group B = 0.000 Decimal fraction soil group c = 0.000 oecimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 rervious ratio(Ap) ~ 0.4000 Max loss rate(Fm)= 0.301(zn/yr) Initial subarea data: znitial area flow distance ~ 718.000{Ft.} Top (of initial area) elevation = 1464.000{Ft.} aottom (of initial area) elevation = I453.300{pt.} Difference in elevation = I0.700{Fr.} slope = 0.8I490 s(%)= 1.49 TC = k{0.374)*[{lenQth«3}/(elevation change)]^0.2 Initial area time of concentration = 12.041 min. Rainfall intensity = 2.62I{zn/or} for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.766 subarea runoff = 4.877(CFS) Total initial stream area = 2.43O(4c.) Pervious area fraction = 0.400 znitial area Fm value = 0.391(zn/*r) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 11.000 to Point/Station 0.000 *°^* PIPEFLOW TRAVEL TIME (User specified size) *°** upstream point/station elevation = 1447.500(Ft.) oownstream point/station elevation = 1447.350(Ft.) Pipe len9th = 3.00{Ft.} manning's N = 0.013 wn. of pipes = 1 nequired pipe flow ~ 4.877(CFS) Given pipe size = 24.00(zn.) calculated individual pipe flow = 4.877(CFS) wormal flow depth in pipe = 5.37(In.) Flow top width inside pipe = 20.01(In.) critical Depth = 9'32{zn.} Pipe flow velocity = 9.28(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) ~ 12.05 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 11.000 to Point/Station 9.000 «^** CONFLUENCE OF MINOR STREAMS *^** Along main stream number: 1 in normal stream number 2 stream flow area = 2.490(Ac.) nunoff from this stream ~ 4.877(cps) Time of concentration = 12.05 min. nainfall intensity = 2.620{zn/*r} Area averaged loss rate (Fm) = U.]QlI(zn/*r) Area averaged Pervious ratio (Ap) = 0.4000 Summary of stream data: Stream Flow rate Area TC Fm Rainfall zntensiry No. (CFS) (Ac.) {min} (In/Hr) (In/Hr) 1 12.14 5.993 12.48 0.391 2.565 2 4.88 2.430 12.05 0.391 2.620 Qmax(1) = 1.000 * 1.000 * 13.142} + 0.975 * 1.000 * 4.877) + = 16.899 Qmax(2) = 1.025 * 0.965 * I2.142} + 1.000 * 1.000 * 4.877) + = 16.894 Total of 2 streams to confluence: Flow rates before confluence point: 12.142 4.877 /~- | �' -���� �_ maximum flow rates at confluence using above data: 16.899 16'894 Area of streams before confluence: 5.993 2.430 Effective area values after confluence: 8.423 8'216 Results of confluence: Total flow rate ~ 16.899(cF Time of concentration ~ 12.481 min. Effective stream area after confluence = 8.423(xc.) Study area average Pervious fraction(Ap) = 0.400 Study area average soil loss rate(Fm) = O.]yI(zn/*r) Study area total (this main stream) = 8.42(Ac.) Process from Point/Station 9.000 to Point/Station 12.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 1447.350(Ft.) oownstream point/station elevation = 1447.000(Ft.) Pipe length 42U0(Ft ) manning's N = 0.0I3 No. of pipes = 1 nequired pipe flow = 16.899(cFS) Given pipe size = ]O.00{zn.} Calculated individual pipe flow = 16.899[rps) mormal flow depth in pipe = 14.13{zn.} Flow top width inside pipe = 29.95(zn.) Critical Depth - 16.66(in.) Pipe flow velocity = 7.43{Ft/s} Travel time through pipe = 0.00 min. Time of concentration (TC) I2.57 min. +*+ +++ Process from Point/Station 13.000 to Point/Station 12.000 a*aa SUBAREA FLOW ADDITION *°** PARK subarea oecimal fraction soil group A = I.000 Decimal fraction soil group B = 0.000 oecimal fraction soil group C = 0.000 oecimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.8580 Max loss rate(Fm)= 0.831(In/Hr) The area added to the existing stream causes a a lower flow rate of Q = 16.798(CFS) therefore the upstream flow rate of Q = 16.899(cp3) is being used Time of concentration = I2.57 min. Rainfall intensity = 2.554(zn/*r) for a 10.0 year storm Effective runoff coefficient used for area. {rotal area with modified rational method)(Q=KCIA) is C = 0.758 Subarea runoff ~ 0.000(cFS) for 0.260(Ac.) Total runoff = 16.899(CFS) Effective area this stream = 8.68(Ac.) Total Study Area (Main Stream No. 1) = 8.69(Ac.) Area averaged Fm value = O.404{In/*r} ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 12.000 to Point/station 12.000 **^* CONFLUENCE OF MINOR STREAMS ^°»^ Along wain Stream number: 1 in normal stream number 1 stream flow area = 8.683{Ac'} nvnoff from this stream = 16.899(CFS) Time of concentration = 12.57 min. nainfall intensity ~ 2.554{zn/or} Area averaged loss rate (Fm) = 0.4043{zn/*r} Area averaged Pervious ratio (Ap) = 0.4I35 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 14.000 to Point/Station I5.000 «*»* INITIAL AREA EVALUATION »**» COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 oecimal fraction soil group D = 0.000 �__\ � SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In/Hr) Initial subarea data: Initial area flow distance = 466.000(Ft.) Top (of initial area) elevation = 1466.900(Ft.) Bottom (of initial area) elevation = 1463.300(Ft.) Difference in elevation = 3.600(Ft.) Slope = 0.00773 s(%)= 0.77 TC = k(0.304)*[(lengthA3)/(elevation change)]A0.2 Initial area time of concentration = 9.390 min. Rainfall intensity = 3.043(In/Hr) for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.871 Subarea runoff = 1.246(CFS) Total initial stream area = 0.470(Ac.) Pervious area fraction = 0.100 Initial area Fm value = 0.098(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 15.000 to Point/Station 16.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1463.300(Ft.) End of street segment elevation = 1452.660(Ft.) Length of street segment = 576.000(Ft.) Height of curb above gutter flowline = 8.0(In.) width of half street (curb to crown) = 22.000(Ft.) Distance from crown to crossfall grade break = 20.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.025 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.827(CFS) Depth of flow = 0.276(Ft.), Average velocity = 2.670(Ft/s) Streetflow hydraulics at midpoint of street travel : Halfstreet flow width = 7.468(Ft.) Flow velocity = 2.67(Ft/s) Travel time = 3.60 min. TC = 12.99 min. Adding area flow to street COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In/Hr) Rainfall intensity = 2.505(In/Hr) for a 10.0 year storm Effective runoff coefficient used for area, (total area with modified rational method)(Q=KCIA) is C = 0.865 Subarea runoff = 1.094(CFS) for 0.610(Ac.) Total runoff = 2.340(CFS) Effective area this stream = 1.08(Ac.) Total Study Area (Main Stream No. 1) = A 77(Ar 1 Area averaged Fm value = 0.098(In/Hr) Street flow at end of street = 2.340(CFS) Half street flow at end of street = 2.340(CFS) Depth of flow = 0.295(Ft.), Average velocity = 2.815(Ft/s) Flow width (from curb towards crown)= 8.394(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 16.000 to Point/Station 16.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.080(Ac.) Runoff from this stream = 2.340(CFS) Time of concentration = 12.99 min. Rainfall intensity = 2.505(In/Hr) Area averaged loss rate (Fm) = 0.0978(In/Hr) Area averaged Pervious ratio (Ap) = 0.1000 Summary of stream data: Stream Flow rate Area TC Fm Rainfall Intensity C(� mo' ([Fs} (Ac.) (min) (In/Hr) (In/Hr) 1 16.90 8.683 I2.57 0.404 2.554 2 2.34 1.080 12.99 0.098 2.505 Qmax(1) = 1.000 * 1.000 * 16.890} + 1.020 * 0.908 * 2.340} + = 10.211 Qmax(2) = 0.977 * 1.008 * I6.899} + 1.000 * 1.000 * 2.340} + = I8.855 Total of 2 streams to confluence: Flow rates before confluence point: 16.809 2.340 moximum flow rates at confluence using above data: 19.211 18.855 xrea of streams before confluence: 8.683 1'080 Effective area values after confluence: 9.729 9.763 Results of confluence: Total flow rate = 19.211(cFS Time of concentration ~ 12.575 min. Effective stream area after confluence = 9.729(Ac.) study area average Pervious fraction(Ap) = 0.379 study area average soil loss rate(Fm) = 0'370{zn/*r} study area total (this main stream) = 9.76(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 17.000 to Point/Station 18.000 **^* INITIAL AREA EVALUATION °«°^ COMMERCIAL subarea type oecimal fraction soil group A = I.008 oecimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 oecimal fraction soil group D = 0.000 scs curve number for soil (AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.008(zn/nr) Initial subarea data: Initial area flow distance = 212.000{Fr.} Top (of initial area) elevation ~ 1466.900(Ft.) opttom (of initial area) elevation = 1465.000(Ft.) Difference in elevation = 1.900(Ft.) Slope = 0.00896 s(%)= 0.90 TC = k(0'304)»[(length«3)/(elevation change)]^0.2 Initial area time of concentration = 6.657 min. Rainfall intensity = 3.742{zn/*r} for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.876 subarea runoff = 0.754(CFS) Total initial stream area = 0.230(Ac.) rervinus area fraction = 0.100 znitial area Fm value = 0.098(zn/*r) End of computations, rotal study Area = I0.00 (Ac.) The following figures may be used for a unit hydrograph study of the same area. wnte: These figures do not consider reduced effective area effects caused by confluences in the rational equation. Area averaged pervious area fraction(Ap) = 0.372 Area averaged SCS curve number = 32.0 25-YEAR STORM EVENT czo San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2005 Version 7.1 Rational Hydrology Study Date: 03/03/14 Tract No. 18657 - Madison square single Family Residential Development Rational Method Hydrology - Proposed Developed Condition watershed included Onsite Drainage Area & Tributary Street Frontages 25-year Storm Event Program License Serial Number 6143 ********* Hydrology Study Control Information ********** Rational hydrology study storm event year is 25.0 10 Year storm 1 hour rainfall = 1.000(in.) 100 Year storm 1 hour rainfall = 1.500(In.) Computed rainfall intensity: Storm year = 25.00 1 hour rainfall = 1.199 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.000 to Point/Station 2.000 **** INITIAL AREA EVALUATION **** RESIDENTIAL(8 - 10 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil (AMC 2) = 32.00 Pervious ratio(Ap) = 0.4000 Max loss rate(Fm)= 0.391(In/Hr) Initial subarea data: Initial area flow distance = 733.000(Ft.) Top (of initial area) elevation = 1467.000(Ft.) Bottom (of initial area) elevation = 1453.780(Ft.) Difference in elevation = 13.220(Ft.) Slope = 0.01804 s(%)= 1.80 TC = k(0.374)*[(lengthA3)/(elevation change)]A0.2 Initial area time of concentration = 11.687 min. Rainfall intensity = 3.200(In/Hr) for a 25.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.790 Subarea runoff = 5.839(CFS) Total initial stream area = 2.310(Ac.) Pervious area fraction = 0.400 Initial area Fm value = 0.391(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2.000 to Point/Station 3.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1449.780(Ft.) Downstream point/station elevation = 1449.280(Ft.) Pipe length = 27.50(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.839(CFS) Given pipe size = 24.00(in.) calculated individual pipe flow = 5.839(CFS) Normal flow depth in pipe = 7.11(In.) Flow top width inside pipe = 21.92(In.) Critical Depth = 10.24(In.) Pipe flow velocity = 7.49(Ft/s) Travel time through pipe = 0.06 min. cat Time of concentration (TC) = 11.75 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2.000 to Point/Station 3.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 stream flow area = 2.310(Ac.) Runoff from this stream = 5.839(CFS) Time of concentration = 11.75 min. Rainfall intensity = 3.190(In/Hr) Area averaged loss rate (Fm) = 0.3911(In/Hr) Area averaged Pervious ratio (Ap) = 0.4000 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4.000 to Point/Station 5.000 **** INITIAL AREA EVALUATION **** RESIDENTIAL(8 - 10 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil (AMC 2) = 32.00 Pervious ratio(Ap) = 0.4000 Max loss rate(Fm)= 0.391(In/Hr) Initial subarea data: Initial area flow distance = 686.000(Ft.) Top (of initial area) elevation = 1464.300(Ft.) Bottom (of initial area) elevation = 1453.780(Ft.) Difference in elevation = 10. 520(Ft.) Slope = 0.01534 s(%)= 1.53 TC = k(0.374)*[(lengthA3)/(elevation change)]A0.2 Initial area time of concentration = 11.756 min, Rainfall intensity = 3.188(In/Hr) for a 25.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.790 Subarea runoff = 4.808(CFS) Total initial stream area = 1.910(Ac.) Pervious area fraction = 0.400 Initial area Fm value = 0.391(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5.000 to Point/Station 3.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1449.780(Ft.) Downstream point/station elevation = 1449.280(Ft.) Pipe length = 17.30(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 4.808(CFS) Given pipe size = 24.00(in.) Calculated individual pipe flow = 4.808(CFS) Normal flow depth in pipe = 5.73(In.) Flow top width inside pipe = 20.46(In.) Critical Depth = 9.26(In.) Pipe flow velocity = 8.35(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 11.79 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5.000 to Point/Station 3.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.910(Ac.) Runoff from this stream = 4.808(CFS) Time of concentration = 11.79 min. Rainfall intensity = 3.183(In/Hr) Area averaged loss rate (Fm) = 0.3911(In/Hr) Area averaged Pervious ratio (Ap) = 0.4000 C22 summary of stream data: Stream Flow rate Area TC Fm Rainfall Intensity No. (CFS) (Ac.) (min) (In/Hr) (In/Hr) 1 5.84 2.310 11.75 0.391 3.190 2 4.81 1.910 11.79 0.391 3.183 Qmax(1) = 1.000 * 1.000 * 5.839) + 1.002 * 0.996 * 4.808) + = 10.641 Qmax(2) = 0.998 * 1.000 * 5.839) + 1.000 * 1.000 * 4.808) + = 10.632 Total of 2 streams to confluence: Flow rates before confluence point: 5.839 4.808 Maximum flow rates at confluence using above data: 10.641 10.632 Area of streams before confluence: 2.310 1.910 Effective area values after confluence: 4.213 4.220 Results of confluence: Total flow rate = 10.641(CFS) Time of concentration = 11.748 min. Effective stream area after confluence = 4.213(Ac.) Study area average Pervious fraction(Ap) = 0.400 Study area average soil loss rate(Fm) = 0.391(In/Hr) Study area total (this main stream) = 4.22(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.000 to Point/Station 6.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1448.780(Ft.) Downstream point/station elevation = 1447.200(Ft.) Pipe length = 217. 50(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 10.641(CFS) Given pipe size = 30.00(In.) calculated individual pipe flow = 10.641(CFS) Normal flow depth in pipe = 11.36(In.) Flow top width inside pipe = 29.10(In.) Critical Depth = 13.10(In.) Pipe flow velocity = 6.25(Ft/s) Travel time through pipe = 0.58 min. Time of concentration (TC) = 12.33 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.000 to Point/Station 6.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 4.213(Ac.) Runoff from this stream = 10.641(CFS) Time of concentration = 12.33 min. Rainfall intensity = 3.099(In/Hr) Area averaged loss rate (Fm) = 0.3911(In/Hr) Area averaged Pervious ratio (Ap) = 0.4000 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 7.000 to Point/Station 8.000 **** INITIAL AREA EVALUATION **** RESIDENTIAL(8 - 10 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil (AMC 2) = 32.00 Pervious ratio(Ap) = 0.4000 Max loss rate(Fm)= 0.391(In/Hr) Initial subarea data: Initial area flow distance = 667.000(Ft.) Top (of initial area) elevation = 1463.000(Ft.) Bottom (of initial area) elevation = 1453.690(Ft.) Difference in elevation = 9.310(Ft.) Slope = 0.01396 s(%)= 1.40 TC = k(0.374)*[(lengthA3)/(elevation change)]A0.2 Initial area time of concentration = 11.846 min. Rainfall intensity = 3.174(In/Hr) for a 25.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.789 subarea runoff = 4.458(CFS) Total initial stream area = 1.780(Ac.1 Pervious area fraction = 0.400 Initial area Fm value = 0.391(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 8.000 to Point/Station 6.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1449.690(Ft.) Downstream point/station elevation = 1447.950(Ft.) Pipe length = 20.80(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 4.458(CFS) Given pipe size = 24.00(In.) calculated individual pipe flow = 4.458(CFS) Normal flow depth in pipe = 4.24(In.) Flow top width inside pipe = 18.31(in.) Critical Depth = 8.91(In.) Pipe flow velocity = 11.90(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 11.87 min, ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 8.000 to Point/Station 6.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.780(Ac.) Runoff from this stream = 4.458(cFs) Time of concentration = 11.87 min. Rainfall intensity = 3.169(In/Hr) Area averaged loss rate (Fm) = 0.3911(In/Hr) Area averaged Pervious ratio (Ap) = 0.4000 Summary of stream data: Stream Flow rate Area TC Fm Rainfall Intensity No. (CFS) (Ac.) (min) (In/Hr) (In/Hr) 1 10.64 4.213 12.33 0.391 3.099 2 4.46 1.780 11.87 0.391 3.169 Qmax(1) = 1.000 * 1.000 * 10.641) + 0.975 * 1.000 * 4.458) + = 14.986 Qmax(2) = 1.026 * 0.963 * 10.641) + 1.000 * 1.000 * 4.458) + = 14.974 Total of 2 streams to confluence: Flow rates before confluence point: 10.641 4.458 Maximum flow rates at confluence using above data: 14.986 14.974 Area of streams before confluence: 4.213 1.780 Effective area values after confluence: 5.993 5.838 C.2.4- Results of confluence: Total flow rate = 14.986(CFS) Time of concentration = 12.328 min. Effective stream area after confluence = 5.993(Ac.) Study area average Pervious fraction(Ap) = 0.400 Study area average soil loss rate(Fm) = 0.391(In/Hr) Study area total (this main stream) = 5.99(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 6.000 to Point/Station 9.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1447.700(Ft.) Downstream point/station elevation = 1447.500(Ft.) Pipe length = 39.20(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 14.986(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 14.986(CFS) Normal flow depth in pipe = 15.21(In.) Flow top width inside pipe = 30.00(In.) Critical Depth = 15.68(In.) Pipe flow velocity = 6.00(Ft/s) Travel time through pipe = 0.11 min. Time of concentration (TC) = 12.44 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 6.000 to Point/Station 9.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 5.993(Ac.) Runoff from this stream = 14.986(CFS) Time of concentration = 12.44 min. Rainfall intensity = 3.082(In/Hr) Area averaged loss rate (Fm) = 0.3911(In/Hr) Area averaged Pervious ratio (Ap) = 0.4000 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/Station 11.000 **** INITIAL AREA EVALUATION **** RESIDENTIAL(8 - 10 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 scs curve number for soil (AMc 2) = 32.00 Pervious ratio(Ap) = 0.4000 Max loss rate(Fm)= 0.391(In/Hr) Initial subarea data: Initial area flow distance = 718.000(Ft.) Top (of initial area) elevation = 1464.000(Ft.) Bottom (of initial area) elevation = 1453.300(Ft.) Difference in elevation = 10.700(Ft.) Slope = 0.01490 s(%)= 1.49 TC = k(0.374)*[(lengthA3)/(elevation change)]A0.2 Initial area time of concentration = 12.041 min. Rainfall intensity = 3.143(In/Hr) for a 25.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.788 Subarea runoff = 6.018(CFS) Total initial stream area = 2.430(Ac.) Pervious area fraction = 0.400 Initial area Fm value = 0.391(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 11.000 to Point/Station 9.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1447.500(Ft.) CaS Downstream point/station elevation = 1447.350(Ft.) Pipe length = 3.90(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.018(CFS) Given pipe size = 24.00(In.) calculated individual pipe flow = 6.018(CFS) Normal flow depth in pipe = 5.97(in.) Flow top width inside pipe = 20.75(In.) Critical Depth = 10.41(in.) Pipe flow velocity = 9.87(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 12.05 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 11.000 to Point/Station 9.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 2.430(Ac.) Runoff from this stream = 6.018(CFS) Time of concentration = 12.05 min. Rainfall intensity = 3.142(In/Hr) Area averaged loss rate (Fm) = 0.3911(In/Hr) Area averaged Pervious ratio (Ap) = 0.4000 Summary of stream data: Stream Flow rate Area TC Fm Rainfall Intensity No. (CFS) (Ac.) (min) (In/Hr) (In/Hr) 1 14.99 5.993 12.44 0.391 3.082 2 6.02 2.430 12.05 0.391 3.142 Qmax(1) = 1.000 * 1.000 * 14.986) + 0.978 * 1.000 * 6.018) + = 20.874 Qmax(2) = 1.022 * 0.969 * 14.986) + 1.000 * 1.000 * 6.018) + = 20.855 Total of 2 streams to confluence: Flow rates before confluence point: 14.986 6.018 Maximum flow rates at confluence using above data: 20.874 20.855 Area of streams before confluence: 5.993 2.430 Effective area values after confluence: 8.423 8.236 Results of confluence: Total flow rate = 20.874(CFS) Time of concentration = 12.437 min. Effective stream area after confluence = 8.423(Ac.) Study area average Pervious fraction(Ap) = 0.400 Study area average soil loss rate(Fm) = 0.391(In/Hr) Study area total (this main stream) = 8.42(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 9.000 to Point/Station 12.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 1447.350(Ft.) Downstream point/station elevation = 1447.000(Ft.) Pipe length = 42.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 20.874(CFS) Given pipe size = 30.00(In.) calculated individual pipe flow = 20.874(CFS) Normal flow depth in pipe = 16.01(In.) Flow top width inside pipe = 29.93(In.) • Critical Depth = 18.63(In.) Pipe flow velocity = 7.83(Ft/s) Travel time through pipe = 0.09 min. Ca Time of concentration (TC) = 12.53 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 13.000 to Point/Station 12.000 **** SUBAREA FLOW ADDITION **** PARK subarea Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil (AMC 2) = 32.00 Pervious ratio(Ap) = 0.8500 Max loss rate(Fm)= 0.831(In/Hr) The area added to the existing stream causes a a lower flow rate of Q = 20.825(CFS) therefore the upstream flow rate of Q = 20.874(CFS) is being used Time of concentration = 12.53 min. Rainfall intensity = 3.069(In/Hr) for a 25.0 year storm Effective runoff coefficient used for area, (total area with modified rational method)(Q=KCIA) is C = 0.781 Subarea runoff = 0.000(CFS) for 0.260(Ac.) Total runoff = 20.874(CFS) Effective area this stream = 8.68(Ac.) Total Study Area (Main Stream No. 1) = 8.69(Ac.) Area averaged Fm value = 0.404(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 12.000 to Point/Station 12.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 8.683(Ac.) Runoff from this stream = 20.874(CFS) Time of concentration = 12. 53 min. Rainfall intensity = 3.069(in/Hr) Area averaged loss rate (Fm) = 0.4043(in/Hr) Area averaged Pervious ratio (Ap) = 0.4135 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 14.000 to Point/Station 15.000 **** INITIAL AREA EVALUATION **** COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil (AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(in/Hr) Initial subarea data: Initial area flow distance = 466.000(Ft.) Top (of initial area) elevation = 1466.900(Ft.) Bottom (of initial area) elevation = 1463.300(Ft.) Difference in elevation = 3.600(Ft.) Slope = 0.00773 s(%)= 0.77 TC = k(0.304)*[(lengthA3)/(elevation change)]A0.2 Initial area time of concentration = 9.390 min. Rainfall intensity = 3.648(In/Hr) for a 25.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.876 Subarea runoff = 1.502(CFS) Total initial stream area = 0.470(Ac.) Pervious area fraction = 0.100 Initial area Fm value = 0.098(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 15.000 to Point/Station 16.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** ca Top of street segment elevation = 1463.300(Ft.) End of street segment elevation = 1452.660(Ft.) Length of street segment = 576.000(Ft.) Height of curb above gutter flowline = 8.0(in.) width of half street (curb to crown) = 22.000(Ft.) Distance from crown to crossfall grade break = 20.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 slope from grade break to crown (v/hz) = 0.020 street flow is on [1] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.025 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.213(CFS) Depth of flow = 0.290(Ft.) , Average velocity = 2.781(Ft/s) Streetflow hydraulics at midpoint of street travel : Halfstreet flow width = 8.180(Ft.) Flow velocity = 2.78(Ft/s) Travel time = 3.45 min. TC = 12.84 min. Adding area flow to street COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil (AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In/Hr) Rainfall intensity = 3.024(In/Hr) for a 25.0 year storm Effective runoff coefficient used for area, (total area with modified rational method)(Q=KCIA) is C = 0.871 Subarea runoff = 1.342(CFS) for 0.610(Ac.) Total runoff = 2.844(CFS) Effective area this stream = 1.08(Ac.) Total Study Area (Main Stream No. 1) = 9.77(Ac.) Area averaged Fm value = 0.098(In/Hr) Street flow at end of street = 2.844(CFS) Half street flow at end of street = 2.844(CFS) Depth of flow = 0.310(Ft.) , Average velocity = 2.939(Ft/s) Flow width (from curb towards crown)= 9.171(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 16.000 to Point/Station 16.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.080(Ac.) Runoff from this stream = 2.844(CFS) Time of concentration = 12.84 min. Rainfall intensity = 3.024(In/Hr) Area averaged loss rate (Fm) = 0.0978(In/Hr) Area averaged Pervious ratio (Ap) = 0.1000 Summary of stream data: Stream Flow rate Area TC Fm Rainfall Intensity No. (CFS) (Ac.) (min) (In/Hr) (In/Hr) 1 20.87 8.683 12.53 0.404 3.069 2 2.84 1.080 12.84 0.098 3.024 Qmax(1) = 1.000 * 1.000 * 20.874) + 1.016 * 0.975 * 2.844) + = 23.691 Qmax(2) = 0.983 * 1.000 * 20.874) + 1.000 * 1.000 * 2.844) + = 23.361 Total of 2 streams to confluence: Flow rates before confluence point: c28 20.874 2.844 Maximum flow rates at confluence using above data: 23.691 23.361 Area of streams before confluence: 8.683 1.080 Effective area values after confluence: 9.736 9.763 Results of confluence: Total flow rate = 23.691(CFS) Time of concentration = 12.526 min. Effective stream area after confluence = 9.736(Ac.) Study area average Pervious fraction(Ap) = 0.379 Study area average soil loss rate(Fm) = 0.370(In/Hr) Study area total (this main stream) = 9.76(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 17.000 to Point/Station 18.000 **** INITIAL AREA EVALUATION **** COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil (AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In/Hr) Initial subarea data: Initial area flow distance = 212.000(Ft.) Top (of initial area) elevation = 1466.900(Ft.) Bottom (of initial area) elevation = 1465.000(Ft.) Difference in elevation = 1.900(Ft.) Slope = 0.00896 s(%)= 0.90 TC = k(0.304)*[(lengthA3)/(elevation change)]A0.2 Initial area time of concentration = 6.652 min. Rainfall intensity = 4.487(In/Hr) for a 25.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.880 subarea runoff = 0.909(CFS) Total initial stream area = 0.230(Ac.) Pervious area fraction = 0.100 Initial area Fm value = 0.098(In/Hr) End of computations, Total Study Area = 10.00 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation. Area averaged pervious area fraction(Ap) = 0.372 Area averaged SCS curve number = 32.0 cac APPENDIX D SYNTHETIC UNIT HYDROGRAPH METHOD HYDROLOGY CALCULATIONS FOR EXISTING PRE-DEVELOPED CONDITION DESIGN 100-YEAR STORM EVENT D1 unit Hydrograph Analysis Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2004, version 7.0 Study date 06/09/13 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ San Bernardino County Synthetic unit Hydrology Method Manual date - August 1986 Program License Serial Number 6143 Tract No. 18657 - Madison Square Single Family Residential Development onsite Subarea - 100-Year Storm - Existing Pre-Developed Condition Loss Rate (Fm) and Low Loss Fraction (Yb) Calculation and Peak Flow rate Runoff volume & Flow Time Duration Calculation Storm Event Year = 100 Antecedent Moisture Condition = 3 English (in-lb) Input Units Used English Rainfall Data (Inches) Input values Used English Units used in output format Area averaged rainfall intensity isohyetal data: Sub-Area Duration Isohyetal (Ac.) (hours) (In) Rainfall data for year 100 8.80 1 1.50 Rainfall data for year 100 8.80 6 4.38 Rainfall data for year 100 8.80 24 8.29 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ******** Area-averaged max loss rate, Fm ******** SCS curve SCS curve Area Area Fp(Fig C6) Ap Fm No.(AMCII) NO. (AMC 3) (Ac.) Fraction (In/Hr) (dec.) (In/Hr) 67.0 84.6 8.80 1.000 0.290 1.000 0.290 Area-averaged adjusted loss rate Fm (In/Hr) = 0.290 ********* Area-Averaged low loss rate fraction, Yb ********** Area Area SCS CN SCS CN S Pervious (Ac.) Fract (AMC2) (AMC3) Yield Fr 8.80 1.000 67.0 84.6 1.82 0.778 Area-averaged catchment yield fraction, Y = 0.778 Area-averaged low loss fraction, Yb = 0.222 User entry of time of concentration = 0.251 (hours) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ watershed area = 8.80(Ac.) Catchment Lag time = 0.201 hours Unit interval = 5.000 minutes Unit interval percentage of lag time = 41.5007 Hydrograph baseflow = 0.00(cFs) Average maximum watershed loss rate(Fm) = 0.290(In/Hr) Average low loss rate fraction (Yb) = 0.222 (decimal) VALLEY UNDEVELOPED S-Graph Selected Computed peak 5-minute rainfall = 0.555(In) Computed peak 30-minute rainfall = 1.137(In) specified peak 1-hour rainfall = 1.500(1n) computed peak 3-hour rainfall = 2.894(1n) Specified peak 6-hour rainfall = 4.380(in) specified peak 24-hour rainfall = 8.290(1n) Rainfall depth area reduction factors: „ > Using a total area of 8.80(Ac.) (Ref: fig. E-4) 5-minute factor = 1.000 Adjusted rainfall = 0.555(In) 30-minute factor = 1.000 Adjusted rainfall = 1.136(1n) 1-hour factor = 1.000 Adjusted rainfall = 1.499(In) 3-hour factor = 1.000 Adjusted rainfall = 2.893(1n) 6-hour factor = 1.000 Adjusted rainfall = 4.380(1n) 24-hour factor = 1.000 Adjusted rainfall = 8.290(In) Unit H y d r o g rap h +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Interval 'S' Graph unit Hydrograph Number Mean values ((CFS)) (K = 106.43 (CFS)) 1 4.605 4.901 2 23.686 20.306 3 51.176 29.257 4 67.877 17.774 5 75.999 8.643 6 81.252 5.590 7 85.192 4.193 8 88.162 3.161 9 90.559 2.551 10 92.415 1.975 11 93.843 1.520 12 95.118 1.356 13 96.212 1.165 14 97.079 0.923 15 97.807 0.775 16 98.396 0.627 17 98.848 0.480 18 99.263 0.442 19 99.678 0.442 20 100.000 0.343 Peak unit Adjusted mass rainfall Unit rainfall Number (In) (In) 1 0.5549 0.5549 2 0.7322 0.1773 3 0.8612 0.1289 4 0.9662 0.1050 5 1.0564 0.0902 6 1.1363 0.0799 7 1.2086 0.0723 8 1.2749 0.0663 9 1.3364 0.0615 10 1.3939 0.0575 11 1.4481 0.0542 12 1.4994 0.0513 13 1.5729 0.0736 14 1.6443 0.0713 15 1.7136 0.0693 16 1.7810 0.0675 17 1.8468 0.0658 18 1.9111 0.0643 19 1.9739 0.0628 20 2.0355 0.0615 21 2.0958 0.0603 22 2.1549 0.0592 23 2.2130 0.0581 24 2.2701 0.0571 25 2.3262 0.0561 26 2.3815 0.0552 27 2.4359 0.0544 28 2.4895 0.0536 29 2.5423 0.0528 30 2.5944 0.0521 31 2.6458 0.0514 32 2.6965 0.0507 33 2.7467 0.0501 34 2.7962 0.0495 35 2.8451 0.0489 36 2.8935 0.0484 37 2.9413 0.0478 38 2.9886 0.0473 39 3.0353 0.0468 40 3.0817 0.0463 41 3.1275 0.0458 42 3.1729 0.0454 43 3.2179 0.0450 44 3.2624 0.0446 45 3.3066 0.0441 46 3.3503 0.0438 47 3.3937 0.0434 48 3.4367 0.0430 49 3.4794 0.0426 50 3.5216 0.0423 51 3.5636 0.0420 52 3.6052 0.0416 53 3.6465 0.0413 54 3.6875 0.0410 55 3.7282 0.0407 56 3.7686 0.0404 57 3.8087 0.0401 58 3.8486 0.0398 59 3.8881 0.0396 60 3.9274 0.0393 61 3.9664 0.0390 62 4.0052 0.0388 63 4.0437 0.0385 64 4.0820 0.0383 65 4.1200 0.0380 66 4.1578 0.0378 67 4.1953 0.0376 68 4.2327 0.0373 69 4.2698 0.0371 70 4.3067 0.0369 71 4.3434 0.0367 72 4.3799 0.0365 73 4.4078 0.0279 74 4.4355 0.0277 75 4.4629 0.0275 76 4.4902 0.0273 77 4.5173 0.0271 78 4.5442 0.0269 79 4.5710 0.0267 80 4.5975 0.0265 81 4.6239 0.0264 82 4.6500 0.0262 83 4.6761 0.0260 84 4.7019 0.0258 85 4.7276 0.0257 86 4.7531 0.0255 87 4.7785 0.0254 88 4.8037 0.0252 89 4.8287 0.0250 90 4.8536 0.0249 91 4.8783 0.0247 92 4.9029 0.0246 93 4.9274 0.0245 94 4.9517 0.0243 95 4.9759 0.0242 96 4.9999 0.0240 97 5.0238 0.0239 98 5.0476 0.0238 99 5.0712 0.0236 100 5.0947 0.0235 101 5.1181 0.0234 102 5.1414 0.0233 103 5.1645 0.0231 104 5.1875 0.0230 105 5.2104 0.0229 106 5.2332 0.0228 107 5.2559 0.0227 108 5.2784 0.0226 109 5.3009 0.0224 - 110 5.3232 0.0223 111 5.3454 0.0222 112 5.3675 0.0221 113 5.3895 0.0220 114 5.4114 0.0219 115 5.4332 0.0218 116 5.4549 0.0217 117 5.4765 0.0216 118 5.4980 0.0215 119 5.5194 0.0214 120 5.5407 0.0213 121 5.5619 0.0212 122 5.5830 0.0211 123 5.6040 0.0210 124 5.6249 0.0209 125 5.6458 0.0208 126 5.6665 0.0207 127 5.6872 0.0207 128 5.7077 0.0206 129 5.7282 0.0205 130 5.7486 0.0204 131 5.7689 0.0203 132 5.7891 0.0202 133 5.8093 0.0201 134 5.8294 0.0201 135 5.8493 0.0200 136 5.8692 0.0199 137 5.8891 0.0198 138 5.9088 0.0197 139 5.9285 0.0197 140 5.9481 0.0196 141 5.9676 0.0195 142 5.9870 0.0194 143 6.0064 0.0194 144 6.0257 0.0193 145 6.0449 0.0192 146 6.0641 0.0192 147 6.0831 0.0191 148 6.1021 0.0190 149 6.1211 0.0189 150 6.1400 0.0189 151 6.1588 0.0188 152 6.1775 0.0187 153 6.1962 0.0187 154 6.2148 0.0186 155 6.2333 0.0185 156 6.2518 0.0185 157 6.2702 0.0184 158 6.2886 0.0183 159 6.3068 0.0183 160 6.3251 0.0182 161 6.3432 0.0182 162 6.3613 0.0181 163 6.3794 0.0180 164 6.3974 0.0180 165 6.4153 0.0179 166 6.4331 0.0179 167 6.4510 0.0178 168 6.4687 0.0177 169 6.4864 0.0177 170 6.5040 0.0176 171 6.5216 0.0176 172 6.5391 0.0175 173 6.5566 0.0175 174 6.5740 0.0174 175 6.5914 0.0174 176 6.6087 0.0173 177 6.6259 0.0173 178 6.6431 0.0172 179 6.6603 0.0172 180 6.6774 0.0171 181 6.6944 0.0170 182 6.7114 0.0170 183 6.7284 0.0169 184 6.7453 0.0169 185 6.7621 0.0168 186 6.7789 0.0168 187 6.7957 0.0167 188 6.8124 0.0167 189 6.8290 0.0167 190 6.8456 0.0166 191 6.8622 0.0166 192 6.8787 0.0165 193 6.8952 0.0165 D5 194 6.9116 0.0164 195 6.9280 0.0164 196 6.9443 0.0163 197 6.9606 0.0163 198 6.9768 0.0162 199 6.9930 0.0162 200 7.0092 0.0162 201 7.0253 0.0161 202 7.0413 0.0161 203 7.0574 0.0160 204 7.0733 0.0160 205 7.0893 0.0159 206 7.1052 0.0159 207 7.1210 0.0159 208 7.1368 0.0158 209 7.1526 0.0158 210 7.1683 0.0157 211 7.1840 0.0157 212 7.1997 0.0156 213 7.2153 0.0156 214 7.2309 0.0156 215 7.2464 0.0155 216 7.2619 0.0155 217 7.2773 0.0155 218 7.2927 0.0154 219 7.3081 0.0154 220 7.3235 0.0153 221 7.3388 0.0153 222 7.3540 0.0153 223 7.3693 0.0152 224 7.3844 0.0152 225 7.3996 0.0152 226 7.4147 0.0151 227 7.4298 0.0151 228 7.4448 0.0150 229 7.4599 0.0150 230 7.4748 0.0150 231 7.4898 0.0149 232 7.5047 0.0149 233 7.5195 0.0149 234 7.5344 0.0148 235 7.5492 0.0148 236 7.5639 0.0148 237 7.5787 0.0147 238 7.5934 0.0147 239 7.6081 0.0147 240 7.6227 0.0146 241 7.6373 0.0146 242 7.6519 0.0146 243 7.6664 0.0145 244 7.6809 0.0145 245 7.6954 0.0145 246 7.7098 0.0144 247 7.7242 0.0144 248 7.7386 0.0144 249 7.7529 0.0143 250 7.7673 0.0143 251 7.7815 0.0143 252 7.7958 0.0143 253 7.8100 0.0142 254 7.8242 0.0142 255 7.8384 0.0142 256 7.8525 0.0141 257 7.8666 0.0141 258 7.8807 0.0141 259 7.8947 0.0140 260 7.9087 0.0140 261 7.9227 0.0140 262 7.9367 0.0140 263 7.9506 0.0139 264 7.9645 0.0139 265 7.9784 0.0139 266 7.9922 0.0138 267 8.0060 0.0138 268 8.0198 0.0138 269 8.0336 0.0138 ' 270 8.0473 0.0137 271 8.0610 0.0137 272 8.0747 0.0137 273 8.0883 0.0136 274 8.1019 0.0136 275 8.1155 0.0136 276 8.1291 0.0136 277 8.1427 0.0135 278 8.1562 0.0135 279 8.1697 0.0135 280 8.1831 0.0135 281 8.1966 0.0134 282 8.2100 0.0134 283 8.2234 0.0134 284 8.2367 0.0134 285 8.2501 0.0133 286 8.2634 0.0133 287 8.2766 0.0133 288 8.2899 0.0133 unit unit Unit Effective Period Rainfall soil-Loss Rainfall (number) (In) (In) (In) 1 0.0133 0.0030 0.0103 2 0.0133 0.0030 0.0103 3 0.0133 0.0030 0.0104 4 0.0134 0.0030 0.0104 5 0.0134 0.0030 0.0104 6 0.0134 0.0030 0.0104 7 0.0135 0.0030 0.0105 8 0.0135 0.0030 0.0105 9 0.0136 0.0030 0.0105 10 0.0136 0.0030 0.0106 11 0.0136 0.0030 0.0106 12 0.0137 0.0030 0.0106 13 0.0137 0.0031 0.0107 14 0.0138 0.0031 0.0107 15 0.0138 0.0031 0.0107 16 0.0138 0.0031 0.0108 17 0.0139 0.0031 0.0108 18 0.0139 0.0031 0.0108 19 0.0140 0.0031 0.0109 20 0.0140 0.0031 0.0109 21 0.0141 0.0031 0.0109 22 0.0141 0.0031 0.0110 23 0.0142 0.0032 0.0110 24 0.0142 0.0032 0.0110 25 0.0143 0.0032 0.0111 26 0.0143 0.0032 0.0111 27 0.0143 0.0032 0.0112 28 0.0144 0.0032 0.0112 29 0.0144 0.0032 0.0112 30 0.0145 0.0032 0.0113 31 0.0145 0.0032 0.0113 32 0.0146 0.0032 0.0113 33 0.0146 0.0033 0.0114 34 0.0147 0.0033 0.0114 35 0.0147 0.0033 0.0115 36 0.0148 0.0033 0.0115 37 0.0148 0.0033 0.0115 38 0.0149 0.0033 0.0116 39 0.0149 0.0033 0.0116 40 0.0150 0.0033 0.0116 41 0.0150 0.0033 0.0117 42 0.0151 0.0034 0.0117 43 0.0152 0.0034 0.0118 44 0.0152 0.0034 0.0118 45 0.0153 0.0034 0.0119 46 0.0153 0.0034 0.0119 47 0.0154 0.0034 0.0120 48 0.0154 0.0034 0.0120 49 0.0155 0.0034 0.0120 50 0.0155 0.0035 0.0121 51 0.0156 0.0035 0.0121 52 0.0156 0.0035 0.0122 53 0.0157 0.0035 0.0122 54 0.0158 0.0035 0.0123 55 0.0159 0.0035 0.0123 56 0.0159 0.0035 0.0124 57 0.0160 0.0036 0.0124 58 0.0160 0.0036 0.0125 59 0.0161 0.0036 0.0125 60 0.0162 0.0036 0.0126 I)7 61 0.0162 0.0036 0.0126 62 0.0163 0.0036 0.0127 63 0.0164 0.0036 0.0127 64 0.0164 0.0037 0.0128 65 0.0165 0.0037 0.0128 66 0.0166 0.0037 0.0129 67 0.0167 0.0037 0.0129 68 0.0167 0.0037 0.0130 69 0.0168 0.0037 0.0131 70 0.0168 0.0037 0.0131 71 0.0169 0.0038 0.0132 72 0.0170 0.0038 0.0132 73 0.0171 0.0038 0.0133 74 0.0172 0.0038 0.0133 75 0.0173 0.0038 0.0134 76 0.0173 0.0039 0.0135 77 0.0174 0.0039 0.0135 78 0.0175 0.0039 0.0136 79 0.0176 0.0039 0.0137 80 0.0176 0.0039 0.0137 81 0.0177 0.0039 0.0138 82 0.0178 0.0040 0.0138 83 0.0179 0.0040 0.0139 84 0.0180 0.0040 0.0140 85 0.0181 0.0040 0.0141 86 0.0182 0.0040 0.0141 87 0.0183 0.0041 0.0142 88 0.0183 0.0041 0.0143 89 0.0185 0.0041 0.0144 90 0.0185 0.0041 0.0144 91 0.0187 0.0042 0.0145 92 0.0187 0.0042 0.0146 93 0.0189 0.0042 0.0147 94 0.0189 0.0042 0.0147 95 0.0191 0.0042 0.0148 96 0.0192 0.0043 0.0149 97 0.0193 0.0043 0.0150 98 0.0194 0.0043 0.0151 99 0.0195 0.0043 0.0152 100 0.0196 0.0044 0.0152 101 0.0197 0.0044 0.0154 102 0.0198 0.0044 0.0154 103 0.0200 0.0044 0.0155 104 0.0201 0.0045 0.0156 105 0.0202 0.0045 0.0157 106 0.0203 0.0045 0.0158 107 0.0205 0.0046 0.0159 108 0.0206 0.0046 0.0160 109 0.0207 0.0046 0.0161 110 0.0208 0.0046 0.0162 111 0.0210 0.0047 0.0163 112 0.0211 0.0047 0.0164 113 0.0213 0.0047 0.0166 114 0.0214 0.0048 0.0166 115 0.0216 0.0048 0.0168 116 0.0217 0.0048 0.0169 117 0.0219 0.0049 0.0170 118 0.0220 0.0049 0.0171 119 0.0222 0.0049 0.0173 120 0.0223 0.0050 0.0174 121 0.0226 0.0050 0.0175 122 0.0227 0.0050 0.0176 123 0.0229 0.0051 0.0178 124 0.0230 0.0051 0.0179 125 0.0233 0.0052 0.0181 126 0.0234 0.0052 0.0182 127 0.0236 0.0053 0.0184 128 0.0238 0.0053 0.0185 129 0.0240 0.0053 0.0187 130 0.0242 0.0054 0.0188 131 0.0245 0.0054 0.0190 132 0.0246 0.0055 0.0191 133 0.0249 0.0055 0.0194 134 0.0250 0.0056 0.0195 135 0.0254 0.0056 0.0197 136 0.0255 0.0057 0.0198 137 0.0258 0.0058 0.0201 138 0.0260 0.0058 0.0202 139 0.0264 0.0059 0.0205 140 0.0265 0.0059 0.0206 141 0.0269 0.0860 0.0209 142 0.0271 0.0060 0.02II 143 0.0275 0.0061 0.0214 144 0.0277 0.0062 0.0215 145 0.0365 0.0081 0.0284 146 0.0367 0.0082 0.0285 147 0.037I 0.0083 0.0289 148 0.0373 0.0083 0.0290 149 0'0378 0'0084 0.0294 150 0.0380 0.0085 0.0296 151 0.8385 0.0086 0.0299 152 0'0388 0.0086 0.0301 153 0.0393 0.0087 0.0305 154 0.0396 0.0088 0.0308 155 0.0401 0'0089 0.0312 156 0.0404 0.0008 0.0314 157 0.04I0 0.009I 0.0319 158 0'04I3 0'0092 0.032I 159 8.0420 0.0093 0.0326 160 0.0423 0.0004 0.0329 I61 0.0430 0'0096 0.0334 162 0.0434 0.0096 0.0337 163 0.044I 0.0098 0,0343 164 0,0446 0.0099 0.0346 I65 0.0454 0.010I 0.0353 166 0.0458 0.0102 0.8356 167 0.0468 0.0104 0.0364 168 0.0473 0.0105 0.0368 169 0.0484 0.0108 0.0376 170 0.0489 8.0109 0.0380 171 0'050I 0.0111 0.0390 172 0'0507 0'0113 0.0395 173 0.052I 0.0116 0.0405 174 0.8528 0.0118 0.041I 175 0'0544 0.0I2I 0.0423 176 0.0552 0.8I23 0.0438 177 0.0571 0.0127 0.0444 178 0.0581 8'0I29 0'0452 179 0.0603 0.0I34 0.0460 180 0'0615 0.0137 0.0478 181 0.0643 0.0143 0.0500 182 0.0658 0.0146 0'05I2 183 0.0693 0.0I54 0.0539 184 0'0713 0'0159 0.0555 185 0.05I3 0.0I14 0.0399 186 0.0542 0.0131 0.0421 187 0.0615 0'0137 0.0478 188 0.0663 0.0148 0.05I6 189 0.0799 0,0178 0.062I 190 0.0902 0.020I 0.0701 191 0'I289 0.0242 0.1048 192 0.1773 0.0242 0.1531 193 0'5549 0.0243 0.5308 194 0.1050 0.0234 0.08I7 195 0'0723 0.0I61 0.0562 196 0'0I75 0.0128 0.0447 197 0.0736 0.0104 0.0572 198 0.0675 0.0I50 0.0525 199 0.0628 0.0140 0.0489 200 0.0592 0.0132 0.0460 201 0.0561 0.0125 0'0436 202 8.0536 0.0119 0.0417 203 0.0514 0.0I14 0.0400 204 0'0495 0'0110 0.0385 205 0.0478 0.0I06 0.0372 206 0.0463 0'0103 0.0360 207 0,0450 0.0100 0.0350 208 0.0438 0.0097 0.0340 209 0.0426 0.0085 0.0332 210 0.0416 0.0093 0.0324 211 0.0407 0.0091 0.0316 212 0.0398 0.0089 0.8310 213 0'0390 0.0087 0.0303 214 0.0383 8.0085 8.0208 2I5 0.0376 0.0084 0.0292 216 0.0369 0.0082 0.0287 217 0.0279 0.0062 0.0317 218 0.0273 0.006I 0.02I2 219 0.0267 0.0059 0.0208 220 0.0262 8.0058 0.0204 221 0.0257 0.0057 0.0200 222 0.0252 0.0056 0.0196 223 0.0247 0.0055 0.0192 224 0.0243 0.0054 0.0189 225 0.0239 0.0053 0.0186 226 0.0235 0.0052 0.0183 227 0.0231 0.0051 0.0180 228 0.0228 0.0051 0.0177 229 0.0224 0.0050 0.0174 230 0.0221 0.0049 0.0172 231 0.0218 0.0048 0.0169 232 0.0215 0.0048 0.0167 233 0.0212 0.0047 0.0165 234 0.0209 0.0047 0.0163 235 0.0207 0.0046 0.0161 236 0.0204 0.0045 0.0159 237 0.0201 0.0045 0.0157 238 0.0199 0.0044 0.0155 239 0.0197 0.0044 0.0153 240 0.0194 0.0043 0.0151 241 0.0192 0.0043 0.0149 242 0.0190 0.0042 0.0148 243 0.0188 0.0042 0.0146 244 0.0186 0.0041 0.0145 245 0.0184 0.0041 0.0143 246 0.0182 0.0041 0.0142 247 0.0180 0.0040 0.0140 248 0.0179 0.0040 0.0139 249 0.0177 0.0039 0.0138 250 0.0175 0.0039 0.0136 251 0.0174 0.0039 0.0135 252 0.0172 0.0038 0.0134 253 0.0170 0.0038 0.0133 254 0.0169 0.0038 0.0131 255 0.0167 0.0037 0.0130 256 0.0166 0.0037 0.0129 257 0.0165 0.0037 0.0128 258 0.0163 0.0036 0.0127 259 0.0162 0.0036 0.0126 260 0.0161 0.0036 0.0125 261 0.0159 0.0035 0.0124 262 0.0158 0.0035 0.0123 263 0.0157 0.0035 0.0122 264 0.0156 0.0035 0.0121 265 0.0155 0.0034 0.0120 266 0.0153 0.0034 0.0119 267 0.0152 0.0034 0.0118 268 0.0151 0.0034 0.0118 269 0.0150 0.0033 0.0117 270 0.0149 0.0033 0.0116 271 0.0148 0.0033 0.0115 272 0.0147 0.0033 0.0114 273 0.0146 0.0032 0.0114 274 0.0145 0.0032 0.0113 275 0.0144 0.0032 0.0112 276 0.0143 0.0032 0.0111 277 0.0142 0.0032 0.0111 278 0.0141 0.0031 0.0110 279 0.0140 0.0031 0.0109 280 0.0140 0.0031 0.0109 281 0.0139 0.0031 0.0108 282 0.0138 0.0031 0.0107 283 0.0137 0.0030 0.0107 284 0.0136 0.0030 0.0106 285 0.0135 0.0030 0.0105 286 0.0135 0.0030 0.0105 287 0.0134 0.0030 0.0104 288 0.0133 0.0030 0.0103 Total soil rain loss = 1.73(1n) Total effective rainfall = 6.56(1n) Peak flow rate in flood hydrograph = 22.50(CFs) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 24 - HOUR STORM Runoff Hydrograph Hydrograph in 5 Minute intervals ((CFS)) DICJ Time(h+m) volume Ac.Ft Q(CFS) 0 7.5 15.0 22.5 30.0 0+ 5 0.0003 0.05 Q 0+10 0.0021 0.26 Q 0+15 0.0060 0.56 Q 0+20 0.0112 0.75 Q 0+25 0.0169 0.84 VQ 0+30 0.0231 0.90 VQ 0+35 0.0296 0.94 VQ 0+40 0.0364 0.98 VQ 0+45 0.0433 1.01 VQ 0+50 0.0504 1.03 VQ 0+55 0.0576 1.05 VQ 1+ 0 0.0650 1.07 VQ 1+ 5 0.0724 1.08 VQ 1+10 0.0800 1.10 VQ 1+15 0.0876 1.11 VQ 1+20 0.0953 1.12 VQ 1+25 0.1030 1.12 VQ 1+30 0.1108 1.13 VQ 1+35 0.1187 1.14 VQ 1+40 0.1266 1.15 Q 1+45 0.1345 1.15 Q 1+50 0.1425 1.15 Q 1+55 0.1504 1.16 Q 2+ 0 0.1584 1.16 Q 2+ 5 0.1665 1.17 Q 2+10 0.1745 1.17 Q 2+15 0.1826 1.17 Q 2+20 0.1907 1.18 Q 2+25 0.1988 1.18 Q 2+30 0.2070 . 1.18 Q 2+35 0.2152 1.19 Q 2+40 0.2234 1.19 Q 2+45 0.2316 1.20 Q 2+50 0.2399 1.20 Q 2+55 0.2482 1.20 QV 3+ 0 0.2565 1.21 QV 3+ 5 0.2648 1.21 QV 3+10 0.2732 1.22 QV 3+15 0.2816 1.22 QV 3+20 0.2901 1.22 QV 3+25 0.2985 1.23 QV 3+30 0.3070 1.23 QV 3+35 0.3155 1.24 QV 3+40 0.3241 1.24 QV 3+45 0.3327 1.25 QV 3+50 0.3413 1.25 QV 3+55 0.3499 1.26 QV 4+ 0 0.3586 1.26 QV 4+ 5 0.3673 1.26 Q V 4+10 0.3760 1.27 Q V 4+15 0.3848 1.27 Q V 4+20 0.3936 1.28 Q V 4+25 0.4025 1.28 Q v 4+30 0.4113 1.29 Q V 4+35 0.4202 1.29 Q v 4+40 0.4292 1.30 Q v 4+45 0.4381 1.30 Q V 4+50 0.4472 1.31 Q V 4+55 0.4562 1.31 Q V 5+ 0 0.4653 1.32 Q V 5+ 5 0.4744 1.32 Q V 5+10 0.4835 1.33 Q V 5+15 0.4927 1.33 Q V 5+20 0.5020 1.34 Q V 5+25 0.5112 1.35 Q V 5+30 0.5205 1.35 Q V 5+35 0.5299 1.36 Q V 5+40 0.5393 1.36 Q V 5+45 0.5487 1.37 Q V 5+50 0.5581 1.37 Q V 5+55 0.5676 1.38 Q V 6+ 0 0.5772 1.39 Q V 6+ 5 0.5868 1.39 Q V 6+10 0.5964 1.40 Q V 6+15 0.6061 1.40 Q V 6+20 0.6158 1.41 Q V 6+25 0.6255 1.42 Q V 1 \ 6+30 0.6353 1.42 Q v 6+35 0.6452 1.43 Q V 6+40 0.6551 1.44 Q V 6+45 0.6650 1.44 Q V 6+50 0.6750 1.45 Q V 6+55 0.6850 1.46 Q V 7+ 0 0.6951 1.46 Q V 7+ 5 0.7052 1.47 Q V 7+10 0.7154 1.48 Q V 7+15 0.7256 1.49 Q v 7+20 0.7359 1.49 Q V 7+25 0.7462 1.50 Q V 7+30 0.7566 1.51 Q V 7+35 0.7671 1.52 Q V 7+40 0.7776 1.52 Q V 7+45 0.7881 1.53 Q V 7+50 0.7987 1.54 Q V 7+55 0.8094 1.55 Q V 8+ 0 0.8201 1.56 Q V 8+ 5 0.8308 1.56 Q v 8+10 0.8417 1.57 Q v 8+15 0.8526 1.58 Q v 8+20 0.8635 1.59 Q V 8+25 0.8745 1.60 Q V 8+30 0.8856 1.61 Q V 8+35 0.8968 1.62 Q V 8+40 0.9080 1.63 Q v 8+45 0.9192 1.64 Q V 8+50 0.9306 1.65 Q v 8+55 0.9420 1.66 Q v 9+ 0 0.9535 1.67 Q v 9+ 5 0.9650 1.68 Q V 9+10 0.9766. 1.69 Q v 9+15 0.9883 1.70 Q v 9+20 1.0001 1.71 Q V 9+25 1.0119 1.72 Q v 9+30 1.0238 1.73 Q v 9+35 1.0358 1.74 Q v 9+40 1.0479 1.75 Q V 9+45 1.0601 1.77 Q v 9+50 1.0723 1.78 Q v 9+55 1.0847 1.79 Q V 10+ 0 1.0971 1.80 Q v 10+ 5 1.1096 1.82 Q v 10+10 1.1222 1.83 Q v 10+15 1.1349 1.84 Q v 10+20 1.1477 1.86 Q v 10+25 1.1606 1.87 Q v 10+30 1.1735 1.88 Q v 10+35 1.1866 1.90 Q v 10+40 1.1998 1.91 Q v 10+45 1.2131 1.93 Q V 10+50 1.2265 1.95 Q V 10+55 1.2400 1.96 Q V 11+ 0 1.2536 1.98 Q V 11+ 5 1.2674 1.99 Q V 11+10 1.2812 2.01 Q V 11+15 1.2952 2.03 Q V 11+20 1.3093 2.05 Q V 11+25 1.3235 2.07 Q v 11+30 1.3379 2.09 Q v 11+35 1.3524 2.11 Q v 11+40 1.3670 2.13 Q v 11+45 1.3818 2.15 Q v 11+50 1.3967 2.17 Q v 11+55 1.4118 2.19 Q v 12+ 0 1.4270 2.21 Q v 12+ 5 1.4427 2.27 Q v 12+10 1.4593 2.42 Q v 12+15 1.4775 2.64 Q v 12+20 1.4967 2.78 Q v 12+25 1.5164 2.86 Q V 12+30 1.5365 2.92 Q v 12+35 1.5570 2.98 Q v 12+40 1.5779 3.03 Q v 12+45 1.5990 3.07 Q v 12+50 1.6205 3.12 Q v 12+55 1.6422 3.16 Q v 13+ 0 1.6642 3.20 Q v 13+ 5 1.6865 3.24 Q V ID\Z_ 13+10 1.7091 3.28 Q v 13+15 1.7319 3.32 Q v 13+20 1.7551 3.36 Q v 13+25 1.7785 3.40 Q v 13+30 1.8022 3.44 Q v 13+35 1.8262 3.49 Q v 13+40 1.8505 3.53 Q V 13+45 1.8752 3.58 Q V 13+50 1.9002 3.63 Q v 13+55 1.9255 3.68 Q V 14+ 0 1.9511 3.73 Q v 14+ 5 1.9772 3.78 Q v 14+10 2.0036 3.84 Q v 14+15 2.0305 3.90 Q v 14+20 2.0578 3.97 Q V 14+25 2.0856 4.04 Q V 14+30 2.1139 4.11 Q V 14+35 2.1428 4.19 Q V 14+40 2.1722 4.27 Q V 14+45 2.2022 4.36 Q v 14+50 2.2329 4.46 Q v 14+55 2.2643 4.56 Q v 15+ 0 2.2965 4.68 Q v 15+ 5 2.3296 4.80 Q v 15+10 2.3636 4.94 Q v 15+15 2.3987 5.09 Q v 15+20 2.4349 5.26 Q V 15+25 2.4719 5.36 Q V 15+30 2.5076 5.20 Q V 15+35 2.5414 4.90 Q V 15+40 2.5749 4.87 Q V 15+45 2.6101 5.11 Q V 15+50 2.6483 . 5.54 Q v 15+55 2.6915 6.27 Q V 16+ 0 2.7444 7.68 Q V 16+ 5 2.8255 11.78 Q v 16+10 2.9593 19.43 VQ 16+15 3.1143 22.50 v Q 16+20 3.2258 16.19 Q v 16+25 3.3018 11.03 Q v 16+30 3.3642 9.06 Q v 16+35 3.4210 8.24 Q V 16+40 3.4728 7.53 Q V 16+45 3.5206 6.93 Q V 16+50 3.5644 6.36 Q V 16+55 3.6050 5.90 Q v 17+ 0 3.6435 5.58 Q V 17+ 5 3.6798 5.28 Q V 17+10 3.7141 4.98 Q V 17+15 3.7467 4.73 Q V 17+20 3.7777 4.50 Q V 17+25 3.8073 4.30 Q v 17+30 3.8359 4.15 Q v 17+35 3.8635 4.01 Q v 17+40 3.8898 3.83 Q v 17+45 3.9144 3.57 Q V 17+50 3.9383 3.47 Q V 17+55 3.9616 3.39 Q v 18+ 0 3.9845 3.32 Q V 18+ 5 4.0066 3.21 Q V 18+10 4.0274 3.01 Q v 18+15 4.0464 2.76 Q V 18+20 4.0642 2.59 Q V 18+25 4.0813 2.48 Q V 18+30 4.0978 2.39 Q V 18+35 4.1137 2.32 Q V 18+40 4.1292 2.25 Q V 18+45 4.1443 2.19 Q V 18+50 4.1590 2.14 Q V 18+55 4.1734 2.09 Q V 19+ 0 4.1875 2.05 Q V 19+ 5 4.2013 2.00 Q V 19+10 4.2148 1.96 Q V 19+15 4.2281 1.93 Q V 19+20 4.2411 1.89 Q V 19+25 4.2540 1.86 Q V 19+30 4.2666 1.83 Q V 19+35 4.2790 1.80 Q V 19+40 4.2912 1.78 Q V 19+45 4.3033 1.75 QV V 19+50 4.3152 1.73 Q v 19+55 4.3270 1.71 Q V 20+ 0 4.3386 1.68 Q v 20+ 5 4.3500 1.66 Q V 20+10 4.3614 1.64 Q V 20+15 4.3725 1.62 Q V 20+20 4.3836 1.61 Q v 20+25 4.3945 1.59 Q v 20+30 4.4054 1.57 Q V 20+35 4.4161 1.55 Q V 20+40 4.4266 1.54 Q V 20+45 4.4371 1.52 Q V 20+50 4.4475 1.51 Q v 20+55 4.4577 1.49 Q v 21+ 0 4.4679 1.48 Q V 21+ 5 4.4780 1.46 Q V 21+10 4.4879 1.45 Q V 21+15 4.4978 1.43 Q v 21+20 4.5076 1.42 Q V 21+25 4.5173 1.41 Q V 21+30 4.5269 1.40 Q V 21+35 4.5364 1.38 Q V 21+40 4.5459 1.37 Q V 21+45 4.5552 1.36 Q V 21+50 4.5645 1.35 Q v 21+55 4.5737 1.34 Q V 22+ 0 4.5829 1.33 Q v 22+ 5 4.5919 1.32 Q V 22+10 4.6009 1.31 Q v 22+15 4.6099 1.30 Q v 22+20 4.6187 1.29 Q v 22+25 4.6275 1.28 Q V 22+30 4.6362 _ 1.27 Q v 22+35 4.6449 1.26 Q v 22+40 4.6535 1.25 Q V 22+45 4.6620 1.24 Q V 22+50 4.6705 1.23 Q v 22+55 4.6789 1.22 Q v 23+ 0 4.6873 1.21 Q v 23+ 5 4.6956 1.21 Q v 23+10 4.7039 1.20 Q V 23+15 4.7121 1.19 Q v 23+20 4.7202 1.18 Q v 23+25 4.7283 1.17 Q v 23+30 4.7363 1.17 Q v 23+35 4.7443 1.16 Q V 23+40 4.7523 1.15 Q V 23+45 4.7602 1.15 Q V 23+50 4.7680 1.14 Q v 23+55 4.7758 1.13 Q V 24+ 0 4.7836 1.13 Q V 24+ 5 4.7909 1.07 Q V 24+10 4.7968 0.85 Q v 24+15 4.8006 0.55 Q V 24+20 4.8030 0.36 Q V 24+25 4.8049 0.27 Q V 24+30 4.8064 0.21 Q V 24+35 4.8075 0.17 Q V 24+40 4.8084 0.13 Q v 24+45 4.8092 0.11 Q v 24+50 4.8097 0.09 Q v 24+55 4.8102 0.07 Q V 25+ 0 4.8106 0.05 Q v 25+ 5 4.8109 0.04 Q V 25+10 4.8111 0.03 Q V 25+15 4.8113 0.02 Q V 25+20 4.8114 0.02 Q V 25+25 4.8115 0.01 Q V 25+30 4.8115 0.01 Q V 25+35 4.8116 0.00 Q V APPENDIX E SYNTHETIC UNIT HYDROGRAPH METHOD HYDROLOGY CALCULATIONS FOR PROPOSED DEVELOPED CONDITION DESIGN 100-YEAR STORM EVENT unit Hydrograph Anal y s i s Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2004, version 7.0 Study date 06/09/13 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ San Bernardino County Synthetic Unit Hydrology Method Manual date - August 1986 Program License Serial Number 6143 Tract No. 18657 - Madison Square Single Family Residential Development onsite Subarea - 100-Year Storm - Proposed Developed Condition Loss Rate (Fm) and Low Loss Fraction (Yb) Calculation and Peak Flow rate Runoff volume & Flow Time Duration Calculation Storm Event Year = 100 Antecedent Moisture Condition = 3 English (in-lb) Input Units Used English Rainfall Data (Inches) Input values Used English Units used in output format Area averaged rainfall intensity isohyetal data: Sub-Area Duration Isohyetal (Ac.) (hours) (In) Rainfall data for year 100 8.70 1 1.50 Rainfall data for year 100 8.70 6 4.38 Rainfall data for year 100 8.70 24 8.29 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ******** Area-averaged max loss rate, Fm ******** SCS curve SCS curve Area Area Fp(Fig C6) Ap Fm No.(AMCII) NO.(AMC 3) (Ac.) Fraction (In/Hr) (dec.) (In/Hr) 32.0 52.0 8.70 1.000 0.785 0.413 0.324 Area-averaged adjusted loss rate Fm (In/Hr) = 0.324 ********* Area-Averaged low loss rate fraction, Yb ********** Area Area SCS CN SCS CN S Pervious (Ac.) Fract (AMC2) (AMC3) Yield Fr 3.59 0.413 32.0 52.0 9.23 0.320 5.11 0.587 98.0 98.0 0.20 0.971 Area-averaged catchment yield fraction, Y = 0.702 Area-averaged low loss fraction, Yb = 0.298 user entry of time of concentration = 0.208 (hours) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ watershed area = 8.70(Ac.) Catchment Lag time = 0.167 hours Unit interval = 5.000 minutes Unit interval percentage of lag time = 50.0080 Hydrograph baseflow = 0.00(CFS) Average maximum watershed loss rate(Fm) = 0.324(In/Hr) Average low loss rate fraction (Yb) = 0.298 (decimal) VALLEY DEVELOPED S-Graph Selected Computed peak 5-minute rainfall = 0.555(In) C� Computed peak 30-minute rainfall = 1.137(1n) Specified peak 1-hour rainfall = 1.500(1n) Computed peak 3-hour rainfall = 2.894(1n) Specified peak 6-hour rainfall = 4.380(1n) Specified peak 24-hour rainfall = 8.290(1n) Rainfall depth area reduction factors: using a total area of 8.70(Ac.) (Ref: fig. E-4) 5-minute factor = 1.000 Adjusted rainfall = 0.555(In) 30-minute factor = 1.000 Adjusted rainfall = 1.136(1n) 1-hour factor = 1.000 Adjusted rainfall = 1.499(1n) 3-hour factor = 1.000 Adjusted rainfall = 2.893(1n) 6-hour factor = 1.000 Adjusted rainfall = 4.380(1n) 24-hour factor = 1.000 Adjusted rainfall = 8.290(1n) Unit H y d r o g rap h +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Interval 'S' Graph unit Hydrograph Number Mean values ((CFS)) (K = 105.22 (CFS)) 1 4.579 4.818 2 29.811 26.548 3 68.811 41.034 4 89.938 22.229 5 97.016 7.448 6 98.751 1.825 7 100.000 1.314 Peak unit Adjusted mass rainfall unit rainfall Number (In) (In) 1 0.5549 0.5549 2 0.7322 0.1773 3 0.8612 0.1289 4 0.9662 0.1050 5 1.0564 0.0902 6 1.1363 0.0799 7 1.2086 0.0723 8 1.2749 0.0663 9 1.3364 0.0615 10 1.3939 0.0575 11 1.4481 0.0542 12 1.4994 0.0513 13 1.5730 0.0736 14 1.6443 0.0713 15 1.7136 0.0693 16 1.7810 0.0675 17 1.8468 0.0658 18 1.9111 0.0643 19 1.9739 0.0628 20 2.0355 0.0615 21 2.0958 0.0603 22 2.1549 0.0592 23 2.2130 0.0581 24 2.2701 0.0571 25 2.3262 0.0561 26 2.3815 0.0552 27 2.4359 0.0544 28 2.4895 0.0536 29 2.5423 0.0528 30 2.5944 0.0521 31 2.6458 0.0514 32 2.6965 0.0507 33 2.7467 0.0501 34 2.7962 0.0495 35 2.8451 0.0489 36 2.8935 0.0484 37 2.9413 0.0478 38 2.9886 0.0473 39 3.0353 0.0468 40 3.0817 0.0463 41 3.1275 0.0458 42 3.1729 0.0454 43 3.2179 0.0450 44 3.2624 0.0446 45 3.3066 0.0441 53„, 46 3.3503 0.0438 47 3.3937 0.0434 48 3.4367 0.0430 49 3.4794 0.0426 50 3.5216 0.0423 51 3.5636 0.0420 52 3.6052 0.0416 53 3.6465 0.0413 54 3.6875 0.0410 55 3.7282 0.0407 56 3.7686 0.0404 57 3.8087 0.0401 58 3.8486 0.0398 59 3.8881 0.0396 60 3.9274 0.0393 61 3.9664 0.0390 62 4.0052 0.0388 63 4.0437 0.0385 64 4.0820 0.0383 65 4.1200 0.0380 66 4.1578 0.0378 67 4.1953 0.0376 68 4.2327 0.0373 69 4.2698 0.0371 70 4.3067 0.0369 71 4.3434 0.0367 72 4.3799 0.0365 73 4.4078 0.0279 74 4.4355 0.0277 75 4.4629 0.0275 76 4.4902 0.0273 77 4.5173 0.0271 78 4.5442 0.0269 79 4.5710 0.0267 80 4.5975 0.0265 81 4.6239 0.0264 82 4.6500 0.0262 83 4.6761 0.0260 84 4.7019 0.0258 85 4.7276 0.0257 86 4.7531 0.0255 87 4.7785 0.0254 88 4.8037 0.0252 89 4.8287 0.0250 90 4.8536 0.0249 91 4.8783 0.0247 92 4.9029 0.0246 93 4.9274 0.0245 94 4.9517 0.0243 95 4.9759 0.0242 96 4.9999 0.0240 97 5.0238 0.0239 98 5.0476 0.0238 99 5.0712 0.0236 100 5.0947 0.0235 101 5.1181 0.0234 102 5.1414 0.0233 103 5.1645 0.0231 104 5.1875 0.0230 105 5.2104 0.0229 106 5.2332 0.0228 107 5.2559 0.0227 108 5.2784 0.0226 109 5.3009 0.0224 110 5.3232 0.0223 111 5.3454 0.0222 112 5.3675 0.0221 113 5.3895 0.0220 114 5.4114 0.0219 115 5.4332 0.0218 116 5.4549 0.0217 117 5.4765 0.0216 118 5.4980 0.0215 119 5.5194 0.0214 120 5.5407 0.0213 121 5.5619 0.0212 • 122 5.5830 0.0211 123 5.6040 0.0210 124 5.6249 0.0209 125 5.6458 0.0208 b4-- 126 5.6665 0.0207 127 5.6872 0.0207 128 5.7077 0.0206 129 5.7282 0.0205 130 5.7486 0.0204 131 5.7689 0.0203 132 5.7891 0.0202 133 5.8093 0.0201 134 5.8294 0.0201 135 5.8493 0.0200 136 5.8692 0.0199 137 5.8891 0.0198 138 5.9088 0.0197 139 5.9285 0.0197 140 5.9481 0.0196 141 5.9676 0.0195 142 5.9870 0.0194 143 6.0064 0.0194 144 6.0257 0.0193 145 6.0449 0.0192 146 6.0641 0.0192 147 6.0831 0.0191 148 6.1021 0.0190 149 6.1211 0.0189 150 6.1400 0.0189 151 6.1588 0.0188 152 6.1775 0.0187 153 6.1962 0.0187 154 6.2148 0.0186 155 6.2333 0.0185 156 6.2518 0.0185 157 6.2702 0.0184 158 6.2886 0.0183 159 6.3068 0.0183 160 6.3251 0.0182 161 6.3432 0.0182 162 6.3613 0.0181 163 6.3794 0.0180 164 6.3974 0.0180 165 6.4153 0.0179 166 6.4331 0.0179 167 6.4510 0.0178 168 6.4687 0.0177 169 6.4864 0.0177 170 6.5040 0.0176 171 6.5216 0.0176 172 6.5391 0.0175 173 6.5566 0.0175 174 6.5740 0.0174 175 6.5914 0.0174 176 6.6087 0.0173 177 6.6259 0.0173 178 6.6431 0.0172 179 6.6603 0.0172 180 6.6774 0.0171 181 6.6944 0.0170 182 6.7114 0.0170 183 6.7284 0.0169 184 6.7453 0.0169 185 6.7621 0.0168 186 6.7789 0.0168 187 6.7957 0.0167 188 6.8124 0.0167 189 6.8290 0.0167 190 6.8456 0.0166 191 6.8622 0.0166 192 6.8787 0.0165 193 6.8952 0.0165 194 6.9116 0.0164 195 6.9280 0.0164 196 6.9443 0.0163 197 6.9606 0.0163 198 6.9768 0.0162 199 6.9930 0.0162 200 7.0092 0.0162 201 7.0253 0.0161 ' 202 7.0413 0.0161 203 7.0574 0.0160 204 7.0733 0.0160 205 7.0893 0.0159 L- 205 7.1052 0.0I59 207 7.I210 0.0150 208 7.1368 0.0158 209 7'1526 0'0I58 2I0 7.1683 0.0I57 211 7.1840 8,0157 212 7.1997 0.0156 213 7.2153 0.0I56 214 7.2309 0.0I56 215 7.2464 0.0I55 2I6 7.2610 0.0155 217 7.2773 0.0I55 218 7.2027 0.0154 219 7'3881 0.0154 220 7.3235 0.0I53 221 7.3388 0.0I53 222 7'3540 0.0153 223 7.3693 0.0152 224 7.3844 0.0I52 225 7.3996 0.8152 226 7.4147 0.015I 227 7.4288 0.8I51 228 7.4448 0-0150 229 7.4599 0.0150 230 7.4748 0.0I50 231 7'4898 0-0I49 233 7.5047 0.0140 233 7.5195 0.0I49 234 7'5344 0'0148 235 7.5492 0.0I48 236 7.5640 0.0148 237 7.5787 0.0I47 238 7.5934 0.0I47 239 7.6081 0.0I47 240 7.6227 0'0146 241 7.6373 0.0146 I42 7-6519 0,0146 243 7.6664 0'0145 244 7.6809 0.0I45 245 7.6954 0.0145 246 7'7098 0.0I44 247 7.7242 0.0I44 248 7'7386 0.0144 249 7.7529 0.0143 250 7.7673 0.0I43 251 7'78I5 0'0143 252 7'7958 0'0143 253 7.8100 0.0143 254 7'8242 0.0142 355 7.8384 0.0142 256 7.852I 0.0I4I 257 7.8666 0-0141 258 7.8807 0.0I41 259 7.8947 0.0I40 260 7.9087 0.0140 261 7.9227 0.0140 262 7.9367 0.0140 263 7'9506 0.0139 264 7.9645 0,0139 265 7.9784 0.0139 266 7.9922 0.8138 267 8.0060 0.0I38 268 8.0I98 0.0138 269 8'0336 0'0138 270 8.0473 0.0137 271 8'0610 0.0137 272 8.0747 0'0137 273 8.0883 0.0136 274 8.I019 0.0136 275 8.1155 0'0136 276 8.1291 0.0136 277 8.1427 0.013E 278 8.1562 0.0135 279 8.1697 0.0135 280 8.1831 0.0135 281 8'1966 0-0134 282 8.2100 0.0I34 283 8.2334 0.0134 284 8.2367 0.0I34 285 8.2501 0.0133 286 8'2634 0'0133 287 8.2766 0.01]] 288 8.2899 0.0I33 Unit Unit unit Effective Period Rainfall soil-Loss Rainfall (number) (In) (In) (In) 1 0.0133 0.0040 0.0093 2 0.0133 0.0040 0.0093 3 0.0I33 0.0040 0.0094 4 0.0134 0'0840 0.0084 5 0.0134 0.0040 0.0094 6 0.0134 0.0040 0.0094 7 0.0135 0'0040 0'0095 8 0.0I35 0.0040 0.0005 9 0.0136 0.0040 0.0095 10 0.8136 0'0041 0.0095 11 0.0136 0.004I 0.0096 12 0.8137 0.0841 0.0096 13 0.0137 0'0041 0'0096 14 0.0I38 0.004I 0.0007 15 0.0138 0.0041 0.0897 16 0.0138 0.0041 0.0097 17 0.0I39 8.0041 8.0008 18 0.0139 0'0042 0.0098 19 0.0I40 0,0042 0.0098 20 0.0I40 0.0042 0.0098 21 0'0I41 0,0042 0'0099 22 0.0141 0.0042 0.0099 23 0.0142 0.0042 . 0.0099 24 0.0I43 0'0042 0'0100 25 0.0143 0.0042 0.0I00 26 0.0143 0.0043 8.0I00 27 0.0I43 0.0043 0'0I01 28 0.0144 0.0043 0.8101 29 0.0144 0.0043 0.0I0I 30 0.0I45 0.0043 0'0IO2 31 0.0I45 0.0043 0.0IO2 32 0.0146 0.0043 0.0103 33 0.0146 0'0044 0.0103 34 0,0147 0.0044 0.0I03 35 0.0147 0.0044 0.0103 36 0.0148 0.0044 0'0104 37 0.0I48 0.0044 0.0104 38 0,0149 0.0044 0.0104 39 0.0I49 0'0045 0.0I05 40 0,0150 0'0045 0.0105 41 0,0150 0.0045 0.0106 42 0.0151 0.0045 0'0106 43 0.0I62 0.0045 8.0I06 44 0,0153 0.0045 0.0107 45 0,0153 0'0045 0'0107 46 0.0153 0.0046 0.0I07 47 0.0154 0'0046 0'0108 48 0.0154 0.0046 0'0188 49 0.0155 0'0045 0.0109 50 0'0155 0'0046 0'0I09 51 0.0156 0.0047 0.0110 52 0.8156 0.0047 0.0I10 53 0.0157 0'0047 0'0110 54 0.0I58 0.0047 0.0111 55 0.0I69 0.0047 0.0I1I 56 . 8,0159 0'0047 0'0113 57 0.0160 0.0048 0.0I12 58 0,0I60 0.0048 0.0112 59 0.0181 0.0048 0'0I13 60 0,0I62 0.0048 0.0I19 61 0.0162 0.0048 0.0114 62 0.0I53 0'0049 0.0I14 63 0,0164 0.0049 0.0115 64 0.0164 0.0049 0.0115 65 0.0165 0'0049 0.0I16 66 0.0I66 0.0049 0.0I16 67 0.0167 0'0050 0.01I7 68 8.0167 0'0050 0'0117 69 0.0168 0.0060 0.0I18 70 0.0168 0'0050 0,0I18 71 8.0I69 0.0051 0'0119 72 0.0170 0.0051 0'0119 ' El- T 73 0.0171 0.0051 0.0120 74 0.0172 0.0051 0.0120 75 0.0173 0.0051 0.0121 76 0.0173 0.0052 0.0121 77 0.0174 0.0052 0,0122 78 0.0175 0.0052 0.0123 79 0.0176 0.0052 0.0123 80 0.0176 0.0053 0.0124 81 0.0177 0.0053 0.0125 82 0.0178 0.0053 0.0125 83 0.0179 0.0053 0.0126 84 0.0180 0.0054 0.0126 85 0.0181 0.0054 0.0127 86 0.0182 0.0054 0.0128 87 0.0183 0.0054 0.0128 88 0.0183 0.0055 0.0129 89 0.0185 0.0055 0.0130 90 0.0185 0.0055 0.0130 91 0.0187 0.0056 0.0131 92 0.0187 0.0056 0.0132 93 0.0189 0.0056 0.0132 94 0.0189 0.0056 0.0133 95 0.0191 0.0057 0.0134 96 0.0192 0.0057 0.0134 97 0.0193 0.0058 0.0135 98 0.0194 0.0058 0.0136 99 0.0195 0.0058 0.0137 100 0.0196 0.0058 0.0138 101 0.0197 0.0059 0.0139 102 0.0198 0.0059 0.0139 103 0.0200 0.0060 0.0140 104 0.0201 0.0060 0.0141 105 0.0202 0.0060 0.0142 106 0.0203 0.0061 0.0143 107 0.0205 0.0061 0.0144 108 0.0206 0.0061 0.0144 109 0.0207 0.0062 0.0146 110 0.0208 0.0062 0.0146 111 0.0210 0.0063 0.0148 112 0.0211 0.0063 0.0148 113 0.0213 0.0063 0.0150 114 0.0214 0.0064 0.0150 115 0.0216 0.0064 0.0152 116 0.0217 0.0065 0.0152 117 0.0219 0.0065 0.0154 118 0.0220 0.0066 0.0154 119 0.0222 0.0066 0.0156 120 0.0223 0.0067 0.0157 121 0.0226 0.0067 0.0158 122 0.0227 0.0068 0.0159 123 0.0229 0.0068 0.0161 124 0.0230 0.0069 0.0162 125 0.0233 0.0069 0.0163 126 0.0234 0.0070 0.0164 127 0.0236 0.0070 0.0166 128 0.0238 0.0071 0.0167 129 0.0240 0.0072 0.0169 130 0.0242 0.0072 0.0170 131 0.0245 0.0073 0.0172 132 0.0246 0.0073 0.0173 133 0.0249 0.0074 0.0175 134 0.0250 0.0075 0.0176 135 0.0254 0.0076 0,0178 136 0.0255 0.0076 0.0179 137 0.0258 0.0077 0.0181 138 0.0260 0.0078 0.0183 139 0.0264 0.0079 0.0185 140 0.0265 0.0079 0.0186 141 0.0269 0.0080 0.0189 142 0.0271 0.0081 0.0190 143 0.0275 0.0082 0.0193 144 0.0277 0.0083 0.0194 145 0.0365 0.0109 0.0256 146 0.0367 0.0109 0.0258 147 0.0371 0.0111 0.0261 148 0.0373 0.0111 0.0262 - 149 0.0378 0.0113 0.0265 150 0.0380 0.0113 0.0267 151 0.0385 0.0115 0.0270 152 0.0388 0.0116 0.0272 153 0.0393 0.0117 0.0276 154 0.0396 0.0118 0.0278 155 0.0401 0.0120 0.0282 156 0.0404 0.0120 0.0284 157 0.0410 0.0122 0.0288 158 0.0413 0.0123 0.0290 159 0.0420 0.0125 0.0295 160 0.0423 0.0126 0.0297 161 0.0430 0.0128 0.0302 162 0.0434 0.0129 0.0304 163 0.0441 0.0132 0.0310 164 0.0446 0.0133 0.0313 165 0.0454 0.0135 0.0319 166 0.0458 0.0137 0.0322 167 0.0468 0.0139 0.0328 168 0.0473 0.0141 0.0332 169 0.0484 0.0144 0.0340 170 0.0489 0.0146 0.0343 171 0.0501 0.0149 0.0352 172 0.0507 0.0151 0.0356 173 0.0521 0.0155 0.0366 174 0.0528 0.0157 0.0371 175 0.0544 0.0162 0.0382 176 0.0552 0.0165 0.0388 177 0.0571 0.0170 0.0401 178 0.0581 0.0173 0.0408 179 0.0603 0.0180 0.0423 180 0.0615 0.0183 0.0432 181 0.0643 0.0192 0.0451 182 0.0658 0.0196 0.0462 183 0.0693 0.0207 0.0486 184 0.0713 0.0213 0.0501 185 0.0513 0.0153 0.0360 186 0.0542 0.0161 0.0380 187 0.0615 0.0183 0.0432 188 0.0663 0.0198 0.0465 189 0.0799 0.0238 0.0561 190 0.0902 0.0269 0.0633 191 0.1289 0.0270 0.1019 192 0.1773 0.0270 0.1503 193 0.5549 0.0270 0.5279 194 0.1050 0.0270 0.0780 195 0.0723 0.0215 0.0507 196 0.0575 0.0171 0.0404 197 0.0736 0.0219 0.0516 198 0.0675 0.0201 0.0474 199 0.0628 0.0187 0.0441 200 0.0592 0.0176 0.0415 201 0.0561 0.0167 0.0394 202 0.0536 0.0160 0.0376 203 0.0514 0.0153 0.0361 204 0.0495 0.0148 0.0348 205 0.0478 0.0142 0.0336 206 0.0463 0.0138 0.0325 207 0.0450 0.0134 0.0316 208 0.0438 0.0130 0.0307 209 0.0426 0.0127 0.0299 210 0.0416 0.0124 0.0292 211 0.0407 0.0121 0.0286 212 0.0398 0.0119 0.0280 213 0.0390 0.0116 0.0274 214 0.0383 0.0114 0.0269 215 0.0376 0.0112 0.0264 216 0.0369 0.0110 0.0259 217 0.0279 0.0083 0.0196 218 0.0273 0.0081 0.0192 219 0.0267 0.0080 0.0188 220 0.0262 0.0078 0.0184 221 0.0257 0.0077 0.0180 222 0.0252 0.0075 0.0177 223 0.0247 0.0074 0.0174 224 0.0243 0.0072 0.0171 225 0.0239 0.0071 0.0168 226 0.0235 0.0070 0.0165 227 0.0231 0.0069 0.0162 228 0.0228 0.0068 0.0160 • 229 0.0224 0.0067 0.0158 230 0.0221 0.0066 0.0155 231 0.0218 0.0065 0.0153 232 0.0215 0.0064 0.0151 233 0'02I2 0.0053 0.0149 234 0.0209 0.0062 0.0I47 235 0.0207 0.0062 0.0145 236 0.0204 8.0061 0.0143 237 0.0201 0.0060 0.014I 238 0.0199 0.0059 0.0140 239 0.0197 0.0059 0.0I38 240 0.0194 0.0058 0.0136 241 0'0192 0'0057 0.0135 242 8.0190 0.0057 0.0133 243 0.0188 0.0056 0.0132 244 0.0186 0.0055 0.0131 245 0.0184 0.0055 0.0139 246 0'0182 0.0054 0.0128 247 0'0180 0.0054 0'0127 248 0.0179 0.8053 0.0125 249 0.0177 0.0059 0.0124 250 0.0175 0'0052 0.0123 251 0.0174 0.0052 0.0122 252 0.0172 0.0051 0.0121 253 0.0170 0'0051 0.0120 254 0.0I69 0.0050 0.0119 255 0.0167 0.0850 0.0I18 256 0,0166 0.0048 0.0117 257 0.0165 0.0049 0.0116 258 0'0163 0.0049 0.0115 250 0.0162 0.0048 0.0114 260 0.016I 0.0048 8.0113 261 0.0159 0.0047 0.0I12 262 0.0158 0.0047 0.0111 263 0.0157 0.0047 0.0110 264 0.0I56 0.0046 0.0109 265 0.0155 0.0046 0.0108 266 0.8153 0'8046 0.0I08 267 0.0152 0.0045 0'0I07 268 0.0I5I 0,8045 0.0106 269 0.0150 0.0045 0.0105 270 0'0149 0'0044 0'0105 271 0'0148 0.0044 0.0104 272 8.0147 0.0044 0.0I03 273 0'0146 8'0044 0.0102 274 0.0I45 0.0043 0.0IO2 275 8.0144 0.0043 0.0I01 276 0'0143 0.0043 0.0I00 277 0.0142 0.0042 0.0I00 278 0.0141 0.0042 0.0009 279 0.0I40 0.0042 0'0099 280 0.0I40 0.0042 0.0098 281 0.0139 8.0041 0.0097 I82 0'0138 0.0041 0'0097 283 0.0137 0.0041 0.0096 284 0.0136 0.0041 0.0096 285 0'0I35 0'0840 0.0005 286 0.0I35 0.0040 8.0095 287 0.0134 0.0040 0.8094 288 0'0133 0,0040 0.0093 Total soil rain loss = 2.29(1n) Total effective rainfall = 6.00(1n) Peak flow rate in flood hydrograph = 28'37(Cp5) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 24 - HOUR STORM munnff Hydrngraph Hydrograph in 5 minute intervals ((CFS)) Time{h+m} Volume Ac.Ft Q(CFS) 0 7.5 15.0 22.5 30.0 0+ 5 0.0003 0.04 Q 0+I0 0.0023 0.29 Q 0+15 0.0070 0.67 Q 0+20 0.0I30 0.88 VQ 0+25 0.0196 0.96 VQ '0+30 0.0263 0.97 VQ 0+35 0.0332 0.99 VQ 0+40 0.0400 0.99 VQ 0+45 0.0469 l O0 v� ' ' C��|r-\ 0+50 0.0537 1.00 VQ 0+55 0.0606 1.00 VQ 1+ 0 0.0675 1.00 VQ 1+ 5 0.0745 1.01 VQ 1+10 0.0814 1.01 VQ 1+15 0.0884 1.01 VQ 1+20 0.0954 1.02 VQ 1+25 0.1024 1.02 VQ 1+30 0.1095 1.02 Q 1+35 0.1165 1.03 Q 1+40 0.1236 1.03 Q 1+45 0.1307 1.03 Q 1+50 0.1379 1.04 Q 1+55 0.1450 1.04 Q 2+ 0 0.1522 1.04 Q 2+ 5 0.1594 1.05 Q 2+10 0.1666 1.05 Q 2+15 0.1739 1.05 Q 2+20 0.1811 1.06 Q 2+25 0.1884 1.06 Q 2+30 0.1957 1.06 Q 2+35 0.2031 1.07 Q 2+40 0.2104 1.07 Q 2+45 0.2178 1.07 QV 2+50 0.2252 1.08 QV 2+55 0.2327 1.08 QV 3+ 0 0.2401 1.08 QV 3+ 5 0.2476 1.09 Qv 3+10 0.2551 1.09 Qv 3+15 0.2627 1.09 QV 3+20 0.2702 1.10 Qv 3+25 0.2778 1.10 Qv 3+30 0.2854 1.11 Qv 3+35 0.2931 1.11 Qv 3+40 0.3008 1.11 QV 3+45 0.3085 1.12 QV 3+50 0.3162 1.12 Qv 3+55 0.3240 1.13 QV 4+ 0 0.3317 1.13 Q V 4+ 5 0.3396 1.13 Q v 4+10 0.3474 1.14 Q V 4+15 0.3553 1.14 Q V 4+20 0.3632 1.15 Q v 4+25 0.3711 1.15 Q v 4+30 0.3791 1.16 Q v 4+35 0.3871 1.16 Q v 4+40 0.3951 1.17 Q V 4+45 0.4031 1.17 Q v 4+50 0.4112 1.17 Q V 4+55 0.4193 1.18 Q v 5+ 0 0.4275 1.18 Q v 5+ 5 0.4357 1.19 Q V 5+10 0.4439 1.19 Q V 5+15 0.4521 1.20 Q v 5+20 0.4604 1.20 Q V 5+25 0.4688 1.21 Q V 5+30 0.4771 1.21 Q V 5+35 0.4855 1.22 Q V 5+40 0.4939 1.22 Q v 5+45 0.5024 1.23 Q v 5+50 0.5109 1.23 Q V 5+55 0.5194 1.24 Q V 6+ 0 0.5280 1.24 Q V 6+ 5 0.5366 1.25 Q V 6+10 0.5452 1.26 Q v 6+15 0.5539 1.26 Q V 6+20 0.5627 1.27 Q V 6+25 0.5714 1.27 Q V 6+30 0.5802 1.28 Q v 6+35 0.5891 1.28 Q v 6+40 0.5980 1.29 Q v 6+45 0.6069 1.30 Q V 6+50 0.6159 1.30 Q V 6+55 0.6249 1.31 Q V 7+ 0 0.6340 1.32 Q v 7+ 5 0.6431 1.32 Q V -7+10 0.6522 1.33 Q v 7+15 0.6614 1.34 Q v 7+20 0.6706 1.34 Q v 7+25 0.6799 1.35 Q V I E ` ' 7+30 0.6893 1.36 Q v 7+35 0.6987 1.36 Q v 7+40 0.7081 1.37 Q v 7+45 0.7176 1.38 Q v 7+50 0.7271 1.38 Q v 7+55 0.7367 1.39 Q v 8+ 0 0.7463 1.40 Q V 8+ 5 0.7560 1.41 Q v 8+10 0.7658 1.41 Q V 8+15 0.7756 1.42 Q V 8+20 0.7854 1.43 Q v 8+25 0.7953 1.44 Q v 8+30 0.8053 1.45 Q V 8+35 0.8153 1.46 Q v 8+40 0.8254 1.46 Q v 8+45 0.8356 1.47 Q v 8+50 0.8458 1.48 Q V 8+55 0.8561 1.49 Q V 9+ 0 0.8664 1.50 Q V 9+ 5 0.8768 1.51 Q v 9+10 0.8873 1.52 Q V 9+15 0.8978 1.53 Q V 9+20 0.9084 1.54 Q V 9+25 0.9191 1.55 Q V 9+30 0.9298 1.56 Q v 9+35 0.9406 1.57 Q v 9+40 0.9515 1.58 Q v 9+45 0.9625 1.59 Q v 9+50 0.9735 1.60 Q v 9+55 0.9846 1.61 Q v 10+ 0 0.9958 1.63 Q V 10+ 5 1.0071 1.64 Q V 10+10 1.0185 1.65 Q v 10+15 1.0299 1.66 Q v 10+20 1.0414 1.67 Q V 10+25 1.0531 1.69 Q v 10+30 1.0648 1.70 Q v 10+35 1.0766 1.71 Q v 10+40 1.0885 1.73 Q V 10+45 1.1005 1.74 Q V 10+50 1.1126 1.76 Q V 10+55 1.1248 1.77 Q V 11+ 0 1.1371 1.79 Q V 11+ 5 1.1495 1.80 Q V 11+10 1.1620 1.82 Q V 11+15 1.1747 1.83 Q V 11+20 1.1874 1.85 Q V 11+25 1.2003 1.87 Q v 11+30 1.2133 1.89 Q v 11+35 1.2264 1.90 Q V 11+40 1.2396 1.92 Q v 11+45 1.2530 1.94 Q v 11+50 1.2665 1.96 Q v 11+55 1.2802 1.98 Q v 12+ 0 1.2939 2.00 Q V 12+ 5 1.3081 2.05 Q v 12+10 1.3235 2.23 Q v 12+15 1.3406 2.50 Q v 12+20 1.3589 2.65 Q v 12+25 1.3776 2.72 Q V 12+30 1.3966 2.75 Q v 12+35 1.4157 2.78 Q V 12+40 1.4351 2.81 Q V 12+45 1.4546 2.84 Q v 12+50 1.4744 2.87 Q v 12+55 1.4943 2.89 Q v 13+ 0 1.5144 2.92 Q V 13+ 5 1.5348 2.95 Q v 13+10 1.5553 2.99 Q v 13+15 1.5761 3.02 Q v 13+20 1.5972 3.05 Q v 13+25 1.6184 3.09 Q v 13+30 1.6400 3.13 Q v 13+35 1.6618 3.17 Q v 13+40 1.6839 3.21 Q v 13+45 1.7063 3.25 Q v 13+50 1.7289 3.29 Q v 13+55 1.7520 3.34 Q v 14+ 0 1.7753 3.39 Q v 14+ 5 1.7990 3.44 Q V �'2__ 14+10 1.8231 3.50 Q v 14+15 1.8476 3.56 Q v 14+20 1.8725 3.62 Q V 14+25 1.8979 3.69 Q v 14+30 1.9238 3.75 Q v 14+35 1.9502 3.83 Q v 14+40 1.9771 3.91 Q v 14+45 2.0046 4.00 Q V 14+50 2.0328 4.09 Q V 14+55 2.0617 4.19 Q v 15+ 0 2.0913 4.30 Q v 15+ 5 2.1218 4.43 Q V 15+10 2.1532 4.56 Q V 15+15 2.1857 4.71 Q V 15+20 2.2193 4.88 Q V 15+25 2.2537 5.00 Q V 15+30 2.2865 4.76 Q v 15+35 2.3162 4.31 Q v 15+40 2.3455 4.25 Q v 15+45 2.3768 4.55 Q V 15+50 2.4118 5.08 Q v 15+55 2.4527 5.95 Q V 16+ 0 2.5061 7.75 Q v 16+ 5 2.5934 12.68 Q v 16+10 2.7550 23.46 V Q 16+15 2.9497 28.27 v Q 16+20 3.0727 17.87 Q V 16+25 3.1380 9.48 Q v 16+30 3.1802 6.13 Q v 16+35 3.2194 5.70 Q V 16+40 3.2536 4.96 Q v 16+45 3.2858 4.68 Q V 16+50 3.3162 4.41 Q V 16+55 3.3451 4.20 Q V 17+ 0 3.3726 4.00 Q V 17+ 5 3.3990 3.83 Q V 17+10 3.4244 3.68 Q v 17+15 3.4488 3.55 Q v 17+20 3.4725 3.44 Q V 17+25 3.4955 3.34 Q V 17+30 3.5179 3.25 Q v 17+35 3.5397 3.16 Q v 17+40 3.5609 3.09 Q v 17+45 3.5817 3.02 Q v 17+50 3.6020 2.95 Q v 17+55 3.6219 2.89 Q v 18+ 0 3.6415 2.83 Q v 18+ 5 3.6604 2.75 Q v 18+10 3.6780 2.55 Q V 18+15 3.6935 2.26 Q V 18+20 3.7079 2.08 Q v 18+25 3.7216 2.00 Q V 18+30 3.7351 1.95 Q V 18+35 3.7482 1.90 Q v 18+40 3.7610 1.87 Q v 18+45 3.7736 1.83 Q V 18+50 3.7860 1.80 Q V 18+55 3.7982 1.77 Q V 19+ 0 3.8102 1.74 Q V 19+ 5 3.8220 1.71 Q V 19+10 3.8336 1.69 Q V 19+15 3.8450 1.66 Q V 19+20 3.8563 1.64 Q V 19+25 3.8674 1.61 Q V 19+30 3.8784 1.59 Q v 19+35 3.8892 1.57 Q V 19+40 3.8998 1.55 Q V 19+45 3.9104 1.53 Q V 19+50 3.9208 1.51 Q V 19+55 3.9310 1.49 Q V 20+ 0 3.9412 1.47 Q V 20+ 5 3.9512 1.45 Q V 20+10 3.9611 1.44 Q V 20+15 3.9709 1.42 Q V 20+20 3.9806 1.41 Q V 20+25 3.9901 1.39 Q V 20+30 3.9996 1.38 Q V 20+35 4.0090 1.36 Q V 20+40 4.0183 1.35 Q V 20+45 4.0275 1.33 QESV 20+50 4.0366 1.32 Q V 20+55 4.0456 1.31 Q V 21+ 0 4.0545 1.30 Q V 21+ 5 4.0633 1.28 Q V 21+10 4.0721 1.27 Q V 21+15 4.0808 1.26 Q v 21+20 4.0894 1.25 Q V 21+25 4.0979 1.24 Q v 21+30 4.1064 1.23 Q V 21+35 4.1148 1.22 Q V 21+40 4.1231 1.21 Q V 21+45 4.1313 1.20 Q V 21+50 4.1395 1.19 Q V 21+55 4.1476 1.18 Q V 22+ 0 4.1557 1.17 Q V 22+ 5 4.1637 1.16 Q V 22+10 4.1716 1.15 Q V 22+15 4.1795 1.14 Q V 22+20 4.1873 1.13 Q V 22+25 4.1950 1.13 Q V 22+30 4.2027 1.12 Q V 22+35 4.2104 1.11 Q V 22+40 4.2179 1.10 Q V 22+45 4.2255 1.09 Q V 22+50 4.2330 1.09 Q V 22+55 4.2404 1.08 Q V 23+ 0 4.2478 1.07 Q V 23+ 5 4.2551 1.07 Q V 23+10 4.2624 1.06 Q V 23+15 4.2696 1.05 Q V 23+20 4.2768 1.04 Q V 23+25 4.2840 1.04 Q V 23+30 4.2911 . 1.03 Q V 23+35 4.2982 1.03 Q V 23+40 4.3052 1.02 Q V 23+45 4.3121 1.01 Q V 23+50 4.3191 1.01 Q V 23+55 4.3260 1.00 Q V 24+ 0 4.3328 1.00 Q V 24+ 5 4.3393 0.94 Q V 24+10 4.3441 0.69 Q V 24+15 4.3462 0.31 Q V 24+20 4.3469 0.10 Q V 24+25 4.3471 0.03 Q V 24+30 4.3472 0.01 Q V E(4 APPENDIX F FLOW-BASED AND VOLUME-BASED BMP DESIGN CALCULATIONS F\ PROJECT: TRACT NO. 18657 - MADISON SQUARE PACIFIC COAST ADDRESS: Southwest Corner of Walnut Av. & Juniper Av. CIVIL-SOUTH, INC. SUBJECT: FLOW-BASED BMP DESIGN 0 CALC 1180 DURFEE AVE.SUITE 220 DATE: May 2013 / Rev. March 2014 SOUTH EL MONTE,CA 91733 Flow-Based BMP Design Runoff Flow Rate Calculation: a) Hydrology Onsite Subarea Designation: 1 to 12 b) Total Onsite Subarea Acreage = 8.69 Acres c) Total Onsite Subarea's Design 100-Yr. Flow Rate, Q = 27.6 cfs d) Proposed Use of (i) Grassy Swales to be located within Each Lot & in Water Quality Lot D; (ii) Kristar's FloGard Dual-Vortex Hydrodynamic Separator Model DVS-84C as Flow-Based BMPs to treat the Pollutants of Concern from Onsite Area e) Use the design procedures and instructions as developed by by San Bernardino County Stormwater Program as shown below:- f) From NOAA Atlas 14 Precipitation Depths (2-Year 1-Hour Rainfall) Map (See Page A-4 in Appendix A): The Area-Averaged 2-Year 1-Hour Rainfall, 12yr-1hr = 0.67" g) BMP Design Rainfall Intensity, IBMP = 12yr-lhr x Regression Coeff. x Safety Factor of 2 where Regression Coefficient for Intensity, I = 0.2787 per Table D-1 Hence, IBMp = 0.67 x 0.2787 x 2 = 0.373" h) The Composite Runoff Coefficient, CBMp = 0.858i3 - 0.78i2 + 0.774i + 0.04 where i = watershed imperviousness ratio = 0.60 (with 40% pervious area) Hence, CBMp = 0.1853 - 0.2808 + 0.4644 + 0.04 = 0.4089 i) Therefore, BMP Flow Rate, QBMp = CBMp X IBMp x A = 0.4089 x 0.373 x 8.69 = 1.33 cfs or 0.153 cfs per acre j) Per manufacturer's specs, the DVS-84C has treated flow capacity of 6.5 cfs; Pa TR18657-WQMP Calc.xls PROJECT: TRACT NO. 18657 - MADISON SQUARE PACIFIC COAST ADDRESS: Southwest Corner of Walnut Av. & Juniper Av. CIVIL-SOUTH, INC. SUBJECT: VOLUME-BASED BMP DESIGN CALC 1180 DURFEE AVE.SUITE 220 DATE: May 2013 /Rev. March 2014 SOUTH EL MONTE,CA 91733 Volume-Based BMP Design Calculation: a) Hydrology Onsite Subarea Designation: 1 to 12 b) Total Onsite Subarea Acreage, A = 8.69 Acres c) Total Onsite Subarea's Design 100-Yr. Flow Rate, Q = 27.6 cfs d) Proposed Use of Underground Contech CMP Detention System as Volume-Based BMP to treat the Pollutants of Concern from Onsite Area e) Use the design procedures and instructions as developed by by San Bernardino County Stormwater Program as shown below:- f) The Composite Runoff Coefficient, CBMp = 0.85813 - 0.78i2 + 0.774i + 0.04 where i = watershed imperviousness ratio = 0.60 (with 40% pervious area) Hence, CBMp = 0.1853 - 0.2808 + 0.4644 + 0.04 = 0.4089 g) The Project's Drainage Area is located within Valley Region. h) From NOAA Atlas 14 Precipitation Depths (2-Year 1-Hour Rainfall) Map (See Page A-4 in Appendix A): The Area-Averaged 2-Year 1-Hour Rainfall, 12yr-lhr = 0.67" Thus, Area-Averaged 6-Hour Mean Storm Rainfall, P6 :- P6 = 12yr-lhr x Regression Coeff. = 0.67" x 1.4807 = 0.99" i) Proposed use of 48 Hours Drawdown time for Volume-Based BMP; Thus, the corresponding Regression Constant, a = 1.963 F3 7818657-WQMP Calc.xls PROJECT: TRACT NO. 18657 - MADISON SQUARE PACIFIC COAST ADDRESS: Southwest Corner of Walnut Av. & Juniper Av. CIVIL-SOUTH, INC. SUBJECT: VOLUME-BASED BMP DESIGN CALC 1180 DURFEE AVE. SUITE 220 DATE: May 2013 / Rev. March 2014 SOUTH EL MONTE,CA 91733 Volume-Based BMP Design Calculation (Continued): j) Calculate "Maximized Detention Volume", Po :- where Po = a X Cbmp X P6 P0 = 1 .963 X 0.4089 X 0.99" Po = 0.79 inch k) Calculate "Target Capture Volume", Vo :- where Vo = (Po X A) / 12 Vo = (0.79" X 8.69 acres) / 12 Vo = 0.572 Acre-Feet or 24,916 Cu-Ft or 2,867 Cu-Ft/Acre I) Calculate Drawdown Time of Proposed Contech CMP System:- The results of the double ring infilterometer test indicate an infiltration rate of minimum 4 inches per hour per soils report dated February 13, 2014 prepared by Geotek, Inc. TR18657-WQMP Calc.xls PROJECT: TRACT NO. 18657 - MADISON SQUARE PACIFIC COAST ADDRESS: Southwest Corner of Walnut Av. & Juniper Av. CIVIL-SOUTH, INC. SUBJECT: VOLUME-BASED BMP DESIGN CALC 1180 DURFEE AVE. SUITE 220 DATE: May 2013 / Rev. March 2014 SOUTH EL MONTE,CA 91733 Volume-Based BMP Design Calculation'Continued): m) Applying a Factor of Safety of 3 to measured Infiltration Rate:- Design Infiltration Rate, Id = 4 Inches per Hour F.S. of 3 = 1.33 Inches/Hour or 2.67 Feet/Dav n) Proposed Bottom Infiltration Surface Area of Contech CMP System:- Trapezoidal shaped bottom area with width of 48' and averaged length of 105.13', Abottom = 5,464 Sq-Ft o) Thus, Design Daily Infiltration Capacity, Idesign = Abottom X Id = 5,464 Sq-Ft X 2.67 Feet/Day = 14,589 Cu-Ft/Dav p) Therefore, Drawdown Time of Proposed Contech CMP System:- Drawdown Time = (Vo of 24,916 Cu-Ft) T 'design = 24,916 CF _ 14,589 Cu-Ft/Day = 1 .71 Days or 41 .0 Hours < 48 Hrs. Max. q) Comparison, For Typical S.F. of 2 to Measured Infiltration Rate:- Design Infiltration Rate, Id = 4 Inches/Hour : 2 = 2.0 Inches/Hour Design Daily Infiltration Capacity, Idesign = 21,856 Cu-Ft/Day & Drawdown Time = 24,916 CF : 21,856 Cu-Ft/Day = 1 .14 Days or 27.4 Hours TR18657-WQMP Calc.xls F -I-0 4- I CT (1) I 4–. io -‘. co to (DJ 'j ;44-I co c‘i r,4 o ci 06 ,_ esi\ (flI '47 I(•–•,.. = s-- .-•. >"" C) 1.0 Co N\ ,. I I -C CD .....:,. z , < NI_ w , 11..... 2 Lu., • v) 0 ' I— 0 0 rn </1-1-0 \14-717---, (./) 0 X II N L.L.I It, (/) ( 0 • (..)u_ ..co C.0 N 0 i C) 1-.0 C\I 0 T- -- W ° < g) 0 0 IJ- L.L.I Li- 1 >< CD /XCL,77- (3 44.5 OD 7--0) r". • ,, CO Lai ,- (5 ii 9- ---e) 1 0 Nut) GO 0 ii ,-- 7 v) 0 La 0 cD/1 m er 0 . _, Nt- Lip-II . Nw 0 11 / w x N- a 0_ 0 N • 0 I Nt 0 0/, CL.. vo.-•• in IT szt i -* NIII .I-- I—,, •......0 a - < 1...4 -'• 1--- 00N400Ce CD -- - ------4- ____ = - \.. --\\ OZ5 ,, ._, .., ...„, --....„ - _ --.. \ - _ ..._ _ _ ___ _ _ \ fel 0 PA _.,7 _ _____ _ _ _ _ _ Ma \ \ Ze Ct. AV el3diNnr CO -N ,/ . , CS a. . / ..-". N OD 4 _y-Ril 1 / -li , ---- / S6'SS '-•:1- rn --9- _It; A . ; , , .,,, > N ,- , C et" , I 7.71.111111. a ' . II# :IF -al (0 ›,,, b 1 El 70-1 II / LL . I. damn , ..., ,.._ IIc;„! 1 0 t"'• .../ dct 7 7., : • 4) • .1 : ' 2 CO °P L.C5 H, ' < ; , , CI .'" • —7- - ....- a. 1 —1 , 'N\i„... i.,,(Dm ?, 1 x, . ,7. 80tANI 'ANI OZ7G zt- SJ . C.,tnic2oAc- vg . a cii: /AM 75\ 01 -,..1...., x 1- o_ cr) r;2 NUIL 80 .ANI 6) . ID :j1:2f. 'ANI OZ*ZG,t, 5' 838/Di 8 wow' tc.ts \ F(4.2)3Aci .9 01 'PT; , %- ' W'LY R 12' 22' 6' 6' 0.5' 5.5' 2. 0% 18„ © 0 OP a� IR/ ar .. , 0 0 ...... I__ 0 18" 0 PERVIOUS CONCRETE GUTTER, 8" THICK 0 3/4-INCH CRUSHED ROCKS. 36" DEPTH O NON-WOVEN GEOTEXTILE FILTER FABRIC (MIRAFI 180N OR CITY APPROVED EQUAL) 0 16 MIL (MINIMUM) PLASTIC VAPOR BARRIER (BARRIER-BAC VB350 (16 MIL) OR CITY APPROVED EQUAL) O MODIFIED 8" CURB PER CITY STANDARD PLAN NO. 1000 PREPARED BY: DETAIL OF PERVIOUS SHEET 44.",,G_ ,4r PACIFlC COAST CIVIL-SOUTH, INC. CONCRETE GUTTER AS .:P� °; 1180 Durf Av.ro,.. Suns 220 1 O F 1 �C= FA:(:2:47:5-CA ' LID BMP FOR W'LY WIDENED •aN{^ • FAX (628) 57'.��988 SECTION OF JUNIPER AVE. 03-26-2014 PROJECT: TRACT NO. 18657 - MADISON SQUARE PACIFIC COAST ADDRESS: Southwest Corner of Walnut Av. & Juniper Av. CIVIL-SOUTH, INC. SUBJECT: VOLUME-BASED BMP DESIGN CALC 1180 DURFEE AVE.SUITE 220 DATE: March 2014 SOUTH EL MONTE,CA 91733 Volume-Based BMP Design Calc. for Widened Pvmt. & Parkway Area of Juniper Ave: a) Hydrology Offsite Subarea Designation: 15 to 16 (with Total Area of 0.61 Ac.) b) Total Offsite Subarea's Design 100-Yr. Flow Rate, Q = 1.73 cfs c) Area of Widened Pavement & Parkway Area = 18,250 sq-ft or 0.419 Ac., and consists of 8,850 sq-ft Landscape Area & 9,400 sq-ft Pavement, Curb & Sidewalk d) Prop. Use of Pervious Conc. Gutter (18" wide) & Stone Subgrade (36" Depth) as Volume-Based BMP to treat Pollutants of Concern from Widened Offsite Area. e) Use the design procedures and instructions as developed by by San Bernardino County Stormwater Program as shown below:- f) The Composite Runoff Coefficient, CBMp = 0.858i3 - 0.78i2 + 0.774i + 0.04 where i = watershed imperviousness ratio weighted % imperviousness ratio = 0.55 (for about 45% of Landscape Area) Hence, CBMp = 0.1853 - 0.2808 + 0.4644 + 0.04 = 0.372 g) The Project's Drainage Area is located within Valley Region. h) From NOAA Atlas 14 Precipitation Depths (2-Year 1-Hour Rainfall) Map (See Page A-4 in Appendix A): The Area-Averaged 2-Year 1-Hour Rainfall, 12yr-1hr = 0.67" Thus, Area-Averaged 6-Hour Mean Storm Rainfall, P6 :- P6 '- 12yr-1hr x Regression Coeff. = 0.67" x 1.4807 = 0.99" i) Proposed use of 48 Hours Drawdown time for Volume-Based BMP; Thus, the corresponding Regression Constant, a = 1.963 TR18657-WQMP Juniper Calc.xls PROJECT: TRACT NO. 18657 - MADISON SQUARE PACIFIC COAST ADDRESS: Southwest Corner of Walnut Av. & Juniper Av. CIVIL-SOUTH, INC. 1 SUBJECT: VOLUME-BASED BMP DESIGN CALC 1180 DURFEE AVE.SUITE 220 DATE: March 2014 SOUTH EL MONTE,CA 91733 Volume-Based BMP Design Calculation (Continued): j) Calculate "Maximized Detention Volume", Po :- where Po = a X Cbmp X P6 PO = 1.963 X 0.372 X 0.99" Po = 0.72 inch k) Calculate "Target Capture Volume", Vo :- where Vo = (Po X A) / 12 Vo = (0.72" X 0.419 acres) / 12 Vo = 0.025 Acre-Feet or 1 ,089 Cu-Ft I) Calculate Drawdown Time of Proposed Pervious Gutter as LID BMP:- The results of the double ring infilterometer test indicate an infiltration rate of minimum 4 inches per hour per soils report dated February 13, 2014 prepared by Geotek, Inc. m) Applying a Factor of Safety of 3 to measured Infiltration Rate:- Design Infiltration Rate, Id = 4 Inches per Hour : F.S. of 3 = 1 .33 Inches/Hour or 2.67 Feet/Dav I TR18657-WQMP Juniper Calc.xls PROJECT: TRACT NO. 18657 - MADISON SQUARE PACIFIC COAST ADDRESS: Southwest Corner of Walnut Av. & Juniper Av. CIVIL-SOUTH, INC. SUBJECT: VOLUME-BASED BMP DESIGN CALC 1180 DURFEE AVE. SUITE 220 DATE: March 2014 SOUTH EL MONTE,CA 91733 Volume-Based BMP Design Calculation (Continued): n) Proposed 18" wide & 8" depth of Pervious Concrete Gutter underlain with 36" depth layer of 3/4" Crushed Rocks along the Proposed Concrete Curb on West side of Juniper Ave. o) Surface Area of Reservoir for Proposed Pervious Gutter: SA = 1 .5' wide x 450' long of pervious concrete gutter = 675 sq-ft p) The Retention Volume of Pervious Concrete Gutter LID BMP:- Vret = (Id/12 X SA X Tfin) + (SA X D X Naggregate) where Naggregate= 0.15 porosity for Pervious Concrete & 0.40 for Crushed Rocks 01= 8" for Depth of Pervious Concrete Gutter D2= 36" for Depth of 314" Crushed Rocks Tf„= 3 Hours for Duration of Storm when Infiltration is occurring as basin is filling q) Thus, the Retention Volume of Prop. Pervious Conc. Gutter LID BMP: Vret = [(1 .33 "/Hr./12) X 675 s.f. X 3 Hr.] + (675 s.f. X 8" of D1 X 0.15) + (675 s.f. X 36" of D2 X 0.40) = 225 c.f. + 67.5 c.f. + 810 c.f. = 1 ,102 cu-ft > Required 1 ,089 cu-ft of V. Target Capture Volume Hence, the provided Vrpt of 1 ,102 cu-ft from the Pervious Gutter with I36 of 3/4" Crushed Rocks will fully treat the required V, of 1,089 cu-ft. TR18657-WQMP Juniper Calc.xls BROCHURE, DETAILS, MAINTENANCE GUIDES FOR FLOGARD DUAL-VORTEX HYDRODYNAMIC SEPARATOR Innovative stormwater management products ig740 aril® Enhanced Gravity KRISTAR r-44 DUAL-VORTEX Separation in a • Hydrodynamic Separator Compact Configuration ADVANTAGES • Fits industry-standard manholes or vaults • Economical installation • Ease of maintenance • Vector controt FEATURES • Dual vortex efficiency • Integral high flow bypass • Flexible design—on line or off line • Retention of floatables during high flows # • Gasketed/bolted access covers • Durable stainless steel or fiberglass components MAINTENANCE FEATURES • Dual access to sediment storage areas • Easy access to floatable collection areas • Modular construction of components • Large interior work areas • Recommended inspections—twice per year HOW IT WORKS L)* Particle settling is accelerated by tangential flow pattern forces in a highly circuitous path.Through the use of two independent cylindrical separators and control weirs, low flow is initially directed to the first separator while moderate flow overflows the first weir and enters the second separator. Settled particles are collected in the isolated bottom storage area,minimizing re-suspension while floating debris and oils are retained in the separators and upper storage areas.At peak flows,excess flows breach the second control weir and exit the system without impacting treatment flow or re-entraining captured pollutants. FB Innovative stormwater management products _AL__KRISTAR: aUara i� DUAL-VORTEX Hydrodynamic Separator The FloGard®Dual-Vortex Hydrodynamic Separator offers -itiik:, 14., , . , ,I® an innovative and economic -- . alternative for BMP implementation ::-.,.:1,,Ti..7,-.,.:‘,. ,, in new and retrofit applications where land area necessitates ¢ compact, effective treatment for .19-V, removal of suspended pollutants 'ti -4Pk from stormwater runoff. AVAILABLE OPTIONS • Removable internals • Square configurations to accept multiple inlet pipes - '''ii , .. ' , or other special site conditions • Flume inlet control for grated inlet applications FloGard DUAL-VORTEX Hydrodynamic Separator1' _ ,-, r Models and Nominal Dimensions(circular configuration) :::: 0. Diameter Depth(below invert) Maximum inlet pipe sizef6 3 914 3.75 1143 12 305 4ssio•••••,... > 19 DVS-48 4 1219 5.00 1524 18 457 DVS-60 5 1524 6.25 1905 24 610 DVS-72 6 1829 8.50 2286 36 914 DVS-84 7 2134 9.50 2896 42 1067 DVS-96 8 2438 11.00 3048 48 1220 DVS-120 10 3048 13.50 4115 48 1220 sititibit:.:n. . DVS-144 12 3658 16.50 4877 60 1524 . _.itiggi,T34 KriStar Enterprises, Inc. •• 360 Sutton Place • Santa Rosa, CA 95407 KRISTAR ' PH: 800-579-8819 • FAX: 707-524-8186 •www.knstar.com '\ 1 ©2007-2009 KriStar Enterprises,Inc. FloGard®is registered trademarks of KriStar Enterprises,Inc. KR II STAR /\ FloGard® Dual-Vortex Hydrodynamic Separator /Y MO.SIIMMilef MP110MW PROUtt Characteristics and Capacities(English) Model ID Depth Treated Flow Total Max. Sediment Oil/ Below Capacity Flow Pipe Storage Floatable - . _....: Invert m_ .,_. _,....:, _ _ .: ._.., Capacity. ..__.Size .; ..., .. . Storage ft ft 67 pm 110 Peak2 cfs in yd3 gal cfs pm cfs cfs DVS-36 3 3.75 0.12 0.35 0.50 4 12 0.3 18 DVS-48 4 5.00 0.25 0.75 1.25 9 18 0.7 43 DVS-60 5 6.25 0.45 1.30 2.50 16 24 1.3 83 DVS-72 6 8.25 0.70 2.00 4.25 27 36 2.2 141 *- DVS-844 7 9.50 1.00 3.00 6.50 40 42 3.5 294 DVS-96 8 10.75 1.40 4.20 9.50 57 48 5.3 337 DVS-1204 10 13.50 2.50 7.30 16.80 99 48 9.7 917 DVS-1444 12 16.00 3.90 11.60 26.40 154 60 15.5 1825 Characteristics and Capacities (Metric) Model ID Depth ; Treated Flow Total Max. Sediment " - Oil/ Below Capacity Flow Pipe Storage Floatable Invert Capacity Size Storage m m 67 pm 110 Peak2 L/s _ mm m3 L L/s pm L/s L/s DVS-36 0.9 1.14 3.5 10 14 113 300 0.23 68 DVS-48 1.2 1.52 7 21 35 255 450 0.54 163 DVS-60 1.5 1.91 13 37 71 453 600 1.00 314 DVS-72 1.8 2.51 20 57 120 765 900 1.70 534 DVS-844 2.1 2.90 30 85 184 1133 1050 2.70 1113 DVS-96 2.4 3.28 40 120 269 1614 1200 4.00 1276 DVS-1204 3.0 4.11 70 205 475 2800 1200 7.40 3471 DVS-1444 3.7 4.88 110 330 750 4360 1500 11.90 6908 'Treated Flow Capacity is based on 80%removal of suspended sediment with the approximate mean particle size shown. The appropriate flow capacity should be selected based on expected site sediment characteristics. 2 Maximum flow prior to bypass. 3 Total design flow to the system should not exceed the Peak Flow Capacity. 4Call Kristar representative for availability in your area. Notes: Systems may be sized based on a water quality flow(i.e.1-inch design storm)or on net annual sediment load removal depending on local regulatory requirements. Contact Kristar for the most accurate and cost effective sizing for your project location. When sizing system based on a water quality flow,the required flow to be treated must be less than or equal to the Treated Flow • Capacity for the selected unit. Additional Treated Flow Capacities based on different mean particle sizes are available upon request. ©2009 Kristar Enterprises,Inc. 360 Sutton Place,Santa Rosa,CA,95407,(800)579-8819 REV DVCC 111009 0 0 0 O \\\ \ O N d' ti1- (I) (/i 1 > > 0 0 ) - O O O II O O N (fl 1- > > 0 0 W L 7) 7) 0 it 0 0 CU 0 1 2 2 > I 1 0. -I I s) a) CU Cn ca N ; II o o o N co N - N 2 2 E C9 � W I I • O c 0 T w MIMI i 3 LL v m s• a N ? v \\ _ 0 W W0 0 U 7 113 Tv a 13 o. O O I I N O 000 W COO N O co / r r O O O O O :1- 0 Q w ma Ilk f 7 vI w z O ) lH 0 0 N F lO as o OUTLET, 3X 024.00" CAST IRON ACCESS 042.00" MAX. COVERS STANDARD. ALTERNATE ' /._=\_ PIPE SIZE. COVERS & GRATED INLET OPTIONS C!) i. H.-.^i) \ SEE NOTE 1. AVAILABLE. SEE NOTE 2. `� �) yi �1• ''�.G::,71!I MATCH UNE •• tC �> • • � , - �.; � Ili=_ =) (----- TOP SLAB. (7-7--;,...7:t= ��) ` �). SEE NOTE 7. 3" gig, 4117411, INLET, 042.00" MAX. � PIPE SIZE. to: `SEE NOTE 1. ■3X 024.00" IRONACCESSCOVERSSTANDARD. ALTERNATE COVERS & GATED INLET OPTIONS AVAILABLE. SEE NOTE 2. !�-� UPPER RISER CONCRETE COLLAR 1 r AS REQUIRED. IN 1 1 i_i I, j\I j SEE NOTE 2. rr �' 5.00' [60.00"] MINIMUM DEPTH. ri r. SEE NOTE 3. ,=_____, . 1 '/,. i. ‘ .-. MIDDLE RISERtr' ' WITH INTERNALSI' INSTALLED. Ilik IP OUTLET. 41 �� �> INLETI INTERNAL "---' � �� COMPONENTS. INLET, i"., ,, INTERNAL 1 OUTLET, el?' -_. r 042.00" MAX. i 1 042.00" MAX. Q = ' COMPONENTS PIPE SIZ . � ',,'I PIPE SRE. op SEE NOTE 1. ..+_-_L_-_,-,__-__ -T,, SEE NOTE 1. r- r�----_-T� 110t 1 'P PARTRION SLAB. 'LOWER 9.50' [114.00'] MINIMUM THICK. 1111 SUMP LOWER RISER. --BASE. 8.00" MINIMUM 8.00" MINIMUM 07.00' [84.00"] f WALL THICKNESS 08.33' [100.001 NOTES: 1. STANDARD INLET/OUTLET PIPE CONFIGURATION TO ENTER & EXIT SEPARATOR AT 180'. CUSTOM ANGLED CONFIGURATIONS AVAILABLE UPON REQUEST, SPECIFIC MAXIMUM ANGLES & PIPE SIZES APPLY. CONTACT KRISTAR ENTERPRISES FOR ENGINEERING DETAILS. 2. BOLTED & GASKETED ACCESS COVERS ADJUSTED TO GRADE, USING GRADE RINGS. FIELD POURED CONCRETE COLLAR AS REQUIRED, BY OTHERS. INLET GRATES & ALTERNATE COVER OPTIONS AVAILABLE. 3. FOR DEPTHS LESS THAN THE MINIMUM SHOWN CONTACT KRISTAR ENTERPRISES FOR ENGINEERING DESIGN ASSISTANCE. 4. PARTITION SLAB MAY BE MADE AS A CONCRETE SLAB AS SHOWN, OR FROM ALTERNATIVE MATERIALS: e.g. STAINLESS STEEL, FIBERGLASS COMPOSITE, ETC. 5. CONCRETE COMPONENTS SHALL BE MANUFACTURED IN ACCORDANCE WITH ASTM DESIGNATION C478. 6. REMOVABLE INTERNAL COMPONENTS MAY BE AVAILABLE TO FACILITATE MAINTENANCE. CONTACT KRISTAR ENTERPRISES FOR DETAILS. 7. MATCH LINES PROVIDED TO FACILITATE PROPER ALIGNMENT OF ALL CONCRETE COMPONENTS DURING ASSEMBLY. TITLE /2o ;rd DUAL-VORTEX K— R KriStar Enterprises, Inc. • HYDRODYNAMIC SEPARATOR / k 360 Sutton Place,Santa Rosa,CA 95407 CIRCULAR STRUCTURE Ph:800.579.8819, Fax:707.524.8186,www.kristar.com DVSD\�//S-8 i)C DRAWING NO. REV ECO DATE -84C DVS-84C A 0103 JPR 4/10/12 JPR 4/25/11 SHEET 1 OF 1 0 0 0 o ,;fir, ,. 0 X - �Pd" 0 • TYPICAL CIRCULAR COVER. ________2 FIELD POURED CONCRETE COLLAR. o BY OTHERS. (GROUT INSIDE JOINT FINISHED PAVED OR TO CONFORM WITH CLEAR OPENING). LANDSCAPED SURFACE. TYPICAL BACK—FILL ••• 7ni :,. AS REQUIRED. 4 4 a a ° ° ° TYPICAL TOP SLAB ° ° a ° ° ° AS REQUIRED. b °° ° . ' / I TYPICAL CIRCULAR GRADE RING, AS REQUIRED. CIRCULAR COVER o—o—oO 0O O O o—o—o O O O ->0000000000 00 o G 0o0o0D000o0-000 O O O O G -060-0-0-0 0 0-0-0-0-0— 0-0 060-0606066 0-00 C0-0-0 0-0-0 00 O O�7 TYPICAL RECTANGULAR COVER. FIELD POURED CONCRETE FINISHED PAVED OR COLLAR. BY OTHERS. LANDSCAPED SURFACE. TYPICAL BACK—FILL AS REQUIRED. ° °° _ TYPICAL TOP SLAB °°• ° AS REQUIRED. ° 0 ° . TEMPORARY FORMING MATERIAL AS REQUIRED. BY OTHERS. RECTANGULAR COVER TITLE CONCRETE COLLARKRB`R KriStar Enterprises, Inc. P.O. Box 6419,Santa Rosa,CA 95406 GUIDELINES Ph:800.579.8819, Fax:707.524.8186,www.kristar.com DRAWING NO. REV ECO DATE DD-0010 NR 0087 NEW 3/14/11 JPR 3/14/11 SHEET 1 OF 1 BIZ eROTEFT/04, 17 OS GENERAL SPECIFICATIONS FOR MAINTENANCE OF FLOGARD®DUAL-VORTEX HYDRODYNAMIC SEPARATOR SCOPE: Federal,State and Local Clean Water Act regulations and those of insurance carriers require that stormwater filtration systems be maintained and serviced on a recurring basis. The intent of the regulations is to ensure that the systems,on a continuing basis,efficiently remove pollutants from stormwater runoff thereby preventing pollution of the nation's water resources. These specifications apply to the FloGard® Dual-Vortex Hydrodynamic Separator. RECOMMENDED FREQUENCY OF SERVICE: Drainage Protection Systems (DPS)recommends that installed FloGard®Dual-Vortex Separators be serviced on a recurring basis. Ultimately, the frequency depends on the amount of runoff, pollutant loading and interference from debris and litter;however, it is recommended that each installation be serviced at least two times per year. DPS technicians are available to do an on-site evaluation,upon request. RECOMMENDED TIMING OF SERVICE: DPS guidelines for the timing of service are as follows: 1. For areas with a definite rainy season:Prior to and following the rainy season. 2. For areas subject to year-round rainfall:On a recurring basis(at least two times per year). 3. For areas with winter snow and summer rain: Prior to and after the snow season. 4. For installed devices not subject to the elements(wash racks,parking garages,etc.): On a recurring basis(no less than two times per year). SERVICE PROCEDURES: Note:The most efficient way to service the FloGard®Dual-Vortex Hydrodynamic Separator is by physically entering the tank To do so requires that the person be trained and certified in confined space procedures. DPS technicians ARE confined space trained and certified. 1. Lift the EZ-Lift tank manhole cover. 2. Then either: a. Use an industrial vacuum with an extension to remove collected floating debris and hydrocarbons from surface,or; b. Manually remove collected floating debris and hydrocarbons from the surface. 4. Measure depth of sediment buildup at bottom of tank through separator tube. Inspect tank and internal components for damage and obstructions. 5. If necessary*: a. Use an industrial vacuum with an extension to remove sediment from the bottom of the tank through separator tubes,or; b. Disassemble and remove the separator module from the tank through the manhole. Vacuum sediment and debris from the bottom of tank. Once the tank has been cleaned,the separator module should be reassembled inside the tank and set in place on the installed anchor brackets. 6. The EZ-Lift manhole cover shall be replaced. HS DISPOSAL OF COLLECTED DEBRIS,HYDROCARBONS AND SEDIMENT The collected debris,hydrocarbons and sediment shall be offloaded from the vacuum for disposal. Once removed,DPS has possession and must dispose of it in accordance with local, state and federal agency requirements. DPS also has the capability of servicing all manner of catch basin inserts and catch basins without inserts,underground oil/water separators,stormwater interceptors and other such devices. All DPS personnel are highly qualified technicians and are confined space trained and certified. Call us at (888)950-8826 for further information and assistance. *Note: DPS uses a truck-mounted vacuum for servicing these units. Pump-out by the industrial vacuum is not included as part of the normal service of the Dual-Vortex Hydrodynamic Separator and is quoted on a case-by-case basis when the silt level warrants. 11/04 F-4 APPENDIX G LAYOUT & VOLUME SIZING OF PROPOSED CONTECH CMP INFILTRATION SYSTEM Cil -1-o v- I CT CD M - -, co • b? c4_, Li..) 0. ,- • (13 \ CN • 1.� l N II < 1›- Lr') 0 ‘- .---\'‘'5 Z lki�- W U LL ILL \ M Z N W �o ce D U ) ,,� O co ,•,; 0 0 �I=l� / I— Ci,� V) cnQd= .ate > 41-1 1`r) 0 /'/ Li_V),� 0 �Zl" 0 0 N N 0 W LL(4) %C W p � % 0�L . Q0 ( 1N � = WOQ 0�LL Y :.},,,,,_-____,-- 0 Q �— I I I I I)Lf) I � �U c�Jte� r-Z • T. o P (3 < m — Qp z a, < 0 00 — . Q L� O N ' co Novo m - Qoin II)2:5mW0N � • /4-N*CO a O Vi L_ NC C o • Io1N v) oLa Lao C3rVixwoo N0 .. NN co fx ,� o oil o- Qc� E� � Q �� ' 'no (ii / ( 0 > m0 all4 : k Milk a 1. — — . . 111111 / •�/\V 2�3dINf1� i. N _/y / AA r''7'7-7A'-V M(,N9\-2lt+d d021d oCLy ` / SSSS r0 .'-..S-.__._>, C— Aa a — ill \ ` N W _ k ik R. BWS � • IiIiIt II / ♦ ,jlr-AlZ moMV i/ 0. Zl ZZ O Q • U �.-o ii �=� r W-; _:* CNJ Cit `((' €0.....&-- _.?,,rova ,1-$- • \`-' 121 m co 4� m IA..it (��/ / / m / Q U ddH-14\ II z Xs j...2 Li QN2. oW el , a '� (� u.. ^CDS ! - L %- mom a� 01 a£sas zr45 a O II O -- .'LS £c9S 6N MCm I ('�03/Di KNI- , II ONLO O �� OW II �U_ Sd .MOTH ;> ii' 1 ' - �L 3 • I_rn-r_`r�� Or,Or.Or 7 a Q C3� -- 9£'LS Y£l'Z ix I- n o ", m g..r 'ANI L'Z5 J�'. 8•Z9� ,I �l 01 01 Il co �S N I 808 01 v>� F b1 4 - 3'LS LS'95 OS'SS I in 91 Z•4S �1 0 p DA S'4S 1 o _—_ j y m �. A N J d dH-ld '� /` el 'A HI " 0 LL I.J� DA S'4S 2 -- 4:,% h kc' M ` I z 0, U 0 'AM LZS I I / . 11r Ol Z'4S LL cn1. N 0 LII _Ii(n (/) AI ce — 4_ < o:�' 1 �- ,rill U U I�of o L.L Q 0 0 00 00 c "• 00a�'T- AM LZS a a5• .— Di z tis ç \ in co �, 00 0) . �n• 0 W �,z 0 II II M.04 S'tS d'M F_ II Lo or. Lf) . . d'o I- �H CO ONOog d-1.1 CD.,. _•n c r0 it .. m Z 4, I 1-.. U 030 IN N 4 tJS U o Co o 0)NNI-a) ■tp 0M aZ N 6 r II d N W (X�. H 473 V) NSO o Cl) TN Z O g■ l':i Hi p l I I T In ® P-a R 2 U toadII Q Im- g N 0 II ITO .a W z O M co Pri O u) .1 ■ n H MZ W �- ZO O ED c L:33 '0 Ca- C CD= Cl) C 61- CO WI- .4 - CO 4E' -ct,-- -iti---1 213 c 4c2 E co .c It .:(4-3 ciC.5c1 co 0_ 2...-; E 0 -0 E CI--cp — o 47-- w D 7 S-•,-o :.•=• a) c0 c 7/ 0 1 /\• • 2•> V. •c• 0 2 44 . 0 , >2" C/1 Jes! MO - •A sc2 w IT C\i c°13 c Z s/ //A, r)-irit-;- •1),-0 a, , 0 CD I_ /\\,/\ e.,,,,_•it ce)_1, km,4 o >0 2 mto 0 F-1 -0— Y -A i c ti 0 co 2 -4- \ ,, I ---•(i) g 0 LC) \/\\/\\/\S)/.\.')J 'la g 2 " +1 , A* ° CD>. < 1-1 V \ ';-- i -1 ‘L 10 > \/ \ \-7), ' 1 " C i •1 tn a)0_ a) / , 1 . 4, - 0...zi- 7--c.. - ,._ I 03 ii.J /.'• : _y--_,, )).% ;. ,-.0 AL sa 0 Lc) - \\////\ •-•-p.)• E a) •\///. //Lac' . 8 cf) o ,1 . e\I ' C..) ..... Jes!1:1 MO \/ -,67'i,,.)--' F--1 < U..1---I. ---- E ---1 0 0 \ 0 .. 0 o Z • a) — 0 o <--- 7 KN 4--c • C• CO C %,..lt - r"" .••••• 0 co a; ...c co ef-1- I I I r____, yadap en oay3 ( - t\c\:. 1 y /' (,,PZ-.2t)/ f) ',x',,,,;.-Ls , C,- ",,,„'w,, „t„,y;\S,, .tilltV 1 U } o 'S\ � I r I (6 IS;Y(1111'141 tL'lT, st i 0) 'h 01'tx' V) 1,11 N } " `c2 N fS ii FE '�- _ 4,34w-t::::,, � C `w yip *,`ti, s tt 1 1 OO-O-O--O-Ofl. c 4) a) c 4) L) 2 2 Cl) Cl) 2 4) a) CO c6 N CII [6 c9 Co Co f6 fo [o co co CO CO CC1 CO CO CO CO CO;>CO {D CO 7 (6 o co O o W ca HI d w- ' a) } -`o •Q L m O c 11141 `^ N- N co 05 mss oZU NL 5 .. §y N p a) !' NC � re Lu N o p0� -- ,,! 2 D m9. 00). O O 0 y C -i° O — 11 u `•U- C- c') O.O t O L_ IL Q ct N 06 -4' a) ti .-.co co N.N..d' U U U .c?.--c;°(7' � +. U :1) U :3:1I '0 C0 � l� u) 00 77.) N — -- ° c co ci � � O NN � cM0 r _ N c O 6�7 CY co y ° ° O O N a a . x C N N C . xco g a) I+ CO 0 L T' d k g �^ c rn Q a a) ai Q o w � Via) o - co Q cn co ° �n .. C O o cc U o • � 0 . v) m m +,, O Z c v - .r o x C 3 V, ti IM U ' U V NU 'o co fn . Q m 5 Nm u) ';0I, O '_c—p y o 2 +, Z c= @ o ¢ U () CO 0 m Q ai • a`) a) ° o _• U -a = 3 ,� cn t ' $u) ir) F- LLCJaat Q5 co Q C c c � ai a) o) az r- _ (7.) ....-c) s f/! 0- < n. c0 0 o O'd c n7 a •C --2 _ x coo w V/aotk � � a .. -o a� m co C� o L vi a� Q L o)�p ° i0 U w • 0 ai -0 c O "° p m s c a) o z ItiPk Li.1 Mi f''� O Fir P Q ai �; E .c m °C cc = 3 < o o ,N C ai 2 a)m m 2 2'LL a) a) o 0 > g ° o k") >2 ®I''� p m a) 13 > aoO .«- -� aa ° N ca ° E`aoa� a) zaEaE47;O u o c o ea -° c -a) a) a O Q U 0_ N o cn o a.. o . v' x C C ��ItR ' N Z o � c 0 a) m O � O °) u) .j3a) , L-. c V (� X •x •x � W � — v) � � ce U aU, 8 ai .c Q _2 a a) c , � a) � .c c ... _. 0 Ewa) s � m 0) ca W o 0 0 �- o U o ♦ ., m - m o 0 02 a � , c c 0Z`6 ti ti 0 0 m �` o o _ co 0 0 ° L E o s a 03. a� a� N _ o m a� oa Ca ;� O L 0a_ 5Cn0UI- ou) _1 co (nZ (n (� � 0 (n � 0 aF Z JJa0f- QQQ F a 0 0 U) C-tr5 BROCHURE, TYPICAL SPECIFICATIONS & DETAILS, INSTALLATION, INSPECTION & MAINTENANCE REQUIREMENTS FOR CONTECH CMP SYSTEM o ga T d Metal Pipe for armw Detention an f i1tration &e k t ? . ✓; ;rod✓' h Ptuci Se.Ee,e1-4/0 the.. vi514f stovniiW k Y so(u.tiok s iern ems 9 ` f ,At.tsf 0qt z,a sir N.. `"►..; �l Contech's corrugated metal pipe(CMP) underground detention/ iy'"`1 " Px infiltration systems can be sized and shaped to meet your site- It's Y P it's simple to choose the right low impact ‘;',:y. specific needs.The versatile material provides almost limitless �ui development(LID)solution to achieve your runoff os opportunities to match individual site requirements while lowering reduction goals with the Contech UrbanGreen" site development costs. Staircase. First,select the runoff reduction practices that are most appropriate for your site, paying Durable particular attention to pretreatment needs. If the entire design • Proven service life—Exceeds 100-years with proper specification storm cannot be retained,select a treatment best management that meets all AASHTO and ASTM pipe specifications practice (BMP)for the balance. Finally,select a detention system to • Handles fill heights in excess of 100 feet—steel combines address any outstanding downstream erosion. strength with soil / Surface Infiltration ���`�'' • 100%traceable material—maintains performance even when recycled E Subsurface Infiltration Homogenous material—eliminates failures due to stress cracks, L shrinkage cracks and air voids g Rainwater HarvestingB: Various coatings available with predictable service life Detention 01 Biofiltration —Aluminized Steel" Type 2 -Galvanized a CORLIX� Filtration Ofrii -TRENCHCOAT` Hydrodynamtc5eparotton Learn more about our available coatings at: ®2012 Contech ngiriered Solutions LLC - www.ContechES.com/ Learn more about our low impact development at: www.ContechES.com/ r m uocvious C.Ott.tiln5S avaulabl.e. 2 Learn more at www.CcntechES.ccm/unp gx Versatile s�. • Wide range of shapes and sizes—round and pipe-arch in diameters from 6 to 144 inches .r 1 "� " •` 7 • Variety of layouts—rectangular, L-shape and staggered cells are frequently used � £ �F • Array of fittings—tees,wyes,elbow,saddle branches, � • '> -,11''f` manifolds, reducers and custom fabrication availableiE i ' s r rad,y � r Sustainable t "" ,;:;;i. x • World's most recycled content—can count `"` ' , towards LEED®credits a Ca N Te e S, W✓��Su t ibOWS� SA ,f4tf b✓AA IAGI'1 S) fli.. • Requires less energy and materials to produce— MViA,ptteOLOLS A.t2d vt&LtA.e,.e.r5 A-vt VA.iIA ble. lowers carbon footprint ILearn how Confect) products can help 2I contribute to LEED credits at " . www.CorntechES:corn/iv.C E. Easy to Install and Maintain i��' 4' • Flexible and forgiving during installation • Lightweight for easy handling T t..-S\ S W • Quick assembly shortens site development time � � c,. k¢P� • Integrated outlet control structure eliminates need for �1 p-1'cr k�„) downstream control structure • Manhole riser sections,complete with ladders facilitate any access and scheduled maintenance Typical Spacing for Multiple Barrels Diameter Spacing"` Pipe-Arch Span Spacing* r> Upto24" 12" Ugdu36'' 1$" ��{. 24*to IT • i!Z Ola tet 3d*fin 108" 1/3SPon pf, Fof Pipe Pike Arch Spacing shown provides room for proper backfill to enable fhe structure to develop adequate side support,Spacing'with AASHTO M-f 455,A-i,A-2,.A-3 granular fill.Closer spacing is possible depending on qualify of backfill and placing and compaction methods. Learn more at W1VVJ.CoriechES.con;/cmp 3 A1 Detention •;.;., ,' lc i,,.•„ Contech CMP detention systems store stormwater runoff exceeding :' � , a site's allowable discharge rate and release it slowly over time. ' �: > ; " Installed belowgrade,the systems maximize property usage and �, T£ - . n .44 X 71 meet your specific water quantity requirements. CMP detention �` r "1, z1,-.1,77,....,,,.•:•;,...,.,,,,„ ar' ' ,, , : systems are available in all AASHTO M-36 Types. , .� s, A'''';,%;•,,,,,-,;,,,7,,,,,,,, r- '.,,,,,,,,,,„['.A „ *x a -• f " � i ' ' . Riser inleti. $ ls �� ;s 7." ' , „ „•,.,.to catchbasin or curb inlet tfi”1'.gs , `�t � r^ °. µrd s k+i , ' .,i • Barrels .:. ,`->, _., '�% ",,«�� r ::- °�i" r `, 4' c C,Mi A.Lte.A lath S ste.W1 '' ' •,1 , ' fit.:'.4,:I...7 r,,.. .,,, ,,...,.,...,,, .4...... .. ,... ..., „.„ ..., ,,, ,..,.: 2.- ' t T.7 t ,,,- ,:,, ,,, ,.os --, .,,.-,-0,, ,, ,,,,. , , Bans , i 4,4gg _ Outlet pipe li (sized to control runoff) High Volume Storage ' Contech plate systems allow for high volume stormwater :A' storage in small footprint areas.The systems are offered _ _ E in a wide variety of shapes and sizes in both aluminum �' '" " .> v and galvanized steel. Full-pipe systems and three-sided Ma structures with open bottoms can be used for infiltration. i : ' Typically,Contech plate systems are used on high vertical � .r�,_, 4 .; ?; rise applications or in areas where the smallest possible ,. �" ap_ c• ''''' ",:,.,,ii, footprint is of the greatest concern.The systems are bolted together in the field,which reduces the number of , a t. ' freight loads. Remote sites or projects with challenging `�E `h w `� >' accessibility often utilize plate systems. Platt s St.¢..M 'For Ingh VOiLA'S StO 4 Learn more at www.ContechES.comicmp Axl 0 _ tt: Infiltration � � �� -ii _ CMP pipe and pipe-arch is available fully or partially �. • perforated to meet your Low Impact Development(LID) � � '� . requirements. Subsurface perforated CMP infiltration , �� systems store stormwater runoff in the pipe and Fir;", y ,•� � .? �;; surrounding stone during a storm until it can be slowly gym w; released into the surrounding native soil. v„v. t-.. x ,r s '` a '. .. �� s w 5 ,. ,,,..#, �...,- 4 ,.. ,-Fes" *-. '" " i � . ! ¢'erFbKxt�d C.t`vl ' ivkfitvatios� s sfett " °" dam :. v�t� is sbofset tbhYi I vbUd4di1,1 Soe " r Sh✓� b Dene . ni( h t41� pips_ AIAOfY' siovmwate v rat* Low Profile A When vertical space must be maximized,the CMP can be utilized #'<. ��' in a pipe-arch shape.The low,wide pipe-arch design allows for greater storage in a shallow profile than typical round pipe without z losin anystructural integrity. Like our round i e pipe arch is �• 9P P .P P . �� 40. produced in six wall thicknesses including 18, 1 b, 14, 12, 10 and 8 gage,which are available with either helical or annular corrugations. a "sem .4 ,6014.„ to .`a r r ,, {'int-avc Ft fbv• lbw p✓Dfi7E, a,,i ptit,p tioi&. K ,*x;=, Learn more r.•,t www Co 5 * r) - Api � :' ` On-Site Manufacturing , 4 ,� .Ht If your job site is remote or you have limited "' ,' e • storage space or restricted traffic patterns,take v . ,., -,,::_...,„,„:,,, ) ,'1. advantage of our Mobile Production Vehicle (MPV)for fast and cost effective on-site steel pipe ' manufacturing.The PIPE MPV®is designed to be a self-supporting lotr• �g factory that can be quickly deployed and put into production. , Once on site, pipe manufacturing progresses quickly enough to t � I allow pipe installation within four hours. l' The PIPE MPV canproduce corrugated metal S • �g pipe in a variety '� � '"�INC.!r of sizes. Diameters from 36"-192"and lengths up to 35'can be accommodated.This pipe meets the same levels of quality ' construction as does all Contech manufactured pipe,with high coil feedrate speeds and the same lock-seem edge process used °" in conventional pipe manufacturing. innovative Solutions for Challenging Sites ; : Sizing Round Pipe-CMP and Plate(CMP 12-in to 144-in; Plate-;60-in to 240-in) Diameter Volume Min. Diameter VCoverolume Mm . Diameter Volume Min. Diameter Volume Mm. Cover C (inches) (ft3/ft) Height (inches) (ft3/ft) Height (inches) (ft3/ft) Heiv (inches) (ft3/ft) Cover 9ht Height 12 .78 12" 60 19.6 12" 120 78.5 18" 180 176 24" 15 1.22 12" 66 23.7 12" 126 86.5 18" 186 188 24" 18 1.76 12" 72 28.2 12" 132 95.0 18" 192 201 24" 21 2.40 12" 78 33.1 12" 138 103.8 18" 198 213 30" 24 3.14 12" 84 38.4 12" 144 113.1 18" 204 227 30" 30 4.9 12" 90 44.1 12" 150 122 24" 210 240 30" 36 7.0 12" 96 50.2 12" 156 132 24" 216 254 30" 42 9.6 12" 102 56.7 18" 162 143 24" 222 268 30" 48 12.5 12" 108 63.6 18" 168 153 24" 228 283 30" 54 15.9 12" 114 70.8 18" 174 165 24" 234 298 30" Pipe-Arch-CMP 1/2"Deep Corrugations Min. Min. Min. -- Min. Shape Volume Cover Shape Volume Shape Volume ShaCoverpe VolumeCover Cover (inches) (ft'/ft) (inches) (ft/ft) Height (inches) (f3/ft) (inches) (ft/ft)Height Height Height 17 x 13 1.1 12" 28 x 20 2.9 12" 49 x 33 8.9 12" 71 x 47 18.1 12" 21 x 15 1.6 12" 35 x 24 4.5 12" 57 x 38 11.6 12" 77 x 52 21.9 12" 24 x 18 2.2 12" 42 x 29 6.5 12" 64 x 43 14.7 12" 83 x 57 26.0 12" 1"Deep Corrugations 60 x 46 15.6 15" 81 x 59 27.4 18" 103 x 71 42.4 18" 128 x 83 60.5 24" 66 x 51 19.3 15" 87 x 63 32.1 18" 112x75 48.0 21" 137 x 87 67.4 24" 73 x 55 23.2 18" 95 x 67 37.0 18" 1 17 x 79 54.2 21" 142 x 91 74.5 24" Pipe-Arch-MULTI-PLATE"' ',:4,'-'-c'.. . . 3"Deep,Cpm3gations . Min. Min. Min. Min. Shape Volume Cover Shape Volume Cover Shape Volume Cover Shape Volume Cover (ft-in) (ft'/ft) Hei hi (inches) (ft/ft) (inches) (ft/ft) (inches) (ft3/ft) 9 Height Height Height • 6.1 x 4-7 22 12" 8-7 x 5-11 41 18" 8-7 x 5-11 41 18" 14-1 x 8-9 97 24" 6-4 x 4-9 24 12" 8-10 x 6-1 43 18" 8-10 x 6-1 43 18" 14-3 x 8-11 101 24" 46-9 x 4-11 26 12" 9-4 x 6-3 46 18" 9-4 x 6-3 46 18" 14-10 x 9-1 105 24" 2 7-0 x 5-1 29 12" 9-6 x 6-5 49 18" 9-6 x 6-5 49 18" 15-4 x 9-3 109 24" ta 7-3 x 5-3 31 12" 9-9 x 6-7 52 18" 9-9 x 6-7 52 18" 15-6 x 9-5 114 24" a- 7-8 x 5-5 33 12" 10-3 x 6-9 55 18" 10-3 x 6-9 55 18" 15-8 x 9-7 118 24" m 7-11 x 5-7 36 12" 10-8 x 6-11 58 18" 10-8 x 6-11 58 18" 15-10 x 9.10 122 24" 8-2 x 5-9 38 18" 10-11 x 7-1 61 18" 10-11 x 7-1 61 18" 16-5 x 9-11 126 30" 13-11 x 8.7 93 24" 16-7 x 10-1 131 30" 13-3 x 9-4 98 24" 15-4 x 10-4 124 24" 17-2 x 11-4 153 30" 19-3 x 12-4 185 30" 1 13-6 x 9-6 102 24" 15-7 x 10-6 129 24" 17-5 x 11-6 158 30" 19-6 x 12-6 191 30" 'god: 14-0 x 9-8 106 24" 15-10 x 10.8 134 24" 17-11 x 11-8 163 30" 19-8 x 12-8 196 30" 1 14-2 x 9-10 111 24" 16-3 x 10-10 138 30" 18-1 x11-10 168 30" 19-11 x12-10 202 30" L. ct 14-5 x 10-0 115 24" 16-6 x 11-0 143 30" 18-7 x 12-0 174 30" 20-5 x 13-0 208 30" 14-11 x 10-2 120 24" 17-0 x 11-2 148 30" 18-9 x 12-2 179 30" 20-7 x 13.2 214 36" Learn more at www.ContechES.com/cmp 7 \� 40011016. loopIli ++e �ra n fie,; a ;'� �+•�..��� s�z. _ xo <"vim' � q. � � z �.� a,+�• ��� Next Steps Read our white paper,Economic Optimization of Infiltration tO StOtiviwalcr roots. Systems,to learn more.You'll receive free PDH credits for To use the Design Your Own Detention System tool,visit: completing a quick quiz. www.ContechES.com//t. 0 5 Available at www.ContechES.com/ .fv4p To use the Land Value Calculator,visit: www.ContechES.com/L V Qvttk LIS' (Please scroll to the bottom right to download the • LEED information-www.ContechES.comAttzt Land Value Calculator) • LID Application Guide-www.ContechES.com/iid. To use the Rain Water Harvesting Runoff Reduction • Articles-www.ContechES.com/a?aLln Calculator tool,visit: www.ContechES.com/Y'W h-C (A,. L i a. "o v We're here to make your job easier-and that includes being able to get in touch with us when you need to. Sta.yft a- 'fro(iett. Search for your local rep at www.ContechES.com If you are ready to begin a project,contact your local While you're there,be sure to check out our upcoming seminar representative to get started. Or you can check out our design schedule or request an in-house technical presentation. toolbox for all our online resources at www.ContechES.com/AL i5ittf`00Eb0x. • Ci::=NTECHr ENGINEERED SOLUTIONSEl❑ ,, • 02012 Contacts Engineered Solutions LLC . 800.338.1122 _ wwwContediES.com El • • • MI Rights Reserved.Printed in the USA. NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS AN EXPRESSED WARRANTY We print our brochures entirely on Forest OR AN IMPUED WARRANTY Of MERCHANTABIUTY OR FITNESS FOR ANY PARTICULAR Stewardship Council certified paper. FSC FSC PURPOSE.SEE THE CONIECH STANDARD CONDITIONS OF SALE(VIEWABLE AT certification ensures that the paper in WWW.CONTECHES.COM/COS)FOR MORE INFORMATION. our brochures contain fiber from well- managed and responsibly harvested Get Sodal With Usl forests that meet strict environmental and socioeconomic standards. CMP Delenfion•rifikwl,on 4-12 �n URBANGR [[NTP ,,,,,,,i,,,,,,.:,:,..„:;;,,,,,:.,• CMP Detention and Infiltration � 1 �A Installation Guide w_ �....�.,., ... .' b *`.6'u`' v � . t yg �pC y 4i x t ;fix� „�"' � � ..:*''..,,,-!i,77.,:.;,;1, ',- � ',.:.•.,,,,r:,',;; -..,, �"�w '`�'•• � „��,� .,. ,, no's s ._ - "'"iS > s s F a R v[ qr � «.y-`*yp '''4,.77.; •�f ,,e,''' �ur�``"°s ',:':,.'::7;,„::: ``� °. 9•:g� ��� �. p•kwy k� � � max,��� �� �''';',•';•';',:7:;"‘/,'!,-*':'''' p ,,,,''"' `�.. 'A - `.mac„ :Ab w „.1..... "1 s / ,, Y r "k id., 's. • • Ka 'e'I' .: � �P�fA•�.f �� f :�, � ""' `c .meg., JNF'll♦ �, V'rr ';'.4.-:4,.:•,' 9F '^ •,.:7:„.':',,,:,,44.-:,„,;,,V1."‘,,....:;,,,,',.;•.%, 'a' r s ? 1Y''. J 'T.� �� 4. '4:4';'• '*`• "*`per', -,, ''''' �t, C1/4. LU ENGINEERED SOLUTIONS CMP Detention Installation Guide Using an open-graded bedding material is acceptable; however, an engineering fabric separator is required between the base and Proper installation of a flexible underground detention system the subgrade. will ensure long-term performance.The configuration of these systems often requires special construction practices that differ Grade the base to a smooth, uniform grade to allow for the from conventional flexible pipe construction. Contech Engineered proper placement of the pipe. Solutions strongly suggests scheduling a pre-construction meeting with your local Sales Engineer to determine if additional In-Situ Trench Wall measures,not covered in this guide, are appropriate for your site. If excavation is required,the trench wall needs to be capable of supporting the load that the pipe sheds as the system is loaded. Foundation If soils are not capable of supporting these loads,the pipe can Construct a foundation that can support the design loading deflect. Perform a simple soil pressure check using the applied applied by the pipe and adjacent backfill weight as well as loads to determine the limits of excavation beyond the spring line maintain its integrity during construction. of the outer most pipes. If soft or unsuitable soils are encountered, remove the poor soils In most cases the requirements for a safe work environment down to a suitable depth and then build up to the appropriate and proper backfill placement and compaction take care of this elevation with a competent backfill material.The structural fill concern. material gradation should not allow the migration of fines,which can cause settlement of the detention system or pavement above. Backfill Material If the structural fill material is not compatible with the underlying Typically,the best backfill material is an angular,well-graded, soils an engineering fabric should be used as a separator. In granular fill meeting the requirements of AASHTO A-1,A-2 or some cases,using a stiff reinforcing geogrid reduces over A-3. In some cases, it may be desirable to use a uniformly graded excavation and replacement fill quantities. material for the first 18-to 24-inches.The maximum particle size should not exceed 3/4 inch.This type of material is easier to place Geogrid Used to Reduce Geogrid wasn't Used the Amount of Undercut under the haunches of the pipe and requires little compactive //.2 /%/,,,--_///////////H///////////// %J/_/////////// W_////.„„,i</<//„, i`y�/\�/ �r �� � � �� iE 6 4 effort. Depending on the bedding material, a separation %l/\`%j �� \ \\\/i`\`/`man men geotextile might be required above and below these initial lifts. %\ /// /\ „..<„•\\�\\f/\\\%\ •\›\\ 4 m \-;., ��1� , //\,/ „\/r\//\/\\/\/ ' ` ` ` ` ` `\ ` `/�`< Bac ll-well graded /// ,/ <'? , l< �,// , /�,Kc/, ( „ ,// \ „s„'/ 0 © Live Load 3/4'granular and smaller / Geogrid Undercut and Replace ;::(7\j\\�/\ � �\�Embankment Unsuitebre Soils \ \ Grade the foundation subgrade to a uniform or slightly sloping \ �1\ \\r\ �_\\\..\ \_; \i\_\;\..\ \,ear grade. If the subgrade is clay or relatively non-porous and the y!\�r�y��\;A./".:•// \\ o;,\y�i\`i//\//\\`i`;\``/,`i,.r;�`i`i% �� </\. , b d ggr ed \\i,..///. i%\\ \\\//\\: ./Z%.\</;”%///�././,//\�/,.i/, bedding graded construction sequence will last for an extended period of time, bedding layer it is best to slope the grade to one end of the system.This will Bedding-uniformly graced allow excess water to drain quickly, preventing saturation of the subgrade. Open-graded fill is typically not used beyond the initial 18-to 24- inches because this type of fill often does not provide adequate Bedding confining restraint to the pipes. If a uniformly graded material A 4 to 6-inch thick,well-graded,granular material is the (particles all one size)is used, install a geotextile separation fabric preferred pipe bedding. If construction equipment will operate to prevent the migration of fines into the backfill. for an extended period of time on the bedding, use either an engineering fabric or a stiff geogrid to ensure the base material Backfill using controlled low-strength material (CLSM or maintains its integrity. "flowable fill")when the spacing between the pipes will not allow for placement and adequate compaction of the backfill. %,\%f\ :/••\'/•',/,Embankment \� �\ Work closely with the local Contech Sales Engineer regarding the j,\`/`/, Bedding-well graded %//� special installation techniques required when using CLSM. �\/\/. 3/4'granular and smaller \`1\`\ ����/� 1!1'per loot of rover or \`,(,�\In-situ \,� ,,,` f4'mimmum %�., ,,,,/\\trenchwall Backfill Placement %,/2.—/`\`f/\`%`\�i�`%`%`%`%�i`i����`i�y/��f``\i�\\\iT`i/,\`i/\ Place backfill in 8-inch loose lifts and compact to 90%AASHTO ✓/,�/✓/,////...//,ii ,f,/.(/✓/�/✓/✓%,//,/x//;/,//.//,/,e//../.. T99 standard proctor density. Backfill in a balanced manner making sure that no more than a two-lift differential is present from one pipe side to the other. Backfilling at differential heights from one side of the pipe to the other in excess of 16"can cause 2 pipe distortions or potential pipe collapse. Advance balanced Construction Loading lifts across the width of the system evenly along the length of the Typically,the minimum cover specified for a project assumes detention system as you backfill. H-20 live load. Because construction loads often exceed design "„,,,,,,, live loads,increased temporary minimum cover requirements are necessary.Since construction equipment varies from job .�,~~. �ojob' itisbe�«,addmoequipment specific minimum cover requirements with your local Contech Sales Engineer during your pre-construction meeting. • Corrugated Steel Pipe "Loose Lifts General Guidelines for Minimum For large systems,conveyor systems,backhoes with long reaches Cover Required for Heavy Off-Road or dragtines with stone buckets may be used to place backfill. Construction Equipment Once minimum cover for construction loading across the entire Minimum Cover vvidthnfthe s�tmi,nached'advance the equipment to the Pipe (feet) - [���m\ recentlyend ofthe for Indicated Axle Loads p|accdfi||.andbegin�h:sequ�nceagain ����, (kips) until the system is completely backfilled.This type of construction Inches 18_50 50-75 | 75-110 110-150 } sequence provides room for stockpiled backfill directly behind backhoe,the a�we||a��hemvv�mrn�ofcons�mction traffic. • 12-42 2.0 2.5 3.0 3.0 Material stockpiles on top of the backfilled detention system 48-72 3.0 3.0 3.5 4.0 should be limited to 8-to 10-feet high and must provide 78'120 3.0 3�J 4�O 4.0 balanced loading across all barre|r.Tod�e,minetheprope,cnver l28'l44 3.5 4.04�� merthepipeomaUmmthemnvementofcons�nctionoquipment4.5 1,see Table o,con�actyour\nca|[ontech5a|esEnginmcc Table 1 .~=skim ENE 'PE/1111 --41111..:- Construction Load When flowable fill is used,you must prevent pipe floatation. Typically,small lifts are placed between the pipes and then allowed to set-up prior to the placement of the next lift. The allowable thickness of the CLSM lift is a function of a proper Additional Considerations balance between the uplift force of the CLSM,the opposing Because most systems are constructed be!mw'grade,rainfall weight of the pipe,and the effect of other restraining measures. can rapidly ' filltherxcavatinn� potentially causing floatation Thepipecanm,�|imi�df|uidpmsvrewithoutpiprdiuo�ion and movement ofthe previously placed pipey�To help mitigate ordispiacementwhich also a�eu�the[Blift local Contech Sales Engineer can help d,�e,minethe proper|i� potenha|pmb|em�. itisb,sttosta�thein`tuUadnnatthe downstream end with the outlet already constructed to allow thickness. a route for the water to escape.Temporary diversion measures Staged pOUTS as required may be required for high flows due to the restricted nature of the ' outlet pipe. /</ip' 411. ".. ', °~~nk~~` Catch~.~...~ ` Water ��~=.� %������~���"=b°'^� �� ���J��i' B0; �� ` ` ` ` ` �� finished Funchoning System Outlet Controi 3 ��\\ir� � ^._ D CMP Pre-Construction Checklist Contech Field Contact and Phone: Contech Plant Contact and Phone: Contractor Contact and Phone: Project Name: Site Address: Precon Attendees: Topics to Review: Ell Truck access and pipe storage availability/expectation Ell Pipe unloading and handling safety,equipment and procedures El System layout and shop drawing review El Shipping schedule and installation sequence El Joint configuration and assembly El Connection with unlike storm sewer materials LI Backfill material selection and placement strategy IJ Backfill sequence,lift thickness and balanced loading LI Compaction requirement(90%)and equipment Additional cover requirements for heavy construction loads El CMP riser concrete cap installation Notes: • • CONTECH ENGINEERED SOLUTIONS £02012 CONTECH ENGINEERED SOLUTIONS,LLC, NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS ANEXPRREASSNEYD PWARARTICRANULARTY 800-338-1122 OR AN IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR www.ContechES,corn PURPOSE. SEE THE CONTECH STANDARD CONDITIONS OF SALE (VIEWABLE AT All Rights Reserved Printed in the USA, WWWCONTECHES.COM/COS)FOR MORE INFORMATION. Contech Engineered Solutions LLC provides site solutions for theciv;1:r ngindustry includes bridges,drainage,sanitary sewer,stormwater and he ,1,or:auctForinformationon other Conyndi division offerings,visit ConteolsEScorn or call 800,338.1122 The product(s)described may be protected by one or more of the following U 5,624,576,5,707,527;5,759,415;5,788,848;5,985,157;6,027,639;6,350,3Spatents: 6,406,218;6.641,720, 6,511,595;6,649,048;6,991,114;6,998.038;7,186,058;related foreign patents or other patents pending. Support • Drawings and specifications are available at www.ContechES.comicmp ugcmp_installation guide 10/12 et r•Viv FE STORMWATEI --����L���N�� Maintenance Underground storm water detention and retention sy stems should be inspected at regular intervals and maintained when necessary to ensure optimum performance. The rate at which the system collects pollutants will depend more heavily on site activities than the size or configuration of the system. Inspection Inspection is the key to effective maintenance and is easily performed. CONTECH recommends ongoing quarterly inspections of the accumulated sediment. Sediment deposition and transport may vary from year to year and quarterly inspections will help insure that sy stems are cleaned out at the appropriate time. Inspections should be performed more often in the winter months in climates where sanding operations m ay lead to rapid accumulations, or in equipment washdown areas. It is very useful to keep a record of each inspection. A sample inspection log is included for your use. Systems should be cleaned w hen inspection reveals that accumulated sediment or trash is clogging the discharge orifice. CONTECH suggests that all systems be designed with an access/inspection manhole situated at or near the inlet and the outlet orif ice. Should it be necessary to get inside the system to perform maintenance activities, all appropriate precautions regar ding confined space entry and OSHA regulations should be followed. Cleaning Maintaining an underground detention or retention ayatom is easiest when there is no flow entering the system. For this reason, it is a good idea to schedule the c leanout during dry weather. Accumulated sediment and trash can typically be evacuated through the manhole over the outlet orifice. If maintenance is not performed as recommended, sediment and trash may accumulate in front of the outlet orifice. Manhole covers should be securely seated following cleaning activities. 5TORMWATER 5t3LUTtC)NS_. Inspection & Maintenance Log Diameter System Location: Anywhere, USA Date Depth of Accumulated Maintenance Maintenance Sediment Trash Performed Personnel Comments 12/01/99 2" None Removed B. Johnson Installed Sediment Removed 03/01/00 1" Some Sediment and B. Johnson Swept Trash parking lot 06/01/00 0" None None 09/01/00 0" Heavy Removed Trash S. Riley 12/01/00 1" None Removed S. Riley Sediment 4/01/01 0" None None S. Riley Removed ACE 04/15/01 2" Some Sediment and Environmental Trash Services SAMPLE APPENDIX H HYDRAULIC & CATCH BASIN INTERCEPTION CAPACITY CALCULATIONS KI HYDRAULIC CAPACITY CALCULATIONS FOR ONSITE STREETS, WALNUT AVE. & JUNIPER AVE. w a: i 1 o IC)i \I ® aa. CV T i I i A Z O J I J W WIJ al © Z4.1, �1 N 6N _J I rn N (6 0 I 7ir ‘ ; /'� e_ O _ A limitO 0 0 0 N N O I I 14 ° N o T � 'in N I0 6 1 1 ) cr a CIVILCADD/CIVILDESIGN Engineering Software, (c) 2004 Version 7.0 TRACT NO. 18657 - MADISON SQUARE STREET HYDRAULIC CAPACITY CALCULATION ONSITE 'C' STREET - FULL STREET CAPACITY AT CROWN ELEVATION MINIMUM SLOPE OF 0.5% Program License Serial Number 6143 *** Street Flow Analysis *** Upstream (headworks) Elevation = 10.000(Ft.) Downstream (outlet) Elevation = 9.500(Ft.) Runoff/Flow Distance = 100.000(Ft.) Maximum depth(HGL) of flow at headworks = 0.510(Ft.) Top of street segment elevation = 10.000(Ft.) End of street segment elevation = 9.500(Ft.) Length of street segment = 100.000(Ft.) Height of curb above gutter flowline = 6.0(In.) width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.700(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Half street cross section data points: X-coordinate (Ft.) Y-coordinate (Ft.) 0.0000 0.7400 right of way 12.0000 0.5000 top of curb 12.0000 0.0000 flow line 13.5000 0.1417 gutter end 13.5000 0.1417 grade break 32.0000 0.5117 crown Depth of flow = 0.510(Ft.) Average velocity = 2.345(Ft/s) Total flow rate in 1/2 street = 9.504(CFS) warning: depth of flow exceeds top of curb Distance that curb overflow reaches into property = 0.50(Ft.) Streetflow hydraulics: Halfstreet flow width (curb to crown) = 19.917(Ft.) Average flow velocity = 2.34(Ft/s) Channel including Gutter and area towards property line: Flow width = 2.000(Ft.) Flow Area = 0.661(Sq.Ft) Velocity = 2.854(Ft/s) Flow Rate = 1.887(CFS) Froude No. = 0.8747 Channel from outside edge of gutter towards grade break: Flow width = 0.000(Ft.) Flow Area = 0.000(Sq.Ft) velocity = 0.000(Ft/s) Flow Rate = 0.000(CFS) Froude No. = 0.0000 Channel from grade break to crown: Flow Width = 18.417(Ft.) Flow Area = 3.392(Sq.Ft) Velocity = 2.246(Ft/s) Flow Rate = 7.617(CFS) Froude No. = 0.9222 Total flow rate in street = 19.008(CFS) ‘44 CIVILCADD/CIVILDESIGN Engineering Software, (c) 2004 versinn 7.0 TRACT NO. 18657 - MADISON SQUARE STREET HYDRAULIC CAPACITY CALCULATION omsTTs 'C' STREET - FULL STREET CAPACITY AT TOP OF CURBS MINIMUM SLOPE OF 0.5% Program License Serial Number 6143 ++* Street Flow Analysis °^° upstream (headworks) Elevation = 10.008(Ft.) oownstream (outlet) Elevation = 9.500(pt.) Runoff/Flow nistance ~ I00.000{Ft.} Maximum depth(HGL) of flow at headworks = 0.500{Ft.} Top of street segment elevation ~ 10.000{Ft'} End of street segment elevation = 9.500{pt.} Length of street segment = 100.000{Ft.} Height of curb above gutter flowline ~ 5.0(zn.) width of half street (curb to crown) = 20.000{Ft.} oistance from crown to crossfall grade break ~ 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 street flow is on [2] side(s) of the street oistance from curb to property line ~ 12.000{Ft.} Slope from curb to property line (v/hz) = 0.020 Gutter width = 1'500(Fc.) Gutter hike from flowline = 1.700{zn.} Manning's N in gutter = 0.0I50 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0I50 ualf street cross section data points: X-coordinate (Ft.) Y-coordinate (Ft.) 0.0000 0.7400 right of way I2'0000 0.5000 top of curb 12'0000 0.8000 flow line 13.5000 0.1417 gutter end 13.5000 0.1417 grade break 32'0000 8. 5I17 crown Depth of flow ~ 0.500(Ft.) Average velocity ~ 3'343{Ft/s} Total flow rate in 1/2 street = 9.828(cF5) streetflow hydraulics: *alfstreet flow width (curb to crown) = 19'417(Ft.) Average flow velocity ~ 2.34{Ft/s} Channel including Gutter and area towards property line: Flow width = I.500(pr.) Flow Area = 0.644(sq.pt) velocity = 3'20I(rt/s) Flow Rate ~ 2.061(cFs) Froude No. = 0.8611 Channel from outside edge of gutter towards grade break: Flow width = 0.000(Ft.) Flow Area ~ 0.000{Sq.Fr} velocity = 0.000(Ft/s) Flow Rate = 0.000([ps) Froude NO. = 0.0000 Channel from grade break to crown: Flow Width = 17'917{pt.} Flow Area = 3.2I0{sq.Ft} velocity = 2.171(Ft/s) Flow Rate = 6.968{cFs} Froude No. = 0.9037 Total flow rate in street = 10.057([F5) 1��� CIVILCADD/CIVILDESIGN Engineering Software, (c) 2004 version 7.0 TRACT NO. 18657 - MADISON SQUARE STREET HYDRAULIC CAPACITY CALCULATION VISITE 'C' STREET - FULL STREET CAn^czry AT mrGxT-op-wxvs MINIMUM SLOPE OF 0.5% Program License serial Number 6143 °** Street Flow Analysis ^°° upstream (headworks) Elevation = 10.000{Fr.} omwnstream (outlet) Elevation = 9.500(Ft.) Runoff/Flow oistance ~ I00.000(Ft.) maximum depth(HGL) of flow at headworks = 0.740(Fr.) Top of street segment elevation = lO.00O(pt.) End of street segment elevation = 9.500{Ft.} Length of street segment = 100.000{Ft.} Height of curb above gutter flowline = 5.0{zn.} width of half street (curb to crown) = 20.080(Ft') oistance from crown to crossfall grade break = I8.500{Fr.} slope from gutter to grade break (v/hz) = 0.020 slope from grade break to crown (v/hz) = 0.020 street flow is on [2] side(s) of the street oistance from curb to property line = 12.000(Ft') Slope from curb to property line (v/hz) = 0.020 Gutter width = 1'500{pr.} Gutter hike from flowline = 1.700(zn.) Manning's N in gutter ~ 0.0I50 wanning's N from gutter to grade break = 0.0I50 Manning's N from grade break to crown = 0.0150 *ulf street cross section data points: x-coordinate (Ft.) Y-coordinate (Ft.) 0.0000 0.7400 right of way 12.0000 0.5000 top of curb I2.0008 0.0008 flow line 13'5000 0.I417 gutter end 13.5000 0.I417 grade break 32.0000 0.5117 crown oepth of flow = 0.740(Ft.) Average velocity = 3.211{Ft/s} Total flow rate in 1/2 street = 32.402(cFS) warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown' oistance that curb overflow reaches into property = 12.00(Ft.) Streetflow hydraulics: *alfstreet flow width (curb to crown) = 20.000(Ft.) *werage flow velocity = 3.21(Ft/s) Channel including Gutter and area towards property line: Flow width = 13'500(pt.) Flow xrea ~ 2.444{sq.rt} Velocity = 2.021{Ft/s} Flow Rate = 4'030([FS) Froude mo. = 0'8371 channel from outside edge of gutter towards grade break: Flow width = 0.000(Ft.) Flow xrea = 0.000{sq'Fr} velocity = 0'000{pt/s} Flow Rate = 0.000(cFS) Froude wo' = 0'0000 Channel from grade break to crown: Flow Width = 18.500(Ft') Flow Area = 7.647(Sq.Ft) velocity = 3.501{Ft/s} Flow aate = 27.463([F5] Froude No. = 0.9844 Total flow rate in street ~ 64'803([FS) iS 1 A ;o 1 ci. - 6 i 0 N—�1- 1- N� O ›-ci‘ ' <4 .. f 8 d. 4 Ire) O V AI U� � � / vii U A CS � a � 1(! g 1 H- 1 CIVILCADD/CIVILDESIGN Engineering Software, (c) 2004 version 7.0 TRACT NO. 18657 - MADISON SQUARE STREET HYDRAULIC CAPACITY CALCULATION ONSITE 'A' . 'B' 'D' & 'E' STREETS FULL STREET CAPACITY AT STREET cnoww ; MINIMUM sLops OF 0.5% Program License serial wumber 6143 *°° Street Flow Analysis °°° Upstream (headworks) Elevation = 10.080{Ft.} oownstream (outlet) Elevation = 9.500(pt.) nunoff/Flow oistance = 100.000(Ft.) Maximum depth(HGL) of flow at headworks = 0.470(rr.) Top of street segment elevation = 10.000(Ft.) End of street segment elevation = 9.500(Ft.) Length of street segment = 100.000(Ft.) Height of curb above gutter flowline = 6'0(zn') width of half street (curb to crown) = 18.000{pt.} oistance from crown to crossfall grade break = 16'500{pr.} Slope from gutter to grade break (v/hz) = 0'020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street oistance from curb to property line = 12.000{Ft.} Slope from curb to property line (v/hz) = 0.020 sutter width = I.500{pt.} Gutter hike from flowline = 1.700{zn.} manning's N in gutter = 0'0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 nalf street cross section data points: x-coordinate (Ft.) Y-coordinate (Ft.) 0.0000 0.7400 right of way I2'0000 0.5000 top of curb 12.0000 0.0008 flow line I3.5000 0.1417 gutter end 13.5000 0.1417 grade break 30.0000 0.4717 crown oepth of flow = 0.470(Ft.) Average velocity = 3.225(Ft/s) Total flow rate in 1/2 street = 7.330(CFS) streetflow hydraulics: Halfstreet flow width (curb to crown) = 17.917(Ft.) Average flow velocity = 2.23{Ft/s} Channel including Gutter and area towards property line: Flow width = 1.500(Ft.) Flow xrea = 0.599{sq.rt} velncity ~ 3.067(Ft/s) Flow Rate = I.836(cps) Froude wn' = 0.8555 channel from outside edge of gutter towards grade break: Flow width = 0.000(Ft.) Flow Area = 0.000{sq.Ft} velocity ~ 0'000(Ft/s) Flow nate = 0.000{cFs} Froude wo. = 0.0000 channel from grade break to crown: Flow width = 16.417{Ft'} Flow Area = 2.695(5q.Ft) velocity = 2.038(Ft/s) Flow Rate = 5.494(CFS) Froude No. = 0.8866 Total flow rate in street = I4'660([Fs} CIVILCADD/CIVILDESIGN Engineering Software, (c) 2004 Version 7.0 TRACT NO. 18657 - MADISON SQUARE STREET HYDRAULIC CAPACITY CALCULATION ONSITE 'A' . 'B' . 'D' & 'E' STRFFTS FULL STREET CAPACITY AT TOP OF CURBS ; MINIMUM SLOPE OF 0.5% Program License Serial Number 6143 *** Street Flow Analysis *** Upstream (headworks) Elevation = 10.000(Ft.) Downstream (outlet) Elevation = 9.500(Ft.) Runoff/Flow Distance = 100.000(Ft.) Maximum depth(HGL) of flow at headworks = 0.500(Ft.) Top of street segment elevation = 10.000(Ft.) End of street segment elevation = 9.500(Ft.) Length of street segment = 100.000(Ft.) Height of curb above gutter flowline = 6.0(In.) width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.700(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Half street cross section data points: x-coordinate (Ft.) Y-coordinate (Ft.) 0.0000 0.7400 right of way 12.0000 0.5000 top of curb 12.0000 0.0000 flow line 13.5000 0.1417 gutter end 13.5000 0.1417 grade break 30.0000 0.4717 crown Depth of flow = 0.500(Ft.) Average velocity = 2.452(Ft/s) Total flow rate in 1/2 street = 9.401(CFS) Note: depth of flow exceeds top of street crown. streetflow hydraulics: Halfstreet flow width (curb to crown) = 18.000(Ft.) Average flow velocity = 2.45(Ft/s) Channel including Gutter and area towards property line: Flow width = 1.500(Ft.) Flow Area = 0.644(Sq.Ft) velocity = 3.220(Ft/s) Flow Rate = 2.073(CFS) Froude No. = 0.8663 Channel from outside edge of gutter towards grade break: Flow width = 0.000(Ft.) Flow Area = 0.000(Sq.Ft) velocity = 0.000(Ft/s) Flow Rate = 0.000(CFS) Froude No. = 0.0000 Channel from grade break to crown: Flow width = 16.500(Ft.) Flow Area = 3.190(Sq.Ft) velocity = 2.297(Ft/s) Flow Rate = 7.328(CFS) Froude No. = 0.9207 Total flow rate in street = 18.803(CFS) HCA CIVILCADD/CIVILDESIGN Engineering Software, (c) 2004 version 7.0 TRACT NO. 18657 - MADISON SQUARE STREET HYDRAULIC CAPACITY CALCULATION ONSITE 'A' . 'B' . 'D' & 'E' STREETS FULL STREET CAPACITY AT RIGHT-OF-WAYS ; MINIMUM SLOPE OF 0.5% Program License Serial Number 6143 *** Street Flow Analysis *** Upstream (headworks) Elevation = 10.000(Ft.) Downstream (outlet) Elevation = 9.500(Ft.) Runoff/Flow Distance = 100.000(Ft.) Maximum depth(HGL) of flow at headworks = 0.740(Ft.) Top of street segment elevation = 10.000(Ft.) End of street segment elevation = 9.500(Ft.) Length of street segment = 100.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.700(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Half street cross section data points: x-coordinate (Ft.) Y-coordinate (Ft.) 0.0000 0.7400 right of way 12.0000 0.5000 top of curb 12.0000 0.0000 flow line 13.5000 0.1417 gutter end 13.5000 0.1417 grade break 30.0000 0.4717 crown Depth of flow = 0.740(Ft.) Average velocity = 3.239(Ft/s) Total flow rate in 1/2 street = 31.075(CFS) warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 12.00(Ft.) streetflow hydraulics: Halfstreet flow width (curb to crown) = 18.000(Ft.) Average flow velocity = 3.24(Ft/s) channel including Gutter and area towards property line: Flow width = 13.500(Ft.) Flow Area = 2.444(Sq.Ft) velocity = 1.998(Ft/s) Flow Rate = 4.882(CFS) Froude No. = 0.8274 Channel from outside edge of gutter towards grade break: Flow Width = 0.000(Ft.) Flow Area = 0.000(Sq.Ft) velocity = 0.000(Ft/s) Flow Rate = 0.000(CFS) Froude No. = 0.0000 Channel from grade break to crown: Flow width = 16.500(Ft.) Flow Area = 7.150(Sq.Ft) velocity = 3.663(Ft/s) Flow Rate = 26.194(CFS) Froude No. = 0.9807 Total flow rate in street = 62.151(CFS) HICK W 1 A I I H- I w I w N a_ I > -HLi] I EL W I Q I X z (A 0 IHz IiH U W �) D W III z CD -H III LL1 III > w -00 C.41 H i < W co Cr z � III WI - oN III 0_ WI .--' i `----N 1110 Z J 16 © -) U -CNcv � Q z o z ra 12- Y - t © >- O N 0_ osO Li o 1'0 Ci :- •• Q LLI 0 � o 0 N N W in 1 1 I Q , 0 UQ ir?t a_ 0 Y Oz1 CCQQ CIVILCADD/CIVILDESIGN Engineering software, (c) 2004 Version 7.0 TRACT NO. 18657 - MADISON SQUARE STREET HYDRAULIC CAPACITY CALCULATION JUNIPER AVENUE- HALF STREET CAPACITY AT CROWN ELEVATION MINIMUM SLOPE OF 1.3% Program License Serial Number 6143 *** Street Flow Analysis *** Upstream (headworks) Elevation = 10.000(Ft.) Downstream (outlet) Elevation = 8.700(Ft.) Runoff/Flow Distance = 100.000(Ft.) Maximum depth(HGL) of flow at headworks = 0.550(Ft.) Top of street segment elevation = 10.000(Ft.) End of street segment elevation = 8.700(Ft.) Length of street segment = 100.000(Ft.) Height of curb above gutter flowline = 8.0(In.) width of half street (curb to crown) = 22.000(Ft.) Distance from crown to crossfall grade break = 20.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.700(in.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Half street cross section data points: X-coordinate (Ft.) Y-coordinate (Ft.) 0.0000 0.9067 right of way 12.0000 0.6667 top of curb 12.0000 0.0000 flow line 13.5000 0.1417 gutter end 13.5000 0.1417 grade break 34.0000 0.5517 crown Depth of flow = 0.550(Ft.) Average velocity = 4.084(Ft/s) Total flow rate in 1/2 street = 19.960(CFS) Streetflow hydraulics: Halfstreet flow width (curb to crown) = 21.917(Ft.) Average flow velocity = 4.08(Ft/s) Channel including Gutter and area towards property line: Flow Width = 1.500(Ft.) Flow Area = 0.719(Sq.Ft) velocity = 5.497(Ft/s) Flow Rate = 3.951(CFS) Froude No. = 1.3994 Channel from outside edge of gutter towards grade break: Flow width = 0.000(Ft.) Flow Area = 0.000(Sq.Ft) velocity = 0.000(Ft/s) Flow Rate = 0.000(CFS) Froude NO. = 0.0000 Channel from grade break to crown: Flow width = 20.417(Ft.) Flow Area = 4.168(Sq.Ft) Velocity = 3.841(Ft/s) Flow Rate = 16.010(CFS) Froude No. = 1.4979 Total flow rate in street = 19.960(CFS) CIVILCADD/CIVILDESIGN Engineering Software, (c) 2004 Version 7.0 TRACT NO. 18657 - MADISON SQUARE STREET HYDRAULIC CAPACITY CALCULATION ,7UNIPER AVENUE- FULL STREET CAPACITY AT TOP OF CURBS MINIMUM SLOPE OF 1.3% Program License Serial Number 6143 *°ti's Street Flow Analysis *°t* Upstream (headworks) Elevation = 10.000(Ft.) Downstream (outlet) Elevation = 8.700(Ft.) Runoff/Flow Distance = 100.000(Ft.) Maximum depth(HGL) of flow at headworks = 0.667(Ft.) Top of street segment elevation = 10.000(Ft.) End of street segment elevation = 8.700(Ft.) Length of street segment = 100.000(Ft.) Height of curb above gutter flowline = 8.0(in.) Width of half street (curb to crown) = 22.000(Ft.) Distance from crown to crossfall grade break = 20.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.700(in.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Half street cross section data points: x-coordinate (Ft.) Y-coordinate (Ft.) 0.0000 0.9067 right of way 12.0000 0.6667 top of curb 12.0000 0.0000 flow line 13.5000 0.1417 gutter end 13.5000 0.1417 grade break 34.0000 0.5517 crown Depth of flow = 0.667(Ft.) Average velocity = 5.381(Ft/s) Total flow rate in 1/2 street = 40.145(CFS) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 0.02(Ft.) Streetflow hydraulics: Halfstreet flow width (curb to crown) = 22.000(Ft.) Average flow velocity = 5.38(Ft/s) Channel including Gutter and area towards property line: Flow Width = 1.517(Ft.) Flow Area = 0.894(Sq.Ft) velocity = 6.196(Ft/s) Flow Rate = 5.541(CFS) Froude No. = 1.4220 Channel from outside edge of gutter towards grade break: Flow width = 0.000(Ft.) Flow Area = 0.000(Sq.Ft) velocity = 0.000(Ft/s) Flow Rate = 0.000(CFS) Froude No. = 0.0000 channel from grade break to crown: Flow width = 20.500(Ft.) Flow Area = 6.567(Sq.Ft) velocity = 5.270(Ft/s) Flow Rate = 34.604(CFS) Froude No. = 1.6408 Total flow rate in street = 80.291(cFs) B1 CIVILCADD/CIVILDESIGN Engineering software, (c) 2004 version 7.0 TRACT NO. 18657 - MADISON SQUARE STREET HYDRAULIC CAPACITY CALCULATION JUNIPER AVENUE- FULL STREET CAPACITY AT RIGHT-OF-WAYS MINIMUM SLOPE OF 1.3% Program License Serial Number 6143 *** Street Flow Analysis °tip°* Upstream (headworks) Elevation = 10.000(Ft.) Downstream (outlet) Elevation = 8.700(Ft.) Runoff/Flow Distance = 100.000(Ft.) Maximum depth(HGL) of flow at headworks = 0.907(Ft.) Top of street segment elevation = 10.000(Ft.) End of street segment elevation = 8.700(Ft.) Length of street segment = 100.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 22.000(Ft.) Distance from crown to crossfall grade break = 20.500(Ft.) slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 street flow is on [2] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.700(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Half street cross section data points: x-coordinate (Ft.) Y-coordinate (Ft.) 0.0000 0.9067 right of way 12.0000 0.6667 top of curb 12.0000 0.0000 flow line 13.5000 0.1417 gutter end 13.5000 0.1417 grade break 34.0000 0.5517 crown Depth of flow = 0.907(Ft.) Average velocity = 6.224(Ft/s) Total flow rate in 1/2 street = 88.289(CFS) ! !Warning: water is above left or right bank elevations Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 12.02(Ft.) Streetflow hydraulics: Halfstreet flow width (curb to crown) = 22.000(Ft.) Average flow velocity = 6.22(Ft/s) channel including Gutter and area towards property line: Flow width = 13.500(Ft.) Flow Area = 2.698(Sq.Ft) velocity = 3.358(Ft/s) Flow Rate = 9.062(CFS) Froude No. = 1.3238 Channel from outside edge of gutter towards grade break: Flow width = 0.000(Ft.) Flow Area = 0.000(Sq.Ft) velocity = 0.000(Ft/s) Flow Rate = 0.000(CFS) Froude No. = 0.0000 Channel from grade break to crown: Flow width = 20.500(Ft.) Flow Area = 11.487(Sq.Ft) velocity = 6.897(Ft/s) Flow Rate = 79.227(CFS) Froude No. = 1.6238 Total flow rate in street = 176.578(CFS) HIS ci w z w o y I--< D 0 tn w 5( w v) L._ i- m .1C 6.;5 g• \;„ X D W 0 10t‘1,) ‘' =7_.. .....______J [...,.7. ..:'.; Z LU 11 f-,i.,:.:• ?., 0 t!.:,:::,,:::,, b " bt:1;::. .Si N i...:::,; :d Ell' il Lis r ) LO C\I PI:•':-:'2i C\1 1M / CC1 }-: e-i o 1 1 H T- 1 ---i i Z 4( c;::;:,: ;: Vi: 0 1,!;:•Z.:.,-,1 • ; 1:2 ci k •;:-,:::,':A ,Ai u.) 3 LU ro CNI •. 4 V:i :: ;) Pmel E... 1 k -1 \;.:::,: :9 ..... csii r.41 _ LL, / 1 ri- --- D Z 0 0 d "Z ee < >7 I-: W 0 (/) LU 5<- 0 w v) H1 .5 CIVILCADD/CIVILDESIGN Engineering software, (c) 2004 Version 7.0 TRACT NO. 18657 - MADISON SQUARE STREET HYDRAULIC CAPACITY CALCULATION WALNUT AVENUE- HALF STREET CAPACITY AT TOP OF CURB MINIMUM SLOPE OF 0.5% Program License Serial Number 6143 *** Street Flow Analysis *** upstream (headworks) Elevation = 10.000(Ft.) Downstream (outlet) Elevation = 9.500(Ft.) Runoff/Flow Distance = 100.000(Ft.) Maximum depth(HGL) of flow at headworks = 0.667(Ft.) Top of street segment elevation = 10.000(Ft.) End of street segment elevation = 9.500(Ft.) Length of street segment = 100.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 19.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.700(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Half street cross section data points: X-coordinate (Ft.) Y-coordinate (Ft.) 0.0000 1.0467 right of way 19.0000 0.6667 top of curb 19.0000 0.0000 flow line 20.5000 0.1417 gutter end 20.5000 0.1417 grade break 39.0000 0.5117 crown Depth of flow = 0.667(Ft.) Average velocity = 3.462(Ft/s) Total flow rate in 1/2 street = 24.895(CFS) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 0.02(Ft.) Streetflow hydraulics: Halfstreet flow width (curb to crown) = 20.000(Ft.) Average flow velocity = 3.46(Ft/s) Channel including Gutter and area towards property line: Flow Width = 1.517(Ft.) Flow Area = 0.894(Sq.Ft) Velocity = 3.848(Ft/s) Flow Rate = 3.441(CFS) Froude No. = 0.8832 Channel from outside edge of gutter towards grade break: Flow Width = 0.000(Ft.) Flow Area = 0.000(Sq.Ft) velocity = 0.000(Ft/s) Flow Rate = 0.000(CFS) Froude No. = 0.0000 Channel from grade break to crown: Flow Width = 18.500(Ft.) Flow Area = 6.296(Sq.Ft) Velocity = 3.407(Ft/s) Flow Rate = 21.454(CFS) Froude No. = 1.0293 Total flow rate in street = 24.895(CFS) H \ �o CIVILCADD/CIVILDESIGN Engineering Software, (c) 2004 Version 7.0 TRACT NO. 18657 - MADISON SQUARE STREET HYDRAULIC CAPACITY CALCULATION WALNUT AVENUE- HALF STREET CAPACITY AT RIGHT-OF-WAY MINIMUM SLOPE OF 0.5% Program License Serial Number 6143 *** Street Flow Analysis *** Upstream (headworks) Elevation = 10.000(Ft.) Downstream (outlet) Elevation = 9.500(Ft.) Runoff/Flow Distance = 100.000(Ft.) Maximum depth(HGL) of flow at headworks = 0.950(Ft.) Top of street segment elevation = 10.000(Ft.) End of street segment elevation = 9.500(Ft.) Length of street segment = 100.000(Ft.) Height of curb above gutter flowline = 8.0(in.) width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 19.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.700(in.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Half street cross section data points: X-coordinate (Ft.) y-coordinate (Ft.) 0.0000 1.0467 right of way 19.0000 0.6667 top of curb 19.0000 0.0000 flow line 20.5000 0.1417 gutter end 20.5000 0.1417 grade break 39.0000 0.5117 crown Depth of flow = 0.950(Ft.) Average velocity = 3.968(Ft/s) Total flow rate in 1/2 street = 58.959(cFS) warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 14.17(Ft.) Streetflow hydraulics: Halfstreet flow width (curb to crown) = 20.000(Ft.) Average flow velocity = 3.97(Ft/s) Channel including Gutter and area towards property line: Flow Width = 15.667(Ft.) Flow Area = 3.326(Sq.Ft) Velocity = 2.133(Ft/s) Flow Rate = 7.093(CFS) Froude No. = 0.8158 Channel from outside edge of gutter towards grade break: Flow width = 0.000(Ft.) Flow Area = 0.000(Sq.Ft) velocity = 0.000(Ft/s) Flow Rate = 0.000(CFS) Froude No. = 0.0000 Channel from grade break to crown: Flow width = 18.500(Ft.) Flow Area = 11.532(Sq.Ft) velocity = 4.498(Ft/s) Flow Rate = 51.866(CFS) Froude No. = 1.0039 Total flow rate in street = 58.959(CFS) H �� CATCH BASINS' INTERCEPTION CAPACITY CALCULATIONS Htt3 © gOil W Z lv-1 E. �. as 4M gm an _ SIM 4 O 1H".56ggiLt_ •k v/ 1 1il �glin Vt:;... *r 6 FD 1....4:: 105(21x. Q —� „.1414 VD i OSi Q 0 LI eg 'T-I s __fit 1 B. „a 8B gdg ,as Z E « E. WI' _ it —1 S I. 2 III! u � u g 4tgV 0 N s• W s L7 (13 n = / ti W n b. in l'R n : 2 _ _ _ y�� Z Z a6;,:: m w y n 9915 n t- x 8 t o ' Z f.o ■�� Ii2viiii ;; i4- ssi tz _ i aaae � & &a 'gan « & �aa ,o - - n53 r O (Decoy,' 1 i O J m m 4-0 zdJJJJJOJ JJJJ J raJJjnmJ =jP u6xmm c 6y, y1y- dm R :o * 8 n $ ., uY- 8v, r ^ d .- r I a E`:m,m mm n eitIlltliiitttlAnttrgttirn g I .,,,:,,,,' r � W � 1✓ N ' � � � � tl � � YI .`� t'! W Yl �V � � � � •r p•� C � s� lnsls23DR >nl5 � b. ;, i 0• 3888888 $$8$8$$88ti3g8$$ 88 Cill gi 0 G�y {{,y5 IgGs8sonansEEEOZEEEEE05 . 0 . 0 6„„1 1,‘ ! — �_ —� — — — W w5 Ei — i`� .,. e '�_ Z O ..1 7 '' _ "M • -' - ■iii��i • '''7"r---= -i • G •.G�t i� -1 . --11 I fC !-,fii\i_ 4 t___-.4...-_-1. • ,, "It.- ty-1 .- k / , • .41,1. pourri„N-,,1„:„ .77-7.7 AEllilizisin w.4.1 alp . n. z� F�'u5 •:�'., . f I •I I 'Sl4 j 1, d ,f9ZL,,_ �OonS p0'o5 •b£a ,4E �_ e_ I \), tr . \� / •Ib 1 ,Z9'iSc th ova' bs' i { 8 M L.w9o,g ,'ft --0' =4-a�om ,,` „.:. „.: r,.�4 I,+E---, ,,--g- a ;I1,r. ° 1 �_ '� i �\`t . t L1)(' `�y ` ecsi n,...„, Mn_; 3 Z _ =9"t� /' a , ,...1 ) + S l '11 r li I - 0O''\ '(■*\ I syr'. G c !', ? ••`. .._.� ~9 g. -� , - - '6i. _ .>Y` + kbi l • _ ¢ II •! I t c•41'. ..` Nl \' _os 4 UZ, ,� • 1 I' 1G DA♦ 4- ..cao►- v ,, g 4 ne ‘� 02 a I. I ID ' �r� '°e,../).\.•'Nob • 91A1. , i1avYTM.PSSZ9ZN I i �I '. 3ttt, ,91.6LZ a 1 / 1. • 1 i etp r _ o �. .�.. S 1 i I 1. JLtIM kiwi .WeiV .ri ___ °m M,Ls.J1000N �1 / 17 r '' 1 1 1; I I` n , ivree . 91Roon .1 r i \ 1.1=-:' •.J 4 ''' ;I , ,9s'OL / SE* ,00'os; soros .19bS � pons) a,9s'Lf` �. \,'11 ii �. r f • I I 3 iS,l0A0N v )' 8 r g / •...-----i u yh S -yl / is+ ' j '' : d III 1 a Q ' O n 'W / D - !vl Q - 1}u 8 i! `! h 's �rl+ r JJ 1� ,eH Nm tlGi :I - S :Mn M Mgl' MX - Mo M� i ( 1._ / rices' I I { ,„ti iCtit•o0N _ / n4 twos 3 , I '.00'wy •/ ;�..'� .. J\ ‘ s II1 Hp 5 w yr 1. rf6.9Z14 r999e� M I g8 �,, } 8,, • 1 ,: ,Z{ p9n9 �y •• n o '� 1 •�t' a I �D ` 7ia f Stil_ LS.t�00N 1 1 V I I 1,OSIL 3 CS:10.99N I �r `'OM l!/ •t Za o \.._. ■nom F■_/,�',.. ,i�n� I Y '11 V i ILI - 4 I N y ,CZ}.” +pOro9 M .1040N p0•LL M.LS31100N f - \]' •'N'd..�.`/,J' w�.. �>i y i , •N b :cYLsl�a.._. I i , El .,__, W i �._ t ps'6c.�sstaaou r v 3VI ,. all'ilil i)I F• III N�as rs ' V ,99.99 ..i. $ �• .b yJ,� fir, 1 81e sh1 1 I 11 Iti 8 '•,� '' . �.., 0" I,II: ,I� n IP!:' r ! I ' / la./ „,,,4mss'' �ld I 1 ., , 1 1 II OQ'6[3.CS.l0A0N �•¢ ' iv �`% n AI z, 4 'e■ , ....,. n,o•, \ 0, i ,, �'" 'f `: c.,„„, n I tg, • -�011'09. P'n 1b(4 .$L i�•SS . .`�' $ n¢ 1 �� 't Itk � 8 ' ,OC of : 09: 90 os 90'09 00 os p9'as o9 9 1 i 0 i ,ri,bic g 'g• g 8 M.6 ..�..i 1 �r loci , j ,OQ'6L 3 10.00N I i .It N I : ,, ,o, d � �_ �_ a %' ■ g .r P�V 1 If �.ii.., 9YL 6Y NN ` 12 `�, y a 1 w �� J I i . . i -/1•�i gI,Zsli�7.• +� lsotr ' Dos: ons �y �•� '�"l��R� ,r g. L' �j 4....„ __ • _ ,FWVI": \ 11 I It 1 1111 2 ,. ri M;6tia400N_ P)c� d' idi�TiV�� ����lei��� i •/ �9s.�.��,1�� 4 ,n i!) .i � hoi ill , �. ,' 4111.. 1,th 1/L .serf .ons •• ,00ns .00. p0'oS '.0015 AVM LB'Sc / 11 ,uZ�,�■ ai+ _ •, $,. hi! c. � �'' S p 1 _ bl ih 8 Die be g Ib, g ' ti I h ' • ( . C % i , (— � C , . i ill; t i ) i s _ I .1 i foss 00.5,„:- 00'OQ i i OS i •_�s roses�,. �� roS ,Os !Z'LS j I I III ' `` II _ .c,I; .. 1. .R 'g g ,/ II s-7-; . 5 e �, II a' I it of' !'1hhh'j $IPIIIPIItr. q �5 h ii I . U 8 II t3. 2% l 3 w 'SI f G� ` ' PROJECT: Madison Square PACIFIC COAST TRACT: TRACT NO. 18657 CIVIL, INC. SUBJECT: CATCH BASIN INTERCEPTION CALCS. 30141 AGOURA ROAD,SUITE 200 DATE: June 2013 AGOURA HILLS,CA 91301-4311 PROP. CATCH BASIN AT ST. STA. 2+36.64 ON SIS OF 'C' STREET (Storm Drain's Catch Basin No. 2 on S.D. Lateral 'A-2') GIVEN:- a) Hydrology Subarea Designation: 2 to 3 b) Subarea Acreage = 2.31 Acres c) Subarea's Design 100-Yr. Flow Rate, Q = 7.7 cfs d) Street/Gutter Slope upstream of C.B. Opening, S = 0.5% e) Prop. Curb & Gutter Type: A2-6 (W=18") f) Half Street Width = 20' with 12' Parkway SOLUTION:- a) Local Sump Condition for Proposed Catch Basin b) Prop. Catch Basin Type: City of Fontana Std. No. 3004 c) Prop. Catch Basin Width & Local Depression Depth: W=10' with L.D.= 2" d) Per County of Orange EMA Local Drainage Manual's Page 5-42 for Capacity of Curb Opening Inlets in a Low Point or Sump:- Q (capacity) = 3.087 L H1'5 where L = W = 10' & H = (a + y) a = depth of depression of curb at inlet = 2" or 0.17' y = depth of flow in approach gutter = 0.47' (See Calc on Next Page) = 3.087 x 10 x (0.17 + 0.47)1'5 = 15.8 cfs > Q(tributary) = 7.7 cfs e) Hence, 100% Interception Provided. I 18657-CB-Interception-Calc.xls F—i [CI CIVILCADD/CIVILDESIGN Engineering Software, (c) 2004 version 7.0 TRACT NO. 18657 - MADISON SQUARE CATCH BASIN INTERCEPTION CAPACITY CALCULATION C.B. NO. 1 AT ST. STA. 2+36.64 ON S/S OF 'C' STREET SPPWC STD. PLAN NO. 300-3, W=10' WITH L.D.=2" CASE 'E' Program License Serial Number 6143 *** Street Flow Analysis *** Upstream (headworks) Elevation = 54.720(Ft.) Downstream (outlet) Elevation = 54.130(Ft.) Runoff/Flow Distance = 107.180(Ft.) Maximum flow rate in channel(s) = 7.700(CFS) Top of street segment elevation = 54.720(Ft.) End of street segment elevation = 54.130(Ft.) Length of street segment = 107.180(Ft.) Height of curb above gutter flowline = 6.0(In.) width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.700(in.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Half street cross section data points: x-coordinate (Ft.) Y-coordinate (Ft.) 0.0000 0.7400 right of way 12.0000 0.5000 top of curb 12.0000 0.0000 flow line 13.5000 0.1417 gutter end 13.5000 0.1417 grade break 32.0000 0.5117 crown Depth of flow = 0.470(Ft.) Average velocity = 2.336(Ft/s) Total flow rate in 1/2 street = 7.700(CFS) streetflow hydraulics: Halfstreet flow width (curb to crown) = 17.925(Ft.) Average flow velocity = 2.34(Ft/s) Channel including Gutter and area towards property line: Flow width = 1.500(Ft.) Flow Area = 0.599(Sq.Ft) velocity = 3.219(Ft/s) Flow Rate = 1.928(CFS) Froude No. = 0.8976 Channel from outside edge of gutter towards grade break: Flow Width = 0.000(Ft.) Flow Area = 0.000(Sq.Ft) velocity = 0.000(Ft/s) Flow Rate = 0.000(CFS) Froude No. = 0.0000 Channel from grade break to crown: Flow width = 16.425(Ft.) Flow Area = 2.698(Sq.Ft) velocity = 2.140(Ft/s) Flow Rate = 5.772(CFS) Froude No. = 0.9303 Total flow rate in street = 7.700(CFS) H zO PROJECT: Madison Square PACIFIC COAST TRACT: TRACT NO. 18657 CIVIL, INC. SUBJECT: CATCH BASIN INTERCEPTION CALCS. 30141 AGOURA ROAD,SUITE 200 DATE: June 2013 AGOURA HILLS,CA 91301-4311 PROP. CATCH BASIN AT ST. STA. 2+36.64 ON NIS OF 'C' STREET (Storm Drain's Catch Basin No. 1 on S.D. Lateral 'A-3') GIVEN:- a) Hydrology Subarea Designation: 5 to 3 b) Subarea Acreage = 1.91 Acres c) Subarea's Design 100-Yr. Flow Rate, Q = 6.3 cfs d) Street/Gutter Slope upstream of C.B. Opening, S = 0.5% e) Prop. Curb & Gutter Type: A2-6 (W=18") f) Half Street Width = 20' with 12' Parkway SOLUTION:- a) Local Sump Condition for Proposed Catch Basin b) Prop. Catch Basin Type: City of Fontana Std. No. 3004 c) Prop. Catch Basin Width & Local Depression Depth: W=10' with L.D.= 2" d) Per County of Orange EMA Local Drainage Manual's Page 5-42 for Capacity of Curb Opening Inlets in a Low Point or Sump:- Q (capacity) = 3.087 L H1'5 where L = W = 10' & H = (a + y) a = depth of depression of curb at inlet = 2" or 0.17' y = depth of flow in approach gutter = 0.44' (See Calc on Next Page) = 3.087 x 10 x (0.17 + 0.44)1'5 = 14.7 cfs > Q(tributary) = 6.3 cfs a) Hence, 100% Interception Provided. 18657-CB-Interception-Calc.xls �2 CIVILCADD/CIVILDESIGN Engineering Software, (c) 2004 Version 7.0 TRACT NO. 18657 - MADISON SQUARE CATCH BASIN INTERCEPTION CAPACITY CALCULATION C.B. NO. 2 AT ST. STA. 2+36.64 ON N/S OF 'C' STREET SPPWC STD. PLAN NO. 300-3, W=10' WITH L.D.=2" CASE 'E' Program License Serial Number 6143 *** Street Flow Analysis *** upstream (headworks) Elevation = 54.720(Ft.) Downstream (outlet) Elevation = 54.130(Ft.) Runoff/Flow Distance = 107.180(Ft.) Maximum flow rate in channel(s) = 6.300(CFS) Top of street segment elevation = 54.720(Ft.) End of street segment elevation = 54.130(Ft.) Length of street segment = 107.180(Ft.) Height of curb.above gutter flowline = 6.0(In.) width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 street flow is on [1] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.700(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Half street cross section data points: X-coordinate (Ft.) Y-coordinate (Ft.) 0.0000 0.7400 right of way 12.0000 0.5000 top of curb 12.0000 0.0000 flow line 13.5000 0.1417 gutter end 13.5000 0.1417 grade break 32.0000 0.5117 crown Depth of flow = 0.443(Ft.) Average velocity = 2.223(Ft/s) Total flow rate in 1/2 street = 6.300(CFS) Streetflow hydraulics: Halfstreet flow width (curb to crown) = 16.583(Ft.) Average flow velocity = 2.22(Ft/s) Channel including Gutter and area towards property line: Flow width = 1.500(Ft.) Flow Area = 0.559(Sq.Ft) velocity = 3.086(Ft/s) Flow Rate = 1.724(CFS) Froude No. = 0.8910 Channel from outside edge of gutter towards grade break: Flow width = 0.000(Ft.) Flow Area = 0.000(Sq.Ft) velocity = 0.000(Ft/s) Flow Rate = 0.000(CFS) Froude No. = 0.0000 Channel from grade break to crown: Flow Width = 15.083(Ft.) Flow Area = 2.275(Sq.Ft) Velocity = 2.011(Ft/s) Flow Rate = 4.576(CFS) Froude No. = 0.9127 Total flow rate in street = 6.300(CFS) HZZ PROJECT: Madison Square PACIFIC COAST TRACT: TRACT NO. 18657 CIVIL, INC. SUBJECT: CATCH BASIN INTERCEPTION CALCS. 30141 AGOURA ROAD,SUITE 200 DATE: June 2013 AGOURA HILLS,CA 91301-4311 PROP. CATCH BASIN AT ST. STA. 4+52.17 ON NIS OF 'C' STREET (Storm Drain's Catch Basin No. 3 on S.D. Lateral 'A-1') GIVEN:- a) Hydrology Subarea Designation: 8 to 6 b) Subarea Acreage = 1.78 Acres c) Subarea's Design 100-Yr. Flow Rate, Q = 5.9 cfs d) Street/Gutter Slope upstream of C.B. Opening, S = 0.5% e) Prop. Curb & Gutter Type: A2-6 (W=18") f) Half Street Width = 20' with 12' Parkway SOLUTION:- a) Local Sump Condition for Proposed Catch Basin b) Prop. Catch Basin Type: City of Fontana Std. No. 3004 c) Prop. Catch Basin Width & Local Depression Depth: W=10' with L.D.= 2" d) Per County of Orange EMA Local Drainage Manual's Page 5-42 for Capacity of Curb Opening Inlets in a Low Point or Sump:- Q (capacity) = 3.087 L H1'5 where L = W = 10' & H = (a + y) a = depth of depression of curb at inlet = 2" or 0.17' y = depth of flow in approach gutter = 0.44' (See Calc on Next Page) = 3.087 x 10 x (0.17 + 0.44)1'5 = 14.7 cfs > Q(tributary) = 5.9 cfs a) Hence, 100% Interception Provided. 18657-CB-Interception-Calc.xls 1-123 CIVILCADD/CIVILDESIGN Engineering Software, (c) 2004 Version 7.0 TRACT NO. 18657 - MADISON SQUARE CATCH BASIN INTERCEPTION CAPACITY CALCULATION C.B. NO. 3 AT ST. STA. 4+52.17 ON N/S OF 'C' STRFFT SPPWC STD. PLAN NO. 300-3, W=10' WITH L.D.=2" CASE 'E' Program License Serial Number 6143 *** Street Flow Analysis *** Upstream (headworks) Elevation = 54.490(Ft.) Downstream (outlet) Elevation = 54.190(Ft.) Runoff/Flow Distance = 63.800(Ft.) Maximum flow rate in channel(s) = 5.900(CFS) Top of street segment elevation = 54.490(Ft.) End of street segment elevation = 54.190(Ft.) Length of street segment = 63.800(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.700(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Half street cross section data points: X-coordinate (Ft.) Y-coordinate (Ft.) 0.0000 0.7400 right of way 12.0000 0.5000 top of curb 12.0000 0.0000 flow line 13.5000 0.1417 gutter end 13.5000 0.1417 grade break 32.0000 0.5117 crown Depth of flow = 0.445(Ft.) Average velocity = 2.061(Ft/s) Total flow rate in 1/2 street = 5.900(CFS) Streetflow hydraulics: Halfstreet flow width (curb to crown) = 16.669(Ft.) Average flow velocity = 2.06(Ft/s) Channel including Gutter and area towards property line: Flow width = 1.500(Ft.) Flow Area = 0.561(Sq.Ft) velocity = 2.860(Ft/s) Flow Rate = 1.605(CFS) Froude No. = 0.8239 Channel from outside edge of gutter towards grade break: Flow Width = 0.000(Ft.) Flow Area = 0.000(Sq.Ft) Velocity = 0.000(Ft/s) Flow Rate = 0.000(CFS) Froude No. = 0.0000 channel from grade break to crown: Flow Width = 15.169(Ft.) Flow Area = 2.301(Sq.Ft) velocity = 1.867(Ft/s) Flow Rate = 4.295(CFS) Froude No. = 0.8446 Total flow rate in street = 5.900(CFS) H24 PROJECT: Madison Square PACIFIC COAST TRACT: TRACT NO. 18657 CIVIL, INC. SUBJECT: CATCH BASIN INTERCEPTION CALCS. 30141 AGOURA ROAD,SUITE 200 DATE: June 2013 AGOURA HILLS,CA 91301-4311 PROP. CATCH BASIN AT ST. STA. 4+74.51 ON EIS OF 'B' STREET (Storm Drain's Catch Basin No. 4 on S.D. Line 'A') GIVEN:- a) Hydrology Subarea Designation: 11 to 9 b) Subarea Acreage = 2.43 Acres c) Subarea's Design 100-Yr. Flow Rate, Q = 7.9 cfs d) Street/Gutter Slope upstream of C.B. Opening, S = 0.5% e) Prop. Curb & Gutter Type: A2-6 (W=18") f) Half Street Width = 31.65' with 12' Parkway (on street knuckle) SOLUTION:- a) Local Sump Condition for Proposed Catch Basin b) Prop. Catch Basin Type: City of Fontana Std. No. 3004 c) Prop. Catch Basin Width & Local Depression Depth: W=10' with L.D.= 2" d) Per County of Orange EMA Local Drainage Manual's Page 5-42 for Capacity of Curb Opening Inlets in a Low Point or Sump:- Q (capacity) = 3.087 L H1'5 where L = W = 10' & H = (a + y) a = depth of depression of curb at inlet = 2" or 0.17' y = depth of flow in approach gutter = 0.50' (See Calc on Next Page) = 3.087x10x (0.17 + 0.50)1.5 = 16.9 cfs > Q(tributary) = 7.9 cfs e) Hence, 100% Interception Provided. 18657-CB-Interception-Calc.xls HZS CIVILCADD/CIVILDESIGN Engineering Software, (c) 2004 Version 7.0 TRACT NO. 18657 - MADISON SQUARE CATCH BASIN INTERCEPTION CAPACITY CALCULATION C.B. NO. 4 AT ST. STA. 4+74.51 ON E/S OF 'B' STRFFT SPPWC STD. PLAN NO. 300-3, W=10' WITH L.D.=2" CASE 'E' Program License Serial Number 6143 *** Street Flow Analysis *** Upstream (headworks) Elevation = 54.180(Ft.) Downstream (outlet) Elevation = 53.800(Ft.) Runoff/Flow Distance = 72.980(Ft.) Maximum flow rate in channel(s) = 7.900(CFS) Top of street segment elevation = 54.180(Ft.) End of street segment elevation = 53.800(Ft.) Length of street segment = 72.980(Ft.) Height of curb above gutter flowline = 6.0(In.) width of half street (curb to crown) = 31.650(Ft.) Distance from crown to crossfall grade break = 30.150(Ft.) slope from gutter to grade break (v/hz) = 0.024 slope from grade break to crown (v/hz) = 0.024 street flow is on [1] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.700(in.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Half street cross section data points: x-coordinate (Ft.) Y-coordinate (Ft.) 0.0000 0.7400 right of way 12.0000 0.5000 top of curb 12.0000 0.0000 flow line 13.5000 0.1417 gutter end 13.5000 0.1417 grade break 43.6500 0.8502 crown Depth of flow = 0.496(Ft.) Average velocity = 2. 92(Ft/s) Total flow rate in 1/2 street = 7.900(CFS) streetflow hydraulics: Halfstreet flow width (curb to crown) = 16.563(Ft.) Average flow velocity = 2.39(Ft/s) Channel including Gutter and area towards property line: Flow width = 1.500(Ft.) Flow Area = 0.637(Sq.Ft) velocity = 3.238(Ft/s) Flow Rate = 2.063(CFS) Froude No. = 0.8755 Channel from outside edge of gutter towards grade break: Flow width = 0.000(Ft.) Flow Area = 0.000(Sq.Ft) velocity = 0.000(Ft/s) Flow Rate = 0.000(CFS) Froude No. = 0.0000 Channel from grade break to crown: Flow width = 15.063(Ft.) Flow Area = 2.666(Sq.Ft) velocity = 2.189(Ft/s) Flow Rate = 5.837(CFS) Froude No. = 0.9171 Total flow rate in street = 7.900(CFS) H2G PROJECT: Madison Square PACIFIC COAST TRACT: TRACT NO. 18657 CIVIL, INC. SUBJECT: CATCH BASIN INTERCEPTION CALCS. 30141 AGOURA ROAD,SUITE 200 DATE: June 2013 AGOURA HILLS,CA 91301-4311 PROP. CATCH BASIN AT ST. STA. 16+34.00 ON W/S OF JUNIPER AVE. (Storm Drain's Catch Basin No. 5 join to Exist. Lateral 'F' per City Dwq. #3614) GIVEN:- a) Hydrology Subarea Designation: 15 to 16 b) Subarea Acreage = 1.08 Acres c) Subarea's Design 100-Yr. Flow Rate, Q = 3.63 cfs d) Street/Gutter Slope upstream of C.B. Opening, S = 1.8% e) Prop. Curb & Gutter Type: A2-8 (W=24") f) Half Street Width = 22' with 12' Parkway SOLUTION:- a) Flow-by or Continuous Grade Condition for Proposed Catch Basin b) Prop. Catch Basin Type: City of Fontana Std. No. 3004 c) Prop. Catch Basin Width & Local Depression Depth: W=10' with L.D.= 2" d) Per County of Orange EMA Local Drainage Manual's Page 5-37 for Capacity of Curb Opening Inlets with Partial Interception Q (capacity) = 0.7 L (a + y)1•5 where L = W = 10' & a = depth of depression of curb at inlet = 4" or 0.33' y = depth of flow in approach gutter = 0.33' (See Calc on Next Page) = 0.7 x 10 x (0.33 + 0.33)1'5 = 3.75 cfs > Q(tributary) = 3.63 cfs e) Hence, 100% Interception Provided. 18657-CB-Interception-Calc.xls HZ CIVILCADD/CIVILDESIGN Engineering Software, (c) 2004 Version 7.0 TRACT NO. 18657 - MADISON SQUARE CATCH BASIN INTERCEPTION CAPACITY CALCULATION C.B. NO._._5AT ST. STA. 16+34.00 ON w/S OF JUNIPER AVE. SPPWC STD. PLAN NO. 300-3, W=10' WITH L.D.=2" CASE 'E' Program License serial Number 6143 *** Street Flow Analysis *** Upstream (headworks) Elevation = 53.400(Ft.) Downstream (outlet) Elevation = 52.950(Ft.) Runoff/Flow Distance = 24.900(Ft.) Maximum flow rate in channel (s) = 3.630(CFS) Top of street segment elevation = 53.400(Ft.) End of street segment elevation = 52.950(Ft.) Length of street segment = 24.900(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 22.000(Ft.) Distance from crown to crossfall grade break = 20.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Half street cross section data points: X-coordinate (Ft.) Y-coordinate (Ft.) 0.0000 0.9067 right of way 12.0000 0.6667 top of curb 12.0000 0.0000 flow line 14.0000 0.1667 gutter end 14.0000 0.1667 grade break 34.0000 0.5667 crown Depth of flow = 0.332(Ft.) Average velocity = 3.080(Ft/s) Total flow rate in 1/2 street = 3.630(CFS) Streetflow hydraulics: Halfstreet flow width (curb to crown) = 10.256(Ft.) Average flow velocity = 3.08(Ft/s) Channel including Gutter and area towards property line: Flow Width = 2.000(Ft.) Flow Area = 0.497(Sq.Ft) velocity = 4.222(Ft/s) Flow Rate = 2.098(CFS) Froude No. = 1.4926 Channel from outside edge of gutter towards grade break: Flow Width = 0.000(Ft.) Flow Area = 0.000(Sq.Ft) velocity = 0.000(Ft/s) Flow Rate = 0.000(CFS) Froude No. = 0.0000 Channel from grade break to crown: Flow width = 8.256(Ft.) Flow Area = 0.682(Sq.Ft) velocity = 2.248(Ft/s) Flow Rate = 1.532(CFS) Froude No. = 1.3786 Total flow rate in street = 3.630(CFS) HZ3 FULL FLOW CAPACITY CALCULATIONS FOR PROPOSED 8" PVC STORM DRAIN PIPE ON LOTS 1 TO 15 N29 CIRCULAR CONDUIT FLOW (Normal & Critical Depth Computation) Project: Tract No. 18657 - Madison Square Pipe ID: FULL FLOW CAPACITY -6" PVC S.D. Pipe on Lots 1 to 15 -Slope at 1.0% Min. Tc e } A { I) Design Information(Input) Pipe Invert Slope So= 0.0100 ft/ft Pipe Manning's n-value n= 0.0120 Pipe Diameter D= 6.00 inches Design discharge Q= 0.61 cfs Full-flow Capacity(Calculated! Full-flow area Af= 0.20 sq ft Full-flow wetted perimeter Pf= 1.57 ft Half Central Angle Theta= 3.14 radians Full-flow capacity Qf= 0.61 cfs Calculation of Normal Flow Condition Half Central Angle(0<Theta<3.14) Theta= 2.27 radians Flow area An= 0.17 sq ft Top width Tn= 0.38 ft Wetted perimeter Pn= 1.13 ft Flow depth Yn= 0.41 ft Flow velocity Vn= 3.54 fps Discharge Qn= 0.61 cfs Percent Full Flow Flow= 100.00% of full flow Normal Depth Froude Number Frn= 0.93 subcritical Calculation of Critical Flow Condition Half Central Angle(0<Theta-c<3.14) Theta-c= 2.20 radians Critical flow area Ac= 0.17 sq ft Critical top width Tc= 0.40 ft Critical flow depth Yc= 0.40 ft Critical flow velocity Vc= 3.65 fps Critical Depth Froude Number Frc= 1.00 UD-Culvert_6 PVC.xls, Pipe H- I J INTERCEPTION CAPACITY CALCULATIONS FOR PROPOSED GRATED DROP INLETS 1-ks1 GRATED DROP INLET INTERCEPTION CAPACITY CALCULATION FOR PROPOSED 12"x12" SQUARE GRATED INLET ON LOTS 1 to 15 The Calculation below Used Maximum Ponding Depth at the Inlet of 3 Inches Deep. Proposed Use of NDS Square Area Drain 12"x12" Grated Inlet (Model No. 1212) For Shallow Ponding Depth, Grate Perimeter controls over Grate Area (See Appendix A) Q = Discharge (cfs) = 100-Year Q of 0.75 cfs Apply 50% Clogging Factor to the Calculated Perimeter Length P = L = Inlet Opening Perimeter (ft) a = Length of Opening (ft) b = Width of Opening (ft) Use Weir Equation, Q = CLH' 5 where C=3.0 , L = Perimeter of Grate , and H = 3" depth Hence, Q = 3.0 x P x (0.25)'5 or P = Q ! [3.0 x (0.25)1'51 CALCULATED PROPOSED SIZES Hydrology Size of DESIGN Q QIP P P effective min. a min. b a b Node No. Grated Drop Inlet (cfs) ( cfs/ft) ( ft ) (ft) (ft) ( ft) (ft) (ft) Grated 12" x 12" 0.75 0.38 2.00 4.00 1.00 1.00 1.00 1.00 Drop Inlets on (For Each (Applies (Each Proposed Rear Grate Clogging 12" x 12" Grated Yard of Inlet) Factor) Drop Inlet can Lots 1 to Intercept up to 15 0.75 cfs of Runoff) HSZ GRATED DROP INLET INTERCEPTION CAPACITY CALCULATION FOR PROPOSED 18"x18" SQUARE GRATED INLET ON WATER QUALITY LOT D The Calculation below Used Maximum Ponding Depth at the Inlet of 3 Inches Deep. Proposed Use of NDS Square Area Drain 18"x18" Grated Inlet (Model No. 1818) For Shallow Ponding Depth, Grate Perimeter controls over Grate Area (See Appendix A) Q = Discharge (cfs) = Peak 100-Year Q of 1.1 cfs Apply 50% Clogging Factor to the Calculated Perimeter Length P = L = Inlet Opening Perimeter (ft) a = Length of Opening (ft) b = Width of Opening (ft) Use Weir Equation, Q = CLH1'5where C=3.0 , L = Perimeter of Grate , and H = 3" depth Hence, Q = 3.0 x P x (0.25)." or P = Q / [3.0 x (0.25)1'53 CALCULATED PROPOSED SIZES Size of Hydrology DESIGN Q P P effective min. a min. b a Grated Node No. Drop Inlet (cfs) ( cfs/ft) (ft) (ft) (ft) (ft) (ft) (ft) 13 to 12 18" x 18" 1.10 0.38 2.93 5.87 1.47 1.47 1.50 1.50 in Water Quality (For Each (Apply Lot D Grate 50% (Each Proposed Inlet) Clogging 18" x 18" Grated Factor) Drop Inlet can Intercept up to 1.1 cfs of Runoff) HYDRAULIC CAPACITY CALCULATION FOR PROPOSED PARKWAY DRAIN PER SPPWC STD. PLAN NO. 151 -2, S=6' BOX CONDUIT FLOW (Normal & Critical Depth Computation) Project: Tract No. 18657 - Prop. Parkway Drain on Juniper Ave. as Emergency Outlet Box ID: Full Flow Capacity of Parkway Drain per SPPWC Standard Plan No. 151-2, S=6' A Y H w Design Information(Input) Box conduit invert slope So= 0.0200 ft/ft Box Manning's n-value n= 0.0130 Box Width W= 6.00 ft Box Height H= 0.33 ft Design discharge Q= 9.32 cfs Full-flow capacity(Calculated) Full-flow area Af= 1.98 sq ft Full-flow wetted perimeter Pf= 12.66 ft Full-flow capacity Qf= 9.32 cfs Calculations of Normal Flow Condition Normal flow depth(<H) Yn= 0.25 ft Flow area An= 1.52 sq ft Wetted perimeter Pn= 6.51 ft Flow velocity Vn= 6.14 fps Discharge Qn= 9.33 cfs Percent Full Flow = 100.11% of full flow Normal Depth Froude Number Fr„= 2.15 supercritical Calculation of Critical Flow Condition Critical flow depth Yc= 0.42 ft Critical flow area Ac= 2.53 sq ft Critical flow velocity Vc= 3.68 fps Critical Depth Froude Number Frc= 1.00 UD-Culvert_Curb Outlet.xls, Box RSS HYDRAULIC CAPACITY CALCULATION FOR OVERFLOW GRASSY SWALE ON LOT D Normal Flow Analysis - Trapezoidal Channel Project: Tract No. 18657 - Hydraulic Capacity of 6'Wide Overflow Grass Swale Channel ID: Use Manning's n of 0.035 for Vegetated or Grassed Lined Swales F c T �/ Y 1� � VO 1 Z1 E $2 Design Information (Input) Channel Invert Slope So= 0.0100 ft/ft Manning's n n= 0.035 Bottom Width B= 6.00 ft Left Side Slope Z1 = 3.00 ft/ft Right Side Slope Z2= 3.00 ft/ft Freeboard Height F= 0.00 ft Design Water Depth Y= 1.00 ft Normal Flow Condtion (Calculated) Discharge Q= 31.07 cfs Froude Number Fr= 0.70 Flow Velocity V= 3.45 fps Flow Area A= 9.00 sq ft Top Width T= 12.00 ft Wetted Perimeter P= 12.32 ft Hydraulic Radius R= 0.73 ft Hydraulic Depth D= 0.75 ft Specific Energy Es= 1.19 ft Centroid of Flow Area Yo= 0.44 ft Specific Force Fs= 0.46 kip • 18657_UD-Channles_v1.04.XLS, Basics ��� Critical Flow Analysis - Trapezoidal Channel Project: Tract No. 18657 - Hydraulic Capacity of 6'Wide Overflow Grass Swale Channel ID: Use Manning's n of 0.035 for Vegetated or Grassed Lined Swales F e (� Ya F., I1 Z1 < Z2 Design Information (Input) Bottom Width B= 6.00 ft Left Side Slope Z1 = 3.00 ft/ft Right Side Slope Z2= 3.00 ft/ft Design Discharge Q= 27.60 cfs Critical Flow Condition(Calculated) Critical Flow Depth Y= 0.76 ft Critical Flow Area A= 6.29 sq ft Critical Top Width T= 10.56 ft Critical Hydraulic Depth D= 0.60 ft Critical Flow Velocity V= 4.39 fps Froude Number Fr= 1.00 Critical Wetted Perimeter P= 10.81 ft Critical Hydraulic Radius R= 0:58 ft Critical (min)Specific Energy Esc= 1.06 ft Centroid on the Critical Flow Area Yoc= 0.31 ft Critical (min) Specific Force Fsc= 0.36 kip 18657_UD-Channles_v1.04.XLS, Basics u B WATER SURFACE PROFILE GRADIENT CALCULATIONS FOR STORM DRAIN LINE 'A' & LATERALS & EXISTING LATERAL 'F' PER CITY DWG. NO. 3614 EXIST. STORM DRAIN LATERAL 'F' PER CITY DWG. NO. 3614 c4 0 0 2HI d 0 0 o m X • H O Hi N Z v E Q Q it >- L1.1 K it W Z z H O < Z H X O 0 Qrn w w a0 n. Q * O v v X p ›- O_ 0- Z + N N X 000,O O X n > X CO W O Z k u JO H • X O 0 >- C7 • -0 X O 0 Z IIW Z X • • Q V) X > <0 X N. W 0]H X V)O J X >- 7 0 W X 0 • V) \ * Lt-1 Lri O O0 LD 3 (..7 H -'( N N v 2 0 X >- V) 2* w� w0o a*.-, Ct Ln J • J • 3 LU X 01 u W CO W 0 0 X >- d' 2 X VI•7/- V) gX 3� 3 H p* it u Z _1 Z X L7>. 0 H Q X O 0 H I- H H * rn 01 H • • • V)i m 0 > H W X Hi Hi W CC 0 X J} V) J U X LU X z_ a X . H(4.) CC CC l7 LU> X O 0 v X LU Z 0 W X H} > H 7 J X 0 H in Z VH) • V)W X LL r H H 0! 0 W HI X• m J J X Ch CO CIO >- v1- W l7 HI Q W a l7J X 64 O•N • N 0 W l7 H LL H Z0 0 J CCH Lu W•U-_X 01 •01 0 Z>O H rn 0 i~/) LL LL •Z0 X d' V• 0 Q Z 2 F• • 0 H O! 12 . w W� X HI HI O 2 H O V) LU 0 Z J 0 d 0 0..U H CC Z LU V) -I J 7 l7 0 0 Z LU • 0 W* M 01M 0 cc 0 0' 3 F- < < U 0JQa* 1• L . 0 J N 2 V) 0 z U I- cc K W>S LL is OSi Q 0 0 H U Z >- 0 H I- V) 7 Q V)X •V) O 0 0 LU N H nZ W V)0 0 .....• z • rio CC J NH U 2X X X -J KO .H it it HH �'O • U-1 H Q K 0 J LU F F H w z X r LO QU0 U0 UOZ HZV) HJ M X M H M LU • LU W M W M W M H H Q0 OLU X H - 00 0 U 2 I I D_ v) I V) in V) z 3 V) n> X l.0 O ^ J r-I0 2 V)0 W f� LL U W X X H ZZ 0 • .p (•'•J F O F•O F•O(.2LU > 2 •• • X Ly J w 7QH J Ln = 0_' J Ce LU O W H X _ n H X V)co 3 U- CO _J = LHL W • W W 'CO C7 • N X N N %J 0Cr ri 0 0 Z in Z Z'd 3 Z I c a * HI HI U- HI LU LU HI K 12 CL M 2 H Ch H Ch 1-1•71"0 0 N. U a X M M /� 7 rn0 QHF- 0 o V Iw- Ln 0- `� H riZ H 1.0 a X ii Z Q Q W CO 0 0 H I- 00H * H WOZ 3HQ N U H J m UX 00X 0 Z . > ,--i •i0 X 2 Z W W H U- l7 • U ON 0Ch 0t Z J H ••M X Q 2 0 CC Q Z U 0 H O H Ct V)H 0 W U Ln X ,-i V1 -•-+ 7170 7 Z H 7 I-O F-0 I-i0 H Q •i1 X Cr O O'33- in Q I- • in QHI Q,-iceQHiI- w • •> X • • I-- v) O H F- H O F• < U F- m in w LU W r CO 00 11 II Z2 Z H 0 CC V) V) 3 V) F- Q J •71- Z}}I-HMM H S W 0 X W J 0 7 LL Q .U3 W CY O H •o o O_Q H U- LU d Q < Q • * Hi H HU • • W H 3 30Q < SQ 0 V) H 0- X <wp Q3 s< Q sQ �i a Z � Oa 3 tc r-i in 00 0- • �O V❑ LU p 0 LU U- Cl.I O - 0 l0 ) V ) Q V) V)V) K Q O.LL X L!1 IN LL V )V N. L 000 Ow it I I U) �� c}n� LU 3 pLL V):: .4 rn rn M 0HX CD Z O_ I 0 . CO J0la - OO H H H < < < 0 - � • r-I g-Cf 0 V) V) V) U X • W H N MH H H Z E> X CtNO Q UF- 2} CI' 0 0 0 HI N M LU N >-J X •.o >JOX M1010 /� agQ rii-I OF Z Z Z cC 0 Hw`n4 � • (j/'� ~ ••000 LU LU LU 0 H Z z Z 0 0 0 Z * HI HI Q Z • • U 0 0 H H H Z Z Z d' l7 X Z Q O� V) M J J J LU Z X 01ri0 F- • 0 0 l7 l7 l7 Z Z Z F- Z 0 5 X 00 HI • '/� Z •H HZ Z Z W W W H 0_' H 1.11* N ri CI- V I • O a. O W H H H 5 2 g 0 Q H JX OC'' U- • cc 0 0 0 w w W w 3 < WX o 0 HI NM 2 UUU U < < < LU W LU 0 X V J* HI HI ~~~VI 2 NZ X HI 0 H0000000HI00 0 0 HI 0 0X 000r-I STORM DRAIN LINE 'A' H47 o! 0 0 0 2 2 H1 0- 0 0 0 r, 0 0 m * H O r-I IN <HI Z> * >- w z W Z z I-O HO < z H * O 0 0 Qrn w w a• o o 0 a a * i- a� l7 l7 l7 l7 0 * 00000 } a < Q Q + _J N* •0000 * r, > J0 JO H • * 0 0 0 } 17 • l7 • N 0 * 0 0 0 Z Z II W Z * • < < V) ,� > Q0 •x N. W CO * L/ V)O V)0 J >- 2 O 2 O W x H • H • * 0 0 0 _ 0 0 V) N * III Ln Ln lfl CL De 3 l7 H * N N N L_./ 20 is >- - * VI 2* >,-i >0 0 H* r-1 W d• W O Y 0.* 00 r-I Ln J • J • 3 W* H N L/ W C1 LU 0 0* >- d' 2 * r-I HI V)V' V) g* HI Z d'* r� 3 3 H 0* v zi< z JQ * 61 z}H > H VX * Q1 N. N. m Q H 0_ * r-I r-I r-I �>- a > >•0Wp * >U * H W < * zemz * HHN in 0C l7 WW> it 0 O O v } W HZ > H H 2 J 41 0 0 H V1 0 H V) 2 w * LL r� } to H n 41 0 0 W HI in * V) J i * 0 M 00 00 0� M `Cr J Z>- • it 61MOLn0 >- 0- CO l7 r-I N < w 0 l7 J * •r-I •0 • 00 J E • Z Z0 Z0 2 J a W LL* 61 •0 •0 W l7 W U U H 0' H Ln W •2* d- in Ln Z a z o: H w LL 4*Z 0 * 41- d 0 0 Z>0 H < LL O V) 0 •W Cl! * r-I H1 HI 0 0 2 ZZ Ce p I- 0' 0 H H o_' CC • CO L7 * 0 a 00 0_V H V1 LU * • V) J < LU 0 Z WQ' W* Cr)rl)61M61 WI Z LU H o! < 0 Q 0 0>* �Ind•�d' 00 cc 0 0 cc V) < 2 Q2 . HJQQ* •tet •v1 • Q 0 0 J N z v1 H >- U H LLQ' w w * 0 HI < H V) in a V1 E >2 Li.* 0 0 Ce 0 0 H U 0 Z H (f) 2 - W (i)* 0 0 LL < 3 a z V) V)z W H * CL 0 w a 0 g W W O .4 * L.5 a_J J 0 U E* i * * J a V) >- Z Z H 0 0 0-N I- 1 W H H H H 17 LU H 41 N N N H 2d'00 H I E J 00 VO 00 VOZ V) I-0 J * CD LO LO H • • • LU H N. 0 W w rn lain" W M 11.11-n1-1 H << - • W * V1 7 C1 0 0 U Ln 2' V) Vl V) V) Z 3 E • > * V1 u1 Ln H d'00 < 2 I LO < LL I Z Z • * -J •d'00 LL LU I- 00 - * * * H WI * H 0 0 D_'u10 W HI W W I-O HM HO HO 17 > I g * LU 2QH J W 0_ J am 0_'61 (1O IC OW H N. • * _J *k V)CO 3 H • Z H H W • W • W • W •m 12 vt- •.• -k UD lO 10 H IL 0 H 0- LL >(D >LD >N >N LC) -1 * . LL • CO 0! 0 Z J 0 Zd' Zd- Z"lr Zd'3 Z 00- * N. N N- m • LUHo: K H cc Hd- H szt Hyr Hd'0 0 H 0' * N N N H W H LU 0 0- I- • W a r-I r-I r-I r-i Z H d * 0 Q 3=w • w In Q • I_ w 0 0 0 •V) Q 0 , • * Z 2 • H l7 E N U o' V) 2 U* Ln* 0* 0 O H > Z * H O• H Q < I- 0 < Z • Z • Z • Z • LU * V) i E W H LL 0 LL 0 LD O 1r1 000 000 Z J I- * a W 10 Q' < W 0- 0 H N H Vt H in V)H In 0 W U •. * H1 d• 61 Z H 2 Z V1 U 2 H. H H Y H H Q * -4. Ln In ON .•>- V) Q 0 K L1 < < < K Q H W C .> cc H 0 HH H H O H Q U H • V)W * rn rn rn H LU 2' Z O OCWV) V) LI 3VI I- < • •J * tt vi- Q • • r-I HI N 0_F- H 0 a O H J < 2 LL 0Q • 3 W * d• d• •:1- < - 0.0 0 Q (11 Q2 w 0- 2 Z * HI HI HI >H 3 3O< <H 1- IQ- < 00 ut H0 * 1 mi Q a< Q Q 2 Q I a O .. 3 * r-I H 61 N • WO 20 20 WO 0 w LL 20 * HI LO to LLOO- • .1 • LL V) VH)(/) Q(/) Q VI IA V) K Q d LL * Cl'.) N N cc }\ W\ WN }N W3 LU * H 0000 0WI I I V)2 K2 O!2 N2 H 0 LL it • rnM rnM 0 H Z 0- V) V) V) < < < < 2 I 0 0 . OMO H H H 0 * * Z rnCrl0 I N Cl) H H H H Z cc0 > * •W r- * Cl)H 61 Cl)0 O • d'.:I-d' 2} d' 0 0 0 H N Cl) d' W N W W * •N •IN Q , �d-cr OH z z z In • zwV)* Tro`to� HI HI HI cc 0 H it d' •d- •d H •V100 I- Z Z Z 0 0 0 0 0 Z • * Q • • • • 0 0 O H H H Z Z Z Z o_ l7 * ZZ . .�Nin00 UJ Cr) J J J W Z * 00000 in Ln H H F- H H Z * in in 000 H • l7 l7 l7 Z Z Z Z H Z 0 X* • • • • • Z •: Z Z Z W W W W H o_' H W* LC)00 V1 M 00 0 •••• OW H H H 2 E E 2 0 3 < W* NNu'1 L11 LL • CY Q 0 0 0 0 W W W W W r-I NMO 2 L./L.) U W W W W W W W 0 * V) J* HHHina ce in 2 2 2 Z * * H 0 r-I 0000000 r-I 00 0 0 0 r-I 0 0* 00000 W ‘0 = = ,•1 0. 0 /1 CD 0 CO * • HO HI 1-‘1 Z Z > * H < < < * * ›- LL/ CL * 0 0 L., ow 41c) LJJ Z Z I-0 I--CD Q ZH * 0.0 0_CD L.)0- 0- * <C) LI.! LI.! -g 0_,-, LP L7 L.7 L.7 0 * o >- < < z z _.1 et* o a a < < + N N-I' • * > * 00 U..1 0 111 0 Z * ,..., _J0 _J0 H • ir 0 >- g..7 • 0 • '--0410 z Z II Lu z -z • < < Ln -,% ,--, <0 N- W 03 H * L.., 0 0 0 0 -J * ›- ,o 0 CD LLJ * H • H • 410 C C 0 -•,.. * Lr1 < < H< * • '.0 cc cc 3 L.7 H 41C'.1 ,-., mo * >- - * If) I.!' >0) >0 0 I-* r-, LU 0 U.10 Y 0.1' LPI -1 • ._J • 3 LU-I' ••-../ LUC) UJ 0 041 ›- •:t 2 * 0•c1- 0 M* H z cc* H 041 .4- z* ,....., z _i -It 0 * crl Z Lu H 5. .? r•-• H F- H HF- * • I-p--, 0 Q -3- 41H 0 ra ›- > H W ic H'..0 0 LU X CZ 0 * --1 LUL) * a. Lu I- * Z E in * L.) I- >-et 410 H NI CL L.7 in w> it 0 f-'.-./ = * 1.1.1 Z 0-UJ -g • H>- U > HI 0- -1 * Z E Z z I- 7 in W -ic 00 H Lu H H 0 U * U-f-, I- I H * 0 0 W HI 0 I-4 En _I 2 it 00 C CD 0,-, >- N. 'CI' M .-1 U›- • * 0 • • ›- Ln L7 IN HI < LU ZL7.-1 * • 0 0 -J 2 Z Z 0 Z 0 0 J H CL U.1 U-* 0 LU L LU 0- U H 0' H I W •I* Lf) Z OL. Z W Z u..1 I- U.1 11_ NI Z 0 * ‘/- 0 0 Z>0 H < U I- 0 0 N.LIJ CL 41H 00 <Z CL H O Z H Ce Ce L7 * • • 2 HO 0 0' LJ- 0 -I 0 a 2 * 00 3-U H 0 0 U w • U * Li) _J 0 Z LU cc LLI W410) z I Z E 0 04 Q U Q H C>ic 't 00 1:4 0 0 Q H Q I Q 0 Z--1•gt .‹* • 00 LUN CZ 0 LU U I- U_0.u_0 w UJ * • • ..J Q H Ce I- Ce 0 t.)>2 U-* 00 H i-) 0 I- H I- 0 0 0* 00 LI_ < 0 Z Z 0 0 Z Q -I, 0 LU E a. 0 LU U-I 0 •• H * L7 • W-1 J D E* * * * J Ce 0 LU * Z CT 0 0 0.N F- I U LU I- I- H I- L7 WHH * 0 H In CD 0 H I tl- .-J UCD UCD U0 UOZ 0 1-0I-H-1 ic LL) H • • • W H N. 00 U.I LU rel LU n1 LU M U.1 rn H H Q Q 0 Z LU * • Ln cri 0 0 U it, - I in in Ln ti) z 32 . D> 4' LP) H ‘:1-0 0 < 1 I 1.0 •cr 0 I Z Z D * _1 a .‹I.0 0 LL LU H CO - > * * * H LU I U * H H 00 rY if)0 LU H 0 LU HO i-rtn I-HI H H LP > 1 cr * LU I 0<H -J LU -J W H Ce HI CL es1 ce CN Lu H N. 00 * J 10 03 3 H • Z M H LU • LU • U.1 • LU •CO 1.7 In- I -gun H N. LL 0 H 0 LL >N.. >N- >N- >N- 17<0 it • L.L et 0 Z -J CL 0 Z`ct Z'41 Z V' Z41 3 Z 00- > N- 2 L11 H CL cc LL et H•zzl- H•cl- H•cr H'71'0 0 HI 0 0' -g r•J I- LU a.U I- LU 0 0- I- • a H H H H Z H LU -ii 0 et 2 UJ <F- I- LJ-1 U 0 1.1.1 I- •Z X * 0- <U H 3 2 LU • LU < • CL LU 0 0 0 0 0 < 0 H 0 * Z 7 Z L.7 Z NJ U = 0 H U-I' 011 CD.1, 0, OH > Z._!,CC * CY H Li-0 H Q Q I- 0- Q Z • Z • Z • Z • LU V) iii U uJ H U- 0 U.. 00 Orr) OH OHIZ -J I- 10LL -X * 3 Q W O. OL HO HO H i---10 I-1 HI 0 U.1 U 0 LLI 410) Z 0 0 Z in U 0 I-r-I H HI H H Y H 1-1 H * 0 '1 • • 0 - I-- 0 < 0 CL 0 < < < CC< H Lu g 0tt'l > 41 0 L.L1 CL I- 12. I-I- I- H OH < U I- la.0 Ill * al HH U.1 CC Z 0 - CC U.1 0 0 0 30 I- Q 0 •-J * v.I. 0 I-H •.:!-rn HI UJ 0 c t 0 LU_i 0 0 U. •ct LL.i CL LU * •:1' Q Z (NH 3-H F- LL 0- rr) I-F- < 0- 0 Z Li" (-) * HI E CL 0 00 0 < <0 U.1 Z 0 QOW * 7 • • LLI H 3 30< < < M< 0 In 1-01 * 1 U >3 I- I- I- I- V Z 0 r. it 1 Cr < Z< < < M < 1 W 00 * M N- CO UJ 0 10 10 UJ C 0 LL1 Li-0.IrflIO * '41- 0- I H V U F- LU I- I--J * • LO • 0 U.!)) 00 Q0 Q0 00 W Q 0-LI.. * N CO- > 0 CC ).-",. W\ W\ ›.-\ W 3 LU ic HI 00000 LU I I I 02 c1D CD In F- DU- it mmmi-n 0 H Z I 0 * • M Z 0- 0 (f) 0 < < < < 0 * O 0 0 rn1-1 I-I H H 0 * * Z CL H H NJ 0 0 0 0 U * I-- it 0 LU HI Ni fil H H H H Z et> 41H 1. • N.N.N. Z 0- W N U.1 LU * • i...)0 LLI IT'I'Ci" 2).- 1" 0 0 0 H NI rn cf > -1 0* N. Q 0-cr scrizt VI- Z Z Z in • Z UJ 0* CY W Hi--11-11--1 Ce 0 H * Cr 1- 0-1000 LU LU LU 0 Z * HI 0 0 0 0 I- Z Z Z 0 0 0 0 CL -It < 3. • • • VO 0 H H H Z Z Z z et 1-7 it Z U 0 rn H w Z frI -J ..J J LU Z * 0 < . I0CDH 0 H I- H H H Z 410 I-- • H H,--i 1..7 LI 1..7 Z Z Z Z I- Z 0 M* • z • Z z Z Lu w w LU H w H LLI* 0 0 .4 0 OW H H H M M 7 E 0 < I- _1* 0 LL • re) CL 0 0 0 0 LU Lu W LU W 3 < w* ,--1 <0 0 < < < _.1 _i -J ...1 I-- "••••,-g r-ItNrel 0 I QV U Li U1 LU LU LU U-1 U.1 0 * 0 J* I-H I-u)ce ce in 2 I 2 Z * * H 0 H 0 0 0 0 0 0 0 H 00 0 0 0 H 0 041 0 H44 o 0 0 0 0 0 0 0 0 0 0 0 00000000 00000000 . . . . . . 0 0 o o 0 0 0 0 0 0 0 0 Ui Ui Lin r-‘1 r•4 NI NJ ‘.00 0 0 0 Lin lin Lin Lin NI IN H H Cn N 0 o 0 0 o 0 cm 0 H NJ rn .c) rn H NJ HOHMH %sort ej 0 .0 .0 .0 • •0 •0 .0 .0 \JAI Of) Lin Lel Ui un ▪ H H CY" 0 mcn Lo C r,, ,—,- ,.,-, • • H 0 0 Iicr . if) 0 0 0 0 0 0 0 rel Il j LO LID LO Ln Li" Lin Lin Lin Ui Lri Ui N. N. N NJ NJ NJ NJ NJ di• LC) LC) LD LC) LO C) CA Cn ▪ dt d- r di- dr dr H H H H OH 0 Lin Lin Lin tft • NJ NJ IN NJ H NJ H ni 0 di-0,1 Or-I0HOHON1 0 .0 •O .0 • H N.H N H N.H N. dt 0 dt 0 dr 0 dr •di- •dr •d- •d- H H HHCnOuni-riun0 00 Cn CCI a)00 . . . . . . . . m rr)N.H 0 0 0 H H 00000000H H4S ce 0 0 I Hi a 0 0 .-. 0 m • Ho r-I N ZZ > v g - > w 0 0 0 C7 o W 1 O 0 W Z Z -0 < Z H l C7.-. a 0 a a 4c aao�1 -L.7 t..3 U * 000 >- a << + N NN ce* • • • > 03 W Z � J 0 H • is 0 0 } C7 • \0 * 0 0 Z II W -) • • e-.. Q > <0 n W 03 H is s./ V)O J is >- 0 0 W is H • * 0 0 O V) \ 4 V1 in ' S < 1-< lfl OL 3 l7 H is N NJ L.-, 2 0 4c >- •1; V) S n W rn LU O OY 2- NJ L/1 J • J • 3 W is LO k.-/ W O LU 0 O x > em V1 I * r-I 0 V)st V) X W .-1 z CC x em 0 3 3 H 0 1' �/ J Z J z is C7>- U 0 I. < i Cr. o' Z H Z H I- Ur HI- * •N. • I- Q F-is. H1 H in H'- V) > H 0 J>- 0 J QUW CLO J W 4 H>- I-H H • 0J 0_LU � O 0 Z ZZ F- 0V)W •k • 0 _LL r 10 H H Lrl '' ' O O 0� .4- 0 M _J J >- • * CON00 >- 00 v C7 H < LU 4- C7 J 4 •0 O JI Z Z 0 0 J - awLLi 0 -O LU 0 w > F- H 0' H l0 W •2 4' V1 Ln Z 0- z ce v) H F- w LL ZO * 'cr '- Si • 0 Z>O H < 0 Z V) 0 0 W C is r-1 H 0 <Z ce F- O 0 H K OC -• L.7 ii • • 2 H 0 V) 0' LL J 0 a I 4 „� 0 a U H V) 0 U w>I-- •x V) J Ch 0 Z LU a'V)H W is o1 0 Cr) 1 Z 5 co na < U<OZ 0>4 V1 Cr 0 W 0 0 < I < I <0 OJ<<4' •.1- • 0 W N CV) LU V) U {- LL aLL W W is 0 J H a' > aV)OU>SLL4' 0 00 LI_ < V) 0 I- 1.11 VI O •zr In Z V7Z5 n • 0 W a 0 LU W VI - I •k C7 D!J J 0 F- 5 is is is J a'V) V1 -k Z 0 N 0 O N I- I W F- I- I- l7 W H •J> 4' O 0 H •IM0 H I cr J U0 U0 U0z v) I-01-0_1 4' l0 1.0 I- • • LU F- N. 4 W Wm Wrn WmH H << W is ^n V) ■0 0 U In - V) V) V) Z 3 5 • 0> tc Ln Lnt Y J Crv H In 0 < x i LO < 07 1 Z Z F- J 0 LL W F- 00 is H LU I is 1.0 H O a'V)0 LU r-I U W I-r-1 F-rn F-rn l7 > I d• is //�''\�� W • 0<H J W J OCN KM (M LU H N . * 41 J V)073 H • Z S H W • W • W W . C7 In- is Vt Ln �j H ' 0 LL 0 H 0 LL >n >N . >n 1.0 .1m sc • • U -• cc 0 z J a0 Z� Z� Z'3 Z 00- • 4' n N- I IS W H0C 0! LL 0- H H H H H H O H r1 V O' i' N N O LU< F- LU 0� a U 0• W a HI r-I r-I Z H •Q . Z 3ILU • LU Q • a LU o 0 01 V) < 0 �0 * CI_ Z 0 C7 5 NJ U V) H U'F 0'.' N N H > Z 2' is H 0' H< < I- 0- < Z • Z • Z • W LL do V) • W H U- 0 U- 000 Orn 0r Z J H * 2 0 CC < LU a K H1-1 H rn N H rn 0 W U • W 4' rV O1 Z 0 Z V) U 0 I-HI I-HiY I-- H Q Q. 41 m m tI I V)i• 't I 0_ < 0 Ce NI-H Fa- OFF- < U F- 0V)•w * 0 0 1 H •• W a' Z 0 - a'W V) V) 3 VI F- < • •J 4' Lo Ln 0 •M re) H S W 0 a' O W J 0 0 LL < a 3 W k . 01 w < HI H1 a I- I- LL a rn I-F- < a a' z U is H H (�jY.FJ' 2 • •00 0 < Q0 W 2 0 < • ce - wH 3 30< < SQ 0 VI F- • _ •, I a'>3 F- F- F- U Z •c is V I < 5< < 2< I O ••0 3 4' Hi L.0 N. • W 0 2 0 W O 0 W LL • 2 0 4' H 0 -.0 •I .•. V) F-V) Q V) F-V) Ce < d lLL LL 41 rn rn 00- 0 CC �� w� >•- LU 3 LU -1 H 0 0 0 OH I I I V)0 C0 V)0 Z I 0rn rn rn 0 i1 7 Z 0 V) V) V) < < < 0 4 O r-i� .NJ rn H H H v) V) V) OU •x F- isLinrn '/ Hi re" Z W H N M H H H Z CL> is N00rn F- NNS Z 0 LU NJ W W is •N. • U • T}•.1' I>• 0 0 0 r-1 NJ M >J 0- N O N CL 0 H C H HI V F- Z Z Z W N is tt F- • O Ol W W w 0 z '1 H H • o N F- Z z Z 0 0 0 0_ - Q • • • U O O H H H Z Z Z R C7 r z corn W Z M J .J J LU Z 00101 Q • •,r-I rn V) F- F- F- H Z 4k 0 NJ NJ F- • r-I HI (.7 C7 0 Z Z Z F- Z 0 2 Z •c Z Z Z W W W H W H LU is 00 to rn 0 ••- 0 W H H H 5 2 2 0 < F- J•k r-I H rn /J[ LL • 10 0 0 0 w w w w 3 < w- 'H 1-1 <0 0 < < < J J J F- -s' r-I NJrnO I U U U W W LU W W W 0 * V) Jis I-I- in 0 H0000000,-100 0 0 Z * 1--1 0 0•% 000r-I x 2 x 2 2 e--IO H N Z0 ZO ZO QO Z H < < < < } w Z z I-o sti'O F-O •0-0 F-O I-O I- Q61 W W a0• H0 a0 H0 a0 a0 a • a� >- a a < a < a� z z < * * 00 WO MO w0 MO we wt0 LU >- l7 • H• L • H• L0 L • 1J. 7 Z 2 4Z aD Z <0000 Z N 0 0 0 00 d-00 V)O in in '- H •O He • H• HN• H•HO H 0 a' 0 0!01 0 OLn 0 > g't Z zr-I >- H H /"1 W61 MO in 0 J • • • u w0 cGco ccO1 } v1 w 4t W 4- V)d' >.1- >,zt H Z H Z H J.-. 3 H H O M Z Lc) H V) d d rn Z H v H J} J Z Z Zt H N 0 J. H N W 0 v Lu rn rn H} I-C 0 0' 0' O 0 000 H in 0000000 W H '4 < J 0000000 In u rn • • • 0000000• J} • Z U L7 H r-I H ,--I rn H 000'4-000 w l7 CO O ce H ZO ZO ZO ZO ZO ZO Z OOOOOcc0 z>0 H U 2 0 V~) 00000010 <Z a' F- H N N SHO V) U. 2 0 J I O I .4 0In0N001c a U H O W 0V'0l00000 in 0 H 2 J J I N J 00000000 W 0 000 NJ 000 LU N 0L < din 6 H * H -1 5z 000010Vn0 H F i I NJ NJ H 000-0-0 U N CO 0 Z <NJ < J 00-0 0 0 w a LU J J L..7 Z H a'J J 2 U V) is * * * * * * * z H00001000000 a N I- w F- I- I- F- I- F- I- F- HW<01000N000 W H I g U J UO UO UO UO UV. U.4 U.7 U I- 0 > LU Wm LU rn LU rn Lu rn LU NJ WN LU EN LU cn w 0000001000 U - o! a V) in in in in V) V) V) H 0e0Une-0.4000 < 2 I < LL I J F-H.40 -c'4t000 LL WI— - :: * * * it * * * * V) H H 1-1 0C V)0 W 0 00 LU F-.Q F-O F-NJ F-CO I-00 I-Ln F-V1 F- w >- O rn JQH J LU LU J 0!'1' CZ N. KN 0!N aeN cc on a'.0- OC V)m 3 H Z a w H LU • LU • LU • w • LU • LU • w • LU HH * F- 0 l0 LL H H > LL >N >N >N >00 >6) >01 >O > •0W WHa'CZ 0 J a < 0 Hsc1- H•ct Hot H•c- Hit H.4 H•c1- H QLLI F-F- O Ln a 0 0J Ln a H H H H H H H d U 2 0 3 2 w • • W • K H LU co M 0 - H H N Z N Vn l7Z NN U V) U* H* O* N* 00* O* V1* H* H W Z O H< < - 0 < Z • z - Z • Z • Z • Z • Z • Z 0 LU v1 w H L.L. 0 0 F- W ON 0 L 00 ON 061 Orn 01- 0 0Z 20 0C LU m a' HM HN H00 H01 H61 HOl Hi0 H O V) r-I 2 I-r-1 F-H F-H F-M F-rn I-'c- F-to F- w 4t 0 N 0 a21 V) < < < < < < < < a'fk w 0! 0 - H a'a in W N V~) N in N (~n N N F- • •in rn In M in M M M H 2 w cc C- 0 W J V)CO 0 H H H H H H H H 0 F- F- a N J F-I- a •00000000 0=U w H <3 0< < z< < z< < < < I2U IN a3 E< < H< < H< < F- < WO 20 F-0 20 F-O x0 20 20 - CC 0. v <W NJ N LL V) V)V) <V) Z V) Ln }\ w\ 2-. W\ 2- W W\ W\ V)000000�V'Cr�c- ul OW I I I 02 CZ2 n2 CZ2 n2 C42 a'2 a'2 LU LU rn rn fnMNN NNN OH z a W Z a V) V) V) < < < < < < < < HH>LO0N0000Lnlnin H H H JaQ.4 NN NN6)•crN V) V) V1 V) V) V) N N w H N M H H H H H H H H •a NNNCO61010H Z 0. 0 U In"4.4'4'4..4.4-In Ln 2� .c-.c- 0 0 0 H N m 4� 0 t0 N co •aeH4t.4rt.4'.4�ct� U Z Z Z V) H H H H H H H H - -HHNO w w LU OO000rnO F-HONo00InH•ci F- Z z Z O O 0 O O 0 O O WM UO 'Tr0 H H H Z Z Z Z z Z Z Z V) H N Lin 0N01 M rt 01 W Z NM J J J O0 MNo0CS)Cr)Cr)10•:1- ul I- Q. V)HHHinrn -L1N C 7 l 7 C7 I- Z Z z z z z z 0: O~ Z Z Z w w w LU w w w LU O W H H H X g g a fN J CC 0 0 0 0 LU W w w LU LU w LU <0 0 0 < < < J J J J -J J J J H N M O X X I U U U U w LU LU LU w w w w w w w 1-F-F-V)CLnana'C40!V) S 2 2 H O H 0 0 0 0 0 0 0 H O O 0 0 0 O 0 0 O N47 C o o O o 0 o O o 0 o O C O O o v--H 0_ 00000000000 NJ 0. o o O o m i m < *• Q * it it W C it LU C it Q OLU * O 0 0 O O O O O O O 0 Z * 0 0 0 O Q H O a 0 it 0 a it U at it O it 0000000000000000000000 it 000000 J Cit 0000000000000000000000 J Cit 000000 + N Nic N Nit . . . . . . it i< > it it O Z is it O H • it o O O 0 O O O O O O O • it 0 0 O - 0 it O O o O O O O O O O O \0 it O 0 O II W Z it W Z it • V) it V) it > <O it W CO H it 133 H it O _J it it 0 UJ it it it O 0 o O O O O O O O O it o 0 0 Li) \ it Ln Ln Ln Ln 0 O o O 0 O O -. is O O O 3 U H it NJ NJ NJ N NJ NJ NJ N Ni Ni NJ U H it N N N 2O it 20 it it is V) 2it 2it W o 0_it O NJ Ln L/1 Ln Ln Ln Ln Ln 0.it Ln Ln Ln J • 3 LU it d- Ni Ln LA in Ln Ln Ln Ln LU it Ln Ln Ln LU 0 O it 0.# 2 it en c-I is V) 000 Zit tic r1HHZ Cit Cit 3 H OOOZit Zit 000 Z J it J is O O O OQ it e-I H lO LO rnM M rnM rnM Q is M M M • •H U 2 is Ln Ln NJ NJ CO LC) LO 1.0 l0 LO t0 U 2 is lO (0 LO > H W it r-I H H H H W it W C 0 it C O it II II II J U it U it W it it Z Z Z I- Z C it O (2 0 O o O 0 O O 0 o Z C it o 0 O W W W C (.7 H LLN> is o O O O O O O O O O O ( H W> it 0 O O IC X2gW Z Ja.W is Z Ja.W it • W W W> H Z2J it H ZJJ it CCCZ F HV)W it I- Hif)W it UUUH V) HQ it V) F-Q it Z Z Z H WX it H Wg it H H H V) J LU it M NJ H (.0 et Ln L0 l0 l0 C0 N. J LU it N. N. N. M J CO} • it N01re)e-Ier Lel L0HN .HN.0N 0 N.0 N.0 N.0 N.0 CC>- • i< N.ON.ON.0N. H < LU 1-1---L7...1 is •o •O •N •O •O •0 •O •O •O •O •O LU F-F-t7J is •O •O •O 0 2 -I VI C LU LL is H •H •H •r1 •r-I •H •r-I •r1 •r1 •c1 •r1 • J V) C LU LL it H •H •H • • Ln'M O• H }LU •2 it Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln H }LU •2 it Ln Ln Ln W 0�k Q F-LU C it H H H H H H H r1 H r1 H 0 k Q F-W C it r-I r-I r-I C C Z U C7 it C Z V 1,7 is F-F-F-O 0- •O W iL 0- •o L is W LU LU Z LU CO •H LU it Ln H Ln H rn N.MH N0 NJ 01 NJ 00 NJ OO N O Ni NJ NJ et LU CO •H LU it M N.M r-I NI'CI' EEEQ UV20 0>it NMNrnr-lr-IHOIONOHOHOHONONON VU20 0>it 0N0rn0M WWW 2 < • J Q Q K •N •NJ •H •0 •0 •O •O •O •O •O •O < • J Q Qit •O •O •O JJJF- LLLLg0 W W it 0 0 0 0 O O 0 O O 0 0 LJ-LLE0 W W it O O O W W W C 0 W>2 LL it O O 0 0 0 0 o O o O O C 0 W>2 LL it O O O V) 2 O Z 11)it 2 0 Z V)it H H H W Q~0 I N Q~O it it J C Wet in it C LU et in it F- U W W W LU C k it 1-1 H Ln Ln NJ N N. 00 M 01 et LU C* it O N . et et U et Z F F F-(r) F F J it o O CO 00 O O 0 O r-I r-I N F-F • •_J it M Cr) et NJ W N H gggH S a m > it et et NJ N H H H H H H H 3 d m > V) Zit r-I HH H HZ V V UW 2ULn * 2 V Ln it M I-mI7 VUU> 12U it 12V it N. ce N.LU <<<H O> it 0> 4t • LU •m Z Z Z U C d it n N. 0 O N N N N NJ N NJ - C a. it NJ NJ N H >H HHH QLL it QLL it LI) Z Ln 3 Z = >ti 01 01 et dr M M M M M M M - it M M M et H v O LU WLU0 V)00 0' it H H r-I H V)00 a it r1 H Z mmm H W LU it W LU it Ln >.}Q 0 O >- HH> is HH> it et etH QQQ> Jn.QLil _ it JNLQ it 01 O61Z ���J •a. i< -0. it et V)H et 0 I I 2 W 0 U Ln it 00 N. 00 M M et et et et et et 0 V Ln it et et et n Y F-N .H F-F-F- •C c-I it CI 0 N Ln N. N. N. N. N. N. N •C H it N. N. N. CQ F a.NL0-LLJ V) > it (f) •> is 0 F- < LU W LU Li ' 0 V)W it O H H r1 r1 H H H H H H - 0 V)LU it H H ri 3 V) I- 0 0 0< 0 O F •J it Ln Ln Ln in Ln Ln Ln Ln Ln Ln Ln 0 0 F- •J it Ln Ln Ln 0 2 LL w m 3 W it a et et et er et d' et et et et W M 3 LU it d' dr dr W a QJ QJ J j O c-I * H H H c-I H H ri r-I c-I H H O H ca * H H r-I 1< 0 V V U Ln a V) is a Ln it F U HHH 0: I- it 0: F at 2< I I-F I-C C d'0 3 it NJ N . LO Ln Le) 0 H 01 01 O M C et 0 3 it C0 0) et W 0 0 H H H LU a.NJ J I 0 it Ln m Ln N. et O 00 N . LID LD Ln a.N J J 2 0 it et M m I\ W VUU 3 W LL * Cr) M M N NJ NJ H H H H H W LL * H H H V)2 F- I I I O LL it 0 U it Q 2 NJ JN I 0 it O * N 0 M M M it it it V) U it F- is Cod'0 M N 0 0 et 0001 et 01 M C)in 00 Ln CO Cr 00 NJ 00 F- it 0100 Ln 00 H 00 H Z • • • C> it etmN.Len N.CN ONCN.001001000HCN0 C> it N0cif)0cto LU 000 NJ LU LU it •CO •M •Ln •r1 •N •N •N •N •N. •N •N LU LU it •N •N •N Cr) ZZZ >--10* N0N0N00000010010010010000000 >J0* 000000 Ln Z W V)it etOd'Od-Od'Od'Od'Od•Od'OLn0LI)0Ln0 Z W V)it Ln0LnCLn0 C W W W O H it d' •d •d' •d' •d• •d' •d' •d' •d' •d' •d' • H is d' •dr •et • 0 0 U U Q Z it H c I H r-I r-I H H H r-I H H * r-I H r.1 Z C V)VI V)L7 it it LU V)V)N Z it 00 Ln M C O d'd'C r-11.0 N.Ln NJ Cr)H CS)0 N NJ N.00 Ln is M N.0 01 01 00 F- LU W LU H Z it c-I 000 F-N.H 00 F-019 LJ0 Ln N N Ln CO NJ N et N.H N Z it C)0000 NJ OO Z F- 2222 O fit N O mit W H C H Wit N.N .Le) o Ni NJ 01 et M LO 0 M M et 00 NO o r-101 H Wit 0 00 01 00 00 L0 E 0 CCC< F- Jit Mre)N N.F-00H01 I-OlLOLON01 Cr)r10HNr-I M I- Jit d• d' In JLLN 0 0 0 3 <Wit Hi H U H NJ m urn d' d' et Ln Ln Ln < Wit Ln Ln In W 0 C C Cit V) JVit 2 2 N Jit Z WWW* it in in it 0 r1 0 0* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0H 0 0* 000000 H4 0 0 0 0 0 0 CD 0 a 0 0 0 0 0 0 0 0 0 0 0 rr 0 0 0 0 0 0 0 CD m a 0 0 0 o O CD 0 0 0 O o d• a CO m * > -*• x Q * * W LY * LU LY * O O O CD 0 0 0 0 Q Z H * O 0 O 0 0 0 0 0 0 0 0 Q Z H 0. a. * a. O. * it * 0OOOO0000000O0OO c00000OOOOOOOOOOOOOOOOO * 00000,00000000000 J a'* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 J Ce* • . • • • • • . . . • • . . • • N N* N N* * * * * * * O 0 O O O O CD 0 • * 0 O 0 0 O 0 0 CD CD O O • * 0 0 0 0 0 0 0 0 \0 * 0 0 0 0 0 0 0 0 0 0 0 ..0 * W Z * W Z * V) * V) * Q0 * <0 * OOH * OOH * * * * * 0 O 0 0 0 CD 0 0 * 0 0 0 O O 0 O O 0 O 0 it 0 0 0 0 0 0 0 0 \ * 0 0 0 O 0 0 0 0 0 0 0 .. * N N N N N N N N ()H * N N N N N N N N N N N (7 H * 20 * 20 * * * 2* 2* tri (D 1D t0 LD 1.0 '.O LD 0~..ic (D (D L0 LO LC) LO (D (0 LD (0 d 4* Ln Ln Ln Ln Ln Ln Ln Ln LU* Ln Ln Ln Ln Ln In Ln Ln Ln Ln W* 0* 0* * * LY* CL* 0* 0* Z* Z* J * J 41 rn M M M M M rn MQ * M M M M rn rn M rn rn rn rn Q * (D 1.0 (D (D (D (D 1.0 CO 5 2 * (D 1.0D ( ( 0 1.0 I0 (.0 (0 (D l0 (D U 2 it N..I .# H f- * f-0- * f-Q. * H W * H W * d'0 * 0'0 * U * U * * * W * W * O O 0 0 0 0 0 O Z d' * 0 O O 0 0 O O 0 0 0 0 Z Ce * 0 0 O 0 0 O 0 O C. H W> * 0 O 0 0 0 0 0 O 0 O O 1..7 H W> it Z J CL W * Z J d W * W * H ZnJ * F- HV) v) F-< * V~) F-<In Lu * 00 00 00 CO 01 d1 a1 O J W * O 0 HH ri N M rn d d Ln Ln J LU * N O N.O N.O N-O N-O N .O N .0 00 O OC 0>- • * 00 0 00 O 00 H CO,-I 00,-I 00 H 00,-I 00,-I 00,-i 00 O 00 a 0> • * •0 •0 •O •O -0 •0 •0 .0 W F-1-0J * •O •0 •O .0 .0 •0 •O •0 •0 •0 • W F-F-(7J * H •H •H •H •H •H •H •H • J V) LY LU LL* HH •HI •HH •HH •H1 •HH •HH •H •HH •HH •HH J V) d'LU LL 41 in N In Ln Ln Ln Ln In H >-LU •2* in In In Ln Ln Ln In In Ln Ln In H >-W •2* d d' d d d d d' d LL d'Q J Z 0 * d d- d d' d' d• d- d- d' d- d' LL d <J Z 0 * Hi Hi H HH HH Hi HI HH 0 ith Z F-LU CC(7 it HH HH H H H H HH H H HH HI 0*k I-- U LU l7 * CL •OW * 0- •OW * rn(0 rn 00 d-rn d 00 tH Ln In N 1O 0 CO 0 Wm •H W* N .HI N.rn 00 N-01 M N HN N 0 H rn rn d•d-(D(0 N00 Wm •H W* 0 re,0rn0di-0dl-0Le)O(D0N000 UU20 0>* 001OOOrHOrn HLnrHN-ri01,-IN,-ILe)r-I01,-I UU20 0>* •0 •o •O •0 •0 •O •0 •O < • J<<* •0 •,-I •HH •Hi •,-i •cH •HH •N •N •N • Q • J<<* 0 0 0 0 0 O 0 0 LL LL 2 0 W W * 0 0 0 0 0 0 0 0 0 0 LL LL 2 0 W W * O 0 0 0 0 0 0 0 a 0 W>2 U.it O 0 0 0 0 0 0 0 O O LY 0 LU>I U.it D OZ V)* D OZ V)* V)7F-H * V)ZF-H * < 0 * < 0 * Cr) Ce WI' 4c Ce LLI drit 01 (O IF N 0 al 00 W cc*n * 00 00 01 0 N d N . ,-i In 0 (D LUCC*n * d d' Ln (D n 00 CO at F-f- • •J * O H N d• Ln to n 01 O N M F-F- J * ic HH HI HI H H HH HH HH 3 C.CO •> * N N N N N N N N M M r r 3 0.m •> * DUV) it DUV) it it * 12 U it 12 U * N N N N N N N N - LY 0. * N N N N N N N N N N N - d'0. * M M M rn nn M M rn -Q LL • 4c M m rn M rn M rn M M rn rn Q LL * v)c0a * in00a * WW * WW it H H> * H H> it JdQ * Jd< * 2 * 2 * IF d' d' It d' It It rn 0 U Ln * rn rn M N N N H1 ,-i 0 61 00 0 U in * N. N- N. N. n n n n •Ce HH it N N n N . N . N- N. N N. (D (O •CC H * HH Hi HH HH ri ,-H HH rH " 0 in LU * HH HH H HI H HH Hi HH H HH HI - 0(.1)LU * Ln Ln In Ln Ln Ln Ln Ln 0 0 I- •J * In in Ln Ln Ln in Ln In Ln Ln In 0 O F- •J * •ct d' d' •cr d' d' d d- W m 3 W * d- d' d d IF IF d- IF d IF IF W rn 3 W * HH HH HH HH HH HH HH HH V) Hi * HI HH HH c1 HI HI HI HH HI HH HH (/) HH * 0A?! * 0° * 0. (A * d V) * 0) 01 d- 01 Ln o (O IN Ce v 0 3 is 00 Ln HH 00 in N H a1 01 to d- r 00'd'0 3 -*3L N N N H HH HH O O 0.N J 2 0 * 01 CT) 01 00 00 CO N . N. N N- tO d NJ J 2 0 * 0 H H H H H H H H ~..LL d LL. * LU * W * 0U.. * 0LL * 0 * 0 * * * In00LnrHOrHLnH01HII•HI00HIHIHi F- it U1HI00HiHiHiItHIN-H10HNHHd'HH(DHI00ri01 I- * d'Od'01L10)Lna1Ln01(001LID C1N .01 OC> * N-O)N-01 00 01 00 01 00 01 01 01 01 01 a)a101010101a1 cc> * •N. •(D •(0 •t0 •(O •(0 •(O •(O LU LU * •t0 •(O •(0 •(D •1.0 •(D •(O •(O •(O •(D • LU LU * 0000000000000000 >J 0* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 >J 0* Ir)0 Ln O Ln O in 0 In 0 in O Ln O Ln 0 Z LU I/)* Ln O in 0 Ln 0 Ln O Ln o Ln 0 Ln 0 Ln O Ln 0 Ln O in d Z LU V)* IF •d' •d •d' •d• •d' •d' •d' • H * It •d' •d' •d' •d' •d' •d' •d' •d' •d' •d'2 H * H HH H H HH H HH HH * HH HH HH HH Hi HH HH HH HH HI HH D * * H) * N .0 N.drH•HNre)HHMO1NHId'Le)00Lel it reINN,-HNMM(DV1HHMd'OL/LnO(O(OM01MNU * rHO,HV1N00LILn0HHNJN .01Lnd0 Z * Ln 00 d'In 01 MN a1NNs01III dNN.N\d"d'00indi-H Z * O * . . . . . . . . . . . . . . . . . . . . .J ' i(D 00 Ln COHHN Ln CO(O LLn LU N Mn M N M N N H N H * N. IF LD d'HH IDorn Ln 00 OHD H dd N HIDH W* CD (D n N. 00 01 01 0 F- J* 0 H H N N N M rn M d- d'Q I- J* in Ln V1 Lel in Ln In (D < LU\* (D (D (D (D 1.0 (D (D LO LD (D (O OC < LU* V) J* } (/) J* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 HH 0 0* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CO CO 0 0 0 0 0 0 rH 0 0* H4-9 0000 0 0 0 0 0 0 0 0 0 0 00000000000 00000000000 000000 o o 0 0 0 0 0 0 0 0 0 0 NJ N N N N N LD LD t0 111 Ln Ln Ln Ln M M M M M M cD tD tD LD cD LD 000000 LD 01 01 00 00 00 N 010 cr1-Ln N Ln O Ln .Ln •H •0 •0 •0 • H •N •N •N •N •N Ln Ln Ln Ln Ln Ln H H H r1 H HNJHLn0tDn00Ln01M M 00 M N.en N NJ'Cr N N.NI •LD •LD •LD •Ln •4 • 0 0 0 0 0 O O O O O tF [t H H H N Cr Cr Cr Ni 0 CO d' 4 4 4 a m • Ni N N N N 01 01 M M M M Ln 00 Cl 01 en Ln In O H N M M 1--I N N N N N Ln L/1 Ln In Lncr Ln '-I H rH-1 1--4 Cr H Cr lD LD lfl o0 O M Ln Ln In In (.0 LD 01• 0)Ln 01(.001^Cl n 0^ •LD •LD •LD •LD •LD • 00HOHOHOHOH Ln 0 Ln 0 Ln 0 in 0 Ln o Ln •:�.1 •�J. •.. •, . •4 •4 N•zrLDD1Ln(OHOH010 4400001LnLin Den N▪LD co Ln r --ILn MO1 •01 4rrI ct •cr LD N. n I,. h. n 00000000000.-1S0 STORM DRAIN LATERAL `A-1 ' H5 \ ce d 0 0 0 0 0 0 x ,--I r, O m ,HOH NJ Z H 2 < >- LU K is W Z Z F-O Q Z H * O 0 0 O 0 0 Q01 W W 0.0 0. 0_ • a" L7 L. l7 U * 00000000000 } < < Z + N N* 00000000000 i' 00 W O Z 4 } -Io H • is O O O O O O Z • II W 0 * 0 O O O O O Q N 44 > Q 0 x n. W m H i, V)O J x >- O O LU t '- < N I-Q 440 O O O O O O 3 =HH * N N NJ N N NJ tc V) 2 4' wN w0 0.* H H H H H � w,--I• w • o 0 *v ct >- Ln 2 i; V1.:1- V) g x 3H 3 H O* ':rz4' ,-' Z J i, L7>- 0Q i '.O tO kr) Lo Lo L0 Z H U S is 00 00 00 00 00 00 H V)M > H W 4 W 0'O i, J} J U - LU - Z 4' O,-. H i-NJ i, W Z ce LD d W 4.O 000000 v H>- > H 0J is Z Z 1- L/)W -K O H H (i) 4' LL H „ VI J •t N1 to Ln Ln L 1 Ln O 0— J > • * rn H M O M O •M O M Q • MO Z Z < J Ce LU U. H •H •H•H •H •HO W U Z d Z d H W •S- Ln III Ln Ln Ln Ln O Z>O H Ij w V- Z0 � •:1- V- *4' ct O Q Z 0 I- W H 0! c LU cc L7 + HI '--I HI HH '-i Hi S H 0 L/1 0_ m J 0 o. is O 0_U H H m i; O V1 _J 0. • C Z W Wic Ln N.Ln rn LO Ni N .N.N.H 00 O I CC 0 Q < U 0>4 OLOOLOOLOO LO O N .0 0 J N 0aC LU U H LL. 0-rn LU W Qr •O •0 •0 •0 •0 • o H V I- • z Ln 0 aN •,1>SV)* 0 0 0 0 0 O H l7 QCe J LU J -i 0 Q w w N F-N is Z 00 O 0-N F- I 0_ V) W * J F- I- F- l7 W J HI * 00 00 N N. N. H H N O H Q U J U U'ct U Z V) F- I- J i; 00 00 01 O H N F- ,H . U F- CC I- LU WN WN WNH H < S •W is H Ln O < 2 I J - Q 1 V) V) V) Z 3- O Q> is H ,--1 ,-I N N NJ J [t O LL W F- < 4 it H W ,-I 10_V) is •--i z VW 1 0 N < W F-01 F-01 F-01 L.7 > Q U k LU O Q H J LU - J 0!O CC LO 0"LO w H - W F- i; -I V)073 H F- 2 H W • W • W •CO l7 Q is 01 01 01 01 01 01 HLL Q F- LU LL >00 >0) >01 J=U_ re is U.1,-1 0 J H Z 0 5• •Ct Zit Z�3 Z Q om- Ln Ln Ln Ln Ln Ln 3 H O' Hct H•:1- HB0 0 w(NJ Q0 4' S QF"LU O 0- . Z 0- H H H Z H W - 4, Z W 3 L.7 w N V V• O H LU N O OV) Q QI-W * HI < Ui, N.r LO LOH > JHZ H 0_MH Q Q II S < Z • Z • Z • W3 H 4' HM LU H 3 LL OH ON 0 N.1Z J • J X 1.0 2 LU mO 0! H O H N V1 H NJ 0 LU 0- Z 4k00 01 01 00 N. N. F- 7 F-HI F-H Y F-Hi H •O H 4 NJ N (N NJ IN NJ W+ LL' `n 0 1 Z V ) < < Ir< F- W Ln H Q •> 4' F-F- F- O F- < U II 2 V)w 4' H H H r-1 ,-I H J H W CC 0 03 H 04 LU VI V) 3 V) F- Q 0 3 •J 4' Ln Ln Ln Ln Ln Ln O W J C O L.L. W 0 3 w 4 d' ct ct . D. H 0< 0• W H 3 V n Q D < 5 O 0�F - -k HI .-i r-i H H H QUV1 >3 301- < xQ U N o- •H i4 F- 5Q Q 5Q U K •co 0 3 * 01 0 H H N CO w0 20 w0 0 w 0_Un20 4' H O 00 N. LO Ln N N QV) V~1 V1 C F-J 0E-1:: 0 ce V) >•\ W\ >-\ W < Lu LL * M N 1-1 H ,H ,-I N Q't V'ct O WI I I V)0 CC 0 V)0 F- 0 LL is LU - NJ N.1 NJ 0 HIA ln VIQ Q < S I 0 * QF -W0101 I-SZO_ H H H 0 4' J H Z0LO F- - Cf)rHO1HN .HN.HLC)H01 3H 00 0•• Z 0- HILI NJ MH H H Z CC> 1 000 N CO 4:1-00 Ln 00 L0 00 L.0 • • 0- Z Ct ' U F- 0 Z Z H NJ M N LU N >J 0* 00N01•N01•N01•N01•NO) V)r-IQ,-IH 0 0 Hwy- •dc '• t•[t .' . .'ct 032^LUO F- LU z z 0 0 0 00' Z i, H Lu 0 • • U O •::1- H H H Z Z Z CC L7 * V)rnF-,HN LU Z N J J J W Z - N.MOLOLOV-ONLOcr0 - F- F- H Z i, NCO Chrn N M'-I O,-I‘71-LO 0- •Z H'NLn F -I l7 l7 l7 Z Z Z F- Z 0m•H O LU H H H W LU LU H 0C HH Wit H Ln N.NJ 01 H H H N NJ 2 2 0 < w* O rH NI NJ NI - 0 U 0 0 O < -1 H r-1 H H H H w 2 2 w r-INJtY0 S UUU 0U < < < LU LU LU 0 i< V~1 Jis ~~Ln z vliC H O T-10000000,-100 O O Z * 1-1 O O% 00000000000,--I H 5 Z_ STORM DRAIN LATERAL `A-2' HS3 0L 0 0 0 I O H a o 0 0 * o m � NJ zQ Q * E * W a * W z Z H00 d ZH 0.. * O O O 1.7x, a 000 }- Q Q Z J n:* 00 + N N* • • • • • * ^ > * W z it 'moi JO H • -11 0 0 O r • \0 -zO 0 O z II w Z Q > Q O * n N. W CO H � L., v)0 J * } 2 0 W * H • * O O O in NQ * O O O Lo cc cc 3 L.21--1 * N N N 2 2 * >- Ln 2* w N. w 0 0a* 00 00 ^ w* LD l0 v WHi w 3 Ox >- un I * V)V U) E-4v^ 3 H 3 H 01 J -4l7>- 00 Q L rn 61 01 Z H H Z -4c:3, 0, 01 H QH W -VH'- W a O -4J Y J U * W z it ^ H HU W> * 0 0 0 IH--� * W Z 0.W * • H>- z z I- L/1 u..1 * O H H V) * LL r--. H * O W HI V) J N 111 Lrl (0 0,...., m J )- . * 00 M 00 O c0 H 4 W 0J * •0 •0 • O J} z Z 2 J aWLL* HI •Hi •HI O W 0 H a H W • 2* Lr) LI-1 to z 0- Z W LL W a * •-I HI HI O Q Z Ct I-W H cc a U * 2 H 0 V) 0. N J 0 0- 0 O 0.0 H H N . * O VI ,J 0. • 7 z w w* 01 Ln 61061 1m a * OHO�O 0 H I Q W JQQ •�0 W N U • I- LL 0.N LU W * O O J U J m K HN . >2LLL* O O N 2 0. • V)* O W U 2 • Z 111 w V) Hrn 61 * J J N O H E* -g * _J a W + * Z m O 0.N I- I a In w I- H I- 17 w J m * IPI v1 Lr1 H N.CD H Q V J V.4' U•C' UttZ V) H H -J * •1- V- W H - a I- W W N W N W N H H Q 2 •W * V) Hi U Q V) V) V) Z 3- 0Q> * N NJ NJ H 1110 Q x I JI z z (NJ H -4 J ' O LLLi!H a - * 1, H W 10V) * H CL V)0 W N Q W H co Hoo H 00 17 > Q V W S Q H J LU - J a N z^ 0.'N W H - oc H * J V1m3 H H I H W • W • W •NJ] 17 4 * N- N. N . HI LL 4 H W U >61 >01 >61 J: LL 0. 0 J H Z 0 Z.:1- Z-) Z.:1-3 Z Qom- * ^ N. N. WHla a 3 H 0. Hd' HCtHCh0 0 aNO'Q * W O 0- • J a HI .-'l1 HI Z H W -X7 QHH O O - z H H2 * a 32W • W • O H LU 61 m mV) Q QHw Z W I.7 E N U V1 HI 4 U* 6)* V1 V1 H W J 3H ZH * H a N H Q Q II E Q Z • Z • Z • H N . W H LL 0 3 LL O,"i 061 0 61 Z J • J * 0. . I p 04 W O IY H O H N V)H N 0 W 0- Z * m LO LO m 2 V) N H 7 HH HHo HHIH •OH * n N . N. H CS) V) 0 1 v) Q Q 04< H W v)Hi. •> * • w + CC o_ • Z HH H OH 4 U II Ev)w * HI HI Hi J M W cc 0 CO H CC W V) V) 3 V) I- Q 0 3 •J * U1 in in M H 2 LU a • 0 W J O 7 w W 0 3 W * '' 7 • HI 0.H H 0. V n H H 4 0. K V)NH * Hi s-I H - 04 0 0 Q <0 W 2 04 W 3 3 0 Q Q 2Q 0 v) a • z 1 0V1 >3 H H I- U 0 H * - U Q E Q 4 E< 1 cc cc •0 3 * O 00 WO 2 0 WO 0 LU aL)in 20 * O 01 J: LL V) VH)V) Q V) un V) a Q d LL * N N H •C - 0 C >-'---. W\ >-\ W 3 W * �N Q•zr d-d' WI I I V)2 0.2 V)2 H (]W W - fNNNJ OH z I 0 * H 2 z a V) V) V) Q Q Q 2 * QHW0000 H H H 0 * * J H Z N n V) V) V) V * H * 00 U1 l0 I1)00 3• H6•6• UJ Z0. H N MH H H Z a> -4 NHNHN� W N W W * •00 •00 • 0- Z'RCr 2>- "7 0 0 0 H N m >J0* 01 Hi 0')HI 61 •OHV4- UH Z Z Z Ln 0• ZWO** '7C '0d' V)HIQHI� • HI H H 03Ern� H LU Z LU 0 0 0 2 it w 0 • • U 0 s7 H H H Z z Z cL l7 * V)N 1-H61 W Z NJ J J J W Z * CT IN LC)Nm 0* ON In H H H H Z * 61�•4-OLn a •ZHH l7 l7 l7 z z Z H z 0 E* • • • • • 0 03 H Z Z Z W W W H CC H W* HI1900H61 ' ce •0 OW H H H f f E 0 Q H J* 0NJN N 0.Ur) W0 0 0 0 w w w w 3 4 W* H H H Q0 0 4 Q Q .J J J H �* HnirnO 2 LJ U U LU W W LU W LU 0 * V) J* F-HHv)a InHI 0 H0000H0000000,--100 O 0 HI 0 O* 00000 HI HS1 STORM DRAIN LATERAL `A-3' H 5S a O O 0 I HI a O O 0 00 r1O H N Z0 > '' HI Q < * v >- w CC * W Z Z I-O < ZH * O O 0 t7,. a O a a * du L) l07 L7 U * 00000 J CC* 00000 >- d < Q + N N* • • • . • r,, > x v JO H • * 0 O 0 >- l7 • - 0 * 0 0 0 Z II W Z * • r� 4 > < O * n W MH * v V)0 _J * } H • W * O O O 0 til Q * O O O n g 3 l7 H * N NJ N � 2 0 * >. - * V1 2* wN- woO d* •-• L15 Ln Ln J • J • 3 W* L11 Ln v Wri w 0 0* >- Ln 2 * HI Z a'* r. 3 3 H 0* Z* u Z J * LD} 0 4 * 01 Z H V 2 * CO CO CO H I- HH * O▪M > HW * . C1 J} J V * W * N I- HHl7 W> * O O 0 H v * w Z a.u..1 * • H} > H 0J * Z Z I- V)W * O H H to * LL n H O W r-I L/) J * 01 O O O 0v m J } • * N.H 000 CO >- l7 H 4 W l7 J * •O •O • O J Z Z O 0 J LY W LL* H1 •H1 •r-1 O Z a Z H 0' H W •2* Ln Ln Ln W LL Z O * cJt .1' ` " O Z>0 H Vl O W 0 * HI HI H O < Z K I- W H CC CC L•7 * 2 H O 0 a IN J 0 a * O a V H H N. * O to J a • 0 Z W W* ID N-LC)M LD I M eCC Q U 0>* ON.ON�O • 0 ce W N eL I- + V I- U dN W W a* 0 0 J M V1 CL O d •> 2 15 0 O O H in O 0 W O Q Z W I-Cl * l7 ce J J M I- E* * ~ * J a' W + * Z M 0 a a LU N I- I inH H H l7 W J rn * r-I H H H NO H Q U J V� •7 U'7Z V1 I- H J 0 0 0 I- W H - ce I- W WIN W N W N H H 4 O -W * VI H O V Q in VI 0 Z 3- O 4> * N Ni N H Ln0 4 I I J - I Z Z M I- * J -0 Li.W1- a - - it * H W 1 ato Hi V)0 W C N 4 W I-00 I-CO F00)7 > <U * W O<H J W - J KN a'N . a'N-W H - a'H J V1m3 H I- 2 H W • W • W •m l.7 4 * M M rn H U- Q H LU U- >01 >0l >Cl J: • U rt O J H Z 0 Z•,:1- Z•cl- ZI3 Z Qom- * iD Lfl LD iu -iCL a' 3 H a' H� HC HC0 0 C[NQO' * W0 a • J a HI H r-1 Z H W - * H <H H O 0 - Z I- H 2 * a 3=W • w • O H w N. 0 0V) 4 <I Lu * Z W 1.7X NJ V Ln H 4 V* el-* 00 COH > JHZ * H a NJ H 4 Q II E Q Z • Z • Z • LU 3H * HN- WH LL O 3 V- ON 001 (DM1Z J • J * C1. • 20 a LU O OC HO H V1H.-10 W 0- Z * m �t M D V) M F- 0 H HI I-HI Y I-Hi H •O H * N. n N I-01 V) 0 1* Lin Q Q a'< I- w in r-1 Q •> * • w + Ll' a • z HH H OH 4 V II XLnW * HI r•i r-I J M W LY 0 m H a'W V) V) 3 V) I- Q O 3 •J * in Ln Ln M H 2 W CC • O W J 0 D LL LU 0 3 W * ‘Cl• r•-I a H H a U n H H Q a ce to M H * H H c-I - 0< 0 0 Q <D ILI 7 D 0* * M I- • WH 3 3O< Q 2< 0 0 a •Z * 1 0V0 >3 I- H H U 00H * <UH Q � < Q 7< I a LY •O 3 * Ln O LD w 0 20 u.10 O W a U n 2 0 * O 01 J: Q LL0 m V) U V) LHn in 0 4 0_LL * N N • H <Tr- Oce >,.. w"-... >� w 3 W * CC N Q`t`S W1 I V)O CLD V)a H ❑LL * NNN Z a in V) to Q Q Q D 1 O * H 2 <H WCCCO H H H 0 * * J H Z N N- in in V) U * H * 00 Ln cr Ln CO H • • W r-i N M H H H Z a' > it NJ CO N CO N- • Cl Cl Z 0- W NJ W W it •CO •CO • 0- Z•:1-cl• 2} 0 0 0 H NJ M > J O* Cr,/NJ Cl NJ dl •0 HCS U H Z Z Z to • Z W V1* •:1-O�Oct Lnr-IQHr-i CL O H it "I ••:1- •.cI- 117 N-.O L LI w W O Z * r-i 1-1 H 0 3 cl-0 H Z Z Z 0 0 0 ce * W 0 • • U 0 •)' H H H Z Z Z K I7 * VI M HNCI LU Z N J J J LU Z * N M 000 0 0 HI V) H I- H H Z * Cr O Ln rn CO CL •Z HI HI l7 l7 l7 Z Z Z H Z 0 f* • • • • • 0mH Z Z Z W W W H c4 H W* fVLDCOr-1Ol Cr •0 O W H H H M f 2 0 4 H J* O r•-I r-i L-1 aUn IY0 0 0 O LU W L11 141 3 Q W1 H H H H NJ rn0 2 UUU U W W W LU LU LU 0 * Vl J* HHHV1Wv) Z *r-1 0 ,-10000000H00 0 0 H 0 0* 00000c-I APPENDIX HYDROLOGY MAPS FOR EXISTING PRE-DEVELOPED CONDITION AND PROPOSED DEVELOPED CONDITION 7