HomeMy WebLinkAboutCitrus-Slover IntersectionHydrology/Hydraulics
Report Citrusm*Slover
Intersection
Prepared for: City of Fontana
Project Manager Gary Bradshaw, P.E.
March, 2000
SOWLE 1131 West Sixth Street, Ontario, California 91762
Introduction
The intersection at Citrus Avenue and Slover Avenue was analyzed to determine the size of curb inlets and laterals
needed for intersection improvements for the City of Fontana. This report uses the 25-year storm for the analysis.
The report by L. D. King was used for reference since they previously completed an analysis on this area. It should
be noted that their report also includes an analysis of the 100-year storm.
Study Area
To establish the limits of the study area, L. D. King's report dated May 2000 was referenced. In addition, field
reviews of the study area were performed to ensure the study area limits are correctly identified. The tributary area
analyzed for this report includes the area bounded by the railroad south of Interstate 10 on the north, Oleander
Avenue on the east, Slover Avenue on the south and Citrus Avenue on the west. The study area consists of
approximately 55 acres. All areas south of the Union Pacific Railroad right-of-way are included. Runoff from
Oleander Avenue is not included as it is assumed to drain to the south. However, the areas from all lanes of Citrus
Avenue and Slover Avenue are included.
Hydrology
Hydrology calculations are performed to estimate runoff quantities and are prepared in accordance with Standards
and Practices outlined in the San Bernardino County Hydrology Manual (1986). To estimate runoff quantities,
rainfall and infiltration estimates were prepared.
Rainfall data for the study area was based on the Hydrology Manual's Isohyetal Maps (Figures B-3 and B-4). The
isohyetal maps area attached in Appendix A. Since the study area is relatively small, one -hour storm event will
provide the largest peak runoff quantity. Therefore, the 10-year 1-hour event and 100-year 1-hour event are used.
Using the 10-year and 100-year rainfall intensities with the Rainfall Depth Versus Return Period for Partial Duration
Series Charge (Figure D-2) from the Hydrology Manual, the 25-year 1-hour storm event rainfall intensity was
estimated. Figure D-2 is also attached in Appendix A.
The Hydrology Manual bases infiltration rate on land usage, Antecedent Moisture Content (AMC) and soil type.
AMC Type II was used as specified. As shown in Figure C-15 in Appendix A, the soil group for the study area is
type A.
The hydrology map is included in Appendix B and shows the drainage areas, nodes and location of catch basins.
Runoff quantities are estimated using the Rational Method Hydrologic Analysis Software prepared by Advanced
Engineering Software (AES). Since the 100-year storm was analyzed in a previous study, only the 25-year storm
was analyzed in this study. The output is included in Appendix C.
The natural drainage in this study area flows in a southwesterly direction. For the rational method calculations, the
runoff north of and including Boyle Avenue flows southerly through an existing open channel and is collected in a
basin north of the intersection of Citrus Avenue and Boyle Avenue which is an extension of the existing trunkline.
This runoff is captured in a grate inlet behind the curb. The area south of Boyle Avenue flows to Slover Avenue and
then westerly to the drainage basins at the intersection of Citrus Avenue and Slover Avenue. Future inlets are
shown on the hydrology map at the west end of Slover as it was not feasible to connect to the trunkline on Citrus
Avenue, and the master plan of drainage shows this area to drain in a westerly direction. These inlets will connect to
the future system on Catawba Avenue as shown in the City of Fontana's Master Plan. The future inlets shown at the
south end of Citrus Avenue shall be incorporated in the future widening project.
Hydraulics
The Hydraulic Elements I program package by AES was used to estimate water depth in the streets and to determine
inlet widths for both sump and flowby conditions. These calculations are included in Appendix D.
Hydraulic calculations for the laterals were performed using the Water Surface Pressure Gradient (WSPG)
computerized software to establish water surface elevations. The output from the hydraulic models are included in
Appendix E. Since our design uses a 42-inch pipe on Slover Avenue, a portion of the existing 30-inch pipe shown
in the plans prepared by L. D. King will be replaced with 42-inch pipe.
Twelve curb inlets were sized using flows calculated from the rational method. In addition, the existing 42-inch
trunk line on Citrus Avenue will be extended at a 45-degree angle to the east of Citrus to collect the water behind the
curb using a 54-inch riser inlet. Calculations were based on the weir equation Q = Cw P h15, and a detail is shown in
Appendix F.
The flows and lengths of the inlets are included in the following table:
Actual
Inlet No.
Report
Inlet No.
Inlet Location
Inlet
Type
Flow
(cfs)
Area
(acres)
Street
depth (cfs)
Recommended
basin width (ft)
Basin width
(ft)
A-3
1
NW on Citrus
Flowby
4.90
1.74
0.43
15.3
21
A-4
2
NE on Citrus
Flowby
4.51
1.61
0.42
14.4
14
B-1
3
NE on Slover I
Sump
25.72
9.72
0.69
14.54
21
A
4
NE of Citrus2
Sump
37.25
18.61
N/A
N/A
54" riser
B-2
5
SE on Slover
Flowby
2.59
1.38
0.37
7.3
10
N/A
6
NW on Slover 1
Flowby
8.03
2.49
0.51
16.2
Future
N/A
7
NW on Slover 2
Flowby
16.60
5.95
0.63
26.9
Future
N/A
8
SW on Slover
Flowby
2.64
1.23
0.38
7.3
Future
A-2
9
SE on Citrus 1
Flowby
1.48
0.40
0.30
5.2
7
A-1
10
SW on Citrus 1
Flowby
1.39
0.40
0.29
5.1
7
N/A
1 ]
SE on Citrus 2
Flowby
2.42
0.96
0.35
7.3
Future
N/A
12
SW on Citrus 2
Flowby
2.11
0.94
0.34
6.5
Future
B
13
NE on Slover 2
Flowby
30.87
11.61
0.73
42.8
28
Appendix A
Hydrology Data
�1.1
cur _.
•
W I I
I R
`
TO
— T_ —I-
--
I
1W �'r
RIE �.
°
R2E
I
�— -}—I
..
—r-
—
-I'—T�4N
—y,
i I MfIT lu
T 3 N
r
I - J s
'-- '
— III— tt
I�•
_
IA
L
I • I
i I
—
+ I b I
1` fsf i
my
LIS
T2N
— — — —
+• .-,.
Nl1.1
-.I
CITY —
— —
J
s I
r '
TM
ONO
16
I
y aLrrt
Lalim
•t
UPL�NC
"`� sow a 'a•o,
CLAPOMMY
TIS
-is
•
a" too
;WNW
T
��•��.i
An.We
;/�
,a CHINO
I
\`-_
�/- y RIE
I .I R E i •' j
T2S
_
b
'+74•00
_ '
;
' •
COUNTYIY
BELOOD
FAN CNATDRINO
•
ro
— —
IF0 ''•``
VALLEY AREA
��
-
i
* 1 -
.,, • •
1'..
S
ISCHYETALS
Yw - 10 YEAR I HOUR
• I -
•••
+—
�
�.�.�ew
10
&Awm ON U.SD&, NQAILATLAS 2, WS
-
I
R7w-
A�1'RO'vCD
•
PL -.
CIPITATION UNCHES)
DATESrin-
R8 i R7W
IW L
RIE R2E -
T --� — Y •L I i 7 I 1 I I `
T
T
f 7; A k 1
�- N
f _ t
: Sr k 714''T? N
_ � LIT,q �/off`
_ _ 2.0 � � I � �— •pow �
It
N.
--f
IN
T—
IL
I n►ss -�
oar
rt --- T- -t --,-- — � 1.. _-- •� ...� ., I I r•'"i
s• `.� r �i T..,..,T 1 N
,.aa TA I j; a. tSAAI Rh
TIS — - — -- T- — -•�' I _
_ O N TA l O ►• 4-
_
lis
lz 1.2— CA— %
• guar [t[r .. I'— — �-1 —
c"•.. , •fir — � I LE.
r - c - •t CH O J;M ;,�•���,
T2S Let "�` ~+ R i I • I R2 I'
'y`• d• � I 1 11.1� Z� ' �s.•oo
1 , 1
...M•� .......... f i
T3S
- -- ING
8
I w
IPITATION (INCHES)
VALLEY AREA
WHYETAIS
YID.-100 YEAR I HOUR
IIIAM oN U.•2^.r naAA. MLAA C W"
AmqwvwOle
loaaeEz ft"craft Maf& 4 me it
J
I
I
I
J
J
J
D-7 FIGURE D-2
,�.'F_ 4• •v, :-t '.•-. � 'r• � �a •SIC
51
In
1 �1. i `• - �. y.u�/� .'S••� rC � 1 s • I S � ����' y/ N::! 1 �. • �i: �t •t-` � i' � •� i y
ROJECT , .. ;. �:.Y_ ,.}}}�;, ; • A� -L': {�r,Y• ,.►. r
OCATIONk ` ' f� : "_ f % 4• rh ' v
F,'fl' • ^ _ ,: � .. ,.,,,:, .A i •.,.f ,��''.. . L t• - '•"� !'Y, :.'1ii - � L�'`=.�fi�„•-• :.R \ -.. : 1 `• j� - �,r•-•-�'•- J • I • � � ' ,;,
°-� � y`J••i. � ' �'' "'•�.! �`��- ate' �4� �-•s� :^yv__ ' s•�rjr..'�'t;,�`-rf�:7_•�...•.� ,�' •� �7�� `_-• j '')P. '!'
! .�_ ,. \. r . �tr.�^. • w. 7G,` •• �.` 1 1-_\ /Fyn: �' yr-'�'�'•t �\ 1 1.� i� �•'.`:� .ice
.�I..Y-.�. '�•ti�..- -.• ,•.: •• • t Z� •L:F-1 1 . ��.' _'.._ S.f� �d..�"i., •_ {_ � a+` a •.•JS•" _��
..j •. c - :. • • i � �r - �,•�tl -:y _�� -.�.. L'_:�. - 'i' ' •• s r� •..ram--��.:Y ..c'.�.3�'1:rzy'
,y•r_'yr i:-'�n..::a :•�„J: � '.!.�.' - /,1�. ...s —ass � �`
�. 1 .�' 1.1 •� L � e.. }
- - ' �'�• , �� :�. � '-\ it -�7' � t
t 1-• i sjrs. Y,
AN
iM A :.
HYDROLOGIC SOILS GROUP MAP
SAKI BER�9ARD11O COUN�'YI/2 FOR
HYDROLOGY MANUAL SOUTHWEST-C AREA
C-28 FIGURE C-15
Appendix B
Hydrology Map
Appendix C
Rational Method Calculations
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
(Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-96 Advanced Engineering Software (aes)
Ver. 6.1 Release Date: 01/01/96 License ID 1395
Analysis prepared by:
❑COD❑❑❑DDD❑❑DO❑DOOOODOD❑❑DODO❑DDO❑DO❑DO❑OODDO❑OCC,D❑❑DOOOOO❑❑❑DODDD❑O❑OODOD❑O
❑DODO❑ODOODOO❑❑ODODOD❑OOOO❑O❑OOO❑D❑❑❑❑DOODDO❑❑DOG❑O❑ODOOODO❑❑DOD❑❑D❑❑DOD❑D❑D
D❑ODO❑❑OD❑❑ODDOODOOCO❑ODOO❑OO❑OOOO❑❑❑D❑ODDOOOO❑❑OO❑D❑D❑❑O❑❑❑COOD❑O❑OOO❑O❑❑DO
DOD❑ GOODD❑O❑❑❑DDOD❑❑D❑DDDCO❑ODOOOOOO❑ODDOOODO❑OO❑❑DOODDOODOCDOOODOODDCODDOD
************************** DESCRIPTION OF STUDY **************************
* CITRUS/SLOVER INTERSECTION
* CONFLUENCE OF ALL PIPES AND AREAS
* *
**************************************************************************
FILE NAME: C:\TEMP\CITALL.DAT
TIME/DATE OF STUDY: 11:23 1/16/2001
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
--*TIME-OF-CONCENTRATION MODEL* --
USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 24.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .90
*USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = .6000
USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 1.1000
*ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD*
*USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
1 30.0 20.0 .018/ .018/ .020 .67 2.00 .03125 .1670 .01500
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1. Relative Flow -Depth = .00 FEET
as (Maximum Allowable Street Flow Depth) - (Top -of -Curb)
2. (Depth)*(Velocity) Constraint = .0 (FT*FT/S)
****************************************************************************
FLOW PROCESS FROM NODE 10.00 TO NODE 20.00 IS CODE = 2.1
----------------------------------------------------------------------------
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW-LENGTH(FEET) = 771.00
ELEVATION DATA: UPSTREAM(FEET) = 1089.60 DOWNSTREAM(FEET) = 1079.20
Page 1 of 16
\\boyleonl\on-proj\F60\300\Calcs\rational method\CITALL.doc
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.273
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.171
SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
COMMERCIAL A 6.64 .98 .10 32 10.27
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA RUNOFF (CFS ) = 18.37
TOTAL AREA(ACRES) = 6.64 PEAK FLOW RATE(CFS) = 18.37
****************************************************************************
FLOW PROCESS FROM NODE 20.00 TO NODE 30.00 IS CODE = 6.1
----------------------------------------------------------------------------
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»>(STANDARD CURB SECTION USED) ««<
UPSTREAM ELEVATION(FEET) = 1079,20 DOWNSTREAM ELEVATION(FEET) = 1077.50
STREET LENGTH(FEET) = 516.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) = 20.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00
INSIDE STREET CROSSFALL(DECIMAL) _ .017
OUTSIDE STREET CROSSFALL(DECIMAL) _ .017
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
STREET PARKWAY CROSSFALL(DECIMAL) = .020
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 24.92
***STREET FLOWING FULL***
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = .59
HALFSTREET FLOOD WIDTH(FEET) = 16.30
AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.32
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.38
STREET FLOW TRAVEL TIME(MIN.) = 3.70 Tc(MIN.) = 13.98
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.637
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 5.72 .98 .10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA AREA(ACRES) = 5.72 SUBAREA RUNOFF(CFS) = 13.07
EFFECTIVE AREA(ACRES) = 12.36 AREA -AVERAGED Fm(INCH/HR) _ .10
AREA -AVERAGED Fp(INCH/HR) = .98 AREA -AVERAGED Ap = .10
TOTAL AREA(ACRES) = 12.36 PEAK FLOW RATE(CFS) = 28.25
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = .61 HALFSTREET FLOOD WIDTH(FEET) = 17.40
FLOW VELOCITY(FEET/SEC.) = 2.43 DEPTH*VELOCITY(FT*FT/SEC.) = 1.50
***************************************************************************
FLOW PROCESS FROM NODE 30.00 TO NODE 40.00 IS CODE = 6.1
Page 2 of 16
\\boyleonl\on-proj\F60\300\Calcs\rational method\CITALL.doc
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»>(STANDARD CURB SECTION USED) ««<
UPSTREAM ELEVATION(FEET) = 1077.50 DOWNSTREAM ELEVATION(FEET) = 1076.00
STREET LENGTH(FEET) = 317.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) = 20.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00
INSIDE STREET CROSS FALL (DECIMAL) _ .017
OUTSIDE STREET CROSS FALL (DECIMAL) _ .017
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
STREET PARKWAY CROSSFALL(DECIMAL) _ .020
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 31.86
***STREET FLOWING FULL***
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) _ .60
HALFSTREET FLOOD WIDTH(FEET) = 16.85
AVERAGE FLOW VELOCITY (FEET/SEC.) = 2.85
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.72
STREET FLOW TRAVEL TIME(MIN.) = 1.85 Tc(MIN.) = 15.83
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.447
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 3.42 .98 .10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA AREA(ACRES) = 3.42 SUBAREA RUNOFF(CFS) = 7.23
EFFECTIVE AREA(ACRES) = 15.78 AREA -AVERAGED Fm(INCH/HR) _ .10
AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .10
TOTAL AREA(ACRES) = 15.78 PEAK FLOW RATE(CFS) = 33.37
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) _ .61 HALFSTREET FLOOD WIDTH(FEET) = 17.28
FLOW VELOCITY(FEET/SEC.) = 2.90 DEPTH*VELOCITY(FT*FT/SEC.) = 1.77
****************************************************************************
FLOW PROCESS FROM NODE 40.00 TO NODE 50.00 IS CODE
»»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««<
»»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««<
------------------------------
ELEVATION DATA: UPSTREAM(FEET) = 1076.00 DOWNSTREAM(FEET) = 1070.50
CHANNEL LENGTH THRU SUBAREA(FEET) = 429.00 CHANNEL SLOPE _ .0128
CHANNEL BASE(FEET) _ .00 "Z" FACTOR = 2.000
MANNING'S FACTOR = .030 MAXIMUM DEPTH(FEET) = 5.00
CHANNEL FLOW THRU SUBAREA(CFS) = 33.37
FLOW VELOCITY(FEET/SEC) = 4.92 FLOW DEPTH(FEET) = 1.84
TRAVEL TIME(MIN.) = 1.45 Tc(MIN.) = 17.28
****************************************************************************
FLOW PROCESS FROM NODE 50.00 TO NODE 50.00 IS CODE = 8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
Page 3 of 16
\\boyleonINon-proj\F60\300\Calcs\rational method\CITALL.doc
MAINLINE Tc(MIN) = 17.28
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.321
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CM
COMMERCIAL A 2.83 .98 .10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA AREA(ACRES) = 2.83 SUBAREA RUNOFF(CFS) = 5.66
EFFECTIVE AREA(ACRES) = 18.61 AREA -AVERAGED Fm(INCH/HR) _ .10
AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .10
TOTAL AREA(ACRES) = 18.61 PEAK FLOW RATE(CFS) = 37.25
FLOW PROCESS FROM NODE 50.00 TO NODE 320.00 IS CODE = 4.1
»»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER -SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
---------------------------=----
ELEVATION DATA: UPSTREAM(FEET) = 1065.00 DOWNSTREAM(FEET) = 1058.59
FLOW LENGTH(FEET) = 185.27 MANNING'S N = .013
DEPTH OF FLOW IN 42.0 INCH PIPE IS 13.1 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) = 14.60
GIVEN PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 37.25
PIPE TRAVEL TIME(MIN.) = .21 Tc(MIN.) = 17.49
FLOW PROCESS FROM NODE 320.00 TO NODE 320.00 IS CODE = 1
----------------------------------------------------------------------------
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
TOTAL NUMBER OF STREAMS = 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) = 17.49
RAINFALL INTENSITY(INCH/HR) = 2.30
AREA -AVERAGED Fm(INCH/HR) = .10
AREA -AVERAGED Fp(INCH/HR) = .97
AREA -AVERAGED Ap = .10
EFFECTIVE STREAM AREA(ACRES) = 18.61
TOTAL STREAM AREA(ACRES) = 18.61
PEAK FLOW RATE(CFS) AT CONFLUENCE = 37.25
FLOW PROCESS FROM NODE 60.00 TO NODE 40.00 IS CODE = 2.1
----------------------------------------------------------------------------
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
- ------------------------
INITIAL SUBAREA FLOW-LENGTH(FEET) = 602.00
ELEVATION DATA: UPSTREAM(FEET) = 1116.00 DOWNSTREAM(FEET) = 1076.00
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE))** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.764
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 4.075
SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
Page 4 of 16
\\boyleonilon-proj\F60\300\Calcs\rational method\CITALL.doc
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
COMMERCIAL A .83 .98 .10 32 6.76
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA RUNOFF(CFS) = 2.97
TOTAL AREA(ACRES) _ .83 PEAK FLOW RATE(CFS) = 2.97
FLOW PROCESS FROM NODE 40.00 TO NODE 140.00 IS CODE = 6.1
----------------------------------------------------------------------------
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»> (STANDARD CURB SECTION USED) ««<
-------------------------------
UPSTREAM ELEVATION(FEET) = 1076.00 DOWNSTREAM ELEVATION(FEET) = 1069.20
STREET LENGTH(FEET) = 547.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) = 40.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00
INSIDE STREET CROSSFALL(DECIMAL) _ .020
OUTSIDE STREET CROSSFALL(DECIMAL) _ .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
STREET PARKWAY CROSSFALL(DECIMAL) _ .020
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.07
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) _ .38
HALFSTREET FLOOD WIDTH(FEET) = 11.33
AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.76
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.06
STREET FLOW TRAVEL TIME(MIN.) = 3.30 Tc(MIN.) = 10.07
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.211
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A .78 .98 .10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA AREA(ACRES) _ .78 SUBAREA RUNOFF(CFS) = 2.19
EFFECTIVE AREA(ACRES) = 1.61 AREA -AVERAGED Fm(INCH/HR) _ .10
AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .10
TOTAL AREA(ACRES) = 1.61 PEAK FLOW RATE(CFS) = 4.51
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) _ .40 HALFSTREET FLOOD WIDTH(FEET) = 11.86
FLOW VELOCITY(FEET/SEC.) = 2.83 DEPTH*VELOCITY(FT*FT/SEC.) = 1.12
****************************************************************************
FLOW PROCESS FROM NODE 140.00 TO NODE 320.00 IS CODE = 4.1
----------------------------------------------------------------------------
»»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER -SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
ELEVATION DATA: UPSTREAM(FEET) = 1063.70 DOWNSTREAM (FEET) = 1058.59
FLOW LENGTH(FEET) = 87.53 MANNING'S N = .013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 4.8 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) = 10.14
Page 5 of 16
\\boyleonl\on-proj\F60\300\Calcs\rational method\CITALL.doc
GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 4.51
PIPE TRAVEL TIME(MIN.) _ .14 Tc(MIN.) = 10.21
FLOW PROCESS FROM NODE 320.00 TO NODE 320.00 IS CODE = 1
-----------------------------------------------------
»» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
TOTAL NUMBER OF STREAMS = 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) =
10.21
RAINFALL INTENSITY(INCH/HR) =
3.18
AREA -AVERAGED Fm(INCH/HR) _
.10
AREA -AVERAGED Fp(INCH/HR) _
.98
AREA -AVERAGED Ap = .10
EFFECTIVE STREAM AREA(ACRES)
= 1.61
TOTAL STREAM AREA(ACRES) =
1.61
PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.51
****************************************************************************
FLOW PROCESS FROM NODE 60.00 TO NODE 100.00 IS CODE = 2.1
----------------------------------------------------------------------------
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
-------- -----
INITIAL SUBAREA FLOW-LENGTH(FEET) = 600.00
ELEVATION DATA: UPSTREAM(FEET) = 1116.00 DOWNSTREAM(FEET) = 1077.00
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.785
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 4.068
SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
COMMERCIAL A .84 .98 .10 32 6.79
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA RUNOFF(CFS) = 3.00
TOTAL AREA(ACRES) _ .84 PEAK FLOW RATE(CFS) = 3.00
FLOW PROCESS FROM NODE 100.00 TO NODE 110.00 IS CODE = 6.1
----------------------------------------------------------------------------
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»>(STANDARD CURB SECTION USED) ««<
UPSTREAM ELEVATION(FEET) = 1077.00 DOWNSTREAM ELEVATION(FEET) = 1069.40
STREET LENGTH(FEET) = 557.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) = 40.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00
INSIDE STREET CROSSFALL(DECIMAL) _ .020
OUTSIDE STREET CROSSFALL(DECIMAL) _ .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
STREET PARKWAY CROSSFALL(DECIMAL) _ .020
Page 6 of 16
\\boyleonl\on-proj\F60\300\Calcs\rational method\CITALL.doc
*,"TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.27
ST REETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = .38
HALFSTREET FLOOD WIDTH(FEET) = 11.33
AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.90
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.12
STREET FLOW TRAVEL TIME(MIN.) = 3.20 Tc(MIN.) = 9.99
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.226
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A .90 .98 .10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA AREA(ACRES) = .90 SUBAREA RUNOFF(CFS) = 2.53
EFFECTIVE AREA(ACRES) = 1.74 AREA -AVERAGED Fm(INCH/HR) _ .10
AREA -AVERAGED Fp(INCH/HR) = .98 AREA -AVERAGED Ap = .10
TOTAL AREA(ACRES) = 1.74 PEAK FLOW RATE(CFS) = 4.90
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = .40 HALFSTREET FLOOD WIDTH(FEET) = 12.06
FLOW VELOCITY(FEET/SEC.) = 2.98 DEPTH*VELOCITY(FT*FT/SEC.) = 1.19
****************************************************************************
FLOW PROCESS FROM NODE 110.00 TO NODE 320.00 IS CODE = 4.1
----------------------------------------------------------------------------
»»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER -SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
-- ELEVATION DATA: DATA: UPSTREAM(FEET) = 1063.90 DOWNSTREAM(FEET) = 1058.59
FLOW LENGTH(FEET) = 70.97 MANNING'S N = .013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 4.7 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) = 11.33
GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 4.90
PIPE TRAVEL TIME(MIN.) _ .10 Tc(MIN.) = 10.09
****************************************************************************
FLOW PROCESS FROM NODE 320.00 TO NODE 320.00 IS CODE = 1
----------------------------------------------------------------------------
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
- TOTAL NUMBER NUMBER OF STREAMS = 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
TIME OF CONCENTRATION(MIN.) = 10.09
RAINFALL INTENSITY(INCH/HR) = 3.21
AREA -AVERAGED Fin ( INCH/HR) = .10
AREA -AVERAGED Fp(INCH/HR) = .98
AREA -AVERAGED Ap = .10
EFFECTIVE STREAM AREA(ACRES) = 1.74
TOTAL STREAM AREA(ACRES) = 1.74
PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.90
** CONFLUENCE DATA **
STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER
Page 7 of 16
\\boyleonllon-proj\F60\300\Calcs\rational method\CITALL.doc
NUMBER
(CFS)
(MIN.)
(INCH/HR)
(INCH/HR)
(ACRES)
NODE
1
37.25
17.49
2.304
.97( .10)
.10 18.6
10.00
2
4.51
10.21
3.183
.98( .10)
.10 1.6
60.00
3
4.90
10.09
3.206
.98( .10)
.10 1.7
60.00
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 3 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM
Q Tc
Intensity
Fp(Fm)
Ap
Ae HEADWATER
NUMBER
(CFS) (MIN.)
(INCH/HR)
(INCH/HR)
(ACRES)
NODE
1
39.77 10.21
3.183
.97( .10)
.10
14.2
60.00
2
43.95 17.49
2.304
.98( .10)
.10
22.0
10.00
3
39.65 10.09
3.206
.97( .10)
.10
14.1
60.00
COMPUTED
CONFLUENCE ESTIMATES ARE
AS FOLLOWS:
PEAK FLOW
RATE(CFS) =
43.95
Tc(MIN.) =
17.49
EFFECTIVE
AREA(ACRES)
= 21.96
AREA -AVERAGED
Fm(INCH/HR)
_ .10
AREA -AVERAGED Fp(INCH/HR) = .98
AREA -AVERAGED Ap = .10
TOTAL AREA(ACRES) =
21.96
FLOW PROCESS FROM NODE 320.00 TO NODE 330.00 IS CODE = 4.1
»»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER -SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
ELEVATION DATA: UPSTREAM(FEET) = 1058.59 DOWNSTREAM(FEET) = 1057.35
FLOW LENGTH(FEET) = 168.92 MANNING`S N = .013
DEPTH OF FLOW IN 42.0 INCH PIPE IS 21.9 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) = 8.65
GIVEN PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 43.95
PIPE TRAVEL TIME(MIN.) = .33 Tc(MIN.) = 17.82
FLOW PROCESS FROM NODE 330.00 TO NODE 330.00 IS CODE = 1
----------------------------------------------------------------------------
»»>DESIGNATE, INDEPENDENT STREAM FOR CONFLUENCE««<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION (MIN.) = 17.82
RAINFALL INTENSITY(INCH/HR) = 2.28
AREA -AVERAGED Fm(INCH/HR) = .10
AREA -AVERAGED Fp(INCH/HR) = .98
AREA -AVERAGED Ap = .10
EFFECTIVE STREAM AREA(ACRES) = 21.96
TOTAL STREAM AREA(ACRES) = 21.96
PEAK FLOW RATE(CFS) AT CONFLUENCE = 43.95
FLOW PROCESS FROM NODE 70.00 TO NODE 80.00 IS CODE = 2.1
----------------------------------------------------------------------------
>>> >>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
Page 8of16
\\boy)eonllon-proj\F60\300\Calcs\rational method\CITALL.doc
INITIAL SUBAREA FLOW-LENGTH(FEET) = 872.00
ELEVATION DATA: UPSTREAM(FEET) = 1085.90 DOWNSTREAM(FEET) = 1069.00
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.037
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.216
SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
COMMERCIAL A 8.56 .98 .10 32 10.04
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA RUNOFF(CFS) = 24.03
TOTAL AREA(ACRES) = 8.56 PEAK FLOW RATE(CFS) = 24.03
****************************************************************************
FLOW PROCESS FROM NODE 80.00 TO NODE 90.00 IS CODE = 6.1
----------------------------------------------------------------------------
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»>(STANDARD CURB SECTION USED) ««<
UPSTREAM ELEVATION(FEET) = 1069,00 DOWNSTREAM ELEVATION(FEET) = 1067.10
STREET LENGTH(FEET) = 212.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) = 40.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 35.00
INSIDE STREET CROSSFALL(DECIMAL) _ .020
OUTSIDE STREET CROSSFALL(DECIMAL) _ .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
STREET PARKWAY CROSSFALL(DECIMAL) = .020
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 28.08
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = .69
HALFSTREET FLOOD WIDTH(FEET) = 27.71
AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.87
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.67
STREET FLOW TRAVEL TIME(MIN.) = .91 Tc(MIN.) = 10.95
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.052
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 3.05 .98 .10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA AREA(ACRES) = 3.05 SUBAREA RUNOFF(CFS) = 8.11
EFFECTIVE AREA(ACRES) = 11.61 AREA -AVERAGED Fm(INCH/HR) _ .10
AREA -AVERAGED Fp(INCH/HR) = .98 AREA -AVERAGED Ap = .10
TOTAL AREA(ACRES) = 11.61 PEAK FLOW RATE(CFS) = 30.87
END OF SUBAREA STREET FLOW HYDRAULICS:
DE PTH(FEET) = .71 HALFSTREET FLOOD WIDTH(FEET) = 29.63
FLOW VELOCITY(FEET/SEC.) = 3.95 DEPTH*VELOCITY(FT*FT/SEC.) = 2.80
FLOW PROCESS FROM NODE 90.00 TO NODE 350.00 IS CODE = 4.1
Page 9 of 16
\\boyleonIlon-proj\F60\300\Calcs\rational method\CITALL.doc
-----------------------------------------------------
»» >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER -SPECIFIED PIPESIZE (NEW ELEMENT) ««<
ELEVATION DATA: UPSTREAM(FEET) = 1064.92 DOWNSTREAM (FEET) =
1058.71
FLOW LENGTH(FEET) = 618.87 MANNING'S N = .013
DEPTH OF FLOW IN 30.0 INCH PIPE IS 20.2 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) = 8.81
GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 30.87
PIPE TRAVEL TIME(MIN.) = 1.17 Tc(MIN.) = 12.12
FLOW PROCESS FROM NODE 350.00 TO NODE 350.00 IS CODE =
----------------------------------------------------------------------------
8.1
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
-------------------------------
MAINLINE Tc(MIN) = 12.12
* 25 YEAR RAINFALL INTENSITY (INCH /HR) = 2.872
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap
SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL)
CN
COMMERCIAL A 1.38 .98 .10
32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA AREA(ACRES) = 1.38 SUBAREA RUNOFF(CFS) = 3.45
EFFECTIVE AREA(ACRES) = 12.99 AREA -AVERAGED Fm(INCH/HR) _
.10
AREA -AVERAGED Fp(INCH/HR) = .98 AREA -AVERAGED Ap = _10
TOTAL AREA(ACRES) = 12.99 PEAK FLOW RATE(CFS) =
32.43
FLOW PROCESS FROM NODE 350.00 TO NODE 340.00 IS CODE =
----------------------------------------------------------------------------
4.1
>>>>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««<
>>>>>USING USER -SPECIFIED PIPESIZE (NEW ELEMENT) ««<
ELEVATION DATA: UPSTREAM(FEET) = 1058.71 DOWNSTREAM (FEET) =
1058.41
FLOW LENGTH(FEET) = 11.81 MANNING'S N = .013
DEPTH OF FLOW IN 30.0 INCH PIPE IS 15.4 INCHES
PIPE -FLOW VELOCITY (FEET/SEC.) = 12.78
GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 32.43
PIPE TRAVEL TIME (MIN. ) _ .02 Tc(MIN.) = 12.14
FLOW PROCESS FROM NODE 340.00 TO NODE 340.00 IS CODE =
----------------------------------------------------------------------------
8.1
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
- ----------------------
MAINLINE Tc(MIN) = 12.14
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.870
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap
SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL)
CN
COMMERCIAL A 7.78 .98 .10
32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
Page 10 of 16
\\boyleonllon-proj\F'60\300\Calcs\rational method\CITALL.doc
SUBAREA AREA(ACRES) = 7.78 SUBAREA RUNOFF(CFS) = 19.
EFFECTIVE AREA(ACRES) = 20.77 AREA -AVERAGED Fm(INCH/HR) _
AREA -AVERAGED Fp(INCH/HR) = .98 AREA -AVERAGED Ap = .10
TOTAL AREA(ACRES) = 20.77 PEAK FLOW RATE(CFS) =
41
�U
51.82
FLOW PROCESS FROM NODE 340.00 TO NODE 330.00 IS CODE = 4.1
----------------------------------------------------------------------------
»»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««<
»» >USING USER -SPECIFIED PIPESIZE (EXISTING ELEMENT) «« <
ELEVATION DATA: UPSTREAM(FEET) = 1058.41 DOWNSTREAM (FEET) = 1057.35
FLOW LENGTH(FEET) = 112.05 MANNING'S N = .013
ASSUME FULL -FLOWING PIPELINE
PIPE -FLOW VELOCITY(FEET/SEC.) = 10.56
GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 51.82
PIPE TRAVEL TIME(MIN.) = .18 Tc(MIN.) = 12.31
FLOW PROCESS FROM NODE 330.00 TO NODE 330.00 IS CODE = 1
----------------------------------------------------------------------------
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) = 12.31
RAINFALL INTENSITY(INCH/HR) = 2.84
AREA -AVERAGED Fm(INCH/HR) = .10
AREA -AVERAGED Fp(INCH/HR) = .98
AREA -AVERAGED Ap = .10
EFFECTIVE STREAM AREA(ACRES) = 20.77
TOTAL STREAM AREA(ACRES) = 20.77
PEAK FLOW RATE(CFS) AT CONFLUENCE = 51.82
** CONFLUENCE DATA **
STREAM
Q
Tc
Intensity
Fp(Fm)
Ap
Ae
HEADWATER
NUMBER
(CFS)
(MIN.)
(INCH/HR)
(INCH/HR)
(ACRES)
NODE
1
39.77
10.54
3.123
.97( .10)
.10
14.2
60.00
1
43.95
17.82
2.279
.98( .10)
.10
22.0
10.00
1
39.65
10.42
3.144
.97( .10)
.10
14.1
60.00
2
51.82
12.31
2.845
.98( .10)
.10
20.8
70.00
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM
Q
Tc
Intensity
NUMBER
(CFS)
(MIN.)
(INCH/HR)
1
88.29
10.42
3.144
2
88.62
10.54
3.123
3
85.10
17.82
2.279
4
92.61
12.31
2.845
Fp(Fm) Ap Ae HEADWATER
(INCH/HR) (ACRES) NODE
.98( .10) .10 31.6 60.00
.97( .10) .10 32.0 60.00
.98( .10) .10 42.7 10.00
.97( .10) .10 36.9 70.00
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 92.61 Tc(MIN.) =
12.31
Page II of16
\\boyleonl\on-proj\F60\300\Calcs\rational method\CITALL.doc
EFFECTIVE AREA(ACRES) = 36.87 AREA -AVERAGED Fm(INCH/HR) _ .10
AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .10
TOTAL AREA(ACRES) = 42.73
****************************************************************************
FLOW PROCESS FROM NODE 330.00 TO NODE 360.00 IS CODE = 4.1
----------------------------------------------------------------------------
»»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER -SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
ELEVATION DATA: UPSTREAM(FEET) = 1057.35 DOWNSTREAM(FEET) = 1055.70
FLOW LENGTH(FEET) = 222.57 MANNING'S N = .013
ASSUME FULL -FLOWING PIPELINE
PIPE -FLOW VELOCITY(FEET/SEC.) = 9.63
GIVEN PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 92.61
PIPE TRAVEL TIME(MIN.) _ .39 Tc(MIN.) = 12.70
****************************************************************************
FLOW PROCESS FROM NODE 360.00 TO NODE 360.00 IS CODE = 1
----------------------------------------------------------------------------
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) = 12.70
RAINFALL INTENSITY(INCH/HR) = 2.79
AREA -AVERAGED Fm(INCH/HR) = .10
AREA -AVERAGED Fp(INCH/HR) = .97
AREA -AVERAGED Ap = .10
EFFECTIVE STREAM AREA(ACRES) = 36.87
TOTAL STREAM AREA(ACRES) = 42.73
PEAK FLOW RATE(CFS) AT CONFLUENCE = 92.61
****************************************************************************
FLOW PROCESS FROM NODE 130.00 TO NODE 300.00 IS CODE = 2.1
----------------------------------------------------------------------------
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW-LENGTH(FEET) = 227.00
ELEVATION DATA: UPSTREAM(FEET) = 1063.90 DOWNSTREAM(FEET) = 1061.10
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.413
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 4.208
SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
COMMERCIAL A .40 .98 .10 32 6.41
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA RUNOFF (CFS) = 1.48
TOTAL AREA(ACRES) = .40 PEAK FLOW RATE(CFS) = 1.48
FLOW PROCESS FROM NODE 300.00 TO NODE 360.00 IS CODE = 4.1
Page12 of16
\\boyleonl\on-proj\F60\300\Calcs\rational method\CITALL.doc
----------------------------------------------------------------------------
»» >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER -SPECIFIED PIPESIZE (NEW ELEMENT) ««<
ELEVATION DATA: UPSTREAM(FEET) = 1058.06 DOWNSTREAM(FEET) = 1035.70
FLOW 1ENGTH(FEET) = 85.01 MANNING'S N = .013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 3.3 INCHES
PIPE -FLOW VELOCITY (FEET/SEC. ) = 5.62
GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 1.48
PIPE TRAVEL TIME(MIN.) _ .25 Tc(MIN.) = 6.67
FLOW PROCESS FROM NODE 360.00 TO NODE 360.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»» >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION (MIN.) = 6.67
RAINFALL INTENSITY (INCH/HR) = 4.11
AREA -AVERAGED Fm(INCH/HR) _ .10
AREA -AVERAGED Fp ( INCH/HR) _ .98
AREA -AVERAGED Ap = .10
EFFECTIVE STREAM AREA(ACRES) _ .40
TOTAL STREAM AREA ( ACRES) = .40
PEAK FLOW RATE (CFS) AT CONFLUENCE = 1.48
** CONFLUENCE DATA **
STREAM
Q
Tc
Intensity
Fp(Fm)
Ap
Ae
HEADWATER
NUMBER
(CFS)
(MIN.)
(INCH/HR)
(INCH/HR)
(ACRES)
NODE
1
88.29
10.83
3.073
.98( .10)
.10
31.6
60.00
1
88.62
10.95
3.053
.97( .10)
.10
32.0
60.00
1
85.10
18.24
2.248
.98( .10)
.10
42.7
10.00
1
92.61
12.70
2.793
.97( .10)
.10
36.9
70.00
2
1.48
6.67
4.111
.98( .10)
.10
.4
130.00
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
* * PEAK FLOW RATE TABLE * *
STREAM
Q
Tc
Intensity
Fp(Fm)
Ap
Ae
HEADWATER
NUMBER
(CFS)
(MIN.)
(INCH/HR)
(INCH/HR)
(ACRES)
NODE
1
89.39
10.83
3.073
.98( .10)
.10
32.0
60.00
2
89.71
10.95
3.053
.97( .10)
.10
32.4
60.00
3
93.60
12.70
2.793
.98( .10)
.10
37.3
70.00
4
85.89
18.24
2.248
.97( .10)
.10
43.1
10.00
5
74.79
6.67
4.111
.98( .10)
.10
1 9.9
130.00
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE (CFS) = 93.60 Tc (MIN.) = 12.70
EFFECTIVE AREA(ACRES) = 37.27 AREA -AVERAGED Fm(I NCH/HR) _ .10
AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .10
TOTAL AREA(ACRES) = 43.13
*******vk�***************I****************************** -,c********************
Page 13 of 16
\\boyleonl\on,proj\F60\300\Calcs\rational method\CITALL.doc
FLOW PROCESS FROM NODE 360.00 TO NODE 370.00 IS CODE = 4.1
»»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER -SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
---------------------------
ELEVATION DATA: UPSTREAM(FEET) = 1055.70 DOWNSTREAM (FEET) = 1055.01
FLOW LENGTH(FEET) = 83.97 MANNING'S N = .013
ASSUME FULL -FLOWING PIPELINE
PIPE -FLOW VELOCITY(FEET/SEC.) = 9.73
GIVEN PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 93.60
PIPE TRAVEL TIME(MIN.) _ .14 Tc(MIN.) = 12.84
FLOW PROCESS FROM NODE 370.00 TO NODE 370.00 IS CODE = 1
----------------------------------------------------------------------------
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION (MIN.)
= 12.84
RAINFALL INTENSITY(INCH/HR)
= 2.77
AREA -AVERAGED Fm(INCH/HR) _
.10
AREA -AVERAGED Fp(INCH/HR) _
.98
AREA -AVERAGED Ap = .10
EFFECTIVE STREAM AREA(ACRES)
= 37.27
TOTAL STREAM AREA(ACRES) =
43.13
PEAK FLOW RATE(CFS) AT CONFLUENCE = 93.60
FLOW PROCESS FROM NODE 130.00 TO NODE 310.00 IS CODE = 2.1
----------------------------------------------------------------------------
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS«« <
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
----------------------=
INITIAL SUBAREA FLOW-LENGTH(FEET) = 317.00
ELEVATION DATA: UPSTREAM(FEET) = 1063.90 DOWNSTREAM(FEET) = 1059.30
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.095
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.960
SUBAREA Tc AND LOSS RATE DATA (AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
COMMERCIAL A .40 .98 .10 32 7.10
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA RUNOFF(CFS) = 1.39
TOTAL AREA(ACRES) _ .40 PEAK FLOW RATE(CFS) = 1.39
FLOW PROCESS FROM NODE 310.00 TO NODE 370.00 IS CODE = 4.1
----------------------------------------------------------------------------
>>>>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««<
>>>>>USING USER -SPECIFIED PIPESIZE (NEW ELEMENT)<<<<<
-------------------
ELEVATION DATA: UPSTREAM(FEET) = 1056.86 DOWNSTREAM (FEET) = 1055.01
Page 14 of 16
\\boyleonilon-proj\F60\300\Calcs\rational method\CITALL.doc
FLOW LENGTH(FEET) = 59.22 MANNING'S N = .013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 3.1 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) = 5.73
GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 1.39
PIPE TRAVEL TIME(MIN.) = .17 Tc(MIN.) = 7.27
FLOW PROCESS FROM NODE 370.00 TO NODE 370.00 IS CODE = 1
»» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»» >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
---------------------
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) = 7.27
RAINFALL INTENSITY(INCH/HR) = 3.90
AREA -AVERAGED Fm(INCH/HR) = .10
AREA -AVERAGED Fp(INCH/HR) = .98
AREA -AVERAGED Ap = .10
EFFECTIVE STREAM AREA(ACRES) _ .40
TOTAL STREAM AREA(ACRES) = .40
PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.39
** CONFLUENCE DATA **
STREAM
Q
Tc
NUMBER
(CFS)
(MIN.)
• 1
89.39
10.98
1
89.71
11.10
1
93.60
12.84
1
85.89
18.37
1
74.79
6.80
2
1.39
7.27
Intensity
Fp(Fm)
Ap
Ae
(INCH/HR)
(INCH/HR)
(ACRES)
3.047
.98( .10)
.10
32.0
3.028
.97( .10)
.10
32.4
2.774
.98( .10)
.10
37.3
2.237
.97( .10)
.10
43.1
4.061
.98( .10)
.10
19.9
3.904
.98( .10)
.10
.4
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK
FLOW RATE TABLE
**
STREAM
Q
Tc
Intensity
Fp (Fm)
Ap
Ae
NUMBER
(CFS)
(MIN.)
(INCH/HR)
(INCH/HR)
(ACRES)
1
76.15
6.80
4.061
.98(
.10)
.10
20.3
2
90.47
10.98
3.047
.98(
.10)
.10
32.4
3
90.78
11.10
3.028
.97(
.10)
.10
32.8
4
94.58
12.84
2.774
.98(
.10)
.10
37.7
5
86.68
18.37
2.237
.97(
.10)
.10
43.5
6
77.81
7.27
3.904
.98(
.10)
.10
21.6
HEADWATER
NODE
60.00
60.00
70.00
10.00
130.00
130.00
HEADWATER
NODE
130.00
60.00
60.00
70.00
10.00
130.00
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 94.58 Tc(MIN.) = 12.84
EFFECTIVE AREA(ACRES) = 37.67 AREA -AVERAGED Fm(INCH/HR) _ .10
AREA -AVERAGED Fp(INCH/HR) = .98 AREA -AVERAGED Ap = .10
TOTAL AREA(ACRES) = 43.53
-- -----------
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 43.53 TC(MIN.) = 12.84
EFFECTIVE AREA(ACRES) = 37.67 AREA -AVERAGED Fm(INCH/HR)= .10
AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .10
Page15 of16
\\boyleonllon-proj\F60\300\Calcs\rational method\CITALL.doe
PEAK FLOW RATE(CFS) = 94.58
** PEAK
FLOW RATE TABLE
**
STREAM
Q
Tc
Intensity
Fp(Fm)
Ap
Ae
HEADWATER
NUMBER
(CFS)
(MIN.)
(INCH/HR)
(INCH/HR)
(ACRES)
NODE
1
76.15
6.80
4.061
.98(
.10)
.10
20.3
130.00
2
77.81
7.27
3.904
.98(
.10)
.10
21.6
130.00
3
90.47
10.98
3.047
.98(
.10)
.10
32.4
60.00
4
90.78
11.10
3.028
.97(
.10)
.10
32.8
60.00
5
94.58
12.84
2.774
.98{
.10)
.10
37.7
70.00
6
86.68
18.37
2.237
.97(
.10)
.10
43.5
10.00
END OF RATIONAL
METHOD
ANALYSIS
Page 16 of 16
\\boyleon lion-proj\F60\300\Calcs\rational method\CITALL.doc
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
(Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-96 Advanced Engineering Software (aes)
Ver. 6.1 Release Date: 01/01/96 License ID 1395
Analysis prepared by:
DD❑❑❑❑❑L�DDGD❑❑❑❑❑Q❑❑❑Q❑❑❑❑❑DQ❑❑❑❑❑❑❑QQQ❑❑❑Q❑❑❑DD❑❑❑QQ❑Q❑❑❑❑❑❑❑❑D❑D❑❑❑G❑Q❑❑❑❑
G❑❑C❑❑❑G(�❑D❑D❑❑D❑O❑❑Q❑❑OQ❑❑❑❑❑❑QODD❑❑❑❑Q❑❑Q❑❑❑❑❑D❑❑Q❑❑❑❑❑❑❑❑❑QQ❑❑❑CDD❑❑❑❑❑QO
Q❑�'iD❑v�L7C'❑❑t]❑DD❑D❑❑❑❑❑OQQQD❑❑D❑❑❑❑D❑❑❑C❑❑C❑QQ❑❑❑❑❑❑DD❑❑❑❑❑❑QQ❑D❑C�❑❑❑D❑C❑❑❑
❑❑QQ❑QQ❑❑❑Q❑D❑U❑❑DO❑QD❑❑❑❑❑❑❑❑❑QQQQ❑❑❑D❑�JDDD❑❑n❑❑❑❑❑❑❑❑❑❑❑D❑❑❑❑❑❑❑❑❑Q❑❑❑❑❑D❑
************************** DESCRIPTION OF STUDY **************************
* SOUTHBOUND CITRUS NORTH OF SLOVER
* NORTHWEST OF CITRUS/SLOVER INTERSECTION
* CATCH BASIN 1 AT NORTHWEST CORNER OF INTERSECTION
**************************************************************************
FILE NAME: C:\TEMP\CITNW.DAT
TIME/DATE OF STUDY: 8:51 1/ 8/2001
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
--*TIME-OF-CONCENTRATION MODEL* --
USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 24.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90
*USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) _ .6000
USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 1.1000
*ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD*
*USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
1 30.0 20.0 .018/ .018/ .020 .67 2.00 .03125 .1670 01500
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1. Relative Flow -Depth = .00 FEET
as (Maximum Allowable Street Flow Depth) - (Top -of -Curb)
2. (Depth)*(Velocity) Constraint = .0 (FT*FT/S)
FLOW PROCESS FROM NODE 60.00 TO NODE 100.00 IS CODE = 2.1
----- -----------------------------------------------------------------------
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
>>U SE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW-LENGTH(FEET) = 600.00
ELEVATION DATA: UPSTREAM(FEET) = 1116.00 DOWNSTREAM(FEET) = 1077.00
Page 1 of 3
\\boyleonl\on-proj\F60\300\Calcs\rational methodUTNW.doc
Tc = K*[(LENGTH** 3.00)1(ELEVATION CHANGE))** .20
SUBAREA ANALYSIS USED MINIMUM Tc (MIN.) =
6.785
* 25 YEAR RAINFALL
INTENSITY(INCH/HR) =
4.068
SUBAREA Tc AND LOSS
RATE DATA(AMC II):
DEVELOPMENT TYPE/
SCS SOIL AREA
Fp
Ap SCS Tc
LAND USE
GROUP (ACRES)
(INCH/HR)
(DECIMAL) CN (MIN.)
COMMERCIAL
A .84
.98
.10 32 6.79
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR)
=
.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap
= .10
SUBAREA RUNOFF(CFS)
= 3.00
TOTAL AREA(ACRES) =
.84 PEAK FLOW
RATE(CFS)
= 3.00
FLOW PROCESS FROM NODE 100.00 TO NODE 110.00 IS CODE = 6.1
----------------------------------------------------------------------------
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»> (STANDARD CURB SECTION USED) ««<
UPSTREAM ELEVATION(FEET) = 1077.00 DOWNSTREAM ELEVATION(FEET) = 1069.40
STREET LENGTH (FEET) = 557.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) = 40.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00
INSIDE STREET CROSS FALL (DECIMAL) _ .020
OUTSIDE STREET CROSS FALL (DECIMAL) _ .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
STREET PARKWAY CROSS FALL (DECIMAL) = .020
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.27
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = .38
HALFSTREET FLOOD WIDTH(FEET) = 11.33
AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.90
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.12
STREET FLOW TRAVEL TIME(MIN.) = 3.20 Tc(MIN.) = 9.99
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.226
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A .90 .98 .10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA AREA(ACRES) = .90 SUBAREA RUNOFF(CFS) = 2.53
EFFECTIVE AREA(ACRES) = 1.74 AREA -AVERAGED Fm(INCH/HR) _ .10
AREA -AVERAGED Fp(INCH/HR) = .98 AREA -AVERAGED Ap = .10
TOTAL AREA(ACRES) = 1.74 PEAK FLOW RATE(CFS) = 4.90
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = .40 HALFSTREET FLOOD WIDTH(FEET) = 12.06
FLOW VELOCITY(FEET/SEC.) = 2.98 DEPTH*VELOCITY(FT*FT/SEC.) = 1.19
FLOW PROCESS FROM NODE 110.00 TO NODE 130.00 IS CODE = 4.1
----------------------------------------------------------------------------
»»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««<
Page 2 of 3
\\boyleonl\on-proj\F60\300\Calcs\rational method\CITNW.doc
>>>>>USING USER -SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
--------------------------------
ELEVATION DATA. UPSTREAM(FEET) = 1063.90 DOWNSTREAM (FEET) = 1061.70
FLOW LENGTH(FEET) = 220.00 MANNING'S N = .013
DEPTH OF FLOW IN 42.0 INCH PIPE IS 6.5 INCHES
PIPE -FLOW VELOCITY (FEET /SEC.) = 5.21
GIVEN PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 4.90
PIPE TRAVEL TIME(MIN.) _ .70 Tc(MIN.) = 10.69
-------------------
END OF STUDY SUMMARY:
TOTAL AREA (ACRES) = 1.74 TC(MIN.) = 10.69
EFFECTIVE AREA(ACRES) = 1.74 AREA -AVERAGED FM(INCH/HR)= .10
AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .10
PEAK FLOW RATE(CFS) = 4.90
END OF RATIONAL METHOD ANALYSIS
Page 3 of 3
\\boyleon I \on-prcj\F60\300\Calcs\rational method\CITNW.doc
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
(Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-96 Advanced Engineering Software (aes)
Ver. 6.1 Release Date: 01/01/96 License ID 1395
Analysis prepared by:
❑D❑❑DOUR❑❑UJ❑❑❑00❑❑❑❑❑❑0❑❑❑❑❑O❑00❑0❑❑❑Q❑000000❑❑❑❑QO❑❑❑O❑❑OC❑OQQ❑ODOQ❑DC❑❑❑❑
❑❑❑ODO❑ODUC❑❑❑000C7000❑❑❑Q❑OOOQiJ❑❑❑❑CODQ❑0❑OQ❑0❑❑0000❑❑❑0❑0❑000❑❑❑Q❑O❑0❑❑00❑0
❑❑❑❑:-I❑JO��J❑❑Q❑O❑❑❑C]f�00❑❑0❑0❑O❑❑00❑❑❑❑❑❑❑❑❑OOQ❑❑❑❑000�7❑❑OJO❑O❑0❑O❑0❑❑❑❑OO0000
❑0❑❑❑❑OC:-7C:1❑�7i:7❑❑❑OOOC❑G❑❑0❑❑0❑❑❑Q❑000❑00❑❑O❑❑OQ❑❑ODOQ❑❑Q�❑❑O❑❑Q❑❑D❑00❑❑❑❑000
************************** DESCRIPTION OF STUDY **************************
* NORTHBOUND CITRUS NORTH OF SLOVER
* NORTHEAST OF CITRUS/SLOVER INTERSECTION
* CATCH BASIN 2 AT NORTHEAST CORNER OF INTERSECTION
**************************************************************************
FILE NAME: C:\TEMP\CITNE.DAT
TIME/DATE OF STUDY: 8:59 l/ 8/2001
--------------------
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
-------------
--*TIME-OF-CONCENTRATION MODEL* --
USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 24.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90
*US ER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) _ .6000
USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 1.1000
*ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD*
*US ER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
1 30.0 20.0 .018/ .018/ .020 .67 -2.00 .03125 1670 01500
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1. Relative Flow -Depth = .00 FEET
as (Maximum Allowable Street Flow Depth) - (Top -of -Curb)
2. (Depth)*(Velocity) Constraint = .0 (FT*FT/S)
****************************************************************************
FLOW PROCESS FROM NODE 60.00 TO NODE 40.00 IS CODE = 2.1
----------------------------------------------------------------------------
>>> >>RATIONAL METHOD INITIAL SUBAREA ANALYSIS «« <
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
--------------
INITIAL SUBAREA FLOW-LENGTH(FEET) = 602.00
ELEVATION DATA: UPSTREAM(FEET) = 1116.00 DOWNSTREAM(FEET) = 1076.00
Page I of 3
\\boyleonl\on-proj\F60\300\Calcs\rational method\CI7NE.doc
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.764
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 4.075
SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
COMMERCIAL A .83 .98 .10 32 6.76
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA RUNOFF(CFS) = 2.97
TOTAL AREA(ACRES) = .83 PEAK FLOW RATE(CFS) = 2.97
****************************************************************************
FLOW PROCESS FROM NODE 40.00 TO NODE 140.00 IS CODE = 6.1
----------------------------------------------------------------------------
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»>(STANDARD CURB SECTION USED) ««<
UPSTREAM ELEVATION(FEET) = 1076.00 DOWNSTREAM ELEVATION(FEET) = 1069.20
STREET LENGTH(FEET) = 547.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) = 40.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00
INSIDE STREET CROSSFALL(DECIMAL) _ .020
OUTSIDE STREET CROSSFALL(DECIMAL) _ .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
STREET PARKWAY CROSSFALL(DECIMAL) = .020
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.0'7
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = .38
HALFSTREET FLOOD WIDTH(FEET) = 11.33
AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.76
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.06
STREET FLOW TRAVEL TIME(MIN.) = 3.30 Tc(MIN.) = 10.07
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.211
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap
SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL)
CN
COMMERCIAL A .78 .98 .10
32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA AREA(ACRES) = .78 SUBAREA RUNOFF(CFS) = 2.19
EFFECTIVE AREA(ACRES) = 1.61 AREA -AVERAGED Fm(INCH/HR) _
.10
AREA -AVERAGED Fp(INCH/HR) = .98 AREA -AVERAGED Ap = .10
TOTAL AREA(ACRES) = 1.61 PEAK FLOW RATE(CFS) =
4.51
END OF SUBAREA STREET FLOW HYDRAULICS:
DE PTH(FEET) = .40 HALFSTREET FLOOD WIDTH(FEET) = 11.86
FLOW VELOCITY(FEET/SEC.) = 2.83 DEPTH*VELOCITY(FT*FT/SEC.) =
1.12
FLOW PROCESS FROM NODE 140.00 TO NODE 130.00 IS CODE = 4.1
----------------------------------------------------------------------------
>>>>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««<
Page 2 of 3
\\boyleon l`:on-proj\F60\300\Ca)cs\rational method\CITNE.doc
»»>USING USER -SPECIFIED PIPESIZE (EXISTING ELEMENT) «« <
ELEVATION DATA: UPSTREAM(FEET) = 1063.70 DOWNSTREAM (FEET) = 1061.70
FLOW LENGTH(FEET) = 201.00 MANNING'S N = .013
DEPTH OF FLOW IN 42.0 INCH PIPE IS 6.2 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) = 5.08
GIVEN PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1
PIPE -FLOW (CFS) = 4.51
PIPE TRAVEL TIME (MIN. ) _ .66 Tc (MIN. ) = 10.73
END OF STUDY SUMMARY:
TOTAL AREA (ACRES) = 1.61 TC(MIN.) = 10.73
EFFECTIVE AREA(ACRES) = 1.61 AREA -AVERAGED FM(INCH/HR)= .10
AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .10
PEAK FLOW RATE(CFS) = 4.51
END OF RATIONAL METHOD ANALYSIS
Page 3 of 3
\\boyleon I \on-proj\F60\300\Calcs\rational method\CITNE.doc
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
(Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-96 Advanced Engineering Software (aes)
Ver. 6.1 Release Date: 01/01/96 License ID 1395
Analysis prepared by:
❑DD❑�C�CCD❑❑G❑❑CrJD❑❑G❑❑❑❑DD❑ODOD❑❑❑O;JO❑DDOOD❑❑❑❑❑DODO❑❑DO❑❑❑0❑U❑❑❑❑7❑DO❑ODD❑D
❑❑DDCUCLTC❑D00❑❑❑D❑❑❑❑❑D000❑0❑0❑DODO❑ODD❑❑G7❑O❑DO❑❑DODOC❑0❑DODO❑0❑OOOOODD❑❑00
0❑0000CC000D❑D❑❑❑❑GOO❑ODD❑❑❑OOOOODDOCDOODO.DMOOD0000❑OCCODODD❑ODD000000❑0000
❑D❑OOC>GGDO00❑Ou ❑❑DDDDDOD❑OOOODDDD❑DODO❑ODDDOD❑❑❑❑J❑❑❑CC❑❑0❑C❑❑❑❑❑DODO❑D❑D❑❑
************************ DESCRIPTION OF STUDY **************************
* WESTBOUND SLOVER EAST OF CITRUS
* NORTHEAST OF CITRUS/SLOVER INTERSECTION
* CATCH BASIN 3 AT NORTHEAST CORNER OF INTERSECTION
**************************************************************************
FILE NAME: C:\TEMP\SLONEI.DAT
TIME/DATE OF STUDY: 12:37 1/ 8/2001
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
--*TIME-OF-CONCENTRATION MODEL* --
USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 24.00
SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = .90
*US ER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
SLOPE OF INTENSITY DURATION CURVE (LOG (I; IN/HR) vs. LOG(Tc;MIN)) _ .6000
USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 1.1000
*ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD*
*USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
1 30.0 20.0 .018/ .018/ .020 .67 2.00 .03125 1670 01500
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1. Relative Flow -Depth = .00 FEET
as (Maximum Allowable Street Flow Depth) - (Top -of -Curb)
2. (Depth)*(Velocity) Constraint = .0 (FT*FT/S)
****************************************************************************
FLOW PROCESS FROM NODE 230.00 TO NODE 120.00 IS CODE = 2.1
----------------------------------------------------------------------------
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW-LENGTH(FEET) = 887.00
ELEVATION DATA: UPSTREAM(FEET) = 1076.70 DOWNSTREAM(FEET) = 1065.80
Page 1 of 2
\\boyleonl\on-proj\F60N300\Calcs\rationaI method\SLONELdoc
Tc = K* [ (LENGTH** 3.00) / (ELEVAT-
SUBAREA ANALYSIS USED MINIMUM T
* 25 YEAR RAINFALL INTENSITY (T
SUBAREA Tc AND LOSS RATE DATA (R -
DEVELOPMENT TYPE/ SCS SOT
LAND USE GROUP
COMMERCIAL A
SUBAREA AVERAGE PERVIOUS LOSS
SUBAREA AVERAGE PERVIOUS AREA
SUBAREA RUNOFF (CFS) = 20. 5
TOTAL AREA (ACRES) = 7.78
**********************-********* -*
FLOW PROCESS FROM NODE 120 _
»»>USER SPECIFIED CONSTANT S
USER -SPECIFIED CONSTANT SOURCE
USER -SPECIFIED AREA ASSOCIATED -
* ACCUMULATED SOURCE FLOW
DATA - .-
* SUMMED DATA: FLOW (CFS)
_
END OF STUDY SUMMARY:
TOTAL AREA (ACRES) =
7 -
EFFECTIVE AREA(ACRES) =
7 `-
AREA -AVERAGED Fp ( INCH/HR)
=
PEAK FLOW RATE (CFS) =
20
* ACCUMULATED SOURCE FLOW
DATA
* SUMMED DATA: FLOW ( CFS)
_
END OF RATIONAL METHOD ANALYS I
Page 2 of 2
\\boyleonl\on-proj\F60\300\Calcs\rationaI rnetli __ —
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE))** .20
SUBAREA ANALYSIS USED MINIMUM Tc (MIN.) = 10.273
* 25YEAR RAINFALL INTENSITY(INCH/HR) = 3.171
SUBAREA Tc AND LOSS RATE DATA (AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
COMMERCIAL A 6.64 .98 .10 32 10.27
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA RUNOFF (CFS ) = 18.37
TOTAL AREA (ACRES) = 6.64 PEAK FLOW RATE(CFS) = 18.37
******<********************************************************************
FLOW PROCESS FROM NODE 20.00 TO NODE 30.00 IS CODE = 6.1
----- -----------------------------------------------------------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»>(STANDARD CURB SECTION USED) ««<
UPSTREAM ELEVATION(FEET) = 1079.20 DOWNSTREAM ELEVATION(FEET) = 1077.50
STREET LENGTH(FEET) = 516.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) = 20.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00
INSIDE STREET CROSS FALL (DEC I MAL) _ .017
OUTSIDE STREET CROSS FALL (DECIMAL) _ .017
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
STREET PARKWAY CROSSFALL(DECIMAL) _ .020
*-*TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 24.92
-**STREET FLOWING FULL***
S TREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) _ .59
HALFSTREET FLOOD WIDTH(FEET) = 16.30
AVERAGE FLOW VELOCITY (FEET /SEC.) = 2.32
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.38
STREET FLOW TRAVEL TIME(MIN.) = 3.70 Tc(MIN.) = 13.98
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.637
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 5.72 .98 .10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA AREA(ACRES) = 5.72 SUBAREA RUNOFF(CFS) = 13.07
EFFECTIVE AREA(ACRES) = 12.36 AREA -AVERAGED Fm(INCH/HR) _ .10
AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .10
TOTAL AREA(ACRES) = 12.36 PEAK FLOW RATE(CFS) = 28.25
END OF SUBAREA STREET FLOW HYDRAULICS:
DE PTH(FEET) _ .61 HALFSTREET FLOOD WIDTH(FEET) = 17.40
FLOW VELOCITY(FEET/SEC.) = 2.43 DEPTH*VELOCITY(FT*FT/SEC.) = 1.50
****-Ar ***********************************************************************
FLOW PROCESS FROM NODE 30.00 TO NODE 40.00 IS CODE = 6.1
Page 2 of 4
\\boyleon I\on-proj\F60\300\Calcs\rational method\CITNE2.doc
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»> (STANDARD CURB SECTION USED) ««<
UPSTREAM ELEVATION(FEET) = 1077.50 DOWNSTREAM ELEVATION(FEET) = 1076.00
STREET LENGTH (FEET) = 317.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) = 20.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00
INSIDE STREET CROSSFALL(DECIMAL) _ .017
OUTSIDE STREET CROSSFALL(DECIMAL) _ .017
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
STREET PARKWAY CROSSFALL(DECIMAL) = .020
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 31.86
**'*STREET FLOWING FULL***
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = .60
HALFSTREET FLOOD WIDTH(FEET) = 16.85
AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.85
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.72
STREET FLOW TRAVEL TIME(MIN.) = 1.85 Tc(MIN.) = 15.83
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.447
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL)
COMMERCIAL A 3.42 .98 .10
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA AREA(ACRES) = 3.42 SUBAREA RUNOFF(CFS) _
EFFECTIVE AREA(ACRES) = 15.78 AREA -AVERAGED FM(INCH/HR)
AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .10
TOTAL AREA(ACRES) = 15.78 PEAK FLOW RATE(CFS) =
SCS
CN
32
7.23
.10
33.37
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = .61 HALFSTREET FLOOD WIDTH(FEET) = 17.28
FLOW VELOCITY(FEET/SEC.) = 2.90 DEPTH*VELOCITY(FT*FT/SEC.) = 1.77
****************************************************************************
FLOW PROCESS FROM NODE 40.00 TO NODE 50.00 IS CODE = 5.1
---------------------------------------------------
»»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««<
»»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««<
ELEVATION DATA: UPSTREAM(FEET) = 1076.00 DOWNSTREAM(FEET) = 1070.50
CHANNEL LENGTH THRU SUBAREA(FEET) = 429.00 CHANNEL SLOPE _ .0128
CHANNEL BASE(FEET) = .00 "Z" FACTOR = 2.000
MANNING'S FACTOR = .030 MAXIMUM DEPTH(FEET) = 5.00
CHANNEL FLOW THRU SUBAREA(CFS) = 33.37
FLOW VELOCITY(FEET/SEC) = 4.92 FLOW DEPTH(FEET) = 1.84
TRAVEL TIME(MIN.) = 1.45 Tc(MIN.) = 17.28
FLOW PROCESS FROM NODE 50.00 TO NODE 50.00 IS CODE = 8.1
--------------------------------------------------
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
Page 3 of 4
\\boyleonl\on-proj\F60\300\Calcs\rational method\CITNE2.doc
MAINLINE Tc(MIN) = 17.28
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.321
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 2.83 .98 .10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA AREA(ACRES) = 2.83 SUBAREA RUNOFF(CFS) = 5.66
EFFECTIVE AREA(ACRES) = 18.61 AREA -AVERAGED Fm(INCH/HR) _ .10
AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .10
TOTAL AREA(ACRES) = 18.61 PEAK FLOW RATE(CFS) = 37.25
****************************************************************************
FLOW PROCESS FROM NODE 50.00 TO NODE 130.00 IS CODE = 4.1
»»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER -SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
ELEVATION DATA: UPSTREAM(FEET) = 1065.00 DOWNSTREAM(FEET) = 1061.70 -
FLOW LENGTH(FEET) = 306.00 MANNING'S N = .013
DEPTH OF FLOW IN 42.0 INCH PIPE IS 17.8 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) = 9.57
GIVEN PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 37.25
PIPE TRAVEL TIME(MIN.) _ .53 Tc(MIN.) = 17.81
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 18.61 TC(MIN.) = 17.81
EFFECTIVE AREA(ACRES) = 18.61 AREA -AVERAGED Fm(INCH/HR)= .10
AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .10
PEAK FLOW RATE(CFS) = 37.25
END OF RATIONAL METHOD ANALYSIS
Page 4 of 4
\\boyleonlion-proff60\300\CalcArational method\CITNE2.doc
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
(Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-96 Advanced Engineering Software (aes)
Ver. 6.1 Release Date: 01/01/96 License ID 1395
Analysis prepared by:
❑❑❑D❑GC❑DC❑00❑❑❑❑❑0❑O❑O❑DOO❑0❑❑C❑❑00❑❑0❑❑❑O❑O❑❑OG❑❑❑❑000❑0❑CD❑❑❑00❑❑❑❑O❑❑00❑
CD0❑000❑❑❑❑O❑COO❑DO❑❑❑D❑D❑ODOO❑❑O❑0❑❑O❑❑❑❑DC❑❑00❑❑❑0❑D❑❑DDOO❑❑❑D❑❑❑D00❑❑D000
0000000000❑000000m000❑❑❑0❑C000❑O❑OCO❑❑000❑❑ODC❑❑❑❑00❑❑0❑C❑❑❑000❑OD❑❑❑❑0❑00❑❑C
ODODO❑❑❑ODDOO❑ODD❑O❑DOODOODOODDOOO❑ODO❑GODO❑❑000❑❑0❑❑❑OODOOD❑OD❑D❑D❑❑D❑0❑❑❑0
************************** DESCRIPTION OF STUDY **************************
* EASTBOUND SLOVER EAST OF CITRUS
* SOUTHEAST OF CITRUS/SLOVER INTERSECTION
* CATCH BASIN 5 AT SOUTHEAST CORNER OF INTERSECTION
**************************************************************************
FILE NAME: C:\TEMP\SLO-SE.DAT
TIME/DATE OF STUDY: 17:32 12/21/2000
--------------------------------------
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
--*TIME-OF-CONCENTRATION MODEL* --
USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 24.00
SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE _ .90
*USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
SLOPE OF INTENSITY DURATION CURVE (LOG (I;IN/HR) vs. LOG(Tc;MIN)) = .6000
USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 1.1000
*ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD*
*USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
1 30.0 20.0 .018/ .018/ .020 .67 2.00 03125 1670 01500
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1. Relative Flow -Depth = .00 FEET
as (Maximum Allowable Street Flow Depth) - (Top -of -Curb)
2. (Depth)* (Velocity) Constraint = .0 (FT*FT/S)
****************************************************************************
FLOW PROCESS FROM NODE 150.00 TO NODE 160.00 IS CODE = 2.1
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
-------------------------------
INITIAL SUBAREA FLOW-LENGTH(FEET) = 658.00
ELEVATION DATA: UPSTREAM(FEET) = 1071.80 DOWNSTREAM(FEET) = 1067.00
Page l of 3
\\boyleon 1\on-proj\F60\300\Calcs\rational method\SLO-SE.doc
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.903
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.060
SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
COMMERCIAL A .41 .98 .10 32 10.90
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA RUNOFF(CFS) = 1.09
TOTAL AREA(ACRES) _ .41 PEAK FLOW RATE(CFS) = 1.09
****************************************************************************
FLOW PROCESS FROM NODE 160.00 TO NODE 170.00 IS CODE = 6.1
-------------------------------------------------------------------
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»>(STANDARD CURB SECTION USED) ««<
UPSTREAM ELEVATION(FEET) = 1067.00 DOWNSTREAM ELEVATION(FEET) = 1063.90
STREET LENGTH(FEET) = 757.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) = 35.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 30.00
INSIDE STREET CROSSFALL(DECIMAL) _ .020
OUTSIDE STREET CROSSFALL(DECIMAL) _ .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
STREET PARKWAY CROSSFALL(DECIMAL) _ .020
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.01
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) _ .37
HALFSTREET FLOOD WIDTH(FEET) = 10.60
AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.53
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) _ .57
STREET FLOW TRAVEL TIME(MIN.) = 8.22 Tc(MIN.) = 19.12
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.184
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A .97 .98 .10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA AREA(ACRES) _ .97 SUBAREA RUNOFF(CFS) = 1.82
EFFECTIVE AREA(ACRES) = 1.38 AREA -AVERAGED Fm(INCH/HR) _ .10
AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .10
TOTAL AREA(ACRES) = 1.38 PEAK FLOW RATE(CFS) = 2.59
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) _ .40 HALFSTREET FLOOD WIDTH(FEET) = 11.88
FLOW VELOCITY(FEET/SEC.) = 1.62 DEPTH*VELOCITY(FT*FT/SEC.) _ .64
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 1.38 TC(MIN.) = 19.12
EFFECTIVE AREA(ACRES) = 1.38 AREA -AVERAGED Fm(INCH/HR)= .10
AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .10
Page 2 of 3
\\boyleonl\on-proj\F60\300\Calcs\rational method\SLO-SE.doc
PEAK FLOW RATE(CFS) = 2.59
END OF RATIONAL METHOD ANALYSIS
Page 3 of 3
\\boyleonllon-proj\F60\300\Calcs\rational method\SLO-SE.doc
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
(Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-96 Advanced Engineering Software (aes)
Ver. 6.1 Release Date: 01/01/96 License ID 1395
Analysis prepared by:
❑❑�7Q❑Q❑C7❑❑CQ❑GGG❑❑❑❑❑QQCGOC❑❑❑❑❑❑CGQ❑❑❑❑❑G❑QQQ❑❑❑QOGGGQQ❑❑QQGuGG❑❑❑❑❑❑CQOQ❑G
❑QQ❑C❑OOQQQ❑QQC❑❑QQQ❑❑❑OQQ❑❑Q❑❑❑QCOGQQ❑❑❑GQ❑OQ❑❑Q❑G�J�JQGOQQ❑❑QQ❑❑Qp❑❑OQQG❑GQ❑
❑❑QGQ❑❑GQ❑❑❑G�70GGGG❑C❑❑❑❑QCG❑Q❑❑❑QQQGGQ❑❑❑QQCG❑Q❑❑❑❑❑❑COCQQ❑❑QQOG❑Q❑❑❑❑Q❑Q'JQ
QQ❑G❑❑❑QQ❑CQQQ❑❑❑❑❑❑CG❑Q❑❑Q❑QG❑❑Q❑0❑QCGC❑❑❑❑QQ❑QCGG❑❑❑❑OQ❑❑❑❑❑O❑❑QG❑QQ❑❑❑❑QG
************************** DESCRIPTION OF STUDY **************************
* WESTBOUND SLOVER WEST OF CITRUS
* NORTHWEST OF CITRUS/SLOVER INTERSECTION
* CATCH BASIN 6 BETWEEN WEST END OF PROJECT AND INTERSECTION
**************************************************************************
FILE NAME: C:\TEMP\SLONWI.DAT
TIME/DATE OF STUDY: 11:45 12/21/2000
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
--*TIME-OF-CONCENTRATION MODEL* --
I USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 24.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .90
*USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = .6000
USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 1.1000
*ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD*
*USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
----------- ------ ----- ------
1 30.0 20.0 .018/ .018/ .020 .67 2.00 .03125 .1670 01500
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1. Relative Flow -Depth = .00 FEET
as (Maximum Allowable Street Flow Depth) - (Top -of -Curb)
2. (Depth)*(Velocity) Constraint = .0 (FT*FT/S)
FLOW PROCESS FROM NODE 190.00 TO NODE 200.00 IS CODE = 2.1
- -----------------------------------------------------------------------
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW-LENGTH(FEET) = 436.00
ELEVATION DATA: UPSTREAM(FEET) = 1070.00 DOWNSTREAM(FEET) = 1063.50
Page 1 of 2
\\boyleonl\on-proj\F60\300\Calcs\rational method\SLONWI.doc
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.016
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.680
SUBAREA Tc AND LOSS RATE
DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp
Ap SCS Tc
LAND USE
GROUP (ACRES) (INCH/HR)
(DECIMAL) CN (MIN.)
COMMERCIAL
A 2.49 .98
.10 32 8.02
SUBAREA AVERAGE PERVIOUS
LOSS RATE, Fp(INCH/HR) =
.98
SUBAREA AVERAGE PERVIOUS
AREA FRACTION, Ap = .10
SUBAREA RUNOFF(CFS) =
8.03
TOTAL AREA(ACRES) =
_
2.49 PEAK FLOW RATE(CFS)
= 8.03
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) =
2.49 TC(MIN.) =
8.02
EFFECTIVE AREA(ACRES) =
2.49 AREA -AVERAGED Fm(INCH/HR)=
AREA -AVERAGED Fp(INCH/HR)
_ .98 AREA -AVERAGED Ap
.10
= .10
PEAK FLOW RATE(CFS) =
8.03
END OF RATIONAL METHOD ANALYSIS
Page 2 of 2
\\boyleon 1 \on-proj\F60\300\Calcs\rational method\SLON W 1.doe
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
(Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-96 Advanced Engineering Software (aes)
Ver. 6.1 Release Date: 01/01/96 License ID 1395
Analysis prepared by:
OC❑u�J�7��7GJ❑❑❑❑❑❑❑❑❑D❑D❑DC❑❑❑D❑❑DJ❑OD❑Q❑❑D❑❑❑D❑❑❑❑❑ODD❑❑❑❑❑❑DD❑❑DG❑❑L�0❑❑❑❑❑❑
❑❑❑❑LOCO❑❑❑❑❑❑C❑❑❑❑❑❑❑❑DDC❑❑❑❑❑❑❑❑DDCI❑CD❑❑DD❑D❑❑❑❑❑❑❑❑D❑❑DOG❑❑❑❑D❑D❑❑❑❑❑❑❑❑❑
❑❑❑G❑OC❑❑❑❑CODOC❑❑DD❑D❑D'JD❑❑D❑❑G❑DCDD❑C❑O❑❑❑❑OD❑C❑❑❑❑❑❑❑❑C❑❑C❑❑❑❑D❑DC❑D❑❑❑❑❑
L1❑D❑❑f]CODOD❑O❑❑❑❑DDC❑❑❑❑0❑❑DD❑C❑DC❑❑D❑DD❑❑D❑❑❑C7❑❑DO❑❑❑❑❑❑C❑❑D❑❑D❑C❑DODO❑❑D❑❑
************************* DESCRIPTION OF STUDY **************************
* WESTBOUND SLOVER WEST OF CITRUS
* NORTHWEST OF CITRUS/SLOVER INTERSECTION
* CATCH BASIN 7 AT WEST END OF PROJECT
**************************************************************************
FILE NAME: C:\TEMP\SLONW2.DAT
TIME/DATE OF STUDY: 16: 9 12/21/2000
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
--*TIME-OF-CONCENTRATION MODEL* --
USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 24.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90
*USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = .6000
USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 1.1000
*ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD*
*USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
1 30.0 20.0 .018/ .018/ .020 .67 2.00 .03125 .1670 .01500
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1. Relative Flow -Depth = .00 FEET
as (Maximum Allowable Street Flow Depth) - (Top -of -Curb)
2. (Depth)*(Velocity) Constraint = .0 (FT*FT/S)
****************************************************************************
FLOW PROCESS FROM NODE 220.00 TO NODE 210.00 IS CODE = 2.1
----------------------------------------------------------------------------
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
----------------------------------
INITIAL SUBAREA FLOW-LENGTH(FEET) = 710.00
ELEVATION DATA: UPSTREAM(FEET) = 1068.80 DOWNSTREAM(FEET) = 1060.10
Pagel of 2
\\boyleonl\on-proj\F60\300\Calcs\rational method\SLONW2.doc
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE))** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.133
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.198
SUBAREA Tc AND LOSS RATE
DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap
SCS Tc
LAND USE
GROUP (ACRES) (INCH/HR) (DECIMAL)
CN (MIN.)
COMMERCIAL
A 5.95 .98 .10
32 10.13
SUBAREA AVERAGE PERVIOUS
LOSS RATE, Fp(INCH/HR) = .98
SUBAREA AVERAGE PERVIOUS
AREA FRACTION, Ap = .10
SUBAREA RUNOFF(CFS) =
16.60
TOTAL AREA(ACRES) =
5.95 PEAK FLOW RATE(CFS) = 16.60
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) =
5.95 TC(MIN.) = 10.13
EFFECTIVE AREA(ACRES) =
5.95 AREA -AVERAGED Fm(INCH/HR)=
.10
AREA -AVERAGED Fp(INCH/HR)
_ .98 AREA -AVERAGED Ap = .10
PEAK FLOW RATE(CFS) =
16.60
END OF RATIONAL METHOD ANALYSIS
Page 2 of 2
\\boyleonl\on-proj\F60\300\Calcs\rational method\SLONW2.doc
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
(Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-96 Advanced Engineering Software (aes)
Ver. 6.1 Release Date: 01/01/96 License ID 1395
Analysis prepared by:
❑OQ❑❑i7❑❑0❑❑❑QD00❑ODDO❑❑O❑0❑OD❑0❑❑❑CDOC�J❑❑DD❑❑00❑C❑❑❑Q❑❑❑CQ❑❑00❑❑❑D❑DD❑❑DC❑❑❑
❑DOD❑GD000C❑❑❑C❑DO❑DODO❑00❑DDDO❑❑❑❑JOC❑O❑❑DODOQ❑G❑C❑❑❑❑QODDO❑❑❑❑❑D�7❑OD❑❑0❑D❑
DODO❑OODOODOC❑DO❑OD❑❑ODD❑ODO❑❑DOODO❑DDCDODD❑DOO❑C❑ODO❑OOD❑❑DOODD❑OOODCO❑❑OD❑
00DOUDUDODODDOOODDDDGOO❑D❑OODO❑❑DDODD❑❑ODCOD❑❑D❑ODOO❑❑❑O❑DOODDO❑OD❑❑DD❑❑D❑DD
************************** DESCRIPTION OF STUDY **************************
* EASTBOUND SLOVER WEST OF CITRUS
* SOUTHWEST OF CITRUS/SLOVER INTERSECTION
* CATCH BASIN 8 AT WEST END OF PROJECT
**************************************************************************
FILE NAME: C:\TEMP\SLO-SW.DAT
TIME/DATE OF STUDY: 17: 5 12/21/2000
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
--*TIME-OF-CONCENTRATION MODEL* --
USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 24.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90
*USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) _ .6000
USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 1.1000
*ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD*
*USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
1 30.0 20.0 .018/ 018/ .020 67 2.00 03125 1670 01500
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1. Relative Flow -Depth = .00 FEET
as (Maximum Allowable Street Flow Depth) - (Top -of -Curb)
2. (Depth)*(Velocity) Constraint = .0 (FT*FT/S)
****************************************************************************
FLOW PROCESS FROM NODE 130.00 TO NODE 240.00 IS CODE = 2.1
---------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW-LENGTH(FEET) = 479.00
ELEVATION DATA: UPSTREAM(FEET) = 1063.90 DOWNSTREAM(FEET) = 1062.20
Pagel of 3
\\boyleonl\on-proj\F60\300\Calcs\rational method\SLO-SWAoc
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.091
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.029
SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
COMMERCIAL A .67 .98 .10 32 11.09
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA RUNOFF(CFS) = 1.77
TOTAL AREA(ACRES) _ .67 PEAK FLOW RATE(CFS) = 1.77
****************************************************************************
FLOW PROCESS FROM NODE 240.00 TO NODE 250.00 IS CODE = 6.1
-------------------------
------------------
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»>(STANDARD CURB SECTION USED) ««<
UPSTREAM ELEVATION(FEET) = 1062.20 DOWNSTREAM ELEVATION(FEET) = 1061.20
STREET LENGTH(FEET) = 359.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) = 40.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 35.00
INSIDE STREET CROSSFALL(DECIMAL) _ .020
OUTSIDE STREET CROSSFALL(DECIMAL) _ .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
STREET PARKWAY CROSSFALL(DECIMAL) _ .020
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.37
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) _ .41
HALFSTREET FLOOD WIDTH(FEET) = 12.42
AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.37
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) _ .56
STREET FLOW TRAVEL TIME(MIN.) = 4.37 Tc(MIN.) = 15.46
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.482
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A .56 .98 .10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA AREA(ACRES) _ .56 SUBAREA RUNOFF(CFS) = 1.20
EFFECTIVE AREA(ACRES) = 1.23 AREA -AVERAGED Fm(INCH/HR) _ .10
AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .10
TOTAL AREA(ACRES) = 1.23 PEAK FLOW RATE(CFS) = 2.64
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) _ .42 HALFSTREET FLOOD WIDTH(FEET) = 12.96
FLOW VELOCITY(FEET/SEC.) = 1.41 DEPTH*VELOCITY(FT*FT/SEC.) _ .59
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 1.23 TC(MIN.) = 15.46
EFFECTIVE AREA(ACRES) = 1.23 AREA -AVERAGED FM(INCH/HR)= .10
AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .10
Page 2 of 3
\\boyleonl\on-proj\F60\300\Calcs\rational method\SLO-SW.doc
PEAK FLOW RATE(CFS) = 2.64
- ------ ---------------
END OF RATIONAL METHOD ANALYSIS
Page 3 of 3
1\boyleonl\on-proj\F6013001Calcs\rational method\SLO-SW.doc