Loading...
HomeMy WebLinkAboutEtiwanda Creek Drainage Corridor Design Concept ReportI I •� lig � t I': [ l � DESIGN CONCEPT REPORT JUNE, 1989 I FUSCOE WILLU MS LINDGREN & SHORT Cir it Engineers • Land Surrejx)rs July 13, 1989 To: Distribution List Subject: Etiwanda Creek Drainage Corridor Design Concept Report 2106.1101 Fuscoe, Williams, Lindgren & Short, Inc. is pleased to present the attached Etiwanda Creek Design Concept Report on behalf of the Caryn Company and the North Etiwanda Land. Owners Consortium. This do=Lient is intended to support the Etiwanda North Specific Plan concept for the improvement of Etiwanda Creek. The report addresses the various project alternatives and issues within the Etiwanda Creek Drainage Corridor. A preferred alternative is presented which was selected by the North Etiwanda Land Owners Consortium. We welcome any comments or suggestions for consideration in the preliminary design of Etiwanda Creek Channel. Specifically, we respectfully request that the County of. San Bernardino Department of Transpoitation/Flood Control and the City of Rancho Cucamonga provide a written response to the recommendations presented in this report. An expeditious reply that would allow us to meet or accelerate the progress schedule outlined in Section 5 would be sincerely appreciated. Our goal is to begin construction in February, 1991. Sincerely, FUSCOE, WILLfAMS, LINDGREN AND SHORT, INC. ,,fi/, � 1 Gerald J. Baril, P.E. Project Manager GTB:kec Attachments: Etiwanda Creek Drainage Corridor Design Concept Report: Distribution List 110 51.Sterlittg Ark true • .5trite A • Rirxisule, Californ a 9?5(1; • Phone ('14) .;54-0161 1AX ( 714) -354-1810 04 MITUR W.V6014 01 North Etiwanda Lar13 Owners Consortium (3 0 ) Ahmanson Development - Craig Page Nark Kehke Entec - Bob King Akins Development - Ralph Spargo Olivier Angell - Owner Caryn Company - Joe DiIorio (3) Century American - Ron Metzler Don Stahlin Sing -Wang Cheng - Paul Taylor (2) Jim Clark - Owner Fred Eyer - Owner First Cities Properties - Bob Proehl Cecil Johnson - Owner Eli Joshua - Owner Landmark Land C,omLxzny - Kevin Manning Mike Kerney Kent Philips John O'Neil - Owner Watt Inland Empire - Steve Kabel Rockfield Development Co. - Sonny Geary Gil Rodriguez - Owner Standard Pacific - Kevin Pohlson (2) Tracy & Haigh Dev. Co. - Tom Tracy Tom Haigh Unitex Management Corp. - Jeff Pierson Russ Zasio - Owner San Bernardino County Flood Control District (7) Ken A. Miller, P.E., Director Lewis S. Neeb, P.E., Project Manager (2) Kenneth D. Guidry, P.E.,Chief, Water Resources Division Robert Corchero, P.E., Chief, Planning Division Bob Lawrence, Public Works Engineer III Chidi Onomuno Russell Maguire, P.E. City Engineer Walt Stickney, P.E., Engineering Department Miki Bratt Larry Henderson Rick Gomez, Director., C==ity Development City of Fontana (3) Annivory Calvert, P.E., DPW Jim Mocalis, Director, Conmimity Development Felipe Molinos, P.E. CmisSltants (15 ) Bill C. Mann & Associates - Bill C. Diann, P.E. Land/Plan/Design Group - Jess Harris Steve Kelly Moore & Taber, Geotechnical - Ix)uglas R. Bell, P.E. Gary Lass, P.E. Engineering - Science, Inc. - David M. Hall, P.E. Williamson & Schmid - Dick Schmid, P.E. Mark Seits, P.E. The Peninsula Group - Chris Pauls Patrick Gibbons Geoprcducts Ccrpany - Jim Fish, Ph.D. Dangermond & Associates, Inc. - Pete Dan e=nd Bobbi Lyon David Rainville - Golf Course Architect River -tech, Inc. - Hasan Nouri, P.E. J.P. Kapp & Associates - Ron Sheldon, P.E. ETIWANDA CREEK DRAINAGE CORRIDOR DESIGN CONCEPT REPORT June,1989 Prepared For: The North Etiwanda Land Owners Consortium P.O. Box 216 So. Laguna, California 92677-0216 Prepared By: Fuscoe, Williams, Lindgren & Short, Inc. 11651 Sterling Avenue, Suite A Riverside, California 92503 Submitted By: IF Gerald J. Baril, P.E. \S��RED CIV!( Fy�i EX065 PIRES 6/30/93 sl .�� ATF Of CAO���'r/ 04 DI . LOIN ACENOWLEDGEMENT i EXECUTIVE SUMMARY E-1 1.1 General 1-1 1.2 Project Description 1-1 1.3 Background Information 1-2 1.4 Financing 1-4 1.5 Public Agency Permits & Approvals 1-4 2.1 Etiwanda Debris Dam/Basin 2-1 2.2 Armorflex Channel 2-3 2.3 Concrete Channel 2-5 2.4 Environmental 2-8 2.5 Etiwanda Creek Diversion 2-8 2.6 Water Conservation 2-9 3.1 General 3-1 3.2 Channel Alternatives 3-2 3.21 Alternate No. 1 3-2 3.22 Alternate No. 2 3-2 3.23 Alternate No. 3 3-2 3.24 Alternate No. 4 3-3 3.25 Alternate No. 5 3-3 3.26 Alternate No. 6 3-3 3.27 Alternate No. 7 3-3 3.28 Limited Velocity Concrete Channel 3-3 3.3 Debris Basin vs Dam 3-4 TABU OF OMTENTS (Continued) `1a.NYWA% %FUw l0l:l:lalo INN 04IN, rYM0 4.1 Project Description 4-1 4.2 Project Costs 4-2 a ar •�a�r � is n:• a, �. n �, � • •i� �. 5.1 Project Alternatives 5-1 5.2 Action Plan 5-1 5.3 Progress Schedule 5-2 A. Design Criteria B. 100 -Year Design Flow Schematic C. Hydraulic Calculations - Parabolic Armorflex Channel D. Hydraulic Calculations - Trapezoidal Armorflex Channel E. Hydraulic Calculations - Rectangular Concrete Channel, Most Efficient Hydraulic Section F. Hydraulic Calculations - Rectangular Concrete Channel, 40 fps Maxim= Velocity G. Hydraulic Calculations - Capacity of Existing Etiwanda Channel, Victoria Street to San Sevaine Basin No. 5 H. Hydraulic Calculations - Capacity of Existing San Sevaine Channel, Victoria Street to San Sevaine Basin No. 5 Fuscoe, Williams, Lindgren and Short, Inc. wishes to acknowledge the following organizations and individuals for their participation and interest in the preparation of this report: North Etiwanda Land Owners Consortium Ahmanson Development - * Craig Page Mark Kehke * Bob King (Enter) Akins Development - Ralph Spargo Oliver Angell - Owner Caryn Company - Joe DiIorio Century American - Ron Metzler Sing -Wang Cheng - Paul Taylor Fred Eyer - Owner Cecil Johnson - Owner Eli Joshua - Owner Landmark Land Company - * Kevin Manning * Mike Kerney John O'Neil - Owner PDC - Vincent Petralia Rockfield Development Co. - Sonny Geary Gil Rodriguez - Owner Standard Pacific - * Kevin Pohlson Tracy & Haigh Dev. Co. - * Tom Tracy * Tom Haigh Unitex Managlt Corp. - Jeff Pierson Russ Zasio - Owner * Flood Control Subcommittee Member Elected Representatives Supervisor Jon Mikels, District 2 County of San Bernardino Mayor Dennis L. Stout City of Rancho Cucamonga i W-PUM,• • •• i •a• ••a w • w Ken A. Miller, P.E., Director Lewis S. Neeb, P.E., Project Manager Kenneth D. Guidry, P.E., Chief, Water Resources Division Robert Corchero, P.E., Chief, Planning Division • - OF •• i ••• •r w • • - ••i • w Ken Edwards, P.E., Chief Engineer David T. Sheldon, P.E., Assistant Chief Engineer Frank Peairs, P.E., Planning Engineer Russell Maguire, P.E., City Engineer Walt Stickney, P.E., Engineering Department Bill C. Mann & Associates - Bill C. Mann, P.E. Land/Plan/Design Group - Jess Harris Steve Kelly Moore & Taber, Geotechnical - Douglas R. Bell, P.E. Gary Lass, P.E. Engineering - Science, Inc. - David M. Hall, P.E. Williamson & Schmid - Dick Schmid, P.E. Mark Seits, P.E. Bill Young, P.E. Geoproducts Company - Jim Fish, Ph.D. Dangermond & Associates, Inc. - Pete Dangermond Bobbi Lyon David Rainville - Golf Course Architect Fuscoe, Wi1 lia®s, Idxx g m & Short, Inc. Pat Fuscoe, P.E., President Don Lindgren, P.E., Principal Ray Allard, P.E., Associate Gerald J. Baril, P.E., Project Manager Steve May, P.E., Project Manager Lan -Yin Weber, P.E., Ph.D. ii 6: W. Z ffkkll*101• 0 •1 D10M.IN PURPOSE The purpose of this report is to establish a design concept for Etiwanda Creek that (1) provides 100 -year flood protection for proposed development in the Etiwanda North Specific Plan area, (2) meets the land development objectives of the North Etiwanda Land Owners Consortium and the City of Rancho Cucamonga, (3) can be reasonably permitted by the U.S. Army Corps of Engineers and California Department of Fish & Game, and (4) will be accepted for ownership and maintenance by the San Bernardino County Flood Control District. STUDY I IN11TS The limits of the study for this Etiwanda Creek project are from the double channel under construction at Victoria Street, to the mouth of the canyon approximately 3 miles upstream. The Design Concept Report for Etiwanda Creek was prepared under contract with the Caryn Company, representing the Etiwanda North Land Owners Consortium. PROTECT ALTERNATIVES Nine alternatives for the channelization of Etiwanda Creek are presented or discussed in this report. The project costs vary from $15 to $24 million. The channel sections chosen include parabolic and trapezoidal armorflex, and rectangular concrete. A cost estimate is included for a rectangular concrete channel with a maximum velocity of 40 feet per second. This cost estimate is provided as a camparison for the conventional rectangular concrete channel with a maxinum velocity of 70 feet per second. The project alternatives are discussed in Section 3 of this report. PREFERRED ALTERNATIVE The preferred alternative plan for Etiwanda Creek Channel is primarily an armorflex lined channel as shown on the schematic plan following this summary. The project construction cost is $21 million which includes the Etiwanda debris basin and expanding the capacity of the existing concrete channel from San E-1 Sevaine Basin No. 5 to the double channel under constriction at Victoria Street. Armorflex was chosen for design, aesthetic, and enviromnental reasons as discussed in various sections of this report. Armorflex is a pre -cast interlocking concrete block product that is cabled together to form a continuous channel lining. The blocks have voids in which soil is placed and then vegetated. In a short time, the blocks are covered with vegetation and the channel takes on a natural appearance. The product is new in this area but has been in use for about 20 years. NIAID Il ICN There are a number of other reports arra documents existing or being prepared that relate to this report on Etiwanda Creek, which are listed below and discussed in Section 1.3: • Master Plan for Ultimate Use of North Etiwanda Properties For: San Bernardino County Flood Control District and the City of Rancho Cucamonga By: The Caryn Cody, Representing Etiwanda North Land owners (Consortium) Date: April 17, 1989 • San Sevaine/Etiwanda Creek Hydrology and Basin Routing By: Fuscoe, Williams, Lindgren and Short, Inc. Date: January, 1989 • Loan Application Report, Proposed San Sevaine Creek Water Project By: Engineering -Science Bill Marin & Associates For: County of San Bernardino Date: April, 1986 • Etiwanda North Specific Plan By: The Caryn Ccripany, Representing the Land Owners Date: Current • Ccmprehensive Master Plan of Flood Control and Drainage for the North Etiwanda Area By: Fusc.�oe, Williams, Lindgren and Short, Inc. Date: Current The preferred alternative plan was developed in a series of workshop meetings with other environmental, land planning and geotechnical consultants involved with preparation of the Etiwanda North Specific Plan. The alternatives studied were presented to a Flood Control Sub -Committee of the Land Owners Consortium, and all of the consortium yrs at their monthly meeting. The sub-ccmittee had the responsibility for selecting a preferred alternative. E-2 F.INANCaM Funding for construction of the Etiwanda Creek improvements is planned to be provided through a Mello -Roos C=iunity Facilities District. An election to establish the District will be held in the Fall of 1989. Financing is discussed further in Section 1.4 of this report. PUBLIC AGENCY PI'S AMID APPROVALS Permits will or may be required by the following agencies: • U.S. Army Corps of Engineers • California Department of Fish & Game • California Regional Water Quality Control Board • California State Department of Water Resources, Division of Safety of Dams • San Bernardino County Transportation/Flood Control Department • City of Rancho Cucamonga There are a number of projects issues or constraints which are discussed in detail in Section 2 of this report. The following outlines the primary issues: • Etiwanda Creek Debris Facility - Excavated Basin vs a Dam - Basin Location • Armorflex Channel Vining - Maintenance - Fencing • Concrete Channels - Cavitation of invert from high velocities - Maintenance - Liability • Environmental - Concrete vs Armorflex - Mitigation Costs • Etiwanda Creek Diversion to San Sevaine Basin No. 5 - Riverside County concerns downstream • Water Conservation - Preservation of spreading grounds for the MWD and CBMWD Water Replenishment and Cyclic Storage Requirements E-3 ETIWANDA CREEK DRAINAGE CORRIDOR PREFERRED ALTERNATIVE $21,000,000. LEGEND CONCRETE CHANNEL CONCRETE CONDUIT mm■ ARMORFLEX TRAP. CHANNEL ARMORFLEX PARABOL CHANNEL FUSM/)Ls/.11r.il.µ .Irr.. u.•, \nlrrA WILLIAMrurrnl.t., r.JIFn,.w'lltu.t !>H1.IH.mW LRAD cu'! u+ -a rn (:nyP•.rr. �[nrvJ.fu�[nrvJ Sunn,•rrt w 104' TO 141' PARABOLIC SECTION 9 ow S-0, 100+00 PROPOSED 24th STREET � � A� BRIDGE W 1 90' TO 135 TRAPEZOIDAL SECTION �_w�� STA. 15f TO 24'I 72+00 7L_ZH=11' TO 12' I RECTANGULAR / IC SECTION BRIDGE \ �_ DIVERSION STRUCTURE I . RCP OR RCB i hA8N1 M(L_6 RECONSTRUCTED SECTION EXIST. W A CHANNEL VIC BASM 1y EXIST. SAN SEVAI E CHANNEL E DBL. �Pt - CHANNEL UNDER CONSTRUCTION Fp STA. 16+00MAY 1969 FWLS JN 2106.1101 II II SII LADWP CORRIDOR--,,,., 1� SCE CORRIDOR----,fll PROPOSED EAST Z:z BRIDGE O STA. O = 150+00 SCE CORRIDOR— ---1 LEGEND CONCRETE CHANNEL CONCRETE CONDUIT mm■ ARMORFLEX TRAP. CHANNEL ARMORFLEX PARABOL CHANNEL FUSM/)Ls/.11r.il.µ .Irr.. u.•, \nlrrA WILLIAMrurrnl.t., r.JIFn,.w'lltu.t !>H1.IH.mW LRAD cu'! u+ -a rn (:nyP•.rr. �[nrvJ.fu�[nrvJ Sunn,•rrt w 104' TO 141' PARABOLIC SECTION 9 ow S-0, 100+00 PROPOSED 24th STREET � � A� BRIDGE W 1 90' TO 135 TRAPEZOIDAL SECTION �_w�� STA. 15f TO 24'I 72+00 7L_ZH=11' TO 12' I RECTANGULAR / IC SECTION BRIDGE \ �_ DIVERSION STRUCTURE I . RCP OR RCB i hA8N1 M(L_6 RECONSTRUCTED SECTION EXIST. W A CHANNEL VIC BASM 1y EXIST. SAN SEVAI E CHANNEL E DBL. �Pt - CHANNEL UNDER CONSTRUCTION Fp STA. 16+00MAY 1969 FWLS JN 2106.1101 1' ' f•cN��hM Y � 1.1 The development of Etiwanda North will require the improvement of Etiwanda Creek for flood protection from Victoria Avenue to the canyon mouth, a distance of approximately three miles. FWI.S has prepared a number of conceptual plans and cost estimates that would provide the necessary flood protection with construction costs varying from $15 million to $24 million. The real cost, however, mist include costs for habitat mitigation and enhancement, time delay costs in obtaining envirormental permits, annual maintenance costs, and development enhancements as a cost credit. Flood control options that were analyzed included a rectangular concrete channel, an armorflex lined channel, a composite rectangular concrete and armorflex channel., and leveed channels of rock or armorflex North of 24th street. Seven alternatives were presented to the Flood Control Subcommittee of the North Etiwanda Iand Owners Consortium. The subcommittee unanimously selected a preferred alternative based on the real costs and that alternative is presented in this report. The flood control project option selected is primarily an armorflex lined channel as described below. Armorflex is a precast concrete block product which is described in Section 2.2. 1.2 Project iczri� t i nq� The Etiwanda Creek Drainage Corridor project contains the following elements: • A 100 -year frequency flood control protection system • An adjacent low flow natural stream system • A wildlife trail • Water conservation • Mitigation for increased storm flows as a result of land development • Provisions for future integration of local storm water anti pollution devices • A debris basin to protect the flood control system 1-1 This report addresses the Flood Control System, including the debris basin. As shown on the schematic plan in Section 4, the project begins just South of Victoria Avenue where it joins the double San Sevaine and Etiwanda Channels now under construction. From this point 3,300 feet upstream, the existing Etiwanda Creek concrete channel el is being expanded to provide for ultimate development fleas. The existing channel ends here adjacent to San Sevaine Basin No. 5. A new rectangular concrete channel is proposed upstream from here to a structure diverting flows to Basin No. 5 to provide for runoff mitigation. The diversion is conveyed to Basin No. 5 in an underground system. From the diversion structure, an armorflex lined trapezoidal channel is proposed upstream to 24th Street. At this point, an armorflex lined parabolic channel is proposed to extend for the remainder of the project to the proposed debris basin at the mouth of Etiwanda Canyon. The Caryn Ccnpany, representing the North Etiwanda Land Owners Consortium, has been involved with the San Bernardino County Flood Control District and the City of Rancho Cucamonga in the planning and financing of necessary and/or desired flood control facilities, open space enhancement, and the ultimate use of future surplus District properties in the Etiwanda North planning area. The Flood Control District is the largest property owner in this area, with 1,329 acres in the unincorporated area to be annexed to the City, and another 441 acres within the City. The Caryn Cmpany has submitted a draft proposed Master Plan to the District describing possible uses for the District's properties. This design concept report was prepared for the North Etiwanda Land Owners Consortium and forms an integral part of the Master Plan described above, as well as the Etiwanda North Specific Plan currently being prepared and reviewed by the City of Rancho Cucamonga. Other reports integral to this Design Coroept Report for Etiwanda Creek include the "San Sevaine/Etiwanda Creek Hydrology and Basin Routing" report prepared by FWLS and submitted to the District in January, 1989. This report is being revised to reflect the latest hydrology to be used for final design of Etiwanda Creek. Zine revised report will also present the latest concept for San Sevaine Basins 1 thou 5 and the diversion of a portion of Etiwanda flows into Basin No. 5. FWLS is also preparing a comprehensive Master Plan of flood control and 1-2 drainage for the North Etiwanda area. neat docent will assist the Flood control District in evaluating individual project proposals within the North Etiwanda area. The County of San Bernardino is also processing a I'loan Application Report, proposed San Sevaine Creek Water Project" under the Small Reclamation Projects Act (Public law 84-984). This Bureau of Reclamation project includes Etiwanda Cmek arra debris dawn. The proposed bureau inprovement for Etiwanda Creek is a conventional rectangular concrete channel. At this time, the North Etiwanda Land Owners Consortium is proceeding with a C=mi.ty Facilities District under the Mello -Roos Act to provide funding for the Etiwanda Creek preferred alternative presented in this report. In developing the preferred plan, FWLS prepared some fifteen alternative conceptual plans and cost estimates in concert with the several consultants involved in preparation of the Etiwanda North Specific Plan. Workshop meetings were held with engineering, environmental, land planning, and geOtechnical input. The alternatives were narrowed to seven arra presented to the Flood Control Sub -Committee of the Land Owners Consortium. The sub -committee selected a preferred alternative utilizing armorflex channel lining. This alternative was then presented to all of the consortium members on June 6, 1989. A subsequent Flood Control Sub -committee meeting was held on June 20. At that time, the alternatives were once again reviewed and FWIS was directed to prepare this report with armorflex as the preferred alternative. It should be noted that the Flood Control Sub- Cmmttee considered the ability to obtain Fish & Game and Corps of Engineer approvals as important as technical flood control design matters and costs. Opinions were expressed, that if a conventional concrete channel were proposed, the project could very well be delayed for years or stopped altogether. Concurrently with the review of this design concept report by the District and City, FWLS will be preparing 200 scale preliminary design drawings. Preliminary plans are scheduled to be canpleted in Septenber 1989 for review by all concerned parties and agencies. The goal is to have approved plans and permits and be ready to advertise for construction bids in January 1991. 1-3 1.4 FillwTrr'_,ng As stag previously, funding for the proposed Et1wanda Creek improvements is planned to be provided through a Mello -Roos Oommauity Facilities District (CFD). An election to establish the District will be held later this year. The construction cost for the preferred alternative is $21 million. A 30% construction contingency has been included, which can be reduced to 10% on the final estimate prepared from approved drawl gs. No allowance has been made for escalation of unit prices between now and the actual bidding date. Expenses not included in the $21 million construction cost are contract administration and inspection, CFD costs, engineering, and plan check and permit fees. Additionally, no allowance has been provided for riots -of -way for the channel or debris basin, or environmental mitigation. The bond dollar limit for the CFD should include any or all of the above cost factors deemed appropriate in addition to the $21 million construction cost. .• :,. ter,•, --71 • I :.t u --1z- r._ The construction of Etiwanda Creek and debris dam improvements will require envies clearance and permits from a number of public agencies. Me envirormvzrtal approval process is being aocarrplished in conjunction with the Etiwanda North Specific Plan, and will include an environmental resource management plan for North Etiwanda including from Day Creek Easterly to Duncan Canyon. Permits will or may be required by the following agencies: • U.S. Army Corps of Engineers • California Department of Fish & Game • California Regional Water Quality Control Board • California State Department of Water Resources, Division of Safety of Dams • San Bernardino County Transportation/Flood Control Department • City of Rancho Cucamonga 1-4 F L! 10 2.1 Etiwanda Debris Dam/Basin The proposed project includes a debris catcbment facility at the apex of the alluvial fan that has been generated over the years by debris fleas out of Etiwanda Canyon. Preliminary estimates indicate that a 100 -year flood event could produce debris volumes in emoess of 400,000 cubic yards. on an averaged annual basis, the Etiwanda Creek Watershed can be expected to produce about 15,000 cubic yards of debris per year. The basin will be designed to discharge clear water in a 100 -year event with a significant factor of safety. Typically, a debris catchment facility is a dam created by an excavation just large enough to balance the earthwork. If the dam is large enough in size or volume, design and construction fall within the jurisdiction of the State Division of Dam Safety. Preliminary design of the catchment by others as part of a proposed Bureau of Reclamation project for Etiwanda Creek indicate the dam would be State jurisdictional and require very stringent design measures. A number of sites were investigated for location of the debris facility, including multiple basins in the watershed (see site location maps on pages 3- 20, 3-23). Multiple basins were more costly than a single basin, and would result in a greater environmental impact. The sites were narrowed to three for a more detailed analysis. Site No. 1 is located just North of the IADWP easement. This is also the site that was chosen for the Bureau of Reclamation Etiwanda Creek project. Site No. 2 is located further up the canyon at the end of the existing flood control right-of-way. Site No. 3 is located still further up the canyon, approximately 700 feet North of the existing flood control riot -of -way. Critical habitat areas, topography, aesthetics, and seismic cmwtraints make siting of the debris facility difficult. Sites 1 and 2 essentially avoid all but the seismic constraint. Site No. 3 was considered as a dam only with no basin excavation upstream. The dam height would be approximately 100 feet. The debris catciment area has riparian woodlands with Maple and White Alder trees. Site No. 3 also has seismic constraints, is the most qtly, has 2-1 maintenance and access problems, and has the greatest environmental impact and would be state jurisdictional. The seismic constraint at sites 1 and 2 can be mitigated by constructing a debris "basin" rather than a "damn. The basin would be an excavation totally below the existing ng gr,ound level. The basin concept results in an additional cost of about $1 million more than a dam at sites 1 and 2. However seismic design requirements for the dam concept could reduce this incremental cost. On the plus side, the debris basin would generate about 1.2 million cubic yards of fill material for use by nearby landowners, be more aesthetic than a high dam, and minimize State Division of Dam Safety involvement which will speed up the approval process. In turn, construction of the debris "basin" could conceivably proceed ahead of the channel and provide considerable "fast track" flood and debris protection on the alluvial fan. Accordingly, we are using a debris basin and have selected Site No. 1 as the most economical. Site No. 1 is located the farthest downstream which eliminates about 1,600 feet of channel and has less excavation. It should be noted that access to proposed development on the East side of Etiwanda Creek will require access across the creek at two locations. One crossing would be located imrediately upstream of the debris basin. A second crossing would be located immediately upstream of the existing flood control easement. Some form of channelization of Etiwanda Creek will be required upstream of the debris basin to accooTcdate the crossings. Channelization could be accomplished with a ccxrbination of concrete and/or armored training levees. The planning and financial responsibility for crossings and necessary channelization are beyond the scope of this report and the CFD. In summary, the primary issues involved with the debris catchment facility are: • Is a debris "dam" technically or economically feasible, or advisable, in view of the geotechnical seismic constraints at the mouth of Etiwanda Canyon'> • Will the proposed debris "basin" mitigate the geotechnical seismic constraints? • Will the proposed debris "basin" be a non State Division of Dam Safety jurisdictional facility? 2-2 2.2 Armorf 1 ex Charziel. Armorflex channel lining, although new to this area, has been in use for about twenty years. Riverside County Flood Control District has several new projects where it will be used. It is a pre -cast concrete block product where the blocks interlock and are cabled together. A polyester cable will be used with a scuff jacket for protection during installation. A geotechnical fabric is placed on the soil beneath the block to prevent the loss of fine soil particles. The blocks are available with voids for placement of soil which can be seeded with grass. The grass moots form a matrix under the geotechnical fabric and adds to the stability of the system. Design velocities may remove the grass blades, but the roots remain and regrowth occurs. Maintenance of turfed armorflex is estimated to be $700 per acre per year. Included in that cost is turf maintenance, debris and trash removal, and fence maintenance. Based on an average channel width of 125 feet, annual maintenance is estimated to be $2.00 per lineal foot. If turf maintenance is not required, the cost is estimated to be about $0.50 per lineal foot per year. maintenance includes irrigation, fertilizer, and weekly mowing. The critical design factor for armorflex is velocity which is based on experimental data. Tests have been run at Simons, Li & Associates (SLA) hydraulic research facility in Fort Collins, Colorado. Class 30 block, the lightest manufactured, was subjected to velocities scuiewhat in excess of 20 feet per second (fps) . As stated in SLA's report dated January 13, 1989, six eight-hour tests were performed after which the armorflex system was inspected for deformation, settlement, and loss of subsoil. None of these conditions indicating incipient instability were found, indicating stable hydraulic performance. In light of the test limits, we have limited the design velocities for the proposed armorflex channel to a maximum of 20 fps. Tb achieve this velocity, channel drops or grade adjustments are required for the upper 3,700 feet. The maximum grade adjustment is 2.5% in this read. 2% differential will be taken up in 2 to 3 foot vertical increments with a sluing apron over a distance of 10 feet. Two geometric sections have been chosen for the armorflex channel. A parabolic section was chosen for the reach upstream of 24th Street through the proposed 2-3 golf course. The geometric parabola chosen has a depth of six feet at top widths of 140, 160, and 180 feet. The average slope is quite flat and is approximately 13 horizontal to 1 vertical which blends easily into the golf course. Me average depth of flow is about four feet for the 100 -year design. 'Ihe parabola is a very efficient hydraulic section. The shallow depth minimizes the tractive forces acting on the lining, and the flat side slope results in low velocities near the channel edges. The significance of these factors is a smaller size or class of armorflex blocks required carapared to a trapezoidal section, and the use of a grass lining in the freeboard section of the channel because of the lower velocity. Downstream of 24th Street to San Sevaine Basin No. 5, a trapezoidal armorflex channel section with three horizontal to one vertical (3H:1V) side slopes was selected. The trapezoidal section was chosen over the parabolic because there was no need for flat side slopes to blend into a golf course. The 3H: 1V side slopes result in an average channel width reduction of 25 feet. This reach will serve as a continuation of the proposed wildlife corridor. The channel will require fencing, whereas the need for fencing for the parabolic section is very minimal and could be eliminated. In summary, the primary issues involved with the use of armorflex are: • The acceptance of a new product in this District • Will fencing of the parabolic armorflex channel be required through the golf course? • Will the higher cost of an armorflex channel be offset by mitigation and time delay costs? • Will the sodded 13H:1V freeboard area of the parabolic section through the golf course be acceptable? • Maintenance of the turf in the golf course segment. 2-4 The following outlines the advantages and disadvantages of armorflex channel lining: Disadvantages • Aesthetically pleasing with Higher cm-jstxuctian cost grassed surface than conventional concrete charnel with velocities greater • An envirormentally acceptable than 40 feet per second. flood channel • New product for this area • Chain link fencing can be complicates approval process eliminated on the parabolic section 0 Right -of -Way requirements greater than concrete channels • Turfed armorflex can be maintained by the District or as an integral 0 Maintenance by District may be an part of a golf course issue • minimal or no mitigation District liability may be an requirements issue if fencing is not used • Channel integrity maintained for flows in excess or design frequency • Relatively high flow resistance for lower velocities • Easily integrated with golf course • Graffiti proof • Lower maintenance costs than conventional concrete channel with high cavitation causing velocities. 2.3 The use of a conventional concrete channel for Etiwanda Creek was the leading alternative based on construction costs only. other factors dealing with real costs, as discussed previously, can eliminate this option as the preferred alternative. However, a concrete channel is proposed for a short distance downstream from the San Sevaine Basin 5 diversion structure to the existing concrete channel.. Armorflex was nort used in this short reach due to the requirement for long concrete transition structures at each end, leaving only a very short length of armorflex in the center. 2-5 A critical design issue with concrete channels is cavitation, which starts in the 40 to 50 fps velocity range. On Etiwanda Creek, utilizing the most efficient hydraulic section, the velocity varies from 41 to 71 fps. All but the lower 1,700 feet has velocities in excess of 50 fps. Additionally, velocities can be expected to exceed 40 fps upstream of 24th Street on an annual basis. Downstream of 24th Street, a 5 -year storm flow will produce velocities in excess of 40 fps. The probability of a minor to moderate cavitation producing storm occurring a short time prior to the 100 -year design storm is very real. This is a primary concern. Erosion of the invert by cavitation from the prior storm could reduce the channel capacity by about 40 percent. In other words, the 100 -year channel in reality may only be a 10 -year channel. This is a very serious potential liability. The seriousness of this problem is well recognized by the Los Angeles and Orange County Flood Control Districts. Both Districts have lost concrete channel inverts from cavitation by "clear" flows. The Los Angeles County Flood Control District policy is "no concrete channels with velocities greater than 40 fps". Their design procedure is to utilize a Bureau of Reclamation Type 3 Stilling Basin with a sloping apron drop structure, utilizing baffle blocks and the hydraulic jump to dissipate the energy. In the case of Etiwanda Geek, a stilling basin is not a practical solution, especially if the channel is kept in an excavated section. The structure would be appr Kimately 315 feet long and 175 feet wide at the middle baffle block section. And, the channel invert at the downstream end would be in about 30 feet of cut. The alternative solution for a 40 fps maximum velocity is a wide channel varying in width from 45 to 80 feet at a cost of $24 million. A concrete channel with velocities in excess of 40 fps presents a high cost maintenance problem. Replacing invert concrete on an annual to bi-annual basis would be in addition to the routine maintenance costs for silt, trash and debris rival; road, fence and gate maintenance; and rodent and weed control. Based on an average channel width of 14 feet, routine maintenance is estimated to be $0.50 per lineal foot per year. Assuming the replacement of 4 -inches of 2-6 concrete every other year, this would result in an annual cost of about $35 per lineal foot per year. The primary issues involved with the use of a conventional high velocity concrete channel are summarized below: • Velocities for the 100 -year design flows in a conventional hydraulically efficient concrete channel are in excess of 70 feet per second. Cavitation would occur and erode the channel invert. • Velocities in the reach above 24th Street would be in excess of 40 feet per second for flows only slightly greater than the one-year frequency event. Cavitation begins in the 40 to 50 feet per second range. • Velocities in the lower reach below 24th Street would exceed 40 fps for the 5 -year frequency event. • Model studies may be required to verify design calculations. r1he following outlines the advantages and disadvantages of a conventional high velocity rectangular concrete channel: a •►r. �� . • • Lower initial construction cost • Conventional design for faster approval process • Least right-of-way requirements • SB= maintains and assumes liability for channel 2-7 Disadvantages • Can be aesthetically unpleasing • Difficult to obtain envirormien tal permits • Difficult to integrate with a golf course • High velocities can result in cavitation and erode the channel invert • Maintenance costs will be high for replacement of invert concrete • Fencing and a 20 foot wide access road could be required on each side of the channel • Channel capacity could be reduced to a 10 -year design flow if the invert is eroded by cavitation. If not replaced prior to a large storm, this could be a serious liability. Construction of Etiwanda Creek Channel will require a permit frthe U. S Army Corps of Engineers and the California Department of Fish and Game. The proposed project is located on an alluvial fan. Removal of alluvial fan scrub habitat will require mitigation by replacement or preserved habitat in other areas. Discussion with the enviramnental agencies have indicated a minimm habitat replant ratio of 5 to 1 for concrete channels. A ratio of 10 to 1 is possible. Indications are that an armorflex cikannel would not require mitigation, and would serve to reduce overall mitigation requirements for development of the area. In terms of real casts as discussed previously, mitigation for the concrete channel is estimated to be $5,000,000 based on a 4 to 1 replacement ratio and $80,000 per acre for land and enhancement casts. It should be noted that any enhancement of the San Sevaine Basins would not count as channel mitigation. The primary enviramnental issues are summarized as in0= • Are mitigation costs a "real" cost that need to be applied to construction costs? • Is it possible to obtain Corps and Fish & Game permits in a reasonable time frame if a concrete channel were selected as the preferred alternative? 2.5 Etiwanda Creek Diversion The diversion of a portion of Etiwanda Creek flows into San Sevaine Basin No. 5 is the subject of a report FWIS filed with the San Bernardino County Flood Control District, in February 1989, for their review arra approval. The purpose of the diversion is to mitigate increased storm runoff from proposed development in the Etiwanda Creek Drainage Basin. The mitigation will be accomplished by reducing peak discharges through flood control detention in the San Sevaine Basins. The alterative to diversion is onsite detention. Three issues are associated with diversion of Etiwanda flows into San Sevaine Basin No. 5. First, the peak flows in San Sevaine Channel downstream of Basin 5 must not be increased. This is beim accomplished with the proposed modifications to San Sevaine Basins. The second issue relates to a previous agreement between the San Bernardino Flood Control District and the Riverside County Flood Control District. By agreement, the maximum discharge in San Sevaine Creek at the County line shall 2-8 not exceed 12,100 cfs. This is also being accomplished by additional detention of peak flows in Junipa Basin. The third issue deals with timing on construction of the proposed channel and basin inprovements, which is a concern of the Riverside County Flood Control District. Certain existing facilities in Riverside County are inadequate with as little as 2,500 cfs capacity and the timing for their replacement is not yet certain. All of the above issues have been dealt with on a continual basis in art with Williamson & Schnid (W & S), who are the engineers representing the major landowners South of I-15. Joint meetings between the two flood control districts, FWLS and W & S were held on April 20 and May 25. Coordination efforts are continuing and it is expected that the diversion and related issues will be resolved. 2.6 The Etiwanda North Specific Plan proposes a golf course along the proposed Etiwanda Drainage corridor as a development option. Me Etiwanda Creek water spreading grounds are located adjacent to the creek both North and South of 24th Street. If the spreading grounds are eliminated or reduced for the golf course or development, alternative locations will be required for spreading both local drainage flogs for water conservation and imported water for groundwater replenishment. Preliminary studies indicate that the use of San Sevaine Basin No. 5 will satisfy the major needs for spreading local drainage and storm flows for water conservation. Tire spreading grounds North of 24th Street are being used by the Chino Basin FAmicipal Water District (CEM D) and the Metropolitan Water District (MWD) for water replenishment in the Chino Basin for overdrafts in accordance with an adjudicated decision, and cyclic storage such as in "wet years". The present use of the Etiwanda spreading grounds can be transferred to Basin 5. However, a lack of capacity may arise due to a proposal by MWD to use Basin No. 5 for spreading inported water. Cody, it may be necessary to use Basins 2 2-9 and 3 in addition to Basin No. 5 (Basin No. 4 is proposed to be combined with Basin No. 5) for spreading of iaported water. With the golf course option, a meandering low flow stream with ponds has the potential for significant water spreading of both local drainage flows for water ooa�sezvatian, and imported water for groundwater repleniGlu�ent. 2-10 (� �1 �� _! 1 -1 _t _I �.I �l I f i _J �' _I _ 3.2 Channel Alternatives Seven conceptual channel alternatives with schematic plans and cost estimates are presented in this section. We have also included a cost estimate only for an all concrete channel, from existing Etiwanda Channel to the debris basin, designed for a maximimm velocity of 40 fps. As stated in Section 3.1, all channel alternatives are identical below 24th Street. The following descriptions are therefore above 24th Street only. 3.21 Alternate No. 1 - $19,000,000 Alternative No. 1 is a parabolic armorflex channel with sodded freeboard slopes from 24th Street to the Northerly limit of the IADWP Corridor, and a rectangular concrete channel from that point to the debris dam. It has been assumed that IADWP and SCE equipment will cross the channel directly, and no culvert or bridge crossing is required. The otic plan and cost estimate are shown on pages 3-5 and 3-6 respectively. 3.22 Alternate No. 2 - $19,000,000 Alternate No. 2 is a trapezoidal armorflex channel from 24th Street to the Northerly limit of the IADWP Corridor, and a rectangular concrete channel fronn that point to the debris dam. No special crossings at the IADWP and SCE Corridors were again assumed. The trapezoidal section has 3H:1V side slopes. This alternate is wed to show the incremental cost difference with the parabolic section which blends more easily with the golf course, having approximately a 13H:1V side slope. The schematic plan and cost estimate are shown on pages 3-7 and 3-8 respectively. 3.23 Alternate No. 3 - $17,500,000 Alternate No. 3 is a parabolic armorflex channel (with sodded freeboard slopes) frau 24th Strut to just downstream of a proposed East -Nest Road between the two SCE Corridors, and a concrete rectangular channel from that point to the debris dam. An R.C. boot culvert is required at the IADWP and SCE Corridors. An R.C. box culvert is provided at the future East-West Street crossing, as opposed to Alternates 1 and 2 which provided a bridge. This alternative was also considered in connection with a proposed golf course layout option. The otic plan and cost estimate are shown on pages 3-9 and 3-10 respectively. 3-2 3.24 Alternate No. 4 - $17,500,000 Alternate No. 4 is trapezoidal armorflex channel form 24th Street just downstream of the proposed East-West Street, and a rectangular concrete channel frau that point to the debris dam. An R. C. boat culvert is provided at the future East-West Street and the Utility Corridors. The schematic plan and cost estimate are sham on pages 3-11 and 3-12 restively. 3.25 Alternate No. 5 - $15,000,000 Alternative No. 5 is a rectangular concrete channel fy 24th Street to the debris dam. R.C. boat culverts are provided at the future East-West Street and Utility Corridors. The maximum velocity in this sys'te'm reaches 71 fps. The schematic plan and cost estimate are shown on pages 3-13 and 3-14 respectively. 3.26 Alternate No. 6 - $17,500,000 Alternative No. 6 is a nock lined levee frcm 24th Street to the debris dam. This alternate is related to optional developanent arra phasing scenarios for the area. C9hamel stabilizers are required at the upstream and downstream transition areas. The schematic plan and cost estimate are sham on pages 3-15 and 3-16 respectively. 3.27 Alternate No. 7 - $17,500,000 Alternate No. 7 is a combination of an armorflex and armorform (described earlier) levee from 24th Street to the debris dam. Armorform is used below existing ground to the potential scour level. This system is an alternative to the rock levee. Mie advantages over rock are availability, short construction time, more environmentally acceptable as it can be vegetated, and does not attract rodents. The schematic plan and cost estimate are shown on pages 3-17 and 3-18 respectively. 3.28 Limited Velocity mete Charnel - $24,000,000 Section 2 discusses the velocity issue with concrete channels having velocities in excess of 40 fps, and the experimental limiting velocity of 20 fps with armorflex. The preferred armorflex alternative design meets the maximum velocity criteria. Accordingly we have prepared a cost estimate for a rectangular concrete chamel that meets the maxim= velocity criteria of 40 fps for concrete. The channel width varies frcnn 45 to 80 feet. This is in 3-3 c coparison to the armorflex channel width of from 104 to 140 feet. The cost estimate is shown on page 3-19. 3.3 Debris Basin vs Dam The various issues and constraints involved with the proposed debris catchment facility for Etiwanda Geek were disused in detail in Section 2.1. The alternatives analysis dealt with location in regard to property access, critical habitat areas, ground faults, and aesthetics. Seismic constraints and aesthetics led to the analysis of a debris "basin" versus a debris "dam". The preferred alternative for the Etiwanda Creek debris catchment is an excavated "basin" with no embankment or conventional spillway, located at Site No. 1 as shown on the site location plan on page 3-20. The cost estimate is shown on page 3-22. The debris "basin" at Site No. 1 is theoretically more costly than a "dam" at Site No. 1 or No. 2 however, reducing State Division of Safety of Dams involvement to a minimum, aesthetics, and the generation of excavated material for use by adjacent land owners were overriding factors. Additional costs for the "dam" concept, unknown at this early stage, for seismic mitigation could result in the dam being more costly and was also a factor in the selection. A cost estimate is also included for a debris basin at Site No. 2 and is shown on page 3-25. The alternative dam at Site No. 3 is approximately 100 feet high by state criteria. This high dam in a seismic area represents a highly technical and involved design analysis which is beyond the scope of this report. We have therefore not included a cost estimate for that alternative. 3-4 ALTERNATE NO. 1 $19,000,000. CORRIDOR I iI A- BRIDGE 0 PROPOSED BRIDGE STA. 72+00 SUMMIT AVENUE =� — / RCP OR RCB DIVERSION LEGEND STRUCTURE CONCRETE CHANNEL CONCRETE CONDUIT sm BE~ ht�8N1IIf,L 6 MW= ARMORFLEX TRAP. CHANNEL - ARMORFLEX PARABOLIC CHANNEL / EXIST W NNE A CHAL li SII ADWP CORRIDOR ,5 SCE CORRIDOR --,,II — —� PROPOSED BRIDGE STA. o DBL. 150+00 �I 8+00 CORRIDOR I iI A- BRIDGE 0 PROPOSED BRIDGE STA. 72+00 SUMMIT AVENUE =� — / RCP OR RCB DIVERSION LEGEND STRUCTURE CONCRETE CHANNEL CONCRETE CONDUIT sm BE~ ht�8N1IIf,L 6 MW= ARMORFLEX TRAP. CHANNEL - ARMORFLEX PARABOLIC CHANNEL / EXIST W NNE A CHAL vvTo", am"wo ,5 EXIST. SANEVANE CHANNEL S DBL. CHANNEL UNDER CONSTRUCTION STA. 8+00 MAY 1969 FWLS JN 2106.1101 ALTERNATE NO. 5 $15,000,000 R.C. BOX PROPOSED— — — � \\ STA. 150+00 R.C. BO LEGEND ��■ CONCRETE CHANNEL CONCRETE CONDUIT sem■ ARMORFLEX TRAP. CHANNEL - _SCM III�T(.\N•r/nIA A�auuf..TunfA /tntnl.N. �.JI/.nllu YlTn.l (�l+l esa n/nr l6Yf�/'�ww. nul�i�l.tsf.ar7n S§#Ow — n nT�v.r� R.C. BOX R.C. BOX PROPOSED 24th STMEET _ STA. 100+( ASCE CORRIDOR-, ae AFORIDGE \ Q= DIVERSION RCP OR RCB STRUCTURE STA.72+00 'EXIST .EXIST. SAN SEVAINE CHANNEL DBL. CHANNEL UNDER CONSTRUCTION rA. +00 g MAY 1989 [� FWLS JN 2106.1101 II II SII LADWP CORRIDOR -_,,11 ASCE CORRIDOR .1I II a zll R.C. BOX R.C. BOX PROPOSED 24th STMEET _ STA. 100+( ASCE CORRIDOR-, ae AFORIDGE \ Q= DIVERSION RCP OR RCB STRUCTURE STA.72+00 'EXIST .EXIST. SAN SEVAINE CHANNEL DBL. CHANNEL UNDER CONSTRUCTION rA. +00 g MAY 1989 [� FWLS JN 2106.1101 ••1, M81J\ k ���i �.�1\114P PRT E cT: EIrIWANDA CHANNEL VICTCRIA AVENUE Ta SIS DAM DATE: MAY 26, 1989 JOB NO. 2106.11.01 �1•� I •1� V ,C • I• I (71 i ': ffij • 81 Y• • •'D✓ • 11' • I• I IM AN Y' • i '��1 DIS OF 24TH SST a h • �I�. �- �• u 1. AR43RFIEX CL 50 303,667 S.F. $4.30 $1,305,768.00 2. AIMRFLEX CL 30 30,849 S.F. $4.00 $123,396.00 3. SEEDING OVER A 431ZF= 334,516 S.F. $0.05 $16,725.00 4. SOD 39,000 S.F. $0.50 $19,500.00 5. ERiDGE AT SUMMIT AVENUE 8,748 S.F. $80.00 $699,840.00 6. TWO TRANSITION STFSMLTES 2,763 C.Y. $310.00 $856,530.00 7. 10 FT DIA. RCP PIPE 1,334 L.F. $320.00 $426,880.00 S. JUNCTICN BOX 1 L.S. $6,500.00 $6,500.00 9. EXPAND EXIST. ETIWANDA CH. 3,300 L.F. $375.00 $1,237,500.00 10. EXCAVATICN 120,000 C.Y. $2.75 $330,000.00 11. CHANNEL CONC= 3,133 C.Y. $275.00 $861,575.00 12, SCE 9,570 L.F. $8.50 $81,345.00 13. STRJCTURAL BACKFILL 5,600 C.Y. $4.50 $25,200.00 14. COUTL T STRUCIURE 1 L.S. $80,000.00 $80,000.00 SUSIOTAL $6,070,760.00 UIS OF 24TH STT 1. EXCAVATI0N 57,000 C.Y. 2.75 $156,750.00 2. CHANNEL CONCRETE 9,549 C.Y. 275.00 $2,625,975.00 3. CHAIN LINK FENCE 16,400 L.F. 8.50 $139,400.00 4. ACCESS RAMP CCNCF= 164 C.Y. 310.00 $50,840.00 5. BOX CULVERT CONCF= 782 C.Y. 310.00 $242,420.00 6. S UClURAL BACKFILL 14,400 C.Y. 4.50 $64,800-00 7. SIS BASIN AND OUTLET WORKS 1 L.S. 2,220,000.00 $2,220,000.00 SUBT= $5,500,185.00 TOT$11,570,945.00 30%(+-) CONTINGENCY $3,429,055.00 $15,000,000.00 3-14 ALTERNATE NO. 6 $17,500,000 LEGEND ROCK LEVEE CONCRETE CHANNEL CONCRETE CONDUIT ARMORFLEX TRAP. mm CHANNEL -SCE CORRIDOR PROPOSED 21th STREET R.C. BOX-` II II SII LADWP CORRIDOR\ lI SCE CORRIDOR--.,` II PROPOSED A T DIVERSION RCP OR RCB STRUCTURE STA. 72+00 0 LEGEND ROCK LEVEE CONCRETE CHANNEL CONCRETE CONDUIT ARMORFLEX TRAP. mm CHANNEL -SCE CORRIDOR PROPOSED 21th STREET R.C. BOX-` 'EXIST W A CHANNEL .EXIST. SAN SEVAIrE CHANNEL ST CHANNEL UNDER CONSTRUCTION 18+00 MAY 1489 FWLS JN 2106.1101 BRIDGE DIVERSION RCP OR RCB STRUCTURE STA. 72+00 'EXIST W A CHANNEL .EXIST. SAN SEVAIrE CHANNEL ST CHANNEL UNDER CONSTRUCTION 18+00 MAY 1489 FWLS JN 2106.1101 ••i •iDi• i I F -A ftkc-N a 2h. m ILF-Imij PRGIT=: ErimANDA CHANNEL VICIa22A AVENUE To DE RIS DAM DATE: NAY 26, 1989 JOB NO. 2106.1101 AITERUkTE 116" - r4oCK IEVEE SYSTEM LTSTREAM OF 24TH Sn= WITH TRAPEZOIDAL ARMORFLEX AND CONCRETE CHANNELS DOWNSTREAM OF 24TH STREET D/S OF 24TH STREET y 1. A1440PT= CL 50 303,667 S.F. $4.30 $1,305,768.00 2. AR4MUMEX CL 30 30,849 S.F. $4.00 $123,396.00 3. SEEDING OVER ARZIRFLEX 334,516 S.F. $0.05 $16,725.00 4. SOD 39,000 S.F. $0.50 $19,500.00 5. BRIDGE AT SUMMIT AVENUE 8,748 S.F. $80.00 $699,840.00 6. TWO TRANSITION STRUCTURES 2,763 C.Y. $310.00 $856,530.00 7. 10 FT DIA. RCP PIPE 1,334 L.F. $320.00 $426,880.00 8. JUNCTION BOX 1 L.S. $6,500.00 $6,500.00 9. EXPAND EXIST. ETIWANDA CH. 3,300 L.F. $375.00 $1,237,500.00 10. EXCAVATION 120,000 C.Y. $2.75 $330,000.00 11. CHANNEL C NCRE'TE 3,133 C.Y. $275.00 $861,575.00 12, FENCE 9,570 L.F. $8.50 $81,345.00 13. SIRJCTURAL BAC19= 5,600 C.Y. $4.50 $25,200.00 14. CUTI'LET STBJCZURE 1 L.S. $80,000.00 $80,000.00 $6,070,760.00 U/S OF 24TH STREET 1. TRANSITION SIURCTURE 2,507 C.Y. 310.00 $777,170.00 2. Bpi{ CULVERT 277 C.Y. 310.00 $85,870.00 3. WEST LEVEE FILL 35,449 C.Y. 2.70 $95,712.00 4. EAST LEVEE FILL, 36,007 C.Y. 2.70 $97,219.00 5. WEST LEVEE ROCK 18,456 C.Y. 37.00 $682,872.00 6. EAST LEVEE ROCC 22,660 C.Y. 37.00 $838,420.00 7. SHOT PnJNG STABILIZERS 139,950 S.F. 18.00 $2,519,100.00 8. SIS BASIN AND OUTLET WMW 1 L.S. 2,220,000.00 $2,220,000.00 SUBS, $7,316,363.00 TO $13,387,123.00 30% (+-) CONTING WCY $4,112, 877.00 GRAND TOTAL $17,500,000-00 3-16 ALTERNATE NO. 7 $17,500,000 PROPOSED EAST \ 1 G \\, XX u' w _51.1MMIT AVENUE LEGEND ARMORFLEX LEVEE CONCRETE CHANNEL CONCRETE CONDUIT gym. ARMORFLEX TRAP. mm CHANNEL PROPOSED 24th STREET _ R.C. BOX DIVERSION STRUCTURE --SCE CORRIDOR----., `BRIDGE RCP OR RCB #A > BASKMm Is 'EXIST W A CHANNEL VICTORIA' BASIN 15 +EXIST. SAN SEVAINE CHANNEL _�(ICTORIA AVENGE_ _ � DBL. �ENP� STA. CHANNEL UNDER CONSTRUCTION 18+00 � MAY 1989 FWLS JN 2106.1101 II II SII II :ADWP CORRIDOR —"SCE CORRIDOR— II _ \ Y 00 \ PROPOSED 24th STREET _ R.C. BOX DIVERSION STRUCTURE --SCE CORRIDOR----., `BRIDGE RCP OR RCB #A > BASKMm Is 'EXIST W A CHANNEL VICTORIA' BASIN 15 +EXIST. SAN SEVAINE CHANNEL _�(ICTORIA AVENGE_ _ � DBL. �ENP� STA. CHANNEL UNDER CONSTRUCTION 18+00 � MAY 1989 FWLS JN 2106.1101 PF1=I: EITWANDA CHANNEL VICICRIA AVENUE TO DEBRIS DAM DATE: MAY 26, 1989 JOB NO. 2106.1101 ALTERNATE •' E► LEVEE SYSTEM UPSTREAMOF Y'�= WITH TRAPEZOIDAL ART)RFLEX AND CCNCR= f /• I Iii DONNSTREAM OF YSTREET DIS OF 24TH Sir 1. AF4i RFZEX CL 50 303,667 S.F. $4.30 $1,305,768.00 2. A 40RFIEX CL 30 30,849 S.F. $4.00 $123,396.00 3. SEEDING OVER AFd�Di RFLEX 334,516 S.F. $0.05 $16,725.00 4. SOD 39,000 S.F. $0.50 $19,500.00 5. BRIDGE AT SUMMIT AVENUE 8,748 S.F. $80.00 $699,840.00 6. TWO TRANSITION STRUCTURES 2,763 C.Y. $310.00 $856,530.00 7. 10 FT DIA. RCP PIPE 1,334 L.F. $320.00 $426,880.00 8. JUNCrICN BOX 1 L.S. $6,500.00 $6,500.00 9. EXPAND FAST. EITVWM CH. 3,300 L.F. $375.00 $1,237,500.00 10. EXCAVATION 120,000 C.Y. $2.75 $330,000.00 11. CHANNEL, CONC!REI'E 3,133 C.Y. $275.00 $861,575.00 12. FENCE 9,570 L.F. $8.50 $81,345.00 13. STRUCTURAL BAC TILL 5,600 C.Y. $4.50 $25,200.00 14. CSF= S JCIURE 1 L.S. $80,000.00 $80,000.00 $7,443,748.00 TOTAL $13,514,508.00 30%(+-) CONTINGENCY $3,985,492.00 GRAND TOTAL $17,500,000.00 3-18 SUBTOTAL $6,070,760.00 U/S OF 24TH SPREE!' 1. TRANSITION STUlrTlURE 2,507 C.Y. 310.00 $777,170.00 2. BOX CULVERT 277 C.Y. 310.00 $85,870.00 3. WEST LEVEE FILL 35,449 C.Y. 2.70 $95,712.00 4. EAST LEVEE FILL 36,007 C.Y. 2.70 $97,219.00 5. WEST LEVEE ARMRFLEX 74,771 S.F. 4.00 $299,084.00 6. FAST LEVEE ARi0PE EX 75,778 S.F. 4.00 $303,112.00 7. WEST LWEE AR14MUlORM 169,716 S.F. 3.00 $509,148.00 8. EAST LEVEE ARi40RFORM 179,111 S.F. 3.00 $537,333.00 9. SHEET' PIISNG STABILIZERS 139,950 S.F. 18.00 $2,519,100.00 10. SIS BASIN AND CST WOW 1 L.S. 2,220,000.00 $2,220,000.00 $7,443,748.00 TOTAL $13,514,508.00 30%(+-) CONTINGENCY $3,985,492.00 GRAND TOTAL $17,500,000.00 3-18 PRQTECI': ETIWANDA CHANNEL VICIURIA AVENUE TO SIS BASIN DATE: JUNE 15, 1989 JOB NO. 2106.11.01 I1W M• •• •: NOND CA • a -sic •+' • P 1 191 �• •1 1 91 • • • 9i ' 91' 9 ••' 1 D/S OF 24TH STREET 1. CHANNEL CONCRETE 12,761 C.Y. 275.00 $3,509,275.00 2. BOX CUIF.f2T CONCRETE 760 C.Y. 310.00 $235,600.00 3. 10 FT. DIA. RCP PIPE 1,334 L.F. 320.00 $426,880.00 4. JUNCTION BOX 1 L.S. 6,500.00 $6,500.00 5. EXPAND EXIST. ETIWANDA CH. 3,300 L.F. 375.00 $1,237,500.00 6. EXCAVATION 110,000 C.Y. 2.75 $302,500.00 7. FENCE 9,570 L.F. 8.50 $81,345.00 8. STRUCIURAL BACITILL 13,000 C.Y. 4.50 $58,500.00 9. OUTLET STRUCTURE 1 L.S. 80,000.00 $80,000.00 U/S OF 24TH STREET 1. EXCAVATION 192,000 C.Y. 2.75 2. CHANNEL CONCRETE 28,807 C.Y. 275.00 3. GAIN LINK FENCE 16,200 L.F. 8.50 4. ACCESS RAMP CONCRETE 164 C.Y. 310.00 5. BOX CULVERT C CNCP= 2,517 C.Y. 310.00 6. STRUCTURAL BACEFTLL 27,300 C.Y. 4.50 7. DEBRIS BASIN AND OUTLET WORKS 1 L.S. 2,929,060.00 DOC 17 SUBTOTAL TOTAL 30%(+—) CORrINGENCY GRAND TOM 3-19 $5,938,100.00 $528,000.00 $7,921,925.00 $137,700.00 $50,840.00 $780,270.00 $122,850.00 $2,929,060.00 $12,470,645.00 $18,408,745.00 $5,591,255.00 $24,000,000.00 II a 1g W6O W Lj II 00 W vi V f. - m 0 II x • W J • I I LL Z �• Ir 2 \ I \I OZ Cp N P N m b g¢ p S N w U m2�F� J O a o 0 cc N ga C LL O II w i g cc D 9 Q o 0 V \ cc N W II 11 LU a =' n N pZZw r o== ' V a � w m �YN 0 3 Wm � 0 LU �� a J x Z r z -Q e+ 0LU � x w Z w w Q� N \� CL �0 o o CL a _JLLJ oc w ¢ go \ it O y LU o w > ►o s '+ _ ul z r �N Q U S � U a r - m z a z o Q o o e 3 uj w 0 0 0 Ch O a O m CL 0 m 0 0 0 0 N 3-21 + N PROJECT: ErivmNDA CHANNEL EEBRIS BASIN SITE 1 DATE: JULY 7, 1989 JOB NO. 2106.11.01 1 Dw I • u - r• �• ���1 1• EXCAVATION 1,200,000 C.Y. 2.00 $2,400,000.00 2. ARA'93Ri1,1Ri 60,000 S.F. 4.00 $240,000.00 3. IXfT'LE<I' TOWER 65 L. F. 500.00 $32,500.00 4. 36" R.C.P. EPAIN 3,955 L.F. 110.00 $435,050.00 5. DEBRIS BAI;P= 2,000 L.F. 30.00 $60,000.00 6. CHAIN Tit FENCE 3,300 L.F. 8.50 $28,050.00 SUBTOTAL $3,195,600.00 30%(+-) CONSTRiCTION CONTINGINCy $804,400.00 TCTAL $4,000,000.00 •.. 3-22 1 LL • 1_ 0 o � / % IleUP r i 3-23 W Z J m O Z Q ''m V/ C ' m ob • w N 0 W Z * cc A U FW— V 1 Z W alt LU N H 4 � m 3 W O z a - cc 0 0 0 0 o so,ao N N o C N O O z ui J II I + O W J N J 2 W o LV N o > z� CL U y 0 O LL ul Va cc 0 Lo Ym Ln \ aLLI Wm o LLI w \\ J o N U z w cc c Q3 m o \ o o �w za d Q w \ 0 a o �N o Z \� + Fcc a W 0 W d Q W x W \ � ~ F 4. w J M ppm o, �N a \ N O O \ u+ d p 6 i O O � m ;o W= W o \ �P Z ^ w a m Q x Q W Z W m = O N � v U + m w p p N 2 a ¢ o 0 0 W n O CL O ¢ o N N N N N N T ^ r A O 3-24 PROJECT: ETIWANDA CANNEL, 1lEBRIS BASIN SITE 2 BATE: JULY 7, 1989 JOB NO. 2106.11.01 a � • �?S. �+: PJM R�►I 1. EXCAVATION 1,618,516 C.Y. 2.00 $3,237,032.00 2. AMORFIORM 60,000 S.F. 4.00 $240,000.00 3. OUIUT MWER 65 L.F. 500.00 $32,500.00 4. 36" R.C.P. DRAIN 2,583 L.F. 110.00 $284,130.00 5. DEBRIS BARRIER 2,000 L.F. 30.00 $60,000.00 6. CHAIN LINK FENCE 4,100 L.F. 8.50 $34,850.00 SUN3MIAL $3,888,512.00 30%(+-) CONS'IM=CNN CONTINGENCY $1,111,488.00 $5,000,000.00 3-25 "'.4D*IMrr,"K- I 4.1 Project De=iptian The preferred alternative for Etiwanda Creek is a combination of parabolic and trapezoidal armorflex channel sections fy a diversion structure in the vicinity of San Sevaine Basin No. 5 upstream to the mouth of the canyon. The diversion structure and conduit will divert 2,300 cfs to Basin No. 5. From this point, a rectangular concrete channel will be construct -.ed downstream to the existing Etiwanda Creek concrete channel. The existing trapezoidal channel is not adequate to convey even the reduced flows. The capacity will be expanded, by replacing the outside sloping wall with a vertical wall, downstream to the double channel under construction just South of Victoria Street. The schematic plan and cost estimate are shown on pages 4-3 and 4-4 respectively. A debris basin at the canyon mouth is included in the prof eat and is required to be constricted concurrently with the channel. It should be noted that the armorflex blocks have a compressive strength of about 8,000 psi compared to 3,000 to 5,000 psi for a conventional concrete channel. Theoretically, debris in the flaw would do more damage to the channel concrete than the armorflex blocks. And, armorflex block, if desired, can be easily replaced. Of course, none of the above considers the armorflex velocity of 20 fps versus 70 fps for a concrete channel as an additional damaging factor. The rectangular concrete channel between the existing channel and the diversion structure varies in width from 15' to 241, and varies in height from 6' to 121. The trapezoidal armorflex section from the diversion stricture to 24th Street is 7' in depth and varies from 90' to 135' in width. The parabolic armorflex channel from 24th Street to the debris basin is 4' to 5' in depth and varies from 104 to 140 feet in width. The preferred alternative includes bridges at a proposed realigned Summit Avenue, 24th Street, and a future East-West Street just South of the upper SCE Corridor. The uppex 3,700 feet of the channel will have drop structures to maintain a maximum velocity of 20 fps in each reach. The vertical drop will 4-1 be in 2 to 3 foot increments aver a 10 foot horizontal distance. The minim m spacing is approximately 100 feet, and the maximum 600 feet. 4.2 Project Costs Conceptual construction costs have been estimated for the facilities included in the preferred alternative. Additional costs and fees in addition to construction costs are discussed in Section 1.4. Preliminary construction plans have not yet been prepared for the project. A 200 scale plan view has been prepared and is available under separate cover. Typical sections and hydraulic calculations for the proposed facilities are included in the Section 6 Appendix. Construction costs for the preferred alternative are summarized below. Detailed estimates for the overall project and debris basin follow. Downstream of 24th Street Upstream of 24th Street Wn•_.1 Construction contingency Total Construction Cost r 4-2 $ 6,230,843 9,719,685 $15,950,528 5,049,472 $21,000,000 ETIWANDA CREEK DRAINAGE CORRIDOR PREFERRED ALTERNATIVE $21,000,000. PROPOSED 1 EAST � i STA. 150+00 LEGEND CONCRETE CHANNEL ......I. CONCRETE CONDUIT MME ARMORFLEX TRAP. CHANNEL ■� ARMORFLEX PARABOI CHANNEL W 104' TO 141' 7 \ PARABOLIC SECTION ' BRIDGE W 90' TO 135' TRAPEZOIDAL SECTION w J STA. 15' TO 24' 72+00 L - H=11' TO 12' RECTANGULAR C SECTION -- 100+00 BRIDGE \ `_ RSION STRUCTURE RCP OR RCB W18E1MM�� / IWN.i10, s RECONSTRUCTED SECTION EXIST W A CHANNEL 1lIR7011fA� I BASH ,5 EXIST. SAN SEVAINE CHANNEL E � DBL. CHANNEL UNDER CONSTRUCTION Ft+`� STA. AVO 18+00 MAY 1989 FWLS JN 2108.1101 II II SII LADWP CORRIDORji 11 'SCE CORRIDOR II �: BRIDGE °A �I �a SII y>� .. III SCE CORRIDOR W 104' TO 141' 7 \ PARABOLIC SECTION ' BRIDGE W 90' TO 135' TRAPEZOIDAL SECTION w J STA. 15' TO 24' 72+00 L - H=11' TO 12' RECTANGULAR C SECTION -- 100+00 BRIDGE \ `_ RSION STRUCTURE RCP OR RCB W18E1MM�� / IWN.i10, s RECONSTRUCTED SECTION EXIST W A CHANNEL 1lIR7011fA� I BASH ,5 EXIST. SAN SEVAINE CHANNEL E � DBL. CHANNEL UNDER CONSTRUCTION Ft+`� STA. AVO 18+00 MAY 1989 FWLS JN 2108.1101 •• Mal' ••. �. 1 /• PRQTECT: ETIWANDA CREEK CHANNEL VICIORIA AVENUE TO DEBRIS BASIN DATE: JUNE 2, 1989 JOB NO. 2106.11.01 DatiR • TO EXPAND EXISTING ETIWANDA •nIal 51+15 TO aXLSTRUCT • s v r - oc)NCRETE ajANNEL 71+88 TO 100 -FOO N CIONSTRUCT TRAPEZoDIAL ARMORFLEX CHANNEL 100+00 TO 179+80 OC)NSTFdj(,T PARABOLIc AR40RFLEX CHANNEL DIS OF 24TH STREET 1. ARMORFLEX CL 50 376,367 S.F. $4.30 $11618,378.00 2. AR40PTIEX CL 30 40,288 S.F. $4.00 $161,152.00 3. SEEDING OVER ARMORFIEX 416,655 S.F. $0.05 $20,833.00 4. SOD 41,440 S.F. $0.50 $20,720.00 5. BRIDGE AT SUMMIT AVENUE 8,748 S.F. $80.00 $699,840.00 6. TRANSITION STRUCTURE 1,662 C.Y. $310.00 $515,220.00 7. 10 Fr DIA. RCP PIPE 11355 L.F. $320.00 $4330,600.00 8. JUNCTION BOX 1 L.S. $6,500.00 $6,500.00 9. EXPAND EXIST. ETIWANDA CH. 3,300 L.F. $375.00 $1,237,500.00 10. EXCAVATION 128,000 C.Y. $2.75 $352,000.00 11. CHANNEL ODNCRETE 3,579 C.Y. $275.00 $984,225.00 12. FENCE 9,570 L.F. $8.50 $81,345.00 13. STRUCTURAL BACKFILL 4,340 C.Y. $4.50 $19,530.00 14. OUTLET' STRUCIURE 1 L.S. $800,000.00 $80,000.00 SUBTOTAL $6,230,843.00 U/S OF 24TH STREET 1 - ARMORFTEX CL 50 1,014,984 S.F. 4.30 $4,364,431.00 2. ARMORFLEX CL 30 2,996 S.F. 4.00 $11,984.00 3. SEEDING OVER ARMORFLEX 1,017,980 S.F. 0.05 $50,899.00 4. EXCAVATION 130,000 C.Y. 2.75 $357,500.00 5. SOD 402,422 S.F. 0.50 $201,211.00 6. FENCE 15,960 L.F. 8.50 $135,660.00 7. BRIDGE AT 24TH ST. 71392 S.F. 100.00 $739,200.00 8. BRIDGE AT STA 151+30 6,588 S.F. 100.00 $658,800.00 9. DEBRIS BASIN/UJrIE'r WORKS 1 L.S. 3,200,000.00 $3,200,000.00 •• M• 1 M t ati • all N• - 1 alal ••. •• • 1 N t 1 alal' 1 •- • •i .• • a1 ••. •'•.• � all i � i+ • t •. RIG11T-OF-WAY C= NOT1 M all l#C 27 4-4 SUBTOTAL TO'T'AL 30%(+-) CONTINGENCY GRAND TOTAL $9,719,685.00 $15,950,528.00 $5,049,472.00 $21,000,000.00 CONCE=AL COST ESTIMATE, , PRQTECP: ETIWANDA CHANNEL DEBRIS BASIN SITE 1 DATE: JULY 7, 1989 JOB NO. 2106.11.01 TTEM NO. DESCRIPTION QUAN'T'ITY UNIT COST COST 1. EXCAVATION 1,200,000 C.Y. 2.00 $2,400,000.00 2. ARMORFORM 60,000 S.F. 4.00 $240,000.00 3. OUTLET TOWER 65 L.F. 500.00 $32,500.00 4. 36" R.C.P. DRAIN 3,955 L.F. 110.00 $435,050.00 5. DEBRIS BARRIER 2,000 L.F. 30.00 $60,000.00 6. CHAIN LINK FENCE 3,300 L.F. 8.50 $28,050.00 30%(+-) CX?NSTRUCTION CONTINGENCY TOTAL 0 4-5 $3,195,600.00 $804,400.00 $4,000,000.00 i i J i yl:r►IR: M rk;-Wzl ba IYk/DI * :`yIDizi a J IV ZL. 5.1 Recammnded Project Alternatives Ftisc�, Williams, landgren and Short, Inc., in collaboration with the Caryn Coupany and the North Etiwanda. Land amers Consortium, makes the following recommendations to the County of San Bernardino Department of ii -log MR 1. The Etiwanda da Creek Channel preferred alternative described in this report be approved in principle. 2. Tile Etiwanda Creek debris "basin" concept be approved in principle as an alternative to a debris "dam". 3. The Etiwanda debris basin be located at Site No. 1 as described in this report. 4. The County of San Bernardino Department of TransportatimVFlood Control initiate action to locate a regional site for debris disposal for the various planned arra existing debris basins from Day Creek to Duncan Canyon. 5. The City of Rancho Cucamonga review the preferred alternative plan and construction cost estimate and determine its adequacy for a Mello -Roos election. F a_ r.� V U . e Ube following action plan is recce in the interest of expediting the plan development and approval process for the Etiwanda. Creek project. 1. FWLS proceed with the preparation of 200 -scale preliminary design plans for the preferred alternative. 2. FWLS initiate action with the State Department of Water Resources, Division of Safety of Dams to determine if the State would have jurisdiction aver the proposed debris basin. 3. FWLS initiate geotechnical investigation for a debris basin at Site No. 1 as described herein. i 5-1 r4wMre�1 Alternatives Analysis Feb. 89 May 29, 1989 landowners Flood Control - May 31, 1989 Subccaxunittee Meeting to Select Preferred Alternative Meeting to present - June 6, 1989 Preferred Alternative Prepare Draft Design Concept Report June 7, 1989 June 20, 1989 Finalize Design Concept Report June 10, 1989 June 23, 1989 Public Agency Review and Approval June 1989 December 1989 of Design Concept Preliminary Design June 1989 September 1989 Public Agency Review and Septi 1989 December 1989 Approval of Preliminary Design Final Design and Agency Processing January 1990 December 1990 Environmental Permits Manch 1990 December 1990 Advertise and Award Construction January 1991 February 1991 r 5-2 C� 0 IJ G 0 0 tis W' U i" I .•..;r Is 16IM r.. *: 01;r411 !s4M 4 US --.0 • 100 -year frequency flood per separate report to be updated for final design. • Etiwanda debris basin voles requirements per separate report by Bill Mann & Associates. � SLS • Maximum, velocity of 20 fps • Mannings n = 0.03 for velocity calculations • Mannings n = 0.035 for capacity calculations • Freeboard area sodded on parabolic section • U. S. Army Corps of Engineers criteria for determining ng range of Manning s n for velocity and capacity calculations, air entrainment, and superelevation. Iris Angeles County Flood control District criteria for freeboard. I as-M'A DFA .-a v �11 fe M al Ve ITIM4�6- 41 1 4A 0 ETIWANDA CREEK DRAINAGE CORRIDOR DESIGN FLOWS 100 -YEAR (CFS) I10 -YEAR (CFS) DESIGN REACH II 4000 II 2380 SII I I LADWPCORRIDOR �III SCE CORRIDOR II PROPOSED 5300 3127 °N�a -11 �I I 9`'CZ.� 311 .. FZ II SCE CORRIDOR--,,, 9y O \9 n 5900\\\ 3481 II STA. 100+00 it PROPOSED 24th STIEET _ II EXISTING SUMMI 8700 3953 STA. DIVERSION 72+00 STRUCTURE 7200 4248 I HANNEL 5900 4900 2891 3500 2085 HANNEL VgTolml SAW 2300 1357 T,E"WbWA CHANNEL 0 CAPACITY) XIST. SAN SEVANE CHANNEL (5,200 CFS CAPACITY) EVUNDER�7CONSTRUCTION AE (4 CO) STA. ETIWANDA (7 998 CFS) 18+00 hrAY igen FWLS JN 2106.1101 '1 t1• •.1 W RA &1 G t 11651 Sterling Avenue, Suite A FU FIJSCOE PROJECT: ET/WA1✓,01j C1%ANN PROJECT NO: 2106. //D Riverside, CA 92503 �� ■LL S (714') 354-0161 BY: , Z DATE: CHECK: 7- s- 89 DATE: UNDGREN & SHORT PA RA 6 0 L /C 0 >e FL ESC CirilF.ngfnetrx • Land Surveyors - Z ell ANi✓EL V �Ax. - o H/SXC SHEET OF 0\ OD N W -i ul N \0 v) 0 0 0 +o+ +o+ o+ o o 0 0 0 o O �I O O O O p p O O p o O O O o p W 0 O O p 0 0 0 0 o o p o V1 0 u1 p o vl o ul o Ul o o m - J O o N N 0 0 0 0 O O O O 0 0 0 o oa oo: y y � O O o 0 O O 0 0 O O O O 0 0 �O01\ Q U,vl Q)� �w� Xo p � m i y Q) O o 0 0 0 0 Z' a)c� 0,�o� mm ON (7) I �m moi �rn oa}p o - y r A \ o3 oow O w w 100 Qo oo a3 o0 oa �� �,� '-,I�, o a I Oy 0)N �+ W 'A O O W 0 Za m 3 -� o m coo �i �� �� �� 0\w v ( r - 0o0 w N Oo j * ENTERED INF]RMATION FOR SUDCHANNEL N\|MBEP 1 : NODE NUMBER "y" COORDINATE ^Y" CDORDINA-[ 1 .00 10(,T` 2 10.00 98.4' 3 30.00 95.06 4 50.00 94.49 5' 70.00 94.00 6 90.00 p4.4� 7 110.00 95.96 8 130.00 98.41 9 140.00 100.00 SUBCHANNEL SLOPE(FEET/FEET) = .036800 SUBCHANNE� MANNINGS FRICTION FACTOR = .035000 ^^ ~ ^ ^ ^ ^ ~^ ^ ^^^^ SUBCHANNEL ^^ ~ ` ^ ^ ~ ^ ^ ^ ^ ^ ^^ ^~ ^^^ ^ ^ ^ FLOW(CFS) = 7210.3 ^ ^^ ~ ^^ ~ ^ ~ ^ ^ ^ ^ ^^ ^ ~ ^ ^ ^^ ~ ^ ^ ^ ^ ` ' ^ ' SUBCHANNEL FLOW AREA(SQUARE FEET) = 407.22 SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 17.706 SUBCHANNEL FROUDE NUMBER = 1.739 / SURCHANNEL FLOW TOP-WIDTH(FEFT) = 126.55 SUBCHANNEL HYDRAULIC DEPTH(FEET) = 3.22 ---- ---------------`--------------------------------------------'---------- TOTAL lRRETJLAF [HANqFL FLOV(CFS) WANTED = 72()0.0� . CCAFiIEr TPREEULAR CHANNE| TLDW(rFS` = 721002 EST[MAThD `F'REEULAR CHANNEL NORMAi. DEPTH WATER SURFACE ELEyATION......... ................... 98.92 NOTE: WArER SURFACE IS BELOW EXTREME LEAT AND F'lGHT 9P1K ELEVATIONS., [EECRlPTION OF STUDv * PPRAB0LTC ARMORFLEX CHANNEL * Q-670{ c5s, * TOP WIDTH=14C ft, DEPTH=6 ft, Vmax=20 fps * ____________________________________________________________________________ * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : NODE NUMBER "X" COORDINATE "Y" COORDINATE � ' 1 .0O 100.00 2 10.00 98.41 ' 3 30.00 95.96 4 50.00 94.49 5 70.00 94.00 6 90.0O 94.49 7 110.00 95.96 8 130.00 9P.41 9 140.00 100.0(". SUBCHANNEL SLOPE(FEET/FEET) = .030400 SUBCHANNEL MANNINGS FRICTION FACTOR = .030000 .'.....'....^..'......'.,...........^.^.....'...'....'~....'....^..^.'.`'. . . SUBCHANNEl FLO�{CFS) = 6709.8 '--'--- ----- * 0=5900 cfs. n=0.030 * 'OF WIDTH=5900 cfs' DEPTH -6 ft, Vmax=21 fps ^ ____________________________________________________________________________ * ENTERED INFORMATION FOR SUBCHANNEL NUMBEP 1 : NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 .00 100.0-1 2 10.00 P8.41 3 30.00 95.9� 4 50.00 94.49 5 70.00 94.00 6 90.00 94.49 7 110.00 95.96 8 130.00 98.41 9 140.00 100.00 SUBCHANNEL SLOPE(FEET/FEET) = .030400 SUBCHANNEL MANNINGS FRICTION FACTOR = .030000 SUBCHANNEL ^~^^~`^^^^^^^^^^^~~^^'^^~^~^^^~^^^^^^^^^^^^^'^^^ FLOW(CFS) = 5926.0- SUBCHANNEL FLOW AREA(SQUARE FEET) = 341.91 SUBCHANNB. FLOW VELD[ITY(FEET/5EC.) = 17.3?2 SU9CHAN"EL FRDU]E NUMBER = 1.808 SL!GCHANNE4 FLOW TOP-WIDTH(FEET) SU8CHANNEL HYDRAuLIC DEPTH(FEET! = 2.85 ------ TD�Q jQREGULAP j9REGULAP CHANNGL F�UwQF3O WANTEV = 5900.0� [O"PUTED TRRFGU/'AF CHANNEL FiOW/CFS> = 5925.06 ECTlrATED IPPEGL/LAR CHAN!JE� NOPMA'' DEPTH WATER SUPFaL[ ELFVATIDN. . . . . . . . . . . ' , . . . . . . . . . . .. . .. Q2.41'' NOTE: WATER CUPP4C[ 10 BELOW Ey[REQE LEFT AND FIGHT BAN}' ELFVATlON5. DESCRIPTION OF STUDY * PARABOLIC ARMORFLEY CH4NNE,- * * 0=5900 cfs, n=0.035 * * TOP WIDTH=140 ft, DEPTH=6 ft, Vmax=20 fps * *************************************************************************+ _-______________________________- ____-_______-__--___________-____--_-_-___ * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 .00 100.00 2 10.00 98.41 3 30.00 95.96 4 50.00 94.4V 5 70.00 P4.00 6 90.00 94.49 7 110.00 95.94 8 13;.00 9B.41 9 140.00 100.00 SUBCHANNE!- SLOPE(FEET/FEET) = '030400 SUBCHANNEL MANNINGS FRICTION FACTOR = 035090 �� SUBCAANNEL FLOW(CFS) = 5913.F� SUBCHANNEL FLOW AREA(5QUARE FEET) = 379.69 SUBCHANNEL FLOW VELOCITY(FEE7/SEC.1 SUBCHANNEL FRDUDE NUMBER = 1.569 SUBCHANNEL FLOW TOP-WIDTH(FEET) SU9CHANNEL HYDRAULIC DEPTH(FEET) = 2.07 ____________________________________________________________________________ TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 5900.00 COMPUTED IRREGULAR CHANNEL FLOW(CFS? = 5918'82 ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE ELEVATION.........................''.. 98.71 NOTE: WATER SURFACE IS BELOW EXTREME LEFT AND RIGHT BANK ELEVATIONS. DESCRIPTION OF STUDY * P4RATOLY[ ARMORFLEY CHANNEL * * 0=5000 c+'s. r=0,()0-1 * * rnP WTDIH=180 f+, DEFTH=6 f+, Vma,=20 fps + ) | * EWTEPED JNFORmAT7ON FOP TU8CHANNEL N]NEER NODE NJMuEF "Y" 000R?lNA7E "/" COORD!NAI[ \ 1 ' ('10 100. (`/` / 2 25 0) � 75, of) 04,1'r � 90.00 94. 07.1 6 105.00 � 1S0.00 95.19 g 155. 0--.? 9"n3 9 180.00 102.O( SUBCHANNEL SLOPE(FEET/FE[T` = .055E90 SUBCHANNEL MANNINGS FRICTION FACTOR = .02000(A . . . . ' . ^ ~ . .. . ' . . . . .... . ., .. . .. . . . ^ .. . . . . . . . .. - . . . . . . . . . . . . . SUBCHANNEL FLOW(CFS) = 5919.1 ' SUBCHANNEL FLOW AREA(SQUARE FEET) = 298.18 SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 19.851 SUBCHANNEL FROUDE NUMBER = 2.351 SUBCHANNEL FLOW TOP-WID-PH(FEET) = 134.72 SUBCHANNEL HYDRAULIC DEPTH(FEET) = 2.21 _____________________________________________________________________ TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 5900.O0 COMPWTED TRREGULAR CHANNEL FLOW(CFS) = 5919.12 ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE ELEVATION.........,........,....,..... 97.4C, NOTE: WATER SURFACE ]S BELOW EXTREMF LEFT AND RIGHT RANr ELEVATIONS. c DESCRIPTION OF STUDY * PARABOLIC ARMORFLEy CHANNEL ^ * 0=590J cf5. r=0.035 ^ � TOP W7D7H=180 ft. DEPTH=6 ft, Vmax=25 fos � �������������������������������������������������������������������� � * ENTERED INFORMATION FOR SUBCHANNEL NUMBEP 1 : NODE NUMPER "X" COORDINATE "Y" COORDINATE 1 DESCRIPTION .00 100.00 � 25.00 97.13 3 50.00 95.19 4 75.00 94.17 5 90.00 94.00 6 105.00 94.17 7 130.00 95.19 8 155.00 97.13 9 180.00 1n0.00 SUBCHANNEL 8LOPE(FEET/FEET) = .055800 SUBCHANNEL MANNINGS FRICTION FACTOR = .035000 "^^~^ SUBCHAN�EL ^ ^ ^' ^ ^^" ^ 1.1- ^ ^ ^ ^ ^^ ^ ^ ^ ^ ^^ -.1 FLOW(CFS) = 5916.2 ' ~ ~^ ^ ' ^ SUBCHAWNR)' FLOW A9EA(SOUARL FEET) = 331.02 SUB[HANN[L ROW VELOCITY'FEET/6EC.) = 17.87j:: SLTCHANNEL FROUDE NUMFER = 2.040 SURCHAmNEK FLOW TOP-WIDTH(FEET) = 138,9^ SUPCHANNEL HYDPAULIC DFP7H'FEET/ = 2.0: '------- -----------'----------------------------------'------------------- TOTAL IR9EGULAP :HANNEL FLOW(CFS) WPNTED = 5900.0,:) [OMPUTZI {RPSGULAR CHANNEL FiOW(CFS) = 5916.21 ES71M4TED 7PR[LULAP CKANmEL NORMAL DEPTH WATER S1RFATE EiEVPTI]N. ' . . .. . ..... . . .. ,. .. ... . .. . . . 97,64 NOTE: WA7ER SURFACE IS BELOW EXTREME ____________________________________________________________________ �EFT AND RJGpT BAN!/ ELFVATIONS. ___ _ ------ DESCRIPTION OF STUDY * PARABOLIC ARMORFLEX CHANNEL * * 0=5900 cfs, n=0"030 * * TOP IOIDTH=180 ft, DEPTH=6 ft, %ax=20 fps ^ ____________________________________________________________________ _______ * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 .00 10O.00 2 25.00 97.13 3 50.00 95.19 4 75.00 94.17 5 90.00 94.00 6 105.00 94.17 ? 130.00 95.19 8 155.00 97.13 -7 SUBCHAN1WEL MANNINGS FRICTION FACTOR = .03(/00. ...'.^''................~'~..'...'...~........,...,..'.-........'^^'... '.. SUBC-HANNEL FLOW(CFS) = 5917.F SUBCHANNEL FLOW AREA(SOUARE FEET` = 302.23 SUBCHANNEL FLOW HELOCITY(FEET/SEC.) = 19.58; SUBCHANNEL FROU0E NUMBER = 2.308 SUDCHANNEL FLOW TOP—WIDTH(FEFT) = 135.2/+ SUDCHA�,1NEL HYl`RAULIC DEPTH(FEET) = 2.23 -- - -----'-------------------------------------------------- '-- -- -- - ___________________________________________________________________ TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 5900.00 COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 5917.81 ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE NOTE: WATER SURFACE IS BELOW EXTREME LEFT AND RIGHT BANK ELEVATIONS. DESCpTPTIOr OF FTUDY + PARABOLIC PPmOPF'-[X CHANNE`' » � ''=Too) 7fs. � `0 bilflTH,10{ ft. DEPTH -5 ft` "may -20 fps * � � ENTERED lNFORMATlVN FOR SUBCHANNEL NUMBFR 1 : NoDi NuIBEC ''w" CUDR0IN&F ^Y'^ COO"LaNAr[, / � 75-0C� "4.1? � 90'00 0C 6 i u5'»0 17 ? 130.00 p5.19 6 155.O0 nT. 13 9 ISO. C0 100.00 SUBCHANNEL SLOPE(FEET/FEET) = .053600 SUBCHANNEL MANNINGS FRICTION FACTOR = .035100 ^^~^^^^^^^^^^~^^^^^^^^^^^^^^^^^^^^^^~^^^'^^'^^~`^`^``^^ SUBCHANNEL FLOW(CFS) = 5905.9 SUBCHANNEL FLOW AREA(SQLARE FEET) = 335.20 . SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 17.619 SUBCHANNEL FROUDE NUMBER = 2.002 SUBCHANNEL FLOW TOP—WIDTH(FEET) = 139.42 SUBCHANNEL HYDRAULIC DEPTH(FEET) = 2.40 ------------------------------------------------------------------ - ``-` - 7OTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 5900.00 CUIPUrED IRREGULAR CHANNEL FLOW(CFS) = 5905'95 ESTlMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE VESCRIF'TION OF _ryTl_L'•Y #t r� 4<.¢.*.9..k.. .k..j..x ri •¢ is i. s.. �.t. i CHAININE'l_ ri TOPS i.I1DTr1 1 ' C', ft, DER11-E.1=6 ft. Vrna =20 fpM- f .;F. At # y;..J .r ai.. J. • .*. •}t• -Y •?t # .• �?'f •k •}F• # if• •'.E :s'1t :4.. # •}• .F,{..0 .r •i`•+.• 9F •}� # # �� •}e• •1t •}F •i„ .r • # z _y,. •3F...ti• �r # 'A ?e ENT'ERE=D INFORMATION FOR EU13CHANNEL1_, NUP" +ER 1 NODE NUMBER "V COORDINATE ° Y ° COORDINATE. i .00 100. 00 L 2o. . 00 97 . 37 4+0. 00 95"' . 50 4 60 . 00 ?t{ . 2.7 5 SO . 00 T4. t_u;F 6 100 ., c_r €'. c"4.37 120.00 95.5 =1 S 140. r.- 0 97.37 t? i 6rC . 00 11 j[:. i:tr_} SLt: PE i FEET/l-. E'E T = . _x536 0r :ut'I....I...j•..FI\},.F-'._. Mf-7i`yr,IiN(:3'.; f-FT rl_F. CTr_tr'� a a �yi:_ :r•�:y�•yl N.If '._ (—�._���'FF i. �\ '— .••';s•.7i ... !=i_ F ._n_,1 REV i 5 :tl_ 1`'il_ l=E.'`'*- C.•.JI:::.::i-•,1-�:�5',.!F:l._ F i:l'_1T..'F. 11.!{'E'. � • -'- _.. � �`i==, i L �4_ i• _.. a.'1:-:f'..•-�i:.�`\i!•:t �w i- r_ l_ �t�. +.;, p 7 r 1-. S !: c`r;F, f E'. ' ;YT)r'-"t! :t C: ? }l - '; H : F E.T E• i "1'rr-1TC:,-Z! I'11r AF i •sJ^n�h FL Fl i-sl i i r-•�—;•-., F I/ ,i••f• I'', _. •—, � L . L . �T L' .... F .. _. � , a ... l _ (... � 4". .. ,.. 4 i i F 1 _. ._ _'- ... .— '•. } r •_r' _ ,CC_1P9t•UTE.) TRRELILl _0 H:_', r3=L F!.Owl(C!S r:_.� i. •,�'ET� i"I'l�'i.�..r•,, ~HAhiF:F_l rJORhIf-i,_ DEPTH .4F -•T-.; SJ!`t'M-= NOTE: WATER TS BEL -O!:,' Fr s:.L.EFT .I - L +..t •x�e # >E ## #�i>E x;f DESCRyIPTION OF STUDY # PARADOI_ I'_ ARMORFL-F'' CHANNEL_ r, 0=5300 r•f s , n=0.035 } TOP WIDTH=160 ft, DEPTH=6 ft. Vma.,, tR0 fps iF •M:• :f # •# i( -•}E• •}f• # •�• •;:-•)E••)t• # •3i• # # #-rt• # # •3E• •}e• •}� •� •rF # # •re # •}E• •�• •x• # •if••iF •x' •ii -9F # it •f• # •3E• ii• # 3(• # # # •x• •rE• ii � �ti is � �-� � -iF -� •�- #• •K• # •iE- iE•,�' �= •>~ X #- F ENT _F;E"D IN OR -1'f Iord P,uz S!_!F:E HFI!' WEL. hlLitf'r3EP,' NUMI3l-F. rF X rF C Ot7r- D I W = .F Y FF l".C1f?FiC I PJ 12 1 0, , 0 C • wl.l. 0 l f, 1 r`,;- CACI AL.F. 1?17 9 � 1q�`./'C C07.X 9 160.«0 E. SUBCHANNEL SLOFE/FEET/PEET) = .053600 SUPCHANNEL MANNINGS FRICTION FACTOR = .03t/`X; ' ' � .' . .' . ... . . . ...' ... . . .. . . ' .. . ^ . .. . . . ' . ' SUBCHANNEL FLOW(CFS' = 53P4.8 SUBCHANNEL FLOW A9EA(SQUARE FEE,) = 301.43 SUE'CHANNEL TLOW VELOCITY(FEET/SEC.) = 17.66P SUBCHANNEL rROUDF NUMBER = 2.003 SU9CH4NNEL FLOW TOP-W[DTH(FEFT` = 124.8R SUBCHANNEL HYDRAULIC DEPTH(FEET) = 2.42 TOTAL IRREGULAR CHANNEL FLOW/CFS) WANTED = 5200.00 COMPUTEL IRREGULAR CHANNEL FLOW(CFS) = 5324.77 ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE NOTE: WPTER SURFACE TS PELOW EXTFEM[ LEFT AND RIGHT BANK ELEVATIONS. EST7M4TED IRREGULAR :H4NNB NORMAL IEpTH kK`TER nUR'-ACK DF97RIpT104 Oc 37UPv ' * �`7�F'L� i ��u'C ' ~ ?=4('Js r"s n=0.03' ° ^ 100 VIDrHY1G) ft, DEPT,|=& 'L, Vma =2» fn� v | / ° FNTERED TNr]pMcT Qv rOR nUPCJTU&0 KUPD[p 1 : | 1c '0^0 � 50.O`-) 9-,qC? . 5 7»/.fX, c'4.01 - {pO.(,0 Q0. 00 94. 4c' 7 110.00 95.96 8 130.00 99.41 ' 9 140.00 100.00 SUBCHANNEL SLOPE(FEET/FEET) = .065000 SUBCHANNEL MANNINGS FRICTION FACTOR = .030000 � . . . ' . . ^ . . . ' . .. . .'. . .. .... . . . . . . ' - . SUBCHANNEL FLOW(CFS) = 4006.6 . .. . . . . . . 7—.— . . . . . . . . SUBCHANNEL FLOW AREA(SpGARE FEET) = 198.89 SUBCHANNEL FLOW VELOCITY/FEET/SEC.) = 20.145 SUBCHANNEL FROUDE NUMBER = 2.49B SUBCHANNEL FLOW 70P-W7DTH(rFFT) = 98.4/: SUBCF4NNEL H«DRAUiIC DEPTH(FEET` = 2.02 _______________________________________________________________ ---- - - - - - ____________ --- - - -- - - - `- -------- -- ---------- ----- -- ----- ---- - - - - -- - - - -` ` -- - -- TOTAL lRRETi/LAR CHPNNEL FLOW(CFS) WANTED = 400u.= COMPUTED IRR[6ULAR CHANNEL FLOW(rFS) = 4006.60 EST7M4TED IRREGULAR :H4NNB NORMAL IEpTH kK`TER nUR'-ACK NOTE; WATER SURFACE IS BELOW EXTREME LEFT AND RIGHT BAN' ELEVATIONS' DESCRIPTION OF STUDY * PARABOLIC ARMORFL[X CHANNEL * * 0=+000 cfs, n=0.035 * * rOF W]DTH=!40 it DEPTH=6 ft, Vmax=20 fps * --------------------------------------------------------------------'-----` * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 .00 100.00 2 10.00 98.41 3 30.00 95.96 4 50.00 94.49 5 70.00 04.00 . 6 90.00 94.4v 'r i10.00 95.96 F 120.00 98.411 � 140.00 100.;0 SUBCHAONEi S"OP[/FEFT/FEET) = .06509� SURCHHNNZL 1CNNIOGS MICTION FACTOR - .03501C.- SUBCHANNYL . .~ .. FLCW/CFQ> = 4021.8 ~ ~ .... .... SUB[HANN0 FLOW APFA(SO/jARF FEET, = 221.9-2 . 9ITCHoUNTL =LOW VELgCI7Y(FFET/SEC.) = 18.118 ) SLBLYANNE! PROUCE NUMBER = P.167 YUFZPANNCL FLPW TOP-WIPT&FEFT) = 102,22 / HyDqAU/ 77 I`EPTP<7[Fr` = 2.1� 7OTPL T9REGULAF CHANNEL FL0W(7FB) WAN'rED CDMFUTFF IRAFGULAR CHPNNEL FLDW(CB; = 4021.76. GGTIMA7ED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE NOTE: WATER SURFACE IS BELOW EXTREME LEFT AND RIGHT BANK ELEVATIONS. om �us'CO�. 11651 Sterling Avenue, Suite PROJECT: ET/WAND C114,yVc1 PROJECT NO: 21D6 //o 1 WNLLUMS Kive(714 CA -0161 BY: DATE: CHECK: DATE: �REN (714) 354-0161 T. 2 . 6-Z3-84 I&SHORT RECTAA/CCO/VC ef/A111VE-L Orit Engineers • Gand.Vurwyors ( MO$T 1-1yoe,4 uz le E=10 SHEET / OF Z9 � -GV� o ow �A -{ -1l-� -1NNNa1 �Z Z } o1+1 +4' -++*o++oH o 000000 00 C C) a a o Oo %C0 0 o V,, > y o O OO W , W i � .p �l N .p •p t^1 � o o I O O O O Op O p l O O 0 O O O � IA U1At 1 t� ! 7o V1; � BVI , V1 70 In 11 O �l Iq��L�O� cp O o cb�o O IppO 0 0 o IIf L O �!Gv i0 p I o O p'_ p1 p p o d 0 (j) (j) C> �� W 6 - 1 j i C G\ G� 0� C G1 I Q pp C (�D Q7 � r i 1� r O I 01, I .p N j Ij .p N W ZO I d oo I C) o' ` Ito ! N O'P 'P I oo rp '4I U) fl N o• CD 00 W W W a o a o` c o` O, D I p O p I O n �i y ooc�opp00000000ppOOioopO t,cz5 00 00 00 00 0 O f _ o0 00oo p r, 'A L)(.jj(j) 'j) (.3 Lrtw V)w V)w V1 utW U)w �w Z �p , n �oo;�mc�Lr,°� wo w� �o v N ow�a v�i'`rlo� o C _ �A iiI Op C\ � N o� � v N �1 Q\W 'P �P vl I l� N v p �I W pN H v cc, I ui ti O FUSCOE 11651 StelingAvenue, SuiteA PROJECT: E719141d,4 c%<A7VNEL PROJECT NO: 2106-.//o Riverside, CA 92503 =DATE: WILLU MS (714) 354-0161 BY: 7TI, c,?,- 89 CHECK: DATE: LINDGREN & SHORT Civil Engineers • Land.Surneyors SHEET 3 OF 29 Fie o Ak S TA , SS -r- 0 0 To STA • 6(;+ 0 0 Q = 4,9oo c.{s. , S = 0,o2o g TRy b. /9 FO,,-'- K= 0.007 %z = 4• SO o, 5-,6 - 9 -;"L = 0.0 s FROM Pe -'/q TE 4- a Q = 6,309 c,�-s Top CONSFIe✓AT/✓E TRS/ b, 16- D= 6D- 8 Foie K- 0,007, k- ¢,00 0. 0 1 5- FRo/w Q = ¢, go 8 c.�. s . eZo5f- TD q, qooe. 1-s so USE D,I 7- 8.3 $ V_ 36, 57-F4'1S4 r= 2.23 0,002- 4.01 , %�_ 4.09 7L = 0, 013 F�oM AGATE ¢ OA/ = 7,52 Hoy = ¢0,70 -/•�S� � :2 G2 F_VM AX _ x'70 _ 2. 6 2 32.2 x 7.5-2- FieOM PL ATE ¢ g- d,1/0( ,_ /. 0 s- ole .S7 • AIR- E-AIMA hV M El -IT DA - 8'38,x DA= 0-1t2 .01 FUSCOE 11651 Sterling Avenue, Suite PROJECT: E-T/W4AIM G'I%ANNEL PROJECT NO: Riversid4 CA 92503 BY. DATE.6'-23,81 CHECK: DATE: LINDGE (714) 354-0161 T.S. LIHDGREH & SHORT Civil Engineers • Land .Surveyors SHEET 4- OF 2 9 FRoAA STA. 6G+0o TD STA. 7/Y- 88 Q = 4,90 0 -C.7�s. , S. 0.036 8 Tky b= /4 Fog k =: 0•oo7 , _ 3.5-o �= 7 = 0.015 FROM PLATE ¢ Q = 4, 2 93 C, {,S . NDr GooD TRy b /S FoR K = 0.0 0 7 , _ .3.75 Lr) = 7 - -A = 0-015 Fjeonn PLATE 4 Q = 5,16 I C,�•S . CLOSE ro � 9Do �•{s , So N 722 V_ ¢5,27 f/•%Sle., �= 2-f7 Foie k = 0,001 , = 3.6$ 7\ = 0-013 Fi�OM PLA TE `f DN = 6.49 , V•�aX.= SD 3�-��/sec ., FN = 3.48 so 3 G _ 3.1-8 D 32.2 x 6.¢9 F/20N1 PI -ATF 1�5- d�� = /•/l OR //% A/i2 ENTieA1WMF1V T DA = 722x0•/1 FUSCOE 11651 Sterling Avenue, SuiteA PROJECT. E71{U4N44 C/14NNEL PROJECT NO: 2/0 �. //0 / Rive(714 35 -0161 BY: DATE: CHECK: DATE: WILL (714) 354-016I -%• .I , �- 23- 89 LINDGREN I&SHORT Ciril Engineers • Land.Surewyors SHEET S OF 29 FROM STA. 7/t 88 %O STA . 82 t SD Q = 7,200 0.03C8 p= 9 - %1 0. 0 15- FSE' 0 M PLA 7E 4- 317 3g 2 C .J. S. Too C0VS-,6P✓A7-1VC Tie y b 7' _ = 8. S n o, o i S jc,eo/ n PLA 7-6- EQ 0= 7,2-05 c'.{ S. CLOSE 70 7,200 e-- ,S . So USE 6=- /7' D,V : 8.¢9' , VS7 P.1sec. , F : 3,02- Fo,e k . 0.002- ¢. 2 s n= D,013 rp-ons P2 A E 4- D,l � 7. 64 VMAx = 5s47 F= VMA X _ 6-5-,4 3.5-4- __ X D 4 32.2 x77.64- IrROM PLATE ¢S CC�n� � /•/D oR 2)A = 8- 99 x o./o D4 _ 0 8 s /0;/- A/ie t ✓Tie• bVM E-A/ j" 4 y = _f/ ) Ls--:E-i 47 ) �/ � ) 32.2 X goon �y _ 0.20 1:�S�OE 11651 Sterling Avenue, SuiteA PROJECT: ET/G1,41VI Q CiI/fNNEL PROJECT NO: Z/O6,/lO WILL (714) 354-0161 Riverside ca 90161 BY: T -T. DATE:623'89 CHECK: DATE: LINDGREN & SHORT Grit Engineers • Land Surveyors SHEET 6- OF Z FROM 5 T , g z t SO TO STA . 97-/- 0 0 Q = 6, 70o c.�S . , S = 0,0368 -T"Ry b= /7' FOR A— 0,007 R = 4 zs �- S"S, -il - 0.0/S Fie0AA PLATE ¢ Q- 7, 2 o S 0,f S 7-00 C0NSF,'VA71VE b= / TRi 6 FOR- X= 0.007, 9=. 4,00 D = 6'-)1:- 0101 S F,e 0AI� PZA 7E 4- Q = 6, /30 c.f S . ezoSE To 6,700e,�,5 " So USE b= A6 " V. 48.9s 9,bec , , F Foxe /<=-0,007 ,2 = 4,/3 -A= O , 013 Fie 014A P -IA TE -f b, = 7.,!5 8 V,, = 5-4..52- F�/s�,� F,,, � 3.4 7 , 9�X[� 3,4 7 32,2x7"68 FROAA, PZATE 4-5-- 4 S-4 = O"SSx 0'/) o k //;/- ,¢/,c Fi✓Ti 11651 Sterling Avenue, Suite A PROJECT- ErlglAW4A r1141V11FL PROJECT NO: 2 / D �, // o �.USCOE / 2503 WILLU MS Riverside, C5 90161 BY DATE: / CHECK: DATE: LINDGREN (714) 354-0161 T, I', 6Z3-�'� & SHORT Civil [s'nginerrs • Land.Surveynrc SHEET 7 OF 2-9 �c-,Ro/n 577-A 97-x00 To STA. /07+oo Q::: 5;V00 c.f s . , S. 0, 036'8 7-9,y 6 � 1.5 Fole K _ 0, 007 ,e = 3.75- T .7sT = 0.015 FP 0 AA PGA TE V- (/ (/ = S,/6/ c,•(,s. AloT coo1) T'ey /6 Foc k =0.007, 9= -/'00 -71= 0,01 S /,WoM PLA -r Q: 6,130 c. -f,5. CLo56- To S0 usE b = /6 D,,/ - 7.7 7 � V = 9 7.4 4 -0, /sr. FN Fot- k: 0.002 � .3•q4 � = 0-013 F,eDA� PLATE � V Ax.= 52'75H'I/ c•,, F � 3.52 F t _ s2.7s .73,.52_ 9�— 32.2 X 6'-'79 Fg o/v\ Pi -,A TE 4-s- ���/d = /�/� OR- // ,41P t-,VrE'A11vMFv r %A = 777x 0.// DA. 0.9s' 'L o y _ (�� (sz .7 s) 32.2 x 9000 Ay = 0•/7' �us'COEi 11651 SierlingAvenue, SuiteA PROJECT: ET�W.4Na,q c'lmmw CA 92503 PROJECT NO: 2 ��G ��Q� WILLIAMS Riv (7 4) 40161 BY: T I , DATE: Z 3-s9 CHECK: DATE: LINDGREN & SHORT Civil Engineers • Land Surveyors SHEET 8 OF 2-6) F9 OM .5TA • /07-t00 To 5TA . /25-�00 Q = S, 900 C,Is., S. 0•05-3C Fob k - 0,007 , R= 4.00 D = ' 0-0/5 /C -9 0/V\ PIA7E 4- Q = 7, 3 98 C S . 7o o co l✓sE,e i/,q Ti v,6 - TAY 6 = /S' Fop- K= 0.007/ F,= 3.75- .75D D= 7. S -)q= 0.0) S F,eolv,, PLA-rE ¢- Q = 6, 2 z 8 c J- ' . CLOSE To .S, yo o so USE b = is' 7 0 ' V= -7' Foy k= 0•oo2, 9 3.67 71 - 0, o / 3 Fgom, PIATE 4 - PAI tS- 4 O i VMA x, — 60,74- /SSC ., F F Vi IIA 9 . _ 60.7¢ —� A32—,?x--6-48 FRo� PLATE 4S d = / I S 0 9 /5X, A/R ENrA4IYNf DA = 7Zoxo/s (1)�6o.74)Y15-) Ay = 32.2 x 8000 �sy_ o.21 IFUSCOE 11651 Sterling Avenue, SuiteA PROJECT:hTI92503 W,Q�/j e'y�fNNEL PROJECT NO: Z (D�, /1Q/ WILD Riverside, �I4) 354-0161 BY: T Z DATE: 6 23_89 CHECK: DATE: LIDGREH &SHORT l.iril Kngineenq • Land.Surveyors SHEET 9 OF 2-61 C OAA S7 - A, /257+00 TO GZ = 6300 C.f s. , S. 0.0s3C S7 -A. /46-t-oo T,ey 6= 15 /--0 F- k= 0.007 3.7-5- Z) -= Z)' 5-/ = 0,01 S F/201V\ pe-A-rC4 Q - 6, ZZ 3 FO C) CIO AlSE. Vl-riVE- Tey b = /4- D= 7' FP-C9Ak Fore k= 0.007, P-= 3•so 15- F'Oe0M PZATF /- 6 2 62 - .f•s. So us E b = l 4 ' 7,/2 V S3./% Fdl, k= 0002 = 3.53 71 = 0. 0 ► 3 F-Ie0NM PLATE DN = 6.40 �, V,, 5-9./���,�ser•� F . 4•l2 FVIAAx. _ 59./tl� _ 4.12- ./Z32.2 -32 ,c 6.4 0 04 /S/ A19 ENrCA/,1/MEVT 'DA = 7/2x0 -/S- D _ r DA -- q /, D 7 FUSCOE 11651 Sterling Avenue, Suite A PROJ ECT: ET-1W,4Nofi CIIAIVIIEZ PROJECT NO: Z106,1101 Riversid4 CA 92503 gY: DATE: CHECK: DATE: WILL (714) 354-0161 T I. 23- SR LINDGREN & SHORT Civil Engineers • Land Surveyors SHEET 10 OF 29 FRO/v` STA. 146+00 TD STA . /4 8+2 o Q- S,30D c.J.S, S= 0,08S6 TRX b /4 ' FOR J< = 0.007 3.so n = 7/ -n = 0.O 1-5- F90M PLATE � Q � 6,5-418 -Too eo n/SE�e m -rl v E TRY b 13 / ,co,e /< - 0.007, )2 = 3.25 5 s 71 = 0-0/5- r,eOhn PLATE -;I- 5, Q = S, 34 7 c,-0� 5 . eG0SE TO So U5 E b : /,3 D,V = 6 ¢ 3 l/. 63.3 7 F = 4 .90 FoR k= 0-002- ?,= 3.2-3 -7�- = O. O/ 3 Fie 0M PIA TE 4 DN = S 7 8. Vistas %. S2 1q/s�c F = S. / 7 F= VMAx. _ 70.5-2- 517 9 9b 32.2 x 5778 F,2oAA PGA TE fS d-7,_ /.22 OK 22j4 A/9 ENiIpA/.�/MENT DA=6.43x0.22 DA_ /� 11651 Sterling Avenue, Suite PROJECT -f /j�(/ FUSCOE �QA/D�Q [yANIVEL PROJECT NO: z/D�,/101 IA WILLMS Riverside CA 91503 BY: T DATE: CHECK: DATE: (714) 354-0161 r , �- 2 3' 9 LINDGREN & SHORT ('frit Engineers • Land Surveyors SHEET // OF 2 9 FR o M STA - / 8 +" TO 5 7-A . /6-3 t SO Q= q�-,000 c, -FS, s. aogs6 TR y b = /3 FOP- k = 0,007 6 S _ 0. orS FXoM PLATE ¢ 7Ry 6= /2 FOP- k= 0-007, 9= 3,00 -k\=01015- FP-oM p A -Fc - V- Q= ¢,,3,0/ C,7,S. CLOSE TO 0 = ,000c�,s so us E 6;--71z" 5764 V:- 5-9. o 9.3 D,002-, 0 0 1 3 FP 0 NA PZ A TE 4- D,4 = so8 , V�41AX 7 tSS 6$ f�'���,, �N 9x0 3z.2 x sos F90Ak PLATE �S - 66\ = 1,2 Z O R L),4 S00- X 0122— DA = /•2 ¢ A y _ 66,5vs)1�12-> 32.2 x 8000 y = 0.20' 22-;1, it/k ENrRA/n//yEn/T I 11651 Sterling Avenue, Suite A PROJECT: FT1W,4,Va4 GyANNEL PROJ ECT N O: 210 � 1 / 01 FUSCOE Riverside CA 92503 BYDATE: WILLIAMS (714) 354-0161: T-1 , DATE: 6--Z3_8q CHECK: LINDGREN & SHORT Cirit Engineers • Land.Sure yors SHEET /Z OF 29 1 Fie0A& SrA . /,�Sf 5-0 ro STA . /77-1'00 ¢ 000 CY.5- S_ 0,D70 8 TRy b:-- /3 FOA k _ 0.0 07 , - 3.2 D- 5' '7\= o-015- ,C90AA, PLA77-,E ¢ Q = 4 S 87 e. 7/, S.. Too e01V5 X'k1A 7_/ TRy !b= /2 f-09 k = 0,007, 2 = 3,00 6 --A-: 0 o / S Fie ons P,1 A TE ¢ Q 31 CLOSF 70 ¢,00ae"t s. So USE % - 12 _" D = 6. o 6 �` V= .SS. 01 f=l-�s� . F = 3 94- N FD,e k = 0, 0 0 2_ , Je = 3 • o / ,7x _ 0.013 Feo M PZA TE DN _ S 16- , VMA X. = 4�/• Z / P./see. , F = 4, 6 2- F= VMAX . = 6/. 2 / - = 4-.6 z XD 32.2 X 5-,4S FKOIV� PLATE ¢S 61?K/d _ /,/g DA = 6-06Y'f"8 DA 0'? 0p, /B j4 Alp- EA1;rRA/NNFN ,a y = (/) e V. 2 /)Y/2-) 32-2)c SDoo Ay_ 0,171 5 BY: FUSCOE 1]651 Sterling Avenue, Suite PROJECT -11651 G'//gNIVEC PROJECT NO: z 06. 0 Riverside 92503 : DATE: WILLIAl1As (714) 3 354-016I %I, DATE�-Z3��9 CHECK: LINMUN & SHORT Chit Engineers • Lund.Surveyors SHEET /3 OF 29 FROM` STA. /77-1-00 TO /82+00 Q = 41000 C O.094S TRy b= 12 FOP- k=-0,007 9= 3.00 D= 6 = o.o/s Fie OM PzA%E ¢ Too Co.✓SER ✓A Ti VE Tey,6 = 1/ Fore k=0,007, R= 2.7-5- D s s -21= 010/6- F,eOnk PI A iE ¢ L _ 3, 6/7 cGoSE To 4,000 e°. ,5 . so u5E 6 = /I .DN = 5-,93 ", V _ 6/.2 8 r"4,A;-n, F = ¢.4 3 )Cote K- 0,002- , 9= 2.95 --r\= 0,01 3 F-90AA P4ATE 4- D,,,=5.33; Vax.. 6gzi6 sec, F= 5.2/ F_- V—A6AW _ 69.Z6 9 xD 4 32.2x 5:33 F,e01A PLATE 45- d-,. /- Z Z 0 le 2 2 A/,e E�✓r,�A/.✓MFi DA . S93 x0,22- Z)A - A30 3 27,2- X 8000 Aye 020 .N .IKI EM 1110-Z-;1601 Appendix III 1 July .70 1 ,I - LEGEND o MINNESOTA DATATI�Y-•,t� • KITTITAS DATA •+1 •1'I !1 1 1 1 1� dm. .. •';;� J ,SEE DESIGN CURVE BELOW Q - , 1• 6 IZ t6 F= V a. EXPERIMENTAL DATA . . L 1 DIS `;,��;:1•. d SUGGESTED DESIGN CURVE d •Ir 1 �� '11 tl p = V =. _ - .. y • :.i '.' .•' •111 DESIGN CURVE .. , .,:��.!+I NOTE t d m =DEPTH OF WATER AND AIR MIXTURE d =COMPUTED DEPTH FOR NON- II Ij AERATED FLOW V =COMPUTED-VELOCI.TYEOR•NON- AERATED FLOW --- .III,i r i p =GRAVITATIONAL ACCELERATION 1 F= FROUDE NUMBER FOR NONAERATED FLOW •.-�•j.: `' - AIR ENTRAINMENT h` SEE TEXT PAGE S7 ate 45. III-47 '--- ,...._cam_ �� v'''~'r 1. � �• Y I J,ir. .y�y"•,"'�1''ii 17�:,1 /�' .sir• ' ';1 • .......- _. -._._...rte - - � .. � •. w.-+—+�--w �...__�r... _.. .. I� y_...1+.Q..:.� Z_ .,� .y:.a..# .r. ?F �. ?t •�• s• :a- :R -.<.k y ..�..g..u...;. ,�...#.�_ .# .�..a. ;i- •Jf •9F 4• -f�;a- �- i• i' :�- •fi i. �. �..y. •3: •!E :l• •�c. 4. •�• •3E •� :# :e• •�•.�.;: •� .�, x . �..;,.:k .�. y. y_ y. � K..� .., i . HYDRAU..- I C ELEIYI.= NT 3 -- I PROGRAM GRAM PAC}: A011 ,C) Copyright fight 1952--8 Adve'''ced EYIC?::YIep irg aft4aa.•-e .saes, Ver. 2.7A Release Da6/25/96 nE71c:i Analysis prepaNet by! TIME/DATE OF STUDY: 600 1/ 1/1980 'E _ } +� a• ► DESCRIPTION OF STUDY RECTANGULAR CONCRETE CHANNEL- � * 1.6 ft WIDE5 12 ft DEEP ..c; .ce:�:1.•;�••�•-¢3F•�•?:..}Z..;.i±•.�e�•it;i•.�--•f•.f:..;i ##..p..',F. •�:�f•�r•�••'; �'' �fi•�•#��••1±•=i.•#X'. �=o-:�..#_.�..y..,�:c.tE `�•if••34•:�C••it••}(.�i••}F �r •3f'y±# t:.�F `�•.j�•.x •ri••k � � i["L 7 #:'/.:e . . . r.i-!A NEL_ 7NPUT IN!=DRM :TI:.fiN- . ----------------------------------------------------------------------------- C,-iAl-Ii`.'•E.L Z H`_ R I ZONT AL f VER r I CAL. • EASE W 7 )TH (:='EE") -• :6.00 1: :!!' ..•• PNT CHAWNE:i_. :y-±_Ll.RE i F=F-c_•Tf EXT - . i.}2••`j(;,0. !°1 N IN _ :u'-• _, F7f`.'IC1 100 FACTOR T•O. ...: .. . NDEMAL—DEPTq FLOW •vi' .R, .....rr .L7% M,jr`i±:rMO DE FT± -i : F+'_f: T ) c.. i i : 36 -Los -._fir"--W;P-'H(FE T, -- J6.00 KEW AEEA'S2UQF7 '=j GO i A?':PAUL .0 DL:PTH'.F EF_:-.) - B.: S FLOW AVERAGE t Or - &- E =7 iUN I FOP M r=F:OUDE NUMBER -- 2. PP'i AVER VELOCITY HERD (F•E CT ) _ 20.70? •=EEC 7�'. _C t F 17 Er.NEr-(B Y ' F E F-_ T —• 2903!Z1 CRIT r_: s _ !-.. , I Ci=;:. -I EF'T-i FuDW t'�F: F;:1~i:�� i .� Ot'a ; ---------------------------------------------------------------------------- CR I T I CAL FLOW TOP—WIDTH(FEET) = 16.00 CRITICAL_ FLOW AREA (S` DARE FEET) = 228.49, CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 14.R8 CRITICAL FLOW AVERAGE VELOCITY ( FEET, SE: C .) = 21.4.5 CFj I T 1 CAU DEPTH(FEET) = 14.28 CRITICAL FLOW PRESSURE -±- MOMENTUM(POUNDS) = 305440.60 AVERAGED CRITICAL_ FLOW VELOCITY HEAD(FEET) = 7.142 CF' I T I C AL. FLOW SPECIFIC ENERGY(FEET) = 21.422 ?:c:t � kF S'3t3t #iFk3ck##d�a#•"ri{# DESCRIOTJON OF S UDY .%i•.7FyF3Erx x?C'k 3E 3'i g.•##••k:k?�?F#�# RECTANGULAR CONCRETE CHANNEL c } P=16 00 rfe - li=0.013 is 6 ft WIDE 12 ft DEEP .}; . �..� ;:..}F •�: 3. � -�- ii• :K .� ii• X •� •'q• a( #'�.'.+s• :# •iE• jr• •?r i= •iE• •}l- •3F' •�• •{. # r.:..};- •X: •}�• :�• •�• •�- fit• •z.` -� # •#- i;. � K: iE •}f..�..� .}..�c.t.r .� :¢ #� .jt. •j4• •Y.• .}t. i• •}c •� .}:. •� �5 •�: #..:� .}d..nc..�..nc .}E• •�• •�'• •� •�- �'- •k �%- •+^• #'• �''JF �' ,x. •?E � �• -�•.ti, i4• # -)<• tiF •?F •Y •3!• 3f• •i► t: •9• •�• •1E• •if• ?...*..t(• dF ?� ;r.- •Yr x. s;..�E #•;:. •X #: •lF' ?f• •iF •3s ?4..y�..�. x;. ;x .}a..� �..�..y_ �• •?i• 3f' •3% 3?' ii• i�-•34• •}i •Y• #� �t 1? X . >CHA'aNFL 7. NP► 7 I NFORMAT I Cin; • e --------•,.�±-;r-,�,�h�F!._ <<H±-+���"�±7tJ'1"r�•±L-/vER-I-ICr'�^i_)_.-__._-----_.._.,Y�......_..--'--•--_ ._---__.-----'•----------•-----...•_--__-.�G L|��| Lfl!��IvwLL &NIFORM FLOW(CFS) = &900.00 ! MANIHINGS FRICTION FACTOR = .013� NOPh4.-DEPTH FLOW INFORMATION: -----'''--------------------------------'----------------------------------- //>`` NORMAL DEPTH(FEET) = 7.52 FLOW TEF-WIETH(FEET) = 16.00 F)Ok AREA(SQUARE FEET) = 120.39 H»DRAUiTC DEPTY/FEET` = 7,52 FLOP AVERAGE VELO[ITY(FEET/SEC.) = 40.7''l UNIFORM FROUDE NUMBER = 2.615 PRESSURE + MOMENTUM(POUNDS) = 414740.80 AVERAGED VELOCITY HEAD(FEET) = 25.722 SPECIFIC ENERGY(FEET) = 33.247 CRITICAL -DEPTH FLOW INFORMATION: --------------------------------------------------------------------'---- - CPI"ICAL FLOW TOP-WIDTH(FEET) = 16.00 CRITICAL FLOW AREA(SQUARE FEET) = 228.48 CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 14.28 CRTTICAL FLOW AVERASE VELOCITY(FEET/SEC.) = 21.45 CWITICAL DEPTH/FEET` = 14.28 CpITTCAL FLOW PRESSURE + MOMENTUM(POUNDS) = 3054Y9,K� 4X -AGED CPITTC4L FLOW VELOC70 HEAD(FEET) = 7.142 [RrTICA� VLOW 5PECTFIC ENERGY/FEET) = 21.42E, D=RIPTIgN Or S-UDY � FEE ANPILAP CONCR07F CHANNEL « ' ?=qlo0 cis. `=C.(>0- -3;_ * )� 't Nine, 11 pt DEEP * '----------'------------- ------------------------------''-----'- 0HINKE. 0H3FITONTAL/VERTICAL4 ' - --' FCFEKJDTQ'FFqT = 15,0'' C51%,9-AN7 CHANNEL fLr\PF(FEF�/FEE7` = .036RO0 wN:FTRM c'Oh(EF S) = 4900.00 MA*NINES FRICTION FACTOR = .0150 P3PM4n-CEPTH FLOW INFORMATION: >>>)� NORMAL DEPTH(FEET) = 7.22 FLOW TOP-WIDTH(FEET) = 15.00 FLOW AREA(SQUARE FEET) = 108.23 HY[>RAULTC DEPTH(FEET) = 7.22 FiOW AVERAGE VELOCITY(FEET/SEO) = 45.27 UNIFORM FROUDE NUMBER = 2.970 PRESSURE + MOMENTUM(POUNDS) = /+54261.50 AVERAGED VELOCITY HEAD(FEET) = 31.827 SPEC7FIC ENERQY(FEET) = 39.042 ============================================================================ CRITTCAL-DEPTH FLOW INFORMATION: CR177CA/- F!-Ok "OP-WIDTH(FEET) = 15.00 CRIlICAL FLOW AREA(S[Uh4RE FEET) = 223.64 CRITICAL FLOk HYDRAULIC DEPTH(FEET) = 14.91 [P7TlCAL FLOW AJERAGE VELOCITY(FEET/SEC.) = 21'01 CRTTlCAL DEplH(FEET) = 14.91 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 31208P'70 AVFRAGET CRITICAL FLOW VELOCITY HEAD(FEFT) CRITICAL FLOW SFFCIFJC ENER5Y(FEET` = 2P.36� /7 i . >:.:_ • ..�;. of .1 .:x:. is x . x .. - . _ .. .�� -d ..# .••�,-a:#-#-xx•�••}c•#�i•-�##D E z C Rr` T J, OFSTUDY ii tc.p_ •..H..>: .::t, .fir. � .}_ x.. :.5 #=#•�•l� -:��= -� � :•k.f. - , %.`ECT, r": w _;UI_.AF: CONCRETE CHANNEL "E ft WIDE, 11 ft DEEP }: r �, .y' .�.}; ;:.w .y :. � :;.:�.k.:F..w:.y_a�.� ye.k #:T•;� #K-#•#•4..y}.�.�..�:..u.�.v.c..�.:,::q•.};.�:•.y.•k:•:�:••#•}: -••� #�_•Y•.f-•?�•<: •� •�. •sF•� •3 •'X. •k :�.�..;� z, x.k:. �_.y.#. .:;_:�; •e 3 '� f •74• .Y .tit �: %..�' # i� i.: # •� •§: r:.� � •# '11• # # i%• 9f• •:? it• •�• # y. ?=• •#.• # �•= # •# •:#•+r •Y k # -`�. 34• #• # 3i•+. # # # # :: *t •+• # r .3,. ,;._ -?� •',* � -$. i #. �..a..:::z. � : � _ ,. �. � ., :• CHAPlt:l)=L. INPUT TNFCIF;MATION<<. -------------------------------------------------------------------- i;Hr~:NN =' Zf HOR I ZONTAL V FTI is : _ .0c.. BASEWIDTH(FEET) = 15.00 CONSTANT CHANNEL SLOPE ( FEET: FEET) = . 036E OC! UNIFORM FLOW(CFS) = 4900.00 MANN I NRS FRICTION FACTOR = .0130 NORMAL -DEPTH FLOW INFORMATION: >>>>N . NORMAL DEPTH(FEET) = 6.49 LOW TOP-WIDTH(FEET) = 15.00 FLOW AREA ( SQUARE FEET) = 97.30 HYDRAULIC DEPTH (FEET) = 6.49 TL...OL• (•fit•?ERAGE VEL_OC .'f tF (FE ETi SEC .) 50.0l., PREUSURE + MOMENTUM(POUNDS) 497875,00 r ATR GEI-y VELOCITY ail- AD I E.: c: F T) - 39,20-:1. _'. F r i_ P T l'- :I C E i'+i i=. F".' C Y (F :-. F- i ) 45.86: I -,k I.CAL FLOW OW Ti'OP—WI DT•1-I(F=F-FwT 15.0w:) E R T T• Cf :l_ FLAW f= PEA ! Su'i_'.ARF Fr:.F`_7) 223.6,4 CFITICK F :.. ("7 is Li . _ r .. ;J L.. C: F P T ! -, : F E I": t 14.91 C % T I i- F'•, _ "LOW At, E •:A1'.E V0LOC i T 'Y (FEE T SE C . _... L: i . P J. r_•: r, . E= A:FD PPITICK FLOW VELOCITY I- E A : ( = E E T) •, ,. �f _ _' I T .T _ AL FLOW SPEC I F T C ENFRB V (F-•EET S .._. 22.3614 i; t..s: .ec .�y. ..}_.1_. .�_.k..s.#.3-.a-##•�.fi $: �'-+ •?E'!i-#•'.• DE:C TFT ! O OF STUDY .j6..w •�: �: #•.4c •�-.T-...##.�;:.� X...�c 1K. .�.y�.:�: :.�.�;,�},#.i: . CnNrRFTE CHANNEL.. 17 ft WIDE, 12. ft DEE`' y .�..:�..fi.•�••�-•!-�,'-:r•??••�;•:i;.#•.jt.•,^•y;#ir-k-#•A•#•►;••'_.u.##.w_###:•k#•�tiE#:#_#••p-•'<-:►'E•it•)F.R..f.ti4.:c•##�7!#•}••#:#•�••'sER#3F•�:Y-#-�•-�*3. �:#'t=� 9•� �=# •'s' iF •f # # 3S• •iF iE at• # # •3E # •3(• ds• tiK• ii- •)4• # # # �E• -YF # •�• # # •ii• # # i(• i4• •?< 9F # •?�• # #: # •?F,F •)4• # # # # •ff iE• ri ?E• # # •i[•'1F 44• •{ �•#� •l6- # •# #• #?� ti� # •�.- •# �- # -?# :_ =. � .•: CHANNEL._ INPUT INFORMATION <:. <; CHANNEL_ (HOR I ZONTAL i VERT I GAL x .00 BASEW I DTH ( FEET) = 17.00 CONSTANT CHANNEL SLOPE(FEET/FEET) = .036800 UNIFORM FLOW(CFS) = 7200.00 MANN I NGS FRICTION FACTOR = .0150 sNlORMA,i._--l'jEPTH FLOW INFORMATION: %!%:V NOPMAI._ D(= PvH (FE='ET ) - 8.41? FLOW TOP-WIDTH(FEET) = 17.1':1_) FLOW AREA (SQUPRE FEET) = 144.37, HYDRAULIC =)E PTH' FEET) - 8.49 FLOG' AVERAGE ` ELOC:ITY(FEET/SEC.)4` ,8:' LN I4- ORM FROUDE NUMBER R = 2.015 RESE:URF + MOMENTUM(POUNDS) -- 734025.20 AVE. {_:;f,E D VELOC : TY HE aD r FEET : 39.611. FA: ----------------------------------------- - ----- CRITICAL-DEPTH ---CRlTICAL-DEPTH FLOW INFORMATION: ____________________________________________________________________________ CRlTICAL FLOW TOP-WIDTH(FEET! = 17.00 CFIrICAL FLOW AREA(SQUARE FEET) = 301.37 CFITICAi FLOP HYDRAULIC DEPTH(FEET) = 17.73 CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 23.89 CRrTIC4L DEPTH(FEET) = 17.73 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 500033.30 AVEPAGEI' CRITICAL FLOW VELOCITY HEAD(FEFT/ = 8.863 &R:TICAL FLOW SPECIFIC ENERGY(FEET) = 26,591 ************************** DESCRIPTION OF STUDY * RECTANGULAR CONCRETE CHANNEL * * C=7200 cfs, n=0.013 * * 17 ft WIDE, 12.5 ft DEEP � *****+*************************************************************v*^***~ CYrTICA' FLOW TOP-WIDTH(FEET) = 17.00 CRITICAL PLOW AREA(SPU4RE FEET) = 301.37 CRITICaL FLOW HYDRAULIC DEPTH(FEET> = 17.73 CPITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 23.89 CRITICAL DEPTH(FEET) = 17.73 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 500033.30 AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 8.863 CRIT]CAL FLOW SPECIFIC ENERGYfFEET> = 26.591 ************************** DESCRIPTION OF STUDY * RECTANGULAR CONCRETE CHANNEL * * 0=6700 cfs' n=0.015 * � 16 ft WIDE, 12.5 ft DEEP * /4il/CHANNEL INPUT INFORMATION<<<< ------'-------------------------------------------------------------------- [HANNEL Z(HORTZOwTAL/VERT]CAL) = .00 BASEWJDTU(FEE'` = 16.00 C0NSEANT CHANNEL GLOpE(FEET/FEET) = .036800 �^� U�|IFCRK FLOW(CFS) = 6700.00 ' ^ �/>>CHANNEL INPUT INFORMATION<<<< 2�44)NNEi Z(HORTZONTAL/VERTICAL) = .0{. BASEWIPTH(rEET) = 17.00 CUP'STAwT CHANNEL SLOPE(FEET/FEET) = .036800 JWTF[)NM FLOW/CFS/ = 7200.()0 MANKINTS FRI77ION FACTOP = .0101. FiOW ]NFOFMA-I00- VORMAL DEPTP(FEET) cLEW TDF'-WIPTH/FEET) = 17,0.7) F!OW ARFI(SQL!ARE FEEr) = 129.80 H?DRAU11C D[PTH(FTFT) = 7.64 FLOW A\`ERAEE «ELgCIr"/NEEr/SF[.) = 55.47 Iiw7FOry r9OUDE NUHBEp = 3,5?9 '9/ESSWF + MOMEN71!H(PDUNrE` = 204898.6// 4k'ERAG[D VE-OPITY HEAD(FEET) = 4".7[,0 SpECXIQ ENERSY(FEET) = 55.41� CRITICAL -DEPTH FLOW INFORMATION: ____________________________________________________________________________ CYrTICA' FLOW TOP-WIDTH(FEET) = 17.00 CRITICAL PLOW AREA(SPU4RE FEET) = 301.37 CRITICaL FLOW HYDRAULIC DEPTH(FEET> = 17.73 CPITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 23.89 CRITICAL DEPTH(FEET) = 17.73 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 500033.30 AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 8.863 CRIT]CAL FLOW SPECIFIC ENERGYfFEET> = 26.591 ************************** DESCRIPTION OF STUDY * RECTANGULAR CONCRETE CHANNEL * * 0=6700 cfs' n=0.015 * � 16 ft WIDE, 12.5 ft DEEP * /4il/CHANNEL INPUT INFORMATION<<<< ------'-------------------------------------------------------------------- [HANNEL Z(HORTZOwTAL/VERT]CAL) = .00 BASEWJDTU(FEE'` = 16.00 C0NSEANT CHANNEL GLOpE(FEET/FEET) = .036800 �^� U�|IFCRK FLOW(CFS) = 6700.00 ' ^ NERMAL.-DEPTHI FLOW INFORMATION: ,)>>� NORMAL DEPTH(FEET) = 8.55 FLOW TOP-WIDTH(FEET) = 16.00 FLOW AREA(SQUARE FEET) = 136.87 HYDRAULIC DEPTH(FEET) = 8.55 FLOW AVERAGE VELOCITY(FEET/SEC'> = 48.95 UNIFORM FROUDE NUMBER = 2.949 PRESSURE + MOMENTUM(POUNDS) = 672104.40 /'VERA8ED VELOCITY HEAD(FEET) = 37.2n8 SPECIFIC ENERGY(FEET) = 45.763 CRITICAL -DEPTH FLOW INFORMATION: CRITICAL FLOW FLOW T3P-WIDTH(FEET) = 16.00 CRITICAL FLOW AREA(SQUARE FEET) = 281.51 CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 17.59 CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 23.80 CRITICAL DEPTH(FEET) = 17.59 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 463551.90 AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 8'796 C9I7ICAL FLOP SPECIFIC ENERGY(FEET) = 26.390 YESCRIPTION OF SrUDY * RECTANGULAR CONCRETE CHANNEL * + D=6700 cfs' r-0'013 � * 16 pt WIDE, 1R.5 ft DEEP * ZO �CHAN^/EL INPL/T TNFORMATION'(/! CHANy«Ei Z`HOK]ZOUTAL/VEPTICAL` = .00 Bf5FW!D7H(FEET) - 16.00 CONSTANT CHANNEL SLOPE(FEET/FEET` = .036800 L]NIrORM FLOW(CFS) = w700.00 MANNlNG5 FFICTION FACTOR = .033) ============================================================================ NCPMAL-DEPTH FLOW }NFOPMATIONi ---'---'-------------------------------------------------------------------- .`>K NORMAL DEPTH(FEET) = 7.6B FLOW TOP-WIDTH(FEET/ = 16.00 FLOW AREA(SQUARE FEET) = 122.89 HYDRAULIC DEPTH(FEET) = 7.68 FLOW AVERAGE VELOCITY(FEET/SEC.) = 54.52 UNIFORM FROUDE NUMBER = 3.467 PRESSURE + MOMENTUM(POUNDS) = 737309.60 AVERAGED VELOCITY HEAD(FEET) 46.153 SPECIFIC ENERGY(FEET) = 53.834 CRITICAL -DEPTH FLOW INFORMATION- ________________________________________________________________________ CRITICAL FLOW TOP-WIDTH(FEET) = 16.00 CRITICAL FLOW AREA(SQUARE FEET! = 281.51 CrITICAL FLOW HYDRAULIC DEPTH(FEET) = 17.59 CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 23.00 CRITICAL DEPTH/FEET) = 17.59 CRITlCAL FLOW PRESSURE + MOMENTUM(POUNDS) = 463551.93 AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 8.796 CRITICAL FLOW SPECIFIC ENERGv(FEET) = 26.300 20 DESCRIPTION OF 9TUDY * 1� �t WIDE, 12 ft DEEP . * ` >"CHANNB- INPUT INFORMATION<<<< ____________________________________________________________________________ CHANNE�_ Z(HORIZON7AL/VERT3CAL) = .00 BA5EWIDTH(FEET) = 16.00 CONSTANT CHANNEn SLOPE(FEET/FEET) = .036800 UNIFORM FLOW(CFS) = 5900.5(_. MANNINGS FRICTION FACTOR = .0150 ============================================================================ NORMAL—DEPTH FLOW INFORMATION: 14>>> NORMAL DEPTH(FEET) = 7.77 FLOW TOP—WIDTH(FEET) = 16.00 FLOW AREA(SQUARE FEET) = 124.36 HYDRAULIC DEPTH(FEET) = 7.77 FLOW AVERAGE VELOCITY(FEET/SEC.) = 47.44 UNIFORM FROUDE NUMBER = 2.Y99 PRESSURE + MOMENTUM(POUNDS) = 572601.30 AVFFAGED VELOCI7Y HEAD(FEET) = 34.951 SPECIFIC ENERGY(FEET> = 4E'.724 LP7TlCAL—DEPTH F—OW INFORMATION: -'------' ------------------------------------------------------------------ CrlrTCAL FLD|: TOP'k7D`H(0EET) = 16.0C [A]71CAL FLOW AREA(Spi'ARE P[ET) = 253.62 C l?.CAi FLOW HVDRAULIC DEPTH(FEET) = CF171CAL FL[U AVEPAG£ YELOQlTY(F[E!/SE{ .) = 22.Q1 [P1lICA.- [`EPTH(FE[T) = Q.14 [QIT`[P'- '-LON rRE55URE + MOMENTUM(POUNDS) A`/HRPDED CRT!!CAL FLOW dEwO[]lv HEAD(FEET) = CP!TICAL FLOW SPECIFIC ENEPGY'F[ET) = 24 245 DESCRIPTION OF STUDY * RE[TkNGULAR CONCRETE CHANNEL + « E=5000 cfs, n=0.013 v � :1 ft WIDE, 12 ft DEEP * l/?!WHANNEL INPUT INFORMATI]N'<x ________________________________________________________________________ ___ CHANNEL Z(HORIZONTAL/VERTICAL) = .00 BASEWIDTH(FEET) = 16.00 CONSTANT CHANNEL SLOPE(FEET/FEET) = .036800 UNIFORM FLOW(CFS) = 5900.90 MANNlNGS FRICTION FACTOR = .0130 NORMAL—DEPTH FLOW INFORMATION: >>>!; NORMAL DEPTH(FEET) = 6.99 FLOW TOP—WIDTH(FEET) = 16.00 FLOW APEA(SQUARE FEET) = 111.85 HYDRAULIC DEPTHIFEET) = 6.99 FLOW AVERAGE VELOCITY(FEET/SEC.) = 52.75 UNIFORM FROUDE NUMBER = 3.516 PRESSJRE v MOMENTUM(POUNDS) = 627520.90 AVERAGED VELOCITY HEAD(FEET) = 43.209 SPECIFIC ENERGY(FEET) = 50.199 &FlT][AL—DEPTH FLOW INFORMATION: ...r•a r i'•.:"r._. t ...Wr r4.' —4L Ir. tr t_t._ CRITICAL FLOW AREA ; OUARE FEF.._.) 258.6-:' CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 16.16 CRITICAL FLC'W AVERAGE VELOCITY (FEFT /SE:`C F) = 2? . 81 CRITICAL DEPTH(FEET) = 16.16 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 3 1 ChS n X) AVERA3ED CRITICAL FLOW VELOCITY HEAL' (FE=ET) _ 8.092 CR i T I CAS_ FLOW SPECIFIC ENERGY(FEET) = 24.245 DESCRIPTION VF STUDY RECTANGULAR CONCRETE CHANNEL Q=5900 cfa. n=0.015 * 15 ft WIDE, 11.5 t DEEP a��•��•��••�'•gar•�•it•�e'•�••�•�•�•x-•�:•���: �•;+c'ai':�•?s••�•��•�•;E••�-•�-�•�•� �'•�•a�•?�'�r-•r��•-�•�•�'a�•�•�••�•x••�•��a� •��••��-a�'•�•x-�'•�e �-�r�--�-��L�-.x..� •;r���x-x- �•'�' � 9�'%-/."-){".�.' :S' � Tf' � -!C _/".�• "lC T � T(7C T. "� T T. T.' �'T :4"T. T.• �T 7f' F.' 7C :T -!1 "lC �' 7C" �'.S'i"iC :s h• � Y.' T T. �. Z"�' �'S' -/c' 7C Tf T. T. "F .•�.. i?' 'Yi /.'-'i-'�f• ti:•.{,• •}f..X. y . f •.�', •}� i > CHANNEL INPUT INFORMATION <: <<:: <:: --------------------------------------------------------------------------- CHANNEL. l (HC R I ZONTAL.! VERT I CAL) = .00 0 $ASEW I DTH ( FEET) = 15.00 CONSTANT CHANNEL_ S!._OPE ( FEET /FEET) 0 = .053600 UNIFORM FLOI t a S 5900 .00 MPNN I NGE• FRICTION FACTOR - .0150 W?" F FAI._-O r=TH FLOW !NFCtF•I'`?TION: ----------------------------------------------------------------------------- FLOW A,F cCtt P . Inp.00 PLOW ^. – 1Ct VEO iTY (PE;T/ S((n) 54.63 PRESSURE URE -f :'?OMEr. -.0 7 (!='OUN!_ S) .._ 64A851.90 r F`'-" t .. i:'A_. 9E F T E. r -',_OW IN =ORMA•l'1(: N: ---------------------------------------------------------------------------- C... I cAI_. FLOW A.. AS. ;r-,._. FFA.: 252.11 R T! ?'::AL FLOW HYDRAULIC C DE PTH(FEET) _ 16.87 CRTAICAL FLOW AVERAGE :i E _ E E= T ; ,s E:: C ., 23.R! CRITICAL FLOW PRESSURE + MOMENTUM (POUND3) = 259770:6-c) AVERAGED 39=i, 7 ?n6- AVERAGE_'D CRITICAL FLOW VELOCITY HEAD(FEET) = 8.437 CRITICAL FLOW SPECIFIC ENERGY(FEET) = 25.31.1 DESCRIPTION OF STUDY * RECTANGULAR CONCRETE CHANNEL # -x• 0=5900 cfs .: n=0.013 15 ft WIDE, 11.5 ft DEEF' •k t •if.:r J6• ;�- •;: • •iG •:` '!{• f- •t4 14' •?� iF �. •jL•'%: �' •3I•'�• •?{. -k- •s�.':'.c -�"?4' jf• •iE 'iC �' i' •?4"�{• i%..�. _�. �,c..� �. .c:.t .�{ .�.:�..*. y; �..� � # •1E .�. •K•'f.• •f: Jk'i? ?!. •?' .fF .C- '-•% �'.3F. •fir• jf•'�t..?( :�..�. � � .x .y.. •. . : `'t_HA4NEL INPUT INFORMATION'=: << ----------------------------------------------------------------------------- CH f` NE[_ (HORIZONTAL /VERTIC>rL) - .00 EASEWIDTH(FEET) = 15.00 CONSTANT CHANNEL SLOPE ( FEET/FE•ET) - .053600 UN 2 F ORM F= LOW f CFS) = 5900.00 MANNING: S F=RICTION FACTOR - . f'. 1 3c, 27 - NORMAL -DEPTH ZNORMAL-..Z,_-..,TH F.L_OW Ifi'f-C2F'MATI CN - ' - -- - CRITICAL DEPTH(FEET) = CRITICAL FLOW PRESSURE PVERA9ED CRITICAL FLOW CRITICAL FLOW SPECIFIC 17.28 + MOMENTUM(POUNDS) VELOCITY HEAD(FEET) ENERGY(FEET) = = 25.924 363433.80 8.642 DESCRIPTION OF STUDY ***********************+** * RErTAIGULAR CONCRETE CHANNEL * * 0=5100 cfsr n=0.013 * + 13 ft WIDE. I1 ft DEEP * **************************************************************************** >>>>CHANNEL INPUT INFORMATION<<<< CHANNEL Z(HORIZONTAL/VERTICAL) BASEWIDTH(FEET) = 13.00 CONSTANY CHANNEL SLOPE(FEET/FEET3 = .085600 UNIFORM FLOW(CFS) = 5300.00 MANNINGS FRICTION FACTOR = .0130 ============================================================================ NORMAL -DEPTH FLOW XFORMATION: ____________________________________________________________________________ Pt�>> NORPA| D[PTH'FEET` = 5.78 FL[W TUF-OIDTH(FEET) = 13.10 FLOW AR[4(SPUARE FEET) = 75.16 HvnpxULI& DEPTH(VERT) = 5.7[ PLO, AyERPFF VELO[ITY'FEET/S[C. = TC.52 D1170nM "%C?F NI/MBEP = T.1v9 FFES7iRL + mOMENQ=PO]NDT= 02786V.5' PVERPOED yEkO[ITY HFAD&EET> = 7Q.?23 7»ECIFI[ ENFRGY'FEFT) nw!T]CAL-VFFTH FLOV TNFORMATTDK: ____________________________________________________________________________ Cn|Tl[A F -OW T[f-HlPTH(FEFT) = CFTTlrA' FLOW AREA/97UAPF FEET) CFiZTICAL FLOW H»DR2ULTC DEPTH/FEET) = 17.2B [*77ICAL FLRW AVFRA5E VB-OCJTY(FEET/SEC I = 23.59 [PIT:CA. DEPTH(FEET) = 17.28 CRITICAL FLCW PRESSURE + MOMENTUM(POUNDS) = 3,3423.8� AVFRASED CRITICAL FLOW VELOCITV HEAD(FEET) = Em42 CRITICAL FLOW SPECIFIC ENERGY(FEET) = 2E.924 DESCRIPTION OF STUDY * RECTANGULAR CONCRETE CHANNEL * * 0=4000 cfs^ n=0.015 * * 12 ft WIDE, 10 ft DEEP � * >>>>CHANNEL INPUT INFORMATION<<<< ____________________________________________________________________________ CHANNEL 2'(HO9IZONTAL/VERTICAL) BASEWIDTH(FEET) = 12.00 CONSTAN7 CHANNEL SLOpE<FEET/FEET/ = .085600 UN!IFORM FL,-.-,W(CFS) = 4000.00 MANNINC3 FRICTION FACTOR = .0150 ============================================================================ NORMAL -DEPTH FLOW IN=ORMATION: _________________________________________________________________________ __ N8KMAL PEPTH(FEET) = 5.Ki- FiOW TrP-W`DTH'FEET> = 12.00 FiOW AVERAGE VELOCITY<FEET/SE[.) = 59.06. UNIFORM FRDUDE NUMBER = 4.381 PRFSSURE + MOMENTUM(POUNDS) = 469743.3n AVERAGED VELOCITY HEAD(FEET) = 59.165 SPECTFIC ENEPGY(FEET) = 59.809 CRITICAL-DFPTH FLOw INFORMATION: ____________________________________________________________________________ CRITICAL FLOW TOP-WIDTH(FEET) = 12.00 CRITICAL F/ -OW ARFA(SQUARF FEET) = 18105 CR7TICA! FLOW HYDRAULIC DEPTH(FEET) = 15.11 CPITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 22.06 CRITICAL DEPTH(FEET) = 15.11 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 256482,80 AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 7.555 CRITICAL FLOW SPECIFIC ENERGY(FEET) = 22.667 DESCRIPTION OF STUDY * RECTANGULAR CONCRETE CHANNEL * » 0=4000 cfs, n=0.013 * * 12 ft WIDE, 10 ft DEEP * CRITICAL FLOW TOP-WIDTH(FEET) = 12.00 CRITICAL FLOW AREA(SQUARE FEET) = 181.35 CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 15.11 CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 22.06 CRITICAL DEPTH(FEET) = 15.11 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 256482.80 AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 7.555 CRITICAL FLOW SPECIFIC ENERGY(FEET) = 22.667 ************************** DESCR7PTION OF STUDY * RECTANGULAR CONCRETE CHANNEL * * 0=4000 cfs. n=0.015 � * 12 ft WIDE, 10.5 ft DEEP * 2^� '%%>CHANNEL INPUT INFORMATION"!".,.: --'----------------------'------------------------------'--------- C1ANNEL 0H]PIZONTAL/VEprlCAi') = — ---- ,00 0A8EjInTQ'FEET` = 12.00 [ONSTPNY CHNN0 SLOPEcFEET/FEET = ,085600 UNIFOPV FLOW/[FS! = h000.00 M4NNINGS FRICTION FACTOP = .013,:: NCFMAL-DEPTH &LOW iNFOP>'AT-0% 0>�j NOPMAL NOPMAi DEFT`f`FEET, = 5.0 -c -- FLOW TOP-WIDTH(FEET) = 12.0D FLOW AREA(SQUARE FEET) = 60.91 HYDRAULIC DEPTH(FEET/ = 5.08 FuOW AVERAGE VFLOCTTY(FEET/SEC.) = 65.68 UNIFORM FRnUDE NUMBER = 5.137 PRESSJRE + MOMENTUM(POUNDS" = 518732.20 AVERAGED VELOCITY HEAD(FEET) = 66.976 SPECIFIC ENERGY(FEET) = 72.052 ============================================================================ CRITICAL -DEPTH FLOW INFORMATION: CRITICAL FLOW TOP-WIDTH(FEET) = 12.00 CRITICAL FLOW AREA(SQUARE FEET) = 181.35 CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 15.11 CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 22.06 CRITICAL DEPTH(FEET) = 15.11 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 256482.80 AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 7.555 CRITICAL FLOW SPECIFIC ENERGY(FEET) = 22.667 ************************** DESCR7PTION OF STUDY * RECTANGULAR CONCRETE CHANNEL * * 0=4000 cfs. n=0.015 � * 12 ft WIDE, 10.5 ft DEEP * 2^� _ CF'VTCAL FLOW SPECIFIC ENER8Y'FEEI) = 22.bK, � DESCRIPTION OF STUDY � ^ RECTANGULAR CONCRETE CHANNEL * � + Q=4000 cfs' n=0.025 * * 11 it WIDE, 10.5 ft DEEP � >>>>CHANNEL INPUT INFORMATION<<<( l_________________________-___________________________-____-_------_--------- / � CHANNEL Z(HORIZONTAL/VERTICAL) = .00 BASEWIDTH(FEET) = 11.00 CONSTANT CHANNEL SLOPE<FEET/FEET> = .094500 / UNIFORM FLOW(CFS) = 4000.00 ' MANNINGS FRICTION FACTOR = .0150 � NORMA!_. -DEPTH FLOW INFORMATION: - _-_______________________-_______________________________________ >>>>> NORMAL DEPTH(FEET) = 5.93 / FLOW TOP-WIDTH(FEET) = 11.00 \ FLOW AREA(9]U4RE FEET5 = 65.27 HYDPA]LJC DEPTH(FEET) = 5.93 F| OW AQTRPGE VFLO=Y'FEET/SEC.) = 61.29 ' |NTFO�� FROUDE NUMBER = 4 433 ) ` . pRESS\F[ q MOMENIUM(POUNOS/ = 4R7119.90 AYERPGED yFLOClT\ HEAD(FEET) = 52.316 [PlTJCAL DEPTH FLUJ TNPORMATlDN: '- -------'-------------------------------------------------------'-'-----' | CnjTJCAL PLnW TOP-WIDTf>(FEE`) CRITITPh rLJW 4R[A'9QUPP& =EET) = 176.15 VNR]Tl[�A' FLn� H!DP4LLJ[ PEpTH'FErT` = 16 01 | - � ^ ( CRITYCAL FLOW AVERAGE VELOCITY(FEET/PEC.) = 22.71 ' CPTT!CAL DEPTu/FFET) = 16.01 CR:TICAE FLAW PRES9URF + MOMENTUM/POUNDS) = P64030.70 ' | -^»FR4GTr CRITICAK FLOW VELOCITY HEAD(FEET) P^007 / ORIT}CK FLOW SPECIFIC E*EREv(FFET) = 24.0p1 DE5CRIPTI01 OP STUDY / * RECTANGULAR CONCPETE CHANNEL ' * * 0=400() cfs, n=0.013 * | i * 11 ft WIDE, 10.5 ft DEEP * � >>>>CHANNEL INPUT INFORMATION<<</ CHANNEL Z(HORIZONTAL/VERTICAL) / BASEWIDTH(FEET) = 11.00 CONSTANT CHANNEL SLOPE(FEET/FEET) = .094500 UNIFORM FLOW(CFS) = 4000.00 MANN1N8S FRICTION FACTOR = . \ 013O NOPMAL-DEPTH FLOW INFORMATION: NORMAL DEPTH(FEET) = 5.33 FLOW TOP-WIDTH(FEET) = 11'00 FLOW AREA(SQUARE FEET) = 58.0- | HYDRAULIC DEPTH(FEET) = 5,33 / ��� F19W AVERA3Z VELOCITY(FEET/SEC.) = 69.2e.- 21? ' 11651 Sterling Avenue Suite A PROJ ECT: ET/`1/•�NOfl C/1/�NNEL PROJECT NO: 2/ 0 �, //0 / Riverside CA 92503 WILLU MS (714) 354-0161 ILINDGREN : BYTr • DATE:FUSCOE DATE:,o3-89 K: CHECK DATE: WC7-A1VCULAR Cove. C%1A1VNE1- & SHORT Civil Engineers. • Land Igurveyors VEI_Oelrv . ¢0 FPS' SHEET / OF :Zq �.�w wyUD �.'�� 'D00oo�v ��+ o\cs H A N.y o i4.0.++off. *o+ ^' "°� +0+ ° +o+ hti� +o� +�+ O +o 1) +yam o O'sm + h -+�+ o o o D to if 11 DC D a o Ha o o° °O tv °o'J o 0 0 Pio o ho 00 o oowao�l0 V p Z < NI 0 0 0 o a 0 0 0 0 Il y o 0 0 0 0 o y y 0 o � 7% v) 70 kA to � 1 fi �1' � � �1 � � N y a � � 00 0 fro '� i coIt p l� o 90 o 10D °! q� ° o 0 0 _v O o 0 0 0;0 00 o Flo w L°v ow W C C ( ON O' ON 00 coON 00 co co 0\� � o `� h`v`1 ` x- fi o o o 0 0 0 0 0 O N tv N) N N c,,, �1 ) p o� o �.(ZZ h o oCID 7% c o o O 1 O O o o far Z a\ p�p pyo v `�1 y y y �� N N w ►�' N c� w G, w co w �� y I �\A nl w w w WF(wkl R'► V O o a p 0 o O O O � )p O D 'i I o !n D y D W ctl o �\ o, o` o 0 0 0 O C D A �? I�'tI_ O 0 0 0 o o o h U1 o h 0 0 v1 o Ul LI o U) U ,� Z o��o i�AONo a a a a y � '�° °�` V U 1 lv" _� ITI Rl :P vl � :Q � W � W w G► N o J °` `° t►� �t w o o u 11651 Sterling Avenue, Suite A PROJECT:ET/W.4NDA CfiANNE PROJECT NO: Zl o�* FUSCOE //0 / Riverside CA 90161 BY: E DATE: 1NILLIAMS (714) 354-0161 %- _ . DAT�' 26%8% CHECK: LINDGREN & SHORT Civil FAgineers • Land.Sarveynrs SHEET 3 OF 29 FR oM S rA . ss -f- 0 0 To 57-A. 66-f-00 0'0 7 o 8 I YMA,e TRy FOR !C= 0.00 Z, In. z 0.013 \/ = 3 9 , 0 Z—P;�e . L ESS TNA N 40 -P Ae,- , Mnx T/ly b : 23.5 0.002 0. 0/ 3 1 x= 39./7>�40005E Toh%A 4-0 50 USE b- 2 3.5- DN FoR K= 0,00-71 n = 0.0/S N F.= VMAx , 39.17 Z 99 D 32.2�S3z FROM PLATE ¢S — WIVI _ /• 0 S 0i2 8 ° � AX E. -,v eA1A"FWT DA = S.97A0,09 DA = 0, 47 FUSCOE 11651 Sterling Avenue, SuiteA PROJECT: ET/;,(/ANDA C11,4NNEcL PROJECT NO: 9/01�', /l0/ Riverside, CA 92503 BY DATE: CHECK: DATE: WILL (714) 354-0161 T T. �' Z 6- 8 9 LINDGREN & SHORT Civil Engineers • LandSurveyors SHEET ¢ OF 2 F/ZOM S7 -A . 67t SS TO 57-A, 7/t 98 Q = 15; 900 c.�s..1 S= 0 . D 3 68 , VmAx . = 4 o 4/sac . %fly b.= 4.6' FOR K. 0, 002, _ 0. 0/3 VMA x = 39,47 7'�X ysw . LESS T/1A�✓ TRy b= 4S1 FoA K= 0,002-, -?L= 0.013 V . = .39. 7 8 ��/ GLOSS To 40 1 ��sec So USE 6 = 45- / l b1V = 2.74 . FOR !C= 0,007 , 71 0.0 /5- 3. S3. o o V = 36.34 {��s-ef ., F,,i= 3.70 F= V,,cax _ 39,78 2 �74 FQ dM PLA TE 4s -- d- ld -7 //6 0 R /G/ A/R E,vr �A = 3,00 x 04 6 bg. 0.¢e, 2 OF ¢ 1 GTTWAN3A .:HMNEL 2 HYDRAULIC LrLi.. BY TONY ISLAM 3 CFEN rAAINEL 'VICTORIA TO MIN 5 1?53.061303.64 1 1313.9 S :915.:1 130+.26 2 .014 ?°,30.0 1:25.5 2 . X14 :91".0 1327.5 3 .015 456:.0 1366,5 3 .015 S 4660.0 1364.5 2 .014 1 4163.0 1359.5 2 .014 1000.0 52.12.0 1385.0 2 .014 4 2 1390.05 0 1 2 13.5 25.33 ? 2 9.0 23.5 3 1 9.0 25.5 0.0 1.5 4900.0 ` 3 T E S I. KOS 3ARY I = INVERT ELEVATION = CRITICAL DEPTH W = 4ATER SURFACE ELEVATION H = HEISHT OF CHANNEL E = ENERGY ERASE LINE = CURVES CROSSING OVER B = PRIME ENTRANCE OR EXIT Y = WALL ENTRANCE OR EXIT P. STA?IONS FOR POINTS AT A JUMP MAY NOT BE PLOTTED EXACTLY ETINANDA CHANNEL HYDRAULIC CAL C, BY TONY ISLAM OPEN CHANNEL VICTORIA TO BASIN 5 4 of f 1753,"b .I w CH E . .323.55 ,I W H C E r 19t4.13 2''?:, 42 21"b.b0 ??47.19 2317,78 I w H C E R c=$8.38 45$=47 c�24,5b • 2500.15 2670,74 2741.33 .32 I w H C E rt 29f3.110 I 4 HC E R ..'123.59 = 4. 2.7 315,64 . 2447,23 5 .23 35.3E.42 3659,11 2-1 EQ f 60 � t 3 i •':'ri . :,7n , '- V. 234.,37 ^li$r,.5 x223.73 • :.291.32 • 43c4,91 t4?°.5) �5+fib, 04 4576.68 I W H C E TX Kb4, . ' 47:7.$7 I WH C E 7X "788,46 I W H C E R 43`9,05 u'+29.54 , 5': "0.23 • 50".0.82 :303,64 1314.93 1325,?2 1337,51 .349.80 1360.09 137x1.33 1342.57 1393.97 .405,25 141 .55 11651 Sterling Avenue Suite A PROJECT:LET-E7t/v,¢ ellANNEL PROJECT NO: 2/06'. //a 1 FUSCOE Riverside CA 92503 BY: DATE: CHECK: DATE: WILLU MS (714) 354-0161 TS, 6' - �9 LINDGREN & SHORT Ciril F,ngineers • Gand Surveyors SHEET j OF 2 �KOAA, STA. 77+ 63 TO STA, 62+50 Q 7, 20o e.fs. S= 0,0318 VIAAx. = ¢0 . / . rey 6. 64" FoR k'_ 0.00 2 , 71 = 0.013 vMAX . - 40, p 2-#1, C' BEATER TNAn/ ¢o Pec, Tie)l b= 65 FOR K= 0,002 -n:-0,013 U,u,ax = ¢0. 58 � eZ-osE TO ¢O /•user So usE b = 6 S 1�N = 2.-73 FOR K=0.007, Z) = 2. q8" , V: 37./�ff,� - 3.79 N — VMAY _ ¢Q , ,� _ - 4.3 3 �D 3Z.2 X 2.73 FROM PLA TE ¢ s �"� _ /,M OK /� A/R F,✓TiPA/N�'1F,t/T L7q = 2.g9XL D,g _ 0-48 ay _ (� ) (00-5-S) 2K40 32.2icgoo o ,Aye 0.4z FVS�'O „' 11651 Sterling Avenue, Suite A PROJECT: E-T/K�,/it/OA C//ANNE PROJECT NO: Z/0 �. //0 / Riverside G9 92503 BY: CHECK: DATE: WILL (714) 354-0161 Tr. DATE: 6-z� y9 LINDGREN & SHORT Civil F,ngineerx • Land.Surveyora SHEET 6 OF 29 F90AA STA • 82+5-0 7o STA - q7-f-00- 7-x00Q= 0,=6,700 C15- , S'= 0.0.368 , VmAx r '�-o x'41 . TRy b= 6,5�' Fa,e k:e 0.00z, n,L 0.0i3 V,t,1 AX X. = 3 9.2 S p -/sec. L Ess Tl.1A nl 40 -Yf /spc %Ry b= 6S FOR /<.= 0,002, -A= 0.0J3 VMAX. = 39.48 P-A`ec CLDsE TO 40 PIAWQ So USE b = 6��' , `DK k= 0,00-7 �►=O'��s DAI = Z.8s , V.; 34'•%S7q1s�,, F= 3377 FFA �Ax _ 39 48 _ ¢,3 ,Ijx 32.2 x 2.61 Fig' o Ak PL ATE ¢S — G��/ = 1,14 D /�/p Ah2 F11rxPA1,1kr✓r d - DA = 2.957 x 044 �A FtJSCOE 11651 Sterling Avenue, Suite A PROJECT: ET/WAVDA ell,4MAIEL PROJECT NO: 2/0 6 Riverside, CA 92503 BY' DATE: CHECK: DATE: WILL (714) 354-0161 �_ 6 z�'2�9 LINDGREN & SHORT Civil F,ngineers • Land Surveyors SHEET % OF 2q SROM STA • 97t0 o To STA . /o7t00 a _ • ; ,?o0 S! 0.0368 i VMA) TAcee -rgy b:-- 676 ' FOR kz-, 0.0oz , 72.=0,0/3 yMAx • = 374 -OP -1 [,E55 rNAiv 90 -(4,1s-9C . Tgy b= �s� For, k= 01001-, -hZ- 0013 So 05E b= GS ' l DA/ = 2.4- 1 FoQ !< - o 007 n = 0.D15' DAl = Z•64 V= 34,4/ �f.�s�.� � = 3.73 F= �ZmAx. = 37,d2- 9 XD 32.2)< 2.4! FRoM PLA TE 4S 41�ld = /'/,� 0A /6/ Aiee ENreA DA = 2 •(4 x o-/bl Dq_ 0,¢z ay 13742-)Ll6s) ,32.zx8000 AY = 0.36 FUSCOE 11651 Sterling Avenue, Suite PROJECT:E'J'/(,y1dVDA e#4WcZ PROJECT NO: 210d,1101 Riverside, CA 92503 BY: DATE: CHECK DATE: WILLIAMS (714) 354-0161 T .� , 6'Z6'89 LINDGREN & SHORT Grit F,ngineers • Land Surveyors SHEET & OF 2,9 1 FR OAA, srA . /08* 45 7'0 STA. /25--f-00 Q - S, 900 C,fs. , S� o.os36 VinAX. = 40��/sem. TJ -y 6 = 76 FOR k =, 0.00 2 , - = 0.0/3 \111AAX. = 3 9, SG P Xr e LESS T#,gAl 40Phea . -my 6 = 75 � FOR k= 0.007-.) -,k= 0.013 Vivi Ax . _ `iO • D 8 {� •lSe- e L 0 SE TD 50 (JSE b = 7S" D V = FoR K. 0007, 0.0is N F V,AAy. _ 40.0 _ SOS 32.2x/-96 F,eOAA PLATE 46S — d�� = 1,20 JP, 2o,,% Aire AVrfA1WNCv I% = 2.14 )xO-2o bA = o.4'3 y _ /) 40.08) 275) 32.2x 8000 ay. o -f7 11651 Sterling Avenue, Suite A PROJECT: ET/`{ 4A/ FUSCOE Dq Cf>IANNEL PROJECT NO: 2-10b',1101 Riverside, CA 92503 BY:DATE: CHECKDATE: WILL (714) 354-0161 z 6 �9 LINDGREN & SHORT Cit -it F,nyineers • Land.4urveyors SHEET(? OF 29 FROM STA . /25--f-00 TO STA 5,300 e.f s. J S= 0.o5-3�, YMAx.= ¢° TRY 6 = 76' F,09 k.: -0.6'70Z..,# VMAx. = 3 8.2 1/#/ LESS rN/in/ ¢D j/ sae . i 7 -Ry b. 7s Fo1e /<. - 0,002-, -77= o•0/3 VMAx . _ 3 8.9 -7 P' . so USE 6= 7s , v,,, _ / 8¢ FoP- K= 0.007 , n = O.O!S 2.0 o � � V = 3 5.2- S���Se�. YMAK• _ .39,47 _ .500 )x i) 32,2)C 1,84- F90A& PIA -TE d-5- � � Z 1.2 0 o,e Zo °a Alf FlIrViNM, DA 2.ovx 0.20 DAA 0-4-0 FUSCOE 11651 Sterling Avenue, Suite PRO JECT:Ej/h/,4 /LJ C11441,,/EL PROJECT NO: 7-/0 e //o/ Riverside, CA 92503 BY DATE: CHECK DATE: WILL (714) 354-0161 T. S, r! Zf;-% LINDGREN & SHORT Cirit Engineers • Land.Surveyors SHEET/Q OF 29 FROM STA . 14 -'C -i-00 TO STA . /¢8-t 00 0= S, 300 C. S. S= 0.0856' > VIiUAX.= 1,00 fl'b:ec . 7'9y b - 74 FOP- �<J 0.0 0 z , -n= 0,013 V K,4X . _ ¢¢, S� ]Cf' ISec . 6R EA TEK 7-lAd 4o-0-& T,ey b = 7.5- F99 K = 0.0 02 , � = 0.013 \-/M,ax . = ¢4.37 tlSec , so usE 6 = 75- , DN = /•5-9 FOP- K= 0-007, -)'=:0,015- V= t=0.015- V= 40,67 l'l-hec.,) �XD - 2,2x I -S•9 FRoNI FI -ATE ¢S — 2�?l = /130 DA XO,3o DA-o.sz o R 307 Aik F,✓r. FUSCOE 11651 Sterling Avenue, SuiteA PROJECT: E'7-/I414NDA C11,4A1i✓EL PROJECT NO: 2/0(,, //0/ Riverside, CA 92503 BY: DATE: CHECK: DATE: WILL (7I4) 354-0161 LINDGREN & SHORT Civil f.ngineers • Land Surveyors SHEET // OF 2-9 FROAA 97-A. /¢8t20 TO sTA • /6'3t50 Q = `i, 000 e.f s. 7 S= o.08s6 , Vm", =. 40 P./sed . %ley ,6 = 76 ' FOP, 1<=,0.002- , -7... 0.013 VMAX- = 3 9• 5-9 p/sem, GESS T1/AA1 ¢D / Tgy b = 75-� FOR k= O.00z, 0.0/3 VMAX , - 3 9.7 8 �S�c , eLoSE Tv So U SE b = 7.5/ /-34 Fog k=0,007, = 0 01 S F VMAX • 3"ZL— D —32,2X /.34- FiPOM FZ-ATE QS — d�/j .7 /,30 DA = /. 4-j� x o , 3 o �A = 0 , 4 q - Ole 3 0% A/r- �Nr�M 1,VHZWr ay _ (/)(39.79)i('7s> 32.ZX9000 Ay= 0." FUSCOE 11651 Sterling Avenue, Suite PROJECT:Ej1W,4WA4 CNAAINEL PROJECT NO: z/0�;,110/ Riversid4 CA 92503 BY: DATE: CHECK: DATE: WILL (714) 354-0161 T I �—Z6-89 LINDGREN & SHORT Ovil Engineers • Land.9urveyors SHEET /'L OF 2 9 FR O AA sTa . /63f s0 TO STA • / 77-,- 0 0 000 e. ss. 5. o, 070 8 , V ax. = 1�50 {.Aa Tip'y b = 76 FOK 0.00 2 ,� -h=: 0,0/3 VMAX • = 3 7-34- 61,15;ec . Z ----ST T, 411 -�eo P Aec' . TRy b = 76- ' Foie k = 0.00 2-,, -A= V*A1. = 3 7• 5-3 �7/sue so USE b= %S� Fog /<=01007" -A=0,0/s' D,/ = /. Ss' , V= 3¢.39 P'15ee FN- 4'87 F- VmAY,. _ 37.53 S.SS 9 XD 32.2X /,¢Z FROM 01ATE ¢S d-11 /.z o of- 2,o;/- 41P F,vr)eAii✓. 10A = /, r -5-,K 0.2 0 DAA 0,3/ (13 7.51-73)'(7-5-) 32.2 xS000 .4 11651 SterlingAaenue, SuiteA PROJECT:E"j/,/,4^/,oA C//AW41g-1 PROJECT NO: 2 FUSCOE p //Q Riverside, CA 92503 BY: DATE q CHECK: DATE: WILL (714) 354-0161 TI, 6 zti'8 1 LINDGREN & SHORT Civil Engineers • Land Surveyors SHEET /J OF 2-q FROAA, S TA - /78 t 4s TO 57-R • /92-00 Q = ¢, 000 -e .{�s. , S= D. O 9 ¢S VZUAX • = 90 fYA". TRy 6:-- Sl Folz 1<2 0.002 / -,n =- 0.013 VMAX . = 3 9.77.6,Aee . LESS 7WAi1/ 4fO -11-1-sie -rRy b = 8o ' rro9 k = o, o o z , � — o, 013 VM AX . = �e-0 , 02 L'GoSE 7D 40��/mac . so use b . 8o' , /D.✓ = /•2s A:-OK K= 0.007, = 0 0IS Dti /- 3 V. F = SS3 F 4-0, 0 z _ 6.31 �X 73�•2 FieoM PLATE ¢S — G��� _ 1,3 0 /�q = /-3G x 0 ,30 DA = o • ¢� Die 3 0 ,�4 A/,e E-,,/rk.41WMEN r 6y= O ) �w0�)Z�gv 32-.2 x 8000 ,6 y = 0- So .._ — ---.� r.`.,o... "-.-•__ ?+rror.�_.:....... .. .._...-.i•.u+c+i� - �=i=,�i• — — --- "moi r'—�+..�. I Elv. 1110-2-1601 A :)c'cndix III S i 11 1 July 70 sl 1. JOo 230 0 .. - 00 -- ! ° o°- zoo °'°c •o -d- t .I I - - J• 0 j , ISO 1 1 I _ _ _ _ _ _ _ • c- ` —�-- 1111 j ' v ��—f -- --- -- 1 _ I of ►' t I .I loo 90 _�:__�-- -.- Doi �p .�� >. - - �~ 1•___:� � � �l;.� Or.. 60 Etjt �o j. 0.000 o.or 0.015 0,02 0.03 0.04 r i u b(ANNING'S A I,I BASIC EOUATIONS C•32 eLOG,012.2R/K R ve 1 2 S.e1. 21. oS LOG,, R/K i. WHERE: C+CMC2T CO[fflCl[NT Ii i n-NANNING•� RE3I.1TANCC ?i I :I LOCrr1C IC NT A-wrDaw"LIC RAOtUS,rr .i 1 K +COVIVALE14T ROUGHNESS HEIGHT, f T OPEN CHANNELS C -n -R -K RELATION 0.008<n<0.04 ;f.F T%XT PAGE 6 Plate 4 t ii.'i1), III -6 � il.11ill it I I .I j I• I � .1. ' � 1 EM 1110-2-;1601 �! Appendix III tt 1 July •70 ,r 1.2 r, u F.= V 9 Q. EXPERIMENTAL DATA IZ -b. DESIGN CURVE NOTE:_dm = DEPTH OF WATER AND AIR MIXTURE d = COMPUTED DEPTH FOR "ON - AERATED FLOW - V =COMPUTED •VELOCI.T.-CF-OR-MON- AERATED FLOW-77­7­ g LOW— ' g = GRAVITATIONAL ACCELERATION , F = FROUOE NUMBER FOR NONAERATED •• FLOW AIR ENTRAINMENT SEE TEXT PAGE 53 - III -47 r '^T r' } :i'�';i,� _. •/ , .. , — _—_ -- — -,'•'IIIc `+ r" i. — y r r ,�'�� .., ,' is •lil ,• r..;• • - �"� T'T�!'ti'•R"g":i :!' n „ .' . '?' .i^T T."!' -v �'!'�' .!" n� h"R KT f i'RTR T7S' :T 7' aT 7•F7' i!'R'7t'-,'T:$"?C".!'7."7S"X'S-:�'?:"T"yt'?' i1'y'/�"7.'•Y yt•T f-f'IDRAULI+C ELEMENTS -- I PROGRAM P?CKAG'E 'l_•) I_Gp•y°r7 ht i 22 -S8 Advai'lt"ed Engineering Software (cies) Ver, 2.7A Release Date: 6/25/se e Serizl # 2324 Analysis rr 9parsd by: ME/DATE OF STUDY: 8^14 1/ 1/1980 DESCRIPTION OF STUDY ' ?ECTANGULAR CONCRETE CHANNEL fi i Q•'.:4900 cfs+ n=0.013 r 23.5 ft WIDE, 9.S ft JEEP, Vmax=40 fps # ,; -....'�:?��t•-.t'�-�t•#:�•�•���1-'�-}-�-aE�•'�••Baa-�••�•}:�•�:�•�•�-�•�a�'�'•x•�'aE•�•�-•�•�•#•��•�--r��••�':�•�'�•sE��a-�c•:�•�•-#:��••�:��•�•�-•�•�•��•:�-.�:_�••:: .:� . f v. _. _#...• x..`q'..�. ]e �C # ;� i{";' i�• .}�• •'•f"}:' .�c"f.' �i �'I' •3!'T:�!' :E •1!� 1f' yF' tea• �"R' �• T.• .:i r#' �• -fi' +F' .,�' # •?4 +e• 3!- !{. �iF• •t?' �4' .,i.• •?3•-i!• # �" $' •?4' P • Vii..# .{. # K• y '#' �• •ii' -,+• iF ''f.' Vit' •'i• eE Y'R * '•Ir iEL INPUT . riC-OR A r I ON'. . ------------------------------------------------------------------ C-..`.?'.iijEl._ .= (x•90 ITI. mT%/V'EPT1CAL. _ „ . . t 19 WIDTH : FEET ) = 23.50 70ARTANT CHANNEL SLOPEtFEET/FEET) .020800 '�f:Z%•_�i�-•i_-.JC` � f� 'i-1 j3a �. �iFO`'+Mr.-� RCN: ----------------------------------------------------------------- F'I(.,RMAL DEPTH(FEET) _ 5.32 PLOW T _r. -"W I t`TH ( FEET) = 83.5(7) _:1-),W AVE-RnGE. i; �:i=1._0C1TYrc•I_E.1...:_EC. i 10.01 7 i. " 1. i U6.'E NUMBER i : . 9 2 .=7P ,�-S'^ 1t. + MOMENTUM(POUNDS) h.p NTf Ir, ` O t`'`S) 3 x 7 9 . 6. •' 4. :''= 1 �i .�r:� ll t"1��1"if_-i i r L.:' 1 �. � ff.J �.✓ISN AI. ,.. r- / �.� � 11 i ��f -3C.PL'a(JED ' ELOC I � ��! HEAD(FEET) F EET) •-• 22.923 PEs :FIC ENERGY(FEET) - 29.10-1) CRITICAL -DEPTH FI...UIW INFORMATION: R I T• I CAL PLOW TOP-WIDTH(FEET) = 23.50 I I T I CAL FLOW AREA (SQUARE FEET) - 259.72 CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 11.05 CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC,.) = 18.87 CRITICAL DEPTH(FEET) == 11.05 CRI -" I CAL FLOW PRESSURE + MOMENTUM(POUNDS) = 268706.00 AVERAGED (CRITICAL FLOW VELOCITY HEAD(FEET) = 5.527 CP I T I CAL FLOW SPECIFIC ENERGY(FEET) = 16.579 DESCRIPTION OF STUDY-t't?F'3�ijE,R'4#+r94••yE•4F..�f.r.it��:Ez'r.�•iE# c 0 ^:-'i. GLLOR C� �r'� CRETE C ANNEi— �• a 23.5 ft WIDE, 9.50 f t DEEP, Vm • m-00 fps a. ;: � ..:.:.:; � .:# �+• # �• �:. i":""• 3E .y ,i• .�...; .�. �. •�• i# •}i• �• �• .?f # :# •�• si..*..� .# .;# �. x .>�• % f �c .�..�. �c . �..�..�..,�. •�:• jF �• ?f• � -# •�§' •i�- �F• �• •!i• aE• tit �• �f• :i f• •R• �,i• •fF '='' i#- '# :?• # # �• •�• # •if• f..�. yF .� -:. M.:�.: s �• :, :;�. x ._ :�• f. s,�..#. �' •3F f t �{R• 1#j -iI 4• ?�•'Ti- =F �F. •if • •if•'{�• �jF• ?4 aE• if• X Y •3f• iE •i:• y •?f• �(' �f.• �• aE• :t- ii• �. }I• .rk •ri. -1f• jF• # �E• •af•'?• ?R.:'t• •14• i4' if•'lf• � t- •'�• ,t• iF ?J• •sk .pc -# ai :} �. '�!• INPUT Ilbi(�ORMA fiiON',<< , is ;N NE 7 r H0P I;'';Gt'.,..r AL / `,iERT r 7 - .00 i_lJN3TANT C; -A INET_ SLOPE•(FE^ET/FEE-•T? _ .02080 LAI FORM FLOW(CFS) = 4900.00 C1." NN I NG5 FRICTION FACTOR = .0150 NnRMAL-DEPTH FLOW INFORMATION: !`-NORMAL .DEPTH ( FEET) 5,e7 FLOW TOP-WIDTH(FEET) = E3.50 _OW AREA ( SQUARE FEET) = 13e.01 HYDRAULIC I C DEPTH ( FEF T) - 5.87 =LOW AVERAGE VELOCITY(FEET%SF_C.) = 35.50 UNIFORM F•ROUDE NUMBER = 2.582 PRESSURE + MOMENTUM(FOUNDS) = 362429.60 aVERAGED VELOCITY HEAD(FEET) = 19.575 SPECIFIC ENERGY(FEET) = 25.447 CRITICAL -DEPTH FLOW INFORMATION: CRITICAL FLOW TOP-WIDTH(FEET) = 23.50 CRITICAL FLOW PREA ( SQUARE FEET) = 259.72 C R i T I CA L FLC W HYDRAULIC DEPTH : FEE T) = 11.05 CRITICAL FLOW AVERAGE VELOCIT`a`(T=FET/SFC.) = 1a.87 jR r,-i::AL i_EPTH(FFET) = 1.1.05 R ; T I CA.L FLOW PRESSURE + MOMEi--,lTl._M ( PCT(. NDS) = %8"06.00 AY;=:RA BEL+ CRT T i C"AL FLOW VELOCITY HEAD(FEET) - 5.527 i 17TC L. FLOW SFECIFIC ENERGY(FEET) = 16.57'7 ?C ;�.x. y -.}�. ;_:.-�C•'F, •o jf'Y..•.'R' :f- al'•�i"=-# �'• 1f• ' -Yi• DESCRIPTION QF STPDY .u. �_:� .f,15 'fir •+-•$at•?t?f �•'?• ,5,..;..>;. � :#• �e•.� ...;� sc ;�, ;� RECTANGULAR CC:'NC.RE.TE_ CHANNEL. , 1-4100 ofs. I=C.013 a o5 ='t WTI:E, 6.50 ft DEEP. '1max=AO f os :t ''- .� '! -:ti ::. iF :. � .,t.r. +. �c �..:.;.•• :# �. #• •'�• .# # 3�r �-; .�. �..#..s� :#• .i(• iE •�c !-'.-'3F # =t• ?F' ; �..?• iE -.Y• 3(- -# •?r �k• §E ;- •3� 1i. # i .} y.:�, r„ #, 1{..1..._ � # M..�c .# s. M .Y '9F' • :# # �� ?E• §(- L..�. a..y. x..;..:f. x- � t d• #= ={- � ±�• 3S •+F _r. y aE..7�.:s- �• -t..l d- i• )# 'x iF X4.3(• �. 3F •+s.:k. � iG -1(- =i• =k t js:. -?{. : �. -�-=i• # ?i; ?i-'#. ?s. #.:.� � r. } _t �.... �. *..� . z. � :. � .�..# �• :f- # t :# :# �• KPAIMEL INPUT N i I 1 -------------------------------------------------------------------- N'll-JEL Z'HCRIZONTAL /VERTICAL) K.", PAREW I D T H ( FEET 1 - 45.00 DNSTANT CHANNEL SLOPE (FEET /F EET) 03680-0 !NIr=•CEyM FLOW(CFS) = 4900.00 'f+ANN I'•* G a FRICTION FACTOR = .0130 NORMAL -DEPTH FLOW INFORMATION: NORMAL DEPTH ( FEET) = 2.74 FLOW TOP-WIDTH(FEET) = 45.00 FLOW AREA(SQUARE FEET) = 123.17 HYDRAULIC DEPTH(FEET) = 2.74 FLOW AVERAGE VELOCITY(FEETISEC.) = 39.78 !NIFORM FROUDE NUMBER = 4.238 PRESSURE + MOMENTUM(POUNDS) _ 388287.00 AVERAGED VELOCITY HEAD(FEET) = 24.576 -.=,PEC: I F I C ENERGY(FEET) = 27.313 CRITICAL -DEPTH FLOW INFORMATION: Ci : I T I C A'_ FLOW TOP-WIDTH(FEET) = 45.00 CRITICAL FLOW c AREA ( QUARE FENT) 122.56 CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 7.17 CRITICAL FLOW AVERAGE VE LOC I TY ( FEET /'=EC .) = 15.19 CRITICAL DEPTH(FEET) = 7.17 R I T I CRL FLOW PRESSURE -+- MO!" fENTUM ( POUNDS) = 216386.00 0 :^L't-�='AGEI_� CRITICAL_ FLOW VELOCITY HEAD(FEz.T' = 3.583 CF' {.-r I CAL Fl. ['W '3PE.!_.:I F I C ENERGY t FEET) = 10-751 17 ?k¢gh..-i{...#..yt •.:_.,S�ti. �..y�..k.. ..r�.�;..iF'k••'# DET-.rCRIPYliN OV STUD �1�•i!•fi•#;F•i4�•#'#•g• �••*r k••9i•:f :fi •?;•.�.•t. •r� ••?r•:�•yi`•k •.'# RE_CTAh,sE_ti._LAR CONCRETE CHANNEL. 00900 afe, n=0.015 &5 ft WIDE, 1.50 `•t DEEP, Vma:.=:40 Fps at .;.;..:�. >�.:.�. �. .:•s.:�f• •# .q.'+E- •k•.�. # .x..#:� # -ti' e�!• •?� �E• �'f.• •?E• •!k•.*. •k• # .:c'y.'k •K # •)i•.# d4• .3i• ?+• y¢ •)f' •k •?�• )E �• .�. # .�. ?¢• a .�. •:,^ .�• •#}'3F•:�. •?P• •# iF x. •A -i�• # :::t •3t •'�. •fr � •y;R. #.?�' .�• # _. �..,� �� a.-.�..�. �. t• :# .�• •?f• � ?k %f..�..N.: e iE ?d• �e•'k -�s'k•?4 �i• •1(• -i• •?F •i�• :#• a(•+.E tt• •3F )f• :i• af• ai• :�-?ti r�4• a• # it• # 3= �• # iE• #. # :. �..�..�..� .yt. �. �. _,. ;i .;#• '• ?#. •i� =i• :- -i� �• :�:. #• .,t s• •-i[1NNE:{_ INPUT I NFORMAT IGN<:: i ' <:' ------------------------------------------------------------------------------ CL ANNEL Z (HORIZONTAL / VERT I CAL) = . 0(- 9ASEW I DTH (FE:ET) = 45.00 CONSTANT CHANNEL SLOPE ( FEET/ FEET) .03620C.) 0C.) UNIFORM FLOW(CFS) = 4900.00 !°'ANN I NGS FRICTION FACTOR = .0150 NORMAL—DEPTH FLOW INFORMATION: ---------- %>,>> NORMAL DEPTH(FEET) = 3.00 FLOW TOP—WIDTH(FEET) = 45.00 Ft % AI- = A (SQUARE FEET) - 134.84 :!'YD "tF=''_►L C E": DEPTH(FEET)3.011'') =1 L' -t_W �`i•:E1-+'�;GE V�_.l._OCIT• IFE._E / SEC. ) 3,' .34-. Q'••FA .!, E -E F `•li ,MEN T f. UM (F'`1E!NES) - 357672.0C I}. ; "''_ 7D VELOCITY HEAD(FEET) _ 20.D)5 ,L.. ' _'. 1L ' f.•}TH t::•1 i -W j `.!l'S,-:r.rlwq_ j CsN ..i ."E=u FLjW TOC:...-WT0THtF'T-1. = 4 5.05 '4: T . 1 CA; • FLOW A EA (SQUARES FEET) 322.`':•7 _RIT! AL cl_OW Ay14_RC.1=E It E_u0C .. i •'ltFEET FC, Y = 's &-lopoxp Cpjr3rnQ EFi.(}W uE,. OC :.T'; {...):._ D ,:. F'i__; A ._ .._ .T8 -- _ . . 1.... i}_. FLOW SP`: E . E' .. L E„`.tR F' i.;:i' ' F:. EE I ) = 10.051 •.. }• t... ¢ 1 :q. _.:. ii .;t .j�..:t :i ,!. # 'f•?4•.)j. •fe. �q• «. •# %t D F %_ R •j,.:: T I. iO N 0" STUDY -_- 3F• # .'+F :.�• .) r #• 'k• •?{• 'sr t`:• �i sk' h: '#• #.• -# .;r. a,�• # :� �• �. # .:.c. PECTANOYLAR CONCRETE CHANNEL 5 ft WIDE, 7.00 ft DEEP, Vma)•.=40 fps u �. v. �. _{ :k .A. �• Y• •R• •iE• # ar. �. x..s� �..�. �, �..# �• �• •�. # �..�..�• •# �• •E # •if• # �E• .;E •#• �• •3t• .�• .�• •Yr # X at• 3F #• �• �;- :6 •kx,- •)F #•=#•'�F• �c .ar. �• •iF r # x •�•'`-•� ie• # # �• �• •)i• d+ 'r: � ri •' CHANNEL INPUT !T INFaf'MATION< ----------------------------------------------------------------------------- CHANNEL (HORIZONTAL/VERTICAL) _ .00 ASEW T DTH ( FEET) -_ 65.00 CONSTANT CHANNEL SLOPE ( FEET/ FF_.ET) - .036800 s_)N I FORM FLOW(CFS) = 7200.00 1;3NNIN6S FPTCTIQN FACTOR = .'• i 3cl NORMAL—OEPTH F _.i' W INFOPMATION------------------------------- - 1 DEPTWF •LCA Tnp W I r T E-{ F EET) = 65.00 .=._OW A .EP ( 3OUAR = FEET) =- 177.41 ,-{'- d:•^'AUL 1 :: DEPTH(FEET) - 2.73 s : _04 A ' i E_ VE^NVE;LOC I TY ( FEE._ ! ; SEC . • 40.58 WHIPMRh A F•''-":= E:3i-ERE - ;' O ME NTUM (i O NDS) 5 81 6 i . ?0 : I T I CAL --DEPTH Fs _0W I PFORMAT I ON ---------------------------------------------------------------------------- yRI TT.CAL FLOW TOP—WIDTH(FEET) = 65.00 CRITT CAL FLOW AREA ( SQUARE: FEET) — 471.19 _:R TT•ICAI— FLOW HYDRAULIC DEPTH(FEET) 7.25 GR I T I CAL FLOW AVER AGE VF_L.00 I TY (FEET/SEC .) = 15.29 CRITICAL Dr';F'T'-i t FEET 7 = ,25 CRITICAL FLOW PRESSURE + MOMENTUMPOUNDS) = X319 74.80 += Y RAGED CR E T I CAE._ FLOW VELOCITY HEAD(FEET) = 3.626 CRITICAL FUOW SPECIFIC ENERGY(FEET) = 10.375 DESCRIPTION OF STUDY * RECTANGULAR CONCRETE CHANNEL &._?Li_}i_} C•f s, n=0.015 / a * 05 ft WIDE, 7 ft DEEP, alma:•;=40 fps ,. ,,. �:-ii--k+t- •!F •1• �• •� �e•-�• � •?F •}[• •1• •� 4F+f•+E # 9f•+(• •iE• �• •x• •!E••�• •iF •k -1f• •�• at-•lE4: •lF•iE •1f• 3• •3f• •#••3f• •#• •3F ?E• •14-•aE •3�?F+F •}e• �• 9F �• 9F•-�• # •x• •�•;;�-34.9F• •3a• #• •�• k •x �• � � � �- :� •�• ,.:t :•- ?� .�• •}i• -t-x-•iF •it-•�• # iF # i4• # •i( -•}i• #?@ •x• iE• jE••#••if•+F?E •iE• •!i•+6 #+F iE+E+F• •34•+F• •}E••lE• �E• # �E #+F •k •1F+t• #• # •!t• •iF•+t•?E••�• #• •!E •!4•+F+F+r •3f +f• dF # •lf• •3f• -#• •!�-�•+E• •l�• •14• # :rt it a.• • • :_'HAND fEI._ INPUT INFORMATI� �N< <; J4:-i\;l'JE=L . ' ( HORIZONTAL ZONTAL AVE RT;"C�- L) - .00 '. Crid: T"N F CHANNEL ELOPE (FE't=.T `EE T) _ 036800 +_.NIFC+PA F_OW( _F% - 7200.00 .%N I NGS FRICTION FACTOR _ .0150 .. -q ra,^.++ —0 _,•= TH FLOW 1 NF'Of iA N _ r W z -QP --W S DTH ( TE T) 05,00 .-TW APEAOSQUARE FEET) + QA AVERAGE SEL:'(.` GE YE!__3.?(_ T T Y ( FEET : TE(_ .) - 17,16 -S71SuRE+ MO ME`dTUM (F -'O NeS) _ F3,495.20 r i Q f EC •..',= i :—CITY WEAD (L: EET) - 21-403 r_ , T ; I +er=a!-.--DEP Tc.s P! OW I NFORMAT I ON I TTIGAL FLOW TOP—WIETH(FEET) - 65.00 1 F I T I CAL =LOW AREA (SQUr RE 7EE T) = 471.19 CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 7.255 CRITICAL FLOW AVERAGE VELOCITY(FE'ETISEC.) = 15.28 CRITICAL DEPTH(FEET) = 7.25 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 319774.60 AVERAGED CRITICAL PLOW VELOCITY HEAD(FEET) = 3.626 CRITICAL FLOW SPECIFIC ENERGY(FEET) = 10.875 DESCRIPTION OF STUDY+ t ECTANGULAR CONCRETE CHANNEL � 4=1700 cfs. n=0.013 g_ �, r{, ��..� ,; .:q. •�-# •af• •}h -";-.+o• ?A• �E-�•-+f•.�..,y:.�c..1F �t•'� ?E •je• •yF• :a(• •1�• # •1E• ,?4 -ac• •#F ?i•'.k •* {t• # is iF �iE• •it• •3k• •!4' -1t• •+F •3E °+E �k. R• •3i• �S• •aE• iE •�• �?F •?� .'�• •�• -;F • f i= moi• •IF• r+.- i£' •34• '# -i ;i' iF �4• ;6 •af• .g :�. ��. �. _:- •�• �• •±'• # -�#• -# •',�• .'l.�'f. x• y # =?• +f• •jF• x• iE .# �. ai•'�E• •la• iE'r. # :4 �• # it• •k # it• if -+4• -ii• +F -k+E• •;f• •�• •�• •!F # �• #.;;. �. ?k .?E ,k •?!• # i#• � ,+• # ?4• •h• �• •� � :# �# # �• 9F =# v ?# :i -?k HA NEL- INPUT INFORMATION <; ------------------------------------------------------------------------------ ;E ANN L. Z : NOPI ZONTAL/VERT; ICAI.._ : — '00 CG G' J �: �' q�+ I DT H (t- E r iT =- � 65.00 CASTA 1T =HAP::dEL SLOPE ( FEE T/ r= =ET) .036800 UAIFORM - t F Fry) = 6700,0C,, // ------------------------------------------------------------------------- : .• . P•LG'RMAL. DEPTH (1=E:ET) = 2.61 FLOW TOP-WIDTH(FEET) _ 65.00 FLOW AREA ( SQUARE FEET) - t69.73 i -•!V DRAUL. I `_: DEPTH(FEET) -_ 2.61 F=LOW AVERAGE VELOCITY ( FEE-; :`SEC .) - 39.4.8 UNIFORM FROUDE NUMBER ER _ 4.305 PRE'SSURE v MOMENTUM(POUNDS) _ x.'26371.60 AWERAGED VELOCITY HEAD(FEET) = 24.197 SPECIFIC ENERGY(FEET) = 26.809 CRITICAL -DEPTH FLOW INFORMATION; CRITICAL FLOW TOP-WIDTH(FEET) = f 65.00 CRITICAL FL OW AREA ( SQUARE FEET) = 449.19 CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 6.91 CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 4.92 CRITICAL DEPTH(FEET) = 6.91 CRITICAL FLOW PRESSURE + MOMENTUM ! POUNDS) = 290514.10 ! 'EPAGE D CRITICAL FLOW VELOCITY H; -A& FEET) = 2,405 .:RTT1. I CAL_ FKGW SPECIFIC ENERGY(FEET) = 10.265 •.:..s. •.. sr .> . Y..:�.:�...;�.:......Y:..3..fi. 4 .'h -k.. - •.;s- i•'h .'r ?i• CESCI I P ION OF 7 fU1)t% at� ".r r- 3E'+f••R•.Z 4c :s �• s.• �` fi?i•:.i. s•'# -+F .rt,� # � __:i. s.�. r ._ TQNBUL R ':.nNEPETE CHANNEL .. 5 It W T DE_ . v.5 J'% DEEP,iJ1Ti<: x--40 fps :f• - ; ,.. �c }..�(.-_:..;�.{ :,�. .ti �-? 71•:�C•.�: .}. �� t,y. 3E •'a• u. �. vi. 7E 'x ..�..u.}t .g. .};. v..>�_s4. •__i• f. ;{, y.:_ :�. �.T :y.� � i-?� .L..>�. h-;,. �. _;.}..s.. .r: � � �. ¢_.�• y. � r..�. 4. x :. ,::s fi• y. -3f..� ,r. '�• #• # :¢• Y• �• i4• �F # :�, iF =s• 'r. #• •� �- i4• y. }� �.:� y. �• :�• :�• # x- �• �• �• 3f• :t• #• 'sE a• :� #• #� -iF � # :q ?F s: �: x '-• •k• ai- iF � -�• # -+•. -{. # #•;► -ia• •;2• .�. �: k �- . • . QQ?PrEL_. 4NRUT INFORMATION`'':::.'' ----------------------------------------------------------------------------- C 11110. .10"ORVZONTAL/VEP"ICAL) L ASE}.d T' IT ; (F`..•:1 --T i _.t} t?5 . Of -.,i^ . {`+`S .�; i�� }._;..7:,`f'.:tt�lEL 'L..{1P ( FIE / F FET ) = .036300 = 6700.00 PONNINGS FRT""TON FACTOR .015(1 NORMAL -DEPTH FLOW iiNFORMATION: . ; NORMAL_ DE:F= TH r FEET) = R.95 FLOW TOP--•WIDTH(!=EET) = 65.01 FLOW AREA(SQUARE FEET) = 195.35 PYDRAUL_ I C I]E:PTH (F= EET) = 2.:35 !=L.OW AVERAGE VELOCITti (FEET/SEC.) _ :36.15 ..NIFORM FROUDE NUMBER = 3.772 PRESSURE + MOMENTUM(POUNDS) = 481836.20 AVERAGED VELOCITY HEAD(FEET) = 20.291 SPECIFIC ENERGY(FEET) = 23.14e CRITICAL -DEPTH FLOW INFORMATION CP7•I 1r��_iaL. CRI ICAL Imo! 1 T I CAr_ STTICQL qUE AGFD }_ . I T a LY F•• L. F!._OW TOP --W i DTE' (F FF T) _ 00 !_.OW AREA (SQUARE FEET) = 449.19 FLOW HYDRAULIC DEPTH i FEET) = 6.91 FLOW AVERAGE VEU0C I TY (FEE:.? / SEC .) = 14.92 DEPTH(FEET) = 6.9I FLOW PPESSURE 0 MOMENT; M V POUNDS) = 290514.10 r"_ O T I C =?i._ FLOW VELOCITY HE AD (S E'ET) = 3.455 FU W 5 PEC I F T C NERGY'F EE r) _• 10,365 20 a K. x�: '1t :r•#?f-i�-�!• rs�•'t•;i.7_ :-'.6•`+�•%?•.j�••i(•>;•:#.•�• 1,)L._L3CiilPT.L.I..N OF I-i-U'DY 3-#.j�.#•-+-'k••�:•#-?�•.'fat•s�•jt�-+;••:'-?EiF:i.rc••.E-•q��:t?F•:4 � C=570" cfs, n=C.013 I;,- 05 05 f, KJE, 6.5 Ft DEEP, Vmax=40 fps + /'CHANNEL !NPUT INFORMATION<<o, ---------------------------------------------------------------------------- MAUNEL Z(HORTZONTA-/VERT%CAL) = .n0 ?uSEWiDrH("EET) = 65.00 rCNSTANT CHANNB- SLOPE(FEET/FEET) = .036800 UNIFORM FLOW(CFS) = 5900.00 MANN7NGS FRICTION FACTOR = .0130 NORMAL -DEPTH FLOW INFORMATION: ,;>>V NORMAL NORMAL DEPTH(FEET) = 2.41 ^ FLOW TOP-WIDTH(FEET) = 65.00 FLOW AREA(SQUARE FEET) = 156.83 HYDRAULIC DEPTH(FEET) = 2.41 FLOW AVERAGE VELOCITY(FEET/SEC.) = 37.62 L|NIF[!RM FROUDE NUMBER = 4.268 ?PSiCURE + IOMENTUM(P9UNDS) = 441935.20 A`.'F9aGEm VELOCITY HEAD(FEET> = 21.976 TnE[IFI[ ENERGY'FEET) = 24.389 [7'-17AL-[EPTH FLOW INFORMATION; ---------------------------' ---------------------------------' -0TTICP/' P�OW TOP-OTDTH(FETT = 65.)� TPA'I[?L FnOu cRTA(SQ']ARE FEETI = 412,61 q'OA IYORAU.IC ]ZPTH rTST` = 6 35 &R,TIrAL QDW AVERAGE VELOCIlY(FFFT'SEC./ = 14.T0 7417'CAL DEPTH(FEET) = v35 -RlrICAL 7i'[U PPESSURE I MCMENTUM(FnUNDS) = 245209 7) T''ERA7ED 0RJr3C4L FLOW VELOCITY HEAD(FEET) 0:11rAi FLOW SPECIFIC TNEPGY(FSET) = 9.523 DESCRIP-71N OF SlUDY � -E[7TVGikOP aCNCIETE CHANNEL � * //-5100 cfs '`=0.015 : * 15 fr WIrE, 6.5 ft DEEP. Vmax=40 fps � CHANNEL INPU7 INFORMATION<<<< ' -'---------------------------------------------------------------------- - "HANNEL Z(HORIZONTAL/VERT ICAL) = .00 BASEWIDTH(FEET) = 65.00 CONSTANT CHANNEL SLOPE(FEET/FEET) = .036800 �NIFORM r--LOW(CFS) = 5900.00 MANNIMGS FRICTION FACTOR = .0150 !',JORM4L-DEPTH FLOW INFORMATION: '-- ------------------------------------------------------------------------ nEPTHcFEET> = 2.64 FLOW TOP-WIDTH(FEET) = 65.00 o -OW OREA(SQUARE FEET) = 171.46 H/PRAULIC DEPTH(PEET/ = 2.64 F7OW AVqRAGE VELOCITY(FEET/SEC.) = 34,41 ''NIFORM FROUDE NUMBER = 3.734 r9ISILRE + MOMENTUM/POUNDS) = 407541.20 AVEP4GED VELOCITY HEAD(FEET) = 18.386 1PECIFTO FNERGY/FEET> = 21.024 ._'P T I L NL.. FLOW APEA : SDUARE FEET? ? _ 412.61 CRITICAL FkOW HYDRAULIC D EPTH (P EET) = 6,35 ,..,zTyrA.._ i~•►_at•+ AVERAGE EL.OclrY, E, r Er_„ 14.30 C RI. FT(=ADEPTH(FEET) = 6.35 CRIT; f. AL FLOW PRESSURE + MOMENTUM(POUNDS) = 245209. 30 MERAGED CPITICAI_ FLOW VELOCITY HEAD(FEET) := 3.175 RITT PLOW SPECIFIC ENERGY FEET) = 9.523 «.. ,�• > a� ?� at # DEsCF;IPTION OF STUD' T-'-:THNGULAR CONCRETE CHANNEL r 0=5900 rfs, n=0.013 "T ft WIDE, S ft DEEP, Vmax=40 fps .. ,� : ,� -f• •1�• �+: •�• :- �• � �>E• •�• ��• �-�•-� •� �• �-•� ii• •>r �- •>F # :>F •� -� •� :� •� •� •� •>f 1F �• •� �x-a�• •�• •��• •� ��• •� at• �• •�• •>F •�• �•>� �• •?� •� ••��•• •� a�••x••� �: •?�• •� •� •�e •�. •.�. •x.•�• •� aE• •�• as •�- :£ •�!• �• --• -f• # X• •�• :t # �i• •1F a!• 9F •'� iE +i• j4• iF ii• •{F• �+• •it --3F• •)f •1<• •�• •3F •1t• jE• •iF x• iF �F• iF• ai• •fF •1k •1E•'.�• •»• i{• •3{• •1{• iE # # •li• •;t• •i4• •i4• # h• -1F �{ �i• k'�i• iE• # aiE •3F # •?f• •� •i4• •x• JE •it• •1E• iE �F.;. �, .�. _ . . ;CHANNEL A lNEL INPUT i• NFORMAT I Olid <:. •::• < <:: ------------------------------------------------------------------------------ . HANNEL (HOR I?CNTAL /VERTICAL) _ .00 BPSEW I DTH ( FEET) = 75 00 �_,H^NNEL SL_OP (B=EET%FEET) 053600 ni:�r..;l`•�-..,1;_�S FRTCT ICN F=ACTO •_ 0110 %CRMAn-nEPTH + knw NTORMx`11 ION: ----------------------------------------------------------------------------- ,:•,..:!W T'_''; ' —:•1 T D -H FEE ► ) = 15.00 .'J./_ 0 1-i DL": AL•'._ I C DE"Ta EE T . -- 1.96 F:_GW A ERAaF `,1ELOCiTY(F EE_r _EC.) — 40,08 T I VORM FROUDE. NUMBER BER = 5.042 ------------------------------------------------------------------------------ CRITICAL FLOW TOP—WIDTH(FEET: = 75.0" CRITICAL FLOW W APEA (SOUARE FEET) _ 422.92 -sI ! :..._ {_ FLCW HYDRAULIC DEPTH(FEET) -_ 5.77 CRITICAL FL .l. W AVERA 3E VE�OC T TY ( FEET %TEC . ` = 12.63 CRITICAL DEPTH(FEET) FEET) = 5.77 CRITICAL FLOW PRESSURE: + MOMENTUM(POUNDS) = 23379 7.3i AVERAGED ("_RITIC.AL FLOW VELOCITY HEAD<FEL T) = 2,,885 ' R I T I CAL CLOW SPECIFIC ENERGY ( FEET) = 3.656 F•.,:..;;t.:f>f>~a�# DESCRIPTION OF STUDY a�?►a��r>E;Exk1E ?ECT,?hJEiULAR CONCRETE CHANNEL t' 73 ft WIDE, 6 ft DEEP, Vmax 40 fps :t..�. sl,.:; :i. y. �..K....�• .�• # :f if• :;: ,y �. • d.',�• �• •3f•'rF if• •if• df• �f' iF 3f• .1i. # iF ? f• :�4. if• •1C• •i f• •af• .j�. ?f• af• #',�• k• .',�• •iF .x• •14• ii• �• •?�• !i.• •?�• •3f• # i{. #• 4• •�•. �} � •a•?i• #• #• iF -1i..�• .�. }• �. •k• �f.• �• � •►4• ., •;til',.}NEL T r.. PUP INFORMATION <: < . —---------------------------------------------------------------------------- CH. fl`iNEL ,_ .'';-10R I .ZO=Li VE RT I CAL) _ .00 0 9A _•SEW L D H( FEET)= I a. t'St_i r._'=H O ANT CHANNEL .SLOPE R F EET/FEET) _ .053600 UNIFORM + "^^N+`tiNGE PRIC It -N FAC;TCR = .0150 ZZ. .' NORM41_ EEPTH(FEET) = 2.14 FLOW TOP-WInTH'FnET) = 75.00 F|.OW APEA(SQUARE FEET) = 160.65 nYDRAULIC DEpTHfFEET) = 2'14 QLOW AVERAGE VELOCITY(FEET/SEC.) = 36.73 UNrFORM FROUDE NUMBER = 4.422 ORESSURE + MOMENTUM(POUNDS) = 430651.10 4'''ER4GED VELOCITY HEAD(FEET) = 20.945 SPECIFIC ENERGY(FEET) = 23.087 CRITICAL -DEPTH FLOW INFORMATION: -------------------------------- CRITICAL FLOW TOP-WIDTH(FEET) = 75.00 CRITICAL FLOW AREA(SQUARE FEET) = 432.82 CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 5.77 CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 13.63 CRITICAL DEPTH(FEET) = 5.77 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 233787.30 AVERAGED CPITICAL FLOW VELOCITY HEAD(FEET) = 2.885 ORTTICAL FLOW SPECIFIC ENERGY(FEET) = 8.656 DESCRiPTION OF STUDY * A77TAN2LLnR ]]NCRETE CHANNEL v * 0=1300 :fs,n=0.013 * * 05 =+ WIDE. 5.5 ft DEEP. Vma,=40 fps * � VNPUT [NFOPMATlON<(;( 1.40RIZONTAL!VETTICAL) = .00 / ��S���I��H(FEET> = 75 00 / - . [ONETANT CHANNE4 SLOPE(FEET/FEE[/ = .053b00 UNJFORM rLOW(CFS' = 5300.)C � wRlC7ION FACTOR 1/kfiy--DEF`TH FLOW [%F%lATION: ��p��AL DEPTH(FEET) 84 = 1 | ' ^ FLUW TOP-WIDTH(FEET) = 75.00 7LCW AREA(SQUARE FEET) = 137.76 ^/vDRrUL{C CEPTH(FEET> = 1.84 FLOW AVERAGE VELOCITY(FEET/SEC.) = 38.47 UNIFORM FROUDE NUMBER = 5.003 PRESSURE + MOMENTUM\POUNDS) = 403045.30 AVERAGED VELOCITY HEAD(FEET) = 22.994 SPECIFIC ENERGY<FEET) = 24.821 ============================================================================ CRITICAL -DEPTH FLOW INFORMATION: CRITICAL FLOW TOP-WIDTH(FEET) = 75.00 CRITICAL FLOW AREA(SQUARE FEET) = 402.96 CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 5.37 WRTTIC4L FLOW AVERAGE VELOCITY(FEET/SEC.) = l3.15 CRITICAL DEPTH(FEET) = 5.37 CRITICA|- FLOW PRESSURE + MOMENTUM(POUNDS) = 202637.30 AYERA�ED CRITICAL FLOW VELOCITY HEAD(FEET) = 2.686 CRITICAL F/ -[}W SPECIF7C ENERGY(FEET) = 8'059 DESCRIPTION + AECTANGULAR CONCRETE CHANNEL � 0=f= cfs. n=0.015 ~- '' '-~- - - -' ~--~ ''-- -^^ =-- OF STUD* °A5E i MATER SURFACE PROFILE LISTING ETIWANDA CHANNEL HYDRAULIC CALC. BY TONY !SLAM OPEN CHANNEL VICTORIA TO BASIN 5 STATION INVERT DEPTH W.G. Q VEL VEL ENERGY SUPER CRITICAL HST! B45E/ ?L 10 AVHPR ELEV OF FLOW ELEV HEAD GRD.EL. ELEV DEPTH DIA ID N0, G,ER :!EL=H SO SF AVE HF NORM DEPTH ,753.06 1303.64 5.03 1309.67 5900,0 38.61 23.17 1332.84 .00 11.90 133.50 85.33 .00 0 00 TRANS STR .01001 .02008 1,24 .00 1815.00 1304.26 6.47 131').?3 5900.0 38.81 23,41 1334,14 .00 12.51 9.00 23.50 .00 0 '0�1 491.17 ,02093 .01937 9.51 6.36 .00 230b.17 1314.54 b.60 1381413 5900,0 38.06 22.52 1343.65 .00 12.51 9.00 23.50 .00 2 C 523.82 .020'%3 .01763 9.24 6.36 '0 283(1.0" 1325.50 6.92 1338.42 5900.0 3b.29 00-1.47 1352.89 .00 12.51 9.00 23.5.1 00 0 .00 TRANS STR .02857 21'.0 1.46 .(`0 aa0),y0 132`.50 5.34 1332,34 5900.0 37.44 81.79 1354.63 .00 10.61 9.00 25.5) rr0 0 ,00 9.1.02 .(234" ,02297 EO.42 5.33 1,50 :31!.02 1.348.31+ 5.39 1394.83 5900.0 37 05 21.33 1375.56 .00 10,61 9.00 85.50 .')0 0 0� 53.98 .?2348 .12116 15.95 5.33 1.50 4 65.,`O It X66.50 5.�2 0.0 35.32 19.39 '39'.51 .00 !0 .61 a •0f! C1..0 ,00 0 .U0 T�(ANS 5TF .03158 .0':433 1.36 1.50 4s60.016 1369.50 7.86 11377.36 5900.0 31.76 15.87 1393,23 .00 12.51 9.00 23.50 .00 0 .0:� JLNC, ST"M, 400000 :'197q (i l 4560.00 1369.50 5.05 1374,55 4900.0 41.2" 26.47 1401.03 .00 11.05 9.00 23.50 .00 0 i0 55:.'.0 .02808 )23 11 15..52 5.05 00 5212.00 1385.00 5.05 1390.05 4900,0 41,29 26.50 1416,55 .00 11.05 .00 23.50 .00 0 00 .`�:THANNEL INPDr [NFOPMATION<<// CHANNEL- 7(-40RIZONTAL/VERTICAL) = .00 94SEWIDTH(FEET> = 75.00 CONSTANT CHANNEL SLOPE(FEET/FEET) = .053600 JNlFOPM FLOW(CFS) = 5300.00 MANNINGS FRICTION FACTOR = .0150 NORMAL-DEITH FLOW INFORMATION: ---------------------- NORMAL __________________ >>>>> NORMAL DEPTH(FEET) = 2.00 FLOW TOP-WIDTH(FEET) = 75.00 FLOW AREA(SQUARE FEET) = 150.35 HYDRAULIC DEPTH(FEET) = 2.00 ^ OLOW AVERAGE VELOCITY(FEET/SEC.) = 35.25 UNIFORM FROUDE NUMBER = 4,388 PRESSURE + MOMENTUM(POUNDS) = 371468.20 AVERAGED VELOCITY HEAD(FEET) = 19.296 SPECIFIC ENERGY(FEET) = 21.301 rRETlCAQ-34FTH =LOW INFORMATION: ---------------------------------------------------------------------------- XTTICAL F`-OiJ TOP-WIO7H&FEET) = 75,00 TRTTJCAL FLOW 1REA/SO3A9E FEET! = "02.96 VrITICAL FLOW HYDRAULIC DEPTH(FEET` = 5.37 CnIT[CAL =LOW AVERAGE VELPClTY'FEET/FEC') - 13,15 qRIrIC4/- CEPTHMEET) = 5.7'' ourC+, ALgW PRESSURE + MOMENTUM'POUNDS> 'u/FRAPFD CP[T[CA 9LOW VELOCITY PFAD(FTET) CRIT`rAL Fi% SPFC[FTC ElEPGY(&qFT) = DES[FIPTION OF 1TCCY � TErT4N3ULAR CD4CPE�E CHANNg' � x 7=5100 OF5~ n-0.013 � � "I `+ VIDE. 5.5 ft DEEP, wns'=40 fos + �CHA!1FTL INPUT INFO9MATlON<(�( ____________________________________________________________________________ C|1ANNEL Z/HORIZONTAL/VERTICAL) = .00 BASEWIDTH(FEET) = 75.00 CONSTANT CHANNEL SLOPE(FEET/FEET) = .085600 UNIFORM FLOW(CFS) = 5300.00 aANNINGS FRICTION FACTOR = .0130 NORMAL -DEPTH FLOW INFORMATION: ---------------------------------------------------------------------------- >>>>> NORMAL DEPTH(FEET) = 1.59 FLOW TOP-WIDTH/FEET) = 75.00 FLOW AREA(SQUARE FEET) = 119.45 HvnFAULTC DEPTH(FEET) = 1.59 T|'CW AVERAGE VELOCITY(FEE[/SEC.) = 44.37 LN[FOR|1 FROUDE NUMBER = 6.19� "FESSURE + ;OMENTUM(POUNDS) = 46;660.20 AVERAGED VELOCITY HEAD(FEET) = 30^571 �PECIFIC [-NERGv(FEET, = 3?.164 F0lll[AL-DEQTH FLOW INFORMATION: ---------------------------------------------------------------------------- CRITICAL F|OW TOP-WIDTH(FEET) = 75.00 &7lT`C4L QOW APEA(SPUARE FEET) = 402.96 244- -- 7RiTlr4t Fn]W ' AVFRAGE VELOCITY(FEET/SEC,) = 13.15 7Pl71CAi 7EPTH(FIET) = 5.37 CRITICAL CLOW PPESSURE + MOMENTUM(POUNDS) = 202637,30 O1ERAGED CR[TICAL FLOW VELOCITY HFAD(FEET) = 2.686 CRInICAL FLOW SPECIFIC qNERGY(FEET) = 8.059 DESCRIP7I0M OF STUDY * FEC -ANGULAR CONCRETE CHANNEL * * 0=%00 cfs, n=0.015 * * 75 ft WIDE, 5.5 ft DEEP, Vmax=40 fps * «*************************************************************************** `,CHANNEL INPUT INFORMATION<<<( -_' _______-__________________________�__-__________________________-_____-_ CHANNEL Z(HORIZONTAL/VERTICAL) = .00 DASEWIDTH(FEET) = 75.00 CONSTANT CHANNEL SLOPE(FEET/FEET) = .085600 UNIFORM FLOW(CFS) = 5300.00 "4NNINGS FRICTION FACTOR = .0150 ============================================================================ kOiMPL-DEPTA FLOW INFORMATION: NOFM4L [EPTH(FEET) = 1.74 --JW TOP-WIDTH(FEET) = 75.00 OiOW A3EA'5A�!ARE FEET` = 120.32 -f9cAjL7C DEPTH(FEET) = 1.74 " ?W ?VTR4RE \'ELOCTTy'FEET'5EC.> = +0.67 ./Q -[RM ARCUI!E '^UVBER = 5.437 p'`IFEUPE v rUMENTUM(POUN0S) = 424971.o0 A07PAOEC VELOCITY p^EAD(FEET) = 25.683 io=IrIC ENERGY(FEET) = 27.421 70 -ICuL-]EnTH PLOW INFORMATION: CArTICAn FLOW FLCW TOP-WIDTH(TEET) = 75.00 T^'Ir,CAj rL7u AREMSOUARE FEET) = 40R.96 QFITICAL cLOW HYDRAULIC DEPTH(FEET) = 5.37 �PlTlCAL FLDW AVERAGE VELOCITY(FEET,5EC.) = 1S.15 OP[rICAL DEPTH/FEET) = 5.37 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 202637.30 %"EXAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 2.686 CRiTICAL FLOW SPEC[FIC ENERGY(FEET) = 8.059 DESCRIPTlON OF STUDY ************************+* � RECTANGULAR CONCRETE CHANNEL � * * 0=4000 cfs, n=0.013 ' + /5 ft WIDE, 5.5 ft DEEP, Vmax=40 fps * �`%`Cq4NNEL INPUT INFORMATION<<<< CHANNEL Z(HOR72ONTAL/VERTICAL) PeSEWIDTH(FEET) = 75.00 CCNSTAW CHANNEL SLOPE(FEET/FEET) = .085600 UNIFORM FLOW`CFS) = 4000.00 MAuNIN8S FRICTION FACTOR = .0130 NORMuL-DEPTH FLOW INFORMATION: '--------------------------------------------------------------------------- l`/>> NORMAL DEPTH|FEET) = 1.34 ­_ --_ - w= AYIRAULIC DEPTH(FEET) = 1.34 F�CW AVERAGE UELOCITY(FEET/SEC.1 = 39.78 UNIFORM FROUDE NUMBER = 6.053 PRESSURE + MOMENTUM(POUNDS) = 312527.40 AVERAGED VELOCITY HEAD(FEET) = 24.566 qPECIFIC ENERGY(FEET) = 25.i07 CRITICAL -DEPTH FLOW INFORMATION,. [RIwICAL FLOW TOP-WIDTH(FEET) = 75.00 CRITICAL FLOW AREA(SQUARE FEET) = 333.94 CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 4.45 CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 11.98 CRITICAL DEPTH(FEET) = 4.45 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 139240.30 AVERAGED CRITICAL FLOW VELOCITY HEOD(FEET) = 2.228 CRITICAL FLOW SPECIFIC ENERGY(FEET) = 6.680 +**+********************** DESCRIPTION OF STUDY ************************** * ?£CTANGULAR CONCRETE CHANNEL * + Q=4000 cfs, n=0.015 * + 75 +t WIDE, 5.5 ft DEEP, Vmax=40 fps « ` ."`CNAmNEL INPUT INFORMATION(<O( _________________________________________________________________ / ��u.ANNEL T(1CRIZON"AL/VERTICAL) = .00 [ 01TEW!D71KEET) = 75. 00 CCM97ANT CHAHHB- SLOPE(FEET/cEET> = .095600 ;'.NlFOqM FLOW(EFS) = 4000.0-) | m�NKNGS FRICTION FACTCR = (�15() | ^ ?ORNAL-CEpTF 7�'OW [NFOpMA-[ON: `'/ 400MAL DEPTH(FEIT) = 1.46 %OW `[P-WTDTH/FEEF) = 75.00 |'1�u �REA'�O��PE FEET' 72 = i3� / ' ' | `i\DRAULIC DEPTH(FEET) = j.46 FLOW AVERAGE VELOCITY/FEET/SEC.) 36.46 UNIFORM FROUCE NUMBER = 5.312 PRESSURE ^ MOMENTUM(POUNDS) = 287601.40 AVERAGED VELOCITY HEAD(FEET) = 20.638 SPECIFIC ENERGY(FEET) = 22.101 ORITICAL-DEPTH FLOW INFORMATION: CRITICAL FLOW FLOW TOP-WIDTH(FEET) = 75.00 CRITICAL FLOW AREA(SQUARE FEET) = 333.94 CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 4.45 CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.> = 11.98 CRITICAL DEPTH(FEET) = 4.45 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 139240.30 K\'FPAGEb CRITICAL FLOW VELOCITY HEAD/FEET) = 2.228 CRI�ICAL FLOW SPECIFrC ENERGY(FEET) = 6.680 DESCRIPTION OF STUDY ************************** � RECTANGULAR CONCRETE CHANNEL » » 5=4000 cfs, 0=0.013 * » 75 ft WIDE, 5,5 ft DEEP, Vma,=40 "Ps * ':aFl ; I•iOR I ZONTx- L /VERT T. CAL) _ .00 0 =' SEW I DTH ( FEET) -_ 75.00 CONSTANT CHANNEL SLOPE ( FEET/FEET) - .070800 UN I F OR,M !.._OlJ (C S) _. 4000.00 MANN I NGS FRICTION FACTOR = .0130 NORMAL -DEPTH FLOW INFORMATION: NORMAL DEPTH(FEET) = 1.42 FLOW TOP—WIDTH(FEET) = 75.00 FLOW AREA(SQUARE FEET) = 106.57 HYDRAULIC DEPTH(FEET) = 1.42 FLOW AVERAGE VELOCITY(FEET/SEC.) = 37.53 UNIFORM FROUDE NUMBER = 5.549 F'FESSURE + MOMENTUM(POUNDS) _ 295663.30 AVERAGED VELOCITY HEAD(FEET) =_ 21.875 SPECIFIC ENERGY(FEET) = 23.295 — :RITICAL_--DEPTH FLOW INFORMATION: - f"RI•:ICAL F40W TCP-WIDTH(FEET) — 75.,00 ... iii ".'- A FLOW AREA (S>. ~;UARE FEET) " 333.94 CR T T I CAL. FLOW HYDRAULIC DEPTH FEET) = 4.45 ,-_ r T : CAL CLOW AVERAGE VE'.LOC I TY ( FEE'S"/SE . ' = 11.90 1..,-_ ITT. =AL : PH r FET) = 4.45 _RT TI fA. F_0E PRESSUREMOMENTUM(POUNDS)+ = 1 x92* ._0 "E .AGED CRITICAL FLOW VF=LOCI"1``,/ HE=4=EET) 2•22P w r -• %A� `"'.._OW "il~ E I T I C ENERGY(FEET) -- 0.69f_.) 69+") ;...r.x.•:� �h:# ;i.:,:..:#•tf•?k-k-:4• q..•,..,yt.s. #il•?F# DE S_ F I p r I ! nN OF STUDY # 3r.h..p,. �...;....�.:a:�c }.sr E..k.��.�. �..y: •: �.r +;: fi. 4. tE: C- =i{'.GUL AR CONCRETE CwANNEL � .:{. e__;.-«•?# n,••�'�•:#-�r',t-� �z.�:.:.::.:.;y-3r•''-:• � at•?E•k-y:,�..#.�. # �: v.�::} F. x.#.K � �•;;�ie•i-�3t iE•?'•+r�-.#•ri•-=-•� •�F?t•# #.�..�r..;c.hi-•�i,-•F;t:'T� k'.=:_'4 -+F• � � .�.# 1 f #• y -r, -� i -'f• ;%'k k•'F`•.;- .�;• k #'�• >F •lt # iE ii- iF -#' •f• � #.}i. ,�. M.:rt. j..�. �ji...f..z.:f. � k'..# ?F �.:i. it. __ .`•' jt. �• .y ?i..{. ar .;. �. y #.:;. fi _�.:. •,�. �. _y .::.#.;t 'R. _;. yr..�..�..�..;_ � •�!• :: . • . %= EL INPUT INF- RMATI(.3N::.. . —-- ---------------•-------....-------- ---- — '�;r�':��#i.IEL-�• �-.T'Wf31"J'Tf L_/VEFiTIr;'A!_ j—------ 'rH� y�Fjtt B!' S W I DTH ( FEET) = 75.00 CONSTAj"11.T. CHANNEL ;SLOPE(FEET/FEET) _ .070900 UNIFORM ;=LOW(CFS) = 4000-00 MANN I NGS FRICTION FACTOR = .0150 NORMAL—DEPTH FLOW INFORMATION: .. > NORMAL DEPTH(FEET) = 1.55 FLOW TOP—WIDTH(FEET) = 75.00 F!—OW AREA ( SQUARE FEET) = 116.30 HYDRAULIC DEPTH(FEET) _ 1.55 FLOW AVERAGE VELOCITY(FEET/SEC.) = 34.39 UNIFORM FROUDE NUMBER = 4.867 ,".c:j SSURE + MOMENTUM(POUNDS) _ 272230.33 AYERAGED VELOCITY HEAD ( FEET) = 1.8.368 SPECIFIC ENERGY(FEET) = 19.919 ;° r T I CAL—DEPTH FLOW INFORMATION: 7P I T I CAL FLOW TOP—WIDTH(FEET) = 75.00 CRITICAL FLOW AREA QQUARE FEET) = 333.q4 CRITICAL F_;W 1-i'` DRAU?._ I C DEPTH(FEET) — 4.45 CRITICAL FLOW AVERAGE VEL.00 I TY ( FEET / SEC .) = 1 1 . % :,'at= ED _ _ T T I CAL FLOW VELOCITY HEAD(FEET) = 2.R28 •Q :TlC'LSPECIFIC_f�ENERGY(FEET) _ 6.680 _0 } i. - £ �t it .� cp. ;: .r K .... j .: }� •# } 4 h ji -!F D `__ C R I P I• I O N OF STUDY L.. 'F �F !i 9E # # .0 �..� # �. a ?F !f 3� � � :? ' t •t 3f •3F #'.7 * R ri-jl�G JLAR CNC`FETE CHANNEL_ r :• y0 ft WIDE. 5.5 -r%, DEEP.. `•1111c1:. =C.0 fos k „, s. T �- �..�.:� � x..�..� .k .>l..y�. r:. jf'.•# >?. ai. •3F• # ?E'DE •� •#- 9i• 3h •?E• ?�• 9E •)i' •i!' •.>,(' •3E 9r :�F•-?f :{. •!F •�• �. •it # #: a. # .� •#• .<f• # �iE• •3f• #• .� �• ) •;-':• # # # � :t :+i• t •}t -k•.iE ?4• • �• �. 'F 3F• # •*• .*. 1! sy.:# _4'!. ;f .j(..�. s�"!E' # �. y4' sJk'1F #'11'ti£• ?E •1i.'3f• sy •if• •3E• # �!' #' yf"j(' 4••34' #'f. � yE• �#' �f if• # :�. # #)E � �i' .fi �f"#:Nr .�•'Sf' iE' yl..�..}F :{. x.�. #.}t• i4' •)i• .j�. #'�' # �"#'s(..�'*"1(.'�' jt' �' CHnNNEL INPUT IN:=ORMATION<;;•:;<; ::: CHANNEL Z ( HORIZONTAL/VERTICAL) _ .00 E• A EW I I)TH ( FEET) = 90.0o CONSTANT CHANNEL SLOPE (FEET/FEET) ,- .094500 UNIFORM FLOW(CFS) = 4000.00 0 MANN I NGS FRICTION FACTOR _ .0130 NORMAU --C)EF'TH FLOW INFORMATION Cr�!a,L_ (�EF'TH (F.:T ) �. 1.25 1OF FLOW KOP-WIDTH(FEEv) 80.0C.) un= AREA(SOUARE FEET) 99.95 r --W AVERAGE G VE=i..-tOC L 1 `-f ( F E .' SE_C,) -- 40 .02 ,__9 r -'In. RE + N 1h• ENTl Iii ( =SOU D S) - 31412800 Q4T?TCFV VVLOCITY YEAD(FEETY 2! /•-• CG1.'•I ..CAL--7EPTHF•�I._€_W IN=C MATION: COFr1.•_AL- F! -OW TOP-WIDTH(FEET) = 80,01-1 CRI11CAL F40W r, EA ; C'.O DARE FEET) =• 341-02. 1_," E r 1._AL FLOW I-it'�i`E'P LIC DE=f:-THkI•-EET•; _ ,•('.i:.'.7 -. ITT_ CAL. F� _i.'Ly 1 V`cRf' SE Vf-t_O : I TY (FEE:T / SEC 71%77CAL DEPTHVE T) = 4.e7 'r O FLOW PRESSURE + h.MCh_! ICU NE S) 1%276.20 .•`VE R,= IE^ CRITICAL FLOW VEL O a. TY HE AD { FEET A 0133 1'33 - T I CA;_ FLOW SPECIFIC ENE 36Y ( FEET) = DESCRIPTION i.31= STUDY PROTAC• SULAR CONCRETE CHANNEL 3? rt WIDE, 5.5 rig DEEP, Vma =40 fps t x t} �- } •�• �'�• }- 3F'�• � k .:rt. �..•..lf 34• •aF # 4• # •# if' �'-34• # •3r ?;• -#• •�F' •fi i4' •34• ?E 9E # i4.3?•'i4'')?• �•'3[• •34• # •34• #.�, k: i4• # •�• :f• 9r # �E• •1F ?# # # #'Jf•'#'t �•'i- .x •�:• � 4 �• dF fi if• .x :r ;f ;• ^�� # -+ •(• 4• ti(• # ii• # •'#• -r •3F # k• •:#• # �• •34• aF •![• iF aE• iF •34' iE •i4• •34• y4• iF �(• # �• •,4• # # •?F # ?F �- �- # ye- # 4• x i•* �• •34• # �►. -:a• i4• -3E iF x-•�E' # k• # .� 3F •34 -x � # � # # # �. �4' i• i*• M• ?�- •: ••• CHANNEL INPUT I. NFORMAT I ON< ,.:: <: ---------------------------------------------------------------------------- i. H ANNEL L {HORIZONTAL / VERT I CAL) _ .00 BASEWIDTH(FEET) = 80.00 cowr= CHANNEL SLOPE(FEETMEET) .094500 u"-I1PORM "LOW(CFS) = 4000.oO MhNN I NU S FRICTION FACTOR _ .0150 3150 -. R AL --GEF w FLOW IN Oi;MA f ION: ----------------------------------------------------------------- NO MAL OE'F''TH (FEET) - 1.:36 _i u f'Or•_wiDTH(FEET) = 80.00 • __OW == REA r SQ BARE FEET) = t 09 . 1 tl H T LFtF1L_,r__ I C DEPTH(FEET) = 1.36 ._0A AVE:RA1.,y3' VELOCITY ( Ft E f /'SE� � .) - 36.65 ZA '•::l E 33•t_tRE a MOMENTUM(POUNDS) - 288841 .30 nVERAGED VELOCITY HEAD(FEET) - 20.873 FHEC I IC ENERGY(FEET) 2E.237 CRITICAL -DEPTH FLOW INFORMATION: CRITICAL FLOW TOP-WIDTH(FEET) = 80.00 CRITICAL FLOW AREA (SQUARE FEET) - 341.22 C ' I T I CAL FLOW HYDRAULIC DEPTH(FEET) = 4.2 CKTICAL_ FLOW AVERAGE VELOCITY(FEET/LEC.) = 11.721 CRITICAL DEPTH(FEET) = 4.27 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 136E76.60 AVERAGED AGED CRITICAL FLOW VELOCITY HEAD(FEET) = 2.133 CRITICAL FLOW SPECIFIC ENERGY(FEET) = 6.399 Z9 1V4rIIJ JIP N • •T V • _M •' �If 11 5J F I DIAM9 ►• I IDI IV'n NMI_ • ' •`5'Illf FUSCOEuMVSrer gArr�>Suite A PROJECT:—TIW,4AIOA c114,1✓E PROJECT NO: 2/0C Rarrside, Ca4rornia 92503 N S (774) 354-0161 BY: -T = DATE ¢_/�_ gy CHECK DATE: FAx(n�) 4)354 3S4-axlo Civil Engines • Land Surveyors SHEET / OF U) /G co N n 46 ISI O Ga 1 O co -Z N I Cid W O Q C) O O 0 O p O O U 0 0 0 p o 0 0 0 0 0 0 0 - In 0 0 0 0 0 o p p o 0 0 a U 0 0 0 0 0 N 0 N 0 N 0 N 0 N o N r D ai CD � OBD C* c N co N w N co � N � N c4 r � wt w w 1 o a-)! 1-) N N O 1 i Ql 1 b i co Ca ID Z t W N O crl Ul o D �o QO ? ,o op •o �b c� co O v �1 o o 0 0 0 0 0 0 0 o j fl ° y o{ o 0 0 0 0 o O o p o O !■ ■ Rit Sterang Suite 2503 PROJECT: ET/WXIV✓O i Cf1AN1✓EL PROJECT NO: 210 Riverside Cal{j14) 3 92503 �n�)3s¢-o16r gl(: T Z DATE ¢_/6.89 CHECK: DATE: Ulm-omMMNSMWIW lrix(7I4)354-0810 SRm C" engineers •rand Surveyors SHEET 2 OF w y O 0 0 0 a � 0 0 o p o 0 o O o 0 0 0 0 0 0 o p 0 0 vl Ui Ul co z m C13 o -- D 0-\ \ Cp O1 V ba �i o Z 0 3 ey Op cip o0 --p `Q `Q y Ll --t '-Q Q� or.\ -Z aD OJ •c� y � D O o o O O O O o 0 f D 0 0 o O O O �p i* RESULTS OF IRREGULAR CHANNEL ANALYSIS ** CALCULATIONS BASED ON MANWINGS EQUATION WITH ALL DIMENSIONS IN FEET OR FEET AND SECONDS :c> Copyri;ht 1982-88 Advanced Engineering Software (aes) Ver. 3.3A Release Date: 8/02/88 Serial # 2224 Analysis prepared by: DESCRIPTION OF STUDY ************************** y CAFACIrY FOR ETIWANDA CHANNEL * * 0=0700 Lis, T=0.0228 * ^ FRTEGCARD= '}.S0 ft * ----- ----_----------------------------------------------------------- / 1 ENTERED IMFCPMATION FOR SUBCHANNEL NUMBER 1 : HODE ^1UMBER "Y" COORDINATE "Y" COORDINATE 1 .00 �2 7. 23.50 4 23.51 6UBCi|ANNEL SLOPE(FEET/FEET) = .022800 SYBCHAN'|E'- M4NNlMGS rPICTION FAC�OR = Z3 5' 91.00 100.00 /o 00C&4NNEL FLOW(CFS) = 6508.7 FUBCH4NNEL FLOW AREA(5QUARE FEET) = 149.57 JUDCHANNEL FLOW VELOCITY(FEET/SEC.) = 42.152 35BCHAmNEL FROUDE NUMBER = 2.940 SUBCHANNEL FLOW TOP-WIDTH(FEET) = 23.44 3U8CSANNEL HYDRAULIC DEPTH(FEET) = 6.39 ------ ______________________________________________________________________ TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 6300.00 COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 6308.74 ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE ELEVATION............................. 99.95 NOTE: WATER SURFACE IS BELOW EXTREME LEFT AND RIEHT BANK ELEVAYIONG. ____________________________________________________________________________ DESCRIPTION OF STUDY ' CAP -CITY FOR ETIWANDA CHANNEL * � ]= 3500 cfs` S=0.0228 * � T7EEBCARD= 2.5 ft � �� * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : NODE NUMBER "X^ COORDINATE `Y" COORDINATE 1 .00 100.00 2 13.50 91.00 3 23.50 91.00 4 23.51 100.00 SUBCHANNEL SLOPE(FEET/FEET) = .022800 SUBCHANNEL MANNINGS FRICTION FACTOR = .014000 ^'^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^~^^^^^^^^^^^~^^^^^^^^^^^^``^^^ SUBCHANNEL FLOW(CFS) = 3505.5 SUBCHANNEL FLOW AREA(SQUARE FEET) = 96.34 9' ~ SUBCHANNEL FLOW VELOCITY(FEET/8EC.) = 36.385 SUBCHANNEL FROUDE NUMBER = 2.902 SUBCHANNEL FLOW TOP-WIDTH(FEET) = 19.73 SUBCHANNEL HYDRAULIC DEPTH(FEET) = 4.88 ____________________________________________________________________________ ____________________________________________________________________________ TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 3500.00 C01PUTED IRREGULAR CHANNEL FLOW(CFS) = 3505.48 / ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE HLEVATICN.......... ............. ...... 97.48 NOTE: WATER SURFuCE IS BEL% E47REME ` LEFT AND TIGHT 9P4[ ELEVATIOIS. \ / DESCRIPTION OF STUDY * CAPaCITv F3R ETIWANEP CHANNEL * ) � U=2700 �rs, S,C.D22� � / � K FREEBOARD= 3.5 ft ---------------------------------------------------------------------------- * ENTERED INFORMATICN FOR SUBCHANNE! NUMBER 1 : NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 "0{' 100.00 2 13.50 91.00 3 23.50 91.00 4 23.51 100.00 SUBCHANNEL SLOPE(FEET/FEEV = .022800 SUBCHANNEL MANNINGS FRICTION FACTOR = .014000 ^^~~^^^^^^^^^^^^~^^^`^^^^^^^^^^^^^^^^^^^^^^^~'^^^'^^^^^'^^^^^^^^^^^^^^^^^^^^ SUBCHANNEL FLOW(CFS) = 2700.1 SUBCHANNEL FLOW AREA(SQUARE FEET) = 79.38 SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 34.017 SUPCHANNEL FROUDE NUMBER = 2.886 SUBCHANNEL FLOW TOP-WIDTH(FEET) = 18.39 SUBCHANNEL HYDRAULIC DEFTH(FEET) = 4.32 ____________________________________________________________________________ ____________________________________________________________________________ T]TAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 2700.00 COMPU-ED IRREGULAR CHANNEL FLOW(CFS) = 2700.08 ESTIMATED IPREGULAR CHANNEL NORMAL DEPTH WATER SURFACE ELEVATION............................. 96.59 14 === ====================================== OF IRREGULAR CHANNEL ANALYSIS ** CALCULATIONS BASED ON MANNINGS EQUATION WITH ALL DIMENSIONS IN FEET OR FEET AND SECONDS ============================================================================ (c) Copyright 1982-88 Advanced Engineering Software (aes) Ver. 3.3A Release Date: 8/02/88 Serial # 2224 Analysis prepared by: FUSCOE, WILLIAMS, LINDGREN & SHORT DESCRIPTION OF STUDY * * CAPACITY FOR ETIWANDA CHANNEL * [=1'900 cfs, S=0.0228 A | * FREEBOARD= 0.00 ft * ______ ____________________________________________________________________ * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : NODE NUMEER "X" COORDINATE "Y" COORDINATE 1 0x) 2 13.50 � 25.5� 4 Z9.00 SUDCHAKNEL SLOPE(FEET/FEET) = .022600 SUBCHANNEL MANNINSS FRICTION FACTOR = 100.0� 91^ 00 /'E:/ i5�/ 91.00 100.00 .014000 TUBCHANNEL FLOW(CFS) = 10917.4 SUBCHANNEL FLOW AREA(SQUARE FEET) = 228.d1 SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 47.798 SUBCHANNEL FROUDE NUMBER = 3.477 SUBCHANNEL FLOW TOP-WIDTH(FEET) = 38.92 SUBCHANNEL HYDRAULIC DEPTH(FEET) = 5.87 - - ----------------------------------------------------------------------- TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 10900.00 COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 10917.39 ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE NOTE: WATER SURFACE IS BELOW EXTREME LEFT AND RIGHT BANK ELEVATIONS. DESCRIPTION OF STUDY ************************** * * [APACITY FOR ETIWANDA CHANNEL * * Q=5700 cfs, S=C.0228 * * rREEBOARD= 2.5 ft E,d'i EFtED Ii'•:'FORr'!i=yT13N FOR S1.!Rt;HAidIVEL.. N!_:h1SL_R .i NC, DE NUMBER ,._.,, COORDINATE � 1Nr"•tT COORDINATE 1 . 00 0 1 f: 0.00 13.50 91.00 7. 23.50 - 4 23.51 100. 00 SUBCHANNEL SLOPE ( FEE T / FE.ET) - .026800 SUBCHANNEL MANN Z ! O S FRICTION FACTOR = .014000 0 :_........................................................... SUBCHANNEL FLOW(CFS) = 3600.6 SUBCHANNEL FLOW AREA(SQUARE FEET) = 96.:4 SUBCHANNEL FLOW VELOCITY(FEET/SEC.) _ 39.448 SUBCHANNEL FROUDE NUMBER = 3.146 SUBCHANNEL FLOW TOP-WIDTH(FEET) = 19.73 SUBCHANNEL HYDRAULIC DEPTH(FEET) = 4.88 TOTAL IRREGULAR CHANNEL. FLOW(CFS) WANTED = 3800.00 COMPUTED IRREGULAR CHANNEL FLOW(CFS) -= Z800.56 ESTIMATED IRREGULAR CHANNEL NiORMAL. DEPTH WATER SURFACE ELEVATION ............ . ....... r........ 97.43 NOTE: WATER SURFACE I J wtL:W EXTREME __rT AND RrBHT SANK -_rbA!IiNom . DESCRIPTION O F STUDY T CAPACITY FOR ET I WANDA CHANNEL. C-2600 cfs. 5=0.0263 .n . l= %+ N •yC .7..j� :lz .a %� M .jC � .j� .'�,�.:� �. +� %P. %(` :i? ;ii .'�`..';_..� �. -�1� )4r :r T � 'm..'�:.j:.� ;iC Tw :il` k .',k. ;'�._ .� :� .T• •y .� '+� :;: i$ .n �- �'� .�_ � '•�_ :...'�...au..� =4 �4 n Y� is � �^ % � T iti ENTERED INFORMATION FOR SUBCHANNEL NUMBER NODE NUMBER • :, COORDINATE "Y" C3Gzvs;FE h 13.50 91.00 23.50 91.00 4 23.51 100.00 SUBCHANNEL SLOPE ( FEET/FEET) = .026800 SUBCHANNEL MANN I NGS FRICTION FACTOR = .014000 ........................................................................... SUBCHANNEL FLOW(CFS) = 2800.3 SUBCHANNEL FLOW AREA(SQUARE FEET) = 76.31 SUBCHANNEL FLOW VEL.00ITY(FEET/SEC.) 36.455 TUBC}IAr,:NEL F:. OUDE NUMBER -- 3.126 SUBCHANNEL FLOW TOP-WIDTH(FEET) - 11.18 SUBCHANNEL_ HYDRAULIC DEPTH(FEET) = 4.22 TOTAL I PRE GUL.AR CHANNEL FLOW(CFS) WANTED = 2900.00 COMPUTED IRREGULAR CHANNEL FLOW (CFS) = 2800.27 ESTIMATED I .RREGULAR CHANNEL NORMAL DEPTH WATER SURFACE ELEVATION-- ...............:.......... , 96.45 /n t ENTERED INF]RMATION FDR SUDC�TNNEL NUMBER l : MODE NLMBER "X" COORDINATE "Y" COORDINATE 2T / � .00 100.00 2 15.00 90.00 \m 7 23.00 90.00 \______l 4 25.01 100.00 /o' SUBCHANNEL SLOPE(FEET/FEET) = .026800 SUBCHANNEL MANNINGS FRICTION FACTOR = .014000 ^^^^ ^'^^^^`^`^^^^^^^^^^^^^^~~^^^^^^~^^^^^^^^^^^^^^^^^^^^^^^^^```^``^`^``'' SUBCHANNEL FLOW(CFS) = 4907.3 SUBCHANNEL FLOW AREA(SQUARE FEET) = 116.61 SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 42.082 SUBCHANNEL FROUDE NUMBER = 3.163 SUBCHANNEL FLOW TOP-WIDTH(FEET) = 21.21 SUBCHANNEL HYDRAULIC DEPTH(FEET) = 5.50 ____________________________________________________________________________ TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 4900.00 COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 4907.31 ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE ELEVArION.................'........... 97.47 NCTE: WATER SURFACE IS BEL]W EXTPENE LEFT AND RlSHT BANK ELE'/ATI3NS. �-------------------------------`---------------------------------- DESCRIPTION CF STUDY * CAPACITY FOR ETIWANDA CHANNEL. * « C=ZAG0 cfs, S=0.0169 f � FREEBOARD= 1,5 ft * ____________________________________________________________________________ * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 .00 1O0.00 2 15.00 90.00 3 25.O0 90.00 4 25.01 100.00 SUBCHANNEL SLOPE(FEET/FEET) = .026800 SUBCHANNEL MANNINGS FRICTION FACTOR = .01400O '' ^^^^`^^^^^^^^^^^^^^^^^^^^^^^^~~^^^^^~^^~^^^^^^^^^^^^^^^^^~^^^^^^^^^^^^^ SUBCHANNEL FLOW(CFS) = 3800.4 SUBCHANNEL FLOW AREA(SQUARE FEET) = 96.34 SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 39.447 AL17*ANNEL F9OUDE NUMBER = 3.146 Su8CHANNE" FLOW TOP-WIDTH(FEET) = 19.73 SUBCHANNEL HYDRAULIC DEPTH(FEET) = 4.88 ____________________________________________________________________________ ___________________________________________________________________________ TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 3800.00 COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 3800.41 ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE A CrNTi_Y-aCi) i.:`,F ..i'i;':(-•i : 1U,4 FLIF.' !'I_.ii',:^.�:. .._ . '•.('_:,E E NL;MBER " v " COORDINATE " COORDINATE 13 . 5t:) ? 1 . 00 :71 2 3 . 5 (:) 91.00 4 23.51 100.00 SUDCHANl' EL SLr7i"''E C EE /F:-_F_T) - .054400 SUBCHANNEL MANN I NGS FR I CT I CN FACTOR = .014000 00 a . ,. • I . _ J . . . . . n a _ . . . . . . . n . . n . . . . n M1 . a e. . . . n . . . n J J 4 a . . . . . . . . . . . . a . . . . . n n . . . .+ SUBCHANNEL FLOW(CFS) = 5414.B SUBCHANNEL. FLOW AREA(SQUARE FEET) = 96.Z4 SUBCHANNEL FLOW VEL.00:ITY ( FEET/SEC .) _ 56.203 SUBCHANNEL_ FROUDE NUMBER = 4.482 SUBCHANNEL FLOW TOP—WIDTH(FEET) - 19.75 SUBCHANNEL HYDRAULIC DEPTH(FEET) = 4.33 ------------------------------------------------------------------------------ ----------------------------------------------------------------- TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 5400.00 COMPUTED IRREGULAR CHANNEL. FLOW(CFS) = 5414.77 ,_.':"sT.: I A : 'D TRFtl::;:i•_•LA.. Lr•!r-INtdEL NORMAL DEPTP P ;dA , !_ SURFACE r. EVATTr.M J.. ,. n ......... ............, `- 7.419 NOTE: WATER SURFACE IS 3ELOW EXTREME LEFT AND RIGHT •3A`;V ELEVATIONS. ;� .;4. •,.:•r. `fi :�' : t :i� 'IY ; T .. -,' ;x ;� : ;1; /' C f Y _ i_ S I i ' � i I 1•'•S L ! i - STUDY ;� :t� :�' '�: )� i. `.� 'i::•� � 'Y � 'i %8' �� r 1S: ik' Cit `�' �� ;i� '�L` ;rJ W CA: AC i. 7Y FOR R .._ I I WA �. _ A t..:i iAi?�i�'• Ems_ t• � r. _ b f a- iii'. �.. .Jf + • ._ _L. . •� ..L • �y a?:,� :::k .r '.N :� �h ils :�: � .h � .i � •Y .� )�. i4 .1 i!. ••�i .1+ '� 'i' .i SC .T `� � r ..�.'`` i}K .y: ?.F :i .jj l..j: •� .?. � :' i� +1 Y• •T 'F�' ]V v�' � .Y ?r•. if:: -Y �T. �. �M1 .jt � )k .� .x 'jk• ::.�, A�. y. +i —----------------------------------------------------------------------------- * ENTERED INFORMATION FOR :+USCrl?=NNI_L_ NUMBER 1 J NO,;,_ s•;lJ::,...ER XCOORDINATE Ct_k:'DI iTE 1 .00 y0 1{ yi; . 00 2 13.50 91. 00 23 50 91.00 4 23.51 :f.0i .00 SUBCHANNEL SLOPE ( FEET/FEET) .054400 SUBCHANNEI_ MANN I N3S FRICTION FACTOR = .014000 ........................................................................... SUBCHANNEL FLOW(CFS) = 4002.4 SUBCHANNEL_ FLOW AREA ( SQUARE FEET) = 77.00 SUBCHANNEL FLOW VELOCITY(FE:ET/SEC.) SUBCHANNEL _i.._ FROUDE NUMBER = 4.45:3 .MI3C Ahi,,c..._._ FLOI+, TOP—WIDTH(FEET) 18.20- SUBCHANNEL 8. _S BCHAhNC'_-I HYDRAULIC DEPTH(FEET) _ 4.2-3 Tt1A_ I : REU_r c CHANNEL FLOW(CFS) WANTED = 4000.00 ;OMPL'TED T FiF:Ir'_GUL_AR CHANNEL FLOW(CFS) = 4002.42 ESTIMATED IRREGULAR CHANNEL NC:RMAL DEPTH WATER SURFACE ELEVATION.n. ....... ................ 9.46 �� NOTE: WATER SURFACE IS BELOW EXTREME LEFT AND RIGHT BANK ELEVATIONS. DESCRIPTION OF STUDY * C)PACI[Y FOR ETIWANDA CHANNEL * * O= 12000 cfs, S=0.0544 ° * A FREEBOARD= 0.00 ft ************************************************************************** ____________________________________________________________________________ * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 .00 2 15.00 3 25.00 4 25.01 SUBCHANNEL S4OPE(FEET /FEET) = .054400 SUBCHANNEL MANNINGS FRICTION FACTOR = .C14000 . SUBCHANNEL FLOW(CFS) = 12926.8 SU8CHANNEL FLOW AREA(SQUARE FEET) = 17505 9UBCHPNNEL FLOW YELOCITY(FEET/SEC.) = 68.586 SUBOHANUEL FROUDE NUMBER = 4.565 / %3CHAN^|EL FLOW TOF—WICTH(FEET) = 25.01 7.|�Zn, CHAN�F"L HYDFAULIC DEPTH(FEET) = 7 01 -------'---- --------------------------------------------------------------- T3TAL IRREGULAR CHANNEL Q=CFS; WANYED = 12000.90 c2mPum 1R7EBULAR THANt|EL FLQW(CFS) = 1202L.79 ESTIMATED QFEOULAR CHANNEL NORMAL DEPTH WATER SjRFACE ELEYFTICN.............^.^..."~........ 190.01 NOTE: WATER SURFACE IS ABOVE LEFT OR FIGHT BANK ELEVATIONS. _________________________________________________________________ DESCRIPTION OF STUDY I CAPACITY FOR ETIWANDA CHANNEL * * * O=7000 cfs, S=0,0544 * t FRiEBOARD= 2.5 ft ____________________________________________________________________________ * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : NODE NUMBER `X" COORDINATE "Y" COORDINATE 1 .00 100.00 2 15.00 90.0O 3 25.00 90.00 4 25.01. 100.00 SUBCHANNEL SLOPE(FEET/FEET) = .054400 SUBCHANNEL MANNINGS FRICTION FACTOR = .014000 �� .� . ^ ..." ^ . ... .^ . . ..^.. . . 100.00 90.0-0 / /Q 90.00 �-------� 100.00 .C14000 . SUBCHANNEL FLOW(CFS) = 12926.8 SU8CHANNEL FLOW AREA(SQUARE FEET) = 17505 9UBCHPNNEL FLOW YELOCITY(FEET/SEC.) = 68.586 SUBOHANUEL FROUDE NUMBER = 4.565 / %3CHAN^|EL FLOW TOF—WICTH(FEET) = 25.01 7.|�Zn, CHAN�F"L HYDFAULIC DEPTH(FEET) = 7 01 -------'---- --------------------------------------------------------------- T3TAL IRREGULAR CHANNEL Q=CFS; WANYED = 12000.90 c2mPum 1R7EBULAR THANt|EL FLQW(CFS) = 1202L.79 ESTIMATED QFEOULAR CHANNEL NORMAL DEPTH WATER SjRFACE ELEYFTICN.............^.^..."~........ 190.01 NOTE: WATER SURFACE IS ABOVE LEFT OR FIGHT BANK ELEVATIONS. _________________________________________________________________ DESCRIPTION OF STUDY I CAPACITY FOR ETIWANDA CHANNEL * * * O=7000 cfs, S=0,0544 * t FRiEBOARD= 2.5 ft ____________________________________________________________________________ * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : NODE NUMBER `X" COORDINATE "Y" COORDINATE 1 .00 100.00 2 15.00 90.0O 3 25.00 90.00 4 25.01. 100.00 SUBCHANNEL SLOPE(FEET/FEET) = .054400 SUBCHANNEL MANNINGS FRICTION FACTOR = .014000 �� .� . ^ ..." ^ . ... .^ . . ..^.. . . KuOCHANNEL FLOW ARE&EQLARE FEET) = 1Lb.82 3i'9[�HANNEL FLCW YELOCI-Y(FEET/SEC.) = 59.992 SUBCHANNEL FROUDE NUMBER = &.507 SUBCHANNEL FLOW TOP-WIDTH(FEET) = 21,23 SUBCHANNEL HYDRAULIC DEPTH(FEET) = 5.50 ____________________________________________________________________________ ___ ________________________________________________________________________ TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 7000.00 COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 7008.57 ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE NOTE: WATER SURFACE IS BELOW EXTREME LEFT AND RIGHT BANK ELEVATIONS. DESCRIPTION OF STUDY t CAPACITY FOR ETIWANDA CHANNEL * * * Q= 54C0 cfs, S=0.0544 * t FPEEBCARD= 3.5 ft ---- --------------------------------------------`----------------------------- ' * ENTERED iNFORMATICN FOR SUBCHANNEL NUMBER 1 : '^ wCDE NU1DER "M" C003DINA-E "Y" COORClNATF / 1 .0O 10{.00. / /V 2 15.00 90.0C | 3 25 0� 90.00 ' `�-----� 4 25.01 100.00 SUBCHAMNEL SLOPE(FEET/FEET) .054400 SUBCHINNEL MANNIMGS FR:CTION FACTOR = .014C00 ...'. ^^...................... ....... ^............ ^........... ^......~.^.^.. 3U3CHANNEL FLOW(CFS) = 5414.6 SUBCHANNEL FLOW 4REA(3QUARE FEET) = 96.34 SUBCHANNEn FLOW VELOCITY(FEET/GEC.) = 56.202 � 3UBCHANNEL FROUDE NUMBER = 4.482 SUBCHANNEL FLOW TOP-WIDTH(FEET) = 19.73 SUBCHANNEL HYDRAULIC DEPTH(FEET) = 4.88 ____________________________________________________________________________ __ _________________________________________________________________________ TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 5400.00 COMPUTED IRREGULAR CHANNEL FLOW(CFS) == 5414.55 ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE ELEVATION............................. 96.48 NOTE: WATER SURFACE IS BELOW EXTREME LEFT AND RIGHT BANK ELEVATIONS. ___________________________________________________________________