HomeMy WebLinkAboutEtiwanda Creek Drainage Corridor Design Concept ReportI I •� lig � t I': [ l �
DESIGN CONCEPT
REPORT
JUNE, 1989
I
FUSCOE
WILLU MS
LINDGREN
& SHORT
Cir it Engineers • Land Surrejx)rs
July 13, 1989
To: Distribution List
Subject: Etiwanda Creek Drainage Corridor
Design Concept Report
2106.1101
Fuscoe, Williams, Lindgren & Short, Inc. is pleased to present the attached
Etiwanda Creek Design Concept Report on behalf of the Caryn Company and the
North Etiwanda Land. Owners Consortium. This do=Lient is intended to support
the Etiwanda North Specific Plan concept for the improvement of Etiwanda Creek.
The report addresses the various project alternatives and issues within the
Etiwanda Creek Drainage Corridor. A preferred alternative is presented which
was selected by the North Etiwanda Land Owners Consortium. We welcome any
comments or suggestions for consideration in the preliminary design of Etiwanda
Creek Channel.
Specifically, we respectfully request that the County of. San Bernardino
Department of Transpoitation/Flood Control and the City of Rancho Cucamonga
provide a written response to the recommendations presented in this report. An
expeditious reply that would allow us to meet or accelerate the progress
schedule outlined in Section 5 would be sincerely appreciated. Our goal is to
begin construction in February, 1991.
Sincerely,
FUSCOE, WILLfAMS, LINDGREN AND SHORT, INC.
,,fi/, � 1
Gerald J. Baril, P.E.
Project Manager
GTB:kec
Attachments: Etiwanda Creek Drainage
Corridor Design Concept Report:
Distribution List
110 51.Sterlittg Ark true • .5trite A • Rirxisule, Californ a 9?5(1; • Phone ('14) .;54-0161 1AX ( 714) -354-1810
04 MITUR W.V6014 01
North Etiwanda Lar13 Owners Consortium (3 0 )
Ahmanson Development - Craig Page
Nark Kehke
Entec - Bob King
Akins Development - Ralph Spargo
Olivier Angell - Owner
Caryn Company - Joe DiIorio (3)
Century American - Ron Metzler
Don Stahlin
Sing -Wang Cheng - Paul Taylor (2)
Jim Clark - Owner
Fred Eyer - Owner
First Cities Properties - Bob Proehl
Cecil Johnson - Owner
Eli Joshua - Owner
Landmark Land C,omLxzny - Kevin Manning
Mike Kerney
Kent Philips
John O'Neil - Owner
Watt Inland Empire - Steve Kabel
Rockfield Development Co. - Sonny Geary
Gil Rodriguez - Owner
Standard Pacific - Kevin Pohlson (2)
Tracy & Haigh Dev. Co. - Tom Tracy
Tom Haigh
Unitex Management Corp. - Jeff Pierson
Russ Zasio - Owner
San Bernardino County Flood Control District (7)
Ken A. Miller, P.E., Director
Lewis S. Neeb, P.E., Project Manager (2)
Kenneth D. Guidry, P.E.,Chief, Water Resources Division
Robert Corchero, P.E., Chief, Planning Division
Bob Lawrence, Public Works Engineer III
Chidi Onomuno
Russell Maguire, P.E. City Engineer
Walt Stickney, P.E., Engineering Department
Miki Bratt
Larry Henderson
Rick Gomez, Director., C==ity Development
City of Fontana (3)
Annivory Calvert, P.E., DPW
Jim Mocalis, Director, Conmimity Development
Felipe Molinos, P.E.
CmisSltants (15 )
Bill C. Mann & Associates - Bill C. Diann, P.E.
Land/Plan/Design Group - Jess Harris
Steve Kelly
Moore & Taber, Geotechnical - Ix)uglas R. Bell, P.E.
Gary Lass, P.E.
Engineering - Science, Inc. - David M. Hall, P.E.
Williamson & Schmid - Dick Schmid, P.E.
Mark Seits, P.E.
The Peninsula Group - Chris Pauls
Patrick Gibbons
Geoprcducts Ccrpany - Jim Fish, Ph.D.
Dangermond & Associates, Inc. - Pete Dan e=nd
Bobbi Lyon
David Rainville - Golf Course Architect
River -tech, Inc. - Hasan Nouri, P.E.
J.P. Kapp & Associates - Ron Sheldon, P.E.
ETIWANDA CREEK DRAINAGE CORRIDOR
DESIGN CONCEPT REPORT
June,1989
Prepared For:
The North Etiwanda Land Owners Consortium
P.O. Box 216
So. Laguna, California 92677-0216
Prepared By:
Fuscoe, Williams, Lindgren & Short, Inc.
11651 Sterling Avenue, Suite A
Riverside, California 92503
Submitted By: IF
Gerald J. Baril, P.E.
\S��RED CIV!( Fy�i
EX065
PIRES
6/30/93
sl .��
ATF Of CAO���'r/
04 DI
. LOIN
ACENOWLEDGEMENT i
EXECUTIVE SUMMARY E-1
1.1
General
1-1
1.2
Project Description
1-1
1.3
Background Information
1-2
1.4
Financing
1-4
1.5
Public Agency Permits & Approvals
1-4
2.1
Etiwanda Debris Dam/Basin
2-1
2.2
Armorflex Channel
2-3
2.3
Concrete Channel
2-5
2.4
Environmental
2-8
2.5
Etiwanda Creek Diversion
2-8
2.6
Water Conservation
2-9
3.1 General
3-1
3.2 Channel Alternatives
3-2
3.21 Alternate No.
1
3-2
3.22 Alternate No.
2
3-2
3.23 Alternate No.
3
3-2
3.24 Alternate No.
4
3-3
3.25 Alternate No.
5
3-3
3.26 Alternate No.
6
3-3
3.27 Alternate No.
7
3-3
3.28 Limited Velocity Concrete Channel
3-3
3.3 Debris Basin vs Dam
3-4
TABU OF OMTENTS (Continued)
`1a.NYWA% %FUw l0l:l:lalo INN 04IN, rYM0
4.1 Project Description 4-1
4.2 Project Costs 4-2
a ar •�a�r � is n:• a, �. n �, � • •i� �.
5.1 Project Alternatives 5-1
5.2 Action Plan 5-1
5.3 Progress Schedule 5-2
A.
Design Criteria
B.
100 -Year Design Flow Schematic
C.
Hydraulic Calculations
- Parabolic Armorflex Channel
D.
Hydraulic Calculations
- Trapezoidal Armorflex Channel
E.
Hydraulic Calculations
- Rectangular Concrete Channel,
Most Efficient Hydraulic Section
F.
Hydraulic Calculations
- Rectangular Concrete Channel,
40 fps Maxim= Velocity
G.
Hydraulic Calculations
- Capacity of Existing Etiwanda
Channel, Victoria Street to
San Sevaine Basin No. 5
H.
Hydraulic Calculations
- Capacity of Existing San Sevaine
Channel, Victoria Street to
San Sevaine Basin No. 5
Fuscoe, Williams, Lindgren and Short, Inc. wishes to acknowledge the following
organizations and individuals for their participation and interest in the
preparation of this report:
North Etiwanda Land Owners Consortium
Ahmanson Development - * Craig Page
Mark Kehke
* Bob King (Enter)
Akins Development - Ralph Spargo
Oliver Angell - Owner
Caryn Company - Joe DiIorio
Century American - Ron Metzler
Sing -Wang Cheng - Paul Taylor
Fred Eyer - Owner
Cecil Johnson - Owner
Eli Joshua - Owner
Landmark Land Company - * Kevin Manning
* Mike Kerney
John O'Neil - Owner
PDC - Vincent Petralia
Rockfield Development Co. - Sonny Geary
Gil Rodriguez - Owner
Standard Pacific - * Kevin Pohlson
Tracy & Haigh Dev. Co. - * Tom Tracy
* Tom Haigh
Unitex Managlt Corp. - Jeff Pierson
Russ Zasio - Owner
* Flood Control Subcommittee Member
Elected Representatives
Supervisor Jon Mikels, District 2
County of San Bernardino
Mayor Dennis L. Stout
City of Rancho Cucamonga
i
W-PUM,• • •• i •a• ••a w • w
Ken A. Miller, P.E., Director
Lewis S. Neeb, P.E., Project Manager
Kenneth D. Guidry, P.E., Chief, Water Resources Division
Robert Corchero, P.E., Chief, Planning Division
• -
OF •• i ••• •r w • • - ••i • w
Ken Edwards, P.E., Chief Engineer
David T. Sheldon, P.E., Assistant Chief Engineer
Frank Peairs, P.E., Planning Engineer
Russell Maguire, P.E., City Engineer
Walt Stickney, P.E., Engineering Department
Bill C. Mann & Associates - Bill C. Mann, P.E.
Land/Plan/Design Group - Jess Harris
Steve Kelly
Moore & Taber, Geotechnical - Douglas R. Bell, P.E.
Gary Lass, P.E.
Engineering - Science, Inc. - David M. Hall, P.E.
Williamson & Schmid - Dick Schmid, P.E.
Mark Seits, P.E.
Bill Young, P.E.
Geoproducts Company - Jim Fish, Ph.D.
Dangermond & Associates, Inc. - Pete Dangermond
Bobbi Lyon
David Rainville - Golf Course Architect
Fuscoe, Wi1 lia®s, Idxx g m & Short, Inc.
Pat Fuscoe, P.E., President
Don Lindgren, P.E., Principal
Ray Allard, P.E., Associate
Gerald J. Baril, P.E., Project Manager
Steve May, P.E., Project Manager
Lan -Yin Weber, P.E., Ph.D.
ii
6: W. Z ffkkll*101• 0 •1 D10M.IN
PURPOSE
The purpose of this report is to establish a design concept for Etiwanda Creek
that (1) provides 100 -year flood protection for proposed development in the
Etiwanda North Specific Plan area, (2) meets the land development objectives of
the North Etiwanda Land Owners Consortium and the City of Rancho Cucamonga,
(3) can be reasonably permitted by the U.S. Army Corps of Engineers and
California Department of Fish & Game, and (4) will be accepted for ownership
and maintenance by the San Bernardino County Flood Control District.
STUDY I IN11TS
The limits of the study for this Etiwanda Creek project are from the double
channel under construction at Victoria Street, to the mouth of the canyon
approximately 3 miles upstream.
The Design Concept Report for Etiwanda Creek was prepared under contract with
the Caryn Company, representing the Etiwanda North Land Owners Consortium.
PROTECT ALTERNATIVES
Nine alternatives for the channelization of Etiwanda Creek are presented or
discussed in this report. The project costs vary from $15 to $24 million. The
channel sections chosen include parabolic and trapezoidal armorflex, and
rectangular concrete. A cost estimate is included for a rectangular concrete
channel with a maximum velocity of 40 feet per second. This cost estimate is
provided as a camparison for the conventional rectangular concrete channel with
a maxinum velocity of 70 feet per second. The project alternatives are
discussed in Section 3 of this report.
PREFERRED ALTERNATIVE
The preferred alternative plan for Etiwanda Creek Channel is primarily an
armorflex lined channel as shown on the schematic plan following this summary.
The project construction cost is $21 million which includes the Etiwanda debris
basin and expanding the capacity of the existing concrete channel from San
E-1
Sevaine Basin No. 5 to the double channel under constriction at Victoria
Street. Armorflex was chosen for design, aesthetic, and enviromnental reasons
as discussed in various sections of this report. Armorflex is a pre -cast
interlocking concrete block product that is cabled together to form a
continuous channel lining. The blocks have voids in which soil is placed and
then vegetated. In a short time, the blocks are covered with vegetation and
the channel takes on a natural appearance. The product is new in this area but
has been in use for about 20 years.
NIAID Il ICN
There are a number of other reports arra documents existing or being prepared
that relate to this report on Etiwanda Creek, which are listed below and
discussed in Section 1.3:
• Master Plan for Ultimate Use of North Etiwanda Properties
For: San Bernardino County Flood Control District and the City of
Rancho Cucamonga
By: The Caryn Cody, Representing Etiwanda North Land owners
(Consortium)
Date: April 17, 1989
• San Sevaine/Etiwanda Creek Hydrology and Basin Routing
By: Fuscoe, Williams, Lindgren and Short, Inc.
Date: January, 1989
• Loan Application Report, Proposed San Sevaine Creek Water Project
By: Engineering -Science
Bill Marin & Associates
For: County of San Bernardino
Date: April, 1986
• Etiwanda North Specific Plan
By: The Caryn Ccripany, Representing the Land Owners
Date: Current
• Ccmprehensive Master Plan of Flood Control and Drainage for the North
Etiwanda Area
By: Fusc.�oe, Williams, Lindgren and Short, Inc.
Date: Current
The preferred alternative plan was developed in a series of workshop meetings
with other environmental, land planning and geotechnical consultants involved
with preparation of the Etiwanda North Specific Plan. The alternatives studied
were presented to a Flood Control Sub -Committee of the Land Owners Consortium,
and all of the consortium yrs at their monthly meeting. The sub-ccmittee
had the responsibility for selecting a preferred alternative.
E-2
F.INANCaM
Funding for construction of the Etiwanda Creek improvements is planned to be
provided through a Mello -Roos C=iunity Facilities District. An election to
establish the District will be held in the Fall of 1989. Financing is
discussed further in Section 1.4 of this report.
PUBLIC AGENCY PI'S AMID APPROVALS
Permits will or may be required by the following agencies:
• U.S. Army Corps of Engineers
• California Department of Fish & Game
• California Regional Water Quality Control Board
• California State Department of Water Resources,
Division of Safety of Dams
• San Bernardino County Transportation/Flood Control Department
• City of Rancho Cucamonga
There are a number of projects issues or constraints which are discussed in
detail in Section 2 of this report. The following outlines the primary issues:
• Etiwanda Creek Debris Facility
- Excavated Basin vs a Dam
- Basin Location
• Armorflex Channel Vining
- Maintenance
- Fencing
• Concrete Channels
- Cavitation of invert from high velocities
- Maintenance
- Liability
• Environmental
- Concrete vs Armorflex
- Mitigation Costs
• Etiwanda Creek Diversion to San Sevaine Basin No. 5
- Riverside County concerns downstream
• Water Conservation
- Preservation of spreading grounds for the MWD and CBMWD
Water Replenishment and Cyclic Storage Requirements
E-3
ETIWANDA CREEK DRAINAGE CORRIDOR
PREFERRED ALTERNATIVE
$21,000,000.
LEGEND
CONCRETE CHANNEL
CONCRETE CONDUIT
mm■ ARMORFLEX TRAP.
CHANNEL
ARMORFLEX PARABOL
CHANNEL
FUSM/)Ls/.11r.il.µ .Irr.. u.•, \nlrrA
WILLIAMrurrnl.t., r.JIFn,.w'lltu.t
!>H1.IH.mW
LRAD cu'! u+ -a rn
(:nyP•.rr. �[nrvJ.fu�[nrvJ Sunn,•rrt
w
104' TO 141'
PARABOLIC
SECTION
9
ow
S-0, 100+00
PROPOSED 24th STREET � � A�
BRIDGE
W 1
90' TO 135
TRAPEZOIDAL
SECTION
�_w�� STA.
15f TO 24'I 72+00
7L_ZH=11' TO 12'
I RECTANGULAR /
IC SECTION
BRIDGE \ �_
DIVERSION STRUCTURE
I
. RCP OR RCB i
hA8N1 M(L_6
RECONSTRUCTED
SECTION EXIST. W A CHANNEL
VIC
BASM
1y EXIST. SAN SEVAI E CHANNEL
E
DBL.
�Pt - CHANNEL UNDER CONSTRUCTION
Fp STA.
16+00MAY 1969
FWLS JN 2106.1101
II
II
SII
LADWP CORRIDOR--,,,.,
1�
SCE CORRIDOR----,fll
PROPOSED EAST Z:z
BRIDGE
O
STA. O
=
150+00
SCE CORRIDOR— ---1
LEGEND
CONCRETE CHANNEL
CONCRETE CONDUIT
mm■ ARMORFLEX TRAP.
CHANNEL
ARMORFLEX PARABOL
CHANNEL
FUSM/)Ls/.11r.il.µ .Irr.. u.•, \nlrrA
WILLIAMrurrnl.t., r.JIFn,.w'lltu.t
!>H1.IH.mW
LRAD cu'! u+ -a rn
(:nyP•.rr. �[nrvJ.fu�[nrvJ Sunn,•rrt
w
104' TO 141'
PARABOLIC
SECTION
9
ow
S-0, 100+00
PROPOSED 24th STREET � � A�
BRIDGE
W 1
90' TO 135
TRAPEZOIDAL
SECTION
�_w�� STA.
15f TO 24'I 72+00
7L_ZH=11' TO 12'
I RECTANGULAR /
IC SECTION
BRIDGE \ �_
DIVERSION STRUCTURE
I
. RCP OR RCB i
hA8N1 M(L_6
RECONSTRUCTED
SECTION EXIST. W A CHANNEL
VIC
BASM
1y EXIST. SAN SEVAI E CHANNEL
E
DBL.
�Pt - CHANNEL UNDER CONSTRUCTION
Fp STA.
16+00MAY 1969
FWLS JN 2106.1101
1' ' f•cN��hM Y �
1.1
The development of Etiwanda North will require the improvement of Etiwanda
Creek for flood protection from Victoria Avenue to the canyon mouth, a distance
of approximately three miles. FWI.S has prepared a number of conceptual plans
and cost estimates that would provide the necessary flood protection with
construction costs varying from $15 million to $24 million. The real cost,
however, mist include costs for habitat mitigation and enhancement, time delay
costs in obtaining envirormental permits, annual maintenance costs, and
development enhancements as a cost credit.
Flood control options that were analyzed included a rectangular concrete
channel, an armorflex lined channel, a composite rectangular concrete and
armorflex channel., and leveed channels of rock or armorflex North of 24th
street. Seven alternatives were presented to the Flood Control Subcommittee of
the North Etiwanda Iand Owners Consortium. The subcommittee unanimously
selected a preferred alternative based on the real costs and that alternative
is presented in this report. The flood control project option selected is
primarily an armorflex lined channel as described below. Armorflex is a
precast concrete block product which is described in Section 2.2.
1.2 Project iczri� t i nq�
The Etiwanda Creek Drainage Corridor project contains the following elements:
• A 100 -year frequency flood control protection system
• An adjacent low flow natural stream system
• A wildlife trail
• Water conservation
• Mitigation for increased storm flows as a result of land development
• Provisions for future integration of local storm water anti pollution
devices
• A debris basin to protect the flood control system
1-1
This report addresses the Flood Control System, including the debris basin. As
shown on the schematic plan in Section 4, the project begins just South of
Victoria Avenue where it joins the double San Sevaine and Etiwanda Channels now
under construction. From this point 3,300 feet upstream, the existing Etiwanda
Creek concrete channel el is being expanded to provide for ultimate development
fleas. The existing channel ends here adjacent to San Sevaine Basin No. 5. A
new rectangular concrete channel is proposed upstream from here to a structure
diverting flows to Basin No. 5 to provide for runoff mitigation. The diversion
is conveyed to Basin No. 5 in an underground system. From the diversion
structure, an armorflex lined trapezoidal channel is proposed upstream to 24th
Street. At this point, an armorflex lined parabolic channel is proposed to
extend for the remainder of the project to the proposed debris basin at the
mouth of Etiwanda Canyon.
The Caryn Ccnpany, representing the North Etiwanda Land Owners Consortium, has
been involved with the San Bernardino County Flood Control District and the
City of Rancho Cucamonga in the planning and financing of necessary and/or
desired flood control facilities, open space enhancement, and the ultimate use
of future surplus District properties in the Etiwanda North planning area. The
Flood Control District is the largest property owner in this area, with 1,329
acres in the unincorporated area to be annexed to the City, and another 441
acres within the City. The Caryn Cmpany has submitted a draft proposed Master
Plan to the District describing possible uses for the District's properties.
This design concept report was prepared for the North Etiwanda Land Owners
Consortium and forms an integral part of the Master Plan described above, as
well as the Etiwanda North Specific Plan currently being prepared and reviewed
by the City of Rancho Cucamonga.
Other reports integral to this Design Coroept Report for Etiwanda Creek include
the "San Sevaine/Etiwanda Creek Hydrology and Basin Routing" report prepared by
FWLS and submitted to the District in January, 1989. This report is being
revised to reflect the latest hydrology to be used for final design of Etiwanda
Creek. Zine revised report will also present the latest concept for San Sevaine
Basins 1 thou 5 and the diversion of a portion of Etiwanda flows into Basin No.
5. FWLS is also preparing a comprehensive Master Plan of flood control and
1-2
drainage for the North Etiwanda area. neat docent will assist the Flood
control District in evaluating individual project proposals within the North
Etiwanda area.
The County of San Bernardino is also processing a I'loan Application Report,
proposed San Sevaine Creek Water Project" under the Small Reclamation Projects
Act (Public law 84-984). This Bureau of Reclamation project includes Etiwanda
Cmek arra debris dawn. The proposed bureau inprovement for Etiwanda Creek is a
conventional rectangular concrete channel. At this time, the North Etiwanda
Land Owners Consortium is proceeding with a C=mi.ty Facilities District under
the Mello -Roos Act to provide funding for the Etiwanda Creek preferred
alternative presented in this report.
In developing the preferred plan, FWLS prepared some fifteen alternative
conceptual plans and cost estimates in concert with the several consultants
involved in preparation of the Etiwanda North Specific Plan. Workshop meetings
were held with engineering, environmental, land planning, and geOtechnical
input. The alternatives were narrowed to seven arra presented to the Flood
Control Sub -Committee of the Land Owners Consortium. The sub -committee
selected a preferred alternative utilizing armorflex channel lining. This
alternative was then presented to all of the consortium members on June 6,
1989. A subsequent Flood Control Sub -committee meeting was held on June 20.
At that time, the alternatives were once again reviewed and FWIS was directed
to prepare this report with armorflex as the preferred alternative.
It should be noted that the Flood Control Sub- Cmmttee considered the ability
to obtain Fish & Game and Corps of Engineer approvals as important as technical
flood control design matters and costs. Opinions were expressed, that if a
conventional concrete channel were proposed, the project could very well be
delayed for years or stopped altogether.
Concurrently with the review of this design concept report by the District and
City, FWLS will be preparing 200 scale preliminary design drawings.
Preliminary plans are scheduled to be canpleted in Septenber 1989 for review by
all concerned parties and agencies. The goal is to have approved plans and
permits and be ready to advertise for construction bids in January 1991.
1-3
1.4 FillwTrr'_,ng
As stag previously, funding for the proposed Et1wanda Creek improvements is
planned to be provided through a Mello -Roos Oommauity Facilities District
(CFD). An election to establish the District will be held later this year.
The construction cost for the preferred alternative is $21 million. A 30%
construction contingency has been included, which can be reduced to 10% on the
final estimate prepared from approved drawl gs. No allowance has been made for
escalation of unit prices between now and the actual bidding date. Expenses
not included in the $21 million construction cost are contract administration
and inspection, CFD costs, engineering, and plan check and permit fees.
Additionally, no allowance has been provided for riots -of -way for the channel
or debris basin, or environmental mitigation.
The bond dollar limit for the CFD should include any or all of the above cost
factors deemed appropriate in addition to the $21 million construction cost.
.• :,. ter,•, --71 • I :.t u --1z- r._
The construction of Etiwanda Creek and debris dam improvements will require
envies clearance and permits from a number of public agencies. Me
envirormvzrtal approval process is being aocarrplished in conjunction with the
Etiwanda North Specific Plan, and will include an environmental resource
management plan for North Etiwanda including from Day Creek Easterly to Duncan
Canyon. Permits will or may be required by the following agencies:
• U.S. Army Corps of Engineers
• California Department of Fish & Game
• California Regional Water Quality Control Board
• California State Department of Water Resources,
Division of Safety of Dams
• San Bernardino County Transportation/Flood Control Department
• City of Rancho Cucamonga
1-4
F
L!
10
2.1 Etiwanda Debris Dam/Basin
The proposed project includes a debris catcbment facility at the apex of the
alluvial fan that has been generated over the years by debris fleas out of
Etiwanda Canyon. Preliminary estimates indicate that a 100 -year flood event
could produce debris volumes in emoess of 400,000 cubic yards. on an averaged
annual basis, the Etiwanda Creek Watershed can be expected to produce about
15,000 cubic yards of debris per year. The basin will be designed to discharge
clear water in a 100 -year event with a significant factor of safety.
Typically, a debris catchment facility is a dam created by an excavation just
large enough to balance the earthwork. If the dam is large enough in size or
volume, design and construction fall within the jurisdiction of the State
Division of Dam Safety. Preliminary design of the catchment by others as part
of a proposed Bureau of Reclamation project for Etiwanda Creek indicate the dam
would be State jurisdictional and require very stringent design measures.
A number of sites were investigated for location of the debris facility,
including multiple basins in the watershed (see site location maps on pages 3-
20, 3-23). Multiple basins were more costly than a single basin, and would
result in a greater environmental impact. The sites were narrowed to three for
a more detailed analysis. Site No. 1 is located just North of the IADWP
easement. This is also the site that was chosen for the Bureau of Reclamation
Etiwanda Creek project. Site No. 2 is located further up the canyon at the end
of the existing flood control right-of-way. Site No. 3 is located still
further up the canyon, approximately 700 feet North of the existing flood
control riot -of -way.
Critical habitat areas, topography, aesthetics, and seismic cmwtraints make
siting of the debris facility difficult. Sites 1 and 2 essentially avoid all
but the seismic constraint. Site No. 3 was considered as a dam only with no
basin excavation upstream. The dam height would be approximately 100 feet.
The debris catciment area has riparian woodlands with Maple and White Alder
trees. Site No. 3 also has seismic constraints, is the most qtly, has
2-1
maintenance and access problems, and has the greatest environmental impact and
would be state jurisdictional.
The seismic constraint at sites 1 and 2 can be mitigated by constructing a
debris "basin" rather than a "damn. The basin would be an excavation totally
below the existing ng gr,ound level. The basin concept results in an additional
cost of about $1 million more than a dam at sites 1 and 2. However seismic
design requirements for the dam concept could reduce this incremental cost. On
the plus side, the debris basin would generate about 1.2 million cubic yards of
fill material for use by nearby landowners, be more aesthetic than a high dam,
and minimize State Division of Dam Safety involvement which will speed up the
approval process. In turn, construction of the debris "basin" could
conceivably proceed ahead of the channel and provide considerable "fast track"
flood and debris protection on the alluvial fan. Accordingly, we are using a
debris basin and have selected Site No. 1 as the most economical. Site No. 1
is located the farthest downstream which eliminates about 1,600 feet of channel
and has less excavation.
It should be noted that access to proposed development on the East side of
Etiwanda Creek will require access across the creek at two locations. One
crossing would be located imrediately upstream of the debris basin. A second
crossing would be located immediately upstream of the existing flood control
easement. Some form of channelization of Etiwanda Creek will be required
upstream of the debris basin to accooTcdate the crossings. Channelization
could be accomplished with a ccxrbination of concrete and/or armored training
levees. The planning and financial responsibility for crossings and necessary
channelization are beyond the scope of this report and the CFD.
In summary, the primary issues involved with the debris catchment facility are:
• Is a debris "dam" technically or economically feasible, or advisable, in
view of the geotechnical seismic constraints at the mouth of Etiwanda
Canyon'>
• Will the proposed debris "basin" mitigate the geotechnical seismic
constraints?
• Will the proposed debris "basin" be a non State Division of Dam Safety
jurisdictional facility?
2-2
2.2 Armorf 1 ex Charziel.
Armorflex channel lining, although new to this area, has been in use for about
twenty years. Riverside County Flood Control District has several new projects
where it will be used. It is a pre -cast concrete block product where the
blocks interlock and are cabled together. A polyester cable will be used with
a scuff jacket for protection during installation. A geotechnical fabric is
placed on the soil beneath the block to prevent the loss of fine soil
particles. The blocks are available with voids for placement of soil which can
be seeded with grass. The grass moots form a matrix under the geotechnical
fabric and adds to the stability of the system. Design velocities may remove
the grass blades, but the roots remain and regrowth occurs.
Maintenance of turfed armorflex is estimated to be $700 per acre per year.
Included in that cost is turf maintenance, debris and trash removal, and fence
maintenance. Based on an average channel width of 125 feet, annual maintenance
is estimated to be $2.00 per lineal foot. If turf maintenance is not required,
the cost is estimated to be about $0.50 per lineal foot per year.
maintenance includes irrigation, fertilizer, and weekly mowing.
The critical design factor for armorflex is velocity which is based on
experimental data. Tests have been run at Simons, Li & Associates (SLA)
hydraulic research facility in Fort Collins, Colorado. Class 30 block, the
lightest manufactured, was subjected to velocities scuiewhat in excess of 20
feet per second (fps) . As stated in SLA's report dated January 13, 1989, six
eight-hour tests were performed after which the armorflex system was inspected
for deformation, settlement, and loss of subsoil. None of these conditions
indicating incipient instability were found, indicating stable hydraulic
performance.
In light of the test limits, we have limited the design velocities for the
proposed armorflex channel to a maximum of 20 fps. Tb achieve this velocity,
channel drops or grade adjustments are required for the upper 3,700 feet. The
maximum grade adjustment is 2.5% in this read. 2% differential will be taken
up in 2 to 3 foot vertical increments with a sluing apron over a distance of
10 feet.
Two geometric sections have been chosen for the armorflex channel. A parabolic
section was chosen for the reach upstream of 24th Street through the proposed
2-3
golf course. The geometric parabola chosen has a depth of six feet at top
widths of 140, 160, and 180 feet. The average slope is quite flat and is
approximately 13 horizontal to 1 vertical which blends easily into the golf
course. Me average depth of flow is about four feet for the 100 -year design.
'Ihe parabola is a very efficient hydraulic section. The shallow depth
minimizes the tractive forces acting on the lining, and the flat side slope
results in low velocities near the channel edges. The significance of these
factors is a smaller size or class of armorflex blocks required carapared to a
trapezoidal section, and the use of a grass lining in the freeboard section of
the channel because of the lower velocity.
Downstream of 24th Street to San Sevaine Basin No. 5, a trapezoidal armorflex
channel section with three horizontal to one vertical (3H:1V) side slopes was
selected. The trapezoidal section was chosen over the parabolic because there
was no need for flat side slopes to blend into a golf course. The 3H: 1V side
slopes result in an average channel width reduction of 25 feet. This reach
will serve as a continuation of the proposed wildlife corridor. The channel
will require fencing, whereas the need for fencing for the parabolic section is
very minimal and could be eliminated.
In summary, the primary issues involved with the use of armorflex are:
• The acceptance of a new product in this District
• Will fencing of the parabolic armorflex channel be required through the
golf course?
• Will the higher cost of an armorflex channel be offset by mitigation and
time delay costs?
• Will the sodded 13H:1V freeboard area of the parabolic section through the
golf course be acceptable?
• Maintenance of the turf in the golf course segment.
2-4
The following outlines the advantages and disadvantages of armorflex channel
lining:
Disadvantages
•
Aesthetically pleasing with Higher cm-jstxuctian cost
grassed surface than conventional concrete
charnel with velocities greater
• An envirormentally acceptable than 40 feet per second.
flood channel
• New product for this area
• Chain link fencing can be complicates approval process
eliminated on the parabolic
section 0 Right -of -Way requirements greater
than concrete channels
• Turfed armorflex can be maintained
by the District or as an integral 0 Maintenance by District may be an
part of a golf course issue
• minimal or no mitigation District liability may be an
requirements issue if fencing is not used
• Channel integrity maintained for flows
in excess or design frequency
• Relatively high flow resistance for
lower velocities
• Easily integrated with golf course
• Graffiti proof
• Lower maintenance costs than conventional
concrete channel with high cavitation
causing velocities.
2.3
The use of a conventional concrete channel for Etiwanda Creek was the leading
alternative based on construction costs only. other factors dealing with real
costs, as discussed previously, can eliminate this option as the preferred
alternative. However, a concrete channel is proposed for a short distance
downstream from the San Sevaine Basin 5 diversion structure to the existing
concrete channel.. Armorflex was nort used in this short reach due to the
requirement for long concrete transition structures at each end, leaving only a
very short length of armorflex in the center.
2-5
A critical design issue with concrete channels is cavitation, which starts in
the 40 to 50 fps velocity range. On Etiwanda Creek, utilizing the most
efficient hydraulic section, the velocity varies from 41 to 71 fps. All but
the lower 1,700 feet has velocities in excess of 50 fps. Additionally,
velocities can be expected to exceed 40 fps upstream of 24th Street on an
annual basis. Downstream of 24th Street, a 5 -year storm flow will produce
velocities in excess of 40 fps.
The probability of a minor to moderate cavitation producing storm occurring a
short time prior to the 100 -year design storm is very real. This is a primary
concern. Erosion of the invert by cavitation from the prior storm could reduce
the channel capacity by about 40 percent. In other words, the 100 -year channel
in reality may only be a 10 -year channel. This is a very serious potential
liability.
The seriousness of this problem is well recognized by the Los Angeles and
Orange County Flood Control Districts. Both Districts have lost concrete
channel inverts from cavitation by "clear" flows. The Los Angeles County Flood
Control District policy is "no concrete channels with velocities greater than
40 fps". Their design procedure is to utilize a Bureau of Reclamation Type 3
Stilling Basin with a sloping apron drop structure, utilizing baffle blocks and
the hydraulic jump to dissipate the energy.
In the case of Etiwanda Geek, a stilling basin is not a practical solution,
especially if the channel is kept in an excavated section. The structure would
be appr Kimately 315 feet long and 175 feet wide at the middle baffle block
section. And, the channel invert at the downstream end would be in about 30
feet of cut. The alternative solution for a 40 fps maximum velocity is a wide
channel varying in width from 45 to 80 feet at a cost of $24 million.
A concrete channel with velocities in excess of 40 fps presents a high cost
maintenance problem. Replacing invert concrete on an annual to bi-annual basis
would be in addition to the routine maintenance costs for silt, trash and
debris rival; road, fence and gate maintenance; and rodent and weed control.
Based on an average channel width of 14 feet, routine maintenance is estimated
to be $0.50 per lineal foot per year. Assuming the replacement of 4 -inches of
2-6
concrete every other year, this would result in an annual cost of about $35 per
lineal foot per year.
The primary issues involved with the use of a conventional high velocity
concrete channel are summarized below:
• Velocities for the 100 -year design flows in a conventional hydraulically
efficient concrete channel are in excess of 70 feet per second. Cavitation
would occur and erode the channel invert.
• Velocities in the reach above 24th Street would be in excess of 40 feet per
second for flows only slightly greater than the one-year frequency event.
Cavitation begins in the 40 to 50 feet per second range.
• Velocities in the lower reach below 24th Street would exceed 40 fps for the
5 -year frequency event.
•
Model studies may be required to verify design calculations.
r1he following outlines the advantages and disadvantages of a conventional high
velocity rectangular concrete channel:
a •►r. �� . •
• Lower initial construction cost
• Conventional design for faster
approval process
• Least right-of-way requirements
• SB= maintains and assumes
liability for channel
2-7
Disadvantages
• Can be aesthetically unpleasing
• Difficult to obtain
envirormien tal permits
• Difficult to integrate
with a golf course
• High velocities can result
in cavitation and erode the
channel invert
• Maintenance costs will be high
for replacement of invert
concrete
• Fencing and a 20 foot wide
access road could be required
on each side of the channel
• Channel capacity could be reduced
to a 10 -year design flow if the
invert is eroded by cavitation.
If not replaced prior to a large
storm, this could be a serious
liability.
Construction of Etiwanda Creek Channel will require a permit frthe U. S Army
Corps of Engineers and the California Department of Fish and Game. The
proposed project is located on an alluvial fan. Removal of alluvial fan scrub
habitat will require mitigation by replacement or preserved habitat in other
areas. Discussion with the enviramnental agencies have indicated a minimm
habitat replant ratio of 5 to 1 for concrete channels. A ratio of 10 to 1
is possible. Indications are that an armorflex cikannel would not require
mitigation, and would serve to reduce overall mitigation requirements for
development of the area. In terms of real casts as discussed previously,
mitigation for the concrete channel is estimated to be $5,000,000 based on a 4
to 1 replacement ratio and $80,000 per acre for land and enhancement casts. It
should be noted that any enhancement of the San Sevaine Basins would not count
as channel mitigation. The primary enviramnental issues are summarized as
in0=
• Are mitigation costs a "real" cost that need to be applied to construction
costs?
• Is it possible to obtain Corps and Fish & Game permits in a reasonable time
frame if a concrete channel were selected as the preferred alternative?
2.5 Etiwanda Creek Diversion
The diversion of a portion of Etiwanda Creek flows into San Sevaine Basin No. 5
is the subject of a report FWIS filed with the San Bernardino County Flood
Control District, in February 1989, for their review arra approval. The purpose
of the diversion is to mitigate increased storm runoff from proposed
development in the Etiwanda Creek Drainage Basin. The mitigation will be
accomplished by reducing peak discharges through flood control detention in the
San Sevaine Basins. The alterative to diversion is onsite detention.
Three issues are associated with diversion of Etiwanda flows into San Sevaine
Basin No. 5. First, the peak flows in San Sevaine Channel downstream of Basin
5 must not be increased. This is beim accomplished with the proposed
modifications to San Sevaine Basins.
The second issue relates to a previous agreement between the San Bernardino
Flood Control District and the Riverside County Flood Control District. By
agreement, the maximum discharge in San Sevaine Creek at the County line shall
2-8
not exceed 12,100 cfs. This is also being accomplished by additional detention
of peak flows in Junipa Basin.
The third issue deals with timing on construction of the proposed channel and
basin inprovements, which is a concern of the Riverside County Flood Control
District. Certain existing facilities in Riverside County are inadequate with
as little as 2,500 cfs capacity and the timing for their replacement is not yet
certain.
All of the above issues have been dealt with on a continual basis in art
with Williamson & Schnid (W & S), who are the engineers representing the major
landowners South of I-15. Joint meetings between the two flood control
districts, FWLS and W & S were held on April 20 and May 25. Coordination
efforts are continuing and it is expected that the diversion and related issues
will be resolved.
2.6
The Etiwanda North Specific Plan proposes a golf course along the proposed
Etiwanda Drainage corridor as a development option. Me Etiwanda Creek water
spreading grounds are located adjacent to the creek both North and South of
24th Street. If the spreading grounds are eliminated or reduced for the golf
course or development, alternative locations will be required for spreading
both local drainage flogs for water conservation and imported water for
groundwater replenishment.
Preliminary studies indicate that the use of San Sevaine Basin No. 5 will
satisfy the major needs for spreading local drainage and storm flows for water
conservation.
Tire spreading grounds North of 24th Street are being used by the Chino Basin
FAmicipal Water District (CEM D) and the Metropolitan Water District (MWD) for
water replenishment in the Chino Basin for overdrafts in accordance with an
adjudicated decision, and cyclic storage such as in "wet years". The present
use of the Etiwanda spreading grounds can be transferred to Basin 5. However,
a lack of capacity may arise due to a proposal by MWD to use Basin No. 5 for
spreading inported water. Cody, it may be necessary to use Basins 2
2-9
and 3 in addition to Basin No. 5 (Basin No. 4 is proposed to be combined with
Basin No. 5) for spreading of iaported water.
With the golf course option, a meandering low flow stream with ponds has the
potential for significant water spreading of both local drainage flows for
water ooa�sezvatian, and imported water for groundwater repleniGlu�ent.
2-10
(�
�1
��
_!
1
-1
_t
_I
�.I
�l
I
f
i
_J
�' _I
_
3.2 Channel Alternatives
Seven conceptual channel alternatives with schematic plans and cost estimates
are presented in this section. We have also included a cost estimate only for
an all concrete channel, from existing Etiwanda Channel to the debris basin,
designed for a maximimm velocity of 40 fps. As stated in Section 3.1, all
channel alternatives are identical below 24th Street. The following
descriptions are therefore above 24th Street only.
3.21 Alternate No. 1 - $19,000,000
Alternative No. 1 is a parabolic armorflex channel with sodded freeboard slopes
from 24th Street to the Northerly limit of the IADWP Corridor, and a
rectangular concrete channel from that point to the debris dam. It has been
assumed that IADWP and SCE equipment will cross the channel directly, and no
culvert or bridge crossing is required. The otic plan and cost estimate
are shown on pages 3-5 and 3-6 respectively.
3.22 Alternate No. 2 - $19,000,000
Alternate No. 2 is a trapezoidal armorflex channel from 24th Street to the
Northerly limit
of the IADWP
Corridor, and a rectangular concrete channel
fronn
that point to
the debris
dam. No special crossings at the IADWP
and SCE
Corridors were
again assumed.
The trapezoidal section has 3H:1V side
slopes.
This alternate
is wed
to show the incremental cost difference with the
parabolic section which
blends more easily with the golf course,
having
approximately a
13H:1V side slope. The schematic plan and cost estimate
are
shown on pages 3-7 and 3-8 respectively.
3.23 Alternate No. 3 - $17,500,000
Alternate No. 3 is a parabolic armorflex channel (with sodded freeboard slopes)
frau 24th Strut to just downstream of a proposed East -Nest Road between the
two SCE Corridors, and a concrete rectangular channel from that point to the
debris dam. An R.C. boot culvert is required at the IADWP and SCE Corridors.
An R.C. box culvert is provided at the future East-West Street crossing, as
opposed to Alternates 1 and 2 which provided a bridge. This alternative was
also considered in connection with a proposed golf course layout option. The
otic plan and cost estimate are shown on pages 3-9 and 3-10 respectively.
3-2
3.24 Alternate No. 4 - $17,500,000
Alternate No. 4 is trapezoidal armorflex channel form 24th Street just
downstream of the proposed East-West Street, and a rectangular concrete channel
frau that point to the debris dam. An R. C. boat culvert is provided at the
future East-West Street and the Utility Corridors. The schematic plan and
cost estimate are sham on pages 3-11 and 3-12 restively.
3.25 Alternate No. 5 - $15,000,000
Alternative No. 5 is a rectangular concrete channel fy 24th Street to the
debris dam. R.C. boat culverts are provided at the future East-West Street and
Utility Corridors. The maximum velocity in this sys'te'm reaches 71 fps. The
schematic plan and cost estimate are shown on pages 3-13 and 3-14 respectively.
3.26 Alternate No. 6 - $17,500,000
Alternative No. 6 is a nock lined levee frcm 24th Street to the debris dam.
This alternate is related to optional developanent arra phasing scenarios for the
area. C9hamel stabilizers are required at the upstream and downstream
transition areas. The schematic plan and cost estimate are sham on pages 3-15
and 3-16 respectively.
3.27 Alternate No. 7 - $17,500,000
Alternate No. 7 is a combination of an armorflex and armorform (described
earlier) levee from 24th Street to the debris dam. Armorform is used below
existing ground to the potential scour level. This system is an alternative to
the rock levee. Mie advantages over rock are availability, short construction
time, more environmentally acceptable as it can be vegetated, and does not
attract rodents. The schematic plan and cost estimate are shown on pages 3-17
and 3-18 respectively.
3.28 Limited Velocity mete Charnel - $24,000,000
Section 2 discusses the velocity issue with concrete channels having velocities
in excess of 40 fps, and the experimental limiting velocity of 20 fps with
armorflex. The preferred armorflex alternative design meets the maximum
velocity criteria. Accordingly we have prepared a cost estimate for a
rectangular concrete chamel that meets the maxim= velocity criteria of 40 fps
for concrete. The channel width varies frcnn 45 to 80 feet. This is in
3-3
c coparison to the armorflex channel width of from 104 to 140 feet. The cost
estimate is shown on page 3-19.
3.3 Debris Basin vs Dam
The various issues and constraints involved with the proposed debris catchment
facility for Etiwanda Geek were disused in detail in Section 2.1. The
alternatives analysis dealt with location in regard to property access,
critical habitat areas, ground faults, and aesthetics. Seismic constraints and
aesthetics led to the analysis of a debris "basin" versus a debris "dam".
The preferred alternative for the Etiwanda Creek debris catchment is an
excavated "basin" with no embankment or conventional spillway, located at Site
No. 1 as shown on the site location plan on page 3-20. The cost estimate is
shown on page 3-22.
The debris "basin" at Site No. 1 is theoretically more costly than a "dam" at
Site No. 1 or No. 2 however, reducing State Division of Safety of Dams
involvement to a minimum, aesthetics, and the generation of excavated material
for use by adjacent land owners were overriding factors. Additional costs for
the "dam" concept, unknown at this early stage, for seismic mitigation could
result in the dam being more costly and was also a factor in the selection.
A cost estimate is also included for a debris basin at Site No. 2 and is shown
on page 3-25. The alternative dam at Site No. 3 is approximately 100 feet high
by state criteria. This high dam in a seismic area represents a highly
technical and involved design analysis which is beyond the scope of this
report. We have therefore not included a cost estimate for that alternative.
3-4
ALTERNATE NO. 1
$19,000,000.
CORRIDOR I
iI
A-
BRIDGE 0
PROPOSED
BRIDGE
STA. 72+00
SUMMIT AVENUE =� — / RCP OR RCB
DIVERSION
LEGEND STRUCTURE
CONCRETE CHANNEL
CONCRETE CONDUIT sm BE~
ht�8N1IIf,L 6
MW= ARMORFLEX TRAP.
CHANNEL
- ARMORFLEX PARABOLIC
CHANNEL /
EXIST W NNE
A CHAL
li
SII
ADWP CORRIDOR
,5
SCE CORRIDOR --,,II
— —�
PROPOSED
BRIDGE
STA. o
DBL.
150+00
�I
8+00
CORRIDOR I
iI
A-
BRIDGE 0
PROPOSED
BRIDGE
STA. 72+00
SUMMIT AVENUE =� — / RCP OR RCB
DIVERSION
LEGEND STRUCTURE
CONCRETE CHANNEL
CONCRETE CONDUIT sm BE~
ht�8N1IIf,L 6
MW= ARMORFLEX TRAP.
CHANNEL
- ARMORFLEX PARABOLIC
CHANNEL /
EXIST W NNE
A CHAL
vvTo",
am"wo
,5
EXIST. SANEVANE CHANNEL
S
DBL.
CHANNEL UNDER CONSTRUCTION
STA.
8+00
MAY 1969
FWLS JN 2106.1101
ALTERNATE NO. 5
$15,000,000
R.C. BOX
PROPOSED— — — �
\\ STA.
150+00
R.C. BO
LEGEND
��■ CONCRETE CHANNEL
CONCRETE CONDUIT
sem■ ARMORFLEX TRAP.
CHANNEL
- _SCM III�T(.\N•r/nIA A�auuf..TunfA
/tntnl.N. �.JI/.nllu YlTn.l
(�l+l esa n/nr
l6Yf�/'�ww. nul�i�l.tsf.ar7n
S§#Ow —
n nT�v.r�
R.C. BOX
R.C. BOX
PROPOSED 24th STMEET _
STA. 100+(
ASCE CORRIDOR-,
ae AFORIDGE \ Q=
DIVERSION RCP OR RCB
STRUCTURE
STA.72+00
'EXIST .EXIST. SAN SEVAINE CHANNEL
DBL.
CHANNEL UNDER CONSTRUCTION
rA.
+00 g MAY 1989
[� FWLS JN 2106.1101
II
II
SII
LADWP CORRIDOR -_,,11
ASCE CORRIDOR
.1I
II
a
zll
R.C. BOX
R.C. BOX
PROPOSED 24th STMEET _
STA. 100+(
ASCE CORRIDOR-,
ae AFORIDGE \ Q=
DIVERSION RCP OR RCB
STRUCTURE
STA.72+00
'EXIST .EXIST. SAN SEVAINE CHANNEL
DBL.
CHANNEL UNDER CONSTRUCTION
rA.
+00 g MAY 1989
[� FWLS JN 2106.1101
••1, M81J\ k ���i �.�1\114P
PRT E cT: EIrIWANDA CHANNEL
VICTCRIA AVENUE Ta SIS DAM
DATE: MAY 26, 1989
JOB NO. 2106.11.01
�1•� I •1� V ,C • I• I (71 i ': ffij • 81 Y• • •'D✓ • 11' • I• I IM
AN Y' • i '��1
DIS OF 24TH SST
a
h • �I�. �- �• u
1.
AR43RFIEX CL 50
303,667
S.F.
$4.30
$1,305,768.00
2.
AIMRFLEX CL 30
30,849
S.F.
$4.00
$123,396.00
3.
SEEDING OVER A 431ZF=
334,516
S.F.
$0.05
$16,725.00
4.
SOD
39,000
S.F.
$0.50
$19,500.00
5.
ERiDGE AT SUMMIT AVENUE
8,748
S.F.
$80.00
$699,840.00
6.
TWO TRANSITION STFSMLTES
2,763
C.Y.
$310.00
$856,530.00
7.
10 FT DIA. RCP PIPE
1,334
L.F.
$320.00
$426,880.00
S.
JUNCTICN BOX
1
L.S.
$6,500.00
$6,500.00
9.
EXPAND EXIST. ETIWANDA CH.
3,300
L.F.
$375.00
$1,237,500.00
10.
EXCAVATICN
120,000
C.Y.
$2.75
$330,000.00
11.
CHANNEL CONC=
3,133
C.Y.
$275.00
$861,575.00
12,
SCE
9,570
L.F.
$8.50
$81,345.00
13.
STRJCTURAL BACKFILL
5,600
C.Y.
$4.50
$25,200.00
14.
COUTL T STRUCIURE
1
L.S.
$80,000.00
$80,000.00
SUSIOTAL
$6,070,760.00
UIS
OF 24TH STT
1.
EXCAVATI0N
57,000
C.Y.
2.75
$156,750.00
2.
CHANNEL CONCRETE
9,549
C.Y.
275.00
$2,625,975.00
3.
CHAIN LINK FENCE
16,400
L.F.
8.50
$139,400.00
4.
ACCESS RAMP CCNCF=
164
C.Y.
310.00
$50,840.00
5.
BOX CULVERT CONCF=
782
C.Y.
310.00
$242,420.00
6.
S UClURAL BACKFILL
14,400
C.Y.
4.50
$64,800-00
7.
SIS BASIN AND OUTLET WORKS
1
L.S.
2,220,000.00
$2,220,000.00
SUBT= $5,500,185.00
TOT$11,570,945.00
30%(+-) CONTINGENCY $3,429,055.00
$15,000,000.00
3-14
ALTERNATE NO. 6
$17,500,000
LEGEND
ROCK LEVEE
CONCRETE CHANNEL
CONCRETE CONDUIT
ARMORFLEX TRAP. mm
CHANNEL
-SCE CORRIDOR
PROPOSED 21th STREET
R.C. BOX-`
II
II
SII
LADWP CORRIDOR\
lI
SCE CORRIDOR--.,`
II
PROPOSED A T
DIVERSION
RCP OR RCB
STRUCTURE
STA. 72+00
0
LEGEND
ROCK LEVEE
CONCRETE CHANNEL
CONCRETE CONDUIT
ARMORFLEX TRAP. mm
CHANNEL
-SCE CORRIDOR
PROPOSED 21th STREET
R.C. BOX-`
'EXIST W A CHANNEL
.EXIST. SAN SEVAIrE CHANNEL
ST CHANNEL UNDER CONSTRUCTION
18+00
MAY 1489
FWLS JN 2106.1101
BRIDGE
DIVERSION
RCP OR RCB
STRUCTURE
STA. 72+00
'EXIST W A CHANNEL
.EXIST. SAN SEVAIrE CHANNEL
ST CHANNEL UNDER CONSTRUCTION
18+00
MAY 1489
FWLS JN 2106.1101
••i •iDi• i I F -A ftkc-N a 2h. m ILF-Imij
PRGIT=: ErimANDA CHANNEL
VICIa22A AVENUE To DE RIS DAM
DATE: NAY 26, 1989
JOB NO. 2106.1101
AITERUkTE 116" - r4oCK IEVEE SYSTEM LTSTREAM OF 24TH Sn= WITH
TRAPEZOIDAL ARMORFLEX AND CONCRETE CHANNELS
DOWNSTREAM OF 24TH STREET
D/S OF 24TH STREET
y
1.
A1440PT= CL 50
303,667 S.F.
$4.30
$1,305,768.00
2.
AR4MUMEX CL 30
30,849 S.F.
$4.00
$123,396.00
3.
SEEDING OVER ARZIRFLEX
334,516 S.F.
$0.05
$16,725.00
4.
SOD
39,000 S.F.
$0.50
$19,500.00
5.
BRIDGE AT SUMMIT AVENUE
8,748 S.F.
$80.00
$699,840.00
6.
TWO TRANSITION STRUCTURES
2,763 C.Y.
$310.00
$856,530.00
7.
10 FT DIA. RCP PIPE
1,334 L.F.
$320.00
$426,880.00
8.
JUNCTION BOX
1 L.S.
$6,500.00
$6,500.00
9.
EXPAND EXIST. ETIWANDA CH.
3,300 L.F.
$375.00
$1,237,500.00
10.
EXCAVATION
120,000 C.Y.
$2.75
$330,000.00
11.
CHANNEL C NCRE'TE
3,133 C.Y.
$275.00
$861,575.00
12,
FENCE
9,570 L.F.
$8.50
$81,345.00
13.
SIRJCTURAL BAC19=
5,600 C.Y.
$4.50
$25,200.00
14.
CUTI'LET STBJCZURE
1 L.S.
$80,000.00
$80,000.00
$6,070,760.00
U/S OF 24TH STREET
1.
TRANSITION SIURCTURE 2,507 C.Y.
310.00
$777,170.00
2.
Bpi{ CULVERT 277 C.Y.
310.00
$85,870.00
3.
WEST LEVEE FILL 35,449 C.Y.
2.70
$95,712.00
4.
EAST LEVEE FILL, 36,007 C.Y.
2.70
$97,219.00
5.
WEST LEVEE ROCK 18,456 C.Y.
37.00
$682,872.00
6.
EAST LEVEE ROCC 22,660 C.Y.
37.00
$838,420.00
7.
SHOT PnJNG STABILIZERS 139,950 S.F.
18.00
$2,519,100.00
8.
SIS BASIN AND OUTLET WMW 1 L.S.
2,220,000.00
$2,220,000.00
SUBS,
$7,316,363.00
TO
$13,387,123.00
30% (+-) CONTING WCY
$4,112, 877.00
GRAND TOTAL
$17,500,000-00
3-16
ALTERNATE NO. 7
$17,500,000
PROPOSED EAST \ 1
G \\,
XX
u'
w
_51.1MMIT AVENUE
LEGEND
ARMORFLEX LEVEE
CONCRETE CHANNEL
CONCRETE CONDUIT gym.
ARMORFLEX TRAP. mm
CHANNEL
PROPOSED 24th STREET _
R.C. BOX
DIVERSION
STRUCTURE
--SCE CORRIDOR----.,
`BRIDGE
RCP OR RCB
#A >
BASKMm Is
'EXIST W A CHANNEL
VICTORIA'
BASIN
15 +EXIST. SAN SEVAINE CHANNEL
_�(ICTORIA AVENGE_ _ �
DBL.
�ENP� STA. CHANNEL UNDER CONSTRUCTION
18+00 � MAY 1989
FWLS JN 2106.1101
II
II
SII
II
:ADWP CORRIDOR
—"SCE CORRIDOR— II
_
\
Y
00
\
PROPOSED 24th STREET _
R.C. BOX
DIVERSION
STRUCTURE
--SCE CORRIDOR----.,
`BRIDGE
RCP OR RCB
#A >
BASKMm Is
'EXIST W A CHANNEL
VICTORIA'
BASIN
15 +EXIST. SAN SEVAINE CHANNEL
_�(ICTORIA AVENGE_ _ �
DBL.
�ENP� STA. CHANNEL UNDER CONSTRUCTION
18+00 � MAY 1989
FWLS JN 2106.1101
PF1=I: EITWANDA CHANNEL
VICICRIA AVENUE TO DEBRIS DAM
DATE: MAY 26, 1989
JOB NO. 2106.1101
ALTERNATE •' E► LEVEE SYSTEM UPSTREAMOF Y'�= WITH
TRAPEZOIDAL ART)RFLEX AND CCNCR= f /• I Iii
DONNSTREAM OF YSTREET
DIS OF 24TH Sir
1.
AF4i RFZEX CL 50
303,667
S.F.
$4.30
$1,305,768.00
2.
A 40RFIEX CL 30
30,849
S.F.
$4.00
$123,396.00
3.
SEEDING OVER AFd�Di RFLEX
334,516
S.F.
$0.05
$16,725.00
4.
SOD
39,000
S.F.
$0.50
$19,500.00
5.
BRIDGE AT SUMMIT AVENUE
8,748
S.F.
$80.00
$699,840.00
6.
TWO TRANSITION STRUCTURES
2,763
C.Y.
$310.00
$856,530.00
7.
10 FT DIA. RCP PIPE
1,334
L.F.
$320.00
$426,880.00
8.
JUNCrICN BOX
1
L.S.
$6,500.00
$6,500.00
9.
EXPAND FAST. EITVWM CH.
3,300
L.F.
$375.00
$1,237,500.00
10.
EXCAVATION
120,000
C.Y.
$2.75
$330,000.00
11.
CHANNEL, CONC!REI'E
3,133
C.Y.
$275.00
$861,575.00
12.
FENCE
9,570
L.F.
$8.50
$81,345.00
13.
STRUCTURAL BAC TILL
5,600
C.Y.
$4.50
$25,200.00
14.
CSF= S JCIURE
1
L.S.
$80,000.00
$80,000.00
$7,443,748.00
TOTAL $13,514,508.00
30%(+-) CONTINGENCY $3,985,492.00
GRAND TOTAL $17,500,000.00
3-18
SUBTOTAL
$6,070,760.00
U/S
OF 24TH SPREE!'
1.
TRANSITION STUlrTlURE
2,507
C.Y.
310.00
$777,170.00
2.
BOX CULVERT
277
C.Y.
310.00
$85,870.00
3.
WEST LEVEE FILL
35,449
C.Y.
2.70
$95,712.00
4.
EAST LEVEE FILL
36,007
C.Y.
2.70
$97,219.00
5.
WEST LEVEE ARMRFLEX
74,771
S.F.
4.00
$299,084.00
6.
FAST LEVEE ARi0PE EX
75,778
S.F.
4.00
$303,112.00
7.
WEST LWEE AR14MUlORM
169,716
S.F.
3.00
$509,148.00
8.
EAST LEVEE ARi40RFORM
179,111
S.F.
3.00
$537,333.00
9.
SHEET' PIISNG STABILIZERS
139,950
S.F.
18.00
$2,519,100.00
10.
SIS BASIN AND CST WOW
1
L.S.
2,220,000.00
$2,220,000.00
$7,443,748.00
TOTAL $13,514,508.00
30%(+-) CONTINGENCY $3,985,492.00
GRAND TOTAL $17,500,000.00
3-18
PRQTECI': ETIWANDA CHANNEL
VICIURIA AVENUE TO SIS BASIN
DATE: JUNE 15, 1989
JOB NO. 2106.11.01
I1W M• •• •: NOND CA • a -sic •+' • P 1 191 �• •1 1
91 • • • 9i ' 91' 9 ••' 1
D/S OF 24TH STREET
1.
CHANNEL CONCRETE
12,761
C.Y.
275.00
$3,509,275.00
2.
BOX CUIF.f2T CONCRETE
760
C.Y.
310.00
$235,600.00
3.
10 FT. DIA. RCP PIPE
1,334
L.F.
320.00
$426,880.00
4.
JUNCTION BOX
1
L.S.
6,500.00
$6,500.00
5.
EXPAND EXIST. ETIWANDA CH.
3,300
L.F.
375.00
$1,237,500.00
6.
EXCAVATION
110,000
C.Y.
2.75
$302,500.00
7.
FENCE
9,570
L.F.
8.50
$81,345.00
8.
STRUCIURAL BACITILL
13,000
C.Y.
4.50
$58,500.00
9.
OUTLET STRUCTURE
1
L.S.
80,000.00
$80,000.00
U/S OF 24TH STREET
1.
EXCAVATION
192,000
C.Y.
2.75
2.
CHANNEL CONCRETE
28,807
C.Y.
275.00
3.
GAIN LINK FENCE
16,200
L.F.
8.50
4.
ACCESS RAMP CONCRETE
164
C.Y.
310.00
5.
BOX CULVERT C CNCP=
2,517
C.Y.
310.00
6.
STRUCTURAL BACEFTLL
27,300
C.Y.
4.50
7.
DEBRIS BASIN AND OUTLET WORKS
1
L.S.
2,929,060.00
DOC 17
SUBTOTAL
TOTAL
30%(+—) CORrINGENCY
GRAND TOM
3-19
$5,938,100.00
$528,000.00
$7,921,925.00
$137,700.00
$50,840.00
$780,270.00
$122,850.00
$2,929,060.00
$12,470,645.00
$18,408,745.00
$5,591,255.00
$24,000,000.00
II
a
1g W6O W
Lj II
00 W
vi V f. -
m 0 II x
• W J
• I I LL Z
�• Ir 2
\ I
\I
OZ
Cp
N
P
N
m
b
g¢
p S N
w
U
m2�F� J
O
a
o
0
cc
N
ga C
LL
O
II
w
i
g
cc
D
9
Q
o
0
V
\
cc
N
W
II 11
LU
a
='
n
N
pZZw
r
o==
'
V a
�
w
m
�YN
0
3
Wm
�
0
LU
��
a
J
x
Z
r
z
-Q
e+ 0LU
�
x
w
Z
w
w
Q� N
\�
CL
�0
o
o CL
a
_JLLJ
oc
w
¢
go
\
it
O y
LU
o
w
>
►o
s
'+
_
ul
z r
�N
Q U
S �
U a
r -
m
z a
z o
Q o
o
e
3
uj
w
0
0
0
Ch
O
a
O
m
CL
0
m
0
0
0
0
N
3-21
+
N
PROJECT: ErivmNDA CHANNEL
EEBRIS BASIN SITE 1
DATE: JULY 7, 1989
JOB NO. 2106.11.01
1 Dw
I • u - r• �• ���1
1•
EXCAVATION 1,200,000
C.Y.
2.00
$2,400,000.00
2.
ARA'93Ri1,1Ri 60,000
S.F.
4.00
$240,000.00
3.
IXfT'LE<I' TOWER 65
L. F.
500.00
$32,500.00
4.
36" R.C.P. EPAIN 3,955
L.F.
110.00
$435,050.00
5.
DEBRIS BAI;P= 2,000
L.F.
30.00
$60,000.00
6.
CHAIN Tit FENCE 3,300
L.F.
8.50
$28,050.00
SUBTOTAL
$3,195,600.00
30%(+-) CONSTRiCTION CONTINGINCy
$804,400.00
TCTAL
$4,000,000.00
•..
3-22
1
LL
• 1_ 0
o � /
%
IleUP r
i
3-23
W
Z
J
m
O
Z
Q
''m
V/ C
'
m ob
•
w N
0
W Z
*
cc
A
U
FW—
V 1
Z
W
alt
LU
N
H
4
�
m
3
W
O
z
a -
cc
0
0
0
0
o
so,ao N
N
o C
N
O
O
z
ui
J
II I
+
O
W
J
N
J
2
W
o LV N
o
>
z�
CL
U
y
0
O
LL
ul
Va
cc
0
Lo
Ym
Ln
\
aLLI
Wm
o LLI w
\\
J
o
N
U
z
w
cc
c
Q3
m
o
\
o
o �w
za
d
Q w
\
0
a
o �N
o
Z
\�
+ Fcc
a
W
0
W
d
Q
W
x
W
\
�
~
F
4.
w
J
M
ppm
o,
�N
a
\
N
O
O
\
u+
d
p 6
i
O
O �
m
;o
W=
W
o
\ �P Z
^
w
a
m
Q
x
Q
W
Z W
m
=
O
N
�
v
U
+
m
w
p
p N
2 a
¢ o
0
0
W
n
O
CL
O
¢
o
N
N
N
N
N
N
T
^
r
A O
3-24
PROJECT: ETIWANDA CANNEL,
1lEBRIS BASIN SITE 2
BATE: JULY 7, 1989
JOB NO. 2106.11.01
a
� • �?S. �+: PJM R�►I
1. EXCAVATION
1,618,516
C.Y.
2.00
$3,237,032.00
2. AMORFIORM
60,000
S.F.
4.00
$240,000.00
3. OUIUT MWER
65
L.F.
500.00
$32,500.00
4. 36" R.C.P. DRAIN
2,583
L.F.
110.00
$284,130.00
5. DEBRIS BARRIER
2,000
L.F.
30.00
$60,000.00
6. CHAIN LINK FENCE
4,100
L.F.
8.50
$34,850.00
SUN3MIAL $3,888,512.00
30%(+-) CONS'IM=CNN CONTINGENCY $1,111,488.00
$5,000,000.00
3-25
"'.4D*IMrr,"K-
I
4.1 Project De=iptian
The preferred alternative for Etiwanda Creek is a combination of parabolic and
trapezoidal armorflex channel sections fy a diversion structure in the
vicinity of San Sevaine Basin No. 5 upstream to the mouth of the canyon. The
diversion structure and conduit will divert 2,300 cfs to Basin No. 5. From
this point, a rectangular concrete channel will be construct -.ed downstream to
the existing Etiwanda Creek concrete channel. The existing trapezoidal channel
is not adequate to convey even the reduced flows. The capacity will be
expanded, by replacing the outside sloping wall with a vertical wall,
downstream to the double channel under construction just South of Victoria
Street. The schematic plan and cost estimate are shown on pages 4-3 and 4-4
respectively.
A debris basin at the canyon mouth is included in the prof eat and is required
to be constricted concurrently with the channel. It should be noted that the
armorflex blocks have a compressive strength of about 8,000 psi compared to
3,000 to 5,000 psi for a conventional concrete channel. Theoretically, debris
in the flaw would do more damage to the channel concrete than the armorflex
blocks. And, armorflex block, if desired, can be easily replaced. Of course,
none of the above considers the armorflex velocity of 20 fps versus 70 fps for
a concrete channel as an additional damaging factor.
The rectangular concrete channel between the existing channel and the diversion
structure varies in width from 15' to 241, and varies in height from 6' to 121.
The trapezoidal armorflex section from the diversion stricture to 24th Street
is 7' in depth and varies from 90' to 135' in width. The parabolic armorflex
channel from 24th Street to the debris basin is 4' to 5' in depth and varies
from 104 to 140 feet in width.
The preferred alternative includes bridges at a proposed realigned Summit
Avenue, 24th Street, and a future East-West Street just South of the upper SCE
Corridor. The uppex 3,700 feet of the channel will have drop structures to
maintain a maximum velocity of 20 fps in each reach. The vertical drop will
4-1
be in 2 to 3 foot increments aver a 10 foot horizontal distance. The minim m
spacing is approximately 100 feet, and the maximum 600 feet.
4.2 Project Costs
Conceptual construction costs have been estimated for the facilities included
in the preferred alternative. Additional costs and fees in addition to
construction costs are discussed in Section 1.4. Preliminary construction
plans have not yet been prepared for the project. A 200 scale plan view has
been prepared and is available under separate cover. Typical sections and
hydraulic calculations for the proposed facilities are included in the Section
6 Appendix. Construction costs for the preferred alternative are summarized
below. Detailed estimates for the overall project and debris basin follow.
Downstream of 24th Street
Upstream of 24th Street
Wn•_.1
Construction contingency
Total Construction Cost
r
4-2
$ 6,230,843
9,719,685
$15,950,528
5,049,472
$21,000,000
ETIWANDA CREEK DRAINAGE CORRIDOR
PREFERRED ALTERNATIVE
$21,000,000.
PROPOSED 1
EAST � i
STA.
150+00
LEGEND
CONCRETE CHANNEL
......I. CONCRETE CONDUIT
MME ARMORFLEX TRAP.
CHANNEL
■� ARMORFLEX PARABOI
CHANNEL
W
104' TO 141' 7 \
PARABOLIC
SECTION '
BRIDGE
W
90' TO 135'
TRAPEZOIDAL
SECTION
w J STA.
15' TO 24' 72+00
L -
H=11' TO 12'
RECTANGULAR
C SECTION --
100+00
BRIDGE \ `_
RSION STRUCTURE
RCP OR RCB
W18E1MM�� /
IWN.i10, s
RECONSTRUCTED
SECTION EXIST W A CHANNEL
1lIR7011fA� I
BASH
,5 EXIST. SAN SEVAINE CHANNEL
E �
DBL.
CHANNEL UNDER CONSTRUCTION
Ft+`� STA.
AVO 18+00 MAY 1989
FWLS JN 2108.1101
II
II
SII
LADWP CORRIDORji
11
'SCE CORRIDOR
II
�: BRIDGE
°A
�I
�a
SII
y>�
..
III SCE CORRIDOR
W
104' TO 141' 7 \
PARABOLIC
SECTION '
BRIDGE
W
90' TO 135'
TRAPEZOIDAL
SECTION
w J STA.
15' TO 24' 72+00
L -
H=11' TO 12'
RECTANGULAR
C SECTION --
100+00
BRIDGE \ `_
RSION STRUCTURE
RCP OR RCB
W18E1MM�� /
IWN.i10, s
RECONSTRUCTED
SECTION EXIST W A CHANNEL
1lIR7011fA� I
BASH
,5 EXIST. SAN SEVAINE CHANNEL
E �
DBL.
CHANNEL UNDER CONSTRUCTION
Ft+`� STA.
AVO 18+00 MAY 1989
FWLS JN 2108.1101
•• Mal' ••. �. 1 /•
PRQTECT: ETIWANDA CREEK CHANNEL
VICIORIA AVENUE TO DEBRIS BASIN
DATE: JUNE 2, 1989
JOB NO. 2106.11.01
DatiR • TO EXPAND EXISTING ETIWANDA •nIal
51+15 TO aXLSTRUCT • s v r - oc)NCRETE ajANNEL
71+88 TO 100 -FOO N CIONSTRUCT TRAPEZoDIAL ARMORFLEX CHANNEL
100+00 TO 179+80 OC)NSTFdj(,T PARABOLIc AR40RFLEX CHANNEL
DIS OF 24TH STREET
1.
ARMORFLEX CL 50
376,367
S.F.
$4.30
$11618,378.00
2.
AR40PTIEX CL 30
40,288
S.F.
$4.00
$161,152.00
3.
SEEDING OVER ARMORFIEX
416,655
S.F.
$0.05
$20,833.00
4.
SOD
41,440
S.F.
$0.50
$20,720.00
5.
BRIDGE AT SUMMIT AVENUE
8,748
S.F.
$80.00
$699,840.00
6.
TRANSITION STRUCTURE
1,662
C.Y.
$310.00
$515,220.00
7.
10 Fr DIA. RCP PIPE
11355
L.F.
$320.00
$4330,600.00
8.
JUNCTION BOX
1
L.S.
$6,500.00
$6,500.00
9.
EXPAND EXIST. ETIWANDA CH.
3,300
L.F.
$375.00
$1,237,500.00
10.
EXCAVATION
128,000
C.Y.
$2.75
$352,000.00
11.
CHANNEL ODNCRETE
3,579
C.Y.
$275.00
$984,225.00
12.
FENCE
9,570
L.F.
$8.50
$81,345.00
13.
STRUCTURAL BACKFILL
4,340
C.Y.
$4.50
$19,530.00
14.
OUTLET' STRUCIURE
1
L.S.
$800,000.00
$80,000.00
SUBTOTAL
$6,230,843.00
U/S
OF 24TH STREET
1 -
ARMORFTEX CL 50
1,014,984
S.F.
4.30
$4,364,431.00
2.
ARMORFLEX CL 30
2,996
S.F.
4.00
$11,984.00
3.
SEEDING OVER ARMORFLEX
1,017,980
S.F.
0.05
$50,899.00
4.
EXCAVATION
130,000
C.Y.
2.75
$357,500.00
5.
SOD
402,422
S.F.
0.50
$201,211.00
6.
FENCE
15,960
L.F.
8.50
$135,660.00
7.
BRIDGE AT 24TH ST.
71392
S.F.
100.00
$739,200.00
8.
BRIDGE AT STA 151+30
6,588
S.F.
100.00
$658,800.00
9.
DEBRIS BASIN/UJrIE'r WORKS
1
L.S.
3,200,000.00
$3,200,000.00
•• M• 1 M t ati • all N• - 1 alal
••. •• • 1 N t 1 alal' 1 •-
• •i .• • a1 ••. •'•.• � all i � i+ • t
•. RIG11T-OF-WAY C= NOT1 M all
l#C 27
4-4
SUBTOTAL
TO'T'AL
30%(+-) CONTINGENCY
GRAND TOTAL
$9,719,685.00
$15,950,528.00
$5,049,472.00
$21,000,000.00
CONCE=AL COST ESTIMATE,
,
PRQTECP: ETIWANDA CHANNEL
DEBRIS BASIN SITE 1
DATE: JULY 7, 1989
JOB NO. 2106.11.01
TTEM
NO. DESCRIPTION QUAN'T'ITY UNIT COST COST
1.
EXCAVATION
1,200,000
C.Y.
2.00
$2,400,000.00
2.
ARMORFORM
60,000
S.F.
4.00
$240,000.00
3.
OUTLET TOWER
65
L.F.
500.00
$32,500.00
4.
36" R.C.P. DRAIN
3,955
L.F.
110.00
$435,050.00
5.
DEBRIS BARRIER
2,000
L.F.
30.00
$60,000.00
6.
CHAIN LINK FENCE
3,300
L.F.
8.50
$28,050.00
30%(+-) CX?NSTRUCTION CONTINGENCY
TOTAL
0
4-5
$3,195,600.00
$804,400.00
$4,000,000.00
i
i
J
i
yl:r►IR: M rk;-Wzl ba IYk/DI * :`yIDizi a J IV ZL.
5.1 Recammnded Project Alternatives
Ftisc�, Williams, landgren and Short, Inc., in collaboration with the Caryn
Coupany and the North Etiwanda. Land amers Consortium, makes the following
recommendations to the County of San Bernardino Department of
ii -log MR
1. The Etiwanda da Creek Channel preferred alternative described in this
report be approved in principle.
2. Tile Etiwanda Creek debris "basin" concept be approved in principle as
an alternative to a debris "dam".
3. The Etiwanda debris basin be located at Site No. 1 as described in
this report.
4. The County of San Bernardino Department of TransportatimVFlood Control
initiate action to locate a regional site for debris disposal for the
various planned arra existing debris basins from Day Creek to Duncan
Canyon.
5. The City of Rancho Cucamonga review the preferred alternative plan and
construction cost estimate and determine its adequacy for a Mello -Roos
election.
F a_ r.� V U . e
Ube following action plan is recce in the interest of expediting the plan
development and approval process for the Etiwanda. Creek project.
1. FWLS proceed with the preparation of 200 -scale preliminary design plans
for the preferred alternative.
2. FWLS initiate action with the State Department of Water Resources,
Division of Safety of Dams to determine if the State would have
jurisdiction aver the proposed debris basin.
3. FWLS initiate geotechnical investigation for a debris basin at Site No.
1 as described herein. i
5-1
r4wMre�1
Alternatives Analysis
Feb. 89
May 29, 1989
landowners Flood Control
-
May 31, 1989
Subccaxunittee Meeting to Select
Preferred Alternative
Meeting to present
-
June 6, 1989
Preferred Alternative
Prepare Draft Design Concept Report
June 7, 1989
June 20, 1989
Finalize Design Concept Report
June 10, 1989
June 23, 1989
Public Agency Review and Approval
June 1989
December 1989
of Design Concept
Preliminary Design
June 1989
September 1989
Public Agency Review and
Septi 1989
December 1989
Approval of Preliminary Design
Final Design and Agency Processing
January 1990
December 1990
Environmental Permits
Manch 1990
December 1990
Advertise and Award Construction
January 1991
February 1991
r
5-2
C�
0
IJ
G
0
0
tis W'
U i" I
.•..;r Is
16IM r.. *:
01;r411 !s4M 4 US --.0
• 100 -year frequency flood per separate report to be updated for final
design.
• Etiwanda debris basin voles requirements per separate report by Bill Mann
& Associates.
� SLS
• Maximum, velocity of 20 fps
•
Mannings n = 0.03 for velocity calculations
• Mannings n = 0.035 for capacity calculations
• Freeboard area sodded on parabolic section
• U. S. Army Corps of Engineers criteria for determining ng range of Manning s n
for velocity and capacity calculations, air entrainment, and
superelevation. Iris Angeles County Flood control District criteria for
freeboard.
I
as-M'A DFA .-a v �11 fe M al Ve ITIM4�6- 41 1 4A 0
ETIWANDA CREEK DRAINAGE CORRIDOR
DESIGN FLOWS
100 -YEAR (CFS)
I10 -YEAR (CFS)
DESIGN REACH
II
4000 II
2380 SII
I I
LADWPCORRIDOR �III
SCE CORRIDOR II
PROPOSED
5300
3127
°N�a -11
�I I
9`'CZ.� 311 ..
FZ II SCE CORRIDOR--,,,
9y
O \9
n
5900\\\
3481 II
STA. 100+00 it
PROPOSED 24th STIEET _ II EXISTING SUMMI
8700
3953
STA. DIVERSION
72+00 STRUCTURE
7200
4248 I
HANNEL
5900
4900
2891
3500
2085
HANNEL
VgTolml
SAW
2300
1357
T,E"WbWA CHANNEL
0 CAPACITY)
XIST. SAN SEVANE CHANNEL
(5,200 CFS CAPACITY)
EVUNDER�7CONSTRUCTION
AE (4 CO)
STA. ETIWANDA (7 998 CFS)
18+00 hrAY igen
FWLS JN 2106.1101
'1 t1• •.1 W
RA
&1 G t
11651 Sterling Avenue, Suite A
FU
FIJSCOE
PROJECT: ET/WA1✓,01j C1%ANN PROJECT NO: 2106. //D
Riverside, CA 92503
�� ■LL S (714') 354-0161
BY: , Z
DATE: CHECK:
7- s- 89
DATE:
UNDGREN
& SHORT
PA RA 6 0 L /C 0 >e FL ESC
CirilF.ngfnetrx • Land Surveyors
- Z
ell ANi✓EL V �Ax. - o H/SXC SHEET OF
0\
OD
N
W -i ul
N \0
v)
0 0
0
+o+
+o+
o+
o
o 0
0 0
o O
�I
O O
O O
p p
O O
p o
O O
O o
p
W 0
O O
p 0
0 0
0
o o
p o
V1 0
u1 p
o
vl o
ul o
Ul o
o
m
-
J
O o
N N
0 0
0 0
O O
O O
0 0
0 o
oa
oo:
y
y
�
O O
o 0
O O
0 0
O O
O O
0 0
�O01\
Q
U,vl
Q)�
�w�
Xo
p
�
m
i
y
Q)
O o
0 0
0 0
Z'
a)c�
0,�o�
mm
ON (7) I
�m
moi
�rn
oa}p
o
-
y
r
A
\
o3 oow
O
w
w 100
Qo
oo a3
o0
oa
��
�,�
'-,I�,
o
a
I
Oy
0)N
�+ W
'A O
O
W 0
Za
m
3
-�
o
m
coo
�i
��
��
��
0\w
v ( r -
0o0
w
N
Oo j
* ENTERED INF]RMATION FOR SUDCHANNEL N\|MBEP 1 :
NODE NUMBER "y" COORDINATE ^Y" CDORDINA-[
1
.00
10(,T`
2
10.00
98.4'
3
30.00
95.06
4
50.00
94.49
5'
70.00
94.00
6
90.00
p4.4�
7
110.00
95.96
8
130.00
98.41
9
140.00
100.00
SUBCHANNEL
SLOPE(FEET/FEET) =
.036800
SUBCHANNE�
MANNINGS FRICTION FACTOR = .035000
^^ ~ ^ ^ ^ ^ ~^ ^ ^^^^
SUBCHANNEL
^^ ~ ` ^ ^ ~ ^ ^ ^ ^ ^ ^^ ^~ ^^^ ^ ^ ^
FLOW(CFS) = 7210.3
^ ^^ ~ ^^ ~ ^ ~ ^ ^ ^ ^ ^^ ^ ~ ^ ^ ^^ ~ ^ ^ ^ ^ ` ' ^ '
SUBCHANNEL
FLOW AREA(SQUARE FEET)
= 407.22
SUBCHANNEL
FLOW VELOCITY(FEET/SEC.) = 17.706
SUBCHANNEL
FROUDE NUMBER = 1.739
/ SURCHANNEL
FLOW TOP-WIDTH(FEFT) =
126.55
SUBCHANNEL
HYDRAULIC DEPTH(FEET) =
3.22
---- ---------------`--------------------------------------------'----------
TOTAL lRRETJLAF [HANqFL FLOV(CFS)
WANTED = 72()0.0�
. CCAFiIEr TPREEULAR
CHANNE| TLDW(rFS` = 721002
EST[MAThD
`F'REEULAR CHANNEL NORMAi.
DEPTH WATER SURFACE
ELEyATION.........
...................
98.92
NOTE: WArER SURFACE IS BELOW EXTREME
LEAT AND F'lGHT 9P1K ELEVATIONS.,
[EECRlPTION OF STUDv
* PPRAB0LTC ARMORFLEX CHANNEL *
Q-670{ c5s,
* TOP WIDTH=14C ft, DEPTH=6 ft, Vmax=20 fps *
____________________________________________________________________________
* ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
NODE NUMBER "X" COORDINATE "Y" COORDINATE
�
' 1 .0O 100.00
2 10.00 98.41
' 3 30.00 95.96
4 50.00 94.49
5 70.00 94.00
6 90.0O 94.49
7 110.00 95.96
8 130.00 9P.41
9 140.00 100.0(".
SUBCHANNEL SLOPE(FEET/FEET) = .030400
SUBCHANNEL MANNINGS FRICTION FACTOR = .030000
.'.....'....^..'......'.,...........^.^.....'...'....'~....'....^..^.'.`'. .
. SUBCHANNEl FLO�{CFS) = 6709.8
'--'--- -----
* 0=5900 cfs. n=0.030
* 'OF WIDTH=5900 cfs' DEPTH -6 ft, Vmax=21 fps ^
____________________________________________________________________________
* ENTERED INFORMATION FOR SUBCHANNEL NUMBEP 1 :
NODE NUMBER "X" COORDINATE "Y" COORDINATE
1
.00
100.0-1
2
10.00
P8.41
3
30.00
95.9�
4
50.00
94.49
5
70.00
94.00
6
90.00
94.49
7
110.00
95.96
8
130.00
98.41
9
140.00
100.00
SUBCHANNEL
SLOPE(FEET/FEET) = .030400
SUBCHANNEL MANNINGS FRICTION FACTOR
= .030000
SUBCHANNEL
^~^^~`^^^^^^^^^^^~~^^'^^~^~^^^~^^^^^^^^^^^^^'^^^
FLOW(CFS) = 5926.0-
SUBCHANNEL
FLOW AREA(SQUARE FEET) =
341.91
SUBCHANNB.
FLOW VELD[ITY(FEET/5EC.) =
17.3?2
SU9CHAN"EL
FRDU]E NUMBER = 1.808
SL!GCHANNE4
FLOW TOP-WIDTH(FEET)
SU8CHANNEL
HYDRAuLIC DEPTH(FEET! =
2.85
------
TD�Q jQREGULAP j9REGULAP CHANNGL F�UwQF3O WANTEV
= 5900.0�
[O"PUTED TRRFGU/'AF CHANNEL FiOW/CFS> =
5925.06
ECTlrATED IPPEGL/LAR CHAN!JE� NOPMA'' DEPTH WATER SUPFaL[
ELFVATIDN. . . . . . . . . . . ' , . . . . . . . . . . .. . .. Q2.41''
NOTE: WATER CUPP4C[ 10 BELOW Ey[REQE
LEFT AND FIGHT BAN}' ELFVATlON5.
DESCRIPTION OF STUDY
* PARABOLIC ARMORFLEY CH4NNE,- *
* 0=5900 cfs, n=0.035 *
* TOP WIDTH=140 ft, DEPTH=6 ft, Vmax=20 fps *
*************************************************************************+
_-______________________________- ____-_______-__--___________-____--_-_-___
* ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
NODE NUMBER "X" COORDINATE "Y" COORDINATE
1
.00
100.00
2
10.00
98.41
3
30.00
95.96
4
50.00
94.4V
5
70.00
P4.00
6
90.00
94.49
7
110.00
95.94
8
13;.00
9B.41
9
140.00
100.00
SUBCHANNE!-
SLOPE(FEET/FEET) = '030400
SUBCHANNEL
MANNINGS FRICTION FACTOR =
035090
��
SUBCAANNEL FLOW(CFS) = 5913.F�
SUBCHANNEL FLOW AREA(5QUARE FEET) = 379.69
SUBCHANNEL FLOW VELOCITY(FEE7/SEC.1
SUBCHANNEL FRDUDE NUMBER = 1.569
SUBCHANNEL FLOW TOP-WIDTH(FEET)
SU9CHANNEL HYDRAULIC DEPTH(FEET) = 2.07
____________________________________________________________________________
TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 5900.00
COMPUTED IRREGULAR CHANNEL FLOW(CFS? = 5918'82
ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
ELEVATION.........................''.. 98.71
NOTE: WATER SURFACE IS BELOW EXTREME
LEFT AND RIGHT BANK ELEVATIONS.
DESCRIPTION OF STUDY
* P4RATOLY[ ARMORFLEY CHANNEL *
*
0=5000 c+'s. r=0,()0-1 *
* rnP WTDIH=180 f+, DEFTH=6 f+, Vma,=20 fps +
)
| * EWTEPED JNFORmAT7ON FOP TU8CHANNEL N]NEER
NODE NJMuEF "Y" 000R?lNA7E "/" COORD!NAI[
\ 1 ' ('10 100. (`/`
/ 2 25 0)
�
75, of) 04,1'r
� 90.00 94. 07.1
6 105.00
� 1S0.00 95.19
g 155. 0--.? 9"n3
9 180.00 102.O(
SUBCHANNEL SLOPE(FEET/FE[T` = .055E90
SUBCHANNEL MANNINGS FRICTION FACTOR = .02000(A
. . . . ' . ^ ~ . .. . ' . . . . .... . ., .. . .. . . . ^ .. . . . . . . . .. - . . . . . . . . . . . . .
SUBCHANNEL FLOW(CFS) = 5919.1
' SUBCHANNEL FLOW AREA(SQUARE FEET) = 298.18
SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 19.851
SUBCHANNEL FROUDE NUMBER = 2.351
SUBCHANNEL FLOW TOP-WID-PH(FEET) = 134.72
SUBCHANNEL HYDRAULIC DEPTH(FEET) = 2.21
_____________________________________________________________________
TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 5900.O0
COMPWTED TRREGULAR CHANNEL FLOW(CFS) = 5919.12
ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
ELEVATION.........,........,....,..... 97.4C,
NOTE: WATER SURFACE ]S BELOW EXTREMF
LEFT AND RIGHT RANr ELEVATIONS.
c
DESCRIPTION OF STUDY
*
PARABOLIC ARMORFLEy CHANNEL ^
* 0=590J cf5. r=0.035 ^
� TOP W7D7H=180 ft. DEPTH=6 ft, Vmax=25 fos �
��������������������������������������������������������������������
�
* ENTERED INFORMATION FOR SUBCHANNEL NUMBEP 1 :
NODE NUMPER "X" COORDINATE "Y" COORDINATE
1
DESCRIPTION
.00
100.00
�
25.00
97.13
3
50.00
95.19
4
75.00
94.17
5
90.00
94.00
6
105.00
94.17
7
130.00
95.19
8
155.00
97.13
9
180.00
1n0.00
SUBCHANNEL
8LOPE(FEET/FEET) = .055800
SUBCHANNEL MANNINGS FRICTION FACTOR =
.035000
"^^~^
SUBCHAN�EL
^ ^ ^' ^ ^^" ^ 1.1- ^ ^ ^ ^ ^^ ^ ^ ^ ^ ^^ -.1
FLOW(CFS) = 5916.2
' ~ ~^ ^ ' ^
SUBCHAWNR)'
FLOW A9EA(SOUARL FEET) = 331.02
SUB[HANN[L
ROW VELOCITY'FEET/6EC.) = 17.87j::
SLTCHANNEL
FROUDE NUMFER = 2.040
SURCHAmNEK
FLOW TOP-WIDTH(FEET) = 138,9^
SUPCHANNEL
HYDPAULIC DFP7H'FEET/ = 2.0:
'------- -----------'----------------------------------'-------------------
TOTAL IR9EGULAP :HANNEL FLOW(CFS) WPNTED =
5900.0,:)
[OMPUTZI {RPSGULAR
CHANNEL FiOW(CFS) =
5916.21
ES71M4TED
7PR[LULAP CKANmEL NORMAL DEPTH WATER
S1RFATE
EiEVPTI]N.
' . . .. . ..... . . .. ,. .. ... . .. . . .
97,64
NOTE:
WA7ER SURFACE IS BELOW EXTREME
____________________________________________________________________
�EFT AND RJGpT BAN!/ ELFVATIONS.
___
_ ------
DESCRIPTION OF STUDY
* PARABOLIC ARMORFLEX CHANNEL *
* 0=5900 cfs, n=0"030 *
* TOP IOIDTH=180 ft, DEPTH=6 ft, %ax=20 fps ^
____________________________________________________________________ _______
* ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
NODE NUMBER "X" COORDINATE "Y" COORDINATE
1 .00
10O.00
2 25.00
97.13
3 50.00
95.19
4 75.00
94.17
5 90.00
94.00
6 105.00
94.17
? 130.00
95.19
8 155.00
97.13 -7
SUBCHAN1WEL MANNINGS FRICTION FACTOR = .03(/00.
...'.^''................~'~..'...'...~........,...,..'.-........'^^'... '..
SUBC-HANNEL FLOW(CFS) = 5917.F
SUBCHANNEL FLOW AREA(SOUARE FEET` = 302.23
SUBCHANNEL FLOW HELOCITY(FEET/SEC.) = 19.58;
SUBCHANNEL FROU0E NUMBER = 2.308
SUDCHANNEL FLOW TOP—WIDTH(FEFT) = 135.2/+
SUDCHA�,1NEL HYl`RAULIC DEPTH(FEET) = 2.23
-- - -----'-------------------------------------------------- '-- -- -- -
___________________________________________________________________
TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 5900.00
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 5917.81
ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
NOTE: WATER SURFACE IS BELOW EXTREME
LEFT AND RIGHT BANK ELEVATIONS.
DESCpTPTIOr OF FTUDY
+
PARABOLIC PPmOPF'-[X CHANNE`' »
� ''=Too) 7fs.
� `0 bilflTH,10{ ft. DEPTH -5 ft` "may -20 fps *
�
�
ENTERED lNFORMATlVN FOR SUBCHANNEL NUMBFR 1 :
NoDi NuIBEC ''w" CUDR0IN&F ^Y'^ COO"LaNAr[,
/
� 75-0C� "4.1?
� 90'00 0C
6 i u5'»0 17
? 130.00 p5.19
6 155.O0 nT. 13
9 ISO. C0 100.00
SUBCHANNEL SLOPE(FEET/FEET) = .053600
SUBCHANNEL MANNINGS FRICTION FACTOR = .035100
^^~^^^^^^^^^^~^^^^^^^^^^^^^^^^^^^^^^~^^^'^^'^^~`^`^``^^
SUBCHANNEL FLOW(CFS) = 5905.9
SUBCHANNEL FLOW AREA(SQLARE FEET) = 335.20
. SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 17.619
SUBCHANNEL FROUDE NUMBER = 2.002
SUBCHANNEL FLOW TOP—WIDTH(FEET) = 139.42
SUBCHANNEL HYDRAULIC DEPTH(FEET) = 2.40
------------------------------------------------------------------ - ``-` -
7OTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 5900.00
CUIPUrED IRREGULAR CHANNEL FLOW(CFS) = 5905'95
ESTlMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
VESCRIF'TION OF _ryTl_L'•Y #t r� 4<.¢.*.9..k.. .k..j..x ri •¢ is i. s.. �.t. i
CHAININE'l_
ri TOPS i.I1DTr1 1 ' C', ft, DER11-E.1=6 ft. Vrna =20 fpM- f
.;F. At # y;..J .r ai.. J. • .*. •}t• -Y •?t # .• �?'f •k •}F• # if• •'.E :s'1t :4.. # •}• .F,{..0 .r •i`•+.• 9F •}� # # �� •}e• •1t •}F •i„ .r • # z _y,. •3F...ti• �r # 'A ?e
ENT'ERE=D INFORMATION FOR EU13CHANNEL1_, NUP" +ER 1
NODE NUMBER "V COORDINATE
° Y ° COORDINATE.
i
.00
100. 00
L
2o. . 00
97 . 37
4+0. 00
95"' . 50
4
60 . 00
?t{ . 2.7
5
SO . 00
T4. t_u;F
6
100 ., c_r €'.
c"4.37
120.00
95.5 =1
S
140. r.- 0
97.37
t?
i 6rC . 00
11 j[:. i:tr_}
SLt: PE i FEET/l-. E'E T =
. _x536 0r
:ut'I....I...j•..FI\},.F-'._. Mf-7i`yr,IiN(:3'.; f-FT rl_F.
CTr_tr'�
a a �yi:_ :r•�:y�•yl N.If '._
(—�._���'FF i. �\ '— .••';s•.7i ...
!=i_
F ._n_,1 REV i 5 :tl_ 1`'il_ l=E.'`'*-
C.•.JI:::.::i-•,1-�:�5',.!F:l._
F i:l'_1T..'F. 11.!{'E'. � • -'- _.. � �`i==,
i L �4_
i•
_.. a.'1:-:f'..•-�i:.�`\i!•:t �w i-
r_ l_ �t�. +.;, p 7
r 1-.
S !: c`r;F, f E'.
' ;YT)r'-"t! :t C: ? }l - '; H : F E.T
E•
i "1'rr-1TC:,-Z! I'11r AF i •sJ^n�h FL Fl
i-sl i i r-•�—;•-., F I/ ,i••f• I'',
_. •—, � L . L . �T L' .... F .. _. � , a ... l _ (... � 4". .. ,.. 4 i i F 1 _. ._ _'- ... .— '•. } r •_r' _
,CC_1P9t•UTE.) TRRELILl _0 H:_', r3=L F!.Owl(C!S
r:_.� i. •,�'ET� i"I'l�'i.�..r•,, ~HAhiF:F_l rJORhIf-i,_ DEPTH .4F -•T-.; SJ!`t'M-=
NOTE: WATER TS BEL -O!:,'
Fr s:.L.EFT .I - L
+..t •x�e # >E ## #�i>E x;f DESCRyIPTION OF STUDY
# PARADOI_ I'_ ARMORFL-F'' CHANNEL_
r, 0=5300 r•f s , n=0.035 }
TOP WIDTH=160 ft, DEPTH=6 ft. Vma.,, tR0 fps
iF •M:• :f # •# i( -•}E• •}f• # •�• •;:-•)E••)t• # •3i• # # #-rt• # # •3E• •}e• •}� •� •rF # # •re # •}E• •�• •x• # •if••iF •x' •ii -9F # it •f• # •3E• ii• # 3(• # # # •x• •rE• ii � �ti is � �-� � -iF -� •�- #• •K• # •iE- iE•,�' �= •>~ X #- F
ENT _F;E"D IN OR -1'f Iord P,uz S!_!F:E HFI!' WEL. hlLitf'r3EP,'
NUMI3l-F. rF X rF C Ot7r- D I W = .F Y FF l".C1f?FiC I PJ
12 1 0, , 0 C • wl.l. 0 l
f, 1 r`,;- CACI AL.F. 1?17 9
� 1q�`./'C C07.X
9 160.«0 E.
SUBCHANNEL SLOFE/FEET/PEET) = .053600
SUPCHANNEL MANNINGS FRICTION FACTOR = .03t/`X;
' ' � .' . .' . ... . . . ...' ... . . .. . . ' .. . ^ . .. . . . ' . '
SUBCHANNEL FLOW(CFS' = 53P4.8
SUBCHANNEL FLOW A9EA(SQUARE FEE,) = 301.43
SUE'CHANNEL TLOW VELOCITY(FEET/SEC.) = 17.66P
SUBCHANNEL rROUDF NUMBER = 2.003
SU9CH4NNEL FLOW TOP-W[DTH(FEFT` = 124.8R
SUBCHANNEL HYDRAULIC DEPTH(FEET) = 2.42
TOTAL IRREGULAR CHANNEL FLOW/CFS) WANTED = 5200.00
COMPUTEL IRREGULAR CHANNEL FLOW(CFS) = 5324.77
ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
NOTE: WPTER SURFACE TS PELOW EXTFEM[
LEFT AND RIGHT BANK ELEVATIONS.
EST7M4TED IRREGULAR :H4NNB NORMAL IEpTH kK`TER nUR'-ACK
DF97RIpT104 Oc
37UPv
' * �`7�F'L�
i ��u'C
' ~ ?=4('Js
r"s n=0.03'
°
^ 100 VIDrHY1G) ft, DEPT,|=& 'L, Vma =2» fn�
v
|
/
° FNTERED TNr]pMcT Qv rOR nUPCJTU&0
KUPD[p 1 :
|
1c '0^0
� 50.O`-)
9-,qC?
.
5 7»/.fX,
c'4.01 -
{pO.(,0
Q0. 00
94. 4c'
7 110.00
95.96
8 130.00
99.41
'
9 140.00
100.00
SUBCHANNEL SLOPE(FEET/FEET) =
.065000
SUBCHANNEL MANNINGS FRICTION FACTOR = .030000
�
. . . ' . . ^ . . . ' . .. . .'. . .. .... . . . . . . ' - .
SUBCHANNEL FLOW(CFS) = 4006.6
. .. . . . . . . 7—.— . . . . . . . .
SUBCHANNEL FLOW AREA(SpGARE FEET)
= 198.89
SUBCHANNEL FLOW VELOCITY/FEET/SEC.)
= 20.145
SUBCHANNEL FROUDE NUMBER = 2.49B
SUBCHANNEL FLOW 70P-W7DTH(rFFT) =
98.4/:
SUBCF4NNEL H«DRAUiIC DEPTH(FEET` =
2.02
_______________________________________________________________
---- - - - - -
____________
--- - - -- - - - `- -------- -- ---------- ----- -- ----- ---- - - - - -- - - - -` ` -- - --
TOTAL lRRETi/LAR CHPNNEL FLOW(CFS) WANTED = 400u.=
COMPUTED IRR[6ULAR CHANNEL FLOW(rFS) = 4006.60
EST7M4TED IRREGULAR :H4NNB NORMAL IEpTH kK`TER nUR'-ACK
NOTE; WATER SURFACE IS BELOW EXTREME
LEFT AND RIGHT BAN' ELEVATIONS'
DESCRIPTION OF STUDY
* PARABOLIC ARMORFL[X CHANNEL *
* 0=+000 cfs, n=0.035 *
* rOF W]DTH=!40 it DEPTH=6 ft, Vmax=20 fps *
--------------------------------------------------------------------'-----`
* ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
NODE NUMBER "X" COORDINATE "Y" COORDINATE
1
.00
100.00
2
10.00
98.41
3
30.00
95.96
4
50.00
94.49
5
70.00
04.00
. 6
90.00
94.4v
'r
i10.00
95.96
F
120.00
98.411
�
140.00
100.;0
SUBCHAONEi
S"OP[/FEFT/FEET) = .06509�
SURCHHNNZL 1CNNIOGS MICTION FACTOR - .03501C.-
SUBCHANNYL
. .~ ..
FLCW/CFQ> = 4021.8
~ ~ .... ....
SUB[HANN0
FLOW APFA(SO/jARF FEET, = 221.9-2
. 9ITCHoUNTL
=LOW VELgCI7Y(FFET/SEC.) = 18.118
) SLBLYANNE!
PROUCE NUMBER = P.167
YUFZPANNCL
FLPW TOP-WIPT&FEFT) = 102,22
/
HyDqAU/ 77 I`EPTP<7[Fr` = 2.1�
7OTPL T9REGULAF
CHANNEL FL0W(7FB) WAN'rED
CDMFUTFF IRAFGULAR
CHPNNEL FLDW(CB; = 4021.76.
GGTIMA7ED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
NOTE: WATER SURFACE IS BELOW EXTREME
LEFT AND RIGHT BANK ELEVATIONS.
om
�us'CO�. 11651 Sterling Avenue, Suite PROJECT: ET/WAND C114,yVc1 PROJECT NO: 21D6 //o 1
WNLLUMS Kive(714 CA -0161 BY: DATE: CHECK: DATE:
�REN (714) 354-0161 T. 2 . 6-Z3-84
I&SHORT RECTAA/CCO/VC ef/A111VE-L
Orit Engineers • Gand.Vurwyors ( MO$T 1-1yoe,4 uz le
E=10 SHEET / OF Z9
�
-GV� o ow �A
-{ -1l-� -1NNNa1 �Z
Z
} o1+1 +4' -++*o++oH o
000000 00 C
C) a a o Oo %C0 0 o
V,,
> y
o O OO W , W i � .p �l N .p •p t^1 �
o o I O O O
O Op O p l O O 0 O O O
� IA U1At 1 t� ! 7o V1; � BVI , V1 70 In 11
O �l
Iq��L�O� cp O o cb�o O IppO 0 0 o
IIf L
O �!Gv i0 p I o O p'_ p1 p p o d
0 (j) (j) C>
�� W 6
- 1 j i C G\ G� 0� C G1 I Q pp C (�D Q7 �
r i
1� r O I 01, I .p N j Ij .p N W ZO I d
oo I
C) o'
` Ito ! N
O'P 'P I oo rp
'4I U) fl N o•
CD 00
W
W W
a o a o` c o` O,
D I p O p I O
n �i
y ooc�opp00000000ppOOioopO
t,cz5 00 00 00 00 0 O f _
o0 00oo p r,
'A L)(.jj(j) 'j) (.3 Lrtw V)w V)w V1 utW U)w �w Z
�p , n
�oo;�mc�Lr,°� wo w� �o v N ow�a v�i'`rlo� o C
_ �A iiI
Op C\ � N o� � v N �1 Q\W 'P �P vl I l� N v p �I
W
pN
H v cc, I ui ti O
FUSCOE 11651 StelingAvenue, SuiteA PROJECT: E719141d,4 c%<A7VNEL PROJECT NO: 2106-.//o
Riverside, CA 92503 =DATE:
WILLU MS (714) 354-0161 BY: 7TI, c,?,- 89 CHECK: DATE:
LINDGREN
& SHORT
Civil Engineers • Land.Surneyors SHEET 3 OF 29
Fie o Ak S TA , SS -r- 0 0 To STA • 6(;+ 0 0
Q = 4,9oo c.{s. , S = 0,o2o g
TRy b. /9 FO,,-'- K= 0.007 %z = 4• SO
o, 5-,6 - 9 -;"L = 0.0 s FROM Pe -'/q TE 4-
a
Q = 6,309 c,�-s Top CONSFIe✓AT/✓E
TRS/ b, 16-
D=
6D- 8
Foie K- 0,007, k- ¢,00
0. 0 1 5- FRo/w
Q = ¢, go 8 c.�. s . eZo5f- TD q, qooe. 1-s
so USE
D,I 7- 8.3 $ V_ 36, 57-F4'1S4 r= 2.23
0,002- 4.01
, %�_ 4.09
7L = 0, 013 F�oM AGATE ¢
OA/ = 7,52 Hoy = ¢0,70 -/•�S� � :2 G2
F_VM AX _ x'70 _ 2. 6 2
32.2 x 7.5-2-
FieOM PL ATE ¢ g- d,1/0( ,_ /. 0 s- ole .S7 • AIR- E-AIMA hV M El -IT
DA - 8'38,x
DA= 0-1t2 .01
FUSCOE 11651 Sterling Avenue, Suite PROJECT: E-T/W4AIM G'I%ANNEL PROJECT NO:
Riversid4 CA 92503 BY. DATE.6'-23,81 CHECK: DATE:
LINDGE (714) 354-0161 T.S.
LIHDGREH
& SHORT
Civil Engineers • Land .Surveyors SHEET 4- OF 2 9
FRoAA STA. 6G+0o TD STA. 7/Y- 88
Q = 4,90 0 -C.7�s. , S. 0.036 8
Tky b= /4 Fog k =: 0•oo7 , _ 3.5-o
�= 7 = 0.015 FROM PLATE ¢
Q = 4, 2 93 C, {,S . NDr GooD
TRy b /S FoR
K = 0.0 0 7 , _ .3.75
Lr) = 7 - -A =
0-015 Fjeonn PLATE 4
Q =
5,16 I C,�•S . CLOSE ro � 9Do �•{s ,
So
N
722 V_ ¢5,27 f/•%Sle., �= 2-f7
Foie
k = 0,001 , = 3.6$
7\ =
0-013 Fi�OM PLA TE `f
DN =
6.49 , V•�aX.= SD 3�-��/sec ., FN = 3.48
so 3 G _ 3.1-8
D 32.2 x 6.¢9
F/20N1 PI -ATF 1�5- d�� =
/•/l OR //% A/i2 ENTieA1WMF1V T
DA =
722x0•/1
FUSCOE 11651 Sterling Avenue, SuiteA PROJECT. E71{U4N44 C/14NNEL PROJECT NO: 2/0 �. //0 /
Rive(714 35 -0161 BY: DATE: CHECK: DATE:
WILL (714) 354-016I -%• .I , �- 23- 89
LINDGREN
I&SHORT
Ciril Engineers • Land.Surewyors SHEET S OF 29
FROM STA. 7/t 88 %O STA . 82 t SD
Q = 7,200
0.03C8
p= 9
-
%1 0. 0 15- FSE' 0 M PLA 7E 4-
317
3g 2 C .J. S. Too C0VS-,6P✓A7-1VC
Tie y b 7'
_
= 8. S
n o, o i S jc,eo/ n PLA 7-6-
EQ
0= 7,2-05 c'.{ S. CLOSE 70 7,200 e-- ,S .
So USE 6=- /7'
D,V : 8.¢9' , VS7 P.1sec. , F : 3,02-
Fo,e k . 0.002- ¢. 2 s
n= D,013 rp-ons P2 A E 4-
D,l � 7. 64 VMAx = 5s47
F= VMA X _ 6-5-,4 3.5-4-
__
X D 4 32.2 x77.64-
IrROM PLATE ¢S
CC�n� � /•/D oR
2)A = 8- 99 x o./o
D4 _ 0 8 s
/0;/- A/ie t ✓Tie• bVM E-A/ j"
4 y = _f/ ) Ls--:E-i 47 ) �/ � )
32.2 X goon
�y _ 0.20
1:�S�OE 11651 Sterling Avenue, SuiteA PROJECT: ET/G1,41VI Q CiI/fNNEL PROJECT NO: Z/O6,/lO
WILL (714) 354-0161 Riverside ca 90161 BY: T -T. DATE:623'89 CHECK: DATE:
LINDGREN
& SHORT
Grit Engineers • Land Surveyors
SHEET 6- OF Z
FROM 5 T , g z t SO TO STA . 97-/- 0 0
Q = 6, 70o c.�S . , S = 0,0368
-T"Ry b= /7' FOR A— 0,007 R = 4 zs
�- S"S, -il - 0.0/S Fie0AA PLATE ¢
Q- 7, 2 o S 0,f S 7-00 C0NSF,'VA71VE
b= /
TRi 6 FOR-
X= 0.007, 9=. 4,00
D = 6'-)1:-
0101 S F,e 0AI� PZA 7E
4-
Q =
6, /30 c.f S . ezoSE To
6,700e,�,5 "
So
USE b= A6 "
V. 48.9s 9,bec , ,
F
Foxe
/<=-0,007 ,2 = 4,/3
-A=
O , 013 Fie 014A P -IA TE
-f
b, =
7.,!5 8 V,, = 5-4..52- F�/s�,�
F,,, � 3.4 7
,
9�X[� 3,4
7
32,2x7"68
FROAA, PZATE 4-5--
4
S-4 = O"SSx 0'/)
o k //;/- ,¢/,c Fi✓Ti
11651 Sterling Avenue, Suite A PROJECT- ErlglAW4A r1141V11FL PROJECT NO: 2 / D �, // o
�.USCOE /
2503
WILLU MS Riverside, C5 90161 BY DATE: / CHECK: DATE:
LINDGREN (714) 354-0161 T, I', 6Z3-�'�
& SHORT
Civil [s'nginerrs • Land.Surveynrc SHEET 7 OF 2-9
�c-,Ro/n 577-A 97-x00 To STA. /07+oo
Q::: 5;V00 c.f s . , S. 0, 036'8
7-9,y 6 � 1.5 Fole K _ 0, 007 ,e = 3.75-
T
.7sT = 0.015 FP 0 AA PGA TE V-
(/
(/ = S,/6/ c,•(,s. AloT coo1)
T'ey /6 Foc k =0.007, 9= -/'00
-71= 0,01 S /,WoM PLA -r
Q: 6,130 c. -f,5. CLo56- To
S0 usE b = /6
D,,/ - 7.7 7 � V = 9 7.4 4 -0, /sr. FN
Fot- k: 0.002 � .3•q4
� = 0-013 F,eDA� PLATE �
V Ax.= 52'75H'I/ c•,, F � 3.52
F t _ s2.7s .73,.52_
9�— 32.2 X 6'-'79
Fg o/v\ Pi -,A TE 4-s- ���/d = /�/� OR- // ,41P t-,VrE'A11vMFv r
%A = 777x 0.//
DA. 0.9s'
'L
o y _ (�� (sz .7 s)
32.2 x 9000
Ay = 0•/7'
�us'COEi 11651 SierlingAvenue, SuiteA PROJECT: ET�W.4Na,q c'lmmw CA 92503 PROJECT NO: 2 ��G ��Q�
WILLIAMS Riv (7 4) 40161 BY: T I , DATE: Z 3-s9 CHECK: DATE:
LINDGREN
& SHORT
Civil Engineers • Land Surveyors SHEET 8 OF 2-6)
F9 OM .5TA • /07-t00 To 5TA . /25-�00
Q = S, 900 C,Is., S. 0•05-3C
Fob k - 0,007 , R= 4.00
D = '
0-0/5 /C -9 0/V\ PIA7E 4-
Q = 7, 3 98 C S . 7o o co l✓sE,e i/,q Ti v,6 -
TAY 6 = /S'
Fop- K= 0.007/ F,= 3.75-
.75D
D= 7. S
-)q= 0.0) S F,eolv,, PLA-rE ¢-
Q = 6, 2 z 8 c J- ' . CLOSE To .S, yo o
so USE b = is'
7 0 ' V=
-7'
Foy k= 0•oo2, 9 3.67
71 - 0, o / 3 Fgom, PIATE 4 -
PAI tS- 4 O i VMA x, — 60,74- /SSC ., F
F Vi IIA 9 . _ 60.7¢
—� A32—,?x--6-48
FRo� PLATE 4S
d = / I S 0 9 /5X, A/R ENrA4IYNf
DA = 7Zoxo/s
(1)�6o.74)Y15-)
Ay =
32.2 x 8000
�sy_ o.21
IFUSCOE 11651 Sterling Avenue, SuiteA PROJECT:hTI92503 W,Q�/j e'y�fNNEL PROJECT NO: Z (D�, /1Q/
WILD Riverside, �I4) 354-0161 BY: T Z DATE: 6 23_89 CHECK: DATE:
LIDGREH
&SHORT
l.iril Kngineenq • Land.Surveyors SHEET 9 OF 2-61
C OAA S7 - A, /257+00 TO
GZ = 6300 C.f s. , S. 0.0s3C
S7 -A. /46-t-oo
T,ey 6= 15 /--0 F- k= 0.007 3.7-5-
Z) -=
Z)' 5-/ = 0,01 S F/201V\ pe-A-rC4
Q - 6, ZZ 3 FO C) CIO AlSE. Vl-riVE-
Tey b = /4-
D= 7'
FP-C9Ak
Fore k= 0.007, P-= 3•so
15-
F'Oe0M PZATF /-
6 2
62 - .f•s.
So
us E b =
l 4 '
7,/2
V S3./%
Fdl,
k= 0002
= 3.53
71 =
0. 0 ► 3
F-Ie0NM PLATE
DN
= 6.40 �,
V,, 5-9./���,�ser•� F . 4•l2
FVIAAx.
_ 59./tl� _ 4.12-
./Z32.2
-32 ,c 6.4 0
04 /S/ A19 ENrCA/,1/MEVT
'DA =
7/2x0 -/S-
D _ r
DA
-- q /, D 7
FUSCOE 11651 Sterling Avenue, Suite A PROJ ECT: ET-1W,4Nofi CIIAIVIIEZ PROJECT NO: Z106,1101
Riversid4 CA 92503 gY: DATE: CHECK: DATE:
WILL (714) 354-0161 T I. 23- SR
LINDGREN
& SHORT
Civil Engineers • Land Surveyors SHEET 10 OF 29
FRO/v` STA. 146+00 TD STA . /4 8+2 o
Q- S,30D c.J.S, S= 0,08S6
TRX b /4 ' FOR J< = 0.007 3.so
n =
7/ -n = 0.O 1-5- F90M PLATE �
Q � 6,5-418 -Too eo n/SE�e m -rl v E
TRY b 13 / ,co,e /< - 0.007, )2 = 3.25
5 s 71 = 0-0/5- r,eOhn PLATE -;I-
5,
Q = S, 34 7 c,-0� 5 . eG0SE TO
So U5 E b : /,3
D,V = 6 ¢ 3 l/. 63.3 7 F = 4 .90
FoR k= 0-002- ?,= 3.2-3
-7�- = O. O/ 3 Fie 0M PIA TE 4
DN = S 7 8. Vistas %. S2 1q/s�c F = S. / 7
F= VMAx. _ 70.5-2- 517
9 9b 32.2 x 5778
F,2oAA PGA TE fS d-7,_ /.22 OK 22j4 A/9 ENiIpA/.�/MENT
DA=6.43x0.22
DA_ /�
11651 Sterling Avenue, Suite PROJECT -f /j�(/
FUSCOE �QA/D�Q [yANIVEL PROJECT NO: z/D�,/101
IA
WILLMS Riverside CA 91503 BY: T
DATE: CHECK: DATE:
(714) 354-0161 r , �- 2 3' 9
LINDGREN
& SHORT
('frit Engineers • Land Surveyors
SHEET // OF 2 9
FR o M STA - / 8 +" TO 5 7-A . /6-3 t SO
Q= q�-,000 c, -FS, s. aogs6
TR y b = /3 FOP- k = 0,007
6 S _ 0. orS FXoM PLATE ¢
7Ry 6= /2 FOP- k= 0-007, 9= 3,00
-k\=01015- FP-oM p A -Fc
-
V-
Q= ¢,,3,0/ C,7,S. CLOSE TO
0 =
,000c�,s
so us E 6;--71z"
5764 V:- 5-9. o
9.3
D,002-,
0 0 1 3 FP 0 NA PZ A TE 4-
D,4 = so8 , V�41AX 7 tSS 6$ f�'���,,
�N
9x0 3z.2 x sos
F90Ak PLATE �S
- 66\ = 1,2 Z O R
L),4 S00- X 0122—
DA = /•2 ¢
A y _ 66,5vs)1�12->
32.2 x 8000
y = 0.20'
22-;1, it/k ENrRA/n//yEn/T I
11651 Sterling Avenue, Suite A PROJECT: FT1W,4,Va4 GyANNEL PROJ ECT N O: 210 � 1 / 01
FUSCOE
Riverside CA 92503 BYDATE:
WILLIAMS (714) 354-0161: T-1 , DATE: 6--Z3_8q CHECK:
LINDGREN
& SHORT
Cirit Engineers • Land.Sure yors
SHEET /Z OF 29 1
Fie0A& SrA . /,�Sf 5-0 ro STA . /77-1'00
¢ 000 CY.5- S_ 0,D70 8
TRy b:-- /3 FOA k _ 0.0 07 , - 3.2
D- 5' '7\= o-015- ,C90AA, PLA77-,E ¢
Q = 4 S 87 e. 7/, S.. Too e01V5 X'k1A 7_/
TRy !b= /2 f-09 k = 0,007, 2 = 3,00
6 --A-: 0 o / S Fie ons P,1 A TE ¢
Q 31 CLOSF 70 ¢,00ae"t s.
So USE % - 12 _"
D = 6. o 6 �` V= .SS. 01 f=l-�s� . F = 3 94-
N
FD,e k = 0, 0 0 2_ , Je = 3 • o /
,7x _ 0.013 Feo M PZA TE
DN _ S 16- , VMA X. = 4�/• Z / P./see. , F = 4, 6 2-
F= VMAX . = 6/. 2 / - = 4-.6 z
XD 32.2 X 5-,4S
FKOIV� PLATE ¢S 61?K/d _ /,/g
DA = 6-06Y'f"8
DA 0'?
0p, /B j4 Alp- EA1;rRA/NNFN
,a y = (/) e V. 2 /)Y/2-)
32-2)c SDoo
Ay_ 0,171
5 BY: FUSCOE 1]651 Sterling Avenue, Suite PROJECT -11651 G'//gNIVEC PROJECT NO: z 06. 0
Riverside 92503 : DATE:
WILLIAl1As (714) 3 354-016I %I, DATE�-Z3��9 CHECK:
LINMUN
& SHORT
Chit Engineers • Lund.Surveyors SHEET /3 OF 29
FROM` STA. /77-1-00 TO /82+00
Q = 41000 C
O.094S
TRy b= 12
FOP- k=-0,007 9= 3.00
D= 6
= o.o/s Fie OM PzA%E ¢
Too Co.✓SER ✓A Ti VE
Tey,6 = 1/
Fore k=0,007, R= 2.7-5-
D s s
-21= 010/6- F,eOnk PI A iE ¢
L _ 3, 6/7 cGoSE To 4,000 e°. ,5 .
so u5E 6 = /I
.DN = 5-,93 ", V _ 6/.2 8 r"4,A;-n, F = ¢.4 3
)Cote K- 0,002- , 9= 2.95
--r\= 0,01 3 F-90AA P4ATE 4-
D,,,=5.33; Vax.. 6gzi6 sec, F= 5.2/
F_- V—A6AW _ 69.Z6
9 xD 4 32.2x 5:33
F,e01A PLATE 45- d-,. /- Z Z 0 le 2 2 A/,e E�✓r,�A/.✓MFi
DA . S93 x0,22-
Z)A - A30
3 27,2- X 8000
Aye 020
.N .IKI
EM 1110-Z-;1601
Appendix III
1 July .70
1
,I
- LEGEND
o MINNESOTA DATATI�Y-•,t�
• KITTITAS DATA •+1
•1'I
!1
1
1
1
1� dm.
.. •';;�
J
,SEE DESIGN
CURVE BELOW
Q - , 1• 6
IZ t6
F= V
a. EXPERIMENTAL DATA
.
. L
1 DIS
`;,��;:1•.
d SUGGESTED DESIGN CURVE
d
•Ir
1
��
'11
tl
p = V =. _ -
..
y •
:.i '.'
.•'
•111
DESIGN CURVE
.. ,
.,:��.!+I
NOTE t d
m =DEPTH OF WATER AND AIR MIXTURE
d =COMPUTED DEPTH FOR NON-
II Ij
AERATED FLOW
V =COMPUTED-VELOCI.TYEOR•NON-
AERATED FLOW ---
.III,i
r
i p =GRAVITATIONAL ACCELERATION
1 F= FROUDE NUMBER FOR NONAERATED
FLOW
•.-�•j.:
`'
-
AIR ENTRAINMENT
h`
SEE TEXT PAGE S7
ate 45.
III-47
'--- ,...._cam_
��
v'''~'r 1. � �• Y I J,ir.
.y�y"•,"'�1''ii
17�:,1
/�'
.sir•
' ';1
• .......- _. -._._...rte
- -
� .. � •. w.-+—+�--w �...__�r... _..
..
I�
y_...1+.Q..:.� Z_ .,� .y:.a..# .r. ?F �. ?t •�• s• :a- :R -.<.k y ..�..g..u...;. ,�...#.�_ .# .�..a. ;i- •Jf •9F 4• -f�;a- �- i• i' :�- •fi i. �. �..y. •3: •!E :l• •�c. 4. •�• •3E •� :# :e• •�•.�.;: •� .�, x . �..;,.:k .�. y. y_ y. � K..� .., i .
HYDRAU..- I C ELEIYI.= NT 3 -- I PROGRAM GRAM PAC}: A011
,C) Copyright fight 1952--8 Adve'''ced EYIC?::YIep irg aft4aa.•-e .saes,
Ver. 2.7A Release Da6/25/96 nE71c:i
Analysis prepaNet by!
TIME/DATE OF STUDY: 600 1/ 1/1980
'E _ } +� a• ► DESCRIPTION OF STUDY
RECTANGULAR CONCRETE CHANNEL- �
* 1.6 ft WIDE5 12 ft DEEP
..c; .ce:�:1.•;�••�•-¢3F•�•?:..}Z..;.i±•.�e�•it;i•.�--•f•.f:..;i ##..p..',F. •�:�f•�r•�••'; �'' �fi•�•#��••1±•=i.•#X'. �=o-:�..#_.�..y..,�:c.tE `�•if••34•:�C••it••}(.�i••}F �r •3f'y±# t:.�F `�•.j�•.x •ri••k � � i["L 7 #:'/.:e
. . . r.i-!A NEL_ 7NPUT IN!=DRM :TI:.fiN- .
-----------------------------------------------------------------------------
C,-iAl-Ii`.'•E.L Z H`_ R I ZONT AL f VER r I CAL. •
EASE W 7 )TH (:='EE") -• :6.00
1: :!!' ..•• PNT CHAWNE:i_. :y-±_Ll.RE i F=F-c_•Tf EXT -
. i.}2••`j(;,0.
!°1 N IN _ :u'-• _, F7f`.'IC1 100 FACTOR T•O. ...: .. .
NDEMAL—DEPTq FLOW •vi' .R, .....rr .L7%
M,jr`i±:rMO DE FT± -i : F+'_f: T ) c.. i i : 36
-Los -._fir"--W;P-'H(FE T, -- J6.00
KEW AEEA'S2UQF7 '=j
GO
i A?':PAUL .0 DL:PTH'.F EF_:-.) - B.: S
FLOW AVERAGE t Or - &- E
=7
iUN I FOP M r=F:OUDE NUMBER -- 2. PP'i
AVER VELOCITY HERD (F•E CT ) _ 20.70?
•=EEC
7�'. _C t F 17 Er.NEr-(B Y ' F E F-_ T —• 2903!Z1
CRIT r_: s
_ !-.. , I Ci=;:. -I EF'T-i FuDW t'�F: F;:1~i:�� i .� Ot'a ;
----------------------------------------------------------------------------
CR I T I CAL FLOW TOP—WIDTH(FEET) = 16.00
CRITICAL_ FLOW AREA (S` DARE FEET) = 228.49,
CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 14.R8
CRITICAL FLOW AVERAGE VELOCITY ( FEET, SE: C .) = 21.4.5
CFj I T 1 CAU DEPTH(FEET) = 14.28
CRITICAL FLOW PRESSURE -±- MOMENTUM(POUNDS) = 305440.60
AVERAGED CRITICAL_ FLOW VELOCITY HEAD(FEET) = 7.142
CF' I T I C AL. FLOW SPECIFIC ENERGY(FEET) = 21.422
?:c:t � kF S'3t3t #iFk3ck##d�a#•"ri{# DESCRIOTJON OF S UDY
.%i•.7FyF3Erx x?C'k 3E 3'i g.•##••k:k?�?F#�#
RECTANGULAR CONCRETE CHANNEL c
} P=16
00 rfe - li=0.013 is
6 ft WIDE 12 ft DEEP
.}; . �..� ;:..}F •�: 3. � -�- ii• :K .� ii• X •� •'q• a( #'�.'.+s• :# •iE• jr• •?r i= •iE• •}l- •3F' •�• •{. # r.:..};- •X: •}�• :�• •�• •�- fit• •z.` -� # •#- i;. � K: iE •}f..�..� .}..�c.t.r .� :¢ #� .jt. •j4• •Y.• .}t. i• •}c •� .}:. •� �5 •�: #..:� .}d..nc..�..nc
.}E• •�• •�'• •� •�- �'- •k �%- •+^• #'• �''JF �' ,x. •?E � �• -�•.ti, i4• # -)<• tiF •?F •Y •3!• 3f• •i► t: •9• •�• •1E• •if• ?...*..t(• dF ?� ;r.- •Yr x. s;..�E #•;:. •X #: •lF' ?f• •iF •3s ?4..y�..�. x;. ;x .}a..� �..�..y_ �• •?i• 3f' •3% 3?' ii• i�-•34• •}i •Y• #� �t 1? X
. >CHA'aNFL 7. NP► 7 I NFORMAT I Cin; • e
--------•,.�±-;r-,�,�h�F!._ <<H±-+���"�±7tJ'1"r�•±L-/vER-I-ICr'�^i_)_.-__._-----_.._.,Y�......_..--'--•--_ ._---__.-----'•----------•-----...•_--__-.�G
L|��| Lfl!��IvwLL
&NIFORM FLOW(CFS) = &900.00
! MANIHINGS FRICTION FACTOR = .013�
NOPh4.-DEPTH FLOW INFORMATION:
-----'''--------------------------------'-----------------------------------
//>`` NORMAL DEPTH(FEET) = 7.52
FLOW TEF-WIETH(FEET) = 16.00
F)Ok AREA(SQUARE FEET) = 120.39
H»DRAUiTC DEPTY/FEET` = 7,52
FLOP AVERAGE VELO[ITY(FEET/SEC.) = 40.7''l
UNIFORM FROUDE NUMBER = 2.615
PRESSURE + MOMENTUM(POUNDS) = 414740.80
AVERAGED VELOCITY HEAD(FEET) = 25.722
SPECIFIC ENERGY(FEET) = 33.247
CRITICAL -DEPTH FLOW INFORMATION:
--------------------------------------------------------------------'---- -
CPI"ICAL FLOW TOP-WIDTH(FEET) = 16.00
CRITICAL FLOW AREA(SQUARE FEET) = 228.48
CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 14.28
CRTTICAL FLOW AVERASE VELOCITY(FEET/SEC.) = 21.45
CWITICAL DEPTH/FEET` = 14.28
CpITTCAL FLOW PRESSURE + MOMENTUM(POUNDS) = 3054Y9,K�
4X -AGED CPITTC4L FLOW VELOC70 HEAD(FEET) = 7.142
[RrTICA� VLOW 5PECTFIC ENERGY/FEET) = 21.42E,
D=RIPTIgN Or S-UDY
� FEE ANPILAP CONCR07F CHANNEL
«
' ?=qlo0 cis. `=C.(>0-
-3;_
* )� 't Nine, 11 pt DEEP
*
'----------'------------- ------------------------------''-----'-
0HINKE. 0H3FITONTAL/VERTICAL4
' - --'
FCFEKJDTQ'FFqT = 15,0''
C51%,9-AN7 CHANNEL fLr\PF(FEF�/FEE7` =
.036RO0
wN:FTRM c'Oh(EF S) = 4900.00
MA*NINES FRICTION FACTOR = .0150
P3PM4n-CEPTH FLOW INFORMATION:
>>>)� NORMAL DEPTH(FEET) = 7.22
FLOW TOP-WIDTH(FEET) = 15.00
FLOW AREA(SQUARE FEET) = 108.23
HY[>RAULTC DEPTH(FEET) = 7.22
FiOW AVERAGE VELOCITY(FEET/SEO) =
45.27
UNIFORM FROUDE NUMBER = 2.970
PRESSURE + MOMENTUM(POUNDS) =
/+54261.50
AVERAGED VELOCITY HEAD(FEET) =
31.827
SPEC7FIC ENERQY(FEET) = 39.042
============================================================================
CRITTCAL-DEPTH FLOW INFORMATION:
CR177CA/- F!-Ok "OP-WIDTH(FEET) = 15.00
CRIlICAL FLOW AREA(S[Uh4RE FEET) = 223.64
CRITICAL FLOk HYDRAULIC DEPTH(FEET) = 14.91
[P7TlCAL FLOW AJERAGE VELOCITY(FEET/SEC.) = 21'01
CRTTlCAL DEplH(FEET) = 14.91
CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 31208P'70
AVFRAGET CRITICAL FLOW VELOCITY HEAD(FEFT)
CRITICAL FLOW SFFCIFJC ENER5Y(FEET` = 2P.36�
/7
i . >:.:_ • ..�;. of .1 .:x:. is x . x .. - . _ ..
.�� -d ..# .••�,-a:#-#-xx•�••}c•#�i•-�##D E z C Rr` T J, OFSTUDY ii tc.p_ •..H..>: .::t, .fir. � .}_ x.. :.5
#=#•�•l� -:��= -� � :•k.f. - ,
%.`ECT, r": w _;UI_.AF: CONCRETE CHANNEL
"E ft WIDE, 11 ft DEEP
}: r �, .y' .�.}; ;:.w .y :. � :;.:�.k.:F..w:.y_a�.� ye.k #:T•;� #K-#•#•4..y}.�.�..�:..u.�.v.c..�.:,::q•.};.�:•.y.•k:•:�:••#•}: -••� #�_•Y•.f-•?�•<: •� •�. •sF•� •3 •'X. •k :�.�..;� z, x.k:. �_.y.#. .:;_:�;
•e 3 '� f •74• .Y .tit �: %..�' # i� i.: # •� •§: r:.� � •# '11• # # i%• 9f• •:? it• •�• # y. ?=• •#.• # �•= # •# •:#•+r •Y k # -`�. 34• #• # 3i•+. # # # # :: *t •+• # r .3,. ,;._ -?� •',* � -$. i #. �..a..:::z. � : � _ ,. �. � .,
:• CHAPlt:l)=L. INPUT TNFCIF;MATION<<.
--------------------------------------------------------------------
i;Hr~:NN =' Zf HOR I ZONTAL V FTI is : _ .0c..
BASEWIDTH(FEET) = 15.00
CONSTANT CHANNEL SLOPE ( FEET: FEET) = . 036E OC!
UNIFORM FLOW(CFS) = 4900.00
MANN I NRS FRICTION FACTOR = .0130
NORMAL -DEPTH FLOW INFORMATION:
>>>>N . NORMAL DEPTH(FEET) = 6.49
LOW TOP-WIDTH(FEET) = 15.00
FLOW AREA ( SQUARE FEET) = 97.30
HYDRAULIC DEPTH (FEET) = 6.49
TL...OL• (•fit•?ERAGE VEL_OC .'f tF (FE ETi SEC .) 50.0l.,
PREUSURE + MOMENTUM(POUNDS) 497875,00
r ATR GEI-y VELOCITY ail- AD I E.: c: F T) - 39,20-:1.
_'. F r i_ P T l'- :I C E i'+i i=. F".' C Y (F :-. F- i ) 45.86:
I -,k I.CAL FLOW OW Ti'OP—WI DT•1-I(F=F-FwT 15.0w:)
E R T T• Cf :l_ FLAW f= PEA ! Su'i_'.ARF Fr:.F`_7) 223.6,4
CFITICK F :.. ("7 is Li . _ r .. ;J L.. C: F P T ! -, : F E I": t 14.91
C % T I i- F'•, _ "LOW At, E •:A1'.E V0LOC i T 'Y (FEE T SE C . _... L: i . P J.
r_•:
r, . E= A:FD PPITICK FLOW VELOCITY I- E A : ( = E E T) •, ,. �f
_ _' I T .T _ AL FLOW SPEC I F T C ENFRB V (F-•EET S .._. 22.3614
i; t..s: .ec .�y. ..}_.1_. .�_.k..s.#.3-.a-##•�.fi $: �'-+ •?E'!i-#•'.• DE:C TFT ! O OF
STUDY
.j6..w •�: �: #•.4c •�-.T-...##.�;:.� X...�c 1K. .�.y�.:�: :.�.�;,�},#.i:
. CnNrRFTE CHANNEL..
17 ft WIDE, 12. ft DEE`' y
.�..:�..fi.•�••�-•!-�,'-:r•??••�;•:i;.#•.jt.•,^•y;#ir-k-#•A•#•►;••'_.u.##.w_###:•k#•�tiE#:#_#••p-•'<-:►'E•it•)F.R..f.ti4.:c•##�7!#•}••#:#•�••'sER#3F•�:Y-#-�•-�*3. �:#'t=� 9•� �=#
•'s' iF •f # # 3S• •iF iE at• # # •3E # •3(• ds• tiK• ii- •)4• # # # �E• -YF # •�• # # •ii• # # i(• i4• •?< 9F # •?�• # #: # •?F,F •)4• # # # # •ff iE• ri ?E• # # •i[•'1F 44• •{ �•#� •l6- # •# #• #?� ti� # •�.- •# �- # -?# :_ =. � .•:
CHANNEL._ INPUT INFORMATION <:. <;
CHANNEL_ (HOR I ZONTAL i VERT I GAL x .00
BASEW I DTH ( FEET) = 17.00
CONSTANT CHANNEL SLOPE(FEET/FEET) = .036800
UNIFORM FLOW(CFS) = 7200.00
MANN I NGS FRICTION FACTOR = .0150
sNlORMA,i._--l'jEPTH FLOW INFORMATION:
%!%:V NOPMAI._ D(= PvH (FE='ET ) - 8.41?
FLOW TOP-WIDTH(FEET) = 17.1':1_)
FLOW AREA (SQUPRE FEET) = 144.37,
HYDRAULIC =)E PTH' FEET) - 8.49
FLOG' AVERAGE ` ELOC:ITY(FEET/SEC.)4` ,8:'
LN I4- ORM FROUDE NUMBER R = 2.015
RESE:URF + MOMENTUM(POUNDS) -- 734025.20
AVE. {_:;f,E D VELOC : TY HE aD r FEET : 39.611.
FA:
----------------------------------------- - -----
CRITICAL-DEPTH
---CRlTICAL-DEPTH FLOW INFORMATION:
____________________________________________________________________________
CRlTICAL FLOW TOP-WIDTH(FEET! = 17.00
CFIrICAL FLOW AREA(SQUARE FEET) = 301.37
CFITICAi FLOP HYDRAULIC DEPTH(FEET) = 17.73
CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 23.89
CRrTIC4L DEPTH(FEET) = 17.73
CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 500033.30
AVEPAGEI' CRITICAL FLOW VELOCITY HEAD(FEFT/ = 8.863
&R:TICAL FLOW SPECIFIC ENERGY(FEET) = 26,591
************************** DESCRIPTION OF STUDY
* RECTANGULAR CONCRETE CHANNEL *
* C=7200 cfs, n=0.013 *
* 17 ft WIDE, 12.5 ft DEEP �
*****+*************************************************************v*^***~
CYrTICA' FLOW TOP-WIDTH(FEET) = 17.00
CRITICAL PLOW AREA(SPU4RE FEET) = 301.37
CRITICaL FLOW HYDRAULIC DEPTH(FEET> = 17.73
CPITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 23.89
CRITICAL DEPTH(FEET) = 17.73
CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 500033.30
AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 8.863
CRIT]CAL FLOW SPECIFIC ENERGYfFEET> = 26.591
************************** DESCRIPTION OF STUDY
* RECTANGULAR CONCRETE CHANNEL *
* 0=6700 cfs' n=0.015 *
� 16 ft WIDE, 12.5 ft DEEP *
/4il/CHANNEL INPUT INFORMATION<<<<
------'--------------------------------------------------------------------
[HANNEL Z(HORTZOwTAL/VERT]CAL) = .00
BASEWJDTU(FEE'` = 16.00
C0NSEANT CHANNEL GLOpE(FEET/FEET) = .036800
�^�
U�|IFCRK FLOW(CFS) = 6700.00 ' ^
�/>>CHANNEL INPUT INFORMATION<<<<
2�44)NNEi Z(HORTZONTAL/VERTICAL) =
.0{.
BASEWIPTH(rEET) = 17.00
CUP'STAwT CHANNEL SLOPE(FEET/FEET) =
.036800
JWTF[)NM FLOW/CFS/ = 7200.()0
MANKINTS FRI77ION FACTOP = .0101.
FiOW ]NFOFMA-I00-
VORMAL DEPTP(FEET)
cLEW TDF'-WIPTH/FEET) = 17,0.7)
F!OW ARFI(SQL!ARE FEEr) = 129.80
H?DRAU11C D[PTH(FTFT) = 7.64
FLOW A\`ERAEE «ELgCIr"/NEEr/SF[.) =
55.47
Iiw7FOry r9OUDE NUHBEp = 3,5?9
'9/ESSWF + MOMEN71!H(PDUNrE` =
204898.6//
4k'ERAG[D VE-OPITY HEAD(FEET) = 4".7[,0
SpECXIQ ENERSY(FEET) = 55.41�
CRITICAL -DEPTH FLOW INFORMATION:
____________________________________________________________________________
CYrTICA' FLOW TOP-WIDTH(FEET) = 17.00
CRITICAL PLOW AREA(SPU4RE FEET) = 301.37
CRITICaL FLOW HYDRAULIC DEPTH(FEET> = 17.73
CPITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 23.89
CRITICAL DEPTH(FEET) = 17.73
CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 500033.30
AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 8.863
CRIT]CAL FLOW SPECIFIC ENERGYfFEET> = 26.591
************************** DESCRIPTION OF STUDY
* RECTANGULAR CONCRETE CHANNEL *
* 0=6700 cfs' n=0.015 *
� 16 ft WIDE, 12.5 ft DEEP *
/4il/CHANNEL INPUT INFORMATION<<<<
------'--------------------------------------------------------------------
[HANNEL Z(HORTZOwTAL/VERT]CAL) = .00
BASEWJDTU(FEE'` = 16.00
C0NSEANT CHANNEL GLOpE(FEET/FEET) = .036800
�^�
U�|IFCRK FLOW(CFS) = 6700.00 ' ^
NERMAL.-DEPTHI FLOW INFORMATION:
,)>>� NORMAL DEPTH(FEET) = 8.55
FLOW TOP-WIDTH(FEET) = 16.00
FLOW AREA(SQUARE FEET) = 136.87
HYDRAULIC DEPTH(FEET) = 8.55
FLOW AVERAGE VELOCITY(FEET/SEC'> = 48.95
UNIFORM FROUDE NUMBER = 2.949
PRESSURE + MOMENTUM(POUNDS) = 672104.40
/'VERA8ED VELOCITY HEAD(FEET) = 37.2n8
SPECIFIC ENERGY(FEET) = 45.763
CRITICAL -DEPTH FLOW INFORMATION:
CRITICAL FLOW FLOW T3P-WIDTH(FEET) = 16.00
CRITICAL FLOW AREA(SQUARE FEET) = 281.51
CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 17.59
CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 23.80
CRITICAL DEPTH(FEET) = 17.59
CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 463551.90
AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 8'796
C9I7ICAL FLOP SPECIFIC ENERGY(FEET) = 26.390
YESCRIPTION OF SrUDY
* RECTANGULAR CONCRETE CHANNEL *
+ D=6700 cfs' r-0'013 �
* 16 pt WIDE, 1R.5 ft DEEP *
ZO �CHAN^/EL INPL/T TNFORMATION'(/!
CHANy«Ei Z`HOK]ZOUTAL/VEPTICAL` = .00
Bf5FW!D7H(FEET) - 16.00
CONSTANT CHANNEL SLOPE(FEET/FEET` = .036800
L]NIrORM FLOW(CFS) = w700.00
MANNlNG5 FFICTION FACTOR = .033)
============================================================================
NCPMAL-DEPTH FLOW }NFOPMATIONi
---'---'--------------------------------------------------------------------
.`>K NORMAL DEPTH(FEET) = 7.6B
FLOW TOP-WIDTH(FEET/ = 16.00
FLOW AREA(SQUARE FEET) = 122.89
HYDRAULIC DEPTH(FEET) = 7.68
FLOW AVERAGE VELOCITY(FEET/SEC.) = 54.52
UNIFORM FROUDE NUMBER = 3.467
PRESSURE + MOMENTUM(POUNDS) = 737309.60
AVERAGED VELOCITY HEAD(FEET) 46.153
SPECIFIC ENERGY(FEET) = 53.834
CRITICAL -DEPTH FLOW INFORMATION-
________________________________________________________________________
CRITICAL FLOW TOP-WIDTH(FEET) = 16.00
CRITICAL FLOW AREA(SQUARE FEET! = 281.51
CrITICAL FLOW HYDRAULIC DEPTH(FEET) = 17.59
CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 23.00
CRITICAL DEPTH/FEET) = 17.59
CRITlCAL FLOW PRESSURE + MOMENTUM(POUNDS) = 463551.93
AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 8.796
CRITICAL FLOW SPECIFIC ENERGv(FEET) = 26.300
20
DESCRIPTION OF 9TUDY
* 1� �t WIDE, 12 ft DEEP . *
` >"CHANNB- INPUT INFORMATION<<<<
____________________________________________________________________________
CHANNE�_ Z(HORIZON7AL/VERT3CAL) = .00
BA5EWIDTH(FEET) = 16.00
CONSTANT CHANNEn SLOPE(FEET/FEET) = .036800
UNIFORM FLOW(CFS) = 5900.5(_.
MANNINGS FRICTION FACTOR = .0150
============================================================================
NORMAL—DEPTH FLOW INFORMATION:
14>>> NORMAL DEPTH(FEET) = 7.77
FLOW TOP—WIDTH(FEET) = 16.00
FLOW AREA(SQUARE FEET) = 124.36
HYDRAULIC DEPTH(FEET) = 7.77
FLOW AVERAGE VELOCITY(FEET/SEC.) = 47.44
UNIFORM FROUDE NUMBER = 2.Y99
PRESSURE + MOMENTUM(POUNDS) = 572601.30
AVFFAGED VELOCI7Y HEAD(FEET) = 34.951
SPECIFIC ENERGY(FEET> = 4E'.724
LP7TlCAL—DEPTH F—OW INFORMATION:
-'------' ------------------------------------------------------------------
CrlrTCAL FLD|: TOP'k7D`H(0EET) = 16.0C
[A]71CAL FLOW AREA(Spi'ARE P[ET) = 253.62
C l?.CAi FLOW HVDRAULIC DEPTH(FEET) =
CF171CAL FL[U AVEPAG£ YELOQlTY(F[E!/SE{ .) = 22.Q1
[P1lICA.- [`EPTH(FE[T) = Q.14
[QIT`[P'- '-LON rRE55URE + MOMENTUM(POUNDS)
A`/HRPDED CRT!!CAL FLOW dEwO[]lv HEAD(FEET) =
CP!TICAL FLOW SPECIFIC ENEPGY'F[ET) = 24 245
DESCRIPTION OF STUDY
* RE[TkNGULAR CONCRETE CHANNEL +
« E=5000 cfs, n=0.013 v
� :1 ft WIDE, 12 ft DEEP *
l/?!WHANNEL INPUT INFORMATI]N'<x
________________________________________________________________________ ___
CHANNEL Z(HORIZONTAL/VERTICAL) = .00
BASEWIDTH(FEET) = 16.00
CONSTANT CHANNEL SLOPE(FEET/FEET) = .036800
UNIFORM FLOW(CFS) = 5900.90
MANNlNGS FRICTION FACTOR = .0130
NORMAL—DEPTH FLOW INFORMATION:
>>>!; NORMAL DEPTH(FEET) = 6.99
FLOW TOP—WIDTH(FEET) = 16.00
FLOW APEA(SQUARE FEET) = 111.85
HYDRAULIC DEPTHIFEET) = 6.99
FLOW AVERAGE VELOCITY(FEET/SEC.) = 52.75
UNIFORM FROUDE NUMBER = 3.516
PRESSJRE v MOMENTUM(POUNDS) = 627520.90
AVERAGED VELOCITY HEAD(FEET) = 43.209
SPECIFIC ENERGY(FEET) = 50.199
&FlT][AL—DEPTH FLOW INFORMATION:
...r•a r i'•.:"r._. t ...Wr r4.' —4L Ir. tr t_t._
CRITICAL FLOW AREA ; OUARE FEF.._.) 258.6-:'
CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 16.16
CRITICAL FLC'W AVERAGE VELOCITY (FEFT /SE:`C F) = 2? . 81
CRITICAL DEPTH(FEET) = 16.16
CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 3 1 ChS n X)
AVERA3ED CRITICAL FLOW VELOCITY HEAL' (FE=ET) _ 8.092
CR i T I CAS_ FLOW SPECIFIC ENERGY(FEET) = 24.245
DESCRIPTION VF STUDY
RECTANGULAR CONCRETE CHANNEL
Q=5900 cfa. n=0.015
* 15 ft WIDE, 11.5 t DEEP
a��•��•��••�'•gar•�•it•�e'•�••�•�•�•x-•�:•���: �•;+c'ai':�•?s••�•��•�•;E••�-•�-�•�•� �'•�•a�•?�'�r-•r��•-�•�•�'a�•�•�••�•x••�•��a� •��••��-a�'•�•x-�'•�e �-�r�--�-��L�-.x..� •;r���x-x-
�•'�' � 9�'%-/."-){".�.' :S' � Tf' � -!C _/".�• "lC T � T(7C T. "� T T. T.' �'T :4"T. T.• �T 7f' F.' 7C :T -!1 "lC �' 7C" �'.S'i"iC :s h• � Y.' T T. �. Z"�' �'S' -/c' 7C Tf T. T. "F .•�.. i?' 'Yi /.'-'i-'�f• ti:•.{,• •}f..X. y . f •.�', •}� i
> CHANNEL INPUT INFORMATION <: <<:: <::
---------------------------------------------------------------------------
CHANNEL. l (HC R I ZONTAL.! VERT I CAL) =
.00
0
$ASEW I DTH ( FEET) = 15.00
CONSTANT CHANNEL_ S!._OPE ( FEET /FEET)
0
= .053600
UNIFORM FLOI t a S 5900 .00
MPNN I NGE• FRICTION FACTOR - .0150
W?" F FAI._-O r=TH FLOW !NFCtF•I'`?TION:
-----------------------------------------------------------------------------
FLOW A,F cCtt P . Inp.00
PLOW ^. – 1Ct VEO iTY (PE;T/ S((n)
54.63
PRESSURE URE -f :'?OMEr. -.0 7 (!='OUN!_ S) .._
64A851.90
r F`'-" t .. i:'A_. 9E F T E. r -',_OW IN =ORMA•l'1(: N:
----------------------------------------------------------------------------
C... I cAI_. FLOW A.. AS. ;r-,._. FFA.: 252.11
R T! ?'::AL FLOW HYDRAULIC C DE PTH(FEET) _ 16.87
CRTAICAL FLOW AVERAGE :i E _ E E= T ; ,s E:: C ., 23.R!
CRITICAL FLOW PRESSURE + MOMENTUM (POUND3) = 259770:6-c)
AVERAGED
39=i, 7 ?n6-
AVERAGE_'D CRITICAL FLOW VELOCITY HEAD(FEET) = 8.437
CRITICAL FLOW SPECIFIC ENERGY(FEET) = 25.31.1
DESCRIPTION OF STUDY
* RECTANGULAR CONCRETE CHANNEL #
-x• 0=5900 cfs .: n=0.013
15 ft WIDE, 11.5 ft DEEF'
•k t •if.:r J6• ;�- •;: • •iG •:` '!{• f- •t4 14' •?� iF �. •jL•'%: �' •3I•'�• •?{. -k- •s�.':'.c -�"?4' jf• •iE 'iC �' i' •?4"�{• i%..�. _�. �,c..� �. .c:.t .�{ .�.:�..*. y; �..� � # •1E .�. •K•'f.• •f: Jk'i? ?!. •?' .fF .C- '-•% �'.3F. •fir• jf•'�t..?( :�..�. � � .x .y..
•. . : `'t_HA4NEL INPUT INFORMATION'=: <<
-----------------------------------------------------------------------------
CH f` NE[_ (HORIZONTAL /VERTIC>rL) - .00
EASEWIDTH(FEET) = 15.00
CONSTANT CHANNEL SLOPE ( FEET/FE•ET) - .053600
UN 2 F ORM F= LOW f CFS) = 5900.00
MANNING: S F=RICTION FACTOR - . f'. 1 3c, 27 -
NORMAL -DEPTH
ZNORMAL-..Z,_-..,TH F.L_OW Ifi'f-C2F'MATI CN
- ' - -- -
CRITICAL DEPTH(FEET) =
CRITICAL FLOW PRESSURE
PVERA9ED CRITICAL FLOW
CRITICAL FLOW SPECIFIC
17.28
+ MOMENTUM(POUNDS)
VELOCITY HEAD(FEET)
ENERGY(FEET) =
=
25.924
363433.80
8.642
DESCRIPTION OF STUDY ***********************+**
* RErTAIGULAR CONCRETE CHANNEL *
*
0=5100 cfsr n=0.013 *
+ 13 ft WIDE. I1 ft DEEP *
****************************************************************************
>>>>CHANNEL INPUT INFORMATION<<<<
CHANNEL Z(HORIZONTAL/VERTICAL)
BASEWIDTH(FEET) = 13.00
CONSTANY CHANNEL SLOPE(FEET/FEET3 = .085600
UNIFORM FLOW(CFS) = 5300.00
MANNINGS FRICTION FACTOR = .0130
============================================================================
NORMAL -DEPTH FLOW XFORMATION:
____________________________________________________________________________
Pt�>> NORPA| D[PTH'FEET` = 5.78
FL[W TUF-OIDTH(FEET) = 13.10
FLOW AR[4(SPUARE FEET) = 75.16
HvnpxULI& DEPTH(VERT) = 5.7[
PLO, AyERPFF VELO[ITY'FEET/S[C. = TC.52
D1170nM "%C?F NI/MBEP = T.1v9
FFES7iRL + mOMENQ=PO]NDT= 02786V.5'
PVERPOED yEkO[ITY HFAD&EET> = 7Q.?23
7»ECIFI[ ENFRGY'FEFT)
nw!T]CAL-VFFTH FLOV TNFORMATTDK:
____________________________________________________________________________
Cn|Tl[A F -OW T[f-HlPTH(FEFT) =
CFTTlrA' FLOW AREA/97UAPF FEET)
CFiZTICAL FLOW H»DR2ULTC DEPTH/FEET) = 17.2B
[*77ICAL FLRW AVFRA5E VB-OCJTY(FEET/SEC I = 23.59
[PIT:CA. DEPTH(FEET) = 17.28
CRITICAL FLCW PRESSURE + MOMENTUM(POUNDS) =
3,3423.8�
AVFRASED CRITICAL FLOW VELOCITV HEAD(FEET) =
Em42
CRITICAL FLOW SPECIFIC ENERGY(FEET) = 2E.924
DESCRIPTION OF STUDY
* RECTANGULAR CONCRETE CHANNEL *
* 0=4000 cfs^ n=0.015 *
* 12 ft WIDE, 10 ft DEEP � *
>>>>CHANNEL INPUT INFORMATION<<<<
____________________________________________________________________________
CHANNEL 2'(HO9IZONTAL/VERTICAL)
BASEWIDTH(FEET) = 12.00
CONSTAN7 CHANNEL SLOpE<FEET/FEET/ = .085600
UN!IFORM FL,-.-,W(CFS) = 4000.00
MANNINC3 FRICTION FACTOR = .0150
============================================================================
NORMAL -DEPTH FLOW IN=ORMATION:
_________________________________________________________________________ __
N8KMAL PEPTH(FEET) = 5.Ki-
FiOW TrP-W`DTH'FEET> = 12.00
FiOW AVERAGE VELOCITY<FEET/SE[.) = 59.06.
UNIFORM FRDUDE NUMBER = 4.381
PRFSSURE + MOMENTUM(POUNDS) = 469743.3n
AVERAGED VELOCITY HEAD(FEET) = 59.165
SPECTFIC ENEPGY(FEET) = 59.809
CRITICAL-DFPTH FLOw INFORMATION:
____________________________________________________________________________
CRITICAL FLOW TOP-WIDTH(FEET) = 12.00
CRITICAL F/ -OW ARFA(SQUARF FEET) = 18105
CR7TICA! FLOW HYDRAULIC DEPTH(FEET) = 15.11
CPITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 22.06
CRITICAL DEPTH(FEET) = 15.11
CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 256482,80
AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 7.555
CRITICAL FLOW SPECIFIC ENERGY(FEET) = 22.667
DESCRIPTION OF STUDY
* RECTANGULAR CONCRETE CHANNEL *
» 0=4000 cfs, n=0.013 *
* 12 ft WIDE, 10 ft DEEP *
CRITICAL FLOW TOP-WIDTH(FEET) = 12.00
CRITICAL FLOW AREA(SQUARE FEET) = 181.35
CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 15.11
CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 22.06
CRITICAL DEPTH(FEET) = 15.11
CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 256482.80
AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 7.555
CRITICAL FLOW SPECIFIC ENERGY(FEET) = 22.667
************************** DESCR7PTION OF STUDY
*
RECTANGULAR CONCRETE CHANNEL *
*
0=4000 cfs. n=0.015 �
* 12 ft WIDE, 10.5 ft DEEP *
2^�
'%%>CHANNEL INPUT INFORMATION"!".,.:
--'----------------------'------------------------------'---------
C1ANNEL 0H]PIZONTAL/VEprlCAi') =
— ----
,00
0A8EjInTQ'FEET` = 12.00
[ONSTPNY CHNN0 SLOPEcFEET/FEET =
,085600
UNIFOPV FLOW/[FS! = h000.00
M4NNINGS FRICTION FACTOP = .013,::
NCFMAL-DEPTH &LOW iNFOP>'AT-0%
0>�j NOPMAL NOPMAi DEFT`f`FEET, = 5.0 -c --
FLOW TOP-WIDTH(FEET) = 12.0D
FLOW AREA(SQUARE FEET) = 60.91
HYDRAULIC DEPTH(FEET/ = 5.08
FuOW AVERAGE VFLOCTTY(FEET/SEC.) =
65.68
UNIFORM FRnUDE NUMBER = 5.137
PRESSJRE + MOMENTUM(POUNDS" =
518732.20
AVERAGED VELOCITY HEAD(FEET) =
66.976
SPECIFIC ENERGY(FEET) = 72.052
============================================================================
CRITICAL -DEPTH FLOW INFORMATION:
CRITICAL FLOW TOP-WIDTH(FEET) = 12.00
CRITICAL FLOW AREA(SQUARE FEET) = 181.35
CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 15.11
CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 22.06
CRITICAL DEPTH(FEET) = 15.11
CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 256482.80
AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 7.555
CRITICAL FLOW SPECIFIC ENERGY(FEET) = 22.667
************************** DESCR7PTION OF STUDY
*
RECTANGULAR CONCRETE CHANNEL *
*
0=4000 cfs. n=0.015 �
* 12 ft WIDE, 10.5 ft DEEP *
2^�
_ CF'VTCAL FLOW SPECIFIC ENER8Y'FEEI) = 22.bK,
�
DESCRIPTION OF STUDY
� ^ RECTANGULAR CONCRETE CHANNEL *
� + Q=4000 cfs' n=0.025 *
* 11 it WIDE, 10.5 ft DEEP �
>>>>CHANNEL INPUT INFORMATION<<<(
l_________________________-___________________________-____-_------_---------
/
� CHANNEL Z(HORIZONTAL/VERTICAL) = .00
BASEWIDTH(FEET) = 11.00
CONSTANT CHANNEL SLOPE<FEET/FEET> = .094500
/ UNIFORM FLOW(CFS) = 4000.00
' MANNINGS FRICTION FACTOR = .0150
� NORMA!_. -DEPTH FLOW INFORMATION:
- _-_______________________-_______________________________________
>>>>> NORMAL DEPTH(FEET) = 5.93
/ FLOW TOP-WIDTH(FEET) = 11.00
\ FLOW AREA(9]U4RE FEET5 = 65.27
HYDPA]LJC DEPTH(FEET) = 5.93
F| OW AQTRPGE VFLO=Y'FEET/SEC.) = 61.29
' |NTFO�� FROUDE NUMBER = 4 433
) ` .
pRESS\F[ q MOMENIUM(POUNOS/ = 4R7119.90
AYERPGED yFLOClT\ HEAD(FEET) = 52.316
[PlTJCAL DEPTH FLUJ TNPORMATlDN:
'- -------'-------------------------------------------------------'-'-----'
| CnjTJCAL PLnW TOP-WIDTf>(FEE`)
CRITITPh rLJW 4R[A'9QUPP& =EET) = 176.15
VNR]Tl[�A' FLn� H!DP4LLJ[ PEpTH'FErT` = 16 01
| - � ^
( CRITYCAL FLOW AVERAGE VELOCITY(FEET/PEC.) = 22.71
' CPTT!CAL DEPTu/FFET) = 16.01
CR:TICAE FLAW PRES9URF + MOMENTUM/POUNDS) = P64030.70
' | -^»FR4GTr CRITICAK FLOW VELOCITY HEAD(FEET) P^007
/ ORIT}CK FLOW SPECIFIC E*EREv(FFET) = 24.0p1
DE5CRIPTI01 OP STUDY
/ * RECTANGULAR CONCPETE CHANNEL ' *
* 0=400() cfs, n=0.013 *
|
i * 11 ft WIDE, 10.5 ft DEEP *
� >>>>CHANNEL INPUT INFORMATION<<</
CHANNEL Z(HORIZONTAL/VERTICAL)
/
BASEWIDTH(FEET) = 11.00
CONSTANT CHANNEL SLOPE(FEET/FEET) = .094500
UNIFORM FLOW(CFS) = 4000.00
MANN1N8S FRICTION FACTOR = .
\ 013O
NOPMAL-DEPTH FLOW INFORMATION:
NORMAL DEPTH(FEET) = 5.33
FLOW TOP-WIDTH(FEET) = 11'00
FLOW AREA(SQUARE FEET) = 58.0-
| HYDRAULIC DEPTH(FEET) = 5,33
/ ���
F19W AVERA3Z VELOCITY(FEET/SEC.) = 69.2e.- 21?
'
11651 Sterling Avenue Suite A
PROJ ECT: ET/`1/•�NOfl C/1/�NNEL
PROJECT NO: 2/ 0 �, //0 /
Riverside CA 92503
WILLU MS (714) 354-0161
ILINDGREN
:
BYTr •
DATE:FUSCOE
DATE:,o3-89
K:
CHECK
DATE:
WC7-A1VCULAR Cove. C%1A1VNE1-
& SHORT
Civil Engineers. • Land Igurveyors
VEI_Oelrv . ¢0 FPS' SHEET / OF :Zq
�.�w
wyUD
�.'��
'D00oo�v
��+
o\cs
H
A
N.y o
i4.0.++off.
*o+
^'
"°�
+0+
°
+o+
hti�
+o�
+�+
O
+o
1)
+yam
o
O'sm
+
h
-+�+
o
o o
D
to
if 11 DC
D a
o Ha
o
o°
°O
tv
°o'J
o 0
0 Pio
o ho
00
o
oowao�l0
V
p
Z
<
NI
0
0
0
o
a
0
0
0
0
Il
y
o
0
0
0
0
o
y y
0
o �
7% v)
70 kA
to
� 1 fi �1'
� �
�1
� �
N
y
a �
�
00 0
fro '� i
coIt
p l� o
90
o 10D °!
q� °
o
0
0
_v O
o 0
0 0;0 00
o Flo
w
L°v
ow
W
C
C
(
ON
O' ON
00
coON
00
co
co 0\� �
o
`�
h`v`1
` x- fi
o
o o
0
0 0
0
0
O
N tv
N)
N
N
c,,,
�1
) p
o�
o
�.(ZZ
h o oCID
7%
c o
o
O
1 O
O
o
o
far
Z
a\
p�p
pyo
v
`�1 y y y ��
N
N
w
►�'
N
c�
w
G,
w
co
w
��
y
I
�\A
nl
w
w
w
WF(wkl
R'►
V
O
o
a
p
0
o
O
O
O
�
)p
O
D
'i
I
o
!n
D y D W ctl
o
�\
o,
o`
o
0
0
0
O
C
D
A
�?
I�'tI_
O
0 0 0
o o
o
h
U1
o
h
0
0
v1
o
Ul
LI
o
U)
U
,�
Z
o��o i�AONo
a a a a y
�
'�°
°�`
V
U 1
lv"
_�
ITI
Rl
:P
vl
�
:Q
�
W
� W
w
G►
N
o J °`
`°
t►�
�t
w
o
o
u
11651 Sterling Avenue, Suite A PROJECT:ET/W.4NDA CfiANNE PROJECT NO: Zl o�*
FUSCOE //0 /
Riverside CA 90161 BY: E DATE:
1NILLIAMS (714) 354-0161 %- _ . DAT�' 26%8% CHECK:
LINDGREN
& SHORT
Civil FAgineers • Land.Sarveynrs SHEET 3 OF 29
FR oM S rA . ss -f- 0 0 To 57-A. 66-f-00
0'0 7 o 8 I YMA,e
TRy FOR !C= 0.00 Z, In. z 0.013
\/ = 3 9 , 0 Z—P;�e . L ESS TNA N 40 -P Ae,- ,
Mnx
T/ly b : 23.5 0.002 0. 0/ 3
1 x= 39./7>�40005E Toh%A 4-0
50 USE b- 2 3.5- DN
FoR K= 0,00-71 n = 0.0/S
N
F.= VMAx , 39.17 Z 99
D 32.2�S3z
FROM PLATE ¢S — WIVI _ /• 0 S 0i2 8 ° � AX E. -,v eA1A"FWT
DA = S.97A0,09
DA = 0, 47
FUSCOE 11651 Sterling Avenue, SuiteA PROJECT: ET/;,(/ANDA C11,4NNEcL PROJECT NO: 9/01�', /l0/
Riverside, CA 92503 BY DATE: CHECK: DATE:
WILL (714) 354-0161 T T. �' Z 6- 8 9
LINDGREN
& SHORT
Civil Engineers • LandSurveyors
SHEET ¢ OF 2
F/ZOM
S7 -A . 67t SS
TO
57-A,
7/t 98
Q = 15; 900
c.�s..1 S=
0 . D 3 68 ,
VmAx .
= 4 o 4/sac .
%fly b.= 4.6' FOR K. 0, 002, _ 0. 0/3
VMA x = 39,47 7'�X ysw . LESS T/1A�✓
TRy b= 4S1 FoA K= 0,002-, -?L= 0.013
V . = .39. 7 8 ��/ GLOSS To 40 1 ��sec
So USE 6 = 45- / l b1V = 2.74 .
FOR !C= 0,007 , 71 0.0 /5-
3.
S3. o o V = 36.34 {��s-ef ., F,,i= 3.70
F= V,,cax _ 39,78
2 �74
FQ dM PLA TE 4s -- d- ld -7 //6 0 R /G/ A/R E,vr
�A = 3,00 x 04 6
bg. 0.¢e,
2 OF ¢
1 GTTWAN3A .:HMNEL
2 HYDRAULIC LrLi.. BY TONY ISLAM
3 CFEN rAAINEL 'VICTORIA TO MIN 5
1?53.061303.64 1 1313.9
S :915.:1 130+.26 2 .014
?°,30.0 1:25.5 2 . X14
:91".0 1327.5 3 .015
456:.0 1366,5 3 .015
S 4660.0 1364.5 2 .014
1 4163.0 1359.5 2 .014 1000.0
52.12.0 1385.0 2 .014
4 2 1390.05
0 1 2 13.5 25.33
? 2 9.0 23.5
3 1 9.0 25.5 0.0 1.5
4900.0
` 3 T E S
I. KOS 3ARY
I = INVERT ELEVATION
= CRITICAL DEPTH
W = 4ATER SURFACE ELEVATION
H = HEISHT OF CHANNEL
E = ENERGY ERASE LINE
= CURVES CROSSING OVER
B = PRIME ENTRANCE OR EXIT
Y = WALL ENTRANCE OR EXIT
P. STA?IONS FOR POINTS AT A JUMP MAY NOT BE PLOTTED EXACTLY
ETINANDA CHANNEL
HYDRAULIC CAL C, BY TONY ISLAM
OPEN CHANNEL VICTORIA TO BASIN 5
4 of f
1753,"b
.I w CH E .
.323.55
,I W H C E
r
19t4.13
2''?:, 42
21"b.b0
??47.19
2317,78
I w H C E
R
c=$8.38
45$=47
c�24,5b
•
2500.15
2670,74
2741.33
.32
I w H C E
rt
29f3.110
I 4 HC E
R
..'123.59
=
4. 2.7
315,64
.
2447,23
5 .23
35.3E.42
3659,11
2-1 EQ f 60
� t
3 i •':'ri
.
:,7n ,
'- V.
234.,37
^li$r,.5
x223.73
•
:.291.32
•
43c4,91
t4?°.5)
�5+fib, 04
4576.68
I
W H C E TX
Kb4,
.
'
47:7.$7
I WH C E 7X
"788,46
I W H C E R
43`9,05
u'+29.54
,
5': "0.23
•
50".0.82
:303,64 1314.93 1325,?2 1337,51 .349.80 1360.09
137x1.33 1342.57 1393.97 .405,25 141 .55
11651 Sterling Avenue Suite A PROJECT:LET-E7t/v,¢ ellANNEL PROJECT NO: 2/06'. //a 1
FUSCOE
Riverside CA 92503 BY: DATE: CHECK: DATE:
WILLU MS (714) 354-0161 TS, 6' - �9
LINDGREN
& SHORT
Ciril F,ngineers • Gand Surveyors
SHEET j OF 2
�KOAA, STA. 77+ 63 TO STA, 62+50
Q 7, 20o e.fs. S= 0,0318 VIAAx. = ¢0 . / .
rey 6. 64" FoR k'_ 0.00 2 , 71 = 0.013
vMAX . - 40, p 2-#1, C' BEATER TNAn/ ¢o Pec,
Tie)l b= 65 FOR K= 0,002 -n:-0,013
U,u,ax = ¢0. 58 � eZ-osE TO ¢O /•user
So usE b = 6 S 1�N = 2.-73
FOR K=0.007,
Z) = 2. q8" , V: 37./�ff,� - 3.79
N —
VMAY _ ¢Q , ,� _ - 4.3 3
�D 3Z.2 X 2.73
FROM PLA TE ¢ s �"� _ /,M OK /� A/R F,✓TiPA/N�'1F,t/T
L7q = 2.g9XL
D,g _ 0-48
ay _ (� ) (00-5-S) 2K40
32.2icgoo o
,Aye 0.4z
FVS�'O „' 11651 Sterling Avenue, Suite A PROJECT: E-T/K�,/it/OA C//ANNE PROJECT NO: Z/0 �. //0 /
Riverside G9 92503 BY: CHECK: DATE:
WILL (714) 354-0161 Tr. DATE: 6-z� y9
LINDGREN
& SHORT
Civil F,ngineerx • Land.Surveyora
SHEET 6 OF 29
F90AA
STA • 82+5-0
7o
STA -
q7-f-00-
7-x00Q=
0,=6,700
C15- , S'=
0.0.368
, VmAx
r '�-o x'41 .
TRy b= 6,5�' Fa,e k:e 0.00z, n,L 0.0i3
V,t,1 AX X. = 3 9.2 S p -/sec. L Ess Tl.1A nl 40 -Yf /spc
%Ry b= 6S FOR /<.= 0,002, -A= 0.0J3
VMAX. = 39.48 P-A`ec CLDsE TO 40 PIAWQ
So USE b = 6��' ,
`DK k= 0,00-7 �►=O'��s
DAI = Z.8s , V.; 34'•%S7q1s�,, F= 3377
FFA �Ax _ 39 48 _ ¢,3
,Ijx 32.2 x 2.61
Fig' o Ak PL ATE ¢S — G��/ = 1,14 D /�/p Ah2 F11rxPA1,1kr✓r
d -
DA = 2.957 x 044
�A
FtJSCOE 11651 Sterling Avenue, Suite A PROJECT: ET/WAVDA ell,4MAIEL PROJECT NO: 2/0 6
Riverside, CA 92503 BY' DATE: CHECK: DATE:
WILL (714) 354-0161 �_ 6 z�'2�9
LINDGREN
& SHORT
Civil F,ngineers • Land Surveyors
SHEET % OF 2q
SROM STA • 97t0 o To STA . /o7t00
a _ • ; ,?o0 S! 0.0368 i VMA) TAcee
-rgy b:-- 676 ' FOR kz-, 0.0oz , 72.=0,0/3
yMAx • = 374 -OP -1
[,E55 rNAiv 90 -(4,1s-9C .
Tgy b= �s� For, k= 01001-, -hZ- 0013
So 05E b= GS ' l DA/ = 2.4- 1
FoQ !< - o 007 n = 0.D15'
DAl = Z•64 V= 34,4/ �f.�s�.� � = 3.73
F= �ZmAx. = 37,d2-
9 XD 32.2)< 2.4!
FRoM PLA TE 4S 41�ld = /'/,� 0A /6/ Aiee ENreA
DA = 2 •(4 x o-/bl
Dq_ 0,¢z
ay
13742-)Ll6s)
,32.zx8000
AY = 0.36
FUSCOE 11651 Sterling Avenue, Suite PROJECT:E'J'/(,y1dVDA e#4WcZ PROJECT NO: 210d,1101
Riverside, CA 92503 BY: DATE: CHECK DATE:
WILLIAMS (714) 354-0161 T .� , 6'Z6'89
LINDGREN
& SHORT
Grit F,ngineers • Land Surveyors
SHEET & OF 2,9 1
FR OAA, srA . /08* 45 7'0 STA. /25--f-00
Q - S, 900 C,fs. , S� o.os36 VinAX. = 40��/sem.
TJ -y 6 = 76 FOR k =, 0.00 2 , - = 0.0/3
\111AAX. = 3 9, SG P Xr e LESS T#,gAl 40Phea .
-my 6 = 75 � FOR k= 0.007-.) -,k= 0.013
Vivi Ax . _ `iO • D 8 {� •lSe- e L 0 SE TD
50 (JSE b = 7S" D V =
FoR K. 0007, 0.0is
N
F V,AAy. _ 40.0 _ SOS
32.2x/-96
F,eOAA PLATE 46S — d�� = 1,20 JP, 2o,,% Aire AVrfA1WNCv
I% = 2.14 )xO-2o
bA = o.4'3
y _ /) 40.08) 275)
32.2x 8000
ay. o -f7
11651 Sterling Avenue, Suite A PROJECT: ET/`{ 4A/
FUSCOE Dq Cf>IANNEL PROJECT NO: 2-10b',1101
Riverside, CA 92503 BY:DATE: CHECKDATE:
WILL (714) 354-0161 z 6 �9
LINDGREN
& SHORT
Cit -it F,nyineers • Land.4urveyors SHEET(? OF 29
FROM STA . /25--f-00 TO STA
5,300 e.f s. J S= 0.o5-3�, YMAx.= ¢°
TRY 6 = 76' F,09 k.: -0.6'70Z..,#
VMAx. = 3 8.2 1/#/ LESS rN/in/ ¢D j/ sae .
i
7 -Ry b. 7s Fo1e /<. - 0,002-, -77= o•0/3
VMAx . _ 3 8.9 -7 P' .
so USE 6= 7s , v,,, _ / 8¢
FoP- K= 0.007 , n = O.O!S
2.0 o � � V = 3 5.2- S���Se�.
YMAK• _ .39,47 _ .500
)x i) 32,2)C 1,84-
F90A& PIA -TE d-5- � � Z 1.2 0 o,e Zo °a Alf FlIrViNM,
DA 2.ovx 0.20
DAA 0-4-0
FUSCOE 11651 Sterling Avenue, Suite PRO JECT:Ej/h/,4 /LJ C11441,,/EL PROJECT NO: 7-/0 e //o/
Riverside, CA 92503 BY DATE: CHECK DATE:
WILL (714) 354-0161 T. S, r! Zf;-%
LINDGREN
& SHORT
Cirit Engineers • Land.Surveyors
SHEET/Q OF 29
FROM
STA .
14 -'C -i-00 TO
STA . /¢8-t 00
0= S, 300
C. S.
S= 0.0856'
> VIiUAX.= 1,00 fl'b:ec .
7'9y b - 74 FOP- �<J 0.0 0 z , -n= 0,013
V K,4X . _ ¢¢, S� ]Cf' ISec . 6R EA TEK 7-lAd 4o-0-&
T,ey b = 7.5- F99 K = 0.0 02 , � = 0.013
\-/M,ax . = ¢4.37 tlSec ,
so usE 6 = 75- , DN = /•5-9
FOP- K= 0-007, -)'=:0,015-
V=
t=0.015-
V= 40,67 l'l-hec.,)
�XD - 2,2x I -S•9
FRoNI FI -ATE ¢S — 2�?l = /130
DA XO,3o
DA-o.sz
o R 307 Aik F,✓r.
FUSCOE 11651 Sterling Avenue, SuiteA PROJECT: E'7-/I414NDA C11,4A1i✓EL PROJECT NO: 2/0(,, //0/
Riverside, CA 92503 BY: DATE: CHECK: DATE:
WILL (7I4) 354-0161
LINDGREN
& SHORT
Civil f.ngineers • Land Surveyors SHEET // OF 2-9
FROAA 97-A. /¢8t20 TO sTA • /6'3t50
Q = `i, 000 e.f s. 7 S= o.08s6 , Vm", =. 40 P./sed .
%ley ,6 = 76 ' FOP, 1<=,0.002- , -7... 0.013
VMAX- = 3 9• 5-9 p/sem, GESS T1/AA1 ¢D /
Tgy b = 75-� FOR k= O.00z, 0.0/3
VMAX , - 3 9.7 8 �S�c , eLoSE Tv
So U SE b = 7.5/ /-34
Fog k=0,007, = 0 01 S
F VMAX • 3"ZL—
D —32,2X /.34-
FiPOM FZ-ATE QS — d�/j .7 /,30
DA = /. 4-j� x o , 3 o
�A = 0 , 4 q -
Ole 3 0% A/r- �Nr�M 1,VHZWr
ay _ (/)(39.79)i('7s>
32.ZX9000
Ay= 0."
FUSCOE 11651 Sterling Avenue, Suite PROJECT:Ej1W,4WA4 CNAAINEL PROJECT NO: z/0�;,110/
Riversid4 CA 92503 BY: DATE: CHECK: DATE:
WILL (714) 354-0161 T I �—Z6-89
LINDGREN
& SHORT
Ovil Engineers • Land.9urveyors SHEET /'L OF 2 9
FR O AA sTa . /63f s0 TO STA • / 77-,- 0 0
000 e. ss. 5. o, 070 8 , V ax. = 1�50 {.Aa
Tip'y b = 76 FOK 0.00 2 ,� -h=: 0,0/3
VMAX • = 3 7-34- 61,15;ec . Z ----ST T, 411 -�eo P Aec' .
TRy b = 76- ' Foie k = 0.00 2-,, -A=
V*A1. = 3 7• 5-3 �7/sue
so USE b= %S�
Fog /<=01007" -A=0,0/s'
D,/ = /. Ss' , V= 3¢.39 P'15ee FN- 4'87
F- VmAY,. _ 37.53 S.SS
9 XD 32.2X /,¢Z
FROM 01ATE ¢S d-11 /.z o of- 2,o;/- 41P F,vr)eAii✓.
10A = /, r -5-,K 0.2 0
DAA 0,3/
(13 7.51-73)'(7-5-)
32.2 xS000
.4
11651 SterlingAaenue, SuiteA PROJECT:E"j/,/,4^/,oA C//AW41g-1 PROJECT NO: 2
FUSCOE p //Q
Riverside, CA 92503 BY: DATE q CHECK: DATE:
WILL (714) 354-0161 TI, 6 zti'8 1
LINDGREN
& SHORT
Civil Engineers • Land Surveyors SHEET /J OF 2-q
FROAA, S TA - /78 t 4s TO 57-R • /92-00
Q = ¢, 000 -e .{�s. , S= D. O 9 ¢S VZUAX • = 90 fYA".
TRy 6:-- Sl Folz 1<2 0.002 / -,n =- 0.013
VMAX . = 3 9.77.6,Aee . LESS 7WAi1/ 4fO -11-1-sie
-rRy b = 8o ' rro9 k = o, o o z , � — o, 013
VM AX . = �e-0 , 02 L'GoSE 7D 40��/mac .
so use b . 8o' , /D.✓ = /•2s
A:-OK K= 0.007, = 0 0IS
Dti /- 3 V. F = SS3
F 4-0, 0 z _ 6.31
�X 73�•2
FieoM PLATE ¢S — G��� _ 1,3 0
/�q = /-3G x 0 ,30
DA = o • ¢�
Die 3 0 ,�4 A/,e E-,,/rk.41WMEN r
6y= O ) �w0�)Z�gv
32-.2 x 8000
,6 y = 0- So
.._ — ---.� r.`.,o... "-.-•__ ?+rror.�_.:....... .. .._...-.i•.u+c+i� - �=i=,�i• — — --- "moi r'—�+..�. I
Elv. 1110-2-1601
A :)c'cndix III S i 11
1 July 70
sl
1.
JOo
230
0
.. - 00 -- !
° o°-
zoo °'°c
•o -d- t .I I
- - J• 0 j ,
ISO 1 1 I
_ _ _ _ _ _ _ • c- ` —�-- 1111 j '
v ��—f -- --- -- 1 _ I of ►' t I .I
loo
90 _�:__�-- -.- Doi �p .�� >. - - �~ 1•___:� � � �l;.�
Or..
60
Etjt
�o j.
0.000 o.or 0.015 0,02 0.03 0.04 r i
u
b(ANNING'S A
I,I
BASIC EOUATIONS
C•32 eLOG,012.2R/K
R ve 1
2 S.e1. 21. oS LOG,, R/K
i.
WHERE:
C+CMC2T CO[fflCl[NT
Ii
i
n-NANNING•� RE3I.1TANCC ?i I
:I
LOCrr1C IC NT
A-wrDaw"LIC RAOtUS,rr .i 1
K +COVIVALE14T ROUGHNESS
HEIGHT, f T
OPEN CHANNELS
C -n -R -K RELATION
0.008<n<0.04
;f.F T%XT PAGE 6
Plate 4 t ii.'i1),
III -6 � il.11ill
it I
I .I
j I• I � .1.
' � 1
EM 1110-2-;1601 �!
Appendix III tt
1 July •70
,r
1.2
r, u
F.= V
9
Q. EXPERIMENTAL DATA
IZ
-b. DESIGN CURVE
NOTE:_dm = DEPTH OF WATER AND AIR MIXTURE
d = COMPUTED DEPTH FOR "ON -
AERATED FLOW -
V =COMPUTED •VELOCI.T.-CF-OR-MON-
AERATED FLOW-777
g
LOW— '
g = GRAVITATIONAL ACCELERATION ,
F = FROUOE NUMBER FOR NONAERATED ••
FLOW
AIR ENTRAINMENT
SEE TEXT PAGE 53 -
III -47 r '^T r'
} :i'�';i,�
_. •/ , ..
, — _—_ -- —
-,'•'IIIc
`+ r" i. — y r r ,�'�� ..,
,' is •lil
,• r..;• • - �"� T'T�!'ti'•R"g":i :!' n „ .' . '?' .i^T T."!' -v �'!'�' .!" n� h"R KT f i'RTR T7S' :T 7' aT 7•F7' i!'R'7t'-,'T:$"?C".!'7."7S"X'S-:�'?:"T"yt'?' i1'y'/�"7.'•Y yt•T
f-f'IDRAULI+C ELEMENTS -- I PROGRAM P?CKAG'E
'l_•) I_Gp•y°r7 ht i 22 -S8 Advai'lt"ed Engineering Software (cies)
Ver, 2.7A Release Date: 6/25/se e Serizl # 2324
Analysis rr 9parsd by:
ME/DATE OF STUDY: 8^14 1/ 1/1980
DESCRIPTION OF STUDY
' ?ECTANGULAR CONCRETE CHANNEL fi
i Q•'.:4900 cfs+ n=0.013 r
23.5 ft WIDE, 9.S ft JEEP, Vmax=40 fps #
,; -....'�:?��t•-.t'�-�t•#:�•�•���1-'�-}-�-aE�•'�••Baa-�••�•}:�•�:�•�•�-�•�a�'�'•x•�'aE•�•�-•�•�•#•��•�--r��••�':�•�'�•sE��a-�c•:�•�•-#:��••�:��•�•�-•�•�•��•:�-.�:_�••::
.:� . f v. _. _#...• x..`q'..�. ]e �C # ;� i{";' i�• .}�• •'•f"}:' .�c"f.' �i �'I' •3!'T:�!' :E •1!� 1f' yF' tea• �"R' �• T.• .:i r#' �• -fi' +F' .,�' # •?4 +e• 3!- !{. �iF• •t?' �4' .,i.• •?3•-i!• # �" $' •?4' P • Vii..# .{. # K• y '#' �• •ii' -,+• iF ''f.' Vit' •'i• eE Y'R
* '•Ir iEL INPUT . riC-OR A r I ON'. .
------------------------------------------------------------------
C-..`.?'.iijEl._ .= (x•90 ITI. mT%/V'EPT1CAL. _ „ . .
t 19 WIDTH : FEET ) = 23.50
70ARTANT CHANNEL SLOPEtFEET/FEET) .020800
'�f:Z%•_�i�-•i_-.JC` � f� 'i-1 j3a �. �iFO`'+Mr.-� RCN:
-----------------------------------------------------------------
F'I(.,RMAL DEPTH(FEET) _ 5.32
PLOW T _r. -"W I t`TH ( FEET) = 83.5(7)
_:1-),W AVE-RnGE. i; �:i=1._0C1TYrc•I_E.1...:_EC. i 10.01
7 i. " 1. i U6.'E NUMBER i : . 9 2
.=7P ,�-S'^ 1t. + MOMENTUM(POUNDS)
h.p NTf Ir, ` O t`'`S) 3 x 7 9 . 6.
•' 4. :''= 1 �i .�r:� ll t"1��1"if_-i i r L.:' 1 �. � ff.J �.✓ISN AI. ,.. r- / �.� � 11
i ��f -3C.PL'a(JED ' ELOC I � ��! HEAD(FEET) F EET) •-• 22.923
PEs :FIC ENERGY(FEET) - 29.10-1)
CRITICAL -DEPTH FI...UIW INFORMATION:
R I T• I CAL PLOW TOP-WIDTH(FEET) = 23.50
I I T I CAL FLOW AREA (SQUARE FEET) - 259.72
CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 11.05
CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC,.) = 18.87
CRITICAL DEPTH(FEET) == 11.05
CRI -" I CAL FLOW PRESSURE + MOMENTUM(POUNDS) = 268706.00
AVERAGED (CRITICAL FLOW VELOCITY HEAD(FEET) = 5.527
CP I T I CAL FLOW SPECIFIC ENERGY(FEET) = 16.579
DESCRIPTION OF STUDY-t't?F'3�ijE,R'4#+r94••yE•4F..�f.r.it��:Ez'r.�•iE#
c 0 ^:-'i. GLLOR C� �r'� CRETE C ANNEi— �•
a
23.5 ft WIDE, 9.50 f t DEEP, Vm • m-00 fps a.
;: � ..:.:.:; � .:# �+• # �• �:. i":""• 3E .y ,i• .�...; .�. �. •�• i# •}i• �• �• .?f # :# •�• si..*..� .# .;# �. x .>�• % f �c .�..�. �c . �..�..�..,�. •�:• jF �• ?f• � -# •�§' •i�- �F• �• •!i• aE• tit �• �f• :i f• •R• �,i• •fF '='' i#- '# :?• # # �• •�• # •if•
f..�. yF .� -:. M.:�.: s �• :, :;�. x ._ :�• f. s,�..#. �' •3F f t �{R• 1#j -iI 4• ?�•'Ti- =F �F. •if • •if•'{�• �jF• ?4 aE• if• X Y •3f• iE •i:• y •?f• �(' �f.• �• aE• :t- ii• �. }I• .rk •ri. -1f• jF• # �E• •af•'?• ?R.:'t• •14• i4' if•'lf• � t- •'�• ,t• iF ?J• •sk .pc -# ai :} �. '�!•
INPUT Ilbi(�ORMA fiiON',<< ,
is ;N NE 7 r H0P I;'';Gt'.,..r AL / `,iERT r 7 - .00
i_lJN3TANT C; -A INET_ SLOPE•(FE^ET/FEE-•T? _ .02080
LAI FORM FLOW(CFS) = 4900.00
C1." NN I NG5 FRICTION FACTOR = .0150
NnRMAL-DEPTH FLOW INFORMATION:
!`-NORMAL .DEPTH ( FEET) 5,e7
FLOW TOP-WIDTH(FEET) = E3.50
_OW AREA ( SQUARE FEET) = 13e.01
HYDRAULIC I C DEPTH ( FEF T) - 5.87
=LOW AVERAGE VELOCITY(FEET%SF_C.) = 35.50
UNIFORM F•ROUDE NUMBER = 2.582
PRESSURE + MOMENTUM(FOUNDS) = 362429.60
aVERAGED VELOCITY HEAD(FEET) = 19.575
SPECIFIC ENERGY(FEET) = 25.447
CRITICAL -DEPTH FLOW INFORMATION:
CRITICAL FLOW TOP-WIDTH(FEET) = 23.50
CRITICAL FLOW PREA ( SQUARE FEET) = 259.72
C R i T I CA L FLC W HYDRAULIC DEPTH : FEE T) = 11.05
CRITICAL FLOW AVERAGE VELOCIT`a`(T=FET/SFC.) = 1a.87
jR r,-i::AL i_EPTH(FFET) = 1.1.05
R ; T I CA.L FLOW PRESSURE + MOMEi--,lTl._M ( PCT(. NDS) = %8"06.00
AY;=:RA BEL+ CRT T i C"AL FLOW VELOCITY HEAD(FEET) - 5.527
i 17TC L. FLOW SFECIFIC ENERGY(FEET) = 16.57'7
?C ;�.x. y -.}�. ;_:.-�C•'F, •o jf'Y..•.'R' :f- al'•�i"=-# �'• 1f• ' -Yi•
DESCRIPTION QF STPDY .u. �_:� .f,15 'fir •+-•$at•?t?f �•'?• ,5,..;..>;. � :#• �e•.� ...;� sc ;�, ;�
RECTANGULAR CC:'NC.RE.TE_ CHANNEL. ,
1-4100 ofs. I=C.013 a
o5 ='t WTI:E, 6.50 ft DEEP. '1max=AO f os
:t ''- .� '! -:ti ::. iF :. � .,t.r. +. �c �..:.;.•• :# �. #• •'�• .# # 3�r �-; .�. �..#..s� :#• .i(• iE •�c !-'.-'3F # =t• ?F' ; �..?• iE -.Y• 3(- -# •?r �k• §E ;- •3� 1i. # i .} y.:�, r„ #, 1{..1..._ � # M..�c .# s. M .Y '9F' • :# # �� ?E• §(-
L..�. a..y. x..;..:f. x- � t d• #= ={- � ±�• 3S •+F _r. y aE..7�.:s- �• -t..l d- i• )# 'x iF X4.3(• �. 3F •+s.:k. � iG -1(- =i• =k t js:. -?{. : �. -�-=i• # ?i; ?i-'#. ?s. #.:.� � r. } _t �.... �. *..� . z. � :. � .�..# �• :f- # t :# :# �•
KPAIMEL INPUT N i I 1
--------------------------------------------------------------------
N'll-JEL Z'HCRIZONTAL /VERTICAL) K.",
PAREW I D T H ( FEET 1 - 45.00
DNSTANT CHANNEL SLOPE (FEET /F EET) 03680-0
!NIr=•CEyM FLOW(CFS) = 4900.00
'f+ANN I'•* G a FRICTION FACTOR = .0130
NORMAL -DEPTH FLOW INFORMATION:
NORMAL DEPTH ( FEET) = 2.74
FLOW TOP-WIDTH(FEET) = 45.00
FLOW AREA(SQUARE FEET) = 123.17
HYDRAULIC DEPTH(FEET) = 2.74
FLOW AVERAGE VELOCITY(FEETISEC.) = 39.78
!NIFORM FROUDE NUMBER = 4.238
PRESSURE + MOMENTUM(POUNDS) _ 388287.00
AVERAGED VELOCITY HEAD(FEET) = 24.576
-.=,PEC: I F I C ENERGY(FEET) = 27.313
CRITICAL -DEPTH FLOW INFORMATION:
Ci : I T I C A'_ FLOW TOP-WIDTH(FEET) = 45.00
CRITICAL FLOW c AREA ( QUARE FENT) 122.56
CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 7.17
CRITICAL FLOW AVERAGE VE LOC I TY ( FEET /'=EC .) = 15.19
CRITICAL DEPTH(FEET) = 7.17
R I T I CRL FLOW PRESSURE -+- MO!" fENTUM ( POUNDS) = 216386.00
0
:^L't-�='AGEI_� CRITICAL_ FLOW VELOCITY HEAD(FEz.T' = 3.583
CF' {.-r I CAL Fl. ['W '3PE.!_.:I F I C ENERGY t FEET) = 10-751
17
?k¢gh..-i{...#..yt •.:_.,S�ti. �..y�..k.. ..r�.�;..iF'k••'# DET-.rCRIPYliN OV STUD �1�•i!•fi•#;F•i4�•#'#•g• �••*r k••9i•:f :fi •?;•.�.•t. •r� ••?r•:�•yi`•k •.'#
RE_CTAh,sE_ti._LAR CONCRETE CHANNEL.
00900 afe, n=0.015
&5 ft WIDE, 1.50 `•t DEEP, Vma:.=:40 Fps at
.;.;..:�. >�.:.�. �. .:•s.:�f• •# .q.'+E- •k•.�. # .x..#:� # -ti' e�!• •?� �E• �'f.• •?E• •!k•.*. •k• # .:c'y.'k •K # •)i•.# d4• .3i• ?+• y¢ •)f' •k •?�• )E �• .�. # .�. ?¢• a .�. •:,^ .�• •#}'3F•:�. •?P• •# iF x. •A -i�• # :::t •3t •'�. •fr � •y;R. #.?�' .�• #
_. �..,� �� a.-.�..�. �. t• :# .�• •?f• � ?k %f..�..N.: e iE ?d• �e•'k -�s'k•?4 �i• •1(• -i• •?F •i�• :#• a(•+.E tt• •3F )f• :i• af• ai• :�-?ti r�4• a• # it• # 3= �• # iE• #. # :. �..�..�..� .yt. �. �. _,. ;i .;#• '• ?#. •i� =i• :- -i� �• :�:. #• .,t s•
•-i[1NNE:{_ INPUT
I NFORMAT IGN<:: i ' <:'
------------------------------------------------------------------------------
CL ANNEL Z (HORIZONTAL / VERT I CAL) = . 0(-
9ASEW I DTH (FE:ET) = 45.00
CONSTANT CHANNEL SLOPE ( FEET/ FEET) .03620C.)
0C.)
UNIFORM FLOW(CFS) = 4900.00
!°'ANN I NGS FRICTION FACTOR = .0150
NORMAL—DEPTH FLOW INFORMATION:
----------
%>,>> NORMAL DEPTH(FEET) = 3.00
FLOW TOP—WIDTH(FEET) = 45.00
Ft % AI- = A (SQUARE FEET) - 134.84
:!'YD "tF=''_►L C E": DEPTH(FEET)3.011'') =1
L' -t_W �`i•:E1-+'�;GE V�_.l._OCIT• IFE._E / SEC. ) 3,' .34-.
Q'••FA .!, E -E F `•li ,MEN T f. UM (F'`1E!NES) - 357672.0C
I}. ; "''_ 7D VELOCITY HEAD(FEET) _ 20.D)5
,L.. ' _'. 1L ' f.•}TH t::•1 i -W j `.!l'S,-:r.rlwq_ j CsN
..i ."E=u FLjW TOC:...-WT0THtF'T-1. = 4
5.05
'4: T . 1 CA; • FLOW A EA (SQUARES FEET) 322.`':•7
_RIT! AL cl_OW Ay14_RC.1=E It E_u0C .. i •'ltFEET FC, Y = 's
&-lopoxp Cpjr3rnQ EFi.(}W uE,. OC :.T'; {...):._ D ,:. F'i__; A ._ .._ .T8
-- _ . . 1.... i}_. FLOW SP`: E . E' .. L E„`.tR F' i.;:i' ' F:. EE I ) = 10.051
•.. }• t... ¢ 1 :q. _.:. ii .;t .j�..:t :i ,!. # 'f•?4•.)j. •fe. �q• «. •# %t D F %_ R •j,.:: T I. iO N 0" STUDY
-_- 3F• # .'+F :.�• .) r #• 'k• •?{• 'sr t`:• �i sk' h: '#• #.• -# .;r. a,�• # :� �• �. # .:.c.
PECTANOYLAR CONCRETE CHANNEL
5 ft WIDE, 7.00 ft DEEP, Vma)•.=40 fps
u �. v. �. _{ :k .A. �• Y• •R• •iE• # ar. �. x..s� �..�. �, �..# �• �• •�. # �..�..�• •# �• •E # •if• # �E• .;E •#• �• •3t• .�• .�• •Yr # X at• 3F #• �• �;- :6 •kx,- •)F #•=#•'�F• �c .ar. �• •iF r # x •�•'`-•� ie• # # �• �• •)i• d+ 'r: � ri
•' CHANNEL INPUT !T INFaf'MATION<
-----------------------------------------------------------------------------
CHANNEL (HORIZONTAL/VERTICAL) _ .00
ASEW T DTH ( FEET) -_ 65.00
CONSTANT CHANNEL SLOPE ( FEET/ FF_.ET) - .036800
s_)N I FORM FLOW(CFS) = 7200.00
1;3NNIN6S FPTCTIQN FACTOR = .'• i 3cl
NORMAL—OEPTH F _.i' W INFOPMATION-------------------------------
-
1
DEPTWF •LCA Tnp W I r T E-{ F EET) = 65.00
.=._OW A .EP ( 3OUAR = FEET) =- 177.41
,-{'- d:•^'AUL 1 :: DEPTH(FEET) - 2.73
s : _04 A ' i E_ VE^NVE;LOC I TY ( FEE._ ! ; SEC . • 40.58
WHIPMRh
A F•''-":= E:3i-ERE - ;' O ME NTUM (i O NDS) 5 81 6 i . ?0
: I T I CAL --DEPTH Fs _0W I PFORMAT I ON
----------------------------------------------------------------------------
yRI TT.CAL FLOW TOP—WIDTH(FEET) = 65.00
CRITT CAL FLOW AREA ( SQUARE: FEET) — 471.19
_:R TT•ICAI— FLOW HYDRAULIC DEPTH(FEET) 7.25
GR I T I CAL FLOW AVER AGE VF_L.00 I TY (FEET/SEC .) = 15.29
CRITICAL Dr';F'T'-i t FEET 7 = ,25
CRITICAL FLOW PRESSURE + MOMENTUMPOUNDS) = X319 74.80
+= Y RAGED CR E T I CAE._ FLOW VELOCITY HEAD(FEET) = 3.626
CRITICAL FUOW SPECIFIC ENERGY(FEET) = 10.375
DESCRIPTION OF STUDY
* RECTANGULAR CONCRETE CHANNEL
&._?Li_}i_} C•f s, n=0.015 / a
* 05 ft WIDE, 7 ft DEEP, alma:•;=40 fps
,. ,,. �:-ii--k+t- •!F •1• �• •� �e•-�• � •?F •}[• •1• •� 4F+f•+E # 9f•+(• •iE• �• •x• •!E••�• •iF •k -1f• •�• at-•lE4: •lF•iE •1f• 3• •3f• •#••3f• •#• •3F ?E• •14-•aE •3�?F+F •}e• �• 9F �• 9F•-�• # •x• •�•;;�-34.9F• •3a• #• •�• k •x �• � � � �- :� •�•
,.:t :•- ?� .�• •}i• -t-x-•iF •it-•�• # iF # i4• # •i( -•}i• #?@ •x• iE• jE••#••if•+F?E •iE• •!i•+6 #+F iE+E+F• •34•+F• •}E••lE• �E• # �E #+F •k •1F+t• #• # •!t• •iF•+t•?E••�• #• •!E •!4•+F+F+r •3f +f• dF # •lf• •3f• -#• •!�-�•+E• •l�• •14• # :rt it a.•
• • :_'HAND fEI._ INPUT INFORMATI� �N< <;
J4:-i\;l'JE=L . ' ( HORIZONTAL ZONTAL AVE RT;"C�- L) - .00
'. Crid: T"N F CHANNEL ELOPE (FE't=.T `EE T) _ 036800
+_.NIFC+PA F_OW( _F% - 7200.00
.%N I NGS FRICTION FACTOR _ .0150
.. -q ra,^.++ —0 _,•= TH FLOW 1 NF'Of iA N
_
r W z -QP --W S DTH ( TE T) 05,00
.-TW APEAOSQUARE FEET)
+ QA AVERAGE SEL:'(.` GE YE!__3.?(_ T T Y ( FEET : TE(_ .) - 17,16
-S71SuRE+ MO ME`dTUM (F -'O NeS) _ F3,495.20
r i Q f EC •..',= i :—CITY WEAD (L: EET) - 21-403
r_ , T ; I +er=a!-.--DEP Tc.s P! OW I NFORMAT I ON
I TTIGAL FLOW TOP—WIETH(FEET) - 65.00
1 F I T I CAL =LOW AREA (SQUr RE 7EE T) = 471.19
CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 7.255
CRITICAL FLOW AVERAGE VELOCITY(FE'ETISEC.) = 15.28
CRITICAL DEPTH(FEET) = 7.25
CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 319774.60
AVERAGED CRITICAL PLOW VELOCITY HEAD(FEET) = 3.626
CRITICAL FLOW SPECIFIC ENERGY(FEET) = 10.875
DESCRIPTION OF STUDY+
t ECTANGULAR CONCRETE CHANNEL �
4=1700 cfs. n=0.013
g_ �, r{, ��..� ,; .:q. •�-# •af• •}h -";-.+o• ?A• �E-�•-+f•.�..,y:.�c..1F �t•'� ?E •je• •yF• :a(• •1�• # •1E• ,?4 -ac• •#F ?i•'.k •* {t• # is iF �iE• •it• •3k• •!4' -1t• •+F •3E °+E �k. R• •3i• �S• •aE• iE •�• �?F •?� .'�• •�• -;F • f i= moi• •IF• r+.- i£' •34• '# -i ;i' iF �4• ;6 •af•
.g :�. ��. �. _:- •�• �• •±'• # -�#• -# •',�• .'l.�'f. x• y # =?• +f• •jF• x• iE .# �. ai•'�E• •la• iE'r. # :4 �• # it• •k # it• if -+4• -ii• +F -k+E• •;f• •�• •�• •!F # �• #.;;. �. ?k .?E ,k •?!• # i#• � ,+• # ?4• •h• �• •� � :# �# # �• 9F =# v ?# :i -?k
HA NEL- INPUT INFORMATION <;
------------------------------------------------------------------------------
;E ANN L. Z : NOPI ZONTAL/VERT; ICAI.._ : — '00
CG
G' J �: �' q�+ I DT H (t- E r iT =- � 65.00
CASTA 1T =HAP::dEL SLOPE ( FEE T/ r= =ET) .036800
UAIFORM
- t F Fry) = 6700,0C,, //
-------------------------------------------------------------------------
: .• . P•LG'RMAL. DEPTH (1=E:ET) = 2.61
FLOW TOP-WIDTH(FEET) _ 65.00
FLOW AREA ( SQUARE FEET) - t69.73
i -•!V DRAUL. I `_: DEPTH(FEET) -_ 2.61
F=LOW AVERAGE VELOCITY ( FEE-; :`SEC .) - 39.4.8
UNIFORM FROUDE NUMBER ER _ 4.305
PRE'SSURE v MOMENTUM(POUNDS) _ x.'26371.60
AWERAGED VELOCITY HEAD(FEET) = 24.197
SPECIFIC ENERGY(FEET) = 26.809
CRITICAL -DEPTH FLOW INFORMATION;
CRITICAL FLOW TOP-WIDTH(FEET) = f 65.00
CRITICAL FL OW AREA ( SQUARE FEET) = 449.19
CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 6.91
CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 4.92
CRITICAL DEPTH(FEET) = 6.91
CRITICAL FLOW PRESSURE + MOMENTUM ! POUNDS) = 290514.10
! 'EPAGE D CRITICAL FLOW VELOCITY H; -A& FEET) = 2,405
.:RTT1.
I CAL_ FKGW SPECIFIC ENERGY(FEET) = 10.265
•.:..s. •.. sr .> . Y..:�.:�...;�.:......Y:..3..fi. 4 .'h -k.. - •.;s- i•'h .'r ?i• CESCI I P ION OF 7 fU1)t% at� ".r r- 3E'+f••R•.Z 4c :s �• s.• �` fi?i•:.i. s•'# -+F .rt,� # � __:i. s.�.
r ._ TQNBUL R ':.nNEPETE CHANNEL ..
5 It W T DE_ . v.5 J'% DEEP,iJ1Ti<: x--40 fps
:f• - ; ,.. �c }..�(.-_:..;�.{ :,�. .ti �-? 71•:�C•.�: .}. �� t,y. 3E •'a• u. �. vi. 7E 'x ..�..u.}t .g. .};. v..>�_s4. •__i• f. ;{, y.:_ :�. �.T :y.� � i-?� .L..>�. h-;,. �. _;.}..s.. .r: � � �. ¢_.�• y. � r..�. 4.
x :. ,::s fi• y. -3f..� ,r. '�• #• # :¢• Y• �• i4• �F # :�, iF =s• 'r. #• •� �- i4• y. }� �.:� y. �• :�• :�• # x- �• �• �• 3f• :t• #• 'sE a• :� #• #� -iF � # :q ?F s: �: x '-• •k• ai- iF � -�• # -+•. -{. # #•;► -ia• •;2• .�. �: k �-
. • . QQ?PrEL_. 4NRUT INFORMATION`'':::.''
-----------------------------------------------------------------------------
C 11110. .10"ORVZONTAL/VEP"ICAL)
L ASE}.d T' IT ; (F`..•:1 --T i _.t} t?5 . Of -.,i^
. {`+`S .�; i�� }._;..7:,`f'.:tt�lEL 'L..{1P ( FIE / F FET ) =
.036300
= 6700.00
PONNINGS FRT""TON FACTOR .015(1
NORMAL -DEPTH FLOW iiNFORMATION:
. ; NORMAL_ DE:F= TH r FEET) = R.95
FLOW TOP--•WIDTH(!=EET) = 65.01
FLOW AREA(SQUARE FEET) = 195.35
PYDRAUL_ I C I]E:PTH (F= EET) = 2.:35
!=L.OW AVERAGE VELOCITti (FEET/SEC.) _
:36.15
..NIFORM FROUDE NUMBER = 3.772
PRESSURE + MOMENTUM(POUNDS) =
481836.20
AVERAGED VELOCITY HEAD(FEET) =
20.291
SPECIFIC ENERGY(FEET) = 23.14e
CRITICAL -DEPTH FLOW INFORMATION
CP7•I
1r��_iaL.
CRI
ICAL
Imo! 1 T I CAr_
STTICQL
qUE AGFD
}_ . I T a LY F•• L.
F!._OW TOP --W i DTE' (F FF T) _ 00
!_.OW AREA (SQUARE FEET) = 449.19
FLOW HYDRAULIC DEPTH i FEET) = 6.91
FLOW AVERAGE VEU0C I TY (FEE:.? / SEC .) = 14.92
DEPTH(FEET) = 6.9I
FLOW PPESSURE 0 MOMENT; M V POUNDS) = 290514.10
r"_ O T I C =?i._ FLOW VELOCITY HE AD (S E'ET) = 3.455
FU W 5 PEC I F T C NERGY'F EE r) _• 10,365
20
a K. x�: '1t :r•#?f-i�-�!• rs�•'t•;i.7_ :-'.6•`+�•%?•.j�••i(•>;•:#.•�• 1,)L._L3CiilPT.L.I..N OF I-i-U'DY 3-#.j�.#•-+-'k••�:•#-?�•.'fat•s�•jt�-+;••:'-?EiF:i.rc••.E-•q��:t?F•:4
� C=570" cfs, n=C.013 I;,-
05
05 f, KJE, 6.5 Ft DEEP, Vmax=40 fps +
/'CHANNEL !NPUT INFORMATION<<o,
----------------------------------------------------------------------------
MAUNEL Z(HORTZONTA-/VERT%CAL) = .n0
?uSEWiDrH("EET) = 65.00
rCNSTANT CHANNB- SLOPE(FEET/FEET) = .036800
UNIFORM FLOW(CFS) = 5900.00
MANN7NGS FRICTION FACTOR = .0130
NORMAL -DEPTH FLOW INFORMATION:
,;>>V NORMAL NORMAL DEPTH(FEET) = 2.41 ^
FLOW TOP-WIDTH(FEET) = 65.00
FLOW AREA(SQUARE FEET) = 156.83
HYDRAULIC DEPTH(FEET) = 2.41
FLOW AVERAGE VELOCITY(FEET/SEC.) = 37.62
L|NIF[!RM FROUDE NUMBER = 4.268
?PSiCURE + IOMENTUM(P9UNDS) = 441935.20
A`.'F9aGEm VELOCITY HEAD(FEET> = 21.976
TnE[IFI[ ENERGY'FEET) = 24.389
[7'-17AL-[EPTH FLOW INFORMATION;
---------------------------' ---------------------------------'
-0TTICP/' P�OW TOP-OTDTH(FETT = 65.)�
TPA'I[?L FnOu cRTA(SQ']ARE FEETI = 412,61
q'OA IYORAU.IC ]ZPTH rTST` = 6 35
&R,TIrAL QDW AVERAGE VELOCIlY(FFFT'SEC./ = 14.T0
7417'CAL DEPTH(FEET) = v35
-RlrICAL 7i'[U PPESSURE I MCMENTUM(FnUNDS) = 245209 7)
T''ERA7ED 0RJr3C4L FLOW VELOCITY HEAD(FEET)
0:11rAi FLOW SPECIFIC TNEPGY(FSET) = 9.523
DESCRIP-71N OF SlUDY
� -E[7TVGikOP aCNCIETE CHANNEL �
* //-5100 cfs '`=0.015 :
* 15 fr WIrE, 6.5 ft DEEP. Vmax=40 fps �
CHANNEL INPU7 INFORMATION<<<<
' -'---------------------------------------------------------------------- -
"HANNEL Z(HORIZONTAL/VERT ICAL) = .00
BASEWIDTH(FEET) = 65.00
CONSTANT CHANNEL SLOPE(FEET/FEET) = .036800
�NIFORM r--LOW(CFS) = 5900.00
MANNIMGS FRICTION FACTOR = .0150
!',JORM4L-DEPTH FLOW INFORMATION:
'-- ------------------------------------------------------------------------
nEPTHcFEET> = 2.64
FLOW TOP-WIDTH(FEET) = 65.00
o -OW OREA(SQUARE FEET) = 171.46
H/PRAULIC DEPTH(PEET/ = 2.64
F7OW AVqRAGE VELOCITY(FEET/SEC.) = 34,41
''NIFORM FROUDE NUMBER = 3.734
r9ISILRE + MOMENTUM/POUNDS) = 407541.20
AVEP4GED VELOCITY HEAD(FEET) = 18.386
1PECIFTO FNERGY/FEET> = 21.024
._'P T I L NL.. FLOW APEA : SDUARE FEET? ? _ 412.61
CRITICAL FkOW HYDRAULIC D EPTH (P EET) = 6,35
,..,zTyrA.._ i~•►_at•+ AVERAGE EL.OclrY, E, r Er_„ 14.30
C RI. FT(=ADEPTH(FEET) = 6.35
CRIT; f. AL FLOW PRESSURE + MOMENTUM(POUNDS) = 245209. 30
MERAGED CPITICAI_ FLOW VELOCITY HEAD(FEET) := 3.175
RITT PLOW SPECIFIC ENERGY FEET) = 9.523
«.. ,�• > a� ?� at # DEsCF;IPTION OF STUD'
T-'-:THNGULAR CONCRETE CHANNEL
r 0=5900 rfs, n=0.013
"T ft WIDE, S ft DEEP, Vmax=40 fps
.. ,� : ,� -f• •1�• �+: •�• :- �• � �>E• •�• ��• �-�•-� •� �• �-•� ii• •>r �- •>F # :>F •� -� •� :� •� •� •� •>f 1F �• •� �x-a�• •�• •��• •� ��• •� at• �• •�• •>F •�• �•>� �• •?� •� ••��•• •� a�••x••� �: •?�• •� •� •�e •�. •.�. •x.•�• •� aE• •�• as •�-
:£ •�!• �• --• -f• # X• •�• :t # �i• •1F a!• 9F •'� iE +i• j4• iF ii• •{F• �+• •it --3F• •)f •1<• •�• •3F •1t• jE• •iF x• iF �F• iF• ai• •fF •1k •1E•'.�• •»• i{• •3{• •1{• iE # # •li• •;t• •i4• •i4• # h• -1F �{ �i• k'�i• iE• # aiE •3F # •?f• •� •i4• •x• JE •it• •1E• iE �F.;. �, .�.
_ . . ;CHANNEL A lNEL INPUT i• NFORMAT I Olid <:. •::• < <::
------------------------------------------------------------------------------
. HANNEL (HOR I?CNTAL /VERTICAL) _ .00
BPSEW I DTH ( FEET) = 75 00
�_,H^NNEL SL_OP (B=EET%FEET) 053600
ni:�r..;l`•�-..,1;_�S FRTCT ICN F=ACTO •_ 0110
%CRMAn-nEPTH + knw NTORMx`11 ION:
-----------------------------------------------------------------------------
,:•,..:!W T'_''; ' —:•1 T D -H FEE ► ) = 15.00
.'J./_ 0
1-i DL": AL•'._ I C DE"Ta EE T . -- 1.96
F:_GW A ERAaF `,1ELOCiTY(F EE_r _EC.) — 40,08
T I VORM FROUDE. NUMBER BER = 5.042
------------------------------------------------------------------------------
CRITICAL FLOW TOP—WIDTH(FEET: = 75.0"
CRITICAL FLOW W APEA (SOUARE FEET) _ 422.92
-sI ! :..._ {_ FLCW HYDRAULIC DEPTH(FEET) -_ 5.77
CRITICAL FL .l. W AVERA 3E VE�OC T TY ( FEET %TEC . ` = 12.63
CRITICAL DEPTH(FEET) FEET) = 5.77
CRITICAL FLOW PRESSURE: + MOMENTUM(POUNDS) = 23379 7.3i
AVERAGED ("_RITIC.AL FLOW VELOCITY HEAD<FEL T) = 2,,885
' R I T I CAL CLOW SPECIFIC ENERGY ( FEET) = 3.656
F•.,:..;;t.:f>f>~a�# DESCRIPTION OF STUDY a�?►a��r>E;Exk1E
?ECT,?hJEiULAR CONCRETE CHANNEL t'
73 ft WIDE, 6 ft DEEP, Vmax 40 fps
:t..�. sl,.:; :i. y. �..K....�• .�• # :f if• :;: ,y �. • d.',�• �• •3f•'rF if• •if• df• �f' iF 3f• .1i. # iF ? f• :�4. if• •1C• •i f• •af• .j�. ?f• af• #',�• k• .',�• •iF .x• •14• ii• �• •?�• !i.• •?�• •3f• # i{. #• 4• •�•. �} � •a•?i• #• #• iF -1i..�• .�. }• �. •k• �f.• �• � •►4•
., •;til',.}NEL T r.. PUP INFORMATION <: < .
—----------------------------------------------------------------------------
CH. fl`iNEL ,_ .'';-10R I .ZO=Li VE RT I CAL) _ .00
0
9A _•SEW L D H( FEET)= I a. t'St_i
r._'=H O ANT CHANNEL .SLOPE R F EET/FEET) _ .053600
UNIFORM +
"^^N+`tiNGE PRIC It -N FAC;TCR = .0150 ZZ.
.' NORM41_ EEPTH(FEET) = 2.14
FLOW TOP-WInTH'FnET) = 75.00
F|.OW APEA(SQUARE FEET) = 160.65
nYDRAULIC DEpTHfFEET) = 2'14
QLOW AVERAGE VELOCITY(FEET/SEC.) = 36.73
UNrFORM FROUDE NUMBER = 4.422
ORESSURE + MOMENTUM(POUNDS) = 430651.10
4'''ER4GED VELOCITY HEAD(FEET) = 20.945
SPECIFIC ENERGY(FEET) = 23.087
CRITICAL -DEPTH FLOW INFORMATION:
--------------------------------
CRITICAL FLOW TOP-WIDTH(FEET) = 75.00
CRITICAL FLOW AREA(SQUARE FEET) = 432.82
CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 5.77
CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 13.63
CRITICAL DEPTH(FEET) = 5.77
CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 233787.30
AVERAGED CPITICAL FLOW VELOCITY HEAD(FEET) = 2.885
ORTTICAL FLOW SPECIFIC ENERGY(FEET) = 8.656
DESCRiPTION OF STUDY
* A77TAN2LLnR ]]NCRETE CHANNEL v
* 0=1300 :fs,n=0.013 *
* 05 =+ WIDE. 5.5 ft DEEP. Vma,=40 fps *
�
VNPUT [NFOPMATlON<(;(
1.40RIZONTAL!VETTICAL) = .00
/
��S���I��H(FEET> = 75 00
/ - .
[ONETANT CHANNE4 SLOPE(FEET/FEE[/ = .053b00
UNJFORM rLOW(CFS' = 5300.)C
�
wRlC7ION FACTOR
1/kfiy--DEF`TH FLOW [%F%lATION:
��p��AL DEPTH(FEET) 84 = 1
| ' ^
FLUW TOP-WIDTH(FEET) = 75.00
7LCW AREA(SQUARE FEET) = 137.76
^/vDRrUL{C CEPTH(FEET> = 1.84
FLOW AVERAGE VELOCITY(FEET/SEC.) = 38.47
UNIFORM FROUDE NUMBER = 5.003
PRESSURE + MOMENTUM\POUNDS) = 403045.30
AVERAGED VELOCITY HEAD(FEET) = 22.994
SPECIFIC ENERGY<FEET) = 24.821
============================================================================
CRITICAL -DEPTH FLOW INFORMATION:
CRITICAL FLOW TOP-WIDTH(FEET) = 75.00
CRITICAL FLOW AREA(SQUARE FEET) = 402.96
CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 5.37
WRTTIC4L FLOW AVERAGE VELOCITY(FEET/SEC.) = l3.15
CRITICAL DEPTH(FEET) = 5.37
CRITICA|- FLOW PRESSURE + MOMENTUM(POUNDS) = 202637.30
AYERA�ED CRITICAL FLOW VELOCITY HEAD(FEET) = 2.686
CRITICAL F/ -[}W SPECIF7C ENERGY(FEET) = 8'059
DESCRIPTION
+ AECTANGULAR CONCRETE CHANNEL
� 0=f= cfs. n=0.015
~- '' '-~- - - -' ~--~ ''-- -^^ =--
OF STUD*
°A5E i
MATER SURFACE PROFILE LISTING
ETIWANDA CHANNEL
HYDRAULIC CALC.
BY TONY
!SLAM
OPEN
CHANNEL VICTORIA
TO
BASIN 5
STATION
INVERT
DEPTH
W.G.
Q
VEL
VEL
ENERGY
SUPER
CRITICAL
HST!
B45E/
?L
10
AVHPR
ELEV
OF FLOW
ELEV
HEAD
GRD.EL.
ELEV
DEPTH
DIA
ID N0,
G,ER
:!EL=H
SO
SF AVE
HF
NORM DEPTH
,753.06
1303.64
5.03
1309.67
5900,0
38.61
23.17
1332.84
.00
11.90
133.50
85.33
.00
0
00
TRANS STR
.01001
.02008
1,24
.00
1815.00
1304.26
6.47
131').?3
5900.0
38.81
23,41
1334,14
.00
12.51
9.00
23.50
.00
0
'0�1
491.17
,02093
.01937
9.51
6.36
.00
230b.17
1314.54
b.60
1381413
5900,0
38.06
22.52
1343.65
.00
12.51
9.00
23.50
.00
2
C
523.82
.020'%3
.01763
9.24
6.36
'0
283(1.0"
1325.50
6.92
1338.42
5900.0
3b.29
00-1.47
1352.89
.00
12.51
9.00
23.5.1
00
0
.00
TRANS STR
.02857
21'.0
1.46
.(`0
aa0),y0
132`.50
5.34
1332,34
5900.0
37.44
81.79
1354.63
.00
10.61
9.00
25.5)
rr0
0
,00
9.1.02
.(234"
,02297
EO.42
5.33
1,50
:31!.02
1.348.31+
5.39
1394.83
5900.0
37 05
21.33
1375.56
.00
10,61
9.00
85.50
.')0
0
0�
53.98
.?2348
.12116
15.95
5.33
1.50
4 65.,`O
It X66.50
5.�2
0.0
35.32
19.39
'39'.51
.00
!0 .61
a •0f!
C1..0
,00
0
.U0
T�(ANS 5TF
.03158
.0':433
1.36
1.50
4s60.016
1369.50
7.86
11377.36
5900.0
31.76
15.87
1393,23
.00
12.51
9.00
23.50
.00
0
.0:�
JLNC, ST"M,
400000
:'197q
(i
l
4560.00
1369.50
5.05
1374,55
4900.0
41.2"
26.47
1401.03
.00
11.05
9.00
23.50
.00
0
i0
55:.'.0
.02808
)23 11
15..52
5.05
00
5212.00
1385.00
5.05
1390.05
4900,0
41,29
26.50
1416,55
.00
11.05
.00
23.50
.00
0
00
.`�:THANNEL INPDr [NFOPMATION<<//
CHANNEL- 7(-40RIZONTAL/VERTICAL) = .00
94SEWIDTH(FEET> = 75.00
CONSTANT CHANNEL SLOPE(FEET/FEET) = .053600
JNlFOPM FLOW(CFS) = 5300.00
MANNINGS FRICTION FACTOR = .0150
NORMAL-DEITH FLOW INFORMATION:
----------------------
NORMAL
__________________
>>>>> NORMAL DEPTH(FEET) = 2.00
FLOW TOP-WIDTH(FEET) = 75.00
FLOW AREA(SQUARE FEET) = 150.35
HYDRAULIC DEPTH(FEET) = 2.00 ^
OLOW AVERAGE VELOCITY(FEET/SEC.) = 35.25
UNIFORM FROUDE NUMBER = 4,388
PRESSURE + MOMENTUM(POUNDS) = 371468.20
AVERAGED VELOCITY HEAD(FEET) = 19.296
SPECIFIC ENERGY(FEET) = 21.301
rRETlCAQ-34FTH =LOW INFORMATION:
----------------------------------------------------------------------------
XTTICAL F`-OiJ TOP-WIO7H&FEET) = 75,00
TRTTJCAL FLOW 1REA/SO3A9E FEET! = "02.96
VrITICAL FLOW HYDRAULIC DEPTH(FEET` = 5.37
CnIT[CAL =LOW AVERAGE VELPClTY'FEET/FEC') - 13,15
qRIrIC4/- CEPTHMEET) = 5.7''
ourC+, ALgW PRESSURE + MOMENTUM'POUNDS>
'u/FRAPFD CP[T[CA 9LOW VELOCITY PFAD(FTET)
CRIT`rAL Fi% SPFC[FTC ElEPGY(&qFT) =
DES[FIPTION OF 1TCCY
� TErT4N3ULAR CD4CPE�E CHANNg' �
x 7=5100 OF5~ n-0.013 �
� "I `+ VIDE. 5.5 ft DEEP, wns'=40 fos +
�CHA!1FTL INPUT INFO9MATlON<(�(
____________________________________________________________________________
C|1ANNEL Z/HORIZONTAL/VERTICAL) = .00
BASEWIDTH(FEET) = 75.00
CONSTANT CHANNEL SLOPE(FEET/FEET) = .085600
UNIFORM FLOW(CFS) = 5300.00
aANNINGS FRICTION FACTOR = .0130
NORMAL -DEPTH FLOW INFORMATION:
----------------------------------------------------------------------------
>>>>> NORMAL DEPTH(FEET) = 1.59
FLOW TOP-WIDTH/FEET) = 75.00
FLOW AREA(SQUARE FEET) = 119.45
HvnFAULTC DEPTH(FEET) = 1.59
T|'CW AVERAGE VELOCITY(FEE[/SEC.) = 44.37
LN[FOR|1 FROUDE NUMBER = 6.19�
"FESSURE + ;OMENTUM(POUNDS) = 46;660.20
AVERAGED VELOCITY HEAD(FEET) = 30^571
�PECIFIC [-NERGv(FEET, = 3?.164
F0lll[AL-DEQTH FLOW INFORMATION:
----------------------------------------------------------------------------
CRITICAL F|OW TOP-WIDTH(FEET) = 75.00
&7lT`C4L QOW APEA(SPUARE FEET) = 402.96 244-
--
7RiTlr4t
Fn]W
'
AVFRAGE VELOCITY(FEET/SEC,) =
13.15
7Pl71CAi
7EPTH(FIET)
=
5.37
CRITICAL
CLOW
PPESSURE
+ MOMENTUM(POUNDS) =
202637,30
O1ERAGED
CR[TICAL
FLOW
VELOCITY HFAD(FEET) =
2.686
CRInICAL
FLOW
SPECIFIC
qNERGY(FEET) = 8.059
DESCRIP7I0M OF STUDY
* FEC -ANGULAR CONCRETE CHANNEL *
* 0=%00 cfs, n=0.015 *
* 75 ft WIDE, 5.5 ft DEEP, Vmax=40 fps *
«***************************************************************************
`,CHANNEL INPUT INFORMATION<<<(
-_' _______-__________________________�__-__________________________-_____-_
CHANNEL Z(HORIZONTAL/VERTICAL) = .00
DASEWIDTH(FEET) = 75.00
CONSTANT CHANNEL SLOPE(FEET/FEET) = .085600
UNIFORM FLOW(CFS) = 5300.00
"4NNINGS FRICTION FACTOR = .0150
============================================================================
kOiMPL-DEPTA FLOW INFORMATION:
NOFM4L [EPTH(FEET) = 1.74
--JW TOP-WIDTH(FEET) = 75.00
OiOW A3EA'5A�!ARE FEET` = 120.32
-f9cAjL7C DEPTH(FEET) = 1.74
" ?W ?VTR4RE \'ELOCTTy'FEET'5EC.> = +0.67
./Q -[RM ARCUI!E '^UVBER = 5.437
p'`IFEUPE v rUMENTUM(POUN0S) = 424971.o0
A07PAOEC VELOCITY p^EAD(FEET) = 25.683
io=IrIC ENERGY(FEET) = 27.421
70 -ICuL-]EnTH PLOW INFORMATION:
CArTICAn FLOW FLCW TOP-WIDTH(TEET) = 75.00
T^'Ir,CAj rL7u AREMSOUARE FEET) = 40R.96
QFITICAL cLOW HYDRAULIC DEPTH(FEET) = 5.37
�PlTlCAL FLDW AVERAGE VELOCITY(FEET,5EC.) = 1S.15
OP[rICAL DEPTH/FEET) = 5.37
CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 202637.30
%"EXAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 2.686
CRiTICAL FLOW SPEC[FIC ENERGY(FEET) = 8.059
DESCRIPTlON OF STUDY ************************+*
�
RECTANGULAR CONCRETE CHANNEL �
*
* 0=4000 cfs, n=0.013 '
+ /5 ft WIDE, 5.5 ft DEEP, Vmax=40 fps *
�`%`Cq4NNEL INPUT INFORMATION<<<<
CHANNEL Z(HOR72ONTAL/VERTICAL)
PeSEWIDTH(FEET) = 75.00
CCNSTAW CHANNEL SLOPE(FEET/FEET) = .085600
UNIFORM FLOW`CFS) = 4000.00
MAuNIN8S FRICTION FACTOR = .0130
NORMuL-DEPTH FLOW INFORMATION:
'---------------------------------------------------------------------------
l`/>> NORMAL DEPTH|FEET) = 1.34
_ --_ - w=
AYIRAULIC DEPTH(FEET) = 1.34
F�CW AVERAGE UELOCITY(FEET/SEC.1 = 39.78
UNIFORM FROUDE NUMBER = 6.053
PRESSURE + MOMENTUM(POUNDS) = 312527.40
AVERAGED VELOCITY HEAD(FEET) = 24.566
qPECIFIC ENERGY(FEET) = 25.i07
CRITICAL -DEPTH FLOW INFORMATION,.
[RIwICAL FLOW TOP-WIDTH(FEET) = 75.00
CRITICAL FLOW AREA(SQUARE FEET) = 333.94
CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 4.45
CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 11.98
CRITICAL DEPTH(FEET) = 4.45
CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 139240.30
AVERAGED CRITICAL FLOW VELOCITY HEOD(FEET) = 2.228
CRITICAL FLOW SPECIFIC ENERGY(FEET) = 6.680
+**+********************** DESCRIPTION OF STUDY **************************
* ?£CTANGULAR CONCRETE CHANNEL *
+ Q=4000 cfs, n=0.015 *
+ 75 +t WIDE, 5.5 ft DEEP, Vmax=40 fps «
` ."`CNAmNEL INPUT INFORMATION(<O(
_________________________________________________________________
/ ��u.ANNEL T(1CRIZON"AL/VERTICAL) = .00
[ 01TEW!D71KEET) = 75. 00
CCM97ANT CHAHHB- SLOPE(FEET/cEET> = .095600
;'.NlFOqM FLOW(EFS) = 4000.0-)
| m�NKNGS FRICTION FACTCR = (�15()
| ^
?ORNAL-CEpTF 7�'OW [NFOpMA-[ON:
`'/ 400MAL DEPTH(FEIT) = 1.46
%OW `[P-WTDTH/FEEF) = 75.00
|'1�u �REA'�O��PE FEET' 72 = i3�
/ ' '
| `i\DRAULIC DEPTH(FEET) = j.46
FLOW AVERAGE VELOCITY/FEET/SEC.) 36.46
UNIFORM FROUCE NUMBER = 5.312
PRESSURE ^ MOMENTUM(POUNDS) = 287601.40
AVERAGED VELOCITY HEAD(FEET) = 20.638
SPECIFIC ENERGY(FEET) = 22.101
ORITICAL-DEPTH FLOW INFORMATION:
CRITICAL FLOW FLOW TOP-WIDTH(FEET) = 75.00
CRITICAL FLOW AREA(SQUARE FEET) = 333.94
CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 4.45
CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.> = 11.98
CRITICAL DEPTH(FEET) = 4.45
CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 139240.30
K\'FPAGEb CRITICAL FLOW VELOCITY HEAD/FEET) = 2.228
CRI�ICAL FLOW SPECIFrC ENERGY(FEET) = 6.680
DESCRIPTION OF STUDY **************************
� RECTANGULAR CONCRETE CHANNEL »
» 5=4000 cfs, 0=0.013 *
» 75 ft WIDE, 5,5 ft DEEP, Vma,=40 "Ps *
':aFl ; I•iOR I ZONTx- L /VERT T. CAL) _ .00
0
=' SEW I DTH ( FEET) -_ 75.00
CONSTANT CHANNEL SLOPE ( FEET/FEET) - .070800
UN I F OR,M !.._OlJ (C S) _. 4000.00
MANN I NGS FRICTION FACTOR = .0130
NORMAL -DEPTH FLOW INFORMATION:
NORMAL DEPTH(FEET) = 1.42
FLOW TOP—WIDTH(FEET) = 75.00
FLOW AREA(SQUARE FEET) = 106.57
HYDRAULIC DEPTH(FEET) = 1.42
FLOW AVERAGE VELOCITY(FEET/SEC.) = 37.53
UNIFORM FROUDE NUMBER = 5.549
F'FESSURE + MOMENTUM(POUNDS) _ 295663.30
AVERAGED VELOCITY HEAD(FEET) =_ 21.875
SPECIFIC ENERGY(FEET) = 23.295
— :RITICAL_--DEPTH FLOW INFORMATION:
- f"RI•:ICAL F40W TCP-WIDTH(FEET) — 75.,00
... iii ".'- A FLOW AREA (S>. ~;UARE FEET) " 333.94
CR T T I CAL. FLOW HYDRAULIC DEPTH FEET) = 4.45
,-_ r T : CAL CLOW AVERAGE VE'.LOC I TY ( FEE'S"/SE . ' = 11.90
1..,-_ ITT. =AL : PH r FET) = 4.45
_RT TI fA. F_0E PRESSUREMOMENTUM(POUNDS)+ = 1 x92* ._0
"E .AGED CRITICAL FLOW VF=LOCI"1``,/ HE=4=EET) 2•22P
w r -• %A� `"'.._OW "il~ E I T I C ENERGY(FEET) -- 0.69f_.)
69+")
;...r.x.•:� �h:# ;i.:,:..:#•tf•?k-k-:4• q..•,..,yt.s. #il•?F# DE S_ F I p r I ! nN OF STUDY # 3r.h..p,. �...;....�.:a:�c }.sr E..k.��.�. �..y: •: �.r +;: fi. 4.
tE: C- =i{'.GUL AR CONCRETE CwANNEL �
.:{. e__;.-«•?# n,••�'�•:#-�r',t-� �z.�:.:.::.:.;y-3r•''-:• � at•?E•k-y:,�..#.�. # �: v.�::} F. x.#.K � �•;;�ie•i-�3t iE•?'•+r�-.#•ri•-=-•� •�F?t•# #.�..�r..;c.hi-•�i,-•F;t:'T� k'.=:_'4 -+F• � � .�.#
1
f #• y -r, -� i -'f• ;%'k k•'F`•.;- .�;• k #'�• >F •lt # iE ii- iF -#' •f• � #.}i. ,�. M.:rt. j..�. �ji...f..z.:f. � k'..# ?F �.:i. it. __ .`•' jt. �• .y ?i..{. ar .;. �. y #.:;. fi _�.:. •,�. �. _y .::.#.;t 'R. _;. yr..�..�..�..;_ � •�!• ::
. • . %= EL INPUT INF- RMATI(.3N::.. .
—--
---------------•-------....-------- ----
—
'�;r�':��#i.IEL-�• �-.T'Wf31"J'Tf L_/VEFiTIr;'A!_ j—------
'rH�
y�Fjtt
B!' S W I DTH ( FEET) = 75.00
CONSTAj"11.T. CHANNEL ;SLOPE(FEET/FEET) _
.070900
UNIFORM ;=LOW(CFS) = 4000-00
MANN I NGS FRICTION FACTOR = .0150
NORMAL—DEPTH FLOW INFORMATION:
.. > NORMAL DEPTH(FEET) = 1.55
FLOW TOP—WIDTH(FEET) = 75.00
F!—OW AREA ( SQUARE FEET) = 116.30
HYDRAULIC DEPTH(FEET) _ 1.55
FLOW AVERAGE VELOCITY(FEET/SEC.) =
34.39
UNIFORM FROUDE NUMBER = 4.867
,".c:j SSURE + MOMENTUM(POUNDS) _
272230.33
AYERAGED VELOCITY HEAD ( FEET) =
1.8.368
SPECIFIC ENERGY(FEET) = 19.919
;° r T I CAL—DEPTH FLOW INFORMATION:
7P I T I CAL FLOW TOP—WIDTH(FEET) =
75.00
CRITICAL FLOW AREA QQUARE FEET) =
333.q4
CRITICAL F_;W 1-i'` DRAU?._ I C DEPTH(FEET)
— 4.45
CRITICAL FLOW AVERAGE VEL.00 I TY ( FEET
/ SEC .) = 1 1 . %
:,'at= ED _ _ T T I CAL FLOW VELOCITY HEAD(FEET) = 2.R28
•Q :TlC'LSPECIFIC_f�ENERGY(FEET) _ 6.680
_0
} i. - £ �t it .� cp. ;: .r K .... j .: }� •# } 4 h ji -!F D `__ C R I P I• I O N OF STUDY
L.. 'F �F !i 9E # # .0 �..� # �. a ?F !f 3� � � :? ' t •t 3f •3F #'.7
* R ri-jl�G JLAR CNC`FETE CHANNEL_ r
:• y0 ft WIDE. 5.5 -r%, DEEP.. `•1111c1:. =C.0 fos k
„, s. T �- �..�.:� � x..�..� .k .>l..y�. r:. jf'.•# >?. ai. •3F• # ?E'DE •� •#- 9i• 3h •?E• ?�• 9E •)i' •i!' •.>,(' •3E 9r :�F•-?f :{. •!F •�• �. •it # #: a. # .� •#• .<f• # �iE• •3f• #• .� �• ) •;-':• # # # � :t :+i• t •}t -k•.iE ?4• • �• �. 'F 3F• # •*•
.*. 1! sy.:# _4'!. ;f .j(..�. s�"!E' # �. y4' sJk'1F #'11'ti£• ?E •1i.'3f• sy •if• •3E• # �!' #' yf"j(' 4••34' #'f. � yE• �#' �f if• # :�. # #)E � �i' .fi �f"#:Nr .�•'Sf' iE' yl..�..}F :{. x.�. #.}t• i4' •)i• .j�. #'�' # �"#'s(..�'*"1(.'�' jt' �'
CHnNNEL INPUT IN:=ORMATION<;;•:;<; :::
CHANNEL Z ( HORIZONTAL/VERTICAL) _ .00
E• A EW I I)TH ( FEET) = 90.0o
CONSTANT CHANNEL SLOPE (FEET/FEET) ,- .094500
UNIFORM FLOW(CFS) = 4000.00
0
MANN I NGS FRICTION FACTOR _ .0130
NORMAU --C)EF'TH FLOW INFORMATION
Cr�!a,L_ (�EF'TH (F.:T ) �. 1.25
1OF
FLOW KOP-WIDTH(FEEv) 80.0C.)
un= AREA(SOUARE FEET) 99.95
r --W AVERAGE G VE=i..-tOC L 1 `-f ( F E .' SE_C,) -- 40 .02
,__9 r -'In. RE + N 1h• ENTl Iii ( =SOU D S) - 31412800
Q4T?TCFV VVLOCITY YEAD(FEETY 2! /•-•
CG1.'•I ..CAL--7EPTHF•�I._€_W IN=C MATION:
COFr1.•_AL- F! -OW TOP-WIDTH(FEET) = 80,01-1
CRI11CAL F40W r, EA ; C'.O DARE FEET) =• 341-02.
1_," E r 1._AL FLOW I-it'�i`E'P LIC DE=f:-THkI•-EET•; _ ,•('.i:.'.7
-. ITT_ CAL. F� _i.'Ly 1 V`cRf' SE Vf-t_O : I TY (FEE:T / SEC
71%77CAL DEPTHVE T) =
4.e7
'r O FLOW PRESSURE + h.MCh_! ICU NE S) 1%276.20
.•`VE R,= IE^ CRITICAL FLOW VEL O a. TY HE AD { FEET A 0133
1'33
- T I CA;_ FLOW SPECIFIC ENE 36Y ( FEET) =
DESCRIPTION i.31= STUDY
PROTAC• SULAR CONCRETE CHANNEL
3? rt WIDE, 5.5 rig DEEP, Vma =40 fps t
x t} �- } •�• �'�• }- 3F'�• � k .:rt. �..•..lf 34• •aF # 4• # •# if' �'-34• # •3r ?;• -#• •�F' •fi i4' •34• ?E 9E # i4.3?•'i4'')?• �•'3[• •34• # •34• #.�, k: i4• # •�• :f• 9r # �E• •1F ?# # # #'Jf•'#'t �•'i- .x •�:• � 4 �• dF fi if• .x :r ;f
;• ^�� # -+ •(• 4• ti(• # ii• # •'#• -r •3F # k• •:#• # �• •34• aF •![• iF aE• iF •34' iE •i4• •34• y4• iF �(• # �• •,4• # # •?F # ?F �- �- # ye- # 4• x i•* �• •34• # �►. -:a• i4• -3E iF x-•�E' # k• # .� 3F •34 -x � # � # # # �. �4' i• i*• M• ?�-
•: ••• CHANNEL INPUT I. NFORMAT I ON< ,.:: <:
----------------------------------------------------------------------------
i. H ANNEL L {HORIZONTAL / VERT I CAL) _ .00
BASEWIDTH(FEET) = 80.00
cowr= CHANNEL SLOPE(FEETMEET) .094500
u"-I1PORM "LOW(CFS) = 4000.oO
MhNN I NU S FRICTION FACTOR _ .0150
3150
-. R AL --GEF w FLOW IN Oi;MA f ION:
-----------------------------------------------------------------
NO MAL OE'F''TH (FEET) - 1.:36
_i u f'Or•_wiDTH(FEET) = 80.00
• __OW == REA r SQ BARE FEET) = t 09 . 1 tl
H T LFtF1L_,r__ I C DEPTH(FEET) = 1.36
._0A AVE:RA1.,y3' VELOCITY ( Ft E f /'SE� � .) - 36.65
ZA
'•::l E 33•t_tRE a MOMENTUM(POUNDS) - 288841 .30
nVERAGED VELOCITY HEAD(FEET) - 20.873
FHEC I IC ENERGY(FEET) 2E.237
CRITICAL -DEPTH FLOW INFORMATION:
CRITICAL FLOW TOP-WIDTH(FEET) = 80.00
CRITICAL FLOW AREA (SQUARE FEET) - 341.22
C ' I T I CAL FLOW HYDRAULIC DEPTH(FEET) = 4.2
CKTICAL_ FLOW AVERAGE VELOCITY(FEET/LEC.) = 11.721
CRITICAL DEPTH(FEET) = 4.27
CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 136E76.60
AVERAGED AGED CRITICAL FLOW VELOCITY HEAD(FEET) = 2.133
CRITICAL FLOW SPECIFIC ENERGY(FEET) = 6.399
Z9
1V4rIIJ JIP N • •T
V • _M •' �If 11 5J F
I DIAM9 ►• I IDI
IV'n NMI_
• ' •`5'Illf
FUSCOEuMVSrer gArr�>Suite A PROJECT:—TIW,4AIOA c114,1✓E PROJECT NO: 2/0C
Rarrside, Ca4rornia 92503
N S (774) 354-0161 BY: -T = DATE ¢_/�_ gy CHECK DATE:
FAx(n�) 4)354 3S4-axlo
Civil Engines • Land Surveyors SHEET / OF
U) /G
co N n
46 ISI O
Ga 1 O
co -Z N I Cid W
O Q C) O O 0 O p O O U
0 0 0 p o 0 0 0 0 0 0 0
- In
0
0
0
0
0
o
p
p
o
0
0
a
U
0
0
0
0
0
N
0
N
0
N
0
N
0
N
o
N
r
D
ai
CD
�
OBD
C*
c
N
co
N
w
N
co
�
N
�
N
c4
r
�
wt
w
w
1
o
a-)!
1-)
N
N
O
1
i
Ql 1
b
i
co
Ca
ID
Z
t
W
N
O
crl
Ul
o
D
�o
QO ?
,o
op
•o
�b
c� co
O
v
�1
o o
0
0
0
0
0
0
0
o j
fl
°
y
o{ o
0
0
0
0
o
O
o
p
o
O
!■ ■ Rit Sterang Suite 2503 PROJECT: ET/WXIV✓O i Cf1AN1✓EL PROJECT NO: 210
Riverside Cal{j14) 3 92503
�n�)3s¢-o16r gl(: T Z DATE ¢_/6.89 CHECK: DATE:
Ulm-omMMNSMWIW lrix(7I4)354-0810
SRm
C" engineers •rand Surveyors SHEET 2 OF
w y
O
0
0
0
a
�
0
0
o
p
o
0
o
O
o
0
0
0
0
0
0
o
p
0
0
vl
Ui
Ul
co
z
m
C13
o
--
D
0-\
\
Cp
O1
V
ba
�i
o
Z
0
3
ey
Op
cip
o0
--p
`Q
`Q
y
Ll
--t
'-Q
Q�
or.\
-Z
aD
OJ
•c�
y �
D
O
o
o
O
O
O
O
o
0
f
D
0
0
o
O
O
O
�p
i* RESULTS OF IRREGULAR CHANNEL ANALYSIS **
CALCULATIONS BASED ON MANWINGS EQUATION
WITH ALL DIMENSIONS IN FEET OR FEET AND SECONDS
:c> Copyri;ht 1982-88 Advanced Engineering Software (aes)
Ver. 3.3A Release Date: 8/02/88 Serial # 2224
Analysis prepared by:
DESCRIPTION OF STUDY **************************
y CAFACIrY FOR ETIWANDA CHANNEL *
* 0=0700 Lis, T=0.0228 *
^ FRTEGCARD= '}.S0 ft *
----- ----_-----------------------------------------------------------
/ 1 ENTERED IMFCPMATION FOR SUBCHANNEL NUMBER 1 :
HODE ^1UMBER "Y" COORDINATE "Y" COORDINATE
1 .00
�2
7. 23.50
4 23.51
6UBCi|ANNEL SLOPE(FEET/FEET) = .022800
SYBCHAN'|E'- M4NNlMGS rPICTION FAC�OR =
Z3 5'
91.00
100.00 /o
00C&4NNEL FLOW(CFS) = 6508.7
FUBCH4NNEL FLOW AREA(5QUARE FEET) = 149.57
JUDCHANNEL FLOW VELOCITY(FEET/SEC.) = 42.152
35BCHAmNEL FROUDE NUMBER = 2.940
SUBCHANNEL FLOW TOP-WIDTH(FEET) = 23.44
3U8CSANNEL HYDRAULIC DEPTH(FEET) = 6.39
------ ______________________________________________________________________
TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 6300.00
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 6308.74
ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
ELEVATION............................. 99.95
NOTE: WATER SURFACE IS BELOW EXTREME
LEFT AND RIEHT BANK ELEVAYIONG.
____________________________________________________________________________
DESCRIPTION OF STUDY
'
CAP -CITY FOR ETIWANDA CHANNEL *
� ]= 3500 cfs` S=0.0228 *
� T7EEBCARD= 2.5 ft �
��
* ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
NODE NUMBER "X^ COORDINATE `Y" COORDINATE
1 .00 100.00
2 13.50 91.00
3 23.50 91.00
4 23.51 100.00
SUBCHANNEL SLOPE(FEET/FEET) = .022800
SUBCHANNEL MANNINGS FRICTION FACTOR = .014000
^'^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^~^^^^^^^^^^^~^^^^^^^^^^^^``^^^
SUBCHANNEL FLOW(CFS) = 3505.5
SUBCHANNEL FLOW AREA(SQUARE FEET) = 96.34
9'
~
SUBCHANNEL FLOW VELOCITY(FEET/8EC.) = 36.385
SUBCHANNEL FROUDE NUMBER = 2.902
SUBCHANNEL FLOW TOP-WIDTH(FEET) = 19.73
SUBCHANNEL HYDRAULIC DEPTH(FEET) = 4.88
____________________________________________________________________________
____________________________________________________________________________
TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 3500.00
C01PUTED IRREGULAR CHANNEL FLOW(CFS) = 3505.48
/
ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
HLEVATICN.......... ............. ...... 97.48
NOTE: WATER SURFuCE IS BEL% E47REME
` LEFT AND TIGHT 9P4[ ELEVATIOIS.
\
/
DESCRIPTION OF STUDY
* CAPaCITv F3R ETIWANEP CHANNEL *
) � U=2700 �rs, S,C.D22� �
/ �
K FREEBOARD= 3.5 ft
----------------------------------------------------------------------------
* ENTERED INFORMATICN FOR SUBCHANNE! NUMBER 1 :
NODE NUMBER "X" COORDINATE "Y" COORDINATE
1 "0{' 100.00
2 13.50 91.00
3 23.50 91.00
4 23.51 100.00
SUBCHANNEL SLOPE(FEET/FEEV = .022800
SUBCHANNEL MANNINGS FRICTION FACTOR = .014000
^^~~^^^^^^^^^^^^~^^^`^^^^^^^^^^^^^^^^^^^^^^^~'^^^'^^^^^'^^^^^^^^^^^^^^^^^^^^
SUBCHANNEL FLOW(CFS) = 2700.1
SUBCHANNEL FLOW AREA(SQUARE FEET) = 79.38
SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 34.017
SUPCHANNEL FROUDE NUMBER = 2.886
SUBCHANNEL FLOW TOP-WIDTH(FEET) = 18.39
SUBCHANNEL HYDRAULIC DEFTH(FEET) = 4.32
____________________________________________________________________________
____________________________________________________________________________
T]TAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 2700.00
COMPU-ED IRREGULAR CHANNEL FLOW(CFS) = 2700.08
ESTIMATED IPREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
ELEVATION............................. 96.59 14
=== ======================================
OF IRREGULAR CHANNEL ANALYSIS **
CALCULATIONS BASED ON MANNINGS EQUATION
WITH ALL DIMENSIONS IN FEET OR FEET AND SECONDS
============================================================================
(c) Copyright 1982-88 Advanced Engineering Software (aes)
Ver. 3.3A Release Date: 8/02/88 Serial # 2224
Analysis prepared by:
FUSCOE, WILLIAMS, LINDGREN & SHORT
DESCRIPTION OF STUDY
*
* CAPACITY FOR ETIWANDA CHANNEL
* [=1'900 cfs, S=0.0228 A
| *
FREEBOARD= 0.00 ft *
______ ____________________________________________________________________
* ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
NODE NUMEER "X" COORDINATE "Y" COORDINATE
1 0x)
2 13.50
� 25.5�
4 Z9.00
SUDCHAKNEL SLOPE(FEET/FEET) = .022600
SUBCHANNEL MANNINSS FRICTION FACTOR =
100.0�
91^ 00 /'E:/
i5�/
91.00
100.00
.014000
TUBCHANNEL FLOW(CFS) = 10917.4
SUBCHANNEL FLOW AREA(SQUARE FEET) = 228.d1
SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 47.798
SUBCHANNEL FROUDE NUMBER = 3.477
SUBCHANNEL FLOW TOP-WIDTH(FEET) = 38.92
SUBCHANNEL HYDRAULIC DEPTH(FEET) = 5.87
- - -----------------------------------------------------------------------
TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 10900.00
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 10917.39
ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
NOTE: WATER SURFACE IS BELOW EXTREME
LEFT AND RIGHT BANK ELEVATIONS.
DESCRIPTION OF STUDY **************************
*
* [APACITY FOR ETIWANDA CHANNEL
*
* Q=5700 cfs, S=C.0228
*
* rREEBOARD= 2.5 ft
E,d'i EFtED Ii'•:'FORr'!i=yT13N FOR S1.!Rt;HAidIVEL.. N!_:h1SL_R .i
NC, DE NUMBER ,._.,, COORDINATE � 1Nr"•tT COORDINATE
1 . 00 0 1 f: 0.00
13.50 91.00
7. 23.50 -
4 23.51 100. 00
SUBCHANNEL SLOPE ( FEE T / FE.ET) - .026800
SUBCHANNEL MANN Z ! O S FRICTION FACTOR = .014000
0
:_...........................................................
SUBCHANNEL FLOW(CFS) = 3600.6
SUBCHANNEL FLOW AREA(SQUARE FEET) = 96.:4
SUBCHANNEL FLOW VELOCITY(FEET/SEC.) _ 39.448
SUBCHANNEL FROUDE NUMBER = 3.146
SUBCHANNEL FLOW TOP-WIDTH(FEET) = 19.73
SUBCHANNEL HYDRAULIC DEPTH(FEET) = 4.88
TOTAL IRREGULAR CHANNEL. FLOW(CFS) WANTED = 3800.00
COMPUTED IRREGULAR CHANNEL FLOW(CFS) -= Z800.56
ESTIMATED IRREGULAR CHANNEL NiORMAL. DEPTH WATER SURFACE
ELEVATION ............ . ....... r........ 97.43
NOTE: WATER SURFACE I J wtL:W EXTREME
__rT AND RrBHT SANK -_rbA!IiNom
.
DESCRIPTION O F STUDY
T
CAPACITY FOR ET I WANDA CHANNEL.
C-2600 cfs. 5=0.0263
.n . l= %+ N •yC .7..j� :lz .a %� M .jC � .j� .'�,�.:� �. +� %P. %(` :i? ;ii .'�`..';_..� �. -�1� )4r :r T � 'm..'�:.j:.� ;iC Tw :il` k .',k. ;'�._ .� :� .T• •y .� '+� :;: i$ .n �- �'� .�_ � '•�_ :...'�...au..� =4 �4 n Y� is � �^ % � T iti
ENTERED INFORMATION FOR SUBCHANNEL NUMBER
NODE NUMBER • :, COORDINATE "Y" C3Gzvs;FE
h 13.50 91.00
23.50 91.00
4 23.51 100.00
SUBCHANNEL SLOPE ( FEET/FEET) = .026800
SUBCHANNEL MANN I NGS FRICTION FACTOR = .014000
...........................................................................
SUBCHANNEL FLOW(CFS) = 2800.3
SUBCHANNEL FLOW AREA(SQUARE FEET) = 76.31
SUBCHANNEL FLOW VEL.00ITY(FEET/SEC.) 36.455
TUBC}IAr,:NEL F:. OUDE NUMBER -- 3.126
SUBCHANNEL FLOW TOP-WIDTH(FEET) - 11.18
SUBCHANNEL_ HYDRAULIC DEPTH(FEET) = 4.22
TOTAL I PRE GUL.AR CHANNEL FLOW(CFS) WANTED = 2900.00
COMPUTED IRREGULAR CHANNEL FLOW (CFS) = 2800.27
ESTIMATED I .RREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
ELEVATION-- ...............:.......... , 96.45
/n
t ENTERED INF]RMATION FDR SUDC�TNNEL NUMBER l :
MODE NLMBER "X" COORDINATE "Y" COORDINATE
2T /
� .00 100.00
2 15.00 90.00 \m
7 23.00 90.00 \______l
4 25.01 100.00 /o'
SUBCHANNEL SLOPE(FEET/FEET) = .026800
SUBCHANNEL MANNINGS FRICTION FACTOR = .014000
^^^^ ^'^^^^`^`^^^^^^^^^^^^^^~~^^^^^^~^^^^^^^^^^^^^^^^^^^^^^^^^```^``^`^``''
SUBCHANNEL FLOW(CFS) = 4907.3
SUBCHANNEL FLOW AREA(SQUARE FEET) = 116.61
SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 42.082
SUBCHANNEL FROUDE NUMBER = 3.163
SUBCHANNEL FLOW TOP-WIDTH(FEET) = 21.21
SUBCHANNEL HYDRAULIC DEPTH(FEET) = 5.50
____________________________________________________________________________
TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 4900.00
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 4907.31
ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
ELEVArION.................'........... 97.47
NCTE: WATER SURFACE IS BEL]W EXTPENE
LEFT AND RlSHT BANK ELE'/ATI3NS.
�-------------------------------`----------------------------------
DESCRIPTION CF STUDY
* CAPACITY FOR ETIWANDA CHANNEL. *
« C=ZAG0 cfs, S=0.0169 f
� FREEBOARD= 1,5 ft *
____________________________________________________________________________
* ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
NODE NUMBER "X" COORDINATE "Y" COORDINATE
1 .00 1O0.00
2 15.00 90.00
3 25.O0 90.00
4 25.01 100.00
SUBCHANNEL SLOPE(FEET/FEET) = .026800
SUBCHANNEL MANNINGS FRICTION FACTOR = .01400O
'' ^^^^`^^^^^^^^^^^^^^^^^^^^^^^^~~^^^^^~^^~^^^^^^^^^^^^^^^^^~^^^^^^^^^^^^^
SUBCHANNEL FLOW(CFS) = 3800.4
SUBCHANNEL FLOW AREA(SQUARE FEET) = 96.34
SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 39.447
AL17*ANNEL F9OUDE NUMBER = 3.146
Su8CHANNE" FLOW TOP-WIDTH(FEET) = 19.73
SUBCHANNEL HYDRAULIC DEPTH(FEET) = 4.88
____________________________________________________________________________
___________________________________________________________________________
TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 3800.00
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 3800.41
ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
A CrNTi_Y-aCi) i.:`,F ..i'i;':(-•i : 1U,4 FLIF.' !'I_.ii',:^.�:. .._ .
'•.('_:,E E NL;MBER " v " COORDINATE " COORDINATE
13 . 5t:) ? 1 . 00
:71 2 3 . 5 (:) 91.00
4 23.51 100.00
SUDCHANl' EL SLr7i"''E C EE /F:-_F_T) - .054400
SUBCHANNEL MANN I NGS FR I CT I CN FACTOR = .014000
00
a . ,. • I . _ J . . . . . n a _ . . . . . . . n . . n . . . . n M1 . a e. . . . n . . . n J J 4 a . . . . . . . . . . . . a . . . . . n n . . . .+
SUBCHANNEL FLOW(CFS) = 5414.B
SUBCHANNEL. FLOW AREA(SQUARE FEET) = 96.Z4
SUBCHANNEL FLOW VEL.00:ITY ( FEET/SEC .) _ 56.203
SUBCHANNEL_ FROUDE NUMBER = 4.482
SUBCHANNEL FLOW TOP—WIDTH(FEET) - 19.75
SUBCHANNEL HYDRAULIC DEPTH(FEET) = 4.33
------------------------------------------------------------------------------
-----------------------------------------------------------------
TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 5400.00
COMPUTED IRREGULAR CHANNEL. FLOW(CFS) = 5414.77
,_.':"sT.: I A : 'D TRFtl::;:i•_•LA.. Lr•!r-INtdEL NORMAL DEPTP P ;dA , !_ SURFACE
r. EVATTr.M J.. ,. n ......... ............, `- 7.419
NOTE: WATER SURFACE IS 3ELOW EXTREME
LEFT AND RIGHT •3A`;V ELEVATIONS.
;� .;4. •,.:•r. `fi :�' : t :i� 'IY ; T .. -,' ;x ;� : ;1; /' C f Y _ i_ S I i ' � i I 1•'•S L ! i - STUDY
;� :t� :�' '�: )� i. `.� 'i::•� � 'Y � 'i %8' �� r 1S: ik' Cit `�' �� ;i� '�L` ;rJ
W CA: AC i. 7Y FOR R .._ I I WA �. _ A t..:i iAi?�i�'• Ems_ t•
�
r. _ b f a- iii'. �.. .Jf + • ._ _L. .
•� ..L • �y a?:,� :::k .r '.N :� �h ils :�: � .h � .i � •Y .� )�. i4 .1 i!. ••�i .1+ '� 'i' .i SC .T `� � r ..�.'`` i}K .y: ?.F :i .jj l..j: •� .?. � :' i� +1 Y• •T 'F�' ]V v�' � .Y ?r•. if:: -Y �T. �. �M1 .jt � )k .� .x 'jk• ::.�, A�. y. +i
—-----------------------------------------------------------------------------
* ENTERED INFORMATION FOR :+USCrl?=NNI_L_ NUMBER 1 J
NO,;,_ s•;lJ::,...ER XCOORDINATE Ct_k:'DI iTE
1 .00 y0 1{ yi; . 00
2 13.50 91. 00
23 50 91.00
4 23.51 :f.0i .00
SUBCHANNEL SLOPE ( FEET/FEET) .054400
SUBCHANNEI_ MANN I N3S FRICTION FACTOR = .014000
...........................................................................
SUBCHANNEL FLOW(CFS) = 4002.4
SUBCHANNEL_ FLOW AREA ( SQUARE FEET) = 77.00
SUBCHANNEL FLOW VELOCITY(FE:ET/SEC.)
SUBCHANNEL _i.._ FROUDE NUMBER = 4.45:3
.MI3C Ahi,,c..._._ FLOI+, TOP—WIDTH(FEET) 18.20-
SUBCHANNEL
8. _S BCHAhNC'_-I HYDRAULIC DEPTH(FEET) _ 4.2-3
Tt1A_ I : REU_r c CHANNEL FLOW(CFS) WANTED = 4000.00
;OMPL'TED T FiF:Ir'_GUL_AR CHANNEL FLOW(CFS) = 4002.42
ESTIMATED IRREGULAR CHANNEL NC:RMAL DEPTH WATER SURFACE
ELEVATION.n. ....... ................ 9.46 ��
NOTE: WATER SURFACE IS BELOW EXTREME
LEFT AND RIGHT BANK ELEVATIONS.
DESCRIPTION OF STUDY
* C)PACI[Y FOR ETIWANDA CHANNEL *
* O= 12000 cfs, S=0.0544 °
*
A FREEBOARD= 0.00 ft
**************************************************************************
____________________________________________________________________________
* ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
NODE NUMBER "X" COORDINATE "Y" COORDINATE
1 .00
2 15.00
3 25.00
4 25.01
SUBCHANNEL S4OPE(FEET /FEET) = .054400
SUBCHANNEL MANNINGS FRICTION FACTOR =
.C14000
.
SUBCHANNEL FLOW(CFS) = 12926.8
SU8CHANNEL FLOW AREA(SQUARE FEET) = 17505
9UBCHPNNEL FLOW YELOCITY(FEET/SEC.) = 68.586
SUBOHANUEL FROUDE NUMBER = 4.565
/ %3CHAN^|EL FLOW TOF—WICTH(FEET) = 25.01
7.|�Zn, CHAN�F"L HYDFAULIC DEPTH(FEET) = 7 01
-------'---- ---------------------------------------------------------------
T3TAL IRREGULAR CHANNEL Q=CFS; WANYED = 12000.90
c2mPum 1R7EBULAR THANt|EL FLQW(CFS) = 1202L.79
ESTIMATED QFEOULAR CHANNEL NORMAL DEPTH WATER SjRFACE
ELEYFTICN.............^.^..."~........ 190.01
NOTE: WATER SURFACE IS ABOVE LEFT OR FIGHT
BANK ELEVATIONS.
_________________________________________________________________
DESCRIPTION OF STUDY
I CAPACITY FOR ETIWANDA CHANNEL *
*
* O=7000 cfs, S=0,0544
*
t FRiEBOARD= 2.5 ft
____________________________________________________________________________
* ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
NODE NUMBER `X" COORDINATE "Y" COORDINATE
1 .00 100.00
2 15.00 90.0O
3 25.00 90.00
4 25.01. 100.00
SUBCHANNEL SLOPE(FEET/FEET) = .054400
SUBCHANNEL MANNINGS FRICTION FACTOR = .014000
��
.�
. ^ ..." ^ . ... .^ . . ..^.. . .
100.00
90.0-0
/
/Q
90.00
�-------�
100.00
.C14000
.
SUBCHANNEL FLOW(CFS) = 12926.8
SU8CHANNEL FLOW AREA(SQUARE FEET) = 17505
9UBCHPNNEL FLOW YELOCITY(FEET/SEC.) = 68.586
SUBOHANUEL FROUDE NUMBER = 4.565
/ %3CHAN^|EL FLOW TOF—WICTH(FEET) = 25.01
7.|�Zn, CHAN�F"L HYDFAULIC DEPTH(FEET) = 7 01
-------'---- ---------------------------------------------------------------
T3TAL IRREGULAR CHANNEL Q=CFS; WANYED = 12000.90
c2mPum 1R7EBULAR THANt|EL FLQW(CFS) = 1202L.79
ESTIMATED QFEOULAR CHANNEL NORMAL DEPTH WATER SjRFACE
ELEYFTICN.............^.^..."~........ 190.01
NOTE: WATER SURFACE IS ABOVE LEFT OR FIGHT
BANK ELEVATIONS.
_________________________________________________________________
DESCRIPTION OF STUDY
I CAPACITY FOR ETIWANDA CHANNEL *
*
* O=7000 cfs, S=0,0544
*
t FRiEBOARD= 2.5 ft
____________________________________________________________________________
* ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
NODE NUMBER `X" COORDINATE "Y" COORDINATE
1 .00 100.00
2 15.00 90.0O
3 25.00 90.00
4 25.01. 100.00
SUBCHANNEL SLOPE(FEET/FEET) = .054400
SUBCHANNEL MANNINGS FRICTION FACTOR = .014000
��
.�
. ^ ..." ^ . ... .^ . . ..^.. . .
KuOCHANNEL FLOW ARE&EQLARE FEET) = 1Lb.82
3i'9[�HANNEL FLCW YELOCI-Y(FEET/SEC.) = 59.992
SUBCHANNEL FROUDE NUMBER = &.507
SUBCHANNEL FLOW TOP-WIDTH(FEET) = 21,23
SUBCHANNEL HYDRAULIC DEPTH(FEET) = 5.50
____________________________________________________________________________
___ ________________________________________________________________________
TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 7000.00
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 7008.57
ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
NOTE: WATER SURFACE IS BELOW EXTREME
LEFT AND RIGHT BANK ELEVATIONS.
DESCRIPTION OF STUDY
t CAPACITY FOR ETIWANDA CHANNEL *
*
* Q= 54C0 cfs, S=0.0544
*
t FPEEBCARD= 3.5 ft
---- --------------------------------------------`-----------------------------
' * ENTERED iNFORMATICN FOR SUBCHANNEL NUMBER 1 :
'^ wCDE NU1DER "M" C003DINA-E "Y" COORClNATF /
1 .0O 10{.00. /
/V
2 15.00 90.0C
| 3 25 0� 90.00 ' `�-----�
4 25.01 100.00
SUBCHAMNEL SLOPE(FEET/FEET) .054400
SUBCHINNEL MANNIMGS FR:CTION FACTOR = .014C00
...'. ^^...................... ....... ^............ ^...........
^......~.^.^..
3U3CHANNEL FLOW(CFS) = 5414.6
SUBCHANNEL FLOW 4REA(3QUARE FEET) = 96.34
SUBCHANNEn FLOW VELOCITY(FEET/GEC.) = 56.202
� 3UBCHANNEL FROUDE NUMBER = 4.482
SUBCHANNEL FLOW TOP-WIDTH(FEET) = 19.73
SUBCHANNEL HYDRAULIC DEPTH(FEET) = 4.88
____________________________________________________________________________
__ _________________________________________________________________________
TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 5400.00
COMPUTED IRREGULAR CHANNEL FLOW(CFS) == 5414.55
ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
ELEVATION............................. 96.48
NOTE: WATER SURFACE IS BELOW EXTREME
LEFT AND RIGHT BANK ELEVATIONS.
___________________________________________________________________