Loading...
HomeMy WebLinkAboutCherry Ave Industrial Area Line L - Village of HeritageSTORM DRA�N HYDRAUL�CS FOR THE CHERRY AVENUE � NDUSTR�AL' AREN ( INCLUDING LATERALS B, C & D ) PREP�\RED BY: HALL & FOREMAN, WC. i 3170 REDHILL AVE. COSTA MESA, CA. 92626 - 3428 ( 714 ) 641-8777 X?e g 26"W40".9 gmeo CIVIL ENGINEERING • LAND PLANNING a LAND SURVEYING SUBJECT BY DATE JOB NO. SHEET / OF C 14 E,CK% Avp, . S. D Cr. . N , 41;-7/88 3P-!" + cNFgP,\/ Avg C DL�AR D�SlZ5A1 LII�IF�L� 0►A 4+2a-24 (b,- l3 +97.67 PES': i)jt+C i'C D� SfvL-&Mve„1 "an�, SEC7/onl, Q, T��gind S z) AST 31p -"n 3) PC A 00TE9 F00- gel, 0 G As E i �6fYu �vt + `$ -F L i,U{ 1-oadn � Tn �svr�a-� b-!al'.�v Ov�aKc c A SJ:2_ I��Y12. C—, Lo" t%,LL WUYfl + V[YF GtiC E • %G7 MC LoAdis yyj��� CiJ A/ f Y /O �. �. {IY Q./17 4Y t 2 W 13 ry A_ 7 T I� c 102-F 17fn t3 6 j)• 33 moi. ...n .-.-n.... . ..ter, r. r'- r�%'�r...-� • t- � �.r rr-. n. .-.. rlr n-.nn.� n 1rn _ ..'f� Ri ♦� A177 M h e g 20"Mew-o-v Rmeo CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT 7 BY DATE NO. SHEET OF JOB 2 Cd = D- Bo C CN� W= D ' x 130x 27 2- .24 24 7 5-6& Lb -i /-It ��j�,,. G� C6yv��►.ed fl„1c�v i GJ� wAbv Pr C h,,.mor /IL- ;A(',.LX-U t. L--1 3-7 l AkTRLLb3 E v" �E- +(�nz� �. +1r ` = Ig -83 7276Lli/W- ,..— -rte• — •ii•-. �i �r .. ^+ (.T•AAAf-nn ^Af—^nKjlA nnn—n4^r - f") A, !:44.0---? wig g 26"W400,0 me® CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE JOB NO. SHEET 3 OF W G Ft J J. s3ot0Z . .22S 3L !0 2 x 6 2. 4 S 3 o Ll,� �F 24 i 1 = Io 2 "I Ar C� 1 4 ACFC-D. S-7) 0 +-l82)x -4,'9b mbno„f way tnrt,#X WAP. (Poi'- F fi d'r`°"`lr n E&4',JAA `�) _ Mo rr _ D - /5 3 s l 3 •�5 p� t 18-2, x. ¢ • 9 6 JZ M.ea C$, gfc p,R ; sk. O t t ff' W 7/7 766 OA Qxt3S12 i 7 L_ly- S6v- L : o - so X, 3 s'32 6 766 L-4--o Drv-ck. I-RCFtP� S ► �,C1i• q� _ ggds 1J,� 8��• � -1- M _ 2-3 � -x 15 / �s,�l _ M = o - o dog u �s66 - �+ • � b- � � �i- ►1 ' L� Irj66 = 1 & 92 L&4 0- 602 7566 C�S,r) — d1E = . 0,7%)c 75 66 = o 2 —' � L 1,-3 ►�c,.; ac r rte,( �s� P��u �-� -•---+---,-, , ..rr" .. n. l -rnl7kllA .. /7i A) rAi.8777 X?e g 26"W400 -v gmee CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE JOB NO. SHEET 4 OF Cog 83— fr.33) -47 - -- --- _ L 728 r 73 q31 �r) =•Q !9 �y 3( W2, : '/s�►1 33''d�'! 356 L1�lrh- = 2t "Ar ,}- ,4rc M : - 12S x 3s'69,..x4 9 6 t- 0• J2_.so + 0.14S1x 2-3J4��+•gd = 39��' ��''' CgDF� I%.so x 3561 + 0• b��r x237 = 347 31X,-1374=,9526 C ��_� V = O- 062.- - z�7-q_ /4 r Lba 1nE -�. �o = p�,J�� 4 g914 —� 31� = 24,691 -,Ue Morr3411 3*85' . '10.,020fLb�, (s�) C70t) 76MI- _ire = 7i7+ (,o1- 07 Lbn C .) S kIZA, Fav u : b76Q� 4- 3 `7831- 149 : 10 07LLd _I I 4 400 0 = 2: 3 52 7 : !S- %y 2. v � Vr : VU 2-1,394 OJT 0 8s a 3, 52 , U, n G 0- gs ACT 31� 9. 3,2.3 0 At M I7n nrn. rn i Ais - ^(OCTA%+rCA r'i ll-A1nk.ffA nnPI.I-7 Ann „ I'f1Al RA1.R777 X?e g 5po"W4000 gmee CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE JOB NO. SHEET Of 5 Ca,dt 2 „ z Load -e ,i iia r ir, 7 f"l'r (�2- d- S3a ��AcF��,sr�U�-, s-7r� 2253 ��-' • S 3 1 e �") +,U{ Mo tt'� s 0-238 9 22 93 ��•g2 ►�- 2648ILI e Mbw-e-t' 76 O. 6905 X 3 4.92- \ > loo B /L4,3• �Mv t 4t -y Afc- = D - 3 9 91 X 2Z53 � ° IioM) = B 17 _ d-psax /3 X32 796x7s6b-tp.sx3s7.614 n-6air���?4 �> l 17796 x -7S 66' o -s' x3 69 f -.312r -- Z37� o • -f y p-.13 SR >1 22- -2- - -2-- Arf ,e,, No C F. O S d 7- i1�2 -7 Lh 074 112-7 fJg24 b1l Vv = 20, r01 vvi = 2 3, 648' 0-,{- CJ- 2 3 sz 7 - /-.j --?^ mf -mu„ l gVCl.vl lC f•r%CTA FAC'C ^ fnAl IC'nOKnA onrnR.'+.+no 171 Al X?e g 26"Mao."o gmeo CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT 8Y DATE lOB NO. SHEET OF 1^� Ca,it 2 Mom 4 Me- + 2 6 4 e �h-s = 2-7334 '>> IOOR 11, a 37 �L ha T O h�*� I � k U/Jlr Gw�d S� � a ,Ue Mornon — Ate mom e n 17"V UA fi fi Ae— i I-),, UA r _ AK- - 68&"Lha (Min . 4,,ur) _ 6WLhi. _ T{ vunr =71r' �u 394, 13.s- I. i (TI nn 17 M 7 x 2-7 33-et� F) _ 17- ---------------- r��2 9 CJ 7Ac? 3�8� _ Q, 0 5 3 � = ^.ten ncrni..nt I Avr'►nlr f r1CTA I'MCA rni MrNOP Wk Q9ROR.3A9R A (714) 941-9777 m h g g 20"W40 -,v gmeo CIVIL ENGINEERING a LAND PLANNING • LAND SURVEYING SUBJECT BY DATE JOB NO. SHEET OF Gb 4 1 �60 p Acl3��, f0�' 0 OC 37 r- p. oo pn� : P-- t>xuAl Ile ft p .613' i__ Nr R. iCivt .1+33 , FIs' Lo37�Lbo O'_ 1Wn �_ 022/ P= 0.002- v D3`>x1.7'�12 p�17 �r = fO.r. C• 2 C j4CL10-r-2-)r�z ng.. p.g,� 4oa o x 12 � FIs- 2 � Y 610 , p. 0018 x IZ�cr7 ^ 0.37NCI/�i."" 16 PMIh^r 0. . 1� lir r 2 �( Q• 2-,c 12r O 60 i, L �, C(' CJ oa- f7 - - 10 SQA. 1184- 36 t6 ,�,•�,..� kcal i 3 }'�s-96 JVIG x i JY� Gl ►r Co,lrP 9 - " co k -'V 5-0, /''/ , t 234 �/- � DP _ Jo2 d 19 -f"I I1-6-7 1 117n DGn;411 1 nV171,11 iC r:r1QTA KACRA r.Al 11:0PNIA g9FIR-349A a (714) W-8777 m h e g 5�6"Mwc Rmco CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE JOB NO. SHEET a OF 9 — = 0-771 h > 1 0� !/o(= fO i g� I1-6- i 5.21 (log* 19 L5-0 24 9 v L1,rs 14, -- INS ' toy,'' 617 63- 61-7 62- 4 = 39 70 L / £.F.P _ 37 pi'f• i 21- 17 jJ�oV PV 1,,o u �t �►�s c ion 6 2- 56 z = Zs of 7n RCn1-111 I ANIPM1 M A /'O+gTa IUFC.PA (.AI I970RIVIA g9F399•449A 0 (7141 641-8777 w4e g t?*o"w400v Rmco ®� CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE lOB NO. SHEET OF , 13 l _ S_ 29 } 2t1 Fcy L.L- + L -f- mo _ 0. 29 3s- x (14 S 4 2-31f x � 22, 9 04� C DoI.� _ MorJ� i" S Jac--) _ O- is 3s ( 14-S; t�34�x �'-ZS = ' ► 1,6)79 L -/A /4.Zi iSJDF� — 4- Art p Scorn ~o - 0s3 x C14•W2) (18 a 7)- _ 7g 2- L� d- o 3 x(►4-, 752) c ?6�J = `7q-.2 L� 757 2- 73 76 L -►- /,teat PlS. y? = 11, 4 -7 L !A O. 2-3 9: L - C601' ` 90 s'2- 9 4,3bs 0 2-210 rbc) ,uc o- o-r9b x go7g = 723 + S �) !,� -0 071 ,9L, , = '7Z3 Lam' C 2 1. 17 ci 3 3 3 (-� 17 w �k / 2 ►• 3 A-,�b x 12 ►7 - 27ag' I- I�i 12 17 x 333 = 40 s �` 2 - zl 7n acnun I A%iann IF 4 C() -,TA MESA rA1 IFnRN1A 02626-3429 0 (714) 641-8777 M W?& g 20"WAO'-p gmeo CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE JOB NO. SHEET OF x 4oS 3 x S 29 -1- O- 12-Y, 2738- 5- 214 - 4,4`x/ o -/,2s x 4�s� �s-2-3 f a 14te,2--7 �cs-�g = ¢/ 79� ! *Arc l gaff : D -SD X 4os� -r ,L,K ( 40S3 2'R2;2 - s rev �" _ D - 0 6 2- � 2 7 3 -9- : ) 7 / 1-, . Z2i7o4 + ►t, 473 - 4 1I,`) 79 +- 4 36s - 4491 7376 -f -2-2-70t 0 - ?64 6 Lln ? �2 +7 23 —2 99-z- = '7,376 45-39 f 1-71 = 12,o96 g/ W / i"cv. I�rvv V� ' 2 ��� �t0c;lD p/�J Vu Cc,�,��,�.1� s_F� = !•7� ra�o� = 20 sob , (ACT 312,'9- 2) N o rr� ►�,,� S" v 41V -17t V o -g1" " o - � gl7n Pr:nWll I A%/F=NIIF • nnsTAMERA. CAI..IFORNIA 92826-3428 • (714) 641-8777 CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE JOB NO. SHEET OF (,� 2 zsz� L� I �j o I � �' �{ f� M ci�'�r"vr� = (� • 2 3 � � 2 S" 29 � S • �9 = /k- 3,0-4 4�' _ ArC fr\0rrrQ'vk — o- 1,216 'Z -A;" .:�s6L x 25-21; Qot ArC os3 + 0- 68�s�2�38 O • bS 3 n /41 7S2 + 0. 079 2 -e 907'g t- 0.5 x 4 7F, wi rte 7,00`i (N Rota ;o�3njt47sz+o-o796x907e+o-s�40 +o-3►zr-�L738" o — 0-23>�t�as-a4 2 g 9- 2 = & Lf -7 LIA (.{,arc ) Izb [c Ll� S fc�u = 0.S o Z�24 0, gr 0 8'� � Of-) C,, 2 71d -- .� � 2 06S 'Lha 1), 037 JL44 117(1 RFnHII 1. A\/FNIJF 0 COSTA�AFSA. CALIFORNIA 92626-3128 0 (714) 641-8777 we g 26"W40 ---p Rmco CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE JOB NO. SHEET12— OF l� v wYl" + 9 6 4 6 1 �A ` c� I) MC /JIB �,,�✓✓?' C pa 394, �3_S•� - �S-) 96 4 Mu I.7 xX12- ,c bdZ ('-fix %fDOOXxU'7's�� o t.J ACZ 3 J d% - D- 0o3S sS h a e ' q j _— p-74 }rc/' 0202 z r ~0 �4 is C4..i},o 1.33,.G-DOr4 CR�-T- 3ID- 14 D-4 CS)'� -I .-.- ... . n r. 1 - n�—. A-," i.... rrnn. I. —. nn nena Y -i AI ptil-0777 6147 Lh/ r 1✓ h�av " = 12 O �-6 -f 12 6 6 MC /JIB �,,�✓✓?' C pa 394, �3_S•� - �S-) 96 4 Mu I.7 xX12- ,c bdZ ('-fix %fDOOXxU'7's�� o t.J ACZ 3 J d% - D- 0o3S sS h a e ' q j _— p-74 }rc/' 0202 z r ~0 �4 is C4..i},o 1.33,.G-DOr4 CR�-T- 3ID- 14 D-4 CS)'� -I .-.- ... . n r. 1 - n�—. A-," i.... rrnn. I. —. nn nena Y -i AI ptil-0777 • BUILDING CODE REQUIREMENTS 7.10.5.2 —Vertical spacing of ties shall not exceed 16 longitudinal bar diameters. 48 tie bar or wire di- ameters, or least dimension of the compression mem- ber. 7.10.5.3—Ties shall be arranged such that every corner and alternate longitudinal bar shall have lateral support provided by the corner of a tie with an in- cluded angle of not more than 135 deg and no bar shall be farther than 6 in. clear on each side along the tie from such a laterally supported bar. Where longitudinal bars are located around the perimeter of a circle, a complete circular tie may be used. 7.10.5.4—Ties shall be located vertically not more than 1 /2 a tie spacing above the top of footing or slab in any story, and shall be spaced as provided herein to not more than 1/2 a tie spacing below the lowest horizontal reinforcement in slab or drop panel above. 7.10.55 —Where beams or brackets frame from four directions into a column, ties may be terminated not more than 3 in. below lowest reinforcement in shal- lowest of such beams or brackets. 7.11 — Lateral reinforcement for flexural members 7.11.1 —Compression reinforcement in beams shall be enclosed by ties or stirrups satisfying the size and spacing limitations in Section 7.10.5 or by welded wire fabric of equivalent area. Such ties or stirrups shall be provided throughout the distance where compres- sion reinforcement is required. 7.11.2— Lateral reinforcement for flexural framing members subject to stress reversals or to torsion at supports shall consist of closed ties, closed stirrups, or spirals extending around the flexural reinforcement. 7.11.3 — Closed ties or stirrups may be formed in one piece by overlapping standard stirrup or tie end hooks around a longitudinal bar, or formed in one or two pieces lap spliced with a Class C splice (lap of 1.7f d), or anchored in accordance with Section 12.13. 7.12 —Shrinkage and temperature rein- forcement 7.12.1 — Reinforcement for shrinkage and tempera- ture stresses normal to flexural reinforcement shall be provided in structural slabs where the flexural rein- forcement extends in one direction only. 318-27 7.12.1.1 — Shrinkage and temperature reinforce- ment shall be provided in accordance with either Sec- tion 7.12.2 or 7.12.3. 7.12.2 —Deformed reinforcement conforming to Sec- tion 3.5.3 used for shrinkage and temperature rein- forcement shall be provided in accordance with the following: 7.12.2.1 — Area of shrinkage and temperature re- inforcement shall provide at least the following ratios of reinforcement area to gross concrete area, but not less than 0.0014: (a) Slabs where Grade 40 or 50 deformed bars are used ................ 0.0020 (b) Slabs where Grade 60 de- formed bars or welded wire fabric (smooth or deformed) are used .............................. 0.0018 (c) Slabs where reinforcement with yield stress exceed- ing 60,000 psi measured at a yield strain of 0.35 percent is used ........ 0.0018 x 60,000 fy 7.12.2.2 — Shrinkage and temperature reinforce- ment shall be spaced not farther apart than five times the slab thickness, nor 18 in. 7.12:2.3 —At all sections where required, reinforce- ment for shrinkage and temperature stresses shall develop the specified yield strength fr in tension in accordance with Chapter 12. 7.12.3 —Prestressing tendons conforming to Section 3.5.5 used for shrinkage and temperature reinforce- ment shall be provided in accordance with the follow- ing: 7.12.3.1 — Tendons shall be proportioned to provide a minimum average compressive stress of 100 psi on gross concrete area using effective prestress, after losses, in accordance with Section 18.6. 7.12.3.2 —Spacing of tendons shall not exceed 6 ft. 7.12.3.3 —When spacing of tendons exceeds 54 in., additional bonded shrinkage and temperature rein- forcement conforming to Section 7.12.2 shall be pro- vided between the tendons at slab edges extending from the slab edge for a distance equal to the tendon spacing. 318-32 ACI STANDARD CHAPTER 9 - STRENGTH AND SERVICEABILITY, REQUIREMENTS 9.0 — Notation T = cumulative effects of temperature, creep, shrinkage, and differential settlement A9 = gross area of section, sq in. U = required strength to resist factored loads or A, = area of nonprestressed tension reinforce- related internal moments and forces ment, sq in, w, = weight of concrete, Ib per cu ft A', = area of compression reinforcement, sq in. W = wind load, or related internal moments and d' = distance from extreme compression fiber to forces centroid of compression reinforcement, in. y, = distance from centroidal axis of gross sec - d, = distance from extreme tension fiber to cen- tion, neglecting reinforcement, to extreme fi- troid of tension reinforcement, in. ber in tension D = dead loads, or related internal moments and a = ratio of flexural stiffness of beam section to forces flexural stiffness of a width of slab bounded E = load effects of earthquake, or related inter- laterally by centerline of adjacent panel (if nal moments and forces any) on each side of beam. See Chapter 13 E, = modulus of elasticity of concrete, psi. See am = average value of a for all beams on edges Section 8.5.1 of a panel f, = specified compressive strength of concrete, J3 = ratio of clear spans in long to short direction psi of two-way slabs ` Of ' = square root of specified compressive strength /3s = ratio of length of continuous edges to total } of concrete, psi perimeter of a slab panel fn = average splitting tensile strength of light- A = multiplier for additional long-time deflection weight aggregate concrete, psi as defined in Section 9.5.2.5 1, = modulus of rupture of concrete, psi = time -dependent factor for sustained load. See f,, = specified yield strength of nonpresttessed Section 9.5.2.5 reinforcement, psi P' = reinforcement ratio for nonprestressed F = loads due to weight and pressures of fluids compression reinforcement, A'Ibd with well-defined densities and controllable maximum heights, or related internal mo- 0 = strength reduction f?ctor. See Section 9.3 � ments and forces 9.1 — General h = overall thickness of member, in. H = loads due to weight and pressure of soil, 9.1.1 — Structures and structural members shall be water in soil, or other materials, or related designed to have design strengths at all sections at internal moments and forces least equal to the required strengths calculated for the l�, = moment of inertia of cracked section trans- factored loads and forces in such combinations as are formed to concrete stipulated in this code. f 1, = effective moment of inertia for computation _. of deflection 9.1.2 —Members also shall meet all other require - 19 =moment of inertia of gross concrete section ments of this code to insure adequate performance at about centroidal axis, neglecting reinforce- service load levels. ment f = span length of beam or one-way slab, as defined in Section 8.7; clear projection of 9.2 —Required strength cantilever, in. f„ = length of clear span in long direction of two- 9.2.1 — Required strength U to resist dead load D and way construction, measured face-to-face of live load L shall be at least equal to supports in slabs without beams and face- to-face of beams or other supports in other U = 1.4D + 1.7L (9-1) cases L = live loads, or related internal moments and 9.2.2 — If resistance to structural effects of a specified forces wind load W are included in design, the following M. = maximum moment in member at stage de- combinations of D, L, and W shall be investigated to flection is computed determine the greatest required strength U M,, = cracking moment. See Section 9.5.2.3 Pb = nominal axial load strength at balanced strain U = 0.75(1.4D + 1.7L + 1.7W) (9-2) conditions. See Section 10.3.2 P„ = nominal axial load strength at given eccen- where load combinations shall include both full value tricity and zero value of L to determine the more severe P„ = factored axial load at given eccentricity <_ (P„ condition, and 0 • BUILDING CODE REQUIREMENTS U = 0.9D + 1.3W (9-3) but for any combination of D, L, and W, required strength U shall not be less than Eq. (9-1). 9.2.3 — If resistance to specified earthquake loads or forces E are included in design, load combinations of Section 9.2.2 shall apply, except that 1.1E shall be substituted for W. 9.2.4 — If resistance to earth pressure H is included in design, required strength U shall be at least equal to U = 1 AD + 1.7L + 1.7H (9-4) except that where D or L reduce the effect of H, 0.9D shall be substituted for 1.4D and zero value of L shall be used to determine the greatest required strength U. For any combination of D, L, and H, required strength U shall not be less than Eq. (9-1). 9.2.5—If resistance to loadings due to weight and pressure of fluids with well-defined densities and con- trollable maximum heights F is included in design, such Loading shall have a load factor of 1.4, and be added to all loading combinations that include live load. 9.2.6 — If resistance to impact effects is taken into ac- count in design, such effects shall be included with live load L. 9.2.7 —Where structural effects T of differential set- tlement, creep, shrinkage, or temperature change may be significant in design, required strength U shall be at least equal to U = 0.75(1.4D + 1.4T + 1.7L) (9-5) but required strength U shall not be less than U = 1.4(D + T) (9-6) Estimations of differential settlement, creep, shrink- age, or temperature change shall be based on a re- alistic assessment of such effects occurring in ser- vice. 9.3 — Design strength 9.3.1 — Design strength provided by a member, its connections to other members, and its cross sections, in terms of flexure, axial load, shear, and torsion, shall be taken as the nominal strength calculated in ac- cordance with requirements and assumptions of this code, multiplied by a strength reduction factor �6. 9.3.2 — Strength reduction factor 0 shall be as fol- lows: C Q 1 11 ..- Fl,evinn withniir nvinl marl ()Of) 318-33 9.3.2.2 —Axial load, and axial load with flexure. (For axial load with flexure, both axial load and moment nominal strength shall be multiplied by appropriate single value of 0 ) (a) Axial tension, and axial tension with flexure ...................................0.90 (b) Axial compression, and axial compres- sion with flexure: Members with spiral reinforcement con- forming to Section 10.9.3 ..................0.75 Other reinforced members .................0.70 except that for low values of axial compression 0 may be increased in accordance with the following: For members in which fy does not exceed 60,000 psi, with symmetric reinforcement, and with (h—d'—dj/h not less than 0.70, 0 may be increased linearly to 0.90 as OP„ decreases from 0.10f' A9 to zero. For other reinforced members, 0 may be increased linearly to 0.90 as OP„ decreases from 0.10f,Ag or oPb, whichever is smaller, to zero. 9.3.2.3 — Shear and torsion ................ 0.85 9.3.2.4 — Bearing on concrete (See also Section 18.13) ........0.70 9.3:3 — Development lengths specffied in Chapter 12 do not require a 0 -factor. 9.4 —Design strength for reinforcement Designs shall not be based on a yield strength of re- inforcement fy in excess of 80,000 psi, except for prestressing tendons. 9.5 —Control of deflections 9.5.1 — Reinforced concrete members subject to flex- ure shall be designed to have adequate stiffness to limit deflections or any deformations that may ad- versely affect strength or serviceability of a structure at service loads. 9.5.2 —One-way construction (nonprestressed) 9.5.2.1 — Minimum thickness stipulated in Table 9.5(a) shall apply for one-way construction not supporting or attached to partitions or other construction likely to be damaged by large deflections, unless computation of deflection indicates a lesser thickness may be used without adverse effects. 9.5,2.2— Where deflections are to be computed, deflections that occur immediately on application of load shall be computed by usual methods or formulas for elastic deflections, considering effects of cracking and rninfnrr-nmont nn morn-lior cliffnP^s 10.3.5.1 — For nonprestressed members with spiral reinforcement conforming to Section 7 10.4 or com- posite members conforming to Section 10.14: dPn(n,) = 0.850(0.85f,(A9 — A,) -* f,AS,] (10-1) 10.3.5.2 — For nonprestressed members with tie re- inforcement conforming to Section 7.10.5: 6P,(,,,,,,) = 0.80ch[0.85f,(A9 — Asr) * fYA,,] (10-2) 10.3.5.3 — For prestressed members, design axial load strength 6P„ shall not be taken greater than 0.85 (for members with spiral reinforcement) or 0.80 (for members with tie reinforcement) of the design axial load strength at zero eccentricity 6Po. 10.3.6 — Members subject to compressive axial load shall be designed for the maximum moment that can accompany the axial load. The factored axial load P„ at given eccentricity shall not exceed that given in Section 10.3.5. The maximum factored moment M„ shall be magnified for slenderness effects in accor- dance with Section 10.10. 10.4 —Distance between lateral supports of flexural members 10.4.1 —Spacing of lateral supports for a beam shall not exceed 50 times the least width b of compression flange or face. 10.4.2 —Effects of lateral eccentricity of load shall be taken into account in determining spacing of lateral supports. 10.5 — Minimum reinforcement of flexural members 10.5.1 —At any section of a flexural member, except as provided in Sections 10.5.2 and 10.5.3, where positive reinforcement is required by analysis, the ra- tio p provided shall not be less than that given by 200 P"n = f (10-3) Y In T -beams and joists where the web is in tension, the ratio p shall be computed for this purpose using width of web. 10.5.2 —Alternatively, area of reinforcement provided at every section, positive or negative, shall be at least one-third greater than that required by analysis. 10.5.3 — For structural slabs of uniform thickness, minimum area and maximum spacing of reinforce- ment in the direction of the span shall be as required for shrinkage and temperature according to Section 7.12. 10.6 —Distribution of flexural reinforcement in beams and one-way slabs 10.6.1 — This section prescribes rules for distribution of flexural reinforcement to control flexural cracking in beams and in one-way slabs (slabs reinforced to re- sist flexural stresses in only one direction). 10.6.2 —Distribution of flexural reinforcement in two- way slabs shall be as required by Section 13.4. 10.6.3 — Flexural tension reinforcement shall be well distributed within maximum flexural tension zones of a member cross section as required by Section 10.6.4. 10.6.4 — When design yield strength f,, for tension re- inforcement exceeds 40,000 psi, cross sections of maximum positive and negative moment shall be so proportioned that the quantity z given by z = fs 3 d�A (10-4) does not exceed 175 kips per in. for interior exposure and 145 kips per in. for exterior exposure. Calculated stress in reinforcement at service load & (kips per sq in.) shall be computed as the moment divided by the product of steel area and internal moment arm. In lieu of such computations, & may be taken as 60 percent of specified yield strength fy. 10.6.5 — Provisions of Section 10.6.4 may not be suf- ficient for structures subject to very aggressive ex- posure or designed to be watertight. For such struc- tures, special investigations and precautions are required. 10.6.6 —Where flanges of T -beam construction are in tension, part of the flexural tension reinforcement shall be distributed over an effective flange width as de- fined in Section 8.10, or a width equal to 1/10 the span, whichever is smaller. If the effective flange width exceeds 1/10 the span, some longitudinal reinforce- ment shall be provided in the outer portions of the flange. 10.6.7 —If the depth of a web exceeds 3 ft, longitu- dinal reinforcement having a total area equal to at least 10 percent of the area of the flexural tension rein- forcement shall be placed near the side faces of the web and distributed in the zone of flexural tension with a spacing not more than the web width, nor 12 in. Such reinforcement may be included in strength com- putations only if a strain compatibility analysis is made to determine stresses in the individual bars or wires. 10.7 — Deep flexural members 10.7.1 — Flexural members with overall depth to clear span ratios greater than 2/5 for continuous spans, or cl) C, El BUILDING CODE REQUIREMENTS (a) support reaction, in direction of applied shear, introduces compression into the end regions of member, and (b) no concentrated load occurs between face of support and location of critical section defined in Section 11.1.2.1 or 11.1.2.2. 11.1.2.1 —For nonprestressed members, sections located less than a distance d from face of support may be designed for the same shear V„ as that com- puted at a distance d. 11.1-2.2—For prestressed members, sections lo- cated less than a distance h/2 from face of support may be designed for the same shear V„ as that com- puted at a distance h/2. 11.1.3 — For deep flexural members, brackets and corbels, walls, and slabs and footings, the special provisions of Section 11.8 through 11.11 shall apply. 11.2 —Lightweight concrete 11.2.1 —Provisions for shear strength V, and tor- sional moment strength T, apply to normal weight concrete. When lightweight aggregate concrete is used, one of the following modifications shall apply: 11.2.1.1 —When ft is specified and concrete is pro- portioned in accordance with Section 4.2, provisions for V,, and T, shall be modified by substituting f„/6.7 for NIT, but the value of fa/6.7 shall not exceed N/1711., 11.2.1.2—When fd is not specified, all values of f, affecting V,, T,, and M,, shall be multiplied by 0.75 for "all -lightweight' concrete, and 0.85 for "sand - lightweight' concrete. Linear interpolation may be used when partial sand replacement is used. 11.3 — Shear strength provided by concrete for nonprestressed members 1.3.1 —Shear strength V. shall be computed by pro- visions of Section 11.3.1.1 through 11.3.1.4, unless a more detailed calculation is made in accordance with Section 11.3.2. 11.3.1.1 —For members subject to shear and flex- ure only, V� = 2% 'Tb,rd (11-3) 11.3.1.2 — For members subject to axial compres- sion, 318-45 Vc = 2 I 1 + N. ) L cb,,d (11-4) 2000A9, Quantity N„/Ag shall be expressed in psi. 11.3.1.3 —For members subject to significant axial tension, shear reinforcement shall be designed to carry total shear. 11.3.1.4 —At sections where factored torsional mo- ment T„ exceeds 0 (0.5ti ExZy), V� _ 2X, f,'b„,d 1+(2.5C,Vu1 (11-5) 11.3.2 —Shear strength Vc may be computed by the more detailed calculation of Section 11.3.2.1 through 11.3.2.3. 11.3.2.1— For members subject to shear and flex- ure only, VC = Ci.9 f� + 2500p” d I bd (11-6) but not greater than 3.5 Eb.,d. Quantity V„d/M„ shall not be taken greater than 1.0 in computing V, by Eq. (11-6), where M„ is factored moment occurring. si- multaneously with V„ at section considered. 11.3.2.2 —For members subject to axial compres- sion, Eq. (11-6) may be used to compute V, with Mm substituted for M„ and V�d/M„ not then limited to 1.0, where M111=M.—N,,(4h—d) (11-7) 8 However, V, shall not be taken greater than V� = 3.5 f�bwd 1 +500u (11-8) Quantity N„ /A9 shall be expressed in psi. When Mm as computed by Eq. (11-7) is negative, V, shall be computed by Eq. (11-8). 11.3.2.3 —For members subject to significant axial tension, N� V, = 2 1 + �b„,d (11-9) 500A9 where N„ is negative for tension. Quantity N„ /A9 shall be expressed in psi. Members in Compression and Bending The most severe situation among Eqs. (13.4-1) through (13.4.3) wilIcon trol the design. Traditionally, under most building codes, members subject to stresses produced by wind or earthquake forces combined with other loads ha,e been proportioned in the working stress method for unit stresses 331" greater than those specified, provided that the section thus required is not less than that required for the combination of dead and live load. In strength design, the infrequent occurrence of the maximum wind load condition is taken into account by the smaller overload factors when wind effects are included. This reduced safety provision for the temporary effect of wind or earthquake, or both, appears in ACI -Appendix B for the working stress method, and in ACI -9.2.2 and 9.2.3 for the strength method. Additionally, the possibility of undercapacity is accommodated by the requirement of ACI -9.3. For spirally reinforced columns I = 0.75, and for tied columns 0 = 0.70, the difference being related partially to the reserve capacity to deform before failure which is exhibited by the spirally reinforced column. The lower undercapacity factors 0 for compression members arise from statistical variations in observed strength and are a rough indication that the strength variability to be expected in tied columns is slightly greater than in spiral columns and that the variability expected in columns is greater than in beams. The difference in the behavior of tied and spirally reinforced axially loaded columns is further accounted for by the use of a different maximum compression capacity as discussed in Sec. 13.11. For combined compression and bending, the ¢ value may be variable and increase to 0.90 (for pure flexure) as the axial compression decreases to zero. This variation of 0 is treated later in Sec. 13.20. 13,5 Concentrically Loaded Short Columns In accordance with Eq. (13.3.1) without the term representing the contri- tribution of the spiral, the maximum nominal ultimate capacity Po on a concentrically loaded short column (Fig. 13.5.1) is Po = 0.85f, -(A„ - A,,) + f..4„ (13.1.1) Where .41; is the gross area bh and A,., is the total longitudinal reinforcement (•41 +.-1,). This equation is also in agreement with the rectangular stress - block assumptions of Sec. 3A where the entire cross section is subject to a failure compressive strain of 0.003. It may also be expressed as Pn - •A[0.851�•(1 - p„) + f,.py] (13.5.2) where E'y = AiA,,. When the terms including pY are combined, Eq. (1 3.5.2) becomes Pn = .11"[()-85/" + /�,,I,/. -- O.S51"'A (13.5.3) i i —A Az`� i Cs - frA, C, = 0.8547Ay -A,,) C, Fig. 13.5.1 A concentrically Ioaded column. 2 13.6 General Discussion on z Combined Bending and AXic A structural member may be subje� in many ways. It is common in re: moments act on all columns. These floor loads on both exterior and such as crane loads in industrial bt, in columns due to unbalanced flo, simplifying assumptions: I. The far ends of columns that a considered fixed in continuity ar 2. Maximum bending in a column . cent span of the floor under con, axial forces from factored loads 3. The loading condition causing axial load shall also be consider• Concrete construction is usuall rigid frames and arches (Fig. 13.6 sections in the two structures shown TABLE 2. Moment Strength Mu/ cpf'bd2 ,or Mn/fcbd2 of Rectangular Sections with Tension Reinforcement Only= w 000 .001 .002 .003 .004 .005 .006 .007 .008 .009 0.0 0 .0010 .0020 .0030 ,0040 .0050 .0060 .0070 .0080 .0090 0.01 .0099 .0109 .0119 .0129 .0139 .0149 .0159 .0168 ,0178 .0188 0.02 .0197 .0201' .0217 .0226 .0236 .0246 .0256 .0266 .0275 .0285 0.03 .0295 .0304 .0314 .0324 .0333 .0343 .0352 .0362 .0372 .0381 0.04 .0391 .0400 .0410 .0420 .0429 .0438 .0448 .0457 .0467 .0476 0.05 .0485 .0495 .0504 .0513 .0523 .0532 .0541 .0551 .0560 .0569 0.06 ,0579 .0588 .0597 .0607 ,0616 .0625 .0634 .0643 .0653 .0662 0.07 .0671 .0680 .0689 .0699 ,0708 .0717 .0726 .0735 .0744 .0753 0.08 .0762 .0771 .0780 .0789 .0798 .0807 .0816 .0825 .0834 .0843 0.09 .0852 .0861 .0870 .0879 .0888 ,0897 .0906 .0915 .0923 .0932 0,10 .0941 .0950 .0959 .0967 .0976 .0985 .0994 .1002 .1011 .1020 0.11 .1029 .1037 .1046 .1055 .1063 .1072 .1081 .1089 .1098 .1106 0.12 .1115 .1124 .1133 .1141 .1149 .1158 .1166 .1175 .1183 .1192 0.13 .1200 .1209 .1217 .1226 .1234 .1243 .1251 .1259 ,1268 .1276 0.14 .1284 .1293 .1301 .1309 .1318 .1326 .1334 .1342 .1351 .1359 0.15 ,1367 .1375 .1384 .1392 .1400 .1408 .1416 .1425 .1433 .1441 0.16 .1449 .1457 .1465 .1473 .1481 ;.1489 .1497 .1506 .1514 ,1522 0.17 .1529 .1537 .1545 .1553 .1561 .1569 .1577 .1585 .1593 .1601 0.18 .1609 .1617 .1624 .1632 .1640 ;.1648 .1656 .1664 .1671 .1679 0.19 ,1687 .1695 .1703 .1710 .1718: .1726 .1733 .1741 .1749 .1756 0.20 .1764 .1772 .1779 ,1787 .1794 .1802 .1810 .1817 .1825 .1832 0.21 .1840 .1847 .1855 .1862 .1870 .1877 .1885 .1892 .1900 .1907 0.22 .1914 .1922 .1929 .1937 .1944 .1951 .1959 .1966 .1973 .1981 0.23 .1988 .1995 .2002 .2010 .2017 .2024 .2031 .2039 .2046 .2053 0.24 .2060 .2067 .2075 .2082 .2089 .2096 .2103 .2110 .2117 .2124 0.25 .2131 .2138 ,2145 .2152 .2159 .2166 .2173 .2180 .2187 .2194 0.26 .2201 .2208 .2215 .2222 .2229 .2236 .2243 .2249 .2256 .2263 0.27 .2270 .2277 .2284 .2290 .2297 .2304 .2311 .2317 .2324 .2331 0.28 .2337 .2344 .2351 .2357 .2364 .2371 .2377 ,2384 .2391 .2397 0.29 .2404 .2410 .2417 .2423 .2430 .2437 .2443 .2450 .2456 ,2463 0.30 .2469 .2475 .2482 .2488 .2495 .2501 .2508 .2514 .2520 .2527 0.31 .2533 .2539 .2546 .2552 .2558 .2565 .2571 .2577 .2583 .2590 0.32 .2596 .2602 .2608 .2614 .2621 .2627 .2633 .2639 .2645 .2651 0.33 .2657 .2664 .2670 .2676 .2682 .2688 .2694 .2700 .2706 .2712 0.34 .2718 .2724 ,2730 .2736 .2742 .2748 .2754 ,2760 .2766 .2771 0.35 .2777 ,2783 .2789 .2795 .2801 .2807 .2812 .2818 .2824 .2830 0.36 ,2835 .2841 .2847 ,2,&,53 .2858 .2864 .2870 .2875 .2881 ,2887 0.37 .2892 .2898 .2904 .2909 .2915 .2920 .2926 .2931 .2937 .2943 0,38 .2948 .2954 .2959 .2965 .2970 .2975 .2981 .2986 .2992 .2997 0.39 .3003 .3008 .3013 .3019 .3024 .3029 .3035 .3040 .3045 .3051 *_Mn/f'bd2 = Asfy(d-a/2)f,bd2 = (0(1-0.59 w), where w = p fy/fc and a = Asfy/0.85f.b. Design: Using factored moment Mu enter table with Mu/ y fcbd2; find w and compute steel percentage P from p = wf/fy. Investigation: Enter table with w from w = p fy/f,'; find value of Mn/f�bd2 and solve for nominal moment strength, Mn. 9-7 FIGURE 5. COMPUTATION DIAGRAM FOR PROJECTING CONIXJITS Los Angeics County Flood Control District S-2 Lob AFKeIus County FIt,c,: :ontrc' j it ci MOMENT, THRUST, AND SHEAR COEFFICIENTS FOR ELASTIC RINGS TYPICAL PIPE LOADINGS 5LU -" REFERENCE : EN&NEERING NEWS RECCRO, VCLUME 87 -1921 PAGE 768 SIGN CONVENTICN +M = TENSION ON INSIDE FACE +N = COMPRESSION +V = SHEAR POSITIVE FOR LEFT SIDE w A9- UNIFORM LOAD ON 1800 TOP e w MOMENT CCEFFICIENT ■ W R THRUST COEFFICIENT • W SHEAR CCEFFICIENT - W W= TOTAL LOAD IN EACH CASE R = MEAN RADIUS OF RING w 0' a UNIFORM LEAD CN 906 TOP a� , ntratr�trd jtlpr�rt at8ethln 8 = 60° 6 = 900 A = 120° 6 = i80* M N I V I M N V M N V N V M N V TOP .1817 -.0262 0 +.1757-.0132 0 .16901 0 0 +.1627+.01361 C +.1572 +.026 0 SIDE -1683 .5000 .0262 .1613+5000 .0132-.1549+.500 0 -1475+.50001-0136-.1398.5000-.0269 SOTTO .3055 .0262 t.5000+20051+.0132,.0 1690 0 0 *.1496 -0136 0 .1370 -0269 0 w• LOADING DUE TO WEIGHT OF RING 6 w (rM(erfrotti y,pporl at Bottom 6 = 60° e = 90' 1 8 = 120° 1 9 = 1800 TOP M N I V M N V M r I V i M N I V 1 M N V TOP +.1495 -.053C 0 .1435 -.0400 0 _-k13681-0268 0_ 1+.1304-0132; 0 1+.1250 0 +5000+.040.0-1401 +.5000 .0268 -.1327♦5000;+.0132-.1250+.5000 ° 5000 +.1885 .0400 0 +.1572 t0268 0 ¢ 1376 .0132 0 + 1250 0 0 0 SIDE . -.1535+.5000+.0530-.1465 BOTTOA1t +.2935 +.0530 0 w 0' a UNIFORM LEAD CN 906 TOP a� , ntratr�trd jtlpr�rt at8ethln 8 = 60° 6 = 900 A = 120° 6 = i80* M N I V I M N V M N V N V M N V TOP .1817 -.0262 0 +.1757-.0132 0 .16901 0 0 +.1627+.01361 C +.1572 +.026 0 SIDE -1683 .5000 .0262 .1613+5000 .0132-.1549+.500 0 -1475+.50001-0136-.1398.5000-.0269 SOTTO .3055 .0262 t.5000+20051+.0132,.0 1690 0 0 *.1496 -0136 0 .1370 -0269 0 w• LOADING DUE TO WEIGHT OF RING 6 w LOADING DUE TO WATER; PIPE FULL, ZERO PRESSURE HEAD ON SOFFIT 8 q [mctntrokd SvpWt ai 8ottam 6 = 60° A = 90' 8 = 120° 9 = 180° TOP M N I V M N V M N V M N 1 V M I N I V TOP .0796 -0796 0 10736 -0666 0 .0669 -053 0 .06061-.0389 0 OSSI -0266 0 -0909 .2500 +.0796 -0839 +.2500 .0667 .0775 +2500 +.0536 -0701 ¢25001+0399-.0624 .2500 -0267 SIDE BOTTOM +.2389 *.0796 t,5000,+1339,+0666, . 0 .1025 + Q534 0 I -I+.0829 +.0389 D +.0704 +0266 0 LOADING DUE TO WATER; PIPE FULL, ZERO PRESSURE HEAD ON SOFFIT 8 q w ,e �� M N I V w TOP -.10421+.3125 0 UNIFORM LOAD TRIANGULAR LOAD SIDE +.1250 0 -0625 ON SIDES ON 51DES BOTTOM -.1458+.6875 0 S-71 G^ncT Mtratm Supw+at BotfamT 6 = 60' 9 = 90° A = 120' 8 = 180° TOP M N i V M9 N I V M 1 N 1 V I M N 1 V i M I N i V TOP t0796-.23891 0 1+.073b -2257 0 +06691-212 0 .0606-.19911 0 +0511-.1859 0 SIDE -.0903-0680+.0191-0838-0680+.0667-.0775-.0680+0532-0701-.0680 039_9-062 -.0680 0267 BOTTOM *.2389 -.3981 1.5000 +.1337 -5109 0 1025 -.4243 0 *.0829 -.4379 0 +.0704 -.451 I 0 w ,e �� M N I V w TOP -.10421+.3125 0 UNIFORM LOAD TRIANGULAR LOAD SIDE +.1250 0 -0625 ON SIDES ON 51DES BOTTOM -.1458+.6875 0 S-71 M N V TOP -.1250h5000 0 SIDE 12501 0 0 80TT0M-1250 SG00 O t6dn ! o // L A ca7avto a Ar is roq A -Ed n+►" #v &=WO L7 pVe2 01=ds 0/0 fH psr foot 2- WA& v POOs of dihavrl a�ymlcfv aro)W7cd m'7)17 car;"O ca/lbr, G and T shaH,a Maso of #n /mvz r 6-7a D-4 cr Dn. w/sdsaVes 4 gvaw.. /NrEeiOR USED pQEAPIPE jpI�S U 'ZiP SHRGER E -L -Ly y F EOLrV/TN Mo2TA-Q s}N!J NEAT�Y A fWPlpO 91r7 wt 6stcd U-1 neat sty 5. Oro mr#bi:67a on aloes 24 and loss 47 akmc-, r MTI a" al (TYP) W. OEM t ALBERT A. WEBB ASSOCIATES CONSULTING ENGINEERS 3788 MCCRAY STREET, RIVERSIDE, CALIFORNIA 92506 TELtPHONE (714) 086-1070 TO City of Fonr_ana P.O. box 518, Fontana, CA 92335 GENTLEMEN: WE ARE SENDING YOU d Attached ❑ Under separate cover via the following items: ❑ Shop drawings ❑ Prints ❑ Plans ❑ Samples ❑ Specifications ❑ Copy of letter ❑ Change order ❑ DATE February 26, 1.988 W. O. NO. �6-526 FILE NO. 3544.29 ATTENTION Mr. Bob Porter RE: (:herrn- Avenue industrial Park Detention Basin Plans & tiydrology Study TRANSMITTED: ins;'.�r.s and. two (2) sets of rri.nts of rile above mentioned plans o 1 °.j;' a tinye men tl UneC! tll:i THESE ARE TRANSMITTED as checked below: ❑ For approval ❑ Approved as submitted ❑ For your use ❑ Approved as noted ❑ As requested ❑ Returned for corrections U hor review and comment ❑ ❑ FOR BIDS DUE 19 C Resubmit copies for approval ❑ Submit copies for distribution ❑ Return corrected prints ❑ PRINTS RETURNED AFTER LOAN TO US REMARKS Fie beiir�ve cheSe n1ans are ready for final review and s.igniature by the City . COPY TO /r. Robert Schoenborn, City of Fontana Mr. Roger hatch, West End Venture0 1,1r, John Hogan, Hall & Foreman It enclosures are not as noted, kindly notify us at once. 6.'al�ly i anz ALBERT A. WEBB ASSOCIATES CONSULTING ENGINEERS 3788 MCCRAY STREET, RIVERSIDE, CALIFORNIA 92506 TCLE►HONE ( 714) 588.1070 TO City of Fontana Fontana, CA 92335 GENTLEMEN: DATE February 29, 1988 W. 0. NO. 86-526 FILE NO. ATTENTION Mr. Bob Porter RE Cherry Avenue Industrial Storm Drain ❑ Prints ❑ Plans ❑ Samples ❑ Specifications ❑ Copy of letter WE ARE SENDING YOU jJ Attached ❑ Under separate cover via the following items: ❑ Shop drawings ❑ Prints ❑ Plans ❑ Samples ❑ Specifications ❑ Copy of letter ❑ Change order ❑ TRANSMITTED: Original mylars, two (2) sets of prints and hydratllir cal—lations far the referenced revised storm drain THESE ARE TRANSMITTED as checked below: ❑ For approval ❑ Approved as submitted ❑ Resubmit copies for approval ❑ For your use ❑ Approved as noted ❑ Submit copies for distribution ❑ As requested ❑ Returned for corrections ❑ Return corrected prints ❑ For review and comment ❑ ❑ FOR BIDS DUE 19 ❑ PRINTS RETURNED AFTER LOAN TO US REMARKS We believe these plans are ready for final review and signature by the City. COPY TO Mr. Robert Schoenborn, City of Fontana Mr. Roger Hatch, West End Venture Mr. John Hogan, Hall & Foreman It enclosures are not as noted, kindly notify us at once. Wa t!!5an2 WF/ca LINE L Q25 PRESSURE PIPE -FLOW HYDRAULICS COMPiTER PROGRAM PACKAGE (Reference: LACFD,LAORD,& OCEMA HYDRAULICS CRITERION) >>> j >>) >0>00>00>0 I>Q >0 (C) CoPyripht 1962 Advanced Engineering SoftwareEAES: Esoecially pneoared for: HPLL & FOREMAN, XC. **********DESCR:P7!1...iN OF .......... * !NDUS70A. AREA LINE L HYDRAULICS * 0 25 YR, STA 412.75 70 STA 5050.16 * VENKI., jN 3810-04, 11/20/677 DlSa 0 JRM 4 NOTE: STEADY FLGW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOS7 _ON SERVA71VE FORMU"AE FROM THE CURRENT LACROLAOFOD. AND LC - 04 DESIGN MANUALS. D S7REAM PRESSURE P:PE 7-51 CONTROL DATQ OWN !"ZDE '"IUMBER 4 i 2. 07' FLOW"INE ELEVATIUN -7.t ,E DIAME7ER07'••C4, = 106,0Z PIPE 1`!6w(CFS) ASSiMED D36N67REAM ICONR5Z HOL Aevmum Enpineerinp Sofmare SER:A_ No. AO*Eap REV. E.2 RELEASE =70m17/82 ARESBiRE FLOW TRO:ES2 PROM K0DZ 412.75 70 NEDE 4E&K 13 Zon wASTREAT NZDE 42025 E.EVP711N - jaj.,OISI ----------------------------------------------------------------------------- PRESSURE F.Z^ j�n=GN LiSSEQ DIEZ&ARGE VpNnm ARE, VE"3117i DE.71.0 6. E Z&OZ 50745 .7&34 E. 134. Z :06.10 1H E7. E 14. to XUT7 Y.:" n ;. 0.03 bz"o 00-= FjW;,E sovi - _.. :..,. r1: •, 1 IadV 11t_Wl v7 C.+:"�. -- . LI1::IV 1S•s DOWNSTREAM ;-r C7:•L_N SL.Of-'I_, = .00625AVEni=iG.: D FRICTION S,OPE K rl IUNC i oON ASSUMED ED AS . '4•lL e j JUNCTION ` ENS i r'1 ( FEE ) 7.50 F R i !C1'11 ON LOSS •�•• J . 06 1 ENTRANCE. LOSSES = 0. It" jrzt JUNCTION LO:.7.`.eES -' DY+.•-IV1- ,_•.v2_�'(__4i1C1 . I'";rI f•••1i•:�� E,t. - .iUltiCis01�� LL.lti;aL`M .._ . _.h• �.....• �Li .....rte. �)`!'{:i.l•11:�:•••1i4:.,.:. L_L)�Jr.:a) - _ 48 4. ;. 06- 4..36+ { -0601( O- ti+ZO) = 1.114 4: ; cCw< i 2c5. 549 i q r •- iwt�= i LJ t,{ �. i PRESSURE 1RESSUFLOW PROCESS FROM NODZ---+�20. 25 LJ - NODE DE �_.�.549. t:��: - CODE 13 L+ PSTP' EAM NODE 54.7. i�_.•,C: EL.C�'•.i071ON = 1212.44 -' CALCULATE C. r'riE.C.+SL,iRC. 1" L4.1w PIPE -BEND L, r. r. ( U�..C�ry�l!••i).�...-.._....�--.-........_..-�._....._..-._..�.._-.-....,._ r. PIPE FLOW = 966.61 L -s PIPE DIAMETER - 102.00 INCHES PIPE LENS H -- 129.57 FE ET MANN I NIS N- .01300 CENTRAL ANSLE 3.090 DEGREES PRESSURE FLOW AREA = .r]6. %4 SQUARE FEET FLOW VELOCITY = 17.03 FEET PER SECOND _D VELOCITY HEAD = 4.506 BEND COEFFICIENT(KB) .04% tB_KB(vELOC TY HEAD) .046)*( 4. 50) = -0,S PIPE CONVEYANCE FAC bR 107=1.156 FRICTION; _ E -F) - •s -. .. FR:CTIQN LOSSES = L*SF '•.; 549.82 HBL= i k2E2.306% ;EGL. ( 1226.610 urLOWL.1NE- i 1212.440; r-'RGSS:..±rC: FLOW PROWS r"FROM -WllUr:_..-'549< 62 TO NUDE �_-..-.r.� f�- ^•=1�c::^r.-�`^.�_.._» 5 18 CODE CALCULATE PRESSURE � ".. LJ".._. _..J/e:r-'.. i»iF-�1.'..I V!.% - �'tir1„•i�..,C:.'TIi•-!) . _IPE _ 966.61 _ �.�.-----.-..._r..---.._.�....._.....__-.--....._...._.... LOS'Et,.. METER = 102.00 IN042S ._S:f FEE7 :: iNi'41 IteL7S N = . 4:.1. w:ti1ll_i DEGREES r.., , .....,. �•�i-. l.'1._i:. -- 30-190 t.)EL7 f':Ci.:J MW VELDCZ7V - 17.03 FEET PER SECOND VELOCITY MEAD = 4,1ZE BEND 03EFF:01EX7&Z) -446 HL'1=!'\,:,:•i (VEL>_!L .. : HEAD) = 1 .145)*( 4. ,r',J1;.11,",,.) = .65E r'•. PE Zs_ :jVVA•VCE FAT7% i0721.15E .^R s`.. __ -- • RI ..., ^0.\i ASSES _.. y_T'''.`.SF 402.23)*( M&287) .:.. 2.20''. _ : ._ - t_• Y L. f •(.• KODE ASE -05 . MSL= i ....«..i C�a L.C:.�) ....,:fa_.= t d4:...:rif..te ,...._. y`-...i..,'y�_... ':;"_�• , ._1:'..i.C•. .-_.1,. 022 -MAY VIDE la t" 5 n _ _-. - ._ V i i -1 .I. S_: t \, -' 107.6-1 ----------------------------------------------------------------------------- P7PE -.._ N .._ •- .: •• s _J _ _ 'i I .i � t. I \ .. i ti i�! �:1 • \, ._ r �f.+ 1 t: 9'+:�� RESEORE ''i._.. w AREA = 56.745 SQUARE PEE -7 �. 1 _. -c_.1r _ ~ t.• nEh• D ..._ 4.506 BEND t_,4_E ` . Z ..._I•\. { f'i� r) •'. vl:...._.___ _ ~•Y .,.1) .&4&W ...___1 = . _. _.. 'C: 0.CJ :'L. i t iJ E "5-01 . i�' r 5 - \ ... 1 • " ._ ._. \ 107=003_= '\ .i �, t .. u i_I 4_ •. . . � .-. -1 F' `, ___ ` _. .. ._ _ l ... ,..'• 4. e �I �. .._ "::r vJ fi. _. _._,.: !^ !- �_ .... .._... .. � .t_ �.. ... ... .. i1.. :.Jn i. iti�: _•`-. ... -.==•__.._..'.. y_[_»1L v. 4' t:. ',_.,,_...-. y_ V _1 «� _. .__..:.-� _.. ._ -••M'1LF;. D 1 -ND OCEMA PRESSURE `Lt:W ,_ UNi.'-I ION i'UYCM''_'•L1-;.: USED: DY= ltori_`*VE-la:..' 'V 1' :.o :i'':::_ 1-i! , --i %;;'x'4`,.';*Ct. S (DEL } H3) %4*V4*CDS (DEL i i=4) , t ((i :.i-H;_)*16.1 ) DOWNSTREAM t+Yc"ri%eiL..P4GS N = r 0.4300 UOSTREAK FRICTION S.DPE .00790 DOWNSTREAM FRICTION SLOPE .6003 i-iV,`.`. ^:K : D h' i. l .i ON S"OTE I N JUNCTION [•.L i_IF t ._ .. t::-•;_ . ,t,... -t • ' . _ a t'•,��tJl•I�..., rig:• k•:-+t•:•.� u:.3�\w 1 iON LEi\iGTh (t'E 1 ) ^ 5.00 FRICTION E._liSS -- .040 EVRANCE LOSSES = 0.000 MANHOLE LOSSES 1 S GREATER THAN 1 mLiMFtJJ.. N ML MEN i i M LOSSES MOMENTUM Ult LJSSE .110 M J41" OLE LOSSES '- .225 i� Ir HV � '-r- JUNCTION LOSSES-- •'t'' .i. ^.i'�`a+�=^ (F±; .i. � f z iJIW LrJS.r 1 i- t C.N F E'ii-iNCi LOSSES) jUNCTION LOSSES - 4.379- 4.5 6f .040)+( 0.000) = .265 NODE. 1040.00 . '-il:iL= i ...:'z: f . 444 E � - �%:L'7t_- ( 1C.Ni. i�t:.�r/ ;t',_t.�WL..iRi=:=" t 107.870 -`f'ti=3.3%JRE FLOW h•;iJLE:.?u FROM -KOD._...__"'klL,vlM 00 _:..i� y`-_-__�__..^__'•_.._�::.._...,_._ ME 7 18 CODE 3 jh- S . i":7_.!'^ M :itGDE 1232.37 E....E5• A i i r. N •t;`.���. ,max:.. �- +,..,�-:.__...._......... _+RMSa..i;.G_ +"__O:Y r•Ir-tE^L!i.t`tl':) LOSSES COMA) �^----.......__._._._...._r__..__.._..._...-....._._»-_ PIPE •\ - :? PIPE DIAMETER - 102,00 J. �'4l .1' C. �Z "- :. L:...�h:.".7TV •-• 192.37 FEET MANN: NGS N = .01300 E_r1�PS. ,i -i i.. [••i i'\IE7x_. r. ^ 5. i 1. 0 DEGREES Y.___l.- , MEAD -. M. .w 1 r a.:.w.N5 CjL..." "•'., .w...._X_ . ES_ .'"i l = K P •! . '\% ....... r ..: i ! •i' HEAD) i . 0 C.• 3 j 3; { 4.373) = .2 0, _ _ S .r. G -. _.. ...,.o- E.; , :t1.., \ L wv.J. G ..."^.i } -...,, �i,la>_ - Ott:. � .t.. .� ,... .. .. • PRESSURE ''RESS!. ._, fF-" r Y} ly ..-v:..i TRIN N60..._ ._... e.Le a.. 7 ..... 4.�--I''+`1.ii:......-._=_�_ 1337.E7 ^_._�....C___. _..^ ...-_.-. _.._..... IDE _. .. 1.. w.4 s7 a_ ...+ r x- J i_ _.. ir. •_ _. -" .'i `�,.. �: tr V. r..... Y". � --------------------------------. - -_ _ ...... _... u - _•.. .. = -._. }-. = ..._ _ ---------------_ _.._ ._.. --.._................ A.+ . _.. t .._ -- .i. Et+ :.. i� I .�• a N i_ . E .. PIPE ,_E -_ t i -= 145 -ZZ FEET i+; r�i+li\• i IS;, v 1�5. v 01300 I'w R i_'. 1S S i t E .., a.' .. 1-i -i 4, w•, U-701 MM f 1 L- f' ., : L:. .. .... _. v _e S::• _. _T P%77 •- i"i � t- ` -` : a_ - . . Imo. r n ... _. ' _ ....- t Y ... ... •.: 1 r .. .- * w ...:_i 4 -..._ / ,. i - 4_ ._' L -o 1.. •�.� a r.. ...., ... 1. „=.'w._a �,... ... •_I.. n. V. r_+- ... .. .. � t i .... ... .-/c1..r^_.-=w.~:_._.....µi:.r;-....•A'I'--.n....�...._...�. ....:�=. .. �.'_••.... ... ... ... ... ---------------------------------------------------------------------------- 757 F L.;S rlft% M \!'t_LUL.i, i T LtcL i i' -E ii Ott . 102.00 �; = . 4 5 16 . ;''�J :; i29 ' 2 966.6 i02.00 56.745 17.054 -- 3 13.7 24.00 3.142 4.358 60.1100 0.000 -••M'1LF;. D 1 -ND OCEMA PRESSURE `Lt:W ,_ UNi.'-I ION i'UYCM''_'•L1-;.: USED: DY= ltori_`*VE-la:..' 'V 1' :.o :i'':::_ 1-i! , --i %;;'x'4`,.';*Ct. S (DEL } H3) %4*V4*CDS (DEL i i=4) , t ((i :.i-H;_)*16.1 ) DOWNSTREAM t+Yc"ri%eiL..P4GS N = r 0.4300 UOSTREAK FRICTION S.DPE .00790 DOWNSTREAM FRICTION SLOPE .6003 i-iV,`.`. ^:K : D h' i. l .i ON S"OTE I N JUNCTION [•.L i_IF t ._ .. t::-•;_ . ,t,... -t • ' . _ a t'•,��tJl•I�..., rig:• k•:-+t•:•.� u:.3�\w 1 iON LEi\iGTh (t'E 1 ) ^ 5.00 FRICTION E._liSS -- .040 EVRANCE LOSSES = 0.000 MANHOLE LOSSES 1 S GREATER THAN 1 mLiMFtJJ.. N ML MEN i i M LOSSES MOMENTUM Ult LJSSE .110 M J41" OLE LOSSES '- .225 i� Ir HV � '-r- JUNCTION LOSSES-- •'t'' .i. ^.i'�`a+�=^ (F±; .i. � f z iJIW LrJS.r 1 i- t C.N F E'ii-iNCi LOSSES) jUNCTION LOSSES - 4.379- 4.5 6f .040)+( 0.000) = .265 NODE. 1040.00 . '-il:iL= i ...:'z: f . 444 E � - �%:L'7t_- ( 1C.Ni. i�t:.�r/ ;t',_t.�WL..iRi=:=" t 107.870 -`f'ti=3.3%JRE FLOW h•;iJLE:.?u FROM -KOD._...__"'klL,vlM 00 _:..i� y`-_-__�__..^__'•_.._�::.._...,_._ ME 7 18 CODE 3 jh- S . i":7_.!'^ M :itGDE 1232.37 E....E5• A i i r. N •t;`.���. ,max:.. �- +,..,�-:.__...._......... _+RMSa..i;.G_ +"__O:Y r•Ir-tE^L!i.t`tl':) LOSSES COMA) �^----.......__._._._...._r__..__.._..._...-....._._»-_ PIPE •\ - :? PIPE DIAMETER - 102,00 J. �'4l .1' C. �Z "- :. L:...�h:.".7TV •-• 192.37 FEET MANN: NGS N = .01300 E_r1�PS. ,i -i i.. [••i i'\IE7x_. r. ^ 5. i 1. 0 DEGREES Y.___l.- , MEAD -. M. .w 1 r a.:.w.N5 CjL..." "•'., .w...._X_ . ES_ .'"i l = K P •! . '\% ....... r ..: i ! •i' HEAD) i . 0 C.• 3 j 3; { 4.373) = .2 0, _ _ S .r. G -. _.. ...,.o- E.; , :t1.., \ L wv.J. G ..."^.i } -...,, �i,la>_ - Ott:. � .t.. .� ,... .. .. • PRESSURE ''RESS!. ._, fF-" r Y} ly ..-v:..i TRIN N60..._ ._... e.Le a.. 7 ..... 4.�--I''+`1.ii:......-._=_�_ 1337.E7 ^_._�....C___. _..^ ...-_.-. _.._..... IDE _. .. 1.. w.4 s7 a_ ...+ r x- J i_ _.. ir. •_ _. -" .'i `�,.. �: tr V. r..... Y". � --------------------------------. - -_ _ ...... _... u - _•.. .. = -._. }-. = ..._ _ ---------------_ _.._ ._.. --.._................ A.+ . _.. t .._ -- .i. Et+ :.. i� I .�• a N i_ . E .. PIPE ,_E -_ t i -= 145 -ZZ FEET i+; r�i+li\• i IS;, v 1�5. v 01300 I'w R i_'. 1S S i t E .., a.' .. 1-i -i 4, w•, U-701 MM f 1 L- f' ., : L:. .. .... _. v _e S::• _. _T P%77 •- i"i � t- ` -` : a_ - . . Imo. r n ... _. ' _ ....- t Y ... ... •.: 1 r .. .- * w ...:_i 4 -..._ / ,. i - 4_ ._' L -o 1.. •�.� a r.. ...., ... 1. „=.'w._a �,... ... •_I.. n. V. r_+- ... .. .. � t i .... ... .-/c1..r^_.-=w.~:_._.....µi:.r;-....•A'I'--.n....�...._...�. ....:�=. .. �.'_••.... ... ... ... ... ---------------------------------------------------------------------------- 757 L W 1= . 141 JV tom. t 1q. ZE 1t'» f, 1:113 o. cl. e. . 0 4--li 0. lzlouz-, 0. 01021, 00 01 4 el. e. 0. 00 21. 000 0.000 0.000 5 0.0="=05 EQUALS BAS:N INPUT=== LACPCD AND OCEMA PRESSURE FLOW jJNCTION FORMULAE USED,. Dy=(02*VE-01*V!*COS(DE"TAI)-03*V3*COS(DELTA3)- 04*V4*COS(DELTA4))/((Al+A2)*16,1) UPSTREAM MANNINGS N .01300 DOWNE7REAM MANNINGS N .01%D UPSTREAM FRICTION S"OPE .01092 DOWNSTREAM FRICTION SLOPE 00790 AVERAGED FRICT70N SLOPE IN juNCT:ON ASSUMED AS Oogqi JUNCTION LENGTH(FEET) = 4.67 FRICTION "OSS .044 ENTRANCE LOSSES = 0.0@0 MANHWE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = .004 MANHOLE LOSSES = .219 JUNCTION LOSSES = DY+HVl-HV2+(FRlCTlON LOSS)f(CN TRANCE LOSSES) jUNCI ZON LOSSES = -1.197+ 5.581- 4.379+( .0441+( G.Ow@) - .2613, NODE 1402.34 i HSu= ( 1230.011);EEL= ( 1235.592)!FLOWLINE= 1222.%Z.� PRESSURE FLOW ASSUMPTION USED 70 ADJUST HGL AND EGL "DST PRESSURE HEAD USING SOFFIT CON TRD. NODE 1402.34 c K%= ( 12b0.930)zE@L= ( 1236.5il>:F"0wwjNE= 12LKS30 PRESSURE FLOW PROCESS FROM NOLE 1402.34 TO NODE 1750.63 IS CODE ti=t L. NODE 1750.89 E.EVATION - 1227.67 �.,YCALTILATE PRESSJRE FLOW DIPE-BEND LOSSES(OCEMA): PIPE F.Lb = 952.S2 OFS PIPE DIAMETER = 56-Wi INCHES PIDE LEN37- 346.55 FEE7 MANNINGS N = .013K ZEN7RA, AvS.E = 25,902 DEGREE8 ;RESS-RE F.In AREA = 5Z.266 SnUARE FEET F,D& VZ,CZ:7V = 16.96 FEE7 PER SECOND VE.0=7Y nZAD = 5,581 BELL C1EFFl0:Ex7K% zo-i hB=KBwlVZ.Z1:7V mEAD) .114)*& 5.5%) - .74E TISE CZNWFYAN1E FAC70R 900.764 FR7C71DN S,ZoEkB7j 7K=10% .05SES = "*BF 346.55:*( .010057) 3.60:� NZDF f733.6S I HGL= ( lE35-*6YlESL- % I -------------------------------------------------------------------------- "RESFaRF ;LD- AB5jYPT:ON LBED 71 AujwS7 KGL AWD ES_ DS7 XAETSW�F mEAD wSINS SOPF17 CZkTRD, XIDE T73Z.Eh jE15.&7T,wRA,- PIESEiRE X-D� ;AjIESS FRGM NODF i7SZ.63 T1 NODE 1102,3m IS LITT %mDE 1602,34 E.EVA-11" = 12E6.5'2 ---- 1: 777: -----------:._...'--.y-------------------------------------- 7012-1 F DpY_..._,--.-_.....--.------ cmw'= --DO 57PE-IENLDSKSZCEMA)-� TIPE 71z- = 032.9E crs Y7PZ DoPXE7Z& = 07PE ENG7- 5L.Ll PEE- CFx7;A, aL. K4 DEDREE_­-, 0 ;TESSLAF AREP sajo"F 0.10 = I 7TR -RA: 5.311 BEZ ..... �.........- ._L.T , ..­, IHVL+i- J.(7+L+Lr L+H• i Li 0-ULj= NODE.)yi,•, !'� E 1812.34 8 UPSTREAM Epr� 1 G. 3`:' L... -c VIFa i i Oi.S -` a ,=L.Lit L. LACFCD AND OCEMA PRESSURE w JUNCTION r=ORMuLkE USED: :..._L+(D_.L r .L) ' .. Lv V ,:r'14'1rL;5 1DG• . f A,:a.1 - UPSTREAM MFiNN ). i\ GS N .= .01300 DOWNSTREAM j � L. M Y.1 •.+i. Vti�,Ll DOWNSTREAM t" f.> I C i i ON SLOPE -- .0!092 AVERAGED r' Fi,:. C'.+.L [.il+ SLOPE -',:.:. I N ..) UNC i • 1,,,1(1; F.i:?J-.i1'. .i.; AS . Q 0ZQt EN7Rf=1NCE LOSSES = 0,000 14 11. JL9fu_:`7 ON LOSSES = DY•4KV1-HV2`-(FRlCTZ(•N i-i._SS)f&E` 7iihtNCE u LOSSES) .. ti±y.TION .L:]ES = 1.648+ 4.Ci3- 5.r8.+( LC0)f{ &titi }= .8:.; - NODE ms.1`ODE 1V1L.3`i• . i i{. L= ( 1 L::3 9. illi_ 2) ; -_??..'_• ` 1 243- C:iE,..+? e ` _Oir4L s - E= ( 1226.750, -750 .. - _ j - _"• 1812.34 1^1.., NODE 5647.61 1 = l..�J.. E i_r-1847.61 - L "CEI" M NODE 18 r•'. 6.i. C.LEVATm r• - i229.03 -`_.-_._._.�......._..........._._-.--.-_..----..........__..__...--•-__....._.�..r,_--.....----__.....-_._..,....._._ .-_-..--_..--. S-A i CUL_1'• TE F•1RE U :_r ^-i..LW i 1 i P -i' END i..O L,.� ES t4JCL'M . PXE ' 4 35.37 FEETi}I1'-Itb . a Ni:l.:: 1\ . 01 3 ol[+ CEN7'.CAL F•,ii4.:7..._ ..- E2.000 DEi1t?`.ES t PhCESS iRE . ,ow AREA = 50.266 SGjARE • Li_- , .EP .f) - , . Jy _ .�• i - x a L:. s- n., PX.... -..:I° E Y. ,NZE . pz^ i.,!! - -' '7.. EZ. r C!4 r ii .. ... . .t aN w1i.-:JP:.:". . _.. . '^ n •.'5.-_. 16 -7 -El . ,._ !E _. :i J. !) uC_!.'.,= .L L:44. 5L',0; &1-1✓'Vt•t-.. DIE .. 1 1•. __ _.. EEO. ..._ L•+ -_._._-r F -..._.-;.:'i:.= _ . -.moi,. ,.._.N�...710m i...' _.C25.,. -.-.____..._..._.-,........_--.._......._._._._.._.... 112 D:Q�E_E7 AREA V2=77! is . r . - - _ �Y. o 5KEES i . I.� :: 1� `' ' ..- «• 1.06 QTQ 0.011 -..»... - I - - - - _ - �_n TIT: 0 co 11 NO. DISCHARGE D I.F- METER F=1REA VELOCITY DELTA Hv : 6. OZ 50.266 17.292 G. 366 4.643 1.:. _ 952. .i �� J. x.10 L-0. 266 Vii. t ..:0 9 83.7 42.00 9.621 8.705 50.636 - 4 0. el 171. CQ1, 21. 000 0000 0.000 - LACFCD AND OCEMA PRESSURE w JUNCTION r=ORMuLkE USED: :..._L+(D_.L r .L) ' .. Lv V ,:r'14'1rL;5 1DG• . f A,:a.1 - UPSTREAM MFiNN ). i\ GS N .= .01300 DOWNSTREAM j � L. M Y.1 •.+i. Vti�,Ll DOWNSTREAM t" f.> I C i i ON SLOPE -- .0!092 AVERAGED r' Fi,:. C'.+.L [.il+ SLOPE -',:.:. I N ..) UNC i • 1,,,1(1; F.i:?J-.i1'. .i.; AS . Q 0ZQt EN7Rf=1NCE LOSSES = 0,000 14 11. JL9fu_:`7 ON LOSSES = DY•4KV1-HV2`-(FRlCTZ(•N i-i._SS)f&E` 7iihtNCE u LOSSES) .. ti±y.TION .L:]ES = 1.648+ 4.Ci3- 5.r8.+( LC0)f{ &titi }= .8:.; - NODE ms.1`ODE 1V1L.3`i• . i i{. L= ( 1 L::3 9. illi_ 2) ; -_??..'_• ` 1 243- C:iE,..+? e ` _Oir4L s - E= ( 1226.750, -750 .. - _ j - _"• 1812.34 1^1.., NODE 5647.61 1 = l..�J.. E i_r-1847.61 - L "CEI" M NODE 18 r•'. 6.i. C.LEVATm r• - i229.03 -`_.-_._._.�......._..........._._-.--.-_..----..........__..__...--•-__....._.�..r,_--.....----__.....-_._..,....._._ .-_-..--_..--. S-A i CUL_1'• TE F•1RE U :_r ^-i..LW i 1 i P -i' END i..O L,.� ES t4JCL'M . PXE ' 4 35.37 FEETi}I1'-Itb . a Ni:l.:: 1\ . 01 3 ol[+ CEN7'.CAL F•,ii4.:7..._ ..- E2.000 DEi1t?`.ES t PhCESS iRE . ,ow AREA = 50.266 SGjARE • Li_- , .EP .f) - , . Jy _ .�• i - x a L:. s- n., PX.... -..:I° E Y. ,NZE . pz^ i.,!! - -' '7.. EZ. r C!4 r ii .. ... . .t aN w1i.-:JP:.:". . _.. . '^ n •.'5.-_. 16 -7 -El . ,._ !E _. :i J. !) uC_!.'.,= .L L:44. 5L',0; &1-1✓'Vt•t-.. DIE .. 1 1•. __ _.. EEO. ..._ L•+ -_._._-r F -..._.-;.:'i:.= _ . -.moi,. ,.._.N�...710m i...' _.C25.,. -.-.____..._..._.-,........_--.._......._._._._.._.... 112 D:Q�E_E7 AREA V2=77! is . r . - - _ �Y. o 5KEES i . I.� :: 1� `' ' ..- «• 1.06 QTQ 0.011 -..»... - I - - - - _ - �_n TIT: 0 co 11 MANHOLE LOSSES GREATER A';LMr:DN MOMENTUM LOSSES M L`;tiNN _ LOSSES .126 !'ll -til: ii.1... !"` LOSSES J l.�i� C i.. N L�.Jj�iE J�`'_ HY .. _:v EN 4 n—• _. _,.. ,-• _ _ 1 RANCE i _ . .JUNCTION LOSSES = • e_` . 4. 516- i . 643+ 0,00Z) NODE .kYt)tiW)E1847.61 = . i •�r ;:; 18 f.61 ii .1.^L^ E 1��4•a C.'.-�3.< •- w <_ -4_7«.. i..+• E. �1!Llr / �I"i..t.iV��..l.!'ti!�= \ aC.::.'....li:�t!�,\ F-'Kt_S;...iRL !'-ti-L;vr r-':;+JZESSNr=RLM—NODE s~i. Gi TO N OD._«_.�1,=73�.•_ 1847. NODE 1853.85 E=.i:: is 8 --- .'• w ., .40 rR;_�-!:FLOW ~ _—r.._—__--__—_—_. — ` ` r._—L`\u L=�SEStOC_rAr _--.r—.._"_vFL4JLAT_ E FLON = 857.40 CFS PIPE DIAMETER iC•.l.l J. �l •- PIPE LENGTH 46.24 ..-lir ibl�i"'.i��.! '.. 1. ... . E - CENTRAL ANKE = 29.05Z DEGREES PRESS(LRE ._iJva r•i:��.l'--i - =.10. L:L66 ...•�-s:�.. AR=. ___ .. =`i _CJ 1h YEi... OW .L N~Y _. 17.06 !ter,. 1 Py_ SECOND - ~ Y 4.5;6 &I .L_. .EF r11'rL*(V�__0l7j r_t_) r+0 ."022i _ .140t. 4.5 .10 PIPE CONVEYANCE F -_70R — " :.E0.764 FRICTION R07114 � i •_ S.O-isE �Z08637,*' 4 y3, .. _rS_-S — *SP .a __ 4E.24)*(.0068270) NODE V _... 1 _.__"�J r..Ct. %t., .��Ji._- � Z!".usl. vy1 �`! 4r••t...CJ%h'L.. J. i•i ._— \ ... _..... ./r r4:.'... i...I-..=LrSURE ._.l_K PROCESS _'^•_M !\'..;:.;C— 1693.85 1O!\<•J1.!E^_.1.-.,G•4::.3i!::.i4w1.=-C•:.._�._.-.......�:...:.._ :_.. ! a.1, �tC! m NODE ------------------------------------------------------------------------------ 1SE0,.. B —.-..�VA, 13N — 1229,S3 - �-... 55 r -:•"I _`N —S_1 •_..y.t.1'tt-.A,WD.1 L •— 657.41 • FS •_ PE Y, ,�r!ir�r-ice— ... B6.00 r i_•. I.G_.'.` �Lr!-:.'... _ !^'._1"li i__, .. .... r� .._ _ - .. .,.. . ! ?'fi: ,.,.. —• 1 157.40)/. 9 2 (64: Y7. 2 ._ n : ^- L,: 1- C. C. CAL-C"l_�LA7E %j I N I Q %4, IN iZ � J—.,,. A FR 1A V EL 03 L 85578 4 .JGa 0, E. 17. C.Z.7 7. A i;) Up A+ C, 117, ,—..z 7: N IV.. j: ri Li V, —"m 7 vil- + `2 k � t—, , - C:.. I" I, C- :- Z V� i %,C' i M k I 2,1Z. V 7— E, r±e L" El� z, r 7 Z, p L —.0 '71 7 s -i IJ L. 7. 7 R1= 4. 30-7-3 7 4 6, 0 i2l Q) 0 171 SLS. 000 ERP—S.. AlN-PLJT=== JUNCTION FCJR(fijj!—P;= SED A P RE 8 S "i R E F —Q3*V3*COS MEELTA3) — 0 Vi - - . n %" I L Uj I % L_ L_ I %I %Zj I -I % I- M � I i = D. Vi I-KiUIIDN LOSS .014 ENTRANCE LOSSES = 0. 000 MANHOLE "OSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUN LOSSES = Oss MANHOLE LOSSES = .219 jUNCTION LOGSZ3 = Dy+HV!-"V2+(PR1CT1GN LOSS)+(ENTRANLE LOSSES) jUNCTION LOSSES = -13S+ 4-303- 4.374n( .014)+( 0000) N-ODE 2256.70 !247.!6S);EGw= ( !25!.472>;FLOwL1NE= .232, < 1233.e7o', PRESSURE F_GW PROCESS FROM NODE 2213.70 To my-'O r22y2.,o IS CODE 3 UPSTREAM NODE S232.00 ELEVATION = 1234.63 ---------------------------------------------------------------------------- CALCULATE PRESSJRS FLOW 0:PZ-SEND LOSSES(GCEMA)4 0PE FLOW = 733.45 CFE PIPE DIAM2TER = 50,00 iNCHEs PIPE LE137H 33.3Z FE27 MANNINGS N = CEN7RA. ANDLE = 0,aK 0Z3RZZ3 PRESSURE F-OW AREA = 44.175 MARE FEE7 FLOW VE"OC17Y = 16.63 FE17 PER SECOND VE-OC HEAD - 4,3Z3 BEND COZ7FICIENT(it) .1213 HB=KBx(VELGCZTv HEAD) -QJ*1 4.303) = .50-1 PIPE CONVEYANCE FACTER 7676.797 FRjT77L% 8_00ECSF) FRIC713N -DESES = L*BF 23.30)*( .0091712) .30a. NODE 2232-ZO HGL= C 1247.S9Gx;HG"= 1±34.E3b'' PRESSiTE "LEN PROZEES FROM NJDE 2232.00 TO NODE EN91.0Z 18 Z6DE L2PE7REAX NZDE 2292,OZ ELEVA71D% 12Z4.63 ---------------------------------------------------------------------------- ;RKS5wF2 T_Z& j_NC 7114 "ZZEES; DIAME7EX PREA VE-0=7V DE.TA ­105 sz.zz 4,,179 1E.E67 725.E SZ.ZZ 1S.647 1E.Z 13.ZC Z.Eac 76.30J Liz Kos 0.z3z &COT 2.300 ::Fnx TREK.TZ ".I, jjvw"!Z. pszn-.Z wszor. -;ZTTEA �30 Z'- 061 ZBE c2ETF ^...:ESE ZaE&- ZETLI 11 -DEERE ZZE LEla.11 I I.- vw"uQ_.v MMHU = 4.111 B=ND GIEFFICIENT(KY = .0616 hB=KB*(VE4aCl7Y READ) = i x ZBQ*(KIM •_..33E, PME CCNVEYA%IE FRO -OR = 7676.7;7 FR:CTZCN B,2MEM C06730' FR:C7!CN LOSSES = L*SF - I 15 MW - ME :\ODE 2327.Oa PRESSURE FLII PROC282 FROn 430S 2202.M 70 NODE M7.60 :8 CZ,E UPSTREAm NDE E46 O7.S3 E.EVATIZN = 1240.0i ----------------------------------------------------------------------------- CA-Cjl=E PRESSuRE FoOn FQC7:Z& LOSSES(LACTOD)t PIPE F.0W = 713.53 ZF3 PIPE MAIWER = SZ.wZ ZoMM., PIPE LENGTH 254.56 FEET MANNINGS N = 013oz 57=01KI7F7ri:.: (( 7!S.53;/( 7670797M*2 = .008760-.3 n7=!*sF = C 254.500 - .0067803) 02M) NME 2467.10 ; 40,= ( =5V.126QESL= ( =55.240t7.1".l%Z= PREESURE FLMN PR3:ES8 7RUK ACLI EAm7.nZ 70 %ola 24va.Qmoi M KnE &PE7RHAN xZDE E%K.47 !.EVA710% = -------------------------------------------------------------------------------------- ZQ.MLXM TRESSIRE r,Z^ Mno, PME P.1w = 71s.nz GFE NPE MAKE -ER 50,00 nZsES PREBBURE F -W AREA = 40.71 EQLARE FCZ7 FW" VELEI17Y = pZ27 1» •- EECDN�*t VE,1_.::7V mEAD = MEUDIVY &FAY ZQ 'EDE ENS2.07 A2s!.zM;E2,= F" p"J" FRZA %jW EAER-47 71 nME W77.33 71 LOD: VZOT M77,EV EnEXMq - 124E,M ------------------------------------------------- 77:z 7-11 7-h5Z WE Sv, Zj 2 � = 713.ZO77k 7G7E.7T7KwvZ = Q0176M c VjEP-=Z 1: WTZ -C ZA 77. BT L20 -M 70 -OF-REA MF ETW.il L�Tox-:.. - 121: ------------------------------------------------------------- -E ", -:_�-177:n 5SQ--;, ------- ..InZKY- ZZ.7; Z7Z., vo.cl 7. E. -nby j 5:, 'i" .nj N 1 i J N C T 10 r" zl'y-riv L L.-DISS-1 4. No" "a CIS. 3 7A-. i7+~.% 3i—_,: -7 7 7 40 EL V P-* -- - L 0 SE E S 1% L A CF.' %CD) 67 4. EIAMETER 3C. t. 7 4 S 7 517 0 0 7 7 2 S 0 C_4 C:. if b 2 2-3 31 7-f. 4-0. "Ci N-jF)EE 7 '-.3. 0 C' _-,.I -7c". 0 7 E' (71 -J--:�= - : IM" 0 L L 0 CE E- S (L A6 -,'F CZ 67-4. '3`5! C;Z5 •E D A Yi -7 ER' 44. I -I' FEE - 2i: 3. CE " -� V=I S E. Z _2E L C WL 1 F. Z.- Z 1.--1-•• 2-'- -77 4 71 El E, L i "-t r"7 i ' L H *l ii JL) E zA.i a ti 3 � L. � .Y t' i i- L. ES I .J h VEL —C, a% i+el `•• .J .7. E. T 46.?tl.+ il�.a E�+�• .4 I• Od. I 2-8• Y•!CJ (+ �F Vda k�i iG . ij;Ot ilia 00. L7 off 1N slt lPU I _ _.,_.. tilt^`!';'+G. J: -{rte t`'L.,!Uii �i l..•-? ,�?J %�I �'sJ �r�:'ZU L,_hi lam.. Jar: 1.J a _) i•- l L.•:+. Yf V L_"u': T' V a. '>`: i .vii L}�.i- Yi 1. I �'i:. r:r'. 41 '1` L.. �j::! t L� L -i A".7. a i.: •ii• Y li•' ' iC, 0.L.; aJ �!W �ti� Tti: s tti ,i: F.•: �Vi ,.i. i�:� �:. _, a a, 1. i'':_i'r4�h: r f'f .. .� _�' •"� .� '-^ „ 40['i'8 v j_i;_i1J:4.^� 1-1�11`i .r.----'.L_�%+ .`T.._.L:'-'!!�. -^• a l�.t�+'�; Y„ r"^. L?E.., t" 1'.�t_• 1.: •'y -Li.. c..l''':' ..;i ,i;iti i. __ ! L: itH p': �'�.�J��il`_.,� i-: •L.o • lf-!t(jill%t ..i hiedV i .L ?,_i iti ,'H { .,. il'a ti - _. ,� '...L` - -! Ei ...RP.N,c=. E-SE_S_ - Vin OQ'i . J i.f.\ju,. 1 L_I?�a l._1i:,5. {y ^- ir' , f Y! i. V% -F. � r C .L vT _ L,i(e L. � ti '---a ,• - ' -.!•'; ".. _'.. h1•' y .L •r «,..H•:.i r.� "1" li�i4 TH!11 y,r v.i.r •:3 i,::tl ✓4+- .!a E_G'f-+ 4 aozc3 i Via i�.lej a ,�'-' vLr��� . e'ii .v' 1 n '-i+�= C .t �_i�, i. !,tY•(i 7 v %-LiH_ j,12 k _)a `.i..Jt1 J _r ( ``` __• r-."{E,...SLtCE -..�._..... , . ..1_: 3461a ...J. .... TO ...._N OT)E._._..,____r._.�_..�_........�__•��____:.:....-...�___.._. ti• (_•)f t Y.� a !L` a. ! ..... Lr •_t a.J ,._ _•' �. 1.! {`. i"_!7r 'Mw L%>ti u:.l r-i'r_"✓a 1.7.._ ELCV(moi i II !M '- 1254a lL....f C.t�L.ii..)f:L`- % ice, v r' : ''i .... ._ ... , _ .._ ... _. L ._- .__'i'• t a. i. .. _.Gin ....... '}: � n :(::moi LY:=s _} s. ^ '! - n iJ i .. _. ^i i_.� __.. ^•4 moi._. 1-•- a.:..._ _ :.:.. _. _, .r;: � �.l lt'-.v✓ ... _+;`ti _..«i .ACL._ : ... �_._._ __ ...__.. _..... _....._.._...__..... ._-. _ .: ,.. _ �i r. I ::� Kr n 'e'♦ ... �I ^y' R ... i.� __ a t::r r »�i n 7 _r •.., :... i_ a e,:� r.- i r, •... .. _ 1, _f � L-' ,... a ti _ •. � Ll :f .r. r " ••_ +YJ F! in 4WlNt_iliN i_UNU:E = DT'HVl- +V=fw(_R.: IItN L ai) -(= 1RA 14 _ LOSSES) j,4 1OLJo:CS - .`- 2.116- 2.290+( .Y_.)-( i000) _ . .58 NULC :601a05 . rG_ t '!x u Li.iWf... IMC.•= ( i254.690) PRESSURE FLOW NODE _ PROCESS NODE .:ICJ 4:'.0.0 TO NODE 363S.83 1 L} -L•t.. D -_ U T REAM NODEt�636. 69 ELEVATION = !255.26 CALCULATE 1�"dl��.�vJG{G--------------------------------------------------------------- �vYtl1-'irr; PIPE -SEND ' PIPE FLOW _' } _ _ LENGTH _ {_ = 515.71 CIS PIPE �' 1. 1'••I:Tit 7 E ff " •x-'iti7a �L%tL� INCHES �:E.l�iTiii=i! . _38.64_�-E ;�'i�=li'+iit i h;;�E N - . 4r:. �•iT.�t1! r- t=1NVi._.C. 16-100 v5_GR'LC.J PRESSURE FLOW i=1REA = 44.179 SGitjANE FEET F LL•w VELOCITY = .1 r 67 -EE SECOND ' P • w. tS ,.7 VELOCITY HE<-iD = 2.116 1 t{C.ND COEFFICIENT(KB) _ 1057 ICONVEYANCE ;: Y Imo•) c.. a. a. F:r % - �.2 �; - _ _7676.757 F Plt i C_i y S..ItV t�LLir L L <t�, f` . - NODE 3638-69 . .h L= f 1265- 4!0`:i gES,= ( 1 267. i20 y! 0OWLINE= l 0�Li�7 .. «if . �) •••+rr 1855.2601 - PRESSURE -.LW PROCESS iiU74 rmE^ 3638-83 ..::._.-.�O.:_NODE 4021-17 0 Lr1:f:_..=18.--=C=D=EUPSTREAM NODE 4021.17 ELEVATION = r.:=......_..-..__.._..._. -- 1258.93 CF3 P ;r�L���L� I L' PRESSUREPRESSURE_U4d FRICTION ._._ '.- '=L' -i -_;....._.._-._--......_.__-.r........._....---...r.---•----____.. FLOW 515. ! 1. PE DIAMER 5 ,• = . PIP 10-00 -,0 ..:, ,E... PIPE lIPE LENGTH I -- 382.28 FEET Mr=iitifM I NGS N = .01300 _ ;515.71)/t f E 1 8 . Ir'9 f i i; * �' _- 't 510.5 =6 BF - ._•i:.'2. G moi) * ( . �e 0 �5.t.05) = ` .724 NODE 02l . 11 . "-eGi._.--"' t .. LLJL•a ! Lam! CG' 468r Le +'1'14-1 . T;...CJWL.1 Ni=.'- • 25tii. ::7.:r'Y. i ----------------------------------------------------------------------------- .. 515.7 .., t_�../ •,.. + 50.266 _ 0 . 4:. "..: Z �. ' a �(�,£.• ... 14-'34 __ 5:5.7 ?•<.... 3 _ 44.05 w. . Rte•' __ r _..... x_. � .. I. Kol Kozo s:o 0a 0K. ti• 0.0 Z.03 G, Q IrY../ 0. V:q-•'G. Kozo .. A1 _ ...... AZ - E A . .E•wi:.✓5_ w.bd !an: -:ON Y• -- P{•Y O._.J E BED, ..'Y- .L:�.. ;»i::L-U... -• a.x'0`:..r_. <i!C._.yh•� J "`'.✓.�i:�•.'S:,To..� i� : - .r) _. 1.r it ,.. � I••i.._ - � •u; \,.'.`N. ". ._. � ._ . L' C.. r_ ^� F•i •'- i i t i i^: _. R.. �-� �) 'ii' .i iw, . ,_r �J fh� � V Q l I'f =-i.': r !-....._ - : 5_ t.x y_ _ - c , ! o a :.. ES __ ._ c _. - ..x =t_ : ._ w _r ...... • �. t- 1 .,SJ �._ . _ - t n, ...._ .._ E x. «.. . .._ S _. 5. -' 7S, .. 63*- __. 11 ...." 5 L: _ i,•'.. i�ji H:.�, - .r � ,._ UPSTREAM NODE 4317.35 ELEVAMN = 1261.77 CALCULATE PRESSURE FLOW FRICTION i,..i:;S�)E' CI._M,..^Li1).��_.���........._..�__�.........._`. _..^. _........ __._...« PIPE FLOW = 515.71 CF8 PIPE DIAMETER - 16-00 14C4ES PIPE i.CNC:rT i = 291.7Z FEET iY;ANN I NGS N ... a 01 300 Si = (Or/K)•JF'D4S_ -- L l 515.71)/( 9120. i•C_•4) ) **2 = . 0031'}: z 1 NODE 4317.35 o` f"SL= ( 1 268. 266)`. CGS= \ 1263. 9 Gl • , ,. f; Lr' -Ji T 1- 1261.770) ------------------------------------------------------------------------------------- PRESSURE FLOW F=1SSUM 7 :DN USED O !-'IMUST C'it:il.., AND EEL. LOST 'PRESSURE HEAD USING ,SOF 1 . CONTROL = 7 i.504 NODE 4317.35 . k" Go i +: E �. i -'ti � `. CI L= � i 2 i ... 'i'¢.I5) i FL_LIWLl lei." (!2Q.770 P"fiCsti„wUfiC t-LOVM 103CCSti FROM YN`i•_-...._..4317.j5 TO '''31/.j5.t,! NODE�.c,...��;•-_.Crj'';::::::_._`..�._.=...._....-. ODE 5 ------------------------------------------------------------------------------- CALOdUATE PRESSURE F"OW JUNCTION LOSSES: Nn. D::_It.✓i-PRSE DIFiM{`"IER AREA VELOCITY DELTA by 1 504.1 96.00 50.266 10.029 0.000 1.562: z 515.7 16.00 50.266 10.260 111.6 21.00 2.405 405 4. 814 90.000 A O '` r . Z 71.4� 0.0 1 _ 4.til0 Yi e 0.000 0.000 �5 0.0===U5 J E«>:fJi^t_.W SF-t;:✓1i•L INPUT=== AND OCEMA --" _ �• U44 _T".vi�W rCi:iliJLi-;c. USED:illi (G:2'>'', VE Q".'f.-+V «. *i_+L..IS fi. EL i AI / '0v'*'Y3.*C °.E ~P- __ '-I•`'Y''k''V`+•+:•,...O'_ (..'Fi_ A4) ) { . (r.i-i'i'fl_.)9'..1':1. 1 r i' DOWNSTREAM IYt!^INN 1 N&LS ill = .0130e. A V Cfii- S ?! i R... T 7 3N MTE X :.. L+i1iIT x O N ASKMED I'1+:S r M 1 _. - �" r _ - ^_ 1.75 f ... l_ 1 .i. _ii,\ _.i..: �: i."� n •'_ til t:••`.. LZESES _ _ -"' :FrS -i ,_ii^, •(�i..i"V Yi 6.1 I'tE iL �,..i;Y: i_Li ��,:.+l:.. i_• L3=Bi+1.CiV7RQ %; ,w,•.:'•h+( .005)+( 3a Iii :Ili ! Z;-;.. 10 umz c --------------------------------------------------------------------------- QREasm 7.31 77:C711, .- .. I'• ._ .._. .. .. S 4 ,. . ti. CRT P02 2 D I A ';:' ,-• - ( v. 1 SCJ. ti4;0 Zlet . Cf bb 'J, . 4 7 1 1.393 2 504.1 9G.00 30.266 10.029 1.562 3 28.0 30.00 4.909 5.712 45.000 -- 4 0. 0 oll. 010 0, . ol 0.1 14) 0. 0210 0. 5 0.0===05 EQUALS B;4iS:i,� iNPUT=== LACFf--;D AND GOEMA P-'RESSURE FLOW jUNCTION FORMJLAE USED. Dy=(02*V2-01*1I*COS(7ELTAI)-93*V3*CDS(DELTPZ)- 04*V4*CDS(DELTA4))/((AI+p2)*16.1) UPST:RE,.4!',,I' t,14-,iNINGS .013012,, DOWNSTREAM MANNINgS N .01300 UPSTREAM FRICTION SLOPE -00272 DOWNSTREAM FRICTILN SLOPE = .00306 AVERAGED FRICTION SLOPE !N JiNCTION ASSUMED AS 00203 jUNC710N LENSTm(FEE7) = 5.50 FRICTION LOSS .04, ENTRANCE LOSSES = 0,000 jUNCTION LOSSES - DY+HVi-hV2w(=RlCTION LOSS)+(ENTRANCE LOSSES) jUNCTION LOSSES = .268f 1.393- 1.562+( 016)+( O,OOZ) , NODE 4450.00 1 HGL= ( 1271.28K;EBo= ( 1272.677);F.DWLINE= .113 ( 1263,60/ PRESSURE F"OW PROCESS FROM NODE 4450.00 TO NODE 4677.67 IS CODE UP27REAM NODE 4877.67 ELEVA71UN = 1264.94 ----------------------------------------------------------------------------- PRESSURE FLOW FRI0710N "OSSES(LACFCD)-. KIE476.09 CAB PIPE DIAMETER = 96.ZO KCHES r'_ _^ "EN37H = wE7.E7 FEE7 MANNINGS: N = 01300 ST=cQ/x)**2 = 4( 47E.09)/( 9120.764))**2 = .0027247 iKF==.*6F = ( 427.67)*( =27247) = 1 . 1 6r,,, NODE 4677.&7 ; HK= ( 1272.A*9T;ESL= < 1273.S42);FL00.1NE= ( 1264.S"0 ------------------------------------------------------------------------------- TRESSIRE F-35 ASSUMP7104 USED TO AjjbS7 H6L AND EG,... WST PRASSURE HEAD US00 SOFF:T CON7RDL - .4, NODE *677.67 : HGL= ( 1272.940);E31- ( !27*.323)&wGW!:NE= C 0S4. :%y..(:,:. Z'RESWE F.Zw PROCESS FROM WE 4877.67 Tice NODE 4682.34 :E CODE UPS7REA, N:DE 4ELE,34 ELEVA-lD% - 1264.96 ----------------------------------------------------------------------------- CALEd,A7E PREBSjtE FLDW MANaDnE -0S3EE(LACFCD)L PZPE F.00 = 476.03 CF5 PIPE DIAMETER 91,Zo jNCKES SGUARE "EY" 7-04 VE.TZ:7Y 5.47 FEE7 PER SECCND VE"DZT-Y WEAD -Z5�fVEw01:7Y HEAD) ARD"FoS "or "W" kDVE Y&S.74 W CODE ------------------------------------------------------------------------------- IWI.A7E 211%oRE =,I- 74:1-jDA ;:PE 0-051 :FE �7hz KAZE7E7 L7. "I n"Nx:x!6 n 47G.0011 E7.o0of .307P47; .17.--. �',.I-•16..1..iJLI-f^..., PRESSURE FLOW , 11"`t«,^ 'C:�� D r..��:J'�ii:_S ({..+�.rC.i� A) . � _ - PIPE FLOW= 476.03 O .` PIPE DIAMETER = 96.00 INCHES PIPE LENGTH = 135.42 FEET MANNZNGS N Z1300 y CEN i RPL ANDLE = 55.410 LlC.l3rit_."".;, 1 446.0 73.00 00 0. 666 14.517 PRESSURE FLOW AREA 26C1 Str:JYlri,:.. ter_,; 2 476.1 •."'tr 6M 50.266 9.472 FLOW VELOC17Y = 9.47 FEET PER SECOND 90. 000 VELOCITY i 7i HEAD = 1.393 BEND COEFFICIENT(KB) _. .2032 _ i'••Y,C1= KB* (VELOCITY i'iC,M-D) .203)*( 1.,_93) ^ .263 LAi.:r^i_D AND i.:•_C:MA PRESSuRE FLOW ;�t�Ii._• JTION i'iJ'��•���1>_.JL,!-•E USED. PIPE CONVEYANCE FACTOR 9120.764 ` .0327247 FRICTION LDLs'.- = w*8 _ { 135.42)*( .0027247) = .36'':3 01300, NODE 5045.16 1 GL= i 1273. 136> J1_..G= t 1275. 123% O ' T _,. ( 1265.660 r''";.-S}^'t.iK;:="_ i•_i.iV: i-`i'{:+CE::5S f",:v•ii iM?O1%E 5045.1E TO NODE ._.�5..',,-.5'r..-..,.==CODE ,-......._�...__._. U1 -....TRE Y. NODE 5050. .,.F.F ELEVATION = 1267.43 ---------------------------------------------------------------------------- Nu. LiISC`^i-tRis_. DIAMETER AREA VELOCITY 'Y ' 1 446.0 73.00 00 0. 666 14.517 0.000 3.202' 2 476.1 •."'tr 6M 50.266 9.472 22.S ZE.00 _E.00 7.065 4.230 90. 000 4 2i. k+ 1. 00 iLr. 0eQ) 01. COO 21. izI;: k+ _ LAi.:r^i_D AND i.:•_C:MA PRESSuRE FLOW ;�t�Ii._• JTION i'iJ'��•���1>_.JL,!-•E USED. �t:�. DW=l*VE-6:�_�•tV!*C1_.iSCD L1Aii-MZ*V3*COS(DE1A3) L. Do*V4*t:"DS (WJE _. 'Pej ) i ( (P; +AE) *16, I ) 01300, DOWNSTREAM 9ANKNOS N .03z;2 -i. i H'b E N,P _D ; , . = I D,\: S_XE E ,_ _'r• 0 , ,. a AS&-,- _D AS j=7:0% LH;t6 , .F E .) = 5.1c : l0% LOSE - .00D -OSSES E,._ ^` D 1 , .Vs-HV2y,. (" Rd. ._ I 1i..s!Y L.+_a_,_. ) tet` { ".\.+, :Rr 1:._.rE L_.._.sEE". J t �• , 4 u. ._ ... , ._.._ ._ E E ._ •._ .. u a._ .- �.; i- 3.262- 1.3%1, .;.t,^:.1 " . .... _ . "- u , 5:,. .l ZDE .JZti "L'•. .a 6 a r.,._ lt,,... 5 .....`.Tr g M._+:.Ji..__' i 1 E i ,.JY & _. d, % i W L yw = ; n _ i- ......:_i•C _.. .�. F - OK ri'_r,'7%L.i. ,- n. ..r ••u ..:�F:�.�.i TL, h"i.aaJ no" !`5t�`:a./ ^:J:_-.,._.....�__.__�..._.-.._._.__........._..._....^._..____. t�--t2�:1^ ,._�JJ ,~ F=,.E_.SO a•._ , �_i- N _l_:iS >_ ...ii F s_. �_4. i•R•D" 1.15 V' -DE 5050-:5 0 0...= r. .1 _.. .,. ,... v.. C:r :. ..•! y .:L`�.=' \ .. �:. �Ci. :j,:.. �.. ,y r':._ta vw�., �4� "'•• � .. ���t r. PRESSURE PIPE -FLOW HVDRAULIES COMPUTER PROGRAM PACKAGE (Reference: LAC FD.LACRD,& DOEMA HYDRAULICS CRITERION) (C) Copyright !SEE %vanced Enp).nee-Iring Software CAES3 Esoecially p-emared for: HALL It FOREMAN, W. **********DESCRIPTION OF * 1NDUSMAL AREA LINE L HYDRAULICS * 025- ' lZ0 YR FROM 412.75 TO 480.25 THEN Q 25 FROM 4W.RS To 5050.16 * VR,Klll.i,j,JN11 300-04, liIL0187, DISK 4 J 4 + N3TE: 27EADY FLDW HYURAULIC HEAD -LOIS COMPUTATIONS BASED ON ThE MOS7 CONSERVATIVE FORMULAE FROM THE CJRREWT LACRDILACFCD, AND OCEMA DEEWN MANUP"S. DOWNE-REAX PRESSWRE TIPE MW CON-ROL DATA: N= NjIBER = 412.75 F1_OWLINE E�_EVATIDN P:PE DIANWERW04) = jIC: 8,0Z PIPE F"DWWS) ASS -ZED D=67%kl CGW-R3, so, 121S.710 E,inuering Software :AEG:, SEW" su, 00483P REV. &Z RELEASE 5H7012/1702 I PKEEXE F.06 PROZEES 412.15 70 hObE she -LE is 00�E jPE7REP! NIDE 42&W E.EVA713% = 1111,00 CA�01.A_E PAW%hE p.m. jjNz7:5N 388ES. ::S:nQFEE D:A0 Es q;E9 VELOC17Y 1E.7A _=E&S ZOE= 5E.745 17.Cly 1�0&z QL.vj &ZE:7 �0662 50.1 3-.20 10SOA Q.ETE 4. 50E UPSTREAM MANNINOS 'u = .01300 i3�i-JWNS } RE M fY11=iN I NSS 4 - .01300 STREAM FRICTION SWOPE 813 DOWNSTREAM FRICTION SL_`��, -'E -_ .ri1rV' 06 s AVERAGED FRICTION s.r ... L.!"''E TN juNC71ON PaSUMED,AS •k085g v UN i I ON LEND H( FEE i )" 7.50 F r Z 0 . uN LOSE .064 u4 ENTRANCE LOSSES - O. Ook1 jUNil ION i_USS'L'S =%1'{•iHV,i,-ri4'2•i..(r'R.LCT_ON LL1SS) iENT W LOSSES) j l.11 C7' 1 ON LOSSES - 2.162+ 4.506- 5.420+( .064)+( !irei[l00) =1.313 31..'.i NODE 4�;0. i !"7SL ( 1221 s 7.r : ); ESL= { 11M 26. '�i43> F'r _ PRESSURE I'i...l..?'Jti I"'R(„l+1i:SS FROM NODE .f^'-•-._._._.�^�-•-i-i._-•NODE .._...S�_=_":.-�:==c'.�:.___...-.-=__..-: .._. 420.25 .82 IS CODE UPSTREAm NODE 549.62 ELEVATION = 12i2.44 _r-ir,lrJi_•A ._ PRESSURE RE rLLli♦`:1 P:PE-BEND LUi.SES(�.+i,+�.f7•,i-i)• _.___. _.__. _.___...__.._�_�. _, PIPE FLOW = 966.61 OFS PIPE DIAMETER = 102.00 INCHES PIPE r..1::.i`,3i H - 12S.57 FEET lYihliNNI•;• GS N - . 01300 11s.EN ^{AL }^ AME 3- GS0 Ll.-`_-.l]i'{C.CS PRESSURE FLOW AREA = 56. 7''"•`cJ ';-fFEET FEE Sig.' FLOW VELOCITY = 17.03 FEET PER SECOND M007Y HEAD = 4.506 BEND COEFFICIENT(= .0463 PIPE ZNKYANCE =`AC M •- 10721,136 F RICTIUN E' OPC. BF .0061287 FRZC7ZON LOSSES _ L*87 129.57)*( r ,063 NODE 543-62 . t -;.:L= ,::,', i9''. .EGL= { 1227. r0'y)prLLiWLl.itE= f ' .:, 4c h'i:E::i: +4J Rv^ PLOW M`T''I Li 21=i.:•S ?""iOM r4triDG .._y�549• b^._y�=.^-'..=^._y��^.._.._��c:•__....: ._=_.....,_G 70 NODE 16-05 !S CODE OP87REAx NODE 956.05 E i._ E V !`; T• i ltd_'• `1:= 1216.95-1 .i-1�.�...r,_r- ._ �-• . ,_.�i:�i... ri4 __t..tf•; r= i ��'i�I-ti= I.4 L1 i_l!SS`, tr.1 -^_. ` �_�__�-__.._____........__...._...,.._.._._...,_._._... 'ZZ__ -....LM -- %&L! l_I'-E 'IPE DIAMETER•'_ iiG+L.v iLi1C.! Xi.: i"i.: �''.•. .._ .«._•yii:iY: i -_ 402.E3 7r.. E7 MAN N,i.+v'ti„-S \? PRESSURE . _6 AREA - _•tea. /'tf_�SQUARE F_E •-_ 1_ �b� .._ r_. J ,.., _ . s - 0,= PER SECOND •- - ""' •..s "� �' !Z721,56 F ` .., ire.. __f % MOMS=) .. _.. _ _ - E _ . 'a iLl::. a !_. u 1 '>r• , u f,;,! ir:+Z:' d :: •• t:i r i •'_ a_'r . L. i _.ti.... •:.s._ tom,_ %. '_l::.. r ... _ ._ - _ r_ « y ,:'it n. _,.;r . ::! G t i . ry �__•'ri- _. ... i • ... C• � « +..• %E. i J .....:_.. ... ,: P`l. _. E SS ,-ii...,ri'-iNODE «.r-rLy�c.•�r�-.__:_'�.�._.._C_.-_=..;...-•-_--�-.-_..=._:x_�__._.._--.. _...._ ._ 71 NODE 1025-03 . •.t CODE • P�. -�1�. _. Vii:_ -_r__• - e' �- .•. E -.Y - i_r.�Jt_'�>`]i __ 4 __._.___._._.._._.-..........,._. _.._�..__._._...___., .__... .. _ • .. a_. z_ a .. u .._ ,� a.. _.�_. ^l ,._ r. • ~ •._ 1 �. «. n>..!•_ / �t-liF IVLJL-_. 1 I i ELEVATION '�•S. '. r •1 --------------------------------------'-----.'_ CALCULATE 1-'RESSiJnE: FL^jµ+T NO- DISCHARGE DIAMETER rlliEA 4 E { . L 1 1 1 DELTA HV '- 00 J. 1 ii 9 4.379 'SEG. 6 i02.00 '6. 5 17.034 -- • 4. SiiiS-. - 13.7 24.00 3.142 4.356-- _ EQUALS _ _ BASIN �I iti Ot UL^C USED:l*VLCO" ( DEL_^ i) I % l ( F « ` - t) c 1 v . i ? .01300 DOWN_ TREAM h GS h _ .0!300 UPSTREAM DOWNSTREAM JWNSYREAM t=' R I C7I i•_ N SLOPE - .00813 AVERAGED FRICTw 4.11 SoOVE IN JUNCTION ASSUMED }'t Syt+lZi8i?t 1 _- LIN I 10 tw LEi,'G a H (FEE ) = 5.00 0 FRICTION LOSS � = 040 MANHOLE LOSSES GREATER THAN f 1-1(JM;=';-SN MOMENTUM L1..,SC'"^•S MOMENTUM LOSSES = . 'i 1 o 1'=ii taw: OLE LGw.iSES - .225 jUN2Ii-LGSwES - Dt"-V1-& u+tFR1TIJ4 LGS_i+(CrTp t - NLOSSES) JLtl'_.237- 379-4.�k�ti( a040)-( 0.000) : =65 NODE _�4k.'0 i 17.= \ !'aS.337>:EGLK S .23a.7106-Lin014E= 1107.670 • 1-lil Ea.SSEJ Rr FLOW tRU rE7S-_ +-Li_.•,NODE O,E ..... 100-00 . C .:: ".+ ^.._...._• _O =,^'L�1..E�. ::.__^3_.f_..._C.=S y..=teLir"_TIREAM NODE !E32.37 :�. _. _:.._:... �:...__... _.. � .• _i_ Y A : I :.c � • �:t i� lt-tL�,'iJLr„C, PRESSURE _• PIPE_...._____`_._y__-._.___.-----�...._.__.__._..,.__.__.._....____... -BEND LOSSES(OCEMA): PIPE FLOW = 952.92 -F :-.PEDIAMETER - 102.00 0 _H =JPIPE LENGTH 192.37 FEET MANNINGS N = 01300 CEN7=h"iN.=t:.._ ^_ tit. DEGREES l__..;�;\EE PRESSURE �4 FLOW }YIFr^DC1 , `f - 16.7S FEET ET PER SECOND 4'L10C a i' HEAD _ 4.37S BEND COEFFICIENT(KB) - .060, PIPE CONVEYANCE FAC i•0 i -' 10721.156 FRICTION SLOPE(BF) - .0079003 NODE 1232.37 HGL= ( 123 0• b34.1)YMGL..- \ J. 2tJll•• 512i if �.. OWL .l. NE= ♦ 12 .I. ..Sw c.!L._iln l• PRESSURE FLOW !-SRV4E55 FROM `Cw41l.JE_ 123a.37 - _- ... TO Y^NODE 1397.67 -r:=..t��ru:UPS_REAM NODE 1357.S! ELEVATIONTION_ 1222.43 --------------------------------------------------------------------- CALCULATE PRESSURE FLOW PIPE -BEND LOS SES; (OCEMA) s PIPE _ f^L-OW 952.92 CFS PIPE DIAMETER �:.P�1 .�llG. key! INCHES i-IPE LENOT14 165.30 FEET hIHNNlNtaS N = .01300 CENTRAL ANGLE = 12.284 DEGREES PRESSURE FLOW AREA = 56.745 SQUAiE FEET FLOW VELOCITY = 16.79 FEET DER SA C t VELOCITY Y %EAD = 4.379 t: E%D COEFF I C I EN7 (K - ...0524 L,NL_L,L!L_H I=:. h-'RCJ=)L;.t= i a_LJW ijNLr i +.N LLct:.6: NO. DISCHARGE DIAMETER AREA VELDITv DELTA H i 952.9 S E. i:. 0 50.266 i8.958 0.000 .=.i.561 ,:` 952.9 K2.00 56.745 i6.793 4.379 wf 0. Y K}. r 1i.. 0... 4' 00 0. 'L0 0.000 _. r• 5 0. }CI==•-=li 5 EQUALS ==_.. L7k31 N INPUT=== L}_•CFED AND OL.GMA r`i:L;"SURE r'—l.W JUNCTION Fl..iRh;ULAE USED: D y=c(`0l!•);V2-0a.*l+1*COS (DEL { AI) —l>'!..:e*Y.n','11t0 `E ""s Di.r*yi"•*i Oil (DELTA4) ) /J (1Ai.'i^A2)*._CJ. 1) UPSTREAM FRICTION SLOPE .01092 DOWi`iS7R2f•M FRICTION SLOPE — .00790 J -s . _ iy_:r'Fi�:i,+, t`^ ii+.Ciai:i �."�..1i•-t:;,. ._;ii JUNCTION :.CI\ ASSUMED AS . %i,l0941 J+. NC t ..ON nEN07 i (FEET) = 4.67 FRICTION l.,r'BS -- 044 ENTRANCE LOSSES = 0.000 MF;ttiM"lL.lLE LOSSES LPE?CR THAN `rMPS LlMOMENTUM LOSSES n LES MOMENTUM .�:OL:= .004 MANHOLE LOSSES _ .c1 _ JUNCTION LOSSES = UY+HVI"-Vi*(YRI_1LN__r)+!EN I LOSSES) j t» NSC . i,_ N LOSSES :i..1rii.- 5.561— 4.379-( .044)+( 0.000) = .262, i\fu:Jc. 1402.34 .t��-!i�L_m• { i"-�tL'„':y ";= .;.2�ib. L75/ q.rT'LC}ihLar4F- ( a. L::�.:.2.��r.:+4�) - -- r=i'�i:_vJLIi�L FLOW ASSUMPTION L.�,�.?,=i1 t triHL�v;__-._.-...�_�_.L�_._._-".__.._._.__."..,..»�.__-.-._..._.__._-.- —CST PRESSURE HEAD USING C`_.!1^ .L ,ry CONTROL = .03 NODE 1402.34 ( .230a Ja:l iii ) j I G r...^ { A.LvI.Jn 5 ..) "F ' h - , ...}`- N"{'l C:::ii✓moi?E -w_i.: 1ti r \Li{..•E%7 i:? PROM NODE 1402.34 TO .�=�_:•--.-�__.��..._:..._... _ _ _ ___ __ 1 L., r•vis 1750.89 i.7 .Li>•.):.= .... .i �+,"'.'_F» ,�_PT NODE _ i'i.J.•. in•9 ,:.._..VAI It»N = 1227.6I ----------------------------------------------------------------------------- PIPE DIAMETER = 16-00 INCHES 5E 7EE7 ... ~i.».r ..L.I A 0.007 a'J.r_.0 3EF I 71 CI E \_ L En1 .+ w .. ._- - - _:. . a •«J ...} a ' _ K23.7&4 ..»i�. ..- a. .1.1i wSiC,i.•_.. 1;��•'1 ^' u.. •l. :. ._.._. , 34 i.7. iii! 1 * & .010057; = 3. G••Zv_ _.---_._.-_---.-__.. ----- .- .�-- .�____- ` 1--- -----_....._.....-- _..-.---- .--- 31165" ..1; -5L: i • ,_ t..i • i•• - .,.:_i : t ». •rS E._ 7L A"1067 H _» .- AND D E j L.. Z27 r E J ' _ ,_. f -.._.. - �� t.- S : k {«1 L• 3 .-' a. �i ,.. tt i':. ! ('� >,..i L». ^ - _.. . �... '•_ TLE ..+':..o C' . a . ;+o i._ _ S _ ... __ _.. i:' 7 };; {•',:. (_'' L-' \ .L L'r'i' ._ . '•i ,..! .,� • J - - ... q.... L+tie.-.. .__ ...-....... ,. ... �:/. ;75Z.65 70 +-...� .... . 4 . _, � L• � - _. _ ._. _� -.... -• .. .L 1.. Lam. •.w. u .. .• PRIESSURE FLCIW Pi-IO'C'ESS FRJIM j'-l;L_pDE 1802.34 7i NODE S - LJ P ST RE A t,: Pm CD E 10)12. 12. 34 1228.7-5 ------------------------------------------------------------------------------------ FLO, 4 jj.,,,CT],"CN LESSES." NO. D 'HA RGE CIAMETER J. T L I Y DE V 2, 6 9 2 SF, 11. 7. 292 6. 4.643 00 10. 53i 61-3. 42'. C."O, 9. &a*-, :i. 6 . 7',D55 0. 636 4 0. V2. Z... 00, 0. Goo 0. 000 el. el el 0 5 4'.i! -•t:' i — - ;7.r , '_ _,! 1p ) - : B, .: - _;S "%4 oz o 77 rUNC. FCRlYi'LjLkE DY= Lr?v_r_L U4 *V 'l- -3; •C D-3 Z" 7 P 4 317113 —4, 7 OP E DC I'N'C'S 7, R E_ Fl F R I C 7 1 DIN E I N _1 UINC I ASSUi I Dl % L T FE 7 - C7 J. ON LLO-;­:�`.SD 0 0? L -, %; �r) PR E 7 ;11 iDS11;1":7rr- = 0. 01W,-10 S D", +,-.I v li s s LOSSISE-E) I L; I A L k -Cls U:• ,� � "' CJ_ 646 -Ir 643-- 5. 56'. + 0- ZOO N E. 34 iz- L Z ' 2, 2 ; E G L 66 5 A.)— a. 5Ct'7 L, H D. :7 L: rn Li k - 7L: 1 R 1 k- 7 D E.'L. Zw, i" !'L'- 6.. 4. 5-6;2r F Ll,ti;_ Va-1 -tFRICTION -11..�., I I-, 1., , ", -, J.r L.Vf•'L Vlti ,- .V. -W 7Ki Ga ERAGED SLOPE i ! a jUNCTION Assl.ii*:=D At .0%96 jUNCTION LENGTH(FEET) = 1.75 FRICTION LOSS .016 ENTRANCE LOSSES = 0.00C :7ii'=1N1-OLE LOSSES GREATER THAN N Ti ^ S MOMENTUM iJ SJ= mo MOMENTUM CT'" O �litiI i. N -OSSC.r,_'+ - 11Y+1"e V: "C'lu2'f' : t' i'i: i.,^ T r 1+' -S- r•h - 'r. L-i%:f,,;.-. jl.iNC I J.ON LOSSES = .251f 4. x+18- 4.643+( .016)+( i1.+. o1.o)o24 NODE 1847.61 . HSL'( 1240.290);ESL= ( 1244.8 ) pr: i ' \ t..229 PRESSURE FLOW PROCESS !-t[OM 4.1E i647.61 _TiL�4ODE 1893.b5 ==i by CODE UPSTREAM ihJr:^_M ODE 1LS3,85ELEVATION L,.A_E H i .rL N 11: 2�. f -i0 --------------------------------------------------------------------------- L..i-iLC -Ar -r'KE.1S_.!RE FwOW PIPE -BEND L.IdL]J6::,`l.•(Oi.,ErTlA) u PIPE LO4 - S57. 40 O S PIPE DIAMETER "HPCTEi_ 96-00 litHE= P.-_ _EN74 46.24 FEET lANVi4GS i= .01300 PRESSURE RE FLOW AREA = 5Q.266 SulLiA RE FEET FLOW VELOCITY = 17.16 FEET PER SECOND KB=KBwCVEL0C17Y HEAD) PIPE CONVEYANCE • +4.518) .642 "I"uR 020.764 isb4.:TI1.iN v!i».. D F^'E :vr-.ri ? FRICTION LOSSES = LA'S F - i 46.24)*( .0086370) = .40`5 - NODE 40`5- aD= i893-85 1 i:L= i i241.S4@> EGL=S J.Lc.-JL)^LOiL1\E= _ .. ( iC.�..�•n �i'4:ii�i: ~.^i_..!_....:i4� :"L..,_i+%•. r "41 FROM M NODE 180.85 TO NODE 1:.960. 38 ..J Cl.DE ._• PSTREAM NODE jSSe,as ELEVATION i- --•'•--^-`-'.._.__»-_..'-----"_ --------^---_---------^--------.------------------------•-•--•-•---•---- J .=f-..1. ;53 . ._CT _ ;tiAN ...�\:.:_Ci N = a y.., -i .1 ,_l' - • �l % ^ 4. , 6 _ . . 4 i , .0086375) ! +. ._.�./ z . 760. ) **2 . YK ,!! iJ i..l3' ,l it.: NODE OE ,I. •.:9"" . n;1- ..241. Sl8l J -- a:_46. 4-I -•i w r _QWL: j 1 ._ .....- . _ »_.. = . S = _ F_ -Z;` • A....Z :_,_. w:. FR..., FS.+.Ji. E ....7C':& d 71 !+,:.i.e:_ 2... d 4. C: 4 s - r'-'- Y....- ».._.-..... _» 1'• .. -. 1. n - 1 tili.i__. -_�-G-�Lf\I_ �..J� ;_-v.. S _i ... 4..l�in r � ._,..__.-.--..._........_.._._.-._..._._....___..._ PZ TE ,.,'t'Yu ,.L:! FEET . •1t,�L' ; _ ..'+-7._. ": .... _ ..!u •,�� n. ''.!L« �. ._. NIS 5..E73 DESRZEL' P:32 I_ ,_ _\. s EN _. .:, _._ ...• s 3Q0.764 . R ..5� . a - , s..,-t� 1 •�.. t __ ...: ' NEDE _. _ _ .» "e " .. >..: t: ,.., . It S ... .. _ .:? !_. - - 4+f•'i-._-i v `• _ s _ - .... »._r. _. -- .. =--_..-___-..-.,.._------.-_».--..-__--.----._»_...__...--_» PIP _ r.. _ .. ...•t»''f� a +.'. ,_ C' l r ..- - .. 1". ... -' is. _. , t -.. .-.... L_A5� CD AND OCEMA PRESSURE FLOW jUNCTION R ULVE LSE.J •>'••Va *iNkJS (DcL. i i -i1 )-Ci:.',:r-V,=,ii'C:+sS (.riELT!=i,:.) i4*V4•iFi.rOS (DEL ! A4) ) / ( (H.3.••+'A2) *i6. 1) UPS7REAs FRIC7ION SLOPE .00932 DOWNS T REAM E= rr IcTioN SLOPE - .00984 AVERAGE__FRICTION oi• ,rJ �-rfVC. f i �..., h1.`?. Si..l�T!=.D r :::3 . 14;:�i 3t[I!-,� ,.i i_4NC ! I OX LENGTH(FEET) 22 +:!tii sl•r. R I C71'_+1\1 "063 iL, 0 ENTRANCE '14 JUt\ice r.AON LOSSES = i1•i'+nV!-mV2'f (t"PS..L.,7ON L0SS) it tC..\iTt\ illi. E LOSSES, 2167-83 '• ` 4 4.518+( -200)+( k01K.44f) = 1.14:: ii� ""- ( 12t5.43 ES_ ; Ui ''rJ K A. M J CE 1,.._I 1 �!•'? a«�Ir'L . 00,S 17 3D ' VINNS710E1-!!}; Mi':,LL.M.,UNVERAGE::r L_ r'� •- v � I%i (-. ;« ') LV i urw .`..s L... tl' •. c\j ,.; i II\: L. t 1 ily i-4,-�:�i'i�.l.% �•�u a k�:.�7 •�_1 j'jti:i1C)N _:=�43TH(F^Er-7) ..tr Z C. iii .EYitli;i?n "Si r�4 .. Y. i}i F'i\i•-iL i...G-t•1SPL�f.•-.. !•� j���'C I f'i-t,11 "r C'i'wiirir'��.i iii i'i Ll i�•`.� f� i •;t i C-�`, �'j`v'�;C.���T:_�i'! l..E��C?Sr..''.i =• l�,ir.r Crii'ilt!"�11i.��:« L�lSSL�=' . r-. i.'� j ,rti1„(.N LOSSES -- DY �V.-f��`•i iri'\al Yll_�i Llrt�ir/'} �S-NIfRA-1, MI*E 4 aL + 111' t 0, _ f . L.. w'w• N0DE" 2i25 ;. fK, `a C —0L.. { Ef/i -. iG.:'? iLi.�_= C ..4u1a \T 1 ^'F\C. �i�•_ii�� r=L� 'w Rs... ir: t\i M1 E titr r—'Q. /0 ^'+'vl.i4 «-• J-, .........i=))«= ✓..i! -L r-t�_.I•^f�'r .4:.-!��` «_.=.':i�..e ��ti aw..��4il+I', 1V�il ••^: .,.C��sr« t'i+:i i...l.r�..•�_zTi� .._>w5i•i_I i" T:- Ci , ISS ,_lES ivj_,Ci';A r ,:a,.s. 4,.s ...•1-E !- 'Pr D y A ! T4'J�ti7•�a M:.iYi tltil.rl'iC�+ *"' 1 rr� I...L ��. L"?M:-! i+..:/v ,.:JM• ( ::.G r �ii"Is�i�4 .i. 1\+it�� i" -' • Y .0 iF4 lCtii,;p.,..0 '- G..a L.00 Uzi -7i' -H-5 '.,''R:.4-Z-BiLiRE. F-iRIE: :iA 7•5 Lu:'i..'i- Rv.E FE _ C" ..l.�Hi VrEL:wC a V ..• .i. i.:F. t�5 F LL'" i P'%: rJ-f_•I_iiy ' V' _ . 1-1�• J. r1fDA ) ND iJL: -i w i Cl r L•`' wr .>. ' �r i-. ^ t -I i1 1 = { -r ,'9e, -'r r i i. M V __ f i i 1d 4 F i H -- / CF L� M (( -r f .. C" it r «i..,.•,W —1 `.7 r.v -' L 'i7 i' ... , �•.._, .:F4l .' Y� i • 009 " a•-rtt . 336 _-52.3-" 0-) C- ;Z'vi a. •� .J .:�i.J� -" �;i - w r',.. r; .-_, •: �; i \ ? v C_ r_ __ M w.. r, h'_' Y_� ._....�. '4 ' . ` s 4i i•\I '•^ - - -_ tr •_ J. •,_... _ ..'.J,._ :i^'. ^..-. .....r•�t Y. W. r{'iC.;o tr'._._tiJ:ra.^ i• i_J�� �r•i .. • :. tr -; h;.• L r11;�t '•r "r tr _. i• •:J ti .. ++.' s ...+�/ a Y.• r� ,._ e. J SAV.� -_ r. ..r `. tk• (Gtr5C.;Z. r• «. ti- a •• t• h'. =.. :_}. ,.. � ! T...F i ^. -_ >_ i�� �., ti..._ .• : \i !-.• is _...... _ - _ _ _. ... .. L• _ _.. _. w _ _..._ r :..... - . y .. .. n ..'. t� � 5 r lu :.. _ ' • , ti_• u 4 ! _ �._ - i'•e t -PRESS' "RE1l Oi}!wr;l Li i.: ..:....^_. .I N jL�. :moi..:_^C:_ til^'ir•i_'t~!i; {%l L%C 4f- s i; ! L46 . to f „; u 1J0�,,F CJ> �. `! i I CODE � ^ N 1 .•� (::. �,. •..I..rCKf^1T.f.vi�l! -' J._s•!i+. G'i'.L ;�h�L:...i.i' '7'.�. h,1GM._�__ ... ri. r!^ -r'i^ ....._ _:-f .-.^ --•..._...__.^..._._.._--_.._._.__-_..-.•.---.....-.r.._. f^!'� .wl :r'f" r'wtl My 'il�iti-'i L.':...r_. . , 1 ^1f- • _ _ L_iJ�.'�/:.L'! . A. r. til.% J 71 S. Ju O ISS Nr:, r"'E D 1 l~iiyl: ! _' !'t _ y 'it/l. k+0 J. !'„i+Cc_ t„'FR.:„s'.. ZELi'•_. i •^0Vv P, _.rf i, y='••i'• . l�_+•x' (\'!_I^OI .e. +-,' r”-C!'Z iJl -- . 0. 5'1C ( Jr•. 1 ' N0L. r GL 125 �. b .��'."�!•1 v C: L7 L_^ ( J. �Z �:a ':I• '+yr r v .... i..!Si(..__ ..._ � ( J. f.::.i!. !4+a � +i .�'_; .'_....:.•_l'�: -._l., -'•r ---.r _.SSL, r"+"c t�;r; _.i a .=. "r''Jt . '4 r- _ iir0 ;1'i..,�3=_- J . •'v Y iR 4 S. e._r CA _ _ .. _. _ _ ''.:_t :! _F: (= `•_.i _ Pi..:..r4 .\�.' �J.J1� •... 1..._i,s....rr ..t :i ...- w. r .Le -'C L; _�, i ....:1 __ F•r i`.• ,! i••I�-,....w I S7 63 N r' . ! ... L; __ •�. _. • N .r 4. .. ^ �. \ d = ... Y!' a 7 +. r / u ._. �',_ — . ... �.:.! f �.• •_1 L! r h ._.._ i ._ ._ .y i.... �' \ _. _ .. ^I' �_. N .. I' _. _.=1�l�.=.._r•...._—_•_.._.._...r.r—�—rwrn_�_=-. �.�__. i... „'_.�--._. -.µ��r �.—r—r�—.rY..�^.—�r•r_._.�«_—•�._n•r _.. __—_. �._r r'.. __•�—w��.�_n .u. E 22,7 7. rii3 tJ I'•w_ ^ri L_. !'i„� i•ti •..r Yr ... �: L? �iVa ."t ..J __r„_•_•N'1—f� � � •t ••. wa.. ra _ •_ .. 4. •.._ ... {.•rl ^. .._ fL T, ♦— Vim' .... f_:.'F,• ,.. r +.. �. 4. "•. .., V•—.....w._......._....__.r_._.............r_...._..—._. ... .._.�........_�.._. _.. LL I ._ . C _. r-• 'i I . _ .._ .. �• a ,_.r +. s ! J- FLOW V;u?_'� Ty _ w� -�^- --•-• ` r _� Ji s o J. t HD 4. 111:31 \! .. tRlG/T1DN LJJGiS LfJ- -! i• % �` tt 4?Iti�ui i1 •L"__ 4"n, r=(:_:+U i itiiLr^irtJ �-•1 �. L8 i__'*� i3. �JLJt �).: . V)- r`t !!L_i!i,� i1=-0 i:iwrL. - ( 2r53. �1.r rte.•^r r`.i"_,.%. ,i' .i. Ln LA 4. C,t ! _ r*i `...'�.r!„1'.�+..'t i' !,i_(i •( I4l.j h: • .. ^•M G�._ " •- t ) —.L �— • r • vUa1.` i..ii-1,-REAM NODE _�• 2-'•7a80, - _ —I •.L� i .ct=i•�f i...Li:.4� � (._i•;i..:rLr%) i= " S "L''' �' t ,— � , -•: r` L 5. ^) f i L f tl` f % `=i r i ) #?k - _ _. t i 7_ i .t .Cli% cLiL t J.2:55. 247 t -PRESS' "RE1l Oi}!wr;l Li i.: ..:....^_. .I N jL�. :moi..:_^C:_ til^'ir•i_'t~!i; {%l L%C 4f- s i; ! L46 . to f „; u 1J0�,,F CJ> �. `! i I CODE � ^ N 1 .•� (::. �,. •..I..rCKf^1T.f.vi�l! -' J._s•!i+. G'i'.L ;�h�L:...i.i' '7'.�. h,1GM._�__ ... ri. r!^ -r'i^ ....._ _:-f .-.^ --•..._...__.^..._._.._--_.._._.__-_..-.•.---.....-.r.._. f^!'� .wl :r'f" r'wtl My 'il�iti-'i L.':...r_. . , 1 ^1f- • _ _ L_iJ�.'�/:.L'! . A. r. til.% J 71 S. Ju O ISS Nr:, r"'E D 1 l~iiyl: ! _' !'t _ y 'it/l. k+0 J. !'„i+Cc_ t„'FR.:„s'.. ZELi'•_. i •^0Vv P, _.rf i, y='••i'• . l�_+•x' (\'!_I^OI .e. +-,' r”-C!'Z iJl -- . 0. 5'1C ( Jr•. 1 ' N0L. r GL 125 �. b .��'."�!•1 v C: L7 L_^ ( J. �Z �:a ':I• '+yr r v .... i..!Si(..__ ..._ � ( J. f.::.i!. !4+a � +i .�'_; .'_....:.•_l'�: -._l., -'•r ---.r _.SSL, r"+"c t�;r; _.i a .=. "r''Jt . '4 r- _ iir0 ;1'i..,�3=_- J . •'v Y iR 4 S. e._r CA _ _ .. _. _ _ ''.:_t :! _F: (= `•_.i _ Pi..:..r4 .\�.' �J.J1� •... 1..._i,s....rr ..t :i ...- w. r .Le -'C L; _�, i ....:1 __ F•r i`.• ,! i••I�-,....w I S7 63 N r' . ! ... L; __ •�. _. • N .r 4. .. ^ �. \ d = ... Y!' a 7 +. r / u ._. �',_ — . ... �.:.! f �.• •_1 L! r h ._.._ i ._ ._ .y i.... �' \ _. _ .. ^I' �_. N .. I' _. _.=1�l�.=.._r•...._—_•_.._.._...r.r—�—rwrn_�_=-. �.�__. i... „'_.�--._. -.µ��r �.—r—r�—.rY..�^.—�r•r_._.�«_—•�._n•r _.. __—_. �._r r'.. __•�—w��.�_n .u. E 22,7 7. rii3 tJ I'•w_ ^ri L_. !'i„� i•ti •..r Yr ... �: L? �iVa ."t ..J __r„_•_•N'1—f� � � •t ••. wa.. ra _ •_ .. 4. •.._ ... {.•rl ^. .._ fL T, ♦— Vim' .... f_:.'F,• ,.. r +.. �. 4. "•. .., V•—.....w._......._....__.r_._.............r_...._..—._. ... .._.�........_�.._. _.. LL I ._ . C _. r-• 'i I . _ .._ .. �• a ,_.r +. s lJUWNbi KGHIYi ^ 1 � i L. ! _ UN 010876 ! JUNCTION; ASSUMED :.., ,._: 5AVERA3E rICT100 8nOn111,4 MOTION LCPG_`l"E=+) -- 8n00 . RSL•—.. -N LOSS-- ENTRANCE LOSSES = 0.000 ;•.e. ..!JNCT.i.ON LOSSES = Di - 4 b! -H L ` _RTC -jX OS7i ".EN 1 - C4 LOSSES., tiUNC 10ALOSSES = ._ww"3.624— 4.-1g"( .066)T( 0,000) .357 NODE 35rNODE 2885.23 . :GL= \ .:5 5.570:7EGL- ( 1255—: 4)q-.hL1,-= +r' !. C20i F''tE.'}.'-.._.'RC "LOVJ Pi'ii.ivi:..i_+S FROM ftj,..,iy`..-...».885. �,._.,.....,.......h._...._..-�.�,-..-_:::.::--....=---.-C.�-c--.-...-.... 93 TO NODE 3174.40 IS CODE w+F'S YRGP" M NODI_ 3174.40 ELEVATION = 1250,08 1^,r l_i._Lt_!i,-F-i �.-G PRESSURE it �Yti i' !'� - 1�.,` 1 iJ.ty i... i«r1i`.3�C;;ti ( LH'~M Irl)p.�_........----....-_.-.-.--.--,..._—_._..___-- PIPE 1..OW L_ 674.95 95 4.•h"S P^')./'L_ DIAMETER 90-00 INCHES PIPE "ENST.. = 288.47 FEET MA!'tlNiN.:S N = .01300 .S,•f=- :0!K) * 2 = t . 674.95)/( 7676. !, r)) *•!:''• .00772% 07., 1 :r ==L4i S = ( 288.47)*( .0077260) -'• 2.223 NODo_. 3174.40 °N HOL- 1257. i 9) jE:. L ( 126 . tl•._a-e)yf "0WL.,.ilt[E= \ i.25:{;•tN 4 808 --1•_':ii.v w"7:.)RE -'_—VW F'".w: F.r «.. _7r—C: R+..)lY:—NODE —�:--...==�T=�..^.-iM--_=::::.:✓...-_�.--�, �:=-y:.+».__..._—._....-.... 3174.40 TO NODE 317S.97 18 CODE L . 1!•'': i r(EAM 'tiOsiE 3179.Z7 C_i,-EVA 1. ON 1250.14 ----------_.-----_._,..--__------_.--------_.-------_--------_.--___--_-__.___._..--_..-_ CALl.rt.lA I C PR Sa'7f-.ii:E FLOW MANHOLE LU,1.SES (i.•.f'11..,i- CD) . PIPE F.Ow = 674.95 CFS PIPE DIAMETER 90,00 !NCaES ?-rfGC.0?i-):.il'Cl'_-" LOW 1'1i\Lk-a�- - 44.179 y-:.••1::!t=ARE FEET 8 FEET ER SECCNIE) E-ti+tr�� -- . �G .`J•fi." '. VE._OC 1 1� HEAD)= i�•�:f'' ! 3.624) _ ^ 1 .. ..l �'~ i ' ,-1 v �' 1 � �^ �.. t. �. w• li v f . 1-, L.) ... �. r.. Y• }'•. .L �.. , ..... .�. � ; C: � : • . 1 ^—— ....r .=.... ti.._,—___.;_.—__ —V 1_),...'i:_.,...I..:ia;........,�._.�— .... rFl.:ia^�. ,...._.�.—_.—�._,_..—.—_—._._.._.�._......... �. �._�_.. __... .._... M._ 34E7.14 N r.. t ! I_r5 ..e . 6 S . ! n E .._....._. a.. a ._.. , n ._ "P n ....... w.._._ a �:r t� y:�; i ,, (.C.'.::._ •-' 1 ... t::. C•'•i, w C 4 ". ! .. r. w: ! ,.. 1 � a- ..._ _ .i. _ .. -0 NODE 307,t3 LE • rr?....ter:;... -1 .. � .,.__. .. _- -._ ..__ - .. _ _-.. ... ,_ .._..._ t.._ � ... ._.... �I-."~_--...r._....-._._.-._.,-.... _..._—.,.. ._..... ._. ,.. I .-=PRESSURE -FL.UNv PROCESS -R:.1w-NODE --X6/..r_.r::r-TO !4!_T'._ y_==_:-...._.=`'.r�..=_. 1.53 CODE UPSTREAM flEF-M IVO(.%,E 3401. 53 ELEVATION - 1253,73 - -----------.--- . _---------^..---.---«.----_-____-.CAUAr -RZ SURE FLOW .UNC -10N LOSSES: NO, DsSw"ARSE DIAMETER AREA VE -.t'_ T_!.Y DELTA Tom, 1 1 536.5 30.00 44.173 12. ,.1 144 c . '-4r: 2.230, 2 675.0 90.00 t-�� 15.278 3.624 3 136.4 43.00 12.566 ii.&7 18.067 'i 0.0 0.00 0.000 0.000 0.000 � 3.0===05 EQUALS BASIN j NF-'L,i '- LA LC✓I,-•' CD AND OCENA PRESSURE SSURE ,-OW .S liNv i .i. JN FORMULAE `- US,` -.Dg I LJ- ._. - D 1 •= l�ii.'�•V2-u':.'M'�r _i,$i•COS (i}C_L f ! 1i) _^ia3:i•Iv'.:?•%.•CDS (i.)*.moi_ 1 A3) •- Q4*V4.9Q•t.OS(DE" I A4) ) i• (!.Ai.«r't-2) *1G. 1 i wr-'St.'�"�•I-�wi'�rr��rrri•a:vi�' i DOWNSTREAM Mrirlli4I! GS 1`t -•• a ti.!�. ,.i!i: til Ut•'81 riC«A , FRICTION SLOPE - .00466 DOWNSTREAM FRIC710P,, S�OPE .00,773 AVERAGED FRICTIDN SLOPE I, jjNZTION ASSUMED AS .00630 EN7RANCE LOSSES k r1w.;NL..JTION LOSSES - DY-.HVI-M«r..0R.i.i.!!1Or'.1 L-OSS)f(EN7"\°ri:vC LOSSES) +_' UNCT I. LiN LOSSES -'- 1.849f .-. x'90- 3.624+( ObS) + ( 0 a K~.1+% o) - .6073 NODE 3461.53 1263.264106"=i 1 i .C:r,..la +C.l 5 l•!,j >f • .0 W L r,. wd^. ti 1253.710 F,04 r +-f.O.... SS , Rom NODE348:.53 TO NODE 3603,05 1 1 0 .,,::..iD .-. •- _i �-�i ^i . ! i',.,lw ` %00.05 ELEVATION = 1254.SS -_----_---_--- .-.....-----.--'---r--------_'-_.---------__--------------•.---------.------.--.-_...-_._.....,_ C N,- =. w r- PRE .gig t...♦i: FLIA -.-SfEND 1038 S i L..EMAI a :1- - "_!Gr 30-00 - v 3 6. ;_.1 i GTE 1 • ` -1 �_ is d 1-i•Yli.:--_.,. 1't �- .�• ;\; r_ •-, PIP: -.._'ems 116.52 L_ �E_ Ml~.N.\:..N&S N � .01%0 I- ... ^ ._ Z D ♦. O __ 1 .. ,..e !- F12 -:R •' , ♦« , _✓ V , _ t -. v r i L X - r.- S Y- .. -J - --� ti ,_ r.. -....._...J _... -ass ^• 148.50a( .2046617i •' .50'. I _ r ..:. ••'I . , � lJ ..1 «i •L.� H..• n H:.• ^. ._.._. _. y , , ._ % :•• ....-... *r a -v W: ti_ ------------------------------------------------------------------------------ �. .,. .., n ..'.. 0- r h a. 'r'I w . ._ / .- i ^. a 6 .( .._ . ..J y ... E.A. ... _. t.. IT s _ .. «• D 17E 1 EEL 14* l:ys fLam_ ._.-.amu_..... HVmitHL`I1::u I P:»v I ..UN SL,i_JrIE .r'I.lei as JiMC I IOO -,' ASSUMED AS 00470 jUfVvYIO1Li L.r•--Ns-••I I H `I»Ew r 2.25 i`R.LC t 1O{S LOSS — .011 ,..N7R!•7NF.+rw i..Uat.`SE — 0.000 JUNCTION LOSSES = lV* HV' HV2+ =R+L-3Lr SV!'r _ L -_-1C E LOSSES) e ):f.•p 0 Y.54: t. ) J 1 Ci O Iia• LOSSES = .321f 2-1:6— -,2 i( ell)-( NODE .: 6OZ- K;3 : HSL- [ 120. G:f'IG 5) § i:::.W ( 1266. ! 21) i'_OWL,+.ISL!E= ..J : 1254.890 y" 3636-85 CODE •-•I''-,- �, -•-�'• NODE -t T 1255.26 � ,r -.-.,-.-- -. r......---__. -..---.--._1__-..-.... ------------------------------------------------ --t-_.-_----_,.»......._---_•..,.._...-------------------------- ---..._. -----_--�.__.-_..-__-.__-- t.+F•{:..S,s_.._h' E .,`RErt-»•`Jt.:fi:= ;'L_.:.. W PIPE -BEND nt--`. O v I PIPE LENGTH58.64 FEET MANNINGN = 0 1 "75 CEN :A_ Aa-_ = 16-100 DEGREES PRESSURE FLOW C{:J1 AY'Cr.Fi "- 44.173 S Q tJ A t' : G FEET FIX VELOO17Y = 11.67 FEET PER SKOND VE5... r C^- r" I TIKB) 1057 5 lid^ ^;S (Vr_I_UF_. l i Y HEAD) — l r 106)*( 2,116) = .224 r' x r•E L. ON . - : ^^!` GE :` H am. i U R = 7678.797 F R i L? _ l..J;`' SLOPE(ST _ .. 1 \.L1F..r . .. L. N LOSSES 1__*S -.. t 384)*(8. '�/045J105) = i • .1. f • ♦,-, 1�._JC,_ 3"._36SI .69 L H— i:.f...J_• < 1MLep4) ( 7 •L:_ti( M�1_-UWS_J.M i255,260> "JES" F"os p"C" FROM NOLE 3618-29 1M NODE 4021.17 1S CODE wDE7REAM1258.33 W�=21.17 ___-------------_--._____-. 4IL .__.---_-..-- _ _-___r__.___"_____-- -_L»—P«__ivIRE .01 i. _ rrSSE:WJ -r•1 ---_. ' PIPE rr- J'E JLNE7wT . S0,10 Ci. L) 1 Aa ;ZPE __ 0i 36011FEW MANN w ^ai S, -.i N _•' iy?. . i-1 .r. ♦..•Y _ L: i f 'J r i '9• * I'._ I ...✓... v. __.up c . i ... ... \ Ai..l. 0 7L4_•% La»a..w. I -L.!. 5.- 6441•/ ; LI.JF•ae:_._t\1.._= E_EoA_:ZN 12503c, -------------------------------------------------------------------------- t 515.7 :_: I t•- ♦.. & L.•.'S t. 1Z.260 i„!.t 'II;' :.J •. II♦_• ♦ It i n i.. (_ ..- L a. i ✓ .t^• ., z o li Y.: n •G: .'. fj 5 .... - _ C.100 -_ ♦.•...: A r. t. Z•. , _ _ N i •-- ... • a.- _•• .v L .... -. w ._. -. F 1-'�d�: _ _ - - 1=;+. �:; i-; •i: v; �r!i-e tJ� T `ti's+.i J i1i� �^ d. _IIS i��«^_.^ N L is CJ G �%:C i i r = 'ti. iJl. _ '+ i _ LI !_• W 1-1 4 i`I 0i) k' �r .E % • :. v i=,— �.4' `1:4 �. _ - i � - 7, _. .-:.: ATE ! PIPE L'-w.l 7`•t ,_ 29 I'+1.1 F :;�: ' ,,"'7t=`IPrtl\.; I -N 1G, c+ lu •_ I`t •� � ��1 1 SF J!fl��ifira - M-:ty. 7i) t ��lii !` iE -' - .._.. �. C'`E"-L �' r - � •,:1 :\ 7Z), '' t . yid+G':1 , '5 70' �. r• `« - e1i1:JG 41:;.L fC - -• - i t�• I:.C7G% 26,5. =iIL1 . j . r. r':' r NE h'7lCS'--_`!,J.^.G F: -DW I•.•.3S LS. -D Ll 1—:L1_'t_rv«t !-'::=C_ r'-•t�'�.L I�..in -_ .. L : .l i�::r J, • Y 4: ":'"`.�tiw"').L�1'iC r -LIQ r- \� i•rw_:J rlJ;ly Nom'`^: t �-f•�J4 �. —1— — _ _ 17. .J z4.•_' 4 N i :rs —. I. . w_> < 7 . .i. �.G _ e I C�:tiLL,.uL�`•» i•-';iP.._�=i_!riC•, -^^-_-.___—'--•----»—_._.,.«..««�._.»_....._—_—_»_.._ -_.L..ikJ "` ...�^ ..._. LCJa�_: INL, j _ SS';_.I`:;i?i'L.=. _ _ w�j' L+.wr�f'',c`~.. l �.�i t�i�Gl'_,1 !bF�L ��....� '1' t i.i�_L, r . i �• F . I Y it 5:0 . � � C! C � tir ■ 1tf � f 1 I[r • I[: I " c ' L "• i w.t_v• ! jrC•. � rtii. :i.'.f;".r i0. 26L71._ ,i .i. s C.J:•_ • GZ, 4 v f. .4 a kr• �,. _ Y0— t. L.4 lzie.lgf •— . � :.! r%•„ :L:` _._::�Fl_ 1,".:it:�_+HL:i Cfrl;] z Int 1 �`+Ir s..r , ,,.»c FO! t?!,U! 1-,,E uSED,. f: _ 1!lY— Jai.,,%t`"�%rr:.:`I_+:.�.•ic•,•i.t.':'_rCi� .i��4.. i l••i.i / "4.!:+::•'� Y.:.!''•�..rt.ii !i.)i.«t,.. i«i-'�,.�1 _• a•'•t :-F't. L•:. '..� 7A. Fi j. `j` 1'•, i= : 'f: « G r ' �.4^•_ :C�, t .._'t•..,Jla ,=,-.�F^''C. ^• a Il_�.�:f�kd N1'� '.rfi!=« _ ,.. C.r w,•�{ w..._1_ f._« - _ J r _ v_D LIam... _ _• «. _ ' '— wl a. . _ i'7 ::1 i':..t i • .... Li Te -.i n Y."Lt w:F .,, ti.F ,. ., ... _ _. � !_ w_ 4.) « � " .— r.. • r ^ n u !' .._ t � a N .- a LF ,�. 1_. L• w.l i � '_ v 7:,' L t_t =— C:.?«C r'i , :-ihi.1 ,C_, :1'^'i.•4J \i Ir Je' „•,,:C t_w.i:r1 a''`• ,.r ••�._ .>-.� ._ _. __dy .-e .;=:_ '.. a i.!. 7w3 �i1:,1;'�t�'"i.:. f_..J Stial. w _. _ :.:.. __ «.. n ._ - ! a �rr: �: - �• �t-+ c. +ti L! } -I- x: r 00" •_"t.._.._.. :: —_�v'i ,—_.. __,.. ... •\,.... ��_ i.•._. �u «_ter .. 1,.' ;t ..,. �' f y, ... _ ._, , ti _. (• �_ — "« _ � o-.4.. i. ,y „ • ii;: _ �r l r ,. � _.._.Jri,«.. .• .. ,.r _.i.' ._. _._.��i�L7 w'. _ "ti~. r—,✓..i •\,�--«..... t.v i »! `.,.'l_u:..r w... ,r '. _, __—..___•«; —. ,'_.«_.._.........«._._._«--�-_...._......___•__..___.«-_..._.. __.,. _..,_ 55 ,. - ..._ a �. s. +.,. a. « ._ ._ n _ ._ ._ .. t=.. _ „ ... _ ..« , ....._. __ - "t ._ .__ . « n :,.• i=• S .� i n i _ .«_ 14v •«- ... t_ �• , :i. _ .... .... � e' ._ :• _ -E - - - CALCULATE G PRESSURE FLOW MOT= rLOSSES: _.—...r._—r__.—...r._.......----_..._._.—_—r..•...--.....__�r_._.....—. ND. DISCHARGE DIAMETER AREA VELOC •_.i =1F—rh, ^,'y i 476.1 :1t. +4 0 50.266 9.47i 0.000 i.333 ji `,~"J�i4. ... 6.00 50.266 r.iii.0223 C.6.iii ._ 0-it 0 4.�� Jr `: 9 5.! -'' r 0.0 0.00 0.000 0.000 0.000 r_ LA0FCD AND OCEMA -;v:"LLW j.NviJN =;•.0.FE USED: iw;DY=(v:*V2'_L*VIrCJ5(J_L_-e)—iLiV3*CO (DEL -3)— 04*,4*COS (JE_ i A4)) / , (i +rte) * i 6. ' ) UPSTREAM Cfli=livi\1,1.?iiGS N = .01300 UPSTREAM FRICTION SwOPE .00272 1Jht"i[EAM Fi't1,C-13N '."+.L.MDE — .Ziil306 AVERAGED FRICTION "::..{.,ice: =: Z& YJ U!\ICI J.;.lN ASSUMED AS . 0028D J\:MN wENSTH ( FEE T) = 5.50 FRICTION wOhS .016 ENTRANCE LOSSES = 0,000 .J ONC710N LOSSES = Dy+&Vl —hV2+ (R.. C- .i.ON . LuSS) r & N ^RA>'G LOSSES) )^ih .1.�LZ__ES_ EG6+ ..� ~- y.56am+( .016)+( 0.000) _-. 11 ..ODE 4050.30 a HGL- ( 1 . 1 . 284) ( : _ i— + O -• - _ _. C:rZ7L-^ i C.� �.. G � % 7 � i Li.Jilti�. 3, i4w�- 'v ...r.::�::s. Z Y _- n'•"[wi.+M:..�FLOW -i"ri_i S..r._.S.:r I-RO7*i NODE "_....r. - DE...-,877 �7 .._. _. -.-r.y TO IS `...-..LI'NODE L--4877.E7 s(•C'Ylti l li-i5-•--..-l1S64.94 .:: r •.i -PIPE F� c y- 476.09 C -r PIPE D _ A M rR _ S :EE.4 . i ._ l `,. __Gf FEET , i}j:'\.I\.iN:.:7G .'; -- ir!.i.,.:ltiri<i .. 476.00/( =i J. `iL. f uJi• i ) *riG — iL+iLi�:: f 2Jh . �'" SF — i 42 r . �_ � i * , . +LAS: 2 i 247) = .- . w ._ _ 65 —44r«.1.._._._-`„.._+.r_._....__...__.._......77.67 o 'wr—._..--�._._.—j�--»�•�,_..—..--------__----»-..rte— ...—rte._.--.u.....—_..__.r..........._.._..._- A _,.. ,••.Y', _ Z _ r L.' ED TO 1•'1D _JC: V 46" ANE EBL.. sf mS.= l :-(C_. :'•�r� i-'.d:-. ( 1274. yr A • `yl`:_3W"1NE= C .6i:6,. 5 .... �.= Z_..�r_. ._._..__.Yard`.•,51`„E=:--,M_._._.r._s__==.�.-....._._._..--=--..r-•-==I,=...-...._-_._......__:�=.c._-c.......-.___.-..^ m NLDE 4677.67 7C NAM o@62,30 :3 CjDE { _-_._..._...._._ - -»_ -----_.-_--...._.... --_...__„•...-__-.-----^.r--_._r._ --___.----•-"---`...----'^._.--_.«..._..r-..__..-._._- --- -._--- __- _._. .... .. . 4r.. l.J �. .e 1 = 9.47 F .._. r PER I � VE.0 1 i._ru. -.•. . lL•5* , 1''E—w. _.. r r r E r..I i(•' , 1 n 3 _ 3? ._. ...- .. r. . r. _ t. ii W. ....E N t: J :_t. n ,_ r er (- _. -- • 117L. K' w ! . E L....r \ .. r... ''7 %.• .. _ a .._I L , a.._ ' . ` = .. _ • r. .- (r__.....1.._...._......._.`..-:...._...;4,1.+a_•u--..••M1 yiry. Y=...—_..-. _.� .. ...r. _._.'. .._.�� __.._.�... ._..._.._. _..� _:.._.. :.. •. r ..J _ -v -� . _ Z — _ ._ ... ,- i -....-y,.- . r r . .- i_. ., -. .. C .+:.J . �`.'I 0911. •_ ,_ ..r • . i .» 21 , ._.. _...__=.. -- —.�---........._.._.__...—..-_-._......__._.._.-....._..J...._.._.._..r_--_--_•--_•---_-_-_«-..___...--..._. .-...-._._—.._._.......... __».....--.._.__ --- AZLE K ..r . r UPSTREAM r _ ,.. _ PROCESS FRIM 1 D E 4 iti. .:. i 4 0 ,;lJ %:L 504Z-:6 19 C .9I J_.. ..{- 5045.16 ELEVATION 1265,6t, '�. �• �t .Y ' � ����.^—.-+---_ —=-.-__.____,_-.--____-«_-___.-_•__LhL..:A— —�J:`E FLOW F- `D nwLSES(_4E7•)._• 57E.00 `•.3- LENGTH 5 i:1:»ME�Lw _ 96, 10 .N.":wrItM35.42 FEET '-N4l GS t = 1 _r' CEN-Cll'iL_ E-}N:'7L.E = 59- 410 ;.;t.:i:tlii=C.S PRESSURE FlOW AREA - 50.266 MARE FEE -7 PIPE CONVEYANCE 7ACTOR 9120.764 FRICTION S.OWE(Sp) i ... J r "r C . •Y- ! .0027247) - .3 0, NODE 5045.0 a. G . • .:r • 7 w:r t:.r "v ._ 4.'f l.« t .w 1. / �./ • _. e« � 'r _ ._. ••_—r R: Sv:.f RE FLOW Nti MC:7"�__'" 'Ji-,�rNODE 15 :«�-.._-'`� 0L .16 TO NJDE5 ...--_r.._......_..�...---_--...,—_...—_ — _ _ __ • L.i-4:_..,Jtr�w=+-'!._u•:�t.Ji4�:.,—�"6..i..'v� J—w:i'i +�1�—^. ... .....,.=--.^.—..._--__—„...—.^._,..._._—._.__.,,.__.._.......--._._...—____,......_.».— 4tJr AREA _• t r_•• ,«`-w DE -TA _A 30.6bo 14.537 0.000 S.W2 2 476.1 96.00 50266 5.472 J K.3 ZE. 0 1_t: 7.065 Lr. t`.w`.1(1 4 0.0 0.00 .i 1T j 0.000 r0.'w .., ,1 LACM AND OCEMA PRESSURE _ «G1e Jviwir -{N FOM,AE 6:uC.Li. '. » .� •..• J ” t.: w:t •it' �,. ,:, :w ... v w! . Lam'.. L i 1-y w:r i • j. LI. •6.�i.f.(.YC4..•vL ♦J�L�1-+ft•I t � l: iJ.T -DF' � . a. .«_r•'. 1• .. LV w'�J . -- u sem• i. ..JZO KSK A-5" :n jwNZ_lU% ASSLIED AE "77:1% -off" L:BQm4EA7iA%ZE .__.ii: t •._.'E .-_G. ___+_ ... _ _.._.. t. ..J. i_"�_s... _-. _�Qv . .OE:a• ' . Er�..,i _ :. CaY _.. .•'V4_ 53LZ- der .•1... t 0 f E. w_I._.1- - = 5 _ !K7. -K. _ _ _.-_.---.-_.-__..._____--___.._._.---......._...---__--..__.—_._._.-.-_._._-,».._--.._._._.---.-_.___ I-•__.»....-_......-__..-_. :..... w. i..._ . =—:a f..' -,r_... '-_.:4 USED 70 .`-i a -r .J _ J ... . . _ , A N a./ L_ _ _ PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) (C) Copyright 198E Advanced Engineering Software CAES7 Especially prepared for: HALL & FOREMAN, INC. #**###*###DESCRIPTION OF RESULTS####################* • LATERAL B HYDRAULICS (INDUSTRIAL AREA) # Q 25 # AHMED SHEIKH, J. N. 3551, 3/27/87 NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 10.35 FLOWL I NE ELEVATION = 1236.15 PIPE DIAMETER(INCH) = 51.00 PIPE FLOW(CFS) = 122.72 ASSUMED DOWNSTREAM CONTROL HGL = 1245.467 Advanced Engineering Software CAESI SERIAL No. A0483A REV. 2.2 RELEASE DATE:12/17/82 <<(<((<<(<(<<<<C((<<<<((<C<<<((<(<(((<>>>)>>>>>>>)>)>>)>>>>>>">>>>>>>>>)>>>>> PRESSURE FLOW PROCESS FROM NODE 10.35 TO NODE 77.10 IS CODE = 1 UPSTREAM NODE 77.10 ELEVATION = 1236.88 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 122.72 CFS PIPE DIAMETER = 51.00 INCHES PIPE LENGTH = 66.75 FEET MANNINGS N = .01300 SF= ( Q/K) *#2 = ( ( 122.72)/( 1688. 477)) ##2 = .0052825 HF=L#SF = ( 66.75)*( .0052825) = .353 NODE 77.10 : HGL= < 12 45. 820> ; EGL= < 1246. 982> ; FLOWL I NE= < 1236.880> --------------------- PRESSURE FLOW PROCESS FROM NODE 77.10 TO NODE 121.34 IS CODE = 3 UPSTREAM NODE 121.34 ELEVATION = 1237.37 PIPE FLOW = 122.72 CFS PIPE DIAMETER = 51.00 INCHES PIPE LENGTH = 44.24 FEET MANNINGS N = .01300 CENTRAL ANGLE = 18.770 DEGREES PRESSURE FLOW AREA = 14.186 SQUARE FEET FLOW VELOCITY = 8.65 FEET PER SECOND VELOCITY HEAD = 1.162 BEND COEFFICIENT(K.b) _ .114E HE+=KE+* (VELOCITY HEAD) = t .114)*( 1.162) = .133 PIPE CONVEYANCE FACTOR = 1688.477 FRICTION SLOPE(SF) _ .0052825 FRICTION LOSSES = L*SF = ( 44.24)*( .0052825) = .234 NODE 121.34 : HGL= < 1246. 186) ; EGL= < 1247. 348> ; FLOWL I NE= < 1237.370> -------------------- PRESSURE FLOW PROCESS FROM NODE 121.34 TO NODE 193.91 IS CODE = i UPSTREAM NODE 193.91 ELEVATION = 1238.17 -------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 122.72 CFS PIPE DIAMETER = 51.00 INCHES PIPE LENGTH = 72.57 FEET MANNINGS N = .01300 SF= (Q/K) **2 = ( ( 122.72)/( 1688.477)) **2 = .0052825 HF=L*SF = ( 72.57)*( .0052825) = .383 NODE 193.91 HGL= < 1246. 569> ; EGL= < 1247. 731> ; FLOWLINE= ( 1238.170> PRESSURE FLOW PROCESS FROM ------------------ NODE 193.99 TO NODE 198.58 IS CODE = 5 UPSTREAM ---------------------------------------------------------------------------- NODE 198.58 ELEVATION = 1038.22 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 113.7 51.00 14.166 8.018 0.000 .998 2 122.7 51.00 14.166 8.651 -- 3 9.0 27.00 3.976 2.256 90.000 - 4 0.0 0.00 0.000 0.000 0.010 - 5 0.0===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*Vi*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE _ .00454 DOWNSTREAM FRICTION SLOPE _ .00528 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00491 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .023 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = .327+ .998- 1.162+( .023)+( 0.000) = .187 NODE 198.58 : HGL= < 1246. 920) ; EGL= ( 1247. 918> ; FLOWL I NE= < 1238. 220) PRESSURE FLOW FLOW PROCESS FROM NODE 198.58 TO NODE 459.47 IS CODE = 1 UPSTREAM NODE 459.47 ELEVATION = 1241.35 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 113.75 CFS PIPE DIAMETER = 51.00 INCHES PIPE LENGTH = 260.89 FEET MANNINGS N = .01300 SF= (Q/ K) **2 = ( ( 113.75)/( 1688. 477)) **2 = .0045385 HF=L*SF = ( 260.69)*( .0045385) = 1.184 NODE 459.47 : HGL= ( 1248.104>;EGL= ( 1249.102>;FLOWLINE= < 1241.350) r a..vvvc- a "- " I "will 114"Ai" -ruj 7. -t ! 1 V IMULJG `t0•t. 1'i 10 L CMC = G UPSTREAM NODE 464.14 ELEVATION = 1241.40 ------------------------------------------------------------------------- CALCULATE PRESSURE FLOW MANHOLE LOSSES(LACFCD): PIPE FLOW = 113.75 CFS PIPE DIAMETER = 51.00 INCHES PRESSURE FLOW AREA = 14.186 SQUARE FEET FLOW VELOCITY = 6.02 FEET PER SECOND VELOCITY HEAD = .998 HMN = . 05* (VELOCITY HEAD) = .05*( .998) _ .050 NODE 464.14 : HGL= < 1248. 154> ; EGL= < 1249. 152> ; FLOWL I NE= < 1241. 400> ----------------------- PRESSURE FLOW PROCESS FROM NODE 464.14 TO NODE 773.73 IS CODE = 1 UPSTREAM NODE 773.73 ELEVATION = 4242.95 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 113.75 CFS PIPE DIAMETER = 51.00 INCHES PIPE LENGTH = 309.59 FEET MANNINGS N = .01300 SF=(Q/K)**2 = (( 113.75)/( 1688.477))**2 = .0045385 HF=L*SF = ( 309.59)*( .0045385) = 1.405 NODE 773.73 : HGL= < 1249. 559> ; EGL= ( 1250. 557> ; FLOWL I NE= < 1242.950> ---------------------- PRESSURE FLOW PROCESS FROM NODE 773.73 TO NODE 778.46 IS CODE = 5 UPSTREAM NODE 778.46 ELEVATION = 1243.00 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 86.1 51.00 14.186 6.066 0.000 .571 2 113.7 51.00 14.186 8.018 -- .998 3 27.7 24.00 3.142 8.820 90.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE _ .00260 DOWNSTREAM FRICTION SLOPE _ .00454 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00357 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .017 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = .854+ .571- .998+( .017)+( 0.000) = .444 NODE 778.46 : HGL= ( 1250. 429> ; EGL= < 1251. 001 > ; FLOWL I NE= < 1243.000> ------------------- PRESSURE FLOW PROCESS FROM NODE 778.46 TO NODE 1000.00 IS CODE = 1 UPSTREAM NODE 1000.00 ELEVATION = 1244.11 ------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 86.06 CFS PIPE DIAMETER = 51.00 INCHES PIPE LENGTH = 221.60 FEET MANNINGS N = .01300 SF= (Q / K) **2 = ( ( 86.06)/( 1688. 477)) **2 = .0025978 HF=L*SF = ( 221.60)*( .0025978) = .576 NODE 1000.00 : HGL= < 1251. 005> ; EGL= < 1251. 576> ; FLOWL I NE= < 1244.110> CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 86.06 CFS PIPE DIAMETER = 51.00 INCHES PIPE LENGTH = 144.83 FEET MANNINGS N = .01300 SF= (Q/K) **2 = ( ( 86-06)/( 1688. 477)) **2 = .0025978 HF=L*SF = ( 144.83)*( .0025978) = .376 NODE 1144.83 : HGL= ( 1251. 381 ); EGL= ( 1251. 953) ; FLOWL I NE= ( 1244. 830) PRESSURE FLOW PROCESS FROM NODE 1144.83 TO NODE 1149.50 IS CODE = 2 UPSTREAM NODE 1149.50 ELEVATION = 1244.90 ------------------------ --------------------------------------------------- CALCULATE PRESSURE FLOW MANHOLE LOSSES(LACFCD): PIPE FLOW = 86.06 CFS PIPE DIAMETER = 51.00 INCHES PRESSURE FLOW AREA = 14.166 SQUARE FEET FLOW VELOCITY = 6.07 FEET PER SECOND VELOCITY HEAD = .571 HMN = . 05* (VELOCITY HEAD) = .05*( . 571) _ .029 NODE 1149.50 : HGL= ( 1251. 410) ; EGL= ( 1251. 981 > ; FLOWL I NE= ( 1244.900> PRESSURE FLOW PROCESS FROM NODE 1149.50 TO NODE 1381.31 IS CODE _ -1 _ UPSTREAM NODE 1381.31 ELEVATION = 1246.42 -------------------------- ------------------------------------------------ CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 86.06 CFS PIPE DIAMETER = 51.00 INCHES PIPE LENGTH = 231.81 FEET MANNINGS N = .01300 SF= (Q/K) **2 = t ( 86-06)/( 1688. 477)) **2 = .0025978 HF=L*SF = ( 231.81)*( .0025978) = .602 NODE 1381.31 : HGL= ( 1252. 012> ; EGL= ( 1252. 583) ; FLOWL I NE= ( 1246.420> PRESSURE FLOW PROCESS FROM NODE 1381.31 TO NODE 1471.25 IS CODE = 3 UPSTREAM NODE 1471.25 ELEVATION = 1247.29 ----------------------------------------------------------------------- CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 86.06 CFS PIPE DIAMETER = 51.00 INCHES PIPE LENGTH = 89.09 FEET MANNINGS N = .01300 CENTRAL ANGLE = 38.160 DEGREES PRESSURE FLOW AREA = 14.186 SQUARE FEET FLOW VELOCITY = 6.07 FEET PER SECOND VELOCITY HEAD = .571 EMEND COEFFICIENT(KB) _ .1628 HFA=KB* (VELOCITY HEAD) = t .163)*( . 571) = .093 PIPE CONVEYANCE FACTOR = 1688.477 FRICTION SLOPE(SF) _ .0025978 FRICTION LOSSES = L*SF = t 89.09)*( .0025978) = .231 NODE 1471.25 : HGL= ( 1252. 336> ; EGL= ( 1252. 908) ; FLOWLINE= < 1247.290> PRESSURE FLOW PROCESS FROM NODE 1471.25 TO NODE 1475.92 IS CODE = 5- _ UPSTREAM NODE 1475.92 ELEVATION = 1248.54 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 86.1 36.00 7.069 12.175 0.000 2.302 2 86.1 51.00 14.186 6.066 -- .571 3 0.0 0.00 0.000 0.000 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0===05 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE _ .01665 DOWNSTREAM FRICTION SLOPE _ .00260 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00962 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .045 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY+HVi-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = -1.536+ 2.302- .571+( .040)+( 0.000) = .239 NODE 1470.92 : HGL= ( 1250. 845> ; EGL= ( 1253. 147> ; FLOWL I NE= < 1248.540> ---------------------------------------------------------------------------- PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .70 NODE 1475.92 : HGL= < 1251. 540> ; EGL= ( 1253. 842> ; FLOWLINE= < 1248.540> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM G) PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) (C) Copyright 1982 Advanced Engineering Software EAESI Especially prepared for: HALL & FOREMAN, INC. **********DESCRIPTION OF */NDUSTRIAL A2EA S- D_ LA7E2AL CRQ1zm LINE `L' LIATftzAL STA 6.6 TO2232.o-k- * T 2s YP- * VL/IKI• /V u—N 3910 -04, 2'/6/88 J>IS�-_ " VC—Nkl l—I SHTS J_ THRU 7 **************iEIEdE*dE�fdF*************�FIE*****************�dF*********�*iE�E***lEif•**� ************lF**�*****�*dEif*dE�EIEIF�EIE�FiFib9E*lE9ElE�E9EifdE9E1E9F9ElF�FdF�dE*�FdEiE16�E�iE�EIE*9FlFiEdEIE�E*IF�EiFif3E NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 6.60 FLOWLINE ELEVATION = 1255.47 PIPE DIAMETER(INCH) = 48.00 PIPE FLOW(CFS) = 153.13 ASSUMED DOWNSTREAM CONTROL HGL = 1263.260 Advanced Engineering Software EAESI SERIAL No. A0483A REV. 2.2 RELEASE DATE:12/17/82 PRESSURE FLOW PROCESS FROM NODE 6.60 TO NODE 180.63 IS CODE =--1 UPSTREAM NODE 180.63 ELEVATION = 1260.69 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 153.13 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 174.03 FEET MANN I NGS N = .01300 SF= (Q/Y.) **2 = ( ( 153.13)/( 1436. 431)) **2 = . 01 13645 HF=L*SF = ( 174.03)*( .0113645) = 1.978 NODE 160.63 : HGL= < 1265. 238> ; EGL= < 1267. 544> ; FLOWL I NE= < 1260. 690> ---------- UPSTREAM NODE 185.30 ELEVATION = 1261.04 -------------------------------------------------- - CALCULATE PRESSURE FLOW JUNCTION LOSSES: PIPE DIAMETER NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 149.6 45.00 11.045 13.547 0.000 2.850 2 153.1 48.00 12.566 12.186 -- 2.306 3 3.5 18.00 1.767 1.986 90.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0===05 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*Vii-COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((Ai+A2)*16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE _ .01531 DOWNSTREAM FRICTION SLOPE _ .01136 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .01334 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .062 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = -.423+ 2.850- 2.306+( .062)+( 0.000) = .183 NODE 185.30 : HGL= ( 1264. 877> ; EGL= < 1267. 727) ; FLOWL I NE= ( 1261. 040) PRESSURE FLOW PROCESS FROM NODE 185.30 TO NODE 591.70 IS CODE -- UPSTREAM NODE 591.70 ELEVATION = 1267.49 ---------------- 7 PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 149.62 CFS PIPE DIAMETER = 45.00 INCHES PIPE LENGTH = 406.40 FEET MANNINGS N = .01300 SF= (Q/ K) **2 = ( t 149.F,2)/( 1209. 335)) **2 = .0153069 HF=L*SF = ( 406.40)*( .0153069) = 6.221 NODE 591.70 : HGL= ( 1271. 098> ;EGL= ( 1273. 947> ;FLOWLINE= ( 1267.490) ----------------------------------------------------------------------------- PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .14 NODE 591.70 : HGL= < 1271. 240> ; EGL= ( 1274. 090> ; FLOWL I NE= < 1267.490> PRESSURE FLOW PROCESS FROM NODE 591.70 TO NODE 596.37 IS CODE _ --- UPSTREAM NODE 596.37 ELEVATION = 1267.56 •-------------------------------------------------------------------------- CALCULATE PRESSURE FLOW MANHOLE LOSSES(LACFCD): RIPE FLOW = 149.62 CFS PIPE DIAMETER = 45.00 INCHES PRESSURE FLOW AREA = 11.045 SQUARE FEET FLOW VELOCITY = 13.55 FEET PER SECOND VELOCITY HEAD = 2.850 HMN = . 0 5* (VELOCITY HEAD) = .05*( 2.850) _ .142 NODE 596.37 : HGL= < 1271. 382) ; EGL= < 12 74.2 32> ; FLOWL I NE= < 1267.560> PRESSURE FLOW PROCESS FROM NODE 596.37 TO NODE 998.10 IS CODE = 1 - UPSTREAM NODE 998.10 ELEVATION = 1273.94 - ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD"): PIPE FLOW = 149.62 CFS PIPE DIAMETER = 45.00 INCHES PIPE LENGTH = 401.75 FEET MANNINGS N = .01300 SF= (Q/K) **2 = ( ( 149.G-2)/( 1209. 3135 ) ) **L = . 015306 9 HF=L*SF = ( 401.75)*( .0153069) = 6.150 NODE 998.10 . HGL= < 1277_ : Fri = % 1 ;= Ai7[_ ?A D> ! P7; nW' r NP7: quin, � PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL ,3 LOST PRESSURE HEAD USING SOFFIT CONTROL = .16 NODE 998.10 : HGL= < 1277. 690> ; EGL= < 1280. 540> ; FLOWL I NE= < 1273.940> PRESSURE FLOW PROCESS FROM NODE 998.10 TO NODE 1002.77 IS CODE = 5 4 - UPSTREAM NODE 1002.77 ELEVATION = 1274.01 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 149.6 54.00 15.904 9.407 0.000 1.374 2 149.6 45.00 11.045 13.547 -- 2.850 3 0.0 0.00 0.000 0.000 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0===05 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-QI*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((Ai+AI)*16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE _ .00579 DOWNSTREAM FRICTION SLOPE _ .01531 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .01055 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .049 ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = -.048 MANHOLE LOSSES = .142 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = 1.427+ 1.374- 2.850+( .049)+( 0.000) = .192 NODE 1002.77 : HGL= < 1279. 357> ; EGL= ( 1280. 731 > ; FLOWL I NE= < 1274.010> PRESSURE FLOW PROCESS FROM NODE 1002.77 TO NODE 1010.77 IS CODE = 1 UPSTREAM NODE 1010.77 ELEVATION = 1274.09 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 149.62 CFS - PIPE DIAMETER = 54.00 INCHES PIPE LENGTH = 8.00 FEET MANNINGS N = .01300 SF= (Q/K) **2 = ( ( 149.62)/( 1966. 489)) **2 = .0057889 HF=L*SF = ( 8.00)*( .0057889) = .046 NODE 1010.77 : HGL= < 1279. 403> ; EGL= ( 1280. 778> ; FLOWL I NE= < 1274.090> PRESSURE FLOW PROCESS FROM NODE 1010.77 TO NODE 1029.77 IS CODE = 5 UPSTREAM NODE 1029.77 ELEVATION = 1274.29 ---------------------------------------------=------------------------------ CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 133.4 93.00 47. 173 2.827 0.000 .124 2 149.6 54.00 15.904 9.407 -- 1.374 3 16.2 42.00 9.621 1.689 90.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0===05 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V`-Q1*Vi*CDS(DELTAI)-03*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N = .01300 nnl.IhIQTGC71nM M nKINI T KIMQ hl - I -A 1 '2171171 DOWNSTREAM FRICTION SLOPE = .00079 (� AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .0030E JUNCTION LENGTH(FEET) = 19.00 FRICTION LOSS = .OS7 ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = -.235 MANHOLE LOSSES = .069 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) € JUNCTION LOSSES = 1.015+ .124- 1.374+( .057)+( 0.000) _ . 126 NODE 1029.77 : HGL= < 1280. 780) ; EGL= ( 1280. 904) ; FLOWL I NE= ( 1274. 290) ---------------------------------------------------------------------------- PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 1.26 NODE 1029.77 : HGL= ( 1282.040) ; EGL= ( 1282. 164) ; FLOWL I NE= ( 1274.290) PRESSURE FLOW PROCESS FROM NODE 1029.77 TO NODE 1037.77 IS CODE = 1 UPSTREAM NODE 1037.77 ELEVATION = 1274.34 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 133.37 CFS PIPE DIAMETER = 93.00 INCHES PIPE LENGTH = 8.00 FEET MANNINGS N = .01300 SF= (Q / K) **2 = < ( 133.37)/( 8380. 416)) **2 = . 000253 3 HF=L*SF = ( 8.00)*( .0002533) = .002 NODE 1037.77 : HGL= ( 1282. 042> ; EGL= ( 1282. 166> ; FLOWL I NE= ( 1274.340> ----------------------------------------------------------------------------- PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .05 NODE 1037.77 : HGL= < 1282. 090> ; EGL= ( 1282. 214) ; FLOWL I NE= < 1274.340> PRESSURE FLOW PROCESS FROM NODE 1037.77 TO NODE 1042.44 IS CODE = 5 UPSTREAM NODE 1042.44 ELEVATION = 1274.37 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 133.4 96.00 50.266 2.653 0.000 .109 2 133.4 93.00 47.173 2.827 -- .124 3 0.0 0.00 0.000 0.000 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0===05 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-01*Vl*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE _ .00021 DOWNSTREAM FRICTION SLOPE _ .00025 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00023 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .001 ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = -.000 MANHOLE LOSSES = .006 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = .015+ .109- .124+( .001)+( 0.000) = .007 NODE 1042.44 : HGL= < 1282. 112> ; EGL= < 1282. 221 > ; FLOWL I NE= < 1274. 370) ---------------------------------------------------------------------------- PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .26 NODE 1042.44 : HGL= ( 1282. 370> ; EGL= ( 1282. 479> ; FLDWL INE= ( 1274. 370) PRESSURE FLOW PROCESS FROM NODE 1042.44 TO NODE 1297.75 IS CODE = 1 UPSTREAM NODE 1297.75 ELEVATION = 1276.12 -------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 133.37 CFS PIPE DIAMETER = 96.00 INCHES PIPE LENGTH = 255.33 FEET MANNINGS N = .01300 SF= (Q /K) **2 = t ( 133.37)/( 9120. 764)) **2 = .0002138 HF=L*SF = ( 255.33)*( .0002136) = .055 NODE 1297.75 : HGL= ( 1282. 425> ; EGL= ( 1282. 534> ; FLOWL I NE= ------------------------------------------------------------ < 1276.120> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 1.70 NODE 1297.75 : HGL= < 1284. 120> ; EGL= < 1284. 229> ; FLOWL I NE= < 1276.120> PRESSURE FLOW PROCESS FROM NODE 1297.75 TO NODE 1305.25 IS CODE = 5 UPSTREAM NODE 1305.25 ELEVATION = 1276.16 ---------------------------------------------- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY 1 108.4 96.00 50.266 2.156 2 133.4 96.00 50.266 2.653 3 1.5 18.00 1.767 .849 4 23.5 30.00 4.909 4.787 5 0.0===Q5 EQUALS BASIN INPUT=== DELTA HV 0.000 .072 -- .109 90.000 45.000 - LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-01*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4*V4*CDS(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE _ .00014 DOWNSTREAM FRICTION SLOPE _ .00021 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00018 JUNCTION LENGTH(FEET) = 7.50 FRICTION LOSS = .001 ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = -.012 MANHOLE LOSSES = .005 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = .025+ .072- .109+( .001)+( 0.000) = .007 NODE 1305.25 : HGL= ( 1284. 164> ; EGL= ( 1284. 236) ; FLOWL I NE= < 1276.160> PRESSURE FLOW PROCESS FROM NODE 1305.25 TO NODE 1709.73 IS CODE = 1 UPSTREAM NODE 1709.73 ELEVATION = 1281.33 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 108.39 CFS PIPE DIAMETER = 96.00 INCHES PIPE LENGTH = 404.48 FEET MANNINGS N = .01300 SF= (Q/K) **2 = ( ( 108.39M / t 9120. 764)) **2 = .0001412 HF=L*SF = ( 404.48)*( .0001412) = .057 NODE 1709.73 : HGL= < 1284. 221> ; EGL= < 1284. 293> ; FLOWLINE= < 1281.330> ----------------------------------------------------------------------------- PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 5.11 NODE 1709.73 : HGL= < 1289. 330> ; EGL= < 1289. 402> ; FLOWL I NE= < 1281.330> PRESSURE FLOW PROCESS FROM NODE 1709.73 TO NODE 1727.73 IS CODE-= 5-- - UPSTREAM NODE 172:7.73 ELEVATION = 1285.81 ---------------------------------------------------------------------------- NO. DISCHARGE DIAMETER 1 74.0 45.00 2 108.4 96.00 3 27.9 72.00 4 6.5 72.00 5 0.0===05 EQUALS AREA VELOCITY DELTA HV 11.045 6.702 0.000 .697 50.266 2.156 -- .07E 28.274 .987 60.000 - 28.274 .230 60.000 - BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*Vi*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 - UPSTREAM FRICTION SLOPE _ .00375 DOWNSTREAM FRICTION SLOPE _ .00014 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00194 JUNCTION LENGTH(FEET) = 16.00 FRICTION LOSS = .035 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = -.280+ .697- .072+( .035)+( 0.000) = .360 NODE 1727.73 : HGL= ( 1289. 084> ; EGL= ( 1289. 782) ; FLOWL I NE= < 1285. 810) ------------------------------------------------------------------------- PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .48 NODE 1727.73 : HGL= < 1289. 560> ; EGL= < 1290. 258> ; FLOWL I NE= < 1285.810> PRESSURE FLOW PROCESS FROM NODE 1727.73 TO NODE 2088.29 IS CODE = i UPSTREAM NODE 2088.29 ELEVATION = 1288.65 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 74.02 CFS PIPE DIAMETER = 45.00 INCHES PIPE LENGTH = 360.56 FEET MANNINGS N = .01300 SF= (Q/K) **2 = ( ( 74.02)/( 1209. 335)) **2 = .0037463 HF=L*SF = ( 360.56)*( .0037463) = 1.351 NODE 2088.29 : HGL= ( 1290. 911 > ; EGL= ( 1291. 608> ; FLOWL I NE= ( 1288. 650) ---------------------------------------------------------------------------- PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 1.49 NODE 2088.29 : HGL= ( 1292. 400> ; EGL= < 1293. 098) ; FLOWL I NE= ( 1288. 650) PRESSURE FLOW PROCESS FROM NODE 2088.29 TO NODE 2227.33 IS CODE = 3 - UPSTREAM NODE 2227.33 ELEVATION = 1289.75 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 74.02 CFS PIPE DIAMETER = 45.00 INCHES PIPE LENGTH = 139.04 FEET MANNINGS N = .01300 CENTRAL ANGLE = 90.000 DEGREES PRESSURE FLOW AREA = 11.045 SQUARE FEET FLOW VELOCITY = 6.70 FEET PER SECOND VELOCITY HEAD = .697 BEND COEFFICIENT(KB) _ .2500 HES=KB* (VELOCITY HEAD) _ ( .250)*( .697) = .174 PIPE CONVEYANCE FACTOR = 1209.335 FRICTION SLOPE(SF) _ .0037463 FRICTION LOSSES = L*SF = ( 139.04)*( .0037463) = .521 NODE 2227.33 : HGL= < 1293. 095> ; EGL= < 1293. 793> ; FLOWL I NE= < 1289. 750) ---------------------------------------------------------------------------- PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .40 NODE 2227.33 : HGL= ( 1293. 500) ;EGL= ( 1294. 197) ;FLOWLINE= ( 1289.750> UPSTREAM NODE `'2232.00 ELEVATION = 1290.54 CALCULATE PRESSURE FLOW JUNCTION LOSSES: DISCHARGE NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 74.0 54.00 15.904 4.654 0.000 .336 2 74.0 45.00 11.045 6.702 -- .697 3 0.0 0.00 0.000 0.000 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0===05 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED. DY=(Q2*V2-01*VI*COS(DELTAI)-Q3*V3*COS(DELTA3)- 04*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE _ .00142 DOWNSTREAM FRICTION SLOPE _ .00375 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00258 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .012 ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = -.012 MANHOLE LOSSES = .035 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = .349+ .336- .697+( .012)+( 0.000) = .047 NODE 2232.00 : HGL= < 1293. 908> ; EGL= < 1294. 244) ; FLOWL I NE= < 1290. 540) ---------------------------------------------------------------------------- PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 1.13 NODE_ 2232.00 : HGL= < 1295.040) ; EGL= < 1295. 376> ; FLOWL I NE= < 1290.540> ---------------- �C`1- PrNRLySIs N17 -f-} 36" UPI,----------------------____-__ --------------------------- PRESSURE FLOW PROCESS FROM NODE 2227.33 TO NODE 2232.00 -IS CODE = 5 UPSTREAM NODE 2232.00 ELEVATION = 1290.54 ---------------------------------------- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 74.0 36.00 7.069 10.472 0.000 1.703 2 74.0 45.00 11.045 6.702 -- .697 3 0.0 0. 00 0.000 0.000 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0===05 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(U2*V='-01*V1*COS(DELTAI)-03*V3*COS(DELTA3)- 04*V4*COS(DELTA4))/((A1+A^c)*16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = . 013 00 UPSTREAM FRICTION SLOPE _ .01232 DOWNSTREAM FRICTION SLOPE _ .00375 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00803 JUNCTION LENGTH ( FEET) = 4.67 FRICTION LOSS = .038 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY+HVI--HVA=+ (FRI CTI ON LOSS) + (ENTRANCE LOSSES) r- JUNU I I ON LOSSES = -.957+ 1.703- .697+( .038)+( 0.000) = . 08E. NODE 2232.00 . HGL= ( 12 92. x;8,1) ; %GL= ( 1294. 283> ; FLOWL I NE= < 1290. 540, PRESSURE FLOW ASSUMPTION USED TO ADjUS T HGL AND EGLLOST -- ---- PRESSURE HEAD USINS SOFFIT CONTROL = .96 NODE 2232.00 . HGL= ( 1293. 5401 ; EGL= ; PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) (C) Copyright 1962 Advanced Engineering Software EAESI Especially prepared for: HALL & FOREMAN, INC. **********DESCRIPTION OF RESULTS*************************** * INDUSTRIAL AREA HYDRAULICS LATERAL D FROM LINE L * 0 25 YR ,LATERAL STA 5.65 (LINE L STA 1803.85) * VENKI. N, J. N 3551, 3/17/87 **************************************************************************** NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS EASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE F'IPE FLOW CONTROL DATA: NODE NUMBER = 5.65 FLOWLINE ELEVATION = 1230.92 PIPE DIAMETER(INCH) = 42.00 PIPE FLOW(CFS) = 105.59 ASSUMED DOWNSTREAM CONTROL HGL = 1239.060 Advanced Engineering Software EAESI SERIAL No. A0483A REV. 2.2 RELEASE DATE:12/17/82 PRESSURE FLOW PROCESS FROM NODE 5.65 TO NODE 183.71 IS CODE - UPSTREAM NODE 183.71 ELEVATION = 1235.09 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 105.59 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 178.06 FEET MANNINGS N = .01300 SF= (Q/K) **2 = ( t 105-159)/( 1006. 105)) **2 = .0110144 HF=L*SF = ( 178.06)*( .0110144) = 1.961 NODE 183.71 : HGL= < 1241. 021) ; EGL= < 1242. 891) : FLOWLINE= < 1235. 090) ---------------------- PRESSURE FLOW PROCESS FROM NODE 183.71 TO NODE 347.67 IS CODE = 3 UPSTREAM NODE 347.67 ELEVATION = 1238.94 PIPE FLOW = 105.59 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 163.96 FEET MANNINGS N = .01300 CENTRAL ANGLE = 3.336 DEGREES PRESSURE FLOW AREA = 9.621 SQUARE FEET FLOW VELOCITY = 10.97 FEET PER SECOND VELOCITY HEAD = 1.870 BEND COEFFICIENT(KB) _ .0481 HB=KB*(VELOCITY HEAD) _ ( .048)*( 1.870) = .090 PIPE CONVEYANCE FACTOR = 1006.105 FRICTION SLOPE(SF) _ .0110144 FRICTION LOSSES = L*SF = ( 163.96)*( .0110144) = 1.806 NODE 347.67 : HGL= < 1242. 917> ; EGL= ( 1544. 787> ; FLOWL I NE= < 1238.940) PRESSURE FLOW PROCESS FROM NODE 347.67 TO NODE 352.34 IS CODE-= 2 UPSTREAM NODE 352.34 ELEVATION = 1239.03 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW MANHOLE LOSSES(LACFCD): PIPE FLOW = 105.59 CFS PIPE DIAMETER = 42.00 INCHES PRESSURE FLOW AREA = 9.621 SQUARE FEET FLOW VELOCITY = 10.97 FEET PER SECOND VELOCITY HEAD = 1.870 HMN = . 05* (VELOCITY HEAD) = .05*( 1.870) _ .094 NODE 352.34 : HGL= ( 1243. 011 > ; EGL= ( 1244. 881 > ; FLOWL I NE= < 1239.030> PRESSURE FLOW PROCESS FROM NODE 352.34 TO NODE 716.13 IS CODE = 3 UPSTREAM NODE 716.13 ELEVATION = 1243.76 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 105.59 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 363.79 FEET MANNINGS N = .01300 CENTRAL ANGLE = 7.402 DEGREES PRESSURE FLOW AREA = 9.621 SQUARE FEET FLOW VELOCITY = 10.97 FEET PER SECOND VELOCITY HEAD = 1.870 BEND COEFFICIENT(KB) _ .0717 HB=KB*(VELOCITY HEAD) _ ( .072)*( 1.870) = .134 PIPE CONVEYANCE FACTOR = 1006.105 FRICTION SLOPE(SF) _ .0110144 FRICTION LOSSES = L*SF = ( 363.79)*( .0110144) = 4.007 NODE 716.13 : HGL= ( 1247. 152'> ; EGL= ( 1249. 022> ; FLOWL I NE= < 1243.760> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .11 NODE 716.13 : HGL= < 1247. 260> ; EGL= < 1249. 130> ; FLOWL I NE= < 1243.760> PRESSURE FLOW PROCESS FROM NODE 716.13 TO NODE 723.13 IS CODE = 5 - UPSTREAM NODE 723.13 ELEVATION = 1245.11 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 36.6 27.00 3.976 9.210 .142 1.317 2 105.6 42.00 9.621 10.975 --- 1.870 3 50.0 33.00 5.940 8.416 45.000 - 4 19.0 24.00 3.142 6.042 45.000 - 5 0.0===05 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-01*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))i((A1+A2)*16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .01250 JUNCTION LENGTH(FEET) = 7.00 FRICTION LOSS = .087 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = 2.023+ 1.317- 1.870+( .087)+( 0.000) = 1.558 NODE 723.13 : HGL= ( 1249. 371 > ; EGL= ( 1250. 668) ; FLOWL I NE= ( 1245.110> PRESSURE FLOW PROCESS FROM NODE 723.13 TO NODE 805.57 IS CODE = 3 UPSTREAM NODE 805.57 ELEVATION = 1246.26 --------------------------------------------------------------------------- CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 36.62 CFS PIPE DIAMETER = 27.00 INCHES PIPE LENGTH = 82.44 FEET MANNINGS N = .01300 CENTRAL ANGLE = 1.677 DEGREES PRESSURE FLOW AREA = 3.976 SQUARE FEET FLOW VELOCITY = 9.21 FEET PER SECOND VELOCITY HEAD = 1.317 SEND COEFFICIENT(KB) _ .0341 HB=KB*(VELOCITY HEAD) _ ( .034)*( 1.317) = .045 PIPE CONVEYANCE FACTOR = 309.703 FRICTION SLOPE(SF) _ .0139813 FRICTION LOSSES = L*SF = ( 82.44)*( .0139813) = 1.153 NODE 805.57 : HGL= ( 1 `50.56 9> ; EGL= < 1251. 886> ; FLOWL I NE= < 1246.260> PRESSURE FLOW PROCESS FROM NODE 805.57 TO NODE 1197.67 IS CODE = 3 UPSTREAM NODE 1197.67 ELEVATION = 1251.75 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMAK PIPE FLOW = 36.82 CFS PIPE DIAMETER = 27.00 INCHES PIPE LENGTH = 392.10 FEET MANNINGS N = .01300 CENTRAL ANGLE = 12.593 DEGREES PRESSURE FLOW AREA = 3.976 SQUARE FEET FLOW VELOCITY = 9.21 FEET PER SECOND VELOCITY HEAD = 1.317 BEND COEFFICIENT(KB) _ .0935 HB=KB*(VELOCITY HEAD) _ ( .094)*( 1.317) = .123 PIPE CONVEYANCE FACTOR = 309.703 FRICTION SLOPE(SF) _ .0139813 FRICTION LOSSES = L*SF = ( 392.10)*( .0139813) = 5.462 NODE 1197.67 : HGL= < 1256. 174> ; EGL= < 1257. 491 > ; FLOWL I NE= < 1251. 750) PRESSURE FLOW PROCESS FROM NODE 1197.67 TO NODE 1202.34 IS CODE-= 2 - UPSTREAM NODE 1202.34 ELEVATION = 1251.82 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW MANHOLE LOSSES(LACFCD): PIPE FLOW = 36.62 CFS PIPE DIAMETER = 27.00 INCHES PRESSURE FLOW AREA = 3.976 SQUARE FEET FLOW VELOCITY = 9.21 FEET PER SECOND VELOCITY HEAD = 1.317 HMN = . 05* (VELOCITY HEAD) = .05*( 1.317) _ .066 NODE 1202.34 : HGL= < 1256. 240> ; EGL= ( 1257. 557) ; FLOWL I NE= ( 1251.820> PRESSURE FLOW PROCESS FROM NODE 1202.34 TO NODE 1697.67 IS CODE = 3 - UPSTREAM NODE 1697.67 ELEVATION = 1260.24 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 36.62 CFS PIPE DIAMETER = 27.00 INCHES PIPE LENGTH = 495.33 FEET MANNINGS N = .01300 CENTRAL ANGLE = 15.908 DEGREES PRESSURE FLOW AREA = 3.976 SQUARE FEET i ---- 1 1 1 I I- -- 1. ♦.! i I _"s I" V V 1...1 1 i V l L, 1 4 1 % 1\ L / - • J. W J 1 HES=KP* (VELOCITY HEAD) = t .105)*( 1. 317) = .138 F'IF'E CONVEYANCE FACTOR = 305.703 FRICTION SLOPE(SF) _ .0139813 FRICTION LOSSES = L*SF = ( 495.33)*( .0139813) = 6.925 NODE 1697.67 : HGL= < 1263. 304> ; EGL= < 1264. 621> ; FLOWLINE= < 1260.240> PRESSURE FLOW PROCESS FROM NODE 1657.67 TO NODE 1702.34 IS CODE = 2 -- UPSTREAM NODE 1702.34 ELEVATION = 1260.32 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW MANHOLE LOSSES(LACFCD): PIPE FLOW = 36.62 CFS PIPE DIAMETER = 27.00 INCHES PRESSURE FLOW AREA = 3.576 SQUARE FEET FLOW VELOCITY = 5.21 FEET PER SECOND VELOCITY HEAD = 1.317 HMN = . 05* (VELOCITY HEAD) = .05*( 1. 317) _ .066 NODE 1702.34 : HGL= < 126 3.370> ;EGL= < 1264. 6871 ;FLOWLINE= < 1260.320> PRESSURE FLOW PROCESS FROM NODE 1702.34 TO NODE 1562.21 IS -CODE = 3- - UPSTREAM NODE 1962.21 ELEVATION = 1264.74 CALCULATE PRESSURE FLOW PIPE -EMEND LOSSES(OCEMA): PIPE FLOW = 36.62 CFS PIPE DIAMETER = 27.00 INCHES RIPE LENGTH = 259.87 FEET MANNINGS N = .01300 CENTRAL ANGLE = 8.346 DEGREES PRESSURE FLOW AREA = 3.976 SQUARE FEET FLOW VELOCITY = 9.21 FEET PER SECOND VELOCITY HEAD = 1.317 EMEND COEFFICIENT(KB) _ .0761 HE+=KB* (VELOCITY HEAD) _ ( .076)*( 1. 317) = .100 RIPE CONVEYANCE FACTOR = 309.703 FRICTION SLOPE(SF) _ FRICTION LOSSES = L*SF = ( 259.87)*( .0139813) = 3.633 NODE 1962.21 : HGL= ( 1267. 103> ; EGL= < 1268. 420> ; FLOWL I NE= . 0139813 1264.740) PRESSURE FLOW PROCESS FROM NODE 1962.21 TO NODE 2085.56 IS CODE _ -1 - UPSTREAM NODE 2085.96 ELEVATION = 1266.84 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 36.62 CFS PIPE DIAMETER = 27.00 INCHES PIPE LENGTH = 123.75 FEET MANNINGS N = .01300 SF= (Q / K) **2 = (( 36.62)/( 309. 703)) **2 = .0139813 HF=L*SF = ( 123.75)*( .0139813) = 1.730 NODE 2085.96 : HGL= < 1268. 833> ; EGL= < 1270. 151 > ; FLOWL I NE= < 1266. 8401 ---------------------------------------------------------------------------- FIRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .26 NODE 2085.96 : HGL= < 1269. 090> ; EGL= < 1270. 407> ; FLOWL I NE= < 1266.640> PRESSURE FLOW PROCESS FROM NODE 2085.96 TO NODE 2142.26 IS CODE _ 3 - UPSTREAM NODE 2142.26 ELEVATION = 1267.80 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW RIPE -EMEND LOSSES(OCEMA): RIPE FLOW = 36.62 CFS PIPE DIAMETER = 27.00 INCHES RIPE LENGTH = 56.30 FEET MANNINGS N = .01300 CENTRAL ANGLE = 1.880 DEGREES PRESSURE FLOW AREA = 3.576 SQUARE FEET FLOW VELOCITY = 9.21 FEET PER SECOND VELOCITY HEAD = 1.317 EMEND COEFFICIENT(KB) _ .0361 HP=KP*(VELOCITY HEAD) _ ( .036)*( 1.317) = .048 v Ix LLj I1V14 "u 1;;? 10 G�_) - L. -ter - % JO. J4J/'+�'l .VI%:j uQ 1.]/ _ . Its( NODE 2142.26 : HGL= ( 1269. 925> ; EGL= < 1271. 242> ; FLOWL I NE= ( 1267.800> ------------------------------------------------------------------------- PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .13 NODE 2142.26 : HGL= ( 1270. 050) ; EGL= ( 1271. 367> ; FLOWL I NE= ( 1267.800> PRESSURE FLOW PROCESS FROM NODE 2142.L6 TO NODE 2147.26 IS CODE = 5 - UPSTREAM NODE 2147.26 ELEVATION = 1268.13 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA' HV 1 22.2 24.00 3.142 7.073 .167 .777 2 36.6 27.00 3.976 9.210 -- 1.317 3 14.4 21.00 2.405 5.987 60.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0===05 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(02*V2-01*V1*COS(DELTA1)-03*V3*COS(DELTAS)- 04*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE _ .00965 DOWNSTREAM FRICTION SLOPE _ .01398 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .01181 JUNCTION LENGTH(FEET) = 5.00 FRICTION LOSS = .059 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = 1.196+ .777- 1.317+( .059)+( 0.000) = .714 NODE 2147.26 : HGL= ( 1271.305> ;EGL= ( 1272. 082> ;FLOWLINE= < 1268. 130) PRESSURE FLOW PROCESS FROM NODE 2147.26 TO NODE .2377.28 IS CODE-= 3 - UPSTREAM NODE 2377.28 ELEVATION = 1271.12 --------------------------------------------------------------------------- CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 22.22 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 230.02 FEET MANNINGS N = .01300 CENTRAL ANGLE = 7.780 DEGREES PRESSURE FLOW AREA = 3.142 SQUARE FEET FLOW VELOCITY = 7.07 FEET PIER SECOND VELOCITY HEAD = .777 BEND COEFFICIENT(KB) _ .0735 HB=KB*(VELOCITY HEAD) _ ( .074)*( .777) = .057 PIPE CONVEYANCE FACTOR = 226.224 FRICTION SLOPE(SF) _ .0096474 FRICTION LOSSES = L*SF = ( 230.02)*( .0096474) = 2.219 NODE 2377.28 : HGL= < 1273. 581 > ; EGL= < / 1274. 358> ; FLOWL I NE= < 1271.1 *20> PRESSURE FLOW PROCESS FROM NODE 2377.E:8 1-0 NODE 2564. b0 IS CODE-= 1 - UPSTREAM NODE 2564.50 ELEVATION = 1273.56 ----------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 22.22 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 187.22 FEET MANNINGS N = .01300 SF= (G!/K) **2 = ( ( 22.22)/( 226. 224)) **2 = .0096474 HF=L*SF = ( 187.22)*( .0096474) = 1.806 NODE 2564.50 : HGL= < 1 x:75. 387> ; EGL= < 1276. 164> ; FLOWL I NE= < 1273.360> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL . ... r r .. . . � � • ....... . r . ..... .... v r ♦ 7 r v r • a r • v a v v • � v e. L. i l l� - \ 1 L. ( V . V V •L / PRESSURE FLOW PROCESS FROM NODE 2564.50 TO NODE 2069.17 IS CODE = 2 UPSTREAM NODE ---------------------------------------------------------------------------- 2569.17 ELEVATION = 1273.62 ': " CALCULATE PRESSURE FLOW MANHOLE LOSSES(LACFCD): PIPE FLOW = 22.22 CFS PIPE DIAMETER = 24.00 INCHES PRESSURE FLOW AREA = 3.142 SQUARE FEET FLOW VELOCITY = 7.07 FEET PER SECOND VELOCITY HEAD = .777 HMN = . 05* (VELOCITY HEAD) _ .05*( .777) _ .039 NODE 2569.17 ----------------------------------------------- : HGL= < 1275. 599> ; EGL= < 1276. 376> ; FLOWL I NE= ( 1273.620> PRESSURE FLOW ---------------------------- ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .02 NODE 2569.17 : HGL= < 1 275. 620> ; EGL= ( 1276. 397> ; FLOWL I NE= < 1273.620> PRESSURE FLOW PROCESS FROM NODE 2569.17 TO NODE 2669.86 IS CODE = 3 UPSTREAM NODE 2669.86 ELEVATION = 1274.93 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 22.22 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 103.03 FEET MANNINGS N = .01300 CENTRAL ANGLE = 65.590 DEGREES PRESSURE FLOW AREA = 3.142 SQUARE FEET FLOW VELOCITY = 7.07 FEET PER SECOND VELOCITY HEAD = .777 PEND COEFFICIENT(KB) _ .2134 HB=KB*(VELOCITY HEAD) _ ( .213)*( .777) _ .166 PIPE CONVEYANCE FACTOR = 226.224 FRICTION SLOPE(SF) _ .0096474 FRICTION LOSSES = L*SF = ( 103.03)*( .0096474) _ .994 NODE 2669.86 : HGL= < 1276. 780> ; EGL= < 1277. 557> ; FLOWL I NE= ( 1274.930> -------------------------------------------------------------------------- PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .15 NODE 2669.86 : HGL= < 1276.930) ;EGL= < 1277. 707> :FLOWLINE= ( 1274.930> PRESSURE FLOW PROCESS FROM NODE 2673.86 TO NODE 2673.66 IS CODE = 8 UPSTREAM NODE 2673.86 ELEVATION = 1275.03 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW(CFS) = 22.22 PIPE DIAMETER(INCH) = 24.00 PRESSURE FLOW VELOCITY HEAD = .777 CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) _ .2*( .777) _ .155 NODE 2673.66 : HGL= < 1277. 862> ;EGL= < 1277. 862> ;FLOWLINE= < 1275.030> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM j• LL IL LL LL LL LL u LL I LL LL_ LL M LL LL LL C LL LL LL U. LL n O LL LL u. U u LL LL LL I ♦ Q LL w LL LL LL LL u u 1L �.• N w LL LL LL LL LL LL LLLL LL LL LL LL ry L LL LL LL LL LL u- I V q LL LL LL i ! � 1 � u w 7 VI N N •I NNN N NN In In I J7 %• N N N n N N I 1 Y ANN v � � I INn In I', N N I li I •.� N N N I I I O L In N N N N N N I I 6 N N N N N N N I O H V N N N N N N ., • n In 1 I I + N N � � I ' Ih InIn N N In N J In N N V• In N I I i I I V In N , 14 . 4 N N N I\ NN N In N NNNN n N N N N N N N N N N N 1 I V N N N NVIN NN NN NN I OY NNN NN rVN NN ` rr��t- 7JD 3 NNN VI V.N In NN N N I N N ANN NN NntNN r r�•�� ��� O' O N O U N N N N N N VI N I NNNNNN ter' ter• MIn U N N N N N N N N w n N N N N I •N N Y N N • N U N L ' • N n S In o N N N NN NYI J] O C N N ^CN NN NN ,NN .♦•♦• • l 7 CN ON NN ANN :NN •♦.♦• ♦f O N ON N .1N In NN 'NN U ♦ In a N U In N N N N N N ♦ ♦•♦ ♦.•♦ O PI N M N N L l nN N N N N N T L M N L N • 17 In M M M M N N N N N N ♦ N w N > In M M M In N N V 1 N N V` N N` M NNNNNN NN � -•iN H N•. , O N NNN V. S N N> N Ml M i N N NNNN 1 ♦ a u vZN' i•\N NN NNNN NVl NNNN MD V N X N J N N INN • N N N N N N N N •• N H N X N N cLN J N N ''NN NN N N In N N N Nq N I/• > I J J J JJJJ n N N N N N N N N I n N N N- f M• 1 1 N LL. N NN N� tNN N N N N N N 00 J N N N CN fNNNNNN NY1 :NyNIN 1 NN lT J N'CN' N ON n •t N J J INNIn NN NN, ' 'NNNN NN Q N ON , Y In J V O Y N ` h1 N J NIM MM. HM MM VI L L N T N `LN JJJ.JJJJ YIMMn MMIMM C)Y O LN R N M Yl :H M IMM H H hI H O O Q N II. LN KdQd QQ MM IMMI HH,Hh I-IHHH HHH V u` LN I N D d 4 MM MM HHH HH�HHHHHH HHH > N O N n ll In Q 4 M M IMM H H H H C S. .0 N IJ N K M M 1 M M H H H H D a N M M M MT n M M M H amt M N cN IN In In n EN T 2 2 L =22I N L N N E N V• R N L 7 Z Z Z Z Z Z Z 2r1• Z Z Z, Z Z J J •ti 11 .'-- N O V` `•• 1 t o S Z Z Z Z Z Z Z Z Z Z Z Z Z Z i J J > V I n•• i N 7N Y Z 2 . N 7N Z Z J J L lo c Z P N u N VI Z Z J J Y H r 6 N N n.yN Z Z J J NLL I J NHN VI ea In Z Z J J u N WN v`+•N Z Z Z72ZZZ ZZ ZZ ZZ J JJ JJJJ JJJJ JJJ ILI 0 NYN "•� v l Z< Z Z Z Z Z Z Z Z Z ZZ Z J J J J J J J J J J J J J J Z n? In N n rnIn ♦d I O In UIIn ,n -.IN ] n nN v, 7� •7 n-)9 7�-)-)-)•-> CAH [J N C1N N •� -e n -� -I -� rf •� -e -� ♦ ax a V. N N N In NN ' V LL O N NN N,nN •7 "f . . H L NN •n InN �•7 . • CI L 2 F NNVI aVI N N N I, In I,In N -�>>' y M NNN I n I n N r VIN N N N N N N N N N C 1. In •n N H e' o cn N N N N n N N n In N !J O V I N N N n N In N H O UN I n N N InIn Ing �w InNN VI ✓I In MI T 0 U N N VI VI In L Cr 1 vI N N VI N L L Cr T N N N r lf N N N I N N M> C In N N N V l N J �f O In �n N N Jl N J 0 ?J NNS � L M •• v K II, LL •• N •- d N J LL LL LL u IL LL d L L N i LL LL LL I- IL LL. U N O N LL LL LL U. LL :7 U M'J 'L LL U IL LL 1 0 0 2 0 IL LL •1 t LL. 1 l 7 LL LL J LL LL LL G c C 11 LL LL L '1 LL -� O D •i LL LL 1 IL Il. LL r• L O L LL LL LL i V V 7 O O n O O O O O O O ' usAt or CI a O O Cl O O O O O O O 1 aor' 0 0 0 0 o n n o 0 0 0 o 0 % o C� % 0 0 % 0 ul ul 0 o 0 0 0 0 CI. H 0 0 ry o [I ea Q of O 0. a 0 0 0 0 0 0 o O o 0 I N� o o c; c4 0 0 0 o Com, o I 4 P P I I •O O V\ O O o Q O . I v s I 1 i s o o u o O o O ' 0 w P o 0 0 to I C. o! I I 1 I i M v In •o A Q O I IO II d 1 O j I 1 I i I I u r O O O O O N I.O .O in O O OCI O O O 'O O O I s O O O O O O O !O O O i r 0 0 • . . I N O O O OO Nl M • N 4r%, an •- t u O C O O O OfjI O •O O O I > Y O 0 O O O OI O o O ,•1, O. O O 10 f �. n o 0 1 IA In o In v. 0 0 o n o O ^o7 1 Ct' 0b 0.' Y •' O 1 0 O O 10 C•' O I O f. d • I OLI W �1 n• .� vl M M M M n r r I a- 1 I F tr 3 • O • O • v • J • S .• •o O 10, co. • I O O p p J m r r z n co, tli n n i � o`a,," •O- j n .O.11 Noi n( 00 Cb I �5' w Q > R 1- .ta IA O O I C% O O O O O O O O 0 O 10 O O Q C? O O O Oa 10 Of O I O O" In u O N 4() I J N r co P co o•' m O •o o• = N IPI M M .O A �t O i In N f- 11�� RC1 Q * T 'o T o O u a o r 0 r 0 0 0 N 0 ' n o' Z n q (� LL ` r r r r rN :rN tT N s O R It O •o .O IT U r N 1n h NI .0 06 to o• 1 A rn J J a0 CI O O O C/ M N O P I tT O O O O C) O O I Q N N N N N N N N n c a > T o 0 0 0 & o M o O n T 11f 1- .'1 to • N O O O i O w Z go N ^ H O k A �•n IMI M ! 0 A 1„J O M N III III N ry Q K .n V J O < l• O Ca C) • O• O O• O •O OO "2'• `D > f-1 f7 KI Yf d P P ryOC. ~ N r N 1•- 4 co 41 In co A A "Dy 7 00 U O\ n- 74 V i "I Ln /VI v 1 Z N V IV 'o M M M P P N r N J y F 7o t(1 •JO M A A UI K - U 2 N N M r s to C A to N /1O VI C1 K w O M N N N N N N N N N N J 0. O U �t u K 11 w Ul K n.� C3 a s I I C'1 u I o I W W O o 0 0 0 o O o o 0 1- IJ C U, W a m 6- u f u o 0 0 0 0 'o o I 0 0 0 0 0 0 0 o v i u 0 0 0 o O ji•D M n M o Y J r +S O n O o O 'N u I o I o 0 N N 1 �- •- ^ r- _ M N N •O _ '� 1 .� P m M N •- n M M bi IA b M -) L/ v •O r` f` f` b I I M f i [1 LL r- f` f• M IO M b •O J nI U N M O N O• IA N J N m O N IN i A m O •O 2- S U u N N A CD P • M A m P O U O O O r O j O O O N N N N Al 'N N N N N r •-• •� r r •� r r r r J Q N N n n P , f� CD IrI x x 0 0 0 0 ' 0 o o f o 0 0 0 N M N N N N 'N N N N N > N r Q/ P GD P ou O N .. N H M •C P Id O f N H n u P O O O O O O ofti n U cu Im fu a O•N d M O• j d O j •D •o P C r N N IH M b J v M R) I O O O I O u P P O co O IC) O ( o o n c Y r I N N N N ' ,N•• ^ ,-• � N n. • � I N •- �- •- •- 1 W I N N V ,D •d+ IN I n f, � J J A N �t � N M J IU I r. •O •n A b J J 1- • N W% M n A M ) v • CD • 1� N 7 U. IU' 1 0 CD O M U Im .O V C) o O ' NI` IO n O I O I O C3 M O m O O O N O M •- I F N O O O [', O IO I N O N O N .O N G n n V j I — e - o n Q O •O O o 10 I o I O IO O a u u a a u N J H J I I U Z u/ O n I C) N r w J J J J JJ J J J I J J J J J J J w H ' d 6 LL LL w I LL '� LL I I� LL' /- ILL •- LL z I = 2 z o •o O o H K n I U N O N b b U M U O U n O u t- O M H r A N AI N •o IU • . • • • w • • W W w w IN N N H f) J J 1. lu ' A N O P N .G J P ;N f• rl K H 41M N O P n W •D UI a a i) V n • • v 0 O o • c, C) I Q n n b N N A C O I 4 O a U a r . K J I D• o' � •fY C Q. Q 11_•1 " l.7 r or • 7 H v � u N . � .N-� v r ' a u I l u IH u N H . O N A I J J J J J O O fl . x b b N N0 N ap O 7 to G - /• 0 J IL S S S t 2 7 H WU O n n n T T y y 7 UX v pD p aD a1 f.- -1 a W LD 0 N •u n o N O = o - y n a ,n a •� n �D b �. a � •� r - J d 0 O J I' I I I f � it { ' 11 0 1 ' s � , o C3 s I a 1 i OC O C I UP N W � I I 2 O 10- cni 1- u, j H S 2 ;C 2 O H -) 2 d 9 2 J O W H ' U OU J Its W H S x J J 2 J W F a a H 7 S � U, F J a l- U. N K K O nz nLL 2 2 H r 0 0 M Sz N N O W H LL1K a2 H m =) UI i LLQ U S a U. Q u O S W O III C, O a a N KO W 4 K O N NW S 21-2 1 -UM H N 2 vas ao W LL J p [ N K U 'a K _) tl U US I1, 2 CC a -4 MY1r, i\UP Wd ' HCl Illpn.v aa u Gear nH m s s T H N O> z N H N O n W U1 11, $ M H R C[ K Fa JOH/- ulwu, .0 W .JHUU , t x x u, K az 7 If j ' Hl -1-• NzS V 2 7. d sOM /U LL, , H HI.1 7 OSS OOCLL) v OLL H( -H 6 d nK VKUH/- r, n n po077noKaa I 1- 1- 1- J =)Y LL, I In r) 7J:31OGK ' 4 2 2 u U7 N U L) KF UI LL, 111 ,-,HUIL V U a _I J H F G7 U f w z.4 F J O J O 0 0 In ,Y a a w a 4 p ,•• K a 2� 1U UP [is n' K WE LL d6 SNK [YK nl1KF F: C`n f-,-► r O K , IJ 7 N N N 2= T Y a UP W -1 7 '7 z0z zn.I! P C, s 2 Z ,, , W Z U U I 1-H p0n T 5,117, a HH nO,71-1-=0= JJ KIrr Ku» w 1 gZ f f 11, t4 as It u OO C,a K K S AW C, 'll & ry O• C)PILL N OOC. , w W LL u .1u 0 - its J YY U 11, LL .: , 11 S 7 HI -Ha -x 2: N wul ,u o e 1- H 1- ' 0 W u U. K K Z a a 4 I^")LL LL U.WWUTTT 7 7 7 Ue a C) . nG)HH Z 3 C) N In VI H m 1 J u, UP us n et W usUI 4 LL LL U. /- P- 1� f , U V U 7 O O X a a �n12Zp ,11u0U a a aG-)S 0n1-1-1- «-1-r non V)N-Wn.a a z z \\ H H H 1 1 u u/ u H H M r N O O O,-•1IMP H q n. IAF J 1 1 1 1 1 1 2 S'13 LL u u H M :3� O n '7 7 J fR ra } x x x t a n T 2= W 0 Lo u 11 t, t'1 L•) l9 1.9 0 00 Lo La.0 v uv„ 0 15 u: u uu.. 0 L7 •D 00 LD aaa d a d a d d a a a a a d a d a a d d a a d d a d d a d a a d a 1010 a a d aad d d d a a d dad a d d ada aad a d a add dad a d d a d a a d N d a •a ( > d Y, > d a d a C a a O d O M a a n d a L d a m d a>a a d a,na r > d a > d a � d rxr v > d 1 d d.o d Cd a O d n+•I d rra •f m d , L d �O d as �• L d n d a U a a d a) C d Pf d �• F_ d , 4 d o •.� a n � a a as r U 1 a Y` d `md n Y d n nd •n a Y) r a r a r d d a d d r a a a a d a a a naa r a a r a d r• as 41,010 n a a aaa a a d ) a a raa a d a a a a a a d r a a r• rl�^r r~�!�••• I � I ' I r r r In N N N !A •\ •• ♦ ♦ ♦ •♦ ♦ \ ♦ •♦ M y N N N N I N N h r h M M h h h i N h N N Vl In N N IA v) In lf\ N h N N In N h N Vl tn. MM ANN N N N HH N fI• N tf\ h M •/1 h vl N N h N N t/) ht/) 10N hN li)h N N VI N N N , IA N I N ✓) N N M N {I) h N N to N N to N N N N 1/ry I N I N N N N N to 1 N t•7 Hy N I N tR ul In MN i lnM l/)N MN N In I vi � In to -ln lr, MlI\ I NN N NN NN I �In I M H N H y, N l/• N h N I H � H H H H H NIH H H H H F• H M H I H M H H H H H H H H H F H M M n M M M M M H I H H M M r) M, • ry M M M •- I H H Mr, MM MM _ M M I M M M M M , M M M n M J J n n I M M J J M M M M J J J J J J zz z Z z Z Z z z Z z Z z z J J .. z z 2 2 2 Z Z 2 7 Z z 2 Z "i zz z z z 2 Z Z z Z z Z Z Z Z Z Z Z Z z Z •• zzzz�zz—<zzzzzz c t+ u lr n o o u u n uuu ♦ o u u u ,n • u � u M L L L 0 t -I19 N u p t90 0 r .+uu � r �. add r d a d v +4 add • i Y) d a C O d a d D a d a d O L d a d n a a d e d a a .-+ r a d d • 1 O a d d n d a In J d a d ad a a a d a M • = d a d r • d d a c• r a d a • r c d a a oa o ddd • ud d a M N V d d d M N d d Y r d d V L a N d O 11 • a • a a C a > d d d L d C d O♦ d O d V + d A • M d • d L ♦ d t a N d • d h N \ • V alnY A P a I`• J c u d> v O H d \ d M •Y O d x d r d 4 a m ♦ d > d A L M a d trn F J Y` 1 a P J a d I r d,od V N a .•t a ur O L a n d O L e a 14 d I r N a L d P C 7 a 010 O a n 1 u T d t a c a d od n m a u o P A d d v n v •o r d N •H •• a C d N L a 6 d L a E d > 4 d 6d b U A d .0 of d L J a PO a va r z c a w d N H ( O a d m LL u J .1 -0 .-f v m d n • a r d ♦Z 1 7 a `.Id D 7 tr ] a d ♦1- c v ancl d M (Y O a a 1 O E a d ♦ LL H O a d d n Z L a d a N V tY t7 a a 3 w J o 0.0 N • O d d ♦ r N r d d a ✓, P a d a C O A a d d J b r! r a a • .-1 P a a a v� •oda o O I d d a M m y o a a a i rl U I a a d L P r d a n . a a a M > b7 C aaa JR O d a d J O M a O a R L r m v � u N LL r L .i L,!, 1 'J' LD J rc oto n +u o u M Ln .+•.� Ib z i eu� L n ✓ 0 O to e e n u u . In n J ..L n L L �u•� r 1 r v u T o 0 0 o O o 0 W � 0 0 0 0 0 0 rc n .+ a 1 w 0 � o 0 0 o c+ o o o o+ o v. 0 09 w LD n •- � o n o Mo 0 0 �� U < C 111 U O [_ O J R O O O O O O O W O Q vl oo R 0 0 D 0 0 P 0 0 0 L`' V a s J o 0 0 o 0 0 o ! M U1 A n G+ Cl d O I n n J n n M o .o 0 0 0N m [b J V r Cl O r O V: •O J I O •O P N O O f O Mr O O O O O 0 all •_ .. 11. 0 o ci 0 o 0 0 0 0 0' o o O U Ir Y U �n J O O O O n O O Y • • • • . i 1 N r •1 M j r. 3 • N • O • o p I .O O N Z I I a �� 4y✓ CR Z 1—ul V so 2 O -D O O O O' > A O� O O O O O r ` r { J J Q O M A N O I N f J 1 O A N A N •Q ' O N N N N n N NI o N I v LL r r r r r V. r ✓ ♦ i i1 t fu O u O Cl O cl u; ^ h N r O CIO^ r c,l S' cc f' prZD N ••'i p S ur r .9 O 61 r a ".j O } T } Z O Ll n 4 7 N In . A 4 r N M r r 1 7•l, N' �1. V v �l O K J �('(/�� 4 •� I U n J a 0 O O U O O O O cc '7 D. �t •Q N m' V I- C /l T 1 O » b 1 ul \ •1 O• M •O fr1 N •O M J ` ;1 T a V 111 � m• N `n W •1 V J \� 7 N A OV n K LLI V 111 N N N N N N N J d A J �� / •f 41",1 I i\. I •i\ , N Illt h o I K jrCI• r �, S W I m Ot .- r n u1 W o 0 0 0 0 O O 1-u o 0 0 0 0 l o o C !7 1- Y I mQ W O 6 F U O O O O O O P O i v o o •a o co: m •o 2 J r a o 0 0 01 U M N �. Oto P •O `O O `� LL O � • v t0 • n • tp I j j O m J D"1 M M NI. i •o H . r O v v m P O Pr• - n J N N v Q r •t J 1 Q ■ i V m P O 1 . N N N N N N N M O m v • A N n to V A J co N m O J t', J en Q 00 M O M .► O d I! 2 V O N r r N N N N N N N N N I-1 r r r 11 r •r r VI ' N O N J N .. d N K1 •- 'O m m •r H m i J v v O Ifr P .O j .i u O O O o C'I — •a on n C, a v a In n J v C, u+ r r •m JU J 1n rN •1 M j j Z LL O O r /� I O O I j 0 O K N I � N r � H ♦ I 11 ' N a • • • 7 j 2 N LL ' w ' ••- VI N m CIM 'O •O � •4 v� � a O x > v M �1 A • I•A N - O M p nr I I I on J Jn 'N N N N 1N0 N 'C, O T J J J F A N. - N n KI to M A •D 1 O x LL\ O O O Ir O O 'N O O F I F ' N O O O /• N O O • N C, N O p LL. LL • n r r O 'n ••� O O O O O O O LL . 11 x ; C n It ✓` Z U) j J V I- J J J J J J J J 0 Ir 6a O J •- H J Y I m a Q W O ' K :3 �J K 7 m O J LL H I F t U M N• 11.. LL. LL t- LL 1- LL �Il M a •O O 2 IO O O •O u• CO 14-) A O V r` V O i !✓ OU H n O h N •O , ti ul U. u1 I W n� VI 4 S v 7 •O DI A to Z I^ h Z r. 111 Ft IN H H C'. U. J J J J U. IrI 7. to to In n or + H w a n O 'w UI v 'a a C) u Q ♦ • x •O • o O Q 1.9 M ;LD oz. Y M 3 Z N n n O p O O O F• K N V P 'U V V 7 H H r •O N H 7 N A J r J J J - n m n 2 O O C7 ul \ Y o v 0 > o o r o Y o J N x • X S T T ari t-, t!1 H Ut LL J P v h • (f O b !1 K1 d v h 7. Ua � of, t W LJ r r -'1 M LLI ✓I O In 7_ O - V h S r n O a \ O YD 0 cc ul "o 3 J d O J �p � I Is, i > 4 I r I V Q ! r I I 1 � c, i o i I i ur ! 1 IHII 1 z t oa- N m r a w i za -�zJ O W M � ! o V U J W W I M S J J 2 J W I-- .w 4 M 4 x W T. _j N K c, O O 2 o o LL 22,E >-On N xZ N 1/1 O W ru,m 4 Z H r O I W F LL u u x r LL 4 u Ln'x u1 ow o 4. K In a o al r i a cca V vI W r rrz ru_I rin3 u 4's a o W1J 4.3 h'll 4 K-N U W LLI IseH ul N J H 2 I r.9 ' zIs, 4 ..KN M W ro wnauc4 t7 4 f 02pn 2 3 r NIn 0.7Za". r ' r.noo W W 111 AY rYK 4 ,J O r r .1 LLI 41.1 ulJ rUU m, S r 2 lu I22 , = 3'!: K ru J717 r,l- lnz�:u I Z a 2 a SOHWuI I ' N H H v O u. r S r 4u. �r r n a a r.l as oof44 Iii n 11- w r 1.- 1- »>JIn s Ii,onL-1 JDw. I 111 W W W 111 M H V IL Qu ' n 4 J J Hx U u F- IllZ S 73 J 0 0 0 O nfY4 4 QQ 4 �r Y 3rWwusam 41 Is. a, a z v/n-,v r)o Kr SY cjn rr/-»dK 1/17 ii Ovt /nrn 3" SY4 Wn'7 I 7 Z z x a u t+ O S S Sul ul Z U u r r 000 L r LLI C of MN Or70E- r S 03. JJ Is WfSc rLLI LL 44 , K n• G Il OOO a 3c Ir K tY a O W N n Cl n u w f/ LL ll LL111u HIIlJ1• 10- m L, 1111E rrrrvR147- , •- N IIs III Irl Ll �! F- N r Ll IIIILI Is. KK 244 1•Ia wwurrr x 7 7r,rr rrr Z 7 4 Is O N N r S S 0 ✓I N N n F• J us us W aawul a u U. LLrrI- i uuQ9.0 O 4 4 4 L) .-Nzzzo Inuuu 44a1lxxwHMN no�rrrrF o oo ; In I.I 1n w a. a 4 z z Z \♦ H M M x W LLs u" 0-1 1-1 r V O O .7 r o o N o a F r J 1 1 1 I I I Z E--7'7 LL IL N O 7 ♦ ♦ ••»J cd so +us f» O ti� x x K 1 O o 14 T. i T W v1 _ S Z S T S S Cx 2 2 T S S O I i S Z I S M T S S 17 2 a Z S T M • r S 2 S m S S x x M x S I S S N L L S S S x T x Lr to i 2 2 rTT x r xxx u H N K r-hA r AAA nAn a a rAA r AA L A Arm c C O A A A A A A N A A t- r -r -A o o o t AAA A A A Q A A A h A A � •"1 r h A A h A h N N r 4 N • N N - I A h f� A A AA N N ryN :NN - 4- A A A N N . N N J A A A AAA NN :NN INNJ A A A N N N N N N w m Q A A A A A A AAA NN NN -NN NN NNNN ANN NDN NN vl • rN 2 A A A AAA A A A N NN N N N �N N N N N N C• A A A A A A N N N" N N N N N N m r c C A A A A A A Nm N N N N N A A A t Ah NN. NN NN c O O' o O A A r- t, h A A N N N N N N U A A A A A A N N N N N N m N N U A A p- r- h I N N N N N N M A h A A A ! N N N N Y r A A r -NA rr NN NN U L A NA A • h O N • r. v A A> A D C c A> A n h r a nrl A C A L A C A A OA • •\ • ♦ r O \ A O A . r N A •• ♦ ♦ • \ \ •♦ •♦ ♦ ♦ w • M A N A A L A M V1 V1 N N h L \ A L A A u i A M M M M Irl I n h V 1 N N N h A O A r A M NI V•r Nlrl nV1 N N n A' r N h M M M Vl V1 V1 \ • V b y A- A M A S A A> h M r V1 N N M VIN N N V) h v+ C C V h> h A X A J v\ u'I ul M V\ N V11r�1 Vl N N N Vf vt O H A S A h X h A Q AJ V1 N V1 M N N V\ Vl h VI N v VIN � A Q A A > A J - V7 N VI N ut ut • ♦ h > A r r J N v t v l N N M A L M A A n A V v\ N V\ V\ M I u t N N N N N O J r A r C. A A O A J vt M Ih Vl Vl V1 Y1 M 'I'N IIS I I N N� vl V1 Vf u! IN N N vt Vf N N VI r 1 Q S r C A A O A A •i A J M V\ Vl V\ V1 N U .-1 h .-1 A A V h J u\ M N N u'I V1 UI O L h V A A r1 h J N V\ N u\ h Vl O L m A w A h L h J J J J J J J M In N V\ 1/� V1 I r N' A L A A O h V\ N V\ M N Vl ul M H H A C 7 h op._ A Q h N V• Vl N Vl M V'I V'1 H H O h Q A A L A Q Q T 4 Q Q H HH HH'HH HHH•'+HH U N A L A r. n A Q H H H HIO HFI - H H M 1-I H H r M A O A h U A A Q MMMM M MMM H I -. H H O m r V A f- h • Q M M M M M M M M M H N H H P 'V W N u\ A A A r A r- C A MM !MM IMM b +/ A CA r F A S S Z T 2 2 S MM IMMi L r A EA r Q h S M M M M M J J J J > IO m U h Q n A 7 A S Nl MM M J J L 00 A 7 A n U A S S T S S T T M M M VI ' J J O, O A r r A r- Illh n A J J J J J V Z aH r4 1 6 h LLIA r- h Z zZ Z 272 ZZlZZZ Z J J m LL U J h.•/A r w r z 2 2 2 Z 2 Z Z z 2 Z Z 2 Z z r V A z 2 J J J J J J J J J J J J J) n A r A n .ihZZ J JJJJ JJ JJ J JJJJ ♦Z I J h MA A c�A zz ..Q rr a n rnn .�A ZZ Cly 7h .dA A Gln 2 Z \ H C O A U A t h 2 2 O O A A Z Z Z Z z Z Z Z z Z Z Z Z Z N a E A A A A A Z 7. z Z z Z Z Z Z Z Z z z• \ LL F O A A A Z L A A A n r A O' nl L C O A A A A r A A '� • y 7 O A A A r b b l A A A A h �n H 7 LI A A A rA A V. p •LLI h Ah AAA r� w a n A A A n A h n L AAA M> S 7 C A A A U O .•hA A A A J b M A h n - Q L Z A v .f Q •. N Y D T T I L T x .I L V\ r x T 2 T L S V n V\ 1TZ T T Z 0 U •rl L T T S Z T x I b z m T S I T T Z L 7 V I I x T T,x c x x C O L 1:X S T r T T LL I I n T T x w,. 0 . 0 . CD . 0 . 0 . tD . 0 cl, C, U, o -0 O O L4 4 o o o O C; O C; C; 0 0 C; 0 C; C; G C) O C4 0 C) C) C, C, C, C, 0 C, M O C:) C:) I., C, L, O CD n O C) C) O 0 0 C, CD 0 % CD 0 (D CD CD 0 C) CD O C) C; .0 le rl C; Orl > 3 r. O G O O 0 O. C) 0 C, C> C, C:, C. 0: n C-1 C, 0 0 LL 00 -Z ro C, O <) C� O D 0 m Z I _ - [V YI N r 1 Y V C -4 v a or0 8 I LLI C, I uw o o n n h o 0 0 o O I O o 0 ul0v 1C ►-u o o n M O Ih v r- t U O o M O IP m .t r` O � V1 •O N n LL • � v v J c* R d 11 f N R M I In 1 M j O m r .-. O m I A I O O VJ I h I N U M r M I In I I CID N m J V\ •O m r i* m J T V m O O N ! h LI 1 O N r r N r r r r r r r M P M A N In Ki t�Q K� f✓� r M J O v �-' r I u `';�• N N N N N N N � O C� M r• N U • � F J LL J O r- to n N r R IL v OO N C1 n rl H a m o n v o 0 • O -1 Yr- s u o 0 0 C) o N Z N N IN 1, O `0 C, In O 1 Z N i I r r N A V: O •O ri In I i•O > u v n � n• N � .�+ � O N l••• r : f• 1 I Y1 J J ♦+ N N V1 i J J h N O O O A 7 LL M M O N M r- (V N J 2 u� O G O O 0 o N O O O O N O O N O O O 11 W r O N v O O O O O O O LL 11 11 I F M J K Q U. f7 O IL _ J LL. H h 0. N • LL 1- LL Il.h, LL h LL �O a O O O I 4 [l U 1• I[1 r- .o m 7 Y M n LL LLI u. W •111 n I v � m '[` 11 A 2 N N z •J Z r 111 H H • M n 4 J J J J U.1 o n n n o n lY 2 /- ul 1 O •.. O w uo In J a O LL G • x n o o n ' n C a In T .o a r a v a r - n J oc a d a CI 'C Lo t9 t'l Y H zz N nOo 0 0 0 0 h K u R u u u h H � R H • O N n J d J J J O o a u x LL r YI W fa ll R 11 10 N ,i •Q W � t� 1- tti 1.1 C• K w H2 J d a J r s a m n O 7 3 O n z Q K r I N w OIn N W 1- d w O IL W H 2 d O YI N uOuJul i F - i w 4 H dc S W T J I f t K H K O 0 2 i O LL Z z H 1~ O n H x z N N O 111 r W K Q Z N x 7 W Z LL U U S a LL QU t7SIII N C, O o Q I- O w /Y In O. K N I- Z Sr z I- I r VIS U 4n IL O UILL i J7t] N K u a K nH u N wW LLIJ HT Z r1-1- zKa .+aH H III Q Ij x S t-wc7auaa :lc a O H m S 3 —lq0 In Z.7 ! N r InO C W LLI i . M H � K CY fY K S d J O 1'-1.- LL YI YI ul Q 111 J r U 1, x S i 111 P� I % S 7 k I.- 1-� J>> I. - In a :9 0- 2 z a wIu HHH 7a Kr x. Z 000 v n Lac H F r 6 Y na n a n K U F r C,C+O Z Ztl Off' 44 n_r1 r>>a u1 aJa VIN s LAI n n C, 9 J 7 K M n� S W uI Ul H N U LLi u U tY a J J I-1 Z U U .• al S T Z �I 7 J 0 0 0 0 �I traa4 aamrts .— 1•-YI LLI Ial K K R u 4 ti in Ka w0 c,n rr►•>s nor In l_1 U aNN a'1 S x "Id all-) zzz ncu bO Z[tlulm . LI I, rrooC^ 1 z ms a•t.I Qgf•1F 1- z OS JJ IK K. 1- K U' 7 Ill I11 x F, r-- LLa'a IL LL. 000. w[I' 2tr lv UI LLI M tY K O ZIn a 0 C, t[ K U. LL 11 HI LL r UI J >~ > Uw tl, PILL S I rr r R• InQ7 � ry 11, 11J 1110 4r rr w LLI Iu LL w WW x a a a LL LL LL W U x x S 1- azz uaaz U O N H H I-• i .i O N In N Jw III U, a 4Y111 n LL 1-r uuu0o0 -2 rvzzz13 In 'iuuu 44 fi 13 •1' W NHH nQ1-I-1- 1 -1 -root, In an TW Wt3 zz ♦ HNH 1- W W {,HHM 1-tiooarooH I oarf- JJ it ll. N 7 M n 7 ' ♦ ♦ .. �1 '7 J fel to r V-L»aaa7 -f r UI O ? L X X X L 7 ;7 N T i X S r S W 0 W49 9 5�6"W40,t 946 CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE JOB NO. SHEET OF 1AIDUS7-IAL AREA 14VPkM0LICS VENkj.N 1t/24167 39,10-04 %eL�%� tw_ .._-1Ina rZdit!en ,dhucttv�_1� Fod�hrIf 01ra;n 8-rA 6.4 -061.7d ��iS;Cy„ �yc ftv�G 1) to nd a vo( c,.L- l 7Zz c k npii':3 % teei» L4," 114" n 4 i ru VC I a Com' 4& fit" c6,,, 20 2) I Ae U,,U f t,Jcic, h t" c� /-,n') C lo.� '.,e� i-, tO C /40 hC-F Qrd /4-D �r-r {torizantrd C E,t CAL7PAN-C D-8 3) lel & ma fC .D iii g -n m e k,, do k,y rtn-1 �r u.d-coi �ev CGrvt ! vQ.� 75sI i `j�Y► L ' (DJ A) 4 coo 6c7 j 5, �nt � �x�'I.t Y2.A�J� iOY+ 3170 REDHILL AVENUE . COSTAMESA, CALIFORNIA 92626-3428 0 (714) 641-8777 wag g 476"W40.00 gmet CIVIL ENGINEERING • LAND PLANNING + LAND SURVEYING SUBJECT BY DATE 108 NO. SHEET OF Y,enk; ,N. 4/(6/97 Z TranA m S tvu ct�Av-c Av)abC k>FF. C AL�T'PM S �> . 83) JF oad r I' L i vt Lo" H S ry��ov eye . YQ Lari�..� d.:s tom 8.9' La-ItRAL CoNlIT1010 2. /7-/7 OL Srk 64+II-74 = 2.0 , ((zn-6—l2rs•8) r•rs�2-D = $•Ca LATE re A I- COND I n 0),4 1 AT r 77 64+11-"74. r I 1 I >t 40A1.0- %oA D I Fov Load Lone w;o(ik wi tt, ft4 t. T�Ir, We., 7iu du -,e Fit n C -t 6 - -ti urs¢.,.. tk, QX,fe v rn.- w 7otrd dim fir �w,f<al L�Arc �occl 0 sra 6,94-04-02 2- 7.1;o JC�.So = 1- 2-z ksF t E- 4 fiO.06S 7 4"+ - 06x)-7-17 = S- 03' A,,� t d i�,'bJ-w 'l 7 soXs-03 8 d �r 6j- L,4, 1-22 LSI-- Ccr�x l- 3170 REDHILL AVENUE 0 COSTAMESA, CALIFORNIA 92626-3428 0 (714) 641-8777 w4e g 470"M",op pmet CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE lOB NO. SHEET OF T M r� I ark ,� -32- ° '� LD - z x_306 kSF CsC2uAte) 4 py c -t Lam,; )Lk ria Q L o G•O( - I- 2 2 fcS F T vQ nA AXeV41 Lo. -,d = 1.22 k -S +/-s- r 4 -s �r 4- 1 -sem . 2 8 + 2 - s �.3�� 1-3 )2 1000 3170 REDHILL AVENUE 0 COSTAMESA, CALIFORNIA 92626-3428 0 (714) 641-8777 h err lo"Wao-op '`�s CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE !f/r6/-17 1 JOB NO. SHEET OF mol Ar srA 64+01 J I _ 12r> s-rs �a.4o To F d dLd (3.isx2 +4) x 6-3p = O- q-93 ksF Ecv load WOg- 0-4g3 -{ D-Sc4 N.rn cs tc�� C)- So 4 �i e!;►.�f' La o.el IY`)0b',u; d-tA lJ Wka,Eoaoi i v� ��cvt,�aY c� _ 321. 0 z 6.30 - 403 kS h 3170 REDHILL AVENUE 0 COSTAMESA, CALIFORNIA 92626-3428 0 (714) 641-8777 TvG nA Utv4, L-0 4 93 le s 3170 REDHILL AVENUE 0 COSTAMESA, CALIFORNIA 92626-3428 0 (714) 641-8777 h 9 9 20"M4004 99co CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING JOB NO. SHEET OF SUBJECT BY DATE 4 /6/87 5 Load 4CIC14 1•S -D + I. 5E 4- 2-s CL+ M) 3::�0 /Vna cow► cA i maw I'1^o�n 3 � o 4- s x o-544 + 2-3- �0 -s) :. ®OO = 2 32:4 ksF. AT S fA E,A+ tt- 74 C� o ►- rJ/1 tr .iaad oy, c� � �, /�.� = 5-02 kip /L 'c%nw e4 -7T- w -,,a : / 4. „ a) 13 -Of fo-o AT srA 64 +11.74 L G v l'� �QHG� � D • 2 8 - Irk' F -�'� i ntsc�� � )2 -JX 1000 12- D.- Load W 2 �� x Igo J{ 14= 3. So iV ker-r �� _ -&;-w:22 z 31 + 1- s Is- Z 9 3-46 ] (17-17 4- 2A l l 1 -0 Ps F 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626-3428 0 (714) 641-8777 h err lo"W4404 94co CIVIL ENGINEERING • LAND PLANNING + LAND SURVEYING SUBJECT BY DATE JOB NO. SHEET S OF 64+/i- 74- 17 120.40+ 9-f-, 5 4 = 121v -/1- a4 4.9 12o3-76 I S x IA&-< 44- oZ 2.94 KS F T- ,,' ck nz,i6 � -A, t�` I rha I / .$-o2 k s F MrW"JlW&lWM7j� _rI of eo7-. SLAB 4-6o rsF 17-/7 + 17.6y` OF *ALL ofwA��- ,4d-, c j = /4 �r , (� • , , = 14 - ani( g6t- 4" _ !7 t �_ o�,%k a 17-3 fiaR BoT. S�4FS X34 -/3 k. _ I BoT. SLA3 9.0/1 S Kea, Pv L14 - A40 xL4_42- It - Z c.�LQewed _ 3. s b n d C CAL S_ F. maxi m.uyn � 3-S �s�oa� � x IZ�ctlt /�. 5-0 2 A 6) e. '`'cq.l �Lc ,e,,-. 37. 2S k.;,44 3170 REDHILL AVENUE 0 COSTAMESA, CALIFORNIA 92626-3428 0 (714) 641-8777 CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE 108 NO. SHEET OF 2o3,7 t 1294-- A NALYs IS -< R, S7 x e IF311 (x.44 - o -S k) Z = 3 C i2 24 R4 (000 3 k:k vii 12 12 � 3 3170 REDHILL AVENUE 0 COSTAMESA, CALIFORNIA 92626-3428 0 (714) 641-8777 X?e g 20"W"'Wo p000co CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY VRnk�DATE/ �� J03�1 SHEET g OF N. 4 MomFnti4trj liri✓1 �✓i /,_ 0-57 f3 1.792 c A F 1-79= -D i` 2-94 X' r- $•33 2-94 Ot;,g f 4-40 �sr= /� (� btu -fir 4GrdV z YEA = 11-33. 18.34 <z it -33 o - 36 2 5 ► z z 2 ►`� r3� -�- w + k1 L = 4-0 _57 x01-33 +- ;i (241-6,S7 ) , /►• li ►s- rz Jr _-S7-(1t � �� z (�.94_n•s7),J1.33- " 1► 3? — 21-311 2 i 12, ---- -, - 3170 REDHILL AVENUE 0 COSTAMESA, CALIFORNIA 92626-3428 0 (714) 641-8777 h err 26"W440 99co CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING F BJECT BY DATE JOB NO. SHEET OF 'j vim; . N 411'V?2 9 76,10 a = 2-)1- 06 ►flax.,x.c < rn -I-.vc MO mon �, f3� (M d J = 211 • G� - •76 = 7� 4.56 �k•-, Max-: nu, r', —eve Momerut 76-Iot- 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626-3428 • (714) 641-8777 T01NT 14 M-embev CAF) A -D Aa PSA 6C PES -DGd _ -- Fgctov 0-64 m o rr1Q.►y /S 14 • 7.7. �4. 2 7 + 7f- 4 6 + 39-�3 -- 37 • ►4 6c.Qcrc� ,- 14_34 - 2S•49 j + 23.77 + 13-37 C. 0. P5 c- kArt.r- kc -t— 6 ) -pw — 12-74 4 • 20 — 7- 40 ; {- C'• tr + 4 - s9 c.o. 4- 4.0g gang) -47 -- 2- 61 }�?• 43 + r� �r Lx _ p. q tf — b- 79- 4- 0-24 - + C) 76,10 a = 2-)1- 06 ►flax.,x.c < rn -I-.vc MO mon �, f3� (M d J = 211 • G� - •76 = 7� 4.56 �k•-, Max-: nu, r', —eve Momerut 76-Iot- 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626-3428 • (714) 641-8777 h e 9 26"W4404 hGe. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE 4 /lb �� lOB NO. SHEET OF i o � h,� � t=�.� f � • 34 zr7-3 J1 _ /4 � f p 34 2 = 16.03 - - No Slav p /Vlc• �u >� m �C/.�j w�u* A/1 v�r�.�" = 7S- !3 p.�Qxl$-aY_ 42. /8- Z / l f 7-r s- F . _ 34 - i3 k • 3170 REDHILL AVENUE 0 COSTAMESA, CALIFORNIA 92626-3428 0 (714) 641-8777 CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE JOB NO. SHEET, I OF 4//6/ 7 Mt,n he, X113 /2•/4 7.704. —7 Q +(2.94 a.s7) i tr 3 izEnl and e10mo VJ- af- 4- i/� -bpi 44 �S r . d -� 7 , cL'� Vrr� ih vJ✓IOI MU w."wh 7- 70, 40 i = _76- A> - V, -os = D - of k 79 It 33 0 - 09 12•os' 3170 REDHILL AVENUE 0 COSTAMESA, CALIFORNIA 92626-3428 • (714) 641-8777 h 9 9 lo"WAO-op 99co CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY 7ATEt// lOB NOOF . 712- _v d = t " C -v = �3 3,S �.00b n 11 .c fl \�c : 29.24--K- y�, 29 : li, :: 24 -g4Co , ►^� c kers J Arc ('d Lo a( w� ash � 168 LI32 x /4 �,►- .46-oz Ale /►�lo m�..Jr Baf. Fed u 14-Iz /68 Mo x/ ,nu ?r of A'/l',w)"A C To� - /-, /ted J :� GA � 14 c (QE F. PcA Ooyr-� k - P= X147- div Aq Ing Z00 l rrjJ� _ o OD 33, - O-7stb po16 ` i►�x � / -A 2- 47 /0 j Ltd c1r l3 07 . ,�6 f� 3170 REDHILL AVENUE 0 COSTAMESA, CALIFORNIA 92626-3428 • (714) 641-8777 h err 20"WA90 99co CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE JOB NO. SHEET OF V"./N 4//7/97 13 p . pa773 /30--$4'-�ct't�c+ = D -IB -SS cc) o-2,(2 P= 0-0!413 o • 9 .4 =c"'-� At:" ,c ' 14 )v =2 37 � � • IC K An Nb►r+ _ _ _7Y- /3 I -► 0 o- 114 Z P- c o 7 C 0 o 3170 REDHILL AVENUE 0 COSTAMESA, CALIFORNIA 92626-3428 • (714) 641-8777 wh 9 9 20"W400,v 99ce CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE JOB NO. SHEET OF �D1 I tk "'d. ,o► PO4- Mbmtht _ &-44 1VPg- Mcomont- : 76-/o -4 >2-X itale D o l94 p• 9 x 4 apa--x f1- x (1 O- co t33 4+ni►. �2do O- oa311 l,�-# s C $ " C /� C �� ,� f� t Jh ►�, v �, u . tr PJS . ►+�a„�rht- � 76 , /u l oac� p - 17S 0•9 4Clip Z � � 1�• 19g3� P. o-a32Z ASF : �- >s •�r. in W, 3170 REDHILL AVENUE 0 COSTAMESA, CALIFORNIA 92626-3428 0 (714) 641-8777 h e 9 26"W44fov 99co CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE le Z JOB NO. SHEET OF �T sT 64-,ri�.�q 74 l?03.7 CaylAi'dev ( L, I A t-7. ►;') I rO-S7 al �-73 1 2-94 2- 72 2 94- = 2 - 8 4 2- 18 18 y ( drl � www �..1` = 1,19 -4.1 �k �IPif" Po/ momo4 = 119-41 — 53-0 7 = 66 -34'k- No to : i 1a a 60Arf wave COLA C,:�Jc,�.j "f r fiy i Azk .fin cam( d -;A Fv , d o^ vt �C.�!'" ;PA.Aiafco4' . 3170 REDHILL AVENUE 0 COSTAMESA, CALIFORNIA 92626-3428 0 (714) 641-8777 h err 26"W400-0 94co CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE JOB NO. 777,40, F 2 Y1 a.4,tV CA -4, Gu t,# /SARV Ae dam; rAtd J � &)ZK moAa%t % :- 66-34 (�-' O-vd Nz� - rr 53.o7kc✓s'1i^ Jr+iJ� I h 1 C ✓f K-0 Y[ ki 1 pg ( h 4)�& GU 4.1j 66-34 Alzir1en 66- 4,- 0. g 4fi6c� n -f -r C 1 J L O- 15 3 w _ a- 470 P, p-0113 Pl►,Gx 0. 0(6 I.45 53 07 0 - 121 g� w = 0 - 432D 0- Do 2 am C rc vat, �v u rr-e-� bx,4pw 1 o f � U/�-e - 4 I Z C/ VQ v t v Jz.i h �„ C, ►r.Qr,t bo To mi AA m-zx t�, L,- 61 .fes, M,eu4-r v Q � ►. �c e ►r�.r o<irif 1� VQ L h �C.F mp,�,,t f � v �► ,Ce r h r o � C -e �rC T �" S r� 644 f I. 3170 REDHILL AVENUE 0 COSTAMESA, CALIFORNIA 92626-3428 0 (714) 641-8777 h 9 9 26ftW44to 94Co CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE JOB NO. SHEET OF 4] 191k7 I 1-7 N66 1 I L /--C� a I I P, in i i �p C / a 6 . -Yx k t- kva-.4 kwt ,Grp,- 1 -44,r -A A,.u'^ Dae> mP n f A4,M- L , # Gj _ 43.8 r� �s it 3170 REDHILL AVENUE 0 COSTAMESA, CALIFORNIA 92626-3428 0 (714) 641-8777 CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING WE SUBJECT BY DATE JOB NO. SHEET OF 3ssl U) J H U 7 � o u 2 r LL O L •, O Q J W z 0 v lu x-� O e =1I I V IA 3170 REDHILL AVENUE 0 r � I 1 I I I N I i COSTA MESA, CALIFORNIA 92626-3428 • (714) 641-8777 h e g 20v"0000m� pmee CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE JOB NO. SHEET OF �1Xr,k, . Na/m/p ��� l9 C - �a v // #�C6`sc(r 1g-33� 1�=00 4-1 v RIES #9 C/L ry 4 Flow L-ra x,& 1'e't"e, A kx Zc --,A" A'd q py-kr, #&;r) Cin ( v el i on tFk #-- .2)2) TIte L-ovac roe/ � -� ."f,'Y" TZ, U YLu rrb* v ry i -v/{ Y.e.rp At ,-ca L &lx #, I v vz,, ec tire- A, Ik4 (p&"7 ff-q IK 1U Y^tA r ", awvWW )L4 WqA K- J -011 J-011 X) 3� UAC CAL P-PNf /1 rOYlaovd.A V+ju /S c" c i! 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626-3428 0 (714) 641-8777 oN G #1-8.s' ..NG *9. B'v' !.Nb / !O -o GoA�G f♦47 Far L 2- *9-!<D�Gol'r,. ADPll'otjrL REINFoCcEMENT F0P- AHP 17-17 2 o CP" FDR P, END _j WAU. ONLY 2 - #% - ,5.5 "Lorl (- -DETA F(g 7-tyC- E -ND W Pr L L R T- i A �L� 41 / •7!L 1Nt�lER FAC E C PoS. Nc,olnc>j7 ) 6U'TC-P, FAfr (N�6. MUr ►vi� sctu _ VGCi f "c 3-� i h 9 g 26v-oosm� pmee CIVIL ENGINEERING • LAND PLANNING 0 LAND SURVEYING SUBJECT BY DATE JOB NO. SHEET OF 411AM �- EX TeR 2 - # ''`� Fo1Z S o Lo N6 EKfv, - 2- pok LOA i F,ca - Fo �'S S' Loral LD SP i�•Ji' icn� PL AN O F TO P y E)C' OF 6Ars Foy OPENIN 6 ,--"nL 2 - --* 7 R 6'o L-DNG -ONG SR ►>- rJ -i ])/QEGT1pn1 �xTI'A 2 Pow s=aLoN6 ,c T -a P, 2 # 4,6. 2 9-' 0 Lo Yv 6 PLAN OF 807-70M I-AYEA or- aakc FOR MH 010&MA16 No E_ ALL fnN 0 pP» ►.p brabis av-e .PzFve- beLVA In add,,: ., -& MA dad"4k►-, -� 1>0 v/S %+.6uJGll f'OV d� 1 0,.1., ba V/± jw.1/t >� e C.(,A v App.;J-Ad MI4 aMr►� 3170 REDHILL AVENUE 0 COSTAMESA, CALIFORNIA 92626-3428 0 (714) 641-8777 PRESSURE FIRE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) (C) Copyright 198E Advanced Engineering Software EAESJ Especially prepared for: HALL & FOREMAN, INC. **********DESCRIPTION OF RESULTS*********# * INDUSTRIAL AREA HYDRAULICS FOOTHILL S.D FROM UP/S OF JCT LINE L * 0 25 YR BEGIN STA 6960.38 FOOTHILL DRAIN * VENKI.N, JN 3610-04, 2/26/87, DISK # JRM 4 NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 6960.38 FLOWLINE ELEVATION = 1207.62 PIPE DIAMETER(INCH) = 81.00 PIPE FLOW(CFS) = 450.66 ASSUMED DOWNSTREAM CONTROL HGL = 1217.480 Advanced Engineering Software EAES3 SERIAL No. A0483A REV. 2.2 RELEASE DATE : 12/ 17/82 <<<<<<<<<<<<(<(<<<(<(<(((<<<<(((<<((<<)>))>)>)>>>>>>>)>>)>>>>)>>>>>))>>>>>>> PRESSURE FLOW PROCESS FROM NODE 6960.38 TO NODE 6970.00 IS CODE 5 - UPSTREAM NODE 6970.05 ELEVATION = 1207.66 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA 1 443.5 81.00 35.-785 12.395 0. 000 2 450.7 61.00 35.780 12.594 -- 3 7.1 18.00 1.767 4.029 90.000 4 0.0 0.00 0.000 0.000 0.000 5 0.0===05 EQUALS BASIN I NPUT*=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(02*V2-01*V1*COS(DELTA1)-03*V3*COS(DELTA,_,)- 04*V4*COS(DELTA4))/((A1+A2)*16.].) UPSTREAM MANNINGS N = .01300 HV 2.386 2.463 Lira 1 RGtil'1 1- P( 1 L. I 1 UIV t3LUpL = . 1[ wt)8n DOWNSTREAM FRICTION SLOPE = .006214 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00595 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .028 ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = .077 MANHOLE LOSSES = .123 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = .154+ 2.366- 2.463+( .028)+( 0.000) = .151 NODE 6970.05 : HGL= ( 1217. 708> ; EGL= < 1 EEO. 094> ; FLOWL INE= ( 1207. 660) PRESSURE FLOW PROCESS FROM NODE 6970.05 TO NODE 7449.74 IS CODE = 1 UPSTREAM NODE 7449.74 ELEVATION = 1211.97 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 443.54 CFS PIPE DIAMETER = 81.00 INCHES PIPE LENGTH = 479.61 FEET MANNINGS N = .013600 SF= (G�/K) **2 = ( ( 443.54)/( 5797. 875)) **2 = .0056523 HF=L*SF = ( 479.61)*( .0058523) = 2.807 NODE 7449.74 : HGL= < 1220. 51 5> ; EGL= < 1222. 901 > ; FLOWL I NE= < 1211.970) PRESSURE FLOW PROCESS FROM NODE 7449.74 TO NODE -7454.41 IS CODE = 5 UPSTREAM NODE ---------------------------------------------------------------------------- 7454.41 ELEVATION = 1211.99 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 443.5 84.00 38.485 11.525 0.000 2.063 2 443.5 81.00 35.785 12.395 -- 2.386 3 0.0 0.00 0.000 0.000 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0===05 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY= (QR*V2-1; 1 *V 1 *COS ( DELTA I) -03*V3*COS ( DELTAS) - 04*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00482 DOWNSTREAM FRICTION SLOPE _ .00585 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00534 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .025 ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = -.000 MANHOLE LOSSES = .119 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = .323+ 2.063- 2.386+( .025)+( 0.000) = .144 NODE 7454.41 : HGL= < 1220.982>:EGL= ( 1223.045>:FLOWLINE= ( 1211.990) PRESSURE FLOW PROCESS FROM NODE 7454.41 TO NODE -8009.74 IS CODE 1 UPSTREAM NODE 8009.74 ELEVATION = 1214.85 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): RIPE FLOW = 443.54 CFS PIPE DIAMETER = 84.00 INCHES RIPE LENGTH = 555.33 FEET MANNINGS N = .01300 SF= (D/Y.) **2 = ! t 443.54)/( 63.88. 366)) **2 = .0048204 HF=L*SF = ( 555.3-j)*( .0048204) = 2.677 NODE 8009.74 : HGL= ( 1223. 659) : EGL= < 125.5. 722> ; FLOWLINE= < 1214.850> ---------------- PRESSURE FLOW PROCESS FROM NODE 8009.74 TO NODE 8014.41 IS CODE = 2 UPSTREAM NODE 8014.41 ELEVATION = 1214.87 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW MANHOLE LOSSES(LACFCD): PIPE FLOW = 443.54 CFS RIPE DIAMETER = 84.00 INCHES PRESSURE FLOW AREA = 38.485 SQUARE FEET FLOW VELOCITY = 11.53 FEET PER SECOND VELOCITY HEAD = 2.063 HMN = . 05* (VELOCITY HEAD) = .05*( 2.063) _ .103 NODE 8014.41 : HGL= ( 1223. 7G2> ; EGL= ( 1225.82 5> ; FLOWL I NE= ( i 214. 870> PRESSURE FLOW PROCESS FROM NODE 8014.47 TO NODE 8053.95 IS CODE = 1 UPSTREAM NODE 8053.95 ELEVATION = 1215.42 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 443.54 CFS PIPE DIAMETER = 84.00 INCHES PIPE LENGTH = 39.54 FEET MANNINGS N = .01300 SF= (Q/K) **2 = ( t 443.54)/( 6388. 366)) **2 = .0048204 HF=L*SF = ( 39.54)*( .0048204) = .191 NODE 8053.95 HGL= ( 1223. 953> ; EGL= ( 1226. 015) ; FLOWLI NE= < 1215.420> PRESSURE FLOW PROCESS FROM NODE 8053.95 TO NODE 8055.45 IS CODE = 5 UPSTREAM NODE 8055.45 ELEVATION = 1215.44 ---------------------------------- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 440.1 84.00 38.485 11.437 0.000 2.031 2 443.5 84.00 36.465 11.525 -- 2.063 3 3.4 18.00 1.767 1.918 90.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0===05 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(02*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((AI+A2)*16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE _ .00475 DOWNSTREAM FRICTION SLOPE _ .00482 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00476 JUNCTION LENGTH(FEET) = 1.50 FRICTION LOSS = .007 ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = .031 MANHOLE LOSSES = .103 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = .063+ 2.031- 2.063+( .007)+( 0. 000) _ .110 NODE 8055.45 : HGL= ( 1224. 094) ; EGL= < 1226. 126> ; FLOWL I NE= < 1215.440> PRESSURE FLOW PROCESS FROM NODE -8055.4`;-TO NODE- 8155.73 IS- CODE -- 1 - UPSTREAM NODE 8155.73 ELEVATION = 1216.84 -------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 44-0.15 CFS PIPE DIAMETER = 84.00 INCHES PIPE LENGTH = 100.29 FEET MANNINGS N = .01300 SF= (Q/K) **2 = ( ( 440.15)/( 6388. 366)) **2 = .0047470 HF=L_*SF = ( 100.28)*( .0047470) = .476 NODE 6155.73 : HGL= ( 1224. 571 > : EGL= < 1226. E02> : FLOWL TNF= PRESSURE FLOW PROCESS FROM NODE 6155.73 TO NODE 8155.75 IS CODE = 5 UPSTREAM NODE 8155.73 ELEVATION = 1216.84 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 374.3 84.00 38.485 9.726 0.000 1.469 2 440.1 84.00 36.485 11.437 -- 2.031 3 65.8 48.00 12.566 5.239 40.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0===05 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE _ .00343 DOWNSTREAM FRICTION SLOPE _ .00475 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00409 JUNCTION LENGTH(FEET) = 2.00 FRICTION LOSS = .008 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY+HVi-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = .927+ 1.469- 2.031+( .008)+( 0. 000) = .374 NODE 8155.73 : HGL= ( 1225. 506> ; EGL= ( 1226. 975> ; FLOWL I NE= ( 1216.640> PRESSURE FLOW PROCESS FROM NODE 8155.73 TO NODE 8207.93 IS CODE = i UPSTREAM NODE 8207.93 ELEVATION = 1217.56 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 374.32 CFS PIPE DIAMETER = 84.00 INCHES PIPE LENGTH = 52.20 FEET MANNINGS N = ,.01300 SF= (Q /F() **2 = (( 374.32)/( 6388. 366)) **2 = .0034333 HF=L*SF = ( 52.20)*( .0034333) = .179 NODE 6207.93 : HGL= ( 1225. 685) ; EGL= < 1227. 154> ; FLOWL I NE= < 1217.560> PRESSURE FLOW PROCESS FROM NODE 8207.93 TO NODE 8207.93 IS CODE = 5 UPSTREAM NODE 8207.93 ELEVATION = 1217.56 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA 1 366.4 84.00 38.485 9.519 0.000 2 374.3 84.00 38.485 9.726 -- 3 8.0 18.00 1.767 4.510 90.000 4 0.0 0.00 0.000 0.000 0.000 5 0-0===05 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(02*V2-01*V1*COS(DELTAI)-Q3*V3*CGS(DELTA3)- 04*V4*COS (DELTA4)) / ((A1+A2) *16.1 ) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FR I CTI ON SLOPE. _ . 0032 9 DOWNSTREAM F=RICTION SLOPE _ .00343 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00336 JUNCTION LENDTH (FE:ET) = 1.50 FRICTION LOSS = .005 ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES HV 1.407 1.469 V 1-11 11 1lvly Lu1.J 1:.a L. •7 LLT-MVI—rlVI= -r%r Mit, I IUIN LU55)+(LN I HHNL;L LOSSES) JUNCTION LOSSES = .124+ 1.407- 1.46r3+( .005)+( 0. 000) = .076 NODE 8207.93 : HGL= ( 1225. 826> :EGL= ( 1227. 233> ;FLOWLINE= < 1217.560> PRESSURE FLOW PROCESS FROM NODE 8207.93 TO NODE 8217.31 IS CODE = 1 UPSTREAM NODE 8217.31 ELEVATION = 1217.69 --------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 366-35 CFS PIPE DIAMETER = 84.00 INCHES PIPE LENGTH = 9.38 FEET MANNINGS N = .01300 SF= (Q/K) **2 = (( 366. 35) / ( 6.388. 366)) **2 = .0032886 HF=L*SF = ( 9.38)*( .0032886) = .031 NODE 8217.31 HGL= ( 1 225. 857> : EGL= ( 1227. `64> ; FLOWL I NE= ( 1217.690> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM h err 20"Wao-ep 99co CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE JOB NO. SHEET OF (lk IX4 6;L �p YZ4-1-e Too is oar AjaA ),tA*, o=c c om odc�c�f i r, r �5h, aE Gk vv 4WnL4.e (raUdtvj-, Q 4rm rn dVnin 4,4dtot,, CQ�ad -Q2r= 410•46 C+A-). l c Yu npp j � fry ezbO kft w .P n t- ml -.a4 cr v � /►Avg .PX .� �g Car % )xca l Crywfcd etA 530 . U 9 c-.P,A . J=oar `<Zox-ti. t r� CancG mn /f v vc2 k CG G` U S �' J aA &4c �'r� It iJ b e� mod,' w r Lo I f r� bQ v 1'Y1 ��70 CG V Y y r 410-46 d (.j�.L 71 ox (A ti rest Ycc n n ff . -T) �v o .tea car�1rYact 5% C%Anmel ?W tze- vl'rn� i r i 0 Vur (A 1 7'ke C GL; L' or, ( S 3 0. 0 5— 4 t 0- 4 6= 119. 6 3 c t,,4 Jan p ovt s ba,4 x .& rQ A Bc�x. C�tn� r J� � a�-�r'c�•nc�l G; c r ve's; I r C iu ry y A vn cox0 Ncy rK g 6a1, / pL,'r-c LIQ,' v+� IVB r ►, ,',.� '/J �e„ ,,. �p,[� b ,:.,d or fik. �'r� c !/ x ►tit v Q I k �'lOW c' n &,� .��-_o�^ /��' t6 GCorcupiy �vV �X It �,, l "vo�. c A4 n rix 0- 0.2 5 Y1 �y -rt.e f and 69,rn Cvo�Z.-/-oJ<<r = 0-01$ 3170 REDHILL AVENUE 0 COSTAMESA, CALIFORNIA 92626-3428 • (714) 641-8777 •::•i{' RESUL7S OF IRREGULAR l_.'-if-NN=.L ANALYSIS 7;# CALCULATIONS BASED 11,E M(ii'Ji'.'j NGS EO_II:'I", ON WITH ALL DIMENSIONS IN FEET OR FEET AND SECONDS (C) ._.oi:.iwriont 1963 Advanced c..i1o:.Y1F?e' inq Software i.l-ES] �R•9F•:t=.'••'�•?4• ii•k�: � Ltii^_.r'.?� =• ' 3. J^. l.i" ,:'.•`-r•...li_';�'�c'#•iPx#3i'•i�•iF•iE3t•i: �'sE•�f.••�•#•p••}••3�•�s••Y: #�•�:_�.##: •3E••3i•�••3-•D; •D:��•'�•:a: •�: �••�'•�•fi••�••iE :a•s: s: * N. BA` E LINE _i EMP CHANNEL HYDRAULICS x. * 0 yyL f R EXIST XIS I "Ei:CE (REST ALONG CHERRY AVE * C. LINE ST. STA 1420.52 (BASE LINE Y_\KI.i1 j} 1810 R 4/29/8/ •KA' �'T 'S�F.'T� � T"•f: }• i�'iS "T: 'I:' i��T� �•fi i.'•%• f"R••%T•k F. ��'iC SC•T. ']C• s�"�"l� T T+7C T. 7C TC'T. 'J� T ��7C "IC TC T: 'A•T '!C ]C T'�7C"IC��G'F 7C �7C�T. •X'�7C��T: F'A'T' ------_----__•---------------------------.....----__.__r---------r_-------------_•----__— .. ENTERED INFORMATION FOR SUBCHi-lNNE:L NUMBER 1 NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 0.00 1307.40 9.00 1304.20 3 27.00 1304.20 4 33.00 1305.90 SUBCHANNE:L SLODE ( FEET /FEET) _ .003100 SUSCHAN SEL MANNINGS FRICTION FACTOR = .025000 IJ . . . . . . . . u u . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . u . . . . . . u . . . . . . . u . . . . . . . SUBCHANNEL FLOW(CFS) l ( = 120.2 S BCHA1�N L FLOW I' AREA(SQUARE FEET) — 32.53 SUBCHANNEL FLOW VELOCITY (FEET/SEG.) = 3.694 SUSCHANNEL FROUDE NUMBER = .595 SUDCHANNEL FLOW TOP—WIDTH(FEET) _ 27.14 S� ` ;CHANNEL HYDRAULIC DEPTH { FEET) — 1.20 ---------'---------------------------------------------------------------------- s�TAL IRREGULAR C - f:4NP-'EL FLOW (CFS) WANTED i.OM '°U T r_D IRREGULAR EGUL.AR C AI INEL FLOW (CFS) = i2:0. i 1 ESTIMATED I riREEL�QR u;—iANNEL, NORMAL DEPTH WPTER SURFACE ELEVATION .. . . . . . u . . . . N . . . . . N . . . . N . . . . . 1305.S4 NOTE: S WATER SURFACE IS BELOW EXTREME LEFT T AND R is GGT BANK ELEVATIONS. **********DESCR:TTjoN OP * N.BASE WNE TEM�:, CHANNEn HYDRAMICS CAMS * 0 100 DIF"ERENCE =119.5CPS.STA 7624.57 * VENXI. N. W3810. 412S/S7 ----------------------------------------------------------------------------- * ENTERED YNTOM71% NOR SMCHMNENiMBER 1 . NODE NUMER "m" CDOWINATE "Y" COORDINME. 7. 50 3 0 5. 6 1307. SO 02nooc. 506CHAN1.EL ".W ONVATSWAPF WiET) SUM-MAEL PLO" VK0C7-V(TEE7/SFC.) 5.07,': "WonE .924 -YDROU-10 MQ-�W=l = ------------------------------------------------------------------------------- 0 . -OTQ� -RAFA;.QQ O�Qqrm. VICUMPY) OWT&D = ): S. 5;:m 4,1 . 0=7sp 5"Awso-Ap C-OVOK =QW(M) = 1) 9. 5- TF-IMAMD :TRES�Cv :-QNNV. wDQvKn 1_,7p-1 &Q794 WoATE., E- i op- 1 -1. .. . . . . ...................... 130S.M. s Fl-pw F x ============================================================================ HYDRAULDC ELEMENTS - I PROGRAM PACKAGE (0) Copyrignt 1982 Advanced Engineering Software EAES] ____________________________________________________________________________ Advarceo Enpineerinp Software [AES] REV. 2.0 RELEASE DATE:l2/30/82 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<((<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> **********DESCRIPTTON [/T * N.BASE LINE BOX CULVERT CROSSING CHERRY AVE * * Q 100YR DTPFERENCE D8" 1.2518 BUX 0=60CFS FOR ONE BARRELST4 * VENKI.Ni, JN 38M 4/29/87 * *********************************************************************+****** | >>>>CHAKNEL INPUT INFORMATION<<<< CHANNEL Z(HORIZOKTAL/VERTICAL) = 0.W0 |8ASEwlDTH(FEET) CONSTANT CHANNEL SLOoE(PEET/FEEI) = .013600 | UNIFORM FLOW(CFS) = 60.00� | MAN��I»�[�S F9TCTIDm �c�rT[�R = .@140 NORMA��DEPTH FLO� INFOR�ATIO�: i---------------------------------------------------------------------------- | >>>>> NORMAL DEPTHCFFE-) = .817, FLOW TOo- WIDTH(FEET) = 8.0141 FLOW AREA(SQUAHE FEET) = 6.36 | HYDRAU;-IC D,---PTH(FEET) = .80 Fl -GW AVERAGE VELDCITY(FEET/SEC.) 9.43 U�JFORM FROJDE NUMBER = 1.863 | PRESSiRE + MOKEnTJm(POUNDS) = 3254.K | . AVERAGED VELOCITY HEAD(FEET) = 1.381 SPECIF7C ENERGY&EE") | CRITICAL -DEPTH FLOW INFORMATION: ____________________________________________________________________________ � CRITICALFLOW L W |UP-W/D|H(FEE7) = 8.00 � CRITICAL FLOW AREA(SQUARE FEET) = 9.64 CRITICAL FLOW HYDRAULIC DEPTH(PEET) = 1.21 i CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 6.22 | CRITICAL DEPTH(FEET) = 1.21 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 1086.12 AVERAGED CRITICAL FLOW VELOCITY HEAD(FEEI) = .60, | CRITICAL FLOW SPECIFIC ENERGY(FEET) = l.807 **********DESCRIPTION! OF RESULTS*a�a�a� * S. EASE LINE BOX CULVERT CROStiSING CHERRY AVE * G! 100i'R DIFFERENCE 119.5CFS sTA. 79-1-0 57 * VENKI. N, JN 381 �, 4/29/87 ;F >)) > CHANNEL INPUT INFORMATION < < < ( ---------------------------------------------------------------------------- CHANNEL Z(HORIZONTAL/VERTICAL) BASEW I DTH ( FEET) = 16.00 CONSTANT CHANNEL SLOPE (FEET/ FEET) _ .013600 UNIFORM FLOW(CFS) = 120. Q)0 MANNINGS FRICTION FACTOR = .0140 NORMAL—DEPTi FLOW ? NFORl ATI Ora ----------------------------------------------------------------------------- >>)>) NORMAL DEr'TH(FEET) _ .77 FLOW TOr'— WT DTH (FEc.T) = 1 G. 00 FLOW r ^EA (SQUARE FEET) = 12.30 FlYDr:;PU'._It DEPTH(FEET) _ . 77 FLOW i=;VERAGE VELOCITY(FEET/SF_C. ) = 9. 7E, �'NOUDE NUMBER = 11.961 'R ESS 11P E + hlDfriENTL-I,y; (F='OLiNDS) — 2563. 96 �-rVE;t;( iC7i .L� VCLLIC I' Y HEAD ( FEET) = 1.478 SPECIFIC ENERGY(FEET) = c..c47 C i. ; "'" CAL —DT H r: Ow T NFORMAT Ir ON: --•------------------------------------.-------------------------------- ----- -- C T rf r_. 7 r �.i= = 1 C'. �L�0 s r. s r -r r ry• T rr, � ,. I i. v E -i L. i - � ire yV f � r r �T. } I i`i i r C R 1"C Fi " "i—f-314" p = 'c' -f' j _: I r•`•. j- . L. ri: i"' L!.J { r •'1' L%r?%i!..i __ i L i�f_h-� I ((-C'. 1.= r 7 _ i . 21 ,:; r: r, •;. N --i-, „vti ._..�_. .—,iC. [..J �C�f i14i'r 1. Y-�OI_i14Ai:C) _L La Y F—;CPUT %(j— EFj LJ 1 * K.BASELINE 7EMP CHANNEL HYDRAULICS * Q :=119.5CFS.POR 0100YR DlFFrERENCE °STA 7921.57 * * VENKI.N,JN3810, 4/28/87 * **************************************************************************** ____________________________________________________________________________ * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : NODE NUMBER /'X" COORDINATE "Y" COORDINATE 1 0.0N 1311.80 . � 7.50 13@8.68 � 3 25.5W 1308.68 4 30.50 5310.20 SUBCHANNEL S�ODE(FEET/FEET) = .013600 � SUBCHANNEL MANNINGS FRICTION FACTOR ^0250N0 | � ..~.~...~.~.............~..........~.........................~..'...''..~''. SUBCH AEL FLOW(CFS) = 120^ 5 / SUBCRA�-NEL FLOW AREA(GQUARE FEET) FUBCHANNEL FLOW VELOCITY(FEET/SEC.) F�OUDc SiBCHAN��cL *UMBER � 1 176 | - - ^ | SUBCHANNEL FLOW TUP-WIDTH(FEET) 23.0 SUBC�AmNEL HYDW|-IC DEDTH(PEET) = .84 [ . ___________________________-________________________________________-_______ ______ ____________________________________________________________ ^,TOTPL IRREGULAR CHANNEL FLOW(CFS) WANTED = 119.50 � COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 120.48 � FS�lMATED IRREGULAq CHANNEL NORMPL DEMTH WATER SURFACE ............... ...'.."....... 1309.63 NOTE: WATER SiRFALE :S BELOW EXTREME | LE --'- POD RT04T BONY ELEVArIONS. *7'Eit*i-dR'dc.*"DC*D-.S R l mT I D" OP h- �?'_I _�•7 3 #c ie #�F9!s��c Ye#x # kdt lE k#�? le fir# 1F # x 3r n a r k7" a s r. 4tiicr, * N t BASE LINE T EmO HYDRAULICS C RLCS 'i!' r�7'. =119.5 h , .'..{.' i ._.. r.. } !'� Lf .! 1'" C : � :'_. ti �.... —.. � STA �i r' ��� E". 7 p 5 . .7._ i`. $' �"k"k"�!' .}..�. i`.' 7.'�'�f" If"�"ii '�"r":"i!' _�'.�'�•`.' $"a.'%�' :�:"#"7�"*"�"r"g' �" �:F'k-'k' -1t �'3='3F"3!' �' �' x YF 3t' }-'it"Y-'3!"'�C'�-'� -fi h"}."f' � 'T: $-'aF �f- -�I^'R' _�.'� �`F �'t-'Y`!"� 7F �t' -�-Y. $.'J' ----------------------------------------------------------------------------- * ENTERED !WPO MO j ION FOR S:_.iBCHH1N;V_•i._ NUMBER • NODE NUMBER "X" COORDINATE "Y" COORDINATE 111. OLI) 1311. 70 4 3450. !310.85 .S ::I:i_P{ANNEw %0 Ea1`...'_E1s!`....."_.T? — .010400 � .7vB..: -:r^:N!" tr'.L MANNINeS FRICTION FACTOR O iT -- .025 000 e v . . w e Y r. • . . . p F r e . . a . .. . • _ a . . . w . tl c tr . . . . w p � ! J+-` a;.tFLOW(CFS)� 1,4I�• w . . tr . . . e . .. a . tr ... e a ...www . SUP.Crr-;I\,,4EL - . E, SUt;CY;PNIEL "LOW 1= R A (S•'.,'1.1ARE FEET) ) = 22.20 .terUBCt ANiMEL. 1"'i_OWi Vj_I OCI 1 yT (Tr'EE!'%SE.... ) — 5.43.11. 5_[B[;i-fANyt�EL. Rl1`_�!lE NUMBER = 1.034 3UPC t"i l-N:MEL FLOW, i OP—W.ID i H (FEET) —^ 25.92 S ::P,i_1Hf. t- .r%l L. —HYDRAULIC Ife:F•4T1- (h• r ET)8i- _ Y V ...f ----------------------------------------------------------------------------- f O? AL R R E_yUL AR CHANNEL PLOW(CFS) D = 119.50 f..• (.,1-1'!°tDUT`D .. PKt'!'1%_LAR trH4'i:Jit,'E� FL W (C �� � ia `�'3 J. l_. ESTIMATED :.:aR =SULL- R r•HF.;: NEL NORMAL DEPTH WATER ER URPAC: 1310.0 I NDTE; E Ih'.1 1 i = is =sURPA1.,e` !S BMW EXTREME .F=7 !T -i '' D R l i. 0 7 BANK ELEVATIONS. **********DESCRIPTION O" * N,BASE LINE TEMP CHANNEL HYDRAULICS ^ * Q 100YR DlFNERENCE=119.5CFS.. STA 829S^01 + * VENKI.N. JN 300. 4/28/87 ____________________________________________________________________________ * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : �ODE NUMBER "X" COORDINATE "Y" COORDINATE 1 0.00 1314.95 i 2 6.00 1312.75 / 3 24.00 1312.75 4 29.00 1314"35 SJBCHANNEL SLOPE(FEET/FEET) = .010400 | SUBCHANNEL MANNINGS FRTCTIUN FACTOR .025000 ............,,.,.,,.,,',,,,,,.,,',,,~,,,,,,,',,^,',,,,,,~,,,,",,,,~,.~^, SJRCHANNEL FLOW(CFS) = 121.4 SJBCHANVEL FLOW AREP(SQUARE FEET) = 21.67 SiBCHANNEL FLOW VELOCITY(PEET/SEC.) 5.604 ! SjBCHA*NE" ARDUDE NUMBER = 1.040 . SURCPANNFL PLOW TOP-WIDTH(FEET) = 24.03 MTCHA»NE� -YDRQJLIC DEPTH(FEET) = .9N | | ------------------------------------------------------------------------__-- � -C-0- TRREG./"Po CHANN�L �LO�(CFS> WANTED = Il9 50 / - ^ CIVr'TTD lTREGULAR CHANNEL FLOW(CFS) = L21.0; EWMATED TR9EGjLPR CHANWEL MORMAL DEOTH WATER SURFACE 0 ���-7�» __ ............................. 1313.78 N070 WP -ER SURAPLE 38 BELOW EXTREME LET- AND RAG"T BANk E-EVATlOx/S. ' ____________________________________________________________________________ **********DESCRIPTION 0 # N. D ASE LINE TEMP CHANNEL HYDRAULICSyy T' 0 i:Z,/OYR DIFi=•ERENCE=� / 1/ � % 5 CSS. STA EI:_'39. �'1 * VENKI. N. iN 38..0, `I' 28/81 r ':�;�'dt'3t••3F#•1FdF#de'•D!'•�F•�'••bE#iE••if'dF'••3E•'1••k•#-k7F##:•iFiEiF9f••iN•k'•�;##•'3b#•it•#'IM•k#if•'iE'•kdt••}�E'#•ihy4•it••k••1Fi£••Y•3e•fi#�f••:-�••it'��;-iT:•�=•€�•�=��;--k7:•�y::•xi��:: ----------------------"-------------------------------------------- --- — — ---- -- — -- # ENTERED INFORMATION FOR SUBCHANNEL NUMBER I . NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 0. 00 1320. 80 7.50 1318.35 25.50 1318.35 4 30. 0(.1 Q i % 80 JB ;iVNES_OP(F tT/ P 4 i ) . 01!40, SU Ci;FNEL MANNIN&S FRICTION FACTOR = .025000 . . . . . . . n . . . . . . . . n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a . n . . . . . . n . . . SUBCHANNE:L_ FLOW(CFS) = 119. 9 CSI iBCHANNEL_ FLOW F REA (SQ ARE FEET) = 21.59 SUBCHPNNEL PLOW VEL0CT7YfPEFT/SEC.) 5.554 S lBOHAwN L. ;— iii ji iD;-_•_ v',UrTjBER = 1.038 SUBCHANNE L FLOW TOP-WIDTH(FEET) = 24.29 Irl iBrC If-tNNEL HYDRAULIC DEP I_ H (r EET)n �, y9 _ 81 ---------------------------------------------------------------------.__ ---------------------------------------------------------------------------- TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 119.501 COMPUTED IRREGULAR CHANNEL PLOW(CFS) = 119.92 ESTIMATED IRREGULAR AR CHANNL NORMAL DEPTH WATER SURFACE E:_.EtIL.iTT:= N ............................. 1319.37 NOTE: e :_ ., r,:.iTER SURFACE Q B ..—..6.., D W EXTREME -- — — — —--------.-----------------------------------------------------------. I i r�. 'f f. RES>JL7 n OP IRREGULAR CHANNEL ANALYSIS � Cf -4 _ iia? .aT T ON BAI;ED Or,,! MA NN 1 NGS EQUATION WITH ALL DIMENSIONS .u''L FEET OR FEET AND SECDNDS (C) t 1_1"t,]yr Grit 1983 Advanced stir?"I.,r«••e'..Ylt^.'eY^inq Software EA1=.C. I � : F * N.BASE LINE TGMl-t. i....Hh-iNN _ HYDRAULICS �- * 0 PROKCHERRYAVE).CENTERLINE BASELINE ;,_`sTA 9148.21 #�•3E##'x-k#:•#:'•z'•�• *#-:�• �••;;••€?x::t�c•�-ii-•�•�: •i:=� #: #: �t.s_y.._.�_�t :i -i`•�,_.;•..��.;�. F•�--�: •z � � -€ �••3�•�•� •�•�•a��•�3c•;�iF•f: •w �� ;. •iF�� ir�'iz �!••�•.�_.�.i:,;._. * ENTERED I N •s_l��MA � I ON FOR SUB _~H f-tI�NNEL NUMBER 1 n - - NODE NUMBER "}," i. OORDIitlr=tic. "Y" COORDINATE RDINATE -_ 0.0t`1 1323a45 5.00 1321.70 23.00 j, 0 _..:.. 70 _. 1 % L;r i�:I.l '`''� .471 :J L:,, L. u t •, '�ii__ +s•.:: .+�'_... i''.i».•, nt��. _.. ^1".._ �^ ?�i_li:! :-Flf_ j"�"j _ a 11_f L.ti t:f��;l l;i v u r e u v . u r t r. .. e• r e r_ n r, e r .. r e. n_ u n .. µ. v v. e p �• n.... v. n.. u.. v v r .. v r. .. a �7 .. _ �._t "i t-}1 iii : ,.• •_- _. _.. ��:n (•- .'i .i �- .i. t11(�1 n .i. QRFA(SRUQRE FEE-) 22.0. ,:t ._ T � O `'t: 1, L r L t._l W V - _ _ 0 r _ • V (! = , / E C n ) = 5.45'D i f.1_'rO "!. i+• teal 7i'_t-1::' fV w_ET) = G'4. ir•r"1 1 . �._._.__._.V__ __ --~ -------- — -_----__..-.—_...._....._...--_..—_...—.—_...."------•-----..__..---....--..—.— --_— _ ---•- -ETC. . R SC_5 ...PR s_. :1•'N "LOW(CFS) WANTED — 119.52 i -li ED 1. .,.lt'_ ....i-+s'� '. --.. `via!_-,•__, p"04(cps) 120.14 • ._.. 7PREROUPP CHANNEL NORMAL DE—t" WATER ., Ur<f"'F'%CF _ - . ... ..., . r . n . . . . .. .. . t . . . . ,. . p .. I— r _ i.: 2L:'. 7; - -.. --•'. !1~• � •'M1+fir-` ,.. •-_ �'• ... ._ , , #�•i=#i; i::t'�'..#••Jt•If:=:--"ti:,-? �, �! i �, �_ li: � j.": rim: C�..i[_.�i ijt'•#•ii-#i°••}F•9t••ft9F•k••Y4••iF•k••7F#yF#•]f••s4•it••k••�t••7FiE•k••)F•9k•if•.3ik.•yf•-k••3Eas•�FiEs=•�-� : •;-�a..;� -w..�- • N. BPSE LINE TEMP. CHANNEL HYDRAULICS •iE• VEN9I.N, ..iN 3810, 4%28!87 .ti ## #=# •3E• •ls• is-•lF'r••h: ## �i-�F i• •3E• •�i• •Y:• •3f•�r•� #•it• :�:• # if••�• # # # # •Y.• # •ir •lE'iE## •3f• iF# #•k• 9t ##-le• # dE• ## ## # •lF# # 9E# #iF •3r •� •�•#•iF •!t•#•3^#: # # # # •}=-�. ...-----------------......---------._-------..-...._---------. --------.--------....—r.----_...------ # ENTERED !.jtP !i•iMAi iON '.-(J.wR Si.1+B:..F-11=11 NEL NUMBER I NODE N14_,'rl''iBER txrCOORDINATE tYt COORDINATE i 0. 010 1324.15 3510. 22. 13 2 2. l�'� 4 27.00 1323.75 CS1..JBCAA;Vi1VEi.__ , LODE VEET/= EET) ` .010000 l41N I 'B- = ] CT! _ N FACTOR 1T—:=.025004A . . . . . r . w _ . u . . . . r . . . . . . . c :. . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . SUECHANNEL FLOW(CFS) = 119.6. SiBEHANNE! PLOW A%A(SPLPQF FEE-) 22.23 SUPCHANNE! =_% VELOCITY(FEET/SEC.) 5.379 Sj4'•.Hj NNS. . R rU__E lV -;yfM x_:.1-1 = 1.016 16 - ._ :-CHANt° E, TOP -W I TH (F E--) = 25.54 _t i ^'A(k'NEw f a7:tA %L f. 11^x! 1 h (s=EET) _. .87 ^ —`-------`••---.•--�---------------_..-------- --- — -- _.. ':1 -t-;._I;,_PR CHANNELCHANNELL_OW (t_:'`, -i) WANTEDr----•-_.._ _ AL _ vl_.?rt�•��:.i~ 1.:1 I- �!'R `. 4.IL}..-.4`i l?Lr'S%'tltaNEi__ FLOW(CFS) R ._ t'i . CKPNNEw - G R 1"Q :__ LI = i— ^I Wi Y-! - c•e S t i Pj = j:'i I_: r- _._._._. . . . . : r. . . . . . . . a . . . . . . . .1323. 7,:-'— t:-Rr-p1. L': AS BELOW EwTRr=M_ **' RESUL i S OF IRREGULPR CHANNEL ANALYSIS CALCULATIONS BASED ON MANNINGS EQUATION WITH ALL. DIh'ENSIONS, IN FEET OR FEET AND SECOND'S (fff(f<.flit(flfftClfftfffftttffltf(fft}')))}•)))}))})})})})))•>)}}>))})�).%;}}) (C) Ci_ioyright 1983 Advanced Engineering Software (AES] (fftfttt<flit(ffff{ffffllft(ttfttftCtt))))})}>})•>>>)}}>)}}>}}})>>)>>•})>}})) **********DESCRIPTION OF * N. BASE LINE TEMP CHANNEL HYDRAULICS * 0 100YR D I FT ERENCE 119.5 CFS . STA 9560.00 * VENK I . N. j N3810. 5/13/87 �. jF•ii•i•ab#••�**#-**•k•******iF•3E**•�•3e••#'•i�•i--Di•-DE•)f••3f••iF*•ii••R•*•Df•**#•it•*-k-k••!F••li•3E•�E••3t••3F**•3�F•k•**#iE*yf•*•�'•if•li•3E*3i-•k••i�ie••k*•§i• � •s'�t -----------------------------------------------------------------------•---'--. * CENTERED INFORMATI4.O FOR SU2CHANNEL.. NUMBER I „ NODS. NUMBER "X" COORDINATE "Y" COORDINATE i0 II,, 3_ c 4 lc i 325. 22.5 0, 1325.80 50 i32S.80 S +BCHF-iNNEL S i_l-?. DE ( !' EE T FEET) a 011300 SL BCHANNEL MANN NCS FRICTION FACTOR =- .025000 v ¢ u ¢ [ p [ n v ¢ [ a • u n ¢ s F . . . . . . . . v . ¢ . v a . . u . . . v . . . . ¢ . . . . v u v . v . v . . v u • u ¢ . . . . . . v ¢ u • ¢ w SUB( ANNEL, FL OW (CFS) = 121.4 SUBCHANNEL FLOW W AREA (S iLlARE FEET) _ 21.72 Si UBCHANNEL FLOW VEE_.00ITY (FEE•T/SE:C.) 5.590 UDCHANNEL=ROi-DE; ;NUMBER = 1.074 Si;B;-HANNEL FLOW TOP -;~==L'7 FEE i) = 25.82. SUBC'i:`-iNNEL HYDRAULIC DEPTH(FEET) —. . ,i:{1,. -------------------------------------------------------------------- TO L !RREGULAR CHANNELLO sFS ) WAN --ED =! i 1. '.i . ._5w. COMPUTED ! RREGULAR CHANNEL FLOW(CFS) = 121.4-11, _`.r7ED 'iR S - " — CHANNEL }=omMiL DEPTH WATER S cPA.E ELEVATION .. . . . . . . . . . . . . . . u . . . . . . . . . . .. . 13 S. 7` , NOTE: WATER SURFACE !S DELDW EXTREME LEPT AND RIGHT BANK E�EVATIDNS,, ----------------------------------------------------------------------------- **********DESCRIPTION OF * N. BASE LINE TEMP CHANNEL HYDRAULICS 0 100YR DIFFERENCE CO%, 80C.=S, STA 10173.0;1 4; * VENK i . N. J'N3810. 5/13/87 ---------------------------------------------------------------- ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 NODE DUMBER "X" COORDINATE "Y„ COORDINATE 1 0.00 18.00 3 39. 00 4 45.50 5 46.00 0 8 64.00 7 75. ri 0 S! iBCHANNEL SLOPE ( FEET./FEET ) SUBCHANNEL MANN I NCS FRICTION 1333. 40, 1333. 00 1332.80, 1332.79 1332.70 1332. 70 1333. GO .013200 FACTOR = .025000 ................................. ..................................... SUBCHAhiNEL FLOW(CFS) = Il 9. 8 SUBCHANNi=L FLOW AREA (SQUARE FEET) _ SO. 44 SUBCHANNE L FLOW VaL � tC I T Y (Fr ET / SEC.) - 3.926 Si EBCHANNEL FROUDE NUMBER = 1.048 SUBCHANNE L FLOW TOP-WIDTH(FEET) = 69.73 GUBCHANNEL r'YDRAUL! C DEPTH(FEET) _ .44 ------------------------------------------------------------------------------ -;OTAL_. IRREGULAR CHANNEL t=LOW (CFS) WANTED = ;�. 521 _--__--- CMDeU ED I R-CGLAR CHANNEL FLOW(CFS) = 119.56 ESTIMATED I RRt_G_.:LAR C;HANraj L NORMAL )'` PT WATER S A' -.'r'. ELEVA71 0N........ „ .................... 1333.35 NOTE: WATER G'...'R ACE I:tt:.'.,, F_L_t,+ „ EXTREME **********DESCRIPTION OF RESULTS******************************************** * N.BASE LINE TEMP CHANNEL HYDRAULICS * * Q 100YR DIFFERENCE 50% , STA 10407.0 * * VENKI.M, JN 3810, 4/28/87 * -----------------------------------------------------------~---------------- * ENTERED INFORMATION FOR SJBCHANNEL NUMBER 1 : NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 N.00, 1337.50 2 5.50 1335.80 3 23.50 1335.8G 4 27.50 l336°95 SUBCHAWNEL SLOPE(FEET/"EET) = .016100 SUBCHANNEL MANNTNES FRICTION FACTOR = .025000 ^^^^^^~^^^^^~^^^^^^~^~^^^^^^^~^~^^^^~^^^~^^~^^^^^^^^^^^^^^~~^^'~^^^^^^^^'^~` SUBCH'ANNEL FLOW(CFS) = 60.2 SUBCHANNEL FLOW AREA(SQUARE FEET) SUBZHANNEL FLOW VELOCI—Y(PEET/SEC.) = 5.6909 SuBCHANNEL FROUDE mJm8ER = 1.195 SUBCHANNEL FLUW TOP—WIDTH(FEET) = 22.03 SUBCHANWEL HYDRAULIC DEPTH(PEET) = ----------------------------------------------------------------------------- ,55 ---------------------------------------------------------------------------- TOTAL lRREGULAR CHANNEL FLOW(CFS) WANTED = 669.00 COMDU7ED IRREGULAR C`fANwEL F,OW(CFS) = 60.22 E9TTMPTED IAREGULPR CHANNEL NORMAL DEPW WATbR SURPACE '`TIE: WATER SOPPAPE :S BELOW EXTREME .Fl— q/xD R"GoT BANK 1�EVATJON9. t � RE SOL7 5 -OF IRREGULAR CHANNEL AivALYS: S^�••�__===^-M_=.._-_ _,._ CALCULATIONS BASED ON MANN I NSS EQUATION WITH ALL DIMENSIONS I N FEET OR FEET AND SECONDS (C) Copyright I983 Advanced Engineering Software LI ESA <{tC{{{<{c{<.l{<f{(<tt<t{<{<{{t<<.(<{{<{iiiiii>>:)�>>iiiiijj)>)>j>>>:;%:>�>;•:>) **********DESCRIPTION O * S. SASE LINE STREET CAPACITY WITH BERM FOR 0 EXISTING 100 YR * 0 100YR DIFERENCE =410.5 CF5 (ALONG CHERRY AVE ) STA 7967.57 �- * VENKI. N, JN 3S10i 5/5/87 ----------------------------------------------------------------------------- * ENTERED INFORMATION FOR SUBCHANNEL NUMBER I . NODE NUMBER X„ COORDIh%iATE "Y" C=_ORDTNATE � Irl „ ttl L�I 5.00 12. 02) 4 12.0]. 5 50. 0,26 E 50.01 7 63.00 77.00 87.00 :moi_ R `.E''t-lr;iN L :. LODE(F Ems. ' /FEE``` ) ...._ B Ci"IANNEL Mr-lyilll lNSS FRICTION 1311.85 1310. 85 1310.85 1310.35 130 9.3112, 13G?9..:7 1310. t. 2-0 I.3 ii. Ili . 31 1312. 20 . 008600, FACTOR i IR = .018000 . . . . . . . . . . . . . . . . . . . . . . . . . . ,. . . . . . .. . . a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . n n r `."t'LiB�.-rHf-fNNEL FLOW AREl".H(SQUAR FEET) ... 61.87 ,`_•iU_I'+(•il•^li4i'.!•EL FLOW VC."IO .I^Y (FE i SEC. ) 6.639 S.ji={i,.HANN L FROUDE I")E N;''F-= 1.291 SUBOHANy+iEL PLOW W ';TOP -W MH KE i ) = 75.39 F. iUrt'C'.-I4;^ti;NEL HYDRPj:_ .. C; DEPTH(FEET) _ , S2 ------------------------------------------------------------------------------ ----------------------------------------------------------------------------- COMDUTED ZEiRr=.l✓UL_AR CHANNEL F:..l. W (C, t•_.) = 410.7t-. ESTIMATED IRREGULAR Ct";t-y.4Ni- L NORMAL 1E:'MA D P7 ' WATER .R `;.- A. ... ELEVATION .. . ,_ . .. .. ... . ... . . . . . . r . . . . . .. 0. 917 **********DESCRIPTION OF RESULTS******************************************** � * G.BA8E LINE STREET CAPACITY WITH BERM FOR Q 100YR EXISTING * 0� * Q 1��YR DIFERENCE, 410.5CFS, STA 8298 * �. VENKI.N, JN3810, 5/14/87 * ____________________________________________________________ * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 0. OVA 1314.75 | 2 5.00 1313.75 \ 3 12.N0 1313.75 4 12.01 1313.25 5 37.00 1312.68 6 49.00 1312.13 7 49.01 1312.80 8 62.00 1313.05 9 72.690 1314.80 � SUBCHANNEL SLOPE(FEET/FEET) = .009200 SUBCHANNEL MANNINGG FRICTION FACTOR = / .018000 ^^^~^^^^^^^^^^^^^^^^^^^"^^^^^^^^^^°^"^^^^~^^^^^^^"^^^^^^^^^^^^~^^^~^^^^^^^^' SUBCHANNEL FLOW(CFS) = 414.4 SUBCHANNEL FLOW AREA(SQUAHE FEET) = 56.64 SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 7.316 SUBCHANNEL FROUDE NUMBER = 1.355 SUBCHANNEL FLOW TOP-WIDTH(FEET) = 62.52 SUBCHANNEL HYDRAULIC DEPTH(FEET) = .91 � ____________________________________________________________________________ ' ---------------------------------------------------------------------------- \ rOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 410.51! COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 414.39 ( ' ESTIMATED IRREGULAR C�ANNIEL NORMAL DEPTH WATER SUR=ACE ' ELEVATION.........~..........."....'.. 1313.89 � NOTE: WATER SURFACE IS BELOW EXTREME LEFT AND RTGHT BPNK ELEVATIONS. ----------------------------------------------------------------------------| **********DESCRIPTION OF RESULTS** * * * ***************** * * * S.BASE LINE STREET CAPACITY WITH BERM * 0 =410. SCFS , STA 8839.29 - * VENKI. N, JN3810, 5/6/87 -------------------------------------------------------------- * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 0.00 1319.85 2 23.00 1318.80 3 23.01 1318.30 4 49.00 1317.65 5 61.00 1317.10 6 61.01 1317.77 7 74.00 1316.05 8 84.00 1320.05 SUBCHANNEL SLOPE(FEET/FEET) _ .010400 SUBCHANNEL MANNINGS FRICTION FACTOR = .018000 . . . . . . . . . . . . . . . . . . . . SUBCHANNEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FLOW(CFS) = 411.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . SUBCHANNEL FLOW AREA(SQUARE FEET) = 51.61 SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 7.970 SUBCHANNEL FROUDE NUMBER = 1.447 SUBCHANNEL FLOW TOP-WIDTH(FEET) = 54.79 SUBCHANNEL ---------------------------------------------------------------------------- HYDRAULIC DEPTH(FEET) _ .94 ---------------------------------------------------------------------------- TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 410.50 COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 411.33 ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE ELEVATION ............................. 1318.80 NOTE: WATER SURFACE IS BELOW EXTREME LEFT AND RIGHT BANK ELEVATIONS. **********DESCRIPTION OF RtSULTS********* * S.BASE LINE STREET CAPACITY WITH BERM * 0 100YR DIFFERENCE 410.5 CFS, STA 9148.21 � * VENKI. N, JN3810, 5/6/87 **************************************************************************** ---------------------------------------------------------------------------- * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 0.00 1322,90 13.00 1322.50, 3 63.00 1320.'30 4 63.01 1320.97 5 73.00 1321.20 6 83.00 1323.20 SUBCHANNEL SLOPE(FEET/FEET) _ .009600 SUBCHANNEL MANNINGS FRICTION FACTOR = .018000 . . . . . . . . . . . . . . . . . . . . SUBCHANNEL . . . . . . . . . . . . . . . . ■ . . . . . . . . . . . FLOW(CFS) = 415.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . SUBCHANNEL FLOW AREA(SQUARE FEET) = 54.21 SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 7.665 SUBCHANNEL FROUDE NUMBER = 1.397 SUBCHANNEL FLOW TOP-WIDTH(FEET) = 57.96 SUBCHANNEL HYDRAULIC DEPTH(FEET) _ .94 ------------------------------------------------------------------------ TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 410.50 COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 415.50 ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE ELEVATION ............................. 1322.19 NOTE: WATER SURFACE IS BELOW EXTREME LEFT AND RIGHT BANK; ELEVATIONS. ---------------------------------------------------------------------------- **********DESCRIPTION OF RESULTS*********** * S.BASE LINE STREET CAPACITY WITH BERM * 0 100YR DIFFERENCE 410.5 CFS, STA 9247.47 * VENY.I. N, JN3810, 5/6%87 ------------------------------------------------------------------------- * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 0.00 1323.80 2 24.00 1.322.80 3 24.01 1322.30 4 62.00 1321.25 5 62.01 11,321. 92 6 75.00 113-22.20 7 85.00 1324.20 SUBCHANNEL SLOPE(FEET/FEET) _ .009600 SUBCHANNEL MANNINGS FRICTION FACTOR = .018000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SUBCHANNEL FLOW(CFS) = 412.1 SUBCHANNEL FLOW AREA(SQUARE FEET) = 53.41 SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 7.717 SUBCHANNEL FROUDE NUMBER = 1.394 SUBCHANNEL FLOW TOP-WIDTH(FEET) = 56.07 SUBCHANNEL HYDRAULIC DEPTH(FEET) _ .95 ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 410.50 COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 412.14 ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE ELEVATION ............................. 1322.87 NOTE: WATER SURFACE IS BELOW EXTREME LEFT AND RIGHT BANK. ELEVATIONS. ---------------------------------------------------------------------------- **********DESCRIPTION OF RESULTS************* * S.BASE LINE STREET CAPACITY WITH BERM * G 100YR DIFFERENCE 410.5CFS, STA 9560.00 * VENKI. N. STN 38.10, 5/6/87 ---------------------------------------------------------------------------- * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 0.00 1326.85 26.85 E 21.00 1325.85 3 21.01 1325.35 4 48.00 1324.80 5 60.00 1324.25 6 60.01 1324.9E 7 73.00 1325.20 8 83.00 1327.20 SUBCHANNEL SLOPE(FEET/FEET) _ .012800 SUBCHANNEL MANNINGS FRICTION FACTOR = .018000 . . . . . . . . . . . . . ■ . . ■ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SUBCHANNEL FLOW(CFS) = 411.9 SUBCHANNEL FLOW AREA(SOUARE FEET) = 48.79 SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 8.441 SUBCHANNEL FROUDE NUMBER = 1.587 SUBCHANNEL FLOW TOP-WIDTH(FEET) _ 55.55 SUBCHANNEL HYDRAULIC DEPTH(FEET) _ .88 ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 410.50 COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 411.86 ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE ELEVATION ............................. 1325.86 NOTE: WATER SURFACE IS BELOW EXTREME LEFT AND RIGHT BANK ELEVATIONS. ---------------------------------------------------------------------------- **********DESCRIPTION OF * S.BASE LINE STREET CAPACITY WITH BERM * 0 100YR DIFFERENCE , E74 CFS (66/ OF FULL CAPACITY 410.5), STA 10173.00 * VENKI. N, JN 3810, 5/6/87 **************************************************************************** ---------------------------------------------------------------------------- * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 0.00 1333.50 20.00 1333.12 49.00 1332.58 4 61, 00 1332. 037 5 61.01 1332.70 6 74.00 1333.05 7 84.00 1335.05 SUBCHANNEL SLOPE ( FEET/FEET ) _ .012400 SUBCHANNEL MANNINGS FRICTION FACTOR = .018000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t . . . . . . . . . . . . . . . . . . f . ■ . . . . . . . . . . , . . . . . . . . . . SUBCHANNEL FLOW(CFS) = 277.0 SUBCHANNEL FLOW AREA(SQUARE FEET) = 43.47 SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 6.372 SUBCHANNEL FROUDE NUMBER = 1.471 SUBCHANNEL FLOW TDP-WIDTH(FEET) = 74.60 SUBCHANNEL HYDRAULIC DEPTH(FEET) _ .58 ---------------------------------------------------------------------------- TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = E74.00 COMPUTED IRREGULAR CHANNEL FLOW(CFS) _ 277.01 ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE ELEVATION ............................. 133 -..47 NOTE: WATER SURFACE IS BELOW EXTREME LEFT AND RIGHT BANK ELEVATIONS. ---------------------------------------------------------------------------- **********DESCRIPTION OF RESULTS*********#** * S.BASE LINE STREET CAPACITY WITH BERM * G! 100 YR, DIFFERENCE 274 CFS (66% OF FULL CAPACITY 410.5) STA 10407.41 * VENKI. N, JN 3810, 5/6/87 * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : - NODE NUMBER "X" COORDINATE "Y" COORDINATE i 0.00 1337.23 2 47.00 1335. 00 3 47.01 1335.67 4 60.00 1335.95 5 70.00 1337.95 SUBCHANNEL SLOPE(FEET/FEET) _ .012800 SUBCHANNEL MANNINGS FRICTION FACTOR = .018000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SUBCHANNEL FLOW(CFS) = 276.2 SUBCHANNEL FLOW AREA(SG!UARE FEET) = 36.41 SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 7.587 SUBCHANNEL FROUDE NUMBER = 1.551 SUBCHANNEL FLOW TOR-WIDTH(FEET) = 48.97 SUBCHANNEL HYDRAULIC DEPTH(FEET) _ .74 TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 274.00 COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 276.20 ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE ELEVATION ............................. 1336.5E NOTE: WATER SURFACE IS BELOW EXTREME LEFT AND RIGHT BANK ELEVATIONS. ---------------------------------------------------------------------- a g tt M A w Z 't a ery Ly 'v v c 8_ l>t ry; y�y o O 0 E N e V� _ Y F WI I V "P I 1 I • eje�` I 22 O♦ O M a 75 BLa O v s 8_ m ry; y�y o O 0 E � n e WI I V "P I 1 I eje�` is i V • a E;a BLa I�v N i 3 � tp yy I W W A N o - mclr O �N Z� 0 U W .} `b gr D pp w W a t i z m W W W Q ~� — C= La W f 3 "�o o LL 1 03 J O N .b � N� N• LLJ U p Z QO R 0 6N e v ue ocro ,`o J Z p tn U S I, ORp N u In c o • L' u> uv v - o u �1 `�yf ° W 1 W 'i•- 'i{ �N o p r w o� b- 2 N c� I"iau �o ..� 4 Z Z p i E_ lFe N W O 3 ZoS Y Iy oNJNo of `gym W � res -ra Y O C) s•:a ,31: 39 b;,, o u=w W00 Q -u_u u u c L o:�� Q • i W t J y a W /� QO p W p O W O cii b 17i �x Q� QQ � � ¢� >_ l0 0 0 0� O J N N N Q S 2 0 2 O K U u u u u x � 000000 W N_ O_ N O N Q Q czay OOOOF v 00000000000 _ M t♦ g fi g��_ N M f 0 0000 _ N I.1 Q_ L4!2 O Z W~ O p Z W O p R p O p 0 d z NMIO Yf bl� ml2r: - o a _€, 1 O po C < 1. •� W W S N N -------- ♦N{C fmT0-Nnb c O N N N Yl tp N N < U W Z ` o o< e c < b 4 W V • Y H Iz.. � = b = - n O i • u N - o a• •ti Q • H W W + W O BN o • r - 00 co b� P•. 4 p O z b uc- OO 00 C^APF - Vu = Y gC_ b o n0 NMI a pWWWWai EiD LL Y ~ zZa� N � O U` F7 Y1 0 0 1. 4,! ll J pi O g•d �L CL 0Z 3t3�U w O .o ov o.0 nb ocoo pa w000p:a w!. tZ 00 Q 00 QQZ= p002 Y oa o�La o0000u. VV c OIrINNN'• 'aeb N W- � Ww .�H■O O O— �� V r'J �E Qln OJ mmZO Q _ o�:r=n 000=- - �.•. 14 U_U_O Z YQ _ • LPW- iV j. O� 000 �_ OOrtr �pOC �S •• PtF-p p N JJN O a d G W Ol 1 Wp 1 K a L 5 4 mOM u v • W Q W L e I"'N44a000 JV- J w =)o J�Q=OJ22R�1u-ie i.?=O% L P N Z y y_Q.WW (6, 4 _Q 0 , C20ECK 11i Pe__i Y1I1 O O O N V f dW a W y f A V u W t Y U a b o o E"7 a a U i E c •. • a P N a4� WOUC p_j N W a-S�QE�uuuoLw moU 3 - <•lja�vu -c w E•,� - • • P w Q O J , 44.~00 o Q J O= ZW O I-Z X.2 •w. WoapV co o p_� p. `o' K H o Yao4J;�p 2 WQ?aiu 4'r=a7 2`u;•ei C Q Q N O wo 4 OQ JSQWZ YomV J C-0 WOC = 0, O u x6- - vf 1 Q O a I W Q �a U N ppfab G LL J Z O NJ JWO O K V Q u w _ eV Mi f h b r Z o t W W S N N -------- ♦N{C fmT0-Nnb N N N N Yl tp N N /- N N ti N rJ 3 p O r� V Q O W M a - p r J F- N W 2 a. W E: 0 W Z w W U p Z O L) o Z W p U p cr W O m LL Z_ W cr W Ir Q O V LLp Q O J P 0 w 2 D a w Ir -I- lF1 r r N o S z �N U. ¢ WIL N N VO J w = 4 O� Z Ill Q W W F C ij oo C 0o 0 WL 0 3 <VZ rn J V 3 O � UZ' O W t3 W � O p [ 2 � O u O�n �ol i. O�niv+Iml rr _ M 3 C_ o < W t O Fo 2 IV. CAPACITY OF CURB OPENING INLETS IN A LOW POINT OR SUMP The capacity of a curb opening inlet in a sump or low point varies with the length of the inlet and the depth of water at the entrance. The inlet will operate as a weir until the water submerges the entrance. When the depth of water is about twice the height of the entrance or more, it will operate as an orifice. Between these two depths it will operate somewhere between the two. The nomograph (Table L) is based on the following conditions: A. The curb opening inlet (no grate) is located at a low point in the grade. B. All flow coming to the inlet must eventually enter the inlet and will pond until sufficient head is built up so the outflow through the inlet will equal the peak inflow from the gutters. The hydraulic basis of the nomograph is as follows: A. For heads (depths of water) up to the height of the opening. (H/h < 1), the inlet is assumed to act as a weir with the flow passing through critical depth at the entrance and following the formula. Q o 3.087 LH3/2 B. For heads equal to or greater than twice the height of opening H/h > 2, the inlet is assumed to act as an orifice following the formula Q/L e 5.62 h3/2 (H'/h)1/2 This is a rearrangement of the standard orifice formula Q e CA(2gH)1/2 with C R 0.7 and H' equal to the head on the middle of the inlet opening (H' e H - h/2). C. For heads with H/h between 1 and 2, a transition was used as the oper- ation of the inlet is indefinite. Procedure: Enter the nomograph with any two of the three values H, Q/L, H/h and read the third. Where h n total height of opening in feet L - total length of opening in feet H.- depth of water at the entrance in feet Q a total peak rate of flow to the inlet in CES Normally Q, H, and h will be known, and the nomograph can be used to determine the length of opening L. The spread of the water on the street will depend upon the cross slope of the pavement. -29- 1 ' /O E /D 6 .6 2 9 4 7 3 8 75 2 , b 7 ' 6.3 /.0 .5--6 8 QIL,' f I•Z o, .e s.s 6 •3 a � ,nP►%� a -z o �.s o i €' q .08 c z5 .06 0 0 .04 0 .25 2 5 .0 .02 0 o/ . /s W a Sur�« N/ .4 H Curb /.5 —L _ T Loco/ IJ[�orrsson rai TABLE L -30- .purtou ct P/✓L•:c FcaCs C/ c, •,_<,o.� r„ o rvsh , o c ope�,:�y �r'/e>s of /o,v ,cc•. -'s V. CAPACITY OF CURB OPENING INLETS ON A CONTINUOUS GRADE The capcity of a curb opening inlet on a continuous grade varies directly with: A. Depth of water at the inlet entrance B. Length of clear opening The depth of the water at the inlet entrace for a given discharge varies directly with: A. Cross slope of the pavement at the curb B. Amount of warping or depression of the gutter flow line at the inlet C. Roughness of the flow line D. Longitudinal slope of the gutter The capacity of a curb opening inlet when intercepting 100 percent of the flow in the gutter is given by the formula: Q a 0.7 L (a + y)3/2 where y - depth of flow in approach gutter a s depth of depression of F.L. at inlet L - length of clear opening To size an opening the following information must be known: A. Height of the curb opening. B. Depth (a) of flow line depression, if any, at the inlet. C. Design discharge (Q) in the gutter (information as to drainage area, rainfall intensity and runoff coefficients from which a design dis- charge can be estimated). Any carryover from a previous inlet must be included. D. Depth of flow in normal gutter for the particular longitudinal and cross slopes at the inlet in question. This may be determined from the street capacity charts. The capacity of a curb opening inlet is decreased by allowing part of flow to•pass the opening. A maximum of fifteen percent of the flow is recommended passing. Procedure A. Enter Table M (a) with depth of flow, y, and gutter depression at the inlet, a, and determine Q/L the interception per foot of inlet opening if the inlet were intercepting 100% of the gutter flow. -32- B. Determine length of inlet L required to intercept 100% of the gutter flow. L a total gutter flow Q divided by the factor Q/L. C. Compute ratio Lp/L where Lp - actual length of inlet for partial interception. D. Enter Table M (b) with Lp/L and a/y and determine ration Qp/Q, the proportion of the total gutter flow intercepted by the inlet in question. E. Flow intercepted, Qp is the ration Qp/Q times the total gutter flow Q. F. Flow carried over to next inlet is Q - Qp. -33- DEPTH OF FLOW • y - FEET n i c � 03 .04 .05 .06 .06 .10 .2 .3 4 .5 .6 I O I (Cz) DISCHARGE PER FOOT OF _._ ;_LENGTH OF CURB OPENING _.I_ INLETS tJHEN INTERCEPTING --7100% OF GUTTER FLOW • I I r.. .f � / , i (b) PARTIAL INTER- CEPTION RATIO. FOR INLETS OF LENGTH. LESS THAN L. 10 .o i .5 .4 .3 .2 Q� L .10 .00 .06 .05 .04 CON 02 z .05 .06 .08 .10 .2 .3 .4 .5 .6 .8 LO'10 TABLE 'M BUREAU of PUBLIC ROADS CA.FACITY OF CURB OPENING INLETS , DIVISION Two WASH., D. C. -34- ON CONTINUOUS GRADE { 1 - a/y �f II ti -f-- ' 10 .o i .5 .4 .3 .2 Q� L .10 .00 .06 .05 .04 CON 02 z .05 .06 .08 .10 .2 .3 .4 .5 .6 .8 LO'10 TABLE 'M BUREAU of PUBLIC ROADS CA.FACITY OF CURB OPENING INLETS , DIVISION Two WASH., D. C. -34- ON CONTINUOUS GRADE { Page D-2 D-2 Required Data and Calculations D-2.1 Street Flow Carrying -Capacity Submitted data shall include complete cross sections between property lines of streets at the proposed catch basins and of any streets which control the flow of water to the pertinent locations. Street cross sections shall indicate the following: 1. Dimensions from the street center line to the top of curb and property line. 2. Gutter slope at each catch basin. 3. Elevations for the top of curb, flow line, property line and street crown at each catch basin center line. 4. Curb batter. Please refer to Charts Nos. D-01 to D-08, Inclusive, for nomographs giving street capacities for some typical street sections. D-2.2 Catch Basin Size and Type Size and type of catch basin shall be determined by physical requirements and by inlet flow capacities given in Charts Nos. D-10 to D-26, inclusive. Criteria used, if other than those recommended in this section, shall be cited and accompanied by appropriate calculations. D-2.3 Connector Pipe and "V" Depth Calculation D-2.3.1 Single Catch Basins O. S' Fr�cbo ord Hyd. Man. G C. F a _ v v cH o, 1167 for ,oea/r {/ow 0 Sfarm Oro%n — 01. L c Page D-3 D-2.3.1 Single Catch Basins continued. Given the available head (H), the required connector pipe size can be determined from culvert equations, such as those given in King & Brater, "Handbook of Hydraulics", Section Four, fifth edition. Chart No. D-30 can be used for a nomographic solution of a culvert equation for culverts flowing full. The minimum catch.basin "V" depth shall be determined as follows: 2 v= c.Fo.sZ z9 �c ss where V = Depth of the catch basin, or "V" depth, measured in feet from the invert of the connector pipe to the top of the curb. C.F. Vertical dimension of the curb face at the catch basin opening,in feet. v = Average velocity of flow in the connector pipe, in feet per second, assuming a fu 11 pipe section. d = Diameter of connector pipe, in feet. S = Slope of connector pipe. The term 1.2 v2/2g includes an entrance loss of .2 of the velocity head. Assuming a curb face at the catch basin opening of 10 inches, which is the value normally used by most agencies, and Cos S 1, the above equation may be simplified to the following: z2 9 f d Please refer to Chart No. D-31 for a graphical solution to the above equation for curb faces of 10 inches. Hyd. Man. Page D-4 ' D-2.3.2 Catch Basins In Series LL' .•. o :. • a::: Q G CFS d: a O. S'Fr ccboor d ° V a V/ .a a V 4: a. 2 — d� o: ? d• Gos Si /.2 d1 d� oC s SI Hyd. Man. .S'Mii7. Fi-ccboord 112 H H1 H. G. {or•'OeOk F/ow V 51orm Aor•o%n L Select a connector pipe size for each catch basin, and deter- mine the related head loss (HIS H2) by means of a culvert equation, or by Chart No. D-30, The sum of head losses In the series shall not exceed the available head, i.e., H1 +H2+ +Hn < H. ' The minimum catch basin "V" depths shall be determined in the following manner: 1. The first catch basin "V" depth shall be calculated as for a single catch basin: 1 2 112 di 0 Page D-5 D-2.3.2 Catch Basins in Series continued. 2. The second catch basin "V" depth shall be determined as follows: 2 112 v= 1 ZgCos52_G Assuming again that C.F. a 0.83 and Cos S2 l 2 112=133fH, /.1 2 X02 -G 3. The freeboard provided for the second catch basin generally shall not be less than 0.5 feet and shall be checked as follows: 2 14'9.7= v -cos 5 - 1 Vi If C.F.2 = 0.83 and Cos S2 = 1, z 'F 152 = V2 -d? -/.1 Zg -0.83 Where especially "tight" conditions prevail, the 0.5 feet freeboard requirement referred to above may be omitted. In such cases the difference between the gutter elevation and the hydraulic grade line elevation of the main line will be accepted as the available head. 4. Connector pipes between catch basins in series shall be checked for adverse slope by the following relationship: V2 -0-5 > V, -G The figure of 0.5 shown above.is the standard 6 -inch ,_cross slope of the catch basin floors. Hyd. Man. Los Angeles County Flood Control District ` DESIGN OF SPUN CONCRETE CONNECTOR PIPES FLOWING FULL H 0.5 0.6 Q 3 0.7 A 2gH 0.8 Q 4 1.2 + �� L 0.9 D� L 5 1.0 \ 6 \ 7 \ 8 1.5 \ 9 10 2.0 \ \ 15 2.5 \ EXAMPLE 20 3.0 H=1.0, Q=20, L=125 USE D=27" 3.5 25, 4.0 \ 30 \ 5.0 35 \ 40 6.0 50 7.0 60 8.0 70 9.0 80 10.0 90 100 Catch ]�Are Free water surface .Basin a A H Hyd. grade line Storm Drain 9th LENGTH (FEET) 0 25 50 75 100 125 150 175 200 Page G-3 �2 a 0 25 50 75 100 125 150 175 200 n_ -3n ' J CIVIL ENGINMING • LAND PLANNINO • LAND 8Ul1VEYINO SUb1[CT sY DAN 1.236-S7 1238' I «� �i.,NUST Z6 >12 9 ,� J /L 1228 9 . . 1,16 I'er peaA rl"-- 'Y 122? -761 - � ,S/o�•�n Droin -- - 't q e- Lz �1 . EL 1223 ► i _ L -76-lb i j/. FPS f L S-rf1 1R1+3z 92, 4/2- � T.-�. 1232 C..L. , / 2 2 7 .,ACL /4� ( /i26 2/ , -- w -•-f7 Q 21.2- 0 G/Z K-., 226-2 l+ I H 76- !6 zr or 2� _ �. 3./4i 2 4 '� L, 13.2s i Iroe r+o. 3106-L AINWAY AVENUE • COSTA lat•SA, CAL1ronfliA 02620.4075 • (71 1) 011.8777 / suerECT f If. CIVIL ENGINEEnING • LAND PLANNI144 • LAND SUfIYEYItId By WE foe Nd, sii[Et Of . 41.-76- l3 9Z 27.634 fQ TP- 61 126x- 38 6 � p 27.E cxS �i • /0 z F 0 r 3 3 r•c % ie," LRS. 6? = 0- '7s C3 IIIS .._ ___. __. _.... __ .__ ... -r --- • I „cel lr'r ,llor_p vA_ ,.�r, I._�' itzs Z rl . _: r FPS ilsl A // D-4-5 Nl, • LAND PLANNINQ • LAND sunvEYINO CIVIL ENGINEEnING SVDICCT�/' nBY C/L 6f (l / DAif. {�I ;7 !Oe NO. BII[C1 Of .f 1`i�� l� ) �•� 12 /' Ieta. •MaS7 Im N2 j 9 't S71Z o o A ' 1. oA 1*/viv x' 11 —10 -J/ol,ln Droin 278 -70.. _ Lz I� S;F 4o 5.23 -+4-t FP.1� 1 ..� 12 K7 5l' 365 16D I - i II H OF � 6 _ r: , 7 069 ILL l25D- 8 6 mamma 3186•L AIRWAY AVENUE • COSTA IMESA, CALIronflIA 92626-4075 • (114) 641-81111 CIVIL ENGINEEMMI e LA14D PLANNING- o LAND MWEY)NO SUBJECT,-, OY DATF MUG. Pl1ttT DF 11P /,� � . (r �' � It °i 6 � . ' %i���t 1 `�. ` , ► � I , S7'1Z 1296" i0 12W-2— A6pcoli 11olr— 't7 EL 12- 1-45'7. A - 74 0 2- C FS 2`-i-3-76- go D -34 14 D 12-95-0 ,f l!A, ,;LL= 167 -74 4-1 1 7D P 74� -T) /,7 ; ; � � i V1 70 � 4 D 6o t 5- p, (2e,- —PM IZ'G' /D i. .- > L- L DF 6. - L A I R',,/Av, 1". `�o 177 SV[iIECT / )207.95 fT— rr� C Por - I - LAND PLANNING o LAND sunVEYIN(l 0ATF. nN rr X,(VS7- ZV7 >/,a /y � ,S2/� I2c6-9 . pcoA J) orm Oroin 200 •,�i4 23 -0a c �% A ' �� pG FoOT'r•*ILt 1r,iF1CCFPioP SfwtR r 1292./u S NT No . "o + 'u.'irf Q a 23 01 2.23 1 16 L� i s7. sA. 4-4 •7�— s> rz057.83 t� cr- 30 A= Z• �1= L2 6 3 FP , 1 � Ix / � b 1.21 %- 4--5 ! I 20 11t:0A rr., [rnr:,nA 0 i r f CIVIL ENGINEEnING • II �Il;f I: II I LAND PLANNING • LAND 8UIIVEYINU SUBIECi BY DAIf. r toll Ho. (<<�. /215.7 1Z/� L Y01A WRIT of . ffN ��,tlUST �E >/,2 "Y9 -/ S,/z1210-7/ ; Fp s . t I' z 'd'$7 9,7 ew N4 l ' OF l y ll I d -75�.� i 121 Lz - z 3186-L AIRWAY AVENUE 9 COSTA Mr -SA, CALIFOflNIA 92626.4675 • (714) 641.8777 2��/�� tom! ' `' `� I (I , CIVIL ENGINEEMNO • LAND PLANNING • LAND aunVEYIN0 By DATF too No. 'U"'CTl;rjt)/�j -7 1.) Ni — 1c, [ti 1 --p , -- Laci %) / i 2/ 111RIT Of I S/Z 12-10• 16; '1716, Ircr pcoll rl%4olv 420 Z I. CIA FPJr 4-.I X 'ILI 5"' 7W Na Iill, 3 o OF F-2 -2- 36 �r- L .qinr,.l AinWAYAVENUE COSTA HP -SA, CALir0n14lA 02626-4075 • (714) 641-8 777, 1l oo;; I CIVIL ENGINEEnING • LAND PLANNING • LAND 8UnVEYINO SUDIECT BY DATE. 108 NO. 811EET Of 1 41 11 N "W07 Im >/,2 S,/L �lohe dr it . bi L? i2,,oz- ,. Z- . f I� A •• 5.78 FPS � 1 . /k�.( YI/I 62 . I 1 .72- N1 I I 1 BLF O F l (V H % _ 1767 k- L) 01 LZ 2 ataa.l AMWAY AVFNIIF • COSTA MrSA, CALIronNIA 82828-4875 • (714) 841.8771 1 CIVIL ENGINEEFIINO • SUBIECT By 10rc 4, AYOIu I Zai-(6«:� 17- 3Ar 62 7/ cfi n We -20 r c ✓•510 ..� . ►I ilia' l LAND PLANNING • LAND BUFIVEYINO DArr. r-- ►oe No. I SWIFT DI - �� N Vsr J10II-M DSO/n - t If t FPS 1�4,02 r• 1 I , I ,4�Q/L,QBLE .�/ " '' k'E0.lJ, fir' J �•�- � t�E' NG Q p 33- 7/ c/*S II' IMS -1 AIFIWAY AVENUE COSTA F -S& CAUr0n1J1A 92828.4675 • (114) 641.8111 r L' I I. CIVIL ENGINEERING • LAND PLANNING • LAND SUIIVEYINa ! I SUBJECT BY DAlf. fuel "U. r • � IZ2� �Y 614111 o► 66*6s'77'� S.� s 6 67-69 IA 92628 �ia75 (>>�) 041-8777 l IAr-I AIRWAY AVENUE • COSTA WSA, CALironr4•r I i CIVIL ENGINEERING • SUDIECT I;,�(r),P�+Py LY I . LAND PLANNING • LAND SURVEYING By DATE I TOD NO. BII[[T C/1 Iz3J f� n f I , iI p. 77 it ) I I I I L z 12a�.s ntnr..1 AtnwAY AVFPJIIF f COSTA Fa s& CALIFonNIA 92828.4875 4 .I (711) 811.8777 CIVIL ENGINEEIIING • LAND pLANNINO • LAWBURVEYINa SUBJECT BY Lz DATF ' JDB Nd. 811EET Of 7.=1 12 3 3 <fall- A&z N - - - /1Co" _- � rNLE' 1� .S izG of � 1`^►'- CTDO -. 67 L -,:• LZ r- 3/ LL c 1i3� 3106•L AIRWAY AVENUE F COSTA MM% CALIrOntI1A 02626.4675 (1-14) 641.8777 1 9 - CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING ISUBJECTW—// &Z11V Y J/s I BY 4 L("e�C� I DATE I JOB NO. SHEET Of I ei 0 —ri - , I/ iNUST ZZ >12 s�LI` 7. 3y 6/ ys Q Q 909 FPS., 7 • os 3186-L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92626-4675 • (714) 641.8777 Cw' 0.77 p,, 3y G21 (CF FLS) _ j '' ,QED .D. f,/- / 2 Q a Z y"V 2i G�s K= 716 k)cPZ. USE 3186-L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92626-4675 • (714) 641.8777 h err 20"#t4004 got* CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING FJECC4/ T BY DATE lOB NO. SHEET OF // BELS//Y /11A1-Y�/S !(yV d -.�l B,6 .3C6o ,W-77 ZE >12 z,; 4 S1Z 1270 97. �- mac_ /-' pooA i l Z 6 9-93 I I! NOTE.'- 0--5 F8 /S PQf><E�ED, /N ]TONT S/TUd7T0vV/S 17- Amy T'AmY 4E kEo(/cFp OQ 'o!.�1Irlmo- c4 Q Tc. 127 Q ly. • i4'CP �� '� L F O F 2 � � J'� = 2.Nos- (-1-Z y6 Q/Q Im 4� o-4 =ps USE K, (' ? 'V -I)ER771 , 3186-L AIRWAY AVENUE 0 COSTA MESA, CALIFORNIA 92626-4675 0 (714) 641-8777 r CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATEJOB NO. SHEET OF C4TC11BQS/N ,rl�S 4L YJ/S A S k e,llck c2-3 — k � 3 S .S- / I rril 'AVJr fE >/.2 zea >< �S1L 1266-sa /2.64.6 t� 1 biz 497-Y_ V7 7-C.I2 l d Y. GC.. 12 64.6 4{'Q/L.4fLE .4' , �y �CF fLR) ; L� g 2 - cps cps D9.7 ktCP S(q )� Lr OF = H Gf FB -f /.2 ✓?<�� of USE • �r� Y 1>EPTX>✓ 3186-L AIRWAY AVENUE 0 COSTA MESA, CALIFORNIA 92626-4675 • (714) 641-8777 err 4?,*o"w44fo.P 9co CIVIL ENGINEERING LAND PLANNING LAND SURVEYING JOF 1 SUBJECT By SHEET C41V, zz//v JIM/*- IvIrls A oe NoI y. C.9 (Cc -4 1 5a "'c7'0 USE - . . •. - q t I -n r, 0, 11 A f17gt- 11 A. A A 7 1; A (71A4 FtA1-8777 f CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYINO [ SUMIEM BYA p DATE JOB NO. SHEET 01' " '1141Jr4!Z >1.2 1,Lt7A "y" I v eL izn-YA .................. eL - _,. \ -will pp—o Fit E y. 01,A Z 0 C9 0 Tc. 2 410 3D r,6 4 QYQ/L.48LE �¢ � ~ �CF � FyR) = 6 � 2 I � �QEc� �. f/=Q4�' NG OF oll USE — • q J/ 4-1 f -p 4 .41 ct A I . 0 17 7 h 9 6! 20"W440-0 gets CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBIECT BY I DATE I IOB NO. I SHEET cw �4TZ/� BQS//V ,rfydLYJ/S _pcoA-- - I S/O/ Di 01/7 t.rr I ^ y- CIA — t o . /F7-FP.r C.8 w' 2y 6•yr cis A'CP �� LF OF z USE Gf- -�F,64/2V2'2y1(:) Y ,DEQ, 3186-L AIRWAY AVENUE 0 COSTA MESA, CALIFORNIA 92626-4875 0 (714) 641-8777 h 9 9 16"W44to 94co CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING 3170 REDHILL AVENUE 0 COSTAMESA, CALIFORNIA 92626-3428 0 (714) 641-8777 SUBJECT„ V a�rl N (( gy k.w, DAT - / ' JOB NO. 3 / SHEETJOF LrNE t,1o. CII. l� C+P� 1Se'�i� 2°'2r-"Lc.7.0 r-otfie-cA(AIF- R.A t.L-tel 7��� - ��� - lilt I1 L_� 0207 e26.6 y 11 g �1 02o' 7.y 3 Qr^ 1b .93 �0 L _3 •�o L _ 3 L w c- L — - ^ y /v� ib—' -- wQ i Z.6 /Z 3 S• y I /D. lI ;L'S' %•9l F' lLr'c-rGl3 +SAG'TYPe. ►' �(� t 3.�iz+` >>"�z �s• �a _33 7� Y / Z 42 3 •6Z ' ` cls I L4.7 Lf - E _._.__ _ SAT EQJ4 L D L- l 0 4 22.71- - -- � �S � � 2r �' � 3 • � � � i �' �r 2ZZ •b! 1iL_!I I '+�C�Iq S��Z O /G,�_.'Ty_ �ET 4 { 20. 30 q• SL 2�;FJr+v -/2- L-/2- r -7722, 3170 REDHILL AVENUE 0 COSTAMESA, CALIFORNIA 92626-3428 0 (714) 641-8777 h 9 g 26v-oeom� pmes CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUB CTB DATE JOB NO. SHEET OF LIti� Flo. 1 �' elq 4. Of — s.,y -- /2 Foy N �Y, 7 ?-1'-! +/i L_ ti c-, j 2- 2-3.0.v Zo l7�%Cfs L L- a �' 13 ' I L -qA L -qAM , ' ' y � P%14 4 � - b �r�b2 7) I / I 3.3 I L i j f i p i i i i I 3170 REDHILL AVENUE 0 COSTAMESA, CALIFORNIA 92626-3428 0 (714) 641-8777 AFF SUBJECT CAXII h 9 9! lfteftwto 99co CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING W14L Y•f/S 2IIVc`zI SY DATE , - / - 1106 NO. I SHEET OF 73 A /7/9-q3 : 1.292•-35 7 3 - l2 � I/ // L E G L CD c . 6_""L 8/, - 12-9 9 GC 3- iSE 1 D �6 �' V DEPTX7/, Tom' C- $ .� LB/2 Q = /23-52 CFS St = (,2g•s�/26o 4/='bo23 Sf rtivu f60 PC P To C. 8. " L 8 /r j�rc1tn xoiSs_ 0.0023x�}-o-02� G_B_ er�r�ancloiYs= O 2 _p - 12 ` EGL_ G� o C-8. " L �/2= `13.3.3, c'c.r3. F 12-93 7gC/i ) 3186-L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92626-4675 • (714) 641.6777 Foo jr 3.24 CB Ta�' Rl��• l� , Gil' � .p_361 1295.6 ► C�6��w1.� �` - i L, 1292.3 +1293.2 -4)r -S= f292�Q __._�—_ -.9_ .. _ �llUST 6E /,2 /�Q S'�L J293 -1.°r, K. Qa s6 I k CP L F or- 7Z a 4 V? ' 4/_ / -., 2 3 a •3 7 •� = ���.....__. -' _ - ,_ , . /292- 84 / 6 67-> 6? s- stub i , , s - _ .Si I/ // L E G L CD c . 6_""L 8/, - 12-9 9 GC 3- iSE 1 D �6 �' V DEPTX7/, Tom' C- $ .� LB/2 Q = /23-52 CFS St = (,2g•s�/26o 4/='bo23 Sf rtivu f60 PC P To C. 8. " L 8 /r j�rc1tn xoiSs_ 0.0023x�}-o-02� G_B_ er�r�ancloiYs= O 2 _p - 12 ` EGL_ G� o C-8. " L �/2= `13.3.3, c'c.r3. F 12-93 7gC/i ) 3186-L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92626-4675 • (714) 641.6777 Foo jr CB Ta�' Rl��• l� , Gil' � .p_361 1295.6 ► C�6��w1.� �` - i L, 1292.3 +1293.2 -4)r -S= f292�Q __._�—_ -.9_ S Lam' %4i)Z� /ll- ' 31,37 D•03 1� 2-3 6) --�7 39 QE'N4 Q R 123-52 Cl -.S K. Qa s6 I k CP L F or- 7Z a 4 V? ' 4/_ A _ 23-274 I/ // L E G L CD c . 6_""L 8/, - 12-9 9 GC 3- iSE 1 D �6 �' V DEPTX7/, Tom' C- $ .� LB/2 Q = /23-52 CFS St = (,2g•s�/26o 4/='bo23 Sf rtivu f60 PC P To C. 8. " L 8 /r j�rc1tn xoiSs_ 0.0023x�}-o-02� G_B_ er�r�ancloiYs= O 2 _p - 12 ` EGL_ G� o C-8. " L �/2= `13.3.3, c'c.r3. F 12-93 7gC/i ) 3186-L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92626-4675 • (714) 641.6777 99co CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT T—Y-- TATE JOB NO. SHEET Of �'.4TC/� BGS/rS� ,dNQ� Ys�S 4�L� Q7 .128 7•s9 1284.94 u�,c��4� %~ c.3. �G� MPi��. 12 84.86 r F -- 12 8 3.69 �I 1/ Wast fE >12 S'1L Q - 410.46+ k(2-1-554 -i6-67�1 2 ,,1 2-1 60 Q �XPJ� Q ' n�U BC.c L7 / -103.2s - Fs I 10 3 FPS r• �rc. 1z�4-- 9 G.C. -5 S{C ( ski:� l28 7 1AL AMILA&Z k y �Cf FLS, '' kEig b. /i 2- 6 5 Qty N4 q l0_ 3- 25- c/*s K= /006 I A'CP 4 -7 7S L F OF z a at- it F.6 -f 62-) USE/d-3S " 'DEoIX,1, Pr/•2' �' L BAl, = Z x206=4` = 137.16 2 rte— bo �cP S4 = o•oo2g, F.,rt;,,, = o•oaz�x� _ .03, �_ a. �o,c� >o z ,= 0. 15 c.B- -p L 8Al, = 1285•�J�i 1 _ IL83.37, �/c=1?84-54 c129i,P5-13 31190=1- OIRW-A*POOTA MEftA, C.ALWORNIA 92626-4075 • (714) 641-8777 CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT CQ7�S/ BQS'//Y 111,4LYJ/S BY DATE JOB NO. SHEET OF ,4ro 44 -+ s- 62- 2.2'3# 2-'3#- 73 7l 6(- 1291-90 r - 2 14•4qI)283 /I _ /4 -9 o s o �! C8 0ot�� lZ �'2-?? r 4MILA&I 4' =9 ' q /0 7 6cps K- 4236 (� r �I L F O F %Z G� ,r FB --� / 2 V�'.2 �'� 07= k CP , �- 2P •»q USE --l � +V ' P-cp (�nRr�'ns� vOro c. B. " 9�r 4312- 3186-L AIRWAY AVENUE 0 COSTA MESA, CALIFORNIA 92626-4675 0 (714) 641-8777 F. *4 9c• CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING Sl1olECT Ty -- DATE me NO. SHEET OF�'dTZ/! BQS'/iV ,tINQL YJ/S i = 83.83 IIS �r'�tIUST fE >/.2 I; T•. %ci tri' pet2 4 � ielir. 1 �. oin =- 2- ©/LU QZ f •may � i274 v kCPS t_Y-11, = CY Q1,A Fops 0- UP _ -�4/I -- � T.C. 12 83-83 �� 62 -2 _ j s 1� ( 127,71 /�•6L: 2 loaG) ,4YQ/L.4fsLEJig '' (CF q °li- 62 cP.s K= I oo 6 I k'CP 12 7. 7S LF D F 42_ Gf F.6 4 / 2 V'1200,'1 A : 9 62) USE (,fes 6o RcP 4- ,9,03 - 903 Cc>nneciii ,V •�DEPTl,�, C - 3 '/". 3186-L QIRWeav Awkwwi: i AckarA MMOA, CAL-WORNIA 926-26-4675 0 (714) 641-8777 CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SB1ECT BY DATE JOB NO. SHEET OF �.e�. Q 1 Q A fJ�t �I.� �c_ d� � �-ire.. j--• PF�o��y�-S�yc�) (c�(, Fav C -►3 L g/� = 12�3•�3� i�c7L = l293.1� NU��C�` Tch• c% Qo�Q -.^-A f1�i6.Og,� I�vu 6o►�ds j J l -F 1296-05 — 0-— ►zq 3- 19 40 11 �ov c_ g ,� L ��� _ Is93•sb, 4C = 123 I l �: 2 ,4 :1296-og- o-r—gad • II 14 N F -M, A)6) -VN 0,�, ( { Q:�G,y�� a s( !� 23o,37c.� z�8 ,�N= �•4,� L : 29.51' z Q, ,9: ,4L / frAI3" �. n ' 1B o9�t912� It ,� --Z /2 Q6«l w ��S•2S-+%�►D�� �Din3G��- - 12'7. 78 � •3 y��, out w = 19s• 30 -1-198• os Ll 2r _ X83 - 3s CFS 10 r 3170 REDHILL AVENUE 0 COSTAMESA, CALIFORNIA 92626-3428 0 (714) 641-8777 h 9 9! 2w^40.ro got* CIVIL ENGINEERING LAND PLANNING • LAND SURVEYING ' 9UDIECT BY DATE lOB NO. SHEET OF CQTC/� B4S/iV AML YS/S A� r' �. • : r.'. �; i - -� r J � ' n � �� AfUST ZZ >12 � I l T.C. ,QY,411-A&E Q Q 22 22 CfS %'CP -:7�- L F O F y. c /Q .� -7 0 7 Fp-r USE 2 Z tV zmc1, 3186-L AIRWAY AVENUE 0 COSTA MESA, CALIFORNIA 92626.4675 • (714) 641-8777 CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUB/ECT I BY I DATE I TOB NO. SHEET Of C4iZ'/� B4S/N ANQ� Ys/s f^ r S/z j27�.gi V i ..1 y. 0/Q 5-24 FPf 2 T.C. 12 3.63 �,�=�• 43 �2 ��= 6-si AY. IZ ASLE 4• = Q a 12-6D CPs K = l / � �� / 5- ktCP LF OF �_ Gf" FB / 2 V��.2c.'.c 4�= _ ` 7__ ICT, USE 3186-L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92626-4675 • (714) 641.8777 0 SUBACT CWZ;y71 154 get* CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING 1 By DATE I JOB NO. I SHEET Of lv4ljl- zz >12 S;/z q-1/17 1IL:t2A 9J� ST L) r5 C., CSA Q( dt) ni c4l 62-2. C1,4 QIA j FP Jr C6 y:z/4-9 2, 0 T.C. 0.19 7)11- ,dY411-A6Zf 2-12Q� Nle - Q . G2 - 2. C A -.S A'C P /2- (,`7 LF OF —1 3 a at- 71 r6 4 IP7, A6 p L L) _ �s /- s � + 4/- 0 �� 4�.4� 1zs /.g� -7 3186-L AIRWAv'*"'IcilH� 4 OldSrA MESA 16AL-WORNI-A ODODA-4675 0 (714) 641.8777 h 9 9! 20"Wa4tf Rote CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECTBY DATE JOB NO. SHEET Of ct7Z!1,5Z141 ,d"L' Y.l/S � � Iw.,1c.Q 1.2- /.2 X17 SAF C7 12-4.33 ' /O/*M 0/ 0//1 f) I IJ 1. 1 I� y. CIA .. 8.97 2! --(C/-"`-')_ :2 1 Q n 2� GF$ !� = l CT- k'C0 A=2,L(J� use S• 71Y /��EPTz�, �T Y �? �7 2! --(C/-"`-')_ :2 1 Q n 2� GF$ !� = l CT- k'C0 A=2,L(J� use S• 71Y /��EPTz�, �I •` CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE IOD NO. SHEET Of r Z7.7 . SU el " r r 26, y y. (.1/Q .. 2.5 3 Fps C8 3 w' ' ( S.ig Y .vt~ los / K �I 176- USE 3186•L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92626-4675 • (714) 641.8777 CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SMECT C41"M 545141 AY141- Yrl-f By DATE J015 NO. SHEET OF if 12864� -e7 Z g-2 A&Jr fE >/,2 I;r" (;7 p C. C) A 11. aG L. 12 88 -91 )2136 /'.17**' 01.17 .6 6 1290 ^, 12 q- o (p. a) J/. Q,1A Ho FPS c6vv Xx ice= 0-072- 1-9 � . ooq �12 17 ,4Y411 -A&E N4 .767 USE 3186-L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92626-4675 • (714) 641-8777 1 CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY TATE Hm NO. SHEET OF C47ZI71 BZ141 ■® I 2, ZZ >1.2 ..................... -c '* 'T 12-L/). L( 12-3 L Q1.A FPS C9 0 � -1 6, q2- ,QYQ/L�BLE k' _ �CF •� F��' = 1 3 QEc� 0. . o )c7' , Alcp. r6 4 I - -- .- I - - .- -_,..4 - -0% A ^ Ike A rp 16.1 RAI -A777 CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING 9 SUBJECTr41-z-11 Bz/N IdI 4L Y'rls I BY I CITE I IOD NO. I SHEET OF I FPS 7-C. /2 /737 1 0,32- �! y ,�Y,4/�.4BLE .4' ¢ 3. 5 � �CF � FLS) = Z • o �] � , Q A X37 cis K= ZZ6, 2 k�cP S�, ZF of Z �i " c�- FB 4i 2 V��� :1 d = 07 �T 3186•L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92626-4675 • (714) 641-8777 h 9 9! 10"444t, 94cs CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT C41711 BZ141 1y.4L Y.f/.r I BY I DATE I )OS NO. I SHEET of ' ct .DUST j/'7 � , 4 fE >/2 SQL !` 122 Z pc:•c7ft_�%r'�.�:._...._ )I�J FPJ' CB O yl 2/l W � . D g 4" ice= 6.)o T.C.2-�i �CF ItfLq) = 3.60 .QEc7 .D. fy- o. 12- Ge Nle Qxr k'CP G i L F O F r164 2 V��2 �'� d= 3"_ 0 /fir, .767 USE V/DEPTH, 3186•L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92628.4675 9 (714) 641.8777 PRESWRE PIPE4LOW HYDRALLICS CO P1MR PROGRAM PACKAGE (Reference: LUD,LACRD,& OCEMA HYDRP&ICS CRITERION) (C) Copyright 1982 Advanced Engineering Software [AES] Especially prepar HALL & FOREMAN, INC. **********DESCRIPTION OF RESULTS*********** * INDUSTRIAL AREA HYDRAULICS , C.B # 19 CALCS AT 8155.73 FOOTHILL S.D * 0 25 YR, AT CHERRY AND FOOTHILL X—ING * VENKI. N, JN 3810-04, 12/18/67, DISK "VENKI #2 9 **************************************************************************** NOTE: STEADY FLOW HYDRAULIC HEAD—LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE RIPE FLOW CONTROL DATA: NODE NUMBER = 0.00 FLOWLINE ELEVATION = 1217.27 PIPE DIAMETER(INCH) = 48.00 RIFE FLOW(CFS) = 98.99 ASSUMED DOWNSTREAM CONTROL HGL = 1225.510 Advanced Engineering Software CAESI SERIAL No. A0483A REV. 2.2 RELEASE DATE:12/17/82 (<<((<<(<<<<(<<<<(<<<(<<<<<<(((<<(<((<>>>>>>>>>>>>>>>>>>>)>>>>>)>)>>>>>>>>>> PRESSURE FLOW PROCESS FROM NODE 0.00 TO NODE 15.00 IS CODE = 1 UPSTREAM NODE 15.00 ELEVATION = 1222.00 ----------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 98.59 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 15.00 FEET MANNINGS N = :01300 SF= (0/ K) **2 = t t 98-99)/( i 436. 431)) **2 = . 0047491 HF=L*SF = ( 15.00)*( .0047491) = .071 NODE 15.00 HGL= < 1225. 581) ; EGL= < 1226. 545> ; FLOWLINE= < 1222. 000) -------------------------------------------------- PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .42 NODE 115.00 : HGL= < 1226. 000) : EGL= < 1226. 964> : FLOWL INE= < 1222.000> PRESSURE FLOW PROCESS—FROM—NODE _ _15. 0 LA —Tri tmnr- t ti=., TR rnnp—__ _ CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 55.7 33.00 5.940 9.369 0.000 1.363 2 99.0 48.00 12.566 7.877 -- .964 3 0.0 0.00 0.000 0.000 0.000 - r:: 4 0.0 0.00 0.000 0.000 0.000 - 5 43.3===05 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(02*V2-01*V1*COS(DELTAI)-03*V3*COS(DELTAS)- 04*V4*COS(DELTA4))/((Ai+AE)*16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE _ .01107 DOWNSTREAM FRICTION SLOPE _ .00475 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00791 JUNCTION LENGTH(FEET) = 3.33 FRICTION LOSS = .026 ENTRANCE LOSSES = .193 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = .867+ 1.363- .964+( .026)+( .193) = 1.486 NODE 18.33 : HGL= ( 1227. 086> ; EGL= ( 1228. 449) ; FLOWL I NE= ( 1222.100) PRESSURE FLOW PROCESS FROM NODE 18.33 TO NODE 27.33 IS CODE - UPSTREAM NODE 27.33 ELEVATION = 1222.19 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 55.65 CFS PIPE DIAMETER = 33.00 INCHES PIPE LENGTH = 9.00 FEET MANNINGS N = .01300 SF= (Q / K) **2 = ( ( 55.65)/( 528. 866)) **i? = .0110723 HF=L*SF = ( 9-00)*( .011070 = .100 NODE 27.33 HGL= ( 1227. 186> ; EGL= < 1228. 549> ; FLOWL I NE= ( 1222.190> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM SUB/ECT C41-rll 6! ge, CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING BY I DATE ' JOB NO. ' SHEET Of islIv QNQL Y.r/S I I I I F� �0RC- c- 8. c- 7- s�-A . 664- 6x-79. 2 S.D. SSR. 60 � 1A vt0'D ----•- ---- --�--`' Ott r• y. zo 01,A _ - 0 I FPS 1 �_ 0§/-/-a.o TC. /z zz-�� 0,0 P. 64, 12/7-7 1 QVQ/L,48LE 1r 7 G 1 = �CF F��) _ ,QEc� 1�, f/ 0 3 AES Nle q 7-Q27 c 17 K= 105- fV 9196 E4�IQWAV 1AWv:w Wc . COSTA M;;QA, CALIFORNIA 92626-4675 • (714) 641-9777 Zq I v t M O I fJ _ CL } C -i m a U C Q U a o � J a O = � U w J F - Q Q N cy U 0 m U o Z N � u u�. N V/ i a Q CL) \ V 0 d - a in �s _ O U -- u � U f I$ C � V Q _ C r �0 ° �' m C a a 4, os L a` Q h < U v J `E t I � U_ ui LIJ N = Q W Z of O cn w u CL a LL- c Zq i Page G-36 W� J I v i Page G-36 W� J Page G-36 W� J Page G -?6 D -4C m O t a i 0 X � W C Q O U a J m U W Q Q N U D cn U O � Z J V a� a O y c cn �] Q U -4N c� c cv o u N p o� L � Q � C U �- V 0 �> �. r ul Page G -?6 D -4C Pago u-36 D -4C —I r Q 0 3 o --t Z LLJ 'E �a C. Q W m nU F— Q ) O � n w 3 O ,4 � Q i U p JO J a u- m C U W I Q Q N U im U Z u «. Q C G Q U v_ � U m g ZZ0 U a c VJ o LiviD �o v Q Jtil O Pago u-36 D -4C � I Q n � --t Z LLJ 'E �a O Q W F— U W 2 ' ^ V � n 3 2 ,4 � C i � W JO n. a u- C I Pago u-36 D -4C v NI 0 3 > L a U _ i D m n J T o � ° Cq J n' o cn m - V v W 7 N ►- a a U 0 to I V 2 v I U _ D n o ° Cq o n' o cn V 7 ►- s 0 vi C O Q 4 viu O E o J � cv V � f tet! J q O Q W � O cn LJ C Q LL _.,1,7 C Pago G-36 0 - 4v w Page G-36 /� ?LY514 t O O O L CL 6.. M U W C c 0 Q U c �- J � Q U W J Q < Q N U CZ U O � V Z ` CL) s �► Iz-N 0 au o a cn � c `= � U -xJ U Q c ry W Q v v N c u a. c c U E � � V) D S Y� U �. g Q - �.oTr 7,0 =��J cc Q — 9sia c=� LiJ Z N O cn - w CL n a 1 1 w Page G-36 /� ?LY514 0 317N Erl, 7 0-4C >- 2 J w '" ,(, j = z a O w LIJ Q c N 1 \ �► Q O � LLI Z of n O cn 3 LJ a. a ° L c Q _ C\ v �9 C W < U c O a� \ U W J F - Q Q N V Q U o � Z ' w � u �. Q r- y v 7 � � C � U p •� Q 4 {.J Q Of L Q Q v, < U VIPD 0 317N Erl, 7 0-4C >- 2 J w '" ,(, j = z a O w LIJ Q c N 1 \ �► Q O LLI Z of n O cn 3 LJ a. a ° c 0 317N Erl, 7 0-4C U r- V t Cm _ 4 O L C a.+ O c ~ 0 U p \ iL U C C 7 _ O y� U O � m 41 CU 0 t c V Q O U o c J G fl r 1 U Z LLJ O W Ir li. F-� U Z W U O 0 W d � (M V� W a 0 ■ �i G d Page G-37 L_ { Q w >- n m U r- V t Cm _ 4 O L C a.+ O c ~ 0 U p \ iL U C C 7 _ O y� U O � m 41 CU 0 t c V Q O U o c J G fl r 1 U Z LLJ O W Ir li. F-� U Z W U O 0 W d � (M V� W a 0 ■ �i G d Page G-37 L_ Q w ci N a v 4) l L N N N U 9 w C N C O U p Q) Z N v v N Z ZJ�d1 LIFE QD CO it 7 � l7 Page G-36 0-4Cl °J Lo �o C. m ry O J 1 O ry U C W Q C O U a J m - � = o U W J F- Q Q U D N v U � o Z � w � U .. � � S V) 0 D C C! V 6CIO GO C .O O c� U v g V c N 0 zz U p V ((S v C13 C V w m o, s u p Q Ql vVI E L� N Q I� a. r J, I Z W •• In a O Q O WLL- ti Q � W Z a n Ln 3 O o CL W J u _C Page G-36 0-4Cl \I L t Q ti q0 0. vi U , � Q G W cel G J m � U w U D Ll Com! U o Z V u D C _ CL C U ry Li � U 8 m _ � GCIO C c >° Li V) L C O Q � ry-) C uC Q Q N U O E n �n ix �y. w t�f <a o g a Q a a c, I u_ O cn O o CL W a c 0 rag0 G-jb D -4C 7 _ Z?•r _ O u z=_ O cn LJ J C GO—j 'L/ Page G-36 0-4^ L � a 3CL O� o jo m C J CV .. u N w c Q U o U w M J Q Q N < u 0 m cn N N U Z vu u ... w cu I'D O o v CV N p " Q ui M U --4m "'N cv� g " m �. u a v • O �` Vi V v N. J C � � C U Q Q oVIE� � 1 -� U 2 Wlu Q o w m ?I 7 _ Z?•r _ O u z=_ O cn LJ J C GO—j 'L/ Page G-36 0-4^ sN L 1 0 3 > a Qou di r o Q C U D " � U E T 4l w c 0 `j J U o m 1 Iv M _ I ?- U U w N J �- Q Q U 0 u o a U o � � Z ' m U N -C o cn w (D o D CL a w c O � m � U U O sN 0 Qou di Q C U D " � U E T 4l `j ly� I ?- U a m o a LAI � � m U o cn w O o CL a w c 0 i -7,L'L-w 07 Page G-36 Page G-36 L Q 0 w NJ �Q t U7 va y � � � m •. 0 cv u v c��1 0 W `y c �.' Q ° U -0 CJ J � = o U W J F- V Q _N U o Z � V a� O y O y 0 0_ O U --Kv 7 � L N N m cm L V Q Q Q O N V J U W J O av g ai o a c LL.I Q' N U Page G-36 C. B. 11 -/ CUI;I',• 0PE,NJNTG (SUMP) Cro Given: (a) Discharge Q CFS (b) Curb type " " "D" 4" Rolled 6" Rolled �2 Solution: 11 (depth at opening) _ /2 isiches h ())ei.ght of opening) inches 11 /h = 'r l !o From Ch art: Q/ft. of opening = < A CFS L required (,L /. - �%� %3 ft. USE 3 L/ C� . -31- C. B. // L - 3 CLTI%r-,' OP] NJNG (SUMP Q,zr = 1--5.0'; 6)/0 0 L-2 Given: Q21'2� Iti �. - e33• o� CFS (a) Discharge Q - (b) Curb type "A-2" "D" .4" Rolled 6" Rolled 6P ° G• /? G v7 7�Sa- Solution: II (depth at opening) _ /2 inches h (),ci.ght of opening) _ �° inches 11 1h 1c) From Chart: Q/ft. of opening = r CFS L required - °� / G `^ _ % ' ft. �.�� USE Lft. = `. -31- Given Solution: CURB 01111"NING ( Intel-ccption (a) discharge c F -3 M street slcpe S = (c) curb type ''A-211 (d) ha -If street v"idL11 Q // sv� 90. 7f- )I/1z Se - ft. 3- (L for total in,!ei c-eption) 'TRY: I rt. J- 2 3 C) Q11 CFS (I n e r c c p 1, e d) is Q(' Cj--'S(Car;--yovcr) L E. 31700EDRILL AVO -C CIVIL LAND f F, C. D. CURB Ok 'WING ( Interccption ) Given: (a) di ,cl�arf;e (� /7. Fv CIPS (b) street slop• 5 = 0, o/�h (C) curb type 11�1I III)II (d) half street width = ,�� ft. Solution: Th.,retore- y= o.y 17,l= / 1' _ So.70a (L for total intezc-cpf.iori) r I P/y = .301/c.,' r-�e X /",Y I?• G:.. C:rS (Intercepted) FS (Can-yove r) to GR '.�� 3170 REOH-LL AVEKVE COSTA m%r,. CA m.",3,9 +�. '/ CMLCNDINEEPOIlG . LAND MAKKINO . LAKO i(R!f_TMO - --'•"'."�*•t-+m••-.v.ar-..v�rr.sv..c+*r�¢'a.rrl.�:x�xun� _ ._ �nsrr- �.. (( — _. C. 13 ;t CU1113 OP E'NING ( Intet•cr.ption %� Given: (a) discharge /2 CIS (b) street slope S = o• °�S� (c) curb type, "A_2I' (d) half street width Solution: J, = ��, /3 l O.GIo = �� (L for total inter ccption) TRY: _ I ft. Z. /t. I- - a/y = .33/ =6S - Ip 2�•'c = /<.� Cr'S (Ilite ]-ccpte(1) 2170 AEDHILI AVENUE (MTA WK G O- n-0118 MILEN011.7EMNO • LAIIDILANNINO . IANO ROt"'UM r�c r Y �rte. err 0, Given: (a) (b) C. B. 11 ,/-% - C11J;F3.OPENJ\G (SUMP) Discharge Q /m -T = Z CFS Curb type "A-2" "D" 4" Rolled 6" Rolled u cz:: Solution: IJ (depth at opening) inches h (height of opening) _ /O inches li /h = /-2, / / - Qloo = /d.J4� �o 61,,c = //,f2- f/. C/0 (Pf o = 4f7 -2y 53 �r Y From Chart: Q/ft. of opening = 2,9f CFS L required = 2 / 2 �� -' 30� ft. U S F L = ft. 9 - 31- C. B. ,l CLT11h' OPENING (SUMP) Given: (a) Discharge Q 2,7 = -"Z-2--.2_,2, CFS (b) Curb type "A-2" "D" 4" Rolled 6" Rolled Solution: 11 (depth at opening) _ Z inches h (),ci.ght of opc.>ning) - (0 niches 11/h From Chart: Q/ft. of opening = ��/� CFS L required = 22 Z l �S = cSY ft. U S F L= ft. - 31- ��•. �!t ._. . _ ._. -. — •• ..._ .•-•—r�Pw't^.�l.ot /Srfe¢'atA'1tTa"�AI�!7 .-. .. �!'Ic'v-.• .. :v. C. B. CURB O1'l::NING ( 111tel'C(1ption ) G : 2-2- Given: 2Given: (a) discharge CITS (b) street slope S = •O/�fz '/' (c) curb type "A -2'' I^-21' III)II (d) half street Nvidth = Z ft. Solution: �rrs1/� ol�(2 )+/z_�/�S i� Thl,refclrc yr: d G� �z /L = D . 6 J, = z/ti% / 0.6q = 3�_ (L for total irttei cepti:on) TRY: _ LF Z ft. 1//I 2 -2 a/y= .33/b G)/GJ Q1,= D SSU X ZZ -572 - IR -0 CFS (Intercepted) Qc:= Z<•SZ '2 = SZ C F's(Carrymter) �v �•B �—�3 we,r c•70 mems:, t9e. t, ', k . 7170 Ri DMIU AVENVI CMTA 1Kµ G V IM*JI4 - ��. QYIL[NOII<S[MNO t LAHOPLINNINO • 1A4DRdfM-IK0 • )I 124-7- C. B. # L-13 CITI,I, 0PE, JNG (SUIII') l Y 02s ---z 1%, Y,3 Grp 4. 6r7 Given: G (a) Discharge Q - 2r �S� CFS (b) Curb type "A-2" "D" 4" Rolled 6" Rolled F. 18Cr�v Solution: II (depth at opening) _ %Z inches h (height of opening) inches From Chart: Q/ft. of opening = °� S CFS L required = 2 r - 7. 4 ft. U S E L= ft. -31- GK. C)c;=- - (r'arryo,,,c� ) —35— / C. B. L - /4 /iyT . 7/ Sr CUPB OPENING ( Interception } q 33/ Given: (a) discharge CFS (b) street slope S 0/56 / (c) curb type "A-2" (d) ha —f street width = 38 ft. Solution. Q/S�f" = S• fq ^! (0 0 i56 )iz 4l Ss, 'T'hcrefore } =L 0 39 /L 12 07 for total inte.rccptior.) Ih/ L ~ ----- - --'� — --- GK. C)c;=- - (r'arryo,,,c� ) —35— 7; �_ _ r � fir• 4� C. B. # L - /S 7- = GjO.O 2 CURB OPENING ( Interception ) - Ft CCS Given- (a) discharge Q goo = 1' 4 CFS (b) street slope S = Q - 02/Z}- (c) curb type "A-2" D" g" G(�v( Face (�'C� ff.,,, 4 I-c.._Q ' ller Deis � � cv (d) half street width = 31� ft. Solution: Q/sta ! gni- l ( 0 021. ) _ l3. 26 Therefore y=�� j] Q / L = . 33 L = 194 /0'33 = 5 -S -a `T, for total intcrcepf.ion) 'T'RY: L� I; L QC= - - C s(Caxz-,lover) -35- _ = So -33 33 0.2s- 0.2s- g os'c� r 6g �v CURB OPEN1\TG ( Interception ) Given: (a) discharge C� = 9-o.s- CC'S (b) street slope S = 0-01S-6 ' l' (c) i curb type ''A-2" "D" (d) half street width ft, Solution: I - �- /Sr/?= `�oS' /(.0,01S-6 /z � ' I 72-46 ) = 1'i crefcic v= _.j Q /L ` L 0•ro = !g l IT, for. total interception) TRY: L 1 a ;y .33/ 0.47 QP= CFS (intercepted) Q '.. �% .. --�?+� _.._.CFS(CarryoN er) TO v..Y![^�. L!^LT��'71:^_•_�"=^.T".,....- _.� -. `-�':S-•YMhMf`.�'C': .'1+tt. ._fir.:.'. .AhS�:__ -.. '►1fi� -.�-"L �.6i �%'� T/c 1Q/ro = 23 ,97 ems 3 CURB Ok'E"NING ( Intercc: ption ) Given: (n) discharge Qay- _ /K 6�- C11S (b) street slope S= d o S(l I/ I (c) curb type LLA -2" 11.D11 (d) half street N,.,idth = 30 ft. Solution: . �z _�_ 8 2 - - /�' oce = �� 6 /(( o 4 203 )- = -ThcrefOre Q 6 S 0.6 J_i !l `•C1 I .ri •Ci C ^ (L for°a tolkin'UL.: cr,1)1'5on)TRY- x _C1's (IrlL c.'ceP"('d) i 0(: h 3lTQ A:DHILL AY^UE OMA PM CA MY Wlt "� CIVIL • LAUDPLARRING • V C. B. CURB 01")"WING ( Intcrc(htion ) Given: (a) discharf;e 07,�— ` % o'J�' c1�0- (b) street slope S = dd (c) curb type "11-2" IfI)Ir (d) h, -df street width = 3 ft. Solution: �IStJI' _ Lot l ( I Dy2 )'lz- Thcrefore y= C2 / 1� (L for total inter cepti,on) ft. J.rL -- b I � � x•67 =66 DlW a.�3 (1,= qy g� x �, �3 - � .OS' - crS (Intercepted) Cir.= 4, 8$ •- A, dS 83 ci.�'S(ca ri),ovcr) 4D 71:�J AA A� r, �'avemw 4t, Rpc, 11f0EIEDNIUAVE4VE "TAFKMCA1'1M*N11 - TZZI:I. W CIVIL[NOIkt1MN0 4 LANDH/INNINO • 1.4408,-M'IKO C. I3. 11 L — �� CLIRFF' 0PENFING (SUMP Given: gyp, (a) Discharge Q t6l�-Q = CFS nn , fibtj' (b) Curb type "A-2" "D" 4" Rolled 6" polled m PNV �B Solution: II (depth at opening) _ /Z inches h ()Ieight of opening) - /0 inches li/h & E= From Chart: Q/ft. of opening = CFS L required = y 3 y / _2 6' �-- = /(4.6 � ft. USF L= / ft. -31- ... .. _.... y..—.tom._ ...,....r...�-�-r - - •-........ �.�,..r ,..�...-.... ... t..��..;_ .."�-. •a Yt 9:.?.--r!-Lw, tr. sn, r-: ....Y.�..,.....13, CIJLtl3 O1'J�;i`Ii:C_i ( l��trrr(�htior) ) Given: (a) discharge, 0-- 3.S t_:F 11 (c) curb t l)c ''A-211 11 1) (d) )10,f Street NvidLh = Solution: 1Ir� i ,i2 !�i S 3 for total intez (-c pti-.-)]z) !»018 h11Nt I,.?Mur mev trllt CA s -r,,1.1! �� � CIY1LCHIu';111N0 • LAIIO PLAMN1110 7.44111IW..'1.:0 INE i AVENUAI ML, HYDfiAUL1C CALCULATI • NS FOR LATERAL "L9 (REF: LATERAL "C" BUBBLE OUT STRUCTURE) wad 6! Aw. 3170 Cm-DMiLL AYENUE • COSTA 128& CA 22OWSM • (714) 041-7777 CIVIL BldMgIZHR1A10 • LARD PLAMMING • LAND SUMMMa Discussion: This report contains hydraulic calculations for the proposed storm drains in the Cherry Avenue Industrial Area. The storm drain line "L" and its connecting lateral "C" located along Cherry Ave. north of Miller Ave. designed for 25 -year frequency run-off, except at railroad crossing. At the crossing, the storm drains are designed to carry the 100 -year flow. Catch basins, immediately upstream of the railroad allow the 100 -year run-off to enter the system. Then, downstream of the railroad, the excess flow above the 25 -year run-off is forced back out of the system and into the street. The Cherry Ave. street has been designed with drainage easements to accommodate the excess of 25 -year, up to 100 -year frequency run-off from a drainage area of 523 acres located north of Baseline Ave. (See Hydrology Report). There are proposed inlet structures and outlet structures along lateral "C" north and south of railroad crossings. The beginning downstream HGL control for lateral "C" has been computed as 1273.70 nearby storm drain station 1+85.30. This was based on the depth of the flow in Cherry Ave. with 100 -year frequency run-off A hydraulic analysis was conducted for Line "C" between station 1+85.30 and station 10+10.77 assuming the 25 -year frequency flow in the storm drain with downstream HGL control as 1273.70. This analysis revealed that the outlet structures proposed at station 10+10.77 will discharge the excess flow above the 25 -year run-off back to the street (Cherry Ave.) as is intended. Then, based on the computed HGL at station 10+10.77, upstream portions of the lateral "C" were analyzed. The pipe and inlet structures between stations 10+10.77 and 17+27.73 have been designed for 100 -year frequency run-off . This conveys the 100 -year run-off under the railroad. Upstream of station 17+27.73, lateral "C" is designed for 25 -year frequency run-off . Hydraulic calculations for the portion of storm drain line "L" located along Miller Ave. has been performed based on the downstream control HGL of 1273.70 at station 36+00.50. This analysis has been conducted from station 36+00.50 to 44+50.00 assuming the 25 -year frequency run-off in the storm drain. It was further assumed that catch basins #2 and #3 will not function. It was found that at station 44+50.00 the HGL is 1277.76 which is 2.36' higher than the top of curb. This assures that excess flow in the line will bubble out. The hydraulic calculations upstream of station 44+50.00 assumes the 100 -year flow is the pipe. The downstream control HGL at station 44+50.00 is 1275.76 which is the maximum water surface elevation at drainage easement for Miller Ave. S.D. line "L" was also analyzed between station 4+20.24 and 22+92.00 to find out how much additional flow can be accommodated in the line without bubbling out through the catch basin #6, located nearby the junction of Meyer Canyon Drive and Cherry Ave. The hydraulic analysis indicated that the maximum additional run-off in excess of 35.2 cfs will bubble out, beginning at catch basin #6 and then catch basins located upstream of station 22+92.00. This assures that the downstream storm drain will not be overloaded more than 35.2 cfs (35.2 cfs is neglible compared to the total system design). All run-off in excess of the 25 -year flow will indeed drain along Cherry Ave. as is intended. kINSWIZZIMP 41,21 REPRT2 PRESSURE RIFE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) ,_�-x•�a�•����••�•��••x•�••�•x•�••�•�•x••x•aE•�•�•��••�•x••�•�•�•x•�••��•�a�•�•�•�aE••x••x••�•�•�•�•�•�•�•��••��••�•x�•�•x••x••�•��•�••x••�•�•�•�•�•�•��••�•�•�•��•� (C) Copyright 1982 Advanced Engineering Software EAESI Especially prepared for: HALL & FOREMAN, INC. **********DESCRIPTION OF RESULTS**** * INDUSTRIAL AREA LINE L HYDRAULICS (REF: BUBBLE OUT- LATERAL "C") * 0 25-100 YR FROM 412.75 TO 2187.83, 0 25 YR + 35.2 CFS * VENK I . N, JN 3810-04, 2/15/88, DISK " VENK I #1-211 � NOTE: STEADY FLOW HYDRAULIC HEAD—LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 412.75 FLOWLINE ELEVATION = 1210.50 PIPE DIAMETER(INCH) = 106.00 RIPE FLOW(CFS) = 1223.70 ASSUMED DOWNSTREAM CONTROL HGL = 1215.710 Advanced Engineering Software EAESI SERIAL No. A0483A REV. 2.2 RELEASE DATE : 12/ 17/ 82 PRESSURE FLOW PROCESS FROM NODE 412.75 TO NODE 420.25 IS CODE = 5 UPSTREAM NODE 420.25 ELEVATION = 1211.04' ' CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 1001.8 102.00 56.745 17.655 .170 4.840 2 1223.7 108.00 63.617 19.235 -- 5.745 3 221.9 54.00 15.904 13.952 60.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0===05 EDUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(02*V2-G!i*V1*COS(DELTAi)-lam3*V3*COS(DELTA3)- 04*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00873 DOWNSTREAM FRICTION SLOPE _ .00960 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00917 JUNCTION LENGTH(FEET) = 7.00 FRICTION LOSS = .069 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = 2.221+ 4.840- 5.743+( .069)+( 0.000) = 1.384 NODE 420.25 : HGL= ( 1 222. 000> ; EGL= < 1226. 839> ; FLOWL I NE= < 1211. 000) PRESSURE FLOW PROCESS FROM NODE 420.25 TO NODE 549.82 IS CODE -=--3- - UPSTREAM NODE 549.82 ELEVATION = 1212.44 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 1001.81 CFS PIPE DIAMETER = 102.00 INCHES PIPE LENGTH = 129.57 FEET MANNINGS N = .01300 CENTRAL ANGLE = 3.090 DEGREES PRESSURE FLOW AREA = 56.745 SQUARE FEET FLOW VELOCITY = 17.65 FEET PER SECOND VELOCITY HEAD = 4.840 FIEND COEFFICIENT(KB) _ .0463 HB=KF*(VELOCITY HEAD) _ ( .046)*( 4.840) = .224 PIPE CONVEYANCE FACTOR = 10721.156 FRICTION SLOPE(SF) _ .0087315 FRICTION LOSSES = L*SF = ( 129.57)*( .0087315) = 1.131 NODE 549.82 : HGL= < 1223.355) ; EGL= < 1228. 195> ; FLOWL I NE= < 1212.440> PRESSURE FLOW PROCESS FROM NODE 549.82 TO NODE 956.05 IS -CODE: - UPSTREAM NODE 956.05 ELEVATION = 1216.95 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW PIPE -FIEND LOSSES(OCEMA): PIPE FLOW = 1001.81 CFS PIPE DIAMETER = 102.00 INCHES PIPE LENGTH = 402.23 FEET MANNINGS N = .01300 CENTRAL ANGLE = 30.190 DEGREES PRESSURE FLOW AREA = 56.745 SQUARE FEET FLOW VELOCITY = 17.65 FEET PER SECOND VELOCITY HEAD = 4.840 BENT) COEFFICIENT(KB) _ .1448 HB=KB* (VELOCITY HEAD) = f .145)*( 4.840) = .701 PIPE CONVEYANCE FACTOR = 10721.156 FRICTION SLOPE(SF) _ .0087315 FRICTION LOSSES = L*SF = ( 402.23)*( .0087315) = 3.512 NODE 956.05 : HGL= ( 1227. 568> ; EGL= ( 1232. 408) ; FLOWL I NE= ( 1216.950> PRESSURE FLOW PROCESS FROM NODE 956.05 TO NODE. 1035.00 IS CODE-= 3 UPSTREAM NODE 1035.00 ELEVATION = 1217.83 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 1001.81 CFS PIPE DIAMETER = 102.00 INCHES PIPE LENGTH = 78.95 FEET MANNINGS N = .01300 CENTRAL ANGLE = 2.350 DEGREES PRESSURE FLOW AREA = 56.745 SQUARE FEET FLOW VELOCITY = 17.65 FEET PER SECOND VELOCITY HEAD = 4.840 FIEND COEFFICIENT(KB) _ .0404 HB=KB*(VELOCITY HEAD) _ ( .040)*( 4.840) = .196 PIPE CONVEYANCE FACTOR = 10721.156 FRICTION SLOPE(SF) _ .0087315 FRICTION LOSSES = L*SF = f 78.95)*( .0087315) = .689 NODE 1035.00 : HGL= < 12 :8. 453> ; EGL= < 1233. 293> ; FLOWL INE= < 1217. 830) PRESSURE FLOW PROCESS FROM NODE 10=5.00 TO NODE 1040.00 IS CODE 5-�- UPSTREAM NODE 1040.00 ELEVATION = 1217.87 1 586.1 102.00 56.745 17.413 .139 4.708 2 1001.8 102.00 56.745 17.655 -- 4.840 3 13.7 24.00 3.142 4.356 60.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0===05 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*Vi*COS(DELTAI)-03*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE _ .00845 DOWNSTREAM FRICTION SLOPE _ .00873 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00861 JUNCTION LENGTH(FEET) = 5.00 FRICTION LOSS = .043 ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = .115 MANHOLE LOSSES = .242 JUNCTION LOSSES = DY+HVI-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = .246+ 4.708- 4.640+( .043)+( 0.000) = .285 NODE 1040.00 : HGL= ( 1228. 869) ; EGL= ( 1233. 578> ; FLOWL INE= < 1217.870> PRESSURE FLOW PROCESS FROM NODE 1040.00 TO NODE 1232.37 IS CODE = 3 UPSTREAM NODE 1232.37 ELEVATION = 1219.32 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW PIPE -SEND LOSSES(OCEMA): PIPE FLOW = 988.12 CFS PIPE DIAMETER = 102.00 INCHES PIPE LENGTH = 192.37 FEET MANNINGS N = .01300 CENTRAL ANGLE = 5.740 DEGREES PRESSURE FLOW AREA = 56.745 SQUARE FEET FLOW VELOCITY = 17.41 FEET PER SECOND VELOCITY HEAD = 4.708 BEND COEFFICIENT(KB) _ .0631 HS=KB* (VELOCITY HEAD) _ ( .063)*( 4.708) = .297 PIPE CONVEYANCE FACTOR = 10721.156 FRICTION SLOPE(SF) _ .0084945 FRICTION LOSSES = L*SF = t 192.37)*( .0084945) = 1.634 NODE 1232.37 : HGL= < 1230. 801) ; EGL= < 1235. 509> ; FLOWL I NE= ( 1219.320> PRESSURE FLOW PROCESS FROM NODE 1232.37 TO NODE- 1397.67 -IS CODE-= 3 - UPSTREAM NODE 1397.67 ELEVATION = 1222.43 -------------------------------------------------------------------------- CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 988.12 CFS PIPE DIAMETER = 102.00 INCHES PIPE LENGTH = 165.30 FEET MANNINGS N = .01300 CENTRAL ANGLE = 12.284 DEGREES PRESSURE FLOW AREA = 56.745 SQUARE FEET FLOW VELOCITY = 17.41 FEET PER SECOND VELOCITY HEAD = 4.708 BEND COEFFICIENT(KB) _ .0924 HB=KB*(VELOCITY HEAD) _ ( .032)*( 4.700= .435 PIPE CONVEYANCE FACTOR = 10721.156 FRICTION SLOPE(SF) _ .0084945 FRICTION LOSSES = L*SF = ( 165.30)*( .0084945) = 1.404 NODE 1397.67 : HGL= ( 1 `32. 640) ; EGL= < 1237. 348) ; FLOWL I NE= < 1222.430> PRESSURE FLOW PROCESS FROM NODE 1397.67 TO -NODE -1402.34 IS CODE ---_5____ UPSTREAM NODE 1402.34 ELEVATION = 1222.93 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA vFl nr: T TY npl T& Hv 3 0.0 0.00 0.000 0.000 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0===05 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(02*V2-01*V1*COS(DELTA1)-Q3*V3*COS(DELTAS)- Q4*V4*CQS(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE _ .01174 DOWNSTREAM FRICTION SLOPE _ .00849 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .01012 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .047 ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = .005 MANHOLE LOSSES = .235 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = -1.287+ 6.001- 4.708+( .047)+( 0. 000) = .283 NODE 1402.34 : HGL= ( i 231. 630> ; EGL= ( 1237. 631 > ; FLOWL I NE= < 1222.930) PRESSURE FLOW PROCESS FROM NODE 1402.34 TO NODE 1750.69 IS CODE = 3 UPSTREAM NODE 1750.89 ELEVATION = 1227.87 -----------------------------------------------------------------------•------ CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 988.12 CFS PIPE DIAMETER = 96.00 INCHES PIPE LENGTH = 348.55 FEET MANNINGS N = .01300 CENTRAL ANGLE = 25.902 DEGREES PRESSURE FLOW AREA = 50.266 SQUARE FEET FLOW VELOCITY = 19.66 FEET PER SECOND VELOCITY HEAD = 6.001 BEND COEFFICIENT(KB) _ .1341 HR=KB*(VELOCITY HEAD) _ ( .134)*( 6.001) = .605 PIPE CONVEYANCE FACTOR = 9120.764 FRICTION SLOPE(SF) _ .0117370 FRICTION LOSSES = L*SF = ( 348.55)*( .0117370) = 4.091. NODE 1750.89 : HGL= < 1236. 526> ;EGL= ( 1242.527> ;FLOWLINE= < 1227. 870) PRESSURE FLOW PROCESS FROM NODE 1750.89 -TO -NODE- 1802.34 -IS CODE -_3____. UPSTREAM NODE 1802.34 ELEVATION = 1228.59 ------------------ CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): RIPE FLOW = 988.1` CFS PIPE DIAMETER = 96.00 INCHES PIPE LENGTH = 51.45 FEET MANNINGS N = .01300 CENTRAL ANGLE = 32.754 DEGREES PRESSURE FLOW AREA = 50.266 SQUARE FEET FLOW VELOCITY = 19.66 FEET PER SECOND VELOCITY HEAD = 6.001 BEND COEFFICIENT(KB) _ .1508 HB=KB*(VELOCITY HEAD) _ ( .151)*( 6.001) = .905 PIPE CONVEYANCE FACTOR = 9120.764 FRICTION SLOPE(SF) _ .0117370 FRICTION LOSSES = L*SF = ( 51.45)*( .0117370) = .604 NODE 1802.34 : HGL= ( 1238, 035) ; EGL= < ]. 244. 036) q FLOWL I NE= < 1228.590) PRESSURE FLOW PROCESS FROM NODE 1802.34 TO NODE 1812,34 IS CODE 5 _ UPSTREAM NODE 1812.34 ELEVATION = 1228.75 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA 1 304.4 96.00 50.266 17.992 6.366 988.1 96.00 50.266 19.658 - HV 5. 026 G. 001 5 0.0===05 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(QE*VE-Q1*Vi*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE _ .00983 DOWNSTREAM FRICTION SLOPE _ .01174 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .01076 JUNCTION LENGTH(FEET) = 10.00 FRICTION LOSS = .108 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY+HVi-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = 1.726+ 5.026- 6.001+( .106)+( 0. 000 ) = .859 NODE 1812.34 : HGL= < 1239.86% ; EGL= ( 1244. 895> ; FLOWL I NE= ( 1228. 750) PRESSURE FLOW PROCESS FROM NODE 1812.34 TO NODE 1847.61 IS CODE = 3 UPSTREAM NODE 1847.61 ELEVATION = 1229.03 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 904.37 CFS PIPE DIAMETER = 96.00 INCHES PIPE LENGTH = 35.37 FEET MANNINGS N = .01300 CENTRAL ANGLE = 22.000 DEGREES PRESSURE FLOW AREA = 50.266 SQUARE FEET FLOW VELOCITY = 17.99 FEET PER SECOND VELOCITY HEAD = 5.026 EMEND COEFFICIENT(KB) _ .1236 HS=KED* (VELOCITY HEAD) _ ( .124)*( 5.026) = .621 PIPE CONVEYANCE FACTOR = 9120.764 FRICTION SLOPE(SF) _ .0098317 FRICTION LOSSES = L*SF = ( 35.37)*( .0098317) = .346 NODE 1847.61 : HGL= < 1240. 8387 ; EGL= < 1245. 864> ; FLOWL I NE= < 1229.030> PRESSURE FLOW PROCESS FROM NODE 1847.61 TO NODE 1847.61 IS CODE = 5 UPSTREAM NODE 1847.61 ELEVATION = 1229.03 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 892.6 96.00 50.266 17.758 . 955 4.897 2 904.4 96.00 50.266 17.992 -- 5.026 3 11.8 21.00 2.405 4.893 90.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0===05 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4*V4*COS (DELTA4)) / ((A1+A2> *1'6.1 ) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE _ .00958 DOWNSTREAM FRICTION SLOPE _ .00983 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00970 JUNCTION LENGTH(FEET) = 1.75 FRICTION LOSS = .017 ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = .131 MANHOLE LOSSES = .251 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = .261+ 4. 897- 5.026+( .017)+( 0.000) = .263 NODE 1847.61 : HGL= < 1241. 236> ; EGL= ( 1246. 132> ; FLOWL I NE= ( 1229.030> PRESSURE FLOW PROCESS FROM NODE 1847.61 TO NODE 1853.85 IS -CODE = 3 _-- UPSTREAM NODE 1853.85 ELEVATION = 1225.40 ------------------------------- CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 892.60 CFS PIPE DIAMETER = 96.00 INCHES PIPE LENGTH = 46.24 FEET MANNINGS N = .01300 CENTRAL ANGLE = 29.050 DEGREES PRESSURE FLOW AREA = 50.266 SQUARE FEET FLOW VELOCITY = 17.76 FEET PER SECOND VELOCITY HEAD = 4.897 BEND COEFFICIENT(KB) _ .1420 HB=KB*(VELOCITY HEAD) = t .142)*( 4.897) = .695 PIPE CONVEYANCE FACTOR = 9120.764 FRICTION SLOPE(SF) _ .0095775 FRICTION LOSSES = L*SF = ( 46.24)*( .0095775) = .443 NODE 1893.85 : HGL= ( 1242. 374> ; EGL= < 1247. 271 ); FLOWL I NE= < 1229. 400) PRESSURE FLOW PROCESS FROM NODE 1893.85 TO NODE 1560.38 IS CODE = 1 UPSTREAM NODE 1960.38 ELEVATION = 1229.93 ------------------------------ CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 892.60 CFS PIPE DIAMETER = 96.00 INCHES -PIPE LENGTH = 66.53 FEET MANNINGS N = .01300 SF= (Q/ K) **2 = (( 892.60)/( 9120. 764)) **2 = .0095775 HF=L*SF = ( 66.53)*( .0095775) = .637 NODE 1960-36 HGL= ( 1243. 011 ); EGL= ( 1247. 908) ; FLOWL I NE= ( 1229. 930) PRESSURE FLOW PROCESS FROM NODE--1960.38-TO NODE- 2114.64 -IS CODE-= -3- - UPSTREAM NODE 2114.64 ELEVATION = 1231.16 ------------------------------ CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 892.60 CFS PIPE DIAMETER = 96.00 INCHES PIPE LENGTH = 154.26 FEET MANNINGS N = .01300 CENTRAL ANGLE = 11.273 DEGREES PRESSURE FLOW AREA = 50.266 SQUARE FEET FLOW VELOCITY = 17.76 FEET PER SECOND VELOCITY HEAD = 4.897 BEND COEFFICIENT(KB) _ .0885 HB=KB*(VELOCITY HEAD) _ ( .088)*( 4.897) = .433 PIPE CONVEYANCE FACTOR = 9120.764 FRICTION SLOPE(SF) _ .0095775 FRICTION LOSSES = L*SF = ( 154.261*( .0095775) = 1.477 NODE 2114.64 : HGL= < 1244. 922 > ; EGL= < 1245. 818) ; FLOWL I NE= ( 1231. 160> PRESSURE FLOW PROCESS FROM NODE 2114.64 TO NODE 2165.83 IS CODE = 1 UPSTREAM NODE 2165.83 ELEVATION = 1231.57 - ------------------------------------ CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 892.60 CFS PIPE DIAMETER = 96.00 INCHES PIPE LENGTH = 51.19 FEET MANNINGS N = .01300 SF= (Q/K) **2 = < ( 892.60)/( 9120. 764)) **2 = .0095775 HF=L*SF = ( 51.19)*( .0095775) = .490 NODE 2165.83 HGL= < 1245. 412) ; EGL= ( 1250. 309> ; FLOWL INE= < 12--i.570> PRESSURE FLOW PROCESS FROM -NODE --2165.83 TO NODE _2187. 83 IS CODE-= 5- - UPSTREAM NODE 2187.83 ELEVATION = 1232.27 ------------------------------------ CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 776.7 90.00 44-17q 17- �R 1 1 1L 010iic. iu 7 QQ 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0===05 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(92*V2-01*V1*COS(DELTAI)-03*V3*COS(DELTAS)- 04*V4*COS (DELTA4)) / ((A1+A2) *16.1 ) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .01023 DOWNSTREAM FRICTION SLOPE _ .00958 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00990 JUNCTION LENGTH(FEET) 22.00 FRICTION LOSS = .218 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = 1.121+ 4.799- 4.897+( .218)+( 0. 000 ) = 1.242 NODE 2187.83 : HGL= < 1246. 751 > ; EGL= < 1251. 550> ; FLOWL I NE= ( 1232.270) END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM PRESSURE F'IF'E -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) (C) Copyright 1982 Advanced Engineering Software CAES] Especially prepared for: HALL & FOREMAN, INC. **********DESCRIPTION OF * INDUSTRIAL AREA LINE L HYDRAULICS (REF:BUBBLE OUT LATERAL "C" ) * Q 25-IOOYR FROM 2187.8 TO 3481.53, CONSTANT 0 25-100 YR * VENKI. N, JN 3810-04, 2/15/86, DISH. "VENKI #1-1" � NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE F'IF'E FLOW CONTROL DATA: NODE NUMBER = 2187.83 FLOWLINE ELEVATION = 1232.27 PIPE DIAMETER(INCH) = 90.00 PIPE FLOW (CFS) _---- 778.65 ASSUMED DOWNSTREAM CONTROL HGL = 1246.750 <<(<<<<(<<<<<<<<(<<<<<<<<<<C<<<<(({<<<>>>)>)>>>>>>>>>>)>>>>>>>>>>>}>>))>>>>> Advanced Engineering Software CAES] SERIAL No. A0483A REV. 2.2 RELEASE DATE:12/17/82 PRESSURE FLOW PROCESS FROM NODE 2187.83 TO NODE -2258.70 IS -CODE 3 - - UPSTREAM NODE 2258.70 ELEVATION = 1233.87 .-------------------------------------------------------------------------- CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 776.65 CFS PIPE DIAMETER = 90.00 INCHES PIPE LENGTH = 70.87 FEET MANNINGS N = .01300 CENTRAL ANGLE = 45.120 DEGREES PRESSURE FLOW AREA = 44.179 SQUARE FEET FLOW VELOCITY = 17.58 FEET PER SECOND VELOCITY HEAD = 4.799 BEND COEFFICIENT(KB) _ .1770 HB=KB*(VELOCITY HEAD) _ ( .177)*( 4.799) _ .849 PIPE CONVEYANCE FACTOR = 7678.797 FRICTION SLOPE(SF) _ .0102297 FRICTION LOSSES = L*SF = ( 70.87)*( .0102297) _ .725 NODE 2258.70 : HGL= C 1248. 324> ; EGL= < 1253. 123> ; FLOWL I NE= < 1233.870> UPSTREAM NODE 2 258. 70 ELEVATION = 1233.87 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 776.7 90.00 44.179 17.580 0.000 4.799 2 776.7 90.00 44.179 17.580 -- 4.799 3 0.0 21.00 2.405 0.000 74.600 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0===05 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE _ .01023 DOWNSTREAM FRICTION SLOPE _ .01023 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .01023 JUNCTION LENGTH(FEET) = 1.50 FRICTION LOSS = .015 ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = -.000 MANHOLE LOSSES = .24Vr JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = -.000+ 4.799- 4.799+( .015)+( 0.000) = .255 NODE 2258.70 : HGL= < 1248. 580> ; EGL= < 1253. 379> ; FLOWL I NE= < 1233.870> - ----------------------- PRESSURE FLOW PROCESS FROM NODE 2258.70 TO NODE 2292.00 IS CODE = 3 UPSTREAM NODE 2292.00 ELEVATION = 1234.63 CALCULATE PRESSURE FLOW PIPE -£SEND LOSSES(OCEMA): PIPE FLOW = 776.65 CFS PIPE DIAMETER = 90.00 INCHES PIPE LENGTH = 33.30 FEET MANNINGS N = .01300 CENTRAL ANGLE = 21.200 DEGREES PRESSURE FLOW AREA = 44.179 SQUARE FEET FLOW VELOCITY = 17.58 FEET PER SECOND VELOCITY HEAD = 4.799 PEND COEFFICIENT(KB) _ .1213 HB=KB* (VELOCITY HEAD) _ ( .121)*( 4.799) = .582 PIPE CONVEYANCE FACTOR = 7678.797 FRICTION SLOF'E(SF) _ FRICTION LOSSES = L*SF = ( 33.30)*( .0102297) = .341 NODE 2292.00 : HGL= < 1249.50 3> ; EGL= ( 1254. 302'> ; FLOWL I NE= .0102297 < 1234.630> PRESSURE FLOW PROCESS FROM NODE 2292.00 TO NODE 2292.00 IS CODE = 5 UPSTREAM NODE 2292.00 ELEVATION = 1234.63 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA 1 776.7 90.00 44.179 17.580 0.000 2 776.7 90.00 44.179 17.580 -- 3 0.0 33.00 5.940 0.000 78.500 4 0.0 0.00 0.000 0.000 0.000 5 0.0===05 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-01*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE _ .01023 HV 4.799 4.799 JUNCTION LENGTH(FEET) = 2.75 FRICTION LOSS = .028 ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = -.000 MANHOLE LOSSES = .240 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOGG)+(ENTRANCE LOSSES) JUNCTION LOSSES = -.000+ 4.799- 4.799+( .028)+( 69.000) = .268 '�� NODE 2292.600 : HGL= ( 1249.771>;EGL= < 1254.570>;FLOWLINE= < 1234.630> x x x x x x x x x x x x x yt• x •!t• •R• ie• it it it it it• it iE• •iF if• iE• iF �E• •lF iF •� if • �E• iF •lf � •iE• �f• •�F iE •1E• if � iF � iE• �E• d(• •ib •lE• �iE �lf • •lP �f• iE �IF •If• �if• •lf • •lf• •iE• �4• �if• if• •lE- dE •!f• �3f• df• �E •iF• � � �F -lF •lE PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE CC (Reference: LACFD,LACRD,R OCEMA HYDRAULICS CRITERION) (C) Copyright 198E Advanced Engineering Software EAES7 Especially prepared for: HALL & FOREMAN, INC. **********DESCRIPTION OF RESULTS***** * INDUSTRIAL AREA LINE L FROM STA 3600.5 TO 4450.00 * 0 25-100 YR, 100 YR CONTROL ON STREET 0 25 CONSTANT IN S.D * VENKI.N, JN 3810-04, 2/24/86, DISK " VENKI.N # 1-1" NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS EASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 3600.50 FLOWLINE ELEVATION = 1254.89 PIPE DIAMETER(INCH) = 90.00 PIPE FLOW(CFS) = 504.13 ASSUMED DOWNSTREAM CONTROL HGL = 1273.700 p � on cg v ar�d cl-�ervy A.ve ---- 7/.7 7 -t- 70 - S 6 = 12 -7/- 17, 2- -epi of rPow W_ S. z 2¢cT. = 72- 419 C 73. 70 7.3 r+� <<<((<<<<<<(<<<(<<<<<<<<<C(<<<<<<<<<((>>>>)>>)>>>>>)>>>>>>>>>>>>>>>>>)>>>>>> Advanced Engineering Software IAES] SERIAL No. A0483A REV. 2.2 RELEASE DATE:12/17/82 PRESSURE FLOW PROCESS FROM-NODE--3600.50-TO NODE--3638.89-IS CODE = 3 -- UPSTREAM NODE 3638.89 ELEVATION = 1255.26 ------------------------------------------------------------------------- CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 504.13 CFS PIPE DIAMETER = 90.00 INCHES PIPE LENGTH = 38.39 FEET MANNINGS N = .01300 CENTRAL ANGLE = 16.100 DEGREES PRESSURE FLOW AREA = 44.179 SQUARE FEET FLOW VELOCITY = 11.41 FEET PER SECOND VELOCITY HEAD = 2.022 BEND COEFFICIENT(KB) _ .1057 HB=KB* (VELOCITY HEAD) _ ( -J-06)*( 2.022) _ .214 PIPE CONVEYANCE FACTOR = 7678.797 FRICTION SLOPE(SF) _ .0043102 FRICTION LOSSES = L*SF = ( 38.3:9)*( .004310:) _ .165 NODE 3638.89 : HGL= < 1 x:74. 079) : EGL= < 1276. 101 > : FLOWL I NE= < 1255.260> Li ?-Q 1 r% I-_ P41.1 IVU Li r- YVr-1. 1 / =Lt -VH 1 IUIN = idzJb. 'J�s ------------- ----------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): RIPE FLOW = 504.13 CFS PIPE DIAMETER = 90.00 INCHES PIPE LENGTH = 385.28 FEET MANNINGS N = .01300 SF=(Q/K)**2 = (( 504.13)/( 7678.797))**2 = .0043105 HF=L*SF = ( 382.28)*( .0043102) = 1.648 NODE 4021.17 : HGL= ( 1275. 727> ; EGL= ( 1277. 749> ; FLOWL I NE= Z -C 1258.930> PRESSURE FLOW PROCESS FROM NODE 4021.17 TO NODE 4025.84 IS CODE = 5 UPSTREAM NODE 4025.84 ELEVATION = 1258.98 ------------------------------------------------------------------------ CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 504.1 96.00 50.266 10.029 0.000 1.562 2 504.1 90.00 44.179 11.411 -- 5.022 3 0.0 0.00 0.000 0.000 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0===05 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((Ai+A2)*16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE _ .00306 DOWNSTREAM FRICTION SLOPE _ .00431 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00368 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .017 ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = -.002 MANHOLE LOSSES = .101 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = .458+ 1.562- 2.022+( .017)+( 0.000) = .118 NODE 4025.84 : HGL= ( 1276. 305> ; EGL= ( 1277. 867> ; FLOWLINE= ( 1258.960> PRESSURE FLOW PROCESS FROM NODE 4025.65 TO NODE 4317.35 IS CODE = 1 UPSTREAM NODE 4317.35 ELEVATION = 1261.77 -------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 504.13 CFS PIPE DIAMETER = 96.00 INCHES PIPE LENGTH = 291.70 FEET MANNINGS N = .01300 SF= (Q/ K) **2 = ( ( 504.13)/( 9120. 764)) **2 = .0030551 HF=L*SF = ( 291.70)*( .0030551) = .891 NODE 4317.35 : HGL= ( 1277.196>;EGL= ( 1278.758>;FLOWLINE= ( 1261.770) PRESSURE FLOW PROCESS FROM NODE 4317.25 -TO NODE _4317.35 -IS -CODE _ _J-- ~ UPSTREAM NODE 4317.35 ELEVATION = 1561.77 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 504.1 96.00 50.266 10.029 0.000 1.562 2 504.1 96.00 50.266 10.029 -- 1.562 3 0.0 0.00 0.000 0.000 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0===05 EQUALS BASIN INPUT=== 1 nfl=l-n 1hlr. nnrlwr, r.n-r .-I I- - -. -. 1 _-.. _.--• •... -- ----- UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE _ .00306 DOWNSTREAM FRICTION SLOPE _ .00306 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00306 JUNCTION LENGTH(FEET) = 1.75 FRICTION LOSS = .005 ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = -.000 MANHOLE LOSSES = .076 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = -.000+ 1.562- 1.562+( .005)+( 0.000) = .093 NODE 4317.35 : HGL= < 1277. 280> ; EGL= ( 1278. 842) ; FLOWL I NE= ( 1261.770> PRESSURE FLOW PROCESS FROM NODE 4317.35 TO NODE 4444.50 IS CODE = 1 UPSTREAM NODE 4444.50 ELEVATION = 1263.00 ------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 504.13 CFS PIPE DIAMETER = 96.00 INCHES PIPE LENGTH = 127.15 FEET MANN I NGS N = .01300 SF= (G! /k) **2 = ( ( 504.13)/( 9120. 764)) **2 = .0030551 HF=L*SF = ( 127.15)*( .0030551) = .386 NODE 4444.50 : HGL= < 1277. 666> ; EGL= ( 1279. 230> ; FLOWL I NE= ( 1263.000) PRESSURE FLOW PROCESS FROM NODE 4444.50 TO NODE 4450.00 IS CODE = 5 UPSTREAM NODE 4450.00 ELEVATION = 1263.05 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 504.1 96.00 50.266 10.029 0.000 1.562 2 504.1 96.00 50.266 10.029 -- 1.562 3 0.0 30.00 4.909 0.000 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0===05 EQUALS BASIN INPUT=== LACFCD"AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(02*V2-01*V1*COS(DELTAI)-G!3*V3*COS(DELTAS)- 04*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE _ .00306 DOWNSTREAM FRICTION SLOPE _ .00306 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00306 JUNCTION LENGTH(FEET) = 5.50 FRICTION LOSS = .017 ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = -.000 MANHOLE LOSSES = .078 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = -. 00el+ 1.562- 1.562+( .017)+( 0.000) = .095 NODE 4450.00 : HGL= < 1277. 763> ; EGL= < 1279. 325> : FLOWL I NE= ( 12F,3.050> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM �R-n-,�-��c-�����c�c�r�ryr�ryrxfiyrytytytxititytirifititiFiF9FiFiFiFiFiF�9F9FdF�9F9FaE1F1E••IE�E*iEiFIF�FdE9EdEiEIE•ifdF�if�F�-lFdFiE PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) (C) Copyright 1962 Advanced Enpineerin4 Software CAES] Especially prepared for: HALL & FOREMAN, INC. **********DESCRIPTION OF RESULTS***a�** * INDUSTRIAL AREA LINE L STA 4450.00 TO 5049.83 •* D 100 YR WITH R/W ELEV CONTROL * VENKI. N, JN 3810-04, 2/24/88 � NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND DCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 4450.00 FLOWLINE ELEVATION = 1:63.05 PIPE DIAMETER(INCH) = 96.00 PIPE FLOW (CFS) = 621.15 -; ASSUMED DOWNSTREAM CONTROL HGL = 1275.760 T�, = 12 7-S 30 �"c- g•4 / l 77P- sr 1-�6L Cont�o� = 127s-76 c�..1 Advanced Ennineerinq Software CAES] SERIAL No. A0483A REV. 2.2 RELEASE DATE: 12/17/8` PRESSURE FLOW PROCESS FROM NODE 4450.00 TO NODE 4877.67 IS CODE = 1 UPSTREAM NODE 4877.67 ELEVATION = 1264.94 ------------------------------------------------------------------ CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): F'IF'E FLOW = 651.15 CFS F'IPE DIAMETER = 96.00 INCHES PIPE LENGTH = 457.67 FEET MANNINGS N = .01300 SF= (D/K) **2 = (( 621.15)/( 9120. 764)) **2 = .0046380 HF=L*SF = ( 427.67)*( .004E380) = 1.984 NODE 4877.67 : HGL = ( 1277. 744) ;EGL= ! 1280. 115} .FLOWLINE= ( 1264.940> PRESSURE FLOW PROCESS FROM NODE 4877.67 TO NODE 4882.34 IS CODE = 2 UPSTREAM NODE 4882.344 ELEVATION = 1264.96 ----------------------------------------- CALCULATE PRESSURE FLOW MANHOLE LOSSES(LACFCD): r" T Mr- r[ r.i i - r . 1 , r- --- - - - - r -"LJ" VC-"WL.l 1 T - IC -0 t'GG 1 h'0t( .`=t-UNU VELOCITY HEAD = 2.371 HMN = . 05* (VELOCITY HEAD) = .05*( 2. 371) NODE 4882.34 : HGL= < 12 77. 862> ; EGL= < 1280. 233> ; FLOWL I NE= < 1264. 960) PRESSURE FLOW PROCESS FROM NODE 4882.34 TO NODE 4909.74 IS CODE = 1 UPSTREAM NODE 4909.74 ELEVATION = 1265.07 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 651.15 CFS PIPE DIAMETER = 96.00 INCHES PIPE LENGTH = 27.40 FEET MANNINGS N = .01300 SF=(Q/K)**2 = (( 621.15)/( 9120.764))**2 = .0046380 HF=L*SF = ( 27.40)*( .0046380) = .127 NODE 4909.74 : HGL= ( 1277. 989> ; EGL= ( 1280. 360> ; FLOWL I NE= ( 1265.070> PRESSURE FLOW PROCESS FROM NODE 4909.74 TO NODE 5045.16 IS CODE = 3 UPSTREAM NODE 5045.16 ELEVATION = 1265.66 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW PIPE -EMEND LOSSES(OCEMA): PIPE FLOW = 621.15 CFS RIPE DIAMETER = 96.00 INCHES PIPE LENGTH = 135.42 FEET MANNINGS N = .01300 CENTRAL ANGLE = 59.430 DEGREES PRESSURE FLOW AREA = 50.266 SQUARE FEET FLOW VELOCITY = 12.36 FEET PER SECOND VELOCITY HEAD = 2.371 SEND COEFFICIENT(KB) _ .2032 HB=KB*(VELOCITY HEAD) _ ( .203)*( 2.371) = .482 PIPE CONVEYANCE FACTOR = 9120.764 FRICTION SLOPE(SF) _ .0046380 FRICTION LOSSES = L*SF = t 135.42)*( .0046380) = .628 NODE 5045.16 : HGL= < 1279. 099> ; EGL= < 1281. 470> ; FLOWL I NE= < 1265.660> PRESSURE FLOW PROCESS FROM NODE 5045.16 TO NODE 5049.83 IS CODE = 5 UPSTREAM NODE 5049.83 ELEVATION = 1267.43 ----------------------------------------------------------------------------- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 583.3 75.00 30.660 19-013 0.000 5.613 2 621.1 96.00 50.266 12.356 -- 2.371 3 37.8 36.00 7.069 5.348 90.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0===05 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(02*V2-Q1*V1*COS(DELTAI)-03*V *-COS(DELTAS)- 04*V4*CDS(DELTA4)>/((A1+A2)*16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE _ .01526 DOWNSTREAM FRICTION SLOPE _ .00464 AVERAGEI:) FRICTION SLOPE IN JUNCTION ASSUMED AS .00995 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .046 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY+HVi-HV2+(FRICTI01�4 LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = -2.F,21+ 5.613- 2.371+( .046)+( 0. 000) = .668 NODE 5049.83 : HGL= < 127E. 525> ;EGL= ( 1282. 138> ;FLOWLINE= ( 1267.430> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM CHERRY AVENUE STORM DRA�N HYDRAULM C ALC ULATMNS FOR LATERAL "C" (REF.: LINE "L" STORM DRAIN) hfs�o 9! �60 3170 RZOMILL AVENUE COSTA MESA, CA 92620-3428 • (714) 041-0777 C^� CIVIL EMNEHRING LAPID PLANNING • LAND ZSURVL- lNG PRESSURE FIRE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) (<<<(<C(<<<<(<<<<(<<CC<<<<<C<<<((<C(<<>>>>>>>>>>>>>>>>>>>>>>>>>>)>}>)>>>>>>> (C) Copyright 1982 Advanced Engineering Software EAES7 Especially prepared for: HALL & FOREMAN, INC. **********DESCRIPTION OF RESULTS******* * INDUSTRIAL AREA S.D LATERAL C FROM LINE L ,LATERAL STA 185.3 TO 1010.77 * 0 25-100 YR WITH 0 100 ON STREET CONTROL AND 0 25 IN S.D * VENKI. N, JN 3810-04, 2/23/88, DISK, "VENKI # 1-1 � **************************************************************************** NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 185.30 FLOWLINE ELEVATION = 1261.04 PIPE DIAMETER(INCH) = 45.00 PIPE FLOW(CFS) = 149.62 ASSUMED DOWNSTREAM CONTROL HGL = 1273.700 — T 12 2- 11 C97 Srk 2-8ffi 8-9- 07, INCL LIES Po NA`N6 ?�eh/X F Qm� R M�'���� �- 1°�;�L cb►,t..2. 12'73.70 Advanced Engineering Software EAES7 SERIAL No. A0483A REV. 2.2 RELEASE DATE:12/17/62 PRESSURE FLOW PROCESS FROM-NODE---185.30-TO NODE - 551.70 -IS CODE--- 1 - UPSTREAM NODE 551.70 ELEVATION = 1267.49 ------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 149.62 CFS PIPE DIAMETER = 45.00 INCHES PIPE LENGTH = 406.40 FEET MANNINGS N = .01300 SF= (G!/ K) **2 = ( ( 149.62)/( 1209. 335)) **2 = .0153069 HF=L*SF = ( 406.40)*( -Q53069) = 6.221 NODE 591.70 : HGL= < 1279. 921 > ; EGL= < 1282. 770) : FLOWL I NE= < 1267. 490) PRESSURE FLOW PROCESS FROM NODE 591.70 TO NODE 596.37 IS CODE = 2 UPSTREAM NODE 596.37 ELEVATION = 1267.56 --------------------------------------------------------------- CALCULATE PRESSURE FLOW MANHOLE LOSSES(t.Ar.Frn)! FLOW VELOCITY = 13.55 FEET PER -SECOND - VELOCITY HEAD = 2.850 HMN = .05*(VELOCITY HEAD) = .05*( 2.850) NODE 596.37 : HGL= ( 1280. 063> ; EGL= ( _ .142 1282. 913) ; FLOWL I NE= < 1267.560> PRESSURE FLOW PROCESS FROM NODE 596.37 TO NODE 998.10 IS CODE = i UPSTREAM NODE 998.10 ELEVATION = 1273.94 ------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 149.62 CFS PIPE DIAMETER = 45.00 INCHES PIPE LENGTH = 401.73 FEET MANNINGS N = .01300 SF= (Q/K) **2 = ( ( 149.62)/( 1209. 335)) **2 = .0153069 HF=L*SF = ( 401.73)*( .0153069) = 6.149 NODE 998.10 : HGL= ( 1286. 212> ; EGL= ( 1289. 062) ; FLOWLI NE= < 1273. 940) PRESSURE FLOW PROCESS FROM NODE 998.10 TO NODE 1002.77 IS CODE = 5 UPSTREAM NODE 1002.77 ELEVATION = 1274.01 ---------------------------------------- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 149.6 51.00 14.186 10.547 0.000 1.727 2 149.6 45.00 11.045 13.547 -- 2.850 3 0.0 0.00 0.000 0.000 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE _ .00785 DOWNSTREAM FRICTION SLOPE _ .01531 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .01158 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .054 ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = -.017 MANHOLE LOSSES = .142 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = 1-105+ 1.727- 2.850+( .054)+( 0.000) = .197 NODE 1002.77 : HGL= ( 1287. 531 ); EGL= ( 1289. 258> ; FLOWL I NE= ( 1274.010> PRESSURE FLOW PROCESS FROM NODE 1002.77 TO NODE 1010.77 IS CODE 1 - UPSTREAM NODE 1010.77 ELEVATION = 1274.09 ---------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 149.62 CFS PIPE DIAMETER = 51.00 INCHES PIPE LENGTH = 8.00 FEET MANNINGS N = .01300 SF= (Q/K) **2 = t { 149.62)/( 1688. 477)) **2 = .0076522 HF=L*SF = ( 6-00)*( .0078522) = .063 NODE 1010.77 : HGL= < 1267. 594> ; EGL= ( 1289. 321> ; FLOWLINE= < 1274.090> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM -- -- - 4 26"W4 fop 94C. CIVIL ENGINEERING LAND PLANNING • LAND SURVEYING SUBJECT BY DATE JOB NO. SHEET OF LATERAL -C. TCT ANA,LyS(S P20M /0+/0-77 7Z) 10+29.77 Mi I 7UAIC l /OA/ ANALk/S'/f Feo /,,l l0 f /b- %7 Tv 104 20.27 r,4 r Seo mflnf� p) �� 1 U P S Ts -t Pm /*9-62 -r 206 49 + 194-24 = 352-49 � Z 2 �_9on ,q _4,4.179.19-4F ,7677 77. hv, = 0- 99 s4 - 0- 0021 3170 REDHILL AVENUE 0 COSTAMESA, CALIFORNIA 92626-3428 0 (714) 641-8777 Su h 9 g lov000ma� 94ce CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING BY I DATE JOB NO. SHEET - OF /PE 2 PIPE 3 QI PE 4 �z 5.1 �3 _ 42 �4 _ 42 „ 9.62 c fS 0-3 = = 163 -Tic rs AA- = �• 621 V� = i0-73 FPS v4 = �0 - 3s p- PS Vl = i o ss Frc hv3 = 1 �9 hv4 8 Iso 94, : DO 7 V2 - Qfy1 -I- 03 U3 CoA 3o 4�4 y¢ COi130 _ �7i•G•»/ i �r'fipn = (289.3.--r-0-o3 1289.3-5- .5461 46 L (0 Qu _ f119-62Ato-Ss — 3s2 4 7•g8 fiC04.3 (103.2.ix10.73 +9g-62xIo-3S� 0 0-5 C44• I�+ 14- I�})�3z-2 10 f Tc f fie%+ Ly 4 h V, — r 1 Vz t 4 (i�. u. .(6/4) -t (an1wa►-,-e jell) +- 66+ -99 - 1.13 4- os +• o6 +-03 H6L AT srfl /0 t10 --r7 = 128759 EGL = 12 B7 s9+1-73 = 8g- 32 --6L (�D STA I0f20-27 = (289.3.--r-0-o3 1289.3-5- .5461 46 L (0 SM 10-f20• 2-`7 = 1289-3s -0-9`d = 12 SS -36 3170 REDHILL AVENUE . COSTAMESA, CALIFORNIA 92626-3428 • (714) 641-8777 2 555.4 90.00 44.179 12.571 -- 2.454 3 0.0 0.00 0.000 0.000 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0===05 EQUALS BASIN INPUT=== LACFCD AND DCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAi)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE _ .00371 DOWNSTREAM FRICTION SLOPE _ .00523 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00447 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .021 ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = -.002 MANHOLE LOSSES = .123 JUNCTION LOSSES = DY+HVi-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = .556+ 1-895- 2.454+( .0L -,I)+( 0.000) _ .144 NODE 1042.44 : HGL= < 1287. 654> ; EGL= < 1289. 549> s FLOWL I NE= < 1274.370> PRESSURE FLOW PROCESS FROM NODE 1042.44 TO NODE 1297.75 IS CODE = 1 UPSTREAM NODE 1297.75 ELEVATION = 1276.12 ------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): RIPE FLOW = 555.36 CFS PIPE DIAMETER = 96.00 INCHES RIPE LENGTH = 255.33 FEET MANNINGS N = .01300 SF=(Q/K)**2 = t( 555.36)/( 9120.764))**2 = .0037075 HF=L*SF = ( 255.33)*( .0037075) _ .947 NODE 1297.75 : HGL= < 1288. 600> ; EGL= < 1290. 496> : FLOWL I NE= < 1276.120> PRESSURE FLOW PROCESS FROM NODE 1297.75 TO NODE 1305.25 IS CODE = 5 UPSTREAM NODE 1305.25 ELEVATION = 1276.16 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 530.4 96.00 50.266 10.551 0.000 1.729 2 555.4 96.00 50.266 11.049 -- 1. 8 95 3 1.5 16.00 1.767 .849 90.000 - 4 23.5 30.00 4.909 4.787 45.000 - 5 0.0===05 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(02*V2-Q1*V1 *COS (DELTA 1)-Q3*V3*COS(DELTA3)- Q4*V4*COS (DELTA4) ) / ( (A1+A2) *IE. 1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE _ .00338 DOWNSTREAM FRICTION SLOPE _ .00371 AVERAGED FRICTION SLOPE IN JUNCTION -ASSUMED AS .00354 JUNCTION LENGTH (FEET) = 7.50 FRICTION LOSS = .027 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES =-D'Y+HV 1 -HVA:+ (FRICTION LOSS) + ( ENTRANCE LOSSES) JUNCTION LOSSES = .284+ 1.729- 1.895+( .027)+( 0.000) _ .144 NODE 1305-25 : HGL= < 1288. 9 i 1) ; EGL= ( 1290. 640) ; FLOWL I NE= < 1276. 160> CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 530.36 CFS PIPE DIAMETER = 96.00 INCHES PIPE LENGTH = 404.48 FEET MANNINGS N = .01300 SF= (Q / K) **2 = ( ( 530.36)/( 9120. 764)) **2 = .0033813 HF=L*SF = ( 404.48)*( .0033813) = 1.368 NODE 1709.73 : HGL= ( 1290. 27> ; EGL= < 1292. 008> ; FLOWL I NE= < 1281.330> PRESSURE FLOW PROCESS FROM NODE 1709.73 TO NODE 1716.33 IS CODE = 5 UPSTREAM NODE 1718.33 ELEVATION = 1281.44 ------------------------------------------ CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 302.2 96.00 50.266 6.012 0.000 .561 2 530.4 96.00 50.266 10.551 -- 1.729 3 120.7 72.00 28.274 4.270 60.000 - 4 107.5 72.00 28.274 3.801 60.000 - 5 0.0===05 EQUALS BASIN INPUT=== LACFCD AND DCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((Ai+A2)*16,1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE _ .00110 DOWNSTREAM FRICTION SLOPE _ .00338 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00224 JUNCTION LENGTH(FEET) = 6.60 FRICTION LOSS = .019 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY+HVi-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = 2.050+ .561- 1.729+( .019)+( 0. 000 ) = .901 NODE 1718.33 : HGL= ( 1292. 348> ; EGL= < 1292. 909> q FLOWL I NE= ( 1281.440> LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((Ai+A2)*16.1) PRESSURE FLOW PROCESS FROM NODE 1718.33 TO NODE 1718.93 IS CODE - UPSTREAM NODE 1718.93 ELEVATION = 1281.45 ------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 302.18 CFS PIPE DIAMETER = 96.00 INCHES PIPE LENGTH = .60 FEET MANNINGS N = .01300 SF= (Q/K) **2 = ( ( 302.16)/( 9120. 764)) **` = .0010977 HF=L*SF = ( .60)*( .0010977) = .001 NODE 1718.93 HGL= ( 1292. 349> ; EGL= ( 1292. 910> ; FLOWL I NE= ( 1281.450> PRESSURE FLOW PROCESS FROM NODE 1716.93 TO NODE 1727.73 IS CODE = 5 UPSTREAM NODE ---------------------------------------------------------------- 177.73 ELEVATION = 1285.81 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 74.0 45.00 11.045 6.702 0.000 .697 2 302.2 96.00 50.266 6.012 -- .561 3 120.7 72.00 28.274 4.269 60.000 - 4 107.5 72.00 28.274 3.801 60.000 - 5 0.0===05 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((Ai+A2)*16.1) DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE _ .00375 DOWNSTREAM FRICTION SLOPE _ .00110 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .0024E JUNCTION LENGTH(FEET) = 8.80 FRICTION LOSS = .021 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = .870+ .697- .561+( .021)+( 0.000) = 1.027 NODE 1727.73 : HGL= ( 1293. 240) ; EGL= < 1293. 937> ; FLOWL I NE= ( 1285.610> PRESSURE FLOW PROCESS FROM NODE 1727.73 TO NODE 2086.29 IS CODE = 1 UPSTREAM NODE 2088.29 ELEVATION = 1288.65 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 74.02 CFS PIPE DIAMETER = 45.00 INCHES PIPE LENGTH = 360.56 FEET MANNINGS N = .01300 SF= (G!/K) **2 = (( 74.02)/( 1209. 335)) **2 = .0037463 HF=L*SF = ( 360.56)*( .0037463) = 1.351 NODE 2088.29 : HGL= < 1294. 591 > ; EGL= ( 1295. 288) ; FLOWL I NE= ( 1268.650> PRESSURE FLOW PROCESS FROM NODE- 2088.29 TO NODE -2227.33-IS CODE _ �3 UPSTREAM NODE 2227.33 ELEVATION = 1289.75 .----------------------------------------------------------------------- CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FL OW = 74.02 CFS PIPE DIAMETER = 45.00 INCHES PIPE LENGTH = 139.04 FEET MANNINGS N = .01300 CENTRAL ANGLE = 90.000 DEGREES PRESSURE FLOW AREA = 11.045 SQUARE FEET FLOW VELOCITY = 6.70 FEET PER SECOND VELOCITY HEAD = .697 BEND COEFFICIENT(KB) _ .2500 HB=KB*(VELOCITY HEAD) _ ( .250)*( .697) = .174 PIPE CONVEYANCE FACTOR = 1209.335 FRICTION SLOPE(SF) _ .0037463 FRICTION LOSSES = L*SF = ( 139.04)*( .0037463) = .521 NODE 2'227.33 : HGL= < 1295. 286> ; EGL= < 1295. 983> ; FLOWL INE= < 1289.750> PRESSURE FLOW PROCESS FROM NODE 2227.33 TO NODE 2232.00 IS -CODE =--5-- _ UPSTREAM NODE 2232.00 ELEVATION = 1289.79 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 74.0 36.00 7.069 10.472 0.000 1.703 2 74.0 45.00 11.045 6.702 -- .697 3 0.0 0.00 0.000 0.000 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0===05 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(U2*V2-DI*V1*COS(DELTAi)-03*V3*COS(DELTA3)- G!4*V4*COS (DELI'A4)) / ((Ai+A2) *16.1 ) UPSTREAM MANNINGS N = .01300 DOWNS"T"REAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE _ .01232 DOWNSTREAM FRICTION SLOPE _ .00375 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .0080E JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .038 ENTRANCE LOSSES = 0.000 JUNGT I UN LOSSES = DY+HV 1-HV,2+ (FR T f'T T nKi i ngcz) 4- r C:7KITonKjrm* i riooco % END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM PRESSURE FLOW PROCESS FROM NODE 2227.33 TO NODE 2232.00 IS CODE = 5 _ UPSTREAM NODE 2232.00 ----------------------------------------------------------- ELEVATION = 1289.79 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 74.0 54.00 15.904 4.654 0.000 .336 2 74.0 45.00 11.045 6.702 -- .697 3 0.0 0.00 0.000 0.000 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0===05 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*VI*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE _ .00142 DOWNSTREAM FRICTION SLOPE _ .00375 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00258 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .012 ENTRANCE LOSSES = 0.000 �•. MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = -.012 MANHOLE LOSSES = .035 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = .349+ .336- .697+( .012)+( 0.000) = .047 NODE 2232.00 : HGL= < 1295.694> :EGL= < 1296. 030> ;FLOWLINE= < 1289.790> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM CHERRY AVIENUC STORM DRAIN FOOTHILL RC STRUCTURAL CALCS (REF: L.A.C.F.C.D.) Aft h�e 9! 99,ce 3170 REDHILL AVENUE • COSTA MESA, CA 92028.3420 • (714) 841-0777 ® CIVIL (INGINEERING • LAND PLANNING • LAND SUMMING a I LL I I w LO OO ¢ M CL a I I J I B!999jaB9I999�9A9�6 �m 1119999 9 9 9 9 5 m66ob9 �! ��dOf •cu �M !}+ ` 99th 1176 M M1-12 fl- . Y Z• r. I{ In W 1- Q! 1 9 9 n 1S W •I m�9m-+!N-+mlee9l9mmlm I jJ -i M N� m i IZ X O LLCn F- U F- u iH 969699 M 'LL YCncc 3 J I 996669 9 6 9 6 6 6 H OL U i FS�Z 9�994�999�991f1191f]Ifl'9 99666CU W 1100YZ 9 S OC~D-'" mmao119to •ImmCOISCU9 w m�N��� n _ .N. U Z nJ W I w T; MJILL 1 NhM [n S O O U¢ M 11 W I D V .+; ... .+ .r .r' .r 0 ID r~+ 3 w I ¢ W U W ¢O LL ! I N LI _ Z ,4. aD H U O Z qJY r! ' im is 68 SAS L01 OZ� A OxM CO IF- Z,.. 966m99999919669 W - z IN !9SII�S6S w (n a Cn a (9 O¢ U .� Ca W a sa d m, m m sis d 'T co ¢ W co 01 M 6 6 0 5 �J ¢ a i¢ Q ~," � M 9n 6 W I. cr Z., Y Z [C c E-- H > I o- 7 O o-0. Q m O� � A � r , Fw- 'N �'.Z, .• ¢696666 O H Q F 9 9 9 6 6 6 1x666666 UO W J II 2 2 O LO Z LL g 6 e e 6 6 N C4 0 U J U Cn ¢ w F J O J S WO J FLL mH a t`� aQda Sh V7 l�UI� a U �f`CD OJ N6 6 q 2 U LL p U) m Y U 6 10 6M Z IT Z LL F- 6 - 6 f- ¢ O O O M H co O Z L cr O LL U> W Q u] w w J H H F- }N JC .Z. V CL N m A66669 69 (n Z C=CZ aEn 47 666 66 66 q J WQZ ~o-0+22 W ' Z O za Q ANO QW W~ Q0S616f1Nb9 Z wto ul F- 0M �-+w QP0mN m 3 Z I-- O A C[ W a -+N M -. 3 O Pa F- r Q .0. o -+UJ OZ 6W"wQ Z U aZ H CA tZ1U UU UA LLLLfh C7TTU O o -+w F- f - O CNl'1- C7 H Z 30 q q }Y -0QW S W Oz 70 Z m FCL -i CLO F I a J 0L) U X �D ~ m In 6 I LL az a4 I I I 1 I � 1 r i 1 1 I I I O QI L) w I I f- I � W O U • O p I It I'l i O o0 1 I O I -w= O >C j J J j I LL mWw MKa i Nam v mw i I vt m w o r WO p _ z ¢ U. O I 1 W 0 j ! p I • I I I 1 . I I i II 1 i I i I ' r I Ij I I 1 I I I I I I \ I r I I 1 I I i i I I I WAiXO .WAlXO .P-KVXO .WANG PA40 • S 0 W U C 0 U. AWS 0 J W UZ' a Im a CD Im oW J m O 0 LL O Z r0. w W 0 1 `.T . Oxnard Ox lfd Oxford oxrav oxford _ .� a w .+ n j I I I � I Wo I. 00 CL CL 6Is fA JJ f 6�066I�16in06"s0eDat�666��� � •�.,_ \ 69 hllttff WDM � MIDM mN I Y N CD fu I �D �W.-. l; m J onn WJF- > LL 66O.rAI.'+O+�BA'mBm ,J�l tM 9 ¢'� r N .Mi It N a ►+ of m m 9 d; � LL Y[AK 3 J 4W 9 9`+> B U a 1-2z 966661n6��Ya I00 I m�OIsB6N 61n F- NY2 6 r •• 9 6 ZF-n. mn+a%oato (natmmmm 17 m Iqtv 1nRm.+ �ON I•m U a 6 7 m >fU N m Z. KJLL I X4.:4 :644A 64 F m 6 ' 6 F m W F M d O_ N N (U (U a U z a a l0L W m ❑7 W O �..� Z In Ln N 666666 a -i O i O Z 66666 = W JIn - W I!1 Ch 9 t7 I= Z.•. 66 6 66 6668®666 J easin 66 U .� _j A °m¢cv 0au� m�4e44m�m.:�.:.:� W� >ma- ¢ M .. .. .. .. r. .. .r ..., .r I + K N�NroOm CD r` 0 a CL U 5 EQ Wir co ~ LL ._ O J I > Q ~ > W CQ H i } a m W I- -C M a 6 6 6 G49 z Z 696 66 O Q d mX 0 N ; 2 !- C 6696 F66n mm O J SW6 JF•LL l e aN 1m 44444 wo h.0N4 N W m an6; a; U 6 6 w K -i d QJ �+ J uj 6 6 F- I O Z O O Z F- 00Ir j I a LL W N Z I i Q� mM fJ Q7 0 >LLQj>O[W!7 .. m 666666 J W JcraZarn J X666�q 96r. � J F -N W W N Z O I za N a o¢oam En W x666 Vl-6B W r.a W Wm to H i 0M .,W ar Mmw eD 32F -00m W cra .+NM �+ �+ �+3 m FF- 0 J CQmUUU UOLLLLL9m 2=[J •'+ W W 9�W -j mra 9 a 0i -- Y U ME7 �• � � -0 Z~ It Yr�7 Q F d 9> M O ff W w = W OJM Z , � OU i~ U I G i f I F t ! i ! Lq s I I I m 0 W U C 0 U. AWS 0 J W UZ' a Im a CD Im oW J m O 0 LL O Z r0. w W 0 Orta Oxford 0ldb d' Oxford 0WAD d , ' I 666266 Gig Gins 696m669 a ax- •�� • • • • 1 a 66nU Y �o� mNrai i a; a; w- m w " r M 6 66�ON�66mmm6m j S N & j CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE JOB NO, SHEET OF MI P,4VEiYlENT. S = 0.4020 0,1, 3 ' —o'26',c0,0 B -0,22 ',7)Z,O 0.W211W 12 W �ST4554r G4PQC17Y1CkAQ7 3186-L AIRWAY AVENUE 0 COSTA MESA, CALIFORNIA 92626-4675 0 (714) 641-8777 CHERRY AVENUE STRE I Y TABLE a=26 b=10.5 c=1.5 d=13 W'ROAD w=51' W'PKY• Q/ S 1/2 DEPTH AREA P (FT) R (FT) (FT) (FT) (FT) (SF) 0.12 0.079 1.302 0.06 1.320 --- 1.207 2.02 0.15 0.130 2.084 0.062 2.080 ___ 4.83 0.20 0.266 3.388 0.078 3.347 --- 9.86 0.25 0.465 4.691 0.099 4.613 5.880 --- --- 17.63 0.30 0.727 5.995 0.121 0.144 7.147 28.695 0.35 1.053 1.442 7.299 8.602 0.168 8.413 -- 43.425 0.40 0.42 1.615 9.124 0.177 8.920 50.438 58.181 0.44 1.799 9.645 0.187 9.427_-_ 9.933 66.53 0.46 1.992 10.167 10.688 0.196 0.205 10.440--- 5.54 0.48 0.50 2.193 2.410 11.210 0.215 10.947 --- 85.64 96.35 0.52 2.634 11.731 0.225 11.453 --- 102.01 0.53 2.750 11.992 0.229 11.707 12.210 --- --- 106.695 0.54 2.869 12.495 0.230 0.231 13.217 --- 116.58 0.56 3.124 3.398 13.502 14.509 0.234 14.223 --- 127.84 0.58 ..",60 3.692 15.515 0.238 15.230 --- 140.38 147.18 61 3.847 16.019 0.24 15.733 154.3 --U.62 4.007 16.522 0.242 16.237 16.740 _-_-_- 161.77 0.63 4.172 17.025 0.245 0.248 17.243 --- 169.58 169.58 0.64 4.342 4.517 17.529 18.032 0.250 17.747 177.74 0.65 0.66 4.697 18.535 0.253 18.250 186.337 195.207 .0.67 4.882 19.039 0.256 18.753 19.253 --- 0.5 204.58 0.68 5.075 19.539 20.039 0.26 0.263 19.753 1.0 214.68 0.69 0.70 5.277 5.489 20.539 0.267 20.253 1.5 225.01 288.88 0.75 6.702 23.390 0.287 22.753 25.253 4.0 6.5 378.428 0.80 8.165 25.539 28.039 0.320 0.352 27.753 9.0 487.88 0.85 0.87 9.877 10.632 29.039 0.366 28.753 10.0 538.87 0.88 11.025 29.539 0.373 29.253 10.5 11.0 566.0 594.22 0.89 11.428 30.039 0.38 0.388 29.753 30.253 11.5 623.46 0.90 0.91 11.840 12.263 30.539 31.039 0.395 30.753 12.0 654.109 0.92 12.695 31.539 0.403 31.253 12.5 13.0 685.620 718.414 0.93 13.138 32.037 0.410 0.418 31.753 32.253 13.5 752.02 0.94 13.590 32.539 MILLER AVENUE STREET PA I Y TABLE --DEPTH (FT) a=22 AREA (SF) b=6.5 P (FT) c=1.5 R (FT) d=6' W'ROAD (FT) w=36' W'PKY. (FT) Q/S 1/2 0.11 0.072 1.401 0.051 1.317 --- 0.99 0.15 0.145 2.454 0.059 2.330 --- 2.177 0.20 0.294 3.772 0.078 3.597 --- 5.31 0.25 0.505 5.089 0.099 4.863 --- 10.72 0.30 0.780 6.407 0.122 6.130 --- 18.97 0.37 1.271 8.251 0.154 7.903 --- 36.176 0.38 1.353 8.762 0.154 8.407 --- 38.55 0.40 1.531 9.783 0.157 9.413 --- 44.045 0.42 1.729 10.804 0.16 10.420 --- 50.46 0.44 1.948 11.826 0.165 11.427 --- 57.990 0.46 2.186 12.847 0.170 12.433 --- 66.498 0.48 2.445 13.868 0.176 13.440 --- 76.158 0.50 2.724 14.890 0.183 14.447 --- 86.965 0.52 3.023 15.911 0.190 15.453 --- 98.975 0.54 3.342 16.932 0.197 16.460 --- 112.236 0.56 3.681 17.953 0.205 17.467 --- 126.798 0.58 4.041 18.975 0.213 18.473 --- 142.765 4.420 19.996 0.221 19.480 --- 160.080 62 4.820 21.017 0.229 20.487 --- 178.906 0.64 5.240 22.038 0.238 21.492 --- 199.235 0.66 5.679 23.060 0.246 22.500 --- 221.042 0.67 5.907 23.570 0.251 23.00 --- 232.612 0.68 6.142 24.571 0.25 23.50 0.50 241.34 0.69 6.387 25.571 0.250 24.00 1.0 250.952 0.70 6.642 26.571 0.250 24.50 1.5 261.108 0.71 6.907 27.571 0.251 25.00 2.0 271.920 0.72 7.182 28.571 0.251 25.50 2.5 283.391 0.73 7.467 29.572 0.252 26.00 3.0 295.38 0.74 7.762 30.572 0.254 26.50 3.5 308.320 0.75 8.067 31.572 0.256 27.00 4.0 321.795 0.76 8.382 32.572 0.257 27.50 4.5 335.952 0.77 8.707 33.572 0.259 28.00 5.0 350.798 0.78 9.042 34.573 0.261 28.50 5.5 366.17 /T.T 0.79 9.387 35.573 0.264 29.00 6.0 382.583 h err 26"W4004 '`�e CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE JOB NO. SHEOF /00 K STPC-0- Fitw IV ��k s � ET 6 3916—ry / Z- POP C ate Ry A VE AST- -S/DIe l�ltST S'/D� 2-0737 2 /4- So (Bu6h& cc -0 subbG-ou t 9- S 1 0.00 (V-IlpM L -4) C F to W, L-) 4) 1s.o3 72- 53+2-5,9 -72-.53 (i, pvta90- (I/i r-ccw � (Xt,ST.r-LOW FoYr rrI/L tt 1', Pr. -M M ILLI: P- 2$7 S3 3 3- R-0 ��r°om L-si 13- L44 2.82 / r,,oy, L-6) F1P m L -►b) �(a f.vAa CF6� L- 7) 1• !ac . oC),D �g7 �-^ 1-49) 357.- 04 2q2- 22 Tats A1—f- 4-lrw = � 16t, _62_ 62 1- rS-476 og /4 S b6 1,-R-1- I: S -r pc 72 —S 3 C f C� i rl z c �� bei �il�� = 2 32- r 7cr. f I, 1cl d > Cb, (01+0 I-1�4 r u - 1G 3c f- 6, 1K, Ghderc_c f<av 3,07.33 / ! •S 6;/. /C = 2,4 60 -6 / Top or Intal Gn = 0-694- O t;7 J2 C f?vSY CKTI - r te7r;(Gt 7o•Sb 470 -A- y 70.7/ r��! 72--03 6/0 za C root wif Cry " vl� 3170 REDHILL AVENUE 0 COSTAMESA, CALIFORNIA 92626-3428 0 (714) 641-8777 h 9 9 26"W440, RgCo CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE JOBNO SHEET OF l00 Y4. STP -MT Gl_n LJ YCNx1- 6�s% % 3 O -en Z Z P09 C'AP-NC GIe s7' 3 tm-Qa (ao — Qx5-z Z �1. S. dr ► k i 74 - G -F- D . 6 7l -rte 0-12- + o • 2 4 (CFS (6100 2'1.) (6'p47) l 1� i/Jcia>7 cc oJr o F �', v 14 /67 Y /60 `/K r �rrza� I ops 30 - 171 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626-3428 0 (714) 641-8777 h err 20"W40400 99co CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING I�SUBJECT r BYk , S� ^ lDfE' 1 2 ' a� , JOB NO3_,;�s/ SHEET OF LlLLA KS --- MILD D�� lS�/, � p b `�' .Z � 1 � �'� id �' � � • � r 4S• e,,% I66 o.14 ISM6 ELf-a�- iiq7 L-2 H-12ZC-F�, 'CA21JE<al E STr D 2, Z2 3D .y � I � LL S'( (�o. q6 _ z J .17 4�— �`0 AcL E M e�,u Iz o7-3!) I (wgsT Sme) / ,Z►y. ko �� !•Sb � 2g ,S � 3; 23nZ � ` �• Z1 i faya' 2.340 1, Z V ; -6N z�o3� 13� l Kw� /•�}2 37 -7c X07 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626-3428 0 (714) 641-8777 ycFl sT CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECTo B N gy DA� JOo. SHEET OF c- 2SZ 382 3170 REDHILL AVENUE 0 COSTAMESA, CALIFORNIA 92626-3428 • (714) 641-8777 CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY C 1 OATS .�/7 JOB NO. �/J A� SHEET / OF i MILL J��i ' _ �' JI\•�� � - l�r �/ 30 .o &o ! !/ (2 CA Z CD Z 2 4- �L W e�tc.d Pa✓-► w• �� —12-1 oo 'Ori S_ oo yfr �- �I /,-�.�=8• •� 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626-3428 0 (714) 641-8777 CIVIL ENGINEERING o LAND PLANNING o LAND SURVEYING SUBJECT �EP%y �N 4 U BY 1�N DATE 108 NO. SHEET OF 2-23 -BJ 3SS / m /20 kl - 14 L U£ /60 foo i 1`4 / 7a >`� 3170 REDHILL AVENUE 0 COSTAMESA, CALIFORNIA 92626-3428 0 (714) 641-8777 ia(... 99co CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE lOB NO. SHEET OF Sr CAPAc�7-y ,div w. .2 -v -F 35s " 6' 2G CF= 0.,q D. 2 �Y aJ3r/ _;. ../AL c S7 Al & LU6 AQUA — .5.53 c— k' �— i w = .22.r-7 e - •��3 % • .5 5.3 X y9, o7* dloo C=S 3186-L AIRWAY AVENUE 0 COSTA MESA, CALIFORNIA 92626-4675 0 (714) 641-8777 CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT ST. c4&c/7-i/ BYDATE � W . Z-�3-F JOB NO. 3SS/ SHEET OF //.5' !d ' /2' /21 7�7' ` ,/ 42, I r LZ?S' �IQLF Sr CFJioo tidLF c� Q�oo 4/ZLF .S7' Q = d %3 = 2d .89 4 W = 65./7 R = .2sj3 4 4yll Sf,w. 114L uE�. ] 3 X a 9 07 X AY -0 3186-L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92626-4675 • (714) 641-8777 fa h e 9 16"W40,00 99co CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE lOB NO. SHEET OF ST1zEF7 C,4PdUTy /lEit! W.// - ,7/- d( QHS QHS Ql00 Woo 1 /.9 R — - .2S4 Q s a W.1/ K- S �21 Q-3/3 - 0aW Q�3` S6a Q�:/F= ,�S/.3 4/` 9/ k .��. 07 k . a od = 1-56-6-2 Q foo /N/= 1087 83 o% X 59. o%X . 6S/3 /875.72 #2:W 1T,1 G,,F 44,4.4190 Y 3186-L AIRWAY AVENUE 0 COSTA MESA, CALIFORNIA 92626-4675 0 (714) 641-8777 CIVIL ENGINEERING o LAND PLANNING • LAND SURVEYING I F ECT �By- ��N DATE 2 _ -� JOB NO. �v 5-/ SHEET OF �7J; v. /3 �r� Bo i,2o /60 2D o AEkITA 4F 3170 REDHILL AVENUE 0 COSTAMESA, CALIFORNIA 92626-3428 0 (714) 641-8777 err 2ftew400vo 9e1 CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT MEYE2. CANYON Z),QI✓E BY KIN DATA /3 - �� JOB NO. SHEET OF M WIM 0 D Gc /2-0 /eo 2Jo 300 '36'o MfYE� C41v% ✓✓ OQ/vc 72✓��� . 3170 REDHILL AVENUE 0 COSTAMESA, CALIFORNIA 92626-3428 0 (714) 641-8777 CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECTMEy�e (f"449�.Cw. . BY ,/� DATE �._ �2-B> JOB N0.3BlO I SHEET OF _., (a) (0 Q11, a- .9W Wfj 41 !/QLUES ElO clue r4 y (L F 7 rzlkly ;4,06827;) Q 23. 6� Grf 3G. 3/ cif C<-1 .20.7-5. 3170 REDHILL AVENUE 0 COSTAMESA, CALIFORNIA 92626-3428 0 (714) 641-8777 1L S S� q �- 07 k r �tj7 = ,2SS4.3 X o ,oc�L rcJ ,oGo6,d (dJ t o, 59 k 99 0,7 /!145 )11 k CAMIC)lv 4ok1k15 ElO clue r4 y (L F 7 rzlkly ;4,06827;) Q 23. 6� Grf 3G. 3/ cif C<-1 .20.7-5. 3170 REDHILL AVENUE 0 COSTAMESA, CALIFORNIA 92626-3428 0 (714) 641-8777 SUBJECT _ CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING ,�/LLE BY d (iENl�E DATE 108 NO. "!'l SHEET OF Qlov 9,6LF piS HQLF 0�6; X Z? GFS . 3170 REDHILL AVENUE 0 COSTAMESA, CALIFORNIA 92626-3428 0 (714) 641-8777 CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT 4fjVG4e I By DATE JOB NO. SHEET OF Cry S /,/�1LFST Q�oo f1slLFs"r" S32Z- I. �L wp - .35', l7 ' .r .5-d .2.' 99 07X Q too = �'. �'�.?Sll �o%X "Ap3 = 353, MAY � 1 X E/0 C.W,5 !Z Y 3170 REDHILLAVENUE 0 COSTAMESA, CALIFORNIA 92626-3428 0 (714) 641-8777 CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECTBY EQR 4V Clv�l�i� DATE �-1 "7/ioN' _ lOB NO. SHEET OF /78� 4 Z /,2'- ?� ' l.�' '24 1.2 42 qq Z✓ I �3 / .y 11= �'� 07;L SC 9`).07 s-- d-;-7 o, 4-3 . /7 Q = rS 3, 37 Z,=C rvrN LkND Sc,g PE C�tS1` m EiJ'f +o s�aPf J 1,02 o e G I o I8 , 2 0 4�op N4LF sr et, 712-7Z /s Q - •J•g9� K�l-f11LTfeeeT 111ttGaz, i►o�r,��l Aa S 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626-3428 0 (714) 641-8777 "7/ioN' _ /tee:.. C too WZLr ZQN a - Sep o /1-S- 11= �'� 07;L SC 9`).07 s-- d-;-7 o, wp = q/. /7 Q = rS 3, 37 Z,=C rvrN 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626-3428 0 (714) 641-8777 CIVIL ENGINEERING 0 LAND PLANNING 0 LAND SURVEYING 11 SUBJECT C�/FQQv I vEA16"E I BY kl�o TDATE ,67 JOB "J,610 SHEET OF 1 0 o. k1 41-ZIE y - i t1oF1y41 Z) 3170 REDHILL AVENUE 0 COSTAMESA, CALIFORNIA 92626-3428 0 (714) 641-8777 CIVIL ENGINEERING c LAND PLANNING • LAND SURVEYING SUBJECTC y v� I BY DATE J08 NO. SHEET 0F7-11 o 7Sa/UOC / 00r aBovF alleB 2UGD 2% J0000 !C VQLU� ,r1D00 .SOOJ %D:�O INCL . BdLCA OF P,</W, 3170 REDHILL AVENUE 0 COSTAMESA, CALIFORNIA 92626-3428 • (714) 641-8777 120 a.9q— 080 w a.4o ° 0.10 o 7Sa/UOC / 00r aBovF alleB 2UGD 2% J0000 !C VQLU� ,r1D00 .SOOJ %D:�O INCL . BdLCA OF P,</W, 3170 REDHILL AVENUE 0 COSTAMESA, CALIFORNIA 92626-3428 • (714) 641-8777 m h 9 9 v 6"Ma4fo-v CIVIL ENGINEERING • LAND OLANNING • LAND SURVEYING SUBJECT�EQQY Li VF BY DATE JOB NO. SHEET OF 4 / oor d sailE aleg 12o nqq— I _ a 9`0 o f D '`"21000 0 3000 tt000 a Food ox , IC V.4LU.E ///CZ, Bd4e D,' POWY, 3170 Ri_,- AVENUE 0 COSTAMESA, CALIFORNIA 92626-34-: e (714) 641-8777 14 0 it Ile- Lf V 4 0 ------------ LILL-, �-02- - - ��� �o f n .6 3) 13 _ q, s� 6 Y: - TCO 0.6Y 14 0 it Ile- TABLE 2. Moment Strength Mu/ y fcbd2 or Mn/fcbd2 of Rectangular Sections with Tension Reinforcement Only* w .000 .001 .002 .003 .004 .005 .006 .007 .008 .009 0.0 0 .0010 .0020 .0030 .0040 .0050 .0060 .0070 .0080 .0090 0.01 .0099 .0109 .0119 .0129 .0139 .0149 .0159 .0168 .0178 .0188 0.02 .0197 .0207 .0217 .0226 .0236 .0246 .0256 .0266 .0275 .0285 0.03 .0295 .0304 .0314 .0324 .0333 .0343 .0352 .0362 .0372 .0381 0.04 .0391 .0400 .0410 .0420 .0429 .0438 .0448 .0457 .0467 .0476 0.05 .0485 .0495 .0504 .0513 .0523 .0532 .0541 .0551 .0560 .0569 0.06 .0579 .0588 .0597 .0607 .0616 .0625 .0634 .0643 .0653 .0662 0.07 .0671 .0680 .0689 .0699 .0708 .0717 .0726 .0735 .0744 .0753 0.08 .0762 .0771 .0780 .0789 .0798 .0807 .0816 .0825 .0834 .0843 0.09 .0852 .0861 .0870 .0879 .0888 .0897 .0906 .0915 .0923 .0932 0.10 .0941 .0950 .0959 .0967 .0976 .0985 .0994 .1002 .1011 .1020 0.11 .1029 .1037 .1046 .1055 .1063 .1072 .1081 .1089 .1098 .1106 0.12 .1115 .1124 .1133 .1141 .1149 .1158 .1166 .1175 .1183 .1192 0.13 .1200 .1209 .1217 .1226 .1234 .1243 .1251 .1259 .1268 .1276 0.14 .1284 .1293 .1301 .1309 .1318 .1326 .1334 .1342 .1351 .1359 0.15 .1367 .1375 .1384 .1392 .1400 .1408 .1416 .1425 .1433 .1441 0.16 .1449 .1457 .1465 .1473 .1481 .1489 .1497 .1506 .1514 .1522 0.17 .1529 .1537 .1545 .1553 .1561 .1569 .1577 .1585 .1593 .1601 0.18 .1609 .1617 .1624 .1632 .1640 .1648 .1656 .1664 .1671 .1679 0.19 .1687 .1695 .1703 .1710 .1718 .1726 .1733 .1741 .1749 .1756 0.20 .1764 .1772 .1779 .1787 .1794 .1802 .1810 .1817 .1825 .1832 0.21 .1840 .1847 .1855 .1862 .1870 .1877 .1885 .1892 .1900 .1907 0.22 .1914 .1922 .1929 .1937 .1944 .1951 .1959 .1966 .1973 .1981 0.23 .1988 .1995 .2002 .2010 .2017 .2024 .2031 .2039 .2046 .2053 0.24 .2060 .2067 .2075 .2082 .2089 .2096 .2103 .2110 .2117 .2124 0.25 .2131 .2138 .2145 .2152 .2159 .2166 .2173 .2180 .2187 .2194 0.26 .2201 .2208 .2215 .2222 .2229 .2236 .2243 .2249 .2256 .2263 0.27 .2270 .2277 .2284 .2290 .2297 .2304 .2311 .2317 .2324 .2331 0.28 .2337 .2344 .2351 .2357 .2364 .2371 .2377 .2384 .2391 .2397 0.29 .2404 .2410 .2417 .2423 .2430 .2437 .2443 .2450 .2456 .2463 0.30 .2469 .2475 .2482 .2488 .2495 .2501 .2508 .2514 .2520 .2527 0.31 .2533 .2539 .2546 .2552 .2558 .2565 .2571 .2577 .2583 .2590 0.32 .2596 .2602 .2608 .2614 .2621 .2627 .2633 .2639 .2645 .2651 0.33 .2657 .2664 .2670 .2676 .2682 .2688 .2694 .2700 .2706 .2712 0.34 .2718 .2724 .2730 .2736 .2742 .2748 .2754 .2760 .2766 .2771 0.35 .2777 .2783 .2789 .2795 .2801 .2807 .2812 .2818 .2824 .2830 0.36 .2835 .2841 .2847 .2853 .2858 .2864 .2870 .2875 .2881 .2887 0.37 .2892 .2898 .2904 .2909 .2915 .2920 .2926 .2931 .2937 .2943 0.38 .2948 .2954 .2959 .2965 .2970 .2975 .2981 .2986 .2992 .2997 0.39 11 .3003 .3008 .3013 .3019 .3024 .3029 .3035 .3040 .3045 .3051 * Mn/fcbd2 = Asfy(d-a/2)fcbd2 = w (1-0.59u)), where w = p fy/f' and a - Asfy/0.85fc'b. Design: Using factored moment Mu enter table with Mu/ y fcbd2; find w and compute steel percentage p from p = wf'/fy. Investigation: Enter table with w from w = p fy/fc'; find value of Mn/f�bd2 and solve for nominal moment strength, Mn. 9-7 Id 2- # 10. + ill which .hown in ��D :0% nforcc- naller in ••.Orking ;scniial ioject of i - I I3.7 Practical Selection for Beam Sizes, Bar Sizes, and Bar Placement / 51 I f3.7 Practical Selection for Beam f Sizes, Bar Sizes, and Bar Placement In the previous section the procedure and example for the design of rec- tangular sections in bending with tension reinforcement only have been treated on the assumption that the design moment M = M known. This is rarely the case, however, because the design moment is already must include the effect of the weight of the beam itself which has not yet been designed. In reality, then, the dead weight of the beam has to be assumed at the Outset, a trial beam size is then obtained and may tx- readjusted if its 01ect on the design moment is significantly different from the assumed value. Tile choice of the steel percentage p is very much dependent on the limitation of the deflection of the beam. Years of experience with the working stress method showed that deflection problems were rarely encountered with beams having a steel reinforcement ratio p not more than one-half the maximum permissible value. The use of this amount (one-half of 0.751)b = 0.375pb) may provide a suitable guide for the preliminary choice of the reinforcement ratio. For the selection ()fail integral number of bars to meet a total steel area requirement, it is desirable to tabulate the combined area of several bars at a time. Table 3.7.1 gives bar areas for up to 10 bars of the different sizes. Table 3.7.1 I( Total Areas for Various Numbers of Reinforcing Bars iNominal Bur Diameter Wc,igh► Numher u/' Burs 4 S 6 7 8 9 10 # 3 1 # 4 0.375 0.5(X) 0.376 0.668 0.11 0.20 0.22 0.40 0.33 0.44 0.55 0.66 0.77 0.88 0.99 1.10 # 5 0,625 1.043 0.31 0.62 0.60 0.93 ().80 1.24 1.(X) 1.20 1.40 I .G0 1.80 2.OU 1 # 6 0.750 1.502 0.44 0.88 1.32 1.76 1.55 2.20 1.86 2.17 2.48 2.79 3.10 # 7 0.875 - 2.044 0.60,. 1.20 1.80 2.40 3.00 2.64 3.08 3.52 3.96 4.40 #8 I.0(X) 2.670 0.79 1.58 2,37 3.16 3.95 3.60 4.20 4.80 5 .40 G.UU #9 1.128 3.400 1.00 2.00 3.00 4.00 5.00 4.74 5.53 6.32 7.11 7.90 #10 1.270 4.303 1.27 2.54• 3.81 5.08 6.35 6.00 7.W 8.00 9.00 10.00 # 11 1.410 5.313 1.56 3.12 - 4,68 6.24 7.62 8.89 10.16. 11.43 12.70 # 14" 1.693 7.65 2, 25 4.50 6.75 9.00 9.36 15. 12.48 14.04 15.60 # I8" 2.257 13.60 4.00 B.OU 12.00 16.00 1.80 11.25 20.(X) 0 QO 13,50 50 15.75 75 18.00 20.25 22.50 24.00 28.0() 32.00 36.00 40.00 " # 14 and # 18 bars are used primarily as column reinforcement and are rarely used in beams. # For the placement of bars within the beam width, ACI -7.6.1 specifies J! ;, the clearance needed between bars to permit proper concrete placement I I around them. This clearance is I in. or the nominal diameter of the bar, n: whichever is greater. When two or more layers of bars are required, the minimum clearance between layers is I in. (ACI -7.6.2). Table 3.7.2 gives minimum beam widths for various numbers of equal -sized bars, computed in the manner described above. _ -- " 4= ~. -- .-4- — — -- Q Q Z T COAftfE/VTS _5012o'1.41 40' 4745' 2440' E C. TO B C r-3 RE✓1SE0 ,P/!'E TO 54 .R'OPE L dL. 70 fND,0E WiItL OF C.B. i 824`34' ' 225`S7 ¢9.[b P/PE OPF�ET BY !'CEGB C 54°62/7` O' 4593' 46 C TO R wAODEO s _QC00 .`7111�E�Y��—M.I REV/SED CYINSTRUCT/ON NOTES �C " r - EXTEA/O£D L,✓E OAr SMPM ORA/Al ✓ z . HCR/Z.r/m40 iERT.:lS -- -- — - — s -- .-4- — — -- Q Q Z T COAftfE/VTS _5012o'1.41 40' 4745' 2440' E C. TO B C r-3 RE✓1SE0 ,P/!'E TO 54 .R'OPE L dL. 70 fND,0E WiItL OF C.B. i 824`34' ' 225`S7 ¢9.[b P/PE OPF�ET BY !'CEGB C 54°62/7` O' 4593' 46 C TO R wAODEO ,9 voRPOfiGE 5. REV/SED CYINSTRUCT/ON NOTES �C " r - EXTEA/O£D L,✓E OAr SMPM ORA/Al ✓ . HCR/Z.r/m40 iERT.:lS -- -- — - — s O 1 2 3 1102- i RAY / %%X / JA JAN - UT/L/TY A3Eb1ENT / i - 1 a's (1 — v'�?1 1'J 11� 1.>' J1�' J1, I J1� d 1J= I J \\\ x,'97 -S Ja 11vE Z 1= O NO. HFVISI®NS /@— CO/✓57 CATCH BA5//Y L = C6,Y5T i6` RCP, O -LOAD A5 NOTEO $�— /'[U4 ENO RCP 5OL/o s` •/ CONST Z7" RCP P -L OAO AS M97EP CON6T TEMP INLET o Fy' s� 2i TEMP. INLET 4 /=f539, L2=2' v LIVE 4 OAK .4YENVE N 5EE F#TJF/[E B" /V,9- IB' Do E' W 0- $ $ � � PRO✓ECT BDUNOARQY � a ig "2A1, W h Q 26229 Z'i Ew 321190 h sfq '[OF c oeh`p CITY OF FONTANA, CALIFORNIA —� PUBLIC WORKS DEPARTMENT 2 DRAWN BY STORM ^DRAIN PLANS , ' '/6E9 Ff7 e.A-78 Aw. AL' F\v'[.t HORIZ re 40' F" n-54As MILLER AVENUE EXTENSION VEN' '"*w uawNum 9170 IiEpiI LL AVE: COET111E7A CMlIOAM1>4 tngMtn'n ads Wommimumm LAND PLAWN i wo veq3m5ww LINE "15" DATE PREIIAM UNIDER THE SUPER! ION OF, ac -R STA. 0+00 TO STA. +17.61D. 3-3'B1 9 1/0 APiRWW DATE APPf7ovAL on7E JOHN C. HOGAN R.C.E. 26224 ATE C.nL ENCa R.GE.•do3La mov 12 Q Q Z T COAftfE/VTS _5012o'1.41 40' 4745' 2440' E C. TO B C RE✓1SE0 ,P/!'E TO 54 .R'OPE L dL. 70 fND,0E WiItL OF C.B. i 824`34' ' 225`S7 ¢9.[b P/PE OPF�ET BY !'CEGB C 54°62/7` O' 4593' 46 C TO R wAODEO ,9 voRPOfiGE 5. REV/SED CYINSTRUCT/ON NOTES �C " EXTEA/O£D L,✓E OAr SMPM ORA/Al ✓ NO. HFVISI®NS /@— CO/✓57 CATCH BA5//Y L = C6,Y5T i6` RCP, O -LOAD A5 NOTEO $�— /'[U4 ENO RCP 5OL/o s` •/ CONST Z7" RCP P -L OAO AS M97EP CON6T TEMP INLET o Fy' s� 2i TEMP. INLET 4 /=f539, L2=2' v LIVE 4 OAK .4YENVE N 5EE F#TJF/[E B" /V,9- IB' Do E' W 0- $ $ � � PRO✓ECT BDUNOARQY � a ig "2A1, W h Q 26229 Z'i Ew 321190 h sfq '[OF c oeh`p CITY OF FONTANA, CALIFORNIA —� PUBLIC WORKS DEPARTMENT 2 DRAWN BY STORM ^DRAIN PLANS , ' '/6E9 Ff7 e.A-78 Aw. AL' F\v'[.t HORIZ re 40' F" n-54As MILLER AVENUE EXTENSION VEN' '"*w uawNum 9170 IiEpiI LL AVE: COET111E7A CMlIOAM1>4 tngMtn'n ads Wommimumm LAND PLAWN i wo veq3m5ww LINE "15" DATE PREIIAM UNIDER THE SUPER! ION OF, ac -R STA. 0+00 TO STA. +17.61D. 3-3'B1 9 1/0 APiRWW DATE APPf7ovAL on7E JOHN C. HOGAN R.C.E. 26224 ATE C.nL ENCa R.GE.•do3La mov 12 IJ . ' I - —_ _ a_ -- _ _ _, o _ r- # -_— - " - ------ _ - __ - - - — _- - T .. --'-- --- _ - - -- - _ - - — -- - =--.-- y . -- -- -- -_ - - _ _ _ . - - _ - - - _ - - - - -- _ __ - - Z�q • f• r I - i _F DLmi, - �. g 'J _"\-.._...___... dF- C,JI-�` ,•4.�. '1"''•i.'. -,.. r , ,,a i-: L'D' �� _- •t ®® , r. ' 3,IF —,T 7 a '� I - 4 \ — . = j �- 1 1 r 1 p 4 _ ---,_ ZW. c ,._.,,, l c <� -# �; �L 2 z 6 4 Oi tm - L I L \ . \ �- awr , a -, . llo� _ ' —� - t Y - , , 9_ _� c _ - �' f r h b ,,� ra 7 • .. _ tet' _ a !1l ® -y _ cy c, fn 1/ 1 ; r ,. ,,.,e. 4d 4 - _ -.. s ¢ — �: L�. I . ; -----_- I . ; b _ . ,r _ f� _ _ L_:." :�, — _,. 1� �I r ! �.' - #. r r , _ 1. . LOT 45 D �- li I, — .V::c' r+f r { I G+' t F � %_, _' � 11 -a -7K.- ;4 L--✓ ��.. {{ f� , F �; ! y,, ,� 0�f ,yam//!�///ol /, fJ --.111111111111- I ` �``-`_ ,,+« ;y„'1 Col _ •�' Y c3 , r .s' = + i i i .. - r i d f .. : _ _ _ i w.. y i 11 ,..,: , t j .B. N®. L- 2 ��L 9! %'' - �- \ �, ° ` L;',p► \ B' tai ~� - -- , a ti .F' c �� \j - 1 =' — �� ,,�G } , I. .B. N r 14 ;� 0 1\1 ,A r I . . i� _� - !r �rIt i '}K.- moi• ., y,, �'«-- 1-1!'• �.3 y°' .� . „.,®-, ;�. ^,"7 J N , ` - ,� ,�/ �, yr f `1' ,.. '..t='' '�"k ,r' Ao; ..11 F �'tt _- __-_.. I �,f \ - _ �. ._. A 3 -1 I g , . _, �, , " ;i� I � !, ?I I / z: sr > L! I I t ,�' C> , \ #� �{ ' \ , �,: 'V I — .41" AW' .. �; , -, .. � ,.. l3« . .-",r^ - yS 'fly. - _..A I i7 i — `p .. — F -_ I I L ,�. 4 _ f a _ 8 15 ` I . , w i 1 ,\N1 -4 . 1V 4`1 D .. - ;; _> , t. s„ �, -' ti max. b , ,� r w^�-..,r�Cll .` M' R, . {S a R' C T — _i i _ \ 1\ \ a .I OB NO. , ' _ i . , ,, --- _ �, �� s> 4r 1 �i 19 C.B. N0. L 8A/ 1 1 =; _ , t ;- .. w C.B. / 1 _ 10 > a _ _ +� � ,� C L 9A '\ Rl1' `--.,__ .�` t J.Be�L-8A/2vvp��i--_ C:B. NO. L -9A/2 I -,1 \ I i A/3 - . _�' ,y _ . I ;._-. N 7, , .,.,x i. ..�_ _ \ _, ° a� • s : ,_ fV 0 _ � ,3 B B L 8 cB. . L 9 � �. 1 I __.. -_ - -- - c \ 11 I' 91 - - - , ', _ _ - .' #MFS -, I;, `�""•..•' ¢ `' _ i • h,r• --• G''"m ;7 _-- 1 r o 4 �. a�,,/ m �� X O " '` .m,�.., % 4- oprr Y A t < Z u, �¢ f "' }ir Fitt ti� °� i - , I, rJ 7Ai3E2 Ll� I _ \' �`' , t� o `��, r , ;; , �!' , ` i \ y a I- _. t �,, �,, ,, /' -� _,-"' %. ,.i I I -l ^ _ S i �< , `� \ a : /, 1 1 a i : - ,_ ...„a, i.z .ir(" ..: + •. ''. -:: 'i ; ' xl,: -: .: �� : :%". �' Qf 'r•'�- - _ . - .. A I ol L t - , J 3• 9 \ I 1; \'l 4 .. �_lp_ 1 l -r Q J' ` _ psi 11.l. - _ I $_ _ 1 -� 11 'x11 - T : , ` p C- y•�.. d _ z : _ d _ '. W. , 1 a D i r , M �" - L1NE t ,' - t ,° e _ ° .__ -�,"�� t,,Wl -� ,` s ; MW ;, - _ , r11 I _ r p V 1 ; 1 t k e_ w � _ f � , .• , .---" p?r'f�` �` , � ,,. • + ., � tom, R -,g,+ _ : ;,s �:, r: •'a: � 3.,�°' -�.<�' ��� �`�". e�. , _ - _ _ i _ - i � k s +ice � '1 , '' '' �'1�+� - p� � � _ ,�. � � i l � - - - - `' - " r p _ _ , - �� P _ / i -1 3N , _ `�I. Lam---"`✓ �`�_ ° I -r ," _ r� I , r. o , , E I ,. \ __ �- 0 — ! , Qz: ,� _..�--•r * i - '`"...,.. A,.-'�",. Fii1M9cJr "� 1ti .:: P - i /,^` ?-> �' - ` - - .-. I - - ; i i I �l 'L. _. - � . v V , L_ —, - I a kyr- ti i- Ctll : - q f "" A i _ _ _ _ - ! i v 1. -All . I o - _( 16 It I/'� ��jj �(�t� y( f '".:•;,, �t t ,;� t ^ X 2 - - \ f `_' - �_ _ I ' "t d. i--.,,: , - Y ;. -. �_ __''• �''d ' __'' �f lf9 V� -- 'S ,.��. _ -l'`` `--✓�--_ , K-3 - - _ _ j _ , - I Ilk, I i , ��. r � I z r� y 4. cz - _ I +v ! 1110 '1Z,F 'fy/ } -rte. ' • e�' '� t, i,ii f.�/.+�-.�'�-( ." ,`3' � fir .' AC,,,Y. t.1': - ._ - ... ',. t i1. - _ - ,. I r t ._� - - - - 1 _, rf r L ._.. YA u� ,II _6 r. , 4v .Aw{ ,.. , T - ....._..---"� Fi '-. .< ' 's.� ._ - , _.l S ate, � - 91 ,?:a / _ ,; D >. r - ,A'_ - _, _- , - s \�� - Vim- i / - - Al I \\ .••. �.--• ._ k ` - _ j' ., ✓ ,,,fes -}� „. 4 f BAR A,k ." 3 _ �Mw. : y �. ^ . "3,. r - 1 -- '^. - .-' r`' - . TV,s ^ i, aii "�' 1 4 l i ^ _ 1` q k .-.. ,<% I , . , -- ... - V _ _��^ ,. - " -.,.` _ ,.. -', A G c i A 1 _ I / RdSk 9 I 1 \ CC�t ii T . ,: } , ��P e _ '� 1 i r - _ - w -` ,. - - ^ T ` i' �r� { . M }�`-5,, ,ql iiAr' ...rl ;, * -- 1 $E E -' /k'.., 'tin _ _ � 'f : .. V _. _ i ,. , / , , , - _ f �. I , � CMEEK A -I - . �y• _ _ i NA Im s ,_1 jar r'' _,,;f - -'fs�" ,. G,i�..iii. i1.K (•�Q' -... .,`,:. ¢$��,+ J"'" }'rc _ �,,. - - l3 - , ,gym.' , "` -- ;,� 4a II ,. i �' i C8 NO. o �' - �� - _-_ f '� EJB ._�. :s Y E f t i , , a - - L t �IiF /� ` ( I x,,, ,. r - - I . - - -I, , � ''.� fit'. � +,. .j e.:• :- _ _ � h :: ♦. , l a — � _ .'' - - i W 1 u�5 .'' . £�. M ti, - - ,_ �_- . _ 1 3 , C� i ___ _. _ F\`> ``. _� . /; .. , DBD a L.r w I __ _�__ - , . � ' d me,.. - , C7 .. ,, . ,,,.- .. „u.,, . -". (��,i.- / F''/yam-4i� •,^:" ....¢. - :r ,$ ..\�y i v _, _ _ ri -. , ...... - .._. - 4 _.- v h r - :.: d „ v \ :, „c - : . .. .. ,i ri \,��!� �— _, , L 11 r " - - .�,� .*��P�C,:A ,,, 1#11, 1, , 1, - 11 i/ i r -j . , , � A 9' 1 � _1k 1. ­ ­ . ­­ I Ic yy y yqp.,� ,per'.IfIr+lli'yy�� (-,-a....0 '-C T�. , it <'d , "v,.,.,,. I 11 f . u, LZ'! 4 : \, . F t J •` _ 1� f 't ,. • M1 /,/��11�.'i.[" fir+ g, f , L.�i ` is _ _ -- i' ` - - _ ^^, /. _.I !l _ . i . 4} �.` I- - A u4 s,�e�A ' ,.4� t' I � !' '^ ; 11 10 ,fit., ...may ' >, ,.: j 11 !f VI (I �. ► s�'' ,'o: 0,'i^' ;� i",, " - "-e '`— A.. Pllk3 j f� , /-", ,� , I . . ll r,11 � ' ,-- A t' - __ . - _ m "-. x . £_, .,... _ _ r, _ _ : +- ._-._ 1 - - -=- -- - ----- - -- --- - - - ---L----�----..-__._.-,_..-_ _ _-_..--� I Aw _ . - I _ ,v - - — - - -- -- --- -- -- - �. ._ Ii ,, ,tri , r� I 7 ! ' ' _ 9/ ,� _ ; i I- I � I I ". " it' �� I it �W > 1t �. k. ' i U C F (�,� ..< - . . m, I I Y . v ..� ` r I f 1 I \__��_ I Ill,1 I ; _ _,_ , : _.. — w... i C B N O, f °cam — - -----__j i t , r } . - -- - ..__:1. i a 11 TAt"r''I _ «, 1.L- 1 I� I _ �-19 r_, i -, F VILLAGE U ..- - ,;. > • ' ,. a J t , - _ �: ::�. ..d W%-'7 ---_..____-_ _.__. _.. ---- -----_ - _�- _. - ._`----- -.. ------ -- - "'-- .c.,_ :tom ___ , _ ._ __ p 1 _ , _. _ ___.,_....-... .._ _.._-..- _ +�� „- -q. ,_ _ -_ ,