Loading...
HomeMy WebLinkAbouttract 13325-3TRACT 13325-3 HYDROLOGY AND STORM DRAIN HYDRAULICS PREPARED FOR CITATION BUILDERS BY THE KEITH COMPANIES MAY 24, 1988 gram if rA k1h S, tic if . Idol 4 kl, '1217 "'r" , ;;�t . . , :4e F or 2 dd MAIN LHYLROL DED" ------------ ************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) *** PRELIMINARY/EXPERIMENTAL VERSION *** Copyright 1983,86,87 Advanced Engineering Software (aes) Ver. 4.1B Release Date: 2/20/87 Serial # BETA06 Especially prepared for: * BETA TEST SITE EVALUATION ONLY * FILE NAME: 69013.DAT TIME/DATE OF STUDY: 7:18 5/24/1988 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TIME-OF-CONCENTRATION MODEL* -- USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE = .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) = 1.0000 k*kkkk*kk'kk�k�ckie4c4e'kir�kit�le4cic4cykiekkk�k�e�ir�k�lr*�ekt*4ek�k�kle�k�kk�k�c�c4e�tk4ctr4c9e�e�ckie9c4ckk9ckir�r�c�c9c4cak FLOW PROCESS FROM NODE 301.00 TO NODE 302.00 IS CODE = 2 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3-4 DWELLINGS/ACRE TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW -LENGTH = 1000.00 UPSTREAM ELEVATION = 1334.71 DOWNSTREAM ELEVATION = 1319.90 ELEVATION DIFFERENCE = 14.81 TC = .412*[( 1000.00** 3.00)/( 14.81)]** .20 = 15.163 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.283 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 SUBAREA RUNOFF(CFS) = 7.19 TOTAL AREA(ACRES) = 4.70 PEAK FLOW RATE(CFS) = 7.19 S H E E-( I of **************************************************************************** FLOW PROCESS FROM NODE 302.00 TO NODE 303.00 IS CODE = 6 --------------------------------------------------------------------------- »»>COMPUTE STREETFLOW TR.AVELTIME THRU SUBAREA««< UPSTREAM ELEVATION = 1319.90 DOWNSTREAM ELEVATION = 1319.00 STREET LENGTH(FEET) = 87.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 7.19 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .50 HALFSTREET FLOODWIDTH(FEET) = 12.13 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.26 PRODUCT OF DEPTH&VELOCITY = 1.63 STREETFLOW TRAVELTIME(MIN) = .44 TC(MIN) = 15.61 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.243 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) _ .00 EFFECTIVE AREA(ACRES) = 4.70 AVERAGED Fm(INCH/HR) _ .582 TOTAL AREA(ACRES) = 4.70 PEAK FLOW RATE(CFS) = 7.19 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .50 HALFSTREET FLOODWIDTH(FEET) = 12.13 FLOW VELOCITY(FEET/SEC.) = 3.26 DEPTH*VELOCITY = 1.63 FLOW PROCESS FROM NODE 303.00 TO NODE 304.00 IS CODE = 3 --------------------------------------------------------------------------- »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««< DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.4 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 6.1 UPSTREAM NODE ELEVATION = 1319.00 DOWNSTREAM NODE ELEVATION = 1313:.90 FLOWLENGTH(FEET) = 513.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 7.19 TRAVEL TIME(MIN.) = 1.40 TC(MIN.) = 17.00 5 NF_F_rt z Of -- `7 ��c°k�c�e%itir�kit**��*'�c***��k**�e*ak*4rxFk�cxk�caE9e**st*�t�**9e�c4rk4c�h�ck*9k*�t4tY9tYityc�atyrxxxxxxxacx x FLOW PROCESS FROM NODE 304.00 TO NODE 304.00 IS CODE = 8 ------ -------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.131 k oC T TS "A" RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(I CH/HRR _ .5820 SUBAREA AREA(ACRES) = 10.90 SUBAREA RUNOFF(CFS) = 15.19 EFFECTIVE AREA(ACRES) = 15.60 AVERAGED Fm(INCH/HR) _ .582 TOTAL AREA(ACRES) = 15.60 PEAK FLOW RATE(CFS) = 21.75 TC(MIN) = 17.00 FLOW PROCESS FROM NODE 304.00 TO NODE 305.00 IS CODE = 3 ---------------------------------------------------- »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««< DEPTH OF FLOW IN 24.0 -INCH PIPE IS 18.4 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 8.4 UPSTREAM NODE ELEVATION = 1315.90 DOWNSTREAM NODE ELEVATION = 1307.80 FLOWLENGTH(FEET) = 690.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 21.75 TRAVEL TIME(MIN.) = 1.37 TC(MIN.) = 18.37 FLOW PROCESS FROM NODE 305.00 TO NODE 305.00 IS CODE = 8 ----------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<< <<< 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.034 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA AREA(ACRES) = 5.80 SUBAREA RUNOFF(CFS) = 8.09 EFFECTIVE AREA(ACRES) = 21.40 AVERAGED Fm(INCH/HR) _ .556 TOTAL AREA(ACRES) = 21.40 PEAK FLOW RATE(CFS) = 28.48 TC(MIN) = 18.37 FLOW PROCESS FROM NODE 305.00 TO NODE 106.00 IS CODE = 3 ------------------------------------------------------- »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<< <<< »»>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««< DEPTH OF FLOW IN 27.0 INCH PIPE IS 21.4 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 8.4 UPSTREAM NODE ELEVATION = 1307.80 DOWNSTREAM NODE ELEVATION = 1307.00 FLOWLENGTH(FEET) = 80.00 MANNINGS ESTIMATED PIPE DIAMETER(INCH) = 27.00 PIPEFLOW THRU SUBAREA(CFS) = 28.48 TRAVEL TIME(MIN.) = .16 TC(MIN.) N = .013 NUMBER OF PIPES = = 18.53 1 �sk�Yt7tie:t�e�e�st�r��c�e�t�t�3t�czt��cie�e����k�3tile�elea%*tie�r�r3r1c�Y�e�t���r�cF*����lhle�k�3�?r�'�kk�r�r�e�t9tiic*:Est9c3c�e�e FLOW PROCESS FROM NODE 105.00 TO NODE 106.00 IS CODE = 7 - -------------------------------------------------------------------------- >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 14.13 RAIN INTENSITY(INCH/HOUR) = 2.38 EFFECTIVE AREA(ACRES) = 46.72 TOTAL AREA(ACRES) = 51.20 PEAK FLOW RATE(CFS) = 134.62 AVERAGED LOSS RATE, FM(IN/HR) = .360 FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< ---------------------------------------------------------------------------- CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 14.13 RAINFALL INTENSITY (INCH./HOUR) = 2.38 EFFECTIVE STREAM AREA(ACRES) = 46.72 TOTAL STREAM AREA(ACRES) = 51.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 134.62 CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN.) (INCH/HOUR) (IN/HR) AREA(ACRES) -------------------------------------------------------------- 1 134.62 14.13 2.381 .36 46.72 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 1 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) --------------------------------------------- 1 134.62 46.72 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 134.62 TIME(MINUTES) = 14.130 EFFECTIVE AREA(ACRES) = 46.72 TOTAL AREA(ACRES) = 51.20 6�Ep-r ¢ or- 7 F4LI,', OF 'FLOv,J FROP-; i P_J! t € To -T-H6 E t,jOeT4 FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 18.53 RAINFALL INTENSITY (INCH./HOUR) = 2.02 EFFECTIVE STREAM AREA(ACRES) = 21.40 TOTAL STREAM AREA(ACRES) = 21.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 28.48 CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER -------------------------------------------------------------- RATE(CFS) (MIN.) (INCH/HOUR) (IN/HR) AREA(ACRES) 1 134.62 14.13 2.381 .36 46.72 2 28.48 18.53 2.024 .56 21.40 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER --------------------------------------------- Q(CFS) AREA(ACRES) 1 161.62 63.04 2 139.29 68.12 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 161.62 TIME(MINUTES) = 14.130 EFFECTIVE AREA(ACRES) = 63.04 TOTAL AREA(ACRES) = 68.12 c*************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 107.00 IS CODE = 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW)<< <<< DEPTH OF FLOW IN 54.0 INCH PIPE IS 39.8 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 12.9 UPSTREAM NODE ELEVATION = 1307.00 DOWNSTREAM NODE ELEVATION = 1305.40 FLOWLENGTH(FEET) = 170.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 161.62 TRAVEL TIME(MIN.) = .22 TC(MIN.) = 14.35 **************************************************************************** FLOW PROCESS FROM NODE 107.00 TO NODE 107.00 IS CODE = 8 --------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ------------------------------------------ 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.359 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA AREA(ACRES) = 6.80 SUBAREA RUNOFF(CFS) = 11.47 EFFECTIVE AREA(ACRES) = 69.84 AVERAGED Fm(INCH/HR) _ .418 TOTAL AREA(ACRES) = 74.92 TLOw sr-, TC(MIN) = 14.35 FLOW PROCESS FROM NODE 107.00 TO NODE 108.00 IS CODE = 3 -------------------------------------------------------------------------- »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) «« < DEPTH OF FLOW IN 66.0 INCH PIPE IS 50.3 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 8.3 UPSTREAM NODE ELEVATION = 1305.40 DOWNSTREAM NODE ELEVATION = 1305.20 FLOWLENGTH(FEET) = 67.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 66.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 161.62 TRAVEL TIME(MIN.) = .13 TC(MIN.) = 14.48 FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 8 ------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.346 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 SUBAREA AREA(ACRES) = 3.20 SUBAREA RUNOFF(CFS) = 5.08 EFFECTIVE AREA(ACRES) = 73.04 AVERAGED Fm(INCH/HR) _ .425 TOTAL AREA(ACRES) = 78.12 PEAK FLOW RATE(CFS) = 161.62 TC(MIN) = 14.48 FLOW PROCESS FROM NODE 108.00 TO NODE 109.00 IS CODE = 3 -------------------------------------------------------------------------- »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< >> >>>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW)<< <<< DEPTH OF FLOW IN 51.0 INCH PIPE IS 37.6 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 14.4 UPSTREAM NODE ELEVATION = 1305.20 DOWNSTREAM NODE ELEVATION = 1296.40 FLOWLENGTH(FEET) = 690.00 MANNINGS ESTIMATED PIPE DIAMETER(INCH) = 51.00 PIPEFLOW THRU SUBAREA(CFS) = 161.62 TRAVEL TIME(MIN.) = .80 TC(MIN.) N = .013 NUMBER OF PIPES = = 15.28 1 FLOW PROCESS FROM NODE 109.00 TO NODE 109.00 IS CODE = 8 --------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.272 SOIL CLASSIFICATION IS "A'® RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA AREA(ACRES) = 7.20 SUBAREA RUNOFF(CFS) = 11.58 EFFECTIVE AREA(ACRES) = 80.24 AVERAGED Fm(INCH/HR) _ .430 TOTAL AREA(ACRES) = 85.32 PEAK FLOW RATE(CFS) = 161.62 TC(MIN) = 15.28 FLOW PROCESS FROM NODE 109.00 TO NODE 110.00 IS CODE = 3 ---------------------------------------------------------------------------- »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««< DEPTH OF FLOW IN 51.0 INCH PIPE IS 38.6 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 14.0 UPSTREAM NODE ELEVATION = 1296.40 DOWNSTREAM NODE ELEVATION = 1295.80 FLOWLENGTH(FEET) = 50.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 51.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 161.62 TRAVEL TIME(MIN.) _ .06 TC(MIN.) = 15.34 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 85.32 EFFECTIVE AREA(ACRES) = 80.24 PEAK FLOW RATE(CFS) = 161.62 END OF RATIONAL METHOD ANALYSIS HYDROLOGY STUDY TO DETERP= LOCATION OF CATCH BASINS RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) *** PRELIMINARY/EXPERIMENTAL VERSION *** C onyri rfht 1981 , 86, 87 Advanced Engineering Software (aesl Ver. 4.18 Release Date: 2/20/87 Serial # BETA06 Especially prepared for: * BETA TEST SITE EVALUATION ONLY * FILE NAME: 690134.DAT TIME/DATE OF STUDY: 14:16 5/11/1988 --------------------------------------------------------------------------- --------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --------------------------------------------------------------------------- --------------------------------------------------------------------------- --*TIME-OF-CONCENTRATION MODEL* -- USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE _ .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) = 1.0000 *************************************************************************** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 2 --------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3-4 DWELLINGS/ACRE TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW -LENGTH = 1000.00 UPSTREAM ELEVATION = 1330.60 DOWNSTREAM ELEVATION = 1319.90 ELEVATION DIFFERENCE = 10.70 TC = .412*[( 1000.00** 3.00)/( 10.70)]** .20 = 16.182 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.195 SOIL CLASSIFICATION IS "A0l RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 SUBAREA RUNOFF(CFS) = 6.82 TOTAL AREA(ACRES) = 4.70 PEAK FLOW RATE(CFS) = 6.82 *************************************************************************** FLOW PROCESS FROM NODE 2.00 TO NODE 2.00 IS CODE = 6 ---------------------------------------------------------------------------- »» >COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< --------------------------------------------------------------------------- UPSTREAM ELEVATION = 1319.90 DOWNSTREAM ELEVATION = 1319.05 STREET LENGTH(FEET) = 85.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 6.82 STREETFLOW MODEL RESULTS: SHEE 1 of ti STREET FLOWDEPTH(FEET) = .50 HALFSTREET FLOODWIDTH(FEET) = 12.13 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.09 PRODUCT OF DEPTH&VELOCITY = 1.54 STREETFLOW TRAVELTIME(MIN) = .46 TC(MIN) = 16.64 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.159 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) _ .00 EFFECTIVE AREA(ACRES) = 4.70 AVERAGED Fm(INCH/HR) _ .582 TOTAL AREA(ACRES) = 4.70 PEAK FLOW RATE(CFS) = 6.82 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .50 HALFSTREET FLOODWIDTH(FEET) = 12.13 FLOW VELOCITY(FEET/SEC.) = 3.09 DEPTH*VELOCITY = 1.54 *************************************************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 6.00 IS CODE = 2 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3-4 DWELLINGS/ACRE TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW -LENGTH = 1000.00 UPSTREAM ELEVATION = 1329.20 DOWNSTREAM ELEVATION = 1316.30 ELEVATION DIFFERENCE = 12.90 TC = .412*[( 1000.00** 3.00)/( 12.90)]** .20 = 15.588 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.245 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 SUBAREA RUNOFF(CFS) = 4.34 TOTAL AREA(ACRES) = 2.90 PEAK FLOW RATE(CFS) = 4.34 FLOW PROCESS FROM NODE 4.00 TO NODE 6.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< UPSTREAM ELEVATION = 1316.30 DOWNSTREAM ELEVATION = 1316.20 STREET LENGTH(FEET) = 10.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 6.13 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .48 HALFSTREET FLOODWIDTH(FEET) = 11.38 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.02 PRODUCT OF DEPTH&VELOCITY = 1.46 STREETFLOW TRAVELTIME(MIN) = .06 TC(MIN) = 15.64 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.240 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 SUBAREA AREA(ACRES) = 2.40 SUBAREA RUNOFF(CFS) = 3.58 EFFECTIVE AREA(ACRES) = 5.30 I -T== 7 --F � SHEET 3 of 6 AVERAGED Fm(INCH/HR) _ .582 TOTAL AREA(ACRES) = 5.30 PEAK FLOW RATE(CFS) = 7.91 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .53 HALFSTREET FLOODWIDTH(FEET) = 13.63 FLOW VELOCITY(FEET/SEC.) = 3.05 DEPTH*VELOCITY = 1.61 FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE = 2 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3-4 DWELLINGS/ACRE TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW -LENGTH = 600.00 UPSTREAM ELEVATION = 1328.80 DOWNSTREAM ELEVATION = 1316.80 ELEVATION DIFFERENCE = 12.00 TC = .412*[( 600.00** 3.00)/( 12.00)]** .20 = 11.640 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.675 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 SUBAREA RUNOFF(CFS) = 2.83 TOTAL AREA(ACRES) = 1.50 PEAK FLOW RATE(CFS) = 2.83 **************************************************************************** FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE = 6 --------------------------------------------------------------------------- »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< UPSTREAM ELEVATION = 1316.80 DOWNSTREAM ELEVATION = 1316.20 STREET LENGTH(FEET) = 25.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 2.83 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .33 HALFSTREET FLOODWIDTH(FEET) = 5.77 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.72 PRODUCT OF DEPTH&VELOCITY = 1.21 STREETFLOW TRAVELTIME(MIN) = .11 TC(MIN) = 11.75 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.660 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) _ .00 EFFECTIVE AREA(ACRES) = 1.50 AVERAGED Fm(INCH/HR) _ .582 TOTAL AREA(ACRES) = 1.50 PEAK FLOW RATE(CFS) = 2.83 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .33 HALFSTREET FLOODWIDTH(FEET) = 5.77 FLOW VELOCITY(FEET/SEC.) = 3.72 DEPTH*VELOCITY = 1.21 **************************************************************************** FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 2 --------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< SHEET 4 of 6 DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3-4 DWELLINGS/ACRE TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW -LENGTH = 710.00 UPSTREAM ELEVATION = 1319.20 DOWNSTREAM ELEVATION m 1309.10 ELEVATION DIFFERENCE = 10.10 TC = .412*[( 710.00** 3.00)/( 10.10)]** .20 = 13.329 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.466 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 SUBAREA RUNOFF(CFS) = 6.78 TOTAL AREA(ACRES) = 4.00 PEAK FLOW RATE(CFS) = 6.78 **************************************************************************** FLOW PROCESS FROM NODE 8.00 TO NODE 10.00 IS CODE = 6 --------------------------------------------------------------------------- »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< ---------------------------------------------------------------------------- UPSTREAM ELEVATION = 1309.10 DOWNSTREAM ELEVATION = 1308.30 STREET LENGTH(FEET) = 80.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 6.78 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .50 HALFSTREET FLOODWIDTH(FEET) = 12.13 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.08 PRODUCT OF DEPTH&VELOCITY = 1.53 STREETFLOW TRAVELTIME(MIN) = .43 TC(MIN) = 13.76 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.419 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) _ .00 EFFECTIVE AREA(ACRES) = 4.00 AVERAGED Fm(INCH/HR) _ .582 TOTAL AREA(ACRES) = 4.00 PEAK FLOW RATE(CFS) = 6.78 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .50 HALFSTREET FLOODWIDTH(FEET) = 12.13 FLOW VELOCITY(FEET/SEC.) = 3.08 DEPTH*VELOCITY = 1.53 **************************************************************************** FLOW PROCESS FROM NODE 9.00 TO NODE 10.00 IS CODE = 2 --------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3-4 DWELLINGS/ACRE TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW -LENGTH = 570.00 UPSTREAM ELEVATION = 1317.20 DOWNSTREAM ELEVATION = 1308.30 ELEVATION DIFFERENCE = 8.90 TC = .412*[( 570.00** 3.00)/( 8.90)]** .20 = 11.982 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.629 SOIL CLASSIFICATION IS "A11 RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA RUNOFF(CFS) = 3.32 TOTAL AREA(ACRES) = 1.80 SHEET 5 of 6 SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 PEAK FLOW RATE(CFS) = 3.32 **************************************************************************** l4LOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 2 •--------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ----------------------------------------------------------------------------- ---------------------------------------------------------------------------- DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3-4 DWELLINGS/ACRE TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW -LENGTH = 1000.00 UPSTREAM ELEVATION = 1333.60 DOWNSTREAM ELEVATION = 1319.40 ELEVATION DIFFERENCE = 14.20 TC = .412*[( 1000.00** 3.00)/( 14.20)]** .20 = 15.291 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.271 SOIL CLASSIFICATION IS 10A" RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 SUBAREA RUNOFF(CFS) = 5.02 TOTAL AREA(ACRES) = 3.30 PEAK FLOW RATE(CFS) = 5.02 FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 6 ---------------------------------------------------------------------------- »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- UPSTREAM ELEVATION = 1319.40 DOWNSTREAM ELEVATION = 1315.90 STREET LENGTH(FEET) = 300.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 5.58 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .45 HALFSTREET FLOODWIDTH(FEET) = 9.88 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.26 PRODUCT OF DEPTH&VELOCITY = 1.48 STREETFLOW TRAVELTIME(MIN) = 1.53 TC(MIN) = 16.82 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.145 SOIL CLASSIFICATION IS "A1t RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 SUBAREA AREA(ACRES) _ .80 SUBAREA RUNOFF(CFS) = 1.13 EFFECTIVE AREA(ACRES) = 4.10 AVERAGED Fm(INCH/HR) _ .582 TOTAL AREA(ACRES) = 4.10 PEAK FLOW RATE(CFS) = 5.77 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) _ .45 HALFSTREET FLOODWIDTH(FEET) = 9.88 FLOW VELOCITY(FEET/SEC.) = 3.37 DEPTH*VELOCITY = 1.53 *************************************************************************** FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 2 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3-4 DWELLINGS/ACRE TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW -LENGTH = 1000.00 UPSTREAM ELEVATION = 1315.90 DOWNSTREAM ELEVATION = 1305.70 ELEVATION DIFFERENCE = 10.20 TC = .412*[( 1000.00** 3.00)/( 10.20)]** .20 16.337 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.183 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 SUBAREA RUNOFF(CFS) = 4.61 TOTAL AREA(ACRES) = 3.20 PEAK FLOW RATE(CFS) = 4.61 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 3.20 EFFECTIVE AREA(ACRES) = 3.20 PEAK FLOW RATE(CFS) = 4.61 END OF RATIONAL METHOD ANALYSIS SHEET 6Of6 L � TO L COA -INPUT Uell OJR�Z VA LJE� I a-aulcemul w4e:r -Tum, lk64� 701 2 2,33 A 6F5 1111012 2. &3 //,75- 0 0 13A,Z 13oq, 6,78 /3,33 ....... .. . 1- (2- 21 - /3 4- 77 A� aL:it 5L L 4.E To 4�7 kz- 5 12 DESIGN OF CATCH BASINS AMNG BEGONIA DSII V. CAPACITY OF CURB OPENING INLETS ON A CONTINUOUS GRADE The capcity of a curb opening inlet on a continuous grade varies directly with: A. Depth of water at the inlet entrance B. Length of clear opening The depth of the water at the inlet entrace for a given discharge varies directly with: A. Cross slope of the pavement at the curb B. Amount of warping or depression of the gutter flow line at the inlet C. Roughness of the flow line D. Longitudinal slope of the gutter The capacity of a curb opening inlet when intercepting 100 percent of the flow in the gutter is given by the formula® Q a 0.7 L (a + y)3/2 where y s depth of flow in approach gutter a s depth of depression of F.L. at inlet L - length of clear opening To size an opening the following information must be known: A. Height of the curb opening. B. Depth (a) of flow line depression, if any, at the inlet. C. Design discharge (Q) in the gutter (information as to drainage area, rainfall intensity and runoff coefficients from which a design dis- charge can be estimated). Any carryover from a previous inlet must be included. D. Depth of flow in normal gutter for the particular longitudinal and cross slopes at the inlet in question. This may be determined from the street capacity charts. The capacity of a curb opening inlet is decreased by allowing part of flow to pass the opening. A maximum of fifteen percent of the flow is recommended passing. Procedure A. Enter Table M (a) with depth of flow, y, and gutter depression at the inlet, a, and determine Q/L the interception per foot of inlet opening if the inlet were intercepting 100% of the gutter flow. SHEET 1 of 6 B. Determine length of inlet L required to intercept 100% of the gutter flow. L - total gutter flow Q divided by the factor Q/L. C. Compute ratio Lp/L where Lp = actual length of inlet for partial interception. D. Enter Table M (b) with Lp/L and a/y and determine ration Qp/Q, the proportion of the total gutter flow intercepted by the inlet in question. E. Flow intercepted, Qp is the ration Qp/Q times the total gutter , f low Q. F. Flow carried over to next inlet is Q - Qp. -"fi2of6 S 3 Of 6 DEPTH OF FLOW -y - FEET Cz 03 04 .05 .06 06 .10 .2 .3 4 .5-6 0 1010 i vISCHARGE PER FOOT . �`i —Y — 1.= �/; .6 LENGTH OF CURB OPENING 6 _ _ t Q _ 10 08 06 05 .04 .03 UON (b) PARTIAL IN i ER- CEPTION RATIO. FOR INLETS OF LENGTH LESS THAN L .05 .06 .08 .10 .2 J 4 S 6 8 L010 L T,---,BLEM BUREAU OF PUBLIC ROADS CAPACITY Or' CURB OPENING INLETS nq>I r.�n11rikil rnl +c r-OAr)c, 1 Jt cl/y 1 1 - ,V 1 1 `T- 1 ` � r .05 .06 .08 .10 .2 J 4 S 6 8 L010 L T,---,BLEM BUREAU OF PUBLIC ROADS CAPACITY Or' CURB OPENING INLETS nq>I r.�n11rikil rnl +c r-OAr)c, S=4.of6 C. B. CURB OPENITNTG ( Interception Given: (a) discharge Ci0 _ CFS (b) street slope S (c) curb type "A-2" 11D" (d) half street width = 20FOWOH ft. Solution: 11 S/z_ ) 1/2 y== Ok " 4 Y , L = __/ _ , ! � (L for total interception) TRY: L.p= c 4 ft. YL a / y = .33/ `p = Q s QP_ �^ X _ r CFS (Intercepted) QC= _ ..° _ CFS(Carryover) r 4 .-,�Nj �_ S= 5 of 6 C. B. CURB OPENING-, ( Interception Given: (a) discharge Q CFS (b) street slope S (C) curb type "A-2" "D" (d) half street width Solution:Mw��: l Q/P= )/2= Therefore Y== Q /L L 1 4.; 25.41 (L for total interception) TRY: LP= it. L = z �= VQ (Q�= 1, X -CFS (Intercepted) Qc.11, 4-� 1- j a 1,15- CFS(Carryover) LOtJ C:) f; t, -J, -E 7 7"A PE :a- Im 6of6 CURB OPENING ( Interception ) )57 7 CFS Given: (a) discharge Q ; 0 _ (b) street slope S = "0 (c) curb type "A-2" "D" (d) half street width = 2rJ ft. Solution: «, 4 f; �,;;t S'lt= /( ) i= Therefore y= r Rev Q /L . L = / o ( `4 (L for total interception) TRY: Lp= • L T.I - _ a/y = .33/ 15_ X _CFS (Intercepted) QCU CFS(Carryover) d tlYv'. =-AMIC MFIEZ JDtl 84412 i. iiuRM DRAIN ANALYSIS DATE i8 -MAY -d iwteRlNG, iNC l I;�P--, i ) PAGE 1 C 3cGONIA URIVE SiOR,a uRAIN FROM U5 JCT STK IN ! D.JAKU80WSKIIN 2 MAX 0 ADJ Q LENGTH FL 1 FL 2 CTL/TW U w S KJ KE KM LC L1 L3 L4 Al A3 A4 - i 1306.30 0.00 0.01 35.3 35.3 44.00 1299.81 1300.22 0.00 30. 0. 3 0.0u 0.00 0.00 0 4 U 0 0. u. 0. 4.00 0.013 3 25.2 25.2 201.25 1300.22 1302.22 0.00 30. 0. 3 0.00 0.10 0.00 U 4 4 25.2 25.2 250.00 1"302.77 1305.79 0.00 24. 0. 3 0.00 0.10 0.00 0 5 0 0 0. 0. 0. 4.00 0.013 25.2 25.2 226.30 1305.85 1308.63 0.00 24. 0. 3 0.00 0.10 0.00 8 6 10 11- 0. 14. 30' 4.00 .00 Ou.01J i 6.8 6.8 191.95 1308.71 1311.07 0.00 24. 0. 3 0.00 0.10 0.06 0 7 0 0 0. 0. 0. 0,05 0.01` 6,8 6.8 149.40 1311.12 1312.95 7 8.00 '24. 0. 3 0.00 0.00 0.00 0 0 0 0 17. 0. 0. 0.00 0.01: 6.8 6.8 50.87 1312.95 1313.58 1318.59 24.00 1 0.00 0.20 0.00 8 18.1 10.1 23.03 1300.89 1301.69 1306.30 18. 0. 1 0.00 0.20 0.00 4 8 8 0 - 'J. 0. 0. 0.0 0.81: 6 iu 12.6 12.0 25.50 1308.64 1310.16 13315.30 24. 0, 1 0.00 0.20 0.00 ° L' U 8 U 0 5.8 35.24 1308.b9 1310.88 1314.90 18. 0, 1 8.00 8.20 0.00 6 STORM DRAIN ANALYSIS DATE EDP JOB 84412 ANGELES COUNTY ROAD DEPARTMENT PAGE 18 -MAY -E E BEGONIA DRIVE STORM DRAIN FROM DS JCT STR G R O.JAKUBOWSKI--- - r p 0 W ON OC FLOW SF -FULL V 1 V 2 FL 1 FL 2 HG 1 HG 2 D 1 D 2 TW TW FS) (IN)(IN) (FT) (FT) TYPE tFT/FT) (FPS) (FPS-----.( FT) (F T) CAIC CALC (FT) (FT) CALC__-CK REMARK _. . - HYDRAULIC GRADE LINE CONTROL 1305.30 0.00 _ _ ____ _ _ -- - -- 'S,3 .30_0 1.-842.02 FULL ,.0.00741__ 7.2 7._2 1299.81_1300.22 1305.30 1305.63,_ 5.49 5_41 0.00 5.2 30 0 1.42 1.71 FULL 0.00377 5.1 5.1 1300.22 1302.22 1306.10 1306.86 5.88 4.64 0.00 0.00 - --- 25.2 24 0 2.00 1.76 FULL 0.01241 8.0 8.0 1302.77 1305.79 1306.37 1309.47 3.60 3.68 0.00---.-0.00. 15.2 24 0 2.80 1.76 FULL 0.01241 8.0 8.0 1305.85 1388.63 1309.62 1312.43 3.77 3.80 0.00 0.00 ---_ - --------.-.._ ... - 6,g 24 0 0.71 0.92 FULL 0.08090 2.2 2.2 1308.71 1311.07 1313.18 1313.95 5.07 2.88 0.00----0.,00--- 1 .00 0. -6.8 24 0 0.71 0.92 SEAL 0.00090 2.2 6.7 1311.12 1312.95 1313.96 1313.67 2.84 0.72 0.00 0.00 HYD JUM X = 74.06 X(N) = 0.00 X(J) 136.96 F(J) = 1.72 D(BJ) = 0.72 D(AJ) = 1.17 6.8 24 0 0.71 0.92 PART 0.00090 6.7 4.8 1312.95 1313.58 1313.67 1314.50 0T72 0.92 1324:93 23i� 59 HYORAULIC GRADE LINE CONTROL = 1306.62 0.1 18 0 0.76 1.22 FULL 0.00924 5.7 5.7 1300.89 1301.69 1306.62 1306.83 5.73 5.14 1307.44 1306.30 HYDRAULIC GRADE LINE--C-"TR0t=--1'3-13:10"" 12.6 24 0 0.65 1.27 FULL 0.00310 4.0 4.0 1308.64 1310.16 1313.10 1313.18 4.46 3.02 1313.48 1315.30 HYDRAULIC GRADE LINE CONTROL = 1313.10 - - .90 314 5.8 18 0 0.49 0.93 FULL 0.00305 3.3 3.3 1308.89 1310.88 1313.10 1313.21 4.21 2.33 1313.41 1 1. FL 1. D 1 AND MG 1 REFER TO DOWNSTREAM END 2. FL 2 D 2 AND HG 2 REFER TO UPSTREAM ENO DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HG INTERSECTS SOFFIT IN SEAL CONDITION N - DISTANCE IN FEET FROM 08WNSiREAM END TO POINT WHERE WATER SURFACE REACHES NORMAE DEPTH -BY EITHER BRAW88tirPt--(?R BA64*ATEi X J - DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HYDRAULIC JUMP OCCURS IN LINE F�J) - THE COMPUTED FORCE AT THE HYDRAULIC JUMP N- DEPTH OF WATER BEFORE THE HYDRAULIC JUMP (UPSTREAM SIDE)' - --- -- - - - DEPTH -OF WkTER-AFTER-THE HYDRAULIC -JUMP- (DOWNSTREAM SIDE) AL INDICATES FLOW CHANGES FROM PART TO FULL OR FROM FULL TO PART 0 JUST INDICATES THAT nYDRAuHICGES MPROM CURBERCRTrTECAL NCO IONBARITrI+EAUPSTREAMHENDHOOFTh EILINEMP --- „� @ HJ @ OJT INDlCAiES-THAT-"y"AUL-IC JUMP-DCEURS-kT--- T -HE -JUNCTION AT THE DOWNSTREAM -END OF THE LIN - J SH=Jlof 1