Loading...
HomeMy WebLinkAboutTract 15957 & 15957-6 Phase 4B Village of HeritageHYDROLOGY AND HYDRAULIC REPORT LEWIS HOMES PROJECT PHASE 4B TRACT NOS. 15957 AND 15957-6 CITY OF FONTANA STATE OF CALIFORNIA Prepared by: Hall and Foreman, Inc. - 203 North Golden Circle Drive, Suite 300 Santa Ana, California 92705-4010 (714) 664-0570 P(�se�: j?-t7—P0t'v-F- October 9, 1998 z - 4P I Rang 1 _U FAX COMMUNICATIONS FAX NUMBER: (909) 3: PLEASE DELIVER THE FOLLOWING PAGES TO: NAME: LOCATION: FAX: �09 9Y2- Co -76-7 PHONE: CITY OF CALIFORNIA FROM:MOG�jtlOS LOCATION/ p/oq :3�O�(/ PHONE: TOTAL NUMBER OF PAGES: ® DATE :�E 2 _ TIME : ( INCLUDING COVER SHEET) MESSAGE: A 15� 7 -- � 2��1L7- CITY OF FONTANA ENGINEERING DIVISION 8353 SIERRA AVENUE, FONTANA , CA 92335 PHONE NUMBER: (909) 350-7610 CKos F O N T A N A HYDROLOGY AND HYDRAULIC REPORT LEWIS HOMES PROJECT PHASE 4B TRACT NOS. 15957 AND 15957-6 CITY OF FONTANA STATE OF CALIFORNIA M. No. 4615 W d Exp. LP CIVII OFC Prepared by: Hall and Foreman, Inc. 203 North Golden Circle Drive, Suite 300 Santa Ana, California 92705-4010 (714) 664-0570 hs 6311 October 9, 1998 Kjcj;�PDn4 �NI�LY DFF— 5' �rA App" tA 8 . o..to l ilk Hall & Fbreman, Inc. Ora Civil Engineering • Planning • Surveying • Public Works ----IVEp OCT - 6 �ggp CRY ENGINEER'S OFA PRELIMINARY DRAINAGE REPORT AND HYDRAULIC CALCULATIONS FOR EAST AVENUE - FROM MILLER AVENUE TO FQOTHILL BOULEVARD FOR THE CITY OF FONTANA, CALIFORNIA September 29, 1993 J.N. 3810-021 Prepared by: Warren Williams, P.E. Reviewed by: John C. Hogan, P.E. 13821 Newport Avenue, Suite 200 Tustin, California 92680-7803 Tel 7141544-3404 Fax 714/544-3155 V— - -- - — - - m or Hall & Fbreman, Inc. smr A Civil Engineering - Planning - Surveying - h.blic Works SUBJECT BY DATE JOB NO. SHEET OF/ JIl--PYcr�Q FLOItl-Byf/s -/7//F,Q e/iii/r' �� GFy � tiff- A'r' 13821 Newport Avenue, Suite 200 Tustin, California 52680-78r:3 Tel 7141544-3404 �.G An I is a portion of a land development project by Lewis Homes located in the City of Fontana, California. The ded to the north by Day Canyon Drive, East Avenue to the west, West Liberty Parkway to the east, and we to the south. Phase 4B is composed of Tract nos. 15957 and 15957-6 with a total land area of about 18 15957-6, which is located at the northem'side of the development area, will have 48 residential lots while will have 49 residential lots. p,,mage study is conducted to design the proposed drainage system in the development site. Portion of Day 6 -rt -"e , about 0.4 acre, will be draining to the project site, Aside from this `offsite" tributary, the rest of runoff roy wiu bt ommg from the site itself. et�vill be graded creating a low point at the cul-de-sac of `BB" street. A high point will be located at the junction Af "god "Z" streets creating a southerly runoff flow along "Y" street and an easterly flow along "Z" street. E"PtOLOGY Ihehydrology method used in this study is based on the San Bernardino County Hydrology Manual. The calculations Were made using the AES software for San Bernardino. The site has a soil classification of type "A". The, -proposed drainage system, catch basins and pipelines, is designed for the 10 -year storm event and inlets were checked for 25 -year storm. The runoff carrying capacity of the streets was checked for 100 -year storm discharge. The presence of a sump condition at the cul-de-sac should have dictate 5- ear storm design, however, the low point at that location is designed to handle an overflow into West Libe rarkwaythat did not necessitate the ear design. Pr t0a `rR -r"7'I �J R . 44 HYDRAULICS I�gU,i Nd Alpe � a BM�7Yo GY O AF c�J rt•`'�P A Curb opening catch basins were designed to intercept most of the design 10 -year storm flows using the FHWA HEC -12 method (Quick HEC -12 software by Haestad Methods). Hydraulic grade lines (HGL) for pipes were calculated using the LACFCD computer program F0515P, WSPG. Results of calculations for inlets and pipelines indicate adequacy for the proposed drainage system. Streets are also found to be adequate in conveying the 100 -year storm event indicating that flood levels are well below proposed pad levels. Transmission Report Date/Time Local ID Local Name Company Logo This document was confirmed. (reduced sample and details Below) Document Size Letter -S CURB RETURN APPLICATION DATA *CURB RETURN RADIUS APPLICATION 35' Arterial Highway Intersecting Pages Any Classification of Street Comments Collector Street Intersecting 30' Atrother Collector Street 99826767 OR Collector Street Intersecting 2'39" A Local Street 25' Local Street Intersecting CP 9600 Another Local Street *NOTE: When streets of different closslncatlons intersect, the higher Classification of street tale' Precedence over the lower one far radius sin. Eadmple: Arterial highwI Intersecting o local street - 35'radius. 25' RADIUS CURB RETURN. fl::: LXp°Ne10" ALTERNATE IL CIRCULAR CORNt R cl/e�1ra7 FOR LOCAL STREETS SCALE: 1"=Id pep. ars FACE R a 2a.e' -- pitaFESS/ 0.t* 4• ked S9 Mt. rxt ! 315196 Deleted herringbane pattern - CITY OF FONTANA, CALIFORNIA Drawn By: a >•epwawrrt STD. Checked By: n-Qe*/ DETAIL RAMPED CURB RETURNAaPrwedByCE.ru 127`:Ra Io4A _"_ee SCALE: AS SHOWN Date: /t -/=-a9 7T_ Total Pages Scanned 3' Total Pages Confirmed 3' 12— 1-98; 5:28PM 19-34567 Ho. Doc Remote Statlon Start Time Duration Pages Mode Comments Results 1 982 99826767 12— 1-98' 5:25PM 2'39" 3/ 3 EC CP 9600 EC: Error Correct RE: Resend PD: Polled by Remote BC: Broadcast Send MP: Multi—Poll PG: Polling a Remote CP: Completed RM: Receive to Memory DR: Document Removed LS: Local Scan LP: Local Print FO: Forced output MS: Receive to Mailbox PI: Power Interruption TM: Terminated by user WT: Waiting Transfer NNNr Hall & Fbreman, Inc. Nor® Civil Engineering Planning • Surveying • Public Warks PRELIMINARY DRAINAGE REPORT AND HYDRAULIC CALCULATIONS FOR EAST AVENUE . .19'RECEIVED OCT - 6 1993 CITY ENGINEER'S OFFICE FROM MILLER AVENUE TO FQOTHILL BOULEVARD FOR THE CITY OF FONTANA, CALIFORNIA September 29, 1993 J.N. 3810-021 Prepared by: Warren Williams, P.E. Reviewed by: John C. Hogan, P.E. 13821 Newport Avenue, Suite 200 Tustin, California 92680-7803 Tel 714/544-3404 Fax 714/544-3155 s ®r Hall & Fbreman, Inc. ourA Civil Engineering -Planning - Surveying - h blit Wnrks SUBJECT ,AZ OZ71NG � ZIV By ! 1 / / DATE lOB NO SHEET OF `PEST -zea"rY �,QRrs�w,gY 9- i -93 3aio o� o i �ErTED FLOl�/-8Y 1/s'S�/LL-Ov�F ALON,,45T�ll� I OD lip 011 �( 13821 Newport Avenue, Suite 200 Tustin. California 92680-78(:3 Tel 7141544.3404 GENERAL The project is a portion of a land development project by Lewis Homes located in the City of Fontana, California. The site is bounded to the north by Day Canyon Drive, East Avenue to the west, West Liberty Parkway to the east, and Miller Avenue to the south. Phase 4B is composed of Tract nos. 15957 and 15957-6 with a total land area of about 18 acres. Tract 15957-6, which is located at the northern side of the development area, will have 48 residential lots while tract 15957 will have 49 residential lots. This drainage study is conducted to design the proposed drainage system in the development site. Portion of Day Canyon Drive, about 0.4 acre, will be draining to the project site. Aside from this "offsite" tributary, the rest of runoff will be coming from the site itself. The site will be graded creating a low point at the cul-de-sac of "BB" street. A high point will be located at the junction of "Y" and "Z" streets creating a southerly runoff flow along "Y" street and an easterly flow along "Z" street. HYDROLOGY The hydrology method used in this study is based on the San Bernardino County Hydrology Manual. The calculations were made using the AES software for San Bernardino. The site has a soil classification of type "A". The proposed drainage system, catch basins and pipelines, is designed for the 10 -year storm event and inlets were checked for 25 -year storm. The runoff -carrying capacity of the streets was checked for 100 -year storm discharge. The presence of a sump condition at the cul-de-sac should have dictate 5- ear storm design, however, the low point at that location is designed to handle an overflow into West Libe Parkway that did not necessitate the �=year design. --� , 5� s Ar Q too `jR �"l.�i ci N`�®� p���f �-P +6M�r'nia�G`� oV'GR�LOCv ' HYDRAULICS ..�pt�C UY Curb opening catch basins were designed to intercept most of the design 10 -year storm flows using the FHWA HEC -12 method (Quick HEC -12 software by Haestad Methods). Hydraulic grade lines (HGL) for pipes were calculated using the LACFCD computer program F0515P, WSPG. Results of calculations for inlets and pipelines indicate adequacy for the proposed drainage system. Streets are also found to be adequate in conveying the 100 -year storm event indicating that flood levels are well below proposed pad levels. HYDROLOGY CALCULATIONS M 1w Hall & Foreman, Inc. 11JMCivil Engineering • Planning • Surveying • Public Works iUBJECT ` BY 0 A DATE JOB NO. SHEET OF 9-2"j- 11 -�- I q 5- I l 2 CS 203 North Golden Circle Drive, Suite 300, Santa Ana, California 92705-4010 • Tel 714/664-0570 • Fax 714/664-0596 �Mr Hall & Foreman, Inc. Civil Engineering • Planning • Surveying • Public Works SUBJECT BY DATE JOB NO. SHEET OF UiUJlS 'AWES �`• �a �� S' 7:2— P P � �\ CC- � �Q Q d-1 � �lM C� r�O 203 North Golden Circle Drive, Suite 300, Santa Ana, California 92705-4010 • Tel 714/664-0570 • Fax 714/664-0596 LEWIS HOMES PROJECT CITY OF FONTANA HYDROLOGIC SUMMARY TABLE Node Nos. 11 12 14 15 16 17 18 20 21 22 23 24 25 26 28 29 30 32 33 35 36 37 38 39 41 42 43 101 102 Hydsumtable.xls Tc10 Q10 T000 Q100 (min) (cfs) (min) (cfs) 10.08 1.99 10.08 3.19 11.11 3.22 10.98 5.22 8.94 0.57 8.94 0.87 10.52 0.89 10.36 1.36 11.52 4.58 11.34 7.30 13.65 7.42 13.18 12.16 8.48 1.41 8.48 2.24 8.01 1.37 8.01 2.16 9.23 2.77 9.10 4.46 10.82 4.24 10.52 6.94 11.84 4.27 11.40 7.03 5.51 0.44 5.51 0.67 7.84 2.97 7.61 4.77 9.53 5.08 9.10 8.33 8.58 2.41 8.58 3.82 10.01 13.42 9.53 21.77 5.41 0.37 5.41 0.56 9.06 1.96 9.06 3.12 10.20 3.21 10.15 5.16 10.66 3.75 10.55 6.00 12.19 5.27 11.90 8.60 13.71 6.55 13.26 10.83 13.81 6.76 13.35 11.16 14.06 7.76 13.57 12.81 10.12 2.49 10.12 3.98 11.91 4.11 11.75 6.69 12.81 12.49 12.59 20.51 10.49 20.25 10.32 32.90 10.98 32.35 12.27 52.77 D-7 FIGURE D-2 �a Cs' 3.5 3.5 N 3 3 2.5 2.5 U) w Z Q Z = 2 2 F_ n. w 0 J � LL 1.5 1.5 S Z Q I s -I a / 1,00 0.5 0.5 0 0 2 5 10 25 50 100 RETURN PERIOD IN YEARS NOTE, I. FOR INTERMEDIATE RETURN PERIODS PLOT 10 -YEAR AND 100 -YEAR ONE HOUR VALUES FROM MAPS, THEN CONNECT POINTS AND READ VALUE FOR DESIRED RETURN PERIOD. FOR EXAMPLE GIVEN 10 -YEAR ONE HOURS 0.95" AND 100 -YEAR CNE HOUR - 1.60", P5 -YEAR ONE HOUR - 1.18". REFERENCEtNOAA ATLAS P, VOLUME =I-CAL.,1973 RAINFALL DEPTH VERSUS SAN BERNARDINO COUNTY RETURN PERIOD FOR HYDROLOGY MANUAL PARTIAL DURATION SERIES D-7 FIGURE D-2 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983-92 Advanced Engineering Software (aes) Ver. 1.9A Release Date: 6/26/92 License ID 1237 Analysis prepared by: HALL & FOREMAN, INC. 13821 NEWPORT AVENUE, Suite 200 TUSTIN, CALIFORNIA 92680-7803 714/544-3404 ************************** DESCRIPTION OF STUDY ************************** * CITY OF FONTANA, LEWIS HOMES PROJECT * ONSITE SYSTEM HYDROLOGY ANALYSIS, Q10 * FILENAME: "FONTANA" BY" E. M. RUIZ ************************************************************************** FILE NAME: FONTANA.DAT TIME/DATE OF STUDY: 13:18 9/30/1998 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TIME-OF-CONCENTRATION MODEL* -- USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .90 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE = .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) = 1.0000 **************************************************************************** FLOW PROCESS FROM NODE 19.00 TO NODE 20.00 IS CODE = 2.1 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5-7 DWELLINGS/ACRE TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 195.00 UPSTREAM ELEVATION(FEET) = 65.00 DOWNSTREAM ELEVATION(FEET) = 63.00 ELEVATION DIFFERENCE(FEET) = 2.00 TC(MIN.) = .389*[( 195.00** 3.00)/( 2.00)]** .20 = 8.012 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.347 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 1.37 TOTAL AREA(ACRES) = .53 PEAK FLOW RATE(CFS) = 1.37 **************************************************************************** FLOW PROCESS FROM NODE 20.00 TO NODE 21.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< UPSTREAM ELEVATION(FEET) = 63.00 DOWNSTREAM ELEVATION(FEET) = 58.00 STREET LENGTH(FEET) = 225.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) _ INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) _ STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .28 HALFSTREET FLOOD WIDTH(FEET) = 7.57 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.08 PRODUCT OF DEPTH&VELOCITY = .85 STREET FLOW TRAVEL TIME(MIN.) = 1.22 TC(MIN.) _ 5.00 2.13 9.23 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.074 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) _ .66 SUBAREA RUNOFF(CFS) = 1.54 EFFECTIVE AREA(ACRES) = 1.19 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 1.19 PEAK FLOW RATE(CFS) = 2.77 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .30 HALFSTREET FLOOD WIDTH(FEET) = 8.73 FLOW VELOCITY(FEET/SEC.) = 3.15 DEPTH*VELOCITY = .95 **************************************************************************** FLOW PROCESS FROM NODE 21.00 TO NODE 22.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«« < UPSTREAM ELEVATION(FEET) = 58.00 DOWNSTREAM ELEVATION(FEET) = 53.00 STREET LENGTH(FEET) = 288.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) _ INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .34 HALFSTREET FLOOD WIDTH(FEET) = 10.46 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.02 PRODUCT OF DEPTH&VELOCITY = 1.01 STREET FLOW TRAVEL TIME(MIN.) = 1.59 TC(MIN.) 5.00 = 10.82 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.795 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) _ .85 SUBAREA RUNOFF(CFS) = 1.77 EFFECTIVE AREA(ACRES) = 2.04 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 2.04 PEAK FLOW RATE(CFS) = 4.24 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .35 HALFSTREET FLOOD WIDTH(FEET) = 11.04 FLOW VELOCITY(FEET/SEC.) = 3.17 DEPTH*VELOCITY = 1.10 **************************************************************************** FLOW PROCESS FROM NODE 22.00 TO NODE 23.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< UPSTREAM ELEVATION(FEET) = 53.00 DOWNSTREAM ELEVATION(FEET) = 49.00 STREET LENGTH(FEET) = 200.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 4.39 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .35 HALFSTREET FLOOD WIDTH(FEET) = 11.04 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.28 PRODUCT OF DEPTH&VELOCITY = 1.14 STREET FLOW TRAVEL TIME(MIN.) = 1.02 TC(MIN.) = 11.84 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.648 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) _ .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) _ .13 SUBAREA RUNOFF(CFS) _ .30 EFFECTIVE AREA(ACRES) = 2.17 AREA -AVERAGED Fm(INCH/HR) _ .46 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .48 TOTAL AREA(ACRES) = 2.17 PEAK FLOW RATE(CFS) = 4.27 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .35 HALFSTREET FLOOD WIDTH(FEET) = 11.04 FLOW VELOCITY(FEET/SEC.) = 3.19 DEPTH*VELOCITY = 1.11 **************************************************************************** FLOW PROCESS FROM NODE 23.00 TO NODE 29.00 IS CODE = 5.1 >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA<<<<< - --------------------- UPSTREAM NODE ELEVATION = 49.00 DOWNSTREAM NODE ELEVATION = 47.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 85.00 CHANNEL SLOPE _ .0235 CHANNEL BASE(FEET) _ .00 "Z" FACTOR = 25.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 4.27 FLOW VELOCITY(FEET/SEC) = 3.58 FLOW DEPTH(FEET) _ .22 TRAVEL TIME(MIN.) _ .40 TC(MIN.) = 12.23 **************************************************************************** FLOW PROCESS FROM NODE 29.00 TO NODE 29.00 IS CODE = 1 ---------------------------------------------------------------------------- »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 12.23 RAINFALL INTENSITY(INCH/HR) = 2.60 AREA -AVERAGED Fm(INCH/HR) = .46 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .48 EFFECTIVE STREAM AREA(ACRES) = 2.17 TOTAL STREAM AREA(ACRES) = 2.17 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.27 **************************************************************************** FLOW PROCESS FROM NODE 19.00 TO NODE 24.00 IS CODE = 2.1 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ---------- DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 190.00 UPSTREAM ELEVATION(FEET) = 65.00 DOWNSTREAM ELEVATION(FEET) = 61.50 ELEVATION DIFFERENCE(FEET) = 3.50 TC(MIN.) = .304*[( 190.00** 3.00)/( 3.50)]** .20 = 5.512 10 YEAR RAINFALL INTENSITY(INCH/HR) = 4.189 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) _ .44 TOTAL AREA(ACRES) = .12 PEAK FLOW RATE(CFS) _ .44 **************************************************************************** FLOW PROCESS FROM NODE 24.00 TO NODE 25.00 IS CODE = 6 ---------------------------------------------------------------------------- »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< --------------- UPSTREAM ELEVATION(FEET) = 61.50 DOWNSTREAM ELEVATION(FEET) = 54.60 STREET LENGTH(FEET) = 360.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 1.78 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .28 HALFSTREET FLOOD WIDTH(FEET) = 7.57 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.58 PRODUCT OF DEPTH&VELOCITY = .72 STREET FLOW TRAVEL TIME(MIN.) = 2.33 TC(MIN.) = 7.84 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.391 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4B50 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 2.62 EFFECTIVE AREA(ACRES) = 1.12 AREA -AVERAGED Fm(INCH/HR) _ .44 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .46 TOTAL AREA(ACRES) = 1.12 PEAK FLOW RATE(CFS) = 2.97 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .31 HALFSTREET FLOOD WIDTH(FEET) = 9.30 FLOW VELOCITY(FEET/SEC.) = 3.02 DEPTH*VELOCITY = .94 **************************************************************************** FLOW PROCESS FROM NODE 25.00 TO NODE 26.00 IS CODE = 6 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«« < UPSTREAM ELEVATION(FEET) = 54.60 DOWNSTREAM ELEVATION(FEET) = 49.00 STREET LENGTH(FEET) = 320.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 4.22 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .35 HALFSTREET FLOOD WIDTH(FEET) = 11.04 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.16 PRODUCT OF DEPTH&VELOCITY = 1.10 STREET FLOW TRAVEL TIME(MIN.) = 1.69 TC(MIN.) = 9.53 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.016 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.09 SUBAREA RUNOFF(CFS) = 2.48 EFFECTIVE AREA(ACRES) = 2.21 AREA -AVERAGED Fm(INCH/HR) _ .46 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .48 TOTAL AREA(ACRES) = 2.21 PEAK FLOW RATE(CFS) = 5.08 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .37 HALFSTREET FLOOD WIDTH(FEET) = 12.20 FLOW VELOCITY(FEET/SEC.) = 3.16 DEPTH*VELOCITY = 1.17 **************************************************************************** FLOW PROCESS FROM NODE 26.00 TO NODE 29.00 IS CODE = 5.1 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA<<<<< UPSTREAM NODE ELEVATION = 49.00 DOWNSTREAM NODE ELEVATION = 47.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 100.00 CHANNEL SLOPE _ .0200 CHANNEL BASE(FEET) _ .00 "Z" FACTOR = 25.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 5.08 FLOW VELOCITY(FEET/SEC) = 3.49 FLOW DEPTH(FEET) _ .24 TRAVEL TIME(MIN.) _ .48 TC(MIN.) = 10.01 **************************************************************************** FLOW PROCESS FROM NODE 29.00 TO NODE 29.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 10.01 RAINFALL INTENSITY(INCH/HR) = 2.93 AREA -AVERAGED Fm(INCH/HR) _ .46 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .48 EFFECTIVE STREAM AREA(ACRES) = 2.21 TOTAL STREAM AREA(ACRES) = 2.21 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.08 **************************************************************************** FLOW PROCESS FROM NODE 27.00 TO NODE 28.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5-7 DWELLINGS/ACRE TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00 UPSTREAM ELEVATION(FEET) = 61.40 DOWNSTREAM ELEVATION(FEET) = 54.50 ELEVATION DIFFERENCE(FEET) = 6.90 TC(MIN.) _ .389*[( 330.00** 3.00)/( 6.90)]** .20 = 8.576 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.213 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 2.41 TOTAL AREA(ACRES) _ .98 PEAK FLOW RATE(CFS) = 2.41 **************************************************************************** FLOW PROCESS FROM NODE 28.00 TO NODE 29.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< UPSTREAM ELEVATION(FEET) = 54.50 DOWNSTREAM ELEVATION(FEET) = 47.00 STREET LENGTH(FEET) = 360.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 3.54 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .32 HALFSTREET FLOOD WIDTH(FEET) = 9.88 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.24 PRODUCT OF DEPTH&VELOCITY = 1.05 STREET FLOW TRAVEL TIME(MIN.) = 1.85 TC(MIN.) = 10.43 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.857 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.06 SUBAREA RUNOFF(CFS) = 2.26 EFFECTIVE AREA(ACRES) = 2.04 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 2.04 PEAK FLOW RATE(CFS) = 4.36 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .35 HALFSTREET FLOOD WIDTH(FEET) = 11.04 FLOW VELOCITY(FEET/SEC.) = 3.26 DEPTH*VELOCITY = 1.13 **************************************************************************** FLOW PROCESS FROM NODE 29.00 TO NODE 29.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ----------- TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 10.43 RAINFALL INTENSITY(INCH/HR) = 2.86 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 2.04 TOTAL STREAM AREA(ACRES) = 2.04 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.36 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** Q Tc Intensity Fp Ap Fm Ae (CFS) (MIN.) (INCH/HR) (INCH/HR) (INCH/HR) (ACRES) 1 13.42 10.01 2.929 .97 .48 .47 5.94 2 12.54 12.23 2.597 .97 .48 .47 6.42 3 13.37 10.43 2.857 .97 .48 .47 6.10 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 13.42 Tc(MIN.) = 10.006 EFFECTIVE AREA(ACRES) = 5.94 AREA -AVERAGED Fm(INCH/HR) _ .47 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .48 TOTAL AREA(ACRES) = 6.42 FLOW PROCESS FROM NODE 29.00 TO NODE 101.00 IS CODE = 4 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< >>>>>USING USER-SPECIFIED PIPESIZE<<<<< --------------------- DEPTH OF FLOW IN 18.0 INCH PIPE IS 14.0 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 9.1 UPSTREAM NODE ELEVATION(FEET) = 40.00 DOWNSTREAM NODE ELEVATION(FEET) = 39.30 FLOW LENGTH(FEET) = 35.00 GIVEN PIPE DIAMETER(INCH) _ PIPE-FLOW(CFS) = 13.42 TRAVEL TIME(MIN.) _ .06 MANNING'S N = .013 18.00 NUMBER OF PIPES = TC(MIN.) = 10.07 1 FLOW PROCESS FROM NODE 101.00 TO NODE 101.00 IS CODE = 10 ---------------------------------------------------------------------------- »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<< **************************************************************************** FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5-7 DWELLINGS/ACRE TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 360.00 UPSTREAM ELEVATION(FEET) = 70.00 DOWNSTREAM ELEVATION(FEET) = 66.00 ELEVATION DIFFERENCE(FEET) = 4.00 TC(MIN.) _ .389*[( 360.00** 3.00)/( 4.00)]** .20 = 10.077 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.917 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 1.99 TOTAL AREA(ACRES) _ .91 PEAK FLOW RATE(CFS) = 1.99 **************************************************************************** FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 6 ---------------------------------------------------------------------------- »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< ----------- ----------------- UPSTREAM ELEVATION(FEET) = 66.00 DOWNSTREAM ELEVATION(FEET) = 60.00 STREET LENGTH(FEET) = 213.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .29 HALFSTREET FLOOD WIDTH(FEET) = 8.15 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.42 PRODUCT OF DEPTH&VELOCITY = .99 STREET FLOW TRAVEL TIME(MIN.) = 1.04 TC(MIN.) 2.68 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.750 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .67 SUBAREA RUNOFF(CFS) = 1.37 EFFECTIVE AREA(ACRES) = 1.58 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 1.58 PEAK FLOW RATE(CFS) = 3.22 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .30 HALFSTREET FLOOD WIDTH(FEET) = 8.73 FLOW VELOCITY(FEET/SEC.) = 3.66 DEPTH*VELOCITY = 1.10 **************************************************************************** FLOW PROCESS FROM NODE 12.00 TO NODE 16.00 IS CODE = 9 ---------------------------------------------------------------------------- »»>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA«« < UPSTREAM NODE ELEVATION(FEET) = 60.00 DOWNSTREAM NODE ELEVATION(FEET) = 58.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 90.00 "V" GUTTER WIDTH(FEET) = 8.00 GUTTER HIKE(FEET) _ .250 PAVEMENT LIP(FEET) = .030 MANNING'S N = .0150 PAVEMENT CROSSFALL(DECIMAL NOTATION) _ .02000 MAXIMUM DEPTH(FEET) = 1.00 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.691 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.69 AVERAGE FLOW DEPTH(FEET) = .25 FLOOD WIDTH(FEET) = 8.00 "V" GUTTER FLOW TRAVEL TIME(MIN.) _ .41 TC(MIN.) = 11.52 SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) _ .00 EFFECTIVE AREA(ACRES) = 1.58 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 1.58 PEAK FLOW RATE(CFS) = 3.22 NOTE:TRAVEL TIME ESTIMATES BASED ON NORMAL DEPTH IN A FLOWING -FULL GUTTER(NORMAL DEPTH = GUTTER HIKE) END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = .25 FLOOD WIDTH(FEET) = 8.00 FLOW VELOCITY(FEET/SEC.) = 3.69 DEPTH*VELOCITY = .92 **************************************************************************** FLOW PROCESS FROM NODE 16.00 TO NODE 16.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 11.52 RAINFALL INTENSITY(INCH/HR) = 2.69 AREA -AVERAGED Fm(INCH/HR) = .49 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 1.58 TOTAL STREAM AREA(ACRES) = 1.58 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.22 **************************************************************************** FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 2.1 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 280.00 UPSTREAM ELEVATION(FEET) = 68.00 DOWNSTREAM ELEVATION(FEET) = 67.00 ELEVATION DIFFERENCE(FEET) = 1.00 TC(MIN.) = .304*[( 280.00** 3.00)/( 1.00)1** .20 = 8.937 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.135 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) _ .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) _ .57 TOTAL AREA(ACRES) _ .21 PEAK FLOW RATE(CFS) _ .57 FLOW PROCESS FROM NODE 14.00 TO NODE 15.00 IS CODE = 6 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< UPSTREAM ELEVATION(FEET) = 67.00 DOWNSTREAM ELEVATION(FEET) = 63.20 STREET LENGTH(FEET) = 214.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) _ .76 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .22 HALFSTREET FLOOD WIDTH(FEET) = 4.68 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.25 PRODUCT OF DEPTH&VELOCITY = .50 STREET FLOW TRAVEL TIME(MIN.) = 1.58 TC(MIN.) = 10.52 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.843 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) = .15 SUBAREA RUNOFF(CFS) _ .37 EFFECTIVE AREA(ACRES) _ .36 AREA -AVERAGED Fm(INCH/HR) _ .10 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .10 TOTAL AREA(ACRES) = .36 PEAK FLOW RATE(CES) _ .89 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .23 HALFSTREET FLOOD WIDTH(FEET) = 5.26 FLOW VELOCITY(FEET/SEC.) = 2.25 DEPTH*VELOCITY = .52 **************************************************************************** FLOW PROCESS FROM NODE 15.00 TO NODE 16.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< ---------------------- UPSTREAM ELEVATION(FEET) = 63.20 DOWNSTREAM ELEVATION(FEET) = 58.00 STREET LENGTH(FEET) = 170.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .23 HALFSTREET FLOOD WIDTH(FEET) = 5.26 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.91 PRODUCT OF DEPTH&VELOCITY = .67 STREET FLOW TRAVEL TIME(MIN.) _ .97 TC(MIN.) 1.15 = 11.49 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.695 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) _ .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) _ .22 SUBAREA RUNOFF(CFS) _ .51 EFFECTIVE AREA(ACRES) _ .58 AREA -AVERAGED Fm(INCH/HR) _ .10 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .10 TOTAL AREA(ACRES) _ .58 PEAK FLOW RATE(CFS) = 1.36 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .24 HALFSTREET FLOOD WIDTH(FEET) = 5.84 FLOW VELOCITY(FEET/SEC.) = 2.96 DEPTH*VELOCITY = .72 **************************************************************************** FLOW PROCESS FROM NODE 16.00 TO NODE 16.00 IS CODE = 1 »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 11.49 RAINFALL INTENSITY(INCH/HR) = 2.70 AREA -AVERAGED Fm(INCH/HR) _ .10 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .10 EFFECTIVE STREAM AREA(ACRES) _ .58 TOTAL STREAM AREA(ACRES) _ .58 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.36 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** Q Tc Intensity Fp Ap Fm Ae (CFS) (MIN.) (INCH/HR) (INCH/HR) (INCH/HR) (ACRES) 1 4.58 11.52 2.691 .97 .39 .38 2.16 2 4.58 11.49 2.695 .97 .39 .38 2.16 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 4.58 Tc(MIN.) = 11.521 EFFECTIVE AREA(ACRES) = 2.16 AREA -AVERAGED Fm(INCH/HR) _ .38 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .39 TOTAL AREA(ACRES) = 2.16 **************************************************************************** FLOW PROCESS FROM NODE 16.00 TO NODE 17.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«« < UPSTREAM ELEVATION(FEET) = 58.00 DOWNSTREAM ELEVATION(FEET) = 47.10 STREET LENGTH(FEET) = 500.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 6.29 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .37 HALFSTREET FLOOD WIDTH(FEET) = 12.20 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.92 PRODUCT OF DEPTH&VELOCITY = 1.45 STREET FLOW TRAVEL TIME(MIN.) = 2.13 TC(MIN.) = 13.65 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.431 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.96 SUBAREA RUNOFF(CFS) = 3.43 EFFECTIVE AREA(ACRES) = 4.12 AREA -AVERAGED Fm(INCH/HR) _ .43 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .44 TOTAL AREA(ACRES) = 4.12 PEAK FLOW RATE(CFS) = 7.42 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .39 HALFSTREET FLOOD WIDTH(FEET) = 13.35 FLOW VELOCITY(FEET/SEC.) = 3.90 DEPTH*VELOCITY = 1.54 **************************************************************************** FLOW PROCESS FROM NODE 17.00 TO NODE 101.00 IS CODE = 4 »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< ------------------------ DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.8 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 10.1 UPSTREAM NODE ELEVATION(FEET) = 42.00 DOWNSTREAM NODE ELEVATION(FEET) = 39.30 FLOW LENGTH(FEET) = 74.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 7.42 TRAVEL TIME(MIN.) _ .12 TC(MIN.) = 13.77 **************************************************************************** FLOW PROCESS FROM NODE 101.00 TO NODE 101.00 IS CODE = 11 ---------------------------------------------------------------------------- »»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN -STREAM MEMORY<<<<< ** PEAK FLOW RATE TABLE ** Q Tc Intensity Fp Ap Fm Ae (CFS) (MIN.) (INCH/HR) (INCH/HR) (INCH/HR) (ACRES) 1 18.97 13.74 2.421 .97 .47 .45 10.54 2 18.95 13.77 2.418 .97 .47 .45 10.54 3 20.22 10.07 2.918 .97 .47 .46 8.96 4 20.25 10.49 2.847 .97 .47 .46 9.24 5 19.74 12.30 2.588 .97 .47 .46 10.10 TOTAL AREA = 10.54 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 20.25 Tc(MIN.) = 10.494 EFFECTIVE AREA(ACRES) = 9.24 AREA -AVERAGED Fm(INCH/HR) _ .46 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .47 TOTAL AREA(ACRES) = 10.54 FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 4 »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA«« < »»>USING USER-SPECIFIED PIPESIZE<<<<< DEPTH OF FLOW IN 24.0 INCH PIPE IS 14.8 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 10.0 UPSTREAM NODE ELEVATION(FEET) = 39.30 DOWNSTREAM NODE ELEVATION(FEET) = 34.00 FLOW LENGTH(FEET) = 290.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 20.25 TRAVEL TIME(MIN.) _ .48 TC(MIN.) = 10.98 FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 10 ---------------------------------------------------------------------------- »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 ««< FLOW PROCESS FROM NODE 29.00 TO NODE 30.00 IS CODE = 2.1 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 160.00 UPSTREAM ELEVATION(FEET) = 47.00 DOWNSTREAM ELEVATION(FEET) = 44.70 ELEVATION DIFFERENCE(FEET) = 2.30 TC(MIN.) _ .304*[( 160.00** 3.00)/( 2.30)]** .20 = 5.408 10 YEAR RAINFALL INTENSITY(INCH/HR) = 4.237 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) _ .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) _ .37 TOTAL AREA(ACRES) _ .10 PEAK FLOW RATE(CFS) _ .37 **************************************************************************** FLOW PROCESS FROM NODE 30.00 TO NODE 38.00 IS CODE = 5.1 ---------------------------------------------------------------------------- »» >COMPUTE TRAPEZOIDAL CHANNEL FLOW«« < >>>>>TRAVELTIME THRU SUBAREA<<<<< UPSTREAM NODE ELEVATION = 44.70 DOWNSTREAM NODE ELEVATION = 44.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 25.00 CHANNEL SLOPE _ .0280 CHANNEL BASE(FEET) _ .00 "Z" FACTOR = 25.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) _ .37 FLOW VELOCITY(FEET/SEC) = 1.98 FLOW DEPTH(FEET) _ .09 TRAVEL TIME(MIN.) _ .21 TC(MIN.) = 5.62 **************************************************************************** FLOW PROCESS FROM NODE 38.00 TO NODE 38.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 5.62 RAINFALL INTENSITY(INCH/HR) = 4.14 AREA -AVERAGED Fm(INCH/HR) _ .10 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .10 EFFECTIVE STREAM AREA(ACRES) _ .10 TOTAL STREAM AREA(ACRES) _ .10 PEAK FLOW RATE(CFS) AT CONFLUENCE _ .37 **************************************************************************** FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5-7 DWELLINGS/ACRE TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 325.00 UPSTREAM ELEVATION(FEET) = 67.20 DOWNSTREAM ELEVATION(FEET) = 62.20 ELEVATION DIFFERENCE(FEET) = 5.00 TC(MIN.) _ .389*[( 325.00** 3.00)/( 5.00)]** .20 = 9.063 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.108 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 1.96 TOTAL AREA(ACRES) _ .83 PEAK FLOW RATE(CFS) = 1.96 **************************************************************************** FLOW PROCESS FROM NODE 32.00 TO NODE 33.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< ----------------------------- UPSTREAM ELEVATION(FEET) = 62.20 DOWNSTREAM ELEVATION(FEET) = 58.00 STREET LENGTH(FEET) = 207.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 2.67 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .30 HALFSTREET FLOOD WIDTH(FEET) = 8.73 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.03 PRODUCT OF DEPTH&VELOCITY = .91 STREET FLOW TRAVEL TIME(MIN.) = 1.14 TC(MIN.) = 10.20 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.895 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) _ .65 SUBAREA RUNOFF(CFS) = 1.41 EFFECTIVE AREA(ACRES) = 1.48 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 1.48 PEAK FLOW RATE(CFS) = 3.21 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .31 HALFSTREET FLOOD WIDTH(FEET) = 9.30 FLOW VELOCITY(FEET/SEC.) = 3.26 DEPTH*VELOCITY = 1.02 **************************************************************************** FLOW PROCESS FROM NODE 33.00 TO NODE 35.00 IS CODE = 5.1 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA««< ----------------------------- UPSTREAM NODE ELEVATION = 58.00 DOWNSTREAM NODE ELEVATION = 56.60 CHANNEL LENGTH THRU SUBAREA(FEET) = 80.00 CHANNEL SLOPE _ .0175 CHANNEL BASE(FEET) _ .00 "Z" FACTOR = 25.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 3.21 FLOW VELOCITY(FEET/SEC) = 2.89 FLOW DEPTH(FEET) _ .21 TRAVEL TIME(MIN.) _ .46 TC(MIN.) = 10.66 **************************************************************************** FLOW PROCESS FROM NODE 35.00 TO NODE 35.00 IS CODE = 8 ---------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.819 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) _ .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) _ .26 SUBAREA RUNOFF(CFS) _ .64 EFFECTIVE AREA(ACRES) = 1.74 AREA -AVERAGED Fm(INCH/HR) _ .43 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .44 TOTAL AREA(ACRES) = 1.74 PEAK FLOW RATE(CFS) = 3.75 TC(MIN) = 10.66 FLOW PROCESS FROM NODE 35.00 TO NODE 36.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< ------------- UPSTREAM ELEVATION(FEET) = 56.60 DOWNSTREAM ELEVATION(FEET) = 50.00 STREET LENGTH(FEET) = 320.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 4.68 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .35 HALFSTREET FLOOD WIDTH(FEET) = 11.04 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.50 PRODUCT OF DEPTH&VELOCITY = 1.22 STREET FLOW TRAVEL TIME(MIN.) = 1.52 TC(MIN.) = 12.19 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.602 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .9B SUBAREA RUNOFF(CFS) = 1.87 EFFECTIVE AREA(ACRES) = 2.72 AREA -AVERAGED Fm(INCH/HR) _ .45 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .46 TOTAL AREA(ACRES) = 2.72 PEAK FLOW RATE(CFS) = 5.27 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .36 HALFSTREET FLOOD WIDTH(FEET) = 11.62 FLOW VELOCITY(FEET/SEC.) = 3.59 DEPTH*VELOCITY = 1.29 **************************************************************************** FLOW PROCESS FROM NODE 36.00 TO NODE 37.00 IS CODE = 6 ---------------------------------------------------------------------------- »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< ------------------------ UPSTREAM ELEVATION(FEET) = 50.00 DOWNSTREAM ELEVATION(FEET) = 44.70 STREET LENGTH(FEET) = 320.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 6.12 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .38 HALFSTREET FLOOD WIDTH(FEET) = 12.77 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.50 PRODUCT OF DEPTH&VELOCITY = 1.34 STREET FLOW TRAVEL TIME(MIN.) = 1.52 TC(MIN.) = 13.71 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.425 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) _ .98 SUBAREA RUNOFF(CFS) = 1.71 EFFECTIVE AREA(ACRES) = 3.70 AREA -AVERAGED Fm(INCH/HR) _ .46 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .47 TOTAL AREA(ACRES) = 3.70 PEAK FLOW RATE(CFS) = 6.55 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .39 HALFSTREET FLOOD WIDTH(FEET) = 13.35 FLOW VELOCITY(FEET/SEC.) = 3.45 DEPTH*VELOCITY = 1.36 **************************************************************************** FLOW PROCESS FROM NODE 37.00 TO NODE 38.00 IS CODE = 5.1 »» >COMPUTE TRAPEZOIDAL CHANNEL FLOW««< >>>>>TRAVELTIME THRU SUBAREA<<<<< ----------- UPSTREAM NODE ELEVATION = 44.70 DOWNSTREAM NODE ELEVATION = 44.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 25.00 CHANNEL SLOPE _ .0280 CHANNEL BASE(FEET) _ .00 "Z" FACTOR = 25.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 6.55 FLOW VELOCITY(FEET/SEC) = 4.23 FLOW DEPTH(FEET) _ .25 TRAVEL TIME(MIN.) _ .10 TC(MIN.) = 13.81 **************************************************************************** FLOW PROCESS FROM NODE 38.00 TO NODE 38.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES ««< ---------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.81 RAINFALL INTENSITY(INCH/HR) = 2.41 AREA -AVERAGED Fm(INCH/HR) _ .46 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .47 EFFECTIVE STREAM AREA(ACRES) = 3.70 TOTAL STREAM AREA(ACRES) = 3.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.55 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** Q Tc Intensity Fp Ap Fm Ae (CFS) (MIN.) (INCH/HR) (INCH/HR) (INCH/HR) (ACRES) 1 5.39 5.62 4.141 .97 .45 .44 1.61 2 6.76 13.81 2.414 .97 .46 .45 3.80 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 6.76 Tc(MIN.) = 13.808 EFFECTIVE AREA(ACRES) = 3.80 AREA -AVERAGED Fm(INCH/HR) _ .45 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .46 TOTAL AREA(ACRES) = 3.80 **************************************************************************** FLOW PROCESS FROM NODE 38.00 TO NODE 39.00 IS CODE = 5.1 »» >COMPUTE TRAPEZOIDAL CHANNEL FLOW«« < >>>>>TRAVELTIME THRU SUBAREA«« < UPSTREAM NODE ELEVATION = 44.00 DOWNSTREAM NODE ELEVATION = 42.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 65.00 CHANNEL SLOPE _ .0308 CHANNEL BASE(FEET) _ .00 "Z" FACTOR = 25.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 6.76 FLOW VELOCITY(FEET/SEC) = 4.37 FLOW DEPTH(FEET) _ .25 TRAVEL TIME(MIN.) _ .25 TC(MIN.) = 14.06 **************************************************************************** FLOW PROCESS FROM NODE 39.00 TO NODE 39.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.06 RAINFALL INTENSITY(INCH/HR) = 2.39 AREA -AVERAGED Fm(INCH/HR) _ .45 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .46 EFFECTIVE STREAM AREA(ACRES) = 3.80 TOTAL STREAM AREA(ACRES) = 3.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.76 **************************************************************************** FLOW PROCESS FROM NODE 17.00 TO NODE 18.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5-7 DWELLINGS/ACRE TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 240.00 UPSTREAM ELEVATION(FEET) = 47.10 DOWNSTREAM ELEVATION(FEET) = 44.30 ELEVATION DIFFERENCE(FEET) = 2.80 TC(MIN.) _ .389*[( 240.00** 3.00)/( 2.80)]** .20 = 8.485 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.234 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 1.41 TOTAL AREA(ACRES) _ .57 PEAK FLOW RATE(CFS) = 1.41 **************************************************************************** FLOW PROCESS FROM NODE 18.00 TO NODE 39.00 IS CODE = 5.1 ---------------------------------------------------------------------------- »» >COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA<<<<< --------------------- UPSTREAM NODE ELEVATION = 44.30 DOWNSTREAM NODE ELEVATION = 42.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 40.00 CHANNEL SLOPE _ .0575 CHANNEL BASE(FEET) _ .00 "Z" FACTOR = 25.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 1.41 FLOW VELOCITY(FEET/SEC) = 3.61 FLOW DEPTH(FEET) _ .12 TRAVEL TIME(MIN.) _ .18 TC(MIN.) = 8.67 **************************************************************************** FLOW PROCESS FROM NODE 39.00 TO NODE 39.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«« < >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES ««< -------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.67 RAINFALL INTENSITY(INCH/HR) = 3.19 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) _ .57 TOTAL STREAM AREA(ACRES) _ .57 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.41 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** Q Tc Intensity Fp Ap Fm Ae (CFS) (MIN.) (INCH/HR) (INCH/HR) (INCH/HR) (ACRES) 1 6.64 5.89 4.026 .97 .46 .44 1.99 2 7.76 14.06 2.389 .97 .47 .45 4.37 3 7.27 8.67 3.192 .97 .46 .45 2.92 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 7.76 Tc(MIN.) = 14.056 EFFECTIVE AREA(ACRES) = 4.37 AREA -AVERAGED Fm(INCH/HR) _ .45 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .47 TOTAL AREA(ACRES) = 4.37 **************************************************************************** FLOW PROCESS FROM NODE 39.00 TO NODE 43.00 IS CODE = 6 ---------------------------------------------------------------------------- »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«« < ---------------------------- UPSTREAM ELEVATION(FEET) = 43.60 DOWNSTREAM ELEVATION(FEET) = 42.50 STREET LENGTH(FEET) = 140.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 7.87 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .46 HALFSTREET FLOOD WIDTH(FEET) = 16.82 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.67 PRODUCT OF DEPTH&VELOCITY = 1.24 STREET FLOW TRAVEL TIME(MIN.) _ .87 TC(MIN.) = 14.93 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.304 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) _ .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) _ .12 SUBAREA RUNOFF(CFS) _ .24 EFFECTIVE AREA(ACRES) = 4.49 AREA -AVERAGED Fm(INCH/HR) _ .44 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .46 TOTAL AREA(ACRES) = 4.49 PEAK FLOW RATE(CFS) = 7.76 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .46 HALFSTREET FLOOD WIDTH(FEET) = 16.82 FLOW VELOCITY(FEET/SEC.) = 2.63 DEPTH*VELOCITY = 1.22 **************************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = 1 ---------------------------------------------------------------------------- »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.93 RAINFALL INTENSITY(INCH/HR) = 2.30 AREA -AVERAGED Fm(INCH/HR) _ .44 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .46 EFFECTIVE STREAM AREA(ACRES) = 4.49 TOTAL STREAM AREA(ACRES) = 4.49 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.76 **************************************************************************** FLOW PROCESS FROM NODE 40.00 TO NODE 41.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS«« < DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5-7 DWELLINGS/ACRE TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 455.00 UPSTREAM ELEVATION(FEET) = 59.90 DOWNSTREAM ELEVATION(FEET) = 52.00 ELEVATION DIFFERENCE(FEET) = 7.90 TC(MIN.) _ .389*[( 455.00** 3.00)/( 7.90)]** .20 = 10.121 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.909 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 2.49 TOTAL AREA(ACRES) = 1.14 PEAK FLOW RATE(CFS) = 2.49 **************************************************************************** FLOW PROCESS FROM NODE 41.00 TO NODE 42.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«« < -------------------------------- UPSTREAM ELEVATION(FEET) = 52.00 DOWNSTREAM ELEVATION(FEET) = 45.20 STREET LENGTH(FEET) = 337.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 3.44 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .32 HALFSTREET FLOOD WIDTH(FEET) = 9.88 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.14 PRODUCT OF DEPTH&VELOCITY = 1.02 STREET FLOW TRAVEL TIME(MIN.) = 1.79 TC(MIN.) = 11.91 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.639 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) _ .98 SUBAREA RUNOFF(CFS) = 1.90 EFFECTIVE AREA(ACRES) = 2.12 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 2.12 PEAK FLOW RATE(CFS) = 4.11 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .34 HALFSTREET FLOOD WIDTH(FEET) = 10.46 FLOW VELOCITY(FEET/SEC.) = 3.39 DEPTH*VELOCITY = 1.14 **************************************************************************** FLOW PROCESS FROM NODE 42.00 TO NODE 43.00 IS CODE = 6 ---------------------------------------------------------------------------- »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< ------------------------------- UPSTREAM ELEVATION(FEET) = 45.20 DOWNSTREAM ELEVATION(FEET) = 42.50 STREET LENGTH(FEET) = 170.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 4.62 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .36 HALFSTREET FLOOD WIDTH(FEET) = 11.62 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.15 PRODUCT OF DEPTH&VELOCITY = 1.13 STREET FLOW TRAVEL TIME(MIN.) _ .90 TC(MIN.) = 12.81 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.526 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) _ .56 SUBAREA RUNOFF(CFS) = 1.03 EFFECTIVE AREA(ACRES) = 2.68 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 2.68 PEAK FLOW RATE(CFS) = 4.92 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .37 HALFSTREET FLOOD WIDTH(FEET) = 12.20 FLOW VELOCITY(FEET/SEC.) = 3.07 DEPTH*VELOCITY = 1.13 **************************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES «« < -------------------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 12.81 RAINFALL INTENSITY(INCH/HR) = 2.53 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 2.68 TOTAL STREAM AREA(ACRES) = 2.68 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.92 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** 4 Tc Intensity (CFS) (MIN.) (INCH/HR) 1 10.74 6.77 3.704 2 11.81 9.54 3.015 3 12.14 14.93 2.304 4 12.49 12.81 2.526 Fp Ap Fm Ae (INCH/HR) (INCH/HR) (ACRES) .97 .46 .45 3.53 .97 .47 .45 5.04 .97 .47 .46 7.17 .97 .47 .46 6.60 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 12.49 Tc(MIN.) = 12.808 EFFECTIVE AREA(ACRES) = 6.60 AREA -AVERAGED Fm(INCH/HR) _ .46 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .47 TOTAL AREA(ACRES) = 7.17 **************************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 102.00 IS CODE = 4 >>>>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE««< DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.5 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 18.0 UPSTREAM NODE ELEVATION(FEET) = 37.00 DOWNSTREAM NODE ELEVATION(FEET) = 34.00 FLOW LENGTH(FEET) = 25.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 12.49 TRAVEL TIME(MIN.) _ .02 TC(MIN.) = 12.83 **************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 11 ----------------------------------------------------------------- >>>>>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN -STREAM MEMORY<<<<< ** PEAK FLOW RATE TABLE ** Q Tc Intensity (CFS) (MIN.) (INCH/HR) 1 28.45 6.79 3.696 2 31.46 9.56 3.011 3 32.20 12.83 2.523 4 30.44 14.95 2.302 5 32.23 10.55 2.837 6 32.35 10.98 2.771 7 32.22 12.78 2.529 8 31.23 14.23 2.371 9 31.21 14.26 2.368 TOTAL AREA = 17.71 16.68 Fp Ap Fm Ae (INCH/HR) EFFECTIVE AREA(ACRES) (INCH/HR) (ACRES) .97 .47 .45 9.29 .97 .47 .46 13.15 .97 .47 .46 16.72 .97 .47 .46 17.71 .97 .47 .46 14.47 .97 .47 .46 14.96 .97 .47 .46 16.68 .97 .47 .46 17.51 .97 .47 .46 17.52 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 32.35 Tc(MIN.) = 10.978 EFFECTIVE AREA(ACRES) = 14.96 AREA -AVERAGED Fm(INCH/HR) _ .46 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .47 TOTAL AREA(ACRES) = 17.71 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 17.71 TC(MIN.) = 10.98 EFFECTIVE AREA(ACRES) = 14.96 AREA -AVERAGED Fm(INCH/HR)= .46 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .47 PEAK FLOW RATE(CFS) = 32.35 ** PEAK FLOW RATE TABLE ** Q Tc Intensity Fp Ap Fm Ae (CFS) (MIN.) (INCH/HR) (INCH/HR) (INCH/HR) (ACRES) 1 28.45 6.79 3.696 .97 .47 .45 9.29 2 31.46 9.56 3.011 .97 .47 .46 13.15 3 32.23 10.55 2.837 .97 .47 .46 14.47 4 32.35 10.98 2.771 .97 .47 .46 14.96 5 32.22 12.78 2.529 .97 .47 .46 16.68 6 32.20 12.83 2.523 .97 .47 .46 16.72 7 31.23 14.23 2.371 .97 .47 .46 17.51 8 31.21 14.26 2.368 .97 .47 .46 17.52 9 30.44 14.95 2.302 .97 .47 .46 17.71 END OF RATIONAL METHOD ANALYSIS ------------------------- NNWHall & Foreman, Inc. Civil Engineering • Planning • Surveying • Public Works JBJECT qq ...� � BY DATE JOB NO. SHEET OF O of p ry M r o O _ O rk 2 .iia. r r t- 0)4 I o or, _ o oN 1 -S � U�N n o ACIS -o � 4 \� I cs- r 203 North Golden Circle Drive, Suite 300, Santa Ana, California 92705-4010 • Tel 714/664-0570 • Fax 714/664-0596 M�,w Hall & Foreman, Inc. EM Civil Engineering • Planning • Surveying • Public Works JBJECT 1 By Ad cc M DATE f� rA` M JOB NO.I SHEET OF 2- 203 North Golden Circle Drive, Suite 300, Santa Ana, California 92705-4010 • Tel 714/664-0570 • Fax 714/664-0596 **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983-92 Advanced Engineering Software (aes) Ver. 1.9A Release Date: 6/26/92 License ID 1237 Analysis prepared by: HALL & FOREMAN, INC. 13821 NEWPORT AVENUE, Suite 200 TUSTIN, CALIFORNIA 92680-7803 714/544-3404 ************************** DESCRIPTION OF STUDY ************************** * CITY OF FONTANA, LEWIS HOMES PROJECT * ONSITE HYDROLOGY ANALYSIS, 25 -YEAR STORM EVENT * FILENAME: "FONTANA", OUTPUT FILE: "FONT25.OUT" BY: EMRUIZ ************************************************************************** FILE NAME: FONTANA.DAT TIME/DATE OF STUDY: 13:44 9/30/1998 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TIME-OF-CONCENTRATION MODEL* -- USER SPECIFIED STORM EVENT(YEAR) = 25.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE _ .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) = 1.1800 **************************************************************************** FLOW PROCESS FROM NODE 19.00 TO NODE 20.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5-7 DWELLINGS/ACRE TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 195.00 UPSTREAM ELEVATION(FEET) = 65.00 DOWNSTREAM ELEVATION(FEET) = 63.00 ELEVATION DIFFERENCE(FEET) = 2.00 TC(MIN.) _ .389*[( 195.00** 3.00)/( 2.00)]** .20 = 8.012 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.949 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 1.65 TOTAL AREA(ACRES) _ .53 PEAK FLOW RATE(CFS) = 1.65 **************************************************************************** FLOW PROCESS FROM NODE 20.00 TO NODE 21.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< UPSTREAM ELEVATION(FEET) = 63.00 DOWNSTREAM ELEVATION(FEET) = 58.00 STREET LENGTH(FEET) = 225.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 2.58 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .30 HALFSTREET FLOOD WIDTH(FEET) = 8.73 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.94 PRODUCT OF DEPTH&VELOCITY = .88 STREET FLOW TRAVEL TIME(MIN.) = 1.28 TC(MIN.) = 9.29 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.614 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .66 SUBAREA RUNOFF(CFS) = 1.86 EFFECTIVE AREA(ACRES) = 1.19 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 1.19 PEAK FLOW RATE(CFS) = 3.35 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .31 HALFSTREET FLOOD WIDTH(FEET) = 9.30 FLOW VELOCITY(FEET/SEC.) = 3.41 DEPTH*VELOCITY = 1.06 **************************************************************************** FLOW PROCESS FROM NODE 21.00 TO NODE 22.00 IS CODE = 6 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< UPSTREAM ELEVATION(FEET) = 58.00 DOWNSTREAM ELEVATION(FEET) = 53.00 STREET LENGTH(FEET) = 288.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 4.43 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .35 HALFSTREET FLOOD WIDTH(FEET) = 11.04 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.31 PRODUCT OF DEPTH&VELOCITY = 1.15 STREET FLOW TRAVEL TIME(MIN.) = 1.45 TC(MIN.) = 10.74 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.313 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .85 SUBAREA RUNOFF(CFS) = 2.16 EFFECTIVE AREA(ACRES) = 2.04 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 2.04 PEAK FLOW RATE(CFS) = 5.19 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .37 HALFSTREET FLOOD WIDTH(FEET) = 12.20 FLOW VELOCITY(FEET/SEC.) = 3.23 DEPTH*VELOCITY = 1.20 **************************************************************************** FLOW PROCESS FROM NODE 22.00 TO NODE 23.00 IS CODE = 6 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< UPSTREAM ELEVATION(FEET) = 53.00 DOWNSTREAM ELEVATION(FEET) = 49.00 STREET LENGTH(FEET) = 200.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 5.37 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .36 HALFSTREET FLOOD WIDTH(FEET) = 11.62 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.66 PRODUCT OF DEPTH&VELOCITY = 1.31 STREET FLOW TRAVEL TIME(MIN.) _ .91 TC(MIN.) = 11.65 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.155 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) _ .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) _ .13 SUBAREA RUNOFF(CFS) _ .36 EFFECTIVE AREA(ACRES) = 2.17 AREA -AVERAGED Fm(INCH/HR) _ .46 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .48 TOTAL AREA(ACRES) = 2.17 PEAK FLOW RATE(CFS) = 5.26 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .36 HALFSTREET FLOOD WIDTH(FEET) = 11.62 FLOW VELOCITY(FEET/SEC.) = 3.58 DEPTH*VELOCITY = 1.29 **************************************************************************** FLOW PROCESS FROM NODE 23.00 TO NODE 29.00 IS CODE = 5.1 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW«« < >>>>>TRAVELTIME THRU SUBAREA<<<<< UPSTREAM NODE ELEVATION = 49.00 DOWNSTREAM NODE ELEVATION = 47.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 85.00 CHANNEL SLOPE _ .0235 CHANNEL BASE(FEET) _ .00 "Z" FACTOR = 25.000 MANNING`S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 5.26 FLOW VELOCITY(FEET/SEC) = 3.67 FLOW DEPTH(FEET) _ .24 TRAVEL TIME(MIN.) _ .39 TC(MIN.) = 12.03 **************************************************************************** FLOW PROCESS FROM NODE 29.00 TO NODE 29.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< -------------- TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 12.03 RAINFALL INTENSITY(INCH/HR) = 3.09 AREA -AVERAGED Fm(INCH/HR) = .46 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .48 EFFECTIVE STREAM AREA(ACRES) = 2.17 TOTAL STREAM AREA(ACRES) = 2.17 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.26 **************************************************************************** FLOW PROCESS FROM NODE 19.00 TO NODE 24.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 190.00 UPSTREAM ELEVATION(FEET) = 65.00 DOWNSTREAM ELEVATION(FEET) = 61.50 ELEVATION DIFFERENCE(FEET) = 3.50 TC(MIN.) = .304*[( 190.00** 3.00)/( 3.50)]** .20 = 5.512 25 YEAR RAINFALL INTENSITY(INCH/HR) = 4.943 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) _ .52 TOTAL AREA(ACRES) _ .12 PEAK FLOW RATE(CFS) _ .52 **************************************************************************** FLOW PROCESS FROM NODE 24.00 TO NODE 25.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«« < ------------------------------- UPSTREAM ELEVATION(FEET) = 61.50 DOWNSTREAM ELEVATION(FEET) = 54.60 STREET LENGTH(FEET) = 360.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 2.16 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .29 HALFSTREET FLOOD WIDTH(FEET) = 8.15 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.76 PRODUCT OF DEPTH&VELOCITY = .80 STREET FLOW TRAVEL TIME(MIN.) = 2.17 TC(MIN.) = 7.69 25 YEAR RAINFALL INTENSITY(INCH/HR) = 4.049 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 3.21 EFFECTIVE AREA(ACRES) = 1.12 AREA -AVERAGED Fm(INCH/HR) _ .44 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .46 TOTAL AREA(ACRES) = 1.12 PEAK FLOW RATE(CFS) = 3.63 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .34 HALFSTREET FLOOD WIDTH(FEET) = 10.46 FLOW VELOCITY(FEET/SEC.) = 3.00 DEPTH*VELOCITY = 1.01 **************************************************************************** FLOW PROCESS FROM NODE 25.00 TO NODE 26.00 IS CODE = 6 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«« < UPSTREAM ELEVATION(FEET) = 54.60 DOWNSTREAM ELEVATION(FEET) = 49.00 STREET LENGTH(FEET) = 320.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 5.17 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .37 HALFSTREET FLOOD WIDTH(FEET) = 12.20 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.22 PRODUCT OF DEPTH&VELOCITY = 1.19 STREET FLOW TRAVEL TIME(MIN.) = 1.66 TC(MIN.) = 9.34 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.602 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.09 SUBAREA RUNOFF(CFS) = 3.06 EFFECTIVE AREA(ACRES) = 2.21 AREA -AVERAGED Fm(INCH/HR) _ .46 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .48 TOTAL AREA(ACRES) = 2.21 PEAK FLOW RATE(CFS) = 6.24 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .38 HALFSTREET FLOOD WIDTH(FEET) = 12.77 FLOW VELOCITY(FEET/SEC.) = 3.57 DEPTH*VELOCITY = 1.36 **************************************************************************** FLOW PROCESS FROM NODE 26.00 TO NODE 29.00 IS CODE = 5.1 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< >>>>>TRAVELTIME THRU SUBAREA«« < ---------------------- UPSTREAM NODE ELEVATION = 49.00 DOWNSTREAM NODE ELEVATION = 47.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 100.00 CHANNEL SLOPE = .0200 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 25.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 6.24 FLOW VELOCITY(FEET/SEC) = 3.63 FLOW DEPTH(FEET) _ .26 TRAVEL TIME(MIN.) = .46 TC(MIN.) = 9.80 **************************************************************************** FLOW PROCESS FROM NODE 29.00 TO NODE 29.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«« < ------------- TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 9.80 RAINFALL INTENSITY(INCH/HR) = 3.50 AREA -AVERAGED Fm(INCH/HR) = .46 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .48 EFFECTIVE STREAM AREA(ACRES) = 2.21 TOTAL STREAM AREA(ACRES) = 2.21 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.24 **************************************************************************** FLOW PROCESS FROM NODE 27.00 TO NODE 28.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5-7 DWELLINGS/ACRE TC = K*[(LENGTH** 3.0.0)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00 UPSTREAM ELEVATION(FEET) = 61.40 DOWNSTREAM ELEVATION(FEET) = 54.50 ELEVATION DIFFERENCE(FEET) = 6.90 TC(MIN.) = .389*[( 330.00** 3.00)/( 6.90)]** .20 = 8.576 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.791 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 2.92 TOTAL AREA(ACRES) = .98 PEAK FLOW RATE(CFS) = 2.92 **************************************************************************** FLOW PROCESS FROM NODE 28.00 TO NODE 29.00 IS CODE = 6 ---------------------------------------------------------------------------- »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«« < ---------------------------- UPSTREAM ELEVATION(FEET) = 54.50 DOWNSTREAM ELEVATION(FEET) = 47.00 STREET LENGTH(FEET) = 360.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 4.30 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .35 HALFSTREET FLOOD WIDTH(FEET) = 11.04 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.22 PRODUCT OF DEPTH&VELOCITY = 1.12 STREET FLOW TRAVEL TIME(MIN.) = 1.87 TC(MIN.) = 10.44 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.369 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.06 SUBAREA RUNOFF(CFS) = 2.75 EFFECTIVE AREA(ACRES) = 2.04 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 2.04 PEAK FLOW RATE(CFS) = 5.30 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .36 HALFSTREET FLOOD WIDTH(FEET) = 11.62 FLOW VELOCITY(FEET/SEC.) = 3.61 DEPTH*VELOCITY = 1.29 FLOW PROCESS FROM NODE 29.00 TO NODE 29.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES ««< --------------------------- TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 10.44 RAINFALL INTENSITY(INCH/HR) = 3.37 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 2.04 TOTAL STREAM AREA(ACRES) = 2.04 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.30 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** Q Tc Intensity Fp Ap Fm Ae (CFS) (MIN.) (INCH/HR) (INCH/HR) (INCH/HR) (ACRES) 1 16.38 9.80 3.500 .97 .48 .47 5.89 2 15.46 12.03 3.094 .97 .48 .47 6.42 3 16.31 10.44 3.369 .97 .48 .47 6.13 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 16.38 Tc(MIN.) = 9.800 EFFECTIVE AREA(ACRES) = 5.89 AREA -AVERAGED Fm(INCH/HR) _ .47 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .48 TOTAL AREA(ACRES) = 6.42 **************************************************************************** FLOW PROCESS FROM NODE 29.00 TO NODE 101.00 IS CODE = 4 ---------------------------------------------------------------------------- »» >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< >>>>>USING USER-SPECIFIED PIPESIZE«« < ------------------------------ ASSUME FULL -FLOWING PIPELINE PIPE -FLOW VELOCITY(FEET/SEC.) = 9.3 UPSTREAM NODE ELEVATION(FEET) = 40.00 DOWNSTREAM NODE ELEVATION(FEET) = 39.30 FLOW LENGTH(FEET) = 35.00 GIVEN PIPE DIAMETER(INCH) _ PIPE-FLOW(CFS) = 16.38 TRAVEL TIME(MIN.) _ .06 MANNING'S N = .013 18.00 NUMBER OF PIPES = TC(MIN.) = 9.86 1 **************************************************************************** FLOW PROCESS FROM NODE 101.00 TO NODE 101.00 IS CODE = 10 ---------------------------------------------------------------------------- »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< **************************************************************************** FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 2.1 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS «« < DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5-7 DWELLINGS/ACRE TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 360.00 UPSTREAM ELEVATION(FEET) = 70.00 DOWNSTREAM ELEVATION(FEET) = 66.00 ELEVATION DIFFERENCE(FEET) = 4.00 TC(MIN.) = .389*[( 360.00** 3.00)/( 4.00)]** .20 = 10.077 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.442 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 2.42 TOTAL AREA(ACRES) = .91 PEAK FLOW RATE(CFS) = 2.42 **************************************************************************** FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 6 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< UPSTREAM ELEVATION(FEET) = 66.00 DOWNSTREAM ELEVATION(FEET) = 60.00 STREET LENGTH(FEET) = 213.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 3.26 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .30 HALFSTREET FLOOD WIDTH(FEET) = 8.73 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.70 PRODUCT OF DEPTH&VELOCITY = 1.11 STREET FLOW TRAVEL TIME(MIN.) = .96 TC(MIN.) = 11.03 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.259 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .67 SUBAREA RUNOFF(CFS) = 1.67 EFFECTIVE AREA(ACRES) = 1.58 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 1.58 PEAK FLOW RATE(CFS) = 3.94 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .32 HALFSTREET FLOOD WIDTH(FEET) = 9.88 FLOW VELOCITY(FEET/SEC.) = 3.60 DEPTH*VELOCITY = 1.17 **************************************************************************** FLOW PROCESS FROM NODE 12.00 TO NODE 16.00 IS CODE = 9 ---------------------------------------------------------------------------- >>>>>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA««< UPSTREAM NODE ELEVATION(FEET) = 60.00 DOWNSTREAM NODE ELEVATION(FEET) = 58.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 90.00 "V" GUTTER WIDTH(FEET) = 8.00 GUTTER HIKE(FEET) _ .250 PAVEMENT LIP(FEET) = .030 MANNING'S N = .0150 PAVEMENT CROSSFALL(DECIMAL NOTATION) _ .02000 MAXIMUM DEPTH(FEET) = 1.00 25 YEAR RAINFALL INTENSITY (INCH /HR) = 3.198 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET /SEC.) = 4.23 AVERAGE FLOW DEPTH(FEET) = .28 FLOOD WIDTH(FEET) = 8.00 "V" GUTTER FLOW TRAVEL TIME(MIN.) _ .35 TC(MIN.) = 11.39 SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) _ .00 EFFECTIVE AREA(ACRES) = 1.58 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 1.58 PEAK FLOW RATE(CFS) = 3.94 NOTE:TRAVEL TIME ESTIMATES BASED ON NORMAL DEPTH EQUAL TO [GUTTER -HIKE + PAVEMENT LIP] END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = .28 FLOOD WIDTH(FEET) = 8.00 FLOW VELOCITY(FEET/SEC.) = 4.23 DEPTH*VELOCITY = 1.19 **************************************************************************** FLOW PROCESS FROM NODE 16.00 TO NODE 16.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 11.39 RAINFALL INTENSITY(INCH/HR) = 3.20 AREA -AVERAGED Fm(INCH/HR) = .49 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 1.58 TOTAL STREAM AREA(ACRES) = 1.58 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.94 **************************************************************************** FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 2.1 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 280.00 UPSTREAM ELEVATION(FEET) = 68.00 DOWNSTREAM ELEVATION(FEET) = 67.00 ELEVATION DIFFERENCE(FEET) = 1.00 TC(MIN.) = .304*[( 280.00** 3.00)/( 1.00)]** .20 = 8.937 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.699 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) _ .68 TOTAL AREA(ACRES) = .21 PEAK FLOW RATE(CFS) _ .68 **************************************************************************** FLOW PROCESS FROM NODE 14.00 TO NODE 15.00 IS CODE = 6 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< UPSTREAM ELEVATION(FEET) = 67.00 DOWNSTREAM ELEVATION(FEET) = 63.20 STREET LENGTH(FEET) = 214.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) _ .90 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .23 HALFSTREET FLOOD WIDTH(FEET) = 5.26 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.28 PRODUCT OF DEPTH&VELOCITY = .53 STREET FLOW TRAVEL TIME(MIN.) = 1.56 TC(MIN.) = 10.50 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.358 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) = .15 SUBAREA RUNOFF(CFS) _ .44 EFFECTIVE AREA(ACRES) _ .36 AREA -AVERAGED Fm(INCH/HR) _ .10 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .10 TOTAL AREA(ACRES) = .36 PEAK FLOW RATE(CFS) = 1.06 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .24 HALFSTREET FLOOD WIDTH(FEET) = 5.84 FLOW VELOCITY(FEET/SEC.) = 2.30 DEPTH*VELOCITY = .56 **************************************************************************** FLOW PROCESS FROM NODE 15.00 TO NODE 16.00 IS CODE = 6 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< -------------------------- UPSTREAM ELEVATION(FEET) = 63.20 DOWNSTREAM ELEVATION(FEET) = 58.00 STREET LENGTH(FEET) = 170.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .24 HALFSTREET FLOOD WIDTH(FEET) = 5.84 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.97 PRODUCT OF DEPTH&VELOCITY = .72 STREET FLOW TRAVEL TIME(MIN.) = .95 TC(MIN.) 1.36 = 11.45 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.188 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) = .22 SUBAREA RUNOFF(CFS) _ .61 EFFECTIVE AREA(ACRES) _ .58 AREA -AVERAGED Fm(INCH/HR) _ .10 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .10 TOTAL AREA(ACRES) = .58 PEAK FLOW RATE(CFS) = 1.61 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .25 HALFSTREET FLOOD WIDTH(FEET) = 6.41 FLOW VELOCITY(FEET/SEC.) = 3.05 DEPTH*VELOCITY = .78 **************************************************************************** FLOW PROCESS FROM NODE 16.00 TO NODE 16.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«« < »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< ----------------------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 11.45 RAINFALL INTENSITY(INCH/HR) = 3.19 AREA -AVERAGED Fm(INCH/HR) = .10 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .10 EFFECTIVE STREAM AREA(ACRES) _ .58 TOTAL STREAM AREA(ACRES) = .58 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.61 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** Q Tc Intensity Fp Ap _ Fm Ae (CFS) (MIN.) (INCH/HR) (INCH/HR) (INCH/HR) (ACRES) 1 5.55 11.39 3.198 .97 .39 .38 2.16 2 5.54 11.45 3.188 .97 .39 .38 2.16 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 5.55 Tc(MIN.) = 11.389 EFFECTIVE AREA(ACRES) = 2.16 AREA -AVERAGED Fm(INCH/HR) _ .38 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .39 TOTAL AREA(ACRES) = 2.16 **************************************************************************** FLOW PROCESS FROM NODE 16.00 TO NODE 17.00 IS CODE = 6 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< --------------------------- UPSTREAM ELEVATION(FEET) = 58.00 DOWNSTREAM ELEVATION(FEET) = 47.10 STREET LENGTH(FEET) = 500.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .39 HALFSTREET FLOOD WIDTH(FEET) = 13.35 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.04 PRODUCT OF DEPTH&VELOCITY = 1.59 STREET FLOW TRAVEL TIME(MIN.) = 2.06 TC(MIN.) 7.67 = 13.45 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.894 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.96 SUBAREA RUNOFF(CFS) = 4.25 EFFECTIVE AREA(ACRES) = 4.12 AREA -AVERAGED Fm(INCH/HR) _ .43 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .44 TOTAL AREA(ACRES) = 4.12 PEAK FLOW RATE(CFS) = 9.13 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .42 HALFSTREET FLOOD WIDTH(FEET) = 14.51 FLOW VELOCITY(FEET/SEC.) = 4.11 DEPTH*VELOCITY = 1.71 **************************************************************************** FLOW PROCESS FROM NODE 17.00 TO NODE 101.00 IS CODE = 4 »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< »» >USING USER-SPECIFIED PIPESIZE«« < ----------------------------------- DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.8 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 10.7 UPSTREAM NODE ELEVATION(FEET) = 42.00 DOWNSTREAM NODE ELEVATION(FEET) = 39.30 FLOW LENGTH(FEET) = 74.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 9.13 TRAVEL TIME(MIN.) _ .12 TC(MIN.) = 13.57 **************************************************************************** FLOW PROCESS FROM NODE 101.00 TO NODE 101.00 IS CODE = 11 -------------------------------------------------------------------------- >>>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN -STREAM MEMORY<<<<< ** PEAK FLOW RATE TABLE ** Q Tc Intensity Fp Ap Fm Ae (CFS) (MIN.) (INCH/HR) (INCH/HR) (INCH/HR) (ACRES) 1 23.37 13.57 2.879 .97 .47 .45 10.54 2 23.30 13.64 2.870 .97 .47 .45 10.54 3 24.66 9.86 3.486 .97 .47 .46 8.88 4 24.75 10.50 3.357 .97 .47 .46 9.32 5 24.28 12.10 3.084 .97 .47 .46 10.09 TOTAL AREA = 10.54 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 24.75 Tc(MIN.) = 10.505 EFFECTIVE AREA(ACRES) = 9.32 AREA -AVERAGED Fm(INCH/HR) _ .46 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .47 TOTAL AREA(ACRES) = 10.54 **************************************************************************** FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 4 ---------------------------------------------------------------------------- »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< DEPTH OF FLOW IN 24.0 INCH PIPE IS 17.0 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 10.4 UPSTREAM NODE ELEVATION(FEET) = 39.30 DOWNSTREAM NODE ELEVATION(FEET) = 34.00 FLOW LENGTH(FEET) = 290.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 24.75 TRAVEL TIME(MIN.) _ .47 TC(MIN.) = 10.97 **************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 10 ---------------------------------------------------------------------------- >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<<< **************************************************************************** FLOW PROCESS FROM NODE 29.00 TO NODE 30.00 IS CODE = 2.1 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 160.00 UPSTREAM ELEVATION(FEET) = 47.00 DOWNSTREAM ELEVATION(FEET) = 44.70 ELEVATION DIFFERENCE(FEET) = 2.30 TC(MIN.) _ .304*[( 160.00** 3.00)/( 2.30)]** .20 = 5.408 25 YEAR RAINFALL INTENSITY(INCH/HR) = 5.000 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) _ .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) _ .44 TOTAL AREA(ACRES) _ .10 PEAK FLOW RATE(CFS) _ .44 **************************************************************************** FLOW PROCESS FROM NODE 30.00 TO NODE 38.00 IS CODE = 5.1 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< »»>TRAVELTIME THRU SUBAREA«« < UPSTREAM NODE ELEVATION = 44.70 DOWNSTREAM NODE ELEVATION = 44.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 25.00 CHANNEL SLOPE = .0280 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 25.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = .44 FLOW VELOCITY(FEET/SEC) = 2.24 FLOW DEPTH(FEET) _ .09 TRAVEL TIME(MIN.) = .19 TC(MIN.) = 5.59 FLOW PROCESS FROM NODE 38.00 TO NODE 38.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 5.59 RAINFALL INTENSITY(INCH/HR) = 4.90 AREA -AVERAGED Fm(INCH/HR) = .10 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .10 EFFECTIVE STREAM AREA(ACRES) _ .10 TOTAL STREAM AREA(ACRES) = .10 PEAK FLOW RATE(CFS) AT CONFLUENCE _ .44 FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5-7 DWELLINGS/ACRE TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 325.00 UPSTREAM ELEVATION(FEET) = 67.20 DOWNSTREAM ELEVATION(FEET) = 62.20 ELEVATION DIFFERENCE(FEET) = 5.00 TC(MIN.) = .389*[( 325.00** 3.00)/( 5.00)]** .20 = 9.063 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.668 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 2.38 TOTAL AREA(ACRES) = .83 PEAK FLOW RATE(CFS) = 2.38 FLOW PROCESS FROM NODE 32.00 TO NODE 33.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«« < ---------------------------- UPSTREAM ELEVATION(FEET) = 62.20 DOWNSTREAM ELEVATION(FEET) = 58.00 STREET LENGTH(FEET) = 207.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 3.23 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .31 HALFSTREET FLOOD WIDTH(FEET) = 9.30 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.29 PRODUCT OF DEPTH&VELOCITY = 1.03 STREET FLOW TRAVEL TIME(MIN.) = 1.05 TC(MIN.) = 10.11 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.434 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) _ .65 SUBAREA RUNOFF(CFS) = 1.73 EFFECTIVE AREA(ACRES) = 1.48 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 1.48 PEAK FLOW RATE(CFS) = 3.93 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .34 HALFSTREET FLOOD WIDTH(FEET) = 10.46 FLOW VELOCITY(FEET/SEC.) = 3.24 DEPTH*VELOCITY = 1.09 FLOW PROCESS FROM NODE 33.00 TO NODE 35.00 IS CODE = 5.1 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< »»>TRAVELTIME THRU SUBAREA««< -------------------------------- UPSTREAM NODE ELEVATION = 58.00 DOWNSTREAM NODE ELEVATION = 56.60 CHANNEL LENGTH THRU SUBAREA(FEET) = 80.00 CHANNEL SLOPE _ .0175 CHANNEL BASE(FEET) _ .00 "Z" FACTOR = 25.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 3.93 FLOW VELOCITY(FEET/SEC) = 3.08 FLOW DEPTH(FEET) _ .23 TRAVEL TIME(MIN.) _ .43 TC(MIN.) = 10.55 FLOW PROCESS FROM NODE 35.00 TO NODE 35.00 IS CODE = 8 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.349 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) _ .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) _ .26 SUBAREA RUNOFF(CFS) _ .76 EFFECTIVE AREA(ACRES) = 1.74 AREA -AVERAGED Fm(INCH/HR) _ .43 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .44 TOTAL AREA(ACRES) = 1.74 PEAK FLOW RATE(CFS) = 4.58 TC(MIN) = 10.55 FLOW PROCESS FROM NODE 35.00 TO NODE 36.00 IS CODE = 6 ---------------------------------------------------------------------------- »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< UPSTREAM ELEVATION(FEET) = 56.60 DOWNSTREAM ELEVATION(FEET) = 50.00 STREET LENGTH(FEET) = 320.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 5.73 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .37 HALFSTREET FLOOD WIDTH(FEET) = 12.20 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.57 PRODUCT OF DEPTH&VELOCITY = 1.32 STREET FLOW TRAVEL TIME(MIN.) = 1.49 TC(MIN.) = 12.04 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.093 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) _ .98 SUBAREA RUNOFF(CFS) = 2.30 EFFECTIVE AREA(ACRES) = 2.72 AREA -AVERAGED Fm(INCH/HR) _ .45 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .46 TOTAL AREA(ACRES) = 2.72 PEAK FLOW RATE(CFS) = 6.48 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .38 HALFSTREET FLOOD WIDTH(FEET) = 12.77 FLOW VELOCITY(FEET/SEC.) = 3.70 DEPTH*VELOCITY = 1.41 **************************************************************************** FLOW PROCESS FROM NODE 36.00 TO NODE 37.00 IS CODE = 6 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< UPSTREAM ELEVATION(FEET) = 50.00 DOWNSTREAM ELEVATION(FEET) = 44.70 STREET LENGTH(FEET) = 320.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 7.53 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .40 HALFSTREET FLOOD WIDTH(FEET) = 13.93 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.66 PRODUCT OF DEPTH&VELOCITY = 1.48 STREET FLOW TRAVEL TIME(MIN.) = 1.46 TC(MIN.) = 13.50 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.888 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) _ .98 SUBAREA RUNOFF(CFS) = 2.12 EFFECTIVE AREA(ACRES) = 3.70 AREA -AVERAGED Fm(INCH/HR) _ .46 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .47 TOTAL AREA(ACRES) = 3.70 PEAK FLOW RATE(CFS) = 8.09 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .42 HALFSTREET FLOOD WIDTH(FEET) = 14.51 FLOW VELOCITY(FEET/SEC.) = 3.64 DEPTH*VELOCITY = 1.52 **************************************************************************** FLOW PROCESS FROM NODE 37.00 TO NODE 38.00 IS CODE = 5.1 ---------------------------------------------------------------------------- »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA<<<<< ---------- UPSTREAM NODE ELEVATION = 44.70 DOWNSTREAM NODE ELEVATION = 44.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 25.00 CHANNEL SLOPE _ .0280 CHANNEL BASE(FEET) _ .00 "Z" FACTOR = 25.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 8.09 FLOW VELOCITY(FEET/SEC) = 4.38 FLOW DEPTH(FEET) _ .27 TRAVEL TIME(MIN.) _ .10 TC(MIN.) = 13.59 FLOW PROCESS FROM NODE 38.00 TO NODE 38.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES ««< - --------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.59 RAINFALL INTENSITY(INCH/HR) = 2.88 AREA -AVERAGED Fm(INCH/HR) _ .46 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .47 EFFECTIVE STREAM AREA(ACRES) = 3.70 TOTAL STREAM AREA(ACRES) = 3.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.09 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** Q Tc Intensity Fp Ap Fm Ae (CFS) (MIN.) (INCH/HR) (INCH/HR) (INCH/HR) (ACRES) 1 6.56 5.59 4.900 .97 .45 .44 1.62 2 8.35 13.59 2.876 .97 .46 .45 3.80 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 8.35 Tc(MIN.) = 13.594 EFFECTIVE AREA(ACRES) = 3.80 AREA -AVERAGED Fm(INCH/HR) _ .45 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .46 TOTAL AREA(ACRES) = 3.80 FLOW PROCESS FROM NODE 38.00 TO NODE 39.00 IS CODE = 5.1 ---------------------------------------------------------------------------- »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW«« < »»>TRAVELTIME THRU SUBAREA««< UPSTREAM NODE ELEVATION = 44.00 DOWNSTREAM NODE ELEVATION = 42.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 65.00 CHANNEL SLOPE _ .0308 CHANNEL BASE(FEET) _ .00 "Z" FACTOR = 25.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 8.35 FLOW VELOCITY(FEET/SEC) = 4.58 FLOW DEPTH(FEET) _ .27 TRAVEL TIME(MIN.) _ .24 TC(MIN.) = 13.83 **************************************************************************** FLOW PROCESS FROM NODE 39.00 TO NODE 39.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ----------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.83 RAINFALL INTENSITY(INCH/HR) = 2.85 AREA -AVERAGED Fm(INCH/HR) _ .45 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .46 EFFECTIVE STREAM AREA(ACRES) = 3.80 TOTAL STREAM AREA(ACRES) = 3.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.35 FLOW PROCESS FROM NODE 17.00 TO NODE 18.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5-7 DWELLINGS/ACRE TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 240.00 UPSTREAM ELEVATION(FEET) = 47.10 DOWNSTREAM ELEVATION(FEET) = 44.30 ELEVATION DIFFERENCE(FEET) = 2.80 TC(MIN.) _ .389*[( 240.00** 3.00)/( 2.80)]** .20 = 8.485 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.816 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 1.71 TOTAL AREA(ACRES) _ .57 PEAK FLOW RATE(CFS) = 1.71 **************************************************************************** FLOW PROCESS FROM NODE 18.00 TO NODE 39.00 IS CODE = 5.1 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW«« < »»>TRAVELTIME THRU SUBAREA«« < ------------------------------ UPSTREAM NODE ELEVATION = 44.30 DOWNSTREAM NODE ELEVATION = 42.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 40.00 CHANNEL SLOPE = .0575 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 25.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 1.71 FLOW VELOCITY(FEET/SEC) = 3.89 FLOW DEPTH(FEET) _ .13 TRAVEL TIME(MIN.) = .17 TC(MIN.) = 8.66 **************************************************************************** FLOW PROCESS FROM NODE 39.00 TO NODE 39.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.66 RAINFALL INTENSITY(INCH/HR) = 3.77 AREA -AVERAGED Fm(INCH/HR) = .49 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) _ .57 TOTAL STREAM AREA(ACRES) = .57 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.71 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** Q Tc Intensity Fp Ap Fm Ae (CFS) (MIN.) (INCH/HR) (INCH/HR) (INCH/HR) (ACRES) 1 8.06 5.85 4.772 .97 .46 .44 2.01 2 9.5B 13.83 2.846 .97 .47 .45 4.37 3 8.90 8.66 3.770 .97 .46 .45 2.96 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 9.58 Tc(MIN.) = 13.830 EFFECTIVE AREA(ACRES) = 4.37 AREA -AVERAGED Fm(INCH/HR) _ .45 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .47 TOTAL AREA(ACRES) = 4.37 **************************************************************************** FLOW PROCESS FROM NODE 39.00 TO NODE 43.00 IS CODE = 6 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< ---------------------------- UPSTREAM ELEVATION(FEET) = 43.60 DOWNSTREAM ELEVATION(FEET) = 42.50 STREET LENGTH(FEET) = 140.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 9.72 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .49 HALFSTREET FLOOD WIDTH(FEET) = 17.98 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.90 PRODUCT OF DEPTH&VELOCITY = 1.41 STREET FLOW TRAVEL TIME(MIN.) _ .80 TC(MIN.) = 14.63 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.751 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) _ .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) _ .12 SUBAREA RUNOFF(CFS) _ .29 EFFECTIVE AREA(ACRES) = 4.49 AREA -AVERAGED Fm(INCH/HR) _ .44 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .46 TOTAL AREA(ACRES) = 4.49 PEAK FLOW RATE(CFS) = 9.58 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .49 HALFSTREET FLOOD WIDTH(FEET) = 17.98 FLOW VELOCITY(FEET/SEC.) = 2.86 DEPTH*VELOCITY = 1.39 FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«« < TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.63 RAINFALL INTENSITY(INCH/HR) = 2.75 AREA -AVERAGED Fm(INCH/HR) _ .44 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .46 EFFECTIVE STREAM AREA(ACRES) = 4.49 TOTAL STREAM AREA(ACRES) = 4.49 PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.58 FLOW PROCESS FROM NODE 40.00 TO NODE 41.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS «« < DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5-7 DWELLINGS/ACRE TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 455.00 UPSTREAM ELEVATION(FEET) = 59.90 DOWNSTREAM ELEVATION(FEET) = 52.00 ELEVATION DIFFERENCE(FEET) = 7.90 TC(MIN.) _ .389*[( 455.00** 3.00)/( 7.90)]** .20 = 10.121 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.433 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 3.02 TOTAL AREA(ACRES) = 1.14 PEAK FLOW RATE(CFS) = 3.02 **************************************************************************** FLOW PROCESS FROM NODE 41.00 TO NODE 42.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«« < ---------------------- UPSTREAM ELEVATION(FEET) = 52.00 DOWNSTREAM ELEVATION(FEET) = 45.20 STREET LENGTH(FEET) = 337.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 4.19 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .34 HALFSTREET FLOOD WIDTH(FEET) = 10.46 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.45 PRODUCT OF DEPTH&VELOCITY = 1.16 STREET FLOW TRAVEL TIME(MIN.) = 1.63 TC(MIN.) = 11.75 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.139 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .98 SUBAREA RUNOFF(CFS) = 2.34 EFFECTIVE AREA(ACRES) = 2.12 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 2.12 PEAK FLOW RATE(CFS) = 5.06 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .36 HALFSTREET FLOOD WIDTH(FEET) = 11.62 FLOW VELOCITY(FEET/SEC.) = 3.45 DEPTH*VELOCITY = 1.24 **************************************************************************** FLOW PROCESS FROM NODE 42.00 TO NODE 43.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< ------------------------------ UPSTREAM ELEVATION(FEET) = 45.20 DOWNSTREAM ELEVATION(FEET) = 42.50 STREET LENGTH(FEET) = 170.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 5.70 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .38 HALFSTREET FLOOD WIDTH(FEET) = 12.77 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.26 PRODUCT OF DEPTH&VELOCITY = 1.24 STREET FLOW TRAVEL TIME(MIN.) = .87 TC(MIN.) = 12.62 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.007 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .56 SUBAREA RUNOFF(CFS) = 1.27 EFFECTIVE AREA(ACRES) = 2.68 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 2.68 PEAK FLOW RATE(CFS) = 6.08 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .39 HALFSTREET FLOOD WIDTH(FEET) = 13.35 FLOW VELOCITY(FEET/SEC.) = 3.20 DEPTH*VELOCITY = 1.26 **************************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< »» >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES ««< -------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 12.62 RAINFALL INTENSITY(INCH/HR) = 3.01 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 2.68 TOTAL STREAM AREA(ACRES) = 2.68 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.08 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** Q Tc Intensity (CFS) (MIN.) (INCH/HR) 1 13.07 6.67 4.407 2 14.49 9.52 3.562 3 15.04 14.63 2.751 4 15.39 12.62 3.007 Fp Ap Fm Ae (INCH/HR) (INCH/HR) (ACRES) .97 .46 .45 3.54 .97 .47 .45 5.10 .97 .47 .46 7.17 .97 .47 .46 6.61 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 15.39 Tc(MIN.) = 12.617 EFFECTIVE AREA(ACRES) = 6.61 AREA -AVERAGED Fm(INCH/HR) _ .46 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .47 TOTAL AREA(ACRES) = 7.17 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 43.00 TO NODE 102.00 IS CODE = 4 »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA<<<<< »»>USING USER-SPECIFIED PIPESIZE«« < DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.4 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 19.0 UPSTREAM NODE ELEVATION(FEET) = 37.00 DOWNSTREAM NODE ELEVATION(FEET) = 34.00 FLOW LENGTH(FEET) = 25.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 15.39 TRAVEL TIME(MIN.) _ .02 TC(MIN.) = 12.64 **************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 11 ---------------------------------------------------------------------------- >>>>>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN -STREAM MEMORY<<<<< ** PEAK FLOW RATE TABLE ** Q Tc Intensity (CFS) (MIN.) (INCH/HR) 1 34.54 6.70 4.398 2 38.55 9.54 3.557 3 39.63 12.64 3.004 4 37.71 14.66 2.749 5 39.38 10.33 3.391 6 39.66 10.97 3.271 7 39.65 12.57 3.014 8 38.52 14.04 2.821 9 38.44 14.11 2.813 TOTAL AREA = 17.71 16.67 Fp Ap Fm Ae (INCH/HR) EFFECTIVE AREA(ACRES) (INCH/HR) (ACRES) .97 .47 .45 9.31 .97 .47 .46 13.30 .97 .47 .46 16.73 .97 .47 .46 17.71 .97 .47 .46 14.37 .97 .47 .46 15.12 .97 .47 .46 16.67 .97 .47 .46 17.54 .97 .47 .46 17.56 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 39.66 Tc(MIN.) = 10.971 EFFECTIVE AREA(ACRES) = 15.12 AREA -AVERAGED Fm(INCH/HR) _ .46 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .47 TOTAL AREA(ACRES) = 17.71 END OF STUDY SUMMARY: -------------- TOTAL AREA(ACRES) = 17.71 TC(MIN.) = 10.97 EFFECTIVE AREA(ACRES) = 15.12 AREA -AVERAGED Fm(INCH/HR)= .46 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .47 PEAK FLOW RATE(CFS) = 39.66 ** PEAK FLOW RATE TABLE ** Q Tc Intensity Fp Ap Fm Ae (CFS) (MIN.) (INCH/HR) (INCH/HR) (INCH/HR) (ACRES) 1 34.54 6.70 4.398 .97 .47 .45 9.31 2 38.55 9.54 3.557 .97 .47 .46 13.30 3 39.38 10.33 3.391 .97 .47 .46 14.37 4 39.66 10.97 3.271 .97 .47 .46 15.12 5 39.65 12.57 3.014 .97 .47 .46 16.67 6 39.63 12.64 3.004 .97 .47 .46 16.73 7 38.52 14.04 2.821 .97 .47 .46 17.54 8 38.44 14.11 2.813 .97 .47 .46 17.56 9 37.71 14.66 2.749 .97 .47 .46 17.71 END OF RATIONAL METHOD ANALYSIS ---------------------------- RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983-92 Advanced Engineering Software (aes) Ver. 1.9A Release Date: 6/26/92 License ID 1237 Analysis prepared by: HALL & FOREMAN, INC. 13821 NEWPORT AVENUE, Suite 200 TUSTIN, CALIFORNIA 92680-7803 714/544-3404 ************************** DESCRIPTION OF STUDY ************************** * CITY OF FONTANA, LEWIS HOMES PROJECT * ONSITE SYSTEM HYDROLOGY ANALYSIS, 100 -YEAR STORM EVENT * FILENAME: "FONTANA", OUTPUT FILE: "FONT100.OUT" BY: EMRUIZ ************#*****#**#*******##*******#*******##****#*************##****** FILE NAME: FONTANA.DAT TIME/DATE OF STUDY: 13:43 9/30/1998 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TIME-OF-CONCENTRATION MODEL* -- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE _ .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) = 1.5000 *********************##**********************************#****************** FLOW PROCESS FROM NODE 19.00 TO NODE 20.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5-7 DWELLINGS/ACRE TC = K*((LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 195.00 UPSTREAM ELEVATION(FEET) = 65.00 DOWNSTREAM ELEVATION(FEET) = 63.00 ELEVATION DIFFERENCE(FEET) = 2.00 TC(MIN.) _ .389*[( 195.00** 3.00)/( 2.00)]** .20 = 8.012 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.020 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4B50 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 2.16 TOTAL AREA(ACRES) _ .53 PEAK FLOW RATE(CFS) = 2.16 **#**#**************#***************************#**#************************ FLOW PROCESS FROM NODE 20.00 TO NODE 21.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< UPSTREAM ELEVATION(FEET) = 63.00 DOWNSTREAM ELEVATION(FEET) = 58.00 STREET LENGTH(FEET) = 225.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 3.39 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .31 HALFSTREET FLOOD WIDTH(FEET) = 9.30 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.45 PRODUCT OF DEPTH&VELOCITY = 1.08 STREET FLOW TRAVEL TIME(MIN.) = 1.09 TC(MIN.) = 9.10 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.651 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) _ .66 SUBAREA RUNOFF(CFS) = 2.47 EFFECTIVE AREA(ACRES) = 1.19 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 1.19 PEAK FLOW RATE(CFS) = 4.46 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .35 HALFSTREET FLOOD WIDTH(FEET) = 11.04 FLOW VELOCITY(FEET/SEC.) = 3.34 DEPTH*VELOCITY = 1.16 **************************************************************************** FLOW PROCESS FROM NODE 21.00 TO NODE 22.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< UPSTREAM ELEVATION(FEET) = 58.00 DOWNSTREAM ELEVATION(FEET) = 53.00 STREET LENGTH(FEET) = 288.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 5.91 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .38 HALFSTREET FLOOD WIDTH(FEET) = 12.77 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.38 PRODUCT OF DEPTH&VELOCITY = 1.29 STREET FLOW TRAVEL TIME(MIN.) = 1.42 TC(MIN.) = 10.52 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.263 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) _ .85 SUBAREA RUNOFF(CFS) = 2.89 EFFECTIVE AREA(ACRES) = 2.04 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 2.04 PEAK FLOW RATE(CFS) = 6.94 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .39 HALFSTREET FLOOD WIDTH(FEET) = 13.35 FLOW VELOCITY(FEET/SEC.) = 3.65 DEPTH*VELOCITY = 1.44 **************************************************************************** FLOW PROCESS FROM NODE 22.00 TO NODE 23.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< UPSTREAM ELEVATION(FEET) = 53.00 DOWNSTREAM ELEVATION(FEET) _ - 49.00 STREET LENGTH(FEET) = 200.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 7.17 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .39 HALFSTREET FLOOD WIDTH(FEET) = 13.35 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.77 PRODUCT OF DEPTH&VELOCITY = 1.48 STREET FLOW TRAVEL TIME(MIN.) _ .88 TC(MIN.) = 11.40 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.062 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) _ .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) _ .13 SUBAREA RUNOFF(CFS) _ .46 EFFECTIVE AREA(ACRES) = 2.17 AREA -AVERAGED Fm(INCH/HR) _ .46 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .48 TOTAL AREA(ACRES) = 2.17 PEAK FLOW RATE(CFS) = 7.03 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .39 HALFSTREET FLOOD WIDTH(FEET) = 13.35 FLOW VELOCITY(FEET/SEC.) = 3.70 DEPTH*VELOCITY = 1.45 **************************************************************************** FLOW PROCESS FROM NODE 23.00 TO NODE 29.00 IS CODE = 5.1 >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW«« < >>>>>TRAVELTIME THRU SUBAREA<<<<< ---------------------------- UPSTREAM NODE ELEVATION = 49.00 DOWNSTREAM NODE ELEVATION = 47.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 85.00 CHANNEL SLOPE _ .0235 CHANNEL BASE(FEET) _ .00 "Z" FACTOR = 25.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 7.03 FLOW VELOCITY(FEET/SEC) = 4.03 FLOW DEPTH(FEET) _ .26 TRAVEL TIME(MIN.) _ .35 TC(MIN.) = 11.76 **************************************************************************** FLOW PROCESS FROM NODE 29.00 TO NODE 29.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«« < TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 11.76 RAINFALL INTENSITY(INCH/HR) = 3.99 AREA -AVERAGED Fm(INCH/HR) _ .46 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .48 EFFECTIVE STREAM AREA(ACRES) = 2.17 TOTAL STREAM AREA(ACRES) = 2.17 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.03 **************************************************************************** FLOW PROCESS FROM NODE 19.00 TO NODE 24.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE))** .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 190.00 UPSTREAM ELEVATION(FEET) = 65.00 DOWNSTREAM ELEVATION(FEET) = 61.50 ELEVATION DIFFERENCE(FEET) = 3.50 TC(MIN.) _ .304*[( 190.00** 3.00)/( 3.50)]** .20 = 5.512 100 YEAR RAINFALL INTENSITY(INCH/HR) = 6.283 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) _ .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) _ .67 TOTAL AREA(ACRES) _ .12 PEAK FLOW RATE(CFS) _ .67 **************************************************************************** FLOW PROCESS FROM NODE 24.00 TO NODE 25.00 IS CODE = 6 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< ----------------------------------- UPSTREAM ELEVATION(FEET) = 61.50 DOWNSTREAM ELEVATION(FEET) = 54.60 STREET LENGTH(FEET) = 360.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 2.82 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .31 HALFSTREET FLOOD WIDTH(FEET) = 9.30 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.86 PRODUCT OF DEPTH&VELOCITY = .89 STREET FLOW TRAVEL TIME(MIN.) = 2.10 TC(MIN.) = 7.61 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.179 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 4.22 EFFECTIVE AREA(ACRES) = 1.12 AREA -AVERAGED Fm(INCH/HR) _ .44 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .46 TOTAL AREA(ACRES) = 1.12 PEAK FLOW RATE(CFS) = 4.77 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .36 HALFSTREET FLOOD WIDTH(FEET) = 11.62 FLOW VELOCITY(FEET/SEC.) = 3.25 DEPTH*VELOCITY = 1.17 FLOW PROCESS FROM NODE 25.00 TO NODE 26.00 IS CODE = 6 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< -------------------------- UPSTREAM ELEVATION(FEET) = 54.60 DOWNSTREAM ELEVATION(FEET) = 49.00 STREET LENGTH(FEET) = 320.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 6.81 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .39 HALFSTREET FLOOD WIDTH(FEET) = 13.35 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.58 PRODUCT OF DEPTH&VELOCITY = 1.41 STREET FLOW TRAVEL TIME(MIN.) = 1.49 TC(MIN.) = 9.10 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.652 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.09 SUBAREA RUNOFF(CFS) = 4.09 EFFECTIVE AREA(ACRES) = 2.21 AREA -AVERAGED Fm(INCH/HR) _ .46 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .48 TOTAL AREA(ACRES) = 2.21 PEAK FLOW RATE(CFS) = 8.33 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .42 HALFSTREET FLOOD WIDTH(FEET) = 14.51 FLOW VELOCITY(FEET/SEC.) = 3.75 DEPTH*VELOCITY = 1.56 **************************************************************************** FLOW PROCESS FROM NODE 26.00 TO NODE 29.00 IS CODE = 5.1 >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< »» >TRAVELTIME THRU SUBAREA««< ----------------------------------- UPSTREAM NODE ELEVATION = 49.00 DOWNSTREAM NODE ELEVATION = 47.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 100.00 CHANNEL SLOPE = .0200 CHANNEL BASE(FEET) = 00 "Z" FACTOR = 25.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 8.33 FLOW VELOCITY(FEET/SEC) = 3.89 FLOW DEPTH(FEET) _ .29 TRAVEL TIME(MIN.) _ .43 TC(MIN.) = 9.53 **************************************************************************** FLOW PROCESS FROM NODE 29.00 TO NODE 29.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 9.53 RAINFALL INTENSITY(INCH/HR) = 4.53 AREA -AVERAGED Fm(INCH/HR) _ .46 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .48 EFFECTIVE STREAM AREA(ACRES) = 2.21 TOTAL STREAM AREA(ACRES) = 2.21 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.33 **************************************************************************** FLOW PROCESS FROM NODE 27.00 TO NODE 28.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ------------- DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5-7 DWELLINGS/ACRE TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00 UPSTREAM ELEVATION(FEET) = 61.40 DOWNSTREAM ELEVATION(FEET) = 54.50 ELEVATION DIFFERENCE(FEET) = 6.90 TC(MIN.) _ .389*[( 330.00** 3.00)/( 6.90)]** .20 = 8.576 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.820 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 3.82 TOTAL AREA(ACRES) _ .98 PEAK FLOW RATE(CFS) = 3.82 **************************************************************************** FLOW PROCESS FROM NODE 28.00 TO NODE 29.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«« < UPSTREAM ELEVATION(FEET) ELEVATION(FEET) = 54.50 DOWNSTREAM ELEVATION(FEET) = 47.00 STREET LENGTH(FEET) = 360.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 5.66 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .37 HALFSTREET FLOOD WIDTH(FEET) = 12.20 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.53 PRODUCT OF DEPTH&VELOCITY = 1.31 STREET FLOW TRAVEL TIME(MIN.) = 1.70 TC(MIN.) = 10.28 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.324 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.06 SUBAREA RUNOFF(CFS) = 3.66 EFFECTIVE AREA(ACRES) = 2.04 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 2.04 PEAK FLOW RATE(CFS) = 7.05 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .39 HALFSTREET FLOOD WIDTH(FEET) = 13.35 FLOW VELOCITY(FEET/SEC.) = 3.71 DEPTH*VELOCITY = 1.46 **************************************************************************** FLOW PROCESS FROM NODE 29.00 TO NODE 29.00 IS CODE = 1 »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES ««< ---------------------- TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 10.28 RAINFALL INTENSITY(INCH/HR) = 4.32 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 2.04 TOTAL STREAM AREA(ACRES) = 2.04 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.05 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** Q Tc Intensity Fp Ap Fm Ae (CFS) (MIN.) (INCH/HR) (INCH/HR) (INCH/HR) (ACRES) 1 21.77 9.53 4.525 .97 .48 .47 5.86 2 20.69 11.76 3.989 .97 .48 .47 6.42 3 21.70 10.28 4.324 .97 .48 .47 6.15 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 21.77 Tc(MIN.) = 9.526 EFFECTIVE AREA(ACRES) = 5.86 AREA -AVERAGED Fm(INCH/HR) _ .47 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .48 TOTAL AREA(ACRES) = 6.42 **************************************************************************** FLOW PROCESS FROM NODE 29.00 TO NODE 101.00 IS CODE = 4 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE«« < ------------------------------ ASSUME FULL -FLOWING PIPELINE PIPE -FLOW VELOCITY(FEET/SEC.) = 12.3 UPSTREAM NODE ELEVATION(FEET) = 40.00 DOWNSTREAM NODE ELEVATION(FEET) = 39.30 FLOW LENGTH(FEET) = 35.00 GIVEN PIPE DIAMETER(INCH) _ PIPE-FLOW(CFS) = 21.77 TRAVEL TIME(MIN.) _ .05 MANNING`S N = .013 18.00 NUMBER OF PIPES = TC(MIN.) = 9.57 1 FLOW PROCESS FROM NODE 101.00 TO NODE 101.00 IS CODE = 10 ---------------------------------------------------------------------------- »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<< **************************************************************************** FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 2.1 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5-7 DWELLINGS/ACRE TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 360.00 UPSTREAM ELEVATION(FEET) = 70.00 DOWNSTREAM ELEVATION(FEET) = 66.00 ELEVATION DIFFERENCE(FEET) = 4.00 TC(MIN.) _ .389*[( 360.00** 3.00)/( 4.00)]** .20 = 10.077 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.375 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 3.19 TOTAL AREA(ACRES) _ .91 PEAK FLOW RATE(CFS) = 3.19 **************************************************************************** FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 6 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< UPSTREAM ELEVATION(FEET) = 66.00 DOWNSTREAM ELEVATION(FEET) = 60.00 STREET LENGTH(FEET) = 213.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .32 HALFSTREET FLOOD WIDTH(FEET) = 9.88 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.92 PRODUCT OF DEPTH&VELOCITY = 1.27 STREET FLOW TRAVEL TIME(MIN.) _ .91 TC(MIN.) 4.29 EmmiGMt17 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.155 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .67 SUBAREA RUNOFF(CFS) = 2.21 EFFECTIVE AREA(ACRES) = 1.58 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 1.58 PEAK FLOW RATE(CFS) = 5.22 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .35 HALFSTREET FLOOD WIDTH(FEET) = 11.04 FLOW VELOCITY(FEET/SEC.) = 3.90 DEPTH*VELOCITY = 1.35 FLOW PROCESS FROM NODE 12.00 TO NODE 16.00 IS CODE = 9 ---------------------------------------------------------------------------- »»>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA«« < UPSTREAM NODE ELEVATION(FEET) = 60.00 DOWNSTREAM NODE ELEVATION(FEET) = 58.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 90.00 "V" GUTTER WIDTH(FEET) = 8.00 GUTTER HIKE(FEET) _ .250 PAVEMENT LIP(FEET) = .030 MANNING'S N = .0150 PAVEMENT CROSSFALL(DECIMAL NOTATION) _ .02000 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.077 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 4.23 AVERAGE FLOW DEPTH(FEET) = .28 FLOOD WIDTH(FEET) = 8.00 "V" GUTTER FLOW TRAVEL TIME(MIN.) _ .35 TC(MIN.) = 11.34 SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) _ .00 EFFECTIVE AREA(ACRES) = 1.58 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 1.58 PEAK FLOW RATE(CFS) = 5.22 NOTE:TRAVEL TIME ESTIMATES BASED ON NORMAL DEPTH EQUAL TO [GUTTER -HIKE + PAVEMENT LIP] END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = .28 FLOOD WIDTH(FEET) = 8.00 FLOW VELOCITY(FEET/SEC.) = 4.23 DEPTH*VELOCITY = 1.19 FLOW PROCESS FROM NODE 16.00 TO NODE 16.00 IS CODE = 1 ----------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«« < TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 11.34 RAINFALL INTENSITY(INCH/HR) = 4.08 AREA -AVERAGED Fm(INCH/HR) = .49 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 1.58 TOTAL STREAM AREA(ACRES) = 1.58 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.22 **************************************************************************** FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »» >RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ----------- DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 280.00 UPSTREAM ELEVATION(FEET) = 68.00 DOWNSTREAM ELEVATION(FEET) = 67.00 ELEVATION DIFFERENCE(FEET) = 1.00 TC(MIN.) = .304*[( 280.00** 3.00)/( 1.00)]** .20 = 8.937 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.702 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) _ .87 TOTAL AREA(ACRES) _ .21 PEAK FLOW RATE(CFS) _ .87 **************************************************************************** FLOW PROCESS FROM NODE 14.00 TO NODE 15.00 IS CODE = 6 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< ---------------------- UPSTREAM ELEVATION(FEET) = 67.00 DOWNSTREAM ELEVATION(FEET) = 63.20 STREET LENGTH(FEET) = 214.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 1.15 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .24 HALFSTREET FLOOD WIDTH(FEET) = 5.84 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.51 PRODUCT OF DEPTH&VELOCITY = .61 STREET FLOW TRAVEL TIME(MIN.) = 1.42 TC(MIN.) = 10.36 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.304 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) = .15 SUBAREA RUNOFF(CFS) _ .57 EFFECTIVE AREA(ACRES) _ .36 AREA -AVERAGED Fm(INCH/HR) _ .10 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .10 TOTAL AREA(ACRES) = .36 PEAK FLOW RATE(CFS) = 1.36 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .25 HALFSTREET FLOOD WIDTH(FEET) = 6.41 FLOW VELOCITY(FEET/SEC.) = 2.57 DEPTH*VELOCITY = .66 **************************************************************************** FLOW PROCESS FROM NODE 15.00 TO NODE 16.00 IS CODE = 6 ---------------------------------------------------------------------------- »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< ------------------------------ UPSTREAM ELEVATION(FEET) = 63.20 DOWNSTREAM ELEVATION(FEET) = 58.00 STREET LENGTH(FEET) = 170.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 1.76 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .25 HALFSTREET FLOOD WIDTH(FEET) = 6.41 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.32 PRODUCT OF DEPTH&VELOCITY = .85 STREET FLOW TRAVEL TIME(MIN.) = .85 TC(MIN.) = 11.21 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.104 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) = .22 SUBAREA RUNOFF(CFS) _ .79 EFFECTIVE AREA(ACRES) _ .58 AREA -AVERAGED Fm(INCH/HR) _ .10 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .10 TOTAL AREA(ACRES) = .58 PEAK FLOW RATE(CFS) = 2.09 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .27 HALFSTREET FLOOD WIDTH(FEET) = 6.99 FLOW VELOCITY(FEET/SEC.) = 3.45 DEPTH*VELOCITY = .92 **************************************************************************** FLOW PROCESS FROM NODE 16.00 TO NODE 16.00 IS CODE = 1 »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES ««< -------------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 11.21 RAINFALL INTENSITY(INCH/HR) = 4.10 AREA -AVERAGED Fm(INCH/HR) = .10 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .10 EFFECTIVE STREAM AREA(ACRES) _ .58 TOTAL STREAM AREA(ACRES) = .58 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.09 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** Q Tc Intensity Fp Ap Fm Ae (CFS) (MIN.) (INCH/HR) (INCH/HR) (INCH/HR) (ACRES) 1 7.30 11.34 4.077 .97 .39 .38 2.16 2 7.29 11.21 4.104 .97 .39 .38 2.14 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 7.30 Tc(MIN.) = 11.336 EFFECTIVE AREA(ACRES) = 2.16 AREA -AVERAGED Fm(INCH/HR) _ .38 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .39 TOTAL AREA(ACRES) = 2.16 **************************************************************************** FLOW PROCESS FROM NODE 16.00 TO NODE 17.00 IS CODE = 6 ---------------------------------------------------------------------------- »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< UPSTREAM ELEVATION(FEET) = 58.00 DOWNSTREAM ELEVATION(FEET) = 47.10 STREET LENGTH(FEET) = 500.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) _ INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .43 HALFSTREET FLOOD WIDTH(FEET) = 15.09 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.23 PRODUCT OF DEPTH&VELOCITY = 1.81 STREET FLOW TRAVEL TIME(MIN.) = 1.97 TC(MIN.) 5.00 10.13 = 13.31 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.703 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.96 SUBAREA RUNOFF(CFS) = 5.68 EFFECTIVE AREA(ACRES) = 4.12 AREA -AVERAGED Fm(INCH/HR) _ .43 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .44 TOTAL AREA(ACRES) = 4.12 PEAK FLOW RATE(CFS) = 12.13 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .45 HALFSTREET FLOOD WIDTH(FEET) = 16.24 FLOW VELOCITY(FEET/SEC.) = 4.40 DEPTH*VELOCITY = 1.99 ** PEAK FLOW RATE TABLE ** Q Tc Intensity Fp Ap Fm Ae (CFS) (MIN.) (INCH/HR) (INCH/HR) (INCH/HR) (ACRES) 1 12.13 13.31 3.703 .97 .44 .43 4.12 2 12.16 13.18 3.725 .97 .44 .43 4.10 NEW PEAK FLOW DATA ARE: PEAK FLOW RATE(CFS) = 12.16 Tc(MIN.) = 13.18 AREA -AVERAGED Fm(INCH/HR) = .43 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .44 EFFECTIVE AREA(ACRES) = 4.10 **************************************************************************** FLOW PROCESS FROM NODE 17.00 TO NODE 101.00 IS CODE = 4 >>>>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA«« < >>>>>USING USER-SPECIFIED PIPESIZE««< DEPTH OF OF FLOW IN 18.0 INCH PIPE IS 10.5 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 11.4 UPSTREAM NODE ELEVATION(FEET) = 42.00 DOWNSTREAM NODE ELEVATION(FEET) = 39.30 FLOW LENGTH(FEET) = 74.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 12.16 TRAVEL TIME(MIN.) = .11 TC(MIN.) = 13.29 **************************************************************************** FLOW PROCESS FROM NODE 101.00 TO NODE 101.00 IS CODE = 11 ---------------------------------------------------------------------------- »» >CONFLUENCE MEMORY BANK # 1 WITH THE MAIN -STREAM MEMORY««< ** PEAK FLOW RATE TABLE ** (INCH/HR) Q Tc Intensity .97 (CFS) (MIN.) (INCH/HR) 1 31.25 13.29 3.706 2 31.10 13.41 3.685 3 32.69 9.57 4.512 4 32.90 10.32 4.312 5 32.40 11.81 3.979 TOTAL AREA = 10.54 Fp Ap Fm Ae (INCH/HR) (INCH/HR) (ACRES) .97 .47 .45 10.52 .97 .47 .45 10.54 .97 .47 .46 8.82 .97 .47 .46 9.34 .97 .47 .46 10.07 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 32.90 Tc(MIN.) = 10.325 EFFECTIVE AREA(ACRES) = 9.34 AREA -AVERAGED Fm(INCH/HR) _ .46 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .47 TOTAL AREA(ACRES) = 10.54 **************************************************************************** FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 4 ---------------------------------------------------------------------------- »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< ----------------------- ASSUME FULL -FLOWING PIPELINE PIPE -FLOW VELOCITY(FEET/SEC.) = 10.5 UPSTREAM NODE ELEVATION(FEET) = 39.30 DOWNSTREAM NODE ELEVATION(FEET) = 34.00 FLOW LENGTH(FEET) = 290.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 32.90 TRAVEL TIME(MIN.) _ .46 TC(MIN.) = 10.79 **************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 10 ---------------------------------------------------------------------------- >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 ««< **************************************************************************** FLOW PROCESS FROM NODE 29.00 TO NODE 30.00 IS CODE = 2.1 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS «« < DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 160.00 UPSTREAM ELEVATION(FEET) = 47.00 DOWNSTREAM ELEVATION(FEET) = 44.70 ELEVATION DIFFERENCE(FEET) = 2.30 TC(MIN.) = .304*[( 160.00** 3.00)/( 2.30)]** .20 = 5.408 100 YEAR RAINFALL INTENSITY(INCH/HR) = 6.356 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) _ .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) _ .56 TOTAL AREA(ACRES) _ .10 PEAK FLOW RATE(CFS) _ .56 FLOW PROCESS FROM NODE 30.00 TO NODE 38.00 IS CODE = 5.1 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA«« < ------------------------- UPSTREAM NODE ELEVATION = 44.70 DOWNSTREAM NODE ELEVATION = 44.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 25.00 CHANNEL SLOPE _ .0280 CHANNEL BASE(FEET) _ .00 "Z" FACTOR = 25.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) _ .56 FLOW VELOCITY(FEET/SEC) = 2.16 FLOW DEPTH(FEET) _ .10 TRAVEL TIME(MIN.) _ .19 TC(MIN.) = 5.60 **************************************************************************** FLOW PROCESS FROM NODE 38.00 TO NODE 38.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 5.60 RAINFALL INTENSITY(INCH/HR) = 6.22 AREA -AVERAGED Fm(INCH/HR) _ .10 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .10 EFFECTIVE STREAM AREA(ACRES) _ .10 TOTAL STREAM AREA(ACRES) _ .10 PEAK FLOW RATE(CFS) AT CONFLUENCE _ .56 **************************************************************************** FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »» >RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5-7 DWELLINGS/ACRE TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 325.00 UPSTREAM ELEVATION(FEET) = 67.20 DOWNSTREAM ELEVATION(FEET) = 62.20 ELEVATION DIFFERENCE(FEET) = 5.00 TC(MIN.) _ .389*[( 325.00** 3.00)/( 5.00)]** .20 = 9.063 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.662 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 3.12 TOTAL AREA(ACRES) _ .83 PEAK FLOW RATE(CFS) = 3.12 **************************************************************************** FLOW PROCESS FROM NODE 32.00 TO NODE 33.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< ------------- UPSTREAM ELEVATION(FEET) = 62.20 DOWNSTREAM ELEVATION(FEET) = 58.00 STREET LENGTH(FEET) = 207.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 4.25 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .35 HALFSTREET FLOOD WIDTH(FEET) = 11.04 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.18 PRODUCT OF DEPTH&VELOCITY = 1.10 STREET FLOW TRAVEL TIME(MIN.) = 1.08 TC(MIN.) = 10.15 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.357 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .65 SUBAREA RUNOFF(CFS) = 2.27 EFFECTIVE AREA(ACRES) = 1.48 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 1.48 PEAK FLOW RATE(CFS) = 5.16 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .36 HALFSTREET FLOOD WIDTH(FEET) = 11.62 FLOW VELOCITY(FEET/SEC.) = 3.51 DEPTH*VELOCITY = 1.26 FLOW PROCESS FROM NODE 33.00 TO NODE 35.00 IS CODE = 5.1 >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< >>>>>TRAVELTIME THRU SUBAREA««< --------------------------------- UPSTREAM NODE ELEVATION = 58.00 DOWNSTREAM NODE ELEVATION = 56.60 CHANNEL LENGTH THRU SUBAREA(FEET) = 80.00 CHANNEL SLOPE = .0175 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 25.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 5.16 FLOW VELOCITY(FEET/SEC) = 3.33 FLOW DEPTH(FEET) _ .25 TRAVEL TIME(MIN.) = .40 TC(MIN.) = 10.55 FLOW PROCESS FROM NODE 35.00 TO NODE 35.00 IS CODE = 8 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ------------------------------------- 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.257 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) = .26 SUBAREA RUNOFF(CFS) _ .97 EFFECTIVE AREA(ACRES) = 1.74 AREA -AVERAGED Fm(INCH/HR) _ .43 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .44 TOTAL AREA(ACRES) = 1.74 PEAK FLOW RATE(CFS) = 6.00 TC(MIN) = 10.55 **************************************************************************** FLOW PROCESS FROM NODE 35.00 TO NODE 36.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< UPSTREAM ELEVATION(FEET) ELEVATION(FEET) = 56.60 DOWNSTREAM ELEVATION(FEET) = 50.00 STREET LENGTH(FEET) = 320.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 7.52 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .39 HALFSTREET FLOOD WIDTH(FEET) = 13.35 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.96 PRODUCT OF DEPTH&VELOCITY = 1.56 STREET FLOW TRAVEL TIME(MIN.) = 1.35 TC(MIN.) = 11.90 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.961 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .98 SUBAREA RUNOFF(CFS) = 3.07 EFFECTIVE AREA(ACRES) = 2.72 AREA -AVERAGED Fm(INCH/HR) _ .45 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .46 TOTAL AREA(ACRES) = 2.72 PEAK FLOW RATE(CFS) = 8.60 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .42 HALFSTREET FLOOD WIDTH(FEET) = 14.51 FLOW VELOCITY(FEET/SEC.) = 3.B7 DEPTH*VELOCITY = 1.61 **************************************************************************** FLOW PROCESS FROM NODE 36.00 TO NODE 37.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«« < --------------------------- UPSTREAM ELEVATION(FEET) = 50.00 DOWNSTREAM ELEVATION(FEET) = 44.70 STREET LENGTH(FEET) = 320.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 10.02 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .44 HALFSTREET FLOOD WIDTH(FEET) = 15.66 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.89 PRODUCT OF DEPTH&VELOCITY = 1.71 STREET FLOW TRAVEL TIME(MIN.) = 1.37 TC(MIN.) = 13.26 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.710 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) _ .98 SUBAREA RUNOFF(CFS) = 2.84 EFFECTIVE AREA(ACRES) = 3.70 AREA -AVERAGED Fm(INCH/HR) _ .46 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .47 TOTAL AREA(ACRES) = 3.70 PEAK FLOW RATE(CFS) = 10.83 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .45 HALFSTREET FLOOD WIDTH(FEET) = 16.24 FLOW VELOCITY(FEET/SEC.) = 3.93 DEPTH*VELOCITY = 1.77 **************************************************************************** FLOW PROCESS FROM NODE 37.00 TO NODE 38.00 IS CODE = 5.1 >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< »»>TRAVELTIME THRU SUBAREA««< ------------------------------ UPSTREAM NODE ELEVATION = 44.70 DOWNSTREAM NODE ELEVATION = 44.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 25.00 CHANNEL SLOPE _ .0280 CHANNEL BASE(FEET) _ .00 "Z" FACTOR = 25.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 10.83 FLOW VELOCITY(FEET/SEC) = 4.74 FLOW DEPTH(FEET) _ .30 TRAVEL TIME(MIN.) _ .09 TC(MIN.) = 13.35 **************************************************************************** FLOW PROCESS FROM NODE 38.00 TO NODE 38.00 IS CODE = 1 »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES ««< ----------------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.35 RAINFALL INTENSITY(INCH/HR) = 3.70 AREA -AVERAGED Fm(INCH/HR) _ .46 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .47 EFFECTIVE STREAM AREA(ACRES) = 3.70 TOTAL STREAM AREA(ACRES) = 3.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.83 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** Q Tc Intensity Fp Ap Fm Ae (CFS) (MIN.) (INCH/HR) (INCH/HR) (INCH/HR) (ACRES) 1 8.65 5.60 6.224 .97 .45 .44 1.65 2 11.16 13.35 3.695 .97 .46 .45 3.80 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 11.16 Tc(MIN.) = 13.353 EFFECTIVE AREA(ACRES) = 3.80 AREA -AVERAGED Fm(INCH/HR) _ .45 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .46 TOTAL AREA(ACRES) = 3.80 **************************************************************************** FLOW PROCESS FROM NODE 38.00 TO NODE 39.00 IS CODE = 5.1 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW« «< »»>TRAVELTIME THRU SUBAREA««< ------------------------ UPSTREAM NODE ELEVATION = 44.00 DOWNSTREAM NODE ELEVATION = 42.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 65.00 CHANNEL SLOPE = .0308 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 25.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 11.16 FLOW VELOCITY(FEET/SEC) = 4.95 FLOW DEPTH(FEET) _ .30 TRAVEL TIME(MIN.) = .22 TC(MIN.) = 13.57 **************************************************************************** FLOW PROCESS FROM NODE 39.00 TO NODE 39.00 IS CODE = 1 ----------------------------------------------------------------=----------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.57 RAINFALL INTENSITY(INCH/HR) = 3.66 AREA -AVERAGED Fm(INCH/HR) = .45 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .46 EFFECTIVE STREAM AREA(ACRES) = 3.80 TOTAL STREAM AREA(ACRES) = 3.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 11.16 **************************************************************************** FLOW PROCESS FROM NODE 17.00 TO NODE 18.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5-7 DWELLINGS/ACRE TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 240.00 UPSTREAM ELEVATION(FEET) = 47.10 DOWNSTREAM ELEVATION(FEET) = 44.30 ELEVATION DIFFERENCE(FEET) = 2.80 TC(MIN.) = .389*[( 240.00** 3.00)/( 2.80)]** .20 = 8.485 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.851 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 2.24 TOTAL AREA(ACRES) = .57 PEAK FLOW RATE(CFS) = 2.24 **************************************************************************** FLOW PROCESS FROM NODE 18.00 TO NODE 39.00 IS CODE = 5.1 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< »»>TRAVELTIME THRU SUBAREA««< UPSTREAM NODE ELEVATION = 44.30 DOWNSTREAM NODE ELEVATION = 42.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 40.00 CHANNEL SLOPE = .0575 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 25.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 2.24 FLOW VELOCITY(FEET/SEC) = 4.10 FLOW DEPTH(FEET) _ .15 TRAVEL TIME(MIN.) = .16 TC(MIN.) = 8.65 **************************************************************************** FLOW PROCESS FROM NODE 39.00 TO NODE 39.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.65 RAINFALL INTENSITY(INCH/HR) = 4.80 AREA -AVERAGED Fm(INCH/HR) = .49 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) _ .57 TOTAL STREAM AREA(ACRES) = .57 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.24 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** Q Tc Intensity Fp Ap Fm Ae (CFS) (MIN.) (INCH/HR) (INCH/HR) (INCH/HR) (ACRES) 1 10.61 5.83 6.075 .97 .46 .45 2.04 2 12.81 13.57 3.659 .97 .47 .45 4.37 3 11.80 8.65 4.796 .97 .46 .45 3.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 12.81 Tc(MIN.) = 13.572 EFFECTIVE AREA(ACRES) = 4.37 AREA -AVERAGED Fm(INCH/HR) _ .45 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .47 TOTAL AREA(ACRES) = 4.37 **************************************************************************** FLOW PROCESS FROM NODE 39.00 TO NODE 43.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< ------------------------ UPSTREAM ELEVATION(FEET) = 43.60 DOWNSTREAM ELEVATION(FEET) = 42.50 STREET LENGTH(FEET) = 140.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 13.00 ***STREET FLOW SPLITS OVER STREET -CROWN*** FULL DEPTH(FEET) _ .53 FLOOD WIDTH(FEET) = 20.00 FULL HALF -STREET VELOCITY(FEET/SEC.) = 3.01 SPLIT DEPTH(FEET) _ .23 SPLIT FLOOD WIDTH(FEET) = 5.26 SPLIT FLOW(CFS) _ .61 SPLIT VELOCITY(FEET/SEC.) = 1.54 STREET FLOW MODEL RESULTS: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) _ .53 HALFSTREET FLOOD WIDTH(FEET) = 20.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.01 PRODUCT OF DEPTH&VELOCITY = 1.58 STREET FLOW TRAVEL TIME(MIN.) _ .78 TC(MIN.) = 14.35 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.539 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) _ .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) _ .12 SUBAREA RUNOFF(CFS) _ .37 EFFECTIVE AREA(ACRES) = 4.49 AREA -AVERAGED Fm(INCH/HR) _ .44 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .46 TOTAL AREA(ACRES) = 4.49 PEAK FLOW RATE(CFS) = 12.81 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .53 HALFSTREET FLOOD WIDTH(FEET) = 20.00 FLOW VELOCITY(FEET/SEC.) = 3.01 DEPTH*VELOCITY = 1.58 **************************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = 1 ----------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.35 RAINFALL INTENSITY(INCH/HR) = 3.54 AREA -AVERAGED Fm(INCH/HR) _ .44 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .46 EFFECTIVE STREAM AREA(ACRES) = 4.49 TOTAL STREAM AREA(ACRES) = 4.49 PEAK FLOW RATE(CFS) AT CONFLUENCE = 12.81 **************************************************************************** FLOW PROCESS FROM NODE 40.00 TO NODE 41.00 IS CODE = 2.1 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ---------------------------- DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5-7 DWELLINGS/ACRE TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE))** .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 455.00 UPSTREAM ELEVATION(FEET) = 59.90 DOWNSTREAM ELEVATION(FEET) = 52.00 ELEVATION DIFFERENCE(FEET) = 7.90 TC(MIN.) _ .389*[( 455.00** 3.00)/( 7.90)]** 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.364 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 3.98 TOTAL AREA(ACRES) = 1.14 PEAK FLOW RATE(CFS) 20 = 10.121 Fm(INCH/HR) _ 3.98 al.wl **************************************************************************** FLOW PROCESS FROM NODE 41.00 TO NODE 42.00 IS CODE = 6 ---------------------------------------------------------------------------- »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< UPSTREAM ELEVATION(FEET) = 52.00 DOWNSTREAM ELEVATION(FEET) = 45.20 STREET LENGTH(FEET) = 337.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) _ INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .37 HALFSTREET FLOOD WIDTH(FEET) = 12.20 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.44 PRODUCT OF DEPTH&VELOCITY = 1.27 STREET FLOW TRAVEL TIME(MIN.) = 1.63 TC(MIN.) 5.00 5.53 = 11.75 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.989 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) _ .98 SUBAREA RUNOFF(CFS) = 3.09 EFFECTIVE AREA(ACRES) = 2.12 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 2.12 PEAK FLOW RATE(CFS) = 6.69 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .38 HALFSTREET FLOOD WIDTH(FEET) = 12.77 FLOW VELOCITY(FEET/SEC.) = 3.82 DEPTH*VELOCITY = 1.46 **************************************************************************** FLOW PROCESS FROM NODE 42.00 TO NODE 43.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< ------ --------------- UPSTREAM ELEVATION(FEET) = 45.20 DOWNSTREAM ELEVATION(FEET) = 42.50 STREET LENGTH(FEET) = 170.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 7.53 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .42 HALFSTREET FLOOD WIDTH(FEET) = 14.51 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.39 PRODUCT OF DEPTH&VELOCITY = 1.41 STREET FLOW TRAVEL TIME(MIN.) = .84 TC(MIN.) = 12.59 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.828 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH/HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .56 SUBAREA RUNOFF(CFS) = 1.68 EFFECTIVE AREA(ACRES) = 2.68 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 2.68 PEAK FLOW RATE(CFS) = 8.06 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .42 HALFSTREET FLOOD WIDTH(FEET) = 14.51 FLOW VELOCITY(FEET/SEC.) = 3.63 DEPTH*VELOCITY = 1.51 **************************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«« < >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES ««< ---------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 12.59 RAINFALL INTENSITY(INCH/HR) = 3.83 AREA -AVERAGED Fm(INCH/HR) = .49 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 2.68 TOTAL STREAM AREA(ACRES) = 2.6B PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.06 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** Q Tc Intensity (CFS) (MIN.) (INCH/HR) 1 17.14 6.64 5.620 2 19.15 9.42 4.555 3 20.18 14.35 3.539 4 20.51 12.59 3.828 Fp Ap Fm Ae (INCH/HR) (INCH/HR) (ACRES) .97 .46 .45 3.57 .97 .47 .45 5.13 .97 .47 .46 7.17 .97 .47 .46 6.68 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 20.51 Tc(MIN.) = 12.588 EFFECTIVE AREA(ACRES) = 6.68 AREA -AVERAGED Fm(INCH/HR) _ .46 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .47 TOTAL AREA(ACRES) = 7.17 **************************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 102.00 IS CODE = 4 ---------------------------------------------------------------------------- »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA<<<<< »»>USING USER-SPECIFIED PIPESIZE<<<<< DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.0 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 20.4 UPSTREAM NODE ELEVATION(FEET) = 37.00 DOWNSTREAM NODE ELEVATION(FEET) = 34.00 FLOW LENGTH(FEET) = 25.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 20.51 TRAVEL TIME(MIN.) _ .02 TC(MIN.) = 12.61 **************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 11 ---------------------------------------------------------------------------- »»>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN -STREAM MEMORY««< ** PEAK FLOW RATE TABLE ** Q Tc Intensity (CFS) (MIN.) (INCH/HR) 1 45.59 6.66 5.609 2 51.19 9.44 4.549 3 52.66 12.61 3.825 4 50.58 14.37 3.536 5 52.10 10.04 4.385 6 52.63 10.79 4.200 7 52.77 12.27 3.887 8 51.54 13.77 3.627 9 51.36 13.90 3.607 TOTAL AREA = 17.71 16.58 Fp Ap Fm Ae (INCH/HR) Fm (INCH/HR) (ACRES) .97 .47 .45 9.42 .97 .47 .46 13.42 .97 .47 .46 16.85 .97 .47 .46 17.71 .97 .47 .46 14.24 .97 .47 .46 15.12 .97 .47 .46 16.58 .97 .47 .46 17.53 .97 .47 .46 17.58 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 52.77 Tc(MIN.) = 12.275 EFFECTIVE AREA(ACRES) = 16.58 AREA -AVERAGED Fm(INCH/HR) _ .46 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .47 TOTAL AREA(ACRES) = 17.71 ---------------------------- END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 17.71 TC(MIN.) = 12.27 EFFECTIVE AREA(ACRES) = 16.58 AREA -AVERAGED Fm(INCH/HR)= .46 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .47 PEAK FLOW RATE(CFS) = 52.77 ** PEAK FLOW RATE TABLE ** Q Tc Intensity Fp Ap Fm Ae (CFS) (MIN.) (INCH/HR) (INCH/HR) (INCH/HR) (ACRES) 1 45.59 6.66 5.609 .97 .47 .45 9.42 2 51.19 9.44 4.549 .97 .47 .46 13.42 3 52.10 10.04 4.385 .97 .47 .46 14.24 4 52.63 10.79 4.200 .97 .47 .46 15.12 5 52.77 12.27 3.887 .97 .47 .46 16.58 6 52.66 12.61 3.825 .97 .47 .46 16.85 7 51.54 13.77 3.627 .97 .47 .46 17.53 8 51.36 13.90 3.607 .97 .47 .46 17.58 9 50.58 14.37 3.536 .97 .47 .46 17.71 END OF RATIONAL METHOD ANALYSIS STREET CAPACITY CALCULATIONS M1' Hall & Foreman, Inc. Civil Engineering • Planning • Surveying • Public Works SUBJECT BY DATE JOB NO. - _ -� � �y Yl= 0.�tlo SHEET OF I I k �,S - o•6c�Bg S� � v vs S �o? I -, 5� -2-0,4 et 5- 203 North Golden Circle Drive, Suite 300, Santa Ana, California 92705-4010 • Tel 714/664-0570 • Fax 714/664-0596 l +,a7 IZ8,i3V5 O, oos 0.00 � S' 11, l s p p ► 0 1-2- 97 14.3 p• 0 1 15 i -],o 3 0 0 3p0 2Y, 3b 203 North Golden Circle Drive, Suite 300, Santa Ana, California 92705-4010 • Tel 714/664-0570 • Fax 714/664-0596 Mw Hall & Foreman, Inc. Civil Engineering • Planning • Surveying • Public Works SUBJECT BY DATE JOB NO SHEET OF SSC T Oi'P,4� Q►co - 1 I o - Ig,�, 7 7. � D N �� ��a X 7.1) a- or sg r 17, 7 > 7 N & 1-7 �. (>. z - 5. - 'D oig >z�, Ino Iz,� zl 77 = -3, 7 203 North Golden Circle Drive, Suite 300, Santa Ana, California 92705-4010 • Tel 714/664-0570 • Fax 714/664-0596 MMFr Hall & Foreman, Inc. Civil Engineering • Planning • Surveying • Public Works SUBJECT BY DATE JOB NO. SHEET OF 3 4--7 = 7 7 c, - b� '50, Ij �- 11 � Sa � ,oma 3 4y 6-7 l� N 203 North Golden Circle Drive, Suite 300, Santa Ana, California 92705-4010 • Tel 714/664-0570 • Fax 714/664-0596 CURB OPENING INLET CALCULATIONS IN w m Q o n- C/) z O ] v` 2 c) a 4 Wli- 0 z J . C) F— W U LLJ Cn o o 0- Y LL - 0 IN w m Q o n- C/) z O ] v` 2 c) a 4 Wli- 0 z J . C) F— W U LLJ Cn o o 0- Y LLI cc F- w J CL z - U) U a a m CO "_ U - ' ® 0 � p o M z a 1� LN 0 I- 0 a O C — 6-- Q A o cn Q � Cl) o rA o LL U r` LO LLI 'o U �- N � U z z ® M U 'j) t, a U Q ® L C U z 0 � � U I PROJECT JN 5195 � + HEC12 Version: V70112.2 User SIN: 77010105 Run Date: 09-30-1998 VE w [ S " ----------------------------- --------------------------------------- ----------------------------------- VLET NUMBER CB NO. 1 LENGTH 14.0 STATION TOTAL PEAK DISCHARGE = 7.40 (cfs) lb j(JTTER SLOPE = 0.0190 FT/FT PAVEMENT CROSS SLOPE = 0.0200 FT/FT PREAD W W/T SW SW/SX Eo a S`W SE 12.74 4.0 0.31 0.0833 4.2 0.79 7.0 0.147 0.136 XXXXXXXXXX CURB INLET ON A CONTINUOUS GRADE XXXXXXXXXX REQUIRED LENGTH= 17.4 EFFICIENCY= 0.95 CFS INTERCEPTED= 7.00 CFS CARRYOVER= 0.40 INLET NUMBER CB NO. 2 LENGTH 21.0 STATION TOTAL PEAK DISCHARGE = 13.40 (cfs) (R) '7UTTER SLOPE = 0.0190 FT/FT PAVEMENT CROSS SLOPE = 0.0200 FT/FT SPREAD W W/T SW SW/SX Eo a S'W SE 16.14 4.0 0.25 0.0833 4.2 0.68 7.0 0.147 0.119 XXXXXXXXXX CURB INLET ON A CONTINUOUS GRADE XXXXXXXXXX REQUIRED LENGTH= 24.2 EFFICIENCY= 0.97 CFS INTERCEPTED= 13.05 CFS CARRYOVER= 0.35 ----------- --- ---- ------------------------------------------- INLET NUMBER LENGTH 7.0 STATION TOTAL PEAK DISCHARGE = 13.30 (cfs) 6D JTTER SLOPE = 0.0200 FT/FT PAVEMENT CROSS SLOPE = 0.0200 FT/FT SPREAD AT A SLOPE OF .020 (ft./ft.) IS 13.49 (ft.) XXXXXXXXXX CURB INLET IN A SUMP XXXXXXXXXX P EFFEC. LENGTH = 14.20 H = 0.830 DEPTH OF WATER = 0.55 SPREAD = 27.46 m 0 q W Q LL 0 W m � d U) z 0 U W© �< wLLI U u) 0 0 IL U Y � � w W w o. N a U m m Q \ A H 0 Q (n a � 0 0 O in � x oa LL IrW 0 coCC U v U- LL 0z — Z LL U _ Q U� V z Q � U PIPE HYDRAULICS WSPG CALCULATIONS r -I N O w z U Q O W a 1, N Q a m_ c- r r c z H E [n r-> H a r z 0 _ H N E H i+ Z Q H z W d 0 � F z a � o W 0 LD a za o Z EN Z z a O Ln O F x H 0 O U H E. Ln a H H 1 U yr aN Lf) U m z W O o w v Q n N w a w F Cl) w F x F < x O I LL E. W F Ln tz ul A W E Q m m UOI 3 H W N k+ h I a °a W a 1% F w o 0 0 o a a d F F O n o 0 C7 Lr) HNm U w y o 0 a a 0 _ vi lx H w O a 3 2 H x O W W y W F a a la o a W H g > 3 Q 1a VI O W. O 1 I I OH z a m w w H H H m z a N N m O O O rn OF z z z w W w U O •'-1 m C l0 H H H •• W Z .� N til a a a O Ol [n C7 C7 0 ww W H H H ao o n E E Q O 0 0 0 0 d rrr < F U U U U U U w w (s7 Q S x H m + } N 1p m m a of m m m m m m Cl) m m m E H 1-1 '-I 1--1 e-1 rl r-1 .--f 'i .--1 z z0 z0 zo z0 z0 O z0 z0 zo zO H • �O O O O O O O O O O H N N M .7 I o 1 O n Q E" F d Q a a ,.a H a } + Ln I a I m C3 z N ''I E. W F H E H F F F F + E + E -kE a Um Um U in Um Ucn U� Uc U U Uc Uv W W m W m W m W m W m W N W N W N W N W N W N U) U) U) O W U) U) U) U) U) U) I + t + } + t } + + + } W Fr E, a) Fr Fm Fm FO EN FE. v) Em a d o d a d N d m d m d o d r d Lo d o lzd 0 o d o H W w W W W w w W W w W• 44 > r-1 > N > m > c > v > .n Ln O zm zm z zm zm Z 2m Zm Zrrn 2m zm d H N H N H N H N H N H N N N H N H N H N H N W H rl .-1 H r-1 ri r-1 rl ri E13 r N O v M W m m m Ln c U m + 'i + N + m z + O + N } O 4. m + N + �n W O m O w O rn O o 0 ,� Z ' O 9 O c z Z Z 2 d H O H Q' H W HHM H m H m OH m kD OFi r O1./ O OH O Q E o E -F o E o F 'i E .-q E .-+ F H F N E N E+ v F c EO a H Q .-i a -4 Q ,ti a Q Q .-1 rt r-1 Q Q ,i <, i E F F F F F E F E H F E- u) U) (n U) U) U) U) U) U) U) U) w a E E Q O 3 O a a Q Q a Z Q Q Q Q a z Q F H F E H O F E F F E O F £ Q a a Q Q H Q a Q a Q H Q (4 Q x Q x Q x Q x Q F Q x Q x Q x Q x Q E Q F U U U U U U U U U U (f) Cl) a U) a U) Q U) a U) z U) Q w Q U) Q U) Q U) z U) >+ \ W \ W \ W \ W \ O \ W \ W \ W \ W \ 5 \ cn0 dD d5 do do 75 do d0 do dD r7a a a Q a Q Q a a Q a Q cn w m En En U) ut w w U, U) H H H H H H H H H H H .-1 N m In 1D r m Q1 O O O O O O O O O O O O z z z z z z z z z z z F F E F F F F E F H F 2 2 z 2 2 z z z Z z z W W W W W W W W W W W W W W W W W W a a a a a a a a a a a W w w w w w w w W W W xx x x x x x x 0 0 0 0 0 0 0 0 z Q E F:C O z E o F O H O E O v 0 E O F O H O F O yr O W O a o W O P4 0 O a 0 CL O Q. 0 d O O U o uO 0O C7O x0 oO C7O 0o C7O x0 z z z z w z z z z a a Q Q a a a Q Q Ed wr) Wo Wm } m0 Wm Wo WO Wo + mo .a 0 1]r 4 N .7 m in am ao .ao ao 0 2 z 2 0 to Z m w x r z 'i z 0 z 0 z o x .n Q QU) Q QN wm Q1n Q :c a) < 6. C' rno cno v)o cno co ono cno U)o a O O o 0 0 0 0 O O I O 0 0 5 0 0 0 .7 O I o o 0 o D O 0 a o o Q O 0 o 0 0 0 o d o rO d ga as z d`� `ra' �'w14 w`r z H > o } m o } m m aN I O I U] W r PEG u') a Q; m W m W m U) N > N > N z z I O O O p d' C Ci cx H m + } N 1p m m a of m m m m m m Cl) m m m E H 1-1 '-I 1--1 e-1 rl r-1 .--f 'i .--1 z z0 z0 zo z0 z0 O z0 z0 zo zO H • �O O O O O O O O O O H N N M .7 I o 1 O n Q E" F d Q a a ,.a H a } + Ln I a I m C3 z N ''I E. W F H E H F F F F + E + E -kE a Um Um U in Um Ucn U� Uc U U Uc Uv W W m W m W m W m W m W N W N W N W N W N W N U) U) U) O W U) U) U) U) U) U) I + t + } + t } + + + } W Fr E, a) Fr Fm Fm FO EN FE. v) Em a d o d a d N d m d m d o d r d Lo d o lzd 0 o d o H W w W W W w w W W w W• 44 > r-1 > N > m > c > v > .n Ln O zm zm z zm zm Z 2m Zm Zrrn 2m zm d H N H N H N H N H N H N N N H N H N H N H N W H rl .-1 H r-1 ri r-1 rl ri E13 r N O v M W m m m Ln c U m + 'i + N + m z + O + N } O 4. m + N + �n W O m O w O rn O o 0 ,� Z ' O 9 O c z Z Z 2 d H O H Q' H W HHM H m H m OH m kD OFi r O1./ O OH O Q E o E -F o E o F 'i E .-q E .-+ F H F N E N E+ v F c EO a H Q .-i a -4 Q ,ti a Q Q .-1 rt r-1 Q Q ,i <, i E F F F F F E F E H F E- u) U) (n U) U) U) U) U) U) U) U) w a E E Q O 3 O a a Q Q a Z Q Q Q Q a z Q F H F E H O F E F F E O F £ Q a a Q Q H Q a Q a Q H Q (4 Q x Q x Q x Q x Q F Q x Q x Q x Q x Q E Q F U U U U U U U U U U (f) Cl) a U) a U) Q U) a U) z U) Q w Q U) Q U) Q U) z U) >+ \ W \ W \ W \ W \ O \ W \ W \ W \ W \ 5 \ cn0 dD d5 do do 75 do d0 do dD r7a a a Q a Q Q a a Q a Q cn w m En En U) ut w w U, U) H H H H H H H H H H H .-1 N m In 1D r m Q1 O O O O O O O O O O O O z z z z z z z z z z z F F E F F F F E F H F 2 2 z 2 2 z z z Z z z W W W W W W W W W W W W W W W W W W a a a a a a a a a a a W w w w w w w w W W W M a Ln Ln O w 3 u) 7 O q w o x a• w o Q q Ln x z H n p En a Z o CD a u) Q ] w • a Cl o W a 0 z Q x E m w * * a E F E U c U 2 V v] z W N W W H H f)) f!) u) 2 a z L L a Ln W H zr, zIh zm3:z H N H N H N O O H H '-f 2 H F kv tD Q + Q) Q) T H 7 z z z W o� o Oa z 1 H fn H f'1 u) H f`') O W E a' w E+ c J4 E-r H F� U ZE- OF~<U m r1 to 3 [A F Q f� ❑ P E. F Q W Lti wQ ad Q 0 r E E E U xo as wo Aw �\ dw wu2 as S a s m a F 0* u) U) In U H H H 7• W N N cn v r N (n a 0 0a z 0 0 0 z z z Iz 0 w z w z w H a w W ws a w a w a w 0+ Z * a O O p O O O O O O O O d * O O O O O O O O O O O Q « O O O O O O O O O O O W } U a # w z N « O o 0 0 0 0 0 0 o O o Da # k + O O O O O O O O O p O O O O 0 O O O O O O O O O O O O O O O O O O O O O O O p O O O O O N N # + O O O O O O O O O O O O O O O O O O O O O O } * O O O O O O O O O O + O O O O O O O O O O O w z + fn f o 0 0 0 0 0 0 0 0 0 0 m H } } } + O O O O O O O O O O O O O O O O O O O U• H + fel M rl M fel rl fel N N N N x o + } x + F # a+ o %0 o m LO LD p 0 p W+ M N fel N N N r t0 kD ❑ N N N } f O + 2 + a } Q } v c c c c a v c a c H F# m m m m m m m V] 1O l0 �D F a + a❑ + U + } } a + O O p O p O O O O O O 2 y W « O O O O O O O p O O O O O O O O O O O O O O F fn W # C/) } H } m m r-1 fel m 1n Ln fel m N # N O N ul N O M N m N O O O N v' m fel ON N m m fn r -f %D O r rl m O m O Dl O m O '-I Cl) LD N Dl Dl N H Q W x+ r O r O r O rO r O r O r O CO O fD O m m O a iz F Z O } M M rl M rl M M m lel fel Ln O Z W a # N N N C4 0 N N N N rl N N N N ul a W } O } W+ Qr ul a' N c fn C' r v' O r N Dl m N M N m N Ol Ql U O ❑ 7f N T N v N C N N N m LO r LO fel C' r a r v C N faQi �• N W W Q+ M N M N M N M N M rH M o r) O kO M 1D M UD C' O N r r N Ln a[ Cn H , x (� + O O 0 O O O CJ O O O 0 O O O O O O O0 �f O H H O fn+ O O O O O O O O O p cn u In a k C. a a E + rl M M E-403 Z w W « ; f i f i Ln Ln °r m a e• c' %D U) a m + Q O k x F + Ll, fn + M ri fel fel r) rl rl N N N N Z< k N N N • U W Q a * m m M fel M m MN O O O N N N W >+ fn # h IH O } O 3 + a w + a a + + o N fn m r w m M M 1 v cn k 0 0 0 ul c M o rn m c w ? + N l v ul fn Ln vl fn cn N fn •• fn W k o- w .7 k r r r r. x Q E W } m fel m fel m m m m m m M Q # N N N N N N N N N N N m H W W k W HH fT fel m O .1 .7 [a• x 00 « cn .N -I m m O 1-4 O r O lMD z w w « co -4 o r D � N o N Q W + to c' eT m M N N N N N r-4 E ❑ W + W O + a k O f F } r v' CT r) r r fel N LD .-1 M .--1 m OO ul N m m m m a> * l m 1D O N r rl O Ln O m0 m r Om r N N N N w W w k ffl �D N ID ID �D u) a' N fn .7 O k .--i N N N m N v' N V' N c N v' N u) r-1 ul .H tD %D ,1 a 2 W N f r."O M O rl O M O C•1 O m O r1 OM O M OM W M p N N N N N N N N N N ,� N O .-i O .-1 O ti O .--f O r -I O li O 2 } � •• i r fn N m O C' v' ul m O m O m a w r M lD cn [,7 ON O fel m N .--1 ,--1 N r Ol rl N r-1 rl O .--1 N m O H O O W O £ } «a N H W f M rl tp N kD r -I O m m O (N N .-f tD m V• W .-1 p .-i N Z E rl + O v a N 1D p• ,H .--1 .-1 N fel F m V' m fel N N r-1 U F W+ O O O N H U H fn z ❑ x N a O O O 0 O O O O O O O O m + O 0 0 0 0 0 0 J a + + 0 0 0 0 0 0 0 0 0 0 0 w + � a # Q Q OW z H + + 0 0 0 0 0 0 0 0 0 0 0 a # + a + O O O O O O O O O o O O O o O O O O O O O p N D+ N + o p o 0 o p 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 + O O O o O O O O O O O O O O O O O o O O O O O + + O O O O O O O O O O p O O O o (n Q O # + 0 0 0 o O o 0 0 o O o Co H # t # + + O O o O 0 O o O O O o O O o o O O E 9 + O O O O O O « N N N N N N N N N N N + x+ F + LL + W+ O r O r NO to � ko ID LO O# N N N N N N N N OD Q1 t O + z+ a + 1S + c c c m c U x H E + + .-� LD H lD .� 1D ,� (D .� 1D H m m 1-1 E Q, + 1D %D lD l0 M 1 .•) H W Q: 0 # U + # Z W a + + O o o O O O O O O O O O O O O O O W * O o 0 o p H F o a m W + t 0 0 0 0 0 0 0 0 0 0 0 m + H + a # H N v N N O v' .--1 r W Cl M v N CA 1n o r ul c H O .--1 N H N LD a• O N a Z 0 1-1 W r, + N � %D -i r m to lD .--1 N M H v' o In O Ln O r H c m H fl W 44 E W Z Cl x+ Ol O Dl O Dl O O O 1-1 O H O .-1 O H O H O 1n O Z OL14 W a O t + M N M N M NN q• Q• CN C N Q' N Q, N C N a, N Q• N 1n W + r•1 ri rl H H H H H .--1 r-1 .-( W W W U O Ll W# J+ .-1 M r rl H O r In M m in c' N O C Ln In m r N Ol N Q« O M O CA M � Cl) m O N r -i w N a O C V• 1n 1n m O m (++ W W Ln M 1%1 N O r. kO Ol Wm cli o nN [� E J E. .-1 H rN OH co,:) tl7 en � -; O O O O O O OU ONY� W RC E m Z w a + + O LD O 10 O kD c C O O m m O M 10 tD r1cr1 W + Ln H m V' N N 3 W J * m m rn m m , m m r r c v (n O m + a O t x E t Q+ ul + + N N N N N N N N N C a• a + O N O N O N O N O O O O O M M U W <0, + N N N N N H r-1 wrU) # h 1H + O o 3 # a H W + a a + m + + O m M m O N D in In 1+ w Q. Q, O 'w J + r .-1 M .-1 m m N Q' In L7 In kD ID ID O- w x fC E U] W a ^S W + + t r M m M m M m m. u7 cli M N M N N N N N N N 3 z a t W H H%D a a w x o « O O N m M N 1n a• p Z a L. * N N N N v M O v 1D C M 1n H lD r M LO p RC E W 0 C- + w O + O + E * rl N M m N m M C• O O r O C' O H O Ln O N O V' In 01 H O W W + • C '� Lr) m .-i Ln In .--1 m r-1 Dl 1-1 O H O r O O N a J a z W O+ U) # �D M r-1 lD• H r r1 r rl m 11'1 H m 1n H m N N Dl u'1 H D1 a• H Dl In '-1 Dl W a H + N O M N O M o M O M 0 M O M O M O M O M O M U * •-I O ri O N .-1 O N H O N •--I O N N O N o N N N N Z x -4 O H /t W 2 * m r kD r M Ol N 1D m C N M 1nE. 1f'I O to In C N lD z W O # E+ O m mm m .--I O N N D1 N H M ID O N N E LD M 01 w z Z H F W+ a+ m M r N M l0 r H to r v' .-1 r Q1 D1 m C' M •--1 Q• m r r V' U F« Ea r Ln N M c' r M H m M Cl) O O E O N M a rN-1 ,Ny 'N -I M r1 c' H v U a• m a a In a * , < h M cz o a + O m # > + o a w � L7 a t a z 0 Iwi « a + + # o a at o N N + # O + « * O W z « U1 t M ❑ # mim H f + + O # O F Qt L9 N « Ln + x # F # a+ W # Q + O* z* a t Fc + rn H F + r a + HH W # O U * + a + # o z O d W + H D .] * O F V] W t V1 + H # a t H �• . rn W a.a t o az ra:xw w# F s+ a w 2 A a Ln % W 04 04 �i o LLD x -4-I Ln a w t O + r"W W w + Ln O O W N W W k H x O 5 H a > to U U1 94 + a a z * W at + O Ln asQW w 3 > # i W >. + U) m a0 + = F a m c # F rt = O + UW rt # W �+ V! + h I H + O o 3 + m 4w + a a « - + is U3 # vl 94 O E rn F n 0RC£ 3 W c a + N rn H W W + 3 z .7 # a a m m o Ln in z a w W t N £r1 Q W O + F-4 F * O a > « ,n W W + .7 zW COn« M a H N FC k '4 + + �D W z f m W 0 « H W k c z W W * c U E- �+ - H LO I w a x 0 N O z F O a m w a o a a zo A ° a + m w o z O II Q r > W w o ,.a 0 o W H _ O u) � Q❑ a 3 N > N> O q a v V a C 3 W r- W O ❑ m x V) N y z P H U N z z O H H FF U) a H > a i w a z w O H ro a F F H z LL Q H W ❑ + _ W N N U ti o .7 o W a z a o z H N O z a z > C o ~ E N P � o o W .moi un x q H a LG W H a H a, cnn00 u �" U H n a a W q uW N .a ut a O >+ E - H u m E o z E a a a N wn a w x W * + + * a H a W W E F E F C7 E H U a jy W W N W N W w H H I,� u) to ul ul z Cau w E Ln + z z d En W U a w FO * Fo FO FO ED . ul m 3 .7 H W u1 7 WCD 04 coo C4 W H aW U. F3 �"� H w w W w • CA C7 C4 H a a p x O zrn zm zM zm$2 a E o o w a m Cu H N H N H N H N O p F -4 - '-' ''' •y z H x w w co Lr) Ln H< HaN > e4 W H E.U z z p zE . w Ox❑ ❑ a [1 H O HH N N cn H N O W u) ul 5 F W F `w4 F •� H H o W W a 4E7uF'i uEi zcFn 3N F� x a Q w aa w E E -4a a w E F F � w a ❑ W H o S 3 3 Oa a W a :r: Ft 0 u Q E F E F u �o xo ao wo oW wu) U) �w oa a� W � a� o t I I O �Wi W q CY. ❑ q cn D F z° `n u, w a a a a 5 H H H N u7 U7 [n N u « m (L (''1 H H H H •L m xa� Nd °z WN c3)u N F z Z `� N fel Q' U) w W W CZ O z CL O O O OK. z N W Z H N H a ty a H z z Z z au C) m u7 a ,n W C7 C7 C7 z z 2 E H ao z z z W W W EO H a ww a o o Ln ❑a o 1 of Cs3a x w o4 +3 w Z + H a O O 0 O O O O 0 O O O a * o 0 0 0 0 0 O o 0 0 0 m + > * 0 0 b 0 0 0 0 0 0 0 0 Q * w # 0 a # Q O w + O O O O O O O O O O O W z H + + O O O O O O O O O O O O O O O O O O p O O p a x+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N N + + O O O O O O p O O O O O O O O O O O O O O O # # * O O O O O \ O * 0 0 0 0 0 0 0 0 0 0 0 W z cn + 0 0 0 0 0 0 O o 0 0 0 Q ❑ # C1 H # # + * O O O O O O p O O O O \ + O O O O O9 O O O O O F Q l.7 H + N N N N N N N N N N N x ❑ # + s # E. m*O O O O W* Ln O O b O O O Ln Ln In Ln .n Ln u) In In ❑ * Ln 1n n .n Ln n Ln Ln L� ,n + * 0 0 0 0 0 0 0 0 0 0 * O z # a * L) z * r r r r r r r r r r r H F * N N N N N N N N N N N F a # CL' ❑ # U * # # O O O O O Z w w * O O 99 p9 O O D O O O H a # b O 0 0 0 0 0 0 0 0 0 E- 1 H Q # a Z * 1D N N D m 1D m H r O C kD m m N r m to r m Jn m V' N m Qr N r- 14 F C7 a * r O r V' O C• O to O W co ID O r O r O r O r O a z x co m* H O w x+ r O r m O m O m o D] O W O m b m O m O m O Ln O W w d # N N N N m m m m m LD N N N N N N uiaOm * H r-1 r-1 ri ri N O H N + ka W >+ (n H w# %D m 1D W .-I r r O O m c m C' m W O Ln m m Ln ID O F i+ O ❑ ># v 1n v m O m N m O m N 1- r♦ ID m N m m in r %D < U Q W W Q* N O N N m N -4 O r m m r C' Ln Q V• m N In r♦ In IZ Z �' > x W* O O O N m N m N m .--1 N r; N N N ri m O Q U} * O O O O O O O O O O U] W + W O >+ * m m tD c F- rQ rFn CO W « m m a 1 i o L o 0 Ni or > * m m N N .--I N O O m m m .--1 r -I ri r♦ N r-1 f!] Q + Q W # a, i + In n n n n vi n In Lr!vi n o e # ` H •" 1 * N N N N N F a a + r, U En + W H # 0 3 # O W # x a * -+ # O ID kD m m m a• m r r m Ul 1 # N m m m mc• l0 �n N r co w Q > + Ln n c r m m v 1D W # O W a + r r 0 iD 0 r r r r x a 3 W + m m m m m m m m m m m Q + N N N N N N N N N N N In Z # H ri N N r 1 H H W W 3 F a + W Q H m * O Ln If) In ri m r %D r m m a s Lv x 0 + N N N N to r O m 1D m m z w .4 # n r r r r m m m m m Q W * N N O O O O O O O O O E ❑ W + W O # a + O + G+ F * o r H r•+ r LD r V• r lO r 1D r N r W r m r m r W W p m Q m v r m m m m ra m m m a m Ln m w m m m m m a > a O* In O Ln Ln o Ln O Ln o Ln o 0 0 ID 0 0 0 to o Ln 0 a N W ul * m r-1 m a m m , m m r� m ri m ri m a m H m N N ,e, N N N N N N N N N Q + •--i Cl ri O r -I O .--i O .--I O .-� O H O r-1 O s # h + •• # m m ID U ID m C' .-/ In m m m N N N r m m r O r ID w z + r r Ln H Ln c o Ln Ln o W r c n m N .4 o N m r W p # ,a Zn H W# N m lD .') lD O O N O N .~-1 H N Q' O m b z F a+ O O r� O ry H H H ❑ a + s N W O O O O O o O O 0 W + O O O O O O O O O W # > * O O O O O O d O O W # U (� + Q O w + o O O O O O O O O 4, Z H + + k O O O Cl O O O O O O O O O d O O O a a# 0 0 0 0 o p 0 0 o d o 0 0 0 0 0 0 N N + + o p o O O O d O O O O O O O O O O k # k O O O O O o O O O O # O OO O O O O O .n W z + El) # 0 0 0 0 0 0 0 o rh Q❑ # O H + + + + O O O O o O O O O N N N N N x ❑ + � k E # d# O O O O O d O w k In n 1n In In !] In ❑ # to to Il'1 LLl In Ui in k O O O O O O o k O# Z # U x + r r r r r r r r M H N + N N N N N N N N r F CL + U + + k C., k o O o 0 p O o O O z a> + o 0 o O o 0 o d 0 0• 0 0 0 0 0 0 0 0 E u7 W + [n # .. Q k a z k vl M a, N cn r m m .n Q + Dl o o o 0 O -4 o .-I 0 .-1 cn W F C7 a + r 0 m 0 m o m o m p m O m O m o a z a w w# H O W x# m O m O m O m O m p m d m p m a1 L4 G. r* 2❑ + M M M M M M M M M to O W (Y. # N N N N N to a O rn O H N # W W rn H w+ m d rl O M N N al M .--I M 1D M r r m U E >+ O ❑ >+ ID N r al m to O r N Ul 1D in o to C C' 44 <U Q a W W Q k O N al (14 m m m m . r r lD m to O to O r lD D D: z > x m+ ,-c •� o .� o O o O o 0 0 0 0 0 0 0 ❑ Q m# 0 0 o 0 O o 0 m w k k w o N + a) a rn Q v` y m W + N a) .n H m M M (n m Ul N al r 3 w > * m ul Q + Q w + D" # Ln Ln Ul u'1 .n rf1 .n rf1 Ul o= + H H k N N N N N N N N N U U) + W H + h 3 + O W # a a # .--� k r N lD O lD Q• Ln H tD rn I + N M N .--1 m Ln .-1 r O W Q > k r m (n O O r -I N N O m m m m cp ai x a E 3 W # M M M M M M M M M Q # N N N N N rn H w w + 3 F a k w Q H 3 + m .n M V' lD rl of r-1 to a s [s x 0 # lD O c mr o z 134 w a o 0 0 N N o i ❑ Cu * O W o # a k o k r m r 0 r o 0 a> # r m m m m m M m m m m m o m o 0 w w # m m m m m > a O« lD o to o \D o D 0 D O 1D o r o r W r a Z W r/7 # M M N M M N M rl M N M H M U M a H f N N N N N N N N N S # N O .-� O '-I O N p r-1 O z Z kF # M M m N m m r m m N c ul z Ln 20 * m to Ln .n 0 M c M r N m .-. .-� o .1 W E * W H W+ m O al o O O O O O O O O W E .4 # .-1 r-1 N N N N N N a N Q W+ c , a , H w a+ 3 a # x z O >4 z z E o w W o a, uW p U ❑ Q Q z W + m W o z i o H C) zz OFt II W U) O H ❑ O v) _ N O ❑ ao ao x v x z O z H H F H v ✓ a N a z W N z E- E. E Q W F * z 2 p f.4 C.4s. fy H W o ri — a a o m o o Q O >. m H z W Lon D W 2 W o z FH F o w o d W Ln z z U N •-+ < a O F N H a:o U H❑ W H W a p Ln a Q z D rz Ln ❑ N '-' a Q E H a U x W a in Q F H U p w Ln E O o m v1 a a w a W `� �" m [z W E * * * W * a a c� F V) M w F a N . ] um Um uri urizv) U W W H W -I W w H H 1 m ul m Ur z W W F �O - z z m U) ❑ W E, _ - W * Fcl) * FO FO FOC9> U) m H W t1 a CL' In W O w o QZ O w" L.. h fail E. >rn >.� >r; >�m C7 w ti a m O a o z *, za dE E W W z a' H N H NH N H N O O o �On .W7 3 W N� w U to W I Q - - W r o O o V) < H rzSi - U* zc * Zm W x ❑ �' ON Om zm Orn zmH Ornza D x a QE.W o H r -i H -4 [1) H H O W D E E, a H W1-4 W ZE,-I W F a W' WE E� zE�4u H x W F O F Cam] a 4H. w a ❑ D E. ❑ O Q rQ7 S 3 rA x O w O FCC Q Q Q F E F F U wo xo ao 14o faw Lu w U a F W F O a N� 3� W O 1 I [:Q]� N11 W 3 1 v) D fk 5 O U) D F 2 O. U) U) U) Q Q Q Q O H H H O N W U) U m m HH M H H H z N Q' w N O U E+ z z z "•I N M Q, W W W En a 0 m m FO '-' m N H H O O O az W z a a a z z z O rn u) F F E F w c� ww rZi o w w w H H H w Ha c� C4 E. W Q U O U ❑U W W W aa W W a W a F x x x W O« z « D: O 0 O 0 p 0 0 0 0 0 0 D m # + 0 o O 0 0 0 o O 0 0 0 > ci + + Q o o Q o 0 0 O Q 0 0 W # L9 a + W 2 N # O O O O o O O O O O O W # # O O O O O O O O O O O O O O O O O O O O O O a N a+ N + o 0 0 0 O 0 0 0 0 0 0 0 0 0 o Q O Q 0 o O 0 + + O O O O O O O O O O O O O O O O O O O O O O # \ O # # O O O O O p O O Q O O O O O O O O O O w z # O O O U2 < Q # O O O O O O O O O O p CO H # # # + O O Ul O O O O O O O O O F Q + In to Ill l77 �n ll1 t9 L9 In S O + # x + F+ a+ 0 0 0 0 O 0 0 0 0 0 0 4 + + u� In In �n ui In In In In In U� + 0 0 0 0 o p O o 0 O # z# a + rt U x # # m u) v' In cr Ln <r LO a• In c In m In m In c In c a• H F F a # O o o O O o O O O In O Ln o a Q + # U # # 0 # 0 O 0 O 0 O 0 O 0 O O O O O 0 a> * o O o 0 0 0 H F a s m w # # 0 0 0 0 0 0 0 0 0 0 0 U) rs + H Z # F N # r m O N m N O1 W 00m r u7 1 m m O O r -i 1-1 N O 1-1 m O m O N m In N m N O N -4 11 N .-1 a 0 a W * C O c' O v' O In O to O u'1 O H W W S# N O N O N O N o N O N O N O N O N O N O N Ln 0 G. N N d. O 11 Z O N N N N N N N N N In a o cn f # W W F I-1 W# r m Ol O m O O O 1D In N N C m %.D V` N r ev O ID U H En Q >+ r .-1 m O r O N lD m m In lD V• tD m (n v N In li m m W U a H w w a# m cD O m r ko m N � m w n N In r4 m O Q' 0) cf' m W r O S o > x W + r1 •V• .-i m .-1 m I-1 N .-i N e-1 N N m r In m a s m* o O o O 0 O .-1 .--1 0 r1 14 o O -1 p O r-1 0 O 1-1 En E # 0 a + W W F W O a # + O O m m m m Dl m m c Ol m r LO m o m m rS m F •• 3 m >. w LZ] W > # m m '-1 m m r c r O r In a f + e-1 a a # x w 0 F a + # r r r r r r r r r U m # w a # h m # O H # [r.3 # a cw + M a rn 1 e + + 0) D, m m Ln mm m r In W< > + r-1 N Ln In m r cr) In e c .. In w m Ln w r O w x a z 1 3 W o v 0 c 0 0 0 y N a N c N c N a (N c N a N v N a N c N [n Z h1 W W + & F a + WFCH a s W S x 0 + + 0) o m m p M m w r1 0 m 0 Lr)m 1O 'D r r kD r r N Ln z £ a www # 0 0 o O o 0 0 o O m O m o W O + x + O + W E D+ > # m w Ul lD N ID C' kD N kD kD �D m kD m �D w w m LD m lD W co w + + Ln m N lD m D1 m r-1 m m m Qr (n u) m %D m r m m m m m > a O+ Ol m Ol .� m Ol m O m O N .--I r--1 r-1 r-1 r1 r-1 a Z w m f m o m o m O c o c m o O c m 0 O m O m O m O m p m a H + N N N N N N c N o c o c 0 c 0 c o Q x + + N O N O r/ O r-1 O N O N O .--1 O NN ri O .--1 O N -1 O N r -I o •• W z f r c' r1 Cl r1 m m m m m �D m a• v m N O m m w 01 N W O + c r N m In w .-1 '-1 m r .-1 v� .D N m 0 m m r w m In Cn H W+ N o N c l N .--1 ,--i m O r O m O U F \ # H a w a + f N a O O O O O O a m + + O o 0 0 0 0 > * O o O O 0 p W * u a * Kc z H O o 0 0 o O . a + h O O O O O O O p O O 0 a N a+ N 41 0 0 0 0 0 0 0 0 o O o + * O O O O O O O O O O O \ O k + # O O O O O 0 O W 2 + U) rS ❑ # + O O O O p PQ H + + + \ + * O ut O Ul O illLD O u) O ul p O F ry # * x* F + a* O p O o ❑ # ul ul u1 u1 * 0 + O # z# Kc U x + + m ul c u) c to v In cr ul m 14 H E E a + a nw * , 0 u # + a + + O 0 O 0 O 0 O 0 O O z aW w 0 0 E D a ul W + # 0 0 0 0 0 0 W a h H z # .4 Q E >+ # (n N In O ao w * N ul O O m N O o m ul O O m ul co o m ul m a w c0G 2 Q w« # N c O N o N O N O N N .n a 0 W a + N c N c N c N c N c N Lou W F gym-+ w*am Ch c in �o r NLD m N U H m d u >. N Q 17 FCC ># <+ O r C' w v' m m m r m C' m N w .-1 H W W + O v m n m m n c r a o a Z a > x 0 0 0 O 0 O 0 U) r1 rwn + 0 0 0 a � W W El OE + u) r c c c m 0) Qa [al a $ Vl S• W m > + # lD U) tp v7 In En a + rS Q x W + a >� i # c c c v KV v HC) am: a + # r r r r r r u m h W rt # h V) # ' O H # a z # a e w + m a U) i c + } o m rn IT a N W Q •' h m m CT) O O m r O x a E 3 w + a• � � N a• N a. N Q ul # N N N N N a. H w w + .N -I 8: E. W< H a a w x o # # N rnm m r m Q• N z ata.. * m m rn o o r ❑ w + W a O # + o + LL F a> + * m m ID lD m w o W O O W W # m m m m m m o m o 0 > .7 O# o m o . q m o m m .a z w ul + O -W o v o c o u N x # a F W z O .-4 r m r m ul 0 2 0 W O + E Ql eT m N In .-1 r O m w m ul z H W+ m o rn o m o rn 0 G] E rS N m a � D-LOAD TABLE LL w ling •. .. -J Z a. I ,.. F- a: 111131111M . -. ,. :. � v IIIIIIIIIIIIIIIIIIIIINIIIII 10 111111011111111111111111112111 0111011111 11111111011111IM11 IMNIIIIIIIIIIII31111 11-2.15 110311111011 111110111 W Mill ISO. loll ---IImIIIImI � v 5195\A9Pn_49\9N\01519 4" Non Det U 09: It 31 1999