Loading...
HomeMy WebLinkAboutKaiser Fontana Medical Center (2)ONSITE HYDROLOGY AND HYDRAULICS ANALYSIS FOR THE KAISER FONTANA MEDICAL CENTER 9961 Sierra Ave, Fontana, CA Prepared for: HMC Architects 3546 Concours Street Ontario, CA 91764-5583 David Rose, 909-989-9979 and Kaiser Permanente 9961 Sierra Avenue Fontana, CA 92335 Jim Herrington, 909-427-4115 Prepared by: RBF Consulting 14725 Alton Pkwy Irvine, CA 92618 Detlef Kopp, RCE 70995 Lena Baghdasarian, RCE 73090 Phone: 949-472-3505 JN: 10-105573 Prepared on: December 17, 2008 h mw 4w r dO *a Table of Contents 1.0 Introduction..............................................................................................3 2.0 Hydrology and Hydraulic Analysis.........................................................5 2.1 Hydrology — Rational Method........................................................................... 5 2.2 Hydraulics....................................................................................................... 5 3.0 Conclusions..............................................................................................8 A. Appendix A — Hydrology Calculations...................................................... ix B. Appendix B — Hydraulics Calculations.......................................................x C. Appendix C — Exhibits................................................................................xi Exhibit 1 - Onsite Hydrology Map....................................................................xi Figure1: Site Vicinity..................................................................................................................4 Figure2: Soils Map.....................................................................................................................6 Figure3: Point Rainfall................................................................................................................7 ._ H:\Pdata\10105573\Admin\reports\Hydrology\KFMC Onsite Hydrology.doc 2 4w 0 E71 a. 1.0 Introduction am 1.1 Background .. The onsite hydrology and hydraulics report for the Kaiser Fontana Medical Center was prepared Am by RBF Consulting on behalf of HMC Architects and Kaiser Permanente. The entire existing ON Kaiser Permanente Medical Center is located within the City of Fontana. The project site is located east of Sierra Avenue, and north of Valley Boulevard (refer to Figure 1, Vicinity Map). Im The existing hospital consists of approximately 50 acres of hospital buildings, medical offices, a central utilities plant, parking structures and parking lots. The parking lots are spread —• throughout the campus. All the parking lots drain into catch basins connected to the onsite storm drain system. Existing storm drain and utility layouts suggest that the original infrastructure was constructed as part of the original hospital with many additions and expansions. Detailed analysis of the existing system can be found in Hydrology and Floodplain Hydraulics Analysis for the Kaiser Fontana Medical Center dated November 10, 2008, by RBF Consulting. In the report dated November 10, 2008, the existing 27/30 -inch main storm drain, along with the existing parallel storm drain system, in Healthcare Parkway, have been verified. In this onsite study only the existing 24 -inch storm drain located on the west end of the project will be examined, brcause a portion of the line will be relocated due to construction. In addition, the upstream area, 10 -year flow rate, and time of concentration used to analyze the onsite areas tributary to the existing 27/30 -inch storm drain main were taken from the report dated dW November 10, 2008. The proposed hospital consists of two (2) Patient Towers, a Diagnostic and Treatment wing err (D&T), a Hospital Support Building (HSB), and a Central Utility Plant (CUP). To make room for the new hospital, some of the buildings of the existing hospital will be demolished. This expansion of buildings created a complicated network of pipes, some of which will be replaced or removed when the new facilities are constructed. The site will be designed so that storm water is directed away from the buildings and into lateral that drain into stormwater treatment .. devices such as bioretention areas or planter boxes before entering the existing system. Additionally, porous pavement will be used in some parking lots to infiltrate runoff into the ground. Overflow from these areas will be captured in catch basins and discharged into the existing storm drain system. 4W 1.2 Objective An The primary objective of this report is to provide the technical documentation for the final design Wo and improvements plans for the proposed onsite storm drain facilities developed for the proposed hospital site, more specifically outlined as: rr 1. Identify the required storm drain facilities for the improvements based upon the drainage area tributary to each proposed drainage inlet/concentration point. 2. Based on drainage patterns, ground slope, land use, soil type, using the Rational Method, perform a hydrologic analysis to provide the design flowrate used to size the .. proposed onsite storm drain facilities. .r 3. Based on the hydrological analysis, using Manning's equation, verify the capacities of the proposed onsite new 24 -inch storm drain and new laterals connecting into existing systems. AW Mft H:\Pdata\10105573Wdmin\reports\Hydrology\KFMC Onsite Hydrology.doc 3 C fl � I 1 r i! O 0 1,000 2,000 3,000 Feet Kaiser Medical Center Fontana Replacement Hospital CONBII LTI . FIGL)1-V, VVicinity Map • ■ ■ CI 14 Map Document: (M:\Mdata\10105573\GIS\KaiserSitevcinityMap_t.mxd) -9/3/2008 0 V:1 am 2.0 Hydrology and Hydraulic Analysis 1,. In order to understand the proposed conditions and size the proposed storm drain, hydrologic and hydraulic analyses were performed to model these conditions. Hydrologic calculations to -.„ evaluate surface runoff associated with 10 -year hypothetical design storm frequency from the tributary drainage areas were performed using Advanced Engineering Software (AES). All storm drain pipes are designed for a 10 -year storm event in the City of Fontana. Hydrologic parameters used in the analysis, such as rainfall and soil classification, are presented in the San Bernardino County Hydrology Manual. The hydraulic analysis to model the storm drains system within the study area used Water Surface Pressure Gradient (WSPG) program by CivilDesign along with AutoDesk's Manning Pipe Calculator to check pipe capacities. .,� 2.1 Hydrology — Rational Method The hydrologic calculations to determine the 10 -year peak flow rates were performed using the criteria in the San Bernardino County Hydrology Manual. The Rational Method is an empirical computation procedure for developing a peak runoff rate (discharge) for storms of a specific low recurrence interval. Rational Method equations are based on the assumption that the peak flow rate is directly proportional to the drainage area, rainfall intensity, and a loss rate coefficient, which describes the effects of land use and soil type. The Rational Method flow rates were Ism computed by generating a hydrologic "link -node" model, which divides the area into drainage subareas. The Rational Method analysis is included in Appendix A. The hydrology map can be found in Exhibit 1. The land use for the study area was determined using field survey data. Hydrologic soil group A was used for the analysis (See Figure 2, Soil Map). Antecedent Moisture Condition II (AMC II) '— was used to determine the 10 -year hydrology analysis for floodplain mapping. AMC indicates the soils wetness prior to a particular storm and runoff potential for the subject storm. The point rainfall data was determined using 10 -year Isohyetal maps provided by San Bernardino County (see Figure 3). 4W 2.2 Hydraulics 4'" WSPG uses Bernoulli's equation for the total energy at each section of pipe and Manning's formula to calculate the friction loss for each reach. Using flowrates determined from the "Am hydrologic model, the hydraulic grade line (HGL) in each storm drain system was determined. If the HGL is within the pipe, the water is flowing as partial flow. If the HGL is above the pipe, the water is flowing by pressure and if the HGL is above the finish grade, the water is overflowing at the inlets and catch basins into the street. WSPG was used to verify the 24 -inch onsite storm �. drain. The top of pipe elevation of the existing 42 -inch storm drain along Valley Boulevard was used as the controlling water surface elevation to perform the analysis for the 24 -inch line. Autodesk's Manning Pipe Calculator was used to size all the other proposed onsite short storm drain laterals, majority of which drain into bioretention areas or planter boxes before entering the -. existing system. L Im H:\Pdata\10105573Wdmin\reports\Hydrology\KFMC Onsite Hydrology.doc 5 IM _ I i _ I y (' I — � SAN-BERNARDINOIAVE I- - I MARYGOLD AVE C f Lu— LU j Q LU - O w I w LLJi VALLEY BLVD I J_ () 0 500 1,000 1,500 Feet C O N......O ... G:S - Map Document: (M:1Mdata\10105573\GIS\Landuse.mxd) - 9/3/2008 Legend Project Site Soil Type A Soil Type B I Kaiser Medical Center Fontana Replacement Hospital F I UURI; ?-:Soil Map 5-11 FIGURE Am we rrr 3.0 Conclusions am The proposed Kaiser Fontana Medical Center site plan requires an updated onsite storm drain system to insure that no flooding occurs in a 10 -year storm event. The existing 27/30 -inch main *■ storm drain line running through the site is to remain as is and has been verified per the overall Hydrology and Floodplain Hydraulics Analysis for the Kaiser Fontana Medical Center dated November 10, 2008, also prepared by RBF Consulting. This study verifies the hydraulic capacity .. of the relocated capacity of the 24 -inch storm drain along the west side of the property. All proposed onsite new storm drain lines were sized for a 10 -year storm event, based on this hydrological and hydraulic analysis. R M Om M nr 4W ■m w aw HAPdata\1 01 05573\Admin\reports\Hydrology\KFMC Onsite Hydrology.doc 8 W Pj r lJ H 'J '.l u n Ili A. Appendix A — Hydrology Calculations H:iPoata\10105573\AdMnVeport&\ i"rdogylKFW Onske Hydrdogy.doc Ix I i I i a# f I[ I! I 1 I I i I i I i I i I i 11 a I I I I i t i I i I i Date: 12/19/08 File name: AREA-A.RES Page 1 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 5.000 w#x##r##w#w#rw##++*w#r#w+++w####w+w+#wtww*ww##ww+wwwtw*#t*w*rww##########rr# RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983-2004 Advanced Engineering Software (sea) Ver. 10.0 Release Date: 01/01/2004 License ID 1264 Analysis prepared by: RBF Consulting 14725 Alton Parkway Irvine, California 92618 w*ww###www#x#w#wtt#w*w*w## DESCRIPTION OF STUDY twtw#www+w####w######x##+# * Area A 10 -YR Hydrology * 2008-12-15 * 10-105573 +###r#wx#t##wwww##ww#+#w##w##wwt*w*w#w###wwrwx##+w++www#w###x###x*ww**www+ FILE NAME: G:\KAISER\AREA-A.DAT TIME/DATE OF STUDY: 08:19 12/19/2008 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TIME-OF-CONCENTRATION MODEL* -- USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 8.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE 0.90 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10 -YEAR STORM 60 -MINUTE INTENSITY(INCH/HOUR) = 0.950 100 -YEAR STORM 60 -MINUTE INTENSITY(INCH/HOUR) = 1.400 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 10.00 1 -HOUR INTENSITY(INCH/HOUR) = 0.9595 SLOPE OF INTENSITY DURATION CURVE = 0.6000 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* *USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) -(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED x++#ww*#++w##w#x##w#+t#*w*+*w##+++w###+w#t##ww##x##w##ww#w#ww####x###rx###*r FLOW PROCESS FROM NODE 1.01 TO NODE 1.02 IS CODE - 21 ____________________________________________________________________________ »» RATIONAL METHOD INITIAL SUBAREA ANALYSISc « »USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA ­ INITIAL SUBAREA PLOW-LENGTH(FEET) - 128.00 ELEVATION DATA: UPSTREAM(FEET) = 1140.00 DOWNSTREAM(FEET) . 1137.00 TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 Date: 12/19/08 File name: AREA-A.RES Page 2 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 5.000 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 4.261 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) COMMERCIAL A 0.45 0.98 0.10 32 5.00 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) - 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) 1.69 TOTAL ARKA(ACRES) = 0.45 PEAK FLOW RATE(CFS) = 1.69 #######**tw####+wwrxwwww+###*ww#w#xw*+w#wwww###+####+w#**+#++########**+*+w# FLOW PROCESS FROM NODE 1.02 TO NODE 1.03 IS CODE = 51 ____________________________________________________________________________ »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW«« »» TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)c < ELEVATION DATA: UPSTREAM(FEET) = 1137.00 DOWNSTREAM(FEET) - 1128.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 378.00 CHANNEL SLOPE = 0.0238 CHANNEL BASE(FEET) = 27.00 "Z• FACTOR = 1.000 MANNING'S FACTOR - 0.015 MAXIMUM DEPTH(FEET) = 0.50 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.206 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A 1.03 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.16 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.08 AVERAGE FLOW DEPTH(FEET) - 0.06 TRAVEL TIME(MIN.) = 3.03 TC(MIN.) - 8.03 SUBAREA AREA(ACRES) = 1.03 SUBAREA RUNOFF(CFS) = 2.88 EFFECTIVE AREA(ACRES) = 1.48 AREA -AVERAGED FM(INCH/HR) - 0.10 AREA -AVERAGED Fp(INCH/HR) - 0.97 AREA -AVERAGED Ap - 0.10 TOTAL AREA(ACRES) . 1.48 PEAK FLOW RATE(CFS) = 4.14 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) - 0.06 FLOW VELOCITY(FEET/SEC.) = 2.39 LONGEST FLOWPATH FROM NODE 1.01 TO NODE 1.03 - 506.00 FEET. FLOW PROCESS FROM NODE 1.03 TO NODE 1.04 IS CODE = 31 ____________________________________________________________________________ »» COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA«« » >>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) —— ELEVATION DATA: UPSTREAM(FEET) . 1125.00 DOWNSTREAM(FEET) = 1124.35 FLOW LENGTH(FEET) = 65.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.0 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 5.36 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES - 1 PIPE-FLOW(CFS) = 4.14 PIPE TRAVEL TIME(MIN.) - 0.20 TC(MIN.) - 8.24 LONGEST FLOWPATH FROM NODE 1.01 TO NODE 1.04 . 571.00 FEET. #########t+#t##+#www#w#ww##w####++wwwww*#wr##########tw*wt+*############x#t# FLOW PROCESS FROM NODE 1.04 TO NODE 1.05 IS CODE = 31 ____________________________________________________________________________ » >>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA-« » >>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) « c ELEVATION DATA: UPSTREAM(FEET) . 1124.35 DOWNSTREAM(FEET) = 1123.44 FLOW LENGTH(FEET) = 91.00 MANNING'S N = 0.013 I I I i a i i i i i t i t 1 i 1 i i t I i i E 1 t 1 1 i t i i i i i t I i i Date: 12/19/08 File name: AREA-A.RES Page 3 DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.0 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 5.36 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.14 PIPE TRAVEL TIME(MIN.) . 0.28 TC(MIN.) . 8.52 LONGEST FLOWPATH FROM NODE 1.01 TO NODE 1.05 . 662.00 FEET. FLOW PROCESS FROM NODE NODE CODE = 81 ------1.05-IS ---_--1.05-TO - _------- _---- _---- _---- _-__-- ­­,ADDITIONOF SUBAREA TO MAINLINE PEAK FLOW-« _»»,ADDITION MAINLINE Tc(MIN) . 8.52 * 10 YEAR RAINFALL INTENSITY(INCH/HR) . 3.095 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A 0.34 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) . 0.34 SUBAREA RUNOFF(CFS) = 0.92 EFFECTIVE AREA(ACRES) = 1.82 AREA -AVERAGED FM(INCH/HR) = 0.10 AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap - 0.10 TOTAL AREA(ACRES) = 1.82 PEAK FLOW RATE(CFS) = 4.91 FLOW PROCESS FROM NODE 1.05 TO NODE 1.06 IS CODE = 31 ____________________________________________________________________________ - ,COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA -- »»,USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) «« ELEVATION DATA: UPSTREAM(FEET) . 1123.44 DOWNSTREAM(FEET) . 1123.09 FLOW LENGTH(FEET) = 35.00 MANNING'S N - 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 10.2 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 5.55 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES . 1 PIPE-FLOW(CFS) = 4.91 PIPE TRAVEL TIME(MIN.) = 0.11 Tc(MIN.) = 8.62 LONGEST FLOWPATH FROM NODE 1.01 TO NODE 1.06 - 697.00 FEET. FLOW PROCESS FROM NODE 1.06 TO NODE 1.06 IS CODE = 1 ____________________________________________________________________________ > > »DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE -- TOTAL NUMBER OF STREAMS - 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 8.62 RAINFALL INTENSITY(INCH/HR) = 3.07 AREA -AVERAGED Fm(INCH/HR) - 0.10 AREA -AVERAGED Fp(INCH/HR) - 0.98 AREA -AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 1.82 TOTAL STREAM AREA(ACRES) - 1.82 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.91 FLOW PROCESS FROM NODE 1.07 TO NODE 1.08 IS CODE 21 • ____________________________________________________________________________ »> >RATIONAL METHOD INITIAL SUBAREA ANALYSIS«« »USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA PLOW-LENGTH(FEET) = 124.00 ELEVATION DATA: UPSTREAM(FEET) = 1139.80 DOWNSTREAM(FEET) = 1137.00 Date: 12/19/08 File name: AREA-A.RES Page 4 TC - K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) - 5.000 * 10 YEAR RAINFALL INTENSITY(INCH/HR) - 4.261 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) COMMERCIAL A 0.49 0.98 0.10 32 5.00 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap - 0.10 SUBAREA RUNOFF(CFS) 1.84 TOTAL AREA(ACRES) 0.49 PEAK FLOW RATE(CFS) . 1.84 ###+*########*t#####t++#####+r#r##r#***###*#########rxx######r*####rrx++###x FLOW PROCESS FROM NODE 1.08 TO NODE 1.09 IS CODE - 51 A•5 ____________________________________________________________________________ - -COMPUTE TRAPEZOIDAL CHANNEL FLOW-« »» TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) «« ELEVATION DATA: UPSTREAM(FEET) - 1137.00 DOWNSTREAM(FEET) . 1127.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 391.00 CHANNEL SLOPE = 0.0256 CHANNEL BASE(FEET) . 27.00 "Z+ FACTOR - 1.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) . 0.50 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.259 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A 1.16 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) - 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.52 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.31 AVERAGE FLOW DEPTH(FEET) - 0.06 TRAVEL TIME(MIN.) = 2.82 TC(MIN.) . 7.82 SUBAREA AREA(ACRES) = 1.16 SUBAREA RUNOFF(CFS) = 3.30 EFFECTIVE AREA(ACRES) = 1.65 AREA -AVERAGED Fm(INCH/HR) - 0.10 AREA -AVERAGED Fp(INCH/HR) - 0.98 AREA -AVERAGED Ap = 0.10 TOTAL AREA(ACRES) - 1.65 PEAK FLOW RATE(CFS) - 4.70 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.07 FLOW VELOCITY(FEET/SEC.) . 2.64 LONGEST FLOWPATH FROM NODE 1.07 TO NODE 1.09 - 515.00 FEET. ###x#x*++###rrx#######xx*###xxx*##rrxx**#####*########x*#####r##*rrr##*x##+# FLOW PROCESS FROM NODE 1.09 TO NODE 1.06 IS CODE = 31 ____________________________________________________________________________ --COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA-.. »»,USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««4 ELEVATION DATA: UPSTREAM(FEET) 1124.00 DOWNSTREAM(FEET) = 1123.09 FLOW LENGTH(FEET) - 53.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.2 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 6.80 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES . 1 PIPE-FLOW(CFS) - 4.70 PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) = 7.95 LONGEST FLOWPATH FROM NODE 1.07 TO NODE 1.06 = 568.00 FEET. FLOW PROCESS FROM NODE 1.06 TO NODE 1.06 IS CODE = 1 ____________________________________________________________________________ >» »DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE< «< »»,AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES-- I i ! i f I ! i t I a i t i I I I i t 1 I i f 1 I i I i I i a i ! i ! i l i Date: 12/19/08 File name: AREA-A.RES Page 5 TOTAL NUMBER OF STREAMS . 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) - 7.95 RAINFALL INTENSITY(INCH/HR) - 3.23 AREA -AVERAGED Fm(INCH/HR) . 0.10 AREA -AVERAGED Fp(INCH/HR) . 0.98 AREA -AVERAGED Ap . 0.10 EFFECTIVE STREAM AREA(ACRES) - 1.65 TOTAL STREAM AREA(ACRES) - 1.65 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.70 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR)(ACRES) NODE 1 4.91 8.62 3.073 0.98( 0.10) 0.10 1.8 1.01 2 4.70 7.95 3.227 0.98( 0.10) 0.10 1.6 1.07 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 9.45 7.95 3.227 0.98( 0.10) 0.10 3.3 1.07 2 9.37 8.62 3.073 0.98( 0.10) 0.10 3.5 1.01 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 9.45 Tc(MIN.) = 7.95 EFFECTIVE AREA(ACRES) = 3.33 AREA -AVERAGED Fm(INCH/HR) . 0.10 AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap . 0.10 TOTAL AREA(ACRES) = 3.47 LONGEST FLOWPATH FROM NODE 1.01 TO NODE 1.06 = 697.00 FEET. rr++++rr++r+rrrrr+++rrrrrr++r+rrrrr+++++rr+rrrr+++r++rr++rrr++r++rrrr++++++r FLOW PROCESS FROM NODE 1.06 TO NODE 1.10 IS CODE = 31 ____________________________________________________________________________ » COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA-­ ­­USING UBAREA-«>» USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) «< ELEVATION DATA: UPSTREAM(FEET) . 1123.09 DOWNSTREAM (FEET) - 1122.33 FLOW LENGTH(FEET) = 86.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 12.6 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 6.29 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) . 9.45 PIPE TRAVEL TIME(MIN.) = 0.23 TC(MIN.) = 8.17 LONGEST FLOWPATH FROM NODE 1.01 TO NODE 1.10 - 783.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 3.47 TC(MIN.) . 8.17 EFFECTIVE AREA(ACRES) = 3.33 AREA -AVERAGED FM(INCH/HR)= 0.10 AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap . 0.10 PEAK FLOW RATE(CFS) - 9.45 ** PEAK FLOW RATE TABLE ** STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 9.45 8.17 3.173 0.98( 0.10) 0.10 3.3 1.07 2 9.37 8.85 3.025 0.98( 0.10) 0.10 3.5 1.01 END OF RATIONAL METHOD ANALYSIS Date: 12/19/08 File name: AREA-A.RES Page 6 I i a 1 11 11 a! f i [ 1 a 1 1 I [ i 11 E 1 i 1 t 1 t t t! E i a 1 I Date: 12/19/08 File name: AREA-B.RES Page 1 RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983-2004 Advanced Engineering Software (aes) Ver. 10.0 Release Date: 01/01/2004 License ID 1264 Analysis prepared by: RBF Consulting 14725 Alton Parkway Irvine, California 92618 »»»»x*x»»»»»»»+ DESCRIPTION OF STUDY * Area B 10 -YR Hydrology * 2008-12-15 * 10-105573 FILE NAME: G:\KAISER\AREA-B.DAT TIME/DATE OF STUDY: 08:23 12/19/2008 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TIME-OF-CONCENTRATION MODEL* USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 8.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE . 0.90 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10 -YEAR STORM 60 -MINUTE INTENSITY(INCH/HOUR) = 0.950 100 -YEAR STORM 60 -MINUTE INTENSITY(INCH/HOUR) = 1.400 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 10.00 1 -HOUR INTENSITY(INCH/HOUR) = 0.9595 SLOPE OF INTENSITY DURATION CURVE = 0.6000 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* *USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30,0 20.0 0.018/0,018/0.020 y0 67a =2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) -(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED --FLOW PROCESS FROM NODE- ----2.01-TO NODE --2.02-IS CODE - 21 6-1 _________ _____________________ --RATIONAL METHOD INITIAL SUBAREA ANALYSIS-- -USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW-LENGTH(FEET) . 130.00 ELEVATION DATA: UPSTREAM(FEET) = 1140.20 DOWNSTREAM(FEET) = 1138.00 TC . K*[(LENGTH** 3.00)/(ELEVATION CHANGE))**0.20 Date: 12/19/08 File name: AREA-B.RES Page 2 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) . 5.000 * 10 YEAR RAINFALL INTENSITY(INCH/HR) . 4.261 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) COMMERCIAL A 0.14 0.98 0.10 32 5.00 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) . 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap . 0.10 SUBAREA RUNOFF(CFS) = 0.52 TOTAL AREA(ACRES) = 0.14 PEAK FLOW RATE(CFS) - 0.52 FLOW PROCESS FROM NODE 2.02 TO NODE 2.03 IS CODE = 51 +2 __________________________________________________________________________ RVV/ ,,-COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »> TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) «« ELEVATION DATA: UPSTREAM(FEET) = 1138.00 DOWNSTREAM(FEET) - 1136.00 CHANNEL LENGTH THRU SUBAREA(FEET) . 180.00 CHANNEL SLOPE - 0.0111 CHANNEL BASE(FEET) . 30.00 •Z" FACTOR . 1.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) - 0.50 * 10 YEAR RAINFALL INTENSITY(INCH/HR) . 3.390 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A 0.90 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.89 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.29 AVERAGE FLOW DEPTH(FEET) = 0.05 TRAVEL TIME(MIN.) = 2.32 TC(MIN.) . 7.32 SUBAREA AREA(ACRES) = 0.90 SUBAREA RUNOFF(CFS) = 2.67 EFFECTIVE AREA(ACRES) = 1.04 AREA -AVERAGED Fm(INCH/HR) = 0.10 AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 1.04 PEAK FLOW RATE(CFS) = 3.08 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.06 FLOW VELOCITY(FEET/SEC.) = 1.60 LONGEST FLOWPATH FROM NODE 2.01 TO NODE 2.03 = 310.00 FEET. FLOW PROCESS FROM NODE 2.03 TO NODE 2.04 IS CODE = 51 __________________________________________________________________________ »» >COMPUTE TRAPEZOIDAL CHANNEL FLOW«« < »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) -<. <. ELEVATION DATA: UPSTREAM(FEET) = 1136.00 DOWNSTREAM(FEET) = 1129.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 225.00 CHANNEL SLOPE . 0.0311 CHANNEL BASE(FEET) = 30.00 "Z" FACTOR - 1.000 MANNING'S FACTOR - 0.015 MAXIMUM DEPTH(FEET) . 0.50 * 10 YEAR RAINFALL INTENSITY(INCH/HR) . 3.045 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A 1.46 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) . 5.03 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.62 AVERAGE FLOW DEPTH(FEET) - 0.06 TRAVEL TIME(MIN.) = 1.43 Tc(MIN.) - 8.76 SUBAREA AREA(ACRES) . 1.46 SUBAREA RUNOFF(CFS) = 3.87 EFFECTIVE AREA(ACRES) . 2.50 AREA -AVERAGED Fm(INCH/HR) - 0.10 1 i i 1 a 1 a 1 a I f 1 t i I! ! 1 ! 1 ! I ! 1 a 1 a 1 E I t i a 1 [ 1 t 1 Date: 12/19/08 File name: AREA-B.RES Page 3 AREA -AVERAGED Fp(INCH/HR) = 0.97 AREA -AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 2.50 PEAK FLOW RATE(CFS) - 6.63 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.07 FLOW VELOCITY(FEET/SEC.) - 3.OD LONGEST FLOWPATH FROM NODE 2.01 TO NODE 2.04 = 535.00 FEET. FLOW PROCESS FROM NODE 2.04 TO NODE 2.05 IS CODE = 31 ____________________________________________________________________________ »» COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA-.. <, » >>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) -<, ELEVATION DATA: UPSTREAM(FEET) = 1125.00 DOWNSTREAM(FEET) = 1124.30 FLOW LENGTH(FEET) = 80.00 MANNING'S N = 0.013 a DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.2 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) - 5.73 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 6.63 PIPE TRAVEL TIME(MIN.) = 0.23 TC(MIN.) = 8.99 LONGEST FLOWPATH FROM NODE 2.01 TO NODE 2.05 = 615.00 FEET. FLOW PROCESS FROM NODE 2.05 TO NODE 2.05 IS CODE - 81 6� 4 PIPE TRAVEL TIME(MIN.) = 0.15 TC(MIN.) = 9.58 F� ____________________________________________________________________________ > »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW --MAINLINE Tc(MIN)===--8=99-�=- * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.997 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A 0.44 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 0.44 SUBAREA RUNOFF(CFS) 1.15 EFFECTIVE AREA(ACRES) = 2.94 AREA -AVERAGED Fm(INCH/HR) = 0.10 AREA -AVERAGED Fp(INCH/HR) - 0.98 AREA -AVERAGED AP = 0.10 TOTAL AREA(ACRES) = 2.94 PEAK FLOW RATE(CFS) = 7.67 FLOW PROCESS FROM NODENODE - 31 __-_____-__________- ��Le -----2.06-IS-CODE _________________________ -----2.05_TO >> -COMPUTE COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA«« < VVV » » USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) «« ELEVATION=DATA:= UPSTREAM(FEET) === 1124.30 a DOWNSTREAM(FEET) _ =1123.00 = FLOW LENGTH(FEET) = 155.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.6 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) . 5.78 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 7.67 PIPE TRAVEL TIME(MIN.) . 0.45 TC(MIN.) = 9.43 LONGEST FLOWPATH FROM NODE 2.01 TO NODE 2.06 • 770.00 FEET. FLOW PROCESS FROM NODE 2.06 TO NODE 2.06 IS CODE - 81 P� 5 ____________________________________________________________________________ »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « _-MAINLINE =TC(MIN)====-9.43= _ * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.911 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Date: 12/19/08 File name: AREA-B.RES Page 4 LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A 1.25 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, FP(INCH/HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap - 0.10 SUBAREA AREA(ACRES) . 1.25 SUBAREA RUNOFF(CFS) = 3.17 EFFECTIVE AREA(ACRES) = 4.19 AREA -AVERAGED Fm(INCH/HR) = 0.10 AREA -AVERAGED Fp(INCH/HR) - 0.98 AREA -AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 4.19 PEAK FLOW RATE(CFS) = 10.61 FLOW PROCESS FROM NODE 2.06 TO NODE 2.07 IS CODE = 31 ____________________________________________________________________________ »> >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA--< --USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) -«< «< ELEVATION DATA: UPSTREAM(PEET)====1123 00 =DOWNSTREAM(FEET) -= 1121`40 =_ FLOW LENGTH(FEET) = 77.50 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.5 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 8.87 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 10.61 PIPE TRAVEL TIME(MIN.) = 0.15 TC(MIN.) = 9.58 LONGEST FLOWPATH FROM NODE 2.01 TO NODE 2.07 = 847.50 FEET. FLOW PROCESS FROM NODE 2.07 TO NODE 2.07 IS CODE = 1 ____________________________________________________________________________ » » DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<4 < TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 9.58 RAINFALL INTENSITY(INCH/HR) . 2.88 AREA -AVERAGED Fm(INCH/HR) . 0.10 AREA -AVERAGED FP(INCH/HR) - 0.98 AREA -AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) 4.19 TOTAL STREAM AREA(ACRES) - 4.19 PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.61 FROM NODE IS CODE _ ��Le NODE -- VVV -----2.09 -21---_- --2.08-TO --FLOW-PROCESS _____________________ ______ ____--________ »> >RATIONAL METHOD INITIAL SUBAREA ANALYSIS< «. >>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW-LENGTH(FEET) 168.00 ELEVATION DATA: UPSTREAM(FEET) = 1150.45 DOWNSTREAM(FEET) = 1149.00 TC = K*((LENGTH** 3.00)/(ELEVATION CHANGE))**0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.106 * 10 YEAR RAINFALL INTENSITY(INCH/HR) . 3.780 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) COMMERCIAL A 0.11 0.98 0.10 32 6.11 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) - 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 0.36 TOTAL AREA(ACRES) = 0.11 PEAK FLOW RATE(CFS) - 0.36 FLOW PROCESS FROM NODE 2.09 TO NODE 2.10 IS CODE - 31 ________________________________________________________________ I I [ I [ I [ I a I!) E I l I t I I I t I i I E I a I i I a I t I 1 I t I Date: 12/19/08 File name: AREA-B.RES Page 5 --COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA-- - -USING -USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE PLOW)< «< ELEVATION DATA: UPSTREAM(FEET) = 1123.60 DOWNSTREAM (FEET) = 1121.85 FLOW LENGTH(FEET) = 269.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 8.000 DEPTH OF FLOW IN 8.0 INCH PIPE IS 3.5 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 2.50 ESTIMATED PIPE DIAMETER(INCH) = 8.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.36 PIPE TRAVEL TIME(MIN.) = 1.80 Tc(MIN.) = 7.90 LONGEST FLOWPATH FROM NODE 2.08 TO NODE 2.10 = 437.00 FEET. **f+#r#„Y#f##Yr#r##**r#f+++###,r#rrY**f+#f,####Y*#***##++<,##r#*r*+*x«<rr•� --FLOW PROCESS FROM NODE 2.10 TO NODE---- 2.10 IS CODE - 81 �Q�J __________________ -____ _________________________ , »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«« MAINLINE Tc(MIN) - 7.90 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.238 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A 1.37 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap - 0.10 SUBAREA AREA(ACRES) - 1.37 SUBAREA RUNOFF(CFS) = 3.87 EFFECTIVE AREA(ACRES) = 1.48 AREA -AVERAGED Fm(INCH/HR) = 0.10 AREA -AVERAGED Fp(INCH/HR) = 0.97 AREA -AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 1.48 PEAK FLOW RATE(CFS) = 4.18 --FLOW 13 -4b -PROCESS FROM NODE -----2.10 TO NODE ------2.10 IS CODE = 81 _________________ ____ » >>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) - 7.90 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.238 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A 0.46 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) - 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) - 0.46 SUBAREA RUNOFF(CFS) 1.30 EFFECTIVE AREA(ACRES) 1.94 AREA -AVERAGED Fm(INCH/HR) = 0.10 AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap = 0.10 TOTAL AREA(ACRES) 1.94 PEAK FLOW RATE(CFS) = 5.48 #YYrY*#*##**#,<,#,r#„ Y**+#*+#<+,+###rY***f♦«##r#r#**#x*#ff##YY+#**#*#fx<** FLOW PROCESS FROM NODE 2.10 TO NODE 2.07 IS CODE - 31 ____________________________________________________________________________ » >>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA-« » >>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 1121.85 DOWNSTREAM (FEET) = 1121.40 FLOW LENGTH(FEET) = 45.00 MANNING'S N - 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 11.1 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 5.65 ESTIMATED PIPE DIAMETER(INCH) - 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) - 5.48 PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) = 8.04 LONGEST FLOWPATH FROM NODE 2.08 TO NODE 2.07 = 482.00 FEET. Date: 12/19/08 File name: AREA-B.RES Page 6 FLOW PROCESS FROM NODE 2.07 TO NODE 2.07 IS CODE = 1 ____________________________________________________________________________ --DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE -- __AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES- = « =TOTAL NUMBER =OF= STREAMS ===2==== CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) - 8.04 RAINFALL INTENSITY(INCH/HR) - 3.21 AREA -AVERAGED Fm(INCH/HR) - 0.10 AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 1.94 TOTAL STREAM AREA(ACRES) = 1.94 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.48 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 10.61 9.58 2.885 0.98( 0.10) 0.10 4.2 2.01 2 5.48 8.04 3.206 0.98( 0.10) 0.10 1.9 2.08 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 15.41 8.04 3.206 0.98( 0.10) 0.10 5.5 2.08 2 15.53 9.58 2.885 0.98( 0.10) 0.10 6.1 2.01 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) - 15.53 Tc(MIN.) = 9.58 EFFECTIVE AREA(ACRES) 6.13 AREA -AVERAGED Fm(INCH/HR) - 0.10 AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 6.13 LONGEST FLOWPATH FROM NODE 2.01 TO NODE 2.07 - 847.50 FEET. FLOW PROCESS FROM NODE 2.07 TO NODE 2.11 IS CODE = 31 ____________________________________________________________________________ » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA«. < » >>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) «« = ELEVATION DATA: UPSTREAM(FEET) = 1121.40==DOWNSTREAM(FEET) = 1116.40 = ` FLOW LENGTH(FEET) - 500.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.1 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) - 7.44 ESTIMATED PIPE DIAMETER(INCH) - 24.00 NUMBER OF PIPES - 1 PIPE-FLOW(CFS) = 15.53 PIPE TRAVEL TIME(MIN.) = 1.12 Tc(MIN.) = 10.70 LONGEST FLOWPATH FROM NODE 2.01 TO NODE 2.11 = 1347.50 FEET. FLOW PROCESS FROM NODE 2.11 TO NODE 2.11 IS CODE - 81 ____________________________________________________________________________ » >>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-­ MAINLINE LOW« « AI MNLINE TC(MIN) = 10.70 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.700 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN 11! 1 i 1 E I t!!!! 1 1 i i 1 I! 1 1 t 1 t r[ 1 1 1 a 1 t I i 1 t i Date: 12/19/08 File name: AREA-B.RES Page 7 COMMERCIAL A 0.53 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, FP(INCH/HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap - 0.10 SUBAREA AREA(ACRES) - 0.53 SUBAREA RUNOFF(CFS) = 1.24 EFFECTIVE AREA(ACRES) = 6.66 AREA -AVERAGED Fm(INCH/HR) = 0.10 AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap = 0.10 TOTAL AREA(ACRES) 6.66 PEAK FLOW RATE(CFS) = 15.60 ++++++x++++++xxxxxxxxxxxxx+xxxxxx+xx+x++xxxxx+++++xx+++++x++++xxx+xxx+++xxxx FLOW PROCESS FROM NODE 2.11 TO NODE 2.12 IS CODE - 31 --------------------------------------- _____________________________________ »-COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREAcc « » » USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) «< ELEVATION DATA: UPSTREAM(FEET) = 1116.40 DOWNSTREAM (FEET) = 1116.00 FLOW LENGTH(FEET) = 57.00 MANNING'S N - 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 17.3 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 6.44 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 15.60 PIPE TRAVEL TIME(MIN.) = 0.15 TC(MIN.) = 10.85 LONGEST FLOWPATH FROM NODE 2.01 TO NODE 2.12 = 1404.50 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 6.66 TC(MIN.) = 10.85 EFFECTIVE AREA(ACRES) = 6.66 AREA -AVERAGED FM(INCH/HR)= 0.10 AREA -AVERAGED FP(INCH/HR) = 0.98 AREA -AVERAGED Ap = 0.10 PEAK FLOW RATE(CFS) = 15.60 x+ PEAK FLOW RATE TABLE xx STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 15.44 9.30 2.936 0.98( 0.10) 0.10 6.0 2.08 2 15.60 10.85 2.678 0.98( 0.10) 0.10 6.7 2.01 END OF RATIONAL METHOD ANALYSIS Date: 12/19/08 File name: AREA-B.RES Page 8 1 1 a 1 4 1 a 1 1 1 [ 1 a 1 t 1 ! i t 1 i 1 ! 1 11 t 1 t 1 k 1 i i i i I i Date: 12/19/08 File name: AREA-C.RES Page 1 xxr#xr########*x+*x+#*#«###<##xx<###+##*<*x*rr«<rrrr+#«rr+r#<##<#rtrtrtx<*## RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (ReferenCe: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983-2004 Advanced Engineering Software (aes) Ver. 10.0 Release Date: 01/01/2004 License ID 1264 Analysis prepared by: RBF Consulting 14725 Alton Parkway Irvine, California 92618 r#x*#r#r###++<####**rt+#<## DESCRIPTION OF STUDY ********+###<##xxx++#r<rr# * Area C 10 -YR Hydrology * 2008-10-16 * 10-105573 < FILE NAME: G:\KAISER\AREA-C.DAT TIME/DATE OF STUDY: 11:52 12/16/2008 USER SPECIFIED HYDROLOGY =AND HYDRAULIC =MODEL =INFORMATION: --*TIME-OF-CONCENTRATION MODEL* -- USER SPECIFIED STORM EVENT(YEAR) 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 8.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10 -YEAR STORM 60 -MINUTE INTENSITY(INCH/HOUR) = 0.950 100 -YEAR STORM 60 -MINUTE INTENSITY(INCH/HOUR) = 1.400 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 10.00 1 -HOUR INTENSITY(INCH/HOUR) - 0.9595 SLOPE OF INTENSITY DURATION CURVE = 0.6000 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* *USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) = 1 30 0 20 0 OL018/0 018/0x020 0x67= =2=00 0 0313 OL167 0?0150= GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1, Relative Flow -Depth - 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADTUSTMENT NOT SELECTED <#####<+#xr<<###x+r#<<##<#rt#x#rx*rx+x*##+#«##+xr##« <#x#«<+<###<xrrr+#+#r# FLOW PROCESS FROM NODE 3.01 TO NODE 3.02 IS CODE = 21 Gr ` ____________________________________________________________________________ »» RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA— INITIAL SUBAREA FLOW-LENGTH(FEET) = 216.00 ELEVATION DATA: UPSTREAM(FEET) = 1132.00 DOWNSTREAM(FEET) = 1129.95 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 Date: 7.2/19/08 File name: AREA-C.RES Page 2 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 6.625 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.599 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) COMMERCIAL A %,&1_ 0.98 0.10 32 6.63 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) - 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) 1.61 TOTAL AREA(ACRES) = 0.51 PEAK FLOW RATE(CFS) = 1.61 FLOW PROCESS FROM NODE 3.02 TO NODE 3.03 IS CODE - 31 ____________________________________________________________________________ > >>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA-.. » >>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) «c ELEVATION DATA: UPSTREAM(FEET) = 1118.90 DOWNSTREAM(FEET) = 1111.40 FLOW LENGTH(FEET) - 165.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 4.4 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 7.49 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) - 1.61 PIPE TRAVEL TIME(MIN.) = 0.37 TC(MIN.) = 6.99 LONGEST FLOWPATH FROM NODE 3.01 TO NODE 3.03 = 381.00 FEET. FLOW PROCESS FROM NODE 3.03 TO NODE 3.03 IS CODE = 81 G ____________________________________________________________________________ » » ADDITION OF SUBAREA TO MAINLINE PEAK FLOW- ­ MAINLINE Tc(MIN) = 6.99 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.485 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A 0.17 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) - 0.17 SUBAREA RUNOFF(CFS) 0.52 EFFECTIVE AREA(ACRES) = 0.68 AREA -AVERAGED Fm(INCH/HR) = 0.10 AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 0.68 PEAK FLOW RATE(CFS) - 2.07 FLOW PROCESS FROM NODE 3.03 TO NODE 3.04 IS CODE = 31 ___________________________________________________________________________ » » COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA«c > > >USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW)<c ELEVATION DATA: UPSTREAM(FEET) - 1111.40 DOWNSTREAM(FEET) 1110.50 FLOW LENGTH(FEET) = 43.50 MANNING'S N - 0.013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 6.8 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 5.80 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) - 2.07 PIPE TRAVEL TIME(MIN.) = 0.13 TC(MIN.) - 7.12 LONGEST FLOWPATH FROM NODE 3.01 TO NODE 3.04 = 424.50 FEET. FLOW PROCESS FROM NODE 3.04 TO NODE 3.04 IS CODE = 81 G r5 --ADDITION >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-- .... 1 1 ! 1 ! 1 a 1 ! i 1 l a 1 [ 1 a 1 t f f t [ 1 11 1 1 t 1 11 ! l l 1 [! Date: 12/19/08 File name: AREA-C.RES Page 3 MAINLINE TC(MIN) = 7.12 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.448 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A 0.26 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 0.26 SUBAREA RUNOFF(CFS) 0.78 EFFECTIVE AREA(ACRES) - 0.94 AREA -AVERAGED Fm(INCH/HR) = 0.10 AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap - 0.10 TOTAL AREA(ACRES) = 0.94 PEAK FLOW RATE(CFS) - 2.83 FLOW PROCESS FROM NODE 3.04 TO NODE 3.05 IS CODE = 31 »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« « » » >USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««< = ELEVATION DATA: UPSTREAM(FEET)== =1110 50v-DOWNSTREAM(FEET) == 1109.50 FLOW LENGTH(FEET) = 53.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.8 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) - 6.20 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.83 PIPE TRAVEL TIME(MIN.) = 0.14 Tc(MIN.) = 7.26 LONGEST FLOWPATH FROM NODE 3.01 TO NODE 3.05 - 477.50 FEET. FLOW PROCESS FROM NODE 3.05 TO NODE 3.05 IS CODE - 81 G - A. >» »ADDITION OF SUBAREA TO MAINLINE PEAK FLOW -- MAINLINE TC(MIN) = 7.26 * 10 YEAR RAINFALL INTENSITY(INCH/HR) - 3.407 SUBAREA LOSS RATE DATA(AMC II): SCS DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A 0.60 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap - 0.10 SUBAREA AREA(ACRES) - 0.60 SUBAREA RUNOFF(CFS) - 1.79 = 0.10 EFFECTIVE AREA(ACRES) = 1.54 AREA -AVERAGED Fm(INCH/HR) = 0.10 AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap - 0.10 5.16 TOTAL AREA(ACRES) = 1.54 PEAK FLOW RATE(CFS) = 4.59 FLOW PROCESS FROM NODE 3.05 TO NODE 3.06 IS CODE = 31 --COMPUTE COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« « »> USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 1109.50 DOWNSTREAM (FEET) 1109.10 FLOW LENGTH(FEET) = 20.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 9.4 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 6.92 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.59 PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 7.31 LONGEST FLOWPATH FROM NODE 3.01 TO NODE 3.06 = 497.50 FEET. FLOW PROCESS FROM NODE 3.06 TO NODE 3.06 IS CODE - 81 CI -15 ____________________________________________________________________________ Date: 12/19/08 File name: AREA-C.RES »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW -- MAINLINE Tc(MIN) - 7.31 * 10 YEAR RAINFALL INTENSITY(INCH/HR) - 3.394 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A 0.20 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) - 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) - 0.20 SUBAREA RUNOFF(CFS) = 0.59 EFFECTIVE AREA(ACRES) 1.74 AREA -AVERAGED FM(INCH/HR) = 0.10 AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap - 0.10 TOTAL AREA(ACRES) = 1.74 PEAK FLOW RATE(CFS) = 5.16 FLOW PROCESS FROM NODE 3.06 TO NODE 3.07 IS CODE - 31 --COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA«« » >>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) «« = ELEVATION DATA: UPSTREAM(FEET) = 1109.10 DOWNSTREAM(FEET)=== 1107.10 FLOW LENGTH(FEET) = 98.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.3 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 7.43 ESTIMATED PIPE DIAMETER(INCH) - 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.16 PIPE TRAVEL TIME(MIN.) = 0.22 TC(MIN.) - 7.53 LONGEST FLOWPATH FROM NODE 3.01 TO NODE 3.07 = 595.50 FEET. #*##**ff#fk#+*+**t*##f###+#+*r#f!!##+#*!#######k**++#r+#tkkkk+*k!##r##+##k## FLOW PROCESS FROM NODE 3.07 TO NODE 3.07 IS CODE = 81 / / ____________________________________________________________________________ » >>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « < MAINLINE TC(MIN) - 7.53 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.334 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A 0.41 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) - 0.41 SUBAREA RUNOFF(CFS) = 1.19 EFFECTIVE AREA(ACRES) = 2.15 AREA -AVERAGED FM(INCH/HR) - 0.10 AREA -AVERAGED Fp(INCH/HR) - 0.98 AREA -AVERAGED Ap - 0.10 TOTAL AREA(ACRES) - 2.15 PEAK FLOW RATE(CFS) - 6.26 +!##++#+##rr!!!##!!##rl+k++k#!*###k+#+k+*+*##rr###+##kkr####*##!#+#kkf#!##*# FLOW PROCESS FROM NODE 3.07 TO NODE 3.07 IS CODE = 81 ---------------------------------------------------------------------------- - -ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-« MAINLINE Tc(MIN) = 7.53 * 10 YEAR RAINFALL INTENSITY(INCH/HR) - 3.334 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A 0.98 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) - 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 0.98 SUBAREA RUNOFF(CFS) = 2.85 EFFECTIVE AREA(ACRES) = 3.13 AREA -AVERAGED Fm(INCH/HR) - 0.10 AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap = 0.10 a 1 ! 1 a i a I [ 1 a i a 1 t 1 f i t 1 t i f I i i E! t! t# i i i i t f Date: 12/19/08 File name: AREA-C.RES Page 5 TOTAL AREA(ACRES) = 3.13 PEAK FLOW RATE(CFS) = 9.12 rss+++x+++x+xrsr+ssss+++x++rsss++xxrrrrsssss+rs++xrrrxxrrs+rs++ssssxxrr+rrrr NODE 3.07_IS CODE _ n G+ FLOW PROCESS FROM NODE -81_ -__-_-_- _ --- ______--------------- 1 ___________________ -_----3.07-TO- LOW-=»» ADDITION OF SUBAREA TO MAINLINE PEAK FLOW -- --ADDITION ....= ......... MAINLINE =53________________ =� s 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.334 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A 0.10 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap - 0.10 SUBAREA AREA(ACRES) - 0.10 SUBAREA RUNOFF(CFS) = 0.29 EFFECTIVE AREA(ACRES) = 3.23 AREA -AVERAGED FM(INCH/HR) . 0.10 AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 3.23 PEAK FLOW RATE(CFS) = 9.41 +xxx+r+xr+xr+rr+s++++xx+ss+s+++++xx++s+rr++++++xxxxxx+rr+x+++rrrrsss+x++xxxx FLOW PROCESS FROM NODE 3.07 TO NODE 3.08 IS CODE = 31 ____________________________________________________________________________ »» COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 1122.50 DOWNSTREAM (FEET) 1120.10 FLOW LENGTH(FEET) = 10.00 MANNING'S N . 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.5 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 21.75 ESTIMATED PIPE DIAMETER(INCH) - 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) - 9.41 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 7.54 LONGEST FLOWPATH FROM NODE 3.01 TO NODE 3.08 - 605.50 FEET. xr+srsssrr+sx+xxrssrsr++xxxxxs+srsss+rx+r+xxxr+ssrrs++xxxrr+rrsrrss++s+++xrr PROCESS FROM NODE NODE 3.08 IS CODE = 81 ________________________ C Q v -_FLOW ------3.08-TO ________________ _-____ --ADDITION OF SUBAREA TO MAINLINE PEAK FLOW -- MAINLINE TC(MIN) = 7.54 s 10 YEAR RAINFALL INTENSITY(INCH/HR) . 3.332 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A 0.75 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) - 0.75 SUBAREA RUNOFF(CFS) 2.18 EFFECTIVE AREA(ACRES) = 3.98 AREA -AVERAGED FM(INCH/HR) = 0.10 AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap = 0.10 TOTAL AREA(ACRES) 3.98 PEAK FLOW RATE(CFS) = 11.59 ssr+xsr+rsrssr++xsrrrsss++rr++r+rrsrrxssrx+x+rrsrrsrsss+s++xxrsrrs+ssssssrrs FLOW PROCESS FROM NODE 3.08 TO NODE 3.09 IS CODE . 31 ____________________________________________________________________________ »» COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » »>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««< ELEVATION=DATA: UPSTREAM(FEET)== =1120 10==DOWNSTREAM(FEET) =1116.84= FLOW LENGTH(FEET) = 50.00 MANNING'S N . 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.6 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 13.96 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES 1 Date: 12/19/08 File name: AREA-C.RES PIPE-FLOW(CFS) 11.59 PIPE TRAVEL TIME(MIN.) - 0.06 TC(MIN.) = 7.59 LONGEST FLOWPATH FROM NODE 3.01 TO NODE 3.09 . 655.50 FEET. :__ .... _________...... ________... END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 3.98 TC(MIN.) = 7.59 EFFECTIVE AREA(ACRES) = 3.98 AREA -AVERAGED FM(INCH/HR)= 0.10 AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap . 0.10 PEAK FLOW RATE(CFS) = 11.59 END OF RATIONAL METHOD ANALYSIS 6 I 1! i a# a i t i a i i 1 t 1 1 1 t 1! 1 t i 11[ i i 1 t l a 1 1 i a i Date: 12/19/08 File name: AREA-D.RES Page 1 - ­USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) « « RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983-2004 Advanced Engineering Software (aes) Ver. 10.0 Release Date: 01/01/2004 License ID 1264 Analysis prepared by: RBF consulting 14725 Alton Parkway Irvine, California 92618 DESCRIPTION OF STUDY * Area D 10 -YR Hydrology * 2008-12-16 # * 10-105573 FILE NAME: G:\KAISER\AREA-D.DAT TIME/DATE OF STUDY: 09:07 12/17/2008 USER-SPECIFIED_ HYDROLOGY AND HYDRAULIC -MODEL _INFORMATION: = -===_________:___ --*TIME-OF-CONCENTRATION MODEL* -- USER SPECIFIED STORM EVENT(YEAR) 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 8.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE 0.90 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL - 10 -YEAR STORM 60 -MINUTE INTENSITY(INCH/HOUR) 0.950 100 -YEAR STORM 60 -MINUTE INTENSITY(INCH/HOUR) 1.400 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT . 10.00 1 -HOUR INTENSITY(INCH/HOUR) . 0.9595 SLOPE OF INTENSITY DURATION CURVE = 0.6000 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* -USER-DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 =20 0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0 0150= GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth . 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth)*(Velocity) Constraint - 6.0 (FT*FT/S) ID-2.____________________________________________________________________________ *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED FR6M***!#ypi?41►may++4?P.ILN++I`1RRl���lG�r NoV IUB ZOOg FLOW PROCESS FROM NODE 4.01 TO NODE 4.01 IS CODE = 7 ____________________________________________________________________________ » ».USER SPECIFIED HYDROLOGY INFORMATION AT NODE«« USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN.) = 41.10 RAINFALL INTENSITY(INCH/HR) = 1.20 EFFECTIVE AREA(ACRES) = 6.60 TOTAL AREA(ACRES) - 168.80 PEAK FLOW RATE(CFS) 16.50 AREA -AVERAGED FM(INCH/HR) = 0.48 AREA -AVERAGED Fp(INCH/HR) = 0.97 Date: 12/19/08 File name: AREA-D.RES Page 2 AREA -AVERAGED Ap = 0.49 NOTE: EFFECTIVE AREA IS USED AS THE TOTAL CONTRIBUTING AREA FOR ALL CONFLUENCE ANALYSES. FLOW PROCESS FROM NODE 4.01 TO NODE 4.02 IS CODE - 31 --COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA- - - ­USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) « « ELEVATION DATA: UPSTREAM(FEET) = 1129.77 DOWNSTREAM(FEET) 1128.45 FLOW LENGTH(FEET) = 169.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 17.3 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) - 6.80 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES 1 PIPE-FLOW(CFS) = 16.50 PIPE TRAVEL TIME(MIN.) . 0.41 TC(MIN.) = 41.51 LONGEST FLOWPATH FROM NODE 4.01 TO NODE 4.02 = 169.00 FEET. FLOW NODE 4.02 TO NODE 4.02 IS CODE = 81 ____________________________________ _____ _PROCESS _FROM _________________________________ » >.ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-.. MAINLINE Tc(MIN) = 41.51 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.197 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A 0.80 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 0.80 SUBAREA RUNOFF(CFS) 0.79 EFFECTIVE AREA(ACRES) 7.40 AREA -AVERAGED FM(INCH/HR) = 0.43 AREA -AVERAGED Fp(INCH/HR) = 0.97 AREA -AVERAGED Ap - 0.45 TOTAL AREA(ACRES) = 169.60 PEAK FLOW RATE(CFS) - 16.50 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE FLOW PROCESS FROM NODE 4.02 TO NODE 4.03 IS CODE = 31 ____________________________________________________________________________ » >>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA—— --USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW)- ­ LOW) «« _._==========.._.====______=__=_=====______________________________________= ... ELEVATION DATA: UPSTREAM(FEET) - 1128.45 DOWNSTREAM(FEET) = 1126.61 FLOW LENGTH(FEET) = 226.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 17.0 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 6.92 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 16.50 PIPE TRAVEL TIME(MIN.) = 0.54 Tc(MIN.) = 42.06 LONGEST FLOWPATH FROM NODE 4.01 TO NODE 4.03 = 395.00 FEET. 4.03 IS CODE 81 ID-2.____________________________________________________________________________ FLOW PROCESS FROM NODE 4.03 TO NODE = ».»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« < MAINLINE Tc(MIN) = 42.06 * 10 YEAR RAINFALL INTENSITY(INCH/HR) - 1.187 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Pp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A 3.36 0.98 0.10 32 ! 1 i i 11 1 i 1 i 1 a 1 11 1 11 f 1 ! 1 ! 1 11 1 If 1 1 [ 1 ! 1 11 1 1 1! 1 Date: 12/19/08 File name: AREA-D.RES SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98 SUBAREAAVERAGE PERVIOUS AREA FRACTION, Ap - 0.10 SUBAREA AREA(ACRES) . 3.36 SUBAREA RUNOFF(CFS) = 3.30 EFFECTIVE AREA(ACRES) = 10.76 AREA -AVERAGED Fm(INCH/HR) = 0.33 AREA -AVERAGED Fp(INCH/HR) . 0.97 AREA -AVERAGED Ap - 0.34 TOTAL AREA(ACRES) = 172.96 PEAK FLOW RATE(CFS) - 16.50 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE FLOW PROCESS FROM NODE 4.03 TO NODE 4.04 IS CODE . 31 --COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA«< c » » USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) «c<c ELEVATION DATA: UPSTREAM(FEET) - 1126.61 DOWNSTREAM(FEET) = 1125.90 FLOW LENGTH(FEET) = 114.00 MANNING'S N . 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 19.1 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 6.14 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 16.50 PIPE TRAVEL TIME(MIN.) = 0.31 Tc(MIN.) = 42.37 LONGEST FLOWPATH FROM NODE 4.01 TO NODE 4.04 = 509.00 FEET. FLOW PROCESS FROM NODE 4.04 TO NODE 4.04 IS CODE = 1 ________________________________________________________________ »» DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 42.37 RAINFALL INTENSITY(INCH/HR) - 1.18 AREA -AVERAGED Fm(INCH/HR) = 0.33 AREA -AVERAGED Fp(INCH/HR) = 0.97 ARKA-AVERAGED Ap = 0.34 EFFECTIVE STREAM AREA(ACRES) = 10.76 TOTAL STREAM AREA(ACRES) = 172.96 PEAK FLOW RATE(CFS) AT CONFLUENCE = 16.50 FLOW PROCESS FROM NODE 4.05 TO NODE 4.06 IS CODE . 21 1 llo ____________________________________________________________________________ - -RATIONAL METHOD INITIAL SUBAREA ANALYSIS-- ­USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA - INITIAL SUBAREA PLOW-LENGTH(FEET) = 238.00 ELEVATION DATA: UPSTREAM(FEET) = 1151.00 DOWNSTREAM(FEET) . 1148.62 TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 6.816 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.539 SUBAREA TC AND LOSS RATE DATA(AMC II).- DEVELOPMENT I):DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) COMMERCIAL A 0.52 0.98 0.10 32 6.82 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) . 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 1.61 TOTAL AREA(ACRES) 0.52 PEAK FLOW RATE(CFS) = 1.61 FLOW PROCESS FROM NODE 4.06 TO NODE 4.07 IS CODE - 31 ____________________________________________________________________________ »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA< <« Date: 12/19/08 File name: AREA-D.RES --USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) « c = ELEVATION DATA; UPSTREAM(FEET) = =1131 30 DOWNSTREAM(FEET) === 1128.65 FLOW LENGTH(PEET) - 52.00 MANNING'S N . 0.013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 4.3 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) - 7.83 ESTIMATED PIPE DIAMETER(INCH) - 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.61 PIPE TRAVEL TIME(MIN.) = 0.11 Tc(MIN.) . 6.93 LONGEST FLOWPATH FROM NODE 4.05 TO NODE 4.07 = 290.00 FEET. FLOW PROCESS FROM NODE 4.07 TO NODE 4.07 IS CODE . 81 r 4 ____________________________________________________________________________ �1 --ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«<c MAINLINE TC(MIN) . 6.93 * 10 YEAR RAINFALL INTENSITY(INCH/HR) . 3.505 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A 0.29 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap - 0.10 SUBAREA AREA(ACRES) = 0.29 SUBAREA RUNOFF(CFS) = 0.89 EFFECTIVE AREA(ACRES) = 0.81 AREA -AVERAGED Fm(INCH/HR) . 0.10 AREA -AVERAGED Fp(INCH/HR) = 0.97 AREA -AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 0.81 PEAK FLOW RATE(CFS) - 2.48 FLOW PROCESS FROM NODE 4.07 TO NODE 4.08 IS CODE - 31 >» »COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA«c »» >USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) « c ELEVATION DATA: UPSTREAM(FEET) = 1128.65 DOWNSTREAM(FEET) = 1126.00 FLOW LENGTH(FEET) = 267.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 7.7 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 4.69 ESTIMATED PIPE DIAMETER(INCH) . 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) - 2.48 PIPE TRAVEL TIME(MIN.) = 0.95 Tc(MIN.) . 7.88 LONGEST FLOWPATH FROM NODE 4.05 TO NODE 4.08 . 557.00 FEET. FLOW PROCESS FROM NODE 4.08 TO NODE 4.08 IS CODE - 81 ID ____________________________________________________________________________ »» ADDITION OF SUBAREA TO MAINLINE PEAK PLOW««< MAINLINE TC(MIN) - 7.88 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.244 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A 1.09 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 1.09 SUBAREA RUNOFF(CFS) = 3.09 EFFECTIVE AREA(ACRES) . 1.90 AREA -AVERAGED Fm(INCH/HR) = 0.10 AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap . 0.10 TOTAL AREA(ACRES) = 1.90 PEAK FLOW RATE(CFS) - 5.38 FLOW PROCESS FROM NODE 4.08 TO NODE 4.04 IS CODE - 31 t I t 1 t l ! i i 1! l f I i i E I t 1 1 1 ! 1 ! i t 1! i ! I t 1! 1 I! Date: 12/19/08 File name: AREA-D.RES ____________________________________________________________________________ »» COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA«« < --USING >USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) «« = ELEVATION DATA: UPSTREAM(FEET) = 1126.00 DOWNSTREAM (FEET) - 1125.90 FLOW LENGTH(FEET) = 29.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.6 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 3.76 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.38 PIPE TRAVEL TIME(MIN.) = 0.13 TC(MIN.) = 8.00 LONGEST FLOWPATH FROM NODE 4.05 TO NODE 4.04 = 586.00 FEET. FLOW PROCESS FROM NODE 4.04 TO NODE 4.04 IS CODE = 1 ____________________________________________________________________________ > »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE< «< --AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES-- TOTAL ALUES- <TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.00 RAINFALL INTENSITY(INCH/HR) = 3.21 AREA -AVERAGED FM(INCH/HR) = 0.10 AREA -AVERAGED Fp(INCH/HR) - 0.98 AREA -AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 1.90 TOTAL STREAM AREA(ACRES) - 1.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.38 ** CONFLUENCE DATA ** STREAM Q TC Intensity Fp(Fm) Ap As HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 16.50 42.37 1.182 0.97( 0.33) 0.34 10.8 4.01 2 5.38 8.00 3.213 0.98( 0.10) 0.10 1.9 4.05 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q TC Intensity Fp(Fm) Ap As HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 15.92 8.00 3.213 0.97( 0.22) 0.22 3.9 4.05 2 18.37 42.37 1.182 0.97( 0.29) 0.30 12.7 4.01 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 18.37 TC(MIN.) = 42.37 EFFECTIVE AREA(ACRES) = 12.66 AREA -AVERAGED Fm(INCH/HR) = 0.29 AREA -AVERAGED Fp(INCH/HR) = 0.97 AREA -AVERAGED Ap = 0.30 TOTAL AREA(ACRES) - 174.86 LONGEST FLOWPATH FROM NODE 4.05 TO NODE 4.04 = 586.00 FEET. FLOW PROCESS FROM NODE .4.04 TO NODE 4.09 IS CODE = 31 ____________________________________________________________________________ > »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA-« » >>>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW)-- ELEVATION LOW)«-ELEVATION DATA: UPSTREAM(FEET) = 1125.90 DOWNSTREAM (FEET) = 1122.20 FLOW LENGTH(FEET) = 316.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 16.1 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 8.20 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 18.37 5 Date: 12/19/08 File name: AREA-D.RES Page 6 PIPE TRAVEL TIME(MIN.) - 0.64 TC(MIN.) - 43.01 LONGEST FLOWPATH FROM NODE 4.05 TO NODE 4.09 = 902.00 FEET. FROM TO IS 81 p FLOW PROCESS _CODE _= -----4.09 ---- --------------- ______________»»ADDITION _NODE -----4.09 _NODE _______________________ ___- ­­ADDITIONLOW-« OF SUBAREA TO MAINLINE PEAK FLOW -- ____..:_____________________________________________________________________ ....... MAINLINE TC(MIN) = 43.01 * 10 YEAR RAINFALL INTENSITY(INCH/HR) - 1.172 SAREA LOSS RATE DATA(AMC II): UB DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A 0.21 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) . 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap - 0.10 SUBAREA AREA(ACRES) = 0.21 SUBAREA RUNOFF(CFS) = 0.20 EFFECTIVE AREA(ACRES) = 12.87 AREA -AVERAGED Fm(INCH/HR) = 0.29 AREA -AVERAGED Fp(INCH/HR) - 0.97 AREA -AVERAGED Ap = 0.30 TOTAL AREA(ACRES) = 175.07 PEAK FLOW RATE(CFS) 18.37 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE ID FLOW PROCESS FROM NODE 4.09 TO NODE 4.09 IS CODE = 81 ____________________________________________________________________________ »» ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< = MAINLINE'TC(MIN)i== 43.01 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.172 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A 0.58 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 0.58 SUBAREA RUNOFF(CFS) = 0.56 EFFECTIVE AREA(ACRES) = 13.45 AREA -AVERAGED Fm(INCH/HR) = 0.28 AREA -AVERAGED Fp(INCH/HR) - 0.97 AREA -AVERAGED Ap = 0.29 TOTAL AREA(ACRES) = 175.65 PEAK FLOW RATE(CFS) = 18.37 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE FLOW PROCESS FROM NODE 4.09 TO NODE 4.09 IS CODE = 81 ____________________________________________________________________________ »-ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE TC(MIN) = 43.01 * 10 YEAR RAINFALL INTENSITY(INCH/HR) - 1.172 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A 0.24 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) . 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) . 0.24 SUBAREA RUNOFF(CFS) 0.23 EFFECTIVE AREA(ACRES) = 13.69 AREA -AVERAGED Fm(INCH/HR) = 0.28 AREA -AVERAGED FP(INCH/HR) = 0.97 AREA -AVERAGED Ap . 0.29 TOTAL AREA(ACRES) = 175.89 PEAK FLOW RATE(CFS) = 18.37 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE FLOW PROCESS FROM NODE 4.09 TO NODE 4.10 IS CODE = 31 ________________________________________________________________ »> >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA-- 11 i I 11 t! a i! i A I a i k 1 1 i t i I i I i!! t I 1 I I I I! i I Date: 12/19/08 File name: AREA-D.RES Page 7 --USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) «<c< ELEVATION DATA: UPSTREAM(FEET) = 1122.20 DOWNSTREAM(FEET) 1120.39 FLOW LENGTH(FEET) = 207.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 18.1 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 7.24 ESTIMATED PIPE DIAMETER(INCH) - 24.00 NUMBER OF PIPES - 1 PIPE-FLOW(CFS) = 18.37 PIPE TRAVEL TIME(MIN.) - 0.48 Tc(MIN.) - 43.49 LONGEST FLOWPATH FROM NODE 4.05 TO NODE 4.10 = 1109.00 FEET. +x+++xss+ss++++ss+*+s++++x+xssss++ssxrxxss++s+xs+xxs ss s+srrrxxs s++srsrxss+++� FLOW PROCESS FROM NODE--- 4.10 IS CODE = 81 -TO -NODE ------4.10 - ________________________ --ADDITION OF SUBAREA TO MAINLINE PEAR FLOW««< MAINLINE Tc(MIN) . 43.49 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.164 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN , COMMERCIAL A 0.38 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 0.38 SUBAREA RUNOFF(CFS) = 0.36 EFFECTIVE AREA(ACRES) = 14.07 AREA -AVERAGED Fm(INCH/HR) = 0.27 AREA -AVERAGED Fp(INCH/HR) - 0.97 AREA -AVERAGED Ap = 0.28 TOTAL AREA(ACRES) - 176.27 PEAK FLOW RATE(CFS) = 18.37 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE ++++xx+s+++srxs++++++rx++++s+rxxss++++xxxx+s++++r+xx+ss++++rx+++++s++xxs+sss FLOW PROCESS FROM NODE 4.10 TO NODE 4.11 IS CODE = 31 ____________________________________________________________________________ »».COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< »».USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) «« ELEVATION DATA: UPSTREAM(FEET) = 1120.39 DOWNSTREAM(FEET) = 1119.69 FLOW LENGTH(FEET) = 74.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 17.5 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 7.50 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 18.37 PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) = 43.65 LONGEST FLOWPATH FROM NODE 4.05 TO NODE 4.11 - 1183.00 FEET. xsss++++x+ss++++rxssss++srxxxsss+s+rrtss+ss+++rxsxss++ss+r+xsss+++srt+xxs+ss FLOW FROM NODE 4.11 TO NODE 4.11 IS CODE 81 PROCESS . ____________________________________________________________________________ »».ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<< c ___________________ MAINLINE TC(MIN) - 43.65 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.161 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A 0.95 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap - 0.10 SUBAREA AREA(ACRES) = 0.95 SUBAREA RUNOFF(CFS) 0.91 EFFECTIVE AREA(ACRES) = 15.02 AREA -AVERAGED FM(I:NCH/HR) . 0.26 AREA -AVERAGED Fp(INCH/HR) - 0.97 AREA -AVERAGED Ap = 0.27 TOTAL AREA(ACRES) = 177.22 PEAK FLOW RATE(CFS) - 18.37 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE Date: 12/19/08 File name: AREA-D.RES ss++ss+rrrxxsssss++xxxxssss++xs+++++ss++s+xrs++++xs sss++rxx+++ss FLOW PROCESS FROM NODE 4.11 TO NODE 4.12 IS CODE = 31 --COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA«< > » .USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) «« ELEVATION DATA: UPSTREAM(FEET) = 1119.69 DOWNSTREAM(FEET) = 1118.90 FLOW LENGTH(FEET) = 97.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 18.7 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) - 7.01 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 18.37 PIPE TRAVEL TIME(MIN.) = 0.23 TC(MIN.) = 43.88 LONGEST FLOWPATH FROM NODE 4.05 TO NODE 4.12 = 1280.00 FEET. FLOW PROCESS FROM NODE 4.12 TO NODE 4.12 IS CODE = 81 ____________________________________________________________________________ > »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW- <<< MAINLINE TC(MIN) = 43.88 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.158 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A 1.17 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap . 0.10 SUBAREA AREA(ACRES) = 1.17 SUBAREA RUNOFF(CFS) = 1.12 EFFECTIVE AREA(ACRES) = 16.19 AREA -AVERAGED PM(INCH/HR) = 0.25 AREA -AVERAGED Fp(INCH/HR) = 0.97 AREA -AVERAGED Ap = 0.26 TOTAL AREA(ACRES) = 178.39 PEAK FLOW RATE(CFS) = 18.37 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE s+s+xxsxss+ss++rrss+sss+rrrsss+++++xssss+++rx+xxx+++rrxxxss++r+r FLOW PROCESS FROM NODE 4.12 TO NODE 4.13 IS CODE = 31 --COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA-- - ­USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW -- ELEVATION DATA: UPSTREAM(FEET) = 1118.90 DOWNSTREAM(FEET) = 1118.46 FLOW LENGTH(FEET) . 47.00 MANNING'S N - 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 17.5 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 7.46 ESTIMATED PIPE DIAMETER(INCH) . 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 18.37 PIPE TRAVEL TIME(MIN.) = 0.10 TC(MIN.) 43.99 LONGEST FLOWPATH FROM NODE 4.05 TO NODE 4.13 = 1327.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 178.39 TC(MIN.) 43.99 EFFECTIVE AREA(ACRES) = 16.19 AREA -AVERAGED Fm(INCH/HR). 0.25 AREA -AVERAGED Fp(INCH/HR) - 0.97 AREA -AVERAGED Ap = 0.26 PEAK FLOW RATE(CFS) 18.37 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 18.30 9.68 2.866 0.97( 0.16) 0.17 7.5 4.05 2 18.37 43.99 1.156 0.97( 0.25) 0.26 16.2 4.01 END OF RATIONAL METHOD ANALYSIS I I a I I a 1 a 1 t I f 1 a I a i I I 11 11 11 I I t 1 11 11 I! I i Date: 12/19/08 File name: AREA-E.RES Page 1 RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983-2004 Advanced Engineering Software (aes) Ver. 10.0 Release Date: 01/01/2004 License ID 1264 Analysis prepared by: RHP Consulting 14725 Alton Parkway Irvine, California 92618 DESCRIPTION OF STUDY * Area E 10 -YR Hydrology * 2008-12-15 * 10-105573 FILE NAME: G:\KAISER\AREA-E.DAT TIME/DATE OF STUDY: 09:54 12/19/2008 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TIME-OF-CONCENTRATION MODEL* -- USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE (LOG (I; IN/HR) vs. LOG(TC;MIN)) = 0.6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) = 0.9500 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* *USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0,167 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) -(velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED FLOW PROCESS FROM NODE 5.01 TO NODE 5.02 IS CODE = 21 E �' ____________________________________________________________________________ »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS«« >>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW-LENGTH(FEET) = 163.00 ELEVATION DATA: UPSTREAM(FEET) = 1140.00 DOWNSTREAM(FEET) = 1136.40 TC - K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 5.000 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 4.219 Date: 12/19/08 File name: AREA-E.RES Page 2 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp AP SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) COMMERCIAL A 0.16 0.98 0.10 32 5.00 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) . 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, AP = 0.10 SUBAREA RUNOFF(CFS) = 0.59 TOTAL AREA(ACRES) = 0.16 PEAK FLOW RATE(CFS) = 0.59 FLOW PROCESS FROM NODE 5.02 TO NODE 5.03 IS CODE = 61 iL ____________________________________________________________________________ . »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED)< « < UPSTREAM= ELEVATION(FEET) . 1136.40= DOWNSTREAM =ELEVATION(FEET)===1133 50 STREET LENGTH(FEET) . 220.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) - 26.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) . 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Mannings FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.31 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.23 HALFSTREET FLOOD WIDTH(FEET) = 3.36 AVERAGE FLOW VELOCITY(FEET/SEC.) 2.16 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) - 0.49 STREET FLOW TRAVEL TIME(MIN.) - 1.70 Tc(MIN.) = 6.70 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.540 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp AP SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A 0.46 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, AP - 0.10 SUBAREA AREA(ACRES) = 0.46 SUBAREA RUNOFF(CFS) = 1.43 EFFECTIVE AREA(ACRES) . 0.62 AREA -AVERAGED Fm(INCH/HR) = 0.10 AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED AP - 0.10 TOTAL AREA(ACRES) = 0.62 PEAK FLOW RATE(CFS) = 1.92 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) . 0.26 HALFSTREET FLOOD WIDTH(FEET) = 5.04 FLOW VELOCITY(FEET/SEC.) . 2.17 DEPTH*VELOCITY(FT*FT/SEC.) = 0.56 LONGEST FLOWPATH FROM NODE 5.01 TO NODE 5.03 = 383.00 FEET. PLOW PROCESS FROM NODE 5.03 TO NODE 5.04 IS CODE - 61 ------ _------- _---- _---- ______---- ____---- ______---- ____-------------------- --COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED)< «< ...................... =======.=== UPSTREAMELEVATION(FEET)= 1133 50DOWNSTREAMELEVATION(FEET) =1132 40 STREET LENGTH(FEET) = 182.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 26.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 11 ! I t! a 1 ! 1 a I 1 1 a 1 ! 1 11 t! t l t i i 1 i t E 1 t l t l i t Date: 12/19/08 File name: AREA-E.RES OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) 0.020 Mannings FRICTION FACTOR for Streetflow Section (curb- to- curb) = 0.0150 Mannings FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) - 2.52 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) a 0.31 HALFSTREET FLOOD WIDTH(FEET) . 7.67 AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.62 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.51 STREET FLOW TRAVEL TIME(MIN.) = 1.81 TC(MIN.) = 8.57 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.054 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A 0.45 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) ¢ 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 0.45 SUBAREA RUNOFF(CFS) = 1.20 EFFECTIVE AREA(ACRES) = 1.07 AREA -AVERAGED Fm(INCH/HR) - 0.10 AREA -AVERAGED Fp(INCH/HR) - 0.98 AREA -AVERAGED Ap a 0.10 TOTAL AREA(ACRES) = 1.07 PEAK FLOW RATE(CFS) - 2.85 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) = 8.16 FLOW VELOCITY(FEET/SEC.) = 1.66 DEPTH*VELOCITY(FT*FT/SEC.) = 0.54 LONGEST FLOWPATH FROM NODE 5.01 TO NODE 5.04 = 565.00 FEET. FLOWPROCESS - - FROMNODE _---5.04-TO-NODE_-----5.04-IS CODE ¢ 81 _- - _____________________ ..».ADDITION OF SUBAREA TO MAINLINE PEAK FLOW.c« MAINLINE TC(MIN) = 8.57 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.054 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A 0.30 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) - 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) - 0.30 SUBAREA RUNOFF(CFS) ¢ 0.80 EFFECTIVE AREA(ACRES) = 1.37 AREA -AVERAGED Fm(INCH/HR) a 0.10 AREA -AVERAGED Fp(INCH/HR) = 0.97 AREA -AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 1.37 PEAK FLOW RATE(CFS) - 3.65 FLOW PROCESS FROM NODE 5.04 TO NODE 5.05 IS CODE = 31 --COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA«« < .....USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««c ELEVATION DATA: UPSTREAM(FEET) . 1129.40 DOWNSTREAM (FEET) = 1128.90 FLOW LENGTH(FEET) = 48.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.4 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 5.28 ESTIMATED PIPE DIAMETER(INCH) - 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.65 PIPE TRAVEL TIME(MIN.) = 0.15 Tc(MIN.) . 8.72 LONGEST FLOWPATH FROM NODE 5.01 TO NODE 5.05 = 613.00 FEET. Date: 12/19/08 File name: AREA-E.RES Page 4 #Y**fff##YYYrt#*#fff###trt#iff#*f#iii#*1fYtt*Yt**tf #*#ff#*tf##t### FLOW PROCESS FROM NODE 5.05 TO NODE 5.06 IS CODE = 31 --COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA-- - ­USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) —— = ELEVATION DATA: UPSTREAM(FEET)¢- 1128.90= DOWNSTREAM(FEET) =¢=1124 58¢. FLOW LENGTH(FEET) - 432.00 MANNING'S N ¢ 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.5 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 5.21 ESTIMATED PIPE DIAMETER(INCH) - 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.65 PIPE TRAVEL TIME(MIN.) = 1.38 TC(MIN.) - 10.10 LONGEST FLOWPATH FROM NODE 5.01 TO NODE 5.06 . 1045.00 FEET. ****#####4Yt***ft#Ytt**###f#Y#*1ffYrt#*###Yrtrt**f4f###*****##**rt**1f####*rtk### FLOW PROCESSFROMNODE5.06TO-NODE -----5.06 IS CODE = 81 V ---------------------- - - _- --- - »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«c« MAINLINE Tc(MIN) = 10.10 * 10 YEAR RAINFALL INTENSITY(INCH/HR) . 2.767 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A 0.76 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LASS RATE, Fp(INCH/HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap a 0.10 SUBAREA AREA(ACRES) = 0.76 SUBAREA RUNOFF(CFS) = 1.83 EFFECTIVE AREA(ACRES) = 2.13 AREA -AVERAGED Fm(INCH/HR) = 0.10 AREA -AVERAGED Fp(INCH/HR) = 0.97 AREA -AVERAGED Ap = 0.10 TOTAL AREA(ACRES) . 2.13 PEAK FLOW RATE(CFS) a 5.12 # FLOW PROCESS FROM NODE 5.06 TO NODE 5.07 IS CODE x 31 --.COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA- >. >USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««< _________¢=____aa==______=x=______.___=_._.DO'W'N'____=__=__ax=__.D_____a=_ ELEVATION DATA: UPSTREAM (FEET) . 1124_ .58 DOWNSTREAM (FEET) = 1122.00 FLOW LENGTH(FEET) = 254.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.1 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) a 5.71 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.12 PIPE TRAVEL TIME(MIN.) = 0.74 Tc(MIN.) = 10.85 LONGEST FLOWPATH FROM NODE 5.01 TO NODE 5.07 = 1299.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) . 2.13 TC(MIN.) = 10.85 EFFECTIVE AREA(ACRES) = 2.13 AREA -AVERAGED Fm(INCH/HR)= 0.10 AREA -AVERAGED Fp(INCH/HR) = 0.97 AREA -AVERAGED Ap = 0.10 PEAK FLOW RATE(CFS) a 5.12 END OF RATIONAL METHOD ANALYSIS I l f 1 a 1 i 1 t I ! i ! 1 a l a i a I r 1 I t 1 a 1 a! f! a i 1 1 a! Date: 12/19/08 File name: AREA-F.RES Page 1 SUBAREA TC AND LOSS RATE DATA(AMC II): RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983-2004 Advanced Engineering Software (aes) Ver. 10.0 Release Date: 01/01/2004 License ID 1264 Analysis prepared by: RBF Consulting 14725 Alton Parkway Irvine, California 92618 2 DESCRIPTION OF STUDY * AreaF 10 -YR Hydrology * 2008-12-15 * 10-105573 FILE NAME: G:\KAISER\AREA-F.DAT TIME/DATE OF STUDY: 08:35 12/19/2008 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TIME-OF-CONCENTRATION MODEL* USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) 18.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE - 0.90 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE (LOG (I; IN/HR) vs. LOG(Tc;MIN)) = 0.6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) . 0.9500 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* *USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 =20 0 = 0.018/0.018/0.020 =0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative FLOW -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED FLOW PROCESS FROM NODE 6.01 TO NODE 6.02 IS CODE . 21 ---------------------------------------------------------------------------- --RATIONAL METHOD INITIAL SUBAREA ANALYSIS. «< >>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW-LENGTH(FEET) = 150.00 ELEVATION DATA: UPSTREAM(FEET) . 1130.90 DOWNSTREAM(FEET) = 1129.41 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 5.674 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.911 Date: 12/19/08 File name: AREA-F.RES Page 2 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) COMMERCIAL A 0.44 0.98 0.10 32 5.67 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) . 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) 1.51 TOTAL AREA(ACRES) 0.44 PEAK FLOW RATE(CFS) = 1.51 FLOW PROCESS FROM NODE NODE --- -6.03-IS CODE . 51 2 ------6.02-TO- ___________________-________-______-____ »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW. « < » >>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « « ELEVATION DATA: UPSTREAM(FEET) = 1129.00 DOWNSTREAM(FEET) = 1125.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 240.00 CHANNEL SLOPE . 0.0167 CHANNEL BASE(FEET) = 27.00 •Z" FACTOR = 1.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 0.50 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.250 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A 1.10 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.07 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) . 1.95 AVERAGE FLOW DEPTH(FEET) . 0.06 TRAVEL TIME(MIN.) = 2.05 Tc(MIN.) = 7.72 SUBAREA AREA(ACRES) = 1.10 SUBAREA RUNOFF(CFS) - 3.12 EFFECTIVE AREA(ACRES) 1.54 AREA -AVERAGED Fm(INCH/HR) = 0.10 AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 1.54 PEAK FLOW RATE(CFS) . 4.37 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.07 FLOW VELOCITY(FEET/SEC.) . 2.20 LONGEST FLOWPATH FROM NODE 6.01 TO NODE 6.03 = 390.00 FEET. FLOW PROCESS FROM NODE 6.03 TO NODE 6.04 IS CODE - 31 ____________________________________________________________________________ » -COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) <« ELEVATION DATA: UPSTREAM(FEET) 1125.00 DOWNSTREAM(FEET) = 1124.00 FLOW LENGTH(FEET) - 37.00 MANNING'S N . 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.3 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 7.85 ESTIMATED PIPE DIAMETER(INCH) - 18.00 NUMBER OF PIPES 1 PIPE-FLOW(CFS) = 4.37 PIPE TRAVEL TIME(MIN.) . 0.08 Tc(MIN.) = 7.80 LONGEST FLOWPATH FROM NODE 6.01 TO NODE 6.04 427.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 1.54 TC(MIN.) = 7.80 EFFECTIVE AREA(ACRES) = 1.54 AREA -AVERAGED FM(INCH/HR)= 0.10 AREA -AVERAGED Fp(INCH/HR) . 0.98 AREA -AVERAGED Ap = 0.10 PEAK FLOW RATE(CFS) = 4.37 END OF RATIONAL METHOD ANALYSIS [ i a i 1 i t i t i [ i 1 i a i f i f l 1! i i [ i t i i 1 i 1 i 1 1! [ 1 Date: 12/19/08 File name: AREA-G.RES Page 1 ++rxrrrr+rrx+rrrr++rr+**rrr+rrrr++r+*xr++r+rr+*rr+rr+++rrrrr rrrr+rrrr++rxx+r RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983-2004 Advanced Engineering Software (aes) Ver. 10.0 Release Date: 01/01/2004 License ID 1264 Analysis prepared by: RBF Consulting 14725 Alton Parkway Irvine, California 92618 rrxr++r+r+r+xxxrrrr+xx+r++ DESCRIPTION OF STUDY *+x+rr++xrr+*rx+++rrr+rrrr * Area G 10 -YR Hydro * 2008-12-15 * 10-105573 ' rxr+r++xrrrrr+rxr++xr+++rrr+rrrr+++rrx+rrrr+rrr+++xrr+rrxx+++r+rxxrr++rx++ FILE NAME: G:\KAISER\AREA-G.DAT TIME/DATE OF STUDY: 08:41 12/19/2008 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --'TIME-OF-CONCENTRATION MODEL* -- USER SPECIFIED STORM EVENT(YEAR) 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE (LOG (I; IN/HR) VS. LOG(TC;MIN)) = 0.6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) = 0.9500 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* *USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT -/PABX- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30 0 =20 0 0 018/09018/09020 =0 67 2900 0 0313 09167 0 0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED +xr++xr+x+rr+*rx+rrrrrxrr+rx++rr+r+rx+rrrrr+rxrrrr+rrr+rr+xrr++r+rx*rrrrrxxr FLOW PROCESS FROM NODE- ---7.01 TO NODE---- -7.02 IS CODE = 21 ' _____ ____---- ____-- ­­RATIONAL _»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA— INITIAL SUBAREA FLOW-LENGTH(FEET) < 141.00 ELEVATION DATA: UPSTREAM(FEET) = 1129.30 DOWNSTREAM(FEET) = 1128.00 TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.618 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.934 Date: 12/19/08 File name: AREA-G.RES Page 2 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) COMMERCIAL A 0.62 0.98 0.10 32 5.62 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 2.14 TOTAL AREA(ACRES) = 0.62 PEAK FLOW RATE(CFS) = 2.14 rr++rxxxrrrrrrxr++rrrrrxrrrrrxxxr+rrrxxr+rrrr++rrrr+rrr+rrr+rrrr+rrrrr++++++ FLOW PROCESS FROM NODE 7.02 TO NODE----- 7.03 IS CODE = 51 -----------------------" _____--- ------------------"-� --COMPUTE TRAPEZOIDAL CHANNEL FLOW-.. » >>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)c< ELEVATION DATA: UPSTREAM(FEET) = 1128.00 DOWNSTREAM(FEET) = 1125.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 240.00 CHANNEL SLOPE = 0.0125 CHANNEL BASE(FEET) - 27.00 "Z" FACTOR = 1.000 MANNING'S FACTOR < 0.015 MAXIMUM DEPTH(FEET) - 0.50 * 10 YEAR RAINFALL INTENSITY(INCH/HR) - 3.292 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A 1.58 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) - 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap - 0.10 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) < 4.41 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.06 AVERAGE FLOW DEPTH(FEET) = 0.08 TRAVEL TIME(MIN.) - 1.94 Tc(MIN.) = 7.56 SUBAREA AREA(ACRES) = 1.58 SUBAREA RUNOFF(CFS) = 4.54 EFFECTIVE AREA(ACRES) = 2.20 AREA -AVERAGED Fm(INCH/HR) = 0.10 AREA -AVERAGED Fp(INCH/HR) = 0.97 AREA -AVERAGED Ap = 0.10 TOTAL AREA(ACRES) - 2.20 PEAK FLOW RATE(CFS) = 6.33 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.10 FLOW VELOCITY(FEET/SEC.) - 2.42 LONGEST FLOWPATH FROM NODE 7.01 TO NODE 7.03 = 381.00 FEET. ++rrr++xxr rrrr+rrrr++*xrx+rrrr+x+*rrrxrrrrrr+xrrrr+r+rrrr++xx+rrr++xxxrrrrrr FLOW PROCESS FROM NODE 7.03 TO NODE 7.04 IS CODE = 31 ____________________________________________________________________________ > »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA- < » >>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW)c< ELEVATION DATA: UPSTREAM(FEET) = 1122.50 DOWNSTREAM(FEET) = 1122.00 FLOW LENGTH(FEET) = 45.00 MANNING'S N < 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.1 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 6.22 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) < 6.33 PIPE TRAVEL TIME(MIN.) - 0.12 Tc(MIN.) = 7.68 LONGEST FLOWPATH FROM NODE 7.01 TO NODE 7.04 = 426.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 2.20 TC(MIN.) 7.68 EFFECTIVE AREA(ACRES) 2.20 AREA -AVERAGED Fm(INCH/HR)= 0.10 AREA -AVERAGED Fp(INCH/HR) = 0.97 AREA -AVERAGED Ap = 0.10 PEAK FLOW RATE(CFS) 6.33 END OF RATIONAL METHOD ANALYSIS A i a i a 1 a a 1 t 1 t 1 a 1 ! 1 I i Bill 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Date: 12/19/08 File name: AREA-H.RES Page 1 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 6.276 RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983-2004 Advanced Engineering Software (aea) Ver. 10.0 Release Date: 01/01/2004 License ID 1264 Analysis prepared by: RBF Consulting 14725 Alton Parkway Irvine, California 92618 DESCRIPTION OF STUDY **++xxxx++#+xx##+++++++xx# * Area H 10 -YR Hydrology * 2008-12-16 * 10-105573 FILE NAME: G:\KAISER\AREA-H.DAT TIME/DATE OF STUDY: 08:43 12/19/2008 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TIME-OF-CONCENTRATION MODEL* -- USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) . 8.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10 -YEAR STORM 60 -MINUTE INTENSITY(INCH/HOUR) = 0.950 100 -YEAR STORM 60 -MINUTE INTENSITY(INCH/HOUR) 1.400 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 10.00 1 -HOUR INTENSITY(INCH/HOUR) = 0.9595 SLOPE OF INTENSITY DURATION CURVE = 0.6000 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* *USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) ==1 30.0 20.0 0.018/0 018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1,Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED +++xxxx+++x!#!ltxxxlt++++xxxxx+!#+x+x+#+++++xxxx++++xxxxx+++++xt*+##++++xxx* FLOW PROCESS FROM NODE 8.01 TO NODE 8.02 IS CODE - 21 ____________________________________________________________________________ » —RATIONAL METHOD INITIAL SUBAREA ANALYSIS-- ­USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW-LENGTH(FEET) - 219.00 ELEVATION DATA: UPSTREAM(FEET) = 1137.80 DOWNSTREAM(FEET) = 1135.00 TC = K*((LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 Date: 12/19/08 File name: AREA-H.RES Page 2 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 6.276 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.718 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) COMMERCIAL A 1.06 0.98 0.10 32 6.28 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 3.45 TOTAL AREA(ACRES) = 1.06 PEAK FLOW RATE(CFS) - 3.45 FLOW PROCESS FROM NODE 8.02 TO NODE 8.03 IS CODE - 51 ____________________________________________________________________________ » >>COMPUTE TRAPEZOIDAL CHANNEL FLOWc < » » TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)—... ELEVATION DATA: UPSTREAM(FEET) = 1135.00 DOWNSTREAM(FEET) = 1129.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 87.00 CHANNEL SLOPE = 0.0690 CHANNELBASE(FEET) = 27.00 "Z• FACTOR = 1.000 MANNING .S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 0.50 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.574 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A 0.31 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) - 3.94 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.39 AVERAGE FLOW DEPTH(FEET) = 0.04 TRAVEL TIME(MIN.) = 0.43 TC(MIN.) - 6.70 SUBAREA AREA(ACRES) = 0.31 SUBAREA RUNOFF(CFS) = 0.97 EFFECTIVE AREA(ACRES) 1.37 AREA -AVERAGED Pm(INCH/HR) = 0.10 AREA -AVERAGED Fp(INCH/HR) - 0.98 AREA -AVERAGED Ap - 0.10 TOTAL AREA(ACRES) - 1.37 PEAK FLOW RATE(CFS) = 4.29 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) - 0.05 FLOW VELOCITY(FEET/SEC.) = 3.26 LONGEST FLOWPATH FROM NODE 8.01 TO NODE 8.03 = 306.00 FEET. FLOW PROCESS FROM NODE 8.03 TO NODE 8.04 IS CODE = 31 ---------------------------------------------------------------------------- » >>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREAc. « »» USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) « — ELEVATION DATA: UPSTREAM(FEET) = 1126.00 DOWNSTREAM(FEET) - 1124.24 FLOW LENGTH(FEET) = 176.00 MANNING'S N - 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.2 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) - 5.41 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES - 1 PIPE-FLOW(CFS) - 4.29 PIPE TRAVEL TIME(MIN.) - 0.54 TC(MIN.) 7.25 LONGEST FLOWPATH FROM NODE 8.01 TO NODE 8.04 - 482.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) 1.37 TC(MIN.) = 7.25 EFFECTIVE AREA(ACRES) = 1.37 AREA -AVERAGED Fm(INCH/HR)= 0.10 AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap = 0.10 PEAK FLOW RATE(CFS) 4.29 END OF RATIONAL METHOD ANALYSIS C' C r -I r E u Cl 7 B. Appendix B — Hydraulics Calculations y H:%Pdata%10105573WdmiovepoAaW-drola9YXFMC Ormite HYdrdogy.doe X HEADING LINE NO 1 IS - ZEADING LINE NO 2 IS - r °"BEADING LINE NO 3 IS - so no r m sr err d 9 a 4 F 0 5 1 5 P WATER SURFACE PROFILE - TITLE CARD LISTING KAISER MEDICAL CENTER 10-105573 LINE B 2008-12-17 No ""DATE: 12/19/2008 TIME: 11: 5 4. dw F0515P WATER SURFACE PROFILE - CHANNEL DEFINITI *■CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(1) Y(2 CODE NO TYPE PIERS WIDTH DIAMETER WIDTH DROP CD 24 4 2.00 CD 18 4 1.50 CD 12 4 1.00 CD 8 4 0.67 wrr F W rr E am No rrr on do 00 rrr r F 0 5 1 5 P WATER SURFACE PROFILE — ELEMENT CARD LISTING rri ELEMENT NO 1 IS A SYSTEM OUTLET U/S DATA STATION INVERT SECT 43.59 1116.00 24 r am ELEMENT NO 2 IS A REACH U/S DATA STATION INVERT SECT N +m 96.00 1116.34 24 0.013 mm ELEMENT NO 3 IS A TRANSITION irr U/S DATA STATION INVERT SECT N 100.00 1116.40 24 0.013 ELEMENT NO 4 IS A REACH r U/S DATA STATION INVERT SECT N 289.02 1118.54 24 0.013 a�. r ELEMENT NO 5 IS A TRANSITION U/S DATA STATION INVERT SECT N 293.02 1118.58 24 0.013 rr� ELEMENT NO 6 IS A REACH .. U/S DATA STATION INVERT SECT N 577.88 1121.40 24 0.013 r ELEMENT NO 7 IS A JUNCTION U/S DATA STATION INVERT SECT LAT -1 LAT -2 N Q3 Prr 581.88 1121.42 24 18 0 0.013 5 ELEMENT NO 8 IS A REACH U/S DATA STATION INVERT SECT N r 697.42 1123.00 24 0.013 �r ELEMENT NO 9 IS A JUNCTION r U/S DATA STATION INVERT SECT LAT -1 LAT -2 N Q3 701.42 1123.20 24 12 0 0.013 3 am ELEMENT NO 10 IS A REACH U/S DATA STATION INVERT SECT N .s 853.57 1124.72 24 0.013 r ELEMENT NO 11 IS A JUNCTION * * * * U/S DATA STATION INVERT SECT LAT -1 LAT -2 N Q3 854.57 1124.73 24 8 0 0.013 1 r err wu +rr ' r rrr rrt F 0 5 1 5 P ELEMENT NO 14 IS A REACH U/S DATA STATION INVERT SECT N 974.62 1127.00 12 0.013 mWARNING - ADJACENT SECTIONS ARE NOT IDENTICAL - SEE SECTION NUMBERS AND CHANNEL em ELEMENT NO 15 IS A SYSTEM HEADWORKS an U/S DATA STATION INVERT SECT 974.62 1127.00 24 =NO EDIT ERRORS ENCOUNTERED -COMPUTATION IS NOW BEGINNING ** WARNING NO. 2 ** - WATER SURFACE ELEVATION GIVEN IS LESS THAN OR EQUALS INVER �w rr► rrr 0 ■w to m to w do A w wr Mw WATER SURFACE PROFILE - ELEMENT CARD LISTING ELEMENT NO 12 IS A REACH *�• U/S DATA STATION INVERT SECT N 934.27 1125.53 24 0.013 NO 13 IS A TRANSITION ,ELEMENT U/S DATA STATION INVERT SECT N 935.27 1125.63 12 0.013 ELEMENT NO 14 IS A REACH U/S DATA STATION INVERT SECT N 974.62 1127.00 12 0.013 mWARNING - ADJACENT SECTIONS ARE NOT IDENTICAL - SEE SECTION NUMBERS AND CHANNEL em ELEMENT NO 15 IS A SYSTEM HEADWORKS an U/S DATA STATION INVERT SECT 974.62 1127.00 24 =NO EDIT ERRORS ENCOUNTERED -COMPUTATION IS NOW BEGINNING ** WARNING NO. 2 ** - WATER SURFACE ELEVATION GIVEN IS LESS THAN OR EQUALS INVER �w rr► rrr 0 ■w to m to w do A w wr Mw .m "'LICENSEE: R.B.F. & ASSOC. - SAN DIEGO F0515P WATER SURFACE PROFILE LISTING KAISER MEDICAL CENTER 10-105573 LINE B 2008-12-17 STATION INVERT DEPTH W.S. Q VEL VEL ENERGY SUPE ELEV OF FLOW ELEV HEAD GRD.EL. ELEV .� L/ELEM SO SF AVE HF 43.59 1116.00 2.770 1118.770 16.0 5.09 0.403 1119.173 0.0 52.41 0.00649 .005002 0.26 96.00 1116.34 2.692 1119.032 16.0 5.09 0.403 1119.435 0.0 TRANS STR 0.01500 .005002 0.02 m 100.00 1116.40 2.652 1119.052 16.0 5.09 0.403 1119.455 0.0 103.20 0.01132 .004955 0.51 203.20 1117.57 2.000 1119.568 16.0 5.09 0.403 1119.971 0.0 21.64 0.01132 .004641 0.10 ror 224.84 1117.81 1.814 1119.627 16.0 5.34 0.443 1120.070 0.0 �r 8.10 0.01132 .004531 0.04 232.94 1117.90 1.706 1119.611 16.0 5.60 0.488 1120.099 0.0 �r HYDRAULIC JUMP MR 232.94 1117.90 1.194 1119.099 16.0 8.18 1.039 1120.138 0.0 dr 56.08 0.01132 .010608 0.59 289.02 1118.54 1.243 1119.783 16.0 7.80 0.944 1120.727 0.0 ■.TRANS STR 0.01000 .009964 0.04 293.02 1118.58 1.243 1119.823 16.0 7.80 0.944 1120.767 0.0 .. 165.13 0.00990 .009965 1.65 arr 458.15 1120.21 1.243 1121.458 16.0 7.80 0.944 1122.402 0.0 81.61 0.00990 .009680 0.79 am 539.76 1121.02 1.268 1122.291 16.0 7.62 0.901 1123.192 0.0 '� 27.95 0.00990 .008866 0.25 OR *1,ICENSEE: R.B.F. & ASSOC. - SAN DIEGO F0515P WATER SURFACE PROFILE LISTING KAISER MEDICAL CENTER 10-105573 LINE B 2008-12-17 STATION INVERT DEPTH W.S. Q VEL VEL ENERGY SUPE ELEV OF FLOW ELEV HEAD GRD.EL. ELEV wAL/ELEM SO SF AVE HF 567.71 1121.30 1.321 1122.620 16.0 7.26 0.819 1123.439 0.0 wr 8.15 0.00990 .007881 0.06 575.86 1121.38 1.379 1122.759 16.0 6.92 0.744 1123.503 0.0 2.02 0.00990 .007020 0.01 ew 577.88 1121.40 1.442 1122.842 16.0 6.60 0.676 1123.518 0.0 m"JUNCT STR 0.00500 .004448 0.02 581.88 1121.42 2.203 1123.623 10.8 3.44 0.183 1123.806 0.0 ww 17.85 0.01367 .002257 0.04 .r 599.73 1121.66 2.000 1123.664 10.8 3.44 0.183 1123.847 0.0 wA trr 14.40 0.01367 .002115 0.03 w, 614.13 1121.86 1.814 1123.675 10.8 3.61 0.202 1123.877 0.0 7.57 0.01367 .002063 0.02 �. 621.70 1121.96 1.706 1123.670 10.8 3.78 0.222 1123.892 0.0 r 5.75 0.01367 .002233 0.01 w. r 627.45 1122.04 1.618 1123.661 10.8 3.97 0.244 1123.905 0.0 4w 4.77 0.01367 .002458 0.01 632.22 1122.11 1.540 1123.648 10.8 4.16 0.269 1123.917 0.0 .w 1.85 0.01367 .002636 0.00 634.07 1122.13 1.512 1123.645 10.8 4.24 0.279 1123.924 0.0 ,WHYDRAULIC JUMP 634.07 1122.13 0.903 1123.036 10.8 7.84 0.955 1123.991 0.0 30.84 0.01367 .012191 0.38 ww rrr ww m LICENSEE: R.B.F. & ASSOC. - SAN DIEGO F0515P WATER SURFACE PROFILE LISTING No KAISER MEDICAL CENTER 10-105573 LINE B 2008-12-17 STATION INVERT DEPTH W.S. Q VEL VEL ENERGY SUPE W ELEV OF FLOW ELEV HEAD GRD.EL. ELEV �.L/ELEM SO SF AVE HF 664.91 1122.56 0.936 1123.491 10.8 7.47 0.867 1124.358 0.0 14.50 0.01367 .010717 0.16 �. 679.41 1122.75 0.972 1123.726 10.8 7.13 0.789 1124.515 0.0 8.19 0.01367 .009437 0.08 687.60 1122.87 1.009 1123.875 10.8 6.80 0.717 1124.592 0.0 4.89 0.01367 .008313 0.04. 692.49 1122.93 1.048 1123.981 10.8 6.48 0.652 1124.633 0.0 A. 3.03 0.01367 .007326 0.02 695.52 1122.97 1.088 1124.062 10.8 6.18 0.593 1124.655 0.0 wr 1.51 0.01367 .006463 0.01 �+ 697.03 1122.99 1.131 1124.126 10.8 5.89 0.539 1124.665 0.0 0.39 0.01367 .005704 0.00 .� 697.42 1123.00 1.178 1124.178 10.8 5.61 0.489 1124.667 0.0 JUNCT STR 0.05000 .003360 0.01 701.42 1123.20 1.510 1124.710 7.7 3.03 0.142 1124.852 0.0 �. 6.25 0.00999 .001452 0.01 707.67 1123.26 1.442 1124.704 7.7 3.17 0.156 1124.860 0.0 5.54 0.00999 .001623 0.01 713.21 1123.32 1.380 1124.698 7.7 3.33 0.172 1124.870 0.0 5.00 0.00999 .001821 0.01 ,r 718.21 1123.37 1.322 1124.690 7.7 3.49 0.189 1124.879 0.0 m w 4.29 0.00999 .002048 0.01 m WtICENSEE: R.B.F. & ASSOC. - SAN DIEGO F0515P WATER SURFACE PROFILE LISTING KAISER MEDICAL CENTER 10-105573 LINE B 2008-12-17 STATION INVERT DEPTH W.S. Q VEL VEL ENERGY SUPE ELEV OF FLOW ELEV HEAD GRD.EL. ELEV L/ELEM SO SF AVE HF 722.50 1123.41 1.269 1124.680 7.7 3.66 0.208 1124.888 0.0 3.92 0.00999 .002308 0.01 726.42 1123.45 1.218 1124.668 7.7 3.84 0.229 1124.897 0.0 1.20 0.00999 .002608 0.00 727.62 1123.46 1.171 1124.633 7.7 4.03 0.252 1124.885 0.0 , "HYDRAULIC JUMP 727.62 1123.46 0.802 1124.264 7.7 6.54 0.665 1124.929 0.0 57.72 0.00999 .010044 0.58 785.34 1124.04 0.804 1124.842 7.7 6.51 0.658 1125.500 0.0 +rr 48.26 0.00999 .009372 0.45 *� 833.60 1124.52 0.834 1125.355 7.7 6.21 0.599 1125.954 0.0 13.86 0.00999 .008230 0.11 847.46 1124.66 0.864 1125.523 7.7 5.92 0.544 1126.067 0.0 6.11 0.00999 .007229 0.04 .w 853.57 1124.72 0.897 1125.617 7.7 5.64 0.494 1126.111 0.0 mJUNCT STR 0.01000 .009272 0.01 854.57 1124.73 0.708 1125.438 6.6 6.63 0.682 1126.120 0.0 .� 15.31 0.01004 .012462 0.19 869.88 1124.88 0.687 1125.571 6.6 6.90 0.739 1126.310 0.0 12.60 0.01004 .014079 0.18 m 882.48 1125.01 0.664 1125.674 6.6 7.24 0.813 1126.487 0.0 an m 9.66 0.01004 .016070 0.16 w. m OLICENSEE: R.B.F. & ASSOC. - SAN DIEGO F0515P WATER SURFACE PROFILE LISTING KAISER MEDICAL CENTER 10-105573 LINE B 2008-12-17 INVERT DEPTH W.S. Q VEL VEL ENERGY SUPE ,,STATION ELEV OF FLOW ELEV HEAD GRD.EL. ELEV ..L/ELEM SO SF AVE HF 892.14 1125.11 0.641 1125.748 6.6 7.59 0.894 1126.642 0.0 r. 8.12 0.01004 .018341 0.15 900.26 1125.19 0.619 1125.808 6.6 7.96 0.984 1126.792 0.0 7.10 0.01004 .020942 0.15 907.36 1125.26 0.598 1125.858 6.6 8.34 1.081 1126.939 0.0 6.35 0.01004 .023922 0.15 913.71 1125.32 0.578 1125.902 6.6 8.75 1.190 1127.092 0.0 5.78 0.01004 .027341 0.16 919.49 1125.38 0.559 1125.941 6.6 9.18 1.308 1127.249 0.0 +� 5.28 0.01004 .031246 0.16 924.77 1125.43 0.540 1125.975 6.6 9.64 1.442 1127.417 0.0 ■. 4.91 0.01004 .035708 0.18 w 929.68 1125.48 0.522 1126.006 6.6 10.11 1.586 1127.592 0.0 ■r 4.59 0.01004 .040833 0.19 ■r 934.27 1125.53 0.505 1126.035 6.6 10.59 1.743 1127.778 0.0 =TRANS STR 0.10000 .038562 0.04 935.27 1125.63 0.830 1126.460 6.6 9.47 1.392 1127.852 0.0 22.35 0.03482 .032769 0.73 957.62 1126.41 0.855 1127.263 6.6 9.23 1.323 1128.586 0.0 4m 17.00 0.03482 .030978 0.53 +s.. 974.62 1127.00 0.910 1127.910 6.6 8.80 1.202 1129.112 0.0 ,rr sm vo rrr HEADING LINE NO 1 IS — an aw .iEADING LINE NO 2 IS - m 0"qEADING LINE NO 3 IS - m rrr r.. .r r rr AM m ■r so m an �r er. F 0 5 1 5 P WATER SURFACE PROFILE - TITLE CARD LISTING KAISER MEDICAL CENTER 10-105573 LINE B 2008-12-17 ,m 'bATE: 12/19/2008 TIME: 11: 5 F0515P WATER SURFACE PROFILE - CHANNEL DEFINITI mu CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(1) Y(2 m CODE NO TYPE PIERS WIDTH DIAMETER WIDTH DROP CD 18 4 1.50 CD 12 4 1.00 y 0 'm "m ON w M 0 0 d go err rr C rr F 0 5 1 5 P WATER SURFACE PROFILE - ELEMENT CARD LISTING rrr ELEMENT NO 1 IS A SYSTEM OUTLET .., U/S DATA STATION INVERT SECT 581.88 1121.42 18 ELEMENT NO 2 IS A REACH U/S DATA STATION INVERT SECT N rw 624.21 1121.59 18 0.013 ELEMENT NO 3 IS A JUNCTION U/S DATA STATION INVERT SECT LAT -1 LAT -2 N Q3 625.21 1121.60 18 12 0 0.013 5 ELEMENT NO 4 IS A REACH ON U/S DATA STATION INVERT SECT N 764.38 1122.22 18 0.013 ELEMENT NO 5 IS A TRANSITION U/S DATA STATION INVERT SECT N +R 768.38 1122.24 12 0.013 ELEMENT NO 6 IS A REACH U/S DATA STATION INVERT SECT N 858.30 1123.41 12 0.013 ELEMENT NO 7 IS A SYSTEM HEADWORKS U/S DATA STATION INVERT SECT 858.30 1123.41 12 NO EDIT ERRORS ENCOUNTERED -COMPUTATION IS NOW BEGINNING *�** WARNING NO. 2 ** - WATER SURFACE ELEVATION GIVEN IS LESS THAN OR EQUALS INVER go err rr C emEjICENSEE: R.B.F. & ASSOC. - SAN DIEGO F0515P WATER SURFACE PROFILE LISTING *� KAISER MEDICAL CENTER 10-105573 LINE B �r 2008-12-17 STATION INVERT DEPTH W.S. Q VEL VEL ENERGY SUPE ELEV OF FLOW ELEV HEAD GRD.EL. ELEV as L/ELEM SO SF AVE HF .w, 581.88 1121.42 2.230 1123.650 5.5 3.11 0.150 1123.800 0.0 42.33 0.00402 .002742 0.12 .. 624.21 1121.59 2.176 1123.766 5.5 3.11 0.150 1123.916 0.0 00 JUNCT STR 0.01000 .001378 0.00 am 625.21 1121.60 2.317 1123.917 0.4 0.23 0.001 1123.918 0.0 ..� 139.17 0.00445 .000015 0.00 764.38 1122.22 1.699 1123.919 0.4 0.23 0.001 1123.920 0.0 TRANS STR 0.00500 .000071 0.00 768.38 1122.24 1.677 1123.917 0.4 0.51 0.004 1123.921 0.0 52.52 0.01301 .000124 0.01 ., 820.90 1122.92 1.000 1123.923 0.4 0.51 0.004 1123.927 0.0 7.09 0.01301 .000117 0.00 827.99 1123.02 0.907 1123.923 0.4 0.53 0.004 1123.927 0.0 4.16 0.01301 .000114 0.00 832.15 1123.07 0.853 1123.923 0.4 0.56 0.005 1123.928 0.0 3.37 0.01301 .000123 0.00 835.52 1123.11 0.809 1123.923 0.4 0.59 0.005 1123.928 0.0 2.99 0.01301 .000136 0.00 838.51 1123.15 0.770 1123.923 0.4 0.62 0.006 1123.929 0.0 2.68 0.01301 .000151 0.00 wr 841.19 1123.19 0.735 1123.922 0.4 0.65 0.006 1123.928 0.0 2.44 0.01301 .000168 0.00 er ' ,w owLICENSEE: R.B.F. & ASSOC. - SAN DIEGO F0515P WATER SURFACE PROFILE LISTING ,�. KAISER MEDICAL CENTER 10-105573 LINE B rrw 2008-12-17 STATION INVERT DEPTH W.S. Q VEL VEL ENERGY SUPE ELEV OF FLOW ELEV HEAD GRD.EL. ELEV L/ELEM SO SF AVE HF *■ 843.63 1123.22 0.703 1123.922 0.4 0.68 0.007 1123.929 0.0 2.28 0.01301 .000189 0.00 845.91 1123.25 0.673 1123.922 0.4 0.71 0.008 1123.930 0.0 2.13 0.01301 .000211 0.00 m 848.04 1123.28 0.645 1123.921 0.4 0.75 0.009 1123.930 0.0 ,.. 1.96 0.01301 .000238 0.00 850.00 1123.30 0.619 1123.921 0.4 0.78 0.010 1123.931 0.0 1.81 0.01301 .000269 0.00 ww 851.81 1123.33 0.595 1123.921 0.4 0.82 0.010 1123.931 0.0 1.73 0.01301 .000304 0.00 853.54 1123.35 0.572 1123.920 0.4 0.86 0.011 1123.931 0.0 1.65 0.01301 .000344 0.00 �. 855.19 1123.37 0.550 1123.920 0.4 0.90 0.013 1123.933 0.0 rrr 1.48 0.01301 .000391 0.00 856.67 1123.39 0.530 1123.919 0.4 0.95 0.014 1123.933 0.0 1.48 0.01301 .000442 0.00 w. 858.15 1123.41 0.510 1123.918 0.4 0.99 0.015 1123.933 0.0 0.15 0.01301 .000473 0.00 rw 858.30 1123.41 0.508 1123.918 0.4 1.00 0.015 1123.933 0.0 on +r r +rrr 40 rr on qM Page 1 air Lat A-l.txt air Manning Pipe calculator Given Input Data: shape ....................... circular �., solving for ..................... Depth of Flow Diameter ........................ 1.5000 ft Flowrate ........................ 4.1000 cfs slope ........................ 0.0100 ft/ft manning's n ..................... 0.0130 computed Results: Depth ........................... 0.6719 ft Area........................... 1.7671 ft2 wetted Area ..................... 0.7666 ft2 wetted Perimeter ................ 2.1997 ft Perimeter ....................... 4.7124 ft velocity ... .................. 5.6610 fps Hydraulic Radius ................ 0.3485 ft Percent Full .................... 44.7939 % Full flow Flowrate .............. 10.5043 cfs Full flow velocity .............. 5.9442 fps critical Information critical depth .................. 0.7988 ft critical slope .................. 0.0055 ft/ft critical velocity ............... 4.5363 fps critical area ................... 0.9567 ft2 criticalperimeter .............. 2.4537 ft critical hydraulic radius ....... 0.3899 ft critical top width .............. 1.5000 ft specific energy ................. 1.1699 ft Minimum energy .................. 1.1982 ft Froude number ................... 1.3922 Flow condition .................. supercritical 40 rr on qM Page 1 a.r .m as rrr .n aw am to on r am wr Page 1 OM OW Lat A-2 . txt �,. Manning Pipe calculator ,. Given Input Data: Shape........................ circular rrr Solving for ..................... Depth of Flow Diameter ........................ 1.5000 ft Flowrate ........................ 0.9000 cfs Slope ........................ 0.0100 ft/ft manning's n ..................... 0.0130 computed Results: Depth ........................... 0.3064 ft Area........................... 1.7671 ft2 wetted Area ..................... 0.2593 ft2 wetted Perimeter ................ 1.4069 ft Perimeter ....................... 4.7124 ft velocity .... ....I ...1 --l", 3.7021 fps Hydraulic Radius ................ 0.1843 ft Percent Full .................... 20.4264 % Full flow Flowrate .............. 10.5043 cfs Full flow velocity 5.9442 fps .............. a.r .m as rrr .n aw am to on r am wr Page 1 OM OW M on fiat A-3.txt .. Manning Pipe Calculator MW MM AW 40 OW me ,W Page 1 Given Input Data: shape ....................... Circular AN solving for ..................... Depth of Flow Diameter ........................ 1.5000 ft Flowrate ........................ 4.7000 cfs slope ........................ 0.0100 ft/ft wr Manning's n ..................... 0.0130 .,� Computed Results: Depth ........................... 0.7159 ft �. Area .......................... 1.7671 ft2 wetted Area ..................... 0.8325 ft2 wetted Perimeter ................ 2.2881 ft Perimeter ....................... 4.7124 ft ar velocity..: .................. 5.8258 fps Hydraulic Radius ................ 0.3638 ft Percent Full .................... 47.7295 % Full flow Flowrate .............. 10.5043 cfs Full flow velocity .............. 5.9442 fps critical Information An Critical depth .................. 0.8466 ft #„ Critical slope................. 0.0057 ft/ft Critical velocity ............... 4.7157 fps Critical area ................... 1.0285 ft2 �. Criticalperimeter .............. 2.5494 ft ft Critical hydraulic radius ....... 0.4034 Critical top width .............. 1.5000 ft specific energy ................. 1.2434 ft �. Minimum energy .................. 1.2699 ft Froude number ................... 1.3779 Flow condition .................. supercritical MW MM AW 40 OW me ,W Page 1 ,. Orr "a .■ 4W �r OW wa aw go dw 4M AW Page 1 gat A-4 . txt Manning Pipe calculator ,. Given Input Data: shape........................ Circular rr solving for ..................... Depth of Flow Diameter ........................ 1.5000 ft Flowrate ........................ 9.5000 cfs slope ........................ 0.0100 ft/ft .� manning's n ..................... 0.0130 computed Results: Depth ........................... 1.1542 ft r.. Area .......................... 1.7671 ft2 wetted Area ..................... 1.4591 ft2 wetted Perimeter ................ 3.2099 ft Perimeter ....................... 4.7124 ft velocity ... .................. 6.7577 fps Hydraulic Radius ................ 0.4546 ft Percent Full .................... 76.9462 % Full flow Flowrate .............. 10.5043 cfs Full flow velocity .............. 5.9442 fps Critical Information critical depth .................. 1.2110 ft critical slope ................. 0.0069 ft/ft Critical velocity ............... 6.2599 fps Critical area ................... 1.5751 ft2 criticalperimeter .............. 3.2782 ft ft Critical hydraulic radius ....... 0.4805 Critical top width .............. 1.5000 ft specific energy ................. 1.8502 ft Minimum energy .................. 1.8165 ft Froude number ................... 1.2346 Flow condition .................. supercritical ,. Orr "a .■ 4W �r OW wa aw go dw 4M AW Page 1 �.. Lat B -l. txt Manning Pipe calculator err r 9 arr ®n AW err E Page 1 Given Input Data: Shape........................ circular solving for ..................... Depth of Flow Diameter ........................ 0.6700 ft Flowrate ........................ 1.2000 cfs slope ........................ 0.1900 ft/ft manning's n ..................... 0.0110 computed Results: .. Depth ........................... 0.2064 ft MW Area .......................... 0.3526 ft2 wetted Area ..................... 0.0923 ft2 wetted Perimeter ................ 0.7884 ft Perimeter ....................... 2.1049 ft velocity .... .................. 14.0890 fps Hydraulic Radius ................ 0.1170 ft Percent Full .................... 30.8022 % Full flow Flowrate .............. 6.3084 cfs Full flow velocity .............. 17.8928 fps �r critical Information critical depth 0.5382 ft .................. critical slope .................. 0.0064 ft/ft rr critical velocity ............... 4.1614 fps critical area ................... 0.3124 ft2 critical perimeter .............. 1.4587 ft critical hydraulic radius ....... 0.2142 ft critical top width .............. 0.6700 ft specific energy ................. 3.2912 ft Minimum energy .................. 0.8072 ft Froude number ................... 6.4316 Flow condition .................. Supercritical err r 9 arr ®n AW err E Page 1 aw fiat B-2.txt .A dw Manning Pipe calculator Given Input Data: shape circular solving for ..................... Depth of Flow Diameter ........................ 0.6700 ft Flowrate ........................ 3.2000 cfs slope ........................ 0.2000 ft/ft Manning's n ..................... 0.0110 computed Results: .. Depth ........................... 0.3407 ft Area .......................... 0.3526 ft2 wetted Area ..................... 0.1801 ft2 wetted Perimeter ................ 1.0639 ft Perimeter ....................... 2.1049 ft velocity ... .................. 18.4888 fps r Hydraulic Radius ................ 0.1693 ft Percent Full .................... 50.8524 % Full flow Flowrate .............. 6.4723 cfs Full flow velocity .............. 18.3577 fps wr MW am qM wr rrr OW dw on aw Page 1 Page 1 fiat B-3.txt err Manning Pipe calculator .., Given Input Data: Shape ....................... circular err Solving for ..................... Depth of Flow Diameter ........................ 0.6700 ft Flowrate ........................ 1.2100 cfs ,,. slope ........................ 0.0500 ft/ft �. Manning s n ..................... 0.0110 „! computed Results: Depth ........................... 0.2838 ft ' MW Area... ......................... 0.3526 ft2 wetted Area ..................... 0.1421 ft2 wetted Perimeter ................ 0.9496 ft a, Perimeter ....................... 2.1049 ft velocity ... .................. 8.5145 fps aw Hydraulic Radius ................ 0.1496 ft Percent Full .................... 42.3576 % Full flow Flowrate .............. 3.2361 cfs Full flow velocity .............. 9.1788 fps critical Information critical depth .................. 0.5204 ft critical slope .................. 0.0063 ft/ft critical velocity ............... 4.0264 fps critical area ................... 0.3005 ft2 criticalperimeter .............. 1.4233 ft ft critical hydraulic radius ....... 0.2111 ar critical top width .............. 0.6700 ft Specific energy ................. 1.4104 ft Minimum energy .................. 0.7806 ft Froude number ................... 3.2402 e� Flow condition .................. supercritical rr Page 1 0 10 0 4M ON a. aw y 4 8 Page 1 err Lat B-4.txt rr Manning Pipe calculator Given Input Data: Shape circular �r ....................... solving for ..................... Depth of Flow Diameter ........................ 0.8300 ft Flowrate ........................ 5.2000 cfs Slope ........................ 0.1850 ft/ft rrr Manning's n ..................... 0.0110 computed Results: Depth ........................... 0.4012 ft ■,. Area .......................... 0.5411 ft2 wetted Area ..................... 0.2591 ft2 wetted Perimeter ................ 1.2762 ft Perimeter ....................... 2.6075 ft a, velocity .... .................. 20.0709 fps Hydraulic Radius ................ 0.2030 ft Percent Full .................... 48.3379 % "" Full flow Flowrate .............. 11.0189 cfs Full flow velocity .............. 20.3653 fps aw 0 10 0 4M ON a. aw y 4 8 Page 1 d► am ON air IM 40 Page 1 .ir Lat B-5.txt Manning Pipe calculator .� Given Input Data: MM shape ........................... circular solving for ..................... Depth of Flow Diameter ........................ 0.6700 ft Flowrate ........................ 1.3000 cfs slope ........................ 0.0085 ft/ft Manning's n ..................... 0.0110 computed Results: *` Depth ........................... 0.5342 ft Area .......................... 0.3526 ft2 OW wetted Area ..................... 0.3014 ft2 wetted Perimeter ................ 1.4792 ft �. Perimeter ....................... 2.1049 ft velocity ... .................. 4.3129 fps Hydraulic Radius ................ 0.2038 ft Percent Full .................... 79.7372 % �* Full flow Flowrate .............. 1.3343 cfs Full flow velocity .............. 3.7845 fps critical Information -+ critical depth .................. 0.5382 ft critical slope ................. 0.0064 ft/ft critical velocity ............... 4.1614 fps critical area ................... 0.3124 ft2 .� criticalperimeter .............. 1.4587 ft critical hydraulic radius ....... 0.2142 ft critical top width .............. 0.6700 ft specific energy ................. 0.8137 ft �+. Minimum energy .................. 0.8072 ft Froude number ................... 1.1674 +r Flow condition .................. supercritical d► am ON air IM 40 Page 1 Lat C-l.txt Wrr Manning Pipe Calculator ,■, Given Input Data: Shape Circular rrrr Solving for ..................... Depth of Flow Diameter ........................ 0.8300 ft Flowrate ........................ 1.6100 cfs slope ........................ 0.0660 ft/ft �,. manning's n ..................... 0.0110 Computed Results: Depth 0.2796 ft �., ........................... Area .......................... 0.5411 ft2 wetted Area ..................... 0.1602 ft2 wetted Perimeter ................ 1.0280 ft Perimeter ....................... 2.6075 ft velocity ........................ 10.0503 fps Hydraulic Radius ................ 0.1558 ft Percent Full .................... 33.6897 % Full flow Flowrate .............. 6.5815 cfs Full flow velocity .............. 12.1640 fps critical Information critical depth .................. 0.5696 ft critical slope .................. 0.0055 ft/ft critical velocity ............... 4.0368 fps critical area ................... 0.3988 ft2 criticalperimeter .............. 1.6129 ft ft critical hydraulic radius ....... 0.2473 critical top width .............. 0.8300 ft Specific energy ................. 1.8493 ft Minimum energy .................. 0.8544 ft Froude number ................... 3.9213 Flow condition .................. Supercritical Page 1 Page 1 rrr Lat C-2.txt Manning Pipe Calculator Given Input Data: Shape Circular �r ....................... solving for ..................... Depth of Flow Diameter ........................ 0.8300 ft Flowrate 1.6100 cfs Slope ........................ 0.0100 ft/ft �. manning's n ..................... 0.0110 Computed Results: Depth ........................... 0.4771 ft .� Area........................... 0.5411 ft2 wetted Area ..................... 0.3219 ft2 wetted Perimeter ................ 1.4284 ft Perimeter ....................... 2.6075 ft velocity ... .................. 5.0023 fps Hydraulic Radius ................ 0.2253 ft Percent Full .................... 57.4776 % Full flow Flowrate .............. 2.5618 cfs Full flow velocity .............. 4.7348 fps critical Information Critical depth 0.5696 ft .................. Critical slope .................. 0.0055 ft/ft �r Critical velocity ............... 4.0368 fps Critical area ................... 0.3988 ft2 criticalperimeter 1.6129 ft .............. Critical hydraulic radius ....... 0.2473 ft Critical top width .............. 0.8300 ft specific energy ................. 0.8658 ft Minimum energy .................. 0.8544 ft Froude number ................... 1.4169 Flow condition .................. Supercritical err Page 1 r fiat C-3.txt .. Manning Pipe Calculator �r rr ur rn aw 4M do M aw r Page 1 Given Input Data: shape Circular ....................... Solving for ..................... Depth of Flow Diameter ........................ 1.0000 ft Flowrate ........................ 4.5900 cfs Slope 0.0200 ft/ft ........................ Manning's n ..................... 0.0110 computed Results: Depth ........................... 0.6587 ft wr Area .......................... 0.7854 ft2 wetted Area ..................... 0.5487 ft2 wetted Perimeter ................ 1.8938 ft Perimeter ....................... 3.1416 ft velocity ... .................... 8.3652 fps Hydraulic Radius ................0.2897 ft Percent Full .................... 65.8711 % Full flow Flowrate 5.9547 cfs .............. Full flow velocity .............. 7.5817 fps Critical Information *" Critical depth .................. 0.8926 ft Critical slope .................. 0.0060 ft/ft Critical velocity ............... 5.8451 fps Critical area ................... 0.7853 ft2 Criticalperimeter .............. 2.3559 ft Critical hydraulic radius ....... 0.3333 ft Critical top width .............. 1.0000 ft specific energy ................. 1.7484 ft ^�* Minimum energy .................. 1.3389 ft Froude number ................... 2.0000 Flow condition .................. supercritical �r rr ur rn aw 4M do M aw r Page 1 4M ,rr Lat C-4.txt Manning Pipe calculator Page 1 Given Input Data: shape Circular ....................... solving for ..................... Depth of Flow Diameter ........................ 0.6700 ft Flowrate ........................ 0.7800 cfs slope ........................ 0.0100 ft/ft Manning's n ..................... 0.0110 rir Computed Results: �* Depth ........................... 0.3503 ft Area........................... 0.3526 ft2 wetted Area ..................... 0.1865 ft2 wetted Perimeter ................ 1.0830 ft Perimeter ....................... 2.1049 ft velocity ... .................. 4.1817 fps Hydraulic Radius ................ 0.1722 ft Percent Full .................... 52.2825 *� Full flow Flowrate .............. 1.4472 cfs Full flow velocity .............. 4.1049 fps critical Information *� Critical depth .................. 0.4170 ft Critical slope ................. 0.0056 ft/ft Critical velocity ............... 3.3733 fps critical area ................... 0.2312 ft2 -- Criticalperimeter .............. 1.2164 ft critical hydraulic radius ....... 0.1901 ft Critical top width .............. 0.6700 ft specific energy ................. 0.6220 ft Minimum energy .................. 0.6255 ft Froude number ................... 1.3973 +� Flow condition .................. Supercritical Page 1 on fiat C-5.txt Manning Pipe Calculator an am ar.r F M OW so me y Page 1 d Given Input Data: shape Circular ....................... solving for ..................... Depth of Flow Diameter ........................ 0.6700 ft Flowrate ........................ 1.7900 cfs slope ........................ 0.0480 ft/ft Manning's n ..................... 0.0110 computed Results: *� Depth ........................... 0.3603 ft Area .......................... 0.3526 ft2 wetted Area ..................... 0.1932 ft2 wetted Perimeter ................ 1.1030 ft *■ Perimeter ....................... 2.1049 ft velocity ..................... 9.2652 fps Hydraulic Radius ................ 0.1752 ft Percent Full .................... 53.7711 % *■ Full flow Flowrate .............. 3.1708 cfs Full flow velocity .............. 8.9934 fps +.w an am ar.r F M OW so me y Page 1 d �r gat C-6.txt �r Manning Pipe Calculator AW dW do do Page 1 Given Input Data: shape ........................ Circular solving for ..................... Depth of Flow Diameter ........................ 0.6700 ft Flowrate ........................ 0.5900 cfs slope ........................ 0.0240 ft/ft Manning s n ..................... 0.0110 Computed Results: Depth ........................... 0.2346 ft Area.......................... 0.3526 ft2 wetted Area ..................... 0.1100 ft2 wetted Perimeter ................ 0.8485 ft Perimeter ....................... 2.1049 ft velocity ... .................. 5.3619 fps Hydraulic Radius ................ 0.1297 ft Percent Full .................... 35.0149 % �• Full flow Flowrate .............. 2.2421 cfs Full flow velocity .............. 6.3593 fps Critical Information .. Critical depth .................. 0.3604 ft critical slope ................. 0.0052 ft/ft Critical velocity ............... 3.0521 fps Critical area ................... 0.1933 ft2 •• Criticalperimeter .............. 1.1033 ft Critical hydraulic radius ....... 0.1752 ft «� Critical top width .............. 0.6700 ft specific energy ................. 0.6814 ft �,. Minimum energy .................. 0.5406 ft Froude number ................... 2.2783 Flow condition .................. Supercritical AW dW do do Page 1 Page 1 +w Lat C-7.txt Manning Pipe Calculator Given Input Data: Shape ........................ Circular solving for ..................... Depth of Flow Diameter ........................ 0.6700 ft Flowrate ........................ 1.1900 cfs slope ........................ 0.0200 ft/ft Manning's n ..................... 0.0110 ■r computed Results: Depth ........................... 0.3668 ft Area........................... 0.3526 ft2 wetted Area ..................... 0.1976 ft2 wetted Perimeter ................ 1.1162 ft °^ Perimeter ....................... 2.1049 ft velocity ... .................. 6.0229 fps Hydraulic Radius ................ 0.1770 ft Percent Full .................... 54.7512 % Full flow Flowrate .............. 2.0467 cfs Full flow velocity .............. 5.8052 fps rr critical Information *� Critical depth .................. 0.5163 ft Critical slope ................. 0.0063 ft/ft Critical velocity ............... 3.9966 fps critical area ................... 0.2978 ft2 w. Criticalperimeter .............. 1.4150 ft ft Critical hydraulic radius ....... 0.2104 Critical top width .............. 0.6700 ft Specific energy ................. 0.9306 ft Minimum energy .................. 0.7744 ft Froude number ................... 1.9556 Flow condition .................. Supercritical Page 1 .. fiat C-9.txt Manning Pipe Calculator 4M Given Input Data: Shape ........................ Circular solving for ..................... Depth of Flow r� Diameter ........................ 1.0000 ft Flowrate ........................ 2.1800 cfs "' Slope ........................ 0.0060 ft/ft manning's n ..................... 0.0110 computed Results: '* Depth ........................... 0.5980 ft Area .......................... 0.7854 ft2 dw wetted Area ..................... 0.4901 ft2 wetted Perimeter ................ 1.7681 ft *� Perimeter ....................... 3.1416 ft velocity ... .................. 4.4484 fps Hydraulic Radius ................ 0.2772 ft Percent Full .................... 59.7995 % -■ Full flow Flowrate .............. 3.2615 cfs Full flow velocity .............. 4.1527 fps critical Information *�* Critical depth .................. 0.6311 ft Critical slope ................. 0.0049 ft/ft +w Critical velocity ............... 4.1623 fps Critical area ................... 0.5238 ft2 �- Criticalperimeter .............. 1.8329 ft Critical hydraulic radius ....... 0.2858 ft ,r critical top width .............. 1.0000 ft specific energy ................. 0.9050 ft -• Minimum energy .................. 0.9466 ft Froude number ................... 1.1215 �+ Flow condition .................. supercritical w V M 0 Page 1 q" 4W Lat D-1.txt rr Manning Pipe Calculator 0 E 4 0 rrr E 0 y Page 1 Given Input Data: shape ....................... Circular solving for ..................... Depth of Flow Diameter ........................ 0.6700 ft Flowrate ........................ 0.8900 cfs *� Slope ........................ 0.3560 ft/ft manning's n ..................... 0.0110 Computed Results: �. Depth ........................... 0.1453 ft Area .......................... 0.3526 ft2 wetted Area ..................... 0.0563 ft2 wetted Perimeter ................ 0.6490 ft Perimeter ....................... 2.1049 ft velocity ... .................. 15.8001 fps Hydraulic Radius ................ 0.0868 ft Percent Full .................... 21.6815 % Full flow Flowrate .............. 8.6351 cfs Full flow velocity .............. 24.4922 fps do critical Information •� critical depth .................. 0.4465 ft Critical slope ................. 0.0058 ft/ft Critical velocity ............... 3.5464 fps critical area ................... 0.2510 ft2 �. critical perimeter .............. 1.2754 ft critical hydraulic radius ....... 0.1968 ft W Critical top width .............. 0.6700 ft specific energy ................. 4.0249 ft ,.. Minimum energy .................. 0.6697 ft Froude number ................... 8.7214 �• Flow condition .................. supercritical 0 E 4 0 rrr E 0 y Page 1 ON do m, Lat D-2.txt AN Manning Pipe Calculator E E E E 0 0 Page 1 Given Input Data: AM Shape ....................... Circular am Solving for ..................... Depth of Flow Diameter ........................ 0.8300 ft Flowrate ........................ 3.0900 cfs am Slope ........................ 0.0390 ft/ft M manning's n ..................... 0.0110 computed Results: Depth ........................... 0.4686 ft ,r Area........................... 0.5411 ft2 wetted Area ..................... 0.3149 ft2 wetted Perimeter ................ 1.4112 ft Perimeter ....................... 2.6075 ft velocity ... .................. 9.8140 fps W Hydraulic Radius ................ 0.2231 ft Percent Full .................... 56.4521 Full flow Flowrate .............. 5.0592 cfs r. Full flow velocity .............. 9.3506 fps E E E E 0 0 Page 1 Lat D-3.txt 4W �r Manning Pipe Calculator w 3 M am nr F W err Page 1 t Given Input Data: shape ....................... Circular solving for ..................... Depth of Flow r� Diameter ........................ 0.6700 ft Flowrate ........................ 0.1200 cfs slope ........................ 0.0100 ft/ft Manning s n ..................... 0.0110 r computed Results: Depth ........................... 0.1304 ft Area .......................... 0.3526 ft2 wetted Area ..................... 0.0483 ft2 wetted Perimeter ................ 0.6123 ft *� Perimeter ....................... 2.1049 ft velocity ... .................. 2.4846 fps "r Hydraulic Radius ................ 0.0789 ft Percent Full .................... 19.4683 % -* Full flow Flowrate .............. 1.4472 cfs Full flow velocity .............. 4.1049 fps irrr w 3 M am nr F W err Page 1 t Ar Lat D-4.txt -60 MW Manning Pipe Calculator 0 y d E 0 0 N E 8 Page 1 Given Input Data: shape Circular ....................... solving for ..................... Depth of Flow Diameter 0.6700 ft ........................ Flowrate ........................ 0.2000 cfs �^ slope ........................ 0.0100 ft/ft Manning's n ..................... 0.0110 Computed Results: Depth ........................... 0.1682 ft Area .......................... 0.3526 ft2 wetted Area ..................... 0.0694 ft2 wetted Perimeter ................ 0.7033 ft M— Perimeter ....................... 2.1049 ft velocity ... .................. 2.8835 fps Hydraulic Radius ................ 0.0986 ft Percent Full .................... 25.1113 % �- Full flow Flowrate .............. 1.4472 cfs Full flow velocity .............. 4.1049 fps rr 0 y d E 0 0 N E 8 Page 1 .r fiat D-5.txt Manning Pipe calculator Mg fts MW r 0 8 0 h err Page 1 Given Input Data: .. Shape ........................ circular solving for ..................... Depth of Flow Diameter ........................ 0.6700 ft Flowrate ........................ 0.2300 cfs Slope 0.0100 ft/ft ........................ Manning's n ..................... 0.0110 i. computed Results - a" Depth ........................... 0.1806 ft Area .......................... 0.3526 ft2 r wetted Area ..................... 0.0766 ft2 wetted Perimeter ................ 0.7315 ft ®" Perimeter 2.1049 ft ....................... velocity ... .................... 3.0018 fps �r Hydraulic Radius ................ 0.1047 ft Percent Full .................... 26.9544 % Full flow Flowrate .............. 1.4472 cfs Full flow velocity .............. 4.1049 fps r Mg fts MW r 0 8 0 h err Page 1 +r �,. Lat D-6 . txt Manning Pipe Calculator 4. Given Input Data: ShapeCircular .rr Solving for ..................... Depth of Flow Diameter ........................ 0.6700 ft Flowrate ......... 1.0000 cfs Slope ........................ 0.1640 ft/ft Manning's n ..................... 0.0110 Computed Results: Depth ........................... 0.1873 ft �. Area .......................... 0.3526 ft2 wetted Area ..................... 0.0806 ft2 wetted Perimeter ................ 0.7464 ft Perimeter ....................... 2.1049 ft Velocity ... .................. 12 4061 fps Hydraulic Radius ................ 0.1080 ft Percent Full .................... 27.9491 % Full flow Flowrate .............. 5.8609 cfs Full flow velocity .............. 16.6236 fps critical Information Critical depth .................. 0.4738 ft Critical slope .................. 0.0060 ft/ft critical velocity ............... 3.7136 fps Critical area ................... 0.2693 ft2 criticalperimeter .............. 1.3300 ft ft critical hydraulic radius ....... 0.2025 Critical top width .............. 0.6700 ft Specific energy ................. 2.5791 ft Minimum energy .................. 0.7107 ft Froude number ................... 5.9738 dW Flow condition .................. Supercritical Page 1 0 an OW 8 .M wr e 0 E Page 1 Lat D-7.txt aw Manning Pipe calculator Given Input Data: shape circular ........................ solving for ..................... Depth of Flow rr Diameter ........................ 0.6700 ft Flowrate ........................ 0.3600 cfs slope ........................ 0.1710 ft/ft Manning's n ..................... 0.0110 arr computed Results: Depth ........................... 0.1115 ft Area .......................... 0.3526 ft2 wetted Area ..................... 0.0385 ft2 wetted Perimeter ................ 0.5630 ft *� Perimeter ....................... 2.1049 ft velocity ... .................. 9.3455 fps "" Hydraulic Radius ................ 0.0684 ft Percent Full .................... 16.6359 % *■ Full flow Flowrate .............. 5.9847 cfs Full flow velocity .............. 16.9746 fps of an OW 8 .M wr e 0 E Page 1 w. w Lat D-8.txt Manning Pipe Calculator Page 1 Given Input Data: shape Circular tir solving for ..................... Depth of Flow Diameter ........................ 0.6700 ft Flowrate ........................ 0.9200 cfs ON slope ........................ 0.2500 ft/ft VW Manning's n ..................... 0.0110 Computed Results: Depth ........................... 0.1613 ft Area .......................... 0.3526 ft2 wetted Area ..................... 0.0654 ft2 wetted Perimeter ................ 0.6873 ft Perimeter ....................... 2.1049 ft Velocity ... .................. 14.0740 fps Hydraulic Radius ................ 0.0951 ft Percent Full .................... 24.0789 % Full flow Flowrate .............. 7.2362 cfs Full flow velocity .............. 20.5245 fps critical Information Critical depth .................. 0.4541 ft Critical slope .................. 0.0058 ft/ft Critical velocity ............... 3.5924 fps Critical area ................... 0.2561 ft2 Criticalperimeter .............. 1.2907 ft Critical hydraulic radius ....... 0.1984 ft Critical top width .............. 0.6700 ft specific energy ................. 3.2396 ft Minimum energy .................. 0.6812 ft Froude number ................... 7.3457 ' Flow condition .................. supercritical Page 1 no Lat D-9. txt .rr Manning Pipe Calculator Page 1 Given Input Data: shape Circular err ....................... solving for ..................... Depth of Flow Diameter ........................ 0.8300 ft Flowrate 1.1300 cfs ........................ slope 0.0190 ft/ft ower ........................ Manning's n ..................... 0.0110 .. Computed Results: Depth ........................... 0.3228 ft ,r Area........................... 0.5411 ft2 wetted Area ..................... 0.1946 ft2 wetted Perimeter ................ 1.1178 ft Perimeter ....................... 2.6075 ft velocity ..................... 5.8062 fps Hydraulic Radius ................ 0.1741 ft Percent Full .................... 38.8886 % Full flow Flowrate .............. 3.5312 cfs Full flow velocity .............. 6.5265 fps Critical Information Critical depth .................. 0.4741 ft Critical slope ................. 0.0050 ft/ft Critical velocity ............... 3.5362 fps Critical area ................... 0.3195 ft2 Criticalperimeter .............. 1.4219 ft ft critical hydraulic radius ....... 0.2247 .W critical top width .............. 0.8300 ft specific energy ................. 0.8467 ft Minimum energy .................. 0.7111 ft Froude number ................... 2.0873 Flow condition .................. supercritical Page 1 ■0 Lat E-1.txt �r Manning Pipe calculator I. MM �r qft do us M" As Page 1 Given Input Data: shape circular art solving for ..................... Depth of Flow Diameter ........................ 0.6700 ft Flowrate ........................ 0.8000 cfs Slope 0.0070 ft/ft �. ........................ manning's n ..................... 0.0110 computed Results: Depth 0.3976 ft �. ........................... Area........................... 0.3526 ft2 wetted Area ..................... 0.2180 ft2 wetted Perimeter ................ 1.1785 ft Perimeter ....................... 2.1049 ft velocity ... .................. 3.6696 fps Hydraulic Radius ................ 0.1850 ft Percent Full .................... 59.3502 % Full flow Flowrate .............. 1.2109 cfs Full flow velocity .............. 3.4344 fps critical Information critical depth .................. 0.4225 ft critical slope ................. 0.0056 ft/ft critical velocity ............... 3.4053 fps critical area ................... 0.2349 ft2 criticalperimeter .............. 1.2275 ft ft critical hydraulic radius ....... 0.1914 critical top width .............. 0.6700 ft specific energy ................. 0.6066 ft Minimum energy .................. 0.6338 ft Froude number ................... 1.1352 .r Flow condition .................. supercritical I. MM �r qft do us M" As Page 1 C. Appendix C — Exhibits ' • Exhibit 1 - Onsite Hydrology Map �J r] Il 0 u H.%PdateN0105573Wdmin4eportsViordogyWFW Onsite Hydrology.doc xi