HomeMy WebLinkAboutKaiser Fontana Medical Center (2)ONSITE
HYDROLOGY AND HYDRAULICS ANALYSIS
FOR THE
KAISER FONTANA MEDICAL CENTER
9961 Sierra Ave, Fontana, CA
Prepared for:
HMC Architects
3546 Concours Street
Ontario, CA 91764-5583
David Rose, 909-989-9979
and
Kaiser Permanente
9961 Sierra Avenue
Fontana, CA 92335
Jim Herrington, 909-427-4115
Prepared by:
RBF Consulting
14725 Alton Pkwy
Irvine, CA 92618
Detlef Kopp, RCE 70995
Lena Baghdasarian, RCE 73090
Phone: 949-472-3505
JN: 10-105573
Prepared on:
December 17, 2008
h
mw
4w
r
dO
*a
Table of Contents
1.0 Introduction..............................................................................................3
2.0 Hydrology and Hydraulic Analysis.........................................................5
2.1 Hydrology — Rational Method........................................................................... 5
2.2 Hydraulics....................................................................................................... 5
3.0 Conclusions..............................................................................................8
A. Appendix A — Hydrology Calculations...................................................... ix
B. Appendix B — Hydraulics Calculations.......................................................x
C. Appendix C — Exhibits................................................................................xi
Exhibit 1 - Onsite Hydrology Map....................................................................xi
Figure1: Site Vicinity..................................................................................................................4
Figure2: Soils Map.....................................................................................................................6
Figure3: Point Rainfall................................................................................................................7
._ H:\Pdata\10105573\Admin\reports\Hydrology\KFMC Onsite Hydrology.doc 2
4w
0
E71
a. 1.0 Introduction
am 1.1 Background
..
The onsite hydrology and hydraulics report for the Kaiser Fontana Medical Center was prepared
Am by RBF Consulting on behalf of HMC Architects and Kaiser Permanente. The entire existing
ON Kaiser Permanente Medical Center is located within the City of Fontana. The project site is
located east of Sierra Avenue, and north of Valley Boulevard (refer to Figure 1, Vicinity Map).
Im
The existing hospital consists of approximately 50 acres of hospital buildings, medical offices, a
central utilities plant, parking structures and parking lots. The parking lots are spread
—• throughout the campus. All the parking lots drain into catch basins connected to the onsite
storm drain system. Existing storm drain and utility layouts suggest that the original
infrastructure was constructed as part of the original hospital with many additions and
expansions. Detailed analysis of the existing system can be found in Hydrology and Floodplain
Hydraulics Analysis for the Kaiser Fontana Medical Center dated November 10, 2008, by RBF
Consulting. In the report dated November 10, 2008, the existing 27/30 -inch main storm drain,
along with the existing parallel storm drain system, in Healthcare Parkway, have been verified.
In this onsite study only the existing 24 -inch storm drain located on the west end of the project
will be examined, brcause a portion of the line will be relocated due to construction. In addition,
the upstream area, 10 -year flow rate, and time of concentration used to analyze the onsite
areas tributary to the existing 27/30 -inch storm drain main were taken from the report dated
dW November 10, 2008.
The proposed hospital consists of two (2) Patient Towers, a Diagnostic and Treatment wing
err (D&T), a Hospital Support Building (HSB), and a Central Utility Plant (CUP). To make room for
the new hospital, some of the buildings of the existing hospital will be demolished. This
expansion of buildings created a complicated network of pipes, some of which will be replaced
or removed when the new facilities are constructed. The site will be designed so that storm
water is directed away from the buildings and into lateral that drain into stormwater treatment
.. devices such as bioretention areas or planter boxes before entering the existing system.
Additionally, porous pavement will be used in some parking lots to infiltrate runoff into the
ground. Overflow from these areas will be captured in catch basins and discharged into the
existing storm drain system.
4W 1.2 Objective
An The primary objective of this report is to provide the technical documentation for the final design
Wo and improvements plans for the proposed onsite storm drain facilities developed for the
proposed hospital site, more specifically outlined as:
rr 1. Identify the required storm drain facilities for the improvements based upon the drainage
area tributary to each proposed drainage inlet/concentration point.
2. Based on drainage patterns, ground slope, land use, soil type, using the Rational
Method, perform a hydrologic analysis to provide the design flowrate used to size the
.. proposed onsite storm drain facilities.
.r 3. Based on the hydrological analysis, using Manning's equation, verify the capacities of
the proposed onsite new 24 -inch storm drain and new laterals connecting into existing
systems.
AW
Mft H:\Pdata\10105573Wdmin\reports\Hydrology\KFMC Onsite Hydrology.doc 3
C
fl
� I
1
r
i!
O 0 1,000 2,000 3,000 Feet Kaiser Medical Center Fontana Replacement Hospital
CONBII LTI . FIGL)1-V, VVicinity Map
• ■ ■
CI
14
Map Document: (M:\Mdata\10105573\GIS\KaiserSitevcinityMap_t.mxd) -9/3/2008
0
V:1
am 2.0 Hydrology and Hydraulic Analysis
1,.
In order to understand the proposed conditions and size the proposed storm drain, hydrologic
and hydraulic analyses were performed to model these conditions. Hydrologic calculations to
-.„ evaluate surface runoff associated with 10 -year hypothetical design storm frequency from the
tributary drainage areas were performed using Advanced Engineering Software (AES). All storm
drain pipes are designed for a 10 -year storm event in the City of Fontana. Hydrologic
parameters used in the analysis, such as rainfall and soil classification, are presented in the San
Bernardino County Hydrology Manual. The hydraulic analysis to model the storm drains system
within the study area used Water Surface Pressure Gradient (WSPG) program by CivilDesign
along with AutoDesk's Manning Pipe Calculator to check pipe capacities.
.,� 2.1 Hydrology — Rational Method
The hydrologic calculations to determine the 10 -year peak flow rates were performed using the
criteria in the San Bernardino County Hydrology Manual. The Rational Method is an empirical
computation procedure for developing a peak runoff rate (discharge) for storms of a specific
low recurrence interval. Rational Method equations are based on the assumption that the peak flow
rate is directly proportional to the drainage area, rainfall intensity, and a loss rate coefficient,
which describes the effects of land use and soil type. The Rational Method flow rates were
Ism computed by generating a hydrologic "link -node" model, which divides the area into drainage
subareas. The Rational Method analysis is included in Appendix A. The hydrology map can be
found in Exhibit 1.
The land use for the study area was determined using field survey data. Hydrologic soil group A
was used for the analysis (See Figure 2, Soil Map). Antecedent Moisture Condition II (AMC II)
'— was used to determine the 10 -year hydrology analysis for floodplain mapping. AMC indicates
the soils wetness prior to a particular storm and runoff potential for the subject storm.
The point rainfall data was determined using 10 -year Isohyetal maps provided by San
Bernardino County (see Figure 3).
4W
2.2 Hydraulics
4'" WSPG uses Bernoulli's equation for the total energy at each section of pipe and Manning's
formula to calculate the friction loss for each reach. Using flowrates determined from the
"Am hydrologic model, the hydraulic grade line (HGL) in each storm drain system was determined. If
the HGL is within the pipe, the water is flowing as partial flow. If the HGL is above the pipe, the
water is flowing by pressure and if the HGL is above the finish grade, the water is overflowing at
the inlets and catch basins into the street. WSPG was used to verify the 24 -inch onsite storm
�. drain. The top of pipe elevation of the existing 42 -inch storm drain along Valley Boulevard was
used as the controlling water surface elevation to perform the analysis for the 24 -inch line.
Autodesk's Manning Pipe Calculator was used to size all the other proposed onsite short storm
drain laterals, majority of which drain into bioretention areas or planter boxes before entering the
-. existing system.
L
Im
H:\Pdata\10105573Wdmin\reports\Hydrology\KFMC Onsite Hydrology.doc 5
IM
_ I i
_ I
y
(' I
— � SAN-BERNARDINOIAVE
I-
- I MARYGOLD AVE
C f
Lu—
LU
j Q
LU
- O
w
I w
LLJi
VALLEY BLVD
I
J_
() 0 500 1,000 1,500 Feet
C O N......O
... G:S -
Map Document: (M:1Mdata\10105573\GIS\Landuse.mxd) - 9/3/2008
Legend
Project Site
Soil Type A
Soil Type B
I
Kaiser Medical Center Fontana Replacement Hospital
F I UURI; ?-:Soil Map
5-11 FIGURE
Am
we
rrr
3.0 Conclusions
am
The proposed Kaiser Fontana Medical Center site plan requires an updated onsite storm drain
system to insure that no flooding occurs in a 10 -year storm event. The existing 27/30 -inch main
*■ storm drain line running through the site is to remain as is and has been verified per the overall
Hydrology and Floodplain Hydraulics Analysis for the Kaiser Fontana Medical Center dated
November 10, 2008, also prepared by RBF Consulting. This study verifies the hydraulic capacity
.. of the relocated capacity of the 24 -inch storm drain along the west side of the property. All
proposed onsite new storm drain lines were sized for a 10 -year storm event, based on this
hydrological and hydraulic analysis.
R
M
Om
M
nr
4W
■m
w
aw
HAPdata\1 01 05573\Admin\reports\Hydrology\KFMC Onsite Hydrology.doc 8
W
Pj
r
lJ
H
'J
'.l
u
n
Ili
A. Appendix A — Hydrology Calculations
H:iPoata\10105573\AdMnVeport&\ i"rdogylKFW Onske Hydrdogy.doc Ix
I i I i a# f I[ I! I 1 I I i I i I i I i I i 11 a I I I I i t i I i I i
Date: 12/19/08 File name: AREA-A.RES
Page 1
SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 5.000
w#x##r##w#w#rw##++*w#r#w+++w####w+w+#wtww*ww##ww+wwwtw*#t*w*rww##########rr#
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
(Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2004 Advanced Engineering Software (sea)
Ver. 10.0 Release Date: 01/01/2004 License ID 1264
Analysis prepared by:
RBF Consulting
14725 Alton Parkway
Irvine, California 92618
w*ww###www#x#w#wtt#w*w*w## DESCRIPTION OF STUDY twtw#www+w####w######x##+#
* Area A 10 -YR Hydrology
* 2008-12-15
* 10-105573
+###r#wx#t##wwww##ww#+#w##w##wwt*w*w#w###wwrwx##+w++www#w###x###x*ww**www+
FILE NAME: G:\KAISER\AREA-A.DAT
TIME/DATE OF STUDY: 08:19 12/19/2008
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
--*TIME-OF-CONCENTRATION MODEL* --
USER SPECIFIED STORM EVENT(YEAR) = 10.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 8.00
SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE 0.90
*USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
10 -YEAR STORM 60 -MINUTE INTENSITY(INCH/HOUR) = 0.950
100 -YEAR STORM 60 -MINUTE INTENSITY(INCH/HOUR) = 1.400
COMPUTED RAINFALL INTENSITY DATA:
STORM EVENT = 10.00 1 -HOUR INTENSITY(INCH/HOUR) = 0.9595
SLOPE OF INTENSITY DURATION CURVE = 0.6000
*ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
*USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1. Relative Flow -Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) - (Top -of -Curb)
2. (Depth) -(Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
*USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
x++#ww*#++w##w#x##w#+t#*w*+*w##+++w###+w#t##ww##x##w##ww#w#ww####x###rx###*r
FLOW PROCESS FROM NODE 1.01 TO NODE 1.02 IS CODE - 21
____________________________________________________________________________
»» RATIONAL METHOD INITIAL SUBAREA ANALYSISc «
»USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA
INITIAL SUBAREA PLOW-LENGTH(FEET) - 128.00
ELEVATION DATA: UPSTREAM(FEET) = 1140.00 DOWNSTREAM(FEET) . 1137.00
TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
Date: 12/19/08 File name: AREA-A.RES
Page 2
SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 5.000
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 4.261
SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
COMMERCIAL A 0.45 0.98 0.10 32 5.00
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) - 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
SUBAREA RUNOFF(CFS) 1.69
TOTAL ARKA(ACRES) = 0.45 PEAK FLOW RATE(CFS) = 1.69
#######**tw####+wwrxwwww+###*ww#w#xw*+w#wwww###+####+w#**+#++########**+*+w#
FLOW PROCESS FROM NODE 1.02 TO NODE 1.03 IS CODE = 51
____________________________________________________________________________
»»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««
»» TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)c <
ELEVATION DATA: UPSTREAM(FEET) = 1137.00 DOWNSTREAM(FEET) - 1128.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 378.00 CHANNEL SLOPE = 0.0238
CHANNEL BASE(FEET) = 27.00 "Z• FACTOR = 1.000
MANNING'S FACTOR - 0.015 MAXIMUM DEPTH(FEET) = 0.50
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.206
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 1.03 0.98 0.10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.16
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.08
AVERAGE FLOW DEPTH(FEET) - 0.06 TRAVEL TIME(MIN.) = 3.03
TC(MIN.) - 8.03
SUBAREA AREA(ACRES) = 1.03 SUBAREA RUNOFF(CFS) = 2.88
EFFECTIVE AREA(ACRES) = 1.48 AREA -AVERAGED FM(INCH/HR) - 0.10
AREA -AVERAGED Fp(INCH/HR) - 0.97 AREA -AVERAGED Ap - 0.10
TOTAL AREA(ACRES) . 1.48 PEAK FLOW RATE(CFS) = 4.14
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) - 0.06 FLOW VELOCITY(FEET/SEC.) = 2.39
LONGEST FLOWPATH FROM NODE 1.01 TO NODE 1.03 - 506.00 FEET.
FLOW PROCESS FROM NODE 1.03 TO NODE 1.04 IS CODE = 31
____________________________________________________________________________
»» COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««
» >>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ——
ELEVATION DATA: UPSTREAM(FEET) . 1125.00 DOWNSTREAM(FEET) = 1124.35
FLOW LENGTH(FEET) = 65.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.0 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) = 5.36
ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES - 1
PIPE-FLOW(CFS) = 4.14
PIPE TRAVEL TIME(MIN.) - 0.20 TC(MIN.) - 8.24
LONGEST FLOWPATH FROM NODE 1.01 TO NODE 1.04 . 571.00 FEET.
#########t+#t##+#www#w#ww##w####++wwwww*#wr##########tw*wt+*############x#t#
FLOW PROCESS FROM NODE 1.04 TO NODE 1.05 IS CODE = 31
____________________________________________________________________________
» >>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA-«
» >>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) « c
ELEVATION DATA: UPSTREAM(FEET) . 1124.35 DOWNSTREAM(FEET) = 1123.44
FLOW LENGTH(FEET) = 91.00 MANNING'S N = 0.013
I I I i a i i i i i t i t 1 i 1 i i t I i i E 1 t 1 1 i t i i i i i t I i i
Date: 12/19/08 File name: AREA-A.RES
Page 3
DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.0 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) = 5.36
ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES =
1
PIPE-FLOW(CFS) = 4.14
PIPE TRAVEL TIME(MIN.) . 0.28 TC(MIN.) . 8.52
LONGEST FLOWPATH FROM NODE 1.01 TO NODE 1.05 . 662.00
FEET.
FLOW PROCESS FROM NODE NODE CODE =
81
------1.05-IS
---_--1.05-TO
- _------- _---- _---- _---- _-__--
,ADDITIONOF SUBAREA TO MAINLINE PEAK FLOW-«
_»»,ADDITION
MAINLINE Tc(MIN) . 8.52
* 10 YEAR RAINFALL INTENSITY(INCH/HR) . 3.095
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap
SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL)
CN
COMMERCIAL A 0.34 0.98 0.10
32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
SUBAREA AREA(ACRES) . 0.34 SUBAREA RUNOFF(CFS) = 0.92
EFFECTIVE AREA(ACRES) = 1.82 AREA -AVERAGED FM(INCH/HR)
= 0.10
AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap - 0.10
TOTAL AREA(ACRES) = 1.82 PEAK FLOW RATE(CFS) =
4.91
FLOW PROCESS FROM NODE 1.05 TO NODE 1.06 IS CODE =
31
____________________________________________________________________________
- ,COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA --
»»,USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««
ELEVATION DATA: UPSTREAM(FEET) . 1123.44 DOWNSTREAM(FEET) .
1123.09
FLOW LENGTH(FEET) = 35.00 MANNING'S N - 0.013
DEPTH OF FLOW IN 15.0 INCH PIPE IS 10.2 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) = 5.55
ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES .
1
PIPE-FLOW(CFS) = 4.91
PIPE TRAVEL TIME(MIN.) = 0.11 Tc(MIN.) = 8.62
LONGEST FLOWPATH FROM NODE 1.01 TO NODE 1.06 - 697.00
FEET.
FLOW PROCESS FROM NODE 1.06 TO NODE 1.06 IS CODE =
1
____________________________________________________________________________
> > »DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE --
TOTAL NUMBER OF STREAMS - 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) = 8.62
RAINFALL INTENSITY(INCH/HR) = 3.07
AREA -AVERAGED Fm(INCH/HR) - 0.10
AREA -AVERAGED Fp(INCH/HR) - 0.98
AREA -AVERAGED Ap = 0.10
EFFECTIVE STREAM AREA(ACRES) = 1.82
TOTAL STREAM AREA(ACRES) - 1.82
PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.91
FLOW PROCESS FROM NODE 1.07 TO NODE 1.08 IS CODE
21 •
____________________________________________________________________________
»> >RATIONAL METHOD INITIAL SUBAREA ANALYSIS««
»USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA«
INITIAL SUBAREA PLOW-LENGTH(FEET) = 124.00
ELEVATION DATA: UPSTREAM(FEET) = 1139.80 DOWNSTREAM(FEET) =
1137.00
Date: 12/19/08 File name: AREA-A.RES
Page 4
TC - K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
SUBAREA ANALYSIS USED MINIMUM TC(MIN.) - 5.000
* 10 YEAR RAINFALL INTENSITY(INCH/HR) - 4.261
SUBAREA TC AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
COMMERCIAL A 0.49 0.98 0.10 32 5.00
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap - 0.10
SUBAREA RUNOFF(CFS) 1.84
TOTAL AREA(ACRES) 0.49 PEAK FLOW RATE(CFS) . 1.84
###+*########*t#####t++#####+r#r##r#***###*#########rxx######r*####rrx++###x
FLOW PROCESS FROM NODE 1.08 TO NODE 1.09 IS CODE - 51
A•5
____________________________________________________________________________
- -COMPUTE TRAPEZOIDAL CHANNEL FLOW-«
»» TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««
ELEVATION DATA: UPSTREAM(FEET) - 1137.00 DOWNSTREAM(FEET) . 1127.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 391.00 CHANNEL SLOPE = 0.0256
CHANNEL BASE(FEET) . 27.00 "Z+ FACTOR - 1.000
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) . 0.50
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.259
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 1.16 0.98 0.10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) - 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.52
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.31
AVERAGE FLOW DEPTH(FEET) - 0.06 TRAVEL TIME(MIN.) = 2.82
TC(MIN.) . 7.82
SUBAREA AREA(ACRES) = 1.16 SUBAREA RUNOFF(CFS) = 3.30
EFFECTIVE AREA(ACRES) = 1.65 AREA -AVERAGED Fm(INCH/HR) - 0.10
AREA -AVERAGED Fp(INCH/HR) - 0.98 AREA -AVERAGED Ap = 0.10
TOTAL AREA(ACRES) - 1.65 PEAK FLOW RATE(CFS) - 4.70
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.07 FLOW VELOCITY(FEET/SEC.) . 2.64
LONGEST FLOWPATH FROM NODE 1.07 TO NODE 1.09 - 515.00 FEET.
###x#x*++###rrx#######xx*###xxx*##rrxx**#####*########x*#####r##*rrr##*x##+#
FLOW PROCESS FROM NODE 1.09 TO NODE 1.06 IS CODE = 31
____________________________________________________________________________
--COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA-..
»»,USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««4
ELEVATION DATA: UPSTREAM(FEET) 1124.00 DOWNSTREAM(FEET) = 1123.09
FLOW LENGTH(FEET) - 53.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.2 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) = 6.80
ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES . 1
PIPE-FLOW(CFS) - 4.70
PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) = 7.95
LONGEST FLOWPATH FROM NODE 1.07 TO NODE 1.06 = 568.00 FEET.
FLOW PROCESS FROM NODE 1.06 TO NODE 1.06 IS CODE = 1
____________________________________________________________________________
>» »DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE< «<
»»,AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES--
I i ! i f I ! i t I a i t i I I I i t 1 I i f 1 I i I i I i a i ! i ! i l i
Date: 12/19/08 File name: AREA-A.RES Page 5
TOTAL NUMBER OF STREAMS . 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) - 7.95
RAINFALL INTENSITY(INCH/HR) - 3.23
AREA -AVERAGED Fm(INCH/HR) . 0.10
AREA -AVERAGED Fp(INCH/HR) . 0.98
AREA -AVERAGED Ap . 0.10
EFFECTIVE STREAM AREA(ACRES) - 1.65
TOTAL STREAM AREA(ACRES) - 1.65
PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.70
** CONFLUENCE DATA **
STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR)(ACRES) NODE
1 4.91 8.62 3.073 0.98( 0.10) 0.10 1.8 1.01
2 4.70 7.95 3.227 0.98( 0.10) 0.10 1.6 1.07
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
1 9.45 7.95 3.227 0.98( 0.10) 0.10 3.3 1.07
2 9.37 8.62 3.073 0.98( 0.10) 0.10 3.5 1.01
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 9.45 Tc(MIN.) = 7.95
EFFECTIVE AREA(ACRES) = 3.33 AREA -AVERAGED Fm(INCH/HR) . 0.10
AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap . 0.10
TOTAL AREA(ACRES) = 3.47
LONGEST FLOWPATH FROM NODE 1.01 TO NODE 1.06 = 697.00 FEET.
rr++++rr++r+rrrrr+++rrrrrr++r+rrrrr+++++rr+rrrr+++r++rr++rrr++r++rrrr++++++r
FLOW PROCESS FROM NODE 1.06 TO NODE 1.10 IS CODE = 31
____________________________________________________________________________
» COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA-
USING
UBAREA-«>» USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) «<
ELEVATION DATA: UPSTREAM(FEET) . 1123.09 DOWNSTREAM (FEET) - 1122.33
FLOW LENGTH(FEET) = 86.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 21.0 INCH PIPE IS 12.6 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) = 6.29
ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) . 9.45
PIPE TRAVEL TIME(MIN.) = 0.23 TC(MIN.) = 8.17
LONGEST FLOWPATH FROM NODE 1.01 TO NODE 1.10 - 783.00 FEET.
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 3.47 TC(MIN.) . 8.17
EFFECTIVE AREA(ACRES) = 3.33 AREA -AVERAGED FM(INCH/HR)= 0.10
AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap . 0.10
PEAK FLOW RATE(CFS) - 9.45
** PEAK FLOW RATE TABLE **
STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
1 9.45 8.17 3.173 0.98( 0.10) 0.10 3.3 1.07
2 9.37 8.85 3.025 0.98( 0.10) 0.10 3.5 1.01
END OF RATIONAL METHOD ANALYSIS
Date: 12/19/08 File name: AREA-A.RES Page 6
I i a 1 11 11 a! f i [ 1 a 1 1 I [ i 11 E 1 i 1 t 1 t t t! E i a 1 I
Date: 12/19/08 File name: AREA-B.RES Page 1
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
(Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2004 Advanced Engineering Software (aes)
Ver. 10.0 Release Date: 01/01/2004 License ID 1264
Analysis prepared by:
RBF Consulting
14725 Alton Parkway
Irvine, California 92618
»»»»x*x»»»»»»»+ DESCRIPTION OF STUDY
* Area B 10 -YR Hydrology
* 2008-12-15
* 10-105573
FILE NAME: G:\KAISER\AREA-B.DAT
TIME/DATE OF STUDY: 08:23 12/19/2008
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
--*TIME-OF-CONCENTRATION MODEL*
USER SPECIFIED STORM EVENT(YEAR) = 10.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 8.00
SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE . 0.90
*USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
10 -YEAR STORM 60 -MINUTE INTENSITY(INCH/HOUR) = 0.950
100 -YEAR STORM 60 -MINUTE INTENSITY(INCH/HOUR) = 1.400
COMPUTED RAINFALL INTENSITY DATA:
STORM EVENT = 10.00 1 -HOUR INTENSITY(INCH/HOUR) = 0.9595
SLOPE OF INTENSITY DURATION CURVE = 0.6000
*ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
*USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
1 30,0 20.0 0.018/0,018/0.020 y0 67a =2.00 0.0313 0.167 0.0150
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1. Relative Flow -Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) - (Top -of -Curb)
2. (Depth) -(Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
*USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
--FLOW PROCESS FROM NODE- ----2.01-TO NODE --2.02-IS CODE - 21
6-1
_________ _____________________
--RATIONAL METHOD INITIAL SUBAREA ANALYSIS--
-USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA«
INITIAL SUBAREA FLOW-LENGTH(FEET) . 130.00
ELEVATION DATA: UPSTREAM(FEET) = 1140.20 DOWNSTREAM(FEET) = 1138.00
TC . K*[(LENGTH** 3.00)/(ELEVATION CHANGE))**0.20
Date: 12/19/08 File name: AREA-B.RES Page 2
SUBAREA ANALYSIS USED MINIMUM TC(MIN.) . 5.000
* 10 YEAR RAINFALL INTENSITY(INCH/HR) . 4.261
SUBAREA TC AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
COMMERCIAL A 0.14 0.98 0.10 32 5.00
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) . 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap . 0.10
SUBAREA RUNOFF(CFS) = 0.52
TOTAL AREA(ACRES) = 0.14 PEAK FLOW RATE(CFS) - 0.52
FLOW PROCESS FROM NODE 2.02 TO NODE 2.03 IS CODE = 51 +2
__________________________________________________________________________ RVV/
,,-COMPUTE TRAPEZOIDAL CHANNEL FLOW««<
»> TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««
ELEVATION DATA: UPSTREAM(FEET) = 1138.00 DOWNSTREAM(FEET) -
1136.00
CHANNEL LENGTH THRU SUBAREA(FEET) . 180.00 CHANNEL SLOPE -
0.0111
CHANNEL BASE(FEET) . 30.00 •Z" FACTOR . 1.000
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) - 0.50
* 10 YEAR RAINFALL INTENSITY(INCH/HR) . 3.390
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap
SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL)
CN
COMMERCIAL A 0.90 0.98 0.10
32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.89
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.29
AVERAGE FLOW DEPTH(FEET) = 0.05 TRAVEL TIME(MIN.) = 2.32
TC(MIN.) . 7.32
SUBAREA AREA(ACRES) = 0.90 SUBAREA RUNOFF(CFS) = 2.67
EFFECTIVE AREA(ACRES) = 1.04 AREA -AVERAGED Fm(INCH/HR)
= 0.10
AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap = 0.10
TOTAL AREA(ACRES) = 1.04 PEAK FLOW RATE(CFS) =
3.08
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.06 FLOW VELOCITY(FEET/SEC.) = 1.60
LONGEST FLOWPATH FROM NODE 2.01 TO NODE 2.03 = 310.00
FEET.
FLOW PROCESS FROM NODE 2.03 TO NODE 2.04 IS CODE = 51
__________________________________________________________________________
»» >COMPUTE TRAPEZOIDAL CHANNEL FLOW«« <
»»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) -<.
<.
ELEVATION DATA: UPSTREAM(FEET) = 1136.00 DOWNSTREAM(FEET) =
1129.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 225.00 CHANNEL SLOPE .
0.0311
CHANNEL BASE(FEET) = 30.00 "Z" FACTOR - 1.000
MANNING'S FACTOR - 0.015 MAXIMUM DEPTH(FEET) . 0.50
* 10 YEAR RAINFALL INTENSITY(INCH/HR) . 3.045
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap
SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL)
CN
COMMERCIAL A 1.46 0.98 0.10
32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) . 5.03
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.62
AVERAGE FLOW DEPTH(FEET) - 0.06 TRAVEL TIME(MIN.) = 1.43
Tc(MIN.) - 8.76
SUBAREA AREA(ACRES) . 1.46 SUBAREA RUNOFF(CFS) = 3.87
EFFECTIVE AREA(ACRES) . 2.50 AREA -AVERAGED Fm(INCH/HR)
- 0.10
1 i i 1 a 1 a 1 a I f 1 t i I! ! 1 ! 1 ! I ! 1 a 1 a 1 E I t i a 1 [ 1 t 1
Date: 12/19/08 File name: AREA-B.RES
Page 3
AREA -AVERAGED Fp(INCH/HR) = 0.97 AREA -AVERAGED Ap = 0.10
TOTAL AREA(ACRES) = 2.50 PEAK FLOW RATE(CFS) - 6.63
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.07 FLOW VELOCITY(FEET/SEC.) - 3.OD
LONGEST FLOWPATH FROM NODE 2.01 TO NODE 2.04 = 535.00 FEET.
FLOW PROCESS FROM NODE 2.04 TO NODE 2.05 IS CODE = 31
____________________________________________________________________________
»» COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA-..
<,
» >>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) -<,
ELEVATION DATA: UPSTREAM(FEET) = 1125.00 DOWNSTREAM(FEET) = 1124.30
FLOW LENGTH(FEET) = 80.00 MANNING'S N = 0.013
a
DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.2 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) - 5.73
ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 6.63
PIPE TRAVEL TIME(MIN.) = 0.23 TC(MIN.) = 8.99
LONGEST FLOWPATH FROM NODE 2.01 TO NODE 2.05 = 615.00 FEET.
FLOW PROCESS FROM NODE 2.05 TO NODE 2.05 IS CODE - 81
6� 4
PIPE TRAVEL TIME(MIN.) = 0.15 TC(MIN.) = 9.58
F�
____________________________________________________________________________
> »>ADDITION OF SUBAREA TO MAINLINE PEAK
FLOW --MAINLINE
Tc(MIN)===--8=99-�=-
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.997
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 0.44 0.98 0.10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
SUBAREA AREA(ACRES) = 0.44 SUBAREA RUNOFF(CFS) 1.15
EFFECTIVE AREA(ACRES) = 2.94 AREA -AVERAGED Fm(INCH/HR) = 0.10
AREA -AVERAGED Fp(INCH/HR) - 0.98 AREA -AVERAGED AP = 0.10
TOTAL AREA(ACRES) = 2.94 PEAK FLOW RATE(CFS) = 7.67
FLOW PROCESS FROM NODENODE - 31
__-_____-__________-
��Le
-----2.06-IS-CODE
_________________________ -----2.05_TO
>> -COMPUTE COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA«« <
VVV
» » USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««
ELEVATION=DATA:= UPSTREAM(FEET) === 1124.30 a DOWNSTREAM(FEET) _ =1123.00 =
FLOW LENGTH(FEET) = 155.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.6 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) . 5.78
ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 7.67
PIPE TRAVEL TIME(MIN.) . 0.45 TC(MIN.) = 9.43
LONGEST FLOWPATH FROM NODE 2.01 TO NODE 2.06 • 770.00 FEET.
FLOW PROCESS FROM NODE 2.06 TO NODE 2.06 IS CODE - 81
P� 5
____________________________________________________________________________
»» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «
_-MAINLINE =TC(MIN)====-9.43= _
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.911
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
Date: 12/19/08 File name: AREA-B.RES
Page 4
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 1.25 0.98 0.10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, FP(INCH/HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap - 0.10
SUBAREA AREA(ACRES) . 1.25 SUBAREA RUNOFF(CFS) = 3.17
EFFECTIVE AREA(ACRES) = 4.19 AREA -AVERAGED Fm(INCH/HR) = 0.10
AREA -AVERAGED Fp(INCH/HR) - 0.98 AREA -AVERAGED Ap = 0.10
TOTAL AREA(ACRES) = 4.19 PEAK FLOW RATE(CFS) = 10.61
FLOW PROCESS FROM NODE 2.06 TO NODE 2.07 IS CODE = 31
____________________________________________________________________________
»> >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA--<
--USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) -«<
«<
ELEVATION DATA: UPSTREAM(PEET)====1123 00 =DOWNSTREAM(FEET) -= 1121`40 =_
FLOW LENGTH(FEET) = 77.50 MANNING'S N = 0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.5 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) = 8.87
ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 10.61
PIPE TRAVEL TIME(MIN.) = 0.15 TC(MIN.) = 9.58
LONGEST FLOWPATH FROM NODE 2.01 TO NODE 2.07 = 847.50 FEET.
FLOW PROCESS FROM NODE 2.07 TO NODE 2.07 IS CODE = 1
____________________________________________________________________________
» » DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<4 <
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) = 9.58
RAINFALL INTENSITY(INCH/HR) . 2.88
AREA -AVERAGED Fm(INCH/HR) . 0.10
AREA -AVERAGED FP(INCH/HR) - 0.98
AREA -AVERAGED Ap = 0.10
EFFECTIVE STREAM AREA(ACRES) 4.19
TOTAL STREAM AREA(ACRES) - 4.19
PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.61
FROM NODE IS CODE _
��Le
NODE
--
VVV
-----2.09 -21---_-
--2.08-TO
--FLOW-PROCESS
_____________________ ______ ____--________
»> >RATIONAL METHOD INITIAL SUBAREA ANALYSIS< «.
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA«
INITIAL SUBAREA FLOW-LENGTH(FEET) 168.00
ELEVATION DATA: UPSTREAM(FEET) = 1150.45 DOWNSTREAM(FEET) = 1149.00
TC = K*((LENGTH** 3.00)/(ELEVATION CHANGE))**0.20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.106
* 10 YEAR RAINFALL INTENSITY(INCH/HR) . 3.780
SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
COMMERCIAL A 0.11 0.98 0.10 32 6.11
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) - 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
SUBAREA RUNOFF(CFS) = 0.36
TOTAL AREA(ACRES) = 0.11 PEAK FLOW RATE(CFS) - 0.36
FLOW PROCESS FROM NODE 2.09 TO NODE 2.10 IS CODE - 31
________________________________________________________________
I I [ I [ I [ I a I!) E I l I t I I I t I i I E I a I i I a I t I 1 I t I
Date: 12/19/08 File name: AREA-B.RES Page 5
--COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA--
- -USING -USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE PLOW)< «<
ELEVATION DATA: UPSTREAM(FEET) = 1123.60 DOWNSTREAM (FEET) = 1121.85
FLOW LENGTH(FEET) = 269.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 8.000
DEPTH OF FLOW IN 8.0 INCH PIPE IS 3.5 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) = 2.50
ESTIMATED PIPE DIAMETER(INCH) = 8.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 0.36
PIPE TRAVEL TIME(MIN.) = 1.80 Tc(MIN.) = 7.90
LONGEST FLOWPATH FROM NODE 2.08 TO NODE 2.10 = 437.00 FEET.
**f+#r#„Y#f##Yr#r##**r#f+++###,r#rrY**f+#f,####Y*#***##++<,##r#*r*+*x«<rr•�
--FLOW PROCESS FROM NODE 2.10 TO NODE---- 2.10 IS CODE - 81 �Q�J
__________________ -____ _________________________
, »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««
MAINLINE Tc(MIN) - 7.90
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.238
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 1.37 0.98 0.10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap - 0.10
SUBAREA AREA(ACRES) - 1.37 SUBAREA RUNOFF(CFS) = 3.87
EFFECTIVE AREA(ACRES) = 1.48 AREA -AVERAGED Fm(INCH/HR) = 0.10
AREA -AVERAGED Fp(INCH/HR) = 0.97 AREA -AVERAGED Ap = 0.10
TOTAL AREA(ACRES) = 1.48 PEAK FLOW RATE(CFS) = 4.18
--FLOW 13 -4b
-PROCESS FROM NODE -----2.10 TO NODE ------2.10 IS CODE = 81
_________________
____
» >>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
MAINLINE Tc(MIN) - 7.90
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.238
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 0.46 0.98 0.10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) - 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
SUBAREA AREA(ACRES) - 0.46 SUBAREA RUNOFF(CFS) 1.30
EFFECTIVE AREA(ACRES) 1.94 AREA -AVERAGED Fm(INCH/HR) = 0.10
AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap = 0.10
TOTAL AREA(ACRES) 1.94 PEAK FLOW RATE(CFS) = 5.48
#YYrY*#*##**#,<,#,r#„ Y**+#*+#<+,+###rY***f♦«##r#r#**#x*#ff##YY+#**#*#fx<**
FLOW PROCESS FROM NODE 2.10 TO NODE 2.07 IS CODE - 31
____________________________________________________________________________
» >>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA-«
» >>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««<
ELEVATION DATA: UPSTREAM(FEET) = 1121.85 DOWNSTREAM (FEET) = 1121.40
FLOW LENGTH(FEET) = 45.00 MANNING'S N - 0.013
DEPTH OF FLOW IN 15.0 INCH PIPE IS 11.1 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) = 5.65
ESTIMATED PIPE DIAMETER(INCH) - 15.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) - 5.48
PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) = 8.04
LONGEST FLOWPATH FROM NODE 2.08 TO NODE 2.07 = 482.00 FEET.
Date: 12/19/08 File name: AREA-B.RES Page 6
FLOW PROCESS FROM NODE 2.07 TO NODE 2.07 IS CODE = 1
____________________________________________________________________________
--DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE --
__AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES-
= «
=TOTAL NUMBER =OF= STREAMS ===2====
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) - 8.04
RAINFALL INTENSITY(INCH/HR) - 3.21
AREA -AVERAGED Fm(INCH/HR) - 0.10
AREA -AVERAGED Fp(INCH/HR) = 0.98
AREA -AVERAGED Ap = 0.10
EFFECTIVE STREAM AREA(ACRES) = 1.94
TOTAL STREAM AREA(ACRES) = 1.94
PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.48
** CONFLUENCE DATA **
STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
1 10.61 9.58 2.885 0.98( 0.10) 0.10 4.2 2.01
2 5.48 8.04 3.206 0.98( 0.10) 0.10 1.9 2.08
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
1 15.41 8.04 3.206 0.98( 0.10) 0.10 5.5 2.08
2 15.53 9.58 2.885 0.98( 0.10) 0.10 6.1 2.01
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) - 15.53 Tc(MIN.) = 9.58
EFFECTIVE AREA(ACRES) 6.13 AREA -AVERAGED Fm(INCH/HR) - 0.10
AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap = 0.10
TOTAL AREA(ACRES) = 6.13
LONGEST FLOWPATH FROM NODE 2.01 TO NODE 2.07 - 847.50 FEET.
FLOW PROCESS FROM NODE 2.07 TO NODE 2.11 IS CODE = 31
____________________________________________________________________________
» >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA«. <
» >>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««
= ELEVATION DATA: UPSTREAM(FEET) = 1121.40==DOWNSTREAM(FEET) = 1116.40 = `
FLOW LENGTH(FEET) - 500.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.1 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) - 7.44
ESTIMATED PIPE DIAMETER(INCH) - 24.00 NUMBER OF PIPES - 1
PIPE-FLOW(CFS) = 15.53
PIPE TRAVEL TIME(MIN.) = 1.12 Tc(MIN.) = 10.70
LONGEST FLOWPATH FROM NODE 2.01 TO NODE 2.11 = 1347.50 FEET.
FLOW PROCESS FROM NODE 2.11 TO NODE 2.11 IS CODE - 81
____________________________________________________________________________
» >>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-
MAINLINE
LOW« «
AI
MNLINE TC(MIN) = 10.70
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.700
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
11! 1 i 1 E I t!!!! 1 1 i i 1 I! 1 1 t 1 t r[ 1 1 1 a 1 t I i 1 t i
Date: 12/19/08 File name: AREA-B.RES Page 7
COMMERCIAL A 0.53 0.98 0.10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, FP(INCH/HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap - 0.10
SUBAREA AREA(ACRES) - 0.53 SUBAREA RUNOFF(CFS) = 1.24
EFFECTIVE AREA(ACRES) = 6.66 AREA -AVERAGED Fm(INCH/HR) = 0.10
AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap = 0.10
TOTAL AREA(ACRES) 6.66 PEAK FLOW RATE(CFS) = 15.60
++++++x++++++xxxxxxxxxxxxx+xxxxxx+xx+x++xxxxx+++++xx+++++x++++xxx+xxx+++xxxx
FLOW PROCESS FROM NODE 2.11 TO NODE 2.12 IS CODE - 31
--------------------------------------- _____________________________________
»-COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREAcc «
» » USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) «<
ELEVATION DATA: UPSTREAM(FEET) = 1116.40 DOWNSTREAM (FEET) = 1116.00
FLOW LENGTH(FEET) = 57.00 MANNING'S N - 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 17.3 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) = 6.44
ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 15.60
PIPE TRAVEL TIME(MIN.) = 0.15 TC(MIN.) = 10.85
LONGEST FLOWPATH FROM NODE 2.01 TO NODE 2.12 = 1404.50 FEET.
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 6.66 TC(MIN.) = 10.85
EFFECTIVE AREA(ACRES) = 6.66 AREA -AVERAGED FM(INCH/HR)= 0.10
AREA -AVERAGED FP(INCH/HR) = 0.98 AREA -AVERAGED Ap = 0.10
PEAK FLOW RATE(CFS) = 15.60
x+ PEAK FLOW RATE TABLE xx
STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
1 15.44 9.30 2.936 0.98( 0.10) 0.10 6.0 2.08
2 15.60 10.85 2.678 0.98( 0.10) 0.10 6.7 2.01
END OF RATIONAL METHOD ANALYSIS
Date: 12/19/08 File name: AREA-B.RES Page 8
1 1 a 1 4 1 a 1 1 1 [ 1 a 1 t 1 ! i t 1 i 1 ! 1 11 t 1 t 1 k 1 i i i i I i
Date: 12/19/08 File name: AREA-C.RES Page 1
xxr#xr########*x+*x+#*#«###<##xx<###+##*<*x*rr«<rrrr+#«rr+r#<##<#rtrtrtx<*##
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
(ReferenCe: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2004 Advanced Engineering Software (aes)
Ver. 10.0 Release Date: 01/01/2004 License ID 1264
Analysis prepared by:
RBF Consulting
14725 Alton Parkway
Irvine, California 92618
r#x*#r#r###++<####**rt+#<## DESCRIPTION OF STUDY ********+###<##xxx++#r<rr#
* Area C 10 -YR Hydrology
* 2008-10-16
* 10-105573 <
FILE NAME: G:\KAISER\AREA-C.DAT
TIME/DATE OF STUDY: 11:52 12/16/2008
USER SPECIFIED HYDROLOGY =AND HYDRAULIC =MODEL =INFORMATION:
--*TIME-OF-CONCENTRATION MODEL* --
USER SPECIFIED STORM EVENT(YEAR) 10.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 8.00
SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
*USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
10 -YEAR STORM 60 -MINUTE INTENSITY(INCH/HOUR) = 0.950
100 -YEAR STORM 60 -MINUTE INTENSITY(INCH/HOUR) = 1.400
COMPUTED RAINFALL INTENSITY DATA:
STORM EVENT = 10.00 1 -HOUR INTENSITY(INCH/HOUR) - 0.9595
SLOPE OF INTENSITY DURATION CURVE = 0.6000
*ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
*USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
= 1 30 0 20 0 OL018/0 018/0x020 0x67= =2=00 0 0313 OL167 0?0150=
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1, Relative Flow -Depth - 0.00 FEET
as (Maximum Allowable Street Flow Depth) - (Top -of -Curb)
2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
*USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADTUSTMENT NOT SELECTED
<#####<+#xr<<###x+r#<<##<#rt#x#rx*rx+x*##+#«##+xr##« <#x#«<+<###<xrrr+#+#r#
FLOW PROCESS FROM NODE 3.01 TO NODE 3.02 IS CODE = 21 Gr `
____________________________________________________________________________
»» RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
»USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA—
INITIAL SUBAREA FLOW-LENGTH(FEET) = 216.00
ELEVATION DATA: UPSTREAM(FEET) = 1132.00 DOWNSTREAM(FEET) = 1129.95
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
Date: 7.2/19/08 File name: AREA-C.RES Page 2
SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 6.625
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.599
SUBAREA TC AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
COMMERCIAL A %,&1_ 0.98 0.10 32 6.63
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) - 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
SUBAREA RUNOFF(CFS) 1.61
TOTAL AREA(ACRES) = 0.51 PEAK FLOW RATE(CFS) = 1.61
FLOW PROCESS FROM NODE 3.02 TO NODE 3.03 IS CODE - 31
____________________________________________________________________________
> >>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA-..
» >>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) «c
ELEVATION DATA: UPSTREAM(FEET) = 1118.90 DOWNSTREAM(FEET) = 1111.40
FLOW LENGTH(FEET) - 165.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 9.0 INCH PIPE IS 4.4 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) = 7.49
ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) - 1.61
PIPE TRAVEL TIME(MIN.) = 0.37 TC(MIN.) = 6.99
LONGEST FLOWPATH FROM NODE 3.01 TO NODE 3.03 = 381.00 FEET.
FLOW PROCESS FROM NODE 3.03 TO NODE 3.03 IS CODE = 81 G
____________________________________________________________________________
» » ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-
MAINLINE Tc(MIN) = 6.99
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.485
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 0.17 0.98 0.10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
SUBAREA AREA(ACRES) - 0.17 SUBAREA RUNOFF(CFS) 0.52
EFFECTIVE AREA(ACRES) = 0.68 AREA -AVERAGED Fm(INCH/HR) = 0.10
AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap = 0.10
TOTAL AREA(ACRES) = 0.68 PEAK FLOW RATE(CFS) - 2.07
FLOW PROCESS FROM NODE 3.03 TO NODE 3.04 IS CODE = 31
___________________________________________________________________________
» » COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA«c
> > >USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW)<c
ELEVATION DATA: UPSTREAM(FEET) - 1111.40 DOWNSTREAM(FEET) 1110.50
FLOW LENGTH(FEET) = 43.50 MANNING'S N - 0.013
DEPTH OF FLOW IN 9.0 INCH PIPE IS 6.8 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) = 5.80
ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) - 2.07
PIPE TRAVEL TIME(MIN.) = 0.13 TC(MIN.) - 7.12
LONGEST FLOWPATH FROM NODE 3.01 TO NODE 3.04 = 424.50 FEET.
FLOW PROCESS FROM NODE 3.04 TO NODE 3.04 IS CODE = 81 G r5
--ADDITION >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW--
....
1 1 ! 1 ! 1 a 1 ! i 1 l a 1 [ 1 a 1 t f f t [ 1 11 1 1 t 1 11 ! l l 1 [!
Date: 12/19/08 File name: AREA-C.RES Page 3
MAINLINE TC(MIN) = 7.12
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.448
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 0.26 0.98 0.10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
SUBAREA AREA(ACRES) = 0.26 SUBAREA RUNOFF(CFS) 0.78
EFFECTIVE AREA(ACRES) - 0.94 AREA -AVERAGED Fm(INCH/HR) = 0.10
AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap - 0.10
TOTAL AREA(ACRES) = 0.94 PEAK FLOW RATE(CFS) - 2.83
FLOW PROCESS FROM NODE 3.04 TO NODE 3.05 IS CODE = 31
»»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «
» » >USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««<
= ELEVATION DATA: UPSTREAM(FEET)== =1110 50v-DOWNSTREAM(FEET) == 1109.50
FLOW LENGTH(FEET) = 53.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.8 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) - 6.20
ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 2.83
PIPE TRAVEL TIME(MIN.) = 0.14 Tc(MIN.) = 7.26
LONGEST FLOWPATH FROM NODE 3.01 TO NODE 3.05 - 477.50 FEET.
FLOW PROCESS FROM NODE 3.05 TO NODE 3.05 IS CODE - 81 G - A.
>» »ADDITION OF SUBAREA TO MAINLINE PEAK FLOW --
MAINLINE TC(MIN) = 7.26
* 10 YEAR RAINFALL INTENSITY(INCH/HR) - 3.407
SUBAREA LOSS RATE DATA(AMC II):
SCS
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap
SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL)
CN
COMMERCIAL A 0.60 0.98 0.10
32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap - 0.10
SUBAREA AREA(ACRES) - 0.60 SUBAREA RUNOFF(CFS) - 1.79
= 0.10
EFFECTIVE AREA(ACRES) = 1.54 AREA -AVERAGED Fm(INCH/HR)
= 0.10
AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap - 0.10
5.16
TOTAL AREA(ACRES) = 1.54 PEAK FLOW RATE(CFS) =
4.59
FLOW PROCESS FROM NODE 3.05 TO NODE 3.06 IS CODE =
31
--COMPUTE COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «
»> USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««<
ELEVATION DATA: UPSTREAM(FEET) = 1109.50 DOWNSTREAM (FEET) 1109.10
FLOW LENGTH(FEET) = 20.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 12.0 INCH PIPE IS 9.4 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) = 6.92
ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 4.59
PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 7.31
LONGEST FLOWPATH FROM NODE 3.01 TO NODE 3.06 = 497.50 FEET.
FLOW PROCESS FROM NODE 3.06 TO NODE 3.06 IS CODE - 81 CI -15
____________________________________________________________________________
Date: 12/19/08 File name: AREA-C.RES
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW --
MAINLINE Tc(MIN) - 7.31
* 10 YEAR RAINFALL INTENSITY(INCH/HR) - 3.394
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap
SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL)
CN
COMMERCIAL A 0.20 0.98 0.10
32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) - 0.97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
SUBAREA AREA(ACRES) - 0.20 SUBAREA RUNOFF(CFS) = 0.59
EFFECTIVE AREA(ACRES) 1.74 AREA -AVERAGED FM(INCH/HR)
= 0.10
AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap - 0.10
TOTAL AREA(ACRES) = 1.74 PEAK FLOW RATE(CFS) =
5.16
FLOW PROCESS FROM NODE 3.06 TO NODE 3.07 IS CODE -
31
--COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««
» >>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««
= ELEVATION DATA: UPSTREAM(FEET) = 1109.10 DOWNSTREAM(FEET)=== 1107.10
FLOW LENGTH(FEET) = 98.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.3 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) = 7.43
ESTIMATED PIPE DIAMETER(INCH) - 15.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 5.16
PIPE TRAVEL TIME(MIN.) = 0.22 TC(MIN.) - 7.53
LONGEST FLOWPATH FROM NODE 3.01 TO NODE 3.07 = 595.50 FEET.
#*##**ff#fk#+*+**t*##f###+#+*r#f!!##+#*!#######k**++#r+#tkkkk+*k!##r##+##k##
FLOW PROCESS FROM NODE 3.07 TO NODE 3.07 IS CODE = 81 / /
____________________________________________________________________________
» >>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « <
MAINLINE TC(MIN) - 7.53
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.334
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 0.41 0.98 0.10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
SUBAREA AREA(ACRES) - 0.41 SUBAREA RUNOFF(CFS) = 1.19
EFFECTIVE AREA(ACRES) = 2.15 AREA -AVERAGED FM(INCH/HR) - 0.10
AREA -AVERAGED Fp(INCH/HR) - 0.98 AREA -AVERAGED Ap - 0.10
TOTAL AREA(ACRES) - 2.15 PEAK FLOW RATE(CFS) - 6.26
+!##++#+##rr!!!##!!##rl+k++k#!*###k+#+k+*+*##rr###+##kkr####*##!#+#kkf#!##*#
FLOW PROCESS FROM NODE 3.07 TO NODE 3.07 IS CODE = 81
----------------------------------------------------------------------------
- -ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-«
MAINLINE Tc(MIN) = 7.53
* 10 YEAR RAINFALL INTENSITY(INCH/HR) - 3.334
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 0.98 0.98 0.10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) - 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
SUBAREA AREA(ACRES) = 0.98 SUBAREA RUNOFF(CFS) = 2.85
EFFECTIVE AREA(ACRES) = 3.13 AREA -AVERAGED Fm(INCH/HR) - 0.10
AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap = 0.10
a 1 ! 1 a i a I [ 1 a i a 1 t 1 f i t 1 t i f I i i E! t! t# i i i i t f
Date: 12/19/08 File name: AREA-C.RES
Page 5
TOTAL AREA(ACRES) = 3.13 PEAK FLOW RATE(CFS) = 9.12
rss+++x+++x+xrsr+ssss+++x++rsss++xxrrrrsssss+rs++xrrrxxrrs+rs++ssssxxrr+rrrr
NODE 3.07_IS CODE _
n
G+
FLOW PROCESS FROM NODE -81_ -__-_-_-
_
--- ______---------------
1
___________________ -_----3.07-TO-
LOW-=»» ADDITION OF SUBAREA TO MAINLINE PEAK FLOW --
--ADDITION
....= .........
MAINLINE =53________________
=�
s 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.334
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 0.10 0.98 0.10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap - 0.10
SUBAREA AREA(ACRES) - 0.10 SUBAREA RUNOFF(CFS) = 0.29
EFFECTIVE AREA(ACRES) = 3.23 AREA -AVERAGED FM(INCH/HR) . 0.10
AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap = 0.10
TOTAL AREA(ACRES) = 3.23 PEAK FLOW RATE(CFS) = 9.41
+xxx+r+xr+xr+rr+s++++xx+ss+s+++++xx++s+rr++++++xxxxxx+rr+x+++rrrrsss+x++xxxx
FLOW PROCESS FROM NODE 3.07 TO NODE 3.08 IS CODE = 31
____________________________________________________________________________
»» COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««<
ELEVATION DATA: UPSTREAM(FEET) = 1122.50 DOWNSTREAM (FEET) 1120.10
FLOW LENGTH(FEET) = 10.00 MANNING'S N . 0.013
DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.5 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) = 21.75
ESTIMATED PIPE DIAMETER(INCH) - 12.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) - 9.41
PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 7.54
LONGEST FLOWPATH FROM NODE 3.01 TO NODE 3.08 - 605.50 FEET.
xr+srsssrr+sx+xxrssrsr++xxxxxs+srsss+rx+r+xxxr+ssrrs++xxxrr+rrsrrss++s+++xrr
PROCESS FROM NODE NODE 3.08 IS CODE = 81
________________________
C Q
v
-_FLOW
------3.08-TO
________________ _-____
--ADDITION OF SUBAREA TO MAINLINE PEAK FLOW --
MAINLINE TC(MIN) = 7.54
s 10 YEAR RAINFALL INTENSITY(INCH/HR) . 3.332
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 0.75 0.98 0.10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
SUBAREA AREA(ACRES) - 0.75 SUBAREA RUNOFF(CFS) 2.18
EFFECTIVE AREA(ACRES) = 3.98 AREA -AVERAGED FM(INCH/HR) = 0.10
AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap = 0.10
TOTAL AREA(ACRES) 3.98 PEAK FLOW RATE(CFS) = 11.59
ssr+xsr+rsrssr++xsrrrsss++rr++r+rrsrrxssrx+x+rrsrrsrsss+s++xxrsrrs+ssssssrrs
FLOW PROCESS FROM NODE 3.08 TO NODE 3.09 IS CODE . 31
____________________________________________________________________________
»» COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««<
» »>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««<
ELEVATION=DATA: UPSTREAM(FEET)== =1120 10==DOWNSTREAM(FEET) =1116.84=
FLOW LENGTH(FEET) = 50.00 MANNING'S N . 0.013
DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.6 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) = 13.96
ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES 1
Date: 12/19/08 File name: AREA-C.RES
PIPE-FLOW(CFS) 11.59
PIPE TRAVEL TIME(MIN.) - 0.06 TC(MIN.) = 7.59
LONGEST FLOWPATH FROM NODE 3.01 TO NODE 3.09 . 655.50 FEET.
:__ .... _________...... ________... END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 3.98 TC(MIN.) = 7.59
EFFECTIVE AREA(ACRES) = 3.98 AREA -AVERAGED FM(INCH/HR)= 0.10
AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap . 0.10
PEAK FLOW RATE(CFS) = 11.59
END OF RATIONAL METHOD ANALYSIS
6
I 1! i a# a i t i a i i 1 t 1 1 1 t 1! 1 t i 11[ i i 1 t l a 1 1 i a i
Date: 12/19/08 File name: AREA-D.RES
Page 1
- USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) « «
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
(Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2004 Advanced Engineering Software (aes)
Ver. 10.0 Release Date: 01/01/2004 License ID 1264
Analysis prepared by:
RBF consulting
14725 Alton Parkway
Irvine, California 92618
DESCRIPTION OF STUDY
* Area D 10 -YR Hydrology
* 2008-12-16 #
* 10-105573
FILE NAME: G:\KAISER\AREA-D.DAT
TIME/DATE OF STUDY: 09:07 12/17/2008
USER-SPECIFIED_ HYDROLOGY AND HYDRAULIC
-MODEL _INFORMATION:
= -===_________:___
--*TIME-OF-CONCENTRATION MODEL* --
USER SPECIFIED STORM EVENT(YEAR) 10.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 8.00
SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE 0.90
*USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL -
10 -YEAR STORM 60 -MINUTE INTENSITY(INCH/HOUR) 0.950
100 -YEAR STORM 60 -MINUTE INTENSITY(INCH/HOUR) 1.400
COMPUTED RAINFALL INTENSITY DATA:
STORM EVENT . 10.00 1 -HOUR INTENSITY(INCH/HOUR) . 0.9595
SLOPE OF INTENSITY DURATION CURVE = 0.6000
*ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
-USER-DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
1 30.0 =20 0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0 0150=
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1. Relative Flow -Depth . 0.00 FEET
as (Maximum Allowable Street Flow Depth) - (Top -of -Curb)
2. (Depth)*(Velocity) Constraint - 6.0 (FT*FT/S)
ID-2.____________________________________________________________________________
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
FR6M***!#ypi?41►may++4?P.ILN++I`1RRl���lG�r NoV
IUB ZOOg
FLOW PROCESS FROM NODE 4.01 TO NODE 4.01 IS CODE = 7
____________________________________________________________________________
» ».USER SPECIFIED HYDROLOGY INFORMATION AT NODE««
USER-SPECIFIED VALUES ARE AS FOLLOWS:
TC(MIN.) = 41.10 RAINFALL INTENSITY(INCH/HR) = 1.20
EFFECTIVE AREA(ACRES) = 6.60
TOTAL AREA(ACRES) - 168.80 PEAK FLOW RATE(CFS) 16.50
AREA -AVERAGED FM(INCH/HR) = 0.48 AREA -AVERAGED Fp(INCH/HR) = 0.97
Date: 12/19/08 File name: AREA-D.RES Page 2
AREA -AVERAGED Ap = 0.49
NOTE: EFFECTIVE AREA IS USED AS THE TOTAL CONTRIBUTING AREA FOR ALL
CONFLUENCE ANALYSES.
FLOW PROCESS FROM NODE 4.01 TO NODE 4.02 IS CODE - 31
--COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA- -
- USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) « «
ELEVATION DATA: UPSTREAM(FEET) = 1129.77 DOWNSTREAM(FEET) 1128.45
FLOW LENGTH(FEET) = 169.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 17.3 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) - 6.80
ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES 1
PIPE-FLOW(CFS) = 16.50
PIPE TRAVEL TIME(MIN.) . 0.41 TC(MIN.) = 41.51
LONGEST FLOWPATH FROM NODE 4.01 TO NODE 4.02 = 169.00 FEET.
FLOW NODE 4.02 TO NODE 4.02 IS CODE = 81
____________________________________ _____
_PROCESS _FROM
_________________________________
» >.ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-..
MAINLINE Tc(MIN) = 41.51
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.197
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 0.80 0.98 0.10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
SUBAREA AREA(ACRES) = 0.80 SUBAREA RUNOFF(CFS) 0.79
EFFECTIVE AREA(ACRES) 7.40 AREA -AVERAGED FM(INCH/HR) = 0.43
AREA -AVERAGED Fp(INCH/HR) = 0.97 AREA -AVERAGED Ap - 0.45
TOTAL AREA(ACRES) = 169.60 PEAK FLOW RATE(CFS) - 16.50
NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
FLOW PROCESS FROM NODE 4.02 TO NODE 4.03 IS CODE = 31
____________________________________________________________________________
» >>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA——
--USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW)-
LOW) ««
_._==========.._.====______=__=_=====______________________________________=
...
ELEVATION DATA: UPSTREAM(FEET) - 1128.45 DOWNSTREAM(FEET) = 1126.61
FLOW LENGTH(FEET) = 226.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 17.0 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) = 6.92
ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 16.50
PIPE TRAVEL TIME(MIN.) = 0.54 Tc(MIN.) = 42.06
LONGEST FLOWPATH FROM NODE 4.01 TO NODE 4.03 = 395.00 FEET.
4.03 IS CODE 81
ID-2.____________________________________________________________________________
FLOW PROCESS FROM NODE 4.03 TO NODE =
».»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« <
MAINLINE Tc(MIN) = 42.06
* 10 YEAR RAINFALL INTENSITY(INCH/HR) - 1.187
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Pp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 3.36 0.98 0.10 32
! 1 i i 11 1 i 1 i 1 a 1 11 1 11 f 1 ! 1 ! 1 11 1 If 1 1 [ 1 ! 1 11 1 1 1! 1
Date: 12/19/08 File name: AREA-D.RES
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98
SUBAREAAVERAGE PERVIOUS AREA FRACTION, Ap - 0.10
SUBAREA AREA(ACRES) . 3.36 SUBAREA RUNOFF(CFS) = 3.30
EFFECTIVE AREA(ACRES) = 10.76 AREA -AVERAGED Fm(INCH/HR) = 0.33
AREA -AVERAGED Fp(INCH/HR) . 0.97 AREA -AVERAGED Ap - 0.34
TOTAL AREA(ACRES) = 172.96 PEAK FLOW RATE(CFS) - 16.50
NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
FLOW PROCESS FROM NODE 4.03 TO NODE 4.04 IS CODE . 31
--COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA«< c
» » USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) «c<c
ELEVATION DATA: UPSTREAM(FEET) - 1126.61 DOWNSTREAM(FEET) = 1125.90
FLOW LENGTH(FEET) = 114.00 MANNING'S N . 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 19.1 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) = 6.14
ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 16.50
PIPE TRAVEL TIME(MIN.) = 0.31 Tc(MIN.) = 42.37
LONGEST FLOWPATH FROM NODE 4.01 TO NODE 4.04 = 509.00 FEET.
FLOW PROCESS FROM NODE 4.04 TO NODE 4.04 IS CODE = 1
________________________________________________________________
»» DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) = 42.37
RAINFALL INTENSITY(INCH/HR) - 1.18
AREA -AVERAGED Fm(INCH/HR) = 0.33
AREA -AVERAGED Fp(INCH/HR) = 0.97
ARKA-AVERAGED Ap = 0.34
EFFECTIVE STREAM AREA(ACRES) = 10.76
TOTAL STREAM AREA(ACRES) = 172.96
PEAK FLOW RATE(CFS) AT CONFLUENCE = 16.50
FLOW PROCESS FROM NODE 4.05 TO NODE 4.06 IS CODE . 21 1 llo
____________________________________________________________________________
- -RATIONAL METHOD INITIAL SUBAREA ANALYSIS--
USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA -
INITIAL SUBAREA PLOW-LENGTH(FEET) = 238.00
ELEVATION DATA: UPSTREAM(FEET) = 1151.00 DOWNSTREAM(FEET) . 1148.62
TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 6.816
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.539
SUBAREA TC AND LOSS RATE DATA(AMC II).-
DEVELOPMENT
I):DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
COMMERCIAL A 0.52 0.98 0.10 32 6.82
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) . 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
SUBAREA RUNOFF(CFS) = 1.61
TOTAL AREA(ACRES) 0.52 PEAK FLOW RATE(CFS) = 1.61
FLOW PROCESS FROM NODE 4.06 TO NODE 4.07 IS CODE - 31
____________________________________________________________________________
»»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA< <«
Date: 12/19/08 File name: AREA-D.RES
--USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) « c
= ELEVATION DATA; UPSTREAM(FEET) = =1131 30 DOWNSTREAM(FEET) === 1128.65
FLOW LENGTH(PEET) - 52.00 MANNING'S N . 0.013
DEPTH OF FLOW IN 9.0 INCH PIPE IS 4.3 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) - 7.83
ESTIMATED PIPE DIAMETER(INCH) - 9.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 1.61
PIPE TRAVEL TIME(MIN.) = 0.11 Tc(MIN.) . 6.93
LONGEST FLOWPATH FROM NODE 4.05 TO NODE 4.07 = 290.00 FEET.
FLOW PROCESS FROM NODE 4.07 TO NODE 4.07 IS CODE . 81 r 4
____________________________________________________________________________ �1
--ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«<c
MAINLINE TC(MIN) . 6.93
* 10 YEAR RAINFALL INTENSITY(INCH/HR) . 3.505
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 0.29 0.98 0.10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap - 0.10
SUBAREA AREA(ACRES) = 0.29 SUBAREA RUNOFF(CFS) = 0.89
EFFECTIVE AREA(ACRES) = 0.81 AREA -AVERAGED Fm(INCH/HR) . 0.10
AREA -AVERAGED Fp(INCH/HR) = 0.97 AREA -AVERAGED Ap = 0.10
TOTAL AREA(ACRES) = 0.81 PEAK FLOW RATE(CFS) - 2.48
FLOW PROCESS FROM NODE 4.07 TO NODE 4.08 IS CODE - 31
>» »COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA«c
»» >USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) « c
ELEVATION DATA: UPSTREAM(FEET) = 1128.65 DOWNSTREAM(FEET) = 1126.00
FLOW LENGTH(FEET) = 267.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 12.0 INCH PIPE IS 7.7 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) = 4.69
ESTIMATED PIPE DIAMETER(INCH) . 12.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) - 2.48
PIPE TRAVEL TIME(MIN.) = 0.95 Tc(MIN.) . 7.88
LONGEST FLOWPATH FROM NODE 4.05 TO NODE 4.08 . 557.00 FEET.
FLOW PROCESS FROM NODE 4.08 TO NODE 4.08 IS CODE - 81 ID
____________________________________________________________________________
»» ADDITION OF SUBAREA TO MAINLINE PEAK PLOW««<
MAINLINE TC(MIN) - 7.88
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.244
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 1.09 0.98 0.10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
SUBAREA AREA(ACRES) = 1.09 SUBAREA RUNOFF(CFS) = 3.09
EFFECTIVE AREA(ACRES) . 1.90 AREA -AVERAGED Fm(INCH/HR) = 0.10
AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap . 0.10
TOTAL AREA(ACRES) = 1.90 PEAK FLOW RATE(CFS) - 5.38
FLOW PROCESS FROM NODE 4.08 TO NODE 4.04 IS CODE - 31
t I t 1 t l ! i i 1! l f I i i E I t 1 1 1 ! 1 ! i t 1! i ! I t 1! 1 I!
Date: 12/19/08 File name: AREA-D.RES
____________________________________________________________________________
»» COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA«« <
--USING >USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««
= ELEVATION DATA: UPSTREAM(FEET) = 1126.00 DOWNSTREAM (FEET) - 1125.90
FLOW LENGTH(FEET) = 29.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.6 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) = 3.76
ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 5.38
PIPE TRAVEL TIME(MIN.) = 0.13 TC(MIN.) = 8.00
LONGEST FLOWPATH FROM NODE 4.05 TO NODE 4.04 = 586.00 FEET.
FLOW PROCESS FROM NODE 4.04 TO NODE 4.04 IS CODE = 1
____________________________________________________________________________
> »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE< «<
--AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES--
TOTAL
ALUES- <TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) = 8.00
RAINFALL INTENSITY(INCH/HR) = 3.21
AREA -AVERAGED FM(INCH/HR) = 0.10
AREA -AVERAGED Fp(INCH/HR) - 0.98
AREA -AVERAGED Ap = 0.10
EFFECTIVE STREAM AREA(ACRES) = 1.90
TOTAL STREAM AREA(ACRES) - 1.90
PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.38
** CONFLUENCE DATA **
STREAM Q TC Intensity Fp(Fm) Ap As HEADWATER
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
1 16.50 42.37 1.182 0.97( 0.33) 0.34 10.8 4.01
2 5.38 8.00 3.213 0.98( 0.10) 0.10 1.9 4.05
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM Q TC Intensity Fp(Fm) Ap As HEADWATER
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
1 15.92 8.00 3.213 0.97( 0.22) 0.22 3.9 4.05
2 18.37 42.37 1.182 0.97( 0.29) 0.30 12.7 4.01
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 18.37 TC(MIN.) = 42.37
EFFECTIVE AREA(ACRES) = 12.66 AREA -AVERAGED Fm(INCH/HR) = 0.29
AREA -AVERAGED Fp(INCH/HR) = 0.97 AREA -AVERAGED Ap = 0.30
TOTAL AREA(ACRES) - 174.86
LONGEST FLOWPATH FROM NODE 4.05 TO NODE 4.04 = 586.00 FEET.
FLOW PROCESS FROM NODE .4.04 TO NODE 4.09 IS CODE = 31
____________________________________________________________________________
> »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA-«
» >>>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW)--
ELEVATION
LOW)«-ELEVATION DATA: UPSTREAM(FEET) = 1125.90 DOWNSTREAM (FEET) = 1122.20
FLOW LENGTH(FEET) = 316.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 16.1 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) = 8.20
ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 18.37
5
Date: 12/19/08 File name: AREA-D.RES
Page 6
PIPE TRAVEL TIME(MIN.) - 0.64 TC(MIN.) - 43.01
LONGEST FLOWPATH FROM NODE 4.05 TO NODE 4.09 = 902.00
FEET.
FROM TO IS
81
p
FLOW PROCESS _CODE _=
-----4.09
---- ---------------
______________»»ADDITION
_NODE -----4.09 _NODE
_______________________ ___-
ADDITIONLOW-«
OF SUBAREA TO MAINLINE PEAK FLOW --
____..:_____________________________________________________________________
.......
MAINLINE TC(MIN) = 43.01
* 10 YEAR RAINFALL INTENSITY(INCH/HR) - 1.172
SAREA LOSS RATE DATA(AMC II):
UB
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap
SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL)
CN
COMMERCIAL A 0.21 0.98 0.10
32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) . 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap - 0.10
SUBAREA AREA(ACRES) = 0.21 SUBAREA RUNOFF(CFS) = 0.20
EFFECTIVE AREA(ACRES) = 12.87 AREA -AVERAGED Fm(INCH/HR)
= 0.29
AREA -AVERAGED Fp(INCH/HR) - 0.97 AREA -AVERAGED Ap = 0.30
TOTAL AREA(ACRES) = 175.07 PEAK FLOW RATE(CFS)
18.37
NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
ID
FLOW PROCESS FROM NODE 4.09 TO NODE 4.09 IS CODE =
81
____________________________________________________________________________
»» ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
= MAINLINE'TC(MIN)i== 43.01
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.172
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap
SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL)
CN
COMMERCIAL A 0.58 0.98 0.10
32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
SUBAREA AREA(ACRES) = 0.58 SUBAREA RUNOFF(CFS) = 0.56
EFFECTIVE AREA(ACRES) = 13.45 AREA -AVERAGED Fm(INCH/HR)
= 0.28
AREA -AVERAGED Fp(INCH/HR) - 0.97 AREA -AVERAGED Ap = 0.29
TOTAL AREA(ACRES) = 175.65 PEAK FLOW RATE(CFS) =
18.37
NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
FLOW PROCESS FROM NODE 4.09 TO NODE 4.09 IS CODE =
81
____________________________________________________________________________
»-ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
MAINLINE TC(MIN) = 43.01
* 10 YEAR RAINFALL INTENSITY(INCH/HR) - 1.172
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap
SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL)
CN
COMMERCIAL A 0.24 0.98 0.10
32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) . 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
SUBAREA AREA(ACRES) . 0.24 SUBAREA RUNOFF(CFS) 0.23
EFFECTIVE AREA(ACRES) = 13.69 AREA -AVERAGED Fm(INCH/HR)
= 0.28
AREA -AVERAGED FP(INCH/HR) = 0.97 AREA -AVERAGED Ap . 0.29
TOTAL AREA(ACRES) = 175.89 PEAK FLOW RATE(CFS) =
18.37
NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
FLOW PROCESS FROM NODE 4.09 TO NODE 4.10 IS CODE = 31
________________________________________________________________
»> >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA--
11 i I 11 t! a i! i A I a i k 1 1 i t i I i I i!! t I 1 I I I I! i I
Date: 12/19/08 File name: AREA-D.RES
Page 7
--USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) «<c<
ELEVATION DATA: UPSTREAM(FEET) = 1122.20 DOWNSTREAM(FEET) 1120.39
FLOW LENGTH(FEET) = 207.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 18.1 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) = 7.24
ESTIMATED PIPE DIAMETER(INCH) - 24.00 NUMBER OF PIPES - 1
PIPE-FLOW(CFS) = 18.37
PIPE TRAVEL TIME(MIN.) - 0.48 Tc(MIN.) - 43.49
LONGEST FLOWPATH FROM NODE 4.05 TO NODE 4.10 = 1109.00 FEET.
+x+++xss+ss++++ss+*+s++++x+xssss++ssxrxxss++s+xs+xxs ss s+srrrxxs s++srsrxss+++�
FLOW PROCESS FROM NODE--- 4.10 IS CODE = 81
-TO -NODE ------4.10
- ________________________
--ADDITION OF SUBAREA TO MAINLINE PEAR FLOW««<
MAINLINE Tc(MIN) . 43.49
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.164
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
,
COMMERCIAL A 0.38 0.98 0.10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
SUBAREA AREA(ACRES) = 0.38 SUBAREA RUNOFF(CFS) = 0.36
EFFECTIVE AREA(ACRES) = 14.07 AREA -AVERAGED Fm(INCH/HR) = 0.27
AREA -AVERAGED Fp(INCH/HR) - 0.97 AREA -AVERAGED Ap = 0.28
TOTAL AREA(ACRES) - 176.27 PEAK FLOW RATE(CFS) = 18.37
NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
++++xx+s+++srxs++++++rx++++s+rxxss++++xxxx+s++++r+xx+ss++++rx+++++s++xxs+sss
FLOW PROCESS FROM NODE 4.10 TO NODE 4.11 IS CODE = 31
____________________________________________________________________________
»».COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««<
»».USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««
ELEVATION DATA: UPSTREAM(FEET) = 1120.39 DOWNSTREAM(FEET) = 1119.69
FLOW LENGTH(FEET) = 74.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 17.5 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) = 7.50
ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 18.37
PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) = 43.65
LONGEST FLOWPATH FROM NODE 4.05 TO NODE 4.11 - 1183.00 FEET.
xsss++++x+ss++++rxssss++srxxxsss+s+rrtss+ss+++rxsxss++ss+r+xsss+++srt+xxs+ss
FLOW FROM NODE 4.11 TO NODE 4.11 IS CODE 81
PROCESS .
____________________________________________________________________________
»».ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<< c
___________________
MAINLINE TC(MIN) - 43.65
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.161
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 0.95 0.98 0.10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap - 0.10
SUBAREA AREA(ACRES) = 0.95 SUBAREA RUNOFF(CFS) 0.91
EFFECTIVE AREA(ACRES) = 15.02 AREA -AVERAGED FM(I:NCH/HR) . 0.26
AREA -AVERAGED Fp(INCH/HR) - 0.97 AREA -AVERAGED Ap = 0.27
TOTAL AREA(ACRES) = 177.22 PEAK FLOW RATE(CFS) - 18.37
NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
Date: 12/19/08 File name: AREA-D.RES
ss++ss+rrrxxsssss++xxxxssss++xs+++++ss++s+xrs++++xs sss++rxx+++ss
FLOW PROCESS FROM NODE 4.11 TO NODE 4.12 IS CODE = 31
--COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA«<
> » .USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««
ELEVATION DATA: UPSTREAM(FEET) = 1119.69 DOWNSTREAM(FEET) = 1118.90
FLOW LENGTH(FEET) = 97.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 18.7 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) - 7.01
ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 18.37
PIPE TRAVEL TIME(MIN.) = 0.23 TC(MIN.) = 43.88
LONGEST FLOWPATH FROM NODE 4.05 TO NODE 4.12 = 1280.00 FEET.
FLOW PROCESS FROM NODE 4.12 TO NODE 4.12 IS CODE = 81
____________________________________________________________________________
> »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW- <<<
MAINLINE TC(MIN) = 43.88
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.158
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 1.17 0.98 0.10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap . 0.10
SUBAREA AREA(ACRES) = 1.17 SUBAREA RUNOFF(CFS) = 1.12
EFFECTIVE AREA(ACRES) = 16.19 AREA -AVERAGED PM(INCH/HR) = 0.25
AREA -AVERAGED Fp(INCH/HR) = 0.97 AREA -AVERAGED Ap = 0.26
TOTAL AREA(ACRES) = 178.39 PEAK FLOW RATE(CFS) = 18.37
NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
s+s+xxsxss+ss++rrss+sss+rrrsss+++++xssss+++rx+xxx+++rrxxxss++r+r
FLOW PROCESS FROM NODE 4.12 TO NODE 4.13 IS CODE = 31
--COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA--
- USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW --
ELEVATION DATA: UPSTREAM(FEET) = 1118.90 DOWNSTREAM(FEET) = 1118.46
FLOW LENGTH(FEET) . 47.00 MANNING'S N - 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 17.5 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) = 7.46
ESTIMATED PIPE DIAMETER(INCH) . 24.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 18.37
PIPE TRAVEL TIME(MIN.) = 0.10 TC(MIN.) 43.99
LONGEST FLOWPATH FROM NODE 4.05 TO NODE 4.13 = 1327.00 FEET.
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 178.39 TC(MIN.) 43.99
EFFECTIVE AREA(ACRES) = 16.19 AREA -AVERAGED Fm(INCH/HR). 0.25
AREA -AVERAGED Fp(INCH/HR) - 0.97 AREA -AVERAGED Ap = 0.26
PEAK FLOW RATE(CFS) 18.37
** PEAK FLOW RATE TABLE **
STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
1 18.30 9.68 2.866 0.97( 0.16) 0.17 7.5 4.05
2 18.37 43.99 1.156 0.97( 0.25) 0.26 16.2 4.01
END OF RATIONAL METHOD ANALYSIS
I I a I I a 1 a 1 t I f 1 a I a i I I 11 11 11 I I t 1 11 11 I! I i
Date: 12/19/08 File name: AREA-E.RES Page 1
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
(Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2004 Advanced Engineering Software (aes)
Ver. 10.0 Release Date: 01/01/2004 License ID 1264
Analysis prepared by:
RHP Consulting
14725 Alton Parkway
Irvine, California 92618
DESCRIPTION OF STUDY
* Area E 10 -YR Hydrology
* 2008-12-15
* 10-105573
FILE NAME: G:\KAISER\AREA-E.DAT
TIME/DATE OF STUDY: 09:54 12/19/2008
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
--*TIME-OF-CONCENTRATION MODEL* --
USER SPECIFIED STORM EVENT(YEAR) = 10.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
*USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
SLOPE OF INTENSITY DURATION CURVE (LOG (I; IN/HR) vs. LOG(TC;MIN)) = 0.6000
USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) = 0.9500
*ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
*USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0,167 0.0150
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1. Relative Flow -Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) - (Top -of -Curb)
2. (Depth) -(velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
*USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
FLOW PROCESS FROM NODE 5.01 TO NODE 5.02 IS CODE = 21 E �'
____________________________________________________________________________
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA«
INITIAL SUBAREA FLOW-LENGTH(FEET) = 163.00
ELEVATION DATA: UPSTREAM(FEET) = 1140.00 DOWNSTREAM(FEET) = 1136.40
TC - K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 5.000
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 4.219
Date: 12/19/08 File name: AREA-E.RES Page 2
SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp AP SCS Tc
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
COMMERCIAL A 0.16 0.98 0.10 32 5.00
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) . 0.97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, AP = 0.10
SUBAREA RUNOFF(CFS) = 0.59
TOTAL AREA(ACRES) = 0.16 PEAK FLOW RATE(CFS) = 0.59
FLOW PROCESS FROM NODE 5.02 TO NODE 5.03 IS CODE = 61 iL
____________________________________________________________________________
. »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»>(STANDARD CURB SECTION USED)< « <
UPSTREAM= ELEVATION(FEET) . 1136.40= DOWNSTREAM =ELEVATION(FEET)===1133 50
STREET LENGTH(FEET) . 220.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) - 26.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00
INSIDE STREET CROSSFALL(DECIMAL) 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) . 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
Mannings FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150
Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.31
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.23
HALFSTREET FLOOD WIDTH(FEET) = 3.36
AVERAGE FLOW VELOCITY(FEET/SEC.) 2.16
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) - 0.49
STREET FLOW TRAVEL TIME(MIN.) - 1.70 Tc(MIN.) = 6.70
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.540
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 0.46 0.98 0.10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, AP - 0.10
SUBAREA AREA(ACRES) = 0.46 SUBAREA RUNOFF(CFS) = 1.43
EFFECTIVE AREA(ACRES) . 0.62 AREA -AVERAGED Fm(INCH/HR) = 0.10
AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED AP - 0.10
TOTAL AREA(ACRES) = 0.62 PEAK FLOW RATE(CFS) = 1.92
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) . 0.26 HALFSTREET FLOOD WIDTH(FEET) = 5.04
FLOW VELOCITY(FEET/SEC.) . 2.17 DEPTH*VELOCITY(FT*FT/SEC.) = 0.56
LONGEST FLOWPATH FROM NODE 5.01 TO NODE 5.03 = 383.00 FEET.
PLOW PROCESS FROM NODE 5.03 TO NODE 5.04 IS CODE - 61
------ _------- _---- _---- ______---- ____---- ______---- ____--------------------
--COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»>(STANDARD CURB SECTION USED)< «<
......................
=======.===
UPSTREAMELEVATION(FEET)= 1133 50DOWNSTREAMELEVATION(FEET) =1132 40
STREET LENGTH(FEET) = 182.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) = 26.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00
INSIDE STREET CROSSFALL(DECIMAL) = 0.020
11 ! I t! a 1 ! 1 a I 1 1 a 1 ! 1 11 t! t l t i i 1 i t E 1 t l t l i t
Date: 12/19/08 File name: AREA-E.RES
OUTSIDE STREET CROSSFALL(DECIMAL) 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
STREET PARKWAY CROSSFALL(DECIMAL) 0.020
Mannings FRICTION FACTOR for Streetflow Section (curb- to- curb) = 0.0150
Mannings FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) - 2.52
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) a 0.31
HALFSTREET FLOOD WIDTH(FEET) . 7.67
AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.62
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.51
STREET FLOW TRAVEL TIME(MIN.) = 1.81 TC(MIN.) = 8.57
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.054
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 0.45 0.98 0.10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) ¢ 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
SUBAREA AREA(ACRES) = 0.45 SUBAREA RUNOFF(CFS) = 1.20
EFFECTIVE AREA(ACRES) = 1.07 AREA -AVERAGED Fm(INCH/HR) - 0.10
AREA -AVERAGED Fp(INCH/HR) - 0.98 AREA -AVERAGED Ap a 0.10
TOTAL AREA(ACRES) = 1.07 PEAK FLOW RATE(CFS) - 2.85
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) = 8.16
FLOW VELOCITY(FEET/SEC.) = 1.66 DEPTH*VELOCITY(FT*FT/SEC.) = 0.54
LONGEST FLOWPATH FROM NODE 5.01 TO NODE 5.04 = 565.00 FEET.
FLOWPROCESS - -
FROMNODE
_---5.04-TO-NODE_-----5.04-IS CODE ¢ 81
_- -
_____________________
..».ADDITION OF SUBAREA TO MAINLINE PEAK FLOW.c«
MAINLINE TC(MIN) = 8.57
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.054
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 0.30 0.98 0.10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) - 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
SUBAREA AREA(ACRES) - 0.30 SUBAREA RUNOFF(CFS) ¢ 0.80
EFFECTIVE AREA(ACRES) = 1.37 AREA -AVERAGED Fm(INCH/HR) a 0.10
AREA -AVERAGED Fp(INCH/HR) = 0.97 AREA -AVERAGED Ap = 0.10
TOTAL AREA(ACRES) = 1.37 PEAK FLOW RATE(CFS) - 3.65
FLOW PROCESS FROM NODE 5.04 TO NODE 5.05 IS CODE = 31
--COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA«« <
.....USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««c
ELEVATION DATA: UPSTREAM(FEET) . 1129.40 DOWNSTREAM (FEET) = 1128.90
FLOW LENGTH(FEET) = 48.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.4 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) = 5.28
ESTIMATED PIPE DIAMETER(INCH) - 18.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 3.65
PIPE TRAVEL TIME(MIN.) = 0.15 Tc(MIN.) . 8.72
LONGEST FLOWPATH FROM NODE 5.01 TO NODE 5.05 = 613.00 FEET.
Date: 12/19/08 File name: AREA-E.RES Page 4
#Y**fff##YYYrt#*#fff###trt#iff#*f#iii#*1fYtt*Yt**tf #*#ff#*tf##t###
FLOW PROCESS FROM NODE 5.05 TO NODE 5.06 IS CODE = 31
--COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA--
- USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ——
=
ELEVATION DATA: UPSTREAM(FEET)¢- 1128.90= DOWNSTREAM(FEET) =¢=1124 58¢.
FLOW LENGTH(FEET) - 432.00 MANNING'S N ¢ 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.5 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) = 5.21
ESTIMATED PIPE DIAMETER(INCH) - 18.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 3.65
PIPE TRAVEL TIME(MIN.) = 1.38 TC(MIN.) - 10.10
LONGEST FLOWPATH FROM NODE 5.01 TO NODE 5.06 . 1045.00 FEET.
****#####4Yt***ft#Ytt**###f#Y#*1ffYrt#*###Yrtrt**f4f###*****##**rt**1f####*rtk###
FLOW PROCESSFROMNODE5.06TO-NODE -----5.06 IS CODE = 81
V
----------------------
- - _- --- -
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«c«
MAINLINE Tc(MIN) = 10.10
* 10 YEAR RAINFALL INTENSITY(INCH/HR) . 2.767
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 0.76 0.98 0.10 32
SUBAREA AVERAGE PERVIOUS LASS RATE, Fp(INCH/HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap a 0.10
SUBAREA AREA(ACRES) = 0.76 SUBAREA RUNOFF(CFS) = 1.83
EFFECTIVE AREA(ACRES) = 2.13 AREA -AVERAGED Fm(INCH/HR) = 0.10
AREA -AVERAGED Fp(INCH/HR) = 0.97 AREA -AVERAGED Ap = 0.10
TOTAL AREA(ACRES) . 2.13 PEAK FLOW RATE(CFS) a 5.12
#
FLOW PROCESS FROM NODE 5.06 TO NODE 5.07 IS CODE x 31
--.COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA-
>. >USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««<
_________¢=____aa==______=x=______.___=_._.DO'W'N'____=__=__ax=__.D_____a=_
ELEVATION DATA: UPSTREAM (FEET) . 1124_ .58 DOWNSTREAM (FEET) = 1122.00
FLOW LENGTH(FEET) = 254.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.1 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) a 5.71
ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 5.12
PIPE TRAVEL TIME(MIN.) = 0.74 Tc(MIN.) = 10.85
LONGEST FLOWPATH FROM NODE 5.01 TO NODE 5.07 = 1299.00 FEET.
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) . 2.13 TC(MIN.) = 10.85
EFFECTIVE AREA(ACRES) = 2.13 AREA -AVERAGED Fm(INCH/HR)= 0.10
AREA -AVERAGED Fp(INCH/HR) = 0.97 AREA -AVERAGED Ap = 0.10
PEAK FLOW RATE(CFS) a 5.12
END OF RATIONAL METHOD ANALYSIS
I l f 1 a 1 i 1 t I ! i ! 1 a l a i a I r 1 I t 1 a 1 a! f! a i 1 1 a!
Date: 12/19/08 File name: AREA-F.RES
Page 1
SUBAREA TC AND LOSS RATE DATA(AMC II):
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
(Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2004 Advanced Engineering Software (aes)
Ver. 10.0 Release Date: 01/01/2004 License ID 1264
Analysis prepared by:
RBF Consulting
14725 Alton Parkway
Irvine, California 92618
2
DESCRIPTION OF STUDY
* AreaF 10 -YR Hydrology
* 2008-12-15
* 10-105573
FILE NAME: G:\KAISER\AREA-F.DAT
TIME/DATE OF STUDY: 08:35 12/19/2008
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
--*TIME-OF-CONCENTRATION MODEL*
USER SPECIFIED STORM EVENT(YEAR) = 10.00
SPECIFIED MINIMUM PIPE SIZE(INCH) 18.00
SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE - 0.90
*USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
SLOPE OF INTENSITY DURATION CURVE (LOG (I; IN/HR) vs. LOG(Tc;MIN)) = 0.6000
USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) . 0.9500
*ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
*USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
1 30.0 =20 0 = 0.018/0.018/0.020 =0.67 2.00 0.0313 0.167 0.0150
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1. Relative FLOW -Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) - (Top -of -Curb)
2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
*USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
FLOW PROCESS FROM NODE 6.01 TO NODE 6.02 IS CODE . 21
----------------------------------------------------------------------------
--RATIONAL METHOD INITIAL SUBAREA ANALYSIS. «<
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW-LENGTH(FEET) = 150.00
ELEVATION DATA: UPSTREAM(FEET) . 1130.90 DOWNSTREAM(FEET) = 1129.41
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 5.674
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.911
Date: 12/19/08 File name: AREA-F.RES
Page 2
SUBAREA TC AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
COMMERCIAL A 0.44 0.98 0.10 32 5.67
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) . 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
SUBAREA RUNOFF(CFS) 1.51
TOTAL AREA(ACRES) 0.44 PEAK FLOW RATE(CFS) = 1.51
FLOW PROCESS FROM NODE NODE
--- -6.03-IS CODE . 51
2
------6.02-TO-
___________________-________-______-____
»»>COMPUTE TRAPEZOIDAL CHANNEL FLOW. « <
» >>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « «
ELEVATION DATA: UPSTREAM(FEET) = 1129.00 DOWNSTREAM(FEET) = 1125.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 240.00 CHANNEL SLOPE . 0.0167
CHANNEL BASE(FEET) = 27.00 •Z" FACTOR = 1.000
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 0.50
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.250
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 1.10 0.98 0.10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.07
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) . 1.95
AVERAGE FLOW DEPTH(FEET) . 0.06 TRAVEL TIME(MIN.) = 2.05
Tc(MIN.) = 7.72
SUBAREA AREA(ACRES) = 1.10 SUBAREA RUNOFF(CFS) - 3.12
EFFECTIVE AREA(ACRES) 1.54 AREA -AVERAGED Fm(INCH/HR) = 0.10
AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap = 0.10
TOTAL AREA(ACRES) = 1.54 PEAK FLOW RATE(CFS) . 4.37
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.07 FLOW VELOCITY(FEET/SEC.) . 2.20
LONGEST FLOWPATH FROM NODE 6.01 TO NODE 6.03 = 390.00 FEET.
FLOW PROCESS FROM NODE 6.03 TO NODE 6.04 IS CODE - 31
____________________________________________________________________________
» -COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) <«
ELEVATION DATA: UPSTREAM(FEET) 1125.00 DOWNSTREAM(FEET) = 1124.00
FLOW LENGTH(FEET) - 37.00 MANNING'S N . 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.3 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) = 7.85
ESTIMATED PIPE DIAMETER(INCH) - 18.00 NUMBER OF PIPES 1
PIPE-FLOW(CFS) = 4.37
PIPE TRAVEL TIME(MIN.) . 0.08 Tc(MIN.) = 7.80
LONGEST FLOWPATH FROM NODE 6.01 TO NODE 6.04 427.00 FEET.
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 1.54 TC(MIN.) = 7.80
EFFECTIVE AREA(ACRES) = 1.54 AREA -AVERAGED FM(INCH/HR)= 0.10
AREA -AVERAGED Fp(INCH/HR) . 0.98 AREA -AVERAGED Ap = 0.10
PEAK FLOW RATE(CFS) = 4.37
END OF RATIONAL METHOD ANALYSIS
[ i a i 1 i t i t i [ i 1 i a i f i f l 1! i i [ i t i i 1 i 1 i 1 1! [ 1
Date: 12/19/08 File name: AREA-G.RES Page 1
++rxrrrr+rrx+rrrr++rr+**rrr+rrrr++r+*xr++r+rr+*rr+rr+++rrrrr rrrr+rrrr++rxx+r
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
(Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2004 Advanced Engineering Software (aes)
Ver. 10.0 Release Date: 01/01/2004 License ID 1264
Analysis prepared by:
RBF Consulting
14725 Alton Parkway
Irvine, California 92618
rrxr++r+r+r+xxxrrrr+xx+r++ DESCRIPTION OF STUDY *+x+rr++xrr+*rx+++rrr+rrrr
* Area G 10 -YR Hydro
* 2008-12-15
* 10-105573 '
rxr+r++xrrrrr+rxr++xr+++rrr+rrrr+++rrx+rrrr+rrr+++xrr+rrxx+++r+rxxrr++rx++
FILE NAME: G:\KAISER\AREA-G.DAT
TIME/DATE OF STUDY: 08:41 12/19/2008
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
--'TIME-OF-CONCENTRATION MODEL* --
USER SPECIFIED STORM EVENT(YEAR) 10.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
*USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
SLOPE OF INTENSITY DURATION CURVE (LOG (I; IN/HR) VS. LOG(TC;MIN)) = 0.6000
USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) = 0.9500
*ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
*USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT -/PABX- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
1 30 0 =20 0 0 018/09018/09020 =0 67 2900 0 0313 09167 0 0150
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1. Relative Flow -Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) - (Top -of -Curb)
2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
*USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
+xr++xr+x+rr+*rx+rrrrrxrr+rx++rr+r+rx+rrrrr+rxrrrr+rrr+rr+xrr++r+rx*rrrrrxxr
FLOW PROCESS FROM NODE- ---7.01 TO NODE---- -7.02 IS CODE = 21 '
_____ ____---- ____--
RATIONAL
_»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
»USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA—
INITIAL SUBAREA FLOW-LENGTH(FEET) < 141.00
ELEVATION DATA: UPSTREAM(FEET) = 1129.30 DOWNSTREAM(FEET) = 1128.00
TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.618
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.934
Date: 12/19/08 File name: AREA-G.RES Page 2
SUBAREA TC AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
COMMERCIAL A 0.62 0.98 0.10 32 5.62
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
SUBAREA RUNOFF(CFS) = 2.14
TOTAL AREA(ACRES) = 0.62 PEAK FLOW RATE(CFS) = 2.14
rr++rxxxrrrrrrxr++rrrrrxrrrrrxxxr+rrrxxr+rrrr++rrrr+rrr+rrr+rrrr+rrrrr++++++
FLOW PROCESS FROM NODE 7.02 TO NODE----- 7.03 IS CODE = 51
-----------------------" _____--- ------------------"-�
--COMPUTE TRAPEZOIDAL CHANNEL FLOW-..
» >>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)c<
ELEVATION DATA: UPSTREAM(FEET) = 1128.00 DOWNSTREAM(FEET) = 1125.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 240.00 CHANNEL SLOPE = 0.0125
CHANNEL BASE(FEET) - 27.00 "Z" FACTOR = 1.000
MANNING'S FACTOR < 0.015 MAXIMUM DEPTH(FEET) - 0.50
* 10 YEAR RAINFALL INTENSITY(INCH/HR) - 3.292
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 1.58 0.98 0.10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) - 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap - 0.10
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) < 4.41
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.06
AVERAGE FLOW DEPTH(FEET) = 0.08 TRAVEL TIME(MIN.) - 1.94
Tc(MIN.) = 7.56
SUBAREA AREA(ACRES) = 1.58 SUBAREA RUNOFF(CFS) = 4.54
EFFECTIVE AREA(ACRES) = 2.20 AREA -AVERAGED Fm(INCH/HR) = 0.10
AREA -AVERAGED Fp(INCH/HR) = 0.97 AREA -AVERAGED Ap = 0.10
TOTAL AREA(ACRES) - 2.20 PEAK FLOW RATE(CFS) = 6.33
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.10 FLOW VELOCITY(FEET/SEC.) - 2.42
LONGEST FLOWPATH FROM NODE 7.01 TO NODE 7.03 = 381.00 FEET.
++rrr++xxr rrrr+rrrr++*xrx+rrrr+x+*rrrxrrrrrr+xrrrr+r+rrrr++xx+rrr++xxxrrrrrr
FLOW PROCESS FROM NODE 7.03 TO NODE 7.04 IS CODE = 31
____________________________________________________________________________
> »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA- <
» >>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW)c<
ELEVATION DATA: UPSTREAM(FEET) = 1122.50 DOWNSTREAM(FEET) = 1122.00
FLOW LENGTH(FEET) = 45.00 MANNING'S N < 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.1 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) = 6.22
ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) < 6.33
PIPE TRAVEL TIME(MIN.) - 0.12 Tc(MIN.) = 7.68
LONGEST FLOWPATH FROM NODE 7.01 TO NODE 7.04 = 426.00 FEET.
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 2.20 TC(MIN.) 7.68
EFFECTIVE AREA(ACRES) 2.20 AREA -AVERAGED Fm(INCH/HR)= 0.10
AREA -AVERAGED Fp(INCH/HR) = 0.97 AREA -AVERAGED Ap = 0.10
PEAK FLOW RATE(CFS) 6.33
END OF RATIONAL METHOD ANALYSIS
A i a i a 1 a a 1 t 1 t 1 a 1 ! 1 I i Bill 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Date: 12/19/08 File name: AREA-H.RES
Page 1
SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 6.276
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
(Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2004 Advanced Engineering Software (aea)
Ver. 10.0 Release Date: 01/01/2004 License ID 1264
Analysis prepared by:
RBF Consulting
14725 Alton Parkway
Irvine, California 92618
DESCRIPTION OF STUDY **++xxxx++#+xx##+++++++xx#
* Area H 10 -YR Hydrology
* 2008-12-16
* 10-105573
FILE NAME: G:\KAISER\AREA-H.DAT
TIME/DATE OF STUDY: 08:43 12/19/2008
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
--*TIME-OF-CONCENTRATION MODEL* --
USER SPECIFIED STORM EVENT(YEAR) = 10.00
SPECIFIED MINIMUM PIPE SIZE(INCH) . 8.00
SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
*USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
10 -YEAR STORM 60 -MINUTE INTENSITY(INCH/HOUR) = 0.950
100 -YEAR STORM 60 -MINUTE INTENSITY(INCH/HOUR) 1.400
COMPUTED RAINFALL INTENSITY DATA:
STORM EVENT = 10.00 1 -HOUR INTENSITY(INCH/HOUR) = 0.9595
SLOPE OF INTENSITY DURATION CURVE = 0.6000
*ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
*USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
==1 30.0 20.0 0.018/0 018/0.020 0.67 2.00 0.0313 0.167 0.0150
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1,Relative Flow -Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) - (Top -of -Curb)
2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
*USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
+++xxxx+++x!#!ltxxxlt++++xxxxx+!#+x+x+#+++++xxxx++++xxxxx+++++xt*+##++++xxx*
FLOW PROCESS FROM NODE 8.01 TO NODE 8.02 IS CODE - 21
____________________________________________________________________________
» —RATIONAL METHOD INITIAL SUBAREA ANALYSIS--
USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA«
INITIAL SUBAREA FLOW-LENGTH(FEET) - 219.00
ELEVATION DATA: UPSTREAM(FEET) = 1137.80 DOWNSTREAM(FEET) = 1135.00
TC = K*((LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
Date: 12/19/08 File name: AREA-H.RES
Page 2
SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 6.276
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.718
SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
COMMERCIAL A 1.06 0.98 0.10 32 6.28
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
SUBAREA RUNOFF(CFS) = 3.45
TOTAL AREA(ACRES) = 1.06 PEAK FLOW RATE(CFS) - 3.45
FLOW PROCESS FROM NODE 8.02 TO NODE 8.03 IS CODE - 51
____________________________________________________________________________
» >>COMPUTE TRAPEZOIDAL CHANNEL FLOWc <
» » TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)—...
ELEVATION DATA: UPSTREAM(FEET) = 1135.00 DOWNSTREAM(FEET) = 1129.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 87.00 CHANNEL SLOPE = 0.0690
CHANNELBASE(FEET) = 27.00 "Z• FACTOR = 1.000
MANNING .S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 0.50
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.574
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 0.31 0.98 0.10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) - 3.94
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.39
AVERAGE FLOW DEPTH(FEET) = 0.04 TRAVEL TIME(MIN.) = 0.43
TC(MIN.) - 6.70
SUBAREA AREA(ACRES) = 0.31 SUBAREA RUNOFF(CFS) = 0.97
EFFECTIVE AREA(ACRES) 1.37 AREA -AVERAGED Pm(INCH/HR) = 0.10
AREA -AVERAGED Fp(INCH/HR) - 0.98 AREA -AVERAGED Ap - 0.10
TOTAL AREA(ACRES) - 1.37 PEAK FLOW RATE(CFS) = 4.29
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) - 0.05 FLOW VELOCITY(FEET/SEC.) = 3.26
LONGEST FLOWPATH FROM NODE 8.01 TO NODE 8.03 = 306.00 FEET.
FLOW PROCESS FROM NODE 8.03 TO NODE 8.04 IS CODE = 31
----------------------------------------------------------------------------
» >>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREAc. «
»» USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) « —
ELEVATION DATA: UPSTREAM(FEET) = 1126.00 DOWNSTREAM(FEET) - 1124.24
FLOW LENGTH(FEET) = 176.00 MANNING'S N - 0.013
DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.2 INCHES
PIPE -FLOW VELOCITY(FEET/SEC.) - 5.41
ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES - 1
PIPE-FLOW(CFS) - 4.29
PIPE TRAVEL TIME(MIN.) - 0.54 TC(MIN.) 7.25
LONGEST FLOWPATH FROM NODE 8.01 TO NODE 8.04 - 482.00 FEET.
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) 1.37 TC(MIN.) = 7.25
EFFECTIVE AREA(ACRES) = 1.37 AREA -AVERAGED Fm(INCH/HR)= 0.10
AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap = 0.10
PEAK FLOW RATE(CFS) 4.29
END OF RATIONAL METHOD ANALYSIS
C'
C
r -I
r
E
u
Cl
7
B. Appendix B — Hydraulics Calculations
y
H:%Pdata%10105573WdmiovepoAaW-drola9YXFMC Ormite HYdrdogy.doe X
HEADING LINE NO 1 IS -
ZEADING LINE NO 2 IS -
r
°"BEADING LINE NO 3 IS -
so
no
r
m
sr
err
d
9
a
4
F 0 5 1 5 P
WATER SURFACE PROFILE - TITLE CARD LISTING
KAISER MEDICAL CENTER 10-105573
LINE B
2008-12-17
No
""DATE: 12/19/2008
TIME: 11: 5
4.
dw
F0515P
WATER SURFACE PROFILE - CHANNEL DEFINITI
*■CARD
SECT
CHN
NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(1) Y(2
CODE
NO
TYPE
PIERS WIDTH DIAMETER WIDTH DROP
CD
24
4
2.00
CD
18
4
1.50
CD
12
4
1.00
CD
8
4
0.67
wrr
F
W
rr
E
am
No
rrr
on
do
00
rrr
r
F 0 5 1
5 P
WATER SURFACE
PROFILE —
ELEMENT CARD LISTING
rri
ELEMENT
NO
1
IS
A
SYSTEM OUTLET
U/S DATA
STATION
INVERT
SECT
43.59
1116.00
24
r
am
ELEMENT
NO
2
IS
A
REACH
U/S DATA
STATION
INVERT
SECT
N
+m
96.00
1116.34
24
0.013
mm
ELEMENT
NO
3
IS
A
TRANSITION
irr
U/S DATA
STATION
INVERT
SECT
N
100.00
1116.40
24
0.013
ELEMENT
NO
4
IS
A
REACH
r
U/S DATA
STATION
INVERT
SECT
N
289.02
1118.54
24
0.013
a�.
r
ELEMENT
NO
5
IS
A
TRANSITION
U/S DATA
STATION
INVERT
SECT
N
293.02
1118.58
24
0.013
rr�
ELEMENT
NO
6
IS
A
REACH
..
U/S DATA
STATION
INVERT
SECT
N
577.88
1121.40
24
0.013
r
ELEMENT
NO
7
IS
A
JUNCTION
U/S DATA
STATION
INVERT
SECT LAT -1
LAT -2
N Q3
Prr
581.88
1121.42
24 18
0
0.013 5
ELEMENT
NO
8
IS
A
REACH
U/S DATA
STATION
INVERT
SECT
N
r
697.42
1123.00
24
0.013
�r
ELEMENT
NO
9
IS
A
JUNCTION
r
U/S DATA
STATION
INVERT
SECT LAT -1
LAT -2
N Q3
701.42
1123.20
24 12
0
0.013 3
am
ELEMENT
NO
10
IS
A
REACH
U/S DATA
STATION
INVERT
SECT
N
.s
853.57
1124.72
24
0.013
r
ELEMENT
NO
11
IS
A
JUNCTION
*
*
* *
U/S DATA
STATION
INVERT
SECT LAT -1
LAT -2
N Q3
854.57
1124.73
24 8
0
0.013 1
r
err
wu
+rr
'
r
rrr
rrt
F 0 5 1 5 P
ELEMENT NO 14 IS A REACH
U/S DATA STATION INVERT SECT N
974.62 1127.00 12 0.013
mWARNING - ADJACENT SECTIONS ARE NOT IDENTICAL - SEE SECTION NUMBERS AND CHANNEL
em ELEMENT NO 15 IS A SYSTEM HEADWORKS
an U/S DATA STATION INVERT SECT
974.62 1127.00 24
=NO EDIT ERRORS ENCOUNTERED -COMPUTATION IS NOW BEGINNING
** WARNING NO. 2 ** - WATER SURFACE ELEVATION GIVEN IS LESS THAN OR EQUALS INVER
�w
rr►
rrr
0
■w
to
m
to
w
do
A
w
wr
Mw
WATER SURFACE
PROFILE
- ELEMENT
CARD LISTING
ELEMENT NO
12 IS A REACH
*�•
U/S DATA
STATION
INVERT
SECT
N
934.27
1125.53
24
0.013
NO
13 IS A TRANSITION
,ELEMENT
U/S DATA
STATION
INVERT
SECT
N
935.27
1125.63
12
0.013
ELEMENT NO 14 IS A REACH
U/S DATA STATION INVERT SECT N
974.62 1127.00 12 0.013
mWARNING - ADJACENT SECTIONS ARE NOT IDENTICAL - SEE SECTION NUMBERS AND CHANNEL
em ELEMENT NO 15 IS A SYSTEM HEADWORKS
an U/S DATA STATION INVERT SECT
974.62 1127.00 24
=NO EDIT ERRORS ENCOUNTERED -COMPUTATION IS NOW BEGINNING
** WARNING NO. 2 ** - WATER SURFACE ELEVATION GIVEN IS LESS THAN OR EQUALS INVER
�w
rr►
rrr
0
■w
to
m
to
w
do
A
w
wr
Mw
.m
"'LICENSEE:
R.B.F. &
ASSOC. -
SAN DIEGO
F0515P
WATER
SURFACE
PROFILE LISTING
KAISER MEDICAL
CENTER 10-105573
LINE B
2008-12-17
STATION
INVERT
DEPTH
W.S.
Q
VEL
VEL
ENERGY
SUPE
ELEV
OF FLOW
ELEV
HEAD
GRD.EL.
ELEV
.�
L/ELEM
SO
SF AVE
HF
43.59
1116.00
2.770
1118.770
16.0
5.09
0.403
1119.173
0.0
52.41
0.00649
.005002
0.26
96.00
1116.34
2.692
1119.032
16.0
5.09
0.403
1119.435
0.0
TRANS STR
0.01500
.005002
0.02
m
100.00
1116.40
2.652
1119.052
16.0
5.09
0.403
1119.455
0.0
103.20
0.01132
.004955
0.51
203.20
1117.57
2.000
1119.568
16.0
5.09
0.403
1119.971
0.0
21.64
0.01132
.004641
0.10
ror
224.84
1117.81
1.814
1119.627
16.0
5.34
0.443
1120.070
0.0
�r
8.10
0.01132
.004531
0.04
232.94
1117.90
1.706
1119.611
16.0
5.60
0.488
1120.099
0.0
�r
HYDRAULIC
JUMP
MR
232.94
1117.90
1.194
1119.099
16.0
8.18
1.039
1120.138
0.0
dr
56.08
0.01132
.010608
0.59
289.02
1118.54
1.243
1119.783
16.0
7.80
0.944
1120.727
0.0
■.TRANS STR
0.01000
.009964
0.04
293.02
1118.58
1.243
1119.823
16.0
7.80
0.944
1120.767
0.0
..
165.13
0.00990
.009965
1.65
arr
458.15
1120.21
1.243
1121.458
16.0
7.80
0.944
1122.402
0.0
81.61
0.00990
.009680
0.79
am
539.76
1121.02
1.268
1122.291
16.0
7.62
0.901
1123.192
0.0
'�
27.95
0.00990
.008866
0.25
OR
*1,ICENSEE:
R.B.F. &
ASSOC. - SAN DIEGO
F0515P
WATER
SURFACE
PROFILE LISTING
KAISER MEDICAL
CENTER 10-105573
LINE
B
2008-12-17
STATION
INVERT
DEPTH
W.S.
Q
VEL
VEL
ENERGY
SUPE
ELEV
OF FLOW
ELEV
HEAD
GRD.EL.
ELEV
wAL/ELEM
SO
SF AVE
HF
567.71
1121.30
1.321
1122.620
16.0
7.26
0.819
1123.439
0.0
wr
8.15
0.00990
.007881
0.06
575.86
1121.38
1.379
1122.759
16.0
6.92
0.744
1123.503
0.0
2.02
0.00990
.007020
0.01
ew
577.88
1121.40
1.442
1122.842
16.0
6.60
0.676
1123.518
0.0
m"JUNCT STR
0.00500
.004448
0.02
581.88
1121.42
2.203
1123.623
10.8
3.44
0.183
1123.806
0.0
ww
17.85
0.01367
.002257
0.04
.r
599.73
1121.66
2.000
1123.664
10.8
3.44
0.183
1123.847
0.0
wA
trr
14.40
0.01367
.002115
0.03
w,
614.13
1121.86
1.814
1123.675
10.8
3.61
0.202
1123.877
0.0
7.57
0.01367
.002063
0.02
�.
621.70
1121.96
1.706
1123.670
10.8
3.78
0.222
1123.892
0.0
r
5.75
0.01367
.002233
0.01
w.
r
627.45
1122.04
1.618
1123.661
10.8
3.97
0.244
1123.905
0.0
4w
4.77
0.01367
.002458
0.01
632.22
1122.11
1.540
1123.648
10.8
4.16
0.269
1123.917
0.0
.w
1.85
0.01367
.002636
0.00
634.07
1122.13
1.512
1123.645
10.8
4.24
0.279
1123.924
0.0
,WHYDRAULIC
JUMP
634.07
1122.13
0.903
1123.036
10.8
7.84
0.955
1123.991
0.0
30.84
0.01367
.012191
0.38
ww
rrr
ww
m
LICENSEE:
R.B.F. & ASSOC. - SAN DIEGO
F0515P
WATER
SURFACE
PROFILE LISTING
No
KAISER MEDICAL
CENTER 10-105573
LINE
B
2008-12-17
STATION
INVERT
DEPTH
W.S.
Q
VEL
VEL
ENERGY
SUPE
W
ELEV
OF FLOW
ELEV
HEAD
GRD.EL.
ELEV
�.L/ELEM
SO
SF AVE
HF
664.91
1122.56
0.936
1123.491
10.8
7.47
0.867
1124.358
0.0
14.50
0.01367
.010717
0.16
�.
679.41
1122.75
0.972
1123.726
10.8
7.13
0.789
1124.515
0.0
8.19
0.01367
.009437
0.08
687.60
1122.87
1.009
1123.875
10.8
6.80
0.717
1124.592
0.0
4.89
0.01367
.008313
0.04.
692.49
1122.93
1.048
1123.981
10.8
6.48
0.652
1124.633
0.0
A.
3.03
0.01367
.007326
0.02
695.52
1122.97
1.088
1124.062
10.8
6.18
0.593
1124.655
0.0
wr
1.51
0.01367
.006463
0.01
�+
697.03
1122.99
1.131
1124.126
10.8
5.89
0.539
1124.665
0.0
0.39
0.01367
.005704
0.00
.�
697.42
1123.00
1.178
1124.178
10.8
5.61
0.489
1124.667
0.0
JUNCT STR
0.05000
.003360
0.01
701.42
1123.20
1.510
1124.710
7.7
3.03
0.142
1124.852
0.0
�.
6.25
0.00999
.001452
0.01
707.67
1123.26
1.442
1124.704
7.7
3.17
0.156
1124.860
0.0
5.54
0.00999
.001623
0.01
713.21
1123.32
1.380
1124.698
7.7
3.33
0.172
1124.870
0.0
5.00
0.00999
.001821
0.01
,r
718.21
1123.37
1.322
1124.690
7.7
3.49
0.189
1124.879
0.0
m
w
4.29
0.00999
.002048
0.01
m
WtICENSEE:
R.B.F. &
ASSOC. - SAN DIEGO
F0515P
WATER
SURFACE
PROFILE LISTING
KAISER
MEDICAL
CENTER 10-105573
LINE
B
2008-12-17
STATION
INVERT
DEPTH
W.S.
Q
VEL
VEL
ENERGY
SUPE
ELEV
OF FLOW
ELEV
HEAD
GRD.EL.
ELEV
L/ELEM
SO
SF AVE
HF
722.50
1123.41
1.269
1124.680
7.7
3.66
0.208
1124.888
0.0
3.92
0.00999
.002308
0.01
726.42
1123.45
1.218
1124.668
7.7
3.84
0.229
1124.897
0.0
1.20
0.00999
.002608
0.00
727.62
1123.46
1.171
1124.633
7.7
4.03
0.252
1124.885
0.0
, "HYDRAULIC
JUMP
727.62
1123.46
0.802
1124.264
7.7
6.54
0.665
1124.929
0.0
57.72
0.00999
.010044
0.58
785.34
1124.04
0.804
1124.842
7.7
6.51
0.658
1125.500
0.0
+rr
48.26
0.00999
.009372
0.45
*�
833.60
1124.52
0.834
1125.355
7.7
6.21
0.599
1125.954
0.0
13.86
0.00999
.008230
0.11
847.46
1124.66
0.864
1125.523
7.7
5.92
0.544
1126.067
0.0
6.11
0.00999
.007229
0.04
.w
853.57
1124.72
0.897
1125.617
7.7
5.64
0.494
1126.111
0.0
mJUNCT STR
0.01000
.009272
0.01
854.57
1124.73
0.708
1125.438
6.6
6.63
0.682
1126.120
0.0
.�
15.31
0.01004
.012462
0.19
869.88
1124.88
0.687
1125.571
6.6
6.90
0.739
1126.310
0.0
12.60
0.01004
.014079
0.18
m
882.48
1125.01
0.664
1125.674
6.6
7.24
0.813
1126.487
0.0
an
m
9.66
0.01004
.016070
0.16
w.
m
OLICENSEE:
R.B.F. &
ASSOC. - SAN DIEGO
F0515P
WATER
SURFACE
PROFILE LISTING
KAISER MEDICAL
CENTER 10-105573
LINE
B
2008-12-17
INVERT
DEPTH
W.S.
Q
VEL
VEL
ENERGY
SUPE
,,STATION
ELEV
OF FLOW
ELEV
HEAD
GRD.EL.
ELEV
..L/ELEM
SO
SF AVE
HF
892.14
1125.11
0.641
1125.748
6.6
7.59
0.894
1126.642
0.0
r.
8.12
0.01004
.018341
0.15
900.26
1125.19
0.619
1125.808
6.6
7.96
0.984
1126.792
0.0
7.10
0.01004
.020942
0.15
907.36
1125.26
0.598
1125.858
6.6
8.34
1.081
1126.939
0.0
6.35
0.01004
.023922
0.15
913.71
1125.32
0.578
1125.902
6.6
8.75
1.190
1127.092
0.0
5.78
0.01004
.027341
0.16
919.49
1125.38
0.559
1125.941
6.6
9.18
1.308
1127.249
0.0
+�
5.28
0.01004
.031246
0.16
924.77
1125.43
0.540
1125.975
6.6
9.64
1.442
1127.417
0.0
■.
4.91
0.01004
.035708
0.18
w
929.68
1125.48
0.522
1126.006
6.6
10.11
1.586
1127.592
0.0
■r
4.59
0.01004
.040833
0.19
■r
934.27
1125.53
0.505
1126.035
6.6
10.59
1.743
1127.778
0.0
=TRANS STR
0.10000
.038562
0.04
935.27
1125.63
0.830
1126.460
6.6
9.47
1.392
1127.852
0.0
22.35
0.03482
.032769
0.73
957.62
1126.41
0.855
1127.263
6.6
9.23
1.323
1128.586
0.0
4m
17.00
0.03482
.030978
0.53
+s..
974.62
1127.00
0.910
1127.910
6.6
8.80
1.202
1129.112
0.0
,rr
sm
vo
rrr
HEADING LINE NO 1 IS —
an
aw
.iEADING LINE NO 2 IS -
m
0"qEADING LINE NO 3 IS -
m
rrr
r..
.r
r
rr
AM
m
■r
so
m
an
�r
er.
F 0 5 1 5 P
WATER SURFACE PROFILE - TITLE CARD LISTING
KAISER MEDICAL CENTER 10-105573
LINE B
2008-12-17
,m
'bATE: 12/19/2008
TIME: 11: 5
F0515P
WATER SURFACE PROFILE - CHANNEL DEFINITI
mu CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(1) Y(2
m CODE NO TYPE PIERS WIDTH DIAMETER WIDTH DROP
CD 18 4 1.50
CD 12 4 1.00
y
0
'm
"m
ON
w
M
0
0
d
go
err
rr
C
rr
F 0 5
1 5 P
WATER SURFACE
PROFILE -
ELEMENT
CARD LISTING
rrr
ELEMENT
NO
1 IS
A
SYSTEM OUTLET
..,
U/S DATA STATION
INVERT
SECT
581.88
1121.42
18
ELEMENT
NO
2 IS
A
REACH
U/S DATA STATION
INVERT
SECT
N
rw
624.21
1121.59
18
0.013
ELEMENT
NO
3 IS
A
JUNCTION
U/S DATA STATION
INVERT
SECT LAT -1
LAT -2
N Q3
625.21
1121.60
18 12
0
0.013 5
ELEMENT
NO
4 IS
A
REACH
ON
U/S DATA STATION
INVERT
SECT
N
764.38
1122.22
18
0.013
ELEMENT
NO
5 IS
A
TRANSITION
U/S DATA STATION
INVERT
SECT
N
+R
768.38
1122.24
12
0.013
ELEMENT
NO
6 IS
A
REACH
U/S DATA STATION
INVERT
SECT
N
858.30
1123.41
12
0.013
ELEMENT
NO
7 IS
A
SYSTEM HEADWORKS
U/S DATA STATION
INVERT
SECT
858.30
1123.41
12
NO EDIT
ERRORS
ENCOUNTERED -COMPUTATION IS
NOW BEGINNING
*�** WARNING
NO.
2 **
- WATER SURFACE ELEVATION GIVEN IS LESS
THAN OR
EQUALS INVER
go
err
rr
C
emEjICENSEE:
R.B.F. &
ASSOC. -
SAN DIEGO
F0515P
WATER
SURFACE
PROFILE LISTING
*�
KAISER MEDICAL
CENTER 10-105573
LINE B
�r
2008-12-17
STATION
INVERT
DEPTH
W.S.
Q
VEL
VEL
ENERGY
SUPE
ELEV
OF FLOW
ELEV
HEAD
GRD.EL.
ELEV
as
L/ELEM
SO
SF AVE
HF
.w,
581.88
1121.42
2.230
1123.650
5.5
3.11
0.150
1123.800
0.0
42.33
0.00402
.002742
0.12
..
624.21
1121.59
2.176
1123.766
5.5
3.11
0.150
1123.916
0.0
00
JUNCT STR
0.01000
.001378
0.00
am
625.21
1121.60
2.317
1123.917
0.4
0.23
0.001
1123.918
0.0
..�
139.17
0.00445
.000015
0.00
764.38
1122.22
1.699
1123.919
0.4
0.23
0.001
1123.920
0.0
TRANS STR
0.00500
.000071
0.00
768.38
1122.24
1.677
1123.917
0.4
0.51
0.004
1123.921
0.0
52.52
0.01301
.000124
0.01
.,
820.90
1122.92
1.000
1123.923
0.4
0.51
0.004
1123.927
0.0
7.09
0.01301
.000117
0.00
827.99
1123.02
0.907
1123.923
0.4
0.53
0.004
1123.927
0.0
4.16
0.01301
.000114
0.00
832.15
1123.07
0.853
1123.923
0.4
0.56
0.005
1123.928
0.0
3.37
0.01301
.000123
0.00
835.52
1123.11
0.809
1123.923
0.4
0.59
0.005
1123.928
0.0
2.99
0.01301
.000136
0.00
838.51
1123.15
0.770
1123.923
0.4
0.62
0.006
1123.929
0.0
2.68
0.01301
.000151
0.00
wr
841.19
1123.19
0.735
1123.922
0.4
0.65
0.006
1123.928
0.0
2.44
0.01301
.000168
0.00
er
'
,w
owLICENSEE:
R.B.F. &
ASSOC. -
SAN DIEGO
F0515P
WATER
SURFACE
PROFILE LISTING
,�.
KAISER MEDICAL
CENTER 10-105573
LINE B
rrw
2008-12-17
STATION
INVERT
DEPTH
W.S.
Q
VEL
VEL
ENERGY
SUPE
ELEV
OF FLOW
ELEV
HEAD
GRD.EL.
ELEV
L/ELEM
SO
SF AVE
HF
*■
843.63
1123.22
0.703
1123.922
0.4
0.68
0.007
1123.929
0.0
2.28
0.01301
.000189
0.00
845.91
1123.25
0.673
1123.922
0.4
0.71
0.008
1123.930
0.0
2.13
0.01301
.000211
0.00
m
848.04
1123.28
0.645
1123.921
0.4
0.75
0.009
1123.930
0.0
,..
1.96
0.01301
.000238
0.00
850.00
1123.30
0.619
1123.921
0.4
0.78
0.010
1123.931
0.0
1.81
0.01301
.000269
0.00
ww
851.81
1123.33
0.595
1123.921
0.4
0.82
0.010
1123.931
0.0
1.73
0.01301
.000304
0.00
853.54
1123.35
0.572
1123.920
0.4
0.86
0.011
1123.931
0.0
1.65
0.01301
.000344
0.00
�.
855.19
1123.37
0.550
1123.920
0.4
0.90
0.013
1123.933
0.0
rrr
1.48
0.01301
.000391
0.00
856.67
1123.39
0.530
1123.919
0.4
0.95
0.014
1123.933
0.0
1.48
0.01301
.000442
0.00
w.
858.15
1123.41
0.510
1123.918
0.4
0.99
0.015
1123.933
0.0
0.15
0.01301
.000473
0.00
rw
858.30
1123.41
0.508
1123.918
0.4
1.00
0.015
1123.933
0.0
on
+r
r
+rrr
40
rr
on
qM
Page 1
air
Lat
A-l.txt
air
Manning Pipe calculator
Given Input Data:
shape .......................
circular
�.,
solving for .....................
Depth of Flow
Diameter ........................
1.5000
ft
Flowrate ........................
4.1000
cfs
slope ........................
0.0100
ft/ft
manning's n .....................
0.0130
computed Results:
Depth ...........................
0.6719
ft
Area...........................
1.7671
ft2
wetted Area .....................
0.7666
ft2
wetted Perimeter ................
2.1997
ft
Perimeter .......................
4.7124
ft
velocity ... ..................
5.6610
fps
Hydraulic Radius ................
0.3485
ft
Percent Full ....................
44.7939 %
Full flow Flowrate ..............
10.5043
cfs
Full flow velocity ..............
5.9442
fps
critical Information
critical depth ..................
0.7988
ft
critical slope ..................
0.0055
ft/ft
critical velocity ...............
4.5363
fps
critical area ...................
0.9567
ft2
criticalperimeter ..............
2.4537
ft
critical hydraulic radius .......
0.3899
ft
critical top width ..............
1.5000
ft
specific energy .................
1.1699
ft
Minimum energy ..................
1.1982
ft
Froude number ...................
1.3922
Flow condition ..................
supercritical
40
rr
on
qM
Page 1
a.r
.m
as
rrr
.n
aw
am
to
on
r
am
wr
Page 1
OM
OW
Lat
A-2 . txt
�,.
Manning Pipe calculator
,.
Given Input Data:
Shape........................
circular
rrr
Solving for .....................
Depth of Flow
Diameter ........................
1.5000 ft
Flowrate ........................
0.9000 cfs
Slope ........................
0.0100 ft/ft
manning's n .....................
0.0130
computed Results:
Depth ...........................
0.3064 ft
Area...........................
1.7671 ft2
wetted Area .....................
0.2593 ft2
wetted Perimeter ................
1.4069 ft
Perimeter .......................
4.7124 ft
velocity .... ....I ...1 --l",
3.7021 fps
Hydraulic Radius ................
0.1843 ft
Percent Full ....................
20.4264 %
Full flow Flowrate ..............
10.5043 cfs
Full flow velocity
5.9442 fps
..............
a.r
.m
as
rrr
.n
aw
am
to
on
r
am
wr
Page 1
OM
OW
M
on fiat A-3.txt
.. Manning Pipe Calculator
MW
MM
AW
40
OW
me
,W
Page 1
Given Input Data:
shape .......................
Circular
AN
solving for .....................
Depth of Flow
Diameter ........................
1.5000
ft
Flowrate ........................
4.7000
cfs
slope ........................
0.0100
ft/ft
wr
Manning's n .....................
0.0130
.,�
Computed Results:
Depth ...........................
0.7159
ft
�.
Area ..........................
1.7671
ft2
wetted Area .....................
0.8325
ft2
wetted Perimeter ................
2.2881
ft
Perimeter .......................
4.7124
ft
ar
velocity..: ..................
5.8258
fps
Hydraulic Radius ................
0.3638
ft
Percent Full ....................
47.7295
%
Full flow Flowrate ..............
10.5043
cfs
Full flow velocity ..............
5.9442
fps
critical Information
An
Critical depth ..................
0.8466
ft
#„
Critical slope.................
0.0057
ft/ft
Critical velocity ...............
4.7157
fps
Critical area ...................
1.0285
ft2
�.
Criticalperimeter ..............
2.5494
ft
ft
Critical hydraulic radius .......
0.4034
Critical top width ..............
1.5000
ft
specific energy .................
1.2434
ft
�.
Minimum energy ..................
1.2699
ft
Froude number ...................
1.3779
Flow condition ..................
supercritical
MW
MM
AW
40
OW
me
,W
Page 1
,.
Orr
"a
.■
4W
�r
OW
wa
aw
go
dw
4M
AW
Page 1
gat
A-4 . txt
Manning Pipe calculator
,.
Given Input Data:
shape........................
Circular
rr
solving for .....................
Depth of
Flow
Diameter ........................
1.5000
ft
Flowrate ........................
9.5000
cfs
slope ........................
0.0100
ft/ft
.�
manning's n .....................
0.0130
computed Results:
Depth ...........................
1.1542
ft
r..
Area ..........................
1.7671
ft2
wetted Area .....................
1.4591
ft2
wetted Perimeter ................
3.2099
ft
Perimeter .......................
4.7124
ft
velocity ... ..................
6.7577
fps
Hydraulic Radius ................
0.4546
ft
Percent Full ....................
76.9462
%
Full flow Flowrate ..............
10.5043
cfs
Full flow velocity ..............
5.9442
fps
Critical Information
critical depth ..................
1.2110
ft
critical slope .................
0.0069
ft/ft
Critical velocity ...............
6.2599
fps
Critical area ...................
1.5751
ft2
criticalperimeter ..............
3.2782
ft
ft
Critical hydraulic radius .......
0.4805
Critical top width ..............
1.5000
ft
specific energy .................
1.8502
ft
Minimum energy ..................
1.8165
ft
Froude number ...................
1.2346
Flow condition ..................
supercritical
,.
Orr
"a
.■
4W
�r
OW
wa
aw
go
dw
4M
AW
Page 1
�.. Lat B -l. txt
Manning Pipe calculator
err
r
9
arr
®n
AW
err
E
Page 1
Given Input Data:
Shape........................
circular
solving for .....................
Depth of
Flow
Diameter ........................
0.6700
ft
Flowrate ........................
1.2000
cfs
slope ........................
0.1900
ft/ft
manning's n .....................
0.0110
computed Results:
..
Depth ...........................
0.2064
ft
MW
Area ..........................
0.3526
ft2
wetted Area .....................
0.0923
ft2
wetted Perimeter ................
0.7884
ft
Perimeter .......................
2.1049
ft
velocity .... ..................
14.0890
fps
Hydraulic Radius ................
0.1170
ft
Percent Full ....................
30.8022
%
Full flow Flowrate ..............
6.3084
cfs
Full flow velocity ..............
17.8928
fps
�r
critical Information
critical depth
0.5382
ft
..................
critical slope ..................
0.0064
ft/ft
rr
critical velocity ...............
4.1614
fps
critical area ...................
0.3124
ft2
critical perimeter ..............
1.4587
ft
critical hydraulic radius .......
0.2142
ft
critical top width ..............
0.6700
ft
specific energy .................
3.2912
ft
Minimum energy ..................
0.8072
ft
Froude number ...................
6.4316
Flow condition ..................
Supercritical
err
r
9
arr
®n
AW
err
E
Page 1
aw
fiat
B-2.txt
.A
dw
Manning Pipe calculator
Given Input Data:
shape
circular
solving for .....................
Depth of Flow
Diameter ........................
0.6700 ft
Flowrate ........................
3.2000 cfs
slope ........................
0.2000 ft/ft
Manning's n .....................
0.0110
computed Results:
..
Depth ...........................
0.3407 ft
Area ..........................
0.3526 ft2
wetted Area .....................
0.1801 ft2
wetted Perimeter ................
1.0639 ft
Perimeter .......................
2.1049 ft
velocity ... ..................
18.4888 fps
r
Hydraulic Radius ................
0.1693 ft
Percent Full ....................
50.8524 %
Full flow Flowrate ..............
6.4723 cfs
Full flow velocity ..............
18.3577 fps
wr
MW
am
qM
wr
rrr
OW
dw
on
aw
Page 1
Page 1
fiat
B-3.txt
err
Manning Pipe calculator
..,
Given Input Data:
Shape .......................
circular
err
Solving for .....................
Depth of Flow
Diameter ........................
0.6700
ft
Flowrate ........................
1.2100
cfs
,,.
slope ........................
0.0500
ft/ft
�.
Manning s n .....................
0.0110
„!
computed Results:
Depth ...........................
0.2838
ft '
MW
Area... .........................
0.3526
ft2
wetted Area .....................
0.1421
ft2
wetted Perimeter ................
0.9496
ft
a,
Perimeter .......................
2.1049
ft
velocity ... ..................
8.5145
fps
aw
Hydraulic Radius ................
0.1496
ft
Percent Full ....................
42.3576 %
Full flow Flowrate ..............
3.2361
cfs
Full flow velocity ..............
9.1788
fps
critical Information
critical depth ..................
0.5204
ft
critical slope ..................
0.0063
ft/ft
critical velocity ...............
4.0264
fps
critical area ...................
0.3005
ft2
criticalperimeter ..............
1.4233
ft
ft
critical hydraulic radius .......
0.2111
ar
critical top width ..............
0.6700
ft
Specific energy .................
1.4104
ft
Minimum energy ..................
0.7806
ft
Froude number ...................
3.2402
e�
Flow condition ..................
supercritical
rr
Page 1
0
10
0
4M
ON
a.
aw
y
4
8
Page 1
err
Lat
B-4.txt
rr
Manning Pipe calculator
Given Input Data:
Shape
circular
�r
.......................
solving for .....................
Depth of Flow
Diameter ........................
0.8300 ft
Flowrate ........................
5.2000 cfs
Slope ........................
0.1850 ft/ft
rrr
Manning's n .....................
0.0110
computed Results:
Depth ...........................
0.4012 ft
■,.
Area ..........................
0.5411 ft2
wetted Area .....................
0.2591 ft2
wetted Perimeter ................
1.2762 ft
Perimeter .......................
2.6075 ft
a,
velocity .... ..................
20.0709 fps
Hydraulic Radius ................
0.2030 ft
Percent Full ....................
48.3379 %
""
Full flow Flowrate ..............
11.0189 cfs
Full flow velocity ..............
20.3653 fps
aw
0
10
0
4M
ON
a.
aw
y
4
8
Page 1
d►
am
ON
air
IM
40
Page 1
.ir
Lat
B-5.txt
Manning Pipe calculator
.�
Given Input Data:
MM
shape ...........................
circular
solving for .....................
Depth of Flow
Diameter ........................
0.6700
ft
Flowrate ........................
1.3000
cfs
slope ........................
0.0085
ft/ft
Manning's n .....................
0.0110
computed Results:
*`
Depth ...........................
0.5342
ft
Area ..........................
0.3526
ft2
OW
wetted Area .....................
0.3014
ft2
wetted Perimeter ................
1.4792
ft
�.
Perimeter .......................
2.1049
ft
velocity ... ..................
4.3129
fps
Hydraulic Radius ................
0.2038
ft
Percent Full ....................
79.7372
%
�*
Full flow Flowrate ..............
1.3343
cfs
Full flow velocity ..............
3.7845
fps
critical Information
-+
critical depth ..................
0.5382
ft
critical slope .................
0.0064
ft/ft
critical velocity ...............
4.1614
fps
critical area ...................
0.3124
ft2
.�
criticalperimeter ..............
1.4587
ft
critical hydraulic radius .......
0.2142
ft
critical top width ..............
0.6700
ft
specific energy .................
0.8137
ft
�+.
Minimum energy ..................
0.8072
ft
Froude number ...................
1.1674
+r
Flow condition ..................
supercritical
d►
am
ON
air
IM
40
Page 1
Lat C-l.txt
Wrr Manning Pipe Calculator
,■,
Given Input Data:
Shape
Circular
rrrr
Solving for .....................
Depth of Flow
Diameter ........................
0.8300
ft
Flowrate ........................
1.6100
cfs
slope ........................
0.0660
ft/ft
�,.
manning's n .....................
0.0110
Computed Results:
Depth
0.2796
ft
�.,
...........................
Area ..........................
0.5411
ft2
wetted Area .....................
0.1602
ft2
wetted Perimeter ................
1.0280
ft
Perimeter .......................
2.6075
ft
velocity ........................
10.0503 fps
Hydraulic Radius ................
0.1558
ft
Percent Full ....................
33.6897 %
Full flow Flowrate ..............
6.5815
cfs
Full flow velocity ..............
12.1640 fps
critical Information
critical depth ..................
0.5696
ft
critical slope ..................
0.0055
ft/ft
critical velocity ...............
4.0368
fps
critical area ...................
0.3988
ft2
criticalperimeter ..............
1.6129
ft
ft
critical hydraulic radius .......
0.2473
critical top width ..............
0.8300
ft
Specific energy .................
1.8493
ft
Minimum energy ..................
0.8544
ft
Froude number ...................
3.9213
Flow condition ..................
Supercritical
Page 1
Page 1
rrr
Lat
C-2.txt
Manning Pipe Calculator
Given Input Data:
Shape
Circular
�r
.......................
solving for .....................
Depth of Flow
Diameter ........................
0.8300
ft
Flowrate
1.6100
cfs
Slope ........................
0.0100
ft/ft
�.
manning's n .....................
0.0110
Computed Results:
Depth ...........................
0.4771
ft
.�
Area...........................
0.5411
ft2
wetted Area .....................
0.3219
ft2
wetted Perimeter ................
1.4284
ft
Perimeter .......................
2.6075
ft
velocity ... ..................
5.0023
fps
Hydraulic Radius ................
0.2253
ft
Percent Full ....................
57.4776 %
Full flow Flowrate ..............
2.5618
cfs
Full flow velocity ..............
4.7348
fps
critical Information
Critical depth
0.5696
ft
..................
Critical slope ..................
0.0055
ft/ft
�r
Critical velocity ...............
4.0368
fps
Critical area ...................
0.3988
ft2
criticalperimeter
1.6129
ft
..............
Critical hydraulic radius .......
0.2473
ft
Critical top width ..............
0.8300
ft
specific energy .................
0.8658
ft
Minimum energy ..................
0.8544
ft
Froude number ...................
1.4169
Flow condition ..................
Supercritical
err
Page 1
r
fiat C-3.txt
..
Manning Pipe Calculator
�r
rr
ur
rn
aw
4M
do
M
aw
r
Page 1
Given Input Data:
shape
Circular
.......................
Solving for .....................
Depth of Flow
Diameter ........................
1.0000
ft
Flowrate ........................
4.5900
cfs
Slope
0.0200
ft/ft
........................
Manning's n .....................
0.0110
computed Results:
Depth ...........................
0.6587
ft
wr
Area ..........................
0.7854
ft2
wetted Area .....................
0.5487
ft2
wetted Perimeter ................
1.8938
ft
Perimeter .......................
3.1416
ft
velocity ... ....................
8.3652
fps
Hydraulic Radius ................0.2897
ft
Percent Full ....................
65.8711 %
Full flow Flowrate
5.9547
cfs
..............
Full flow velocity ..............
7.5817
fps
Critical Information
*"
Critical depth ..................
0.8926
ft
Critical slope ..................
0.0060
ft/ft
Critical velocity ...............
5.8451
fps
Critical area ...................
0.7853
ft2
Criticalperimeter ..............
2.3559
ft
Critical hydraulic radius .......
0.3333
ft
Critical top width ..............
1.0000
ft
specific energy .................
1.7484
ft
^�*
Minimum energy ..................
1.3389
ft
Froude number ...................
2.0000
Flow condition ..................
supercritical
�r
rr
ur
rn
aw
4M
do
M
aw
r
Page 1
4M
,rr
Lat C-4.txt
Manning Pipe calculator
Page 1
Given Input Data:
shape
Circular
.......................
solving for .....................
Depth of
Flow
Diameter ........................
0.6700
ft
Flowrate ........................
0.7800
cfs
slope ........................
0.0100
ft/ft
Manning's n .....................
0.0110
rir
Computed Results:
�*
Depth ...........................
0.3503
ft
Area...........................
0.3526
ft2
wetted Area .....................
0.1865
ft2
wetted Perimeter ................
1.0830
ft
Perimeter .......................
2.1049
ft
velocity ... ..................
4.1817
fps
Hydraulic Radius ................
0.1722
ft
Percent Full ....................
52.2825
*�
Full flow Flowrate ..............
1.4472
cfs
Full flow velocity ..............
4.1049
fps
critical Information
*�
Critical depth ..................
0.4170
ft
Critical slope .................
0.0056
ft/ft
Critical velocity ...............
3.3733
fps
critical area ...................
0.2312
ft2
--
Criticalperimeter ..............
1.2164
ft
critical hydraulic radius .......
0.1901
ft
Critical top width ..............
0.6700
ft
specific energy .................
0.6220
ft
Minimum energy ..................
0.6255
ft
Froude number ...................
1.3973
+�
Flow condition ..................
Supercritical
Page 1
on
fiat C-5.txt
Manning Pipe Calculator
an
am
ar.r
F
M
OW
so
me
y
Page 1
d
Given Input Data:
shape
Circular
.......................
solving for .....................
Depth of Flow
Diameter ........................
0.6700
ft
Flowrate ........................
1.7900
cfs
slope ........................
0.0480
ft/ft
Manning's n .....................
0.0110
computed Results:
*�
Depth ...........................
0.3603
ft
Area ..........................
0.3526
ft2
wetted Area .....................
0.1932
ft2
wetted Perimeter ................
1.1030
ft
*■
Perimeter .......................
2.1049
ft
velocity .....................
9.2652
fps
Hydraulic Radius ................
0.1752
ft
Percent Full ....................
53.7711 %
*■
Full flow Flowrate ..............
3.1708
cfs
Full flow velocity ..............
8.9934
fps
+.w
an
am
ar.r
F
M
OW
so
me
y
Page 1
d
�r
gat C-6.txt
�r Manning Pipe Calculator
AW
dW
do
do
Page 1
Given Input Data:
shape ........................
Circular
solving for .....................
Depth of
Flow
Diameter ........................
0.6700
ft
Flowrate ........................
0.5900
cfs
slope ........................
0.0240
ft/ft
Manning s n .....................
0.0110
Computed Results:
Depth ...........................
0.2346
ft
Area..........................
0.3526
ft2
wetted Area .....................
0.1100
ft2
wetted Perimeter ................
0.8485
ft
Perimeter .......................
2.1049
ft
velocity ... ..................
5.3619
fps
Hydraulic Radius ................
0.1297
ft
Percent Full ....................
35.0149
%
�•
Full flow Flowrate ..............
2.2421
cfs
Full flow velocity ..............
6.3593
fps
Critical Information
..
Critical depth ..................
0.3604
ft
critical slope .................
0.0052
ft/ft
Critical velocity ...............
3.0521
fps
Critical area ...................
0.1933
ft2
••
Criticalperimeter ..............
1.1033
ft
Critical hydraulic radius .......
0.1752
ft
«�
Critical top width ..............
0.6700
ft
specific energy .................
0.6814
ft
�,.
Minimum energy ..................
0.5406
ft
Froude number ...................
2.2783
Flow condition ..................
Supercritical
AW
dW
do
do
Page 1
Page 1
+w
Lat
C-7.txt
Manning Pipe Calculator
Given Input Data:
Shape ........................
Circular
solving for .....................
Depth of Flow
Diameter ........................
0.6700
ft
Flowrate ........................
1.1900
cfs
slope ........................
0.0200
ft/ft
Manning's n .....................
0.0110
■r
computed Results:
Depth ...........................
0.3668
ft
Area...........................
0.3526
ft2
wetted Area .....................
0.1976
ft2
wetted Perimeter ................
1.1162
ft
°^
Perimeter .......................
2.1049
ft
velocity ... ..................
6.0229
fps
Hydraulic Radius ................
0.1770
ft
Percent Full ....................
54.7512 %
Full flow Flowrate ..............
2.0467
cfs
Full flow velocity ..............
5.8052
fps
rr
critical Information
*�
Critical depth ..................
0.5163
ft
Critical slope .................
0.0063
ft/ft
Critical velocity ...............
3.9966
fps
critical area ...................
0.2978
ft2
w.
Criticalperimeter ..............
1.4150
ft
ft
Critical hydraulic radius .......
0.2104
Critical top width ..............
0.6700
ft
Specific energy .................
0.9306
ft
Minimum energy ..................
0.7744
ft
Froude number ...................
1.9556
Flow condition ..................
Supercritical
Page 1
..
fiat
C-9.txt
Manning Pipe Calculator
4M
Given Input Data:
Shape ........................
Circular
solving for .....................
Depth of Flow
r�
Diameter ........................
1.0000
ft
Flowrate ........................
2.1800
cfs
"'
Slope ........................
0.0060
ft/ft
manning's n .....................
0.0110
computed Results:
'*
Depth ...........................
0.5980
ft
Area ..........................
0.7854
ft2
dw
wetted Area .....................
0.4901
ft2
wetted Perimeter ................
1.7681
ft
*�
Perimeter .......................
3.1416
ft
velocity ... ..................
4.4484
fps
Hydraulic Radius ................
0.2772
ft
Percent Full ....................
59.7995
%
-■
Full flow Flowrate ..............
3.2615
cfs
Full flow velocity ..............
4.1527
fps
critical Information
*�*
Critical depth ..................
0.6311
ft
Critical slope .................
0.0049
ft/ft
+w
Critical velocity ...............
4.1623
fps
Critical area ...................
0.5238
ft2
�-
Criticalperimeter ..............
1.8329
ft
Critical hydraulic radius .......
0.2858
ft
,r
critical top width ..............
1.0000
ft
specific energy .................
0.9050
ft
-•
Minimum energy ..................
0.9466
ft
Froude number ...................
1.1215
�+
Flow condition ..................
supercritical
w
V
M
0
Page 1
q"
4W
Lat D-1.txt
rr
Manning Pipe Calculator
0
E
4
0
rrr
E
0
y
Page 1
Given Input Data:
shape .......................
Circular
solving for .....................
Depth of
Flow
Diameter ........................
0.6700
ft
Flowrate ........................
0.8900
cfs
*�
Slope ........................
0.3560
ft/ft
manning's n .....................
0.0110
Computed Results:
�.
Depth ...........................
0.1453
ft
Area ..........................
0.3526
ft2
wetted Area .....................
0.0563
ft2
wetted Perimeter ................
0.6490
ft
Perimeter .......................
2.1049
ft
velocity ... ..................
15.8001 fps
Hydraulic Radius ................
0.0868
ft
Percent Full ....................
21.6815
%
Full flow Flowrate ..............
8.6351
cfs
Full flow velocity ..............
24.4922
fps
do
critical Information
•�
critical depth ..................
0.4465
ft
Critical slope .................
0.0058
ft/ft
Critical velocity ...............
3.5464
fps
critical area ...................
0.2510
ft2
�.
critical perimeter ..............
1.2754
ft
critical hydraulic radius .......
0.1968
ft
W
Critical top width ..............
0.6700
ft
specific energy .................
4.0249
ft
,..
Minimum energy ..................
0.6697
ft
Froude number ...................
8.7214
�•
Flow condition ..................
supercritical
0
E
4
0
rrr
E
0
y
Page 1
ON
do
m, Lat D-2.txt
AN Manning Pipe Calculator
E
E
E
E
0
0
Page 1
Given Input Data:
AM
Shape .......................
Circular
am
Solving for .....................
Depth of Flow
Diameter ........................
0.8300
ft
Flowrate ........................
3.0900
cfs
am
Slope ........................
0.0390
ft/ft
M
manning's n .....................
0.0110
computed Results:
Depth ...........................
0.4686
ft
,r
Area...........................
0.5411
ft2
wetted Area .....................
0.3149
ft2
wetted Perimeter ................
1.4112
ft
Perimeter .......................
2.6075
ft
velocity ... ..................
9.8140
fps
W
Hydraulic Radius ................
0.2231
ft
Percent Full ....................
56.4521
Full flow Flowrate ..............
5.0592
cfs
r.
Full flow velocity ..............
9.3506
fps
E
E
E
E
0
0
Page 1
Lat D-3.txt
4W
�r Manning Pipe Calculator
w
3
M
am
nr
F
W
err
Page 1
t
Given Input Data:
shape .......................
Circular
solving for .....................
Depth of Flow
r�
Diameter ........................
0.6700
ft
Flowrate ........................
0.1200
cfs
slope ........................
0.0100
ft/ft
Manning s n .....................
0.0110
r
computed Results:
Depth ...........................
0.1304
ft
Area ..........................
0.3526
ft2
wetted Area .....................
0.0483
ft2
wetted Perimeter ................
0.6123
ft
*�
Perimeter .......................
2.1049
ft
velocity ... ..................
2.4846
fps
"r
Hydraulic Radius ................
0.0789
ft
Percent Full ....................
19.4683 %
-*
Full flow Flowrate ..............
1.4472
cfs
Full flow velocity ..............
4.1049
fps
irrr
w
3
M
am
nr
F
W
err
Page 1
t
Ar
Lat D-4.txt
-60
MW Manning Pipe Calculator
0
y
d
E
0
0
N
E
8
Page 1
Given Input Data:
shape
Circular
.......................
solving for .....................
Depth of Flow
Diameter
0.6700
ft
........................
Flowrate ........................
0.2000
cfs
�^
slope ........................
0.0100
ft/ft
Manning's n .....................
0.0110
Computed Results:
Depth ...........................
0.1682
ft
Area ..........................
0.3526
ft2
wetted Area .....................
0.0694
ft2
wetted Perimeter ................
0.7033
ft
M—
Perimeter .......................
2.1049
ft
velocity ... ..................
2.8835
fps
Hydraulic Radius ................
0.0986
ft
Percent Full ....................
25.1113 %
�-
Full flow Flowrate ..............
1.4472
cfs
Full flow velocity ..............
4.1049
fps
rr
0
y
d
E
0
0
N
E
8
Page 1
.r
fiat D-5.txt
Manning Pipe calculator
Mg
fts
MW
r
0
8
0
h
err
Page 1
Given Input Data:
..
Shape ........................
circular
solving for .....................
Depth of Flow
Diameter ........................
0.6700
ft
Flowrate ........................
0.2300
cfs
Slope
0.0100
ft/ft
........................
Manning's n .....................
0.0110
i.
computed Results -
a"
Depth ...........................
0.1806
ft
Area ..........................
0.3526
ft2
r
wetted Area .....................
0.0766
ft2
wetted Perimeter ................
0.7315
ft
®"
Perimeter
2.1049
ft
.......................
velocity ... ....................
3.0018
fps
�r
Hydraulic Radius ................
0.1047
ft
Percent Full ....................
26.9544 %
Full flow Flowrate ..............
1.4472
cfs
Full flow velocity ..............
4.1049
fps
r
Mg
fts
MW
r
0
8
0
h
err
Page 1
+r
�,. Lat D-6 . txt
Manning Pipe Calculator
4.
Given Input Data:
ShapeCircular
.rr
Solving for .....................
Depth of Flow
Diameter ........................
0.6700
ft
Flowrate .........
1.0000
cfs
Slope ........................
0.1640
ft/ft
Manning's n .....................
0.0110
Computed Results:
Depth ...........................
0.1873
ft
�.
Area ..........................
0.3526
ft2
wetted Area .....................
0.0806
ft2
wetted Perimeter ................
0.7464
ft
Perimeter .......................
2.1049
ft
Velocity ... ..................
12 4061 fps
Hydraulic Radius ................
0.1080
ft
Percent Full ....................
27.9491 %
Full flow Flowrate ..............
5.8609
cfs
Full flow velocity ..............
16.6236 fps
critical Information
Critical depth ..................
0.4738
ft
Critical slope ..................
0.0060
ft/ft
critical velocity ...............
3.7136
fps
Critical area ...................
0.2693
ft2
criticalperimeter ..............
1.3300
ft
ft
critical hydraulic radius .......
0.2025
Critical top width ..............
0.6700
ft
Specific energy .................
2.5791
ft
Minimum energy ..................
0.7107
ft
Froude number ...................
5.9738
dW
Flow condition ..................
Supercritical
Page 1
0
an
OW
8
.M
wr
e
0
E
Page 1
Lat
D-7.txt
aw
Manning Pipe calculator
Given Input Data:
shape
circular
........................
solving for .....................
Depth of Flow
rr
Diameter ........................
0.6700 ft
Flowrate ........................
0.3600 cfs
slope ........................
0.1710 ft/ft
Manning's n .....................
0.0110
arr
computed Results:
Depth ...........................
0.1115 ft
Area ..........................
0.3526 ft2
wetted Area .....................
0.0385 ft2
wetted Perimeter ................
0.5630 ft
*�
Perimeter .......................
2.1049 ft
velocity ... ..................
9.3455 fps
""
Hydraulic Radius ................
0.0684 ft
Percent Full ....................
16.6359 %
*■
Full flow Flowrate ..............
5.9847 cfs
Full flow velocity ..............
16.9746 fps
of
an
OW
8
.M
wr
e
0
E
Page 1
w.
w Lat D-8.txt
Manning Pipe Calculator
Page 1
Given Input Data:
shape
Circular
tir
solving for .....................
Depth of
Flow
Diameter ........................
0.6700
ft
Flowrate ........................
0.9200
cfs
ON
slope ........................
0.2500
ft/ft
VW
Manning's n .....................
0.0110
Computed Results:
Depth ...........................
0.1613
ft
Area ..........................
0.3526
ft2
wetted Area .....................
0.0654
ft2
wetted Perimeter ................
0.6873
ft
Perimeter .......................
2.1049
ft
Velocity ... ..................
14.0740
fps
Hydraulic Radius ................
0.0951
ft
Percent Full ....................
24.0789
%
Full flow Flowrate ..............
7.2362
cfs
Full flow velocity ..............
20.5245
fps
critical Information
Critical depth ..................
0.4541
ft
Critical slope ..................
0.0058
ft/ft
Critical velocity ...............
3.5924
fps
Critical area ...................
0.2561
ft2
Criticalperimeter ..............
1.2907
ft
Critical hydraulic radius .......
0.1984
ft
Critical top width ..............
0.6700
ft
specific energy .................
3.2396
ft
Minimum energy ..................
0.6812
ft
Froude number ...................
7.3457
'
Flow condition ..................
supercritical
Page 1
no
Lat D-9. txt
.rr Manning Pipe Calculator
Page 1
Given Input Data:
shape
Circular
err
.......................
solving for .....................
Depth of Flow
Diameter ........................
0.8300
ft
Flowrate
1.1300
cfs
........................
slope
0.0190
ft/ft
ower
........................
Manning's n .....................
0.0110
..
Computed Results:
Depth ...........................
0.3228
ft
,r
Area...........................
0.5411
ft2
wetted Area .....................
0.1946
ft2
wetted Perimeter ................
1.1178
ft
Perimeter .......................
2.6075
ft
velocity .....................
5.8062
fps
Hydraulic Radius ................
0.1741
ft
Percent Full ....................
38.8886 %
Full flow Flowrate ..............
3.5312
cfs
Full flow velocity ..............
6.5265
fps
Critical Information
Critical depth ..................
0.4741
ft
Critical slope .................
0.0050
ft/ft
Critical velocity ...............
3.5362
fps
Critical area ...................
0.3195
ft2
Criticalperimeter ..............
1.4219
ft
ft
critical hydraulic radius .......
0.2247
.W
critical top width ..............
0.8300
ft
specific energy .................
0.8467
ft
Minimum energy ..................
0.7111
ft
Froude number ...................
2.0873
Flow condition ..................
supercritical
Page 1
■0
Lat E-1.txt
�r Manning Pipe calculator
I.
MM
�r
qft
do
us
M"
As
Page 1
Given Input Data:
shape
circular
art
solving for .....................
Depth of Flow
Diameter ........................
0.6700
ft
Flowrate ........................
0.8000
cfs
Slope
0.0070
ft/ft
�.
........................
manning's n .....................
0.0110
computed Results:
Depth
0.3976
ft
�.
...........................
Area...........................
0.3526
ft2
wetted Area .....................
0.2180
ft2
wetted Perimeter ................
1.1785
ft
Perimeter .......................
2.1049
ft
velocity ... ..................
3.6696
fps
Hydraulic Radius ................
0.1850
ft
Percent Full ....................
59.3502 %
Full flow Flowrate ..............
1.2109
cfs
Full flow velocity ..............
3.4344
fps
critical Information
critical depth ..................
0.4225
ft
critical slope .................
0.0056
ft/ft
critical velocity ...............
3.4053
fps
critical area ...................
0.2349
ft2
criticalperimeter ..............
1.2275
ft
ft
critical hydraulic radius .......
0.1914
critical top width ..............
0.6700
ft
specific energy .................
0.6066
ft
Minimum energy ..................
0.6338
ft
Froude number ...................
1.1352
.r
Flow condition ..................
supercritical
I.
MM
�r
qft
do
us
M"
As
Page 1
C. Appendix C — Exhibits
' • Exhibit 1 - Onsite Hydrology Map
�J
r]
Il
0
u
H.%PdateN0105573Wdmin4eportsViordogyWFW Onsite Hydrology.doc xi