HomeMy WebLinkAboutGraebel Van Lines0 0
CIVIL ENGINEERING LAND SURVEYING
8urvey of by ;E� L -T date
TRACT No.
sy,
P(�' �Lf 9
job no.
�09
T LNS4��
JAeoMINS ':�T. rN ANA)�A
�Of ESS/O
A. De
NO-CO31604
Clv
OF C
unJey- of erv1,,5ton 4:
C�n+Kp,, A. De, Leo -n
I'l-311
RCE
�51 ( '004-
14150 Vine Place, Ste. 100 9 Cerritos, California 90701 * (310) 926-2296
It -1-" 4.v 1
,.4 - 04- 7-,5.
sheet , of ,
TRACT No.
CIVIL ENGINEERING 9 LAND SURVEYING
[-S;---Urvey of I by I date I job no. IsheetzofA
e--;) C- L) 4v�
Oyer
ewe, I o q-N�4
Comme,re,'iQl J - '50% impervioos
loor I hr rrea'tr'k�on:
1.26
Lo�
Or
z n cwp
pokr, LZ tN 6 r(:
r rn c� y- Qs n C 0 r) A %9, C, +�O n.5 leo%
11b" Coll r. Ov,15 LA)dr�, prpv?,1Z,0,6 (2) co, -i,
tOk-6'\'f-,6 L�J�r4, - vr,�", +�4 re, V 10 J -S ev.
5 4e. , +o r a*J
ivio'n LAA b 14 2 i
tio mo--�or aviArjes wt4�--c Jr
0 tAn -tv4 e,/,1tfinJ �-a
O?ad�
A�;V60= f 1)
,S+rOC,4vN--,1
14150 Vine Place, Ste. 100 * Cerritos, California 90701 e (310) 926-2296
TRACT No,
CIVIL ENGINEERING 9 LAND SURVEYING
I survey of I by I date Ijob no. I sheet,,, of, A]
CA LC U LA, -T I DNS �
14150 Vine Place, Ste. 100 * Cerritos, California 90701 o (310) 926-2296
mi
;nt
CUT PAPER ALONG OUTSIDE BOROER-LIKE
V
--------------------------------------------------------------------------------------------------------------
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -----------------------------------------------------------------------
7:
'STUDY NAME:JAStAlWC- 15TW, F:wr" ^.ALl.ULATED BY: V-4
CHECKED BY;&VL.
100.0 -YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER OF
--------------------- IA D V A N C E D E N T N E E R I N G S 0 T W A R ----------------------
;CONCENTRATTOM; AREA (ACRES) �SOIL:DEV.: Tt Tc � I : Fm : Fm ; Q :PATH:ELOPE! V HYDRAULI..S
POINT NUMBER!SUBAREA! SUM !TYPE;TYPE,'MIN.: MIN.!in/h! :(Avg): SUM. !(ft)!ft/f+.:FPS.' AND MOTES
--------------------
------------- ------- ------
---- ---- ----- ---- ------
---- ----- ---- ---------------
220: .007" SLEAF-�:
- - - - - - - - - - - - - - - - - - - -
:5! .3: .1971 1.3: ----
------------- ------- ------ ---- ----
------ 901.0064! 4.3! i0av:
10, Dil
12.0"-PTPE
7. 3! 4.4": .0971 .097: —4; ---- ---------------- :
----------
------- ------ ------ 300!.0048� 5.0' *gall: 5.4cfz-4
�n:.0110 On: .9�
!8,0" -PIPE
21.3!4.110�.097: .097! 9.8; ---- ---------------
4.00; 1.4� 2.7: 1 1
!1000:.0068: :INITIIAL SUBAREA!
6.00! 4.3; 4.3! 1 1 .10! .091: .111.7! ---- ---------------
80!.0500! !INITIAL SUBAREA�
---------------
.101 .09'1! .3: ----
!INJIT
I IAL SUP -ARE -
10.00; .1; .1! 1 ---------------
-------- --------------------- ------ ---- ---------- ---------------
EFFECTIVE AREMA(ACRES): 2 TOTAL STUDY HRll'kACRES',: PEAK F!OW RATE(CIFSI.: .36
------------- ------- ------
--------------- ------ ----------------
------------------------ --------------------------------------------------------------------------------
tDEV TYPES: l:Com,l.:MF.3:Apt.4:Con,5:SFR li+ D/AC.6:8-j0D/AC.7:5-7D/AC. SOIL TYPES: l:A.2:B.3:',,4:D.f
0,S:SPECIFIEL, RUNOFF COEFF.
----------------------------------------------- ---------------------------------------------------------------
4-
I Y� K%P
X11,
A
A
j
+ -
T
A
L ki
L
. . . . . . . . . . .
P7f(l A -
-4.
lill 'RIK
r4j!�El �Z.
.,A 6;j
A
17
ld
I
F
SOIL GROUP BOUN)ARY
SOIL GWWP DESIN"TION SCALEI,46POO
90UPMWf Of INMATED S"CE SCALE REDUCED 13Y 1/2 HYDROLOGIC SOILS GROUP MAP
C-26
FOR
SOUTHWEST -A AREA
FIGURE c-13,
TRACT No.
WO" F
CIVIL ENGINEERING 9 LAND SURVEYING
survey of by I date ljob no. she;"t- 7 of
6ALCULA-TIOKI'��
14150 Vine Place, Ste. 100 * Cerritos, California 90701 @ (310) 926-2296
Date: 3/30/1994 Time: 19:42:56
Project : HYDRAULICS CALCS FOR GRAEBEL VAN LINES
--------------------------------------------------------------------------------------------
INPUT DATA LISTING
------------------
CO L2 MAX 9
ADj 9
LE4GTH
------
FL 1
----
FL 2
----
CTL;TW
------
D
---
W 5
--- -
KJ
----
KE
----
KM LC Ll I—'
---- -- -- --
L4 All
-- ---
A7 A4 J
--- --- -----
IN
----
-- -- -----
1
-----
58.96
2 9.3
9,8
3.00
57.3-0
57.40
62.-_7
13.
0, Z
00
20
- 00 1 : 0
0 0-
0- .00
.011
5.4
5.4
3-00,00
57.40
5E 85
Z '7
1
12.
0. 7
0
.,,30
.00 4
1) 0,
0. 0. 00
0 11
4 1,9
1.9
90.00
58.85
59.43
bl 70
' 1
1�
J
0
0. '3 0
Time: 19:42:56
Date: 3/3011994
jeCt HYDRAULICS CALCS FOR GRAEBEL VAN LINES ------------------------------------------------------------------------------
pro
STORM DRAIN ANALYSIS RESULTS
FL I FL 2 HG I HG 2 D 1 0 2 TW TW
D w On Dc Flow Sf-full V I V ' Calc (f t) ( f t ) Calc CK
Line - 9 ( fDs f t f t a I c ----- ------ ------
N o in) n V if t f t ) TyDe ( f 1 f t os) - - - - - - - - - - - -
------- ----- ----- ------
---- ----- ---- ---- ---- ---- ----
I Hydraulic grade line control 58.87 !.47 .00 '00
5,.4o 58.36
.91
,.:I part 3, 0 6
57.4, 5B.B5 59.54 60.06 2.14 1 2 1 .1110 hju
-40 ceal
3 5�4 18 0
x
:3.8: 9.43 o10,47 60.63 1.62 -n
x
Proj@ct':' HYDRAULICS CALCS FOR GRAEBEL VAN LINES
Date: 3/30/ 1994 Time: 19:42:56
-------------------------------------------------------------------------
PIPE NUMBER 2
COMPOSITE ANALYSIS
Discharoe 9.83 cfs
Downstream Upstream
Veloci ty
5.56
f , Ds
5. 5�?
f os
Depth of flow
1.50
ft
:.47
ft
Area of flow
4.17
sf
4.17
Sf
HGL
58 . 86
f t
58.37
f t
EGL
59.34
ft
59.3S
ft
Invert
�s
37�'%
f t
511.40
f
Soffit
58,36
ft
S;-10
fr
Diameter
",50
�4
W i d th
, K
f t
Structure code
3
PR'-.4AR,Y ANALYzLiS
Channel lenqth
3.00
ft
Normal deoth
.91 ft
Channel slope
.01333
fitift
Critical depth
1.21 ft
Friction slope
.00627
-11tIft
Flow condition
Steep
Adjusted 9
9.373
cfs
V V
Mannings n
.0110
Loss due to friction
.02 ft
Entrance loss coeff
./20
Minor losses
.00 ft
Junction loss coeff
.00
Length of junction
'00 ft
Minor loss coeff
.00
T
lailwater control
'00
f t
Structure code
3
CON.N. ;C7
57ORM � I IVITY
JcwPstrE3m
Uostream oioe
�L!:
to
Lateral 4'
0
AnC�e
to
Lateral 42
�.41 0
4rj
V V
CONNECTIVTTY �'IACRAM
--------- --------- 0 --------- Flow
Projpct - HYDRAULICS CALCS FOR GRAEBEL VAN LINES 4k
Date: 3130/1994 Time: 19:42:56
--- : --------------------------------------------------------------------------
P0E NUMBER 3
Discharze 5.40 ofs
COMPOSITE ANALYSIS
Downstream Uostream
Veloc i ty
3.06
fpi
3 5 3
fos
De pth of flow
2.14
ft
.1
ft
Area of flow
21.29
sf
2.29
c.f
HGL
59.54
ft
60.06
ft
EGL
59.69
f t
0 . Z 5
Manninas
Invert
57.40
ft
53.35
.514 ft
So;;i11 t
loss coeff
.20
Minor losses
Diamete,-
1.50
ft
'00
Width
.00
ft
PR7MARY ANALYST�
Channel
lenoth
7.00.00
ft
Normal deoth
.26 ft
Channel
sloDe
00483,
ft/ft
Critical deDth
.90 ft
Friction
sloDe
.00189
ft/ft
Flow—londition
SteeD
Adjusted
Q
5.40
cfs
Manninas
n
.0110
Loss due to friction
.514 ft
Entrance
loss coeff
.20
Minor losses
�00 ft
'00
Lerr,-Ith of junction
.00 ft
LIST OF ABBREVIATIONS
---------------------
V 1, FL 1, 0 1 and HG I refer to downstream end
V 1., FL 11, 0 2 and HG 2 refer to upstream end
x - Distance in feel from downstream end to Dc-.nt 41here HG intersects soffit in seal condition
xfm�, - Distance in feet from aownstrsam end to ooint where water surface reaches normal depth by either drawdown Cr backwater
�(J� - Distanc2 in feet from downstream and to Doint where hvdraul�c jumD occurs in line
- 1)
�j - The conDutea force a, ".he hydraulic jumD
MJJ - Deot',, of water before the hvdraiul�c JUMD (ucstreain side)
0( Aj �;:, , 4 .3f Wat�r a f ter h-, drau' iumc 'downs treiii, s� de
L) —1i
,';A G fUl', r from fLil' to Da�t
— L ini-lca,,es f, low chages �' rom r,, art I I . I
ica�as that flow charges from zuDer0rit:-al to threugg' a hydraulic ,umD
v Ind-
HJU ind�cates that hydraulic Jumn occurs at the �Iunction all the 'jostream end of the 'line
H.1D indicates that hydraulic Jump, occurs at the )unction at the downstream and of the line
HYDRAULIC ELEMENTS I PROGRAM PACKAGE
Z", n e r oci S, -) f t w a r e I') E S I
C -c) �Dv� I q h t 2 n c e, ci (--- ri
* t � 4( �K I * ,, * * * *, * � Al
* * 9 * * * * * *, * * * * * * * * * * , - * 4c * , . "
STREETFLOVJ MODEL INPUT I NFORMATIOW:
CONSTANT STREET GRADE(FEET/FEET"; .005000
CONSTANT STIIREET F1-01,,-)(CFS� = L1.70
AVERAGE STREETFLOW FRICTION FACTOR(WANNING)
C � Di� 15 TA N T S�YtyllIE-n,�TC,AL STREET lflALF-INJIC)TH( FEET 4 0
ci C.
CC N cS I P)N T SY M ill E T R I!-': A L STREET CROSSF�:LL(DEC-IMA!-
C-0 f, 13 T A � 1 T SYMMETRICAL CUIRB HEIGTIA(FEET) SO
cCi,,lSTP,,NT S 'I" 1"i M E T r. I C f�) 1- GUTTER -WIDTH( f::EET) ?.00
(It IT T ER - L 1.1-1 F E';�- C, 1 12, -13
�TN S"T A N T Y M M E TR T L
T N T Y M M ET R, I A 1- G U TT E P. - F 1; 1 F E E T
2-17 T HE N
D-, F11 -t-, `2, 'f'! F i I f IN C
W
1- t- 0 !J T li
.'!j THE E
Y N;
j 'C', PIT F C '59
!7 1 4 T E T'
,,j F FEE
C:A�, OF 'bOvt H GiAANN?L-
HYDRAULIC ELEMENTS I PROGRAM PACKAGE
"(-�;ht I �?1'732 , tl�sb ngine-er Ln, -i 7!,:)f
I E 3 c j- � I , v, 'D r e c, .--t i, � d. f o r :
ENGINEiEf-,�ING 3*E j-_� 1,� T
0 1 PT I ON 0 F 'R ESULT S.*
CAPACITY OF RECTANGULAR CH.Ai,,iNEL
I N L; I Lll! f
011,7� MA L D'�" T 1-1 F "ElE T
r r) T
C , H i�) I\! N E I Z l-, 10',--,' 1 Z 'I'l i-;,') L, -i L i C C i'dt.-
c -1 Al N E `71 Cl I EE E T E C� T
:
il i'd 1"! 1;
F L G VJ AR, E
ILI
F L, G t,,.j �EE T/
lj�! C�nlj;.Jr
7
7
T 7 T
(I L
�/\j T L
L W E 'ET
0
�7
C r- I' t ON 17 R,,, �7 T
1- j T
sa
I - OW AV EIR A6 E V I.- :- G I T"(
i V
E
T A I.- D,IPTH ( FEET
G R f ', A L FLOW PRESS"URE -� MOMENTUMf POUNDS
1-5.46
A'o .� E 10, A G E D CRITICAL FLOW 'JEL.00 [TY HEAD(
FEET
25q
CR I'TIC A L FLOW SPECIFIC ENERGY(FEET)
:�r,_)gress 4:-.F Rewfora7ance
�7,
CONSIIJ LTiN G CIIV!I'_ ENGINEERS
4\
'7'0: A,A- 14,6-04) A -,44c,
c, .0 M. PA IN Y
2'm— e/1 3 3
VC7: P P4 // 646 ___
- 77'_2a. 3 - � 5 :
TRANSACTION SHEEET
P.: k G E;' /_ 0 F 5
DATE: Z-- 7-6 %,
I " +,here
I transactIon or
I -f -_�o not --eceive all pages of t'
4S any other problem upon receipt of this t-ransaction, please
not i f-, - t-1-. i s c f f i c e imn, ed J ate I y a--*-- ( 7 14 ) 6 7 5 - 8 0 3 0 Thank- yo u
i`-14) 675-1823
PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE
(Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION)
(c) Copyright 1982-88 Advanced Engineering Software (aes)
Ver. 3.OA Release Date:12/27/88 Serial # 3194
Analysis prepared by:
FAVREAU ENGINEERING, INC.
3434 VIA LIDO, SUITE 250
NEWPORT BEACH, CA 92663
714-675-8030
DESCRIPTION OF STUDY
• P M 11668
• OFFSITE Q's INCREASED BY 40%
*LINE B
FILE NAME: 11668B.DAT
TIME/DATE OF STUDY: 16:50 2/27/1990
NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
DESIGN MANUALS.
DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA:
NODE NUMBER = .00 FLOWLINE ELEVATION 956.36
PIPE DIAMETER(INCH) = 48.00 PIPE FLOW(CFS) 81.90
ASSUMED DOWNSTREAM CONTROL HGL 960.860
NODE .00 : HGL= < 960.860>;EGL= < 961.520>;FLOWLINE= <
PRESSURE FLOW PROCESS FROM NODE .00 TO NODE 91.48 IS CODE 3
UPSTREAM NODE 91.48 ELEVATION = 956.66
----- ----------------------------------------------------------------------
CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA):
PIPE FLOW = 81.90 CFS PIPE DIAMETER = 48.00 INCHES
CENTRAL ANGLE = 46.239 DEGREES MANNINGS N = .01300
PIPE LENGTH = 91.48 FEET
PRESSURE FLOW AREA = 12.566 SQUARE FEET
FLOW VELOCITY = 6.52 FEET PER SECOND .1792
VELOCITY HEAD = .660 BEND COEFFICIENT(KB) =
HB=KB*(VELOCITY HEAD) .179)*( .660) = .118
PIPE CONVEYANCE FACTOR 1436.431 FRICTION SLOPE(SF) .0032509
FRICTION LOSSES = L*SF 91.48)*( .0032509) = .297
NODE 91.48 : HGL= < 961.276>;EGL= < 961.935>;FLOWLINE= < 956.660>
PRESSURE FLOW PROCESS FROM NODE 91.48 TO NODE 170.84 IS CODE- 1
UPSTREAM NODE 170.84 ELEVATION = 956.98
----------------------------------------------------------------------------
CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): INCHES
PIPE FLOW = 81-90 CFS PIPE DIAMETER = 48.00
FCV BY:XEROX TELECOPIER 7010 ; 2-28-90 9:55AM CCITT 63-� 7147884139;# 3
7- op �-
PIPE LENGTH =
79.36 FEET MANNINGS N = .01300
IS CODE
SF=(Q/Y,)**2 =
81.90)/( 1436.431))**2 = .0032509
HF=L*SF = (
79.36)*( .0032509) = .258
PIPE FLOW =
NODE 170.84
HGL= < 961.534>;EGL= < 962.193>;FLOWLINE= < 956.980>
279.46 FEET MANNINGS N = .01300
PROCESS FROM NODE 170.84 TO NODE 170.84
IS CODE 5
PRESSURE FLOW
UPSTREAM NODE
170.84 ELEVATION = 956.98
279.46)*( .0027553) = .770
: HGL= < 962.508>;EGL= < 963.067>;FLOWLINE= < 958.100>
----------------------------------------------------------------------------
CALCULATE PRESSURE
FLOW JUNCTION LOSSES:
NO. DISCHARGE
DIAMETER AREA VELOCITY DELTA
HV
1 75.4
48.00 12.566 6.000 .000
.559
2 81.9
48.00 12.566 6.517 --
.660
3 6.5
18.00 1.767 3.678 90.000
-
4 .0
.00 .000 .000 .000
2 75.4
5 .0===Q5 EQUALS BASIN INPUT===
.559
LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED:
DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)-
Q4*V4*COS(DELTA4))/((AI+A2)*16.1)
UPSTREAM MANNINGS N = .01300
DOWNSTREAM MANNINGS N .01300
UPSTREAM FRICTION SLOPE .00276
DOWNSTREAM FRICTION SLOPE .00325
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00300
JUNCTION LENGTH(FEET) = 1.00 FRICTION LOSS .003
ENTRANCE LOSSES = .000
JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES)
JUNCTION LOSSES = .201+ .559- .660+( .003)+( .000) = .104
NODE 170.84 : HGL= < 961.738>;EGL= < 962.297>;FLOWLINE= < 956.980>
PRESSURE FLOW
PROCESS FROM NODE 170.84 TO NODE 450.30
IS CODE
UPSTREAM NODE
450.30 ELEVATION = 958.10
--------- ----------------------------
-------------------------------------
CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD):
PIPE FLOW =
75.40 CFS PIPE DIAMETER = 48.0 0 INCHES
PIPE LENGTH =
279.46 FEET MANNINGS N = .01300
SF=(Q/K)**2 =
75.40)/( 1436.431))**2 = .0027553
HF=L*SF = (
279.46)*( .0027553) = .770
: HGL= < 962.508>;EGL= < 963.067>;FLOWLINE= < 958.100>
NODE 450.30
PROCESS FROM NODE 450.30 TO NODE 454.96
IS CODE 5
PRESSURE FLOW
UPSTREAM NODE
454.96 ELEVATION =___958.12 ......................
- ......
--------------------------------------
CALCULATE PRESSURE FLOW JUNCTION LOSSES:
DELTA
HV
NO. DISCHARGE DIAMETER AREA VELOCITY
1 68.4
48.00 12.566 5.443 .000
.460
2 75.4
48-00 12.566 6.000 --
.559
3 7.0
18.00 1.767 3.961 90. ' 000
-
t%^f% nnn Ann
5 or-
4� . w
Q4*V4*COS(DELTA4))/((Al+A2)*16.1)
UPSTREAM MAMNINGS N = .01300
DOWNSTREAM MANNINGS N .01300
UPSTREAM FRICTION SLOPE .00227
DOWNSTREAM FRICTION SLOPE .00276
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00251
JUNCTION LENGTH(FEET) = 4.66 FRICTION LOSS .012
ENTRANCE LOSSES = .000
JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES)
JUNCTION LOSSES = .198+ .460- .559+( -012)+( .000) = .111
NODE 454.96 : HGL= < 962.717>;EGL= < 963.177>;FLOWLINE= < 958.120>
PRESSURE FLOW PROCESS FROM NODE 454.96 TO NODE 692.25 IS CODE 1
UPSTREAM NODE 692.25 ELEVATION = 959.07
----------------------------------------------------------------------------
CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD):
PIPE FLOW = 68.40 CFS PIPE DIAMETER = 48.00 INCHES
PIPE LENGTH 237.29 FEET MANNINGS N = .01300
SF=(Q/K)**2 68.40)/( 1436.431))**2 = .0022675
HF=L*SF = ( 237.29)*( .0022675) = .538
NODE 692.25 : HGL= < 963.255>;EGL= < 963.715>;FLOWLINE= < 959.070>
PRESSURE FLOW PROCESS FROM NODE 692.50 TO NODE 692.50 IS CODE 5
UPSTREAM NODE 692.50 ELEVATION = 959.07
----------------------------------------------------------------------------
CALCULATE PRESSURE FLOW JUNCTION LOSSES:
NO.
DISCHARGE
DIAMETER
AREA
VELOCITY
DELTA HV
1
64.3
48.00
12.566
5.117
.000 .407
2
68.4
48.00
12.566
5.443
-- .460
3
4.1
18.00
1.767
2.320
75.000 -
4
.0
.00
.000
.000
.000
5
.0===Q5
EQUALS
BASIN INPUT===
LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED:
DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)-
Q4*V4*COS(DELTA4))/((AI+A2)*16.1)
UPSTREAM MANNINGS N = .01300
DOWNSTREAM MANNINGS N .01300
UPSTREAM FRICTION SLOPE .00200
DOWNSTREAM FRICTION SLOPE .00227
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00214
JUNCTION LENGTH(FEET) = 1.00 FRICTION LOSS .002
ENTRANCE LOSSES = .000
JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES)
JUNCTION LOSSES = .101+ .407- .460+( .002)+( .000) = .050
NODE 692.50 : HGL= < 963.358>;EGL= < 963.765>;FLOWLINE= < 959.070>
PRESSURE FLOW PROCESS FROM NODE 692.25 TO NODE 774.46 IS CODE 1
UPSTREAM NODE 774.46 ELEVATION = 959.40
----------------------------------------------------- ------------------------
CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD):
PIPE FLOW = 64.30 CFS PIPE DIAMETER = 48.00 INCHES
PIPE LENGTH = 82.21 FEET MANNINGS N = .01300
SF=(Q/K)**2 = 64.30)/( 1436.431))**2 = .0020038
HF=L*SF = ( 82.21)*( .0020038) = .165
NODE 774.46 HGL= < 963.523>;EGL= < 963.930>;FLOWLINE= < 959.400>
PRESSURE FLOW PROCESS FROM NODE 774.46 TO NODE 774.46 IS CODE 5
UPSTREAM NODE 774.46 ELEVATION = 959.40
----------------------------------------------------------------------------
CALCULATE PRESSURE FLOW JUNCTION LOSSES:
NO.
DISCHARGE
DIAMETER
AREA
VELOCITY
DELTA HV
1
58.0
48.00
12.566
4.615
.000 .331
2
64.3
48.00
12.566
5.117
-- .407
3
6.3
18.00
1.767
3.565
90.000 -
4
.0
.00
.000
.000
.000
5
.0==05
EQUALS
BASIN INPUT===
LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED:
DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)-
Q4*V4*COS(DELTA4))/((AI+A2)*16.1)
UPSTREAM MANNINGS N = .01300
DOWNSTREAM MANNINGS N .01300
UPSTREAM FRICTION SLOPE = .00163
DOWNSTREAM FRICTION SLOPE .00200
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00182
JUNCTION LENGTH(FEET) = 1.00 FRICTION LOSS .002
ENTRANCE LOSSES = .000
JUNCTION LOSSES = DY+HVI-HV2+(FRICTION LOSSWENTRANCE LOSSES)
JUNCTION LOSSES = .152+ .331- .407+( .002)+( .000) = .078
NODE 774.46 : HGL= < 963.676>;EGL= < 964.007>;FLOWLINE= < 959.400>
PRESSURE FLOW PROCESS FROM NODE 774.46 TO NODE 846.54 TS MMF
UPSTREAM NODE 846.54 ELEVATTON - vsq.&A
----------------------------------------------------------------------------
CALCULATE PRESSURE FLOW FRICTION LOSSESfLACFCD)i
PIPE FLOW - 58.00 CFS PIPE DIAMETER 48.00 INCHES
PIPE LENGTH 42.00 FEET MANNINGS N .01300
SF-fO/K)**2 (f 58.00)/( 1436.431)1**2 .0016304
HF=L*SF - ( 42.00)*(_--anXQ04) = .068 - < 959.680 -,-
NODE 846.54 : HGL- < (963.74SOyEGL= < 964.076>;FLOWLINE
END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM
-i
1��
Mo
16
cu 14 3
PAIC'NOLI MAP 07"6-40
MOM N 14
UF -1 -
46NS!�44
Ina
/44
7 AC
MAP 148 36 - 70
AR- NO. 5
ILL!
6. is ACC M/L
S. 49 AC
101
V
;A,"
7 R.A.
001. 7jr
8
PAR. I
4.37AC-U/L
3CWAC.
I I—ff At�
970 zi Sum,
7,.=
3X*R
PAR. NO. 19
5.6f
4 . ....
FAR 29
TKAL A"
%Ito 40 4
p r
L%
L
4 Pat I p a* r- 2
pt
.If AC. IL4 At
8.0 jX1- TI.,, Z. 36 AC 10. 71 AC.
G.rf AC
&2 -Aa(.
13 a
- - +- t --
1b I Ktc I i -. - --
4woo.2 7
Par I
1716 AC
)WAP 872-36- 4 SEE
PAP. 25 EASEMENT PAGE
0 AW Ag" It
-7-k
f JEV rmmu @) '.
zi5i Ar. m1L K
-4&64 AC- M/L 186.04 A . C
4 7.96 AC. -4 h
9&IAC,
24.76 AC. M/L
24.09 AC
.10W.TV. " -
-672-36-4G
� PAR. NO 8 -
4.85AC.---
4,56AC,
Lp
-11-69 Ac-
TI;L\A. LIURW UIC PTN. PAR. NO.
wir .4-4. JAW
Tipt lot
-A
li %
2
2 a:
Pird Por.2
66-
, L
P
4.85AC. 4.65,= 3X6AC
4,25AC. 1. 4.35 3.35AC
Gp S a
A 014-10
JwaC2
gWqv,
MAP 872-36-4T PAIL 26 EASEUENr nil
1%
33 01
i 23
07
I . 2
01
A
15 1.
f-2
oft�-W-w Mika 10%1
6
4p
A-5
4p
I
HYDROLOGY MAP
4-4 0
eq
s L TYPE:
-A
U-S-E_:___C__- OMMERCIAL
4
=2
A:
klo
AT
vf7,
ri I—
A r . , v
t j
t. L
j, a— L
7f
P-5 3 7 c i=s
T
4
t L
4. Ai I . . . ;o 1:
CFS;
Ad.
0
.16
B L
00
00
N 0
C)
-19 4s� 0.
1v
Ai
(0
r ".0 J,
Cy L
'%7 IA4' Z.
.4
w
r
IS -
.6 A
j—
I <
rZr
16
q:
u
L41
f -a -ALA
L
—Ad. t—
LU
CL
DG.
.&OA >
V-71 AC.
"e!x
PT RAINFALL:.0,89
2
Q vsz 41.41 r -f:,5
Qioo-IHR.PT. RAINFALL' 1.28 Q 100 = 5(_0.1 0 c Fs o5i AC_
2
(t DG.
Tc. 21.44- mw
FLOW PATH L
Ac.
a J!17
.73 CF
& — - A,
61. a %
a —_ "" Cb-
IS7, "�'. a :Z"� 1.58AC
OFF—SIT AREA
-�FQ 3.
31. 4 AC.
�3
2 AC
0
VL11i! . , \ �> y --- -
oil b -1.4 ... 0 & �1: so
ell . 11 %: 3:IA
it OIL
%
_141tj V A
00. TJI":*,
rL,
77.
0
X
1
_F.L
F. L. r If fJ;4
A
t
io'7
z\
C;
U�
(?_1\
J
rE'
\C-' 7A
00
'I u
A%
BL
55AC
L
.0 L
BLDG.
L
010
A.0
;015,w.
AC
0. tl* L70
ri
13
A
AC
r
LC
rill 0 1 c
'Mal
771C
0 1 1 - I- ..-- n%
Al
r
.16
5.
4
VL I # WC I - 1 1, 1 ;,�;j
.X.
CF5
a zilv;e
t
J_ 44 lt:;;A—
Vw""
'! j LIM
J
o; ow�
XU,
1i liv
j
JL rx.,j
tv 4 * 0 —
d all
a
3,0,
N42
SCAL E 120 17 Z s
J+K
----------------
vt
AC
BLDG. 4
Ik
+0 2 AC
n
BLDG. 4
L ss4c'
.1111111 MEN I I V-5
ik-s r4s,
13
36 AC
90 AC
x
11.1 ou *Cr I..
CCILONAT0. .0ru
411)
tA\"
-44
-7
or
—IN
t:2J
ZVI
c
T lid Ij
C�L
By $mr
Co. KA bl� 3t?�
DA.
d"T"m
L lee
*A'
Or llo 3c".
Vt;IABLE HEIGHTCURS CIET16L
JOHNSC#4-� ASSOC Wit
CIv1L L Epe4-L. .'"VE714
s, -r
EXIST.
4-4 0
eq
s L TYPE:
-A
U-S-E_:___C__- OMMERCIAL
4
=2
A:
klo
AT
vf7,
ri I—
A r . , v
t j
t. L
j, a— L
7f
P-5 3 7 c i=s
T
4
t L
4. Ai I . . . ;o 1:
CFS;
Ad.
0
.16
B L
00
00
N 0
C)
-19 4s� 0.
1v
Ai
(0
r ".0 J,
Cy L
'%7 IA4' Z.
.4
w
r
IS -
.6 A
j—
I <
rZr
16
q:
u
L41
f -a -ALA
L
—Ad. t—
LU
CL
DG.
.&OA >
V-71 AC.
"e!x
PT RAINFALL:.0,89
2
Q vsz 41.41 r -f:,5
Qioo-IHR.PT. RAINFALL' 1.28 Q 100 = 5(_0.1 0 c Fs o5i AC_
2
(t DG.
Tc. 21.44- mw
FLOW PATH L
Ac.
a J!17
.73 CF
& — - A,
61. a %
a —_ "" Cb-
IS7, "�'. a :Z"� 1.58AC
OFF—SIT AREA
-�FQ 3.
31. 4 AC.
�3
2 AC
0
VL11i! . , \ �> y --- -
oil b -1.4 ... 0 & �1: so
ell . 11 %: 3:IA
it OIL
%
_141tj V A
00. TJI":*,
rL,
77.
0
X
1
_F.L
F. L. r If fJ;4
A
t
io'7
z\
C;
U�
(?_1\
J
rE'
\C-' 7A
00
'I u
A%
BL
55AC
L
.0 L
BLDG.
L
010
A.0
;015,w.
AC
0. tl* L70
ri
13
A
AC
r
LC
rill 0 1 c
'Mal
771C
0 1 1 - I- ..-- n%
Al
r
.16
5.
4
VL I # WC I - 1 1, 1 ;,�;j
.X.
CF5
a zilv;e
t
J_ 44 lt:;;A—
Vw""
'! j LIM
J
o; ow�
XU,
1i liv
j
JL rx.,j
tv 4 * 0 —
d all
a
3,0,
N42
SCAL E 120 17 Z s
J+K
----------------
vt
AC
BLDG. 4
Ik
+0 2 AC
n
BLDG. 4
L ss4c'
.1111111 MEN I I V-5
ik-s r4s,
13
36 AC
90 AC
x
11.1 ou *Cr I..
CCILONAT0. .0ru
411)
tA\"
-44
-7
or
—IN
t:2J
ZVI
c
T lid Ij
C�L
By $mr
Co. KA bl� 3t?�
DA.
d"T"m
L lee
*A'
Or llo 3c".
Vt;IABLE HEIGHTCURS CIET16L
JOHNSC#4-� ASSOC Wit
CIv1L L Epe4-L. .'"VE714
s, -r