Loading...
HomeMy WebLinkAboutGraebel Van Lines0 0 CIVIL ENGINEERING LAND SURVEYING 8urvey of by ;E� L -T date TRACT No. sy, P(�' �Lf 9 job no. �09 T LNS4�� JAeoMINS ':�T. rN ANA)�A �Of ESS/O A. De NO-CO31604 Clv OF C unJey- of erv1,,5ton 4: C�n+Kp,, A. De, Leo -n I'l-311 RCE �51 ( '004- 14150 Vine Place, Ste. 100 9 Cerritos, California 90701 * (310) 926-2296 It -1-" 4.v 1 ,.4 - 04- 7-,5. sheet , of , TRACT No. CIVIL ENGINEERING 9 LAND SURVEYING [-S;---Urvey of I by I date I job no. IsheetzofA e--;) C- L) 4v� Oyer ewe, I o q-N�4 Comme,re,'iQl J - '50% impervioos loor I hr rrea'tr'k�on: 1.26 Lo� Or z n cwp pokr, LZ tN 6 r(: r rn c� y- Qs n C 0 r) A %9, C, +�O n.5 leo% 11b" Coll r. Ov,15 LA)dr�, prpv?,1Z,0,6 (2) co, -i, tOk-6'\'f-,6 L�J�r4, - vr,�", +�4 re, V 10 J -S ev. 5 4e. , +o r a*J ivio'n LAA b 14 2 i tio mo--�or aviArjes wt4�--c Jr 0 tAn -tv4 e,/,1tfinJ �-a O?ad� A�;V60= f 1) ,S+rOC,4vN--,1 14150 Vine Place, Ste. 100 * Cerritos, California 90701 e (310) 926-2296 TRACT No, CIVIL ENGINEERING 9 LAND SURVEYING I survey of I by I date Ijob no. I sheet,,, of, A] CA LC U LA, -T I DNS � 14150 Vine Place, Ste. 100 * Cerritos, California 90701 o (310) 926-2296 mi ;nt CUT PAPER ALONG OUTSIDE BOROER-LIKE V -------------------------------------------------------------------------------------------------------------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ----------------------------------------------------------------------- 7: 'STUDY NAME:JAStAlWC- 15TW, F:wr" ^.ALl.ULATED BY: V-4 CHECKED BY;&VL. 100.0 -YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER OF --------------------- IA D V A N C E D E N T N E E R I N G S 0 T W A R ---------------------- ;CONCENTRATTOM; AREA (ACRES) �SOIL:DEV.: Tt Tc � I : Fm : Fm ; Q :PATH:ELOPE! V HYDRAULI..S POINT NUMBER!SUBAREA! SUM !TYPE;TYPE,'MIN.: MIN.!in/h! :(Avg): SUM. !(ft)!ft/f+.:FPS.' AND MOTES -------------------- ------------- ------- ------ ---- ---- ----- ---- ------ ---- ----- ---- --------------- 220: .007" SLEAF-�: - - - - - - - - - - - - - - - - - - - - :5! .3: .1971 1.3: ---- ------------- ------- ------ ---- ---- ------ 901.0064! 4.3! i0av: 10, Dil 12.0"-PTPE 7. 3! 4.4": .0971 .097: —4; ---- ---------------- : ---------- ------- ------ ------ 300!.0048� 5.0' *gall: 5.4cfz-4 �n:.0110 On: .9� !8,0" -PIPE 21.3!4.110�.097: .097! 9.8; ---- --------------- 4.00; 1.4� 2.7: 1 1 !1000:.0068: :INITIIAL SUBAREA! 6.00! 4.3; 4.3! 1 1 .10! .091: .111.7! ---- --------------- 80!.0500! !INITIAL SUBAREA� --------------- .101 .09'1! .3: ---- !INJIT I IAL SUP -ARE - 10.00; .1; .1! 1 --------------- -------- --------------------- ------ ---- ---------- --------------- EFFECTIVE AREMA(ACRES): 2 TOTAL STUDY HRll'kACRES',: PEAK F!OW RATE(CIFSI.: .36 ------------- ------- ------ --------------- ------ ---------------- ------------------------ -------------------------------------------------------------------------------- tDEV TYPES: l:Com,l.:MF.3:Apt.4:Con,5:SFR li+ D/AC.6:8-j0D/AC.7:5-7D/AC. SOIL TYPES: l:A.2:B.3:',,4:D.f 0,S:SPECIFIEL, RUNOFF COEFF. ----------------------------------------------- --------------------------------------------------------------- 4- I Y� K%P X11, A A j + - T A L ki L . . . . . . . . . . . P7f(l A - -4. lill 'RIK r4j!�El �Z. .,A 6;j A 17 ld I F SOIL GROUP BOUN)ARY SOIL GWWP DESIN"TION SCALEI,46POO 90UPMWf Of INMATED S"CE SCALE REDUCED 13Y 1/2 HYDROLOGIC SOILS GROUP MAP C-26 FOR SOUTHWEST -A AREA FIGURE c-13, TRACT No. WO" F CIVIL ENGINEERING 9 LAND SURVEYING survey of by I date ljob no. she;"t- 7 of 6ALCULA-TIOKI'�� 14150 Vine Place, Ste. 100 * Cerritos, California 90701 @ (310) 926-2296 Date: 3/30/1994 Time: 19:42:56 Project : HYDRAULICS CALCS FOR GRAEBEL VAN LINES -------------------------------------------------------------------------------------------- INPUT DATA LISTING ------------------ CO L2 MAX 9 ADj 9 LE4GTH ------ FL 1 ---- FL 2 ---- CTL;TW ------ D --- W 5 --- - KJ ---- KE ---- KM LC Ll I—' ---- -- -- -- L4 All -- --- A7 A4 J --- --- ----- IN ---- -- -- ----- 1 ----- 58.96 2 9.3 9,8 3.00 57.3-0 57.40 62.-_7 13. 0, Z 00 20 - 00 1 : 0 0 0- 0- .00 .011 5.4 5.4 3-00,00 57.40 5E 85 Z '7 1 12. 0. 7 0 .,,30 .00 4 1) 0, 0. 0. 00 0 11 4 1,9 1.9 90.00 58.85 59.43 bl 70 ' 1 1� J 0 0. '3 0 Time: 19:42:56 Date: 3/3011994 jeCt HYDRAULICS CALCS FOR GRAEBEL VAN LINES ------------------------------------------------------------------------------ pro STORM DRAIN ANALYSIS RESULTS FL I FL 2 HG I HG 2 D 1 0 2 TW TW D w On Dc Flow Sf-full V I V ' Calc (f t) ( f t ) Calc CK Line - 9 ( fDs f t f t a I c ----- ------ ------ N o in) n V if t f t ) TyDe ( f 1 f t os) - - - - - - - - - - - - ------- ----- ----- ------ ---- ----- ---- ---- ---- ---- ---- I Hydraulic grade line control 58.87 !.47 .00 '00 5,.4o 58.36 .91 ,.:I part 3, 0 6 57.4, 5B.B5 59.54 60.06 2.14 1 2 1 .1110 hju -40 ceal 3 5�4 18 0 x :3.8: 9.43 o10,47 60.63 1.62 -n x Proj@ct':' HYDRAULICS CALCS FOR GRAEBEL VAN LINES Date: 3/30/ 1994 Time: 19:42:56 ------------------------------------------------------------------------- PIPE NUMBER 2 COMPOSITE ANALYSIS Discharoe 9.83 cfs Downstream Upstream Veloci ty 5.56 f , Ds 5. 5�? f os Depth of flow 1.50 ft :.47 ft Area of flow 4.17 sf 4.17 Sf HGL 58 . 86 f t 58.37 f t EGL 59.34 ft 59.3S ft Invert �s 37�'% f t 511.40 f Soffit 58,36 ft S;-10 fr Diameter ",50 �4 W i d th , K f t Structure code 3 PR'-.4AR,Y ANALYzLiS Channel lenqth 3.00 ft Normal deoth .91 ft Channel slope .01333 fitift Critical depth 1.21 ft Friction slope .00627 -11tIft Flow condition Steep Adjusted 9 9.373 cfs V V Mannings n .0110 Loss due to friction .02 ft Entrance loss coeff ./20 Minor losses .00 ft Junction loss coeff .00 Length of junction '00 ft Minor loss coeff .00 T lailwater control '00 f t Structure code 3 CON.N. ;C7 57ORM � I IVITY JcwPstrE3m Uostream oioe �L!: to Lateral 4' 0 AnC�e to Lateral 42 �.41 0 4rj V V CONNECTIVTTY �'IACRAM --------- --------- 0 --------- Flow Projpct - HYDRAULICS CALCS FOR GRAEBEL VAN LINES 4k Date: 3130/1994 Time: 19:42:56 --- : -------------------------------------------------------------------------- P0E NUMBER 3 Discharze 5.40 ofs COMPOSITE ANALYSIS Downstream Uostream Veloc i ty 3.06 fpi 3 5 3 fos De pth of flow 2.14 ft .1 ft Area of flow 21.29 sf 2.29 c.f HGL 59.54 ft 60.06 ft EGL 59.69 f t 0 . Z 5 Manninas Invert 57.40 ft 53.35 .514 ft So;;i11 t loss coeff .20 Minor losses Diamete,- 1.50 ft '00 Width .00 ft PR7MARY ANALYST� Channel lenoth 7.00.00 ft Normal deoth .26 ft Channel sloDe 00483, ft/ft Critical deDth .90 ft Friction sloDe .00189 ft/ft Flow—londition SteeD Adjusted Q 5.40 cfs Manninas n .0110 Loss due to friction .514 ft Entrance loss coeff .20 Minor losses �00 ft '00 Lerr,-Ith of junction .00 ft LIST OF ABBREVIATIONS --------------------- V 1, FL 1, 0 1 and HG I refer to downstream end V 1., FL 11, 0 2 and HG 2 refer to upstream end x - Distance in feel from downstream end to Dc-.nt 41here HG intersects soffit in seal condition xfm�, - Distance in feet from aownstrsam end to ooint where water surface reaches normal depth by either drawdown Cr backwater �(J� - Distanc2 in feet from downstream and to Doint where hvdraul�c jumD occurs in line - 1) �j - The conDutea force a, ".he hydraulic jumD MJJ - Deot',, of water before the hvdraiul�c JUMD (ucstreain side) 0( Aj �;:, , 4 .3f Wat�r a f ter h-, drau' iumc 'downs treiii, s� de L) —1i ,';A G fUl', r from fLil' to Da�t — L ini-lca,,es f, low chages �' rom r,, art I I . I ica�as that flow charges from zuDer0rit:-al to threugg' a hydraulic ,umD v Ind- HJU ind�cates that hydraulic Jumn occurs at the �Iunction all the 'jostream end of the 'line H.1D indicates that hydraulic Jump, occurs at the )unction at the downstream and of the line HYDRAULIC ELEMENTS I PROGRAM PACKAGE Z", n e r oci S, -) f t w a r e I') E S I C -c) �Dv� I q h t 2 n c e, ci (--- ri * t � 4( �K I * ,, * * * *, * � Al * * 9 * * * * * *, * * * * * * * * * * , - * 4c * , . " STREETFLOVJ MODEL INPUT I NFORMATIOW: CONSTANT STREET GRADE(FEET/FEET"; .005000 CONSTANT STIIREET F1-01,,-)(CFS� = L1.70 AVERAGE STREETFLOW FRICTION FACTOR(WANNING) C � Di� 15 TA N T S�YtyllIE-n,�TC,AL STREET lflALF-INJIC)TH( FEET 4 0 ci C. CC N cS I P)N T SY M ill E T R I!-': A L STREET CROSSF�:LL(DEC-IMA!- C-0 f, 13 T A � 1 T SYMMETRICAL CUIRB HEIGTIA(FEET) SO cCi,,lSTP,,NT S 'I" 1"i M E T r. I C f�) 1- GUTTER -WIDTH( f::EET) ?.00 (It IT T ER - L 1.1-1 F E';�- C, 1 12, -13 �TN S"T A N T Y M M E TR T L T N T Y M M ET R, I A 1- G U TT E P. - F 1; 1 F E E T 2-17 T HE N D-, F11 -t-, `2, 'f'! F i I f IN C W 1- t- 0 !J T li .'!j THE E Y N; j 'C', PIT F C '59 !7 1 4 T E T' ,,j F FEE C:A�, OF 'bOvt H GiAANN?L- HYDRAULIC ELEMENTS I PROGRAM PACKAGE "(-�;ht I �?1'732 , tl�sb ngine-er Ln, -i 7!,:)f I E 3 c j- � I , v, 'D r e c, .--t i, � d. f o r : ENGINEiEf-,�ING 3*E j-_� 1,� T 0 1 PT I ON 0 F 'R ESULT S.* CAPACITY OF RECTANGULAR CH.Ai,,iNEL I N L; I Lll! f 011,7� MA L D'�"­ T 1-1 F "ElE T r r) T C , H i�) I\! N E I Z l-, 10',--,' 1 Z 'I'l i-;,') L, -i L i C C i'dt.- c -1 Al N E `71 Cl I EE E T E C� T : il i'd 1"! 1; F L G VJ AR, E ILI F L, G t,,.j �EE T/ lj�! C�nlj;.Jr 7 7 T 7 T (I L �/\j T L L W E 'ET 0 �7 C r- I' t ON 17 R,,, �7 T 1- j T sa I - OW AV EIR A6 E V I.- :- G I T"( i V E T A I.- D,IPTH ( FEET G R f ', A L FLOW PRESS"URE -� MOMENTUMf POUNDS 1-5.46 A'o .� E 10, A G E D CRITICAL FLOW 'JEL.00 [TY HEAD( FEET 25q CR I'TIC A L FLOW SPECIFIC ENERGY(FEET) :�r,_)gress 4:-.F Rewfora7ance �7, CONSIIJ LTiN G CIIV!I'_ ENGINEERS 4\ '7'0: A,A- 14,6-04) A -,44c, c, .0 M. PA IN Y 2'm— e/1 3 3 VC7: P P4 // 646 ___ - 77'_2a. 3 - � 5 : TRANSACTION SHEEET P.: k G E;' /_ 0 F 5 DATE: Z-- 7-6 %, I " +,here I transactIon or I -f -_�o not --eceive all pages of t' 4S any other problem upon receipt of this t-ransaction, please not i f-, - t-1-. i s c f f i c e imn, ed J ate I y a--*-- ( 7 14 ) 6 7 5 - 8 0 3 0 Thank- yo u i`-14) 675-1823 PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-88 Advanced Engineering Software (aes) Ver. 3.OA Release Date:12/27/88 Serial # 3194 Analysis prepared by: FAVREAU ENGINEERING, INC. 3434 VIA LIDO, SUITE 250 NEWPORT BEACH, CA 92663 714-675-8030 DESCRIPTION OF STUDY • P M 11668 • OFFSITE Q's INCREASED BY 40% *LINE B FILE NAME: 11668B.DAT TIME/DATE OF STUDY: 16:50 2/27/1990 NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = .00 FLOWLINE ELEVATION 956.36 PIPE DIAMETER(INCH) = 48.00 PIPE FLOW(CFS) 81.90 ASSUMED DOWNSTREAM CONTROL HGL 960.860 NODE .00 : HGL= < 960.860>;EGL= < 961.520>;FLOWLINE= < PRESSURE FLOW PROCESS FROM NODE .00 TO NODE 91.48 IS CODE 3 UPSTREAM NODE 91.48 ELEVATION = 956.66 ----- ---------------------------------------------------------------------- CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 81.90 CFS PIPE DIAMETER = 48.00 INCHES CENTRAL ANGLE = 46.239 DEGREES MANNINGS N = .01300 PIPE LENGTH = 91.48 FEET PRESSURE FLOW AREA = 12.566 SQUARE FEET FLOW VELOCITY = 6.52 FEET PER SECOND .1792 VELOCITY HEAD = .660 BEND COEFFICIENT(KB) = HB=KB*(VELOCITY HEAD) .179)*( .660) = .118 PIPE CONVEYANCE FACTOR 1436.431 FRICTION SLOPE(SF) .0032509 FRICTION LOSSES = L*SF 91.48)*( .0032509) = .297 NODE 91.48 : HGL= < 961.276>;EGL= < 961.935>;FLOWLINE= < 956.660> PRESSURE FLOW PROCESS FROM NODE 91.48 TO NODE 170.84 IS CODE- 1 UPSTREAM NODE 170.84 ELEVATION = 956.98 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): INCHES PIPE FLOW = 81-90 CFS PIPE DIAMETER = 48.00 FCV BY:XEROX TELECOPIER 7010 ; 2-28-90 9:55AM CCITT 63-� 7147884139;# 3 7- op �- PIPE LENGTH = 79.36 FEET MANNINGS N = .01300 IS CODE SF=(Q/Y,)**2 = 81.90)/( 1436.431))**2 = .0032509 HF=L*SF = ( 79.36)*( .0032509) = .258 PIPE FLOW = NODE 170.84 HGL= < 961.534>;EGL= < 962.193>;FLOWLINE= < 956.980> 279.46 FEET MANNINGS N = .01300 PROCESS FROM NODE 170.84 TO NODE 170.84 IS CODE 5 PRESSURE FLOW UPSTREAM NODE 170.84 ELEVATION = 956.98 279.46)*( .0027553) = .770 : HGL= < 962.508>;EGL= < 963.067>;FLOWLINE= < 958.100> ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 75.4 48.00 12.566 6.000 .000 .559 2 81.9 48.00 12.566 6.517 -- .660 3 6.5 18.00 1.767 3.678 90.000 - 4 .0 .00 .000 .000 .000 2 75.4 5 .0===Q5 EQUALS BASIN INPUT=== .559 LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((AI+A2)*16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N .01300 UPSTREAM FRICTION SLOPE .00276 DOWNSTREAM FRICTION SLOPE .00325 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00300 JUNCTION LENGTH(FEET) = 1.00 FRICTION LOSS .003 ENTRANCE LOSSES = .000 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = .201+ .559- .660+( .003)+( .000) = .104 NODE 170.84 : HGL= < 961.738>;EGL= < 962.297>;FLOWLINE= < 956.980> PRESSURE FLOW PROCESS FROM NODE 170.84 TO NODE 450.30 IS CODE UPSTREAM NODE 450.30 ELEVATION = 958.10 --------- ---------------------------- ------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 75.40 CFS PIPE DIAMETER = 48.0 0 INCHES PIPE LENGTH = 279.46 FEET MANNINGS N = .01300 SF=(Q/K)**2 = 75.40)/( 1436.431))**2 = .0027553 HF=L*SF = ( 279.46)*( .0027553) = .770 : HGL= < 962.508>;EGL= < 963.067>;FLOWLINE= < 958.100> NODE 450.30 PROCESS FROM NODE 450.30 TO NODE 454.96 IS CODE 5 PRESSURE FLOW UPSTREAM NODE 454.96 ELEVATION =___958.12 ...................... - ...... -------------------------------------- CALCULATE PRESSURE FLOW JUNCTION LOSSES: DELTA HV NO. DISCHARGE DIAMETER AREA VELOCITY 1 68.4 48.00 12.566 5.443 .000 .460 2 75.4 48-00 12.566 6.000 -- .559 3 7.0 18.00 1.767 3.961 90. ' 000 - t%^f% nnn Ann 5 or- 4� . w Q4*V4*COS(DELTA4))/((Al+A2)*16.1) UPSTREAM MAMNINGS N = .01300 DOWNSTREAM MANNINGS N .01300 UPSTREAM FRICTION SLOPE .00227 DOWNSTREAM FRICTION SLOPE .00276 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00251 JUNCTION LENGTH(FEET) = 4.66 FRICTION LOSS .012 ENTRANCE LOSSES = .000 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = .198+ .460- .559+( -012)+( .000) = .111 NODE 454.96 : HGL= < 962.717>;EGL= < 963.177>;FLOWLINE= < 958.120> PRESSURE FLOW PROCESS FROM NODE 454.96 TO NODE 692.25 IS CODE 1 UPSTREAM NODE 692.25 ELEVATION = 959.07 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 68.40 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH 237.29 FEET MANNINGS N = .01300 SF=(Q/K)**2 68.40)/( 1436.431))**2 = .0022675 HF=L*SF = ( 237.29)*( .0022675) = .538 NODE 692.25 : HGL= < 963.255>;EGL= < 963.715>;FLOWLINE= < 959.070> PRESSURE FLOW PROCESS FROM NODE 692.50 TO NODE 692.50 IS CODE 5 UPSTREAM NODE 692.50 ELEVATION = 959.07 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 64.3 48.00 12.566 5.117 .000 .407 2 68.4 48.00 12.566 5.443 -- .460 3 4.1 18.00 1.767 2.320 75.000 - 4 .0 .00 .000 .000 .000 5 .0===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((AI+A2)*16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N .01300 UPSTREAM FRICTION SLOPE .00200 DOWNSTREAM FRICTION SLOPE .00227 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00214 JUNCTION LENGTH(FEET) = 1.00 FRICTION LOSS .002 ENTRANCE LOSSES = .000 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = .101+ .407- .460+( .002)+( .000) = .050 NODE 692.50 : HGL= < 963.358>;EGL= < 963.765>;FLOWLINE= < 959.070> PRESSURE FLOW PROCESS FROM NODE 692.25 TO NODE 774.46 IS CODE 1 UPSTREAM NODE 774.46 ELEVATION = 959.40 ----------------------------------------------------- ------------------------ CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 64.30 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 82.21 FEET MANNINGS N = .01300 SF=(Q/K)**2 = 64.30)/( 1436.431))**2 = .0020038 HF=L*SF = ( 82.21)*( .0020038) = .165 NODE 774.46 HGL= < 963.523>;EGL= < 963.930>;FLOWLINE= < 959.400> PRESSURE FLOW PROCESS FROM NODE 774.46 TO NODE 774.46 IS CODE 5 UPSTREAM NODE 774.46 ELEVATION = 959.40 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 58.0 48.00 12.566 4.615 .000 .331 2 64.3 48.00 12.566 5.117 -- .407 3 6.3 18.00 1.767 3.565 90.000 - 4 .0 .00 .000 .000 .000 5 .0==05 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((AI+A2)*16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N .01300 UPSTREAM FRICTION SLOPE = .00163 DOWNSTREAM FRICTION SLOPE .00200 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00182 JUNCTION LENGTH(FEET) = 1.00 FRICTION LOSS .002 ENTRANCE LOSSES = .000 JUNCTION LOSSES = DY+HVI-HV2+(FRICTION LOSSWENTRANCE LOSSES) JUNCTION LOSSES = .152+ .331- .407+( .002)+( .000) = .078 NODE 774.46 : HGL= < 963.676>;EGL= < 964.007>;FLOWLINE= < 959.400> PRESSURE FLOW PROCESS FROM NODE 774.46 TO NODE 846.54 TS MMF UPSTREAM NODE 846.54 ELEVATTON - vsq.&A ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSESfLACFCD)i PIPE FLOW - 58.00 CFS PIPE DIAMETER 48.00 INCHES PIPE LENGTH 42.00 FEET MANNINGS N .01300 SF-fO/K)**2 (f 58.00)/( 1436.431)1**2 .0016304 HF=L*SF - ( 42.00)*(_--anXQ04) = .068 - < 959.680 -,- NODE 846.54 : HGL- < (963.74SOyEGL= < 964.076>;FLOWLINE END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM -i 1�� Mo 16 cu 14 3 PAIC'NOLI MAP 07"6-40 MOM N 14 UF -1 - 46NS!�44 Ina /44 7 AC MAP 148 36 - 70 AR- NO. 5 ILL! 6. is ACC M/L S. 49 AC 101 V ;A," 7 R.A. 001. 7jr 8 PAR. I 4.37AC-U/L 3CWAC. I I—ff At� 970 zi Sum, 7,.= 3X*R PAR. NO. 19 5.6f 4 . .... FAR 29 TKAL A" %Ito 40 4 p r L% L 4 Pat I p a* r- 2 pt .If AC. IL4 At 8.0 jX1- TI.,, Z. 36 AC 10. 71 AC. G.rf AC &2 -Aa(. 13 a - - +- t -- 1b I Ktc I i -. - -- 4woo.2 7 Par I 1716 AC )WAP 872-36- 4 SEE PAP. 25 EASEMENT PAGE 0 AW Ag" It -7-k f JEV rmmu @) '. zi5i Ar. m1L K -4&64 AC- M/L 186.04 A . C 4 7.96 AC. -4 h 9&IAC, 24.76 AC. M/L 24.09 AC .10W.TV. " - -672-36-4G � PAR. NO 8 - 4.85AC.--- 4,56AC, Lp -11-69 Ac- TI;L\A. LIURW UIC PTN. PAR. NO. wir .4-4. JAW Tipt lot -A li % 2 2 a: Pird Por.2 66- , L P 4.85AC. 4.65,= 3X6AC 4,25AC. 1. 4.35 3.35AC Gp S a A 014-10 JwaC2 gWqv, MAP 872-36-4T PAIL 26 EASEUENr nil 1% 33 01 i 23 07 I . 2 01 A 15 1. f-2 oft�-W-w Mika 10%1 6 4p A-5 4p I HYDROLOGY MAP 4-4 0 eq s L TYPE: -A U-S-E_:___C__- OMMERCIAL 4 =2 A: klo AT vf7, ri I— A r . , v t j t. L j, a— L 7f P-5 3 7 c i=s T 4 t L 4. Ai I . . . ;o 1: CFS; Ad. 0 .16 B L 00 00 N 0 C) -19 4s� 0. 1v Ai (0 r ".0 J, Cy L '%7 IA4' Z. .4 w r IS - .6 A j— I < rZr 16 q: u L41 f -a -ALA L —Ad. t— LU CL DG. .&OA > V-71 AC. "e!x PT RAINFALL:.0,89 2 Q vsz 41.41 r -f:,5 Qioo-IHR.PT. RAINFALL' 1.28 Q 100 = 5(_0.1 0 c Fs o5i AC_ 2 (t DG. Tc. 21.44- mw FLOW PATH L Ac. a J!17 .73 CF & — - A, 61. a % a —_ "" Cb- IS7, "�'. a :Z"� 1.58AC OFF—SIT AREA -�FQ 3. 31. 4 AC. �3 2 AC 0 VL11i! . , \ �> y --- - oil b -1.4 ... 0 & �1: so ell . 11 %: 3:IA it OIL % _141tj V A 00. TJI":*, rL, 77. 0 X 1 _F.L F. L. r If fJ;4 A t io'7 z\ C; U� (?_1\ J rE' \C-' 7A 00 'I u A% BL 55AC L .0 L BLDG. L 010 A.0 ;015,w. AC 0. tl* L70 ri 13 A AC r LC rill 0 1 c 'Mal 771C 0 1 1 - I- ..-- n% Al r .16 5. 4 VL I # WC I - 1 1, 1 ;,�;j .X. CF5 a zilv;e t J_ 44 lt:;;A— Vw"" '! j LIM J o; ow�­ XU, 1i liv j JL rx.,j tv 4 * 0 — d all a 3,0, N42 SCAL E 120 17 Z s J+K ---------------- vt AC BLDG. 4 Ik +0 2 AC n BLDG. 4 L ss4c' .1111111 MEN I I V-5 ik-s r4s, 13 36 AC 90 AC x 11.1 ou *Cr I.. CCILONAT0. .0ru 411) tA\" -44 -7 or —IN t:2J ZVI c T lid Ij C�L By $mr Co. KA bl� 3t?� DA. d"T"m L lee *A' Or llo 3c". Vt;IABLE HEIGHTCURS CIET16L JOHNSC#4-� ASSOC Wit CIv1L L Epe4-L. .'"VE714 s, -r EXIST. 4-4 0 eq s L TYPE: -A U-S-E_:___C__- OMMERCIAL 4 =2 A: klo AT vf7, ri I— A r . , v t j t. L j, a— L 7f P-5 3 7 c i=s T 4 t L 4. Ai I . . . ;o 1: CFS; Ad. 0 .16 B L 00 00 N 0 C) -19 4s� 0. 1v Ai (0 r ".0 J, Cy L '%7 IA4' Z. .4 w r IS - .6 A j— I < rZr 16 q: u L41 f -a -ALA L —Ad. t— LU CL DG. .&OA > V-71 AC. "e!x PT RAINFALL:.0,89 2 Q vsz 41.41 r -f:,5 Qioo-IHR.PT. RAINFALL' 1.28 Q 100 = 5(_0.1 0 c Fs o5i AC_ 2 (t DG. Tc. 21.44- mw FLOW PATH L Ac. a J!17 .73 CF & — - A, 61. a % a —_ "" Cb- IS7, "�'. a :Z"� 1.58AC OFF—SIT AREA -�FQ 3. 31. 4 AC. �3 2 AC 0 VL11i! . , \ �> y --- - oil b -1.4 ... 0 & �1: so ell . 11 %: 3:IA it OIL % _141tj V A 00. TJI":*, rL, 77. 0 X 1 _F.L F. L. r If fJ;4 A t io'7 z\ C; U� (?_1\ J rE' \C-' 7A 00 'I u A% BL 55AC L .0 L BLDG. L 010 A.0 ;015,w. AC 0. tl* L70 ri 13 A AC r LC rill 0 1 c 'Mal 771C 0 1 1 - I- ..-- n% Al r .16 5. 4 VL I # WC I - 1 1, 1 ;,�;j .X. CF5 a zilv;e t J_ 44 lt:;;A— Vw"" '! j LIM J o; ow�­ XU, 1i liv j JL rx.,j tv 4 * 0 — d all a 3,0, N42 SCAL E 120 17 Z s J+K ---------------- vt AC BLDG. 4 Ik +0 2 AC n BLDG. 4 L ss4c' .1111111 MEN I I V-5 ik-s r4s, 13 36 AC 90 AC x 11.1 ou *Cr I.. CCILONAT0. .0ru 411) tA\" -44 -7 or —IN t:2J ZVI c T lid Ij C�L By $mr Co. KA bl� 3t?� DA. d"T"m L lee *A' Or llo 3c". Vt;IABLE HEIGHTCURS CIET16L JOHNSC#4-� ASSOC Wit CIv1L L Epe4-L. .'"VE714 s, -r