Loading...
HomeMy WebLinkAboutTract 16597for Tract No. 16597 in THE CITY OF FONTANA Prepared For: Silveroak Development 19100 Von Karmen Suite 400 Irvine, Ca 92612 prepared By: Raab Engineering, Inc 310 Maple Avenue, Suite D Corona, CA 92880 (951) 272-1072 MARCH 06, 2006 1 0 D D il ?Zwol TABLE OF CONTENTS :. 1. Narrative discussion �. 2. Section 1. - Avocado Court .. Section A: Storm Frequency 25 years 1. Analysis basin proposed calculations : from -Avocado Ct. at southerly cul-de-sac ckoak Lane to southerly cul-de-sac 2. Catch basin capacity .� 3. Hydrology study - Q25• ,.., Section B: Storm Frequency 100 years rr 1. Analysis of proposed flows: from Blackoak Lane to southerly cul-de-sac 2. Catch basin capacity calculations - Avocado Ct. at southerly cul-de-sac -s 3. Hydrology study - Q100. 3. Section 2. - Banyan Court Section A: Stone Frequency 25 years rr 1. Analysis of proposed flows: Blackoak Lane to southerly cul-de-sac 2. Catch basin capacity calculations - Banyan Court at southerly cul-de-sac �* 3. Hydrology study - Q26. Section B: Storm Frequency 100 years 1. Analysis of proposed flows: Blackoak Lane to southerly cul-de-sac 2. Catch basin capacity calculations - Banyan Court at southerly cul-de-sac r" 3. Hydrology study - Q25. �. 4. Section 3. - Beech Avenue .. 1. Analysis of proposed flows: North tract boundary to catch basin at Baseline Ave. 2. Hydrology study -Q100. 5. Section 4. - Hydrology Study - Existing conditions - Q100 +rr G. Section 5. - WSW run for Hydraulic Grade Line Analysis 7. Section S. - Hydrology Maps i, Existing Conditions ii. Proposed Conditions w 8. Section 7. - Appendix a. Baseline Avenue RCB Plan and Profile b. Hydrology Study - Tract No. 16250 c. Dload Chart do M M NARRATIVE DISCUSSION FOR no HYDROLOGY STUDY - TRACT NO.16597 r° The proposed development of 35 single family homes lies on approximately 8.3 acres on the northwest comer of Beech �. Avenue at Baseline Avenue, and adjacent to two existing residential developments, Tract No. 14293 on the north and northwest sides, and Tract No. 16250 adjacent on the west. .r roved by the City of An existing hydrology study for Tract No. 16250 was previously prepared and subsequently app MW Fontana, which included a portion of the underlying area for this development. These calculations have been included in the a, whi h portion of this report. It also provided for these tributary flows up to 1.5 cls. Since the expected flows .. unt, all flows within this development have been channeled southerly to from this development would exceed this amo the two catch basins proposed at the cul-de-sac terminus. The proposed site generally flows southerly, where temporary inlets to an existing double 8'x10' reinforced concrete box within the right of way for Baseline Avenue. These flows will be picked up in the ultimate design for this tract in two separate catch basins, each constructed at the southerly terminus of Avocado Court and Banyan Court. New 24" pipe +- connections to the existing RCB are part of the tract improvements required with this development. The City of Fontana has adopted a policy of reviewing storm water runoff from new development using a � for Q100. frequency of 25 and 100 years. Flows must be contained within the curb for Q25 and within the property .. Several points should be noted prior to reviewing this report. rr _ A. B. w C r rr This report is and the other wdealing w�� run-off tributary toing Banyan Court waterh storm (en Ztributary to Avocado Court (Section 1) There are no offsite tributary flows into this development, but existing flows along Beech Avenue have been continued southerly to an existing catch basin constructed by the City of Fontana as part of the Baseline Avenue Street Improvements. These flows have been calculated to be below the top of curb for Beech Avenue, and all flows within the street remain within Beech Avenue until reaching Baseline Avenue. (Section 3) The emergency overflow for each of the catch basins planned at the southerly terminus of both Avocado Court and Banyan Court is provided by installing a 12' wide by 6' high wrought iron fence as part of the block wall construction required along the no side of Baseline Avenue. This will provide a cost efficient means of providing secondary overflow abilities for each of these basins in an emergency situation and is consistent with previously approved developments along the north side of Baseline Avenue both east and west of this development. The total run-off leaving the Uthsite, including the has d enrcund lowted as follows: each of the storm drain systems proposed for these streets, at each e r. Avocado Court Banyan Court Foxworth Street Q25 = 7.02 cfs Q25 = negligible 025 = 10.66 cis Q100 = 9.15 cfs Q100 = negligible Q100 = 13.98 cfs In February 2006, the Western portion of the site was re -designed due to existing block walls along the Western tract boundary. Proposed pad heights along this boundary were higher than those from the existing adjoining tracts, and consequently, the thissting additional cost, wall thei pads along the Western boundary dary hadd have to be removed and etorbe (dowered achieveer to n o de to leower the order A eliminate pads, Avocado Court was lowered from Foxworth Street southerly to the cul-de-sac, which consequently affectstorm the ch Avenue, and thestorm drain and sewervdepths. d to on-site conflicter was s. Theed oflow hydraulic grade line elevations for the storm drains ee drain connections 1 were re -calculated, and the improvement plans revised accordingly. The calculations within this report now reflect the re -designed conditions. rrr e.i w im r .. ism SECTION 1 .m N. go im E e 1� SECTION A: � STORM FREQUENCY - 25 YRS 1 0 0 1 0 P 1. ANALYSIS OF PROPOSED FLOWS — AVOCADO COURT From the following hydrology, Q = 10.66 cfs A = 5.0 ac Tc=14.41 min.. From following page calculations, Avocado Court Q capacity > Q talc, or 13.05 cfs > 10.11cfs, therefore assume Q splits evenly on both sides of the street. Q / side = 10.66/2 = 5.33 cfs From the following page calculations: Resulting depth of flow: 0.27' AREA A Q = 1.49 A R2/'S'n A=0.0928 n P=1.435' zn z/s Q = 1.49 A R OR SIP Q = 1.49 X .0928 X .0647 = 1.49 d-0.14' n So .015 S= !.loot Q= . CIO ( �/ X 1.49 Q= [� CFS AREA A+B Q= 1.49 A R 2/3 s 1/2 A=3.2708 n P=18.286' 2/, d=0.47 Q = 1.49 A Rzn OR Q = 1.49 X 3.2708 X .1789 = 103.15 n S17, .015 S= t•&/—. ,n Q= -pit, 1/2 103.15 Q=13_os CFS AREA A+B+C Q = 1.49 A R 2/3S1n A=6.864 n P=18.496' 2/3 864 X 2n d=0.67' Q = 1.49 A R OR Q = 1.49 X 6. .3711 = 352.10 Ste' n S17,015 S= 1.1/2 G o . X 352.10 Q= 4A -%;A- CFS FOR DEPTH OF FLOW CALCULATIONS: Q�+owri - Q d ="mdOR: "3.33--.tq = k - . l4 OR: d =T d2 - d • �1 2 CATCH BASIN CAPACITY CALCULATION — AVOCADO COURT AT SOUTHERLY CUL-DE-SAC CATCH BASIN AT CUL-DE-SAC USES SUMP BASIN DESIGN, Qcatchbasin = 10.66cfs Flooding capacity at top of curb for 025 H / h = 1.00 /.83= 1.20 Using sump basin charts: Q/L =3.0 Solving for L: L =10.66/ 3.0 = 3.55 ft. Use L=3.5ft w VIII SUMP CONDITION - 1 C --A-12 m p3 6 D 2 F- s 75 J 2 7 C Cf .s s � :8 ,ah.'h h � ¢ `.4f O L� ' s Q 10, .08 Q ISA o Al 6 o o 04 0 .25 .03 rR '+ .oz � Q O J1 1.2 i1i California, United States, North America "s, Q Muscoy �Hillsidd. Rd t Projec Site ­�A _j Oil Z Z_ qn NK LOP Mu icipa Field =7A -�s ase''Iire St S., ChoCu - q '6 i m6n: 5th -i St gmttr H 0 AF�-Iu V Mllfnsr� 6 1 A: jM 7 V.. ,n A 0 Wre 111111110- h $bnb cc LO 0,11h am -Ontar Jijru o r . ...... ........................ .............. . ...... .......... ...................................... ........................ MO. ;,G Mira Loma d A" OT e Wk. RW Moren aj1OY 6 : ?4: Cloverdshe Rd monite..Ave Pedleyfxqq j„ M1 2 4 8 Copyright ®1889-2000 Microsoft Corp. and/or Its suppliers. All rights reserved. http:/1www.mIcrosoft.com/StrsGts a the Canada. 0 Copyright 1999 by Geographic Data Technology, Inc. All rights reserved. ®1989 Navigation Technologies, All rights reserved. This data Includes information taken with permission frpm Canadian authorities 0 Her Maio ty eQuee.ninRightor ad Page 1 ® Copyright 1999 by Compusearch MloromarketIng DOW and Systems Ltd. L It, . ji Rancho Cucamonga Fontana, California, United States V 3aseline Ave A, Pt- O!LP, Li . . ........... . :7C North I lzollol El Park . . .......... 3 I h ad' -Ave. xd AVOg H ighla --:H pd 7. it• W ------ hu i ine -J U 01 Tontana I P t site GIC LJ Av. 6 AveT . . .... .... ..... All N L Sal L -J lei h 0 m OV 04 ()A n 1 1 7 Copyright ©1980-2000 Microsoft Corp, and/or Its suppliers. All rights reserved. http:i/www microsoft.com/Streets * Copyright '1999 by Geographic Data Technology, Inc. All rights reserved. C 1999 Navigation Technologies, All rights reserved. This data Includes Information taken with permission from Canadian authorities 0 Her Majesty the Queen in Right of Canada. Page 1 ® Copyright 1999 by Compusearch MicromarketIng Data and Systems Ltd, �-z -'3*AN BERNARDINO COUNTY rAW)RC)l Or -.Y MLNIIAI A o I� NMI F —25 ®R 025 , 'AM - .--- 7011 kftw m 14 - 0 9•ikx sr, k F -t - t: ... .... ... 3ff- F- 7TT 41 NMI .4v Aoff fu ILL 64, m Ir I V LESEXID 4 7 -,Erz; SOIL GROUP BOUNDARY j A SOIL GROUP DESIGNATION SCALE 1:412,000 BOUNDARY OF INDICATED SOURCE SCALE REDUCED BY 1/2 HYDROLOGIC SOILS GROUP MAP FOR SOUTHWEST -A AREA J I .. 1 ... .. r•7v r • ,�. �. r .. v:�r5 o i -'r_.. . w❑Il •.. .. . __._ .._... r _-1 _ �- _' • ME9•E711i IL �; !// -- - '"- - -- ._._�`.. L .4 +-. ._ r - _ - '- _ i ~' t • ,•�9d N �- -�- - - :- - --- - -- - - -- - - - - --- b I1. - t 1 I - - - �-- - - - _ ya I l 1.1 r - ••� - I'T 1..� ' I r I I YCii' 'IT . �. , 1 . p ( , I •`y , -. 1 _� '. '�- i +s■+vti • . - y-^ '_C -• 1- -7•- I I 1 •r fiCT '' ', � I : • _ ' ' yt .1 '' ..� 26 fl y ' ; •� `r ^s:t* .eu ■o..�.t , 4 _ :. '• I i, , I I ¢ � _ � � `~ •r -F •-11 � -{•- � T" ' -3- - - I- 1 - - _' � - • i-a`'-}' --- � ' - - _ Y - � _ •s ( asa f' I e �'� � i - = 0 I b . ' � to .. '� .,.... I � �•r I_1 t� ._�, I, _ p'n r � ; ro I ,: T .. - • �_ $— � � , 1. _ _ ;1_ _I ^ _ _ —1 .1 ` lFEil�p _ • 'If'• �y7rWT I -1j- - f'? �. ! f T Aa LESKA T •� .+ c- 3- 1. I t �'! s • •; 1.: • '7 I ,] _ 1 t -- '-• T �s -' - r i uTh -7 I- �t i' -.'.. I I _I : t.^= C c a 'l I a 1 I -•s, I i! t i / ' JI.{ -- L ` ` 'L 1 ! -9 ! 9 z• I i$ I, t I •1I _ '- I.-T '�� y . - _ -- • -_ - _- ,- r �- ~' • + , , j� �' 1 I `Ci r^D' t a )•y]tp _ ✓� I T --4 1 1 N` 51 -I 'II- 1.� '_�� 1 � - `29 �- - i i 2 �.•ci-- ,� i•4�ai t,-E -1 f '• -I '1 I.- I� I�(� -� • I I I ^I i4! ` =TI• �� h�,C- 3l 1 A �, • , C79•[r 4„� -u �' 1 - .T - 1 ; •f • - -: L_ �. 1.7. _.i - i-_� __ (-- C. [ `,}■� - � ! f F_ _ - - _ _ -{ r J ^ rsa• •.1 •Ltt�• 1 i _” ,;f ' i� w � I t - , • v .. .. � - ■ ••� t • s ��I �►S I _tel �1/� _d� t!' L� - f 't-� • r. ` r �•-'^' •-- f••- �. s •-r- _..-r� __1 ._.. - -yi ..- - ; {~ • .- 1 •••. \ , - -f- _ ,�_ j--'•r•a9LiA11t7ittCAp -- 4•�. 1 pgl�Ai�^�■ r`•.i ` .• .. .. ■ t 4.6.,h LI j\•: . is iIV =�• ■' .e ' ..A.• - _n :�__.1 ItRT1 -44- 1 --�Ea• •I - ' - �� •:R 1- - `?V �.c - - '••• _-r,+' -"�- - ���'.`E Ili 1.,.-'�L�•}. '* + ' 5 _ _ _ ( Ll �n„N --r 1 . - •y'�. - -. - .y - ti,� • ar - •'. CA[>rTi .a • • _ • •-- �. :`�. srca• - _.1 - f"•� . . ' ' • + 1 ,.i '_ ` rl-C ~ t 1 ` •_1-�•— • -Fl — i , P ••i •TN•' — .��llL4 '. •—_- _ —� .�C —. -- _ LAAC I1�{1,-• s t.•"'— /,J , . . -, r 1.7 ar - _ - - .; - }_ - -. 't-.�.il ±mai c ! s� - L. .. •a _ --{l .- -- -- - j ..� _ ”- �... -1 - _;sL.1 - 1 •- !. ! •�i` ry f•'� - - _ . >, s' - ...: = �' r -• .. •_�c. ,!.- .. is _■r _ -_ 1.. (r - ' '•.1.� • ( '. .- . , j . . ' ,� .L 1. L2 yL• r - aAl,vae /L I n' Y"A '� /' _ ': �r■. r r _ ... , _� :1 ? +a a "fs k� •F L ,. . r T• • y - •- - -�f t� ,'^•' - ~ L3 _ � - .i C' - �. 13 .•+'f-, � ..-••tib ^ -i . �' ` .,:'.. -r - ; C1ti'S - t •� - i �: Nti � •:..q �'iiy� "� � - � �./ •. J� --'c `��- },..- -L � `•�•. . iC � `Y, 7� - i -�- .� - r - �;�'; r •';4:r 1-. .- -. -� _li. - - � _ - ••' - ! •. a' • r ••b i• ^ +.s ,j ^�. •• ..1tt1 ' ,�� ' C�I_ nnc _ ` _ - - . .. r- ti 1 - -. \ 1; s�, A.._ •a. _ - 1 • - 1_7 ' _ -wl .. •y+;- CAM • - .4 =isa.w.w .� #xT. .. i •r :,. ,• - _ -rr 'fir i .j - �` . -F■� J^- V- - TIN ` j . ' __ate• � v • -- — r '.'• SIT I1 1L A� _ ' ... .. .. :�C: u"IL . a .0 � -`t i t- --r '•'- - - -. - • � _ -:_ _ I j .• •.... LOIW i' ••� �y `r � �� f �' f s• `'.ish S 966R0 T � �• � . UkIND ry_ , T i fat.• a 1 , .� .-.. ' ..,a a.•. RIALTO_ - _ - _ -c_•- �. -- -- -.- tet, J- �`� •- - - �•- _:'_ - _ F TAN _ �'- a - rsr t *ns. .l •f - _ 1� �a.,L_ :i avnalQ- - 1 - -• ONT LO+gr�•' - - C TON .. " : i • _ • � -..•-; . ."t ,• ,, r __ -- - -• -- -. _• '• - •1'�•�lS •4T _ .. ,•: _ _ - .. rn. R.EDLAHCS •e. ..r .a • • a s . ' _ _ YY 1.11071 ; a, ..[f - c f • •..�.. /• .� • L _ - -. _ i-- T - �...r ■ , i ■ ' 1- • - _- `. ,9: • •� , �• � s._ " •.+•..•' �,: i AtSY'f YORE _ r' .1 ' � � ,•• n, ..c � >. SF'�a i• r w •.ta `r _ • 1.1 .. may.• � 1�a .� ut ■F , k Ta,>:9 ....e. ' r. Ira i { ■ . ' , S , .t-r _ +rn•li� •_ . •,R's` .... '' . i uuwe zCxl7rjcE - 1 ' y1 . J`^r. ,.r. r y, _ � •�`i• v S=� •fir l ra ... y 1 '• nG`I��• I 1 1��``■ ,1 i 1:! CHINO '"' •'":..i' fi T -� -- _ "t = -- _ __•:1... -• �•� _ �.. .- -i- 1 R 1 E RjE RSIDE j} I , -r'f r •7 S _ - - I R V I V E 1 e' • it r� E8• n '� j � � _ fl ' '•t' _ � -{ r %� •i { - a._.. /; ..T' , t� •• • ,SP '+ •v ' • .:r .... _• .l - - - - js n v _ zt i �ti 5 �A R 4W • 5 i R 3 nCYlr .. R2W —I -- — • .� _ti�`.' �.'��_f _ SAN BERNARDINO .COINTY F CONTR I TR T R 5 W: I 11F� 0 CONT REDUCED DRAWING VALLEY AREA AS•N l ISOHYETALS SCALE Ili= 4 MILES Yla — 10 YEAR I HOUR SAN BERNARDi[ :COUNTY �$ • �' I - ' _ _ _ __ - iLLi£D DH V.SD.� HA-L•j-r+J-3 Z. 1773 qA r is F•rrT'Iv,'rm tit ,� PA • e�-- I''�a I I R- R6 - — HYDROLOGY MANUAL' '���'� ` ELff�6-C1�ATRTiL�2FUIne n s 150LINE5 PRECIPITATION 1�7aDNE,1 6■SE• s-■I r FLJE I+1 W.Q. }rg , 1.7 Kayri 1 nt n ' nom" 1 r+�a 1 J+-rtr 1 {,ITir� s =_ �It�YYIK1W - \ KICrtGG •L>• I I 1 , � � 1 .-• I I = I �'�' = Ne�riaa = � � 1 . � � N o *Err 3u 1.5 2 � ' I.•c� I n , I $• I 4 -__� 4 ' •I j d I. .r:• 3i!. I i - I �� A ' 't �Ec r .s.. I' z= ➢{I I Le I �..� _ I I ` ut p i q�` { I I I P J' � 1 I' L � r : 6 1' 9 ra v it t �-F �.' ` i � 1••. � � � � h • 1- .- -" L-- - - �� �- I .t. L- �, .= 1 _I - ..1- - � >l i 1 -- r-1+ 18/f i-' - . - -.}.. •--i - I- . T`i - - I - 4 _ aT • P , • __ - - t i ^,€� 4 = I X I1 1 1 Jt ii- _. t ri ' I ' � !• � 1 � •v➢�* ' i can r.a� a � � If- - :L� r_ s ,- � d �- y 1 - - fi�j'is •,�i_ti�� x'ItiE�ti.. -J �I if f T7_ V —. _ _ _ _ �1 q 5 r 4 1 re I z' T'r.3• ii I� I ,�I,'}' _ �, :Y.9**� 1 . f _ Ll 'T• , 1 3 N 4 ''`• t 6 2 aareri- '1 yZ�l 1 - -� = e'•• 1: I I 1 I I L 1 r• 1 !1 • 1 7. ] ' ilt-,�L` - rt -� a .Fk.f - r'r i -1 = ' - L k \ I Fj-0 • I . ,� - � I 1 I I"°• .. 1 :�� i�/. � • 1 . � i.'•� =4: _ �,�R CT 5. '•t�MO � � 04 r is t �• 1 � �_ I r,1`• . ; -- !- -_ I- • : - I- - Ir A!_ a660rnt -ar g r �-- c:•. L.I 1 ,{....' •ft - `ti- -CI -ter `i-- r- 'tom• .T, �• _ �'=i•.'=�'-3: ��' L -=r--1�1 Li lli .a• •i.s5 �."����•s I , I �' V ti Lrfl'L rr �-{__ � •� r { ' , ti.=ea..• _ I i •` �I� _ '�,• * _�. ���_' •. .. • ' - ; - _ I .. 1. , 7s 1 ~/I 7 = - •�1 +7 _ �{ _ ' y'�,�' r it ;p`r C�eq�5�4r '} ; 6F �/■�+J� ;-,--T2 H ' ;� - - �i;J, �� r „ C •'iTL111 q'i ` �• ~ 5 =_, �:r[.. '' •r.... •' � f� �, � ' L - r �. � I�r t7 � ;1 '� . •� '�•� -- '-`LT ' .- �-•l-yaz-- � usE � ���� 'r,,, I ���' - ' r' - � � - �! �f--,f�� - f .-; * . �1 r� :' ; �5 � 'r i i 1 9 _ _ .i � �� --y _ '+ _ i • � rc?'.F.�.' _ _ _ - i1 -' _ � - _ � - •� � ` �; 1 n �+ IT _ _ •.r - .rl •s%.'.}y. L'� --. - - '" - �. �F I.i �"= -� �y�:�,.; - -1 .a _ 1...•. I � I ':•' ~ { � •_ 1 • - r'19 1 e j a 1. � ' L3 _ -�'� .. _ ••+.. � .n=. • - •,+..• - r r . M;+L�Ij: y;a . a•'�'+ I �• 's '•: �' % _ -' , - T - � ~ •� �1 1 •_, '� � _=4'• 1 -•�.�- - = f re+i, •� a 1f'�t11lA 'r• .I � i _1:�• ;�' •'' •�. -_ •�Laai a I •l��'.r .r �J I •'L i' � z� /" 5 .'1°'" T ' t • � y_ f-+� •�]�,'j •�- - _�•5- - - - ' • yc< r -� • a 1 _r ?���' - ^- -rte Qrx.1 � � �[, - 2i • „ -_ t - _ . r •1 .c :f 'may :+ ;ti. f` _ _ •5a• _• M . v • - r'• tt'w: �.r I �- 1 �'-' e. •'�='"r•Fr'".i 1}.�`=- �- - rte_'-. •3i.' 'L -.' _ __ ���-L-7 -� - I �,q7 Gc� ( L. _ _.i, r -t('•�i7• .:�.. � .A-.rra r.. : 1T�- r r\:-rk�.. l':T••_ 'i .• - V iE�'.,.• '. _`r ,-.. ,F��`,. �__ - • :G �• I_:.' ..`r+far • :.-• I t�r��`i•i36 L! p�y.•'f . I _ .6-` r# ^_ _ _J-•�.. '_,�,:a•.!i...r`'� F--i.,as Lit row 1�-f;..� . .�.��'�r:_�\ • s',_;�\`- ' _ �II—t�j,�i�i�e_`��,.T' ' - FNr. • _ ,� ^ , � - ..r � , 9. I `=lr.- •-r-'"-�+ . _ -�-fir•=-. • •L� , � r _ � ` .� � ' '`- � �, T � C'`f �'~`' :.le � '•3G }t w --j �. _ 1 �i' •4 � 17-I� � �' 1 •, . 1- -_ -I`--- -- - --t'-- - � r �{I• it '• f ,• "1.1 t 9M b1aR➢r1,G l 11 �. i I PL •r , :' _ ..,•. � I _ r .. - • -- i = t.••'� i I I .� j ^ w 1� I i I { . . •, , k •r- c>_ramir ...oi .e•.r= �� •• f R 1 A LTO y r . -. 1. ' - ' ' TANSA ' � ° -- i5: •- •�-^ - - - -'- r- -�- --'�a'tir , –I - -cn _ i - _ •� _ H 4 - ... *a!M - -a` - - - `? Q+ - o-� � .$. �•''• ' • ` _ 5;{•• y' _ae e. ''-' rte.•' �•_ � f _ _ I 1 GatTON •i 1 _ La `�•1$ 52 --I �_ ',y �� — —' _ ' •'• — +; — — —t -- — .. t' i. . - REDLAKDS. •.. .._ • _ - _ s _ _ 1 _ _ Y4 LIIIC7. - -i- _ � ,._ _ -a�• _ .11.1-' _ -��- �••� -i :. asf50 - _ -_-- _ _ ! v' �. 'S� a' � r. a r i `� -__ - � •_>•• .._ ,� �sF'C.` �'-6 n:. ..u� - J� Tim i I. •� - riven 1r Lr ri _ _ 1 1 5 , .ee. ' I '�•, j • 13 TucAtri , , 1 I• e•,• �asp �. '"N I is � _ , J +' f1111Mf Titt�C '! 'v. - , 1 • • . r • a _ t ;r I `i: •r � =ti�.GG T+ �{ , I - 1 �£. - .;.� _ ,_...• • ' r. _ ; ¢•• lY.. , _ , wl r7Q4M1i➢wG uxn e..- r .' '°.-•- I ,.i R t 1 . R7 r�•�" I L� 1.1 i l ERS{DE Ie'• ,.n ne r��ER•, _�: ��•� "c• = I. •yi no- _ R4W •T�'' P z 3 RZW R5" VALLEY AREA xa00 s coxrra� . I REDUCED D R AW I N G X i MMYETu: SCALE Irr - 4'MILES Yeo—}QO YEAR I HOUR - -'. .,,sl -r.>< _-- --- - - SAN BERNARDIISIO�COUNTY ,1��1�,�.��,t,l� i -w -- - -- W .� ', HYDROLOGY MANUALL N c • I 1.13 ISOLIMES,PR•-CINTATI4H .tl-gG1ES) =1 >KALX ml ►� )K �-✓ 3. HYDROLOGY STUDY — Q25 San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2000 Version 6.3 Rational Hydrology Study Date: 07/04/04 Raab Engineering, Corona, California - S/N 875 ------------------------------ ------------ - ----- ********* Hydrology Study Control Information Rational hydrology study storm event year is 25.0 10 Year storm 1 hour rainfall = 1.000(In.) 100 Year storm 1 hour rainfall = 1.520(In.) Computed rainfall intensity: Storm year = 25.00 1 hour rainfall = 1.207 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 3 SECTION B: STORM FREQUENCY - 100 YRS AREA 1 STREET FLOW ANALYSIS — ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/Station 20.000 **** INITIAL AREA EVALUATION **** RESIDENTIAL(3 - 4 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.471(ln/Hr) Initial subarea data: Initial area flow distance = 960.000(Ft.) Top (of initial area) elevation = 71.600(Ft.) Bottom (of initial area) elevation = 54.700(Ft.) Difference in elevation = 16.900(Ft.) Slope= 0.01760 s(%)= 1.76 TC = k(0.412)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 14.411 min. Rainfall intensity = 2.840(in/Hr) for a 25.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.751 Subarea runoff = 10.661(CFS) Total initial stream area = 5.000(Ac.) Pervious area fraction = 0.600 Initial area Fm value= 0.471(In/Hr) ANALYSIS OF PROPOSED FLOWS — AVOCADO COURT TO FOXWORTH AVENUE From the following hydrology, Q = 13.98 cfs A = 5.0 ac Tc=14.41 min.. From following page calculations, Avocado Court Q capacity > Q Calc, or 44.54 cfs > 13.98 cfs, therefore assume Q splits evenly on both sides of the street. From the following page calculations: of flow: 0.48' koCfgA 61-71 18' 1 17.93' 1.33' LEVEL ------ -------------------------------------------------------------------------------- I AREA A AREA B AREA C AREA A Q = 1.49 A R'S"' A=0.0928 n P=1.435' 2/3 2J3 d-0.14' Q = 1.49 A R OR Q = 1.49 X .0928 X .0647 = 1.49 Si/2 n S'/2 .015 S= 1.6ol 1/2 X 1.49 CFS AREA A+B Q= 1.49 A R 2/3 S 1 /2 A=3.2708 n P=18.286' d=0.47' Q = 1.49 A R 2/] OR Q = 1.49 X 3.2708 X .1789 2i3 = 103.15 S'/2 n S'/2 .015 S= 1 ,/2 Q= rol6 X 103.15 Q= (3-05 CFS AREA A+B+C Q = 1.49 A R 2/3 S'/2 A=6.864 n P=18.496' 2j3 2/3 d=0.67' Q = 1.49 A R OR Q = 1.49 X 6.864 X .3711 = 352.10 S1/2 n S'l2 .015 S= (. r Q= .o(d 1J2X 352.10 Q= 44. CFS FOR DEPTH OF FLOW CALCULATIONS: Q — d UNKNOWN^ d I t p�' KNOWN I%�S^'3.05 _ )C." .' OR. d = oAb d — d OR: t � C, _ 7 Q2 — Q7 2 I 4A.c4 _13.OS .4I—.A•/ 2 CATCH BASIN CAPACITY CALCULATION — AVOCADO COURT AT SOUTHERLY CUL-DE-SAC CATCH BASIN AT CUL-DE-SAC USES SUMP BASIN DESIGN, Qcatchbasin = 13.98 cfs Flooding capacity at right of way for 0100 H / h = 1.25 /.83= 1.51 Using sump basin charts: Q/L =3.2 Solving for L: L = 13.98/ 3.2 = 4.37 ft. Use L = 7.0 ft SUMP CONDITION M . f0 --! -. b r.J --5.5 Cir:' EeIle O. e Az Is a a �- � 3 Z V local De�cr��s�::r. ��j California, United States, North America Copyright © 1988-2000 Microsoft Corp. and/or Its suppliers. All rights reserved. http://www.MiCrosoft,com/Streets ® Copyright 1999 by Geographic Date Technology, Inc. All rights reserved. ©1999 Navigation Technologies. All rights reserved. This data Includes information taken with permission from Canadian authorities © Fier Majesty the Queen in Right of Canada. page 1 0 Copyright 1999 by Compusearch Micromarketing Date and Systems Ltd. Bargee Cucamonga Fontana, California, United States North `✓ Fontana I Park ®igbland_ �i� _v .L.k _.... _._... .- _ ._. l'!P bland.. I t t ,. 9 lcw�ll Ave,,:..- ,,Qv� � I ..mJ ' -�-OW, 10 'ice ... , � ..._. ._{ 15 I i,itkfF'S>t 5i tt �1,..,«I,.i,✓ .r"Ibl'+,i ;' Ei I _..__..... {� , 1 bt fe >e Baseline Ave _.,s ..__------ - 4 � t IL@�, •9Pb •ZOn V `✓t e� ,�y;,'<S��"-+r� k k ��i�. ,,{' i V 'IN� I'f�.•..i'I I!•� ''p� p \' ` y,. p ` p t 1 'i � 1'A L P xve j IJ { Y n t 1 1y Tontafia Ct SRO Prop { f � asellne Ave ase Ine.,oA,9e - 1 fD t •1 Imo' i .,_� I 1 1 I_ k ` 6r R i CD TcSGq�V'C Jrs6'i i 'il 0i" rni n 2 n-4 (].6 ()-A 1-? Copyright ©1980-2000 Microsoft Corp. and/or Its suppliers. All rights reserved. http://www.mlcrosoft.com/Streets ® Copyright 1999 by Geographic Data Technology, Inc. All rights reserved. ®1999 Navigation Technologies, Ali rights reserved. This data Includes Information taken with permission from Canadian authorities © Her Majesty the Queen In Right of Canada, Page 1 ® Copyright 1999 by Compusearch Micromarkoting Data and Systems Ltd. + ldldalris,�-_- I i,itkfF'S>t 5i tt �1,..,«I,.i,✓ .r"Ibl'+,i ;' Ei I _..__..... {� , 1 bt fe >e Baseline Ave _.,s ..__------ - 4 � t IL@�, •9Pb •ZOn V `✓t e� ,�y;,'<S��"-+r� k k ��i�. ,,{' i V 'IN� I'f�.•..i'I I!•� ''p� p \' ` y,. p ` p t 1 'i � 1'A L P xve j IJ { Y n t 1 1y Tontafia Ct SRO Prop { f � asellne Ave ase Ine.,oA,9e - 1 fD t •1 Imo' i .,_� I 1 1 I_ k ` 6r R i CD TcSGq�V'C Jrs6'i i 'il 0i" rni n 2 n-4 (].6 ()-A 1-? Copyright ©1980-2000 Microsoft Corp. and/or Its suppliers. All rights reserved. http://www.mlcrosoft.com/Streets ® Copyright 1999 by Geographic Data Technology, Inc. All rights reserved. ®1999 Navigation Technologies, Ali rights reserved. This data Includes Information taken with permission from Canadian authorities © Her Majesty the Queen In Right of Canada, Page 1 ® Copyright 1999 by Compusearch Micromarkoting Data and Systems Ltd. '31AN BERNARDINO COUNTY ►4VMN Or -'V HAKIIIAl w �15 Mr - 6;Z - Tin TV; 71 g ji SOIL GROUP BOUNDARY liLSCALE 1:48POO A SOIL GROUP DESIGNATION BOUNDAPY OF INDICX'-zD SOURCE SCALE REDUCED BY 1/2 HYDROLOGIC SOILS GROUP MAP FOR SOUTHWEST -A AREA ,• �15 Mr - 6;Z - Tin TV; 71 g ji SOIL GROUP BOUNDARY liLSCALE 1:48POO A SOIL GROUP DESIGNATION BOUNDAPY OF INDICX'-zD SOURCE SCALE REDUCED BY 1/2 HYDROLOGIC SOILS GROUP MAP FOR SOUTHWEST -A AREA —; — — I — — :— — — — ,— — -- 'rr,r • 'T MESE�Ii �' — — — — — 9 — • �a — '+ __ — RIE — I `• tie R Z E s. _ I -1 -' � tt� r• I• �E�^�� t t ! 9 •0 1 ,2 T - �LO �. _a � ..�� J4 -1�l . - .' IS +- _ - r ' _- - - 1.3 � c,'"af• j r �^',•�' g e ''•� t" i 1 I t Q 1 !'' h$ 1 1 IQN 3 ■ a `! • ,e sl■+wr � ,-, LElaa ` - 1..'• 'Xe� - _ _ _ _ _ _ - 1 ': �. • • �! , ' 7 1 • ' to ^-'� -- o a . i JS' ' �r TO -1. „� 1 o' r'�'.r - .� 1� '-=L29 �. .a 1 ' 2 c.:ei- - 'lj,y,e T : J '`�' - -f - , rte` =: I T - 1, 1 II' , .1 •4r ',�.aae -' . z■ I •:a °} '•-L .tt. _ _ - ~ ,- , F - �T":1 _ I - - r /' 1 I l� �,, ,a 3■ 1 a lig• ■ r17 .ys •, 1 ,f - % ■1 I -- 1 ` + , I � •t?alp 1 `.- ' I `I • 1.- 1 � � i '': n■) }i -.- y.�I_ 7- _'__I � `- =�. � __ �. i -, a��,. `�•�' r1 / � � . ! I.{ 9r J•t �• � . � �• t �'' 2 - � • •a "f 1 : [ 1 � i rer■• .• , _ tl'yyt■ , 113 �- J�I � d`_ c� ''.,•.� .�' > Y •}yet �.-i j „ `' L'•� � , _.I -a^ Z.. � ♦ ' j � wa. 1 ICY' of I r � � •q� •• � -■ `.� / 1r �� (� q.l .- ° - •••r ,3 1 i1 !'' •°•+�1 L FmO7M£ip 4• ' -.ate J T~t_••�rwa�e> .ca i w�••� --a - •. ~ •r. • ■+ .•1 ' 6. Ld'dli i � ■ • . ■ 4 • t r .. .. "' z aLu,tlk � . .�l•-a. •1 - � � -- a r � F�9 \1 .f,--_ I ' `' 1 a. • 1 J'• ti �� �Y • -• - _-, R•• •.1 +' ��'`:t_ 10RTI 1 , 9 . / 1 ef4 i - -•- •L• -S - _[[....4• .ti - _ •r• •moi- � • --1 �,- �Y� ---_ -'� _ --• i a - •"�.` - _ 1'1' S °is ca Es 4r ... - _ _ , I i L • 1 t ' r `.' r �, - - ,.i 'AFL' - --5- -' �.,' i, _r -�-'. .., - C>t[a � �" � � _ ! - SIE• _ E IM � 1 .. . •J<j � c_ _ t -. � _ � .Lo ~t �� �; S -Ey. "' _ — :•- .. ; � .: ;v_•.�°r --� ;• -' `� : -I•- "'�.ssT�.t,,� �`r - i -. _- � _ � .4F . 1 ar .... v .••� ° t's+t' � •-. .�„t.<,r._ � - .. pq • • •'T , i ,. L• ttr '3- v. r.t - - - S{. 1,,2 '! ;7■ _ ..?� W .L�ICL fyl I ')� •,.: _ ] ,f LT' _ `t ,r4+! - •j t'� - FNc :� - �7 ` - i T- ►.i ; - T } :46L�S _ 1 Fi}►•• �.h� 41!L - I 1 {I. J+ 1 }- •�.` • ° N rY �: :'.. _,: i. I -- - r�' - a` _FEi:_--•i�l-•-� - /V� �77I - --�'�_`_L z -r •T jr - LS 4 • i ,.x • ( �„t� - I ` • •~ rZ; � L ;rl � .. - ..r.: •"=_ �' � - r .. -, � 4 •t � J 71, s � ,�- �' - • r - .{ _� 1• L. tM �• •�- '� �_ JY''1. •,.I'r -- s :�! . •r Li Ir• !L ,as ~ !• I . •1' . .+t:e•r •..ce e• ... •' ie + L= Is�lIN s+lcraa. 1 . ° e l-`—� ��_ ; _ _ `• • 1? �'•1 —_ j : `�-, _` L , _ ,sit:: y.�J SRL CA 1 /.� I• I a 3-C � • y. ! � s{ � , .�_ •.1�. r- - �� •-+- •'+�, - ��•_ - �P +* I r I ; �. , � - r 1 . i, r� ,:;,` � :-,r''' t: f4 L _ • - .--��.- • R -K • , i,': •: - • -F I a ti l •♦ �t �„a n t\ _ — _y - - t _ r . r ,:' "ti 6■■ LI- •. L :'-_� '� i[.•• _- 'T 9j:e• �G� 1 '� r / ,f. ..'�7 r l�0l. y,1Sa _� ��.`_- I ..I my r t• - ', a • r .ice : � J u w 1 � .:.� .� - �'• � % _ -r f•-- '` -Y� _s:- -'% ^ i ` sw pit. .. _ _ - : .- / 1 ct.='' !_ .�_-. . I •:... tal�� ••d ..... .•J :�� s :�[' 11+x. y'r `�'�` {i'" 1 1 •- -- - .1 r•- �' -��.' ' Tr• -rri%•-�, .. �I� •� PLIND PC] Ill e . - ! A.•. ALA LTD_ .q:. •,.e",r a - r j .' ` , •3 r / r _ ' ' -- - - ,.�•- c-'—._ :,:.;.:::� _ F TAN :tr ,= �•°r' ,l •y '�- - .� ~+ ----• �T.- �_.—. !. �. —_ '. { . I .' • .. • , L • '•a-, •; i5•"' • a _ I , e,s� - •f •1 • •k .._ `i : a e6oti t '_.L •S q OLANDS `„ • • . _ _ • 1 r _ _ Yl llMCA ; - • ` !. -x � . .. � .., .J . _ I. a _ y- —4_ 14S Rtr�' of t r •• a �s ■ e. � • _ _ `.I -� ..t of s r.,� r- r •.� - -_ ' � '` .� ` ar" , 1 : ta,�• J°: a -(. .«..••�M: '•s CnCST YCAE - �- .m _ ..-• n. o[ • ..v •p4 _ •._ -'tiF ` ° lV R i - F M1�a •.,-.)xt■,RS- ' * .0 rw t i � • .. i, . 1 : �\•C-" ' lata � • • `! _. • 1.1 , ` ' • � - . -+[r� 1 ; J ♦ _a- n'w,vFl _ • •n� 4 I : TUCa w • y ...''� ■ 1 ' IRl[ra 7L1[14Y: - Yiu- IPA I • . ^Itv CNINa .., '� - ,.�-'�:• } --., ■ 9J` '. •1r I J•s I !1 4 Atil-A r? 414, -"� - � � i • - - - - •._ \''- . - � f • lr- __., - � � lut 1 ILnkaR4M+p CLYItt .o °.._ • I, �• _ .- - �4 '- �•I+S ia: -' - ; c' R� - 1rrtRnce . epultT R I t_ • I R E~' I = I RSIDE .,I - _ _ ; a.•sa e.a i ••veep - 1 � . 1 -- .... �, •- `tie• -1 a.: r .. 'r ..t ' yo- - - ° : - ' �• ,;1R4W i R3 [,a.•n' RZW •➢p RI �f R 5 V I 1 I IFt n Dr t-% Jsm ol _ n LAS N�)i In r en aq1� j�� 1S•T1 E �a !1 Stmt i!•6 16° a' ! a a� 1e ' ' 1 "-• mss 1 ' i0 rJ •_ 4A .y,o -- " t�" rP'lI■ id 6.i 119Pitl�{L'90-. C e%l,iN - 1- --- - -- - - -. i'•R Bw , Rzw _ R6 - - HYDROLOGY MANUAL- ' FAN BERNARLOOO DINO iCOIMT CONTROL REDUCED DRAWING VALLEY AREA SCALE It1= 4 MILES ISOHYETALS Yn - 10 YEAR I HOUR IL"n an use., Hf121 Xn s Z, W3 Cs ISOLINCS PRLCIPITAT1ON11f4CpE5I pt E.I =v IFLE M IIAVMXlCX AREA 1 STREET FLOW ANALYSIS ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/Station 20.000 **** INITIAL AREA EVALUATION **** RESIDENTIAL(3 - 4 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.471(in/Hr) Initial subarea data: Initial area flow distance = 960.000(Ft.) Top (of initial area) elevation = 71.600(Ft.) Bottom (of initial area) elevation = 54.700(Ft.) Difference in elevation = 16.900(Ft.) Slope = 0.01760 s(%)= 1.76 TC = k(0.412)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 14.411 min. Rainfall intensity = 3.577(In/Hr) fora 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.781 Subarea runoff = 13.977(CFS) Total initial stream area = 5.000(Ac.) Pervious area fraction = 0.600 Initial area Fm value= 0.471(ln/Hr) 1.1 I I i I r-[ 1 ., _ .� , p•rjls o. I — — — — R2W ' [ I — •-�-- - IR} E R z E `2 I � 1 , yt� ! / � - - +- -- - 1 - • a I - _- _ � ,+- - - i'• •r' .i ti•. ! t' - ,a . I L ' � I -t � E ! •5-- I' i I - - 1 r F ➢i a L� of t I -� 1 '• 1 I � T-• v � -' - ~ 1 _ } 1 � � run pT�= 't It 1 .r.• 4 •'cl ' ° IZ j � �-•• "r 1 .� 'I" �h- J-. _.1 ' } I�,a t I . n ` p� I r+ I j •€ I I pp €- II 1 I ; , �I 1 i! T 1` , L � 1 4 s � _- _ a7. A r - _ - • ��1 17 `!• -1 y i.7 I � _ — 1 — — 1 I ' — .� ' 1 �, _�➢�. t nn v[� , � .. �_ - �Lw - -- I.t � � 42� ' 1 ( � X�G — � � i l r`'' 1 19 I 2 '�zY•• i L2 I' � I I•'�• � t 1 •�It: E. a7YEA ` - — - -_I� - _ -- �- • 1-1+ '• _ 1 5 I tl��i. , _,r•+ ..•. . fr og.* ! r- — _ J y, 1 r ■ p_I — _•-_ I § R ! 2 uwi- *i� • 1 - �-I- — • r - - Z _ - - - Ll -T — Tg h , //�1 r t —I — — x _ — Wit,' a -t _--_• II I I I +1 � I r' t ^':� • ' sa ' - •_ — I c ` r � i-•• '-*'• � t' ' I I =T s.-, .n1.Ia ' � i . ' y 1710 • 1 • � - � I I .1 L°. - - �- - . `! •• — _ _ r -'r � -i.._j ; 1 ' S lJt 1 1 � � VVVIIf � � I i � �__ �`a, �s •-1 _ f I •t�, ~tt ° � ' I ,�. n�RRR\\\��` - _ � i - 11 � r • -• L ala0rrt 4 + � � : r, � - - y -- <+y - • • IS'1 _ J �y J�` thtTl T� f- •� 1 i _ ^ I I . ` [ '� . 7 L ,�, �-• •?,�5 L..i 1 — — 1 ' •.• • • 9 ° •— ` • ::�Z tL�TI -L'I 1 1 1 - J `7 1 _ 4�- GT � I• •��t[r rte/ a ; t ��-r,.i 1 - � .. �• ' . L! 'i� `: C�GA�'6rJkr .— . _ _. -� _- �iy • _ r t 'C• i •� I :1 1 ,� - � — Y .i • '-1-._ _ .4• - '€ •• C TLlMC l •. • � C E'�' � •tll'� - '. I L t- t• .� �• r'i •J.7 Y•� ~ •u �-_• Vr _c r,• `' ,St - - - -•° / r y5.•, - - -- -'a* �' 't1 - r t ^L7 •- t:- � •��r... y ej1�1J- 7�' I •�1 •,{d - Ii �• .� • i I- 23 �+, �. y - 2. tip. .S _':`. ,' .t r �.tit.:'s - _ . - •.y -� L•i -►• -;•r:` `7-. i1 .� �' •a .v • _ _ tr Z• .i �� �4 y i, c+ t•• ./ ', _ L'.• - - � .t a.• ••r,+ - rr ... -r ~�•,jtl;:-�q� ',�.. ,�"• ,..•: I�l I '�� _ su i ; •S� Z ` � :t+'-, � ` T• 2[%�. 1 l � � t• •r _ •v . �'L? t >'•C+'!l� _ - - '� i. 1 r- "i. {j� , I J'/�- 1•. .. �� I_ d • • , e __ ,�' *'Fri••; ti� -- ki "�•rT . I_ -_ .� ir— f.6`•" .' • f: ^ , - '-•` .t 'v-• - r•• -� � � f �. 16 1 4 ' .•�Ll F • Y t•7• _- t `• T -t ti " _ `• t -s?-,_ •tr. _ - - ,t• - - •� . r -`.• - ,� 1 ,.�I- �--. --�- '- -jLT ' I i• - - =- _- r• -t i -_ •.� r'.� 4- `r- _ - •r 1r - - - •r ,: ,3 ? �K 37 d •a• .t�.r �• 1 �� --- x f-•-J��t.!. Fth7<.-I- I I• -- I-- °`= ' _ ►•' ,- _ —-•.�•1`.'�- -• V ,m�` - - , 7 .�- is - •*� '°ii •� •'.�. Y'. —'� " 3�j, � �url a • ' nt r•' y j,r.L4•' S •/` F •` �. 1' tip` l s �� •" tis•. t�•"�r1 .,�1 T• ! 1 .. , er :� =r. a -' ,•r, —A: ._ I.ii ,- •n :.\ I` •� � iv li'.t_ __ -r- —r d •r. •ar. - .r . I SIT et'�''• _.I _ Sos.. +.'f '• a t 1 � ��' ' _ _ r -- a_ •�, :� \ + �' 1 _- I I I i T` �+)< �� S {� t I• A :. _'- 4' r t I'` I I 'SI L s , - _- •' ° • I I:rr:tl �'r - a �I• � �1 r � yr-- -.Z� -�!_ �` f�.l .,I• 1 1-PLI � . ,rr,. � l s• 1 511M IdaR➢1 I _ �.•. :� I ! 1 M DI �- - I �' -. 1�•�� 1 •1 I r 1�i1 i } I _ a.t••o.n•r � ...,a a.rt - �! ••a�,. R IrA LTO_ `•' _ _ .., . - >•_ - � t, a.r`'� - i i � � • , `� � 1 1 I I 1 �. NT 1 _t ON A (0idbr• •� ! COtTr N• ; _ _. 1 =�. . _ ' ry— � t� . ; . j 1 — —_• 1 i �• M RE D LA K 0 5 a.r. .n t ',,.� , f _ t 1. —. — �•j,5 1•, _- - •°- S • t. .. - _ _ -r { �• ,� - � - ..[ ••1 IL • . _. � o`�:i - y �'�• • —u. L'T 1 I!'} •'S•`�„�• I c4' #^ to - ,- 1 Y ! - 5 •� ,.:r,. I `•• i _ '•• 1.2 � Lt -•-1• %._ + � --�L — - ��r- a �•y,`•_ Y a••'+V I is : V- __ •.•,'` ; i • 1P 9xtMa TLa ce_ I `.• +. .TVCAM 1 !� T I• i.6 yj 1` .. � � �--- � t • yr � Ir-. , - 1_, ttx OEM ➢uMn _ • j.` ��,_ .r.r 5r= ! ' ,1��..— 1• — - 4 • gr ; , — K net caux� - - i R I I I R 7 N . v •enn ,a RISER• _ t4��+ :LSDM ;°..... 7 I ..[.• • — i PtyP-moi - . � _ � r-+• :.r' � - -. _ - �t "1' LI •; t� R3 RZW e'RI r — _ _ _ `•'• '�_f. —,1= SAN D—CRhARDlhlO CO+..trfT IF od�e.raa R5 " I VALLEY AREA — .- -- ''•�„ - . _ _ REDUCED DRAWING 1 1 LS ,.��+• _ _I s fl MILES 00HYET" Std BERh�ARDI�(� SCALE I Yom,—}QO YEAR 1 HOUR - 0UNT r t.i"s _ a./lsM ON 11d1.LR112 E, W1 LEGEND Ap"011n rr -• - -- -- - - HYDROLOGY MANUAL, ................::.-,. F •-•-• I.H ISULIKES,FRECI>•lTAT14F� .JjN[NES) -a,:ALX I•a[ I� ,� 3 HYDROLOGY STUDY —Q100 (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2000 Version 6.3 Rational Hydrology Study Date: 07/04/04 Raab Engineering, Corona, California - S/N 875 ********* Hydrology Study Control Information ********** Rational hydrology study storm event year is 100.0 10 Year storm 1 hour rainfall = 1.000(In.) 100 Year storm 1 hour rainfall = 1.520(In.) Computed rainfall intensity: Storm year= 100.00 1 hour rainfall= 1.520 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 3 SECTION 2 SECTION A: STORM FREQUENCY - 25 YRS I ANALYSIS OF PROPOSED FLOWS — BANYAN COURT From the following hydrology, Q=7.02 cfs A = 2.8 ac Tc=11.47 min.. From following page calculations, Banyan Court Q capacity > Q calc, or 13.84 cfs > 7.02cfs, therefore assume Q splits evenly on both sides of the street. Q / side = 7.02/2 = 3.51 cfs From the following page calculations: Resulting depth of flow: 0.22' to 18' 1 17.93' 1.33 -- ---------LEVEL--------- -- ---- ------ ---- --- -- ---- AREA AREA B j AREA C AREA A Q = 1.49 A R"S"' A=0.0928 n P=1.435' 2n 2n d-0.14' Q = 1.49 A R OR Q = 1.49 X .0928 X .0647 = 1.49 S1/2 n S'/2 .015 S= I. Q=_.&, 18 2X 1.49 Q= O•Zo GFS AREA A+B Q = 1.49 A R 2/3 S'/2 A=3.2708 P=18.286' n 2/3 d=0.47 Q i2 1.49n A R OR S= �8 . Q = . oA t 'X 103.15 Q= 13.&4- CFS Q = 1.49 X 3.2708 X .1789 2/3 = 103.15 S'/2 .015 AREA A+B+C Q = 1.49 A R 2/3 S'/2 A=6.864 n P=18.496' d=0.67' Q = 1.49 A R2�3 2/7 OR Q = 1.49 X 6.864 X .3711 = 352,10 S'/2 n S'/2 .015 S= 1 K. Q= .atS 'X 352.10 Q= 4A.Z4- CFS FOR DEPTH OF FLOW CALCULATIONS: Q KNOWN — Q, d UNKNOWN— di 02 - Q, d2 - df t 3.84 — .20 47 � ' 2. CATCH BASIN CAPACITY CALCULATION — BANYAN COURT AT SOUTHERLY CUL-DE-SAC CATCH BASIN AT CUL-DE-SAC USES SUMP BASIN DESIGN, Qcatchbasin = 7.02cfs Flooding capacity at top of curb for Q25 H / h = 1.00 /.83= 1.20 Using sump basin charts: Q/L =3.0 Solving for L: L = 7.02/ 3.0 = 2.34 ft. Use L=3.5ft c V, !C—f—r2 g 7 %5 -- - - - - .0 6 .6 a � 3.5 IIK 08 .�, .06 3 o � � .03 G 1 t rfT 1 California, United States, North America MUSCOY" 12016) --Hillside Rd 'z Project si 30thISt W te A, 13 Z 12591 vZ Highland Ae Z ui -A. ao I- .�!Itp MuTicipal/Miro Field J YaSan Oernardino ..... ... . .. Ve w ba S -6 L�6j �V E Line„ St LU I. Baseline Base -zf Base Un, ancho l ,clamonc a JI A Tlfg nd i 1_661J Palltv.� 166 N." na i-Rialto­-Av&-- &taLA Fonta' a�rsW Arro� Route ilqill ; t % A a t i f r r i i.1E l' a '510 > JV" V, Oh2—st_ o & West Colton! Bloomington a> ey_Qlvd, %L-- gL -- -777g.' 7' '77 . ...... z 7 9 I�E L South ml I ontana 1t j LLI 13 J u _Yq 7 Q "brand TerraCyo N :iJ" 40i'Upa 7th St / Ooz ('ln ................ co, 13artoh J ...... ................... ...... - ........ . ... 11 .... .... ­'V�1' _T_ ...................... Y V 0. lk '(w 1� ............ RiYvrs ..... . "I ....... Dr Sunnysope al VO., Ormand �,Bellt,dwn M_ I (,';L, 160 J Glen A Mira Lo (D YYY X73 "gil, Rubllddux`-� 5P % [911 Flabo6 tount,6 'Airportr" Morelia VaHey A10 d 'D Pedley z f !7: 0 rni 2 4 8 Copyright 0 1988-2000 Microsoft Corp. and/or Its suppliers. All rights reserved, hitp://www.microsof .com/Streets • Copyright 1999 by Geographic Data Technology, Inc. Alt rights reserved, ©1999 Navigation Technologies, All rights reserved This date Includes informatlon taken with permission from Canadian authorities 0 Fier Majesty the Queen in Right of Canada. Page 1 • Copyright 1999 by Compusearch MIcromarketing Date and Systems Ltd. Fontana, California, United States T"• s North > -i Frontage I C! tie t1C �' - Park Rancho I ;� I I 1 1, i -- � r, i E m{ n 2 f � 661�grr--V = j jj tT � I fs¢••-^ _.� I .._' i v ' � - ;moi r....:. f n 17 Copyright ®1988-2000 Microsoft Corp. end/or Its suppliers. All rights reserved. hltp://www. microsoft.com/Strests ® Copyright 1999 by Geographic Date Technology, Inc, All rights reserved. ®1999 Navigation Technologies. All rights reserved. This data Includes Information taken with permission from Canadian authorities @ Her Majesty the queen In Right of Canada. Page 1 ®Copyright 1999 by Compusearch Micromerketing Data and Systems Ltd. ��A ..+.,. :-�:.,.: -�,,�-n-�.�=jam. ^~:'•� f? .Jt�:''T� mil— e,.r✓. •y '! f. • f~ -{le IF n ;AN BERNARDINO COUNTY J■l i%tin/�1 wo"" ••wall lwl A • _A•^ "yam+ i �� � F, �m _4 _,: t l l .. t sit `- .b i ,yr,.• _•�.:u' 1 •'1---`;� � ,�.�"'�r.>• . a. �� '":_r`�s+.e �r;�s-�����`F' •'_'r'-' y,." ].J -�~",�` �r = !S- k �.. L``^'`"�1R_ � �• • f• j '•/ ` f 'X..�r �' •-"t v - 1511 t s ',- - `.• - ,�.. x�: f : � � ��--��-'~' l�t� �1�1: i• -may, �� .� , . `% ... v •'�� ' `- '� rr' •J� �Jl'.='- �'�-�'- is `f^�•- �' _f' J. � ,F, ��, ._, �- '• t / �:, -� •�- ' '�'~ = T N"' nti ,,{j�•1'`��'a`� ��"� rel rftx .' '.2'= _ rem- -'_- -" `e•.� .` �'','' ,1 ��� A- _ - � ,.i;'` a� • • c \ :.:. fir. f "� '� ,r� • :'/ •'�`s'..'-'- ` ! - g E - _' • � ...r 'e. y -y �A - _�� --F� �I ?'� ��' - .� `•"^r ; - -.t' {` t -:r! � _ : V 4 Vim"--'-� -' - _- 's _.�r}� - •i 1 r'V •. 5.2L ' =,......�i'+r.�Y'1: .g('',..j��� �A' .ai I� 1 yJ'~� � -•- �}.* t- t �•.1•`_, t•_t re' -`._:- � r� 1 a E ' �_- � ---sem •�'' � � �^ �_ • � � �� _s '' '��5 �._. .y'_r . CI .�aJ r: 1 T - -- � ._I-_ � •~' �_ �1 ;a. - i ...1 � - �:,� i _ ...-_� F. `•ti.�.I-�,"_Y ,r _ r i� _ t -'F I '1 '--'"moire'°" s -C,• ��. y I -4 it A,�,_ i �•. 'j•'�_ �.•.a�' - _ v F.:- - -q£�: z_ > _ T= '1`r _ --- ' f!- - :; 1.. Y^i-�l .+�•t•- `+`+'� !-+ I _'1��:�a.-'.•y t,,.;:,,,y ��-=:L_:-..�..: ' � - i. _ j 'c ! _ ..sem_ :... t.. __ +--•r ,�,'^ s�•-�� - �.�,i t-wnxa�. 1 `�..`� I� _ .yi. ���_ti'='•��, ._ - Y�iT. �.. �'`'' . � e t N ` _- — J '�; _. ___ •� . _ .t..-. .,1- -. � e�� 1 �:. �y�-_-rte -, •'-'I�.,: ;4��t— �. ..,r'�` �1 -".� • - _ _ _ I .i .-.. .-' '� i•_Es 5 s 1'3.s - 4 n� - _ �.ir,C� P=--_n'.�t g� _ _ _ fel- IV L_t y}.�� ` � ;'i'-''1 ?: 'lr._ 1? 'i [[�� I'_ � . n � J '.j�� • j .},:'��" `'S - !- _ 6 =fi lii' - __�•k`3,••L's• cp. .5�•�..,- rL ur�•::��g`-,,, n2=+ns ,r�•-'Z:r'"•_:�ya _ -- 4'''.is i+� p :I;- •^,;, _i�- .•_ _ - _•1- �^���_y _ __r• _r'.- �4,. s_ _'.---�',�_ T.. '.a' yult:-'�.��.;--_t:*a �-__.�j � "��''»- "1 .h-j�� �::���tl �M W'1 `Y� • ` -' 'J • - -s I , .'� -' 7` .,IS _' r 'r:, .�l ' y. „ '[ acs=�= =• - _ - '''` �- •."^ . '1 'Fy A! •7.n� !• _ =t �rc,��--: \ z:.,'� -'fii*,{zzC �.r •Y.�'srrl _ _ --¢ ! �,'_iS-y! Yl 1_ _• - _ ^� _. , �r�' `ti y^ +' � ..�'i. jl--fir '• :0. y'�•--1, ll Y_ .1 T• •- � ._` � _ _' r_ ._`: ��1 a • -ll • �R yam- F • • '� �.�Tj _ _ .,••I, ,_ .11e"�p'%� Y ���_"'�^ ."� .-•�_`'„y� � � - 1 ,� • •- _ _ � ' - �mr + ;���'-.Y :��-! h�• 5/ �t'�'�''-c- moi•-o`�:.:.a r: � - - ::� _ � is 1 / _ ! ver +tw` -i. °F?t _ . � i . _�-'.-,� �•. . _ _ • .. ._ ' _ ...._ � �'. �,-,t;-.�ti:;: ,,�_, A` -a F ��.-.. -�' slii-' . w>?6iF#:L,F Y ='�`� ^��,ts, .iG �--.Fm _y„ 20, Iti�1`• ':+•. ! Fy; i.. "+gra•_ _.1, b� .'r —:.:?_-,.; r__�nl :r.se� .. . -�-•, .i• T'N" �-Y + t^t: n.t _*zc.__ +`•. m. __ V s•_S 3: .a��a�, :•'�e.�•'�7'a� ` _. i• �_ ` '-' �:• �s .. � _ �,3�c Y: a'1- , iG �._4:•'d: - . i�+f-' : :;'.o- r��..a z FY� �_ �� .'a'F.'.� �•-•,I;�--5 `�' � 3.-. '- _}. y �.LTs• _ Sr pj- _.'� eKr'._ ----�a'_.x. :Ic_ �g.'�:��....-- �••`•• -•: _-.�_'.f 1 8".__ 'Y -':�1 �'�._.:T. _'.-'. _1- •- 1:,",;. .i'. d�-l� 1 - .'t �.�_��` a� `) �'-• Ik �Q}jf}�J t-^-_, ;I`t:ay .eJ, ' �� -'r•-� " i - •s �• •. .F.d' �_- ~i f ' �v r 1 lM I •�•'U •� 1;� .r. � .�'1 `�"` •� t` "� t � Y:1:. -.i IEGEHIi 4-&4 SOIL CRCUP BOUNDARY SCALE 1�4E,:00 A SOIL CRCUP OSSIGNATION a .a —•—'--- BOUNDARY OF INDICATEDSO'JRC'c SCALE REDUCED BY 1/2 HYDROLOGIC SOILS GROUP MAP FOR -qnt ITHWF. -A AREA T_ I , ! '.. � r MEree13 _ tLr i 1 -_ _ _- _ - _--_ �- -_ L_ ry yi7 � --- _ �- -- I - _ `•r . 116` �S' TA N rI- - 7- -7- I - -- - - y'•5' 1.1 ; I . i•� • ��� I I 'i�� - 1 ■Crr MIT ; - : • 1 , ( K - - - f I �ti - -- r- 7- - _ z._T 7 1 I --� • I � 1 Iwat, .ata .�u...ar. � � _ --�. _ 1 r••., } '-! �c� 7 ',' a 1 __.}.. ' y yi A 1 \ ' 1 ?" �'- �� �u �+. � '_ ,.' t t � • 1 ttt r �� 'i'-' � a-- T t ! s 9 ,G 1 i 1� - -•j- '- ��LO T - ''�r,�' �4 T J t '- k - - � *_ _ - 1 S t �•r•� 1 � , t 1 e ,'••r f 1 I f ' � 1 •P ¢ _!+T�r I' I• fEstFpq ,.[ si+wr I_ (-_ �. _" f— - i; -� -� - - I t �T A. eESNP _ `! -.1_. _tom - _/T_ - �- I - �• ^ 1 - - - - 3 -_' 7 ` -� • ': 1 17 ', 1, I / 1 - ^F- a - __ ,-� +- vitt - .r-.. I ' .- L - - / " y _ I i L �; c ' - • i a `Fes, I, ; - 1 I - - - - .-I _ _� L.-- _ is='�-y. = L , r. ' f J + o !' a • 1 ' r 6. 1 1.4 \ Y°t 9 Z�'Z• 1 ZZ I s I sy 1• + �y v. - + + : ' 1 1 1 -�• 1 I ` _ _ ' 'Y '*A ti -,- rye f -1 - .1 ''rr. .--t ,i.. - n[ -{� '• r+e [a Lfi (4r - Zai tiy,e 7a t s ,I::. m•t. tr, g=. I - r• .t - - - - �� -:_ rpt _I.T- I �-3'• I I r Y 'T�I,IO - � I .1� ' .. i , . r � .', a• ! ti � � - t e •• - �} . LZ y��l! I ~ � ��f t� -L� _ �. *` � -F ' ��_ `4 L� r- \ -� 1 -_-a .--•. bra ` ! I � u� 1 _IcY � I _- f - , •.�* • � .. .; e ; . 1 - r 1 1 J� 1+ ► .' _ _ a LtS 3 _ } } y� J T �y 1�?tom' •�can�1 ^'ac` rs L a - - ._ +- _ . -T, j•-' I • s - rnt -- ,, - - -, �f'^ • ' L - L_w I. 63� A .�. w� a • . . F . • a t s •'°1` •. 1 .L 6i1 6 =1` _ �. 1 _ , ' + f .. -r- 1 l� - • .2 a /••it L - -. _ - -I _^ • :\_� IARTI 7�-rrllpF„••ii,•^{` -tl' 1 I 9 1 fT �.. f ..r' - - • • a 1 - _ ' s G.' ten dii : •-} * ` ZZ . Lt7 , �` �� s. - v ..t , ' r..i ' - •�. �?'-o � . _ __ � . __ .•._ _ ._ �� / y ,• - 2•• a.r.t• _ - - to t'a- "7 't tYlt. 'L�S.'t»cL•_ ' ID!4 - -- -�L l Lt,r ^- �r.�.� - J,,r e .S - Lj�.. _ •`� _ _- L•4- � -- - � __ _ - /Y t i• ' _ - - ' r` 1.7' _ �.: ' ` 1 - 1- ! ''• I j _ j " - 77 T I' 1. 1.4 • �' �"' 1 _� I � � • : ' . �.7 ' R 1 •'" I - Mr L : Jr _ a �' _ - h •• .. t�i..r-' - . , e•Y r _ .. � - • �` rir. • e`. T-1' J_I- •e_ •� 11 t . yvr � . �, .- : � �Y �. � •- � i., '� [E��. • i � y LZ lf�lllti 'iF7tIRAE. �,• J • •-v aV r 3AnnL7ae •I / - 1 ,3aS , L3• Jr. ~ _ _', ct -•�? :j -_ ` f : % _ ; t: - i. --:are, r-= �:' , ti:. T• 1' I• . l ' _ •i _ �•_ �'; •�_ , ^'L '•�... •f' 't •t 1 rte' :- •! f r::r y'•e+T'+ ` - = = J'^• :-5'�F•-i-- -l' t'. p• '� . I [ 1 ` 7 � _ F � � - .. �• \ � ' Y ^ ati � i � 1! �� ,'� -1..., 's = .• - -- ' 1 7' L . � - 2,+- . -•� .•T, '`-? �� tom`. _ __�: • `s' � �- I •• �d .carat 's. 17 - - \� i -y;, °I ears 1 c`.i`� -- i _ • I .I 1 ! . LJ •' . - '� •� -. { - iT_F!x,.. _ - • .L . �..� c _ . La _rte - ^°7' 4 di - . r' • , ( •I i I I n - - - - `*;cam_ _• - :$•'•''� • - ._ .-' :_ - `�' - •.i 1 I¢ . e r r 1 • 1 I [i, T �. ' f • . � ��-.: ' � ; � . •t J _,°,r •' � e '- is a E V-� y 4� -. -1 � ' ' ` �: � � i -� a 1 T , �•• r -T 21 .. - y. .n=.:.e - . '• . Q i �� •' -' •.. � tires, 1 yy ..- -'_ SIT I -r. P171 N Di Lallu ty ' C e� y • : d 5 f °=4 sa aM1iA01 �- — j - -- �• i. `e 1.•ZE 1� RI• a - i,r �r ~ 1 1 d LTO TAN �.ar DNT LCQTI' C •TON• � .' g ' - - _ + � r r_': �_ =• _ - �, '�• _ t. -� - t•: - - -� REDLANDS .•t ' .. ' ' a .�. L _. ._ _ - - - T,•�S r11a �•. _ • _ -- � .. •ate a - e. y � _ - \I _ l .m �•• ••• _ A` � t.. ..t raF'�" .. :` _`.3c � w TT �I Y 1 1 [,,a�' - •��- +. _ : •.••..•' M1w? k RILST YClRE ! •- _ t . 1 •ata t , _ • 1.1 - ♦ [i - ►_ '_yr„r- a? C +-„`_;', . -. '��VNyFi -• •-'#xto`;..r•'•' . 2 IAlM TCARLC � 1 - :.;” ~ %r,•• 11`i I 1 ! � p • y ' 1 i ••. L' H I N O `[.e . ..i•. ••'•' :..i' t 1 arm Ralroxw cup o a,.- [.. v. i °j a• r i R I Il1YFAlln ezu,r it i t .T i.- I� I R S I D E - • I rr + ��rtv - - • ( 'Irl 1 . • R4W s i R3� =.[r,.r — R2W \ �'�•RI �` v i -- `— -- i•'.Tlyc - _. SAN 6ERNARCINO .COLNTY FLOOD CONTROL I T T I 1 IF L 0 LfeTA�L X VALLEY AREA ASN REDUCED DRAWING i -- ' • �! - = • _ ® n 190HYETALS —''-- - ' _ — -'' • _ _ _ __ SAN 67 ER �j �\� �j j� SCALE ! _ MILES YIQ — 10 YEAR ( HOUR T N A R 1.1 11 V O' .COUNT sisi� ON v se.� TtA� >< Aus Z, t� 3 •; to •a6+' IA d7o I'•.Rew I Rzw - -- P6 - - H�'DRC}LOGY MANUAL LE 1; �s ISOLINES PIZECIPITATI�N ll}}rgE57 Di -E• s -11E FL -r Na I !F'4• ma 'W t Rsw R w I �w 1 p,71rti' �`?—' RZW RIWRfE '- RZE , u ' I � „' I � .I i .� _ � HSI. - , — � ;� �— -- — — •— — .— I — — — — - — I - �—'��I� — !t �1 � �C�r -5' 1 '- � �ti = ' p{ ,�"` i I �� .• f _e _ i I , ' - ,W.R ,.�--=- � .2' • • � � li ' ' i i d . • C 18 - 'ti i, 1 ° ° � , i! T 1 1. ` - � % � .t rac. as r _- - L��-� • "- �L^ �_ I.l • 1� � � I-- _ , - � I ����S:j�°-`� �•-_- - -' - "�'►q1 _ I I ' - .- !- -i l t.`'ti'� PiVERr',ir1 44 1 ,9 I 2E: 1 12 Ti ri 1 ` 9' �_ ; 6 2 "moi- . N 'f•'i- � _ - _ �•' _ � _ , ..-•- -. - L - ff ' - - - - ter' • r - i r -r• Y \' r ' 32: 1 !• ] �i'`I ° �' ¢ � - -- '-et as -� . -1 - .�, '-.; �• _, a r.`. � i -i i 1 - ^'�•� �i'1' •. If '']4 °• t LSI ~ \]1 •I I ' _� I f � ' 1 �f• C~ y �� ap L iAllaclf• , 4• n��•. I�, cn.° -_'� i r .-�1-. _ I- ° -- r E% �.i t "r' r `f•- _ _� i-- �, :T r • '- t .�`• ' R- - rte`• ` - 1 - 11 7 ° ~ .l S`� y ° y : s • �:ti �~IC�tr!'• J_ •�_....-�• I - - r - - _ _ ter• - - rR � - ,� '�._ _ . _ - _ 'ax,.lit _ '• j Int, .:cs.. .� - . ��' '_ •_ � � • Lf° ' .rt. , .,, a ■■.ev . fir.- J•7 I . ` T -� ' 1.7 - f-_ T''- •N r �-���}-�� .r-. a" f r' tt ' _' -�Y -.'/.. . ` i' •'.r t 1 1 5 _ + -G, ' -.. - •+ y„ e�'"F'• J `s - • yl 5( `•' �Ir �' � �'`• � �Sr '",- c+° I '`, ', s - "L,�.. .!L_ - _ - °u a°• r. -s: •�.. .- r ... - *,'%'�:y,+ - PY � �_ I f IlT t_'- 'F--% - - - .` "•,°f _-, - . •t ,r • - - - - 4: t t.. _ - - s .. .y r, ,� t : ,"�•• :p 1.,,..r. L:rr ,�• °i �' i .�. r3 �Y ,i ^ E _rr, j-_ t - - •. : t i'r� r - _ _ aRt - s {-++ < '. �• 4 — fi- --I- --- ` 7 - - _ ',�r _ - X1:4 . S _ T - - - - `' �:r.. + ' wr'a. • �'1� ` i.' li" T1 �- - ` i 4 i 'sic-- r-' _ :-_ - �I.e., l.:F ' ' - $,`.• i" '. i � , � � � t �, •, • r I tee ; -gin:. 1 - _ . 1, SI 15 Y- = ` a• 1°..1 Saw i0.4101"o PLINAr, M\ .... -I - c' � - ...� �,,, �= - •a1°. R ISA LTO_ ., : ' � __ _ °� f _ - ,. r -..- — �— — — •cL _ ilii ., s fFNT+lH 41 jig 7" , °. 1 COLTON� •t y -� 1 �. - - °t.a '_ _ �� - Z-1 Lb e,• i ti• �.i,r ••••'+u ! s :' +• ,;" veaa,v Ti •\., - ;� ntealra ` 11i r 144 ,. z It.. � � i)(EnMllmwC tllxx • i' � ' ^'- , ,. � � R , r % I R 2 I I .' I j` — ,i + 1 -' ° �. �.• ,.. �f ! �; , � ti FICC CJLrIL� — � + — t• — . y _I•]a°t]tl LI ERSIDE .,+ TEk•°` .°: _- ear '7 r.. r - -' -I • - :� _ . ' M1fi•1� 4. ° . ° • . ° 7 � ..r..' . s , - _-.. AQP 1la•/ - v `�1 :,,J • ' or _� _ • -. --,a. - .. � v° ,.a ' _ •M Ott�i �` y t 1 1 tS> R4W p, J L R3 RZW `SRI R5 VALLEY AREA REDUCED DRAWING 1 ,.��• t SCALE 1 - 4 -MILES YEAR I HO ��Tu: �1S � -►_ SAN BERNARD ..� rr — HYDROLOGY MANUAL '•. -. ( 1.6 15.0�(tdE3_PRcCIYITkT14�1 �,•{E5l r�+a-E ,mcat_e ru ►la tea >,a `..........................-° —� IIN-. i � I>C tY i• a ra, 961.0-•1 4 .+ It 3. HYDROLOGY STUDY - Q26 San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2000 Version 6.3 Rational Hydrology Study Date: 07/04/04 Raab Engineering, Corona, California - S/N 875 ********* Hydrology Study Control Information ********** Rational hydrology study storm event year is 25.0 10 Year storm 1 hour rainfall = 1.000(ln.) 100 Year storm 1 hour rainfall = 1.520(ln.) Computed rainfall intensity: Storm year = 25.00 1 hour rainfall = 1.207 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 3 AREA 2 STREET FLOW ANALYSIS ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/Station 30.000 **** INITIAL AREA EVALUATION **** RESIDENTIAL(3 - 4 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.471(In/Hr) Initial subarea data: Initial area flow distance = 600.000(Ft.) Top (of initial area) elevation = 71.600(Ft.) Bottom (of initial area) elevation = 58.700(Ft.) Difference in elevation = 12.900(Ft.) Slope = 0.02150 s(%)= 2.15 TC = k(0.412)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration= 11.473 min. Rainfall intensity = 3.257(In/Hr) for a 25.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.770 Subarea runoff = 7.020(CFS) Total initial stream area = 2.800(Ac.) Pervious area fraction = 0.600 Initial area Fm value= 0.471(ln/Hr) SECTION B: STORM FREQUENCY - 100 YRS I ANALYSIS OF PROPOSED FLOWS — BANYAN COURT From the following hydrology, Q = 9.15 cfs A = 2.8 ac Tc=11.47 min.. From following page calculations, Banyan Court Q capacity > Q talc, or 13.84 cfs > 9.15cfs, therefore assume Q splits evenly on both sides of the street. Q / side = 9.15/2 = 4.58 cfs From the following page calculations: Resulting depth of flow: 0.25' —r 18' 17.93' 1.33' - - LEVEL-------------------------------------------------- AREAA -I—J AREA B J AREA C AREA A Q = 1.49 A R 2/3 S'/2 A=0.0928 n P=1.435' tis 2/3 d-0.14' Q = 1.49 A R OR Q = 1.49 X .0928 X .0647 = 1.49 S'/2 n S'/2 .015 S= -lam Q= • 01$ ,-X 1.49 Q= Q -U CFS AREA A+B Q = 1.49 A R 2/3 S'/2 A=3:2708 n P=18.2862/3 2/3 d=0.47' Q = 1.49 A R OR Q = 1.49 X 3.27D8 X .1789 = 103.15 S'/2 n S'/2 .015 Q= , ol$ J2X 103.15 Q=13.84- CFS AREA A+B+C Q = 1.49 A R 2/3 S'/2 A=6.864 n � 2/3 d=0.67'9 Q /2 1.49nA R2/' OR Q /2 1.49 X 6.864 015 X .3711 = 352.10 S= 1.80` Q= , otb 9/2X 352.10 Q= 41.z4 CFS FOR DEPTH OF FLOW CALCULATIONS: n 1 `, F 0KNOWN - d UNKNOWN- d, 7.51 .20 R ... . 1� OR: = OR: d Q2 – Q, d 2 – d, ('S.84- .20 .41— .) 4- 2. CATCH BASIN CAPACITY CALCULATION — BANYAN COURT AT SOUTHERLY CUL-DE-SAC CATCH BASIN AT CUL-DE-SAC USES SUMP BASIN DESIGN, Qcatchbasin = 9.15cfs Flooding capacity at right of way for Q100 H / h = 1.25 /.83= 1.51 Using sump basin charts: Q/L =3.2 Solving for L: L = 9.15/ 3.2 = 2.86 ft. Use —L-- 7.O ft s ��E-:ONDITION 10 �9 =o 6 -9 -75 2- -6 -7 1.0 4-5 018 .33.5 - Ile / 06 .04 .02-1 di -b /27) California, United States, North America 1.- � IV. 130o II C c� 66, Rialto > 1661, - 5th t Fil' F o nt ana E3 at IN; �tl �,` UV__Ri.11`6 Ave Ve It A L I V 0 k 1�10 P (D 2 1h t 1�f all,L) lvd 4 / _,vqt! Bloomington l West Colton VV B colf6n �'i qd k, -TT777­7 o South "4" L Fontana 4, L Lin a ,<D 7t Stto ,Grand Terra"" 7J, J ' ..... 41", ... ......... ..... .. ......R.e. ......... .................. to t ................ ................... ............ Glen Av rove ............... 2nnyslope ................ V _1_2_H Highgrove Ormand "Q> 0 dllo Mira Lomi7�i RubldouxMe-­_ 160 V 91 1 Flabob' Airport mon More= Vd�ey ite Ave Pedley, -E� 4 0mr, Om! 2 A' 0� Copyright 0 1988-2000 Microsoft Corp. and/or Its suppliers. All rights reserved. http://www.microsaft.com/Streets 0 Copyright 1999 by Geographic Date Technology, Inc. All rights reserved. ©1999 Navigation Technologies, All rights reserved. This date Includes information taken with permission from Canadian authorities 0 Fler Majesty the Queen in Right of Canada. Page 1 (0 Copyright 1999 by Compusearch MIcromarketing Date and Systems Ltd. Muscox 1.20611 Project site A W 30th St 130 i z �r269�,E Highland Awe 30 > 1 J M#cipal/W Field iselinee W Ba LO Lu Salli (Sernardino C c� 66, Rialto > 1661, - 5th t Fil' F o nt ana E3 at IN; �tl �,` UV__Ri.11`6 Ave Ve It A L I V 0 k 1�10 P (D 2 1h t 1�f all,L) lvd 4 / _,vqt! Bloomington l West Colton VV B colf6n �'i qd k, -TT777­7 o South "4" L Fontana 4, L Lin a ,<D 7t Stto ,Grand Terra"" 7J, J ' ..... 41", ... ......... ..... .. ......R.e. ......... .................. to t ................ ................... ............ Glen Av rove ............... 2nnyslope ................ V _1_2_H Highgrove Ormand "Q> 0 dllo Mira Lomi7�i RubldouxMe-­_ 160 V 91 1 Flabob' Airport mon More= Vd�ey ite Ave Pedley, -E� 4 0mr, Om! 2 A' 0� Copyright 0 1988-2000 Microsoft Corp. and/or Its suppliers. All rights reserved. http://www.microsaft.com/Streets 0 Copyright 1999 by Geographic Date Technology, Inc. All rights reserved. ©1999 Navigation Technologies, All rights reserved. This date Includes information taken with permission from Canadian authorities 0 Fler Majesty the Queen in Right of Canada. Page 1 (0 Copyright 1999 by Compusearch MIcromarketing Date and Systems Ltd. Fontana, California, United States id:'Ave �.._.•._: _ , —s .� 911 �'�, ..� :,. �rvl..�, 1r._N�+.fl�•,ft tt .: '`�'•'; �fr�`:� t -..,_.i •__—__.�__.�._, �` Mi n2 nQ nr, nn 9 "i Copyright © 1988-2000 Microsoft Corp. and/or Its suppliers. All rights reserved, http:/Iwww.mlcrosoft.com/Streets ® Copyright 1999 by Geographic Date Technology, Inc. All rights reserved. ®1999 Navigation Technologies, All rights reserved. This data Includes Information taken with permission from Canadian authorities © Her Malesty the Queen In Right of Canada, Page 1 • Copyright 1999 by Compusearch Micromerkoting Date and Systems Ltd. Frei i$ t `.:",t y r North ' I I-nnt7n�� ... I>�IiDiC�9t�_ r-)arIz Cucamonga 1 ' _... J30 Fdle�llTaetc� ®IJP hl n id:'Ave �.._.•._: _ , —s .� 911 �'�, ..� :,. �rvl..�, 1r._N�+.fl�•,ft tt .: '`�'•'; �fr�`:� t -..,_.i •__—__.�__.�._, �` Mi n2 nQ nr, nn 9 "i Copyright © 1988-2000 Microsoft Corp. and/or Its suppliers. All rights reserved, http:/Iwww.mlcrosoft.com/Streets ® Copyright 1999 by Geographic Date Technology, Inc. All rights reserved. ®1999 Navigation Technologies, All rights reserved. This data Includes Information taken with permission from Canadian authorities © Her Malesty the Queen In Right of Canada, Page 1 • Copyright 1999 by Compusearch Micromerkoting Date and Systems Ltd. AREA 2 STREET FLOW ANALYSIS ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/Station 30.000 **** INITIAL AREA EVALUATION **** RESIDENTIAL(3 - 4 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.471(In/Hr) Initial subarea data: Initial area flow distance = 600.000(Ft.) Top (of initial area) elevation = 71.600(Ft.) Bottom (of initial area) elevation = 58.700(Ft.) Difference in elevation = 12.900(Ft.) Slope = 0.02150 s(%)= 2.15 TC = k(0.412)*[(length^3)/(elevation change))^0.2 Initial area time of concentration = 11.473 min. Rainfall intensity = 4.101(In/Hr) fora 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.797 Subarea runoff = 9.148(CFS) Total initial stream area = 2.800(Ac.) Pervious area fraction = 0.600 Initial area Fm value = 0.471(In/Hr) SAN BERNARDINO COUNTY -JVF'%Mr'il t-%r+W AAAKIIIA] 11 womils, .�w 71 _4 iv . Fl, +._ s. aff I ..... . . ..... .............. . UM - Sir T! F� L 5 F _h �Av Q:1 r „I---fp LEGEND SOIL GROUP BOUNDARY zz — A SOIL GROUP DESIGNATION SCALE 1:0,000 BOUNDARY OF INDICA7-'_O SOURCE SCALE REDUCED BY 1/2 HYDROLOGIC SOILS GROUP MAP FOR e% I -r- i I t A I f— 1-1-r- A A F:-, r-- 1% j i -1 1 ! • '.: i , 4yrr 7 � -- K r' � — — --- — — �— T H 1 ' —I- - YCFr YR ' , ' ( '-• - - 34 _ _ cl ti• - _- _ i , •\'• 1 -� _- '�- - -�- 1 1 , _ 4-- • I Ivyln ,••u hu.r.r . --�-- LZ Ir ya ,. 1 ,a • L fl i� ^ I . -1 \f--Aaio.� r - ' f • �, I -b _ •,' - `r _}' -I .1.- �.'• r - -•F' - - ` -LO 1L -'F l� ' ` _ ' h i - _ - * - - .3 lr l 1 ^ R c •' .� a' 1 I I ` o 1 I -� , c[t rr ' 1SLer• il�gN r3 '�e! ° T L• 1 •;1.: �76 .•0y , � , sti1L'W-i , +� IJ Il 4 N at- mt. ,� T- _ "fir vrh -,I. +._•.� I i ,� _,.., "' j (' ti - - �f'r. - !T_ - ; - �a - -. = -- ---- -t--' �'.•� ! - t - - - - -If = L•-= z rte- +' L - . . / - - - I - f�4s -!r- - - 1.-#I - I I L I [ [t 'aIf'•I �_'_-_ _ a�' Vt y�o=` � ` - - - - L �• 'I ��� 1t . °s` •.•y1 , ) f II ,+N4/ - y —i t .�•-�y4,41 .i ''rr. j1 �,e !, I 6 � [�� [r'[ - 4 'tih .. i=. 1 - r _ .T .- � 1 :� � ..._ r� -..._ '><" 1.7- � -I I� � �'•' �. _ - I - � [ �,}• 1 , , ! w i?hlCl- 1 qr r,[� . �•-• 1 r ,1� r . ! .� '•1 k I• �� 1 0 � '0' r�°• t .. '�7. . Ls I- Ir • .i i _'"'� i �, t 1 • ?•-•.-- L..� .•T �,� �.r- _ ¢ _ ..� +►s . •' .•1 ` J I I! 1 1 1_ • 1� 3 �' °` � L �RRcimmt 10 L1FF-••••�F••• urvr, '-•!•.eca e-e� . + •_ - s 7- .{- - ,,.- �^- - - • -��• . �. r ) I - �, = • • • m __ • = .[• , P•CF rii ��a • -a i _ • • ° e • °i•` . • t °l6tnh L , 1!_. i�Y. an a• .i.r •6` � =R; �:�_�'�c IGRTI e• I � I 1 • � �r C, � �e � �• , r i 63 y : • , t c �'^ -- _''� - s-`"• - -• - _ _ - -' i=;TSr � ._ - - - I- .�� - i -_ • .[[.rrm 1-- 1 • (- •ei`f 3' _[- . I ■ 1- � I 1 y / , ' •, . 1.1 • �• ` .. L w�sp>i. - - - - - - ` slsV - - ' E Iw 6 � _st.NMCz �:• Ya- - -r F - -` - - 'F - �~•'§ _. --•" �IIV C1EfTL ~" :�'. r. :i: c�Y• ..1! _ -1- �l�4STT., 1 • 1 , +-�F'"f`.. .LO ' �'r '! ` - s •-c i '•o..i •' _ - .�I.e�i:-� rr. --. _ _= 1 - - WI ,{ - -� (- 1 ,�' 1.7' _ ,�`� 1 7•, _ _ • +Ir.•�- )ri.+� +' _ 1 �• _.. � •_ 11 - -.r._ .t '• 1 o -i _-'-_ I _ 1 1 r-' _ f I ` - � j' f' •� -� � _, >, yf '; - rr:.: = _• - r •, �,; `. -..c ; e••ti r `. : °•. I I I � ) �'� % , I 'rte- tt,,{{•' ( • ��- r .. _- _ - -, ,,t:.� �. ^. j .' f • .. - , -- 1.� r - f� ►S • �,'` v.l.- :i.. -- ` • �sr 'r: +1?`•;I �, 1 r L'• a�[u.r's►lnNas. i ~1 r ,ALa.• +.1i •rE'"�- .4 rr _ :at •-- 1 . it 1 Vie,:I :-: F f i _ 8c . i L3 - 1• - , � _ L :rf � _yj •5 '"'� +'� • �.' ` .+_: ^ •,I:.. ' ' : TM a,[Er, . _ -) -�^ I =� ��- r {:•„�: � •:iq _ � � �. --J t �+5'C!- ��.... ....}. ,;' . �� T--� r --,• +� !, -1.. t 11'„ s•_'^ ..� 1 .` __ � .i � - _- �. - - L- f• •�-c .,' f. ��J ��.. "- � .�� �'f- ' •• r_ ••"',: , rj:, 'a • - ` a ' � ' \''Y � . '�+,F I j ''- .• � j;_._ •a = •• ( 7 '^ � - =� -ys ,- •• s _ !� _ .._Z_ • -;i '.� I •• •ypt ' n "='. 1 1 � - Z -"'.,' 1 .•• \�-y.•,•, _ � ti , .- T y�l , q ��,', _ , . J..+. r - . ` �•- r . y., °T, Fti,LTi /� -- z, y - • -..- .•.._ L.. ... F,._. _ �l '\� _ _ •�._�- � .:� -'.�` ,r.` _ -., 1,.,�'%.- __ _ - - -fc. - rr .._7'.• _ .!!� •_ S �► pjh _ _. � , - rLr`,,• _ I '�• - .x - i i�•.rr • 't.E'vr. e - '` ,:•�4 y r' _ - r_ r ! '- •� ' •-d' ; .. _ y+' _ ( -I - r I -T 1. N DA. _ . ` ' . a' • V ! . • . i . r 1 �, 1 r= I !e f ` _ - . i a. f- , i i Lr ' • � � C.: : 1 `-.H�:... �`� L , r� � � V-^[ ► . C,� ; -. - T y_ -.,. �I=_ �' .;I ti -•T- .. ' — � •• >• � SIT .,,::�a' .. .3 .. �_�� �_ '�:f�- .! _ ,` T `�• `_.' i ..� - • PL?1ND • •�. ry �•,. �_ ,gd `� f :• I`�,; °�' 's�:11�961A01 1 '`'moi 1 i 1 - _ E 1N I • I• �• R I+A LT 0_ .. • .__ R..,• 'rc ,. ~ - � °�� - . ' ` � t- _ � 1 � � •� I •- - -- t- �'•-- :•_' =,'-":r - F TdN :;r+ ,L 'a• �,_ i• a,s� }, f ` •_ y �. .� l.- -:•s a6n•nc � -, — I •; Le._ E ra _ •. � G TONt _ 3 F �� -.. _- _ r' '� _ �, - -` ',■ - _ — — 4NT lG9T• ,�;... ' — — —'• r`•ar ,- •— �� —. '• -- —� —• � — jitS o• - r. '� ° � - • � - - - -_ ` -- - •':,,.-- R E D LANDS -a••er .•r :� •^ ...-... • , ' • -.� .J. � (� .� - r �'_ • . aI •[ • • I r, -• ••'d ., •, - •r •' •..,.. � 'Y C,£aTl10RE _ - •ar �. - 1._• A• nr � ♦iF'0'• y t• e" Y ,�[, i _`, __• -1.1 , - ' ♦ ` r - • r 4r ft n. �c r � su i +•�'" ^� ' a aRa1Fe r[nluc[ -C'r�• - .r. ,e,: t •• y` - , F :-. ' • •? I '•` •. ' I ' t �67R��•^, I 1 1 ,1 I CHINO•. ''-' .r"';..i' f Q, _ ._ -. _ ..1 ,-, - _ .J.. _ • -I F • - - - •' • - 4 _ . g ; 'r- -•, - _ :,R oW,rr -6 ... -r..... ; �• _ - �°'. r `. 5*� I C --I - i•- , r i, - aexws{enlFrc "! R E .•I � �!.•�aI R S I D E I .=rr• :_ =— i r! - I. _ . .. �. rev � [� . • I V ~: i •'fir .,r _ _ - _ ,i '` - � . i R3 R2W •RI r 1 •, - FAN BELOODCONTRINO 'C TIXR T i . R 5'f* IFLai100hiGOL REDUCED DRAWING VALLEY AREA d5 9 ` — —— -- – - SCALE I"= 4 MILES ISOIiYETALS t ,W,• Y. — 10 YEAR I HOUR qA SAN B ER N A R D I N G-: C O U NTY ItiaE7 G1i LL30.ti HAjJLlilAS Z. M73 �, - - - -- I'•J� aw i R w - -- R6 - - HYDROLOGY MAlUAL r :'" �.:".=.---_._.....�... ..� . FlffS6 COAiKt3L / El�ulnaere -- L fel W r. RIE RZE , s. l " I.1 I jy 1 t I I I I - nor A =tel � •r• I -- - � 1� - - r=' -I 1- - - I �/ - - .t 1.1 - t- r .- - - - --• - -- - - • � - - -- -- -- - - �. _ `- . -' -1• - .�.' Ur- I"`S-*I .•T 2•' o+ I ! , �� -,,i •�• .� I I r% >'LLt}P I _ �_� '..1-•., I I }•1 18fF �•�-. , -i- -i ` d 4 +r• P ' I.T , �. � I g 1 dr' I 1 ' • IIE 1 '",[I', I , ; . i I f! ! I. . , 1 � •vaPF ` � L� zc`c'�" � ` � /- � —. ' , — i ,� / i��s ; _ � I•� s�• +'T /�1•'�•1 —•r a -- .� �.. — � : — i I — — • — 1 ti.: 2 ` aI• , L AlYEAS — —— — '•ii .a �J i, �' I!t. ( - L I ,__ L zJ d.Q• `' :yeti I — �: 2 T i` , �_ TQM} ' I 1 y'-4 �' . '_ � �T' -1- ~•moi•=GIT' ' I ---i-- � •' ° �' L 1 ��—_I -- , �'— f 1 • _ —� ' —•'• — — t 6 1 2 • ■- .a•.ai- _ I „'� N :' I:r ` 'f _ -{ - , e _�+_• ; q , _' � I - _ _:.y - -'1 .r. —. �.. I _ I y I �� I i I I L ,{ l � ! tr 1 li • 1 !. ! �,+ti` �t :� ; _ _) -! - -, el` � - r' S = i .-1 i -� - _�o•�'Rl�Y � - I �,v ' Z , � _ .}, I I 1 L° ;.tom . 1 � •� k. 3L3 L allnotrn r1 t-- P'.4T��• —r1�1 Lt_ I .1_ — — •;1 ■ e .. a rY �.��• — •�il-, Il • _ �.`Y ZU.11T N • L11L....dl I 1�1 II , � - i ✓� - �fy ' 4�_ -_ — 1 �?- 11_1 ♦� �GalS �rT , .— . _ .- - V �11.— .— � 1 L. I •EI[f�.,4 . ° a" . • `y`!� 1 r . . 11 � `' C rLlllE - _l >• ' � -p citta . -- . 1 •. = . ■ -��../ , t �, i S ' .i •,•�, 1 r i _ , - -}_.� - .4 - -•l- .I o -(4 1- - 'I"- • Aa -c r ■ .�•�F(j �11�-•' ��• - , / - ` - .•. tom: 3a7 , 1^ u _.l�+sa _ t _' _ �{.7 T'� •CC YLLM If-�jl 't -f" a n . -2. t' �. _ ; + 1 I! i t y ' tom.. j '` 'l t ■ C4 Y �r4�jl f �_ ' ! t t a = r IJ _}.. •L..-: eF ' Lt . -r 1 .rr.- e. - __! _ - . �! -' Vj �' $_' 1 v J, •I •+ Z•. 1J 1 � 2 I -".` .J '} 4_ _ •• '.+..` _ tom/ :. ..._ _ I i 1, .i r9 I� S '- I t y Vii, �_• - -__ ,_ _ _ ' Z' ti =• . •t ti � ` ? T . � AZ1111N _ •} ..•� ! •IIC7a• fL t t `� t� �' � .1� -7-. .! � 'y_'I� � •-?J -_ :• Y`s � - � _�, - " -r •.� • � I • f 3d�' � � �• _ '• • t _ ''''�+�x. t � • ' Z3 1 'r -~-.: `• = r !� {d "'! _t I �•�_ .r 111��..nn. •et yf-.� ' `f• !y _ _•' �-r `.e- 1 eft L! d F . 2 '�Il'=� 17' t•� %.'"" •`` ~ til •'�F,t a ,F.. =;yYr. 4_ ,q.'- ;_ t i _ - - —�' :•=•r-- —l��h ,ty _ =`ti—r. - — I— L.■°' .. u - - -- - - I-_ -- F-- - - ••` t l - ' . _ _ r r '.. Isi _ ,� _O i•• ` 6-)r ,- - a • t �- , rcton ..�, l La : '` . t tom" LT • I i' - - I � •�, I` .;lf' ,E, ' E4",rr { � - •.� - � - - . r - 1. '�'r� '% f � � - ._. - - � �� � ,�" : .�Y' I I r u- I�I.w,64[ - �. L y-�j4.Tt _i _ - �`- --r- _I ,�'y' i• {.�.+t.�L 'y�' rI -- I• I •a I%r •^ i y 1 I' i•� i -.-s._ � .- � � • � — ,.• '- ai i R�� 1 . SIT I I - I I ri � [� - - � • I ' *'�• • , •{��?; 3 ��r `I• � t �i .. .• r— f.,;.1 �'�: Na � +.— � ..._ —;�, �' • •I L .e. • � ��•• Su■ pr■ I I PL DI '.� _ !.•`` , t' _ 1 I I; !� 1 I _ .:..,.,.r .•.06 �° r R I A LTD_ H — ;' S; t rr ._ 7 1•` ., ...�*asM T A _ •' �. �]••■ '•� , : _ - .�' _ '�- - 15 M + � f' - +- '� -rte•, 'L• .,r dr 'v j� . ONTAtOt?• J. '.. COtTOti�tT.lS •.? '�r_ ' - �� - - -•r r 1 - - r y• REDLAND- Ll S <✓.. ..L _: r t..� Imo• r 1 _ t •S. rr. uticr IL 11.t-' e • L� -FV. 1 .,1.2 - I 'tee i'•• •�:}' I •t / ivl:. p t Y--' r __.. �1. - r-' ,r•, jr� , J t M `' aV L � -• ,.f'r : J � ill41H TCRtUCC - � � 1 L CH C' �, •''" "* Z,�. «r' -T -4= { _ • 1 0.. i , S : fir; 5p Ili', At -F' tul i te�aakwo 1.L3a 2- _ . •3 \._ • f _ — et I'm ��wr � I •L= LI - - - -��- • �• - � - �, I ER51QE .. ar•. _ _ _ .. } • ' •fox' ` i ' f R4W R3 R2W R I %c z '~ ■, t; ,. ' t SA}{ 5EltPiARi}If'!4 COUNTY F '^T IF o°r�tao�__ ; I' R5- REDUCED DRAWING — VALLEY AREA ij - - '•�h - - - .., i - - _ -MILES • - I SCALE Int �? tial-lrt:TAL: ,a„�.• ;, . 1 -iU0 YEAR I HOUR . ' Yw ---`j SAN BERNARDINO' COUNTY >��L,+�laiSl.liaflJ3L,Wt +rn•r.+rm rr -w-- - - .` - w - � ', HYDROLOGY MIANUAI. I I_B ISOUNES,PRECINTATION.IIR;,,{cS) GarE rxx ru pn OU& ra 3. HYDROLOGY STUDY - Q100 (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2000 Version 6.3 Rational Hydrology Study Date: 07/04/04 Raab Engineering, Corona, California - S/N 875 ********* Hydrology Study Control Information Rational hydrology study storm event year is 100.0 10 Year storm 1 hour rainfall = 1.000(In.) 100 Year storm 1 hour rainfall = 1.520(In.) Computed rainfall intensity: Storm year= 100.00 1 hour rainfall= 1.520 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 3 SECTION 3 EXISTING CONDITIONS STORM FREQUENCY- 100 YRS I ANALYSIS OF PROPOSED FLOWS — BEECH AVENUE From the following hydrology, Q = 5.31 cfs A=2.10 ac Tc=16.65 min.. From following page calculations, Beech Avenue Q capacity > Q calc, or 13.84 cfs > 5.31cfs, therefore Q does not overspill top of curb. From the following page calculations: Resulting depth of flow: 0.35' 2. HYDROLOGY STUDY— 0100 From Hydrology Report prepared for Tract No. 14293, (see Appendix), ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 40.000 to Point/Station 40.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** RESIDENTIAL(3 - 4 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.471(ln/Hr) Rainfall intensity = 3.674(In/Hr) fora 100.0 year storm User specified values are as follows: TC = 13.78 min. Rain intensity = 3.67(In/Hr) Total area this stream = 1.18(Ac.) Total Study Area (Main Stream No. 1) = 8.98(Ac.) Total runoff = 3.42(CFS) AREA 3 STREET FLOW ANALYSIS ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 40.000 to Point/Station 50.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1370.000(Ft.) End of street segment elevation = 1360.500(17t.) Length of street segment = 553.000(Ft.) Height of curb above gutter flowline = 8.0(ln.) Width of half street (curb to crown) = 33.000(Ft.) Distance from crown to crossfall grade break = 31.000(Ft.) Slope from gutter to grade break (v/hz) = 0.080 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1 ] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter= 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.753(CFS) Depth of flow = 0.359(Ft.), Average velocity = 3.216(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 11.625(Ft.) Flow velocity = 3.22(Ft/s) Travel time = 2.87 min. TC = 16.65 min. Adding area flow to street RESIDENTIAL(3 - 4 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.471(ln/Hr) Rainfall intensity = 3.281(ln/Hr) fora 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCIA) is C = 0.771 Subarea runoff = 1.890(CFS) for 0.920(Ac.) Total runoff = 5.310(CFS) Effective area this stream = 2.10(Ac.) Total Study Area = 2.10(Ac.) Area averaged Fm value= 0.471(ln/Hr) Street flow at end of street = 5.310(CFS) Half street flow at end of street = 5.310(CFS) Depth of flow = 0.370(Ft.), Average velocity= 3.301(Ft/s) Flow width (from curb towards crown)= 12.174(Ft.) End of computations, Total Study Area = 9.90 (Ac.) SECTION 4 San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2000 Version 6.3 Rational Hydrology Study Date: 07/04/04 Raab Engineering, Corona, California - S/N 875 ********* Hydrology Study Control Information Rational hydrology study storm event year is 100.0 10 Year storm 1 hour rainfall = 1.000(In.) 100 Year storm 1 hour rainfall = 1.520(In.) Computed rainfall intensity: Storm year = 100.00 1 hour rainfall = 1.520 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/Station 20.000 **** INITIAL AREA EVALUATION **** UNDEVELOPED (poor cover) subarea Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 67.00 Adjusted SCS curve number for AMC 3 = 84.60 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.290(ln/Hr) Initial subarea data: Initial area flow distance = 850.000(Ft.) Top (of initial area) elevation = 71.600(Ft.) Bottom (of initial area) elevation = 54.700(Ft.) Difference in elevation = 16.900(Ft.) Slope = 0.01988 s(%)= 1.99 TC = k(0.525)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 17.070 min. Rainfall intensity = 3.231(In/Hr) fora 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.819 Subarea runoff = 21.972(CFS) Total initial stream area = 8.300(Ac.) Pervious area fraction = 1.000 Initial area Fm value = 0.290(ln/Hr) End of computations, Total Study Area = 8.30 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation. Area averaged pervious area fraction(Ap) = 1.000 Area averaged SCS curve number = 67.0 SECTION 5: WSPGW RUN MAINLINE PIPE - AVOCADO COURT INPUT DATA FILE: 799.WSW W S P G W - EDIT LISTING - Version 14.03 Date: 1- 9-2006 Time: 8:36:51 WATER SURFACE PROFILE - CHANNEL DEFINITION LISTING PAGE 1 CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) CODE NO TYPE PIER/PIP WIDTH DIAMETER WIDTH DROP CD 1 3 0 .000 8.000 10.000 .000 .000 .00 CD 2 4 1 2.000 CD 3 3 0 .000 2.650 7.000 .000 .000 .00 WSPGW PAGE NO 1 WATER SURFACE PROFILE - TITLE CARD LISTING HEADING LINE NO 1 IS - Tract No. 16597 HEADING LINE NO 2 IS - Revised Hydraulic Grade Line Calculations HEADING LINE NO 3 IS - Avocado Court WSPGW PAGE NO 2 WATER SURFACE PROFILE - ELEMENT CARD LISTING ELEMENT NO 1 IS A SYSTEM OUTLET * U/S DATA STATION INVERT SECT W S ELEV 110.000 43.690 1 48.690 ELEMENT NO 2 IS A WALL EXIT U/S DATA STATION INVERT SECT 110.000 43.690 2 ELEMENT NO 3 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 131.000 49.360 2 .013 .000 .000 .000 0 ELEMENT NO 4 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 154.820 50.070 2 .013 .000 .000 .000 0 ELEMENT NO 51S A WALL ENTRANCE U/S DATA STATION INVERT SECT FP 154.820 50.070 3 .500 ELEMENT NO 6 IS A SYSTEM HEADWORKS U/S DATA STATION INVERT SECT W S ELEV 154.820 50.070 3 50.070 MAINLINE PIPE - AVOCADO COURT HYDRAULIC GRADE LINE FILE: 799.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 1 Program Package Serial Number: 1376 WATER SURFACE PROFILE LISTING Date: 1- 9-2006 Time: 8:36:55 Tract No. 16597 Revised Hydraulic Grade Line Calculations Avocado Court I Invert I Depth I Water I Q I Vel Vel I Energy I Super ICriticallFlow ToplHeight/IBase Wtl INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.1 Elev I Depth I Width IDia.-FTIor I.D.1 ZL IPrs/Pip -I- `I- -I- -I` `I- -I- L/Elem ICh Slope I I I -I SF Ave I HF ISE D th Froude N Norm D "N" X -Fall ZR ]Type Ch I I I P I I P I I I I YP I i I I I 110.000 43.690 5.000 48.690 -I- -I- I I I I I I I I 13.98 .28 .00 48.69 .00 .39 10.00 8.000 10.000 .00 0 .0 -I- -I- -I- -I- -I- + -I- (- -I- -I- -I- -I` WALL EXIT 1 1 I I I I I 110.000 43.690 5.000 48.690 I I I I I I 13.98 4.45 .31 49.00 .00 1.35 .00 2.000 .000 .00 1 .0 -I- -I- 1- -i- -I- -I- -I- -i- -I- 8.268 .2700 -I- -I- -I- -I- -I- .0038 .03 5.00 .00 .47 .013 .00 .00 PIPE 1 1 1 1 1 1 118.268 45.922 2.798 48.721 -I- -I- 1 1 1 1 1 1 1 13.98 4.45 .31 49.03 .00 1.35 .00 2.000 .000 .00 1 .0 -I- -I` -I- -I- -I- -I- -I- F -I- -I- -I- -I- HYDRAULIC JUMP i I I I I I 118.268 45.922 .615 46.537 I i I I I I I 13.98 17.05 4.51 51.05 .00 1.35 1.85 2.000 .000 .00 1 .0 -I- `I- -I- I- -I- -I- -I- -I- -I- -I- .709 .2700 -I- -I--I- -I- .0880 .06 .61 4.51 .47 .013 .00 .00 PIPE 1 I I I I II 118.977 46.114 .623 46.737 I I I I I 1 13.98 16.70 4.33 51.07 .00 1.35 1.85 2.000 .000 .00 1 .0 -1- -I- 1- -I- -I- -I- -I- -I- -I- 1.960 .2700 -I- -I- -I- -I- -I- .0802 .16 .62 4.38 .47 .013 .00 .00 PIPE I I I I I I I 120.937 46.643 .645 47.288 I I I I I I 13.98 15.93 3.94 51.23 .00 1.35 1.87 2.000 .000 .00 1 .0 -I- -I- 1- -I- -I- -I- -I- -I- -I- 1.678 .2700 -I- -I- -I- -I` -I- .0703 .12 .65 4.10 .47 .013 .00 .00 PIPE 1 1 I I I I I 122.615 47.096 .668 47.764 I I I I I I 13.98 15.19 3.58 51.35 .00 1.35 1.89 2.000 .000 .00 1 .0 -I- -1- 1- -I- -I- -I- -I- -I- -I- 1.447 .2700 -I- -I- -I- -I- -I` .0616 .09 .67 3.83 .47 .013 .00 .00 PIPE 1 I I I I I I 124.062 47.487 .692 48.179 I I I I I I 13.98 14.48 3.26 51.43 .00 1.35 1.90 2.000 .000 .00 1 .0 I I -I` `I- -I- `I` -I 1.254 .277 00 105401 .07 69 3 58 .47 .013 .00 .00 PIPE 1 I I I I I I 125.316 47.825 .717 48.542 I I I I I I 13.98 13.81 2.96 51.50 .00 1.35 1.92 2.000 .000 .00 1 .0 1 I -I- `1- `1- -I- -I` `1- 1.096 .2700 -I 04731 _05 72 3 35 .47 .013 .00 .00 PIPE FILE: 799.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 2 Program Package Serial Number: 1376 WATER SURFACE PROFILE LISTING Date: 1- 9-2006 Time: 8:36:55 Tract No. 16597 Revised Hydraulic Grade Line Calculations Avocado Court I Invert I Depth I Water I Q I Vel Vel I Energy I Super (CriticallFlow ToplHeight/IBase Wt1 INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.l Elev I Depth I Width IDia.-FTIor I.D.1 ZL IPrs/Pip -I- -I- -I- -I- -I- -I- -I SF Ave I HF ISE D th Froude N Norm D "N" X -Fall ZR T e Ch I I P I I I I YP L/Elem ICh Slope I I I i i I P I 126.412 I I I I 48.121 .742 48.863 I I I I I I 1 I 13.98 13.16 2.69 51.55 .00 1.35 -I- 1- 1.93 2.000 .000 .00 1 .0 -I- .952 .2700 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- .0415 .04 .74 3.13 .47 .013 I .00 .00 PIPE I 127.364 I I I I 48.378 .769 49.147 I I I l I I I 13.98 12.55 2.45 51.59 .00 1.35 -I- 1- 1.95 2.000 .000 .00 1 .0 -I- .832 .2700 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- .0364 .03 .77 2.92 .47 .013 .00 .00 PIPE I 128.196 I I I I 48.603 .797 49.400 I I I I I I I I 13.98 11.97 2.22 51.62 .00 1.35 -I- -I- 1- 1.96 2.000 .000 .00 1 .0 -I- .727 .2700 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- .0320 .02 .80 2.73 .47 .013 .00 .00 PIPE I 128.924 I I I I 48.799 .826 49.625 I I I I I I 1 1 13.98 11.41 2.02 51.65 .00 1.35 -I- 1- 1.97 2.000 .000 .00 1 .0 -I- .636 -I- -I- -I- -I- -I- .2700 + -I- + -I- -1- -I- .0281 .02 .83 2.55 .47 .013 I .00 .00 PIPE I 129.559 I I I I 48.971 .856 49.827 I I I I I I I 13.98 10.88 1.84 51.66 .00 1.35 -I- -I- 1- 1.98 2.000 .000 .00 1 .0 -I- .550 -I- -I- -I- -I- -I- .2700 -I- -I--I- -I- -I- .0246 .01 .86 2.38 .47 .013 .00 .00 PIPE 1 130.110 1 1 1 1 49.120 .888 50.008 1 1 1 1 1 1 1 1 13.98 10.37 1.67 51.68 .00 1.35 -I- -I- 1- 1.99 2.000 .000 .00 1 .0 -I- .479 -I- -I- -I- -I- -I- .2700 -I- -I--I- -I- -I- .0217 .01 .89 2.22 .47 .013 I I .00 .00 PIPE I 130.588 I I I I 49.249 .921 50.170 I I I I I I 13.98 9.89 1.52 51.69 .00 1.35 -I- -I- 1- 1.99 2.000 .000 .00 1 .0 -I- .412 -I- -I- -I- -I- -I- .2700 -I- -I- -I- -I- -I- .0190 .01 .92 2.07 .47 .013 1 1 .00 .00 PIPE I 131.000 I I I I 49.360 .956 50.316 I I I I I I 13.98 9.43 1.38 51.70 .00 1.35 -I- -I- 1- 2.00 2.000 .000 .00 1 .0 -I- 5.213 -I- -I- -I- -I- -I- .0298 -I- -I- + + -I- .0170 .09 .96 1.93 .83 .013 1 1 .00 .00 PIPE I 136.213 I I I I 49.515 .982 50.497 I I I I I I 13.98 9.11 1.29 51.79 .00 1.35 -I- -I- 1- 2.00 2.000 .000 .00 1 .0 -I- 5.513 -I- -I- -I- -I- -I- .0298 -I- -I- -I- -I- -I- .0153 .08 .98 1.83 .83 .013 .00 .00 PIPE FILE: 799 -WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 3 Program Package Serial Number: 1376 WATER SURFACE PROFILE LISTING Date: 1- 9-2006 Time: 8:36:55 Tract No. 16597 Revised Hydraulic Grade Line Calculations Avocado Court w+w+w::w++wx++xrxxxwx++w++++xwxrw++++++xxxrrrrww++w+w+rwxww+w+w+++wxxwwww+w+++++x+rrwww+ww+w++xrxxrxwx+www++++xrrrwwwwr++w rxrxwwrw Invert I Depth I Water I Q I Vel Vel I Energy I Super lCriticallFlow ToplHeight/IBase Wt1 INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.EI.I Elev I Depth I Width IDia.-FTIor I.D.1 -I- -1 ZL IPrs/Pip -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- L/Elem ICh Slope I I I I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X-Falll ZR (Type Ch xwxxwwwwwlwww+++x+xlwrxwwwwwlw+xxxrwwwlwwww++x+xlwxwwwwwl++wrxwxlwwwwwwxwxlxwxrwwwlrwwwwwx+Ixxrxxxwxlwww+xxxlrxxwxwwlw++++ I+xxxwxw I I I I 141.726 I I I I I I I I I 49.680 1.019 50.699 13.98 8.68 1.17 51.87 .00 1.35 2.00 2.000 .000 .00 1 .0 -I- 4.125 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- .0298 .0135 .06 1.02 1.71 .83 .013 .00 .00 PIPE I 145.851 I I I I I i I I I I I I 49.803 1.058 50.861 13.98 8.28 1.06 51.93 .00 1.35 2.00 2.000 .000 .00 1 .0 -I- 3.053 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- .0298 .0119 .04 1.06 1.59 .83 .013 .00 .00 PIPE I 148.904 I I I I i I I I I I I I 49.894 1.100 50.994 13.98 7.89 .97 51.96 .00 1.35 1.99 2.000 .000 .00 1 .0 -I- 2.327 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- .0298 .0105 .02 1.10 1.47 .83 .013 .00 .00 PIPE I 151.231 I I I I I i I I I I I I 49.963 1.143 51.106 13.98 7.53 .88 51.99 .00 1.35 1.98 2.000 .000 .00 1 .0 -I- 1.653 -I- -I- + -I- -I- -I- -I- + -I- -I- -I- -I- 1- .0298 .0093 .02 1.14 1.37 .83 .013 .00 .00 PIPE I 152.884 I I I I I I I I I I I I 50.012 1.189 51.201 13.98 7.18 .80 52.00 .00 1.35 1.96 2.000 .000 .00 1 .0 -I- 1.097 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- .0298 .0082 .01 1.19 1.27 .83 .013 .00 .00 PIPE I 153.981 I I I I I I I I I I I I 50.045 1.238 51.283 13.98 6.84 .73 52.01 .00 1.35 1.94 2.000 .000 .00 1 .0 -I- .625 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- .0298 .0073 .00 1.24 1.18 .83 .013 .00 .00 PIPE I 154.607 I I I I I I I I I I I I 50.064 1.290 51.354 13.98 6.52 .66 52.01 .00 1.35 1.91 2.000 .000 .00 1 .0 -I- .213 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- .0298 .0064 .00 1.29 1.09 .83 .013 .00 .00 PIPE I 154.820 I I I I I I I I I I 1 1 50.070 1.346 51.416 13.98 6.22 .60 52.02 .00 1.35 1.88 2.000 .000 -I- -I- -I- -I- .00 1 .0 -I- WALL ENTRANCE -I- + -I- -I- -I- -I- + -I- I 154.820 -I- I I I I I I I I I l I I 50.070 2.258 52.328 13.98 .88 .01 52.34 .00 .50 7.00 2.650 7.000 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- I- .00 0 .0 MAINLINE PIPE - BANYAN COURT INPUT DATA ................ ...... -F 7 ....................... ... ................ ... .......... RAS' C I`JF) I 2 9 Ii 11 viii � BASELINE AVENUE N - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ..................... ....................... ................... ............. .. .......... .......... ....... .... .......... � ui t� � IIIA �� 3 Ik l � Ijj � ISIS � � z � 161 � IIl � QI, i p; j � 7 II If;l; � F II`l If l Ik l � ' Ln CL 0 II I[;I �� II � II Ifi,� II (l` II qi If � � X'A ut ........ ............ ............ ........... ................... DETAIL 'A' NO SCALE DETAIL 'E' NO SCALE NORTH 0 10 20 40 80 120 SCALE: 1 "=40' TRACT NO. m 16597 ON—SITE HYDROLOGY MAP FILE: 799b.WSW W S P G W - EDIT LISTING - Version 14.03 Date: 5-16-2004 WATER SURFACE PROFILE - CHANNEL DEFINITION LISTING CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(1) Y(2) Y(3) Y(4) Y(5) CODE NO TYPE PIER/PIP WIDTH DIAMETER WIDTH DROP CD 1 4 1 2.000 CD 2 4 1 2.000 CD 3 3 0 .000 7.18 7.00 .000 .000 .00 WSPGW PAGE NO 1 WATER SURFACE PROFILE - TITLE CARD LISTING HEADING LINE NO 1 IS - Tract No. 16597 HEADING LINE NO 2 IS - Banyan Court HEADING LINE NO 3 IS - WSPGW PAGE NO 2 WATER SURFACE PROFILE - ELEMENT CARD LISTING ELEMENT NO 1 IS A SYSTEM OUTLET * U/S DATA STATION INVERT SECT W S ELEV 110.000 47.390 1 52.390 ELEMENT NO 2 IS A WALL EXIT " U/S DATA STATION INVERT SECT 110.000 47.390 2 ELEMENT NO 3 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE 164.620 51.880 2 .013 .000 .000 .000 0 ELEMENT NO 4 IS A WALL ENTRANCE U/S DATA STATION INVERT SECT FP 164.620 51.860 3 .500 ELEMENT NO 5 IS A SYSTEM HEADWORKS U/S DATA STATION INVERT SECT W S ELEV 164.620 51.880 3 51.880 Time: 8: 0:43 PAGE 1 Y(6) Y(7) Y(8) Y(9) Y(10) ANG PT MAN H MAINLINE PIPE - BANYAN COURT HYDRAULIC GRADE LINE FILE: 799b.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 1 Program Package Serial Number: 1376 WATER SURFACE PROFILE LISTING Date: 5-16-2004 Time: 8: 0:51 Tract No. 16597 Banyan Court ,x,,,xxxxxxxxx,xr,,,,xxx:xxxxxxxxxx,,,x,,,,xr,,,,w,wwxxwxxxxxxxxxxxxx,,,,,,wwwx„wwxxxxxx,xxx„w„wxwww„wxxxxxxx,x,x,x,,, I Invert I Depth I Water I Q I Vel Vel I Energy I Super lCriticallFlow ,w„wxxx ToplHeight/IBase WtI INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.l Elev I Depth I -I- -I- -I- -I- -I- -I- -I- Width IDia.-FTIor I.D.1 ZL IPrs/Pip L/Elem [Ch Slope I I I -I- -I- + -I- -I- -I- -1 I SF Avel HF ISE DpthlFroude NINorm Dip I "N" I X-Falil ZR (Type Ch ,,,,,xxx,Ixxwxxxw„I,,,,,x„Ixxxxxxxxxlwxwxwx,xwl,,.,,,w1,,,,,,,Iw,xxxwxxxlx,xwww,Ix„w,wwwlw„xxxxwlwx,xw„I„w,ww,1„w,w Ixxxxxxw I I I I I 110.000 47.390 5.000 52.390 I I I I I I I I 9.15 2.91 .13 52.52 .00 1.08 .00 2.000 .000 .00 0 .0 -1- -I- -I- -I- -I- -I- WALL EXIT -I- -f- -I- + -I- -I- -f- (- i I I I I 110.000 47.390 5.000 52.390 I I I I I I I I 9.15 2.91 .13 52.52 .00 1.08 .00 2.000 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- 37.237 .0822 + + -I- -I- -I- -I- -I- 1- .0016 .06 5.00 .00 .51 .013 .00 .00 PIPE I I I I I 147.237 50.451 2.000 52.451 1 I I I I I I I 9.15 2.91 .13 52.58 .00 1.08 .00 2.000 .000 .00 1 .0 -f- -I- -I- -I- -I- -I- 2.128 .0822 -I- -I- -I- -I- -I- -I- -I- 1- .0015 .00 2.00 .00 .51 .013 .00 .00 PIPE I I I I I 149.365 50.626 1.814 52.440 I I I I I I 1 1 9.15 3.05 .14 52.58 .00 1.08 1.16 2.000 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- .788 .0822 -I- -I- -I- -I- -I- -I- -I- 1- .0015 .00 1.81 .34 .51 .013 .00 .00 PIPE I I I I I 150.153 50.691 1.742 52.433 I I I I I I 1 1 9.15 3.15 .15 52.59 .00 1.08 1.34 2.000 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- HYDRAULIC JUMP -I- -I- -I- -I- -I- -I- -I- F I I I I I 150.153 50.691 .628 51.319 i i I f I i I I 9.15 10.83 1.82 53.14 .00 1.08 1.86 2.000 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- 1.809 .0822 -I- -I- -I- -I- + -I- -I- 1- .0334 .06 .63 2.83 .51 .013 .00 .00 PIPE I I I I I 151.963 50.840 .650 51.490 I I I I I I I I 9.15 10.31 1.65 53.14 .00 1.08 1.87 2.000 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- 2:400 .0822 -I- -I- -I- -I- -I- -I- -I- I- .0292 .07 .65 2.64 .51 .013 .00 .00 PIPE I l I I I 154.362 51.037 .673 51.710 I I I I I I 1 1 9.15 9.83 1.50 53.21 .00 1.08 1.89 2.000 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- 1.988 .0822 -I- -I- -I- -I- -I- -I- -I- 1- .0256 .05 .67 2.47 .51 .013 .00 .00 PIPE I I I I I 156.350 51.200 .697 51.897 I I I I 1 I 1 1 9.15 9.38 1.37 53.26 .00 1.08 1.91 2.000 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- 1.658 .0822 -I- -I- -I- -I- -I- -I- -I- 1- .0224 .04 .70 2.31 .51 .013 .00 .00 PIPE FILE: 799b.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 2 Program Package Serial Number: 1376 WATER SURFACE PROFILE LISTING Date: 5-16-2004 Time: 8: 0:51 Tract No. 16597 Banyan Court Invert I Depth I Water I Q I Vet Vel I Energy I Super ICriticallFlow ToplHeight/IBase Wtl INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.1 Elev I Depth I Width IDia.-FTIor I.0.1 ZL IPrs/Pip -I- -1- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I UElem ICh Slope I I I I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X-Falll ZR (Type Ch I I I 1 I I I I I I I 1 I 158.008 51.336 .722 52.059 9.15 8.94 1.24 53.30 .00 1.08 1.92 2.000 .000 .00 1 .0 -I- -I- -I- + -I- -I- -I- -I- -I- + -I- -I- -I- 1- 1.388 .0822 .0197 .03 .72 2.16 .51 .013 .00 .00 PIPE I I I I I I I I I I I I 1 159.396 51.451 .748 52.199 9.15 8.52 1.13 53.33 .00 1.08 1.94 2.000 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- 1.163 .0822 .0173 .02 .75 2.02 .51 .013 .00 .00 PIPE I I 1 I I I I I I I I I I 160.560 51.546 .775 52.321 9.15 8.13 1.03 53.35 .00 1.08 1.95 2.000 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- .973 .0822 .0151 .01 .78 1.88 .51 .013 .00 .00 PIPE I I I I I I I I I I I I I 161.533 51.626 .803 52.429 9.15 7.75 .93 53.36 .00 1.08 1.96 2.000 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- .795 .0822 .0133 .01 .80 1.76 .51 .013 .00 .00 PIPE I I I I I I I I I I I i I 162.327 51.692 .833 52.525 9.15 7.39 .85 53.37 .00 1.08 1.97 2.000 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- .667 .0822 .0117 .01 .83 1.64 .51 .013 .00 .00 PIPE I I I i I I I I I I I I I 162.994 51.746 .863 52.609 9.15 7.04 .77 53.38 .00 1.08 1.98 2.000 .000 .00 1 .0 -I- -I- -I- + -I- -I- -I- -I- -I- + -I- -I- -I- 1- .529 .0822 .0103 .01 .86 1.53 .51 .013 .00 .00 PIPE I I I I I I I I I I I I I 163.523 51.790 .895 52.685 9.15 6.72 .70 53.39 .00 1.08 1.99 2.000 .000 .00 1 .0 -1- -I- -I- + -I- -I- + -I- -I- -I- -I- -I- -I- 1- .419 .0822 .0090 .00 .90 1.43 .51 .013 .00 .00 PIPE I I I I 1 I I I I I I 1 1 163.942 51.824 .928 52.752 9.15 6.40 .64 53.39 .00 1.08 1.99 2.000 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- .308 .0822 .0079 .00 .93 1.33 .51 .013 .00 .00 PIPE I I I I I I I I I 1 1 1 1 164.250 51.850 .963 52.813 9.15 6.11 .58 53.39 .00 1.08 2.00 2.000 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- 208 .0822 .0070 .00 .96 1.24 .51 .013 .00 .00 PIPE FILE: 799b.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 3 Program Package Serial Number: 1376 WATER SURFACE PROFILE LISTING Date: 5-16-2004 Time: 8: 0:51 Tract No. 16597 Banyan Court Invert I Depth I Water I Q I Vel Vel I Energy I Super ICriticallFlow ToplHeight/lBase Wti INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.1 Elev I Depth I Width IDia.-FTIor I.D.1 ZL IPrs/Pip -I- -I- -I- -I- -I- -I- -I- -I- -I- + -I- -I- -I- -1 L/Elem ICh Slope I I I I SF Ave1 HF ISE DpthlFroude NlNorm Dp 1 "N" I X-Fall1 ZR (Type Ch I I I I I I I I I I I I I 164.458 51.867 1.000 52.867 9.15 5.82 .53 53.39 .00 1.08 2.00 2.000 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- .129 .0822 .0061 .00 1.00 1.16 .51 .013 .00 .00 PIPE I I I I 1 I I I I I I I I 164.588 51.877 1.038 52.915 9.15 5.55 .48 53.39 .00 1.08 2.00 2.000 .000 .00 1 .0 -I- -I- -I- -I- -I- + -I- -I- -I- -I- -I- -I- + 1- .032 .0822 .0054 .00 1.04 1.08 .51 .013 .00 .00 PIPE I I I I I I I I I I I 1 1 164.620 51.880 1.080 52.960 9.15 5.29 .43 53.39 .00 1.08 1.99 2.000 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- (- WALL ENTRANCE I I I I I I I I I I I I I 164.620 51.880 1.647 53.527 9.15 1.59 .04 53.57 .00 .60 3.50 6.800 3.500 .00 0 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- I- L_- -T-7/� 7 '`/ ' �' /�' --7 / i'- `� | / / L 0 Hydrology Study TRACT N0. 16250 Prepared by: raab engineering, inc. 310 S. Maple Ave. Ste. D Corona, Ca 92880 Tel (909) 272-1072 Fax (909) 272-0166 Prepared Mark U R President of: Date Q�o?ES-8/t h � w No. 29616 rn m Exp. 3-31-07 �r CIVl1- t F Or CAL\F J TABLE OF CONTENTS 1. Narrative discussion 2. Section 1. -Andrea Street Section A: Storm Frequency 25 years 1. Analysis of existing flows: Andrea Street. 2. Catch basin capacity calculations - Andrea Street n/o Foxworth Street 3. Hydrology study - Q25. 4. Catch basin capacity calculations - Andrea Street at southerly cul-de-sac Section B: Storm Frequency 100 years 1. Analysis of existing flows: Andrea Street. 2. Catch basin capacity calculations -Andrea Street n/o Foxworth Street 3. Hydrology study- Q100 4. Catch basin capacity calculations - Andrea Street at southerly cul-de-sac 3. Section 2. - Plumrose Street Section A: Storm Frequency 25 years 1. Street flow analysis - Foxworth Street at Andrea Street 2. Street flow analysis -Andrea Street to Plumrose Street 3. Analysis of existing flows: Plumrose Street at Clipton Street . 4. Street flow analysis - Plumrose Street from Clipton Street to Foxworth Street 5. Catch basin capacity calculations - West side Plumrose at Foxworth Street 6. Confluence calculations at Foxworth Street and Plumrose Street 7. Catch basin capacity calculations - Foxworth Street at Plumrose Street 8. Catch basin flow analysis - West side of Plumrose Street at Foxworth Street 9. Street flow analysis - Plumrose Street from Foxworth Street to cul-de-sac. 10.Catch basin capacity calculations - Plumrose Street at southerly cul-de-sac Section B: Storm Frequency 100 years 1. Street flow analysis - Foxworth Street at Andrea Street 2. Street flow analysis - Andrea Street to Plumrose Street 3. Analysis of existing flows: Plumrose Street at Clipton Street. 4. Street flow analysis - Plumrose Street from Clipton Street to Foxworth Street 5. Catch basin capacity calculations - West side Plumrose at Foxworth Street 6. Confluence calculations at Foxworth Street and Plumrose Street 7. Catch basin capacity calculations - Foxworth Street at Plumrose Street 8. Catch basin flow analysis - West side of Plumrose Street at Foxworth Street 9. Street flow analysis - Plumrose Street from Foxworth Street to cul-de-sac. 10.Catch basin capacity calculations - Plumrose Street at southerly cul-de-sac 4. WSPGW run for Hydraulic Grade Line Analysis 5. Appendix a. Baseline Avenue RCB Plan and Profile b. Hydrology Study - Tract No. 14293 c. Dload Chart NARRATIVE DISCUSSION FOR HYDROLOGY STUDY—TRACT NO. 16250 The proposed development of 23 single family homes lies on the northeast corner of Hemlock Avenue at Baseline Avenue, and adjacent to an existing residential development, Tract No. 14293. An existing hydrology study for Tract No. 14293 was previously prepared and subsequently approved by the City of Fontana, which showed the underlying area of the proposed Tract No. 16250 as a retention basin site for the storm water runoff in anticipation of the construction of a double RCB in Baseline Avenue some years later. This previously approved report has been included in the appendix section of this revised hydrology study for reference, and the double RCB in Baseline Avenue has been constructed. The City of Fontana has adopted a policy of reviewing storm water runoff from new development using a storm frequency of 25 and 100 years. Flows must be contained within the curb for Q25 and within the property line for Q100. Several points should be noted prior to reviewing this report. A (Section distinct run-off dealing with water tributary to Andrea Street, is 1) and he other dealing with tribtary toPmroseS Street (Section ) B. Offsite flows from vacant property easterly of the subject site were anticipated in the previously approved report, and this current study incorporates and accepts the previous assumptions made therein. These flows are noted at Node 17, and will be conservatively added to the flow -by generated at the four new catch basins on either side of Andrea Street north of Foxworth Street.. C. Existing street flows within Tract No. 14293 have been shown to travel south in Andrea Street, turning then westerly in Foxworth Street to -an existing catch basin system near the existing knuckle of Foxworth Street and Plumrose Avenue. After reviewing the existing hydrology more closely, the City of Fontana has determined that the storm runoff allowed to flow in Foxworth Street exceeds the current design minimum standards, and has requested this development to install a double catch basin system on both sides of Andrea Street north of Foxworth Street. These new catch basins will intercept as much of the existing flow as possible, using 14' catch basin lengths, and then allow the flow -by run-off to continue to the intersection of Foxworth Street and Andrea Street, where it will tum westerly to Plumrose Street.. All of the aforementioned flows are contained in the analysis in Section 1. The existing knuckle is planned to be removed as part of the construction improvements proposed with Tract No. 16250, and the existing catch basin on the southerly side of the knuckle will be relocated and reconstructed on the west side of Plumrose Street. D. Remaining street flows in existing Tract No. 14293 travel south in Plumrose Avenue to the same knuckle intersection referenced above. The calculations within this report show that the storm run-off will divide between the east and west sides of Plumrose Avenue, some of which is captured in the proposed catch basin on the west side of Plumrose Avenue, and some of which will turn the corner at Foxworth Street and be captured by the newly enlarged catch basin (21' length) at the northeast corner. AII of the anticipated flows, either from the flow -by condition at Andrea Street, or the overflow condition in Plumrose, will be captured by the new 21' catch.basin. All of the aforementioned flows are contained in the analysis in Section 2. The emergency overflow for each of the catch basins planned at the southerly terminus of both Andrea Street and Plumrose Street is provided by installing a 12' wide by 6' high wrought iron fencelgate as part of the block wall construction required along the northerly side of Baseline Avenue. The total run-off leaving the site, including the underground flow contained in each of the storm drain systems proposed for these streets, at each of the cul-de-sacs has been calculated as follows: Andrea Street Q25 = 34.99 cfs Q100 = 38.38 cfs Plum rose Avenue Q25 = 66.35 cfs Q100 = 91.77 cfs SECTION 1 California, United States, North America MUSCOYO ti.ill 266) Project s te St 3 1-4 '-S_ 30th 0 & 30,z, J V CO z ';1D_ z t, 2591 Z: E. Hig land,;Av h iv 30 < Dtalto Muolicipali Field (D San �ernar'dlnol W Line ...... -Z Basq-L ngLRt;L,, Baseline e W Base -'L J—P=UU, R-R,Rd Line St .2 ancho N E R AR ) N K C u1i amon N i- 6 5th St 6HTI-HrIff, J., a Rif, lt6 Arrol Route Ade:._ _-a . ....... . Mye_W—" errill Ave Mill t Mi Jl" St Cli t t F,y L 11F T 0 R WE, s, IiI Y AV � M 'F CD St ek- Valle vd Bloomington V West lton�, K 1'3 -0' South C(D r I 77�Z, Fontana LO' aLn a 13 Ontair. 0--'f:"LjUrupa &t-1 Juni i '/613rand Terra)CeL 7th_St 0 ............ ........... ............. tl ive'psi, e, .......... ....................... ............. E,R d. .......... .......... slope Siny > Glen Av8i""":"�" ighdrove Orma V nd Belltdwn Mira Loma pr. 'g Q) 1vt M ON RUbldou d e Fla b L Sed979 M oreno Valley Cloverdale Rd .4ilmonite Ave I'D E V M1 9 4 Copyright 0 1988-2000 Microsoft Corp and/or Its suppliers. All rights reserved. http:/1www,rrlOrOsofLC0rh1StrOet$ • Copyright 1999 by Geographic Data Technology, Inc. All rights reserved. ®1999 Navigation Technologies. All rights reserved. This data Includes information taken with permission from Canadian authorities ®titer Majesty the Queen In Right of Canada. Page 1 ® Copyright 1999 by Compusearch Micromarketing Data and Systems Ltd. Rancho Cucamonga _ � 7 'Vb1muo'r0gzlst, Fontana, California, United States Rd rontage­ PI t ' I P � I r""zAVe. . I i d FontanE., [ lH �;' .f '-h,. rj ct sits RVe ►r , i I i a ti� I E ,.w 1. ®mi 0.2 0.4 U.5 u.6 I.G Copyright C 1998-2000 Microsoft Corp. and/or Its suppliers. All rights reserved. http://www.mlrrosoft.com/Streets C Copyright 1999 by Geographic Data Technology, Inc. All rights reserved. ®1999 Navigation Technologies, All rights reserved. This data Includes Information taken with permission from Canadian authorities C Her Majesty the Queen in Right of Canada. Page I C Copyright 1099 by Compusearch Micromarketing Data and Systems Ltd. TA-A- ISTIA I 'AN BERNARDINO COUNTY pl; m, gza SAN EERNAROINQ COUNTY WE 5854 ,-15i TF: A --4 'He+ Tip' 4' -VUL.: g MI" 10.--t T, w�o t�L 7 901L GP.oUr BOUNDARY SCALE 1.48P00 A FOIL GROUP DESIGNATION BOUNDARY OF INDICATED SOURCE SCALE REDUCED BY Ill HYDROLOGIC SOILS GROUP MAP FOR ' r _ r•]a ,.: I ";%` -T TT +��"W RIW +. RIE 0.p R2ET - i - I 1 . i r • NE.T'_'TI• - it — — �-- �— - — — -- - — �T4N 1-7 II ' __—r [[rT � .• i , � _ - � •T - -- -- - i 1 \h 1 � �' , - + I -; ,fid •� _ t J.•iL[, rLLL F+-•.a•T. ---ryr 1 _ �} LZ�.-fin ' r -. •.,_ °' ,} -1 r �� Z ] ' pi _ - �` C,,L _ , .--_ -," _LO .+•: , '`�..� _ , - - r• '* _ Lr`� 1 • ; e f t 1 I.O �i J. I 3Cil .,-• 1"7.�Wi7 ! �. ` _- '. JI �, _ •.-I- r ■a LESke - I • ! f 11 -i L - , - - __ -t i= x',°�6r ,�� �y � _ 1] I I Y 1• I f/ 1 c1 - nL cv[• - ��' r-- -- .,..fir urk �. _ +..-. � ' i_ y yy _ S --- �'� - _ ' / ���p�' dr • �,. - �■ J I '• ��'►';1 1 / 3. 1.3 ++ `; �Z9 Y 6 r 2 ■• - _ 4 i : -I. -t- -i ._ -•' _ ' -- "1 _1 - _ 1 1 i I I � 1 14 -1 r ]� •a. . 3. 1 B � ■ • � �q,,, -- `*� i1- 1 -_ — � ` — — '' . -.. [.i- I•T ��, ..._I I— ��` -- — - � �, �±■C Iy •7PNr0 1 `'e.. 1 - a•.r , 1 Yy � -'- 1 .ey • •. �� 1;1 - � .��� - t ='.i_` '_'�.-1 r- -r �- •n r ~ ...- �=■ •-- ' �-. - J �' 1 -1[# air • . a . •1 1 �l3 � Lt �) I j•- _ � + ° - (,d '" � 1.3 • . ) ' ' -� T -� � �r... • -� e[= -^rsTi _ '- ■ 1- -Ir- - - f► i, [•, �llfee� Al[ ®r�'''�1��[]• 9F�.� ■ •. ' `• ' '- ai.6rlh L - 'r'- t'- I Js [c1 •x •.- = _.L. ��� -A r 1 - T•' - w 9 L m Mi 0- •' ' • . , [ ... • •' .. ��1� �: a ,•� IOR71 % ' I I 1 - .•.� f _ • , r�l-3 • . d a Y ' i�I•, �'-` v -`� e�'Tr -_ -. _ _ - '', ,■ i -1 �`J: - - -T�a� _ _ _ i LT v m. rqa tT ;,• "•'' ! ■ u.- � ■ �- ■ i:R,'r' -----•LLL}} a• I 1 , x .+. _I .:eCT i, - ; ,L1 ..._ rr -.. J - �_ •■.°=•�i`�- r;[� •5 -{L [ c 1 [.,. .'I�- _ - F .. - *"�- - -� - _ I .y ,, I.1 •:: t'I; L ra�e4r r- ■1`' _ -- t - �7a'sTa • •■ r • "• � +l ,� '�` � � '.LO-� �.3•-•' C7l[tTL � _ _- a •-[ •i • - - '� •' "s1`a�`�' _. -'�' 1 - -• "'+��j' I9•N •�• �.. - -. i - - _ d 1 .¢* t + 1 - ■ - -�. •.[[. --, - -7'' •T tN rYi.6'�±s �= - _y IV's ITfJI't. L la. - ia■ .� - - •.■ •�.. �,�=j LTc LS _ `.j' J= I.#� - - 1 - - :"L ••• cel ♦ _ - �. •, -�. • '• ' �._— .4•L•J- '. ,�' _art • r_-_•�• ! � 1 T' '++ • •I i•• • •r J `,`• '� _r i •Ir , ..: ._i..:~s a L• i :aJ . - �' _ - �'•- r •• ...l. rs •.•+:•:[ CY - x. Y. f .`�: -_ r 1.>f �'� '.���-_ s'L� +a' 'tia' F•3E`?E.'loW -- a` .. a2=.� .. [. .....' ,j'\ .} �1• � Y 11 r YL2 x�w_sialxas. �],` J +•,,:�:. ��f, - •aLsar_ I �1 I- _� ° _ �j. i _ - .i _ - f1a� ,� -: - ',r;.- 1 •r �- •r'. C!t[Ic. Jf •_- I •�1- _ � ,::.#.`s"� iTg � _ ,�--'-r_'-'•c'�_i_ i--• -j•'� _.� • i� \ S +� .. - 1 `"' i - ,t —'7r ;i'� ='4-r. !_. '�' y7 . - t '' / •= � • i J�'. '+^ T i•„r ��' � � •r, .' :I` , _.`-' -�•� •i \ i �' ' ; r v • 1. 'f •[ "• Cr ^"yah 1. - .� [`—�-..•. 's tl - 4-- 1 _ = -I • 1 . t' i_ • - ='i]ry •• -:r - `'s' -ice•° .__ �— I ' N.� era .moi. �y 1 -"--1 ,� - _ �� f '• _ ,. . - .' it .� - .J' +' • r :! ^'=� I • • -'�. •. T. �LiT= 1 .1 J I• +• �N 1'� iT�C-f :�� . Q_ ` L_ �G�' �_ L - _ t I ' I 1' _ b �- _ .:v. •.e' i\ it 6,,. '' _ .1 t '' i',"�''- 1 i r 7 .:` . F '• - 1 - r�, to : I a ` _ - a �'■. � • ��-' �� 1 Ir•ec• ! N „ ar ai + : +71• ,, = t - 4--t .�` `i. 1 '} .. - ^[n= _ -tea.... •_ `oaf -' r All ' r •.... LOIW s _ } _.� , r :--+-,za :3:5,!{aRNA;O. - � - ;_: PLAt{G � ' •� .�. . • C �,T.- •.+a • - •• it -' -r•r , -•IL•.•J - Y - '1 r-°OL..r•'� • [ 1 'I • ' LT L 7 ■. .°• G N I - - �•_ cpw,� `:,:-"r-s• - F TAN - r: a[.s ..,s c. - �• f `' y -- - f `. ar 0 T LG9?I•' C TDH� .. ..w..'' a _ -- - - .. ._ - • - T�aS cr xr .. ■ [•, .; .. _ _ •°m- a. �EDLANDS e.•e. ..[ T, [.r � � • ° J1I 1 - •'.•a,� •� ' S• ' •""•'+•''a a[s:>+al[E t •.•• _ � _ pw ..e � -ao •p'' y * iW .►u C `r _. 1.1 � _ �` u � ^ • - J � [ ; ,4-y- ■ • "+[iMUF: L• • '�S4� ■ - •y.0 7L7[ f + i �j " Yn,. s T IFt i F : • c rte, c K .• a - - [ -+ ■ ,t' J f' ■I[i Tttc. :1 I ,` �' �n=°�.� I r I ■ 1 [ I _ J� a [• .'• j °. _ • 1 •- 1-- -;•_ _ •, _ + - f : � 's- -•� — - , ->; IIx I IL�K,<� ' �� .6 a._ _..�. t `- •'' ; ,,,��' p RI � •I RJE I' l _ ' •' �• • + — RIISItICE. cou[g - - +•[ • r]+aoa T - ■� _ ft I RSIDE '..[ • r Rive Say .r ■ '� - -i r '1 Ji s.i.. •, i'ti1 ) �,sp R�}W 5 i R3� x[' R2W -��RI -I -- I-- -r' ■ •''�..y� �, ,' -' - :- SAN EERNARQINO .COUNTY F CONTROLI TR T R 5 V VALLEY AREA I + I 1IFL 0 0L agl■CONTt: ;.. REDUCED DRAW! NG t1 150HYETALS „��.. }(�}�� ��y ➢��.••� SCALE I = 4 MILES YM - 10 YEAR I HOUR '! { • ! ' t D•' a • Q - •i70 -- S A I ti BERNARD { O -. COUNTY "InON V.SO.G, 1 u f7L.i5 Z,W3 I 1 n .. �. I n.,n I 1� 1 — - - r—-p.Tjro. 1 —� — RZW1 „r 1 RIW +, r R►E P,2E }- �-- — — — i °' --? ' t 1 —rte , 1• � • r ' ,� ' � ' ° 9 = �� ' ( •' � , I I �� , - - "� `tcr r • s_ I . � � x yt �_ I I .� ' .I _ r - ,c•.��rr � c. , —I - - 1 - - 4 _ _ u• P -_ _ . ,. 'ZZ-1 - � � ( ' '• •� '•- -' -. - ._ _I t51'�A7VEAs.� �' - -� Ll�� I I.la ` ::' •�, . I i IFffl'II ■i i _ .- -L_. - i , .4 1 s I 2 �t1•° I xx 1• I I,3•' , ' ;'-�E. , ./ >` - .� .- -, E �: .s ° Y � - - t T3�i� - 0-r - I '_ '1�' I t 6 x � • rnvi� -_ N �' - _ - o�•, ...I - � .i••- _ . .I . I _ _ -� .r -. - I - I t I I 1 I I L �1 I 1 apt: 1 I• 1 r `- « } 1_ - ' ` _7 -!- - •- { fly • I I � �/-. I c aGc. • � � y � 11-" . I � ,•,..� ._...I -r �- - i � •_ '� . r 1 - �.�Y� r..�� - �1_ ._ �� •• - \cF• i � - _ r r . r r �'I I ( r• �, r•F Ll11RC=11 'r aa, PIP -� �`�... ��■� .F••_I • `• •iii L.zz� I Y[j ' ' �.i : -� �''_ •y-•-+I•,l , - °� is-ir - -''•.- P-t.-•'w✓�' • =��1 _ I ,1 - d , s Q r •■ h, : �_•_, •' 1 v ��. I . `a_ , 1 � , t ._. � .,� -� , •C ' ' -GR>�. _L 13.17 �: '�■. > _ >: • _ u ri '� �`��`" t "s _ _ � � • TSN • , 1 ✓ . •� ',, •[4 T- ,I,- iir -t a .�,- +a�i=•�f.4 _ 'i ( u, - � t\ � `� "• L • ,. Y y^, ,t7 � , � L[i_ • • r t�O • . - -- -- .-iNi,,r •• Q� r�.a'� .i■%,t.�l..i=f• -�fnTjf'- _ as i- r • •n ' . - drew t1r . 1-"P ' t;,. - 1 I I! } 1 5 }' ' 1 ' .... °► _ Iy�Q I I • •, ,•. r - d 4 � - - ' ; • : LS s.\•• ; �,�( �.r vv.: r nu' .-s:' � . yL.l%- -' � ~• � �'- I / .L '+- ~ C_ I i! '• v: ,• ��. 1 •I- f. { J.a •°' 4 tal:,tla '': - •� , } .Yf,a' '' •S• ■L7ar I 'f�: I.t . •„�- i- -_ r� ,�='-rF.'�.+ _r• ��--'�`�.� .r`- `•f • �_'�.. er _•••F:'~ '� •7 `" •_ - _ .- _ '_,+ •r. -i N`'I- �-= ---�• :. ! • • - • i. 1? Sµ",J.a• . 1-. ..- � _ _st aye[ •T.�•- - '�' r : > -,r,�. � , •) �% ''� ' • ��'•'- •� nr.4' LT I t i , .r. 4 - r -� _ '" ' 'r.`,- -,r-_r. "•+p ,..r+i.:r fi_ +• y:` \ I q 1! •'I.i - ' .f:.�4:'I . V �� i I_ ° 1'�\ ` „}. . ,Z'•- _ - 1 i• T I N [+(, .:ca'-._c � ins.:. �� z ' I.� t _ s } �•�''-.• - _ r ' at_-j°� _ ''\ate =-s - ; •-+ j 1 'r'l. ,r. ALTi _ r a '• . SI , �� •:�� -a ! :. _ -• '�' r - •. -�- -.I .4"r 1 �� I r`'; a, T •1• "'CI_ 1 •I a : i, r• =y r. a r 4 y. • ��_ _ _I _) L I -I I t. is , .vF, • -/ ' : °,( _• • h I'°1 r act Afla■O,pp 1 �. Rr-- • ' �] •tn•- - ��j f 1 ,rw. '• 11 _ ' ,1 L ..� -� 1�f• L•` e ; ,S ., r `� I' u.l I '�I ' �- a....r .,r _ ...°i ,,.r,= R I,A LTD_ r.. - _ .I •' ., -T == _ • 1 r IP • .+.•yr- " _ 1 : -Tel • I . T r - • , L , • r i ,,rl, X61 •(, 77 ONTi1CL? , I COLT H i - I. =�. " _ —' r. t. _ L;<_ • _ •, tTj5 ,.r a:- - ' - _; - - --r 1 - .. •1, _ •'. ..,� REDLAN135 ..[ - , IYr` r I L - r; -• t ir • •cecr. » t_r .i .� e [ �'s { `I r• • • �. a . Sj •-- Li ,yrrr , z,' 1 :."Y .,r • 7:• '•aU _ • Al LLI t`�s, ar - c-l - • • 'j- iS ' - -,.�•. �•' r•�•• °•- I=r.`r • e ••� ii" r ` Ir.. Mf R f .. ' ' i,r - UN�Lr CL _ •'I�, ,,- t' I a Ip7 ,cffCLLCOI I. ,•34-00 r ��.� _. ' �j LI — �•e.r< I ,, : I E R S I a E . r {GM •j • •'• t '!. .•I • 1 t;S¢ �•• R4 i7 a R3 R2W ; R —` - - ■r - i•� � ;, - — — - - - -- - Salt "Kkni (No caifT'f FKI ONTO L- I VALLEY AREA DRAWING — - - — • � " --'' - - — - •.. - - - - REDUCED r MOH ETA LS _= ' °• _r: I SCALE I" - 4 -MILES Y.-)00 YEAR I HOUR °, J.. _ ,_ ;L� Li ,�-- r• x --- - == — SCAN BERNA►RDINO����NTY �m,IISL'rryI�G41Kltl1,>� ,,a % Trvri� tt - w HYDROLOGY MANUAL L F . f ' m icry iwcc PRFCIrITATirw ,:.rtlFSl rs� =ALE I ME Ari m 1. ANALYSIS OF EXISTING FLOWS -ANDREA STREET- AREA 1A From the hydrology report for Tract No. 14293, at Node 16, Q = 40.18 cfs A =17.36 ac Tc=12.85 min.. From following page calculations, Q splits on each side of street: Therefore, West side: East side: Q = 20.09 cfs Q = 20.09 cfs A=8.68 ac A=8.68 ac Tc=12.85 min.. Tc=12.85 min.. 17.93' AREA�J AREA 8 AREA C AREA A Q = 1.49 A Ren S'/2 A=0.0928 n P=1.435' Q = 1.49 A R2 OR Q = 1.49 X .0928 X .0647. 2A = 1.49 d=0.14' S,� n S'/2 _ .015_ Q= . aZt ,ZX 1.49 Q=dna— CFS AREA A+B Q = 1.49 A Ren S'/2 A=3.2708 n P=18.286' d=0.47 Qilz 1.49n A R2 OR S z 1.49 X 3.2708 X .1789 2/3 = 103.15 Q= . oz1 'X 103.15 CFS AREA A+B+C Q=1.49 AROS"' A=6.864 n P=18.496'2 2/3 d=0.671 Q 1.49 A R OR Q= 1.49 X 6.864 X .3711 = 352.10 S n S'//2 .015 S=�-- 1/1 X 352.10 Q= CFS FOR DEPTH OF FLOW CALCULATIONS: d OR: 1,0.0-14y �' • `� OR: d Q2 — Q, d2 — d. Sl.oZptk�t5 •Z 2. CATCH BASIN CAPACITY CALCULATIONS -ANDREA STREET N/0 FOXWORTH STREET USING FLOW -BY BASIN DESIGN, For water approaching catch each basin from the north, Y = 0.50' (from previous page calculations) A = 0.33' (local depression) Qcontained = 0.7 x L x (a+y) 312 = 0.7 X 28'totai iength X (0.33 + 0.50) 3/2 =14.82 cfs Q flowby = 20.09-14.82 = 5.27 cfs A.ntained =14.82120.09 x 8.68 = 6.40 ac A tiowby = 8.68 - 6.40 = 2.28 ac West Side East Side Qcontained = 0.7 x L x (a+y)'3/2 = 0.7 x 28'totw length X (0.33 + 0.50) 3/2 (See note below) =14.82 cfs Q timby = 20.09-14.82 = 5.27 cfs Acontained =14.82/20.09 x 8.68 = 6.40 ac A fl,wby =8.68-6.40 = 2.28 ac Catch Basin North Qcorrtained = 20/28 X 14.82 =10.59 cfs Catch Basin South Qcontained = 8/28 X 14.82 =4.23 cfs Therefore, for entire catch basin system: Q contained = 14.82 cfs + 14.82 cfs = 29.64 cfs Q flowby = 5.27 cfs + 5.27 cfs = 10.54 cfs A contained = 6.40ac + 6.40ac = 12.80 ac A flowby = 2.28 ac + 2.28 ac = 4.56 ac Note: During the development of working drawings for this project, it was determined that existing utility relocations along Andrea Street would be cost prohibitive, and catch basin sizes were modified to fit existing utility conditions. The overall length of catch basin provided for each side of the street remains at 28 If. 3 HYDROLOGY STUDY — Q25 San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2000 Version 6.3 Rational Hydrology Study Date: 08/09/03 Raab Engineering, Corona, California - S/N 875 Hydrology Study Control Information Rational hydrology study storm event year is 25.0 10 Year storm 1 hour rainfall = 1.000(In.) 100 Year storm 1 hour rainfall = 1.520(in.) Computed rainfall intensity: Storm year= 25.00 1 hour rainfall = 1.207 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 3 USER INPUT AT NODE 17 ++++++++++++++++++++++++..........++++++++++++++++++++++++++++++++++++ Process from Point/Station 17.000 to Point/Station 17.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** RESIDENTIAL(3 - 4 dwl/acre) Decimal fraction soil group A =1.000 Decimal fractionsoil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.471(In/Hr) Rainfall intensity = 2.771(ln/Hr) fora 25.0 year storm User specified values are as follows: TC = 15.02 min. Rain intensity = 2.77(In/Hr) Total area this stream = 0.56(Ac.) Tptal�$tudy Area (Main Stream No. 1) _ _ 0.56(Ac.) Total runoff = 1.13(CFS) AREA 1 C STREET FLOW ANALYSIS — ANDREA STREET FROM FOXWORTH STREET TO CUL-DE-SAC CATCH BASIN +++++-r+++++++++++++++++++++t+++t++++++++++++++++++++++++++++++++++++++ Process from Point/Station 17.000 to Poirii/Station 140.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION' ' Top of street segment elevation = 58.800(Ft.) End of street segment elevation= 52.100(Ft.) Length of street segment = 440.000(Ft.) Height of curb above gutter flowline = 8.0(ln.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (vlhz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (vlhz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.680(ln.) Manning's N in gutter = 0.0150 — Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.551 (CFS) Depth of flow = 0.272 (Ft.), Average velocity = 2.417(Ftls) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.075(FL) Flow velocity = 2.42(Ftts) Travel time = 3.03 min. TC = 18.05 min. Adding area flow to street RESIDENTIAL(3 - 4 dwl/acre) Decimal fraction soil group A =1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.471(In/Hr) Rainfall intensity = 2.481(In/Hr) fora 25.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCIA) is C = 0.729 Subarea runoff = 4.224(CFS) for 2.400(Ac.) Total runoff = 5.354(CFS) Effective area this stream = 2.96(Ac.) Total Study Area (Main Stream No. 1) = 2.96(Ac.) Area averaged Fm value= 0.471(in/Hr) Street flow at end of street = 5.354(CFS) Half street flow at end of street = 2.677(CFS) Depth of flow = 0.302(Ft.), Average velocity = 2.659(Ftfs) Flow width (from curb towards crown)= 9.614(Ft.) bepth X VELOCITY = .30 X 2.66 = 0.80 THEREFORE OKAY 4 CATCH BASIN CAPACITY CALCULATION — ANDREA STREET AT SOUTHERLY CUL-DE-SAC CATCH BASIN AT CUL-DE-SAC USES SUMP BASIN DESIGN, Qcatchbasin = 5.35cfs H/h=1.001.83=1.20 Using sump basin charts: Q/L =3.0 Solving for L: L = 5.35/ 3.0 = 1.78 ft. Use L=3.5ft p SUMP CONDITION \�DCL7� �QrCtc'S�;Glr ��, s p SUMP CONDITION \�DCL7� �QrCtc'S�;Glr ��, SECTION B: STORM FREQUENCY - 100 YRS California, United States, North America t. USCOY —4,JI!lside Rd '20-61 Project site 30 �St tV th� 30 z Highland.Are z �,(25 3 130 ho taka MUwCIPal/IVl'4'-O Field > IDI<D UJernardino R. San �seline W Bas Li e @�8en _,Rct 7 13 a L L L —7, 7-5 d) F anch Cu amon a 5 h N A, R 0 lk f, 13 "itilgP, :E f661 66 1. Alalto— Fdritan tan,_W 0 r Rocute --we"' I IV M R-Tlt- prn I I-8LO- > AIFF 0- F� DAD A) 2 'ZO w oy, Bloomington WOWCaltonl Ivd botan :1 "'0 2 s W, A>1 South El Fontana 'K Lo as n J U g� U 7tb St -kill, ........... .......... ............... PI IV ?1 lk RivCsL Dr ........... I ADA �O , Rt ............................................ ...... ......... ...... Ormand �.Glen vo,tI —141 drove . ........ ... �pnnyslope Mira Loma �Bellt fi i e v RilibidAaux, -1, "At, el FlaboI5 'm 89 iiiid 110 > Pedley 16 Moreno Valley dale Rd 1&er monite Ave -e ®ml 2 4 Copyrlght ®1988-2000 Mlcrosoft Corp. and/or Its suppliers. All rights reserved. http:/Avww.microsoft.com/Streets 0 Copyright 1999 by Geographic Data Technology, Inc. All rights reserved. ®1999 Navigation Technologies. All rights reserved. This data Includes Information taken with perm ission from Canadian authorlties 0 Her Majesty the Queen In Right of Canada. Page 1 @Copyright 1999 by Compusearch Micromarketing Date and Systems Ltd. F Rancho Cucamonga Slid es bn& Sti Fontana, California, United States _I P ..._: ; _.... ._.._.._.__.. _ ` I p $ I=ontanel P ark �'rn r 30 Pg li ras- W= :. r Hig6min X30,, , I - All �_ S vHi hindm i t r f� i...e. P; Project site jr �D 4J ------------ 1---M , f _ � 0 M 0.2 f).4 t98 n a 19 Copyrlght ®19@8-2000 Microsoft Corp. end/or Its suppliers. All rights reserved. http://www.mlcrosoft,com/Strests ® Copyright 1999 by Geographic pate Technology, Inc. All rights reserved. ®1999 Navigation Technologies. All rights reserved. This data Includes Information taken with permission from Canadian authorities 0 Her Majesty the Queen In Right of Canada. Page 1 Q Copyright 1999 by Compusearch Mlcromarketing Date and Systems Ltd. fry;^ .._.t` lm`�-` � .s�•. � -, E�, �# ''�inr_,, - r w,r�!=Miller-`Ave ey A V� t 1 ` pad I t r f� i...e. P; Project site jr �D 4J ------------ 1---M , f _ � 0 M 0.2 f).4 t98 n a 19 Copyrlght ®19@8-2000 Microsoft Corp. end/or Its suppliers. All rights reserved. http://www.mlcrosoft,com/Strests ® Copyright 1999 by Geographic pate Technology, Inc. All rights reserved. ®1999 Navigation Technologies. All rights reserved. This data Includes Information taken with permission from Canadian authorities 0 Her Majesty the Queen In Right of Canada. Page 1 Q Copyright 1999 by Compusearch Mlcromarketing Date and Systems Ltd. 1. ANALYSIS OF EXISTING FLOWS —ANDREA STREET —AREA 1A From the hydrology report for Tract No. 14293, at Node 16, Q = 51.22 cfs A= 17.33 ac Tc=13.29 min.. From following page calculations, Q splits on each side of street: Therefore, West side: I East side: Q = 25.61 cfs Q = 25.61 cfs A=8.67 ac A=8.67 ac Tc=13.29 min.. Tc=13.29 min.. AREn n 1 A' 1 AREA A Q = 1.49 A R2/3S'/2 A=0.0928 n d=1.145' Q = 1.49 A R 2 OR Q = 1.49 X .0928 X .0647 = 1.49 n S172 .015 S= 'un. hjeg - - S. -C Q= . opt "X 1.49 Q= 03-2- CFS AREA A+B Q = 1.49 A Rep S'p' A=3.2708 n P=18.286' �, d=0.41 Q = 1.49 A R OR Q = 1.49 X 3.2708 X .1789 2/3 = 103.15 S'/2 n S'p .015 S= u0j. Q= . 0zl "X 103.15 Q= CFS AREA A+B+C Q = 1.49 A Rep S'n A=6.864 n P=18.496' 2p 2/3 d=0.67' Q = 1.49 A R OR Q = 1.49 X 6.864 X .3711 = 352.10 S'/2 n S'p .015 S= 2- ° Y Q= 0.0 ,nX 352.10 Q= 51.0. CFS FOR DEPTH OF FLOW CALCULATIONS: Q2 d2 — d i 2. CATCH BASIN CAPACITY CALCULATIONS - ANDREA STREET NIO FOXWORTH STREET USING FLOW -BY BASIN DESIGN, For water approaching catch each basin from the north, Y = 0.53' (from previous page calculations) A= 0.33,' (local depression) Q.,,tained = 0.7 x L x (a+y) 3/2 = 0.7 x 28'totai iength x (0.33 + 0.53) 3/2 =15.63 cfs Q flowby = 25.61-15.63 = 9.98 cfs A,ntained =15.63/25.61 x 8.67 = 5.29 ac Aflowby =8.67-5.29 = 3.38 ac West Side East Side Qconteined = 0.7 x L x (a+y) 3/2 = 0.7 x 28'tctw iength x (0.33 + 0.53) 3/2 (See note below) =15.63 cfs Qttowby = 25.61-15.63 = 9.98 cfs Acontained =15.63/25.61 x 8.67 = 5.29 ac Aflowby = 8.67 - 5.29 = 3.38 ac Catch Basin North Qcontained = 20/28 x 15.63 =11.16 cfs Catch Basin South Qoonteined = 8/28 x 15.63 =4.47 cfs Therefore, for entire catch basin system: Q contained = 15.63 cfs + 15.63 cfs = 31.26 cfs Q flowby = 9.98 cfs + 9.98 cfs =19.96 cfs A contained = 5.292c + 5.29ac =10.58 ac A flowby = 3.38 ac + 3.38 ac = 6.76 ac Note: During the development of working drawings for this project; it was determined that e)asbng utility relocations along Andrea Street would be cost prohibitive, and catch basin sizes were modified to fit existing utility conditions. The overall length of catch basin provided for each side of the street remains at 28 If. 3. HYDROLOGY STUDY-- Q100 San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c)1989-2000 Version 6.3 Rational Hydrology Study Date: 08109103 Raab Engineering, Corona, California - SN 875 Hydrology Study Control Information Rational hydrology study storm event year is 100.0 Computed rainfall intensity: Storm year = 100.00 1 hour rainfall = 1.520 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 3 _ USER INPUT AT NODE 17 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++... Process from Point/Station 17.000 to Point/Station 17.000 **** USER DEFINED FLOW INFORMATION AT A POINT —* RESIDENTIAL(3- 4 dwllacre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil -group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.471(INHr) Rainfall intensity = 3.489(INHr) fora 100.0 year storm User specified values are as follows: TC = 15.02 min. Rain intensity = 3.49(In/Hr) Total area this stream = 0.56(Ac.) Total Study Area (Main Stream No. 1) 0.56(Ac.) _ Total runoff = 1.50(CFS) STREET FLOW ANALYSIS — ANDREA STREET - AREA 'IC FROM FOXWORTH STREET TO CUL-DE-SAC CATCH BASIN +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-r++++++++ Process from Point/Station 17.000 to Point/Station 140.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION *** Top of street segment elevation = 58.800(Ft.) End of street segment elevation= 52.100(Ft.) Length of street segment = 440.000(Ft.) Height of curb above gutter flowline = 8.0(ln.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 12.000(Ft) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.680(in.) Manning's N in gutter= 0.0150 Manning's N from gutter to grade break= 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.714(CFS) Depth of flow = 0.292(Ft), Average velocity = 2.581(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.115(Ft.) Flow velocity = 2.58(Ft/s) Travel time = 2.84 min. TC = 17.86 min. Adding area flow to street RESIDENTIAL(3 - 4 dwl/acre) Decimal fraction soil group A =1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.471(In/Hr) Rainfall intensity = 3.145(ln/Hr) for a -100.0-year storm Effective runoff coefficient used for area,(totai area with modified rational method)(Q=KCIA) is C = 0.765 Subarea runoff = 5.623(CFS) for 2.400(Ac.) Total runoff = 7.123(CFS) Effective area this stream 2.96(Ac.) Total Study Area (Main Stream No. 1) = ' 2.96(Ac.) Area averaged Fm value = 0.471(ln/Hr) Street flow at end of street = 7.123(CFS) Half street flow at end of street = 3.561 (CFS) Depth of flow = 0.326(Ft.), Average velocity = 2.845(Ft/s) Flow width (from curb towards crown)= 10.813(Ft.) depth X VELOCITY =.33 X 2.85 = 0.94 THEREFORE OKAY 4 CATCH BASIN CAPACITY CALCULATION — ANDREA STREET AT SOUTHERLY CUL-DE-SAC CATCH BASIN AT CUL-DE-SAC USES SUMP BASIN DESIGN, Qcatchbasin = 7.12 cfs H/h=1.00/.83=1.20 Using sump basin charts: Q/L =3.0 Solving for L: L = 7.1213.0 = 2.37 ft. Use L = 7.0 ft SUMP -CONDITION SECTION 2 SECTION A: STORM FREQUENCY - 25 YRS California, United States, North America muscoy, (206) >1 roject site W" JS't 130 A R'' z z El A, 'dl 259) (D E. 10 Highland Al�e I - -130! M . .. ... .. Klapp Mu'1p >1 icipal/Mliro Field L Baseline Base RO(D 3 para ernardlna� � Ave Base Li �V Base Line S . ...... . -Ung, Clu amon_qa B1 E. R ',I . ....... 66Fl pJalto �ojn a "n ArroLl� Route . . ........... W Nerr _.LA "Mill it_. E Mil[ St C: �r IC L 1IP 0 R� 311 11 A4, d-aliferhio spqoqvxq�' 75 A < 41b ------ -Ji a) 77 Bloomington,, Westtblton E� L (D' South KD Fontana Lo na Undi" 13 J (Upa /16raptl Terrilye' 0 M111UP-a A I 111"Ito RIO i, Okpw% ................ AP .+., ..,,.,., ............ 1.60 11 r, Il ,'?!p ........... Sunnysiope .................. •'_RiY_q,r_sWq_Rc' V 1�1'�,­ .11 .1 'L" r ', -11 11�0'1 ...................... ... ......... ...... a) BelltdW Mira Loma Ormand.., "I n 0 Rubldduk�- g + 60 t:f JO i P � M. o4 n Ua n VA Flab 0 b P "A Versl a, Airpon Morena Vafty > Pedley 'Cloverdale Rd Lonite Ave.. .Ldal� 1 D C n rni 9 4 a Copyright 01988-2000 Microsoft Corp. and/or Its suppliers. All rights reserved. http:ltwww.microsoft.comiStreets • Copyright 1999 by Geographic Data Technology, Inc, All rights reserved. ®1999 Navigation Technologies, Ali rights reserved This data Includes information taken with permission from Canadian authorities 0 Her Majesty the Queen in Right of Canada. Page 1 • Copyright 1999 by Compusearch Micromarketing Date and Systems Ltd. Fontana, California, United States -Rd Rancho Cucamonga SM-Okatan -St _U . ... .... Baseline Ave ....... ...... - -------- A- 41 R y6v - t -J, "-," .... . . .. .... --V ... .. ..... Rcl ........ . . Jig IIaYiI-Ilgl ani Ve 3 Tont a North Fontallo Park la �bGkw II V 'ZI-1 --SAighd n x U, 681 iJ1saInu Project site Lf i ..... .. ..... L Awle Petrl- . ........ . C4- OM1 0.2 0.4 0.6 0.8 1,2 Copyright@ 19BB-2000 Microsoft Corp. and/or its suppliers. All rights reserved, http://www,microsoft.com/Strests • Copyright 1999 by Geographic Date Technology, Inc, All rights reserved. ®1999 Navigation Technologies. All rights reserved. This data Includes Information taken with permission from Canadian authorities @ Her Majesty the Queen In Right of Canada. Page 1 ® Copyright 1099 by Compusearch Micromarketlng Data and Systems Ltd. 1. STREET FLOW ANALYSIS — FOXWORTH STREET —AREA 2A FLOW -BY AT ANDREA / FOXWORTH FROM PREVIOUS ANALYSIS NORTH SIDE WESTERLY: Qflawby = 10.54 cfs A = 4.56 ac Tc=12.85 min.. USERINPUT ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 16.000 to Point/Station 16.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** — RESIDENTIAL(3 - 4 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.471(in/Hr) Rainfall intensity = 3.042(in/Hr) for a 25.0 year storm User specified values are as follows: TC = 12.85 min. Rain intensity = 3.04(ln/Hr) Total area this stream = 4.56(Ac.) Total Study Area (Main Stream No. 1) = 4.56(Ac.) Total runoff = 10.54(CFS) 2. STREET FLOW ANALYSIS — FOXWORTH STREET — AREA 2A FROM ANDREA STREET TO CATCH BASIN NORTH SIDE FOXWORTH l PLUIVIROSE ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 16.000 to Point/Station 7.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 57.800(Ft.) End of street segment elevation = 54.400(Ft.) Length of street segment = 250.000(Ft.) Height of curb above gutter flowline = 8.0(ln.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (vlhz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.680(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 10.771(CFS) Depth of flow = 0.453(Ft.), Average velocity = 3.567(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 17.138(Ft.) Flow velocity = 3.57(Ft/s) Travel time = 1.17 m in. TC = 14.02 min. Adding area flow to street RESIDENTIAL(3 - 4 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C =0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.471(In/Hr) The area added to the existing stream causes a a lower flow rate of Q = 10.353(CFS) therefore the upstream flow rate of Q = 10.540(CFS) is being used Rainfall intensity = 2.888(ln/Hr) for a 25.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCIA) is C = 0.753 Subarea runoff = 0.000(CFS) for 0.200(Ac.) Total runoff= 10.540(CFS) Effective area thip Stream = 4.76(Ac.) Tptal Study,�rep(Main Stream No. 1) = 4.76(Ac.) as averaged Fm valine = 0.471(ln/Hr) eet flow et end pf ,street = 10.540(CFS) if street flow at pnd pf street = 10.540(CFS) nth of flow = 0.450(Ft.), Average velocity = 3.548(Ft/s) width (from q ::(( : ;,yvards crown)= 16.994(Ft.) d of computiptal Study Area = 4.76 (Ac.) 18' I 17.93' ------------------- LEVEL_ AREA AAREA B J AREA C AREA A Q = 1.49 A R2/' S'M A=0.0928 n P=1.435' Q = 1.49 A R2�' Q = 1.49 X .0928 X .0647 = 1.49 d=0.14 S,�z n OR .015 "X 1.49 Q= titi CFS AREA A+B Q = 1.49 A R2/' S'/2 A=3.2708 n P=18.286' Z/3 2A d=0.47' Q = 1.49 A R OR Q = 1.49 X 3.2708 X .1789 = 103.15 S'iz n S'/2 .015 v2 X 103.15 CFS AREA A+B+C Q = 1.49 A Ren S'/2 A=6.864 n P=18.496' 2/3 2A d=0.67' Q = 1.49 A R OR Q = 1.49 X 6.864 X .3711 = 352.10 S'/2 n S`i2 .015 S= 2.2 Q= .on- X 352.10 Q= +52.22 CFS FOR DEPTH OF FLOW CALCULATIONS: imwN - , - d Q Q d�„�,� I to5 .4- .2Z l4 x-. OR: = OR: d = ��- 02 - Q, d2 - d, 16.E -°?-?- . Al-. 14- 3. ANALYSIS OF EXISTING FLOWS — PLUMROSE STREET AT CLIPTON STREET — AREA 2B From the hydrology report for Tract No. 14293, at Node 6, Q = 53.51 cfs A = 30.06 ac Tc=18.45 min.. USER INPUT INFORMATION: ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 6.000 to Point/Station 6.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** RESIDENTIAL(3 - 4 dwi/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number.for AMC 3 = 52.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.471(In/Hr) Rainfall intensity = 2.449(In/Hr) fora 25.0 year storm User specified values are as follows: TC = 18.45 min. Rain intensity = 2.45(In/Hr) Total area this stream = 30.06(Ac.) Total Study Area (Main Stream No. 1) = 30.06(Ac.) Total runoff = 53.51 (CFS) 4. STREET FLOW ANALYSIS - PLUMROSE STREET - AREA 2C FROM CLIPTON STREET TO CATCH BASIN WEST SIDE PLUMROSE AT FOXWORTH Process from Point/Station 6.000 to Point/Station 100.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ** Top of street segment elevation = 56.500(Ft.) End of street segment elevation= 54.800(Ft.) Length of street segment = 155.000(Ft.) Height of curb above gutter flowline = 8.0(ln.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.680(ln.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 - Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 54.578(CFS) Depth of flow = 0.809(Ft.), Average velocity= 5.491(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 7.13(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 18.000(Ft.) Flow velocity = 5.49(Ft/s) Travel time = 0.47 min. TC = 18.92 min. Adding area flow to street RESIDENTIAL(3 - 4 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction -soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.471(ln/Hr) Rainfall intensity = 2.412(ln/Hr) fora 25.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCIA) is C = 0.724 Subarea runoff = 1.101(CFS) for 1.200(Ac.) Total runoff = 54.611 (CFS) Effective area this stream = 31.26(Ac.) Total Study Area (Main Stream No. 1) = 31.26(Ac.) Area averaged Fm value= 0.471(ln/Hr) Street flow at end of street = 54.611(CFS) Half street flow at end of street = 54.611(CFS) Depth of flow = 0.810(Ft.), Average velocity = 5.492(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 7.14(Ft.) Flow width (from curb towards crown)= 18.000(Ft.) End of computations, Total Study Area = 31.26 (Ac.) 5. CATCH BASIN CAPACITY AND FLOW -BY CALCULATIONS — WEST SIDE PLUM ROSE STREET AT FOXWORTH STREET From following page calculations, Q splits on each side of street: Therefore, West side: East side: Q = 27.31 cfs Q = 27.31 cfs A= 15.63 ac A=15.63 ac Tc=18.92 min.. Tc=18.92 min.. USING FLOW -BY BASIN DESIGN, For water approaching each catch basin from the north, Y = 0.63' (from following page) A = 0.33' (local depression) Q=0.7xLx(a+y)312 =0.7x14'x(0.33+0.63) 312 = 9.22 cfs therefore, Q contained = 9.22 cfs Q flowby = 27.31- 9.22 =18.09 cfs A contained = 9.22127.31 x 15.63 = 5.28 ac A flowby = 15.63 — 5.28 = 10.35 ac 18` ------ '__= --�______------- AREA A AREA B AREA C 17.93' AREA A Q = 1.49 A RZ/3 S'/2 A=0.0928 n P=1.435' Q = 1.49 A Rf pR Q = 1.49 X .0928 X .0647 2n = 1.49 d=0.14' S'�x n 7/1.015 Q= .008 X 1.49 Q= 0.13 CFS AREA A+B f S' Q=1.49AR A=3.2708 n P=18.286'1.49 X 3.2708 X .1789: d=0.47' 42 1.49n A Ren pR . 2 D 15 = 103.15 S= '� Q=SL-X 103.15 Q= I A5 CFS AREA A+B+G2i' '/2 Q=1.49AR S A=6.864 n d=0 679fi Q = 1.49 A R2/' OR Q = 1.49 X 6.864 X .3711 2n = 352.10 n .015 S=�_ 1/2X 352.10 p= -51A CFS FOR DEPTH OF FLOW CALCULATIONS: QK"=— Q, — d,W OR: !11 -al -1.23 _ t�- �� OR: d = 0. tri` Q2 — Q, d z 31.41-173 • �1 6. CONFLUENCE CALCULATIONS AT CATCH BASIN NORTH SIDE FOXWORTH STREET AT PLUMROSE STREET CONFLUENCE NO. 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 7.000 to Point/Station 7.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 4.760(Ac.) Runoff from this stream = 10.540(CFS) Time of concentration= 14.02 min. Rainfall intensity = 2.888(ln/Hr) Area averaged loss rate (Fm) = 0.4711(ln/Hr) Area averaged Pervious ratio (Ap) = 0.6000 CONFLUENCE NO. 2 and CONFLUENCE RESULTS ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 7.000 to Point/Station 7.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 15.630(Ac.) Runoff from this stream = 27.310(CFS) Time of concentration = 18.92 min. Rainfall intensity = 2.412(in/Hr) Area averaged loss rate (Fm) = 0.4711(In/Hr) Area averaged Pervious ratio (Ap) = 0.6000 Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/1-1r) 1 10.540 14.02 - 2.888 2 27.310 18.92 2.412 Qmax(1) = 1.000 * 1.000 * 10.540) + 1.245 * 0.741 * 27.310) + = 35.732 Qmax(2) = 0.803 * 1.000 * 10.540) + 1.000 * 1.000 * 27.310) + = 35.777 Total of 2 streams to confluence: Flow rates before confluence point: 10.540 27.310 Maximum flow rates at confluence using above data: 35.732 35.777 Area of streams before confluence: 4.760 15.630 Effective area values after confluence: 16.342 20.390 Results of confluence: Total flow rate = 35.777(CFS) Time of concentration = 18.920 min. Effective stream area after confluence = 20.390(Ac.) Stream Area average Pervious fraction(Ap) = 0.600 Stream Area average soil loss rate(Fm) = O.471(In/Hr) Study area (this main stream) = 2O.39(Ac.) End of computations, Total Study Area = 20.39 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation. Area averaged pervious area fraction(Ap) = 0.600 Area averaged SCS curve number = 32.0 7. CATCH BASIN CAPACITY CALCULATIONS NORTH SIDE FOXWORTH STREET AT PLUMROSE STREET From previous calculations in this report: Q = 35.78 cfs A = 20.39 ac Tc=18.92 min.. CATCH BASIN USES SUMP BASIN DESIGN, Available ponding depth of flow for north side Foxworth Street: 55.40 (centerline elev) -54.53 (flowline at catch basin) 0.87 (available ponding depth H / h = 0.871.83= 1.05 Using sump basin charts: Q/L =2.6 Solving for L: L = 35.7812.6 = 13.76 ft. Use L = 21.0 ft and assume all flows intercepted SUMP CONDITION <0' 7.5 .6-- \�OClTTJ �'�GfC'r5l lr ea . /-1- 1. .1-1-1.2 -.2 8. CATCH BASIN FLOW BY ANALYSIS WEST SIDE OF PLUMROSE ST AT FOXWORTH ST. From previous calculations in this report at Node 100, Q contained = 9.22 cfs Q flowby =18.09 cfs A contained = 5.28 ac A flowby =10.35 ac USER INPUT INFORMATION: Q =18.09 cfs A =10.35 ac Tc=18.92 min.. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 100.000 to Point/Station 100.000 ****USER DEFINED FLOW INFORMATION AT A POINT**** RESIDENTIAL(3 - 4 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.471(in/Hr) Rainfall intensity = 2.412(ln/Hr) for a 25.0 year storm User specified values are as follows: TC = 18.92 min. Rain intensity = 2.41(ln/Hr) Total area -this stream = 10.35(Ac.) Total Study Area (Main Stream No. 1) = 10.35(Ac.) Total runoff = 18.09(CFS) 9. STREET FLOW ANALYSIS -PLUM ROSE STREET -AREA 2D FROM FOXWORTH STREET TO SOUTHERLY CUL-DE-SAC ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 100.000 to Point/Station 120.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 54.800(Ft.) End of street segment elevation = 53.100(Ft.) Length of street segment = 350.000(Ft.) Height of curb above gutter flowline = * 8.0(1 n.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (vlhz) = 0.083 Slope from grade break to crown (vlhz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline a 1.680(ln.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 20.362(CFS) Depth of flow = 0.511 (Ft.), Average velocity = 2.509(Ft/s) Note: depth of flow exceeds top of street crown. Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 18.000(Ft.) Flow velocity = 2.51(Ft/s) Travel time = 2.32 min. TC = 21.24 min. Adding area flow to street RESIDENTIAL(3 - 4 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.471(in/Hr) Rainfall intensity = 2.250(In/Hr) fora 25.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCIA) is C = 0.712 Subarea runoff = 2.646(CFS) for 2.600(Ac.) Total runoff = 20.736(CFS) Effective area this stream = 12.95(Ac.) Total Study Area (Main Stream No. 1) = 12.95(Ac.) Area averaged Fm value = 0.471(in/Hr) Street flow at end of street = 20.736(CFS) Half street flow at end of street = 10.368(CFS) Depth of flow = 0.513(Ft.), Average velocity = 2.527(Ft/s) Note: depth of flow exceeds top of street crown. Flow width (from curb towards crown)= 18.000(Ft.) Depth x Velocity = 0.51 x 2.53 = 1.29 therefore, okay. 10. CATCH BASIN CAPACITY CALCULATIONS PLUMROSE STREET AT SOUTHERLY CUL-DE-SAC CATCH BASIN AT CUL-DE-SAC USES SUMP BASIN DESIGN, Qcatchbasin = 20.74 cfs H / h = 1.00 1.83 = 1.20 Using sump basin charts: Q/L =3.0 Solving for L: L = 20.74/ 3.0 = 6.91 fL Use L =14.0 ft as approximate length SUMP CONDITION SECTION B: STORM FREQUENCY - 100 YRS California, United States, North America C) Muscoy —J:JQiIsiqq Rd i r206 I A, > Project site 130 101 i 4 < V �W'30thlSt J Oil W 1. E Highland Ave icnz 259 >i 130' It Mu ipa)M� Field Tic E) Fi Id > (D i W �1�aniernardnol iii" P -B-0- _�IAE� PCL Base Line St Baseline �Ve Ranchol' ki 0 E r? ...... ..... ,Cudamon 5th St 466 1, 166! PJ'alto S- ontana a Route A.i' . .. . ....... ... RLn )*e eK1. R dwi L V/ West dbltonj Bloomington, 849--m Vpllgy. E akl�'. South Fontana Al 13 -Ont -ano (P ,"Grantl Terrace J A 7th St I............. ................ . J`.a I,, . .. .... . ... :�, 4 q ,z,, V iY t•y arsii-dq-,2L i ................ ............................ Q t:..��Snnyslope ........... t. ...... 61en AV�h _J 3 .-Highgrove Ira Loma --i6o Ormand �Aelltown (D < P W A" Rubldc Ve ;7- U) Ndpp -a i14,. CL Flabob Airport. "boverd< Moreno VaHey > ale Rd .6 iijmonite t 4 j, �E-`R-4 ID Orril 2 4 Copyright @ 1980-2000 Microsoft Corp. and/or Its suppliers. All rights reserved. http:/Avww.MiCrOBOft.COM/Streets 0 Copyright 1999 by Geographic Data Technology, Inc. All rights reserved. ®1999 Navigation Technologies. All rights reserved. This clots Includes Information taken with permission from Conadlan authorltles 0 Fler Majesty the Queen In Right of Canada. Page @Copyright 1999 by Compuseerch Micromoricating Date and Systems Ltd. Rancho Cucamonga Fontana, CaVornia, United States ;- Fontana Perk 4 r �..._HinhAvg '30, selene Ave tN,A*`. t Copyright ©1988-2000 Microsoft Corp. and/or Its suppliers. All rights reserved. http://www.micFosoft.com/Strests ® Copyright 1999 by Geographic Data Technology, Inc. All rights reserved. ®1999 Navigation Technologies. All rights reserved. This data Includes information taken with perm !salon from Canedlan authoritles tD Her Majesty the Queen In Might of Canada. �� ® Copyright 1999 by Compusearch Micromerketing Data and Systems Ltd. 1. STREET FLOW ANALYSIS — FOXWORTH STREET — AREA 2A FLOW -BY AT ANDREA / FOXWORTH FROM PREVIOUS ANALYSIS NORTH SIDE WESTERLY: Ql,,by = 19.96 cfs A = 6.76 ac Tc =13.29 min. USERINPUT ++++++++++++++++++++++++++++++++++++++++++++++++++++++++t+++++++++++f+ Process from Point/Station 16.000 to Point/Station 16.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** RESIDENTIAL(3 - 4 dwI/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.471(In/Hr) Rainfall intensity = 3.755(In/Hr) fora 100.0 year storm User specified values are as follows: TC = 13.29 min. Rain intensity = 3.76(in/Hr) Total area this stream = 6.76(Ac.) Total Study Area (Main Stream No. 1) = 6.76(Ac.) Total runoff = 19.96(CFS) 1. ANALYSIS OF EXISTING FLOWS —ANDREA STREET —AREA 1A From the hydrology report for Tract No. 14293, at Node 16, Q = 51.22 cfs A= 17.33 ac Tc=13.29 min.. From following page calculations, Q splits on each side of street: Therefore, West side: I East side: Q = 25.61 cis Q = 25.61 cfs A=8.67 ac A=8.67 ac Tc=13.29 min.. Tc=13.29 min.. 17.93' AREA ACJ AREA BJ AREA C AREA A Q = 1.49 A R2AS'M A=0.0928 n 5' Q. = 1.49 A R2/' OR Q = 1.49 X .0928 X .0647 = 1.49 d -0.14 n S'� .015 Q= .OV "X 1.49 Q= 0 •Zti CFS AREA A+B Q = 1.49 A R2/3S'/2 A=3.2708 n P=18.286' d=0.47' Q = 1.49 A R2'' OR Q = 1.49 X 3.2708 X .1789 zea = 103.15 S'/2 n S17, .015 S= U10 Q= . 0 ,/2X 103.15 Q= lA-•1S CFS AREA A+B+C Q = 1.49 A R2/,S'/2 A=6.864 n P=18.496'Q = 1.49 A Ren Q = 1.49 X 6.864 X .3711 d=0.67' so n OR Sue .015 = 352.10 S= Q= D 0t1 'X 352.10 Q= 51.02. CFS FOR DEPTH OF FLOW CALCULATIONS: Qm, — Q, d tmmwmd' OR: sw-14 15 — Y� — . �1 OR: d Q2 — Q, d2 — di 51.n-14-- ►S • ti 2. STREET FLOW ANALYSIS — FOXWORTH STREET — AREA 2A FROM ANDREA STREET TO CATCH BASIN NORTH SIDE FOXWORTH 1 PLUIVIROSE +++++++++++++++++++++++++++++++++++++t++++++++++++++++++++++++++++++++ Process from Point/Station 16.000 to Point/Station 7.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 57.800(Ft.) End of street segment elevation = 54.400(Ft.) Length of street segment = 250.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (I] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.680(In.) Manning's N in gutter= 0.0150 — Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 20.255(CFS) Depth of flow = 0.536(Ft.), Average velocity = 4.497(Ft/s) Note: depth of flow exceeds top of street crown. Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 18.000(Ft.) Flow velocity = 4.50(Ft/s) Travel time = 0.93 min. TC = 14.22 min. Adding area flow to street RESIDENTIAL(3 - 4 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 52.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.471(in/Hr) The area added to the existing stream causes a a lower flow rate of Q = 19.639(CFS) therefore the upstream flow rate of Q = 19.960(CFS) is being used Rainfall intensity = 3.606(ln/Hr) fora 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCIA) is C = 0.782 Subarea runoff = 0.000(CFS) for 0.200(Ac.) Total runoff = 19.960(CFS) Effective area this stream = 6.96(Ac.) Total Study Area (Main Stream No. 1) = 6.96(Ac.) Area averaged Fm value= 0.471(in/Hr) Street flow at end of street = 19.960(CFS) Half street flow at end of street = 19.960(CFS) Depth of flow = 0.533(Ft.), Average velocity = 4.471(Ft/s) Note: depth of flow exceeds top of street crown. Flow width (from curb towards crown)= 18.000(Ft.) End of computations, Total Study Area = 6.96 (Ac.) 17.93' __------- LEVEL__ AREA A AREA B j AREA C AREA A Q= 1.49 A R2/s S,/2 A=0.0928 n P=1.435' Q = 1.49 A Ren OR Q = 1.49 X .0928 X .0647 2/3 = 1.49 d=0.14' S,�2 n S'n .015 _ S= Lvj. �. X 1.49 CFS AREA A+B Q = 1.49 A Ref' S'lt A=3.2708 n P=18.286' 1.49 X 3.2708 X .1789 2A d=0.47 Q��z 1.49n A R2rs OR S z 270 = 103.15.015 Q=2X 103.15 Q= t53a CFS AREA A+B+C O = 1.49 A Rf S" A=6.864 n P=18.496' 2/3 d=0.67' Q��z 1.49n A R OR 0 1.49 X 6.864 X .3711 2 3 = 352.10 S 015 S= 2.2° o X 352.10 CFS FOR DEPTH OF FLOW CALCULATIONS: xKNOWS - Q, - du,,m d I OR: tq.qty-15.3 _ �- �' - OR: d = 0.50 d2 - d, X2.22-15.3 e�1�.4� 3. ANALYSIS OF EXISTING FLOWS — PLUMROSE STREET AT CLIPTON STREET— AREA 2B From the hydrology report for Tract No. 14293, at Node 6, Q = 69.57 cfs A = 30.06 ac Tc=18.87 min.. USER INPUT INFORMATION: ++++++.....+++++++++++++++++++++++++++++++++++++++++++++++++++++++++t+ Process from Point/Station 6.000 to Point/Station 6.000 **** USER DEFINED FLOW INFORMATION AT A POINT **'** RESIDENTIAL(3 - 4 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.471(ln/Hr) Rainfall intensity = 3.043(In/Hr) fora 100.0 year storm User specified values are as follows: TC = 18.87 min. Rain intensity = 3.04(In/Hr) Total area this stream = 30.06(Ac.) Total Study Area (Main Stream No. 1) = 30.06(Ac.) Total runoff = 69.57(CFS) 4. STREET FLOW ANALYSIS —PLUM ROSE STREET —AREA 2C FROM CLIPTON STREET TO CATCH BASIN WEST SIDE PLUMROSE AT FOXWORTH i -..........++-f-+..... t+ -F .... i-+-f-+i-......... i-i-.........-1--1-+t+++++-1-+-F-f--F-I-... Process from Point/Station 6.000 to Point/Station 100.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ***' Top of street segment elevation = 56.500(Ft.) End of street segment elevation = 54.800(Ft.) Length of street segment = 155.000(Ft.) Height of curb above gutter flowline = 8.0(ln.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.680(ln.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 70.959(CFS) Depth of flow = 0.660(Ft.), Average velocity = 5.262(Ft/s) Note: depth of flow exceeds top of street crown. Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 18.000(Ft.) Flow velocity = 5.26(Ft/s) Travel time= 0.49 min. TC = 19.36 min. Adding area flow to street RESIDENTIAL(3 - 4 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32-00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.471(in/Hr) Rainfall intensity = 2.996(ln/Hr) fora 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCIA) is C = 0.758 Subarea runoff = 1.473(CFS) for 1.200(Ac.) Total runoff = 71.043(CFS) Effective area this stream = 31.26(Ac.) Total Study Area (Main Stream No. 1) = 31.26(Ac.) Area averaged Fm value= 0.471(in/Hr) Street flow at end of street = 71.043(CFS) Half street flow at end of street = 35.521 (CFS) pepth of flow = 0.660(Ft.), Average velocity = 5.264(Ft/s) 'Note: depth of flow exceeds top of street crown. Flow yv'1 4th (from curb towards crown)= 18.000(Ft.) dy Area 31.26 (Ac.) Endo . rebmputations, Total st�l= 4. STREET FLOW ANALYSIS - FOXWORTH STREET - AREA 2C FROM CLIPTON STREET TO CATCH BASIN WEST SIDE PLUM ROSE AT FOXWORTH ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 6.000 to Point/Station 100.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 56.500(Ft.) End of street segment elevation = 54.800(Ft.) Length of street segment = 155.000(Ft.) Height of curb above gutter flowline = 8.0(ln.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.680(ln.) Manning's N in gutter= 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 70.959(CFS) Depth of flow = 0.660(Ft.), Average velocity = 5.262(Ftls) Note: depth of flow exceeds top of street crown. Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 18.000(Ft.) Flow velocity = 5.26(Ft/s) Travel time = 0.49 min. TC = 19.36 min. Adding area flow to street RE8IDENTIAL(3 - 4 dwllacre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS, curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.471(in/Hr) Rainfall intensity = 2.996(ln/Hr) fora 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCIA) is C = 0.758 Subarea runoff = 1.473(CFS) for 1.200(Ac.) Total runoff = 71.043(CFS) Effective area this stream = 31.26(Ac.) Total Study Area (Main Stream No. 1) = 31.26(Ac.) Area averaged Fm value = 0.471(ln/Hr) Street flow at end of street = 71.043(CFS) Half street flow at end of street = 35.521 (CFS) Depth of flow = 0.660(Ft.), Average velocity = 5.264(Ft/s) Note: depth of flow exceeds top of street crown. Flow width (from curb towards crown)= 18.000(Ft.) End of computations, Total Study Area = 31.26 (Ac.) 5. CATCH BASIN CAPACITY AND FLOW —BY CALCULATIONS — WEST SIDE PLUMOSE STREET AT FOXWORTH STREET From following page calculations, Q splits on each side of street: Therefore, West side: East side: Q = 35.52 cfs Q = 35.52 cfs A=15.63 ac A=15.63 ac Tc=19.36 min.. Tc=19.36 min.. USING FLOW -BY BASIN DESIGN, For water approaching each catch basin from the north, Y = 0.6T (from following page) A = 0.33' (local depression) Q=0.7xLx(a+y)312 =0.7x14'x(0.33+0.66)312 = 9.80 cfs therefore, Q contained = 9.80 cfs Q flowby = 35.52 — 9.80 = 25.72 cfs A contained = 9.80135.52 x 15.63 = 4.31 ac A flowby =15.63 — 4.31 =11.32 ac 17.93' --------------LEVEL------------ ----------------a--------------- AREA AREA B J AREA C AREA A Q = 1.49 A R2(3 Stj2 A=0.0928 n P=1.435' Q = 1.49 A R2/3 0R Q = 1.49 X .0928 X .0647 213= 1.49 d=0.14' S,n — n S'/2 .015 S= ,/2 Q= 'ODS X 1.49 Q=N3_ CFS AREA A+B Q = 1.49 A R2/3 S'/2 A=3.2108 n P=18.286' d=0.47' Q = 1.49 A R— OR Q = 1.49 X 3.2708 X .1789 2/3= 103.15 S'/2 n S', .015 S=?� 1/2 - Q= •006 X 103.15 Q= ql3 CFS AREA A+B+C Q = 1.49 A R2/3 Si,2 A=6.864 n P=18.496' 2/3 2/3 d=0.67' Q = 1.49 A R OR Q = 1.49 X 6.864 X .3711 = 352.10 S'/2 n S'/2 .015 S= B o Q=, oQb 1/2X 352.10 CFS FOR DEPTH OF FLOW CALCULATIONS: d •tr Q wm _ Q i d unw+oxr,— , OR: = OR: d= f Q2 — Q, = d2 — d, 6. CONFLUENCE CALCULATIONS AT CATCH BASIN NORTH SIDE FOXWORTH STREET AT PLUMROSE STREET CONFLUENCE NO.1 ++++++++++++++++++++++++t++++++++++++++++++++++++++++++++++++++t++++++ Process from Point/Station 7.000 to Point/Station 7.000 **** USER DEFINED FLOW INFORMATION AT A POINT *'** RESIDENTIAL(3 - 4 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.471(In/Hr) Rainfall intensity = 3.606(In/Hr) fora 100.0 -year storm User specified values are as follows: TC = 14.22 min. Rain intensity = 3.61(In/Hr) Total area this stream = 6.96(Ac.) Total Study Area (Main Stream No. 1) = 6.96(Ac.) Total runoff = 19.96(CFS) CONFLUENCE NO.2 .}.'.'.'{..{".E'.'..".'{.....E."F.'E....'f..{{..{'.}..E......{.'i..E..F.{'.F.'.F..{........F..}...E..{.'.f.f..'.'..{..."'...E....j'.r.i..{..{.'{.. Process from Point/Station 7.000 to Point/Station 7.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** RESIDENTIAL(3 - 4 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.471(ln/Hr) Rainfall intensity = 2.996(In/Hr) fora 100.0 year storm User specified values are as follows: TC = 19.36 min. Rain intensity = 3.00(In/Hr) Total area this stream = 15.63(Ac.) Total Study Area (Main Stream No. 1) = 22.59(Ac.) Total runoff = 35.52(CFS) CONFLUENCE RESULTS ++++++++++++++++++++++++++++++++++++++++ -t+++++++++++++++++++++++++++++ Process from Point/Station 7.000 to Point/Station 7.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 15.630(Ac.) Runoff from this stream = 35.520(CFS) Time of concentration = 19.36 min. Rainfall intensity = 2.996(In/Hr) Area averaged loss rate (Fm) = 0.4711(ln/Hr) Area averaged Pervious ratio (Ap) = 0.6000 Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 19.960 14.22 3.606 2 35.520 19.36 2.996 Qmax(1) = 1.000 * 1.000 * 19.960) + 1.241 * 0.735 * 35.520) + = 52.346 Qmax(2) = 0.806 * 1.000 * 19.960) + 1.000 * 1.000 * 35.520) + = 51.600 Total of 2 streams to confluence: Flow rates before confluence point: 19.960 35.520 Maximum flow rates at confluence using above data: 52.346 51.600 Area of streams before confluence; 6.960 15.630 Effective area values after confluence: 18.440 22.590 Results of confluence: Total flow rate = 52.346(CFS) Time of concentration = 14.220 min. Effective stream area after confluence = 18.440(Ac.) Stream Area average Pervious fraction(Ap) = 0.600 Stream Area average soil loss rate(Fm) = 0.471(In/Hr) Study area (this main stream) = 22.59(Ac.) End of computations, Total Study Area = 22.59 (Ac.) 7. CATCH BASIN CAPACITY CALCULATIONS NORTH SIDE FOXWORTH STREET AT PLUMROSE STREET From previous calculations in this report: Q = 52.35 cfs A = 22.59 ac Tc= 14.22 min.. CATCH BASIN USES SUMP BASIN DESIGN, Available ponding depth of flow for north side Foxworth Stret: 55.40 (centerline elev) -54.53 (flowline at catch basin) 0.87 (available ponding depth H/h=0.87!.83= 1.05 Using sump basin charts: Q1L =2.6 Solving for L: L = 52.35 12.6 = 20.13' Use L = 21.0 ft and assume all flows Intercepted Note: This length is also conservative since all flows were assumed to be contained on the Northerly side of Foxworth Street SUMP CONDITION 3 0 s g a .-7 - fo _--____ - _ - - . �5 ---- - 2 ' . � � , •OBJ � 1p , + f. V S .6 r Q ' � � -fes �, -•� ,fir 3.5��` v q ! ,Q8 w e :o6 3 �. f Sh ..03— oz O •2 :a/ IS L I - 8. CATCH BASIN FLOW BY ANALYSIS WEST SIDE OF PLUMROSE STREET AT FOXWORTH STREET From previous calculations in this report: Q contained = 9.80 cfs Q flowby =25.72 cfs A contained = 4.31 ac A flowby = 11.32 ac USER INPUT INFORMATION: Q = 25.72 cfs A =11.32 ac Tc=19.36 min. +f+f....+f+f t+++++..... .... l .............++++++..................... Process from Point/Station 100.000 to Point/Station 100.000 USER DEFINED FLOW INFORMATION AT A POINT **** RESIDENTIAL(3 -4 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.471(in/Hr) Rainfall intensity = 2.996(ln/Hr) fora 100.0 year storm User specified values are as follows: TC = 19.36 min. Rain intensity = 3.00(In/Hr) Total area this stream = 11.32(Ac.) Total Study Area (Main Stream No. 1) = 11.32(Ap.) Total runoff = 25.72(CFS) 9. STREET FLOW ANALYSIS — PLUM ROSE STREET — AREA 2D FROM FOXWORTH STREET TO SOUTHERLY CUL-DE-SAC ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 100.000 to Point/Station 120.000 **** **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION Top of street segment elevation = 54.800(Ft.) End of street segment elevation = 53.100(Ft.) Length of street segment = 350.000(Ft.) Height of curb above gutter flowline = S.0(ln.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (vlhz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.680(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 28.674(CFS) Depth of flow = 0.563(Ft.), Average velocity = 2.874(Ft/s) Note: depth of flow exceeds top of street crown. Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 18.000(Ft.) Flow velocity = 2.87(Ft/s) Travel time = 2.03 min. TC = 21.39 min. Adding area flow to street RESIDENTIAL(3 - 4 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.471(ln/Hr) Rainfall intensity = 2.822(In/Hr) fora 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCIA) is C = 0.750 Subarea runoff = 3.737(CFS) for 2.600(Ac.) Total runoff = 29.457(CFS) Effective area this stream = 13.92(Ac.) Total Study Area (Main Stream No. 1) = 13.92(Ac.) Area averaged Fm value= 0.471(In/Hr) Street flow at end of street = 29.457(CFS) Half street flow at end of street = 14.728(CFS) Depth of flow = 0.567(Ft.), Average velocity = 2.905(Ft/s) Note: depth of flow exceeds top of street crown. Flow width (from curb towards crown)= 18.000(Ft.) End of computations, Total Study Area = 13.92 (Ac.) Depth x velocity = .57 x 2.91 = 1.66 therefore, okay. 10. CATCH BASIN CAPACITY CALCULATIONS — PLUIVIROSE STREET AT SOUTHERLY CUL-DE-SAC CATCH BASIN AT CUL-DE-SAC USES SUMP BASIN DESIGN, Qcatchbasin = 29.46 cfs For conservative approach, assume all flows were not contained on the northerly Side of Foxworth Street: Street capacity north side: =15.30 cfs Street flow to catch basin: =19.96 cfs Additional flow: 4.66 cfs Maximum Qcatchbasin = 29.46 + 4.66 = 34.12 cfs H / h = 1.20 /.83 = 1.45 Using sump basin charts: Q/L =3.6 Solving for L: L = 34.12/ 3.6 = 9.48 ft. Use L=14ft MAINLINE PIPE - PLUIVIROSE STREET INPUT DATA FILE: jn709.WSW W S P G W - EDIT LISTING - Version 14.03 Date: 9-22-2003 Time: 2: 0:37 WATER SURFACE PROFILE - CHANNEL DEFINITION LISTING PAGE 1 CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y00) CODE NO TYPE PIERIPIP WIDTH DIAMETER WIDTH DROP CD 1 4 1 4.000 CD 2 3 0 .000 11.880 14.000 .000 .000 .00 CD 3 4 1 4.000 CD 4 4 1 3.000 CD 5 4 1 3.000 CD 6 4 1 3.000 CD 7 4 1 2.000 CD 8 3 0 .000 9.000 14.000 .000 .000 .00 WSPGW PAGE NO 1 WATER SURFACE PROFILE - TITLE CARD LISTING HEADING LINE NO 1 IS - tract no. 16250 HEADING LINE NO 2 IS - mainline - plumrose HEADING LINE NO 3 IS - WSPGW PAGE NO 2 WATER SURFACE PROFILE - ELEMENT CARD LISTING ELEMENT NO 1 IS A SYSTEMA OUTLET . ' t. UIS DATA STATION INVERT SECT W S ELEV 110.000 34.780 1 40.780 ELEMENT NO 2 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 161.500 42.200 1 .013 .000 .000 .000 0 ELEMENT NO 3 IS A WALL ENTRANCE ` U/S DATA STATION INVERT SECT FP 161.500 42.200 2 .500 ELEMENT NO 4 IS A JUNCTION U/S DATA STATION INVERT SECT LAT -1 LAT -2 N 03 Q4 INVERT -3 INVERT -4 PHI 3 PHI 164.500 42.400 4 3 0 .013 29.430 .000 42.400 .000 90.000 .000 RADIUS ANGLE .000 .000 ELEMENT NO 5 IS A WALL EXIT U/S DATA STATION INVERT SECT 164.500 42.400 5 ELEMENT NO 6 IS A REACH UIS DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 451.710 45.160 5 .013 .000 .000 .000 0 s ELEMENT NO 7 IS A JUNCTION ` , * U/S DATA STATION INVERT SECT LAT -1 LAT -2 N Q3 Q4 INVERT -3 INVERT -4 PHI 3 PHI 4 457.040 46.160 7 6 0 .013 52.350 .000 45.260 .000 55.000 .000 RADIUS ANGLE .000 .000 ELEMENT NO 8 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 459.330 46.200 7 .013 .000 .000 .000 0 ELEMENT NO 9 IS A REACH r U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 000 46 460 7 013 22.498 -45.000 .000 0 477. ELEMENT NO 10 IS A REACH " U/S DATA STATION INVERT SECT N 502.110 46.880 7 .013 .000 WSPGW WATER SURFACE PROFILE - ELEMENT CARD LISTING ELEMENT NO 11 IS A WALL ENTRANCE U/S DATA STATION INVERT SECT FP 502.110 46.880 8 .500 ti ELEMENT NO 12 IS A SYSTEM HEADWORKS UIS DATA STATION INVERT SECT 502.110 46.880 8 46.880 RADIUS ANGLE ANG PT MAN H .000 .000 0 PAGE NO 3 W S ELEV MAINLINETIPE - PLUMROSE STREET HYDRAULIC GRADE LINE FILE: jn709.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 1 Program Package Serial Number. 1376 Date: 9-22-2003 Time: 2: 0:41 WATER SURFACE PROFILE LISTING tract no. 16250 mainline - plumrose Q I Vel Vel I Energy I Super ICriticallFlow ToplHeighttl Base Wt1 No Wth i Invert I Depth I Water I Elev 1 (CFS) I (FPS) Head I Grd.El.1 Elev I Depth I Width IDia.-FTIor I.D.1 ZL IPrs/Pip Station I Elev I (FT) I -I- + -I- -I- -I- -I- -I- -I- -I- -I- -I- + + -I HF DpthlFroude NINorm Dp I "N" I X-Fall1 ZR (Type Ch L/Elem ICh Slope I I I I SF Avel ISE I I I I I 110.000 34.780 6.000 40.780 I II I 1 1 I I 91.58 7.29 .82 41.60 .00 2.90 .00 4.000 .000 .00 1 .0 -I -11.111 -I- -I- -I- -I- -1- -1- 1.454 .1441 -1 00411 .01 6.00 00 .013 .00 .00 PIPE I I I I I I I l 111.454 34.9905.796 40.786 -l- -I- -I- { I I I I 91.58 7.29 .82 41.61 .00 2.90 .00 4.000 .000 .00 1 .0 -I- -I- -I- -I- -I- -1- -I- 1 - -I- -I- -1- HYDRAULIC JUMP I I I I II I I 111.454 34.990 1.404 36.394 I I I I 1 91.58 23.27 8.41 44.80 .00 2.90 3.82 4.000 .000 .00 1 .0 -1 1 -I- -I- -I- + -I- + .224 .1441 -10579 I 01 1.40 4 04 1.11 .013 .00 .00 PIPE I I I Ii I I 111.678 35.022 1.406 36.428 I I I I I f 91.58 23.21 8.37 44.79 .00 2.90 3.82 4.000 .000 .00 1 .0 -4.02-1-1.11- -I- -1- -1- -I- -) -i 7.890 .1441 -1,05421- .43 +1. .013 .00 .00 PIPE 1 1 I II I I 119.568 36.159 1.457 37.616 I I I I I I 91.58 22.13 7.60 45.22 .00 2.90 3.85 4.000 .000 .00 1 .0 -I- -I- -I- -I -I -I 6.620 .1441 -i 04751 .31 1.46 3.76-1 1.11 .013 .00 .00 PIPE 1 1 1 II I I 126.188 37.112 1.509 38.621 I I I I I 1 91.58 21.10 6.91 45.53 .00 2.90 3.88 4.000 .000 .00 1 .0 -{- -1 -I -I -I -1 5.609 .1441 -1 04161 .23 1.51 3.51-I 1.11 .013 .00 .00 PIPE 1 1 I II I I 131.797 37.920 1.563 39.484 I I I I I I 91.58 20.12 6.28 45.77 .00 2.90 3.90 4.000 .000 .00 1 .0 -I -1- -I- -I -I -I 4.783 .1441 -1 03651 .17 1.56 3.28-I 1.11 .013 00 .00 PIPE 1 1 I I I I I 136.580 38.610 1.620 40.230 I I I I I I 91.58 19.18 5.71 45.94 .00 2.90 3.93 4.000 .000 .00 1 .0 -i -i- -I- -I- -I- -I -1 03211 1.62 3.07-1 1.11 .013 .00 .00 PIPE 4.111 .1441 .113 I I 1 1 I I 1 I I 140.691 39.202_ 1.679 40.881 I I I I 91.58 18.29 5.19 46.08 .00 2.90 3.95 4.000 .000 .00 1 .0 -1- -I- -1- -I- -I- -I- 3.539 .1441 -I 02821 .110 1.68 2.86-1 1.11 .013 .00 .DO PIPE FILE: jn709.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 2 Program Package Serial Number. 1376 Date: 9-22-2003 Time: 2:0:41 WATER SURFACE PROFILE LISTING tract no. 16250 mainline - plumrose I Vel Vel I Energy I Super ICriticallFlow ToplHeight/IBase Wti INo Wth Elev Depth I Width IDia.-FTIor I.D.1 ZL IPrs/Pip I Invert I Depth I Water I Q Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.Ei.1 I -il -I -1 -I- -i- -I- -I- -1- -1- -I DpthlFroude NINorm Dp I "N" I X-Falll ZR (Type Ch UEtem IChlSlope I I I 5F Avel HF ISE . L/Elern I h Slo1 I I I I I I i I I 144.230 39.712 1.741 41.453 I II I 91.58 17.44 4.72 46.17 .00 2.90 3.97 4.000 .000 .00 1 .0 +1. -I' 'I' 'I' + + '1 1 I- -1 0247 2.67'1 1.11 .013 .00 .00 PIPE 3.061 .1441 . I I I 1 1 1 1 I 147.291 40.153 1.805 41.958 I I 1 I I 91.58 16.63 4.29 46.25 .00 2.90 3.98 4.000 .000 .00 1 .0 -I -I -I -I -1 + -1 02181 1!81 2.49-1 1.11 .013 .00 .00 PIPE 2.634 .1441 .06 1 1 l 1 11 1 1 149.925 40.532 1.873 42.405 1 1 I 1 1 91.58 15.85 3.90 46.31 .00 2.90 3.99 4.000 .000 .00 1 .0 -I 'i 'I 'i 'I' -I' -I 01911 1! 87 2.32'1 1.11 .013 .00 .00 PIPE 2.279 .1441 .04 1 1 1 1 1I 1 1 152.204 40.861 1.943 42.804 1 1 1 1 1 91.58 15.12 3.55 46.35 .00 2.90 4.00 4.000 .000 .00 1 .0 -I' + -1' 'I' 'I' -I- -1.01681 1!94 2.16'1 1.11 .013 .00 .00 PIPE 1.953 .1441 .03 1 1 I i I 1 1 1 154.158 41.142 2.017 43.159 1 1 1 1 1 91.58 14.41 3.23 46.38 .00 2.90 4.00 4.000 .000 .OQ 1 .0 1 -1.0148 2'02 2.01-I 1.11 .013 .00 .00 PIPE 1.665 .1441 .02 I 1 1 I II I i 155.823 41.382 2.095 43.477 I I I I I 91.58 13.74 2.93 46.41 .00 2.90 4.00 4.000 .000 .00 1 .0 + -I' -I' "I- -I -1 -I 01311 2110 1.87'1-1.11 .013 .00 .00 PIPE 1.416 .1441 .02 I I i I I I I I 157.239 41.585 2.176 43.762 I I 1 I I 91.58 13.10 2.67 46.43 .00 2.90 3.98 4.000 .000 .00 1 .0 -1' 'I' 'I" -I- -1 -1 -I 01151+ 2'18 1.74 1.11 1.11 .013 .00 .00 PIPE 1.179 .1441 .01 1 1 I 1 1 1 1 1 158.418 41.756 2.262 44.018 1 1 1 1 1 91.58 12.49 2.42 46.44 .00 2.90 3.97 4.000 .000 .00 1 .0 1 -I -I I •I 'I 1 1.11 .013 .00 .00 PIPE 226 162'1 .966 .1441 .01021 .01 I I I I I I I 1 159.384 41.895 2.353 44.248 I I I i I 91.58 11.91 2.20 46.45 .00 2.90 3.94 4.000 .000 .00. 1 .0 -11.111 -I' 'I- -I' '1' 'I 'I -10090 1 Z 35 1 50 .013 .00 .00 PIPE .772 .1441 .01 FILE: jn709.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 3 Program Package Serial Number. 1376 WATER SURFACE PROFILE LISTING Date: 9-22-2003 Time: 2: 0:41 tract no. 15250 mainline - plumrose Invert I Depth I Water I Q I Vel Vel I Energy I Super ICriticaIIFiow ToplHeighttl Base Wti INo Wth Station I Elev I (FT) I Elev I (CFS) I (FP$) Head I Grd.EI.I Elev I Depth I Width IDia.-FTIor I.D.I ZL IPrs/Pip -I- -I- -1 -I- -I- -I- -I- -I- -I- L/Elem ICh Slope I I I -1- -I- -I- -I- -I- I SF Avel HF ISE Dpth[Froude NINorm Dp I "N" I X-Falll ZR [Type Ch I I I I I I I 160.156 42.006 2.449 44.455 I I I I I I 91.58 11.36 2.00 46.46 .00 2.90 3.90 4.000 .000 .00 1 .0 1- -I- -I- -I- -I- -I- -I- .596 .1441 -I- -I- -I- + -I- -I- -I- .0080 .00 2.45 1.39 1.11 .013 .00 .00 PIPE I I I I I 160.752 42.092 2.550 44.642 I I I i I I I i 91.58 10.83 1.82 46.46 .00 2.90 3.85 4.000 .000 .00 1 .0 1- -I- -I- -I- -I- -I- -1- .420 .1441 -I- -I- -I- -l--i -I- -I- .0071 .00 2.55 1.29 1.11 .013 .00 .00 PIPE 1 1 1 1 1 161.171 42.153 2.658 44.811 1 1 1 1 1 1 1 1 91.58 10.32 1.66 46.47 .00 2.90 3.78 4.000 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- .250 .1441 -I- -I- -I- -I- -l- + -I- 1- .0063 .00 2.66 1.19 1.11 .013 .00 .00 PIPE I I I I I 161.421 42.189 2.774 44.963 I I I I 11 I I 91.58 9.84 1.50 46.47 .00 2.90 3.69 4.000 .000 .00 1 .0 1- -I- -I- -I- -i- -I- -I- .079 .1441 -I- -I- -i- -I--I- -I- -1- .0056 .00 2.77 1.09 1.11 .013 .00 .00 PIPE 161.500 42.200 2.901 45.101 -I- 91.58 9.38 1.37 46.47 .00 2.90 3.57 4.000 .000 .00 1 .0 -I- -I- -I- -I- -1- -I- + (- + + -I- -I- -I- WALL ENTRANCE I i I I I I 161.500 42.200 5.074 47.274 I I I I 1 1 I 91.58 1.29 .03 47.30 .00 1.10 14.00 11.880 14.000 .00 0 .0 -I- I- -I- -I- -I- -I- -I- -I- JUNCT S T R .0667 + -1- -I- -I- -I- -I- .0044 .01 5.07 .10 .013 .00 .00 BOX I I I I I 164.500 42.400 4.546 46.946 -I- -I- I I I I I I 1 1 62.15 8.79 1.20 48.15 .00 2.54 .00 3.000 .000 .00 0 .0 -I- -I- -I- -I- -I- -I- -I- (- -I- -I- -1- -I- WALL EXIT I I I I I I I 164.500 42.400 4.547 46.947 I I I 1 I I 62.15 8.79 1.20 48.15 .00 2.54 .00 3.000 .000 .00 1 .0 -I- -I- -I- -I- -I- + 287.210 .0096 -I- + -I- -I- + -I- -I- ►- .0087 2.49 4.55 .00 2.34 .013 .00 .00 PIPE FILE: jn709.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 4 Program Package Serial Number. 1376 WATER SURFACE PROFILE LISTING Date: 9-22-2003 Time: 2: 0:41 tract no. 16250 mainline - plumrose Invert I Depth I Water I Q I Vel Vel I Energy I Super ICriticallFlow ToplHeight/IBase Wti INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.1 Elev I Depth I Width IDia.-FTIor I.D.1 ZL IPrs/Pip -I- -I- + -I- -I- -I- -I- -I- L/Elem ICh Slope I I I -I- -I- -I- -I- -I- -1 I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X-Falll ZR (Type Ch *Y**fYak*#I*##*!43*zlYYkz*kYzl*******Y'*I*Yz*YYz#YIYzz*!rz*I**Yfe***IYYe*#Y##*#IYt+!***YzIY*Y*##YYI***Y*kYil*z#****I*Y***1nt1*YY** I**frk*Y* i I I I I 451.710 45.160 4.281 49.441 I I I I I I I I 62.15 8.79 1.20 50.64 .00 2.54 .00 3.000 .000 .00 1 .0 -1- -I- + -I- -I- -I- JUNCTSTR ,1876 -I- -I- -I- -I- -I- -I- -I- I- .0053 .03 4,28 .00 .013 .00 .00 PIPE I I I I I 457.040 46.160 5.094 51.254 I I I I I I I I 9.80 3.12 .15 51.41 .00 1.12 .00 2.000 .000 .00 1 .0 + + -I- -1- -I- -I- 2.290 .0175 -I- -I- -I- -I- + -I- -I- 1- .0019 .00 5.09 .00 .79 .013 .00 .00 PIPE I I I I I 459.330 46.200 5.058 51.258 I I I I I I I I 9.80 3.12 .15 51.41 .00 1.12 .00 2.000 .000 .00 1 .0 + -I- -I- -I- -I- -I- 17.670 .0158 -I- -I- -I- -I- + -j- -I- 1- .0019 .03. .00 .00 .81 .013 .00 .00 PIPE I I I i I 477.000 46.480 4.833 51.313 I I i I I I I i 9.80 3.12 .15 51.46 .00 1.12 .00 2.000 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- 25.110 .0159 -I- + -I- -I- -I- -I- -I- 1- .0019 .05 4.83 .00 .81 .013 .00 .00 PIPE I I I I I 502.110 46.880 4.480 51.360 I I I I I I 1 1 9.80 3.12 .15 51.51 .00 1.12 .00 2.000 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- WALL ENTRANCE -I- + -I- -I- -I- + -I- (- I I I I I 502.110 46.880 4.707 51.587 + -I- -I- -I- -I- -I- I I l i I I I I 9.80 .15 .00 51.59 .00 .25 14.00 9.000 14.000 .00 0 .0 + -I- -I- -I- -I- -I- -I- I- LATERAL 1- PLUMROSE STREET INPUT DATA FILE: Iat.WSW W S P G W - EDIT LISTING - Vernon 14.03 Date: 9-22-2003 Time: 2:14:28 WATER SURFACE PROFILE - CHANNEL DEFINITION LISTING PAGE 1 CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) CODE NO TYPE PIER/PIP WIDTH DIAMETER WIDTH DROP CD 1 4 1 3.000 CD 2 3 0 .000 8.570 21.000 .000 .000 .00 WSPGW WATER SURFACE PROFILE - TITLE CARD LISTING HEADING LINE NO 1 IS - tract no. 16250 HEADING LINE NO 2 IS - lateral one HEADING LINE NO 3 IS - WSPGW WATER SURFACE PROFILE - ELEMENT CARD LISTING ELEMENT NO 1 IS A SYSTEM OUTLET U/S DATA STATION INVERT SECT 1003.500 45.260 1 51.250 ELEMENT NO 2 IS A REACH U/S DATA STATION INVERT SECT N 1069.810 47.000 1 .013 .00C ELEMENT NO 3 IS A WALL ENTRANCE ` U/S DATA STATION INVERT SECT FP 1069.810 47.000 2 .500 ELEMENT NO 4 IS A SYSTEM HEADWORKS U/S DATA STATION INVERT SECT 1069.810 47.000 2 47.000 PAGE NO 1 PAGE NO 2 W S ELEV RADIUS ANGLE ANG PT MAN H .000 .000 0 W S ELEV LATERAL I- PLUMROSE STREET -HYD-RAULIC GRADE LINE FILE: Iat.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 1 Program Package Serial Number. 1376 WATER SURFACE PROFILE LISTING Date: 9-22-2003 Time: 2:14:31 tract no. 16250 lateral one ####* Invert I Depth I Water I Q I Vel Vel I Energy I Super ICriticallFlow ToplHeight/IBase Wti INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.l Elev I Depth I Width IDia.-FTIor I.D.I ZL IPrs/Pip -1- -I- -I- + -I- -I- -I- -I- -I- -1- -I- -I- -I- -1 L/Elem ICh Slope I I I I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X-Falll ZR (Type Ch I I I I I I I I I I I I I 1003.500 45.260 5.990 51.250 52.35 7.41 .85 52.10 .00 2.35 .00 3.000 .000 .00 1 .0 + -I- -I- -I- + -I- -I- -I- + -I- -1- + -I- 1- 66.310 .0262 .0062 .41 5.99 .00 1.47 .013 .00 .00 PIPE I I I I I I I I I I I 1 1 1069.810 47.000 4.658 51.658 52.35 7.41 .85 52.51 .00 2.35 .00 3.000 .000 .00 1 .0 WALL ENTRANCE I I i I I I I I I I I I I 1069.810 47.000 5.933 52.933 52.35.42 .00 52.94 .00 .58 21.00 8.570 21.000 .00 0 .0 -I- -I- -I- + -I- -I- + -I- + -I- -1- -I- -I- I- MAINLINE PIPE - ANDREA STREET INPUT DATA FILE: 709a.WSW W S P G W - EDIT LISTING - Version 14.03 Date: 9-18-2003 Time:10:33:41 WATER SURFACE PROFILE - CHANNEL DEFINITION LISTING PAGE 1 CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(B) Y(9) Y00) CODE NO TYPE PIER/PIP WIDTH DIAMETER WIDTH DROP CD 1 4 1 3.000 CD 2 3 D 000 9.660 14.000 .000 .000 -00 CD 3 4 1 3.000 CD 4 4 1 2.500 CD 5 4 1 2.000 CD 6 4 1 2.000 CD 7 4 1 2.000 CD 8 4 1 2.000 CD 9 4 1 2.000 CD 10 4 1 2.000 WSPGW PAGE NO 1 WATER SURFACE PROFILE - TITLE CARD LISTING HEADING LINE NO 1 IS - tract no. 16250 HEADING LINE NO 2 IS - andrea - mainline HEADING LINE NO 31S - WSPGW PAGE NO 2 WATER SURFACE PROFILE - ELEMENT CARD LISTING ELEMENT NO 1 IS A SYSTEM OUTLET ' ' ' U/S DATA STATION INVERT SECT W S ELEV 110.000 39.300 1 44.800 ELEMENT NO 2 IS A REACH ' ' ' UIS DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 149.460 42.470 1 .013 .000 .000 .000 0 ELEMENT NO 3 IS A WALL ENTRANCE r U/S DATA STATION INVERT SECT FP 149.460 42.470 2 .500 ELEMENT NO 4 IS A JUNCTION ' U/S DATA STATION INVERT SECT LAT -1 LAT -2 N Q3 Q4 INVERT -3 INVERT -4 PHI 3 PHI 4 153.490 42.470 4 3 .0 .013 7 1RADIUSO ANGLE 70 000 90.000 000 .000 .000 THE ABOVE ELEMENT CONTAINED AN INVERT ELEV WHICH WAS NOT GREATER THAN THE PREVIOUS INVERT ELEV - WARNING THE ABOVE ELEMENT CONTAINED AN INVERT ELEV WHICH WAS NOT GREATER THAN THE PREVIOUS INVERT EL WARNING ELEMENT NO 5 IS A REACH ' U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 503.300 45.000 4 .013 .000 .000 .000 0 ELEMENT NO 6 IS A JUNCTION ' ' a U/S DATA STATION INVERT SECT LAT -1 LAT -2 N Q3 Q4 INVERT -3 INVERT -4 PHI 3 PHI 4 513.300 45.500 7 5 5 .013 4.470 7. 2 45.500 45.500 25.000 -45.000 GLE .000 .000 ELEMENT NO 7 IS A REACH ' ' UIS DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 618.800 49.800 7 .013 .000 .000 .000 0 ELEMENT NO 8 IS A JUNCTION ' ' ' k UIS DATA STATION INVERT SECT LAT -1 LAT -2 N Q3 Q4 INVERT -3 INVERT -4 PHI 3 PHI 4 628.800 50.000 10 8 9 .013 11 RADIUS 7.820 50.000 50.000 38.000 -45.000 LE .000 .000 WSPGW PAGE NO 3 WATER SURFACE PROFILE - ELEMENT CARD LISTING ELEMENT NO 9 IS A SYSTEM HEADWORKS N/ S ELEV UIS DATA STATION INVERT SECT 50.000 628.800 50.000 10 MAINLINE PIPE,- ANDREA STREET HYDRAULIC GRADE LINE FILE: 709a.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 1 Program Package Serial Number. 1376 WATER SURFACE PROFILE LISTING Date: 9-18-2003 Time:10:33:45 tract no. 16250 andrea - mainline Invert I Depth I Water I Q I Vel Vel I Energy I Super ICriticallFlow ToplHeight/lBase Wti INo Wth StationI Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.1 Elev I Depth I Width IDia.-FTIor I.D.1 ZL IPrs/Pip -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -1 Avel HF DpthlFroude NINorm Dp I "N" I X -Fail) ZR IType Ch L/Elem ICh Slope I I I ( SF ISE I i I I i 110.000 39.300 5.500 44.8D0 I I I I I I I I 38.39 5.43 .46 45.26 .00 2.02 .00 3.000 ODO .00 1 .0 -I -I -I -I- -I- -1.00-1 -1.0033 -I 32.458 .0803 .11 5.50 .921- .013 11 1' .00 .00 PIPE I I I I I 142.458 41.908 3.000 44.908 I I I I ,FI 38.39 5.43 .46 45.37 .00 2.021 -I •I 1 n n D n0 i n .00 3.n 0 00 -I- -l- -I- -I- -1- -l- 3.004 .0803 -I-0031 I- 01 +3. 00 .92 .013 I 1 1 .00 .00 PIPE I I I I I 145.463 42.149 2.721 44.870 I I I I I 38.39 5.70 .50 45.37. .00 2.02 -I- + -I- 1- 1.74 3.000 .000 .00 1 .0 -I- -I- -I- -I- -I- + 1.430 .0803 -I- -1- -I- -I- .0030 .00 2.72 .51 .92 .013 1 1 .00 .00 PIPE I I I I I 146.893 42.264 2.560 44.824 I I I I I I 38.39 5.97 .55 45.38 .00 2.02 + + 1- 2.12 3.000 .000 .00 1 .0 + -I- + -I- -I- -I- 1.006 .0803 -I- -I- -I- -I- -I- .0032 .00 2.56 .61 .92 .013 I I I .00 .00 PIPE I I I I I 147.899 42.345 2.427 44.772 I I I i I 38.39 6.27 .61 45.38 .00 2.02 2.36 3.000 .000 .00 1 .0 -I- 'I- "I- -I- -I- -1 -1 -1- .730 .0803 -'00361 0 2.43 �69 .92 .013 I .00 .00 PIPE 1 I I i I 148.629 42.403 2.310 44.713 I I t I I I I 38.39 6.57 .67 45.38 .00 2.02 + + -I- 1- 2.52 3.000 .000 .00 1 .0 -I- -1- -I- -l- -I- -1- .497 .0803 + + -I- -I- .0040 .00 2.31 .76 .92 .013 I I .00 .00 PIPE I I I I I 149.126 42.443 2.205 44.648 I I i I I I 38.39 6.89 .74 45.39 .00 2.02 -I- -I- 1- 2.65 3.000 .000 .00 1 .0 -I- -1- + -I- -I- -I- .293 .0803 -I- + -I- -I- -I- .0044 .00 2.21 .84 .92 .013 1 1 .00 .00 PIPE I I I I I 149.419 42.467 2.109 44.576 I I I I I I 38.39 7.23 .81 45.39 .00 2.02 -I- -I- 1- 2.74 3.000 .000 .00 1 .0 + -I- + -I- -I- .041 .0803 + -I- + -I- + -I- .0047 .00 2.11 .92 .92 .013 I 1 1 .00 .00 PIPE I I I I I 149.460 42.470 2.088 44.558 -I- -I• I I I I I 38.39 7.31 - .83 45.39 .00 2.02 -I- + -I- -I- -I- -I- + 2.76 3.000 .000 .00 1 .0 + -I- -I- -I- WALL ENTRANCE FILE: 709a.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 2 Program Package Serial Number. 1376 WATER SURFACE PROFILE LISTING Date: 9-18-2003 Time: 10:33:45 tract no. 16250 andrea - mainline I Invert I Depth I Water I Q i Vel Vel I Energy I Super ICriticallFlow ToplHeight/IBase Wti INo Wth Station I Elev I (FT) I Elev { (CFS) I (FPS) Head I Grd.El.l Elev I Depth I Width IDia.-FTlor I.D.I ZL IPrs/Pip -I- -I- -I- -I- + -I- -I- -I- -I- -I- + -I- -I- -I L/Elem ICh Slope I I I I SF Avel HF ISE DpthlFroude NINorn Dp I "N I X-Falll ZR (Type Ch I I I I I I I I I I I 11 149.460 42.470 3.398 45.868 38.39 .81 .01 45.88 .00 .62 14.00 9.660 14.000 .00 0 .0 -I -I -1 -I -I -1 .0029-1 .011 3.40 08 -1 1.013 .00 .00 BOX JUNCT STP. .0000 0 I I I I I I I I I I I I I 153.490 42.470 3.210 45.680 31217 6.37 .63 46.31 .00 1.90 .00 2.500 .000 .00 1 .0 -I- + -I- -I- -I- -I- -I- -I- -I- -I- + -I- -I- 1- 349.810 .0072 .0058 2.03 3.21 .00 1.85 .013 .00 .00 PIPE I I I I I I I i I I i I I 503.300 45.000 2.714 47.714 31.27 6.37 .63 48.34 .00 1.90 .00 2.500 .000 .00 1 .0 -I- -I- + + + -I- -I- -I- + -I- -I- -I- -I- F JUNCT STR .0500 .0064 .06 2.71 .00 .013 .00 .00 PIPE I I- I I I I I I I I I 1 1 513.300 45.500 2.779 48.279 18.98 6.04 .57 48.85 .00 1.57 .00 2.000 .000 .00 1 .0 -l- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- 6.863 .0408 .0070 .05 2.78 .00 .90 .013 .00 .00 PIPE I I I I I I I I I I I 1 1 520.163 45.780 2.546 48.326 18.98 6.04 .57 48.89 .00 1.57 .00 2.000 .000 .00 1 .0 + -I- + -I- + + -I- -I- -I- -I- -I- -I- -I- I - HYDRAULIC JUMP i 520.163 I I I I 45.780 .924 46.704 34.19$ .0408 I 554.356 I I i I 47.173 .959 48.132 18.835 .0408 573.191 47.941 .995 48.936 12.252 .0408 I I I 18.98 13.37 I 2.78 I I 49.48 1 1 .00 1.57 1.99 2.000 .000 .00 1 .0 -I- + -I- -I- .0347 1.19 -I- -I- .92 2.79 + 1- .90 .013 .00 .00 PIPE 18.98 12.74 2.52 50.651 .00 157 2.00 2.000 .000 .00 1 .0 .0305 .57 .96 2.60 .90 .013 .00 .OD PIPE I I I 18.98 12.15 I 2.29 I I 51.23 I I .00 1.57 2.00 2.000 .000 .00 1 .0 -I- -I- .0269 -I- .33 -I- -I- -I- 1.00 2.42 -I- 1- .90 .013 .00 .00 PIPE FILE: 709a.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 3 Program Package Serial Number. 1376 WATER SURFACE PROFILE LISTING Date: 9-18-2003 Time:10:33:45 tract no. 16250 andrea - mainline Invert I Depth I Water I Q I Vel Vel I Energy I Super ICriticallFlow ToplHeight/IBase Wti INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.1 Elev I Depth I Width IDia.-FTIor I.D.1 ZL IPrs/Pip -I -I -I -I -I -I UElem ICh Slope 1 I I I -I- SF Ave -I HF -ISE DI th Froude N Norm D "N" X -Fall ZR a Ch I I P I I P I I I frYP I I I I I 585.443 I I I I 48.440 1.033 49.474 I I I I 18.98 11.58 2.08 51.56 .00 1.57 -1 1- 2.00 2.000 .000 .00 1 .0 -I 8.741 'I -I -I -I -1 .0408 -1.02371 .21 1 A3 -2.25 .90 .013 1 1 .00 .00 PIPE I 594.184 I I I I 48.797 1.073 49.870 I i I I I I 18.98 11.04 1.89 51.76 .00 1.5' -I- + 1- 1.99 2.000 .000 .00 1 .0 + 6.500 _1. + _i- -I- -I- .0408 -I- -I- -I- + -I- . .0209 .14 1.07 2.10 .90 .013 I I 00 .00 PIPE I 600.683 I I I I 49.062 1.116 50.17818.98 I I I I I I 10.53 1.72 51.90 .00 1.57 -I- + 1- 1.99 2.000 .000 .00 1 .0 -I- 5.043 -I- -1- -I- -I- + .0408 -1- -I- -I- -I- -I- 0184 .09 1.12 1.95 .90 .013 .00 .00 PIPE 605.726 49.267 1.160 50.427 18.98 10.04 1.57 51.99 .00 1.57 -I- -I- -I- 1- 1.97 2.000 .000 .00 1 .0 + 3.897 + + + -I- -I- .0408 -I- -I- -I- + .0163 .06 1.16 1.81 .90 .013 I_ .00 .00 PIPE 609.623 49.426 1.207 50.633 18.98 9.57 1.42 52.06 .00 1.57 1.96 2.000 .000 .00 1 ,0 -I- + + + -I- -I- 1.68-I 3.015 .0408 .01441 .04 1!21 .90 .013 1 1 .00 .00 PIPE I 612.638 I I I I 49.549 1.257 50.806 I I I I I I 18.98 9.13 1.29 52.10 .00 1.57 1.93 2.000 OOD .00 1 .0 -I- 2.311 -I- -I- -I- -I- -I- .0408 -I 01281 .03 1!26 1.55-1 .901 .013 1 .00 .00 PIPE 1 614.949 1 I I 1 49.643 1.310 50.953 1 1 1 1 1 11 18.98 8.70 1.18 52.13 .00 1.57 -I 1.90 2.000 .000 .00 1 .D - 1.733 3 -1 .044 -I- -i- '1 -1 08 -I 0114 2 1.31 1.43 .90 13 I I I 00 .00 PIPE . I 616.682 I I I I 49.714 1.366 51.080 I I I I I 18.98 8.30 1.07 52.15 .00 1.57 1.86 2.000 .000 .00 1 .0 -I- 1.182 -I- -I- -I- -I- -1- .0408 -1.01011 .01 1!37 1.32-1 .90 . I- 1 1 .00 .00 PIPE I 617.864 I I I I 49.762 1.427 51.189 I I I I I I 18.98 7.91 .97 52.16 .00 1.57 -I- -I- 1- 1.81 2.000 .000 .00 1 .0 -I- .705 -I- -I- -I- -1- -I- .0408 -I- -I- + -I- -I- .0090 .01 1.43 1.21 .90 .013 .00 .00 PIPE FILE: 709a.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 4 Program Package Serial Number. 1376 WATER SURFACE PROFILE LISTING Date: 9-18-2003 Time:10:33:45 tract no. 16250 andrea - mainline Invert i Depth I Water I Q I Vel Vel I Energy I Super ICriticallFlow ToplHeightllBase Wtl I NO Wth I Inve Station i rt I I (FT) I ev i (CFS) I (FPS) Head I Grd.EI.1 Elev I Depth I Width IDia: FTIor I.D.1 ZL IPrs/Pip -I- -I- -I- -I- -I- -I- + + -i- -I- -1- -I- -i- -I LlElem ICh Slope I I I I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X-Faill ZR (Type Ch L/El *yeRIY**Slope I I I I I I I I I I I 11 618.569 49.791 1.493 51.284 18.98 7.54 .88 52.17 .00 1.57 1.74 2.000 .000 .00 1 .0 -I- -I- -1- -1- -I- -1- -10081-I 00 1.49 1.11 -1 .901- .013 .00 .00 PIPE .231 .0408 1 1 1 1 1 1 1 1 1 1 11 1 615.800 49.800 1.567 51.367 18.98 7.19 .80 52.17 .00 1.57 1.65 2.000 Q00 .00 1 .0 -1- -I- -I- -I- -I- -1- -1 .003$-1 .041 1.57 1A0 -1 I .013 b0 .00 PIPE JUNCT STR .0200 1 1 1 1 1 1 1 11 1 1 1 1 628.800 50.000 2.388 52.388 .00 .00 .00 52.39 .00 .01 .00 .2.000 .000 .00 1 .0 LATERAL 2 -ANDREA STREET INPUT DATA Date: 9-18-2003 Time -10:47:17 W S P G W- EDIT LISTING - Version 14.03 PAGE 1 FILE: 709Iat2.WSW WATER SURFACE PROFILE - CHANNEL DEFINITION LISTING Y 4 Y 5 Y(6) Y 7 Y(8) Y(9) Y00) CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR DRINV OP Y(1) Y(2) Y(3) () �� , CODE NO TYPE PIERIPIP WIDTH DIAMETER WIDTH CD 1 4 1 2.000 CD 2 3 0 .000 6.000 8.000 -000 .000 .00 PAGE NO 1 WSPGW WATER SURFACE PROFILE - TITLE CARD LISTING HEADING LINE NO IS - tract16250 HEADING LINE NOa2 ISal two HEADING LINE NO 3 IS - PAGE NO 2 WSPGW WATER SURFACE PROFILE - ELEMENT CARD LISTING ELEMENT NO 1 IS A SYSTEM OUTLET W S ELEV U/S DATA STATION INVERT SECT 48.280 1008.000 45.500 *1 * ELEMENT NO 2 ISA N REACH RADIUS ANGLE ANG PT MAN H UIS DATA STATION INVERT SECT •0D0 .000 .000 0 1028.210 52.500 1 - ELEMENT NU3 ISA WALL ENTRANCE IS DATA STATION INVERT SECT FP 500 1028.210 52.500 2 * _ ELEMENT NO 4 IS A SYSTEM HEADWORKS W S ELEV U/S DATA STATION INVERT SECT 52.500 1028.210 52.500 2 LATERAL 2 ANDREA STREET HYDRAULIC GRADELINE FILE: 70912t2.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 1 Program Package Serial Number. 1376 WATER SURFACE PROFILE LISTING Date: 9-18-2003 Time:10:47:21 tract no. 16250 lateral two I Invert I Depth I Water I Q I Vel Vel I Energy I Super ICriticallFlow ToplHeight/IBase Wti INo Wth Station I Elev I (FT) -1 Elev I (CFS) I (FPS) Head I Grd.El.1 Elev I Depth I Width IDia.-FTIor I.D.( ZL IPrs/Pip -I- -I- -I- -I- -1- -1- -I- -1- -I- -I- -1- -1- + -( SFAve1 HF ISE DpthlFroude N1Norm Dp ( "N" I X-FaIII ZR IType Ch UE:lem ICh Slope I I I I I I I I I I I I 1008.000 45.500' 2.780 I I I I I 48.280 4.47 1.42 .03 48.31 .00 .74 .00 2.000 ODO .00 1 .0 -1 -1 1 -I- -I- -I- -I- 2.255 .3464 + -I- -1.00041- .00 2178 00 .25 .013 .00 .00 PIPE 1 I I I I 1010.255 46.281 2.000 I I I I I I 11 48.2814.47 1.42 .03 48.31 .00 .74 .00 2.000 .000 .00 1 .0 -100 -1:25-1.013 -I- -I- + -I- .525 .3464 -I- '- - 00041 00 2 00 .00 .00 PIPE i I I I I i I 1010.780 46.463 1.814 I i I I I I 48.277 4.47 1.49_ .03 48.31 .00 .74 1.16 2.000 .000 .00 1 .0 -I- -I- -I- -I- .302 .3464 'I -I -10004-1 + .00 1 81 -1.25-1.013 .00 .00 PIPE I I I I I I i 1011.082 46.567 1.706 I I i II I 48.274 4.47 1.57 .04 48.31 .00 .74 1.42 2.000 .000 .00 1 .0 - -119 -1.25-1.01I- + -I- -I- + .090 .3464 -I -I -00041 .00 1.71 .00 .00 PIPE 11 1 I I I I 1011.172 46.599 1.672 + I I I I I I 48.2704.47 1.59 .04 48.31 .00 .74 1.48 2.000 .000 .00 1 .0 -I- -I- -l- -I- -I- -I- + + -I- (- -I- -1- -I- HYDRAULIC JUMP I I I I I 1011.172 46.599 .279 I I I I I I II 46.878 4.47 16.80 4.38 51.26 .00 .74 1.39 2.000 .000 .00 1 .0 -1.25-1.013 -1- -I- -I- + .773 .3464 -1- -I- -22251 .17 .28 6!76 DO .DO PIPE 1 1 I I I I 1011.945 46.866 .279 I I I I I I I 47.145 4.47 16.79 4.37 51.52 .00 .74 1.39 2.000 .000 .00 1 .0 -I -I- -I- -I- -I- 2.809 .3464 -I- -I- -1 20801 .58 28 6.75 .251- .013 .00 .OD PIPE I I 1 1 I I I I 1014.753 47.839 .288 I I I I I 48.127 4.47 16.00 3.98 52.10 .00 .74 1.40 2.000 .000 .00 1 .0 -i- -I- -I- -I- 2.133 .3464 -I- -I -1 18161 .39 .29 6.32 -1 .251 .013 .00 .00 PIPE _ 1016.887 48.578 .298 48.876 4.47 15.26 3.62 52.49 .00 ._74 1.42 2.000 .000 .00 1 .0 1 -I- + + -I- 1.697 .3464 -I- -I- -1.15861 .27 .30 5.93.1 .25 .013 .00 .00 PIPE FILE: 709Iat2.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 2 Program Package Serial Number. 1376 WATER SURFACE PROFILE LISTING Date: 9-18-2003 Time:10:47:21 tract no. 16250 lateral two wi-kzw:rxrx=-,�x+,+�sr�xxxx - iExx�+-xzxk-tx Invert I Depth I Water I Q I Vel Vel I Energy I Super {Critical{Flow ToplHeight/{Base Wt1 xxnxrrtx INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.1 Elev I Depth I Width IDia.-FTIor I.D.1 -I- -I- -1 ZL IPrs/Pip -I- -I- -I- -I- L/Elem ICh Slope I I -I- -I- -I- -I- -I- -I- + I I SF Avel HF ISE DpthlFroude NINorni Dip I "N" I X-Faill ZR (Type Ch xxktxrk+�xlxxx�xxxnxlxrxxxxxxl:tsxsxxexxlxxx*x�-xxtlxxxx:*xlxxxkxa:Ixi:xxaxrxxltfr¢xxaxlxxxxdeirxl*exx�n*mlxxxtrr.-iexlsxiexxxxlxtrxx IxsxxxRx I I I I 1018.584 49.166 .308 I I I I I I I 49.474 4.47 14.55 3.29 52.76 1 .00 1 .74 1.44 2.000 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -i- -I- -I- -I- -I- -I- -I- 1- 1.389 .3464 .1384 .19 .31 5.56 .25 .013 .00 .00 PIPE I I I I 1019.973 49.647 .318 I I I I I I I 49.965 4.47 13.87 2.99 52.95 I .00 I .74 I- 1.46 2.000 .000 .00 1 .0 -I- -{- -I- -1- 1.156 .3464 -i- -I- -i- + -I- -{- -1- .1209 .14 .32 5.21 �- -{- .25 i .013 t .00 .00 PIPE I I i I 1021.129 50.047 .329 I 1 I I I i I 50.377 4.47 13.23 2.72 53.09 .00 -1- .74 1- 1.48 2.000 .000 .00 1 .0 -I- -i- + -i- .980 .3464 -1- + + -I- -I- -i- -I- .1056 .10 .33 4.88 -I- .25 .013 .00 .00 PIPE I I I I 1022.109 50.387 .340 i I I l I I I 50.727 4.47 12.61 2.47 53.20 I .00 I .74 1.50 2.000 .000 .00 1 .0 -I- -I- + -l- -I- -1- -I- -I- -I- -i- -I- -I- -1- h .840 .346,4 .0922 .08 .34 4.58 .25 .013 I .00 .00 PIPE I I 1 I 1022.949 50.678 .351 I I I 1 I I I 51.029 4.47 12.02 2.25 53.27 I .00 -I- .74 1.52 2.000 .000 .00 1 .0 -I- -I- -I- + .723 .3464 -1- -I- -I- -1- -l- -I- -1- .0805 .06 .35 4.29 -1- .25 1- .013 .00 .00 PIPE I I I I 1023.672 50.928 .363 I I I I I I I 51.291 4.47 11.46 2.04 53.33 1 .00 -i- -1- 1 .74 1- 1.54 2.000 .000 .00 1 .0 -I- -I- -I- -I- .629 .3464 -I- -I- -I- -I- + + -I- .0703 .04 .36 4.02 .25 .013 1 .00 .00 PIPE I I I I 1024.300 51.146 .375 I I I I I I I 51.521 4.47 10.93 1.86 53.38..00 1 -I- -I- .74 1- 1.56 2.000 .000 .00 1 .0 -1- -I- -I- + .546 .3464 -I- + + -i- -I- -I- -I- .0614 .03 .38 3.76 .25 .013 .00 .00 PIPE I I I I 1024.847 51.335 .388 i I 1 I I I I 51.723 4.47 10.42 1.69 53.41 I .00 -I- I .74 1- 1.58 2.000 .000 .00 1 .0 -I- -1- -I- -I- .479 .3464 -I- -I- -I- -I- -I- -I- -I- .0537 .03 .39 3.53 -I- .25 .013 1 .00 .00 PIPE I I I I 1025.326 51.501 .401 I I I I I I I 51,902 _4.47 9.94 1.53 53.44 1 -.00 -I- .74 1- 1.60 2.000 .000 .00 1 .0 -1-, -I- -I- -I- .419 .3464 -1- -I- -i- -I- -l- -I- -i- .0469 .02 .40 3.30 -I- .25 .013 .00 .00 PIPE FILE: 709lat2.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 3 Program Package Serial Number. 1376 WATER SURFACE PROFILE LISTING Date: 9-18-2003 Time:10:47:21 tract no. 16250 lateral two 1 Invert I Depth I Water I Q I Vel Vel I Energy I Super lCriticallFlow ToplHeight/1Base Wti INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.1 Eiev I Depth I Width IDia: FTIor I.D.1 ZL IPrs/Pip -I- -1- + -I- L/Elem ICh Slope I 1 -I- -I- -I- -1- -I- -I- -I- -I- -I- -1 I I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X-Falll ZR (Type Ch I i I I 1025.745 51.646 .415 I I i I I I 1 1 1 52.061 4.47 9.47 1.39 53.46 .00 .74 1.62 2.000 .000 .00 1 .0 -I- -I- -I- -I- .369 .3464 -1- -I -1 1 0410 .02 42 3110 -1..25-1.013 .00 .DO PIPE I I I I I 1026.114 51.774 .429 I I I I I I I I 52.203 4.47 9.03 1.27 53.47 .00 .74 1.64 2.000 .000 .00 1 .0 -I- - I -+ 1- -I- -I- -t- -I- .326 .3464 -t- -I- I- -I- -1- + .0358 .01 .43 2.90 .25 .013 .00 .00 PIPE l i I I I I 1026.440 51.887 .443 I I I I I I l 52.330 4.47 8.61 1.15 53.48 .00 .74 1.66 2.000 .000 .00 1 .0 -I- -I- -t- 1- -I- -I- -I- -1- .282 .3464 -I- -I- 1- -I- -I- -I- .0313 .01 .44 2.72 :25 .013 .00 .00 PIPE c I I I I 1026.722 51.985 .459 I I I I I I II 52.444 4.47 8.21 1.05 53.49 .00 .74 1.68 2.000 .000 .00 1 .0 -I- + -I- F -I- -1- -I- -I- .251 .3464 -I- -I- + -1- -I- -I- .0274 .01 .46 2.54 .25 .013 .00 .00 PIPE 1 I I I I 1026.973 52.072 .474 I I I I I I 11 52.546 4.47 7.83 .95 53.50 .00 .74 1.70 2.000 .000 .00 1 .0 -I- -I- + 1- -I- -l- + -I- .216 .3464 -1- + -I- -1- -1- -I- .0239 .01 .47 2.38 .25 .013 .00 .00 PIPE I I I I I 1027.189 52.146 .491 I I I I I I II 52.637 4.47 7.47 .87 53.50 .00 .74 1.72 2.000 .000 .00 1 .0 -1- -I- -I' -I- -I- + -1 I -1.25-I .193 .3464 .0209 .00 .49 2.23 .013 .00 .00 PIPE I 1 1 I I I I' 1027.382 52.213 .507 I I I I I I 52.720 4.47 7.12 .79 53.51 .00 .74 1.74 2.000 .000 .00 1 .0 -1.25-I -I -I -1 -I .163 .3464 -i -1 .0183 I- .00 .51 2.09 .013 .00 .00 PIPE 1 l I I I I 1027.545 52.270 .525 I I I I I I I 52.795 4.47 6.79 .72 53.51 .00 .74 1.76 2.000 .000 .00 1 .0 + -I- -I- 1- + -I- + + .142 .3464 -I- -I- -1- -1- -I- -i_ .0160 .00 .53 1.96 .25 .013 .00 .OQ PIPE 1 1 1 1 1 1 1 1027.687 52.319 .543 -- 1 1 1 1 1 1 52.862 4.47 6.47 .65 53.51 .00 .74 1.78 2.000 .000 .00 1 .0 _ -I- -I- -I- 1- _I_ _I. _l. -1- .121 .3464 -I- -I- -I- -I- -I- -I- .0140 .00 .54 1.83 .25 .013 .00 .00 PIPE FILE: 709lat2.WSV11 W S P G W- CIVILDESIGN Version 14.03 PAGE 4 Program Package Serial Number. 1376 WATER SURFACE PROFILE LISTING Date: 9-18-2003 Time:10:47;21 tract no: 16250 lateral two I InvertWI Depth I Water I Q I Vel Vel I Energy I Super ICriticallFlow ToplHeightllBase Wti INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.EI.I Elev I Depth I Width IDia.-FTIor I.D.I ZL IPrs/Pip + + -I- -l- -I- -I- -I- -I- -I- + -I- -I- -I- -1 LlElem ICh Slope I I I I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X-Falll ZR (Type Ch I I I 1027.808 52.361 1 .562 1 52.923 .104 .3464 .00 1 I I i 1027.912 52.397 I .581 I 52.978 .083 .3464 1- .013 .00 .00 PIPE 1027.995 152.425 .602 53.028 .069 .3464 I .00 I I I I 1028.064 52.450 --.623 I -53.073 .054 .3464 -I- -I- -I- 10281119 152.468 .645 -I- 53.113 -I- + .1. -I- -I- .040 .3464 .0082 .00 .62 1.40 10281159 152.482 .668 -I- 53.150 -I- + -1. -I- -I- .031 .3464 I I I I 4.47 5.10 .40 10281190 152.493 .691 + 53.184 -I- -1 -I- + -I- .016 .3464 1 .0 10281205 152.498 .716 -1- 53.214 -I- -I + -I- -I- .005 .3464 10281210 152.500 .743 53.243 -I- _I -I- -I- + WALL ENTRANCE -I. .00 4.47 6.171 .591 53.51 1.00 1 .74 1.80 2.000 .000 .00 1 .0 -I- -I- + -I- + -I- -I- F .0123 .00 .56 1.71 .25 .013 .00 .00 PIPE 4.47 15.881.54 53.52 1.00 1 .74 1.82 2.000 .000 .00 1 .0 + + -I- -I- -I- -I- -I- 1- 0107 00 58 1 60 25 .013 .00 .00 PIPE 4.47 15.611 .491 5352 1.001 .74 1.83 2.000 .000 .00 1 .0 -I- -I--I- .0094 .00. -I- -l- .60 1.50 + -I- .25 1- .013 .00 .00 PIPE i I I I 4.47 5.35 .44 I i 53.52 I .00 I .74 1.85 2.000 .000 .00 1 .0 -I- -I- -1- -I- -I- -I- -I- 1- .0082 .00 .62 1.40 .25 .013 .00 .00 PIPE I I I I 4.47 5.10 .40 f I 53.52 I .00 I .74 1.87 2.000 .000 .00 1 .0 -I- -I- + .0072 .00 -I- -I- .65 1.31 + .25 -I- 1- .013 .00 .00 PIPE 4.47 4.861 .37 53.52 1.00 1 .74 1.89 2.000 .000 .00 1 .0 + + -1- -I- -I- -I- -I- 1- .0063 .00 .67 1.23 .25 .013 .00 .00 PIPE 4.47 4.641 .33 53.52 1.00 1 .74 1.90 2.000 .000 .00 1 .0 -I- + -I- .0055 .00 -I- -I- .69 1.15 -I- .25 -I- 1- .013 .00 .00 PIPE I I I 4.47 4.42 .30 I I 53.52 I 1 .00 1 .74 1.92 2.000 .000 .00 1 .0 -I- -I--I- .0048 .00 + + .72 1.07 -I- .25 -I- 1- .013 .00 .00 PIPE I I I I I 4.47 4.21 27 53.52 -I- -I- -I- + -I- I1 .00 _ -I- 1 .74 1.93 2.000 .000 + I- .00 1 .0 FILE: 709Iat2.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 5 Program Package Serial Number. 1376 Date: 9-18-2003 Ti WATER WATER SURFACE PROFILE LISTING tract no. 16250 lateral two * ******** Invert I Depth I Water I Q I Vel Vel I Energy I Super ICriticallFlow ToplHeight/lBase Wti INo Wth Station I Elev I (FT) I Elev I (GFS) I (FPS) Head I Grd.El.1 Elev I Depth I Width IDia: FTIor I.D.1 ZL IPrs/Pip + -1 -I -I "I -I -I Ave -1 HF -SSE pthlFroude NINorm Dp I "N" I X-Falll ZR (Type Ch UElem lCh Slope l SF I I I I I I I I i I I I I I I I I 1028.2`10 52.500 1.136 53.636 4.47 .49 .00 53.64 .00 .21 8.00 6.000 8.000 .00 0 .0 FILE: 70glat4.WSW W S P G W - EDIT LISTING - Version 14.03 Date: 9-18-2003 Time:11: 4:39 WATER SURFACE PROFILE - CHANNEL DEFINITION LISTING PAGE 1 CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(S) Y(9) Y00) CODE NO TYPE PIER/PIP WIDTH DIAMETER WIDTH DROP CD 1 4 1 2.000 CD 2 3 0 .000 3.000 20.000 .000 ,000 -00 WSPGW WATER SURFACE PROFILE - TITLE CARD LISTING HEADING LINE NO 1 IS - tract no. 16250 HEADING LINE NO 2 IS - lateral four HEADING LINE NO 3 IS - WSPGW WATER SURFACE PROFILE - ELEMENT CARD LISTING ELEMENT NO 1 IS A SYSTEM OUTLET * UIS DATA STATION INVERT SECT 52.390 1005.000 50.000 1 ELEMENT NO 2 IS A REACH UIS DATA STATION INVERT SECT N OOC 1019.270 57.370 1 .013 ELEMENT NO 3 IS A WALL ENTRANCE UIS DATA STATION INVERT SECT FP 1019.270 57.370 2 .500 ELEMENT NO 4 IS A SYSTEM HEADWORKS UIS DATA STATION INVERT SECT 57.370 1019.270 57.370 2 PAGE NO 1 PAGE NO 2 W S ELEV RADIUS ANGLE ANG PT MAN H .000 .000 0 W S ELEV LATERAL 3'. ANDREA STREET INPUT DATA EDIT LISTING. Version 14.03 Date: 9-18-2003 Time:10:58: 8 WSPGW - PAGE 1 FILE: 7091at3.WSW WATER SURFACE PROFILE -CHANNEL DEFINITION LISTING Y 4 Y 5 Y(6) Y Y(1) Y 9 Y 10 CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR D P Y(1) Y(2) Y(3) () () () (� () () ( ) CODE NO TYPE PIER/PIP WIDTH DIAMETER WIDTH CD 1 4 1 2.000 CD 2 3 000 14.000 .000 .000 .00 0 .000 5.PAGE NO 1 WSPGW WATER SURFACE PROFILE - TITLE CARD LISTING HEADING LINE NOrI IS - 16250 HEADING LINE NO 2ISlateral three HEADING LINE NO 3 IS - PAGE NO 2 WSPGW WATER SURFACE PROFILE - ELEMENT CARD LISTING 1 is A SYSTEM OUTLET W S ELEV ELEnHcno U/S DATA STATION INVERT SACT 48.280 1005.000 45.500 *1 ELEMENT NO 21-9 A REACH000 U/S DATA STATION INVERT SECT013 N 1020.000 46.100 t1 ELEMENT NO 3 IS A REACH U/S DATA STATION INVERT SECT013 N .000 1033.940.53.310 1 ELEMENT NO 4 IS A WALL ENTRANCE STATION INVERT SECT500 FP U/S DATA 1033.940 53.310 2 ELEMENT NOS YSTEM Ej INVERT SECT DATA STATION 2 53.310 1033.940 53.310 RADIUS ANGLE ANG PT MAN H .000 .000 0 RADIUS ANGLE ANG PT MAN H .000 .000 0 W S ELEV LATERAL 3 - ANDREA STREET HYDRAULIC GRADE LINE W S P G W- CIVILDESIGN Version 14.03 PAGE 1 FILE: 7091at3.WSW Program Package Serial Number. 1376 Date: 9-18-2003 Time:10:58:11 WATER SURFACE PROFILE LISTING tract no. 16250 lateralthree -*�Y}�:*RX*RY-YA-tR11-/rl.-14:YfRl:YYT*RY*Rp R**4*YYR . YRYYRY*RtYk'�*Y*tRRAR RRY I Invert I Depth I Water I Q I Vel Vel I Energy I Super ICdticallFlow ToplHeight/IBase WtI INo Wth Grd.EI.I Elev I Depth I Width ID1a: Fflor I.D.I ZL IPrs/Pip Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I -I- -I- + -I- -I -I- -I- + + -I- -I- + -I- + I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X -Fall) ZR (Type Ch Ykt*YR*li}YY! IR*A'1rR*R UElem ICh Slope I I I k*kR**R'k*I*S*Y:RM[RRIRR!*1:k*RIRRR*R:!#k#I!*Rf*RYktlh**R*RRI*!:h*tkRIMYRRRi4*RIYR*iC*'1tltYtkRA*tlfc*#RRRRRIRRick'kRRl I I I I 1005.000 45.500 2.780 I I I 1 I I I I I 48.280 7.82 2.49 .10 48.38 .00 .99 .00 2.000 .000 .00 1 .0 -) I + + -I- -I 11.50 .0400 + -1- -1- 0012- 01 2 78 .00 .561 .013 .00 .00 PIPE I II I I I I 1016.583 45.963 2.327 -I- I I I I I I 48.290 7.82 2.49 .10 48.39 .00 .99 .00 2.000 .000 .00 1 .0 -I- -I- -I- + -I- -I- -I- + -I- F -i- -I- + HYDRAULIC JUMP 11 1 I I II 1016.583 45.963 .370 I I I I I I 46.333 7.82 19.54 5.93 52.26 .00 .99 1.55 2.000 .000 .00 1 .0 -1.56-1.013 -1- + -1- + .324 .0400 + -I- .2125 I .07 .37 6.79 .00 .00 PIPE I I I I I I I 1016.907 45.976 .370 I I I 1 I I 46.346 7.82 19.48 5 89 52:24 .00 a9 1.55 2.000 .000 .00 1 .0 -I 1 -{- -1- -I- '1- '1- -I- -1.22691 37 6 75 .56 .013 .00 .00 PIPE 3.093 .0400 .70 1 1 1 1 1 1 1 1020.000 46.100 .359 1 1 1 I 1 1 46.459 7.82 20.43 6.48 52.94 .00 .99 1.53 2.000 .000 .QO 1 .0 -1.30-1.013 -1- -I- + .954 .5172 -I- + -123501- .22 .36 7'21 .00 .00 PIPE I 1 I I I I I 1020.954 46.593 .364 I I I I I I 46.957 7.82 19.99 6.20 53.16 .00 .99 1.54 2.000 .000 .00 1 .0 -I I -1 -1 -I 1.816 .55 172 -I -I -1 21321 .39 36 7 00 .30 .013 .00 .00 PIPE I 1 I I I I I 1022.769 47.532 .376 I I I I I I 47.908 7.82 19.06 5.64 53.55 .00 .99 1.56 2.000 .000 .00 1 .0 .I 1 -1- -1- + + 1.510 .5172 + + -1.1862 - 28 38 -I 55 .30 .013 .00 .00 PIPE I I1 I I I I I 1024.279 48.313 .389 I I I I I 48.702 7.82 18.17 5.13 53.83 .00 .99 1.58 2.000 000 .00 1 .0 -1 -1- -I- + -I- 1.278 .5172 + -1 -1-16271 .21 .39 614 .301- .013 .00 .00 PIPE I ii t I I I i 1025.557 48.974 .402 1 I I I I 49.376 7.82 17.33 4.66 54:04 .00 :99 1€0 2.000 .000 .00 1 .0 -I -I- -I- + -1- 1.093 .5172 -1- + -1 14221 .116 40 5.75 .301 .013 .00 .00 PIPE FILE: 7091at3.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 2 Program Package Serial Number. 1376 Date: 9-18-2003 Time:10:58:11 WATER SURFACE PROFILE LISTING tract no. 16250 lateral three Water Q I Vel Vel I Energy I Super ICriticallFlow ToplHeight/IBase Wti INo Wth Invert I Depth I I Elev I (CFS) I (FPS) Head I Grd.El.1 Elev I Depth I Width IDia: FTIgr I.D.1 ZL lPrs/Pip Station I Elev I (FT) I -i -I- -I- + -I� -� + -I- -I- + A- -I- + -I- SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X-Falll ZR lType Ch L/Elem ICh Slope I 11FY*'R1rkY f*�kY�cYit*YI*Y4YMk**Yl**Yk***4r1*R*4**Y*iIY****1t*YYI*YY*Y!*l**YYI.YYI*****:k***I*�'!**R*1YYi**iltYl1c41rf*'lfkYIYY***Y*11t'1[*Y**YI**k*R 1 1 1 1 t I i 1026.650 49.539 I I 1 1 1 1 .416 49.956 7.82 16.52 4.24 54.19 .00 .99 1.62 2.000 .000 .00 1 .0 -1.30-1.013 -1 + -I .945 .5172 -1 -1 -I+ -� 1243 I 12 42 5139 .00 .00 PIPE 1 1 1 1 11 50.028 1 1 1 1 1 1 1 50.458 7.82 15.75 3.85 54.31 00 99 1.64 2.000 .000 .00 1 .0 1027.595 .430 -l- .1. + .823 .5172 .1. + .1. .l 1086 1 .09 43 5` 05 � .30 x..013 .00 .00 PIPE 1 1 1 1 1 1 1028.418 50.454 I I I 1 1 1 1 .444 50.898 7.82 15.02 3.50 54.40 .00 .99 1.66 2.000 .000 .00 1 .0 �- .1. -I. .716 .5172 .I- -I- -10949 I 07 4,73 -1 .30 -1- .013 DO .00 PIPE 1 1 1 1 1 1 1029.134 50.824 1 I 1 1 1 1 1 .460 51.284 7.82 14.32 3.18 54.47 00 .99 1.68 2.00D D00 .00 1 .0 .l -I- + -1- .632 .5172 + + .I- -� 0830 1 .05 46 4!43 .30-1.013 .00 .00 PIPE II I I I I 1029.766 51.151 I I I I I I I .475 51.626 7.82 13.65 2.89 54.52 .00 .99 1.70 2.000 .000 .00 1 .0 -I -I -I .553 .5172 .1 .1 _10726 1 .04 48 4!15 -1.30-1.013 .00 .00 PIPE . i t 1 1 1 1030.319 51.437 1 I 1 1 1 I 1 I .492 51.929 7.82 13.02 2.63 54.56 .00 .99 1.72 2.000 .000 .00 1 .0 -1.30 -1 -I -1 -1 .490 .5172 -1 + .l -0635 I 03 .49 3 88 .013 .00 .00 PIPE I I I i I I 1030.809 51.690 I i I i l l I .509 52.200 7.82 12.41 2.39 54.59 D0 .99 1.74 2.000 .000 .00 1 .0 -1.30-1 -1 -1- -I .434 .5172 -I -I .I -! 0555 I 02 .51 3!64 .013 .00 .00 PIPE 1 1 1 1 1 1 1 1031.243 51.915 1 1 1 1 1 1 .526 52.441 7.82 11.83 2.17 54.62 .00 .99 1.76 2.000 .000 .QO 1 .0 -I -.30-I -I- -1' -i- .383 .5172 -1- 'I- -I- -104861 .02 .53 3.40 .013 .00 .00 PIPE 1 1 1 1 1 1 1031.626 52.113 1 1 1 1 1 1 1 .544 52.65_7 7.82 11.28 1.98 54,63 .00 .99 1.78 2.000 .000 .00 1 .0 -1.30-1-.013 -I -I -1 .339 .5172 -I -I -1 - 1 0425 .01- .54 319 .00 .OQ PIPE FILE: 7091at3.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 3 Program Package S6rial Number. 1376 WATER SURFACE PROFILE LISTING Date: 9-18-2003 Time:10:58:11 tract no. 16250 lateral three Invert I Depth I Water I Q I Vel Vel I Energy I Super ICriticallFlow ToplHeighmBase Wt1 INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.1 Elev I Depth I Width IDia.-FTIor I.D.1 ZL IPrs1Pip 'I 'I -i '1 L/Elem Ich Slope I I 'I 'I -I SF Ave -I HF -ISE DI th Froude I 1 I I P I N Norm Dp I "N" I X-Falll ZR IType Ch I ( 1 I f 1031.965 52.288 .563 I I I I I I I I 52.851 7.82 10.76 1.80 54.65 .00 -1.30-1.013 I .99 1.80 2.000 .000 .00 1 .0 -f' -I- -1' 'I- .299 .5172 "1- -1- -.0372 f .01 .56 2.98 I .00 .00 PIPE I I I I 1032.264 52.443 .583 I I I I I I I1 53.026 7.82 10.26 1.63 54.66 .00 + -I- .99 + 1- 1.82 2.000 .000 .00 1 .0 -I- -I- -I' -I- .265 .5172 -I- -I- -I- -I- + + .0326 .01 .58 2.79 .30 1 .013 1 .00 .00 PIPE I I I I 1032.529 52.580 .603 I I I I I I I 53.183 7.82 9.78 1.49 54.67 .00 .99 1.84 2.000 .000 .00 1 .0 'i' 'I' -i' -I- "1- .Ie -1.30-1.013 .233 .5172 -102851 D1 .60 2161 1 1 I .00 .00 PIPE 1 1 1 1 1032.762 52.701 .624 1 1 1 1 1 1 53.325 7.82 9.32 1.35 54.67 .00 -1.30-1.013 .99 1.85 2.000 .000 .00 1 .0 'I' 'I' -I' .205 .5172 -1' "1 -!02491 .01 .62 2144 1 1 1 OD .00 PIPE 1 1 1 1 1032.967 52.807 .646 1 1 1 1 1 1 53.453 7.82 8.89 1.23 54.68 .00 .99 1.87 2.000 .000 .00 1 .0 -1- + -1- + -I- .179 .5172 -102191 OD 65 2.28-1.30-1.013 I I .00 .00 PIPE I I I I 1033.145 52.899 .669 I I I I I I I 53.568 7.82 8.48 1.12 54.68 .00 -1.30-1-.013 .99 1.89 2.000 .000 .00 1 .0 -I- '1- -i' 'I' .156 .5172 _I- -1- -!01921 .00 .67 214 1 1 .00 .00 PIPE 1 1 1 1 1033.301 52.979 .693 1 1 1 1 1 1 1 53.673 7.82 8.08 1.01 54.69 .00 + -1.30-1.013 .99 1.90 2.000 .000 .00 1 .0 + '1' + + .134 .5172 + -I _'01681 .00 .69 1 1 .00 .00 PIPE I I I I 1033.435 53.049 .718 I I I I I I I 53.767 7.82 7.71 .92 54.69 .00 .99 1.92 2.000 .000 .00 1 .0 -I- -I- -1- -1' .117 .5172 _I- -I- -101471 OQ 72 1.87-1.30-1..013 1 1 1 .00 .00 PIPE 1 1 1 1 1033.552 53.109 .743 1 1 1 1 1 1 53.853 7.82 7.35 .84 54.69 .00 + -1- .99 + 1- 1.93 2.000 .000 .00 1 .0 - _I_ + -I- + .098 .5172 -I' + -I- -I--1= -I- .0129 .00 .74 1.74 .30 .013 .00 .00 PIPE FILE: 7091at3.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 4 Program Package Serial Number. 1376 Date: 9-18-2003 Time:10:58:11 WATER SURFACE PROFILE LISTING tract no. 16250 lateral three '��*�x�#Zy�-�FA�tlltYrklelt![z'>'S-+x Q I Vel Vel I Energy I Super ICriticallFlow ToplHeight/lBase Wt1 INo Wth Invert I Depth I Water I Head I Grd.El.1 Elev I Depth I Width IDia.-FTIor I.D.1 ZL IPrs/Pip Station I Elev I (FT) I Elev _ _ -1 I (CFS) I (FPS) -I -I -1 -1- -I- + -1- _I_ + -1 "N" X-Falll ZR (Type Ch _ -1 -I SF Avel HF ISE DpthlFroude NINorm Dp I I L/Elem ICh Slope a i I I ,�1 I I I 1 I I i I I I I I I 1033.650 53.160 .770 53.930 7.82 7.01 .76 54.69 .00 .99 1.95 2.000 .000 .00 1 -0 -1 -1- -I + -I -I 1 -I -I -1.0113 .7 163 .30 .013 .00 .00 PIPE 71 .082 .5172 .00 1 I I 1 1 1 1 1 1 11 1 1 1033.731 53.202 .798 54.000 7.82 6.68 .69 54.69 .00 -99 1.96 2.000 OOD .00 1 .0 -I- -I- -I- -I- + -I 00 + 1!52 x.30-1.013 .00 .Otl PIPE .067 .5172 -�0Q991 1 1 1 I I II 1033.798 53.237 .827 I 1 1 1 1 1 54.064 7.82 6.37 .63 54.69 .00 .99 1.97 2.000 .000 .00 1 .0 -I -I- + -I- -1- -1- -I- -1.00871 .83 1.42 30-I .013 .00 .00 PIPE .052 .5172 .00 I I I I I I I 1033.850 53.263 .858 I I I I, I I 54.122 7.82 6.07 .57 54.69 .00 .99 1.98 2.000 .000 .00 1 .0 -I- -I- -I- "I' -I- -1- -1.00771 86 1.33 -1.30-I-.013 .00 .00 PIPE .041 .5172 .00 1 1 1 1033.891 153.285 .889 1 I I I 1 54.174 7.82 5.79 .52 54.69 DO 99 1.99 2.000 ODO .00 1 .0 -1.30-I -I- + + -I- + -I- -10067 1 .89 1.24 .013 .00 .00 PIPE .028 .5172 .00 I I I I I I I 1033.919 53.299 .9Z2 I I I I I I 54.221 7.82 5.52 .47 54.69 .00 .99 1.99 2.000 .000 .00 1 .0 + -I- -I- -I- �- -I- -1.0059 1 D 92 1.15 -1-.30-I ,013 .00 .00 PIPE .016 .5172 1 1 1. 1033.935 153.307 .957 1 i I I i 54.265 7.82 5.26 .43 54.69 .00 .99 2.00 2.000 D00 .00 1 .0 -I -.30-I-.013 -I -I'-I -I -I' -1 -10052 I DO 96 1.08 .00 .00 PIPE .005 .5172 I I I I 1033.940 153.3110 .995 I I I 1 54.305 7.82 5.01 .39 54.69 00 99 Z.OQ 2.000 .000 .DO 1 .0 -I- -I- -I- + + ►- -I- -I- -I- -I- WALL ENTRANCE -I- + -I- -I- I l i I I 1033. I 940 I 53.310 1.566 I I I I I I 54.876 7.82 .36 .00 54.88 .00 21 14.00 5.000 14.000 .00 0 .0 . -I- .+ -I- -I- -I- -1- -I- -I- -I- + -1- -1- + I- 4 ANDREA STRE-ET LATERAL, . . INPUT DATA. LATERAL 4 -ANDREA STREET HYDRAULIC GRADE.LINE W S P G W- CIVILDESIGN Version 14.03 PAGE 1 FILE: 7091at4.WSW Program Package Serial Number. 1376 Date: 9-18-2003 Time:11: 4:42 WATER SURFACE PROFILE LISTING tract no. 16250 lateral four Q I Vel Vel I Energy I Super ICriticallFlow ToplHeight/IBase Wt( INo Wth I Invert I Depth I Water Elev I I Grd.El.1 Elev I Depth I Width IDiaTIor I.D.1 ZL IPrs/Pip I(CFS) I (FPS) Head : F Station I Elev I (FT) I + -I -I- -I- -I- -I- -I- -I- -I- ++ -I- -I- -I- I SF Avel HF ISE DpthlFroude NINorm Dp I "N" i X-Fa111 ZR IType Ch LJElem ICh Slope I I I I I I I 1005.000 50.000 .445 I I I I I I I I I 50.445 11.16 21.42 7.13 57.57 .00 1.20 + -1- -I- -I- 1- 1.66 2.000 .000 .00 1 .0 -I- -1- -I- -I- -I- -I• -I- -1- -l- .45 6.75 .35 D13 .00 .00 PIPE 1.586 .5165 .1952 .31 I I { 1 1006.586 50.819 .457 111.16 20.59 6.58 57.861 .00 1.20 1.76 _ _ 1.68 2.000 .000 .00 1 .0 + -1- -I- -I- 1.694 .5165 + -I -I 17271- .29 .46 6.39 .35 .351 .013 I 1 1 .00 .00 PIPE I I I I 1008.280 51.694 .473 I I I I I I 52.167 11.16 19.63 5.98 58.15 .00 1.20 -1 1 1.70 2.000 .000 .00 1 .0 -I -I -I -I 1.445 .5165 -1 -1 -I 15101 .22 .47 5.98 .35 .013 I I I .00 .00 PIPE I I I I 1009.725 52.440 AS9 I I I I I I 52.929 11.16 18.72 5.44 58.37 .00 1.20 + -I- -I- 1- 1.72 2.000 .000 .00 1 .0 + -I- -I- -I-+ 1.242 .5165 -I- -1- -1 -1- -1 1320 .1.6_, .49 5.60 .35 .013 I 1 I .00 .00 PIPE I I I I 1010.967 53.082 .506 I I I I I I 53.588 11.16 17.85 4.95 58.53 .00 1 .20 1.74 2.000 .000 .00 1 .0 -1- -I- -1,11551 -I- + -1- + 51 5 24 -1 .351 .013 .00 .00 PIPE 1.079 .5165 .112 I I I I I I I 1012.046 53.639 .523 I I I I I I 54.162 11.16 17.02 4.50 58.66 .00 1.20 -1.35-1 1.76 2.OD0 .000 .00 1 .0 -I- -I- -I- -I- .940 .5165 -1- -I- -11010 1 .09 .52 4.91 .011- I1 1 .00 .00 PIPE I I I I 1012.986 54.125 .541 I I I I I I 54.666 11.16 16.22 4.09 58.75 .00 1.20 -1.35-1-.013 1.78 2.000 .000 .00 1 .0 -I -i -1 -I -I- 'I- -108841 .54 4.60 .00 .00 PIPE .823 .5165 .07 I I I 1 1 1 1 1013.809 54.550 .560 1 1 1 1 1 I 55.110 11.16 15.47 3.72 58.83 .00 1.20 -1.35-1 1.80 2.000 .000 .00 1 .0 -I -I -I -1 -I- D6 .56 4.30 .013 00 .00 PIPE .724 .5165 -.07741 I 1014.533 54.924 .580 55.504 11.16 14.75 3.38 58.88 .00 1.20 1- 1.82 2.000 .000 .00 1 .0 -I- + -I- -I- + -I- + -I-+ -I- + -I- -I- .58 4.03 .35 .013 .00 .00 PIPE 640 .5165 .0677 .04 W S P G W- CIVILDESIGN Version 14.03 PAGE 2 FILE: 7091st4.WSW Program Package Serial Number. 1376 Date: 9-18-2003 Time: 11: 4:42 WATER SURFACE PROFILE LISTING tract no. 16250 lateral four Vel Vet i Energy }Super }Critical}Flow Top}Height/}Base Wti }No Wth } Invert I Depth I Water I Q I Head I Grd.E1.1 Elev I Depth } Width IDia: FTlor I.D.I ZL IPrs/Pip Station I Elev I (FT) 1 Elev I (CFS) I (FPS) -1 -1- -I- -1- -I Ch _}. -I- -I- -I- Slope I L/Elem ICh Slope I ] X�Fall ZR T e } -1 I -1 SF Ave] HF ISE DpthlFroude NINorm Dp I ' N I I I yP ,L/El}SCh I I I I 1 I I I I I I I f 1015.173 55.254 .600 55.854 11.16 14.06 3.07 58.92 .00 1.20 -I- -I- -I- -I' 1.83 2.000 .000 .QO 1 .0 + -f- + -I- -I- + -I- -I- -I- 35 .60 3.77 . .0133 00 .00 PIPE .565 .5165 .0593 .03 1. 1015737 ]55.546 6I2 1 56.167 111.16 113.41I 2.79 56.961 .00 1 20 -1.35-1 1.85 2.000 ODO .00 1 .0 -I- -I- -I- -I' -I- -I- -105191 .62 3.52 .013 .00 .00 PIPE .499 .5165 .03 I I I 1016.236 155.803 .643 ] I 1 I ( 56.446 11.16 12.78 2.54 58.98 .00 1.20 -1.35-i 1.87 2.000 .000 .OD i .0 -1 -1 -1 '1 -I -1 -!04551 .02 .64 3.30 .013 .00 .00 PIPE .441 .5165 I I I I I i I 1016.677 56.031 .666 I I I I I I 56.697 11.16 12.19 2.31 59.00 .00 1.20 -I- 1- + + -I-.00 1.89 2.000 OQO .00 1 .0 _I_ + -I- -I- -I- -I- -I- + -I- .67 3.08 .35 .013 .00 PIPE .392 .5165 .0398 .02 I I I I I I 1017.069 I 56.233 .689 I I I I l 1 56.922 11.16 11.62 2.10 59.02 .00 1.20 -1.35-1 1.90 2.000 .000 .00 1 .0 -I- -I- + -I- -I- + .01 69 2.88 .013 DO .00 PIPE .344 .5165 -03491 I 1 l I 1 1 } 1017.413 56.411 .714 1- I I I I I 57.125 11.16 11.08 1.91 59.03 .00 1.20 -1.35-} 1.92 2.000 .000 .00 1 .0 + -}- -I- -I- + -1- -103061 .01 .71 2.69 .013 .00 .00 PIPE .305 .5165 II I 10171718 156.569 .739 I I I I I 57.3C8 11.16 10.57 1.73 59.04 .00 1.20 -1.35-1 1.93 2.000 .000 .00 1 .0 -I- + + -1- -1- -1- -1,02681 .74 2.52 .013 .00 .00 PIPE .267 .5165 .09 i I I 10171985 156.706 .766 I I I f I 57.473 11.16 10.07 1.58 59.05 .00 1.20 1.94 2.000 .000 .00 1 .D -f -] -1 + -1- -1- .00 -(02361 .01 .77 2.35 .013 .00 PIPE ,234 .5165 -1.35-1 I i I 1018.219 56.827 .794 ] } I } I 57.621 11.16 9.60 1.43 59.05 .00 1.20 -I- + 1- 1.96 2.000 .000 .00 1 .D -]- -f- + -f- -I- 1 -I- -i -'0207 .79 2.20 .35 .013 .00 .00 PIPE 206 .5165 .00 FILE: 7091at4.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 3 Program Package Serial Number: 1376 WATER SURFACE PROFILE LISTING Date: 9-18-2003 Time:11: 4:42 tract no. 16250 lateralfour Invert I Depth I Water I Q I Vel Vel I Energy I Super [Critical I Flow ToplHeightllBase Wti INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.EI.1 Elev I Depth I Width IDia.-FTIor I.D.1 ZL IPrs/Pip -I -1 -I -i VElem ICh Slopea I I 'I -I +Ave _I I I SF I HF ISE pthlFroude NINorm Dp I "N" I X -Fall] ZR (Type Ch I I I I I I I I 1018.425 56.934 .822 I I i I I 57.756 11.16 9.16 1.30 59.06 .00 1.20 -I- -I- -I- 1- 1.97 2.000 .000 .00 1 .0 -I- -I- -I- -I- .175 .5155 -I- -I- -I- -I- -1" -I- .0181 .00 .82 2.05 .35 .013 1 .00 .00 PIPE I I I I 1018.600 57.024 .853 I I I I I I I 1 57.877 11.16 8.73 1.18 59.06 .00 1.20 -1- -1. + -I- 1- 1.98 2.000 .000 .OQ 1 0 -I- -I- -I- -I- .153 .5165 -I- -I- -I- -I- -1- .0159 .00 .85 1.91 .35 .013 I I .00 .00 PIPE I I I I 1018.753 57.103 .884 I I I I I I I 57.987 11.16 8.33 1.08 59.06 .00 1.20 199 2.000 .000 .00 1 .0 -I- -I- -1- -1.35.1 -1- "I" -10140 I -1- .129 .5165 DO 88 1179 .013 .00 .00 PIPE I I t I 1018.883 57.170 .917 I I I I I I I 1 1 58.087 11.16 7.94 .98 59.07 .00 1.20 -1.35-1 1.99 2.000 .000 .00 1 .0 -i -i -I- -1 .109 .5165 -I "1 -0123 1 .00 .92 1167 .013 1 I .00 .00 PIPE 1 1 I 1 1018.992 57.226 .951 1 1 1 1 1 1 1 58.177 11.16 7.57 .89 59.07 .00 1.20 2.00 2.000 .000 .00 1 .0 '1- . 'I- -1- 'I' .089 .5165 -1 -I -0108 I .00 .95 1155 -1.35-1 .013 .00 .00 PIPE 1019.080 57.272 .987 58.259 11.16 7.22 .81 59.07 .00 1.20 -I- -I- + 1- 2.00 2.000 .000 .00 1 .0 -I- -I- -I- -I- .070 .5165 + -1- -I- -I- -I- + .0095 .00 .99 1.45 .35 .013 I I .00 .00 PIPE I I I I 1019.150 57.308 1.025 I I I I I I I 58.333 11.16 6.88 .74 59.07 .00 1.20 -I 1 2.00 2 000 .000 .QO 1 .0 -I- -I- -i- 'I' .053 .5165 'I "1 .0084 I .00 1 03 1.35 .35 .013 I 1 1 .00 .00 PIPE I I I I 1019.203 57.335 1.065 I I I I I I 58.401 11.16 6.56 .67 59.07 .00 1.20 -I 1 2.00 2.000 .000 .00 1 .0 -I- -I- '1- "I" .039 .5165 -I- -1_ _10074 I .00 1 07 1.25 .35 .013 I f l .00 .00 PIPE 1 I I I 1019.242 57.355 1.106 I I I I I I 58.462 11.16 6.25 .61 59.07 .00 1.20 -1 1 1.99-- 2.000 000 .00 1 .0 -I- -I- _1-.I- .022 .5165 -I- -I- -10065 I 00 1 11 1.16 .35 .013 .00 .00 PIPE FILE: 70912t4.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 4 Program PacWAge Serial Number *1376 TER SURFACE PROFILE LISTING Date: 9-18-2003 Time: 4;42 tract no. 16250 lateral four I Invert I Depth I Water I Q I Vel Vel I Energy I Super ICriticallFlow ToplHeightl�Base Wti Wth Station { Elev 1 (FT) 1 Elev 1 (CFS) I (FPS) Head 1 Grd.El.1 Elev I Depth I Width ]Dia: FTlor I.D.1 ZL IPrs[Pip -I- -I- -I- -I- -I- -I- -I- -I- -I- -1 L/Elem ICh Slope 1 -11 i -I I -1 SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X-Falll ZR (Type Ch ****kl***k*#'*Ik*k*k I'**#k*kk I I I i I I i t i i I I I 1019.264 57.367 1.150 58.517 11.16 5.96 .55 59.07 .00 1.20 1.98 2.000 .000 .00 1 .0 -1 -I -I -I -I -I -10058 I 00 1 15 1.08 -1 .351 .013 .00 .00 PIPE .006 .5165 I 1 1 1 1 1 1 1 1 1 11 1 1G19.270 57.370 1.198 58.568 11.16 5.68 .50 59.07 .00 1.20 1.96 2.000 .000 .QO 1 .0 -i- -I- -I- -i- -I- -i- -I- -i- -1- -l- -I- -I- -I- F WALL ENTRANCE I I I I I I I I I I 1 .21 I I 20.00 3.000 20.000 .00 0 .0 1019.270 57.370 1.948 59.318 11.16 .29 .00 59.32 .00 -1- + -I- -1- -I- -I- + + -I- -I- + -I- + I- LATERAL 5 - ANDREA STREET INPUT DATA EDIT LISTING - Version 14.03 Date: 9-18-2003 Time:11:12: 9 W S P G W - PAGE 1 FILE: 7O91at5.WSW WATER SURFACE PROFILE - CHANNEL DEFINITION LISTING ( Y 4 5 y(6) Y(7) Y(8) Y(9) YO 0 T CHN NO OF AVE PIER HEIGHT 1 BASE ZL Z DROP Y(1) Y(2) Y(3) ) Y () () () () () ) CARD SEC CODE NO TYPE PIER/PIP WIDTH DIAMETER WIDTH CD 1 4 1 2.000 CD 2 3 0 .000 3.000 14.000 .000 -000 •00 PAGE NO 1 WSPGW WATER SURFACE PROFILE - TITLE CARD LISTING HEADING LINE NO 1 13 -tract .16250 HEADING LINE NO2 I lateral five HEADING LINE NO 31S - PAGE NO 2 WSPGW -ELEMENT CARD LISTING WATER SURFACE PROFILE NO 1 ISA SYSTEM OUTLET W S ELEV ELEMENT UIS DATA STATION INVERT SECT 52,390 1005.000 50.000 * * *1 ELEMENT NO 2ISA REACH INVERT DATA STATION INVERT SECT N 000 1020.000 56.830 1 13 * * * ELEMENT NO 31S A REACH UIS DATA STATION INVERT SECT N 000 1033.800 57.480 1 ELEMENT NO 4 IS A WALL STATION INVERT SECT CE FP UIS DATA 1033.800 57.480 2 .500 S ELEMENT NYSTEM HEADWORKS O INVERT SECT DATA STATION 57.480 1033.800 57.480 2 RADIUS ANGLE ANG PT MAN H .000 .000 0 RADIUS ANGLE ANG PT MAN H 000 .000 0 W S ELEV FILE: 7091at5.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 1 Program PacWATER SURFACE PROFILE LISTING Date: 9-18-2003 Time:11:12:12 tract no. 16250 lateral five Invert I Depth I Water I Q j Vel Vet I Energy I Super ICriticallFlow ToplHeight/IBase Wtl INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.EI.I Elev I Depth I Width IDia.-FTIor I.D.I ZL IPrs/Pip -I -I -I 'I -i -I -I -1 HF ISE Dpthl -1oude NINorm Dp I "N" I X -Fall( ZR (Type Ch USF Ave1 Elem ICh Slope I .... I �I .. �. SF Ave 1005.000 150.000 -I .0119 .4553 1005.019 150.009 HYDRAULIC JUMP 1005.019 150.009 -1 1.715 .4553 .013 1006.734 150.789 -1- 2.056 .4553 1008.790 51.7- -1 1.694 .4553 1010.484 152.497 -1 1.424 .4553 1011.907 153.145 -1 1.210 .4553 1013.118 153.696 -1 1.039 .4553 I I 1 1014.157 54.170 .902 .4553 11 I, I I I I 1 1 11 2.390 52.390 7.81 2.49 .1 D 52.49 .00 .99 -I- -I- -I- + -1- -I- -1- -I- -I- -1- h .0012 .00 2.39 .00 .31 .013 1 1 1 1 1 1 1 1 1 1 2.390 52.399 7.81 2.49 .10 52.49 .00 .99 .00 2.000 .000 .00 1 .0 .00 .00 PIPE .00 2.000 .000 .00 1 .0 .362 50.370 7.81 20.151 6.31 56.681 .00 + -I- .99 1.54 2.000 .000 .00 1 1- .0 + -I- + -I- -I- -I- -1- + .2232 .38 .36 7.08 .31 .013 .00 .00 PIPE I .370 I 51.159 I I I I I I1 7.81 19.52 5.92 57.08 -1- .00 + I .99 1.55 2.000 .000 .00 1 1- .0 -1- -1- -1- + + + -I- -1- 1996 .41 .37 6.78 .31 .013 .00 .00 PIPE I 362 I 52.108 1 1 I 1 1 I 7.81 18.61 5.38 57.49 I .00 -I- -I- I .99 1- 1.57 2.000 .000 .00 1 .D -I- -I- -I- -I- ++ -I- -1- .1743 .30 .38 6.35 .31 .013 .00 .00 PIPE .395 52.892 1 7.81 17.75 4.89 57.781 .00 -{- -I- .99 1- 1.59 2.000 .000 .00 1 .0 + -I- -I- -I- -I- -I- -I- -I- .1523 .22 .40 5.95 .31 .013 .00 .00 PIPE .408 53.553 7.81 1 1 6.92 4.45 58.00 .00 -I- -I- .99 1- 1.61 2.000 .00.0 .00 1 .0 -I- -1- -I- -I- -I- -I- -I- -I- 1330 .16 .41 5.57 .31 .013 .00 .00 PIPE 422 54.118 7.81 16.13 4.0 58.161 .00 .99 -I- 1- 1.63 2.000 .000 .00 1 .0 -I- -1- + -I- + -I- -I- + 1163 .12 .42 5.22 -I- .31 .013 .00 .00 PIPE 1 .437 1 54.607 1 1 I 1 1 II 7.81 15.38 3.67 58.28 .00 -I- I _ .99 + I- 1.65 2.00D 000 .00 1 .0 -I- -I- -I- -I- -1- + -I- -I- 1018 pg 44 4.89 .31 .013 .00 .00 PIPE FILE: 709Iat5.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 2 Program Package Serial Number. 1376 WATER SURFACE PROFILE LISTING Date: 9-18.2003 Time:11:12:12 tract no. 16250 lateral five fe*t*k-kk****Yrk**# _ e**i-xiYe4ttkAf,Y.-ktyY--kt:**.**tY�x*k#x2x,�x* Invert I Depth I Water I Q xt*b**xM�lttxltkir*f *!s****x,! I Vel Vel I Energy I Super lCriticallFlow ToplHeight/IBase Wt1 INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.1 Elev I Depth I Width IDia.-FTIor I.D.1 ZL IPrs/Pip -I- -I- -I- + -1- -I- + -I- -1 + -1- + -I- UElem ICh Slope I I I I -I- SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X-Falll ZR (Type Ch RS1Hk*tt*t1*�hTexx#*t*I*#*xYk*h1*xx**k:lYrklYcx'+ttt*t!*�*iRttxYIt2M**!1-FI**tR*it!*Ixtt*t**I***t*x#Self:t#R**k*Ihx*xltt*ItY[M:**#Ifckxxx IxxiltS*ie I 1 i I i I I I 1015.059 54.580 .452 55.032 I I I I 7.81 14.67 3.34 58.37 .00 t .99 1.67 2.000 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- + -I- -1- -I- -1- -I- 1- .788 .4553 .0889 .07 .45 4.58 .31 .013 .00 .00 PIPE I I i 1 I 1015.847 54.939 .467 55.406 I I I i i I 7.81 13.98 3.04 58.44 I .00 I .99 1.69 2.000 .000 .00 1 .0 -I- + -I- -I- + -I- .089 .4553 -I- -I- -I- -I- -I- .0777 .05 .47 4.29 + -I- .31 1- .013 .00 .00 PIPE I I I i 1 1016.536 55.253 .483 55.736 I I I I I I 7.81 13.33 2.76 58.50 I .00 I .99 1.71 2.000 .000 .00 1 .0 -I- -I- -I- -I- -I- . + .604 .4553 -I- -1- + -I- + .0680 .04 .48 4.02 -I- -I- .31 1- .013 .00 .00 PIPE l I I I I 1017.139 55.528 .500 56.028 I I I I I i 7.81 12.71 2.51 58.54 I .00 I .99 1.73 2.000 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- .533 .4553 -I- -I- -I- + -I- .0595 .03 .50 3.76 -I- -I- .31 1- .013 .00 .00 PIPE I I 1 I I 1017.673 55.770 .517 56.287 I i I I I I 7.81 12.12 2.28 58.57 I .00 I .99 1.75 2.000 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- .470 .4553 -I- + -l- -1- -1- .0520 .02 .52 3.52 -I- -I- .31 1- .013 .00 .00 PIPE I I I I I 1018.142 55.984 .535 56.519 I I I I I I 7.81 11.56 2.07 58.59 I 00 I .99 1.77 2.000 .000 .00 1 .0 + -I- -l- -I- + -I- .416 .4553 -I. -I- -I- -I- -I- .0455 .02 .54 3.30 -l- .31 -I- 1- .013 .00 .00 PIPE I I I I I 1018.558 56.174 .553 56.727 I I I i I I 7.81 11.02 1.89 58.61 I .00 I .99 1.79 2.000 .000 .00 1 .0 -I- + -I- -I- + -I- + -I- + -I- + -I- -I- 1- .367 .4553 .0398 .01 .55 3.08 .31 .013 .00 .00 PIPE I I I I I 1018.925 56.341 .572 56.913 I I I I I I 7.81 10.51 1.71 58.63 1 .00 1 .99 1.81 2.000 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- .323 .4553 -I- -I- -I- -I- -1- .0348 .01 .57 2.89 -I- .31 + 1- .013 .00 .00 PIPE I I I I I 1019.248 56.488 .592 57.080_ I I I I I I 7.81 10.02 • 1.56 58.64 1 .00 1 .99_ 1.83 2.000 .000 .00 1 .0 + -1- + + -I- -I- .284 .4553 -I- -I- -l- -I- -I- .0305 .01 .59 2.70 + .31 -I- 1- .013 .00 .00 PIPE FILE: 7091at5.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 3 Program Package Serial Number. 1376 WATER SURFACE PROFILE LISTING Date: 9-18-2003 Time:11:12:12 tract no. 16250 lateral five �� Invert I Depth I Water I Q ***-IY�R*****Y4*H,Ff[- - .`•' "-"`•_�,,.Y,.�Y*Y0:***-Y*+�i[ ***,!«YyH! I Vel Vel I Energy I Super ICriticallFlow ToplHeight/IBase Wt1 INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.EI.1 Elev I Depth I Width IDia.-FIIor I.D.I ZL IPrs/Pip -I- + -I- + -I- -I L/Elem (Ch Slope I I I I .I SF Ave -1 HF -ISE D th Froude NINorm Dpi "N" I X-Falll ZR (Type Ch I I P I I i I I I 1019.532 56.617 .613 57.230 I I I I I I I I 7.81 9.55 1.42 58.65 .00 .99 1.84 2.000 .000 .00 1 .0 -I- -I- -I- 1- -I- -I- .l. .I- -I- -I- .249 .4553 -I- + -I- + .0267 .01 .61 2.53 .31 .013 .00 .00 PIPE I I I I I I 1019.781 56.730 .635 57.365 I i I I I I i 7.81 9.11 1.29 58.65 .00 .99 1.86 2.000 .000 .00 1 .0 -I- -I- I- + -I- -I- -;- _I. .I. .219 .4553 -I- -I- -I- -I- -I- .0234 .01 .64 2.36 .31 .013 .00 .00 PIPE I I I I i I I 1020.000 56.830 .658 57.488 I I I I I I 7.81 8.68 1.17 58.66 .00 .99 1.88 2.000 .000 .00 1 .0 -I- -I- I- -I- -I- -I- -I- -I- -I- 1.666 .0471 -I- -I- -I- -I- + .0211 .04 .66 2.21 .54 .013 DO .00 PIPE 1 I I I I I 1021.666 56.908 .669 57.578 I I I I I I1 7.81 8.47 1.11 58.69 .00 .99 1.89 2.000 .000 .00 1 .0 -I- + + -I- -I- -I- -I- -1- -I- -I- + -I--I- I_ a 2.767 .0471 .0192 .05 .67 2.14 .54 .013 .00 .00 PIPE I I I i I I 1024.433 57.039 .693 57.732 I I I I I II 7.81 8.08 1.01 58.75 .00 .99 1.90 2.000 .000 .00 1 .0 + -I- -I- -I- -I- + -I- + -I- -I- -I- + 1- -I- 2.247 .0471 .0168 .04 .69 2.00 .54 .013 .00 .00 PIPE 1 i I I I I I 1026.680 57.145 .717 57.862 I I I I I I 7.81 7.70 .92 58.78 .00 .99 1.92 2.000 .000 .00 1 ,0 -I- -I- -I- 1- -I- -I- -I- -I- -I- -I- 1.783 .0471 -I- + -I- -I- .0147 .03 .72 1.87 .54 .013 .00 .00 PIPE I I I I I I 1028.463 57.229 .743 57.972 I 11 I I II 7.81 7.34 .84 56.81 .00 .99 1.93 2.000 OOD .00 1 ,0 -1 1 -I- -I- -1- + -I- + 1.437 .0471 -101291 .02 .74 1.74 .54 .013 QO .00 PIPE 1 I I I I I I 1029.899 57.296 .770 58.065 I I I I I I 7.81 7.00 .76 58.83 .00 .99 1.95 2.000 .000 .00 1 .0 -1 1 .I .I -I -1 -1 1.152 .00 471 -1.01131 .01 .77 1163 .54 .013 .00 .00 PIPE I I I I I I I 1031.051 57.351 .798 58.149 - I I I I I I _ 7.81 6.68 .69 58.84 .00 .99 1.96 2.000 .000 .DO 1 .0 -I- -I- -I- 1- -1- -I- -I- -I- -I- -I- .913 .0471 -I- 4; -I- -I- .0099 .01 .80 1.52 .54 .013 .00 .00 PIPE FILE:: 7091st5.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 4 Program Package Serial Number: 1376 WATER SURFACE PROFILE LISTING Date: 9-18-2003 Time:11:12:12 tract no. 16250 lateral five I Invert I Depth I Water I Q I Vel Vel I Energy I Super ICriticallFlow ToplHeight/IBase Wtl INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.E1.1 Elev I Depth I Width IDia.-FTIor I.D.[ ZL IPrs1PIp -I -I 1 _I -1 -ISE -I- -I- -I- pthlFroude NINo I I I ISE Dip I "N" I X-Falll ZR (Type Ch L/Elem ICh Slope I I SF Ave HF I I I I 1031.964 57.394 .827 i I I I I I I I I 58.221 7.81 6.37 .63 58.85 .00 99 1.97 2.000 .000 .00 1 .0 -1-1- + + -I- + .709 _I_ + -10087 .3 142 .54 .013 .00 .00 PIPE 1 .01 8 ` .0471 I I I I I I I 1032.673 57.427 .857 I I I I I I 58.284 7.81 6.07 .57 58.86 .00 °9 7.98 2.000 .000 .00 1 .0 -I- -1- -I- 1- .�_ .507 .0471 -1- -I- -I- -I- -F -I- .0077 .00 .86 1.33 .54 .013 .00 .00 PIPE I I I i I I 1033.180 57.451 .889 I I I I I I I 58.340 7.81 5.79 .52 58.86 .00 .99 1.99 2.000 .000 .00 1 .0 -1 -I- -I- -I- -I- .354 .0471 -I' .I_ -00671 .00 .89 1.24 54-i .013 DO .00 PIPE I i i I I I I 1033.5-33 57-467 .922 I I I I I I 58.390 7.81 5.52 .47 58.86 .00 .99 1.99 2.000 .000 .00 1 .0 -1.54-1-.013 -I- + -1- -I- .218 .0471 + .1_ -00591 .00 92 1!15 DO .00 PIPE 'I I 1 1 I I I I 1033.751 57.478 .956 I I I I I 58.434 7.81 5.26 .43 58.86 .00 .99 2.00 2.000 .000 .00 1 .0 -I -1 -I -I .049 .0471 -I -I 1.00521 .00 .96 1.08 -1 54.1 .013 .00 .00 PIPE I 1 1 I I I I 1033.800 57.480 .994 I I I I I I 58.474 7.81 5.01 .39 58.86 .00 .99 2.00 2.000 .000 .00 1 .0 -I- -I- F ++ -I- -I- WALL ENTRANCE -I- -I- + -I- -I- -I- + I I I I I I I 1033.800 57.480 1.564 -I- -I. + + I I I I I 1 59.044 7.81 .36 .00 59.05 .00 .21 14.00 3.000 14.000 .00 0 ,0 -I- -I- -I- -I- + -I- -I- -I- -I- I- APPENDIX TRACT NO. 16250 EN xc 104 105 MOT =25A DETiala CN y —T i j URI. I ul T. 4..A 5>U G1'350NL Ed� -17:4:1- 7 L=p 106 AVENUE . . . . . . . . . . . . . . . . 7. rts..fes y 4 j r N 1- 4 -g -4 L 5 - ...... -4• T-. Z -F j 7— L 7 -:i AL� t J., A _T-17 PROFILE 4L H :4:1 7 T ORIZ.. 1'p: 40, J-17 VERT. 1'= 9 ab cip- 166t4d A: 1. i. 107 108 109 110 l i L 112 113 11amTRmnON "OT"' .4 C-CoNSTRUCT DBL 10. x S' REINFORCED CONCRETE SO'. PER DETAIL 1. AS CONTRACTOR SHAU PROTECT SRDkTN ON SHEET 3 AM SUPPORT ALL EXISUNG 13TCXM TRANsmohl STRUCTURE PER APWA SM. PLAN 344-1. AND PROVIDE SHOP DELTMGS APPROVED @-MmuaON SHEET 5 " BY A. CIVIL ENGINEER FOR SUPPORT OF CONSTRUCT JUNCTION STRUCTURE PER APWA 570, PLAN 333 -1 - EXISTING PIPE CROSSINGS SUSPENDED ABOVE AS SHOW ON SHEET 5 PROPOSED RCS TO THE SATISFACTION CONSTRUCT JUNCTION STRUCTURE PER APWA STD, PLAN 334-1. =E 7, tJi 7 OF THE AFFECTED AGENCY @-. SHOWN ON SHEET 5 zS a MUSTM D=-nBfr#ON BA&CONSTRUCT MANHOLE PER APWA SM. PLAN 323-1, 630-2 &1 635-2. SN PER DWGL NO. AS SHOWN ON SHEET 6 SH�= 3 &CONSTRUCT WINDOWS PER DETAIL Z, AS SHOWN ON TRACT 14M3 TEMPqaK-CONSTR�=-CLN EPEEMEM -INS� 36: RCF. 1350-0 EL 0 (9-11MALL 24 RCP. 1350-D C 0 tvw m3M to AIL Is' CMF o AFA 22B--VL-M Q�-CMSTRUCT 46' CMP RISER PER DETAIL L AS SHOWN ON SHEET 2 r 12 CONST BRICK AND MORTAR WLI-AD PER DETAIL 5, AS SHOWN SKEET 2 old -1 U; NMUDT DBL 12' x 8' REWORCED CONCRETE BOX PER DETAIL 1, PH ASTER 4 'E WAILOLK I :t-� _ =a, o EN., tL '% 4n SHM ON SHEET 3 3' CMP o R/W In R/W EXISTING I -GRADE EARTH SWALE PER DETAIL 1. As SHOWN ON SHEET 2 PER DWG, NO. 2505 ENCH DAYLIGHT UNE C) ®•-TO BE PZMVM + -7 UNE 19 1 P rM EXS[NQFEN CE AD RSFLAj�RO.W. AFTER CO -MUCRON THE SkTtrAC"QN OF THE Cm ENGINEER, o15pose OF EXCESS MATERIAL JA _RUWF SALVAG E @-REMM TRAFFIC SIGNAL AND POLE, SALVAGE, REPLACE AFTER ROB CULVERT HAS SEEN CONSTRUCTED @ --SAWOUT AND REMOVE AC PAVEMENT BE RELOCATED BY S.C.E. PRIOP TO CONSTRUCTION, CONTRACTOR TO PROTECT IN PLACE AFTER Rm OCATION @-PROTECT IN PLACE 71 r S —-TO"s+"— N CONNECT EXISTING 16' CMP TD 36' RCP THROUGH BRICY, AND MORTAP. PLUG T� 89155 G3`W N NCR 14- rH-" SDNG 19 Segn LINE IB M. ARCH CMP 2 DRAIN)ICE CHANNEEL YU., LINE PER TRACT 140239 •N L as co NOTE. SEE MEET NLUSER 7 MR TMCAL SECTION 'A' 'A' NG AND SE, -n(:)N 'B HO w Ij 7-, (FORPSO RA R/W zol z" IL 21 s 1 t GRAPHIC SCALE T JaA LJ7-% (11 F=) VENUE SELN E --A 40 prepued Br- FONTMA, CALIFORNIA SHOULD CONSTRUCTION OF THEREQUIRED IMPROVEMENTS NOT J.QRDFEssTDIH ALLARD ENGINEERING BASRM AV6iW-ST-O" DRAjf-pM5E` 2 -STAGE I COMMENCE WITHIN TWO YEARS OF THE DATE OF APPROVAL Eww-bv - Lmd &-Thw - Lad Kal'q DUN Or. RT "um" "T DA-rE - A"® SHOWN HEREON AND CARRIED FORTH IN A DILIGENT MANNER. nvm/mm PLAN AND PROFILE SHEET. N.. 36 U�-- MSSi c Do THE CITY ENGINEER MAY REQUIRE REVISIONS To THE PLAN'S TO amm 0.- 13RING THEM INTO CONFORWANDE WITH CONDMO Ing Y--1815 Fm pq 2X-175 WrAL _3TOL "4+0 - Da7mm, 7W IL-A NS AND Exp. --T wl� ' A Prepared for: The Stratham • Group 4675 -Mac Arthur Court, Second Floor Newport Beach, CA 92660 Prepared by: Bonadimail-Ingineers, Inc. - 680 S. Watermaa/P.O. Box 5932 San Bernardino, California 92408192412-5932 (909) 885-3800 ' =-~- �,� • LJri'�Y L. •.� 4URT 32 6 x J S 1 EEYP oung, .E. Date February 1997 JN965023. [131,5] 142933.T 15 February 1997 TABLE OF CONTENTS vicinityMap ................................................. 1 2 Discussion ....... ...................................... 4 Drainage Map On -Site and Off -Site Map Table i (Summary. of Q10 & Q100) ........................... 5 Hydrologic Soils Group Map ........................ . 9 10 Year - 1 Hour Precipitation Map (I'sohyetals) 100 .Year - 1_ Hour Precipitation Map (Isohyetals) ......... • • . • 1Q Si' APPENDIX 10 ".Year Rational Study (Undeveloped). • • • • ' • • ' ' ' ' ' ° - • • • ' ' ' ' ' A A 100 Year Rational Study (Undeveloped) .............••--• •••• 10 Year Rational Study (Developed) • • • • • . • .. • . ' . • • • ' ' ' ' ' ' B ' B 10 0 Year Rational Study (Developed) • • • • • ' • •" ' ' ' ' ' ' ' ' ' • " " 10 0 Year Unit Hydrograph Analysis (Developed) ... . ............ C Flood Hydrograph Routing (Developed) •••••••'''' '''' • • - ' ' ' ' ' D E Hydraulic Calculations ........•...•• ..................'....... JE965023 FN=142931.1 L13115/D5K4 - 1.5 February 1997 } B ONADIIVIAN ENGINEERS, INC. UVEL ENGINEERING CONSULTANTS PHONE (909) 885-3800 FAX (909) 888-4826 TO. Erelipe - FAX PEONS 110:: 350-6618 OVF.T CE NO - FROM: Lana YolIncr DATE: 30 October 1997 PROJECT : T22 14 2 9 3 JOB NO: 965Q23 NO. OF PAGVS : 5 -= (Including. cover sheat) MSCI: Hire is tYze copies beim recruested Please Call £ you haanv auesticns . TRANSMITTING OPERATOR : AVG 9 PLEASE CALL AND CONFIRM FAX RECEIVED TRACT N0. 14 DRAINAGE OFF-SITE 293 MAP W 41 F- H , W I l I� WEL f NE hVEM1E- LEGEND: NObE NUMrER DRA I NAGE BOUNDARY TRACT N0. 14293 DRAINAGE MAS'. -OEE- SITE (DEVELOPED) 1YALNUT• AVENUE I I I I I 103 I f MR DEFINED � A ;m 17.5 ACRES i Dim= 4 7. 18 Cn I 4 In -CCl i. I SEE ON-SITE DRAINAGE MAP uj I5 • I I I I I .4?, . I I• _ • - - _ • - BASELINE LF -GF -NQ, NODE NUMBER DRA IMAGE BQUNO&RY STREET HYDRAULIC CALCULATION TRACT 14293 BEARTREE STREET . STATION 13+00-00 STREET HALFWIDTli (MF-_KKS•IDE) X25 k�.�r� #tF,ttt*dc�fi kkicf#icic#*fr*-*4,*,k#*4***-k*ir*****-t##3'tkfr�7r,k�tit�i #+ *} CFxANNEL FLOW CALCULATIONS }ttt** �#•r-t�-##-r-f-�k}#�i'#-k#'##t�F#f--tis-k*�f.F*�r�*�#:�•k��r-k#-,��er�#�c�-#-�#+i;k*�;������,E*:r��,ra-� CAT,CULATE DEPTH OF FLOW GIVEN- Channel IVEN:Channel Slope #-- ,.409500 (Ft./Vt.) = Given Flow Rate = 55 . Zo Cubic Feet/Second **} OPEN CHANNEL FLOW - STREET FLOW Street Slope (Ft./Ft-) Mannings "n', value for street • 015 Curb Height (In.) = 8 - Street Ralfwidth (Vt. ). = 1.8.00 Distance From Crown to Crossfall Grade Break (Ft.)) 15,50 Slope from Gutter to Grade' Break (Ft./Ft.) _.020 Grade Break to Crown )7- .020 Slope from Number of Halfstreets C�rz�y�,z�9 Rianoft Di0tance from Curb to property Line (Ft.) = line {Ft 00. �' 20 Slope from curb to property De-pth. 4f flD;4 = .702 (Ft.) 5.85 Average Velocity = Chsnn.el flpw top width = 19.77 (Ft.) WP�RNII,Z'= DEPTH OF VT.,OW ExcEE,DS TOP OF . CURB Distance that curb overflow reaches into. property is = 1..773 (Ft. ) NOTE: DEPTH OV FLOW IS HIGHER THE STREET. CROWN streetflow Hydraulics Half street Flow -Wjdth (F't .) Flaw Velocity(Ft./Sec.) = 5.85 Dep55*Velocity 4•11 Flow rate of street - chaxinel, (CFS) Cp,XTICAL FLOW CALCULATIONS 'FOR C 4NNFL NO. 1 29 .17 5ubchannel Critical, Flow 'Top 'Width(Ft-) = 3,735_ Subohannel Critical _Flow Velocity (Ft . /Sec ,) 14. 03 subchannel Critical Flow Area(Sq. Ft.) = Froude Nimber Calculated = 1.QQ0 .850 subchannel Critical. Depth = +++4-i'++++++}.f.+++•++++++++++++++-t-++++i'}.'i "+++++++++++++++++++++++++++++.+++ -%—�---—--- — CHWUL CROSS-UCTION PLOT Death of flow = .70 Feer ►_ °W° STP -M 'FT,OW CROSS SECTION Critical depth for Channel No -I= .69 Fejt _ "ctf .2 -----5--^--- (Feet) Y(Feet) --------- -- -d--- ------- -'Y-Axis-->D. ._--,------------- ---".Oq .91 x 1.00 .89 XC 2.00 .87 x c 3.00 .85 x c . 4.00 .83 X c 5.00 .81 x C 6.00, • .79 x c 7.00 .77 x C 8..00 .75 x c 9.00 .73 c 10.00 .71 x c 11.00 -_69 xw c 12.00 .67 w c 13 :.00 .02 14.00 .D.1 N w C C x ''15 . DO .09c 16.00 W c 17.00 .10 k W C d 18.00 .12 W 19.00 .1$ yq c 20.09 6 X c C 21.00 .1 22.00 .20 V1 W C 23.00 ,22 1 W c C 24.00 .24 ,7C W C ,5.00 .26 W 26.00 .28 x cW 27,00 .30 . x W C � 28.00. .32 x w W. C 29.00 .34 x T'E'F'TSF•-i-TT�•'I`.}..k.'F}i���'F"�',-F}}T�}1 TT'I•i'�T��TT'�'��'I`�� 30,00 .36 T}}TT T.}i.I•}}T++•ETT}T. 4;L}}++4 -J.4 - T FN,1'1T2939 .7 U3115 D5X 12 15 FeL�russy 1997 JN965o23 - - T- —1— - — - i ,.-�t5W _ —'R2W RIW RIE •}'� .T xEat:Rla - ,i �: -- - -- - 4 - L'e .: °_ I• _ Cyt RZE I•-3 1 �_ � �, I- - 7- T I _ _ - _ r � T J_ - • a p`a ,' .. _ 1_ _ _ I` t� ` - �_ -t-- ' •� i ' - I I � - a i YCit• MIT -r- +.,,r � +K.4 5 i.' +-I ! 2 • -pi +1. •' 1 - L t ( � a � � J••• �`. • I I ��.€iA L0 ' C I n' es LE Shp ` - 1 f -F•� r_;/lI - _ t - _ _ - _ - •�! � a''- ,8 , 'S 1• II � - - _ - / Y �i•• - _ _._ - ,.--.. �.., _- - �.,, +_r� � �• • .- ,� t •Er _ `I , -7�.a■ j°� i � - 4, i• -I� t \. ��i�t�' , � '� T.a -L L. I I y " �/ 3F I � t� ' I L r _+. .� a 1 ` 7 • I - __ 1.4 I._ t 's �z I-,altr� _ta _ _ _ _� I4 ' 1 3t - ;I E4A ei�t(/ ` t •h `' a - — - • Y 1 •l\ J � ti• , -3- � n - �t7 T .1 _ - I.0 '' `a3 ti : ' r - y':_-I, -e- - - -_ rF• - - �t i• 1 I I• I .I [,yj4 `"tr, �:oac y-�`r '-_I _ _ - - ' � ° �.. - '1 -_• _.• - 1 t i � , ia.3a ; : IfR `I •'��•{7vgr e.� r •,_. I r. -t - `� -:� i 1.7` 1 �C' -� i~ I {.,bla r � _ . • + • 1 -- 1 in„ °' � I � � ,:.�• _J = _= �` ;i -- — 1 — _1 M ■ �'t I lu IA 44 i+• ' I .� 1 • • S i�1 LZ _60 IV i'�• ``i R,.[ -' - ^'{- -•1 t -+-4 r 11 — •— • •=f.L' L JRN01N[it7 .. 4•s• �•' J i��.1�A`'i�L.l,� 1 �I r� • �` ' .. • =to, I I /i1� Ga- 'e _ _ _ - .- f ■rc'Y a. •cam ■• ,�, a`c �1k L� _ I J+,LdJ �. r•` chs ,rL T � � I l.2 1 ., t I L _ - � "1 ■r'l`f ie_ ei e e •• e •' ..�� •:iv 4 1t1R{I t • `' �''• .1 � , 9 .+. - t ''rfE - - -- - _ _tea._r. - -•`I _ .. s_G ety a � __ �-r ' f ' - y•- I -, LI d� lY _ +�� - - _ �Ii.' _ E ' tE tM s 1 .,. _;1j�. 4x ' .tc-. TSN ` 1 i -, .� �yqy v a \ r,R•' r x I -,�, :.• a •K •.e a_: • ' Ict%: •--• -- ~r I i- 7JI;a� • �.. Isar - n J :. -'�' •�7s - _ Wea La=..L 64t t� •�,•°: fi=r•; L -- - _ _ T �, '11 1.4 rr Ls . 1 ' . • • 1 i • - �' . _ r' - I'-ri..- I C' •t ' _r _- L ° _r�' .'ham t ,�.ta'C(�"' ._ e'� " .�J ilii •� i,•r.• .� �. 1.�• .. . •. ! L 3 - • �:. �. , y1 ` ' ' ... , ( :1 '•.i _ _ • Ir : j„• _ _ t. a+'R[Na7 • , r .-�- t 1 '^''1"' . : - % IZ - `•`' FL - _ �'c a i L. _ ' 'd e, ,',(, , •..al -- I ' r :. . i•. OMCO[.. - ° e•4 CIL; -• . ` � ._ � N ' - ' - _ . - L.. ... �'�.' _ -;. I .l _ L \� �',:L.„ `� ��.•- '.+. x' . •' - 1 7 ' `7 - lt,- -#r •.�- `:s icy■ I . - e■t■e _ I c[II u R. .; t e ••..r. f'7 Etir •T'. +-J •r+" Q_ 'Li .�� _. •{ Y`• �.•}t q+ vA -'I.-.�� •• LJ i' ' •+.:� �'$- ,' _.... 1 hr4; �r _- r` - 'f ' M1 -y•'•, , f5'•T' ar •� ' ° , •,.;& _ - ....,-s _ '_ .- °F _ _ i t S .; y , I 4�' �! r t. 1 l�..l. T I. N k. ,L:�SITE, :�,�--4 _ _ _ — . j • V., .. I PLbNQ Y r. 5 s5' 1 cr- M} - r- _ •*-- -•- t— —1 —,—_ .,,.i .a,r1culm a.LTD_ 3 • - - -- •- _ _ - : ,; �:cy: FD N T A N M' _ •asr` C. - - •1 - -_ . I'v; ■ :: c ■.-■ :• r . : : - a 45.n'• i. , r __ _ r.-1 r• .- „t r4i r '4 o•.IQ- �r - • t - , ��; � •ti ` 13 � ■ i• � _ ' .� L _ _ • r _. '!` SFr' �:f • � a�`y,'-- r 4 -- ~w ••a • , q, aNr ta��l• _ c TON a _ —.... -, ti- -- - -- - - - �a15 r. 1- F• •.**^ REDLANDS ..t _.. ... I. ' • _ _+.� 11tm177, • 'I 1 •'++.■y °' s ..,.•., '•s cRt�•r1[aRe _ \ 'i'- _ [I[ ••[ • :ar •Ow - �•� ` , t--; 1 -- 1-- t' _ .� I f 5�• _ • I i i4 a ._ �r6,•s5 r aa•.v, t I t - - • •fit � qHt W 'F _ - 1 •_f rtf' t :•.' i -�R_ . .• +u,n,c: e I ' • F tu•M TENT& 1 . Y•�.e Ira I f — i1' CHINO •..t . % "` ' r°;.r'w _ z. r_'_ I _ ^�°t:'. 7l11 1AERN RGWG tsVMTT ./ s+•- _ . J •°+■ 5r' R I E i •� C �6�a! R E t 3. RSIDE '�,.�r•■•p..c int t of o'••�;P _ v, a� [ �_ � _ - - � .° .a° - _ _ R4W s i R3 ..t RZW roe RI SAN BERNARDINO .COU4TY Raw: F CONTROL TR T VALLEY AREA _ • t,IF o�t{Aon REDUCED DRAWING [S,M t i __ ••• ••-� - - SCALE Irl= 4 MILES - IS]HYETALS =' a ;.," - - - _ " : �7Q �����ICjL�� L� �� '&Z ID YEAR 1 HOUR . 10 ••, '^uc U NT Ysm OH tJ.:.fl.� H.3.' L1A7'US Z, M73 •t A ►•• env I , R7w R5 – — HYDROLOGY MANUAL- _. I.EGENgt FLQQU �"�`� I� 7- -i- - - - ,rr•ir, F3V� -'R2W 1 Rh, , ' J _ _ ` y — _ 1 :��ri a �EN�. - - ; r - - - — - — — 4 — L •_�o _ '� , - RIE I. �-., • R2E rl . �- ' 1 i+ � r r.�'_ - _.. _L_--- � -� - � I J ISN T - - - - - - ■ ,1 �� I L I.1 -I- T-- - -�- �- - - t—TIT -� O • - Ll •1" •� _I.._ r= 4 •1.-. -. �•-- �- 4 ••/ .cN� �I ii ' I •1 �Y�-� .S er_=.aT- i' �.'• + I I X77 `1, r`• r I T ? - ; `LQ n _ '•�k`i- J - r 'f •�4 - r - � _.. __' I _ `1 I. �RE�� _ � e • 9 rp -, 12 I � � �� � k •I.. _ - - , � _ -• I � 1•-% - i ; e � f'7 I I I � o I � �r ( � - I f Iqp •� ie • ! • w , st+WT I-, -C - _ �. —i _ r T _ - _- _ -- Na IE SnA ` - ' • -1 - •6 i I y 1 1' � ' I o. 1• I f� I � +. xl, urL• ""''' '.' `-ar r� �, I � �. I j, y,� sr 1.; _ L L ° . �� 1 ■� , 1 I - - - - - - -I - _ -� L.•3 io-" t t a i+ . j - - �SF. - - I �• `n -I•- ; -r 1 � L -- - 1 _' . �Li• I zz I• i.I .� L • ��'y'` _ - - _ - .� -� I ��� ' - � b _ I � ��r4i� c~ - 1 1 1.! r' �~'` �. � i 6 ' r e.� - - _ ' y�' � _� Ii°r* '_t- � - '' ` t '� ... �: • I � -'- -' , - T ''T' � , _I �' '- � f I J � `r -1'� .% �1 �' 19 i=. S .ei- - rt •Z'�I T ' �• - - e� '• � ; �Tr a� !� � .: la I , 6 'f'f� • � �° �i°' -- e' L4 - 'ti • I t - _ � a - r r , ti: 'i -_. I � ! -� , ul ��IS I � �� -� L •~ -r-` .�.{ - r ' ^ �".'- � • ''I• s `� I i -. • ' lad' • � • •- ' 1 1 ••■•.. •.T �'-'e1 ---"( � ,..c 1... � �'. a'1'er •• •s ..� x •h.l ..; ,...�.' ' .i ( J I - = s. } L i>t1lp*R£+O 'r, - J ••anw �r„ca .sty , - - IFl � a.. .' a -- L2 ^ r •. 1- � •. _ ..- ��`► s • ° Y • Y Y • ` .. .. . � i �.petq f. -- !,• - � -., � Y•LLV� V i'J4 eTC � • I_ -• a I. 1'^. - '� }F`• -.. -. _ � � Vis: si ■ �aR`• :i\�'I'� fORil y . La 1 I S •` �� t � � j '- • � .er...r. 1 ' �I ' `" a iei'�=' -' �y - .! I • �,} - y '1 f i *u�• "�'- -- • • +� ,i L1 .• •d.. a )Y , 1.�6g1';yp!■T . •� r ., t ' _ pl • 11£ L .1 . ! E 14 _t L , M• • ' - -� LO . �' }(•'�• �.i-'-� CRE �� 11- •.i '' i f - •� `r. •i• -Lw r• .-_, - -•1 • -- sI T -AT N h ,' ' K• ' -' L t •R a �.a Lr..,L _ _- Y • 'A .. ^ : fn •i�/L. -�. C• .-L T.. ' �LLLI� •. LR• -_ •1. ' . LF •� /fA{6�.T J)y. i ..t• ... aY - -I' �. �•.2- IfY ' Lj.[t • •�L J/_ Y• 1 -- vv IJi•� .r• .j ' '� 1 # I.T' x. - •' 4� '-Y`- a � rr_. -` - li • � - '1.�_ _ _ f :vt.Wc •` -S, . _ ,� .. . 1 1 1 • �;'� ' •f I `_ -j 'r . p 1 '•Ir ~` _ 1 1 . _ . t`-, r •` - ..i - meq•-�'•�, -� 1 da _ '- +, ( LS '' 1 w'' I I _r - � hf ,. ..lLi,'.•-� \'- ,r - 4'�'• - 1 y �-- tom' r . �4•: _T -- _ i.' `�•�-�,]• 1-L •� •\�' F'',k.`"C`.r' as .�7/�.• L_ s�fI .!• .� '�a'•. 1 �- TL .. ♦.-�•..tt:.-t eti. tl'fi. _ f '�• IL_ tet'` 1 b L3_ - .3 .`r• ` - f LI`.i!'RIAal. .. - 1 �. r• Lm■ I '_ c �' Q I , [� '� - j9j� f .r i - L•- f¢ • ,� ' o may__ '.� _L i ,. • DNCG[.. _ - . r ,_L .' ' ,,�.Sr'..-t at ._ TM .L �' . ; \ t � . \ •. �.� ^� i. � ' I � -�• ' ,. f !7. •� Li • I' s• ,"'; -i:V 1 � v' _ �. 1 '- -`ern - -- i :•. - L.. ... '-�: ¢1• ,t •i _ _ _ ` �� f. aIF_[:.•.,. �I-+l'.." '`a' x, _ i �'' 1.,�.,' 7- - tee; .•T ati�;'� ~�i`■ •�. •�_ ` -' i I `7 Jr. L1• R: ; ��,: _ _ E_ o, •T.`_ - T'I �''o t•J' 1. •r y - .- 't !I1•Ts - -_�'- - �•'e■Lis• p ➢L= ` ' ,� `�•rr. r�7.,EA.LLT c ��.r� : _. Q_ L __ -• .. s •..�� . :i �. ._ • • ,.■•! ''_ t t- _._rl ' - hYn - :r •' t . t' -.L1 4 i .� •'".. `� - L r' - '-'� \ r� d Y -- _- '-••�. _ - -4 N _ `. • - I`I IN --F — SI 'r"; a 1 a=�`�h.. L ''7 — ; • .+7r• -_ I I aL7t L ••k.' ...' .� .S� d Vie• l.. f T , -� T t- _r,_I_.f. _.-1 - "�L . . 1 •.. •• �-�.-'1' _ _ a• 'r'i 'i �{ jam. ' PLAND } ::fir t� 1 5s rr �} _ •--- �� ,— T .* rlT - ,t .�s I - . , f • ., , t `ry. r ( s • `a' r ..... . S.s4 ! uaR6•IL - ` \ 1 tFO T -" .,,r€ .r � a RIALTO_ ••;. •,•� Lr` — — aw' �r� , r 1 .� IAN AMO�VT L09?'•• C TOM. _ . _ _ _ 9 o - —.—� A :; ■ f.' _ — - •: i , • ' = _ r Illrzu '..R--- REOLAN05 �L -•• .... . ' . ,y'_..m .J.r 1• _ _ �� '6 al ' hr„ 1 ur i �• f •{ �••r - - pRCSTYCIIE �' - � ••'• - , _' tai •0'• - ` -T r • • � � �- 1"'• t .C■rl•' � 1 +�.� t `•�K • ' � NMut "+: • • .�•yMTA` 5 • s..'°' 1 I ,. � I �•■ , r • ',` - e rs�R -I.1 � -} _ � _ , /ar■.,."• - 1■- CHINO ••1 �•F t— -� A-• v p}'� ~ .. i . , �. r - �. f �' � li- -•� � a � ttu I ICNNI?°YIO O{M' .D w_ = „r• ` ` � - -_ �• � � y�� - -I-'-j--' -%: --% - Rlvctticc . - - r ` N RIE : I R E r ' I RSIDE I ' — .. _ _ 1 _ i.. ;9a•cp ell slaw f s ■ 't -'1 1 - � - - i_ -_ -. _ •1 � .a .v R4W s i R3� R2Wp RI I I ' T , • li lid 0`� WT•pL' •�• I t91N 1 DAt+�•' - A "� I - - I Q i —'—_ ._ _ i'•.R B 1N 'i 1 R 7 W R 6 FAN BERNARDLOOD NO .COIN R 5 W' REDUCED DRAWING VALLEY AREA SCALE 1"= 4 MILES 1WHYETALS YM — 10 YEAR I HOUR SAN E ER N A R D I N O =COUNT Ktla QH LL: , !LP LIL aQ1JS 2, tYT! HYDROLOGY MANUAL- �,,._1_`N$; FLff6CII1 yI�'�, - :.r`r� - ::1 �'i -Y� 7:•:�$t.'�! - �' �. " :�:.,•+: � :;:�'�''-' -a v.ls,-'J�..r`fi,,"^ y.'- _ �,1�• .'L2-- _r�_\t:, _r'tr.:::__r_•:1i �. `'•�S_ _ �-0 ,.y. . li. ',k.: - - }ii _ }C rr f - ift;<._,__`r' x•+�- i.�•?7}' �.. - `4�. �'=s Tt ..�;+,_ -:i.- � •f r - '.ice'•% - .��. - `h"CI - 'lig-� ':� cct 4 :.` 'n;+y - ' \"••r' ' - •h - � fir. .•,~*xs-�-, } - F i•- i '' Cr, - • 4 � `-F• r '�= - .,��-- _ '`{�"„� �} _ - _ <.:�L _ moi.• - '� �.,�-`''. ;�:.._. �' 1 .''i%:...'•C=� ter_• _ • 'a.: f .. - ' ;j.` ...c _•;. s=.._ ���•- �.-.,�: ' '.�- - `_y .c __ j<.sj''i !'• �.� :ziir:� fi<v?`57: F YL': _ ° _ _ - `--��s t s 1 L. Y` - Y^ •C: y._-•:.. r'i i .; .;.a- `: 'aC .�t'Jr ' o; _ �� i - - - _- - -" '•i - 'A.%G:- -:::�i:-• 'Y v3:._ - ''S: ••-rte �tr 3 - _ - •r- .')i..•-:� ter.:-�.i�a:' - � � ^,L, _ .�.-t•`.'�'=-�..`.Y, .4...'acr`.-`Y _!- - `-: �.� - _ _ s: c:r :1.:1•.• r:1. ��< _ _ i ---'..f'-_i'• _ ,'r is C' - `'c _ - � _ -7. �'+ J•rL - _ :t _��•',,,•< acs` - •L`^_ rl - r F:� '.a:,r , s xt.. ' ' ay T' \ r •; n r!'-_�,' Jr i:C`•..�-�- - 'r i R.�•-• � �: .itis • : � ' -1 -_ •`;- _ . is r�'L"•r - - • :., •': . 4•.r.. �. � _►-.• _ - iJ ir,r.�-;-. - et" `•1"�' :.�;'. - : c__ �j'•.� wr:• _- s. r. r�•' �•, - - r� - Ji7 ;•..,. .r ,t, _ R.�.'.. _ .t,-�'•, tea. - : i : •>i^+'• �� 1^'==. - -1 iia. -� . rf rs1 J it`:!Z-'-:- :i ! L , rt..3,'r,..� : ... r �-Y , _ <.'`•: -t.a .1': -1"•� _ - ��^,.=.,'.J•;.(•1 - s �r_y+�,•'t- ''F t F+-•: .jr't_ ' . F.<-_. -5, - .i=i: ::v.- :4e •+a,/ �i� if:: :J. _ _-+�La.tlt�_ - r,S"i..�� �' et. %rr._.•�- _} •a_5 ••�'- ' ice. _ ii.,v ..r�,+�rtir ✓ r_• _- • =_:c e • 1• - _ '-• r - - re k:74. ., :`t'-_ ,a - �'^:.` .w •-� _ _ +m�,r.:r•-: =F� •rte.?• _ •' �. :r-•- 't_ •r-1..._. .••�.c^'.�-!-�-r• ''-t •.,x•,"•- •r -,:rF .�sa _=< '`-'t.:.�' _ - ., j. • _ .':�.: i '�_t F�'r' .l.:ri. ✓::i' p - w-�.'Z�';'�i .�.c;: _ _ .rr• •-r+ _ .,� `~� J• :_ • _,�•�- - `'rr •ter �"�': �,�,.�... - r.^-^7. __'' • , i - L11. r,�_.r. _[_a r' -_ � � to ��F 1tt • � ••�,. r.. _ .,La , .jir•.. ; • z` :1,:'�:r _ -•Lti�-^4'.��r•...r�� ~.C: .- �t'-``" -irr':{: r1'•:• �. C•�= - - _a• .a'\'•: -S 1i�a r,. e•3 ,j':. '<< ' .�+ _ ; �_, '_ • .. .r•.•X:'i :c -a.:.+- �ri� .' `^i: �.•�..�• .r' �!+cJtfi_'�;:: c J. Y`_•. • y _ __ _ � . - `�T� _ '�,1' �:"j'.r :a''-�':.... �ti i•^ " '� - 1: '.i, _ _ _'t'.:' i:! _ - - X :'Y' � a 3'_ , :! .Sl.r=• .fir' - •'� .-z,a•�'�` ' +t i*r � _ � •'• ?+;+�< <;.' e.T= .ar • - :'r ^ •=:1 v �,1 -1 •tea '.� ��. -n ar • - • `1 _• . EJ .•<.,` : ✓ }, _ `'1• .F;!- ,:Lz. •'tom - .t::;t.,^_ :r.'yY~ ' �: .C:i• __ 1i, 3.=y,• t'} - •1... :.�" a. vF' 'rj'!�F. -_<-'t<i`•-I • M• v\,' r r•�r`-7' ': ` 1 _ : '�i: '--rr'Pn`f` ��:.••~.:N �h • '- < ''- = � ��'LT-: `J'' .7 1 -$ •y _ f as :•- _ _, `'••'c.. �"a-,. . �•-r^_ F' ,. _ r .t'. _ ie< pi--_•1�L�•^: •{�: - - 17- %r' •rte -f' t_ 1 :,•,•� •�: \• - - �S�' ��,:�.••�;-^ Y,:•�7; 4•_ Lrl•- •,�� -JF1I• ,ri`, ra.. "s:. ]t-.ix•:'T:..1•'-•6:,FC:tiF �L`... r -L••.[ -•E. 'O::I ii�Z .1 __ - •rS :1L• '.x�u - 'F. - Lv~... -_ sit S."...• ar�i_ t ��,.�r r - v+l ,.•F'� fL• •L;? .l.r _ : e� �. n-,,,ti:r :S (rp ' :7 Q :�: =. ti ,'•<� '�'74:r„�^ -'� .e" - es'= _.•2�s �. b�-y j-J� Ii i.J it , . L _ rrl,+Frc'--��7- r ,�:•.:;J:_ _ - f. .s':.:37: ti- -.� i;,e� z .Y:'_.r� r"`,.'`<:t':" - s;: _ •r - - �` _ < i:ie•�r�, !•:.v.. :�•_� - X:f:/` r:--: •'�<!r.-�v '}•;.i• �a. •�: •_�- '.�"a---. - .,'e �•i. �:1+•_-.:: tier r••^-=��'� ,i {'-1.� - s4r".,�,,'a"� 'v'•.1G_ �^�"'arK"�. •_ SI.:• ".� .�•�''- ,.-::,•- s- .s. ..F- '�'• _ti ~- r•tljl. Ya=\i• _ :c, ,, �-,':ri '',a:.• ,•-i i7.s °"'.4 r IF. h. •'� i r, -- -_ �. _ :�{•. ry : ''.•< i.'+ ';31i - ' f'i;=,..-R , - 5 t • � •y.. ��71 �t}r+,.:•�=EhF`ti. =�• •� 1.- + L,. � •:L:-t.�i �: __ - - •rt,a:__. :•�-a•'' _ 'r - .L����w:.:lc;- •i tom'•• wi <r. -= .•,3 A' _:� i4, ier•' '-Y": - '•i% - 'rr-. - �- �'' •„tet, n+y=t�„''.::a i. � �+ rt��: .• .` ti' •r r� s, t ti.; ° ;ice. �}, ::P = - 'll' ° � J,•_x. � Y'":•��kr: ..�..� •• - :�i i-� •- :•`� - � :ate ci;,y _ 'tt�-. � ' -•i 7`� ..•r:.xt•'j,! .=r:-'-::� _.i• •ea:' _ _ .;:s. _,.istt•%-- :•L�sr.•,,.-•'.e._ - _ - '� ar �'�••_ ;� +� !;•�s:�_Lr`'-`4`, E•? Lr •:.t - --':i.,%r:�' [_ `;_'.• t •r l: `•'t;' - :!, jr.,��:�'.�1t'.a'•-i ir. .R _ y,• - " rL. f�r"Sy�, _ �i - '4_aY^'.:+. 4•�,' _C_ r. �Y- _ . r.'Y'., ; _ • f` - r •..a_+ ; �Vr'+rF*Ivr'• - - _ - _ _ .rR �+ct:i 'P• - -t _ ^ • - !., - :.{.' - _ _ r :•+e: ' - ,.._ - ': � :rr�-}..... ^-S: - w�.�-:-: ' :+ _ '�i'�' - y���+ -fid ��'•'r •!.'.".' ' ° • ' s • • • C��+!r • . ii`-• - �- _ �Y- < _ .y,.=::,�_����•-: '.r,-_-'-..-.....;. _ �:� , �; - �3 ' rw t.. !r.TsxelP- � _ rah `�,�- �'�•` •::i_ _ j:.' <'�`,,. ��•, •.: �ti 'rte : -wt`s'+'' _ ";..<1 _-.� •l T� � `�"` _ '•,`j'::•1: '�• `. .'+t �.. _ = - r. "_ rim r.: - - S. ^� <r .�.=-' ci %{ �:'= _ "�:it+- - �. �?:"�L° .i,�.-: : ,Y ��: �y - --•x-t.['e�y.�iiv}i`s•ia'r. �.�,ri:i•i�•=":rL .�, =�'��:� !% -^.Y+•. ^-Lt:fF. •,+ :r _ - • '�" a �� �\i .� .1r•.=%�`x,",....t.7+•�: `'� `tet: xS•r .+:rte ^L'"a F% '�S" V`rn q." - " (f -'fit •s=�+ei.�-"'w�-�,`s�`i•��- i'/' ��r'=� Il rji-•:'•-_,:e• �a Fr': _... =. a' •L:; r_��t 'i'•`•:=:j .r•_� ,fir.. -tc_ _ iy; ��-"i's'_ 'ti;,C`, -- .�:�: - r+- :r :r.:-- .qtr: _a _-x. :.. L'�•+ _ ':�-.,.,�`` r' ti:k+ �jti<_.�"T �• � rr i -v .�' ;.' •mss _ ?F.. _ r••rl , ,� : _ :�r <, s: _ L� L ,1' Wit' .a 'i - _ r, �rtS« _7't`.` `r:� ? !i"={y i j . .i•.'r' T' �� - { y I _ -_ •� , � - :-:i'^_ - ' T • k�4lt • ice?` "1�-..�+•y� "'� ' i • - -.+:r•. , , -i.�.- •:fit-' % � 7a �.�_ • ; �: �6fF 3'3':a, j�Q '- � _ .: ��= ` r .-rtr, _ _ 1 a r::: _"t _ % � _ r,r+., .may e�s.�'� -- �=�': `-''� i • L ! _ -ra -i I _ - t R. wF,`. _ � •. a- ::•'r- ;�'.+' t•, r•.!:'•3tiir_; � ,ter.. • � _ ~:�-•-+i.. �. r ��Ffl1 • �,. f _ }, r• _ � J` a `•�. I�-.-: _..�� ice,-•�E�. �: •rid -tr`• ♦r:_r=`-sn$,•:.._m. r Fes. .is!� i_- �ys'-,:-tr` ,"".�~<- �f - /. ' \"� •ti :H '�_r.:l: �.i�,'N +•-r •S i••'�a�'! -r!" a> r'i�•- �-^i b' '�'-� . '�`9 � .�• .r: �. ''f 'S:. j,•••. _ 's �s. _^-r. ,:..:s:r:•s'� moi; •1' .:d e -y: ti-,ts� _•.:,:-, :'�'' ,.r a - _'/,.. r. �••.. .t4'.Y _ =Yr: <:-= .^`.f :,ra tix __ •}-'_ .amt: "=Cd<: •?.,�. _ry.. ,F. °eF �w 'i. '[:1.--, '4_ ��; = � • t•i'i:''P :'•C - ,aL}r• 1 � t i •?L -'1 4 .1i.- .`ra✓ _ _ - r.,.r: a-8 _iyrh�� f. • • �••' . ,x _ '.• .}+ { � -?�. �'� �:-. _-^'.• .� -. L �. _ • 1 - _ "'+4rr-:r .a r„Ft- ti -.1,'<:^ 'i �'. "�y+ `Yre,' : aha -s,{�; t' • f,•'" -S. 1 Tom.` ..r*+l - '}mer+ -Re _�rr_if - ;r• _-:-r .;�''-._'-G.• ,t �* s 'r -:%L ')_.^•^•✓ gra •a76' e _: '`' �F:i•�i(! rr. sir' --"-', 1^4. �-Li-t"s _iti �: -t_ __�!ri. _ •fir - 1 !^7 '•''S. _.ti •amu'. i :: -;,:! r . ' i - ti :,1_. - t. •',- _ - ,"r.-aP+'a=�.� " . _ _ - .. j e _ ' - �- ..;j'g :-1�""^`~ a'• 1 _ _ �: r - t-r„e t � _ xl: •,.•fv.�:ei�:i_ 'Lr,':;,.:' .•,,.•,_.,, `� - � _jam--,• . ti _ �;r; j - ra. _ •-F- - � .tL�-.. �ti• r • _ ir,r' _ � r' . - -t.�.• =� �• ��' • 4. ,1 '--+,-r. :3�' �•- ,�n.-.. _ LL. �.s- _-ti_ .:'f.:^ -J_1 ';%••� �. ,:�L- .1 � ... ,.�•;; -_ :_:.:� c'� ;:i . � ��w•-:�. a'•, ` ^: � _ -.� �^-,.:'kt+���-,•_i _,<"'1_ r w' ' '• r� - - Y. ^ .'••' ... _! t-� i�-r' - •.ti L . "•� .i= , , t+• .e�: •_ ''^: �£1"-: F•Ja:•I. -�l� 1 :rl� .t<..Fr.i=..rt4^ii ..G...� 1 r-�" _- r•� � r�,^F• :^'r ✓. ' _,�� x -i _ 1 . .r.-��: as . i _ _ _ _ -_ _ _ • �?'T-•C." . ! • , _ - :i. _..ts •`?'.:''1`z.. _ ' d-zj.�: ` .1 _ - - � r T' rr.t • � 1 ' � ..� �t f `•�. �W rte- ��• 1 Y _ i-• • C .lc; '�+�... •t>-.-� _ tt{ rr - . M_ •' •i Yi. . •_ _ `(•-�•-�:. ;5.i�L X14 P`' --- c-- _ �"'' --_�:..n -�4'� xrs-�. 'a �.. r,_rr_k• `.;� :�- _ .L.:d.a:.-' '•r.s - S as xa'•=a.. ._._ :%:r-'- -.•;�' - r .•Js.•t ':fir .-. _ :, :•.- 't• 1 +-_ - 1 - --sC,-^• _ k. :-moi•-:% r.d•L•> �3 , s t-:.•:4. w < }e_::,- bra rn � _sr r- - _ i ••� +-i •.H • ..r •_ tea.. t �,.= � �• _ _ . 'j r f'T- 7' __:�^ `.^,�`%"--_'-n4 il.-, ti r 'r. _ _� a�.a- - _ .�L•'" 1' N •� , '= r � •• •� 41 % -fi" ,.•� � 'a .>> : r - _ .�-• - ter_-�- ' � '\ :�' ,'• ' '"�::.- -r: ,a: T•Y :.-: i a•f. � �..'i.,,` y f� _ 1 :F•`- - .•-. � .Y• � _.. �� L.. "_ - ..+.-�'•�:,Y'• _ t ti•' ! 1_ _ .-r •i •. r < :+`i' • 11 ' "%1r .1 • s i 1. - - R 3 -_ • is la • txr �f'� <._ - - _<. i"• -,•ti? r.Aljr5? 1a _ti +t ��...'{:+mac'- �r"L - t _ _ ! !� :g, -- \. ,�^- - •::'v. - :s. 'ti%,! �•'c3: 'w ..t=tti.'1 _ •s;i .y-, �_ + __ - ?�-'tom-'^-_ '�_�� =v'- -d' ` !. - r - ^ .. .. . .•<} .. _ t'• :�7 :. � .Z . _ - b --� _ '�F • to . 4g s . K _ -r � i, .. _ • s. (. _ :fw :�'�'_= :.L`'%ice-:• - r •'�' _ - •� - - ' . - •'+ - iR I(` •L t •t• ter.-:e,y-'.i�ry % �9 'i'• �i_ _ _. r 'A /� •` t' ��•- •e �lr i � �� f h •. � , �1 ,_ _ _ ' ';:l r/` 'L'�-� Y-' Z.:c -••�j` - •` .. T- - ' -;' _ -'-i t ` • it . _ '�. -ii _ i` - _ _:.i- } . e� - j .� 1. - :+' a S r : 1 i ' .. c r. �{'pizr,:_ 'sii_r,: - ''2; x - ;_`;• �. ' Str t•4� Yt,�=t..+, � i 'i „•zi:i: J�' ri _ `.1 - � � / _ �^Bf'� "�"•'s,. i'^ r '- ': -. `_''•'.i,.' _ ._ -- {�-`�� .. -- • , ' .. -'-=y-''l' r e..: �.-Lr: '•�;:'-; �, •� aT=' � a' '��"_" J7•''• ,J< t. y' =Tt T i ' -- i. _ - ^r, a ! y.r- 4F. `I �j.'�' --� } t`_ ' _ -•. 1 • •i•-4r'S�_ S'�,yY%�} •" r? r� :`� �.r~ � J ,ti,_: 'i . • at ! viu ��_- -"``.,;..r"_�• - - '�'�` __- -_ ..- y =j • F�:, �� �• -- @.i'IJ6 -'d '�_ p 'L�.. - a _ •• ��c_'3+���•..� .� -< - '� _ +• -'r•ya•:;` � _ ■ � _ -�� _ .i_�! � -;s, `SITES}. - F .� a .-v'•-^- �7. _ �. +., -•ti••+ ^T c=__�:Fi - '�'-` - ..:� T_. :'s-�__�.--i..,_~ + a,�, a • Yv �•. n , a -Y: .fix,, f=•= v �� � a ;, - J= �• •�; -• `. yam. -•i ',._ - �'J - _-' - �-�i_s_r� _ °'r � _'•�.r �' [ 1 1 1'-x..r>< �'i .,�,•--' .�' e>•1 4 '� , ' ': ;,-.r- , _ - - - "-- - _t.. :d•L,--- - _ ��,' ��--:^' -Y - :1=;� �7ii1.^-a..•i •'-�'r__�i r•e: s- Jt�--'�- '"'-� ,-:� �'-_��;��P��"�=-'�-=L:c•-a�:� •ICI - y. ;_. 1' - +'r ` - d_ir. __ it = /� _ sal ,r .1' _._c- t Vit, . t •1 _ _ _ - N I �- i._•i--_.' - :_..LBJ^`_ F ��}i- _� r F ` •"-`�-r•T_,' • t 1 •a ' _�1,L� F - _ _ .� +_-_ _ ' -+r _�� , _ f.-� �-4'----"•�'�`� t ti (�, .' :••� - - •� ' �' •� ; ::y'i _ r � 7z._.� e '' 7a" a. 3" x •�. ''.�'L _ :.:rrr. _� I - `w• •�- r :F w ~t �.[ .r e- i.. x : 1 P_�''e'l�.- .,:' , _ .y i '-`�, {,R• ' [T � 6• �,. �'7• _•a .■ _.. .� 'ter '-� r ' ^ r -T:. ._L•.` ..._' •ori raRsa<a a M1F••'�"`• 1 ''•-< •��� - r' -+ i_ mat �' �" - `� .L_ ��s=,�,- _ �' � _ _ _ .}� "G •--� P- _`-•`�-_�".�_�� y ti- � f : t•\1. F'�-' -L_.-� ,y t4._ �:�'•- T• '-- 3. t,E••.c.. T- _ ':�• r •�'k' •. -w.at. - -. - .t' .-. '. •_ ;\• �.a. _.�t�__�. 11 .,'�,_+ :,n v: .. _ � q�-' _ 'L� _ '�=� ' _ - _ �_ _ � <4 ��' u'�r_ I 5 1 3 ' f J; -�•- �:�---, �'u:�11�J- .rx�-_�' -�}.�, . � � S :t -Z 't•. -_-4'Y �_r � � . i. :. ti :a. - _ �r ' is r_ E` _ � xrwa:a - .� _ - r .r _ - [• '"�` --• -ti' `. C - �'r s, �• -1. ;r,.' F :�- _ r '.�' 9 -- -_ - � ....--• _•_ x<'': __ - _ _ _ _ ._�. `I- .ilk may_ -•� , '. Lr . _ ,�. ;,,,y' "�` _ •-J'1' iFFLS' ,.il.: . t•.- ''.F ^• ..:r p•., _ •7pL �`^� ,( _ . �_ V _ i , ■_rrart....-e. ..:"_•' ___ � ..•� • ��--'�kst �r -fir-91 i : _ c. m t _r y I '�=.y •yr 'i:�=:..C.,i, �� a _. �, _ ,�a.�.i__z _ ^} :�'¢ i� ..!- • i:'I e' _ 4 s; �a t• •;S u :u _ _. i en, •`"G'` bo•:� _ '- ' -'e ` ' _ ` -Ar-Ji- -55 Ari- 1_y_. µf �',,,.�i�' �r,,y""!'r 't p i y� 1{' fix. '- _ ' e.i'-F' •.F�- • ' � •� �L�'r !"'M�1._ r ' _ :� [ d '�' ���i -'_I:. , "- _. e1_ � _ � r • N--- • • • o ! J 1= gyp• ^4t`'"• `�, •--r @ �'F-an.a :•! .:: r r - '- �.y��,;• i. � F j xt•-'� J• , ��• %+;,"S''Ez7.+FirFP• ��,. ;;� - _:ti•� ^ _i . '7•y. '.5"n` _ _=,='_a'>•�•+ ._• �x-T ,, �^ x x • �' .� _^!iy'_r �s :.. .J,ry.1,. -� f••r_-'s �'^...� T'i•- ' .�-• ^ _ '_ - [- yL _ r�' __ J'_�- i -�. x ' _ _u.. - •_T'P �s� *Gr-_ __LL•i �rh:. t: r..• •a''. .�a�'.�• ��r _-fes•:': y.. : •�' � }, 1` , i:i.r - _ _ - .r-_'�' _ - t s_�: " - �'' - .K.�f F _ •-__�-� _ :yei37 . .7 .:Pt+= '-r_Lj;_ r .....: �y: •.r sr r•�. .f L- � -+.. _ x' --C_ .t- _ _ .� �S•d•�.. •.s` -J ��' 's _1 -Tl 1- �+i-.�a5'Ir lTFI 1=, `- �- F' +' •'i%a'' T[ .a t'� _ - r -k• _ _•h . .t-�,;::' _' B, 'L- :� - e , tl -- F �t i' 91=_L'=ir j`�•at t. - •�=�-:�<` - - - E J. ;. .L. +{;J r. 1'-✓.^ 1. F• '"=.(t- _ _t _i; -• •j3J •iA 'i_• _1 : ln'x ~ '•�^ `+"'-'r_'� �' L.L II.^ tic•_ 1 L( - t� .mac,..- s` ,x 1_ ,x•`1\ s r$ 'i• - - i. 1 t_'-- _ '1�•s _ flt.. •. tic Yr:i•.�'"�.J( !�_-�_.a l 'moi soz: ti•TI. hT''i_:o _ is �� �.,� "`Nt4<.:t 'L^4.. o: - �' i - ''a _ ° -i: �h= rr �.• i�1,•x-` --�� :1'1 __,,ear L-.-�7�=i-, 1:_:-,,�•,.- 2' _.• _- :.t;L% '`�' • _ 'i •- '1 .a - - `..usx.-v ■k . /t '-• -jam. -c a s/ '1r�•s - i t-_-- •_-+. �r _ ac.J'= -L- n b• ^Lm1 IY 'a. -i• ' i ' a�1 T'���.; �-.Z r,a ':si ` �•' � _:/ +:� , c 1 _'i' �a : �r �:. - _� � - _ a, »- _ •', .. _ � - o {- � d - - B ' .�_T E., ��� .� `•- !' a. -il L : .'' .. _= SYr.�,_,,,1�-,1j �` ' .i _� -_ . . ��_•`:--i'ra.i"�' �• � _t• _ • I :rr"c, , -� - -.e fi - •'Fr'-•< n •,.� +-•("`': rii��=::.y. �j _ 4� .�•_� -� _-1. •r•wc� .•:-F•t�L<�sr ,�. •'� _ _ _i _ �"_T �L 4ca1•ti... -I,p , (_ , \•I s -Jr: =_j '�9 ,?< _ ;fcG " f�'•,1�, y' If ,G _ Yom'•'`-i.T;.+F' rY •..r - •~'c K a u 'L_�-:axs'a rti� _-•a:r - r�r - L It`'` ,_-.-i v c=_;Irk' 1, •-Z•i s, ti'r : �•; - _ - ,.. ' _ '[F`- �- ?r _ r: [ "�-1�..:vL'' 1 xt L• , .:• t ' i. S' . -- - "':'' • _'_ _ - : _ .e 1 ' . - - � �- ^ ^.i• -y --'�: y. 'ski •' _' _ r. ' �i, a1' 6 a ,�_ Wil' a c : n - . .a-{' 1•'- :i_ _ice ��'u•- ...= • F ; n.i= :'� rF'_ � --i �. . ir`=_ '� ..r � yFrX�� ' r_t - x r@ e _ ` _ - 1 -_ �C _S'• _ _ •4�a it .._ _ _ --" :5 :- _•T_.. - r -F - ~ + --•-[ x r r.'�•. •* • _• •' - a •' - _ a _ ,� _ •!. - - - - - ^'ri-2T' .rc- i- :.- - - -tir U L - �y _ _ _ -• }; _ _ 4, ;tb -r, _ �r.LJt1.• - .:.r• _ �}ty_:: j 1 ; .. a ;�L F•' , yit�r °rl•.-=}_�.ra '+f.:;' j7-. }� •ea �`�, _ .l� .1L.z_t iJu-_".:�=�' ,i. - _i'1' �+'' ��... _ :_ _ .- rr^ •ILS -_- _ .� t•` .a_ /F: •3=' � �- •� t3 1' t i I I. '..�.. ._ T`�- <- 'TY. 1 -Y' �1•.' � i.l1i. Lr� ,. a$1 et 'rl: .- _(a ]':-r.r t �.. .-- _. - �! .i i• •�-.1 ' LL'7l1r7 _ _ '\ SOIL GROUP BOUNDARY I •`� A 'SOIL GROUP DESIGNATION -_=4 SCALE ,•1+4r8�= - I�• -•-• POLNOAiYOFIN6ICATEDSOURCE SCALE REDUCED B'°rt' 1/2 HYDROLOGIC SOILS GROUP MAP SAH SSRUARD 0 COUNrf I SAN BERNARDINO COUNTY FOR HYDROLOGY MANUAL - _s--� C7 �_+ SOUTHWEST AREA - CHERRY AVE 0 t-•t LIVE OAK ? ZAVE m. --� '—' > rri im HEMLOCK m AVE BEECH4, AVE SULTANA 'n' AVE i U) DISCUSSION PURPOSE: The purpose of -this study is to determine storm water runoff ,quantities and to recommended drainage improvements for the development of Tract 14293. The development Fontana. The Hemlock Avenue vacant property CRITERIA: is a.36.6 acre site which lies in the City of site is bounded by Baseline on the South, on the West,. Beech Avenue on the east and on the north. The San Bernardino County Hydrology Manual (SBCHM) , dated P_ugust 1986, established the criteria used to develop the storm water quantities. The SBCHM Rational Hydrology Methodology was used to determine both the 10 -year and 100 -year flood events. nzSCUSSION The _ site consists -'of -gently sloping ground approximately 1.5 a from northeast to southwest. The terrain is uniform in grade: The, site has been disked on a semi annual basis for weed abatement. Upstream tributary drainage area is �boundoed k o n Walnut t h e w est. north, Beech on the east and . Heml Approximately 17.5 acres of undeveloped property is adjacent to the north property, line.• The* drainage area was included in the rational study at the current zoning. .,(Reference the site map showing adjoining drainage area.) PAGE 2 OF 10 First the rational study was accomplished.. Second a Unit Hydrograph analysis developed..Third basin study was developed to calculate he basinfuncuality including inflow versus outflow. The following criteria was used for the rational method development. Soil group P: Low runoff potential Jwell drained soils) . The SCS curve number for soil type and landuse is 32. Following is.a table of data which identifies isohyetal data used. in the hydrology analysis . RETURN DURP_TION INTENSITY PERIOD (yrs) (hrs) (in) 2 6 1.80 2 24 3.50 10 1 1.00 - .100 1. 1..52 100 6 3.85 100 24 .9.10 CONCLUSION r The proposed drainage improvements, for Tract 14293 will convey storm water runoff from a 100 -year storm event. Storm water will be passed thro�. gh the project to the south. A detention basin 'is proposed4at the southerly side (downstream end) of the property. This will provide for the developed peak flow to be released at Q of the undeveloped storm water runoff rate for 100 year storm event. FN=142932.T L131,5 JN965023 15 February 1997 PAGE 3 OF 10 T 94293 NAGE MAP ''N -SITE o\ LEGEND: 2A 4 AREA NUMBER 22. NODE NUMBER DRAINAGE BOUNDARY X21 :t - AREA # ACRES AREA- rr ACRES' Al 1. 98 . A14 2.06 A2 2.13 A15 2.38 A3 2. 71 A16 0.21 A4 2. 61 -A17' 0.42 A5 3. 14. AIS 0.55 A6 1.44 A19' 0.64 A7 2.09 A20 Q.91 AS 2.70 A21 0.78 A9 1.55 A22 0..33 A10 1.23 A23 Q.91 A11 1.91 A24 0.56 Al2' 1'.86 A25 9.85 A13 1.68 A26 4.49 A27 17.50 X21 :t - I ('FN=3UR.R86.) (FN=1ODHYD - TABLE 1 CT 142-03 UNDEVELOPED RETURN INTENSITY AMC Q Q(90 %) yEAR YEAR 2 2 I 7•.•6 CFS ( 6.8) 10 5 II -37.2 CFS (33.5) 10 ZO II X'52.3 CFS (47.1) 25 -10 = _ II 52.3 CFS (47.1) Z5 25 II 72.3 CFS (65.1) 100 25 II •-72.3 CFS (65.1) 100 100 II ,/102.6 CFS (92 •3) DEVELOPED . RETTIRN • INTENSITY. AMC Q YEAR YEAR " 2 2 z .65.0. CPS - - 2 2 III 66.1 CFS 10 10 II 79.9 CFS 10 10 III 81.8 CFS 25 25 II 69.5 CFS 25 25 - III° 91.2 CFS 100 100 II 112. 9 CFS 100 10D III 1:•8.6 CFS PAGE 6 0r 10 UNIT HYDROGRAPH RETURN .AMC PEAK YEAR Q 2 III . 43.3 CFS 10 III 5 25- 100 III 100 144.6 CFS (FN=293UHY . H CU) ROUTINGSTUDY RETURN' •Q_ OUT MAXQ OUT YEAR DETENTION BASIN DE'T'ENTION BASIN 2 .6.9 CFS 6'• 9 10 33.5 CFS •11'.6. . 25- 47.1 CFS 11.6 . 100 -65.1 CFS . -11.6 W=293RTE.HYQ) HYDRAULIC CALCULATION PIPE DIAMETER S =0.5 % BASIN 24"DIA. 1S" DIA. I5"DIA.- BASIN DEPTH Q OUT (QFS) Q OUT (CFS) (CFS) STORAGE (FEET & WEIR (AC-FT) 1' 16.6. 6.9 5.6 .230 21 20.2 6.9 6.1 . 1.322 1; 22.1 10.5 6.5 4.413 4' 23.5 11.2 6.9 6.960 4.75' 24.4 11.6 7.2 -9.380 FN=142934.T L131,5 JN965023 15 Februery 1997`-�- ( PAGE 7 OF 10 San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August .19 8 6 ) C1' VILCA�D/CIVIL�DESIGN Engineering i neering Software, (c) 1992 Version 3.1 ° Date: �23/ Rational Hydrology StudyDa1-97___-----------• 2`ract-14293 Offsite-& Ons - _ - - -- onsite Drainage Impacting Baseline Se inera data E-isting Condition (UndevatHemlock emlock eloped) 10 year AMCPMC II 10 y City of Fontana, County of San Bernardino 10 Year Event FN=3UN10.10 L=131,5 --------------------------------• Hydrology Study Control Information ********* Rational hydrology study storm event -year is 10.0 Computed rainfall intensity: _ 1.0 OO (In. ) Storm year = 10.00 1 hour rainfall p Slope• used for rainfall intensity curve b 0.6000 Soil antecedent ' moisture , condition (AMC) = 2 f +''+'+++++++++*+*++'+++ ++'+++++.+ ++'++k'.... .. -+++++++++E ++�+3.000to point/Station 4.000 Process from Point/Station v ** INITIAL AREA EVALUATION :UNDEVELOPED (average cover) subarea .Decimal fraction soil group A 1.000 =Decimal 'fraction . soil group B = 0.000 'Decimal fraction soil group. C• = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil (AMC • 2•) = 50.00 0.510 (In/Hr) :Pervious ratio (Ap)• = 1.0000 Max loss rate (Fm) initial subarea data: initial area flow distance = 650 .000 (Ft. ) Top (of initial area) elevation = 1407 .000 (Ft . ) - - Bottom"(of initial area)7 elevation = . 1400 -000 (Ft. ) Difference in elevation = 7.000 (Ft. ) Slope•= 0,01077 s(a)= 1.08 TC k(0.706) *•L (length"3) / (elevation change) ]''0.2 ! Initial area time of concentration = 23 .310 min. year •store Rainfall intensity = 1.763 (In/Hr) for a 10 .0 y Effective runoff coefficientCu�sed for area (Q=KCIA) is C = 0.487 Subarea runoff = a.5 8 6 ( ) Total initial stream area = 10 .000 (Ac. ) Per-Jicus area fraction 1.000 Initial area Fm value = 0 .810 (Inf Hr) +++++++++++++++++++++++++++++++++++P 0 0 0+ to+Point / Stat ion++++++++5.000+ + Process from Point/Station *** n * * * * SUBAREA FLOW.ADDITION LTNDE VELOPED ( average Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil SCS curve number for cover) subarea group A = 1.000 group B = 0.000 group C = 0.000 group D= 0.000 soil (AMC 2) = 50-00 — Subarea runoff 13.737(CPS) for 16.000 (Ac 26 00 (pc •) - Total runoff = 22.323 (CFS) 81Total area - P_rea averaged ' Fm value = 0. 6.00-0 process from Point/Station 5 .000 to Point /Station SUBAREA FLOW 10DITION **** uNDEVELOPED (average cover) subarea Decimal fraction soil group A = 1.000 Decimal fraction soil group S = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil (AMC 2) = 50.00 Pervious ratio(AP) = 1:0000 Max loss rate (k'm) _ 0.810 (In/Hr) Time of concentration 23.31 m1n.. year storm �ainfai 1 intensity 1.763 (in/Hr) for a 10.0 y Effective runoff coefficient used for area, (total area with modified rational method) (Q=KCIA) 'is C = 0.48 Subarea runoff 29 .972 (CFS) for 34.910 (Ac •) 60.91(Ac• ) Total runoff 52.295(CFS) Total area = A Area averaged Fm value 0 . S 10 (In/Hr) 60.91 (A c • ) End 'of computations,' total study area = The following figures may =v be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced dtionalf festiveequatioarea effects caused -by confluences -in the } Area averaged pervious ,area. fraction (Ap) 1.000 Area averaged SCS curve number = 50.0- I 0.0' F I •I t . I San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN - Engineering Software, (c) 1992 Version 3.1 Study Date: 1/2.3/97 --- Rational Hydrology ________________________-- mlock Tract 14293 Offsite &: Onsite Drainage Impacting Baseline at He data Existing Condition (Undeveloped) 100 year AMC II 100 y ear City of Fontana, County of San Bernardino 100 Year Event FN=3UN100.100 L=131,5____ ******** Hydrology Study -Control Information Rational ------ - hydrology �drolostudy storm event year is 10.o.'.0 _ • Computed ra.;ntensitinfall y _ 1.520 (In. ) Storm year = 100 .00 1 hour rainfall p 6 000 �-_... Slope used for rainfall intensity curve b = 0. Soil antecedent moisture condition (P -MC) = 2 +++++++++++++++++++++++++++++++++.+++++++++++++++station+}+T+}}+} 4-000. 00+ Process from. Point /Station •3 .000 to. POin % .* * * * INITIAL AREA EVALU-P TIO"T pNDEVELOPED (average cover) subarea Meciinal fraction soil group A = 1.000 ,Decimal fraction soil -group B = 0.000 '.Decimal fraction soil group. C = 0.000' :Decimal fraction soil group D = 0.000 -SCS curve number- for soil (AMC 2) = 50.00 0.. 810 (InjHr) Pervious ratio(AP) ='1.0000 Max loss rate (FM) Initial subarea data: Initial area flow distance = 650.000 (Ft. ) Top (of initial area) elevation = 1407.000(Ft.) Bottom (of initial area) elevation = ..1400.000 (Ft.) Difference in elevation = 7.00d (Ft.) 'Slope = . 0.01077 80-0= • 1..08 . TC. = k (0 .706) * [ (lengthAB) / (elevation change) ] "0 .2 Initial area time of concentration = 23.310 min. Rainfall ' intensity = 2.680 (In/Hr) fora loo.KCIA) 0i year =Storm 0 .628 Effective' runoff coeffidient used for area (Q= Subarea runoff = 16.839 (CFS) 10 .O Q O (Ac .') Total initial stream area. = . Pervious area fraction = 1.000 Initial area Fm value = 0 .810 (In/Hr) Process from Point/Station 4,000 to Point/Station 5 * * * * SUBAREA FLOW ADDITION * * * * UNDEVELOPED (average cover) subarea 1.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B C = 0.000 Decimal fraction soil group D = 0.000 Decimal fraction soil for group soil (AMC = 2) = 50.00 - RrA r1jrve number A 1-7 Subarea runoff = 26.942 (CFS) for 16.000 Ukc-) 26.00 (Ac.) Total runoff = 43.781 (CFS) Total area = Area averaged Fm value = 0.810 (In/Hr) ++++++++++++++++ ""+++++++4"'F'E.';"F'F+++++++++++++++++"+++++++++++++++++++"0 04 Process from Point/Station{ 5.000 to Poi nt/Statim **** SUBAREA FLOW ADDITION **** UNDEVELOPED (average cover) subarea Decimal fraction soil group 'A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil (P -MC 2) = 50.00 0.810 (In/Hr)` Pervious ratio (AP) = 1.0000. Max loss rate Time of conceritration = 23.31 min. Rainfall intensity = 2.680(l far a 100.0 year storm Effective runoff coefficient used for area, (total area with modified rational method) (Q=KCI30 is C = 0.628 Subarea runof-f = 58.784{CFS) for 34.910 (Ac-) 60.91 (Ac.) - Total runoff = 1.02.565 (r -Fs). Total area = _ Area F averaged m value ' _ 0.810 (In/Hr) 60- 91 (Ac. ) End of computations, total study area = . The f ollowing _ figures may be used.for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area e*ffects'caused - by confluer_ces in. the rational equation. Area averaged pervious area. fraction (Ap) = 1.000 Area averaged SCS curve number = 50.0 San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Version 3.1 ----Rational_ Hydrology_ Study --------Date: 1/17/97_________________ Tract 14293 Off site & Onsite Drainage Impacting Baseline at Hemlock Developed Condition Tract + 17.5 Acres to.North East nardino City of Event a, county of FN=3DE10 .10 Ls131, 5an r (Condition AMC III) _ -- 10 Year Event _ ----------------------- ----------------- _-__-______________ Hydrology Study Control Information Rational hydrology study storm event year is 10.0 Computed rainfall intensity: _ 1.000(In.) Storm year 10.0 0 1. hour rainf all p - Slope used for rainf ail intensity curve b 0..6000 Soil antecedent moisture condition. (AMC) 3 TT" ';"'""}'+'k"'"}.' "+'"i""{"i. .......".".�•'.}.'+'f'•i"{."i•'F•�}.{••{'.'{..++•} ++++ •}++.}.'�.'}.•�•'1'�•'�";"•{...�'�.'+'�"�"{'+... Process from Point/Station 18.000 to Point/station 19.000 * * * INITIAL AREA EVA.LUATION * * ** ? . RESIDENTIAL (3 - 4 • dwl/acre) Decimal fraction soil group A 1.000 Decimal fraction - soil ' group 3 = 0.000 Decimal. fraction, soil. group 'C = 0.006 Decimal fraction soil group D = 0:00 SCS curve• number for soil (AMC- 2) 32 .+00 ' Adjusted SCS curve number for AMC 3 = 52.00 0.471 (In/Hr) Pervious ratio (APY = 0.6000• Max loss rate (Frit) _ initial subarea data' - Initial area flow distance •= 601.440 (Ft.) a Top (of initial area) - elevation = 75 .000 (Ft. ) Bottom (of initial area) elevation = 63 .400 (Ft. ) Difference in: elevation 11.600 (Ft.). k Slope 0.01929 s(-.,) = 1 .93 TC = k (0 .412) * ( (length"3) / (elevation change) ]'`0.2 Initial area -time of concentration = 11.736 min. Rainfall intensity = 2 .662 (In/Hr) for ° a 10.0 year storm Effective runoff 'coefficient '"used for area (Q=KCIA) is C . = 0.741 Subarea runoff 1.790 -(CFS) Total initial. stream area 0.908(AC.) Pervious area fraction 0.600 Initial area "Fm value °0 .471(In/Hr) +-;•f++=++f+}++++++fi-+-}--!••-t•T-f--E•+r-I-+-i--F+-F•++++++T++++++++++++++++t++....+++++ Process from Point/Station � SUg�E�Oto FLOWPADDITIONt*�** 20.400 **** STREET FLOW TRAVEL TIME — Top of street segment elevation = 63.400 (Ft . ) End of street segment elevation = • 51.300 (Ft . ) Length of street segment 682. 09 0 (Ft. ) 8.0 In.). Height of curb above gutter flowline = T,a;,a+-r; „- t,a1 f ci-rapt- (nurh to crown) = 18.000 (Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft,) Gutter hike from flowline = 1.680 (In.) Manning' s• N in gutter = 0. 0150 Manning' s N from gutter to grade break = • 0.0150 Manning's N from grade break to crown '= 0.0150 Estimated mean flow rate at midpoint of street =' Depth of flow 0.293(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.133 (Ft. ) Flow velocity = •2.79(Ft/s) Travel time = 4.08 min. TC = 15.81 min. Adding area flow to street RESIDENTIAL(3 - 4 dwl/acre) Decimal Fraction soil group P_ = 1.000 .Decimal. fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for sail (AMC 2) = 32.00 Ad'usted SCS curve number for AMC 3 = 52.00 2.556(CFS) 2.789(Ft/8) 7 Pervious ratio•(Ap) 0•. 6000 Max loss rate (Fm) = 0.471 (In/Hr) Rainfall intensity = 2.226 (In/Hr} for -a* 10.0 year storm Effective runoff coefficient used.for area, (total area with modified rational method) (Q=KCIA) is C = 0.710 Subarea runoff = 0. 871 (CFS) for 0 .777 (Ac . ). -Total runoff = 2.661(CFS) Total area = 1.68,(Ac. ) Area averaged Fm value = 0.471(ln/Hr) Street flow -.at end. of street = 2 .661(CFS) Halfstreet flow at end of street— . • 2•.661 (CFS} Depth of flow = 0.296(Ft.), Average velocity = 2.815(Ft/s) Flow width'(from curb towards crown)= 9.289(Ft.) .E...T'F'f'"F {".'I"'F"k". i""}'F'E"}'"}....{'T'I"F'F'E'FT'}'•F }"E..'F.. }"{... ...-1 ++++++++++.++++++++++ .Process from'Point/Station 20.000 to Point/Station •21.000 **** STREET FLOW TRAVEL TIME.+ SUBAREA FLOW ADDITION Top of street .segment elevation 51.300 (Ft.) End of street segment elevation = 46.000(Ft.) Length of street segment . = 353 .040 (Ft.) Height of curb above gutter flowline = 8.0 (.In;) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossf all grade break = 16.500(Ft :) Slope from gutter to grade break (v/hz) = 0.040 Slope from grade break to crown (v/hz) _= 0.020 Street flow is an (1] side -(s) of the street Distance- from curb to property line = '24.000 (Ft. ) Slope from curb to property line (v/hz). 0.020 Gutter'width = 1.500.(Ft,) Gutter hike from flowline = 1.680 (In.). Manning's N in gutter = 0'.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from. grade. break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.921(CFS) Depth of flow = 0 .311 (Ft.) , Average velocity = 2. 6 7 1 (FIL: Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.055(Ft.) Flow velocity = 2.67(Ft/s) Travel time = 2.27 min. TC = 18.08 -min. Adding area flow to street nmo-rnUNTrn-rar.('Z - 4 t9wl /Rcre) Adjusted SCS curve number for AMC 3 = 52.DU 0.471(In/Hr) Pervious ratio (A_p) = 0.6000 Max loss rate (Fm) = Rainfall intensity = 2 .054 (In/Hr) for a 10.0 year storm f ff' iet s ued for area (total area with modified Effective runof coe is n f rational method) •(Q=KCIA) is C = 0.694 Subarea runoff = 0.208(CFS) for 0 .329 (Ac. ) Total runoff = 2.869 (CFS) Total area Area averaged Fm value = 0.471(In/Hr) Street flow at end of street = 2.869(CFS). Half street flow at end of street = 2. a 6 9 (CFS) - Depth of flow = 0. 310 (Ft.) , Average velocity = 2.660 (Ft/s) Flow width' (from curb towards crown) = • 9 .981 (Ft.) +Tr_+...F+.+.._+...F"F'I"E"F'}..{"}..{..'{•++'"}.'F'.j..E..F.F.'i"I.':'..y.+'F..F.}'..} +4-+T+.;'.'.}..{+1i.'F'F'1"F'I..F.}"F.++•.I'.T+++++++++'I"E + Process from Point/Station .20.000 to Point/Station 21.000 CONFLUENCE O F MAIN STREAMS The following data inside Main Stream is listed: .In.Main Stream dumber: 1 . Stream flow area = 2.014(Ac .) Runoff from this stream = 2.869 (CFS) Time of . concentration 18:08 min. Rainfall intensity = 2. 0 5 4, (In/Hr) Area averaged loss rate (Fm) = 0.4711(In/Hr) Area averaged Pervious ratio (Ap) = 0.6000 - -- - ------Program -is now starting with Main . Stream No. 2 '.t..+ +.+..F.p...+_.+.._+...+..F..+ ++++++.+.++.+..{..y..;.'j'+"i.++'} +.{..++++.F"++T"F.++++++': ++++"i.+++'}.'F...'{ ++ Process from Point/Station 2.3.000' to Point/Station 24.00-0 ** * INITIAL AREA EV.UUA_TION RES.IDENTI.A-L(3 - 4 dwl/acre) Decimal fraction soil group A 1.000 Decimal fraction soil .group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil 'group D = 0.000 SCS cure number for soil(AMC.2) = 32.00 - Adjusted SCS curve number ' for AMC, 3 = 52.00. Pervious ratio (AP) = 0 .6000 Max. loss rate (Fm) = 0 .471 (•In/Hr) Initial subarea data: Initial area flow distance = 466.170(Ft .) Top (of initial area) elevation = 89.9 0 0 (Ft.). Bottom (of initial area) elevation = 81.000 (Ft.) -Difference in elevation = 8.900 (Ft.) Slope = 0.01909 . s(o)= 1.91 TC = k(0.412) * [ (length''3) / (elevation change) ]''0 .2 Initial area time of .concentration = 10.621 -min. Rainfall intensity = 2.826 (In/Hr) for a 10.0 year storm Effective runoff coefficieht used for area (Q=KCIA) is C = 0.750 Subarea runoff = 1.164 (CFS) - Total initial stream area = 0.549 (Ac.) Pervious area fraction = 0.600 Initial area Fm value = 0.471(In/Hr) ..++_+.+_+.}_+...F.+.++...++f}++-i-s.+..+..F++'E +-F-F+.3 +++...{ +++++.+..+..+++T+.+..}..F+'I.'C.'I"}.+.+.._+...+..F++.F+.+."+..}.++.+..+ Process from Point/Station OFLOWPoint/Station ** 25.000 * * * * STREET FLOW TRAVEL TIME + SUBAREA t allraca e brex = J b. 5 u u `r L. J Distance trom crown to cross g slope from gutter to grade break (v/hz) 0.020 slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side (s) of the street Distance from curb to property line = 10 .000 (Ft . ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500 (Ft .) - Gutter hike from flowline = 1.680 Manning' s ISI in gutter 0.0150 Manning' s N from gutter to grade break = 0.0150 k t rows 0 015 0 Manning' s' N from grade -Urea o c 1.8 3 8 (CFS) Estimated mean flow rate at midpoint of street = 'A- ra e velocity = 2 .448 (Ft/s) Depth . of flow = 0.273 (Ft . ) , g Streetf low hydraulics • at midpoint of street travel: .Half street flow width = 8 .175 (Ft. ) Flow velocity = 2.45(Ft/s) 25.000 Travel time = 3.53* min. TC = 14.15 min. Adding. area flow to street RESIDENTIA..L (3 - 4• dwl/acre) subarea Decimal fraction soil group A = 1.000 -Decimal fraction soil .group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0' Q032 SCS curve number for soil (AMC .00 2) _ 52 00 Adjusted SCS curve number• =or A.M- C 3 0.471 (In/Fir) Pervious ratio(AP) =.0.6000 Max loss rate (Fm) = ear storm Rainfall intensity = 2 . 379 (In/Hr) fora 10.0 Y d for -area (total area with modified :Effective runof= coefficient use 'rational method) (Q=KCIA) is C = 0..722 zSubarea runoff = 0.871 (CRS) for 0.636 (Ac.) :Total runoff = 2.035 (CFS) Total area• = 1.18 (Ac. ) Area averaged Fm value = 0 .471(In/Hr) :Street. -flow at end of -street = 2.035 (CRS) Half street flow at end of street = 2.035 (CFS)'2.506 (Ft/s) 'Depth of flow = 0.281 (Ft.) , Average velocity = ,Flow °width (from curb . towards -crown) _ ° B..541 (Ft . ) j„{..�..•E'�"'f"}"F"F.�.�.f..;..;..'S'}�..}..;...rI.F.�"FT'F';".r.'I."'�'+T.F'F++T.f....�.'E}}T.�..LT'F��}0OO+e Process from Point/Statio� 25.000 to Point/Station * SUBPREA • FLOW ADDITION TJNDEVELOPED ( average • cover) subarea .Decimal fraction soil group A = 1.000 Decimal fraction soil group B 0.000 Decimal fraction - Soil group C = 0.000 1 fraction soil group D = 0.000 DaL; CL = 50.00 SCS curve number for soil (AMC 2) . Adjusted SCS curve number for AMC 3 = 70-00 p ,532 (In/Hr) Pervious ratio (Ap) = 1.0000 Max loss rate (Fm) _ Time of concentration = 14.15 min. Rainfall intensity = 2 .379 (In/Hr) for a 10.0 ear storm Effective runoff coefficient used for area, (total area with modified rational method) (Q=KCIA) is C = 0.697 Subarea runoff = 16 .3 67 (CFS) for9 50 'c •) 11.04 {Ac. ) Total runoff = 18.402 (CFS) Total area = Area averaged Fm value = 0.526 (In/Hr) +++++++++++++++++++++++++++++++ +++.j ++T+"{"f.'}"'i ++"} ++.{"t'.i'.{"i'.'{.+++"}''}. ++.}.'F'}..}".f"+'i"°.�"''�"'�''}•T+"}.+'}'+'} ++++++ 25.000 to Point /Station +000{ prnrP_vq from Point/Station Time of concentration = 14.15 min. Rainfall intensity = 2.379 (In/Hr)'' Area averaged loss rate (Fm) = 0.5259 (In/Hr) Area averaged Pervious ratio (Ap) = 0.9570 .............................. '-si- F -F+++ ++�.++.}++.F.++++++T.E.++++++'}...�..;..'I.+ Process from Point/Station ( 28.00 to Point/Station 22.000 * *** USER DEFINED FLOW INFORMAT ON A POINT **** RESIDENTIAL (3 - 4 dwl/acre) Decimal' fraction soil group A = 1'.000 Decimal fraction soil group S = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil (P -IC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 0.471'(In/Hr) Pervious ratic(Ap) = 0.6000 Max loss rate(Fm)= �. Rainfall intensity = • 2.447(In/Hr) for a 10.0 year storm User specified values are as follows: TC =* 13.50 min. Rain - intensity, = 2.45 (In/Hr) Total area =. (Ae.) Total runoff = 140.50(CFS) ............................................ .t' •.r. ..i...}..i. "f.' .. ++...f..;..'..• ....j...f. +.•t. +-E. ..E..t. .. .i...;. . ..i.. + .L .{. }• .}. �. ............................ 1 Process .from Point/Station 28.000 to Point/Station 22•.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main_ -Stream number: 2 in normal stream number 2 Stream flow area = 50.000 (Ac.) 'Runoff from this stream = 140:500 (CFS) 1 Time of concentration 13.50 min. - Rainfall intensity. = 2. 4 4 7 {in/Hr) Area averaged loss rate (Fm) 0.4711(zn/Hr) Area averaged Pervious ratio (AP) = 0.6000 -Summary of stream. data: Stream F_ low rate TC Rainfall Intensity No. _.(CFS) (min) (In/Hr) 1 18.402 14.15 2.379 F 2 140.500.. 13.50 2.447 1.000 * 1.000 * .18.402) + :• • 0.965 * 1.000• * 140.500) "+. = 154.027 • Qmax (2) _. 1.037 * 0.954 * 18.402) + 1.000 * 1.000 * 140.5.00,) + = 158.700 Total of 2 streams to confluence: Flow rates before confluence point: 18.402 140.500 Maximum flow rates at confluence using above data: 154.027 158.700 Area of streams before confluence: 11.035 50.000° Effective area values after confluence: 61.035 60.525 Results of confluence: Tni-al flow rate = 158.700 (CFS) 3 -,++++++++++++++,++++++++++++++++++++++++++++++++-r z++++++++++++-1--F+++++++++++++++++++++++++++++++•+-,-+•+atio+++++++ 1 2 . 000 Process from Point/Station 22.000 to Point/Station 21.000 * * * * STREET FLOW "TRAVEL TIME + SUBAREA FLOW ADDITION Top of , street segment elevation = 54.500 (Ft . ) End of street segment elevation = 46 .000 (Ft . ) L n th of street segment = 660.510 (Vt.) e g Height of curb above gutter flowline = 8.0 (In.) Width of half street (curb to crown) = 38 .'000 (Ft.) t from crown to crossfall grade break = 36.500(Ft.) Dzs once Slope from gutter to grade break (v/hz) = 0.040 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side (s) of the street Distance from curb to 'property line = 13 .000 (Ft . ) Slope f rom ' curb to property lite (v/hz) = 0.020 . Gutter width = - 1.500(Ft.) Gutter hike from flowline = 1.680 (In. ) Manning's N in gutter = 0.015.0 Manning' s N f rom • gutter to - grade break • = 0._015 0 f d break to -drown = 0.0150 Manning s N from gra e - Estimated mean flow_ rate .at midpoint of street = 159.894(CFS) (Ft/s) Depth of flow = 0 :865 -(Ft..) , Average velocity =' 5.222 Warning: depth of flow exceeds top of curb Distance that .curb overflow reaches into property' • Streetflow hydraulics at midpoint of. street travel: -Halfstreet flow width*_ . 37.743.(Ft .) . Flow velocity = 5 .22 (Ft/s) . ' Travel time = 2 .11 •itiin: TC = 15 .61 min. Adding area flow to street . RESIDENT IAL (3 - 4 dwl/acre) fraction soil group A =.1.000 .Decimal Decimal: fraction soil group B =-0.000 Decimal fraction soil group C = 0.000. Decimal fraction soil group D = 0.000 '-SCS curve number for soil (AMC 2) =.32.00 Adjusted SCS curve .number for AMC 3 = 52.00 Pervious -ratio (Ap) = 0 . 6000 Max loss rate (Fm) _ 0.471 (in/Hr) The area added to the exist-ing stream caiuses a 448'(CFS) a lower flow rate of Q•-= 97' 158.700(CPS) is being used therefore the upstream flow rate of Q = Rainfall intensity = 2 .•243 (In/Hr) for a • 10 .0 year storm - t u ed for area (total area with modified Effective runoff coeff icien s , rational method)(Q=KCIA) is C = 0.870 Subarea runoff = 0.000(CFS) for 0.911 (Ac . ) Total -runoff = 15B.70-0(CFS) Total area = 61.44 Area averaged Fm value = 0.481(in/Hr) Street flow at end of street = 158.700 -(CFS) Half street flow at end of street = 79.350 (CFS) Depth of flow = 0.863 (Ft.), Average velocity = 5 .215 (Ft/s) Warning: depth of flow exceeds top of curb • Distance that curb overflow reaches into property = 9.81 (Ft . ) Flow width (from curb towards crown) _ ` 37. G44 (Ft.) L'1"'1"++-F+'F.....+"1'•+'F'••1•'1'+'1".+"1"j"f....'F••F++•1'+T'1•.....T+'3'•'1"1'•'1"1'•"F+••}•+"F•}}T++++'..."1....O. Process from Point/Station 22.000 to Point/Station 21 -00 **** CONFLUENCE OF MAIN STREAMS **t* m,kn fr,i I nvi•i nrr r9 ;; t ;; -i nq-i rle Main Stream is listed: I 1. I Area averaged loss rate (Fm) Area averaged Pervious -ratio Summary of stream data: Stream Flow rate TC No - • . (CFS) (min) = 0.4808 (in/Hr) (pp) = 0.6636 Rainfall Intensity (In/Hr) 1 2.869 18.08 2.054 2.243 2 158.700 15.61 Qmax (1) _ 1.000 * 1.000 * . 2.869) 144.528 • 0.893 * 1.000 * 158.7.00) + = " Qmax (2) • _ - * 0.863 * 2.869) + ' 161.. 473 .1.120 1.000 * 1.000 * 158.700) + _ Total of 2 main streams to confluence: Flow rates before 158n70pence point: , 2.869 Maximum. flow. rates at confluence using above data: 144.528 161.473 Area of_. streams before confluence: 2.014 61.436 Effective area values after confluence: •63.450 63.174 Results of confluence161.473 (CFS) ' Total flow rate = 15.608 min. Time of concentration = _ 63.174 Mc - ) Effective stream area after confluence.. 0.662 .Study area. average Pervious fraction(Ap) = 0 .481 (Irl/Hr) Study area average soil loss rate (FM). _ Study area-. total 63. 45 (Ac .) ++++++++++++++++..+++T++++++++++++1.000+to+Point/Station 2.000 ++++++++++++++ Process from Point/Station **** 1. **** INITIAL AREA EVALUATION d dwl acre) RESIDENTIP_L (3 / A = 1.000 Decimal fraction soil group Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction. soil group D = 6-000 SCS curve number for soil (AMC 2) = 32.00 Adjusted SCS curvenumber for - AMC 3 = 52.00 0 4-71 (Irl'/Hr) Pervious ratio(Ap) =_0.6000 Max loss rate(Fm)= Initial subarea data: 00 . 4510 (Ft.) Initial area flow distance = 300(Ft. .). Top (of initial area) elevation = 93SD •400 (). ) Bottom (of initial area) elevation = 12.9 00 (Ft . ) Difference in elevation = 2 86 Slope = 0.02860 s(o)= TC = k (0.412) * [ (lengthA3) / (elevation change) 70 .2 9.667 min. Initial area time of ' concentration = for a 10.0 year storm Rainfall intensity = 0 •758 2.990(InfHr) Effective runoff coefficient used for area (Q=KCIA) is C = Subarea runoff = 4.487 (CFS) 1.979 (Ac 'Pni-al ; n; t-.-i_al stream area = • ) L . uuu zo eo1nL/ �UCLL•1U11 process from Point/Station �*�* **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION Top of street segment elevation 80 .400 (Ft . ) End of street segment elevation 000 (Ft .) 00 (Ft . ) Length of street segment = r Height of curb above • gutter flowlir_e S. 0 (In.) Width of half street (curb to crown) _ 18 .0.00 (Ft. ) Distance from crown to crdesbreak grade break 0.040 • 04016.500 (Ft . ) Slope from gutter to gra = 0 •020 Slope -from grade break to crown '(v/hz) Street flow is on [23 side (s) of the street Distance from curb to property line 12 .0000020. ) Slope from curb to property line (v/hz) _ Gutter width = 1.500 (Ft . ) Gutter hike from •flowline = . 1.680 (In. ) Manning' s N in gutter = . 0-0150 Manning's• N from gutter to grade break = 0.0150 Manning' s N from grade break to crown = 0 .015 0 6.9 04- (CFS ) Estimated mean flow rate at midpoint *of street = Depth of flow 0 .342 (Ft.) , .Average velocity = 2 :419 (Ft/s) Streetflow hydraulics at midpoint of street travel: Half street. f low width 11.595 (Ft .)- Flow velocity = 2.42.(Ft/8) Travel .time = 2.04 min, TC 11:.71 min. Adding area flow to street RESIDENTIAL (3 - 4 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil -group B =-0.00.0 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil (AMC 2) = 32.00 Adjusted SCS .curve number for AMC 3 = 52 .00 0.471 (in/Hr) Pervious ratio(AP)- = 0.6000 Max .loss rate (Fm) = year storm Rainfall intensity = 2.666'(In/Hr) for a 10.0 y Effective runoff -coefficient used for area,.(total area with.modified rational method) (Q=KCIA) is C = 0.741° . Subarea runoff = 3.633(CFS) .for 2.132' (Ac.) _ A .! 1 (pc.) . Total runoff = 8.121(CFS) Total area.= Area averaged Fm value = 0.471(In/Hr) Street flow .at. end of street = 8.121�(C060 (CFS) Half street flow ' at end of street = 2..516 (Ftp s ) Depth .of flow = 0. 358 (Ft.) , Average velocity = Flow width (from curb towards crown) _ 12.376 (Ft.) i'Fi +T { ; F {'T E {T'F'F..'y....+.F..T�..}.'{"i"'}.'}."}'}.'}.}-}.}}.."F.}+...i,.'}"F...T.."�..'}. ++++++++++ 2.000 to Point/station. 3.000 Process from Point/Station. * * * * CONFLUENCE OF MINOR STREAMS Along Main Stream number: 1 in' normal stream number 1 Stream flow area- = 4.11i (.kc!.') Runoff from this stream = 8.121 (CFS) Time of concentration = 11.71 min. � Rainfall intensity = 2 .666 (2n/Hr) 0 .4711 (Ir_/Hr) Area averaged loss rate (Fm) 00.6000 Area averaged Pervious ratio (AP) { ++++++++++++++++++++++++++++++ f-+-F+'I"'I.++'{'•i'++++'}"+++.}.{..L-{-++++'}'+'}.} .F }.T '}".} 'F" �"'} .{" ++-r+-1- -f-+ -'r �" ++ +++++ ++ •f -+-I- -3.. +++ 3.000 T + 103.000 to Point/Station Process from Point/Station _ _ 3 I J 1JCl+_LLLLCL_L 1.1al:L.LLJil OU -L -L y.LUUJJ __ = v.uuu Decimal fraction' soil group D = 0.000 - SCS curve number for soil (AMC 2) = 32-00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio (Ap) = 0.6000 Max loss rate (Fm) = 0. 471 (In/Hr) Rainfall .intensity = 2 .280 (In/Hr) for a 10.0 year storm User specified values are as follows: TC = 15.19 min. Rain intensity = 2.28(ln/Hr) Total area = . 17 , 50 (Ac .) Total runoff = 47.1S (CFS) +++++++.4 +"} ++++++++.i ++++++++.}..i +++"}•'} +++++++++++•t"i. +++++++++ +'{";•'{ +.E.+++++'•{ ++ Process from Point/Station 103.000 to Point/Station 3.000 * * * * CONFLUENCE OF MINOR STREAMS Along Main Stream -number: 1 in normal stream number 2 Stream flora area = i7 .500 (Ac.) . Runoff from this stream = 47.180 (CFS) Time of concentration = 15.19 min. Rainfall intensity = 2. 2 8 0 (In/Hr.) ' Area averaged loss rate (Fm) 0 .4711(In/Hr) Area averaged Pervious ratio (Ap) = 0.6000 Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr). 1 8..121 11.71. 2_.666 2• 47.180 15.19 .2.280 Qmax (1) _ 1.000 * 1:000 * 8.121) +. 1.213 * 0.771 * 47. 180) + _ ' . °-52.233. Qmax (.2) _ 0.824 * 1 000 * 8.121) + - 1.000.. * 1.000 * 47.180) + _ 53.873 Total of 2 streams to confluence: Flow rates before confluence-pflint: 8.121 47..180 Maximum flow rates at confluence using above data: 52.233 53.873 Area of streams before confluence: 4.111 17.500 Effective area values .after confluence: 17.597 21:611. Results of confluence: Total flow -rate 53 .873 (CFS) Time of concentration = ' 15.190 min. Effective stream area after confluence = 21, 611(Ac . ) Study area average Pervious fraction (Ap) = 0.600 Study area average soil loss rate (Fm) = 0 .471(In/Hr) Study area total (this main stream) = 21.61(Ad, ) +++++++++++++++++++++++++++++++++++++++++++++++++++++ ++-}•+++•3-++ •i--{-•}•++ Process from Point/Station 3.000 to Point/Station x!-.000 * * * * STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * * * Top of street segment elevation = 77.400 (Ft.') End of street segment elevation = 73.040(Ft.) .91 C .1 I Slope from grade break to crown (v/hz) = 0.020 Street, flow is on [2} side (s) of the street Distance from curb to property line = 12.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500 (Ft.) Gutter hike from flowline = 1.680 (In.) Manning's N in gutter = 0.0150 Mannings N from gutter to grade break = 0. 0150 Manning' s N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 57.250(CFS) De th of flow = 0 615 (Ft ) Average velocity = 4.823 (Ft/s) p , Note: depth of flow exceeds top of street crown. Streetflow hydraulics at midpoint of street travel:. Halfstreet flow width = 18 .000 (Ft . ) Flow velocity = 4.82 (Ft/s) Travel time = 1.38 min. TC = 16.57. min. Adding area flow to street RESIDENTIAL (3 - 4 dwl /acre ) Decimal fraction soil group A = 1.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0:0.00 SCS curve number for soil (AMC 2) = 32.00 Adjusted.SCS' curve number for AMC 3' = 52.00 Pervious ratio (Ap)=' 0. 6000 Max loss rate(Fm)=- The ate(Fm)=-The area added to the existing stream causes a a lower flow rate of Q = 37.053 (CFS) 0.471 (In/Hr) .therefore the upstream flow rate, of Q = 53. 873 (CFS) is being used Rainfall intensity• = 2. 164- (In/Hr)• for a 10.0 year storm Effective runoff • coefficient used for area, (total .area with modified rational method) (Q=KCIA) ;is C•= 0.845 Subarea runoff = 0.000(CFS) fo.r 2.709 (Ac. ) Total runoff = 53 .873.(CFS) ' Total area -= 24.32 (Ac.) Area averaged Fm value = 0.471 (In/Hr) • Street flow' at *end of -street = 53 .873 (CFS) Half street. flow at end of street = 26.937 (CFS) Depth of -flow = 0.603. (*Ft .) , Average .velocity = 4.709 (Ft/s) Note: depth of flow exceeds top of street crown. Flow -width (from curb towards crown). = 18.000 (Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++-E+++++++++++++++++++++ Process from .Point/Station 4.000 -to Point/Station. 5..000 ****. STREET FLOW TRAVEL TIME + SUBAREA: FLOW P.DDITION Top of street segment elevation = 73 .040 (Ft . ), End of street segment elevation = 65 .320 (Ft . ) Length of. street segment = 400.800(Ft.) Height of - curb above gutter flowline = Width of half street (curb to crown) = 18. 0 00 (Ft . ) Distance from crown to' crossfall grade break. = 16.•500 (Ft.) Slope from gutter to grade break (v/hz) = 0.040' Slope from grade break to crown (v/hz) = 0.020 Street -flow is on [2) side (s) of the street Distance from curb' to property line = 12.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500 (Ft.) Gutter hike from flowline = 1.680 (In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Flow velocity = 5. 71 (Ft/s) TC = 17.74 min. Travel time = 1.17 min. Adding area flow to street RESIDENTIP_L (3 - 4 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group H = 0.000 Decimal fraction soil group C = 0.000 . Decimal fraction .soil group D = 0.000 SCS curve number for soil (AMC 2) = 32.00 Adjusted SCS curve . number for 'ratio AMC 3 = 52.00 Max loss rate (Fm) _ pervious (Ap) = 0.6000 The area added to, the existing stream causes -a 22 (CFS) 0.471(In/Hr) a lower flow rate of Q = 38.9 S3.873(CFS) is being used therefore the *upstream flow rate of Q = year storm Rainf all intensity = 2 .0 7 7 (In/Hr) for a 10. 0 y d for area' (total area with modified Effective -runoff coefficient use rational method) (Q=KCIA) is . C = 0.829 Subarea runoff = 0.000 (CFS) for 2.607 (Ac. ) Total runoff 53 .873 (CFS) Total area = 26.93 (Ac. ) Area. averaged Fm value = 0 .471(In/Hr) Street flow. at end of street = 53.873.(CFS) Half' street flow at� •et -d of street 26..9.37 (CFS) Depth of flow = 0. 553 (Ft .) , Average velocity 5.593 (Ft/s ) Note: depth of flow exceeds top of street crown. Flow width (from curb towards - crown) = is. 000 (Ft.) 'F;"E'•'}"'F'•i"'."'}"'{'"."I"'{""'"";";"''•i""i"i"T•}•'�•'�";'T'}'.'y•�•�"'.�'.'�.'+"}'.�'.'}"C'�•'�".i.�'•.t.'F..'.F"'}•'�."'�•'�'..i•'.�.•i"t..i•.�'T•j..T;� . .000 + to Process from Point/SStatioI. + SUBAREP_OFLOW ADDITION' *on* **** STREET FLOW Top of street segment elevation 56.500 (Ft. ) J End of street segment elevation.= Length of street segment = 457.44Q (Ft.) Height of curb above gutter f lowline ° 8.0 (In . ) . ° width. of half street (curb to crown) - 18.000 (Ft . ) Distance from crown -to crossfall grade *break. 0 , 04.016 500 (Ft. ) Slope from gutter to grade break (v/hz) = Slope" from grade break to crown (v/hz) 0.020 Street flow is on [.2] side (s) of'the street Distance from..•curb .to property line = ..12 .000.(Ft . ) Slope from curb to property line (v/hz) _ 0.020 Gutter width = 1. 500 (Ft.) Gutter hike from flowline = l .680 (In.) Manning' s N in gutter = 0.0150 Manning' s N from gutter to grade break = 0--0150 •Manning's •N from grade breaX to crown = 0.01510 57.010 (CFS) Estimated mean flow rate at midpoint of street = Depth of flow = . 0 .562 (Ft.) , Average velocity = 5 .722 (Ft/s) Note: depth of flow exceeds top of street ' crown . Streetf low hydraulics at midpoint of • street travel: I Halfstreet. flow width 72=(Ft js) 000 (Ft . ) Flow velocity - Travel time = 1.3 3 min. TC = 19.0 8 Adding.area flow to street RESIDENTIAL(3 - 4 dwl/acre) Decimal fraction soil group A.= 1.000 l Decimal fraction soil group B = 0.000 I Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0..000 00 5C5 curve number for soil (AMC 2) 2 __ Rainfall intensity = . 1.989 (In/Hr) for a 10.0 year storm Effective runoff coefficient used for area, (total area with modified rational • m.ethod) (Q=KCIA) is C = 0.811 Subarea runoff = 0.000(CFS) for :3. 13 6 Total runoff = 53.873 (CFS) Total area.-- 30.06 (Ac.) Area averaged Fm value'= 0.471(In/Hr) Street flow at end of street = . 53.873(CFS) Half street flow at end of street = 26'.937 (CFS) Depth o.f flow = 0 .553 (Ft.) , Average velocity = 5 .595 (Ft/s) Note: depth of flow exceeds top of street crown. -Flow width (f rom curb towards crown) = 18.0 00 (Ft . ) {"•.."f..{".'{"}"j".t".{"..."j."...}",".j".......{"}.'i".+T'E.+.}..+'i"t"'{..'{"+.{'+"}..}.+'i"'}.'}•'{"}..f'.T+"+T.i.+"i.'+"+'}"+.}'.++"'."' + Process from Point/Station 6.000 to Point/Station 7.000 * * * * STREET FLOW TRAVEL TIME + SUBAREA FLOW P.DDITION ,* Top of street segment elevation =. 56.500(Ft.) End of street segment. elevation = 54.500(Ft.) Length of street segment = 231.460 (Ft. ) Height- of curb above gutter .flowl ine = 8.0 (In.) Width of half street -(curb to crown) 18.000 (Ft. ) Distance from crown to crossfall grade break Slope from gutter to grade break (v/hz) = 0.040. Slope from grade break to crown (v/hz). = 0.020 _ Street flow is on (21' side (s) of the street Distance' from curb to property line = 12 .000 (Ft.) Slope from curb to property line (v/hz) = 0.020 ;,. Gutter width = 1.500 (Ft.) ' = Gutter hike• from flowline = •1.680 (In..) Manning's N in gutter = .0.0'150 Manning's N. from gutter to grade break = 0.0150• 3 Manning's N from. grade break to crown = 0 .0150 Estimated mean flow rate at midpoint of street = 55.163(CPS) Depth of flow • 0•.631 (Ft.) , Average velocity = -4.432 (Ft/s) J Note: -depth of flow exceeds top of street crown. Streetflow hydraulics- at midpoint of street travel: Half'street flow width = 18.000 (Ft . ) Flow velocity = 4.43 (Ft/s) Travel time = 0..87 min. TC = 19.95 min. Adding area ' flow to street RESIDENTIAL D - 4 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group"B• = Q.000 Decimal fraction soil group C = 0.000 Decimal. • fraction., soil group D = 0. 0 Q`0 SCS curve number for soil (PMC 2) Adjusted SCS curve number for AMC 3.= 52.00 Pervious ratio(AP) = O.6000 Max loss rete (Fm) = 0.4-71 (In/Hr) The area added to the existing stream causes a a lower flow. rate of Q = 41.543 (CFS) therefore the upstream flow rate of Q = 53.873(CFS) is being used Rainfall intensity = 1.936 (In/Hr) for a 10.0 year storm Effective runoff coefficient used for area, (total area with modified rational method) (Q=KCIA) is C = 0.803 Subarea runoff = 0.000(CFS) for 1.440 (Ac . ). Total runoff = 53..873(CFS) Total area = 31.50 Area averaged Fm value = 0.471(In/Hr) Street flow at end of street = 53.873(CFS) Half street flow at end of street = 26.937(CFS) Depth of flow 0. 62 6 (Ft.) , Average velocity = 4. 3 91 (Ft/s) ... 1 Process from Point/Station 6.000 to Point/Station 7.000 * * * * CONFLUENCE OF MAIN STREAMS t*** The following data inside Main Stream is fisted: In Main Stream number:' 1 Stream flow area = ' 31.503 (Ac.) Runoff from this stream =. 53.873 (CFS) Time of concentration = 19.95 min. Rainfall intensity = 1.936 (In/Hr) Area averaged loss rate (Fm) = 0.4711(In/Hr) Area averaged Pervious ratio (Ap) 0.6000 Program is now starting with Main Stream No. 2 +++++++++++++++++++++++++++-I: ++T+++++ Process from'Poi.nt/Station' 26.000 to Point/Station 8.000 * X * INITIAL ' AREA EVALUATIOiv RES IDENTIA.L (3 - 4 • dwl / acre ) Decimal fraction soil group A = 1.000 Decimal fraction soil -group B 0.000 ' Decimal fraction soil -group C = 0.000 Decimal fraction soil group .D = 0.LQG - - SCS curve number for .soil (AMC 2) = 82.00 Adjusted SCS curve number for AMC 3'= 52.00 Pervious ratio'(Ap)' = 0.6000 Max loss rate (Fm) = 0.471 (In/Hr) Initial subarea data: Initial area .flow distance = 307.370 (Ft.) Top (of initial area). elevation = 93.300 (Ft.) Bottom (of initial area) elevation = • 76.600 (Ft.) Difference in, elevation '= 16.700 (Ft. ) Slope 0.05433 s (a) _. 5.43 Te = k(0.4i2)* [ (length'3)/.(elevation change)']`'0.2 Initial. area time of• concentration = 7.294 min.. Rainfall intensity = 3. 5 41(In/Hr) 'for a 10.0 y ear ' storm Effective runoff coefficient used for area (Q=KCIA) .is C = 0.780 Subarea runoff = 5.791 (CFS). Total initial stream area 2.096 Pervious area fraction = 0.600. Initial area Fm value = 0 .471(In/.Hr) +++ 4:+++ ++++"++"{ ++ "}'..f. +++++++++ +:" ..}..j...t... }. .. ..E. i..F..E.... •t... .... .. ...F. .. j...i..f,..t...}.... ..}. Process from Point/station 8.000 to Point/Station 9.000' * * * * STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION Top of street segment elevation = 76. 600 (Ft . ) End of street segment elevation = 70.000 (Ft . ) Length of street segment = 312.980 (Ft.) Height of curb above gutter f lowline = ' 8.0 (In.) Width of half street (curb to crown) = 18.000 (Ft.) Distance from crown to crossf all grade break = 16.500 (Ft.) Slope from gutter to grade break (v/hz) = 0.,020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s), of the street Distance from curb to property line . = 12 .00G (Ft . ) Slope from curb to property line. (v/hz) = 0.020 Gutter width = 1. 500 (Ft. ) Gutter, hike from flowline = 1.687 (In.) Manning' s N in gutter = 0.0150 Manni•ncrI c v f•rnrn cnit-t-Pr i -n rTrarla hraak = n n7 qn Depth of flow = 0 .398 (Ft.) , Average velocity = 3.048 (Ft/s) Flow width (from curb towards crown) = 14.415 (Ft.) }}}_'F'F•}"E'{''F'I"I"•F'}••E''F•}'.+}•i'++ I"}•+•{"F.}."}"•j-.}.-r}•F"I..++ Process from Point/Station 9.000 to Point/Station 10.000 * * * * CONFLUENCE OF MINOR STREAMS * * * * Along Main Stream number: 2 in normal stream number 1 Stream flow area = 6•.334 (Ac.) Runoff from this stream = 13.171 (CFS) Time of concentration = 10.91 min. Rainfall intensity = 2 . 782 (In/Hr) Area averaged loss rate (Fm) _ - 0.4711 (In/Hr) Area averaged. Pervious ratio (Ap) = 0.6000 '�"'F'F .T. "}• "{"'E"I"�"{"}"F'F'F .}..{..}..}..f. "'f"F'{.'�"'F"}"F"E'}":"'I"F ^I•'F }'}"{"I"F' -1-•i' -i- -1- -F }'f•%?-'�"' T'}"{" °{"F•'F'F'{;'F'-,-'�"}• .r .� •F'{' `}•'I"F":"I"i" Process. from Point/Station 11.000 to Point/Station 12.000 **** INITIAL AREA EVALUATION **** RESIDENTIAL(3 - 4 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B 0.0-00 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil (AMC 2)' = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio (AP) = 0.6000 Max loss rate (Fm) _ 0 .471 (In/Hr) Initial subarea data: Initial area flow distance = 272.410 (Ft:)- Top (of initial area) elevation = 74.500 (Ft.. ) Bottom (of initial area) elevation = 71.4.00 (Ft.). Difference in elevation= 3.100 (Ft.) Slope = 0.01.138. s (%)= 1.14 TC = k (0.412) * [ (length"3) /.(elevation change) 0 .2' Initial area time of concentration = 9.501 min. Rainfall intensity =. 3 .022 (In/Hr) for • a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.760 Subarea runoff 4.387 (CRS) Total initial stream area = 1.911 (Ac.) ' Pervious area fraction =,0.600 Initial area Fm value = 0 .471(In./Hr) 'F"}'i"i•'{_...}'•:•'F'.F•I'TT'I"+•I"'.}'{"'}.Ts"+"{".+T'{"+'}'+'F}T•E••F•{"•}•'F'F'}"F•'F'I"I•'}'.I•+'I"++'I•'F'}'}•'F'{'++ j"+'F•}•++4-+4-+'} + Process from Point/Station '12:000 to Point/Station 10.000 * * * * STREET FLOW . TRAVEL TIME + SUBAREA FLOW ADDITION ** Top of street segment. elevation = 71.400 (•Ft . ) End of street segment elevation = 66 .200 (Ft . ) Length of street segment = 276.500 (Ft . ) Height of curb above gutter flowline = 8 .0 (In. ) Width of half street* (curb to crown) IS. 000 (Ft.) Distance from crown to crossfall grade break = 16.500 (Ft . ) Slope from gutter to grade break (v/hz) = 0.040 Slope from grade break to crown (v./hz) = 0.020 Street flow is 'on [2] side (s) of the street. Distance from curb to property line = 12.000 (Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500 (Ft . ) F J :3 VC1Jl 11 V1 t1lJW = U ]1U \P L. J ! diV t::-,.Ldy= VCIUU1Ly = J a VGu �L L/ vl Streetflow hydraulics at midpoint of street travel: Half street flow width = 9.990 (Ft.) Flow velocity = 3.02 (Ft/s) Travel time = 1.53 min. TC = 11.03 min. Adding area flow to street RESIDENTIAL (3 - 4 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil (AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52:00. Pervious ratio (Ap) 0.6000 Max loss rate (Fm) = 0 .471 (In/Hr) Rainfall intensity = 2.7 63 (In/Hr) for a 10.0 year storm Effective runoff coefficient used for area, (total area with modified rational method) (Q=KCIA) isC = 0.747 Subarea. runoff = 3.403 (CFS) for 1. 865 (Ac . ) Total runoff = 7.790(CFS) Total area = 3.78 (Ac.) Area averaged Fm value = • 0.471(In/Hr). Street flow at end of street = 7.790 (CFS) Half • street flow at -and of street = 3 .895 (CFS) . Depth of flow = 0.325 (Ft.) , Average velocity = 3.1-90(F t/s) 'Flow width (f rom curb . towards crown) = 10.743 (Ft.) +TT'}"i... {'......."}•'j."}..}"......"'"{.T'}"f......'.;."..T..."}..'f"...}}....T''.'}"'f".T'}..'.. Process from Point/Station 12.000 td Point/Station 10.000 CONFLUENCE OF MINOR STRE.A.MS Prong Main Stream number: 2 in normal stream number 2 Stream flow area = 3.776 (Ac.) Runoff from this stream = 7.790 (CFS) Time of concentration . = 11.03 min. Rainfall intensity = 2.763 (In/Hr) Area averaged loss rate. (Fm) _ •0.4711. (In/Hr) Area averaged .Pervious ratio (Ap) 0.600b Summary of stream data: Stream Flow rate TC .No. ' ' (CFS) - (min) 1 �'13 •.171 •10:91 2 7.790 11.03 ' Qmax (1) _ 1:000 * 1.000 1.008 * 0.989 Rainfall Intensity (In/Hr) 2.182 2.763 13.171) + . •7.790) + = 20.937 Qmax (2) _ 0.992 * 1.000-* 13.171) + 1.000 * 1.000 * 7.790) + = 20.857 Total of..2 streams to .confluence:' Flow rates before confluence point: 13.171 7.790 Maximum flow rates at confluence using above data: 20.937 20.857 Area of streams before confluence : 6.334 3.776 Effective area values after confluence: 10.069 10.110• '{- +++ -}.++ +.}.+++-F+++T+°+..+++++++-F +-i-++•ET+ +_E,.f..} +++++_}.+++++_F.f-.}"++-j..f-.'{ +++_f'.++ + _E. T..F.+.{_+ Process from Point/Station 13.000 to Point/Station 14.000 **** INITIAL APNEA EVALUATION *** RESIDENTIAL; (3 - 4 dwl/acre) Decimal fraction soil group P_ = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil .group D = 0.000 SCS curve number for soil (AMC 2) _ -32 .00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio (Ap) = 0.6000 Max loss rate (Fm) = '0 .471 (In/Hr) Initial• subarea data: Initial area flow distance = 309.410 (Ft.) Top (of initial area) elevation = 70,800 (Ft. ) Bottom (of initial. area) elevation = 67.300 (Ft. ) Difference in elevation = 3.500 (Ft.) Slope = 0.01131 s(o)= 1.13 TC = k (0.412) * [ (length''3) / (elevation change) j''0'.2 Initial' area time of concentration = 10.009 min, Rainfall intensity'= * 2..929 (.In/Hr). for a . •1.0.0 year storm _ Effective runoff coefficient used for area (Q=KCIA) is C = 0.755 Subarea runoff _ = 3.727 (CFS) Total initial . stream area = 1.685 (Ac. ) Pervious area fraction = 0.600 Initial area Fm value = 0.471(I•n/Hr) -'++++-i-_}.+++++.E+_{_'1__E+++++++++_F++++++++T++•......................F-E+.++++++++++ Process from Point/Station 14.000 to Point/Station 15.000 * * * * STREET FLOW TRAVEL TIME •+ SUBAREA'. FLOW ADDITION t.*** Top of street segment elevation = . 67.300 (Ft.) End of street segment elevation = • 63 .000•(Ft . ) ' Length of street segment = 331 .120•(Ft. ) Height of curb above gutter flowline = B. 0 (In. )• Width of half street (curb to crown)• = 18.000 (Ft'.) Distance from crown to crossfall grade break - 16.500 (Ft . ) )' Slope . from gutter to grade break (v/hz) = 0 .04'0 Slope. from grade break to crown (v/hz) = 0.020 Street'-f1ow.'is on [21 side (s) of the street - Distance from .curb to property- line = 12.000 (Ft.) Slope from curb to property -line• (v/hz) = 0.020 . Gutter width = 1.500 (Ft:) - Gutter hike from flowline = • 1.680 (In.) Manning' s N in gutter = 0 ..01,50 Manning' s N from gutter to grade- break = 0.0150 Manning' s N f rom grade. break to crown = 0.015 0 Estimated mean flow rate at midpoint of street = 6.007 (CFS) Depth of flow = 0 .318 (Ft.) , . Average velocity = ' 2 .571(Ft/s ) Streetflow hydraulics at midpoint of •street travel: ' Half street flow width =. 10.419 (Ft . ) Flow velocity = 2.57 (Ft/s) Travel time = 2.15- man. TC = 12.16 min. Adding area flow to street. RESIDENTIAL (3 - 4 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.00b Decimal fraction soil group C = 0 .000 Decimal fraction soil group D = 0.000 SCS curve number for soil (AMC 2) - = 32.00 5unarea runor= = 3..474 (CFS) for 2 .062 (Ac. ) Total runoff = 7 .201(CFS) Total area = 3.75 (Ac . ) Area averaged Fm value = ' 0.471(In/Hr) Street flow at end - of street = 7.201 (CFS) Half street flow at end of street = 3.600 (CFS) Diepth of flow = 0 .334 (Ft.) , Average velocity = 2 . 685 (Ft/5) • Flow width (from curb .towards crown) = 11.218 (Ft.) -}...{-.... ++++-i'++++++++++++++++++++++++++++++++++-}-+++++-t•+++++++++++++++++ Process from Point/Station 14.000 to Point/Station 15.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 3.747 (Ac.) Runoff from this stream 7..2 0 1 (CFS) Time of concentration = 12.16 min.. Rainfall intensity = 2 .606 (In/Hr) Area' averaged loss rate (Fm) • = 0 .4711 (-In/Hr). Area averaged Pervious ratio (Ap) 0.6000 . Suminar-y of stream data: Stream --No. 1 _ 2 Qmax (1) Qmax Flow rate TC (CFS) (min) 21:209 12.56 7.201 12.16 1:000 * 1.000' 0..976 * 1.•000 Rainfall Intensity (In/Hr) 2.556 2.606 21.209) + 7..201) + = 28.240 1.024 * 0.968 * 21.209) + 1'.000 * 1,000 * 7.201) . + = 28.227 Total of 2. streams to' confluence: Flow rates before confluence point: 21.209. 7.201 Maximum -flow rates at confluence using'a:bove data: 28.240- 28.227 Area of streams -before confluence.: i 11.303 3.747 Effective area values after confluence: 15.050 14.6.89 Results . of conf luence : Total flow rate = 28.240 (CFS) Time of concentration = '12.557 min. Effective stream area after confluence = 15. 0,5 0 (Ac . ) ,. Study area average Pervious fraction(Ap) _ • 0.600 Study area average soil loss rate (Fm) = 0.471 (In/Hr) Study area total (this main stream) = 15•.05 +•d••+++-F+3"+'}•'}•+++.+T++•i++++++"E'+++++•h++++++++++++'i'++++•3"'+'E•+'i'•+++++'I-+•i••}"'}••j°'.++"I Process from Point/Station 15.000 to Point/Station 16.0'00 STREET FLOW TRAVEL TIME + SUEP_REA FLOW ADDITION Top of street segment elevation = 63 .000 (Ft . ) End of street segment elevation = 57 .600 (Ft . ) Length of street segment = 417. 84:0 (Ft.) Height of curb above gutter flowline = 8.0(In.) Distance from curb to property line '= 12 . 000 (Ft. ) Slope from curb to property aline (v/hz) = 0.020 Gutter width = 1.5 0 0 (Ft . ) Gutter hike from flowline 1. 680 (Iri. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to Crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.499 (Ft.) , Average velocity = Note: depth of flow exceeds top of street crown. Streetflow hydraulics at midpoint of street travel: Halfstr'eet flow width = 18 . 000 (Ft . ) Flow velocity = 3 .96 (Ft/s) Travel time = 1.76 min. TC = 14.32 min. Adding area flow to street RESIDENTIAL (3 - 4 dwl /acre ) Decimal fraction soil group A = ,1.000. Decimal fraction ,soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D = 0.000 SCS curve number- for soil (.AMC 2) • = 32.00 Adjusted SCS curve number* for AMC 3 = 52.00 30.473'(CFS) 3.955(Ft/s) Pervious ratio (A) = 0,6000 Max loss rate'(Fm) = 0.471 (In/Hr) Rainfall intensity ' = 2.362(1n/Hr). for a 10 .0 year storm Effective runoff coefficient used for area, (total area with modified rational method) '(Q=KCIA) is C- = 0.837*' Subarea runoff 1.430 (CFS) for'' 2.380 (Ac.) Total runoff = 29.670 (CFS) Total area = 17.43 (Ac.) - Area averaged Fm :value = 0.471(In/Hr) . Street flow at end of street = 29.670 (CFS).. Half street flow at end of 'street = ° 14.835 (CFS) Depth of flow = 0 .496 (Ft.) , Average velocity'- 3.913 (Ft/s) Note : depth - of . flow exceeds top of street crown. Flow width (from curb towards crown) = .18. 000 (Ft. ) . . ......... f... -i ........+-t .....L......................... ............. Process from Point/Station •15:000 to Point/Station 16.00.0 * * * * CONFLUENCE, OF- MINOR -STREAMS* Along- Mair' Stream number: 2 ' in normal stream number 1 Stream flow area = • 17.430 (Ac.) Runoff from'this stream = 29*.670 (CFS) Time of. concentration = 14.32 mini. Rainfall *intensity = 2.3 62 (In/Hr) Area averaged. loss rate (Fm) _ 0.4711 (In/Hr) Area averaged Pervious ratio. (Ap) . = 0.6000 -1--i-i-.-F-1--}--F-{--f--I....+++++f+++++++ +++++++++++++++++++ ..................... Process from Point/Station 27.000 to Point/Stati•on 17.000- INITIAL 7,000INITIAL AREA EVALUATION **** UNDEVELOPED ( average cover) subarea Decimal fraction soil group A = 1.000 Decimal fraction soil. group B = 0.000 . Decimal fraction soil group C = 0.000 T Decimal fraction soil group D = 0.000 l SCS curve number for soil (AMC 2) = 50.00 Adjusted SCS curve number for AMC 3 = 70.00 . PPrvin>>s rafiio (A1D) = 1.0000 Max loss rate (Fm) = 0 .532 (In/Hr) Z:31ULJ7_' = U.U/-Ub"/ S(a)= 2.07 TC = k(0.706) * [ (length''3) /(elevation change) 1 X0.2 Initial area time of concentration = 15.018 min. Rainfall intensity 2 .296 (In/Hr) for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.691 Subarea runoff = 0.892 (CFS) Total initial • stream area = 0 .562 (Ac . ) Pervious area fraction = 1.000 initial area - Fm value = 0 .532 (In/Hr) ++++++++++++++++++}++++ F}} ► }-r}} !-+ f i -I- --F-i-i--}- i-} i• (- Process from Point/Station 17.000 to Point/Station 16.000 * * * * STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION Top of street segment elevation '= 59.500 (Ft. ) -End of street segment elevation = 57.600 (Ft. ) Length of street -segment = 159.450 (Ft.) Height of curb. above gutter flowline = 8.0 (In.) Width of half street (curb to. crown) _ . 18 .000 (Ft. ) Distance. from crown to cros'sfall• grade break = 16:500 (Ft.) Slope from gutter to grade•break (v/hz) = 0.040 Slope from grade break to crown (v/hz) ' = 0..020 F ' . - • Street flow is bn [21 side (s) of the street . Distance from curb to property line = •12.000 (Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width .= 1. -900 -(Ft.) Gutter hike from flowline = 1.680 (In. )' , Manning's N in gutter = 0.0150 :Manning' s N from gutter to grade break = 0 .015.0 -Manning' s N from grade break to crown = .0'.0150 Estimated mean flow rate at midpoint of street = 1.057 (CFS) Depth of flow = '0 :206 (Ft.) , Average velocity = 1.659 (Ft/8) Streetf low hydraulics at midpoint of street travel: Half street flow width = 4.780 (Ft. ) Flow velocity = 1.70(Ft/s) Travel time = 1.56 min. TC = 16.58 min.. Adding area .flow to street = - RESIDENTIAL (3 - 4 'dwl/acre) Decimal fraction soil group A = 1.000 • Decimal fraction -soil group B = 0-.000 } Decimal fraction soil group C = 0.000 Decimal ''fract'io'n soil group D =.0.000 SCS curse number for soil (AMC. 2)' = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 0 , 471 (In/Fir) Pervious ratio (Ap)' = 0.6000 Max_ loss rate (Fm) _ Rainfall intensity = 2.163 (In/Hr) for a 10.0 year storm Effective* runoff coefficient used for_ area, (total area with modified rational method) (Q=KCIA) is' C = 0.677 Subarea runoff = 0.250 (CFS) for '0 .208 (Ac.) Total runoff = 1.142 (CFS) Total area = 0 a 77 (Ac.) Area averaged Fm value = 0.516 (In/Hr) Street flow at end of street = 1.142 (CFS) Half street flow at end of street = 0.571.(CFS) 1,•724 Ft s Depth of flow = 0 .210 (Ft.) , Average velocity ( ) Flow width (from curb towards crown) = 4.987 (Ft.) '} . j.. . j. "F..}..}. +.. f ...{..r + + s..{..F i .} .j- .}.. j.:,... ..}... .}.. •{..{". } }.. +. f + } }. } .a..F ..1....F } .. ..}. . ...{..}.. i...r . .}•..E - Process from Point/Station 17.000 to Point/Station 16.000 ***� CONFLUENCE OF MINOR STREAMS **** ­ .--V2. - G . LUJ `1.1111111 Area averaged loss rate (Fm) = 0.5159(In/Hr) Area averaged Pervious ratio (Ap) = 0.8919 Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1. 29.670 14.32 2.362 2 1.142 16.58 2.163 Qmax (1) _ 1.000 * 1.000 * 29.670).+ 1.121 * 0. B-63 * 1.142) + = 30.775 Qmax (2) _ 0.895 * 1.000 * 29.670) + 1.00.0 * 1.000 * 1.142) + _ .27.687 Total' of 2 streams to confluence: - Flow rates bef ore conf luence point: 29.670 1.142 Maximum flow rates at conf luence using above data 30.775' 27.6-87 Area of streams -before conf luence: 17.430 0.770 Effective area values .after" confluence: 18.095 18.200 ' Results of "confluence: Total 'flow rate = 30.775 (CFS) Time of concentration = 14-.317 min. Effective stream area after confluence = 18.0.9-9 (Ac.) Study area average Pervious fraction (Ap) 0.612 Study area average soil loss rate (Fm) = 0.473 (.In/Hr) Study area -total (this main stream) = 18.20'(Ac. ) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++4-++ Process frot Point/S-tation-`. _ ' 16.000 to Point/Station 7.000 * * * * STREET FLOW TRAVEL TIME + SUBAREA FLOW ADD ITION -* * * * Top of street , -segment. elevation 57.600 (Ft. ) End of street segment elevation = 54. 300 (Ft. } Length of -street segment = 295.9.30 (Ft.) Height of curb above' gutter flowline = 8.0 (In. ) Width of half •street (curb to crown) = 18.000(Ft.-) Distance from crown -to crossfall. grade break = 16 .500 (Ft.') Slope from gutter to grade break (v/hz) = 0.040 Slope from grade break to crown (.v/hz) _ . 0.020 Street flow is on .[23 side (s) of the street Distance .f ram curb to property line = T2 .000 (Ft.) Slope from curb toproperty line (v/hz) = 0.020 Gutter width = 1.500 (Ft. )" Gutter hike from flowline = 1.680 (In. ) Manning' s N in gutter = • 0 . 0150 Manning' s N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated -mean flow rate at -midpoint of street , = 31.131(CFS) Depth of flow = 0.516 (Ft .) , Average velocity = 3 .744 (Ft/s) Note: depth of flow exceeds top of street crown. Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 18 . 000 (Ft . ) I Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil (AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.'00 Pervious ratio (Ap) = 0.6000 Max. loss rate (Fm) = 0.471 (In/Hr) The area added to the existing stream causes a a lower flow rate of Q = 29.459 (CFS) therefore the upstream flow rate of Q = 30 . 775 (CFS) is being used Rainfall intensity = 2 .241,(In/Hr) for a 10.0 year storm Effective runoff coefficient used for area, (total area with modified rational method) (Q=KCIA.) is C = 0.889 Subarea runoff = 0.000 ( CFS) for 0.419° (Ac . ) Total runoff = 30.775(CFS) Total area Area averaged Fm value = 0.473 (In/Hr) Street flow at end of street 30 .775 (CFS) Half Street flow at end of street = 15.388 (CFS) Depth of flow = 0.515 (Ft .) , Average velocity = 3.727 (Ft/s) Note: depth of flow exceeds top of street crown . Flow width (from curb towards crown) = 18 .000 (Ft . ) .}....+-i..i•+++++..+.++++++•i-+++++++}++++++•+++++++.- +++++++++++-1!+++-j:++++++++ .Process' -from Point/Station 16.000 to Point/Station. 7.000 * * * * CONFLTJENCE OF MAIN STREAMS The following data inside Main Stream is listed: .In Main. Stream number: 2 - Stream flow area •= 18.514(P_c.) Runoff from this stream = 30.775 (CFS) Time of concentration = , 15.63 min.. Rainfall intensity = 2 . 241 (Iii/Hr) Area averaged loss rate (Fm) = 0.4729 (In/Hr) Area averaged Pervious ratio (Ap) = 0.6121 Summary of stream data : Stream. Flow rate TC Rainfall Intensity No. ( CFS) (min) (In/Hr) -1 53.87.3 19.95 1.936 2 30.775 15.63 2.241, 1.000 `* 1.000 * 53.873). + 0.828 * 1.000 '* 30.775) + _ . 79.345 Qmax (2) _ 1.208 * 0.784 * 53.873) + 1.000 * 1.000 * 30.775) + = 81.784 Total of 2 main streams 'to confluence: Flow rates before confluence point': 53.873 30.775 Maximum flow rates at confluence using above data: 79.345 81.784 Area of streams before confluence: 31.503 18'.514 Effective area values after. confluence : 50 .017 43.207 Results of confluence: a Luuy dLt--4 LrUUd--L = nu . UG (A.c. ) End of computations., total study area = 114.12 (Ac . ) The following figures may be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation. Area averaged pervious area fraction(Ap), = 0.636 Area averaged SCS curve number = 33.6 ) ....++++++-F.............++++++....-....-f...........f+++i-....-F-F+....... Process from Point/Station 2.000 to Point/Station 3.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ** Top of street segment elevation = 80.400(Ft.) End of street segment elevation = 77.400(Ft.) Length of street segment = 296.000(Ft.) Height of curb above gutter flowline = 8.0(ln.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = .16.500(Ft.) Slope from gutter to grade break (v/hz) = 0.040 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutterwidth = 1.500(Ft.) Gutter hike from flowline = 1.680(16.) Manning's N in gutter= 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 8.600(CFS) Depth of flow = 0.443(Ft.), Average velocity= 3.021(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 16.626(Ft.) Flow velocity = 3.02(Ftts) Travel time= 1.63 min. TC = 11.30 min. Adding area flow to street RESIDENTIAL(3 - 4 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.471(In/Hr) Rainfall intensity = 3.286(in/Hr) for a 25.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCIA) is C = 0.771 Subarea runoff = 4.827(CFS) for 2.132(Ac.) Total runoff = 10.417(CFS) Effective area this stream = 4.11 (Ac.) Total Study Area (Main Stream No. 1) = 4.11 (Ac.) Area averaged Fm value= 0.471(ln/Hr) Street flow at end of street = 10.417(CFS) Half street flow at end of street = 10.417(CFS) Depth of flow = 0.468(Ft.), Average velocity = 3.167(Ft/s) Flow width (from curb towards crown)= 17.908(Ft.) OFFSITE HYDROLOGY 25 YEAR FREQUENCY TRACT NO. 14293 NOTE: THIS SECTION WAS ADDED TO THE EXISTING ATIONSOFORGY REPORT THE PROP SOED THIS TRACT, SO THAT CONTINUING CALCULATIONS SUBDIVISION COULD BE MADE. San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2000 Version 6.3 Rational Hydrology Study Date: 09/11/03 Raab Engineering, Corona, California - S/N. 875 --_-------------- ------ ------------- ********* Hydrology Study Control Information Rational hydrology study storm event year is 25.0 10 Year storm 1 hour rainfall = 1.000(ln.) 100 Year storm 1 hour rainfall = 1.520(in.) Computed rainfall intensity: Storm year = 25.00 1 hour rainfall= 1.207 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 3 -I--F-F+-F-Fi-....-E-F-F-F.-F-I-.-F-I-.-Fi ...t -F.... -F -F -Ft... .-F-1--F-1-i-i--E-i-d--F-F-F-F-Fi-..... ......... Process from Point/Station 1.000 to Point/Station 2.000 **** INITIAL AREA EVALUATION **** RESIDENTIAL(3 - 4 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.471(INHr) Initial subarea data: Initial area flow distance = 451.000(Ft.) Top (of initial area) elevation = 93.300(Ft.) Bottom (of initial area) elevation = 80.400(Ft.) Difference in elevation = 12.900(Ft.) Slope = 0.02860 s(%)= 2.86 TC = k(0.412)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 9.667 min. Rainfall intensity = 3.609(in/Hr) for a 25.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C'= 0.783 Subarea runoff = 5.589(CFS) Total initial stream area = 1.979(Ac.) Pervious area fraction = 0.600 Initial area Fm value = 0.471(In/Hr) }}+i -++-F+++...... F.-F-F-Fi--f--F-1....+a-..+-F-4-i-t-F.....i-+-F-f-........i-............. Process from Point/Station 2.000 to Point/Station 3.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 80.400(Ft.) End of street segment elevation = 77.400(Ft.) Length of street segment = 296.000(Ft.) Height of curb above gutter flowline = 8.0(ln.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (v/hz) = 0.040 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutterwidth = 1.500(Ft.) Gutter hike from flowline = 1.680(in.) Manning's N in gutter= 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 8.600(CFS) Depth of flow = 0.443(Ft.), Average velocity= 3.021(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 16.626(Ft.) Flow velocity = 3.02(Ftls) Travel time = 1.63 min. TC = 11.30 min. Adding area flow to street RESIDENTIAL(3 - 4 dwi/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.471(1n/Hr) Rainfall intensity = 3.286(In/Hr) for a 25.0 year storm Effective runoff coefficient used for area, (total area with modified rational method)(Q=KCIA) is C = 0.771 Subarea runoff = 4.827(CFS) for 2.132(Ac.) Total runoff = 10.417(CFS) Effective area this stream = 4.11 (Ac.) Total Study Area (Main Stream No. 1) = 4.11 (Ac.) Area averaged Fm value = 0.471(In/Hr) Street flow at end of street = 10.417(CFS) Half street flow at end of street = 10.417(CFS) Depth of flow = 0.468(Ft.), Average velocity = 3.167(Ft/s) Flow width (from curb towards crown)= 17.908(Ft.) }+.....-F+i-....i-t-Fi--F.......-F-Fi--F-F+i-.-F-F.i-....+....ta-.........t.......tf.. Process from Point/Station 2.000 to Point/Station 3.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 4.111 (Ac.) Runoff from this stream = 10.417(CFS) Time of concentration= 11.30 min. Rainfall intensity = 3.286(in/Hr) Area averaged loss rate (Fm) = 0.4711(ln/Hr) Area averaged Pervious ratio (Ap) = 0.6000 .......-I--t--I-.+-F-F.-F-I--F-F-F-F....-F....d-.-Fti--t--Fti-........ -t-F-f-.....-I.........- ... Process from Point/Station 103.000 to Point/Station 3.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Since the origin of the user defined 100 -year volume is unknown, it is first necessary to decrease the 100 -year volume to it's corresponding 25 -year amount. From a review of the previously calculated volumes at common Node 3, a ratio of the Q100 to Q25 can be determined, and an adjustment made to continue calculations of this storm event. Using a ratio of known 100 -year volumes to known 25 -year volumes: Qioo = 13.424 cfs Q25 = 10.417 cfs Qioo- = 13.424 Qzs 10.417 2100— = 1.29 Qzs Therefore, using previous report's Q100 = 47.18 cfs Qzs = Qloo 11.288 47.18 / 1.288 Qzs = 36.80 cfs RESIDENTIAL(3 - 4 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) =0.6000 Max loss rate(Fm)= 0.471(in/Hr) Rainfall intensity = 2.752(In/Hr) for a 25.0 year storm User specified values are as follows: TC = 15.19 min. Rain intensity = 2.75(In/Hr) Total area this stream = 17.50(Ac.) Total Study Area (Main Stream No. 1) = 21.61(Ac.) Total runoff = 36.80(CFS) ........+-F.-F-l-+-f-ti--F......-F-F-F-1--...a-i-+.-Fi-i-i--F-F....-F-F....+i--F-F-h-f--l-....-1-...... Process from Point/Station 103.000 to Point/Station 3.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 17.500(Ac.) Runoff from this stream = 36.800(CFS) Time of concentration = 15.19 min. Rainfall intensity = 2.752(In/Hr) Area averaged loss rate (Fm) = 0.4711(in/Hr) Area averaged Pervious ratio (Ap) = 0.6000 Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 10.417 11.30 3.286 2 36.800 15.19 2.752 Qmax(1) = 1.000 * 1.000 * 10.417) + 1.234 * 0.744 * 36.800) + = 44.208 Qmax(2) = 0.810* 1.000* 10,417)+ 1.000 * 1.000 * 36.800) + = 45.239 Total of 2 streams to confluence: Flow rates before confluence point: 10.417 36.800 Maximum flow rates at confluence using above data: 44.208 45.239 Area of streams before confluence: 4.111 17.500 Effective area values after confluence: 17.129 21.611 Results of confluence: Total flow rate = 45.239(CFS) Time of concentration= 15.190 min. Effective stream area after confluence = 21.611(Ac.) Stream Area average Pervious fraction(Ap) = 0.600 Stream Area average soil loss rate(Fm) = 0.471(In/Hr) Study area (this main stream) = 21.61 (Ac.) i--F-F....i-f-I-t i--1-.i-i--1 .... i-.-Fi--Ft-F-I .... .-f--I--Ft.-F-F-Ft .-l--F.t-F-F-F...............t... Process from Point/Station 3.000 to Point/Station 4.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 77.400(Ft.) End of street segment elevation = 73.040(Ft.) Length of street segment = 400.320(Ft.) Height of curb above gutter flowline = 8.0(in.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (v/hz) = 0.040 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (1] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.680(ln.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 48.074(CFS) Depth of flow = 0.767(Ft.), Average velocity = 5.390(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 5.01(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 18.000(Ft.) Flow velocity = 5.39(Ft/s) Travel time = 1.24 min. TC = 16.43 min. Adding area flow to street RESIDENTIAL(3 - 4 dwi/acre) Decimal fraction soil group A= 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 _ SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= OA71(In/Hr) Rainfall intensity = 2.626(ln/Hr) for a 25.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCIA) is C = 0.739 Subarea runoff = 1.919(CFS) for 2.709(Ac.) Total runoff = 47.158(CFS) Effective area this stream = 24.32(Ac.) Total Study Area (Main Stream No. 1) = 24.32(Ac.) Area averaged Fm value= 0.471(ln/Hr) Street flow at end of street = 47.158(CFS) Half street flow at end of street = 47.158(CFS) Depth of flow = 0.760(Ft.), Average velocity = 5.379(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 4.68(Ft.) Flow width (from curb towards crown)= 18.000(Ft.) +i-d-.-F+.+i--1-f-i-....-I--F.+.a--E-E+-F-f-.........}.-l-....i--E-F..........- ...f-1--F+-l--F.... Process from Point/Station 4.000 to Point/Station 5.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 73.040(Ft.) End of street segment elevation = 65.320(Ft.) Length of street segment = 400.800(Ft.) Height of curb above gutter flowline = 8.0(ln.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (v/hz) = 0.040 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.680(in.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 49.685(CFS) Depth of flow = 0.677(Ft.), Average velocity = 7.053(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. -Distance that curb overflow reaches into property = 0.50(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 18.000(Ft.) Flow velocity = 7.05(Ftls) Travel time = 0.95 min. TC = 17.37 min. Adding area flow to street RESIDENTIAL(3 - 4 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D-= 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.471(1n/Hr) Rainfall intensity = 2.539(In/Hr) for a 25.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCIA) is C = 0.733 Subarea runoff = 2.951(CFS) for 2.607(Ac.) Total runoff = 50.108(CFS) Effective area this stream = 26.93(Ac.) Total Study Area (Main Stream No. 1) = 26.93(Ac.) Area averaged Fm value= 0.471(ln/Hr) Street flow at end of street = 50.108(CFS) Half street flow at end of street = 50.108(CFS) Depth of flow = 0.680(Ft.), Average velocity = 7.053(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 0.66(Ft.) Flow width (from curb towards crown)= 18.000(Ft.) ....++++++....+-f--1-....++++-t........-F-F-F+-F....-F-F-F-F+-i--F-i .i -++t++++ -E+ -f --1-a-+° ... Process from Point/Station 5.000 to Point/Station 6.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 65.320(Ft.) End of street segment elevation = 56.500(Ft.) Length of street segment = 457.440(Ft.) Height of curb above gutter flowline = 8.0(ln.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter. to grade break (v/hz) = 0.040 Slope from grade break to crown (vlhz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb. to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.680(ln.) Manning's N in gutter= 0.0150 Manning's N from gutter to grade break= 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 53.026(CFS) Depth of flow = 0.701(Ft.), Average velocity= 7.067(Ftls) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 1.70(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 18.000(Ft.) Flow velocity = 7.07(Ft/s) Travel time = 1.08 min. TC = 18.45 min. Adding area flow to street RESIDENTIAL(3 - 4 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 _ Decimal fraction soil group' D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.471(In/Hr) Rainfall intensity = 2.449(ln/Hr) fora 25.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCIA) is C = 0.727 Subarea runoff = 3.397(CFS) for 3.136(Ac.) Total runoff = 53.506(CFS) Effective area this stream = 30.06(Ac.) Total Study Area (Main Stream No. 1) = 30.06(Ac.) Area averaged Fm value= 0.471(In/Hr) Street flow at end of street = 53.506(CFS) Half street flow at end of street = 53.506(CFS) Depth of flow = 0.704(Ft.), Average velocity = 7.070(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 1.86(Ft.) Flow width (from curb towards crown)= 18.000(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 6.000 to Point/Station 7.000 **** **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION Top of street segment elevation = 56.500(Ft.) End of street segment elevation = 54.500(Ft.) Length of street segment = 231.460(Ft.) Height of curb above gutter flowline = 8.0(ln.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (v/hz) = 0.040 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.680(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 54.787(CFS) Depth of flow = 0.851(Ft.), Average velocity= 4.962(Ft/s) Warning: depth of flow exceeds top of curb .Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 9.24(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 18.000(Ft.) Flow velocity = 4.96(Ft/s) Travel time = 0.78 mina TC = 19.23 min. Adding area flow to street RESIDENTIAL(3 - 4 dwllacre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.471(ln/Hr) Rainfall intensity = 2.389(ln/Hr) for a 25.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCIA) is C = 0.723 Subarea runoff = 0.865(CFS) for 1.440(Ac.)' Total runoff = 54.371 (CFS) Effective area this stream = 31.50(Ac.) Total Study Area (Main Stream No. 1) = 31.50(Ac.) Area averaged Fm value= 0.471(in/Hr) Street flow at end of street = 54.371 (CFS) Half street flow at end of street = 54.371 (CFS) Depth of flow = 0.849(Ft.), Average velocity= 4.956(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 9.11 (Ft.) Flow width (from curb towards crown)= 18.000(Ft.) ....-i--Fi-.t-F-Fi--f--F-l--h-F........i-.i-i--f--F-Fi--I-........t-F....-f-........... F+ -I-....... Process from Point/Station 6.000 to Point/Station 7.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number. 1 Effective stream flow area = 31.503(Ac.) Total study area this main stream = 31.503(Ac.) Runoff from this stream = 54.371(CFS) Time of concentration = 19.23 min. Rainfall intensity = 2.389(in/Hr) Area averaged loss rate (Fm) = 0.4711(in/Hr) Area averaged Pervious ratio (Ap) = 0.6000 Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 26.000 to Point/Station 8.000 **** INITIAL AREA EVALUATION **** RESIDENTIAL(3 - 4 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap).= 0.6000 Max loss rateft)= 0.471(In/Hr) Initial subarea data: Initial area flow distance = 307.370(Ft.) Top (of initial area) elevation = 93.300(Ft.) Bottom (of initial area) elevation = 76.600(Ft.) Difference in elevation = 16.700(Ft.) Slope = 0.05433 s(%)= 5.43 TC = k(0.412)*[(length"3)/(elevation change)]"0.2 Initial area time of concentration = 7.294 min. Rainfall intensity = 4.274(In/Hr) for a 25.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.801 Subarea runoff = 7.173(CFS) Total initial stream area = 2.096(Ac.) Pervious area fraction = 0.600 Initial area Fm value = 0.471(in/Hr) -{.......-p-E.-F-1--1-.....++++.i--F+-F-F-F-I-i-+-}-....-I--l-+ti--1-....+++-F.-F-h-F....+-F+-1-+++t-Ft+ Process from Point/Station 8.000 to Point/Station 9.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 76.600(Ft.) End of street segment elevation = 70.000(Ft.) Length of street segment = 372.980(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (v/hz) = 0.040 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.680(in.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 11.793(CFS) Depth of flow = 0.447(Ft.), Average velocity = 4.028(Ftls) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 16.868(Ft.) Flow velocity = 4.03(Ft/s) Travel time = 1.54 min. TC = 8.84 min. Adding area flow to street RESIDENTIAL(3 - 4 dwllacre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0,6000 Max loss rate(Fm)= 0.471(in/Hr) Rainfall intensity = 3.809(In/Hr) for a 25.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCIA) is C = 0.789 Subarea runoff = 7.234(CFS) for 2.700(Ac.) Total runoff = 14.407(CFS) Effective area this stream = 4.80(Ac.) Total Study Area (Main Stream No. 2) = 4.80(Ac.) Area averaged Fm value = 0.471(In/Hr) Street flow at end of street = 14.407(CFS) Half street flow at end of street = 14.407(CFS) Depth of flow = 0.474(Ft.), Average velocity = 4.252(Ft/s) Note: depth of flow exceeds top of street crown. Flow width (from curb towards crown)= 18.000(Ft.) .........-F-l-.....-Fi-i--i--1--l-t-i....i--I-t-Fi--h-F-F-F+-F-F.++-F-1--h-1-........fi-++-i ....+-Fi-... Process from Point/Station 9.000 to PointlStation 10.000 **** **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION Top of street segment elevation = 70.000(Ft.) End of street segment elevation = 66.200(Ft.) Length of street segment = 320.000(Ft.) Height of curb above gutter flowline = 8.0(ln.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (v/hz) = 0.040 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (vthz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.680(in.) Manning's N in gutter= 0.0150 Manning's N from gutter to grade break= 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street 16.735(CFS) Depth of flow = 0.429(Ft.), Average velocity= 3.185(Ft/s) Streetflow hydraulics at midpoint of street travel: . Halfstreet flow width= 15.951(Ft.) Flow velocity = 3.19(Ft/s) Travel time = 1.67 min. TC = 10.51 min. Adding area flow to street RESIDENTIAL(3 - 4 dwIlacre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.0(1 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.471(In1Hr) Rainfall intensity = 3.432(ln/Hr) for a 25.0 year storm Effective runoff coefficient used for area,(total area with modified .rational method)(Q=KCIA) is C = 0.776 Subarea runoff = 2.505(CFS) for 1.550(Ac.) Total runoff = 16.912(CFS) Effective area this stream = 6.35(Ac.) Total Study Area (Main Stream No. 2) = 6.35(Ac.) Area averaged Fm value = 0.471(In/Hr) Street flow at end of street = 16.912(CFS) Half street flow at end of street = 8.456(CFS) Depth of flow = 0.430(Ft.), Average velocity = 3.194(Ftfs) Flow width (from curb towards crown)= 16.017(Ft.) .}.,....{... }.F}.... -F -k-... t-F-4-.-Fd--F-1-........ .i -#-h.... t ti-.i--F+-i--F....-Fti--Fi-....-F-I ... Process from Point/Station 10.000 to Point/Station 10.000 **** CONFLUENCE OF MINOR STREAMS Along Main Stream number: 2 in normal stream number 1 Stream flow area = 6.346(Ac.) Runoff from this stream = 16.912(CFS) Time of concentration = 10.51 min. Rainfall intensity = 3.432(ln/Hr)0.4711In/Hr Area averaged loss rate (Fm) _ ( ) Area averaged Pervious ratio (Ap) = 0.6000 +a.+++++++++++++++++++++++.....++++++++++++++++++.....+++++++++++++++++ Process from Point/Station 11.000 to Point/Station 12.000 **** INITIAL AREA EVALUATION **** RESIDENTIAL(3 - 4 dwi/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.471(In/Hr) Initial subarea data: Initial area flow distance= 272.410(Ft.) Top (of initial area) elevation = 74.500(Ft.) Bottom (of initial area) elevation = 71.400(Ft.) Difference in elevation = 3.100(Ft.) Slope= 0.01138 s(%)= 1.14 TC = k(0.412)*[(length"3)1(elevation change)]"0.2 Initial area time of concentration = 9.501 min. Rainfall intensity = 3.647(ln/Hr) for a 25.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.784 Subarea runoff = 5.459(CFS) Total initial stream area = 1.910(Ac.) Pervious area fraction = 0.600 Initial area Fm value= 0.471(ln/Hr) .....+++-F+++++++...........++++++-F++++....-F++++.............++}}....++ Process from Point/Station 12.000 to Point/Station 10.000 **** **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION Top of street segment elevation = 71.400(Ft.) End of street segment elevation = 66.200(Ft.) Length of street segment = 276.500(Ft.) Height of curb above gutter flowline = 8.0(ln.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (vlhz) = 0.040 Slope from grade break to crown (vlhz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.680(ln.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 8.117(CFS) Depth of flow = 0.398(Ft.), Average velocity= 3.761(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 14.407(Ft.) Flow velocity = 3.76(Ft/s) Travel time = 1.23 min. TC = 10.73 min. Adding area flow to street RESIDENTIAL(3 - 4 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap). = 0.6000 Max loss rate(Fm)= . 0.471(ln/Hr) Rainfall intensity = 3.391(In/Hr) for a 25.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCIA) is C = 0.775 Subarea runoff = 4.448(CFS) for 1.860(Ac.) Total runoff = 9.907(CFS) Effective area this stream = 3.77(Ac.) Total Study Area (Main Stream No. 2) = 10.12(Ac.) Area averaged Fm value = 0.471(ln/Hr) Street flow at end of street = 9.907(CFS) Half street flow at end of street = 9.907(CFS) Depth of flow = 0.422(Ft.), Average velocity = 3.949(Ft/s) Flow width (from curb towards crown)= 15.576(Ft.) ..... i-+-Fi--F.i-..-Fi-+.-Fi--f--F.i-i--F-4-+-I-i--I-.-F-F-F-Fi-+-i-i-....+++-Fi-............-F-F....... Process from Point/Station 10.000 to Point/Station 10.000 **** CONFLUENCE OF MINOR STREAMS Along Main Stream number: 2 in normal stream number 2 Stream flow area = 3.770(Ac.) Runoff from this stream = 9.907(CFS) Time of concentration = 10.73 min. Rainfall intensity = 3.391(ln/Hr) Area averaged loss rate (Fm) = 0.4711(In/Hr) Area averaged Pervious ratio (Ap) = 0.6000 Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 16.912 10.51 3.432 2 9.907 10.73 3.391 Qmax(1) = 1.000 * 1.000 * 16.912) + 1.014 * 0.980 * 9.907) + = 26.758 Qmax(2) = 0.986 * 1.000 * 16.912) + 1.000 * 1.000 * 9.907) + = 26.583 Total of 2 streams to confluence: Flow rates before confluence point: 16.912 9.907 Maximum flow rates at confluence using above data: 26.758 26.583 Area of streams before confluence: 6.346 3.770 Effective area values -after confluence: 10.041 10.116 Results of confluence: Total flow rate = 26.758(CFS) Time of concentration = 10.511 min. Effective stream area after confluence = 10.041(Ac.) Stream Area average Pervious fraction(Ap) = 0.600 Stream Area average soil loss rate(Fm) = 0.471(In/Hr) Study area (this main stream) = 10.12(Ac.) +.+-I-.... .++-I-++++++-I-........+i-...4 ..................................... Process from Point/Station 10.000 to Point/Station 15.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 66.200(Ft.) End of street segment elevation = 63.000(Ft.) Length of street segment = 319.840(Ft.) Height of curb above gutter flowline = 8.0(ln.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (v/hz) = 0.040 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.680(in.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 28.397(CFS) Depth of flow = 0.622(Ft.), Average velocity = 4.686(Ft/s) Note: depth of flow exceeds top of street crown. Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 18.000(Ft.) Flow velocity = 4.69(Ft/s) Travel time = 1.14 min. TC = 11.65 min. Adding area flow to street RESIDENTIAL(3 - 4 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 _ Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.471(In/Hr) Rainfall intensity = 3.227(ln/Hr) for a 25.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCIA) is C = 0.769 Subarea runoff = 1.196(CFS) for 1.230(Ac.) Total runoff = 27.955(CFS) Effective area this stream = 11.27(Ac.) Total Study Area (Main Stream No. 2) = 11.35(Ac.) Area averaged Fm value= 0.471(in/Hr) Street flow at end of street = 27.955(CFS) Half street flow at end of street = 27.955(CFS) Depth of flow = 0.619(Ft.), Average velocity = 4.657(Ft/s) Note: depth of flow exceeds top of street crown. Flow width (from curb towards crown)= 18.000(Ft.) i--i--Fi-+..............+i-.-F-Fi-i-f-l-.-F-F-F-f....-F.-4-.-F-t--F-F-F-Fi-i-i--F-F-I--1-t-i-....-Fi-d-i--F.... Process from Point/Station 15.000 to Point/Station 15.000 **** CONFLUENCE OF MINOR STREAMS Along Main Stream number: 2 in normal stream number 1 Stream flow area = 11.271(Ac.) Runoff from this stream = 27.955(CFS) Time of concentration = 11.65 min. Rainfall intensity = 3.227(in/Hr) Area averaged loss rate (Fm) = Q.4711(In/Hr) Area averaged Pervious ratio (Ap) = 0.6000 -i-i--F-I-..-F.-F-F....-F-F-F-F.......i-+-F-F-F.-F-h-F-F-F.....-F-F-Fi....................f- ... Process from Point/Station 13.000 to Point/Station 14.000 **** INITIAL AREA EVALUATION RESIDENTIAL(3 - 4 dwi/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.471(In/1-1r) Initial subarea data: Initial area flow distance= 309.410(Ft.) Top (of initial area) elevation = 70.800(Ft.) Bottom (of initial area) elevation = 67.300(Ft.) Difference in elevation = 3.500(Ft.) Slope= 0.01131 s(%)= 1.13 TC = k(0.412)*[(lengthA3)1(elevation change)]^0.2 Initial area time of concentration = 10.009 min. Rainfall intensity = 3.535(ln/Hr) for a 25.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.780 Subarea runoff = 4.632(CFS) Total initial stream area = 1.680(Ac.) Pervious area fraction = 0.600 Initial area Fm value= 0.471(ln/Hr) ...+++++1-+++++++-.....{........+it....++++.-1--F....i-i-+-{-++....+-f-....+++i-+... Process from Point/Station 14.000 to Point/Station 15.000 **** **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION Top of street segment elevation = 67.300(Ft.) End of street segment elevation = 63.000(Ft.) Length of street segment = 331.120(Ft.) Height of curb above gutter flowline = 8.0(ln.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (v/hz) = 0.040 Slope from grade break to crown (vlhz) = 0.020 Street flow is on [1 ] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.680(ln.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 7.472(CFS) Depth of flow = 0.410(Ft.), Average velocity = 3.205(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 14.997(Ft.) Flow velocity = 3.20(Ft/s) Travel time = 1.72 min. TC = 11.73 min. Adding area flow to street RESIDENTIAL(3 - 4 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.471(ln/Hr) Rainfall intensity = 3.213(In/Hr) for a 25.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCIA) is C = 0.768 Subarea runoff = 4.599(CFS) for 2.060(Ac.) Total runoff = 9.231 (CFS) Effective area this stream = 3.74(Ac.) Total Study Area (Main Stream No. 2) = 15.09(Ac.) Area averaged Fm value= 0.471(In/Hr) Street flow at end of street = 9.231 (CFS) Half street flow at end of street = 9.231 (CFS) Depth of flow = 0.436(Ft.), Average velocity = 3.375(Ft/s) Flow width (from curb towards crown)= 16.286(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 15.000 to Point(Station 15.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 3.740(Ac.) Runoff from this stream = 9.231 (CFS) Time of concentration = 11.73 min. Rainfall intensity = 3.213(In/Hr) Area averaged loss rate (Fm) = 0.4711(In/Hr) Area averaged Pervious ratio (Ap) = 0.6000 Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (InlHr) 1 27.955 11.65 3.227 2 9.231 11.73 3.213 Qmax(1) _ 1.000 * 1.000 * 27.955) + 1.005 * 0.993 * 9.231) + = 37.166 Qmax(2) _ 0.995 * 1.000 * 27.955) + 1.000 * 1.000 * 9.231) + = 37.047 Total of 2 streams to confluence: Flow rates before confluence point: 27.955 9.231 Maximum flow rates at confluence using above data: 37.166 37.047 Area of streams before confluence: 11.271 3.740 Effective area values after confluence: 14.984 15.011 Results of confluence: Total flow rate = 37.166(CFS) Time of concentration = 11.649 min. Effective stream area after confluence = 14.984(Ac.) Stream Area average Pervious fraction(Ap) = 0.600 Stream Area average soil loss rate(Fm) = 0.471(In/Hr) Study area (this main stream) = 15.01(Ac.) -1-+-1-..........i-+.-h-F-1--1-...-1-........ F}.-F-f-.....i--F-f-+a--4-...................... Process from Point/Station 15.000 to Point/Station 16.000 **** **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION Top of street segment elevation = 63.000(Ft.) End of street segment elevation = 57.600(Ft.) Length of street segment = 417.840(Ft.) Height of curb above gutter flowline = 8.0(ln.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (v/hz) = 0.040 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.680(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 40.118(CFS) Depth of flow = 0.671(Ft.), Average velocity= 5.777(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 0.23(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 18.000(Ft.) Flow velocity = 5.78(Ft/s) Travel time = 1.21 min. TC = 12.85 min. Adding area flow to street RESIDENTIAL(3 - 4 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.471(In/Hr) Rainfall intensity = 3.042(in/Hr) fora 25.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCIA) is C = 0.761 Subarea runoff = 3.010(CFS) for 2.380(Ac.) Total runoff = 40.176(CFS) Effective area this stream = 17.36(Ac.) Total Study Area (Main Stream No. 2) = 17.47(Ac.) Area averaged Fm value = 0.471(In/Hr) Street flow at end of street = 40.176(CFS) Half street flow at end of street = 40.176(CFS) Depth of flow = 0.672(Ft.), Average velocity = 5.777(Ftls) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 0.25(Ft.) Flow width (from curb towards crown)= 18.000(Ft.) +-F-t-... i--1-t-F.i-t.-Fd-.ti--F-F-F-F.a--H-.f-I-i--F-Fi-......-I--F-Fi--F-F-1--F.-F-F-F.-1 ....-F-f--I--F-F-F-F..... Process from Point/Station 16.000 to Point/Station 16.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number Stream flow area = 17.364(Ac.) Runoff from this stream = 40.176(CFS) Time of concentration = 12.85 min. Rainfall intensity = 3.042(ln/Hr) Area averaged loss rate (Fm) = 0.4711(in/Hr) Area averaged Pervious ratio (Ap) = 0.6000 t+............ F-F+t-1-..-F.-F....t-F-h-f--l--F....-ht-f-i-.-F-h.-F....-hi--F-I-.-f-....i-i-....-t.. Process from Point/Station 27.000 to Point/Station 17.000 **** INITIAL AREA EVALUATION **** UNDEVELOPED (average cover) subarea Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 50.00 Adjusted SCS curve number for AMC 3 = 70.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.532(In/Hr) Initial subarea data: Initial area flow distance = 300.000(Ft.) Top (of initial area) elevation = 65.700(Ft.) Bottom (of initial area) elevation = 59.500(Ft.) Difference in elevation = 6.200(Ft.) Slope = 0.02067 s(%)= 2.07 TC = k(0.706)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 15.018 min. Rainfall intensity = 2.771(in/Hr) fora 25.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.727 Subarea runoff = 1.128(CFS) Total initial stream area = 0.560(Ac.) Pervious area fraction = 1.000 Initial area Fm value = 0.532(ln/Hr) . i-+++++-i--I--l--I-..... ++ t +..... +++++-F++++++.+++++-1-+-1-++....... +++++++++-F i -++-f-+ Process from Point/Station 17.000 to Point/Station 16.000 **** **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION Top of street segment elevation = 59.500(Ft.) End of street segment elevation = 57.600(Ft.) Length of street segment = 159.450(Ft.) Height of curb above gutter flowline = 8.0(in.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (v/hz) = 0.040 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.680(ln.) Manning's N in gutter= 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.340(CFS) Depth of flow = 0.261 (Ft.), Average velocity = 2.062(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.530(Ft.) Flow velocity = 2.06(Ft/s) Travel time = 1.29 min. TC = 16.31 min. Adding area flow to street RESIDENTIAL(3 - 4 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for scil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)7- 0.471-(In/Hr) Rainfall intensity = 2.637(in/Hr) for a 25.0 year storm Effective runoff coefficient used for area,(total area with modified rational methpd)(Q=KCIA) is C = 0.724 Subarea runoff = O.342(CFS) for 0.210(Ac.) Total runoff = 1.470(CFS) Effective area this stream = 0.77(Ac.) Total Study Area (Main Stream No. 2) = 18.24(Ac.) Area averaged Fm value = 0.516(in/Hr) Street flow at end of street = 1.470(CFS) Half street flow at end of street = 1.470(CFS) Depth of flow = 0.267(Ft.), Average velocity = 2.106(Ft/s) Flow width (from curb towards crown)= 7.846(Ft.) ++-F++i--l-+++....+i-+++.....+.++....++-F-i-........--l-+i-+++i-++++++-1-+++++i-+++++ Process from Point/Station 16.000 to Point/Station 16.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.770(Ac.) Runoff from this stream = 1.470(CFS) Time of concentration = 16.31 min. Rainfall intensity = 2.637(ln/Hr) Area averaged loss rate (Fm) = 0.5157(ln/Hr) Area averaged Pervious ratio (Ap) = 0.8909 Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 40.176 12.85 3.042 2 1.470 16.31 2.637 Qmax(1) = 1.000 * 1.000 * 40.176) + 1.191 * 0.788 * 1.470) + = 41.556 Qmax(2) = 0.843 * 1.000 * 40.176) + 1.000 * 1.000 * 1.470) + = 35.324 Total of 2 streams to confluence: Flow rates before confluence point: 40,176 1.470 Maximum flow rates at confluence using above data: 41.556 35.324 Area of streams before confluence: 17.364 0.770 Effective area values after confluence: 17.971 18.134 Results of confluence: Total flow rate = 41.556(CFS) Time of concentration = 12.854 min. Effective stream area after confluence = 17.971 (Ac.) Stream Area average Pervious fraction(Ap) = 0.612 Stream Area average soil loss rate(Fm) = 0.473(In/Hr) Study area (this main stream) = 18.13(Ac.) Process from ,Point/Station 16.000 to Point/Station 7.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION'** Top of street segment elevation = 57.600(Ft.) End of street segment elevation = 54.500(Ft.) Length of street segment = 295.930(Ft.) Height of curb above gutter flowline = 8.0(ln.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (v/hz) = 0.040 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.680(ln.) Manning's N in gutter= 0.0150 Manning's.N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 42.042(CFS) Depth of flow 0.727(Ft.), Average velocity. = 5.231(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 3.01(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 18.000(Ft.) Flow velocity = 5.23(Ft/s) Travel time = 0.94 min. TC = 13.80 min. Adding area flow to street RESIDENTIAL(3 - 4 dwi/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soi►(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 _ Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.471(In/Hr) The area added to the existing stream causes a a lower flow rate of -Q = 40.428(CFS) therefore the upstream flow rate of Q = 41.556(CFS) is being used ,Rainfall intensity = 2.915(ln/Hr) for a 25.0 year storm Effective runoff coefficient used for area,(total area with modified •--rational method)(Q=KCIA) is C = 0.754 Subarea runoff = 0.000(CFS) for 0.420(Ac.) Total runoff = 41.556(CFS) Effective area this stream = 18.39(Ac.) Total Study Area (Main Stream No. 2) = 18,66(Ac.) Area averaged Fm value = 0.473(In/Hr) Street flow at end of street = 41.556(CFS) Half street flow at end of street = 41.556(CFS) Depth of flow = 0.723(Ft.), Average velocity = 5.227(Ftls) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 2.80(Ft.) Flow width (from curb towards crown)= 18.000(Ft.) ++++++++++++....+-I-+-F-I........-+i-....tt++++++++++++++.++++-F+++++-h++++++ Process from Point/Station 16.000 to Point/Station 7.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Effective stream flow area = 18.391 (Ac.) Total study area this main stream = ' 18.656(Ac.) Runoff from this stream = 41.556(CFS) Time of concentration = 13.80 min. Rainfall intensity = 2.915(In/Hr) Area averaged loss rate (Fm) = 0.4729(in/Hr) Area averaged Pervious ratio (Ap) = 0.6121 Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 54.371 19.23 2.389 2 41.556 13.80 2.915 Qmax(1) = 1.000 * 1.000 * 54.371) + 0.784 * 1.000 * 41.556) + = 86.966 Qmax(2) = 1.275* 0.717* 54.371)+ 1.000 * 1.000* 41.556) + = 91.276 Total of 2 main streams to confluence: Flow rates before confluence point: 55.371 42,556 Maximum flow rates at confluence using above data: 86.966 91.276 Effective Area of streams before confluence: 31.503 18.391 Effective area values after confluence: 49.894 40.993 Results of confluence: Total flow rate = 91.276(CFS) Time of concentration = 13.797 min. Effective stream area after confluence = 40.993(Ac.) Stream Area average Pervious fraction(Ap) = 0.604 Stream Area average soil loss rate(Fm) = 0.472(In/Hr) Steam effective area = 49.89(Ac.) End of computations, Total Study Area = 50.16 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation. Area averaged pervious area fraction(Ap) = 0.604 Area averaged SCS curve number = 32.2 Slope from gutter to grade break (v/hz) = 0.040 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side (s) of the street 1 Distance from curb to property line = 24.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.680 (In. ) Mannings N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Mannings N from grade break to crown = 6.0150 Estimated mean flow rate at midpoint of street = 4.171(CFS) Depth of flow = 0 .334 (Ft.) , Average velocity = 3 .132 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstree . flow width = 11.178 (Ft. ) Flow velocity 3.13(Ft/s) Travel.. t ime. = 3.63 min TC .15..37 min. Adding area flow to street RESIDENTIAL (3 - 4 dwl/acre) 1 Decimal fraction soil group A = 1'.000 Decimal fraction soil group S = 0•.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D.='0.000 SCS curve number for soil (.AMC 2) = 32.00' Adjusted SCS curve number for AMC 3 = 52.00. Pervious ratio (P.p) = 0.;6000 Max loss rate (Fm) = 0.471 (In/Hr) Rainfall intensity = 3.442(In/Hr) for 100.0 year storm Effective runoff coefficient used for area, (total area with modified rational method)-(Q=KCIA) is C = 0.777•' A -Subarea runoff = 1.584 (CFS) , for : 0. 7 ' 77(Ac . ), Total runoff = . 4 .505 (CFS) Total area = 1.68 (Ac. ) Area averaged Fm value = •0.471 (In/Hr) �( Street flow at end of street .= 4.505 (CFS) Half• street flow at 'end of street = . .4.505(CFS) Depth o -f flow = 0 .341(Ft.) , Average velocity = 3.190 (Ft/s) 4 Flow width (f rom curb towards crown) _ •11.53 2 (Ft. ) "} . ..'I"{"F. "F.'}....V. T'I"F'F...'}".."F"F'E'F"F"."F"i"F'F '.j"."I"i". ... ..I"}.'F'}"I°.•....}'.".•F'}"'t"'{........f'.. j..'}'...:"}".I. Process from Pgint/Station 20-:000 to Point/Station 21.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW I Top of street segment elevation = 51.300(Ft.) End of street segment_ elevation =' 46.000(Ft.) Length of street segment = 363.040(Ft.) Height of curb above gutter flowline _ 8.0 (In.) Width of half street .(curb to crown) 18 .000 (Ft.) Distance from crown to crossfall grade break . = 16.500 (Ft . ) Slope from gutter to grade break (v/hz) = 0.040 Slope from grade break to crown (v/hz)0.020 Street flow is on [1] side (s) .of the street . I Distance' from curb to property line = 24.000 (Ft . ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500 (Ft.) Gutter hike from flowline = 1.680 (In.) Manning' s N in gut t e'r = 0. 0150 Manning' s N from gutter. to grade break = 0.0150 Manning' s N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.945 (CFS) Depth of flow = 0. 359 (Ft.) , Average velocity = 3 .030 (Ft/s) Streetf low hydraulics at midpoint of street travel: TT.,, =-4.- - +- fI nva ur; rl f- -h = 12 •44R (Ft _ l WA J San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, , (c) 1992 Version 3.1 Rational Hydrology 2/20/97 _ _- Tract 14293 Offsite & Onsite Drainage Impacting Baseline at Hemlock Developed Condition Tract + 17.5. Acres'to North East City of Fontana, County of San ernardino 100 Year - Event FN=3DE10 0 .10 0 L=131,5 ( Condition PNIC III) ********* Hydrology Study Control Information ********** Rational hydrology study storm event year. is .1.00.0 Computed rainfall intensity: Storm• year = 100.00 1 hour rainfall p = 1.520 (In.) Slope used for rainfall intensity curve b = 0.6000 .Soil antecedent moisture ' condition (AMC). = 3. +....-F-1--b-1-+++..+-t-++-f-+++...i-+++++..........i-++-i-+++++++.h++_t..{.+..... +++-E..-+++++ Process from Point/Station 1:8.000 to. Point /Station 19.000 **** INITIAL P..REA EVALUATION **** :-111 (3 - 4 dwl/acre) Decimal* ftattion soil group A-= 1.000 . Decimal fraction soil.,group B = 0.000 Decimal fraction soil group C = 0.000 Decimal .fraction -soil group D = 0.000 SCS curve number for soil (AMC. 2) • = 32.00 Adjusted' SCS curve number for AMC 3 = 5.2 . Ob 0. 471 (In/Hr) Pervious ratio'(P_p) = 0.6000. Max loss rate (Fm) _ Initial• subarea data Initial area flow distance 601.440 (Ft . ) Top' (ofinitial area) elevation = 75. 000 (Ft. ) Bottom °(of initial area) elevation = 63 .400 (Ft.) . 'Difference in elevation = 11.600 (Vt . ) Slope '_• 0.01929 s (o) = 1.93 • TC = k(0. 412) * [ (length''3) / (elevation change) ]' 0 •2 ° Initial area time of concentration = 11.736 min. Rainfall intensity = 4.046 (In/Hr) for a 100 .0 year. storm. • Effective runoff coefficient used for area (Q=KCIA) is C = 0.795 Subarea runoff = 2.921(CFS) Total initial stream area = 0.908(Ac.) Pervious area fraction = 0.600 Initial area. Fm value = 0 .471(In/Hr) +++-f-a--'F+'t`•....+^f'++++-i ....+-f-....++++++++++++-{ ..T+++++++++++............+++ process from Point/Station FLOWADDITION OPoint/Station ** 20°000 *** STREET FLOW TRAVELTIME + SUBAREA Top of street segment elevation = 63.400 (Ft.) End of street segment elevation = 51:300 (Ft . ) Length of street segment = G82.090 (Ft.) Slope from gutter to grade break (v/hz) = 0.040 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side (s) of the street 1 Distance from curb to property line = 24.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.5 0 0 (Ft . ) Gutter hike from flowline = 1.680 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.171(CFS) Depth of flow = 0. 334 (Ft .) , Average velocity = 3 .132 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 11.178(Ft.) Flow velocity 3.13(Ft/s) Travel..time. ime. = 3.63 min TC = .15..37 min. Adding area flow to street R'ESIDEN'TIAL (3 - 4 dwl/acre) j . Decimal fraction soil group A = 1*. 000 Decimal fraction soil group B = 0•.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D.='0.000 SCS curve number for soil (.Al4C 2) = 32.00' . . Adjusted SCS curve _number for AMC 3 = 52.0d. Pervious ratio (P.p) = 0,6000 Max loss rate (Fm) = 0.471 (In/Hr) Rainfall intensity = 3.442 (In./Hr) fora 100.0 year storm Effective runoff coefficient used for area, (total area with modified • rational method) •(Q=KCIA) is C = 0 .777 • 1 " Subarea runoff = 1.584 (CFS) , for ` 0.7 ' 77(Ac . ). Total runoff = 4. 505 (CFS) Total area = 1.68 (Ac. ) Area averaged Fm value = •0.471 (In/Hr) Street flow at end of street .= 4.505 (CFS) Half- street flow at -end of street = . .4.505(CFS) Depth o -f flow = 0. 341 (Ft.) , Average velocity = 3.190 (Ft/s) Flow width (from curb towards crown) = • •11.53 2 (Ft.) ....}.'1"'{". .'{.'.}'.4 .}. .... .;. ..;.. Z ,{...;..E..{..E.. S .{.. ,.}..'... . .. .f..{-.}..{-.. j•• .}• '{"'F...'I"'}...f..}...;.. ..{. i...{.. .. ...t. } .{..}.. S. . Process from Pgint/Station 20,:000 to Point/Station 21.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDI'I`ION :l Top of street segment elevation = 51.300(Ft.) End of street segment_ elevation = 46.000(Ft.) Length of street segment = 363.040(Ft .) Height of curb above gutter- flowline 8.0 (In.) Width of half street .(curb to crown) . 18 .000 (Ft . ) Distance from crown to crossfall grade break = 16 .500 (Ft . ) Slope from gutter to grade break (v/hz) _ 0.040 Slope from grade break to crown (v/hz)0.020 Street flow is on [1] sides) .of the street . I Distance' from curb to property line = 24.000 (Ft . ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1. 5 0 0 (Ft.) Gutter hike from flowline = 1.680 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter -to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.945 (CFS) Depth of flow = 0 .359 (Ft. ) , Average velocity = 3 .030 (Ft/s) Streetf low hydraulics at midpoint of street travel: T'r - 1 F1 nUT TAT i ri f -'h = I? •4 4 R (F t . ) 1Jt-_U LLttd1. 11dL:L.1U.L1 SUll group b = U . U UU Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil (AMC 2) = 32 e 00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio (Ap) = 0. 6000 Max loss rate (Fm) = 0 .471 (In/Hr) Rainfall intensity = 3.199(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area, (total area with modified rational method) (Q=KCIA) is C = 0.767 Subarea runoff ' = 0.439(CFS) for 0.329 (Ac.) Total runoff = 4.944 ( CFS) Total area '= 2. 01 (A_c . ) Area ' averaged Fm value = 0.471(In/Hr) Street flow at end of street = 4. 9 44 (CFS) Nalf street flow at end of street = 4•.944 (CFS) Depth of flow = 0.359 (Ft.) , Average velocity = 3 .030 (Ft/s) Flow width (from curb towards crown) = 12.447 (Ft.) +++++++++++4-+++ +++++++++ +++++++++++ ++++++++++++ ++++++++++++++++.}.+++.,+++ Process from Point/Station 20.000 to Point/Station 21.000 * * * * CONFLUENCE OF MAIM' STREAMS * * * * The following data inside Main Stream is listed: In Main Stream number: 1 - Stream flow area ._ . 2. 014 (Ac. ) Runoff,from this stream = 4.944 (CFS) Time of concentration = 17.36 min'.. Rainfall intensity =. 3.19.9(In/Hr) -Area averaged loss rate (Fm) _ ' 0 .4711 (In/Hr) ' Area averaged Pervious ratio (Ap) = 0.6000 Program -is now starting with Main. Stream No. 2 +++.+++++++++ +f++ -j--} +T+++_..E'..{..{..f.+ +..4..4.+++.f.+.} +++++++ ++ + ++++++++++++ + ++++4-++++ ..Process from 'Point/Station 23 . 000 to Point -/Station 24.000 **** INITIAL AREA EVALUATION'**** RESIDENTIAL(3 - 4 dwl/acre) Decimal fraction soil group - A = 1..000 - Decimal- fraction soil group B.= 0.000 Decimal fraction soil group C =••0.000 Decimal fracti-o:d soil group D = 0.000 SCS curve number for soil (AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio (Ap) = 0.6000 Max loss rate'(Fin) = 0.471 (In/Hr) initial subarea data: Initial area flow distance = 466.170 (Ft.) Top (of initial .area) elevation = 89 .900 (Ft. ) Bottom (of. initial. area) . elevation = .81. 000 (Ft.) Difference in elevation = 8.900 (Ft.) Slope = 0.01909 s(-".)= 1.91 J TC = k (0.412) * [ (length''3) /(elevation change) ] "0 .2.' Initial area time of concentration = 10.621 min. Rainfall intensity = •4.296 (In/Hr) for a 100.0 .year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.801 Subarea runoff = ' 1. 890 (CFS) ' Total initial stream area = 0. 549 (Ac.) 3 Pervious area fraction 0.600 1 Initial area Fm value = . 0.471(In/Hr) _1 J �i.iu v.i 0L.,y.G=L_ .7C�:Jtlt=1IU =.LCVdL1OI1 = 1J.000 (b.t ] Length of street segment = 519.050(Ft.) Height of curb above gutter flowline = 8. 0 (In.) Width of half street ( curb to crown) = 40.0 0 0 (Ft . ) Distance from crown to crossfall grade break = 38.500 (Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is. on [1] side (s) of the street Distance from curb to property line = 10. 00.0 (Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = .1.68-0 (In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150- Manning's N from grade break to crown = .0.03-5o Estimated mean flow rate at midpoint of street = Depth of flow = 0.311(Ft.) ,, Average velocity = Streetflow hydraulics at.midpoint of street travel: Halfstreet flow width = 10 .032 (Ft . ) Flow velocity = 2.74(Ft/s) Travel time = 3.16 mini .. • TC = 13.78 min. Adding area flow to street RESIDENTI_U (3 - 4 dwl/acre) Decimal. fraction -soil group 'A =-1..000 Decimal ..fraction boil group B = 0.000' Decimal .fraction sail group C = 0.000 Decimal fraction soil group D = 0.000 SCS cur-ae number ..f or soil (AMC 2) =.32.00 Adjusted SCS curve number for•AMC.3 = 52.00 2. 9 84 (CFS) 2.741(Ft/s) Pervious ratlo(Ap) = 0.6000• Max loss rate (Fm)= 0.471(In/Hr)• Rainfall intensity = 3.67.5(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area, ( total area with modified- Slope odified- rational method)(Q=KCIA) is C =0_785 Subarea runoff = • 1.527 (CFS). for 0.636 Total -runoff = 3 .417 (CFS) Total area .= .Area averaged Fm value = • 0.471(In/Hr) Street flow -at end of street = 3.417(CFS) Half street flow at end of street 3.417(CFS) Depth of flow = -0.3-22 (Ft.)-, Average velocity = 2.830 (Ft/s) Flow width (from curb towards crown) = 10.605 (Ft.) ........•I I" F.•} { ..•I. .'f....•i•'F..........'{ }.T•F'{...'.j"'f"......"I :..ri•} I"F'i..•E"{... Process from Point/Station 25.000 to Point/Station 22.000 UNDEVELOPED (average cover) subarea Decimal fraction soil group A = 1.000 Decimal fraction soil, group B = 0.000 Decimal fraction.soil group C = 0.000 Decimal fraction soil group D = 0.6.00 SCS curve number for soil (AMC 2) = 50.00 Adjusted SCS curve number for AMC 3 = 70.00 Pervious ratio (P_p) = 1.0000 Max loss rate (Fm) = 0 .532 (In/Hr) Time of concentration. = 13.78 min. Rainfall intensity = 3 .675 (In/Hr) for a 100.0 year store Effective runoff coefficient used for area, (total area with modified rational method)(Q=KCIA) is C = 0.769 Subarea runoff = 27.858 (CFS) for 9.850 (Ac. ) Total runoff = 31.274 (CFS) • Total area = 11.04 (Ac. ) Area averaged Fm value = 0.526(In/Hr) Along Main Stream flow Stream number: 2 in normal stream number 1 area = Runoff from*this stream Time of concentration = Rainfall intensity = Area averaged loss rate Area averaged Pervious 11.035 (Ac.) = 31.274 (CFS) 13.78 min. 3. 675 (In/Hr) •(Fm) = 0.5259 (In/Hr) ratio (Ap) = 0.9570 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point,/Station 22.000 to Point/Station 21.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION Top of street segment elevation = 54. 500 (Ft.-) End of street segment elevation = 46.000 (Ft . ) Length of street segment = 660.510 (Ft.) Height of curb above gutter f lowline = 8.0 (In.) Width of half street. (curb to crown) _ ' 38.000 (Ft.) Distance from crown to crossfall grade break = 36.500 (Ft.) Slope from gutter -.to grade break -(v/hz) 0.040° Slope from grade break to crown (v/hz) = 0:020 Street flow i.s on [2) side (s) of the street Distance from curb to property line) - Slope from curb to property line •(v/hz) 0.020 Gutter width = 1.500 (Ft.) -Gutter hike from. f lowli ne = 1.680. (In . ) Ma.nningrs .N in. gutter = 0.0150 Manning' s N from gutter to grade break 0.015 0 Manning' s N from grade break to crown = 0.01.5 0 Estimated mean flow rate at midpoint of street . = 0.000 (CFS) Adding area flow to street RESIDENTIAL (3 - 4 dvil/acre) -Decimal .fraction soil group •A = 1.000 Decimal fraction soil•group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D =•0.000 SCS curve- number for soil.(AMC 2) = 32.00 J Adjusted SCS curve number .for AMC 3 = E2. 00 Pervious ratio(.Ap) = 0 .6000 Max loss rate (Fm) = 0.471 (In/Hr) :Rainfall intensity 3 :615 (In/Hr) for a•: 100.0 year storm Effective runoff coefficient used for °area, (total area with modified rational method)(Q=KCIA) is C =.0.769 Subarea runoff = 33'.901(CFS) for 0.911 (Ac.) Total runoff = 33.901 (CFS) Total- area = 11.95 (Ac. Area averaged Fm value = 0.522 (In/Hr) Street flow at end of street = 33 .901(CFS) Half street flow at and of street = 16.951 (CFS) _. Depth of flow = 0 .523 (Ft .) , Average velocity = 3.907 (Ft/s) Flow width (from curb towards - crown) = 20.630 (Ft . ) +++++++++;++++++++++++++++++.++++-,L++++++++++++++++++++++++++++++++++++++ Process from Point/Station 22.000 to Point/Station 21.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 11 .946 (Ac. ) Runoff from this stream = • 33.901 (CFS) Time of concentration = 13.78 min. ( H 1 7 A i Stream Flaw rate TC No. -(CFS) _ (min) 1 4.944- 17.36 2 33.901 13.78 Qrnax (1) _ _ 1.000 * 1'.000 0.849 * 1.000 Qmax (2) _ 1.175 * - 0.793 1.000 * 1.000 Rainfall Intensity (In/Hr) 3 .199 3 : 675 4.944) + 33.901) + 4.944) + 33.901) + _ Total of 2 main streams to conf luence : .Flow rates before confluence point: 4.9.44 33.901 Maximum flow rates at confluence using above data: 33.724 38.509 -Area of streams before confluence: 2.014 11.946 Effective area values after confluence: 13.960. 13.544 Results of confluence: Total flow' rate = .38.509 (CFS) . Time of concentration = 13.777 min. Effective stream area after confluence = Study area average Pervious fraction(P_p) _ Study area average soil loss rate (Fm) _ Study area .total = 3-3. 96 (Ac.) 33.724 38.509 13.844 (Ac.) 0.882 0.514 (In/Hr) ':'-L.'{.++++++++'++++•+•-�'..�.-f'.i.'J(.-f.++++++++-IrT+.f..�.'.1--F'_}'.++++++•�+++•-}.'�..�..'�'.�fTTT++"�.'+�i'.{--}'-T-•�'+'+'+'1. Process from Point/Station 1.000 to Point/Station 2.000 * ** INITIAL AREA EVALUATION ***. RESIDENTIAL(3 - 4 dwl/acre) Decimal. fraction soil group A '=--1.000 Decimal fraction soil group B = 0..000 Decimal ' fraction soil . group . C. = 0.000 - Decimal fraction soil group D = 0.000 SCS curve number for soil (AMC 2) = 32 .00 Adjusted SCS curve number for AMC 3 =-52,;00 Pervious ratio (Ap) = 0.6000 Max loss .rate (Fm).= 0.471 (In/Hr) Initial subarea data: Initial area flow distance = 451.000 (Ft . ) Top (of initial area) elevation = . 93 .300 (Ft. ) Bottom. (of initial area) elevation = 80 .400 (Ft. ) Difference in elevation = 12 :900 (Ft . ) Slope = . 0.02860 s(-".)= TC = • k (0 .412) * [ (length''3) / (elevation change) ] "0 .2 Initial area time of concentration = 9.667 min. Rainfall intensity, = 4 .545 (In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIP_) is C = 0.8.07 Subarea runoff = 7.257 (CFS) Total initial stream area = 1.979 (Ac.) Pervious area fraction = 0.600 Initial area Fm value = 0.471(ln/Hr) a� p,LJU. U1 .7L.lCCI.. SCyILLCllly 1-_-1t::tvdLl0n = / / .'TUU ku-z Length of street segment 296. 000 (Ft. ) Height of curb above gutter flowline = 8 e 0 (In.) Width of half street (curb to crown). _ •18 .000 (Ft. ) Distance from crown to crossfall grade break = 16 .500 (Ft Slope from gutter to grade break (v/hz) = 0.040 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 12 . 000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500 (Ft.) Gutter hike from flowline = 1.680 (In.) Manning' s N in gutter' _ .0. 01-90 .Manning's N from gutter to .grade break = 0.0150 Manning' s N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0 . 391 (Ft.) r Average velocity = Streetf low hydraulics at midpoint of -street travel: Halfstreet flow width . = 14.042 (Ft.) - Flow velocity 2. 72 (Ft/s) Travel time = 1.8 2 min . TC = 11.43 min. Adding area flow to street RESIDLNTIP_L (3 - 4, dwl/acre). Decimal fraction, soil group A =.1.000 Decimal fraction soil group B = 0.000 Decimal fraction. soil group 'C = 0.000 Decimal fraction soil group D'= 0.000, SCS curve number for s oil (AMC 2) = 32.00 Ad'usted SCS curve number for AMC 3 = 52.00- 11.165 (CFS) 2.718 (Ft/s ) 7 Pervious ratio (Ap) = 0.6000 Max loss rate (Fm).= 0.471 (In/Hr) Rainfall intensity = 4.099 (In/Hr) .for a 100.0 year storm Effective runoff coeff; cient used for area. (total area with modified rational method) (Q=KCIA) is C = 0.797 Subarea runoff 6.168 (CFS) for 2.132 (Ac.. ) Total runoff = 13 . 424 (CFS) Total area- 4.11 (Ac-. } Area averaged Fm value =. 0.471 (In/Hr) Street flow. at end of street 13.4.24 (CFS) - Half street flow at and of- street = 6.712 (CFS) Depth o7f flow 0 . 412 (Ft.) , Average -vel ocity 2. 843 (Ft/s3 Flow width. (from curb towards crown) = 15 . 095 (Ft.). +++++++++-L++++++++++++•+'++++++++++++++++++++++++++++++++++++++ +++++++++ Process from. Point/Station 2•.000 to Point/Station -3.000 * * * * CONFLUENCE OF MINOR STREAMS * * * * .Along Main Stream number: 1 in normal stream number 1 Stream. flow area = 4.11i(Ac.) Runoff from this stream = . 13.424(CFS) Time of concentration = 11.48 min. Rainfall intensity = 4.099 (In/Hr) Area averaged loss rate (Fm) = 0.4711 (In/Hr) Area averaged Pervious ratio. (Ap) = 0.6000 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ •+++++++++ Process from Point/Station 103.000 to Point/Station 3.000 * *** USER DEFINED FLOW INFORMATION AT A POINT. RESIDENTIAL (3 - 4 dwl/acre) Decimal fraction soil group A = 1.000- I i Pervious ratio (Ap) = 0 . 6000 Max loss rate (Fm) = • 0.471 (In/Hr) Rainfall intensity = 3.466(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 15.19 min, Rain intensity = 3 .47 (In/Hr) Total*area = 17. 5 0 (Ac.) Total- runoff = 47:18 (CFS) ++++++++++++++++++++++++ ++++++++++++-F++++r++++++++++++++++++r +++++++++• Process from Point/Station 103.000 to Point/Station 3.000 * * * * CONFLUENCE OF MINOR STREAMS * * * * Along Main Stream number: 1 in normal stream number 2 Stream flow area = 17.500 (Ac.) Runoff from this stream • 47,180 (CFS). Time of concentration = 15.19 min. Rainfall intensity = 3.466 (In/Hr) Area averaged loss rate (Fm) = 0.4711(In/Hr) Area averaged Pervious ratio (Ap) = 0.6000 Summary of stream data: Stream No. 1 2 Qmax' (1) Flow rate.. TC' Rainfall Intensity .'(CFS) (min) .(In/Hr ) 13.424 47.18.0 1.000 1. 212 Qmax (2) _ 0.825 1:000 11.48 4.099.. 15.19 3.466 1.00.0 * 13..424) + 0.756.* 47.180) + 1.000 * 13.424) + 1.000 * 47.180) + -.56.634 . 58.260 - Total of 2 streams to confluence:.. Flow rates before confluence point- . 13.424 47.180 Maximum flow rates at confluence using above data: 5'6.634 58.260 Area of streams before confluence:' 4.111 17'.500 Effective area values after . confluence: 17.339 21.611 Results of confluence: Total flow rate = 58.260(CPS) Time of concentration = 15.190 min. Effective stream area after confluence = 21. 611 (Ac.') Study area average Pervious fraction (A_p) = 0.600 Study area average soil loss rate (Fm) = 0 .471 (In/Hr) Study area total (this main stream) =. 21.61 (Ac. ) +++++++++++'{'+++•-f'++++++a-•'E'++++++++++++++++++-i-++++++++++++++++ + T++++++++T Process from Point/Station 3.000 to Point/Station 4.000 * * * * STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * * * .. Top of street segment elevation = 77 .400 (Ft . ) End of street segment elevation = 73.0-4-0 (Ft.) Length of street segment = 400.320 (Ft.) Height of curb above gutter flowline = B. 0 (In.) Width of half street ( curb to crown) = 18.0 00 (Ft . ) Distance from crown to crossfall grade break = 16.500 (Ft. ) Gutter hake from flowline = 1.680 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to .grade break = 0.0150 Manning' s N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 61.912 (CFE) Depth of flow = 0.631 (Ft.) , _average velocity = 4.975 (Ft S) Note: depth of flow exceeds top of street crown. Streetflow hydraulics at midpoint of- street travel: Halfstreet flow width = 18 .000 (Ft. ) Flow velocity = 4.97(Ft%s) Travel time = 1.34 -min. TC = 16.53 min. Adding area flow to street RESIDENTIAL (3 _ 4 dwl/acre) Decimal fraction soil group A =.1.000 Decimal fraction soil group B = 0.000 _ Decimal fraction soil group C = 0.000 Decimal fraction- soil group D = 0.000 SCS - curve number for soil (AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio (Ap) = 0.6000 Max loss rate (Fm) = 0.471 (In/tar) Rainfall intensity = 3•.294 (In/Hr) for a 100.0 year storm Effective runoff coefficient used for area, (total area with modified 3 ratiohal -method) (q=kCIA) is C = 0.'864. Subarea runoff = 3. 53 3 (CFS)' for 2.709 (Ac. ) Total runoff- '= 61:793 (CFS) • Total area = 24.32 (Ac.) Area averaged Fm value 0.471(In/Hr) Street flow at end of street = 61.793 (CFS) Half street flow at end of street = . 3D.896(CFS) Depth of, flow = 0.631 (Ft .) , Average velocity 4.971(Ft/s) Note: depth of flow exceeds• top of street crown. Flow width (from curb towards crown) = 18 .0 0 0 (Ft . ) ++++++++ F j....';_._}...-i-_F._Fa._{_...-}.._I__}'.}'_}.'9-'{_'F-F...{_f+�_.}-i-i•-i-++++.{..y-}_}.-1--{•+++?-Li-_+.{_f_I_'I'.'I ++ Process from Point/Station 4..000 to Point/Station 5.000, **** STREET FLOW TRAVEL TIME +.SUBAREA FLOW ADDITION Top of street segmentelevation = 73 . 040 (Ft..) - End of street segment elevation = 65 .320 (Ft . ) Length of street segment = 400.800(Ft.) t Height. of curb above. gutter flowline = Width of half street (curb. to crown) = 18.000 (Ft. ) Distance from crown to crossfall grade break = 16.500 (Ft.) Slope from gutter to grade break (v/hz) = 0.040 _# Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2]. side (s) of the street -� Distance,from curb to property line' = 12 . 000 (Ft . ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500 (Ft.) Cutter hike from flowline = 1.680 (In. ) Manning' s N in gutter = 0.0150 Manning's N from gutter to grade break• = 0.0150 Manningr s N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 65.105 (CFS) Depth of flow = 0.585 (Ft.) , .Average velocity 6 .029 (Ft/s) Note: depth of flow exceeds top of street crown. Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 18 .000 (Ft. ) Flow velocity = 6.03 (Ft/s) Travel time = 1.11 min. TC = 17.64 min. 1JCL.I.LLLCLJ.. L LC11.:L.1.1J11 .7U1..L-JJ_Uup iJ = U . V U SCS curve number for soil (AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 Pervious ratio (AP) = 0.6000 Max loss rate -(Fm) = 0 .471(In/Hr) Rainfall intensity =3 .168 (In/Hr) for a 100.0 year storm Effective runoff coefficient used for area, (total area with modified ` rational method) (Q=KCIA) "is C = 0.853 Subarea runoff = 3.576 (CFS) for .2.607 (Ac.) Total runoff = 65.369 (CFS) Total area = 26.93 (Ac.) Area averaged Fm value = .0.471(In/Hr) Street- flow at end of street = 65. 3 69 (CFS) Half street flow at end of street = 32.684 (CFS) Depth of flow = 0.586(F•t.) , Average velocity = 6.039 (Ft/s) Note: depth of flow exceeds top ' of street crown. Flow width (from curb towards crown) = 18 000 (Ft . ) +++++T..E..}.-I•'E'I"E•+..1.+'F.++T+++++++++T++.}•+.{.'E+++"E'..f.+++++.�...} ++T+++++++++++++.}.1.�-++++ 0 Process from Point/Station 5 :00to Point/Station 6.000" * * * * STREET . FLOW TRAVEL TIME + SUBAREA FLOW ADDITION Top of street segment elevation = 65.320(Ft.) End of street segment elevation = 56.500 (,Ft . ) Length of street segment = A-57.440 (Ft.) - Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 18.000 (Ft.) Distance from crown 'to crossfall grade break = 16.500 (Ft-.). Slope from gutter to grade break (v/hz) _ •0.040 Slope from grade break to crown (v/hz) - 0.020 Street flow is on [2j side (s) of the street Distance. from .curb 'to property line = 12.000 (Ft.) _ Slope from curb to property- line (v/hz) = 0.020 Gutter width -1.500(Ft.) Gutter hike from flowline = 1.680 (In. ) Manning' s N in gutter = - 0. 01.50 Manning' s N. from gutter to gade break = 0.0150 Manning' s N from grade break to crown = 0.0150 f Estimated mean flow rate at midpoint of street = 69 .175 (CPS) i Depth of flow = '0.596 (Ft.), Average velocity = 6.177 (Ft/s) Note: depth of flow exceeds top of. street crown. 5treetflow hydraulics at midpoint • of . street travel: } Half street flow width = IS.. 0*00 (-Pt . ) Flow velocity = 6.18 (Ft/s) - Travel time = 1.23 min. TC = 18.87 min-.% Adding area flow to street RESIDENTIAL (3 - 4 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil.group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction -soil group D = 0.000 SCS curve number for soil (AMC 2) = 32.00 Adjusted*SCS curve number for AMC 3 = 52.00 Pervious ratio (Ap) = 0.6 .000 Max loss rate (Fm) _ 0 .471(In/Hr) Rainfall intensity = 3 .042 (In/Hr) for a 100.0 year storm Effective runoff coefficient used for area,. (total area with modified rational method) (Q=KCIA) is C = 0.842 Subarea runoff = 4.204 (CFS) for 3.136 (Ac.) Total runoff = 69.573 (CFS) Total area = 30.06 (Ac.) Area averaged Fm value = 0.471 (In/Hr) Street flow at end of street = 69.573 (CFS) 4 Half street flow at end of street = 34.786 (CFS) Tit r n rnn/T4_ \ — t- •��•� r+l_/.r'i! T+++++++++•+++++++++++++++++++++++ 1+++++'E--E'+-F•-I_..I'..-{ -i----t-t-"t- -r-r-rTTTT'!'TI -f TT'T TT'TT Process from Point/Station 6.000 to Point/Station 7.000 * * * * STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * * * Top of street segment elevation = 56 .500 (Ft . ) End of street segment elevation = 54.500 (Ft . ) Length of street segment, = 231.460'(Ft , ) Height of curb above gutter flowline = 8.0 (In. ) Width of half street (curb to crown) = 18. 000 (Ft.) Distance from crown to crossfall grade break = 16.500 (Ft.) h Slope from gutter to grade break (v/hz) = 0.040 Slope from grade break to crown (v/hz) = 0.020 Street .flow is on [2]. side (s) of the .street Distance from -curb to property line = 12 . DDO (Ft . ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500 (Ft.) Gutter hike from flowline = 1.680 (In. ) Manning s N .in gutter' = 0.0150 . Manning' s N f rom gutter to grade break = 0.0150 Manning' s N f rom grade break to crown •= 0.0150 Estimated mean flow rate at midpoint of street' _ 71.239 (CFS) Depth of flow = 0.702 (Ft.), Average velocity 4.732 (Ft/•s) Warning: depth of flow exceeds top of curb Note:. depth of flow exceeds top of -street crown. Distance that curb overflow reaches into property. = 1.76 (Ft. ) Streetflow hydraulics at midpoint of street travel: Half street flow* width = 18 .000 (Ft. ) Flow velocity 4.73 (Ft/s) . Travel time = 0.82 min. • TC 19.69 min. Adding area flow to street RESIDENTIAL (3 - 4 dwl,/acre) Decimal fraction soil group A 1.000 - .Decimal fraction soil• group B = 0.000 Decimal fraction soil group C = 0.000. Decimal fraction soil • group D• = 0.000• SCS curve number for soil (AMC 2) 32.00 Adjusted SCS curve number -for...AMC .3 = 52.00 Pervious 'ratio (Ap) = 0.6000 Max loss rate (Fm) = 0.471(In/11r) .. Rainfall intensity = - 2.,-966 (In/Hr) for a • 100.0 'year storm Effective runoff coefficient used for area., (total area with modified rational method) (Q=KCIA) is C'= 0.836• Subarea runoff = 1.171 (CFS.) for 1.440 (Ac.) Total runoff = 70.744 (CFS) Total area = 31.50 (Ac. ) Area averaged . Fm value — 0 .471 (In/Hr) Street flow at end of street = 70.744 (CFS) Half street flow at end of street • = 35.372(CFS) Depth of flow = o. 699:(Ft .) , Average velocity = 4 .730 (Ft/s) Warning: depth of flow exceeds top of curb t Note: depth of flow exceeds top of street crown. Distance that curb overflow readies into property = 1.63 (Ft.) Flow width (from curb -towards crown) = 18.000 (Ft. ) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++ _ Process from Point/Station 6.000 to Point/Station 7.000 * * * * CONFLUENCE OF MAIN STREAMS * * * * _ The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 31.503 (Ac. ) Runoff from this stream = '70.7.44 (CFS) ............................. i-++++++++++ ++-{--F-h+ +'.-+-Fi--h-i--I-+++++++++ ++++-f-a--F-i--{--I--} + Process from Point/Station 26,000 to Point/Station 8.000 **** INITIAL AREA EVALUATION RESIDENTIAL (3 - 4 dwl/acre) D-ecimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for• soil (AMC 2) =,32.00 Adjusted SCS curve number for Pervious ratio(Ap) = 0.6000 AMC •3 = 52.00 Max loss rate(Fm)= 0.471(In/Hr) Initial subarea data: Initial area flow distance = 307.370(Ft.) Top (of initial area) elevation = 93.300 (Ft.) (of 4nitia•1 area) elevation = 76.600 (Ft.) Bottom Difference in elevation = 16 .700(Ft.) Slope = 0.05433 s(-'.)= 5.43 TC = k (0.412) * [ (length"3) / (elevation change) ]'`0.2 Initial area time of concentration. = 7:294 min. Rainfall intensity = -5.382 (In/Hr) for a 100.0 year storm Effective- runoff coefficient used -for area (Q=KCIA)- is '-C = 0.821 Subarea runoff = 9.264(CFS) Total initial stream area = 2.096.(P_c . ) Pervious area fraction =•0.600 Initial area Fm value = 0: 471 ( In/Hr) +++++++++++-t+++++++++++++++++++++++++++++++++.+-i +++++++++++++++++++++++ Process from Poiizt/Station 8.000 to Point/Station 9.000 ****. STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION, Top of street segment elevation 76.600(Ft.) End of street segment. elevation. 70 .00.0 (Ft.). Length of street segment = 372.986 (Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half -street (curb to crown) IS . 000 (Ft.) _ Distance from crown to crossf all grade break 16.500(Ft.) Slope from gutter to grade break (v/hz) 0:020 Slope from grade break to.crown (v/hz) = 0.020 Street flovi is on [2] side (s) of. the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property•line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter - hike from flovTline = 1. 687 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at. midpoint of street = 15'. 216 (CFS) Depth of flow = .0 .395 (Ft.) . Average velocity = 3.618 (Ft/s) Streetflow hydraulics- at midpoint of street travel: Half street flow width = 14.212(Ft .) Flow velocity = 3.62(Ft/s) Travel time = 1.72 min. TC = 9.01 min. Adding area flow to street RESIDENTIAL (3 - 4 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 - Decimal fraction soil group C = 0.000 Effective runoff coefficient used for area (total area with modified rational method) (Q=KCIA) is C = 0.811 Subarea runoff = 9.138 (CFS) for 2.693 (Ac. ) Total runoff = 18.403(CFS) Total area = 4.79(Ac.) Area averaged Fm .value = 0.471 (In/Hr) Street flow at end of street = 18.403(CFS) Half street flow at end of street = 9.201 (CFS) Depth of flow = 0 .417 (Ft.) , Average velocity = 3.790 (Ft/s) Flow width (from curb towards crown) = 15 .312 (Ft . ) +++++++++++++++++++++++++++++++++++++++++++++++ +++++++++ ++++++++++++ ++ Process from Point/Station 9.000 to Point/Station. 10.000 * * * * STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * * * Top of street segment elevation = 70.000 (Ft . ) End of street segment elevation = 66.200 (Ft.) Length of street segment = • 307.850 (Ft.) Height of curb above gutter flowline = 8.0 (In.) Width' of. half street (curb to crown). = 18.000 (Ft.) Distance from crown to crossfall grade_ break = 16.500 (Ft. ) Slope from gutter, to grade break (v/hz) = •0.040 Slope from . grade break to crown (v/hz) = 0.020 Street flow is on. [2]. side (s) of the' street Distance from curb to property line - = 12.000 (Ft.). Slope from curb to property line (v/hz) = 0.020 Gutter width 1. 500 (Ft.) Gutter dike from fJowl ine = 1.680 (In.) .Manning' s N. in gutter =' 0.0150 Manning' s N from gutter to grade break = 0. 0150 Manning' s• N from grade break to crown = 0.015 0 Estimated mean flow rate at midpoint of street = Depth of flow= 0.'45.8 (Ft.)., Average velocity =. Streetflow hydraulics at -midpoint of street travel: Halfstreet flow width = 17.409 (Ft:-) Flow velocity 3 .43 (Ft/s) • Travel • time = 1. 4 9 min. TC = 10.51 min. Adding area flow to street RESIDENTIAL (3 - 4 dwl/acre) - Decimal fraction .soil. group A =. 1.000 Decimal fraction. soil group B 0.•000 Decimal fraction soil. group C = 0.000 . Decimal fraction soil group D = 0.000 SCS curve number for soil (AMC 2) = 32.00 d' t d SCS curve number for -AMC 3 = 52.00 21.371(CFS) 3.432 (Ft/s) A bus e Pervious ratio (Ap) = 0.6000 • Max loss rate (Fri) = 0 .471 (In/Hr) Rainfall intensity = 4.324 (In/Hr) for a 100.0 year storm Effective runoff coefficient used for area, (total area with modified rational method) (Q=KCIA) is C = 0.802 Subarea runoff = . • 3.560 (CFS) for • 1.545 (Ac. ) Total runoff = ` 21.962 (CFS.) Total area = 6 .33 (Ac.) Area averaged Fm value = 0.471(In/Hr) Street flow at end of street = ' 21.962 (CFS) Half street flow at end of street = 10.981 ( CFS) Depth of flow = 0.462 (Ft.), Average velocity =_ 3,455 (Ft/s) Flow width (from curb towards crown) = 17.594 (Ft.) ++++++••+.++++++++++++++++++++++++++++++++++++++ Process from Point/Station 9.000 to Point/Station 10.000 * * * * CONFLUENCE OF MINOR STREAMS * * * * Rainfall intensity = . 4.324(In/Hr) Area averaged loss rate (Fm) = 0.4711(In/Hr) Area averaged Pervious ratio (Ap) = 0.6000 ++++++++++++++++++-, +++++++++++++ ...................................... Process from. Paint/Station 11.000 to Point/Station 12.000 **** INITIAL AREA EVALUATION **** RESIDENTIAL(3 - 4 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve -number 'for soil (AMC 2) = 32.00 Ad'Justed SCS curve number for AMC •3 = 52.00 Pervious ratio (P_p) = 0.6000 'Max loss rate (Fm) = Initial subarea data:. Initial area flow distance = 272.410 (Ft.) Top (of initial area) elevation = 74.500 (Ft. ) Bottom (of initial area) elevation = 71.400 (Ft.) Difference in elevation = 3.100 (Ft.). Slope = 0.01138 s(o)= .•1.14 TC = k (0 .412) * [-(length'3) / (elevation change) 1 `0 .2 Initial area time of concentration = 9.501 min. 0.471 (In/Hr) Rainfall intensity = 4.593 (In/Hr) for ,a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) 'is C = 0..808 Subarea.runoff = 7 .089 ( CFS ) Total initial stream area = - 1.911(Ac.) Pervious. area fraction = 0.600 initial area Fm value . 0 .47.1(In/Hr) ................ ........................................................ Process from Point/Station 12.000 to Point/Station 10.000 * * * * STREET FLOW TRAVEL TIME s SUBAREA FLOW ADDITION ** * * Top of . street segment elevation = 71.400 (Ft . ) End of street_ segment elevation -= '66 .200. (Ft .) - Length of street segment = 276.500 (Ft.) Height . of curb above gutter .flowline . = 8 : 0 (in. ) Width of half street'''( curb to crown) = 18 .000 (Ft.) Distance from crown to crossf all grade break = 16.500(Ft .) Slope from gutter to grade break (v/hz)• = 0.040 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side (s) - of the street Distance from curb to property. line = 12. 000 (Ft . ) Slope from curb to property line (v/hz) 0.020 Gutter width = - 1 .500 (Ft . ) Gutter hike from f lowl ine = 1.680 (In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break '= 0.0150 Manning s N. from grade break to crown = 0.015.0 Estimated mean flow rate at midpoint of street = 10.548(CFS) Depth of flow = 0.353(Ft.), Average velocity = 3.388(Ft/s) Streetflow hydraulics at midpoint of street travel: Half street flow width = 12.142 (Ft . ) Flow velocity = 3.39(Ft/s) Travel time = 1.36 min . TC = 10.B6 min. Adding area flow to street RESIDENTIAL(3 - 4 dwl/acre) Adjusted SCS curve number for - AMC 3 = 52.00 p 471 (In/Hr) Pervious ratio (P_p) = 0.6000 Max loss rate (Fm) _ Rainfall intensity = 4 . 238 (In/Hr) for a 100 .0 year storm Effective runoff coefficient used for area, (total area with modified rational method) (Q=KCIA) is C = 0.800 Subarea runoff- = 5.714 (CFS) for 1.865 (Ac . ) Total runoff = 12.803 (CFS) Total area = 3 ; 78 (P_c • ) Area averaged Fm value = 0_.471(In/Hr) Street flow at end of street = 12.803 (CFS) Half street flow at end of street = 6.402 (CFS) Depth of flow = 0 .372 (Ft.) , Average velocity = 3 ,550 (Ft/s) Flow .width (from curb towards crown) = 13. . 117(Ft . ) ++++++++++++++++++++++++%+++++++++++++++++++++ ++++++++++-E ++++ F E++++++ Process .from Point/Station 12.000 to Point/Station 10.000 *** CONFLUENCE OF MINO.R STREAMS 1 Along Main Stream number: 2 in normal .stream number Stream flow area = 3.776 (Ac.) Runoff from this stream 12.803 (CFS) Time Of concentration = 10 . 86 min. Rainfall intensity = 4.238 (In/Hr) Area averaged loss rate (Fm) _ • 0 .4711(In/Hr) Area averaged Pervious ratio (Ap) 0.6000 v Summary of ' stream data: Stream Flow rate: TC Rainfall Intensity No,. (CFS) • (min) (In/Hr) 1 21.962 10.51. 4.324 2 12.803 10.86 4.238 Qmax(1) _ * .1.000 * 21.962) • + 1.000 * 0.967 * 12.803) + _ ..� 1.023. 34.628 Qmax(2) _ * 1.000 ;k.' 21.962) +. 0:978 * 1.000 * 12.803) + = 34.279 1-.000 , Total of 2• streams -to confluence: 4 Flow, rates before confluence point: •21.962 12.803. Maximum flow rates at confluence using above data: 34.628 34.279 Area of streams before confluence: 6.334 3.776 ff Effective area values after confluence: d 9.987 10.110 Results of Confluence: Total flow rate = 34.628 (CFS) Time of concentration = 10.507 min. 9 g87 (Ac ) Effective stream area after confluence = Pervious fraction (Ap) . . = Study area average soil loss rate (Fm) = 00.6.0 {In/Hr) Study area average total (this main stream) _ 10.11 (In.. ) Study area 1 15.000 +++++++++++++++-.++++++++++++++++++•;-+++++++++++++++++++++++++++++++++++ from Point/Station 10.000 to Point/Station Process +++* emv"pm RT,nTq TPLITRT, TTMF Y RTTRARRA FT,nw 7MMTION **** Width of half street (curb to crown) = 18.000 (Ft. ) t ce from crown to crossfall grade break - 16.500 (Ft. ) Dis an Slope from gutter to grade break (v/hz) = 0.040 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side (s) of the street Distance from curb to property line = 12. 0 00 (Ft . ) Slope from curb to property line (v/h.z) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.680 (In.) Manning' s N in gutter = 0 .0150 Manning's N from gutter to .grade break = 0.0150 Manning' s N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 36,.767 (CFS) Depth of -flow = 0.54:4 (Ft.) , Average velocity = 3.945 (Ft/sY Note: depth of f low exceeds top of street crown. Streetf low hydraulics at midpoint of street travel: . Halfstreet flow width = 18.000(Ft.) Flow velocity = 3 .94 (Ft/s) Travel time = 1.35 min. . TC = 11.86 min. Adding area flow to street RESIDENTIAL0 - 4 dwl/acre) Decimal fraction soil group A: = 1.000 Decimal fraction soil group B = 0.000 Decimal f=•action soil group C = 0.000 -- Decimal*. fraction soil group D = 0;000 SCS curve. number- for soil (AMC 2) = 32.00 Adjusted SCS- curve number .for AMC 3 = 52.00 0 .471 (In/Hr) Pervious ratio (Ap)• = 0.6000 Max loss rate (Fm) _ Rainfall intensity = 4.021(In/Hr). for a 100.0. year storm Effective runoff coefficient used for area, (total area with modified rational method) (Q=KCIA) is C = 0:.853 rb Subarea runoff . = 1.221 (CFS) for. 1.234 (AC . ) Total runoff = 35.849(CFS) Total area = 11.22 (Ac . ) Area averaged Fm value = . 0.471(In/Hr) Street flow at end of street = 35.849(CFS) Half street flow at end of. street = 17.924 (CFS) Depth of -flow = 0.540 (Ft.) , Average velocity = 3.905 (Ft/8) Note: depth of flow exceeds top of street crown . Flow width (from curb -towards crown) = 18 .000 (Ft . } +++++++++++++++++++++-+ ""�'.Z.E..� ++T�•+ •T'�'E +.�.++++T.{"�.+++'F'..�....�.'f.'.�.''"�..�.++++++++..�..++TT..}..+ Process from Point/Station 10.000 to Foirit%Station 15.000 * * X * CONFLUENCE OF MINOR STREAMS Along Main Stream number: 2 in normal stream number 1 Stream flow area = 11.221(Ac.) Runoff from this stream = 35.849 (CFS) Time of concentration = 11.86 min. Rainfall intensity = 4.021(In/Hr) Area averaged loss rate (Fm) _ 0. 4711 (InHr) 1 Area averaged Perviotis ratio - (Ap) = 0. 6000 '}.'.}."}.'}.++++'j"}"++"{.'{"}"+..j''{'..}.'}.'} 4}"}'+++"}..'1"}.T+'.+.}."{'..f.'}.'{'+'}"}..}}"++++++'%+'}"}..".}.'i.'"}.'{.'++1'.f.++'}"}..'i"{..+ Process. from Point/Station 13.000 to Point/Station 14.000 **-�* INITIAL AREA EVALUATION **** RESIDENTIAL(3 - 4 dwl/acre) Decimal fraction soil group A= 1.000 Decimal fraction soil group B = 0.000 Initial subarea data: initial area flow distance = 309.410 (Ft.) Top (of initial area) elevation = 70.800 (Ft. ) Bottom (of initial area) elevation = 67.300(Ft,) Difference in elevation = 3.500 (Ft.) slope = 0.01131 s(o)= 1.13 TC = k(0 .412) * [ (length''3) /(elevation change) ] h0 .2 initial area time of concentration = 10.009 min. Rainfall intensity = 4.451 (In/Hr) -for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.805 Subarea runoff = 6.036 (CFS) Totalini tial stream area = 1.685 (Ac. ) Pervious area fraction 0.600 Initial area Fm value = 0 .471(In/Hr) ++++++++++++++++++++++++++++++++++++++++++-E-F.i-++ -E-(--1 + +..1 � + +++ i ++ Vis. + Process from Point/Station 14.000 to Point/Station 15.000 * * STREET FLOW TRAVEL TIME ' + SUBAREA FLOW ADDITION Top of street segment • elevation = 67 .300 (Ft . ) End of street segment elevation 63 . 000 (Ft . ) Length of street segment = 331.120 (Ft. ) - - Height of curb_ above gutter f.lowline = 8.0 . ) Width 'of' half street (curb to crown) = 18.000 ((FFt . ) Distance from crown to crossfall grade break = 16.500( Ft. )� slope from gutter to grade break (v/hz) = 0.040 Slope from grade break to crown (v/hz) =0.020 Street flow is on [2] side (s) of the street Distance from curb to property line = 12 .000 (Ft . ) Slope from curb to property line . (v/hz) = 0.020 Gutter width = 1.50.0 (Ft.) . ;s Gutter hike from f10VI ne = 1.680 (in..) Manning's N* in gutter-= 0.0150 .Manning's N from .gutter to grade break = 0.0150 - Manning' s- .0150- ivfanning's- N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 9-.729(CFS) Depth of flow = 0 .363 (Ft.) , Average velocity .= 2 .887 (Ft/8) ' SJtreetflow hydraulics at midpoint of street travel: Halfstreet flow width = •12.659 (Ft.) Flow. velocity = 2:. &9 (Ft/s) y Travel time -= 1.91 min. . TC 11.92 min. Adding area f 1 ow to street RESIDENTIAL(3 - 4 dwl/acre) Decimal fraction soil- group, A 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 - Decimal fraction soil group D = 0.000 SCS curve number for soil (AMC 2) = 32.00 Adjusted SCS curve number for AMC 3.= 52 .00 0 ; 471 (In/Er) Pervious ratio(AP) = 0.6000 Max loss rate (Fm) _ Rainfall intensity = • 4.008 (In/Hr) for a 100.0 year storm Ef fective runof f coefficient used for area, (total area with modified rational method) (Q=KCIA) is C = 0.794 �- Subarea runoff = 5.892 (CFS) for 2.062 (Ac. ) Total runoff = 11.928 (CFS) Total area = 3 .75 (Ac . ) Area averaged Fm value = 0 .471 (In/Hr) I Street flow at end of street = 11.928 (CFS) Half street flow at end of street = 5.964(CFS) Depth of flow = 0 .384 (Ft.) , Average velocity = 3. 033 (Ft/8) Flow width (from curb towards crown) = 13.725 (Ft.) _X .3 Along Main Stream number:- 2 in normal stream number 2 Stream flow area = 3 .747 Runoff from this stream = 11.928 (CrS) Time of concentration = 11.92 min. Rainfall intensity = 4. 0 0 8 (In/Hr) Area averaged loss rate (Fm) = 0.4711(ln/Hr) Area averaged Pervious ratio (Ap) = 0.6000 Summary of stream data: Stream Flow rate TC No. (CFS) (min) 1 35.849 11.86. •2 11.928 11.92 QmaX (1) _ 1.000 * 1.000 1.004 * 0.995 Qmax (2) _ . 0.996 * 1.000• 1:000 * 1. 50.0 Rainfall Intensity (In/Hr) 4.021 4.008 35.849) + 11.928) + _ 35.849) + 11.928) + _ Total of 2 'streams- to confluence: i. Flow rates before confluence point: 35.849 11.928 Maximum flow rates at confluence using above data: •47.757 47.648 .Area of streams before confluence 11.221 3.747 Effective area values after .confluence: 14.948 14.968 Results of conf luence: Total flow rate = 47 ,.757 (CFS) Time of concentratio = 11.858 min. Effective stream area after confluence = 14.948 (Ac.) .' Study area average Pervious fraction (Ap) = 0.600 Study area average -sail loss rate (Fm) = 0.47'1 (Iri/Hr) Study area total '(thin main stream) = 14.97 -(Ac..) +++++++++++++++++++++'+++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 15.000 -to Point/Station 16.00*0 ****.STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 63 ..000 (Ft . ) End of street segment elevation = 57 .600 (Ft . ) Length of street segment = 417.a40(Ft.) Height of curb above gutter flowline 8.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossf all grade break • = 16.500 (Ft.) Slope from gutter to grade break (v/hz) = 0.040 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street - Distance from curb to property line = 12.000 (Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.50 0 (Ft . ) Gutter hike from flowline = 1.680 (In. ) Manning' s N in gutter = 0.0150 Manning's N from gutter• to grade break = 0.0150 M=r,ninrT1 c v from Grade break to crown = 0.0150 47,757 47.648 s Flow velocity = 4.87(Ft ) Travel time = 1.43 min. TC = 13.29 min. Adding area flow to street RESIDENTIAL(3 e 4 dwl/acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil (AMC 2) = 32.00 Adjusted SCS -curve number for AMC 3 =. 52.00 D,471(In°/Hr) Pervious ratio(AP) = 0.6000 Max loss rate.(PM) _ Rainfall intensity = 3 .756 (In/Hr) for a 100.0 year storm 'Effective runoff coefficient used for area, (total area with modified rational method) (Q=KCIA) is C = 0.860 Subarea runoff = 3 .465 (CFS) for 2.380 (Ac. ) Total runoff = 51.222(CFS) Total area = 17.33 (Ac.) Area averaged Fm value = 0.471 (In/Hr) Street flow at end of street = 51.222 (CFS) Half street flow at end of street =e velocity (CFS) 4.860 (Ft/s) Depth of flow = 0 .578 (Ft .) , g = Mote: :depth of flow exceeds top of . street crown. Flow width (from curb towards crown) = 18.000 (Ft . ) ++++++++++++++++++-F.'++++'+++;{•,-}••4+++++++++++++++++++++++++++++++++++.1"'+ 3 15.000 to Point/Station . 16.000 Process from Point/Station** * * * * CONFLUENCE OF MINOR STREAMS r Along Main Stream number: 2 in normal .stream number 1 Stream flow area Runoff from this stream = 51.2°22 (CFS) Time of concentration = " '13.29 min. Rainfall intensity 3.756.(In./Hr) Area averaged -loss rate (Fm) "0.4 - (In/Hr) Area averaged Pervious ratio (AP) = 0.6000 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++.++++17} 0 00+ 27.000 to Point/Station ****.INITIAL rom AREAtEVALUATION **** UNDE, ELOPED (average cover) st Decimal' fraction soil group A Decimal fraction• soil group B Decimal fraction soil group C Decimal fraction soil group D SCS curve number' for soil (AMC bares = 1.000 = 0.000 = 0.000 = 0.000 2) = 50.00 ( Adjusted SCS. curve number for AMC 3 70.00 { Pervious ratio(AP) = 1.0000 Max 1DS5 rate (Fm) _ Initial subarea• data: Initial area flow distance = 30b .000 (Ft. ) Top (of initial area) elevation = 65.700 (Ft . ) Bottom (of initial area) elevation = 59.500 (Ft.) Difference in elevation 6.200 (Ft.) Slope = 0 .02067 s (o) = 2.07 TC = k (0.706) * L (length" 3) / (elevation change) ] '0. 2 Initial area time of concentration = 15.018 min. Rainfall intensity = 3.490 (in/Hr) for a 100.0 Effective runoff coefficient used for area (Q=KCIA) Subarea runoff = 1.496 (CFS) rrni-ml ;n; t-zal stream area = 0 .562 (Ac. ) 0.53'2 (In/Hr) year storm is C = 0.763 F1 A 1 Process from Paint/Station 17.000 to Point/station 16.000 * * * * STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION Top of street segment elevation = 59.500 (Ft.) End of street segment elevation = 57.600 (Ft.) Length of street segment = 159.450 (Ft.) Height of curb above gutter flowline = 8.0 (In.) Width of half street (curb to crown) = 18.000 (Ft.) r crown to crossfall grade break = 16.500 (Ft.) Distanceprom Slope from gutter to grade break (v/hz) = 0.040 Slope from grade break to crown (v/hz). _. 0.020 Street flow is an [2] side (s) of the street line • = 12. 000 (Ft.) Distance from curb to property Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500 (Ft . ) Gutter hike from flowline = 1.680 (In.) Manning -'s N in gutter = 0.0-150 Manning's N from gutter to'grade break = 0.0150 Manning's N. from grade• break to crown = 0..0150 1.773 (CFS) Estimated mean flow rate at midpoint of D 235 (Ft ) Average velocity street • = = 1.884 (Ft/s) .. Depth of flow = • t Streetflcw hydraulics at midpoint of street travel; Halfstreet flow width = 6.229 (Ft .) Flow velocity = 1.88 (Ft/.$) Travel time = 1.41 min. TC = 16.43 min. Adding area flow to street RESIDENTIAL (3 - 4 dwl/acre) Decimal fraction soil group A = 1..000 Decimal fraction soil group B = 0.000' Decimal, fraction soil group C = 0.'000 Decimal fraction soil group D = 0.000 SCS curve number for soil (AMC 2) _ • 32 .00 .Adjusted SCS . curve number for AMC 3, = 52.00 p , 471 (In/Hr) Pervious ratio (Ap) = 0 . 6000 Max loss •rate (Fm) _ Rainfall intensity = • . 3.307 (In/Hr) for a 10o.0 year storm, Effective runoff coefficient used for area, (total area with modified rational method) (Q=KCIA) is C 0.754 t - Subarea runof f = .0.438(CFS) for 0-208 (Ac.) . # 'Total runoff =' 1. 934 (CFS) Total area = 0.77 (Ac. ) Area averaged Fm value = :0.516 (In/Hr) Street flow at end of street = 1.934 (CFS) Half street flow at end of street = 0.967 (CFS) Depth of flow = 0.240 (Ft,.) , Average velocity = 1.919 (Ft/s) Flow width. (from curb towards crown) = 6.491 (Ft. ) •.I'i"}.'}"}•+"+'F'{"f"'} { F+j"'F+++"F'y"i.'T+'{"}•'.i•+++'F'{.'E'II'"E'I++'F'}++"1"}•'F••}'}.'I'T'F•I•'I"}'+t++'E }+.}..'I....}.'F.'{.•i"'F+ Process from Point/Station 17.000 to Point/Station 16.000 * * * * CONFLUENCE OF . MINOR STRE.AI�'IS Along Main Stream number : 2 in normal stream number 2 Stream flow area = 0 .770(Ac. ) Runoff from this stream =. 1.934 (CFS) Time of concentration = 16.43 , min. Rainfall intensity = 3 .307 (In/Hr) Area averaged loss rate (Fm) = 0 .5159 (In/Hr) Area averaged Pervious ratio (Ap) = 0.8919 '1 Summary of stream data Stream Flow rate TC Rainfall Intensity . � tri -MC -1 / ,•.. � ,-, 1 ( -r, Pari 1.000 * 1.'000 * 51.222) + 1.161 * 0.809 * 1.934) + = 53.038 Amax (2) _ . 0.863 * 1.000 * 51.222) + 1.000 * 1.000 * 1.934) + = 46.1541 Total of 2 streams to confluence: Flow rates bef ore conf luence point: 51.222 1.934 Maximum flow rates at confluence.using above data: 53.038 46.154 • Area of streams before confluence:, 17.328 0.770 Effective area values after confluence:. 17.951 18.098 ' 'Results of confluence: Total flow rate = 53 .038 (CFS) Time of concentration = 13.287 min. Effective stream areaafter confluence 17 .951(Ac . ) Study area - average Pervious fraction (Ap) = 0.612 Study area average soi•1 loss rate (Fm) _ -0.473 (In/Hr) Study area total (this main. stream) . _ •18 .10 (Ac.) ++';"F•'F"{ ++++++++••f'•'1'+++++++++ +++ E f I"f•'� ++'•F'i"'I +++++'F++++++++'i"-F+++"i'+++ 'F ++++ Process from PointfStation 16.000 to Point/Station 7.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 57.600 (Ft.) End of street segment elevation = 54.500 (Ft . ) Length of street segment = 295.930 (Ft.) Height of curb above gutter flowline = 8. 0'(1n.) Width of half street (curb to crown) = 18.000 (Ft.) Distance .from crown to crossfall. grade break.. = 16.500 (Ft.'). slope from gutter to grade break (v./hz) = 0.040 Slope from grade break to crown (v/hz) = 0.020 Street flow is. on [2] side (s) of the street Distance ' from curb- to -property line. = 12.000 (Ft.) Slope from curb to property line (y/hz)' = 0.020 Gutter width Gutter hike­:rord flowline = 1.680 (In.) Manning.' s N in gutter •= 0.0150 Manning's N from gutter to grade break = 0.0150 Manning' s N from grade break to crown 0.0150 Estimated mean flow rate at midpoint of street = 53. 657 (CFS) Depth of flow 0. 6 0 6 (Ft .) , Average velocity = 4.646 (Ft/s) Note: depth of flow exceeds top of street crown. Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 18 .0.00 (Ft . ) Flow velodity = 4.65 (Ft/s) l Travel time = 1.0 6 min. TC = 14.35 min. Adding area flow to street RESIDENTIAL (3 - 4 dwl/acre) Decimal f raction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 1 SCS curve number for soil (AMC 2) = 32 .00 Adjusted SCS curve number for AMC 3 = 52.00 .471(In Hr 0 Pervious ratio (Ap) = 0.6000 Max 1055 rate (Fm) _ ) I I I rational meznoo.) kQ=K(2'A) 1S u = U . uy-5 Subarea runoff = 0.000(CFS) for 0.419(Ac .) Total runoff = 53.038(CFS) Total area = 18.37(Ac.) Area averaged Fm value = 0.473(In/Hr) Street flow at end of street = 53.038 (CFS) Half street flow at end of street = 26.519(CFS) Depth of flow = 0 .604 (Ft.) , ..average. velocity = 4 .625 (Ft/s) Note: depth of flow exceeds top of street crown. Flow width (from curb towards crown) = 18.000(Ft.) ....-k-•b+f-f--f-i-1--E•F+-f-..fr-i•-i-....f-1-3-. .-F. ... +++T++ -F. ... -F+-I-... ....'-i.........++4+ Process from Point/Station 16.000 to Point/S.tat ion 7.000 *** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is fisted: In Main Stream number:,2 Stream flow area = 18 .370 (P_c.). Runoff from this stream = 53 .038 (°CFS) Time of concentration = 14.35 min. Rainfall intensity = 3 .5 8 6 (In/Hr) Area averaged loss rate (Fm) = 0.4730(In/Hr) Area averaged Pervious ratio (Ap) = 0.6121 Program is °now starting with Main, Stream No. 3 Process from Point/Station 35.000 to Point/station 7.000 **** USER DEFINED. FLOW INFORMATION AT'A PARK subarea Decimal fraction soil group A.= 1.000 Decimal -fraction soil group,B = 0.000 Decimal fraction soil group.0 = 0.000 -Decimal fraction soil group D = 0.000 SCS curve number for soil (AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00 0.667 (In/Hr) Pervious ratio (Ap) = 0.8500' Max loss rate (Fm)= - R-ainf.all intensity = . 3 ..58G (In/Hr) for a _ 100 . 0 year storm User specified values are as follows: TC . = 14.35 min. Rain intensity = 3.5 9. (In/Hr) Total area 4.49 (P_c. ) Total runoff = 11.25 (CFS) ..i..}..}...{.....}.....,.+,..}...E...+,...{.... . ....{...E...(..... i --F... j-....}..{-.•{--F-F'+.. ..}._'}.'}•'i... { }. Process from Point/Station * 35.000.to Point/Station 7.000 **** CONFLUENCE OF MAIN STREAMS - The following data -inside Main Stream is listed: In Main Stream number:•3 Stream flow area = 4.490(Ac.) Runoff from this stream = 11.250(CFS) Time of concentration = 14.35 min. Rainfall intensity = 3.586(In/pr6674(In/Hr) Area averaged loss rate (Fm) _ Area averaged Pervious ratio (Ap) = 0.8500 Summary of stream data: Stream Flow rate TC Rainfall Intensity No. ( CFS) (min) (In/Hr) 1. MW .a. s vvv • v . , --, 0.801 * . 1.000 * 53 .038) + 0.788 * 1.000 * 11.250) + = 122.080 Qmax (2) = 1.249 * 0.729 * 70.744) + 1.000 * 1,000 * 53.038) + 1.000 * 1.000 * 11.250)- + = 128.657 Qmax (3) _ 1.248 * 0.729 * 70.744) + 1.000 * 1.000 * 53.038) + 1.000 * 1.000 * 11.250) + = 128.656 Total of 3 main streams to confluence: Flow rates before. confluence point: 70.744 53.038 11.250 Maximum flow rates at confluence using above data: 122.080 128.657. 128.656 _ Area of streams before confluence: 31.503 18.370 4.490 r Effective area values after confluence: 54.3.63 45.818 45.821 Results_ Of'_can,flu-ence: Total flow rate = 128.657 (,CFS) Time of concentration = 14.349 min. Effective stream area after confluence' = 45.818 (Ac. ) Study area average Pervious' fraction(Ap) = 0.625 Study area average soil loss rat-e(Fm). 0..488 (In/Hr).' Study -area total = 54.3 6 (Ac .) 68.61 (Ac,) End. of computations, total study area = The -following f igures ' may. .� . be used for a unit 'hydrograph study of the same area. Note: These figures'do not consider reduced effective area effects caused by confluences in the rational equation. Area averaged pervious area. fraction (Ap) = 0.677 Area averaged SCS curve number = 34.7 Unit Hyd•r o graph Ana, y i s Copyright (c) CIVILOIDD/CIVILDESIGN, 1994, Version 2.6 Study date . 1/21/97 +-}.++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ San Bernardino County Synthetic Unit Hydrology Method Manual date - August 1986 Tract 14293 -Offsite ix Onsite Drainage Impacting Baseline at Hemlock Developed Condition Tract + 17.5 Acres to Nor - . East City o.f Fontana, County of San Bernardino Unit Hydrograph 100 Year Event FN=293uhy.100 L=131,5 (Condition AMC III) -------------------------------------------------------------------- Storm Event Year = 100 Antecedent Moisture . Condition. •= 3 Area averaged rainfall intensity isohyetal•"data: Sub -Area Duration Intensity (acres) (hours) (inches) . Rainf all data for year -1`0 0 49.35 1 1 .52 Rainfall data for year 100 49.35 "6 3.85 Rainf all data for. year ' 10 0 . 49.35 24" 9.10 +++++++++++++++++++++.. P+++++++++++++++++++++.+-• . ++++ #•+++++-f-++++++++++ ******** "Area=averaged max loss rate, Fm ******** SCS curve SCS curve Area Area Fp (Fig c6) Ap Fm No. (AMCI I) No. (AMC 3) (Acres) Fraction (In/Hr) (dec .) (in/hr) 33.6 53.6 49.35 1.000 0.765 0.636 0.487 Area -averaged adjusted loss .rate Fm (In/Hr) = 0 .487 �• *�******* Area -Averaged low loss rate fraction, Yb Area Area SCS cn SCS cn S Pervious (acres) Tract (AMC2) (AMC3) yield fr 31.39 0.636 33.6 53.6 8.66 0.372 17.96 0.364 98.0 98.0 0.20 0.960 Area -averaged catchment yield fraction, Y = 0.586 Area -averaged low loss fraction, Yb = 0.414 +++++++++++++++++++++;-+++++++++++++++°+++++++++++++++++++++++++++++++ User entry of time of concentration = 0.239 (hours) Watershed area = 49.35 acres rni-r+ln,rn=ni- T•=rr rima = n - i 91 bmir_R Note: User entry override of the Fm value Valley Developed S -Graph Selected 30 -minute factor Computed peak 5 -minute rainfall = 0.563 inches Computed peak 30 -minute rainfall = 1.152 inches specified peak 1 -hour rainfall = 1.520 inches Computed peak 3 -hour rainfall = 2.687 inches Specified peak 6 -hour rainfall = 3.850 inches Specified peak 24-hour rainfall = 9.100 inches Rainfall depth area reduction factors: Using a total area of 49.35 acres (Ref: fig. E-4) 5 -minute factor = 0.998 Adjusted rainfall = 0.561 inches - 30 -minute factor = 0.998 Adjusted rainfall = 1.149 inches -hour factor = 0.998 Adjusted rainfall = 1.516 inches .1 3 -hour factor = 1.-000 Adjusted rairif all = 2.687 inches 6 -hour factor = 1.000 Adjusted rainfall = 3.849 inches 24_hour- factor -=-1_000------- Adjusted -rainfall, -=--9_099- inches ------- Unit Hydrograph Interval IS, Graph Unit Hydrograph Number------------Mean-values------------- (CFS) `--------------------- 1 3.530 21.069 2 22.988 116.127 3 • 57.215 204.277 4 83.112 154.563 5 93.897 64.368 A 97.870 23.708 7 95.895 6.120 8 99.670 4.622 .. --9--------------100_000----=--------------1_972•-------------,-------- ------------------------- Total soil rain loss = 3.52 (Ift. ) Totaleffectiverunoff-'----5_58-{In-) ------------------------------- Total soil -loss volume = 14.4639 (Acre -Feet) Total (Acre -Feet) ------------------- -storm -runoff ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -volume -=--_-22_9457- 24 - •H 0 U R S T O R M R u n o f f H y d r.ograph / - Hydrograph -in - 5 Minute intervals ( CFS) Time(h+m) Volume (AF) Q(CFS) 0 ---50_0-----100_0-- --150_0-----200.0 -0+ 5----- 0.0017 0.24 Q 0+10• 0.0125 1.58 Q 0+15 0.0396 3.93 Q 0+20 0.0790 5.72 VQ i 0+25 0.1235 6.47 VQ 0+30 0.1700 6.75 VQ 0+35 0.2171 6.84 VQ M . - n qcn�7 r- nn zrn 0 i I+ 5 u . 5u� 1 1 . u vL2 1+10 0.5530 7.01 VQ 1+15 0.6014 7.03 Q 1+20 0.6499 7.04 Q 1+25 0.6985 7.06 Q 1+30 0.7472 7.07 Q 1+35 0.7960 7.09 Q 1+40 0.8449 7.10 Q 1+45 0.8940 7.12 Q 1+50 0.9431 7.13 Q 1+55 0.9923 7.15 Q 2+ 0 1.0417 7.17 Q 2+ 5 1.0912 7.18 Q 2+10 1.1407 7.20 Q 2+15 1.1904 7.21 QV 2+20 1.2402 7.23 QV 2+25 1.2901 7.25 QV 2+30 1.3401 7.26 QV 2+35 1.3903 7.28 QV 2+40 1.4405 7.30 QST 2+45 1.4909 7.31 QV 2+50 1.5414 7.33 QV 2+55 1.5920 7.35 QV 3+ 0 1.6427 7.37 QV 3+ 5 1.6936 7.38 QV 3+10 1:.7446 7.40 Q V .3+15 1.7957. 7.42 Q V 3+20 1.8469 7.44. Q V 3+25 1.8982 7.46 Q V 3+3.0 1.9497 7:47 Q V 3+35 2.0013 °7.49 Q V 3+40 2.053Q 7 .51 Q •.V 3+45 2.1049 7.53 Q. V- 3450. 2.1569 7.55 Q. V 3+55 2.2090 7.57 Q V 4+ 0 2.2613 7.59. Q V 4+ 5 2.3137 7.61. Q V 4+10 2.3662 7•.63 Q V 4+15 2.4189 7.•65 Q V .4+20 2.4717 7.67 Q V 4+25 2.5246 7.69 Q V 4+30 2..5777 7.71 Q °° V 4+35 2.6310 7.73 Q V 4+40 2.6844 • 7.75 Q V 4+45 2.7379 7.77 Q V 4+50 2.7916 7.79• Q V 4+55 2.8454 7.82 Q V 5+ 0 2.8994 7.84 Q V 5+ 5 2.9535 7.86 Q V 5+10 3.0078 7.88 Q V 5+15 3.0622 7.90 •Q V 5+20 3.1168 7.93 Q V 5+25 3.1715 7.95 Q V° 5+30 3,2265 7 .97 Q V 5+35 3.2815 8.00 Q V 5+40 3.3368 8..02 Q V 5+45 3.3922 8.04 Q V 5+50 3.4477 8.07 Q V 5+55 3.5035 8.09 Q V 6+ 0' 3.5594 8.12 Q V. 6+ 5 3,6155 8.14 Q V n wn r, 17 6+40 4.0131 8.33 Q V 6+45 4.0706 8.36 Q v 6+50 4.1284 8.38 Q V 6+55 4.1863 8.41 Q V 7+ 0 4.2444 8.44 Q V 7+ 5 4.3027 8.47 Q v 7+10 4.3613 8.50 Q v 7+15 4.4200 8.53 Q v 7+20 4.4789 8.56 Q v 7+25 4.5381 8.59 Q v 7+30 4.5975 8.62 Q v 7+35 4.6570 8.65 Q v 7+40 4.7168 8.68 Q v ' 7+45 4.7769 8.71 Q v 7+50 4.8371 8.75 Q v 7+55 4.8976 8.78 Q V 8+ 0 4.9583 8.81 Q V 8+ 5 5.0192 8.85 Q v 8+10 5.0804 8.88 Q v 8+15 5.1418 8.92 Q v 8+20' 5.2034 8.95 Q v 8+25 5.2653 •8.99 Q v 8+30_ _ 5.3275 9.02 Q v 8+35 5.3899 9.06 Q v 8+40 5.452.6 9.10 Q v 8+45 5.5155 9.i4 Q v 8+50 5.5787 9.18 Q 11 8+55 5.6422 9.22 Q v r 9+ 0 5.7059 9*:26 Q v 9+ 5 5.7699 9.30 Q V 9+10 5.8342 9.34 Q v 9+15 5.8988 9.38 • Q v 9+20. 5.9637 3.42• Q V 9+25 6.02.89 9.46 Q v 9+•30 6.0944 9.51 Q V 9+35 6.1602"' 9.55 Q V 9+40 6.2263 9.60 Q, V •9+45 6.2927 9.65 Q } 9+50 6.3595 9.69- Q V 9+55 6.4266 9.74_ Q V 10+ 0 6.4940 '9.79 Q v I 10+ 5 6.5618 9.84 Q v 10+10 6.6299 9.89 Q. V 10+15 6.6984 9.94 Q v 10+20 6.7672 10.00 Q V 1,0+25 6.8364 10.05 Q v 10+30 6.9060 10.10 Q v 10+35 6.9759 10.16 Q v 10+40 7.0463 10,22 Q V 10+45 7.1171 10.27 Q V 10+50 7.1882 10.33 Q V 10+55 7.2598 10.40 Q v 11+ 0 7.3319 10.46 Q v 11+ 5 7.4043 10.52 Q v 11+10 7.4772 10.59 Q V 11+15 7.5506 10.65 Q v 11+20 7.6244 10.72 Q v 11+25 7.6987 10.79 Q V 11+30 7.7735 10.86 Q v 11+35 7.8488 10.93 Q V I I iA n 7 _9746 11.01 Q V 1G"f- 3 U 12+10 8.3876 ' 11.06 Q 12+15 8.4599 10.50 Q 12+20 8.5295 10.11 Q 12+25 8.5984 10.00 Q 12+30 8.6675 10.03 Q 12+35 8.7372 10.12 Q 12+40 8.8075 10.22 Q 12+45 6.8787 10.33 Q 12+50 8.9506 10.44 Q 12+55 9.0234 10.57 -Q 13+'0 9.0971 10,70 Q 13+ 5 9.1717 10.83 Q 13+10 9.2472 10.97 Q 13+15 9.3238 11.12 Q 13+20 9.4014 11.27 Q 13+25 9.4800 11.42 Q 13+30 9.5599 11.59 Q 13+35 9.6408 11.76 Q 13+40 9.7231 11.94 Q 13+45 9.8066 12.13 Q 13+50 9.8915 12.33 Q 13+55 9.9778' 12.54 Q 14+-0 - -10.0657 12_e76_ Q 14+ 5 10.1551 12.99 Q 14+10 •10.24.64 13.24 Q 14+15' 10.3395 13.52 Q .,14+20 10.4346 13.81 Q 14+25' 10.5317 14.11 .Q 14+30 10.6311 14.43 Q 14+35 10.7327 14.76 Q 14+40 10.8369 15.13 Q _ 14+45 10.9439 15.52 Q 14:+50 11.0537 15.95 Q 14+55. 11.1668 16:42 Q �. 1,5+ 0 11.2834 16.93 Q 15+ 5 11.4039 17.50• Q 15+10 11.5288 18.13 Q 15+15 _ 11.6585 18.83 Q 15+20 11.7937 19.63 Q 15+:25 11.9339 20.36 Q 15+30 12:0742 20'.38 e Q 15+35 12.2106 19.80 Q 15+40 12.3478 19.92 Q 15+45 12.4"940 21.24 Q 15+50 12.6561 23.54 Q 15+55 12.8450 27.42 Q 16+ 0 13.0901 35.58 Q 16+ 5 13+.4932 58.54 16+10 14.2490 109.73 16+15 15.2449 144.60, 16+20 16.0150 111.82 16+25 16.43 * 97 61.66 16+30 16.6929 36.77 Q ___• 16+35 16.8719 25.99 Q 16+40 17.0329 23.38 Q 16+45 17•.1740 20.49 Q 16+50 17.2991 18.16 Q 16+55 17.4157 16.93 Q 17+ 0 17.5256 15.96• Q 17+ 5 17.6299 15.14 Q Irl r7g01 14 41 Q Iu N V v V V v v v v V V V V v V V 'V V V V V V V V. V v V V V V v V V V V N 17+35 17+40 17+45 17+50 17+55 18+ 0 18+ 5 18+10 18+15 18+20 18+25 18+30 18+3-5 18+40 18+45 18+50 18+55 19+ 0 19+ 5 19+10 19+15 19+20 19+25 19+30 19+35 19+40 19+45 19+50 "19+55 '20+ 0 .20+ 5 2.0+10 t 20+15 20+20 20+25 {. 20+30 .20+35 20+40 20-:-45 2.0+50 20+55 21+ 0 21+ 5 21+10 21+15 21+20 21+25 21+30 21+35 21+40 21+45 21+50 21+55 22+ 0 - 22+ 5 ° 22+10 22+15 22+20 a 22+25 22+30 22+35 18.Ibyy . 18.2496 18.3270 18.4025 18.4761 18,5479 18.6186 18.6903 18.7651 18.8420 18.9192 18.9957 19.0713 19.1460 19•.2197 19.2926 19.3645 19.4356 19,5059 19.5754 19 .6442 19.7123 19.7796 19.8463•_ 19.9124 19.9778 20.0427 20.1069 20.1706 20.2338 20.2964 20,3585 20.4201 20.4812 20.5419 20-6021 20.6619 20.7212 20.7801 20.8386 20--S 9 67. 20.9544 21.0117 21.0686 21.1252 2.1,1814 21.2373 21.2929 21.3481 21.4029 21.4575 21.5118 21.5657 21.6193 21.6727 21.7258 21.7786 21.8311 21.6833 21.9353 21.9870 11.y.3 V- 11.57 Q 11.25 Q 10,96 Q 10.68 Q 10.43 Q 10.26 Q 10.41 Q 10.86 Q ll .•17 Q 11.20 Q 11.11 Q 10.98 Q 10.84 Q 10.71 Q 10.58 Q 10.45 Q 10.32 Q 10.21 Q 10.09 Q 9.99 Q 9.68 Q' 9.78 Q -.9.-68 Q 9.59 Q 9.50 Q 9.41 Q 9.33 Q 9.25 Q 9.17 Q 9.09 ` Q 9.02 Q 8.95 Q 8.88 Q 8.81' Q 8.74 Q 6.68 Q 8.61 Q 8.55 Q 8.49, Q -.8.43 Q 8.38 Q 8.32 Q 8 .27' Q 8.22 Q 8.16 Q 8.11 Q 8.06 Q 8.02 Q 7.97 Q 7.92 Q 7.88 Q 7..83 Q 7.79 Q 7.75 Q 7.71 Q 7.616 Q 7.62 Q 7.58 Q 7.55 Q 7.51 Q v V V V V V V V V V V V V V V V V V V V V V V • �V _ - � V _ V V V V v V V V V. V v V V V ' V � V v V v v v v v v v v v v v 17+35 18.lbyy . 11 . y.i w 17+40 18.2496 11.57 Q 17+45 18.3270 11.25 Q 17+50 18.4025 10.96 Q 17+55 18.4761 10.68 Q 18+ 0 18.5479 10.43 Q 1.8+ 5 18.6186 10.26 Q 18+10 18.6903 10.41 Q 18+15 18.7651 10.86 Q 18+20 1S . 8420 ll ..17 Q 18+25 18.9192 11.20 Q 18+30 18.9957 11.11 Q 18+3.5 19.0713 10.98 Q 18+40 19.1460 10.84 Q 18+45 19.2197 10.71 Q 18+50 19.2926 10.58 Q r 18+55 19.3645 10.45 Q 19+ 0 19.4356 10.32 Q 19+ 5 1915059 10.21 Q y 19+10 19.5754 10.09 Q 19+15 19.6442 9.99 Q 19+20 19..7123 9.68 Q ' 19+25 19.7796 9.78 Q 19+30 19.8463_ -_ • 9 .-68 Q 19+35 19.9124 9.59 ' Q 19+40 19.9778 9.50 Q 19+45 20.0427 9.41 Q 19+50 20.1069 9.33 Q 20.1706 9.25 Q .19+55 •20+ 0 20.2338 9.17 Q 5 20.2964 9.09 ' Q .20+ 2.0+10 20.3585 9.02 Q C 20+15 20.4201 8.95 Q 20'+20 20.4812 6.88 Q 20+25 20.5419 8.81, Q �. 20+30 20.6021 8.74 Q .20+35 20.6619 8.68 Q 20+40 20.7212 8.61 Q 20+45 20.7801 8.55 Q 2.0+50 20.8386 8.49, Q 20+55 20:8967. _. .-8.43 Q 21+ 0 20.9544 8.38 Q f 21+ 5 2'1.0117 8.32 Q 21+10 21.0686 8.27' Q 21+15 21.1252• . 8.22 Q _ 21+20 2.1.1814 8.16 Q 21+25 21.2373 8.11 Q 21+30 21.2929 8.06 Q 21+35 21..3481 8.02 Q 21+40 21.4029 7.97 Q 21+45 II 21.4575 7.92 Q ' 21+50 21.5118 7.88 Q 21+55 21.5657 7..83 Q 22+ 0 21.6193 7.79 Q --' 22+ 5 21.6727 7.75 Q 22+10 21.7258 7.71 Q 22+15 21.7786 7.66 Q -J 22+20 21.8311 7.62 Q 22+25 21.8833 7.58 Q 22+30 21.9353 7.55 Q 22+35 21.9870 7.51 Q V U V V V V V V V V -V V V V V V N V Vv v v v V V. v v v v V V V V �vv v v v v V v v V V v v v v V "IT 23+ 5 22.2920 7.29 Q V 23+10 22.3420 1.26 Q V 23+15 22.3918 7.23 Q V 23+20 22.4413 7.19 Q V 23+25 22.4906 7.16 Q V 23+30 22.5397 7.13 Q V 23+35 22.5886 7.10. Q V 23+40 22.6373 7.07 Q V 23+45 22.6858 7.04 Q V 23+50 22.7341 7.01 Q V 23+55 22.7822 6.98 Q V 24+ 0 22.8301 6.95 Q V 24+ 5 22.8761 6.68 Q V 24+10 22.9127 5.32 Q V 24+15 22.9331 2.95 Q V 24420 22 .9411 • 1.17 Q V 24+25 22.9440 0.42 Q V 24+30 22.9450 0.15 Q V 24+35 22.9455 0.08 Q V 24+40 ------22-9457_-_--- 0.02 ---------- t ° FLOOD HYDROGRAPH ROUTING PROGRAM Copyright '(c) CIVILCADD/CIVILDESIGN, 1991 Study date: 1/24/97 Tract 14293 Offsite & Onsite Drainage Impacting Baseline at Hemlock Developed Condition Tract + 17.5 Acres to North East City of Fontana, County of San Bernardino Routing Study l0D Year Event FN=293RTE.100 L=131,5 -(Condition -AMC _III)- ----------- **** *** **** HyDROGRAPH INFORNLATION From study/file name: 293uhy*te* ****************************�ROGR.APH DATA.. Number of intervals.= 296 Time interval = 5.0 (Min.) 144.6 (CFS) Maximum/Peak flow rate = - _ _ Total volume = 22.95 Status of hydrographs being held in storage Stream - 1. Stream 2 Stream 3 Stream 4 Stream 5 Peak (CFS) mob 0.000 0.000 0.000 0.000 Vol (Ac -Ft) 0.000 . 0.000 0.000 0.000 0.00"0 r**�*****9:�r****•ie*ir**�r�:�'********�F'k�:3c**�***�r:��e�**Y3r�:*,k*****k**'kdc�*d: 'ix •k***k .......................... '}.}'�"'F....{.T';"I"'}.. I'F� I F' E'.F'E.{'.('.{'..j Poiret/Station ;'.I.'F':.}'Ff F{. E{ %0 000 • 0.000 to s from Point%StatPoint/Station.**** * * * * RETp_R.DING BASIN ROUTING User data -_------_-___-___---._--_____ -entry -of -depth_cutflow-storage- ' Total number of inflow hydrograph intervals = 296 Hydrograph time unit =. 5.000.. (Min . )- in storage•basin 0.00(Ft ) Initial depth f -------------------------------------------------------------------- ---___-___ Initial basin depth = 0.00 -(Ft.) 0.00 (Ac.Ft) e Initial basin Initial basin storage = outflow7 (CFS) ---- _-_--------- - +� vs. storage. Depth _--- --------------------- and Depth vs. Discharge data: %2) dt%2) Basin Depth outfl Storage . (CFS) (AC.Ft) Ft) (Ac.Ft) (CFS) (Ac . Ft) -- _ (Ft ) -------0.000 -------------- ----000 0.00 -----0.000------0.000-------------------------------- 0.000 0.216 0.244 1,000 0.230 4.000 0.230 1.322 6.900 1.298 1.346 � 2.000 i 3.000 4.413 10.500 4.377 4,449 6.999 4.000 6.960 11.200 6.921 9.340 9.420 •--4750---_----_______-----Detention 9.380 11.600 Hdrograph Basin Routing--_---_---------_-_ Y �RVULA/ . 083 . 167 0 .2-50 .333 .417 0 .500 i .583 .667 0 .750 .831 } .917 1.000 1 .083 L .167 1,250 1.333 1.417 1.500 1.583 1.667 1..750 1.833 1.917 2,000 2.083 2.167' 2.250 2.333 2.417 2.500 2.583 2.667 2.750 2.833. 2.917 3.000• 3.083 '3.167 3.250 3.333 3.417 3.500 3.583 3.667 3.75 3.83 3.91 4.00 4.08 4.16 P 4.25 4.33 4.41 4.50 4.58 4.66 4.75 4.83 4.9 5.0 0.2 1.6 4.0 5.8 6.6 6.9 6.9 7.0 7.0 7.1 7.1 7.1 7.1. 7.1 7.1 7-.1 7.2 7.2 7.2 7.2 7.2 7,2 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.4 7.4 7.4 7.4 .7.4 7.4 7.5- 7.5 7.5 7.5 7.5 7 . '6 7.6 7.6 7.6 p 7.6 3' 7.6 7 7.7 0 7.7 3 7.7 7 7.7 0 7.7 3 7.8 7 7.8 0 7.8 3 7.8 7 7.8 0 7.9 3 7.9 17 7.9 00 7.9 0.0 0.1 0.4 0.9 1.5 2.1 2.6 3.1 3.6 4.0 4.1 4.1 4.2 4.2 4 .3 4.3 4.4 4.4 4.5 4.5 4.6 4:6 4.7 4.7 4.8 4.8 4.8 4.9 .4..9 5.0 5.0 5.1 5.1 5.2 5.2 5.2 5.3' 5 .'3 5.4 5.4 '5 .4 5.5 5 .5 5.5 5.6 5.6 5 .7 5.7 5.7 5.8 5.8 5.8 5.9 5.9 5.9 6.0 6.0 6.0 6.1 6.1 I41.. . 1 4 f • U 0.001 0 0.007 0 0.024 0 0.-053 01 0.087 OI 0.121 02 0.152 02 0.180 01 0.206 0I 0.228 01 0.249 01 . 0 .270 OI 0.290 01 0 .310 0I 0.330 OI 0.350 OI 0.369 OI 0.388 OI 0.407 OI 0.426 0 0.-444 0 0.462 0 0.480 0 0.498 0 •0.515 0 0.533 0 0.550 0 0.567 0. 0.583 0. 0.600 0' 0.616 0. 0.632 0 0.648 0 0.664 0 0.680 0 0.695 0 0.710 0,. 0.725 0 0.740 0. 0..755 0 .0.770 0. 0.764 0. 0.799 0 0.813 0 0.827. 0 0.841 0 0.855 0 0.869 0 0.882 0 0 896 0 0.909 , 0 0.923 0 0.936 0 0.949 0 0.962 0 0.975 0 0.988 0 1.000 0 1.013 0 1.026 0 -.563 8.1 6.3 1.111 0 1 8 8.1 6.4 1.123 0 1.8 .667 5 8.1 6.4 '1 .135 0 1. 8 .750 -1.833 8.2 6 A 1 .14 7 0 1.9 1 8.2 6.5 1.159 0 1.9 _917 6.000 8.2 6.5 1.171 0 1.9 5.0$3 8.2 6.5 1•.183 0 1.9 8 .3 6 . 6 1.194 0 -1.9 .167 a 8.3 6.6 1.206 0 1.9 .250 6.333 8.3 6.6 1.218 0 1.9 S 8.3 6.7 1.229 0 1.9 .417 1.500 8.4 6.7 1.241 0. 1.9 6.583 8.4 6.7 1.252 0 1.9 6.66.7 8.4 6.7 1.264 0 2.0 6.750 B. 6.8 •1.275 0 2.0 6.833 8.5 6.8 1.287 0 _ 2.0 6 - A- - 6_.:.8.._._ ._ ...- . -- -...1.2.9 $.._ ..2.0 .917- 7.000 8.5 6.9 1.310 0 2.0 7.083 8.6 6.9 1.321 0 2.0 7.167 8.6 6.9 1.332 0 _ 2.0 7.250 8.6 6.9 1.344 0 2.0 7.333 8.6 6..9 1.356 0 .2.0 8.7 7.0 1.367 0 - = 2.0 -7,417 7.500 8.7 7.0 1.379 0 2.0 7.583 8.7 7.'0 1.391 0 .2.0 7 8 .8. 7.0 •1 .403 0' ' 2.0 .667 7•.750 8.8 7.0 1.416. 0 2.0 7.833 ' 8.8 7.0 1.428 0 2.0 7.917 8.9 7.0 .1.441. 0 2.0 8.000 8.9 7.1 1.453 0 2.0 8.083 8.9 7.1.- 1.466 0 2.1 8.167 9.0 7.1 1.479 0 2.1 L� 8.250. 9.0 7.1 1.492. 0 2.1 8•.333 9.0 7.1 1.505. 0 2.1 8.417 9.1 7.1 1.518 O1. 2.1 8-.500' 9'.1 7.1 1.531' 01 2'.1 8.583 7.2 1.545 OI 2.1 8.667 .9.1 9.2 7.2 1.559 OI. _ OI 2.1 8.750 9.2 7.2 1.573 2.1 8.833 9.2 7.2 1.587 01 2:1 8.917 9.3 7.2 7.2 1:601 OI 1.615 01. 2.1 2.1 9.000 9.083 9.3 9.4 7.3 1.629 OI 2.1 9.167 9.4 7.3 1.644 OI 2.1 9.250 9.4 7.3 1.659 01 2.1 9.333 9.5 7..3 1.674 OI 2.1 9.417 9.5 7.3 1.689 01 2.1 9.500 9.6 7.3 1.704 OI 2.1 9.583 7.4 1.719 OI• 2.1 9.667 .9.6 9.7 7.4 1 .735 01 2.1 9.750 9.7 7.4 1.751 OI 2.1 r 9.833 9.8 7.4 1.76.7 OI 2.1 t 9.917 9.8 7.4 1.783 OI 2,� 10.000 9.9 7.5 1.800 01 2.� 10.083 9.9 7.5 1.816 01 2. 10.167 10.0 7.5 1.833 01 2.1 10.250 10.0 7.5 1.850 OI 2 , ' 10.333 10.1 7.5 1.867 01 2 . 10.417 10.1 7.6 1.885 OI 2.� 10.500 10.2 7.6 1.902 OI _ - - ___ - „ ., '7 ti 1.920 01 IN ' L.083 10.6 7.7 2.033 01 L.167 10.6 7.8 2.053 01 11.250 10.7 7.8 2.073 01 " 1.333 10.8 7.8 2.093 0I 1.417 10.8 7.8 2.113 01 11.500 10.9 7.8 2.134 01 1.583 11.0 7.9 2.155 01 1.667 11.0 7.9 2.177 01 11.750 11.1 7.9 2.199 01 1.833 11.2 7.9 2.221 01 1.917 11.3 8.0 2.244 01 L2.000 11.4 8.0 2.2'67 0I 12.083 11.4 8.0 2.290 01 2.167 11.0 8.1 2.311 4I 2.250 10.4• 8.1 2.329 01 12 .333. 9.9 8.1 2.343 0I .2.417 9.8 8.1 2.355 01 _2.500 9.8 8.1 2.367 02 }12.583 9.9 8.1 2.378 02 _2.667 10.0 8.1 2.391 01 _2.750 10.1 8.2 2.403 01 12.833 10.2 8.2• 2.417 01 12.917 8.2 2.431 01 L3.000 _10.3_ 10.4 8-.2 2.446 01 13.083 10.6 8.2 2.461 0I 13.167 10.7 8.2 2.478 0I 13.250 10.8 8.3 2.495 01 13.333 11.0 8.3 2.513 01 x,13.417.. 11.1 8:3 2.532 01. 13.500 11:3 8.3 2.552 01 13.583 11.5 8.4 2.573 0I 11.7 8.4 2.595 01 ,13.667 13.750 11.8 8.4 •2.519 0I 13.833 12.0 8.4 2.643 0I 13.917 12.2 8.5 2.668 01 14.000 12.5 8.5 2.695 01 14.083 12.7 8.5 2.723 0I `14.167 12.9 8.6' 2.752 0I .114.250 13.2' 8.6 2.783 -01 - 14.333 13.5 8.6 2.816 0I i 14.417 13..B 8-.7 2.850 0 I 114.500 14.1 8.7 2.887 0 I 14.583 '14. 5 8.8 2.925 0 I' 14.667 14.'B 8.8 2.9.65 0 I 14.750 15.2 8.9 3.008 0 I 14.833 15.6 8.9 3.053 0 I 14.917 16.1 9.0 3.100 0 I -.-115.000 16.6 9..0 3.151 0 I 15.083 17.2 9.1 3.2'05 02 15.167 17.8 9.2 3.263 0I 15.250 18.5 9.2 3.324 0 I 15.333 19.3 9.3 3.391 0 I 15.417 20.0 9.4 3.462 0 I 15.500 20.1 9.5 3.535 0 I x.15.583 19.7 9.6 3:607 0 I 15.667 19.9 9.6 3.677 0 I 15.750 21.2 9.7 3.752 0 I 13-5.833 23 .5 9.8 3.838 0 I 15.917 27.4 10.0 3.946 0. I 16.000 35.6 10.1 4.093 0 I _ 7 2.2 2.2 2 ..2 2.2 2.. 3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2 .3' 2.3 2.3 2.3 2.3 2.3 2.3 2.4 2.4 2.4 2.4 2.4 2.4 2'. 4 2.4 2;4 2.4- 2.4 2.4 .2 A 2.4 2.4 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2 '. 5 2.5 2.6 2.6 2.6 2.6 2..G 2.6 2.7 2.7 2.7 2.7 2.8 2.8 2.8 2.8 2.9 3.0 ry " 25.8 11 .3 7 .383 0 I 4.1 4.2 .583 23.1 11.3 7.474 0 I 4.2 .667 16.750 20:2 11.3 7.545 0 I 4.2 y x.833 17.9 11.3 7.598 OI 4.2 ..917 16.6 11.3 7.639 OI 4.2 1 .000 15.7 11.3 7.672 OI 4.2 3 7 14.8 11.3 7.699 OI 4.2 .083 7 14.1 11 .3 7.721 02 4.2 .167 13.5 11.3 7.738 0 4.2 -1.250 17.333 12.9 11.3 7.751 0 4.2 7.417 12.5 11.3 7.760 0 4.2 12.0 11.3 7.766 0 4.3 .7.500 17.583 11.6 11.3 7.770 0 4.3 7.667 11.3 11.3 7.771 0 4.3 7.750 11.0 11.3 7.769 0 4.2 17.83'3 10.7 11.3 7.766 0 4:2 7.917 10.4 11..3 7.761 0 4.2 8.000 10.2 11.3 7.753 0 4.2 818.083 10.0 11.3• 7.745 0 4.2 -8.167 10.2 11.3 7.736 0 4.2 8.250 10.'8 11.3 7.731 0 4.2 218.333 11.1. 11.3 7.728 0 4,2 X8.417 11.2 11.3 7.727 0 4.2 8:500 11.1 _' 11.3 7.726 0 4.2 A . 583 11.0 • -11.3 7.724 0 0 4.2 18.667 10.'9 11.3 7.722 4.2 it.. 8 11.3 7.718 0 4.2 ,8-.750 •10.6 11.3 7.714 0 4.2 .8.833 1.38.917 10.5 11.3 '•7.708 0 4.2 10.4 11.3 7.702 0 4.2 _9.000 10.3 11.3 7.-695 0 4.2 .9.083 j 19 .167 10.2 11.3 7.688 04.2 7-9 10.0 11.3 7.679 0 - 4.2 .250 L9.333 9.9 11.3 7.670 0 4.2 19.417 9.8 11.3 7.-660 0 4.2 19:500 9.7 11.3 7.650 .0 4.2 L9.583 9.7 11.3 7.639 0 4.2 ,19. 667 9.6 11.3 7:627 0 - - 4.2 -1'19.750 9.5 11:•3 7.615 0 4.2 L9. 833 9.4 11.3 7.602 0 4.2 19.517 9.3 11.3 7.589 0 4.2 (20.000 9.2 11.3 7:575 0 4.2 20.083 9.2 .11.3 7.560 0 4.2 20.167 9.1 1.1.3 7.545 0 4.2 120.250 9.0 11.3 7_.530 IO 4.2 20.333 9.0 11.3 7.514 IO 4.2 20.417 8.9 11.3 7.498 IO 4.2 --l'.20 500 8.8 11.3 7.481 •IO 4.2 - 20.583 8.8 11.3 7.464 IO 4.2 20.667 8.7 11.3 7.446' TO 4.1 -(20.750 8.6 11.3 7.428 4.1 .20.833 8.6 11.3 7.410 IO 4.1 20.917 8.5 11.3 7.391 IO 4.1 ,21.000 8.5 11.3 7.372 IO 4.1 X21.083 8.4 11.3 7.352 IO 4.1 21.167 8.4 11.3 7.333 IO 4.1 21.250 8.3 11.3 7.312 IO 4.1 '721.333 8.3 11.3 7.292 IO 4.1 21.417 8.2 11.3 7.271 IO 4.1 21.50 0 8.2 11.2 7.250 IO 4.1 `-' 7 9.9 8 TCS LL,uuu !.y 11.E '/.11'/ IU 2.083 7.8 11.2 7.094 I0 .2.167 7.8 11.2 7.070 IO 22.250 7.8 11.2 7.047 IO 8,333 7.7 11.2 7..023 I0 2.417 7.7 11.2 6.998 I0 22.500 7.6 11.2 6.974 I0 2.583 7.6 11.2 6.949 10 2.667 7.6 11.2 6.925 IO 22.750 7.5 11.2 6.900 I.0 "2.833 7.5 11.2 6.874 I0 2.917 7,5 11.2 6.849 IO ,23.000 7.4 11.2 6.823 I0 ^3.083 7.4 11.2 6.797 10 3.167 7.4 11.1 6.771 I0 7.3 11.1. 6.745 I0 #23.250 ?3.333 7.3 -11.1 6.719 I0 3.'417 7.3 11.1 6.692 10 e.3:500 7.2 11.1 6.665 10 123.583 7.2 11.1 6.639 IO 3.667 7.2 11.1 6.612 I0 7.1 11.1 6.585 I0 _3.750 23.833 7.1 11.1 6.557 IO• 3.917• 7.1 11.E - 6.530 I0 _ 4.000 7.1 11.1 6.502 IO X24.083 6.8 11.1 6.474 I0 '?4.167 5.4' 11.1 6.439 I0 ;4.250 3.0 .11.0 6.392 I 0 24.333 1.2 11.0 6.331 I 0 [?4.417 0.4 11.0 6.260 I 0 14.5000.1 11.0 6.187 I 0 24.583 0..1 11.0 6.112 I 0 ' .1,24. 667 0.0 10.9. 6.037 I 0 ?4.750 0.0 10.9 5.961 I 0 24.833 0.0 10.9 5.886 I 0 124.917 0.0 10.9 5.811' I 0 ).5.000 0.0 10.9 5.736 I 0 25.083- 0.0 10.8. 5.662 I 0 '25.167 0.0 10.8 5.587 -1 0 25.250 0.0 10.8 5.512 I 0 25.333 0.0 10 .8 5-.438 I 0 25.417 0.0 10.8 5:364 I 0 25.500 0.0 10:7 5.290 I 0 25.583 0.0 10.7 5.216 I 0 25.667 0.0 10.7 .5.142 I 0 -1 25.750 0.-0 10.7 5.069 I 0 25.833 0.0 10.7 4.995 L 0 25.917 0.0 10.6 4.922 I 0 126.000 0.0 10.6 4.849 I 0 26.083 0.0 10.6 '4.776 I 0 26.167 0.0 10.6 4.703 I 0 e 26.250 0.0 10.6 4.630 I 0 26,333 0.0 10.5 4.557 I 0 26.417 0.0 10.5 4.485 I 0 -'26.500 0.0 10.5 4.412• I 0 '26.583 0.0 10.4 4.340 I 0 26.667 0.0 10.3 4.269 I 0 '26.750 0.0 10.2 4.198 I 0 -°26.833 0.0 10.2 4.128 I 0 26.917 0.0 10.1 4.058 I 0 ,27.000 0.0 10.0 3.989 I 0 ? U. u y .n J .5t55 1 u G . ! 2.7 .5uu 0.0 9.5 3.520 I 0. 2.7 .583 0.0 9.4 3.455 I 0 2.7 .667 X7.750 0.0 9.3 3.390 I 0 2.6 0.0 9.2 3.326 I 0 2.6 .833 0.0 9.2 3,263 I 0 2.6 .917 28.000 0.0 9.1 3.200 I 0 2..6 " 0.0 9.0 3.138 I0 2.6 .083 0.0 8.9 3.076 10 2.5 .167 X8.250 0.0 8.9 3.015 I0 2.5 `x.333 0.0 8.8 2.954 10 2.5 9.417 0.0 8.7 2.894 IO 2.5 0.0 8.7 2.834 10 2.5 18.500 n 3 0. 0 8. 6 2.774 10 2.5 .583 3.667 0.0 8.5 2.715 IO 2_.4 0.0• 8.5 2.657 IQ 2.4 -8•.750 28.833 0.0 8.4. 2.599 10 2.4 3.917 0.0. 8..3. 2.541 I0 2.4 0..0 8.3 2.484 IO 2.4 ,9.000 29.083 0.0 8.2 2.428 10. 2.3 9.167 0.0 8.1 2.371 10 2.3 0.0 8.1 2.316 10 .2 .3 .9.250 ;29.333 0.0 8.0 2.260 I0_ 2.3 9.417 0.0• 7.9 2.206' IQ' _ .2`.3 9.500 0.0 7.9 2.151. I0 2.3 X9.583. 0.0 7.8 2. 097 10 e 2.2 "9.667 0.0 7.7 2.044 IO 2.2 9.7.50 0.0 7.7 1.991 I0 „ 2.2 29.833 0.0 7.6. 1.938 10 2.2' 9.917 0:0 7.6 1.886 10 2.2 0.000 0.0 7.5. 1.834 IO 2.1 0 : 0 . ' 7 .4' 1.783 10 2.1 .10..083 1.30'.167 0.0 7..4 1.732 10- 2.1 10.25.0 0.0 7.3 1.681 I0 2.1 0.333 0.0 7..3 1.631 10 2.1 `.3 0.417 ' 0.0 7.2 1.581 10. 10 2.1 90.417 0.0 7.1 1.532 2.1 10.583 0.0 7.1 1.483 I0 2.0 30.667 0.0 7-.-0 2.0 30.750 0.0 7.0 1.386 I0 2.0 30.833 0.0 -6.9 1.338 I0 2.0 30.917 0.0 6.8 .1.291 I0 1.9 131.000 0.0 6.7 1.244 I0 1.*9 31.083 0.0 6.6 1.198 10 1.8 31.167 0.0 6.5 1.153 I0 1.8 31.250 0.0 .6.3 1.109 10 1.8 31.333 0.0 6.2 1.066 10 1.7 31.417 0.0 6.1 1.024 10 1.7 X31.500 .0.0 6.0 0.982 IQ 1.7 31.583 0.0 5.9 0.941 I0 '0.901 1.6 31.667 0.0 5.8 IQ 1.6 31.750 0.0 5.7 0.861 IQ I0 1.5 31.833 0.0 5.6 0.,823 1.5 31.917 0.0 5.5 0.785 IO '10 1.5 -32.000 32.000 0 .0 5.4 0.747 1.4 .132.083 0.0 5.3 0.711 I0 1.4 32.167 0.0 5.2 0.675 ID 1.4 32.250 • 0.0 5 .1 0.639 I0 1.3 .132.333 0.0` 5.0 0.605 IO 1.3 32.417 0.0 4.9 0.571 I0 1.3 32.500 0.0 4.8 0.537 I0 -L 3 0.0 4 .2 0 .319 0 1.1 .083 0.0 4 .2 0 .290 0 1.0 .167 ;3.250 0.0 4.1 0.262 0 1.0 ?3.333 0.0 4.0 0.234 0 0.9 0.0 3.6 0.208 0 0.8 .417 0.0 3.2 0.184 0 0.7 .,.3-.500 -A3.583 0.0 2.8 0.163 0 0.6 3.667 0.0 2.5 0.145 0 0.6 3.750 0.0 2.2 0.129 0 0.5 33.833 0.0 2.0 0.114 0 0.4 3.917 0.0 1.8 0.101 0 0,4 4.000 0.0 1.6 0.090 0' 0.3 34.083 0.0 1.4 0.080 0 0.3 4.167 0.0 1.2 0.071 0 , 0..3 4.250 0.0 1.1 0.063 0 0.2 -34,333 0.0 1.0 0.056 0 0.2 -4.417 0.0 0.9 0.049 0 0.2 4.500 0.0 0.8 0.044 0 0.2 y 34.583 0.0 `O .7 0.039 0 0.1 4:667 0.0 0.6 0.034 •0 0.1 4.750 0.0 0.5 0.030 0 0.1 0.0 0.5 0.027 0 0.1 :x.34.833 34.917 0.0 0.4 0.024 .0 _ 0.1 15.0 0,0 0.0 0.4 0.021 0 0.1 , 083 0.0 0.3 0.019 0 0.1 .35. 1-35.167 0.0 0.3 .0.017 0. 0.1 15.250 0.0 0.3. 0..015 0 0.1 35.333 0.0 -0.2 0.013 0 0.1 V3.5.4-17 0.0 '0.2 0.012 ' 0 0.0 35.500 0.0 0.2 0.010 0' 0.0 35.583 0.0 0'.2 0.009 0 0.0 35.667 0.0 0.1 0.008 0 0 0.0 35,750 0.0 0.1 0.00.7 0.0 35.833 0.0 0.1 .0.006 0 _ 0.0 35.917 '0.0 .0.1 0.006 0 HYDROGR.A.PH DATA* Number of intervals = 431 Time interval = 5.0 (Min.) 11.3 (CFS) ` Maximum/Peak flow .rate = :. Total volume = 22.94 . (Ac . Ft) Statu6 of hydrographs being held in storage 3 Stream 4 Stream 5 Stream 1 Stream 2 Stream 0.000 0.000 0.000 Peak (CFS) 0.000 0.000 0.000 0.000 0.000 0.000 Vol (Ac.Ft) 0.000 STREET HYDRAULIC CALCULATION TRACT 14293 PLUMROSE STREET - STATION 11+00.00 *************************************** * * * * * * * * * * * CHANNEL FLOW CALCULATIONS CALCULATE DEPTH OF FLOW GIVEN:.6100 0 Channel` Slope = .006100 (Ft. /Ft.) = Given Flow:Rate = 70.74 Cubic Feet/second * * * OPEN CiLkNNEL . FLOW - STREET FLOW * * * Street Slope (Ft;/Ft.) = .0061 Mannings "n" value for street = .015 Curb. Height (In.) = 8 - Street Halfwidth (Ft.) = 18.00 16 .50 Distance From Crown to Crossfall .Grade Break (Ft.). 16.50 Slope from Gutter to Grade Break (Ft'./Ft.) _ 020 Slope front Grade Break to Crown (Ft./Ft-) - .020 Number of -Half streets Carrying Runoff = 2 Distance from: curb to property line (Ft.) = 12.0020 Slope from curb to proporty' line (Ft. /Ft.) _ Depth -of flow = .625 (Ft.) Average Velocity = 4.41 (Ft./Sec.) Channel flow top, width = 18.00 (Ft.) IS HIGHER THE STREET CROWN. NOTE: DEPTH OF FLOW Streetflow Hydraulics Halfstreet Flow Width (Ft .) 4.18.00De th*Velocity = 2.76 Flow Velocity(Ft./Sec.) = p70.74 Flow rate of street channel (CFS) = CRITICAL FLOW Cz1LCULATIONS FOR CHANNEL NO. 1: 1 8.55 _ Subchannel Critical Flow Top 'Width (Ft .) = .3..947 Subchannel Critical Flow Velocity (Ft. /Sec .) Subchannel Critical Flow Area (Sq. " Ft.) _ Froude Number Calculated= 1.001 678 Subchannel Critical Depth = CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 2: 18 , 55 Subchannel Critical Flow Top Width(Ft.) = 3.947 Subchannel Critical Flow Velocity (Ft .sec . } ° = 8.96 Subchannel Critical Flow Area(Sq. Ft.)) _ Froude Number Calculated = 1.001 .678 Subchannel Critical Depth = .{•++-F++++++++•{'++++++r++-i-....+++++++++++++++++-i-+++-i-+++•1-- ..+++++++++++i *********************** CHANNEL CROSS-SECTION PLOT Depth of flaw = .63 Feet , = "W" L131,5 DSA 12 15 February 1997 :1 STREET FLOW CROSS SECTION Critical depth for Channel NO.1= .68 Feet , = "c" 68 Feet = "c".2 Critical depth for Channel No.2= , .7 , g X (Feet) Y(Feet) Y -Axis -->0. .5 ----------------------- ------------------------------------------___-_---- --------- x •.00 1.00 .89 x 2.00 .87 x 3.00 .85 x 4.00 .83 x 5.00 .81 g 6.00 .79 X 7.00 .77 x 8.00 .75 x 9.00' .73 - X. 10.00 .71 x 11.00 .69 x 12.00 •67 W c 13.00 .02. x W c 14.00 . 04 x W c .15.00 .06 xx W c 16.00 .08 W c '17. 00 .10 x W c 18.00 .12 x W c 19.00 .14 x W c 20.00.- -. - _ :16- x W c 21.60 .•18 x W c 22.00 -.20 x W c 23.00. .22 x W.c 24.00 x W c 25.00 .26 x W c 26.00 .26 x W c 27.00 .30 x W c 28.00 •32 x W c 29.00 .34 X W c 30.00 .36 X Y1 c 31.00 •34 x W c 32.00 • 32x W .c 33.00 . 30 x W c 34.00 x 28 W c 35.00 .26 x W c 36.00•24 x W c 37..00 .22 x W c 38.00 •20 x W c 39.00 .Z8 x _ W c - 40.00 6 x W c 41.00 . 1 2 W c 42.00 .12 x W c 43.00 . 10 •x W c 44.00 .00.6 X W c 45.00 W c 46.00 • 04 A W c 47.00 • 02 x W c 48.00 .00 X 4900 .69 x 50..00 .71 X 51.60 .73 x 52.00 .75 X. 53.00 •77 x 54.00 •79 x 5500 .81. X 56..00 .83 X 57.00 .85 X 58.00 .87 X 59.00 • 89 x 60.00 .91 }}}} } -} { } }}}............... .�.}}}-{••}•}}}--}•}••}••}'}•}•}•}•}•-►•}-F}}-}}}}}}-i--{--�-•�•}•;•}}}•f•.... FN=142937.T M96S023 L131,5 DSA 12 15 February 1997 :1 STREET HYDRAULIC CALCULATION TRACT 14293 BE_7�,RTREE STREET - STATION 13+00.00 • * * * * * * CHANNEL FLOW CALCULATIONS CALCULATE DEPTH OF FLOW GIVEN: �g800 0 Channel Slope = .009800 (Ft. /Ft.) _ Given Flow Rate = 61.80 Cubic Feet/Second l *** OPEN CHANNEL FLOW - STREET FLOW.*** Street Slope (Ft./Ft.) _ .0098 Mannings "n" value for street = .01'5 Curb Height (In.) = - B. Street Halfwidth (Ft.) = 18.00 18.50 Distance From Crown to Crossfall Grade Break (Ft.)16.50 Slope from Gutter to Grade Break • (Ft .�/Ft.) H _ .020 Slope from. Grade Break to' Crown (Ft. /Ft.) . Number of Half Carrying_ Runoff = 2 - 1 Distance *from curb to property line (Ft.) = 7"2020 Slope from curb' to property -line (Ft./Ft.) = . Depth of flow = .536 (Ft.) Average Velocity = 4.83 (Ft./Sec.) t Channel flow top - width = 18.00 (Ft.) NOTE: DEPTH OF FLOW IS HIGHER THE STREET CROWN Streetflow Hydraulics 18-00 Halfstreet Flow. Width (Ft.) 2.59 Flow Velocity (Ft. /Sec.)* =a.:De th*Velocity = Flow rate of street channel (CFS) = 61.80' CRITICAL FLOW CALCULATIONS TOR CHANNEL 18.00 18.00 Subchannel Crit p 3.808 Subchannel Critical Flow Velocity (Ft. /Sec.) = 8.12 Subchannel . Critic'al Flow Area(Sq.- Ft.) _ Froude Number Calculated = .999 Subchannel Critical Depth CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 2: 18,00 Subchannel Critical Flow Top Width (Ft.) = 3,808 - Subchannel Critical Flow Velocity (Ft . /SEC .) = 8,12 Subchannel Critical Flow Area.(Sq. Ft.) _ Froude Number Calculated = .999 ,631 Subchannel-Critical Depth = .•i....+++ -k•+ -f .. +++++++++++++++++++i-+++++++++++++++++++++++++++++++++ ***********x****** CHANNEL CROSS-SECTION PLOT Depth of flow = 54 Feet , = "W" STREET FLOW CROSS SECTION Critical depth for Channel No . l= .63 Feet _ "c"•63 Feet , = "c" .9 Critical depth for Channel No . 2= - 2 5 , 7 X (Feet) Y(Feet) Y -Axis -->0. ------------ ----.00 .51 X 1.00 . 89 X 2.00 .67 X 3.00 .85 X 4.00 .83 X 5.00 .81' x 6.00 -79 X 7.00 .77 X 8.00 .75 x 9.00 .73 x 10.00. .71 X 11.00 .69 12.00 .67 x W c 13.00 :O2 X W c O 14.00 - 06 �. W c 15.00 -.08 X W c 16.00 g W c 17.00 -10 X W c 18.-00.12 X W . C. 19.00 -14 xW c y 20.00 . 16 . x - -.v -c 21-0018 18 K w c 22.00 -20 x W c 23.00 -22 g W c X 24.00 -24 g W c 25.00 -26 W C 26.00 .28 W c 27.00 .30 x W c 1; 2B.00 . 32 x W c 29.00 -34 X W c 30.00 .36 x W c 31.00 -34x c, 32.00 .32 xW c _-1 33.00 .30 W 34..00 --2B x W c' 35.00 .26 x W C 36.00 -24 x W c 37.00 .22 W c 38.00 .20 X W c 39.00 -18 g W c 40.00 .16 - x _ _ W c 41.00 .14 X W c -- 42.00 -12 X W c - 43:00 .10 X W c 44 .-00 ' .08 X W c 45.00 .06 X W c I' 46.00 X -04 W c 47.00 .02 x W c 48.00 .00 x 49.00 .69 X . 50.00 .71 X 51.00 .73 X 52.00 .75 x 53.00 .77 X 54.00 .79 x 55.00 -81 x 56.00 .83 x 57.00 •B5 x I 58.00 .87 X 59.00 .89 X 60.00 •91 ...............65023}'�'•E i++++.}..}}-}.}t}.}.'E'}•'{.'�"4'{"�'.{"{.j'.T'3'.{'+"E+T+++++++++++++++++++++++++ 1 yN=142938.T JN 9 L131, 5 DSK 12 15 February 1997 W tri