Loading...
HomeMy WebLinkAboutTract 16403 & 16403-1�. ALLARD ENGINEERING � d u 9 tea sunanoa lana vanidmv TRACT 16403 and 16403-1 HYDROLOGY &HYDRAULICS REPORT November 8, 2002 Revised December 19, 2002 Revised January 16, 2003 Revised March 20, 2003 Revised April 22, 2003 Revised April 29, 2003 Prepared For: Young Homes 10370 Trademark Street Rancho Cucamonga, CA 91730 (909) 477-6722 Fax (909) 477-672 Job Number 159.08.02 Prepared under the supervision of: David S Hammer ACE 43976 Exp. 06-30-05 8253 Sierra Avenue Fontana, CA 92335 (909) 356-1815 * (909) 356-1795 QgpSS /p� No.X976 * Exp. 6/30/05 Cl v oLc�,e OP IP AO� rr d. "a a. w AW AN s. MR Im 00 A. .o .M Table of Contents Introduction Purpose Methodology Findings Summary Hydrology Exhibits 100 Year Hydrology Calculations 25 Year Hydrology Calculations Street Capacity and Existing Catch Basins Calculations W.S.P. G. W. Tract No. 16403 Hydrology Map — rear pocket Appendix A. Tract 13325-1 and 13325-2 Hydrology and Storm Drain Hydraulics, October 10, 1987 B. Tract No. 13929-1 and No. 13929 Hydrology and Hydraulics Report Prepared April 1990, Revised August 1990 A. Reference Material (Rear Pockets) f. Proposed Drainage Improvement Plans 1. "City of Fontana Dwg. No. 1510". Sheet 1-3 of 8 and Sheet 7 of 8 2. "City of Fontana Dwg. No. 1984". Sheet I & 2 of 6 3. "City of Fontana Dwg. No. 1508", Sheet 1 & 4 of 13 4. "City of Fontana Dwg. No. 1983" Sheet 2 of 2 5. Aft "City of Fontana Dwg. No. 2015". Sheet 4 of 6 Ow 5 an to .. «o F 8 AW E e E no to .m 0, A qu Introduction Tract No. 16403 is a proposed 102 single-family lot subdivision, being developed in two phases, that is located in the City of Fontana. Tract 16403 is situated south of Baseline err Avenue, between Beech Avenue and Village Parkway. On the south side, the project is bounded by existing Tract 13929 and 13929-1. Purpose The purpose of this hydrology and hydraulics report is to determine the 100 -year and 25 -year runoff for Tract 16403, and show that the proposed street improvements are adequately sized to convey the runoff to the existing storm drain in Village Parkway. '�' Methodology .w The rational method, as outlined in the San Bernardino County Hydrology Manual, was used go to determine 25 -year and 100 -year event storms. Hydrology and Hydraulics calculations were .. performed with computer programs commonly used for this purpose. W Findings an ,r The 25 -year storm water runoff is conveyed in the street below the top of curb elevations while the 100 -year storm water will be conveyed in the street and does not exceed right-of- way elevations (See Street Capacity Calculations). The existing catch basins located south of .� proposed tract 16403 in Village Parkway were sized adequately to handle run-off from the proposed tract and any existing run-off entering Village Parkway from existing Tract 13929. After reviewing the existing hydrology, the facilities downstream of the existing 14' and 7' sump catch basins were designed to handle 119 cfs. Our development, along with a portion of tract 13929-1(see hydrology exhibit) contributes approximately 59.6 cfs, while the remainder of tract 13929 and 13929-1 contributes 38.9 cfs as shown on City of Fontana as -built drawings (See Proposed Drainage Improvement Plans). Ignoring the hydrologic time of concentration, the run-off in the downstream storm facility will be less then the design run-off (119 cfs vs. 98.6 cfs). Summary M Tract 16403 proposed improvements will adequately convey storm water run-off to a safe ,. point of discharge. Additionally, we are proposing two 14' flow -by basins to help alleviate the amount of storm water runoff that currently reaches the two existing sump basins in Village Parkway. The two flow -by catch basins will be located approximately 70 feet northwest of the existing sump catch basins. The record plans for the existing storm drain and street improvements in Village Parkway will be revised to include the proposed catch basins, together with local depressions and storm drain improvements. M 0 EME T4N — T 'o / , — ± ;r R2W - - 1' RIW RIE R2E W R W R6W R51N 4W -. HESKRI, — — -- J -- -� - -- - - - -- e i - T 1 - - - - - - - -- -+ �� _ wilu. ,uf. w•••T .�i ••• M. 'P i I I _ _ a••.r ` oa 04 ,a o•; , 1.3 - - 1 I, i . �• I• + � e 9 .o I II 'I .� 1 RRE N-! ! t -- - -+- - i-- — F- �+/• — -7 -+ ,J• RA L[SN�. (. I I � l+e14p °3 •s•T, I 'i .p ■f>i1NT I. [.[�. T3N A, N. dl A - t, 29 ~ • 6 2 wi- - �'wMl •✓ - cI" _- r+_ -_ +_ _ _ I - _- I - 11 T- i - �. � 2 'I • • ' 'nkat r lCl � - / I I I I I ,1 y�•2 yy - ez + - - -'• ! � n !}-� ,. I �' •; moo,[ - ,q - - ' - -� - - � -- '� 1.1 �- - --- -- - � � ti - - '- - - - - --- - I _ � � • �i.f I I 4T T�NiO ! 1 Y ` { • I � � i Y � ' `[AY, ��� `i t- f= • 1 d ,s 1A L u•orN[Ao - BEf •••' • \ AL OW I - - - - - - - - - - -- -- - - T2N - - - ' �+i�i w- as - _ �' �r ••,. e° �l•O �I - � Z - - - � - • . • •[AR t � If.`' ✓ RFt ,IA - lug-ls'--�{� - - _ - `p ,e'.. .E - - •N LAN[ 1.4 VILLAW \� [e".- / : r �� IA - ° • ! w - - 1 i c �•� i� - I.E [PRINo• AaLO.•, Ll SIT E ! t .,� �. *p,�r ,y .0 z, r� " _ • '� ,u' �t «AT• - - - A. -- •ON \• ICU - ' [LTA ,.•. •` � �a ••' "�•'e�• � 1 • ._ - P - r J - . c•,,• ,. J __ \_I .�F i _ _-__ W - j SAN R RNARD,4 1 UPLAND 7 ' $ v N. 0 cLANa�[nT 1'.R I ALT 0_ - - -cucA _ .: FON TAN N> .As� �. r WO TIS -- - - . •, ONT 10. ••• C TON S •� ~r• - c.a REDLANDS o•°. �*[jj • LOVA LIAOA - _ - • '�' wA • A _ _ ea,•O •, CRE[TNORE - - - - - `> . J• ,u _ - LI • � - IPA �I ! +uRDr.• .. • r • y •RUN Tu [ [ ! 4 : �: •�V'-, A : '•j, Rio ` T :e CHINO _ — f- r •.� P i r L "Al y [[RM owl 7 RIE : I R E f'•! a S4- - ; - • ` RIV[R[i0[ COUNT • + WOO T2S- RSIDE f Hca•, — J v _,� • 4 7 r •: _ ' RI es •.�......• , S•N,o. �R4W R3 R2W + — •. �. '' FAN BERNARD NO COUNTY iLOOD CONTROL DISTRICT •'I "°`"; RSw: REDUCED DRAWINIG VALLEY AREA T3S ° i90MYETALS SCALE I"= 4 MILEc eAeED OYpo 10 O.E tlAJA.dlA5AR I o2UR •.�•., ID973 A SAN BERNARDINO COUNTY A1A�Ve[L LE N t �M1owEA s FLRQL 7[Ifp�Y[[I� ''"••'•Aew R7w Rs HYDROLOGY MANUAL •• • .• ISOLINCS PR[CIP!TATION (INCHES)AU tCAL[ "*Mt -E NQ OR•N N0. •'•... A... A A• A A•...•....... ... •° 1902 f•tw wRD-1 of 12 ►��w MW ' jI r MAIM►,rM�► - ON vy 9 VIA Aft Wo 'A�Mp10100111 ININIMd Mr ,fan. all APMWA "Limit RPM fall •.ED DRAWING VALLEYAREA ••HOUR '' ' • • • 'bmf.^. •�-�..s�i k N R E R N A R D I N O COUNTY SAN BERNARD o COUNTY �t SGALE REDUCED E w r do 40 +rr irr .w aw er +w do w M• 410 IS! rr 3.5 m 2.5 cn W U Z `� = 2 H a W a 0.5 aw 3.5 3 2.5 FA 1.5 �*V 0 L I I 1 I 1 0 2 5 10 25 50 100 RETURN PERIOD IN YEARS NOTE e 1. FOR INTERMEDIATE RETURN PERIODS PLOT 10 -YEAR AND 100 -YEAR ONE HOUR VALUES FROM MAPS. THEN CONNECT POINTS AND READ VALUE FOR DESIRED RETURN PERKM FOR EXAMPLE GIVEN IO -YEAR ONE HOUR• 0.95" AND 100 -YEAR CNE HOUR • 1.60'. 25 -YEAR ONE HOUR • 1.IS-. REFERENCE I N 0 A A ATLAS Y, VOLUME a-CAL.,19T3 RAINFALL DEPTH VERSUS SAN BERNARDINO COUNTY RETURN PERIOD FOR HYDROLOGY MANUAL PARTIAL DURATION SERIES D-7 FIGURE D-2 am Aw F **************************************************************************** Im RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) AU (c) Copyright 1983-95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 40 Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE. FONTANA CA. 92336 TEL. (909) 356-1815 FAX (909) 356-1795 ************************** DESCRIPTION OF STUDY ************************** * Tract 16403, Fontana IRS * 100 Year Storm Analysis �r 4ft FILE NAME: 403-100.DAT TIME/DATE OF STUDY: 8:34 3/12/2003 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TIME-OF-CONCENTRATION MODEL*-- An USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 ""' SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) _ .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) = 1.5000 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* **************************************************************************** FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 2.1 arr---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS«« < >>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< °w INITIAL SUBAREA FLOW-LENGTH(FEET) = 460.00 ELEVATION DATA: UPSTREAM(FEET) = 1359.90 DOWNSTREAM(FEET) = 1344.80 WA Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.950 . * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.698 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) RESIDENTIAL 115-7 DWELLINGS/ACRE" A 2.97 .98 .50 32 8.95 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .98 ow I" 1/ ,w m +w .w 1111 wr ww arr ar 9w m .s sal► qw as om SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 11.25 TOTAL AREA(ACRES) = 2.97 PEAK FLOW RATE(CFS) = 11.25 **************************************************************************** FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 6.1 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 1345.30 DOWNSTREAM ELEVATION(FEET) = 1343.36 STREET LENGTH(FEET) = 246.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) _ .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 12.70 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .46 HALFSTREET FLOOD WIDTH(FEET) = 15.12 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.57 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.18 STREET FLOW TRAVEL TIME(MIN.) = 1.60 Tc(MIN.) = 10.55 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.257 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" A .85 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) _ .85 SUBAREA RUNOFF(CFS) = 2.88 EFFECTIVE AREA(ACRES) = 3.82 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 3.82 PEAK FLOW RATE(CFS) = 12.96 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .46 HALFSTREET FLOOD WIDTH(FEET) = 15.20 FLOW VELOCITY(FEET/SEC.) = 2.59 DEPTH*VELOCITY(FT*FT/SEC.) = 1.20 FLOW PROCESS FROM NODE 13.00 TO NODE 12.00 IS CODE = 8.2 ■w ---------------------------------------------------------------------------- »»>ADD SUBAREA RUNOFF TO MAINLINE, AT MAINLINE Tc, ««< »»>(AND COMPUTE INITIAL SUBAREA RUNOFF) ««< INITIAL SUBAREA FLOW-LENGTH(FEET) = 470.00 ELEVATION DATA: UPSTREAM(FEET) = 1357.30 DOWNSTREAM(FEET) = 1343.36 an Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 ,w SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.212 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.617 nil m END OF SUBAREA STREET FLOW HYDRAULICS: AV DEPTH(FEET) _ .56 HALFSTREET FLOOD WIDTH(FEET) = 14.91 FLOW VELOCITY(FEET/SEC.) = 2.56 DEPTH*VELOCITY(FT*FT/SEC.) = 1.45 ..r m SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc .. LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) RESIDENTIAL do "5-7 DWELLINGS/ACRE" A 2.52 .98 .50 32 9.21 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .98 r SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.52 INITIAL SUBAREA RUNOFF(CFS) = 9.37 ** ADD SUBAREA RUNOFF TO MAINLINE AT MAINLINE Tc: MAINLINE Tc(MIN) = 10.55 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.257 SUBAREA AREA(ACRES) = 2.52 SUBAREA RUNOFF(CFS) = 8.55 EFFECTIVE AREA(ACRES) = 6.34 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .50 AL TOTAL AREA(ACRES) = 6.34 PEAK FLOW RATE(CFS) = 21.51 s FLOW PROCESS FROM NODE 12.00 TO NODE 14.00 IS CODE = 6.1 s" ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED) ««< +w -------------------------------------------------------------------- UPSTREAM ELEVATION(FEET) = 1343.36 DOWNSTREAM ELEVATION(FEET) --- = 1342.07 ri STREET LENGTH(FEET) = 242.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 +ir SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) _ .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 22.79 40 ***STREET FLOWING FULL*** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .57 HALFSTREET FLOOD WIDTH(FEET) = 15.10 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.59 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.47 STREET FLOW TRAVEL TIME(MIN.) = 1.56 Tc(MIN.) = 12.10 alll * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.919 SUBAREA LOSS RATE DATA(AMC II): +� DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" A .83 .98 .50 32 aw SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) _ .83 SUBAREA RUNOFF(CFS) = 2.56 4w EFFECTIVE AREA(ACRES) = 7.17 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .50 +fit TOTAL AREA(ACRES) = 7.17 PEAK FLOW RATE(CFS) = 22.15 m END OF SUBAREA STREET FLOW HYDRAULICS: AV DEPTH(FEET) _ .56 HALFSTREET FLOOD WIDTH(FEET) = 14.91 FLOW VELOCITY(FEET/SEC.) = 2.56 DEPTH*VELOCITY(FT*FT/SEC.) = 1.45 ..r m A* m sw �r **************************************************************************** +w� FLOW PROCESS FROM NODE 15.00 TO NODE 14.00 IS CODE = 8.2 ---------------------------------------------------------------------------- »»>ADD SUBAREA RUNOFF TO MAINLINE, AT MAINLINE Tc, ««< »»>(AND COMPUTE INITIAL SUBAREA RUNOFF) ««< m INITIAL SUBAREA FLOW-LENGTH(FEET) = 470.00 ELEVATION DATA: UPSTREAM(FEET) = 1354.30 DOWNSTREAM(FEET) = 1342.07 "w +r Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.456 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.545 SUBAREA Tc AND LOSS RATE DATA(AMC II): r DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) RESIDENTIAL rr "5-7 DWELLINGS/ACRE" A 2.52 .98 .50 32 9.46 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .98 ... SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.52 INITIAL SUBAREA RUNOFF(CFS) = 9.20 rrr ** ADD SUBAREA RUNOFF TO MAINLINE AT MAINLINE Tc: MAINLINE Tc(MIN) = 12.10 rr * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.919 SUBAREA AREA(ACRES) = 2.52 SUBAREA RUNOFF(CFS) = 7.78 EFFECTIVE AREA(ACRES) = 9.69 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 9.69 PEAK FLOW RATE(CFS) = 29.93 +wo **************************************************************************** As FLOW PROCESS FROM NODE 14.00 TO NODE 16.00 IS CODE = 6.1 ---------------------------------------------------------------------------- r »>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< dt »» >(STANDARD CURB SECTION USED) ««< *r UPSTREAM ELEVATION(FEET) = 1342.07 DOWNSTREAM ELEVATION(FEET) = 1340.12 STREET LENGTH(FEET) = 246.00 CURB HEIGHT(INCHES) = 8.0 at STREET HALFWIDTH(FEET) = 20.00 �r DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 y� INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 s SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) _ .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 31.14 ***STREET FLOWING FULL*** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .58 HALFSTREET FLOOD WIDTH(FEET) = 15.89 = AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.30 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.93 STREET FLOW TRAVEL TIME(MIN.) = 1.24 Tc(MIN.) = 13.35 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.696 SUBAREA LOSS RATE DATA(AMC II): wr AV y ,. Is DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN in RESIDENTIAL "5-7 DWELLINGS/ACRE" A .84 .98 .50 32 'aft SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 1w SUBAREA AREA(ACRES) _ .84 SUBAREA RUNOFF(CFS) = 2.43 40 EFFECTIVE AREA(ACRES) = 10.53 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .50 IV TOTAL AREA(ACRES) = 10.53 PEAK FLOW RATE(CFS) = 30.41 40 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .58 HALFSTREET FLOOD WIDTH(FEET) = 15.71 qw FLOW VELOCITY(FEET/SEC.) = 3.28 DEPTH*VELOCITY(FT*FT/SEC.) = 1.90 air **************************************************************************** FLOW PROCESS FROM NODE 17.00 TO NODE 16.00 IS CODE = 8.2 r---------------------------------------------------------------------------- »»>ADD SUBAREA RUNOFF TO MAINLINE, AT MAINLINE Tc, ««< »»>(AND COMPUTE INITIAL SUBAREA RUNOFF) ««< rr INITIAL SUBAREA FLOW-LENGTH(FEET) 470.00 ELEVATION DATA: UPSTREAM(FEET) = 1351.30 DOWNSTREAM(FEET) = 1340.12 go Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.628 WK * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.496 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5-7 DWELLINGS/ACRE" A 2.55 32 9.63 .98 .50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.55 INITIAL SUBAREA RUNOFF(CFS) = 9.20 ** ADD SUBAREA RUNOFF TO MAINLINE AT MAINLINE Tc: MAINLINE Tc(MIN) = 13.35 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.696 SUBAREA AREA(ACRES) = 2.55 SUBAREA RUNOFF(CFS) = 7.36 EFFECTIVE AREA(ACRES) = 13.08 AREA -AVERAGED Fm(INCH/HR) _ .49 .�r AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .50 r� TOTAL AREA(ACRES) _ _ 13.08 PEAK FLOW RATE(CFS) = 37.77 qM **************************************************************************** 40 FLOW PROCESS FROM NODE 16.00 TO NODE 18.00 IS CODE = 6.1 ---------------------------------------------------------------------------- ' »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< ,o »»>(STANDARD CURB SECTION USED) ««< am UPSTREAM ELEVATION(FEET) = 1340.12 DOWNSTREAM ELEVATION(FEET) = 1337.20 STREET LENGTH(FEET) = 246.00 CURB HEIGHT(INCHES) = 8.0 dt STREET HALFWIDTH(FEET) = 20.00 4w DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 aM INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 ar do �w AN 40 dN do ME da. qm AN .�w SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) _ .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 38.83 ***STREET FLOWING FULL*** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .59 HALFSTREET FLOOD WIDTH(FEET) = 16.01 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.08 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.39 STREET FLOW TRAVEL TIME(MIN.) = 1.01 Tc(MIN.) = 14.35 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.539 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN mm RESIDENTIAL "5-7 DWELLINGS/ACRE" A .77 .98 .50 32 am SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 qm SUBAREA AREA(ACRES) _ .77 SUBAREA RUNOFF(CFS) = 2.11 EFFECTIVE AREA(ACRES) = 13.85 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .50 aw TOTAL AREA(ACRES) = 13.85 PEAK FLOW RATE(CFS) = 38.03 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .58 HALFSTREET FLOOD WIDTH(FEET) = 15.89 „r FLOW VELOCITY(FEET/SEC.) = 4.03 DEPTH*VELOCITY(FT*FT/SEC.) = 2.36 **************************************************************************** FLOW PROCESS FROM NODE 19.00 TO NODE 18.00 IS CODE = 8.2 iru »»>ADD SUBAREA RUNOFF TO MAINLINE, AT MAINLINE Tc, ««< »»>(AND COMPUTE INITIAL SUBAREA RUNOFF) ««< +w INITIAL SUBAREA FLOW-LENGTH(FEET) = 470.00 ELEVATION DATA: UPSTREAM(FEET) = 1348.20 DOWNSTREAM(FEET) = 1337.20 T.c = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.659 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.488 SUBAREA Tc AND LOSS RATE DATA(AMC II): are DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) s RESIDENTIAL "5-7 DWELLINGS/ACRE" A 2.62 .98 .50 32 9.66 d SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 na SUBAREA AREA(ACRES) = 2.62 INITIAL SUBAREA RUNOFF(CFS) = 9.43 ** ADD SUBAREA RUNOFF TO MAINLINE AT MAINLINE Tc: MAINLINE Tc(MIN) = 14.35 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.539 dW SUBAREA AREA(ACRES) = 2.62 SUBAREA RUNOFF(CFS) = 7.19 EFFECTIVE AREA(ACRES) = 16.47 AREA -AVERAGED Fm(INCH/HR) _ .49 Iff AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 16.47 PEAK FLOW RATE(CFS) = 45.23 me m r 9a FLOW PROCESS FROM NODE 18.00 TO NODE 20.00 IS CODE = 6.1 ----------------- ---------- ------------------------------ >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 1337.20 DOWNSTREAM ELEVATION(FEET) = 1335.50 STREET LENGTH(FEET) = 185.00 CURB HEIGHT(INCHES) = 8.0 ,e. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 rr SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) _ .020 air **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 45.84 ***STREET FLOWING FULL*** +■ STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .63 HALFSTREET FLOOD WIDTH(FEET) = 18.33 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.03 ,. PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.55 STREET FLOW TRAVEL TIME(MIN.) _ .77 Tc(MIN.) = 15.12 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.430 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" A 46 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 ,w SUBAREA AREA(ACRES) _ .46 SUBAREA RUNOFF(CFS) = 1.22 EFFECTIVE AREA(ACRES) = 16.93 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 16.93 PEAK FLOW RATE(CFS) = 45.23 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .63 HALFSTREET FLOOD WIDTH(FEET) = 18.21 FLOW VELOCITY(FEET/SEC.) = 4.01 DEPTH*VELOCITY(FT*FT/SEC.) = 2.53 do FLOW PROCESS FROM NODE 30.00 TO NODE 20.00 IS CODE = 8.2 do------------------------------------------------------------------------- »»>ADD SUBAREA RUNOFF TO MAINLINE, AT MAINLINE Tc, ««< »»>(AND COMPUTE INITIAL SUBAREA RUNOFF) ««< ----------------- INITIAL SUBAREA FLOW-LENGTH(FEET) = 575.00 .� ELEVATION DATA: UPSTREAM(FEET) = 1344.47 DOWNSTREAM(FEET) = 1335.50 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.874 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.722 W SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc m FI r' LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) COMMERCIAL A 1.10 .98 .10 32 8.87 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) = 1.10 INITIAL SUBAREA RUNOFF(CFS) = 4.58 ** ADD SUBAREA RUNOFF TO MAINLINE AT MAINLINE Tc: ,o MAINLINE Tc(MIN) = 15.12 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.430 a„ SUBAREA AREA(ACRES) = 1.10 SUBAREA RUNOFF(CFS) = 3.30 EFFECTIVE AREA(ACRES) = 18.03 AREA -AVERAGED Fm(INCH/HR) _ .46 AREA -AVERAGED Fp(INCH/HR) = .98 AREA -AVERAGED Ap = .48 TOTAL AREA(ACRES) = 18.03 PEAK FLOW RATE(CFS) = 48.13 ********************************************************************** * FLOW PROCESS FROM NODE 20.00 TO NODE 32.00 IS CODE= 6.1 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 1335.50 DOWNSTREAM ELEVATION(FEET) = 1332.40 dr STREET LENGTH(FEET) = 180.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 18.00 END OF SUBAREA STREET FLOW HYDRAULICS: do DEPTH(FEET) = .67 HALFSTREET FLOOD WIDTH(FEET) = 18.00 FLOW VELOCITY(FEET/SEC.) = 5.15 DEPTH*VELOCITY(FT*FT/SEC.) = 3.47 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 �w OUTSIDE STREET CROSSFALL(DECIMAL) _ .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 48.47 ***STREET FLOWING FULL*** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION Orr THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. "" STREET FLOW DEPTH(FEET) = .68 HALFSTREET FLOOD WIDTH(FEET) = 18.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.16 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 3.48 STREET FLOW TRAVEL TIME(MIN.) = .58 Tc(MIN.) = 15.70 a1�11 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.353 SUBAREA LOSS RATE DATA(AMC II): tiw DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN 40 COMMERCIAL A .23 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .98 qm SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 ,m SUBAREA AREA(ACRES) = .23 SUBAREA RUNOFF(CFS) _ .67 EFFECTIVE AREA(ACRES) = 18.26 AREA -AVERAGED Fm(INCH/HR) _ .46 4m AREA -AVERAGED Fp(INCH/HR) = .98 AREA -AVERAGED Ap = .47 TOTAL AREA(ACRES) = 18.26 PEAK FLOW RATE(CFS) = 48.13 40 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: do DEPTH(FEET) = .67 HALFSTREET FLOOD WIDTH(FEET) = 18.00 FLOW VELOCITY(FEET/SEC.) = 5.15 DEPTH*VELOCITY(FT*FT/SEC.) = 3.47 r ■s aw rn qw fm 40 **************************************************************************** FLOW PROCESS FROM NODE 33.00 TO NODE 32.00 IS CODE = 8.2 ---------------- ----------------------------------------------------------- >>>>>ADD SUBAREA RUNOFF TO MAINLINE, AT MAINLINE Tc, ««< »» >(AND COMPUTE INITIAL SUBAREA RUNOFF) ««< INITIAL SUBAREA FLOW-LENGTH(FEET) = 767.00 ELEVATION DATA: UPSTREAM(FEET) = 1344.20 DOWNSTREAM(FEET) = 1322.40 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.301 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.084 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5-7 DWELLINGS/ACRE" A 2.42 .98 .50 32 11.30 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.42 INITIAL SUBAREA RUNOFF(CFS) = 7.83 ** ADD SUBAREA RUNOFF TO MAINLINE AT MAINLINE Tc: MAINLINE Tc(MIN) = 15.70 ar * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.353 SUBAREA AREA(ACRES) = 2.42 SUBAREA RUNOFF(CFS) = 6.24 �+ EFFECTIVE AREA(ACRES) = 20.68 AREA -AVERAGED Fm(INCH/HR) _ .46 AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .47 TOTAL AREA(ACRES) = 20.68 PEAK FLOW RATE(CFS) = 53.80 **************************************************************************** 40 FLOW PROCESS FROM NODE 32.00 TO NODE 34.00 IS CODE = 6.1 +�w---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«« < »»>(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 1332.40 DOWNSTREAM ELEVATION(FEET) = 1326.00 STREET LENGTH(FEET) = 450.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 18.00 w DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 a/ INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 a! **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 54.98 140 ***STREET FLOWING FULL*** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) _ .71 'e HALFSTREET FLOOD WIDTH(FEET) = 18.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.13 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 3.65 0 arr **************************************************************************** FLOW PROCESS FROM NODE 34.00 TO NODE 34.00 IS CODE = 1 ---------------------------------------------------------------------------- +rr »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< ----------------------------------------------------- w TOTAL NUMBER OF STREAMS = 2 r CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 17.16 RAINFALL INTENSITY(INCH/HR) = 3.18 AREA -AVERAGED Fm(INCH/HR) _ .45 AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .46 "s EFFECTIVE STREAM AREA(ACRES) = 21.53 48 TOTAL STREAM AREA(ACRES) = 21.53 PEAK FLOW RATE(CFS) AT CONFLUENCE = 53.80 40 **************************************************************************** FLOW PROCESS FROM NODE 40.00 TO NODE 41.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< 4w >>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ----------------------------- qft INITIAL SUBAREA FLOW-LENGTH(FEET) = 526.00 AI ELEVATION DATA: UPSTREAM(FEET) = 1334.40 DOWNSTREAM(FEET) = 1329.30 aw do in 40 me no LLJ Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.418 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.556 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH/HR) COMMERCIAL A 1.07 .98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) = 4.29 Ap SCS Tc (DECIMAL) CN (MIN.) .10 32 9.42 .98 TOTAL AREA(ACRES) = 1.07 PEAK FLOW RATE(CFS) = 4.29 ra STREET FLOW TRAVEL TIME(MIN.) = 1.46 Tc(MIN.) = 17.16 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.179 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS 10 LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A .85 .98 .10 32 40 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .98 is SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) _ .85 SUBAREA RUNOFF(CFS) = 2.36 ,m EFFECTIVE AREA(ACRES) = 21.53 AREA -AVERAGED Fm(INCH/HR) _ .45 AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .46 TOTAL AREA(ACRES) = 21.53 PEAK FLOW RATE(CFS) = 53.80 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE w 4w END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .71 HALFSTREET FLOOD WIDTH(FEET) = 18.00 4w FLOW VELOCITY(FEET/SEC.) = 5.08 DEPTH*VELOCITY(FT*FT/SEC.) = 3.60 arr **************************************************************************** FLOW PROCESS FROM NODE 34.00 TO NODE 34.00 IS CODE = 1 ---------------------------------------------------------------------------- +rr »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< ----------------------------------------------------- w TOTAL NUMBER OF STREAMS = 2 r CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 17.16 RAINFALL INTENSITY(INCH/HR) = 3.18 AREA -AVERAGED Fm(INCH/HR) _ .45 AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .46 "s EFFECTIVE STREAM AREA(ACRES) = 21.53 48 TOTAL STREAM AREA(ACRES) = 21.53 PEAK FLOW RATE(CFS) AT CONFLUENCE = 53.80 40 **************************************************************************** FLOW PROCESS FROM NODE 40.00 TO NODE 41.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< 4w >>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ----------------------------- qft INITIAL SUBAREA FLOW-LENGTH(FEET) = 526.00 AI ELEVATION DATA: UPSTREAM(FEET) = 1334.40 DOWNSTREAM(FEET) = 1329.30 aw do in 40 me no LLJ Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.418 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.556 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH/HR) COMMERCIAL A 1.07 .98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) = 4.29 Ap SCS Tc (DECIMAL) CN (MIN.) .10 32 9.42 .98 TOTAL AREA(ACRES) = 1.07 PEAK FLOW RATE(CFS) = 4.29 to 4m wr FLOW PROCESS FROM NODE 41.00 TO NODE 34.00 IS CODE = 6.1 w ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< FLOW PROCESS FROM NODE 34.00 TO NODE 34.00 IS CODE >>>>>(STANDARD CURB SECTION USED) ««< a�r---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«« < UPSTREAM ELEVATION(FEET) = 1329.30 DOWNSTREAM ELEVATION(FEET) = 1326.00 »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< STREET LENGTH(FEET) = 548.00 CURB HEIGHT(INCHES) = 8.0 �* STREET HALFWIDTH(FEET) = 18.00 as DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 rr **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.95 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .42 +m HALFSTREET FLOOD WIDTH(FEET) = 7.60 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.28 qm PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) _ .96 EFFECTIVE STREAM AREA(ACRES) = 2.09 STREET FLOW TRAVEL TIME(MIN.) = 4.01 Tc(MIN.) = 13.43 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.683 SUBAREA LOSS RATE DATA(AMC II): on DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS ye LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A 1.02 .98 .10 32 w SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 NODE SUBAREA AREA(ACRES) = 1.02 SUBAREA RUNOFF(CFS) = 3.29 1 53.80 17.16 3.179 .98( .45) .46 21.53 EFFECTIVE AREA(ACRES) = 2.09 AREA -AVERAGED Fm(INCH/HR) _ .10 AREA -AVERAGED Fp(INCH/HR) = .98 AREA -AVERAGED Ap = .10 40 TOTAL AREA(ACRES) = 2.09 PEAK FLOW RATE(CFS) = 6.74 ,m END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .44 HALFSTREET FLOOD WIDTH(FEET) = 8.04 As FLOW VELOCITY(FEET/SEC.) = 2.35 DEPTH*VELOCITY(FT*FT/SEC.) = 1.03 .A **************************************************************************** FLOW PROCESS FROM NODE 34.00 TO NODE 34.00 IS CODE = 1 a�r---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«« < iM »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< �* TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.43 RAINFALL INTENSITY(INCH/HR) = 3.68 AREA -AVERAGED Fm(INCH/HR) = .10 AREA -AVERAGED Fp(INCH/HR) = .98 AREA -AVERAGED Ap = .10 s EFFECTIVE STREAM AREA(ACRES) = 2.09 TOTAL STREAM AREA(ACRES) = 2.09 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.74 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 53.80 17.16 3.179 .98( .45) .46 21.53 10.00 on 0 e 0 am im E MR 40 1. MR rrr ws 2 6.74 13.43 3.683 .98( .10) .10 2.09 40.00 +w RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** s STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 59.6 17.16 3.179 .975( .417) .43 23.6 10.00 2 56.6 13.43 3.683 .975( .409) .42 18.9 40.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 59.60 Tc(MIN.) = 17.16 do EFFECTIVE AREA(ACRES) = 23.62 AREA -AVERAGED Fm(INCH/HR) _ .42 AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .43 ,,,,., TOTAL AREA(ACRES) = 23.62 +w END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 23.62 TC(MIN.) = 17.16 mm EFFECTIVE AREA(ACRES) = 23.62 AREA -AVERAGED Fm(INCH/HR)= .42 AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .43 ! PEAK FLOW RATE(CFS) = 59.60 on ** PEAK FLOW RATE TABLE ** do STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE w NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 56.6 13.43 3.683 .975( .409) .42 18.9 40.00 40 2 59.6 17.16 3.179 .975( .417) .43 23.6 10.00 Aw END OF RATIONAL METHOD ANALYSIS 0 e 0 am im E MR 40 1. MR w **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983-95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: M ALLARD ENGINEERING do 8253 SIERRA AVE. FONTANA CA. 92336 TEL. (909) 356-1815 FAX (909) 356-1795 ************************** DESCRIPTION OF STUDY ************************** * TRACT 16403, FONTANA * 100 YEAR STORM ANALYSIS * BEECH AVENUE ************************************************************************** +ew FILE NAME: 403-B-l.DAT AW TIME/DATE OF STUDY: 11:50 3/12/2003 40 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- 'r --*TIME-OF-CONCENTRATION MODEL*-- USER SPECIFIED STORM EVENT(YEAR) = 100.00 sr1 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 dw *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* do SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) = 1.5000 an ds *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* ," *USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING 41 WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 NA NA NA NA NA NA NA NA NA NA +� GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = .00 FEET 40 as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) 40 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN 40 OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 50.00 TO NODE 51.00 IS CODE = 2.1 ---------------------------------------------------------------------------- sw »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< >>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ------------------------------------- INITIAL SUBAREA FLOW-LENGTH(FEET) = 600.00 W r aw sw do 40 to 40 +o 40 do No d0 s arR w +r► tlMt wr 4111 ar u1M �r ELEVATION DATA: UPSTREAM(FEET) = 1360.70 DOWNSTREAM(FEET) = 1347.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.364 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.892 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) COMMERCIAL A .85 .98 .10 32 8.36 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) = 3.67 TOTAL AREA(ACRES) _ .85 PEAK FLOW RATE(CFS) = 3.67 ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- END OF STUDY SUMMARY: TOTAL AREA(ACRES) _ .85 TC(MIN.) = 8.36 EFFECTIVE AREA(ACRES) _ .85 AREA -AVERAGED Fm(INCH/HR)= .10 AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .10 PEAK FLOW RATE(CFS) = 3.67 END OF RATIONAL METHOD ANALYSIS 40 RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983-95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 as Analysis prepared by: .. ALLARD ENGINEERING 8253 SIERRA AVE. alr FONTANA CA. 92336 TEL. (909) 356-1815 FAX (909) 356-1795 ************************** DESCRIPTION OF STUDY ************************** * Tract 16403, Fontana * 25 YEAR STORM ANALYSIS .. FILE NAME: 403-100.DAT 40 TIME/DATE OF STUDY: 9:55 3/12/2003 am USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TIME-OF-CONCENTRATION MODEL*-- w� USER SPECIFIED STORM EVENT(YEAR) = 25.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* �r SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) _ .6000 a USER SPECIFIED'1-HOUR INTENSITY(INCH/HOUR) = 1.1500 to *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 2.1 ---------------------------------------------------------------------------- a�1 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< >>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW-LENGTH(FEET) = 460.00 ELEVATION DATA: UPSTREAM(FEET) = 1359.90 DOWNSTREAM(FEET) = 1344.80 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 41 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 8.950 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.602 nqm SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc "r LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5-7 DWELLINGS/ACRE" A 2.97 .98 .50 32 8.95 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .98 As SUBAREA AVERAGE PERVIOUS AREA FRACTION, AP = .50 yrs 40 ON SUBAREA RUNOFF(CFS) = 8.32 TOTAL AREA(ACRES) = 2.97 PEAK FLOW RATE(CFS) = 8.32 is do **************************************************************************** FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 6.1 w----------------- ---------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 1345.30 DOWNSTREAM ELEVATION(FEET) = 1343.36 STREET LENGTH(FEET) = 246.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 20.00 a�► is DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 an OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 ON SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) _ .020 vo **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 9.38 40 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .42 qw HALFSTREET FLOOD WIDTH(FEET) = 13.32 40 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.39 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.01 ani STREET FLOW TRAVEL TIME(MIN.) = 1.72 Tc(MIN.) = 10.67 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.242 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS 40 LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN 40 RESIDENTIAL "5-7 DWELLINGS/ACRE" A .85 .98 .50 32 40 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 ala SUBAREA AREA(ACRES) _ .85 SUBAREA RUNOFF(CFS) = 2.11 EFFECTIVE AREA(ACRES) = 3.82 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 3.82 PEAK FLOW RATE(CFS) = 9.47 �s END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .42 HALFSTREET FLOOD WIDTH(FEET) = 13.32 rrt FLOW VELOCITY(FEET/SEC.) = 2.41 DEPTH*VELOCITY(FT*FT/SEC.) = 1.02 FLOW PROCESS FROM NODE 13.00 TO NODE 12.00 IS CODE = 8.2 ------------------------------------------------------------- �" »»>ADD SUBAREA RUNOFF TO MAINLINE, AT MAINLINE Tc,<<<<< ;o »»>(AND COMPUTE INITIAL SUBAREA RUNOFF) ««< 4m INITIAL SUBAREA FLOW-LENGTH(FEET) = 470.00 ELEVATION DATA: UPSTREAM(FEET) = 1357.30 DOWNSTREAM(FEET) = 1343.36 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 'i SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.212 40 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.540 SUBAREA Tc AND LOSS RATE DATA(AMC II): 0 +ft i DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) 40 RESIDENTIAL "5-7 DWELLINGS/ACRE" A 2.52 .98 .50 32 9.21 do SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 40 SUBAREA AREA(ACRES) = 2.52 INITIAL SUBAREA RUNOFF(CFS) = 6.92 do ** ADD SUBAREA RUNOFF TO MAINLINE AT MAINLINE Tc: MAINLINE Tc(MIN) = 10.67 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.242 SUBAREA AREA(ACRES) = 2.52 SUBAREA RUNOFF(CFS) = 6.25 EFFECTIVE AREA(ACRES) = 6.34 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .50 aw TOTAL AREA(ACRES) = 6.34 PEAK FLOW RATE(CFS) = 15.72 ************************************************************************** FLOW PROCESS FROM NODE 12.00 TO NODE 14.00 IS CODE = 6.1 --------------------------------------------------------- +w >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 1343.36 DOWNSTREAM ELEVATION(FEET) = 1342.07 im STREET LENGTH(FEET) = 242.00 CURB HEIGHT(INCHES) = 8.0 do STREET HALFWIDTH(FEET) = 20.00 0 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 4w OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 ON SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 40 STREET PARKWAY CROSSFALL(DECIMAL) = .020 40 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 16.64 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: 40 STREET FLOW DEPTH(FEET) = .52 HALFSTREET FLOOD WIDTH(FEET) = 18.24 *+t AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.37 .PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.24 go STREET FLOW TRAVEL TIME(MIN.) = 1.71 Tc(MIN.) = 12.37 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.966 on SUBAREA LOSS RATE DATA(AMC II): 42 DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN aw RESIDENTIAL "5-7 DWELLINGS/ACRE" A .83 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .83 SUBAREA RUNOFF(CFS) = 1.85 EFFECTIVE AREA(ACRES) = 7.17 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .50 7s TOTAL AREA(ACRES) = 7.17 PEAK FLOW RATE(CFS) = 15.99 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .52 HALFSTREET FLOOD WIDTH(FEET) = 17.93 FLOW VELOCITY(FEET/SEC.) = 2.35 DEPTH*VELOCITY(FT*FT/SEC.) = 1.21 "m m +M FLOW PROCESS FROM NODE 15.00 TO NODE 14.00 IS CODE = 8.2 aA---------------------------------------------------------------------------- »»>ADD SUBAREA RUNOFF TO MAINLINE, AT MAINLINE Tc, ««< d0 »» >(AND COMPUTE INITIAL SUBAREA RUNOFF) ««< ON INITIAL SUBAREA FLOW-LENGTH(FEET) = 470.00 to ELEVATION DATA: UPSTREAM(FEET) = 1354.30 DOWNSTREAM(FEET) = 1342.07 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.456 r4 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.485 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL). CN (MIN.) RESIDENTIAL "5-7 DWELLINGS/ACRE" A 2.52 .98 .50 32 9.46 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .98 do SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.52 INITIAL SUBAREA RUNOFF(CFS) = 6.80 .a4 ** ADD SUBAREA RUNOFF TO MAINLINE AT MAINLINE Tc: mo MAINLINE Tc(MIN) = 12.37 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.966 .w SUBAREA AREA(ACRES) = 2.52 SUBAREA RUNOFF(CFS) = 5.62 EFFECTIVE AREA(ACRES) = 9.69 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 9.69 PEAK FLOW RATE(CFS) = 21.61 **************************************************************************** FLOW PROCESS FROM NODE 14.00 TO NODE 16.00 IS CODE = 6.1 ii---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED) «« < UPSTREAM ELEVATION(FEET) = 1342.07 DOWNSTREAM ELEVATION(FEET) = 1340.12 STREET LENGTH(FEET) = 246.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 20.00 dW DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 rw STREET PARKWAY CROSSFALL(DECIMAL) _ .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 22.48 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .54 HALFSTREET FLOOD WIDTH(FEET) = 19.02 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.95 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.59 STREET FLOW TRAVEL TIME(MIN.) = 1.39 Tc(MIN.) = 13.76 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.782 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS 40 LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL 4m .aa D zaj "5-7 DWELLINGS/ACRE" A .84 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .98 w SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) _ .84 SUBAREA RUNOFF(CFS) = 1.73 EFFECTIVE AREA(ACRES) = 10.53 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 10.53 PEAK FLOW RATE(CFS) = 21.75 is END OF SUBAREA STREET FLOW HYDRAULICS: 40 DEPTH(FEET) _ .53 HALFSTREET FLOOD WIDTH(FEET) = 18.79 FLOW VELOCITY(FEET/SEC.) = 2.92 DEPTH*VELOCITY(FT*FT/SEC.) = 1.56 dW FLOW PROCESS FROM NODE 17.00 TO NODE 16.00 IS CODE = 8.2 ---------------------------------------------------------------------------- »»>ADD SUBAREA RUNOFF TO MAINLINE, AT MAINLINE Tc, ««< .ter »»>(AND COMPUTE INITIAL SUBAREA RUNOFF) ««< INITIAL SUBAREA FLOW-LENGTH(FEET) = 470.00 �w ELEVATION DATA: UPSTREAM(FEET) = 1351.30 DOWNSTREAM(FEET) = 1340.12 40 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.628 qe * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.447 to SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc „w LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) RESIDENTIAL X11 "5-7 DWELLINGS/ACRE" A 2.55 .98 .50 32 9.63 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 40 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 do SUBAREA AREA(ACRES) = 2.55 INITIAL SUBAREA RUNOFF(CFS) = 6.79 ** ADD SUBAREA RUNOFF TO MAINLINE AT MAINLINE Tc: MAINLINE Tc(MIN) = 13.76 to * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.782 SUBAREA AREA(ACRES) = 2.55 SUBAREA RUNOFF(CFS) = 5.27 +tet EFFECTIVE AREA(ACRES) = 13.08 AREA -AVERAGED Fm(INCH/HR) _ .49 i AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 13.08 PEAK FLOW RATE(CFS) = 27.01 4w 40 FLOW PROCESS FROM NODE 16.00 TO NODE 18.00 IS CODE = 6.1 qm------=--------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< 41 »»>(STANDARD CURB SECTION USED) ««< s UPSTREAM ELEVATION(FEET) = 1340.12 DOWNSTREAM ELEVATION(FEET) = 1337.20 As STREET LENGTH(FEET) = 246.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 aw SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) _ .020 vs� Ej im dr **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 27.76 ,ft STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .54 tu HALFSTREET FLOOD WIDTH(FEET) = 19.10 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.62 A PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.95 it STREET FLOW TRAVEL TIME(MIN.) = 1.13 Tc(MIN.) = 14.89 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.653 me SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP . (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" A .77 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) _ .77 SUBAREA RUNOFF(CFS) = 1.50 �s EFFECTIVE AREA(ACRES) = 13.85 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 13.85 PEAK FLOW RATE(CFS) = 27.01 +s NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .54 HALFSTREET FLOOD WIDTH(FEET) = 18.87 FLOW VELOCITY(FEET/SEC.) = 3.60 DEPTH*VELOCITY(FT*FT/SEC.) = 1.93 4m FLOW PROCESS FROM NODE 19.00 TO NODE 18.00 IS CODE = 8.2 ---------------------------------------------------------------------------- »»>ADD SUBAREA RUNOFF TO MAINLINE, AT MAINLINE Tc, ««< »»>(AND COMPUTE INITIAL SUBAREA RUNOFF) ««< dW INITIAL SUBAREA FLOW-LENGTH(FEET) = 470.00 ELEVATION DATA: UPSTREAM(FEET) = 1348.20 DOWNSTREAM(FEET) = 1337.20 ail Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.659 *� * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.441 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) Z$ RESIDENTIAL "5-7 DWELLINGS/ACRE" A 2.62 .98 .50 32 9.66 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.62 INITIAL SUBAREA RUNOFF(CFS) = 6.96 �M ** ADD SUBAREA RUNOFF TO MAINLINE AT MAINLINE Tc: MAINLINE Tc(MIN) = 14.89 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.653 SUBAREA AREA(ACRES) = 2.62 SUBAREA RUNOFF(CFS) = 5.11 EFFECTIVE AREA(ACRES) = 16.47 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 16.47 PEAK FLOW RATE(CFS) = 32.10 **************************************************************************** FLOW PROCESS FROM NODE 18.00 TO NODE 20.00 IS CODE = 6.1 F-71 n. 0 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED) ««< do UPSTREAM ELEVATION(FEET) = 1337.20 DOWNSTREAM ELEVATION(FEET) = 1335.50 STREET LENGTH(FEET) = 185.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 i SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 +*+� STREET PARKWAY CROSSFALL(DECIMAL) _ .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 32.53 ***STREET FLOWING FULL*** s STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .58 HALFSTREET FLOOD WIDTH(FEET) = 15.71 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.50 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.04 'W STREET FLOW TRAVEL TIME(MIN.) _ .88 Tc(MIN.) = 15.77 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.563 ® SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN „w RESIDENTIAL "5-7 DWELLINGS/ACRE" A .46 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 'm SUBAREA AREA(ACRES) _ .46 SUBAREA RUNOFF(CFS) _ .86 EFFECTIVE AREA(ACRES) = 16.93 AREA -AVERAGED Fm(INCH/HR) _ .49 do AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 16.93 PEAK FLOW RATE(CFS) = 32.10 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: w DEPTH(FEET) _ .58 HALFSTREET FLOOD WIDTH(FEET) = 15.58 FLOW VELOCITY(FEET/SEC.) = 3.50 DEPTH*VELOCITY(FT*FT/SEC.) = 2.02 FLOW PROCESS FROM NODE 30.00 TO NODE 20.00 IS CODE = ---------------------------------------------------------------------------- 8.2 „�„ »»>ADD SUBAREA RUNOFF TO MAINLINE, AT MAINLINE Tc, ««< »»>(AND COMPUTE INITIAL SUBAREA RUNOFF) ««< INITIAL SUBAREA FLOW-LENGTH(FEET) = 575.00 ELEVATION DATA: UPSTREAM(FEET) = 1344.47 DOWNSTREAM(FEET) = 1335.50 +err► Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE))** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.874 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.620 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc a� LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) COMMERCIAL A 1.10 .98 .10 32 8.87 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 0 4m r:3 .w 4w SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) = 1.10 INITIAL SUBAREA RUNOFF(CFS) = 3.49 .w ** ADD SUBAREA RUNOFF TO MAINLINE AT MAINLINE Tc: MAINLINE Tc(MIN) = 15.77 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.563 SUBAREA AREA(ACRES) = 1.10 SUBAREA RUNOFF(CFS) = 2.44 EFFECTIVE AREA(ACRES) = 18.03 AREA -AVERAGED Fm(INCH/HR) _ .46 AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .48 TOTAL AREA(ACRES) = 18.03 PEAK FLOW RATE(CFS) = 34.07 **************************************************************************** FLOW PROCESS FROM NODE 20.00 TO NODE 32.00 IS CODE = 6.1 ---------------------------------------------------------------------- dl »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< qw >>>>>(STANDARD CURB SECTION USED) ««< arr UPSTREAM ELEVATION(FEET) = 1335.50 DOWNSTREAM ELEVATION(FEET) = 1332.40 STREET LENGTH(FEET) = 180.00 CURB HEIGHT(INCHES) = 8.0 ++. STREET HALFWIDTH(FEET) = 18.00 +�► DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 wu OUTSIDE STREET CROSSFALL(DECIMAL) _ .040 dilk SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 **************************************************************************** FLOW PROCESS FROM NODE 33.00 TO NODE 32.00 IS CODE = 8.2 ---------------------------------------------------------------- 'm »»>ADD SUBAREA RUNOFF TO MAINLINE, AT MAINLINE Tc,<<<<< »»>(AND COMPUTE INITIAL SUBAREA RUNOFF) ««< lw ow **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 34.32 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .62 HALFSTREET FLOOD WIDTH(FEET) = 17.18 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.59 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.85 STREET FLOW TRAVEL TIME(MIN.) _ .65 Tc(MIN.) = 16.43 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.502 +0 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A .23 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) _ .23 SUBAREA RUNOFF(CFS) = 50 EFFECTIVE AREA(ACRES) = 18.26 AREA -AVERAGED Fm(INCH/HR) _ .46 AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .47 war TOTAL AREA(ACRES) = 18.26 PEAK FLOW RATE(CFS) = 34.07 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .62 HALFSTREET FLOOD WIDTH(FEET) = 17.10 FLOW VELOCITY(FEET/SEC.) = 4.59 DEPTH*VELOCITY(FT*FT/SEC.) = 2.85 **************************************************************************** FLOW PROCESS FROM NODE 33.00 TO NODE 32.00 IS CODE = 8.2 ---------------------------------------------------------------- 'm »»>ADD SUBAREA RUNOFF TO MAINLINE, AT MAINLINE Tc,<<<<< »»>(AND COMPUTE INITIAL SUBAREA RUNOFF) ««< lw ow LzJ e-7 .. wo INITIAL SUBAREA FLOW-LENGTH(FEET) = 767.00 ELEVATION DATA: UPSTREAM(FEET) = 1344.20 DOWNSTREAM(FEET) = 1322.40 w Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 As SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.301 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.131 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5-7 DWELLINGS/ACRE" A 2.42 .98 .50 32 11.30 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.42 INITIAL SUBAREA RUNOFF(CFS) = 5.76 �w ** ADD SUBAREA RUNOFF TO MAINLINE AT MAINLINE Tc: w MAINLINE Tc(MIN) = 16.43 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.502 SUBAREA AREA(ACRES) = 2.42 SUBAREA RUNOFF(CFS) = 4.39 EFFECTIVE AREA(ACRES) = 20.68 AREA -AVERAGED Fm(INCH/HR) _ .46 *+ AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .47 TOTAL AREA(ACRES) = 20.68 PEAK FLOW RATE(CFS) = 37.95 ar**************************************************************************** do FLOW PROCESS FROM NODE 32.00 TO NODE 34.00 IS CODE = 6.1 ---------------------------------------------------------------------------- ,a »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »» >(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 1332.40 DOWNSTREAM ELEVATION(FEET) = 1326.00 'w STREET LENGTH(FEET) = 450.00 CURB HEIGHT(INCHES) = 8.0 an STREET HALFWIDTH(FEET) = 18.00 am DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 ift OUTSIDE STREET CROSSFALL(DECIMAL) _ .040 'w SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 m **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 38.82 ***STREET FLOWING FULL*** .�r STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .66 HALFSTREET FLOOD WIDTH(FEET) = 18.00 ar AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.46 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.93 STREET FLOW TRAVEL TIME(MIN.) = 1.68 TC(MIN.) = 18.11 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.360 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A .85 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) _ .85 SUBAREA RUNOFF(CFS) = 1.73 EFFECTIVE AREA(ACRES) = 21.53 AREA -AVERAGED Fm(INCH/HR) _ .45 AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .46 ww TOTAL AREA(ACRES) = 21.53 PEAK FLOW RATE(CFS) = 37.95 m �e ur► �w �1 s �e 40 s mo aw i/ Iva rn 4w NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .65 HALFSTREET FLOOD WIDTH(FEET) = 18.00 FLOW VELOCITY(FEET/SEC.) = 4.43 DEPTH*VELOCITY(FT*FT/SEC.) = 2.89 **************************************************************************** FLOW PROCESS FROM NODE 34.00 TO NODE 34.00 IS CODE = 1 ---------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 18.11 RAINFALL INTENSITY(INCH/HR) = 2.36 AREA -AVERAGED Fm(INCH/HR) _ .45 AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .46 EFFECTIVE STREAM AREA(ACRES) = 21.53 TOTAL STREAM AREA(ACRES) = 21.53 PEAK FLOW RATE(CFS) AT CONFLUENCE = 37.95 **************************************************************************** FLOW PROCESS FROM NODE 40.00 TO NODE 41.00 IS CODE = 2.1 --------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< >>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW-LENGTH(FEET) = 526.00 ELEVATION DATA: UPSTREAM(FEET) = 1334.40 DOWNSTREAM(FEET) = 1329.30 `r Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.418 +w * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.493 At SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc rw LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) COMMERCIAL A 1.07 .98 .10 32 9.42 10 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 "*' SUBAREA RUNOFF(CFS) = 3.27 40 TOTAL AREA(ACRES) = 1.07 PEAK FLOW RATE(CFS) = 3.27 w� FLOW PROCESS FROM NODE 41.00 TO NODE 34.00 IS CODE = 6.1 -------------------------------------------------------- mm »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< 40 »»>(STANDARD CURB SECTION USED) ««< MR UPSTREAM ELEVATION(FEET) = 1329.30 DOWNSTREAM ELEVATION(FEET) = 1326.00 STREET LENGTH(FEET) = 548.00 CURB HEIGHT(INCHES) = 8.0 go STREET HALFWIDTH(FEET) = 18.00 am DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .040 wr W Ej on do SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 +w **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.51 �= STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .39 HALFSTREET FLOOD WIDTH(FEET) = 6.71 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.15 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) _ .83 STREET FLOW TRAVEL TIME(MIN.) = 4.25 Tc(MIN.) = 13.67 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.793 ul SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS "m LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN do COMMERCIAL A 1.02 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .98 rw SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) = 1.02 SUBAREA RUNOFF(CFS) = 2.47 ,wl EFFECTIVE AREA(ACRES) = 2.09 AREA -AVERAGED Fm(INCH/HR) _ .10 AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .10 +s TOTAL AREA(ACRES) = 2.09 PEAK FLOW RATE(CFS) = 5.07 40 END OF SUBAREA STREET FLOW HYDRAULICS: in DEPTH(FEET) _ .40 HALFSTREET FLOOD WIDTH(FEET) = 7.09 FLOW VELOCITY(FEET/SEC.) = 2.20 DEPTH*VELOCITY(FT*FT/SEC.) = 88 **************************************************************************** FLOW PROCESS FROM NODE 34.00 TO NODE 34.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«« < »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES ««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.67 wlr RAINFALL INTENSITY(INCH/HR) = 2.79 AREA -AVERAGED Fm(INCH/HR) _ .10 ar AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .10 EFFECTIVE STREAM AREA(ACRES) = 2.09 TOTAL STREAM AREA(ACRES) = 2.09 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.07 dw ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE an NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 37.95 18.11 2.360 .98( .45) .46 21.53 10.00 wm 2 5.07 13.67 2.793 .98( .10) .10 2.09 40.00 " RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO do CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** do STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 4m 1 42.2 18.11 2.360 .975( .417) .43 23.6 10.00 2 40.2 13.67 2.793 .975( .408) .42 18.3 40.00 alb L-1 ** PEAK FLOW RATE TABLE ** COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: STREAM PEAK FLOW RATE(CFS) = 42.21 Tc(MIN.) = 18.11 Ae EFFECTIVE AREA(ACRES) = 23.62 AREA -AVERAGED Fm(INCH/HR) = 42 w AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .43 °w TOTAL AREA(ACRES) = 23.62 40.2 13.67 fm END OF STUDY SUMMARY: 18.3 40.00 2 TOTAL AREA(ACRES) = 23.62 TC(MIN.) = 18.11 23.6 EFFECTIVE AREA(ACRES) = 23.62 AREA -AVERAGED Fm(INCH/HR)= .42 AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .43 PEAK FLOW RATE(CFS) = 42.21 METHOD ANALYSIS ** PEAK FLOW RATE TABLE ** v" AV on As ma 40 10 As lw ad 4w 4w IN do 40 mo �r do STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 40.2 13.67 2.793 .975( .408) .42 18.3 40.00 2 42.2 18.11 2.360 .975( .417) .43 23.6 10.00 END OF RATIONAL METHOD ANALYSIS v" AV on As ma 40 10 As lw ad 4w 4w IN do 40 mo �r do **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983-95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE. FONTANA CA. 92336 TEL. (909) 356-1815 FAX (909) 356-1795 ************************** DESCRIPTION OF STUDY ************************** * TRACT 16403, FONTANA * 100 YEAR STORM ANALYSIS * BEECH AVENUE ************************************************************************** FILE NAME: 403-B-l.DAT TIME/DATE OF STUDY: 11:50 3/12/2003 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TIME-OF-CONCENTRATION MODEL* -- USER SPECIFIED STORM EVENT(YEAR) = 25.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) _ .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) = 1.1500 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* *USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT -/PARK HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 NA NA NA NA NA NA NA NA NA NA am GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = .00 FEET do as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *w *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN to OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* AW **************************************************************************** FLOW PROCESS FROM NODE 50.00 TO NODE 51.00 IS CODE = 2.1 ---------------------------------------------------------------------------- .. »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< w INITIAL SUBAREA FLOW-LENGTH(FEET) = 600.00 E., w to w Sm in ,m AK w 45 a�n ar, MM me W N ELEVATION DATA: UPSTREAM(FEET) = 1360.70 DOWNSTREAM(FEET) = 1347.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.364 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.751 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) COMMERCIAL A .85 .98 .10 32 8.36 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) = 2.79 TOTAL AREA(ACRES) _ .85 PEAK FLOW RATE(CFS) = 2.79 END OF STUDY SUMMARY: TOTAL AREA(ACRES) _ .85 TC(MIN.) = 8.36 EFFECTIVE AREA(ACRES) _ .85 AREA -AVERAGED Fm(INCH/HR)= .10 AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .10 PEAK FLOW RATE(CFS) = 2.79 END OF RATIONAL METHOD ANALYSIS r7 t in ***STREET FLOWING FULL*** art STREET FLOW MODEL RESULTS: ------------------------------------------------------ ,,,,, STREET FLOW DEPTH (FEET) _ .58 HALFSTREET FLOOD WIDTH(FEET) = 20.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.93 PRODUCT OF DEPTH&VELOCITY = 1.69 **************************************************************************** .w HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-95 Advanced Engineering Software (aes) Ver. 5.1 Release Date: 01/01/95 License ID 1400 *+� Analysis prepared by: ALLARD ENGINEERING 6101 CHERRY AVE FONTANA CA. TEL (909) 899 - 5011 FAX (909) 899-5014 M -------------------------------------------------------- TIME/DATE OF STUDY: 14:58 4/21/2003 40 ----------------------------------------------------------------- ************************** DESCRIPTION OF STUDY ************************** sr * Street Capacity Calculations for Tract No 16403 * Blackthorn Drive east of Fieldrush Court * File: 16403-04 ************************************************************************** **************************************************************************** %W >>>>STREETFLOW MODEL INPUT INFORMATION<<<< art -------------------------------------------------------- CONSTANT STREET GRADE(FEET/FEET) _ .005000 CONSTANT STREET FLOW(CFS) = 29.90 MN AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 20.00 rr DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020000 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) _ .67 �r CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER-LIP(FEET) _ .03125 �w CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) _ .12500 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES in ***STREET FLOWING FULL*** art STREET FLOW MODEL RESULTS: ------------------------------------------------------ ,,,,, STREET FLOW DEPTH (FEET) _ .58 HALFSTREET FLOOD WIDTH(FEET) = 20.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.93 PRODUCT OF DEPTH&VELOCITY = 1.69 0 CJ wir **************************************************************************** +� HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-95 Advanced Engineering Software (aes) m Ver. 5.1 Release Date: 01/01/95 License ID 1400 *� Analysis prepared by: ALLARD ENGINEERING 6101 CHERRY AVE FONTANA CA. m TEL (909) 899 - 5011 FAX (909) 899-5014 ---------------------------------------------------------------------------- TIME/DATE OF STUDY: 12:52 4/21/2003 ***STREET FLOWING FULL*** STREET FLOW MODEL RESULTS: -----------------------------------------------------------•----------------- w STREET FLOW DEPTH(FEET) _ .59 HALFSTREET FLOOD WIDTH(FEET) = 20.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.45 PRODUCT OF DEPTH&VELOCITY = 2.05 --------------------------------------------------------------- DESCRIPTION OF STUDY ************************** * Street Capacity Calculation for Tract No 16403 * Blackthorn Drive between Foxglove P1 and Fieldrush Court File 16403-03 ************************************************************************** **************************************************************************** "■' >>>>STREETFLOW MODEL INPUT INFORMATION<<<< ---------------------------------------------------------------------------- CONSTANT STREET GRADE(FEET/FEET) _ .007000 CONSTANT STREET FLOW(CFS) = 37.80 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020000 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) _ .67 CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER-LIP(FEET) _ .03125 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) _ .12500 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES ***STREET FLOWING FULL*** STREET FLOW MODEL RESULTS: -----------------------------------------------------------•----------------- w STREET FLOW DEPTH(FEET) _ .59 HALFSTREET FLOOD WIDTH(FEET) = 20.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.45 PRODUCT OF DEPTH&VELOCITY = 2.05 --------------------------------------------------------------- X10 ma **************************************************************************** +. HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-95 Advanced Engineering Software (aes) = Ver. 5.1 Release Date: 01/01/95 License ID 1400 ++ Analysis prepared by: ' ALLARD ENGINEERING 6101 CHERRY AVE FONTANA CA. TEL (909) 899 - 5011 FAX (909) 899-5014 ----------------------------------------------------------- �r TIME/DATE OF STUDY: 14:47 4/21/2003 ------------------------------------------------------------- �w ************************** DESCRIPTION OF STUDY ************************** * Street Capacity Calculations for Tract No. 16403 * Blackthorn Drive between Eldeberry Court and Foxglove Place * * File 16403-02 ************************************************************************** **************************************************************************** �.. >>>>STREETFLOW MODEL INPUT INFORMATION<< << 's ------------------------------------------------------- CONSTANT STREET GRADE(FEET/FEET) _ .012000 CONSTANT STREET FLOW(CFS) = 45.20 ve AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 20.00 40 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020000 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) _ .67 CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER-LIP(FEET) _ .03125 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) _ .12500 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES ***STREET FLOWING FULL*** Orr STREET FLOW MODEL RESULTS: -------------- --------------------------------------- ,.,, STREET FLOW DEPTH (FEET) _ .58 HALFSTREET FLOOD WIDTH(FEET) = 20.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.44 PRODUCT OF DEPTH&VELOCITY = 2.55 do ma do 40 to AN qm r - **************************************************************************** r HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-95 Advanced Engineering Software (aes) Ver. 5.1 Release Date: 01/01/95 License ID 1400 +� Analysis prepared by: ALLARD ENGINEERING 6101 CHERRY AVE FONTANA C.A. TEL (909) 899 - 5011 FAX (909) 899-5014 ---------------------------------------------------- TIME/DATE OF STUDY: 14:51 4/21/2003 ************************** DESCRIPTION OF STUDY ************************** * Street Capacity Calculation for Tract No 16403 * Angelica Lane at Village Parkway * aw * File 16403-03 ************************************************************************** 40 **************************************************************************** in >>>>STREETFLOW MODEL INPUT INFORMATION<< << ---------------------------------------------------- do CONSTANT STREET GRADE(FEET/FEET) _ .006100 CONSTANT STREET FLOW(CFS) = 48.10 me AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020000 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) _ .67 CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER-LIP(FEET) _ .03125 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) _ .12500 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES ***STREET FLOWING FULL*** ---------------------- i STREET FLOW MODEL RESULTS: -------------------------------------------------- ,,,. STREET FLOW DEPTH (FEET) _ .65 HALFSTREET FLOOD WIDTH(FEET) = 20.00 do AVERAGE FLOW VELOCZTY(FEET/SEC.) = 3.61 PRODUCT OF DEPTH&VELOCITY = 2.36 as 4m ao mm do ar +Ilr yrr mm Ar 0 **************************************************************************** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE 4N (C) Copyright 1982-95 Advanced Engineering Software (aes) Ver. 5.1 Release Date: 01/01/95 License ID 1400 w Analysis prepared by: go ALLARD ENGINEERING * 6101 CHERRY AVE FONTANA CA. TEL (909) 899 - 5011 FAX (909) 899-5014 AM ---------------------------------------------------------------------------- do TIME/DATE OF STUDY: 15:18 4/21/2003 w ************************** DESCRIPTION OF STUDY ************************** * Street Capacity Calculations for Tract No 16403 * Existing Village Parkway, Northwest of Existing Sump Catch Basins * See Exhibit 1 and 2 for Street X -Section Geometry, File 16403-05 ************************************************************************** **************************************************************************** 'r >>>>STREETFLOW MODEL INPUT INFORMATION<<<< ---------------------------------------------------------------------------- '"" CONSTANT STREET GRADE(FEET/FEET) _ .016800 as CONSTANT STREET FLOW(CFS) = 53.80 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 arr INTERIOR STREET CROSSFALL(DECIMAL) _ .020000 OUTSIDE STREET CROSSFALL(DECIMAL) _ .035380 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) _ .67 CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER-LIP(FEET) _ .03125 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) _ .12500 war FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES urr ***STREET FLOWING FULL*** STREET FLOW MODEL RESULTS: aiw---------------------------------------------------------------------------- STREET FLOW DEPTH(FEET) _ .65 HALFSTREET FLOOD WIDTH(FEET) = 18.00 as AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.31 PRODUCT OF DEPTH&VELOCITY = 3.48 ---------------------------------------------------------------------------- C75 411 AY 6 23'e Af TREET SECTION '.E PARKWAY WW I MENT BY U. -BUILDERS ,BLVD., SUITE 201 CA 92680 SIDMA Ile (4orArlaAi v,4,qlxs) Zl nB,�f%Sj/NG PER CiTY.,aPPROVEO � /MPPOVEM&L,7 17E,4MS, T,P. /332s -/ ,OND 7r. /3325-3, Y/GL,aGE P,dPKW4y, P/LE NVa 1505 AAV /659 RESP4U7/WI-)' sa e2' /' /o/ g' EXl -r. VAR (F,5 � 0/o', r'IA �_nAc����inv-z' i�rc�rcMcri i-ci+�� Imo. �S'j'Lb -i AND TR, /3325 - V/LLAG6 PIJRK{4�,a�, /LENO. /SQ3 f, /55/9 KES,-sGT/yELY 82 ' R/w 77-7 0,60 ,' ,�.'� -'"bra. y"` � ,.8' I ' 'i%�I %D � 8'' • MvsL i r =— �-- �s'f3 Tom_=�1 � 1 R/w Vii..• . , .��-. • .1 / i -7-o :1LLA E PARKWAY - z L.E VEL L We 1 TI.=G.0 50' R/ W a .. SECT I C TYP -:CAL s...,.,.,,EET�CR0SS SNOT TO SCALE 40 **************************************************************************** ^� HYDRAULIC ELEMENTS - I PROGRAM PACKAGE as (C) Copyright 1982-95 Advanced Engineering Software (aes) Ver. 5.1 Release Date: 01/01/95 License ID 1400 Analysis prepared by: arr ALLARD ENGINEERING w 6101 CHERRY AVE FONTANA CA. TEL (909) 899 - 5011 FAX (909) 899-5014 "m -------------------------------------------------- dt TIME/DATE OF STUDY: 21:43 4/21/2003 .s► ************************** DESCRIPTION OF STUDY ************************** +rs * Street Capacity Calculation for Tract No 16403, Southwest side of Village * Parkway, at Proposed 14' Catch Basin * * File 16403-06 ************************************************************************** >>>>STREETFLOW MODEL INPUT INFORMATION<< << ---------------------------------------------------- "� CONSTANT STREET GRADE(FEET/FEET) = .012000 CONSTANT STREET FLOW(CFS) = 53.80 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 to INTERIOR STREET CROSSFALL(DECIMAL) = .020000 OUTSIDE STREET CROSSFALL(DECIMAL) = .040000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = .67 CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER-LIP(FEET) = .03125 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) = .12500 �r FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES ***STREET FLOWING FULL*** 40STREET FLOW FLOW MODEL RESULTS: at--------------------------------------------------------------------------- NOTE: STREET FLOW EXCEEDS TOP OF CURB. ON THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) = .70 HALFSTREET FLOOD WIDTH(FEET) = 18.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.84 PRODUCT OF DEPTH&VELOCITY = 3.41 sr ffm so am No "m **************************************************************************** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-95 Advanced Engineering Software (aes) Ver. 5.1 Release Date: 01/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 6101 CHERRY AVE FONTANA CA. TEL (909) 899 - 5011 FAX (909) 899-5014 ---------------------------------------------------------------------------- TIME/DATE OF STUDY: 21:46 4/21/2003 as .,w ************************** DESCRIPTION OF STUDY ************************** tr * Street Capacity Calculations for Tract No 16403, Northeast Side o * Village Parkway at Proposed 14' Catch Basin * * * File 16403-07 **************************************************************************** +Iw >>>>STREETFLOW MODEL INPUT INFORMATION<<<< ---------------------------------------------- CONSTANT STREET GRADE(FEET/FEET) 011040 CONSTANT STREET FLOW(CFS) = 53.80 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 dW CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 +w INTERIOR STREET CROSSFALL(DECIMAL) = .020000 OUTSIDE STREET CROSSFALL(DECIMAL) = .035300 s/ CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = .67 CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50 �w CONSTANT SYMMETRICAL GUTTER-LIP(FEET) = .03125 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) = .12500 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES ***STREET FLOWING FULL*** STREET FLOW MODEL RESULTS: 'w ----------------------------------------------- NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) = .69 HALFSTREET FLOOD WIDTH(FEET) = 18.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.67 PRODUCT OF DEPTH&VELOCITY = 3.23 **************************************************************************** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-95 Advanced Engineering Software (aes) Ver. 5.1 Release Date: 01/01/95 License ID 1400 Analysis prepared by: dO ALLARD ENGINEERING 6101 CHERRY AVE FONTANA CA. TEL (909) 899 - 5011 FAX (909) 899-5014 ---------------------------------------------------------------------------- ii1 TIME/DATE OF STUDY: 21:56 4/21/2003 ws ************************** DESCRIPTION OF STUDY ************************** * Tract No 164031 Catch Basin Proposed for the southwest Side of Village .w * Parkway * File 16403-10 dN **************************************************************************** 40 » »FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION« « iM--------------- ----------------------------------------------------------- w Curb Inlet Capacities are approximated based on the Bureau o �M Public Roads nomograph plots for flowby basins and sump basins. w STREETFLOW(CFS) = 26.90 do GUTTER FLOWDEPTH(FEET) _ .70 BASIN LOCAL DEPRESSION(FEET) _ .33 *� FLOWBY BASIN WIDTH(FEET) = 14.00 >>>>CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 39.0 40 >>>>CALCULATED ESTIMATED INTERCEPTION(CFS) = 14.5 ----------------------- SSS VILLAGE PARKWAY INLET SKETCH FOR CALCULATION OF FLOW -BY CONTRIBUTING TO SUMP do w rMl - qm dw .w HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-95 Advanced Engineering Software (aes) Ver. 5.1 Release Date: 01/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 6101 CHERRY AVE FONTANA CA. TEL (909) 899 - 5011 FAX (909) 899-5014 No---------------------------------------------------------------------------- 49 TIME/DATE OF STUDY: 21:59 4/21/2003 ************************** DESCRIPTION OF STUDY ************************** * Tract No 16403, Proposed Catch Basin to be on Northeast Side of Village * * Parkway * File 16403-11 so >>>>FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION<< << ---------------------------------------------------------------------------- 40 Curb Inlet Capacities are approximated based on the Bureau of to Public Roads nomograph plots for flowby basins and sump basins. on STREETFLOW(CFS) = 26.90 "N GUTTER FLOWDEPTH(FEET) _ .69 BASIN LOCAL DEPRESSION(FEET) _ .33 40 FLOWBY BASIN WIDTH(FEET) = 14.00 in >>>>CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 39.6 no >>>>CALCULATED ESTIMATED INTERCEPTION(CFS) = 14.3 SES VILLAGE PARKWAY INLET SKETCH FOR CALCULATION OF FLOW -BY CONTRIBUTING w TO SUMP a 40 do W As on aw 4m do �w rw .s 40 Wr w do dit r ALLARD ENGINEERING civil engineering land surveying land planning 8253 Sierra Avenue Fontana, CA 92336 (909) 356-1B15 • (909) 356-1825 DESCRIPTION T2Acc tJ,•o_ I�q+o 3 JOB # DESIGNED BY APPROVED t 36 Q `�-8Y Ptt D LIP, 1C 8 cj 43 ps . I �i 4 -1U SHEET OF DATE IL �V) o H 0 rC9 yJ 17 �k15711 J, gtlC % C. g + 4 � Q�'?S9-, �` 5.3 CFSs rOc la A Up f $ s WOTE . (*) 4 = 5q. 16 cVs Helf MOb \S R ATktwAl CURB UNE 7' REINFORCUK STEEL PER APPLICABLE I 3'K: 10' ROLLED ►LATE/`US STD. DWG. OR AS DETAILED OTHERWISE. RADI (A.ST.M.A361 FORMED AS SHOWN 11SIDE WALK SLOPE —� ; �3-0 w#413ARSX(w46')A.S. T-� iw—" Fi a Q c 4 � o — -I I Y.71 a, a �— HEX. NUTS 11/i HOLE IN PLATE I ADJUSTABLE STRRIP SEE DETAIL BELOW • f s 3/a' +X it ALLEN NO. BRASS SET CLAP ENO (3',s ALLEN WRENCH). CSX OR PUNCH f:' HOLE % DEEP 1"C.C.ON SUPPORT BOLT FOR SET SCREW. --1"0 O GALVANIZED STEEL -STD. SQUARE HEAD OR HEXOGONAL HEAD MACHINE DOLT SEE NOTE 3. ' 6 tr• � 3 Tt rS 'L'! •r, •b T(VARESI r-- ( Shorn OR CNN Bash Std.) (TYP) NOTE: "S" is the shortest distance between the sill of the Catch Basin and the center of the nearest protection bar. See Note S. DETAIL OF CATCH BASIN OPENING r*34 X9Q12 or a ( 4 4 X9@ 16 (except of 6 anchors) A INTERNOR FACE OF CATCH BASIN END WALL —_ Ile ._ OPENING FOR COHC. I B PLACEssENTEA.ENO. - - 1 SEE SPLICE DETAIL a 3 i *3b or#4X9Cai43te. 1 ENO ANCHOR51 NOTE: CATCH BASIN TOP SLAB REINFORCING STEEL @.LOCATE A4 xr EA. END. NOT SHOWN. 1 %= O e ( LENGTH AFTER WELD) ELECTRICALLY WELDED STUDS. f 1 NELSON {f SNEER CONNECTOR KiM. WELDING SYSTEMpVIS10N I.. , SHEER ODNNECTOR OR EQUALS STAGGER AS INDICATED BELOW. ^� , B NOTE einforcing Steel and Splice not shown Above Details. dace Anchors approximately evenly of 15"max. c.c. between and anchors and anchors of splice joints except omit at 8 anchor location. Space B anchors at approximately-450max. between e end anchors. ALTERNATE METHODS FOR FACE PLATE ANCHORAGE y'R(TYP)) ( .T 1 1 s/Ei iii 3/i e/i V, TOP DRILL / N.C.1OP NOTE - 1. T . FOR 3 X 11,�' ALLEN HEAD SET SCREW 1. MATERIAL SHALL BE UST STEEL. �2 2. STIRRUPS SHALL BE GALYANIZED. 3. FOR INSTALLATION DETAILS SEE STD.OING.2-0232 ADJUSTABLE PROTECTION BAR STIRRUP 2-/4 SQUARE HOLES I.OR 51e X 1 %j CARRIAGE BOLT vy, 2" 'rte 4' 4 FACE PLATE END & SPLICE DETAILS NOTES I. SUPPORT BOLT ANGLE "oeSHALL NARY TO CONFORM WITH BATTER OF ADJOINING CURB. 2 ?ROTECTION BAR SHALL BE INSTALLED AND SUPPORT BOLTS SPACED, ACCORDING TO SHEET 2 of 2. 3. SUPPORT BOLTS SHALL BE EQUAL IN LENGTH TO CURB FACE + 4"± FOR ALL CURB BATTERS. 4. ALL EXPOSED METAL PARTS SHALL GALVANIZED AFTER FAB 5. PROTECTION BAR SPACING, PROTECTION 13AR"S"SHALL BE INSTALLED WHEN THE MINIMUN CLEAR OPENING OFTHE CATCH BASIN EX- CEEDS 6~BAR"S"SHALL BE PLACED SUCH THAT NO MINIMUN CLEAR OPENING EXCEED 6" (A) WHEN ONE BAR IS REQUIRED"S" SHALL BE 63/4 HOWEVER THIS SHALL BE REDUCED IF NECESSARY SO THAT THE CENTER OF THE PROTECTION BAR IS NOT LESS THAN 2%4 FROM THE ROLLED PLATE- 8) LATEB) WHEN TWO OR MORE BARS ARE REQUIRED "S"SHALL BE 63/4 WITH REMAINING BARS SPACED AT rm"Gc. THE SPACING OF TOP BAR SHALL BE REDUCED IF NECESSARY SO THAT THE CENTER 4F 'THE BAR IS NOT LESS THAN 21/2 FROM THE ROLLED PLATE. i 6. WHERE CATCH BASIN ARE TO BE CONSTRUCTED ON CURVES,TtM. MAXIMUM CHORDLENGTH FOR FACE PLATE SHALL BE SUCH THAT THE MAXIMUM DIMENSION FROM SAID CHORQ (MEASURED) PERPENDICULAR THERETO ) TO THE TRUE CURVE WILL NOT EXCEED ONE INCH. WHERE MORE THAN ONE CHORD IS REQUIRES CHORD LENGTH SHALL BE EQUAL. 7. WHERE LENGTH OF FACE PLACE IS BETWEEN 22! AND 431, TWO SECTIONS MAY BE USED WHEN LENGTH EXCEEDS 43, THREE SECTIONS MAY BE USED. SECTIONS SHALL BE SPLICED ACCORDING TO THE SPLICE DETAIL. SPLICE SHALL BE PLACED ONE FOOT FROM SUPPORT BOLT SEE SHEET 2 of 2. t3 LENGTH OF FACE PLATE IS W -I:-12" FOR ALL CATCH BASINS EXCEPT 6 xs/e xo-e' THE DRIVEWAY CATCH BASIN. SPLICE PLATE 9 CATCH BASIN OPENING = NORMAL CURB FACE +4"INCHES UNLESS+ OTHERWISE SPECIFIED. '�/�X10'ROLLED PLATE 10. SPACING OF ALL ANCHORAGE =>T- 1 Y _ a. SET END ANCHORS 3"FROM ENDS OF FACE PLATE. b. PLACE ONE A ANCHOR AT EACH SIDE OF ANY AND ALL SPLICE >A +c JOINTS AND WITHIN 6"THEREOF. sit u" _ 21 SAy (w� II LOCATE WELDS IN LONGER $PAM SEDIMENT. ` j 1 N sedes drawing of some number do/ed Nov 2 197, Mi, -__2 -E..1 -10E OI-A"j , (moo IZ Eyw?T I N U. L- U REVISIONS RIVERSIDE COUNTY FLOOD CONTROL ►ROI ECT No AND DETAIL OF CATCH BASIN --r-----�- ----- WATER CONSERVATION DISTRICT OPENING ORAwING NO. --- — Anrtovco sr LAC fCO � LL INSTALLATION DETAILS CH.cr cMcowcx a •01I S"ELT NO _p Q STANDARD ORAMINC NUMBER Ce 105 OF DESCRIPTION APPRDATE c.•CCACC ev O.rc S-4i�6_ W Z �� sr e v W W N x� Z = I W O o- u � PROTECTION BAR ISEE NOTE 2 A S. %-RADIUS — -I I Y.71 a, a �— HEX. NUTS 11/i HOLE IN PLATE I ADJUSTABLE STRRIP SEE DETAIL BELOW • f s 3/a' +X it ALLEN NO. BRASS SET CLAP ENO (3',s ALLEN WRENCH). CSX OR PUNCH f:' HOLE % DEEP 1"C.C.ON SUPPORT BOLT FOR SET SCREW. --1"0 O GALVANIZED STEEL -STD. SQUARE HEAD OR HEXOGONAL HEAD MACHINE DOLT SEE NOTE 3. ' 6 tr• � 3 Tt rS 'L'! •r, •b T(VARESI r-- ( Shorn OR CNN Bash Std.) (TYP) NOTE: "S" is the shortest distance between the sill of the Catch Basin and the center of the nearest protection bar. See Note S. DETAIL OF CATCH BASIN OPENING r*34 X9Q12 or a ( 4 4 X9@ 16 (except of 6 anchors) A INTERNOR FACE OF CATCH BASIN END WALL —_ Ile ._ OPENING FOR COHC. I B PLACEssENTEA.ENO. - - 1 SEE SPLICE DETAIL a 3 i *3b or#4X9Cai43te. 1 ENO ANCHOR51 NOTE: CATCH BASIN TOP SLAB REINFORCING STEEL @.LOCATE A4 xr EA. END. NOT SHOWN. 1 %= O e ( LENGTH AFTER WELD) ELECTRICALLY WELDED STUDS. f 1 NELSON {f SNEER CONNECTOR KiM. WELDING SYSTEMpVIS10N I.. , SHEER ODNNECTOR OR EQUALS STAGGER AS INDICATED BELOW. ^� , B NOTE einforcing Steel and Splice not shown Above Details. dace Anchors approximately evenly of 15"max. c.c. between and anchors and anchors of splice joints except omit at 8 anchor location. Space B anchors at approximately-450max. between e end anchors. ALTERNATE METHODS FOR FACE PLATE ANCHORAGE y'R(TYP)) ( .T 1 1 s/Ei iii 3/i e/i V, TOP DRILL / N.C.1OP NOTE - 1. T . FOR 3 X 11,�' ALLEN HEAD SET SCREW 1. MATERIAL SHALL BE UST STEEL. �2 2. STIRRUPS SHALL BE GALYANIZED. 3. FOR INSTALLATION DETAILS SEE STD.OING.2-0232 ADJUSTABLE PROTECTION BAR STIRRUP 2-/4 SQUARE HOLES I.OR 51e X 1 %j CARRIAGE BOLT vy, 2" 'rte 4' 4 FACE PLATE END & SPLICE DETAILS NOTES I. SUPPORT BOLT ANGLE "oeSHALL NARY TO CONFORM WITH BATTER OF ADJOINING CURB. 2 ?ROTECTION BAR SHALL BE INSTALLED AND SUPPORT BOLTS SPACED, ACCORDING TO SHEET 2 of 2. 3. SUPPORT BOLTS SHALL BE EQUAL IN LENGTH TO CURB FACE + 4"± FOR ALL CURB BATTERS. 4. ALL EXPOSED METAL PARTS SHALL GALVANIZED AFTER FAB 5. PROTECTION BAR SPACING, PROTECTION 13AR"S"SHALL BE INSTALLED WHEN THE MINIMUN CLEAR OPENING OFTHE CATCH BASIN EX- CEEDS 6~BAR"S"SHALL BE PLACED SUCH THAT NO MINIMUN CLEAR OPENING EXCEED 6" (A) WHEN ONE BAR IS REQUIRED"S" SHALL BE 63/4 HOWEVER THIS SHALL BE REDUCED IF NECESSARY SO THAT THE CENTER OF THE PROTECTION BAR IS NOT LESS THAN 2%4 FROM THE ROLLED PLATE- 8) LATEB) WHEN TWO OR MORE BARS ARE REQUIRED "S"SHALL BE 63/4 WITH REMAINING BARS SPACED AT rm"Gc. THE SPACING OF TOP BAR SHALL BE REDUCED IF NECESSARY SO THAT THE CENTER 4F 'THE BAR IS NOT LESS THAN 21/2 FROM THE ROLLED PLATE. i 6. WHERE CATCH BASIN ARE TO BE CONSTRUCTED ON CURVES,TtM. MAXIMUM CHORDLENGTH FOR FACE PLATE SHALL BE SUCH THAT THE MAXIMUM DIMENSION FROM SAID CHORQ (MEASURED) PERPENDICULAR THERETO ) TO THE TRUE CURVE WILL NOT EXCEED ONE INCH. WHERE MORE THAN ONE CHORD IS REQUIRES CHORD LENGTH SHALL BE EQUAL. 7. WHERE LENGTH OF FACE PLACE IS BETWEEN 22! AND 431, TWO SECTIONS MAY BE USED WHEN LENGTH EXCEEDS 43, THREE SECTIONS MAY BE USED. SECTIONS SHALL BE SPLICED ACCORDING TO THE SPLICE DETAIL. SPLICE SHALL BE PLACED ONE FOOT FROM SUPPORT BOLT SEE SHEET 2 of 2. t3 LENGTH OF FACE PLATE IS W -I:-12" FOR ALL CATCH BASINS EXCEPT 6 xs/e xo-e' THE DRIVEWAY CATCH BASIN. SPLICE PLATE 9 CATCH BASIN OPENING = NORMAL CURB FACE +4"INCHES UNLESS+ OTHERWISE SPECIFIED. '�/�X10'ROLLED PLATE 10. SPACING OF ALL ANCHORAGE =>T- 1 Y _ a. SET END ANCHORS 3"FROM ENDS OF FACE PLATE. b. PLACE ONE A ANCHOR AT EACH SIDE OF ANY AND ALL SPLICE >A +c JOINTS AND WITHIN 6"THEREOF. sit u" _ 21 SAy (w� II LOCATE WELDS IN LONGER $PAM SEDIMENT. ` j 1 N sedes drawing of some number do/ed Nov 2 197, Mi, -__2 -E..1 -10E OI-A"j , (moo IZ Eyw?T I N U. L- U REVISIONS RIVERSIDE COUNTY FLOOD CONTROL ►ROI ECT No AND DETAIL OF CATCH BASIN --r-----�- ----- WATER CONSERVATION DISTRICT OPENING ORAwING NO. --- — Anrtovco sr LAC fCO � LL INSTALLATION DETAILS CH.cr cMcowcx a •01I S"ELT NO _p Q STANDARD ORAMINC NUMBER Ce 105 OF DESCRIPTION APPRDATE c.•CCACC ev O.rc S-4i�6_ go da mm in .w do w. do ALLARD ENGINEERING DESCRIPTION civil engineering land surveying land planning JOB # SHEET OF DESIGNED BY DATE 8253 Sierra Avenue Fontana, CA 92336 APPROVED (909) 356-1815 • (909) 356-1825 Q5i Pa "CJ i rl U CoEP A Fort. -F x 15T i N "7' C --G. Sov-t+� s 510e O'- *41U-A6'G PA&KWAI tl aA rte, L $` 0'-j F4- wo tvz Rina ` g' LF 5 No •.Jnl VOHIO L, OeP"(N Fob E IA4 6 i t t-1 6 1 C-3. oi= % LLAt,� PP�4LW'01 ?4>1-401rJt1 Oma' (l1� 5Ni0v�t� pa plot ��(�tcAti� C&,S'v4 ► UL - J 4E HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-95 Advanced Engineering Software (aes) Ver. 5.1 Release Date: 01/01/95 License ID 1400 roc Analysis prepared by: ALLARD ENGINEERING 'W 6101 CHERRY AVE as FONTANA CA. TEL (909) 899 - 5011 FAX (909) 899-5014 MR---------------------------------------------------------------------------- M6 TIME/DATE OF STUDY: 22:30 4/21/2003 .w ************************** DESCRIPTION OF STUDY ************************** * Tract No 16403, Existing 7' Catch Basin on Southwest Side of Village * Parkway * File 16403-20 >> >>SUMP TYPE BASIN INPUT INFORMATION<< << 'o---------------------------------------------------------------------------- +fit Curb Inlet Capacities are approximated based on the Bureau of 's Public Roads nomograph plots for flowby basins and sump basins. qW dA BASIN INFLOW(CFS) = 15.30 BASIN OPENING(FEET) _ .87 DEPTH OF WATER(FEET) _ .93 �w >>>>CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 5.75 me to mm Wi war do w sew wr w HYDRAULIC ELEMENTS - I PROGRAM PACKAGE +�► (C) Copyright 1982-95 Advanced Engineering Software (aes) Ver. 5.1 Release Date: 01/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 6101 CHERRY AVE FONTANA CA. TEL (909) 899 - 5011 FAX (909) 899-5014 ws ---------------------------------------------------------------------------- TIME/DATE OF STUDY: 22:43 4/21/2003 ************************** DESCRIPTION OF STUDY ************************** * Tract No 16403, Existing 141 Catch Basin on the Northeast Side of * Village Parkway * File 16403-21 >>>>SUMP TYPE BASIN INPUT INFORMATION<<<< ---------------------------------------------------------------------------- a0 Curb Inlet Capacities are approximated based on the Bureau of dt Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 15.50 Am BASIN OPENING(FEET) _ .87 DEPTH OF WATER(FEET) _ .90 qW do >>>>CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 6.02 40 go rr AU w rill w rir a rrt ,,. T1 Tract 16403 storm drain analysis for existing line" A" 0 T2 see City of Fontana Dwg Nos. 1510 (Sheet 7) and 1983 (Sheet 2) T3 SO 3209.8901309.260 1 1311.700 *� R 3487.6701313.360 1 .013 .000 .000 1 R 3633.4101315.210 1 .013 .000 .000 0 R 3724.9201316.372 1 .013 -29.130 .000 0 R 3855.0001318.100 1 .013 .000 .000 0 "** JX 3861.0001318.090 5 4 .013 28.800 1318.570 -33.5 .000 R 3876.6501318.290 5 .013 57.490 .000 0 JX 3883.6601319.380 2 9 10.013 15.300 15.5001319.5001319.500 84.5 45.0 .000 R 3885.0801319.390 2 .013 -1.820 .000 0 R 3938.0301319.730 2 .013 .000 .000 0 R 3967.7101319.921 2 .013 .000 .000 0 M R 4058.2801320.504 2 .013 .000 .000 0 SH 4058.2801320.504 2 1322.530 CD 1 4 1 .000 4.000 .000 .000 .000 .00 CD 2 4 1 .000 3.000 .000 .000 .000 .00 CD 3 4 1 .000 4.000 .000 .000 .000 .00 CD 4 4 1 .000 3.000 .000 .000 .000 .00 CD 5 4 1 .000 4.000 .000 .000 .000 .00 M CD 6 4 1 .000 1.500 .000 .000 .000 .00 CD 7 4 1 .000 2.000 .000 .000 .000 .00 r� CD 8 4 1 .000 3.000 .000 .000 .000 .00 CD 9 4 1 .000 1.500 .000 .000 .000 .00 CD 10 4 1 .000 2.500 .000 .000 .000 .00 CD 11 4 1 .000 4.000 .000 .000 .000 .00 aw Q 38.900 .0 w dw 4M do F a 00 4" do a% r E +w i E H 10 M IN E 40 to 40 di w r� d FILE: villpklna.WSW W S P G W - EDIT LISTING - Version 14.03 Date: 4-22-2003 Time: 0:12:57 WATER SURFACE PROFILE - CHANNEL DEFINITION LISTING PAGE 1 CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(1) Y(2) Y (3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) CODE NO TYPE PIER/PIP WIDTH DIAMETER WIDTH DROP CD 1 4 1 4.000 CD 2 4 1 3.000 CD 3 4 1 4.000 CD 4 4 1 3.000 CD 5 4 1 4.000 CD 6 4 1 1.500 CD 7 4 1 2.000 CD 8 4 1 3.000 CD 9 4 1 1.500 CD 10 4 1 2.500 CD 11 4 1 4.000 W S P G W PAGE NO 1 WATER SURFACE PROFILE - TITLE CARD LISTING HEADING LINE NO 1 IS - Tract 16403 storm drain analysis for existing line" All HEADING LINE NO 2 IS - see City of Fontana Dwg Nos. 1510 (Sheet 7) and 1983. (Sheet 2) HEADING LINE NO 3 IS - W S P G W PAGE NO 2 WATER SURFACE PROFILE - ELEMENT CARD LISTING ELEMENT NO 1 IS A SYSTEM OUTLET U/S DATA STATION INVERT SECT W S ELEV 3209.890 1309.260 1 1311.700 ELEMENT NO 2 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 3487.670 1313.360 1 .013 .000 .000 .000 1 ELEMENT NO 3 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 3633.410 1315.210 1 .013 .000 .000 .000 0 ELEMENT NO 4 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 3724.920 1316.372 1 .013 179.991 -29.130 .000 0 ELEMENT NO 5 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 3855.000 1318.100 1 .013 .000 .000 .000 0 ELEMENT NO 6 IS A JUNCTION * * U/S DATA STATION INVERT SECT LAT -1 LAT -2 N Q3 Q4 INVERT -3 INVERT -4 PHI 3 PHI 4 3861.000 1318.090 5 4 0 .013 28.800 .000 1318.570 .000 -33.500 .000 RADIUS ANGLE 0 w do m do w �7 I .000 .000 THE ABOVE ELEMENT CONTAINED AN INVERT ELEV WHICH WAS NOT GREATER THAN THE PREVIOUS +� INVERT ELEV -WARNING THE ABOVE ELEMENT CONTAINED AN INVERT ELEV WHICH WAS NOT GREATER THAN THE PREVIOUS w INVERT ELEV -WARNING ELEMENT NO 7 IS A REACH Aw U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H •w 3876.650 1318.290 5 .013 15.597 57.490 .000 0 ELEMENT NO 8 IS A JUNCTION * U/S DATA STATION INVERT SECT LAT -1 LAT -2 N Q3 Q4 INVERT -3 INVERT -4 PHI 3 PHI 4 3883.660 1319.380 2 9 10 .013 15.300 15.500 1319.500 1319.500 84.500 45.000 rr RADIUS ANGLE aA .000 .000 ELEMENT NO 9 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 3885.080 1319.390 2 .013 44.709 -1.820 .000 0 wll W S P G W PAGE NO 3 WATER SURFACE PROFILE - ELEMENT CARD LISTING ELEMENT NO 10 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H w 3938.030 1319.730 2 .013 .000 .000 .000 0 do ELEMENT NO 11 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 3967.710 1319.921 2 .013 � .000 .000 .000 0 ELEMENT NO 12 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 4058.280 1320.504 2 .013 .000 .000 .000 0 ELEMENT NO 13 IS A SYSTEM HEADWORKS do U/S DATA STATION INVERT SECT W S ELEV 4058.280 1320.504 2 ewe 1322.530 d 0 w do m do w �7 I gill 91 111 s! o f •! & I t l & i ! 1 i i t l t l E f t! t! i i t l FILE: villpklna.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 1 Program Package Serial Number: 1382 WATER SURFACE PROFILE LISTING Date: 4-22-2003 Time: 0:13:21 Tract 16403 storm drain analysis for existing line" All see City of Fontana Dwg Nos. 1510 (Sheet 7) and 1983 (Sheet 2) •v�***+****wit■r*r,er«�*:**.�rrr*�*,r.•,r*,rr*,err,e�*rr�r**,r*,e.rrr**r««■��,r,rr*r«***+r.,er*r•w*�,r**r**«.+,r***w«•e*,rr*�x+rr�,r*****r •*r****■ Invert I Depth Water Q Vel Vel Energy Super CriticallFlow Top Height/ Base Wt No Wth Station Elev (FT) I Elev (CFS) (FPS) Head I Grd.El. Elev Depth Width Dia. -FT or I.D. ZL Prs/Pip L/Elem ICh Slope I -1-SF Ave HF SE Dpth Froude N Norm Dp "N" X -Fall ZR Type Ch .:*+.r+*rr I **•**•t*• .+�,rt,e*� I tr*,r•*�*x I *r+*,►�*,tw r•:«*,r• I *�,r,r,r,r• •,r*,�r,e,r�• I *��***« •�••r*** •�*rrr*,e I �,r,rr**• *#,r+*,t• •r•*,e I w+•t*t• 3209.890 1309.260 2.157 1311.417 98.50 14.25 3.16 1314.57 .00 3.01 3.99 4.000 .000 .00 1 .0 133.281 .0148 .0144 1.92 2.16 1.91 2.15 .013 .00 .00 PIPE 3343.171 1311.227 2.173 1313.400 98.50 14.12 3.09 1316.49 .00 3.01 3.98 4.000 .000 .00 1 .0 144.499 .0148 .0134 1.94 2.17 1.88 2.15 .013 .00 .00 PIPE 3487.670 1313.360 2.260 1315.620 98.50 13.46 2.81 1318.43 .00 3.01 3.97 4.000 .000 .00 1 .0 145.740 .0127 .0124 1.80 2.26 1.75 2.25 .013 .00 .00 PIPE 3633.410 1315.210 2.282 1317.492 98.50 13.29 2.74 1320.24 .12 3.01 3.96 4.000 .000 .00 1 .0 91.510 .0127 .0118 1.08 2.40 1.71 2.25 .013 .00 .00 PIPE 3724.920 1316.372 2.325 1318.697 98.50 13.00 2.62 1321.32 .00 3.01 3.95 4.000 .000 .00 1 .0 8.711 .0133 .0114 .10 2.32 1.65 2.22 .013 .00 .00 PIPE 3733.631 1316.488 2.334 1318.822 98.50 12.94 2.60 1321.42 .00 3.01 3.94 4.000 .000 .00 1 .0 54.992 .0133 .0107 .59 2.33 1.64 2.22 .013 .00 .00 PIPE 3788.623 1317.218 2.428 1319.646 98.50 12.34 2.36 1322.01 .00 3.01 3.91 4.000 .000 .00 1 .0 29.846 .0133 .0095 .28 2.43 1.52 2.22 .013 .00 .00 PIPE 3818.469 1317.615 2.529 1320.144 98.50 11.76 2.15 1322.29 .00 3.01 3.86 4.000 .000 .00 1 .0 18.080 .0133 .0084 .15 2.53 1.41 2.22 .013 .00 .00 PIPE 3836.548 1317.855 2.636 1320.491 98.50 11.21 1.95 1322.44 .00 3.01 3.79 4.000 .000 .00 1 .0 10.919 .0133 .0075 .08 2.64 1.30 2.22 .013 .00 .00 PIPE I a 1 i i t 1 a i a i a I a I r i a# t i a i a t 1 ! i t 1 ! i FILE: villpklna.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 2 Program Package Serial Number: 1382 WATER SURFACE PROFILE LISTING Date: 4-22-2003 Time: 0:13:21 Tract 16403 storm drain analysis for existing line" A" see City of Fontana Dwg Nos. 1510 (Sheet 7) and 1983 (Sheet 2) .*+*..r•w«,taw+**•+rr•*«,t***w�+*t■*+.t.**■*****ef..«,t.***«x*■*f.«*.r•.**•*r,tr•*.t,t«•.*,t*.•,t.,s*t«.►.w.«*:•■xr..,t.«+r*,t.+•,e *,t* ••*t••*« Invert Depth Water Q Vel Vel Energy I Super ICriticalllFlow Top Height/ Base Wt No Wth Station I Elev (FT) Elev I (CFS) (FPS) Head Grd.El. Elev I Depth I Width +Dia. -FT or I.D.+ ZL Prs/Pip L/Elem -I Ch Slope I I I SF Ave HF ISE Dpth !i Froude N Norm Dp "N" X -Fall ZR Type Ch 3847.46811 1318.000 2.750 1320.750 98.50 10.69 1.78 1322.53 .00 j 3.01 3.71 4.000 .000 .00 1 .0 5.788 .0133 .0067 .04 2.75 1.20 2.22 .013 .00 .00 PIPE 3853.256 1318.077 2.873 1320.950 98.50 10.19 1.61 1322.56 .00 3.01 3.60 4.000 .000 .00 1 .0 1.744 .0133 .0059 .01 2.87 1.10 2.22 .013 .00 .00 PIPE 3855.000 1318.100 3.008 1321.108 98.50 9.72 1.47 1322.57 .00 3.01 3.45 4.000 .000 .00 1 .0 LIR,F) JUNCT STR -.0017 .0040 .02 3.66 1.00 .013 .00 .00 PIPE 3861.000 1318.090 4.335 1322.425 69.70 5.55 .48 1322.90 .00 2.52 .00 4.000 .000 .00 1 .0 15.650 .0128 .0024 .04 .00 .00 1.83 .013 .00 .00 PIPE 3876.650 1318.290 4.248 1322.538 69.70 5.55 .48 1323.02 .00 2.52 .00 4.000 .000 .00 1 .0 JUNCT STR 1555 .0029 .02 .00 .00 .013 .00 .00 PIPE 3883.660 1319.380 3.574 1322.954 38.90 5.50 .47 1323.42 .00 2.03 .00 3.000 .000 .00 1 .0 1.420 .0070 .0034 .00 .00 .00 1.84 .013 .00 .00 PIPE 3885.080 1319.390 3.583 1322.973 38.90 5.50 .47 1323.44 .00 2.03 .00 3.000 .000 .00 1 .0 52.950 .0064 .0034 .18 3.58 .00 1.90 .013 .00 .00 PIPE 3938.630 1319.730 3.423 1323.153 38.90 5.50 .47 1323.62 .00 2.03 .00 3.000 .000 .00 1 .0 29.680 .0064 .0034 .10 3.42 .00 1.90 .013 .00 .00 PIPE 3967.710 1319.921 3.333 1323.254 38.90 5.50 .47 1323.72 .00 2.03 .00 3.000 .000 .00 1 .0 90.570 .0064 .0034 .31 3.33 .00 1.90 .013 .00 .00 PIPE FILE: villpklna.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 3 Program Package Serial Number: 1382 WATER SURFACE PROFILE LISTING Date: 4-22-2003 Time: 0:13:21 Tract 16403 storm drain analysis for existing line" All see City of Fontana Dwg Nos. 1510 (Sheet 7) and 1983 (Sheet 2) ...t�*,t.ww,t,t*****tw+t*rrx,t+.•**,t,et•*.*,t*,rt«,t�•,tri,t,tt,r,t*�*,tt�*,t*.,t,t*ww*,t.,t�•*,t,tt,t•«*rw*r..,t•.*,t•r*•+w,t***,t*rt*+*«,t ,t w,t.**,tww �,t+*,trw• Invert , Depth Water , Q , Vel Vel Energy Super Critical,Flow Top Height/ Base Wt No Wth Station , Elev (FT) Elev (CFS) (FPS) Head Grd.E1.I Elev Depth Width Dia. -FT or I.D. ZL Prs/Pip L/Eleni Ch Slope ( , SF Ave HF ISE Dpth Froude N Norm Dp "N" X -Fall ZR Type Ch 4058.280 1320.504 3.058 1323.562 38.90 5.50 .47 1324.03 .00 2.03 .00 3.000 .000 .00 1 .0 no T1 VILLAGE PARKWAY PROPOSED LINE "F" 0 T2 See City of Fontana Dwg No 1510 (Sheet 7) with Proposed Revision 2 T3 err► SO 103.6201318.570 1 1322.430 R 127.8201318.940 1 .013 -61.660 .000 0 R 143.8201319.185 1 .013 1.860 .000 0 JX 149.8201319.277 4 2 3.013 14.500 14.3001319.7201319.720-60.0 60.0 .000 SH 149.8201319.277 4 1319.277 40 CD 1 4 1 .000 3.000 .000 .000 .000 .00 CD 2 4 1 .000 2.000 .000 .000 .000 .00 40 CD 3 4 1 .000 2.000 .000 .000 .000 .00 CD 4 4 1 .000 3.000 .000 .000 .000 .00 iw Q .001 .0 i 40 do sA P Aw to E 0 y +ter E E 0 1-7 M 0, d JIM go err FILE: vi11pklnf.WSW W S P G W - EDIT LISTING - Version 14.03 Date: 4-22-2003 Time: 1: 5:36 WATER SURFACE PROFILE - CHANNEL dw DEFINITION LISTING PAGE 1 CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(1) Y(2) no Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) CODE NO TYPE PIER/PIP WIDTH DIAMETER WIDTH DROP i CD 1 4 1 3.000 SIAM CD 2 4 1 2.000 CD 3 4 1 2.000 di CD 4 4 1 3.000 W S P G W 40 PAGE NO 1 WATER SURFACE PROFILE - TITLE CARD LISTING 'rW HEADING LINE NO 1 IS - VILLAGE PARKWAY PROPOSED LINE "F" '~ HEADING LINE NO 2 IS - do See City of Fontana Dwg No 1510 (Sheet 7) with Proposed Revision 2 HEADING LINE NO 3 IS - W S P G W PAGE NO 2 WATER SURFACE PROFILE - ELEMENT CARD LISTING ELEMENT NO 1 IS A SYSTEM OUTLET dl U/S DATA STATION INVERT SECT W S ELEV 40 103.620 1318.570 1 1322.430 ELEMENT NO 2 IS A REACH U/S DATA STATION INVERT SECT N a� RADIUS ANGLE ANG PT MAN H 127.820 1318.940 1 .013 22.487 -61.660 .000 0 ELEMENT NO 3 IS A REACH +�I11 U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 143.820 1319.185 1 .013 492.867 1.860 .000 0 ELEMENT NO 4 IS A JUNCTION * * U/S DATA STATION INVERT SECT LAT -1 LAT -2 N Q3 Q4 INVERT -3 INVERT -4 PHI 3 PHI 4 on 149.820 1319.277 4 2 3 .013 a 14.500 14.300 1319.720 1319.720 -60.000 60.000 RADIUS ANGLE 40 .000 .000 ELEMENT NO 5 IS A SYSTEM HEADWORKS U/S DATA STATION INVERT SECT W S ELEV f 149.820 1319.277 4 1319.277 40 IN JIM go I a# a w 1 a i a A ! 1 t I a I t i a i a 1 ! I a s t I i# a i ` i a 1 FILE: villpklnf.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 1 Program Package Serial Number: 1382 WATER SURFACE PROFILE LISTING Date: 4-22-2003 Time: 1: 5:43 VILLAGE PARKWAY PROPOSED LINE "F" See City of Fontana Dwg No 1510 (Sheet 7) with Proposed Revision 2 Invert Depth water Q Vel Vel Energy I SuperI Critical Flow Top Height/ Base Wt No Wth Station Elev I (FT) Elev (CFS) (FPS) Head Grd.El. Elev Depth I Width Dia. -FT or I.D. ZL Prs/Pip L/Elem ICh Slope I I I SF Avel HF SE DpthIFroude N Norm Dp "N" X -Fall ZR Type Ch 103.620 1318.570 3.860 1322.430 28.80 4.07 .26 1322.69 .00 1.74 .00 3.000 .000 .00 1 .0 24.200 .0153 .0019 .0S .00 .00 1.22 .013 .00 .00 PIPE 127.820 1318.940 3.578 1322.518 28.80 4.07 .26 1322.78 .00 1.74 .00 3.000 .000 .00 1 .0 16.000 .0153 .0019 .03 .00 .00 1.22 .013 .00 .00 PIPE 143.820 1319.185 3.370 1322.555 28.80 4.07 .26 1322.81 .00 1.74 .00 3.000 .000 .00 1 .0 JUNCT STR .0153 .0009 .01 .00 .00 .013 .00 .00 PIPE -------------------- WARNING - Junction Analysis - Large Lateral Flow(s)------------------ I 1 1 149.820 1319.277 3.509 1322.786 .00 .00 .00 1322.79 .00 01 .00 3.000 .000 .00 1 .0 4m T1 VILLAGE PARKWAY LATERAL F-1 0 as T2 See City of Fontana Dwg No 1510 (Sheet 7) Proposed Revision No 2 T3 SO 101.7401319.720 1 1322.790 R 127.4401319.840 1 .013 .000 .000 0 WE 127.4401319.840 2 .250 SH 127.4401319.840 2 1319.840 CD 1 4 1 .000 2.000 .000 .000 .000 .00 CD 2 2 0 .000 6.470 14.000 .000 .000 .00 Q 14.500 .0 M F e 10 'o is r E P_ mm do r 4m do qq 0 P A in ■ a1q •aq 40 40 do on a/ PAGE NO 2 WATER SURFACE PROFILE — ELEMENT CARD LISTING rr IS A SYSTEM OUTLET U/S DATA STATION INVERT SECT FILE: vilpklatfl.WSW W S P G W - EDIT LISTING - Version 14.03 Date: 6- 4-2003 Time:12:58:27 101.740 1319.720 WATER SURFACE PROFILE - CHANNEL DEFINITION LISTING ,w PAGE 1 CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(1) Y(2) Y(3) Y(4) Y(5) ELEMENT NO 2 Y(6) Y(7) Y(8) Y(9) Y(10) A REACH * " CODE NO TYPE PIER/PIP WIDTH DIAMETER WIDTH DROP INVERT SECT CD 1 4 1 2.000 ANG PT MAN H CD 2 2 0 .000 6.470 14.000 .00 127.440 1319.840 1 W S P G W .000 .000 PAGE NO 1 ELEMENT NO 3 WATER SURFACE PROFILE - TITLE CARD LISTING U/S DATA STATION INVERT HEADING LINE NO 1 IS - FP 127.440 VILLAGE PARKWAY LATERAL F-1 2 .250 ELEMENT NO 4 IS A SYSTEM HEADWORKS ' HEADING LINE NO 2 IS - U/S DATA STATION INVERT See City of Fontana Dwg No 1510 (Sheet 7) Proposed Revision No 2 HEADING LINE NO 3 IS - 127.440 1319.840 W S P G W P A in ■ a1q •aq 40 40 do on a/ PAGE NO 2 * W S W S 1319.840 WATER SURFACE PROFILE — ELEMENT CARD LISTING ELEMENT NO 1 IS A SYSTEM OUTLET U/S DATA STATION INVERT SECT ELEV 101.740 1319.720 1 1322.790 ELEMENT NO 2 IS A REACH * " U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 127.440 1319.840 1 .013 .000 .000 .000 0 ELEMENT NO 3 IS A WALL ENTRANCE U/S DATA STATION INVERT SECT FP 127.440 1319.840 2 .250 ELEMENT NO 4 IS A SYSTEM HEADWORKS ' U/S DATA STATION INVERT SECT ELEV 127.440 1319.840 2 * W S W S 1319.840 ! i t I t 1 t 1 t I i i 11 IL I a A k A k i t I & A 1k a tIII & l f 1 i 1 t i FILE: vilpklatfl.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 1 Program Package Serial Number: 1382 WATER SURFACE PROFILE LISTING Date: 6- 4-2003 Time:12:58:32 VILLAGE PARKWAY LATERAL F-1 See City of Fontana Dwg No 1510 (Sheet 7) Proposed Revision No 2 ##*****#*##*#***#***#***#*#************#**********#****##***#*#****#*******#*#*****##*****##****##****#*****#*****#****##* **####** Invert Depth Water Q Vel Vel I Energy I Super ICriticalIFlow ToplHeight/ Base Wtj INo Wth Station I Elev (FT) Elev (CFS) I (FPS) Head I Grd.El.I Elev I Depth I Width Dia.-FTIor I.D.1 ZL IPrs/Pip L/Elem ICh Slope I ( I SF Avel HF ISE DpthIFroude NINorm Dp I "N" I X -Fall ZR IType Ch 101.740 1319.720 3.070 1322.790 14.50 4.62 .33 1323.12 .00 1.37 .00 2.000 .000 .00 1 .0 25.700 .0047 .0041 .11 3.07 .00 1.54 .013 .00 .00 PIPE 127.440 1319.840 3.056 1322.896 14.50 4.62 .33 1323.23 .00 1.37 .00 2.000 .000 .00 1 .0 WALL ENTRANCE 127.440 1319.840 3.468 1323.308 14.50 .30 .00 1323.31 .00 .32 14.00 6.470 14.000 .00 0 .0 e 40 go F do h 4m Ai r F 40 do A F 0 0 T1 VILLAGE PARKWAY LATERAL F2 0 T2 See City of Fontana Dwg No 1510 (sheet 7) Proposed Revision No 2 T3 So 101.7301319.720 1 1322.790 R 113.9901319.780 1 .013 .000 .000 0 WE 113.9901319.780 2 .250 SH 113.9901319.780 2 1319.780 A! CD 1 4 1 .000 2.000 .000 .000 .000 .00 CD 2 2 0 .000 6.630 14.000 .000 .000 .00 go Q 14.300 .0 e 40 go F do h 4m Ai r F 40 do A F 0 0 ON 00 w i E an go as to +r FILE: vilpklatf2.WSW W S P G W - EDIT LISTING - Version 14.03 Date: 4-22-2003 Time: 1:29:57 WATER SURFACE PROFILE - CHANNEL dw DEFINITION LISTING IPAGE 1 CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(1) Y(2) ... Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) CODE NO TYPE PIER/PIP WIDTH DIAMETER WIDTH DROP err CD 1 4 1 2.000 CD 2 2 0 .000 6.630 14.000 .00 W S P G W PAGE NO 1 WATER SURFACE PROFILE - TITLE CARD LISTING HEADING LINE NO 1 IS - VILLAGE PARKWAY LATERAL F2 • HEADING LINE NO 2 IS - See City of Fontana Dwg No 1510 (sheet 7) Proposed .iw Revision No 2 HEADING LINE NO 3 IS - W S P G W w PAGE NO 2 WATER SURFACE PROFILE - ELEMENT CARD LISTING ELEMENT NO 1 IS A SYSTEM OUTLET U/S DATA STATION INVERT SECT W S ELEV !: 101.730 1319.720 1 1322.790 ELEMENT NO 2 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 113.990 1319.780 1 .013 16 .000 .000 .000 0 ELEMENT NO 3 IS A WALL ENTRANCE Ai U/S DATA STATION INVERT SECT FP 113.990 1319.780 2 .250 40 ELEMENT NO 4 IS A SYSTEM HEADWORKS U/S DATA STATION INVERT SECT IN W S ELEV 113.990 1319.780 2 "ft 1319.780 Ai ON 00 w i E an go as to 11 a I A I • I • 1 t I [ i a 1 r I a I & I t i i I • i a I r i t i a I 1! FILE: vilpklatf2.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 1 Program Package Serial Number: 1382 WATER SURFACE PROFILE LISTING Date: 4-22-2003 Time: 1:30: 5 VILLAGE PARKWAY LATERAL F2 See City of Fontana Dwg No 1510 (sheet 7) Proposed Revision No 2 +*��****:**************��*+**,r*,r***«**�*******,r+*�**************,r************,r********,e+*�*�*,r**�*�**********,rte•*+,r******* **+***** Invert Depth ( Water Q Vel Vel I Energy I Super ICriticaliFlow ToplHeight/ Base WtI INo Wth Station I Elev (FT) Elev (CFS) I (FPS) Head I Grd.El.1 Elev I Depth ( Width Dia.-FTIor I.D.1 ZL IPrs/Pip L/Elem ICh Slope I I I I SF Avel HF ISE DpthIFroude NINorm Dp I "N" I X -Fall ZR IType Ch 101.730 1319.720 3.070 1322.790 14.30 4.55 .32 1323.11 .00 1.36 .00 2.000 .000 .00 1 .0 12.260 .0049 .0040 .05 3.07 .00 1.49 .013 .00 .00 PIPE 113.990 1319.780 3.059 1322.839 14.30 4.55 .32 1323.16 .00 1.36 .00 2.000 .000 .00 1 .0 WALL ENTRANCE 113.990 1319.780 3.460 1323.240 14.30 .30 .00 1323.24 .00 .32 14.00 6.630 14.000 .00 0 .0 nZ, FOR.' 1640,tii: A -E IN.E .-AVENU t �;�F �� � f`...........g.,..' """"r. •� '" i ~ 1. ' ..v..,+.. � � � ,� f LEb on- INDICATES DRAINAGE FLOW a4 BASELINE AVENUE VICINITY MAP NTS Project Location .. to 4m do 069X2004 TRACTS 13325-1, AND 13325-2 HYDROLOGY AND STORM DRAIN HYDRAULICS PREPARED FOR CITATION BUILDERS PREPARED BY THE KEITH COMPANIES OCTOBER 10, 1987 w do qW 4 do R9 Is DISCUSSION HYDROLOGY FOR TRACT 13325 I. PURPOSE: The purpose of this hydrologic analysis was to determine the necessary storm drain facilities to adequately protect the proposed residential development in this tract 13325, and to provide for future development as dictated in the "Storm Drain Master Plan" and the "Master Plan of Developed Hydrology" by Hall and Foreman, Inc. (Prints dated July 29, 1986.) The lines shown to be necessary according to this analysis are proposed master drainage plan facilities. That is, lines required to contain the 10 year storm within top of curb. Additionally, the 100 year storm is maintained within the street right of way. 1W 069X2004 rr The hydrology was performed using the computer program This program +�► by Advanced Engineering software (AES). for San Bernardino is based on the hydrology manual The hydrology for the catch basins and catch County. basins laterals was performed using initial subareas into the tributary to each basin to get the peak flow for the 10 trurr basin. All lines and basins were sized conditions. The only storm except those in sump the site is the area north and east of Village sump on Parkway, which was sized for 100 year runoff. As an be to contain interim condition, a CSP inlet will placed As runoff from this undeveloped land. 44) The hydraulics were performed using the STORM computer The capacity of the catch basins go program by Civil Soft. County Environmental Management was based on the Orange "Drainage Design Criteria and Aids (4th w Agency's Printing)". The depth of flow along the curbs was from +� taken from the values computed by the Hydrology gm and are shown in the printouts. w 1W 069X2004 rr rr rr rir ey IN on do N M F HYDROLOGY 100 Year Sump Condition 10 Year Study Hydrology for Catch Basin Design on AN R E d on do U Lt R8 I J. I R7W I ; i 16W ,.• ! I R I 4W �niy` — -� — R2W t— .r - -- r RIW �` RIE R2E + LIMrdM . — I'1TIT ~ z ! � / � ! I 1• ' v t - -I �.J.-� I � 1 .�.� • d q � ! � i' r ! j I ! I .` 'a ' .o� I s• ' R� �T — I — r- -♦- T — I— , .-C� /� — ' — :: 7 •i- '. _ J I.i �� , I I I PI '> I ! 1- � 1 y- a. ._ 1 i w Its � 1 _! — _y.� — — — 11 1 T I�~1• — — — I � `x x: 1 i.;+ - / TSN ._.F — �I — _ _� M _ f ~ • x ...af- 7 rNY' -' —{ -_-d� \ _ • - I _ . _ _ _ Z._ _ . a'1 + — I — l< 1 L Al DIND — - -- _ �' _• ' i V • °' � '' � I � y+. o �,t •�., '� �' t i dor / a Z ` ' 1 S \ ` "_�L'T t F�� ``� Ki`/ - ,jr • •1' Y` - , i L _ _ _ _ -^ �� __- M-4 1 4j• -�' - -Y C< ---�I----S ' P•.,i •moi ' r • y l ' - CW. 17-1 -� ' i \\•' ; ' 1 Y - -+- - ;. - -—a'2�•� rallls TIN ;u I - -_ ��-i -- •.\ ., - ` -u - - d -� - �� - r v� .•.ar �\ I I �''I� — I 1 i I I PL .. SAN r° f I �' Imo• ! 1 I I JA t'f ., ;i Isj N i O� al r' 11A, LT TIS — -- — — > }. .,^?s : -` A IO 'i !- r_ • ONTA I 'a• I. -1 -q a� r - �- - t _ - loy ...... _ lis } I� I. _ -T - 1. • `_ REDLAND a of \ - t. •�.. � i r•• I � ��. '�. .". •+`,•• ,.1. Ralolt - i �•s �, ! I 1, i *i _ *: — �-- --t_ �_ —LI. — T - -0' •. s I ! «• a. l ; (r.«•••' I M•M *anl�u j k I \�.� ' 1vzo I qo - - - �- - — • '..• Y- . -`--`i wl a[zul oul } l - c.. /� I R I I I i I R 1' • Ira NO[ C • a••p• T2$ i ERSIDE - - = 11N11� +�..•..., \'T, j -} -- —'«—M- - � -- - - .ioo� - - pM•1 1•. �'` I ' R4W R3 R2W �, RI + — _ • _ _ _ _ _ SAN OERNAROINO COLWY � _ — _! � _•' ••:� • ��' 1 - � - ' R 5 � VALLEY AREA r3s I — I REDUCED DRAWING MOMMA" :•_. I ►e pW�.. ` _c>, 1 SCALE I 4. MILES Yoo-100 YEAR 'hHOUR ,=�;�� ••.. - — - 1,0 - - SAN BERNARDINO COUNTY M,�oM„�,11D...L.....S • — x1' '` I- - j - - - A - -- 'LEGEND, .rearm �r • 9 I I w •'••• w HYDROLOGY MAN6AL r -le Isol-INE! PRFCIPITATION {INCHES) �•*� sup[ Y° Opt 1i° UXXPOK LI + t 4• ; T4N W I I —,— ( R I I M R6W I.., I I ( R5 I I 4W:I h,.irs R2W -- - t ? RIW' ' �:'r. RIE • "+. R2E — T —I— ( I L �rdbA - — �r" — — 1 — — �- .l ti — — L".. — _I —'— = — - - — 4N I IMI 1 I I � ., I � I I � I �w I i• I i I, T` I .J4 • --- — --- -- --T.—f -I:—T- _ _ yy� +I 4. i• I • I I = I w i �I Y c -I - I I \ V. .ruo •aw.,, q t y I I I 0 I / i(.� •� " I '� -� -}- v - - -t ,---�..•' - \ ,� g - - .3 Iii •`% + •� / - I -1 1 ait,. ��,�( \ e` ' f ro I� f „ .I LO,} rr�y�r w R[WQ•-�aawr +' - I--. -"i /- - / ,.A - J - I 1 \ •. o Ev+f T3N It- I - I_ I I -- IN 'ii•T• .��, iE•�• i - - I I - 1 - I-, I - a.. +.�\ 1-1 / h 11. - % Vel• �,- �{ -� �- �� i - _ i T a+ I L I ;t� • I �i J 1 1•� J•- 1 t t F- • I is I 2`2, i 22 i• I.'I• I I i 1. I / I ... _- _ ` - - - -\ { f I ' * I ,r"" •�' } --} I *� �,- +oi� � \ _^f I 1 I T .s_' I i I 1 `iN j -•- -I - i- - `1.i ' ! `Mw tis ' z •:•••- - Ic - Ir,�,�� I �1� f ,»'� I ` -� --1 - �. •= , s `^` -_'-) - '/ - t- - - -- --- }I - - I - I l _ 1 I I I I I I 1 �"� , �•"•� . ,� �-• o„ if • ., I _ 1 -' - , _I., _ ,- C I~ - - - ' •,r II 1 Le '�•• ' (,, a I • �-- I-f`� _ -< -i •-- / --. Ana, •I,, \�� 1 I 4.,/-7T - l y� , Jic� �; h-IM, `•, \a , Q t3� i i` c r - _••_. i T \ 'I- �-v�l -ac/u t xa i`r - - .- - •• ` I- i- - T2N —�-, / • iwr rpy �,� - -� ` - I I I k I • ` - ''E�• n.- '� �• •, i L (:Ire � 1- . �r 1 I I I fi I \ ,.r _ _ _ _ - _ _ - - - - - ` • • _-— ` - - - -• I s --`E rh ♦ T K Y �c - .Low 1 ..�.. _ :�.•.IYLI l -VAST 4t - —I' Y s 14 �I s- r > +1 — a' .% : n. • I i = loax rwws. Y if/ T - I t I' i 1 -.- --- k- t 13TTw- .� I%, _ ` _ -t • -� . I =i4 / ' -- •7� - - y i '� , --- -F Cx- { / �•-- --�• - ' _ � - / � � � I . \ � � ' i � \\ `� 1. i I � . i.-� ,� r• .- 1 '� ' -- �� - - 1 -� - _ - - -i-1.OL �►ts -�- .Y` - '- I N--` - - — — — — — - 1 -- i — - w - ` ;,} <� 'i .,,..• .. J'r"rf,l �I F(• ��` i l �/ j / .v oM rDAM 1i _ �" - T men: - - _s 1• - �j _ ` 1 \ a I \.. �.I - .�-�- sm 19 I I ( - zlk' K'TA ' I I �. • :" d} S a f ell, - �_ PLAND. ye' ' I, � s.h •hi.or I \, � I .,+. RhAITO_ - + +; a ( -- 's.. - �. . • .-.+ .- FONTAN - ;' air• s» .. �,/ -+ - - -+ - -_ TIS — _ � .� -; .. I; c' l • ,� --,� � Me o j ; — "'\, — Ai ,,•, 1 ONT 101'" �• C TONS - - . - i. ,. _ ...� - - -, - — _ - — jdS - • - _ - 7 - T -` - r REDLANDS -j • •• A . ; Lori �. ..... I r IN \ oat r 1 T I:! CHINO ,. •r 5 — �' a. \ I— -- - - ..a = -� -21I L • ';a �,•r ' , 1 T I - I - -� - '.: - - �- .•".. I -- : > .: li- - ti — I l , ... ouaaa • / - - - .� '» .. •�*i'� RIE I ,•R E�., �, 1 � • ; , , t t - .avInslo. , coup - - • +s••oo + I \ , ,. So` i R4W I R3 R2W \ RI SAN BERNARDINO COIMY t FLOOD CONTROLITR I — ' I I • • IF a,.a ' REDUCED DR rILE I NIG VALLEYAREA ,• T, S — -I - j - - SCALE I"= 4 S tso►ivETA�s '•� .• �.--"I t T7- %rya •••-"�; •. _. . _ _ -. _ ---1 _ "M ONO&MC NOAA qufYEAR I �i973 A 1�o SAN BERNARDINO COUNTY I•ReW G I R7W •• 6 HYDROLOGY MANUNL I .............................. .R.•.................•... ISOLI E PRECIPITATION (INCHES) wT! xxt ni rn D roam f.f a• +.O-1 1 .. r1 JI )I _ I -.. - -i` .' � .y'' ',.,Ivy'►." `V.�: :1q.� ..'�L� A /I ' I -1i c. i Ir - _ 1f - v .l ' � �•• ,�� •r I-..^ ��!>„� -i'r•to i- s i •`i_ � ,1 .'a' ,rte - �'.�-';(�'' �4 ,I .r -s I •. - ... �"err . r (''`"_ �-=•�%;�' '• i -t _ .t j ' _ , Ir _ - M �- I • - i w+v i � _ _ � '=a..=r-' ,- --t.._ _ ._� _� i'___- "tel _ � --.1:_..�. __ ~.2- __-•^_c `.'_ '•C lI(- _ :- '�. l ,( f,�. •'fj"_ i j _ _,alt. ^, t:-:,- :�_ �i^�- " -_ _ _ _ _._. _...��a-, _�_\ __ gip_: ��.�_•�. .-�' - -=�4.__.�>_ .tpi�•.-..- - t ( s� - L. - - - - •"f' V it 'a," .-r....'L',� _ ^r',:-s,•.r .-w',"_•Y:'- _ •fit - �•, ;I'' i, t. '. �'r -�x•1' ,�% l` -i+•` 11• -{`;"jam: - � -=�,a`,- y.- {kl`'rl^- •--� '�-�F"tr{5 r• i.yT•,�•"�', �dica �. .5. +•._ r�� �l ale?= �_ r =_� 1; rl f • •': 1- -'` �, 1.• ; : i'. - Lt , li ' '� 1 �• ai.; ( --- . r 1 -. ,._ rr `. A 'II• il•!'-:� _ �.�!r •�1'a �fl:�:� � -ice ir.'i -s-. ._A`_ �-•E ...__ kt ✓T!.' it , �_ �- A . - ,j.-- : _ _ _ .."•• r _ �, "x'' — - r T_ 1 -'=!rte rrj -r _ ' 1 a • �.. a Ar r •' ".' 7; � ;ice 1 (, i �-.:� � - _ � ._ - � _ J { -._" v..a ■ MR, .!Tr!q 1111'.rs'5#*I'M Ir• � Q' ate' N• - 16c= - C. a: _ )SCJ- `7' . r �� T �flYii� is•/�� !i1• 'fiL!!•`-•F MSI: Ao• Ni J E — IR r w �.+a •� ���••'�REIJIS7 R! E _.if �� � �i� � Z�tw±r SAN BERNARDINO COUNTY HYDROLOGY MANUAL mss! INDEX MAP ; I \ _ ....� 1 1� ' Y Y , .✓' i 4 % 4.jy �_ � �OYRCE•. O[OL�SO'► MAP 'ti: __��1 ',�'•4 p �+'•, 'moi. _ Li � `\' � - _ _ JL :•!.%`._ wl .�� �.. - ♦� :T+ .0 �. +:, 7�� jam= �`'���,, t {!P` .,• } �-._ C tea►• 7ti f 1i. 'CD_�f. _ �.j�C„i� - - •,t ``ice . tiG t'.!- r.! tr.. \ C � � .:��•, •t� l�`r�+y���` '-7 � •�'�r� �•� :� :1't„•'j� � sem::, _3 f _ 'l`_''�.'r�= �t� a ..1. r' ri'(•_';T7'`(c!� ' -� .,., � ...t'�ey a,.e-i.- `�:'�,"!' : ' T�. f � .� z�' •\ � - '. y: _ •" • -�� t .:1?-), -t*1 •'ti .v. /l j.Y Ii J.-%: -J,f -.T. t:.,•.,'i• 4? •`� _ .�'+.T =�•r-v �=:' %�.���� j .71.- �/� rt'-' -�r�� i; �r:�tt... �':'� �:k' -•: 1 ^-� 71 �f. 1 i. k `1, y • - I a _!crr t” "•1 i' ` �• (I�.`�fe�� ,: l' � _D'-'� i '• -� s.�'',,�..��i••'�!`:-rS`.k'^�- '�•-' jl t�` - t :=, ,nr 3. y `Irn=� t+ \ 1 "fit _-' r r� ' r•r-rz,,,F -�f �_'�-�. >, •'„__: !- T -'.•` - - . L 1 A 7' %"�:� ['ty,-,f`!,.. s;\M *. \\. _ �-�!�1•�.;;a Tl,y.t...:'�fii._ - _ It". - _ L 4 y " , A t J',,\ f ;i�' �,s3r^ �.�•� � _ -.�-C3 -'!•y l i�'•' .!!�2 f.� tq,yr� �� is i. }L�� � - - / � S � �1 �•i � 9 .6t�. ' t ';rr � _� y:y . t ...�_` a Jt _�,. . �— r-sr � z rt' its.. .d�•r •.��g .J^ 1�. ,� f.-'If�.� �,,• a ha'-t-�`.,r�- � � '-.�.;;�,��a�:�i: :�.�•-°�'' ••�.souRctibEoloGY -- �,, '.x. c�,-'.ei,�� y•f•�•`�' 'r"'., s�. '7 ..�'.. ` J., EGtfsf �:SURVE?i'i_ -.f �.' / A !•1. �: � -s tib_ ` R, �M :4 r- int. ,• � • t� e %a' - - �t �,'�.il �i - •t� iii` --=T- • I - -. J- _ - -aiiaY r `r- _ ' ft' ��� t------- �- - �`•-�-_'. 3--'n_A��•,'.,-••��F_-,-1 -!his rL !a • Ili.-�__t'�c (. :I A. `'- Z ;~- ,-�•. .y` -B ,_._ a" - - .,l':I"�_ - q(f_'N�II-' '.i _41y,::rk�C•:a•L '__ - .<^,� ^, .ti //CB/�//•- '� ,_ 4 "3: '' �•-,...�` �1-.• `! I rr--,_. Yic.),t �.lY� �j.. �I ► �(� _ ■ V- J -_i _•} _ .� ;" �'�,�.^� :awl: a � ✓;- :4 37: :.� _'�--� , I ' i1 f� L m i � •.- - - --_ -- _ _ - -- �I . i ..rn 7�.. _�j � _j ,,.- _ iri' s''1�i�i.-,� � _ ��y r - -• -r 'r '�-j..r,r - L:./t'1�" .:1. _ CL^'� -� - ' . - r -'r - v •,-7I ��_V o - .� - = =' ''' ��d. i • . _ •vim., at r � � _ i - t-. _ Al SOIL GROW BOUNDARY A SOIL GROUP DESIGNATION —•—•---- BOUNDARY OF INDICATED SOURCE v SCALE I,4efm0 SCALE REDUCED BY 1/2 C-26 HYDROLOGIC SOILS GROUP MAP FOR SOUTHWEST -A AREA FIGURE C-13 �\ 4 \. 1 SAN BERNARDINO COUNTY C-4 INDEX MAP ; I \ _ ....� 1 1� ' Y Y , .✓' i 4 % 4.jy �_ � �OYRCE•. O[OL�SO'► MAP 'ti: __��1 ',�'•4 p �+'•, 'moi. _ Li � `\' � - _ _ JL :•!.%`._ wl .�� �.. - ♦� :T+ .0 �. +:, 7�� jam= �`'���,, t {!P` .,• } �-._ C tea►• 7ti f 1i. 'CD_�f. _ �.j�C„i� - - •,t ``ice . tiG t'.!- r.! tr.. \ C � � .:��•, •t� l�`r�+y���` '-7 � •�'�r� �•� :� :1't„•'j� � sem::, _3 f _ 'l`_''�.'r�= �t� a ..1. r' ri'(•_';T7'`(c!� ' -� .,., � ...t'�ey a,.e-i.- `�:'�,"!' : ' T�. f � .� z�' •\ � - '. y: _ •" • -�� t .:1?-), -t*1 •'ti .v. /l j.Y Ii J.-%: -J,f -.T. t:.,•.,'i• 4? •`� _ .�'+.T =�•r-v �=:' %�.���� j .71.- �/� rt'-' -�r�� i; �r:�tt... �':'� �:k' -•: 1 ^-� 71 �f. 1 i. k `1, y • - I a _!crr t” "•1 i' ` �• (I�.`�fe�� ,: l' � _D'-'� i '• -� s.�'',,�..��i••'�!`:-rS`.k'^�- '�•-' jl t�` - t :=, ,nr 3. y `Irn=� t+ \ 1 "fit _-' r r� ' r•r-rz,,,F -�f �_'�-�. >, •'„__: !- T -'.•` - - . L 1 A 7' %"�:� ['ty,-,f`!,.. s;\M *. \\. _ �-�!�1•�.;;a Tl,y.t...:'�fii._ - _ It". - _ L 4 y " , A t J',,\ f ;i�' �,s3r^ �.�•� � _ -.�-C3 -'!•y l i�'•' .!!�2 f.� tq,yr� �� is i. }L�� � - - / � S � �1 �•i � 9 .6t�. ' t ';rr � _� y:y . t ...�_` a Jt _�,. . �— r-sr � z rt' its.. .d�•r •.��g .J^ 1�. ,� f.-'If�.� �,,• a ha'-t-�`.,r�- � � '-.�.;;�,��a�:�i: :�.�•-°�'' ••�.souRctibEoloGY -- �,, '.x. c�,-'.ei,�� y•f•�•`�' 'r"'., s�. '7 ..�'.. ` J., EGtfsf �:SURVE?i'i_ -.f �.' / A !•1. �: � -s tib_ ` R, �M :4 r- int. ,• � • t� e %a' - - �t �,'�.il �i - •t� iii` --=T- • I - -. J- _ - -aiiaY r `r- _ ' ft' ��� t------- �- - �`•-�-_'. 3--'n_A��•,'.,-••��F_-,-1 -!his rL !a • Ili.-�__t'�c (. :I A. `'- Z ;~- ,-�•. .y` -B ,_._ a" - - .,l':I"�_ - q(f_'N�II-' '.i _41y,::rk�C•:a•L '__ - .<^,� ^, .ti //CB/�//•- '� ,_ 4 "3: '' �•-,...�` �1-.• `! I rr--,_. Yic.),t �.lY� �j.. �I ► �(� _ ■ V- J -_i _•} _ .� ;" �'�,�.^� :awl: a � ✓;- :4 37: :.� _'�--� , I ' i1 f� L m i � •.- - - --_ -- _ _ - -- �I . i ..rn 7�.. _�j � _j ,,.- _ iri' s''1�i�i.-,� � _ ��y r - -• -r 'r '�-j..r,r - L:./t'1�" .:1. _ CL^'� -� - ' . - r -'r - v •,-7I ��_V o - .� - = =' ''' ��d. i • . _ •vim., at r � � _ i - t-. _ Al SOIL GROW BOUNDARY A SOIL GROUP DESIGNATION —•—•---- BOUNDARY OF INDICATED SOURCE v SCALE I,4efm0 SCALE REDUCED BY 1/2 C-26 HYDROLOGIC SOILS GROUP MAP FOR SOUTHWEST -A AREA FIGURE C-13 rr 4 P 100 YEAR SUMP CONDITION F E .w do IN .n d1 0 qr r am *************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE ,.. (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) *** PRELIMINARY/EXPERIMENTAL VERSION *** Copyright 1983,86,87 Advanced Engineering Software (aes) Ver. 4.1B Release Date: 2/20/87 Serial- # BETA06 Especially prepared for: * BETA TEST SITE EVALUATION ONLY Aw ************************** DESCRIPTION OF STUDY ************************** CITATION FONTANA - 100 YEAR PORTION (SUMP) * MAIN LINE SYSTEM * KEITH COMPANIES - TOM BRAUN as FILE NAME: B:FONT100.DAT TIME/DATE OF STUDY: 14:58 9/11/1987 +� USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TIME-OF-CONCENTRATION MODEL* -- do USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 "� SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 96 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 40 SLOPE OF INTENSITY DURATION CURVE = 6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) = 1.5000 m ************************************************************************* FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 2 ------------------------------------------------------------ »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW -LENGTH = 1000.00 UPSTREAM ELEVATION = 1360.00 DOWNSTREAM ELEVATION = 1343.00 ELEVATION DIFFERENCE = 17.00 rlr TC = 304*[( 1000.00** 3.00)/( 17.00)]** .20 = 10.884 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.177 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA RUNOFF(CFS) = 30.85 TOTAL AREA(ACRES) = 8.40 PEAK FLOW RATE(CFS) = 30.85 nw , FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 8 --------------------------------------------------------------------------- --»»>ADDITION-OF-SUBAREA-TO-MAINLINE-PEAK-FLOW<<<<< -------------------- 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.177 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) _ .0970 SUBAREA AREA(ACRES) = 8.80 SUBAREA RUNOFF(CFS) = 32.32 .. EFFECTIVE AREA(ACRES) = 17.20 AVERAGED Fm(INCH/HR) _ •097 Im go TOTAL AREA(ACRES) = 17.20 PEAK FLOW RATE(CFS) = 63.17 rr TC(MIN) = 10.88 40:*************************************************************************** Or FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 3 --------------------------------------------------------------- 40 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««< DEPTH OF FLOW IN 33.0 INCH PIPE IS 23.9 INCHES • «�. PIPEFLOW VELOCITY(FEET/SEC.) = 13.7 UPSTREAM NODE ELEVATION = 1343.00 a DOWNSTREAM NODE ELEVATION = 1330.00 FLOWLENGTH(FEET) = 630.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 63.17 TRAVEL TIME(MIN.) = .77 TC(MIN.) = 11.65 FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 8 --------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< do 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.010 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(IN9.19 _ .4850 SUBAREA AREA(ACRES) = 9.20 SUBAREA RUNOFF(CFS) = 29.19 EFFECTIVE AREA(ACRES) = 26.40 AVERAGED Fm(INCH/HR) _ .232 ,d TOTAL AREA(ACRES) = 26.40 PEAK FLOW RATE(CFS) = 89.76 w TC(MIN) = 11.65 **************************************************************************** w FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 3 ---------------------------------------------------- 40 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««< DEPTH OF FLAW IN 45.0 INCH PIPE IS 32..3 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 10.6 UPSTREAM NODE ELEVATION = 1330.00 DOWNSTREAM NODE ELEVATION = 1325.00 FLOWLENGTH(FEET) = 610.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 45.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 89.76 TRAVEL TIME(MIN.) _ .96 TC(MIN.) = 12.61 MM FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 8 A---------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.824 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA AREA(ACRES) = 11.20 SUBAREA RUNOFF(CFS) = 33.66 EFFECTIVE AREA(ACRES) = 37.60 AVERAGED Fm(INCH/HR) _ .308 TOTAL PEAK FLOW ARATE(3 CFS) = 119-00 ,. r TC(MIN) = 12.61 on END OF RATIONAL METHOD ANALYSIS do MR dd rr .s do 4W .A rr FLOW PROCESS FROM NODE 104.00 TO NODE 105.00 IS CODE = 3 wo- --------------------------------------------------------------------------- „�;, »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER—ESTIMATED PIPESIZE (NON—PRESSURE FLOW) ««< ------- -------- __________________________======--------------------- DEPTH OF FLOW IN 45.0 INCH PIPE IS 34.3 INCHES ft PIPEFLOW VELOCITY(FEET/SEC.) = 13.2 UPSTREAM NODE ELEVATION = 1325.00 wo DOWNSTREAM NODE ELEVATION = 1316.00 FLOWLENGTH(FEET) = 720.00 MANNINGS N = 013 ESTIMATED PIPE DIAMETER(INCH) = 45.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 119.00 TRAVEL TIME(MIN.) _ .91 TC(MIN.) = 13.52 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 37.60 EFFECTIVE AREA(ACRES) = 37.60 dA PEAK FLOW RATE(CFS) = 119.00 on END OF RATIONAL METHOD ANALYSIS do MR dd rr .s do 4W .A rr r. ■M 4m do in dig arar 40 mm w r rr war .w r 10 YEAR STUDY *************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE .. (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) *** PRELIMINARY/EXPERIMENTAL VERSION *** rir Copyright 1983,86,87 Advanced Engineering Software (aes) Ver. 4.1B Release Date: 2/20/87 Serial # BETA06 do Especially prepared for: * BETA TEST SITE EVALUATION ONLY ************************** DESCRIPTION OF STUDY ************************** CITATION FONTANA - 10 YEAR PORTION * MAIN LINE SYSTEM * KEITH COMPANIES - TOM BRAUN 40 ************************************************************************** FILE NAME: B:FONT10.DAT TIME/DATE OF STUDY: 15: 8 9/11/1987 ------------------------------------ USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: .w --*TIME-OF-CONCENTRATION MODEL*-- USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE _ .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) = 1.0000 a! *************************************************************************** +� FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 2 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< di DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3-4 DWELLINGS/ACRE MR TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 • INITIAL SUBAREA FLOW -LENGTH = 1000.00 UPSTREAM ELEVATION = 1339.80 DOWNSTREAM ELEVATION = 1331.80 ELEVATION DIFFERENCE = 8.00 TC = .412*[( 1000.00** 3.00)/( 8.00)]** .20 = 17.151 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.120 SOIL CLASSIFICATION IS "A" RESIDENTIAL ->-3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 SUBAREA RUNOFF(CFS) = 7.06 TOTAL AREA(ACRES) = 5.10 PEAK FLOW RATE(CFS) = 7.06 FLOW PROCESS FROM NODE 202.00 TO NODE 203.00 IS CODE = 6 ---------------------------------------------------------------------------- di »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< UPSTREAM ELEVATION = 1332.00 DOWNSTREAM ELEVATION = 1327.50 STREET LENGTH(FEET) = 280.00 CURB HEIGTH(INCHES) = 6. STREET.HALFWIDTH(FEET) = 20.00 in DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 10 rr OUTSIDE STREET CROSSFALL(DECIMAL) _ .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 rr **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 7.91 STREETFLOW MODEL RESULTS: ,�. STREET FLOWDEPTH(FEET) _ .48 HALFSTREET FLOODWIDTH(FEET) = 11.38 mill AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.90 PRODUCT OF DEPTH&VELOCITY = 1.89 do STREETFLOW TRAVELTIME(MIN) = 1.20 TC(MIN) = 18.35 ww 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.036 ld SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 SUBAREA AREA(ACRES) = 1.30 SUBAREA RUNOFF(CFS) = 1.70 40 EFFECTIVE AREA(ACRES) = 6.40 AVERAGED Fm(INCH/HR) _ .582 TOTAL AREA(ACRES) = 6.40 PEAK FLOW RATE(CFS) = 8.37 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .50 HALFSTREET FLOODWIDTH(FEET) = 12.13 FLOW VELOCITY(FEET/SEC.) = 3.80 DEPTH*VELOCITY = 1.89 *************************************************************************** FLOW PROCESS FROM NODE 203.00 TO NODE 204.00 IS CODE = 3 ---------------------------------------------------------------------------- »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««< ------------ DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.1 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 7.-3 UPSTREAM NODE ELEVATION = 1327.50 DOWNSTREAM NODE ELEVATION = 1319.10 MR FLOWLENGTH(FEET) = 580.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 A PIPEFLOW THRU SUBAREA(CFS) = 8.37 TRAVEL TIME(MIN.) = 1.32 TC(MIN.) = 19.67 ,aw NOR--------------------------------------------------------------------------- FLOW PROCESS FROM NODE 204.00 TO NODE 204.00 IS »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< CODE = 8 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.953 ---------------- SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 SUBAREA AREA(ACRES) = 7.20 SUBAREA RUNOFF(CFS) = 8.88 EFFECTIVE AREA(ACRES) = 13.60 AVERAGED Fm(INCH/HR) _ .582 TOTAL AREA(ACRES) = 13.60 PEAK FLOW RATE(CFS) = 16.78 TC(MIN) = 19.67 rl **************************************************************************** FLOW PROCESS FROM NODE 204.00 TO NODE 105.00 IS CODE = 3 -------------------------------------------------- ------------------------ >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««< DEPTH OF FLOW IN 21.0 INCH PIPE IS 16.9 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 8.1 „* UPSTREAM NODE ELEVATION = 1319.10 DOWNSTREAM NODE ELEVATION = 1316.00 ■r Q. FLOWLENGTH(FEET) = 240.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 16.78 "f TRAVEL TIME(MIN.) _ .49 TC(MIN.) = 20.16 FLOW PROCESS FROM NODE 105.00 TO NODE -105.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 20.16 RAINFALL INTENSITY (INCH./HOUR) = 1.92 EFFECTIVE STREAM AREA(ACRES) = 13.60 TOTAL STREAM AREA(ACRES) = 13.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 16.78 ,WI **************************************************************************** MR FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 7 19 --------------------------------------------------------------------------- »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< ------ _____________________________________-------- __________________ USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 13.52 RAIN INTENSITY(INCH/HOUR) = 2.45 EFFECTIVE AREA(ACRES) = 37.60 TOTAL AREA(ACRES) = 37.60 PEAK FLOW RATE(CFS) = 119.00 AVERAGED LASS RATE, Fm(IN/HR) = .308 FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 13.52 RAINFALL INTENSITY (INCH./HOUR) = 2.45 A EFFECTIVE STREAM AREA(ACRES) = 37.60 TOTAL STREAM AREA(ACRES) = 37.60 4t PEAK FLOW RATE(CFS) AT CONFLUENCE = 119.00 CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN..) (INCH/HOUR) (IN/HR) AREA(ACRES) di------------------------------------------------------------- 1 16.78 20.16 1.924 .58 13.60 2 119.00 13.52 2.445 .31 37.60 i RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) --------------------------------------------- wMA 1 106.76 51.20 2 134.62 46.72 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 134.62 TIME(MINUTES) = 13.520 EFFECTIVE AREA(ACRES) = 46.72 TOTAL AREA(ACRES) = 51.20 rr FLOW PROCESS FROM NODE 105.00 TO NODE 106.00 IS CODE = 3 ---------------------------------------------------------------------------- »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA -c<<<< »»>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««< ---------- DEPTH OF FLOW IN 45.0 INCH PIPE IS 34.5 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 14.8 UPSTREAM NODE ELEVATION = 1316.00 DOWNSTREAM NODE ELEVATION = 1307.50 FLOWLENGTH(FEET) = 540.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 45.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 134.62 TRAVEL TIME(MIN.) = .61 TC(MIN.) = 14.13 C] **************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 1 --------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ------------------------= ------------------------------------ -------------------------------------------------- CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: di TIME OF CONCENTRATION(MINUTES) = 14.13 RAINFALL INTENSITY (INCH./HOUR) = 2.38 40 EFFECTIVE STREAM AREA(ACRES) = 46.72 TOTAL STREAM AREA(ACRES) = 51.20 90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 134.62 *************************************************************************** i FLOW PROCESS FROM NODE 301.00 TO NODE 302.00 IS CODE = 2 ---------------------------------------------------------------------------- ""� »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3-4 DWELLINGS/ACRE TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 A INITIAL SUBAREA FLOW -LENGTH = 1000.00 UPSTREAM ELEVATION = 1334.00 DOWNSTREAM ELEVATION = 1319.40 ELEVATION DIFFERENCE = 14.60 TC = .412*[( 1000.00** 3.00)/( 14.60)]** .20 = 15.206 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.279 SOIL CLASSIFICATION IS "A" d6 RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 SUBAREA RUNOFF(CFS) = 7.18 IN TOTAL AREA(ACRES) = 4.70 PEAK FLOW RATE(CFS) = 7.18 **************************************************************************** FLOW PROCESS FROM NODE 302.00 TO NODE 303.00 IS CODE = 6 --------------------------------------------------------------------------- »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< -------------------------------- UPSTREAM ELEVATION = 1319.40 DOWNSTREAM ELEVATION = 1318.40 STREET LENGTH(FEET) = 100.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 w DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 7.18 „�. STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. do rr THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION -• THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) = .51 HALFSTREET FLOODWIDTH(FEET) = 12.88 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.00 PRODUCT OF DEPTH&VELOCITY = 1.54 STREETFLOW TRAVELTIME(MIN) = .56 TC(MIN) = 15.76 M 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.230 ld SOIL CLASSIFICATION IS "A" RESIDENTIAL ->-3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 ,* SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) _ .00 EFFECTIVE AREA(ACRES) = 4.70 AVERAGED Fm(INCH/HR) _ .582 TOTAL AREA(ACRES) = 4.70 PEAK FLOW RATE(CFS) = 7.18 END OF SUBAREA STREETFLOW HYDRAULICS: go DEPTH(FEET) _ .51 HALFSTREET FLOODWIDTH(FEET) = 12.88 FLOW VELOCITY(FEET/SEC.) = 3.00 DEPTH*VELOCITY = 1.54 FLOW PROCESS FROM NODE 303.00 TO NODE 303.00 IS CODE = 8 --------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ____________________________________________ 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.230 •� SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 SUBAREA AREA(ACRES) = 1.40 SUBAREA RUNOFF(CFS) = 2.08 EFFECTIVE AREA(ACRES) = 6.10 AVERAGED Fm(INCH/HR) _ .582 TOTAL AREA(ACRES) = 6.10 PEAK FLOW RATE(CFS) = 9.05 TC(MIN) = 15.76 **************************************************************************** FLOW PROCESS FROM NODE 303.00 TO NODE 304.00 IS CODE = 3 --------------------------------------------------------------------------- '� »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««< DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.4 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 6.4 UPSTREAM NODE ELEVATION = 1319.40 DOWNSTREAM NODE ELEVATION = 1313.40 FLOWLENGTH(FEET) = 600.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 9.05 TRAVEL TIME(MIN.) = 1.56 TC(MIN.) = 17.33 FLOW PROCESS FROM NODE 304.00 TO NODE 304.00 IS CODE = 8 rii--------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.107 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 SUBAREA AREA(ACRES) = 10.80 SUBAREA RUNOFF(CFS) = 14.82 di EFFECTIVE AREA(ACRES) = 16.90 AVERAGED Fm(INCH/HR) _ .582 TOTAL AREA(ACRES) = 16.90 PEAK FLOW RATE(CFS) = 23.19 r ,. an TC(MIN) = 17.33 .. - FLOW PROCESS FROM NODE 304.00 TO NODE 305.00 IS CODE = 3 •--------------------------------------------------------------------------- ,r,,, »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««< _____________________ ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.4 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 24.9 UPSTREAM NODE ELEVATION = 1313.40 DOWNSTREAM NODE ELEVATION = 1207.80 FLOWLENGTH(FEET) = 560.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 23.19 TRAVEL TIME(MIN.) = .37 TC(MIN.) = 17.70 iIIM FLOW PROCESS FROM NODE 305.00 TO NODE 305.00 IS CODE = 8 ---------------------------------------------------------------------------- r »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< --------------------- 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.080 SOIL CLASSIFICATION IS "A" ► RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 dd SUBAREA AREA(ACRES) = 9.10 SUBAREA RUNOFF(CFS) = 12.27 EFFECTIVE AREA(ACRES) = 26.00 AVERAGED Fm(INCH/HR) _ .582 " TOTAL AREA(ACRES) = 26.00 W PEAK FLOW RATE(CFS). = 35.06 TC(MIN) = 17.70 FLOW PROCESS FROM NODE 305.00 TO NODE 106.00 IS CODE = 3 --------------------------------------------------------------------------- »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< 99 »»>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««< 40 DEPTH OF FLOW IN 30.0 INCH PIPE IS 22.3 INCHES at PIPEFLOW-VELOCITY(FEET/SEC.) = 9.0 UPSTREAM NODE ELEVATION = 1207.80 DOWNSTREAM NODE ELEVATION = 1207.00 40 FLOWLENGTH(FEET) = 80.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 35.06 TRAVEL TIME(MIN.) = .15 TC(MIN.) = 17.85 **************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 1 --------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< di CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 17.85 40 RAINFALL INTENSITY (INCH./HOUR) = 2.07 EFFECTIVE STREAM AREA(ACRES) = 26.00 ii TOTAL STREAM AREA(ACRES) = 26.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 35.06 m CONFLUENCE INFORMATION: m 0 r STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE "'v NUMBER RATE(CFS) (MIN.) (INCH/HOUR) (IN/HR) AREA(ACRES) "' -------------------------------------------------------------- 1 134.62 14.13 2.381 .36 46.72 2 35.06 17.85 2.070 .58 26.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. „ SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE d1 NUMBER Q(CFS) AREA(ACRES) --------------------------------------------- aw 1 168.18 67.30 2 148.90 72.72 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 168.18 TIME(MINUTES) = 14.128 EFFECTIVE AREA(ACRES) = 67.30 TOTAL AREA(ACRES) = 77.20 i FLOW PROCESS FROM NODE 106.00 TO NODE 107.00 IS CODE = 3 ---------------------------------------------------------------------------- �., »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««< DEPTH OF FLOW IN 54.0 INCH PIPE IS 40.1 INCHES *0 PIPEFLOW VELOCITY(FEET/SEC.) = 13.3 do UPSTREAM NODE ELEVATION = 1307.00 DOWNSTREAM NODE ELEVATION = 1305.40 FLOWLENGTH(FEET) = 160.00 MANNINGS N = .013 40 FLOWLENGTH(FEET) PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1 di PIPEFLOW THRU SUBAREA(CFS) = 168.18 TRAVEL TIME(MIN.) _ .20 TC(MIN.) = 14.33 on FLOW PROCESS FROM NODE 107.00 TO NODE 107.00 IS CODE = 8 40 --------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.361 on SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 SUBAREA AREA(ACRES) = 6.80 SUBAREA RUNOFF(CFS) = 10.89 EFFECTIVE AREA(ACRES) = 74.10 AVERAGED Fm(INCH/HR) _ .443 TOTAL AREA(ACRES) = 84.00 PEAK FLAW RATE(CFS) = 168.18 TC(MIN) = 14.33 **************************************************************************** FLOW PROCESS FROM NODE 107.00 TO NODE 108.00 IS CODE = 3 --------------------------------------------------------------------------- »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLAW) ««< DEPTH OF FLOW IN 54.0 INCH PIPE IS 40.1 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 13.3 UPSTREAM NODE ELEVATION = 1305.40 DOWNSTREAM NODE ELEVATION = 1305.00 vi FLOWLENGTH(FEET) = 40.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 168.18 TRAVEL TIME(MIN.) _ .05 TC(MIN.) = 14.38 77 mm r7 FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 8 -- ------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 10 YEAR RAINFALL INTENSITY(INCH/HOUR) 2.356 40 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 do SUBAREA AREA(ACRES) = 2.60 SUBAREA RUNOFF(CFS) = 4.15 EFFECTIVE AREA(ACRES) = 76.70 ® AVERAGED Fm(INCH/HR) _ .448 TOTAL AREA(ACRES) = 86.60 PEAK FLAW RATE(CFS) = 168.18 TC(MIN) = 14.38 .m FLOW PROCESS FROM NODE 108.00 TO NODE 109.00 IS CODE = 3 ------------------------------------------------- »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««< ------------------------------------- ------------------------ DEPTH OF FLOW IN 51.0 INCH PIPE IS 39.3 INCHES do PIPEFLOW VELOCITY(FEET/SEC.) = 14.3 UPSTREAM NODE ELEVATION = 1305.00 DOWNSTREAM NODE ELEVATION = 1296.40 FLOWLENGTH(FEET) = 690.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 51.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 168.18 TRAVEL TIME(MIN.) _ .80 TC(MIN.) = 15.18 i FLOW PROCESS FROM NODE 109.00 TO NODE 109.00 IS CODE = 8 da---------------------------------------------------- ----------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ------------------------------------------ nw-----------------------------------------------= -------------------------- - ------------------------- 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.281 +r SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA AREA(ACRES) = 7.20 SUBAREA RUNOFF(CFS) = 11.64 EFFECTIVE AREA(ACRES) = 83.90 AVERAGED Fm(INCH/HR) _ .451 TOTAL AREA(ACRES) = 93.80 PEAK FLOW RATE(CFS) = 168.18 do TC(MIN) = 15.18 ill FLOW PROCESS FROM NODE 109.00 TO NODE 110.00 IS CODE = 3 ----------------------------------------------- ,,,� »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««< ------------------------------------------ DEPTH OF FLOW IN 51.0 INCH PIPE IS 40.0 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 14.1 UPSTREAM NODE ELEVATION = 1296.40 DOWNSTREAM NODE ELEVATION = 1295.80 FLOWLENGTH(FEET) = 50.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 51.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 168.18 TRAVEL TIME(MIN.) _ .06 TC(MIN.) = 15.24 .rr ON **************************************************************************** FLOW PROCESS FROM NODE 110.00 TO NODE 110.00 IS CODE = 8 --------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< -------------------------- "� 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.276 to SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS -RATE, Fm(INCH/HR) _ .4850 SUBAREA AREA(ACRES) = 4.50 SUBAREA RUNOFF(CFS) = 7.25 EFFECTIVE AREA(ACRES) = 88.40 'o AVERAGED Fm(INCH/HR) _ .453 TOTAL AREA(ACRES) = 98.30 w PEAK FLOW RATE(CFS) = 168.18 do TC(MIN) = 15.24 Ali FLOW PROCESS FROM NODE 110.00 TO NODE 111.00 IS CODE = 3 ---------------------------------------------------------------------------- „0 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««< DEPTH OF FLOW IN 51.0 INCH PIPE IS 38.3 INCHES +0 PIPEFLOW VELOCITY(FEET/SEC.) = 14.7 do UPSTREAM NODE ELEVATION = 1295.80 DOWNSTREAM NODE ELEVATION = 1289.20 FLOWLENGTH(FEET) = 500.00 MANNINGS N = .013 'o ESTIMATED PIPE DIAMETER(INCH) = 51.00 NUMBER OF PIPES = 1 di PIPEFLOW THRU SUBAREA(CFS) = 168.18 TRAVEL TIME(MIN.) _ .57 TC(MIN.) = 15.81 40 FLOW PROCESS FROM NODE 111.00 TO NODE 111.00 IS CODE = 8 --------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< id 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.226 m SOIL CLASSIFICATION IS "A" IN RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA AREA(ACRES) = 6.20 SUBAREA RUNOFF(CFS) = 9.72 EFFECTIVE AREA(ACRES) = 94.60 40 AVERAGED Fm(INCH/HR) _ .455 jW TOTAL AREA(ACRES) = 104.50 PEAK FLOW RATE(CFS) = 168.18 �w TC(MIN) = 15.81 **************************************************************************** FLOW PROCESS FROM NODE 111.00 TO NODE 112.00 IS CODE = 3 •-------------------------------------------------------------------------- »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««< to DEPTH OF FLOW IN 51.0 INCH PIPE IS 38.2 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 14.8 UPSTREAM NODE ELEVATION = 1289.20 DOWNSTREAM NODE ELEVATION = 1288.80 FLOWLENGTH(FEET) = 30.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 51.00 NUMBER OF PIPES = 1 4m PIPEFLOW THRU SUBAREA(CFS) = 168.18 TRAVEL TIME(MIN.) _ .03 TC(MIN.) = 15.84 rrri FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 1 as r -------------------------------------------------- ** »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ------------------------------------------------- CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 15.84 RAINFALL INTENSITY (INCH./HOUR) = 2.22 �. EFFECTIVE STREAM AREA(ACRES) = 94.60 TOTAL STREAM AREA(ACRES) = 104.50 PEAK FLAW RATE(CFS) AT CONFLUENCE = 168.18 **************************************************************************** FLAW PROCESS FROM NODE 501.00 TO NODE 502.00 IS CODE = 2 ---------------------------------------------------- '� »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<.<< ---------- ----------------------------------- ------------------------------------------------- -------------- DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3-4 DWELLINGS/ACRE TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW -LENGTH = 850.00 UPSTREAM ELEVATION = 1325.00 di DOWNSTREAM ELEVATION = 1310.00 ELEVATION DIFFERENCE = 15.00 TC = .412*[( 850.00** 3.00)/( 15.00)]** .20 = 13.719 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.424 +o SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 40 SUBAREA RUNOFF(CFS) = 14.59 do TOTAL AREA(ACRES) = 8.80 PEAK FLOW RATE(CFS) = 14.59 FLOW PROCESS FROM NODE 501.00 TO NODE 502.00 IS CODE = 2 ---------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ld DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3-4 DWELLINGS/ACRE 48 TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW -LENGTH = 1000.00 UPSTREAM ELEVATION = 1325.00 DOWNSTREAM ELEVATION = 1310.00 ELEVATION DIFFERENCE = 15.00 di TC = .412*[( 1000.00** 3.00)/( 15.0.0)]** .20 = 15.124 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.286 SOIL CLASSIFICATION IS "A" 10 RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 ii SUBAREA RUNOFF(CFS) = 15.49 TOTAL AREA(ACRES) = 10.10 PEAK FLOW RATE(CFS) = 15.49 .N FLOW PROCESS FROM NODE 502.00 TO NODE 503.00 IS CODE = 6 ---------------------------------------- ----------------------------------- »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< UPSTREAM ELEVATION = 1310.00 DOWNSTREAM ELEVATION = 1302.00 00 STREET LENGTH(FEET) = 700.00 CURB HEIGTH(INCHES) = 8. A STREET HALFWIDTH(FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 24.00 40 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .040 an SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 rri **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 16.63 *• STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .66 HALFSTREET FLOODWIDTH(FEET) = 18.87 AVERAGE FLOW VEIACITY(FEET/SEC.) = 3.82 PRODUCT OF DEPTH&VELOCITY = 2.51 STREETFLOW TRAVELTIME(MIN) = 3.05 TC(MIN) = 18.18 ,o 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.047 SOIL CLASSIFICATION IS "A" i COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) _ .0970 SUBAREA AREA(ACRES) = 1.30 SUBAREA RUNOFF(CFS) = 2.28 40 EFFECTIVE AREA(ACRES) = 11.40 AVERAGED Fm(INCH/HR) _ .527 do TOTAL AREA(ACRES) = 11.40 PEAK FLAW RATE(CFS) = 15.60 END OF SUBAREA STREETFLOW HYDRAULICS: 'm DEPTH(FEET) = .64 HALFSTREET FLOODWIDTH(FEET) = 18.13 do FLOW VELOCITY(FEET/SEC.) = 3.83 DEPTH*VELOCITY = 2.45 FLOW PROCESS FROM NODE 503.00 TO NODE 503.00 IS CODE = 8 --------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLAW««< --------- - --------------____- 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.047 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 SUBAREA AREA(ACRES) = 9.70 SUBAREA RUNOFF(CFS) = 12.79 EFFECTIVE AREA(ACRES) = 21.10 AVERAGED Fm(INCH/HR) _ .552 TOTAL AREA(ACRES) = 21.10 PEAK FLOW RATE(CFS) = 28.39 TC(MIN) = 18.18 --FLOW PROCESS FROM NODE 503.00 TO NODE 504.00 IS CODE = 3 -------------------------------------- --------------------------------- »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««< -------------------------------------------- --------------------------------- --------------- 40 DEPTH OF FLAW IN 27.0 INCH PIPE IS 20.1 INCHES PIPEFLOW VELACITY(FEET/SEC.) = 8.9 UPSTREAM NODE ELEVATION = 1302.00 DOWNSTREAM NODE ELEVATION = 1294.00 FLOWLENGTH(FEET) = 700.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 28.39 TRAVEL TIME(MIN.) = 1.30 TC(MIN.) = 19.48 **************************************************************************** FLOW PROCESS FROM NODE 504.00 TO NODE 504.00 IS CODE = 8 --------------------------------- ------------------ »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ---------------------------------- w 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.964 SOIL CLASSIFICATION IS "A" SCHOOL SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 SUBAREA AREA(ACRES) = 11.00 SUBAREA RUNOFF(CFS) = 13.68 EFFECTIVE AREA(ACRES) = 32.10 AVERAGED Fm(INCH/HR) _ .562 TOTAL AREA(ACRES) = 32.10 �.. PEAK FLOW RATE(CFS) = 40.49 TC(MIN) = 19.48 w #/ a **************************************************************************** FLOW PROCESS FROM NODE 504.00 TO NODE 504.00 IS CODE = 8 -- ------------------------------------------------------------ ----------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< -------------------------------------- 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.964 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 to SUBAREA AREA(ACRES) = .85 SUBAREA RUNOFF(CFS) = 1.13 EFFECTIVE AREA(ACRES) = 32.95 +4 AVERAGED Fm(INCH/HR) _ .560 TOTAL AREA(ACRES) = 32.95 PEAK FLOW RATE(CFS) = 41.62 40 TC(MIN) = 19.48 ds 40 FLOW PROCESS FROM NODE 504.00 TO NODE 112.00 IS CODE = 3 -- ----------------------------------------------------- dig »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««< ----------------------------------- DEPTH OF FLOW IN 33.0 INCH PIPE IS 22.9 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 9.4 UPSTREAM NODE ELEVATION = 1294.00 DOWNSTREAM NODE ELEVATION = 1289.20 FLOWLENGTH(FEET) = 480.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 41.62 TRAVEL TIME(MIN.) _ .85 TC(MIN.) = 20.33 i **************************************************************************** FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 1 di-------------------------------------- ------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< 4r »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< ------------------------------------------ _ ------------------------------ ------------------------- CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 20.33 +a RAINFALL INTENSITY (INCH./HOUR) = 1.91 +g EFFECTIVE -STREAM AREA(ACRES) = 32.95 TOTAL STREAM AREA(ACRES) = 32.95 40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 41.62 is CONFLUENCE INFORMATION: COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 208.02 TIME(MINUTES) = 15.841 EFFECTIVE AREA(ACRES) = 120.27 TOTAL AREA(ACRES) = 137.45 it STREAM PEAK FLOW TIME INTENSITY ' FM EFFECTIVE NUMBER ------------------------------------------------------------- RATE(CFS) (MIN.) (INCH/HOUR) (IN/HR) AREA(ACRES) 1 168.18 15.84 2.223 .45 94.60 2 41.62 20.33 1.914 .56 32.95 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE --------------------------------------------- NUMBER Q(CFS) AREA(ACRES) ,n 1 208.02 120.27 2 180.41 127.55 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 208.02 TIME(MINUTES) = 15.841 EFFECTIVE AREA(ACRES) = 120.27 TOTAL AREA(ACRES) = 137.45 it Oft FLOW PROCESS FROM NODE 112.00 TO NODE 113.00 IS CODE = 3 ------------------------------------------------------------- ""' »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER—ESTIMATED PIPESIZE (NON—PRESSURE FLOW) ««< DEPTH OF FLAW IN 57.0 INCH PIPE IS 42.9 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 14.5 to UPSTREAM NODE ELEVATION = 1289.20 DOWNSTREAM NODE ELEVATION = 1287.20 4m FLOWLENGTH(FEET) = 180.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 57.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 208.02 40 TRAVEL TIME(MIN.) = .21 TC(MIN.) = 16.05 FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 8 •---------------- -------------------------------------------------- a »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< --------------------------------------------------------------- --------------------------------- 40 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.206 SOIL CLASSIFICATION IS "A" 0 RESIDENTIAL—> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 SUBAREA AREA(ACRES) = 4.00 SUBAREA RUNOFF(CFS) = 5.85 40 EFFECTIVE AREA(ACRES) = 124.27 AVERAGED Fm(INCH/HR) _ .481 to TOTAL AREA(ACRES) = 141.45 PEAK FLOW RATE(CFS) = 208.02 ' TC(MIN) = 16.05 ------------------------------------------ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 141.45 EFFECTIVE AREA(ACRES) = 124.27 +d PEAK FLOW RATE(CFS) = 208.02 ----------------------------------------------------------- ------------------------------------------ 40 END OF RATIONAL METHOD ANALYSIS an do 40 fa go ri 40 do on dki m +r go dl 40 0 9 40 96 0 0 0 40 do 40 ri ON do 40 w 0 HYDROLOGY FOR CATCH BASIN DESIGN ,. RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) *** PRELIMINARY/EXPERIMENTAL VERSION *** Copyright 1983,86,87 Advanced Engineering Software (aes) Ver. 4.1B Release Date: 2/20/87 Serial # BETA06 Especially prepared for: * BETA TEST SITE EVALUATION ONLY ************************** DESCRIPTION OF STUDY ************************** TRACT 13325 INITIAL AREA CALCS FOR SIZING OF CATCH BASINS LINE A - 100 YEAR (SUMP) PORTION * * KEITH COMPANIES - TOM BRAUN ************************************************************************** do FILE NAME: B:FONTACB.DAT w TIME/DATE OF STUDY: 17:54 9/13/1987 ------------------------------------------------------- ---------------------------------------- 0 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ------------ an --*TIME-OF-CONCENTRATION MODEL* -- +o USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE _ .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) = 1.5000 r r FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 2 -------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< -------------------------------------------------------------- DEVELOPMENT IS COMMERCIAL OR TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 at INITIAL SUBAREA FLOW -LENGTH = 700.00 UPSTREAM ELEVATION = 1337.70 DOWNSTREAM ELEVATION = 1326.00 40 ELEVATION DIFFERENCE = 11.70 r1 TC = .304*[( 700.00** 3.00)/( 11.70)]** .20 = 9.469 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.542 NIX SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) _ .0970 SUBAREA RUNOFF(CFS) = 6.00 TOTAL AREA(ACRES) = 1.50 PEAK FLOW RATE(CFS) = 6.00 FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 6 •---------------------------------- ---------------------------------------- »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< UPSTREAM ELEVATION = 1326.00 DOWNSTREAM ELEVATION = 1325.90 STREET LENGTH(FEET) = 8.70 CURB HEIGTH(INCHES) = 6. a STREET HALFWIDTH(FEET) = 20.00 4, DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 ift SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 6.00 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .47 HALFSTREET FLOODWIDTH(FEET) = . 10.63 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.22 PRODUCT OF DEPTH&VELOCITY = 1.51 STREETFLOW TRAVELTIME(MIN) = .05 TC(MIN) = 9.51 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.529 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) _ .0970 SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) _ .00 EFFECTIVE AREA(ACRES) = 1.50 AVERAGED Fm(INCH/HR) _ .097 TOTAL AREA(ACRES) = 1.50 PEAK FLOW RATE(CFS) = 6.00 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .47 HALFSTREET FLOODWIDTH(FEET) = 10.63 ill FLOW VELOCITY(FEET/SEC.) = 3.22 DEPTH*VELOCITY = 1.51 40 *************************************************************************** VIII FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 2 ------------------ _____ +11lA »»> RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< - --------- ---------- NATURAL POOR COVER go TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW -LENGTH = 900.00 UPSTREAM ELEVATION = 1360.00 DOWNSTREAM ELEVATION = 1343.00 ELEVATION DIFFERENCE = 17.00 di TC = .525*[( 900.00** 3.00)/( 17.00)]** .20 = 17.645 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.126 40 SOIL CLASSIFICATION IS "A" NATURAL POOR COVER "BARREN" SUBAREA LOSS RATE, Fm(INCH/HR) _ .4100 do SUBAREA RUNOFF(CFS) = 20.53 ON TOTAL AREA(ACRES) = 8.40 PEAK FLOW RATE(CFS) = 20.53 FLOW PROCESS FROM NODE 102.00 TO NODE 104.00 IS CODE = 5 40 »»>COMPUTE TRAPEZOIDAL -CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA««< ----------------------------------------------------- ___________ UPSTREAM NODE ELEVATION = 1343.00 DOWNSTREAM NODE ELEVATION = 1326.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 700.00 CHANNEL BASE(FEET) = 15.00 "Z" FACTOR = 3.000 MANNINGS FACTOR = .035 MAXIMUM DEPTH(FEET) = 5.00 CHANNEL FLAW THRU SUBAREA(CFS) = 20.53 FLOW VELACITY(FEET/SEC) = 3.43 FLOW DEPTH(FEET) _ .37 TRAVEL TIME(MIN.) = 3.40 TC(MIN.) = 21.04 **************************************************************************** 40 FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 8 ----------------------------------------- --------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ------------------------------------- ---------------------- ---------------------------- 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.813 "a �r SOIL CLASSIFICATION IS "A" +� NATURAL POOR COVER "BARREN" SUBAREA LOSS RATE, Fm(INCH/HR) _ .4100 SUBAREA AREA(ACRES) = 28.00 SUBAREA RUNOFF(CFS) = 60.55 EFFECTIVE AREA(ACRES) = 36.40 AVERAGED Fm(INCH/HR) _ .410 TOTAL AREA(ACRES) = 36.40 PEAK FLOW RATE(CFS) = 78.71 TC(MIN) = 21.04 +0 do *************************************************************************** FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 3 w►----------------------------------- ------------------------------------------ »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< do »»>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««< DEPTH OF FLOW IN 36.0 INCH PIPE IS 26.2 INCHES ts PIPEFLOW VELOCITY(FEET/SEC.) = 14.3 UPSTREAM NODE ELEVATION = 1326.00 DOWNSTREAM NODE ELEVATION = 1325.00 FLOWLENGTH(FEET) = 50.00 MANNINGS N = 013 a ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 78.71 we TRAVEL TIME(MIN.) _ .06 TC(MIN.) = 21.10 qu FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 2 to ----------------------------------------- ----------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< NATURAL POOR COVER TC = K* LENGTH** 3.00 )/(ELEVATION )/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW -LENGTH = 1600.00 UPSTREAM ELEVATION = 1360.00 do DOWNSTREAM ELEVATION = 1326.00 ELEVATION DIFFERENCE = 34.00 TC = 525*[( 1600.00** 3.00)/( 34.00)]** .20 = 21.694 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.762 SOIL CLASSIFICATION IS "A" NATURAL POOR COVER "BARREN" SUBAREA LOSS RATE, Fm(INCH/HR) _ .4100 so SUBAREA RUNOFF(CFS) = 77.04 TOTAL AREA(ACRES) = 36.40 PEAK FLOW RATE(CFS) -77.04 --------------------------------------------------- ------------------------- END OF STUDY SUMMARY: TOTAL AREA (ACRES ) = 36.40 dS EFFECTIVE AREA(ACRES) = 36.40 PEAK FLOW RATE(CFS) = 77.04 "_____________________________________________ i ----------------------- END OF RATIONAL METHOD ANALYSIS no do ew IN 40 do 40 iw .wr IN *************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) *** PRELIMINARY/EXPERIMENTAL VERSION *** to Copyright 1983,86,87 Advanced Engineering Software (aes) Ver. 4.1B Release Date: 2/20/87 Serial # BETA06 do Especially prepared for: * BETA TEST SITE EVALUATION ONLY t************************* DESCRIPTION OF STUDY TRACT 13325-1 - INITIAL AREA CALCS FOR CATCH BASIN SIZING LINE A ( p W * * FILE NAME: B:FONTACBI.DAT TIME/DATE OF STUDY: 12: 8 9/12/1987 10 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: +.� --*TIME-OF-CONCENTRATION MODEL*-- USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE = .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) = 1.0000 dl FLOW PROCESS FROM NODE 203.00 TO NODE 107.00 IS CODE = 2 ---------------------------------------------------------------------------- 00 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ----------- ____________________ 4W DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3-4 DWELLINGS/ACRE '" TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 jj INITIAL SUBAREA FLOW -LENGTH = 1100.00 UPSTREAM ELEVATION = 1328.50 DOWNSTREAM ELEVATION = 1305.40 ELEVATION DIFFERENCE = 23.10 to TC = .412*[( 1100.00** 3.00)/( 23.10)]** .20 = 14.690 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.326 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 SUBAREA RUNOFF(CFS) = 6.28 TOTAL AREA(ACRES) = 4.00 PEAK FLOW RATE(CFS) = 6.28 FLOW PROCESS FROM NODE 107.00 TO NODE 107.00 IS CODE = 6 --------------------------------------------------------------------------- »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< ------------------------------------------------ ------------------------------------ 40 UPSTREAM ELEVATION = 1305.40 DOWNSTREAM ELEVATION = 1305.30 STREET LENGTH(FEET) = 10.00 CURB HEIGTH(INCHES) = 6. d1 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 +b **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 6.28 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .48 HALFSTREET FLOODWIDTH(FEET) = 11.38 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.09 PRODUCT OF DEPTH&VELOCITY = 1.50 do STREETFLOW TRAVELTIME(MIN) = .05 TC(MIN) 14.74 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.321 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) _ .00 EFFECTIVE AREA(ACRES) = 4.00 AVERAGED FM(INCH/HR) _ .582 TOTAL AREA(ACRES) = 4.00 PEAK FLOW RATE(CFS) = 6.28 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .48 HALFSTREET FLOODWIDTH(FEET) = 11.38 rill FLOW VELOCITY(FEET/SEC.) = 3.09 DEPTH*VELOCITY = 1.50 .s *************************************************************************** 44 FLOW PROCESS FROM NODE 107.00 TO NODE 107.00 IS CODE = 8 ---------------------------------------------------------------------------- 4w »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.321 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 SUBAREA AREA(ACRES) = 2.80 SUBAREA RUNOFF(CFS) = 4.38 EFFECTIVE AREA(ACRES) = 6.80 AVERAGED Fm(INCH/HR) _ .582 TOTAL AREA(ACRES) = 6.80 PEAK FLOW RATE(CFS) = 10.64 TC(MIN) = 14.74 uw FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 2 --------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ,ur► DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3-4 DWELLINGS/ACRE TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW -LENGTH = 950.00 UPSTREAM ELEVATION = 1315.20 DOWNSTREAM ELEVATION = 1305.10 ill ELEVATION DIFFERENCE = 10.10 TC = .412*[( 950.00** 3.00)/( 10.10)]** .20 = 15.873 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.221 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, FM(INCH/HR) _ .5820 SUBAREA RUNOFF(CFS) = 3.83 TOTAL AREA(ACRES) = 2.60 PEAK FLOW RATE(CFS) = 3.83 **************************************************************************** i FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 6 to•- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< UPSTREAM ELEVATION = 1305.10 DOWNSTREAM ELEVATION = 1305.00 im 4. go STREET LENGTH(FEET) = 8.70 CURB HEIGTH(INCHES) = 6. am' STREET HALFWIDTH(FEET) = 20.00 w It on DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .41 HALFSTREET FLOODWIDTH(FEET) = 7.80 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.92 PRODUCT OF DEPTH&VELOCITY = 1.19 STREETFLOW TRAVELTIME(MIN) = .05 TC(MIN) _ 15.92 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.217 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) EFFECTIVE AREA(ACRES) = 2.60 AVERAGED Fm(INCH/HR) _ .582 TOTAL AREA(ACRES) = 2.60 PEAK FLOW RATE(CFS) = END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .41 HALFSTREET FLOODWIDTH(FEET) _ FLOW VELOCITY(FEET/SEC.) = 2.92 DEPTH*VELOCITY = 3.83 Fm(INCH/HR) _ .5820 .00 3.83 7.80 1.19 FLOW PROCESS FROM NODE 401.40 TO NODE 401.50 IS CODE = 2 --------------------------------------------------------------------------- od »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ------------------------------------------------- DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5-7 DWELLINGS/ACRE TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW -LENGTH = 1000.00 UPSTREAM ELEVATION = 1316.00 DOWNSTREAM ELEVATION = 1301.80 46 ELEVATION DIFFERENCE = 14.20 TC = .389*[( 1000.00** 3.00)/( 14.20)]** .20 = 14.438 40 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.351 dil SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA RUNOFF(CFS) = 6.72 "� TOTAL AREA(ACRES) = 4.00 PEAK FLOW RATE(CFS) = 6.72 FLAW PROCESS FROM NODE 401.50 TO NODE 109.00 IS CODE = 6 rlt--------------------------------------------------------------------------- »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< UPSTREAM ELEVATION = 1301.80 DOWNSTREAM ELEVATION = 1296.40 STREET LENGTH(FEET) = 400.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 apt DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 rM SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 an **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 7.63 STREETFLOW MODEL RESULTS: ar #. • STREET FLOWDEPTH(FEET) _ .50 HALFSTREET FLOODWIDTH(FEET) = 12.13 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.46 PRODUCT OF DEPTH&VELOCITY = 1.73 STREETFLOW TRAVELTIME(MIN) = 1.93 TC(MIN) = 16.36 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.181 SOIL CLASSIFICATION IS -"A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LASS RATE, Fm(INCH/HR) _ .4850 SUBAREA AREA(ACRES) = 1.20 SUBAREA RUNOFF(CFS) = 1.83 la EFFECTIVE AREA(ACRES) = 5.20 AVERAGED Fm(INCH/HR) _ .485 aw TOTAL AREA(ACRES) = 5.20 PEAK FLOW RATE(CFS) = 7.93 END OF SUBAREA STREETFLOW HYDRAULICS: 10 DEPTH(FEET) _ .50 HALFSTREET FLOODWIDTH(FEET) = 12.13 FLAW VELOCITY(FEET/SEC.) = 3.60 DEPTH*VELOCITY = 1.79 FLOW PROCESS FROM NODE 109.00 TO NODE 109.00 IS CODE = 8 .. - --------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLAW««< 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.181 SOIL CLASSIFICATION IS "A" +r RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA AREA(ACRES) = 2.00 SUBAREA RUNOFF(CFS) = 3.05 #is, EFFECTIVE AREA(ACRES) = 7.20 AVERAGED Fm(INCH/HR) _ .485 va TOTAL AREA(ACRES) = 7.20 PEAK FLOW RATE(CFS) = 10.99 "" TC(MIN) = 16.36 r� **************************************************************************** FLOW PROCESS FROM NODE 111.00 TO NODE 111.00 IS CODE = 2 -------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< --------------------------------------------------------- DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5-7 DWELLINGS/ACRE 41 TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW -LENGTH = 1000.00 UPSTREAM ELEVATION = 1303.70 DOWNSTREAM ELEVATION = 1289.20 ELEVATION DIFFERENCE = 14.50 TC = .389*[( 1000.00** 3.00)/( 14.50)]** .20 = 14.377 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.357 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA RUNOFF(CFS) = 8.09 d# TOTAL AREA(ACRES) = 4.80 PEAK FLOW RATE(CFS) = 8.09 FLOW PROCESS FROM NODE 111.00 TO NODE 111.00 IS CODE = 6 ---------------------------------------------------------------------------- »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< - ------------------------------------------------------------------ UPSTREAM ELEVATION = 1289.20 DOWNSTREAM ELEVATION = 1289.10 STREET LENGTH(FEET) = 4.70 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 W INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .040 rr 0 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 8.09 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .47 HALFSTREET FLOODWIDTH(FEET) = 10.63 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.34 4w PRODUCT OF DEPTH&VELOCITY = 2.03 STREETFLOW TRAVELTIME(MIN) _ .02 TC(MIN) = 14.40 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.355 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA AREA(ACRES) _ .00 SUBAREA RUNOFF(CFS) _ .00 EFFECTIVE AREA(ACRES) = 4.80 AVERAGED Fm(INCH/HR) _ .485 di TOTAL AREA(ACRES) = 4.80 PEAK FLOW RATE(CFS) = 8.09 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) _ .47 HALFSTREET FLOODWIDTH(FEET) = 10.63 FLOW VELOCITY(FEET/SEC.) = 4.34 DEPTH*VELOCITY = 2.03 r�r FLOW PROCESS FROM NODE 111.00 TO NODE 111.00 IS CODE = 2 +Wt •-------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5-7 DWELLINGS/ACRE TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW -LENGTH = 480.00 UPSTREAM ELEVATION = 1297.40 DOWNSTREAM ELEVATION = 1289.20 ELEVATION DIFFERENCE = 8.20 TC = .389*[( 480.00** 3.00)/( 8.20)]** .20 = 10.374 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.866 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBTOTALEAREA(ACRES)S, 00 1.40PEAK FLOW RATE(CFS) = 3.00 ************************************************************************** FLOW PROCESS FROM NODE 111.00 TO NODE 111.00 IS CODE = 6 ---------------------------------------------------------------------------- ® »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< UPSTREAM ELEVATION = 1289.20 DOWNSTREAM ELEVATION = 1289.10 STREET LENGTH(FEET) = 4.70 CURB HEIGTH(INCHES) = 6. " STREET HALFWIDTH(FEET) = 20.00 to DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .040 Id SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 m **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 3.00 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .34 HALFSTREET FLOODWIDTH(FEET) = 6.17 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.50 PRODUCT OF DEPTH&VELOCITY = 1.20 ,,,STREETFLOW TRAVELTIME(MIN) _ .02 TC(MIN) = 10.40 11111 Im rrr 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.863 +.� SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA AREA(ACRES) _ .00 SUBAREA RUNOFF(CFS) _ .00 EFFECTIVE AREA(ACRES) = 1.40 AVERAGED Fm(INCH/HR) _ .485 TOTAL AREA(ACRES) = 1.40 PEAK FLOW RATE(CFS) = 3.00 END OF SUBAREA STREETFLOW HYDRAULICS: w DEPTH(FEET) _ .34 HALFSTREET FLOODWIDTH(FEET) = 6.17 FLOW VELOCITY(FEET/SEC.) = 3.50 DEPTH*VELOCITY = 1.20 END OF STUDY SUMMARY: „R TOTAL AREA(ACRES) = 1.40 EFFECTIVE AREA(ACRES) = 1.40 PEAK FLOW RATE(CFS) = 3.00 *0 END OF RATIONAL METHOD ANALYSIS dt r ter► 4w a 00 ON �r r�r .w s an 1W r'7 RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) *** PRELIMINARY/EXPERIMENTAL VERSION *** Copyright 1983,86,87 Advanced Engineering Software (aes) _ Ver. 4.1B- Release Date: 2/20/87 Serial # BETA06 ,w Especially prepared for: rr * BETA TEST SITE EVALUATION ONLY ,w ************************** DESCRIPTION OF STUDY ************************** TRACT 13325 - LINE B INITIAL AREA CALCS FOR SIZING CATCH BASINS * KEITH COMPANIES - TOM BRAUN 40 ************************************************************************** 0 FILE NAME: B:FONTBCB.DAT qW TIME/DATE OF STUDY: 18: 8 9/13/1987 dt USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: r --*TIME-OF-CONCENTRATION MODEL*-- USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 *w# SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 ii *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE = .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) = 1.0000 �If FLOW PROCESS FROM NODE 204.00 TO NODE 204.00 IS CODE = 2 w., »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ---------------------------------------------------------------- DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3-4 DWELLINGS/ACRE TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW -LENGTH = 1000.00 UPSTREAM ELEVATION = 1337.00 DOWNSTREAM ELEVATION = 1320.20 ELEVATION DIFFERENCE = 16.80 TC = .412*[( 1000.00** 3.00)/( 16.80)]** .20 = 14-.785 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.317 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 0 SUBAREA RUNOFF(CFS) = 6.72 TOTAL AREA(ACRES) = 4.30 PEAK FLOW RATE(CFS) = 6.72 s FLOW PROCESS FROM NODE 204.00 TO NODE 204.00 IS CODE = 6 --------------------------------------------------------------------------- »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< UPSTREAM ELEVATION = 1320.20 DOWNSTREAM ELEVATION = 1319.10 STREET LENGTH(FEET) = 80.00 CURB HEIGTH(INCHES) = 6. to STREET HALFWIDTH(FEET) = 20.00 . DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 nv 71 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 rr SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 7.86 " STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .50 HALFSTREET FLOODWIDTH(FEET) = 12.13 „r.. AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.57 PRODUCT OF DEPTH&VELOCITY = 1.78 STREETFLOW TRAVELTIME(MIN) = .37 TC(MIN) = 15.16 w 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.283 i SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 SUBAREA AREA(ACRES) = 1.50 SUBAREA RUNOFF(CFS) = 2.30 EFFECTIVE AREA(ACRES) = 5.80 AVERAGED Fm(INCH/HR) _ .582 TOTAL AREA(ACRES) = 5.80 PEAK FLOW RATE(CFS) = 8.88 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .51 HALFSTREET FLOODWIDTH(FEET) = 12.88 til FLOW VELOCITY(FEET/SEC.) = 3.71 DEPTH*VELOCITY = 1.91 *************************************************************************** FLOW PROCESS FROM NODE 204.00 TO NODE 204.00 IS CODE = 8 ---------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< - -------------------------------------------- 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.283 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 mi SUBAREA AREA(ACRES) = 1.40 SUBAREA RUNOFF(CFS) = 2.14 EFFECTIVE AREA(ACRES) = 7.20 AVERAGED Fm(INCH/HR) _ .582 TOTAL AREA(ACRES) = 7.20 di PEAK FLOW RATE(CFS) = 11.02 TC(MIN) = 15.16 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 7.20 EFFECTIVE AREA(ACRES) = 7.20 PEAK FLOW RATE(CFS) = 11.02 END OF RATIONAL METHOD ANALYSIS E_ RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE «.. (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) *** PRELIMINARY/EXPERIMENTAL VERSION *** 40Copyright 1983,86,87 Advanced Engineering Software (aes) Ver. 4.1B Release Date: 2/20/87 Serial # BETA06 4W go Especially prepared for: * BETA TEST SITE EVALUATION ONLY 4m************************** DESCRIPTION OF STUDY ************************** TRACT 13324-1 LINE C INITIAL AREAS * * * ************************************************************************** FILE NAME: B:FONTCCB.DAT TIME/DATE OF STUDY: 12:35 9/12/1987 ----------------------------------------------- -------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 40 --*TIME-OF-CONCENTRATION MODEL*-- USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 �l *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE _ .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) = 1.0000 *************************************************************************** FLOW PROCESS FROM NODE 303.00 TO NODE 303.00 IS CODE _ -------------------------------------------------------- �"" »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< -------------------------------------------------- DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3-4 DWELLINGS/ACRE TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 0 INITIAL SUBAREA FLOW -LENGTH = 1000.00 UPSTREAM ELEVATION = 1333.00 4, DOWNSTREAM ELEVATION = 1319.40 ELEVATION DIFFERENCE = 13.60 A TC = .412*[( 1000.00** 3.00)/( 13.60)]** .20 = 15.424 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.259 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 SUBAREA RUNOFF(CFS) = 4.53 TOTAL AREA(ACRES) = 3.00 PEAK FLOW RATE(CFS) = 4.53 **************************************************************************** FLOW PROCESS FROM NODE 303.00 TO NODE 304.00 IS CODE = 6 ----------------------------------------------------- -------- �► »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< w UPSTREAM ELEVATION 1319.40 DOWNSTREAM ELEVATION = 1313.40 STREET LENGTH(FEET) = 600.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 OL INTERIOR STREET CROSSFALL(DECIMAL) _ .020 it OUTSIDE STREET CROSSFALL(DECIMAL) _ .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 5.63 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .47 HALFSTREET FLOODWIDTH(FEET) = 10.63 w„ AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.02 PRODUCT OF DEPTH&VELOCITY = 1.41 +� STREETFLOW TRAVELTIME(MIN) = 3.31 TC(MIN) = 18.74 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.010 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 SUBAREA AREA(ACRES) = 1.70 SUBAREA RUNOFF(CFS) = 2.19 EFFECTIVE AREA(ACRES) = 4.70 AVERAGED Fm(INCH/HR) _ .582 TOTAL AREA(ACRES) = 4.70 PEAK FLOW RATE(CFS) = 6.04 s END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .48 HALFSTREET FLOODWIDTH(FEET) = 11.38 FLOW VELOCITY(FEET/SEC.) = 2.98 DEPTH*VELOCITY = 1.44 *************************************************************************** FLOW PROCESS FROM NODE 304.00 TO NODE 304.00 IS CODE = 2 ---------------------------------------------------------------------------- �r »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3-4 DWELLINGS/ACRE 4w TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 tw INITIAL SUBAREA FLOW -LENGTH = 1000.00 UPSTREAM ELEVATION = 1328.00 an DOWNSTREAM ELEVATION = 1313.40 ELEVATION DIFFERENCE = 14.60 Is TC = .412*[( 1000.00** 3.00)/( 14.60)]** .20 = 15.206 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.279 on SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 0 SUBAREA RUNOFF(CFS) = 8.40 TOTAL AREA(ACRES) = 5.50 PEAK FLOW RATE(CFS) = 8.40 FLOW PROCESS FROM NODE 304.00 TO NODE 304.00 IS CODE = 6 --------------------------------------------------------------------------- a »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< - ---- ------------------ �„� UPSTREAM ELEVATION = 1313.40 DOWNSTREAM ELEVATION = 1313.30 STREET LENGTH(FEET) = 10.00 CURB HEIGTH(INCHES) = 6. IN STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 " SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 dt **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 8.86 STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) _ .54 rrr 4w m HALFSTREET FLOODWIDTH(FEET) = 14.38 g*- AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.16 PRODUCT OF DEPTH&VELOCITY = 1.72 uw STREETFLOW TRAVELTIME(MIN) _ .05 TC(MIN) = 15.26 an 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.274 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 SUBAREA AREA(ACRES) _ .60 SUBAREA RUNOFF(CFS) _ .91 EFFECTIVE AREA(ACRES) = 6.10 AVERAGED Fm(INCH/HR) _ .582 TOTAL AREA(ACRES) = 6.10 PEAK FLOW RATE(CFS) = 9.29 4% END OF SUBAREA STREETFLOW HYDRAULICS: of DEPTH(FEET) _ .54 HALFSTREET FLOODWIDTH(FEET) = 14.38 FLOW VELOCITY(FEET/SEC.) = 3.31 DEPTH*VELOCITY = 1.80 *************************************************************************** FLOW PROCESS FROM NODE 104.00 TO NODE 105.50 IS CODE = 2 ---------------------------------------------------------------------------- '" »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3-4 DWELLINGS/ACRE TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLAW -LENGTH = 1000.00 UPSTREAM ELEVATION = 1328.40 DOWNSTREAM ELEVATION = 1312.20 ELEVATION DIFFERENCE = 16.20 TC = .412*[( 1000.00** 3.00)/( 16.20)]** .20 = 14.893 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.307 SOIL CLASSIFICATION IS "A" ,i RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 SUBAREA RUNOFF(CFS) = 6.21 TOTAL AREA(ACRES) = 4.00 PEAK FLOW RATE(CFS) = 6.21 **************************************************************************** FLOW PROCESS FROM NODE 105.50 TO NODE 305.00 IS CODE = 6 --------------------------------------------------------------------------- d »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< +� UPSTREAM ELEVATION = 1312.20 DOWNSTREAM ELEVATION = 1307.80 STREET LENGTH(FEET) = 260.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .040 ..r SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 da **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 7.53 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .47 HALFSTREET FLOODWIDTH(FEET) = 10.63 AVERAGE FLOW VELACITY(FEET/SEC.) = 4.04 PRODUCT OF DEPTH&VELOCITY = 1.89 STREETFLOW TRAVELTIME(MIN) = 1.07 TC(MIN) = 15.97 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.213 on SOIL CLASSIFICATION IS "A" it RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 SUBAREA AREA(ACRES) = 1.80 SUBAREA RUNOFF(CFS) = 2.64 ow EFFECTIVE AREA(ACRES) = 5.80 AVERAGED Fm(INCH/HR) _ .582 m TOTAL AREA(ACRES) = 5.80 PEAK FLOW RATE(CFS) = 8.51 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) _ .50 HALFSTREET FLOODWIDTH(FEET) = 12.13 FLOW VELOCITY(FEET/SEC.) = 3.86 DEPTH*VELOCITY = 1.93 FLOW PROCESS -FROM NODE 305.00 TO NODE 305.00 IS CODE = 8 ---------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.213 SOIL CLASSIFICATION IS "A" RESIDENTIAL—> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 . SUBAREA AREA(ACRES) = 3.30 SUBAREA RUNOFF(CFS) = 4.84 EFFECTIVE AREA(ACRES) = 9.10 *�► AVERAGED Fm(INCH/HR) _ .582 TOTAL AREA(ACRES) = 9.10 PEAK FLAW RATE(CFS) = 13.36 TC(MIN) = 15.97 ,i END.OF STUDY SUMMARY: TOTAL AREA(ACRES) = 9.10 „ EFFECTIVE AREA(ACRES) = 9.10 PEAK FLOW RATE(CFS) = 13.36 END OF RATIONAL METHOD ANALYSIS 4w Iff am I .w Wt w 0, go A *w ,rr AM 0 *************************************************************************** r" RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) *** PRELIMINARY/EXPERIMENTAL VERSION *** do Copyright 1983,86,87 Advanced Engineering Software (aes) - Ver. 4.1B Release Date: 2/20/87 Serial # BETA06 Especially prepared for: * BETA TEST SITE EVALUATION ONLY * fln ************************** DESCRIPTION OF STUDY ************************** TRACT 13325-1 CATCH BASINS LINE D * FILE NAME: B:FONTDCB.DAT TIME/DATE OF STUDY: 13: 4 9/12/1987 it USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TIME-OF-CONCENTRATION MODEL* -- 96 USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 40 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE = .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) = 1.0000 711 91 FLOW PROCESS FROM NODE 401.00 TO NODE 402.00 IS CODE,= 2 mm »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ----------- ========--========-------- ========------------------- it DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5-7 DWELLINGS/ACRE TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW -LENGTH = 850.00 UPSTREAM ELEVATION = 1310.10 DOWNSTREAM ELEVATION = 1300.50 ELEVATION DIFFERENCE = 9.60 TC = .389*[( 850.00** 3.00)/( 9.60)]** .20 = 14.163 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.378 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 it SUBAREA RUNOFF(CFS) = 6.13 TOTAL AREA(ACRES) = 3.60 PEAK FLOW RATE(CFS) = 6.13 w FLOW PROCESS FROM NODE 402.00 TO NODE 402.00 IS CODE = 6 -------------------------------------------------------------------------- 0 »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< UPSTREAM ELEVATION = 1300.50 DOWNSTREAM ELEVATION = 1300.40 STREET LENGTH(FEET) = 8.30 CURB HEIGTH(INCHES) = 6. ig STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 wt 0 OUTSIDE STREET CROSSFALL(DECIMAL) _ .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 6.90 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .48 HALFSTREET FLOODWIDTH(FEET) = 11.38 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.40 PRODUCT OF DEPTH&VELOCITY = 1.64 +0 STREETFLOW TRAVELTIME(MIN) _ .04 TC(MIN) = 14.20 END OF RATIONAL METHOD ANALYSIS 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.374 SOIL CLASSIFICATION IS "A" RESIDENTIAL—> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA AREA(ACRES) _ .90 SUBAREA RUNOFF(CFS) = 1.53 'R EFFECTIVE AREA(ACRES) = 4.50 AVERAGED Fm(INCH/HR) _ .485 TOTAL AREA(ACRES) = 4.50 PEAK FLOW RATE(CFS) = 7.65 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) _ .50 HALFSTREET FLOODWIDTH(FEET) = 12.13 i FLOW VELOCITY(FEET/SEC.) = 3.47 DEPTH*VELOCITY = 1.73 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 4.50 EFFECTIVE AREA(ACRES) = 4.50 PEAK FLOW RATE(CFS) = 7.65 END OF RATIONAL METHOD ANALYSIS 0 71 as *************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) *** PRELIMINARY/EXPERIMENTAL VERSION *** Copyright 1983,86,87 Advanced Engineering Software (aes) Ver. 4.1B Release Date: 2/20/87 Serial # BETA06 Especially prepared for: * BETA TEST SITE EVALUATION ONLY DESCRIPTION OF STUDY ************************** TRACT 13325-1 CATCH BASINS LINE E * * FILE NAME: B:FONTECB.DAT TIME/DATE OF STUDY: 13: 8 9/12/1987 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ------------------------------------------------------ ------------------------------------------------------------------------- ------------------------- --*TIME-OF-CONCENTRATION MODEL* -- USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 +*� SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE = .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) = 1.0000 r"J rlli FLOW PROCESS FROM NODE 504.00 TO NODE 504.00 IS CODE = 2 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ---------------------------------------------------------------- ---------------------------------------------------------------- DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5-7 DWELLINGS/ACRE TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW -LENGTH = 350.00 UPSTREAM ELEVATION = 1300.80 DOWNSTREAM ELEVATION = 1293.80 "' ELEVATION DIFFERENCE = 7.00 TC = .389*[( 350.00** 3.00)/( 7.00)]** .20 = 8.859 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.151 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 rrr SUBAREA RUNOFF(CFS) = 2.04 TOTAL AREA(ACRES) _ .85 PEAK FLOW RATE(CFS) = 2.04 FLOW PROCESS FROM NODE 504.00 TO NODE 504.00 IS CODE = 6 *A -------------------------------------------------------------------------- »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- UPSTREAM ELEVATION = 1293.80 DOWNSTREAM ELEVATION = 1293.70 STREET LENGTH(FEET) = 4.70 CURB HEIGTH(INCHES) = 6. a STREET HALFWIDTH(FEET) = 20.00 W DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 m no r OUTSIDE STREET CROSSFALL(DECIMAL) _ .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 wr **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 2.04 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .29 HALFSTREET FLOODWIDTH(FEET) = 4.95 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.48 PRODUCT OF DEPTH&VELOCITY = 1.02 rirl STREETFLOW TRAVELTIME(MIN) = .02 TC(MIN) = 8.88 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.146 SOIL CLASSIFICATION IS "A" RESIDENTIAL—> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) _ .00 *" EFFECTIVE AREA(ACRES) _ .85 AVERAGED Fm(INCH/HR) _ .485 TOTAL AREA(ACRES) = .85 PEAK FLOW RATE(CFS) = 2.04 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .29 HALFSTREET FLOODWIDTH(FEET) = 4.95 rp FLOW VELOCITY(FEET/SEC.) = 3.48 DEPTH*VELOCITY = 1.02 END OF STUDY SUMMARY: TOTAL AREA(ACRES) _ .85 +� EFFECTIVE AREA(ACRES) _ .85 PEAK FLOW RATE(CFS) = 2.04 �r END OF RATIONAL METHOD ANALYSIS go do *0 ■I 40 do 4= do aw atr rrr E F 40 W HYDRAUUCS Catch Basins Storm Drains do E 40 to N wa do E M arr F .w p E F E E .m As it No as 5 *■ 069X2004 dO - CATCH BASIN CALCULATIONS 1101 le Amik Ise oneAsof AMS7 &=a. imp ownsJ�s Arlt Iii a__a i a • gh/ of Opewmig th) 1 'e/ a ti w LS ti(v N W p ,� t►► to a m .J kAa �o o of W1111Y \\I//) in /ne%e.. :.Co ` �\ c, ca o �' c., �. o, o w I I L, � �, � I...... �I � � I I� I ,�,,�,�,►.� i � 1, 4 �l � I. i.l,l 1 1J Aloho o/ oWh ar wa/ee a/ *Aww.,W !o heij/i1 c/ ope-7o o 011h) -,�i 1 _ 1 AM C. B. �`. c-trr.r' OPEN NIG (SUair) 4w Given: +ill (a) Discharge Q = l� (�� CFS (b) Curb type "A-2" "D" 4" Rolled 6" Rolled Solution: 4 Ti (depth at opening) _ ,Cpdinches .wif o enin ) = g�J� inches h (heig}zt o p g 40 From Chart: I- /ft. of opening = .2 CFS �I L required = �?i--/ '� ,�- = 27 ft. �I _ L = ft. U S E 4 �'I rrr wr C. 13 . 1f l `� T� ✓ `� C11f;I,* 0PE.NI\'G (SUMP) Given: I (a) Discharge Q 11 CFS i 6 _ 0-55 +� (b) Curb type "A-2" "D" 4" Rolled 6" Rolled Solution: if (depth at opening) 0_ inches . 40 I h (height of opening) V inches . H /h 40 From Chart: Q/ft. of opening = :�j CFS L required = j l .�J _ _ �J. CP_ ft. 40 II U S E L = ft. " 4P �wl!lI tl ". r w 40 40 di 40 _.i I W Given: CUnF 0PE.N1�7G (SUIIP) (a) Discharge Q kO _ \g 3 CFS (b) Curb type "A-2" "D" 4" Rolled 6" Rolled Solution: if (depth at opening) _ N( -).O0 inches h (height of opening) inches From Chart: Q /ft. of opening = , �J CFS L required = �� / �,� = ELL ft. U S E L= ft. " �r aw CL1RI,• 0PE,N1\1G (SUNI P) Given: i (a) Discharge CFS +� (b) Curb type "A-2" "D" 4" Rolled 6" Rolled �r 4II Solution: si Oil Ii (depth at opening) _ inches h (height of opening) _ �rJ� inches ii/h = " ,. +�r j From Chart: Q/ft. of opening CFS -�C� j / 2 � _ _ �J .�J L required = �' ft. 40 IIIft._ " „ft USD L— 'I 4w �. C. B. N cuns- OPG (SUMP) .w Given: (a) Discharge Q �D_ CFS (b) Curb type "A-2" "D" 4" Rolled 6" Rolled Solution: if (depth at opening) _ inches �I h (height of opening) inches ■r .i From Chart: Q/ft. of opening CFS I L required = / _ 4-7-7 ft. U S E L = ft. " 40 �1 w. err C. B. t� a. C17PI,' OPT NTI\TG (SUNI P) 04 Given: (a) Discharge (b) Curb type "A-2" "D" 4" Rolled 6" Rolled rM Solution: Ii (depth at opening) _ 'L (_ inches I h (height of opening) _J inches 11/h From Chart: Q/ft. of opening CFS L required ft. ft. USE L= +.� II . I 40 +11r Mal DEPTH OF FLOW - y - FEET .01 c 03 04 05 06 iso .10 .2 .3 < .5 6 0 10 (a) DISCHARGE PER FOOT OF —�_- �• 6 - LENGTH OF CURB OPENING JI , --l-INLET-S.:` HEN INTERCEPTING- �- - .4 ---I00% OF GUTTER FLOW / 1 .z E.. y ° .�o 40 mac, 1 .06 as /7117 L r � (b) lw PARTIAL INTER.- ' CEPTION RATIO 1 FOR INLETS OF LENGTH LESS THAN L m • AS .06 .09 10 .2 4 S .6 .e uii TABS BUREAU OF PUBLIC ROAOS CAPACITY OF CURB OPENING INLETS I 1 � Ap Js I� 1 a% I I I I �•� Z ,�/ -,,- T- I m • AS .06 .09 10 .2 4 S .6 .e uii TABS BUREAU OF PUBLIC ROAOS CAPACITY OF CURB OPENING INLETS an C. B. I� CURB OPE NITNG-s ( Interception ) +� Given: (a) discharge WO CFS = . (b) street slope S 13 r (c) curb type "A-2" "D" (d) half street width = IQ ft. 40 Solution: Q/S'lz_ /( _ _ Therefore y- Q/L =< - "'"' L _/�--- '�- (L for total interception) < L' TRY: Lp= _ t. YL = a/y = .33/ _ Q �t Q%Q -- X = CFS (Intercepted) Qcz= CFS (Carryover) 4" 4 ON 40 Solution: Z Therefore y �r • 40 Q /L CUR13 OYENI\TG ( Interception ) for total interception) Given: (a) discharge Q = � a, O4' C rS (b) T. street slope S = . Ci +fir (c) curb type "A-211 "D" (d) half street width = 40 Solution: Z Therefore y 40 Q /L L = f_ : (L for total interception) TRY: YL X QP- �--- CFS (Intercepted) QC = CFS (Carryover) 40 di W -35- C. CURB OPENITNIG ( Interception ) Given: (a) discharge QjL_ Dom_ Cf street sloe S (b) P i' (c) curb type "A-2" "D" (d) half street width = 20• Solution: QIP= /( ) 2= Therefore y O• Q /L L =/ �. ` Gj, (L for total irterception) TRY: Lp= ft. YL a/y = .33/ _ Q/Q = QP_ X CFS (Intercepted) Qc= _ _ CFS(Carryover) ,or -35- am to 40 +rt 40 a W 4W 46 40 ts �r► 4w A 40 a No d* CURB OPENING ( Interception ) Given: (a) discharge t2Q = F?, C. FS (b) street slope S = 0.021 �� / l (c) curb type 11A-2" "D" (d) half street width = C ft. Solution: Q/SY2_ /( )�2= Therefore y"0. Q /LL F1 = (' (L for. total interception) TRY: YL a/y - .33/_ _ Qp- X = CFS (Intercepted) QC== CFS (Carryover) -35- do 4" 44 40 air a 40 Orr 40 do 4 to 4► ar +r C . B - 0 CURB OPENING ( Interception ) Given: (a) discharge (Z'O CFS (b) street slope S = l]' .j '/' (c) curb type "A-2" "D" (d) half street width = k Q ft. Solution: Q/S = /( ) = Therefore y Q /L =a !Z71 L = °X� /��:�J7 I9,2Z ] (L for total interception) TRY: Ip= U5 1 �}-► YL a/y = .33/ = C� 7W Q QP= X = CFS (Intercepted) Qc = - CFS (Carryover) -35- 4m OF am r eR am a .o im .m 4. 40 40 IK 40 11111111 40 A, fm 4w 4m a RW at KEITH DATE K—M, ENGINEERING, INC. 2900 S. Bristol St. Suits 8205 Costa Mesa CA 92626 (714)250.0300 Q �i2 ��►�- ' � _- � .off �.oC, Q -C z46` t (:�—�-&4F> TRACT NO. PAGE OF 0 irr fm NK M ,,. 0 E w HYDRAULICS an 40 N da 4w Im no to 5 in 40 I" do r 069X2004 �r► r ■. on �r :I aw ass r rl� +ger do 4w 40 qu IK r 10 a. AK im m air 40 �Ilt .. to �r STORM DRAIN EXHIBIT NTS. KL 1TH ENi, 1 NLEIP Nf, , IN( t,TORM UPA4, PALYSI: PROJECT STORM DRAIN 1332'-, CITATIC'N FQN; �O;,' i ArE i PESIF,NER MATTi4eu) VANDERBURGL - CD L2 MAX 0 ADJ G LENGTH eL I EL 2 CTL/TW D w S 1:J R. E YM LC L1 13 '.4 Al A:3 A4 :i 1287.93 2 2 208.0 208.0 144.63 1 01.4 120 Ct, 0.00 rl^ 0r,,,, 0.00 0 . 1 -6 -0. 0.00 0.01'3._..__ 2 3 20U.0 208.0 20.73 1281.8( 0.00 GG. UO 0.00 0.19 0 4 0 38 0. 0. 30- 8.00 0.0113 2 4 168.4 168.0 6.53 126Y.:3,5 1282.50 6.46 54. -V. -3-.7,t .00- 6.•00 1? &--- t 6- _V_ 6 0-.w6 _0 -.- _0_1 a 2 168.0 168.0 26.09 1282.50 1283.11 0.00 54. 0. 3 ..30 0.00 0.00 0 6 42 43 0. 45. 45. 9.54 0.013 2 6 168.0 168.0 48.93 1283.34 1284.40 0.00 54. 0. 3 C.00 0.00 0.00 0 7 0 0 0. 0. 2 7 168.0 168.0 70.69 1284.48 1285.30 0.00 54. 0. 3 ("06 0.00 v.25 0 8 0 0 0. 0. 0. 0.00 0.013 2 8 168.0 168.0 173.00 1285.30 1286.91 0.00 54, 0. j 1 .00 0.00 6.60 0 0 0 0. -0. 0-.- X60 -0 n-- 7-1 2 9 168.0 168.0 70.69 1286.91 1287.36 0.00 54. 0. a 00 0.00 0.25 0 10 0 0 0. U. 0. 0.00 0.013 2 10 166.0 168.0 G7.94 1287.56 1288.10 0.00 54. ol 3 'A .00 0.00 0.00 0 11 0 0 0. 01. 0. 2 11 168.0 168.0 23.23 1288.10 1288.29 0.00 54. 0. 3 4. 00 0.00 0. 14 0 12 44 C. 0. 9E'- 0. 4..6 0.013 .12.', 146e, 0 168.0 29,07 1288.33 1288.56 0.00 54. 0:- 0.17 --0- ---1-3 48 -6- 0. 45. 0-. CF E. 61-37 -%- 2 13. 74 1288.56 1288.67 0' 54. 0. 3 .00 0.00 0.11 0 14 0 0 0. Cl. 0. 0.00 0.013 13 ise.o ir,9.0 .00 2 14 168.0 168.0 166.91 1289.67 1290.00 0.00 54. 0. 3 .;4'.00 0.00 0.00 0 '15 0 0 0. 0. 0. 0. 00 5.013-- - 2 15 168.0 168.0 70.69 1290.00 1290.57 0.00 54. 0. 3 '4. 00 0.00 0.25 0 16 0 0 0. U. J. 0.00 0.013 Q.013 11.0 100.25 1290.57 2 67 0.00 5;�. '70. 3, 66 92 10 1 0.00 54. 0. •3 .00 0 0' 0 0 0'. 0. 0. 0.06 0.013'.:: 2 17 1 8.0 Aq.� �91.9 3 12 35 0.0 0(1 0 is - 45- 0.00 O_. 0 1'J- ___ 2 18 168.0 168.0 68.96 1294.35 1295.18 0.00 5C 0. 3 -;4.00 0.00 0.07 0. -0 2 19 160.0 168.0 29.72 1295.18 1295.54 0.00 54. 0. 3 o o 0.00 0.0-, 0 20 0 0 0. oll 0. 0.00 0.013 [i iO 168 _.O 6 Ef. 0 _5��_ ?13 7 1295.54 1296-.18 0.00 54.,,T, 2 21 168.0 0 13":79 1296.18 1296.i35 0.00 .54:`. 0. 3,: .00 0.06 0.11 0 22 0 0 0. 0. 0. 0. 00, 0.013 2 22 168.0`168.0 �4.20 1296.35 1296.40 0.00 54. Q. 3 0-0-­-0�0-0z. 0-.66 0 •0 3 2 23 168.0 168.0 I61.17 1296.40 1298.33 0.00- 54, 0'. .-Oo 0.00 0.09 0- 24' 0 ... 0 O -j -Ow DO,- -019, 24- 166.0_168.0 15.12 1298.33 1298.52 0.00 54. 0.- 3 .66 0.-60 0.11 0 0.- 2 25 134.0 -134.0 46.02 1298.GO 1299.15 0.00 48. 0. 00 0.00 0.22 0 26 0 0 0. 0. U. 0.00 0.013 L xEnx owomooxzwa. INC. yrn^, ox�� oxmmza om. JOB x«4cz(MUT) o^�� �'oxz-o mCmz zomo o^A� `/m)mv mwz^x^ peo oa�nocv n»zzoaw v«xmxn�x"� n '- - --j- ` n� �C� L2 MAX �ANu Leo�� UL i � � 2 '-_ -zo _m-*.o_'-13�4.-o _-15-9.,3o 1299.-1x 13-03 .v.'o o'ov «o v °-�o�oo 0.12 o co o o, o, o. 0.00 0.013- z M� zr m�.o m*.o ^�.z^ y,�.on mvo.o/ ' o.vc ,p ',' o ,.�vo.o� n.00 � ae o � 0. � x zo m°.o 13*'0 36'66 mvo.y` 1305.76 o 0 1" o. o * w 0.00 o.m o uo o e o. o. o. "'o" ^�mo N� � �_--'-- -'- --- -- ----'--- 'o' -«'oo -o'om� �� .vo o'oo 0.11 o 31 nr o o' oo' oov. ozo3 119 1308.6& 1309.12 0.00 48. � � -0 s -0.00 v'cu --0-'32 -0' 0 0. '-o' -v� 0J0 r�of��' «2 32 119.0 119.0 277.7B 1309.12 1313.34 0.00 48 0 3 i ."« o'oo ».vo ^ »« 0 o o. o. ^. 4'66 0. 013 u15-.76-, f-5-.6 i4l-.06 1-31-3.41 1315.5G O.Oo 4b. 0. a vo 0'00 o'ov u 3* o o o. v'' v' o'oo ouro ^ « � ov o.ov v.w o u^ o o o. ^. v. o'oo o.mo ! � ` _ _-' _-' -_-- __'_ -- _ '. - � -� yo-b9�--.v^'-�J' -" o. c - o' sc�� ` .vw o'oo 0.00 o s o o. 0. O. 4'6" vuzn o ao n� m«���m� .on�-n�)o�o�ox--»-� -n- o x cc o. n. o-oo 0.013 '-1 ' .00 o'oo 0.00 * ap v v o. o' o. 0.00 0.013 �V���� -o'^o---- o. o. n.00 0. _0 oo oa --- `2 40 41.6 41.6 475.36 1282.99 1286.03 1293.65 3G. 0. 3 ov 0.20 o'oo o m o o o' o. o. u'ab 0.013 � *o ~ o u*�v 'n�xo--n�m- o' n n--�' n�-�v�� o. vzm� mcvzo- --_� � .00 o�o' o'oo a o v o v. o' o. o'vo 0'013 | � 14.14 128«.i 30. .0x-7.2r-o'o" ^ v v- n o. o'o?y n'ozo --- ` .00 o'oo 0.00 /u 45 o o o' v. o' «'»» ^� o������� 7Rr����-n�ur---o- �x--'7r--n,--n�- v�-zc��zr�m -o��� ( ' ~ .00 °^m 0.00 v w o o o. o' o' 0.00 0. 013� - .�r'0�0-��l7---�--'�--7r---n-`��-'»�--n�--n�m' o.ozn^-�-� � --- ~~ ' ' - - .00 0.20 0.00 m v o o o. v. 0. 0'00 0.0 n-- 2 49o,o `n.o m'vr ona'y .0 0.26 o--�r'-�o� -o' cc ' 10 .6 ��o _o o_o_o�_o�_o �~ ^�^' ^"`"�" ^" "^ 'oo uo�. ( � . ( � . KEITH ENSINCERING, INC. STORM DFAIt� ANALY515 EDP JOB R4412 „ ( IN11•T) DAI£ G -UC"' -8 ( Pk0•)F.C1 STURM DRAIN 13325 CI'IA': IIjN FON.,i-tdA PAGE. 3 DESIGNER MATTHEW VANDERBURGE i CD L2 MAX U ADJ 0 LENGTH FL 1 FL 2 CTL/TW D W 5 KJ I:E ICM Li. L1 L3 L4 Al A3 A4 "- A--'- 2 51 35.1 33.6 3.90 1299.52 1299.56 0.00 30. 0. 3:%v•c0 0.00 0.00 25 5' 0 0 0. 0. 0. 0.00 0.013 52 35.1 35.i 7,84 12,j9.56 129),64 0.00 30. 0. 3 C.I;U 0.00 0.08 C 5s 0 0 O. 0. ;. O.OG 0.01 3 i 53 35.i 35.1 27.76 129S.64 1.•3'').9' 0.00 30, 0. 3 ,C-^0 0.00 0.03 U 5-'I 5G 0 v. ::0. 0. 0.00 %.01J -- - - - -- __ _ ___ 2 59 23.Z Z3.Z 18.511299.9: 1300.10 0.00 .3U. 0. -- 3-;C.00 0.00, 0.0'3 ----o- 55 -- 6-'-0 - (Y: - 0:--- 0-_.._.0-00" -7.13 � 2 55 23.2 23:2 88:11;1300.1.0 1300.98 0.00 30. 0. 1 x,00 0.00 0.00 0 0 0 0 0. 0. 0. 0.00 0.013 2 SG 13.4 11.9 � �---"-'-" - '-- ----- ..3.03 1300. G4 1301 . G9 1.,06.96 18. U. 1 , i .00 0.20 0.00 54 � 0 0 � 0 6. 0: 6. O: Ob-7".-aI3 2 57 16.8 15.6 G.59 1309.62 )309.78 0.00 24. 0. 3 1.00 0.00 0.00 31 58 0 0 0. 0. v_ 0.00 0.013 . _30 ---- - - - - � 2 58 16 13 .8 16.8 - 8.11 09.78 19.9' 0.00 24,- 0.- j- "00 0.00 0.08 0 59 0 6 0.- 4. 0. 0.00 0013- - - 2 59 16.8 16.8 180.91 1309.97 1314.24 0.00 24. 0. 3', .00 0.00 0.00 0 GO 0 64 0. 0. 30• 4.00 0.013 3 13 .9 -----24. -- 0. - 3 -. 0 0.00 { 93. G4 1314,3_ 1317.97 0.00 UO 0.00 0 G) b 0 0. 0. 2 G0 8.4 8.4 A. 5.50 2 G1 8.4 8.4 175.34 1318.04 1320.21 0.00 24. J. 3 .00 0.00 0.00 0 62, 0 0 0. 0. 0. 0.00 0.013 2 62 8.4 '8.4 107.33 1320.21 1321.54 0.00 24. 0. 3 00 0.00 0.15 0 63 0 0 d. 0. 6. 0.00-- I i I 2 G3 8.4 8.4 37.35 1321.54 1322.01 1327.08 24. 0. 1 ' .00 0.20 0.00 0 4 0 0 0. 0. 0. 0.00 0.013 _.- --- - 2 G4 11.0 8.9 26.50 1314.57 1315.47 1318.71 18. 0. 1 „(.00 0.20 0.00 GO 0 0 n 0. Cl. 0. O.OG 5Tii3--" J L- ------__---- - N I I { t ' I# I I i i I I I `I I I i t I I t o i I I I t I I I r t M# 1* 6 11 1 1 1 1 11 1 1 1 1 1 1 1 1 l� I I a is I I I I I 1 9 1 0 14 1 1 1 1 p I 1 4 1 1 1 1 1 1 ��� IMS «wouua cou*zr xuAu onr«xzwawz stovM o� x�� ^xAcvn/e mnp mo n^^m n^r »-mcl'v / PROJECT�,^ :Tepxsnmuv»1suuonnowzmx ^oo`Awp N� F-- ----- ' -'-�-u�-Sj' ���-�'��---��' -�� f ~ -FL -ES)— `-'`-^ `^^' `^^' ^'^~ ~^'^^' '-PS)~ `^^^' -~ / N� ~ ~ 208.0 .. . 5.00 4.10 ,""^ . .~~^~ 10.6 10.6 `^~ , ' � } ' --' '' ` -'- ~ ^' ^~~~ ` ^~~` ^^ ` ^~ ~ ^~`~' 0� � a 168.0 --~-^°=.+'=4- -xoL L o-"o,u" 10 .6, 1-0-6 126 ou-uu zcyo � -' ' -- -7' --FULL --'- -- - - 1285 --- 266. --- 1292.93-- ` | ~``~ ~'`` ~^` j N� ^ _8xmLL -0-04,30 -10-16-1-0--& 287-561292-93Je93'an ._ -- 6.2z_^_Q.ao- _-u.uu�'__-' � m 166 .0 o* o o'no -''' -uL- ''-�- '''- -'' -- 288'10 oyn'ox 1294'36 6'32 o'uo o'oo o'o` W� '1294_7» _-a-x�__ 12- 168.0 54-- o'r, cv�� o'ooroo xo'a �o'a �uoo'o 288.56 129*'80 zovo'oo a'*r o.p* o�'oo �. 2����L 1��'-�e-��. _o'oo ( ^" 168.0 a4 v x'av 3'/7cv^L v'vo/uv m'o m'o zzoo'a 290'00 1295'5* /cvo'ra ^'xr o'ra o'oo o'oo � � � / IS 168.0 54 v 2.99 3.77 rv^c 0.00730 '. 10.6 m u �ay* _ � 19 0 SA .4 22 Pill I 'AAD lng5j 29-S-54 1300 f2 ( __^- ^ _--~-_~_~ ^ � xx 168 .0 54 o*�w* m o'n- o" -_°a 'I L a'I-'-=°_'0-_~`- 99. -3-2.7 '_u-uuz�u-� 10- ^ ua.aa '�.� �.vx o^vx --u~u/� - a* �oo'v �� u u'y^ u'rr suo u or *'yo n'vo ".ov o'oo �-_o / ^ ~ ,./, X.w, ~ v'v" "'a/ 9.71 no no oma/ ~ �u.10 II(AJ)^II(AJ)~ o.uo ' r--'-'--' --' ��-------- . / - ' K � � 11 1 1 1 1 1 1 1 1 l� I I a is I I I I I 1 9 1 0 14 1 1 1 1 p I 1 4 1 1 1 1 1 1 I I I I I I I I I I I I f Is 0# 1 1 1 1 1 1 f% I# I I 1 14 if li I I I I I I 4 HYDRAULIC GRADE LOS ANGUIX8 COUNTY ROWj 11EPARTMEN-7 STORM IIRA� ;NALYSIS EDP 10B 84412 6 .2.10 �0� 1292 gim 282,.9 1289.56 DATE SAF. 6 -OCT --U 1,98 PO]Ei-,T STORM 0. DRAIN 13325 CITATION il)NTANC. 1.282.9 282.9 c BJr"�6 1389.71 6.63 6.72 0.00 "bo o.. -ESIGNER MATTHEW VANDERBURGIF 40 41.6 36 0 1.99 LINE NO (CPS D )(,W) f� DC FJ?W N, N FT T E' SF -FULL IFT/FT) v I (FPS) v 2 (FPS) PC T, " (FT),4 FL 4�:­­-, (FT) - G 2 lu REMW 3..00 2.06 FULL _1 ':5.7 5.7 1286.53' _'86.72 291. . 76 1292.46 5.23 5.76 1293.00 CALL (FI) (Ef tlWC L -2G 1-34-01-- 40 3 -45 ---PART 0.00870 -'-20-2-- - 1,G-,2 - 1299-14 36a. 131)6_44 2-0.9_ 2:.!s I -o-,00,.-' 0_:00_ 27 134.0 4U 0 2.09 3.45 PART ).00870 i6- 1a. t, 1306.44 1308.18 2.51 2.86 0.00 0.00 -48 41- 2 13L. -J-45- V A L,. U.&UW70, 1 3 J_aQ 5 _7A 1 �QA�- � R_,1_308_ka_ 42'---3:0 -''30 -"'O Z.MZ_ �2_3B FULL 0.00 "O:G 0.6 1284.11l 2,9, 134.0 413 0 2 8 2 45,.PART 0100870 13.9- 12.1 130 5 308.47 1308A4 1311.77 2.8B 3.30 0. do 0.00 op 34 134.4 413 - 0­344�5--��-RARZ 4-"270- -12- 1 - - 12 HYDRAULIC GRADE LINE CONTROL 1290.34 31 115.0 48 0 2.86 3.28 PART 1.00686 14.3 15.1 1308.66"�ji09.12 1311.17 1311.52 2.51 2.46 V.00 0.00 W _l 32---119,0.-.48 --0-- 4_4,0_-3_.28__P.AR1.15.1--_18_1-.13D 3A 1311-5Z. lal5-74 2.0 4.0 4.00 0,90 X 0.00 X(N) 22.64 33 119.0 48 0 2...40, 3.28 PART 0.00686 14.9 14.6 131 .41�� ''15.56 1315.84 1318.03 2.43 2.47 0.00 0.00 3T28 --PART 0 0""-.-14_&-- 14-a-_131316-3-5 2.47 al!56 35 119.0 48 0 2.40 3.28 PART 1.00686 14.0 10.8 1316.95,u1i18.75 1319.51 1322.03 2.56 ..::8 0.00 0.00 86 --74kr7--48--A---"48-2,49-SUL4� 0 0030 6 3-x_6.3 . 1 '41 q - 9- b31.9 -19 i� 11 1324,13- 4,aG, -4 - Z-8- OAk_ 0_0 0 L3 7 78.7 36 1'.15- 2.76 EULL 0.01392 ;11.1 1319.4 Z 319.83,1322 .92 1323.29 3.50 3.46 1325.80• 1325.03 I I I I I I I I I I I I f Is 0# 1 1 1 1 1 1 f% I# I I 1 14 if li I I I I I I 4 HYDRAULIC GRADE LINE CONTROL = 1289.55 38 6 .2.10 �0� 1292 gim 282,.9 1289.56 39 -il.6 36 0 1,98 2.10 FULL 0. 9 1.282.9 282.9 c BJr"�6 1389.71 6.63 6.72 0.00 "bo o.. 40 41.6 36 0 1.99 2.10 FULL 0.00389 5.9 5.9 1285. 991. 286.03 12 �89 -.7 -1 -1291-- . 5 6 41 40.0 36 '0 3..00 2.06 FULL 0.00360 ':5.7 5.7 1286.53' _'86.72 291. . 76 1292.46 5.23 5.76 1293.00 1298.00 A k 42'---3:0 -''30 -"'O 0.38 FULL "O:G 0.6 1284.11l 284.76'1290'.34 1290.34 6.23 5.50 1290;35 129l'i-22-- 6- HYDRAULIC GRADE LINE CONTROL 1290.34 43 8.1 30 0 0.52-0.95 FULL 0.00039 1.7 1.7 129-0-.34 I I I I I I I I I I I I f Is 0# 1 1 1 1 1 1 f% I# I I 1 14 if li I I I I I I LOS ANGELES COUNTY PGAll PEPARIMLNT STORM PRAUANALYSIS EPP JOB R441 DATE G-OCT- PROJEfT STURM DRAIN 13325 ClIAT iON FONIANA PAGE 3 I,iSJGNLk MATTHEW VANDERBURGE - LINE 0 HPj2- -Tw---"--Tw,-" W DN DC FLOW BE-EULL:,.: V i-� V' 2 NO (CPS) (IN)'(IN) (FT) (FT) TYPE f FT/FTY. (FPS) .(FPS)(ET) (Ft) CALC CALL i (FT) CALC, CK- REMAR ----fiYtiRAULTG---rzR*DE LINE 44 7./ 24 0 0.74 0.99 FULL 0.00116 2.E G. 1 1289.54: 0.00 Of) 12a9.72 1294.79 1294.81 5.2b 5.09 2,aV--aS-L2,q4- R I - 44--0 "--4.72- 0 oo,"-. 1 9aA-a3_ S - 09 .-"0 46 7 7 24 0.73 0.99 SEAL .-0.60iI6 sl 1289.9'+..293.10 294,83 1295.10 4.94 -1.92., 0.00 0.06, 229. 6 .0 -47 -.24 0 - -MA -9s) pa 0.00 - a�Au& -5 .0--1 X�- 0-00 X(N) 0.00 X(3) 43.86 F(J) = 1.9 11(93) n 0.78 D(AJ) 12 HYDRAULIC GRADE LINE CONTROL m 1295.28 48 ..11.0.-__.24_. -Q-a-60- 1-19 19 HYDRAUL.IC GRADE LINE CONTROL = 1300.63 49 3.8 18, 0 0.34 0.74 FULL 0.06131 2.2 '2.2 1296.9- 298.65`1300.63 1300.65 3.64 2.00, 1300.73 1304.77 LINE rnNTRn? = 1301.65 5 1301.81 -1 02.46 1304:99297. 299.3i�'� ic 25 HYDRAULIC GRADE LINE CONTROL 13Q 3.75. '01 1. i 1304.75 4.ZJ 0.09 IRJ�yllu: 29 5 0 1.77 2.01 7. 9:� 2 4.26 0 51 35.1.:.30 J. 00 ;Z._,35- 7.2 ij�:,J299 399.64. 1, 78 1 :1.77 2.01 '--FAUJ�� 299. 53 35.1 -.,30' 7.2 R. 92 1303,.90 1304.13 0 54 -23."Z-- -FU-LL- 0.00320 .4.7 4.7- , 1299.9 300.10 130*,.58 1304.65 4.66 4.55 0.00 0.00 55 23-2 30 o 1.W 1-�-6�3U .130 ' i 2 ------------fir - 1 1 1 1 11 1 1 1 11 1 I I '1 1 1 1 1 1 YA I I 1 -1 1 11 1 j 1 I pr I 1 1 1 1 1 a LOS ANAFI-ES C7UNTY ROAD DEPARTMENT STORM DRAt),' ANALYSIS EDP lob 8441]j DATE G-OCT-N' L PR03EC1 STORM DRAIN 13:325 CITATION FONTANA PAGE 4 DF!. IG,NER MATTHEW VANDERBURGE -- - -- - - --- -- -------- -- - -- -_ _ _ LINE pp WW ppN DC L W SF-FULL V 1 V 2 FL 1 >, FL 2 HG ; H6 ? 6i b-_2 T41 Tw _ ( NO (CES) (IN)(IN) (FT) (FT) TYPE (FT/FT) (FPS) (FPS)" (FT ):# (FT) CALC CALL (FT) (FT) CALC CK REMARKS` 54 HYDF4Ul 1G" GRAVE -LINE-CON-TRbt,----1=304.36 -- f ( bh 13.4 )P 0 0.64 1.36 FULL 0.016::7 7.r v•r 13oO.64 )+01.69 1304,3(, 1304.73 3.72 3.04 1305.80 1306.96 30 HYDRAULIC GRADE LINE CONTROL = 1311.77 k 57 16.8 24 0 0.97 1.48 SEAL. 0.00551 5.3 11.0 1309.622;1309.78 1311.77 1310.76 2.15 0.98 0.00 0 �0 HY6 7Ui(F i ( X = 0.51 X(N) = 0.00 X(.1) - 0.51 F(]) = G.37P D(BJ) = 0.98 D(AJ) = 2.14 --&8--" _._16.8 -14" - "-0 -4.98 1-.48--PART 0_00551 .1-1 0- 11-.D___1309 309._97_1310.76__1319 25_ . __9.._98. - --0.99. - Q..QQL- ( 59 16.6 24 0 0.98 1.48 PART 0.00551 11.0 6.8 1309.1) 314.24 1310.95 1315.72 0.98 1.48 0.00 0.00 X= 0.00 X(N) = 61.51 60 - "9.4 2#--$--ArB(--- 1,08-" PARS -- 0.04138 - 3".3- -7�� -131 317__97_ 131582. 131fi.23.. X = 0.00 X(N) = 77.51 X(J) = 11.35 F(J) = 2.2 D(BJ) = 0.80 D(AJ) = 1.31 ( 61 8.4 29 0 0.80 1.03 PART 0.00138 7.2 7.2 1318.04'1320.21 1318.84 1321.00 0.80 0.79 0.00 0.00 t b2 8.4 24 0 0.80 1.03 PART 0.00138 7.2 6.9 1320.21 1321.54 1321:01 1322.36 �0 0.82 -0.00 -0�0 X 4. 0 X(N) 50.92 ' 63 8.4 24 0 ,0.79 1.03 PART 0.00138 6.9 5.1 1321.51 122.01 1322.36 1323.04 0.82 1.03 1323.53 1327.08 r60 H'iBRAU616-GAABE L-INE G04"(11=-•1a1-5-7RL- - " ---------"-- ------ ------------------- ( i 64 11,0 18 "'`.0 0.81 1.27 PART 0.01097 7.3. .'6.9 1314.57W :115.47:4315.77 1316.74 1.20 1.27 1317.62 1318.71 11 I! ! i I i 11 ! 11 1 1 1 1 1 IN 1* 0 v I'A I I I I 1 .1 1 Is f I 1 I t 1 V I, FL 1, D 'I ANI, HG I FEVER TO DOWNSTREAM ENO V 2, FL 2 D 2 AND HG 2 REFER IO UPSTREPM END - DYSTANCE IN FEET FROM LJtfNFTREAM END TO POINT WHERE Y(N) DISTANCE IN FEET F•hOH DOWNSTREAM END TO POINT WHERE X-1 7)-.- r. '"CL; IN--EEET_EaCM._pa"S.T Ehm Edfi _:Il_11L�Si1_Wk11:RH. FIJI xHB:COMPUTED FORCE AT- THR HYDRAULIC'JUMP ( D(BJ) URPTH OF WATER BEFORE THE -HYDRAULIC_ JUMP (UPSTREAMI D(AJ) - DEPTH OF WATER AFTER THE HYDRAULIC JUMP (DOWNSTREAM SEAL IMn3EATE9---FLOW-CHANGES-FROM •-PART—I'0 PULIr-OR PROM --FULL HYD JUMP INDICATES THAT FLOW CHANGES FROM SUPERCRITICAL TO HJ R UJT INDICATES THAT HYDRAULIC JUMP OCLURS AT THE JUNCTIi HJ 0 DIT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTI' EOJ E l ( ( ( - - --------- - ---- - ----------- L-- ----- -- _- - - - -- - --- - - _ — - Iti'FRSECTS SOFFIT IN SEAL CONDITION NER SURFACE REACHES NORMAL DEPTH BY EITHER hhAWOGWN OR BACKWATER C EVE 3CPITICAL THROUGH A HYDRAULIC LUMP AT THE UPSTREAM END OF THE LINE AT THE DOWNSTREAM ENO OF THE LINE<_ Y, i h 5. S ,._..--_--._.--- r- c +r ar w w do .. .o ,0 do 40 do .o 40 a .0 .0 dig 40 r +0 ee .w ow TZAGT No. ,4ti0 A6 /3929 #Ymoz.oGY ANP A1YG��9uL/G A'&P0,eT S438 ti`jr .8. iti1RNALf� sTAs PATE PREPARED IN THE OFFICE OF MAOOLE AND ASSOCIATES, INC. CONSULTING CIVIL ENGINEERS AND LAND PLANNERS 1820 E. 16th Street SANTA ANA, CALIFORNIA 92701 PHONE 714.835-2548 /ill. 13-q-1065; m qm 40 dit 7-/7-Z, 2�-,4 45 No dA do do HMe MAR 509 Y6 724 4, 5 /00 Y44 Z, I MAP - Z, 1;7 Z. � Ag s7� V1,u-A6f, 1.1A:,Aew,4,y At' 44--47 4j- 51 40 AUGUST 21, 1990 HYDROLOGY REPORT DISCUSSION OF TRACT NO'S. 13929-1 AND 13929 7! J.N. 133-1265 M Tracts 13929-1 and 13929 are located in the City of Fontana, +� County of San Bernardino, California. The tracts are adjacent to existing single family developments to the south, Tract 13325- 3; and to the west, Tracts 13325-1 and 2; to the east is vacant land that has a city approved tentative tract map; and to the north is vacant land designated by Rancho Fontana specific Plan 40 as a commercial site. to The existing drainage patterns that affect these tracts have been detailed on Plate 1 of this report. The natural direction "'" of drainage flow is to the southwest to a low point in Village e1i Parkway created by Tracts 13325-1, 2 & 3. •" SUMMARY: The development of these tracts will increase surface water runoff due to the covering of surface soils with impermeable structures and surfaces. This increased runoff combined with the +� existing runoff from the vacant land to the north will be carried by street flow, using Q10 within T.C. and Q100 within right-of-way. The runoff flows to the low point created by the existing Tracts 13325-1, 2 and 3, and is picked up in a storm drain system that joins the existing storm drain stub from the ,■, above tracts. a 40 r11 4W r �r 3 4r ,'-�• -.. :-: 1-••`:a� ''ja. t�:•r-. .� `'":• �: •i:( •rte �R��•.1 •c+.....-� 1 ..' : r -�T.r' w! tet'. �y+i..`. ^ •.°+j•._: l'Y.• . , r'.-•'i:i_. =�•:. �:aJ "'ti?>•� z_ _�'` - - .y. - ,r. -ti�.Y.•:_`� - ..Tf` . sem, �'-.��- / «� '. .. .. � �r- e. •.fir '1: ` ► !e i e 'r r -Y••' - .r"• •- y_ -_ 't. -y' �..>-rbc •} "✓„•. ! ='ii' / W i -*.-,t-.~•.!f _u, ", ..1�•:i - is _�:• S's•l.r e'4 M. s.•1.} IO•er+_ - 1jk� { ' . a ''!, •'.:- :I /� ! '•.+>_II.. - L�-oaf -fit• .� .._ .)._� !t=t^�.���;r�,.�- ..� ! _ 2.....: acs �� y e.t. .! � • . ';;/T'� r.., •-I�Y_'itw�.:� •^s'-'?� r:C: �'Ts `�7'�b�°..�.i�.• ..� .� �Sivu�'r G: '.T '•; y$j's vi` •t -moi.. - ' �f.,.. :' '-t. . •ti <:: � •: rr? ,y: ..� �,.� 'fit,`..' (. �I��'� t�;� �...:-• ..a: .. e� : j�'�=-�...,a Zi •�Y � ;� ,'�f�y�jt�" ta-.••••iiiillJJJJ `._' ' �—rw� ",,'` _�•�`'. I I ,SAN BERNARDINO COUNTY (HYDROLOGY MANUAL A F ---\\\ 1 :AN 11111901AR0 NO CWM INDEX MAP •'+'a-+.� 'T"'`� ell ' .:+o;,f hy�.wf, Y�''7•w-`TI•, r1 >,y-^'lY l' y.; ,,�1-i �~ �-�'y t'� �. _v . i r {�`n.�1��-•S':"`..1���M'ir'�S�e�,F.°'°.T's"'e; -�, R•�.'" ��/r��N.; p-1 =rr /��. „!LC tr, ♦`°Or�: t:y� i .I.�t.�.f�fiili�w+ ��`'�.... ti'�i:?n^'�ai%:a`.'i`:. l�: ^'�•'�A.�.,�'.:ti��i•.t-� �.:t.���:'� •. � r ��,�.. aa'. . iC•`:::.Y,"i .tv-..• --�r�. =./,ti '1 b�:. ..�. r `at`•.� :��„t},. � �A, +''� ' ..•+� -:4 A••� r1�fY�gp�fKW` f;� x .'�_'S �p' '�r r•p '".)T••• 4 5". rt •a `� 1 - 'c a � STJ.4"r •'E ,i','7.{ --���; /r�;�ISIi �����j?1'.-17L="J,.. r �¢t'.♦fn`� . � ]° ,Y;���S�.Ga'•�.'.+��_�'�—W-1 ' �a Yt"V.'�'f p���1 `Ii1�1 �`'��.:a i.'Y�'i�•+�� � 7:�r -- 79. st 677% L '� l� t !J' "VIV IAN,KI �` �5. _ •.,'y �• : til �f . pop low 44y i► � � 1 I 1I r � '�-„gym:.•, '�y.�-,��� �`��!� IQTf11 ,�ql•'�'.' Z; -c 1101 ±� - ���� `Lre?5Tti`f 71 rdir A 'nil HYDROLOGIC SOILS GROUP MAP • r..n t :•�atl III`}'�{ }� �i j 1O. Q�~� 'i�;}I r3`;1 �� Illi •- • C-26 FIGURE C-13 5 I I I I . R I I R6W ' '- R + 1 �; _ -+ — T4N — �— —I — — — I T•!O i I i I I A4W I ; R2W t— I— -- -- t— Ri W �.�� R2E + - �' j° RIE I I - 1 .s LI T JF T- 4- St —iT3N ` _ ' .=� I r! — I I I . , , `� rn aic, '- -• �'�./ �•t — I ' 7111 29 tz ' I I I .�wl� �., I I I ••!• _ I y. ,� — , , _ — _►T J + — 1'•- 71-1 T• — I 1 1 .• • , I �'r I -. / ; 1 i •� , r — i II I I f 0 — .^�• %� � / wa /� T `� =• •,•w i L� OfMt.O _ tea, � T �Q�I�yq'/c/p�+� ~-.ga iRi• ��� — _ - �� • •.• `a •'— +- - T2N — 54. — — — J� I It I i 4 — L�— — '•• ...••• : \ �� Korrw I I i i ✓ � ' 1 I '� � -a _ I.� .— ,wwt_. I_ \I I • w'.' • • • • • • • •r =• a,.. 1 — _ = I011rl ,— � - -� I . _ i ..� — �,•, _ — — I y I.I I I 'I•I I c OIIi _ _ _ • I.t — - _ _ - tt• - r , 17 ..i i — J- _I _ _ \ ♦ -4- _ �!' •�0 (-, Ctt — ...• s y , _ — , aL�•,!�� y — — . 1 i ^ Nt - �— I -+ _ [ rw c �14"T? N 4_ \047-4 + _ _LXh t^ 1'7L twtt w 1 �f - .�•}a0•- y X11 � _ .� � _ � ' • -L- T d _ , _ _ Tw ' /I' I LI '1—" - - - I r . J it ey I �} - -ate•. sm t1 1 MY — _ I J~ '1 riTl[(MT �� __••—_ • O__ _•_ ! j,,,�' dY J ' = —� f - - _ t �`Ty I -e` . I� a::.1:- - ,- -r - T I N I — -� -' — « •••• ••• a•Al. A Z°rod ���y �/4 ~� '' l � '�. %�, -- , ` --.. i rt '--�:�-'�''`.aa_r J- I I I "' « — • — �°�.. / �'. PIAND • 4 r'+- p� it ' - ;� 1 r - -- - r- '- ? --a r. .s='..w•++ +».- ' FON TAN • �. • �_- • �• : aha •a,. .•/ \ — _- -_ --� — -- - - yv _... _ ••1, TIS 47 - 00 10 f • • • • • 1 1 1 I r' j t •r.• .� gtt[ytl� _.&F, W �`._ ¢ r rt _ •— r •_ \ -� T — ' "•,c ^•�+a I � I Y.. •x, � � .II.r I `.. ' ...... 1'. Ir• I / 1 1'1 I CHINO6" Ism wr +. • ;..s..i''' —' I —I RIE + ; I R E ! I T,4•oo RSIDE I -_-•. . _♦ - - _._ Vim. - a00* • t s ;�\ ` ' I. 1 yT.t!/-' R4Wi ' I R3 R2W \--iuc'R1 VALLEY AREA ISOHYETALS Ya — 10 YEAR I HOUR Msm ON U.&M NOAA ATLAS 2.1!73 Aff1lovEc By ly rL DATE SCALE I FILE NQ DR•Rt N0. 1982 I,.2MI. wq0-I 3 N 12 FIGURE R--4 7 # 7.- _t __ .•.o'o ' R5We- + •• •�.•,.�=•• • • , O --- REDUCED DRAWING �s 1 -� —I 4�. _ A - - - SAN BERNARDINO COUNTY SCALE la•= 4 MILES 110 I•JzeW , ( • •• R7W Rs ••• HYDROLOGY MANUAL'- c8 ,ISOLINES PRECIPITATION (INCHES) S— I I VALLEY AREA ISOHYETALS Ya — 10 YEAR I HOUR Msm ON U.&M NOAA ATLAS 2.1!73 Aff1lovEc By ly rL DATE SCALE I FILE NQ DR•Rt N0. 1982 I,.2MI. wq0-I 3 N 12 FIGURE R--4 R8 RTW 1 —N—I 1 R6W4W r - ' j•1% — — ._ R2W RIW RIE RZE I 'L .•' i- ME' I _ — ( ♦ ; as I I I Rt 1•AF f - I - r + -� - I- i /- - -; _ - •!• • d� I- L7 -r - -�- T � I I ' � — — • • • I — i! I I i 1� i - «n u.. • -1 / K �' L,YL.— — • I.� — — ' — � �j!y?r — � t— I l r— ' _ I z K`a• I :: I• I� 1 , �%'�Li na'[. r — -- — _ _/ (i — — — — . t I �' •.i t 34 1 I 1 4 I f Tt bill- - •w _ 1 I • % — — — — — • 1. `[MW I I IJ I _ L� 3 �-f , • ti + I��- s.7 ro 1'► �- - �- . .• . _ `---•'� - r -r.- ,,,aus� �'�•7�,`� I I .• 8_4 _ F \ ,.► 1 17- "t Lt - - ! - g•r _ 4 - - �,I- r TIN — — — —' — -- = �- -- — - •.\ � �� � __.. .g 1 r * ,-- -+- - .._ �;.. I .... DAM 'l7 I t ` I - 'r � ` � - -`� : _ „ '- - ..` •�, k _o..,.. .:a ., • _ i x �� °< a.►*+ - -� - - (.,-a J_d4i� $- ly 1 ""1f :_ -r - - - , -sem - !,!� 4 I r r ��.. r \ Tom"•. T IN s•� ' - .tl ••, 1 _ � � 'I ' O YI y. ..• M' Ic•`` I I I I � i � I ' I 1 R 1 A LTO_ • - - - -- +�•--- t TIS { -- — '• ♦y•�•• r -j �- • f :{` ...••ri. _ - - .rte ' .,[., t.�.a ,.•• ''— — ONTA 101t'• •� _ I COLT N j - F J `_ 1.� +/_ - \ : • _ :• .. ,; { - -T - - - •. REOLANO _ •• ,� - ,� - - , 1. / jdS 41, am — I Mar r[•n�e[ ruowv ; i, I 1.• ca CH OT2S t :I R—lot -�34-00 IA .., I�M �......,�• ti i , I -- -t' -'- - R4W-- ....�„ • - - R3• -«.-.... R2 � � •ion RI• ' • r SEAN OERNAROINO COUNTY MOL DISTRICT c am �' S VALLEY AREA T3S — — — ; _ '••: _ - , - – • • REDUCED DRAWING aoNrETALs •• - •• -- - - - !, - SAN BERNARDINO COUNTY SCALE I"= 4 MILES Yr•—ON u 100 YEAR I HOUR suc!w . ►n Rw t• owe _ ��EN� Aw+ortp .v 8 I w •-••••• yy HYDROLOGY MANUAL ••• C8 ISOLINES PRECIPITATION (INCHES) aT[ srlu R[ {In Ow�a IMD low 4 of It Sawa B-12 FIGURE B-4 mm m An do t333#i*ttifi*t#*f##t#i###tff#t#tttt##3###t##i#i##*i#tt##*###it#i3t*i##inti# RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE MR (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITEkION) 40 (c) Copyright 1983-89 Advanced Engineering Software (aes) Ver. 5.4A Release Date: 8/21/89 Serial 9 4451 qw Analysis prepared by: MADOLE AND ASSOCIATES, INC. 1820 E. 16th STREET SANTA ANA, CA 92701 PHONE (714)835-2548 :i3*ii*st33#3i#**zit*3tt#* DESCRIPTION OF STUDY * Q10 HYDROLOGY FOR TRACT NO. 13929-1 AND 13929 ,m * FONTANA, C.A. J.N. 133 - 1265 * AUGUST 23, 1990 F-LEL-19'72?0/0] FILE NAME: 13929.010 A TIME/DATE OF STUDY: 8:42 8/23/1990 BSER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TINE-OF-CONN:ENTRATION MODEL* -- me USER SPECIFIED STORM EVENT(YEAR) = 10.00 is SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 w SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* mm SLOPE OF INTENSITY DURATION CURVE _ .6000 • USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) = 1.0000 S�� PGAT l ()zLvz NODE G06A77I0N ###tiitti#*i3t#3itff##f#ii3i##iiii#3i#iii#3###t###tt####t##tt####t###t3ti##t "r FLOW PROCESS FROM NODE 15.00 TO NODE 20.00 IS CODE = 2 ---------------------------------------------------------------------------- 4w »>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS(<;CC< DEVELOPMENT IS COMMERCIAL �s TC = K*((LENGTH** 3.00)/(ELEVATION CHANGE))** .20 mo INITIAL SUBAREA FLOW-LENGTH(FEET) = 490.00 UPSTREAM ELEVATION(FEET) = 334.60 an DOWNSTREAM ELEVATION(FEET) = 330.00 ELEVATION DIFFERENCE(FEET) = 4.60 TC(MIN.) _ .304*1( 490.00** 3.00)/( 4.60))** .20 = 9.214 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.078 SOIL CLASSIFICATION IS "A° rri „ CUMMCIAL SUBAREA LOSS RATE, Fm(INCH/HR) _ .0970 SUBAREA RUNOFF(CFS) = 1.34 .IIS TOTAL AREA(ACRES) _ .50 PEAK FLOW RATE(CFS) = 1.34 FLOW PROCESS FROM NODE 20.00 TO NODE 25.00 IS CODE _ �+ ---------------------------------------------------------------------------- ,. 0 ----------------------------------------------------------------- '� UPSTREAM ELEVATION(FEET) = 330.00 DOWNSTREAM ELEVATION(FEET) = 325.70 STREET LENGTH(FEET) = 555.00 CURB HEIGTH(INCHES) = 8. ' STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 " INTERIOR STREET CROSSFALL(DECIMAL) = .020 ,6 OUTSIDE STREET CROSSFALL(DECIMAL) _ .040 qw SPECIFIED NUMBER OF EALFSTREETS CARRYING RUNOFF = ra **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 1.88 STREET FLOW MODEL RESULTS: go STREET FLOW DEPTH(FEET) _ .36 ,o HALFSTREET FLOOD WIDTH(FEET) -- 5.94 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.20 40 PRODUCT OF DEPTH&VELOCITY = .78 STREET FLOW TRAVEL TIME(MIN.) = 4.21 TC(MIN.) = 13.42 A 10 YEAR RAINFALL INTENSITY(INCH/FOUR) = 2.456 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, F®(INCH/HR) = .0970 SUBAREA AREA(ACRES) _ .50 SUBAREA RUNOFF(CFS) = 1.06 "w EFFECTIVE AREA(ACRES) = 1.00 AVERAGED Fo(INCH/HR) _ .10 TOTAL AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) = 2.12 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .37 HALFSTREET FLOOD WIDTH(FEET) = 6.31 FLOW VELOCITY(FEET/SEC.) = 2.24 DEPTH*VELOCITY = .83 dit �#i#ii*ff#i#iifffiif#i###f#ii###i*ii#ffi##if ii##f#i#f ii#iiiff#i#ifiiififi#### r0) FLOW PROCESS FROM NODE 25.00 TO NODE 25.00 IS CODE = 1 ---------------------------------------------------------------------------- *w )>)))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE((((( ---------------------------------------------------------------------------- �---------------------------------- ---------------- TOTAL NUMBER OF STREAMS = 2 qw CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.42 is RAINFALL INTENSITY(INCH/HR) = 2.46 AVERAGED Fm(INCH/HR) _ .10 EFFECTIVE STREAM AREA(ACRES) = 1.00 TOTAL STREAM AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.12 � s:s:::sss:s:s::s:sss::ssss:::ssss:ssssss:s:ss:s:ff:f::if:f::fisfi:s#*:if#i:f FLOW PROCESS FROM NODE 10.00 TO NODE 30.00 IS CODE = 2 ---------------------------------------------------------------------------- +� M>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS((((( -- - - - - - - -- - -- - - "'� NATURAL AVERAGE COVER TC = K*E(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 995.00 UPSTREAN ELEVATION(FEET) = 359.00 DOWNSTREAM ELEVATION(FEET) = 343.00 ELEVATION DIFFERENCE(FEET) = 16.00 TC(MIN.) _ .706*I( 995.00** 3.00)/( 16.00))::.20 = 25.508 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.671 so SPIL CLASSIFICATION IS "A" i'IATIipAI i;1j:�Ali� ''�11Fp "PpA.^" -IIWPA ;_flcq PAT-.=m,TNN, WK^^i MR SUBAREA RUNOFF(CFS) = 6.35 'r TOTAL AREA(ACRES) = 8.30 PEAK FLOW RATE(CFS) = 6.35 FLOW PROCESS FROM NODE 30.00 TO NODE 35.00 IS CODE = 5 ---------------------------------------------------------------------------- >>>)>COMPUTE TRAPEZOIDAL -CHANNEL FLOW««< >>>>>TRAVEL TIME THRU SUBAREA««< -------------------------------------------------- ------------------------ ----------------------------------------------------- UPSTREAM NODE ELEVATION(FEET) = 343.00 • DOWNSTREAM NODE ELEVATION(FEET) = 334.90 CHANNEL LENGTH THRU SUBAREA(FEET) = 700.00 on CHANNEL BASE(FEET) = 10.00 "Z" FACTOR = 5.000 ,r MANNING'S FACTOR = .040 MAXIMUM DEPTH(FEET) = 1.00 CWFIEL FLOW THRU SUBAREA(CFS) = 6.35 we FLOW VELOCITY(FEET/SEC.) = 1.73 FLOW DEPTH(FEET) _ .32 do TRAVEL TIME(MIN.) = 6.73 TC(MIN.) = 32.24 do FLOW PROCESS FROM NODE 35.00 TO NODE 35.00 IS CODE = 8 ---------------------------------------------------------------------------- 4" )» >)ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«« < 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.452 SOIL CLASSIFICATION IS "A" NATURAL AVERAGE COVER 'GRASS" SUBAREA LOSS RATE, Fn(INCH/HR) _ .8200 'i SUBAREA AREA(ACRES) = 11.00 SUBAREA RUNOFF(CFS) = 6.25 EFFECTIVE AREA(ACRES) = 19.30 AVERAGED Fm(INCH/HR) _ .820 TOTAL AREA(ACRES) = 19.30 PEAK FLOW RATE(CFS) = 10.97 "w TC(MIN) = 32.24 sir FLOW PROCESS FROM NODE 35.00 TO NODE 59.00 IS CODE = 6 ---------------------------------------------------------------------------- > »»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< UPSTREAM ELEVATION(FEET) = 334.90 DOWNSTREAM ELEVATION(FEET) = 331.60 STREET LENGTH(FEET) = 180.00 CURB HEIGTH(INCHES) = S. STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM1 CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 ' OUTSIDE STREET CROSSFALL(DECIMAL) = .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 ` UTRAVEL TIME CONFUTED USING MEAN FLOW(CFS) = 11.09 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .54 HALFSTREET FLOOD WIDTH(FEET) = 13.31 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.33 PRODUCT OF DEPT%.VELOCITY = 2.36 STREET FLOW TRAVEL TIME(MIN.) _ .69 TC(MIN.) = 32.91 ti+ --,ca T?JTG1.1=TT'rTRif'k•WNIP- _ `• d%% mm m SOIL CLASSIFICATION IS "A" "r COMMERCIAL SUBAREA LOSS RATE, Fu(INCH/HR) _ .0970 SUBAREA AREA(ACRES) _ .20 SUBAREA RUNOFF(CFS) _ .24 EFFECTIVE AREA(ACRES) = 19.50 AVERAGED FA(INC.)1/HR) _ .81 ,r TOTAL AREA(ACRES) = 19.50 PEAK FLOW RATE(CFS) = 10.97 END OF SUBAREA STREET FLOW HYDRAULICS: ■• DEPTH(FEET) _ .54 HALFSTREET FLOOD WIDTH(FEET) = 13.31 FLOW VELOCITY(FEET/SEC.) = 4.28 DEPTH#VELOCITY = 2.31 +rr FLOW PROCESS FROM NODE 59.00 TO NODE 59..00 IS CODE = 8 ---------------------------------------------------------------------------- ^� >»>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW(<<(< ---------------------------------------------------------------------------- 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.43:+ SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fe(INCH/HR) _ .4850 SUBAREA AREA KRES) = 2.10 SUBAREA RUNOFF(CFS) = 1.79 EFFECTIVE AREVACRES) = 21.60 AVERAGED Fm(INCH/HR) _ .781 TOTAL AREMACRES) = 21.60 PEAK FLOW RATE(CFS) = 12.68 +� TC(MIN) = 32.93 �I **s#ssxi#*#i##i*#ss##x*#*t*:ixxss#*i#iii*ssiss#**#sx*xi*#i#xiiii#i*#*ii:i##i FLOW PROCESS FROM NODE 59.00 TO NODE 25.00 IS CODE = 6 A---------------------------------------------------------------------------- > »»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<.<(<< UPSTREAM ELEVATION(FEET) = 331.60 DOWNSTREAM ELEVATION(FEET) = 325.70 STREET LENGTH(FEET) = 380.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECINAL) = .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 12.92 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .58 HALFSTREET FLOOD WIDTH(FEET) = 15.19 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.17 PRODUCT OF DEPTH&VELOCITY = 2.43 STREET FLOW TRAVEL TIME(MIN.) = 1.52 TC(MIN.) = 34.45 d0 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.395 wr SOIL CLASSIFICATION IS "A" A, COMMERCIAL SUBAREA LOSS RATE, F®(INCH/HR) _ .0970 SUBAREA AREA(ACRES) _ .40 SUBAREA RUNOFF(CFS) _ .47 EFFECTIVE AREA(ACRES) = 22.00 AVERAGED Fm(INCH/HR) _ .77 TOTAL AREA(ACRES) = 22.00 PEAK FLOW RATE(CFS) = 12.68 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .58 HALFSTREET FLOOD WIDTH(FEET) = 15.19 FLOW VELOCITY(FEET/SEC.) = 4.10 DEPTH*VELOCITY = 2.38 r El � *sxxsstsfs#ttt#ttxxts:s#itxs:s:#f:s*issx:f*:;tsxxt#sttsssitx#:sfti#i#isstxf# �r FLOW PROCESS FROM NODE 25.00 TO NODE 25.00 IS CODE = 1 ---------------------------------------------------------------------------- .,,, »»)DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«« < >>> »AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES« « < arr ------------ TOTAL NUMBER OF STREAMS = 2 s CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 34.45 RAINFALL INTENSITY(INCH/HR) = 1.39 AVERAGED Fm(INCH/HR) = .77 EFFECTIVE STREAM AREA(ACRES) = 22.00 TOTAL STREAM AREA(ACRES) = 22.00 PEAK FLOW RATE(CFS) AT CONFLUENCE RAINFALL INTENSITY AND TIME OF CONCENTRATIONV RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. #= PEAK FLOW RATE TABLE sf 0(CFS) Tc(MIN.) Fm(INCH/HR) Ae(ACRES) 1 15.43 13.42 .698 9,57 2 13.85 34.45 .739 23.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 15.43 Tc(MIN.) = 13.421 EFFECTIVE AREA(ACRES) = 9.57 AVERAGED Fm(INCH/HR) = .70 TOTAL AREA(ACRES) = 23.00 +ger „,m FLOW PROCESS FROM NODE 40.00 TO NODE 45.00 IS CODE = 2 ---------------------------------------------------------------------------- ti > :* RATIONAL METHOD INITIAL SUBAREA ANALYSISi«« No DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5-7 DWELLINGS/ACRE lit. TC = K*((LENGTH** 3.00)/(ELEVATION CHANGE))** .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 725.00 �* UPSTREAM ELEVATION(FEET) = 344.40 DOWNSTREAM ELEVATION(FEET) = 331.70 ELEVATION DIFFERENCE(FEET) = 12.70 TC(MIN.) = .389*(( 72'j.00** 3.00)0 12.70))** .20 = 12.173 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.604 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA RUNOFF(CFS) = 5.53 TOTAL AREA(ACRESI = 2.90 PEAK FLOW RATE(CFS) = 5,53 4w FLOW PROCESS FROM NODE 45.00 TO NODE 60.00 IS CODE = 6 ---------------------------------------------------------------------------- >»»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< UPSTREAM ELEVATION(FEETI = 331.70 DOWNSTREAM ELEVATION(FEET) = 327.10 STREET LENGTH(FEET) = 546.53 CURD HEIGTHQNC:HES) = 6. ds STREET HALFWIDTH(FEETi = 20.00 DIETANCE ;ROM CR('WN TO CROSSFALL GRADEBREAKiFEET) = 12.00 iNTERICNt TRE;' T ::i+SGFr L':DECIM.AL) _ v_(j fW [UIT=.II'L -TGEE1 .Y +� SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED DING MEAN FLOW(CFS) = 6.32 ,o STREET FLOW MODEL RESULTS: NOTE: STREET FLOW DCEEDS TCP OF CURB. 4W THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCLl:S OUTSIDE OF THE STREET CHANNEL. rw THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) _ .51 'w HALFSTREET FOOD WIDTH(FEET) = 12.SS d0 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.P5 PRODUCT OF DEFTH&VELOCITr = 1.45 STREET FLOW TRAVEL TIME(MIN.) = 3.20 TC(MIN.) = 15.37 10 YEAR RAINFALL INTENSITY (INC H/HOUR) = 2.254 w SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .41350 A SUBAREA AREA(ACRES) = 1.60 SUBAREA P,UNOFF(CFS) = 2.5E EFFECTIVE AREA(ACRES) = 4.50 AVERAGED Fm(INCH/HR) _ .49 °w TOTAL AREA(ACRES) = 4.50 PEAK FLOW RATE(CFS) = 7.21 A END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .51 HALFSTREET FLOOD WIDTH(FEET) = 12.33 ,w FLOW VELOCITY(FEET/SEC.) = 3.01 DEPTH*VELOCITY = 1.55 zzxz***x*xsxsxxxxxzxsz*sx*xsxsxxx**xxzxx*x:xxxxszsx*zzxx****xxx***sssx*sxxxs FLOW PROCESS FROM NODE 60.00 TO NODE 60.00 IS CODE = 1 ---------------------------------------------------------------------------- >»X DESIGNATE INDEPENDENT STREAM FOR CONFLUENCEl%-`t . ii TOTAL NUMBER OF STREAMS = 2 (7ONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: "m TIME OF C(KENTRATION(MIN.) = 15.37 RAINFALL INTENSITY(INC#1/HR) = 2.26 ,AVERAGED Fm(INCH/HR) _ .49 EFFECTIVE STREAM AREA(ACRES) = 4.50 TOTAL STREAM AREA(ACRES) = 4.50 di PEAK FLCAW RATE(CFS) AT CONFLUENCE e�m xssxs*zs*ss:*xxz:xss:ssx:sssxxsxsxx*zxs:xxxxxx:xszxxxszxzxxxx*sssxx*x*:xxxxx FLOW PROCESS FROM NODE 61.00 TO NODE 66.00 IS CODE = 2 ---------------------------------------------------------------------------- >}>%RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<.t:<_ ____________________________________________________________________________ DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5-7 DWELLINGS/AC:RE 'w TC = K*I(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00 UPSTREAM ELEVATION(FEET) = 333.70 DOWNSTREAM ELEVATION(FEET) = 327.10 ` ELEVATION DIFFERENCE(FEET) = 6.60 TC(MIN.) _ .319*11 330.00** 3.00)i( 6.60)1** .20 = 8.653 10 YEAR RAINFALL INTENSITY(INCHiHOUR) _ :3.196 SOIL CLASSIFICATION IS "A" WI RESIDENTIAL-: 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE. Fm(INCH/HR) _ .4350 SUBAREA RUNOFF(CFS) = 2.44 DOTAL AREA(ACRES! = 1,1?0 PEAK FLOW RATE;rFS) = 2.44 ori /�5 Ez rM FLOW PROCESS FROM NODE 60.00 TO NODE 60.00 IS CODE = i ---------------------------------------------------------------------------- '"� >}>??DESIGNATE INDEPENDENT STREAM FOR CONFL!ENCE{{L(.{ >}}}AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<t TONAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: A TIME OF CONCENTRATION(MIN.) = 3.65 RAINFALL INTENSITY(INCH/HR) = 3.20 r AVERAGED Fm(INCH/HR) = .49 EFFECTIVE STREAM AREA(ACRES) = 1.00 TOTAL STREAM AREA(ACRES) = 1.00 PEAK: FLOW RATE(CFS) AT CONFLUENCE = 2.44 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO an CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** Q(CFS) Tc(MIN.) Fm(INCH/HR) Ae(ACRES) 1 8.81 15.37 ,485 5,50 ref 2 8.62 8.65 .485 3.53 on COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: mm PEAK FLOW PATE(CFS) = 8.81 Tc(MIN.) = 15.370 EFFECTIVE AREA(ACRES) = 5.50 AVERAGED Fm(INCH/HR) = .49 ew TOTAL AREA(ACRES) = 5.50 ad FLOW PROCESS FROM NODE 40.00 TO NODE 50.00 IS CODE = 2 ---------------------------------------------------------------------------- it >}wRATIONAL METHOD INITIAL SUBAREA ANALYSIS{{{{< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -) 5-7 DWELLINGSiACRE TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)l** .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 645.00 'w UPSTREAM ELEVATION(FEET) = 344.40 rri DOWNSTREAM EtEVATION(FEET) = 3.31. 70 ELEVATION DIFFERENCE(FEET) = 12.70 ami TC(MIN.) = .389*1( 645.00** 3.00)/( 12.70)1** .20 = 11.348 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.716 SOIL CLASSIFICATION IS "A" „m! RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA RUNOFF(GFS) = 3.61 TOTAL AREA(ACRES) = 1.80 PEAK FLOW RATE(CFS) = 3.61 *m FLOW PROFESS FROM NODE 50.00 TO NODE 50.00 IS CODE = 8 e� ---------------------------------------------------------------------------- >}>%}ADDITION OF SUBAREA TO MAINLINE PEAK FLICK{{t{ ---------------------------------------------------------------------------- q, 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.716 SOIL CLA.4SIFICATION IS "A" RESIDENTIAL-` 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 SUBAREA AREA(ACRES) = 2.30 SUBAREA F4NOFF(CFS) = 4.62 EFFECTIVE AREA(ACRES) = 4.10 AVERAGED Fm(INCH/HR) _ .495 -m MR PEAK FLOW RATE(CFS) = 8.23 4 0 TC(MIN) = 11.35 MR FLOW PROCESS FROM NODE 50.00 TO NODE .`5.00 IS CODE = 6 "in ---------------------------------------------------------------------------- mti >>>\)COMPUTE STREET FLOW TRAVEL TIME THRU SIJBAREAge(.e<. 40 UPSTREAM ELEVATION(FEET) = 331.70 DOWNSTREAM ELEVATION(FEET) = 329.20 STREET LENGTH(FEET) = 260.00 CURB FEIGTH(INCHES) = 6. IN STREET HALFWIDTH(FEET) = 20.00 '" DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 i INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .040 4m SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 *#TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 8.79 STREET FLOW MODEL RESULTS: +� NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION "w THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) _ .54 HALFSTREET FLOOD WIDTH(FEET) = 14.38 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.14 do PRODUCT OF DEPTH&VELOCITY = 1.71 STREET FLOW TRAVEL TIME(MIN.) = 1.38 TC(MIN.) = 12.73 it 10 YEAR RAINFALL INTENSITY (INCH/HOUR)= 2.535 SOIL CLASSIFICATION IS "A" 40 RESIDENTIAL-> 5-7 DWELLING/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 ma SUBAREA AREA(ACRES) _ .60 SUBAREA RUNOFF(CFS) = 1.11 EFFECTIVE AREA(ACRES) = 4.70 AVERAGED Fm(INCH/HR) _ .49 TOTAL AREA{ACRES) = 4.70 PEAK FLOW RATE(CFS) = 8.67 am END OF SUBAREA STREET FLOW HYDRAULICS- DEPTH(FEET) = .54 HALFSTREET FLOOD WIDTH(FEET) = 14.38 FLOW VELOCITY(FEETiSEC.) = 3.09 DEPTH*VELOCITY = 1.68 FLOW PROCESS FROM NODE 55.00 TO tmDE 55.00 IS CODE = 8 =-------------------------------------------------------------- ------------- >i>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ----10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.535 mit SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INC'H/HR) _ .4850 SUBAREA AREA(ACRES) = 1.50 SUBAREA RUNOFF(CFS) = 2.77 EFFECTIVE AREA(ACRES) = 6.20 AVERAGED Fm(INCH/HR) _ .485 TOTAL AREA(ACRES) = 6.20 4m PEAK FLOW RATE(CFS) = 11.44 =r TC(MIN) = 12.73 vm C! fiiJ'.'Gf d'� �'= ='n'f hi F I i(1r I S i "I !Tl� _ r-: 'u ---------------------------------------------------------------------------- 40 %>:>::?COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<'*m q" UPSTREAM ELEVATION(FEET) = 329.20 DOWNSTREAM ELEVATION(FEET) = 327.10 40 STREET LENGTH(FEET) = 265.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 d THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 40 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 do LXRSIDE STREET CROSSFALL(DECIMAL) _ .040 PRODUCT OF DEPTH&VELOCITY = 1.94 *w SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = i 'u **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 12.04 do STREET FLOW MODEL RESULTS: NOTE: STREET FLOW EXCEEDS TOP OF CURB. 4m THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCM OUTSIDE OF THE STREET CHANNEL. d THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) _ .60 40 HALFSTREET FLOOD WIDTH(FEET) = 17.38 do AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.21 PRODUCT OF DEPTH&VELOCITY = 1.94 *w STREET FLOW TRAVEL TIME(MIN.) = 1.38 TC(MIN.) = 14.11 do 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.384 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 +� cJ-gMEA AREA(ACRES) _ .70 SUBAREA RUNOFF(CFS) = 1.20 EFFECTIVE AREA(ACRES) = 6.90 AVERAGED Fm(INCH/HR) _ .49 TOTAL AREA(ACRES) = 6.90 PEAK FLOW RATE(CFS) = 11.79 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .60 HALFSTREET FLOOD WIDTH(FEET) = 17.38 40 FLOW VELOCITY(FEET/SEC.) = 3.14 DEPTH*VELOCITY = 1.90 a FLOW PROCESS FROM NODE 65.00 TO NODE 65.00 IS CODE = 1 Irr---------------------------------------------------------------------------- > » >>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.11 RAINFALL INTENSITY(INCH/HR) = 2.38 'o AVERAGED FA(INCH/HR) _ .49 EFFECTIVE STREAM AREA(ACRES) = 6.90 40 TOTAL STREAM AREA(ACRES) = 6.90 ,m PEAK FLOW RATE(CFS) AT CONFLUENCE = 11.79 *ixx:xssixtixxtxtitx*txsss#:ss#txxxttsssit#tstsstxsttxxxxsss:ss##sit:s*xi*tx FLOW PROCESS FROM NODE 58.00 TO NODE 65.00 IS CODE = 2 ---------------------------------------------------------------------------- ?:>?»RATIONAL. METHOD INITIAL SUBAREA ANALYSISM< "< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5-7 DWELLINGS/ACRE TC = K*L(LENG-jd** 3.00)%(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 690.00 ilKl,PP f4 P f7VA T11NkF 4(17rl A01, =, F-, DOWNSTREAM ELEVATION(FEET) = 327.10 ELEVATION DIFFERENCE(FEET) = 13.60 TC(MIN.) _ .389*1( 690.00** 3.00)/( 13.601*# .20 = 11.656 10 YEAR RAINFALL INTENSITY (INCH/ HOUR) = 2.673 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 wia SUBAREA RUNOFF(CFS) = 3.54 do TOTAL AREA(ACRES) = 1.80 PEAK FLOW RATE(CFS) = 3.54 �w ***ssss**ss**:s:*::**:***:*ss*sssssss*ssssss:s*ssss*ssssss*ss**ss*ss*:*ss*** FLOW PROCESS FROM NODE 65.00 TO NODE 65.0016 CODE = 1 ---------------------------------------------------------------------------- »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< »>»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: dV TIME OF CONCENTRATION(MIN.) = 11.66 RAINFALL INTENSITY(INCH/HR) = 2.67 Am AVERAGED Fm(INCH/HR) _ .49 46 EFFECTIVE STREAM AREA(ACRES) = 1.80 TOTAL STREAM AREA(ACRES) = 1.80 +� PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.54 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAM. ** PEAK FLOW RATE TABLE ** (?(CFS) Tc(MIN.) Fm(INCH/HR) Ae(ACRES) 1 14.87 14.11 .485 8.70 14.77 11.66 .485 7.50 .w COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 14.87 Tc(MIN.) = 14.108 EFFECTIVE AREA(ACRES) = 8.70 AVERAGED Fm(INC:H/HR) _ .49 TOTAL AREA(ACRES) = 8.70 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 8.70 TC(MIN.) = 14.11 EFFECTIVE AREA(ACRES) = 8.70 AVERAGED Fm(INCH/HR)= .49 PEAK FLOW RATE(GFS) = 14.87 *** PEAK FLOW RATE TABLE *** R(CFS) Tc(MIN.) Fm(INCH/HR) Ae(ACRES) 1 14.87 14.11 .485 8.70 M 2 14.77 11.66 .485 7.50 to END OF RATIONAL METHOD ANALYSIS 17 tt►M►t►►i►i►►►►#iit#i►i###ii####i#i######iii######*########i*#i#ti#i*i#it*i RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983-39 Advanced Engineering Software (aes) Ver. 5.4A Release Date: 8/21/89 Serial 1 4451 Analysis prepared by: "m MADOLE AND ASSOCIATES, INC:. 42 1820 E. 16th STREET SANTA ANA, CA 91701 40 P 3NE (714)835-2548 DESCRIPTION OF STUDY * 0100 HYDROLOGY FOR TRACT 13929-1 AND 13929 * FONTA14A , C.A. J.N. 133 - 1265 err► x AUGUST 23, 1990 FILE113929.1001 SEE PLATE 1 FILE NAME: 13929.100 TIME/DATE OF STUDY: 11:16 8/23/1990 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TIME-OF-CONCENTRATIO)t MODEL* -- .w rr USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 *0 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* dig SLOPE OF INTENSITY DURATION CURVE = .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCIi/HOUR) = 1.5000 ri 40 FLOW PROCESS FROM NODE 15.00 TO NODE 20.00 IS CADE = 2 „w ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«.<< DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 490.00 UPSTREAM ELEVATION(FEET) = 334.60 No DOWNSTREAM ELEVATION(FEET) = 330.00 ELEVATION DIFFERENCE(FEET) = 4.60 TC(MIN.) = .304*1( 490.00** 3.00)./( 4.60)1** .20 = 9.214 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.617 SOIL CLASSIFICATION IS 'A" 'i COMMERCIAL SUBAREA LOSS RATE, Fe(INCH/HR) = .0970 SUBAREA RUNOFF(CFS) = 2.03 w TOTAL AREA(ACRES) _ .50 PEAK FLOW RATE(CFS) = 2.03 0 4W to FLOW PROCESS FROM NODE 20.00 TO NODE 25.00 IS CODE = h ■m eo i ---------------------------------------------------------------------------- '"'" >):>»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««( UPSTREAM ELEVATION(FEET) = 330.00 DOWNSTREAM ELEVATION(FEET) = 325.70 STREET LENGTH(FEET) = 555.00 CURB HEIGTH(INCHES) = 8. .r. STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 aw OUTSIDE STREET CROSS-FALL(DECIMAL) = .040 .. SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 to **TRAVEL TIME COMPUTED USI14G MEAN FLOW(CFS) = 2.86 .w STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .40 .40 HALFSTREET FLOOD WIDTH(FEET) = 7.06 40 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.49 PRODUCT OF DEPTH&VELOCITY = 1.00 '0 STREET FLOW TRAVEL TIME(MIN.) = 3.72 TC(MIN.) = 12.93 of 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.767 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fe(INCH/HR) = .0970 SUBAREA AREA(ACRES) = .50 SUBAREA RUNOFF(CFS) = 1.65 EFFECTIVE AREA(ACRES) = 1.00 AVERAGED FO(INCH/HR) _ .10 di TOTAL AREA(ACRES) = 1.00 PEAK FLOW RATE(GFS) = 3.30 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .42 HALFSTREET FLOOD WIDTH(FEET) = 7.44 ,i FLOW VELOCITY(FEET/SEC.) = 2.63 DEPTH#VELOCITY = 1.09 #if#tiif#i#i##i#iffififff##fiiifi##i##i########i#ii#######ffff#fff##fi##iii# FLOW PROCESS FROM NODE 25.00 TO NODE 25.00 IS CODE = 1 ---------------------------------------------------------------------------- >)>>}DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< do TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM I ARE: TIME OF CONCENTRATION(MIN.) = 12.93 RAINFALL INTENSITY(INC}N/HR) = 3.77 AVERAGED FA(INCH/HR) = .10 EFFECTIVE STREAM AREA(ACRES) = 1.00 TOTAL STREAM AREA(ACRES) = 1.00 a� PEAK FLOW.RATE(CFS) AT CONFLUENCE = 3.30 tlli #iiti#i#i##iii#i#i#####ti###i###i##i####ififfifff#ff###ii#i#iiitiiiii###iii# FLOW PROCESS FROM NODE 10.00 TO NODE 30.00 IS CODE = 2 ---------------------------------------------------------------------------- »»)RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< NATURAL AVERAGE COVER TC = K#((LENGTH** 3.00)/(ELEVATION CHANGE)1*# .20 INITIAL SUBAREA FLIM-LENGTH(FEET) = 995.00 40 UPSTREAM ELEVATION(FEET) = 359.00 0.- DOWNSTREAM ELEVATION(FEET) = 343.00 ELEVATION DIFFERENCE(FEET) = 16.00 +tet TC(MIN.) = .706*1( 995.00*# 3.00)/( 16.00))*# .20 = 25.508 a 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.506 on /9 w di FLOW PROCESS FROM NODE 35.00 TO MODE 35.00 IS CODE = 8 ---------------------------------------------------------------------------- »»)ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<< db 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.230 SOIL CLASSIFICATION IS 'A" +� NATURAL AVERAGE COVER "GRASS" SUBAREA LOSS RATE, Fm(INCH/HR) _ .3200 SUBAREA AREA(ACRES) = 11.00 SUBAREA RUNOFF(CFS) = 13.% 40 EFFECTIVE AREA(ACRES) = 19.30 dll AVERAGED Fm(INCH/HR) _ .820 TOTAL AREA(ACRES) = 19.30 PEAK FLOW RATE(CFS) = 24.50 TC(MIN) = 30.98 i FLOW PROCESS FROM NODE 35.00 TO NODE 59.00 IS CODE = 6 ---------------------------------------------------------------------------- ■m )X* COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< UPSTREAM ELEVATION(FEET) = 334.90 DOWNSTREAM ELEVATION(FEET) = 331.60 STREET LENGTH(FEET) = 130.00 CURB HEIGTH(INCHES) = 3. STREET HALFWIDTH(FEET) = 18.00 DISTAN('E FROM CROWN TO CROSSFALL 6RADEBREAK(FEET) = 10.00 40 INTERIOR STREET CROSSFALL(DECIMAL) = .020 ..i OUTSIDE STREET CROSSFALL(DECIMAL) = .040 on SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF do **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 24.69 ***STREET FLOW SPLITS OVER STREET -CROWN*** 40 FULL DEPTH(FEET) = .64 FLOOD WIDTH(FEET) = 18.00 at FULL HALF -STREET VELOCITY(FEET/SEC.)'= 4.82 SPLIT DEPTH(FEET) _ .43 SPLIT FLOOD WIDTH(FEET) = 7.31 4" SPLIT VELOCITY(FEET/SEC.) = 3.83 STREET FLOW MODEL RESJILTS: 40 20 SOIL CLASSIFICATION IS 'A" 00 NATURAL AVERAGE COVER "GRASS" SUBAREA LOSS RATE, Fm(INCH/HR) = .3200 ms SUBAREA RUNOFF(CFS) = 12.59 TOTAL AREA(ACRES) = 3.30 PEAK FLOW RATE(CFS) = 12.59 *s air► FLOW PROCESS FROM NODE 30.00 TO DIODE 35.00 IS CODE = 5 ---------------------------------------------------------------------------- » »COMPUTE TRAPEZOIDAL -CHANNEL FLOW<< «< »»)TRAVEL TIME THRU SUBAREA« «< UPSTREAM NODE ELEVATION(FEET) = 343.00 DOWNSTREAM NODE ELEVATION(FEET) = 334.90 CHANNEL LENGTH THRU SUBAREA (FEET) = 700.00 VIII CHANNEL BASE(FEET) = 10.00 "Z' FACTOR = 5.000 MANNING'S FACTOR = .040 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 12.59 on FLOW VELOCITY(FEET/SEC.) = 2.13 FLOW DEPTH(FEET) _ .48 10 TRAVEL TIME(MIN.) = 5.47 TC(MIN.) = 30.93 w di FLOW PROCESS FROM NODE 35.00 TO MODE 35.00 IS CODE = 8 ---------------------------------------------------------------------------- »»)ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<< db 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.230 SOIL CLASSIFICATION IS 'A" +� NATURAL AVERAGE COVER "GRASS" SUBAREA LOSS RATE, Fm(INCH/HR) _ .3200 SUBAREA AREA(ACRES) = 11.00 SUBAREA RUNOFF(CFS) = 13.% 40 EFFECTIVE AREA(ACRES) = 19.30 dll AVERAGED Fm(INCH/HR) _ .820 TOTAL AREA(ACRES) = 19.30 PEAK FLOW RATE(CFS) = 24.50 TC(MIN) = 30.98 i FLOW PROCESS FROM NODE 35.00 TO NODE 59.00 IS CODE = 6 ---------------------------------------------------------------------------- ■m )X* COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< UPSTREAM ELEVATION(FEET) = 334.90 DOWNSTREAM ELEVATION(FEET) = 331.60 STREET LENGTH(FEET) = 130.00 CURB HEIGTH(INCHES) = 3. STREET HALFWIDTH(FEET) = 18.00 DISTAN('E FROM CROWN TO CROSSFALL 6RADEBREAK(FEET) = 10.00 40 INTERIOR STREET CROSSFALL(DECIMAL) = .020 ..i OUTSIDE STREET CROSSFALL(DECIMAL) = .040 on SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF do **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 24.69 ***STREET FLOW SPLITS OVER STREET -CROWN*** 40 FULL DEPTH(FEET) = .64 FLOOD WIDTH(FEET) = 18.00 at FULL HALF -STREET VELOCITY(FEET/SEC.)'= 4.82 SPLIT DEPTH(FEET) _ .43 SPLIT FLOOD WIDTH(FEET) = 7.31 4" SPLIT VELOCITY(FEET/SEC.) = 3.83 STREET FLOW MODEL RESJILTS: 40 20 STREET FLOW DEPTH(FEET) _ .64 HALFSTREET FLOOD WIDTH(FEET) = 18.00 ,.r AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.82 PRODUCT OF DEPTH&VELOCITY = 3.08 '*+ STREET FLOW TRAVEL TIME(MIN.) _ .62 TC(MIN.) = 31.60 ,rr 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.104 in SOIL CLASSIFICATION IS "A" COM04ERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) _ .0970 d' SUBAREA AREA(ACRES) = .10 SUBAREA RUNOFF(CFS) _ .38 EFFECTIVE AREA(ACRES) = 19.50 AVERAGED Fm(INCH/HR) _ .81 40 TOTAL AREA(ACRES) = 19.50 PEAk; FLOW RATE(CFS) = 24.50 ,o END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .64 HALFSTREET FLOOD WIDTH(FEET) = 18.00 •. FLOW VELOCITY(FEET/SEC.) = 4.82 DEPTH*VELOCITY = 3.08 40 FLOW PROCESS FROM NODE 59.00 TO NODE 59.00 IS CODE = 8 a---------------------------------------------------------------------------- >»»ADDITION OF SUBAREA TO MAINLINE PEAU FLOW<m < 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.204 SOIL CLASSIFICATION IS 'A' RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/Ht) _ ..4850 SUBAREA AREA(ACRES) = 2.10 SUBAREA RUNOFF(CFS) = 3.25 EFFECTIVE AREA(ACRES) = 21.60 AVERAGED Fm(INCH/HP,) _ .781 TOTAL AREA(ACRES) = 21.60 rrr PEAK FLOW RATE(CFS) = 27.66 TC(MIN) = 31.60 40 FLOW PROCESS FROM NODE 59.00 TO NODE 25.00 IS CODE = 6 ---------------------------------------------------------------------------- ri >»>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- "* UPSTREAM ELEVATION(FEET) = 331.60 DOWNSTREAM ELEVATION(FEET) = 325.70 STREET LENGTH(FEET) = 380.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 18.00 DISTAD FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROESFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 do SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = I 40 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 28.03 io ***STREET FLOW SPLITS OVER STREET -GROWN*** FULL DEPTH(FEET) _ .64 FLOOD WIDTH(FEET) = 18.00 qw FULL HALF -STREET VELOCITY(FEET/SEC.) = 4.44 SPLIT DEPTH(FEET) _ .54 SPLIT FLOOD WIDTH(FEET) = 13.31 "o SPLIT VELOCITY(FEET/SEC.) = 3.96 STREET FLOW MODEL RESULTS: am STREET FLOW DEPTH(FEET) _ .64 da HALFSTREET FLOOD WIDTH(FEETI = 18.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.44 4" PRODUCT OF DEPTH&VELOCITY = 2.83 0 STREET FLOW TRAVEL TIME(MIN.) = 1.43 TC(MIN.i = 33.03 o. i 2/ on 100 YEAR RAINFALL INTENSITY (INCH/ HOUR) = 2.146 r SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 'o' SUBAREA AREA(ACRES) = .40 SUBAREA RUNOFF(CFS) _ .74 EFFECTIVE AREA(ACRES) = 22.00 AVERAGED Fm(INCH/HR) _ .77 TOTAL AREA(ACRES) = 22.00 PEAK FLOW RATE(CFS) = 2 7.66 ,m END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .64 HALFSTREET FLOOD WIDTH(FEET) = 18.00 FLOW VELOCITY(FEET/SEC.) = 4.44 DEPTH*VELOX.ITY = 2.83 ,gym AV FLOW PROCESS FROM NODE 25.00 TO NODE 25.00 IS CODE = 1 .,A ---------------------------------------------------------------------------- t,r'/jDESIGNATE INDEPENDENT STREAM FOR CONFLUENCEl� C4 42 t %`AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES,<<0, -------- ----------------------------------- ----------------- ------------------------ AN TOTAL NUMBER OF STREAMS = 2 i CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 33.03 RAINFALL INTENSITY(INCH/HR) = 2.15 AVERAGED Fm(INCH/HR) = .77 EFFECTIVE STREAM AREA(ACRES) = 22.00 TOTAL STREAM AREA(ACRES) = 22.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 27.66 RAINFALL INTENSITY AND TIME OF MENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. +i ** PEAK FLOW RATE TABLE ** wr Q(CFS) TdMIN.) Fm(INCH/HR) Ae(ACRES) 1 26.58 12.93 .698 9.61 do 2 29.51 33.03 .739 23.00 COMPUTED CONFLLOC-E ESTIMATES ARE AS FOLLOWS: PEAK: FLOW RATE(CFS) = 29.51 Tc(MIN.) = :33.027 EFFECTIVE AREA(ACRES) = 23.00 AVERAGED Fm(INCH/HR) = .74 TOTAL AREA(ACRES) = 23.00 FLOW PROCESS FROM NODE 40.00 TO NODE 45.00 IS CODE = 2 ---------------------------------------------------------------------------- )Y')RATIONAL METHOD INITIAL SUBAREA ANALYSISi:<.{:; ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -) 5-7 DWELLINGS/ACRE TC = K*((LENGTH** 3.00)/(ELEVATION CHANGE))** .20 INITIAL .SUBAREA FLOW-LENGTH(FEET) = 725.00 UPSTREAM ELEVATION(FEET) = 344.40 DOWNSTREAM ELEVATION(FEET) = 331.70 ELEVATION DIFFERENCE(FEET) = 12.70 TC(MIN.) = .389*(( 725.00** 3.00)/( 12.70)1** .20 = 12.173 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.906 SOIL CLASSIFICATION IS "A" RESIDENTIAL-) 5-7 DWELLINGS/ACP.E SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA RUNOFF(CFS) = S.93 TOTAL AREA(ACRES" = 2.90 PEAK FLOW RATE(CFS) = 8.93 22 Yi#33iiii####YYY######iiiYY#33ii3tiYi####Y##YY#ffi#YYfiffii#3#3##Y#YYi#x#xi# �. FLOW PROCESS FROM NODE 45.00 TO NODE 60.00 IS CODE = 6 +rr ---------------------------------------------------------------------------- >iCOMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< UPSTREAM ELEVATION(FEET) = 331.70 DOWNSTREAM ELEVATION (FEET) = 327.10 STREET LENGTH(FEET) = 546.53 CURB HEIGTH(INCHES) = 6. •� STREET HALFWIDTH(FEET) = 20.00 10 DISTANCE FROM CROWN TO CROSSFALL (fADEBREAK(FEET) = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 ' OUTSIDE STREET CROSSFALL(DECIMAL) = .040 m SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = i +w 40 **TRAVEL TIME COMPUTED USING MEAN FLOW(CF6) = 11.06 STREET FLOW MODEL RESULTS: .w NOTE: STREET FLOW EXCEEDS TCP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION 10 THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. Ro -STREET FLOW DEPTH(FEET) = .59 ,dN HALFSTREET FLOOD WIDTH(FEET) = 16.63 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.16 m0 PRODUCT OF DEPTH&VELOCITY = 1.86 a0 STREET FLOW TRAVEL TIMF(MIN.) = 2.88 TC(MIN.I = 15.05 40 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.439 SOIL CLASSIFICATION IS 'A' RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fe(INCHiHR) = .4350 SUBAREA AREA(ACRES) = 1.60 SUBAREA RUNOFF(CFS) = 4.25 EFFECTIVE AREA(ACRES) = 4.50 AVERAGED Fm(INCH/HR) _ .49 do TOTAL AREA(ACRES) = 4.50 PEAK FLOW RATE(CFS) = 11.96 END OF 5t(BAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .60 HALFSTREET FLOOD WIDTH(FEET) = 17.38 FLOW VELOCITY(FEET/SEC.) = 3.19 DEPTH*VELOCITY = 1.92 ■1 FLOW PROCESS FROM NODE 60.00 TO NODE 60.00 IS CODE = 1 ---------------------------------------------------------------------------- xw )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««.( ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- TOTAL NUMBER OF STREAMS = 2 w CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CINCENTRATION(MIN.) = 15.05 as RAINFALL INTENSITY(INCH/HR) = 3.44 AVERAGED Fm(INCH/HR) = .49 40 EFFECTIVE STREAM AREA(ACRES) = 4.50 ro TOTAL STREAM AREA(ACRES) = 4.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 11.96 ■ar �#iiiixiix#ixti#xi#i3###i3s##x#ii#######ixiii#i#iii#i##iiiiitii###########iii FLOW PROCESS FROM NODE 61.00 TO NODE 60.00 IS CODE = 2 ---------------------------------------------------------------------------- >)>))RATIONAL METHOD INITIAL SUBAREA ANALYSIS(<(<< ° 40 DEVELOPMENT IS SINGE FAMILY RESIDENTIAL 5-7 DWELLING/ACRE TC = K*((LENGTH** J.00).+'(ELEVATION CHANGE)]** .20 L-1 m 23 see FLOW PROCESS FROM NODE 60.00 TO NODE 60.00 IS CODE = 1 +� ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLD STREAM VALUES««< -------- ------------------------------------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.65 ' RAINFALL INTENSITY(INCH/HR) = 4.79 AVERAGED Fm(INCH/HR) = .49 EFFECTIVE STREAM AREA(ACRES) = 1.00 4m TOTAL STREAM AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.88 00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** 0(CFS) Tc (MIN.) Fe(INCH/HR) Ape (ACRES) 1 14.62 15.05 .485 5.50 2 13.91 8.65 .48.5 3.59 COMPUTED CONFLLENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(GFS) = 14.62 Tc(MIN.) = 15.054 EFFECTIVE AREA(ACRES) = 5.50 AVERAGED Fm(INCH/HR) = .49 40 TOTAL AREM ACRES) = 5.50 di FLOW PROFESS FROM NODE 40.00 TO NODE 50.00 IS CODE =_ 2 ---------------------------------------------------------------------------- 40 >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« - --------- mo DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5-7 DWELLINGS/ACRE TC = K*I(LENGTH** 3.00)/{ELEVATION CF W))** .20 *" INITIAL SUBAREA FLOW-LENGTH(FEET) = 645.00 UPSTREAM ELEVATION(FEET) = 344.40 DOWNSTREAM ELEVATION(FEET) = 331.70 ELEVATION DIFFERENCE{FEET) = 12.70 TC(MIN.) = .389*I( 645.00** 3.00)/( 12.70)1** .20 = 11.348 d6100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.074 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA RUNOFF(CFS) = 5.81 TOTAL AREMACRES) = 1.80 PEAK FLOW RATE(CFS) = 5.81 eIM w w 2¢ INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00 .. UPSTREAM ELEVATION(FEET) = 333.70 ir. DOWNSTREAM ELEVATION(FEET) = 327.10 ELEVATION DIFFEREPDX(FEET) = 6.60 TC(MIN.) = .389*(( 330.00** 3.00)/( 6.60)1** .20 = 8.653 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.794 SOIL CLASSIFICATION IS `A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA RUNOFF(CFS) = 3.88 TOTAL AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) = 3.88 see FLOW PROCESS FROM NODE 60.00 TO NODE 60.00 IS CODE = 1 +� ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLD STREAM VALUES««< -------- ------------------------------------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.65 ' RAINFALL INTENSITY(INCH/HR) = 4.79 AVERAGED Fm(INCH/HR) = .49 EFFECTIVE STREAM AREA(ACRES) = 1.00 4m TOTAL STREAM AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.88 00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** 0(CFS) Tc (MIN.) Fe(INCH/HR) Ape (ACRES) 1 14.62 15.05 .485 5.50 2 13.91 8.65 .48.5 3.59 COMPUTED CONFLLENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(GFS) = 14.62 Tc(MIN.) = 15.054 EFFECTIVE AREA(ACRES) = 5.50 AVERAGED Fm(INCH/HR) = .49 40 TOTAL AREM ACRES) = 5.50 di FLOW PROFESS FROM NODE 40.00 TO NODE 50.00 IS CODE =_ 2 ---------------------------------------------------------------------------- 40 >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« - --------- mo DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5-7 DWELLINGS/ACRE TC = K*I(LENGTH** 3.00)/{ELEVATION CF W))** .20 *" INITIAL SUBAREA FLOW-LENGTH(FEET) = 645.00 UPSTREAM ELEVATION(FEET) = 344.40 DOWNSTREAM ELEVATION(FEET) = 331.70 ELEVATION DIFFERENCE{FEET) = 12.70 TC(MIN.) = .389*I( 645.00** 3.00)/( 12.70)1** .20 = 11.348 d6100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.074 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA RUNOFF(CFS) = 5.81 TOTAL AREMACRES) = 1.80 PEAK FLOW RATE(CFS) = 5.81 eIM w w 2¢ IN 100 YEAR RAINFALL INTENSITY(INCH/HOLO?) = 3.830 w SOIL CLASSIFICATION IS "A" RESIDENTIAL-:> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 do SUBAREA AREA(ACRES) _ .60 SUBAREA RUNOFF(CFS) = 1.81 EFFECTIVE AREA(ACRES) = 4.70 AVERAGED Fm(IFCH/HR) _ .49 TOTAL AREA(ACRES) = 4.70 PEAK FLOW RATE(CFS) = 14.15 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .61 HALFSTREET FLOOD WIDTH(FEET) = 18.13 .w FLOW VELOCITY(FEET/SEC.) = 3.52 DEPTH*VELOCITY = 2.18 fxffxex:xx:fffxff:::fxx:xx:x:fx:xxxxfffxfixf#fffxx##xf:ff:xxx::x::xxxxxfff:x FLOW PROCESS FROM NODE 55.00 TO NODE 55.00 IS CODE = 8 �. ---------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< ■► 100 YEAR RAINFALL INTENSITY(INCH/HOLR) = 3.830 an mr 2� SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 *" FLOW PROCESS FROM NODE 50.00 TO NODE 50.00 IS CODE = 8 +r:r ---------------------------------------------------------------------------- »»)ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< „■� THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION ,,. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.074 SOIL CLASSIFICATION IS "A" •• RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4850 ' SUBAREA AREA(ACRES) = 2.30 SUBAREA RUNOFF(CFS) = 7.43 X111 EFFECTIVE AREA(ACRES) = 4.10 AVERAGED Fe(INCH/HR) _ .485 TOTAL AREA(ACRES) = 4.10 �► PEAK FLOW RATE(CFS) = 13.24 TC(MIN) = 11.35 x#fi#fffff#fait#####tit#f#f###xi#iii##if#ii#ifffifff##xiiixi##xxx######xffff „Mr FLOW PROCESS FROM MODE 50.00 TO NODE 55.00 IS CODE = 6 do ---------------------------------------------------------------------------- »»)COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< q. ---------------------------------------------------------------------------- UPSTREAM ELEVATION(FEET) = 331.70 DOWNSTREAM ELEVATION(FEET) = 329.20 do STREET LENGTHiFEET) = 260.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INTERIOR STREET CROSSFALL(DECIMWU = .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .040 IN 100 YEAR RAINFALL INTENSITY(INCH/HOLO?) = 3.830 w SOIL CLASSIFICATION IS "A" RESIDENTIAL-:> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 do SUBAREA AREA(ACRES) _ .60 SUBAREA RUNOFF(CFS) = 1.81 EFFECTIVE AREA(ACRES) = 4.70 AVERAGED Fm(IFCH/HR) _ .49 TOTAL AREA(ACRES) = 4.70 PEAK FLOW RATE(CFS) = 14.15 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .61 HALFSTREET FLOOD WIDTH(FEET) = 18.13 .w FLOW VELOCITY(FEET/SEC.) = 3.52 DEPTH*VELOCITY = 2.18 fxffxex:xx:fffxff:::fxx:xx:x:fx:xxxxfffxfixf#fffxx##xf:ff:xxx::x::xxxxxfff:x FLOW PROCESS FROM NODE 55.00 TO NODE 55.00 IS CODE = 8 �. ---------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< ■► 100 YEAR RAINFALL INTENSITY(INCH/HOLR) = 3.830 an mr 2� SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 *" **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 14.15 ,K STREET FLOW MODEL RESULTS: NOTE: STREET FLOW EXCEEDS TOP OF CURB. „■� THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) _ .62 ' HALFSTREET FLOOD WIDTH(FEET) = 18.13 X111 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.52 PRODUCT OF DEPTH&VELOCITY = 2.18 STREET FLOW TRAVEL TIME(MIN.) = 1.23 TC(MIN.) = 12.58 IN 100 YEAR RAINFALL INTENSITY(INCH/HOLO?) = 3.830 w SOIL CLASSIFICATION IS "A" RESIDENTIAL-:> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 do SUBAREA AREA(ACRES) _ .60 SUBAREA RUNOFF(CFS) = 1.81 EFFECTIVE AREA(ACRES) = 4.70 AVERAGED Fm(IFCH/HR) _ .49 TOTAL AREA(ACRES) = 4.70 PEAK FLOW RATE(CFS) = 14.15 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .61 HALFSTREET FLOOD WIDTH(FEET) = 18.13 .w FLOW VELOCITY(FEET/SEC.) = 3.52 DEPTH*VELOCITY = 2.18 fxffxex:xx:fffxff:::fxx:xx:x:fx:xxxxfffxfixf#fffxx##xf:ff:xxx::x::xxxxxfff:x FLOW PROCESS FROM NODE 55.00 TO NODE 55.00 IS CODE = 8 �. ---------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< ■► 100 YEAR RAINFALL INTENSITY(INCH/HOLR) = 3.830 an mr 2� 4w SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fe(INCH/HR) = .4850 in SUBAREA AREA(ACRES) = 1.50 SUBAREA RUNOFF(CFS) = 4.52 EFFECTIVE AREA(ACRES) = 6.20 AVERAGED Fm(INCH/HR) _ .485 TOTAL AREA(ACRES) = 6.20 PEAK FLOW RATE(CFS) = 18.66 ,.. TC(MIN) = 12.58 w ". FLOW PROCESS FROM NODE 55.00 TO NODE 65.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>)COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«<.<< ,w UPSTREAM ELEVATION(FEET) = 329.20 DOWNSTREAM ELEVATION(FEET) = 327.10 STREET LENGTH(FEET) = 265.00 CURB HEIGTH(INCHES) = 6. ,x STREET HALFWIDTH(FEET) = 20.00 'o DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 "w OUTSIDE STREET CROSSFALL(DECIMAL) = .040 do SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMi'UTED USING MEAN FLOW(CFS) = 19.65 ***STREET FLOW SPLITS OVER STREET -CROWN*** FULL DEPTH(FEET) = .66 FLOOD WIDTH(FEET) = 20.00 FULL HALF -STREET VELOCITY(FEET/SEC.) = 3.32 w SPLIT DEPTH(FEET) = .44 SPLIT FLOOD WIDTH(FEET) = 9.12 SPLIT VELOCITY(FEET/SEC.) = 2.52 *W STREET FLOW MODEL RESULTS: NOTE: STREET FLOW E)MDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION ,m THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) = .66 HALFSTREET FLOOD WIDTH(FEET) = 20.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.32 rl1 PRODUCT OF DEPTH&VELOCITY = 2.18 STREET FLOW TRAVEL TIME(MIN.) = 1.33 TC(MIN.) = 13.91 ws do 100 -YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.605 SOIL CLASSIFICATION IS 'A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INGH/HR) = .4850 SUBAREA AREA(ACRES) = .70 SUBAREA RUNOFF(CFS) = 1.97 EFFECTIVE AREA(ACRES) = 6.90 AVERAGED Fm(INCH/HR) _ .49 TOTAL AREA(ACRES) = 6.90 PEAK FLOW RATE(CFS) = 19.38 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .66 HALFSTREET FLOOD WIDTH(FEET) = 20.00 FLOW VELOCITY(FEET/SEC.) = 3.32 DEPTH*VELOCITY = 2.18 FLOW PROCESS FROM NODE 65.00 TO NODE 65.00 IS CODE = 1 ---- ------------------------------------------------------------------------ +� >W)DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< f OTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM I ARE: 40 ii 0 TIME OF CONCENTRATION(MIN.) = 13.91 RAINFALL INTENSITY(INCH/HR) = 3.61 +�r AVERAGED Fn(INCH/HR) = .49 EFFECTIVE STREAM AREA(ACRES) 6.90 TOTAL STREAM AREA(ACRES) = 6.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 19.38 FLOW PROCESS FROM NODE 65.00 TO NODE 65.00 IS CODE = 1 rrr---------------------------------------------------------------------------- »>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES« <<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(NIN.) = 11.66 'o RAINFALL INTENSITY(INCH/HR) = 4.01 AVERAGED Fn(INCH/HR) = .49 .R EFFECTIVE STREAM AREA(ACRES) = 1.80 TOTAL STREAM AREA(ACRES) = 1.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.71 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. "* ** PEAK FLOW RATE TABLE ** ON Q(CFS) Tc (MIN.) Fm(INCH/Ht) Ae(ACRES) 1 24.43 13.91 .485 8.70 "w 2 24.05 11.66 .485 7.58 to COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 24.43 Tc(MIN.) = 13.912 $- /cGo W TD CB, 3 EFFECTIVE AREMACRES) = 8.70 AVERAGED F®(INCH/HR) = .49 TOTAL AREA(ACRES) = 8.70 a.r END OF .STUDY SUMMARY.- TOTAL UMMARY:TOTAL AREA(ACRES) = 8.70 TC(MIN.) = 13.91 EFFECTIVE AREA(ACRES) = 8.70 AVERAGED Fe(INCH/HR)= .49 PEAK FLOW RATE(CFS) = 24.43 *** PEAK FLOW RATE TABLE *** 2 i FLOW PROCESS FROM NODE 58.00 TO NODE 65.00 IS CODE = 2 �. ---------------------------------------------------------------------------- >>»)RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< « < DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5-7 DWELLINGS/ACRE TC = K*1(LENGTH** 3.00)/(ELEVATION D*a)1** .10 INITIAL SUBAREA FLOW-LENGTH(FEET) = 690.00 UPSTREAM ELEVATION(FEET) = 340.70 DOWNSTREAM ELEVATION(FEET) = 327.10 ELEVATION DIFFERENCE (FEET) = 13.60 TC(MIN.) = .389*1( 690.00** 3.00)/( 13.60))** .20 = 11.656 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.009 SOIL CLASSIFICATION IS "A' RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, F.(INCH/HR) = .4850 SUBAREA RUNOFF(CFS) = 5.71 TOTAL AREA(ACRES) = 1.80 PEAK FLOW RATE(CFS) 5.71 ML FLOW PROCESS FROM NODE 65.00 TO NODE 65.00 IS CODE = 1 rrr---------------------------------------------------------------------------- »>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES« <<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(NIN.) = 11.66 'o RAINFALL INTENSITY(INCH/HR) = 4.01 AVERAGED Fn(INCH/HR) = .49 .R EFFECTIVE STREAM AREA(ACRES) = 1.80 TOTAL STREAM AREA(ACRES) = 1.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.71 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. "* ** PEAK FLOW RATE TABLE ** ON Q(CFS) Tc (MIN.) Fm(INCH/Ht) Ae(ACRES) 1 24.43 13.91 .485 8.70 "w 2 24.05 11.66 .485 7.58 to COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 24.43 Tc(MIN.) = 13.912 $- /cGo W TD CB, 3 EFFECTIVE AREMACRES) = 8.70 AVERAGED F®(INCH/HR) = .49 TOTAL AREA(ACRES) = 8.70 a.r END OF .STUDY SUMMARY.- TOTAL UMMARY:TOTAL AREA(ACRES) = 8.70 TC(MIN.) = 13.91 EFFECTIVE AREA(ACRES) = 8.70 AVERAGED Fe(INCH/HR)= .49 PEAK FLOW RATE(CFS) = 24.43 *** PEAK FLOW RATE TABLE *** 2 i 9(CFS) TcfMIN.) Fn(INCH/HR) AE(ACRES) 1 24.43 13.91 .485 8.70 2 24.05 11.66 .485 7.58 END OF RATIONAL METHOD ANALYSIS MM im .. 4m, M- 0 VW so W 4w Ad e 5 ww A Y Nr �s 4m so MO I I i I k I t II it Il a! t i a I a A i4 k A A I ! Il k� ! r Il IIS 1 II A i II I I W 0 M /!eight of Opening (h) in Feel (A %0 0: t fiBighf of OPeni� A\(h) in /aches r Z ° n C000ci/) per foo/ of /elIRlh W goe'?."t-7 CQ/L) int c. f• s per foot :�P. °� o�, o°o iv w ch ib Q. N c,1 4► co : 11 e n o — T, q 0 0 � . � • • �1 "Li %3\ . "n Ro/io of aF,ofh of wolcr of 0,0e17in9 Io heigh/ of ooenin9 O ` tv tv R I a c° ffeight of Opeairn9 Win fuel (� 3 kh N tL \ T W T p, u► ` � N �i, � In 4► �► c Height of OAMIVY \(h) is /aches 3 \ O �.\-co Q �t Z : n C000ci/y ,ver foo/ of /ea9th al' opeo:n.� <Q/L J i�� c. !. s per fool ca H N ��„ obi N to .'\�� Oi CQ o • �' w o, ' oo ' i % �o a ( �, 1 i 1 L+ i �, III e• rN `4CDIN� Ro/io of oF,afh of wolcr at ope17in9to heigh/ of ooeoin9 CN�h) iii ��fi�/ftGN rT, 7f Ci ja 40 a 4. it ,. dt 40 A 40 da ew ,ar do ,0 dw .. do 40 do ,■ ra 40 M aw to Ow dm Given: CURB OPEN':NG (SUMP) (a) Discharge Q X00 = 29 S CFS + Sm 22 or- Tj✓, (b) Curb type - „ "D`t 4" Rolled 6" Rolled Solution: A (depth at opening) 2 /?,inches h (height of opening) = S inches E/h From Cha_ 01ft, of opening = 2 CFS L requ4-p ed = C . B . 2 rAr None 6,o ZoT io) AV 40 CURB* 0PENTNTG (SUMP) G iven- /¢ 6 CFS (a) Discharge Q /00wt _ �Efbr�T (b) Curb type "A-2" "D`t 4" Rolled 6" Rolled Solution: ,�. H (deNth at orenin;) _ inches �• h (sleight of opening! = inches dot h /h = /D �= _ "Aw Fror_. Cha. - =.:A QIft. of opening = 2.O _CFS - ------------- d9 d U.S E L= +r. .w 32 Am 4w Ai .R aa� N ,. di MR do Give-: C. s CURB, OPE\`I\TG (SUMP) (a) DischargeQ /_ = ¢ CFS -J►- SEe /03, 27 7j{/5 021 (b) Curb type „ "D" 4 t Rowed 6" Rolled Solution: H (depth at arerdn;) _ /O inches h (height of opening! _ �D inches H !h = /a—/ 6 _ From. Chari: Q/ft. of opening = 2.0 CFS L r cu�.r ed = 2¢ 2.0 ft. U.S E L= /� D. - '�' = 0.67 _ y.?l 75 - - - - �, 0.67- /8 _ X8 67 - - - - -�'14 y7/ 75 WNL N Ig wo w V E �5 /NG �c� C/T Y •ePPROVED Ws1 /MPPo►EM �° V/GL.nGE /,sPKY, A 7r- /3.25 i�59 ,p�T/YfL gou i BQ , �L N.rs . 34 AZ S..�--- (o c3 - 0.760. to A= A = 0.49 i2= A=�.72ZSr'� Z� = p, 04-5 A 1.486 usEn o, /5 /Nsr6,go of o, iB a�.ca _ /3.49 So45 s yz assun�E Ab .� B&LCW&OI# do go WNL ` q oes eAsa do 40 ap dM 40 do Pme c/rr APAWOVEo /MP1Pow-ma • XXV5, T,P: /3326 -/ ,OND W. /3325 -3, r/GLADE IWX Ar E ,Vd 1-5,V AW1'x59 AZMOLsTIW4 NC,P7114m 41' - - 3oVlfl 41.1 IMAX I5 r9%/ MAX g, ie do ;6 IsscwMEG go FL 8 CIS IN rAA¢44UA`/ Du VILLAGE PARKWAY T �oscP. �ouNG, 4" to M 411 40 do do qu do in do in As 40 40 44 IN ,. a 40 til 40 0 4m 0 +0 40 40 do m w 70 L-,, _bZ4) 19 z - - -- r -- - ------------ -- O. 50 A - _ �� D. %l3 7 �✓ %z 5 y I PuE 8 112 Q5��5/ -LEVEL L/� a7r-r I' {�t/arzST GASB • qac C�io =��! ov Jl+�� ` • • �t/arzs-T Gas � I Pua I 1':14+Ift 50' R/W N.T.s• acr 3Cv 44 do r 10 do 40 Aft r sw do 40 r 40 410 err a 40 a,_ 40 r `z CAPA�t rY z z P So t0.5 t 2O � Z5.5 - , /Z s7p_.P��-rt 50' R/ W N r. s (PO NonrH -C/Di) POO t -7 IN 40 ai rr�l 49 sm 90 40 ■1 40 do 4m 40 +w 40 a 40 m 40 i nM a 4m to +�w ur HEADING LINE NO 1 IS - HEADING LINE NO 2 IS - HEADING LINE NO 3 IS - F 0 5 1 5 P WATEF SURFACE PROFILE - TITLE CARD LISTING TRACT NO. 13919 LIP1E " A ' W.S.P.G. HYDRAULIC CALCULATION J. N. 133 - 1265 1139291 PAGE NO 3 0 40 do R 4w tis E 41 to 9 Ali N 40 01. . sw rr 4. 39 so DATE: 1/ 1/1980 TIME: 0:10 4► F0515P WATER SURFACE PROFILE - 04ANNEL DEFINITION LISTING PAGE I CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE 2L tZRi INV YQ) Y(2) YM Yt4) Y(5) Ytb► Y(7) ►(8) Y(9) Y(10) CODE NO TYPE PIERS WIDTH DIAMETER WIDTH DROP CD 1 4 3.00 CD 2 4 2.50 CD 3 4 1.50 CD 4 2 0 0.00 4.92 4.00 0.00 0 40 do R 4w tis E 41 to 9 Ali N 40 01. . sw rr 4. 39 so siM F 0 5 1 5 P PAGE NO 2 WATER SURFACE PROFILE - ELEMENT CARD LISTING ws ELEMENT NO 1 IS A SYSTEM OUTLET • _ • U/S DATA STATION INVERT SECT W S ELEV 3883.65 319.38 1 322.20 ** ELEMENT NO 2 IS A REACH = r : U/S DATA STATION INVERT SECT N RADIUS ANNE ANG FT MAN 4 3885.08 319.39 1 0.013 0.00 8.00 0.00 0 ELEMENT NO 3 IS A REACH = • _ U/S DATA STATION INVERT SECT N RADIUS ANGLE AN PT MAN H 3938.03 319.73 1 0.013 0.00 0.00 0.00 0 ELEMENT NO 4 IS A REACH Ali U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 3967.71 319.92 1 0.013 0.00 75.50 0.00 0 ELEMENT NO 5 IS A REACH dip UIS DATA STATION INVERT SECT N RADIUS ANGLE ANG FT MAN H 4058.28 320.50 1 0.013 0.'00 0.00 0.00 0 ELEMENT NO 6 IS A JUNCTION U/S DATA STATION INVERT SECT LAT -1 LAT -2 N 03 04 INVERT -3 INVERT -4 PHI 3 PHI 4 4063.28 321.00 _ 3 0 0.013 14.5 0.0 322.69 0.00 45.00 0.00 ELEMENT NO 7 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN r 4107.28 322.14 2 0.013 0.00 0.00 0.00 0 As ELEMENT NO 8 IS A WALL ENTRANCE _ U/S DATA STATION INVERT SECT FF 40 4107.28 322.14 4 0.200 do ELEMENT NO 9 IS A SYSTEM HEADWORIiS = s U/S DATA STATION INVERT SECT W 8 ELE'J 4107.28 322.14 4 0.00 NO EDIT ERRORS ENCOINTERED-COMPUTATION IS NOW BEGINNING _• WARNING NO. 2 •_ - WATER SURFACE ELEVATION GIVEN IS LESS THAN OR EOUALS INVERT ELEVATION IN HD*,DS, W.S.ELEV : !NV • DC rw Mir► 4m do 4" .w at mm to .0 in F0515P PAGE WATER SUlRFACE PROFILE LISTING TRACT NO. 13929 LINE " A " 1139293 W.S.P.G. HYDRAULIC CALCULATION J.N. 133 - 1265 STATION INVERT DEPTH W. S. 0 VEL VEL ENERGY SUPER CRITICAL HGT/ BASE/ ZL NO AVBPF ELEV OF FLOW ELEV HEAD GRD.EL. ED DEPTH DIA ID NO. PIER L/ELEM SU SF AVE HF NORM DEPTH m :s:s::csss:::ssssss::sss:ss::ssss:s::ssss::s::s:ssss::sssssssssssssssssssssss:sss:s:s:ss::ss:sss:s::sss::::s:::s:ssssssssssssss:::s 40 3893.65 319.38 2.820 322.200 38.9 5.64 0.494 322.694 0.00 2.030 3.00 0.00 0.00 0 0.0( 1.43 0.00699 .002940 0.00 1.844 0.00 3885.08 319.39 2.813 322.203 38.9 5.65 0.4% 322.699 0.00 2.030 3.00 0.00 0.00 0 0.0i 39.62 0.00642 .003008 0.12 1.900 0.00 �w 3924.70 319.64 2.628 322.272 38.9 5.93 0.545 322.817 0.00 2.030 3.00 0.00 0.00 0 0.0( do 13.33 0.00642 .003131 0.04 1.900 0.00 40 3938.03 319.73 2.561 322.291 38.9 6.05 0.569 321.860 0.00 2.030 3.00 0.00 0.00 0 0.01 to 24.94 0.00640 .003334 0.08 1.900 0.00 me a 3962.97 319.89 2.421 322.317 38.9 6.35 0.626 322.943 0.00 2.030 3.00 0.00 0.00 0 0.0t 4.74 0.00640 .003511 0.02 1.900 0.00 w 40 3967.71 319.92 2.400 322.320 38.9 6.42 0.639 322.359 0.00 2.030 3.00 0.00 0.00 0 O.Oi 40 19.02 0.00640 .003750 0.07 1.900 0.00 do 3986.73 320.04 2.286 322.328 38.9 6.73 0.703 323.031 0.00 2.030 3.00 0.00 0.00 0 0.0: 14.62 0.00640 .004167 0.06 1.900 0.00 4001.35 320.13 2.183 322.318 38.'9 7.06 0.7773 323.091 0.00 2.030 3.00 0.00 0.00 0 0.06 40 3.03 0.00640 .004395 0.01 1.900 0.00 4004.38 320.15 2.183 322.337 38.9 7.06 0.774 323.111 0.00 2.030 3.00 0.00 0.00 0 0.00 HYDRAULIC JUMP 0.00 4004.38 320.15 1.900 372.054 38.9 8.24 1.055 323.109 0.00 2.030 3.00 0.00 0.00 0 0.li 44.76 0.00640 .006196 0.28 1.900 0.00 4049.14 320.44 1.945 322.386 38.9 8.02 0.999 323.385 0.00 2.030 3.00 0.00 9.00 0 0.077 9.14 0.00640 .005648 0.05 1.900 0.00 b 0 4/ r �1 F05151 PAGE . MATER MACE PROFILE LISTING TRACT NO. 13929 LINE " A ' 1139291 M.S.P.G. HYDRAULIC CALCULATION J. N. 133 - 1265 STATION INVERT DEPTH M.S. 0 VEL VEL ENERGY SUPER CRITICAL HGT/ BASE/ 3- NO AVBPF ELEV OF FLOW ECFV HEAD GRD. EL. ELEV DEPTH DIA ID NO. PIER .w L/ELEM SO SF AVE HF NORM DEPTH ZR � ss::tsstts:ssss:::s:sssstsssssts:ttsssssss:sstssttttssssssssssstt:::sssssssstttsss:::tsst:ssss::s:etses:::ststsstss:::ss:s:s:ss:sss " 4058.28 320.50 2.030 322.530 38.9 7.64 0.907 323.437 0.00 2.030 3.00 0.00 0.00 0 0.00 JUNCT STR 0.10000 0.00 4063.28 321.00 1.171 322.171 24.4 10.81 1.815 323.986 0.00 1.683 2.50 0.00 0.00 0 0.00 4.24 0.02591 .017411, 0.07 1.050 0.00 40 4067.52 321.11 1.183 322.293 24.4 10.67 1.768 324.061 0.00 1.683 2.50 0.00 0.00 0 0.00 11.85 0.02591 .016064 0.19 1.050 0.00 4079.37 321.42 1.Z27 322.644 24.4 10.17 1.606 324.250 0.00 1.683 2.50 0.00 0.00 0 0.00 8.41 0.02591 .014139 0.12 1.050 0.00 aw 4087.78 321.63 1.274 322.909 24.4 9.10 1.460 324.369 0.00 1.683 2.50 0.00 0.00 0 0.00 6.23 0.02591 .012457 0.08 1.050 0.00 4094.01 321.80 1.323 323.119 24.4 9.25 1. .2027 324.446 0.00 1.683 2.50 0.00 0.00 0 0.00 4.60 0.02591 .010985 0.05 1.050 0.00 40 to 4098.61 321.92 1.375 323.290 24.4 8.32 1.207 324.497 0.00 1.683 2.50 0.00 0.00 0 0.0 41 3.38 0.02591 .009698 0.03 1.050 0.00 4101.99 322.00 1.430 323.433 24.4 8.41 1.097 324.530 0.00 1.683 2.50 0.00 0.00 0 0.00 2.46 0.02591 .008570 0.02 1.050 0.00 4104.45 322.01 1.487 323.554 24.4 8.01 0.997 324.551 0.00 t.683 2.50 0.00 0.00 0 0.00 1.62 0.02591 .007581 0.01 1.050 0.00 4106.07 2 2.11 1.548 323.657 24.4 7.64 0.907 324.564 0.00 1.683 2.50 0.00 0.00 0 0.00 0.91 0.02591 .006719 0.01 1.050 0.00 4106.98 322.13 1.613 323.745 24.4 7.29 0.824 324.569 0.00 1.683 2.50 0.00 0.00 0 0.00 0.30 0.02591 .005%2 0.00 1.050 0.00 40 W fi all F0515P PAGE 3 WATER SURFACE PROFILE LISTING TRACT NO. 13929 LINE " A " (139291 W.S.P.G. HYDRAULIC CALCULATION J.N. 133 - 1265 STATION INVERT DEPTH W.S. a VEL VEL ENERGY SUPER CRITICAL HGT/ BASE/ 1 NO AVBF; RD OF FLOW ELEV HEAD GRD.EL. ELEV DEPTH DIA ID NO. PIER LiELEM SO SF AVE HF NORM DEPTH ZR ssscsss:s:stetc:::ss:ss::sssssss:s:ssssssscsstss:::tt:suss:etsttsstssstsssssttstcsssstsstss:stssst:tsst:tttcs:st:s:sst::tt:sst:::: 4107.28 322.14 1.683 323.823 24.4 6.94 0.748 324.571 0.00 1.683 2.50 0.00 0.00 0 0.00 WALL ENTRANCE 0.00 4107.28 322.14 2.692 324.832 24.4 2.27 0.080 324.912 0.00 1.050 4.92 4.00 0.00 0 0.00 40 40 it MU A +�11 +i to 40 w 4� +fit to M al 4'% qw 40 .w Nil X111 war 40 w m to 400 im 40 �w err HEADING LINE NO 1 IS - HEADING LINE NO 2 IS - HEADING LINE NO 3 IS - F 0 5 1 5 P WATER SUFfACE PROFILE - TITLE CARD LISTING TRACT NO. 13929 LATEPAL 'B" 1139291 W.S.P.G. HYDRAULIC CALCLUTION J. N. 133 - 1265 PAGE NO 3 /R 0 b R Iw 40 40 do y 40 10 E 0 w in sk 0 D DATE: I/ U1980 TIME: 0:20 F0515P WATER SURFACE PROFILE - C W#R DEFINITION LISTING PAGE 1 CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE a ZR INV Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) YM Y(B) Y(9) Y(10) a CODE NO TYPE PIERS WIDTH DIAMETER WIDTH DROP �w CD 1 4 2.50 CD 2 2 0 0.00 5.63 4.00 0.00 b R Iw 40 40 do y 40 10 E 0 w in sk 0 D r E d E 40 la 4m m d 5 b 46 F 0 5 1 5 P PAGE NO 2 4w a WATER SURFACE PROFILE - ELEMENT CARD LISTING aw ELEMENT NO 1 IS A SYSTEM OUTLET • _ U/S DATA STATION INVERT SECT W S ELEV 40 3.50 319.50 1 322.20 an ELEMENT NO 2 IS A REACH = + • U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 4o 14.82 320.40 1 0.013 0.00 0.00 0.00 0 4m ELEMENT NO 3 IS A WALL ENTRANCE _ do U/S DATA STATION INVERT SECT FP 14.82 320.40 2 0.200 ELEMENT NO 4 IS A SYSTEM NEADWORKS = s U/S DATA STATION INVERT SECT N S ELEV 14.82 320.40 1 0.00 NO EDIT ERRORS ENCOUNTERED -COMPUTATION IS NOW BEGINNING •= WARNING NO. 2 •• - WATER SURFACE ELEVATION GIVEN IS LESS THAN OR EQUALS INVERT ELEVATION IN HDWKDS, W.S.ELEV = INV + DC E d E 40 la 4m m d 5 b 46 h `" F0515P PAGE 1 WATER SURFACE PROFILE LISTING TRACT NO. 13929 LATERAL "B" 1139291 W.S.P.G. HYDRAULIC CALCULATION J.N. 133 - 1265 STATION INVERT DEPTH W.S. 9 VEL VEL ENERGY SUPER CRITICAL HGT/ BASE/ ZL NO AYBPR +w ELEV OF FLOW ELEV HEAD GRD.EL. ED DEPTH DIA ID NO. PIS 'o L/ELEM SO SF AVE HF NORM DEPTH ZR ssisstscstttssttsstt:tstss:sscttsss::sssssssss:ssss:tstsssssts:sss:s::sssstt:ssssstsssssstsssssssttsssssssetttssssssssssssssss:ssss *iw 3.50 319.50 2.700 322.200 29.4 5.99 0.557 322.757 0.00 1.849 2.50 0.00 0.00 0 0.00 1.68 0.07951 .005138 0.01 0.860 0.00 10 5.18 319.63 2.580 322.214 29.4 5.99 0.557 322.771 0.00 1.849 2.50 0.00 0.00 0 0.00 HYDRAULIC JUMP 0.00 5.18 319.63 1.281 320.915 29.4 11.61 2.094 323.009 0.00 1.849 2.50 0.00 0.00 0 0.00 w� 2.222 0.07951 .017785 0.04 0.860 0.00 40 7.40 319.81 1.331 321.141 29.4 11.07 1.901 323.042 0.00 1.849 2.50 0.00 0.00 0 0.00 40 1.90 0.07951 .015670 0.03 0.860 0.00 do 9.30 319.96 1.383 321.344 29.4 10.55 1.728 323.072 0.00 1.849 2.50 0.00 0.00 0 0.00 'M 1.P 0.07951 .013833 0.02 0.860 0.00 No 10.85 320.08 1.438 321.523 19.4 10.06 1.571 373.094 0.00 1.849 2.50 0.00 0.00 0 0.00 1.26 0.07951 .012226 0.02 0.860 0.00 A 12.11 320.19 1.4% 321.681 29.4 9.59 1.429 373.110 0.00 1.849 2.50 0.00 0.00 0 0.00 1.01 0.07951 .010810 0.01 0.860 0.00 13.11 320.26 1.557 321.511 29.4 9.14 1.299 323.120 0.00 1.849 2.50 0.00 0.00 0 0.00 0.75 0.07951 .009587 0.01 0.860 0.00 13.87 320.32 1.622 321.947 29.4 8.72 1.180 323.127 0.00 1.849 2.50 0.00 0.00 0 0.00 4>1< 0.53 0.07951 .008515 0.00 0.860 0.00 44 14.40 320.37 1.692 322.059 29.4 8.31 1.073 323.132 0.00 1.849 2.50 0.00 0.00 0 0.00 6 0.31 0.07951 .007`,,81 0.00 0.860 0.00 44 14.71 320.39 1.767 322.158 29.4 7.93 0.976 323.134 0.00 1.849 2.50 0.00 0.00 0 0.00 d 0.11 0.07951 .006766 0.00 0.860 0.00 h 40% fm 47 C qw to 40 IN m to 0 do to 4" 01-1 40 48 tj mm 40 F0515P PAGE 2 NATER SURFACE PROFILE LISTING TRACT NO. 13929 LATERAL "B" [139291 W. S.P.6. HYDRAULIC CALCULATION J.N. 133 - 1265 STATION INVERT DEPTH N.S. 0 VEL VEL ENERGY SUPER CRITICAL HGTi BASE/ ZL NO AVBPF. ED OF FLOW ED HEAD fin. EL. ELEV DEPTH DIA ID NO. PIER wli LIELEM so SF AVE HF NORM DEPTH tai 4w 14.82 320.40 1.849 322.249 29.4 7.55 0.886 323.135 0.00 1.849 2.50 0.00 0.00 0 0.00 tw WALL ENTRANCE 0.00 14.82 320.40 3.139 323.539 29.4 2.34 0.085 323.624 0.00 1.189 5.63 4.00 0.00 0 0.06 00 qw to 40 IN m to 0 do to 4" 01-1 40 48 tj mm 40 4w Aw ,4 aw 40 du w to 4w .10 4w w �r 401 air to 410 0 1� on 'i AZAR to qo a 40 a 40 IN HEADING LINE NO I IS - HEADING LINE NO 2 IS - HEADING LINE NO 3 IS - F 0 5 1 5 P NATER SURFACE FVfILE - TITLE CARD LISTING TRACT NO. 13929 LATERAL "C" (139291 N.S.P.G. HYDRAULIC CALCULATION J.N. 133 - 1265 PAGE NO 3 H in 10 e 40 49 0, do is E 8 go 0i 8 d 1 0 �r DATE: 1/ 1/1980 TIME: 0:26 F0515P WATER RwACE PROFILE - a*KL DEFINITION LISTING PAGE 1 CARD SECT CHN NO OF AVE PIER DIGHT 1 BASE ZL ZR INV Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) +� CODE NO TYPE PIERS WIDTH DIAMETER WIDTH DROP CD 1 4 2.00 CD 2 2 0 0.00 5.50 4.00 0.00 H in 10 e 40 49 0, do is E 8 go 0i 8 d 1 0 40 ARM ar on di nw to i +�s ani qw 440 a 41w 1118 4w 0 410 to 40 a 4 NN a� NN 40 1io am IN F 0 5 1 5 P NATER SURFACE PROFILE - ELEMENT CARD LISTING ELEMENT NO 1 IS A SYSTEM OUTLET = • U/S DATA STATION INVERT SECT 2.00 321.25 1 ELEMENT NO 2 IS A REACH U/S DATA STATION INVERT SECT N 8.43 321.56 1 0.013 M S ELEV 322.70 PAGE NO 2 RADIUS ME ANG PT MAN H 0.00 0.00 0.00 0 ELEMENT NO 3 IS A WALL ENTRANCE _ U/S DATA STATION INVERT SECT FP 8.43 321.56 2 0.200 ELEMENT NO 4 IS A SYSTEM HEADWORKS • • U/S DATA STATION INVERT SECT M S ED 8.43 321.56 2 0.00 NO EDIT ERRORS ENCOUNTERED -COMPUTATION IS NOW BEGINNING *$ WARNING NO. 2 •s - NATER SURFACE ELEVATION GIVEN IS LESS THAN OR EQUALS INVERT ELEVATION IN HDMCDS, N.S.ELEV = INV + DC 4w go F0515P PAGE 1 ,M WATER SURFACE PROFILE LISTING Aw TRACT NO. 13929 LATERAL 'C' 1139291 W.S.P.6. HYDRAULIC CALCULATION J. N. 133 - 1265 40 do STATION INVERT DEPTH W. S. 9 VEL VEL ENERGY SUPER CRITICAL HGT/ BASE; a. NO AVBPR ELEV OF FLOW ELEV HEAD 6RD.EL. ELEV DEPTH DIA ID NO. PIER VELEM SO SF AVE HF NORM DEPTH a '"�► 2.00 321.25 1.043 322.293 14.5 8.75 1.188 323.481 0.00 1.372 2.00 0.00 0.00 0 0.00 1.60 0.04821 .013531 0.02 0.740 0.00 3.60 321.33 1.076 322.403 14.5 8.41 1.097 323.500 0.00 1.372 2.00 0.00 0.00 0 0.00 1.58 0.04821 .012072 0.02 0.740 0.00 5.18 321.40 1.119 322.522 14.5 8.02 0.998 323.520 0.00 1.372 2.00 0.00 0.00 0 0.00 1# 1.24 0.04821 .010662 0.01 0.740 0.00 40 6.42 321.46 1.163 322.626 14.5 7.64 0.907 323.533 0.00 1.372 2.00 0.00 0.00 0 0.00 0.92 0.04821 .009423 0.01 0.740 0.00 «w 7.34 321.51 1.210 322.717 14.5 7.29 0.824 323.541 0.00 1.M. 2.00 0.00 0.00 0 0.00 0.62 0.04821 .008342 0.01 0.740 0.00 w y 7.96 321.54 1.260 322.797 14.5 6.95 0.750 323.547 0.00 1.372 2.00 0.00 0.00 0 0.00 0.35 0.04821 .007401 0.00 0.740 0.00 8.31 321.55 1.314 322.868 14.5 6.62 0.681 323.549 0.00 1.372 2.00 0.00 0.00 0 0.00 0.12 0.04821 .006573 0.00 0.740 0.00 10 8.43 321.56 1.372 322.932 14.5 6.31 0.619 323.551 0.00 1.372 2.00 0.00 0.00 0 0.00 aw WALL ENTRANCE 0.00 IN 8.43 321.56 2.268 323.828 14.5 1.60 0.040 323.868 0.00 0.742 5.50 4.00 0.00 0 0.00 A r 0 h 8 )�2 c:) CN LLJ CL W A CURB IOPENING F CATCH! BASIN (S) L uJ :tj_ 4 CURE POINT A` .—POIINT B POINT C ST*F?A1G;jj-r GR4 POIN7 E 6J —POINT F C-) < -—DIRECTION OF FLOW 'n a3 iX Cy - 0 K E__ LO L L IN(� F -1k T_ 45C. mn-1 mrl' RB-------- - FACE + H _j SECTION A -A AMERICAN PUBLIC WORKS ASSOCIATION - SOUTHEIRt4 CALIFORNIA CHAPTER PHOMULGAIEL) B*v THI LOCAL DEPRESSIONS STANDARD PLAN P J ULs G WORK5 STAN DAF D 5 114 C GR EENBOOK CCIMM17TEE AT CATCH BASINS METRIC 313-1 i f: R 1$1 Ux 14FV 19(.4-91 SHEET 1 OF 4 USE WITH STANDARD SPECIFICATtONS FOR PUBLIC WORKS CONSTRUCTION LOW- 1_3 C POINT G < PLAN I)r_ FLOW 45C. mn-1 mrl' RB-------- - FACE + H _j SECTION A -A AMERICAN PUBLIC WORKS ASSOCIATION - SOUTHEIRt4 CALIFORNIA CHAPTER PHOMULGAIEL) B*v THI LOCAL DEPRESSIONS STANDARD PLAN P J ULs G WORK5 STAN DAF D 5 114 C GR EENBOOK CCIMM17TEE AT CATCH BASINS METRIC 313-1 I 99A 1$1 �A& 14FV 19(.4-91 SHEET 1 OF 4 USE WITH STANDARD SPECIFICATtONS FOR PUBLIC WORKS CONSTRUCTION ............. TOLL FREE 1-800-227-2600 A PUBLIC SERVICE BY UNDEROROUND SERVICE ALERI AMERICAN PUBLIC WORKS ASSOCIATION - SOUTH . ERN CALIFORNIA CHAPTER STANDARD PLAN ME TRIC 313 - 1 LOCAL DEPRESSIONS AT,-.C,-',ATCH BASINS l;_1n SHEET 4 OF 4 REV. I REVMN DESCRWMN I DATE I ENGR. I CfTY I DATE Z� SAWCUT, REMOVE & REPLACE PAVEMENT, CURB 6131 & CUTTER. ADD LOCAL DER & DETAILSOWALL SHOULD CONS=(XM0NVF.-REQLffl= -, -, �,:;r �' _`­ - IRMO NOT WITM TWO YF" OF'THE DATE.'OF,.�'"PROVAL SHOW 11MON AM CARRED FORM IN A ,11!111LIGENT MANNEIL THE CITi.e. ENG]RUR MAY A. REQUIRE REVISIONS TO THE.,.'PLANS TO BENG THEM OW CONFORMANCE WITH CONDITIONS AND STANDARDS IN EFFECT ��z -tJ I It WAR�TXRMI It F"O. ... .... W4, -, � ;t� �1.11�;71 - � .. I -- I.?, 1;t�r-­ _N 0 It 4 4 V" 7,� J',': t,;r --I j r, lj,�7 Ai ­­.t`��",;, "-. I I-— ", I - I -�- - -, - - - ��- -J. w I �D, - - , I n. M iR E mr A t4R.,:�s Tq e. '. V -:r Vi %; - ji n5la-IR gi� I 1%g 35 ®R i I C Em _Z4. )L9 A -,v po i; j iz AN _64 t L 4.V-1, F1111v!! �61 1?? jj, ? 4N it min WX� ­n­11­:6� '.,�MAXIM W -SL10P&-',':, .... .. - -Z _u* C4 , 7t,-- 4 zz-" Nr A rtc 'f!,!V 1 t 'ff' ^PONCR -TE` E 8L K::7. I� 0717� . . . . . . . . . . . . . I ruIM, - M 111% PIMA 4_1 Go V7. 14- tv, 2- M NL yz tE+ Ec lilt.. 8 310- A- 17 PCC (52D- A-�- 25DO) %oWnw- 'I it. 'K 100 rnm .,'MAXIMUM 3COURSE" 17 ONSTR :C 01 TED! -NATK-t.'! SUBGRADE,-- - PEJ? 1CONSTRUCT-_'*­,*45-­AC:, AVEMENT_-.ON_COMPAC EET' '0N;, ­_SH '.-NO: NOTES: j. 1. CONCRETE AND CONCRETE BLOCK SHALL BE PER SSPWC. CONSTRUcr BL�O'CK-7�SLOUGH.-.-.-'WALL.::,PER-"AI.WA'*-SiD-.-':'622,4��l,�,.,AS-'.,SHOWN:-;�*ON:,*,'-.S 2. CONC�ETE BLOCXS SHALL BE PLACED WHILE THE FOOTING 'IS T J 3 ENT .-,OF:.FOMrANA---.'.-STD,-,�,DET.AVI �,SAWC- I—M, EPIACE:'PAVEM PER-*�: Ciff Y S11LL FRESH. ALL CELLS TO BE FILLED SWD WTH-� 26 R, j:.Iiz_'� 7 AND RODDED SO GROUT IS MONOLITHIC VATH FRESH. F60TING. REM' -CURB:.. 2 SAWCUT., OVEI 3. OMIT MORTAR FROM VERTICAL JOINTS IN FIRST CDURSE:ABME D(I$TNG,'.� "SAWC UT.,�­'� REMOVE...---- REPLA FINISHED GRADE ON 812 mm (32') CENTERS FOR '.WEEP HOLES,-, 28 4. POUR FOOTING AGAINST UNDISTURBED NATURAL 501L.". 0 5. NO LIVE LOAD SURCHARGE kLOWS ON RETAJNED:'d'' 29j CONMUCTlOCK RESSION.' P;Ej?.'.-7, 31 3!��T WN A' P P REPLACE DAMAGED", -AS NECESSARY"' 3 3 LASCAPING 6. TOP OF FOOflNG MAY BE PLACED PARALLEL TO PARKWAY' GRADE. IF STRtET GRADE IS RELAlMlY FLAT AND UNIFO 7. DIMENSIONS SHOM ON THIS PLAN FOR METRIC AND:'ENCUSH ARE NOT EXCATLY EQUAL VALUES. IF METRIC UNI :ALL: T!� �RE USED, FOR CONSTRUCTION SHALL BE METRIC­VALUES.�, . IF -.ENGUSH UNITS ARE USED. ALL VALUES USED FOR CONSTRUCTION, -,SHALL BE' - AMERICAN PUBLIC WORKS ASSO.CIATION';ZOUTHERN� CALIFORNIA C HAFfER PROMULGATED BY THE PUBLIC AORKS STANDARDS INC., iirn l;_1n GREENBO61(commirTEE 1993 ..7 777 REV. 1995 1$1 �A& USE VOTH STANDARD SPECIFICATIONS, FOR,PUBUC WORKS: CONSTRUCTION I� 0717� . . . . . . . . . . . . . I ruIM, - M 111% PIMA 4_1 Go V7. 14- tv, 2- M NL yz tE+ Ec lilt.. 8 310- A- 17 PCC (52D- A-�- 25DO) %oWnw- 'I it. 'K 100 rnm .,'MAXIMUM 3COURSE" 17 ONSTR :C 01 TED! -NATK-t.'! SUBGRADE,-- - PEJ? 1CONSTRUCT-_'*­,*45-­AC:, AVEMENT_-.ON_COMPAC EET' '0N;, ­_SH '.-NO: NOTES: j. 1. CONCRETE AND CONCRETE BLOCK SHALL BE PER SSPWC. CONSTRUcr BL�O'CK-7�SLOUGH.-.-.-'WALL.::,PER-"AI.WA'*-SiD-.-':'622,4��l,�,.,AS-'.,SHOWN:-;�*ON:,*,'-.S 2. CONC�ETE BLOCXS SHALL BE PLACED WHILE THE FOOTING 'IS T J 3 ENT .-,OF:.FOMrANA---.'.-STD,-,�,DET.AVI �,SAWC- I—M, EPIACE:'PAVEM PER-*�: Ciff Y S11LL FRESH. ALL CELLS TO BE FILLED SWD WTH-� 26 R, j:.Iiz_'� 7 AND RODDED SO GROUT IS MONOLITHIC VATH FRESH. F60TING. REM' -CURB:.. 2 SAWCUT., OVEI 3. OMIT MORTAR FROM VERTICAL JOINTS IN FIRST CDURSE:ABME D(I$TNG,'.� "SAWC UT.,�­'� REMOVE...---- REPLA FINISHED GRADE ON 812 mm (32') CENTERS FOR '.WEEP HOLES,-, 28 4. POUR FOOTING AGAINST UNDISTURBED NATURAL 501L.". 0 5. NO LIVE LOAD SURCHARGE kLOWS ON RETAJNED:'d'' 29j CONMUCTlOCK RESSION.' P;Ej?.'.-7, 31 3!��T WN A' P P REPLACE DAMAGED", -AS NECESSARY"' 3 3 LASCAPING 6. TOP OF FOOflNG MAY BE PLACED PARALLEL TO PARKWAY' GRADE. IF STRtET GRADE IS RELAlMlY FLAT AND UNIFO 7. DIMENSIONS SHOM ON THIS PLAN FOR METRIC AND:'ENCUSH ARE NOT EXCATLY EQUAL VALUES. IF METRIC UNI :ALL: T!� �RE USED, FOR CONSTRUCTION SHALL BE METRIC­VALUES.�, . IF -.ENGUSH UNITS ARE USED. ALL VALUES USED FOR CONSTRUCTION, -,SHALL BE' - AMERICAN PUBLIC WORKS ASSO.CIATION';ZOUTHERN� CALIFORNIA C HAFfER PROMULGATED BY THE PUBLIC AORKS STANDARDS INC., CONCRETE.-BLOCK.SLOUGH WALL -STANDARD PLAN �::Mmlc - - I GREENBO61(commirTEE 1993 REV. 1995 �6221. S iEET 1:0F I USE VOTH STANDARD SPECIFICATIONS, FOR,PUBUC WORKS: CONSTRUCTION _zw, i._. 4 t Al. A A L 00 C, co .03' r7-7! Lui. �-Z4 ca 27 WATER f:7 7' /* 0'- .. ..... 'cj A -!DR F, OR-- STORM: Alt 1 7,. n VIL SCALE- 1 20' -------- -- .777777 7. fPrepared. 'Bv: 1PREPARED FOR: ALLARD 'ENGINEERING BENCH MARK. 360 YOUNGHOMES Civil Engineering - Land.Sumqing - Land Fknnim L3 NOTED'*,., -DET AD DR�Wq S C. A 1, f j: CITY OF FONTANA BENCH MARK # Y. 10370 TRADEMARK STREET 360 A NAIL IN POLE j 1536704E 8253 Sierra Ave No, 43976 Fontana, California 92335 AT SOUTHWEST CORNER OF LIME Exp. DESIGNED BY: TEL AVE. AND BASELINE AVE. (909) 356-1815 Fax (90 356-1795 -MAY--' 2003... - FAX 9 c - I V11- �909 477-6715 -D BY: LOCAL. c -DRAW1NG�'-*NO1*"­ 09� 941-7260 CHECKE APPROVED BY: 4'F'CALI David S. Hammer, RICE. 43976 114te alEVATION.-, 1376.03 (expires 6/30/2005) .,CITY': ENGINEER --$P,\, .�PEJOI,.DWG`�7 W. \D%WQ\jb9'08\ R t r A#" 9h84 net "cried 490 �~ side flow esce0de 10% of main fine flow. -1110 wow 4(.46 T -Q -� T \ 0 1"+a+)ulin) p) , E bars - 4"ll 4" trhart ► f f IIef +SN flat$ "A 0 Gas ` new re ban too,11.: � I 3" rettil* A - 1 0 live r I D $psis 7'o.e I* E bore wo p 4'aa 1 1 I Tit be 9 I V TTl I, I CL TOsTf� PLAN SECTION a -S (short not shover$) Manhole fogme and Carer Street Grede /- s'T. . 2 Carrott$ nn"- 7 SECTION 8 - 9 Ar4e shat) not onesed 4a* -When titin flat exeeedk 10% Stella" Lies =- • :•, 04redwCer Sod. Peon 1!iO3, Mw.nM/r1 2 -101/" w�lh pa.ld stied$ Mirtinarm 3,-6 with u.poired sorters Red } �. lb0 0! Cone Shdl Elm,;�, See Note .3 Sh" 2 A fltilte e$ a"orefe 0*11il'"" of 6" Mara 30" die VNft side ItHsr1. 6 `1 kbo boftorth of III eve' round tfeiron• Use Std. PWI312 IJuarrction structural ssthon or a 7 calve y� �.beIklr h red sreti crape S?TuiCtUrs III) for side mleh grodo, which- . N a N I i owe. tabbed 3 _0 a sola ' X30 dtwneter eller is greatest. I e4 14 bore 1-d' Well r. See nae "A" E bars Tit bars '� •=' L-- --� Max. 30" diameter side Inlet. Use Std. PlonGI2 (Junction Structure IM 36"I.D. CONCENTRIC Poft* sweet •Mt .36"x2' .CONCENTRIC CONE CONE MANHOLE' Intel 0ewalim -� ri`'� ocolns at this •. , pont N rir 3. C1dnsh NOW" dWI be In occa-do Ps shit SIGrAw d* 3peeiTico1%ft 4. The floor hole -pipes and graft rho" dell be a-0 iN order of longer to ttlorltr INQ" title bona++ to "P. M bar I 9M mwftft - ORANGE COUNTY ENVIRONMENTAL N FSWIiIT AGENCY STQ PLAN ' • � MrbAee 1503 - � f,.-4- � _T '"W ' W ' I _..I Tl T L. I -� tar pew etrs0ra r '` Ears SECTION 'A -A 2-2' tar 0 sten Two (2) i"M .deals soot to eorree0ond to mhonhole '- d shaft, growl botwoM shaft and seat. • H Rwbfsce floor (,w pipe greater tin e0. "Mtw t 4 at (2" bath ways DETAL_ M NOTE= - else +AMetWn Structure T Type II for Os pipe diornsfsrs of 42�' or greater and hrfot P"•. •r dial 0%M..of 30 •or less. ORANGE COUNTY ENVIRONMENTAL MA AGEMENT J:ENCY 31TR PLAN Approved Ms err, moor M Pbl R ' I AMlsNd= Rtes. TT -lit, orrsaaM et -T1s ; !4-t 141 JUNCTION. STRUCTURE - TYPE n MAN HOLE _5,L 2d. ())AJ _ T l caILS v4'1 l .. 4-d/0'0 LONGIT. °1 .n GALV. ME • STEPS CAST ' IN PLACE •• 3-Vtl'•� ' �- - 36•' DIA --I I+�-j/er' T 36ax244.ECCENTRI.0 CONE TtrPiCAL SECTION 36' I.D. ECCENTRIC CONE. MANHOLE 36"x30" MANHOLE PiPE N. T. S. DETAIL N.ifi A DEVELOPMENT BY CITATION BUILDERS 17731•.IRVINE BLVD.. SUITE -201 TUSTINe CA 92680 N SECTION 8 - 9 Ar4e shat) not onesed 4a* -When titin flat exeeedk 10% Stella" Lies =- • :•, 4iTT� Red } �. lb0 0! Cone Shdl Elm,;�, in sit A be plated a MANHOLE PIPE 0*11il'"" of 6" All steel reinforesmsM 6 `1 kbo boftorth of III 2t•OIA. 7711000" structural ssthon or a 7 calve y� �.beIklr h • rfinish = 4-(A"f i„JNc3IT. ' grodo, which- . N a N �Ir� © r�l�ti'S� � eller is greatest. Rowhd edgdv of Inlets !. '� •=' 7• 3e" DiA. =- �--s-t/lr TYPICAL SECTION Max. 30" diameter side Inlet. Use Std. PlonGI2 (Junction Structure IM 36"I.D. CONCENTRIC r: Q : r rear• � r�a.� .36"x2' .CONCENTRIC CONE CONE MANHOLE' t ra.� L. See Std.•Plan 630-0-0C thria 433-0-0C far IMetnhele Fromo end Celror 09110ft ri`'� 2. S06 SN. PISM507 for Msnllole Shp details. Moil. 11111 lj 117". r,�r 3. C1dnsh NOW" dWI be In occa-do Ps shit SIGrAw d* 3peeiTico1%ft 4. The floor hole -pipes and graft rho" dell be a-0 iN order of longer to ttlorltr INQ" title bona++ to "P. E Manitou llleWb stall big subMilted ft ** Etqira* fair apptraal. " ISM, 9M mwftft - ORANGE COUNTY ENVIRONMENTAL N FSWIiIT AGENCY STQ PLAN ' Approved ..r - C t #018swoo �mr Of ft&lK Wft 1503 36 nREINFORCED CONCRETE MANHOLE '"W ' W ' CONC-RETE. RI -NGS. Ek R DETAIL N.ifi A DEVELOPMENT BY CITATION BUILDERS 17731•.IRVINE BLVD.. SUITE -201 TUSTINe CA 92680 N e mwftk she" steel! be 4'-4>i' end JhstWMR Stn+ctwe bottom width shall M Wareased to 4=0" adnimm stile" Mi. iS Use SN. Mon 1604 with 6" thick rings when M> IS O bero ~ be fileted Y's c.. E bore shall be Ove ed e o e. Tie bore s1 I be N 4 some IWO, e a closer. -W?W L IS anelw seen S -G is epsafied on Inpr pion con War# 0 bore or 6 e.a *Am it thele aro tar longest bore. *two owler hers We rehired. bend or aA le most held rar*Wernnfs. GENERALINOTES 1: CENTER • OF iIANHOLE .SHAFT " be teesad Ow milim 11"0 of storm drwirh w"0" dIe"heler ol le 46' or lees, 'I* - wleiM ase$ plow E bar srmmatrkelty arohar4 she of 49e with antes ' lim. 2. LENGTH L may bet -M illeed 4111111 (011601 moa. sit sash and 10 "Opipe ands. C "rut 0 ba» at 3"o. o. 3. DETAk M+ w(e" depllh of tsto"taie ftsm sheet Vast a lep d Basi is Inde then 2'-10 IR" for pared Areeh or S -Q fa unposed 8110416, WOOwet tlwnoifhic deft 0e tom► dehil M. When dlenetw D is 48" v lou, COW It shell 61104 be teeeled 08 per nota 2. 4 TW"NESS OF DECK sirlH vary when "Keuery to Poo least pipe seat, "I not b• las the" t *War v@Nw ow T, as ahaw in of ove table 6 WOPOKWO STEEL ~ be raved, de$wwedi bare. I ve dew tram tier of concrete uMeas owwwa e"oerx 540 and 1r�er e e show$ .n above table. 6 ITEM p WWI In VC, twine, pneliesl steel and seehor4� P# Isle than e" In Mss welh of the stnmtu» and shall **4 o Rtin of 4 inches from point of embedment. T. 04% REOUCEi11, AND PM hr 0111041e$ sett shelf M esetsd tar Irl mercer and nee" peinssd ar .Med inside flee sett IL STATiWss of av+lts4 slew" at bq►suomWill Ib dp* N Seim of shoN. IL FLOOR sof RaMlals *0 to ow 11 to IF* *it lins. 10. My of lRantreiu do" be slefstrecte/ iR ane eontirwaw s oretiaft, except that Canfreots shell Mee the Often of. llocIF4 a cowtirwilm joint with a longitudinal keyway at the whilijlnq lire. 11. Deleted M. Fbr pipe sieve lot "hon", aro tailed *lues for No fslrrer pips. Use Ainetion Structure Type II for Ds pipe diameters of 42" or great•► and hWt pipe diameters of 30" or less. ORANGE COUNTY ENVIRONMENTAL N NT GENCY STD. PLAN Approved C. R. s/sort Ow'/chr d PirtrYd: Mrierltt Aigte• Ras. TT -!2. 1ls+Asod� e2-Tle JUNCTION STRUCTURE -TYPE II : of a. PROTECTION MR END ANCHORS C_ F. 10'r C. F. ALNAMPKA FOUNORY I! 10" C.P. 81' C.F. A-1577 oR EQUAL 3/4"0GALVAW1.ZE0 STEEL bAR �SEE SUPPORT BOLT DETAIL ULOW PROTECTION 5AR DETAIL GALVANIZEV STEEL PLAT$ .,,... ;� .. j • ;, �, CUK13 IbAR - AL14AMORA TORY P. • o • ,f RA -S904' OR EQUAL � . 4:12 BAT Te USE SUPPORT $OLT 1N 6' OR LONGER INLET' OPENINCT. JL SUPPORT 5OLT DETAIL CURB OPENING DETAIL N . T. 5;' (SEE- CITY OF FONTANA STD. DET. 120 DROP iNLEr S'TRE'ET . ��� sroriov �� �`` LOCAL . �. TiP•iA/S/Tit7N oEOREss/o/v EI�i11WS�t7N7 f ' ' ; I r1 O/NT h 4 I Now O�C.4L �n EPA EeSSIOdN AErAl ` i � �II I REVISIONS: \A 8h>d bast �3 • �•- - -H- - - -H- - --I z - --3- _ fi ban " -•ii+ �- - `••••: �� • E Structure //,� ` - 3 hh - - ` I- _ t t " Spr*+q Ik+e i EA baryl - 1 b" Conatser I I �\ �� •: ,Els1tS -. i s Cancra •. �' -�- Cradle � � F T • •� , , .� j 3'�' + \ ' M out Lknm "s a ,. Tit bony H H cows" (See Noai) I Glee! 13) 10 , 13 • ICS Undislwbad 0" 3" min SECTION Z -Z - G bon #0 l3" I. Junction titrueture Type 8 ohall be used only when sufficient moons of 12" to 3, R i 6„ access Is available for storm drain maintenance. - r --�- ,ALAN 2. Junction structure Type $ Is to be used when 00 of S is greater that I/ I 1 T I �� �the I D of D or 9 Is Largy than 24" 9 shall not exceed 3/4 of 0 or % l J Where 6 is less than 24 use Type= or•TypoSE. Where 13 exceeds 3 4 D a f Z'7--� 39; use lunctbn structure TypeM without manhole. iI Main Line Stone Grab 3. Values o! i,.P,C, and 0 ore spasm on p►oJect drawings. Elevation "R" and (R.C.P. or reinforced elevation "S are shown when required per Note 12. monolithic arch) 4 Elevation 'V' appiee ad mobs wall of structure. S. breakout limits Owl be detereioW a follower Upstream limil-The intersection of the outside of the spar wall with the wait Mee )toll. m M I th" T Tie bort Downstream downstream of the intersection of the outside of fhb epw • ••.:: •. r:3 a 18" wall with Rho main lire pipe wall. The opening shall be nctanpular and cut turned to tit pipe surface without d:inoginl G bars a • reinforainp st"L tsrovids a conatus encom mi I' above the top of tie taaln Moe pip • b Me liinits of Me conasts cradle N a *f1in t e mein to pipe toll• wiltiin Ne iltniti T- 9 4: T of the cradle. 6. T1s tronsysns reMorosmtsrd b pipe Mand los tart at maim d of1/11}p and bent Mo ' top aid bottom *lobe of *par. :: ► : • -'. 7 The main be pip? shall be Id d eltee b hs$ mlx eonCt % exhtt4nq bngitudindH it limits trr 12' a beyond tof brsdcout No Nate 3 and iransve�sllr a T distance of an each side of tte conla line of pipe. Ha It O.D.of pipe . 3 min. Cradle may be ornitted an side opposite lateral hit when constructed in c -wclkx with existing stwrm t,9raln. SECTION M -M B. r,ow $ravel £? �I 1ps ptoosd I Ili" t from foo. of oorlerea, unises oMt«wise 9. E and F bare dw� ?r -,vTW to a pond not lose than J distance fham oentt►iM. TABLE OF VAUES FOR T J` V013+6". e T 10. Floor of sttue" shall be steel iroweild to sgrfnq inn 12 8 11. 91ha1,Aoection Strict re Type 14 M speeHllisd with rsbfaroed mono0k soh dans , Au* value 0 "1 refer to the cosor span of the arch. Is"0f/M si+oM o out and bent Into Junction Structure in Me cony we~as ( " /Cr piper credit under roinfoe meonalithia arch Is not rsquirad. 12. Side inlet pipe sholl enter main line radially when elevations "R"and"S" a not shown on project drpwlmge. When side 1st pipe enters main line ON rr than radiolly, elevation S oholl be shown on project drogfnas and side Inlet pipe shall be laid on a straight grgde„from elevation S • to catch basin or grade break In line. Elevation R shall be shown on project 33 drawings only when stub is to be provided in main line for future side inla pips. 13, Stations specified on drawings appy at the intersection of cootdNines of main line and laterals, except that stations for catch basin connector pipe apply at inside of structure. 14. Junction Structure Type $ shall not be used when oebseta cew4M pipe n • used for main Inde. ORANGE COUNTY ENVIRONMENTAL,,)INJr E T GENCY STD. PLAN Ady04ow Ok- rcfhr of Parc tl'avrte Adopted, Res. •77-92. Rwlsoo e2 - Tie 1313 JUNCTION STRUCTURE TYPE W I o« I JUNCTION' STRUCTURE NO. 21 N. T. S. APPROVED BY: . A p APPROVED DATIE THOMAS E. MAU" DATE: APPROVED BY: D,kTE : SECTION 8 - 9 Ar4e shat) not onesed 4a* -When titin flat exeeedk 10% Stella" Lies =- • :•, 4iTT� Red � !I Elm,;�, O/od tm k A T.^ , = ' Mininwm 2'-4012+ fer peered streets •. (��O" a 2...-Mlninwm 3'-6" lir unpaved etreste 3 All steel reinforesmsM 6 `1 l/2" 0 4"o.e. III - Rad." 1. D. of spurt II �3♦r�rr .�r�lr r��■r ©�� r�'J>��1•© 11/r�©�� �Ir� © r�l�ti'S� � Rowhd edgdv of Inlets '� •=' " f Max. 30" diameter side Inlet. Use Std. PlonGI2 (Junction Structure IM �rrf�1r Ir,°i• �r �r :� �� � rTni� r`;>• s r: Q : r rear• � r�a.� I�I�ri•■ 0 �>� tea■ ria a t ra.� .. trr•r�sr�.irFarslrl� ■�� r7■l�l � '©�' ri`'� tit• m �. �W r,�r e mwftk she" steel! be 4'-4>i' end JhstWMR Stn+ctwe bottom width shall M Wareased to 4=0" adnimm stile" Mi. iS Use SN. Mon 1604 with 6" thick rings when M> IS O bero ~ be fileted Y's c.. E bore shall be Ove ed e o e. Tie bore s1 I be N 4 some IWO, e a closer. -W?W L IS anelw seen S -G is epsafied on Inpr pion con War# 0 bore or 6 e.a *Am it thele aro tar longest bore. *two owler hers We rehired. bend or aA le most held rar*Wernnfs. GENERALINOTES 1: CENTER • OF iIANHOLE .SHAFT " be teesad Ow milim 11"0 of storm drwirh w"0" dIe"heler ol le 46' or lees, 'I* - wleiM ase$ plow E bar srmmatrkelty arohar4 she of 49e with antes ' lim. 2. LENGTH L may bet -M illeed 4111111 (011601 moa. sit sash and 10 "Opipe ands. C "rut 0 ba» at 3"o. o. 3. DETAk M+ w(e" depllh of tsto"taie ftsm sheet Vast a lep d Basi is Inde then 2'-10 IR" for pared Areeh or S -Q fa unposed 8110416, WOOwet tlwnoifhic deft 0e tom► dehil M. When dlenetw D is 48" v lou, COW It shell 61104 be teeeled 08 per nota 2. 4 TW"NESS OF DECK sirlH vary when "Keuery to Poo least pipe seat, "I not b• las the" t *War v@Nw ow T, as ahaw in of ove table 6 WOPOKWO STEEL ~ be raved, de$wwedi bare. I ve dew tram tier of concrete uMeas owwwa e"oerx 540 and 1r�er e e show$ .n above table. 6 ITEM p WWI In VC, twine, pneliesl steel and seehor4� P# Isle than e" In Mss welh of the stnmtu» and shall **4 o Rtin of 4 inches from point of embedment. T. 04% REOUCEi11, AND PM hr 0111041e$ sett shelf M esetsd tar Irl mercer and nee" peinssd ar .Med inside flee sett IL STATiWss of av+lts4 slew" at bq►suomWill Ib dp* N Seim of shoN. IL FLOOR sof RaMlals *0 to ow 11 to IF* *it lins. 10. My of lRantreiu do" be slefstrecte/ iR ane eontirwaw s oretiaft, except that Canfreots shell Mee the Often of. llocIF4 a cowtirwilm joint with a longitudinal keyway at the whilijlnq lire. 11. Deleted M. Fbr pipe sieve lot "hon", aro tailed *lues for No fslrrer pips. Use Ainetion Structure Type II for Ds pipe diameters of 42" or great•► and hWt pipe diameters of 30" or less. ORANGE COUNTY ENVIRONMENTAL N NT GENCY STD. PLAN Approved C. R. s/sort Ow'/chr d PirtrYd: Mrierltt Aigte• Ras. TT -!2. 1ls+Asod� e2-Tle JUNCTION STRUCTURE -TYPE II : of a. PROTECTION MR END ANCHORS C_ F. 10'r C. F. ALNAMPKA FOUNORY I! 10" C.P. 81' C.F. A-1577 oR EQUAL 3/4"0GALVAW1.ZE0 STEEL bAR �SEE SUPPORT BOLT DETAIL ULOW PROTECTION 5AR DETAIL GALVANIZEV STEEL PLAT$ .,,... ;� .. j • ;, �, CUK13 IbAR - AL14AMORA TORY P. • o • ,f RA -S904' OR EQUAL � . 4:12 BAT Te USE SUPPORT $OLT 1N 6' OR LONGER INLET' OPENINCT. JL SUPPORT 5OLT DETAIL CURB OPENING DETAIL N . T. 5;' (SEE- CITY OF FONTANA STD. DET. 120 DROP iNLEr S'TRE'ET . ��� sroriov �� �`` LOCAL . �. TiP•iA/S/Tit7N oEOREss/o/v EI�i11WS�t7N7 f ' ' ; I r1 O/NT h 4 I Now O�C.4L �n EPA EeSSIOdN AErAl ` i � �II I REVISIONS: \A 8h>d bast �3 • �•- - -H- - - -H- - --I z - --3- _ fi ban " -•ii+ �- - `••••: �� • E Structure //,� ` - 3 hh - - ` I- _ t t " Spr*+q Ik+e i EA baryl - 1 b" Conatser I I �\ �� •: ,Els1tS -. i s Cancra •. �' -�- Cradle � � F T • •� , , .� j 3'�' + \ ' M out Lknm "s a ,. Tit bony H H cows" (See Noai) I Glee! 13) 10 , 13 • ICS Undislwbad 0" 3" min SECTION Z -Z - G bon #0 l3" I. Junction titrueture Type 8 ohall be used only when sufficient moons of 12" to 3, R i 6„ access Is available for storm drain maintenance. - r --�- ,ALAN 2. Junction structure Type $ Is to be used when 00 of S is greater that I/ I 1 T I �� �the I D of D or 9 Is Largy than 24" 9 shall not exceed 3/4 of 0 or % l J Where 6 is less than 24 use Type= or•TypoSE. Where 13 exceeds 3 4 D a f Z'7--� 39; use lunctbn structure TypeM without manhole. iI Main Line Stone Grab 3. Values o! i,.P,C, and 0 ore spasm on p►oJect drawings. Elevation "R" and (R.C.P. or reinforced elevation "S are shown when required per Note 12. monolithic arch) 4 Elevation 'V' appiee ad mobs wall of structure. S. breakout limits Owl be detereioW a follower Upstream limil-The intersection of the outside of the spar wall with the wait Mee )toll. m M I th" T Tie bort Downstream downstream of the intersection of the outside of fhb epw • ••.:: •. r:3 a 18" wall with Rho main lire pipe wall. The opening shall be nctanpular and cut turned to tit pipe surface without d:inoginl G bars a • reinforainp st"L tsrovids a conatus encom mi I' above the top of tie taaln Moe pip • b Me liinits of Me conasts cradle N a *f1in t e mein to pipe toll• wiltiin Ne iltniti T- 9 4: T of the cradle. 6. T1s tronsysns reMorosmtsrd b pipe Mand los tart at maim d of1/11}p and bent Mo ' top aid bottom *lobe of *par. :: ► : • -'. 7 The main be pip? shall be Id d eltee b hs$ mlx eonCt % exhtt4nq bngitudindH it limits trr 12' a beyond tof brsdcout No Nate 3 and iransve�sllr a T distance of an each side of tte conla line of pipe. Ha It O.D.of pipe . 3 min. Cradle may be ornitted an side opposite lateral hit when constructed in c -wclkx with existing stwrm t,9raln. SECTION M -M B. r,ow $ravel £? �I 1ps ptoosd I Ili" t from foo. of oorlerea, unises oMt«wise 9. E and F bare dw� ?r -,vTW to a pond not lose than J distance fham oentt►iM. TABLE OF VAUES FOR T J` V013+6". e T 10. Floor of sttue" shall be steel iroweild to sgrfnq inn 12 8 11. 91ha1,Aoection Strict re Type 14 M speeHllisd with rsbfaroed mono0k soh dans , Au* value 0 "1 refer to the cosor span of the arch. Is"0f/M si+oM o out and bent Into Junction Structure in Me cony we~as ( " /Cr piper credit under roinfoe meonalithia arch Is not rsquirad. 12. Side inlet pipe sholl enter main line radially when elevations "R"and"S" a not shown on project drpwlmge. When side 1st pipe enters main line ON rr than radiolly, elevation S oholl be shown on project drogfnas and side Inlet pipe shall be laid on a straight grgde„from elevation S • to catch basin or grade break In line. Elevation R shall be shown on project 33 drawings only when stub is to be provided in main line for future side inla pips. 13, Stations specified on drawings appy at the intersection of cootdNines of main line and laterals, except that stations for catch basin connector pipe apply at inside of structure. 14. Junction Structure Type $ shall not be used when oebseta cew4M pipe n • used for main Inde. ORANGE COUNTY ENVIRONMENTAL,,)INJr E T GENCY STD. PLAN Ady04ow Ok- rcfhr of Parc tl'avrte Adopted, Res. •77-92. Rwlsoo e2 - Tie 1313 JUNCTION STRUCTURE TYPE W I o« I JUNCTION' STRUCTURE NO. 21 N. T. S. APPROVED BY: . A p APPROVED DATIE THOMAS E. MAU" DATE: APPROVED BY: D,kTE : 3/4" re "d 9@118*8 $feel $tope 1=4"s.e. .r► -4'51 4" RIOrtOr t14o1 WE WW "A" 1 SECTION 8 - 9 Ar4e shat) not onesed 4a* -When titin flat exeeedk 10% Stella" Lies =- of main 1b 1 flow / I Red � !I Manhole (roma and cover Two (2) Inch deep seat to oorrsepond to 1lhoNtole shaft, O/od tm k A T.^ , = ' Mininwm 2'-4012+ fer peered streets •. (��O" a 2...-Mlninwm 3'-6" lir unpaved etreste 3 All steel reinforesmsM 6 `1 l/2" 0 4"o.e. III - Rad." 1. D. of spurt 3/4" re "d 9@118*8 $feel $tope 1=4"s.e. .r► -4'51 4" RIOrtOr t14o1 WE WW "A" 1 SECTION 8 - 9 ®� PLAN (Shoff net show*) MOTE nA" Manhole (roma and cover Two (2) Inch deep seat to oorrsepond to 1lhoNtole shaft, O/od tm k grort beta shaft and sed. Concrep rings = ' Mininwm 2'-4012+ fer peered streets •. (��O" a 2...-Mlninwm 3'-6" lir unpaved etreste redmr pet , Slid. Pion SM III II oda I I SEE NOTE Rowhd edgdv of Inlets '� •=' " f Max. 30" diameter side Inlet. Use Std. PlonGI2 (Junction Structure IM _ r l for side inlet•>30"diameter. b40f elthis m apdiee a thio Dpow�" ' alma edge! SECTION A -A NOTEt Use JigIction Structure Tppe •I for outlet pipe diameters of 4e err lots, (Ind`snw ljllainetert of 30 or leu. a lire shaft shol l be 4'-0" and Junction sr X11" §ottom width toll be increosed to 4-0 minimum when Mr15' Use Std. Plan 1504 with rings when M>t5. ORANGE COUNTY ENVIRONMENTAL M AO T A NCY STD. PLAN AlspretteM Gff mfflisit- !err o/ PMA/k Mbrtb 1310 Adopted, flea. "-ft 11111601111001 82 - 7l e 1 63-1442; 96-1141 JUNCTION STRUCTURE -TYPE I Il OF F. LAJN0. 41817 �h � 'JI � tri C OF W_1 4% ftEasTIRW071L ENGINEER NO. - REGISTRATION EXPIRES 3131191 , ILM SCALE: MANHOLE N.T. S. 45i a inerts fivet., 1 3o III dim mal. in paved fl diel tt r_ r-4" for paved streets - ` 4 2=2" for unpaved streets SEE NOTE "A" Sheol I As steel reinforcement »401 4"eve. T I l DETAIL N (Shaft not shown) See Note 3 1`a tf sheep Il s v2 q M"w"-free# 1 ( See Mate 4 l fa a - - Q Reeved edgst of inters ' I , GENERAL NOTES -�T Fes-- j- 6" -� T [ SECTION C -C 1. -HEIGHT M (in See.A-A and See. 9- bshou be frit rest than 4=0, w may be hoereeeN at option of rhe Engineer provided that the Yoko$ of M shell be notMss than flit minimum •pouf ed and that the ►educe► shall be wse4 For H (;n Sec. C -C ) see Note 4. 2. - LENGTH L 211104 be 411011`1111101111 of 20"or less and 511br inlets 41wfa► than 20" mien othwwtst show q on imprvwtad plan, (May be increased afrom of (1) one toot at each "red to meet pipe ands• Coahthhw #4 of 4 o e. 3• -SHAFT stall be constructed as per Sec.0-C and DHalIN when 4*pth M froom •#reef grade to top of boa Is less the+ 2-101/2" tot pawed sfroetsor3=6" far anpawed sfreth 4. -DEPTH M mer be reduced ls on oboeirle lion" at 6" when larger values of M wpMd telt$$ H (in See. C -C) to 3'-6" o. Mss. 5 - T shalt be 0" tar v0lhree d H we b and inclu4ine e. T'shall be ►d' for value/ of H over •. 6 -STEPS •hdl be 3A' reand eehaebd steel 0th a"cbend root test Ilion 6" in the wells o/ atand shat, project a mit. of 4 hahw 1<rvm point of 0""arr1. Unless dhwwiso Steown, shpt shell be placed 1'- 4 on eelile . The lowest stop Mal( rot be tfeors than 2 above the ladle of the Bide of mon" floor. T. •-REINFORCING STEEL Well be * 4 bars , deformed, stralehl bore 1 1,12" clear from fate of concrete. & -STATIONS of "ionhows Shaw" e" t"eprevenwd pen •oply of tenter (pre of 6MR. 9. -FLOOR of "hvNhott BAN• be steel-srowelsd. 10 -RINGS, nedeeo►, end pipe for eooses shaft OW be coaled in 112 emptor And lowly pointed or wlpad loads shaft. If. -LEDGE shall be $hood of a per sod. Use Jw"c! Sf►wellwa Type I for ewflot pipe dlerRebssis of 4!"sr.110ee, OW ;oW# dis"hstars of 30" or lose. ORANGE COUNTY ENVIRONMENTAL M AG NT A ENCY STD. PLAN Approved 7. R /Y satoroc er o1 fYA/k M'fvntt 1310 � � O Adopted= Res. 7T -9L Redssa, O! - Tle JUNCTION STRUCTURE TYPE I 2 or It N 0. 1 r CITY OF FONTANAr CALIFORNIA PUBLIC WORKS DEPARTMENT :;�: , STORM DRAIN PLANS'. DATE :fir !o Sal ,�,,,,,,." DRAWN BY : KE� ;,'M';. D.P. ' IW1v1�A N DES "; ,�;, DESIGNED BY : TRACT # 13325-1 200 a,arr %'v wt. Goo Messer of 92tSI6 C7M) s*ad W T. B. BENCH MARK: CHECK BY: DETAILED SHEET of 8SHEETS City of Fetnteas Bonehisork Ne•379 E.C. t Y. P. ._.__.. Clrovlt Near-Sr30d Neil so P.P. A FILE NO. ineti SM Cop-Seseh L Foothill DATE O C T e 1987 E 1 o. • 1267.84 Deis 9167 W.O. APP�►OVE� ' C ENGWEER WME On t e o - 42 IPFI op- a .5�.1 to STRII GENERAL NOTES 1 ALL WORK SHALL BE DONE IN ACCORDANCE WITH;,.THESE PLANS AND THE CITY OF FONTANA PUBLIC WORKS DEPARTMENT STANDARD SPECIFICATIONS DATED 1975.. 2 CONSTRUCTION PERMITS SHALL BE OBTAINED FROM.THE CITY•OF F014TANA PUBLIC WORKS DEPARTMENT PRIOR TO .::START OF ANY WORK WITHIN THE CITY LIMITS. 3 STATIONING REFERS TO THE CENTERLINES OF STREET EXCEPT WHERE OTHERWISE NOTED. 4 CURVE DATA -REFERS TO THE FACE OF THE CURB 5 ALL EXPOSED CONCRETE -SHALL CONFORM IN GRADE' COLOR AND FINISH TO�ALL ADJOINING CURBS AND SIDEWAI;KS.,. 6 PAVEMENT SECTIONS SHOWN ARE MINIMUM AND SUBJECT TO. REVISION AND APPROVAL OF THE CITY AS REQUIRED BY SOILS 'TEST TAKEN AFTER COMPLETION OF ROUGH GRADING., 7 ALL UNDERGROUND WORK SHALL BE COMPLETED PRIOR TO. PAVING OF STREETS. a 8 EXISTING UNDERGROUND UTILITIES ARE AS, -PER -.-AVAILABLE RECORDS. THE CONTRACTOR SHALL BE RESPONSIBLE FOR VERIFYING THE ACTUAL LOCATION AND ELEVATION,IN THE FIELD. CONTRACTOR SHALL CALL EACH UTILITY PRIOR TO ANY WORK. 9 ALL MANHOLE AND CLEANOUT FRAMES AND COVERS:SHALL BE CONSTRUCTED 6" BELOW FINISHED GRADE .BY SEWER.. CONTRACTOR AND SHALL BE RAISED TO GRADE BY PAVING CONTRACTOR AFTER COMPLETION OF PAVING. 10 ALL VALVE.CANS AND COVERS SHALL BE CONSTRUCTED 61' BELOW FINISHED GRADE BY WATER CONTRACTOR AND SHALL BE RAISED TO GRADE BY PAVING CONTRACTOR AFTER -COMPLETION OF o to PAVING. 11 REFER TO CITY OF FONTANA, UNDERGROUND UT.ILITY•LOCATION w STANDARD DETAIL 129: a .12 THE CONTRACTOR(S) SHALL COORDINATE CONSTRUCTION . WITH ALL.' UTILITIES AND OTHER IMPROVEMENTS INCLUDING: BUT NOT LIMITED TO, GAS, TELEPHONE,.ELECTRICAL, ,LIGHTING, a TELEVISION CABLE,. LANDSCAPING, LANDSCAPING' IRRIGATION, DOMESTIC WATER.,. - REC•LAIMED WATER,.- SEWER, ,STORM DRAINAGE, FLOOD .CONTROL SYSTEMS, ETC. 13 AS BUILT DRAWINGS SHALL BE PROVIDED. BY THE _ CONTRACTOR—.- TO tiOT THE CITY OF FONTANA. i 14 TYPE, LOCATION AND WIDTH.OF.DRIVEWAY APPROACH APRONS WILL BE DETERMINED - AT THE TIME OF CONSTRUCTION AND SHALL SART -CONFORM-WITH THE CITY OF FONTANA STANDARD DETAILS. 15- CONTRACTOR IS INSTRUCTED TO REFER TO THESE: -PLANS AND THE SPECIFICATIONS, AND WHERE THERE IS OR MAYBE A CONFLICT I SHALL IMMEDIATELY REPORT .SAID•CONFLICT.OR,POSSIBLE ,r.. CONFLICT TO THE OWNER'S REPRESENTATIVE:` 16- STERILANT REQUIRED UNDER ALL A. C. :PAVEMENT 17 NO CONCRETE SHALL BE PLACED UNTIL THE FORMS AND REINFORCING STEEL HAVE BEEN PLACED, INSPECTED AND APPROVED• UTILITY NOTIFICATIONS �. SAN GABRIEL VALLEY WATER COMPANY WATER: 11142 GARVEY AVENUE EL MONTE, CA 91734 r (213) 448-6183 T�AC7T SEWER: CITY OF FONTANA 8353 SIERRA AVENUE /332.5-Z FONTANA, CA: 92335 _ (714) 350-7640 SOUTHERNC`.ALIFORNIA EDISON COMPANY" POWER: - P.O. BOX 788 300N. PEPPER STREET RIALTO, CA 92376 DAVE JONES MR . r _ (714) 820-5191 1 SAS: SOUTHERN CALIFORNIA GAS COMPANY 16231 VALLEY BLVD. FONTANA, CA 923.35 'MR. LOU WESTFALI� {; (714),889-9711 SOUTHERN CALIFORNIA GAS'COMPANY TRANSMISSION DIVISION , 2191 E.. BIRCH STREET BREA, CA 92621 (714) 529-2889 TELEPHONE: GENERAL TELEPHONE - 9 O O O HELLMAN .AVENUE PRIVATE ENGINEER ' S NOTICE TO CONTRACTOR j RANCHO CUCAMONGA, CA 917 3 0 THE EXISTENCE AND LOCATION OF ANY, UNDERGROUND UTILITY PIPES (714') 945-3562 L:: OR.STRUCTURES-SHOWN:ON THESE PLANS WERE .OBTAINED BY A SEARCH OF THE AVAILABLE RECORDS. THESE_ LOCATIONS ARE APPROXIMATE. AND. SHALL BE CONFIRMED BY THE CONTRACTOR, SO;THAT ANY PACIFIC BELL NECESSARY•:ADJUSTMENT CAN BE MADE IN. ALIGNMENT -AND/OR' GRADE OF 3939 E . CORONADO STREET THE PROPOSED. IMPROVEMENT. THE CONTRACTOR IS REQUIRED TO TAKE ANAHEIM, CA 92807 .DUE PRECAUTIONARY MEASURES TO PROTECT ANY .UTILITY DINES SHOWN AND ANY OTHER LINES NOT ON RECORD OR NOT SHOWN' ON THESE (714) 999-5639 PLANS.' CONSTRUCTION. CONTkACTOR AGREES THAT IN ACCORDANCE WITH GENERALLY ACCEPTED CONSTRUCTION PRACTICES, CO2STRUCTION CONTRACTOR WILL BE REQUIRED TO ASSUME SOLE AND{COMPLETE RESPONSIBILITY FOR JOB SITE CONDITIONS DURING THEIiCOURSE OF. A DEVELOPMENT BY CONSTRUCTION OF THE PROJECT, INCLUDING SAFETY OF ALL PERSONS AND PROPERTY; THAT THIS REQUIREMENT SHALL BE MADE TO APPLY SOIL ENGINEER., CONTINUOUSLY AND NOT BE LIMITED TO NORMAL WORKING HOURS, AND CITATION BUILDERS RICHARD MILL.: &.'ASSOC.' CONSTRUCTION CONTRACTOR FURTHER AGREES TO DEFEND,j: INDEMNIFY 9624 TURNER'. AVENUE AND HOLD DESIGN PROFESSIONAL HARMLESS FROM ANY AND ALL 17731 IRVINE BLVD., SUITE 201 ITH THE RANCHO cNGA ' cA 9�13o PERFORLIABIMANCE OFAWORKR OK LTHIS D PROJECTCON 'EXCEPTING, WLIABILITY U) (TIO -989-1751 , TUST I N r CA 92G8O ARISING FROM THE SOLE NEGLIGENCE OF DESIGN PROFESSIONAL. SST 2 BRSEL/RJE '.CNS/A U ITEM QUANTITY s T /O" ---- ----- ;f � _�� � 1. CONSTRUCT . 4_. �1 2'" A.C. OVER 12" COMPACTED NATIVE SOIL ._ 2 3, 05 0 ��• FT j /8 O O 3 3 /¢ /S /� l7 2O. CONSTRUCT 3" A .'C.. OVER 12" COMPACTED NATIVE SOIL _ _ ...... . _ . �L 04-1 �j 0 0 S Q . FT { ' Al CONSTRUCT '-2 ", A..C. OVER 12" COMPACTED NATIVE SOIL ....... _ .. _ ... �j �j� O 0 O • SC?,, �r is :23 22 2� O4 CONSTRUCT 61° CURB AND GUTTER PER•CITY OF FONTANA STD. ; DETAIL 101 $ 83 5 Iil�, FT VRI 11 5 . CONSTRUCT 6 CURB . PER CITY OF FONTANA STD. DETAIL 10.1 j1 O6 CONSTRUCT 8!':CURB AND GUTTER PER CITY OF FONTANA STD. .S T T 9 1. DETAIL 101ti, --- -- - -- - - - - j� g85 LlkF 92 93 9v 9•5 9k� 97 CONSTRUCT 8 '! , CURB PER CITY OF FONTANA STD . DETAIL 101. _ _ _ . _ _ .' . L 1 M- I`T. '^ CONSTRUCT STD. CROSS GUTTER PLR CITY OF FONTANA STD. --'-- - - --- - -- - - ----- ii j �• — DETA 87 IL 104','. 8 Q LIN. FT a v cif' c409- 96 CONSTRUCT RAMPED CURB RETURN PER CITY OF FONTANA STD.. DETAIL 10.4A - - - - - - - - - - - - s 3 SQ FT COU l I S BS I j (� •�j —" % 10 CONSTRUCT 80 8/8Z S3 - - - .. _ 157 L IAL F T 8� 7���T • ,'-� 11 CONSTRUCT. 3,RIBBON GUTTER PER DETAIL SHT . 4 7 /.3.3ZS 4 12 CONSTRUCT BARRICADE PER- CITY OF FONTANA STD. DETAIL 118 _ i L1N. FT. a _ . _ -. 7q '. 78 77 76 7S %¢ 1 13 CONSTRUCT LOCAL DEPRESSION PER LETAI�.. - - - - 4 EA. { COU T 7.3 14 INSTALL 2" :X :6" REDWOOD HEADER _ _ _ _ _ _ _ _ _ _ ... _ _ _ LIN. FT SAWCUT AND :'REMOVE I FT. -OF EX I5T ING PAVE MEN:T ... _ . _ _ . , 8 5 0 Q. FT 4 . 3 �8 7Z� ! 16 JOIN EXISTING: PAVEMENT (FEATHER TO [1rtaTGN). , I i .... ... 17 A.C. OVERLAY-,-' (MIN. I�° THICK). 7920 SQ. FT. 66 6s 6¢ 63 6Z 6/ ... ... ... i a CONSTRUCT 6 $ERM SER DETAIL THIS SNE T . .. ... ..f09 LIN. FT 60 5 j .I. ...'•_.� .•^+rr- : ^�TIi i.•++.5,^" '•'•'_ J �. ":t.`�- _,r•.v.i�-•_�:�f•_''•�':.w�-�.Y_. .r^'•-..�, �w_•_��.� _..i-•.�.�..-y_,-...��i•.l__..`✓r•-'-✓.�---+._ yl I /9 5�f YYCL/j, RlrNOAF: f R�/-,Z Al CE P�4V4N"7 l�Ze &7Yavc 0 1,r"/•l _3*V DETlel • .... 80 SF PRImaoCOURT�8 5/4 wCY1T , T. ,ds .�r S y 7 �5 z ss S3 s¢ s H/GHLAND fIVENUE ��POUiE 30 BA56UNE eAI�E�t/U� Q l+' P�e�a✓ECr M/GLOP Al�ENL D��i � �J v, S/7E FG�TF//LL BL!/O. .Pd Q S�iV BE.2NfLPD/.W Al�E�/vE VICINITY MAF i, N.T.S. , i'. CONSTRUCTION NOTES AND ESTIMATED QUANTITIES* '.CNS/A U ITEM QUANTITY s T /O" ---- ----- ;f � _�� � 1. CONSTRUCT . 4_. �1 2'" A.C. OVER 12" COMPACTED NATIVE SOIL ._ 2 3, 05 0 ��• FT j /8 O O 3 3 /¢ /S /� l7 2O. CONSTRUCT 3" A .'C.. OVER 12" COMPACTED NATIVE SOIL _ _ ...... . _ . �L 04-1 �j 0 0 S Q . FT { ' Al CONSTRUCT '-2 ", A..C. OVER 12" COMPACTED NATIVE SOIL ....... _ .. _ ... �j �j� O 0 O • SC?,, �r is :23 22 2� O4 CONSTRUCT 61° CURB AND GUTTER PER•CITY OF FONTANA STD. ; DETAIL 101 $ 83 5 Iil�, FT VRI 11 5 . CONSTRUCT 6 CURB . PER CITY OF FONTANA STD. DETAIL 10.1 j1 O6 CONSTRUCT 8!':CURB AND GUTTER PER CITY OF FONTANA STD. .S T T 9 1. DETAIL 101ti, --- -- - -- - - - - j� g85 LlkF 92 93 9v 9•5 9k� 97 CONSTRUCT 8 '! , CURB PER CITY OF FONTANA STD . DETAIL 101. _ _ _ . _ _ .' . L 1 M- I`T. '^ CONSTRUCT STD. CROSS GUTTER PLR CITY OF FONTANA STD. --'-- - - --- - -- - - ----- ii j �• — DETA 87 IL 104','. 8 Q LIN. FT a v cif' c409- 96 CONSTRUCT RAMPED CURB RETURN PER CITY OF FONTANA STD.. DETAIL 10.4A - - - - - - - - - - - - s 3 SQ FT COU l I S BS I j (� •�j —" % 10 CONSTRUCT 80 8/8Z S3 - - - .. _ 157 L IAL F T 8� 7���T • ,'-� 11 CONSTRUCT. 3,RIBBON GUTTER PER DETAIL SHT . 4 7 /.3.3ZS 4 12 CONSTRUCT BARRICADE PER- CITY OF FONTANA STD. DETAIL 118 _ i L1N. FT. a _ . _ -. 7q '. 78 77 76 7S %¢ 1 13 CONSTRUCT LOCAL DEPRESSION PER LETAI�.. - - - - 4 EA. { COU T 7.3 14 INSTALL 2" :X :6" REDWOOD HEADER _ _ _ _ _ _ _ _ _ _ ... _ _ _ LIN. FT SAWCUT AND :'REMOVE I FT. -OF EX I5T ING PAVE MEN:T ... _ . _ _ . , 8 5 0 Q. FT 4 . 3 �8 7Z� ! 16 JOIN EXISTING: PAVEMENT (FEATHER TO [1rtaTGN). , I i .... ... 17 A.C. OVERLAY-,-' (MIN. I�° THICK). 7920 SQ. FT. 66 6s 6¢ 63 6Z 6/ ... ... ... i a CONSTRUCT 6 $ERM SER DETAIL THIS SNE T . .. ... ..f09 LIN. FT 60 5 j .I. ...'•_.� .•^+rr- : ^�TIi i.•++.5,^" '•'•'_ J �. ":t.`�- _,r•.v.i�-•_�:�f•_''•�':.w�-�.Y_. .r^'•-..�, �w_•_��.� _..i-•.�.�..-y_,-...��i•.l__..`✓r•-'-✓.�---+._ yl I /9 5�f YYCL/j, RlrNOAF: f R�/-,Z Al CE P�4V4N"7 l�Ze &7Yavc 0 1,r"/•l _3*V DETlel • .... 80 SF PRImaoCOURT�8 5/4 wCY1T , T. ,ds .�r S y 7 s . z ss S3 s¢ s s 3 A S S 141_ l orOIL• • A E � - L A N s s o .5' 7 :U �� M- 7 i 7 .. ....... . .......... . .... ..... ...... ...... ....... .. ........ ....... .... ..... .......... ... ....... ...... ...... ...... . . ...... .. L ... . .... ... ..... .... ...... ......... ......... . ..... . ............. .......... ... . ... ..... .... .............. .......... ...... .... ...... .. ..... ... .. ... .. . ....... ..... ... ..... . ........ ...... . ........ .. ... . .. ..... .... .... .. .................. ... .............. .. .... . ..... ... ............ ......... . .... .. .... .... ... ..... . ....... .. ....... ... ...... ...... ... ....... ....... ...... . .. ...... ...... .... . ..... . ....... ...... ....... ...... w .... ... .... 4 ... ....... ....... .......... .. ....... . ........... :..* ............. ..... . ....... .. . .. ........ ...... ....... ... ..... . ..... ....... ... .... .. ...... ....... ....... . ...... ..... .... . . . ..... ....... ...... ...... ...... I ... ...... .. ...................... . ......... ...... ......... ..... ........... . .. . ..... ....... ......... ..... .... ..... .... .......... ....... . .......... .... . .... .......... I ............... ...: .... :j ... .. ...... ...... ...... ...... ...... ....... ..................... .... ... . .... . .... . . ..... ....... . .. ..... ... ... ....... .... .. ...... �: "I ­ ­ ... :­ ­ ': * ... .... .......... ......... ....... . ..... .7 ....... ... . ..... . ....... .... . .. ....... ....... ....... ... . ..... t ....... .......... .......... .................... ...... .................. .... ....... ........ ...... . :.. . . ::: .. . .. ..... .. ........ . ­..�­.. ..... ­* . ­ ..... - .: ....... 1 ...... .... .. ........ ....... ........ . ........ ... ........ ...... .......... .......... � . ..... ....... ......... ............. .............. ........ ........ F.- --.! .... , 1--- ­ ---- *­ .-A ... ...... ... ...... ......... ......... . ......... . ............. ....... .... ....... :4 . . ..... L ....... .. ..... .... .......... :A ....... . -7.. . .... ......... . ..... ....... ... . ............... . ...... .... .... ... ....... ...... .......... .... . .... .. ............ ........ . ..... ........ . . .. ..... ......... ...... ... ... ...... ....... ..... ... .......... ......... ...... ... ......... ... ...... .... .. ......... . ........ . .. ... . ...... . ..................... ......... .......... . ........... ................. ......... . . ....... ... ...... ...... ........ .. ... ..... ... .. .......... .................. ... ..... ....... ............... ..... ....... . ......... ......... .............. .......... .. ...... ....... ....... . .... ... .. ....... .... . . . ..... ..... ........... ..... .... ....... ...... . ....... . ..... . ..... ..... ..... . ............... ...... .... .. ....... ....... . ..... :. ­� .. 11 .. ; .......... .. ........ ... . ..... .... ..... . ..... .. ........ ... ......... . ......... ....... ... .. ....... ....... ... .... ...... ........ ........ .. ......... .......... ...... .. . .... ...... .... ..... . .... .. ...... ........ ....... . .... .... . ...... ...... ... ... ..... .... ..... .... .... ....... .. ..... ..... ... .... ...... ..... . ..... ..... .... .. .... ..... ........ :: . .... ... ..... . ...... ...... ...... .... . ......... ....... .. ..... ....... ...... ...... ... ..... ....... ..... ...... .. .... ...... .. .... ..... . ... ... . ..... ...... ... I .... ...... ...... .. ....... -:I::. ::. t._­_l­*­­ ..... ..... .. .... . ...... J:- .... ..... ....... .... . ... F - ..... ........... ....... . ....... . ...... ... ... ...... . ....... .. ...... .. ............... ...... ....... ...... ...... -.1 ... ....... ..... .... . .... ......... ...... ... ....... . ..... ... ... ....... ......... .. .... . ..... ................. ... ......... . ...... . .................. .... ::.: -::, :: _: ............. . ....... ..... . ........ I ... .... .............. .... ......... ........ t ...... ....... ...... ............... ..... ...... . .... ... ...... .......... . .... ......... ... ......... . . ...... .... ....... ... ---- -----------­ ...... .... ..... ..... ...... ..... ...... ... ... ... ..... .. ....... ....... . ... .... .... . ........ ...... ....... ...... ....... .... . ..... .. ...... ...... .......... . . .... .. .... ....... .......... ......... ......... ... ...... .. ........ ...... .................. .......... .. ..... .......... ....... . ........ ... . ...... .. .... .... . ..... . ..... . ..... .. ........ .............. ............ ...... . ..... ........ . ..... I ...... .. . .... ....... ........... 7 .......... . ....... . ...... ................. . .......... .. ....... ........ . ....... .. .. ...... . ...... ........... ... ........ ........ .......... . . ...... ... . ... ...... ........ .. ...... ........ ....... ­ .... .. I 1 .1 ........... .......... ...... ... : .. .......... ...... : -... --t ..... ... ... ...... ..... . ....... ............... ......... .... ........ : ... ...... -.1 .... ::: ::-:: ::*.::z:::;l._:: , , . ......... ......... ..... ......... .... ..... ..... ......... .......... . . .... ........ ........ ....... ... .... ...... ........ . ........... �­ ...... .... ....... ............ ......... . .......... . . ..... - , . i * * *-'*-* ...... ....... .. . ..... . ........ ......... 7, . . ..... _... - ... . ..... ..... - .... =..�7.7. . ....... .......... .......... ...... ............ ........ ...... .... .. ........ ...... ......... . . ......... ! .. ............. .. ... .. ... ........ ...... ............... ....... ..... .... . ........ ...... ........ ..... ...... . . . .... ..... ........ . ...... . ...... ... ...... . ..... .... .... .. . .. .... ...... ....... ... . . ... ....... ....... ........ ....... ... ......... ......... ..... .. I—— Z.1'. .. .... ... ...... .... ........ .... ... ...... ..... .; ........... ....... ... .. ..... ....... ....... .......... . ....... ....... .......... ......... .... .... .. ........ ........... .......... ... ... . . . . ........ .... .......... .... ............. . ...... . .............. ............. ..... .... ..... ......... ............. - ---------- ..... ... ......... ....... _; .... ...... . ...... i ...... . .. ... ...... ....... . . ........ ................. .. s .... .... . ....... ....... ....... . ...... ....... ... .... ....... ...... ... .... .... . ..... .... .. . ..... .. .... ......... . ....... ......... ...... .... ...... ..... I ... ...... ....... .... ......... ......... .... . ... ......... -.4 ................. . ..... . ..... ...... .. ......... .. ....... ::T . ....... ....... ..... ! ....... ... ...... I ....... ...... .... ... ...... ...... . ...... .. ....... ..... .. ....... i ..... ... : .- ..... .... ... ....... ........ .. ...... ....... .. . .... ........ ... .. ....... ... ... ..................... ....................... ..... .. .. ........ .... .... .... ........ . ........ ...... .... ...... .. . ......... ......... ...... ....... ......... . ..... ......... .. ....... .. ...... .... . ...... .. j....... ....... ...... ......... ..... ...... .... . ... .... . ... ........ ....... ... ..... ... ....... .............. . ....... .... ...... ........ . ....... iik ....... ...... ........ ......... ..... ....... ....... .... ... .... ...... ....... ..... ..... ....... > ..... ........ ...... . .......... ............. . ........... ............ .. ... ........... .... :Z=:: .4 .......... .::J: .... ........ ....... ....... .. ...... ....... ...... . ..... ..... ................ ... ......... .......... . . ....... .......... V- ...... ...... ........ ........ ........ ......... ....... .. .... .... . ..... ..... "T ... ................ .... . ....... ....... ...... ........ ...... . ..... . .... . . ...... ........ . ...... . . ...... ........ .. ....... .............. ....... . . ....... ..... ....... .... ..... . ... ....... ...... ....... ... ... ...... 4. ....... ; ...... .... ... . .... -- -- -- . ...... .......... . . ...... .... .. .......... .... ........ ..... . ..... . ............... ....... .. . ..... .... ... . ... ---------------- . .......... o :: ...... . .... .. ...... ... ...... ..... .... ...... ....... .... . ... ... . .... ..... ..... ..... .. . ....... ....... ..... . ... j ... ...... ...... .... ... . .......... . .... ..... ...... .... ... ... ....... ......... .... .................... .............. ....... ...... . ...... ........... ......... ........... .. ........ ..... . . ...... ...... .. . ..... . ..... . ..... I -A..- e f .......... ...... .......... ............... . ............. ..... .. ..... ...... ...... . .. ..... . ...... .... .......... ...... . ....... . ..... ........ . ... .... . ....... ....... ..... ... . .... .. ... .......... ... ........... . ... ...... ......... .......... ......... ......... ......... . ..... . . .......... ........ ........ - . 7_7 .......... ........... . ..... ....... ...... ...... . . ................. ... . ..... ....... .... . .... ........ .......... .......... .... ... WiMMUMIL. .: ..... ...... ...... ....... ... . ... . ...... ....... .... .... ...... ....... .......... i ....... .... . ... ....... ...... .............. v ................ .... ......... ....... ...... ..... ..... . . ..... ...... ...... ..... ............... . .... . ...... ..... .... ... ....... ... ..... ..... ..... .. ........ .... .. ... . ... ..... ZY.. :.* .-"o ......... i . �_; .... : - ........... ........ ... . .... - I ­­­=*r.::::::..:j:::­ ` -- " .... ... . .. . . . .... .... .... . ..... ....... . ...... ....... ... .......... ......... . ...... ....... . ..... ... : I ........ i ....... ... .......... .......... ...... . ..... ....... ....... ..... . ..... . ............... . . .... .. I-, .... .... ...... . ......... ...... ...... ..... .... ....... 7: . ....... . .......... .. ........ ........ ..... ...... ..... . ....... T.. .......... ... .. .. .......... .... . .... ........ .. .. . ...... ..... . .. . ....... ......... ......... . ...... .... .. . ........ ...... .. ..... .... .... ... . .... .. ..... .. ... ...... ........ . . ..... .... ..... ....... ... ....... 1 1 - .:�:: * ... .. . ..... ....... .......... ......... ........ ...... .. .. . ....... ... . ..... F:.:T: .. . .... ..... . ... ......... ..... . ................. .......... ....... %J . ..... 1; , . - :::::. .......... . ........ ...... ...... .......... ... ....... ........ . ....... ......... ............ ...... . ...... ...... ...... -I ...... .... ............... . ...... . .... ...... ....... . ...... ... .. .... ...... . ..... ... ... ... ... .......... ......... ......... . ...... . ...... ........ ........ ... ....... ..... . ....... ......... ....... ...... - . 11 .... ; .1 .... I ..... ......... _... .... ........ ........ ............. .... ......... . .... .... .. ... ..... ... . . ..... ......... . . ...... ........ --...4 ......... . ..... .... ......... ............................... .. . ...... . --- .. .... . ..... . ....... .... ... ..... ..... ...... ...... ....... ... .... .... ...... ........ I ..... -4-- ..., . . .... - .: .. ....... ..... I .... . . ......... ....... . ... ....... ..... . ...... . ....... ..... ... . .. ..... ... . ...................................... ....... .............. .......... ...... ...... ........... t. ........ .......... ........... .... .... ..... ... .... .... ... .................... . I .............. ..... ..... .... ... . ... . .... . .... . ....... .... . .. .. . ..... ....... _4.. .. . ..... . .......... ........ . .......... . . ..... . . ..... . ..... ......... . . ..... ........ -.T .... . .. ... ... .......... . . ..... 4 ...... .......... ....... ....... .. ..... ..... ...... ..... ... . ...... ........ .. ... .... t .. ..... .... ... ...... ... ..... ....... ....... ....... . ..... ..... .... .. . ..... ......... ..... .. ..... ... .. ...... .... .......... .......... ........ ........ . .... . ..... .... .... ...... .. ... .. .... .... ....... .. ........ ...... .............. ...... ...... ... ...... ... ... ..... ........ .. ........ . F.. - � ... .... .. . ..... . ..... ... . ...... .......... .......... ...... ... . ... ........ . ......... .......... ...... .. .. . ..... a ...... ... ...... ... . ...... . ..... ----- -------- ... ...... .. *.'...:, ........ . ...... .... ... ....... ....... ....... ....... ..... ...... . ...... ... I., .............. ............... ....... .. .... . .. ........... ......... . ...... . ... .... .... .. ... .. .... . ... . ...... .... . . .... . ..... .... . .... . ..... ..... . ....... .... ... . ... I . . ........ .... . ... . . ...... ...... . ................. ............... ... ..... .. ...... ...... ... ..... ...... ...... ..... . ..... ... .... .......... ... .................. ........... ....... .... ......... . ..... . ......... ...... . I ...... .... .. ........ ......... ..... ..... ...... ... ......... ......... .. ...... .... ........ .... . ..... . ....... .... .... ............. .... ... ....... ....... .... ........ % .......... j**,- j - - ------ 4 ................ ......... ..... .... J: .. ...... .. . ....... ........ ................. ....... ...... . ...... ... ..... ........... .... ..... ..... ...... ..... . ..... . ..... .......... ........ ..... ...... ; ...... _: .... ... .. ..... ..... ......... ... ... ....... ......... .... .. ...... ....... ..... .... .. . ........... I . . ..... ...... ---------- . ...... . ......... .......... ...... - - ------- ....... .. .. ...... ...... ..... ... . ..... .... . . 1. ......... ... .. . ...... ...... . ..... . ..... 7:, V - -:.- I < . :.::*.I,::.::�,:,., ...... ....... .. !'7.*.,.­:7�. ...... .... . .......... ......... .......... ......... ........ ... ..... I .... ... ... . .... ...... .. .... . ... . .... ........ . ...... . ..... ... --- - ---- - -------- ---- . ...... . ..... . ..... . ...... ...... . ..... I... .. . ..... ...... ...... L .... ...... ........ . ..... .... .. ....... ........ .. .......... . ......... .......... .... ..... ...... ....... ........ ............... . . ...... ... . ...... . ..... .... . ... .. .... . . .... . .... ............ .. . . ..... . .. ..... . . . . _. . ... _... :q:=.::: ......... ...... .......... ....... . ..... d . . ... ...... ......... ......... .......... ...... .... .... ......... ...... ...... .. ....... . ...... ....... ... .......... . ........ ...... 7 c� .......... ......... .. �f ............ . ..... ... . ..... ... ...... . ...... ... ... .... .... .. .... . . .......... ...... ...... ......... I ... ....... ........ .. ..... .... . ......... .......... ... ..... .. ....... ....... ...... ......... .. . . .......... ... ... ...... ........... ........ ...... ........ .. .... . ... .... W. _;� . ..... ...... . ..... ...... 2 ........ .......... . ..... .................... ...... . ...... . . ..... . ...... . .. ......... �: . ..... ... . .... f-. . ......... . ..... 4- ...... ....... ... ........... 4 ...... . ..... .... .. ..... ... ...... ........ . ..... .... ...... . ..... .. : .. -.l .. ....... ........ L:�' -:-- ... . ... . ........ 4 ... . .... ------ ... ...... i ...... ... ... ..... : ..i. � ...... ...... .... ... . .. ....... .... ..... . .............. .. ...... .. ...... ...... ... ... ....... ...... .... ..... ...... t . ....... .......... ... ..... ......... . .... .......... ......... .... ..... .. . ..... ..... ­_ . ...... ...... ....... . ........... ........ �4 ... . ..... :L ......... ....... . I ...... ...... ... ........ . ........ .......... . ..... .... . ......... ... ...... ........ . T c� . ......... .... .... ........ ..... E ............... .... ............. . ...... ... . ...... . ...... ... . ....... .. . ...... ...... .... . .... -- - ------ : ...... ---- - ---- - - ------ ........... .................... .......... ......... ........ .. .................... ...... .... ..... . ...... ...... ........ ... ..... . ...... ...... .......... .. .... ......... .......... :77 .. ...... <� ....... ..... .... . ........ ........... . ...... .... ...... L ... 1 77 .... ._. ..... q� ....... ..... ... -:, ..... j .. ....... . .... .. ... ....... ...... ..... .... .. ........ ....... .... ..... .... ... .... ....... ...... ...... . .. .. ... .. .... .......... ..... ..... .. ........ -.4 .................... ... ..... . ..... ...... .... ......... , ;� , I ..... ......... ... ............... ... ...... .. ...... ........ ....... ....... ; ....... .. ...... ...... ... .. ...... .... ...... ...... Ni . ....... . .. . ..... . . ...... ..... . . .................... .. . . ..... ..... .. . ....... ....... ... . ...... . ...... ..... ... ...... I ...... . ..... . ....... .. ... ..... .... .... --------- r ...... �7 ........... ..... ..... .............. ......... ..... ..... . ....... ........ ........... ...... . ... ...... . ... ......... ...... ..... ........ ...... ..... . ...... ....... ... . ..... ....... ........ .... . ..... ....... .... . ..... . ............ . ..... . ...... ....... ...... . ..... ....... - . .. .. .... 4: ...... ... .......... ................ ..... ....... .... . .... . ...... . ..... . .. .... .... ... ...... ...... .... ....... ... ... .. ....... ...... ........ ........ ....... . . ........ .. ...... ...... ....... . ........ ......... ... ....... .......... ... ...... ......... ....... .. ........ ......... L) .. ...... .. ---------------------------- ------ .......... ..... ... .... ..... . ...... ....... . .... ... ...... ... .... .... .... .... : .... . ..... .. -- - - ----- .. . .... . ..... ...... .. .... ............. . ....... ........... ..... ... . . ...... ...... . ............ . ....... ....... ...... ........... ......... ..... .. . ....... .... . ..... . ...... . ..... .... ...... - ...... . ...... r . ...... ......... . . ...... .... . .... ....... .............. ...... ............... ....... ....... ...... .... ... -- ------ ... .. ...... .......... ........ ... . ... ....... ........ .... .... ...... ... . ....... . ...... .. ........ 4 . .: I . ....... ...... .. I .... ...... -- ---- i ­ ...... . ...... .... . ......... ....... ..... ... ...... ... .......... ...... ....... ...... . ...... ... ...... ......... .. . .... ....... - - -- -------- - ------ - .... . ... ......... . ...... ...... . ... .. ...... ... 7 ..... x ....... . ...................... ...... .... ... ..... ....... .. .... .... .... ....... .... ........ ...... ......... . ..... . ...... . ....... ......... . .... ................... .. ...... .... .... . . ..... ....... ........ .... ... ......... ......... ......... .. . ..... ........ ...... ...... . ......... . . ...... .......... . ........ .... . .... . ..... ..... .......... ...... .......... . ....... . ....... ... . ... .............. .......... ................... . ..... p ....... .... .... ...... ... .......... .......... .......... ... ..... .......... ... . .... . ..... . ........ ....... ..... ... ...... . ... .. ...... !­ f. .. ........ ...... ........ ..... . ... ...... .... . .... ..... ...... . ..... .. ...... A�E ..... ..... t ........... ........ .... ........... .. .. ....... ..... ...... ....... ............. ... ........... ....... ...... ... ... ...... ................. ...... .... ......... . ...... ....... ......... .......... IN �cw ....... ... . .. .... . ....... ...... .... .. .... . .... .. ...... ....... .......... . ..... . .. . ..... ...... .... . ..... ......... ............ ; ....... 4- ...... ­ I . ..... - . I - _I� ... oo� ---- - --- . ......... ... ...... ........ . ........ ...... .... ..... ....... ......... ....... ....... ....... I ..... ....... ... ... ..... .... . ... ......... .... . .. �-- ­ .... z ... -­= :.*=7T7,-_- +.::.- .... ; . ... . ..... .... . ... ..... ... . .............. �­.. .. ....... ....... ...... ....... . ... ...... .. .. .......... . ....... ............... _­ ........ . ..... . ..... ...... .... . ... .......... T ...... .... r .......... ........ .. ..... .... ....... ....... ..: ........... ... ...... ..... . ............. . ..... ....... ... ....... .. .............. . ......... .......... . ...... I ......... .... ... ... ... . ..... . ..... . ....... .......... ......... ... .... .­ 43� . ........ . ....... ...... . ....... ........ . ...... . ....... .. ... ...... .... ... .. ....... ........ ......... .... ....... J ........... ........ ..... ........ .. .......... ............... *::.. ............... ........... ......... ....... ...... .. ........ ...... . ............. . .... ..... .. . ..... . ...... ...... . .. ..... ... . ..... . ....................... . . ..... ...... .... . .. . ... . ..... ...... . ...... ...... - . ..... . ..... . .. .......... ...... . ... . .... ........ .... . .... ........ ... ......... ......... .......... ....... . ............ ......... .... ........... .... ........ .... ... ..... ...... . ...... ....... ....... ...... ... ..... ....... .. ..... ..... .......... . . . ........ .......... ...... ... . ...... ... ...... ... ..... . ............. . ...... . ...... ....... ...... .... ....... ...... ..... .... ... .... ... . ....... ...... .... .. .. .. ........ ....... . .............. ...... ........... ........ . ... ........ tl.*..**­.l-,-­­ 11 ­ ...... .... .. ...... ...... ..... .... ........ ........... ...... ...................... i:: ... ....... .... ........ ........ ....... ...... ..3 . . ....... ... ............... ...... ............. . ..... ........ .... . .. .. ....... ... ...... ....... ... ...... ....... ...... . . ........ ........ I .............. ...... . ................ ........... . ....... ......... .......... .... ....... ..... . .. ...... .......... ..... .... . ....... ....... 4 .... ..... . ....... ...... ... . ..... ........ ....... ...... .:T ........... . ..... ..... T ... 4- ... .......... ... . . ....... ... ..... .... ......... ... ....... ...... .... .... ...... ...... . . ... . .... .. ...... ....... ........ I ...... .... .... ...... Z 4 .. . ...... .......... .......... . ........... . . ..... . ...... . ..... . ...... ...... ... ... .......... i ...... ....... J ....... .... ... ... ............... .. ....... ....... ......... .... ...... .. .... ....... ............ . ............. .'l f, ............ . ...... . .... . ... . ..... ........ .. ......... .... . ... ....... .. . .... ......... ---- --- ----- ---------- - -- --- . ......... .. ..... . ....... ..... . ...... . ..... ..... . ............ ..­ ........ ... .... ......... ....... ........ ....... ....... .. ... ..... ..... . ..... ........ : ... ...... ... ... ... ..... ....... ... .... . ....... . ..... . ........ . ...... ...... ....... .. .......... . ......... . ...... ........ . ......... .... I . . ...... .. .... ...... ... ... K ... .... . ....... ......... - : - -/ �, : ......... I .. _... . . ....... 1 ..... _. ..... . . ..... ....... -- - ---- ........ ... ....... .... . ... . .... . ........ ....... .. .......... ............... ­­­­ ­ ?I n.: ..... ....... . ...... ....... ........ ...... ....... ..... .... .., .... ... . ..... ....... :7 ..... 4'**.,: ....... ....... ......... ....... ... ..... ..... I . ......... ........ ... . . ...... ...... . ..... . ...... ...... ---- - ------- . ..... --- - ---- . ...... . . ..... ......... .. . ...... ... ...... . ..... . . ...... ...... ...... ................... ..... . ...... -Nc' A�A ... .... .... ... ...... ... ...... 77 ... . ....... ... ....... ......... . .. ....... ... . ...... . ....... ... . ... . ..... ... . .... ... . .... .......... . ..... ....... ........ ...... ....... I . ........ ........ .. ... . ..... ....... ......... ........... . ....... ........ ....... ......... . . ....... .. ...... ..... 7i. ... .......... ... . ..... ......... ... .... . ...... .......... ......... ..... .. . ..... t .::- H 1 7.. -, ­­ - ....... ........ ........ .... ... ........ ...... ............ .......... . .............. . ................... . ..... ... ..... . . ..... . ..... . ..... ---- - --- .. ....... ...... ...... ...... ....... ............. 7..:j-: ....... . ....... . . ..... . . ....... . I ......... +1 .... .. .... . .. ... ..... ....... ........ ...... ..... ....... .­ _W -w . . ......... ... . ..... . . ...... . ... ......... .. . . ........ ... . ..... . ..... ...... .......... ...... . ..... . . ..... .. ... . .. . ..... ....... ................... ...... ...... ...... ....... ...... ..... . . ..... . . .. ..... . ..... .......... .... ..... ....... ........ ......... L --- ----- ...... ..... ...... ....... ......... .......... ... ...... ... .... . .. _4 ... ..... . ......... .... .......... .. ...... ........ .......................... ... .... . ...... . ..... ......... ........ .. . ..... ....... ...... ...... ... . ... ... ......... ....... ......... .... ..... . .. .......... .......... . ....... .......... .... . ..... ... .... . ..... . ...... ..... ....... ....... . ...... . ... . ..... ....... - ...... . ............ ...... ......... ...... . .......... ..... ................ ...... ............. ......... ................... .......... .......... .... .. .......... .......... ............... .... .. . ..... . ...... . . ........... . ..... .... . ... .. ...... . . .... .... . . .. .... . ........ 3_..;� 1, - , - -I- t ........ ... .. ........ .... .......... .... .... ........ ........ .... ..... .... .. .................. .................... ...... .... . .. .. . ..... . ....... . .... ...... .... . ... . . ..... ...... ...... ..... . ..... .... . ...... ... .... .......... . ......... . ...... . ..... ...... ... . ..... . ............. ....... I .. ..... I- ... . .... . ...... ... .. . .. ...... ......... . ...... ......... .......... .......... ......... .. ...... ........ .......... ... . .... V.. ..... ........ ....... ....... ... .... .. .. .... .. . ....... ... .... . .. ..... . ..... . ..... . ..... .. . ..... ....... ... . ...... . ....... ... . ... .. ......... ... . .... - .... = 14 :::: .... i ... **­ * 4 ........... .......... ............ ...... .......... ..... . .... .. ...... .... .... . ....... . ........ .... ..... . .. .... ..... ...... . ........ ................. .......... ........ ................. ......... .............. ....... .... ........................ ..... . ...... .. . .... .......... . . ....... .......... ...... . ... ... .... .. .... . ... ...... 1_1 ......... . ..... ..... . . ...... ...... : .. ..... .... . .... ......... .. ... ........... ......... ....... .. . .......... ....... ..... . . .... . ..... ........ ..... ..... . ...... .. . . ........ ... . . .. .... ......... ..... ...... ........ ....... .. ........ .. ..... ...... .......... .......... . ........ ......... ....... .. .......... .. . .. . . ....... ..... . ............. . ..... ... ...... . ...... , .......... ........... .......... ....... - ...... ... 11 .... I.- _... f, ........... .......... ... ..... :1 . ........ ......... . ........ - - ------ .... ...... . .......... ......... ... . ...... ...... ........ ........ ..... .... .... ......... ............... . ........ ......... ... ....... . ...... .. ..... A . ...... .... . .. ........ ......... .... ....... ....... ....... .... ... ................ . ..... ......... ------ ...... ...... ... .. .... . ...... ...... . ..... . ..... . .. . ..... ....... ...... .... . .... . ..... . ...... . ..... ..... . ............ ........ ..... . .... . ...... . .......... .......... ........... ........... .......... ......... ......... ....... . . ... ......... ........ ...... . ........ . ..................... .... . .... .. . ...... . ........ ......... .......... .. .......... . ... ...... ..... ........... ......... .......... ....... . ..... ...... ... . ...... ..... ...... ..... ...... .. .... ......... ...... ....... .......... ........ ......... .......... ................... ......... ....... ..... ...... .......... ........ ... . .... .... . ... ...... ......... ......... .. ..... .... . ........ ...... .. ....... .......... .. . ... ......... ...... ..... ....... . .......... .................. .... .. .... . . ...... . ........ ..... ..... . ...... . .......... .... ...... ............. ......... ............... EE : .. - , . r,7*** .... . ...... . ...... . ..... .. .... . ......... ...... . .......... . ...... . ..... ...... ............... .......... . .. ..... :� ....... ..... ... . ..... _7: ........ ....... ..... ... ...... ...... ... ......... . .... ....... .......... . ..... ..... ...... .... ....... - . . . . ... ........ .. ....... .... ...... .......... . . . ................. r ........ . .... ... ... . .......................... ... ........ -4 .......... ......... . ....... ...... ... ......... t. - ". . ...... .... . .... ..... _4 --- - ----- ......... ... ........ ...... ..... .... ... . ..... .. . ...... .......... ......... .......... .......... ........ .... .......... . ...... . ...... . ... ............... . . .......... ....... .... . ..... .. . ..... .. . . ....... ....... ...... .......... ........ ......... ... ........ ... ......... + .. ....... ....... ....... .......... .. .... ......... . ...... ....... ......... .......... .. . ..... . . ....... ....... ....... ...... ...... ...... ...... ...... .... ........................ ... . .... . ...... . .......... .. ...... . . ..... L___ j........... . . ....... *: . ......... ;­ . ..... ;_.­ ... . .. .... . ... ... .... . ..... ...... ... .... ...... ...... . ...... ........ ... ....... . ....... .... .. . ...... ........ ..... ...... . ............. ....... .. ..... P- ... ........ ..... . ..... ..... ...... . ...... . ... ...... ........... ... . ........... .... ....... . .. . ..... . . ...... . . ..... . ...... ..... .......... ........ I ....... .......... ....................... . ....... ....... .............. ... ... .... .. ... . ...... .......... ......... .. - - - -------- - ------ ......... ..... ............... . ....... ............. ... ...... ........... ': ....... .... -77" ....... . ..... ...... -;c .... . ... ....... . ....... ::Z-i... . . . , ­ i . . - ...... ;� - ...... . . ....... ......... ......... . . ...... ...... ...... ....... ...... ....... . . ....... .... .. ....... . ...... , ....... ..... .... .......... -A ....... .......... . ........ ......... L .... .... ................ .. . ..... .......... . ..... . ..... - - ------ ....................... ...... ..... ....... ..... ..... .......... .......... .. _­­ .......... ..... .......... I ..... -.1 .......... ....... ...... . -_**-4:- . ..... ....... ................. . .. .... -.s -.! . . ....... - ----- ... . .... .. . ..... . ......................................... ..... . .................... ....... . ...... . ....... .......... . . ........ .......... ...... . ....... . ............... .. .. . ...... .... . ....... . . .... ...... 7-1 ....... ..... � I . , - I ....... .......... ....... .... ..... . ......... ....... ...... - ..... ..... . ....... . ....... ­...­­ .-.: . . . . - .1 , ­ *E . ..... ... ......... ......... ...... ....... .... . ... . ..... ........ . .. . ....... ..... .. ... ........ . . ...... ... .. ... :: ", ...... - ... . . .1 ....... i ..... - . ... .­.­� ..... ... . ....... ...... . . ....... 4 ...... _4 .... . ........ ..... ...... ....... . ...... . ...... I t ...... . ...... . ....... . . ....... ... ....... . .... ...... ... . ....... ...... ... . ....... ....... ..... . ..... ..... ... ... ....... . ........... ...... ... . .... . .... .... ... .... ..... ..... .... . .. E:= ... . . ..... . ....... ... . ... .. . ..... ...... .. .... .... . . ... .... . ...... . . ........ ........ . ...... . ...... - .. . . ..... ...... . . ...... ...... . ..... . ...... . ..... ...... ...... � ..... . ...... .... . ....... .. ........ .......... ...... . . .. .......... .... ... . .... .. . ...... .... ......... ...... .. . ..... ...... .......... . ...... ...... ..... . ....... ... ...... ...... .......... ... .... . ...... . ..... . .. .......... .. ..... . ..... ..... . .......... ......... ... . ..... . . ...... ......... ..... . ... .......... ....... . ..... .. .......... ... . ..... ........ ............ -7 ...... ...... . ...... .... ..... f?!� .. ......... .... . .... 11 .......... .......... .......... ...... ... . . ....... ............... .......... ...... . .......... ....... . ....... . ...... . ..... .......... t ........ . ... . ..... .............. ....... . .............. - ........... ......... ......... I ............ . ....... I .......... ... . ..... . ........ .......... ... . ....... ....... - --: ------ .......... ........... ...... . .............. ........ ..................... ........... ......... ....... .. .. .... ...... ...... . ..... ........ ....... ... . .. . .. .... . ..... - ---------- ---- - -- ................. .... .......... .......... .............. . ...... -------------- .......... ...... ...... ...... . ...... . .............. .... ......... ...... . ............ . ............... . ...... ...... . ....... ................. -i ........... ...... ------------ ---- . ...... ......... . ..... . ...... -- - - - ------ 7 .. . ..... -- - ----- . ....... 1 : ......... . . . ........ . I . . ..... . ............... .:.-: ... .. . ....... ...... .... . ... ... . ..... . .. ... . ........ . ..... . ....... . . ...... ............. ...... . ........... tl.= I .... . ... ... .. . ... . ...... ....... . ..... .......... ; . . ...... 4 ... . ... . ............. ......... ... ......... ......... .......... ...... ....... ...... . . . . ...... ...... . ...... . ....... . ..... .......... ......... .......... ....... ........ ....... .... . .... ..... ........ ......... ... . .... .......... ........ . ...... ...... . ...... ..... ... .. .... . ....... .... ......... .. . ... ...... ... ... . ...... . ...... ...... I— - . . ..... . ........... --- - --- --- - ---- .... . : ........ .... ............... ........... ........... -7-d- .......... .......... ............ I ....... .......... .. . ..... 7 iao - - . T I ........... z ............ , ­:­..�.. .. ;_ ---..!.,--..A .... ­ .. ..t 7 . coo:. ...... . ...... 4 ...... -.1 ...... ...... .. .... ... ......... ....... .. . .... . ...... ..... . ...... 71 ........ .. ...... . . ..... ..... . im :­ , I ... . ....... .... ........... ... ..... .. . ....... .......... ........... . ....... .......... ...... ..... ...... ..... ...... . ...... .......... . ....... ......... ...... . ...... ........ . ...... .......... ....... ..... . . .. ..... ... . ...... . ....... ....... - ....... ............ ............ . ....... ......... . ...... . ........ . .... ........ . . ....... .................. .......... tO . ..... - :=­­ 1: .... .......... ... . ..... ;­ ..... . . ..... ....... ........... . ...... . ...... . ..... =*­* L.- .1 . -, ..... _ . ... ... ...... - ...... .......... .. . ....... ... .......... ....... . ........ ....... ........ .......... ... . ..... . ......... . . ..... .. .... .. . ....... I ......... . ...... . ........ t. .1. ­___ .-- ... p iii- ....... - ­ -..::: -4, ...: 1::: _. ­ :.... . . ........ ........ ... .................. 19 . ... !7-77- - .­.... _'­ ; I .. ..... ­_ . I , _.- --t ... ..... , ....... -- : :w AM . ...... . . ..... ............. .. . ...... . ............. ....... ...... ....... ........ . ....... ........ . ..... ....... .......... . ..... ........ ....... . ......... ...... ............ . ....... .. . .......................... ........ ... . .. ..... ... . . ........ ........ ... . ... ... . ..... . ...... . ..... .... . .. ... ------ ------- .. ............... . ... .... .... . ..... ......... .. . . ..... ............ .... ... .... ..... . ........ ..... ........... .. . ...... . .. ...... . ...... I � .7P ...... . ... ......... .... .. . . ...... ......... ...... ........ ............... . ......... ............ . . . .. ......... ......... ....... ...... .. ......... .4 ... . ....... . ................. ..... .... ......... .......... .... . ...... ....... . . ...... . . ........ ...... .......... ...... 7 . ... . ..... _: ...... ......... ..... . . ....... ....... _: .... .... . ...... . ....... L ......... ..... .................. .. ..................... . ......... ...... �: .......... . ..... tc .......... .. ---- .... ..... . ........... ......... ................ .......... I .......... .......... ...... ... j-.:;.-.. j I .... J. . ....... .......... ....... .. . ....... . ...... ... ...... .. . ..... . . ..... ... ...... ........ ......... ... ..... V* .... . ....... ........ ........ ... ........ ...... ....... .......... ......... . . .... .... ......... ............. .. .... . .......... .... . ... .. .... ... ..... ..... . ....... . . . ................ .... ..... - . ... ..... ..... t .. ....... .............. ..... ............. . ........... .............. . ....... . ...... ........ .-;.. - .......... ...... , ...... ............ k ........ ..... ...... ;- I ......... .......... .. ....... ......... . ................. .... . ................. . ......... .......... . ...... .... .... . .... .......... ............... ..................... ........ . ........ . . ...... .... ...... ....... ... . ..... .......... .......... . . ....... ...... .. ......... . .......... ... ... . ..... ... .. . ..... .......... . ...... . ...... .. . ..... . ....... ...... - i. -A ... . ....... . .... .... I ..... ...... :,. ..... .... ......... ....... ... ....... ......... ....... + . . ....... - .......... _7:47 7- . ...... . ... . ..... . ...... ....... ...... ... .......... ....... ...... ....... ..... -- - --- I .......... I .. ........ .......... ...... .. . ...... ...... ....... . ...... . ....... , I ­ !_ ; :-z, - - ------ - ------- . ..... ...... ......... . ...... . ....... ....... .... .. . ..... .... ... ...... . ......... ....... .......... ........ .......... .......... ........ ...... . . ....... -..41 . . ..... ...... ... ..... .......... .......... .......... ........... .......... L .... .. ......... .. . ...... ......... ... ... . .... ...... ....... . ........ ...... ........ .... . .... . ..... ... : .... ...... .......... ......... .......... I ......... .. ....... . .......... ..-. I ....... ....... .. ........... ........... ...... ... ......... ......... ........ .......... ...... . ...... . ....... . ...... ....... .......... ... . ........ . ...... ....... ....... . ........... .... ..... . . ................. . ...... ......... ...... . ...... 4 ....... ...... . . ..... ...... T.....-.... .... ........ . ....... - ...... ...... ..... ....... ... .... ...... . ..... ........ ..... ... ..... ....... ... ...... .... . ..... .............. . ................ . ...... ....... ....... . .......... ... ...... -A ...... -.4 4 .... .. ... . ......... ..... . . . . .......... .......... ..................... .... . ....... ... .... ......... ....... ............. ... ...... ..................... V ....... .......... ....... ...... . ... . . ....... . ..... ....... ..... ...... ..... .......... ......... ...... .......... .......... ... . ... . ... . ... . ...... . ..... ....... ... . ..... . ..... . ...... - ------ ....... ...... ...... ...... . ....... ... ..... ........ ... . .................... .. .... .. ......... ....... .... .. .......... ......... .. ......... ... ...... . ... . ....... ........ . .......... ......... ....... ... . . ..... ........ . . ....... . . ..... .... . ... .... . ... . . ..... .... ... ...... ............... ...... :::'7 .. 6 -T ..... . ... :... . - : ................ .. . ....... ...... ... . .... ......... 4 .......... ....... .......... .... ..... . .......... .... . ........ _: ....... wA.... :r. :�4 7�7 . ...... ....... rH1.4-11 # . ...... . ... .... .......... ... . ..... .......... ........ ... ...... ...... ... ............ ...... ........ ...... ... ..... ..... -- - ---- ........... .. ......... ... .. ........ ...... ... ..... ..... .. ........ ....... .... ...... . . ....... .. . ..... .. . ...... . ...... ..... .. .. . .... ...... ....... . �­J.,�� .4. .... . . ..... -.-: . .... .. ......... ... . .. ... . . ....... ........ ...... Z.1 .. :7 ... . .. ... ...... ....... .. .... .. . ..... . ...... ...... ...... .... ... ............. ... ......... ........ . ......... ..... ..... ... . ...... . ...... . ....... .... . ..... ...... .. ...... ... . .. ..... . ...... . ..... ... ..... .... ... . ..... . . .. ....... .... . .... ...... . ...... . ..... ...... . ..... . ..... ........ ------ ...... .... . ..... . ..... --- --------- ...... . ..... ..... --- ------- ..... . .... . ..... . ..... . ..... _7... . . ...... ...... . ... . ....... .... .17 .717.7_4 .... ..... .......... .. ........ . ...... ...... ... . ... .. . ... J.. ..... ..... . ...... .......... ........ 4 . ....... . .... . ...... a! ... . .... . ...... . ...... ...... . ..... . ...... . ...... - . ...... .. . ....... ... . .......... ... ....... ....... ...... . . ....... ......... .... . ...... . ...... ..... . ...... . ..... . ...... ...... . ...... ...... . ..... .... .... . ........ . . ..... .. . .... -..* ..... .. ...... .. ...... 7 . ..... . ..... .. . ...... ...... .... . . . ..... ....... . ..... .......... ........... ...... . .. ....... ... ....... ... ......... . ............. ...... .. . .......... ... ......... ...... . ......... =.. .. . ...... --- ......... ...... .... ... ........ ....... .. JK" . _�4 .......... ...... . . .... . . ...... ... ...... . ..... .... . . ..... .. . ..... . ...... ... . .... ......... . .......................... ... ....... .... ......... . ..... ..... . ...... . ..... . ........ . . ..... . . ....... ........... ...... ....... ..... ....... ......... ......... ....... . ..... .......... ....... ... .... .............. ......... ...... ......... ......... . ........ ...... ---------- .. .... . ...... ........ .............. ....... ...... ... ...... . . ......... .......... ki- ..... . ..... ...... ..... .......... .. ..... ............... .... ..... ... ........ ....... .. .............. .......... : ... ... . ........ ... ....... ........... ... .... .. ...... ..... ------ - ...... * ......... . ......... ..... ....... -� --m --: ........... - ....... ............. ..... .... ..... .............. ......... .................. a ......... ... .......... ......... ... ... . .... . ... .. . ..... ......... .... .... ... ............... . ....... . . ...... r ---------- ... ... ... - I ...... . ..... ..... .......... ......... . ......... .......... ? ... ... . ....... ........ ......... . ...... .... ....... . ....... .......... .. ..... .... ... ....... .. I ....... .......... - - ------ . ........ .. ...... . .... . .. ....... .... ...... .............. ........... i ........ . ...... . ...... . ..... ....... .......... .. ....... ........ . .... ... ......... -.: =:.- -�.,__T t7l­­ . ...... ..... . ..... . .. . . .... .. ....... ...... .... ... . ...... . ...... . ........ . ..... . w I ***, -- " -­­', 4* ­ ....... ......... . ......... .......... ...... . ...... :­_ . ...... ...... .................... ......... ......... ....... ..... ......... ..... ... .... ................ ..... ...... ............... .......... ......... ........ ............ ..... ........ .......... ......... .......... ......... . ...... ...... ..... . ...... . ...... ... . .... _: _4 ........ ......... ...... ........ . ...... - ..... ... .. . . .. . . ...... ...... - - ------- ------- . ....... ...... . ..... . . ...... ........ Z1. .. . ..... ....... .... . .... .... ... ..... .... . .. .. . ....... .... .. .. . .... ....... . . ......... ...... . ..... ..... . .... . ..... . ....... . . .... . .... . ...... ........ .. ... ....... ......... ... ...... ........... .. ..... . .. . ........ ...... ........ ......... ....... . . ....... .......... ....... ....... ....... .... .... .. . . .... ....... . ... . .. ...... .. . ...... ... .. . ....... ....... . . ...... L.L. ..... . ........ . ... . .... .......... ....... ..... ...... ... ... .................. ........ - ....... ... . . ....... . . ..... ........ ...... . ...... . .. ... . ...... ....... oo .... . ...... .. ....... .... . ... .. .......... .... ....... .. ........ ... ......... . .. . ...... .......... ............. .... ...... ....... ..... . ..... . ...... . ...... .... . ..... ­ -'....l. .. - V,;;� - - ..... ........ ....... _: ..... _ ......................... .. ..... . . ...... .. .... .... ...... =.T ...... ..... . ..... . ....... .... . .............. ......... . ..... ... ......... ....... L .......... ........ .. ...... .... .... ...... ...... ... . .... . ...... .... . .... . ........... ..... .... ........ ........... ...... .. . .... ...... .... 747 1 7.,J 7 ..... ...... ............. .. ... ....... 7.- ... I .... -1 ................ .... ......... I.: .... I . .......... : ... - ... . ...... . ... . ... . ...... . . . ... . ...... . ...... . ..... ....... .................. ... ........ ........ . .... ......... . ....... ....... .... I . . ...... . ..... ..... ..... 1: -- ---- ... ...... . . ..: -.7.4 .. . . . . ... ...... - . ...... ....... ..... . ...... ...... . . ...... ... . ...... ..... . ..... ..... ... . ... ... . ... .... ....... . ..... . ..... . ...... .... . . ... . ...... . ..... . ..... . ....... .. ....... ..... . ...... .... ......... ...... ..... ... . ..... .......... ......... ...... . . .... . . ...... . .. .... .. ..... . ..... .......... .. ..... ..... ... ..... ... ........ ................. .. ........... . ...... . .. ........ ... . .. ... ......... ...... - ......... .... . ...... ....... . ........ ....... ... .... . ..... ..... ... ...... ..... ..... ......... ......... .......... .... .. .. . . ...... ....... . ..... .. ..... 1 1, 7 ...... ...... ........ I . ...... . - :..i - , .... ..... ..... ...... .... ........... ............ ....... . ........ ...... . .. .......... .......... .......... ....... .......... ....... ........... ......... ........ ...... ....... . ..... . ...... ... ..... . ..... .. . .... .. . ...... ...... .... ..... --- - --- .... .. ... . ..... ... . ...... . ...... . ..... . ....... .. . ....... ........ .... . .. I ........ ...... ................. . . ....... .......... ... SL .... . ..... . ...... ............. ...... ...... . .................... . .... . ..... - - - ... : . -J... . ...... ........ ...... . . ..... .... .... .... .. . ..... . . ...... . ...... ...... ...... ....... ........ ....... ..... . ....... .......... .......... ....... . ....... ... .......... ......... ...... .. .... .... .......... -FE ...... ...... ..... ...... ... . ...... . ..... ..... .... .... ..... . ..... . .... ...... . ..... ::4 . ..... o4 ....... ... . ..... - ------- .......... ........ .... . .... ... . .. ..... :.-7.... .... . ... . ..... ...... .......... ......... f ....... . ....... . ... ... . ..... . ...... ........ 7 ..... 4 ...... ..... . ....... . ..... . ...... . ...... ...... - - . :. , �%' - ....... .. .... ... .. . ... . ...... ..... . ...... ...... ........ ...... . . ..... Y:..: ................ ......... ...... . .... ....... ... .. . ..... . ...... . . . ... . ...... ... ..... ...... ..... . .. . ... . ....... ...... .... ... ...... . ...... . . .......... ...... ... ........... i ....... .......... .. . ....... . ....... ..... ..... .. ..... ...... ... . .. ... .... .... . . .... . ..... .... . ..... ...... ...... .... ...... ..... ..... ...... .... ....... . . ......... ......... .. . ...... .... . .. ... . ........ ....... ... . ....... . ............ ... .... . ...... ....... ......... ... ...... . .. .... . . ..... . ...... ...... ..... ........ .. . .... .... . ..... ....... . ...... . ..... t*.-: r-- ­ - - * - , ­.... - , ­ . ....... ...... pi ..( 77F ....... ........ .... ......... ....... ....................... .... ......... -tt .... ....... ... .. . ...... ....... ... . ... .. . ....... . ...... ..... . ......... ......... . . ....... ...... . .......... .......... . ... ...... .... ..... ...... . .. .... . .... .. . ..... . . ...... -- - ---- .......... ........ I .......... ... ... . ....... . ...... ...... ....... ......... .... ......... ...... .......... ... ... . ...... ....... . ..... ... a ................ .......... . ..... ......... ... . .. _�zt - :.� . 1 11 Z: i -_--_l-- ­_l** :: ...... . ....... ... . ........ ..... ....... . ...... . ..... . ...... . ....... .. . ... . ........ ... .... . ....... . ........ .... . .... . . ....... .. . ....... ...... ........... .... .... .......... ........ ...... . ......... .. . ..... . . ....... ......... ........... ......... 4 . ........ ....... ....... ........ .......... . . ....... . ....... . ..... ........... . .... .. . ..... ........... ............... ....... ........ .... .... ......... ......... ...... .. . ...... .... . ... .. - ......... ... ... ..... . ....... ......... ...... ....... . ..... .......... ..... ...... .......... -------- ...... ...... .................. ...... FZ_ ......... ......... ... ........ ......... .. . .. ...... ­� .... ... .......... T-- ............. ........ I ... ......... A ......... ...... ........... . . ..... ...... ........... ------ ......... ... . ..... ..... ........ Ul ... . .... ........ .... ...... ........ .. ..... . ............. I . . .... ....... .......... . . ....... .. ........ ......... .. ..... ...... . . ........ . ...... ........ . ..... .. .. . ....... ...... . ....... . ....... . ..... . ....... ....... . ...... .......... ...... . ...... . ... ......... . . ....... ........ ......... ....... . . ...... ......... ....... _; .... . ....... ....... ......... ......... ......... .. . ...... . ..... .......... . ....... ....... .......... ........ .......... ..... ... .......... ; . . ...... :: ... ... ......... ... . ...... .......... ......... ...... . .. .... . ............... . ..... .. a ..... . ....... . ...... .......... .......... ........ ........ ......... ... .... . . ....... ...... ....... ......... ... . ... .......... ........ .......... .... .. . ...... ... . ... .... . ...... lif ... ..... 1p. ....... .... %'% . ....... ...... . ..... . ...... . -,. -1 -- ------ - - --- ......... ...... . ....... . ...... ....... ....... -- - ----- . ...... . ...... . ....... -- ----- - ...... . ..... . . ...... . ...... ....... .. . ... .... . . .... . .... . . ..... ........ .. ........ 2 64 0 0 ez -2 5; 700 1 ',8.:+.00 0 00 -:2 3 00 24+0-0 19+0 2'0 +0,0 21 U u t's. w DELTA. RAW US LENGTH TANGENT, 0. 90015-140" 500.0,0 787..68 5.02-29 1 1003"40" 518-00 1.00-00 50-16 15000"12" 85-03 11-20 20043"581" 85-03- 30 877 1.5 55 526-00, :'60. 00 30-03- 200 43"' 5.8*" 8 5 -.0 3 30-77 151. 55� 150 00' 1 '2" -85 03 -�22-27 11--20- 25003"59" 518-00 226-62 115-15 10024,108" 518-00 94-04 47-15 100 15000`127 .85-03 .22-26 111-2.0 20,043."11518" .-851-s.93 30`77.* 1. 5.'-.55'. 526.- �00 60 U-00 .30 03� 200 43." 58" 85 03 30-77 15-55. 15000112" 85-03 22-26 11-20 07044134" 518. 00 70-00 35-0.5 AMERICAN PUBLIC WORKS -ASSOCIATION,- SOUTHERN CALIFORNIA CHAPTER. PROMULGATED BY THE LOCAL DEPRESSIONS.' STANDARD PLAN STANDARDS PUBLIC; WORKS INC., GR EE.N!2160K. COMMITTEE AT CATCH: BASINS. -313 REV 1"6 I "SHEET i. OF 4, I USE WITH STANDARD SPECIFICATION&FOR PUBI.,IC WORKS CONSTRUCTION N OT E ALL EXPOSED EDGES SHALL BE ROUNDED TO A 15 -mrn (HALF INCH) RADIUS. 2.THE CURB FACE AT POINTS A AND D SHALL BE THE NORMAL CURIB FACE OF THE: ADJACENT CURB. THE CURB FACE AT POINTS B AND C SHALL BE THE-NORNIAL CURB FACE OF THC.A'DJACENT CURB PLUS H (SEE-APPLI-CABLE CATCH BASIN, STANDARD PLAN). 3 IN EXISTING STREETS WHERE NO PAVEMENT REMODELING IS INDICATED THE ELEVATION OF THE OUTER EDGE OF THE LOCAL DEPRESSION SHALL MEET THE FINISHED STREET SURFACE. 4. IN NEW STREETS, OR IN EXISTING STREETS WHERE PAVEMENT REMODELING IS INDICATED: THE ELEVATIONS OF POINTS F AND G SHALL BE SET Hi HIGHER THAN THE GUTTER FLOW LINE ELEVATIONS AT POINTS A AND D, RESPECTIVELY. THE ELEVATIONS OF POINTS P AND R SHALL BE SET H2 HIGHER THAN THE GUTTER IFI.OW LINE ELEVATIONS AT POINTS B AND C, RESPECTIVELY. THE ELEVATION OF POINT S SHALL 13E SET 1-4. HIGHER THAN THE FLEVATION AT THE NEAREST GUTTER FLOW LINE WHLRE rHLIRE 1'%->' NO GUT11-13 AWAC, XNT TO THE. LOCAI DEPRESSION, THE [I_rVA'TI(:)N or "01w SINAI I_ RE: `ET H HIGHER rIAAN Iff ELEVAT-I'l-IN Al THE MEARES-) TOF OF CURB - I', I hi F N" 1r1I\j S, H NUILD ON THL IIN0.1LOT 11, NOT]70 ON TI -Il' 4 N,�j N 0 1 ID ON HM PROM'Cr I'IANI;. NOT171 - C 1* 0.) 1.- C I' III. Alva; c) N TII fit tai f'I'.t1tl V%'(; CA I Gli LIAS I N W FOR ONEVATC11 (.IA:;IN 0R INO WAI,A., FOP MUTIFILL CATCH Umili,11,011 THC TIIWKt4F.SS OF THE LOCAL DEPRESI-310N SHALI, BE -100 6. DIMENSIONS SHOWN ON -THIS PLAN FOR METRIC AND EN61-ISH UNCIS ARL NOT c I L Y E 0 U A 1. VALUES. IF MErRic UNITti ARE USED, ALL VALUES USED FOR CONSFRUCTION SHACI�_ �;RE METRIC VALUES, EXCEPT. REIN.FOR("IN'13 BAIR SIZES IN ENGLISH LJNIJS MAYBE SUBSTITUTED r�011 METRIC BAR SIZE -S. IF ENGLISH UNITS ARE USED, ALI. VALUES- L.Ic,-L_D FOR CONSTRUCTION S , Pi . (A L L BE ENGLISII VALUES. AMERICAN PUBLIC WORKS ASSOCIATION - SOUTHERN- CALIFORNIA CHAPTER S IA1`4 DAI(D PLAN LOCAL DEPRESSIONS AT CATCH BASINS 313-1 DIG�LE ► T = ==== S110M CONSTRUMON M DwR.O TSHOT COMMENCE WITi�IT TWO YEARS OF TM DATE OF APPROVAL SHOW HEREON AM FORM IN A DILIGENT MANNEEL THE CITY ENGBITEER MAY REQUIRE REVISIONS TO THE PLANS TO BRING THEM INM CONFORMANCE WITH COND17WNS AND STANDARDS IN EFFECT 171M ti IrT, COURSE MAXIMUM NOTES: 1. CONCRETE AND CONMDE BLOCK SHALL BE PER SSPWC. 2. CONCRETE BLOCKS SHALL BE PLACED WILE THE FOOTING IS .7 STILL FRESH. ALL CELLS TO BE FILLED SCUD WTH GROUT MD RODDED $0 GROUT IS MONOLITHIC WITH FRESH FOOTING. 3. OMIT MORTAR FROM VERTICAL JOINTS IN FIRST COURSE ABUVt FINISHED GRADE ON 812 MM (32") CENTERS FOR WW" HOLES. 4. POUR FOOTING AGAINST tJNt)15'RJRB[,*D NATURAL SOL 5. NO LIVE LOAD SURCHARGE ALLOWED ON RETAINED SOIL 6,' TOP OF FOOING MAY BE PLACED PARALLEL TO PARKWAY GRADE if STREET GRADU IS RELATIWLY FLAT AND UNIFORM, (MAX, 7. DIMENSIONS SHOM (*I. THIS 'PLAN FOR METRIC, AND ENCUSH UN17:; ARE NOT EXCATLY EQUAL VALUES- If METRIC UNIN ARL USH), AIA VALOCS USED FOR CC*45'rRUCTION SHALL fit. MUrRIG V IJNITr5 ARL; USED, ALL VALUES weirr) rop C045TRUCTION SHALL I)[, INGUY-1 Vk.(Ir. ;. AMERICAN PUBLIC WORKS ASSOCIATION - SOUTHERN CALIFORNIA CHAPTER NWIVIIJI.CiAlfrll Me DR.' !IIANDA14t) PLAN 101101 IG VA)ilKf4 NIAM)AI40ri IN(; CONCRETE BLOCK SLOUGH WALL METRIC COMMItier 100 .622-1 (it V 10011 QSE WITH STANDARD SPECIFICATIONS FOR PUBLIC WORKS CONSTRUCTION SHEET 1 OF 1 BENCHMARK CITY OF FONTANA - BENCHMARK NO. 378 CIRCUIT, NO. 67-5, 30D NAJL IN P.P. 9NO #) SW COR. BEECH & FOOTHILL ATE 9/67 ffXVATj0N,*, 1267.8 0 LO N O CN LO CN. LO 00 Ui Ui Ili CN C4 Cq US, rn rn 1*1 C-14 cc) 20 20 �2) G2 12 12 1� Cq LO 00;N CN n CNOO— Cq rn co ad 04 04 Ul cx� n CO (n vi CN co LO c6 L6 u-) (6 uj 24 co ul r�- Lo r,- co to 00 (0 U-) + 04 04 CWD ZWE + N CN + CN + Cq + C-4 C-4 + C14 04 Q n n Cr C14 -4 0411 1 C14 I I CS1 04 co C6 C14 C-): C%4 CATCH, BASN # 1 STA -22 AM A 4 LOM Dff& CASE "Aft LoVy *M;16 '&4T SCALE VILLAGE_,PARKWAY. a. CONSTRUCTION NOTES 0 CONSTRUCT 4.5" AC PAVEMENT OVER 12 'COMPACTED NATIVE SOIL 19 SAWCUT, REMOVE & REPLACE PAVEMENT PER CITY OF FONTANA STD. DETAIL NO. 131 20 SAWCUT & REMOVE CURB .& GUTTER 21 CONSTRUCT LOCAL DEPRESSION PER APWA .STD 313-1 CASE A AS SHOWN HEREON 23 SAWCUT, REMOVE & REPLACE EXISTING PAVEMENT 24 REPLACE DAMAGED LANDSCAPING AS NECESSARY 6 Uj + cn,.- CN i VILLAGEPA'MWA 19 CAI V If 014 :L EXIST,.T; C 8- CURB & GUTTER 24f ----� r- -- N EXIST. SIDEWALK CP EXIST. RIW z SEE DWG NO. 1510 C-1 C.) FOR STORM DRAIN LO Cal Q0 000 2 -q- Z z po + + + 11 04 CO or_ U (n C--4 ck:: C—N FU 21 (0301#1 VILLA GE . PARKWAY SCA L. 1 20' Prepared By: - ALLAAD ENGINEERING w Civil Engineering - Land Surveying - Land Planning 8253 Sierra Avenue Fontana, California 92335 (909) 356-1815 Fax (909) 356-1795 Z, C) 3 David S. Hammer, R.C.E. 43976 f Date (expires 6/30/2005) Ess CITY OF FONTANA, CALIFO�.� SRNIA X 12 11 _7 "AM TRACT NO, 13325-1 - - !. roti DRAWN 'BY., SCALE: rn W U No. 43976 mPHWIRC APWA STANDARD DETAILS AS NOTED. �?z w 06 Exp, 6/30/05 DESIGNED BY:, LOCAL DEPRESSION DETAILS DATE: RC MAY 2003 C VIii- CHECKED BY APPROVED BY. DRAWING NO.: OF CALIF RC CITY ENGINEER R.C.E. 51152 1508 M: \DWG\l 5908\SD\LDET02.DWG RC e �,�® R % mm 15 ALL STATIONING REFERS TO CENTERLINE ­'OF STREET. rj BE SET.'. BY THE ENGINEER TO ENABLE.THE* CONTRACTOR-. TO CONSTRUCT THE WORK TO THE -PLAN GRADES-, 17- ALL PIPELINE OR SUBSTRUCTURES: OFANY' KIND AND :ALL -.TELEPHONE OR' POLESF:wATER METERS,..: VALVES..HYDRANTS,' IRRIGAT-ION-STRUCTURESol—, ETC.: .SHOWN '.OR NOT.; SHOWN -.-ON'TH IS .,-PLAN AND'. LOCATED.- W ITH 1 N AREAS, TO BE IMPROVED AND I.N.TERFERING..WITH.CONSTRUCTION't -SHALL,.BE RELOCATED BY 7TH./ ... I M: \DWG\15908\SD\LDET03.D' ............. ...... . . ............. ...... .. . . . ..... . . ......... . . . . ... ... ... .. . . . . . ... ..... ... ... ...... .... .. ...... ...... ... . ...... .... ......... ....... ... .. ..... ....... .. ...... ... .... . .. . .. .... . ... . .... ..... ..... ... ... . ....... ....... ....... . ... ; : .... ...... . ..... ... ... . . .. ..... ....... ...... ...... ... . .... .. ... .... ... ....... ...... ..... ... ..... % ....... .: .... :::.:� ..... ....... . ...... ....... ... ......... . I ....... . .. ...... .... . ....... ... ... .... .............. ........ . ...... ........ .... ..... ;— .. . .... : ; . : . ... . ... ...... ...... . ..: ; ..: .. ..... ..... . ...... ...... ..... . ...... ..... ... ..... ....... ..... ..... ..... ..... .... . .... ..... . ..... . . ...... ... ..... ....... I ....... ... ... ...... ..... .... ...... ...... .... ... ....... ........ . ..... ....... ....... . ...... .... ... ... ....... ...... ....... ..... ...... ... ... .. ........ ...... ....... ...... .... . ................ .. . ... ....... ........ ...... .... .... .. .... ... ..... ......... . ..... ....... ... : - I.... . ...... .... ........... ...... ..... ..... .. ....... ........ .. . ...... ...... . ..... . .............. .. .... ....... . .......... ..... . ...... ......... . ........ ... ........ .......... .... .... 4 ....... .............. .... ....... ....... ....... .. .... ..... .. ....... ....... ... ..... ... ..... .... ...... ................ .... ........... ... ....... ....... . ....... i .. ....... ....... ...... ..... ...... ........ .... . .. .. ........ .... ..... ...... ... ... ... ..... ..... ....... ..... ... ..... ....... .... .... . ....... ..... ... ...... .. ...... .......... . ..... ....... ... i::�*.'.":..::",.*.,.,.:::*:.I..:: . . ..... ....... .... ... ... ....... ......... ... ..... .......... ....... ....... ... ... . ....... ... ....... ...... .... ...... ...... ...... .. ...... .......... ......... . .... ..... . ....... ...... .... .... ....... ...... . ...... .... ...... ....... ........ ...... I. ........ ...... ....... .. ... ........ ...... .. . ..... ....... ...... ...... . ..... . ...... . ...... ...... .... . ..... ... . .... ...... . ..... . ....... . .... ..... . ...... ...... .... .. ... ...... . .. . ...... ... ...... .... .... . ..... ........ .. ... ... ........ ....... ... ....... .. ..... ..... . ... . ..... . ..... . ... . ........ ... . . .......... ;...: . ..... ...... ..... .... . ...... ..... .. . ..... ....... . ....... . ....... ........ .......... ...... ......... ...... .. . .... ... . ... . ....... ... . ..... . ...... . ....... ...... .... ... ....... ...... ........ .... ....... .... ...... ..... .... .. . .... ....... I..... ..... .. .. ...... ... ........... ............... ..... ....... .... ... ..... ...... . ..... .... ... ....... i ......... ...... ... ...... ....... ... .. ....... .... .... ...... .... ... ....... .. ............... .... .. ..... .. ....... ........ .. . ............... ......... .... .... .J.. ... .: : - I : � , * .'-, .. I ........ .. .... ...... . ....... ........... ...... .... ........ . ..... . I- . ..... . .... .... . ... ---- - -- .... ... ........ .... ....... ......... ; ..... . . ....... ..... .... .......... .......... ..................... . ....... . ..... ..... . ........... ..... .. .... .... ... ....... ... I. ....... ....... .... . ...... .. ... ........ ....... . ....... ....... .. .... .... .. .... . ...... I... ...... I ... ... ....... : ...... ... . ....... .... j .... , .... ...... ... ...... ........ ...... .... : . ..... ... .. ...... ...... .......... .......... ........... . ................ .......... ........ . .......... ......... . ....... . ...... ...... ...... ....... .......... ...... ...... . ... .... ... ...... ... . ....... I ...... ................ .............. ... ...... I ......... ....... ........ ...... ........ ....... ........ ....... ......... ........... ...... ....... ...... ...... ... ...... .... I . ............ :T:::= ....... ... . .......... ....... .... .. . ...... ....... ...... ........ ..... .. ........ ... ... ............... ...... .......... ...... .. ...... .......... .... ...... .......... ...... ... ... ..... .... .... .. ................................ .... .... ... ...... ........ ..... .... .. ....... ...... ........ .... .... . ....... .... ... ........ ..... ... .......... ........ . ..... .... ........ ......... ............. ....... ...... .... ... .... ....... . . ..... . . ....... ....... ....... ...... ...... ... ....... ....... ...... .......... .......... ....... ......... ... ....... I.... .. . ....... ....... ........ ....... ..... ....... ........ ..... ..... . ...... .. . .... .... . .... . ... ... . .... ..... . . . . ....... ..... ..... ..... ............ I ...... ... ......... ........ ...... .. ... ..... ...... ...... .... ... ... --- I --- ........ . ........... ...... .... ....... r ....... . . ..... .... . .................... ....... ...... ... .......... ........ .... ------ ...... .... ..... .. .... .............. .... .. ....... ...... ... .. ..... ....... ... ....... .... .............. ...... ......... ..... ....... ...................... . ........ ....... ....... .......... .......... z ...... 0 .:: ... j- ..I ...... ......... ......... ......... ..... .. . . ..... ........ 11 ...... ......... ...... ..... . ...... ............ .�: ..... . . ..... .. ....... ... - - ------ ..... .......... ........... ....... ....... ... .. .... .. .......... ........ ..... .......... r ...... .... ...... ..... ...... .. ...... ................ ..... ...... ..... ........ . ... ........ ......... ...... .. .................. ...... . ...... ; ........ : . ......... ....... .. .... ........... ....... ...... .... .... - -I ..... ..... ......... ............. . ......... ........ .. .......... .......... ......... . ... ...... .......... ........... ........ ....... ..... ... ... ........... ........ ... .... ... ....... ... ....... . ...... ....... . ...... . ..... -- ---- .. .......... .... ..... .......... ............... . ...... .... ..... . ............. .......... ........ .............. . ...... . ........ . . ....... . ... ..... ......... ....... . .......... ....... .............. . ...... .... ...... .......... . .......... .. ......... ....... ..... * .......... I.... .............. t ....... ......... ......... ....... ....... . ..... ........ .. .... .. ­* . - 1 .... ....... ... ... . ... .......... ....... .... . .... ........ ........ ......... . ....... ....... . ... . ...... ..... .... . ... ... . ... ....... ........ . ....... ......... ...................... ........ ... ; ...... .... ­ _... 2 . ..... .... .......... ......... .......... ... . ..... ....... ... ......... ........... ....... . ... .... ...... ..... ..... ....... .... ....... ...... ......... . ....... .. . ..... ........... .......... .. ...... ... ... ......... T ...... . ...... .... ...... .... ... ........ ....... ....... .. ... ........ ......... . ..... . ............. ..... . ..... ........ . ..... 7-, : - � t. - ; ..... :­ *11, ­­_! :_... ...... ... ... ........ - ...... ............ . . . .... . ...... ....... . ..... . ... ......... .......... ......... ..... .... .......... ........ .............. ...... ......... ........... ........... . ....... -- -- ----- ------- ................ ..... .... . ..... . ........ : .... ..... .. ..... . ..... .... ..... I ..... i .. ...... ...... . . ...... .......... ... . ..... :..*j=:.:- f.- . . _ .... . ....... .. ....... ....... ... .... ... .. ....... .. .... ....... .: .... . I > ..... . ......... ........ .. -- — ----- I......... .......... ........ . .......... .. . ..... .......... ......... .......... . ...... .. .... ..... ....... .... ; ... ...... .......... ......... ......... ... .... .... ... .......... .... ............... -..4. .... ...... ... ... ........... ........ ........................... . _: ..... ........ ; ......... ...... I....... ..... ......... ...... .... ........... ....... ........... ------- .......... .............. .......... ... -- — ---- . ..... . ..... ... ..... . ........ . ....... I..... , I.... I... . . ..... ;.... . .1 ..... ..... ......................... . ......... .......... .......... .......... ...... . .......... ...... .... . . ............................... ........ . .......... ....... ....... ...... . ....... . ... ....... ........... : .... ..... ...... .... ... .. ...... ...... .... ...... . ...... ... I..... ........ ... ..... ... ...... ...... .......... ......... ........ ... ............. ..... ............... .. .. ....... ............... ....... ....... .... ...... ... . ... ... .... ... : ... . ..... . ..... .... ...... ..... ..... ......... ...... ... ..... ..... ...... .......... ......... ......... ....... ... , .... **:::: ..... A . ...... . ....... ..... .... .. ...... ..... . ...... .......... ....... ........... ... ...... . ...... ...... ....... ... ..... .............. . ..... ......... ....... .. --- I -*.*.,..-. := ---:. -: 1*­­*�_­,_�,_ .......... ... ...... .... . ..... . ...... ....... ..... .. . ...... ...... ...... .. ... ................ . .......... ..... ..... ..... . . ....... ............... ... . ..... I .......... ....... ..... . .. ...... ...... ..... ................... .... ... ..... . =­* .... ­ ." . ... ..... .. . ..... . ..... 1. .. . ........ ......... :1:� .. ....... ........ ...... . ... ......... ... ... f .. :: ... ­­ . . .... . ..... .......... ......... - - ------ ............... ........ ......... .. . .... . ..... ....... . . .. ...... ...... ....... .......... .. .. ... . ....... .... ...... ..... .. . ..... .... . ...... ......... ... I . ...... ........... . . ....... .... ....... ..... .... - ------ ......... . ...... ........... . ..... .... .... . ....... ; ...... I ........ ............ 1. .... . ...... . ...... .. . . ..... ....... .......... ........ ... ..... . ..... ........ ... ...... ...... ................... . 1---:-l-...: .... ...... ......... ..... ... . ...... .......... I - I :: .. . ........ ..... ... . .... .......... . ........ ......... ... .. ..... ... .......... ...... ....... i� ...... -.*.*.'..l ..... ......... 4 ....... i ................... .. ....... ...... . --------- - ----- ...... . ........ ..... ....... . ...... ..... .... ......... - - ---- - ­-­ - ----- - . ....... .......... .... ........ ...... ....... .. j..... ..... ........ ... ..... ........ .. ...... .... ...... .... . . ............ ........ . ------ .. .......... ........... ......... .. ..... .... ... .......... ... .... . ..... . ... . .... ....... . ..... ......... .. . ...... ........ .... ....... . . ..... .... . ....... ...... . . .... ............ ........... ....... .................... .... ......... .. . ........ ....... ...... . .... ......... ... .......... ....... ... ... .... ... .............. .... ..... ... .. ...... .......... . ... ...... ...... .... ...... ................ ...... ..... ....... . ..... .... .. .... ------ .... .. .... ..... .. . .............. ...... . ...... ...... ...... - — --------- ....... .... .......... ............ .. .... .... . ... . ..... ------- -- I ... ....... ....... ... . ......... .... . .... .......... . ..... ......... .. ........... ....... . . ........ .... . .......... . ....... ... ... ..... ....... .. r .................... . .... ... I .......... .......... ..... . ..... ..... .... ......... ...... I- .. i ................... ... ..... ............... . ........ ...... ......... ...... .. ....... ....... . . ............... - ------------ - ... . ... ....... ........ - ... ------- ......... .......... ........ ............... . . ....... ....... ..... ... ...... ........ . .. ..... . ...... . ... ...... .......... .. . ..... ...... ............. ... . ... ............... .......... I.... .. . ...... ...... - . ....... .... .... . .. .......... . ........ .... .......... ... .. ...... ......... ... . ... . ...... ... ... . ...... . .. .. ..... .. .. . ...... I . .... .,*::.-..::, I :::*.,:.,. 4� ... .... . ..... . ....... t----- .... .. ..... ......... ...... . .. ......... 4. :: :­ *:",: .... : .......... ... . . ...... ...... .... . ...... ......... .......... . . ....... .. .... ; ---- -- ...... ...... ...... . ..... ... ;� ....... . I __ T a ........ ....... . ...... . ....... ...... .... ... ....... ...... ...... . ....... .. ... ...... .. ...... ..... . .... .... ......... ... I ....... ......... ....... ... .. ...... ..... . .. . . ...... ...... ... . .. . ... ... _: . ........ :. ... . ..... l-- .... : I ...... ......... . ........... . ..... ........ -- ------- . ................. ........ ..... . __ :.. ": . * ... -.:::- - .1 . ..... ..... .... . .. ... . ... ... I --- — --- . ..... ... . ...... . ... ........ .. ..... ..... .. ....... . ........ . ..... .. ... ... . .... . . ............. .......... ......... ( ......... .. I . . .............. - ........ ..... ... ......... ........ ... ... . .. .. . ..... ... . ..... . ......... ...... . .... .... . .. . ....... ..... �71 .............. .. .. . ..... . ..... . ... ..... . .................... .......... I ......... .... . ..... . ... .......... ...... . ..... ............... .......... ........ . . .......... .. ... ... . ........ .... ... .... . ... ......... ...... .. ... ...... .... ..... ... ........... ...... ........ . ...... . .... . ... .. . ..... ... ... . .... .. ... .... . .... ......... ..... . ... . .... ...... ...... ... ....... .... ........ .. . ... . ..... ... . .... . .......... .... ....... ........ ........ .. ...... ...... .. ..... . ............ .......... ........ ..... . ..... . ..... ...... .... .. .......... ......... . ..... .... ..... ........ .. ......... .......... .. ...... ...... ....... ...... . ................ ......... .. ........ . . . . . ............ . ....... .......... ....... ...... ..... ....... . ..... ...... .... ...... ... ... . . ...... .... ..... .......... ........... ............... ......... ....... ..... ........ ... ... . ..... ... .... ....... ....... ....... .. . ..... ...... . ..... . ...... :_ .... . .... ..... - . .......... .... .. . .... . ..... .... ......... . ....... ..... ...... ... ... ...... ........ ........ . ... ..... ... ....... . .. ...... .......... .... ....... .... . .... ......... ....... . ... . ...... . .... .. . ......... ......... .......... ................. --- . . ........ ......... .... ....... .. ........... ...... .... . ......... ... ......... ......... . ...... ....... ...... ......... ... .. . ..... ...... ...... ...... ....... .... .... ....... . .... . ..... . ...... . ..... ...... .......... ..................... .... .... . ... J_ ........ 4 ...... .... ... . .... ........ ......... ... .. ..... .................. ......... ........... 7� ...... ..... . . ..... . ..... ... ......... . ...... ....... .. . ... . . ........ ...... .... . . ........... . ...... - ------ . . .... . .... . ..... . .. ....... .... .. .......... . ..... ...... ... ...... ......... ............ ........... . . . ....... ... ....... ........ .. * ......... ... ... . ...... ... .......... . ...... - . ... ........... .. ... .. ....... . ..... .... . . ..... ...... ...... . ...... ........... ............. . ......... .... ...... - ......... ....... ..... .... .... ........ ... .................... ...... .. ........ ....... ..... .................. .... . .. ... . ..... . ... . .... ..... .. ..... --*.l:*.*" . ...... .. . ..... ....... . ..... . .... ..... . ......... ..... .... . ..... _. - ... . .. ­ .." : _ - - - A...*.- --.- .- , , * * .. .... . ..... ..... — ... . ..... . .. .. ....... . . . ..... . ..... ... ... ................... ..... ........... . ......... . ... . ...... .... . ..... . . ...... .. ....... ..... ......... .... . ........ ... ­;_.... . ..... . ......... ..... . . ... . . .......... .. . ..... ... .... ............. . ...... 7- ... ... ... ........ . ..... ...... . ..... . ....... ... .......... . . ..... . ..... .. . .... ....... ...... ... ........ ....... ......... ......... . .... ......... ......... .......... ... ... ...... ...... ......... ........ ... .... ........ ...... ...... .. .... .. ... .... . ... . . ....... ....... ... ........... . . ...... . .. -------- -- - ----- ..... :. 1. .... . .. ... .... ... ........... ... . ..... .. .... . ... ......... . ......... . .. ..... t : .... . ... . . ....... .... .. . ...... ... .... ....... . .... 77 . ..... ....... . ........ . ....... .. ...... ....... ..... .. .... .... . .. ..... .. . ... .... ... . ......... I ......... .. ....... ..... . .. .. ....... .. .... ...... .. ...... ....... .. . ... ..... . ....... ..... ... 1. ..... ..... .......... . ....... .......... . ­. ­ .... . ..... ...... ....... . ......... ............. ......... ... - ----- ... . . .... .. ....... .. .. .. ... ... .... .... .. ...... . . . .... ....... . ........ ...... . ........ .......... ...... ...... . ............ .... . .... . ..... ...... ....... ... . ... .......... ....... .. . ......... .. .... . . ..... .... . ..... . ...... ..... .......... . ..... . ......... ........ ........ ........ ....... .. . .... .... .. .... ... .... ... ...... . . . ..... ............. ......... .... . ... ­ I .41 ... I ..... !4 .... .... .... .. ... ... .... . .. . .. . ....... .... . ..... ......... ................ ....... ...... . ....... ...... .. ..... ....... ..... . ... . ...... ...... .......... ........ .... . .......... . .. .......... ........ ...... ..... ........ . ..... . . ..... . ......... .. .... ........ ... ...... .......... .. ..... .......... .. ........ ....... . ... ...... ... ..... ..... .. ...... .... ........ ....... ...... .. . . .............. ...... .. . .......... . .. ......... ...... . ....... ...... ....... ......... :.. ­ .. ­ .... .... -1 ...... ­ . - .. _. -1. _. ... :-. ...— ..... ....... ............ . ........ ....... ..... ......... . ....... .. ........... ... .. ..... . . ......... ............ .......... ....... . .. ....... .......... . . ...... . ........ ...... . ... . .......... .. ......... .......... ...... ..... ...... ........ ...... . . ....... .......... ....... .. ........ ... ....... .... ... ..... ... . ..... . ......... ...... ....... . ..... :, : ...... I I .... ­ 4- .......... ........... ...... ... ... . ..... .... .. .......... .................. ...... .......... ............ . ...... ...... .. . ...... . ..... .... .... ;. .................. ... ..... . ... ... ...... . ... ...... ..... .... . ..... . ........ . .......... . ..... . ..... - ------ . ..... . ...... .... ....... ... ....... ....... ...... . .......... ....... ........ ....... . ......... .... ... .... ...... ...... .......... . . ....... ... .... . ........ ........ ... .... ..... ........ ....... ..... .. ... L ...... . ... ......... . .......... . ..... . ..... .... ... ..... .......... ................ ....... . ..... . ............... .............. . ...... ...... . . ...... . ...... -7 ....... ....... . ...... ....... .. .. .... ........... ...... ... . . ...... ...... . ...... ....... . . ........ ... ......... . ............... ........ ......... .......... .... -:.-. =: I.: = _ . . - I �... I .... - .......... I ..... . ........... ........ . ....... ... ..... ..... .. ........ .. ... ....... ..... . ..... .. .. . .............. . ........ --------- T::. = ...... ...... i.: ...... ...... ........ . ..... .. . ....... . . 7 . ........ .... ...... ...... ...... . . ..... .... . - .. ...... ... . .......... ..... . ..... . ...... ... ....... ..... ... .... .. . ..... ....... .... .... ..... ... $ ........ ......... ...... ....... ...... ... ... . . . I ... j .... . ....... ....... ........ . ...... ........... I I I -7 ................ . ... ...... . ..... ......... .... . .. ... ...... ... ...... .. .......... ... . ..... ..... ........ . . ..... . ....... .... ........ ...... . . ......... . . ........... .... ...... ... .. .... .. .... .. .......... ----- - --- . . ..... . ..... ... ; ...: !.. - : .... --i;. ..... . . ..... it..... ......... . ...... . ......... . .... . ..... .. ......... .... ... . ..... ....... ... ...... . ....... ........ . ... ... ....... .... ...... ....... .......... ..... . ....... ........ ... ----- --- . ......... ........ .......... ..... ........ ... ....... . .... - .. ....... . ...... ..... ..... . ....... ­ ­ , - . - .... ... -_i ... .. li ...... 1. j- : . �: ......... 1.1 ....... I ... ........ ......... ...... . ..... ... .... .......... I .. . ... .. ............... . .... .. ... . ....... ---- ­- .... .. . ............ I..... ....... .......... ........ ....... ..... .... . ... ..... .. . ... . .............. ...... . . ..... ... ..... ....... . ....... .......... ...... . .. . ..... . ..... . ...... ........ . ; : ...... . ...... . ....... 11 ...... .... .. . ...... ...... . ...... - ------- . .... ..... . . ...... . ... .... . .. .... ..... .... ......... .. ....... . ..... . .......... .... . . . .. .. .............. ....... ...... . ....... . . ...... .... ...... ...... . . ....... ........... .... .... . . ... . ...... ... .... ............. . ....... .... . ...... .... ........ ........ . ..... . . ..... ........ ...... .... .... .......... ...... . ....... . ........ .. . .... ..... ....... . ...... ..... .. ..... .......... ........ . ...... .... . . ......... .... . ...... ..... . . ....... ..... . ...... ..... ....... .. ..... . .. ..... .. ... .... . ... .. ...... .... ..... ...... .. .... .... . ... . ..... . ................ . ...... . ... . .... .... .... ....... ........ ..... ...... .. ...... .... . .... ......... ........ ... . . ...... . ..... .......... . ...... ............ ....... .... .. . ..... ........ ...... I.... . ....... ...... ..... ........... .. .. ...... .... ........ .. ....... ...... ...... ..... .... . ............. ....... .... .... ........... .... . ...... . ....... .... . . ...... .......... .... .. . . ..... . ...... - ------- . . ..... . ....... ....... ...... ... ........ . ...... ..... . ....... ...... .......... .. . . . . . . . ...... . ...... .... ... ... ....... ......... ........ ...... ........ . ........... . ..... . .... .. .......... r-7 ...... .... . ........ . ..... ... . ...... ......... ......... .... .... ......... .... ........ .. ..... ....... ... . ... .. ..... .. ..... .... ... ... ..... .......... ......... .......... ... .............. ....... ..... ... .......... .... ...... ......... --------- -- ---- .... . ..... . ........ . ......... .... I .......... ... . .... .... .......... ... . ..... ..... .. ........ ...... ...... ......... . ...... ....... .. . ... ........... ........ ... ............ ...... ...... ....... ... . ..... . ...... .......... I......... ......... ......... .. ... ..... . ...... ...... ... ..... . ... .. ......... ...... ........ I I'll f t : ... I ....... ­ . ....... ....... .. ... ...... ...... . . :: ...... 1. -.:: ��- ".- -4 . .............. ....... .......... .. ........ .... .. . .... ....... ...... . ...... ....... ..... . . . . . . . . . . . .... . . ...... ... . ..... ..... ... ... ...... . . .... . . ....... .................... .... . .......... . . ..... ... ....... .......... .......... ....... .............. . .......... . ..... ................ . ...... ......... ........... . .......... ---- - ----- - ------ - ------ .. . ........ ... .. ..... .......... .......... — ------- ----- ...... ....... ......... ....... . ....... .. ... - . .......... ........... . ...... ...... .. ..... ... . ..... .. ..... I........... ..... ............ .. . . .......... .... .......... ...... ...... ............ ........... ..... .......... - ------ ------ . . . ....... ...... ...... .. . ..... ... .... . ...... ........ ... .......... ... . ..... ... . ..... ...... .. ......... ....... ...... ...... .... ..... ... . .... . ...... . ....... ........ .. ... ..... ... ......... ... ........... . ...... . . ......... ..... ........... ... ........ .. ....... ... . ..... . ...... ....... I ............ ...... ..... ... . ....... .... ... . ... . ..... . . .... . . ..... ............ .. .... . ...... ... . ...... . ...... ........ ......... ....... r . ...... i..� ..... ....... .......... ........ ....... ...................... . ... . ....... . . ..... IV ...... .... ...... .. ..... ........ ....... ... ...... .... .. ...... . ..... ...... . ....... .. . ...... . ....... ..... . . ..... ........ . ..... . . .... .... ... ---- . ...... . ..... . ......... ...... -------- ..... . .... ....... ... ----- - -- - ----- .......... . ....... ....... ....... . ...... ...... . ...... ....... .... . ...... ...... ......... ........ ...... . ........ .... ... . ... ... ....... .. ...... ..... . ... . ...... . ....... .. . . ....... ..... . ..... ---- - ------- ..... . ..... . . ....... ... ........ ...... .... .... ......... ...... . ............ ............ .. . ....... . ........ ...... .... . .. ... . ..... . .. ...... . ..... . ..... . ...... .. .. ....... ..... ------ ---- . ..... .......... ...... .. ...... .... ... . ... .. ... ........ ....... ....... .... .. I .... .1 .... ..... . ... ....... ....... . . .... . ..... . . ..... . ....... ...... ........ .. .......... . ... .. ..... .... .. ..... .... ..... ... ..... I .... . ...... . ...... . . ...... . ...... .. . ......... ........ .... ....... - ------ - .. ...... .... . .. ..... ..... .. .... . ... ...... ....... . ......... ... ... . ....... ... ....... ...... ... . ....... ... .......... ... . ..... . ...... . .... . .. .... ...... .. . . ...... . . ....... ..... ....... ..... ....... ... - - ------- 4 ... ...... . ... ..... ..... . . ... ....... . ...... ......... . .. . ... ...... .. ........ .... ........ . ........ ...... ...... ........ I ... .. ..... .... I ... .... I - .". -1 .. - .1 . . . _, 4 .1 .... I _ ...... . I f. ..... . ... . ..... .... . . ...... ... . ............ .. 1 u , * . . .. . ..... . ....... ........ ........... .... ........ ......... ...... ......... . ... ... ....... ... ...... . ...... . .......... .... .. ..... . . I., ...... .............. ...... . ....... . ....... .... ......... .. . ...... . ...... .......... ...... ...... ....... ....... ......... .. . . ....... ...... . ....... . ........ ............... .......... .. . . ..... .......... ......... ...... - . . ...... ...... -1 ...... ..... . ....... ...... ...... .... . ........ .. ......... ........ ... . . ..... ...... . ...... . . ....... ......... ........... I .. . .... I ........... ....... . ... ......... .... . .. .. ......... .. . ........ ---- - ----- ...... ....... .. . ..... . . .......... II..... . .......... . . ......... ...... ...... ............ ... ....... ....... ........... .......... ........ ...... .......... ; .... . .. .... . ....... ...... . ........ ........ ... ........ ........ .. . .... . ....... ...... .... . .... t...... . . .... ....... . ........ --- .... ........ ...... 4 ...... - . ....... ..... . ..... ............... ..... ..... ......... ....... . ......... ..... ......... X .......... a ---- - ------------- .. .... .... . ...... ..... ...... ....... .......... .......... tI/Vl ilk a r- a OR lk. A r.% I— O"%: Ia I 0-%� rl% 91% r— I PR IVATk2ENGINEER!S NOTICE TO CONTRACTOR THE EXISTENCE,AND'--LOCATION,­;OF ANY UNDERGROUND UTILITY PIPES ,..., OR STRUCTURES;::SHOWN ON ;:THESE 'PI;ANS ,WERE .OBTAINED` BY-. A SEARCH Logo, �Mlmm OF ;THE 'AVAILABLE ``RECORDS ".THESE IACATIONS„ ARE APPROXIMATE- W AND' SiIAIrIF_ BE:; 'CONFIRMED `BY `THE :'C'ONTRATOR� SO ,THAT "; ANY i J NECESSARY `ADSUSTMENT LCAN BE � MADE IN ;ALIGI N'i ;AND/0�2 'GRADE ` OF THE pROPO$ED- Ij4PROVEMENT. >THE CONTRACTOR IS, REQUIRED. TO ;TAKE: : t ' 35 DCJE PRECAUTIONARY -MEASURES .TO;PROTECT ANY UT i,ITY , LINES 'SHOWN' 3 i. OTHER .LINES RIOT -ON ARECORD ORS' NOT ; SHOWN ' ON THESE:' 'NINE, - r � . .�. . ;.• �' ;'PCEOANRSST •,;_. - - - -;I -OR:- AGR- .=WiTH' . -TION:�;:CONTR� ACT - Logo, �Mlmm I- -CONST. CA HBASINW-21 PER D�TAIL SHT 2uRTE3 PR/MRO5ELINEAsHT z� co EES THACCORDANCERUC `GENERALLY: ACCEPTED :CONSTRUCTION'' PRACTICES, ;.CONSTRUCTION CONTRACTOR l ILS, .BE REQUIRED_,; 0 ASSUME SOLE `AND 7.COMPLETE RESPONSIBILITY, FO - -JOB-SITE:: F CONDITIONS DURING :THE COURSE.,';O7 SZ S3 .5� CONSTRUCTION, -OF :THE.: PROJECT :;INCLUDING SAFETY OF':�,LL: PERSONS Z$ 8 ;. - - Z �0 AND PROPEFfTY', ; ;TfiAT� TMS 'REQUIREMENT :SHALL ;HE MADE ::TO ; APPL�t / 1 ONST. GRATE . D C.S.P. RISER INLET PER DETAIL SHT. 2 S 17 CONST. REINFORCED CONCRETE COLLAR PER D . ETAIL SHT . 2 O NO all .1000 N101111, Nr -.. -1 t - m Ell w Will 7 INN ONE ` i1 - aartt�araa. Ili' , ► _ 11 � '�ii - !� • \ a t lll�l■aa�arrl� atr _ ttaasta■aRttts■ ��i��aPZ ta���rr Jw i 7,pp—WN 01 1 N ll _ 1'INN 1 IN I Allwattt�aalAlaaar — - �taarar �! _ �► -1 rFL "WIN W -INNER ss lta�m■�Iw �� ►� 1tt�tar�*a•►� 4 a �a - ' r w► `► 1 `! f lsartsn ■aaarr 1• `r �ar.ri"i rati+.IG Pltttaslts� ttast�.�ttltltttttttttttt� �tt .. ,: �� �'sts.rl�asl��_! ataa•a,�r ��. aara��ii ■tt�u�w. a_ t• !! ;g' �TP�.'Tt,Jl� T�l.t�. �• ! l aat�■taaa�aa�■ �■ �; la�aaPsr !1a Il! lttttal��t�I. �T■wt�■a/anT � RaR um6dor` ` �' i r v ■![ a �s • T� T�la�� ara �� ' * e rP■ars �i '���� .. ! . .. rtaar� �ieoi _ aaaalttrt► MAIN !' a' i� _ i ; . r 1► i. e MOWN_ ttaaarl l�ar�lk. �� 1 'tet ♦a' " ■ a+.r�? ,. : i i! s�ttt� w��� a�i� �•�� ���e� �.�t ir�i.r� � � ��irt� ��% � ��! �� �� del - �•� tlttslr�! �a:�♦ {�----�e.��n �".� r lr+i.�i�i5q Gals J•>r� t �' A MERE - �NO r 1• ar " - !'! r s f+�; _ tater_ 7ir�a ■air ��■iii■Isilr ■tt7. • It:.ts i , �� � v �■ s + ■w� a �� aslaas a.�•^ � - �■wt�■alttttrr..� �. .+ �� 6 �; _j Ell 1, L�.. �l �1 1• .{�/_.III Wil i .vavr.����sr �_a* )• �!! t!! �■r�r• i jm` � aaRa1�V"' ast�aaa�aaas > L 1. tss ���• �� J� 1 l', �tl��� aa�C- t �•r�attsaaaTtr U a'• � • t ': ttsa>•1a� ,��'.' 1 C �aJ �_ aarar �■ �■■�ta�a�=a�■lrt��■t�tala�a�t�t�a■!� � >. �Irs.� { �I;y tea_` s>•�ss���a�■aa��rtts=�: �� asiaertn ss�iY/� * , FR taassal �lPl�n �11Is#Is r.staa�i _ �t � ts. lam" t• �rls� ��,;���� i, ' t.�ti ,. asali, rl��i� !■� ✓ �_ ■ 1...... til 7rrs. _Ir t is AI will 11111 Imm a� M��taaaal����a�at�ttaaar■ nasira���aiP'11 �������lpl , ��� - _—ar���i• a•.m.��- 1 /t �t arart■�a�ts�a�a��ltt�a�t�t�arara�ra�t����araao�a�t�t�i�, wa��N.r�a�. _ Itt�t�itttttts.tttta�Ta�ltt�lttttttttaa_atat�tst�ttttt�attttt�tattta�ttt�ta�tttta�tttw�>'� a•.rr_ �% I _ a1•� •��..r?±.ar�n i !!. !!\\ ! 1 >•!•� � >_•�aJ11�11J'W1L7� !':7ylt'l NRI - r: e.� 1r!•7 t•! s l .I,s� �Z�lalateavwr• arlt�nrl[a IStil t'iit�����ANN@ l s� 1. rat , �t P 1l2 Yr' ria—� `�/•'RAI�' 1R1 rnat� __ �— _ 11 IN tet! :ILtaar n• , j�� 1 A' �sa��►'�1� RI�t• wf�� w.7i' /-a��� lrY�r"JY'�! t■■�t� �ti■� a �/ �� �y mal s !■ ■rr�� lTalall ' I �� ' ! '/'' ra► L q i . u.' - 7 1 _ :�■�ri,iJ71r/Y/I1lrLt • mss.. >�s�■tas �st■rt� � ■ea �! � MENNE rlld aa� ,ilk// ' j 1. r QQ/ 1 • +�•r n, I IR r.'_ •al {>•■' r >• �• �a��i�=rte a I.11•a� iY/ • ������, . Y ' �N I •'I l�1 �— ,�.�. ..r 1 ME ! t'In: I, a.rless li ►.....�.�• � .��.� r■rrrirr■aa �' �� . _--� .,�1>�� ;�.ls■ .. �Irt� � ; .. .��..`! a�aa■a�raas��r■rsrrrs�aas �.�aassi,�si 1a �;i'�■�■ 1ss.�1.� rw.. .ya, ■,.., P�ar�-- � 1 =tea*� s �arar� _ _ �;�a�.al�ii� � u -- lam i i� / _ �s�u / � � al �•, � .- ME atv r� tttast�tast. a s e >. .. %• �.�i�' .J' � wi �� �t[ss Ittttttttarattttttttttts!�t�tsttttttttttttt�att►ot a ■1 L as.Tsat� ■ � •x`'. tJ �sn■■aast�al�rr a_arr. s tart■ tii ratGvlii t� iRis�, a>_ _ij� �;.rtal� �� 'r !, _ 11 0 Edo IN ara�ara_ iii Jttstttasl ` t _ �Ilawlari�tarYiii� ss ����■ l�aaii M' �` 1►.`ar a �~ `= ttaas Itttttstaaa�ts>• _- --�� �1 a ■KIWItttttaaa•r l r ! ���fi/� �.��J'�•.y� .i Ili �•i/I )O/-! !f' ��.5 /fes - _ � [tAt� t�� • �-' ttttttttttsaaa.natts _ `� s=�z!�i�.i-s �"' fir s/ ■ �Iara•.! _ ism =00111 r �!� .�{ t__ t�aaaaaaae. l a 1010ttttt�tttst�lalt l wV i rr.:. s�s.a�iic" li�a=il■as.a z� �a�la:���■L�=iw -- - 11 e�rrl aa■al•s� '� a�ata�attt�`arils�..<ar� rs� a�sa� taa�aasasi<�t slstl•� •y s �A.s . L, _ o _aai, i.. ari aas ■ sr.a�� >t lr ttttttttttttt��lr� rt.� a tltta V : �, ��� a � ! )• t� �` a1s1 trs �i• '�rt �Z n aar.�tl aasrt�^>r. ��>.�• t� s:ttts■>�stsrrs.a�a�'�.a•'�'� �_• `r — Ittt�s ssrtt■Itttt�trtaa�tt�ssarstttaas !!1 �� REMAIN ttttaa� aasra=alstttuttttti..�itlsa■ w��s,,,,//trs � l�ta. � �!u': ar■1■ta�ara: 1•ttt� tttt�ttttttttltstttttttttttss_t�stttaara■ttstttsstta� �y�a� TTQI. 1.x!•1 Itltts rrrartl.i �� ■■tom - -- 5"L., -� .t�lat�i t��a�� t�t� t�■l"�'�. `�y r tom■ �ara•■tl.t�all �� �1r .t■•� r.��� �rs�r amt! tartttt�ttaatstttts/arttta� Is taa► ul►saa� ■!t_a tttstt� ttttttaawr�atas �,� a•\. �! l�rt��l■� ,, ■rttttttl■ �� i'aaaV�ss!■._��Mo sat — ate �,aaaar�ttttttttlltttaa�r■■tttl■Ittttta� -- V 1•' l�a� _i�' li�L"— _- tttt�ttta�tt�ttsaaa� ts�s�sssrrts� •� �� � s>•1.a� tttttaa� tttt■■ttli�PP t�� - =a;�lt�la�la� s_ �;-�L■ �_�= int ti N tartstt�uatasrtttttsta�ttlsttwsaaaasstttsttssss �ar■►J1�1 ai ��5. �>r•�:11.. ���� �� �•. 1� >_w\ �saslrtsl>_Irtttttttttaltttttta�llaaa� ��_ �a� �� ��>_ ► at�■�ra��■ ��I1�1��e ���■ r•a.' tttt.lsttttttt� �.���� �+�.�..� '7�. �1��..��.�.■�r_. _ �. � •,F��S�.�;�� � it�'r.>1-':���.. rst�a�■Ists�ttttas.ttaasrtttttttttt�s>•tttttts s�'�� aaa�z��������sr,. �laslaaaa► .1rr� t�a�■� tr � . C� � >! 4� �.•. ._•t � »r ►qtr:. lad ttaTa� ttaa�■tt��a�■la�lttaasts>•taaarlssaaa�ttaalt� s! �+ttttttl■� �.ssst•Itttsitttst>_!w►►u� taas�ltttttts� �� aIa •!srwtt�s 1� �■G�,�rq 1 tats. at��aaaa�l�l�aararat�l�at��tra.■._ ta�ata�a����l�sfrt� .�■��..j.[ai■ta�t�attt�■�>•�.►�T�ta�■ata�ra�� �.���i■�taaa��lw��ala��a. T� 1 �jj,•1l!t��s''•1���� �� t.7 at!`we tt�� ttttaa�tttttttttttttttllttt�attt�t�tttttt�ttaa�t�tttttttttttsttt�tt�>.tt�asl.tta�tttttttrsttsttttt�ttta���r.,.tt�t�stttatrwty_ r. tt�tstttttta�.ttttstt� ��+at�t��tsatttttttttttttt��ttttttttttsatett� ■siJl�tttt��' t�� �!<�f�.11 \ UNION NARROW aat-�tttttttttttsttrst�,.t^ .[� r1 !A. !>•� �� !— t=.�>_�itttttttttstt�tttstt�! 1R�' • /�.ta• �>�� ��saa�tttt�>i�l•i Itttaatl�tsttttttaa� moi, tttr_�atttttttttttttt�t■la. Itttav;ta. ttttttttt�tttttttttts �� .� �a���� ■aa� �.7► lr1�'�� a�=��— ���i•� 1• X71 �' ttllsaasas�ststtttttttttttttt7tts■ltttatt�a�tttttttttttts sal ttttttttttsssiltttttttttsttts. ►f:l a. � �*� � �s�asla.tt�■lstssaarr■aaa�stsaa�■ tttt�iJTas.sl.rta►�1t:�ss1� aaa� ���� ��,r,, a•!�� t' - ��l�lt� 11NNNORRNNam rtttasaatt�atttaa�tttslrst tt��asttat�,� a�t��:^!>_ ,,CC - 1� t■■■t�ttl�ttttaa�l=��ts! tttaastttt�aattts a1�aa ■ats�r i. 1 = . �s a. w ltttsaaa�lo �=00010001 �1• �1 aar■■ � ������������1•s;�s :'.1!�at•1•�� asi ��_ � iat•`�TI► [•ae. _ � t��r�7� �1•�_ lf: �v�ts=aa■ttsr■Its �� a� - -_�'Ittttts��ttttsl� = tttttttttttt�'. . / SOMEONE �� l���e���a� aas■arli.'' atirr.•.rnl:tsae� laas�v �\ � !•\ � �l � �` Zc.TI ♦I�� ►► _.��r��•Jlrtl {� 11���a■�a tatttttt�l �t►s It wi.r:: �ttttsttt� aasttrWNERrttttttttttlr_ J 1• i �a _ Jt�= = �s;Jlllry :�.= t : • ^�ss>•.< u ttt■tt� t ttttttttttttt�taa■�i u l l_` arsaaara ���=!�■ ■�aaa�ttttttttta�tttts� ■1si!^+ul>_>_�t>. a■tts ttttts i .� -•� � ..0 a-7ItI. a=r st�s�s�■�tts■ cu trlsr ■ t!! slalslt�taastttsstt�asittttt�aaa� '�u r�. r�� s nf.�..... _� !•��= .t►i/ �WIN —��i��\>Jsa� �t►i[v� i % ��■la L ,� ��sa�a■taralaraa ,; r a4r�a■��it= aara 1��1 r! • ss Is>•aaa� Rolm! taa�attttt�taastaasl �t��■tom ff �.e_�� �ar� taa t■tttta�ltttttttttttt�t�atat� ttttttttt�tttttttttta�t�ttttt�tttttttttttttt� t■ t�a4 ii u �� r, s�►i► stttttle ! Itttttt� tttt��ttttttttts� �� . \� r! ataaaaw.�� -- _ �_ \71i' �!!. �� — --- tast�i•�ar foP�J y,�VINE -- _ ��� � ���r_� �►/ t'/�.� lI �. � � � �' .'L" � � -v •�! 1� Z til - - - ���. �>= �i=ttn�ttttttttttts Ittttr>,>� a �/ i v s ' i r tttttta� taaa�tttttttttt■�s� i--.[� _ • •' • �' -- -• allmarsa�atars•�■a��l�a�r_��_ararals�_ i _ p tea ta�_at� !_�ar.�� a��sa� sem! �rl�a�.s��/�w�'r ins �`f a�■�aaraa y �w�s e,� _sem �>t� taar�taaaMtrtttttUM j arae `/.� R � .� ...1� ttt�s■ra■a aaa��tttttttttt�■ ttttatttttt�ttttttst�tttttsaatstt�� tttttttttttsatt�■tttatttttttttttss�./�. >.o_ -- �r��■-:�:rt�i��r.�rs:trrFi� �� 1� ism taslta�l� taaa'rQ� �� aars ��a�ststtttta�■ f�� >ls�tt� r111; 1�ftt� ttttaa�tas! �� /a "-� . j tttaasa�aasr ttt��1� — trlra■1�Irttstaastttttttttttts s ttttttttttsttttttttttts ar:r : tttttttae•aaa� Ittttt■sals. aaa�s� �tttsttt� ttt MANUEL rs�asresrtr r ��� ■�� a..S ANN yAft INEREN .nsealtttss*Ttttttts �1■r, �trlt 7.., . r. ars atrlar■alaa.rat �MEM 10101 ttsattttttttttsctt�lttistwarasss stttsr --- - Itatt��� �ttttttaattttttttttttt� taaa� tattta� ■t�llltt�at t�ata� �� M-0 =—i— M—M i�;s.at ria RIMANSWER ararasa�a�AN sr. ts�■isT.— ttaa�tltttts vEll_� ara•a aaae.araa r �l min SERUM rsx� I1 5&5T. S- TOZM .02A1IV PER C171 APP906450 STORM P4AN-9, Te !3326-� F11-jF" NO 1,510 . 6 &X497• W47LG-K PUK didX WIWIEG WA M,e CZ?PAMX WATOX 'Fl AMS S ,LE IN. FEET vONSTRUOTION NOTES e' (D—CONST. SP R.C.P. CD -LOAD AS NOTED) 2�D_CONST . 30 "` R. C. P. ID -LOAD AS NOTED) 0—CONST. 35" R.C.P. (D -LOAD AS NOTED) 4D --CONST. JUNCTION STRUCTURE NO. 2 PER DETAIL ON=SHT.J S CONST. CATCH BASIN PER DETAIL ON SHT. 1 W ShORIAl VAJ IIJ @__I40ME jFX tsT. 4RATAV C.S. P, RISEe /NC ET (D- " , I ec" OVE Fxl ST. 3!0 ,QCf' STG/8 41407.28 'EIVIo OF . 57yWllm zp�i4lv T+9 Q dW 826. ,e L T }-- 7F*N"Z5; v 2250' Z,5). 8' /74 00, 'w ..db deli ,V �= 1. Z.. i ou r nf-. �f +�-�% - �.'` _ .,,,'� .�.:w, S,- ,x;:µ4=:� .- ,��^"•, ,��- ��':5 4111 tSZWV1cif " 33 BECH MARKBASIS OF• BEAR I NGS s FA ..14t.L 3 /ytGtll .� /ori Ta CON tIC-7 041/ —" CITY OF FONTANA BENCH MARK THE BEARING OF N 00° 22' 40" E CITY OF FONTANA® CAL ALONG THE CL OF BEECH AVE., FORN I A 350 A NAIL lid POLE 01535704E SHOWN ON TR NO 11,325-2, VF I LED8I N AT SOUTHWEST CORNER OF LIME 8K 215. PC 1:3-18. INCLUSIVE OF PUBL � C WORKS AVE. AND BASELINE AVE. MAPS, IN THE OFFICE OF THE COUNTY DEPARTMENT 13%12.0 TRECORDER E BASIS DFg9EAR I NG FOWASRTH I SAMAP , . ELEVATION : 'DRAWN BY : SCALE: PREPARED IN THE OFFICE OF Pcomom� STORM DRAIN I MPROVENEN T PLANS HOR. r" 20' ------� MADME Atm ASSCC Y ATES.. INC* ��' ��cw F DES I•GNED s �._. CONSULTING CIVIL ENGINEERS ti�;C� ! VER. 1 41 AND LAND PLANNERS �iy � � nor ��_' ; MM/LP TRACT � 0 I. 1 v 1820 E. 15th Street ►� �. 9 L� No 148)4 r~ � CHECKED: DATE BANTA iiNA. CALIFORNIA -92701 � �� APR ! L 1990 PHONE 1714) .835-.2548 � � E x u $ - 3 � -�t3 , JOB NO. DWG. NO. SHEET NO. isit oA ----: • ' of �`F�� 133 —1265 APPROVED r � � � � s A ril. AL DATE M �' cA OF2 �t � •94®14 ,...••.�''� TY ENG to�EER . C. F o � 131 ®!'S AT MM INWA f iV DI Am rc,.e a _ 7lt rn I G _en . 7_ ♦ _ -_ nn re:. _ c-Jc A064 1 4 -2-Y . ••fcc h -r =: -V_ wompo - -ru -- I 1 - I I -= - -- �.. _..- -' __ -= -- _=�.•--_ __ .... _ _ ._...-� z_= -:t-� C�_�.�-�—:_'=tom — ! -� _ • r -i— 1 i:-_ 77 _ I -- - -- - - - _ _ - — r�-- - -- — L-- -.—G - — _ _ 1 - —i I ?-=—--�---- ---� ��=�f_==�=_��_�:•=_�--..�-I-— , 28+00 29+00 � Ci - .--rrtrrrrie�li sir ��•riiir■ � .6i �ui ��,I� ��ii�� I�n�'i�■,►►�i�i ■iirT' `�r��'� ,� ` ' •� w`�Ga � I�a� rim ' �� ■air ■il .r �=i� ■•i:=i'�i�� � lii�l� ►ilMurifi �i�i■� irr�" C:i.!• V ����� re_; ?� ►� �� a . . s I , �'��T�"��■�r■-�I�' nliiltl�_ .... ._.� r �.tal���y�i iii 0 I■�t \ ■I� f= �� ►rte �� I ..._.r✓r�.. � . .�: ■�1►a �1, Ir i r��sw i� �j��• t �i�•.. ,,� ,r �� �� IIs' O � 1 ■���� � _-.. � �-�" -- .�7��r;�s�itt� a■1' ��'�S C � 1►• i{ !"j' rllrr7 ..Yf�- Yr 1 i_i���1/.�:. .t.q_lal siva=�-'!'■�. �:� ��L�J.1`/ �lr� :u � � ".-'_-�ri�`.��': Li .:/�; rr R! 11� � � Ical�s�sslr.r,1■�—'-(r►�1=r3s. ��-----• .. � G.Sw = • _ I=mo-►�1I►J�T �_..._ � /. aaaA �__.1■���� � t ��� —�� _. � .: ■�aCr�•,e1 �+fir i' ,,S!• ,.r•.1•f�1117��� MEN" � i �►i"7v 1 .� �I� 'I' �. lei I Ir i3_s i • � �-gra rrrs�l �■— a t► - r � 1^, =—j L- ►, . '� �� �I.. ,moi . `�■ I■��+ r I.a Mi ci r� . miil _ 1.�ia s►dla� ■� �i� r���i � �• �aal,■i"" �"�1 �■ � '� - I - =� wlr v�tia� �w+ , `a . �„■■ �oa�i =�:I ��� nJN ►. 1 �� _r�ri�i� rrrr_ �. C�I:�irT�r� �Ir. ■w� Ii aIriisr�ri■ �r■� `►�vr � iii .rs_ ■ ..1� _ �1■�, •s .c .a�au..v- ss■ te. ==_z���. a _ i -I CCii■���;,rr u { c �I..1 ., ..:._ ►: y_� C - � - �� ■�l111-r�'.IE�Z��!��1� �as�ar��,t� tla r ��_ q■t11■�rrw ca 1 1 E t � Is.s itilr: C r.t � — '�i��I�a�a1►a��� .�i■��—tr '�►�'t� w - ■•��—sslt�_■rtlr� Iurws■ISII� illy ' t � E r:►- ss RI rassrllciw asci— • t �r� _ �i a er iu 111 C�Iii � II111011 IA=�� ���j•�j_ titer P!�i'- r • .r ■iii __■iiirr■�rrrrrrl _ � JMr :. r � �iar■� r� :7F •xr�v., .i:'� .illi%% ��• _�� I tt•r `�1 1�' f1/� ®� r► I� lid ri:� �� �� li��� lo_a r�a� � ...� � •v��.w•I� �U I.at■I��►: � + l I���' ZAII= :��Iia ► rlr'� r 1j rrl II 1i��0.y1I a ss�■sss-� , - ���� I r�Pr►•� � . .ir � it � 1�\i `, I�jl� a t.• AM7•P•.■uy Imo■ •1 r 13.1 Yi Lit ► rS f_ - - w iD �r Ijj VtlI �_ moi. _- f�_�\I, 1■I� :�ir rrn>t_ _�i.�1,•r� . �! at► .raal�l = rlw— la . C - v - - = - _ .:- - �. ,� ��, �rar,�ti7Y f .. a■�` i■1�■Ii1�i ia. - z� �. ti t�wr�■rt� �I. 1. 1 ■�-, _ IrrGr■I I■�1� ■r. r Wi■■r\T� * rr�■�■ w ■� rawllrlm�-. ..n�a,7�!�■�JIl��ia"i� _ IIumL— la�wrwiia�.r 1. Ir�i f�+w_`��� - IrII �...1 /LJ/!l���ra •• V r■iirr■� �i� �■� _-- "ate I`� ��■�� r ■IIS■ ����� rrss� rrrrll■ r rs��—rss— sss_ o■ r■I�I �� sss�ss_Irss— � � �■�—ter— trrtr� I �ffiffi T A , �"ECI—1 A VV\/U'= SEE 5PAFET AA0, �a 33Nlk ,•ilL_tiJ t �D-- i 1 �� j I il ' •I I 01 � 0 40 a' 39 3 35 Lo o �� f t o N � .4- � 3 5 �, 344- �\ t2. t �� Q �U j m I , M/ I� / f 3cu �• �- z 30. 30.00 r 50.00 50.00 50.00' 1 50.00 50.00 5.82 103.81 CD) (D — lip 1 - ti_. `tom • '[. B2•. y• CIO 0 .� ne . Vii..• ' > ` 'I T N 89 55' 2 "1d-3; ? 3 '� x 30+00 r' �� �� �r 31 +00 32+00 1 33+00 �� .� 34+0-0N 89055'20"W 29+0C 9Sa ���'hfi�� 1 ���;-� `� �� fir' . ? ���� �� J •\`�� % �.�1�ti' 0 ��SJ-� — • _..._ Exi�r. �ur�ts ��rr�,� �,� �, �,� �� I �,� c- 1 A� b I p� �'� i c,VLo , ` � I i�j `` `3r't�,�"h �� �l� � 'Exis rl K�,W� � �� ����►'�. . z L I POPPY Z_ANi- -� -o CUA\VE. DATA Y O DELTA RAD IIfS LENGTH TANGENT O 89"42'00"' 30. co I -- 45.97 2S.1.84 0° 90000,00" 30.00 47.12 3(1. 00 I q . " K WA Y V � L L A E P A 7R r 35+00 0,Q,ONSTRUCTION NOTES 1 CONST. 9#A.C. PAVEMENT ON COMPACTED NATIVE SUBGRADE SEE TYP I CAL SECT I ON olv Sal. 1 FOR T H I CKNESS O—CONST. 809 CURB WITH 1891 GUTTER PER CITY OF FONTANA STD. DWG. 1003 GO CoN_!5 r9I GT -4 " r-HlcK PC -c- -�9105W,44-/< CITY 01' `0A iA�� Sri. timed /0/5 l -• /�oY EX 167. k57,0t 000 fIFA0d5e 41MV .10//V (F,�5A r�/5R r� .,,)--CONST. CROSS GUTTER PER CITY OF FONTANA STD. DWG. 104 &—CONST. RAMPED CURB RETURN PER CITY OF FONTANA STD. DWG. 100fo• (17) lIV57-ALL gZ500 LMAI h�P5 GT��l�% L1611% - - QTY OF FONTANA- i P CAL UNTY P UAL I C W ORKS D EP � M E Ut�4T1r AS PAP • DRAWN .9CALE BY :LLP STREET I NPROVENEIN n:lit t......A'S F OR VER: s _ SCLiLLP C HE••CK �D : TRiCT �1 0 � 1 -7-7 9 tom.. GD DATE: ..:r .,.. . JOB NO . DWG. NO, SHEI _ 133-12265 APPROVED =_:. s� r,. 4. w _ G`fTY ENGINEER R . C < E . STREET PLAN V 1 i_ {__ PKWY (T?? 1392,93 - 26f!".1, i 833 PF : 13929 505 29- n - 90 SACXFILL UNLESS OTHE"ISE SPECIFIED i W l sA1"OED EARTH 12 O.D. MiN. I4" MIN. e • . •..ere•..'• .. 9EDOM A M lot PTIONft Tn cM Sloe SLOPE Foot DEEP TRENCHES 011 UNSTABLE SOIL ,IMM ole e SPRINBLINE 'O"M ft EXCAW" N LINE yN 0.0;-S<.t;Rtit7(l SAMS PC. /C y ) OPTtd1OF TOR �I62 QD. (4"MMIj SRHCA PPE(MOMTE �)SI� TO SUPPORT SEE ORANGE COUNTY ENVIRONMENTAL "NA NT Y STD PLAN NC Approved D, diodiv Vette 1319 Adapted: Res. 77-9Z Revised: Ras. 78-791 BEDDING DETAIL BEDDING DETA l�v'r>cs :4 • 1. gadding A shall be composed of sand, Ro. 3 or No. 4 crushed rock or gravel per Standard Specifications or other granular material -as may be speci!ted or approved by the Engineer. 2. bedding 3 shall be coteposed of sand or -other granular material as may be specified or approved by the -Engineer and shall conform to Section 316-1.2.1 of the Itandard Speei°ications. 3. Nodding B shall be compacted to a relative compaction of not less than !0 percent unless otherwise specified. '4. Bedding 9 shall he placed in two orl,move lifts for D.D. greater than 60 inches. S. Backfill shall be per Section 306-1:j3 of the Standard Specifications. 6. Where the -cover is q feet or lass, 'V' must be greater than or equal to 6 inches. Where the cover is greater then 8 feet, 'V' must be between 6 and 10 inches inclusive for pipes up to and including 96 inches in diameter. For pipes over 96 inches in diameter, "'.•"' must be between 6 and 12 inches tnalusive. 7. 'V' shall include the thickness of any shoring. S. Shoring shall be a sinimni of 6 inches from the pipe at soringline. S. An Improved bedding method shall be submitted to the vnrineer for env "W.. other than that permitted in note 6. 10. the trench bottom shall be shaved as shown, or the contractor. at his option sae choose not to screed bedding "A" in which case. the pipe shill be backfilldd to a depth of 1/4 O.D. with trenc1 ha,:;e_1; slurry at his expense. 1 l ORANGE COUNTY ENVIRONMENTAL MANA#JMKNT AGENCY STD. PLAN Approved - �:... i !e_ - j;,e. C. R. law,Director of fWfic Worts 1319 AAapte - Ibs. 77-92. %if asd: . EDDI NG . D ETA I L SHEET 2 OF 2 IL (TYPICA-L) N.T.S. (OR USE CITY OF *FONTANA STD DETAIL f31) a� CATCH A DEVELOPMENT BY CITATION BUILDERS 17731 IRVINE BLVD.. SUITE 201 TUSTIN9 CA 92680 BASIN DETAIL, 31415 M CA►: C Poo . rf� 1 _ aIle. s« NM. B I 4 fit A beefNpe�id"' II swim so nets pipe 1 LUndipt+rbM earM� PLAN ' CASE I ,SECTION A -A I 1. All sou wpow now tips end ftMinw aaswll be rranleed. 12 I ^RekMsrttO pencrtM • ' up ---- --- O.aw �� (:�, ro Inlet structure Boesfle 4 ` awe-tlalf ten inside dlernasor of the mein No drain. . '�' _ • � eneosettler?f P'IOa aed.ir - � . J-R��- • greet!► Mee 44 degr"v. was, Cala 2. M/C.Y. i Mein. t•YIr �i Nett t 4 12 a sECTiON a -e -- • CASE.z 1. All sou wpow now tips end ftMinw aaswll be rranleed. 12 12 t " A shell be his, sot plans sold Utdl be between 4?end 10! end 0 •i -poll be tie" ar lose. ' I ' V 1 15 A M as close tinea the loetslds Ilemem r of the side inlet pipe exceed 4 I° 5 awe-tlalf ten inside dlernasor of the mein No drain. 12 s 4. N Anglo s is 45 dsgreat or One. ala Cep L If Angle s Is 7 gowl atth 1f-rry s•nlsitlYN rdla.Ysam IIS seem. 21 1 greet!► Mee 44 degr"v. was, Cala 2. M/C.Y. S t•YIr i• tenter Ifs• of sits fill" awl be on radius of aloin storm drain 12 a otcw volove EAvetloa S M shown on prowl the hogs. I 2T 1 12 • TWA +cin/ we ten matt Merge *06 astasl be the aetWs omww I°13 -Or JO of halo incl pipe pus C adnbgilm er 11' etas wmw T F. . ORANGE COUNTYENVIRONMENTALN MINT AGENCY l IS STD. PLAN I Approved. C. X A101 O1reefOr of A►1A'e I/040 16 1315 I.01 39 A/e1111f04 Res• 77'11111 Ibvia@de flea. ?I111 -M ; !! -?19 9 1001 42 JUNCTION STRUCTURE -TYPE M /aim lop r ( 1 t t t , JUNCTION STRUCTURE NO, 4 I 1 46 12 to N.T.S. 51 N 1. Aeddin shall Ise composed of "ad. tis. 7 or •i 0. 6 eruehed rock or gravel par deer! Seecifieetie" or ether granular material-&@ say be oroct!ted or roved bo chs Twsis►eer. 2. Saddles a shell be c of sand or other granular material as say be specifled.or ipprovod by Tngineor and shall conform to Section 1:6-1.2.1 of the itandard Spect. tons. 3. aedditft f shall be eowrreeted to a relsti impaction of not lose than " percent unless otherwtia specified.. e. beldieg tl shall he placed in two or sore lifts for 0. . rector than 60 inches. S. where the corer to 4 feat or lose. 'V' oust be truster then or to to 6 inches. Where the ewer is greater than B feet, ".1"' wt botwe" a and 10 inches inclusive for pipes up to and tnel a 96 inches In diameter. for pipes aver 96 inches in dismiss 'X' sue be benison 6 and 12 inches inoluaoive. 6. 'V' shell 1"cludo the thickness of any a not. T. Shoring shall bo a stnisus of 6 as from the pier of eortnglint. S. An irptewed beddti.a at •hall be submitted to the •'nr•inoer for env "V" other than the raitted in nota 6, 9• The trove ttes shell be eha•red an show . or the contractor. at fete optl a choose not to scroed beddinit "A" 1n which case, the pipe 1 be back !tlldd to • depth of 1/4 O.D. with Trench backfill, slurry at his expense. '/4' TRICK STEEL PLAX PRov1vE Jcor r" ANA" - Sac rs / PRILL Aar sumer BOtT3. -1P.S6` Mr. A7/tAFP 07rft RA7F �a►-R.eo�vs-� 111 ✓`1y0' 1, � p, O I I 0 4 O J- 0 �a 0 �• `I 3 O a \ 0 Q o A � 0 I I I 97 4 Circular dl \ We See ! i "�LNeta L4. o , I S 0 -4 Normel joint 0 A space --sill 12' ,.,- l PLAN \Ii CUT No. 1: Saw the tube at alt angle of "A/2!' wIth the traverse pilins. Reverse r' � _ KJ4 ^N one section and tape both sections together, forming the deflection angle Pipe -/ CUT No. 2: Saw the tube latgitudlnol ly, nmovhg a strip 3.14(Do-Dt) inches extremities ►--Annular wide on the side opposite the open joint. Bend the ends of the cut Infe►ler SWIM* sp0te together and insert the tube in the pipe. of pipe DETAIL A TYPICAL JOINT FOR REINFORCED CONCRETE PIPE TABLE Cut No, 2 lin; line ti I Cut Na 2 3.14 14-0.1 •- W:;iA1L B (Sano -Tuba. m equal, interior form) Dt L T PERMITTED (inches) (inches) (inches) DEFLECTION d 12 12 4 V 1 15 12 4 I° 5 l6 12 s 1.4 21 1 12 S t•YIr 24 1 12 a 1020 2T 1 12 7 I°13 -Or JO 12 T F. . _3S IS 9" I 36 16 g I.01 39 Is 9 1001 42 a 9 I.06 4 N 10 1/4" I 1 46 M to 1 S 1" 51 N 10 a 4 18 10 0'52 57 If 10 P4 t0 tl II 0'46 6e 21 11743 66" 1. A eoeersts sellor Is r•Wirsd she 10, 1 0, It taHMW to Ot a the Wmltte/ delloitlon of o pt" joint is •Meseded; that is, when a"8A-Is beep than the perosilted deflocliso a*$. (tee Tahiti. IL Concrete callers shell not be ceooatreeted ort coin Ilse sterno drains enter" Mews M the Io{lona Of ordered by ten Entlnter. 3l R•Infereing shell be used where the pipe diarseter H greater than 21 Inches end on all pipes who+• the toll between the extremities ( see DETAIL A I is 2'/t inches er forger. 4 CIRCULAR TIES' air DIAMETER SPACE SETWEEN NO. a PIPE E1(TREM IT1E3 CIRCULAR T1[a 21 or lots 2$11 3 24 to 30 2 or less 3 33 to 57 2 or fess 4 go to go, 12%, or loss 3 IMhsre the space between this pipe exhomiIiss oneseh 2% Mches, the tslllnier of circular Iles dWI be morseled to maintain a maximum spacing of a inches center to anter. Circol•r ties shell have a dlometer S Inches groela+ than the outside diameter of the larger pipe. S. F« pipe larger than e6 inches in disn•ter a special caller detail Mall be delineated on the PmJwt pians. e. Where the pipe is 21 Inches Or 1965 in diameter, on itti rter form of wtsaated Sono -Tuts, or agoal (aa DETAIL B), shall be used to provide o smooth interior joint, The "per form wap be left in piece. When 1M Npe to 24 inches or lorgv o removable interior form shell be used « the interior Joint shell 64 completely filled with Tater and neatly panted. T. where pipes of different diameters we j•insd with s concrete caller, L Shall b• that of the Isrgor pipe wad the external diameter of the tailor .hall be 941*01 to the onside di&"W ad Isrpr pipe phis dT for the ge larr pipe. A concrete collar .holt not be constructed cawectMg a larger dia"ar pipe Irpstreern Io o smaller dia- meter inmeter pope downstream unless shown on the impralement Plans or ordered by the Eng,nsef. 0. The value for ongle "e shall be •horn oA the intpravemenf piens. 9, tethers the slope of IM ugs "M pipe is groats? then ten elope if the doolooram pipe. ptiol soffits. "are the slope of the upstream pipe is fess then the slope of the dowttstroom pipe, join mverls. 10. Beveled pipe may be used In Now M o concrete caller it apprered by the Engineer. II. For pipe site not listed in the TABLE• use values of L.T. S"A'•for the nal larger site lister. ORANGE COUNTY ENVIRONMENTAL M 1, Gli;; •E T A ENCY STD. PLAN ORANGE COUNTY ENVIRONMENTAL A ENT AGENCY STQ PLAN Approved _ Approved R. ArEL M. ECTOR Ole P!/SL/C wows 1 `� 1 7 ` J /sac,, /rie/or N P1N/k Works 1317 31? Adopted- Res. 77-92. '�.,Kasd+ Ado ted p Rea 77-91 Revised,REI NFORCE'"f CONCRETE COLLAR "E" I OF 2 REINFORCED CONCRETE COLLAR- NOTES SHEEI 2 OF 2 �..:._ REINFORCED CONCRETE COLLAR 0 T 91411411141111 LONGITUDINAL !neat srade�- fMcwM10 from* a cover 7=4 )'bars, 0-s'leag,111"O.C. �01l1ene1 fillet CMMiew sdditloeN bars 4•09. to Inside edge ofsentnb or O !'.0.C. !tor 4:ESaoto 1 1=atbart ' 3'o.C. Tie N o'k«. bare ,�t► tor. N ' illbiMen.M3e• r as --•� . Ihe►P AN Tie bare T 'Rebar• - T • T A. SECTION G -G 1411• - DIX x1114 ~6e1e • •.t:. •eyes •gild cop dock of so"49lo NIT S. moofela from end colter ho ' easel=101 "wFtltp•gedefreote 1t Around Par std. P11=630--q-0C T i0s. 3-effi,wilb rapoved street* selveelted le" thru 633 -0 -OC 39" model en s 21" S" 42" omit this step 'Debar• H tear 46" labors 27" in paved streets 4" B" 30" 6•, SI" H bar '�.. �' 'Abere •!i t 9" 36" ' Tit , .+ ' T" .I• 91/2" 2-2" for unpaved streets ji 6• r Variable 1 45" . sees � ��• Ybsre 10 1/4" " 8" 69" 10 Mro 1 S 1" i '"°d'"'"ale orwor SECTION N`M-P-O 7=4 )'bars, 0-s'leag,111"O.C. �01l1ene1 fillet CMMiew sdditloeN bars 4•09. to Inside edge ofsentnb or O !'.0.C. !tor 4:ESaoto 1 1=atbart ' 3'o.C. Tie N o'k«. bare ,�t► tor. N ' illbiMen.M3e• r as --•� . Ihe►P AN Tie bare T 'Rebar• - T • T A. SECTION G -G 1411• - DIX x1114 ~6e1e • •.t:. •eyes •gild cop dock of so"49lo NIT S. moofela from end colter Street grads e• to provodt legal plot Mat TEAT FOR INAPT ItN[N F Par std. P11=630--q-0C T -d TOP is NOT LcvtL le" thru 633 -0 -OC 39" B 21" S" 42" omit this step 24" H tear 46" 8" 27" in paved streets 4" B" 30" 6•, SI" H bar 33" 6 VR" 54" 9" 36" 6 V2" 1'-4' foil paved strtsts 9 1/4" .+ ' T" 60" 91/2" 2-2" for unpaved streets 7 1`2" • �' L .j6 Variable 1 45" T 3/4 66" 10 1/4" " 8" 69" 103/4 1 S 1" i � .y• 1,3/4, TO" t �r 0 bon 84" 121/2" 60" re r T 63" 10" 96" 14" 66" 101/2" 102" TABLE Of 6AR SI ES 69" 10 V/4" ,M„ 16„ to 31 radius - 11.. 114" 111,1114.19C160 on R .0 TS" 11 3/4" 120" 17" 64" 121/2'. 126" I7" 90" 13 1/4" 132" IT 1/2" L • L : aa1- 14" 138" 171/2" 1 102" 151/2' 14 4" T •,r ::i, 16" ow rfdl• 114" 16 I/2" •-..+:�. IT" eo T e die 126" 17" _T8 For afnletlln without iiiaehole. 171/2" Reinforce floor to pipet greater *hon 60 dlantstor Revile Da a8 to rood 12'-39 0 13a" rion :�A W blers net shown for clarity. 144" ORANGE COUNTY ENVIRONMENTAL A N ENCY STD. PLAN Approved H R. il, D�roc or of P&A* NtlrRi Cso 1312 Adeplait Rt@. TPS:. wetdll@st ea-TISI It e.- II � I .. JUNCTION STRUCTURE TYPE -M ' Cr � GURB E STEEL ��POjECT/ON BAP STEE[ �'c.orE 5AWZL B sr�L�ED iia " N IN _f Pea ¢ ,OOEO 4 " ,4 T �/r "' oi.I Nfl _f 0,V siva Z. SUPPO Zr S S.%4L L BE UNiFO p�N[ Y 4Cfl� R[iT it�nT !-O 11.011 OPS FULL V _T rf e5 ,rCEEO 7 EN7E.P. 3. 5 !/PPORT BOL T PA1-1 .4PF'X167VE'O F_ V U.4L . +e, tj;.�.•• a STEEL /1Z,47_ SHA E-NR•P.o • O�/rvO•PY 4 j9/: U•P ;',' S. •�'i'OTECT/ ,4R SNALL BE �4� �4�`�k'• �vV�� �?- 'S6 S USED war N�4MB•P,4 �4- iS77 PF'.POvE!' EOUAL V � /Flo[ 4 AVO -Z of alxT • . • tugs ooE�vi�vis • DEr.�it .ern sucE JUNCTION REVISIONS: APPROVED BY: NO. DESCRIPTION LATE E G. A P. APPRUVED DATE THOMAS I- BRAUN DATE: APPROVED BY: t°i MOTES 1. VALUES for A,B.C,D .D2, Elevation R and Elevation S are shown on plan. 'fable of values for F and T hereon. 2. LATERALS. If laterals enter both sides of junct. str., access shaft shall be located on side receiving the smaller lateral. 3. CENTER OF MANHOLE SHAFT shall be located over center line of Storm Drain when DI is 48." or less. In this case place 4-E bets symmetrically around shaft 45' with center line. 4. LENGT:'i of junction structure may be increased at option to meet pipe ends, but any change in location of spur roust be approved by the Engineer. 5. DETAIL".. When depth of manhole from street to ton of junction structure is less than. 2'-10Y" for paved streets or 3'-6" for unpaved streets., construct monalithic shaft per Detail M. Construction of shaft as per Detail M for any depth of manhole is optional. When UI is 48" or less. -center of shaft shall be located as per Note 3. 6. REINFORCING STEEL. Straight bars, 1V clear of face of concrete unless shown otherwise. Tie bars shall be n4 spaced 19" on centers or closer. Steel schedule detailed on plan. 7. F49EDMF.1.,%T 'P' shall be 5" for D796" or less and 8" for D2 over '96". 8, STEPS shall be 3/4" round oalvantzed steel and anchored' not less than 6" in the walls of the structure and shall project a minimum of 4.inches from point of embedment. Unless otherwise shown, the spacing shall be 16" or 17" on center. The lowest step shall not be more than 2 feet above the invert. 9. RINGS, REDUCER, AND PIPE foraccess shaft shall be seated in 1:2 mix mortar and neatly painted or wiped inside shaft. 10. FLOOR of junction structure shalll�'be steel troweled to spring line. i 11. Bony of junction structure, including spur, shall be constructed in one continuous operation, except that a construction joint at the spring kine, with longitudina keywav, is permitted. ORANGE COUNTY ENVIRONMENTAL M NAGE ENT AGENCY STU PLAN APPROVED 1312 tote •4rliatt Diret/a or Potla+`t NbrAs AI Weds Rya, it°Tie JUNCTION S UCTURE - TYPE -ISM EET 2 0f s STRUCTURE N. T. S. E. a,• f•a No. 41817 P Exp. Tit 1�• �, _ CIVIL • REGISTERED CIVIL ENGINEER NO. 407 REGISTRATION EXPIRES 3/31191 1-8 1/4 See note b) 1/d r Sae Stiffener D p n Do RISER C S.P 3/4"Hols,"H.D.': Detoll hereonJ ! 2 04AMETER GAUGE equally spaced. t4,,- - - t 3Q" 11. Center of hole to 34_ i 3 is' to 2T• 16 be I from O.D.IL 70' to tree 14 of plots -� 4e= .2! • 142'l71 60 63 11.2 4 42' to 4e' I i 2�+� i D/2 se los•:�4 31• to Ie' 10 • DI (Tip) _DI 5 1 BOTTOM VIEW TOP PLATE ,7,I.us��Ring t10. 1 Sae ingot for �L A' \''• JTyvI•a'piac•s Laodtiltq Device o l t E19v. A Oladleg 0 ftp, , - --'it I std OPS or mild .1911 bar ,rules. wherw+ss 1 r shown on Non , « 1/4" t 2" Wade �i C. S P 00 Co. cies .40 in -- - o T -i Side) stare -- - (, DETAIL;-rn.ATE STIFFENER 3/4 Hole tc match top plate••• -sb• Italy cWn- BOTTOM VIEW � •tlaon bond CAGE RETAINER RING ,,,•, .n,,, .•-Cone eoilaf i "CSP RCP CSP r �.t -RCP oE. z sr f -all^ Slope to dram _-L "' a T -t' f - � •. n �' +1 = r • r from ALTERNATE ,FUNCTION ..I :T 6 1 Dry pock Calc. Bleb / E L E VATION 2 I/ „y s/„ Teflon tap•_ r- [ 2 8 Steel bor (typ )-` o lar[a - Scarf and weld I. River pipe 5bs11 •tNM se•Ele+l, A'. - -" S. Ce&rr"tffi'• 0'ii 1iPS iMi1 Cit oMor�n so M-3e. g/8 x g/e " Spacer - 4 Grate assembly shell be gel"rooltat offer fabrication. a. for OIS4'slid larger, wow 1%72 1111 06, wood, to *we with I"welds M eye a I/2"Allen boll d as turn* N Mrs en Iwo assembly. T. pyo of pipe Im dsnOw a1 MIR be same a tr rias, IL Row out she shall be Mop lobncefed and #a m*ad otter avoir. HOL D -DOWN ORANGE COUNTY ENVIRONMENTAL MGE T AGE CY STO PLAN Approved 1305 G Worts A Aril n,t, D cera o/ Pl,O/Ic Arepfei+ Ras. 77-92. Revised' INLET TYPE V QS.P RISER INLET r N.T.S. 12. ELEVATIONS applies at center of main line an prolongation of invert spur. 13. Manholes shall be constructed unless specified otherwise on the project plans. SP1312 any be used without manhole when Engineer determines sufficient meanb of access is available for storm drain maintenance. 14. Uhen manhole is omitted from junction structure, Type IN the following notes shall apply: s. For D2 or B frog: 12" through 33". F b T shall be e". b. For D2 or B greater than 33" use table of values hereof:. c. Omit "E", "J" d "H" bars. d. Omit "C" bars spaced at 3" area use spacing indicated on table. e. ()Blit "A", "B" it "F" bars for etrucrtlre witno.ut side inlets. C4I I � is ORANGE COUNTY ENVIRONMENTAL MANAGEMENT AGENCY STD. PLAN Ayssew d 1.� /�l�'`� C.R. ft/hale, Nm~d il*#e N►rAI 1312 blMefh 14>te, n • gt Artled •t' 714 JUNCTION STRUCTURE- TYPE X *WET 3 or 3 Noe 3 kiwi CITY OF FONTANAr CALIFORNIA PUBLIC WORKS DEPARTMENT ',.r"„"•1 DRAWN BY: DAT£ M...,,. STORM DRAiN PLANS • • D.P. � '�„ ,,,;�, DESIGNED BY : TRACT # 13325"1 2Bir Shiner. Cassa Aland. U 9MWM ('N, 540 V T B. SCALE: BENCH MARK: CHECK 13Y : DETAILED SHEET of � SHEETS City of Fontana Beashwcrk Ne -378. E.C. ) Y. P. CIrewlt No -a7-3.104 Well in P.P. - tee/) SW Cor-9eeeh 4 Foothill FILE N0. DATE: DATE OOT m ' 1987 E l e e -1267.84 Date V67 W.O. APPROVED : I*tv FNGINEER - R.C.E. 18932 11510 e ep_ ,AM ' �1► a TABLE OF VALUES FOR F'AND T Op F 8 T le" 41/2" 39" B 21" S" 42" 8" 24" 5 114'• 46" 8" 27" 61/7" 4" B" 30" 6•, SI" if 1/2't 33" 6 VR" 54" 9" 36" 6 V2" 37" 9 1/4" 39" T" 60" 91/2" 42" 7 1`2" 63" 1 10" 1 45" T 3/4 66" 10 1/4" 1 40" 8" 69" 103/4 1 S 1" S 1/2" ' 1,3/4, TO" 57" 9 IA" 84" 121/2" 60" 91/2" 90" 131/4" 63" 10" 96" 14" 66" 101/2" 102" 15 Int" 69" 10 V/4" ,M„ 16„ 72.. 11.. 114" 161/2" TS" 11 3/4" 120" 17" 64" 121/2'. 126" I7" 90" 13 1/4" 132" IT 1/2" 96" 14" 138" 171/2" 1 102" 151/2' 14 4" 18" 106" 16" 114" 16 I/2" 120" IT" 126" 17" 132" 171/2" 13a" IT 1/2" 144" 18" t°i MOTES 1. VALUES for A,B.C,D .D2, Elevation R and Elevation S are shown on plan. 'fable of values for F and T hereon. 2. LATERALS. If laterals enter both sides of junct. str., access shaft shall be located on side receiving the smaller lateral. 3. CENTER OF MANHOLE SHAFT shall be located over center line of Storm Drain when DI is 48." or less. In this case place 4-E bets symmetrically around shaft 45' with center line. 4. LENGT:'i of junction structure may be increased at option to meet pipe ends, but any change in location of spur roust be approved by the Engineer. 5. DETAIL".. When depth of manhole from street to ton of junction structure is less than. 2'-10Y" for paved streets or 3'-6" for unpaved streets., construct monalithic shaft per Detail M. Construction of shaft as per Detail M for any depth of manhole is optional. When UI is 48" or less. -center of shaft shall be located as per Note 3. 6. REINFORCING STEEL. Straight bars, 1V clear of face of concrete unless shown otherwise. Tie bars shall be n4 spaced 19" on centers or closer. Steel schedule detailed on plan. 7. F49EDMF.1.,%T 'P' shall be 5" for D796" or less and 8" for D2 over '96". 8, STEPS shall be 3/4" round oalvantzed steel and anchored' not less than 6" in the walls of the structure and shall project a minimum of 4.inches from point of embedment. Unless otherwise shown, the spacing shall be 16" or 17" on center. The lowest step shall not be more than 2 feet above the invert. 9. RINGS, REDUCER, AND PIPE foraccess shaft shall be seated in 1:2 mix mortar and neatly painted or wiped inside shaft. 10. FLOOR of junction structure shalll�'be steel troweled to spring line. i 11. Bony of junction structure, including spur, shall be constructed in one continuous operation, except that a construction joint at the spring kine, with longitudina keywav, is permitted. ORANGE COUNTY ENVIRONMENTAL M NAGE ENT AGENCY STU PLAN APPROVED 1312 tote •4rliatt Diret/a or Potla+`t NbrAs AI Weds Rya, it°Tie JUNCTION S UCTURE - TYPE -ISM EET 2 0f s STRUCTURE N. T. S. E. a,• f•a No. 41817 P Exp. Tit 1�• �, _ CIVIL • REGISTERED CIVIL ENGINEER NO. 407 REGISTRATION EXPIRES 3/31191 1-8 1/4 See note b) 1/d r Sae Stiffener D p n Do RISER C S.P 3/4"Hols,"H.D.': Detoll hereonJ ! 2 04AMETER GAUGE equally spaced. t4,,- - - t 3Q" 11. Center of hole to 34_ i 3 is' to 2T• 16 be I from O.D.IL 70' to tree 14 of plots -� 4e= .2! • 142'l71 60 63 11.2 4 42' to 4e' I i 2�+� i D/2 se los•:�4 31• to Ie' 10 • DI (Tip) _DI 5 1 BOTTOM VIEW TOP PLATE ,7,I.us��Ring t10. 1 Sae ingot for �L A' \''• JTyvI•a'piac•s Laodtiltq Device o l t E19v. A Oladleg 0 ftp, , - --'it I std OPS or mild .1911 bar ,rules. wherw+ss 1 r shown on Non , « 1/4" t 2" Wade �i C. S P 00 Co. cies .40 in -- - o T -i Side) stare -- - (, DETAIL;-rn.ATE STIFFENER 3/4 Hole tc match top plate••• -sb• Italy cWn- BOTTOM VIEW � •tlaon bond CAGE RETAINER RING ,,,•, .n,,, .•-Cone eoilaf i "CSP RCP CSP r �.t -RCP oE. z sr f -all^ Slope to dram _-L "' a T -t' f - � •. n �' +1 = r • r from ALTERNATE ,FUNCTION ..I :T 6 1 Dry pock Calc. Bleb / E L E VATION 2 I/ „y s/„ Teflon tap•_ r- [ 2 8 Steel bor (typ )-` o lar[a - Scarf and weld I. River pipe 5bs11 •tNM se•Ele+l, A'. - -" S. Ce&rr"tffi'• 0'ii 1iPS iMi1 Cit oMor�n so M-3e. g/8 x g/e " Spacer - 4 Grate assembly shell be gel"rooltat offer fabrication. a. for OIS4'slid larger, wow 1%72 1111 06, wood, to *we with I"welds M eye a I/2"Allen boll d as turn* N Mrs en Iwo assembly. T. pyo of pipe Im dsnOw a1 MIR be same a tr rias, IL Row out she shall be Mop lobncefed and #a m*ad otter avoir. HOL D -DOWN ORANGE COUNTY ENVIRONMENTAL MGE T AGE CY STO PLAN Approved 1305 G Worts A Aril n,t, D cera o/ Pl,O/Ic Arepfei+ Ras. 77-92. Revised' INLET TYPE V QS.P RISER INLET r N.T.S. 12. ELEVATIONS applies at center of main line an prolongation of invert spur. 13. Manholes shall be constructed unless specified otherwise on the project plans. SP1312 any be used without manhole when Engineer determines sufficient meanb of access is available for storm drain maintenance. 14. Uhen manhole is omitted from junction structure, Type IN the following notes shall apply: s. For D2 or B frog: 12" through 33". F b T shall be e". b. For D2 or B greater than 33" use table of values hereof:. c. Omit "E", "J" d "H" bars. d. Omit "C" bars spaced at 3" area use spacing indicated on table. e. ()Blit "A", "B" it "F" bars for etrucrtlre witno.ut side inlets. C4I I � is ORANGE COUNTY ENVIRONMENTAL MANAGEMENT AGENCY STD. PLAN Ayssew d 1.� /�l�'`� C.R. ft/hale, Nm~d il*#e N►rAI 1312 blMefh 14>te, n • gt Artled •t' 714 JUNCTION STRUCTURE- TYPE X *WET 3 or 3 Noe 3 kiwi CITY OF FONTANAr CALIFORNIA PUBLIC WORKS DEPARTMENT ',.r"„"•1 DRAWN BY: DAT£ M...,,. STORM DRAiN PLANS • • D.P. � '�„ ,,,;�, DESIGNED BY : TRACT # 13325"1 2Bir Shiner. Cassa Aland. U 9MWM ('N, 540 V T B. SCALE: BENCH MARK: CHECK 13Y : DETAILED SHEET of � SHEETS City of Fontana Beashwcrk Ne -378. E.C. ) Y. P. CIrewlt No -a7-3.104 Well in P.P. - tee/) SW Cor-9eeeh 4 Foothill FILE N0. DATE: DATE OOT m ' 1987 E l e e -1267.84 Date V67 W.O. APPROVED : I*tv FNGINEER - R.C.E. 18932 11510 e ep_ ,AM ' �1► a