Loading...
HomeMy WebLinkAboutTract 16991�ALL.S$D EN'[tII3£�IiiNG • '-, A civa rod '.Ima amimna _. TRACTIM)". 1690!� Hyd-fbldg �drAul§'. R-# brf' December -20, .2004 V1 OA' I -s' -Re si Nk': 116 21 2005 2"d Rev6 sli 2 1 2005 10376 Tr:2`4'1,'al'ik Sire -et 9 A -VA. 91730 fig 7160*0-- F'a9)" ' REVIEWED BY x (46 �19' 7633 WILLDAN THIS CIVIL ENGINEERING DOCUMENT HAS BEEN I EVIEWE FOR GENERAL CONFORMANCE WITH APPLICA KE Cl -r STANDARDS. ACCEPTANCE BY THE REVIEWS F OF AW ELEMENTS OF THE ENGINEERING DOCUMENT I ES C STiTUTE A WARRANTY AND DOES NOT RE EVE THE ICANT OR APP'S F J fiUCANT -EFONSIBILITY FOR COMPLIANCE WITH CONSULTANTS f- J[ CO ES i.- QsSf.WS/ 'MIGNATURE F -7- - I DATE am -A- ; No. 4n76 1� Prepared under the supervision of: - Exp. 6/30/07 ( rr David S. Hammer, P.E. RCE 43976 Exp. 06-30-07 n 8253 Sierra Avenue Fontana, CA 92335 (909) 356-1815 * (909) 356-1795 Table of Contents Discussion Hydrology Reference Material Onsite Developed Rational Method for 100 Year Storm Event Street Capacity Calculations Offsite Developed Rational Method for 100 Year Storm Event Tributary to Foxtail Lane Catch Basin Tributary to Sandhurst Street Catch Basin ,.w*, Tributary to East Side of Beech Avenue Catch Basin Street Capacity Calculations Catch Basin Capacity Calculations WSPG Lateral A-4 Onsite Hydrology Exhibit Offsite Hydrology Exhibit Reference Exhibit Discussion OVERVIEW Tract 16991 is located in the City of Fontana, California in The County of San Bernardino. The tract lies directly south of Rancho Fontana Village Parkway, between Beech Avenue and Sultana Avenue. The terrain flows in a southerly direction at a 1.9% slope. The land is currently undeveloped but is proposed to become a single family residential development. Soil class A is prevalent throughout the Tract. PURPOSE i The purpose of this study is to quantify the rate of runoff produced by a 100 year storm event and evaluate the streets, downstream catch basins, and storm drains ability to convey the runoff. CRITERIA The criteria utilized for hydrologic analysis is the San Bernardino County Hydrology Manual. Civil Cad and AES computer software were utilized to perform computations. CONCLUSION Results demonstrate that the onsite and offsite streets have the capacity to convey the 100 year storm event without exceeding the right of way. Furthermore, the downstream catch basins located on Foxtail Lane, Sandhurst Street and Beech Avenue have the ability to intercept 100% of the 100 year storm event. The Beech Avenue Storm Drain system shall have the capacity to convey the flows as the design flows in the storm drain improvement plans and the flows calculated in this report are very similar. The Beech Avenue catch basin lateral was designed to convey 24.5 cfs while 21.7 cfs is what is necessary to convey the 100 year storm event. The lateral that services the Sandhurst Street catch basin and the Foxtail Lane catch basin was designed to convey 20.2 cfs, however 27.0 cfs is what will be necessary to convey the 100 storm event. The additional 6.8 cfs is not of concern due to the relatively low HGL (see reference plan and wspg for lateral A-4). Therefore, it can be concluded that the drainage facilities comprising of the streets, catch basins and storm drain have the ability to convey the storm water runoff in a safe manner. Calculations and exhibits accompany this discussion to further illustrate these findings. Lq Hydrology Reference Material C� 0_1.n r10%lanu- 9% . SAN BERNARDINO COUNTY HYDROLOGY MANUAL FYI I LA VIV 7 A A C-1 C-2 T-;7AW BERNARD NO COUNTY A u c c ti d C,4 A iA 7' FYI I LA VIV 7 A INDEX MAP WOMOIMWV� LAE ---------- sffll 5 J- L 7�1 -7 TIE — K_ I F' r 11RI ;FWTANI it -.7 7 h r Lv L iw W-7 A 7 g 4- -A Tzl TIT A A 7-17V7- LEVEND SOIL GROUP BOUNDARY A SOIL GROUP DESIGNATION SCALE�1 48;000 BOUNDARY OF INDICATED SOURCE SCALE REDUCED BY 1/2 HYDROLOGIC SOILS GROUP MAP FOR SOUTHWEST -A AREA C-1 C-2 T-;7AW BERNARD NO COUNTY oc, C,4 INDEX MAP WOMOIMWV� LAE ---------- sffll 5 J- L 7�1 -7 TIE — K_ I F' r 11RI ;FWTANI it -.7 7 h r Lv L iw W-7 A 7 g 4- -A Tzl TIT A A 7-17V7- LEVEND SOIL GROUP BOUNDARY A SOIL GROUP DESIGNATION SCALE�1 48;000 BOUNDARY OF INDICATED SOURCE SCALE REDUCED BY 1/2 HYDROLOGIC SOILS GROUP MAP FOR SOUTHWEST -A AREA N Developed Rational Method 100 Year Storm Event 14 ************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983-95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING, INC. 6101 CHERRY AVENUE FONTANA, CALIFORNIA 92336 (909) 899 - 5011 ************************** DESCRIPTION OF STUDY ************************** * * Tract 16991 * Tributary Area to East Side of Foxtail Lane - Onsite Only * 100 Year Storm Event ************************************************************************** FILE NAME: 16991100.DAT TIME/DATE OF STUDY: 8:35 6/20/2005 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TIME-OF-CONCENTRATION MODEL* -- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 90 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) _ .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) = 1.5000 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* **************************************************************************** FLOW PROCESS FROM NODE .00 TO NODE 1.00 IS CODE=--2�1-------- --------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS«« < -->>USE-TIME-OF-CONCENTRATION- NOMOGRAPH -FOR -INITIAL -SUBAREA«--------------- INITIAL SUBAREA FLOW-LENGTH(FEET) = 230.00 ELEVATION DATA: UPSTREAM(FEET) = 1338.90 DOWNSTREAM(FEET) = 1336.50 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.666 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.606 SUBAREA Tc AND LOSS RATE DATA(AMC II): Ap SCS Tc DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) COMMERCIAL A .20 .98 .10 32 6.67 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ •97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) = 99 TOTAL AREA(ACRES) _ .20 PEAK FLOW RATE(CFS) _ •99 **************************************************************************** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 6.1 ---------------------------------------------------------------------- »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 1336.50 DOWNSTREAM ELEVATION(FEET) = 1330.00 STREET LENGTH(FEET) = 170.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.28 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .27 HALFSTREET FLOOD WIDTH(FEET) = 7.08 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.68 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) _ .99 STREET FLOW TRAVEL TIME(MIN.) _ .77 Tc(MIN.) = 7.43 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.251 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" A .60 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) _ .60 SUBAREA RUNOFF(CFS) = 2.57 EFFECTIVE AREA(ACRES) _ .80 AREA -AVERAGED Fm(INCH/HR) _ .39 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .40 TOTAL AREA(ACRES) _ .80 PEAK FLOW RATE(CFS) = 3.50 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .30 HALFSTREET FLOOD WIDTH(FEET) = 8.62 FLOW VELOCITY(FEET/SEC.) = 4.06 DEPTH*VELOCITY(FT*FT/SEC.) = 1.21 **************************************************************************** FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 6.1 -------------------------------------------------------------------- »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< »»>(STANDARD CURB SECTION USED)<<<<< -------------------- UPSTREAM ELEVATION(FEET) = 1330.00 DOWNSTREAM ELEVATION(FEET) = 1328.50 STREET LENGTH(FEET) = 195.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.04 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .41 HALFSTREET FLOOD WIDTH(FEET) = 14.10 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.39 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) _ .98 STREET FLOW TRAVEL TIME(MIN.) = 1.36 Tc(MIN.) = 8.79 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.747 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" A .80 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .80 SUBAREA RUNOFF(CFS) = 3.07 EFFECTIVE AREA(ACRES) = 1.60 AREA -AVERAGED Fm(INCH/HR) _ .44 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .45 TOTAL AREA(ACRES) = 1.60 PEAK FLOW RATE(CFS) = 6.20 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .43 HALFSTREET FLOOD WIDTH(FEET) = 15.33 FLOW VELOCITY(FEET/SEC.) = 2.52 DEPTH*VELOCITY(FT*FT/SEC.) = 1.09 **************************************************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 6.1 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< »»>(STANDARD CURB SECTION USED)<<<<< -------------------------------------------------- UPSTREAM ELEVATION(FEET) = 1328.50 DOWNSTREAM ELEVATION(FEET) = 1327.40 STREET LENGTH(FEET) = 120.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.40 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .43 HALFSTREET FLOOD WIDTH(FEET) = 15.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.70 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.15 STREET FLOW TRAVEL TIME(MIN.) = .74 Tc(MIN.) = 9.53 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.523 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/'HR) (DECIMAL) CN COMMERCIAL A .10 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS SUBAREA AVERAGE PERVIOUS AREA SUBAREA AREA(ACRES) _ .10 EFFECTIVE AREA(ACRES) = 1. AREA -AVERAGED Fp(INCH/HR) _ TOTAL AREA(ACRES) = 1.70 RATE, Fp(INCH/HR) _ .97 FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) _ 70 AREA -AVERAGED Fm(INCH/HR) .98 AREA -AVERAGED Ap = .43 PEAK FLOW RATE(CFS) _ .40 _ .42 6.28 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .42 HALFSTREET FLOOD WIDTH(FEET) = 14.87 FLOW VELOCITY(FEET/SEC.) = 2.69 DEPTH*VELOCITY(FT*FT/SEC.) = 1.14 �7 **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983-95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING, INC. 6101 CHERRY AVENUE FONTANA, CALIFORNIA 92336 (909) 899 - 5011 ************************** DESCRIPTION OF STUDY ************************** * Tract 16991 * Tributary Area to West Side of Foxtail Lane - Onsite Only * 100 Year Storm Event ************************************************************************** FILE NAME: 16991W.DAT TIME/DATE OF STUDY: 9:29 6/20/2005 ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- --*TIME-OF-CONCENTRATION MODEL* -- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(TC;MIN)) _ .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) = 1.5000 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* **************************************************************************** FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 2.1 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ------------------------------ INITIAL SUBAREA FLOW-LENGTH(FEET) = 155.00 ELEVATION DATA: UPSTREAM(FEET) = 1336.60 DOWNSTREAM(FEET) = 1329.70 Tc = K*((LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.000 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 6.662 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) COMMERCIAL A .10 .98 .10 32 5.00 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) _ .59 TOTAL AREA(ACRES) _ .10 PEAK FLOW RATE(CFS) _ .59 **************************************************************************** FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 6.1 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED) ««< -------------------------------------------- UPSTREAM ELEVATION(FEET) = 1329.70 DOWNSTREAM ELEVATION(FEET) = 1328.40 STREET LENGTH(FEET) = 200.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **************************************************************************** FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 6.1 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< »» >(STANDARD CURB SECTION USED)<<<<< -------------------------------------------- UPSTREAM ELEVATION(FEET) = 1328.40 DOWNSTREAM ELEVATION(FEET) = 1327.50 STREET LENGTH(FEET) = 160.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.23 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .33 HALFSTREET FLOOD WIDTH(FEET) = 10.43 AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.85 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) _ .62 STREET FLOW TRAVEL TIME(MIN.) = 1.81 Tc(MIN.) = 6.81 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.537 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "8-10 DWELLINGS/ACRE" A .70 .98 .40 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .40 SUBAREA AREA(ACRES) _ .70 SUBAREA RUNOFF(CFS) = 3.24 EFFECTIVE AREA(ACRES) _ .80 AREA -AVERAGED Fm(INCH/HR) _ .35 AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .36 TOTAL AREA(ACRES) _ .80 PEAK FLOW RATE(CFS) = 3.73 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .39 HALFSTREET FLOOD WIDTH(FEET) = 12.94 FLOW VELOCITY(FEET/SEC.) = 2.08 DEPTH*VELOCITY(FT*FT/SEC.) _ .80 **************************************************************************** FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 6.1 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< »» >(STANDARD CURB SECTION USED)<<<<< -------------------------------------------- UPSTREAM ELEVATION(FEET) = 1328.40 DOWNSTREAM ELEVATION(FEET) = 1327.50 STREET LENGTH(FEET) = 160.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 Idook OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.77 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .42 HALFSTREET FLOOD WIDTH(FEET) = 14.68 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.10 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) _ .88 STREET FLOW TRAVEL TIME(MIN.) = 1.27 Tc(MIN.) = 8.08 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.996 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "8-10 DWELLINGS/ACRE" A .50 .98 .40 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .40 SUBAREA AREA(ACRES) _ .50 SUBAREA RUNOFF(CFS) = 2.07 EFFECTIVE AREA(ACRES) = 1.30 AREA -AVERAGED Fm(INCH/HR) _ .37 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .38 TOTAL AREA(ACRES) = 1.30 PEAK FLOW RATE(CFS) = 5.42 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .44 HALFSTREET FLOOD WIDTH(FEET) = 15.45 FLOW VELOCITY(FEET/SEC.) = 2.16 DEPTH*VELOCITY(FT*FT/SEC.) _ .94 N **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983-95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING, INC. 6101 CHERRY AVENUE FONTANA, CALIFORNIA 92336 (909) 899 - 5011 ************************** DESCRIPTION OF STUDY ************************** * Tract 16991 * Side of Development Adjacent to Sultana Avenue - See Onsite Map * 100 Year Storm Event ************************************************************************** FILE NAME: 169910SE.DAT TIME/DATE OF STUDY: 8:25 11/ 9/2004 ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- --*TIME-OF-CONCENTRATION MODEL* -- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) _ .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) = 1.5000 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* **************************************************************************** FLOW PROCESS FROM NODE .00 TO NODE 11.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS«« < >>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- INITIAL SUBAREA FLOW-LENGTH(FEET) = 185.00 ELEVATION DATA: UPSTREAM(FEET) = 1338.90 DOWNSTREAM(FEET) = 1336.50 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.485 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.229 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5-7 DWELLINGS/ACRE" A .50 .98 .50 32 7.49 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .98 Aow SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 2.13 TOTAL AREA(ACRES) _ .50 PEAK FLOW RATE(CFS) = 2.13 **************************************************************************** FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 6.1 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED)<<<<< UPSTREAM ELEVATION(FEET) = 1336.50 DOWNSTREAM ELEVATION(FEET) = 1333.90 STREET LENGTH(FEET) = 145.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.13 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .34 HALFSTREET FLOOD WIDTH(FEET) = 9.21 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.02 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.03 o0► STREET FLOW TRAVEL TIME(MIN.) _ .80 Tc(MIN.) = 8.29 ij * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.920 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" A .50 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) _ .50 SUBAREA RUNOFF(CFS) = 1.99 EFFECTIVE AREA(ACRES) = 1.00 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) = 3.99 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .36 HALFSTREET FLOOD WIDTH(FEET) = 10.33 FLOW VELOCITY(FEET/SEC.) = 3.17 DEPTH*VELOCITY(FT*FT/SEC.) = 1.16 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 1.00 TC(MIN.) = 8.29 EFFECTIVE AREA(ACRES) = 1.00 AREA -AVERAGED Fm(INCH/HR)= .49 AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .50 PEAK FLOW RATE(CFS) = 3.99 END OF RATIONAL METHOD ANALYSIS m N Street Capacity Calculations m Tract 16991 West Side of Sultana Avenue At Tract Boundary 100 Year Storm ************************************************************************ **** »»STREETFLOW MODEL INPUT INFORMATION«« CONSTANT STREET GRADE(FEET/FEET) = 0.016600 CONSTANT STREET FLOW(CFS) = 3.99 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.50 CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER-LIP(FEET) = 0.03125 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) = 0.12500 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS r ---STREET FLOW MODEL RESULTS: C*W- - ------------------------------------------------------------- STREET FLOW DEPTH(FEET) = 0.35 HALFSTREET FLOOD WIDTH(FEET) = 11.04 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.98 PRODUCT OF DEPTH&VELOCITY = 1.04 0.35 ft < 0.5 ft, Therefore water is flowing below top of curb If 100 year storm event is flowing below top of curb so is 25 year event Conclusion — Streets have capacity to convey flows safely NJ Tract 16991 East Side of Foxtail Lane At Southerly Tract Boundary 100 Year Storm ************************************************************************ »»STREETFLOW MODEL INPUT INFORMATION«« CONSTANT STREET GRADE(FEET/FEET) = 0.009700 CONSTANT STREET FLOW(CFS) = 6.28 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.50 CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER-LIP(FEET) = 0.03125 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) = 0.12500 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS o ---STREET FLOW MODEL RESULTS: - - ------------------------------------------------------------ STREET FLOW DEPTH(FEET) = 0.42 HALFSTREET FLOOD WIDTH(FEET) = 14.51 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.83 PRODUCT OF DEPTH&VELOCITY = 1.18 0.42 ft < 0.5 ft, Therefore water is flowing below top of curb If 100 year storm event is flowing below top of curb so is 25 year event Conclusion — Streets have capacity to convey flows safely Tract 16991 West Side of Foxtail Lane At Southerly Tract Boundary 100 Year Storm ************************************************************************ »»STREETFLOW MODEL INPUT INFORMATION«« CONSTANT STREET GRADE(FEET/FEET) = 0.009700 CONSTANT STREET FLOW(CFS) = 5.42 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.50 CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER-LIP(FEET) = 0.03125 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) = 0.12500 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS ---STREET FLOW MODEL RESULTS--------------------------- STREET FLOW DEPTH(FEET) = 0.40 HALFSTREET FLOOD WIDTH(FEET) = 13.93 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.63 PRODUCT OF DEPTH&VELOCITY = 1.07 0.4 ft < 0.5 ft, Therefore water is flowing below top of curb If 100 year storm event is flowing below top of curb so is 25 year event Conclusion — Streets have capacity to convey flows safely D Lq Rational Method Tributary to Foxtail Catch Basin N RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983-95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING, INC. 6101 CHERRY AVENUE FONTANA, CALIFORNIA 92336 (909) 899 - 5011 ************************** DESCRIPTION OF STUDY *********************##*** * Tract 16991 Offsite Rational Method * Tributary to East Side of Foxtail Lane * 100 Year Storm Event *********#*******#******************#*********#*##*#********#*#***#******* FILE NAME: 16992OS4.DAT TIME/DATE OF STUDY: 18:48 7/20/2005 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TIME-OF-CONCENTRATION MODEL* -- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) _ .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) = 1.5000 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* FLOW PROCESS FROM NODE .00 TO NODE 4.00 IS CODE = 2.1 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- INITIAL SUBAREA FLOW-LENGTH(FEET) = 460.00 ELEVATION DATA: UPSTREAM(FEET) = 1338.90 DOWNSTREAM(FEET) = 1332.50 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** 20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.626 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.238 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) Avok RESIDENTIAL "5-7 DWELLINGS/ACRE" A 2.20 .98 ,50 32 10.63 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 AaftkSUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap .50 SUBAREA RUNOFF(CFS) = 7.43 TOTAL AREA(ACRES) = 2.20 PEAK FLOW RATE(CFS) = 7.43 **************************************************************************** FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 6.1 ---------------------------------------------------------------------------- »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«« < »»>(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 1332.50 DOWNSTREAM ELEVATION(FEET) = 1328.00 STREET LENGTH(FEET) = 470.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 11.00 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .41 HALFSTREET FLOOD WIDTH(FEET) = 13.97 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.66 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.08 STREET FLOW TRAVEL TIME(MIN.) = 2.95 Tc(MIN.) = 13.57 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.659 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" A 2.50 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.50 SUBAREA RUNOFF(CFS) = 7.14 EFFECTIVE AREA(ACRES) = 4.70 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) = .98 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 4.70 PEAK FLOW RATE(CFS) = 13.42 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .43 HALFSTREET FLOOD WIDTH(FEET) = 15.12 FLOW VELOCITY(FEET/SEC.) = 2.79 DEPTH*VELOCITY(FT*FT/SEC.) = 1.20 FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.57 RAINFALL INTENSITY(INCH/HR) = 3.66 AREA -AVERAGED Fm(INCH/HR) = .49 AREA -AVERAGED Fp(INCH/HR) = ,98 AREA-AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 4.70 - TOTAL STREAM AREA(ACRES) 4.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 13.42 **************************************************************************** FLOW PROCESS FROM NODE .00 TO NODE 1.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS«« < >>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ------------------ - INITIAL SUBAREA FLOW-LENGTH(FEET) 230.00 ELEVATION DATA: UPSTREAM(FEET) = 1338.90 DOWNSTREAM(FEET) = 1336.50 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.666 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.606 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) COMMERCIAL A .20 .98 .10 32 6.67 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) _ .99 TOTAL AREA(ACRES) _ .20 PEAK FLOW RATE(CFS) _ .99 FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 6.1 --------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>(STANDARD CURB SECTION USED)< « < ---- UPSTREAM ELEVATION(FEET) = 1336.50 DOWNSTREAM ELEVATION(FEET) = 1330.00 STREET LENGTH(FEET) = 170.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.28 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .27 HALFSTREET FLOOD WIDTH(FEET) = 7.08 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.68 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) _ .99 STREET FLOW TRAVEL TIME(MIN.) _ .77 Tc(MIN.) = 7.43 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.251 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS $polk LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN y RESIDENTIAL "5-7 DWELLINGS/ACRE" A .60 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .98 i SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 60 SUBAREA RUNOFF(CFS) = 2.57 EFFECTIVE AREA(ACRES) _ .80 AREA -AVERAGED Fm(INCH/HR) _ .39 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .40 TOTAL AREA(ACRES) = .80 PEAK FLOW RATE(CFS) = 3.50 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .30 HALFSTREET FLOOD WIDTH(FEET) = 8.62 FLOW VELOCITY(FEET/SEC.) = 4.06 DEPTH*VELOCITY(FT*FT/SEC.) = 1.21 **************************************************************************** FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 6.1 ---------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED)<<<<< UPSTREAM ELEVATION(FEET) = 1330.00 DOWNSTREAM ELEVATION(FEET) = 1328.50 STREET LENGTH(FEET) = 195.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 FLOW PROCESS FROM NODE 3.00 TO NODE 5.00 IS CODE = 6.1 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<< <<< DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.04 STREETFL•OW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .41 HALFSTREET FLOOD WIDTH(FEET) = 14.10 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.39 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) _ .98 STREET FLOW TRAVEL TIME(MIN.) = 1.36 Tc(MIN.) = 8.79 x 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.747 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" A .80 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .80 SUBAREA RUNOFF(CFS) = 3.07 A( EFFECTIVE AREA(ACRES) = 1.60 AREA -AVERAGED Fm(INCH/HR) _ .44 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .45 TOTAL AREA(ACRES) = 1,60 PEAK FLOW RATE(CFS) = 6.20 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .43 HALFSTREET FLOOD WIDTH(FEET) = 15.33 FLOW VELOCITY(FEET/SEC..) = 2.52 DEPTH*VELOCITY(FT*FT/SEC.) = 1.09 FLOW PROCESS FROM NODE 3.00 TO NODE 5.00 IS CODE = 6.1 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<< <<< »»>(STANDARD CURB SECTION USED)<<<<< UPSTREAM ELEVATION(FEET) = 1328.50 DOWNSTREAM ELEVATION(FEET) = 1328.00 STREET LENGTH(FEET) = 240.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.57 ***STREET FLOW SPLITS OVER STREET -CROWN*** FULL DEPTH(FEET) _ .49 FLOOD WIDTH(FEET) = 18.00 FULL HALF -STREET VELOCITY(FEET/SEC.) = 1.59 SPLIT DEPTH(FEET) _ .33 SPLIT FLOOD WIDTH(FEET) = 9.98 SPLIT FLOW(CFS) = 1.24 SPLIT VELOCITY(FEET/SEC.) = 1.12 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .49 HALFSTREET FLOOD WIDTH(FEET) = 18.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.59 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) _ .77 STREET FLOW TRAVEL TIME(MIN.) = 2.10 Tc(MIN.) = 10.90 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.175 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A .20 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) _ .20 SUBAREA RUNOFF(CFS) _ EFFECTIVE AREA(ACRES) = 1.80 AREA -AVERAGED Fm(INCH/HR) _ AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .41 TOTAL AREA(ACRES) = 1.80 PEAK FLOW RATE(CFS) _ NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE 73 L[1] 6.20 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .49 HALFSTREET FLOOD WIDTH(FEET) = 18.00 FLOW VELOCITY(FEET/SEC.) = 1:59 DEPTH*VEL•OCITY(FT*FT/SEC.) _ .77 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * x * x * * x * * x * * * * * * * * * * FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1 ---------------------------------------------------------------------------- »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE- <<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 10.90 RAINFALL INTENSITY(INCH/HR) = 4.17 AREA -AVERAGED Fm(INCH/HR) _ .40 AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .41 EFFECTIVE STREAM AREA(ACRES) = 1,80 TOTAL STREAM AREA(ACRES) = 1.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.20 Intensity Fp(Fm) Ap Ae ** CONFLUENCE DATA ** NUMBER. (CFS) (MIN.) (INCH/HR) STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 13.42 13.57 3.659 .98( .49) .50 4.70 .00 2 6.20 10.90 4.175 .98( .40) .41 1.80 .00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER. (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 18.8 13.57 3.659 .975( .463) .48 6.5 .00 2 18.7 10.90 4.175 .975( .460) .47 5.6 .00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 18.77 Tc(MIN.) = 13.57 EFFECTIVE AREA(ACRES) = 6.50 AREA -AVERAGED Fm(INCH/HR) _ .46 AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .48 TOTAL AREA(ACRES) = 6.50 **************************************************************************** FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE = 6.1 ----------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< »»> (STAdDARD CURB SECTION USED) ««< ------------------------------------- UPSTREAM ELEVATION(FEET) = 1328.00 DOWNSTREAM ELEVATION(FEET) = 1319.00 STREET LENGTH(FEET) = 400.00 CURB HEIGHT(INCHES) = 6.0* STREET HALFWIDTH(FEET) = 18,00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 19.84 ***STREET FLOW SPLITS OVER STREET -CROWN' FULL DEPTH(FEET) _ .49 FLOOD WIDTH(FEET) = 18.00 FULL HALF -STREET VELOCITY(FEET/SEC.) = 4.76 SPLIT DEPTH(FEET) _ .33 SPLIT FLOOD WIDTH(FEET) = 10.10 SPLIT FLOW(CFS) = 3.86 SPLIT VELOCITY(FEET/SEC.) = 3.39 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .49 HALFSTREET FLOOD WIDTH(FEET) = 18.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.76 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.31 STREET FLOW TRAVEL TIME(MIN.) = 1.40 Tc(MIN.) = 14.97 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.450 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" A .80 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) _ .80 SUBAREA RUNOFF(CFS) = 2.13 EFFECTIVE AREA(ACRES) = 7.30 AREA -AVERAGED Fm(INCH/HR) _ .47 AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .48 TOTAL AREA(ACRES) = 7.30 PEAK FLOW RATE(CFS) = 19.60 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .49 HALFSTREET FLOOD WIDTH(FEET) = 18.00 FLOW VELOCITY(FEET/SEC.) = 4.76 DEPTH*VELOCITY(FT*FT/SEC.) = 2.31 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 19.6 14.97 3.450 .975( .466) .48 7.3 .00 2 19.6 12.30 3.883 .975( .463) .47 6.4 .00 NEW PEAK FLOW DATA ARE: PEAK FLOW RATE(CFS) = 19.61 Tc(MIN.) = 12.30 AREA -AVERAGED Fm(INCH/HR) _ .46 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .47 EFFECTIVE AREA(ACRES) = 6.37 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 7.30 TC(MIN.) = 12.30 EFFECTIVE AREA(ACRES) = 6.37 AREA -AVERAGED Fm(INCH/HR)= .46 AREA -AVERAGED Fp(INCH/HR) = 97 AREA -AVERAGED Ap = .47 PEAK FLOW RATE(CFS) = 19.61 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 19.6 12.30 3.883 .975( .463) .47 6.4 .00 2 19.6 14.97 3.450 .975( .466) .48 7.3 .00 END OF RATIONAL METHOD ANALYSIS N Rational Method Tributary to Sandhurst Street Catch Basin C� m RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983-95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING, INC. 6101 CHERRY AVENUE FONTANA, CALIFORNIA 92336 (909) 899 - 5011 ++***+#**#****+****#*****+ DESCRIPTION OF STUDY ***********#************** * Tract 16992 Offsite Rational Method * Tributary To North Side of Sandhurst Street * 100 Year Storm Event **+*++***+********+***+****************#************+*****#*******+*#***** FILE NAME: 16991W.DAT TIME/DATE OF STUDY: 9:56 6/23/2005 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TIME-OF-CONCENTRATION MODEL* -- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) _ .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) = 1.5000 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 2.1 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS« <<< -USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ---------------------------------------------------------------------------- INITIAL SUBAREA FLOW-LENGTH(FEET) = 155.00 ELEVATION DATA: UPSTREAM(FEET) = 1336.60 DOWNSTREA.M(FEET) = 1329.70 Tc = K*[(LENGTH** 3.00)/(ELEVP.TION CHANGE)]** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.000 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 6.662 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) COMMERCIAL A .10 ,98 .10 32 5.00 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) _ .59 TOTAL AREA(ACRES) _ .10 PEAK FLOW RATE(CFS) _ .59 FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 6.1 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED) «« < -------------------- UPSTREAM ELEVATION(FEET) = 1329.70 DOWNSTREAM ELEVATION(FEET) = 1328.40 STREET LENGTH(FEET) = 200.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.23 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .33 HALFSTREET FLOOD WIDTH(FEET) = 10.43 AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.85 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) _ .62 STREET FLOW TRAVEL TIME(MIN.) = 1.81 TC(MIN.) = 6,81 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.537 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "8-10 DWELLINGS/ACRE" A .70 .98 .40 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .40 SUBAREA AREA(ACRES) _ .70 SUBAREA RUNOFF(CFS) = 3.24 EFFECTIVE AREA(ACRES) _ .80 AREA -AVERAGED Fm(INCH/HR) _ .35 AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .36 TOTAL AREA(ACRES) _ .80 PEAK FLOW RATE(CFS) = 3.73 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .39 HALFSTREET FLOOD WIDTH(FEET) = 12.94 FLOW VELOCITY(FEET/SEC.) = 2.08 DEPTH*VELOCITY(FT*FT/SEC.) _ .80 FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 6.1 ------------------------------------------------------------------------------ >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« << >>>>>(STANDARD CURB SECTION USED)<<<<< -------------------- UPSTREAM ELEVATION(FEET) = 1328.40 DOWNSTREAM ELEVATION(FEET) = 1327.50 STREET LENGTH(FEET) = 160.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.77 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .42 HALFSTREET FLOOD WIDTH(FEET) = 14.68 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.10 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) _ .88 STREET FLOW TRAVEL TIME(MIN.) = 1.27 Tc(MIN.) = 8.08 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.996 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "8-10 DWELLINGS/ACRE" A .50 .98 .40 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .40 SUBAREA AREA(ACRES) = .50 SUBAREA RUNOFF(CFS) = 2.07 EFFECTIVE AREA(ACRES) = 1.30 AREA -AVERAGED Fm(INCH/HR) _ .37 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .38 TOTAL AREA(ACRES) = 1.30 PEAK FLOW RATE(CFS) = 5.42 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .44 HALFSTREET FLOOD WIDTH(FEET) = 15.45 FLOW VELOCITY(FEET/SEC.) = 2.16 DEPTH*VELOCITY(FT*FT/SEC.) _ .94 FLOW PROCESS FROM NODE 13.00 TO NODE 16.00 IS CODE = 6.1 -------------------------------------------------------------------------- »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«« < >» >>(STANDARD CURB SECTION USED) «« < UPSTREAM ELEVATION(FEET) = 1327.50 DOWNSTREAM ELEVATION(FEET) = 1318.00 STREET LENGTH(FEET) = 520.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 7.82 STREETFL•OW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .41 HALFSTREET FLOOD WIDTH(FEET) = 14.10 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.71 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.51 STREET FLOW TRAVEL TIME(MIN.) = 2.34 Tc(MIN.) = 10.41 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.290 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "- 5-7 DWELLINGS/ACRE" A 1.40 .98 .50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap .50 SUBAREA AREA(ACRES) = 1.40 SUBAREA RUNOFF(CFS) _ EFFECTIVE AREA(ACRES) = 2.70 AREA -AVERAGED Fm(INCH/HR) AREA -AVERAGED Fp(INCH/HR) = .98 AREA -AVERAGED Ap = .44 TOTAL AREA(ACRES) = 2.70 PEAK FLOW RATE(CFS) = 32 4.79 .43 9.38 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .43 HALFSTREET FLOOD WIDTH(FEET) = 15.20 FLOW VELOCITY(FEET/SEC.) = 3.86 DEPTH*VELOCITY(FT*FT/SEC.) = 1.66 **************************************************************************** FLOW PROCESS FROM NODE 16.00 TO NODE 16.00 IS CODE = 1 ---------------------------------------------------------------------------- »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«« < TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.41 RAINFALL INTENSITY(INCH/HR) = 4.29 AREA -AVERAGED Fm(INCH/HR) = .43 AREA -AVERAGED Fp(INCH/HR) = .98 AREA -AVERAGED Ap = .44 EFFECTIVE STREAM AREA(ACRES) = 2.70 TOTAL STREAM AREA(ACRES) = 2.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.38 **************************************************************************** FLOW PROCESS FROM NODE 14.00 TO NODE 15.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »» >RATIONAL METHOD INITIAL SUBAREA ANALYSIS« « < >>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW-LENGTH(FEET) = 500.00 ELEVATION DATA: UPSTREAM(FEET) = 1328.00 DOWNSTREAM(FEET) = 1320.00 TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 10.684 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.224 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5-7 DWELLINGS/ACRE" A 1.90 .98 .50 32 10.68 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 6.39 TOTAL AREA(ACRES) = 1.90 PEAK FLOW RATE(CFS) = 6.39 FLOW PROCESSFROMNODE -----15_00-TO- NODE -- -1600-IS-CODE-= 6.1 --- - -------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« « < »»>(STANDARD CURB SECTION USED) « « UPSTREAM ELEVATION(FEET) = 1320.00 DOWNSTREAM ELEVATION(FEET) = 1318.00 STREET LENGTH(FEET) = 330.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.72 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .46 HALFSTREET FLOOD WIDTH(FEET) = 16.57 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.35 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.07 STREET FLOW TRAVEL TIME(MIN.) = 2.34 Tc(MIN.) = 13.03 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.750 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A .20 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) _ .20 SUBAREA RUNOFF(CFS) _ .66 EFFECTIVE AREA(ACRES) = 2.10 AREA -AVERAGED Fm(INCH/HR) _ .45 [�+ AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .46 TOTAL AREA(ACRES) = 2.10 PEAK FLOW RATE(CFS) = 6.39 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .45 HALFSTREET FLOOD WIDTH(FEET) = 16.28 FLOW VELOCITY(FEET/SEC.) = 2.31 DEPTH*VELOCITY(FT*FT/SEC.) = 1.04 FLOW PROCESS FROM NODE 16.00 TO NODE 16.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«« < »» >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.03 RAINFALL INTENSITY(INCH/HR) = 3.75 AREA -AVERAGED Fm(INCH/HR) _ .45 AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .46 EFFECTIVE STREAM AREA(ACRES) = 2.10 TOTAL STREAM AREA(ACRES) = 2.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.39 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 9.38 10.41 4.290 .98( .43) .44 2.70 10.00 Ro 2 6.39 13.03 3.750 .98( .45) .46 2.10 14.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 15.3 10.41 4.290 .975( .438) .45 4.4 10.00 2 14.5 13.03 3.750 .975( .439) .45 4.8 14.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 15.32 Tc(MIN.) = 10.41 EFFECTIVE AREA(ACRES) = 4.38 AREA -AVERAGED Fm(INCH/HR) _ .44 AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .45 TOTAL AREA(ACRES) = 4.80 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 4.80 TC(MIN.) = 10.41 EFFECTIVE AREA(ACRES) = 4.38 AREA -AVERAGED Fm(INCH/HR)= .44 AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .45 PEAK FLOW RATE(CFS) = 15.32 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN:) (INCH/HR) (INCH/HR) (ACRES) NODE 1 15.3 10.41 4.290 .975( .438) .45 4.4 10.00 2 14.5 13.03 3.750 .975( .439) .45 4.8 14.00 END OF RATIONAL METHOD ANALYSIS Ro Rational Method Tributary to East Side of Beech Avenue Catch Basin N RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983-95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING, INC. 6101 CHERRY AVENUE FONTANA, CALIFORNIA 92336 (909) 899 - 5011 ************************** DESCRIPTION OF STUDY ************************** * Tract 16991 Offsite Rational Method * Tributary to East Side of Beech Avenue - See Offsite Map * 100 Year Storm Event ************************************************************************** FILE NAME: 16992OS3.DAT TIME/DATE OF STUDY: 12:58 6/20/2005 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TIME-OF-CONCENTRATION MODEL* -- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) _ .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) = 1.5000 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* **************************************************************************** FLOW PROCESS FROM NODE 10.00 TO NODE 21.00 IS CODE = 2.1 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW-LENGTH(FEET) = 340.00 ELEVATION DATA: UPSTREAM(FEET) = 1336.60 DOWNSTREAM(FEET) = 1333.20 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.861 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.078 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) 400k COMMERCIAL A .20 .98 .10 32 7.86 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) _ .90 TOTAL AREA(ACRES) = .20 PEAK FLOW RATE(CFS) _ .90 **************************************************************************** FLOW PROCESS FROM NODE 21.00 TO NODE 23.00 IS CODE = 6.1 --------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«« < »»>(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 1333.20 DOWNSTREAM ELEVATION(FEET) = 1318.00 STREET LENGTH(FEET) = 830.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 40.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.59 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .33 HALFSTREET FLOOD WIDTH(FEET) = 8.35 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.92 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) _ .95 STREET FLOW TRAVEL TIME(MIN.) = 4.73 Tc(MIN.) = 12.59 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.828 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A 1.00 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 3.36 EFFECTIVE AREA(ACRES) = 1.20 AREA -AVERAGED Fm(INCH/HR) _ .10 AREA -AVERAGED Fp(INCH/HR) = .98 AREA -AVERAGED Ap = .10 TOTAL AREA(ACRES) = 1.20 PEAK FLOW RATE(CFS) = 4.03 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .37 HALFSTREET FLOOD WIDTH(FEET) = 10.35 FLOW VELOCITY(FEET/SEC.) = 3.20 DEPTH*VELOCITY(FT*FT/SEC.) = 1.17 **************************************************************************** FLOW PROCESS FROM NODE 23.00 TO NODE 23.00 IS CODE = 1 -------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 12.59 RAINFALL INTENSITY(INCH/HR) = 3.83 AREA -AVERAGED Fm(INCH/HR) = .10 AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .10 EFFECTIVE STREAM AREA(ACRES) = 1.20 TOTAL STREAM AREA(ACRES) = 1.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.03 **************************************************************************** FLOW PROCESS FROM NODE 24.00 TO NODE 22.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< >>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW-LENGTH(FEET) = 215.00 ELEVATION DATA: UPSTREAM(FEET) = 1325.00 DOWNSTREAM(FEET) = 1319.80 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.018 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.436 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5-7 DWELLINGS/ACRE" A .60 .98 .50 32 7.02 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 2.67 TOTAL AREA(ACRES) _ .60 PEAK FLOW RATE(CFS) = 2.67 **************************************************************************** --FLOW-PROCESS-FROM NODE 22.00 TO NODE 23.00 IS CODE = 6.1 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<< «< »»>(STANDARD CURB SECTION USED)<< < ------------------------------------ UPSTREAM ELEVATION(FEET) = 1319.80 DOWNSTREAM ELEVATION(FEET) = 1318.00 STREET LENGTH(FEET) = 390.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) _ STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .46 HALFSTREET FLOOD WIDTH(FEET) = 15.18 AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.97 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) _ .91 STREET FLOW TRAVEL TIME(MIN.) = 3.29 TC(MIN.) _ * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.315 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH/HR) RESIDENTIAL "5-7 DWELLINGS/ACRE" A 1.30 .98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ 4.93 10.31 Ap SCS (DECIMAL) CN .50 32 .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 Q Tc SUBAREA AREA(ACRES) = 1.30 SUBAREA RUNOFF(CFS) = 4.48 EFFECTIVE AREA(ACRES) = 1.90 AREA -AVERAGED Fm(INCH/HR) _ .49 AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .50 (INCH/HR) TOTAL AREA(ACRES) = 1.90 PEAK FLOW RATE(CFS) = 6.55 END OF SUBAREA STREET FLOW HYDRAULICS: 9.7 12.59 DEPTH(FEET) = .50 HALFSTREET FLOOD WIDTH(FEET) = 17.08 .975( .337) .35 3.1 FLOW VELOCITY(FEET/SEC.) = 2.11 DEPTH*VELOCITY(FT*FT/SEC.) = 1.05 **************************************************************************** FLOW PROCESS FROM NODE 23.00 TO NODE 23.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 10.31 RAINFALL INTENSITY(INCH/HR) = 4.32 AREA -AVERAGED Fm(INCH/HR) = .49 AREA -AVERAGED Fp(INCH/HR) = .98 AREA -AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 1.90 TOTAL STREAM AREA(ACRES) = 1.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.55 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 4.03 12.59 3.828 .98( .10) .10 1.20 10.00 2 6.55 10.31 4.315 .98( .49) .50 1.90 24.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 9.7 12.59 3.828 .975( .337) .35 3.1 10.00 2 10.3 10.31 4.315 .975( .355) .36 2.9 24.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 10.28 Tc(MIN.) = 10.31 EFFECTIVE AREA(ACRES) = 2.88 AREA -AVERAGED Fm(INCH/HR) _ .35 AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .36 TOTAL AREA(ACRES) = 3.10 **************************************************************************** FLOW PROCESS FROM NODE 23.00 TO NODE 27.00 IS CODE = 6.1 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< --»» >(STANDARD -CURB -SECTION -USED) « «<------------------------------------ UPSTREAM ELEVATION(FEET) = 1318.00 DOWNSTREAM ELEVATION(FEET) = 1313.00 STREET LENGTH(FEET) = 330.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 40.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 10.80 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .49 HALFSTREET FLOOD WIDTH(FEET) = 16.44 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.74 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.82 STREET FLOW TRAVEL TIME(MIN.) = 1.47 TC(MIN.) = 11.78 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.983 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A .30 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) _ .30 SUBAREA RUNOFF(CFS) = 1.05 EFFECTIVE AREA(ACRES) = 3.18 AREA -AVERAGED Fm(INCH/HR) _ .33 AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .34 TOTAL AREA(ACRES) = 3.40 PEAK FLOW RATE(CFS) = 10.46 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .48 HALFSTREET FLOOD WIDTH(FEET) = 16.21 FLOW VELOCITY(FEET/SEC.) = 3.71 DEPTH*VELOCITY(FT*FT/SEC.) = 1.79 **************************************************************************** FLOW PROCESS FROM NODE 27.00 TO NODE 27.00 IS CODE = 1 ----------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« << TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 11.78 RAINFALL INTENSITY(INCH/HR) = 3.98 AREA -AVERAGED Fm(INCH/HR) _ .33 AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .34 EFFECTIVE STREAM AREA(ACRES) = 3.18 TOTAL STREAM AREA(ACRES) = 3.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.46 **************************************************************************** FLOW PROCESS FROM NODE 24.00 TO NODE 25.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS«« < -->>USE-TIME-OF-CONCENTRATION- NOMOGRAPH -FOR -INITIAL -SUBAREA<<--------------- INITIAL SUBAREA FLOW-LENGTH(FEET) = 265.00 ELEVATION DATA: UPSTREAM(FEET) = 1325.00 DOWNSTREAM(FEET) = 1320.50 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.400 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.745 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) COMMERCIAL A .10 .98 .10 32 6.40 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) _ .51 TOTAL AREA(ACRES) _ .10 PEAK FLOW RATE(CFS) _ .51 **************************************************************************** FLOW PROCESS FROM NODE 25.00 TO NODE 25.00 IS CODE = 8.1 ---------------------------------------------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< MAINLINE Tc(MIN) = 6.40 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.745 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" A .30 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) _ .30 SUBAREA RUNOFF(CFS) = 1.42 EFFECTIVE AREA(ACRES) _ .40 AREA -AVERAGED Fm(INCH/HR) _ .39 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .40 TOTAL AREA(ACRES) _ .40 PEAK FLOW RATE(CFS) = 1.93 **************************************************************************** FLOW PROCESS FROM NODE 25.00 TO NODE 26.00 IS CODE = 6.1 ---------------------------------------------------------------------------- » -COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< » »>(STANDARD CURB SECTION USED)<<<<< UPSTREAM ELEVATION(FEET) = 1320.50 DOWNSTREAM ELEVATION(FEET) = 1320.00 STREET LENGTH(FEET) = 160.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.14 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .37 HALFSTREET FLOOD WIDTH(FEET) = 11.94 AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.39 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) _ .51 STREET FLOW TRAVEL TIME(MIN.) = 1.92 TC(MIN.) = 8.32 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.908 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN A 10 .98 .10 32 COMMERCIAL SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) = .10 SUBAREA RUNOFF(CFS) = 43 EFFECTIVE AREA(ACRES) _ .50 AREA -AVERAGED Fm(INCH/HR) _ .33 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .34 TOTAL AREA(ACRES) = .50 PEAK FLOW RATE(CFS) = 2.06 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .36 HALFSTREET FLOOD WIDTH(FEET) = 11.73 FLOW VELOCITY(FEET/SEC.) = 1.38 DEPTH*VELOCITY(FT*FT/SEC.) _ .50 **************************************************************************** FLOW PROCESS FROM NODE 26.00 TO NODE 27.00 IS CODE = 6.1 ---------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 1320.00 DOWNSTREAM ELEVATION(FEET) = 1313.00 STREET LENGTH(FEET) = 600.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 25.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.91 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .36 HALFSTREET FLOOD WIDTH(FEET) = 9.86 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.51 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) _ •89 STREET FLOW TRAVEL TIME(MIN.) = 3.99 Tc(MIN.) = 12.31 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.880 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp CSCS CI LAND USE GROUP (ACRES) (INCH/HR) (DE CMAL) CN COMMERCIAL A .50 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) = .50 SUBAREA RUNOFF(CFS) = 1.70 EFFECTIVE AREA(ACRES) = 1.00 AREA -AVERAGED Fm(INCH/HR) _ .21 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .22 TOTAL AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) = 3.30 END OF SUBAREA STREET FLOW HYDRAULICS: to"", DEPTH(FEET) = .37 HALFSTREET FLOOD WIDTH(FEET) = 10.49 FLOW VELOCITY(FEET/SEC.) = 2.56 DEPTH*VELOCITY(FT*FT/SEC.) = 94 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. **************************************************************************** ** FLOW PROCESS FROM NODE 27.00 TO NODE 27.00 IS CODE ---------------------------------------------------------------------------- = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«« < STREAM Tc Q Intensity y »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< A A p e SOURCE TOTAL NUMBER OF STREAMS = 2 NUMBER (CFS) (MIN.) (INCH/HR) CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: (ACRES) NODE TIME OF CONCENTRATION(MIN.) = 12.31 1 13.7 11.78 3.983 RAINFALL INTENSITY(INCH/HR) = 3.88 .31 4.1 24.00 AREA -AVERAGED Fm(INCH/HR) = .21 2 13.0 14.08 3.579 AREA -AVERAGED Fp(INCH/HR) = .97 .30 4.4 10.00 AREA -AVERAGED Ap = .22 3 13.7 12.31 3.880 EFFECTIVE STREAM AREA(ACRES) = 1.00 .31 4.2 24.00 TOTAL STREAM AREA(ACRES) = 1.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.30 ** CONFLUENCE DATA ** 13.71 Tc(MIN.) = STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE AREA -AVERAGED Fm(INCH/HR) _ 1 9.99 14.08 3.579 .98( .32) .32 3.40 10.00 AREA -AVERAGED Fp(INCH/HR) _ .98 1 10.46 11.78 3.983 .98( .33) .34 3.18 24.00 2 3.30 12.31 3.880 .97( .21) .22 1.00 24.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Tc Q Intensity y Fp(Fm) p( ) A A p e SOURCE NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 13.7 11.78 3.983 .975( .304) .31 4.1 24.00 2 13.0 14.08 3.579 .975( .293) .30 4.4 10.00 3 13.7 12.31 3.880 .975( .300) .31 4.2 24.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 13.71 Tc(MIN.) = 11.78 EFFECTIVE AREA(ACRES) = 4.14 AREA -AVERAGED Fm(INCH/HR) _ .30 AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .31 TOTAL AREA(ACRES) = 4.40 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 4.40 TC(MIN.) = 11.78 EFFECTIVE AREA(ACRES) = 4.14 AREA -AVERAGED Fm(INCH/HR)= .30 AREA -AVERAGED Fp(INCH/HR) _ .98 AREA -AVERAGED Ap = .31 PEAK FLOW RATE(CFS) = 13.71 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 13.7 11.78 3.983 .975( .304) .31 4.1 24.00 2 13.7 12.31 3.880 .975( .300) .31 4.2 24.00 3 13.0 14.08 3.579 .975( .293) .30 4.4 10.00 took ----------- END OF RATIONAL METHOD ANALYSIS Street Capacity Calculations Tract 16991 Offsite Street Capacity Calculation East Side of Foxtail Lane 100 Year Storm Event ************************************************************************ **** »»STREETFLOW MODEL INPUT INFORMATION«« CONSTANT STREET GRADE(FEET/FEET) = 0.028000 CONSTANT STREET FLOW(CFS) = 19.61 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.50 CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER-LIP(FEET) = 0.03125 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) = 0.12500 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS ***STREET FLOW SPLITS OVER STREET -CROWN*** FULL DEPTH(FEET) = 0.49 FLOOD WIDTH(FEET) = 18.00 FULL HALF -STREET FLOW(CFS) = 17.83 FULL HALF -STREET VELOCITY(FEET/SEC.) = 5.31 SPLIT DEPTH(FEET) = 0.26 SPLIT FLOOD WIDTH(FEET) = 6.91 SPLIT FLOW(CFS) = 1.78 SPLIT VELOCITY(FEET/SEC.) = 2.99 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = 0.49 HALFSTREET FLOOD WIDTH(FEET) = 18.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.31 PRODUCT OF DEPTH&VELOCITY = 2.58 @4 Tract 16991 Offsite Street Capacity Analysis North Side of Sandhurst Street Between Beech Ave and Foxtail Lane 100Year Storm Event ************************************************************************ **** »»STREETFLOW MODEL INPUT INFORMATION«« CONSTANT STREET GRADE(FEET/FEET) = 0.010000 CONSTANT STREET FLOW(CFS) = 21.62 = 15.32 + 6.3 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.50 CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER-LIP(FEET) = 0.03125 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) = 0.12500 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS ***STREET FLOWING FULL*** STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = 0.50 HALFSTREET FLOOD WIDTH(FEET) = 18.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.06 PRODUCT OF DEPTH&VELOCITY = 1.52 N N Catch Basin Capacity Calculations Tract 16991 Offsite Catch Basin Interception Analysis East Side of Foxtail Lane 100 Year Storm Event »»FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« ---------------------------------------------------------------------------- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 19.61 GUTTER FLOWDEPTH(FEET) = 0.50 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN ANALYSIS RESULTS: BASIN WIDTH FLOW INTERCEPTION ., 4.05 3.10 4.50 3.42 5.00 3.78 5.50 4.13 6.00 4.48 6.50 4.83 7.00 5.18 7.50 5.53 8.00 5.87 8.50 6.22 9.00 6.56 9.50 6.90 10.00 7.24 10.50 7.58 11.00 7.92 11.50 8.26 12.00 8.59 12.50 8.89 13.00 9.18 13.50 9.46 14.00 9.74 14.50 10.02 15:00 10.28 1550 10.55 16.00 10.82 16.50 11.08 17.00 11.34 17.50 11.60 18.00 11.86 18.50 12.11 19.00 1237 19.50 12.62 20.00 12.87 20.50 13.12 21.00 13.36 19.61-13.36 = 6.25 = 6.3 cfs bypasses catch basin »»FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 21.62 GUTTER FLOWDEPTH(FEET) = 0.50 BASIN LOCAL DEPRESSION(FEET) = 0.33 ------------------------------------------------------ FLOWBY BASIN ANALYSIS RESULTS: BASIN WIDTH FLOW INTERCEPTION 4.46 3.42 4.50 3.44 5.00 3.80 5.50 4.16 6.00 4.51 6.50 4.86 7.00 5.21 7.50 5.56 8.00 5.91 8.50 6.25 9.00 6.60 9.50 6.94 10.00 7.29 10.50 7.63 11.00 7.97 11.50 8.31 12.00 8.64 12.50 8.98 13.00 9.32 13.50 9.64 14.00 9.93 14.50 10.22 15.00 10.50 15.50 10.78 16.00 11.05 16.50 11.32 17.00 11.59 17.50 11.85 18.00 12.12 18.50 12.38 19.00 12.64 19.50 12.90 20.00 13.15 20.50 13.41 21.00 13.67 21,62 —13.67 = 7.95 cfs bypasses catch basin m Tract 16991 Offsite Catch Basin Analysis East Side of Beech Avenue 100 Year Storm Event »»SUMP TYPE BASIN INPUT INFORMATION«« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 21.70 BASIN OPENING(FEET) = 0.71 DEPTH OF WATER(FEET) = 0.71 »»CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 11.75 Therefore, assume a 21' catch basin will intercept 100% of 21.7 cfs Total Q = Q tributary to basin + Q that flows by Sandhurst Street CB 21.7=13.75+7.95 N m WSPG Lateral A-4 T1 T2 Tract 16991 Offsite Storm Drain Lateral A-4 - Sandhurst Street & Foxtail Lane 0 T3 100 Year Storm Event SO 1000.0001310.750 1 1313.660 R 1090.8001311.150 1 .013 .000 .000 0 R 1130.0001312.150 1 .013 99.822 .000 0 R 1161.4901312.370 1 .013 80.189 .000 0 R 1206.4401312.690 1 .013 .000 .000 0 JX 1210.9401313.060 3 2 .013 13.600 1312.950 46.5 .000 R 1241.6101313.280 3 .013 .000 .000 0 R 1267.9301313.469 3 .013 -67.010 .000 0 R 1379.7701314.240 3 .013 .000 .000 0 WE 1379.7701314.240 4 .500 SH 1379.7701314.240 4 1314.240 CD 1 4 1 .000 2.000 .000 .000 .000 .00 CD 2 4 1 .000 1.500 .000 .000 .000 .00 CD 3 4 1 .000 1.500 .000 .000 .000 .00 CD 4 2 0 .000 6.800 14.000 .000 .000 .00 Q 13.400 .0 r L J 0 0 FILE: 16991sandlat.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 1 Program Package Serial Number: 1382 WATER SURFACE PROFILE LISTING Date: 7-20-2005 Time: 7:37:53 Tract 16991 Offsite Storm Drain Lateral A-4 - Sandhurst Street & Foxtail Lane 100 Year Storm Event Invert I Depth I Water ! Q I Vel Vel I Energy I Super ICriticallFlow ToplHeight/IBase Wt1 INo Wth Station I Elev ( (FT) ! Elev I (CFS) j (FPS) Head I Grd.E1.1 Elev I Depth I Width IDia.-FTIor I.D.1 ZL IPrs/Pip L/Eleni ICh Slope I I I I SF Ave1 HF ISE DpthIFroude NINorm Dp I "N" I X-Fall) ZR (Type Ch 1000.000 1310.750 2.910 1313.660 27.00 8.59 1.15 1314.81 .00 1.81 .00 2.000 .000 .00 1 .0 90.800 .0044 .0142 1.29 2.91 .00 2.00 .013 .00 .00 PIPE 1090.800 1311.150 3.803 1314.953 27.00 8.59 1.15 1316.10 .00 1.81 .00 2.000 .000 .00 1 .0 39.200 .0255 .0142 .56 .00 .00 1.29 .013 .00 .00 PIPE i 1130.000 I 1312.150 3.603 I I 1315.753 I 27.00 8.59 I 1.15 I 1316.90 .00 I I 1.81 .00 I 2.000 I I .000 .00 I 1 .0 --I 31.490 - I .0070 I I -I -I- .0142 -I- .45 -I- .00 -I .00 - -I- 2.00 -I- .013 -1- .00 .00 1- PIPE I 1161.490 I 1312.370 4.049 I 1316.418 I I 27.00 8.59 I 1.15 I 1317.57 .00 I I 1.81 .00 I 2.000 I I .000 .00 I 1 .0 44.950 .0071 0142 .64 4.05 .00 2.00 013 .00 ..00 1- PIPE 1206.440 1312.690 4.369 1317.059 27-00 8.59 1.15 1318.21 .00 1.81 .00 2.000 .000 .00 1 .0 -I- JUNCT STR -j- .0822 -I- -I- -I- -I- -I- .0153 I- .07 -I- 4.37 -I- .00 -I- -I- .013 -I- .00 .00 I- PIPE 1210.940 1313.060 4.806 1317.866 13.40 7.58 .89 1318.76 .00 1.36 .00 1.500 .000 .00 1 .0 30.670 0072 .0163 .50 4.81 .00 1.50 .013 .00 .00 PIPE 1241.610 1313.280 5.085 1318.365 13.40 7.58 .89 1319.26 .00 1.36 .00 1.500 .000 .00 1 .0 26.320 .0072 .0163 .43 .00 .00 1.50 .013 .00 .00 PIPE I 1267.930 I 1313.469 5.479 I 1318.948 I i 13.40 7.58 I .89 I 1319.84 .00 i I 1.36 .00 I 1.500 I I .000 .00 I 1 .0 -I 111.840 - -I -0069 -I- -I- --i1- 0163 1.82 5.48 .00 1.50 .013 .00 .00 PIPE 1379.770 1314.240 6.528 1320.768 13.40 7.58 .89 1321.66 .00 1.36 .00 1.500 .000 .00 1 .0 -I WALL ENTRANCE - -j -- -- I- -I- -I- i n n n FILE: 16991sandlat.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 2 Program Package Serial Number: 1382 WATER SURFACE PROFILE LISTING Date: 7-20-2005 Time: 7:37:53 Tract 16991. Offsite Storm Drain Lateral A-4 - Sandhurst Street & Foxtail Lane 100 Year Storm Event Invert Depth Water Q Vel Vel I Energy I Super ICriticallFlow ToplHeight/ Base Wtj INo Wth Station I Elev (FT) Elev (CFS) I (FPS) Head I Grd.El.I Elev I Depth I Width Dia.-FTIor I.D.1 ZL IPrs/Pip L/Elem SCh Slope I I I I SF Avel HF ISE DpthIFroude NINorm Dp I "N" I X -Fall ZR IType Ch •++++++++�+++++++++I++++++++I+++++++++I+++++++++I+++++++I+++++++I+,t+rt+++++I+++++,r+I++++++++I++++++++Ir++++++I+t+++++1+++++ �++++x+r 1379.770 1314.240 '1,867 1322.107 13.40 .12 .00 1322.11 .00 .31 14.00 6.800 14.000 .00 0 .0 m M� LN T1 Tract 16991 0 (00"� T2 Offsite Storm Drain Lateral A-4 - Sandhurst Street & Foxtail Lane T3 100 Year Storm Event SO 1000.0001310.750 1 1313.660 R 1090.8001311.150 1 .013 .000 .000 0 R 1130.0001312.150 1 .013 99.822 .000 0 R 1161.4901312.370 1 .013 80.189 .000 0 R 1206.4401312.690 1 .013 .000 .000 0 JX 1210.9401313.060 3 2 .013 13.600 1312.950 46.5 .000 R 1241.6101313.280 3 .013 .000 .000 0 R 1267.9301313.469 3 .013 -67.010 .000 0 R 1379.7701314.240 3 .013 .000 .000 0 WE 1379.7701314.240 4 .500 SH 1379.7701314.240 4 1314.240 CD 1 4 1 .000 2.000 .000 .000 .000 .00 CD 2 4 1 .000 1.500 .000 .000 .000 .00 CD 3 4 1 .000 1.500 .000 .000 .000 .00 CD 4 2 0 .000 6.800 14.000 .000 .000 .00 Q 13-400 .0 Hydrology Exhibit AG 3-15W*4) J BARS. q 1.4 +m (41-89 LONG. 1.2 m OPTIONAL ROUND TO 73 mo (30) R OUTSIDE 7s n+a► (3') OC CONTINUEF Di F • OPTIO4AL FILLET ID- } EDGE OF ADDITIONAL. BA93 T CONCRETE IN io tell) -oc TD-. WIDE$ 'I SHEET 10F 4 MW OF MAllW(1LE •. ` (� '; • ' �i► t► �►{i+ . T Ttfll1SPUR 1050 ti1M tft" -1lSIgN4f H .. _.- 125. nun x SO.an-(&-_ _ � �- _. _._160 '@A 800 wo RS 2") PIPE SEAT --- T ANY. STANDARD (3'-00) LOW 3-D BARS. 76 mm (3•) OC CONTINUE PIP11; J4111? QQAr1! LNC, 150 mm'(6) OC (R -11M AND COVER NOT SHOM BARS SEE 18013 mm (72*4 2 NOTE 3 IOM 0 466 mm 03 $19.1 oc T E SO4 A AassARS At. �. N'� .D STREET _ o I GRADE OF SPUR 3 WITH A MAID MANHOLE FRAME 0 --mm 10 ! _ COVER PER F D F OF MANHOLE W .AND STD. LAN 8 'SHAFT'm PLAN PER STD. ' 0 BARS (SHAFT MT SHCIWN) PLAN 324 -� w ' TIE BARS STEP$ n ' F BARS ' ; . ..._.....� UNPAVED • T CONST (iC ,-- i F _ _ 'TION -:C_-C_MD_DETAIL .�N': E STREETS, �SLI� T_ SEC E.. TIE' BARS F BARS 125 mm it 50 Tit _ -�OEPTH.M MAY BE REDUCED TO AN-ABSOLUTE.•LtMiT 4F 150'•mm (60) WHEN . (SOO-) BARS ,►.- PIPE SEAT A BARS � 125 rw ....6mm D.ETA I L "N" PLAN. :. � OR LESS. C e 10 B (RIM .AND COVER NOT SOOWN) - B BARS P� AN .'ISE NOTE 1 15M 0 4150 ntm 04 018') BUT MAY BE •INCREASED PROVIDED THAT THE VALUE OF M • SHALL NOT OC BOTH WAYS. TO -BE SECT -ION G'"G 15M 0 450 mm (04' 0 18•) OC. USED WHEN B IS 1500 rM 80TH WAYS. TO BE. USED (608) OR MORE •WHEN D2. IS I500 nim•(601 . BE USED. FOR- H (IN -SECTION C -C) SEE NOTE I..: STREET GRADE CARD OR MORE STREET GRADE 25 3. -SEC-TN N. M--P-O CONCRETE RINGS 'PER OMIT. THiS STEP IN STD. PLAN -324 PAVED STREETS lay fxR, • I3• $ t24') H BAR ,", . RIN6 SEAT 25 mm xx 25 mm i5• x Il ' 150.mm W) .� -SEAT ; : 400 axtt'{tb'} FOR. PAVED ~ 150 mm t69 400 :.; STREETS, 650 mm (21-2• 9 BAR T SHALL BE' 200 mm (8") FOR VALUES OF H UP - TO AND: INCLUDING. 2.4 m FOR UNPAVED STREET. I- iS024VARIABLE i I24) TIE BARS E BARS 112 mm -to TIE BARS N F F J BARS _ ROUND EDGES TO 75 mm (39 R :. . S.ECTI.ON C -C ,., AMERICAN PUBLIC -WORKS ASSOCIATION -SOUTHERN CALIFORNIA CHAPTER L MAW OLE PIPE `.TO PIPE. STA nmi N auaucworuts�' R� NC, GREEN K MM LARGE DE N LET 322-1 REV' 'I SHEET 10F 4 U8E YIDtH STA1D SPF.>rdRCATlOIIs FOlEPUlIitC W[QRKl9 C01�ESTRUCttOA1 ISM 0 300 own (04 0 L/2 (TYP.)---- % IgM 0 300 erall (04 0 120) -� 150 WN CUT LIN-NOE r --3145M (04) CIRCULAR TiES. SEE NOTE 9 • 330-C-23 (560-C-3250) CONCRETE • 25 mm (10) (TYPA D L T 300 mm 024 $00 mat (12"1 100 frim (121 450 mai (ISO.) ' 300 mm (i2') ,123 mm (51 600 imn 124°) 3Oh. mm (1211} t50'arll (6.1 ' 156' °tm� � (504 450 mm 0w), 1 is mm 179 ' 900 mm (36') 450' mm (IOL. 2(23 iillp tom) 1050 ti1M tft" 460 mm ftllY atilt {9`l 1200 min toe• 450..mm (18!1 t3 "Ill, w) 1425 mm (5'f'1 430 :mm (I8') 250 rale 06* . 1300 -mm (60. 525 mitt' (21{) 1650 nem (66" 525 mm (21•1 V16 Oris f64 18013 mm (72*4 600 mm (24' !I r LINE Ido iflm CUT N( 6 1 MI .,. DETAIL W. (SEE NOTE 10) SONO -TUBE. OR .EQUAL. INTERIOR FORM CUT NO. It. SAW THE TUBE AT AN. A00LE OF Al2 WITH THE TRANS- VERSE PLANE.. REVERSE ONE.SECTION AND TAPE BOTH SECTIONS TOGETHER 'FORMING THE DEF'LEtTION ANLE A. CUT 'NO. 2-'. SAW THE TUBE LONGITUDINALLY REMOVING A STRIP 314_ (Q(rQ. ) WIDE: ON THE'SIEfE :OPP431TE *T "e OPEN JOINT: 9BEEg ''ITTNHM �EENDS E P F THE GIT TOGETHER AND INSERT THF_ �- INT•ERIOR SURFACE OF PIPE DETAIL "8" TYPtEAL J0110 00 REINFORM PME AIMEMAN* PUBLIC WORKS ASSOCIA71ON - SOUTHERN CALIFORNIA CHAPTER STANDARD R�PLAN 322-1 SHEET 2 OF 4 CONCRETE -COLLAR FOR RCP STAVa" Put vwlVcs std INc., ti i>Ioa¢w 300 m (12"). THROUGH 1800 mm (7211) ri 380!- 2 atly i0ee c SHEET 1 OF.2 U31E MY -ST F!1~AiIOM RK P11t311C ViftMC0WMCr 1` 125 mm x 50 rAm (50 x2l AT POPE SF ROUND ,G p 700 . ELEVATION • 11 1 b cm a3 _ -A 8, '1fA!(iT�J_m. F on am) 11 zT118,l`x"C4r�F''r11"91 111 ago) lum 2 T3"'�T?l�3 Z•� SW-ii'C� TABLE, I�W Ea. FOR ht famcm Immic SECTUM! Paw- �F; rr�>I11r;ar,--i�t�� << .., m-T'x'7C'1(tF'Dl� AWMCAN PUBLIC WORKS.ASSOCIATII N - SM. HERN. CAsLEORNIA CHAPTER STANDARD R�PLAN 322-1 SHEET 2 OF 4 MANHOLE- PIPE TO PIPE (LARGE -SIDE INLET) / NOTES 1. A CONCRETE COLLAR IS REQUIRED WHERE THE CHANGE 1N GRADE EXCEEDS 10 PERCENT. 2. FOR CURVE JOTN'rS (SEE DETAIL B: -SHEET 0 IF THE EXTREME ENDS OF THE PIPE LEAVE A CLEAR SPACE .T'HAT ,IS GREATER THAN 25 .mm (1•). BUT IS. LESS THAN 75 mm((30) :......, A.__C NtRETE _:COVER IS REOUIR'ED IN ACCORDANCE _.WiT14'SUBSECTION _.-. -: 306-1.2.4 OF THE SSPWC. IF THE . EXTREME ENDS. OF THE PIPE LEAVE A CLEAR SPACE- THAT PACE-THAT 4S. EQUAL TO .OR. SEATER THAN 75 mm (3•). BUT LESS THAN ISO mm' .16"). A ' CONCRETE -COLLAR IS, REOU IRED. IF THE •CLEAR SPACE iS 130. mm (6") OR GREATER, A *TRANSITION STRUCTURE IS REOUIREO. 3. GONCRETE . COLLAR SMALL NOT BE USED FOR A SIZE CHANGE ON THE 'MAIN LINE. 4. CONNECTOR PIPES A.' W14ERE PIPES OF DIFFERENT DIAMETERS ARE. JOINED WITH A CONCRETE. COLLAR. L AND T SHALL BE THOSE OF THE LARGER PIPE. OsOt OR 02. WHICHEVER IS GREATER. B. WHEN �.. IS EQUL TO OR S THAN Rt. JOIN .INVERTS AND WHEN DI -IS GREATER THAN �2. JOIN.. SOFFITS` 5. FOR PIPE•LAR6ER THAN 1800 Own (72") SPECIAL COLLAR DETAILS ARE REQUIRED. • 6. FOR PIPE SIZE NOT LISTED USE NEXT SIZE LARGER. T. ' REINFORCEMENT SHALL CONFORM TO ASTM A 615 M (A 615) GRADE. 300(40).-. 8. WHERE REINFORCING IS .REQUIRED THE DIAMETER OF .TME CIRCULAR TIES SHALL BE 0+(2X WALL THICKNESS) + T. 9. REINFORCING SHALL BE USED WHERE THE PIPE DIAMETER IS GREATER THAN 520 mm (21") AND ON ALL PIPES WHERE THE SPACES BETWEEN! THE EXTREME OUTER ENDS IS 75 mm (38) OR LARGER. CIRCULAR TIES= - PIPE DIAMETER NO. OF CIRCULAR TiES 5o WHERE ;FHS SPACE -BETWEEN PIPE ENDS EXCEEDS 75 mm (3"). THE N1RCULAR. TIES SHALL BE INCREASED TO MAINTAIN AN APPROXIIIAATE SPACING. OF 150 mtn (60) O.C. 10. WHERE THE PIPE IS 5125 mi+n (218)..OR•LESS IN DIAMETER AN i•NTERiOR FORM OF.UNSEALED SONO -TUBE OR EQUAL .SHALL '®E USED TO PROVIDE A SMOOTH INTERIOR JOINT. THE PAPER FORM MAY BE LEFTIly PLACE. (SEE DETAIL Al. WHEN THE PIPE IS 600 clam (240) OR LARGER A RMVASLE INTERIOR FORM SHALL BE- USSD OR 'THE INTERIOR JOINT STALL BE COMPLETELY FILLED WITH -MORTAR AND NEATLY. POINTED. 11. OtMENSIONS' SHOWN :ON TENTS PLAN FOR METRIC AND ENGLISH ):WITS ARE NOT .EXACT EQUAL VALUES. IF METRIC VALZIES E USED. A4L VALUES USED FOR CONSTRUCTION SHALL BE METRIC VALUES .EXCEPT REIN) ORCING .8AR .-SlZ99 IN ENGLISH U14ITS MAY BE. SU8STI.T�ITED .FOR METRIC�tiAR. SIZES: IF ENGLISH UNITS ARE- USED. ALL VALUES USED FOR CONSTRUCTION • SHALL 'BE ENGLISH UNITS. AMERICAN PUBLIC S A► I(30C1A' 'ION. 8Cl L#FORNtA CHAP ft: Q ST MEM� 380-2 SHE T20F.2 5 Innn 12(11) OR LESS • 3 1.0.0 nlrlli 4249TO 750 mm (300) 3 8.25 mm _1330), TO 142'5• mm Cc! 71 4 1304 rani .(60.0) TO 1900 mm 1720 5 WHERE ;FHS SPACE -BETWEEN PIPE ENDS EXCEEDS 75 mm (3"). THE N1RCULAR. TIES SHALL BE INCREASED TO MAINTAIN AN APPROXIIIAATE SPACING. OF 150 mtn (60) O.C. 10. WHERE THE PIPE IS 5125 mi+n (218)..OR•LESS IN DIAMETER AN i•NTERiOR FORM OF.UNSEALED SONO -TUBE OR EQUAL .SHALL '®E USED TO PROVIDE A SMOOTH INTERIOR JOINT. THE PAPER FORM MAY BE LEFTIly PLACE. (SEE DETAIL Al. WHEN THE PIPE IS 600 clam (240) OR LARGER A RMVASLE INTERIOR FORM SHALL BE- USSD OR 'THE INTERIOR JOINT STALL BE COMPLETELY FILLED WITH -MORTAR AND NEATLY. POINTED. 11. OtMENSIONS' SHOWN :ON TENTS PLAN FOR METRIC AND ENGLISH ):WITS ARE NOT .EXACT EQUAL VALUES. IF METRIC VALZIES E USED. A4L VALUES USED FOR CONSTRUCTION SHALL BE METRIC VALUES .EXCEPT REIN) ORCING .8AR .-SlZ99 IN ENGLISH U14ITS MAY BE. SU8STI.T�ITED .FOR METRIC�tiAR. SIZES: IF ENGLISH UNITS ARE- USED. ALL VALUES USED FOR CONSTRUCTION • SHALL 'BE ENGLISH UNITS. AMERICAN PUBLIC S A► I(30C1A' 'ION. 8Cl L#FORNtA CHAP ft: Q ST MEM� 380-2 SHE T20F.2 CONCRETE COLLAR FOR RCP. 300 mm 12':, THROUGH 1 I til L7?"J. REV. DIAL .:TWO WORKING BEFORE DAYS BEFORE YOU DiG YOU DIG TOLL FREE 1-800-227-2600 A PUBLIC SERVICE BY UNDERGROUND SERVICE ALERT REVISION DESCRIPTION NOTES 1. VALUES FOR A. B. C. Di , 02. ELEVATION. R' AND ELEVATION S ARE SHOWN ON THE PROJECT DRAWINGS. ELEVATION S APPLIES AT INSIDE .WALL.: OF --STRUC•TURE-, 2. WHEN DEPTH M FROM * STREET GRADE TO THE TOP OF THE BOX IS LESS THAN 867 mm (2'-10 1/20) FOR PAVED STREETS 'OR 1060 mm l3' -6") FOR UNPAVED STREETS. CONSTRUCT MONOLITHIC SHAFT PER SECTION C -C AND DETAIL "N". SHAFT FOR ANY 'DEPTH OF' MAPIHOLE MAY BE CONSTRUCTED PER SECTION C"C. WHEN DIAMETER DI IS 120D- mm (480) OR LESS; CENTER OF SHAFT MAY BE LOCATED PER NOTE 3. 3. CENTER OF MANHOLE SHAFT SHALL BE LOCATED OVER CENTER LINE OF STORM DRAIN WHEN DIAMETER DI 1S 1200 mmt.48'1 OR LESS. IN WHiCH CASE PLACE E BARS SYMMETRICALLY AROUND'SHAFT AT 45' WITH CENTER LINE. 4. LENGTH OF MANHOLE MAY BE INCREASED Af OPTION -TO MEET PIPE ENDS, BUT ANY CHANGE IN LOCATION :OF' SPUR NJ -ST BE APPROVED BY 'THE ENGINEER. 5. P SHALL BE 125 mm (51 FOR 02=2400 min .(96") OR LESS AND 200 mm (80) FOR D2 OVER 2400 mm (96•). S. REINFORCEMENT 'SHALL CONFORM TO ASTM A 6ISM. GRADE 300(ASTM A 6i5. GRADE 40). AND SHALL TERMINATE' 40•_ mm 0 1/2"') CLEAR OF CONCRETE SUR- FACES UNLESS OTHERWISE. SHOWN. 7. FLOOR OF MANHOLE SHALL BE STEEL TROlEL,ED' - TO:• SPR) NG -LINE. 8. BODY OF MANHOLE SHALL BE POURED IIS ,011t CONTINUOUS OPERATION EXCEPT THAT A CONSTRUCTI.ON*- JOINT WIT!! A- LONGITUDINAL KEYWAY MAY BE PLACED AT SPRING LINE. - 9. THICKNESS OF THE DECK SHALL VARY WHET NECESSARY TO PROVIDE . A LEVEL SEAT BUT SHALL NOT BE LESS THAIi`'THE•-TABULAR VALUES OF F SHOWN ON TABLE. SH. I. 10. IF LATERALS ENTER ON BOTH SIDES OF .MANHOLE, SHAFT SHALL BE LOCATED ON SIDE RECEIVING THE SMALLER LATERAL. 11. STEPS SHALL CONFORM TO STANDARD PLAN- $35 OR 636. UNLESS OTHERWISE SHOWN, STEPS SHALL BE UNIFORMLY SPACED 350 mm (140) TO 373 mm (I5") OC. THE LOWEST STEP SHALL -NOT BE MORE TMAV 600 mm (240) ABOVE THE INVERT. 12. THE FOLLOWiNO CRITERIA SHALL BE USED FQR THIS MANHOLE: A. THIS STANDARD PLAN IS USED- WHEN STANDARD PLAN 320 IS INADE- OUATE. MAiN LINE" = 900• mm.(361 INSIDE DIAMETER OR LARGER. B. LATERAL = 300 mm (122) TO 3600 M0444) INSIDE DIAMETER: HOWEVER, THE INSIDE DIAMETER SHALL NOT--EXCEEED-THE INSIDE DIAMETER OF THE MAIN LINE, AiMIERICAN PUBLIC WORKS AMMIATION• - SOUTHERN G tFORNIA CHAP'T'ER STAND PLAN 322-1 SHkIt 3 OF 4 MANHOLE PIPE TO PI# E . (LAKE SIDE'. INLET). CROSSING. PIPE WALL (DIAMETER OF PIPE ,: Dd (SEE NOTE 3) OPTIONAL SIDE OF BLANKET (TYP.)?a,: � CONCRETE BLANKET %. A2 (CLASS 265CI4 ca ' 1 (TVP.) _ (CLASS CONCR Z..Do/2F OR 0 > 375 mm (IS°) 3N/4 FOR D s 375 frim 054 UNDISTURBED EARTH (TYP.) Is0',rtltfl EXISTING PIPE OUTSIDE OF PIPE BELL :(TYP.) COMR91E 15 N (FOR EXISTING PIPES CR09S_E (WER BY &-_NE_W.:PIPE) 1. CONCRETE BLANKET IS REOU-IRED WHEN THE CLEARANCE .SEfWEEN THE :TOP OF THE EXISTING. PIPE AND THE BOTTOM OF THE CROSSING PIPE iS LESS THAN 41W -Mm- (18 1N 2. Y = D/6 (150.MM (6.IN.) .MIN.).. WHERE THE CLEARANCE"BtfNEE-N THE TOP OF TWE EXISTING PIPE .AND THE..BOTTOM:OF -.THE CROSSING PIPE IS LESS THAN Y. THI CONCRETE SHALL BE PLACED BETWEEN THE PIPES AND AROUND THE. SIDES OF THE CROSSING PIPE UP TO A LEVEL EQUAL TO Y ABOVE THE EXIST- ING PIPE, OR AS REQUIRED BY NOTE 3 BELOW. WHIC�iEVER.IS HIGHER. 3. X = D/12. MINIMUM. TO PROVIDE BEDDING- MATERIAL FOR T!E CROSSING CONDUIT. WHEN X IS LESS THAN THE LOWER 90° OF 7HE CROSSING PIPES OF THE BLANKET SHALL BE RAISED TO MAKE CONTACT'. 4. THE BLANKET SHALL EXTEND LONGITUDINALLY TO THE FiRT JOINT BEYOND THE TRENCH EXCAVATION AT EACH END OF THE BLANKET, EXCEPT THAT THE- BLANI(E1 NEED NOT BE EXTENDED MORE THAN1.2 m (4 FT.) BEYOND THE TRENCH. S. WHENEVER A PIPE BELL IS ENCOUNTERED WITHIN THE- LiMIIiS OF THE BLANKET. ALL DIMENSIONS SHALL REFER TO:- THE"SE:L-.. . INVERT SLAB OF ARCH OR BOX 150mm' SECTION (CROSSING CONDUIT) (6•) UNDISTURBED EARTH v� . EXISTING PIPE` OUTSIDE OF PIPE BELL 150mm OTHER APPROVED CONWRES 9QE (6•) MATERIAL `-•NO MINIMUM CM„PRESS i BLE Lml (FOR EXISTING PIPES ,CROSSED Ute, BY A -NEW _BOX OR• ARCH} NOTES: 1. COMPRESSIBLE BLANKET IS REWIRED WHEN THE CLEAMCE BETWEEN THE TOP OF THE'.EXISTI.NG PIPE AND THE BOTTOM OF THE CROSSING CONDUIT (601 OR ARCH) IS LESS THAN 450 'mm .U8 IN..). 2. THE BLANKET SHALL EXTEND LONGITUDINALLY FOR THEFULL CROSSiNG'CONOUIT TRENCH WiDTH. 3. DIMENSIONS SHOWN ON THIS PLAN FOR METRIC AND EWLISH UNITS ARE NOT EXACT EQUAL VALUES. iF METRIC VALUES ARE USED, ALL. VALUES USED FOR C011STRUCTiON SHALL BE METRIC•VALUES.. WITH THE EXCEPTION OF REINFORCING. BAR SiZES FOR VHICH ENGLISH (IMPERIAL) BAR SIZES MAYBE SUBSTITUTED FOR METRIC BAR SIZES. IF ENGLIgi UNITS ARE USED, ALL VALUES USED FOR CONSTRUCTION SHALL BE ENGLISH VALUES. 13. MANHOLE FRAME AND COVER SHALL CONFORM TO STANDARD PLAN 630 14. MANHOLE SHAFT SHALL CONFORM TO- STANDARD PLAN 324 UNLESS OTHERWISE SHOWN. 15. WHERE A MANHOLE SHAFT - 900 mm (36°) WITHOUT REDUCER IS SPECIFIED REFER TO STANDARD PLAN 326.. ' 16. WHERE A PRESSURE MANHOLE SHAFT - WITH ECCENTRIC REDUCER iS SPECIFIED' REFER TO STANDARD PLAN 328. 17. WHERE A PRESSURE MANHOLE SHAFT - 914 mm (360) WITHOUT iS SPECIFIED REFER TO STANDARD PLAN 329. 18. DIMENSIONS SHOWN ON THIS PLAN FOR METRIC AND ENGLISH UNITS ARE. NOT EXACT EQUAL VALUES. IF METRIC VALUES ARE USED. ALL VALUES USED FOR. CONSTRUCTION SHALL BE METRIC VALUES. EXCEPT -REINFORCING BAR SIZES IN ENGLISH UNITS MAY BE SUBSTITUTED FOR METRIC BAR :t IZES. IF ENGLISH UNITS ARE USED, ALL VALUES USED FOR CONSTRUCTION S14ALL BE ENGLISH UNITS. THE FOLLOWING STANDARD PLANS ARE INCORPORATED HEREIN 324 MANHOLE SHAFT - WITH ECCENTRIC REDUCER 326 MANHOLE SHAFT - 900 mire (360) WITHOUT REDUCER i 328 PRESSURE MANHOLE SHAFT - WITH ECCENTRIC i 329 PRESSURE- MANHOLE SHAFT _ 91.4 mm (360) WiTHOUT 1 REDUCER •630 610 mm (24") MANHOLE FRAME - AND COVER 633 914 -mm (361) MANHOLE. FRAME AND COVER 635 STEEL STEP 636 POLYPROPYLENE Pt S:TI-.0 .STEP- , • t i i �L�• r�uk �`� j. Zll-"U(� AMERICAN PUBLIC 111I►ORKS: ASSOCIA'T'ION - SOUTHERN CALIFORNIA C14APTER STANW.DR-AN METf11C 322; -1 MANHOLE PIPE TO PIPE (LARGE SIDE INLET) STANDARD -PLAN SHEET 4 OF 4 AMERICAN PUBLIC WORKS ASSOCIATION ; gDUT-HERN CALIFORNIA CHAPTER STAND PLAN. . 321.1 -MANHOLE PIPE TO PIPEONE.OR BOTH' MAINLINE �f STANDARD -PLAN PROMULWITBD SYTNE PUSUGWORKssTANDARn3INC., BLANKET PROTECTION FOR PIPES MErRIC GRESMOO ccOWME . i 225 -1 *4 i REV Im $HEFT 1 OF 1 USE WiTH STANDARD SPECIFICATIONS FOR PUBLIC W 0PXS CONSTRUC oN 11. THE FOLLOWING CRITERIA SHALL BE USED FOR THIS MANHOLE: A MA IN LINEJe-82S-Mm--("*)-INS•IDE D1AME.TER_OIR--..&SS. (EXCEPTION- IF. r bWNS:TREAM,.. .F . T E,, MANHOLE : IS -7 9.0.:;mm -735' :--:: IN LI P D 1F. THE MA. NERC. TO 1050 mm (42")' INSIDE DiAllitMR''A: D --TME --THE-`:'MAI. LINE.:RCP' liPSTREAM ,IS 825 mm (339 OR LESS) STANDARD PLAID 320' OR STANDARD PLAN -322 iS NOT APPLICABLE WHERE THE MAIN LINE CONDUIT IS LESS THAN 900 mm (3611) IN DIAMETER. B. SEE SECTION. A - A. THE MAXIMUM SIZE LATERAL THAT .MAY 'BE CONNECTED TO THIS MANHOLE IS SUCH THAT -THE 01 STANCE FROM THE OUTSIDE (TOP) OF THE LATERAL TO THE BOTTOM OF - THE ..200 mr11 (8"•) THiCK TOP OF THE MANHOLE CHAMBER, MEASURED VERTICALLY FROM THE END OF THE RCP, SHALL BE A MINMUM• OF 150 mm (69:- C. IF THE S•IZE' OF THE LATERAL IS SUCH -THAT. THE ABOVE-SPECI:FiED MINIMUM DISTANCES CANNOT SE MAINTAINED.: THEN ONE OF THE FOLLOWING AL'T'ERNATE SOLUTIONS MUST BE USED. 1. PROVIDE A SPECIAL STRUCTURE. 2. PROVIDE TWO STANDARD STRUCTURES, CONSISTING OF THiS MANHOLE PLACED UPSTREAM OR DOWNSTREAM FROM THE APPLICABLE JUNCTION STRUCTURE OR TRANSITION STRUCTURE. 12. MANHOLE FRAME AND COVER SHALL CONFORM TO STANDARD PLAN 630 UNLESS OTHERWISE SHOWN. ' 13. MANHOLE SHAFT SHALL CONFORM TO STANDARD PLAN 324 UNLESS OTHERWISE SHOWN. 14. WHERE A MANHOLE SHAFT - 904 mm (36") WITHOUT REDUCER IS SPECIFIED REFER TO STANDARD PLAN 336. 15. WHERE A PRESSURE MANHOLE SHAFT - WITH ECCENTRIC REDUCER IS SPECIFIED REFER TO STANDARD PLAN 328. 16. WHERE A PRESSURE MANHOLE SHAFT, - 914 -mm •(36") WITHOUT -:.REDUCER IS SPECIFIED .REFER• TO. STANDARD PLAN 329, 1t. DIMENSIONS SHOWN ON THIS PLAN FOR METRIC ANO' ENGLISH UNITS' ARE NOT EXACT EQUAL VALUES. IF METRIC: VALUES ARE -USED. ALL VALUES USED, FOR CONSTRU•CTI.ON SHALL BE METRIC VALUES. EXCEPT REI ORCIN.G. BAR SIZES IN ENGLISH UNITS MAY BE SUSSTI TUTED FOR METRIC BAR SIZES. IF ENGLISH UNITS ARE USED, ALL VALUES USED FOR CONS'T'RUCTION SHALL BE ENGLISH UNITS. THE FOLLOWING STANDARD' PLANS ARE INCORPORATED, HEREIN= 324 MANHOLE SHAFT - WITH ECCENTRIC REDUCER 326 MANHOLE SHAFT - 900 rorh 1361 WITHOUT REDUCER , 328 PRESSURE MANHOLE SHAFT - WITH ECCENTRIC 329 PRESSURE MANHOLE SHAFT - 914 .mm': (36") WITHOUT REDUCER 630 610 mm. (240) MANHOLE FRAME AND COVER 633 91`4 mm f 36'1 MANHOLE FRAME AND COVER 635 S TEEL ' STEP 636 POLYPROPYLENE PLASTIC STEP AMERICAN PUBLIC WORKS ASSOCiAT,I.ON - SOUTHERN CALIFORNIA, CHAPTER. STAND PLAN. . 321.1 -MANHOLE PIPE TO PIPEONE.OR BOTH' MAINLINE �f IDISIDS 825mm 33 OR SMALLER SHEET 3 OF 3 ti SEC•T.ION S -B TABLE OF VALUES FOR M' (SEE NOTE 1) ` SECTION P STREET UiiPAVEO STREET MAX. Miff. mm A -A 867 mist -t0 1/9!) 1080 mm 3'-6• c -c ze2 mns (11•) 2t7 f>ta+ (e 1/2•). 410 .mm (160) 350 nsls»t AW) . f AMERICAN PUBLIC WORKS ASSOCIATION - SOUTHERN CALIFORNIA CHAP -'ER PROMULGATED BY 7HE MANHOLE PIPE ,TO •Pl .ON'E OR SOTH r STANDARD'PL'AN n�ETRIc ti .UNE VS 33 ' OR FF ... R • I i • I REV 1* . i USE WITH STANDAROAPECIFICAMM kAll PUl3LiC WOR1�C8 'CONSTRUCTION i • RRRR ' ^ O EDGES To BE ROUNDED , I SEC•T.ION S -B TABLE OF VALUES FOR M' (SEE NOTE 1) ` SECTION P STREET UiiPAVEO STREET MAX. Miff. mm A -A 867 mist -t0 1/9!) 1080 mm 3'-6• c -c ze2 mns (11•) 2t7 f>ta+ (e 1/2•). 410 .mm (160) 350 nsls»t AW) . f AMERICAN PUBLIC WORKS ASSOCIATION - SOUTHERN CALIFORNIA CHAP -'ER PROMULGATED BY 7HE MANHOLE PIPE ,TO •Pl .ON'E OR SOTH r STANDARD'PL'AN n�ETRIc PUSUG WORK66TAIm.MM4031NC, aaEENaaolcc ifrT .UNE VS 33 ' OR FF ... R • I i • I REV 1* SHEET 1 OF3 USE WITH STANDAROAPECIFICAMM kAll PUl3LiC WOR1�C8 'CONSTRUCTION • RRRR ' ^ O EDGES To BE ROUNDED Z TO 75 mm (30) R At. toJ 1 NOTES OF' SPUR.f ! -_--_ 1. WHEN DEPTH M FROM STREET GRADE. TO THE TOP OF -THE BOX IS LESS 15.0 frim' (64 ' ` � THAN 867 mm (21-10 1/20) FOR PAVED STREETS OR 1060 .mm (3'-60) FOR ..._ ..._ MI �, N. ' ; . ..._.....� UNPAVED • T CONST (iC ,-- i F _ _ 'TION -:C_-C_MD_DETAIL .�N': E STREETS, �SLI� T_ SEC E.. _. ALL STEEL REIW..15M.. -- _ _ ..._-'DEPTH _ -�OEPTH.M MAY BE REDUCED TO AN-ABSOLUTE.•LtMiT 4F 150'•mm (60) WHEN . 0100 m (•4 0' 4•) OC , 1 • _ LARGER VALUES OF M WOULD REDUCE H -19 SECTION C -C TO 1060. mm :t3 6 ) ....6mm D.ETA I L "N" PLAN. :. OR LESS. C e 10 B (RIM .AND COVER NOT SOOWN) 2. H (IN SECTION A --A AND B -B) SHALL NOT BE. LESS THAN 1.2 m (4•-0"), P� AN .'ISE NOTE 1 BUT MAY BE •INCREASED PROVIDED THAT THE VALUE OF M • SHALL NOT ($;HAFT NOT SHOWN) BE LESS THAN THE MINIMUM SPECIFIED AND THAT THE REDUCER --SHALL BE USED. FOR- H (IN -SECTION C -C) SEE NOTE I..: STREET GRADE CARD MANHOLE FRAME CONCRETE RiNGS COVER:PER PER STD: PLAN 324 STREET GRADE 25 3. L SHALL BE 1.2 In (41-0'). UNLESS OTHERWISE SHOWN, L MAY 'BE IN - STD. PLAN 630. OMIT 11415 (S•1tt�) CREASED OR LOCATION OF MANHOLE SHIFTED TO MEET PIPE ENDS. BUT ANY - i t24') .:STEP . IN' PAVED.!STREETS ,", . RIN6 SEAT CHANGE IN • LOCATION OF THE' SPUR MUST BE APPROVED BY THE ENGINEER. . .� ; : MANHOLE SHAFT 225 mm to :.; W u m 4. T SHALL BE' 200 mm (8") FOR VALUES OF H UP - TO AND: INCLUDING. 2.4 m I- PER STD. 400 mm U6') FOR PLAN 324 PAVED STREETS. i I24) - '- " ,• t:> ... •..� " :: (8 0) AND 250 .mm. 110 1 FO,R:VALIJE6•:OF: H.:-�0:1iE1�_�.2�.4, ;m-.(8 .-0:-). _ - N _ :. . o ' o ,., o 6150 mm (2'..2•) 900 mm (3 -•O) STREETS FOR UN= ;, s ao 1' irii�l3•=s�): -• N � 5. STATIONS OF MANHOLES SHOWN ON -PROJECT DRAWINGS APALY AT - � PAVED .STREE'TS .u. CENTER LINE OF' SHAFT. ELEVATIONS ARE -SHOWN AT CENTER LINE OF � Sol SHAFT AND REFER TO- THE PROLONGED INVERT GRADE' LINES. SEE NOTE 3. - " p • 125 atm' x• 50 mm (5'44 PIPE SEAT T c K ROUND $ I 6. REINFORCEMENT SHALL CONFORM TO ASTM •A 615M, GRADE aOO(ASTM A 615; =, 1/z' GRA DE 4.0), AND SHALL TERMINATE 40 mm (1 I/2") CLEAR- OF CONCRETE SUR - ROUND EDGES 1111 FACES UNLESS OTHERWISE SHOWN. 1111" a t5 min 7. FLOOR OF MANHOLE SHALL BE STEEL TROWELED TO 'SPRING LiNE. ; INLET .ELEVATION SECTION Ca -:C APPLIES AT THIS POiNT S. BODY OF- MANHOLE SHALL BE POURED IN ONE CONTINUOUS OPERATION EXCEPT THAT A CONSTRUCTION JOiNT WITH A LONGITUDINAL KEYWAY ' SECTION A -A MAY BE PLACED -AT AT SPRING LINE. ! . 9. THICKNESS -OF THE SHALL VARY WHEN* NECESSARY TO PROVIDE STATION LINE 900 mm (3'-00) .DECK A LEVEL -SEAT BUT SHALL NOT BE LESS THAN 200 mm 184). 1'• 200 mm (80) ` 10. STEPS SHALL CONFORM TO STANDARD PLAN 635 OR 636. UNLESS OTHERWISE I: �• STEPS SHOWN, STEPS SHALL BE UNIFORMLY SPACED 350 mm (140) TO 375 mm (150) OC. T 4S0 mm. tib°D � THE LOWEST STEP SHALL. NOT B.E. MORE THAN 600 mm •(2.4.") ABOVE THE LEDGE • 73 xrrl t3) ' . • � • AT THE SIDE OF THE MANHOLE, ; I ( • 1014 mA+ t4) L♦2T-200 tllfw (8 100 mm (4•) 200 fmle (89. I `{ 200 mm t8 OPTIONAL: 80TTOM GRADE POINTS. SEE NOTES SEC•T.ION S -B TABLE OF VALUES FOR M' (SEE NOTE 1) ` SECTION P STREET UiiPAVEO STREET MAX. Miff. mm A -A 867 mist -t0 1/9!) 1080 mm 3'-6• c -c ze2 mns (11•) 2t7 f>ta+ (e 1/2•). 410 .mm (160) 350 nsls»t AW) . f AMERICAN PUBLIC WORKS ASSOCIATION - SOUTHERN CALIFORNIA CHAP -'ER PROMULGATED BY 7HE MANHOLE PIPE ,TO •Pl .ON'E OR SOTH r STANDARD'PL'AN n�ETRIc PUSUG WORK66TAIm.MM4031NC, aaEENaaolcc ifrT .UNE VS 33 ' OR FF ... R .. 32 � REV 1* SHEET 1 OF3 USE WITH STANDAROAPECIFICAMM kAll PUl3LiC WOR1�C8 'CONSTRUCTION DATE ENGR. Cin DATE SHOULD CONSTRUCTION OF THE REQUIRED IMPROVEMENTS NOT COMMENCE WITHIN TWO YEARS OF THE DATE OF APPROVAL SHOWN HEREON AND CARRIED FORTH IN A DILIGENT )MANNER, . c THE CITY:ENGMER MAY' REQUIRE REVISIONS TO- THE PLANS TO BRING THEM INTO CONFORMANCE WiTH CONDITION( AND STANDARDS IN EFFECT. 'AMERICAN PUBLIC WORKS ASSOCIATION -SOUTHERN CALiI:ORNiA CHAPTER STAN�DCPLAN 32 ..-1.. SHEET20F3 , MANHOLE PIPE TO PiPE (ONE OR BOTH' IViAIN ;LINE ID'S 825mm-, 33 OR•SMALLER �_r.�. .ri .-r-.�+-.rr.w-+-ar���ni.�s�r.s��-.��-rr�-i�r.wi�,:�r�n���" • - , ' 1,.. CITY OF FONTANA, CALIFORNIA Prepared Under The Super vision Of . PREPARED IN THE OFFICE OF MA OLE AND ASSQCIATE% INC. S-1`00"Rk D T Ip^ A•f r1s ' XW CHURCH SPREE( , STEE 107 DRAWN BY: SCALE. RANCHO CCA 9f .730 MILL fA V�D���rV oOAS. SHccw�v PHONE (9%), X311 DESIGNED BY: DATE. LPI MJ STANDAR l AND DETAILS :NOV. • 003. Date : (14 8,03 CHECKED BY: APPR D BY: I�RAWit�G NO.: R.C.E: 6 2p. EX'- A. T. S. il�J (� Z z 34 8 TY ENGINEER R,C.E. 51152 DATE'.— '-. - " CI ; .f:1692-17221storm\sd08.dwg, ')211.812003 03:59x45 'M, INDICATES DRAINAGE FLOW U INDICATES HYDROLOGY NODE 0 N 0 N5 a g7 DWELLING UNITS PER ACRE 211 348 LINEAL FEET OF FLOW 0 o ACREAGE (AC) COMM COMMERCIAL �211 W LINEAL FEET OF FLOW ACREAGE (AC) 1NOim 50 FT. CITY OF FONTANA CALIFORNIA Prepared By: RANCHO FONTANA SPECIFIC PLAN ALLARD ENGINEERING DRAWN BY: SCALE: Civil Engineering - Land Surveying - LiPlanning ''°g oESIGN� BY: 8253 Sierra Avenue - - OFFSITE. HYDROLOGY EXHIBIT pgTE; 1" =50' Fontana, California92335�M 5 TRACT N0, 16991 JUNE, 2005 (909) 356-1815 Pax (909) 356-1795 CHECKED BY: � ml WEST SIDE OF SULTANA AVE 1. Filename: M:\dwg\15928\FlNAL DESIGN\HH\16992 OFFSITE HYDROLOGY EXHIBIT.dwg I IS w- ------------------------- J.(_. -.... ------------------------ d 41, LEGEND: 44 riDe-400, CITY OF FONTANA, CALIFORNIA Prepared By: RANCHO FONTANA SPECIFIC PLAN ALLAFlD ENGINEERING DRAWN BY: SCALE. AE 1 =50' . . . . . . . . . . Ctvfl Engineering - Land Surveying - Land Planning HYDROLOGY EXHIBIT ro DESIGNED BY.- DATE: 8253 Sierra Avenue RCTRACTMAY, 2005 Fontana, California 92335 ,NO. 16991 (909) 356-1815 Fax (909) 356-1795 CHECKED BY. - ml Filename: M:\dwg\15926\final design \HH\HYDROLOGY EXHIBIT.dwg INDICATES DRAINAGE FLOW O3 INDICATES HYDROLOGY NODE 5-7 DWELLING UNITS PER ACRE LINEAL FEET OF FLOW ACREAGE (AC) COMMM MO — COMMERCIAL 2.111M8 LINEAL FEET OF FLOW ACREAGE (AC) 44 riDe-400, CITY OF FONTANA, CALIFORNIA Prepared By: RANCHO FONTANA SPECIFIC PLAN ALLAFlD ENGINEERING DRAWN BY: SCALE. AE 1 =50' . . . . . . . . . . Ctvfl Engineering - Land Surveying - Land Planning HYDROLOGY EXHIBIT ro DESIGNED BY.- DATE: 8253 Sierra Avenue RCTRACTMAY, 2005 Fontana, California 92335 ,NO. 16991 (909) 356-1815 Fax (909) 356-1795 CHECKED BY. - ml Filename: M:\dwg\15926\final design \HH\HYDROLOGY EXHIBIT.dwg I IS w- ------------------------- J.(_. -.... ------------------------ d 41, LEGEND: 44 riDe-400, CITY OF FONTANA, CALIFORNIA Prepared By: RANCHO FONTANA SPECIFIC PLAN ALLAFlD ENGINEERING DRAWN BY: SCALE. AE 1 =50' . . . . . . . . . . Ctvfl Engineering - Land Surveying - Land Planning HYDROLOGY EXHIBIT ro DESIGNED BY.- DATE: 8253 Sierra Avenue RCTRACTMAY, 2005 Fontana, California 92335 ,NO. 16991 (909) 356-1815 Fax (909) 356-1795 CHECKED BY. - ml Filename: M:\dwg\15926\final design \HH\HYDROLOGY EXHIBIT.dwg INDICATES DRAINAGE FLOW O3 INDICATES HYDROLOGY NODE 5-7 DWELLING UNITS PER ACRE LINEAL FEET OF FLOW ACREAGE (AC) COMMM MO — COMMERCIAL 2.111M8 LINEAL FEET OF FLOW ACREAGE (AC) 44 riDe-400, CITY OF FONTANA, CALIFORNIA Prepared By: RANCHO FONTANA SPECIFIC PLAN ALLAFlD ENGINEERING DRAWN BY: SCALE. AE 1 =50' . . . . . . . . . . Ctvfl Engineering - Land Surveying - Land Planning HYDROLOGY EXHIBIT ro DESIGNED BY.- DATE: 8253 Sierra Avenue RCTRACTMAY, 2005 Fontana, California 92335 ,NO. 16991 (909) 356-1815 Fax (909) 356-1795 CHECKED BY. - ml Filename: M:\dwg\15926\final design \HH\HYDROLOGY EXHIBIT.dwg L , -�'T E- , ER L NO TE -'E_NUL 1 ALL WORK SHALL BE IN AEGORl3ktNCE WITH THESE PLANS, THE GlTY OF FONTANA STANDARD PLANS, THEE. H AVEl B E.A...-*ILLER A CON-IFAGT PKUVfSlUNS AND THE STANDARD S-PEClf7eA7iPN5 FOR P{iSLIC WORKS CONSTRUCTION (GREEN . nn� sr0,0 garo+F�--- CITY OF FONTANA TIES AND BENCH MARKS, SHALL BE DOME BY A REGISTERED CIVIL ENGINEER OR LICENSED LAND SURVEYOR ' SURVEY .MONUMENTS THAT WILL BE DESTROYED AS A RESULT OF THIS CONSTRUCTION SHALL BE REPLACED.. THE CONTRACTOR SHALL. NOTIFY THE ENGINEER ONE WEEK PRIOR TO CONSTRICTION SO THAT TIES TO MONUMENTS -CAN BE ESTABLISHED FOR LATER REPLACEMENT OF THE MONUMENT. 18 THE CONTRACTOR SHALL MAINTAIN ACCESS FOR LOCAL RESIDENTS AND BUSINESSES AT ALL TIMES, A Sffi IC ED TRENCH SELECTED TRL'1tIC�! MINIMUM 12 FOOT LANE SHALL BE MAINTAINED AT ALL TIMES IN THE CONSTRUCTION AREA FOR RESIDENTS UATERIAL (1" MAX AAtD _EhIERGEIIICY' VEHLCLES. ROVfDE-AND -MAINTAIN AN EFFECTIVE MEANS OF DUST CONTROL, INCLUDING 19 ----- THE CONTRAC.1 "0? SHALL P, - ADEQUATE WATERING, AT -ALL i`fMES: 20 THE. CONTRACTOR. SHALL .NOT CAUSE ANY EXCAVATED MATERIAL, MUD, SILT OR DEBRIS TO BE DEPOSITED ONTO PUBLIC OR PRIVATE PROPERTY ADJACENT TO THE RIGHT OF WAY DURING CONSTRUCTION -WITHOUT PRIOR WRITTEN APPROVAL. '21... NO TRENCH BACKFILL SHALL TAKE PLACE WITHOUT PRIOR APPROVAL OF THE CITY INSPECTOR. 22 A GEOTECHNICAL ENGINEER SHALL CERTIFY ALL BACKFILL COMPACTION FAILURE TO OBTAIN THE REQUIRED du K ). ALL REFERENCE SPECIFICATIONS AND STANDARDS SHALL BE THE LATEST EDITION UNLESS . ANAHEIM, CA 92807 OTHERWISE NOTED: 2 WHEN A TECHNICAL CONFLICT IS FOUND TO EXIST IN THE CONTRACT. DO�C1JM. NT$ Tl A -T . CAN.._ NOT -.B'E. --= -- -- - - - RESOLVED--BY-'REFERENCE__.T0 PRECEDENCE' PRo IONS 11V THE "GREEN BOOK ; MEN ME. ME 0 M: MEME a M ON MEN ME Ll NAPO Kim 0 w -w 01111111 1 ■ 0 1HIN rs11do NNE 211 MEME N rol AS ■ � � r` w1i � 'viii ;M1 NMI E MENEM OR ON 0 312 ON No on N MEME son MOEN rr I 0 RO N ss 1'A 7uPo' -' SCALE 1•N FEET 40 80 120 160 esz� ON 0 NUNN � •moi CONSTRUCTION NOTES: ,. INSTALL 60" R.C.P., D LOAD PER PROFILE INSTALL 48" R.C.P., D—LOAD PER PROFILE INSTALL 24" R.-C.P., D�--LOAD PER PROFILE K CONST. MANHOLE PIPE TO PIPE PER APWA STD. PLAN 322-1 WITH A BOLT DOWN LID �� CONST MANHOLE PIPE TO PIPE PER APltYA"STD: PLAN ,Q' —1 t' or -- --- _. _---------_.. _ _ .___ ...._.._..,.,;:.......,-•`r-••-..-.. _ ..z_. , _ _ ....._. .. .__._ - ...• . .. .. _. _... _.. ._.-_. _• -------•- --------. : -.__ _ -_ _... _.__ -. __....._....._ _- - -•!rte .. I- _>•:. -.: ---'- __-_-- _ _-._----.._.- _-_- S J 11 PROTECT EXISTING IMPROVEMENT IN PLACE 41 V T 1 Y i j + , • `�_ -.._._,...,_._.._._,._..__.-...._._.»..._.._...._._ _ 3 = .,,-�;.., _ • l;�r•,� _ 1;' ;;' CONST. PLUG WITH DOUBLE •L�R/CK Al MORTAR AND 1 " CONCRETE r , , .:`♦��r '°` MORTAR AT THE END OF RCB f i •� PIPE i`1i ' J Q ' y REMOVE EXSI7: STORM DRAIN STRUCTURE AND PIPE 1 1 3 i t l 3 J '�i ? i HERLOCK ELEMENTARY �� �;� PER A. P. W.A. STD. PLAN 225=1 X11 , �, 15 CONST. BLANKET PROTECTION 83 81 82;!� I I '� _ I 4 �. 'ETEC E7C. STORM' D14AIN PIPE WfTN SAND, PLUG W77H 78 3[ EX' & SEAR 30 R.C.P. PER S.D. PLAN NON • f EX• DOUBLE BR/CK AND MORTAR AND ABANDON \ s z tf fItEMLOCK ELEMENTARY SCHOOL' i4 ' ' '_ y + .T`� € �! :...:.. m } 2 - N 2...- ! DWG: N0: 2213' TQ eE 1 M1 V€DSAWCUT, REMOVE AND REPLACE EX. AC PAVEMENT 1 ; € REMOVE AC TO EG EL . t » 1 O I z'S. 48 R.0.P r 2Q ' GRIND 5'' SIDE ANP. 4t�ERb4Y 0:1 ' A41N P 'R-D>€7A1L 'kt€f EQN . �. � PLAN— ; � � EX.. WATER _ _ e _ .. • 77 , i ' ER S.D. LINE ��� N0: 13325-2 w 14 ' 1, j 21 CURB. &GUTTER 2 -: -� -_ _.. ;< :�, @'ADJUST WATER VALVES TO GRADE EX. WALL 16 i IyG. NO. 151,5 1'~: ;,.... y ° • • / a 6. �' ice/ • , - .T%.' .r ,/ '-•-•—.-r• '' i rr, ,',--•--r•- / "•"_'r `"• , Y'T�r';•.' , r _ / n: `/• i . .. - ♦.,; Tr 1 ,'. - 1.6• z Y E'ASEI�tENT � EX R W _ ,:�,;:. : ' ��rl ,' • ,'•r , , } •� �,ADJUST MANHOLE TO GRADE • _ ..... _...._._.. .._ .-•.._.....�.....•.. _.. �_~_ ......... _ _..._.»....—. -_..«_ ._._. _......... .._... .._...--._-.... i• �. / r I�' ;. /' l of : •, _.__. i •/. / r LL7c:; , '7 7' / % / • %' _! •/ / J ✓ /'Cc7.lAg4' _ tic .. >wTlaHt'v-. _ r ' . � % . ` �f •' ,' ..1�;..,.8`� �.:•.G.�.. _ ,4 N 89°53'29" i� 12 13 � "j 14 6 : • :�� � - , .. ,, . '. .'� ; ';. ...«......... •.... .. �..,.��.:• ..._ CSG • ^^_^. - r. ^•-', n,• - •:r -ter-. "'Y1c a-.•. '• :.r_..::.r-: n.--•--_...-- - - - ''r"•'rte ' ,I• ♦ ,� C ..►— ..r....,._. ...-_....-... : a7ii'. 'tit.+.�a:i.f.T'c .,.3,•S.. ..t^i-?'c.'r. , r � r .�Gu _. „CCI..._.•.•..... ..Gi/l ,' _.._ .._ <:......_....i... •..... .�... ...._._• _......_...... ... .__IEV VAR 9 PLAN � � 5 PER -�`\'•; a \ _ \\ _ 1 ._ i><, .•_- .....,,_, ,®....,.._ �,,, . GRIND 0.14 M� SACUT AND REIvfQilE FUTURE CURB &GUTTER YY OTHERS M I 22 •.,1 l , , EXIST.PAVEMENT AND M EX. PAVEMENT GAS Y 0 0 IN , i \ ,._ .%.. _ .......... OVERLY .1 M EX 66 RX.P. P � U �,�, �1. (' � ,�'• i ; t �. > , � ; � � ; 1, , � j ti � � Q ...... ..... _ ._ ._w _._....�...._.t ,... _ �.� �..,, ; �� �1. L ._> , '! • • ' I € . , \•� r l'�, M •l • j- r • " I J=•''� ,? '^r: r : tr. b' r 1.~l ♦ - t,1 • ,,C• w. C`�' V.y_ PER S.D. PLAN- .LINEA ` l � 1?1 ,�J 1 � C G "V EXi l \ W Q _J ..ug ,r... `r,� • ;� n` ' r ti„t;i CC •r y 1 i t' :Y i,. ©U �\♦ i Nei ����.i' �. �,� f MILLER A VENJE T, TR. NO. 13, 25-1 m EX. TREES ``r' ,N o i I - 1 I zz . PROTECT IN PLACE Q I ; ; ° !-- 2 f o NEIN PAVEMENT DWG. NO. 1510 �. NO.EXISTING PAVEMENT TRA T 16216 ,. AC__ OVERLAY DETAIL n _ n I r MW— #360 BASS OF BEAF CITY OF FONTANA BE MARK360 THE BEARING OF N 00'22'40'° E ALONG TH C F BEECH AVE AS SHOWN MI TR N0 s LINE TABLE LINE BEARING LEN,G r f 42 23.08 A NAIL IN RALE # 1863744E L 0 v AT SOUTHWEST CORNER OF LIME AVE: 13325-2, FILED .IN 8K. 216, PG. 13-18, AND BASELINE AVE. INCLUSIVE IN MAPS . IN THE OFFICE OF THE - - - COUNTY RECORDER OF S.B.C., WAS USED i '' . A' 1376.03' THE BASIS' OF BF.RR1l�IC ' F�7R THIS WAR DIAL TWO. WORKING BEFORE DAYS BEFORE YOU DIG You DIG TOLL FREE A PUBLIC SERVICE* BY UgDER5ROUNO SERVICE ALERT CUR. VF TABLE DATE ENGR. CURVE' Dt'L -TA RADIUS LENGTH TANGENT e�°29'17» ��� �� ��PRO VEMEN � PLANS 150.0.0 11.75 588 -2 1. p'0$" ' 150.'06 38.8 # ' 19:53 C3 26.29', 0" 100.00 46.24. 23.54 04 ' 26`29'30 _ 100..06 46.24 23.54' s LINE TABLE LINE BEARING LEN,G r f 42 23.08 A NAIL IN RALE # 1863744E L 0 v AT SOUTHWEST CORNER OF LIME AVE: 13325-2, FILED .IN 8K. 216, PG. 13-18, AND BASELINE AVE. INCLUSIVE IN MAPS . IN THE OFFICE OF THE - - - COUNTY RECORDER OF S.B.C., WAS USED i '' . A' 1376.03' THE BASIS' OF BF.RR1l�IC ' F�7R THIS WAR DIAL TWO. WORKING BEFORE DAYS BEFORE YOU DIG You DIG TOLL FREE A PUBLIC SERVICE* BY UgDER5ROUNO SERVICE ALERT REV. REVISION DESCRIPTION DATE ENGR. CITY DATE • :� QR�FEsslp� ' PREP,ARED`1N THE i�FFICE OF MADOLE AND ASSOCIATES, INC. S T OR ��� �� ��PRO VEMEN � PLANS .: THIN TWO YEARS OF .THE DATE OF APPROVAL COMMENCE WITHIN �9 .��,Om4s F SHOWN HEREON AND CARR FORTH IN A DILIGENT iVIANNER, No. 621 S 3 �'-.' �o M4CHO CWC CA 99 DRAWN BY: CC MILLER AVENUE, SDIED scAl.�: AS. SHO. CITY E'NGWEER MAY REQUIRE REVISIONS TO THE PLA NS TO Exp: 9-30-05 Exp'. �. �� DESIGNED. BY: LP A�� � �. FR LA, 10 0 TO STA. 19+00.0 DATE - NOV- I BRING THEM INTO CONFORMANCE WITH CONDITIONS AND c`� q ► V 1N- VIF CML �Fo DGte : 3 CHECKED -BY. APR o =.doto DRAWING b104--1 = - STANDARDS tN EFFECT. ftc E. 62M EXF: A. T. S. CITY ENGINEER R.C.E. . 11 2 DATE 3 8 0 ' SHOULD* CONSTRUCTION. OF THE. REQUIRED IMPROVEMENTS. NOT Pre arsd Under The �u ervision Of :. P R CITY OF I- UNTANAg CALI FORM 1A • :� QR�FEsslp� ' PREP,ARED`1N THE i�FFICE OF MADOLE AND ASSOCIATES, INC. S T OR ��� �� ��PRO VEMEN � PLANS .: THIN TWO YEARS OF .THE DATE OF APPROVAL COMMENCE WITHIN �9 .��,Om4s F SHOWN HEREON AND CARR FORTH IN A DILIGENT iVIANNER, No. 621 S 3 �'-.' �o M4CHO CWC CA 99 DRAWN BY: CC MILLER AVENUE, SDIED scAl.�: AS. SHO. CITY E'NGWEER MAY REQUIRE REVISIONS TO THE PLA NS TO Exp: 9-30-05 Exp'. �. �� DESIGNED. BY: LP A�� � �. FR LA, 10 0 TO STA. 19+00.0 DATE - NOV- I BRING THEM INTO CONFORMANCE WITH CONDITIONS AND c`� q ► V 1N- VIF CML �Fo DGte : 3 CHECKED -BY. APR o =.doto DRAWING b104--1 = - STANDARDS tN EFFECT. ftc E. 62M EXF: A. T. S. CITY ENGINEER R.C.E. . 11 2 DATE 3 8 0 ' J:1692-17221stormXsd02Awg,12/181200312:45:28 :PM, .MG 0 J. -I--I- -ice I- .. .. r• i s & w 1 i I—• 1 l—`! I i�1 IArw I imw&lk D AO% A 1 I �1 1 TRA GI NU17 UZ 7 t • t LINE TABLE LINE BEARING LENGTH Ll N 4405849" E 1 1.9-74*' AA lmmm�"am mm 1 / a s-0 fm� } _�� Miry i {{ { i ._ 4.., �.._.•n.x....�..-.I_._,.._— - ~"� ( TO EL TES? >`�Y T- ---, } � P R EAI I N A' A IWATE C�,O ,PA�1Y. } _ t I _ _ .� t :�Al"014 ammm i I . I . 1. 1 11 1 f L__j_ I I � �_ i+ V722+ f oo 7d 7d + zs-� 00 0 - o0 + uu PLAN 1 40 00 25+UU SCALE IN FEET 0 40 80 120 160 CONSTRUCTION NOTES: INSTALL 48" RX.P., D -LOAD PER PROFILE e� J ."5 INSTALL 24" R.C.P., D -LOAD PER PROFILE LK CONST. MANHOLE PIPE TO PIPE PER APWA STD. PLAN 320--1 r r' i -�- .. _ r-_._. -- ... _... - - ---- - -1 RV1r/ V/1PfFE I tilC-llZr• APritir t «_ WAIST— IIL/IVI • .. :FAQ' :n?� :r•AD'v.""..arJn t ::1:_ - v . vJ:L. •t •.S\'vfN. e1 ...it'la%..:. `.J :_. t. .. ., ..J , ' -� «..:,ti,:a«.:::�:,,r.y..,,.,:...-,�,.t�...>�:�.�.�,: _ .•.�.,.�•.:.,.�•. - y:. .... .:,� ..J•x.._ ... ,�+ � _ � PLAN 33 1 2 1 j t JO CONST. CONCRETE COLLAR FOR R. PER APWA STD. 380--2 CONST.CURB OPENING CATCH BASIN PER APWA STD. 300-2, 5 20 t } 12 ; ' W=PER PLAN _.. L' 16 12 2 ! % $ 9 ® 1 ' l 2y¢ REMOVE EXSI T. STORM DRAIN STRUCTURE AND PIPE CONST. BLANKET PROTECTION PER A. P. W.A. STD.PLAN 225--1 + 7T REMOVE AND REPLACE` EX. AC PAVEMENT O SAWCU , TRA C T NO. 16352' i {fjjr w. o r,CONST. LOCAL DRESSION PER APWA STD. 313--1 SA LINA' EX. R/W . i 1 GRIND 5' WIDE AND OVERLAY' 0.1 ' MIN. PER DETAIL ON SH'T. 2 .aiw. .mar �r ® eo aas aaaaD ta.o _ 1 EX. CURB & GUTTEREX. 8" WATER.. ADJUST WATER VALVES TO GRADE EX. 8 WATER - , 4 . •. . 1�'. - .. : -:.� ,T `_ . '%'--' �• f an.•w-• - - . 71TJ -.'d'M¢d ..•Il�il/ —�{,'- - _.._ • •%h•' . - .. r,. -.-., _.......... - -' �f r•••r I � � REV. RE Q DIAL- TWO WORKING . BEFORE DAYS BEFORE YOU DIG YOU DIG TOLE FREE 1-800'227-2600 A PUBLIC SERVICE BY UNDERGROUND SERVICE ALERT I( . REVISION DESCRIPTION ter\ I V ��wLA U i ZI-lu DATE ENGR. 'CITY DATE SHOULD CONSTRUCTION OF THE REQUIRED IMPROVEMENTS NOT COMMENCE WITHIN TWO YEARS OF THE DATE OF APPROVAL SHOWN HEREON AND CARRIED FORTH IN A DILIGENT MANNER, THE PLANS TO THE -CITY ENGINEER MAY REQUIRE REVISIONS TO. . :t BRING THEM INTO CONFORMANCE WITH CONDITIONS AND STANDARDS IN EFFECT. 2 .... r........ EX. 8" SEWER t4j EX. R W----�-�- r.. ,�! 14 REMOVE EX. STORM DRAIN 4STRUCTURE AND PIPE t O b2 C6 64 + , �� •,f , _. ! r�J " ru,VA `L[`�V�ii r / // / ' � 1/�/ � ,' � � ' 1' r/ ls%P .IIS /�LJ /. 'r J •• :\ ' 'f 1 /' . J j Y.• . - it ',F .t'.. ^r' '/ .�, ". •,.,..:'�� '.�w•. w iwi­ .R —OTECT -EX.. } F t :..:�.:.•�:':•:..:'.::....... '..:_.......:.......:...-."..:' '::" _�.:�•'.:"".'�.:.:_ �� �° 11 RCP AND CB :... 63--`-- ( } REMOVAL DETAIL SCALE" 1"=20* BENCH MARK. #360 BASIS OF BEAFNW CITY OF FONTANA BENCH MARK # 360 THE BEARING OF N 00'22'40" E ALONG TH A NAIL IN POLE # 1563704E CL OF BEECH AVE., AS SHOWN ON TR NO AT SOUTHWEST CORNER OF LIME AVE 13325-2, FILED IN BK. 216, PG. 13w-18, AND BASELINE AVE. INCLUSIVE IN MAPS IN THE OFFICE OF THE COUNTY RECORDER OF S.B.C., WAS USED -5PAMON 1376.03 .'AS THEBASIS OF BEARING FOR THIS MAP. Prepared Under The su ervision o : CITY OF FONTANA, CALIFORNIA P P pRo�'E�SlQ� PREPARED IN* THE. OFFICE OF MADOLE AND ASSOCIATES, INC. STO RM DRAI f � IMt- R�� �' off' s� � 'I W- Cif S-1 WE I , SM. 107 DRAWN ' BY:SCALL: RSO = CA W30 MILLER A VENIO/E AS. -SHOWN. '. r� No. 62183 N PHONE CC� � Epp: 9� o. -as DESIGNED BY: ' LINE FROM- - w 19+00.00 TO 28+5000 DATE I AND TERAL A-1 NOV 20.43 V I\- O��)2t_� Dote ' ! �" S6' J 3 CHECKED BY: APPRO ABY: ` DRAWING NQ.: I Ca ' 0� �`� R.C,E.62i83 EXP. 9- !�'� ® . A. T.S. ....4 8' CITY ENGINEER R.C.E. 51152 DATE J:1692-1722\stormisd03.dwg, 12/18/2003 1x:43:05 PM, .MG J:\692-1722\storm\sdo4..dwg, 12/18/2003 12-:43:45 MI.M.G. -