Loading...
HomeMy WebLinkAboutTract 16568 ae ALLARD ENGINEERING civil engineering land surveying land planning TRACT 16568 HYDROLOGY & HYDRAULICS REPORT February 9, 2004 Revised April 13, 2004 Revised May 17, 2004 Revised June 2, 2004 Job Number 159.18.02 Prepared For: Young Homes Inc. 10370 Trademark Street Rancho Cucamonga, CA 91730 Phone (909) 291 -7716 Fax (909) 291 -7633 c9 0 Ess / off ( rS. H AM q� 41 F Prepared under the supervision of: No. 4.3976 * Exp. 6 /.,C /C5 9 C r v t_ fi r,\ FnF CA- F 3 \ i ; 1 David S Hammer ACE 43976 Exp. 06 -30 -05 8253 Sierra Avenue Fontana, CA 92335 (909) 356 -1815 * (909) 356 -1795 1 REi (0'3'°' Hydrology Reference Material Introduction Location Tract 16568 is located in Fontana, California. The tract lies east of Almeria Avenue, in between Los Cedros Avenue and Baseline Avenue. The tract consists of 56 lots on 10 acres. Currently, offsite flows enter the tract from the north. A dry line is currently in place underneath Los Cedros Avenue but lacks catch basins. Therefore, none of the surface flows are intercepted and a significant portion threatens to enter Tract 16568 (See Storm Drain Improvement Plans Tract No. 3348 Highland Haven Phase 1). However, According to City of Fontana Public Services, at the time of completion of Tract 16568 the upstream catch basins should be in place and a significant reduction in surface flow down Almeria Avenue will be the result. The offsite street capacity calculations were made under the assumption the catch basins would be in place along Los Cedros Avenue to intercept surface flows. Onsite Purpose The onsite purpose of the study is to quantify the 100 year and 25 year storm water runoff and assess whether the existing streets have the ability to convey the flows. Offsite Purpose The offsite purpose of the study is to quantify the 100 year storm water runoff that will be intercepted by the proposed offsite storm drain system in Los Cedros Avenue and Almeria Avenue. Two grated inlets are proposed to intercept offsite flows approaching from the north along Almeria Avenue, just north of the Tract boundary. An analysis of these inlet's ability to intercept and convey flows is also addressed. Methodology Rational Methods were applied to quantify the discharge in a 100 year and 25 year storm event. Street capacity calculations were then performed to assess the streets ability to convey the flows. The criteria utilized for design is the San Bernardino County Hydrology Manual. AES and Civil CADD Computer software was utilized to perform the computations. Results The results illustrate that the streets onsite have the capacity to convey the flows. The previous hydrology study for the Almeria storm drain predicted 29 cfs flowing out of Tract 16568 (see hydrology reference material). After an application of the rational method it becomes apparent that only 26 cfs will outlet to Cascade Drive. Therefore, the downstream storm drain system has the capacity to convey the additional flows from the introduction of Tract 16568. In regards to offsite flows, the proposed upstream storm drain system will intercept all of the storm runoff via catch basins along Los Cedros Avenue. The remaining storm runoff flowing down Almeria Avenue will be intercepted by two proposed CMP Riser inlets, which are included in this report. The remaining surface runoff flowing down Catawba Avenue will be intercepted by a berm located along the northern boundary of Tract 16568. Table of Contents Introduction Hydrology Reference Material Onsite Rational Methods 100 Year Storm Event Subarea A Subarea B 25 Year Storm Event Subarea A Subarea B Offsite Rational Methods 100 Year Storm Event Subarea U1 Subarea U2 Subarea Li Subarea L2 Subarea Walnut 25 Year Storm Event Subarea Walnut Onsite Street Capacity Calculations Offsite Street Capacity Calculation Almeria Avenue CMP Riser Head Calculations WSPG Laterals A & B Onsite Hydrology Exhibit - Map Pocket Offsite Hydrology Exhibit — Map Pocket i t- • • , ' • ,..„ ••• -- __ , . - P "' '',....." . .,.. • ,,,-- (. •..3'..) ..:...,.-:• '.'., i ..' :0- •'-' .•' \ 4, ' 7 'r ''-. ° ' .- - -- 4 • : .:.•4-- 4 ,-. 4- , '• '-..,-‘ ' '- - fr•-. • ..•'• ‘; ' � .',. ' r * \ ' o• , ' • 4. ., • ." ,.:.,' -- ,. ,,. / , .k I '• • .-t-i. •• A s „ i tj ----. . . , . i 0: 7. 30 ' , • : v A!,- ... , :11.. , \ C423 e? • \,, ....,, ,- , ''.•'„ ' , \'` /..'`' . . .. . .. , / 0 • , . , ..„ ., ■ 1St 4,21.3) • • , ..4-CciTi,7a) ._,.), • - se ,, , ?c ----- i t, .... / II 'I . -1 =1 -e- • - F.1. ... . / . . , A 4 .._ ,.. — \I . , . ,. ''' • . „ 4.- e, > At• • ;,. t. 4 ... i , , N(8 wa .■ . ,,c) e •...1 /oz,4. . . .. 1 1,. N , - r r- . . c. r. 7 ,E,-; '• A/ • ,. _, . , , AP ,, , .-- . ' ' ','` / C f ' '''.6 \ ,,,;„_--- ; , . ,. .•,- ' '"-- (5- . OLtr' • • '' \ . _,4' , . ''' _ .' 13 . ... " 1fr ..k- ..- ,,, • ,,4 • 0. - - i % p..... Tr , s • C3r4i1 • \ --) ',f ' re \ . - <0 '',1 . • r•• ' i ,.' .. . 1... i, ( ' i ''i. ---] , ,.. , •. '.. I \t, • .. t . . .6' -(41202 L) ;:. _, _ ,' cll.' '• e. . •••,- ■ , °- - •_, . '' - z•.. • , - - 4 (---- ....c., , e, b. _ •,,, 4. -----: \ ' '0.,.6 ( ;I 4( r-as ; , ,... i I II . , ... '; )r.) • • \ ,,,/ .s, • e. tr -,.•- •., A / • r0 r. " / - . 1: -,-- . - 4 . -- "".,.....1 • ' . * 4 , \,5:3 0 v -3/ - •1' ;!' ; ■,_,' oa _.„ 1... ' le I 1 .0i I , .; .3._ -_,_ - . , - . ,------„,---:' • -_-', -...L.___ A- c 4 4 .4.. . ' , .• ,... ' i .r ', A . t l ( ... 4 - 3.4 52- ) , i • ' • (.4.10.4 c P • ; g 3 1 :.' At ,s, $ . • 0 - ' t • I ( • . , -..t.¢..r ... .." -. .,:. • C I 7 il - I ' P 4 ' • ' 1 !'...; , i ... Tf..p..! ,.,,,e.-. ''' I I '• - /,''. :-1 7 (77 P A \*'' , 1 :12.0I + I ,....______2,2_ PC, _ ,, , : , . • r --, ,--- . .5. ,, ..7 ,,, ' • 4 4 14 .' 5 ) '',.' • • 8 ', 1 ' if -----"' 4 ‘ ' . C? \ L_P __L__ ‘, : )4,1P' r l -•• I s." . 1 \ - . ' (' •'>--;.:.:',. : -' : - .1 ) 11aMrco 1 :-.• g 7 . , ., 4 • .. .),„/ r DI ' .• .. r _... . ..:.,. 1_ .- 4,... . ( 4.,-,.. ) .91 '' - \ _______ ‘... _ 2 .1X, __ _., j-•___ I ,--• __, ___ 1 — r‘: .--- ' ;:i [ , .- r- c ...... 4 9- .:. r it * _:- „ - • , ._ , .$ „ ,, • i OC , p • , •, — .•-•---- 1 f . : ,.... . 4 ' -.' (4"sli2-' '--- . i ,■ • ' .E rl P r `.. , , 4....'"' • CL ‘--. ' ' (.424. 4) ' ''‘ ''4 \ ' 41.24 " ' ''''s (6-46C7E)'• I c_74 \ , „.,...-.-i. 1 ifr , , ? t,C. e, .••••1 • ' . • t-li v,.., ,__ ., . ( I 14; — -,-, . - ...• , . . • ••,•...• • Plq. 4 , .4. r ' .. .e 2 OC \ ,, , . , 2 CC ( . , I ,, ' , --------- --- p, -4,.. E 4 ._ _..-- . , \,\ ,..-- - .. , I ,. I 1:..,, T , ... I i (4 ..,. O i ' '.';‘, , & . It .1P 1, 1 ( 6.0.-7) : - rri ,F., r : I ." 2 - I : `• ...' ' I ... r - ., .>< ::1 I c i . - - ,,,,- i' • '‘• -/' . ' • , is, -;, .. (4ee.. ) ,.,., .24. t • i .• (C?) .;) ' .. , < ti . % - ,• 4-:,,, .... ... k .. . . ,. ; •. . -- i'it - c - ,c -, . ) = I . ; ; , o . 4 1 • . 4- : A g *I at „. , "- ' 1....- . .p- • ' t' li ,*(J1Pr , , • c.00• _ I ' ' .../0 ' c r - - ---- , ). 8 ' ._ - ' - , A,',K,i, ,.. (Jet 6 • .., '.!, ,) '-- IJ fr6 :''. -‘,, ' ., ,...,, .1 c 0 . - . 11 it CriaE. ): • ' 4-e. ' A , ,,: . ,.." 1 , ( 1 °' 204. i 4s_.s. ' : • Is ,I 10! .,. /(4.3„).4), 1 :: d 0a ... , ) . • , \t,_ 1 -'',,---, 40. -....5„ ‘. ,,.;-.- ' --„,-.. . ,5 -,) - 0-1- if • ... .,.....„,... . .. • , - I ' — 1 I " ., L- ...1 -,.... i it ! . ,, ,. , .____ q, ._. - ',1 - ,,, , .l.hj •,,,:,:•• ' ",, ...1 , .!9.4:F• ..., - I, • •',... . , ,. ..r. ,,, 4 61_1i ,•,.. ... rir..., ■•••■..ra. • , ir, , 1 . it to , — e • ! 43 ...-/- / o (, . 1 , • .., • —r. .„.. r ---- .;.- *mom .1...***/ i ...x j), •• Ar,,,MPINE ...' - I.` ..,••• - . s 1 4'. ye i ... ;''•# 64. 0 . l':1 -', .i 'lir ''''' " ;yr . ' ir li r t14,"410(0511M 1 ' *1 ' 9' ., „'";-', . ' . --- ., IA) - 05)) .r....' - ,.. 7, . , . , . , ' 4w* ' - ' ' illf1111Falii4111t;gi4iNlidif.1411f46A1P2IP , e' - A , ' ' ' 6 ‘‘ •\_,‘,... e -,..:' -- * ..;. ...■•■••••lemeamommamix■Passtrasgar. 4111r ' ' • • • „..,, , Of' . • 1 / 4 2• . , i i. '''''. Yf rc. ‘ - '' '''. 4. -: '. '''''' ''''''''''' , oo , co ,! 1 • • "''' •••''' '. t'' 1 ' M . ..- '; . 4; • ' ..11 ^ , ' • MINIM ' •_till -- 4 ' - ' 1 1 ' - '."' , :r .1 • . , . . ; ' \ ,-,‘ - • - ,,..., ,---- , .._. ..._ 1 -- - 0 10.-...g. r \ ',..1 - ,,,, _......,.. 7 %.,,. !,. , .. ,..,-, . :, 4 , . ., 1 ;.-, ,, • ' , r . i . •, -:), ri7- .-- , .. w•••••.p , • ." ; A d . 8 ! . A et : .: __:, :- . , '...- .,. . - 1,..7 - 3' 'gt -••'' II n '"/ 1 ..'. . . . - ''' ',....-E_--__ / ::.; :V ' I ' g' ' '''''' .• .'d CAer ' ..1 r ; '4 A ' . ( i*:- •.- :- i -, ,E .' :.‘• . -•" 4 •6'' ' 0 .1'!..'i. ' • . /c 4-12 S) / *;; ' • -'. II! e USD - • (4-te.4)': "Jae TA) ' I ....... - • _a i (...1.2e!..7) i , t." .1,.., ...g , , . \-'-, . , • • 4 \ i' t t ..... , . -• . , . 0 -• - --., - 7", ,44/ ,e , 1 . 4 • r... • - ' ;•-• * i I Xlr' / ; \ C ,;•--) \ r ' ' ' '''''''' ' ' ....-- 1 . ' , ,--/ r ' t.'-''' .... - ''.• 4 ::: - t t ir r 6 e '' .. `• ' 4,.: . f; \ / ., -, ,. A.- •:-, ,. ,.. , ,. • .... ' • . ' ... <Iv •■ 11110 "rr4, , • c __,.....h "-T"' . : ' , ."..17 --'1'1: I - 's- :: - • : ; ---':''.::'c:':71''''''Y''''''''''':"'•'4''''::.::' 41' ''' '''' :::-: :4ei' '4 ' : i'l:''''''' : 7: ; .•:, . / . . :,!%■‘4, "'::- . - OP /..) ; -----, .•.-,' , , ,...' -...?":: , 5-, LP ».1 ..,,,j: V.,... . ,,,,,,,,,„ T.t . , . ' r iL , .. ' . . ' (e e 11° LON t .. , . r .-:!) i'l it , /, (../ r„, ■ ,,,„....----''' ___ .—./ ) , \ '' ' , Li. i 1 , , o _ 7 j ,.,,,,... :; g : , m ,...•7...1 „ \ , : bo 6 f iiik, , s ' — (., '',,' \ ,- IP t ir , ...., . ... ,-' A \.. , - .... . . . ... . P. .'-'.-', ? : .- - 1 , !..i .• .•-.., L,P 1 E . , I, , 1 (1, ' \ 1. • " , (.4 0.-ac , •<- •r, • ....---- - •:',; . 9, ---"=... < - )q \ ,.4._ - i . ,... yf ..; ... ,. , .... --. ' •--' '......:' • '1, r . , •41- ..,.......,; , , . . . LEOEND . - , 'se C ; cS ' ----------f' '''' 1::i4 ''''''''''' \'• - , • ••• • ;"°•• ',',..': -,'";.'.'•;,.;::.,:.,:, :. r .- : ; ' , ';`_ . . ; / •, ' ; ' ,. 1 , -1- r . 1 . , • . , . ' ;•• • '''i ; ;, • <25 .s..S '-'•:-•:-----;•-•------'---• -- • -,- ''' .. '' -• ' ; ' "7:".-- ---7:--- '''' ' -.' " . \ : ( . 4 •= .7 - • -7 .) r. r '111. )N ..' • I.,: \ . . t 1 ; ; ■ ,,,, L I FINts1-. ,.. - .,)P E,■_!-V.'.CON, “ . '''. • , \ - ''' ,"? .8 r ' 1 C21-le__b_.) ■ TOP .. -1 ',' 4.' •.: f. 11 .44 -,...' -,.. _....00-- .No,c.r gi -, ,..x,s! coN,,,-R ELEvAnots, 0. ' _ __ _ .__ _ i : _.1.1 , _•., _ 4 -.. ± --- -,,, .- ;'!' ■IE .0 - 4 * 4 4 ' _ • 1 , .,, 4,3 ■ _ _ , ••• , : A,10•All ' I, . -- -• j -I- • ' I •-•••• - •."- DIRECTCN 0 DRAiNA4A & SWALE , c ...• 1., ; ' .4.- . „ - - . - 4t. 70 ' Il ' I ..i 1 i ■ I -v. - -9y- r ,,,;,,•-• .1 . 1 . ... ,i_ 510P4. Eit.INK g i i) , 8 i ' 1. .----- 4• 1 ,", ,=. ,. .• . i t i 1 I i •••14,•••' • Oft ii -- V -- Q -- . ' i -_-, , • I ' l. ' ..A.Y.- INO.CATE.S FINSI--; ;;RADi ELEvAriON ; :,'•• • ', '4% r ' ', -ec..R:j VII , i 1 0011 , 1 !, ; '. :•tr'' .,,,, -1 % ., • A-g=rc, Of CURB , • ,-; P) - cc - ; ' ' I `"'• " •-•*** , I I . ", 11 ' I 5001 et),C J _ . C.**..... '' °- H Otha . ...E 3C RE - ' --1—*-- ' -. "R*r.. 1 . . - t , , -. -1 = ,i ' l 1 amp •, _ 1 ; t : -..• • ''''..tti; d .5 -1 . ,, - P'el---e4e '' E N LE W A A N . C 025 E 8 . ! .*. 4'. IN, BEICM TOP OF SLOPE I fert" ' 1 ,,.. u•'! (jr) . • . A e • A • , ,. N 0 •■' '', .:':',' ' 5. i 1; '" • , ' DRAINAGE AREAC ) ,P• , ....,_ _4 , 0 6 ° ,,i% ., '.. --- _,.._..,-....... I . . .,......„. ,....,,. VICINiTY MAP . . / : \\1/4.1 ______ . . _ ' --... .,- p 151 NODE N ,,,•'.:,;- ' 1 . ' • ••-• 14't vs 'k'' it „?. '-•'" 1 , . _ _... ..,,, .„.,.,,,,,, \ ,.-- ,.,'- .., "sk . 1 , f ,. ' , ° , - ';')' ' :f. i , •..<0 , , 7 , Al AREA DESIGNAT4N .4(_____.____.,z_) - i -- -- , (-4.-.7-) - c:,:' .' " ' ' ;*•'• •V 1 • r) .1:4 i r• ic.,.;2." , - . 0. 0,,i1 ..,;;.,;", : , ,l': ,■ . • ., 1.',L,,,, I: ; 1,/ 1 : 4. i •-• 1 t " ,i, t . 6 7 -..--'. , I ''',.' I ' . ; 4 4 . ' ,4 ,•,1 ''• cy ..„ ..., _,,,._ 2 r- t Li. l ,, (• 1 7 , 2 . ' 1 11 1 ■ ., . - 1 - ''''' A, 11: f • /g18 cl• .." „,„, ' 4 ■ , :ii '',•• ; l g •,• ••, '.,1 .,1 1 -- 01.1 TV, ■ . • ■ ii - ); • 4 , 1 ..1 '..- Oi ) , ttVr'l ?•- 4' •• : ; \ 6 H ':•,' g ,, ,IP - r ..-.14,r ;•,' , •:•r• 'L. . P: ; .....„ • - r;, - • ' -..../` j 4 1..c. ''.., 0 . ".f, , v; • • ,,. ' '1•:'-',..3 :•.; \ - , cr7 AA ': ' c•-• ■-,•‘, ,A.; f r,M .... ..,,"-- 1.1,,Es-*147,114,;‘ ;;.,-..,,,,..-....,:,....„,,,,•,, ,-;.,...,,,,,,„,..,.., ...'• ,-TRiltalAr, • ' •,;;=:,,... _If ilr --- --) ir, lt il, ‘.. ',.:••';'' I f i !' - "; : ••;"„; .; '''- ',,,.*",,,.,,7-7°-',..:1.",•:;17,4;`,.n.,,P,. ,rt...,z .. ..:::::: •••• _ • - : ••,...„- --,:„.„ ;:: .„,,. , •., , „....., . ,..; . . , - PLATE r" --.- . , , --- 5•0 SCALE WOW,. GRADING imsE . 1 4 . P - A IC 4 DO/ Pf , I A 2601 7L4 1.4 - ar 09 Of An l• I- Cse . , „ 1 \` ,. �. LUCERNE t` ` V1LL[r - ' F �1 R6W R5W '4W R2W Y t— d —t- RIW 4\,t, RIE '. R2E 4 - W I I I I I R W I uT I I i / I` 1 iI I 1IIl113 y — y I I _•S T4N —° r — — - , 15? 7 I r nE7PEMf S/ - , — 1 — .. — — — I I I — — I 1 — T4N • • 1 I \ , I ' - 1 I I _ . , � e I .1• 1.2 : 'per I , �; _ I ,�, s ; t ��MI ''_ I I eP. v ] I. '� 3 I ' t -- 1 �.,.� / rl g I 3 � ,'. I o I r ;.. - -► t -� t- rt ,. - _ -- _ k �- - - - ! - _ L _ .1_ 5 - —I -� e- , 41 - 1 - 1 _,! R E N-d r \ e s o Y Iz - / - I/ � - - -- \ RA aLESN _ e� - _ - ,� I 4 I � j i �.'I RE gN \ fla�wr� �. T -� I +aei MTN i• y 1 `� ' _ r - '�"r. T3N t - I - I ' .a� 9t, E 'le'I • tl'••,I.I' ' I I ! }/ _•,t . -.r xa'1 '•.I1-u -� c / A I I �I 4S ��� °S A / �1.4 I 1 " - 1 . - v , 1 z z I' a- 1 •y 4, I � 1. i 1 > °' I - - T -- I 4 - ,ys r I I -t — — I —I — 1 rt — z9 '� - �-ic - fi,,�„ -C 1 '� f 1 � -� . — off r — _ - —' — I — i -,� AEI, �'c MA � ='. I� I 1 L - I -. � y 7 _ I_ _ - �,. �. 1 1.6 I' `•� 1 '� I • ' 1 <<� 1 \� �' - I d' �� 3 !,�, , ! 1! I S �A/ _ ��'/ -< e�' • 1 14 \\ Q t 3-1 ) \ ..., -, , % 1 *. ` t4ROrMEao 4 •. , t --r-'-- A : • -4 . • • • Pt y .�DwIN �� - I I I ,a. "t� - � -J t.2 ', � �• i - �+ - _∎ � _ �� / gym;` - T2N — I ].• - - - v e Mr r: �!' y - 1 _ -I I`� rA..�,a 1- \I . - �. h� -• •r�Y• -�� /'/ .�. E 14 I IQ -� • I I r ' -- .- E/ ' I I f y 1 I.I f g I ' \ , 4i � - - - - • 1.6 , . '' L -T,�rI":y� - I -y - _ t , ` 13.5,T'?1 N =L - - - __, - E - i `Z�•.. - ` - - - {{- COMM c ._" ....c C t ot ^�' �Q/ / { f \ t.7�_ •I.0 ('-!- -- t - ' 4- � _�1 - - , I IYLL E L aL-T �� - I �� /'� . I17 tea. ` I � ,.`:, I � ,x . _ - � r ' � ` 1 C - I /. i I 1 I 1.4 '`•�'� 1 1.6 7 : j ,(1 , /p.•. -. e : 1_��yl -1 �� / t 2 R _ [/RINS$ I ' . j� 1 SV - a(} OA I I / I - 1 1(■� _ _ t ° o 11 ' e r �fY !_A1 o+ J �M -mac / i _ _ __ ` Itl ■a t {; Y J� .7 � ° x - \ -- I 7 � ` Y .:.,�- - �- ¢ - I -�- - - r / " - i - -- ti - , -- - __t c•�- I - {- -•} - 1 1 I 1 `• 1.1 ' • �� t r .M.•pF ii Ew,. i "v I_ = T �- I - \� .' - - �� ' T,..�• T I N 1 ( .f.'� ®�_ �f��� ,• •,• ' T �- I' C` '� vn 1 - r- -- r -� - -> -- L -1- - -I - _ raA���_. rlu� r`S / I � I `` I Ir 1\ I i / I 1 -- •= ,I■UPLANO •' ��i,r�Ll'�.� ' • 1J1►am���bk .v . • ii� I I ':..• , I +: /��� -m �oage� ,a,. • , . RIALTO_ mrsikj�a=" ' 'zr"T - , ' - ? - - 'r �_ .__ / 1•t�_Iw� — _•= -iF"'. FONTAN �rE�t��a 11 5p ,. waste �•/ r � !� o ��y ' I• �a� C�' TON � ._ , Y" , I �•f s � �� ONT w t0=±r , dZ� -- -- �'� 1. „ ��.��, ^�' 7� LAN "��, t rl .�' 1� \ -+ • •t••• •• f _�,����,'•I_�• ,w.. e. 5 -�. r t.`• a. ...I r- �` w.a, = ` [NI _� -1-- - 1 al � �, OF _: f T ."j ' . I .' - I _ fni. L 14'60 / I ' y 7- 1 cm NO � !� ! �` L.C.,,.,, t ,4e :. , aur_mal , , ' �+' yon r { - —1— �� s 1 ��� e •' ; — I �,7 '• I� RIE ! : I R E t �� ' i' ,� RSIDE 1 -'- �i i a : ig• E Mar SPN P i R 4 W j I --", R t', , 1, I I 1 • \� I F12Q2S4NTR0, OIS T t -I - -- - _ R 5W: VALLEY AREA _ 1 , I I I , • COATROL," REDUCED DRAWING — — — - • . " _ _ I " _ ISO I S � �`, , SCALE i 4 MILES Ya 10 YEAR f HOUR MSED ON U.SD.C NOAA. d1.A.3 2, 1973 SAN BERNARDINO COUNTY �, - °i'S ' - - :a '' Rs HYDROLOGY MANUAL � / _ r Pl. i I I I •R 8 W 1 I R 7 W '•• ! •e SOl NES PR[CiPITATION (INCHES) ID9�tE2 I 1 RRO t2 .. ' �J 8_II FIGURE R- - OCT R8' 1' L R7W I I RW I I -- 7 -- ,- RSNi } + '4W �, :.. << _ • p 4 — R2W r - -- t R !W �. �! `•[.ve,g,,. -4- } — IS R2E J I r „x ' "� �� '�. T4N ' L � ( I �� �E „ __ h" 1'° r �� — — TO .......do _4 ..., ___ I , } I_ a s{ � _ , I T ' " --y. _ + Y` v' 5 _ " ~ J.•• e I n ' I I •� J -I-- -1 - - e 1 - ----- - - ` ' -} -- -4 - -_--` _.. „ -I V- A l LT r I _ t INs � �! ' Fs. RfA,Aµ r i ,-- -+ , -- F ''- '4 / — 1 4- — , 11 __ . _ _FLT `' �' � `4 ; T - i I . i5 � ! I . - 'yam.�, 4 A/ �� — _ r ,. DP Y'Z �" {/ r . { . f .V J J 6' , ,,,,..,., _' ---ttt- -- • i 1 - 9Y'K AlV Pi�• -- u - �/ •. _ , II 1 ___,_ ___\ Ip 1 -.,_ ,, _ _ ,.....t.T.,_,,.,, , — _ �" is z z • � • 1'� �,.� I .al� ��, E (II 7� s� ' � � ,..._,,•$ 2.5' , Ar " 1 — ,, () T 14 pli---,L.,0, �, \\\:14,...____IINV L y a J .o • 1► "si� AWN 141 , 1 0 0 : #4 mow 1 I 1 4� ' ( f ` ' L ARRO'1M f pper�- • ` , y • • � , PaLDW Ih l t + , ,� L _ (_ a. e. oIG ► • 6_ 1t I-u � I. n , . „. 1D J • La : £ .i �:• wrr� IL -i -- .• {y- ..e °., ! 1 \ _ I�' w , y � - _� -S H //fi r - ? 'I eRraH L -N ill ........,........... -1 __ � / � + I.f I L �oAacan ' . . r � . --� „gs M 3 �a � /" -`ter ,, { �, [ni wc ° � (�� • f ��. , li , ? i^- N- ''_ L1wE �"1S„ �J { _ :. �e ... t • A o! p t �.. .11 ',., NLLM[ Nita_ A _ r 1 4 i n�j� 1A� z.f ��i�i r r 1 , i � _ s , 1 - ° / ��,ss 111 11 1 1 ••• a u I � Y I , / �. I r, M +iP . t� --- -- -�'' -- - - - r t.= - -`_ - '` - _�•'!' °t. , • _+�-. _ 1_ 1 ., ae, T 1 N — — — ' -- :-?, 111 - ' '-)-- . - , '-...\, .,• \/ _ .4 fligiM I I . 41111 �'EMM 21� � 1 1�1 I ilig t c 1 °•=' S,• Ah°ADiPO t ,, , ; ,. *11, /� / %t� R i LTO_Iir� �.:: ti 4 ± - • ' IMF° " _ � Z1 ON TA WASH r Io , NMI ' lillartifillitailTOR AMMIIIPP - grVIT11111111". '— � _ � \ - T I S „a llir aim milllOpp.P- III mog oNrA.tca. �����'".[[+►'>." coyroN � � _ - _ . s. k cal f imi __ Clirl ti;MUMMIER r .. :Eel i0v_~i L4.0.,.... coat mat «. k. - - ' 0••9 - -4- - -ua�' -'- ' L L ' : \ 1 rj " I ua.L���y hlt �, a �I 1.6 ��1r A• _ i� YYCAIPA r f s as 5 tea. -.. _ _ pg / �t , R I R2 �� 1 ��, .0.. , 000M,T 7 : ,r .•00 72S I $ i . `1[ a ' qi.- . \... • „Ef uM �,..... .,. 111, „P, ROW � .° . R2W 9DC RI , ‘\ ” 411/ , � , � " t f lt)OQ C TRICT SAN t c - 1tQ1 . i , , 'II ° _ R5 • REDUCED DRAWING VALLEY AREA • T3S - _ _ _ • a�oNrt<TnLs • SCALE I" = 4 MILES : ;,; °. %" • r.: Y100 -100 YEAR !HOUR Le - SAN BERNARDINO COUNTY lelle • ._--» Alum a« u:ac ►w.nl.ru. :. INS 1:5. �•� 8� SIB • - - I,wwo�rtp NY w w HYDROLOGY MANUAL �—' fj `• ( I IS PREC IP'TATION (INCHES) _ `• +� last (*.tat 4 r it B -I2 FIGURE 8-4 C o° 3.5 3.5 3 3 • 2.5 2.5 U) - W 2 - U Z Z 2 2 I— a. W Co - % Q 0.5 / 0.5 0 - 0 2 5 10 25 50 100 RETURN PERIOD IN YEARS NOTE' I. FOR INTERMEDIATE RETURN PERIODS PLOT 10 -YEAR AND 100 -YEAR ONE HOUR VALUES FROM MAPS, THEN CONNECT POINTS AND READ VALUE FOR DESIRED RETURN PERIOD. FOR EXAMPLE GIVEN l0-YEAR ONE HOURs 0.95" AND 100-YEAR CNE HOUR 21.60", 25-YEAR ONE HOUR '1.18 ". C oe REFERENCE ATLAS 2, VOLUME U- CAL.,1973 RAINFALL DEPTH VERSUS SAN BERNARDINO COUNTY RETURN PERIOD FOR HYDROLOGY MANUAL PARTIAL DURATION SERIES • D -7 FIGURE D -2 Onsite 100 Year Storm Event Subarea A G G C o' **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING, INC. 6101 CHERRY AVENUE FONTANA, CALIFORNIA 92336 (909) 899 - 5011 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Tract 16568 Q100 * * * * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 16568.DAT TIME /DATE OF STUDY: 13:26 5/18/2004 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL*- - C USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .90 *USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) _ .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.5000 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* *USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET - CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT - /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 2 20.0 10.0 .020/ .020/ - -- .50 1.50 .03125 .1250 .01500 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = .10 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE .00 TO NODE 1.00 IS CODE = 2.1 » » > RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 520.00 ELEVATION DATA: UPSTREAM(FEET) = 1443.20 DOWNSTREAM(FEET) = 1430.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 9.895 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.423 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.90 .98 .50 32 9.90 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 10.27 TOTAL AREA(ACRES) = 2.90 PEAK FLOW RATE(CFS) = 10.27 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 4.00 IS CODE = 6.3 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« « < » » >( STREET TABLE SECTION # 2 USED) « «< UPSTREAM ELEVATION(FEET) = 1430.00 DOWNSTREAM ELEVATION(FEET) = 1428.00 STREET LENGTH(FEET) = 260.00 CURB HEIGHT(INCHES) = 6.0 C e STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 MAXIMUM ALLOWABLE STREET FLOW DEPTH(FEET) = .60 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 12.34 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .43 HALFSTREET FLOOD WIDTH(FEET) = 15.27 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.52 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.09 STREET FLOW TRAVEL TIME(MIN.) = 1.72 TC(MIN.) = 11.62 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.017 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 1.30 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.30 SUBAREA RUNOFF(CFS) = 4.13 EFFECTIVE AREA(ACRES) = 4.20 AREA- AVERAGED Fm(INCH /HR) = .49 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 4.20 PEAK FLOW RATE(CFS) = 13.34 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .44 HALFSTREET FLOOD WIDTH(FEET) = 15.77 FLOW VELOCITY(FEET /SEC.) = 2.56 DEPTH *VELOCITY(FT *FT /SEC.) = 1.13 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 11.62 RAINFALL INTENSITY(INCH /HR) = 4.02 AREA- AVERAGED Fm(INCH/HR) = .49 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 4.20 TOTAL STREAM AREA(ACRES) = 4.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 13.34 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 4.00 IS CODE = 2.1 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 390.00 ELEVATION DATA: UPSTREAM(FEET) = 1438.30 DOWNSTREAM(FEET) = 1428.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 8.750 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.762 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.10 .98 .50 32 8.75 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 8.08 TOTAL AREA(ACRES) = 2.10 PEAK FLOW RATE(CFS) = 8.08 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« « < TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.75 RAINFALL INTENSITY(INCH /HR) = 4.76 AREA- AVERAGED Fm(INCH /HR) = .49 AREA - AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 2.10 TOTAL STREAM AREA(ACRES) = 2.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.08 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 2.1 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « « < »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 425.00 ELEVATION DATA: UPSTREAM(FEET) = 1433.00 DOWNSTREAM(FEET) = 1428.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.646 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.233 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 1.80 .98 .50 32 10.65 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 6.07 TOTAL AREA(ACRES) = 1.80 PEAK FLOW RATE(CFS) = 6.07 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« « < » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 10.65 RAINFALL INTENSITY(INCH /HR) = 4.23 AREA- AVERAGED Fm(INCH /HR) = .49 AREA - AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 1.80 TOTAL STREAM AREA(ACRES) = 1.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.07 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 13.34 11.62 4.017 .98( .49) .50 4.20 .00 2 8.08 8.75 4.762 .98( .49) .50 2.10 2.00 3 6.07 10.65 4.233 .98( .49) .50 1.80 3.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE Ce 1 25.9 8.75 4.762 .975( .488) .50 6.7 2.00 2 25.7 11.62 4.017 .975( .488) .50 8.1 .00 3 26.1 10.65 4.233 .975( .488) .50 7.7 3.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 26.12 Tc(MIN.) = 10.65 EFFECTIVE AREA(ACRES) = 7.75 AREA- AVERAGED Fm(INCH /HR) _ .49 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 8.10 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 6.3 » »»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » » »(STREET TABLE SECTION # 2 USED) « «< UPSTREAM ELEVATION(FEET) = 1428.00 DOWNSTREAM ELEVATION(FEET) = 1426.60 STREET LENGTH(FEET) = 125.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 MAXIMUM ALLOWABLE STREET FLOW DEPTH(FEET) = .60 C e * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 26.30 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) = .51 HALFSTREET FLOOD WIDTH(FEET) = 19.10 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.49 PRODUCT OF DEPTH & VELOCITY(FT*FT /SEC.) = 1.78 STREET FLOW TRAVEL TIME(MIN.) = .60 Tc(MIN.) = 11.24 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.097 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A .10 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) = .10 SUBAREA RUNOFF(CFS) = .36 EFFECTIVE AREA(ACRES) = 7.85 AREA- AVERAGED Fm(INCH/HR) = .48 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .49 TOTAL AREA(ACRES) = 8.20 PEAK FLOW RATE(CFS) = 26.12 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .51 HALFSTREET FLOOD WIDTH(FEET) = 19.10 FLOW VELOCITY(FEET /SEC.) = 3.47 DEPTH *VELOCITY(FT *FT /SEC.) = 1.76 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 8.20 TC(MIN.) = 11.24 ,; EFFECTIVE AREA(ACRES) = 7.85 AREA - AVERAGED Fm(INCH /HR)= .48 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .49 PEAK FLOW RATE(CFS) = 26.12 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CPS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 25.9 9.35 4.576 .975( .482) .49 6.8 2.00 2 26.1 11.24 4.097 .975( .483) .49 7.8 3.00 3 25.7 12.22 3.898 .975( .483) .50 8.2 .00 END OF RATIONAL METHOD ANALYSIS C C Onsite 100 Year Storm Event Subarea B G G RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING, INC. 6101 CHERRY AVENUE FONTANA, CALIFORNIA 92336 (909) 899 - 5011 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Tract 16568 Subarea Q100 * * * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 16568SS.DAT TIME /DATE OF STUDY: 13:41 5/18/2004 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL*- - CO USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .90 *USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.5000 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* *USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET - CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT- /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = .00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 6.00 IS CODE = 2.1 Ce » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 375.00 ELEVATION DATA: UPSTREAM(FEET) = 1438.30 DOWNSTREAM(FEET) = 1432.30 Tc = K *((LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.522 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.526 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 1.80 .98 .50 32 9.52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 6.54 TOTAL AREA(ACRES) = 1.80 PEAK FLOW RATE(CFS) = 6.54 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 1.80 TC(MIN.) = 9.52 EFFECTIVE AREA(ACRES) = 1.80 AREA- AVERAGED Fm(INCH /HR)= .49 AREA- AVERAGED Fp(INCH /HR) = .98 AREA-AVERAGED Ap = .50 PEAK FLOW RATE(CFS) = 6.54 END OF RATIONAL METHOD ANALYSIS C C C C Onsite 25 Year Storm Event Subarea A C ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING, INC. 6101 CHERRY AVENUE FONTANA, CALIFORNIA 92336 (909) 899 - 5011 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Tract 16568 Q25 * * * * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 16568.DAT TIME /DATE OF STUDY: 13:30 5/18/2004 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL*- - USER SPECIFIED STORM EVENT(YEAR) = 25.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .90 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.2000 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* *USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET - CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT- /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 2 20.0 10.0 .020/ .020/ - -- .50 1.50 .03125 .1250 .01500 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = .10 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** �. - FLOW PROCESS FROM NODE .00 TO NODE 1.00 IS CODE = 2.1 » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS « « < �.. »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 520.00 ELEVATION DATA: UPSTREAM(FEET) = 1443.20 DOWNSTREAM(FEET) = 1430.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.895 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.538 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.90 .98 .50 32 9.90 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 7.96 TOTAL AREA(ACRES) = 2.90 PEAK FLOW RATE(CFS) = 7.96 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 4.00 IS CODE = 6.3 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »> (STREET TABLE SECTION # 2 USED) « «< UPSTREAM ELEVATION(FEET) = 1430.00 DOWNSTREAM ELEVATION(FEET) = 1428.00 STREET LENGTH(FEET) = 260.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 Liroi DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 MAXIMUM ALLOWABLE STREET FLOW DEPTH(FEET) = .60 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 9.55 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .40 HALFSTREET FLOOD WIDTH(FEET) = 13.82 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.35 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) _ .95 STREET FLOW TRAVEL TIME(MIN.) = 1.84 Tc(MIN.) = 11.74 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.194 SUBAREA LOSS RATE DATA(AMC II) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 1.30 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.30 SUBAREA RUNOFF(CFS) = 3.17 EFFECTIVE AREA(ACRES) = 4.20 AREA- AVERAGED Fm(INCH /HR) = .49 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 4.20 PEAK FLOW RATE(CFS) = 10.23 END OF SUBAREA STREET FLOW HYDRAULICS: �,. DEPTH(FEET) _ .41 HALFSTREET FLOOD WIDTH(FEET) = 14.18 FLOW VELOCITY(FEET /SEC.) = 2.40 DEPTH *VELOCITY(FT *FT /SEC.) = .98 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« « < TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 11.74 RAINFALL INTENSITY(INCH /HR) = 3.19 AREA- AVERAGED Fm(INCH /HR) = .49 AREA - AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 4.20 TOTAL STREAM AREA(ACRES) = 4.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.23 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 4.00 IS CODE = 2.1 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « « < »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 390.00 ELEVATION DATA: UPSTREAM(FEET) = 1438.30 DOWNSTREAM(FEET) = 1428.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)) ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.750 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.809 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.10 .98 .50 32 8.75 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 6.28 TOTAL AREA(ACRES) = 2.10 PEAK FLOW RATE(CFS) = 6.28 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« « < TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.75 RAINFALL INTENSITY(INCH /HR) = 3.81 AREA- AVERAGED Fm(INCH /HR) = .49 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 2.10 TOTAL STREAM AREA(ACRES) = 2.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.28 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 2.1 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 425.00 ELEVATION DATA: UPSTREAM(FEET) = 1433.00 DOWNSTREAM(FEET) = 1428.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.646 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.387 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 1.80 .98 .50 32 10.65 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 4.70 TOTAL AREA(ACRES) = 1.80 PEAK FLOW RATE(CFS) = 4.70 FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< » »>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES« «< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 10.65 RAINFALL INTENSITY(INCH /HR) =' 3.39 AREA- AVERAGED Fm(INCH /HR) = .49 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 1.80 TOTAL STREAM AREA(ACRES) = 1.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.70 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 10.23 11.74 3.194 .98( .49) .50 4.20 .00 2 6.28 8.75 3.809 .98( .49) .50 2.10 2.00 3 4.70 10.65 3.387 .98( .49) .50 1.80 3.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE (:: 1 20.1 8.75 3.809 .975( .488) .50 6.7 2.00 2 19.7 11.74 3.194 .975( .488) .50 8.1 .00 3 20.1 10.65 3.387 .975( .488) .50 7.7 3.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 20.12 Tc(MIN.) = 10.65 EFFECTIVE AREA(ACRES) = 7.71 AREA- AVERAGED Fm(INCH /HR) = .49 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 8.10 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 6.3 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »> (STREET TABLE SECTION # 2 USED) « «< UPSTREAM ELEVATION(FEET) = 1428.00 DOWNSTREAM ELEVATION(FEET) = 1426.60 STREET LENGTH(FEET) = 125.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 MAXIMUM ALLOWABLE STREET FLOW DEPTH(FEET) = .60 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 20.26 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .47 HALFSTREET FLOOD WIDTH(FEET) = 17.29 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.26 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.54 STREET FLOW TRAVEL TIME(MIN.) = .64 Tc(MIN.) = 11.29 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.270 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A .10 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) = .10 SUBAREA RUNOFF(CFS) _ .29 EFFECTIVE AREA(ACRES) = 7.81 AREA- AVERAGED Fm(INCH /HR) = .48 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .49 TOTAL AREA(ACRES) = 8.20 PEAK FLOW RATE(CFS) = 20.12 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .47 HALFSTREET FLOOD WIDTH(FEET) = 17.22 FLOW VELOCITY(FEET /SEC.) = 3.26 DEPTH *VELOCITY(FT *FT /SEC.) = 1.54 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 8.20 TC(MIN.) = 11.29 Col EFFECTIVE AREA(ACRES) = 7.81 AREA- AVERAGED Fm(INCH /HR)= .48 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .49 PEAK FLOW RATE(CFS) = 20.12 C ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 20.1 9.39 3.653 .975( .482) .49 6.8 2.00 2 20.1 11.29 3.270 .975( .483) .49 7.8 3.00 3 19.7 12.38 3.094 .975( .483) .50 8.2 .00 END OF RATIONAL METHOD ANALYSIS C C c Onsite 25 Year Storm Event Subarea B C RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING, INC. 6101 CHERRY AVENUE FONTANA, CALIFORNIA 92336 (909) 899 - 5011 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Tract 16568 Subarea Q25 * * * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 16568SS.DAT TIME /DATE OF STUDY: 8:22 1/14/2004 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL*-- USER SPECIFIED STORM EVENT(YEAR) = 25.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .90 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.2000 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* *USER - DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET - CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT- /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = .00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 6.00 IS CODE = 2.1 » » > RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 375.00 ELEVATION DATA: UPSTREAM(FEET) = 1438.30 DOWNSTREAM(FEET) = 1432.30 Tc = K*E(LENGTH** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.522 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.621 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 1.80 .98 .50 32 9.52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 5.08 TOTAL AREA(ACRES) = 1.80 PEAK FLOW RATE(CFS) = 5.08 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 1.80 TC(MIN.) = 9.52 EFFECTIVE AREA(ACRES) = 1.80 AREA- AVERAGED Fm(INCH /HR)= .49 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .50 PEAK FLOW RATE(CFS) = 5.08 END OF RATIONAL METHOD ANALYSIS C Offsite 100 Year Storm Event Subarea U1 C ol ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING, INC. 6101 CHERRY AVENUE FONTANA, CALIFORNIA 92336 (909) 899 - 5011 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Subarea U1 Q100 * * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 165680SF.DAT TIME /DATE OF STUDY: 9:41 6/ 2/2004 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL*- - C USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .90 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.5500 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* *USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET - CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT- /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 .018/ .018/ .020 .67 2.00 .03125 .1670 .01500 2 30.0 15.0 .020/ .020/ - -- .50 1.50 .03125 .1250 .01500 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = .14 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE .00 TO NODE 1.00 IS CODE = 2.1 » » > RATIONAL METHOD INITIAL SUBAREA ANALYSIS « « < »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 630.00 ELEVATION DATA: UPSTREAM(FEET) = 1498.00 DOWNSTREAM(FEET) = 1483.00 Tc = K*ULENGTH** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.463 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.185 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 5.10 .98 .60 32 11.46 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA RUNOFF(CFS) = 16.52 TOTAL AREA(ACRES) = 5.10 PEAK FLOW RATE(CFS) = 16.52 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »>( STREET TABLE SECTION # 2 USED) « «< UPSTREAM ELEVATION(FEET) = 1483.00 DOWNSTREAM ELEVATION(FEET) = 1464.00 STREET LENGTH(FEET) = 870.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 25.73 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) = .56 HALFSTREET FLOOD WIDTH(FEET) = 21.79 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.29 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.97 STREET FLOW TRAVEL TIME(MIN.) = 2.74 Tc(MIN.) = 14.20 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.679 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 6.60 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = 6.60 SUBAREA RUNOFF(CFS) = 18.38 EFFECTIVE AREA(ACRES) = 11.70 AREA- AVERAGED Fm(INCH /HR) _ .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 - TOTAL AREA(ACRES) = 11.70 PEAK FLOW RATE(CFS) = 32.58 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .60 HALFSTREET FLOOD WIDTH(FEET) = 23.85 FLOW VELOCITY(FEET /SEC.) = 5.61 DEPTH *VELOCITY(FT *FT /SEC.) = 3.39 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS, AND L = 870.0 FT WITH ELEVATION -DROP = 19.0 FT, IS 19.3 CFS, WHICH EXCEEDS THE TOP -OF -CURB STREET CAPACITY AT NODE 2.00 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 2.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« « < TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.20 RAINFALL INTENSITY(INCH /HR) = 3.68 AREA- AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 EFFECTIVE STREAM AREA(ACRES) = 11.70 TOTAL STREAM AREA(ACRES) = 11.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 32.58 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** (:: FLOW PROCESS FROM NODE .00 TO NODE 1.00 IS CODE = 2.1 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW- LENGTH(FEET) = 630.00 ELEVATION DATA: UPSTREAM(FEET) = 1498.00 DOWNSTREAM(FEET) = 1483.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.463 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.185 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 2.50 .98 .60 32 11.46 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA RUNOFF(CFS) = 8.10 TOTAL AREA(ACRES) = 2.50 PEAK FLOW RATE(CFS) = 8.10 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »> (STREET TABLE SECTION ## 2 USED) « «< UPSTREAM ELEVATION(FEET) = 1483.00 DOWNSTREAM ELEVATION(FEET) = 1464.00 STREET LENGTH(FEET) = 870.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 12.59 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .46 HALFSTREET FLOOD WIDTH(FEET) = 16.50 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.43 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.02 STREET FLOW TRAVEL TIME(MIN.) = 3.27 Tc(MIN.) = 14.73 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.599 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 3.30 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = 3.30 SUBAREA RUNOFF(CFS) = 8.95 EFFECTIVE AREA(ACRES) = 5.80 AREA- AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 5.80 PEAK FLOW RATE(CFS) = 15.73 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .49 HALFSTREET FLOOD WIDTH(FEET) = 18.00 FLOW VELOCITY(FEET /SEC.) = 4.68 DEPTH *VELOCITY(FT *FT /SEC.) = 2.28 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 2.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 14.73 RAINFALL INTENSITY(INCH /HR) = 3.60 AREA- AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 EFFECTIVE STREAM AREA(ACRES) = 5.80 TOTAL STREAM AREA(ACRES) = 5.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 15.73 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 32.58 14.20 3.679 .98( .59) .60 11.70 .00 2 15.73 14.73 3.599 .98( .59) .60 5.80 .00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 48.2 14.20 3.679 .975( .585) .60 17.3 .00 2 47.5 14.73 3.599 .975( .585) .60 17.5 .00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 48.15 Tc(MIN.) = 14.20 EFFECTIVE AREA(ACRES) = 17.29 AREA- AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 17.50 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.50 TO NODE 2.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 14.20 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.679 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A .20 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = .20 SUBAREA RUNOFF(CFS) = .56 EFFECTIVE AREA(ACRES) = 17.49 AREA- AVERAGED Fm(INCH /HR) = .58 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 17.70 PEAK FLOW RATE(CFS) = 48.71 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 5.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »> (STREET TABLE SECTION ## 2 USED) « «< UPSTREAM ELEVATION(FEET) = 1464.00 DOWNSTREAM ELEVATION(FEET) = 1462.00 STREET LENGTH(FEET) = 390.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 49.03 ** *STREET FLOW SPLITS OVER STREET - CROWN * ** FULL DEPTH(FEET) = 73 FLOOD WIDTH (FEET) = 30.00 FULL HALF - STREET VELOCITY(FEET /SEC.) = 3.17 SPLIT DEPTH(FEET) = .65 SPLIT FLOOD WIDTH(FEET) = 26.13 SPLIT FLOW(CFS) = 20.13 SPLIT VELOCITY(FEET /SEC.) = 2.90 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) = .73 HALFSTREET FLOOD WIDTH(FEET) = 30.00 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.17 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.30 STREET FLOW TRAVEL TIME(MIN.) = 2.05 TC(MIN.) = 16.26 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.393 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA FP Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A .25 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = .25 SUBAREA RUNOFF(CFS) = .63 EFFECTIVE AREA(ACRES) = 17.74 AREA- AVERAGED Fm(INCH /HR) = .58 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 17.95 PEAK FLOW RATE(CFS) = 48.71 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .73 HALFSTREET FLOOD WIDTH(FEET) = 30.00 C oo FLOW VELOCITY(FEET /SEC.) = 3.17 DEPTH *VELOCITY(FT *FT /SEC.) = 2.30 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 16.26 RAINFALL INTENSITY(INCH /HR) = 3.39 AREA - AVERAGED Fm(INCH /HR) = .58 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 EFFECTIVE STREAM AREA(ACRES) = 17.74 TOTAL STREAM AREA(ACRES) = 17.95 PEAK FLOW RATE(CFS) AT CONFLUENCE = 48.71 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 2.1 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 630.00 ELEVATION DATA: UPSTREAM(FEET) = 1496.00 DOWNSTREAM(FEET) = 1482.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)J ** .20 e""` SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.622 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.150 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 2.80 .98 .60 32 11.62 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA RUNOFF(CFS) = 8.98 TOTAL AREA(ACRES) = 2.80 PEAK FLOW RATE(CFS) = 8.98 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 6.2 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« « < » » >( STREET TABLE SECTION # 2 USED) « «< UPSTREAM ELEVATION(FEET) = 1482.00 DOWNSTREAM ELEVATION(FEET) = 1462.00 STREET LENGTH(FEET) = 870.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 14.08 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .47 HALFSTREET FLOOD WIDTH(FEET) = 17.06 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.65 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.17 STREET FLOW TRAVEL TIME(MIN.) = 3.12 Tc(MIN.) = 14.74 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.599 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 3.75 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = 3.75 SUBAREA RUNOFF(CFS) = 10.17 EFFECTIVE AREA(ACRES) = 6.55 AREA- AVERAGED Fm(INCH /HR) = .59 AREA - AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 6.55 PEAK FLOW RATE(CFS) = 17.76 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .50 HALFSTREET FLOOD WIDTH(FEET) = 18.67 FLOW VELOCITY(FEET /SEC.) = 4.93 DEPTH *VELOCITY(FT *FT /SEC.) = 2.46 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1 �r^ » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< €�✓ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 14.74 RAINFALL INTENSITY(INCH /HR) = 3.60 AREA- AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 EFFECTIVE STREAM AREA(ACRES) = 6.55 TOTAL STREAM AREA(ACRES) = 6.55 PEAK FLOW RATE(CFS) AT CONFLUENCE = 17.76 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 2.1 »» >RATIONAL METHOD INITIAL SUBAREA ANALYSIS< « « »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 630.00 ELEVATION DATA: UPSTREAM(FEET) = 1496.00 DOWNSTREAM(FEET) = 1482.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.622 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.150 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 2.80 .98 .60 32 11.62 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA RUNOFF(CFS) = 8.98 TOTAL AREA(ACRES) = 2.80 PEAK FLOW RATE(CFS) = 8.98 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »>( STREET TABLE SECTION # 2 USED) « « < UPSTREAM ELEVATION(FEET) = 1482.00 DOWNSTREAM ELEVATION(FEET) = 1462.00 STREET LENGTH(FEET) = 870.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 14.08 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .47 HALFSTREET FLOOD WIDTH(FEET) = 17.06 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.65 PRODUCT OF DEPTH & VELOCITY(FT*FT /SEC.) = 2.17 STREET FLOW TRAVEL TIME(MIN.) = 3.12 Tc(MIN.) = 14.74 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.599 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 3.75 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = 3.75 SUBAREA RUNOFF(CFS) = 10.17 EFFECTIVE AREA(ACRES) = 6.55 AREA - AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 6.55 PEAK FLOW RATE(CFS) = 17.76 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .50 HALFSTREET FLOOD WIDTH(FEET) = 18.67 FLOW VELOCITY(FEET /SEC.) = 4.93 DEPTH *VELOCITY(FT *FT /SEC.) = 2.46 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 14.74 RAINFALL INTENSITY(INCH /HR) = 3.60 AREA- AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) _ .98 AREA- AVERAGED Ap = .60 EFFECTIVE STREAM AREA(ACRES) = 6.55 TOTAL STREAM AREA(ACRES) = 6.55 PEAK FLOW RATE(CFS) AT CONFLUENCE = 17.76 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 48.71 16.26 3.393 .98( .58) .60 17.74 .00 1 48.02 16.79 3.329 .98( .58) .60 17.95 .00 2 17.76 14.74 3.599 .98( .59) .60 6.55 3.00 3 17.76 14.74 3.599 .98( .59) .60 6.55 3.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 82.9 14.74 3.599 .975( .585) .60 29.2 3.00 2 81.8 16.26 3.393 .975( .585) .60 30.8 .00 3 80.4 16.79 3.329 .975( .585) .60 31.0 .00 4 82.9 14.74 3.599 .975( .585) .60 29.2 3.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 82.93 Tc(MIN.) = 14.74 EFFECTIVE AREA(ACRES) = 29.19 AREA - AVERAGED Fm(INCH/HR) = .58 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 31.05 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 5.00 TO NODE 8.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« « < » » >( STREET TABLE SECTION # 2 USED) « « < UPSTREAM ELEVATION(FEET) = 1462.00 DOWNSTREAM ELEVATION(FEET) = 1460.00 STREET LENGTH(FEET) = 390.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 83.24 ** *STREET FLOWING FULL * ** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) = .80 HALFSTREET FLOOD WIDTH(FEET) = 30.00 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.67 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.94 STREET FLOW TRAVEL TIME(MIN.) = 1.77 Tc(MIN.) = 16.51 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.362 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A .25 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = .25 SUBAREA RUNOFF(CFS) = .62 EFFECTIVE AREA(ACRES) = 29.44 AREA- AVERAGED Fm(INCH /HR) = .58 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 31.30 PEAK FLOW RATE(CFS) = 82.93 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .80 HALFSTREET FLOOD WIDTH(FEET) = 30.00 FLOW VELOCITY(FEET /SEC.) = 3.66 DEPTH *VELOCITY(FT *FT /SEC.) = 2.93 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« « < TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 16.51 RAINFALL INTENSITY(INCH /HR) = 3.36 AREA- AVERAGED Fm(INCH /HR) = .58 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 EFFECTIVE STREAM AREA(ACRES) = 29.44 TOTAL STREAM AREA(ACRES) = 31.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 82.93 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.00 TO NODE 7.00 IS CODE = 2.1 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 630.00 ELEVATION DATA: UPSTREAM(FEET) = 1493.00 DOWNSTREAM(FEET) = 1479.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.622 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.150 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 2.80 .98 .60 32 11.62 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA RUNOFF(CFS) = 8.98 TOTAL AREA(ACRES) = 2.80 PEAK FLOW RATE(CFS) = 8.98 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« « » »> (STREET TABLE SECTION ## 2 USED) ««< UPSTREAM ELEVATION(FEET) = 1479.00 DOWNSTREAM ELEVATION(FEET) = 1460.00 STREET LENGTH(FEET) = 870.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 14.07 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .47 HALFSTREET FLOOD WIDTH(FEET) = 17.23 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.56 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.15 STREET FLOW TRAVEL TIME(MIN.) = 3.18 Tc(MIN.) = 14.80 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.589 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 3.75 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = 3.75 SUBAREA RUNOFF(CFS) = 10.14 EFFECTIVE AREA(ACRES) = 6.55 AREA- AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 6.55 PEAK FLOW RATE(CFS) = 17.71 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .50 HALFSTREET FLOOD WIDTH(FEET) = 18.84 FLOW VELOCITY(FEET /SEC.) = 4.83 DEPTH *VELOCITY(FT *FT /SEC.) = 2.43 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 14.80 RAINFALL INTENSITY(INCH /HR) = 3.59 AREA- AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 EFFECTIVE STREAM AREA(ACRES) = 6.55 TOTAL STREAM AREA(ACRES) = 6.55 PEAK FLOW RATE(CFS) AT CONFLUENCE = 17.71 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.00 TO NODE 7.00 IS CODE = 2.1 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 630.00 ELEVATION DATA: UPSTREAM(FEET) = 1493.00 DOWNSTREAM(FEET) = 1479.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.622 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.150 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 2.80 .98 .60 32 11.62 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA RUNOFF(CFS) = 8.98 TOTAL AREA(ACRES) = 2.80 PEAK FLOW RATE(CFS) = 8.98 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 6.2 » » > COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »> (STREET TABLE SECTION it 2 USED) « «< UPSTREAM ELEVATION(FEET) = 1479.00 DOWNSTREAM ELEVATION(FEET) = 1460.00 STREET LENGTH(FEET) = 870.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 14.07 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .47 HALFSTREET FLOOD WIDTH(FEET) = 17.23 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.56 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.15 STREET FLOW TRAVEL TIME(MIN.) = 3.18 TC(MIN.) = 14.80 Ce * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.589 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 3.75 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = 3.75 SUBAREA RUNOFF(CFS) = 10.14 EFFECTIVE AREA(ACRES) = 6.55 AREA - AVERAGED Fm(INCH /HR) = .59 AREA - AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 6.55 PEAK FLOW RATE(CFS) = 17.71 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .50 HALFSTREET FLOOD WIDTH(FEET) = 18.84 FLOW VELOCITY(FEET /SEC.) = 4.83 DEPTH *VELOCITY(FT *FT /SEC.) = 2.43 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« « < » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 14.80 RAINFALL INTENSITY(INCH /HR) = 3.59 AREA- AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) = .98 C AREA- AVERAGED Ap = .60 EFFECTIVE STREAM AREA(ACRES) = 6.55 TOTAL STREAM AREA(ACRES) = 6.55 PEAK FLOW RATE(CFS) AT CONFLUENCE = 17.71 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 82.93 16.51 3.362 .98( .59) .60 29.44 3.00 1 81.82 18.04 3.188 .98( .59) .60 31.09 .00 1 80.36 18.58 3.131 .98( .59) .60 31.30 .00 1 82.93 16.51 3.362 .98( .59) .60 29.44 3.00 2 17.71 14.80 3.589 .98( .59) .60 6.55 6.00 3 17.71 14.80 3.589 .98( .59) .60 6.55 6.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 115.9 14.80 3.589 .975( .585) .60 39.5 6.00 2 115.7 16.51 3.362 .975( .585) .60 42.5 3.00 3 115.7 16.51 3.362 .975( .585) .60 42.5 3.00 4 112.5 18.04 3.188 .975( .585) .60 44.2 .00 5 110.4 18.58 3.131 .975( .585) .60 44.4 .00 6 115.9 14.80 3.589 .975( .585) .60 39.5 6.00 Naive COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 115.87 Tc(MIN.) = 14.80 EFFECTIVE AREA(ACRES) = 39.49 AREA- AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 44.40 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 8.00 TO NODE 11.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« « < » »>( STREET TABLE SECTION # 2 USED) « «< UPSTREAM ELEVATION(FEET) = 1460.00 DOWNSTREAM ELEVATION(FEET) = 1458.00 STREET LENGTH(FEET) = 390.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 115.99 ** *STREET FLOWING FULL * ** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: Cle NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) = .88 HALFSTREET FLOOD WIDTH(FEET) = 30.00 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.18 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 3.70 STREET FLOW TRAVEL TIME(MIN.) = 1.55 Tc(MIN.) = 16.36 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.381 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A .10 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = .10 SUBAREA RUNOFF(CFS) = .25 EFFECTIVE AREA(ACRES) = 39.59 AREA- AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 44.50 PEAK FLOW RATE(CFS) = 115.87 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .88 HALFSTREET FLOOD WIDTH(FEET) = 30.00 FLOW VELOCITY(FEET /SEC.) = 4.19 DEPTH *VELOCITY(FT *FT /SEC.) = 3.70 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 11.00 TO NODE 11.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 16.36 RAINFALL INTENSITY(INCH /HR) = 3.38 AREA- AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 EFFECTIVE STREAM AREA(ACRES) = 39.59 TOTAL STREAM AREA(ACRES) = 44.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 115.87 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 9.00 TO NODE 10.00 IS CODE = 2.1 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 630.00 ELEVATION DATA: UPSTREAM(FEET) = 1491.00 DOWNSTREAM(FEET) = 1477.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.622 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.150 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) CO' RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 2.80 .98 .60 32 11.62 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA RUNOFF(CFS) = 8.98 TOTAL AREA(ACRES) = 2.80 PEAK FLOW RATE(CFS) = 8.98 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 6.2 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »>( STREET TABLE SECTION # 2 USED) « « < UPSTREAM ELEVATION(FEET) = 1477.00 DOWNSTREAM ELEVATION(FEET) = 1458.00 STREET LENGTH(FEET) = 870.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 14.07 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .47 HALFSTREET FLOOD WIDTH(FEET) = 17.23 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.56 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.15 STREET FLOW TRAVEL TIME(MIN.) = 3.18 Tc(MIN.) = 14.80 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.589 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 3.75 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = 3.75 SUBAREA RUNOFF(CFS) = 10.14 EFFECTIVE AREA(ACRES) = 6.55 AREA- AVERAGED Fm(INCH /HR) _ .59 AREA - AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 6.55 PEAK FLOW RATE(CFS) = 17.71 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .50 HALFSTREET FLOOD WIDTH(FEET) = 18.84 FLOW VELOCITY(FEET /SEC.) = 4.83 DEPTH *VELOCITY(FT *FT /SEC.) = 2.43 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 11.00 TO NODE 11.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 14.80 RAINFALL INTENSITY(INCH /HR) = 3.59 AREA- AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 EFFECTIVE STREAM AREA(ACRES) = 6.55 TOTAL STREAM AREA(ACRES) = 6.55 PEAK FLOW RATE(CFS) AT CONFLUENCE = 17.71 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 9.00 TO NODE 10.00 IS CODE = 2.1 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 630.00 ELEVATION DATA: UPSTREAM(FEET) = 1491.00 DOWNSTREAM(FEET) = 1477.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.622 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.150 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 2.80 .98 .60 32 11.62 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 Cie SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA RUNOFF(CFS) = 8.98 TOTAL AREA(ACRES) = 2.80 PEAK FLOW RATE(CFS) = 8.98 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 6.2 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » » >( STREET TABLE SECTION # 2 USED) « «< UPSTREAM ELEVATION(FEET) = 1477.00 DOWNSTREAM ELEVATION(FEET) = 1458.00 STREET LENGTH(FEET) = 870.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 14.07 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .47 HALFSTREET FLOOD WIDTH(FEET) = 17.23 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.56 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.15 Cie STREET FLOW TRAVEL TIME(MIN.) = 3.18 Tc(MIN.) = 14.80 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.589 SUBAREA LOSS RATE DATA(AMC II): /'^ DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS kilise LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 3.75 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = 3.75 SUBAREA RUNOFF(CFS) = 10.14 EFFECTIVE AREA(ACRES) = 6.55 AREA- AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 6.55 PEAK FLOW RATE(CFS) = 17.71 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .50 HALFSTREET FLOOD WIDTH(FEET) = 18.84 FLOW VELOCITY(FEET /SEC.) = 4.83 DEPTH *VELOCITY(FT *FT /SEC.) = 2.43 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 11.00 TO NODE 11.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< » »>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 14.80 RAINFALL INTENSITY(INCH /HR) = 3.59 AREA- AVERAGED Fm(INCH /HR) = .59 (:r AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 EFFECTIVE STREAM AREA(ACRES) = 6.55 TOTAL STREAM AREA(ACRES) = 6.55 PEAK FLOW RATE(CFS) AT CONFLUENCE = 17.71 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 115.87 16.36 3.381 .98( .59) .60 39.59 6.00 1 115.67 18.06 3.185 .98( .59) .60 42.64 3.00 1 115.67 18.06 3.185 .98( .59) .60 42.64 3.00 1 112.51 19.61 3.032 .98( .59) .60 44.29 .00 1 110.39 20.17 2.982 .98( .59) .60 44.50 .00 1 115.87 16.36 3.381 .98( .59) .60 39.59 6.00 2 17.71 14.80 3.589 .98( .59) .60 6.55 9.00 3 17.71 14.80 3.589 .98( .59) .60 6.55 9.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 148.1 14.80 3.589 .975( .585) .60 48.9 9.00 2 148.8 16.36 3.381 .975( .585) .60 52.7 6.00 3 148.8 16.36 3.381 .975( .585) .60 52.7 6.00 C 4 146.3 18.06 3.185 .975( .585) .60 55.7 3.00 5 146.3 18.06 3.185 .975( .585) .60 55.7 3.00 6 141.4 19.61 3.032 .975( .585) .60 57.4 .00 7 138.6 20.17 2.982 .975( .585) .60 57.6 .00 8 148.1 14.80 3.589 .975( .585) .60 48.9 9.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 148.83 Tc(MIN.) = 16.36 EFFECTIVE AREA(ACRES) = 52.69 AREA- AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 57.60 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 11.00 TO NODE 14.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »>( STREET TABLE SECTION # 2 USED) « «< UPSTREAM ELEVATION(FEET) = 1458.00 DOWNSTREAM ELEVATION(FEET) = 1455.00 STREET LENGTH(FEET) = 390.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 149.13 (:: ** *STREET FLOWING FULL * ** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) = .90 HALFSTREET FLOOD WIDTH(FEET) = 30.00 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.23 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 4.69 STREET FLOW TRAVEL TIME(MIN.) = 1.24 Tc(MIN.) = 17.60 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.235 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A .25 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = .25 SUBAREA RUNOFF(CFS) = .60 EFFECTIVE AREA(ACRES) = 52.94 AREA- AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 57.85 PEAK FLOW RATE(CFS) = 148.83 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .90 HALFSTREET FLOOD WIDTH(FEET) = 30.00 FLOW VELOCITY(FEET /SEC.) = 5.23 DEPTH *VELOCITY(FT *FT /SEC.) = 4.69 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** C ie FLOW PROCESS FROM NODE 14.00 TO NODE 14.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« « < TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 17.60 RAINFALL INTENSITY(INCH /HR) = 3.24 AREA- AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 EFFECTIVE STREAM AREA(ACRES) = 52.94 TOTAL STREAM AREA(ACRES) = 57.85 PEAK FLOW RATE(CFS) AT CONFLUENCE = 148.83 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 2.1 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « « < »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 630.00 ELEVATION DATA: UPSTREAM(FEET) = 1488.00 DOWNSTREAM(FEET) = 1475.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.795 c r-ow * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.113 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 3.00 .98 .60 32 11.80 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA RUNOFF(CFS) = 9.53 TOTAL AREA(ACRES) = 3.00 PEAK FLOW RATE(CFS) = 9.53 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »>( STREET TABLE SECTION # 2 USED) « «< UPSTREAM ELEVATION(FEET) = 1475.00 DOWNSTREAM ELEVATION(FEET) = 1455.00 STREET LENGTH(FEET) = 870.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 �•. SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 14.93 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .48 HALFSTREET FLOOD WIDTH(FEET) = 17.45 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.72 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.24 STREET FLOW TRAVEL TIME(MIN.) = 3.07 Tc(MIN.) = 14.87 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.580 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 4.00 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = 4.00 SUBAREA RUNOFF(CFS) = 10.78 EFFECTIVE AREA(ACRES) = 7.00 AREA- AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 7.00 PEAK FLOW RATE(CFS) = 18.87 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .51 HALFSTREET FLOOD WIDTH(FEET) = 19.12 FLOW VELOCITY(FEET /SEC.) = 5.00 DEPTH *VELOCITY(FT *FT /SEC.) = 2.54 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 14.00 TO NODE 14.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< » »>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « « < TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 14.87 RAINFALL INTENSITY(INCH /HR) = 3.58 AREA- AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 EFFECTIVE STREAM AREA(ACRES) = 7.00 TOTAL STREAM AREA(ACRES) = 7.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 18.87 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 148.11 16.05 3.420 .98( .59) .60 49.18 9.00 1 148.83 17.60 3.235 .98( .59) .60 52.94 6.00 1 148.83 17.60 3.235 .98( .59) .60 52.94 6.00 1 146.32 19.31 3.060 .98( .59) .60 55.99 3.00 1 146.32 19.31 3.060 .98( .59) .60 55.99 3.00 1 141.36 20.88 2.920 .98( .59) .60 57.64 .00 1 138.64 21.45 2.873 .98( .59) .60 57.85 .00 1 148.11 16.05 3.420 .98( .59) .60 49.18 9.00 2 18.87 14.87 3.580 .98( .59) .60 7.00 12.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** C STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 166.0 16.05 3.420 .975( .585) .60 56.2 9.00 2 166.0 16.05 3.420 .975( .585) .60 56.2 9.00 3 165.5 17.60 3.235 .975( .585) .60 59.9 6.00 4 165.5 17.60 3.235 .975( .585) .60 59.9 6.00 5 161.9 19.31 3.060 .975( .585) .60 63.0 3.00 6 161.9 19.31 3.060 .975( .585) .60 63.0 3.00 7 156.1 20.88 2.920 .975( .585) .60 64.6 .00 8 153.1 21.45 2.873 .975( .585) .60 64.8 .00 9 163.8 14.87 3.580 .975( .585) .60 52.6 12.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 165.96 Tc(MIN.) = 16.05 EFFECTIVE AREA(ACRES) = 56.18 AREA- AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 64.85 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 64.85 TC(MIN.) = 16.05 EFFECTIVE AREA(ACRES) = 56.18 AREA- AVERAGED Fm(INCH /HR)= .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 PEAK FLOW RATE(CFS) = 165.96 ** PEAK FLOW RATE TABLE ** (:: STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 163.8 14.87 3.580 .975( .585) .60 52.6 12.00 2 166.0 16.05 3.420 .975( .585) .60 56.2 9.00 3 166.0 16.05 3.420 .975( .585) .60 56.2 9.00 4 165.5 17.60 3.235 .975( .585) .60 59.9 6.00 5 165.5 17.60 3.235 .975( .585) .60 59.9 6.00 6 161.9 19.31 3.060 .975( .585) .60 63.0 3.00 7 161.9 19.31 3.060 .975( .585) .60 63.0 3.00 8 156.1 20.88 2.920 .975( .585) .60 64.6 .00 9 153.1 21.45 2.873 .975( .585) .60 64.8 .00 END OF RATIONAL METHOD ANALYSIS C C Offsite 100 Year Storm Event Subarea U2 C ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING, INC. 6101 CHERRY AVENUE FONTANA, CALIFORNIA 92336 (909) 899 - 5011 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Subarea U2 Q100 * * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 16568OS5.DAT TIME /DATE OF STUDY: 13:47 1/26/2004 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL*- - Ce USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .90 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.5500 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* *USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET - CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT- /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 2 30.0 15.0 .020/ .020/ - -- .50 1.50 .03125 .1250 .01500 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = .14 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 2.1 » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW- LENGTH(FEET) = 630.00 ELEVATION DATA: UPSTREAM(FEET) = 1488.00 DOWNSTREAM(FEET) = 1475.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.795 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.113 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 2.00 .98 .60 32 11.80 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA RUNOFF(CFS) = 6.35 TOTAL AREA(ACRES) = 2.00 PEAK FLOW RATE(CFS) = 6.35 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 6.2 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« « < »»> (STREET TABLE SECTION ## 2 USED) « «< UPSTREAM ELEVATION(FEET) = 1475.00 DOWNSTREAM ELEVATION(FEET) = 1455.00 STREET LENGTH(FEET) = 870.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 (:: DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 9.94 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .42 HALFSTREET FLOOD WIDTH(FEET) = 14.89 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.26 PRODUCT OF DEPTH & VELOCITY(FT*FT /SEC.) = 1.81 STREET FLOW TRAVEL TIME(MIN.) = 3.40 Tc(MIN.) = 15.20 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.533 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 2.70 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = 2.70 SUBAREA RUNOFF(CFS) = 7.16 EFFECTIVE AREA(ACRES) = 4.70 AREA- AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 4.70 PEAK FLOW RATE(CFS) = 12.47 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .45 HALFSTREET FLOOD WIDTH(FEET) = 16.28 FLOW VELOCITY(FEET /SEC.) = 4.50 DEPTH *VELOCITY(FT *FT /SEC.) = 2.04 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 14.00 TO NODE 15.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »> (STREET TABLE SECTION # 2 USED) « «< UPSTREAM ELEVATION(FEET) = 1455.00 DOWNSTREAM ELEVATION(FEET) = 1438.00 STREET LENGTH(FEET) = 725.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 15.44 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .48 HALFSTREET FLOOD WIDTH(FEET) = 17.61 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.79 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.29 STREET FLOW TRAVEL TIME(MIN.) = 2.52 Tc(MIN.) = 17.72 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.222 SUBAREA LOSS RATE DATA(AMC II): ... DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS ( fir LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 2.50 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = 2.50 SUBAREA RUNOFF(CFS) = 5.93 EFFECTIVE AREA(ACRES) = 7.20 AREA- AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 7.20 PEAK FLOW RATE(CFS) = 17.09 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .49 HALFSTREET FLOOD WIDTH(FEET) = 18.34 FLOW VELOCITY(FEET /SEC.) = 4.91 DEPTH *VELOCITY(FT *FT /SEC.) = 2.42 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 7.20 TC(MIN.) = 17.72 EFFECTIVE AREA(ACRES) = 7.20 AREA- AVERAGED Fm(INCH /HR)= .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 PEAK FLOW RATE(CFS) = 17.09 END OF RATIONAL METHOD ANALYSIS C Offsite 100 Year Storm Event Subarea L 1 G G * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING, INC. 6101 CHERRY AVENUE FONTANA, CALIFORNIA 92336 (909) 899 - 5011 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Subarea L1 Q100 * * * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 165680S3.DAT TIME /DATE OF STUDY: 15:53 1/27/2004 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL * -- ,,..... ( USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 1$•00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .90 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.5500 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* *USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET - CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT- /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 2 30.0 15.0 .020/ .020/ - -- .50 1.50 .03125 .1250 .01500 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = .14 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* FLOW PROCESS FROM NODE 11.00 TO NODE 14.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » » >( STREET TABLE SECTION # 2 USED) « «< UPSTREAM ELEVATION(FEET) = 1458.00 DOWNSTREAM ELEVATION(FEET) = 1455.00 STREET LENGTH(FEET) = 390.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.56 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .30 HALFSTREET FLOOD WIDTH(FEET) = 8.60 AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.82 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) _ .54 STREET FLOW TRAVEL TIME(MIN.) = 3.57 Tc(MIN.) = 8.57 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.981 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A .25 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) _ .25 SUBAREA RUNOFF(CFS) = .99 EFFECTIVE AREA(ACRES) _ .26 AREA- AVERAGED Fm(INCH /HR) = .56 AREA - AVERAGED Fp(INCH /HR) _ .91 AREA- AVERAGED Ap = .62 TOTAL AREA(ACRES) = .26 PEAK FLOW RATE(CFS) = 1.03 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .27 HALFSTREET FLOOD WIDTH(FEET) = 7.09 FLOW VELOCITY(FEET /SEC.) = 1.66 DEPTH * VELOCITY(FT*FT /SEC.) = .45 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 14.00 TO NODE 15.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« « < » »>( STREET TABLE SECTION # 2 USED) « « < UPSTREAM ELEVATION(FEET) = 1455.00 DOWNSTREAM ELEVATION(FEET) = 1438.00 STREET LENGTH(FEET) = 725.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.35 ,^* STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: rn , STREET FLOW DEPTH(FEET) = .37 HALFSTREET FLOOD WIDTH(FEET) = 12.33 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.88 PRODUCT OF DEPTH & VELOCITY(FT*FT /SEC.) = 1.44 STREET FLOW TRAVEL TIME(MIN.) = 3.12 Tc(MIN.) = 11.69 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.136 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 3.30 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = 3.30 SUBAREA RUNOFF(CFS) = 10.55 EFFECTIVE AREA(ACRES) = 3.56 AREA- AVERAGED Fm(INCH /HR) = .58 AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 3.56 PEAK FLOW RATE(CFS) = 11.38 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .44 HALFSTREET FLOOD WIDTH(FEET) = 15.61 FLOW VELOCITY(FEET /SEC.) = 4.45 DEPTH *VELOCITY(FT *FT /SEC.) = 1.95 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 3.56 TC(MIN.) = 11.69 EFFECTIVE AREA(ACRES) = 3.56 AREA- AVERAGED Fm(INCH /HR)= .58 AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .60 PEAK FLOW RATE(CFS) = 11.38 END OF RATIONAL METHOD ANALYSIS C C Offsite 100 Year Storm Event Subarea L2 C C ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING, INC. 6101 CHERRY AVENUE FONTANA, CALIFORNIA 92336 (909) 899 - 5011 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Subarea L2 Q100 * * * * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 165680S4.DAT TIME /DATE OF STUDY: 10:59 4/ 8/2004 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL*-- USER SPECIFIED STORM EVENT(YEAR) = 100.00 C ol SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .90 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.5500 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* *USER - DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET- CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT - /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 2 30.0 15.0 .020/ .020/ - -- .50 1.50 .03125 .1250 .01500 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = .14 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** (:: FLOW PROCESS FROM NODE 1.50 TO NODE 2.00 IS CODE = 2.1 » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< (:: »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 330.00 ELEVATION DATA: UPSTREAM(FEET) = 1468.00 DOWNSTREAM(FEET) = 1464.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.130 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.507 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "3 -4 DWELLINGS /ACRE" A .20 .98 .60 32 10.13 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA RUNOFF(CFS) = .71 TOTAL AREA(ACRES) = .20 PEAK FLOW RATE(CFS) _ .71 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 5.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« « < » »> (STREET TABLE SECTION # 2 USED) « «< UPSTREAM ELEVATION(FEET) = 1464.00 DOWNSTREAM ELEVATION(FEET) = 1462.00 STREET LENGTH(FEET) = 390.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.05 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .28 HALFSTREET FLOOD WIDTH(FEET) = 7.87 AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.42 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) _ .40 STREET FLOW TRAVEL TIME(MIN.) = 4.58 Tc(MIN.) = 14.71 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.603 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A .25 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = .25 SUBAREA RUNOFF(CFS) = .68 EFFECTIVE AREA(ACRES) = .45 AREA- AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = .45 PEAK FLOW RATE(CFS) = 1.22 (:: END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .29 HALFSTREET FLOOD WIDTH(FEET) = 8.43 FLOW VELOCITY(FEET /SEC.) = 1.47 DEPTH *VELOCITY(FT *FT /SEC.) = .43 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 5.00 TO NODE 8.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« « < » » >( STREET TABLE SECTION # 2 USED) « «< UPSTREAM ELEVATION(FEET) = 1462.00 DOWNSTREAM ELEVATION(FEET) = 1460.00 STREET LENGTH(FEET) = 390.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.51 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .31 HALFSTREET FLOOD WIDTH(FEET) = 9.27 AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.54 PRODUCT OF DEPTH & VELOCITY(FT*FT /SEC.) = .48 STREET FLOW TRAVEL TIME(MIN.) = 4.22 Tc(MIN.) = 18.93 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.097 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A .25 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = .25 SUBAREA RUNOFF(CFS) = .57 EFFECTIVE AREA(ACRES) = .70 AREA- AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) _ .70 PEAK FLOW RATE(CFS) = 1.58 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .32 HALFSTREET FLOOD WIDTH(FEET) = 9.49 FLOW VELOCITY(FEET /SEC.) = 1.55 DEPTH *VELOCITY(FT *FT /SEC.) = .49 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 8.00 TO NODE 11.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »>( STREET TABLE SECTION # 2 USED) « « < UPSTREAM ELEVATION(FEET) = 1460.00 DOWNSTREAM ELEVATION(FEET) = 1458.00 STREET LENGTH(FEET) = 390.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.83 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .33 HALFSTREET FLOOD WIDTH(FEET) = 10.04 AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.62 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = .53 STREET FLOW TRAVEL TIME(MIN.) = 4.01 Tc(MIN.) = 22.94 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.760 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A .25 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = .25 SUBAREA RUNOFF(CFS) = .49 EFFECTIVE AREA(ACRES) _ .95 AREA- AVERAGED Fm(INCH/HR) _ .59 AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = .95 PEAK FLOW RATE(CFS) = 1.86 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .33 HALFSTREET FLOOD WIDTH(FEET) = 10.16 FLOW VELOCITY(FEET /SEC.) = 1.62 DEPTH *VELOCITY(FT *FT /SEC.) = .53 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 2.1 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 380.00 ELEVATION DATA: UPSTREAM(FEET) = 1458.00 DOWNSTREAM(FEET) = 1449.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.374 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.721 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 3.40 .98 .60 32 9.37 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA RUNOFF(CFS) = 12.66 TOTAL AREA(ACRES) = 3.40 PEAK FLOW RATE(CFS) = 12.66 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 6.2 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< %re » »> (STREET TABLE SECTION # 2 USED) « «< UPSTREAM ELEVATION(FEET) = 1449.00 DOWNSTREAM ELEVATION(FEET) = 1441.00 STREET LENGTH(FEET) = 340.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 18.51 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) = .50 HALFSTREET FLOOD WIDTH(FEET) = 18.90 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.02 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.53 STREET FLOW TRAVEL TIME(MIN.) = 1.13 Tc(MIN.) = 10.50 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.410 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 3.40 .98 .60 32 Cre SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = 3.40 SUBAREA RUNOFF(CFS) = 11.70 EFFECTIVE AREA(ACRES) = 6.80 AREA - AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 6.80 PEAK FLOW RATE(CFS) = 23.41 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .54 HALFSTREET FLOOD WIDTH(FEET) = 20.68 FLOW VELOCITY(FEET /SEC.) = 5.33 DEPTH *VELOCITY(FT *FT /SEC.) = 2.88 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 6.80 TC(MIN.) = 10.50 EFFECTIVE AREA(ACRES) = 6.80 AREA- AVERAGED Fm(INCH /HR)= .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 PEAK FLOW RATE(CFS) = 23.41 END OF RATIONAL METHOD ANALYSIS C Offsite 100 Year Storm Event Subarea Walnut G ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING, INC. 6101 CHERRY AVENUE FONTANA, CALIFORNIA 92336 (909) 899 - 5011 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Walnut Avenue Offsite Q100 * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 165680S2.DAT TIME /DATE OF STUDY: 16:27 1/26/2004 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL*- - (:; USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.5000 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* *USER - DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET - CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT- /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 2 25.0 12.0 .020/ .020/ - -- .50 1.50 .03125 .1250 .01500 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = .13 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.50 TO NODE 3.00 IS CODE = 2.1 » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 540.00 ELEVATION DATA: UPSTREAM(FEET) = 1455.00 DOWNSTREAM(FEET) = 1450.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.605 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.503 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 1.00 .98 .10 32 9.61 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) = 3.96 TOTAL AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) = 3.96 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« « < TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 9.61 RAINFALL INTENSITY(INCH /HR) = 4.50 AREA- AVERAGED Fm(INCH /HR) = .10 (� AREA- AVERAGED Fp(INCH /HR) = .98 �,' AREA- AVERAGED Ap = .10 EFFECTIVE STREAM AREA(ACRES) = 1.00 TOTAL STREAM AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.96 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE .00 TO NODE 1.00 IS CODE = 2.1 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 180.00 ELEVATION DATA: UPSTREAM(FEET) = 1467.00 DOWNSTREAM(FEET) = 1464.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.458 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.241 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "3 -4 DWELLINGS /ACRE" A .40 .98 .60 32 7.46 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA RUNOFF(CFS) = 1.68 C TOTAL AREA(ACRES) = .40 PEAK FLOW RATE(CFS) = 1.68 FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 5.2 » » >COMPUTE NATURAL VALLEY CHANNEL FLOW« «< » »>TRAVELTIME THRU SUBAREA« «< ELEVATION DATA: UPSTREAM(FEET) = 1464.00 DOWNSTREAM(FEET) = 1454.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 310.00 CHANNEL SLOPE = .0323 CHANNEL FLOW THRU SUBAREA(CFS) = 1.68 FLOW VELOCITY(FEET /SEC) = 2.98 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.73 Tc(MIN.) = 9.19 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 8.1 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 9.19 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.623 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 2.10 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 L SUBAREA AREA(ACRES) = 2.10 SUBAREA RUNOFF(CFS) = 7.63 �+' EFFECTIVE AREA(ACRES) = 2.50 AREA- AVERAGED Fm(INCH /HR) = .58 AREA - AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 2.50 PEAK FLOW RATE(CFS) = 9.09 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 5.2 » »>COMPUTE NATURAL VALLEY CHANNEL FLOW« «< » »>TRAVELTIME THRU SUBAREA« «< ELEVATION DATA: UPSTREAM(FEET) = 1454.00 DOWNSTREAM(FEET) = 1450.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 280.00 CHANNEL SLOPE = .0143 CHANNEL FLOW THRU SUBAREA(CFS) = 9.09 FLOW VELOCITY(FEET /SEC) = 2.92 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.60 Tc(MIN.) = 10.79 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 8.1 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « < MAINLINE Tc(MIN) = 10.79 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.199 �.. SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A .90 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = .90 SUBAREA RUNOFF(CFS) = 2.93 EFFECTIVE AREA(ACRES) = 3.40 AREA- AVERAGED Fm(INCH /HR) = .58 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 3.40 PEAK FLOW RATE(CFS) = 11.06 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« « < » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « « < TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 10.79 RAINFALL INTENSITY(INCH /HR) = 4.20 AREA- AVERAGED Fm(INCH /HR) = .58 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 EFFECTIVE STREAM AREA(ACRES) = 3.40 TOTAL STREAM AREA(ACRES) = 3.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 11.06 ** CONFLUENCE DATA ** ,.. STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 3.96 9.61 4.503 .98( .10) .10 1.00 2.50 2 11.06 10.79 4.199 .98( .58) .60 3.40 .00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 14.6 9.61 4.503 .975( .464) .48 4.0 2.50 2 14.7 10.79 4.199 .975( .474) .49 4.4 .00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 14.75 Tc(MIN.) = 10.79 EFFECTIVE AREA(ACRES) = 4.40 AREA- AVERAGED Fm(INCH /HR) = .47 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .49 TOTAL AREA(ACRES) = 4.40 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3.00 TO NODE 14.00 IS CODE = 6.2 » »> COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »>( STREET TABLE SECTION # 2 USED) « «< UPSTREAM ELEVATION(FEET) = 1450.00 DOWNSTREAM ELEVATION(FEET) = 1447.00 STREET LENGTH(FEET) = 420.00 CURB HEIGHT(INCHES) = 6.0 rte- STREET HALFWIDTH(FEET) = 25.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 16.06 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) = .58 HALFSTREET FLOOD WIDTH(FEET) = 22.48 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.11 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.79 STREET FLOW TRAVEL TIME(MIN.) = 2.25 Tc(MIN.) = 13.05 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.747 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A .80 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) = .80 SUBAREA RUNOFF(CFS) = 2.63 �... EFFECTIVE AREA(ACRES) = 5.20 AREA- AVERAGED Fm(INCH /HR) = .42 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .43 TOTAL AREA(ACRES) = 5.20 PEAK FLOW RATE(CFS) = 15.59 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .57 HALFSTREET FLOOD WIDTH(FEET) = 22.29 FLOW VELOCITY(FEET /SEC.) = 3.06 DEPTH *VELOCITY(FT *FT /SEC.) = 1.75 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 14.00 TO NODE 14.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.05 RAINFALL INTENSITY(INCH /HR) = 3.75 AREA- AVERAGED Fm(INCH/HR) = .42 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .43 EFFECTIVE STREAM AREA(ACRES) = 5.20 TOTAL STREAM AREA(ACRES) = 5.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 15.59 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 2.1 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 250.00 ELEVATION DATA: UPSTREAM(FEET) = 1468.00 DOWNSTREAM(FEET) = 1465.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.083 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.656 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 1.10 .98 .60 32 9.08 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA RUNOFF(CFS) = 4.03 TOTAL AREA(ACRES) = 1.10 PEAK FLOW RATE(CFS) = 4.03 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 5.2 » »>COMPUTE NATURAL VALLEY CHANNEL FLOW« «< » »>TRAVELTIME THRU SUBAREA« «< ELEVATION DATA: UPSTREAM(FEET) = 1465.00 DOWNSTREAM(FEET) = 1458.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 310.00 CHANNEL SLOPE = .0226 CHANNEL FLOW THRU SUBAREA(CFS) = 4.03 FLOW VELOCITY(FEET /SEC) = 3.02 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.71 Tc(MIN.) = 10.80 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 8.1 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « < MAINLINE Tc(MIN) = 10.80 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.198 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 2.20 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = 2.20 SUBAREA RUNOFF(CFS) = 7.15 EFFECTIVE AREA(ACRES) = 3.30 AREA- AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 3.30 PEAK FLOW RATE(CFS) = 10.73 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 5.2 » »>COMPUTE NATURAL VALLEY CHANNEL FLOW« «< » »>TRAVELTIME THRU SUBAREA« « < ELEVATION DATA: UPSTREAM(FEET) = 1458.00 DOWNSTREAM(FEET) = 1451.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 295.00 CHANNEL SLOPE = .0237 CHANNEL FLOW THRU SUBAREA(CFS) = 10.73 FLOW VELOCITY(FEET /SEC) = 3.92 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.25 Tc(MIN.) = 12.05 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « < MAINLINE Tc(MIN) = 12.05 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.930 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 2.10 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = 2.10 SUBAREA RUNOFF(CFS) = 6.32 EFFECTIVE AREA(ACRES) = 5.40 AREA- AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 5.40 PEAK FLOW RATE(CFS) = 16.26 C e ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 5.2 » »>COMPUTE NATURAL VALLEY CHANNEL FLOW« « < » » >TRAVELTIME THRU SUBAREA« «< ELEVATION DATA: UPSTREAM(FEET) = 1451.00 DOWNSTREAM(FEET) = 1447.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 225.00 CHANNEL SLOPE = .0178 CHANNEL FLOW THRU SUBAREA(CFS) = 16.26 FLOW VELOCITY(FEET /SEC) = 3.78 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = .99 Tc(MIN.) = 13.04 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « < MAINLINE Tc(MIN) = 13.04 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.748 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A .80 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 Lool SUBAREA AREA(ACRES) = .80 SUBAREA RUNOFF(CFS) = 2.28 EFFECTIVE AREA(ACRES) = 6.20 AREA- AVERAGED Fm(INCH/HR) _ .58 AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 6.20 PEAK FLOW RATE(CFS) = 17.65 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 14.00 TO NODE 14.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« « < » »>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.04 RAINFALL INTENSITY(INCH /HR) = 3.75 AREA- AVERAGED Fm(INCH /HR) = .58 AREA - AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .60 EFFECTIVE STREAM AREA(ACRES) = 6.20 TOTAL STREAM AREA(ACRES) = 6.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 17.65 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 15.48 11.86 3.967 .98( .40) .41 4.83 2.50 1 15.59 13.05 3.747 .98( .42) .43 5.20 .00 2 17.65 13.04 3.748 .97( .58) .60 6.20 10.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 32.6 11.86 3.967 .975( .501) .51 10.5 2.50 2 33.2 13.05 3.747 .975( .508) .52 11.4 .00 3 33.2 13.04 3.748 .975( .508) .52 11.4 10.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 33.24 Tc(MIN.) = 13.04 EFFECTIVE AREA(ACRES) = 11.40 AREA- AVERAGED Fm(INCH /HR) = .51 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .52 TOTAL AREA(ACRES) = 11.40 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 14.00 TO NODE 24.00 IS CODE = 6.2 » »> COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »>( STREET TABLE SECTION # 2 USED) « « < UPSTREAM ELEVATION(FEET) = 1447.00 DOWNSTREAM ELEVATION(FEET) = 1444.00 STREET LENGTH(FEET) = 310.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 25.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 34.03 ** *STREET FLOW SPLITS OVER STREET - CROWN * ** FULL DEPTH(FEET) = .63 FLOOD WIDTH(FEET) = 25.00 FULL HALF - STREET VELOCITY(FEET /SEC.) = 3.86 SPLIT DEPTH(FEET) = .47 SPLIT FLOOD WIDTH(FEET) = 17.24 SPLIT FLOW(CFS) = 9.45 SPLIT VELOCITY(FEET /SEC.) = 3.06 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) = .63 HALFSTREET FLOOD WIDTH(FEET) = 25.00 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.86 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.42 STREET FLOW TRAVEL TIME(MIN.) = 1.34 Tc(MIN.) = 14.38 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.534 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A .60 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 jOilerri SUBAREA AREA(ACRES) = .60 SUBAREA RUNOFF(CFS) = 1.59 EFFECTIVE AREA(ACRES) = 12.00 AREA- AVERAGED Fm(INCH /HR) _ .51 AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .52 TOTAL AREA(ACRES) = 12.00 PEAK FLOW RATE(CFS) = 33.24 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .63 HALFSTREET FLOOD WIDTH(FEET) = 25.00 FLOW VELOCITY(FEET /SEC.) = 3.86 DEPTH * VELOCITY(FT*FT /SEC.) = 2.42 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 24.00 TO NODE 24.00 IS CODE = 1 » > »DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.38 RAINFALL INTENSITY(INCH /HR) = 3.53 AREA- AVERAGED Fm(INCH /HR) = .51 AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .52 EFFECTIVE STREAM AREA(ACRES) = 12.00 TOTAL STREAM AREA(ACRES) = 12.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 33.24 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 20.00 TO NODE 21.00 IS CODE = 2.1 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 325.00 ELEVATION DATA: UPSTREAM(FEET) = 1467.00 DOWNSTREAM(FEET) = 1460.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)) ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.974 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.690 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 1.20 .98 .60 32 8.97 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA RUNOFF(CFS) = 4.43 TOTAL AREA(ACRES) = 1.20 PEAK FLOW RATE(CFS) = 4.43 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 21.00 TO NODE 22.00 IS CODE = 5.2 » » >COMPUTE NATURAL VALLEY CHANNEL FLOW« « < » »>TRAVELTIME THRU SUBAREA« «< Lee ELEVATION DATA: UPSTREAM(FEET) = 1460.00 DOWNSTREAM(FEET) = 1453.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 295.00 CHANNEL SLOPE = .0237 CHANNEL FLOW THRU SUBAREA(CFS) = 4.43 FLOW VELOCITY(FEET /SEC) = 3.16 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.56 Tc(MIN.) = 10.53 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 21.00 TO NODE 22.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « < MAINLINE Tc(MIN) = 10.53 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.261 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 3.20 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = 3.20 SUBAREA RUNOFF(CFS) = 10.59 EFFECTIVE AREA(ACRES) = 4.40 AREA- AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 4.40 PEAK FLOW RATE(CFS) = 14.56 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 22.00 TO NODE 23.00 IS CODE = 5.2 �,✓ » »>COMPUTE NATURAL VALLEY CHANNEL FLOW « «< > »>TRAVELTIME THRU SUBAREA« «< ELEVATION DATA: UPSTREAM(FEET) = 1453.00 DOWNSTREAM(FEET) = 1446.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 230.00 CHANNEL SLOPE = .0304 CHANNEL FLOW THRU SUBAREA(CFS) = 14.56 FLOW VELOCITY(FEET /SEC) = 4.80 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = .80 Tc(MIN.) = 11.33 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 22.00 TO NODE 23.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 11.33 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.078 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 3.00 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = 3.00 SUBAREA RUNOFF(CFS) = 9.43 EFFECTIVE AREA(ACRES) = 7.40 AREA- AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 7.40 PEAK FLOW RATE(CFS) = 23.27 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 23.00 TO NODE 24.00 IS CODE = 5.2 » »>COMPUTE NATURAL VALLEY CHANNEL FLOW« «< » » >TRAVELTIME THRU SUBAREA« «< ELEVATION DATA: UPSTREAM(FEET) = 1446.00 DOWNSTREAM(FEET) = 1444.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 200.00 CHANNEL SLOPE = .0100 CHANNEL FLOW THRU SUBAREA(CFS) = 23.27 FLOW VELOCITY(FEET /SEC) = 3.12 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.07 Tc(MIN.) = 12.40 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 23.00 TO NODE 24.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « < MAINLINE Tc(MIN) = 12.40 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.864 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 1.00 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 2.95 EFFECTIVE AREA(ACRES) = 8.40 AREA- AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 8.40 PEAK FLOW RATE(CFS) = 24.79 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 24.00 TO NODE 24.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« « < » »>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « « < TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 12.40 RAINFALL INTENSITY(INCH /HR) = 3.86 AREA- AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) _ .98 AREA- AVERAGED Ap = .60 EFFECTIVE STREAM AREA(ACRES) = 8.40 TOTAL STREAM AREA(ACRES) = 8.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 24.79 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 32.64 13.20 3.721 .97( .51) .52 11.07 2.50 1 33.23 14.38 3.534 .97( .51) .52 12.00 .00 ttior 1 33.24 14.38 3.534 .97( .51) .52 12.00 10.00 2 24.79 12.40 3.864 .98( .59) .60 8.40 20.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 56.3 13.20 3.721 .975( .540) .55 19.5 2.50 2 55.5 14.38 3.534 .975( .542) .56 20.4 10.00 3 55.5 14.38 3.534 .975( .542) .56 20.4 .00 4 56.8 12.40 3.864 .975( .541) .56 18.8 20.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 56.80 Tc(MIN.) = 12.40 EFFECTIVE AREA(ACRES) = 18.79 AREA- AVERAGED Fm(INCH /HR) = .54 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .56 TOTAL AREA(ACRES) = 20.40 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 20.40 TC(MIN.) = 12.40 EFFECTIVE AREA(ACRES) = 18.79 AREA- AVERAGED Fm(INCH /HR)= .54 AREA - AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .56 PEAK FLOW RATE(CFS) = 56.80 ** PEAK FLOW RATE TABLE ** Col STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 56.8 12.40 3.864 .975( .541) .56 18.8 20.00 2 56.3 13.20 3.721 .975( .540) .55 19.5 2.50 3 55.5 14.38 3.534 .975( .542) .56 20.4 10.00 4 55.5 14.38 3.534 .975( .542) .56 20.4 .00 END OF RATIONAL METHOD ANALYSIS C C Offsite 25 Year Storm Event Subarea Walnut ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING, INC. 6101 CHERRY AVENUE FONTANA, CALIFORNIA 92336 (909) 899 - 5011 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Walnut Avenue Offsite Q25 * * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 165680S2.DAT TIME /DATE OF STUDY: 14:35 5/18/2004 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL*- - USER SPECIFIED STORM EVENT(YEAR) = 25.00 L ime SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .90 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.2000 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* *USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET - CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN - / OUT /PARK HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 2 25.0 12.0 .020/ .020/ - -- .50 1.50 .03125 .1250 .01500 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = .13 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.50 TO NODE 3.00 IS CODE = 2.1 » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 540.00 ELEVATION DATA: UPSTREAM(FEET) = 1455.00 DOWNSTREAM(FEET) = 1450.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.605 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.602 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 1.00 .98 .10 32 9.61 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) = 3.15 TOTAL AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) = 3.15 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 9.61 RAINFALL INTENSITY(INCH /HR) = 3.60 AREA- AVERAGED Fm(INCH /HR) = .10 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .10 EFFECTIVE STREAM AREA(ACRES) = 1.00 TOTAL STREAM AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.15 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE .00 TO NODE 1.00 IS CODE = 2.1 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « « < »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 180.00 ELEVATION DATA: UPSTREAM(FEET) = 1467.00 DOWNSTREAM(FEET) = 1464.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.458 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 4.193 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "3 -4 DWELLINGS /ACRE" A .40 .98 .60 32 7.46 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA RUNOFF(CFS) = 1.30 TOTAL AREA(ACRES) = .40 PEAK FLOW RATE(CFS) = 1.30 FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 5.2 » »>COMPUTE NATURAL VALLEY CHANNEL FLOW« «< » » >TRAVELTIME THRU SUBAREA« « < ELEVATION DATA: UPSTREAM(FEET) = 1464.00 DOWNSTREAM(FEET) = 1454.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 310.00 CHANNEL SLOPE = .0323 CHANNEL FLOW THRU SUBAREA(CFS) = 1.30 FLOW VELOCITY(FEET /SEC) = 2.83 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.82 Tc(MIN.) = 9.28 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 8.1 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 9.28 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.677 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 2.10 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = 2.10 SUBAREA RUNOFF(CFS) = 5.84 EFFECTIVE AREA(ACRES) = 2.50 AREA - AVERAGED Fm(INCH /HR) = .58 AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 2.50 PEAK FLOW RATE(CFS) = 6.96 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 5.2 » »>COMPUTE NATURAL VALLEY CHANNEL FLOW« «< • »» >TRAVELTIME THRU SUBAREA « < ELEVATION DATA: UPSTREAM(FEET) = 1454.00 DOWNSTREAM(FEET) = 1450.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 280.00 CHANNEL SLOPE = .0143 CHANNEL FLOW THRU SUBAREA(CFS) = 6.96 FLOW VELOCITY(FEET /SEC) = 2.73 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.71 Tc(MIN.) = 10.99 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 10.99 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.322 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A .90 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = .90 SUBAREA RUNOFF(CFS) = 2.22 EFFECTIVE AREA(ACRES) = 3.40 AREA- AVERAGED Fm(INCH /HR) = .58 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 3.40 PEAK FLOW RATE(CFS) = 8.38 FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< » »>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 10.99 RAINFALL INTENSITY(INCH /HR) = 3.32 AREA - AVERAGED Fm(INCH /HR) = .58 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 EFFECTIVE STREAM AREA(ACRES) = 3.40 TOTAL STREAM AREA(ACRES) = 3.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.38 ** CONFLUENCE DATA ** .-. STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE L NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 3.15 9.61 3.602 .98( .10) .10 1.00 2.50 2 8.38 10.99 3.322 .98( .58) .60 3.40 .00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 11.2 9.61 3.602 .975( .462) .47 4.0 2.50 2 11.3 10.99 3.322 .975( .474) .49 4.4 .00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 11.28 Tc(MIN.) = 10.99 EFFECTIVE AREA(ACRES) = 4.40 AREA- AVERAGED Fm(INCH /HR) = .47 AREA- AVERAGED Fp(INCH /HR) _ .98 AREA- AVERAGED Ap = .49 TOTAL AREA(ACRES) = 4.40 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3.00 TO NODE 14.00 IS CODE = 6.2 » »> COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« « < » »>( STREET TABLE SECTION # 2 USED) « «< UPSTREAM ELEVATION(FEET) = 1450.00 DOWNSTREAM ELEVATION(FEET) = 1447.00 STREET LENGTH(FEET) = 420.00 CURB HEIGHT(INCHES) = 6.0 ,.. STREET HALFWIDTH(FEET) = 25.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 12.30 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) = .53 HALFSTREET FLOOD WIDTH(FEET) = 20.36 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.89 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.54 STREET FLOW TRAVEL TIME(MIN.) = 2.43 TC(MIN.) = 13.42 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.947 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A .80 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) = .80 SUBAREA RUNOFF(CFS) = 2.05 EFFECTIVE AREA(ACRES) = 5.20 AREA- AVERAGED Fm(INCH /HR) = .42 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .43 TOTAL AREA(ACRES) = 5.20 PEAK FLOW RATE(CFS) = 11.85 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .53 HALFSTREET FLOOD WIDTH(FEET) = 20.00 FLOW VELOCITY(FEET /SEC.) = 2.88 DEPTH *VELOCITY(FT *FT /SEC.) = 1.51 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 14.00 TO NODE 14.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.42 RAINFALL INTENSITY(INCH /HR) = 2.95 AREA- AVERAGED Fm(INCH /HR) = .42 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .43 EFFECTIVE STREAM AREA(ACRES) = 5.20 TOTAL STREAM AREA(ACRES) = 5.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 11.85 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** �.. FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 2.1 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< C ' »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 250.00 ELEVATION DATA: UPSTREAM(FEET) = 1468.00 DOWNSTREAM(FEET) = 1465.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)) ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.083 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.725 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 1.10 .98 .60 32 9.08 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA RUNOFF(CFS) = 3.11 TOTAL AREA(ACRES) = 1.10 PEAK FLOW RATE(CFS) = 3.11 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 5.2 » » >COMPUTE NATURAL VALLEY CHANNEL FLOW« «< » »>TRAVELTIME THRU SUBAREA« «< ELEVATION DATA: UPSTREAM(FEET) = 1465.00 DOWNSTREAM(FEET) = 1458.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 310.00 CHANNEL SLOPE = .0226 CHANNEL FLOW THRU SUBAREA(CFS) = 3.11 ,. FLOW VELOCITY(FEET /SEC) = 2.84 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.82 Tc(MIN.) = 10.90 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « < MAINLINE Tc(MIN) = 10.90 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.339 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 2.20 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = 2.20 SUBAREA RUNOFF(CFS) = 5.45 EFFECTIVE AREA(ACRES) = 3.30 AREA- AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 3.30 PEAK FLOW RATE(CFS) = 8.18 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 5.2 » »>COMPUTE NATURAL VALLEY CHANNEL FLOW« «< » »>TRAVELTIME THRU SUBAREA« «< ELEVATION DATA: UPSTREAM(FEET) = 1458.00 DOWNSTREAM(FEET) = 1451.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 295.00 CHANNEL SLOPE = .0237 CHANNEL FLOW THRU SUBAREA(CFS) = 8.18 FLOW VELOCITY(FEET /SEC) = 3.66 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.34 Tc(MIN.) = 12.24 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « < MAINLINE Tc(MIN) = 12.24 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.114 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 2.10 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = 2.10 SUBAREA RUNOFF(CFS) = 4.78 EFFECTIVE AREA(ACRES) = 5.40 AREA- AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 5.40 PEAK FLOW RATE(CFS) = 12.29 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 5.2 » » >COMPUTE NATURAL VALLEY CHANNEL FLOW« «< » » >TRAVELTIME THRU SUBAREA« «< ELEVATION DATA: UPSTREAM(FEET) = 1451.00 DOWNSTREAM(FEET) = 1447.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 225.00 CHANNEL SLOPE = .0178 CHANNEL FLOW THRU SUBAREA(CFS) = 12.29 FLOW VELOCITY(FEET /SEC) = 3.51 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.07 Tc(MIN.) = 13.31 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 8.1 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 13.31 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.962 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A .80 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = .80 SUBAREA RUNOFF(CFS) = 1.71 EFFECTIVE AREA(ACRES) = 6.20 AREA- AVERAGED Fm(INCH /HR) = .58 vx AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 6.20 PEAK FLOW RATE(CFS) = 13.26 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 14.00 TO NODE 14.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.31 RAINFALL INTENSITY(INCH /HR) = 2.96 AREA- AVERAGED Fm(INCH /HR) = .58 AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .60 EFFECTIVE STREAM AREA(ACRES) = 6.20 TOTAL STREAM AREA(ACRES) = 6.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 13.26 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 11.79 12.03 3.147 .97( .40) .41 4.77 2.50 1 11.85 13.42 2.947 .98( .42) .43 5.20 .00 2 13.26 13.31 2.962 .97( .58) .60 6.20 10.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 24.7 12.03 3.147 .975( .500) .51 10.4 2.50 2 25.0 13.42 2.947 .975( .508) .52 11.4 .00 3 25.1 13.31 2.962 .975( .508) .52 11.4 10.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 25.10 Tc(MIN.) = 13.31 EFFECTIVE AREA(ACRES) = 11.37 AREA- AVERAGED Fm(INCH /HR) = .51 AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .52 TOTAL AREA(ACRES) = 11.40 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 14.00 TO NODE 24.00 IS CODE = 6.2 » »> COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »> (STREET TABLE SECTION # 2 USED) ««< UPSTREAM ELEVATION(FEET) = 1447.00 DOWNSTREAM ELEVATION(FEET) = 1444.00 STREET LENGTH(FEET) = 310.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 25.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 (:: OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 25.70 ** *STREET FLOW SPLITS OVER STREET - CROWN * ** FULL DEPTH(FEET) = .63 FLOOD WIDTH(FEET) = 25.00 FULL HALF - STREET VELOCITY(FEET /SEC.) = 3.86 SPLIT DEPTH(FEET) = .27 SPLIT FLOOD WIDTH(FEET) = 6.96 SPLIT FLOW(CFS) = 1.12 SPLIT VELOCITY(FEET /SEC.) = 1.85 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) = .63 HALFSTREET FLOOD WIDTH(FEET) = 25.00 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.86 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.42 STREET FLOW TRAVEL TIME(MIN.) = 1.34 Tc(MIN.) = 14.65 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.796 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A .60 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 (:: SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = .60 SUBAREA RUNOFF(CFS) = 1.19 EFFECTIVE AREA(ACRES) = 11.97 AREA- AVERAGED Fm(INCH /HR) = .51 AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .52 TOTAL AREA(ACRES) = 12.00 PEAK FLOW RATE(CFS) = 25.10 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .63 HALFSTREET FLOOD WIDTH(FEET) = 25.00 FLOW VELOCITY(FEET /SEC.) = 3.86 DEPTH *VELOCITY(FT *FT /SEC.) = 2.42 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 24.00 TO NODE 24.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.65 RAINFALL INTENSITY(INCH /HR) = 2.80 AREA- AVERAGED Fm(INCH /HR) = .51 AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .52 EFFECTIVE STREAM AREA(ACRES) = 11.97 TOTAL STREAM AREA(ACRES) = 12.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 25.10 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 20.00 TO NODE 21.00 IS CODE = 2.1 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 325.00 ELEVATION DATA: UPSTREAM(FEET) = 1467.00 DOWNSTREAM(FEET) = 1460.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.974 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.752 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 1.20 .98 .60 32 8.97 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA RUNOFF(CFS) = 3.42 TOTAL AREA(ACRES) = 1.20 PEAK FLOW RATE(CFS) = 3.42 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 21.00 TO NODE 22.00 IS CODE = 5.2 » »>COMPUTE NATURAL VALLEY CHANNEL FLOW« « < » » >TRAVELTIME THRU SUBAREA« «< C re ELEVATION DATA: UPSTREAM(FEET) = 1460.00 DOWNSTREAM(FEET) = 1453.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 295.00 CHANNEL SLOPE = .0237 CHANNEL FLOW THRU SUBAREA(CFS) = 3.42 FLOW VELOCITY(FEET /SEC) = 2.98 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.65 Tc(MIN.) = 10.63 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 21.00 TO NODE 22.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 10.63 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.391 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 3.20 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = 3.20 SUBAREA RUNOFF(CFS) = 8.08 EFFECTIVE AREA(ACRES) = 4.40 AREA- AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 4.40 PEAK FLOW RATE(CFS) = 11.11 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 22.00 TO NODE 23.00 IS CODE = 5.2 » »>COMPUTE NATURAL VALLEY CHANNEL FLOW« «< » »>TRAVELTIME THRU SUBAREA« «< ELEVATION DATA: UPSTREAM(FEET) = 1453.00 DOWNSTREAM(FEET) = 1446.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 230.00 CHANNEL SLOPE = .0304 CHANNEL FLOW THRU SUBAREA(CFS) = 11.11 FLOW VELOCITY(FEET /SEC) = 4.48 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = .86 Tc(MIN.) = 11.48 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 22.00 TO NODE 23.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 11.48 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.237 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 3.00 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = 3.00 SUBAREA RUNOFF(CFS) = 7.16 EFFECTIVE AREA(ACRES) = 7.40 AREA- AVERAGED Fm(INCH /HR) = .59 C' AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 7.40 PEAK FLOW RATE(CFS) = 17.66 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 23.00 TO NODE 24.00 IS CODE = 5.2 » »>COMPUTE NATURAL VALLEY CHANNEL FLOW« «< » »>TRAVELTIME THRU SUBAREA« «< ELEVATION DATA: UPSTREAM(FEET) = 1446.00 DOWNSTREAM(FEET) = 1444.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 200.00 CHANNEL SLOPE = .0100 CHANNEL FLOW THRU SUBAREA(CFS) = 17.66 FLOW VELOCITY(FEET /SEC) = 2.90 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.15 Tc(MIN.) = 12.63 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 23.00 TO NODE 24.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 12.63 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.056 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 1.00 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 Ce SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 2.22 EFFECTIVE AREA(ACRES) = 8.40 AREA- AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 8.40 PEAK FLOW RATE(CFS) = 18.68 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 24.00 TO NODE 24.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« « < » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 12.63 RAINFALL INTENSITY(INCH /HR) = 3.06 AREA- AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 EFFECTIVE STREAM AREA(ACRES) = 8.40 TOTAL STREAM AREA(ACRES) = 8.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 18.68 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 24.71 13.37 2.954 .97( .51) .52 10.97 2.50 �.- 1 25.03 14.76 2.784 .97( .51) .52 12.00 .00 1 25.10 14.65 2.796 .97( .51) .52 11.97 10.00 2 18.68 12.63 3.056 .98( .59) .60 8.40 20.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 42.6 13.37 2.954 .975( .540) .55 19.4 2.50 2 41.8 14.65 2.796 .975( .542) .56 20.4 10.00 3 41.7 14.76 2.784 .975( .542) .56 20.4 .00 4 43.0 12.63 3.056 .975( .541) .55 18.8 20.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 43.01 Tc(MIN.) = 12.63 EFFECTIVE AREA(ACRES) = 18.77 AREA- AVERAGED Fm(INCH /HR) = .54 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .55 TOTAL AREA(ACRES) = 20.40 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 20.40 TC(MIN.) = 12.63 EFFECTIVE AREA(ACRES) = 18.77 AREA- AVERAGED Fm(INCH /HR)= .54 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .55 PEAK FLOW RATE(CFS) = 43.01 ** PEAK FLOW RATE TABLE ** C STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 43.0 12.63 3.056 .975( .541) .55 18.8 20.00 2 42.6 13.37 2.954 .975( .540) .55 19.4 2.50 3 41.8 14.65 2.796 .975( .542) .56 20.4 10.00 4 41.7 14.76 2.784 .975( .542) .56 20.4 .00 END OF RATIONAL METHOD ANALYSIS C C Onsite Street Capacity Calculations C C HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -95 Advanced Engineering Software (aes) Ver. 5.1 Release Date: 01/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 6101 CHERRY AVE FONTANA CA. TEL (909) 899 - 5011 FAX (909) 899 -5014 TIME /DATE OF STUDY: 9:54 4/ 8/2004 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Tract 16568 Catawba Avenue Street Capacity Calculation for * 25 Year Storm Event * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » » STREETFLOW MODEL INPUT INFORMATION« « CONSTANT STREET GRADE(FEET /FEET) = .035000 CONSTANT STREET FLOW(CFS) = 20.12 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = .015000 CONSTANT SYMMETRICAL STREET HALF - WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020000 OUTSIDE STREET CROSSFALL(DECIMAL) = .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) _ .50 CONSTANT SYMMETRICAL GUTTER - WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER - LIP(FEET) = .03125 CONSTANT SYMMETRICAL GUTTER - HIKE(FEET) = .12500 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .40 HALFSTREET FLOOD WIDTH(FEET) = 13.93 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.89 PRODUCT OF DEPTH &VELOCITY = 1.98 0.4 < 0.5 , Therefore water is flowing below top of curb "0— • reh C le **************************************************************************** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -95 Advanced Engineering Software (aes) Ver. 5.1 Release Date: 01/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 6101 CHERRY AVE FONTANA CA. TEL (909) 899 - 5011 FAX (909) 899 -5014 TIME /DATE OF STUDY: 10:15 4/ 8/2004 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Tract 16568 Catawba Avenue Street Capacity Calculation for * 100 Year Storm Event * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » » STREETFLOW MODEL INPUT INFORMATION« « CONSTANT STREET GRADE(FEET /FEET) = .035000 CONSTANT STREET FLOW(CFS) = 26.10 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = .015000 CONSTANT SYMMETRICAL STREET HALF - WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020000 OUTSIDE STREET CROSSFALL(DECIMAL) = .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = .50 CONSTANT SYMMETRICAL GUTTER - WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER - LIP(FEET) = .03125 CONSTANT SYMMETRICAL GUTTER - HIKE(FEET) = .12500 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .43 HALFSTREET FLOOD WIDTH(FEET) = 15.09 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.45 PRODUCT OF DEPTH &VELOCITY = 2.33 0.43 < 0.63 , Therefore water is flowing below right of way Offsite Street Capacity Calculation Athena Drive G L HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -95 Advanced Engineering Software (aes) Ver. 5.1 Release Date: 01/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 6101 CHERRY AVE FONTANA CA. TEL (909) 899 - 5011 FAX (909) 899 -5014 TIME /DATE OF STUDY: 13:37 4/ 8/2004 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Tract 16568 Athena Drive Street Capacity Calculation for * 100 Year Storm Event * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » » STREETFLOW MODEL INPUT INFORMATION« « CONSTANT STREET GRADE(FEET /FEET) = .030000 CONSTANT STREET FLOW(CFS) = 24.00 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 CONSTANT SYMMETRICAL STREET HALF - WIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020000 OUTSIDE STREET CROSSFALL(DECIMAL) = .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = .50 CONSTANT SYMMETRICAL GUTTER - WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER - LIP(FEET) = .03125 CONSTANT SYMMETRICAL GUTTER - HIKE(FEET) = .12500 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .43 HALFSTREET FLOOD WIDTH(FEET) = 15.16 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.96 PRODUCT OF DEPTH &VELOCITY = 2.13 0.43 < 0.6 , Therefore water is flowing below right of way. Also if water is flowing below top of curve during 100 year storm, then it will also be flowing below top of curb during 25 year storm. Head Calculations C CMP Riser (A) Elevation Calculation (36 inch Diameter) Equations and Constants were Derived From Brater, E.F. and King, H.W. 1976. Handbook Of Hydraulics, 65th Edition. McGraw Hill, New York. H = (Q/CL) "(2/3) H = Distance Between Maximum Water Surface and Top of CMP Riser (ft) C = Constant Q = Q100 (cfs) L = Represents The Length Of The Opening And Can Be Calculated Using The Equation 2(Pi)R For A 36 inch Pipe 2(Pi)(18) =113.1 inches = 9.4 ft For A 36 inch Pipe with 18 post = 77 inches = 6.4 ft C = 3.087 Q = 17.1 cfs L =6.4ft H = (17.1/(3.087)(6.4)) "2 /3 H = 0.9 ft C C CMP Riser (B) Elevation Calculation (36 inch Diameter) Equations and Constants were Derived From Brater, E.F. and King, H.W. 1976. Handbook Of Hydraulics, 65th Edition. McGraw Hill, New York. H = (Q/CL) "(2/3) H = Distance Between Maximum Water Surface and Top of CMP Riser (ft) C = Constant Q = Q100 (cfs) L = Represents The Length Of The Opening And Can Be Calculated Using The Equation 2(Pi)R For A 36 inch Pipe 2(Pi)(18) =113.1 inches = 9.4 ft For A 36 inch Pipe with 18 post = 77 inches = 6.4 ft C = 3.087 Q = 11.4 cfs L =6.4ft H = (11.41(3.087)(6.4))"2 /3 C H =0.7ft C V WSPG Laterals A & B Ce G CI T1 Tract 16568 0 T2 Almeria Lateral A T3 100 Year Storm Event SO 1001.7701432.310 1 1434.100 R 1013.6501432.730 1 .013 .000 .000 0 WE 1013.6501432.730 2 .500 SH 1013.6501432.730 2 1432.730 CD 1 4 1 .000 2.000 .000 .000 .000 .00 CD 2 2 0 .000 10.670 3.000 .000 .000 .00 Q 17.100 .0 C C k (7 (7 17 FILE: 16568gr1.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 1 Program Package Serial Number: 1382 WATER SURFACE PROFILE LISTING Date: 5 -18 -2004 Time:12:20: 9 Tract 16568 Almeria Lateral A 100 Year Storm Event *********************************************************** * *** **** * ** **** *********** ***** *** *,r, *** *** ** ** * * * * * * **** * *** * * * ***** Invert Depth Water Q Vel Vel Energy Super CriticallFlow Top Height/ Base Wt No Wth Station Elev (FT) Elev (CFS) (FPS) Head Grd.E1. Elev Depth 1 Width Dia. -FT or I.D. ZL Prs /Pip L /Elem Ch Slope SF Ave HF SE Dpth Froude N1Norm Dp "N" X -Fall ZR Type Ch * * * * * * * ** * * * * * * * ** * * * * * * ** * * * * * * * ** * * * * * * * ** * * * * * * *1* * * * * ** * * * * * * * ** * * * * *** * * * * * * * *1* * * * ** ** * * * * * ** * * * * * ** * * * ** * * * * * ** I 1001.770 1432.310 1.129 1433.438 17.10 9.36 1.36 1434.80 .00 1.49 1.98 2.000 .000 .00 1 .0 2.538 .0353 .0147 .04 1.13 1.72 .88 .013 .00 .00 PIPE 1004.308 1432.400 1.157 1433.557 17.10 9.07 1.28 1434.83 .00 1.49 1.98 2.000 .000 .00 1 .0 3.139 .0353 .0133 .04 1.16 1.64 .88 .013 .00 .00 PIPE 1007.446 1432.511 1.204 1433.715 17.10 8.65 1.16 1434.88 .00 1.49 1.96 2.000 .000 .00 1 .0 2.360 .0353 .0118 .03 1.20 1.52 .88 .013 .00 .00 PIPE 1009.806 1432.594 1.254 1433.848 17.10 8.25 1.06 1434.90 .00 1.49 1.93 2.000 .000 .00 1 .0 1.767 .0353 .0105 .02 1.25 1.40 .88 .013 .00 .00 PIPE 1011.573 1432.656 1.306 1433.963 17.10 7.86 .96 1434.92 .00 1.49 1.90 2.000 .000 .00 1 .0 1.161 .0353 .0093 .01 1.31 1.30 .88 .013 .00 .00 PIPE I 1012.734 1432.698 1.363 1434.061 17.10 7.50 .87 1434.93 .00 1.49 1.86 2.000 .000 .00 1 .0 .714 .0353 .0083 .01 1.36 1.19 .88 .013 .00 .00 PIPE 1013.448 1432.723 1.423 1434.146 17.10 7.15 .79 1434.94 .00 1.49 1.81 2.000 .000 .00 1 .0 .202 .0353 .0074 .00 1.42 1.10 .88 .013 .00 .00 PIPE 1013.650 1432.730 1.491 1434.221 17.10 6.81 .72 1434.94 .00 1.49 1.74 2.000 .000 .00 1 .0 WALL ENTRANCE 1013.650 1432.730 2.526 1435.255 17.10 2.26 .08 1435.33 .00 1.00 I 3.00 10.670 3.000 .00 0 .0 -I- -- -- -- -- -I -- -- -- -I- -- -- -- - Ti C Tract 16568 0 T2 Almeria Lateral B T3 100 Year Storm Event SO 1001.7701431.830 1 1433.600 R 1029.2601432.790 1 .013 .000 .000 0 WE 1029.2601432.790 2 .500 SH 1029.2601432.790 2 1432.790 CD 1 4 1 .000 2.000 .000 .000 .000 .00 CD 2 2 0 .000 10.110 3.000 .000 .000 .00 Q 11.400 .0 cle C n fl 0 FILE: 16568gr2.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 1 Program Package Serial Number: 1382 WATER SURFACE PROFILE LISTING Date: 5 -18 -2004 Time :12:39:42 Tract 16568 Almeria Lateral B 100 Year Storm Event Invert Depth Water Q Vel Vel Energy Super CriticallFlow Top Height/ Base Wt No Wth Station Elev (FT) Elev (CFS) (FPS) Head Grd.El. Elev Depth I Width Dia. -FT or I.D. ZL Prs /Pip L /Elem Ch Slope SF Ave HF SE Dpth Froude NINorm Dp "N" X -Fall ZR Type Ch * * * * * * * ** * * * * * * * ** * * * * * * ** * * * * * * * ** * * * * * * * ** * * * * * * *I * * * * * ** * * * * * * * ** * * * * * ** * * * * * * * *I * * * * * * ** * * * * * ** * * * * * ** * * * ** * * * * * ** I 1001.770 1431.830 .804 1432.634 11.40 9.65 1.45 1434.08 .00 1.21 1.96 2.000 .000 .00 1 .0 6.699 .0349 .0207 .14 .80 2.19 .71 .013 .00 .00 PIPE I 1008.469 1432.064 .831 1432.895 11.40 9.23 1.32 1434.22 .00 1.21 1.97 2.000 .000 .00 1 .0 5.421 .0349 .0183 .10 .83 2.06 .71 .013 .00 .00 PIPE 1013.890 1432.253 .861 1433.114 11.40 8.80 1.20 1434.32 .00 1.21 1.98 2.000 .000 .00 1 .0 4.098 .0349 .0160 .07 .86 1.92 .71 .013 .00 .00 PIPE 1017.987 1432.396 .893 1433.289 11.40 8.39 1.09 1434.38 .00 1.21 1.99 2.000 .000 .00 1 .0 3.190 .0349 .0141 .04 .89 1.79 .71 .013 .00 .00 PIPE I 1021.178 1432.508 .926 1433.434 11.40 8.00 .99 1434.43 .00 1.21 1.99 2.000 .000 .00 1 .0 2.459 .0349 .0124 .03 .93 1.67 .71 .013 .00 .00 PIPE I 1023.637 1432.594 .961 1433.555 11.40 7.63 .90 1434.46 .00 1.21 2.00 2.000 .000 .00 1 .0 1.882 .0349 .0109 .02 .96 1.56 .71 .013 .00 .00 PIPE I 1025.518 1432.659 .998 1433.657 11.40 7.27 .82 1434.48 .00 1.21 2.00 2.000 .000 .00 1 .0 1.450 .0349 .0096 .01 1.00 1.45 .71 .013 .00 .00 PIPE I 1026.969 1432.710 1.036 1433.746 11.40 6.94 .75 1434.49 .00 1.21 2.00 2.000 .000 .00 1 .0 1.055 .0349 .0085 .01 1.04 1.35 .71 .013 .00 .00 PIPE I 1028.024 1432.747 1.076 1433.823 11.40 6.61 .68 1434.50 .00 1.21 1.99 2.000 .000 .00 1 .0 .719 .0349 .0075 .01 1.08 1.25 .71 .013 .00 .00 PIPE 1 1 ' o 0 C FILE: 16568gr2.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 2 Program Package Serial Number: 1382 WATER SURFACE PROFILE LISTING Date: 5 -18 -2004 Time:12:39:42 Tract 16568 Almeria Lateral 100 Year Storm Event * *t*** *** * *,t, ***************************************, t, t, r, r******, t, t, t, t *** ** *** ** *** * * ***** ** ** **** * *, *** * * * * ** *,t,t, *** * ** * **** * ******* Invert Depth Water Q Vel Vel Energy Super CriticaliFlow Top Height/ Base Wt No Wth Station Elev (FT) Elev (CFS) (FPS) Head Grd.El. Elev Depth I Width Dia. -FT or I.D. ZL Prs /Pip L /Elem Ch Slope SF Ave HF SE Dpth Froude NINorm Dp "N" X -Fall ZR Type Ch * * * * * * * ** * * * * * * * ** * * * * * * ** * * * * * * * ** * * * * * * * ** * * * * * * *I* * * * * ** * * * * * * * ** * * * * * ** * * * * * * * *I* * * * * * ** * * * * * ** * * * * * ** * * * ** * * * * * ** 1028.743 1432.772 1.118 1433.890 11.40 6.31 .62 1434.51 .00 1.21 1.99 2.000 .000 .00 1 .0 .393 .0349 .0066 .00 1.12 1.16 .71 .013 .00 .00 PIPE 1029.136 1432.786 1.163 1433.949 11.40 6.01 .56 1434.51 .00 1.21 1.97 2.000 .000 .00 1 .0 .124 .0349 .0058 .00 1.16 1.08 .71 .013 .00 .00 PIPE 1029.260 1432.790 1.212 1434.002 11.40 5.73 .51 1434.51 .00 1.21 1.95 2.000 .000 .00 1 .0 -I- -- -- -- -I- -- -- -- - WALL ENTRANCE 1029.260 1432.790 1.850 1434.640 11.40 2.05 .07 1434.71 .00 .77 3.00 10.110 3.000 .00 0 .0