Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Tract 16258-1 & 16258
T 0253 Sierra Avenue Fontana, CA 92335 (909) 356 -1815 * (909) 356 -1795 Table of Contents Introduction Purpose Methodology Findings Summary Hydrology Exhibits 100 Year Hydrology Calculations 40 25 Year Hydrology Calculations Street Capacity and Catch Basin Sizing Calculations W.S.P. G. Printouts Hydrology Map — rear pocket Appendix A: Tract 16158 Hydrology & Hydraulics Report Dated May 29, 2002, Approved. Sheets 12, and 16 of 19, Baseline Avenue Storm Drain, Phase 2, Stage 1, Approved 12/01- rear pockets Introduction Tract No. 16258 is a proposed 215 single - family lot subdivision that is located in the City of Fontana. Tract 16258 is situated north of Baseline Avenue, between Beech and Almeria Avenues. On the west side, the project is bounded by existing Tract No. 16085, on the north, by Tentative Tract 16158 and a proposed Elementary School, and on the east, the project is bounded by Tract No: 12314 and the Almeria Basin (see Vicinity Map Exhibit). Purpose The purpose of this hydrology and hydraulics report is to determine the 100 -year and 25 -year runoff for tracts 16258 -1, and 16258, and show that the proposed improvements, consisting of streets, catch basins, and storm drain are adequately sized to convey the runoff to the existing Baseline Box Storm Drain. Methodology The rational method, as outlined in the San Bernardino County Hydrology Manual, was used to determine 25 -year and 100 -year event storms. Hydrology and Hydraulics calculations were performed with computer programs commonly used for this purpose. Findings The 25-year storm water runoff is conveyed in the street below the to � Y Y P of curb elevations while the 100 -year storm water will be conveyed in the street and does not exceed right-of- way elevations. All offsite run -off north of Virginia Drive will be picked up by a C.M.P. riser and conveyed through the Line `B" storm drain. Line `B" will confluence with run -off from Tract 16158, located north of Tract 16258. The storm drain labeled Line "A" is the continuation of storm drain facilities constructed by Tract 16158, and will pick up in -tract run -off through a series of catch basins located near the intersection of "A" and `B" Streets. A 54" R.C.P. will then discharge a quantity of 150.5 CFS into two 8'x10' reinforced concrete storm drain facilities located in Baseline Avenue. Summary Currently, Tract 16258 proposed improvements will adequately convey storm water run -off to a safe point of discharge. 0, i O,rao �Ac °o R5 REDUCED DRAWING T3S .• -. SCALE I = 4 MILES t 4 SAN BERNARDINO COUNTY e w w HYDROLOGY MANUAL -€Um- • 1.9 ISOLINES PRECIPITATION (INCHES) .. 1, \ `►! �M w. ,;� �.�. � � ��. �� '. :�' ► ,rte ��� -�� 'r+! -wl• '1 hi, 6j =kill EWA s PER !�- T: Tv l K r i4_ 1 11 1 _:J ly D] f. nt A I d A '4 J_ 4 o o- SAN BERNARDINO COUNTY HYDROLOGY MANUAL �•. • I i C-1 C SAN BERNARD NO COUNTY og! C-4 affil I SAN BERNARDINO COUNTY HYDROLOGY MANUAL �•. • I i INDEX MAP VITCE,.4KOLP01 MAP <'' `_ i . t - . ;�. �/ — p') �! ���+. "�til �!�'' / v`t� � A ;.c _ F(V 'D A M .Ti - , M ly. 7f �;'�, ` y { .jl , ty�;' 'S�.h:'�'" .i•y� .i. l.. � ! v i. "'r ., - l" - � �4�'� '��. ! , 1. rv A � [ r� .,Y { 1 �• \i . ✓' y 1 / y.�''�: r��' O "" - - :- r•r�,�.:_ �. :,;�, :r . � �y . � -_• r - .. _ t �) {- 1 mil' -�' . , T .7 K\ V / L•"�. \,s— yq1 t`:��.el .y + � •7 t'o'�.a .f'�JVJ•. .•�; v - e� T I �d i 1. .p /. ��4'. �. _ �_ f� i.L ij '.' >nr. �.d4.. >� `1 - t.+';c' W •., '^' � - � .. .�.�` �•F. - -' � ;,. A ... ,�' • �a�' , � ; -✓ ) , L.1,� -^ �,,!�ya." � �. , `?1 Y �i+ ,2= C�_4': :':C`" - '� •I'� �• "ri � _ t� - l _ - - - i V� Zi Jf� ;SOURCE, GEOLQUYI VAP P. '.-. ' tSWft E rT. IT S Et L A �'A f 'A J, �� �• — „ OZ A L I a a F A7 A a 47r r r w � TI 1 A 7 SOL GROUP BOUNDARY 50 GROUP DESIGNATION SCALE 1 48,000 BOUNDARY OF INDICATED SOURCE SCALE REDUCED BY 11/2 - n - HYDROLOGIC SOILS GROUP MAP FOR SOUTHWEST-A AREA I m C-1 C SAN BERNARD NO COUNTY C-4 INDEX MAP VITCE,.4KOLP01 MAP <'' `_ i . t - . ;�. �/ — p') �! ���+. "�til �!�'' / v`t� � A ;.c _ F(V 'D A M .Ti - , M ly. 7f �;'�, ` y { .jl , ty�;' 'S�.h:'�'" .i•y� .i. l.. � ! v i. "'r ., - l" - � �4�'� '��. ! , 1. rv A � [ r� .,Y { 1 �• \i . ✓' y 1 / y.�''�: r��' O "" - - :- r•r�,�.:_ �. :,;�, :r . � �y . � -_• r - .. _ t �) {- 1 mil' -�' . , T .7 K\ V / L•"�. \,s— yq1 t`:��.el .y + � •7 t'o'�.a .f'�JVJ•. .•�; v - e� T I �d i 1. .p /. ��4'. �. _ �_ f� i.L ij '.' >nr. �.d4.. >� `1 - t.+';c' W •., '^' � - � .. .�.�` �•F. - -' � ;,. A ... ,�' • �a�' , � ; -✓ ) , L.1,� -^ �,,!�ya." � �. , `?1 Y �i+ ,2= C�_4': :':C`" - '� •I'� �• "ri � _ t� - l _ - - - i V� Zi Jf� ;SOURCE, GEOLQUYI VAP P. '.-. ' tSWft E rT. IT S Et L A �'A f 'A J, �� �• — „ OZ A L I a a F A7 A a 47r r r w � TI 1 A 7 SOL GROUP BOUNDARY 50 GROUP DESIGNATION SCALE 1 48,000 BOUNDARY OF INDICATED SOURCE SCALE REDUCED BY 11/2 - n - HYDROLOGIC SOILS GROUP MAP FOR SOUTHWEST-A AREA I m V I RSIDE I I AVER• S / ,f - e •. _ - { ` 1 �� ,.:r...... '.\+ r ..�• z ` °'�° ' "� R4W ., I R3� • R2W " °• RI I t — r •. 4 ,- SAN BERNARDINO COUNTY FLOOD CONTROL DIST T3s - I • ' �"IN�L, RSw REDUCED DRAWING VALLEY AREA "N �' $GALE I 4 MILfS ISOHYETALS , ' yam/ SAN BERNARDINO COUNTY Yp — 10 YEAR 1 HOUR K G MD ON USD, ND-AA. ATLAS 2, 197D .►, to A AFFI BY �., ''f�8W R7W R6 HYDROLOGY MANUAL "' FL >� ,! ISOLINES PRECIPITATION (INCHES) DRTE fULl FILE NQ p11RIQ NO �J 1902 i R •Ew wo -I y •t 12 L 1uLr<r T4N I. — I - - R W -- - R6W tee.., �R R51N 1' 1 � � 4 W �' \ 1 1„ 5 o y `F � ? _ 2W rr- \��H - - - i r RIW R2E 1 - t' • RIE .•.•, r- -- 1 I W[n rIr Le •,,,ry �• �i V 5 . 1 z O+ I Q 4. % i' •'� . ' , 'v VALLEY . T — -1 — _ ,�L . I• WREN / e s ,e 2 t .I.O /I /� + 1 -. - — I. _ i - • I — i L 9 s ' e'T• . s �. t %' "T" t ll. T3N — _ y d -- - -- - -- - 1.4 - I' — - - -- - . - -, ♦�; `- �� y L _ .. / I.6 • `• .o I I T 1 / -�- _ _ _I — I I I ` y ` - •_ -_ z — L 22 � I.' _ � l I. fJC�,. _ I _/ - -_ _ I i -- — � - -I 'u -- r — - tti,, ( �ry I 29 *Awl ) I I - _ J ..r i I I NT T' l - 1 9 • � , - - - \ I i Y i % � i � .ra,,, - - `-��.T. I �- � � d (F LO t © t 1 1.3 � r - • •� • - _ h - - � � - ' � p Cp N p - - L`. - - _ - - - - _�) — - - - - - _ 4 r _ I - _ l • L ARROWN[AD _ ! j ^ p�,y/",IT .. . � •c�^�, - LOMIN pj Z ..A SEAR --1 —_ _— \� , I 1.1 ✓T FE'6'jR, l e }y0 �e•, T� N -- -- art - - -- - • L0 - - , - � _J �•.{l - -- - - `,.....� -- - ,f - ON LAKE IAw _- - - - • -- .j }- �, 'f 1.4 VILLAK N ,�.• s. -- - -- 14 - - ' ) •' l aJ 1' -I • �' _ c•1` �- - •, / =/_ ,I.. �li 1 - s l _ Iv l v ! •i y. 1.L RI,�1 •MIN•! M , ARL OA`, �- L % I � � a N - - -- I oeu LI -- - .,i \- �.I fwr•ew - e..[ ur., - -- - CJ - I 1. - - - r - - �1 f � OM -- I I -' � .'� ,I , 1 �r - TIN I sm 'Y d '1 - ow e q Aao,N \• ; UPLAND I _ I 1. cLARO.oNr .COCA _ _ FONTAN R I ALTO N •AS� �, 4 - A ONT �p�. . • C TON E - \ - TjS ` scR[airOR[ LONAeINDA � � - rT '\ 9A� •' 4 , � � .I - '`.' °` . >�.c^ _ _ - ,. 1 • !RAIN _ c., t I _ IPA I TER E ✓ ' I� a K 1. I t i_ .� - �.• ..V'r e , •O^e ( �. Sa 6d .6 it 1 y NM GIEFI ouN ly M I 1 r RIE •'�•• R E 7 RIVIIRI101 cOUN,T Woo V I RSIDE I I AVER• S / ,f - e •. _ - { ` 1 �� ,.:r...... '.\+ r ..�• z ` °'�° ' "� R4W ., I R3� • R2W " °• RI I t — r •. 4 ,- SAN BERNARDINO COUNTY FLOOD CONTROL DIST T3s - I • ' �"IN�L, RSw REDUCED DRAWING VALLEY AREA "N �' $GALE I 4 MILfS ISOHYETALS , ' yam/ SAN BERNARDINO COUNTY Yp — 10 YEAR 1 HOUR K G MD ON USD, ND-AA. ATLAS 2, 197D .►, to A AFFI BY �., ''f�8W R7W R6 HYDROLOGY MANUAL "' FL >� ,! ISOLINES PRECIPITATION (INCHES) DRTE fULl FILE NQ p11RIQ NO �J 1902 i R •Ew wo -I y •t 12 -I ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE. FONTANA CA. 92336 TEL. (909) 356 -1815 FAX (909) 356 -1795 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Tracts 16258 -1 & 16258 * * 100 Year Storm Analysis * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 258- 100.DAT TIME /DATE OF STUDY: 8:40 3/ 3/2003 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL*- - USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.5100 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ' - - FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 2.1 ---------------------------------------------------------------------- » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 895.00 ELEVATION DATA: UPSTREAM(FEET) = 1436.00 DOWNSTREAM(FEET) = 1415.20 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)) ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.515 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.867 ' SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 9.98 .98 .50 32 12.51 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 i SUBAREA RUNOFF(CFS) = 30.36 TOTAL AREA(ACRES) = 9.98 PEAK FLOW RATE(CFS) = 30.36 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 4.1 »» >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««< » » >USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) « «< ELEVATION DATA: UPSTREAM(FEET) = 1415.20 DOWNSTREAM(FEET) = 1394.00 FLOW LENGTH(FEET) = 930.00 MANNING'S N = .013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 15.3 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 12.07 GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 30.36 PIPE TRAVEL TIME(MIN.) = 1.28 Tc(MIN.) = 13.80 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 10 » »>MAIN- STREAM MEMORY COPIED ONTO MEMORY BANK # 1 « «< ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 19.00 TO NODE 23.00 IS CODE = 2.1 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 747.00 ELEVATION DATA: UPSTREAM(FEET) = 1421.00 DOWNSTREAM(FEET) = 1401.10 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.328 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.105 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 9.55 .98 .50 32 11.33 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA. RUNOFF(CFS) = 31.10 TOTAL AREA(ACRES) = 9.55 PEAK FLOW RATE(CFS) = 31.10 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 23.00 TO NODE 23.00 IS CODE = 1 »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 11.33 RAINFALL INTENSITY(INCH /HR) = 4.11 AREA - AVERAGED Fm(INCH /HR) = .49 ti AREA - AVERAGED Fp(INCH /HR) _ .98 AREA - AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 9.55 TOTAL STREAM AREA(ACRES) = 9.55 PEAK FLOW RATE(CFS) AT CONFLUENCE = 31.10 FLOW PROCESS FROM NODE 20.00 TO NODE 21.00 IS CODE = 2.1 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< OR INITIAL SUBAREA FLOW- LENGTH(FEET) = 378.00 ELEVATION DATA: UPSTREAM(FEET) = 1409.60 DOWNSTREAM(FEET) = 1402.20 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.170 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.402 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A .52 .98 .10 32 7.17 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 "( SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) = 2.48 TOTAL AREA(ACRES) = .52 PEAK FLOW RATE(CFS) = 2.48 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 21.00 TO NODE 23.00 IS CODE = 6.1 ---------------------------------------------------------------------------- » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< » » >(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 1402.20 DOWNSTREAM ELEVATION(FEET) = 1401.10 STREET LENGTH(FEET) = 267.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) _ STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .32 HALFSTREET FLOOD WIDTH(FEET) = 9.77 AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.42 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) _ .46 STREET FLOW TRAVEL TIME(MIN.) = 3.13 Tc(MIN.) _ * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.348 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH /HR) COMMERCIAL A .30 .98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 3.06 10.30 Ap SCS (DECIMAL) CN .10 32 98 0 SUBAREA AREA(ACRES) = .30 SUBAREA RUNOFF(CFS) = 1.15 EFFECTIVE AREA(ACRES) _ .82 AREA - AVERAGED Fm(INCH /HR) _ .10 AREA - AVERAGED Fp(INCH /HR) _ .98 AREA - AVERAGED Ap = .10 TOTAL AREA(ACRES) = .82 PEAK FLOW RATE(CFS) = 3.14 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .32 HALFSTREET FLOOD WIDTH(FEET) = 9.92 FLOW VELOCITY(FEET /SEC.) = 1.42 DEPTH *VELOCITY(FT *FT /SEC.) _ .46 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 24.00 TO NODE 23.00 IS CODE = 8.1 ---------------------------------------------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< MAINLINE Tc(MIN) = 10.30 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.348 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A .42 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) = .42 SUBAREA RUNOFF(CFS) = 1.61 EFFECTIVE AREA(ACRES) = 1.24 AREA - AVERAGED Fm(INCH /HR) _ .10 AREA- AVERAGED Fp(INCH /HR) _ .98 AREA- AVERAGED Ap = .10 TOTAL AREA(ACRES) = 1.24 PEAK FLOW RATE(CFS) = 4.74 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** -- FLOW - PROCESS - FROM - NODE - - - -- 2300 - TO - NODE - - -- - 2300 IS CODE = 1 »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 10.30 RAINFALL INTENSITY(INCH /HR) = 4.35 AREA - AVERAGED Fm(INCH /HR) = .10 AREA - AVERAGED Fp(INCH /HR) = .98 AREA - AVERAGED Ap = .10 EFFECTIVE STREAM AREA(ACRES) = 1.24 TOTAL STREAM AREA(ACRES) = 1.24 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.74 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 31.10 11.33 4.105 .98( .49) .50 9.55 19.00 2 4.74 10.30 4.348 .98( .10) .10 1.24 20.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 35.6 11.33 4.105 .975( .443) .45 10.8 19.00 H C 1111 F t1 u H 2 34.9 10.30 4.348 .975( .439) .45 9.9 20.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 35.57 Tc(MIN.) = 11.33 EFFECTIVE AREA(ACRES) = 10.79 AREA - AVERAGED Fm(INCH /HR) _ .44 AREA - AVERAGED Fp(INCH /HR) _ .98 AREA - AVERAGED Ap = .45 TOTAL AREA(ACRES) = 10.79 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 11 ---------------------------------------------------------------------------- » »> CONFLUENCE MEMORY BANK # 1 WITH THE MAIN- STREAM MEMORY« «< ** MAIN STREAM CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 34.90 10.30 4.348 .98( .44) .45 9.9 20.00 2 35.57 11.33 4.105 .98( .44) .45 10.8 19.00 ** MEMORY BANK # 1 CONFLUENCE DATA ** 3.647 .975( .464) .48 STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 30.36 13.80 3.647 .98( .49) .50 10.0 10.00 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 62.6 10.30 4.348 .975( .460) .47 17.4 20.00 2 64.1 11.33 4.105 .975( .462) .47 19.0 19.00 3 61.5 13.80 3.647 .975( .464) .48 20.8 10.00 TOTAL AREA(ACRES) = 20.77 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 64.11 Tc(MIN.) = 11.328 EFFECTIVE AREA(ACRES) = 18.98 AREA - AVERAGED Fm(INCH /HR) _ .46 AREA - AVERAGED Fp(INCH /HR) _ .98 AREA - AVERAGED Ap = .47 TOTAL AREA(ACRES) = 20.77 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 4.1 ---------------------------------------------------------------------------- »» >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » » >USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) « «< ELEVATION DATA: UPSTREAM(FEET) = 1394.00 DOWNSTREAM(FEET) = 1376.50 FLOW LENGTH(FEET) = 910.00 MANNING'S N = .013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 22.8 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 13.55 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 64.11 PIPE TRAVEL TIME(MIN.) = 1.12 Tc(MIN.) = 12.45 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 1 FLOW PROCESS FROM NODE 16.00 TO NODE 16.00 IS CODE = 7 » » >USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER - SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN.) = 15.59 RAINFALL INTENSITY(INCH /HR) = 3.39 EFFECTIVE AREA(ACRES) = 18.99 X11 TOTAL AREA(ACRES) = 19.17 PEAK FLOW RATE(CFS) = 53.65 AREA - AVERAGED Fm(INCH /HR) _ .40 AREA - AVERAGED Fp(INCH /HR) _ .80 AREA - AVERAGED Ap = .50 NOTE: EFFECTIVE AREA IS USED AS THE TOTAL CONTRIBUTING AREA FOR ALL CONFLUENCE ANALYSES. - - FLOW PROCESS FROM NODE 16.00 TO NODE 13.00 IS CODE = 4.1 » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««< »» >USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 1382.42 DOWNSTREAM(FEET) = 1376.50 FLOW LENGTH(FEET) = 570.00 MANNING'S N = .013 0,; DEPTH OF FLOW IN 36.0 INCH PIPE IS 25.1 INCHES 16 PIPE -FLOW VELOCITY(FEET /SEC.) = 10.21 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 53.65 PIPE TRAVEL TIME(MIN.) = .93 Tc(MIN.) = 16.52 FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 1 ---------------------------------------------------------------------------- »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< - - » »> AND - COMPUTE - VARIOUS - CONFLUENCED STREAM - VALUES <<< < < --------------- - TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 16.52 RAINFALL INTENSITY(INCH /HR) = 3.27 AREA - AVERAGED Fm(INCH /HR) = .40 AREA - AVERAGED Fp(INCH /HR) = .80 AREA - AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 18.99 ---------------------------------------------------------------------------- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 12.45 RAINFALL INTENSITY(INCH /HR) = 3.88 AREA - AVERAGED Fm(INCH /HR) = .46 AREA - AVERAGED Fp(INCH /HR) = .98 AREA - AVERAGED Ap = .47 EFFECTIVE STREAM AREA(ACRES) = 18.98 TOTAL STREAM AREA(ACRES) = 20.77 PEAK FLOW RATE(CFS) AT CONFLUENCE = 64.11 FLOW PROCESS FROM NODE 16.00 TO NODE 16.00 IS CODE = 7 » » >USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER - SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN.) = 15.59 RAINFALL INTENSITY(INCH /HR) = 3.39 EFFECTIVE AREA(ACRES) = 18.99 X11 TOTAL AREA(ACRES) = 19.17 PEAK FLOW RATE(CFS) = 53.65 AREA - AVERAGED Fm(INCH /HR) _ .40 AREA - AVERAGED Fp(INCH /HR) _ .80 AREA - AVERAGED Ap = .50 NOTE: EFFECTIVE AREA IS USED AS THE TOTAL CONTRIBUTING AREA FOR ALL CONFLUENCE ANALYSES. - - FLOW PROCESS FROM NODE 16.00 TO NODE 13.00 IS CODE = 4.1 » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««< »» >USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 1382.42 DOWNSTREAM(FEET) = 1376.50 FLOW LENGTH(FEET) = 570.00 MANNING'S N = .013 0,; DEPTH OF FLOW IN 36.0 INCH PIPE IS 25.1 INCHES 16 PIPE -FLOW VELOCITY(FEET /SEC.) = 10.21 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 53.65 PIPE TRAVEL TIME(MIN.) = .93 Tc(MIN.) = 16.52 FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 1 ---------------------------------------------------------------------------- »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< - - » »> AND - COMPUTE - VARIOUS - CONFLUENCED STREAM - VALUES <<< < < --------------- - TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 16.52 RAINFALL INTENSITY(INCH /HR) = 3.27 AREA - AVERAGED Fm(INCH /HR) = .40 AREA - AVERAGED Fp(INCH /HR) = .80 AREA - AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 18.99 011 TOTAL STREAM AREA(ACRES) = 19.17 PEAK FLOW RATE(CFS) AT CONFLUENCE = 53.65 ** CONFLUENCE DATA ** STREAM Q Tc NUMBER (CFS) (MIN.) 1 62.57 11.42 1 64.11 12.45 1 61.48 14.93 2 53.65 16.52 RAINFALL INTENSITY AND CONFLUENCE FORMULA USE Intensity Fp(Fm) (INCH /HR) (INCH /HR) 4.086 .98( .46) 3.880 .98( .46) 3.479 .98( .46) 3.274 .80( .40) TIME OF CONCENTRATION D FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** Ap Ae (ACRES) .47 17.36 .47 18.98 .48 20.77 .50 18.99 RATIO SOURCE NODE 20.00 19.00 10.00 16.00 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 4.1 ---------------------------------------------------------------------------- »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » » >USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 1376.20/'DOWNSTREAM(FEET) = 1366.50 FLOW LENGTH(FEET) = 580.00 MANNING'S N = .013 ASSUME FULL - FLOWING PIPELINE PIPE -FLOW VELOCITY(FEET /SEC.) = 16.05 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 113.42 PIPE TRAVEL TIME(MIN.) _ .60 Tc(MIN.) = 15.53 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** - - FLOW PROCESS FROM NODE 14.00 TO NODE 14.00 IS CODE = 10 -------------------------------------------------------------------------- » » >MAIN- STREAM MEMORY COPIED ONTO MEMORY BANK # 2 « «< ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** - - FLOW PROCESS FROM NODE 50.00 TO NODE 51.00 IS CODE = 2.1 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL - SUBAREA« - - - - -- INITIAL SUBAREA FLOW- LENGTH(FEET) = 374.00 ELEVATION DATA: UPSTREAM(FEET) = 1397.00 DOWNSTREAM(FEET) = 1391.50 STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 110.1 11.42 4.086 .897( .434) .48 30.5 20.00 2 113.1 12.45 3.880 .897( .435) .49 33.3 19.00 3 113.4 14.93 3.479 .894( .435) .49 37.9 10.00 4 110.9 16.52 3.274 .889( .434) .49 39.8 16.00 ld COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 113 Tc(MIN.) = 14.93 EFFECTIVE AREA(ACRES) _ 37.93 AREA - AVERAGED Fm(INCH /HR) _ .44 AREA - AVERAGED Fp(INCH /HR) _ .89 AREA - AVERAGED Ap = .49 TOTAL AREA(ACRES) = 39.94 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 4.1 ---------------------------------------------------------------------------- »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » » >USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 1376.20/'DOWNSTREAM(FEET) = 1366.50 FLOW LENGTH(FEET) = 580.00 MANNING'S N = .013 ASSUME FULL - FLOWING PIPELINE PIPE -FLOW VELOCITY(FEET /SEC.) = 16.05 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 113.42 PIPE TRAVEL TIME(MIN.) _ .60 Tc(MIN.) = 15.53 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** - - FLOW PROCESS FROM NODE 14.00 TO NODE 14.00 IS CODE = 10 -------------------------------------------------------------------------- » » >MAIN- STREAM MEMORY COPIED ONTO MEMORY BANK # 2 « «< ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** - - FLOW PROCESS FROM NODE 50.00 TO NODE 51.00 IS CODE = 2.1 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL - SUBAREA« - - - - -- INITIAL SUBAREA FLOW- LENGTH(FEET) = 374.00 ELEVATION DATA: UPSTREAM(FEET) = 1397.00 DOWNSTREAM(FEET) = 1391.50 on ga; h Ci J J Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.674 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.513 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH /HR) RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.23 .98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 8.08 TOTAL AREA(ACRES) = 2.23 PEAK FLOW RATE(CFS) Ap SCS Tc (DECIMAL) CN (MIN.) .50 32 9.67 .98 = 8.08 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 51.00 TO NODE 52.00 IS CODE = 6.1 ---------------------------------------------------------------------------- » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< »»>(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 1391.50 DOWNSTREAM ELEVATION(FEET) = 1384.20 STREET LENGTH(FEET) = 412.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 12.09 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .38 HALFSTREET FLOOD WIDTH(FEET) = 12.81 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.43 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.31 STREET FLOW TRAVEL TIME(MIN.) = 2.00 Tc(MIN.) = 11.67 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.032 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.51 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.51 SUBAREA RUNOFF(CFS) = 8.01 EFFECTIVE AREA(ACRES) = 4.74 AREA - AVERAGED Fm(INCH /HR) _ .49 AREA - AVERAGED Fp(INCH /HR) _ .98 AREA - AVERAGED Ap = .50 TOTAL AREA(ACRES) = 4.74 PEAK FLOW RATE(CFS) = 15.12 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .41 HALFSTREET FLOOD WIDTH(FEET) = 14.04 FLOW VELOCITY(FEET /SEC.) = 3.62 DEPTH *VELOCITY(FT *FT /SEC.) = 1.47 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 52.00 TO NODE 54.00 IS CODE = 6.1 ---------------------------------------------------------------------- - - - - -- ri » >>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA ««< 40 » »>(STANDARD CURB SECTION USED) « «< UPSTREAM ELEVATION(FEET) = 1384.20 DOWNSTREAM ELEVATION(FEET) = 1377.50 STREET LENGTH(FEET) = 426.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 ilrl SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 18.97 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .44 HALFSTREET FLOOD WIDTH(FEET) = 15.70 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.67 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.62 STREET FLOW TRAVEL TIME(MIN.) = 1.93 Tc(MIN.) = 13.61 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.678 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.68 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.68 SUBAREA RUNOFF(CFS) = 7.70 EFFECTIVE AREA(ACRES) = 7.42 AREA - AVERAGED Fm(INCH /HR) _ .49 AREA - AVERAGED Fp(INCH /HR) = .98 AREA - AVERAGED Ap = .50 TOTAL AREA(ACRES) = 7.42 PEAK FLOW RATE(CFS) = 21.31 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .46 HALFSTREET FLOOD WIDTH(FEET) = 16.50 FLOW VELOCITY(FEET /SEC.) = 3.75 DEPTH *VELOCITY(FT *FT /SEC.) = 1.71 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 54.00 TO NODE 54.00 IS CODE = 1 ---------------------------------------------------------------------------- »» >DESIGNATE INDEPENDENT STREAM - FOR - CONFLUENCE «« <------ - - - - -- -- - - - - -- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.61 RAINFALL INTENSITY(INCH /HR) = 3.68 AREA - AVERAGED Fm(INCH /HR) = .49 AREA - AVERAGED Fp(INCH /HR) = .98 AREA - AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 7.42 TOTAL STREAM AREA(ACRES) = 7.42 PEAK FLOW RATE(CFS) AT CONFLUENCE = 21.31 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 57.00 TO NODE 56.00 IS CODE = 2.1 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 367.00 ELEVATION DATA: UPSTREAM(FEET) = 1397.20 DOWNSTREAM(FEET) = 1390.20 0 0 dr EI Ap SCS Tc (DECIMAL) CN (MIN.) Ml; .50 32 9.11 TOTAL AREA(ACRES) = 1.90 PEAK FLOW RATE(CFS) = 7.17 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.114 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.678 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH /HR) RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 1.90 .98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = . SUBAREA RUNOFF(CFS) = 7.17 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** - - FLOW PROCESS FROM NODE 56.00 TO NODE 55.00 IS CODE = 6.1 ---------------------------------------------------------------------- » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< » » >(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 1390.20 DOWNSTREAM ELEVATION(FEET) = 1380.80 STREET LENGTH(FEET) = 459.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 11.71 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .37 HALFSTREET FLOOD WIDTH(FEET) = 12.30 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.59 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.34 STREET FLOW TRAVEL TIME(MIN.) = 2.13 Tc(MIN.) = 11.24 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.124 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.77 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.77 SUBAREA RUNOFF(CFS) = 9.07 EFFECTIVE AREA(ACRES) = 4.67 AREA - AVERAGED Fm(INCH /HR) _ .49 AREA - AVERAGED Fp(INCH /HR) _ .98 AREA - AVERAGED Ap = .50 TOTAL AREA(ACRES) = 4.67 PEAK FLOW RATE(CFS) = 15.28 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .40 HALFSTREET FLOOD WIDTH(FEET) = 13.71 FLOW VELOCITY(FEET /SEC.) = 3.82 DEPTH *VELOCITY(FT *FT /SEC.) = 1.53 u ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** -- FLOW - PROCESS FROM NODE 55.00 TO NODE 54.00 IS CODE = 6.1 » »> COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA ««< -- » » >(STANDARD CURB SECTION USED) « «< -- UPSTREAM ELEVATION(FEET) = 1380.80 DOWNSTREAM ELEVATION(FEET) = 1377.50 STREET LENGTH(FEET) = 389.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 18.64 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .48 S HALFSTREET FLOOD WIDTH(FEET) = 17.65 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.88 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.38 0 STREET FLOW TRAVEL TIME(MIN.) = 2.25 Tc(MIN.) = 13.49 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.697 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.32 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.32 SUBAREA RUNOFF(CFS) = 6.70 EFFECTIVE AREA(ACRES) = 6.99 AREA - AVERAGED Fm(INCH /HR) _ .49 AREA - AVERAGED Fp(INCH /HR) _ .98 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 6.99 PEAK FLOW RATE(CFS) = 20.19 PR END OF SUBAREA STREET FLOW HYDRAULICS: i' DEPTH(FEET) _ .49 HALFSTREET FLOOD WIDTH(FEET) = 18.00 FLOW VELOCITY(FEET /SEC.) = 2.96 DEPTH *VELOCITY(FT *FT /SEC.) = 1.45 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 54.00 TO NODE 54.00 IS CODE = 1 ---------------------------------------------------------------------------- » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.49 RAINFALL INTENSITY(INCH /HR) = 3.70 AREA - AVERAGED Fm(INCH /HR) _ .49 AREA - AVERAGED Fp(INCH /HR) _ .98 AREA - AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 6.99 TOTAL STREAM AREA(ACRES) = 6.99 PEAK FLOW RATE(CFS) AT CONFLUENCE 20.19 ** CONFLUENCE DATA ** F 0 STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 21.31 13.61 3.678 .98( .49) .50 7.42 50.00 2 20.19 13.49 3.697 .98( .49) .50 6.99 57.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 41.4 13.61 3.678 .975( .488) .50 14.4 50.00 2 41.4 13.49 3.697 .975( .488) .50 14.3 57.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 41.44 Tc(MIN.) = 13.49 EFFECTIVE AREA(ACRES) = 14.35 AREA - AVERAGED Fm(INCH /HR) _ .49 AREA - AVERAGED Fp(INCH /HR) _ .98 AREA - AVERAGED Ap = .50 TOTAL AREA(ACRES) = 14.41 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 14.00 TO NODE 14.00 IS CODE = 11 ---------------------------------------------------------- » »> CONFLUENCE MEMORY BANK # 2 WITH THE MAIN- STREAM MEMORY««< ** MAIN STREAM CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS)" (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 41.44 13.49 3.697 .98( .49) .50 14.3 57.00 2 41.38 13.61 3.678 .98( .49) .50 14.4 50.00 ** MEMORY BANK # 2 CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 2 110.13 12.04 113.05 13.05 3.958 3.771 .90( .43) .90( .44) .48 .49 30.5 33.3 20.00 19.00 3 113.42 15.53 3.397 .89( .44) .49 37.9 10.00 4 110.94 17.14 3.203 .89( .43) .49 39.8 16.00 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 154.6 13.49 3.697 .920( .451) .49 48.5 57.00 2 154.5 13.61 3.678 .920( .451) .49 48.7 50.00 3 150.1 12.04 3.958 .921( .450) .49 43.3 20.00 4 154.1 13.05 3.771 .921( .451) .49 47.2 19.00 5 151.2 15.53 3.397 .917( .450) .49 52.3 10.00 6 146.2 17.14 3.203 .913( .448) .49 54.2 16.00 TOTAL AREA(ACRES) = 54.35 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 154.56 Tc(MIN.) = 13.493 EFFECTIVE AREA(ACRES) = 48.46 AREA - AVERAGED Fm(INCH /HR) _ .45 AREA - AVERAGED Fp(INCH /HR) _ .92 AREA - AVERAGED Ap = .49 TOTAL AREA(ACRES) = 54.35 LJ FLOW PROCESS FROM NODE 14.00 TO NODE 15.00 IS CODE = 4.1 ---------------------------------------------------------------------------- » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » » >USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 1369.00 DOWNSTREAM(FEET) = 1363.28 40 FLOW LENGTH(FEET) = 95.00 MANNING'S N = .013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 29.4 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 25.04 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 154.56 PIPE TRAVEL TIME(MIN.) _ .06 Tc(MIN.) = 13.56 ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 54.35 TC(MIN.) = 13.56 EFFECTIVE AREA(ACRES) = 48.46 AREA - AVERAGED Fm(INCH /HR)= .45 40 AREA - AVERAGED Fp(INCH /HR) _ .92 AREA - AVERAGED Ap = .49 W -1 PEAK FLOW RATE(CFS) = 154.56 to ** PEAK FLOW RATE TABLE ** H L E STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 150.1 12.10 3.946 .921( .450) .49 43.3 20.00 2 154.1 13.12 3.760 .921( .451) .49 47.2 19.00 3 154..6 13.56 3.686 .920( .451) .49 48.5 57.00 4 154.5 13.67 3.668 .920( .451) .49 48.7 50.00 5 151.2 15.59 3.389 .917( .450) .49 52.3 10.00 ----- 6 - - - -- - 146.2 17.20 3.196 .913( .448) .49 54.2 16.00 END OF RATIONAL METHOD ANALYSIS - ------- - - - - -- H L E I ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE. FONTANA CA. 92336 TEL. (909) 356 -1815 FAX (909) 356 -1795 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Tract 16258, Fontana * 100 Year Storm Analysis / "HELENA PLACE" i FILE NAME: C- 258.DAT rl► TIME /DATE OF STUDY: 15:11 12/11/2002 ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- AR USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL * -- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) _ .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.5100 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* L", FLOW PROCESS FROM NODE 37.00 TO NODE 36.00 IS CODE = 2.1 ---------------------------------------------------------------------------- » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 326.00 ELEVATION DATA: UPSTREAM(FEET) = 1388.00 DOWNSTREAM(FEET) = 1382.60 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.941 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.732 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 1.95 .98 .50 32 8.94 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 .SUBAREA RUNOFF(CFS) = 7.45 L", D ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 36.00 TO NODE 35.00 IS CODE = 6.1 ------------------------------------------------- » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<< >>>>>(STANDARD CURB SECTION USED) ««< _ UPSTREAM ELEVATION(FEET) = 1382.60 DOWNSTREAM ELEVATION(FEET) = 1377.10 STREET LENGTH(FEET) = 336.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 �: DIS FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 1w * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1'0.95 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .38 HALFSTREET FLOOD WIDTH(FEET) = 12.49 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.26 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.23 STREET FLOW TRAVEL TIME(MIN.) = 1.72 Tc(MIN.) = 10.66 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.259 :a SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN �w RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.06 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.06 SUBAREA RUNOFF(CFS) = 6.99 EFFECTIVE AREA(ACRES) = 4.01 AREA - AVERAGED Fm(INCH /HR) _ .49 AREA - AVERAGED Fp(INCH /HR) _ .98 AREA - AVERAGED Ap = .50 TOTAL AREA(ACRES) = 4.01 PEAK FLOW RATE(CFS) = 13.61 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .40 HALFSTREET FLOOD WIDTH(FEET) = 13.65 FLOW VELOCITY(FEET /SEC.) = 3.43 DEPTH *VELOCITY(FT *FT /SEC.) = 1.37 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE - - -- - 3500 TO NODE - - - -- 3400 - IS CODE = 6.1 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< » » >(STANDARD CURB SECTION USED) ««< -- UPSTREAM ELEVATION(FEET) = 1377.10 DOWNSTREAM ELEVATION(FEET) = 1372.70 STREET LENGTH(FEET) = 313.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 16.69 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .43 u HALFSTREET FLOOD WIDTH(FEET) = 15.26 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.41 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.47 STREET FLOW TRAVEL TIME(MIN.) = 1.53 Tc(MIN.) = 12.19 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.929 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL END OF RATIONAL METHOD ANALYSIS fl El "5 -7 DWELLINGS /ACRE" A 1.99 .98 .50 32 40 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.99 SUBAREA RUNOFF(CFS) = 6.16 EFFECTIVE AREA(ACRES) = 6.00 AREA - AVERAGED Fm(INCH /HR) _ .49 AREA - AVERAGED Fp(INCH /HR) _ .98 AREA - AVERAGED Ap = .50 TOTAL AREA(ACRES) = 6.00 PEAK FLOW RATE(CFS) = 18.59 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .45 HALFSTREET FLOOD WIDTH(FEET) = 15.97 ift FLOW VELOCITY(FEET /SEC.) = 3.48 DEPTH *VELOCITY(FT *FT /SEC.) = 1.55 IM* END OF STUDY SUMMARY: r,' TOTAL AREA(ACRES) = 6.00 TC(MIN.) = 12.19 EFFECTIVE AREA(ACRES) = 6.00 AREA - AVERAGED Fm(INCH /HR)= .49 AREA- AVERAGED Fp(INCH /HR) _ .98 AREA - AVERAGED Ap = .50 ae „ PEAK FLOW RATE(CFS) = 18.59 END OF RATIONAL METHOD ANALYSIS fl El 0 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE. FONTANA CA. 92336 TEL. (909) 356 -1815 FAX (909) 356 -1795 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Tracts 16258 -1 & 16258, Fontana * 100 Year Storm Analysis * Isabel Lane, Virginia Drive, Riley Drive ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: H- 258.DAT -_ TIME /DATE OF STUDY: 15:50 2/26/2003 --------------- - - --- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL * -- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) _ .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.5100 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* r r E 0 I ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 20.00 TO NODE 21.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»> RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< - - >>USE - TIME -OF- CONCENTRATION - NOMOGRAPH - FOR _ INITIAL - SUBAREA« -- ---- - - - - -- INITIAL SUBAREA FLOW- LENGTH(FEET) = 378.00 ELEVATION DATA: UPSTREAM(FEET) = 1409.60 DOWNSTREAM(FEET) = 1402.20 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)) ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.170 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.402 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A .52 .98 .10 32 7.17 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 u SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) = 2.48 TOTAL AREA(ACRES) _ .52 PEAK FLOW RATE(CFS) = 2.48 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 21.00 TO NODE 23.00 IS CODE = 6.1 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«« < »» >(STANDARD CURB SECTION USED) « «< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- UPSTREAM ELEVATION(FEET) = 1402.20 DOWNSTREAM ELEVATION(FEET) = 1401.10 STREET LENGTH(FEET) = 267.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.06 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .32 HALFSTREET FLOOD WIDTH(FEET) = 9.77 AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.42 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) _ .46 STREET FLOW TRAVEL TIME(MIN.) = 3.13 Tc(MIN.) = 10.30 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.348 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A .30 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 OR SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) _ .30 SUBAREA RUNOFF(CFS) = 1.15 EFFECTIVE AREA(ACRES) _ .82 AREA - AVERAGED Fm(INCH /HR) _ .10 AREA - AVERAGED Fp(INCH /HR) _ .98 AREA - AVERAGED Ap = .10 TOTAL AREA(ACRES) _ .82 PEAK FLOW RATE(CFS) = 3.14 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .32 HALFSTREET FLOOD WIDTH(FEET) = 9.92 FLOW VELOCITY(FEET /SEC.) = 1.42 DEPTH *VELOCITY(FT *FT /SEC.) _ .46 *** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 24.00 TO NODE 23.00 IS CODE = 8.1 ------------------------------------------------------------------------- -- »» >ADDITION OF SUBAREA TO MAINLINE - PEAK - FLOW< << << --------------- - - - -- MAINLINE Tc(MIN) = 10.30 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.348 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A .42 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) _ .42 SUBAREA RUNOFF(CFS) = 1.61 EFFECTIVE AREA(ACRES) = 1.24 AREA - AVERAGED Fm(INCH /HR) _ .10 AREA - AVERAGED Fp(INCH /HR) _ .98 AREA - AVERAGED Ap = .10 TOTAL AREA(ACRES) = 1.24 PEAK FLOW RATE(CFS) = 4.74 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 23.00 TO NODE 25.00 IS CODE = 6.1 ---------------------------------------------------------------------------- » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA ««< » » >(STANDARD CURB SECTION USED) ««< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- UPSTREAM ELEVATION(FEET) = 1401.10 DOWNSTREAM ELEVATION(FEET) = 1392.30 STREET LENGTH(FEET) = 432.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 40 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 8.55 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .34 HALFSTREET FLOOD WIDTH(FEET) = 10.79 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.34 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.14 STREET FLOW TRAVEL TIME(MIN.) = 2.16 Tc(MIN.) = 12.45 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.879 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.49 .98 .50 32 +114 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.49 SUBAREA RUNOFF(CFS) = 7.60 EFFECTIVE AREA(ACRES) = 3.73 AREA - AVERAGED Fm(INCH /HR) _ .36 AREA - AVERAGED Fp(INCH /HR) _ .98 AREA - AVERAGED Ap = .37 TOTAL AREA(ACRES) = 3.73 PEAK FLOW RATE(CFS) = 11.82 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .37 HALFSTREET FLOOD WIDTH(FEET) = 12.30 FLOW VELOCITY(FEET /SEC.) = 3.62 DEPTH *VELOCITY(FT *FT /SEC.) = 1.35 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 25.00 TO NODE 26.00 IS CODE = 6.1 ---------------------------------------------- » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< » » >(STANDARD CURB SECTION USED) « «< UPSTREAM ELEVATION(FEET) = 1392.30 DOWNSTREAM ELEVATION(FEET) = 1386.60 STREET LENGTH(FEET) = 361.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 H Fli SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 14.85 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .41 HALFSTREET FLOOD WIDTH(FEET) = 14.25 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.45 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.42 STREET FLOW TRAVEL TIME(MIN.) = 1.74 Tc(MIN.) = 14.20 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.586 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.17 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.17 SUBAREA RUNOFF(CFS) = 6.05 EFFECTIVE AREA(ACRES) = 5.90 AREA - AVERAGED Fm(INCH /HR) _ .41 AREA - AVERAGED Fp(INCH /HR) = .98 AREA - AVERAGED Ap = .42 TOTAL AREA(ACRES) = 5.90 PEAK FLOW RATE(CFS) = 16.89 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .43 HALFSTREET FLOOD WIDTH(FEET) = 14.98 IN FLOW VELOCITY(FEET /SEC.) = 3.58 DEPTH *VELOCITY(FT *FT /SEC.) = 1.52 �■ FLOW PROCESS FROM NODE 26.00 TO NODE 27.00 IS CODE = 6.1 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< » » >(STANDARD CURB SECTION USED) « «< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- 1M1 UPSTREAM ELEVATION(FEET) = 1386.60 DOWNSTREAM ELEVATION(FEET) = 1379.70 STREET LENGTH(FEET) = 435.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 20.36 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .45 HALFSTREET FLOOD WIDTH(FEET) = 16.16 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.73 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.68 STREET FLOW TRAVEL TIME(MIN.) = 1.95 Tc(MIN.) = 16.14 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.320 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.72 .98 .50 32 .SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 rI lh vo ;< , im oll H J J SUBAREA AREA(ACRES) = 2.72 SUBAREA RUNOFF(CFS) = 6.93 EFFECTIVE AREA(ACRES) = 8.62 AREA - AVERAGED Fm(INCH /HR) _ .43 AREA - AVERAGED Fp(INCH /HR) _ .98 AREA - AVERAGED AP = .44 TOTAL AREA(ACRES) = 8.62 PEAK FLOW RATE(CFS) = 22.41 w END OF SUBAREA STREET FLOW HYDRAULICS: 04 DEPTH(FEET) = .46 HALFSTREET FLOOD WIDTH(FEET) = 16.74 FLOW VELOCITY(FEET /SEC.) = 3.84 DEPTH *VELOCITY(FT *FT /SEC.) = 1.77 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 8.62 TC(MIN.) = 16.14 EFFECTIVE AREA(ACRES) = 8.62 AREA - AVERAGED Fm(INCH /HR)= .43 AREA - AVERAGED Fp(INCH /HR) _ .98 AREA - AVERAGED Ap = .44 PEAK FLOW RATE(CFS) = 22.41 ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- END OF RATIONAL METHOD ANALYSIS lh vo ;< , im oll H J J w ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE. FONTANA CA. 92336 TEL. (909) 356 - 1815 FAX (909) 356 - 1795 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Tract 16258, Fontana * 100 Year Storm Analysis / Abigail Place * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: I- 258.DAT TIME /DATE OF STUDY: 14:46 12/11/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --------------------------------------- -- *TIME -OF- CONCENTRATION MODEL * -- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) _ .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.5100 �w h I H k �_ HI *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** -- FLOW - PROCESS FROM NODE 30.00 TO NODE 31.00 IS CODE = 2.1 --------------------------------------------------------------------- » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 350.00 ELEVATION DATA: UPSTREAM(FEET) = 1403.30 DOWNSTREAM(FEET) = 1395.70 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.714 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.805 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH /HR) RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.53 .98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 9.83 TOTAL AREA(ACRES) = 2.53 PEAK FLOW RATE(CFS) Ap SCS Tc (DECIMAL) CN (MIN.) .50 32 8.71 .98 9.83 n ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** - - FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS CODE = 6.1 »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<< >>>(STANDARD CURB SECTION USED)<<<<< UPSTREAM ELEVATION(FEET) = 1395.70 DOWNSTREAM ELEVATION(FEET) = 1389.60 STREET LENGTH(FEET) = 363.00 CURB HEIGHT(INCHES) = 6.0 A STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 of INSIDE STREET CROSSFALL(DECIMAL) _ .020 ik OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 ON SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 on ik * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 13.60 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: U�t STREET FLOW DEPTH(FEET) = .40 HALFSTREET FLOOD WIDTH(FEET) = 13.58 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.46 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.38 ow STREET FLOW TRAVEL TIME(MIN.) = 1.75 Tc(MIN.) = 10.46 L * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.306 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.19 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 JAL SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.19 SUBAREA RUNOFF(CFS) = 7.53 big► EFFECTIVE AREA(ACRES) = 4.72 AREA - AVERAGED Fm(INCH /HR) _ .49 AREA- AVERAGED Fp(INCH /HR) _ .98 AREA- AVERAGED Ap = 50 TOTAL AREA(ACRES) = 4.72 PEAK FLOW RATE(CFS) = 16.22 A�1 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .42 HALFSTREET FLOOD WIDTH(FEET) = 14.55 FLOW VELOCITY(FEET /SEC.) = 3.63 DEPTH *VELOCITY(FT *FT /SEC.) = 1.51 FLOW PROCESS FROM NODE 32.00 TO NODE 33.00 IS CODE = 6.1 ------- ------- ----- ------- ----- ----- ------------- -------------------- » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«« < » » >(STANDARD CURB SECTION USED) ««< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- UPSTREAM ELEVATION(FEET) = 1389.60 DOWNSTREAM ELEVATION(FEET) = 1382.20 STREET LENGTH(FEET) = 434.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 20.42 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .44 HALFSTREET FLOOD WIDTH(FEET) = 15.91 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.86 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) STREET FLOW TRAVEL TIME(MIN.) = 1.88 * 100 YEAR RAINFALL INTENSITY(INCH /HR) _ SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA LAND USE GROUP (ACRES) RESIDENTIAL 1.71 Tc(MIN.) = 12.34 3.901 Fp Ap SCS (INCH /HR) (DECIMAL) CN "5 -7 DWELLINGS /ACRE" A 2.73 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.73 SUBAREA RUNOFF(CFS) = 8.39 EFFECTIVE AREA(ACRES) = 7.45 AREA - AVERAGED Fm(INCH /HR) _ .49 AREA- AVERAGED Fp(INCH /HR) = .98 AREA - AVERAGED Ap = .50 TOTAL AREA(ACRES) = 7.45 PEAK FLOW RATE(CFS) = 22.88 END OF SUBAREA STREET FLOW HYDRAULICS: A im D H - 1 t7 DEPTH(FEET) = .46 HALFSTREET FLOOD WIDTH(FEET) = 16.68 FLOW VELOCITY(FEET /SEC.) = 3.95 DEPTH *VELOCITY(FT *FT /SEC.) = 1.81 END OF STUDY SUMMARY: j TOTAL AREA(ACRES) = 7.45 TC(MIN.) = 12.34 EFFECTIVE AREA(ACRES) = 7.45 AREA - AVERAGED Fm(INCH /HR)= .49 4w AREA- AVERAGED Fp(INCH /HR) _ .98 AREA- AVERAGED Ap = .50 PEAK FLOW RATE(CFS) = 22.88 END OF RATIONAL METHOD ANALYSIS ------------------------------- -------- Ai A im D H - 1 t7 �4 !1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -95 Advanced Engineering Software (aes) '. Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE. FONTANA CA. 92336 TEL. (909) 356 -1815 FAX (909) 356 -1795 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Tracts 16258 -1 & 16258 * * 25 Year Event Analysis * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 258- 100.DAT TIME /DATE OF STUDY: 9:31 3/ 3/2003 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL * -- USER SPECIFIED STORM EVENT(YEAR) = 25.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 4-IR SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) _ .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.1900 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* W ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** -- FLOW - PROCESS - FROM - NODE - - - -- 10_00 - TO - NODE - - - -- 1100 - IS - CODE 2_1 - - - - -- » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 895.00 ELEVATION DATA: UPSTREAM(FEET) = 1436.00 DOWNSTREAM(FEET) = 1415.20 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.515 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.048 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 9.98 .98 .50 32 12.51 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 T t io lh 0 SUBAREA RUNOFF(CFS) = 23.00 TOTAL AREA(ACRES) = 9.98 PEAK FLOW RATE(CFS) = 23.00 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 4.1 ---------------------------------------------------------------------------- » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » » >USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 1415.20 DOWNSTREAM(FEET) = 1394.00 FLOW LENGTH(FEET) = 930.00 MANNING'S N = .013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 13.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 11.24 GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 23.00 1 PIPE TRAVEL TIME(MIN.) = 1.38 Tc(MIN.) = 13.89 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 10 ---------------------------------------------------------------------------- » » >MAIN- STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<< ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 4w FLOW PROCESS FROM NODE 19.00 TO NODE 23.00 IS CODE = 2.1 it------------------------------- --------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 747.00 ELEVATION DATA: UPSTREAM(FEET) = 1421.00 DOWNSTREAM(FEET) = 1401.10 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 bi SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.328 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.235 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 9.55 .98 .50 32 11.33 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 23.62 TOTAL AREA(ACRES) = 9.55 PEAK FLOW RATE(CFS) = 23.62 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 23.00 TO NODE 23.00 IS CODE = 1 ---------------------------------------------------------------------------- - -» »> DESIGNATE - INDEPENDENT - STREAM - FOR - CONFLUENCE << < < < --------------- - -- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 11.33 RAINFALL INTENSITY(INCH /HR) = 3.24 AREA - AVERAGED Fm(INCH /HR) _ .49 u - A REA- AVERAGED F p (INCH /HR) _ .98 AREA- AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 9.55 TOTAL STREAM AREA(ACRES) = 9.55 PEAK FLOW RATE(CFS) AT CONFLUENCE = 23.62 i m FLOW PROCESS FROM NODE 20.00 TO NODE 21.00 IS CODE = 2.1 ---------------------------------------------------------------------------- iwI » » > RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 378.00 ELEVATION DATA: UPSTREAM(FEET) = 1409.60 DOWNSTREAM(FEET) = 1402.20 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.170 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 4.257 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A .52 .98 .10 32 7.17 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) = 1.95 TOTAL AREA(ACRES) _ .52 PEAK FLOW RATE(CFS) = 1.95 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 1 FLOW PROCESS FROM NODE 21.00 TO NODE 23.00 IS CODE = 6.1 ------------------------------------------------------------- »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< » » >(STANDARD CURB SECTION USED) ««< a UPSTREAM ELEVATION(FEET) = 1402.20 DOWNSTREAM ELEVATION(FEET) = 1401.10 STREET LENGTH(FEET) = 267.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 x€ DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.39 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .30 HALFSTREET FLOOD WIDTH(FEET) = 8.76 AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.35 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) _ .41 STREET FLOW TRAVEL TIME(MIN.) = 3.30 Tc(MIN.) = 10.47 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.393 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A .30 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 ll SUBAREA AREA(ACRES) _ .30 SUBAREA RUNOFF(CFS) _ .89 EFFECTIVE AREA(ACRES) _ .82 AREA - AVERAGED Fm(INCH /HR) _ .10 AREA - AVERAGED Fp(INCH /HR) _ .98 AREA - AVERAGED Ap = .10 TOTAL AREA(ACRES) _ .82 PEAK FLOW RATE(CFS) = 2.43 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .30 HALFSTREET FLOOD WIDTH(FEET) = 8.83 FLOW VELOCITY(FEET /SEC.) = 1.35 DEPTH *VELOCITY(FT *FT /SEC.) _ .41 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 24.00 TO NODE 23.00 IS CODE = 8.1 ----------------------- » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 10.47 pw * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.393 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A .42 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 lil SUBAREA AREA(ACRES) _ .42 SUBAREA RUNOFF(CFS) = 1.25 EFFECTIVE AREA(ACRES) = 1.24 AREA - AVERAGED Fm(INCH /HR) _ .10 AREA - AVERAGED Fp(INCH /HR) _ .98 AREA - AVERAGED Ap = .10 TOTAL AREA(ACRES) = 1.24 PEAK FLOW RATE(CFS) = 3.68 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 23.00 TO NODE 23.00 IS CODE = 1 a ----------- ------- ---- ---------------- --------------------- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES ««< TOTAL NUMBER OF STREAMS =-== 2_______________ _______________________________ CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: pq TIME OF CONCENTRATION(MIN.) = 10.47 RAINFALL INTENSITY(INCH /HR) = 3.39 AREA - AVERAGED Fm(INCH /HR) _ .10 AREA - AVERAGED Fp(INCH /HR) _ .98 AREA - AVERAGED Ap = .10 EFFECTIVE STREAM AREA(ACRES) = 1.24 TOTAL STREAM AREA(ACRES) = 1.24 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.68 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 23.62 11.33 3.235 .98( .49) .50 9.55 19.00 2 3.68 10.47 3.393 .98( .10) .10 1.24 20.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 27.1 11.33 3.235 .975( .443) .45 10.8 19.00 u ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 11 ---------------------------------------------------------------------------- »»> CONFLUENCE MEMORY BANK # 1 WITH THE MAIN- STREAM MEMORY««< ** MAIN STREAM CONFLUENCE DATA ** 2 26.7 10.47 3.393 .975( .439) .45 10.1 20.00 Ell COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: NUMBER (CFS) (MIN.) (INCH /HR) PEAK FLOW RATE(CFS) = 27.12 Tc(MIN.) = 11.33 EFFECTIVE AREA(ACRES) = 10.79 AREA - AVERAGED Fm(INCH /HR) _ .44 pm AREA- AVERAGED Fp(INCH /HR) _ .98 AREA- AVERAGED Ap = .45 .45 10.8 TOTAL AREA(ACRES) = 10.79 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 11 ---------------------------------------------------------------------------- »»> CONFLUENCE MEMORY BANK # 1 WITH THE MAIN- STREAM MEMORY««< ** MAIN STREAM CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 26.75 10.47 3.393 .98( .44) .45 10.1 20.00 2 27.12 11.33 3.235 .98( .44) .45 10.8 19.00 ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 23.00 13.89 2.862 .98( .49) .50 10.0 10.00 ** PEAK FLOW RATE TABLE ** 6w STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 47.9 10.47 3.393 .975( .460) .47 17.6 20.00 2 48.8 11.33 3.235 .975( .462) .47 18.9 19.00 3 46.5 13.89 2.862 .975( .464) .48 20.8 10.00 TOTAL AREA(ACRES) = 20.77 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 48.81 Tc(MIN.) = 11.328 EFFECTIVE AREA(ACRES) = 18.93 AREA - AVERAGED Fm(INCH /HR) _ .46 AREA - AVERAGED Fp(INCH /HR) _ .98 AREA - AVERAGED Ap = .47 TOTAL AREA(ACRES) = 20.77 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 4.1 ---------------------------------------------------------------------------- » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< »»>USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 1394.00 DOWNSTREAM(FEET) = 1376.50 FLOW LENGTH(FEET) = 910.00 MANNING'S N = .013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 19.2 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 12.74 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 48.81 PIPE TRAVEL TIME(MIN.) = 1.19 Tc(MIN.) = 12.52 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 1 HI-1 FLOW PROCESS FROM NODE 16.00 TO NODE 16.00 IS CODE = 7 ---------------------------------------------------------------------------- » » >USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER - SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN.) = 15.59 RAINFALL INTENSITY(INCH /HR) = 2.67 EFFECTIVE AREA(ACRES) = 18.99 TOTAL AREA(ACRES) = 19.17 PEAK FLOW RATE(CFS) = 53.65 AREA - AVERAGED Fm(INCH /HR) _ .40 AREA - AVERAGED Fp(INCH /HR) _ .80 AREA - AVERAGED Ap = .50 NOTE: EFFECTIVE AREA IS USED AS THE TOTAL CONTRIBUTING AREA FOR ALL CONFLUENCE ANALYSES. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** -- FLOW - PROCESS FROM NODE 16.00 TO NODE 13.00 IS CODE = 4.1 ------------------------------------------------------------------ » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » »>USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< - - -- ELEVATION DATA: UPSTREAM(FEET) = 1382.42 DOWNSTREAM(FEET) = 1376.50 FLOW LENGTH(FEET) = 570.00 MANNING'S N = ..013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 25.1 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 10.21 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = PIPE- FLOW(CFS) = 53.65 PIPE TRAVEL TIME(MIN.) _ .93 Tc(MIN.) = 16.52 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 1 ---------------------------------------------------------------------------- »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 16.52 RAINFALL INTENSITY(INCH /HR) = 2.58 AREA - AVERAGED Fm(INCH /HR) _ .40 AREA - AVERAGED Fp(INCH /HR) _ .80 AREA - AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 18.99 ------------------------------------- -------------------------------------- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< TOTAL NUMBER OF STREAMS = - = = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 12.52 RAINFALL INTENSITY(INCH /HR) = 3.05 AREA - AVERAGED Fm(INCH /HR) _ .46 AREA- AVERAGED Fp(INCH /HR) _ .98 AREA - AVERAGED Ap = .47 EFFECTIVE STREAM AREA(ACRES) = 18.93 TOTAL STREAM AREA(ACRES) = 20.77 PEAK FLOW RATE(CFS) AT CONFLUENCE = 48.81 FLOW PROCESS FROM NODE 16.00 TO NODE 16.00 IS CODE = 7 ---------------------------------------------------------------------------- » » >USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER - SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN.) = 15.59 RAINFALL INTENSITY(INCH /HR) = 2.67 EFFECTIVE AREA(ACRES) = 18.99 TOTAL AREA(ACRES) = 19.17 PEAK FLOW RATE(CFS) = 53.65 AREA - AVERAGED Fm(INCH /HR) _ .40 AREA - AVERAGED Fp(INCH /HR) _ .80 AREA - AVERAGED Ap = .50 NOTE: EFFECTIVE AREA IS USED AS THE TOTAL CONTRIBUTING AREA FOR ALL CONFLUENCE ANALYSES. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** -- FLOW - PROCESS FROM NODE 16.00 TO NODE 13.00 IS CODE = 4.1 ------------------------------------------------------------------ » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » »>USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< - - -- ELEVATION DATA: UPSTREAM(FEET) = 1382.42 DOWNSTREAM(FEET) = 1376.50 FLOW LENGTH(FEET) = 570.00 MANNING'S N = ..013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 25.1 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 10.21 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = PIPE- FLOW(CFS) = 53.65 PIPE TRAVEL TIME(MIN.) _ .93 Tc(MIN.) = 16.52 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 1 ---------------------------------------------------------------------------- »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 16.52 RAINFALL INTENSITY(INCH /HR) = 2.58 AREA - AVERAGED Fm(INCH /HR) _ .40 AREA - AVERAGED Fp(INCH /HR) _ .80 AREA - AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 18.99 �:: COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: go PEAK FLOW RATE(CFS) = 98.75 Tc(MIN.) = 15.10 EFFECTIVE AREA(ACRES) = 38.13 AREA - AVERAGED Fm(INCH /HR) _ .43 AREA - AVERAGED Fp(INCH /HR) _ .89 AREA - AVERAGED Ap = .49 TOTAL AREA(ACRES) = 39.94 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 4.1 »» >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » » >USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 1376.20 DOWNSTREAM(FEET) = 1366.50 FLOW LENGTH(FEET) = 580.00 MANNING'S N = .013 ASSUME FULL - FLOWING PIPELINE PIPE -FLOW VELOCITY(FEET /SEC.) = 13.97 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 98.75 PIPE TRAVEL TIME(MIN.) _ .69 Tc(MIN.) = 15.79 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 14.00 TO NODE 14.00 IS CODE = 10 ---------------------------------------------------------------------------- » »>MAIN- STREAM MEMORY COPIED ONTO MEMORY BANK # 2 « «< ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** - - FLOW PROCESS FROM NODE 50.00 TO NODE 51.00 IS CODE = 2.1 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< >>USE TIME -OF- CONCENTRATION - NOMOGRAPH - FOR INITIAL - SUBAREA « -------- - - - - - -- INITIAL SUBAREA FLOW- LENGTH(FEET) = 374.00 ELEVATION DATA: UPSTREAM(FEET) = 1397.00 DOWNSTREAM(FEET) = 1391.50 TOTAL STREAM AREA(ACRES) = 19.17 PEAK FLOW RATE(CFS) AT CONFLUENCE = 53.65 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 47.94 11.66 3.180 .98( .46) .47 17.58 20.00 1 48.81 12.52 3.047 .98( .46) .47 18.93 19.00 1 46.49 15.10 2.723 .98( .46) .48 20.77 10.00 2 53.65 16.52 2.580 .80( .40) .50 18.99 16.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 96.2 11.66 3.180 .897( .434) .48 31.0 20.00 2 98.2 12.52 3.047 .897( .435) .49 33.3 19.00 3 98.7 15.10 2.723 .893( .435) .49 38.1 10.00 4 97.2 16.52 2.580 .889( .434) .49 39.8 16.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: go PEAK FLOW RATE(CFS) = 98.75 Tc(MIN.) = 15.10 EFFECTIVE AREA(ACRES) = 38.13 AREA - AVERAGED Fm(INCH /HR) _ .43 AREA - AVERAGED Fp(INCH /HR) _ .89 AREA - AVERAGED Ap = .49 TOTAL AREA(ACRES) = 39.94 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 4.1 »» >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » » >USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 1376.20 DOWNSTREAM(FEET) = 1366.50 FLOW LENGTH(FEET) = 580.00 MANNING'S N = .013 ASSUME FULL - FLOWING PIPELINE PIPE -FLOW VELOCITY(FEET /SEC.) = 13.97 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 98.75 PIPE TRAVEL TIME(MIN.) _ .69 Tc(MIN.) = 15.79 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 14.00 TO NODE 14.00 IS CODE = 10 ---------------------------------------------------------------------------- » »>MAIN- STREAM MEMORY COPIED ONTO MEMORY BANK # 2 « «< ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** - - FLOW PROCESS FROM NODE 50.00 TO NODE 51.00 IS CODE = 2.1 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< >>USE TIME -OF- CONCENTRATION - NOMOGRAPH - FOR INITIAL - SUBAREA « -------- - - - - - -- INITIAL SUBAREA FLOW- LENGTH(FEET) = 374.00 ELEVATION DATA: UPSTREAM(FEET) = 1397.00 DOWNSTREAM(FEET) = 1391.50 D d 0 0 iW N h 0 FI Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.674 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.557 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.23 .98 .50 32 9.67 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 6.16 TOTAL AREA(ACRES) = 2.23 PEAK FLOW RATE(CFS) = 6.16 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 51.00 TO NODE 52.00 IS CODE = 6.1 ---------------------------------------------------------------------------- »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA ««< » »>(STANDARD CURB SECTION USED) « «< UPSTREAM ELEVATION(FEET) = 1391.50 DOWNSTREAM ELEVATION(FEET) = 1384.20 STREET LENGTH(FEET) = 412.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 RESIDENTIAL * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 9.18 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .36 HALFSTREET FLOOD WIDTH(FEET) = 11.46 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.21 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.14 STREET FLOW TRAVEL TIME(MIN.) = 2.14 Tc(MIN.) = 11.81 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.155 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND UsF: GROUP (ACRES) (INCH /HR) (DECIMAL) CN "5 -7 DWELLINGS /ACRE" . A 2.51 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES)' 2.51 SUBAREA RUNOFF(CFS) = 6.03 EFFECTIVE AREA(ACRES) = 4.74 AREA - AVERAGED Fm(INCH /HR) _ .49 AREA - AVERAGED Fp(INCH /HR) _ .98 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 4.74 PEAK FLOW RATE(CFS) = 11.38 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .38 HALFSTREET FLOOD WIDTH(FEET) = 12.49 FLOW VELOCITY(FEET /SEC.) = 3.39 DEPTH *VELOCITY(FT *FT /SEC.) = 1.28 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 52.00 TO NODE 54.00 IS CODE = 6.1 ---------------------------------------------------------------------- - - - - -- �jl » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< » » >(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 1384.20 DOWNSTREAM ELEVATION(FEET) = 1377.50 STREET LENGTH(FEET) = 426.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 on t'" * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 14.24 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .41 HALFSTREET FLOOD WIDTH(FEET) = 14.04 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.41 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.39 STREET FLOW TRAVEL TIME(MIN.) = 2.08 Tc(MIN.) = 13.90 i * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.862 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS ISM LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.68 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.68 SUBAREA RUNOFF(CFS) = 5.73 EFFECTIVE AREA(ACRES) = 7.42 AREA - AVERAGED Fm(INCH /HR) _ .49 AREA - AVERAGED Fp(INCH /HR) = .98 AREA - AVERAGED Ap = .50 TOTAL AREA(ACRES) = 7.42 PEAK FLOW RATE(CFS) = 15.86 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .42 HALFSTREET FLOOD WIDTH(FEET) = 14.62 FLOW VELOCITY(FEET /SEC.) = 3.52 DEPTH *VELOCITY(FT *FT /SEC.) = 1.47 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 54.00 TO NODE 54.00 IS CODE = 1 ---------------------------------------------------------------------------- » » >DESIGNATE INDEPENDENT STREAM - FOR - CONFLUENCE <<< < < --------------- - -- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.90 RAINFALL INTENSITY(INCH /HR) = 2.86 AREA - AVERAGED Fm(INCH /HR) = .49 AREA - AVERAGED Fp(INCH /HR) = .98 ` AREA - AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 7.42 TOTAL STREAM AREA(ACRES) = 7.42 PEAK FLOW RATE(CFS) AT CONFLUENCE = 15.86 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** - - FLOW PROCESS FROM NODE 57.00 TO NODE 56.00 IS CODE = 2.1 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 367.00 ELEVATION DATA: UPSTREAM(FEET) = 1397.20 DOWNSTREAM(FEET) = 1390.20 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.114 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.686 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 1.90 .98 .50 32 9.11 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 5.47 TOTAL AREA(ACRES) = 1.90 PEAK FLOW RATE(CFS) = 5.47 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 56.00 TO NODE 55.00 IS CODE = 6.1 ---------------------------------------------------------------------------- » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< » » >(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 1390.20 DOWNSTREAM ELEVATION(FEET) = 1380.80 STREET LENGTH(FEET) = 459.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 !� INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 irI SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 Yrr * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 8.89 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .35 HALFSTREET FLOOD WIDTH(FEET) = 10.94 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.38 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.17 STREET FLOW TRAVEL TIME(MIN.) = 2.26 Tc(MIN.) = 11.38 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.227 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.77 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.77 SUBAREA RUNOFF(CFS) = 6.83 EFFECTIVE AREA(ACRES) = 4.67 AREA - AVERAGED Fm(INCH /HR) _ .49 AREA - AVERAGED Fp(INCH /HR) _ .98 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 4.67 PEAK FLOW RATE(CFS) = 11.51 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .37 HALFSTREET FLOOD WIDTH(FEET) = 12.17 FLOW VELOCITY(FEET /SEC.) = 3.60 DEPTH *VELOCITY(FT *FT /SEC.) = 1.33 n ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** - - FLOW PROCESS FROM NODE 55.00 TO NODE 54.00 IS CODE = 6.1 ---------------------------------------------------------------------- » »> COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »» >(STANDARD CURB SECTION USED) « «< UPSTREAM ELEVATION(FEET) = 1380.80 DOWNSTREAM ELEVATION(FEET) 1377.50 STREET LENGTH(FEET) = 389.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 +�* INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 im * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 14.01 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: ww STREET FLOW DEPTH(FEET) _ .44 HALFSTREET FLOOD WIDTH(FEET) = 15.78 13.79 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.69 RAINFALL INTENSITY(INCH /HR) = PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.19 STREET FLOW TRAVEL TIME(MIN.) = 2.41 Tc(MIN.) = 13.79 ima * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.875 AREA - AVERAGED Fp(INCH /HR) _ SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN No RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.32 .98 .50 32 6.99 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 �- SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.32 SUBAREA RUNOFF(CFS) = 4.99 EFFECTIVE AREA(ACRES) = 6.99 AREA - AVERAGED Fm(INCH /HR) _ .49 po AREA - AVERAGED Fp(INCH /HR) _ .98 AREA - AVERAGED Ap = .50 iV TOTAL AREA(ACRES) = 6.99 PEAK FLOW RATE(CFS) = 15.02 �w END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .45 HALFSTREET FLOOD WIDTH(FEET) = 16.23 FLOW VELOCITY(FEET /SEC.) = 2.73 DEPTH *VELOCITY(FT *FT /SEC.) = 1.23 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 54.00 TO NODE 54.00 IS CODE = 1 ---------------------------------------------------------------------------- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< » »>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.79 RAINFALL INTENSITY(INCH /HR) = 2.88 AREA - AVERAGED Fm(INCH /HR) _ .49 AREA - AVERAGED Fp(INCH /HR) _ .98 AREA - AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 6.99 TOTAL STREAM AREA(ACRES) = 6.99 PEAK FLOW RATE(CFS) AT CONFLUENCE = 15.02 ** CONFLUENCE DATA ** hl" RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** Yii STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE SOURCE NODE NUMBER (CFS) (MIN.) (INCH /HR) STREAM Q Tc Intensity Y Fp(Fm) Ap Ae SOURCE .50 14.4 NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE (ACRES) 1 15.86 13.90 2.862 .98( .49) .50 7.42 50.00 AS FOLLOWS: 2 15.02 13.79 2.875 .98( .49) .50 6.99 57.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** Yii STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE SOURCE NODE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE ow 1 30.8 13.90 2.862 .975( .488) .50 14.4 50.00 NUMBER 2 30.8 13.79 2.875 .975( .488) .50 14.4 57.00 (ACRES) NODE 43.9 1 30.85 13.79 2.875 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: 14.4 57.00 PEAK FLOW RATE(CFS) = 30.85 Tc(MIN.) = 13.79 .98( .49) .50 EFFECTIVE AREA(ACRES) = 14.35 AREA - AVERAGED Fm(INCH /HR) _ .49 ** AREA - AVERAGED Fp(INCH /HR) _ .98 AREA - AVERAGED Ap = .50 54.35 STREAM TOTAL AREA(ACRES) = 14.41 Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 14.00 TO NODE 14.00 IS CODE = 11 ---------------------------------------------------------------------------- >>>>> CONFLUENCE MEMORY BANK # 2 WITH THE MAIN- STREAM MEMORY« «< ** PEAK FLOW RATE TABLE ** ** MAIN STREAM CONFLUENCE DATA ** Ap Ae (ACRES) SOURCE NODE 1 129.2 13.79 STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE .920( .451) NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) 3.069 (ACRES) NODE 43.9 1 30.85 13.79 2.875 .98( .49) .50 14.4 57.00 2 30.80 13.90 2.862 .98( .49) .50 14.4 50.00 2.516 ** MEMORY BANK # 2 CONFLUENCE DATA ** 16.00 TOTAL AREA(ACRES) = 54.35 STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) 13.792 (ACRES) NODE 1 96.23 12.37 3.069 .90( .43) .48 31.0 20.00 Ap 2 98.18 13.21 2.950 .90( .44) .49 33.3 19.00 3 98.75 15.79 2.651 .89( .43) .49 38.1 10.00 4 97.20 17.22 2.516 .89( .43) .49 39.8 16.00 ** PEAK FLOW RATE TABLE ** STREAM Q Tc NUMBER (CFS) (MIN.) Intensity (INCH /HR) Fp(Fm) (INCH /HR) Ap Ae (ACRES) SOURCE NODE 1 129.2 13.79 2.875 .920( .451) .49 48.7 57.00 2 129.1 13.90 2.862 .920( .451) .49 49.0 50.00 3 126.1 12.37 3.069 .920( .450) .49 43.9 20.00 . 4 128.7 13.21 2.950 .920( .450) .49 47.1 19.00 5 126.8 15.79 2.651 .916( .449) .49 52.5 10.00 6 123.5 17.22 2.516 .913( .448) .49 54.2 16.00 TOTAL AREA(ACRES) = 54.35 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 129.15 Tc(MIN.) = 13.792 EFFECTIVE AREA(ACRES) = 48.75 AREA - AVERAGED Fm(INCH /HR) _ .45 AREA - AVERAGED Fp(INCH /HR) _ .92 AREA - AVERAGED Ap = .49 TOTAL AREA(ACRES) = 54.35 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 14.00 TO NODE 15.00 IS CODE = 4.1 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« <« » » >USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) «« < ELEVATION DATA: UPSTREAM(FEET) = 1369.00 DOWNSTREAM(FEET) = 1363.28 FLOW LENGTH(FEET) = 95.00 MANNING'S N = .013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 25.1 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 24.57 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 129.15 PIPE TRAVEL TIME(MIN.) _ .06 Tc(MIN.) = 13.86 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 54.35 TC(MIN.) = 13.86 EFFECTIVE AREA(ACRES) = 48.75 AREA - AVERAGED Fm(INCH /HR)= .45 AREA - AVERAGED Fp(INCH /HR) _ .92 AREA - AVERAGED Ap = .49 PEAK FLOW RATE(CFS) = 129.15 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 126.1 12.44 3.059 .920( .450) .49 43.9 20.00 2 128.7 13.28 2.941 .920( .450) .49 47.1 19.00 3 129.2 13.86 2.867 .920( .451) .49 48.7 57.00 4 129.1 13.96 2.854 .920( .451) .49 49.0 50.00 5 126.8 15.86 2.644 .916( .449) .49 52.5 10.00 6 123.5 17.29 2.511 .913( .448) .49 54.2 16.00 END OF RATIONAL METHOD ANALYSIS ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE. if FONTANA CA. 92336 TEL. (909) 356 -1815 FAX (909) 356 -1795 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Tracts 16258 -1 & 16258, Fontana * 25 Year Storm Analysis, Helena Place frr * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 258 -C.DAT TIME /DATE OF STUDY: 16:26 12/10/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL * -- USER SPECIFIED STORM EVENT(YEAR) = 25.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) _ .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.1900 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 37.00 TO NODE 36.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 326.00 ELEVATION DATA: UPSTREAM(FEET) = 1388.00 DOWNSTREAM(FEET) = 1382.60 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.941 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.729 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 1.95 .98 .50 32 8.94 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 5.69.+ dl TOTAL AREA(ACRES) = 1.95 PEAK FLOW RATE(CFS) = 5.69 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 36.00 TO NODE 35.00 IS CODE = 6.1 ---------------------------------------------------------------------------- » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< » »> (STANDARD CURB SECTION USED) « «< ---------------------------------------------------------------------------- UPSTREAM ELEVATION(FEET) = 1382.60 DOWNSTREAM ELEVATION(FEET) = 1377.10 STREET LENGTH(FEET) = 336.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 E INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 8.33 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .35 III HALFSTREET FLOOD WIDTH(FEET) = 11.14 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.07 �►! PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.07 STREET FLOW TRAVEL TIME(MIN.) = 1.83 Tc(MIN.) = 10.77 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.336 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.06 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.06 SUBAREA RUNOFF(CFS) = 5.28 !fit EFFECTIVE AREA(ACRES) = 4.01 AREA - AVERAGED Fm(INCH /HR) _ .49 AREA - AVERAGED Fp(INCH /HR) _ .98 AREA - AVERAGED Ap = .50 TOTAL AREA(ACRES) = 4.01 PEAK FLOW RATE(CFS) = 10.28 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .37 HALFSTREET FLOOD WIDTH(FEET) = 12.17 FLOW VELOCITY(FEET /SEC.) = 3.22 DEPTH *VELOCITY(FT *FT /SEC.) = 1.19 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 35.00 TO NODE 34.00 IS CODE = 6.1 -------------------------------------------------------------- » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< » » >( STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 1377.10 DOWNSTREAM ELEVATION(FEET) = 1372.70 STREET LENGTH(FEET) = 313.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 L' END OF RATIONAL METHOD ANALYSIS ow ta , Sri E] * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 12.59 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .40 HALFSTREET FLOOD WIDTH(FEET) = 13.65 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.18 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.27 STREET FLOW TRAVEL TIME(MIN.) = 1.64 Tc(MIN.) = 12.41 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.063 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL go "5 -7 DWELLINGS /ACRE" A 1.99 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.99 SUBAREA RUNOFF(CFS) = 4.61 EFFECTIVE AREA(ACRES) = 6.00 AREA - AVERAGED Fm(INCH /HR) _ .49 AREA - AVERAGED Fp(INCH /HR) _ .98 AREA - AVERAGED Ap = .50 TOTAL AREA(ACRES) = 6.00 PEAK FLOW RATE(CFS) = 13.91 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .41 HALFSTREET FLOOD WIDTH(FEET) = 14.23 FLOW VELOCITY(FEET /SEC.) = 3.25 DEPTH *VELOCITY(FT *FT /SEC.) = 1.33 so END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 6.00 TC(MIN.) = 12.41 EFFECTIVE AREA(ACRES) = 6.00 AREA - AVERAGED Fm(INCH /HR)= .49 AREA - AVERAGED Fp(INCH /HR) _ .98 AREA - AVERAGED Ap = .50 PEAK FLOW RATE(CFS) = 13.91 ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- END OF RATIONAL METHOD ANALYSIS ow ta , Sri E] 6 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE. FONTANA CA. 92336 TEL. (909) 356 -1815 FAX (909) 356 -1795 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Tracts 16258 -1 & 16258, Fontana * 25 Year Storm Analysis * Isabel Lane, Virginia Drive, Riley Drive ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** w *3�� FILE NAME: H- 258.DAT TIME /DATE OF STUDY: 11:59 3/21/20Q3 ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL * -- s. USER SPECIFIED STORM EVENT(YEAR) = 25.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) _ .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.1900 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 20.00 TO NODE 21.00 IS CODE = 2.1 ---------------------------------------------------------------------------- » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- INITIAL SUBAREA FLOW- LENGTH(FEET) = 378.00 ELEVATION DATA: UPSTREAM(FEET) = 1409.60 DOWNSTREAM(FEET) = 1402.20 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.170 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 4.257 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A .52 .98 .10 32 7.17 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 6 SUBAREA RUNOFF(CFS) = 1.95 TOTAL AREA(ACRES) _ .52 PEAK FLOW RATE(CFS) = 1.95 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 21.00 TO NODE 23.00 IS CODE = 6.1 ------------------------------------------------------------- » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< » » >(STANDARD CURB SECTION USED) ««< §' UPSTREAM ELEVATION(FEET) = 1402.20 DOWNSTREAM ELEVATION(FEET) = 1401.10 im STREET LENGTH(FEET) = 267.00 ..CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 0 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.39 t" STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .30 HALFSTREET FLOOD WIDTH(FEET) = 8.76 AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.35 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) _ .41 STREET FLOW TRAVEL TIME(MIN.) = 3.30 Tc(MIN.) = 10.47 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.393 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A .30 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) _ .30 SUBAREA RUNOFF(CFS) _ .89 EFFECTIVE AREA(ACRES) _ .82 AREA - AVERAGED Fm(INCH /HR) _ .10 AREA- AVERAGED Fp(INCH /HR) _ .98 AREA - AVERAGED Ap = .10 TOTAL AREA(ACRES) _ .82 PEAK FLOW RATE(CFS) = 2.43 s> END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .30 HALFSTREET FLOOD WIDTH(FEET) = 8.83. FLOW VELOCITY(FEET /SEC.) = 1.35 DEPTH *VELOCITY(FT *FT /SEC.) _ .41 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 24.00 TO NODE 23.00 IS CODE = 8.1 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< - - -- ----- - - - - -- -------------------------------- MAINLINE Tc(MIN) = 10.47 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.393 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A .42 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) _ .42 SUBAREA RUNOFF(CFS) = 1.25 EFFECTIVE AREA(ACRES) = 1.24 AREA - AVERAGED Fm(INCH /HR) _ .10 J AREA - AVERAGED Fp(INCH /HR) _ .98 AREA - AVERAGED Ap = .10 TOTAL AREA(ACRES) = 1.24 PEAK FLOW RATE(CFS) = 3.68 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 23.00 TO NODE 25.00 IS CODE = 6.1 ---------------------------------------------------------------------------- » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< » » >( STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 1401.10 DOWNSTREAM ELEVATION(FEET) = 1392.30 STREET LENGTH(FEET) = 432.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.52 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .32 HALFSTREET FLOOD WIDTH(FEET) = 9.63 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.12 6 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) _ .99 STREET FLOW TRAVEL TIME(MIN.) = 2.31 Tc(MIN.) = 12.78 Air * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.010 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL L "5 -7 DWELLINGS /ACRE" A 2.49 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.49 SUBAREA RUNOFF(CFS) = 5.65 lil EFFECTIVE AREA(ACRES) = 3.73 AREA - AVERAGED Fm(INCH /HR) _ .36 AREA - AVERAGED Fp(INCH /HR) _ .98 AREA - AVERAGED Ap = .37 ow TOTAL AREA(ACRES) = 3.73 PEAK FLOW RATE(CFS) = 8.90 6 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .35 HALFSTREET FLOOD WIDTH(FEET) = 11.00 FLOW VELOCITY(FEET /SEC.) = 3.35 DEPTH *VELOCITY(FT *FT /SEC.) = 1.16 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 25.00 TO NODE 26.00 IS CODE = 6.1 ----------------------------------------------------------------------- » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< _ - »» >( STANDARD - CURB - SECTION _ USED) ««<------------------------------------ UPSTREAM ELEVATION(FEET) = 1392.30 DOWNSTREAM ELEVATION(FEET) = 1386.60 STREET LENGTH(FEET) = 361.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 n r SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 w * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 11.14 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .38 HALFSTREET FLOOD WIDTH(FEET) = 12.67 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.23 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.23 STREET FLOW TRAVEL TIME(MIN.) = 1.86 Tc(MIN.) = 14.64 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.774 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.17 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 kli SUBAREA AREA(ACRES) = 2.17 SUBAREA RUNOFF(CFS) = 4.47 EFFECTIVE AREA(ACRES) = 5.90 AREA - AVERAGED Fm(INCH /HR) _ .41 AREA - AVERAGED Fp(INCH /HR) _ .98 AREA - AVERAGED Ap = .42 TOTAL AREA(ACRES) = 5.90 PEAK FLOW RATE(CFS) = 12.58 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .39 HALFSTREET FLOOD WIDTH(FEET) = 13.32 FLOW VELOCITY(FEET /SEC.) = 3.33 DEPTH *VELOCITY(FT *FT /SEC.) = 1.31 pw ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 26.00 TO NODE 27.00 IS CODE = 6.1 ---------------------------------------------------------------------------- » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< » » >(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 1386.60 DOWNSTREAM ELEVATION(FEET) = 1379.70 iu STREET LENGTH(FEET) = 435.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) _ INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 RR d F SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) _ STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .41 HALFSTREET FLOOD WIDTH(FEET) = 14.36 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.47 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.43 STREET FLOW TRAVEL TIME(MIN.) = 2.09 Tc(MIN.) _ * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.561 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH /HR) RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.72 .98 9.00 15.12 16.73 Ap SCS (DECIMAL) CN .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.72 SUBAREA RUNOFF(CFS) = 5.08 Li h 4w ig EFFECTIVE AREA(ACRES) = 8.62 AREA — AVERAGED Fm(INCH /HR) _ .43 AREA — AVERAGED Fp(INCH /HR) _ .98 AREA — AVERAGED AP = .44 TOTAL AREA(ACRES) = 8.62 PEAK FLOW RATE(CFS) = 16.52 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .42 HALFSTREET FLOOD WIDTH(FEET) = 14.87 to FLOW VELOCITY(FEET /SEC.) = 3.54 DEPTH *VELOCITY(FT *FT /SEC.) = 1.50 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 8.62 TC(MIN.) = 16.73 EFFECTIVE AREA(ACRES) = 8.62 AREA — AVERAGED Fm(INCH /HR)= .43 AREA — AVERAGED Fp(INCH /HR) _ .98 AREA — AVERAGED Ap = .44 PEAK FLOW RATE(CFS) = 16.52 iK END OF RATIONAL METHOD ANALYSIS �s ire E L' ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** pw RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE. FONTANA CA. 92336 TEL. (909) 356 -1815 FAX (909) 356 -1795 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Tract 16258, Fontana * * 100 Year Storm Analysis / Abigail Place * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: I- 258.DAT TIME /DATE OF STUDY: 12:56 3/21/2003 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL * -- USER SPECIFIED STORM EVENT(YEAR) = 25.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) _ .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.1900 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 30.00 TO NODE 31.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE.TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 350.00 ELEVATION DATA: UPSTREAM(FEET) = 1403.30 DOWNSTREAM(FEET) = 1395.70 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.714 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.787 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.53 .98 .50 32 8.71 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 �J no SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 7.51 TOTAL AREA(ACRES) = 2.53 PEAK FLOW RATE(CFS) = 7.51 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS CODE = 6.1 -------- ------------------------------- » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< » »>(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 1395.70 DOWNSTREAM ELEVATION(FEET) = 1389.60 STREET LENGTH(FEET) = 363.00 CURB HEIGHT(INCHES) = 6.0 ,,. STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 10.36 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .37 HALFSTREET FLOOD WIDTH(FEET) = 12.17 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.24 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.20 STREET FLOW TRAVEL TIME(MIN.) = 1.87 Tc(MIN.) = 10.58 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.371 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.19 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.19 SUBAREA RUNOFF(CFS) = 5.68 EFFECTIVE AREA(ACRES) = 4.72 AREA - AVERAGED Fm(INCH /HR) _ .49 AREA - AVERAGED Fp(INCH /HR) _ .98 AREA - AVERAGED Ap = .50 TOTAL AREA(ACRES) = 4.72 PEAK FLOW RATE(CFS) = 12.25 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .39 HALFSTREET FLOOD WIDTH(FEET) = 13.00 FLOW VELOCITY(FEET /SEC.) = 3.38 DEPTH *VELOCITY(FT *FT /SEC.) = 1.31 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 32.00 TO NODE 33.00 IS CODE = 6.1 ---------------------------------------------------------------------------- » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< » » >(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 1389.60 DOWNSTREAM ELEVATION(FEET) = 1382.20 STREET LENGTH(FEET) = 434.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 d fl ON Il � u SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 RESIDENTIAL * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 15.38 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: END OF STUDY SUMMARY: STREET FLOW DEPTH(FEET) _ .41 HALFSTREET FLOOD WIDTH(FEET) = 14.23 7.45 TC(MIN.) = AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.59 7.45 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.47 AREA - AVERAGED Fp(INCH /HR) STREET FLOW TRAVEL TIME(MIN.) = 2.02 Tc(MIN.) = 12.60 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.036 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN "5 -7 DWELLINGS /ACRE" A 2.73 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.73 SUBAREA RUNOFF(CFS) = 6.26 EFFECTIVE AREA(ACRES) = 7.45 AREA - AVERAGED Fm(INCH /HR) _ .49 AREA - AVERAGED Fp(INCH /HR) _ .98 AREA - AVERAGED Ap = .50 TOTAL AREA(ACRES) = 7.45 PEAK FLOW RATE(CFS) = 17.09 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .42 HALFSTREET FLOOD WIDTH(FEET) = 14.87 FLOW VELOCITY(FEET /SEC.) = 3.67 DEPTH *VELOCITY(FT *FT /SEC.) = 1.55 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 7.45 TC(MIN.) = 12.60 EFFECTIVE AREA(ACRES) = 7.45 AREA - AVERAGED Fm(INCH /HR)= .49 AREA - AVERAGED Fp(INCH /HR) _ .98 AREA - AVERAGED Ap = .50 PEAK FLOW RATE(CFS) = 17.09 END OF RATIONAL METHOD ANALYSIS 0 �J J W W m � Q °� 0 ° U � O 78 I 2 79 1 Q E-- cr- w O U U � U n O p ji noi 39 Ii 1 VA N 'O o e; SCALE: 1 " =30' LAT. A -3 LAT. A -4 10' SUMP BASIN 21' FLOW -BY BAS/ 8.8 C► 0.2 C- 10.7 CFS S= 0.0050 FLOW -BY I 1 .3 CFS CRESTS GR TA N LANE S=° °- 11.4 CFS 1 0- 40 cn � v U � o Q � m m 1 0 41 43 42 =Jj - N N LAT. A -1 LAT. A -2 m U I U I o o CATCH BASIN FLOW EXHIBIT TRACTS 16258 -1, 16258 HA ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -95 Advanced Engineering Software (aes) Ver. 5.1 Release Date: 01/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE FONTANA CA. 60 TEL (909) 356 - 1815 FAX (909) 356 -1795 ---------------------------------------------------------------------------- TIME /DATE OF STUDY: 8:47 4/15/2003 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Tract 16258, Fontana * Street Capcity Calculation / 100 Year Storm * Greta Lane, West Side ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** >>>>STREETFLOW MODEL INPUT INFORMATION <<<< -- ---------------------------------------------------------------------------- CONSTANT STREET GRADE(FEET /FEET) _ .010800 CONSTANT STREET FLOW(CFS) = 21.31 it AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 20.00 PM DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = 020000 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) _ .50 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) _ .03125 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) _ .12500 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES irn STREET FLOW MODEL RESULTS: ---------------------------------------------------------------------------- STREET FLOW DEPTH(FEET) _ .49 HALFSTREET FLOOD WIDTH(FEET) = 17.98 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.18 PRODUCT OF DEPTH &VELOCITY = 1.55 Ki R' LJ HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 I'm Analysis prepared by: !1 ALLARD ENGINEERING 8253 SIERRA AVE FONTANA CA. TEL (909) 356 - 1815 FAX (909) 356 -1795 ---------------------------------------------------------------------------- - TIME /DATE OF STUDY: 16:50 3/21/2003 77 IN * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Tract 16258, Fontana on * Street Capacity Calculation / 100 year storm 4 * Greta Lane, East Side » »STREETFLOW MODEL INPUT INFORMATION«« ---------------------------------------------------------------------------- CONSTANT STREET GRADE(FEET /FEET) _ .010800 CONSTANT STREET FLOW(CFS) = 21.31 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020000 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) _ .50 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) _ .03125 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) _ .12500 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES STREET FLOW MODEL RESULTS: ---------------------------------------------------------------------------- STREET FLOW DEPTH(FEET) _ .49 HALFSTREET FLOOD WIDTH(FEET) = 17.98 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.18 - - -_ PRODUCT _ OF - DEPTH& VELOCITY - = - - -- 155 ------- ---- -------- ------------ - - - - -- h F` E� P ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE FONTANA CA. TEL (909) 356 - 1815 FAX (909) 356 -1795 ---------------------------------------------------------------------------- TIME /DATE OF STUDY: 8:38 3/10/2003 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Tract 16258, Fontana * Street Capacity Calculation / 100 Yr. Storm * Greta Lane, East Side, North Half wo ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 1V ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** on » »STREETFLOW MODEL INPUT INFORMATION«« t CONSTANT STREET GRADE(FEET /FEET) _ .010800 CONSTANT STREET FLOW DEPTH(FEET) _ .51 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020000 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) _ .50 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) _ .03125 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) _ .12500 FLOW ASSUMED TO FILL STREET ON ONE SIDE. - - -- STREET FLOW MODEL RESULTS: -------------------------------------------------------------------- NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION - THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) _ .51 qr HALFSTREET FLOOD WIDTH(FEET) = 19.19 ��x �� {!' �� HALFSTREET FLOW (CFS) = 12. 90 Ad AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.39 PRODUCT OF DEPTH &VELOCITY = 1.73 1� HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE FONTANA CA. TEL (909) 356 - 1815 FAX (909) 356 -1795 ---------------------------------------------------------------------------- TIME /DATE OF STUDY: 8:53 3/10/2003 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** • Tract 16258, Fontana • Street Flow Calculation / 100 yr. Storm • Greta Lane, West side, North Half ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » »STREETFLOW - MODEL - INPUT INFORMATION «« CONSTANT STREET GRADE(FEET /FEET) _ .005000 CONSTANT STREET FLOW DEPTH(FEET) _ .51 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020000 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) _ .50 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) _ .03125 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) _ .12500 FLOW ASSUMED TO FILL STREET ON ONE SIDE. - - -- STREET FLOW MODEL RESULTS: ----------------------------------=----------------------------------- NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) _ .51 HALFSTREET FLOOD WIDTH(FEET) = 19.19 HALFSTREET FLOW(CFS) = 8.77 of AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.31 PRODUCT OF DEPTH &VELOCITY = 1.18 a H 3 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 4W Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE FONTANA CA. TEL (909) 356 - 1815 FAX (909) 356 -1795 ---------------------------------------------------------------------------- TIME /DATE OF STUDY: 17: 3 3/21/2003 file name: 258cb #3 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Tract 16258 -1 and 16258 * Catch Basin Calculation (sump condition) # 3 * @ Greta Lane ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » »SUMP TYPE BASIN INPUT INFORMATION«« ---------------------------------------------------------------------- - - - - -- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 9.00 BASIN OPENING(FEET) _ .71 DEPTH OF WATER(FEET) _ .51 » »CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 8.00 W = 10' H hl I7 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE FONTANA CA. TEL (909) 356 - 1815 FAX (909) 356 -1795 ---------------------------------------------------------------------------- -- TIME / DATE - OF - STUDY_ 17_ - 8 -- - 3/21/ 2003 -- file - name 258cb #4.res - - - - -- * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Tract 16258 -1 and 16258 * Catch Basin Calculation (flow -by condition) # 4 * @ Greta Lane ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** »»FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« ---------------------------------------------------------------------- - - - - -- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 10.70 GUTTER FLOWDEPTH(FEET) = .49 BASIN LOCAL DEPRESSION(FEET) = .33 FLOWBY BASIN WIDTH(FEET) = 21.00 » »CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 22.6 »»CALCULATED ESTIMATED INTERCEPTION(CFS) = 10.4 W =21' ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- r HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE FONTANA CA. TEL (909) 356 - 1815 FAX (909) 356 -1795 ---------------------------------------------------------------------------- TIME /DATE OF STUDY: 9:21 3/10/2003 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** • Tract 16258, Fontana • Street Capacity Calculation / 100 Year Storm • Miriam Way, West Side ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** »» STREETFLOW MODEL INPUT INFORMATION«« CONSTANT STREET GRADE(FEET /FEET) _ .007000 CONSTANT STREET FLOW(CFS) = 11.42 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020000 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) _ .50 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) _ .03125 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) _ .12500 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS - - -- STREET FLOW MODEL RESULTS: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) _ .52 - HALFSTREET FLOOD WIDTH(FEET) = 19.71 AVERAGE FLOW VELOCITY(FEET /SEC.) 2.85 PRODUCT OF DEPTH &VELOCITY = 1.48 EI V ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -95 Advanced Engineering Software (aes) L Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 0 8253 SIERRA AVE FONTANA CA. TEL (909) 356 - 1815 FAX (909) 356 -1795 irr ---------------------------------------------------------------------------- TIME /DATE OF STUDY: 9:31 3/10/2003 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Tract 16258, Fontana * Catch Basin Capacity Calculation, flow -by condition * Miriam Way, west side ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » »FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. p �i �0_1 STREETFLOW(CFS) = 11.42 GUTTER FLOWDEPTH(FEET) _ .52 BASIN LOCAL DEPRESSION(FEET) _ .33 FLOWBY BASIN WIDTH(FEET) = 21.00 » »CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 22.6 »»CALCULATED ESTIMATED INTERCEPTION(CFS) = 11.1 t7 d ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE FONTANA CA. TEL (909) 356 - 1815 FAX (909) 356 -1795 ---------------------------------------------------------------------------- �1//1 TIME /DATE OF STUDY: 9:36 3/10/2003 ia * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** • Tract 16258, Fontana • Street Capacity Calculation / 100 year storm • Miriam Way, East Side ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ws » »STREETFLOW MODEL INPUT INFORMATION«« CONSTANT STREET GRADE(FEET /FEET) _ .007000 CONSTANT STREET FLOW(CFS) = 10.70 .$ AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 #AN CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020000 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) _ .50 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 �a CONSTANT SYMMETRICAL GUTTER- LIP(FEET) _ .03125 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) _ .12500 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS - - -- STREET FLOW MODEL RESULTS: ----------------------------------------------------------------------- NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) _ .51 HALFSTREET FLOOD WIDTH(FEET) = 19.13 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.83 PRODUCT OF DEPTH &VELOCITY = 1.44 0 E� * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: rA ALLARD ENGINEERING 8253 SIERRA AVE FONTANA CA. TEL (909) 356 - 1815 FAX (909) 356 -1795 ---------------------------------------------------------------------------- TIME /DATE OF STUDY: 9:41 3/10/2003 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** • Tract 16258, Fontana • Catch Basin Capacity Calculation, flow -by condition • Miriam Way, east side ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** »» FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 10.70 GUTTER FLOWDEPTH(FEET) _ .51 BASIN LOCAL DEPRESSION(FEET) _ .33 FLOWBY BASIN WIDTH(FEET) = 21.00 » »CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 21.6 »»CALCULATED ESTIMATED INTERCEPTION(CFS) = 10.6 �j H_ I i J ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -95 Advanced Engineering Software (aes) � Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE FONTANA CA. TEL (909) 356 - 1815 FAX (909) 356 -1795 ---------------------------------------------------------------------------- �u TIME /DATE OF STUDY: 9:45 3/10/2003 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Tract 16258, Fontana * Street Capacity Calculation / 100 year storm 00 * Helena Place at South end D rr k� ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » »STREETFLOW MODEL INPUT INFORMATION «« ---------------------------------------------------------------------------- CONSTANT STREET GRADE(FEET /FEET) _ .016000 CONSTANT STREET FLOW(CFS) = 18.59 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020000 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) _ .50 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) _ .03125 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) _ .12500 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES STREET FLOW MODEL RESULTS: ---------------------------------------------------------------------------- STREET FLOW DEPTH(FEET) _ .44 4 HALFSTREET FLOOD WIDTH(FEET) = 15.68 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.61 PRODUCT OF DEPTH &VELOCITY = 1.59 8 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -95 Advanced Engineering Software (aes) it Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: on ALLARD ENGINEERING 1� 8253 SIERRA AVE FONTANA CA. TEL (909) 356 - 1815 FAX (909) 356 -1795 ---------------------------------------------------------------------------- A TIME /DATE OF STUDY: 9:50 3/10/2003 so * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** • Tract 16258, Fontana • Street Capacity Calculation / 100 year storm • Helena Place at Carlota Way ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » »STREETFLOW MODEL INPUT INFORMATION« - « --------------------------- CONSTANT STREET GRADE(FEET /FEET) _ .016000 CONSTANT STREET FLOW(CFS) = 13.61 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 1�11t INTERIOR STREET CROSSFALL(DECIMAL) _ .020000 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) '_ .50 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) _ .03125 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) _ .12500 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES - - -- STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .40 HALFSTREET FLOOD WIDTH(FEET) = 13.62 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.45 PRODUCT OF DEPTH &VELOCITY = 1.38 >> FLOW OF 100 YR. Q IN HELENA PLACE WILL NOT FLOOD CARLOTA WAY << H y e ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE FONTANA CA. TEL (909) 356 - 1815 FAX (909) 356 -1795 ---------------------------------------------------------------------------- TIME /DATE OF STUDY: 9:59 3/10/2003 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** • Tract 16258, Fontana • Street Capacity Calculation / 100 year storm • Gabriel Drive at Carlota Way ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » »STREETFLOW MODEL INPUT INFORMATION«« CONSTANT STREET GRADE(FEET /FEET) = .011500 CONSTANT STREET FLOW(CFS) = 15.30 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 X11 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020000 io OUTSIDE STREET CROSSFALL(DECIMAL) = .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = .50 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) _ .03125 Ito CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) = .12500 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES STREET FLOW MODEL RESULTS: - - -- ----------------------------------------------------------------------- STREET FLOW DEPTH(FEET) = .43 HALFSTREET FLOOD WIDTH(FEET) = 15.16 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.16 PRODUCT OF DEPTH &VELOCITY = 1.36 >> FLOW OF 100 YR. Q IN GABRIEL DRIVE WILL NOT FLOOD CARLOTA WAY << 7 r A ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE FONTANA CA. TEL (909) 356 - 1815 FAX (909) 356 -1795 ---------------------------------------------------------------------------- TIME /DATE OF STUDY: 10: 9 3/10/2003 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** • Tract 16258, Fontana • Street Capacity Calculation / 100 year storm • Gabriel Drive at Agatha Lane ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » »STREETFLOW MODEL INPUT INFORMATION «« --------------------------------------------------------------- CONSTANT STREET GRADE(FEET /FEET) _ .020000 CONSTANT STREET FLOW(CFS) = 9.85 >> Q ESTABLISHED BY ADDING 1/3 OF Q FROM NODE 56 TO 55 TO Q 100 AT NODE 56 << it AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 ' INTERIOR STREET CROSSFALL(DECIMAL) _ .020000 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) _ .50 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) _ .03125 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) _ .12500 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES STREET FLOW MODEL RESULTS: ---------------------------------------------------------------------------- STREET FLOW DEPTH(FEET) _ .36 HALFSTREET FLOOD WIDTH(FEET) = 11.55 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.39 PRODUCT OF DEPTH &VELOCITY = 1.21 >> FLOW OF 100 YR. Q IN GABRIEL DRIVE WILL NOT FLOOD AGATHA LANE << F-1 D J ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 4R Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE FONTANA CA. TEL (909) 356 - 1815 FAX (909) 356 -1795 ---------------------------------------------------------------------------- TIME /DATE OF STUDY: 16: 4 3/21/2003 file name : 258scf @j.res * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** • Tract 16258, Fontana • Street Capacity CAlculation / 100 year storm • Elsa Court at Agatha Lane ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** »» STREETFLOW MODEL INPUT INFORMATION«« ---------------------------------------------------------------------------- CONSTANT STREET GRADE(FEET /FEET) _ .018000 A; s CONSTANT STREET FLOW(CFS) = 11.60 >> Q ESTABLISHED BY ADDING '-� OF Q FROM NODE 51 TO 52 TO Q 100 AT NODE 51 << AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020000 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) _ .50 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) _ .03125 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) _ .12500 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES STREET FLOW MODEL RESULTS: ---------------------------------------------------------------------------- AA STREET FLOW DEPTH(FEET) _ .38 HALFSTREET FLOOD WIDTH(FEET) = 12.59 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.41 PRODUCT OF DEPTH &VELOCITY = 1.29 >> FLOW OF 100 YR. Q IN ELSA COURT WILL NOT FLOOD AGATHA LANE << u J ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE FONTANA CA. TEL (909) 356 - 1815 FAX (909) 356 -1795 ---------------------------------------------------------------------------- TIME /DATE OF STUDY: 10:29 3/10/2003 ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Tract 16258, Fontana • Street Capacity Calculation / 100 year storm • Elsa Court at Penny Lane ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » »STREETFLOW MODEL INPUT INFORMATION «« CONSTANT STREET GRADE(FEET /FEET) _ .018000 CONSTANT STREET FLOW(CFS) = 15.12 ,. AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 1wt INTERIOR STREET CROSSFALL(DECIMAL) _ .020000 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) _ .50 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 IRS CONSTANT SYMMETRICAL GUTTER- LIP(FEET) _ .03125 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) _ .12500 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES - - -- STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .40 HALFSTREET FLOOD WIDTH(FEET) = 13.93 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.67 PRODUCT OF DEPTH &VELOCITY = 1.49 - - - - >> FLOW - OF - 100 YR. - Q IN - ELSA - COURT - WILL - NOT - FLOOD - PENNY - LANE - «--- - - - - -- H H * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE FONTANA CA. TEL (909) 356 - 1815 FAX (909) 356 -1795 ---------------------------------------------------------------------------- TIME /DATE OF STUDY: 10:41 3/10/2003 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** • Tract 16258, Fontana • Street Capacity Calculation / 100 year storm • Riley Drive at South end ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** »» STREETFLOW MODEL INPUT INFORMATION«« --------------------------------------------------------------- CONSTANT STREET GRADE(FEET /FEET) _ .016000 CONSTANT STREET FLOW(CFS) = 22.41 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 inn CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 1w INTERIOR STREET CROSSFALL(DECIMAL) _ .020000 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) _ .50 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) _ .03125 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) _ .12500 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES - - -- STREET FLOW MODEL RESULTS: ------------------------------------------------------------------ STREET FLOW DEPTH(FEET) _ .46 - HALFSTREET FLOOD WIDTH(FEET) = 16.71 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.85 PRODUCT OF DEPTH &VELOCITY = 1.77 tl n y F". ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE FONTANA CA. TEL (909) 356 - 1815 FAX (909) 356 -1795 ---------------------------------------------------------------------------- TIME /DATE OF STUDY: 14:43 2/27/2003 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** AA * Tract 16258 * Street Capacity Calculation * Riley Drive @ Penny Lane / 100 year Q ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 9 �r H ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » »STREETFLOW MODEL INPUT INFORMATION«« ---------------------------------------------------------------------------- CONSTANT STREET GRADE(FEET /FEET) _ .016000 CONSTANT STREET FLOW(CFS) = 16.89 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020000 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) _ .50 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) _ .03125 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) _ .12500 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES STREET FLOW MODEL RESULTS: ---------------------------------------------------------------------------- STREET FLOW DEPTH(FEET) _ .43 HALFSTREET FLOOD WIDTH(FEET) = 15.09 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.53 PRODUCT OF DEPTH &VELOCITY = 1.51 L' r� ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE FONTANA CA. TEL (909) 356 - 1815 FAX (909) 356 -1795 ---------------------------------------------------------------------------- �I TIME /DATE OF STUDY: 10:46 3/10/2003 ---------------------------------- * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** • Tract 16258, Fontana • Street Capacity Calculation / 100 year storm • Abigail Place at South end ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » »STREETFLOW MODEL INPUT INFORMATION «« t. ---------------------------------------------------------------------------- CONSTANT STREET GRADE(FEET /FEET) _ .017000 CONSTANT STREET FLOW(CFS) = 22.88 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 !� INTERIOR STREET CROSSFALL(DECIMAL) _ .020000 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) _ .50 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) _ .03125 llr� CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) _ .12500 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES STREET FLOW MODEL RESULTS: ilm -------------------------------------------------------------- ------------ -� STREET FLOW DEPTH(FEET) _ . 4 6 ti .:. , �'- HALFSTREET FLOOD WIDTH(FEET) = 16.71 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.93 PRODUCT OF DEPTH &VELOCITY = 1.81 t. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE Pq (C) Copyright 1982 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: OR ALLARD ENGINEERING 8253 SIERRA AVE FONTANA CA. TEL (909) 356 - 1815 FAX (909) 356 -1795 ---------------------------------------------------------------------------- TIME /DATE OF STUDY: 10:57 3/10/2003 nw * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** itu * Tract 16258, Fontana * Street Capacity Calculation / 100 year storm * Abigail Place at Penny Lane ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » »STREETFLOW MODEL INPUT INFORMATION«« CONSTANT STREET GRADE(FEET /FEET) _ .017000 CONSTANT STREET FLOW(CFS) = 16.22 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020000 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) _ .50 PF CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 ,.,, CONSTANT SYMMETRICAL GUTTER- LIP(FEET) _ .03125 alt CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) _ .12500 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES STREET FLOW MODEL RESULTS: ---------------------------------------------------------------------------- STREET FLOW DEPTH(FEET) _ .42 HALFSTREET FLOOD WIDTH(FEET) = 14.65 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.58 PRODUCT OF DEPTH &VELOCITY = 1.50 - - - ->> FLOW OF 100 YR. Q AT ABIGAIL PLACE WILL NOT FLOOD PENNY LANE << J 0 d ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE FONTANA CA. TEL (909) 356 - 1815 FAX (909) 356 -1795 ---------------------------------------------------------------------------- ! TIME /DATE OF STUDY: 11:10 3/10/2003 DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * ** * Tract 16258, Fontana * Street Capacity Calculation / 25 year storm * Greta Lane (west side) at Miriam Way ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » »STREETFLOW MODEL INPUT INFORMATION«« CONSTANT STREET GRADE(FEET /FEET) _ .005000 CONSTANT STREET FLOW(CFS) = 15.02 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 1 INTERIOR STREET CROSSFALL(DECIMAL) _ .020000 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) _ .50 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) _ .03125 it CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) _ .12500 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES STREET FLOW MODEL RESULTS: ---------------------------------------------------------------------------- STREET FLOW DEPTH(FEET) _ .49 HALFSTREET FLOOD WIDTH(FEET) = 17.98 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.24 PRODUCT OF DEPTH &VELOCITY = 1.09 H, D ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE FONTANA CA. TEL (909) 356 - 1815 FAX (909) 356 -1795 ---------------------------------------------------------------------------- TIME /DATE OF STUDY: 11:18 3/10/2003 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Tract 16258, Fontana * Street Capacity Calculation / 25 year storm * Greta Lane (east side) at Miriam Way ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** »» STREETFLOW MODEL INPUT INFORMATION «« CONSTANT STREET GRADE(FEET /FEET) _ .010800 CONSTANT STREET FLOW(CFS) = 15.86 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020000 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) _ .50 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 (w, CONSTANT SYMMETRICAL GUTTER- LIP(FEET) _ .03125 rw CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) _ .12500 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES OR STREET FLOW MODEL RESULTS: ---------------------------------------------------------------------------- STREET FLOW DEPTH(FEET) _ .44 HALFSTREET FLOOD WIDTH(FEET) = 15.66 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.08 PRODUCT OF DEPTH &VELOCITY = 1.36 F1 J �'1 Hl ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE FONTANA CA. TEL (909) 356 - 1815 FAX (909) 356 -1795 ---------------------------------------------------------------------------- TIME /DATE OF STUDY: 13: 7 3/21/2003 ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Tract 16258 and 16258 -1, Fontana * Sump Basin Calculations for all streets in sump conditions * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » »SUMP TYPE BASIN INPUT INFORMATION«« ---------------------------------------------------------------------- - - - - -- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 22.90 BASIN OPENING(FEET) _ .71 DEPTH OF WATER(FEET) _ .97 » »CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 8.76 NOTE: All basin are in sump condition: Helena Place, Riley Drive and Abigail Place have less Than or equal to 22.90 cfs, with the same ponding Depth = 0.97 W = 14' as requested fi P pr T1 Young Homes- Tract 16258 T2 Line A T3 Final So 981.5501362.980 1 R 1056.8201364.110 1 .013 JX 1064.2001365.270 6 20 3.013 R 1107.8601366.070 6 .013 R 1131.7701366.510 6 .013 JX 1133.2701366.530 6 22 .013 R 1178.5501367.370 6 .013 R 1181.8001367.430 6 .013 JX 1183.3001367.460 10 9 .013 R 1221.9201368.170 10 .013 R 1292.6001369.470 10 .013 JX 1297.4601369.560 11 .013 R 1657.9101376.190 11 .013 JX 1666.1801376.710 15 14 .013 R 1802.6001377.520 15 .013 R 1873.2901377.950 15 .013 JX 1877.9501377.970 16 .013 R 2048.0901378.820 16 .013 R 2118.7801379.180 16 .013 JX 2123.4401379.390 23 .013 R 2187.1401382.420 16 .013 SH 2187.1401382.420 16 CD 1 4 1 .000 4.500 CD 2 4 1 .000 1.500 CD 3 4 1 .000 1.500 CD 4 4 1 .000 3.000 CD 5 4 1 .000 1.500 CD 6 4 1 .000 3.500 CD 7 4 1 .000 1.500 CD 8 4 1 .000 3.500 CD 9 4 1 .000 1.500 CD 10 4 1 .000 3.500 CD 11 4 1 .000 3.500 CD 12 4 1 .000 3.000 CD 13 4 1 .000 3.000 CD 14 4 1 .000 3.000 CD 15 4 1 .000 3.000 CD 16 4 1 .000 3.000 CD 18 4 1 .000 1.500 CD 20 4 1 .000 2.000 CD 22 4 1 .000 2.000 CD 23 4 1 .000 3.000 Q 53.700 .0 0 1369.745 .000 .000 0 11.100 10.6001366.8601366.860 -70.0 60.0 .000 .000 .000 0 31.400 .000 0 09.000 1367.770 -45.0 .000 58.603 .000 0 .000 .000 0 10.500 1368.440 -45.0 .000 .000 .000 0 .000 .000 0 .000 .000 0 59.700 1376.500 45.0 .000 .000 .000 0 - 90.000 .000 0 .000 .000 0 90.000 .000 0 .000 .000 0 1382.4200 .000 .000 .000 .00 .000 .000 .000 .00 .000 .000 .000 .00 .000 .000 .000 .00 .000 .000 .000 .00 .000 .000 .000 .00 .000 .000 .000 .00 .000 .000 .000 .00 .000 .000 .000 .00 .000 .000 .000 .00 .000 .000 .000 .00 .000 .000 .000 .00 .000 .000 .000 .00 .000 .000 .000 .00 .000 .000 .000 .00 .000 .000 .000 .00 .000 .000 .000 .00 .000 .000 .000 .00 .000 .000 .000 .00 .000 .000 .000 .00 FILE: 2581inea.WSW W S P G W- CIVILDESIGN Version 12.95 PAGE 1 For: Allard Engineering, Fontana, California - SIN 643 WATER SURFACE PROFILE LISTING Date: 4 -15 -2003 Time:10:46:52 Young Homes- Tract 16258 Line A Final I Invert I Depth I Water I Q I Vel Vel I Energy I Super ICriticallFlow ToplHeight /IBase Wtl INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.E1.1 Elev I Depth I Width IDia. -FTIor I.D.I ZL IPrs /Pip - I - L /Elem - I - ICh Slope I - I - I - i - I - I - I - I - - I - SF Avel - I - - I - HF ISE DpthlFroude - I - NINorm Dp - I - - I - I "N" - I - I X -Falls - I ZR IType Ch ******+** I*****+ �* rlr.* �**** I+, r*** r, r** I* �*+ �+*** l.***, t*, rl****►** I* r***++, r+ l+***** �I�******* I * * *. * * *�l * * ► * : * :I��r. * +�l * * * ** I * + *r * *+ 981.550 I I 1362.980 I 6.765 I 1369.745 I 154.60 9.72 I 1.47 I 1371.21 .00 I 3.64 I .00 I 4.500 I I .000 .00 I 1 .0 - I - 75.270 - I - .0150 - I - - I - - I - - I - - I - .0062 - I - .47 - I - 6.77 - I - .00 2.62 - 1 - - I - .013 - I - .00 .00 1- PIPE 1056.820 I I 1364.110 6.100 I I 1370.210 I 154.60 9.72 I 1.47 I 1371.68 .00 i 3.64 I .00 i 4.500 I I .000 .00 I 1 .0 JUNCT STR 1572 .0118 .09 6.10 .00 .013 .00 .00 PIPE I I I I I I I I I I I I I 1064.200 1365.270 4.107 1369.377 132.90 13.81 2.96 1372.34 .00 3.32 .00 3.500 .000 .00 1 .0 43.660 .0183 .0174 .76 4.11 .00 2.80 .013 .00 .00 PIPE 1107.860 I I 1366.070 4.069 I 1370.139 I I 132.90 13.81 I 2.96 I 1373.10 .00 I 3.32 I .00 I 3.500 I I .000 .00 I 1 .0 - I - 23.910 - I - .0184 - I - - I - - I - - I - - I - .0174 - I - .42 - I - .00 - I - .00 2.79 - I - - I - .013 - I - .00 .00 1- PIPE 1131.770 I 1366.510 I 4.396 I I 1370.906 I 132.90 13.81 I 2.96 I 1373.87 .00 I 3.32 I .00 I 3.500 I I .000 .00 I 1 .0 - I - JUNCT STR - I - .0133 - I - - I - - I - - I - - I - .0163 - I - .02 - I - .00 - I - .00 - I - - I - .013 - I - .00 .00 I- PIPE 1133.270 - I - 1366.530 5.117 1371.647 123.90 12.88 2.58 1374.22 .00 3.27 .00 3.500 .000 .00 1 .0 45.280 - I - .0186 - I - - I - - I - - I - - I - .0152 - I - .69 - I - .00 - I - .00 2.61 - I - - I - .013 - I - .00 .00 1- PIPE 1178.550 - I - I 1367.370 - I - I 5.380 - I - I 1372.750 I I 123.90 12.88 I 2.58 I 1375.32 .00 I 3.27 I .00 I 3.500 I I .000 .00 I 1 .0 3.250 .0185 - I - - I - - I - - I - .0152 - I - .05 - I - 5.38 - I - .00 2.61 - I - - I - .013 - I - .00 .00 1- PIPE 1181.800 - I - I 1367.430 - I - I 5.369 - I - I 1372.799 I I 123.90 12.88 I 2.58 I 1375.37 .00 i 3.27 I .00 I 3.500 I I .000 .00 I 1 C r�,`� JUNCT STR .0199 - I - - I - - I - - I - .0139 - I - .02 - I - 5.37 - I - .00 - I - - I - .013 - I - .00 .00 i- PIPE 1183.300 - I - I 1367.460 - I - I 6.053 - I - I 1373.513 - I - I I 113.40 - I - 11.79 I 2.16 I 1375.67 .00 I 3.20 I .00 I 3.500 I I .000 .00 I 1 C 38.620 .0184 - I - - I - .0127 - I - .49 - I - 6.05 - I - .00 2.44 - I - - I - .013 - I - .00 .00 1- PIPE an on KA FILE: 2581inea.WSW W S P G W- CIVILDESIGN Version 12.95 PAGE 2 For: Allard Engineering, Fontana, California - SIN 643 WATER SURFACE PROFILE LISTING Date: 4 -15 -2003 Time:10:46:52 Young Homes- Tract 16258 Line A Final Invert I Depth I Water I Q I Vel Vel I Energy I Super ICriticallFlow ToplHeight /IBase WtI INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.E1.1 Elev I Depth I Width IDia. -FTIor I.D.I ZL IPrs /Pip - I - L /Elem - I - ICh Slope I - I - I - I - - I - I I - I - - I - SF Avel - I - - I - HF ISE DpthlFroude - I - NINorm Dp - I - - I - - I - I "N" I X -Fa11I ZR - I IType Ch 1221.920 I I 1368.170 I 5.834 1374.004 I I 113.40 11.79 I 2.16 I 1376.16 .00 I 3.20 I .00 I I 3.500 I .000 .00 I 1 .0 - I - 70.680 - I - .0184 - I - - I - - I - - I - - I - .0127 - I - .90 - I - 5.83 - I - .00 2.44 - I - - I - .013 - I - .00 .00 1- PIPE 1292.600 I I 1369.470 I 5.432 1374.902 I I 113.40 11.79 I 2.16 I 1377.06 .00 I 3.20 I .00 I I 3.500 I .000 .00 I 1 .0 - I - JUNCT STR - I - .0173 - I - - I - - I - - I - - I - .0127 - I - .06 - i - 5.43 - I - .00 - I - - I - .013 - I - .00 .00 I- PIPE 1297.460 I 1369.554 I I 5.410 1374.964 I I 113.40 11.79 I 2.16 I 1377.12 .00 I 3.20 i .00 I I 3.500 I .000 .00 I 1 .0 - I - 307.948 - I - .0184 - I - - I - - I - - I - - I - .0127 - I - 3.91 - I - 5.41 - I - .00 2.43 - I - - I - .013 - I - .00 .00 1- PIPE 1605.408 i 1375.230 I I 3.645 1378.875 I I 113.40 11.79 I 2.16 I 1381.03 .00 I 3.20 I .00 I I 3.500 I .000 .00 I 1 .0 HYDRAULIC JUMP 1605.408 I 1375.230 I I 2.708 1377.938 I I 113.40 14.20 I 3.13 i 1381.07 .00 I 3.20 I 2.93 I I 3.500 I .000 .00 I 1 .0 - I - .128 - I - .0184 - I - - I - - I - - I - - I - .0142 - I - .00 - I - 2.71 - I - 1.51 2.43 - I - - I - .013 - I - .00 .00 1- PIPE 1605.536 - I - I 1375.233 I I 2.708 1377.941 I I 113.40 14.19 I 3.13 I 1381.07 .00 I 3.20 I 2.93 I I 3.500 I .000 .00 I 1 .0 30.018 - I - .0184 - I - - I - - I - - I - - I - .0136 - I - .41 - I - 2.71 - I - 1.51 2.43 - I - - I - .013 - I - .00 .00 1- PIPE 1635.554 - I - I 1375.786 I I 2.846 1378.632 I I 113.40 13.53 I 2.84 I 1381.48 .00 I 3.20 I 2.73 I I 3.500 I .000 .00 I 1 .0 16.488 - I - .0184 - I - - I - - I - - I - - I - .0123 - I - .20 - I - 2.85 - I - 1.36 2.43 - I - - I - .013 - I - .00 .00 1- PIPE 1652.043 -I- I 1376.090 - I - I I 3.004 - I - 1379.094 I I 113.40 12.90 I 2.58 I 1381.68 .00 I 3.20 i 2.44 I I 3.500 I .000 .00 I 1 .0 5.867 .0184 - I - - I - - I - - I - .0114 - I - .07 - I - 3.00 - I - 1.20 2.43 - I - - I - .013 - I - .00 .00 1- PIPE 1657.910 I 1376.198 I I 3.199 1379.397 I I 113.40 12.30 I 2.35 I 1381.75 .00 I 3.20 I 1.96 I I 3.500 I .000 .00 I 1 .0 -I- JUNCT STR -I- .0619 - I - - I - - I - - I - - I - .0088 - I - .07 - I - 3.20 - I - 1.00 - I - - I - .013 - I - .00 .00 I- PIPE [ "`l U1 " Wt I wig BA ail I V1 U . A NMI FILE: 2581inea.WSW W S P G W- CIVILDESIGN Version 12.95 PAGE 3 For: Allard Engineering, Fontana, California - S/N 643 WATER SURFACE PROFILE LISTING Date: 4 -15 -2003 Time:10:46:52 Young Homes- Tract 16258 Line A Final +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ + + + + + + ++ I Invert I Depth I Water I 4 I Vel Vel I Energy I Super ICriticalIFlow ToplHeight /IBase Wti INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.l Elev I Depth I Width IDia. -FTlor I.D.I ZL IPrs /Pip - I - L /Elem - I - ICh Slope I - I - - I - I I - I - I - I - - I - SF Avel - I - HF ISE - I - DpthlFroude - I - NINorm - I - Dp - I - - I - I "N" I X -Fa11i ZR - I IType Ch it 1666.180 I I 1376.710 5.163 I I 1381.873 I 53.70 7.60 I .90 I 1382.77 .00 I I 2.38 .00 I I 3.000 I .000 .00 I 1 .0 136.420 .0059 .0065 .88 5.16 .00 2.60 .013 .00 .00 PIPE 1802.600 I I 1377.520 5.237 I I 1382.757 I 53.70 7.60 I .90 I 1383.65 .00 I I 2.38 .00 I I 3.000 I .000 .00 I 1 .0 - I - 70.690 - I - .0061 - I - - I - - I - - I - - I - .0065 - I - .46 - I - .00 - I - .00 - I - 2.56 - I - .013 - I - .00 .00 1- PIPE 1873.290 I I 1377.950 - I - 5.445 I I 1383.395 - I - I 53.70 7.60 I .90 I 1384.29 .00 I 2.38 I .00 I I 3.000 I .000 .00 I 1 .0 - I - JUNCT STR .0043 - I - - I - - I - - I - .0065 - I - .03 - I - 5.44 - I - .00 - I - - I - .013 - I - .00 .00 I- PIPE 1877.950 - I - I I 1377.970 - I - 5.455 I I 1383.425 - I - I 53.70 7.60 I .90 I 1384.32 .00 I 2.38 I .00 I I 3.000 I .000 .00 I 1 .0 170.140 .0050 - I - - I - - I - - I - .0065 - I - 1.10 - I - 5.45 - I - .00 - I - 3.00 - I - .013 - I - .00 .00 1- PIPE 2048.090 I I 1378.820 - I - 5.708 I I 1384.528 - I - I 53.70 7.60 1 .90 I 1385.42 .00 I 2.38 I .00 I I 3.000 I .000 .00 I 1 .0 - I - 70.690 .0051 - I - - I - - i - - I - .0065 - I - .46 - f - .00 - I - .00 - i - 3.00 - I - .013 - i - .00 .00 1- PIPE 2118.780 -I- I I 1379.180 -I- 5.985 - I - I I 1385.165 - I - I 53.70 7.60 I .90 I 1386.06 .00 I 2.38 I .00 I I 3.000 I .000 .00 I 1 .0 JUNCT STR .0451 - I - - I - - I - .0065 - i - .03 - I - 5.99 - I - .00 - I - - I - .013 - I - .00 .00 I- PIPE 2123.440 -i- I I 1379.390 -I- 5.805 I I 1385.195 I 53.70 7.60 I .90 I 1386.09 .00 I 2.38 I .00 I I 3.000 I .000 .00 I 1 .0 63.700 .0476 - I - - I - - I - - I - - I - .0065 - I - .41 - I - 5.81 - I - .00 - I - 1.26 - I - .013 - I - .00 .00 1- PIPE 2187.140 -I- I I 1382.420 -I- 3.188 -I- I I 1385.608 -I- i 53.70 -I- 7.60 -I- I .90 -I- I 1386.50 -I- .00 -I- I 2.38 -I- I .00 -I- I I 3.000 -I- I .000 -I- .00 I 1 .0 I- w IQ1 ON �1 pq 6 i T1 Tract 16258, Fontana T2 Lateral "A -1" T3 SO 1004.5001366.860 1 R 1026.8801369.850 1 0 WE 1026.8801369.850 2 SH 1026.8801369.850 2 CD 1 4 1 .000 2.000 CD 2 2 0 .000 6.700 Q 11.100 .0 .014 .250 .000 .000 21.000 .000 1370.210 1369.850 000 .00 000 .00 Ce, ��� moors 10 WWI Us RA RA 016-4 04 SIM FILE: 258- a -l.WSW W S P G W- CIVILDESIGN Version 12.95 PAGE 1 For: Allard Engineering, Fontana, California - SIN 643 WATER SURFACE PROFILE LISTING Date: 3- 5 -2003 Time: 7 :26:53 Tract 16258, Fontana Lateral "A -1" +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ + + + + + + ++ I Invert I Depth I Water I 4 I Vel Vel I Energy I Super ICriticallFlow ToplHeight /IBase Wti INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.E1.1 Elev I Depth I Width IDia. -FTIor I.D.I ZL IPrs /Pip L /Elem ICh Slope I I I I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X -Fall) ZR IType Ch 1004.500 I 1366.860 I 3.350 I I 1370.210 I 11.10 3.53 I .19 I 1370.40 .00 I I 1.20 .00 I 2.000 I I .000 .00 I 1 .0 -I- 10.102 -I- .1336 -I- -I- -I- -I- -I- .0028 -I- .03 -I- 3.35 -I- .00 -I- .51 -I- .014 -I- .00 .00 1- PIPE 1014.602 I 1368.210 I 2.028 I I 1370.238 I 11.10 3.53 I .19 I 1370.43 .00 I I 1.20 .00 I 2.000 I I .000 .00 I 1 .0 HYDRAULIC JUMP 1014.602 I 1368.210 I .664 I I 1368.874 I 11.10 12.17 I 2.30 I 1371.17 .00 I I 1.20 1.88 - I - I 2.000 I I .000 - I - .00 t 1 .0 -I .028 - I - .1336 - I - - I - - I - - I - - I - .0492 - I - .00 - I - .66 - I - 3.08 .51 - I - .014 .00 .00 1- PIPE 1014.631 I 1368.214 I .664 I I 1368.878 - 1 - I 11.10 12.16 - I - I 2.30 I 1371.17 .00 I I 1.20 1.88 - I - I 2.000 I I .000 - I - .00 I 1 .0 -I 2.113 -I- .1336 - I - - 1 - - I - .0461 - I - .10 - I - .66 - I - 3.08 .51 - I - .014 .00 .00 1- PIPE 1016.743 I 1368.496 I .688 I I 1369.184 I 11.10 11.60 1 2.09 I 1371.27 .00 I I 1.20 1.90 I 2.000 I i .000 .00 I 1 .0 -I 1.780 -I- .1336 -I- -I- -I- -I- -I .0404 -I- .07 -I- .69 -I- 2.88 -I- .51 -I- .014 -I- .00 .00 1- PIPE 1018.523 I 1368.734 I .712 I I 1369.446 I 11.10 11.06 I 1.90 I 1371.34 .00 I 1 1.20 1.92 I 2.000 I I .000 .00 I 1 .0 - I - 1.493 -I- .1336 -I- -I- -I- -I- -I- .0354 -I- .05 -I- .71 -I- 2.69 -i- .51 -I- .014 -1- .00 .00 1- PIPE 1020.016 I 1368.933 I .738 I I 1369.671 I 11.10 10.54 I 1.73 I 1371.40 .00 I 1 1.20 1.93 I 2.000 I I .000 .00 I 1 .0 -I- 1.277 -I- .1336 -I- -I- -I- -I- -I- .0311 -I- .04 -I- .74 -I- 2.52 -I- .51 -I- .014 -I- .00 .00 1- PIPE 1021.293 I 1369.104 I .764 - I - I I 1369.868 I 11.10 10.05 1.57 I I 1371.44 .00 I I 1.20 1.94 I 2.000 I I .000 .00 I 1 .0 - I - 1.078 - I - .1336 - I - - I - - I - - I - .0273 - I - .03 - I - .76 - I - 2.35 - I - .51 - I - .014 - I - .00 .00 1- PIPE 1022.370 I 1369.248 I .792 I I 1370.040 I 11.10 9.58 1.43 I I 1371.47 .00 I I 1.20 1.96 I 2.000 I I .000 .00 I 1 .0 -I .918 - I - .1336 - I - - I - - 1 - - I - - I - .0239 - I - .02 - I - .79 - I - 2.19 - I - .51 - I - .014 - I - .00 .00 1- PIPE FILE: 258- a - 1.WSW W S P G W- CIVILDESIGN Version 12.95 PAGE 2 For: Allard Engineering, Fontana, California - S/N 643 WATER SURFACE PROFILE LISTING Date: 3- 5 -2003 Time: 7:26:53 Tract 16258, Fontana Lateral "A -1" I Invert I Depth I Water I Q I Vel Vel I Energy I Super ICriticallFlow ToplHeight /IBase Wtl INO Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.l Elev I Depth I Width IDia. -FTior I.D.I - I - ZL IPrs /Pip - I - I - L /Elem - I - ICh Slope - I - I I - I - I - I - I - I - - I - SF Avel - I - HF ISE - I - DpthlFroude - I - NINorm - I - Dp - I - I "N" I X -Fall) ZR IType Ch ++++++ xxxlxx+ x+ xxxxlxx*+ xxx xl+++++ x+*+ I+ xxxxx*+* I+++**** I+++++** I+ x++*++** Ix++*+** I+++*+*** I + + * * + + + +I + + + + + * +I + + + + + + *I * + + ++ I + * * + * ++ 1023.288 I 1369.370 I I .821 I 1370.191 I 11.10 9.14 I 1.30 I 1371.49 .00 I 1.20 I 1.97 I 2.000 I I .000 .00 I 1 .0 -I- .780 -I- .1336 -I- -I- -I- -I- -I- .0210 -I- .02 -I- .82 -I- 2.05 -I- .51 -I- .014 -I- .00 .00 1- PIPE 1024.069 I 1369.474 I I .851 I 1370.325 I 11.10 8.71 I 1.18 -I- I 1371.50 -I- .00 -I- I 1.20 -I- I 1.98 I 2.000 I I .000 .00 I 1 .0 -I- .661 -I- .1336 -I- -I- -I- -I- .0184 .01 .85 1.91 -I- .51 -I .014 -I- .00 .00 1- PIPE 1024.730 I 1369.563 I I .882 I 1370.445 i 11.10 8.31 -I- I 1.07 -I- i 1371.52 -I- .00 -I- I 1.20 -I- I 1.99 -I- I 2.000 -I- I I .000 -I- .00 I 1 .0 - I - .549 - I - .1336 -I- -I- -I- .0162 .01 .88 1.78 .51 .014 .00 .00 1- PIPE 1025.279 I 1369.636 I I .915 I 1370.551 I 11.10 7.92 I .97 I 1371.53 .00 I 1.20 I 1.99 I 2.000 I I .000 .00 I 1 .0 -I- .457 -I- .1336 -I- -I- -I- -I- -I- .0143 -i- .01 -I- .92 -I- 1.66 -I .51 -i .014 -I- .00 .00 1- PIPE 1025.736 I 1369.697 I I .949 I 1370.646 I 11.10 7.55 I .89 I 1371.53 .00 I 1.20 I 2.00 I 2.000 I I .000 .00 I 1 .0 -I- .368 -I- .1336 -I- -I- -I- -1- -I- .0125 -I- .00 -I- .95 -I- 1.55 -I- .51 -I- .014 -I- .00 .00 1- PIPE 1026.103 I 1369.746 I I .985 I 1370.731 I 11.10 7.20 I .81 I 1371.54 .00 I 1.20 I 2.00 I 2.000 I I .000 .00 I 1 .0 -I .287 -I- .1336 - I - - I - - I - - I - - I - .0110 - I - .00 - I - .99 - I - 1.45 - I - .51 - I - .014 - I - .00 .00 1- PIPE 1026.391 I 1369.785 I I 1.023 I 1370.808 I 11.10 6.87 I .73 I 1371.54 .00 I 1.20 I 2.00 I 2.000 I I .000 .00 I 1 .0 -I .222 -I- .1336 -I- - I - - I - - I - - I - .0097 - I - .00 - I - 1.02 - I - 1.35 - I - .51 - I - .014 - I - .00 .00 1- PIPE 1026.613 I 1369.814 I I 1.062 I 1370.876 I 11.10 6.55 I .67 I 1371.54 .00 I 1.20 I 2.00 I 2.000 I .000 I .00 I 1 C -I .148 -I- .1336 -I- -I- -I- -I- -I- .0086 -I- .00 -I- 1.06 -I- 1.25 -I- .51 -I- .014 -I- .00 .00 1- PIPE 1026.761 I 1369.834 -I- I I 1.104 I 1370.938 I 11.10 6.24 I .60 I 1371.54 .00 I 1.20 i 1.99 I 2.000 I .000 I .00 I 1 C -I .095 .1336 -I- - I - - I - - I - - I - .0076 - I - .00 - I - 1.10 - I - 1.16 - I - .51 - I - .014 - I - .00 .00 1- PIPE FILE: 258- a-l.WSW W S P G W- CIVILDESIGN Version 12.95 PAGE 3 For: Allard Engineering, Fontana, California - SIN 643 WATER SURFACE PROFILE LISTING Date: 3- 5 -2003 Time: 7 :26:53 Tract 16258, Fontana Lateral "A -1" I Invert I Depth I Water I Q I Vel Vel I Energy I Super ICriticallFlow ToplHeight /IBase Wt1 INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.l Elev I Depth I Width IDia. -FTlor I.D.I ZL IPrs /Pip - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I L /Elem ICh Slope I I I I SF Ave► HF ISE DpthlFroude NINorm Dp I "N" I X -Fall) ZR IType Ch I I I I I I I I I I I I I 1026.856 1369.847 1.147 1370.994 11.10 5.95 .55 1371.54 .00 1.20 1.98 2.000 .000 .00 1 .0 -I- - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - 1- .024 .1336 .0067 .00 1.15 1.08 .51 .014 .00 .00 PIPE I I I I I I I I f I I I I 1026.880 1369.850 1.195 1371.045 11.10 5.67 .50 1371.54 .00 1.20 1.96 2.000 .000 .00 1 .0 WALL ENTRANCE I I I I I I I I I I I I I 1026.880 1369.850 1.942 1371.792 11.10 .27 .00 1371.79 .00 .21 21.00 6.700 21.000 .00 0 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- I- r Yri 11�1t T1 Tract 16258, Fontana T2 Lateral "A -2" T3 SO 1004.5001366.860 1 R 1016.1601368.870 1 0 WE 1016.1601368.870 2 SH 1016.1601368.870 2 CD 1 4 1 .000 2.000 CD 2 2 0 .000 7.710 Q 10.600 .0 1370.210 .014 .250 1368.870 .000 .000 .000 .00 21.000 .000 .000 .00 0 ��� X11 FILE: 258- a -2.WSW t l CI A 11A t A I _�, � I .3 46..E 11-44 04 SIM W S P G W- CIVILDESIGN Version 12.95 For: Allard Engineering, Fontana, California - SIN 643 WATER SURFACE PROFILE LISTING Tract 16258, Fontana Lateral "A -2" PAGE 1 Date: 3- 4 -2003 Time: 3:45:21 I Invert I Depth ( Water I Q I Vel V61 I Energy I Super ICriticallFlow ToplHeight /IBase Wtl INo Wth Station I Elev l (FT) I Elev I (CFS) I (FPS) Head I Grd.E1.1 Elev I Depth I Width IDia. -FTIor I.D.1 ZL IPrs /Pip - I - L /Elem - I - ICh Slope I - I - - I - I I - I - i - I - - I - SF Avel - I - HF ISE - I - DpthlFroude - I - - I - NINorm Dp - I - I "N" - I - I X -Fa111 - I ZR IType Ch 1004.500 I I 1366.860 3.350 I 1370.210 I I 10.60 3.37 I .18 I 1370.39 .00 I 1.17 I .00 I 2.000 I i .000 .00 I 1 .0 - I - 7.949 - I - .1724 - I - - I - - I - - I - - I - .0025 - I - .02 - I - 3.35 - 1 - .00 - I - .47 - I - .014 - I - .00 .00 1- PIPE 1012.449 I 1 1368.230 2.000 I 1370.230 I 10.60 I 3.37 I .18 I 1370.41 .00 I 1.17 I .00 I 2.000 I I .000 .00 I 1 .0 - I - .984 - I - .1724 - I - - I - - I - - I - - I - .0024 - I - .00 - I - 2.00 - I - .00 - I - .47 - I - .014 - i - .00 .00 1- PIPE 1013.432 I i 1368.400 1.814 I 1370.214 I I 10.60 3.54 I .19 I 1370.41 .00 I 1.17 I 1.16 I 2.000 I I .000 .00 1 1 .0 - I - .521 - I - .1724 - I - - I - - I - - I - - I - .0023 - I - .00 - I - 1.81 - I - .39 - i - .47 - i - .014 - I - .00 .00 1- PIPE 1013.953 I 1 1368.490 1.706 I 1370.196 I 10.60 I 3.71 I .21 I 1370.41 .00 I 1.17 I 1.42 I 2.000 I I .000 .00 I 1 .0 - I - .392 - I - .1724 - I - - I - - I - - I - - I - .0025 - 1 - .00 - I - 1.71 - I - .46 - I - .47 - I - .014 - I - .00 .00 1- PIPE 1014.345 -I- I I 1368.557 -I- 1.618 - I- I 1370.175 I 10.60 -I- I 3.89 I .24 I 1370.41 .00 I 1.17 I 1.57 I 2.000 I I .000 .00 I 1 .0 .318 .1724 - I - -I- -I- .0027 -I- .00 -I- 1.62 -I- .52 -I- .47 -I- .014 -I- .00 .00 1- PIPE 1014.663 I 1368.612 I 1.540 I 1370.152 I 10.60 I 4.08 I .26 I 1370.41 .00 I 1.17 I 1.68 I 2.000 I I .000 .00 i 1 .0 HYDRAULIC JUMP_ 1014.663 - I - I 1368.612 - I - I .863 - I - I 1369.475 I 10.60 I 8.17 I 1.04 I 1370.51 .00 I 1.17 I 1.98 I 2.000 I I .000 .00 I 1 .0 .331 .1724 - I - - I - - i - - I - .0160 - i - .01 - I - .86 - I - 1.78 - I - .47 - I - .014 - I - .00 .00 1- PIPE 1014.994 - I - I 1368.669 - I - I .895 - I - I 1369.564 I 10.60 - I - I 7.79 I .94 I 1370.51 .00 I 1.17 I 1.99 I 2.000 I I .000 .00 I 1 .0 .332 .1724 - I - - I - - I - .0141 - I - .00 - .90 - I - 1.66 - I - .47 - .014 - I - .00 .00 1- PIPE 1015.326 - I - I 1368.726 - I - I .928 - I - I 1369.654 - I - I 10.60 - I - I 7.42 I .86 1 1370.51 .00 I 1.17 i 1.99 I 2.000 I I .000 .00 I 1 .0 .267 .1724 - i - - i - .0124 - I - .00 - i - .93 - I - 1.55 - I - .47 - I - .014 - I - .00 .00 1- PIPE FILE: 258- a -2.WSW W S P G W- CIVILDESIGN Version 12.95 PAGE 2 For: Allard Engineering, Fontana, California - SIN 643 WATER SURFACE PROFILE LISTING Date: 3- 4 -2003 Time: 3:45:21 Tract 16258, Fontana Lateral "A -2" .*.+, r+ �t►..+:. I r * * :�,r... * +. +• +r. *.••...�• * *.•, err**, r, Invert I Depth I Water I 4 I r. r•.*•• �* r., r, r*, Vel Vel I r+•+•**, r, r, Energy r..++* r. ���..**+• .... * *..� *.. + + *r.f *.... +..... I Super ICriticallFlow ToplHeight /1Base Wtl :* + * +.►..,r INo Wth Station I Elev I - I - (FT) I - I - Elev I - I - (CFS) I - I - (FPS) - I - Head I - I - Grd.El.l - I - Elev - I - I Depth - I - I Width - I - IDia. -FTIor - I - I.D.1 - I - ZL - I IPrs /Pip - I - L /Elem ICh :...+.++:. I+.. Slope I t.+►.• 1, I tw..: f.• 1*++*+• I I �•. l► �*+* x+* r rf* r��• SF Avel I, r.+ r+*, r* 1�.***+•** HF ISE DpthlFroude 1.•+ �.«+ NINorm Irr***, r** Dp l * *r. +..►1•. I "N" + : *..1.a•.,� I X -Fall) + *I.. ZR * ++ IType Ch 1� : * *•.a I 1015.593 I 1368.772 I .963 I 1369.735 I 10.60 7.08 I .78 1370.51 I .00 I 1.17 I 2.00 I 2.000 I I .000 .00 I 1 .0 - I - .215 - I - .1724 -I- -I- -I- -I- -I .0109 -I- .00 -I- .96 -I- 1.44 -I- .47 -I- .014 -I- .00 .00 1- PIPE I 1015.808 I 1368.809 I .999 I 1369.808 I 10.60 6.75 I .71 1370.52 I .00 I 1.17 I 2.00 I 2.000 I I .000 .00 I 1 .0 - I - .155 - I - .1724 - I - - I - - I - - I - - I - .0096 - I - .00 - I - 1.00 - I - 1.34 - I - .47 - I - .014 - I - .00 .00 1- PIPE I 1015.963 1368.836 I 1.038 I I 1369.874 1 10.60 6.43 I .64 1370.52 I .00 I 1.17 I 2.00 I 2.000 I I .000 .00 I 1 .0 - I - .112 - I - .1724 - I - - I - - I - - I - - I - .0084 - I - .00 - I - 1.04 - 1 - 1.25 - I - .47 - I - .014 - I - .00 .00 1- PIPE I 1016.076 1368.855 I 1.078 I I 1369.934 I 10.60 6.14 I .58 1370.52 I .00 I 1.17 I 1.99 I 2.000 1 I .000 .00 I 1 .0 - I - .068 - I - .1724 - I - - I - - I - - I - - I - .0074 - I - .00 - I - 1.08 - I - 1.16 - I - .47 - I - .014 - I - .00 .00 1- PIPE I 1016.143 1368.867 I 1.120 I I 1369.987 I 10.60 5.85 I .53 1370.52 1 .00 I 1.17 I 1.99 I 2.000 I I .000 .00 I 1 .0 - I - .017 - I - .1724 - I - - I - - I - - I - - I - .0066 - I - .00 - I - 1.12 - I - 1.08 - I - .47 - I - .014 - I - .00 .00 1- PIPE I 1016.160 1368.870 I 1.167 I I 1370.037 I 10.60 5.57 I .48 1370.52 I .00 I 1.17 I 1.97 I 2.000 I I .000 .00 I 1 .0 WALL ENTRANCE I 1016.160 -I- 1368.870 -I- I 1.886 -1- I I 1370.756 -I- I 10.60 -I- .27 -I- I .00 -I- 1370.76 -I- I .00 -I- I .20 -I- I 21.00 -I- I 7.710 -I- I I 21.000 -I- .00 I 0 .0 I- i 1 1 1 t 1 1 T1 Tract 16258, Fontana T2 Lateral "A -3" T3 SO 1001.7501367.770 1 1371.647 R 1045.4701369.800 1 .014 WE 1045.4701369.800 2 .250 SH 1045.4701369.800 2 1369.80 CD 1 4 1 .000 2.000 .000 .000 .000 .00 CD 2 2 0 .000 7.620 10.000 .000 .000 .00 Q 8.970 .0 0 .000 .000 0 FILE: 258- a -3.WSW W S P G W- CIVILDESIGN Version 12.95 PAGE 1 For: Allard Engineering, Fontana, California - SIN 643 WATER SURFACE PROFILE LISTING Date: 4 -16 -2003 Time: 9:12:13 Tract 16258, Fontana Lateral "A -3" I Invert I Depth I Water I 4 I Vel Vel I Energy I Super ICriticallFlow ToplHeight /IBase Wtl INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.l Elev I Depth I Width IDia. -FTlor I.D.1 ZL IPrs /Pip - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I L /Elem ICh Slope I I I I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X -Fall) ZR IType Ch I I I I I I I I I I I I I 1001.750 1367.770 3.877 1371.647 8.97 2.86 .13 1371.77 .00 1.07 .00 2.000 .000 .00 1 .0 - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - 1- 42.076 .0464 .0018 .08 3.88 .00 .60 .014 .00 .00 PIPE I I I I I I I I I I i I I 1043.826 1369.724 2.000 1371.724 8.97 2.86 .13 1371.85 .00 1.07 .00 2.000 .000 .00 1 .0 - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - 1- 1.644 .0464 .0017 .00 2.00 .00 .60 .014 .00 .00 PIPE I I I I I I I I I I I I I 1045.470 1369.800 1.923 1371.723 8.97 2.89 .13 1371.85 .00 1.07 .77 2.000 .000 .00 1 .0 WALL ENTRANCE I I I I I I I I I I I I I 1045.470 1369.800 2.175 1371.975 8.97 .41 .00 1371.98 .00 .29 10.00 7.620 10.000 .00 0 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- I- T1 Tract 16258, Fontana 0 T2 Lateral "A -4" T3 SO 1001.7501368.440 1 1373.513 R 1019.7601370.480 1 .014 .000 .000 0 WE 1019.7601370.480 2 .250 SH 1019.7601370.480 2 1370.480 CD 1 4 1 .000 1.500 .000 .000 .000 .00 CD 2 2 0 .000 7.500 21.000 .000 .000 .00 Q 10.460 .0 i1r Ali V f' i FILE: 258- a -4.WSW W S P G W- CIVILDESIGN Version 12.95 PAGE 1 For: Allard Engineering, Fontana, California - SIN 643 WATER SURFACE PROFILE LISTING Date: 3- 4 -2003 Time: 3:53: 4 Tract 16258, Fontana Lateral "A -4" +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ + + + + + + ++ I Invert I Depth I Water I 4 I Vel Vel I Energy I Super ICriticallFlow ToplHeight /IBase Wti INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.l Elev I Depth I Width IDia. -FTlor I.D.I ZL IPrs /Pip - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - i - - I - - I - - 1 L /Elem ICh Slope I I I I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X -Fall) ZR IType Ch I I I I I I 1 I I I I I I 1001.750 1368.440 5.073 1373.513 10.46 5.92 .54 1374.06 .00 1.24 .00 1.500 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -i- -I- -I- -I- -I- -I- -I- 1- 18.010 .1133 .0115 .21 5.07 .00 .58 .014 .00 .00 PIPE I I I I I i I I I I I I I 1019.760 1370.480 3.240 1373.720 10.46 5.92 .54 1374.26 .00 1.24 .00 1.500 .000 .00 1 .0 WALL ENTRANCE I I i I I I I I I i i I i 1019.760 1370.480 3.920 1374.400 10.46 .13 .00 1374.40 .00 .20 21.00 7.500 21.000 .00 0 .0 -I- -I- -I- -I- -I- -I -I- -I- -I- -I- -I- -I- -I- I- 1 IN IM i i H T1 Young Homes Tract 16258 -1 0 T2 line "B" T3 Final SO 1002.3901376.430 1 1381.873 R 1032.2701376.860 1 .013 .000 .000 0 R 1067.6301377.340 1 .013 45.014 .000 0 R 1234.7901379.640 1 .013 .000 .000 0 R 1305.4801380.600 1 .013 90.000 .000 0 JX 1310.1401380.660 6 .013 R 1580.2401385.550 1 .013 .000 .000 0 JX 1584.9001385.600 12 .013 R 1854.9901390.480 1 .013 .000 .000 0 JX 1859.6001390.980 7 .013 R 1930.9301391.690 7 .013 - 62.241 .000 0 JX 1933.5901391.730 7 4 .013 33.710 1392.050 50.0 .000 R 1964.8601392.030 7 .013 - 27.879 .000 0 R 2117.1901393.560 7 .013 .000 .000 0 R 2187.9401394.260 7 .013 90.051 .000 0 JX 2192.6001394.310 7 .013 R 2463.8901398.600 7 .013 .000 .000 0 R 2480.7501398.860 7 .013 21.276 .000 0 R 2504.6301399.240 7 .013 .000 .000 0 R 2521.4901399.510 7 .013 - 21.276 .000 0 JX 2526.1501399.570 7 .013 R 2738.0101403.840 7 .013 .000 .000 0 JX 2742.6701403.900 13 .013 R 2811.3201404.590 7 .013 24.200 .000 0 SH 2811.3201404.590 7 1404.590 CD 1 4 1 .000 3.000 .000 .000 .000 .00 CD 2 4 1 .000 3.000 .000 .000 .000 .00 CD 3 4 1 .000 3.000 .000 .000 .000 .00 CD 4 4 1 .000 2.000 .000 .000 .000 .00 CD 5 4 1 .000 2.000 .000 .000 .000 .00 CD 6 4 1 .000 3.000 .000 .000 .000 .00 CD 7 4 1 .000 2.500 .000 .000 .000 .00 CD 8 4 1 .000 2.500 .000 .000 .000 .00 CD 9 4 1 .000 2.500 .000 .000 .000 .00 CD 10 4 1 .000 1.000 .000 .000 .000 .00 CD 12 4 1 .000 3.000 .000 .000 .000 .00 CD 13 4 1 .000 2.500 .000 .000 .000 .00 Q 30.400 .0 FILE: 2581ineb.WSW W S P G W- CIVILDESIGN Version 12.95 PAGE 1 For: Allard Engineering, Fontana, California - SIN 643 WATER SURFACE PROFILE LISTING Date: 4 -15 -2003 Time:ll: 9:49 Young Homes Tract 16258 -1 line "B" Final ****t****, t�*****, r*.***., r***+* tr**•*, t�*, ri.*****:** �**, t*.******** r�* �*****•.** i.*** f.++: r :r + * * * + * * * * * +i. * * *� *r� * * + * * * *i. i.� + * * * + * * +:t* * * *. + *,t* I Invert I Depth I Water I Q I Vel Vel I Energy I Super ICriticallFlow ToplHeight /IBase WtI INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.l Elev I Depth I Width IDia. -FTIor I.D.I - I - ZL - I IPrs /Pip - I - L /Elem ICh - I - Slope I - I - I - I - I - I - I - I - - I - SF Avel - I - HF ISE - I - Dpth - I - {Froude NINorm - I - Dp - I - I "N" I X -Fal1I ZR IType Ch ****+ ��* I , r*,. �** �*. I*****:** I �*** �.,.r* I*+**+**** I **, r**** I *** �.+* I*+** �**** I**** �** I******* �I * * * * * * r.l�� *� * * * I * * *. * * �I I * * * ** I * *• * * ** I I 1002.390 I 1376.430 I 5.443 I 1381.873 I 64.11 9.07 I 1.28 I 1383.15 .00 I 2.57 I .00 I I 3.000 - I - .000 - i - .00 1 .0 1- - I - 29.880 - I - .0144 - I - - I - - I - - I - - I - .0092 - I - .28 - I - 5.44 - I - .00 - I - 2.03 .013 .00 .00 PIPE I I 1032.270 I 1376.860 I 5.289 I 1382.149 I 64.11 9.07 I 1.28 I 1383.43 .00 I 2.57 I .00 I 3.000 I I .000 .00 1 .0 1- 35.360 .0136 .0092 .33 .00 .00 2.08 .013 .00 .00 PIPE I I 1067.630 I 1377.340 I 5.316 I 1382.656 I 64.11 9.07 I 1.28 I 1383.93 .00 I 2.57 I .00 - I - I 3.000 - I - I I .000 - I - .00 1 .0 1- - I - 167.160 - I - .0138 - I - - I - - I - - I - - I - .0092 - I - 1.54 - i - 5.32 - I - .00 2.07 .013 .00 .00 PIPE I I 1234.790 I 1379.640 I 4.561 I 1384.201 I 64.11 9.07 I 1.28 i 1385.48 .00 I 2.57 I .00 - I - I 3.000 - I - I I .000 - I - .00 1 .0 1- - I - 70.690 - I - .0136 - I - - I - - I - - I - - I - .0092 - I - .65 - I - .00 - I - .00 2.08 .013 .00 I .00 PIPE I I 1305.480 I 1380.600 I 4.509 I 1385.109 I 64.11 9.07 I 1.28 I 1386.39 .00 I 2.57 I .00 - I - I 3.000 - I - I .000 - I - .00 1 .0 I- - I - JUNCT STR - I - .0129 - I - - I - - I - - I - - I - .0092 - I - .04 - I - 4.51 - I - .00 .013 .00 I .00 PIPE I I 1310.140 1 1380.660 I 4.492 I 1385.152 I 64.11 9.07 I 1.28 I 1386.43 .00 I 2.57 I .00 I 3.000 I .000 -I- .00 1 .0 -I- 127.230 -I- .0181 -I- -I- -I- -I- -I- .0092 -I- 1.18 -I- 4.49 -I- .00 -I- 1.87 -I- .013 .00 .00 1- PIPE 1437.370 I t 1382.964 I 3.364 I 1386.328 I 64.11 9.07 I 1.28 I 1387.61 .00 I 2.57 I .00 I 3.000 I I .000 .00 I 1 .0 HYDRAULIC JUMP I 1437.370 I I 1382.964 I 1.875 I 1384.838 I 64.11 13.80 I 2.96 I 1387.79 .00 I 2.57 I 2.90 I 3.000 - I - - I - I .000 - I - I .00 1 .0 1- - I - 142.870 - I - .0181 - I - - I - - I - - I - - I - .0180 - I - 2.58 - I - 1.87 - I - 1.92 1.87 .013 .00 .00 PIPE 1580.240 I I 1385.550 I 1.880 i 1387.430 I 64.11 13.75 I 2.94 I 1390.37 .00 I 2.57 I 2.90 I 3.000 - I - - I - I .000 - I - I .00 1 1 .0 I- - I - JUNCT STR - I - .0107 - I - - I - - I - - I - - I - .0181 - I - .08 - I - 1.88 - I - 1.91 .013 .00 .00 PIPE FILE: 2581ineb.WSW W S P G W- CIVILDESIGN Version 12.95 PAGE 2 For: Allard Engineering, Fontana, California - SIN 643 WATER SURFACE PROFILE LISTING Date: 4 -15 -2003 Time:ll: 9:49 Young Homes Tract 16258 -1 line "B" Final Invert I Depth I Water I Q I Vel Vel I Energy I Super ICriticallFlow ToplHeight /IBase Wtl ]No Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.E1.1 Elev I Depth I Width IDia. -FTIor I.D.1 ZL IPrs /Pip - I - L /Elem - I - ICh Slope I - I - - I - I I - I - I - I - - I - SF Avel - I - HF ISE - I - DpthlFroude - I - NINorm - I - Dp - I - I "N" I - I - X -Fall) - I ZR IType Ch 1584.900 I I 1385.600 I I 1.867 1387.468 I 64.11 13.86 I 2.98 I 1390.45 I .00 2.57 I 2.91 I 3.000 I I .000 .00 I 1 .0 - I - 140.260 - I - .0181 - I - - I - - I - - I - - I - .0191 - I - 2.67 - i - 1.87 - I - 1.94 - I - 1.88 - I - .013 - I - .00 .00 1- PIPE 1725.160 I 1388.134 I I I 1.818 1389.952 I 64.11 14.30 I 3.17 I 1393.13 I .00 2.57 I 2.93 I 3.000 I I .000 .00 I 1 .0 - I - 81.300 - I - .0181 - I - - I - - I - - I - - I - .0211 - I - 1.72 - I - 1.82 - I - 2.04 - I - 1.88 - I - .013 - I - .00 .00 1- PIPE 1806.460 I 1389.603 I I I 1.748 1391.351 I 64.11 15.00 I 3.49 I 1394.84 I .00 2.57 I 2.96 I 3.000 I I .000 .00 I 1 .0 - I - 48.530 - I - .0181 - I - - I - - I - - I - - I - .0239 - I - 1.16 - I - 1.75 - I - 2.20 1.88 - I - - I - .013 - I - .00 .00 1- PIPE 1854.990 I 1390.480 I I i 1.681 1392.161 I 64.11 15.73 I 3.84 I 1396.00 I .00 2.57 I 2.98 I 3.000 I I .000 .00 I 1 .0 JUNCT STIR .1085 .0234 .11 2.03 2.37 .013 .00 .00 PIPE 1859.600 I 1390.980 I I I 2.417 1393.396 I 64.11 13.20 I 2.70 I 1396.10 I .04 2.42 I .90 I 2.500 I I .000 .00 I 1 .0 - I - 2.298 - I - .0100 - I - - I - - I - - I - - I - .0223 - I - .05 - I - 2.45 - I - 1.00 2.50 - I - - I - .013 - I - .00 .00 1- PIPE 1861.898 I 1391.003 I I I 2.500 1393.503 I 64.11 13.06 I 2.65 I 1396.15 I 2.50 2.42 I .00 I 2.500 I I .000 .00 I 1 .0 69.032 .. .0100 .0238 1.64 2.50 .00 2.50 .013 .00 .00 PIPE 1930.930 I 1391.690 I I I 3.933 1395.623 I 64.11 13.06 I 2.65 I 1398.27 I .00 2.42 I .00 I 2.500 I I .000 .00 I 1 .0 t - I - JUNCT STR - I - .0151 - I - - I - - I - - I - - I - .0150 - I - .04 - I - .00 - I - .00 - I - - i - .013 - I - .00 .00 I- PIPE 1933.590 - I - 1391.730 - I - 6.568 1398.298 30.40 6.19 .60 1398.89 .00 1.88 .00 2.500 .000 .00 1 .0 31.270 .0096 - I - - I - - I - - I - - I - .0055 - I - .17 - I - .00 - I - .00 1.63 - I - - I - .013 - I - .00 .00 1- PIPE 1964.860 I 1392.030 I I I 6.506 1398.536 I 30.40 6.19 I .60 I 1399.13 I .00 1.88 I .00 I 2.500 I I .000 .00 I 1 .0 - I - 152.330 - I - .0100 - i - - I - - I - - I - - I - .0055 - I - .84 - I - 6.51 - I - .00 1.60 - I - - I - .013 - I - .00 .00 1- PIPE l FILE: 2581ineb.WSW W S P G W- CIVILDESIGN Version 12.95 PAGE 3 For: Allard Engineering, Fontana, California - SIN 643 WATER SURFACE PROFILE LISTING Date: 4 -15 -2003 Time:ll: 9:49 Young Homes Tract 16258 -1 line "B" Final I Invert I Depth I Water I Q I Vel Vel I Energy I Super ICriticallFlow ToplHeight /IBase Wt1 INO Wth Station - I - I Elev I - I - (FT) I - I - Elev I - I - (CFS) I - I - (FPS) Head I - I - Grd.El.l - I - Elev I Depth I Width IDia. -FTlor I.D.I ZL - I IPrs /Pip L /Elem ICh Slope I I I I - I - SF Avel - I - HF ISE DpthlFroude - I - NINorm - I - Dp - I - - I - I "N" I X -Fa11I ZR IType Ch 2117.190 I I 1393.560 I 5.812 i 1399.372 I 30.40 6.19 I .60 I 1399.97 .00 I I 1.88 .00 I I 2.500 I .000 .00 I 1 .0 -I- 70.750 -I- .0099 - I - - I - - I - - I - - I - .0055 - I - .39 - I - .00 - I - .00 - I - 1.61 - I - .013 - I - .00 .00 1- PIPE 2187.940 I I 1394.260 I 5.620 i 1399.880 I 30.40 6.19 I .60 I 1400.48 .00 I I 1.88 .00 I I 2.500 I .000 .00 I 1 .0 - I - JUNCT STR - I - .0107 - I - - I - - I - - I - - I - .0055 - I - .03 - I - 5.62 - I - .00 - I - - I - .013 - I - .00 .00 I- PIPE 2192.600 I 1394.310 I 5.596 I 1399.906 I I 30.40 6.19 I .60 I 1400.50 .00 I 1.88 I .00 I I 2.500 I .000 .00 I 1 .0 -I- 271.290 -I- .0158 -I- -I- -I- -I- -I- .0055 -I- 1.49- -I- 5.60 -I- .00 -I- 1.38 -I- .013 -I- .00 .00 1- PIPE 2463.890 I 1398.600 I 2.796 I 1401.396 I I 30.40 6.19 I .60 I 1401.99 .00 I 1.88 I .00 I I 2.500 I .000 .00 I 1 .0 -I- 16.860 -I- .0154 -I- -I- -I- -I- - I- .0055 - I- .09 -i- .00 -I- .00 -I- 1.39 -I- .013 -I- .00 .00 1- PIPE 2480.750 I 1398.860 I 2.687 I 1401.547 I I 30.40 6.19 I .60 I 1402.14 .00 I 1.88 I .00 I I 2.500 I .000 .00 I 1 .0 - I - 10.215 - I - .0159 - I - - I - - I - - I - - I - .0055 - I - .06 - I - 2.69 - I - .00 - I - 1.38 - I - .013 - I - .00 .00 1- PIPE 2490.965 I 1399.023 I 2.579 I 1401.601 I I 30.40 6.19 I .60 I 1402.20 .00 I 1.88 I .00 I I 2.500 I .000 .00 I 1 .0 HYDRAULIC JUMP 2490.965 I 1399.023 I 1.322 I 1400.344 I I 30.40 11.55 I 2.07 I 1402.41 .00 i 1.88 I 2.50 I I 2.500 I .000 .00 I 1 .0 -I- 13.665 -I- .0159 - I - - I - - I - - I - - I - .0185 - I - .25 - I - 1.32 - I - 1.98 - I - 1.38 - I - .013 - I - .00 .00 1- PIPE 2504.630 I 1399.240 I 1.312 I 1400.552 I I 30.40 11.65 I 2.11 I 1402.66 .23 i 1.88 I 2.50 I I 2.500 I .000 .00 I 1 .0 - I - 16.860 - I - .0160 - I - - I - - I - - I - - I - .0191 - I - .32 - I - 1.54 - I - 2.01 - I - 1.37 - I - .013 - I - .00 .00 1- PIPE 2521.490 I 1399.510 I 1.295 I 1400.805 I I 30.40 11.84 I 2.18 I 1402.98 .00 I 1.88 I 2.50 I I 2.500 I .000 .00 I 1 .0 - I - JUNCT STR - I - .0129 - I - - I - - I - - I - - I - .0198 - I - .09 - I - 1.29 - I - 2.06 - i - - I - .013 - I - .00 .00 I- PIPE MR on AM no M4 4 VA 1 FILE: 2581ineb.WSW W S P G W- CIVILDESIGN Version 12.95 PAGE 4 For: Allard Engineering, Fontana, California - S/N 643 WATER SURFACE PROFILE LISTING Date: 4 -15 -2003 Time:ll: 9:49 Young Homes Tract 16258 -1 line "B" Final I Invert I Depth I Water I Q I Vel Vel I Energy I Super ICriticallFlow ToplHeight /IBase Wtl INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.l Elev I Depth I Width IDia. -FTior -I- I.D.I -I- ZL -I IPrs /Pip -I- -I- L /Elem ICh Slope I -I- -I- I I -I- I -I- -I- SF Avel -I- HF ISE -I- DpthlFroude -I- NINorm -I- Dp I "N" I X -Fa111 ZR IType Ch r�+>**+ �* I* �**:***, r1* �**+ �*+ I***.****+ I+****+ �** I*****+* I*** r, r** I**** r. s•* I.* �* �:* I****++** I * * * * * * * *l� *s *. +�1 + + * * * * *I * * * +� I * * * + * +r I I 2526.150 I 1399.570 I I 1.285 1400.855 I 30.40 11.96 I 2.22 I 1403.08 .00 I 1.88 I 2.50 I 2.500 I I .000 .00 1 .0 - I - 108.883 - I - .0202 - I - - I - - I - - I - - I - .0192 - I - 2.09 - I - 1.29 - I - 2.09 - I - 1.28 - I - .013 - I - .00 .00 1- PIPE I 2635.033 I 1401.765 I I 1.319 1403.084 I 30.40 11.57 I 2.08 I 1405.16 .00 I 1.88 I 2.50 I 2.500 I I .000 - I - .00 I 1 .0 - I - 47.696 - I - .0202 - I - - I - - I - - I - - I - .0173 - I - .82 - I - 1.32 - I - 1.99 - I - 1.28 - I - .013 .00 .00 1- PIPE I 2682.729 1402.726 I I I 1.370 1404.096 I 30.40 11.03 I 1.89 I 1405.99 .00 I 1.88 I 2.49 I 2.500 I I .000 - I - .00 I 1 .0 -I- 23.932 -I- .0202 - I- - I - -I- - I - - I - .0152 - I - .36 -I- 1.37 - I - 1.85 -I- 1.28 -I- .013 .00 .00 1 PIPE I 2706.661 1403.208 I 1 I 1.424 1404.632 I 30.40 10.52 I 1.72 I 1406.35 .00 I 1.88 I 2.48 I 2.500 I I .000 .00 I 1 .0 - I - 14.811 -I- .0202 -I- - I - -I- -I- -I- .0135 -I- .20 -I- 1.42 -I- 1.72 -I- 1.28 -I- .013 - I - .00 .00 1- PIPE I 2721.472 1403.507 I I I 1.481 1404.988 I 30.40 10.03 I 1.56 I 1406.55 .00 I 1.88 I 2.46 I 2.500 I .000 I .00 I 1 .0 -I- 9.821 - I - .0202 - I - -I- - I - - I - - I - .0119 -I- .12 -I- 1.48 - I - 1.59 - I - 1.28 -I- .013 -I .00 .00 1- PIPE I 2731.292 1403.705 I I I 1.542 1405.247 I 30.40 9.56 I 1.42 I 1406.67 .00 I 1.88 I 2.43 I 2.500 I .000 I .00 I 1 .0 -I- 6.718 - I - .0202 - I- -I - I - -I- -I- .0106 - I - .07 - I - 1.54 -I- 1.47 -I- 1.28 - I - .013 -I- .00 .00 1 PIPE I 2738.010 1403.840 I I I 1.607 1405.447 I 30.40 9.12 I 1.29 I 1406.74 .00 I 1.88 I 2.40 I 2.500 -I- I .000 - I - I .00 I 1 C -I- JUNCT STR -i- .0129 -I- -I- -I- -I- -I- .0098 -I- .05 -I- 1.64 -I- 1.36 -I- .013 .00 .00 I- PIPE I 2742.670 1403.900 I I I 1.625 1405.525 I 30.40 9.00 I 1.26 I 1406.78 .04 I 1.88 I 2.39 I 2.500 I .000 I .00 I 1 C - I - 25.689 - I - .0101 - I - - I - - I - - I - - I - .0094 - I - .24 - I - 1.66 - I - 1.33 - I - 1.60 - I - .013 - I - .00 .00 1- PIPE I 2768.359 1404.158 I I I 1.646 1405.804 I 30.40 8.86 I 1.22 I 1407.02 .04 I 1.88 I 2.37 I 2.500 I .000 - I - I .00 I 1 C - I - 29.599 - I - .0101 - I - - I - - I - - I - - I - .0087 - I - .26 - I - 1.68 - I - 1.30 - I - 1.60 - I - .013 .00 .00 1- PIPE w w w n o w ww11 Mes w w 's ow "M w FILE: 2581ineb.WSW W S P G W- CIVILDESIGN Version 12.95 PAGE 5 For: Allard Engineering, Fontana, California - SIN 643 WATER SURFACE PROFILE LISTING Date: 4 -15 -2003 Time:ll: 9:49 Young Homes Tract 16258 -1 line "B" Final Invert I Depth I Water I Q I Vel Vel I Energy I Super ICriticallFlow ToplHeight /IBase Wtl INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.l Elev I Depth I Width IDia. -FTlor I.D.) ZL IPrs /Pip - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I L /Elem ICh Slope I I I I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X -Fall) ZR IType Ch I I I I I I I I I I I I I 2797.958 1404.456 1.718 1406.174 30.40 8.45 1.11 1407.28 .03 1.88 2.32 2.500 .000 .00 1 .0 -I- - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - 1- 10.962 .0101 .0078 .09 1.75 1.20 1.60 .013 .00 .00 PIPE I I I i I I I I I 1 I I I 2808.920 1404.566 1.794 1406.360 30.40 8.06 1.01 1407.37 .03 1.88 2.25 2.500 .000 .00 1 .0 - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - 1- 2.400 .0101 .0070 .02 1.82 1.10 1.60 .013 .00 .00 PIPE I I I I I I I I I I I I I 2811.320 1404.590 1.879 1406.469 30.40 7.68 .92 1407.39 .02 1.88 2.16 2.500 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- I- Ti Tract 16258, Fontana 0 T2 Lateral "B -1" T3 SO 1001.6001392.320 1 1398.297 R 1022.4201393.090 1 .014 .000 .000 0 JX 1026.1401393.280 1 2 .014 3.800 1393.280 90.0 .000 R 1042.2501394.090 1 .014 .000 .000 0 WE 1042.2501394.090 3 .250 SH 1042.2501394.090 3 1394.090 CD 1 4 1 .000 2.000 .000 .000 .000 .00 CD 2 2 0 .000 8.270 14.000 .000 .000 .00 CD 3 4 1 .000 2.000 .000 .000 .000 .00 Q 31.100 .0 FILE: 258- b -1.WSW W S P G W- CIVILDESIGN Version 12.95 PAGE 1 For: Allard Engineering, Fontana, California - S/N 643 WATER SURFACE PROFILE LISTING Date: 4 -15 -2003 Time:11:41:47 Tract 16258, Fontana Lateral "B -1 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ + + + + + + ++ I Invert I Depth I' Water I Q I Vel Vel I Energy I Super ICriticallFlow ToplHeight /IBase Wtl ]No Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.l Elev I Depth I Width IDia. -FTlor I.D.1 ZL IPrs /Pip - I - L /Elem - I - ICh Slope - I - I I - I - - I - I I - I - - I - SF Avel - I - HF ISE - i - DpthlFroude - I - NINorm - I - Dp - I - - I - I "N" I X -Fall) - I ZR IType Ch 1001.600 I 1392.320 I I 5.977 I I 1398.297 34.90 11.11 I 1.92 I 1400.21 .00 I I 1.92 .00 I I I 2.000 .000 .00 I 1 .0 - I - 20.820 - I- .0370 -I- -I- -I- -I- -I- .0276 -I- .57 -I- 5.98 -I- .00 -I- 1.43 -I- -I- .014 .00 .00 1- PIPE 1022.420 I 1393.090 1 I 5.782 I I 1398.872 34.90 11.11 I 1.92 I 1400.79 .00 i I 1.92 .00 I I I 2.000 .000 .00 I 1 .0 - I - JUNCT STR - I - .0511 - I - - I - - I - - I - - I - .0248 - I - .09 - I - 5.78 - I - .00 - I - - I - - I - .014 .00 .00 I- PIPE 1026.140 I 1393.280 I I 6.473 I I 1399.753 31.10 9.90 I 1.52 I 1401.27 .00 I 1.88 I .00 I I I 2.000 .000 .00 I 1 .0 - I - 16.110 - I - .0503 - I - - I - - I - - I - - I - .0219 - I - .35 - I - 6.47 - I - .00 - I - 1.19 - I - - I - .014 .00 .00 1- PIPE WALL ENTRANCE 1042.250 -I- I 1394.090 -I- I I 6.016 -I- I I 1400.106 31.10 -I- - I- 9.90 -I- I 1.52 - I- I 1401.63 -I- .00 -I- I 1.88 -I- I .00 -I- I I 1 2.000 .000 - I- -I- .00 1 0 .0 I- 68 �i i T1 Tract 16258, Fontana T2 Line "C" T3 SO 1000.0001369.920 1 R 1022.1301370.360 1 0 WE 1022.1301370.360 2 SH 1022.1301370.360 2 CD 1 4 1 .000 2.000 CD 2 2 0 .000 9.800 Q 22.410 .0 1371.030 .014 .250 1370.360 .000 .000 .000 .00 14.000 .000 .000 .00 A Us V1 mks V 1 1 911 UA NA an FILE: 258 -c.WSW W S P G W- CIVILDESIGN Version 12.95 PAGE 1 For: Allard Engineering, Fontana, California - SIN 643 WATER SURFACE PROFILE LISTING Date: 3- 5 -2003 Time: 9: 7: 6 Tract 16258, Fontana Line "C" ( Invert I Depth I Water I Q I Vel Vel I Energy I Super ICriticallFlow ToplHeight /IBase Wt1 INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.l Elev - I - I Depth - I - I Width - I - IDia. -FTIor - I - I.D.I - I - ZL IPrs /Pip - I - I - L /Elem ICh - I - Slope I - I - I - I - - I - I I - I - - I - SF Avel - I - HF ISE DpthlFroude NINorm Dp I "N" I X -Fa111 ZR IType Ch I I I I I I I 1000.000 I 1369.920 I 1.417 1371.337 I I 22.41 I 9.41 1.38 I 1372.71 .00 1.69 1.82 2.000 .000 .00 1 .0 1- 8.271 .0199 .0152 .13 1.42 1.45 1.30 .014 .00 I I .00 PIPE I I 1008.271 I 1370.084 I 1.456 1371.541 I I 22.41 I 9.14 1.30 I 1372.84 .00 - 1 - I 1.69 - I - I 1.78 - I - I 2.000 - I - .000 - I - .00 1 .0 1 - I - 8.241 - I - .0199 - I - - I - - i - - I - - I - .0139 - I - .11 1.46 1.37 1.30 .014 I .00 I I .00 PIPE I I 1016.513 I 1370.248 i 1.525 1371.773 I I 22.41 I 8.72 1.18 I 1372.95 - I - .00 - I - I 1.69 - I - I 1.70 - I - 2.000 - I - .000 - I - .00 1 .0 1- - I - 4.263 - I - .0199 - I - - I - - I - - I - - I - .0125 .05 1.53 1.25 1.30 .014 .00 I I .00 PIPE I I 1020.775 I 1370.333 I 1.601 1371.934 I I 22.41 I 8.31 1.07 - I - I 1373.01 - I - .00 - I - I 1.69 - I - I 1.60 - I - I 2.000 - I - .000 - I - .00 1 .0 1- -I- 1.355 -I- .0199 - I - - I - - I - - I - .0114 .02 1.60 1.13 1.30 .014 .00 I I .00 PIPE I I 1022.130 I 1370.360 I 1.688 1372.048 I I 22.41 I 7.92 .97 I 1373.02 .00 I 1.69 I 1.45 I 2.000 .000 .00 1 .0 WALL ENTRANCE I I I I 1022.130 -I- I i 1370.360 - I - I 3.449 -I 1373.809 -I- I I 22.41 -I- I .46 .00 -I- - I - I 1373.81 -I- .00 - I - I .43 - I - I 14.00 -I- 9.800 - I - 14.000 -I- .00 0 .0 I- .a ills irr �M 4� IYr I T1 Tract 16258, Fontana T2 Line "D" T3 SO 1000.0001372.030 1 1373.160 R 1022.1301372.470 1 .014 0 WE 1022.1301372.470 2 .250 SH 1022.1301372.470 2 1372.470 CD 1 4 1 .000 2.000 .000 .000 .000 .00 CD 2 2 0 .000 10.300 14.000 .000 .000 .00 Q 22.880 .0 ��� 000191 Me FILE: 258 -d.WSW W S P G W- CIVILDESIGN Version 12.95 PAGE 1 For: Allard Engineering, Fontana, California - SIN 643 WATER SURFACE PROFILE LISTING Date: 3- 5 -2003 Time: 9: 8: 3 Tract 16258, Fontana Line "D" I Invert I Depth I Water I Q I Vel Vel I Energy I Super ICriticallFlow ToplHeight /IBase Wt1 INO Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.l Elev I Depth I Width IDia. -FTIor I.D.I -I- ZL IPrs /Pip -I -I- L /Elem -I- ICh Slope I -I- I -I- I -I- I -I- -I- SF Avel -I- HF ISE -I- DpthlFroude -I- NINorm -I- Dp -I- I "N" I X -Fall) ZR IType Ch 1000.000 I I 1372.030 I 1.436 I 1373.466 I 22.88 9.47 I 1.39 I 1374.86 .00 I I 1.70 1.80 I 2.000 I I .000 .00 I 1 .0 - I - 6.718 - I - .0199 - I - - I - - I - - I - - I - .0155 - I - .10 - I - 1.44 - I - 1.44 - I - 1.32 - I - .014 - I - .00 .00 1- PIPE 1006.718 I 1372.164 I I 1.466 1373.630 I I 22.88 9.27 I 1.33 I 1374.96 .00 I 1.70 I 1.77 I 2.000 - I - I I .000 - I - .00 I 1 .0 - I - 9.340 - I - .0199 - I - - I - - I - - I - - I - .0143 - I - .13 - I - 1.47 - I - 1.38 - I - 1.32 .014 .00 .00 1 PIPE 1016.058 1 1372.349 I I 1.535 1373.884 I I 22.88 8.84 I 1.21 I 1375.10 .00 I 1.70 I 1.69 I 2.000 I I .000 .00 I 1 C 4.598 .0199 .0129 .06 1.54 1.26 1.32 .014 .00 .00 PIPE 1020.656 I 1372.441 I I 1.613 1374.054 I I 22.88 8.43 I 1.10 I 1375.16 .00 I 1.70 I 1.58 I 2.000 I I .000 .00 I 1 C - I - 1.474 - I - .0199 - I - - I - - I - - I - - I - .0117 - I - .02 - I - 1.61 - I - 1.13 - I - 1.32 - I - .014 - I - .00 .00 1- PIPE 1022.130 - I - I 1372.470 - I - I I 1.702 - I - 1374.172 - I - I I 22.88 - I - 8.03 - I - I 1.00 - I - I 1375.17 - I - .00 - I - I 1.70 - I - I 1.42 - I - I 2.000 - I - I I .000 - I - .00 I 1 i C WALL ENTRANCE 1022.130 -I- I 1372.470 -I- I I 3.523 -I- 1375.993 -I- I I 22.88 -I- .46 -I- I .00 -I- I 1376.00 -I- .00 -I- I .44 -I- I 14.00 -I- I 10.300 -I- I I 14.000 -1- .00 I 0 I- C G T1 BASELINE BOX - HYDRAULICS FOR ULTIMATE Q AND 3 BARRELS TO 46 +20 0 T2 FN = REVBLINEBOX T3 SO 2202.2501266.950 1 1275.330 R 2336.8201267.730 1 .014 .000 .000 0 JX 2338.8201267.740 1 2 .014 20.400 1270.510 90.0 .000 R 2575.1101269.110 1 .014 .000 .000 0 JX 2576.6101269.120 1 3 .014 6.900 1272.370 90.0 .000 R 3060.0001271.920 1 .014 .000 .000 0 R 3210.0001275.990 1 .014 .000 .000 0 R 3302.7801276.610 1 .014 .000 .000 0 JX 3304.2801276.620 1 3 .014 19.200 1279.870 90.0 .000 R 4106.2201281.990 1 .014 .000 .000 0 JX 4110.2201282.020 1 4 .014 37.600 1283.940 90.0 .000 R 4176.2401282.460 1 .014 .000 .000 0 JX 4177.7401282.470 1 3 .014 6.400 1285.720 90.0 .000 R 4292.7201283.240 1 .014 .000 .000 0 JX 4295.7201283.260 1 5 .014 11.500 1285.760 90.0 .000 R 4620.0001285.440 1 .014 .000 .000 0 TS 4652.0001285.610 6 .014 .000 R 5500.0001290.020 6 .014 .000 .000 0 TS 5520.0001290.120 7 .014 .000 R 6497.2701295.200 7 .014 .000 .000 0 JX 6502.7701295.230 7 8 .014 301.000 1296.390 45.0 .000 R 6700.0001296.250 7 .014 .000 .000 0 R 7312.1701301.640 7 .014 .000 .000 0 JX 7316.1701301.670 7 4 .014 44.000 1303.660 60.0 .000 R 9135.0901317.680 7 .014 .000 .000 0 JX 9141.0901317.730 7 8 .014 167.000 1318.700 45.0 .000 R 9519.0001321.000 7 .014 .000 .000 0 OR JX 9521.0001321.020 7 15 .014 40.000 1326.060 -90.0 .000 sr R 10219.0001327.210 7 .014 .000 .000 0 JX 10221.0001327.230 7 17 .014 40.000 1332.230 -90.0 .000 R 10496.6501329.660 7 .014 .000 .000 0 JX 10502.6501329.710 7 9 .014 310.000 1330.700 45.0 .000 �> R 10510.0001329.790 7 .014 .000 .000 0 x TS 10530.0001330.050 11 .014 .000 R 10619.0001331.190 11 .014 .000 .000 0 JX 10621.0001331.210 11 20 .014 40.000 1336.200 -90.0 .000 R 10693.0101332.130 11 .014 .000 .000 0 JX 10694.5101332.150 11 21 .014 40.000 1337.140 -90.0 .000 R 11199.0001338.610 11 .014 .000 .000 0 JX 11201.0001338.630 11 22 .014 40.000 1343.620 -90.0 .000 R 11850.0001346.940 11 .014 .000 .000 0 R 11885.1401347.060 11 .014 .000 .000 0 JX 11888.1401347.070 11 5 .014 23.500 1348.620 80.0 .000 R 11955.7001347.470 11 .014 .000 .000 0 JX 11957.7001347.490 11 23 .014 40.000 1352.480 -90.0 .000 R 12062.7101347.980 11 .014 .000 .000 0 JX 12064.7101347.987 11 2 .014 4.700 1353.040 80.0 .000 R 12314.7101349.296 11 .014 .000 .000 0 JX 12316.7101349.297 11 2 .014 4.700 1354.350 80.0 .000 R 12568.7101350.607 11 .014 .000 .000 0 JX 12570.7101350.618 11 2 .014 4.700 1355.660 80.0 .000 R 12620.0001350.870 11 .014 .000 .000 0 R 12818.7101352.758 11 .014 .000 .000 0 JX 12820.7101352.777 11 2 .014 4.700 1357.800 80.0 .000 R 13066.6901355.110 11 .014 .000 .000 0 JX 13068.6901355.150 11 2 .014 4.700 1360.200 80.0 .000 R 13320.4101357.520 11 .014 .000 .000 0 JX 13322.4101357.542 11 2 .014 7.000 1362.600 80.0 .000 R JX 13698.7501361.118 13703.2501361.161 11 11 12 .014 .014 73.000 1362.720 .000 45.0 .000 0 .000 R 13785.0001361.940 11 .014 .000 .000 0 R 14117.0201364.596 11 .014 .000 .000 0 JX 14119.0201364.612 11 2 .014 4.000 1369.680 80.0 .000 R 14381.0201366.708 11 .014 .000 .000 0 JX 14383.0201366.724 11 2 .014 9.000 1371.800 80.0 .000 R 15118.0001372.604 11 .014 .000 .000 0 JX 15123.0001372.644 11 13 .014 385.000 1374.240 45.0 .000 R 15170.0001373.020 11 .014 .000 .000 0 G it it 1 a R 16450.0001377.884 11 .014 .000 .000 0 JX 16454.0001377.899 11 4 .014 51.000 1379.600 60.0 .000 R 17116.8001380.418 11 .014 .000 .000 0 JX 17122.8001380.441 11 9 .014 684.000 1381.430 45.0 .000 R 17200.0001380.734 11 .014 .000 .000 0 R 17420.0001381.570 11 .014 .000 .000 0 R 18536.0001385.029 11 .014 .000 .000 0 SH 18536.0001385.029 11 .014 1385.029 CD 1 3 2 1.000 8.000 32.000 .000 .000 .00 CD 2 4 1 .000 2.000 .000 .000 .000 .00 CD 3 4 1 .000 1.500 .000 .000 .000 .00 CD 4 4 1 .000 4.000 .000 .000 .000 .00 CD 5 4 1 .000 3.000 .000 .000 .000 .00 CD 6 3 1 1.000 8.000 29.000 .000 .000 .00 CD 7 3 1 1.000 8.000 25.000 .000 .000 .00 CD 8 4 1 .000 5.500 .000 .000 .000 .00 CD 9 4 1 .000 6.000 .000 .000 .000 .00 CD 10 4 1 .000 8.000 .000 .000 .000 .00 CD 11 3 1 1.000 8.000 21.000 .000 .000 .00 CD 12 4 1 .000 4.500 .000 .000 .000 .00 CD 13 4 1 .000 5.000 .000 .000 .000 .00 CD 14 3 1 1.000 8.000 17.000 .000 .000 .00 CD 15 4 1 .000 2.000 .000 .000 .000 .00 CD 16 3 1 1.000 8.000 25.000 .000 .000 .00 CD 17 4 1 .000 2.000 .000 .000 .000 .00 CD 20 4 1 .000 2.000 .000 .000 .000 .00 CD 21 4 1 .000 1.500 .000 .000 .000 .00 CD 22 4 1 .000 2.000 .000 .000 .000 .00 CD 23 4 1 .000 2.000 .000 .000 .000 .00 Q 1269.000 .0 FILE: revblinebox.WSW W S P G W- CIVILDESIGN Version 12.5 PAGE 1 For: Allard Engineering, Fontana, California - SIN 643 WATER SURFACE PROFILE LISTING Date:10 -31 -2001 Time:10: 8:55 BASELINE BOX - HYDRAULICS FOR ULTIMATE Q AND 3 BARRELS TO 46 +20 FN = REVBLINEBOX +•*** r+**+, t* a*, t�*** a, t*+*+ f+ r'+*+ a, t+**+.++ ra+*++ *r *a +,t * * * * * * * *+tr * * * *+t *,r *a'* err* a*, r*+ a, r*, rrr** ar* r*, ras * * * *,++r * +rx + + *,+ * +a *r,t «+ * + * + + *+ *• AR Used I Invert Depth Water Q Vel Vel I Energy I Super ICriticalIFlow ToplHeight /IBase Wti INo Wth Station I Elev I (FT) Elev (CFS) I (FPS) Head I Grd.E1.I Elev I Depth I Width IDia. -FTIor I.D.I ZL IPrs /Pip L /Elem ICh Slope I I I I SF Avel HF ISE DpthIFroude NINorm Dp I "N" I X -Fa11I ZR IType Ch I I I I I I I I I I I I I 2202.250 1266.950 8.380 1275.330 3693.00 15.44 3.70 1279.03 .00 7.78 32.00 8.000 32.000 .00 2 1.0 I_ 134.570 .0058 .0073 .99 8.38 .99 7.36 .014 .00 .00 BOX I I I I I I I I I I I I I 2336.820 1267.730 8.585 1276.315 3693.00 15.44 3.70 1280.02 .00 7.78 32.00 8.000 32.000 .00 2 1.0 JUNCT STR 0050 .0072 .01 8.59 .99 .014 .00 .00 BOX I i I I I I I I I I I I I 2338.820 1267.740 8.672 1276.411 3672.60 15.35 3.66 1280.07 .00 7.75 32.00 8.000 32.000 .00 2 1.0 236.290 .0058 .0072 1.71 8.67 .99 7.33 .014 .00 .00 BOX I I I I I I I I I I I I I 2575.110 1269.110 9.013 1278.123 3672.60 15.35 3.66 1281.78 .00 7.75 32.00 8.000 32.000 .00 2 1.0 I_ JUNCT STR 0067 .0072 .01 9.01 .99 .014 .00 .00 BOX I I I I I I I I I I I I I 2576.610 1269.120 9.041 1278.161 3665.70 15.32 3.65 1281.81 .00 7.74 32.00 8.000 32.000 .00 2 1.0 475.748 .0058 .0072 3.43 9.04 .99 7.32 .014 .00 .00 BOX I I I I I I I I 1 I I I I 3052.358 1271.876 9.716 1281.592 3665.70 15.32 3.65 1285.24 .00 7.74 32.00 8.000 32.000 .00 2 1.0 I_ HYDRAULIC JUMP I I I I I I I I I I I I I 3052.358 1271.876 5.102 1276.978 3665.70 23.95 8.91 1285.88 .00 7.74 32.00 8.000 32.000 .00 2 1.0 -i- -i- -I- -I- -i- -I- -I- -I- -I- -I- -I- -i- -I- 1- 7.642 .0058 .0149 .11 5.10 1.93 7.32 .014 .00 .00 BOX I I I I I I I I I I I I I 3060.000 1271.920 5.077 1276.997 3665.70 24.07 8.99 1285.99 .00 7.74 32.00 8.000 32.000 .00 2 1.0 I_ 38.525 .0271 .0142 .55 5.08 1.94 4.08 .014 .00 .00 BOX i I I I I I I I I i I I I 3098.525 1272.965 5.290 1278.256 3665.70 23.10 8.28 1286.54 .00 7.74 32.00 8.000 32.000 .00 2 1.0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -i- -I- -I- -I- 1- 34.176 .0271 .0127 .43 5.29 1.83 4.08 .014 .00 .00 BOX FILE: revblinebox.WSW W S P G W- CIVILDESIGN Version 12.5 PAGE 2 For: Allard Engineering, Fontana, California - SIN 643 WATER SURFACE PROFILE LISTING Date:10 -31 -2001 Time:10: 8:55 BASELINE BOX - HYDRAULICS FOR ULTIMATE Q AND 3 BARRELS TO 46 +20 FN = REVBLINEBOX ** rr* t*, t+** r, t** r* r, t, t, t* �**+ t** r, r�r* r *x�+ *�r�r + *s « * * *� * * * * * * * * *,t,+* err**** a+***, r** r+*+, r*+, r****, r * * * * *� * * * *� *rr+�t *r * * * * * *r *,r ** * * +r� +�• AR Used Invert Depth Water Q Vel Vel I Energy I Super ICriticallFlow ToplHeight/ Base Wtj INo Wth Station I Elev (FT) Elev (CFS) I (FPS) Head I Grd.El.1 Elev I Depth I Width IDia. -FTlor I.D.I ZL IPrs /Pip L /Elem ICh Slope I I I I SF Avel HF ISE DpthIFroude NINorm Dp I "N" I X -Fall ZR IType Ch +*, t, t►* r, t* I**+*, t**** I, t* r�, ta+ rlr*** wre, r�l**** r****' r, tr** aal** r* r** I, r*,++**+** I++** �, t+ 1 ,t *,t,t *,t * *I.,t *r +r * *I * * * + * * *I +rte +rte *I * *. *+ I +t * + + *r 3132.701 1273.893 5.548 1279.441 3665.70 22.02 7.53 1286.97 .00 7.74 32.00 8.000 32.000 .00 2 1.0 25.909 .0271 .0112 .29 5.55 1.70 4.08 .014 .00 .00 BOX 3158.610 1274.596 5.819 1280.415 3665.70 21.00 6.85 1287.26 .00 7.74 32.00 8.000 32.000 .00 2 1.0 19.580 .0271 .0099 .19 5.82 1.58 4.08 .014 .00 .00 BOX 3178.190 1275.127 6.103 1281.230 3665.70 20.02 6.22 1287.45 .00 7.74 32.00 8.000 32.000 .00 2 1.0 14.537 .0271 .0087 .13 6.10 1.47 4.08 .014 .00 .00 BOX 3192.727 1275.521 6.401 1281.922 3665.70 19.09 5.66 1287.58 .00 7.74 32.00 8.000 32.000 .00 2 1.0 10.389 .0271 .0077 .08 6.40 1.37 4.08 .014 .00 .00 BOX 1 1 3203.116 1275.803 6.714 1282.517 3665.70 18.20 5.14 1287.66 .00 7.74 32.00 8.000 32.000 .00 2 1.0 6.884 .0271 .0068 .05 6.71 1.28 4.08 .014 .00 .00 BOX 1 1 3210.000 1275.990 7.041 1283.031 3665.70 17.35 4.68 1287.71 .00 7.74 32.00 8.000 32.000 .00 2 1.0 92.780 .0067 .0062 .58 7.04 1.19 6.92 .014 .00 .00 BOX 1 1 3302.780 1276.610 7.187 1283.797 3665.70 17.00 4.49 1288.29 .00 7.74 32.00 8.000 32.000 .00 2 1.0 JUNCT STR 0067 .0064 .01 7.19 1.15 .014 .00 .00 BOX 3304.280 1276.620 6.887 1283.507 3646.50 17.65 4.84 1288.34 .00 7.71 32.00 8.000 32.000 .00 2 1.0 354.571 .0067 .0067 2.37 6.89 1.22 6.89 .014 .00 .00 BOX 1 1 3658.851 1278.994 6.887 1285.881 3646.50 17.65 4.84 1290.72 .00 7.71 32.00 8.000 32.000 .00 2 1.0 305.045 .0067 .0065 2.00 6.89 1.22 6.89 .014 .00 .00 BOX FILE: revblinebox.WSW W S P G W- CIVILDESIGN Version 12.5 PAGE 3 For: Allard Engineering, Fontana, California - SIN 643 WATER SURFACE PROFILE LISTING Date:10 -31 -2001 Time:10: 8:55 BASELINE BOX - HYDRAULICS FOR ULTIMATE Q AND 3 BARRELS TO 46 +20 FN = REVBLINEBOX ********************************************** III ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * ** AR Used Invert Depth Water Q I Vel Vel I Energy I Super ICriticallFlow ToplHeight /IBase WtI INO Wth Station I Elev I (FT) Elev (CFS) I (FPS) Head I Grd.E1.I Elev I Depth I Width IDia. -FT]or I.D.I ZL IPrs /Pip L /Elem ICh Slope I i I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X -Fall ZR IType Ch 3963.896 1281.037 7.012 1288.049 3646.50 17.33 4.67 1292.71 .00 7.71 32.00 8.000 32.000 .00 2 1.0 122.661 .0067 .0060 .74 7.01 1.19 6.89 .014 .00 .00 BOX I I I I I I I I I 4086.556 1281.858 7.354 1289.213 3646.50 16.53 4.24 1293.45 .00 7.71 32.00 8.000 32.000 .00 2 1.0 19.664 .0067 .0053 .11 7.35 1.11 6.89 .014 .00 .00 BOX -------------- - - - - -- WARNING - Flow depth near top of box conduit -------------------- I I I I I I I I I I I I I 4106.220 1281.990 7.714 1289.704 3646.50 15.76 3.86 1293.56 .00 7.71 32.00 8.000 32.000 .00 2 1.0 _I_ _i_ _I_ _I_ _I_ _I_ _I_ _I_ _I_ _I_ _I_ _I_ _I_ I_ JUNCT STR .0075 .0070 .03 7.71 1.03 .014 .00 .00 BOX -------------- - - - - -- WARNING - Flow depth near top of box conduit -------------------- 4110.220 1282.020 8.107 1290.127 3608.90 15.08 3.53 1293.66 .00 7.66 32.00 8.000 32.000 .00 2 1.0 66.020 .0067 .0070 .46 8.11 .97 6.84 .014 .00 .00 BOX 4176.240 1282.460 8.128 1290.588 3608.90 15.08 3.53 1294.12 .00 7.66 32.00 8.000 32.000 .00 2 1.0 JUNCT STR 0067 .0070 .01 8.13 .97 .014 .00 .00 BOX 4177.740 1282.470 8.154 1290.624 3602.50 15.06 3.52 1294.14 .00 7.65 32.00 8.000 32.000 .00 2 1.0 114.980 .0067 .0070 .80 8.15 .97 6.82 .014 .00 .00 BOX 4292.720 1283.240 8.185 1291.425 3602.50 15.06 3.52 1294.95 .00 7.65 32.00 8.000 32.000 .00 2 1.0 JUNCT STR .0067 .0069 .02 8.19 .97 .014 .00 .00 BOX FILE: revblinebox.WSW W S P G W- CIVILDESIGN Version 12.5 PAGE 4 For: Allard Engineering, Fontana, California - SIN 643 WATER SURFACE PROFILE LISTING Date:10 -31 -2001 Time:10: 8:55 BASELINE BOX - HYDRAULICS FOR ULTIMATE Q AND 3 BARRELS TO 46 +20 FN = REVBLINEBOX ******************************************************************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * ** AR Used I Invert Depth Water Q Vel Vel I Energy I Super ICriticallFlow ToplHeight /IBase WtI INo Wth Station I Elev (FT) Elev (CFS) I (FPS) Head I Grd.E1.I Elev I Depth I Width IDia. -FTIor I.D.I ZL IPrs /Pip L /Elem ICh Slope I I I I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X -Fa11I ZR (Type Ch I I I I I I i I I I I I I 4295.720 1283.260 8.231 1291.491 3591.00 15.01 3.50 1294.99 .00 7.64 32.00 8.000 32.000 .00 2 1.0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- 192.677 .0067 .0069 1.33 8.23 .97 6.79 .014 .00 .00 BOX 4488.397 1284.555 8.264 1292.819 3591.00 15.01 3.50 1296.32 .00 7.64 32.00 8.000 32.000 .00 2 1.0 HYDRAULIC JUMP 4488.397 1284.555 6.410 1290.965 3591.00 18.67 5.41 1296.38 .00 7.64 32.00 8.000 32.000 .00 2 1.0 131.603 .0067 .0082 1.08 6.41 1.34 6.79 .014 .00 .00 BOX 4620.000 1285.440 6.184 1291.623 3591.00 19.36 5.82 1297.44 .00 7.64 32.00 8.000 32.000 .00 2 1.0 TRANS STR .0053 .0069 .22 6.18 1.42 .014 .00 .00 BOX 4652.000 1285.610 7.167 1292.777 3591.00 17.89 4.97 1297.75 .00 7.99 29.00 8.000 29.000 .00 1 1.0 387.438 .0052 .0056 2.18 7.17 1.20 7.20 .014 .00 .00 BOX 5039.438 1287.625 6.836 1294.461 3591.00 18.76 5.47 1299.93 .00 7.99 29.00 8.000 29.000 .00 1 1.0 193.549 .0052 .0064 1.23 6.84 1.29 7.20 .014 .00 .00 BOX 5232.987 1288.631 6.518 1295.149 3591.00 19.68 6.01 1301.16 .00 7.99 29.00 8.000 29.000 .00 1 1.0 145.082 .0052 .0073 1.05 6.52 1.38 7.20 .014 .00 .00 BOX 5378.069 1289.386 6.214 1295.600 3591.00 20.64 6.61 1302.21 .00 7.99 29.00 8.000 29.000 .00 1 1.0 121.931 .0052 .0083 1.01 6.21 1.48 7.20 .014 .00 .00 BOX 5500.000 1290.020 5.925 1295.945 3591.00 21.64 7.27 1303.22 .00 7.99 29.00 8.000 29.000 .00 1 1.0 TRANS STR .0050 .0074 .15 5.93 1.59 .014 .00 .00 BOX FILE: revblinebox.WSW W S P G W- CIVILDESIGN Version 12.5 PAGE 5 For: Allard Engineering, Fontana, California - SIN 643 WATER SURFACE PROFILE LISTING Date:10 -31 -2001 Time:10: 8:55 BASELINE BOX - HYDRAULICS FOR ULTIMATE Q AND 3 BARRELS TO 46+20 FN = REVBLINEBOX t*#** r* rrrrr*** rvr*, r, rr*, t+, t***+* �: rr�* r+ �*** rr*►tt, t*, t, t�, t** x, r,t + *r *,t,t,tt + * ► +� +,t,tr,t *r *+ truer* �, r*** r, tr*, to + *r�,rr *r * * *,r * * : * ■ + + * * * *,t *• * *+,t ,t * *• AR Used I Invert Depth Water Q ( Vel Vel I Energy I Super ICriticallFlow ToplHeight /IBase Wtl INO Wth Station I Elev (FT) I Elev (CFS) I (FPS) Head i Grd.E1.I Elev I Depth i Width IDia. - FTIor I.D.I ZL IPrs /Pip L /Elem ICh Slope I I I I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X -Fa11I ZR IType Ch I I I I I I I I I I I I I 5520.000 1290.120 8.000 1298.120 3591.00 18.70 5.43 1303.55 .00 8.00 25.00 8.000 25.000 .00 1 1.0 I_ 34.180 .0052 .0061 .21 8.00 1.19 8.00 .014 .00 .00 BOX -------------- - - - - -- WARNING - Flow depth near top of box conduit -------------- - - - - -- I 5554.180 I 1290.298 I 8.000 I 1298.298 I 3591.00 18.75 I 5.46 I 1303.76 I .00 I 8.00 25.00 I 1 8.000 1 25.000 943.090 .0052 .0097 9.19 8.00 1.19 8.00 .014 .00 I 6497.270 I 1295.200 I 12.290 I 1307.490 I 3591.00 18.75 I 5.46 I 1312.95 I .00 8.00 I 25.00 I I 8.000 I 25.000 JUNCT STR 0055 .0082 .04 12.29 1.19 .014 .00 I 6502.770 I 1295.230 I 13.626 i 1308.856 I 3290.00 17.18 I 4.58 I 1313.44 I .00 8.00 I 25.00 I 8.000 I I 25.000 197.230 .0052 .0082 1.61 13.63 1.09 8.00 .014 .00 I 6700.000 I 1296.250 I 14.220 I 1310.470 I 3290.00 17.18 I 4.58 I 1315.05 I .00 8.00 I 25.00 I 8.000 I I 25.000 612.170 .0088 .0082 5.01 14.22 1.09 6.46 .014 .00 I 7312.170 I 1301.640 I 13.838 I 1315.478 I 3290.00 17.18 I 4.58 I 1320.06 I .00 8.00 I 25.00 I 8.000 I I 25.000 JUNCT STR 0075 .0080 .03 13.84 1.09 .014 .00 I 7316.170 I 1301.670 I 14.071 I 1315.741 I 3246.00 16.95 I 4.46 I 1320.20 I .00 8.00 I 25.00 I 8.000 I I 25.000 1818.920 .0088 .0080 14.49 14.07 1.08 6.39 .014 .00 I 9135.090 I 1317.680 I 12.548 I 1330.228 I 3246.00 16.95 I 4.46 I 1334.69 I .00 8.00 I 25.00 I 8.000 I I 25.000 JUNCT STR .0083 .0072 .04 12.55 1.08 .014 .00 FILE: revblinebox.WSW W S P G W- CIVILDESIGN Version 12.5 I 00 1 1.0 1- 00 BOX 00 I 1 1.0 00 BOX 00 I 1 1.0 1- 00 BOX 00 I 1 1.0 1- 00 BOX 00 I 1 1.0 1- 00 BOX 00 1 1 1.0 1- 00 BOX 00 I 1 1.0 1- 00 BOX PAGE 6 For: Allard Engineering, Fontana, California - SIN 643 WATER SURFACE PROFILE LISTING Date:10 -31 -2001 Time:10: 8:55 BASELINE BOX - HYDRAULICS FOR ULTIMATE Q AND 3 BARRELS TO 46 +20 FN = REVBLINEBOX + *, taw, t�**** x�*, t, t+* rx* r, tr* rr: r*** �rx* r+*., t** r* r+, t, t* rr**:+, tr*, t,t + * * + +rr +,t� +xx,t *r,t,r *� * «,r vt r, t*, t, t, r *rr * * * *r *xt * : * *+r *t *r :� ++ + +r +,t ,r� •xrr * * «• AR Used I Invert I Depth I Water I Q I Vel Vel 1 Energy I Super ICriticallFlow ToplHeight /IBase WtI INO Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.E1.I Elev I Depth I Width IDia. -FTIor I.D.I ZL IPrs /Pip L /Elem ICh Slope I I I I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X -Fall) ZR IType Ch I I i I I I I I I I I I I 9141.090 1317.730 13.303 1331.033 3079.00 16.08 4.01 1335.05 .00 8.00 25.00 8.000 25.000 .00 1 1.0 377.910 .0087 .0072 2.71 13.30 1.02 6.18 .014 .00 .00 BOX I I I I I I I I I I I I I 9519.000 1321.000 12.741 1333.741 3079.00 16.08 4.01 1337.76 .00 8.00 25.00 8.000 25.000 .00 1 1.0 JUNCT STR 0100 .0070 .01 12.74 1.02 .014 .00 .00 BOX i I I I I I I I I I I I I 9521.000 1321.020 12.942 1333.962 3039.00 15.87 3.91 1337.87 .00 7.93 25.00 8.000 25.000 .00 1 1.0 -I- -1- -1- -1- -I- -1- -i- -I- -1- -I- -1- -1- -i- i- snow WLS 04 al all Its IVIII a" all C-11 U4 6*1 WA 698.000 .0089 .0070 4.87 12.94 1.01 6.07 .014 .00 .00 BOX 10219.000 1327.210 11.625 1338.835 3039.00 15.87 3.91 1342.75 .00 7.93 25.00 8.000 25.000 .00 1 1.0 JUNCT STR 0100 .0068 .01 11.62 1.01 .014 .00 .00 BOX 10221.000 1327.230 11.823 1339.053 2999.00 15.66 3.81 1342.86 .00 7.86 25.00 8.000 25.000 .00 1 1.0 275.650 .0088 .0068 1.87 11.82 1.00 6.02 .014 .00 .00 BOX 10496.650 1329.660 11.267 1340.927 2999.00 15.66 3.81 1344.74 .00 7.86 25.00 8.000 25.000 .00 1 1.0 JUNCT STR .0083 .0055 .03 11.27 1.00 .014 .00 .00 BOX 10502.650 1329.710 12.357 1342.067 2689.00 14.04 3.06 1345.13 .00 7.31 25.00 8.000 25.000 .00 1 1.0 7.350 .0109 .0055 .04 12.36 .89 5.13 .014 .00 .00 BOX 10510.000 1329.790 12.318 1342.108 2689.00 14.04 3.06 1345.17 .00 7.31 25.00 8.000 25.000 .00 1 1.0 TRANS STR .0130 .0055 .11 12.32 .89 .014 .00 .00 BOX 10530.000 1330.050 11.118 1341.168 2689.00 16.86 4.41 1345.58 .00 8.00 21.00 8.000 21.000 .00 1 1.0 89.000 .0128 .0087 .78 11.12 1.08 5.80 .014 .00 .00 BOX FILE: revblinebox.WSW W S P G W- CIVILDESIGN Version 12.5 PAGE 7 For: Allard Engineering, Fontana, California - SIN 643 WATER SURFACE PROFILE LISTING Date:10 -31 -2001 Time:10: 8:55 BASELINE BOX - HYDRAULICS FOR ULTIMATE Q AND 3 BARRELS TO 46 +20 FN = REVBLINEBOX �* tr, tr* �r* w* r****: �.* a+ ar+, r*+ a, r++***, r****+.**, t+ rr**, t* r* rr* r.** r* t***++* r�t+, r+, t++, t *,t,tw + * + *t+r # * + +,tr,t + + * * * * +,t ,t�rr *a *r * « * * *,t +• + *,trtrrt AR Used Invert ( Depth Water Q I Vel Vel I Energy I Super ICriticallFlow ToplHeight /I Base WtI INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.E1.I Elev I Depth I Width IDia. -FTIor I.D.I ZL IPrs /Pip L /Elem ICh Slope I I I I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X -Fa11I ZR IType Ch •..*..** I..+..:#... 1.*..,..# I.**t....* I***«**. �, I+ k,...,, I**.. r, * l.**. �*, .. I**.*..* I*. �****., I.�. * * * * * *.. « *..I *. * ....I..... I. * * *... I i I I I I I I I I I I i 10619.000 1331.190 10.756 1341.946 2689.00 16.86 4.41 1346.36 .00 8.00 21.00 8.000 21.000 .00 1 1.0 JUNCT STR .0100 .0085 .02 10.76 1.08 .014 .00 .00 BOX I I I I I I I i I I I I I 10621.000 1331.210 11.014 1342.224 2649.00 16.61 4.28 1346.51 .00 8.00 21.00 8.000 21.000 .00 1 1.0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- 72.010 .0128 .0085 .61 11.01 1.06 5.73 .014 .00 .00 BOX I I I I I I I I I I I I I 10693.010 1332.130 10.704 1342.834 2649.00 16.61 4.28 1347.12 .00 8.00 21.00 8.000 21.000 .00 1 1.0 I_ JUNCT STR .0133 .0082 .01 10.70 1.06 .014 .00 .00 BOX I I I I i I I I i i i I I 10694.510 1332.150 10.953 1343.103 2609.00 16.36 4.15 1347.26 .00 8.00 21.00 8.000 21.000 .00 1 1.0 -I- 415.687 -I- .0128 -I- -I- -I- -I- -I- .0082 -I- 3.42 -I- 10.95 -I- 1.05 -I- 5.66 -I- .014 -I- .00 .00 1- BOX 11110.200 1337.473 9.049 1346.522 2609.00 16.36 4.15 1350.68 .00 8.00 21.00 8.000 21.000 .00 1 1.0 HYDRAULIC JUMP 11110.200 1337.473 5.934 1343.407 2609.00 21.98 7.50 1350.91 .00 8.00 21.00 8.000 21.000 .00 1 1.0 88.804 .0128 .0112 .99 5.93 1.63 5.66 .014 .00 .00 BOX 11199.000 1338.610 5.996 1344.605 2609.00 21.76 7.35 1351.96 .00 8.00 21.00 8.000 21.000 .00 1 1.0 JUNCT STR 0100 .0116 .02 6.00 1.60 .014 .00 .00 BOX 11201.000 1338.630 5.700 1344.330 2569.00 22.53 7.88 1352.21 .00 8.00 21.00 8.000 21.000 .00 1 1.0 74.906 .0128 .0121 .91 5.70 1.70 5.60 .014 .00 .00 BOX 11275.910 1339.589 5.729 1345.318 2569.00 22.42 7.80 1353.12 .00 8.00 21.00 8.000 21.000 .00 1 1.0 293.519 .0128 .0113 3.33 5.73 1.69 5.60 .014 .00 .00 BOX FILE: revblinebox.WSW W S P G W- CIVILDESIGN Version 12.5 PAGE 8 For: Allard Engineering, Fontana, California - SIN 643 WATER SURFACE PROFILE LISTING Date:10 -31 -2001 Time:10: 8:55 BASELINE BOX - HYDRAULICS FOR ULTIMATE Q AND 3 BARRELS TO 46+20 FN = REVBLINEBOX • r+ e+ f* r*, r*, rr, r, r* t, r**********, r:*, r, r**+, r��***** AR Used I Invert Depth Water r, t*r, t•. Q �, rtx+* r****, r** r*+ Vel Vel I r**: r, r�***+* Energy rr, r�, rrr��, rx+*, r* �r * *� * * +,r� * * * * *�,► + * *• * « I Super ICriticalIFlow ToplHeight/ Base Wtj *r�,r• ,rr * * * *,r• ENO Wth Station I Elev ( (FT) Elev (CFS) I (FPS) Head I Grd.El.1 Elev I Depth I Width jDia. -FTIor I.D.1 ZL IPrs /Pip L /Elem +*•, r• r+• ICh Slope I I• r:, tr...+ I, r••**.•• �, r**+:+, r+* I I �., r. rr**«+ I*.■..■ rlrrrt**: SF Avel I*** HF x* x* t• ISE DpthIFroude I« r* w•■* NINorm Ix* xrx�*• Dp I*• *.,t• *xI•�www I "N" *wI I X -Fall *w «,++. #rI ZR *••r• I Type Ch I• *�w,t *• 11569.420 1343.347 6.009 1349.356 2569.00 21.38 7.10 1356.45 .00 8.00 21.00 8.000 21.000 .00 1 1.0 126.118 .0128 .0100 1.26 6.01 1.57 5.60 .014 .00 .00 BOX 11695.540 1344.962 6.302 1351.265 2569.00 20.38 6.45 1357.71 .00 8.00 21.00 8.000 21.000 .00 1 1.0 70.542 .0128 .0089 .62 6.30 1.47 5.60 .014 .00 .00 BOX 11766.080 1345.865 6.610 1352.475 2569.00 19.43 5.86 1358.34 .00 8.00 21.00 8.000 21.000 .00 1 1.0 42.311 .0128 .0078 .33 6.61 1.36 5.60 .014 .00 .00 BOX 11808.400 1346.407 6.933 1353.340 2569.00 18.53 5.33 1358.67 .00 8.00 21.00 8.000 21.000 .00 1 1.0 24.902 .0128 .0069 .17 6.93 1.27 5.60 .014 .00 .00 BOX . a ll WI : 1 ma all v1 us wel r s 11833.300 1346.726 7.271 1353.997 2569.00 17.67 4.85 1358.84 .00 8.00 21.00 8.000 21.000 .00 1 1.0 12.856 .0128 .0061 .08 7.27 1.18 5.60 .014 .00 .00 BOX -------------------- WARNING - Flow depth near top of box conduit -------------------- I I I I I I I I I I I I I 11846.150 1346.891 7.626 1354.517 2569.00 16.84 4.41 1358.92 .00 8.00 21.00 8.000 21.000 .00 1 1.0 _I_ _I_ . _I_ _I_ _I_ _I_ _I_ _i_ _I_ _I_ _I_ _I- _I_ I_ 3.846 .0128 .0054 .02 7.63 1.10 5.60 .014 .00 .00 BOX -------------------- WARNING - Flow depth near top of box conduit -------------------- I I I I I I I I I I I I I 11850.000 1346.940 7.999 1354.939 2569.00 16.06 4.00 1358.94 .00 8.00 21.00 8.000 21.000 .00 1 1.0 _I_ _I_ _I_ _I_ _I_ _I_ _I_ _I- _I_ _I_ _I_ _I_ _I_ I_ 14.616 .0034 .0052 .08 8.00 1.03 8.00 .014 .00 .00 BOX -------------- - - - - -- WARNING - Flow depth near top of box conduit --------------- - - - -- FILE: revblinebox.WSW W S P G W- CIVILDESIGN Version 12.5 PAGE 9 For: Allard Engineering, Fontana, California - SIN 643 WATER SURFACE PROFILE LISTING Date:10 -31 -2001 Time:10: 8:55 BASELINE BOX - HYDRAULICS FOR ULTIMATE Q AND 3 BARRELS TO 46 +20 FN = REVBLINEBOX + rrerrerrerew�+*, rf«, r.*t.t t*.•t.f**. �*.•****, r* r�* �, r** r, rrrr+* rf+■t****•t �*+++«+ r+t, r*.* rx. rr.*. �r *. * +r *• + +r,r * * * * *r * *tr * «•rr�,r• . * +. +.r+ AR Used I Invert Depth Water Q Vel Vel I Energy I Super ICriticallFlow ToplHeight /IBase WtI INo Wth Station I Elev (FT) Elev (CFS) I (FPS) Head I Grd.E1.I Elev I Depth I Width IDia. - FTIor I.D.I ZL IPrs /Pip L /Elem ICh Slope I I I I SF Ave) HF ISE DpthIFroude NINorm Dp I "N" I X -Fa11I ZR IType Ch rrr++ reerlrrrrrerer(* re+ rr+« Ierre** �** I**+.* reeeelrerrrrrl�ee * * *�I * + * *ee «reI *err + * *Irrrre + + #I, ter *reerlrrrrr *�Ir *rr *rrle Ierrrrrr I I I I I I I I I I I I I 11864.620 1346.990 8.000 1354.990 2569.00 16.11 4.03 1359.02 .00 8.00 21.00 8.000 21.000 .00 1 1.0 I_ 20.523 .0034 .0080 .16 8.00 1.03 8.00 .014 .00 .00 BOX I I I I I I I I I I I I I 11885.140 1347.060 8.093 1355.154 2569.00 16.11 4.03 1359.18 .00 8.00 21.00 8.000 21.000 .00 1 1.0 I_ JUNCT STR .0033 .0078 .02 8.09 1.03 .014 .00 .00 BOX I I I I I I I I I I I I I 11888.140 1347.070 8.251 1355.321 2545.50 15.96 3.95 1359.28 .00 7.95 21.00 8.000 21.000 .00 1 1.0 I_ 67.561 .0059 .0078 .53 8.25 1.02 7.49 .014 .00 .00 BOX I I I I I I I I I I I I I 11955.700 1347.470 8.380 1355.850 2545.50 15.96 3.95 1359.81 .00 7.95 21.00 8.000 21.000 .00 1 1.0 I_ JUNCT STR .0100 .0076 .02 8.38 1.02 .014 .00 .00 BOX I I I I I I I I I I I I I 11957.700 1347.490 8.622 1356.112 2505.50 15.71 3.83 1359.94 .00 7.87 21.00 8.000 21.000 .00 1 1.0 -I- -I- -I- -I- -i- -I- -I- -I- -I- -I- -I- -I- -I- 1- 105.010 .0047 .0076 .80 8.62 1.00 8.00 .014 .00 .00 BOX I I I I i I I I I I I I I 12062.710 1347.980 8.929 1356.909 2505.50 15.71 3.83 1360.74 .00 7.87 21.00 8.000 21.000 .00 1 1.0 1_ JUNCT STR .0035 .0076 .02 8.93 1.00 .014 .00 .00 BOX I I I I I I I I I I I I I 12064.710 1347.987 8.965 1356.952 2500.80 15.68 3.82 1360.77 .00 7.86 21.00 8.000 21.000 .00 1 1.0 250.000 .0052 .0076 1.89 8.97 1.00 7.76 .014 .00 .00 BOX 12314.710 1349.296 9.545 1358.841 2500.80 15.68 3.82 1362.66 .00 7.86 21.00 8.000 21.000 .00 1 1.0 JUNCT STR .0005 .0075 .02 9.55 1.00 .014 .00 .00 BOX FILE: revblinebox.WSW W S P G W - CIVILDESIGN Version 12.5 PAGE 10 For: Allard Engineering, Fontana, California - SIN 643 WATER SURFACE PROFILE LISTING Date:10 -31 -2001 Time:10: 8:55 BASELINE BOX - HYDRAULICS FOR ULTIMATE Q AND 3 BARRELS TO 46+20 FN = REVBLINEBOX AR Used I Invert Depth Water Q I Vel Vel I Energy I Super ICriticallFlow ToplHeight /IBase WtI INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.E1.I Elev I Depth I Width IDia. -FTIor I.D.I ZL IPrs /Pip L /Elem ICh Slope I I I I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X -Fa11I ZR IType Ch I I I I I I I I I I I I I 12316.710 1349.297 9.588 1358.885 2496.10 15.65 3.80 1362.69 .00 7.85 21.00 8.000 21.000 .00 1 1.0 252.000 .0052 .0075 1.90 9.59 1.00 7.77 .014 .00 .00 BOX I I I I I I I I I I I I 1 12568.710 1350.607 10.175 1360.782 2496.10 15.65 3.80 1364.58 .00 7.85 21.00 8.000 21.000 .00 1 1.0 JUNCT STR 0055 .0075 .01 10.17 1.00 .014 .00 .00 BOX I I I I I I I I I I I I I 12570.710 1350.618 10.207 1360.825 2491.40 15.62 3.79 1364.61 .00 7.64 21.00 8.000 21.000 .00 1 1.0 49.290 .0051 .0075 .37 10.21 1.00 7.81 .014 .00 .00 BOX I I I I I I I I I I I I I 12620.000 1350.870 10.325 1361.195 2491.40 15.62 3.79 1364.98 .00 7.84 21.00 8.000 21.000 .00 1 1.0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- 198.710 .0095 .0075 1.49 10.32 1.00 6.13 .014 .00 .00 BOX I I I I I I I I I I I I I - "rl2818.710 1352.758 9.927 1362.685 2491.40 15.62 3.79 1366.47 .00 7.84 21.00 8.000 21.000 .00 1 1.0 -I- -I- -1- -I- -I- -I- -I- -I- -I- -I- -1- -I- -I- I- JUNCT STR 0095 .0075 .01 9.93 1.00 .014 .00 .00 BOX I I I I I I I I I I I I I `12820.710. 1352.777 9.951 1362.728 2486.70 15.59 3.77 1366.50 .00 7.83 21.00 8.000 21.000 .00 1 1.0 245.980 .0095 .0075 1.84 9.95 1.00 6.12 .014 .00 .00 BOX I I I I I I I I I I I I I 13066.690 1355.110 9.456 1364.566 2486.70 15.59 3.77 1368.34 .00 7.83 21.00 8.000 21.000 .00 1 1.0 JUNCT STR .0200 .0074 .01 9.46 1.00 .014 .00 .00 BOX I I I I I I I I I I I I I 13068.690 1355.150 9.459 1364.609 2482.00 15.56 3.76 1366.37 .00 7.82 21.00 8.000 21.000 .00 1 1.0 _I_ -I- _I_ _I_ 251.720 .0094 .0074 1.87 9.46 1.00 6.13 .014 .00 .00 BOX -1 1 jumm U o I 13320.410 I 1357.520 I 8.962 I 1366.482 I 2482.00 15.56 I 3.76 I 1370.24 .00 I I 7.82 21.00 I I 8.000 I 21.000 .00 I 1 1.0 j JUNCT STR .0110 .0074 01 8.96 1.00 .014 .00 .00 BOX FILE: revblinebox.WSW W S P G W - CIVILDESIGN Version 12.5 PAGE 11 For: Allard Engineering, Fontana, California - SIN 643 i WATER SURFACE PROFILE LISTING Date:10 -31 -2001 Time:10: 8:55 BASELINE BOX - HYDRAULICS FOR ULTIMATE Q AND 3 BARRELS TO 46 +20 j FN = REVBLINEBOX *** �.* r* �r* xr* �rw�**..**********...**+** r• r**+* rrr* rrrr�r*, t+*** rr**** �* rr�++ �*+**.***t** r** *• * * « +... *� * *. * * * *.• * *.• * * *x +�* +. * * * * *,+ a AR Used I Invert I Depth I Water I Q I Vel Vel I Energy I Super ICriticallFlow ToplHeight /IBase WtI INO Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.E1.1 Elev I Depth I Width IDia. -FTIor I.D.I ZL IPrs /Pip L /Elem ICh Slope I I I I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X -Fall) ZR IType Ch I I_ 13322.410 I 1357.542 I 8.997 I 1366.539 I 2475.00 15.52 I 3.74 I 1370.28 .00 I I 7.81 21.00 I 8.000 I I 21.000 .00 I 1 1.0 376.340 .0095 .0074 2.79 9.00 .99 6.10 .014 .00 I I .00 BOX 1 I 13698.750 I 1361.118 I 8.206 1369.324 I I 2475.00 15.52 I 3.74 1 1373.06 .00 I I 7.81 21.00 I 8.000 21.000 .00 1 1.0 JUNCT STR .0095 .0070 .03 8.21 .99 .014 .00 I .00 BOX I I 13703.250 I 1361.161 I 8.584 1369.745 I I 2402.00 15.06 I 3.52 I 1373.27 .00 I I 7.65 21.00 I 8.000 I 21.000 .00 1 1.0 81.750 .0095 .0070 .57 8.58 .96 5.95 .014 .00 I .00 BOX 1 I 13785.000 I 1361.940 I 8.375 1370.315 i I 2402.00 15.06 I 3.52 1 1373.84 .00 I I 7.65 21.00 I 8.000 I 21.000 .00 1 1.0 79.354 .0080 .0070 .55 8.38 .96 6.37 .014 .00 I .00 BOX 1 I 13864.350 I 1362.575 I 8.293 1370.868 I I 2402.00 15.06 I 3.52 1 1374.39 .00 I I 7.65 21.00 I 8.000 I 21.000 .00 1 1.0 1_ HYDRAULIC JUMP I I I I 13864.350 I 1362.575 I 6.389 1368.964 I I 2402.00 18.80 I 5.49 I 1374.45 .00 I I 7.65 21.00 I 8.000 -I- 21.000 -I- .00 1 1.0 1- -I- 252.665 -1- .0080 -I- -I- -I- -I- -I- .0079 -I- 1.99 -I- 6.39 -I- 1.34 6.37 -I- .014 .00 .00 I BOX I I 14117.020 I 1364.596 I 6.433 1371.029 t I 2402.00 18.67 5.41 I I 1376.44 .00 I I 7.65 21.00 I 8.000 I 21.000 .00 1 1.0 JUNCT STR .0081 .0079 .02 6.43 1.33 .014 .00 I .00 I BOX I 14119.020 I 1364.612 I I 6.383 1370.995 I I 2398.0,0 18.79 5.48 I I 1376.47 .00 I I 7.64 21.00 I 8.000 21.000 .00 1 1.0 1_ 262.000 .0080 .0078 2.05 6.38 1.34 6.36 .014 i .00 i .00 I BOX I 14381.020 _1_ I I 1366.708 _1_ I 6.454 1373.162 I I 2398.00 _1_ 18.58 _1_ 5.36 _1_ I I 1378.52 .00 I I 7.64 _1_ 21.00 8.000 _1_ _1_ 21.000 _1_ .00 1 1.0 1_ AN • t**+• w* w,+**** r*, r* �, r* �* x* r*** « * « * *. + +w� *,t * *��t * * * * *wr *ra * *, try* ��, t**+ �++*+* a*****« r** r * * *,r *tw *,r + +�a�� *r *�� * «,t * * *,r ,tt * * *��r *a * *� * *r ** JUNCT STR .0080 .0078 .02 6.45 1.32 .014 .00 .00 BOX FILE: revblinebox.WSW W S P G W - CIVILDESIGN Version 12.5 PAGE 12 For: Allard Engineering, Fontana, California - SIN 643 WATER SURFACE PROFILE LISTING Date:10 -31 -2001 Time:10: 8:55 BASELINE BOX - HYDRAULICS FOR ULTIMATE Q AND 3 BARRELS TO 46 +20 FN = REVBLINEBOX AR Used I Invert I Depth I Water I Q I Vel Vel I Energy I Super ICriticallFlow ToplHeight /IBase Wt1 INO Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.E1.I Elev I Depth I Width IDia. -FTIor I.D.I ZL IPrs /Pip L /Elem ICh Slope I I I I SF Avel HF ISE DpthlFroude NINorm Dp I SIN" I X -Fall) ZR IType Ch L,14383.020 I I 1366.724 I 6.340 1373.064 I I 2389.00 I 18.84 5.51 I 1378.58 .00 I 7.62 I 21.00 I 8.000 I I 21.000 .00 I 1 1.0 151.606 .0080 .0080 _ 1.21 6.34 1.35 6.34 _I_ .014 .00 .00 BOX 14534.630 I I 1367.937 I 6.340 1374.277 I 2389.00 1 18.84 5.51 I 1379.79 .00 I 7.62 I 21.00 I 8.000 -I- I I 21.000 -I- .00 1 1 1.0 1- -I- 419.388 -I- .0080 -1- -I- -I- -I- -I- .0076 -I- -I- 3.19 6.34 -I- 1.35 -I- 6.34 .014 .00 .00 BOX 14954.010 I I 1371.292 I 6.608 1377.900 I I 2389.00 1 18.08 5.07 I 1382.97 .00 I 7.62 I 21.00 I 8.000 I I 21.000 .00 1 1 1.0 113.554 .0080 .0068 .77 6.61 1.27 6.34 .014 .00 .00 BOX 1 15067.570 I I 1372.201 I 6.930 1379.131 I 2389.00 I 17.24 4.61 i 1383.74 .00 1 7.62 I 21.00 I 8.000 I I 21.000 .00 1 1.0 40.560 .0080 .0060 .24 6.93 1.18 6.34 .014 .00 .00 BOX 1 15108.130 I I 1372.525 I 7.268 1379.793 I I 2389.00 I 16.43 4.19 I 1383.99 .00 1 7.62 I 21.00 I 8.000 I I 21.000 .00 1 1.0 9.872 .0080 .0053 .05 7.27 1.10 6.34 .014 .00 .00 BOX -------------------- WARNING - Flow depth near top of box conduit -------------------- 15118.000 I I 1372.604 I 7.624 1380.228 I I 2389.00 I 15.67 3.81 I 1384.04 .00 I 7.62 I 21.00 I 8.000 I 1 21.000 .00 1 1 1.0 _I_ JUNCT STR _I_ .0080 _I_ _I_ _I_ _I_ _I_ .0049 _I_ _I_ .02 7.62 _I_ 1.02 _I_ _I_ .014 _I_ .00 .00 I- BOX -------------------- WARNING - Flow depth near top of box conduit -------------------- 15123.000 I I 1372.644 I 8.985 1381.629 I I 2004.00 I 12.56 2.45 I 1384.08 .00 I 6.78 I 21.00 I 8.000 I 1 21.000 .00 1 1 1.0 _I_ 47.000 _I_ .0080 _I_ _I_ _I_ _I_ _I_ .0049 _I_ _I_ .23 8.98 _I_ .80 _I_ 5.54 _I_ .014 _I_ .00 .00 I- BOX FILE: revblinebox.WSW W S P G W - CIVILDESIGN Version 12.5 PAGE 13 For: Allard Engineering, Fontana, California - SIN 643 WATER SURFACE PROFILE LISTING Date:10 -31 -2001 Time:10: 8:55 BASELINE BOX - HYDRAULICS FOR ULTIMATE Q AND 3 BARRELS TO 46 +20 FN = REVBLINEBOX • t**+• w* w,+**** r*, r* �, r* �* x* r*** « * « * *. + +w� *,t * *��t * * * * *wr *ra * *, try* ��, t**+ �++*+* a*****« r** r * * *,r *tw *,r + +�a�� *r *�� * «,t * * *,r ,tt * * *��r *a * *� * *r ** to 9 911 wrl 1 Oil "A SM AR Used I Invert I Depth I Water I Q I Vel Vel Station I Elev I (FT) I Elev I (CFS) i (FPS) Head L /Elem ICh Slope I I I I SF Ave I I I I I 15170.000 1373.020 8.837 1381.857 2004.00 12.56 2.45 _I_ _I- _I_ _I_ _I_ _I_ _ 1280.000 .0038 .0049 I I I I l 16450.000 1377.884 10.183 1388.068 2004.00 12.56 2.45 -I- -I- -I- -I- -I- -I- - JUNCT STR 0038 .0046 i i I I I 16454.000 1377.899 10.414 1388.313 1953.00 12.24 2.33 -I- -I- -I- -I- -I- -I- - 662.801 .0038 .0046 I i I I I 17116.800 1380.418 10.949 1391.367 1953.00 12.24 2.33 -I- -I- -I- -I- -I- -I- - JUNCT STR .0038 .0019 I I I I I 17122.800 1380.441 12.291 1392.732 1269.00 7.96 .98 _I_ _I_ _I_ _I_ _I_ _I_ _ 77.199 .0038 .0019 I I I I I 17200.000 1380.734 12.148 1392.882 1269.00 7.96 .98 -I- -I- -I- -►- -I- -I- - 220.000 .0038 .0019 i I I I I 17420.000 1381.570 11.740 1393.310 1269.00 7.96 .98 -I- -I- -I- -I- -I- -I- - 1116.000 .0031 .0019 I I I I I 18536.000 1385.029 10.452 1395.481 1269.00 7.96 .98 _I_ _I_ _I- _I_ _I_ _I_ - Energy I Super ICriticallFlow ToplHeight /IBase WtI INO Wth Grd.E1.I Elev I Depth I Width IDia. -FTIor I.D.I ZL IPrs /Pip - -I- -I- -I- -I- -I- -I- -I HF ISE DpthIFroude NINorm Dp I "N" I X -Fa11I ZR IType Ch .*****, r** I*:**+** I** r.**** It •.r *r *�I� *r * «rrl : *�x� *�I * * *,r* Ir * * * *,r* I I I I I I I 1384.31 .00 6.78 21.00 8.000 21.000 .00 1 1.0 6.21 8.84 .80 7.39 .014 .00 .00 BOX I I I I I I I 1390.52 .00 6.78 21.00 8.000 21.000 .00 1 1.0 -I- -I- -I- -I- -I- -I- I- .02 10.18 .80 .014 .00 .00 BOX I I I I I I I 1390.64 .00 6.67 21.00 8.000 21.000 .00 1 1.0 _I_ _I_ _I_ _I_ _I_ _I- I- 3.05 10.41 .78 7.24 .014 .00 .00 BOX I I I I I I I 1393.70 .00 6.67 21.00 8.000 21.000 .00 1 1.0 - -I- -I- -I- -I- -I- -I- I- .01 10.95 .78 .014 .00 .00 BOX I I I I i I I 1393.71 .00 5.00 21.00 8.000 21.000 .00 1 1.0 - -I- -I- -I- -I- -I- -I- I- .15 12.29 .51 5.20 .014 .00 .00 BOX I I I I I I I 1393.86 .00 5.00 21.00 8.000 21.000 .00 1 1.0 - -I- -I- -I- -I- -I- -I- I- .43 12.15 .51 5.20 .014 .00 .00 BOX I I I I I I I 1394.29 .00 5.00 21.00 8.000 21.000 .00 1 1.0 -I- -I- -I- -I- -I- -I- 1- 2.17 11.74 .51 5.61 .014 .00 .00 BOX I I I I I I I 1396.46 .00 5.00 21.00 8.000 21.000 .00 1 1.0 -I- -I- -I- -I- -I- -I- I- H D T1 Tract 16258, Fontana 0 T2 Line "E" T3 SO 984.3201362.530 1 1366.540 R 1021.8901363.280 1 .014 .000 .000 0 WE 1021.8901363.280 2 .250 SH 1021.8901363.280 2 1363.280 CD 1 4 1 .000 2.000 .000 .000 .000 .00 CD 2 2 0 .000 9.920 14.000 .000 .000 .00 Q 18.590 .0 H D FILE: 258 -e.WSW W S P G W- CIVILDESIGN Version 12.95 PAGE 1 For: Allard Engineering, Fontana, California - SIN 643 WATER SURFACE PROFILE LISTING Date: 3 -25 -2003 Time:10:17:39 Tract 16258, Fontana Line "E" I Invert I Depth I Water I Q I Vel Vel I Energy I Super ICriticallFlow ToplHeight /IBase Wtl INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.E1.1 Elev I Depth I Width IDia. -FTIor I.D.1 ZL IPrs /Pip -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I L /Elem ICh Slope I I I I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X -Fall) ZR IType Ch I I I I I I I I I I I I I 984.320 1362.530 4.010 1366.540 18.59 5.92 .54 1367.08 .00 1.55 .00 2.000 .000 .00 1 .0 - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - 1- 37.570 .0200 .0078 .29 4.01 .00 1.15 .014 .00 .00 PIPE I I I I I I i I i I I I I 1021.890 1363.280 3.554 1366.834 18.59 5.92 .54 1367.38 .00 1.55 .00 2.000 .000 .00 1 .0 WALL ENTRANCE I I I I I I I i I I I I I 1021.890 1363.280 4.234 1367.514 18.59 .31 .00 1367.52 .00 .38 14.00 9.920 14.000 .00 0 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- I- ALLARD ENGINEERING • cna m ka -Luwr+arme l a imnin ci TRACT 16158 HYDROLOGY AND HYDRAULICS REPORT May 29, 2002 i ti i 3 Prepared For: Young Homes 10370 Trademark Street Rancho Cucamonga, CA 91730 (909) 477 -6722 Fax (909) 477 -6725 Job Number 159.02.02 Prepared under the supervision of: David S Hammer ACE 43976 Exp. 06 -30 -05 1?1?1 -F G S J ! vr✓ s Nc. 43976 Tr W =0 015 A7 \ ' P C FCF,•,, CFO 8253 Sierra Avenue Fontana, CA 92335 (909) 356 -1815 * (909) 356 -1795 TABLE OF CONTENTS Introduction Purpose Methodology Findings Summary Hydrology Exhibits 100 -Year Hydrology Calculations 10 -Year Hydrology Calculations - Street Capacity Calculations Appendix 16158 -2 Hydrology and Hydraulics Report Introduction Tract 16158 is a proposed 127 single family lot subdivision that is located in the City of Fontana. Tract 16158 is situated south of Walnut Avenue and north of proposed Tentative Tract 16258, which is currently undeveloped vacant land. To the west, the project is bounded by existing Tract 14475. On the east, the project is bounded by 20 acres of undeveloped vacant land (see Vicinity Map Exhibit). To the south and southeast, the project is bounded by 40 acres of vacant land. The 40 -acre property has an approved tentative tract map that will be developed by Young Homes in the future. Currently, the developer proposes to grade and improve the north portion of the project (Tract 16158), which is approximately 11 acres. These 11 acres will yield a total of 66 residential lots. This project proposes a temporary detention basin with the capacity to store the 10 -year, 24 -hour developed runoff from the entire 22 -acre site of Tract 16158. Purpose The purpose of this hydrology and hydraulics report is to determine the 100 -year and 10 -year runoff for Tract 16158 and to verify the capacity of the proposed improvements to safely convey the runoff. The hydrology and hydraulics report for Tract 16158 introduces a storm drain system which conveys storm flows to the northeast side of the existing temporary basin. The approved hydrology report for Tract 16158 -2 provided a unit hydrograph calculation to size a temporary detention basin for a 10 -year, 24 -hour event storm for both Tract 16158 -2 and Tract 16158 improvement. Methodology The rational method was used to determine 10 -year and 100 -year event storms, as outlined in the San Bernardino County Hydrology Manual. Computer programs commonly used for this purpose were utilized herein. Findings The 10 -year storm water runoff is conveyed in the street below the top of curb elevations while the 100 -year storm water is conveyed in the street and does not exceed right -of -way elevations. A storm drain system within Tract 16158 and a portion outside of the tract will be used along with an earthen channel to convey flow to the existing basin. Summary 0 Tract 16158 proposed improvements will adequately convey both the 100 -year and 10 -year runoff in accordance with County criteria. Also, the detention basin is sized to detain all storm water runoff from Tracts 16158 -2 and 16158. 11 D Hydrology Exhibits M H 1 H-I i 2. j. ` v v ;;. -`I t A el I � r ,• - ,L'7 -ice ` _ ;�� : +� R� � ��� f �'- j • s,..r �} All '��'.),- .`.l;ri,�S�j�.�:r �:: - / f 'Y'.F� , • •y1:N��� a—• = :- .- _ - (i ce - ,•�, -_ W / :. �<. "'!s I' �i + �/ I r !r - ,. 3 1. -•. R_. .aY'�.'J '�'�•` { -, F � , I 1 t y IN V . Wit; ��:- !;° -���,; f ' , -�,•: / � �_ ` L :�` ;�: �':..:_ � .}'•�_ =r - ' h 9 • r::� ' 1= ! - -tr.-1 • ` � �' -- - - 1. - ' �'t � \� • r :' u��4Y•/hf,�,�,�j r��7��'' t: i '• \ } ��_ `c '. f: � _ , � Sj� ��f b ;: .rr ��r� _ -s f• -� `_ �,:�� , jf � Cc°- •�� ` � r ?� t �„-+- �'� 7 � � I r" _ •' _ \ \ • i - � ` •� -sue.,. '% /. � � � = �,_ � •. � - -- � - ' = .:_'i... �-1 -' . '- _rte`. "--- . —• --`� r, -1 -_ wctilt d �_? -��� �i � • " ; :'SF- .�-�' - i � L►kY' `vim • �'�i��� - V /%% :.`'� t';T-1.• ,`fK` ,�, Ir:r - _ - �_. 'il`•I . I• 1 _ A � rye- - • ' (-':.- �1_Lt/�' ' i_h_ _ � :f i " - �� "F' 1 t 1 � i� � `.'ri- •��F".f,�ti_ � _ _ � �,6 tt � -_ � 'C �''�-< i � _ </ � -� • wit • _ -_ i -• L`T. 4 •C 1� 'r7 ~..- r ! i �; �;1* <`:•Z:�•••'13 f. _ ,�'` � `.)' -f 1 � -%. -- — ^{ _ - - Tt. •t yy.•3 1•.'r, ...._— .` - .. •a : r� • '�.a1i..: •,' . .f ��y� �. + �, 1 E.• /:• �Y •.�-- - +a 1 �° ,�1 ' J; I• 1 `'� ..:� ..` .�. /'�rr ;�' . M1 .. y , li_ r -\ c _R: '' ,�'1= .:...,.r _• � _ :.<•; � i r.� = 9�': •"'-' '""7 :�.... ._:__ �..�: _ .. F,_ .; :. _ •' �-� -...`: •, :• ,.- Yt•.: -: r� - ^' •* ' - �c • 7. ' 1 •• v • � "•�• y .:.i"•�~ _ r, 1 �' •1 . t i � ! ,••r+ I!' L, • J '.i: �I.s' - �• '� � •;' � �•� � `_ �•, `+ L _ �.• a• «. 4 vii. - �, Il� '' �yy n - -'K "3t. - a • �� • I _ `f 4 ..� +4. �: - �...1 i:.L..3�.rf4 Vii.. R•a.L. `..""•+ :�'r:.: :"� � a ''a . i i ,r � .!_ at1'� � - ^+C • mss -1� .1 �• - �_` - '�� :c1 1, s... - r r - '�`_.t�`�', - .' - ..rte - ••. / � • i - i - ��• + .. 7 r •• �. • i s__ i�::j 1 .., ' _ ` - - ;. �i7 /� _ _ • , = (•:_-"' '�� �1�-if�C�{��'�t =?T ' ti �, a •`< f . stn �'; ,..'_ ;K • c 1 •+i, - J {�.va mot .�♦'f 1 + ta _ = -/ • �+•• �'�• + u • f t ' , ;js':i ' '� - , '1�. �+ � �' .. • ~�+ �• A[ - I - _ - : - 1 _ -'�-., ,•. a 1 A F f�( +�• '..n f.• • •I';'. ", .• : � - r t � � - .:•� I � : � - - � J;. � • ,•... •' - ] ' mo t,': .,R"'1'• ��� � � •- � i� , = r �f, 1 I I A� �� '° ,I „1.� . �✓ • y t !<1'i �. �< � ��r'. •rl�,•Z� _�� �, R _ h , 1 ►/. -_ a 'y 7 �. �-• -' ' r - :.l` /.- rte; „ '4 Y SAN BERNARDINO COUNTY HYDROLOGY MANUAL. A- — FOR SOUTHWEST —A AREA 2 FIGIJf ?F. '- t uw- _ s f0- CAOV 60t/,0.1fr .,, _a. 1 �. fCILC 1•Yp00 f°It CN0, /10Ef"Ar10” _•_� _ - -- •W,.Ar Of ",rCArEO souncE SCALE REDUCED BY 1/!2 HYDROLOGIC SOILS GROUP MAP FOR SOUTHWEST —A AREA 2 FIGIJf ?F. — ' --- --- - —_--It v/ Ir 1. v+l, I R'�Y� I t � \ I I t I YI r RZY / (liv; -. —� Iri j -1 —c. ItlC -- T4! ` tom A -,�-,- ! I I I I I � \ I t .fM Tla V Y— ' I - I- I I _ _ � ' _• I _ y 1 • -J. I - •� - I I - I ' � -- -- i ' ,.,.y _ - .. 1 " = - - � � _ - 'd' Ir I -( - i- \� � I ' f 1 t f t: 1 I 1 I I I 1 ._ a `. "I l I •�' .J. BE AR an ri T2N -. - - - - ~� �i .\•1.1 - - - , - - - T? b I � I � — ' • 1 L � l - � � , 1 � 1 r , •' •� ` I � 1 ' j 1 i • �� r h : t, r � / r iaa�• I •.r•.a , 1 � _- - ^ °• . I , ' I � I . _.. - -•- L'" �` l ! ; i + ; f `••. —:� `� T TIN Ir 7 - I i. o... \ _. L.. y_ I t L•�- y \�i i i i -i T -t= - 11 !- - • eu•e.o■r � .RI I ,- : -- _ _ . �_ a _ i i - 1 1 • FONT - ( ... i - �• t t� TIS >_ l �� ,�• i • = C TpN ,r a. r F. VILA ILA CHINO t f ONT lOt"'.• •..• _ .- _ -- - - •REOL NOS •« � •" ...._ - ` -' :� ' ••�• &W •--l ` y RIE '. • 1 R E 4 1p I i I RSIDE I. t 1 �K1• �M • J i ' , I - •• (,R.Ip(• ......• _ ; r �� •••, V_ . ` - R4W .. I _ R3 R2W �I J �o+ 1 I i 1 I (<<'. ,� • SAN BERNARDINO -OOIJ N I ' t - I -t —1 -- •- —r' L .:ayµ , i _ _ F LOOD R REDUCED DRAWING VALLEY AREA f"Jy TALS T3S - - - - _ SCALE I•� 10 YEAR = 4 MILES Y. - I HOUR SA - BERNARDINO COUNTY "" °°" °S°`" :."" 10 LEGC NO: . Q ' R6 HYDROLOGY MANI)A� . ISOLIV.LC - EL6tJB' •,R e W H 7 w •RECI �If 1:ON (lNCll! s I °.rc •cxc rill Na 1 9 e z f. t .• .wol ., I z __ - --- R -II FIG11RF n -z a 5v! , / t�v i `, F �- •� rr ?w � � Acv' �`.� rrif fr, � • mil` - _ - ! r . y / ' - � � , � � . � } � - i 1 - 1 �l I It - ' i • � ` �� ,s ~' `mil - v .o � 11�'i � ! \ �3� i ,F �_ _ — - - if -, - I_ � - — - _ — a -• t BE _ " - • F _ t• +' 'ALT .. — a- � o 7 - - -i.. .-r .•ice= •_' �° • — - -�-� - — — 'T — f L. IF ,I— I — RIALTO_ - + - - — I- — �• • fi r .• 1 ERSIDE , ,. sc -=R •...... ' ` , ,.•• -- R 4 W R3 Ma 1 RS T3S — - — - - '• -• ' to SAN BERNARDINO COUNTY A • . ' •• J•. e f HYDROLOGY MANUAL w w oil �t�.��w illlt � I �I�;�►''���►.� ■������. �==imam a 5v! , / t�v i `, F �- •� rr ?w � � Acv' �`.� rrif fr, � • mil` - _ - ! r . y / ' - � � , � � . � } � - i 1 - 1 �l I It - ' i • � ` �� ,s ~' `mil - v .o � 11�'i � ! \ �3� i ,F �_ _ — - - if -, - I_ � - — - _ — a -• t BE _ " - • F _ t• +' 'ALT .. — a- � o 7 - - -i.. .-r .•ice= •_' �° • — - -�-� - — — 'T — f L. IF ,I— I — RIALTO_ - + - - — I- — �• • fi r .• 1 ERSIDE , ,. sc -=R •...... ' ` , ,.•• -- R 4 W R3 Ma 1 RS T3S — - — - - '• -• ' to SAN BERNARDINO COUNTY A • . ' •• J•. e f HYDROLOGY MANUAL w w oil �t�.��w illlt � I �I�;�►''���►.� REDUCED DRAWING SCALE 1" = 4 MILES L GEHO: C . ISOLINES PFIECIPIT40" .(INCH VALLEY AREA OaKnT" Y. -100 YEAR I.-HOUR a&= ON UAW- PZA/I I. Wig &P"u"m r � oac _ DCALA I MR In 1 Anon Na rsai f•e .w04 4 .. or ERSIDE ,. sc -=R •...... ' ` , ,.•• -- R 4 W R3 Ma 1 RS T3S — - — - - '• -• ' to SAN BERNARDINO COUNTY A • . ' •• J•. e f HYDROLOGY MANUAL w w REDUCED DRAWING SCALE 1" = 4 MILES L GEHO: C . ISOLINES PFIECIPIT40" .(INCH VALLEY AREA OaKnT" Y. -100 YEAR I.-HOUR a&= ON UAW- PZA/I I. Wig &P"u"m r � oac _ DCALA I MR In 1 Anon Na rsai f•e .w04 4 .. or 1 100 Year Hydrology Calculations N n III i I 1 1 1 1 I RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING, INC. 8553 SIERRA AVENUE FONTANA, CALIFORNIA 92336 (909) 356 - 1815 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Young Homes Tract 16158 * 100 year * * BY: JOE RAMIREZ DATE: 12- 31- 02(REV. 07- 18 -02) * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 0016158.DAT TIME /DATE OF STUDY: 13:54 7/18/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: _ -- *TIME -OF- CONCENTRATION MODEL*- - USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .90 *USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.000 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.500 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.5000 SLOPE OF INTENSITY DURATION CURVE = .6000 *ANTECEDENT MOISTURE CONDITION (AMC III) ASSUMED FOR RATIONAL METHOD* *USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET - CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT- /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 20.0 10.0 .020/ .020/ .020 .50 1.50 .03125 .1100 .01500 2 18.0 10.0 .020/ .020/ .020 .50 1.50 .03125 .1100 .01500 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = .14 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 5.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* UNIT- HYDROGRAPH DATA: WATERSHED LAG = .80 * Tc USED "VALLEY UNDEVELOPED" S -GRAPH FOR DEVELOPMENTS OF IH ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE 2.1 ------ -------- ----- ----- ---------- ---- ---- ---------- ---- ---- ---- --- --------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<<<< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 375.00 ELEVATION DATA: UPSTREAM(FEET) = 1422.20 DOWNSTREAM(FEET) = 1415.50 H : HI t1 D HI Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)) ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.314 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.587 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH /HR) RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.27 .80 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 8.56 TOTAL AREA(ACRES) = 2.27 PEAK FLOW RATE(CFS) Ap SCS Tc (DECIMAL) CN (MIN.) .50 52 9.31 .80 8.56 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 6.2 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<< <<< - - >>> = >( STREET - TABLE - SECTION - #-- 2- USED)<< «<-------------------------------- --------------- - - -- ---------- - - - - -- ----------------------------- UPSTREAM ELEVATION(FEET) = 1415.50 DOWNSTREAM ELEVATION(FEET) = 1409.62 STREET LENGTH(FEET) = 272.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 01 2 UNITS/ACRE AND LESS; AND "VALLEY DEVELOPED" S -GRAPH FOR DEVELOPMENTS OF 3 -4 UNITS /ACRE AND MORE. USER SPECIFIED RAINFALL VALUES: on 2 -YR 6 -HR RAINFALL DEPTH(INCH) = 1.80 2 -YR 24 -HR RAINFALL DEPTH(INCH) = 3.40 100 -YR 6 -HR RAINFALL DEPTH(INCH) = 3.90 100 -YR 24 -HR RAINFALL DEPTH(INCH) = 9.20 SIERRA MADRE DEPTH -AREA FACTORS USED. AREA- AVERAGED DURATION RAINFALL(INCH) 5- MINUTES .37 30- MINUTES .77 1 -HOUR 1.01 3 -HOUR 1.83 1� 6 -HOUR 2.67 24 -HOUR 5.79 *ANTECEDENT MOISTURE CONDITION (AMC III) ASSUMED FOR UNIT HYDROGRAPH METHOD* ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE 2.1 ------ -------- ----- ----- ---------- ---- ---- ---------- ---- ---- ---- --- --------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<<<< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 375.00 ELEVATION DATA: UPSTREAM(FEET) = 1422.20 DOWNSTREAM(FEET) = 1415.50 H : HI t1 D HI Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)) ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.314 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.587 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH /HR) RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.27 .80 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 8.56 TOTAL AREA(ACRES) = 2.27 PEAK FLOW RATE(CFS) Ap SCS Tc (DECIMAL) CN (MIN.) .50 52 9.31 .80 8.56 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 6.2 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<< <<< - - >>> = >( STREET - TABLE - SECTION - #-- 2- USED)<< «<-------------------------------- --------------- - - -- ---------- - - - - -- ----------------------------- UPSTREAM ELEVATION(FEET) = 1415.50 DOWNSTREAM ELEVATION(FEET) = 1409.62 STREET LENGTH(FEET) = 272.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 01 t� SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) _ .020 FLOW PROCESS FROM NODE - - 400 TO NODE -- - 500 IS CODE = 2.1 >> >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< <<< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< -------------------------------------------------------------------- -------- INITIAL SUBAREA FLOW- LENGTH(FEET) = 455.00 ELEVATION DATA: UPSTREAM(FEET) = 1430.00 DOWNSTREAM(FEET) = 1415.80 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)) ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.001 * 10,0 YEAR RAINFALL INTENSITY(INCH /HR) = 4.682 0 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 10.55 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .35 HALFSTREET FLOOD WIDTH(FEET) = 11.71 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.57 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.23 STREET FLOW TRAVEL TIME(MIN.) = 1.27 Tc(MIN.) = 10.58 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.248 I -rt SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN OR RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 1.15 .80 .50 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.15 SUBAREA RUNOFF(CFS) = 3.98 EFFECTIVE AREA(ACRES) = 3.42 AREA- AVERAGED Fm(INCH /HR) _ .40 AREA - AVERAGED Fp(INCH /HR) _ .80 AREA- AVERAGED Ap = .50 �+ TOTAL AREA(ACRES) = 3.42 PEAK FLOW RATE(CFS) = 11.85 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .36 HALFSTREET FLOOD WIDTH(FEET) = 12.26 FLOW VELOCITY(FEET /SEC.) = 3.68 DEPTH *VELOCITY(FT *FT /SEC.) = 1.31 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 1 ------ -------- ----- ----- ---------- ---- ---- ---------- ---- ---- ---------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.58 RAINFALL INTENSITY(INCH /HR) = 4.25 AREA - AVERAGED Fm(INCH /HR) _ .40 AREA - AVERAGED Fp(INCH /HR) _ .80 AREA- AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 3.42 TOTAL STREAM AREA(ACRES) = 3.42 PEAK FLOW RATE(CFS) AT CONFLUENCE = 11.85 FLOW PROCESS FROM NODE - - 400 TO NODE -- - 500 IS CODE = 2.1 >> >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< <<< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< -------------------------------------------------------------------- -------- INITIAL SUBAREA FLOW- LENGTH(FEET) = 455.00 ELEVATION DATA: UPSTREAM(FEET) = 1430.00 DOWNSTREAM(FEET) = 1415.80 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)) ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.001 * 10,0 YEAR RAINFALL INTENSITY(INCH /HR) = 4.682 0 HI ********************************************* * * * * * * * * * * * * * * * * ** * * ** * * * * * * * ** FLOW PROCESS FROM NODE 5.00 TO NODE 3.00 IS CODE = 6.2 ---------------------------------------------------------------------------- a >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<< <<< » » >( STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1415.80 DOWNSTREAM ELEVATION(FEET) = 1409.62 STREET LENGTH(FEET) = 390.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 lNAF SUBAREA Tc AND LOSS RATE DATA(AMC III): STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.128 SUBAREA LOSS RATE DATA(AMC III): j "5 -7 DWELLINGS /ACRE" A 1.48 .80 .50 52 9.00 ill SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.29 SUBAREA RUNOFF(CFS) = 7.69 SUBAREA RUNOFF(CFS) = 5.70 AREA - AVERAGED Fp(INCH /HR) _ .80 AREA- AVERAGED Ap = .50 41 TOTAL AREA(ACRES) = 1.48 PEAK FLOW RATE(CFS) = 5.70 ********************************************* * * * * * * * * * * * * * * * * ** * * ** * * * * * * * ** FLOW PROCESS FROM NODE 5.00 TO NODE 3.00 IS CODE = 6.2 ---------------------------------------------------------------------------- a >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<< <<< » » >( STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1415.80 DOWNSTREAM ELEVATION(FEET) = 1409.62 STREET LENGTH(FEET) = 390.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 lNAF * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 9.55 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .35 HALFSTREET FLOOD WIDTH(FEET) = 11.99 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.09 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.09 STREET FLOW TRAVEL TIME(MIN.) = 2.10 Tc(MIN.) = 11.10 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.128 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.29 .80 .50 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.29 SUBAREA RUNOFF(CFS) = 7.69 EFFECTIVE AREA(ACRES)_= 3.77 AREA- AVERAGED Fm(INCH /HR) _ .40 AREA - AVERAGED Fp(INCH /HR) _ .80 AREA- AVERAGED Ap = .50 41 TOTAL AREA(ACRES) = 3.77 PEAK FLOW RATE(CFS) = 12.65 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .38 HALFSTREET FLOOD WIDTH(FEET) = 13.40 FLOW VELOCITY(FEET /SEC.) = 3.32 DEPTH *VELOCITY(FT *FT /SEC.) = 1.26 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 1 ---------------------------------------------------------------------------- >> >>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< >> >>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<< <<< ** PEAK FLOW RATE TABLE ** TOTAL NUMBER OF STREAMS = 2 Fp(Fm) Ap Ae SOURCE CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: (INCH /HR) .796( .398) (ACRES) .50 7.0 TIME OF CONCENTRATION(MIN.) = 11.10 2 24.1 11.10 4.128 .796( .398) RAINFALL INTENSITY(INCH /HR) = 4.13 4.00 COMPUTED CONFLUENCE ESTIMATES ARE AREA - AVERAGED Fm(INCH /HR) = .40 AREA - AVERAGED Fp(INCH /HR) = .80 Tc(MIN.) = 10.58 AREA- AVERAGED Ap = .50 EFFECTIVE AREA(ACRES) = 7.01 AREA- AVERAGED Fm(INCH /HR) _ EFFECTIVE STREAM AREA(ACRES) = 3.77 AREA - AVERAGED Fp(INCH /HR) _ .80 �y TOTAL STREAM AREA(ACRES) = 3.77 TOTAL AREA(ACRES) = 7.19 PEAK FLOW RATE(CFS) AT CONFLUENCE = 12.65 ** CONFLUENCE DATA ** TO NODE 3.00 = 845.00 FEET. STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE ON NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 40 1 11.85 10.58 4.248 .80( .40) .50 3.42 1.00 2 12.65 11.10 4.128 .80( .40) .50 3.77 4.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** ********************************************* * * * * * * * * * * * * * * * * ** * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3.00 TO NODE 6.00 IS CODE = 6.2 ---------------------------------------------------------------------------- >> >>> COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<< <<< >> >>>( STREET TABLE SECTION # 1 USED) <<<<< UPSTREAM ELEVATION(FEET) = 1409.62 DOWNSTREAM ELEVATION(FEET) = 1407.31 STREET LENGTH(FEET) = 255.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 25.72 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .51 HALFSTREET FLOOD WIDTH(FEET) = 20.17 STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) 1 24.3 10.58 4.248 (INCH /HR) .796( .398) (ACRES) .50 7.0 NODE 1.00 2 24.1 11.10 4.128 .796( .398) .50 7.2 4.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 24.30 Tc(MIN.) = 10.58 EFFECTIVE AREA(ACRES) = 7.01 AREA- AVERAGED Fm(INCH /HR) _ .40 AREA - AVERAGED Fp(INCH /HR) _ .80 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 7.19 LONGEST FLOWPATH FROM NODE 4.00 TO NODE 3.00 = 845.00 FEET. ********************************************* * * * * * * * * * * * * * * * * ** * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3.00 TO NODE 6.00 IS CODE = 6.2 ---------------------------------------------------------------------------- >> >>> COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<< <<< >> >>>( STREET TABLE SECTION # 1 USED) <<<<< UPSTREAM ELEVATION(FEET) = 1409.62 DOWNSTREAM ELEVATION(FEET) = 1407.31 STREET LENGTH(FEET) = 255.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 25.72 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .51 HALFSTREET FLOOD WIDTH(FEET) = 20.17 0 a 0 ol E E� �11 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.19 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.62 STREET FLOW TRAVEL TIME(MIN.) = 1.33 Tc(MIN.) = 11.92 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.956 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A .89 .80 .50 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) _ .89 SUBAREA RUNOFF(CFS) = 2.85 EFFECTIVE AREA(ACRES) = 7.9 AREA- AVERAGED Fm(INCH /HR) _ .40 AREA- AVERAGED Fp(INCH /HR) _ .80 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 8.08 PEAK FLOW RATE(CFS) = 25.31 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .50 HALFSTREET FLOOD WIDTH(FEET) = 19.86 FLOW VELOCITY(FEET /SEC.) = 3.19 DEPTH *VELOCITY(FT *FT /SEC.) = 1.61 FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE = 8.1 ---------------------------------------------------------------------------- >> >>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< MAINLINE Tc(MIN) = 11.92 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.956 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.87 .80 .50 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.87 SUBAREA RUNOFF(CFS) = 9.19 EFFECTIVE AREA(ACRES) = 10.77 AREA- AVERAGED Fm(INCH /HR) _ .40 AREA- AVERAGED Fp(INCH /HR) _ .80 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 10.95 PEAK FLOW RATE(CFS) = 34.50 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.00 TO NODE 8.00 IS CODE = 6.2 » >>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<< <<< >>>>>( STREET TABLE SECTION # 1 USED) <<<<< UPSTREAM ELEVATION(FEET) = 1407.31 DOWNSTREAM ELEVATION(FEET) = 1405.97 STREET LENGTH(FEET) = 100.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) _ .020 F ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * *TRAVEL FLOW(CFS) = TIME COMPUTED USING ESTIMATED FLOW(CFS) = 35.04 ** *STREET FLOWING FULL * ** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .52 HALFSTREET FLOOD WIDTH(FEET) = 21.20 STREET FLOW DEPTH(FEET) = .54 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.00 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.10 HALFSTREET FLOOD WIDTH(FEET) = 21.87 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 STREET FLOW TRAVEL TIME(MIN.) = .42 Tc(MIN.) = 12.33 AVERAGE FLOW VELOCITY(FEET /SEC.) = * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.876 SUBAREA LOSS RATE DATA(AMC III): PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) .(DECIMAL) CN STREET FLOW TRAVEL TIME(MIN.) = 1.17 RESIDENTIAL OR "5 -7 DWELLINGS /ACRE" A .35 .80 .50 52 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA LOSS RATE DATA(AMC III): SUBAREA AREA(ACRES) = .35 SUBAREA RUNOFF(CFS) = 1.10 EFFECTIVE AREA(ACRES) = 11.12 AREA - AVERAGED Fm(INCH /HR) _ .40 DEVELOPMENT TYPE/ SCS SOIL AREA AREA- AVERAGED Fp(INCH /HR) _ .80 AREA- AVERAGED Ap = .50 Ap SCS TOTAL AREA(ACRES) = 11.30 PEAK FLOW RATE(CFS) = 34.81 LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN END OF SUBAREA STREET FLOW HYDRAULICS: RESIDENTIAL DEPTH(FEET) = .52 HALFSTREET FLOOD WIDTH(FEET) = 21.14 FLOW VELOCITY(FEET /SEC.) = 4.00 DEPTH *VELOCITY(FT *FT /SEC.) = 2.09 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 6.2 FLOW(CFS) = --------------------------------------------------------------------- >> >>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>( STREET TABLE SECTION # 1 USED) <<<<< UPSTREAM ELEVATION(FEET) = 1405.97 DOWNSTREAM ELEVATION(FEET) = 1402.50 STREET LENGTH(FEET) = 280.00 CURB HEIGHT(INCHES) = 6.0 STREET FLOW DEPTH(FEET) = .54 STREET HALFWIDTH(FEET) = 20.00 HALFSTREET FLOOD WIDTH(FEET) = 21.87 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 AVERAGE FLOW VELOCITY(FEET /SEC.) = OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 37.28 ** *STREET FLOWING FULL * ** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .54 HALFSTREET FLOOD WIDTH(FEET) = 21.87 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.99 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.15 STREET FLOW TRAVEL TIME(MIN.) = 1.17 Tc(MIN.) = 13.50 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.671 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Pp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 1.68 .80 .50 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.68 SUBAREA RUNOFF(CFS) = 4.95 EFFECTIVE AREA(ACRES) = 12.80 AREA - AVERAGED Fm(INCH /HR) _ .40 AREA- AVERAGED Fp(INCH /HR) _ .80 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 12.98 PEAK FLOW RATE(CFS) = 37.71 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .54 HALFSTREET FLOOD WIDTH(FEET) = 21.94 FLOW VELOCITY(FEET /SEC.) = 4.01 DEPTH *VELOCITY(FT *FT /SEC.) = 2.16 4" FLOW PROCESS FROM NODE 10.00 TO NODE 9.00 IS CODE = 8.1 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <<<<< MAINLINE Tc(MIN) = 13.50 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.671 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.06 .80 .50 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.06 SUBAREA RUNOFF(CFS) = 6.07 EFFECTIVE AREA(ACRES) = 14.86 AREA- AVERAGED Fm(INCH /HR) _ .40 AREA - AVERAGED Fp(INCH /HR) _ .80 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 15.04 PEAK FLOW RATE(CFS) = 43.77 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 9.00 TO NODE 11.00 IS CODE = 3.1 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA<< <<< >>>>>USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) <<<<< ------------------------------- - - ---- 1 ELEVATION DATA: UPSTREAM(FEET) = 1394.50 DOWNSTREAM(FEET) = 1391.30 FLOW LENGTH(FEET) = 234.00 MANNING'S N = .013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 23.6 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 10.56 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 43.77 PIPE TRAVEL TIME(MIN.) _ .37 Tc(MIN.) = 13.87 ********************************************* * * * * * * * * * ** * * * * * * * ** * * * * * *** * ** FLOW PROCESS FROM NODE 11.00 TO NODE 11.00 IS CODE = 8.1 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<< <<< MAINLINE Tc(MIN) = 13.87 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.612 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS J J LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN- RESIDENTIAL "5 -7 DWELLINGS /ACRE" A .43 .80 .50 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .43 SUBAREA RUNOFF(CFS) = 1.24 EFFECTIVE AREA(ACRES) = 15.29 AREA - AVERAGED Fm(INCH /HR) _ .40 AREA - AVERAGED Fp(INCH /HR) = .80 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 15.47 PEAK FLOW RATE(CFS) = 44.23 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 11.00 TO NODE 13.00 IS CODE = 3.1 ---------------------------------------------------------------------------- >> >>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA <<<<< P >>>>>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) <<<<< ------ - - - - -- ELEVATION DATA: UPSTREAM(FEET) = 1391.31 DOWNSTREAM(FEET) = 1387.20 FLOW LENGTH(FEET) = 308.40 MANNING'S N = .013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 24.2 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 10.43 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 44.23 PIPE TRAVEL TIME(MIN.) _ .49 Tc(MIN.) = 14.36 FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 8.1 40 ---------------------------------------------------------------------------- >> >>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ------------------------ MAINLINE Tc(MIN) = 14.36 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.537 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 3.70 .80 .50 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 3.70 SUBAREA RUNOFF(CFS) = 10.45 EFFECTIVE AREA(ACRES) = 18.99 AREA- AVERAGED Fm(INCH /HR) _ . 40 AREA - AVERAGED Fp(INCH /HR) = .80 AREA- AVERAGED Ap = . 50 TOTAL AREA(ACRES) = 19.17 PEAK FLOW RATE(CFS) = 53.65 FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 3.1 ---------------------------------------------------------------------------- >> >>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA <<<<< >> >>>USING COMPUTER- ESTIMATED PIPESIZE (NON - PRESSURE FLOW)<< <<< ELEVATION DATA: UPSTREAM(FEET) = 1387.20 DOWNSTREAM(FEET) = 1383.40 FLOW LENGTH(FEET) = 614.00 MANNING'S N = .013 DEPTH OF FLOW IN 39.0 INCH PIPE IS 28.1 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 8.37 ESTIMATED PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1 J �i PIPE- FLOW(CFS) = 53.65 PIPE TRAVEL TIME(MIN.) = 1.22 TC(MIN.) = 15.59 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 19.17 TC(MIN.) = 15.59 EFFECTIVE AREA(ACRES) = 18.99 AREA - AVERAGED FM(INCH /HR)= .40 AREA - AVERAGED Fp(INCH /HR) _ .80 AREA- AVERAGED Ap = .50 PEAK FLOW RATE(CFS) = 53.65 ** PEAK FLOW RATE TABLE ** Fl F7 0 STREAM Q Tc Intensity FP(FM) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 53.6 15.59 3.368 .796( .398) .50 19.0 1.00 2 528 16.12 3.300 .796( .398) .50 19.2 4.00 - -- END OF RATIONAL METHOD ANALYSIS ---- - - - - -- Fl F7 0 Scale: 1 " =200' 86 EXISTING IMPROVEMENTS EXISTING MEDI�W WHERE � I u —` SHOWN ON PLAN 15 WALNUT STFEET - W Ft/W N.T.S. N LEC,END � INDICATES HYDROLOGY NODE 5.2 --,- -- INDICATEC APFA (ACREArF) WAINIff A YGE. HYDROLOGY 6' WIDE FYHIBff MEANDERING �,�� r-oR MCT IM- Prepared By: ALLARD ENGINEERING Civil Engineering - Land Surveying - Land Planning 6253 Sierra Avenue Fontana, Califimmis 92335 (909) 356 -1815 Fax (909) 356 -1795 M: \DWAi. \1 D902 \HOH eft- M[J'tlA U" E F7 R a D d A 0 H San Bernardino County Rational Hydrology Program T (Hydrology Manual Date - August 1986) t_ CIVILCADD /CIVZLDESIGN Engineering Software, (c) 1989 -1999 Version 6.2 Rational Hydrology Study Date: 03/11/02 ------------------------------------------------------------------------ Tract No. 16158 -2 Walnut Avenue Study 100 Year Event Storm Analysis for street Capacity by: D. Hammer, File Name: Walnut ------------------------------------------------------------------------- Allard Engineering, Fontana, California - SIN 643 ------------------------------------------------------------------------ ********* Hydrology Study Control Information * * * * * * * * ** ------------------------------------------------------------------------ Rational hydrology study storm event year is 100.0 -J Computed rainfall intensity: LC Storm year = 100.00 1 hour rainfall = 1.500 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 2 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 30.000 to Point /Station 31.000 * * ** INITIAL AREA EVALUATION * * ** COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(AP) = 0.1000 Max loss rate(Fm)= Initial subarea data: Initial area flow distance = 690.000(Ft.) Top (of initial area) elevation = 1439.000(Ft.) Bottom (of initial area) elevation = 1434.700(Ft.) Difference in elevation = 4.300(Ft.) Slope = 0.00623 s( %)= 0.62 TC = k(0.304) *[(length "3) /(elevation change)] Initial area time of concentration = 11.468 min. Rainfall intensity = 4.048(In /Hr) for a 100. Effective runoff coefficient used for area (Q =KCIA) Subarea runoff = 2.489(CFS) Total initial stream area = 0.700(Ac.) Pervious area fraction = 0.100 Initial area Fm value = 0.098(In /Hr) 0.098(In /Hr) 0 year storm is C = 0.878 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + ++++ Process from Point /Station 31.000 to Point /Station 32.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 1434.700(Ft.) End of street segment elevation = 1427.900(Ft.) Length of street segment = 740.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 20.000(Ft.) iz/l4 F-1 Distance from crown to crossfall grade break = 10.000(Ft.) break (v /hz) 0.020 ` Slope from gutter to grade = Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1) side(s) of the street Distance from curb to property line = 18.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 1.500(Ft.) �► Gutter hike from flowline = 0.110(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Im Estimated mean flow rate at midpoint of street = 3.733(CFS) Depth of flow = 0.232(Ft.), Average velocity = 2.350(Ft /s) Streetflow hydraulics at midpoint.of street travel: Halfstreet flow width = 12.665(Ft.) Flow velocity = 2.35(Ft /s) Travel time = 5.25 min. TC = 16.72 min. Adding area flow to street COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In /Hr) Rainfall intensity = 3.229(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.873 Subarea runoff = 1.457(CFS) for 0.700(Ac.) Total runoff = 3.946(CFS) am Effective area this stream = 1.40(Ac.) Total Study Area (Main Stream No. 1) = 1.40(Ac.) Area averaged Fm value = 0.098(In /Hr) Street flow at end of street = 3.946(CFS) Half street flow at end of street = 3.946(CFS) Depth of flow = 0.238(Ft.), Average velocity = 2.383(Ft/s) Flow width (from curb towards crown)= 12.927(Ft.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 32.000 to Point /Station 33.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 1427.900(Ft.) End of street segment elevation = 1421.900(Ft.) Length of street segment = 580.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 10.000(Ft.) Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 18.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.110(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.015q Estimated mean flow rate at midpoint of street = 4.791(CFS) Depth of flow = 0.251(Ft.), Average velocity = 2.616(Ft /s) 13/ 14 Area averaged pervious area fraction(Ap) = 0.100 Area averaged SCS curve number = 32.0 HI Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 13.591(Ft.) Flow velocity = 2.62(Ft /s) Travel time = 3.70 min. TC = 20.41 min. Adding area flow to street COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098 (In /Hr) Pervious Rainfall intensity = 2:-865(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.869 Subarea runoff = 1.035(CFS) for 0.600(Ac.) Total runoff = 4.980(CFS) Effective area this stream = 2.00(Ac.) Total Study Area (Main Stream No. 1) = 2.00(Ac.) Area averaged Fm value = 0.098 (In /Hr) Street flow at end of street = 4.980(CFS a street flow at end of street = 4.980(CFS) Depth of flow = 0.255(Ft.), Average velocity = 2.642(Ft/s) towards crown)= 13.788(Ft.) Flow width (from curb End of computations, Total Study Area = 2.00 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation. Area averaged pervious area fraction(Ap) = 0.100 Area averaged SCS curve number = 32.0 HI 0 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING, INC. 8553 SIERRA AVENUE FONTANA, CALIFORNIA 92336 (909) 356 - 1815 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Young Homes Tract 16158 * 100 year Rat. for Sizing Flowby catch basins at spruce tree and Julian By: Joe Ramirez File: OOlatab �.. ]+'G =f'cr A FILE NAME: OO.DAT TIME /DATE OF STUDY: 13:36 7/18/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: - - -- - -- - -- - - -- - -- - - - - -- -- *TIME -OF- CONCENTRATION MODEL * -- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) _ .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.5000 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* *USER - DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET- CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT- /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 18.0 10.0 .020/ .020/ .020 .50 1.50 .03125 .1250 .01500 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = .14 FEET as (Maximum Allowable Street Flow Depth) - (Top - of - Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * ** * * * ** -- FLOW - PROCESS FROM NODE - - - - -- 100 - TO - NODE - - - -- - 200 IS CODE = 2.1 ----------------------------------------------------------- >> >>> RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<<<< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) 420.00 ELEVATION DATA: UPSTREAM(FEET) = 1403.40 DOWNSTREAM(FEET) = 1399.00 am k w o to e D [7 01 1 ull Tc = K *[(LENGTH ** 3.00)/(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.844 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.187 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH /HR) RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.00 .98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = ,50 SUBAREA RUNOFF(CFS) = 6.66 TOTAL AREA(ACRES) = 2.00 PEAK FLOW RATE(CFS) Ap SCS Tc (DECIMAL) CN (MIN.) .50 32 10.84 .98 6.66 ********************************************* * * * * * * * * * * * * * * * * ** * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 6.2 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<< >>>>>( STREET TABLE SECTION # 1 USED) <<<<< UPSTREAM ELEVATION(FEET) = 1399.00 DOWNSTREAM ELEVATION(FEET) = 1395.10 STREET LENGTH(FEET) = 400.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 9.07 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .38 HALFSTREET FLOOD WIDTH(FEET) = 12.88 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.55 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) _ .98 STREET FLOW TRAVEL TIME(MIN.) = 2.61 Tc(MIN.) = 13.46 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.678 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 1.68 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.68 SUBAREA RUNOFF(CFS) = 4.82 EFFECTIVE AREA(ACRES) = 3.68 AREA- AVERAGED Fm(INCH /HR) _ .49 AREA - AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 3.68 PEAK FLOW RATE(CFS) = 10.57 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .40 HALFSTREET FLOOD WIDTH(FEET) = 13.66 �1� l P, 0 FLOW VELOCITY(FEET /SEC.) = 2.66 DEPTH *VELOCITY(FT *FT /SEC.) = 1.06 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 3.68 TC(MIN.) = 13.46 EFFECTIVE AREA(ACRES) = 3.68 AREA - AVERAGED FM(INCH /HR)= .49 AREA - AVERAGED Fp(INCH /HR) _ .98 AREA- AVERAGED AP = .50 PEAK FLOW RATE(CFS) = 10.57 END OF RATIONAL METHOD ANALYSIS l P, 0 J rl i 10 Year Hydrology Calculations 0 D p R t u D ii ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING, INC. 8553 SIERRA AVENUE FONTANA, CALIFORNIA 92336 (909) 356 - 1815 s * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Young Homes Tract 16158 * 10 year * BY: JOE RAMIREZ 12 -31 -01 REV.(07- 19 -02) ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 1016158.DAT TIME /DATE OF STUDY: 13:55 7/18/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL * -- USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.000 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.500 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 10.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.0100 SLOPE OF INTENSITY DURATION CURVE = .6000 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* *USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET- CROSSFALL: CURB GUTTER- GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT- /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 20.0 10.0 .020/ .020/ .020 .50 1.50 .03125 .1100 .01500 2 .18.0 10.0 .020/ .020/ .020 .50 1.50 .03125 .1100 .01500 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = .14 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 5.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* UNIT - HYDROGRAPH DATA: WATERSHED LAG = .80 * Tc USED "VALLEY UNDEVELOPED" S -GRAPH FOR DEVELOPMENTS OF FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 6.2 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<< <<< >> >>>( STREET TABLE SECTION # 2 USED) <<<<< UPSTREAM ELEVATION(FEET) = 1415.50 DOWNSTREAM ELEVATION(FEET) = 1409.62 STREET LENGTH(FEET) = 272.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 2 UNITS /ACRE AND LESS; AND "VALLEY DEVELOPED" S -GRAPH FOR DEVELOPMENTS OF 3 -4 UNITS /ACRE AND MORE. USER SPECIFIED RAINFALL VALUES: 2 -YR 6 -HR RAINFALL DEPTH(INCH) = 1.80 2 -YR 24 -HR RAINFALL DEPTH(INCH) = 3.40 100 -YR 6 -HR RAINFALL DEPTH(INCH) = 3.90 100 -YR 24 -HR RAINFALL DEPTH(INCH) = 9.20 SIERRA MADRE DEPTH -AREA FACTORS USED. AREA- AVERAGED DURATION RAINFALL(INCH) 5- MINUTES .37 30- MINUTES .77 1 -HOUR 1.01 3 -HOUR 1.83 6 -HOUR 2.67 24 -HOUR 5.79 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR UNIT HYDROGRAPH METHOD* FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 6.2 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<< <<< >> >>>( STREET TABLE SECTION # 2 USED) <<<<< UPSTREAM ELEVATION(FEET) = 1415.50 DOWNSTREAM ELEVATION(FEET) = 1409.62 STREET LENGTH(FEET) = 272.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 100 NODE 200 CODE = 2.1 - TO - IS -- - - - - - - -- - - - - -- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<<<< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 375.00 ELEVATION DATA: UPSTREAM(FEET) = 1422.20 DOWNSTREAM(FEET) = 1415.50 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.314 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 3.088 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL 11 5 -7 DWELLINGS /ACRE" A 2.27 .98 .50 32 9.31 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 5.31 TOTAL AREA(ACRES) = 2.27 PEAK FLOW RATE(CFS) = 5.31 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 6.2 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<< <<< >> >>>( STREET TABLE SECTION # 2 USED) <<<<< UPSTREAM ELEVATION(FEET) = 1415.50 DOWNSTREAM ELEVATION(FEET) = 1409.62 STREET LENGTH(FEET) = 272.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 {I H - 111 0 °d r+ l J2 p SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) _ .020 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.53 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .30 HALFSTREET FLOOD WIDTH(FEET) = 9.52 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.22 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) _ .97 STREET FLOW TRAVEL TIME(MIN.) = 1.41 Tc(MIN.) = 10.72 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.838 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 1.15 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.15 SUBAREA RUNOFF(CFS) = 2.43 EFFECTIVE AREA(ACRES) = 3.42 AREA - AVERAGED Fm(INCH /HR) _ .49 AREA - AVERAGED Fp(INCH /HR) _ .97 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 3.42 PEAK FLOW RATE(CFS) = 7.24 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .31 HALFSTREET FLOOD WIDTH(FEET) = 9.99 FLOW VELOCITY(FEET /SEC.) = 3.27 DEPTH *VELOCITY(FT *FT /SEC.) = 1.02 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 1 ---------------------------------------------------------------------- - - - - -- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) RAINFALL INTENSITY(INCH /HR) AREA - AVERAGED Fm(INCH /HR) _ AREA - AVERAGED Fp(INCH /HR) _ AREA- AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) TOTAL STREAM AREA(ACRES) _ PEAK FLOW RATE(CFS) AT CONFL 10.72 2.84 .49 .97 3.42 3.42 UENCE = 7.24 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** - - FLOW PROCESS FROM NODE 4.00 NODE - - -- - 500 IS CODE = 2.1 ------------ - - - - -- - - - - -- - - - - -- ------------------------ >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< <<< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 455.00 ELEVATION DATA: UPSTREAM(FEET) = 1430.00 DOWNSTREAM(FEET) = 1415.80 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.001 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 3.152 e SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL 11 5 -7 DWELLINGS /ACRE" A 1.48 .98 .50 32 9.00 SUBAREA AVERAGE PERVIOUS LOSS _RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 3.54 TOTAL AREA(ACRES) = 1.48 PEAK FLOW RATE(CFS) = 3.54 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 5.00 TO NODE 3.00 IS CODE = 6.2 ------------------------------------------------- 7 -------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<< >>>>>( STREET TABLE SECTION # 1 USED) <<<<< UPSTREAM ELEVATION(FEET) = 1415.80 DOWNSTREAM ELEVATION(FEET) = 1409.62 STREET LENGTH(FEET) = 390.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.29 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.29 SUBAREA RUNOFF(CFS) = 4.65 EFFECTIVE AREA(ACRES) -= 3.77 AREA- AVERAGED Fm(INCH /HR) _ .49 AREA - AVERAGED Fp(INCH /HR) _ .97 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 3.77 PEAK FLOW RATE(CFS) = 7.65 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .33 HALFSTREET FLOOD WIDTH(FEET) = 10.90 FLOW VELOCITY(FEET /SEC.) = 2.95 DEPTH *VELOCITY(FT *FT /SEC.) _ .97 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<< <<< �I r SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) _ .020 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.88 y STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .31 HALFSTREET FLOOD WIDTH(FEET) = 9.77 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.77 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) _ .85 STREET FLOW TRAVEL TIME(MIN.) = 2.35 Tc(MIN.) = 11.35 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.743 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS _ LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.29 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.29 SUBAREA RUNOFF(CFS) = 4.65 EFFECTIVE AREA(ACRES) -= 3.77 AREA- AVERAGED Fm(INCH /HR) _ .49 AREA - AVERAGED Fp(INCH /HR) _ .97 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 3.77 PEAK FLOW RATE(CFS) = 7.65 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .33 HALFSTREET FLOOD WIDTH(FEET) = 10.90 FLOW VELOCITY(FEET /SEC.) = 2.95 DEPTH *VELOCITY(FT *FT /SEC.) _ .97 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<< <<< �I r >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES <<<<< RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM TOTAL NUMBER OF STREAMS = 2 Tc Intensity Fp(Fm) Ap Ae CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: (CFS) (MIN.) TIME OF CONCENTRATION(MIN.) = 11.35 (INCH /HR) (ACRES) NODE 1 RAINFALL INTENSITY(INCH /HR) = 2.74 10.72 2.838 .975( .487) .50 7.0 AREA - AVERAGED Fm(INCH /HR) _ .49 AREA - AVERAGED Fp(INCH /HR) _ .97 2 14.6 11.35 AREA- AVERAGED Ap = .50 .975( .487) .50 7.2 4.00 EFFECTIVE STREAM AREA(ACRES) = 3.77 TOTAL STREAM AREA(ACRES) = 3.77 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.65 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 7.24 10.72 2.838 .97( .49) .50 3.42 1.00 2 7.65 11.35 2.743 .97( .49) .50 3.77 4.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 14.8 10.72 2.838 .975( .487) .50 7.0 1.00 2 14.6 11.35 2..743 .975( .487) .50 7.2 4.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 14.77 Tc(MIN.) = 10.72 EFFECTIVE AREA (ACRES) = 6.98 AREA - AVERAGED Fm(INCH /HR) _ .49 AREA - AVERAGED Fp(INCH /HR) _ .97 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 7.19 LONGEST FLOWPATH FROM NODE 4.00 TO NODE 3.00 = 845.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3.00 TO NODE 6.00 IS CODE = 6.2 ---------------------------------------------------------------------------- p � >>>>> COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<< 111 » »> (STREET TABLE SECTION #( 1 USED) « «< --------------- - UPSTREAM ELEVATION(FEET) = 1409.62 DOWNSTREAM ELEVATION(FEET) = 1407.31 STREET LENGTH(FEET) = 255.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) _ .020 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 15.62 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .44 HALFSTREET FLOOD WIDTH(FEET) = 16.29 iI �1�1 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.83 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.24 STREET FLOW TRAVEL TIME(MIN.) = 1.50 Tc(MIN.) = 12.22 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.624 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) RESIDENTIAL CN 11 5 -7 DWELLINGS /ACRE" A .89 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) _ .89 SUBAREA RUNOFF(CFS) = 1.71 EFFECTIVE AREA(ACRES) = 7.87 AREA - AVERAGED Fm(INCH /HR) _ .49 AREA- AVERAGED Fp(INCH /HR). _ .97 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 8.08 PEAK FLOW RATE(CFS) = 15.13 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .43 HALFSTREET FLOOD WIDTH(FEET) = 16.05 FLOW VELOCITY(FEET /SEC.) = 2.82 DEPTH *VELOCITY(FT *FT /SEC.) = 1.22 FROM NODE 6.00 TO NODE 6.00 IS CODE 8.1 FLOW PROCESS = ---------------------------------------------------------------------------- >> >>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <<<<< Jul i6 MAINLINE Tc(MIN) = 12.22 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.624 SUBAREA LOSS RATE DATA(AMC II): wl im DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.87 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.87 SUBAREA RUNOFF(CFS) = 5.52 EFFECTIVE AREA(ACRES) _' 10.74 AREA- AVERAGED Fm(INCH /HR) _ .49 AREA - AVERAGED Fp(INCH /HR) _ .97 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 10.95 PEAK FLOW RATE(CFS) = 20.65 p" ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.00 TO NODE - - -- 800 - IS CODE = 6.2 >> >>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<< <<< » >>>( STREET TABLE SECTION # 1 USED)<<<<< ____===== t___________________________________ _______________________________ UPSTREAM ELEVATION(FEET) = 1407.31 DOWNSTREAM ELEVATION(FEET) = 1405.97 STREET LENGTH(FEET) = 100.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) _ .020 �1�1 a FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 6.2 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<< <<< >> >>>( STREET TABLE SECTION # 1 USED) <<<<< UPSTREAM ELEVATION(FEET) = 1405.97 DOWNSTREAM ELEVATION(FEET) = 1402.50 STREET LENGTH(FEET) = 280.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 - 0 it p 0 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 22.19 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .46 HALFSTREET FLOOD WIDTH(FEET) = 17.54 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.49 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.61 STREET FLOW TRAVEL TIME(MIN.) = 1.34 Tc(MIN.) _ * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.415 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH /HR) RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 1.68 .98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 14.03 Ap SCS (DECIMAL) CN .50 32 .98 V * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 20.97 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .45 HALFSTREET FLOOD WIDTH(FEET) = 16.91 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.53 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.59 STREET FLOW TRAVEL TIME(MIN.) = .47 Tc(MIN.) = 12.70 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.565 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A .35 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .35 SUBAREA RUNOFF(CFS) _ .65 EFFECTIVE AREA(ACRES) = 11.09 AREA - AVERAGED Fm(INCH /HR) _ .49 AREA - AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 11.30 PEAK FLOW RATE(CFS) = 20.73 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .45 HALFSTREET FLOOD WIDTH(FEET) = 16.84 FLOW VELOCITY(FEET /SEC.) = 3.52 DEPTH *VELOCITY(FT *FT /SEC.) = 1.58 FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 6.2 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<< <<< >> >>>( STREET TABLE SECTION # 1 USED) <<<<< UPSTREAM ELEVATION(FEET) = 1405.97 DOWNSTREAM ELEVATION(FEET) = 1402.50 STREET LENGTH(FEET) = 280.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 - 0 it p 0 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 22.19 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .46 HALFSTREET FLOOD WIDTH(FEET) = 17.54 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.49 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.61 STREET FLOW TRAVEL TIME(MIN.) = 1.34 Tc(MIN.) _ * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.415 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH /HR) RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 1.68 .98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 14.03 Ap SCS (DECIMAL) CN .50 32 .98 V ********************************************* * * * * * * * * * * * * * * ** * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 9.00 TO NODE 11.00 IS CODE = 3.1 >>>>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA<< <<< *II >>>>>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 1394.50 DOWNSTREAM(FEET) = 1391.30 FLOW LENGTH(FEET) = 234.00 MANNING'S N = .013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.4 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 9.48 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES'= 1 PIPE- FLOW(CFS) = 25.72 PIPE TRAVEL TIME(MIN.) = .41 Tc(MIN.) = 14.45 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.68 SUBAREA RUNOFF(CFS) = 2.91 11.00 IS EFFECTIVE AREA(ACRES) = 12.77 AREA - AVERAGED Fm(INCH /HR) _ .49 AREA - AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .50 «<___ TOTAL AREA(ACRES) = 12.98 PEAK FLOW RATE(CFS) = 22.15 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .46 HALFSTREET FLOOD WIDTH(FEET) = 17.54 FLOW VELOCITY(FEET /SEC.) = 3.48 DEPTH *VELOCITY(FT *FT /SEC.) = 1.61 2.373 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 10.U0 TO NODE 9.00 IS CODE = 8.1 ---------------------------------------------------------------------------- Fp >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<< <<< MAINLINE Tc(MIN) = 14.03 (INCH /HR) * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.415 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.06 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.06 SUBAREA RUNOFF(CFS) = 3.57 EFFECTIVE AREA(ACRES) = 14.83 AREA - AVERAGED Fm(INCH /HR) _ .49 AREA - AVERAGED Fp(INCH /HR) _ .97 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 15.04 PEAK FLOW RATE(CFS) = 25.72 ********************************************* * * * * * * * * * * * * * * ** * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 9.00 TO NODE 11.00 IS CODE = 3.1 >>>>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA<< <<< *II >>>>>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 1394.50 DOWNSTREAM(FEET) = 1391.30 FLOW LENGTH(FEET) = 234.00 MANNING'S N = .013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.4 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 9.48 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES'= 1 PIPE- FLOW(CFS) = 25.72 PIPE TRAVEL TIME(MIN.) = .41 Tc(MIN.) = 14.45 V ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 11.00 TO NODE 11.00 IS CODE = 8.1 ---------------------------------------------------------------------------- _ >>>>>ADDITION OF SUBAREA TO MAINLINE_ PEAK - FLOW<< «<___ MAINLINE Tc(MIN) = 14.45 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.373 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL V lh ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** A!t FLOW PROCESS FROM NODE 11.00 TO NODE 13.00 IS CODE = 3.1 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA <<<<< >>>>>USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW)<< <<< ELEVATION DATA: UPSTREAM(FEET) = 1391.30 DOWNSTREAM(FEET) = 1387.20 FLOW LENGTH(FEET) = 308.40 MANNING'S N = .013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.7 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 9.39 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 25.90 PIPE TRAVEL TIME(MIN.) = .55 Tc(MIN.) = 14.99 ** FLOW * PROCESS * FROM * NODE ***** 13* 00 *********** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ------------------------------- - - - - TO - NODE 13.00 IS CODE = 8.1 >> >>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< MAINLINE Tc(MIN) = 14.99 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.321 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 3.70 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 3.70 SUBAREA RUNOFF(CFS) = 6.11 EFFECTIVE AREA(ACRES) = 18.96 AREA- AVERAGED Fm(INCH /HR) _ .49 AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 19.17 PEAK FLOW RATE(CFS) = 31.29 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 3.1 ---------------------------------------------------------------------------- » >>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< >>>>>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW)<< <<< ELEVATION DATA: UPSTREAM(FEET) = 1387.20 DOWNSTREAM(FEET) = 1382.40 FLOW LENGTH(FEET) = 614.00 MANNING'S N = .013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 22.4 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 7.94 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 31.29 PIPE TRAVEL TIME(MIN.) = 1.29 Tc(MIN.) = 16.28 "5 -7 DWELLINGS /ACRE" A .43 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 . SUBAREA AREA(ACRES) = .43 SUBAREA RUNOFF(CFS) _ .73 EFFECTIVE AREA(ACRES) = 15.26 AREA - AVERAGED Fm(INCH /HR) _ .49 AREA - AVERAGED Fp(INCH /HR) _ .97 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 15.47 PEAK FLOW RATE(CFS) = 25.90 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** A!t FLOW PROCESS FROM NODE 11.00 TO NODE 13.00 IS CODE = 3.1 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA <<<<< >>>>>USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW)<< <<< ELEVATION DATA: UPSTREAM(FEET) = 1391.30 DOWNSTREAM(FEET) = 1387.20 FLOW LENGTH(FEET) = 308.40 MANNING'S N = .013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.7 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 9.39 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 25.90 PIPE TRAVEL TIME(MIN.) = .55 Tc(MIN.) = 14.99 ** FLOW * PROCESS * FROM * NODE ***** 13* 00 *********** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ------------------------------- - - - - TO - NODE 13.00 IS CODE = 8.1 >> >>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< MAINLINE Tc(MIN) = 14.99 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.321 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 3.70 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 3.70 SUBAREA RUNOFF(CFS) = 6.11 EFFECTIVE AREA(ACRES) = 18.96 AREA- AVERAGED Fm(INCH /HR) _ .49 AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 19.17 PEAK FLOW RATE(CFS) = 31.29 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 3.1 ---------------------------------------------------------------------------- » >>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< >>>>>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW)<< <<< ELEVATION DATA: UPSTREAM(FEET) = 1387.20 DOWNSTREAM(FEET) = 1382.40 FLOW LENGTH(FEET) = 614.00 MANNING'S N = .013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 22.4 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 7.94 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 31.29 PIPE TRAVEL TIME(MIN.) = 1.29 Tc(MIN.) = 16.28 fl D - p, END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 19.17 TC(MIN.) = 16.28 40 EFFECTIVE AREA(ACRES) = 18.96 AREA - AVERAGED Fm(INCH /HR)= .49 AREA - AVERAGED Fp(INCH /HR) _ .97 AREA- AVERAGED Ap = .50 PEAK FLOW RATE(CFS) = 31.29 40 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE 41 NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 31.3 16.28 2.209 .975( .487) .50 19.0 1.00 ' 2 30.6 16.94 2.157 .975( .487) .50 19.2 4.00 f�l END OF RATIONAL METHOD ANALYSIS fl D - p, e Street Capacity Calculations And Catch Basin Sizing Calculations J 0 HI?" D E J L' e ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -95 Advanced Engineering Software (aes) Ver. 5.1 Release Date: 01 /01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE FONTANA CA. TEL (909) 356 - 1815 FAX (909) 356 -1795 ---------------------------------------------------------------------------- TIME /DATE OF STUDY: 11:28 5/ 3/2002 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * YOUNG HOMES TRACT 16158 * 10 YEAR STREET CAPACITY FOR FAITH ST. DAVID LN.�l�10+ ^- ` * By: JOE RAMIREZ FILE: 10FHSC >> >>STREETFLOW MODEL INPUT INFORMATION<< << CONSTANT STREET GRADE(FEET /FEET) = .010000 CONSTANT STREET FLOW(CFS) = 25.80 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020000 OUTSIDE STREET CROSSFALL(DECIMAL) = .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = .50 A CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) _ .03125 .CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) = .11000 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES „ STREET FLOW MODEL RESULTS: ---------------------------------------------------------------------------- NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) = .51 HALFSTREET FLOOD WIDTH(FEET) = 19.71 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.23 PRODUCT OF DEPTH &VELOCITY = 1.63 A sump condition catch basin is proposed on the north side of the intersection of Faith St. and David Lane to pick up the halfstreet flow on Faith St. I' L 6 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * ** * * * * * * * * * * **** * YOUNG HOMES TRACT 16158 *` * 10 YEAR STREET CAPCITY CALLS. FOR DAVID LANE vie. OF FAITH ST � OU+ *` * B >> >>STREETFLOW MODEL INPUT INFORMATION <<<< qW d CONSTANT STREET GRADE(FEET /FEET) = .015500 CONSTANT STREET FLOW(CFS) = 25.80 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020000 OUTSIDE STREET CROSSFALL(DECIMAL) = .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = .50 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) _ .03125 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) = .11000 STREET EVENLY ON BOTH SIDES FLOW ASSUMED TO FILL qR STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) 47 HALFSTREET FLOOD WIDTH(FEET) = 17.98 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.86 PRODUCT OF DEPTH &VELOCITY = 1.82 Flows on the South half -width of Faith St. will be picked up in a pair of flow- by catch basins at the intersection of David lane and Sharon Court. (L-4 7 E F 0 J L' F1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -95 Advanced Engineering Software (aes) Ver. 5.1 Release Date: 01101195 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE FONTANA CA. TEL (909) 356 -1815 FAX (909) 356 -1795 ---------------------------------------------------------------------------- - - TIME /DATE OF STUDY: 14:39 5/ 3/2002 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** • Young Homes tract 16158 • Catch basin calculations for sump condition no. side of Faith and David • By: Joe Ramirez file: smpcb ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** >> >>SUMP TYPE BASIN INPUT INFORMATION<<<< ---------------------------------------------------------------------- - - - - -- Mql Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 13.60 BASIN OPENING(FEET) _ .71 DEPTH OF WATER(FEET) _ .51 >> >>CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 12.10 po C� tl Ei L� 0 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -95 Advanced Engineering Software (aes) Ver. 5.1 Release Date: 01/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE FONTANA CA. TEL (909) 356 - 1815 FAX (909) 356 -1795 ---------------------------------------------------------------------------- - - TIME /DATE OF STUDY: 11:48 5/ 3/2002 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Young Homes Tract 16158 * 100 YEAR STREET CAPACITY CALC AT SUMP BASIN ON THE NORTH SIDE OF FAITH St* -% * BY: JOE RAMIREZ FILE: OOSMPSC 11 ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** >> >>STREETFLOW MODEL INPUT INFORMATION<<<< ---------------------------------------------------------------------------- CONSTANT STREET GRADE(FEET /FEET) _ .010000 CONSTANT STREET FLOW DEPTH(FEET) _ .51 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020000 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) _ .50 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) _ .03125 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) _ .11000 FLOW ASSUMED TO FILL STREET ON ONE SIDE. STREET FLOW MODEL RESULTS: -------------------- - - - - -- NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. n STREET FLOW DEPTH(FEET) _ .51 HALFSTREET FLOOD WIDTH(FEET) = 19.94 ' r HALFSTREET FLOW (CFS ) = 13.64 � -` --"'y ,� AVERAGE FLOW VELOCITY (FEET /SEC. ) = 3.34 Sl. k4p CATZiH B/-' •z✓4' PRODUCT OF DEPTH &VELOCITY = 1.70 ---------------------------------------------------------------------------- -._._ The Maximum street capacity at the Supp condition catch basing -the north side of Faith street is 13.64. approximately 8JO Us crowns the top of the street and will be picked up downstream at the intersection of David Lane and Sharon Court. .4 ; mA �� j ®r HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -95 Advanced Engineering Software (aes) Ver. 5.1 Release Date: 01/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE FONTANA CA. TEL (909) 356 - 1815 FAX (909) 356 -1795 ---------------------------------------------------------------------------- - - TIME /DATE OF STUDY: 13:36 5/ 3/2002 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Young Homes Tract 16158 * 100 year Street Capacity for Flow -by Catch Basins at David and sharon c * By Joe Ramirez File: fbisc ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ** *STREET FLOWING FULL * ** -------------------- - - - - -- - -- STREET FLOW MODEL RESULT ------------------------------------------------------ ---- - - - STREET FLOW DEPTH(FEET) _ .48 HALFSTREET FLOOD WIDTH(FEET) = 18.00 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.33 PRODUCT OF DEPTH &VELOCITY = 2.08 ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- * At Node no. 9 approximately 13.6 is entering sump Catch Basin on the north side of Faith Street. Subtract 13.6 from 44;:- and • the remainder (30.5 cfs.) for the design run-off for flow -by Catch Basins at the intersection of David Lane and Sharon L ***** >>>>STREETFLOW *---------------------------------------------------------------------- MODEL INPUT INFORMATION<< << CONSTANT STREET GRADE(FEET /FEET) _ .015500 CONSTANT STREET FLOW(CFS) = 30.50 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020000 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) _ .50 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) _ .03125 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) _ .11000 a. FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES ** *STREET FLOWING FULL * ** -------------------- - - - - -- - -- STREET FLOW MODEL RESULT ------------------------------------------------------ ---- - - - STREET FLOW DEPTH(FEET) _ .48 HALFSTREET FLOOD WIDTH(FEET) = 18.00 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.33 PRODUCT OF DEPTH &VELOCITY = 2.08 ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- * At Node no. 9 approximately 13.6 is entering sump Catch Basin on the north side of Faith Street. Subtract 13.6 from 44;:- and • the remainder (30.5 cfs.) for the design run-off for flow -by Catch Basins at the intersection of David Lane and Sharon L ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -95 Advanced Engineering Software (aes) Ver. 5.1 Release Date: 01/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE FONTANA CA. TEL (909) 356 - 1815 FAX (909) 356 -1795 ---------------------------------------------------------------------------- TIME /DATE OF STUDY: 14:51 7/18/2002 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** • Young Homes Tract 16158(LATERALS.0 & D) • CATCH BASIN CALCULTIONS FOR FLOWBY CATCH BASINS AT DAVID AND SHARON CT. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** >>>>FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION <<<< Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and'sump basins. STREETFLOW(CFS) = 15.30 GUTTER FLOWDEPTH(FEET) = .48 BASIN LOCAL DEPRESSION(FEET) = .33 FLOWBY BASIN WIDTH(FEET) = 21.00 >> >>CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 33.0 >> >>CALCULATED ESTIMATED INTERCEPTION(CFS) = 12.0 t � -! � , � { .. _. � ..- r __ .. ..- ...• - _ �... ± - _ ` .. L ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -95 Advanced Engineering Software (aes) Ver. 5.1 Release Date:.01 /01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE FONTANA CA. TEL (909) 356 - 1815 FAX (909) 356 -1795 ---------------------------------------------------------------------------- TIME /DATE OF STUDY: 15: 1 7/18/2002 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * YOUNG HOMES TRACT 16158 * STREET CAPACITY CALCULATIONS FOR LATERALS A & B * BY: JOE RAMIREZ FILE: SCABFB ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** >>>>STREETFLOW MODEL INPUT INFORMATION <<<< CONSTANT STREET GRADE(FEET /FEET) _ .014200 CONSTANT STREET FLOW(CFS) = 17.20 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020000 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) _ .50 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) _ .03125 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) _ .12500 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES ------------------------------------------------------------------ STREET FLOW MODEL RESULTS: ----=----------------------------------------------------------------------- STREET FLOW DEPTH(FEET) _ .44 HALFSTREET FLOOD WIDTH(FEET) = 15.68 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.34 PRODUCT OF DEPTH &VELOCITY = 1.47 L ti HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -95 Advanced Engineering Software (aes) Ver. 5.1 Release Date: 01/01/95 License ID 1400 4W Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE FONTANA CA. TEL (909) 356 - 1815 FAX (909) 356 -1795 ------------------------------------------7--------------------------------- TIME /DATE OF STUDY: 15: 7 7/18/2002 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * YOUNG HOMES TRACT 16158 * FLOWBY CATCH BASIN CALCULTIONS FOR LATERAL A &B as * BY: JOE RAMIREZ FILE: LATABFB ******************************************* * * * * ** * * * * * * * * * * * * * * * * * * * * * * * ** >>>>FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION <<<< Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 8.60 GUTTER FLOWDEPTH(FEET) = .44 BASIN LOCAL DEPRESSION(FEET) = .33 FLOWBY BASIN WIDTH(FEET) = 20.30 >>>>CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 20.3 >>>>CALCULATED ESTIMATED INTERCEPTION(CFS) = 8.6 E H n FI D [1 J D fl WSPGW L� 40 0 H-11 N, T1 Young Homes Tract 16158 (Parent) 0 T2 (LINE "A ")Mainline Storm Drain Analysis T3 SO 1961.2601379.000 1 1379.000 R 2200.0001382.420 2 .035 .000 WX 2200.0001382.420 3 R 2420.4601383.520 3 .013 •000 .000 0 R 2491.2201383.880 3 .013 - 90.061 .000 0 f* R 2670.5501384.780 3 .013 .000 .000 0 R 2741.3301385.130 3 .013 90.065 .000 0 R 2812.7901387.190 3 .013 .000 .000 0 JX 2817.6901387.690 6 4 5.013 4.75 4.7501387.9401387.940 67.6 62.0 .000 R 2916.9201388.800 6 .013 .000 .000 0 , j R 2987.5101389.680 6 .013 89.525 .000 0 R 3049.7001390.450 6 .013 .000 .000 0 R 3120.2901391.310 6 .013 - 89.525 .000 0 JX 3125.4501391.380 6 7 8.013 0.250 0.2501391.8201391.820 75.3 75.1 .000 R 3302.7401393.760 6 .013 .000 .000 0 R 3349.9901394.390 6 .013 - 45.066 .000 0 R 3354.3401394.450 6 .013 .000 .000 0 WE 3354.3401394.450 10 .250 SH 3354.3401394.450 10 1394.950 CD 1 1 0 .000 9.000 10.000 .000 .000 .00 CD 2 1 0 .000 9.000 10.000 2.000 2.000 .00 CD 3 4 1 .000 3.000 .000 .000 .000 .00 CD 4 4 1 .000 1.500 .000 .000 .000 .00 CD 5 4 1 .000 1.500 .000 .000 .000 .00 CD 6 4 1 .000 2.500 .000 .000 .000 .00 'M CD 7 4 1 .000 1.500 .000 .000 .000 .00 CD 8 4 1 .000 1.500 .000 .000 .000 .00 CD 9 4 1 .000 2.000 .000 .000 .000 .00 CD 10 2 0 .000 7.000 14.000 .000 .000 .00 Q 43.700 .0 0 H-11 N, No 11A a" FILE: MAINLINE.WSW W S P G W- CIVILDESIGN Version 12.95 PAGE 1 For: Allard Engineering, Fontana, California - SIN 643 WATER SURFACE PROFILE LISTING Date: 8 -26 -2002 Time: 2:55:27 Young Homes Tract 16158 (Parent) (LINE "A ")Mainline Storm Drain Analysis Invert Depth Water Q Vel Vel I Energy I Super ICriticalIFlow ToplHeight/ Base Wtj ENO Wth Station I Elev (FT) Elev (CFS) (FPS) Head I Grd.El.1 Elev ( Depth I Width IDia. -FTIor I.D.1 ZL IPrs /Pip L /Elem ICh Slope I I SF Avel HF ISE DpthIFroude NINorm Dp I "N" I X -Fall ZR IType Ch 1961.260 1379.000 .964 1379.964 53.70 4.67 .34 1380.30 .00 .90 13.86 9.000 10.000 2.00 0 .0 8.695 .0143 .0152 .13 .96 .90 1.00 .035 .00 2.00 TRAP 1969.955 1379.125 .999 1380.123 53.70 4.48 .31 1380.44 .00 .90 13.99 9.000 10.000 2.00 0 .0 215.242 .0143 .0143 3.08 1.00 .85 1.00 .035 .00 2.00 TRAP 2185.197 1382.208 .999 1383.207 53.70 4.48 .31 1383.52 .00 .90 13.99 9.000 10.000 2.00 0 .0 HYDRAULIC JUMP 2185.197 1382.208 .826 1383.034 53.70 5.58 .48 1383.52 .00 .90 13.30 9.000 10.000 2.00 0 .0 .705 .0143 .0298 .02 .83 1.16 1.00 .035 .00 2.00 TRAP 2185.902 1382.218 .792 1383.010 53.70 5.85 .53 1383.54 .00 .90 13.17 9.000 10.000 2.00 0 .0 1.025 .0143 .0344 .04 .79 1.23 1.00 .035 .00 2.00 TRAP 2186.927 1382.233 .760 1382.993 53.70 6.14 .58 1383.58 .00 .90 13.04 9.000 10.000 2.00 0 .0 1.066 .0143 .0397 .04 .76 1.32 1.00 .035 .00 2.00 TRAP 2187.993 1382.248 .728 1382.976 53.70 6.44 .64 1383.62 .00 .90 12.91 9.000 10.000 2.00 0 .0 1.079 .0143 .0459 .05 .73 1.41 1.00 .035 .00 2.00 TRAP 2189.072 1382.264 .698 1382.962 53.70 6.75 .71 1383.67 .00 .90 12.79 9.000 10.000 2.00 0 .0 1.074 .0143 .0531 .06 .70 1.51 1.00 .035 .00 2.00 TRAP 2190.147 1382.279 .669 1382.948 53.70 7.08 .78 1383.73 .00 .90 12.68 9.000 10.000 2.00 0 .0 1.058 .0143 .0614 .06 .67 1.61 1.00 .035 .00 2.00 TRAP FILE: MAINLINE.WSW W S P G W- CIVILDESIGN Version 12.95 PAGE 2 For: Allard Engineering, Fontana, California - SIN 643 WATER SURFACE PROFILE LISTING Date: 8 -26 -2002 Time: 2:55:27 Young Homes Tract 16158 (Parent) (LINE "A ")Mainline Storm Drain Analysis Invert Depth Water Q Vel Vel I Energy I Super ICriticalIFlow ToplHeight/ Base Wtj ENO Wth Station I Elev (FT) Elev (CFS) (FPS) Head I Grd.El.1 Elev I Depth I Width IDia. -FTIor I.b.1 ZL IPrs /Pip L /Elem ICh Slope I I SF Avel HF ISE DpthIFroude NINorm Dp I "N" I X -Fall ZR IType Ch 2191.205 1382.294 .641 1382.935 53.70 7.42 .86 1383.79 .00 .90 12.56 9.000 10.000 2.00 0 .0 1.033 .0143 .0711 .07 .64 1.72 1.00 .035 .00 2.00 TRAP 2192.238 1382.309 .614 1382.923 53.70 7.79 .94 1383.86 .00 .90 12.46 9.000 10.000 2.00 0 .0 1.004 .0143 I I I I .0823 .08 .61 1.84 1.00 .035 .00 2.00 TRAP 2193.242 1382.323 .588 1382.911 53.70 8.17 I 1.04 1383.95 .00 I .90 I 12.35 9.000 I 10.000 2.00 0 .0 .971 .0143 C .0954 .09 .59 1.97 1.00 .035 .00 2.00 TRAP 2194.213 1382.337 .563 1382.901 53.70 8.57 1.14 1384.04 .00 .90 12.25 9.000 10.000 2.00 0 .0 .936 .0143 .1105 .10 .56 2.11 1.00 .035 .00 2.00 TRAP 2195.150 1382.351 .540 1382.890 53.70 8.98 1.25 1384.14 .00 .90 12.16 9.000 1 10.000 2.00 1 0 .0 .900 .0143 .1281 .12 .54 2.26 1.00 .035 .00 2.00 TRAP 2196.050 1382.364 .517 1382.880 53.70 9.42 1.38 1384.26 .00 .90 12.07 9.000 10.000 2.00 0 .0 .863 .0143 .1485 .13 .52 2.42 1.00 .035 .00 2.00 TRAP 2196.913 1382.376 .495 1382.870 53.70 9.88 1.52 1384.39 .00 .90 11.98 9.000 10.000 2.00 0 .0 .826 .0143 .1722 .14 .49 2.59 1.00 .035 .00 2.00 TRAP 2197.739 1382.388 .473 1382.861 53.70 10.36 1.67 1384.53 .00 .90 11.89 9.000 10.000 2.00 0 .0 .790 .0143 .1998 .16 .47 2.77 1.00 .035 .00 2.00 TRAP 2198.528 1382.399 .453 1382.852 53.70 10.87 1 1.83 1384.69 .00 .90 11.81 9.000 10.000 2.00 0 .0 .753 .0143 .2319 .17 .45 2.96 1.00 .035 .00 2.00 TRAP FILE: MAINLINE.WSW W S P G W- CIVILDESIGN Version 12.95 PAGE 3 For: Allard Engineering, Fontana, California - SIN 643 WATER SURFACE PROFILE LISTING Date: 8 -26 -2002 Time: 2:55:27 Young Homes Tract 16158 (Parent) (LINE "A ")Mainline Storm Drain Analysis Invert Depth ( Water Q Vel Vel I Energy I Super ICriticallFlow ToplHeight/ Base Wtj ENO Wth Station I Elev (FT) Elev (CFS) I (FPS) Head I Grd.El.1 Elev I Depth I Width IDia. -FTIor I.D.1 ZL IPrs /Pip L /Elem ICh Slope I SF Avel HF ISE DpthIFroude NINorm Dp I "N" I X -Fall ZR IType Ch 2199.282 1382.410 .433 1382.843 53.70 11.40 2.02 1384.86 .00 .90 11.73 9.000 10.000 2.00 0 .0 .718 .0143 .2693 .19 .43 3.17 1.00 .035 .00 2.00 TRAP 2200.000 1382.420 .415 1 1382.835 .1 53.70 11.96 1 2.22 1385.05 .00 1 .90 1 11.66 9.000 1 10.000 2.00 1 0 .0 WALL EXIT 2200.000 1382.420 2.380 1384.800 53.70 8.93 1.24 1386.04 .00 2.38 2.43 3.000 .000 .00 1 .0 8.018 .0050 .0066 .05 2.38 1.00 3.00 .013 .00 .00 PIPE 2208.018 1382.460 2.505 1384.965 53.70 8.51 1.13 1386.09 .00 2.38 2.23 3.000 .000 .00 1 .0 43.614 .0050 .0060 .26 2.51 .89 3.00 .013 .00 .00 PIPE 2251.632 1382.678 2.653 1385.331 53.70 8.12 1.02 1386.35 .00 2.38 1.92 3.000 .000 .00 1 .0 145.209 .0050 .0057 .83 2.65 .77 3.00 .013 .00 .00 PIPE 2396.841 1383.402 2.850 1386.252 53.70 7.74 .93 1387.18 .00 2.38 1.31 3.000 .000 .00 1 .0 23.619 .0050 .0056 .13 2.85 .59 3.00 .013 .00 .00 PIPE 2420.460 1383.520 2.873 1386.393 53.70 7.71 .92 1387.32 .02 2.38 1.21 3.000 .000 .00 1 .0 70.760 .0051 .0057 .40 2.90 .57 3.00 .013 .00 .00 PIPE 2491.220 1383.880 2.933 1386.813 53.70 7.64 .91 1387.72 .00 2.38 .88 3.000 .000 .00 1 .0 59.205 .0050 .0060 .35 2.93 .48 3.00 .013 .00 .00 PIPE 2550.425 1384.177 3.000 1387.177 53.70 7.60 .90 1388.07 .00 2.38 .00 3.000 .000 .00 1 .0 120.125 .0050 .0063 .76 3.00 .00 3.00 .013 .00 .00 PIPE FILE: MAINLINE.WSW W S P G W- CIVILDESIGN Version 12.95 PAGE 4 For: Allard Engineering, Fontana, California - SIN 643 WATER SURFACE PROFILE LISTING Date: 8 -26 -2002 Time: 2:55:27 Young Homes Tract 16158 (Parent) - (LINE "A ")Mainline Storm Drain Analysis Invert Depth Water Q Vel Vel I Energy I Super ICriticallFlow ToplHeight /Base Wtj INo Wth Station I Elev (FT) Elev (CFS) I (FPS) Head I Grd.El.1 Elev I Depth I Width IDia. -FTIor I.D.1 ZL IPrs /Pip L /Elem ICh Slope I I I SF Avel HF ISE DpthIFroude NINorm Dp I "N" I X -Fall ZR IType Ch 2670.550 1384.780 3.176 1387.956 53.70 7.60 .90 1388.85 .00 2.38 .00 3.000 .000 .00 1 .0 70.780 .0049 .0065 .46 .00 .00 3.00 .013 .00 .00 PIPE 2741.330 1385.130 3.464 1388.594 53.70 7.60 .90 1389.49 .00 2.38 .00 3.000 .000 .00 1 .0 6.337 .0288 .0065 .04 3.46 .00 1.45 .013 .00 .00 PIPE 2747.667 1385.313 3.321 1388.633 53.70 7.60 .90 1389.53 .00 2.38 .00 3.000 .000 .00 1 .0 HYDRAULIC JUMP 2747.667 1385.313 1.629 1386.942 53.70 13.70 2.91 1389.85 .00 2.38 2.99 3.000 .000 .00 1 .0 2.867 .0288 .0195 .06 1.63 2.11 1.45 .013 .00 .00 PIPE 2750.534 1385.395 1.638 1387.033 53.70 13.59 2.87 1389.90 .00 2.38 2.99 3.000 .000 .00 1 .0 18.391 .0288 .0182 .33 1.64 2.08 1.45 .013 .00 .00 PIPE 2768.925 1385.925 1.703 1367.629 53.70 12.96 2.61 1390.24 .00 2.38 2.97 3.000 .000 .00 1 .0 13:247 .0288 .0161 .21 1.70 1.93 1.45 .013 .00 .00 PIPE 2782.172 1386.307 1.771 1388.078 53.70 12.36 2.37 1390.45 .00 2.38 2.95 3.000 .000 .00 1 .0 9.752 .0288 .0142 .14 1.77 1.79 1.45 .013 .00 .00 PIPE 2791.925 1386.588 1.844 1388.432 53.70 11.78 2.16 1390.59 .00 2.38 2.92 3.000 .000 .00 1 .0 7.388 .0288 .0126 .09 1.84 1.66 1.45 .013 .00 .00 PIPE 2799.313 1386.801 1.920 1388.721 53.70 11.23 1.96 1390.68 .00 2.38 2.88 3.000 .000 .00 1 .0 5.446 .0288 .0112 .06 1.92 1.54 1.45 .013 .00 .00 PIPE FILE: MAINLINE.WSW W S P G W- CIVILDESIGN Version 12.95 PAGE 5 For: Allard Engineering, Fontana, California - SIN 643 WATER SURFACE PROFILE LISTING Date: 8 -26 -2002 Time: 2:55:27 Young Homes Tract 16158 (Parent) (LINE "A ")Mainline Storm Drain Analysis Invert Depth Water Q Vel Vel I Energy I Super ICriticaliFlow ToplHeight/ Base Wtj INo Wth Station ( Elev (FT) Elev (CFS) I (FPS) Head I Grd.El.1 Elev I Depth I Width jDia. -FTjor I.D.1 ZL jPrs /Pip L /Elem + x*# x*++# ICh Slope I I* x*#**#*+ I**++++ I x* Ix*#**++* I xlxxx* xx**+ I++* x#*# I#+**+++ SF Avel Ix++#* HF ISE x+* xl++ DpthIFroude x** xxI* NINorm Dp I "N" x++# x** I + * * * * * *I * + # # * + I I X -Fall + * * # * * *I ZR + + +xx IType Ch I * # + + * *+ 2804.759 1386.958 2.002 1388.960 53.70 10.71 1.78 1390.74 .00 2.38 2.83 3.000 .000 .00 1 .0 3.916 .0288 .0099 .04 2.00 1.42 1.45 .013 .00 .00 PIPE 2808.674 1387.071 2.090 1389.161 53.70 10.21 1.62 1390.78 .00 2.38 2.76 3.000 .000 .00 1 .0 2.667 .0288 .0089 .02 2.09 1.30 1.45 .013 .00 .00 PIPE 2811.341 1387.148 2.184 1389.332 53.70 9.74 1.47 1390.80 .00 2.38 2.67 3.000 .000 .00 1 .0 1.449 .0288 .0079 .01 2.18 1.19 1.45 .013 .00 .00 PIPE 2812.790 1387.190 2.288 1389.478 53.70 9.28 1.34 1390.82 .00 2.38 2.55 3.000 .000 .00 1 .0 JUNCT STR 1020 .0094 .05 2.29 1.09 .013 .00 .00 PIPE 2817.690 1387.690 2.086 1389.776 44.20 10.10 1.58 1391.36 .00 2.21 1.86 2.500 .000 .00 1 .0 18.687 .0112 .0113 .21 2.09 1.16 2.09 .013 .00 .00 PIPE 2836.377 1387.899 2.081 1389.980 44.20 10.12 1.59 1391.57 .00 2.21 1.87 2.500 .000 .00 1 .0 80.543 .0112 .0119 .96 2.08 1.17 2.09 .013 .00 .00 PIPE 2916.920 1388.800 1.977 1390.777 44.20 10.62 1.75 1392.53 .16 2.21 2.03 2.500 .000 .00 1 .0 70.590 .0125 .0124 .87 2.13 1.31 1.97 .013 .00 .00 PIPE 2987.510 1389.680 1.985 1391.665 44.20 10.58 1.74 1393.40 .00 2.21 2.02 2.500 .000 .00 1 .0 62.190 .0124 .0123 .76 1.98 1.30 1.98 .013 .00 .00 PIPE 3049.700 1390.450 1.994 1392.444 44.20 10.53 1.72 1394.17 .15 2.21 2.01 2.500 .000 .00 1 .0 70.590 .0122 .0123 .87 2.15 1.28 2.00 .013 .00 .00 PIPE FILE: MAINLINE.WSW W S P G W- CIVILDESIGN Version 12.95 PAGE 6 For: Allard Engineering, Fontana, California - SIN 643 WATER SURFACE PROFILE LISTING Date: 8 -26 -2002 Time: 2:55:27 Young Homes Tract 16158 (Parent) (LINE "A ")Mainline Storm Drain Analysis Invert Depth ( Water Q Vel Vel I Energy I Super ICriticalIFlow TOpIHeight/ Base Wtj (No Wth Station I Elev (FT) Elev (CFS) I (FPS) Head I Grd.El.I Elev I Depth I Width IDia. -FTIor I.D.1 ZL IPrs /Pip L /Elem ICh Slope I I ( SF Avel HF ISE DpthIFroude NINorm Dp I "N" I X -Fall ZR IType Ch 3120.290 1391.310 1.981 1393.291 44.20 10.60 1.74 1395.03 .00 2.21 2.03 2.500 .000 .00 1 .0 JUNCT STR 0136 .0129 .07 1.98 1.30 .013 .00 .00 PIPE 3125.450 1391.380 1.889 1393.269 43.70 10.98 1.87 1395.14 .00 2.20 2.15 2.500 .000 .00 1 .0 57.500 .0134 .0134 .77 1.89 1.42 1.89 .013 .00 .00 PIPE 3182.950 1392.152 1.889 1394.041 43.70 10.98 1.87 1395.91 .00 2.20 2.15 2.500 .000 .00 1 .0 119.790 .0134 .0129 1.55 1.89 1.42 1.89 .013 .00 .00 PIPE 3302.740 1393.760 1.955 1395.715 43.70 10.61 1.75 1397.46 .12 2.20 2.06 2.500 .000 .00 1 .0 22.951 .0133 .0122 .28 2.08 1.32 1.89 .013 .00 .00 PIPE 3325.691 1394.066 1.992 1396.058 43.70 10.42 1.68 1397.74 .11 2.20 2.01 2.500 .000 .00 1 .0 24.299 .0133 .0114 .28 2.10 1.27 1.89 .013 .00 .00 PIPE 3349.990 1394.390 2.099 1396.489 43.70 9.93 1.53 1398.02 .00 2.20 1.83 2.500 .000 .00 1 .0 4.350 .0138 .0105 .05 2.10 1.13 1.87 .013 .00 .00 PIPE 3354.340 1394.450 2.203 1396.652 43.70 9.54 1.41 1398.07 .00 2.20 1.62 2.500 .000 .00 1 .0 WALL ENTRANCE 3354.340 1394.450 4.837 1399.286 43.70 .65 .01 1399.29 .00 .67 14.00 7.000 14.000 .00 0 .0 T1 Young Homes TRAct 16158 0 T2 T3 SO 1002.1101387.940 1 1389.780 R 1025.9401389.130 1 .013 .000 .000 0 WE 1025.9401389.130 2 .250 SH 1025.9401389.130 2 1389.130 CD 1 4 1 .000 1.500 .000 .000 .000 .00 CD 2 2 0 .000 6.000 20.000 .000 .000 .00 Q 8.600 .0 w 11� . ON am to 11►1 FILE: LATA.WSW W S P G W- CIVILDESIGN Version 12.5 PAGE 1 For: Allard Engineering, Fontana, California - SIN 643 WATER SURFACE PROFILE LISTING Date: 7 -18 -2002 Time: 4:15:59 Young Homes TRAct 16158 Invert Depth water Q Vel Vel I Energy I Super ICriticalIFlow ToplHeight /Base Wtj INo Wth Station I Elev (FT) Elev ( (CFS) (FPS) Head I Grd.El.1 Elev I Depth I Width IDia. -FTIor I.D.1 ZL IPrs /Pip L /Elem ICh Slope I SF Avel HF ISE DpthIFroude NINorm Dp I "N" I X -Fall ZR IType Ch 1002.110 1387.940 1.840 1389.780 8.60 4.87 .37 1390.15 .00 1.14 .00 1.500 .000 .00 1 .0 3.850 .0499 .0067 .03 1.84 .00 .63 .013 .00 .00 PIPE 1005.960 1388.132 1.674 1389.806 8.60 4.87 .37 1390.17 .00 1.14 .00 .1.500 .000 .00 1 .0 HYDRAULIC JUMP 1005.960 1388.132 .727 1388.859 8.60 10.13 1.59 1390.45 .00 1.14 1.50 1.500 .000 .00 1 .0 3.505 .0499 .0281 .10 .73 2.37 .63 .013 .00 .00 PIPE 1009.465 1388.307 .754 1389.062 8.60 9.66 1.45 1390.51 .00 1.14 1.50 1.500 .000 .00 1 .0 4.074 .0499 .0247 .10 .75 2.21 .63 .013 .00 .00 PIPE 1013.539 1388.511 .783 1389.294 8.60 9.21 1.32 1390.61 .00 1.14 1.50 1.500 .000 .00 1 .0 3.174 .0499 .0218 .07 .78 2.06 .63 .013 .00 .00 PIPE 1016.713 1388.669 .814 1389.483 8.60 8.78 1.20 1390.68 .00 1.14 1.49 1.500 .000 .00 1 .0 2.500 .0499 .0192 .05 .81 1.91 .63 .013 .00 .00 PIPE 1019.213 1388.794 .846 1389.640 8.60 8.37 1.09 1390.73 .00 1.14 1.49 1.500 .000 .00 1 .0 1.978 .0499 .0170 .03 .85 1.78 .63 .013 .00 .00 PIPE 1021.190 1388.893 .880 1389.773 8.60 7.98 .99 1390.76 .00 1.14 1.48 1.500 .000 .00 1 .0 1.554 .0499 .0150 .02 .88 1.65 .63 .013 .00 .00 PIPE 1022.745 1388.970 .915 1389.886 8.60 7.61 .90 1390.79 .00 1.14 1.46 1.500 .000 .00 1 .0 1.198 .0499 .0133 .02 .92 1.53 .63 .013 .00 .00 PIPE FILE: LATA.WSW W S P G W- CIVILDESIGN Version 12.5 PAGE 2 For: Allard Engineering, Fontana, California - SIN 643 WATER SURFACE PROFILE LISTING Date: 7 -18 -2002 Time: 4:15:59 Young Homes TRAct 16158 - Invert Depth Water Q Vel Vel Energy I Super ICriticaliFlow ToplHeight/ Base Wtj INo Wth Station I Elev (FT) Elev (CFS) I (FPS) Head I Grd.El.1 Elev I Depth I Width jDia. -FTjor I.D.1 ZL jPrs /Pip L /Elem ICh Slope I I I I SF Avel HF SSE DpthlFroude NINorm Dp I "N" I X -Fall ZR IType Ch 1023.943 1389.030 .953 1389.984 8.60 7.26 .82 1390.80 .00 1.14 1.44 1.500 .000 .00 1 .0 .891 .0499 .0118 .01 .95 1.41 .63 .013 .00 .00 PIPE 1024.833 1389.075 .994 1390.068 8.60 6.92 .74 1390.81 .00 1.14 1.42 1.500 .000 .00 1 .0 .616 .0499 .0105 .01 .99 1.30 .63 .013 .00 .00 PIPE 1025.449 1389.105 1.037 1390.142 8.60 6.60 .68 1390.82 .00 1.14 1.39 1.500 .000 .00 1 .0 .366 .0499 .0094 .00 1.04 1.20 .63 .013 .00 .00 PIPE 1025.816 1389.124 1.084 1390.207 8.60 6.29 .61 1390.82 .00 1.14 1.34 1.500 .000 .00 1 .0 .124 .0499 .0084 .00 1.08 1.10 .63 .013 .00 .00 PIPE 1025.940 1389.130 1.135 1390.265 8.60 5.99 .56 1390.82 .00 1.14 1.29 1.500 .000 .00 1 .0 WALL ENTRANCE 1025.940 1389.130 2.068 1391.198 8.60 .21 .00 1391.20 .00 .18 20.00 6.000 20.000 .00 0 .0 �-I k' ik ai 1 T1 Young Homes Tract 16158 T2 Lateral B T3 SO 1002.1801387.940 1 1389.780 R 1013.4601388.140 1 .013 WE 1013.4601388.140 2 .250 SH 1013.4601388.140 2 1388.140 CD 1 4 1 .000 1.500 .000 .000 .000 .00 CD 2 2 0 .000 7.000 20.000 .000 .000 .00 Q 8.600 .0 0 000 .000 0 ILA WA WA FILE: LATB.WSW W S P G W- CIVILDESIGN Version 12.5 PAGE 1 For: Allard Engineering, Fontana, California - SIN 643 WATER SURFACE PROFILE LISTING Date: 7 -18 -2002 Time: 4:16:24 Young Homes Tract 16158 Lateral B +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + ++ + + + + + + + + + ++ + + + + + + ++ Invert Depth Water Q Vel Vel I Energy I Super ICriticalIFlow TopIHeight /.Base Wtj INo Wth Station I Elev (FT) Elev (CFS) I (FPS) Head I Grd.El.1 Elev I Depth I Width IDia. -FTIor I.D.1 ZL IPrs /Pip L /Elem ICh Slope I I I I SF Avel HF ISE DpthIFroude NINorm Dp I "N" I X -Fall ZR IType Ch 1002.180 1387.940 1.840 1389.780 8.60 4.87 .37 1390.15 .00 1.14 .00 1.500 .000 .00 1 .0 11.280 .0177 .0067 .08 1.84 .00 .85 .013 .00 .00 PIPE 1013.460 1388.140 1.716 1389.856 8.60 4.87 .37 1390.22 .00 1.14 .00 1.500 .000 .00 1 .0 WALL ENTRANCE 1013.460 1388.140 2.175 1390.315 8.60 .20 .00 1390.32 .00 .18 20.00 7.000 20.000 .00 0 .0 Pi 1 F M b'. 1� iIAR 'rl w� T1 Young Homes Tract 16158 T2 Lateralc T3 SO 1001.8201391.820 1 1393.290 R •1024.7801392.980 1 .013 WE 1024.7801392.980 2 .250 SH 1024.7801392.980 2 1392.980 CD 1 4 1 .000 1.500 .000 .000 .000 .00 CD 2 2 0 .000 6.000 20.000 .000 .000 .00 Q 12.000 .0 0 000 .000 0 AMMEA ! i r »� all a ll V �� � 1 ! 1V t 11A FILE: LATC.WSW W S P G W- CIVILDESIGN Version 12.5 PAGE 1 For: Allard Engineering, Fontana, California - SIN 643 WATER SURFACE PROFILE LISTING Date: 7 -18 -2002 Time: 4:16:38 Young Homes Tract 16158 Lateralc Invert Depth Water Q Vel Vel I Energy I Super ICriticaliFlow ToplHeight /lBase Wtj ENO Wth Station I Elev (FT) Elev (CFS) (FPS) Head I Grd.El.1 Elev I Depth I Width IDia. -FTIor I.D.I ZL IPrs /Pip L /Elem ICh Slope I SF Avel HF ISE DpthIFroude NINorm Dp I "N" I X -Fall ZR I Type Ch 1001.820 1391.820 .886 1392.706 12.00 11.04 1.89 1394.60 .00 1.31 1.48 1.500 .000 .00 1 .0 4.207 .0505 .0292 .12 .89 2.27 .76 .013 .00 .00 PIPE 1006.027 1392.032 .909 1392.941 12.00 10.71 1.78 1394.72 .00 1.31 1.47 1.500 .000 .00 1 .0 5.169 .0505 .0264 .14 .91 2.16 .76 .013 .00 .00 PIPE 1011.196 1392.294 .947 1393.240 12.00 10.21 1.62 1394.86 .00 1.31 1.45 1.500 .000 .00 1 .0 3.965 .0505 .0235 .09 .95 2.00 .76 .013 .00 .00 PIPE 1015.161 1392.494 .986 1393.480 12.00 9.74 1.47 1394.95 .00 1.31 1.42 1.500 .000 .00 1 .0 3.068 .0505 .0208 .06 .99 1.84 .76 .013 00 .00 PIPE 1018.229 1392.649 1.029 1393.678 12.00 9.28 1.34 1395.02 .00 1.31 1.39 1.500 .000 .00 1 .0 2.372 .0505 .0186 .04 1.03 1.70 .76 .013 .00 .00 PIPE 1020.601 1392.769 1.075 1393.844 12.00 8.85 1.22 1395.06 .00 1.31 1.35 1.500 .000 .00 1 .0 1.790 .0505 .0166 .03 1.08 1.56 .76 .013 .00 .00 PIPE 1022.391 1392.859 1.125 1393.984 12.00 8.44 1.11 1395.09 .00 1.31 1.30 1.500 .000 .00 1 .0 1.282 .0505 .0149 .02 1.13 1.42 .76 .013 .00 .00 PIPE 1023.674 1392.924 1.180 1394.104 12.00 8.05 1.01 1395.11 .00 1.31 1.23 1.500 .000 .00 1 .0 .808 .0505 .0135 .01 1.18 1.29 .76 .013 .00 .00 PIPE 1024.481 1392.965 1.241 1394.206 12.00 7.67 .91 1395.12 .00 1.31 1.13 1.500 .000 .00 1 .0 .299 .0505 .0123 .00 1.24 1.15 .76 .013 .00 .00 PIPE FILE: LATC.WSW W S P G W- CIVILDESIGN Version 12.5 PAGE 2 For: Allard Engineering, Fontana, California - SIN 643 WATER SURFACE PROFILE LISTING Date: 7 -18 -2002 Time: 4:16:38 Young Homes Tract 16158 Lateralc Invert Depth Water Q Vel Vel I Energy I Super ICriticalIFlow ToplHeight/ Base Wtj INo Wth Station I Elev (FT) Elev I (CFS) I (FPS) Head I Grd.El.I Elev I Depth I Width IDia. -FTIor I.D.1 ZL IPrs /Pip L /Elem ICh Slope I SF Avel HF ISE DpthIFroude NINorm Dp I "N" I X -Fall ZR IType Ch 1024.780 1392.980 1.314 1394.294 12.00 7.31 .83 1395.12 .00 1.31 .99 1.500 .000 .00 1 .0 WALL ENTRANCE 1024.780 1392.980 2.860 1395.840 12.00 .21 .00 1395.84 .00 .22 20.00 6.000 20.000 .00 0 .0 f IM rd F] bli Ti Young Homes Tract 16158 0 T2 laterald T3 SO 1001.8101391.820 1 1393.290 R 1012.3301392.030 1 .013 .000 .000 0 WE 1012.3301392.030 2 .250 SH 1012.3301392.030 2 1392.030 CD 1 4 1 .000 1.500 .000 .000 .000 .00 CD 2 2 0 .000 7.000 20.000 .000 .000 .00 3 Q 12.000 .0 IM rd F] bli M4 SIN 04 we M AIN r7l rrl Ctr 1: "A v I 07.E r l to") r-1 �: # FILE: LATERALD.WSW W S P G W- CIVILDESIGN Version 12.5 PAGE 1 For: Allard Engineering, Fontana, California - SIN 643 WATER SURFACE PROFILE LISTING Date: 7 -18 -2002 Time: 4:16:52 Young Homes Tract 16158 laterald Invert Depth Water Q Vel Vel I Energy I Super ICriticalIFlow ToplHeight /Base WtI INo Wth Station I Elev (FT) Elev (CFS) I (FPS) Head I Grd.El.1 Elev I Depth I Width IDia. -FTIor I.D.I ZL IPrs /Pip L /Elem [Ch Slope ( SF Avel HF ISE DpthIFroude NINorm Dp I "N" I X -Fall ZR IType Ch 1001.810 1391.820 1.148 1392.968 12.00 8.27 1.06 1394.03 .00 1.31 1.27 1.500 .000 .00 1 .0 4.417 .0200 .0146 .06 1.15 1.36 1.02 .013 .00 .00 PIPE 1006.227 1391.908 1.180 1393.088 12.00 8.05 1.01 1394.09 .00 1.31 1.23 1.500 .000 .00 1 .0 4.611 .0200 .0135 .06 1.18 1.29 1.02 .013 .00 .00 PIPE 1010.838 1392.000 1.241 1393.242 12.00 7.67 .91 1394.16 .00 1.31 1.13 1.500 .000 .00 1 .0 1.492 .0200 .0123 .02 1.24 1.15 1.02 .013 .00 .00 PIPE 1012.330 1392.030 1.314 1393.344 12.00 7.31 .83 1394.17 .00 1.31 .99 1.500 .000 .00 1 .0 WALL ENTRANCE 1012.330 1392.030 2.860 1394.890 12.00 .21 .00 1394.89 .00 .22 20.00 7.000 20.000 .00 0 .0 E fl '0 APPENDIX 0 U u H 6 40 .n a� i ALLARD ENGINEERING � aw mfg ]md ewrer Ima el�g TRACT 16158 -2 HYDROLOGY AND HYDRAULICS REPORT November 15, 2001 Revised January 2, 2002 Revised February 15, 2002 Revised March 12, 2002 Prepared For: Young Homes 10370 Trademark Street Rancho Cucamonga, CA 91730 (909) 477 -6722 Fax (909) 477 -6725 Prepared under the supervision of: David S. Hammer, A.C.E. No. 43976, Exp. 06/30/2005 8253 Sierra Avenue Fontana, CA 92335 (909) 356 -1815 * (909) 356 -1795 Table of Contents Vicinity Map 100 Year Hydrology Calculations *" 10 Year Hydrology Calculations Unit Hydrograph Calculations �r Street Capacity Calculations Hydrology Exhibits i kA Introduction Purpose " Methodology Findings Summary Vicinity Map 100 Year Hydrology Calculations *" 10 Year Hydrology Calculations Unit Hydrograph Calculations �r Street Capacity Calculations Hydrology Exhibits i kA Methodology The rational method was used to determine 10 -year and 100 -year event storms, while the unit hydrograph was used to size the proposed detention basins as outlined in the San Bernardino County Hydrology Manual. Computer programs commonly used for this purpose were utilized herein. Findings The 10 -year storm water runoff is conveyed in the street below the top of curb elevations Introduction elevations. The proposed detention basin is approximately 8.4 acre -ft, which is slightly larger Tract No. 16158 is a proposed 127 single - family lot subdivision that is located in the City of Fontana. Tract 16158 is situated south of Walnut Avenue and north of proposed Tentative Tract No.16258, which is currently undeveloped vacant land. To the west, the project is bounded by existing Tract No. 14475. On the east, the project is bounded by 20 acres of undeveloped vacant land (see Vicinity Map Exhibit). To the south and southeast, the project is bounded by 40 acres of vacant land. The 40 acre property has an approved tentative tract map that will be developed by Young Homes in the future. Currently, the developer proposes to grade and improve the north portion of the project (Tract 16158 -2), which is approximately 11 acres. These 11 acres will yield a total of 66 residential lots. This project proposes a temporary detention basin with the capacity to store the 10 -year, 24 -hour developed runoff from the entire 22 acre site of Tract No. 16158. Purpose The purpose of this hydrology and hydraulics report is to determine the 100 -year and 10 -year runoff for tract 16158 -2 and to verify the capacity of the proposed improvements to safely convey the runoff. Also, this report will provide additional 100 -year and 10 -year runoff for tract 16158, which will be verified upon the completion of grading and improvement plans for that tract. This report also provides unit hydrograph calculations to size a temporary detention basin for a 10 -year, 24 -hour event storm for tract 16158 -2 and future tract 16158. Finally, at the request of the city, this report provides peak undeveloped 100 year event runoff for the vacant lands to the east and south of the project site. Methodology The rational method was used to determine 10 -year and 100 -year event storms, while the unit hydrograph was used to size the proposed detention basins as outlined in the San Bernardino County Hydrology Manual. Computer programs commonly used for this purpose were utilized herein. Findings Summary Tract 16158 -2 proposed improvements will adequately convey both the 100 -year and 10 -year runoff in accordance with County criteria. Also, the detention basin is sized to detain these flows and future improvement runoff as well. The 10 -year storm water runoff is conveyed in the street below the top of curb elevations while the 100 -year storm water will be conveyed in the street does not exceed right -of -way elevations. The proposed detention basin is approximately 8.4 acre -ft, which is slightly larger than the 5.2 acre -ft found in unit hydrograph results. Since the basin has capacity to hold over 100% of the 10 -year, 24 -hour storm runoff, a formal outlet structure designed to "meter" out flows is not necessary. Consequently basin rating calculations are not provided. Also, note that appropriate street capacity calculations, storm drain hydraulic calculations, and catch basin calculations will be provided with proposed storm drain and street improvements for the parent tract 16158. Summary Tract 16158 -2 proposed improvements will adequately convey both the 100 -year and 10 -year runoff in accordance with County criteria. Also, the detention basin is sized to detain these flows and future improvement runoff as well. 100 Year Hydrology Calculations D E 8 F iI h ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) - (c) Copyright 1983 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING, INC. 6101 CHERRY AVENUE FONTANA, CALIFORNIA 92336 (909) 899 - 5011 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Young Homes Tract 16158 - 2 * 100 year * By: Joe RAmirez Date: 12 -31 -01 ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 0016158.DAT TIME /DATE OF STUDY: 12:26 12/31/2001 ----------------- - - - - -- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL * -- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.000 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.500 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.5000 SLOPE OF INTENSITY DURATION CURVE = .6000 *ANTECEDENT MOISTURE CONDITION (AMC III) ASSUMED FOR RATIONAL METHOD* *USER- DEFINED STREE' HALF- CROWN TO WIDTH CROSSFALL NO. (FT) (FT) 1 20.0 10.0 2 18.0 10.0 P- SECTIONS FOR COUP STREET- CROSSFALL: IN- / OUT- /PARK- SIDE / SIDE/ WAY 020/ 020/ .020 .020/ .020/ .020 LED PIPEFLOW AND STREETFLOW MODEL* CURB GUTTER- GEOMETRIES: MANNING HEIGHT WIDTH LIP HIKE FACTOR (FT) (FT) (FT) (FT) (n) .50 1.50 .03125 .1100 .01500 .50 1.50 .03125 .1100 .01500 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = .14 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 5.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* UNIT - HYDROGRAPH DATA: WATERSHED LAG = .80 * Tc USED "VALLEY UNDEVELOPED" S -GRAPH FOR DEVELOPMENTS OF 2 UNITS/ACRE AND LESS; AND "VALLEY DEVELOPED" S -GRAPH FOR DEVELOPMENTS OF 3 -4 UNITS /ACRE AND MORE. USER SPECIFIED RAINFALL VALUES: 2 -YR 6 -HR RAINFALL DEPTH(INCH) = 1.80 2 -YR 24 -HR RAINFALL DEPTH(INCH) = 3.40 100 -YR 6 -kR RAINFALL DEPTH(INCH) = 3.90 100 -YR 24 -HR RAINFALL DEPTH(INCH) = 9.20 SIERRA MADRE DEPTH -AREA FACTORS USED. AREA- AVERAGED DURATION RAINFALL(INCH) 5- MINUTES .37 T W Z Q 30- MINUTES •77 1 -HOUR 1.01 3 -HOUR 1.83 6 -HOUR 2.67 24 -HOUR 5.79 *ANTECEDENT MOISTURE CONDITION (AMC III) ASSUMED FOR UNIT HYDROGRAPH METHOD* ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** - -FLOW- PROCESS - FROM - NODE - - - - -- 100 -TO- NODE - - - - -- 200 -IS CODE = 2.1 6w >> >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< <<< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ----------------- INITIAL SUBAREA FLOW- LENGTH(FEET) = 375.00 ELEVATION DATA: UPSTREAM(FEET) = 1422.20 DOWNSTREAM(FEET) = 1415.50 oft Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE) ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.314 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.587 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.27 .80 .50 52 9.31 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 8.56 TOTAL AREA(ACRES) = 2.27 PEAK FLOW RATE(CFS) = 8.56 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 6.2 ---------------------------------------------------------------------------- >> >>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<< <<< »»> (STREET TABLE SECTION # 2 USED) « «< SIR °= UPSTREAM ELEVATION(FEET) = 1415.50 DOWNSTREAM ELEVATION(FEET) = 1409.62 STREET LENGTH(FEET) = 272.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 1�4 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) _ .020 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 10.55 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .35 HALFSTREET FLOOD WIDTH(FEET) = 11.71 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.57 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.23 STREET FLOW TRAVEL TIME(MIN.) = 1.27 Tc(MIN.) = 10.58 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.248 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 1.15 .80 .50 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.15 SUBAREA RUNOFF(CFS) = 3.98 EFFECTIVE AREA(ACRES) = 3.42 AREA- AVERAGED Fm(INCH /HR) _ .40 AREA- AVERAGED Fp(INCH /HR) _ .80 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 3.42 PEAK FLOW RATE(CFS) = 11.85 Z/ . 4 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .36 HALFSTREET FLOOD WIDTH(FEET) = 12.26 FLOW VELOCITY(FEET /SEC.) = 3.68 DEPTH *VELOCITY(FT *FT /SEC.) = 1.31 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.58 RAINFALL INTENSITY(INCH /HR) = 4.25 AREA- AVERAGED Fm(INCH /HR) _ .40 AREA- AVERAGED Fp(INCH /HR) _ .80 AREA- AVERAGED Ap = .50 two EFFECTIVE STREAM AREA(ACRES) = 3.42 k" TOTAL STREAM AREA(ACRES) = 3.42 PEAK FLOW RATE(CFS) AT CONFLUENCE = 11.85 FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 2.1 11I� ---------------------------------------------------------------------------- >> >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<<<< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 455.00 ELEVATION DATA: UPSTREAM(FEET) = 1430.00 DOWNSTREAM(FEET) = 1415.80 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.001 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.682 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL 11 5 -7 DWELLINGS /ACRE" A 1.48 .80 .50 52 9.00 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 5.70 TOTAL AREA(ACRES) = 1.48 PEAK FLOW RATE(CFS) = 5.70 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 5.00 TO NODE 3.00 IS CODE = 6.2 ---- 7 ----------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<< <<< >> >>>( STREET TABLE SECTION # 1 USED)<< <<< ------------------------ UPSTREAM ELEVATION(FEET) = 1415.80 DOWNSTREAM ELEVATION(FEET) = 1409.62 STREET LENGTH(FEET) = 390.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH'(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) _ .020 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 9.55 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .35 HALFSTREET FLOOD WIDTH(FEET) = 11.99 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.09 3/ � RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. F PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.09 STREET FLOW TRAVEL TIME(MIN.) = 2.10 Tc(MIN.) = 11.10 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.128 'SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN Fp(Fm) RESIDENTIAL SOURCE 11 5 -7 DWELLINGS /ACRE" A 2.29 .80 .50 52 NUMBER (CFS) (MIN.) (INCH /HR) SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .80 (ACRES) SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.29 SUBAREA RUNOFF(CFS) = 7.69 .796( .398) EFFECTIVE AREA(ACRES) = 3.77 AREA- AVERAGED Fm(INCH /HR) _ .40 1.00 AREA- AVERAGED Fp(INCH /HR) _ .80 AREA- AVERAGED Ap = .50 2 24.1 11.10 4.128 TOTAL AREA(ACRES) = 3.77 PEAK FLOW RATE(CFS) = 12.65 .50 7.2 4.00 € END OF SUBAREA STREET FLOW HYDRAULICS: AS FOLLOWS: DEPTH(FEET) _ .38 HALFSTREET FLOOD WIDTH(FEET) = 13.40 FLOW VELOCITY(FEET /SEC.) = 3.32 DEPTH *VELOCITY(FT *FT /SEC.) = 1.26 PEAK FLOW RATE(CFS) = 24.30 Tc(MIN.) = 10.58 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** AREA- AVERAGED FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 1 .40 ---------------------------------------------------------------------------- AREA - AVERAGED Fp(INCH /HR) _ .80 >> >>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< Ap = .50 >> >>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES <<<<< !� --------------------------------------------------------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 11.10 LONGEST FLOWPATH FROM NODE 4.00 RAINFALL INTENSITY(INCH /HR) = 4.13 3.00 = 845.00 AREA- AVERAGED Fm(INCH /HR) _ .40 AREA- AVERAGED Fp(INCH /HR) _ .80 AREA- AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 3.77 A TOTAL STREAM AREA(ACRES) = 3.77 PEAK FLOW RATE(CFS) AT CONFLUENCE _ .12.65 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 11.85 10.58 4.248 .80( .40) .50 3.42 1.00 2 12.65 11.10 4.128 .80( .40) .50 3.77 4.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. F ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensit Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 24.3 10.58 4.248 .796( .398) .50 7.0 1.00 2 24.1 11.10 4.128 .796( .398) .50 7.2 4.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 24.30 Tc(MIN.) = 10.58 EFFECTIVE AREA(ACRES) = 7.01 AREA- AVERAGED Fm(INCH /HR) _ .40 AREA - AVERAGED Fp(INCH /HR) _ .80 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 7.19 LONGEST FLOWPATH FROM NODE 4.00 TO NODE 3.00 = 845.00 FEET. ********************************************* * * * * * * * * * * * * * * ** * * * * * * * * * * * * *** -- FLOW - PROCESS - FROM - NODE - - - - -- 300 - TO - NODE - - - -- - 600 IS CODE = 6.2 >>>>> COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<< >>>>>( STREET TABLE SECTION # 1 USED)<<<<< UPSTREAM ELEVATION(FEET) = 1409.62 DOWNSTREAM ELEVATION(FEET) = 1407.31 STREET LENGTH(FEET) = 255.00 CURB HEIGHT(INCHES) = 6.0 1 � t' STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.00 TO NODE 8.00 IS CODE = 6.2 ---------------------------------------------------------------------------- >> >>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<< >>>>>( STREET TABLE SECTION # 1 USED) <<<<< UPSTREAM ELEVATION(FEET) = 1407.31 DOWNSTREAM ELEVATION(FEET) = 1405.97 STREET LENGTH(FEET) = 100.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 LL J/ * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 25.72 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .51 HALFSTREET FLOOD WIDTH(FEET) = 20.17 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.19 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.62 STREET FLOW TRAVEL TIME(MIN.) = 1.33 Tc(MIN.) = 11.92 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.956 SUBAREA LOSS RATE DATA(AMC III): IIA DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A .89 .80 .50 52 pq SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .89 SUBAREA RUNOFF(CFS) = 2.85 EFFECTIVE AREA(ACRES) = 7.90 AREA - AVERAGED Fm(INCH /HR) _ .40 �� AREA- AVERAGED Fp(INCH /HR) = .80 AREA - AVERAGED Ap = .50 Ili TOTAL AREA(ACRES) = 8.08 PEAK FLOW RATE(CFS) = 25.31 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .50 HALFSTREET FLOOD WIDTH(FEET) = 19.86 6 FLOW VELOCITY(FEET /SEC.) = 3.19 DEPTH *VELOCITY(FT *FT /SEC.) = 1.61 6.00 FLOW PROCESS FROM NODE TO NODE 6.00 IS CODE = 8.1 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <<<<< _ ----------- _______________________________ _______________________________ MAINLINE Tc(MIN) = 11.92 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.956 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.87 .80 .50 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.87 SUBAREA RUNOFF(CFS) = 9.19 EFFECTIVE AREA(ACRES) = 10.77 AREA- AVERAGED Fm(INCH /HR) _ .40 AREA- AVERAGED Fp(INCH /HR) = .80 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 10.95 PEAK FLOW RATE(CFS) = 34.50 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.00 TO NODE 8.00 IS CODE = 6.2 ---------------------------------------------------------------------------- >> >>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<< >>>>>( STREET TABLE SECTION # 1 USED) <<<<< UPSTREAM ELEVATION(FEET) = 1407.31 DOWNSTREAM ELEVATION(FEET) = 1405.97 STREET LENGTH(FEET) = 100.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 LL J/ ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * ** * ** -- FLOW - PROCESS - FROM - NODE - - - - -- 800 - TO - NODE - - - - -- 900 - IS CODE = 6.2 >> >>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<< -_>> >>>( STREET TABLE SECTION # 1 USED) <<<<< UPSTREAM ELEVATION(FEET) = 1405.97 DOWNSTREAM ELEVATION(FEET) = 1402.50 STREET LENGTH(FEET) = 280.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) _ .020 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 35.04 ** *STREET FLOWING FULL * ** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .52 HALFSTREET FLOOD WIDTH(FEET) = 21.20 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.00 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.10 f� STREET FLOW TRAVEL TIME(MIN.) _ .42 Tc(MIN.) = 12.33 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.876 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A .35 .80 .50 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .80 �! SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) _ .35 SUBAREA RUNOFF(CFS) = 1.10 EFFECTIVE AREA(ACRES) = 11.12 AREA- AVERAGED Fm(INCH /HR) _ .40 AREA- AVERAGED Fp(INCH /HR) _ .80 AREA- AVERAGED Ap = . TOTAL AREA(ACRES) = 11.30 PEAK FLOW RATE(CFS) = 34.81 AREA- AVERAGED Fp(INCH /HR) _ .80 AREA- AVERAGED Ap = .50 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .52 HALFSTREET FLOOD WIDTH(FEET) = 21.14 FLOW VELOCITY(FEET /SEC.) = 4.00 DEPTH *VELOCITY(FT *FT /SEC.) = 2.09 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * ** * ** -- FLOW - PROCESS - FROM - NODE - - - - -- 800 - TO - NODE - - - - -- 900 - IS CODE = 6.2 >> >>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<< -_>> >>>( STREET TABLE SECTION # 1 USED) <<<<< UPSTREAM ELEVATION(FEET) = 1405.97 DOWNSTREAM ELEVATION(FEET) = 1402.50 STREET LENGTH(FEET) = 280.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 `,/o, SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) _ .020 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 37.28 ** *STREET FLOWING FULL * ** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .54 HALFSTREET FLOOD WIDTH(FEET) = 21.87 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.99 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.15 STREET FLOW TRAVEL TIME(MIN.) = 1.17 Tc(MIN.) = 13.50 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.671 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 1.68 .80 .50 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.68 SUBAREA RUNOFF(CFS) = 4.95 EFFECTIVE AREA(ACRES) = 12.80 AREA- AVERAGED Fm(INCH /HR) _ .40 AREA- AVERAGED Fp(INCH /HR) _ .80 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 12.98 PEAK FLOW RATE(CFS) = 37.71 END OF SUBAREA STREET FLOW HYDRAULICS: `,/o, DEPTH(FEET) _ .54 HALFSTREET FLOOD WIDTH(FEET) = 21.94 FLOW VELOCITY(FEET /SEC.) = 4.01 DEPTH *VELOCITY(FT *FT /SEC.) = 2.16 FLOW PROCESS FROM NODE 10.00 TO NODE 9.00 IS CODE = 8.1 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<< <<< MAINLINE Tc(MIN) = 13.50 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.671 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.06 .80 .50 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.06 SUBAREA RUNOFF(CFS) = 6.07 EFFECTIVE AREA(ACRES) = 14.86 AREA - AVERAGED Fm(INCH /HR) _ .40 AREA- AVERAGED Fp(INCH /HR) _ .80 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 15.04 PEAK FLOW RATE(CFS) = 43.77 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 9.00 TO NODE 11.00 IS CODE = 3.1 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA <<<<< >>>>>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW)<< <<< ELEVATION DATA: UPSTREAM(FEET) = 1402.50 DOWNSTREAM(FEET) = 1398.70 FLOW LENGTH (FEET) = 280.00 MANNING'S N = .013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 23.7 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 10.52 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 43.77 PIPE TRAVEL TIME(MIN.) _ .44 Tc(MIN.) = 13.95 g 0; ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 11.00 TO NODE 11.00 IS CODE = 8.1 on ---------------------------------------------------------------------------- >> >>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <<<<< MAINLINE Tc(MIN) = 13.95 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.600 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A .43 .80 .50 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) _ .43 SUBAREA RUNOFF(CFS) = 1.24 EFFECTIVE AREA(ACRES) = 15.29 AREA- AVERAGED Fm(INCH /HR) _ .40 AREA- AVERAGED Fp(INCH /HR) _ .80 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 15.47 PEAK FLOW RATE(CFS) = 44.07 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** -- FLOW - PROCESS - FROM NODE - 1100 TO NODE ---------- >>>>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA <<<<< >>>>>USING COMPUTER- ESTIMATED PIPESIZE (NON - PRESSURE FLOW)<< <<< ELEVATION DATA UPSTREAM(FEET) = 1398.70 DOWNSTREAM(FEET) = 1393.00 FLOW LENGTH(FEET) = 410.00 MANNING'S N = .013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 23.6 INCHES / H IR b PIPE -FLOW VELOCITY(FEET /SEC.; ESTIMATED PIPE DIAMETER(INCH; PIPE- FLOW(CFS) = 44.07 PIPE TRAVEL TIME(MIN.) = = 10.64 = 30.00 NUMBER OF PIPES = .64 TC(MIN.) = 14.59 1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 8.1 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <<<<< MAINLINE Tc(MIN) = 14.59 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.504 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 5.00 .80 .50 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 5.00 SUBAREA RUNOFF(CFS) = 13.98 EFFECTIVE AREA(ACRES) = 20.29 AREA - AVERAGED Fm(INCH /HR) _ .40 AREA- AVERAGED Fp(INCH /HR) = .80 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 20.47 PEAK FLOW RATE(CFS) = 56.73 Fl E ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 13.00 ---------------------------------------------------------------------------- TO NODE 14.00 IS CODE = 3.1 >>>>>COMPUTE- PIPE -FLOW TRAVEL TIME THRU SUBAREA<< <<< >>>>>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW)<< <<< ELEVATION DATA: UPSTREAM(FEET) = -------------------------------- 1393.00 DOWNSTREAM(FEET) = 1387.00 FLOW LENGTH(FEET) = 570.00 MANNING'S N = .013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 26.1 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 10.35 ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 56.73 PIPE TRAVEL TIME(MIN.) .92 Tc(MIN.) = 15.51 - -- END OF STUDY SUMMARY: --------------- - - - -- TOTAL AREA(ACRES) = 20.47 TC(MIN.) = 15.51 EFFECTIVE AREA(ACRES)'= 20.29 AREA- AVERAGED Fm(INCH /HR)= .40 AREA - AVERAGED Fp(INCH /HR) _ .80 AREA- AVERAGED Ap = .50 PEAK FLOW RATE(CFS) = 56.73 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 56.7 15.51 3.378 .796( .398) .50 20.3 1.00 2 55.8 16.04 3.310 .796( .398) .50 20.5 4.00 END OF RATIONAL METHOD ANALYSIS Fl E OR * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** 1 • TRACT 16158 * �. * 100 YEAR OFF -SITE HYDROLOGY STUDY • BY: DAVID B. WARREN FILE NAME: 16158OFF.DAT TIME /DATE OF STUDY: 10:15 2/14/2002 u„ OR USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL*- - USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .95 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) _ .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.5200 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 20.00 TO NODE 21.00 IS CODE = 2.1 ---------------------------------------------------------------------------- >>>>> RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< <<< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ---------------------------------- INITIAL SUBAREA FLOW- LENGTH(FEET) = 600.00 ELEVATION DATA: UPSTREAM(FEET) = 1435.50 DOWNSTREAM(FEET) = 1422.20 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 25.878 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.518 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) NATURAL GOOD COVER "GRASS" A 7.60 .94 1.00 38 25.88 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .94 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 10.82 TOTAL AREA(ACRES) = 7.60 PEAK FLOW RATE(CFS) = 10.82 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 21.00 TO NODE 22.00 IS CODE = 9 ---------------------------------------------------------------------------- - ->> >>>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA <<<<< UPSTREAM NODE ELEVATION(FEET) = 1422.20 (� ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) = (c) Copyright 1983 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 c l.S IF Analysis prepared by: ALLARD ENGINEERING (J 8253 SIERRA AVE. FONTANA CA. 92336 O TEL. (909) 356 -1815 FAX (909) 356 -1795 OR * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** 1 • TRACT 16158 * �. * 100 YEAR OFF -SITE HYDROLOGY STUDY • BY: DAVID B. WARREN FILE NAME: 16158OFF.DAT TIME /DATE OF STUDY: 10:15 2/14/2002 u„ OR USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL*- - USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .95 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) _ .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.5200 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 20.00 TO NODE 21.00 IS CODE = 2.1 ---------------------------------------------------------------------------- >>>>> RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< <<< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ---------------------------------- INITIAL SUBAREA FLOW- LENGTH(FEET) = 600.00 ELEVATION DATA: UPSTREAM(FEET) = 1435.50 DOWNSTREAM(FEET) = 1422.20 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 25.878 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.518 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) NATURAL GOOD COVER "GRASS" A 7.60 .94 1.00 38 25.88 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .94 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 10.82 TOTAL AREA(ACRES) = 7.60 PEAK FLOW RATE(CFS) = 10.82 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 21.00 TO NODE 22.00 IS CODE = 9 ---------------------------------------------------------------------------- - ->> >>>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA <<<<< UPSTREAM NODE ELEVATION(FEET) = 1422.20 (� DOWNSTREAM NODE ELEVATION(FEET) = 1403.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 840.00 "V" GUTTER WIDTH(FEET) = 5.00 GUTTER HIKE(FEET) _ .250 PAVEMENT LIP(FEET) _ .010 MANNING'S N = .0200 PAVEMENT CROSSFALL(DECIMAL NOTATION) _ .10000 MAXIMUM DEPTH(FEET) = 5.00 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.383 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL GOOD COVER "GRASS" A 13.30 .94 1.00 38 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .94 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 5.64 AVERAGE FLOW DEPTH(FEET) _ .59 FLOOD WIDTH(FEET) = 11.65 "V" GUTTER FLOW TRAVEL TIME(MIN.) = 2.48 Tc(MIN.) = 28.36 SUBAREA AREA(ACRES) = 13.30 SUBAREA RUNOFF(CFS) = 17.32 11�R EFFECTIVE AREA(ACRES) = 20.90 AREA - AVERAGED Fm(INCH /HR) _ .94 AREA- AVERAGED Fp(INCH /HR) _ .94 AREA- AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 20.90 PEAK FLOW RATE(CFS) = 27.22 END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) _ .67 FLOOD WIDTH(FEET) = 13.27 FLOW VELOCITY(FEET /SEC.) = 6.11 DEPTH *VELOCITY(FT *FT /SEC) = 4.12 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 22.00 TO NODE 23.00 IS CODE = 9 ---------------------------------------------------------------------------- - ->> >>>COMPUTE - "V " GUTTER FLOW TRAVEL THRU SUBAREA <<<<< - TIME - - --------------------------------- UPSTREAM NODE ELEVATION(FEET) = 1403.00 DOWNSTREAM NODE ELEVATION(FEET) = 1385.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 830.00 "V" GUTTER WIDTH(FEET) = 5.00 GUTTER HIKE(FEET) _ .250 PAVEMENT LIP(FEET) _ .010 MANNING'S N = .0200 PAVEMENT CROSSFALL(DECIMAL NOTATION) _ .10000 MAXIMUM DEPTH(FEET) = 5.00 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.282 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL GOOD COVER "GRASS" A 19.10 .94 1.00 38 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .94 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 6.50 AVERAGE FLOW DEPTH(FEET) _ .78 FLOOD WIDTH(FEET) = 15.38 "V" GUTTER FLOW TRAVEL TIME(MIN.) = 2.13 Tc(MIN.) = 30.49 SUBAREA AREA(ACRES) = 19.10 SUBAREA RUNOFF(CFS) = 23.13 EFFECTIVE AREA(ACRES) = 40.00 AREA- AVERAGED Fm(INCH /HR) _ .94 AREA- AVERAGED Fp(INCH /HR) _ .94 AREA- AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 40.00 PEAK FLOW RATE(CFS) = 48.45 END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) _ .85 FLOOD WIDTH(FEET) = 16.77 FLOW VELOCITY(FEET /SEC.) = 6.84 DEPTH *VELOCITY(FT *FT /SEC) = 5.81 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** - - FLOW PROCESS FROM NODE 23.00 TO NODE 24.00 IS CODE = 9 >>>>>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA <<<<< UPSTREAM NODE ELEVATION(FEET) = 1385.00 DOWNSTREAM NODE ELEVATION(FEET) = 1376.30 CHANNEL LENGTH THRU SUBAREA(FEET) = 430.00 fQ I (� 0 "V" GUTTER WIDTH(FEET) = 5.00 GUTTER HIKE(FEET) _ .250 PAVEMENT LIP(FEET) _ .010 MANNING'S N = .0200 PAVEMENT CROSSFALL(DECIMAL NOTATION) _ .10000 MAXIMUM DEPTH(FEET) = 5.00 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.236 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL GOOD COVER "GRASS" A 7.20 .94 1.00 38 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .94 4w SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 6.79 AVERAGE FLOW DEPTH(FEET) _ .89 FLOOD WIDTH(FEET) = 17.56 "V" GUTTER FLOW TRAVEL TIME(MIN.) = 1.06 Tc(MIN.) = 31.54 SUBAREA AREA(ACRES) = 7.20 SUBAREA RUNOFF(CFS) = 8.42 EFFECTIVE AREA(ACRES) = 47.20 AREA - AVERAGED Fm(INCH /HR) _ .94 AREA- AVERAGED Fp(INCH /HR) _ .94 AREA- AVERAGED Ap = 1.00 1�! TOTAL AREA(ACRES) = 47.20 PEAK FLOW RATE(CFS) = 55.21 END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) _ .90 FLOOD WIDTH(FEET) = 17.88 - FLOW VELOCITY(FEET /SEC.) = 6.86 DEPTH *VELOCITY(FT *FT /SEC) = 6.21 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 47.20 TC(MIN.) = 31.54 4w EFFECTIVE AREA(ACRES) = 47.20 AREA- AVERAGED Fm(INCH /HR)= .94 wa AREA- AVERAGED Fp(INCH /HR) _ .94 AREA- AVERAGED Ap = 1.00 PEAK FLOW RATE(CFS) = 55.21 OR ---------------------------------------------------------------------------- ----------------------------------------------------- ---------------------------------------------------------------------------- END OF RATIONAL METHOD ANALYSIS 0 R 0 0 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 30.000 to Point /Station 31.000 * * ** INITIAL AREA EVALUATION * * ** COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= Initial subarea data: Initial area flow distance = 690.000(Ft.) Top (of initial area) elevation = 1439.000(Ft.) Bottom (of initial area) elevation = 1434.700(Ft.) Difference in elevation = 4.300(Ft.) Slope = 0.00623 s(%)= 0.62 TC = k(0.304) *[(length ^ 3) /(elevation change)]"0.2 Initial area time of concentration = 11.468 min. Rainfall intensity = 4.048(In /Hr) for a 100.0 Effective runoff coefficient used for area (Q =KCIA) Subarea runoff = 2.489(CFS) Total initial stream area = 0.700(Ac.) Pervious area fraction = 0.100 Initial area Fm value = 0.098(In /Hr) 0.098(In /Hr) year storm is C = 0.878 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 31.000 to Point /Station 32.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 1434.700(Ft.) End of street segment elevation = 1427.900(Ft.) Length of street segment = 740.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Iz44 i San Bernardino County Rational Hydrology Program or (Hydrology Manual Date - August 1986) CIVILCADD /CIVILDESIGN Engineering Software, (c) 1989 -1999 Version 6.2 Rational Hydrology Study Date: 03/11/02 ------------------------------------------------------------------------ Tract No. 16158 -2 Walnut Avenue Study 100 Year Event Storm Analysis for street Capacity � by: D. Hammer, File Name: Walnut ------------------------------------------------------------------ - - - - -- (� Allard Engineering, Fontana, California - SIN 643 --------------------------------------- - - - - - - --------------------------- r * * * * * * * ** Hydrology Study Control Information * * * * * * * * ** ^ ------------------------------------------------------------------------ 1 Rational hydrology study storm event year is 100.0 Computed rainfall intensity: —� GC Storm year = 100.00 1 hour rainfall = 1.500 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 2 R 0 0 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 30.000 to Point /Station 31.000 * * ** INITIAL AREA EVALUATION * * ** COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= Initial subarea data: Initial area flow distance = 690.000(Ft.) Top (of initial area) elevation = 1439.000(Ft.) Bottom (of initial area) elevation = 1434.700(Ft.) Difference in elevation = 4.300(Ft.) Slope = 0.00623 s(%)= 0.62 TC = k(0.304) *[(length ^ 3) /(elevation change)]"0.2 Initial area time of concentration = 11.468 min. Rainfall intensity = 4.048(In /Hr) for a 100.0 Effective runoff coefficient used for area (Q =KCIA) Subarea runoff = 2.489(CFS) Total initial stream area = 0.700(Ac.) Pervious area fraction = 0.100 Initial area Fm value = 0.098(In /Hr) 0.098(In /Hr) year storm is C = 0.878 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 31.000 to Point /Station 32.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 1434.700(Ft.) End of street segment elevation = 1427.900(Ft.) Length of street segment = 740.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Iz44 Fl n aw ■w d h J Distance from crown to crossfall grade break = 10.000(Ft.) Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 18.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.110(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.733(CFS) Depth of flow = 0.232(Ft.), Average velocity = 2.350(Ft /s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12.665(Ft.) Flow velocity = 2.35(Ft /s) Travel time = 5.25 min. TC = 16.72 min. Adding area flow to street COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In /Hr) Rainfall intensity = 3.229(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.873 Subarea runoff = 1.457(CFS) for 0.700(Ac.) Total runoff = 3.946(CFS) Effective area this stream = 1.40(Ac.) Total Study Area (Main Stream No. 1) = 1.40(Ac.) Area averaged Fm value = 0.098(In /Hr) Street flow at end of street = 3.946(CFS) Half street flow at end of street = 3.946(CFS) Depth of flow = 0.238(Ft.), Average velocity = 2.383(Ft/s) Flow width (from curb towards crown)= 12.927(Ft.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 32.000 to Point /Station 33.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 1427.900(Ft.) End of street segment elevation = 1421.900(Ft.) Length of street segment = 580.000(Ft.) Height of curb above gutter flowline = 8.0(In.) width of half street (curb to crown) = 20.000(Ft. Distance from crown to crossfall grade break = 10 Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [11 side(s) of the street Distance from curb to property line = 18.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.110(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.251(Ft.), Average velocity = 000(Ft.) 4.791(CFS) 2.616(Ft /s) 11114 H Area averaged pervious area fraction(Ap) = 0.100 Area averaged SCS curve number = 32.0 E Fl h, Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 13.591(Ft.) Flow velocity = 2.62(Ft /s) Travel time = 3.70 min. TC = 20.41 min. Adding area flow to street COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In /Hr) Rainfall intensity = 2.865(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.869 Subarea runoff = 1.035(CFS) for 0.600(Ac.) Total runoff = 4.980(CFS) Effective area this stream = 2.00(Ac.) Total Study Area (Main Stream No. 1) = 2.00(Ac.) Area averaged Fm value = 0.098(In /Hr) Street flow at end of street = 4.980(CFS) Hait street flow at end of street = 4.980(CFS) Depth of flow = 0.255(Ft.), Average velocity = 2.642(Ft/s) Flow width (from curb towards crown)= 13.788(Ft.) End of computations, Total Study Area = 2.00 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation. Area averaged pervious area fraction(Ap) = 0.100 Area averaged SCS curve number = 32.0 E Fl h, ra fl 10 Year Hydrology Calculations H--- h ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING, INC. 6101 CHERRY AVENUE FONTANA, CALIFORNIA 92336 (909) 899 - 5011 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** �1 * Young Homes Tract 16158 * 10 year r * By: Joe Ramirez rev. 12 -31 -01 FILE NAME: 1016158.DAT TIME /DATE OF STUDY: 12:24 12/31/2001 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL * -- USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.000 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.500 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 10.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.0100 IIM SLOPE OF INTENSITY DURATION CURVE _ .6000 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* *USER - DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET- CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT- /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 20.0 10.0 .020/ .020/ .020 .50 1.50 .03125 .1100 .01500 2 18.0 10.0 .020/ .020/ .020 .50 1.50 .03125 .1100 .01500 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = .14 FEET as (Maximum Allowable Street Flow Depth) - (Top - of - Curb) 2. (Depth) *(Velocity) Constraint = 5.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* UNIT - HYDROGRAPH DATA: WATERSHED LAG = .80 * Tc USED "VALLEY UNDEVELOPED" S -GRAPH FOR DEVELOPMENTS OF ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 4" FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 2.1 >> >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<<<< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< -------- - - - - -- INITIAL SUBAREA FLOW- LENGTH(FEET) = 375.00 ELEVATION DATA: UPSTREAM(FEET) = 1422.20 DOWNSTREAM(FEET) = 1415.50 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.314 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 3.088 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.27 .98 .50 32 9.31 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 5.31 ! TOTAL AREA(ACRES) = 2.27 PEAK FLOW RATE(CFS) = 5.31 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 6.2 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>( STREET TABLE SECTION # 2 USED)<< <<< UPSTREAM ELEVATION(FEET) = 1415.50 DOWNSTREAM ELEVATION(FEET) = 1409.62 STREET LENGTH(FEET) = 272.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 2 UNITS /ACRE AND LESS; AND "VALLEY DEVELOPED" S -GRAPH FOR DEVELOPMENTS OF 3 -4 UNITS /ACRE AND MORE. USER SPECIFIED RAINFALL VALUES: 2 -YR 6 -HR RAINFALL DEPTH(INCH) = 1.80 2 -YR 24- HR'RAINFALL DEPTH(INCH) = 3.40 100 -YR 6 -HR RAINFALL DEPTH(INCH) = 3.90 100 -YR 24 -HR RAINFALL DEPTH(INCH) = 9.20 40 SIERRA MADRE DEPTH -AREA FACTORS USED. AREA- AVERAGED DURATION RAINFALL(INCH) 5- MINUTES .37 30- MINUTES .77 1 -HOUR 1.01 3 -HOUR 1.83 6 -HOUR 2.67 24 -HOUR 5.79 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR UNIT HYDROGRAPH METHOD* ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 4" FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 2.1 >> >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<<<< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< -------- - - - - -- INITIAL SUBAREA FLOW- LENGTH(FEET) = 375.00 ELEVATION DATA: UPSTREAM(FEET) = 1422.20 DOWNSTREAM(FEET) = 1415.50 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.314 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 3.088 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.27 .98 .50 32 9.31 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 5.31 ! TOTAL AREA(ACRES) = 2.27 PEAK FLOW RATE(CFS) = 5.31 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 6.2 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>( STREET TABLE SECTION # 2 USED)<< <<< UPSTREAM ELEVATION(FEET) = 1415.50 DOWNSTREAM ELEVATION(FEET) = 1409.62 STREET LENGTH(FEET) = 272.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 d END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .31 HALFSTREET FLOOD WIDTH(FEET) = 9.99 FLOW VELOCITY(FEET /SEC.) = 3.27 DEPTH *VELOCITY(FT *FT /SEC.) = 1.02 FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 1 ---------------------------------------------------------------------------- ,� >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.72 RAINFALL INTENSITY(INCH /HR) = 2.84 AREA- AVERAGED Fm(INCH /HR) = .49 AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 3.42 TOTAL STREAM AREA(ACRES) = 3.42 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.24 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** -- FLOW - PROCESS - FROM - NODE - - - - -- 400 - TO - NODE - - - - -- 500 - IS CODE = 2.1 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< <<< >>USE TIME -OF- CONCENTRATION - NOMOGRAPH - FOR INITIAL - SUBAREA << INITIAL SUBAREA FLOW- LENGTH(FEET) = 455.00 ELEVATION DATA: UPSTREAM(FEET) = 1430.00 DOWNSTREAM(FEET) = 1415.80 Tc = K *((LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.001 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 3.152 3/ SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) _ .020 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.53 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .30 HALFSTREET FLOOD WIDTH(FEET) = 9.52 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.22 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) _ .97 STREET FLOW TRAVEL TIME(MIN.) = 1.41 Tc(MIN.) = 10.72 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.838 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /.HR) (DECIMAL) CN ' RESIDENTIAL 11 5 -7 DWELLINGS /ACRE" A 1.15 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.15 SUBAREA RUNOFF(CFS) = 2.43 EFFECTIVE AREA(ACRES) = 3.42 AREA- AVERAGED Fm(INCH /HR) _ .49 AREA - AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 3.42 PEAK FLOW RATE(CFS) = 7.24 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .31 HALFSTREET FLOOD WIDTH(FEET) = 9.99 FLOW VELOCITY(FEET /SEC.) = 3.27 DEPTH *VELOCITY(FT *FT /SEC.) = 1.02 FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 1 ---------------------------------------------------------------------------- ,� >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.72 RAINFALL INTENSITY(INCH /HR) = 2.84 AREA- AVERAGED Fm(INCH /HR) = .49 AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 3.42 TOTAL STREAM AREA(ACRES) = 3.42 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.24 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** -- FLOW - PROCESS - FROM - NODE - - - - -- 400 - TO - NODE - - - - -- 500 - IS CODE = 2.1 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< <<< >>USE TIME -OF- CONCENTRATION - NOMOGRAPH - FOR INITIAL - SUBAREA << INITIAL SUBAREA FLOW- LENGTH(FEET) = 455.00 ELEVATION DATA: UPSTREAM(FEET) = 1430.00 DOWNSTREAM(FEET) = 1415.80 Tc = K *((LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.001 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 3.152 3/ SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL 11 5 -7 DWELLINGS /ACRE" A 1.48 .98 .50 32 9.00 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 3.54 TOTAL AREA(ACRES) = 1.48 PEAK FLOW RATE(CFS) = 3.54 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 5.00 TO NODE 3.00 IS CODE = 6.2 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<< >> >>>( STREET TABLE SECTION # 1 USED) <<<<< ■r UPSTREAM ELEVATION(FEET) = 1415.80 DOWNSTREAM ELEVATION(FEET) = 1409.62 STREET LENGTH(FEET) = 390.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .33 HALFSTREET FLOOD WIDTH(FEET) = 10.90 FLOW VELOCITY(FEET /SEC.) = 2.95 DEPTH *VELOCITY(FT *FT /SEC.) _ .97 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< i SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) _ .020 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.88 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .31 HALFSTREET FLOOD WIDTH(FEET) = 9.77 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.77 �t PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) _ .85 STREET FLOW TRAVEL TIME(MIN.) = 2.35 TC(MIN.) = 11.35 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.743 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.29 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.29 SUBAREA RUNOFF(CFS) = 4.65 EFFECTIVE AREA(ACRES) = 3.77 AREA- AVERAGED Fm(INCH /HR) _ .49 AREA- AVERAGED Fp(INCH /HR) _ .97 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 3.77 PEAK FLOW RATE(CFS) = 7.65 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .33 HALFSTREET FLOOD WIDTH(FEET) = 10.90 FLOW VELOCITY(FEET /SEC.) = 2.95 DEPTH *VELOCITY(FT *FT /SEC.) _ .97 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< i -_ >>>>> AND - COMPUTE - VARIOUS - CONFLUENCED STREAM - VALUES<< <<< RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** TOTAL NUMBER OF STREAMS = 2 SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) ► CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: 1 14.8 10.72 2.838 .975( .487) .50 7.0 TIME OF CONCENTRATION(MIN.) = 11.35 2 14.6 11.35 2.743 .975( .487) .50 7.2 4.00 �t RAINFALL INTENSITY(INCH /HR) = 2.74 PEAK FLOW RATE(CFS) = 14.77 Tc(MIN.) = 10.72 AREA- AVERAGED Fm(INCH /HR) = .49 EFFECTIVE AREA(ACRES) = 6.98 AREA- AVERAGED Fm(INCH /HR) _ .49 OR AREA- AVERAGED Fp(INCH /HR) = .97 pw TOTAL AREA(ACRES) = 7.19 AREA- AVERAGED Ap = .50 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** EFFECTIVE STREAM AREA(ACRES) = 3.77 6.2 ---------------------------------------------------------------------------- >>>>> COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<< <<< TOTAL STREAM AREA(ACRES) = 3.77 >>>>>( STREET TABLE SECTION # 1 USED) <<<<< UPSTREAM ELEVATION(FEET) = 1409.62 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 255.00 CURB HEIGHT(INCHES) = 6.0 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.65 STREET HALFWIDTH(FEET) = 20.00 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 7.24 10.72 2.838 .97( .49) .50 3.42 1.00 2 7.65 11.35 2.743 .97( .49) .50 3.77 4.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 �1t * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 15.62 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .44 HALFSTREET FLOOD WIDTH(FEET) = 16.29 STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 14.8 10.72 2.838 .975( .487) .50 7.0 1.00 2 14.6 11.35 2.743 .975( .487) .50 7.2 4.00 �t COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 14.77 Tc(MIN.) = 10.72 EFFECTIVE AREA(ACRES) = 6.98 AREA- AVERAGED Fm(INCH /HR) _ .49 AREA- AVERAGED Fp(INCH /HR) _ .97 AREA- AVERAGED Ap = .50 pw TOTAL AREA(ACRES) = 7.19 LONGEST FLOWPATH FROM NODE 4.00 TO NODE 3.00 = 845.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3.00 TO NODE 6.00 IS CODE = 6.2 ---------------------------------------------------------------------------- >>>>> COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<< <<< >>>>>( STREET TABLE SECTION # 1 USED) <<<<< UPSTREAM ELEVATION(FEET) = 1409.62 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 255.00 CURB HEIGHT(INCHES) = 6.0 = 1407.31 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 �1t * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 15.62 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .44 HALFSTREET FLOOD WIDTH(FEET) = 16.29 J �� a 'o ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE = 8.1 ---------------------------------------------------------------------- - - - - -- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <<<<< ------------------------- ------------------------- MAINLINE Tc(MIN) = 12.22 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.624 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.87 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.87 SUBAREA RUNOFF(CFS) = 5.52 EFFECTIVE AREA(ACRES) = 10.74 AREA- AVERAGED Fm(INCH /HR) _ .49 AREA - AVERAGED Fp(INCH /HR) _ .97 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 10.95 PEAK FLOW RATE(CFS) = 20.65 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE -- - 600 TO NODE - - - -- 800 - IS - CODE = 6.2 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<< <<< >>>>>( STREET TABLE SECTION # 1 USED)<< <<< UPSTREAM ELEVATION(FEET) = 1407.31 DOWNSTREAM ELEVATION(FEET) = 1405.97 STREET LENGTH(FEET) = 100.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) _ .020 G 1 //o AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.83 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.24 STREET FLOW TRAVEL TIME(MIN.) = 1.50 Tc(MIN.) = 12.22 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.624 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A .89 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 ! SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) _ .89 SUBAREA RUNOFF(CFS) = 1.71 EFFECTIVE AREA(ACRES) = 7.87 AREA - AVERAGED Fm(INCH /HR) _ .49 AREA - AVERAGED Fp(INCH /HR) _ .97 AREA- AVERAGED Ap = .50 No TOTAL AREA(ACRES) = 8.08 PEAK FLOW RATE(CFS) = 15.13 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .43 HALFSTREET FLOOD WIDTH(FEET) = 16.05 FLOW VELOCITY(FEET /SEC.) = 2.82 DEPTH *VELOCITY(FT *FT /SEC.) = 1.22 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE = 8.1 ---------------------------------------------------------------------- - - - - -- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <<<<< ------------------------- ------------------------- MAINLINE Tc(MIN) = 12.22 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.624 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.87 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.87 SUBAREA RUNOFF(CFS) = 5.52 EFFECTIVE AREA(ACRES) = 10.74 AREA- AVERAGED Fm(INCH /HR) _ .49 AREA - AVERAGED Fp(INCH /HR) _ .97 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 10.95 PEAK FLOW RATE(CFS) = 20.65 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE -- - 600 TO NODE - - - -- 800 - IS - CODE = 6.2 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<< <<< >>>>>( STREET TABLE SECTION # 1 USED)<< <<< UPSTREAM ELEVATION(FEET) = 1407.31 DOWNSTREAM ELEVATION(FEET) = 1405.97 STREET LENGTH(FEET) = 100.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) _ .020 G 1 //o ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 6.2 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<< <<< >>>>>( STREET TABLE SECTION # 1 USED) <<<<< ---------------------------------- UPSTREAM ELEVATION(FEET) = 1405.97 DOWNSTREAM ELEVATION(FEET) = 1402.50 STREET LENGTH(FEET) = 280.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 * *TRAVEL 2 TIME COMPUTED USING ESTIMATED FLOW(CFS) = 20.97 STREET PARKWAY CROSSFALL(DECIMAL) _ .020 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .45 A HALFSTREET FLOOD WIDTH(FEET) = 16.91 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.53 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.59 STREET FLOW TRAVEL TIME(MIN.) _ .47 Tc(MIN.) = 12.70 HALFSTREET FLOOD WIDTH(FEET) = 17.54 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.565 SUBAREA LOSS RATE DATA(AMC II): 1111 DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.61 LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL 14.03 "5 -7 DWELLINGS /ACRE" A .35 .98 .50 32 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.415 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) _ .35 SUBAREA RUNOFF(CFS) _ .65 DEVELOPMENT TYPE/ SCS SOIL AREA Fp EFFECTIVE AREA(ACRES) = 11.09 AREA - AVERAGED Fm(INCH /HR) _ .49 AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .50 (DECIMAL) CN TOTAL AREA(ACRES) = 11.30 PEAK FLOW RATE(CFS) = 20.73 RESIDENTIAL END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .45 HALFSTREET FLOOD WIDTH(FEET) = 16.84 .50 32 FLOW VELOCITY(FEET /SEC.) = 3.52 DEPTH *VELOCITY(FT *FT /SEC.) = 1.58 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 6.2 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<< <<< >>>>>( STREET TABLE SECTION # 1 USED) <<<<< ---------------------------------- UPSTREAM ELEVATION(FEET) = 1405.97 DOWNSTREAM ELEVATION(FEET) = 1402.50 STREET LENGTH(FEET) = 280.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 7�i6 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) _ .020 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 22.19 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .46 HALFSTREET FLOOD WIDTH(FEET) = 17.54 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.49 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.61 STREET FLOW TRAVEL TIME(MIN.) = 1.34 Tc(MIN.) = 14.03 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.415 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 1.68 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 7�i6 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.68 SUBAREA RUNOFF(CFS) = 2.91 EFFECTIVE AREA(ACRES) = 12.77 AREA - AVERAGED Fm(INCH /HR) _ .49 AREA- AVERAGED Fp(INCH /HR) _ .97 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 12.98 PEAK FLOW RATE(CFS) = 22.15 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .46 HALFSTREET FLOOD WIDTH(FEET) = 17.54 FLOW VELOCITY(FEET /SEC.) = 3.48 DEPTH *VELOCITY(FT *FT /SEC.) = 1.61 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 10.00 TO NODE 9.00 IS•CODE = 8.1 eAs ---------------------------------------------------------------------------- >> >>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <<<<< --------------- MAINLINE Tc(MIN) = 14.03 I� * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.415 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN pm RESIDENTIAL im 11 5 -7 DWELLINGS /ACRE" A 2.06 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 �r SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.06 SUBAREA RUNOFF(CFS) = 3.57 EFFECTIVE AREA(ACRES) = 14.83 AREA - AVERAGED Fm(INCH /HR) _ .49 AREA- AVERAGED Fp(INCH /HR) _ .97 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 15.04 PEAK FLOW RATE(CFS) = 25.72 FLOW PROCESS FROM NODE 9.00 TO NODE 11.00 IS CODE = 3.1 ---------------------------------------------------------------------------- >> >>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA <<<<< 1� >> >>>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 1402.50 DOWNSTREAM(FEET) = 1398.70 FLOW LENGTH(FEET) = 280.00 MANNING'S N = .013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.5 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 9.45 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 25.72 PIPE TRAVEL TIME(MIN.) _ .49 Tc(MIN.) = 14.53 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 11.00 TO NODE 11.00 IS CODE = 8.1 ---------------------------------------------------------------------------- >> >>>ADDITION OF SUBAREA TO MAINLINE - PEAK FLOW<< <<< MAINLINE Tc(MIN) = 14.53 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.365 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL I 11/ici - - FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 8.1 ---------------------------------------------------------------------- >> >>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<< <<< MAINLINE Tc(MIN) = 15.24 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.298 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL 11�! 11 5 -7 DWELLINGS /ACRE" A 5.00 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 5.00 SUBAREA RUNOFF(CFS) = 8.15 !w EFFECTIVE AREA(ACRES) = 20.26 AREA- AVERAGED Fm(INCH /HR) _ .49 AREA- AVERAGED Fp(INCH /HR) _ .97 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 20.47 PEAK FLOW RATE(CFS) = 33.01 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW.PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 3.1 ---------------------------------------------------------------------------- » >>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< >>>>>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW)<< <<< ---------------------------------------------------------------------------- -------------------------------------------- ELEVATION DATA: UPSTREAM(FEET) = 1393.00 DOWNSTREAM(FEET) = 1387.00 FLOW LENGTH(FEET) = 570.00 MANNING'S N = .013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 20.8 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 9.09 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 33.01 L PIPE TRAVEL TIME(MIN.) = 1.05 Tc(MIN.) = 16.29 'J , "5 -7 DWELLINGS /ACRE" A .43 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) _ .43 SUBAREA RUNOFF(CFS) _ .73 EFFECTIVE AREA(ACRES) = 15.26 AREA - AVERAGED Fm(INCH /HR) _ .49 AREA- AVERAGED Fp(INCH /HR) _ ..97 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 15.47 PEAK FLOW RATE(CFS) = 25.79 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 11.00 TO NODE 13.00 IS CODE = 3.1 } ---------------------------------------------------------------------------- >> >>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA<< <<< >> >>>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW)<< <<< ELEVATION DATA: UPSTREAM(FEET) = 1398.70 DOWNSTREAM(FEET) = 1393.00 FLOW LENGTH(FEET) = 410.00 MANNING'S N = .013 !� DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.4 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 9.55 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 25.79 pw PIPE TRAVEL TIME(MIN.) _ .72 Tc(MIN.) = 15.24 - - FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 8.1 ---------------------------------------------------------------------- >> >>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<< <<< MAINLINE Tc(MIN) = 15.24 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.298 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL 11�! 11 5 -7 DWELLINGS /ACRE" A 5.00 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 5.00 SUBAREA RUNOFF(CFS) = 8.15 !w EFFECTIVE AREA(ACRES) = 20.26 AREA- AVERAGED Fm(INCH /HR) _ .49 AREA- AVERAGED Fp(INCH /HR) _ .97 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 20.47 PEAK FLOW RATE(CFS) = 33.01 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW.PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 3.1 ---------------------------------------------------------------------------- » >>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< >>>>>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW)<< <<< ---------------------------------------------------------------------------- -------------------------------------------- ELEVATION DATA: UPSTREAM(FEET) = 1393.00 DOWNSTREAM(FEET) = 1387.00 FLOW LENGTH(FEET) = 570.00 MANNING'S N = .013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 20.8 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 9.09 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 33.01 L PIPE TRAVEL TIME(MIN.) = 1.05 Tc(MIN.) = 16.29 'J , f I 1 to Io ---------- END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 20.47 TC(MIN.) = 16.29 EFFECTIVE AREA(ACRES) = 20.26 AREA - AVERAGED Fm(INCH /HR)= .49 AREA- AVERAGED Fp(INCH /HR) _ .97 AREA- AVERAGED Ap = .50 PEAK FLOW RATE(CFS) = 33.01 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 33.0 16.29 2.208 .975( .487) .50 20.3 1.00 2 32.3 16.97 2.154 .975( .488) .50 20.5 4.00 END OF RATIONAL METHOD ANALYSIS w* f I 1 to Io H UNIT HYDROGRAPH H r1r H L - PROJECT: >1 0* 1 Z I G f it s Ze. 1615 8 DATE: (ZQAC D.E //— 15 -0/ ENGINEER: 1. Enter the design storm return frequency (years) O UA 2. Enter catchment lag s 8� = as 0, OZ 3. Enter the catchment area (acres) ZS , 020,5 /9G � 4. Enter baseflow (sqe mile) S. Enter S -Graph proportions (decimal) to Valley: Developed C Foothill Mountain Yeller: Undeveloped � Desert + 6. Ente aximum loss rate, F aw w hmw) (. 1l O ' �1 7. Enter low loss fra(tion, Y (decimal) 8. Enter watershed area - averaged 5-minute point rainfall Gnd:es)* b =S Enter watershed area- averaged 30- minute point rain- fall (indm)* Q� Enter watershed area - averaged 1 -hour point rainfall Enter watershed area - averaged 3-hour point rainfall p Enter watershed area - averaged 6-hour point rainfall , Enter watershed area - averaged 24 -hour point rainfall (indies) * 9. Enter 24 -hour storm unit interval (minutes) *Note: enter values unadjusted by depth -area factors SAN BERNARDINO COUNTY WATERSHED HYDROLOGY MANUAL INFORMATION FORM 7 A-L I m �1Z�C S d �.___ G1�• S �rC.�GI �1. -�c.� r Z- - 7 2— 4— C. I C. IfFiPwie-, M Pip eg--qN2 ERR- 1. - T I m �1Z�C S d �.___ G1�• S �rC.�GI �1. -�c.� r Z- - 7 2— 4— C. I C. IfFiPwie-, M Pip eg--qN2 n+ u I i H, u Ll rJ D-7 FIGURE D-2 iJ H o 0 1 D-7 FIGURE D-2 ffflYf f /..f �.. wfw N MY•f•• Y /wM / //w/.• Yf/f • tAf.f�l���f —f1� /M •Y�.tM. \Y 1tt���1 \YYpltfw lwY��wtw♦ //f /I YRU w \tl /tt / \t�.Ynt.Y I•Atltttt ttM wfllpp / / / / /A\ ••t Y.. t.Mr� Aw..�:�.�wM _ .A.1.t•tF.Ntw- tftp Yw/wr w I At nplMn .�ww \YYt.\I /1 /V/ //tl/.I \I IIIY t\pt.smIn YO /. �/It Y\Y.t�••"F WV �IYY. \IIf.YL YY It\M 1/! \Iw \ \ \ \Y Y1p p. O1\ \NU \NY�rlpp / / /N / \/t. \IYIY p\p ppl tlgiP . \ \..\\tM ntp ln4 lYY/p.Iwt1\f.. p\tt nl/ wp /\/ //1 / \ \ ■I \ \ \Ynlp ntt/tttttpp\ ■ \.t\ \ I wpw.YpN ppp /■■ssa y ~" man 11\tl n.n,=/1\Nff�l A /169Yln \II IIF.p/rM \Y \f.q 1Yn1\III ptY 1111 pi/ \ /Itltl/ \tllpl ptM� /1 \If.nw/lpw YM M //t / ■ / / ■ ■I / \ \ \IYppn1Y{IIIM -w Mf11N/\ \.ftYn1W /At11S�t\ \t1 ■IIp M111n II mn <t 1 /"11A1 /pllppYilRfpplNllllw\\Ulp Yfllpppa//■/ I\ 1 \ \ \ \Iftl\IMIIYnIwUdli ■ \ /I1MS..1T /1 p1I11Ltr IA /11t 1 \Ip pIp YIU mnw e�it I�f/IURtllt/ip tllp tlplplwnnt nlltw 1Yn ����uuttlnnrrnswlnntw�./�ISa1u So "VILA n�,fM, F rew ew��rww wl storm It171RWuttl m_s1 1u IMMLMT INS "U lILImtlftfus 1061 rm"MwIIINT0iiiiii 1 11Mi,utifln n w 0 a" :6011l t miil ll�il MiMMWMti1tMM1t /t1IIIt11IIIII M" MMMNHILItttltplttlp■■ �Lt��1tt11HIn1U1M�11tTNIMIINIIIIt111111111fl1IFY11A '1IY1It111U111 X 2 1 /f�QR1 e{iIIR1t11tYUU111tIB lMtl IfR1� MH1li�U 11 WMtIM� ■fil 11111'dI11t11111L1111?c 11 t 1111111 MI1RWdnk��'ilfl tf71111NIW C ^' .rte ..^ �— �:a' -_—• _:a � -__ _ � ..:."'�'^ :�� tp 11 Nt /ft/Imn1111 \fl ttttltM .tpl tl/F1M \fi•1tfW nw . J -Iw //I ♦IffA • n�n,4f•�. w - • n tw fuFlwr..nf \fft•M•I�as�v/ tMlp— tYwtY//YIW../Yw WF — wYalw/-- -- - -Mw Ylwww..- -- - -I..w EB \\� Yw ww� YwY —tfw r/t1 YtfYYM Mn1..Y A1.w� fIM •• 11f1�'w� Y.. •.• Yrlw. F�FII�•••••••V♦. F..... w.n ~���•.::11•w"�Mr F.� tYw YY Y /Ywl)/t— .fYUw-.`4N N' \► 1t0.�•,� •w =9 �. /M1 In.�r.wlf \.•• ^Wn ^. � -•�. ~-•r.. :.L: _�_ '"Z- -1__ 11_ to /I \11 •• YY. .o....w ff,• . .w..�:�1:� inFHE = = 7 = ME E iRE RE EE r> =—.max =-- __�� �z�_ -• �?_ __ �- crs=— r_= :a•. --. _ - _—_�- �— " =��� =��� =- �� .r�........r:�L' Sicz< :�'•== c,m-Fw.:.:�- .•— ..::�.:�,� io ��r —trw�\ \was.1\�e�i i//�/w. v.Yi :_ r � 5 ri. �i •�•� n�.. i�.�a�.� f�Y�y 1f�1 AfrYtt \ttw��� � / t/>• �� tt� tl��t• / /w C ppY 1\Ipp'11t1t11f\/\twN/11Y tYp ptA 11 7tt>tift�ltfl Yt�p�1y 1 ►��OYI.MfYnl�ti[In.�..../w t�P1�/ 11Iw p/p / \p. QlY lip ppll / / \0�1 \ \Ifw1• /Ir�l�"�' \ \.�RIw Fa>IIY.Mn Kf \ /Inpl flYt w\/ IIa111wQillw�annru tnw �/. -e.:w •e\Illl LI,r \\ru.rt.pw,at*. pplpnlpptl/NNtH pY \�t/\y nptlp�- ./�y.��F�tIy l./../llf ul n\p uY1 rt[L NpppINNWYYt)\pYlppllWpRl/ppp pw. mr pNppN ■ ■ ■A ■A ■l I\gtppl YlY tl/� t��.� \1117 tlpIR111//tl /lln nlr l►rr Yft ®�IR1 Qlltgfl 111111 R tI�tl lltftN /tfwl plfl �ll�Iltl�t7 tl MlfPO r�1�f IIIY Y1n 1pn alt �I��tRJtlttMltltMltlM lllllr 111O11YIlpn mYITMRRMM� /1117 /w rr11Mf11QOYtIt1T1h �.. •1 RR11R7 all M ain 11143 ) �1R1e11R m J11IBM"IpItQTUllttt1111f11 Qfi 11111�t1�11���ttl t t tll F= =;M t11f1Jill I fi; • Ilmtry Anna nm r�'it, = Im11 Bull II iusu Inm 1/ 111111 1111111 HIM ������11tt11ttt1of1p7t1 f7ipMtll8ftf11UtI111111111fR►._ 'qC Ut1111111 tIM1111Y NWN �1■mr"n111 W11t1tl1 UI 11 R W \M :RM /t goals 1 U111Q11111MYlYM lg1 Islas 111111lln Yfw - \1w1111\1111u Ytu !END L� H 0 0, fJl Li P 0 d H fl H D-7 FIGURE D-2 Ill..■■■ .■ ■ --.....\■ 11111111111\■■ /1Ima gill . nN\■■■■. rmoniiii�_ iiiNiiiiiiiiiiiiiiiiiiiii \\iiuQrii�iiir■p 3 a�. "1 :e�:ii:E = == ::.s"t iz - 3 C=5:::l:; ::::::::iC 1ii::ias- Z. �:ia =i�: �� �: _ u....Y °-- -....... u...nnlNYUO. n.n... ..m.. Yf Nn.N..o..w.u..u...ua..YU - _. 1!1l Mao son .m.o.•.. - -..■ . ■m...tt1.l.11..m.. ■N/1 /.1.1.. �. as /l ■•�� mmm.m . magmealliggiolig - 1111 ■::. + ++.+ tN.[.I I1.IImNm■ -- -- 1 - 1 - .N1 A . ■. /�.--� -//***■. • in me, IN man 11 ■ ■■.. ■.•tom■■ ■ ■ ■ ■ ■.Illllutll� ■■ ■1111., 1111111 ■N ■ ■ ■ ■..NI�NnN■■. ■. /.I 11 ■H■.. IIIni sal limmonlogowasselooii■ii11111111 "sale i 11111 on 11 111 :h■11H ■iii$■ II■■■ ■ 111 ■■■■■■■■ 111111111111 ■ulf1111111111■■■1g /11■ ■■■��� 111 qMI ■11�INIIIHIM ■p11d� ■ ■ ■■1<■ U■■ . ■ . !■ 111■■■■■■■ 11111111111111111111111 lull S■■_■ /t11/1/41u., 1111/11 ■IIIIIIIIl11U1 ■ ■/ 11.. ■ ■. ■.•-- 1111.... ■. t%�fI �tll. mm m.tN 1.1. /•am.- �� � l.. 1/ , / :..t IN.i` •.YN G� M�. :INN \ 1111 / /�YY -M.. ■t ■11.111 /11.� / ■11 /Nlut� .1.�/ ■ ■1 . ■�11M'.NM \. / ■ /YII[t l u7..N.NN ■1 Yf...O..Y Ilan \ \ ■ ■•/���� ■ \■ / /111U 11111 ■H ■ ■1 ■t7111L Ir �!••■ 1'�IC i�.Nl� ■I'\ 1 MIII \ ■ \ ■11 ■OI 111f/ Y � IINNN\ ■ / / ■YYnnn.\ // 1a111t11 ■\l ■.1 /OIIIILni \ \� ■ ■ /��nnr- 1111 ■�.. ■„I,rtll \YU01111NIInn�O■m Mf!•r\iN 1 ■ ■ ■ ■ ■ ■t1 ■ ■ ■ ■ ■ ■ ■ ■■ 11111111111■■■ ■TIMIIIHn ■ s■1tt ■■ H■ ■■ ■■■t11,ul" ■■...11IMIIIIIN ■ ■ ■ ■11 ■ 1 ■ ■ ■ ■_ ■ ■ /t ■ ■ ■ ■ ■ ■■ ■.11111111111 ■ ■.■ 1 1111/111 ■ ■ 11 ■■ ■ ■ ■■ tIn IuW■■■■111.n1uu■_■tl■■■n■■ ■� /� "_= m!: i f't•' Ii =sii'.�iij$ o:� � =S =e = = = =f��• ?i= 5 ?e=c:z :t. a�zsies�'= r� - ::e-- ==-- - - -_ - ..: i •: 1111_;.:.• r� ::�_ = t: ese? ::ee:e�,t =�•:::i:»ii= s�cc::t�e� . ..2 ..a_..-- - '::::t: .:23i::t::Lt:.•:I� _ .: :11_11.--- .::: : : :::l:ti:��22:�.i7 1111...:: . a.a...a....... uu } ry {. T 1111 /.�UUI 1111 ■ 1 1. N •Y�..--.��. HEM - .....::..... �•:.. �•i..� -.MM I. Y.. •........- lm -... .N.....■ ---1111. 1111. N■ . I I..I.m Ym.....YY. 1111... •.- --1111.. Y.........II...... . :.M• 1........1. -a..■ ■m. N ago 1..11Nrm... ...N.1�.■ rr•m ■-- 1111.. ■.y ■Nf. HIII lom1 Y1.►:.1--,. •1111... --1111 1.... ■ / ■•1. -1111.■ ■1111H IItl1 ■NN Y�I / /III.N.�■■� ■NY -1111■ ■.,1.11 � 11.N ■NY .. INN.■ //1 ===No Samoa 11481 IAI■ ■.■■1/1.11gill N+■ .■ ■ YNM.�.�■ 1111�It111 m ■. / ►'11.111IIl.w� / /m1N.. IN_■ H.■ tIYNYNN\_\11 11 ■ ■111.1111■...■M111117M�rr\ /'■ =Oman m■ \r, ■11 u /.'.1N111.N \.Yn M ■ ■_ I. 11_..48- - -r7•. 1111.. I .::. Y.M......1 a..=1-..-....: :Ia.�.1•............Y�Y....fl -� L �11 L. _•- ". 11 11 1111 IN. .............. I. -. .•1 1111. t!• - �-.. I. -- •.1...111w ■.. ago 1..11.:.1 m . M- - N am.Nl - ...NI.aW N....Y.... -.N.. Y..- I�. -.. M.•. Imp- J./ ►J -- 1111 ■ ■rN[Y .1148• ■ ■.....MI. ....�11r - -1111■ /. ).....1..1 1■ .m..N- tMN..Ym...- `...r..r. !1111 .. ■ / ■■■1. .N.■■■ /■ 11 t1111.� ■■ 111\. ttt1��N■■./■ r�l■.. 1/ AI .111..1111�1.�. ■[.11 / /N.M..NY ■. t.-..■ I N \ • / /NI�N ■ \ \ \11 11,811111111... / /1 ■1N.IIIINN \ \\f /=in rLf I./ 1111111111 ...N1 /Ol lull.. ■1111 ■YYY... ■�\ '.NN ■ \■ / / /NIYa N. H■ I UIII ■\\11 ■■M /. NNl\1 ■ /� ■NI��iN \ ■I //■ 1111111111 1111 / ■11M.11l NN / ■111YY.. -MY1 ■ ■ ■ ■p..nl�nnN■■�M\■��/�■ 1 1"11 ■p■ nN1;/.U�n pp•f /�NNN /1.•.481 1 legal 1 \IA / /■./■tNIMNNNp88�n ■ ■•■■.1 V ■ ■..■f■� ■ ■ ■ ■ ■.t111 111 ■..�I..Ill.lq•■■■ ■t.! /■■■■� 1... 1111111111 ■.■■.I.Illlltn■i■■■.a■■■■■.■ ■■■■■ t■ t■ ■ ■■■■■■■femillf�tll ■ ■ all 11t1111 H ■ ■■■ :• 1 ■■■■■■■ ■t11111111111 ■ ■ ■1 /1IIIIIIIf1 ■ ■■ ■ttl ■ ■ ■ ■ ■■ ■ ■ ■ ■It11 ■ ■ ■ ■ ■1■11tU111 111■i■IIIt111N "'■/ ►i 111 ■■■■■ 1, ■ IIINIIINtll111t1111111Y1 ■ ■t�11U ■ ■ ■ ■■ ■ ■ ■ ■1/ 111■■■■■ 11fWt [ 1 �. 1 . 1111111111111111ft�1 !i ■■ 111■■■■■'/ 1 1 . 111f11t11111111111�1111111 ■ ■■1 1111■, ■ ■ ■� -- ......--- -...� i ...l.. = ....... t .• ........--....■ ■1111 HM.11 1111..... 111 • - • ■ 1111 : /. . /.• :. 11.1... ■• Nt.Y. ..� am mosses t■t -1111 .• r/■. .I.t.11. Ml..a. ww■ N •w..ww/I ■.�./■■...I..II..... N..I. t.111.. ■��• ■. -t.. 1111 N•� N.. ■• ■ ■ ■-- N. ■�./ ■111 ii111 /11 ■//m1. i.I11.MI NNr■ �r/■ c` N■' I.\\ ■ /q[I111111. ■ ■ /[ /1 /111.IHN!■MIM - -a�. W., ■N ■ \ / / ■ /man"NNm..■■■ 1111 1111 Y.: 111.111 1■ ■• �NN11■ .1tNIM11.11. 1111111/1[ p.1 Zo HNC N \ \ ■ ■ / /YYNN \. \ \ ■. 11/1 �1u1�■: ■■8111los MC H: 11c N■■\.. 1.1 11 . \ \.� ■YMIIM•1� \ ■Y ■ /BNNN�.>IN. ■■ ■ ■. ■t.■■■■■■■■■.IIIIINP'i UII Illlllfl ■ ■■ q ■ ■w... ►/ P.�.� 1.11 ■.• 1►. 1'rA■ ■t ■.11 ■ ■ ■ ■■ ■. 1■ U_ tN■■■_■■■_ mom lllllls.: �dl■■■._ 1_ �ItlllHl�■■ ■�r' ■ ■` ■ ■ ■� /� /i.t!u,'ll \I/!�!�� 1:1.'4 ■�NY11�_ ■ ■_ ■ ■ :1111 ..5� _:SAS• Li..:2 � 2 � - .Z'..iii --- 11_:11. ..:.::csc:- 1111.,:». s..••. ..��•' _?_ = -- :::...o. - - -�. N ............I :N r.... m 1111.. - - -_/ : ■ :1111. :[i.;.::::..,......... + 1111_ =. .- 1111....- t.�I11.......M....1.� 1111 11....48 -...� . ...�- ......... 1111...- ..MM.. ........ II......■ . :....411..• ...A M - .m + • -N. .Y. ■N1 .148.111.. •■ 11.1..1 .- ..NN- -1111-.. � ■. m. /mt��- .m....m1.1Y11N /111..m�.1.N 1111��j�; ���a ■�.� ■ =11NIMNIr..��r�1■�11�ut 1M�f1IIN�.m. ■ ■•I al -�.N■ � \I � / ■G�����. \ /111W ■H■ t ■�.IIUII N NNNN N- .1 / N ■ N \��, %���� 11 �1 I� .�it�,/111NIIIN�H.�Y�r■1.�.11./ _- __� .:�i • -- �i•iaft: =5� i ......! =z :z I Mr MA :•N..il ...N 1111... - ■.- 1111. M...N1 ............... ,- .-- :1111--- -� ...N u■.NZ ■..I.Y -- ....Y.....M :�_,-- �������Nm...m i- -..m.mrN....l 1}. ■rm•1■ -- ...m=■/■�.Itilirim..•■..n...[n - { .mm..N---...■ IIa�YYMYaa \1111 ■11m 11.N I.Ymm. -a. ■■ Y1...ryry1 1.tY■■■m..•.....AI�•■��Ym.N - -a..■ .N■ ■Y m.■.m11.. ....m.■ •M I1M �NN \ \ ■!\�1 ■11. u.N�.\\ ■1■.11tnH N■ \. ■ /MM NN \1111■ tN \ \S ■YMNNN \ \ \ ■ /Y�IWUH\ NN \ \ \■ ■YN N t1.Nn Ymmm.1.� ■..Y In ■■pAMnN\\■■/ /.11 t a u {g N �\�q ■Y■1 ■ ■■■.■....NIIIH■.■■. I...t IlulNN 111111114 no ■ ■ ■ ■■ iiii■llni■ ool lmHl Ili ■■� ■ 11/1p 1 t ■ iii■ ■ iiiiill�lnnl■ ■.■.t..Illll"l■■H..lNPi:■■■■■■• ■■1111t111 1u1� /gNlt1 pp � ■ 11 ■I111�yll�nii ■ ■ ■ ■piliNi1t 1 ilfffliiii�iiiiii ■■■1t11■■■■■ Ilf■1NIIVWWIlUH11tWfWN1Wl !<■ �Y1 1f■ W■ WIIIYIIYW ■1tllOWILHi■■1111t1■■ ■t1■■■ 10 go 30 40 50 1111 2 00 1111 400500 1000 ST ORM DURATIO JECT L OCATION / Ab. - AREA - A VERAGE D 1h ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** NON - HOMOGENEOUS WATERSHED AREA- AVERAGED LOSS RATE (Fm) AND LOW LOSS FRACTION ESTIMATIONS (C) Copyright 1989 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING, INC. 8253 SIERRA AVENUE FONTANA, CALIFORNIA 92336 (909) 899 - 5011 * ** NON - HOMOGENEOUS WATERSHED.AREA- AVERAGED LOSS RATE (Fm) AND LOW LOSS FRACTION ESTIMATIONS FOR AMC II: 1 TOTAL 24 -HOUR DURATION RAINFALL DEPTH = 5.80 (inches) SOIL -COVER AREA PERCENT OF SCS CURVE LOSS RATE TYPE (Acres) PERVIOUS AREA NUMBER Fp(in. /hr.) YIELD 1 20.50 55.00 32. .975 .442 2 4.64 100.00 78. .416 .587 TOTAL AREA (Acres) = 25.14 AREA- AVERAGED LOSS RATE, Fm (in. /hr.) _ .514 AREA- AVERAGED LOW LOSS FRACTION, Y = .532 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** SMALL AREA UNIT HYDROGRAPH MODEL (C) Copyright 1989 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING, INC. 8253 SIERRA AVENUE FONTANA, CALIFORNIA 92336 (909) 899 - 5011 RATIONAL METHOD CALIBRATION COEFFICIENT = .90 TOTAL CATCHMENT AREA(ACRES) = 25.10 SOIL -LOSS RATE, Fm,(INCH /HR) _ .514 LOW LOSS FRACTION = .532 TIME OF CONCENTRATION(MIN.) = 16.31 SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA USER SPECIFIED RAINFALL VALUES ARE USED RETURN FREQUENCY(YEARS) = 10 5- MINUTE POINT RAINFALL VALUE(INCHES) _ .38 CATCHMENT 30- MINUTE POINT RAINFALL VALUE(INCHES) _ .75 1 -HOUR POINT RAINFALL VALUE(INCHES) = 1.00 3 -HOUR POINT RAINFALL VALUE(INCHES) = 1.90 (AF) 6 -HOUR POINT RAINFALL VALUE(INCHES) = 2.70 24 -HOUR POINT RAINFALL VALUE(INCHES) = 5.80 TOTAL CATCHMENT RUNOFF VOLUME(ACRE -FEET) = 5.31 - 0 TOTAL CATCHMENT SOIL -LOSS VOLUME(ACRE -FEET) = 6.82 TIME VOLUME Q 0. 10.0 20.0 30.0 40.0 (HOURS) (AF) (CFS) ---------------------------------------------------------------------------- .23 -.0963 1.41 +� .51 -.0645 1.42 .78 -.0324 1.43 1.05 -.0001 1.44 1.32 .0324 1.45 !R 1.59 .0652 1.47 is 1.86 .0983 1.48 2.14 .1317 1.49 w 2.41 .1654 1.50 2.68 .1993 1.52 2.95 .2336 1.53 3.22 .2682 1.55 3.50 .3031 1.56 61 3.77 .3383 1.58 4.04 .3739 1.59 4.31 .4099 1.61 4.58 .4462 1.62 4.85 .4829 1.65 5.13 .5200 1.66 5.40 .5575 1.68 5.67 .5954 1.69 5.94 .6338 1.72 6.21 .6726 1.74 6.49 .7119 1.76 6.76 .7517 1.78 7.03 .7921 1.81 7.30 .8329 1.83 7.57 .8743 1.86 7.85 .9163 1.88 8.12 .9590 1.92 8.39 1.0022 1.94 8.66 1.0462 1.98 8.93 1.0908 2.00 9.20 9.48 1.1362 1.1825 2.04 2.07 9.75 1.2295 2.12 10.02 1.2775 2.15 10.29 1.3264 2.21 10.56 1.3763 2.24 10.84 1.4273 2.30 11.11 1.4794 2.34 F1 Hr 0 �J 11.38 1.5329 2.42 11.65 1.5877 2.46 11.92 1.6440 2.55 12.19 1.7017 2.59 . 12.47 1.7588 2.50 12.74 1.8157 2.56 13.01 1.8749 2.70 »Y 13.28 1.9365 2.78 13.55 2.0012 2.97 13.83 2.0690 3.07 14.10 2.1411 3.35 14.37 2.2236 3.99 14.64 2.3174 4.36 14.91 2.4181 4.60 04 f.., 15.18 2.5284 5.23 15.46 2.6511 5.69 15.73 2.7771 5.53 16.00 2.9185 7.05 16.27 3.4229 37.85 16.54 3.9054 5.11 16.82 4.0175 4.88 a 17.09 4.1191 4.16 17.36 4.2017 3.19 17.63 4.2699 2.87 �w 17.90 4.3317 2.63 18.17 4.3887 2.44 go 18.45 4.4442 2.50 18.72 4.4991 2.38 18.99 4.5513 2.27 19.26 4.6012 2.18 19.53 4.6492 2.09 19.81 4.6954 2.02 20.08 4.7401 1.96 20.35 4.7834 1.90 20.62 4.8254 1.84 20.89 4.8663 1.79 21.16 4.9061 1.75 21.44 4.9449 1.71 21.71 4.9828 1.67 OR 21.98 5.0200 1.63 im 22.25 5.0563 1.60 22.52 5.0919 1.57 22.80 5.1268 1.54 23.07 5.1611 1.51 23.34 5.1947 1.49 23.61. 5.2278 1.46 23.88 5.2604 1.44 Hr 0 �J E 4" Street Capacity Calculations 0 H-1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: it ALLARD ENGINEERING 6101 CHERRY AVENUE 4w FONTANA CA. 92336 FAX (909) 899 - 5014 TEL (909) 899 -5011 6m ---------------------------------------------------------------------------- TIME /DATE OF STUDY: 21: 3 3/11/2002 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** • Julian Lane Street Capacity Calculation • Immediately South of Caroline Street (Q10 = 20.7 cfs) • by: D. Hammer, File Name: StCap ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** It� - 7 J _4 J ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** >> >>STREETFLOW MODEL INPUT INFORMATION<< << ---------------------------------------------------------------------------- CONSTANT STREET GRADE(FEET /FEET) _ .011400 CONSTANT STREET FLOW(CFS) = 20.70 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 !A (f: CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 20.00 i6 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020000 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020000 g CONSTANT SYMMETRICAL CURB HEIGHT(FEET) _ .50 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) _ .03000 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) _ .11000 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES -------------------------------- STREET FLOW MODEL RESULTS: tRl ------------------------------------- ------------------- __- ------------------ $' STREET FLOW DEPTH (FEET) _ .46 HALFSTREET FLOOD WIDTH(FEET) = 17.40 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.30 PRODUCT OF DEPTH &VELOCITY = 1.51 It� - 7 J _4 J * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Julian Lane Street Capacity Calculation * Immediately North of Caroline Street (Q10 = 15.1 cfs) * by: D Hammer ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** >> >>STREETFLOW MODEL INPUT INFORMATION<< << ---------------------------------------------------------------------------- CONSTANT STREET GRADE(FEET /FEET) _ .005000 CONSTANT STREET FLOW(CFS) = 15.10 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020000 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) _ .50 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) _ .03000 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) _ .11000 It� - 7 J _4 J 4W uR, a- ifY+ IYi r � FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES STREET FLOW MODEL RESULTS: ---------------------------------------------------------------------------- STREET FLOW DEPTH (FEET) _ .47 HALFSTREET FLOOD WIDTH(FEET) = 17.98 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.26 PRODUCT OF DEPTH &VELOCITY = 1.06 Q -� ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING - 6101 CHERRY AVENUE FONTANA CA. 92336 FAX (909) 899 - 5014 TEL (909) 899 -5011 6K ---------------------------------------------------------------------------- TIME /DATE OF STUDY: 21:10 3/11/2002 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * *** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** >> >>STREETFLOW MODEL INPUT INFORMATION<< << CONSTANT STREET GRADE(FEET /FEET) _ .005000 CONSTANT STREET FLOW(CFS) = 25.30 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 * Julian Steet Capacity Calculation * Immediately South of Caroline Street ( Q100 = 34.8 cfs) * by: D Hammer, File Name: StCap2 ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * >>>>STREETFLOW MODEL INPUT INFORMATION <<<< 4118 ---------------------------------------------------------------------------- CONSTANT STREET GRADE(FEET /FEET) _ .011400 CONSTANT STREET FLOW(CFS) = 34.80 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020000 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020000 ON CONSTANT SYMMETRICAL CURB HEIGHT(FEET) _ .50 ik CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) _ .03000 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) _ .11000 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES ** *STREET FLOWING FULL * ** STREET FLOW MODEL RESULTS: - - -- ------------------------------------------------------------------ NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) _ .54 ` �v HALFSTREET FLOOD WIDTH(FEET) = 20.00 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.71 PRODUCT OF DEPTH &VELOCITY = 2.00 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** • Julian Lane Street Capacity Calculation • Immediately North of Caroline Street (Q100 = 25.3 cfs) • by: D Hammer ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** >> >>STREETFLOW MODEL INPUT INFORMATION<< << CONSTANT STREET GRADE(FEET /FEET) _ .005000 CONSTANT STREET FLOW(CFS) = 25.30 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 4w INTERIOR STREET CROSSFALL(DECIMAL) = .020000 OUTSIDE STREET CROSSFALL(DECIMAL) = .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = .50 go CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) _ .03000 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) = .11000 _ FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES ** *STREET FLOWING FULL * ** STREET FLOW MODEL RESULTS: ---------------------------------------------------------------------------- NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLPCTED. im STREET FLOW DEPTH (FEET) = .544 .O.C� HALFSTREET FLOOD WIDTH(FEET) = 20.00 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.70 irw PRODUCT OF DEPTH &VELOCITY = 1.45 ©• • V1 QI "i 5 z. I I � I d" ti 0 HYDRAULIC ELEMENTS - I PROGRAM PACKAGE ' (C) Copyright 1982 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING (--- 6101 CHERRY AVENUE FONTANA CA. 92336 FAX (909) 899 - 5014 TEL (909) 899 -5011 J irr ---------------------------------------------------------------------------- TIME /DATE OF STUDY: 20:15 3/11/2002 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY ' * * * * * * * * * * * * * * * * * * * * * * * * ** * Walnut Avenue Street Capacity Check * at Tailwind Avenue Intersection (Node 32) * by: D. Hammer ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** >> >>STREETFLOW MODEL INPUT INFORMATION <<<< ---------------------------------------------------------------------------- CONSTANT STREET GRADE(FEET /FEET) _ .007200 CONSTANT STREET FLOW(CFS) = 3.90 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 6 ,4 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020000 OUTSIDE STREET CROSSFALL(DECIMAL) = .020000 OR CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = .67 I CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) = .03000 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) = .11000 - -- - FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: ----------------------------------------- ------------ - - - - STREET FLOW DEPTH (FEET) 4 < .. '1 = .37 HALFSTREET FLOOD WIDTH(FEET) = 12.77 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.25 14� PRODUCT OF DEPTH &VELOCITY = .82 - vim► * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Walnut Avenue Street Capacity Check * at West End of Project Frontage (Node 33) * by: D Hammer ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** >> >>STREETFLOW MODEL INPUT INFORMATION<< << ---------------------------------------------------------------------------- CONSTANT STREET GRADE(FEET /FEET) = .010200 CONSTANT STREET FLOW(CFS) = 5.00 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020000 OUTSIDE STREET CROSSFALL(DECIMAL) = .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = .67 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) = .03000 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) = .11000 �1 A n hl h L FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: ---------------------------------------------- STREET FLOW DEPTH (FEET) _ .38 C - -� - -r - - - - -- O_(o� HALFSTREET FLOOD WIDTH(FEET) = 13.35 - AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.65 O (j PRODUCT OF DEPTH &VELOCITY = 1.00 h �1 A n hl h L el Hydrology Exhibits Ht ��I c C H - H L� d, 7 - _ _ - - 1 / _ D ,�:� ,, � '' �;��1.5 •fit ?W I V1171 A - Jz. X FA _1flZ f ;r J �_ 02\� I r b X q'r :AA r r A f .7: J I SAN BERNARDINO COUNTY HYDROLOGY MANUAL V7_1 h, IF ! 5 I- WT C•f SAN •ERM•R113 V40 co."ry d"i --! SOIL CAOUP SOUNDARY Mc c c• SOIL GROUP 01ESKMATION SOUNO"" Or INDoCATC0 Will SCALE REDUCED 5 ski t HYDROLOGIC SOILS GROUP MAP py. I M 7m; it e. LEM Mill I SAN BERNARDINO COUNTY HYDROLOGY MANUAL r Fj7 < V_J F? D N I" c.. - A � F Z . p d V., aL In t E W�z 4 MC If IT t I A Z_ .0 A. V7_1 h, IF ! 5 I- WT C•f SAN •ERM•R113 V40 co."ry SOIL CAOUP SOUNDARY Mc c c• r Fj7 < V_J F? D N I" c.. - A � F Z . p d V., aL In t E W�z 4 MC If IT t I A Z_ .0 A. FOR SOUTHWEST AREA C -13 -13 FIGUR V7_1 h, IF ! 5 I- WT SOIL CAOUP SOUNDARY - ic - ZIE ...apoo SOIL GROUP 01ESKMATION SOUNO"" Or INDoCATC0 Will SCALE REDUCED BY 1/'2 HYDROLOGIC SOILS GROUP MAP FOR SOUTHWEST AREA C -13 -13 FIGUR R Yr R `> Y! , t q I 1 Y/ r R 2 YA 1 'r o t,__. Ir1f I �_- t2C I 1 1 ° I -- _ T4N �v_ — i I 1 I , it l �s,.c1 `\ 1 \ I I I -- 1 - 1 - I 1 - - L- - I- � -J - , -- - -- •- -•�-, - - -t - • a I � •� � -= T__:�.• !- - -1 - I -- _,_'- I ��- - - -- r �, ---'__ `. t � { I f 1 I 1 t -J 77- •---T \ I _ I i ! - ."r - - •. I _� _�- � ',, �I 1 I - I - 1 ' -'„ - •y � I \ � , I I --- I �h La •3 I I 1 I I I 1 I _i 1� "`�." I I" I ��• ..1. - i ! , ` \ .y 1.1 �f J _ , _�-� __ - - - - - - - - .��' . .._ -_ - _ - X 1.7 - - L r•.OwKY �- \_ r=4 �i I • �• 1.1 t 1'.. , _ 1 a! ' E- 1,...T?N - S - - _- ... ; I - J _ �.1 - .` - _ Rl -L , ,EO , •►.�- -/- / i {y t 4 _ ••� - - A- 4— �'. - - - ` • — _ I�.t L Q� t 4 1 ; � I • ` ' � - ` l .. , � 1 l ~'''� — * I I - I i EI ! ,. / L.� • I c r , l: _ r i �,_T I N PLANO e N> �i o l •� c: I - - _�- • [ ai,e,Drt _RIALTO_ FON'iAN y ! - •'1 - I _ ' - - ;% = ONT -- • +. - _ -- ._' ... REDL NOS T T J • � -• � tt1 j . � I•p• _ _ _ I 1 — — — • • • — �. ..— '' j f : 1 — _ _ [0,14. . . . _, �` • ,` — — _ _ . . . — . -� T '� CHINO t — _.� '; ' .--•. 1 1 -i - - _- _ - -� _ ±� r • + - - -I [ Fi 1' -• 1: w i •^+-[ y RIE 1 .') R E4 ' l T2S RSIDE .log •• — ,i+` r R4W I R3 _ R2W �1 T3S - - - •• F? 7 W R 5 W.' SAN BERNARDINO COUNTY R6 HYDROLOGY MANUAL REDUCED DRAWING SCALE 1'= 4 MILES LEGEND: ISOLINES vRE c ,pIrA1:ON (INC.,! S 1 P I I �— VALLEY AREA WHYCTALS Y- - 10 YEAR 1 HOUR Y•[D ON V ■�� PWAA 41-&S 2, M?3 •r.wD.(D h FL ' D.r[ Wi LLl !IL[ NQ OR+G Pd 19E2 r•ir ww0 FIGURF a - I� �, ,' � `� ► �►• ter.-, IL j �Jam 7-4 -%. Map dEV hmmu Fm MINOR tons fill DE of i VALLEY AREA ��' ®� �-A���' Mawr s� .^-.•— ��� i REDUCED D•. SCALE 1" 4 MILES MoHnTALS :'' I , , , YEAR Scale: 1 " =200' q 86' IMPROVEMENTS 25' I u SHOWN ONEPLLAAN WHERE 15 TYPICAL SECTION W�BTFEET - W N.T.S. O INDICATES HYDROLOGY NODE 5. INDICATES AREA (ACREAGE) UN FLOW PATH LENGTH CONDITIONS OF DEVELOPMENT INDICATES HYDROLOGY AREA FLOW PATH 0 0 1 A' Cn ^� SI DEWALK WALNUT AVE. HYDROLOGY SHEIT 6' WIDE NG CURB AND GUTTER 0^0 MACT IM-2 W Z �0 t439.00 FL ,. -xx.x �1 I Prepared By: ALLARD ENGINEERING Civil Engineering - Lend Surveying -Land Planning 8253 Sierra Avenue Fontana, California 92335 (909) 356 -1815 Fax (909) 356 -1795 I Comm U.8 1421.9 FL � 1427.9 FL 1434.7 FL �. _S.o CFS At�lV!!T' Oa. �3 9 CFS -� - -. �.. } � - ��IENUE --.. �. , 2 � p i,i NAT 0.7 � JV1 rtt _...,. _ 1 i sue. i 0 0 1 A' Cn ^� SI DEWALK WALNUT AVE. HYDROLOGY SHEIT 6' WIDE NG CURB AND GUTTER 0^0 MACT IM-2 W Z �0 t439.00 FL ,. -xx.x �1 I Prepared By: ALLARD ENGINEERING Civil Engineering - Lend Surveying -Land Planning 8253 Sierra Avenue Fontana, California 92335 (909) 356 -1815 Fax (909) 356 -1795 I