HomeMy WebLinkAboutTract 16271N
N
ALLARD ENGINEERING
L■J ma �ymma lma ma aWnma
Tract No. 16271
Hydrology & Hydraulics
Report
May 11, 2004
1 ST Revision: July 26, 2004
2nd Revision: February 22, 2005
3rd Revision: March 18, 2005
Job # 129.08.02
Prepared For:
Stratham Homes Inc.
2201 Dupont Drive, Suite 300
Irvine, CA 92612
Phone (949) 833-1554
A P P R V E D Fax (949) 833-7853
S GNATURE 4'41 9,?,O ESS 10
�O `�
3 0 2005 S. Nq
��aP�
_ 2
T E'. ARP90VAL OF CHIS PLAN AND SRECIFICAT!ONS W No. 43976
SHAL',. NU BE HELD TO PERMIT 011 TO BEAN APPROVAL a
OI i PF Vj(KXF10N OF ANY FEDERAL, STATE, COUNTY OR * Exp. 6/3O/05
G + ! LAA`i UR UROINANCES.
WIL LDAN �9r CIVl� P�\P
FBF CAL�F�
Prepared under the supervision of:
David S. Hammer, P.E. ACE 43976 Exp. 06-30-05
8253 Sierra Avenue Fontana, CA 92335 (909) 356-1615 * (909) 356-1795
Table of Contents
Introduction.............................................................:.........1
A)
Purpose............................................................................1
B)
``�✓ Methodology.
• • 1
Findings:..........................................................................1
D)
Appendix
♦ Hydrology Exhibits and 24 -Hour Synthetic Critical Storm Pattern
♦ Offsite Hydrology and Hydraulic Calculations
A) 100 Year Rational Method -Sultana Avenue
B) 25 Year Rational Method -Sultana Avenue
C) Street Capacity Calculations for Sultana Avenue
D) 100—Year Rational Method — Beech Avenue
E) Street Capacity Calculations for Beech Avenue
F) 100 Year Rational Method -Trapezoidal Earthen Channel
♦ Predeveloped Hydrology
A)
2 Year Storm Event (AMC 1)
B)
10 Year Storm Event (AMC 2)
C)
25 Year Storm Event (AMC 2)
D)
100 Year Storm Event (AMC 2)
♦ Developed Hydrology — Onsite Developed, Offsite Predeveloped
A) 2 Year Storm Event (AMC 3)
B) 10 Year Storm Event (AMC 3)
C) 25 Year Storm Event (AMC 3)
D) 100 Year Storm Event (AMC 3)
♦ Onsite Rational Method & Hydraulic Calculations
A)
25 Year Storm Event (AMC 3)
B)
100 Year Storm Event (AMC 3)
C)
Street Capacity Calculations
D)
Catch Basin Sizing
E)
Wall Opening Hydraulic Calculation
♦ Detention Basin Hydrology and Hydraulics
A)
Developed Unit Hydrograph 2, 10, 25, and 100 -Year Storm Return Frequency
B)
Detention Basin Volume Table & Basin Routing Input Table
C)
Detention Basin Routing (2, 10, 25, and 100 -Year)
D) .
Flow Comparison Table
E)
Emergency Spillway Calculations
F)
V Swale Water Surface Calculation
WSPGW
A) "Line A" Ultimate Beech Avenue Mainline
B) "Line B" Inlet for Detention Basin
C) "Line C" Outlet for Detention Basin
♦ Reference material
City of Fontana. Appendix A. Detention basin policy and design criteria
♦ Hydrology Maps
Developed Condition
Predeveloped Condition
Offsite Developed Condition
Offsite Tributary to V Swale
14
Introduction
Tract 16271 is a proposed 18 single family lot subdivision on 4.3 acres located in Fontana. It is
bounded on the west by future Beech Avenue, on the south by a vacant lot, on the east by
Sultana Avenue, and on the north by Miller Avenue and a vacant lot. The ultimate master
planned storm drain does not exist downstream, therefore a detention basin will be located within
the tract boundaries to mitigate the increased flows downstream of the tract.
Purpose
The purpose of this Hydrology Report is to determine storm water runoff for the site and show
that drainage systems, comprised of proposed streets, catch basins, storm drain, and temporary
detention basin are adequately sized. Hydraulic calculations for storm drain systems and catch
basins are included in this report along with improvement plans. Also, this report considers the
need to minimize the impact of the project on downstream properties by not allowing the peak
storm runoff in the developed condition to exceed 90% of the pre -developed condition peak
runoff. One temporary detention basin is used for this purpose and the criteria for sizing the
detention basin is outlined below.
Methodolo2y
The rational method, as outlined by the current San Bernardino County Hydrology Manual, is
used to determine the 100 -year and 25 -year event storm water runoff. Synthetic Unit
Hydrographs are provided for use to determine total runoff in several developed condition
scenarios. The rational method hydrology calculations include a short length of pipe from the
offsite vacant property located north of the tract. The actual intent is to allow the vacant property
surface drain into the tract via weep holes in the tract perimeter wall. When the offsite vacant
property develops it will likely not drain through Tract 16271. Simulating the interim condition
(surface flow into the tract) using the pipe in the computer models is conservative and will result
in slightly higher storm water runoff flow rates in the developed condition. Computer programs
such as CivilD, AES and W.S.P.G.W. are utilized herein.
Findin s
IN -TRACT — The proposed interior tract streets adequately convey the 100 -year and 25 -year
storm run-off, as outlined in the City of Fontana Master Drainage Plan, towards Beech Avenue.
A Storm drain system will be constructed with a 21 ft catch basin to intercept in -tract flows.
Street capacity calculations have been provided. The purpose of the interim detention basin is to
mitigate the runoffs from the developed condition. The interim detention basin outlet system
will only outflow runoffs on the developed condition lower or equal than the 90% of the flows
on the pre -developed condition. In the event, the catch basin or storm drain system gets plugged,
storm water shall drain through an opening in the perimeter block wall. Calculations for the
opening width and a detail are included in this report.
DETENTION BASINIPROJECT MITIGATION.- The proposed detention basin located at the
southwest corner of the project is sized according to the County Unit Hydrograph criteria and the
City of 'Fontana "Detention Basin Design Criteria" found in Appendix A. Civi1D Computer
programs were used to determine the Unit Hydrographs and Basin Routing calculations.
OFFSITE —100 -year storm run-off calculations'have been provided for Sultana and Beech
Avenue. Also provided are street capacity calculations.
Su_
The on-site streets and storm drain system proposed for the tract will adequately convey 100 -
year event storm water runoff to an interim detention basin which will meter out flows an
acceptable level. The original watercourse has not been altered and the volume of runoff has
been reduced. Therefore, land that is down stream of the project is less likely to flood as a result
of the detention basin. Once downstream master planned storm drain facilities are constructed,
the interim basin can be retired and the tract flows will be delivered to the storm drain system.
Also the temporary detention basin proposed in the south west corner of the tract will minimize
the impact of the project on downstream properties and streets by metering developed condition
storm flows to less than 90% of pre -developed.
M
Hydrology Exhibits
24 -Hour Synthetic Critical Storm
Pattern
M
I
MEw am a.,
le " M
V Irk
ing
,
r Iia
SER i i
- —:rq
RE
in PIT M0W(T(/jl=,=
SAN BERNARDINO COUNTY
HYDROLOGY MANUAL
I
'16� .-77
t
c
9
uvy?._ VWAP
7K* A
JZ M.
L
A
-7-
L
L7
16
7�
'T4
10
Ali'L
r
qL
14
2s
t7n;
.4-41z
if – -.1
r
A
Olt
'OIL croupWut-DART
A SOIL GROUP DESIGNArpoN
'Q--
SCALE 1--8PW
(�lz
CW MUCATED S"CE
SCALE
REDUCED BY 1/2
HYDROLOGIC SOILS GROUP MAP
FOR
qnl I_rU%Air-r--r- A A
PA
t. lot
kill
LEI rAM am,
IN mom
I
_ •��ii�/OPE=�
I ERSIDE
' • r R4WR3 R2W " RI
Ter,( 1b21
SAN KRNARDINO COLKTY
f
LOOO CONTROL DISTRICT
i1 �—' REDUCED DRAWING
T3S VALLEY AREA
— — =
MOW(U
_•:. — - " -•r•: _r.s - - I - SCALE I = 4 MILES Y —100 Ala
•'► -'13
- - -- - - - SAN BERNAF�DINBASM O COUNTY 1 --HOUR
. A 1.. wn.n A►..:, w.s
..i., •� - -LE�
HYDROLOGY wnp.m n
• s "' �' •• W MANUAL 1 INET (INCHES
• 1 1.6 SOl PRECIPIJATION t S) nag
• C,- rat wp owr� ro
• - .m.a��eara
T4N W I I R W R6W • RSW r — I — — —� ---. ?:�'- _ --_— — ---- — - -
1 I I • I - - R ��•� 4 ? R24d�rR ` ,,
J T ••(f.•reZ - - i f -- -- — - - — — 1'd I W RIE �+.,
-i R Z E
—
— — r- L' "� I _
! 1 I_ V 1 --- — — - —� - , - — T - - -L-- _'-ran
T-- _ I _ ..� _' . t 1, r C -'' s- r • _� ► -< I- 1 ► LO _ �� c ` y-/ I I t — - I - , 3 ..«r• • n ; , '• I I • I I
TSN ' — •�••.. a •- �a.�.r + — �-• /— _ T
— _
1.7— LT \ ` ., ' 4• •� ..'e•�.� - i • I r..�. .y ^ _ ('• l I r ice' 1
L _
I['„ r _ ` y` a r •<a- _ .;'•+rr • r '� .-� —! — - - J _t T —\ 3N
_ - to • L. ' - :$ - g- '- =f - -
1.4
T2 7 BERN)
-_ •LO ' — i - _ _ ••
.- CJ�. - MO T 3•,,T? N
4
L, - - w w "•7rrYF
_ 4oli
LI
rim
r •r•= y _ell -7. _T
• -' Lwra _ _ F_�._�• �'• 1 .g•• 1 T `- __fit-- IN
•-: -�I--
PLANO
t • - -• �_Yk
— - : - , : - .--w � [ / '; _ fay w.•K„ .--; __ —' -� --• --
a�...d, L E N. I 0 v ;
-
1 - - _ _ - FON TARIALTO
N
TIS
ON. (O _• T � _ � ` r - _ err. 9 ' Vii_ f _ ` .�
_ � , � � • _ C •TON - x._ :� + - - - _ .. I — -- \ - -�:e
I_
*A., y - _ - _ 1 ..�. = p _ tor:. I.e. _ •`• -t= - - - <-. 1. ;- .. - FS
T— r... ,' •t..rt rtsl�ct ' r Ir.
T 2 S .u. our • - - f - r
y ,�r
�� ♦ -T _ _ - .. P•C. twt slot to.•ti ` - RIE ..al.a
{' - - - +w I : I R E
el RSIDE
' W R 3 .«... _
R4 I M - - R2W
T3S R5W.'
r.
10 A SAN BERNARDINO COUNTY
i•.R8W I ,
R7W •R6 -
• HYDROLOGY MANUAL
REDUCED DRAWING
SCALE It•= 4 MILES
LEGEND[
/ •I ISQLINE PRECIPITATION CINCHES)
FAN DECNATR NO COUNTY
VALLEY AREA
ISOHYETALS
Ylo , 10 YEAR I HOUR
"sm'oN t/.icLr- NOM xrLAs 2, w3
y*'Riovm sr
FL
.WE I SCALE I Fat NQ I 0[rr•4
RIE
1
- r4ROW
W R2W RIE - - - '�- �R2E.
'e'1„ �. i T4N
r
•: •� _ - T3N i
�'. _ •i � • Imo• � - • \h• ,�.`y � ,
air.• .•.........•1•• .\J• fir' t I 4. i
BE
i i` e• 1 c� -I,.,,T?-N
►.
is sn �c.rc2 % — la _ - — uc■y7L),
LT
.tai
gr
•• � �i 'Lr ._ ' - ` '•� rte.*' '-• i -'•.
,
1
Ago
t
TIS
'
i s
NEW
Elk
RIE
1
- r4ROW
W R2W RIE - - - '�- �R2E.
'e'1„ �. i T4N
r
•: •� _ - T3N i
�'. _ •i � • Imo• � - • \h• ,�.`y � ,
air.• .•.........•1•• .\J• fir' t I 4. i
BE
i i` e• 1 c� -I,.,,T?-N
►.
is sn �c.rc2 % — la _ - — uc■y7L),
LT
.tai
gr
•• � �i 'Lr ._ ' - ` '•� rte.*' '-• i -'•.
R5 k0Q)
T3S
SAN
- - — ' - '•••r - - ' - BERNARDINO COUNTY
• � ... _ ,r ., '- :,;: � ; - - - _iso -
•'MANUAL
8 �_ . W_.. "'.................. HYDROLOGY
REDUCED DRAWING
SCALE I"= 4 MILES
G8 ISOLINES PRECIPITATION (INCHES)
B-12
VALLEY AREA
ISOHYETALS €
Y�.-100.YEAR 1—HOUR i
IwcD r
r non...,
WAU
1*02` f.ea w•w
Irao�LJ�d
FIGURE B—•
TIS
NEW
LM�jkR4W
R5 k0Q)
T3S
SAN
- - — ' - '•••r - - ' - BERNARDINO COUNTY
• � ... _ ,r ., '- :,;: � ; - - - _iso -
•'MANUAL
8 �_ . W_.. "'.................. HYDROLOGY
REDUCED DRAWING
SCALE I"= 4 MILES
G8 ISOLINES PRECIPITATION (INCHES)
B-12
VALLEY AREA
ISOHYETALS €
Y�.-100.YEAR 1—HOUR i
IwcD r
r non...,
WAU
1*02` f.ea w•w
Irao�LJ�d
FIGURE B—•
IN
-
'UQAL
'ALLJET
�.
SAN BERNAROINO COLAITY
R2W - I -`-T RIW
RIE
�R2E _
''
<r -- ---
- -
—
..a
--
L--'---
I I
- T4N
I I
VALLEY AREA
i �a Maarr�0.
REDUCED DRAWING
S
I
YETALS
— — — j —
`
= 4
SCALE 1MILES
Xa — 21YEAR 6 HOUR
t
— SAN BERNARDINO
COUNTY
ArLAS
t c A
t.13o
,,,.., VM .T
I ReW I I RAW
R6W HYDROLOGY MANUAL
SS PRECIPITATION (INCHES)
COI'o NE
---
)982
f•t•l
fi110i1 M if
war •.t Tr.�
r
_ I
_
—71
RDI
rl
3 _
-y �'r" _�'
4-1
E�
—
y�l-' i-
•<..•u•
2.
i I T• L -
- --� 'a'•f �_-f� '
�V•r FLfTf-
-�,
rte•
�
IN
i
� 1
, � �-;T�--
�\.� �
c
_
- -rteJ—
\�
I�
To
PAN
w
lo
'•����
11'w
mim"y".mc3cillipm
smimm
• n�7�,�;/;��
�r
in
I
J=
No
�
-
IN
-
R -Q FIPIIRF R- I
'UQAL
'ALLJET
�.
SAN BERNAROINO COLAITY
R2W - I -`-T RIW
RIE
�R2E _
''
<r -- ---
- -
—
..a
--
L--'---
I I
- T4N
I I
VALLEY AREA
i �a Maarr�0.
REDUCED DRAWING
S
I
YETALS
— — — j —
`
= 4
SCALE 1MILES
Xa — 21YEAR 6 HOUR
t
— SAN BERNARDINO
COUNTY
ArLAS
t c A
t.13o
,,,.., VM .T
I ReW I I RAW
R6W HYDROLOGY MANUAL
SS PRECIPITATION (INCHES)
COI'o NE
---
)982
f•t•l
fi110i1 M if
war •.t Tr.�
r
_ I
_
—71
RDI
rl
3 _
-y �'r" _�'
4-1
E�
—
y�l-' i-
•<..•u•
2.
i I T• L -
- --� 'a'•f �_-f� '
�V•r FLfTf-
-�,
rte•
�
IN
i
� 1
, � �-;T�--
�\.� �
c
_
- -rteJ—
\�
R -Q FIPIIRF R- I
�.
SAN BERNAROINO COLAITY
FLOOD CONTFtOL DISTRICT
--
VALLEY AREA
i �a Maarr�0.
REDUCED DRAWING
S
YETALS
— — — j —
`
= 4
SCALE 1MILES
Xa — 21YEAR 6 HOUR
t
— SAN BERNARDINO
COUNTY
ArLAS
t c A
t.13o
,,,.., VM .T
I ReW I I RAW
R6W HYDROLOGY MANUAL
SS PRECIPITATION (INCHES)
COI'o NE
---
)982
f•t•l
fi110i1 M if
R -Q FIPIIRF R- I
1�.
T 3
7.0
I ss
♦. 1 ' ' '� I ''` ,. I •i its• 14.S I -
-L- ' . _ ..,_•. - �- --1 I ' I ' ' 3 -. vs. - I I` I 3,3 al•, ,� � I - F i ' _Er, �\ •.
- �•- � i- T.0 0 so � rl TT � _ ��� oWYc.o 4• _ �.; 1 - Mt� IN
VA,
1--
/���r,%
Nl.•,5 i I V� - ` E i I — — « 5 �I — I • — — �` — '` t _ _ — `E.r.4
1s F t . N
' .
CJY►,v�it�r[u,f-
I-
-4 CA.OVGA
PC-
I• � I I t.. ) •? ez "n as I •' I � .! / i
6.0 ', --� � ter. - TC•
�... It r \ + \I� .i•� `��. f r - X5.0 -tt _ - ytl- r-
?
t i. X6.0- - • • I- - " -' - A-
4.5
TIN — — — — - - :�-- �..: iI _ t:! - •+: .. • .i ` .•EOM i I �'•I
1 , ; \ 1srf .nELYT ir. _ �• - _i - - _ - ^ -- �-V• `-�- 1 -
4.0
I I i I • •ro.ac t
i I I PLANO F .v
RIAL
FONTANA- _
TIS - t_
COLT ,R a r EOYE ` _ .... - - - - \ S
ONTARIO
i I — — _ nor, �,••. .: _ . 1
r' = ii I .,'t. "'Sr.:' ' I • pt rac ' I I I •t ' ti � � _ i. - I ' ' EY SO °' - �• � � -
° I - EYC.1►
4.5
T CHINO T
k - .,..Y —I -- - \ -T - - - - _ - (- -
•' 4� —I
r - r - - • + _ _ i �' , _ .E,Y, oYw I - - - •,'• i- I: ' IE I I R 2 E-,
! i
\ 5a b t - art E . CQUKT - I r 3.15 •oo
T2S —
25
0 ' 1_CR
3.0
, R W ry 20R2W RI_;
y
+ SAN BERNARDINO C
—'-- — -r — �- — - — FLOOD CONTnil,
goi
-
i sw 2 , v- 4 t -V — J. �� REDUCED DRAWING
VALLEY AREA
I Iroas a,ra .
\T3S SCALE 1= 4 MILES tSCk1YETALS
— - t - X2 — 2 YEAR 24 HOUR
,• f "Szo ON U Lea- %I �.• le, rws
`= 7+0-I - SAN BERNARDINO COUNTY
C NIA APPROVED BY
R8W i , i R7 - - - R6WL J HYDROLOGY MANUALC13-
�3.6ISOLINESMECIPITATION(INCHES) `
v DATE fG�tl /{.[ MG ITa . M2
r 1962 f•Itsa tw0� ! rl 12
1uw= BLOW
B-10 FIGURE B-2
'
uiac.c
I
i W
R5� ,
4W t.o
RIM `..r ti RIE ° ''.
7
- • ��.EA• � r —
� -I - �R�E
— —
N—
— �T4
— . - �
i l
I I .t
�
,
414'
— ; .Y -i I — —
- — -ice • I? - - i - — - / — tom• — —
' � � i
' o I
I.
i r' \,
!. ".
� r N p• i 1 ! I I
•
'• i
•r I= I
'7 L� , I
at .t I I I
I i i
"'i 1 I• 4 t• t ,� r,
i
T 3
7.0
I ss
♦. 1 ' ' '� I ''` ,. I •i its• 14.S I -
-L- ' . _ ..,_•. - �- --1 I ' I ' ' 3 -. vs. - I I` I 3,3 al•, ,� � I - F i ' _Er, �\ •.
- �•- � i- T.0 0 so � rl TT � _ ��� oWYc.o 4• _ �.; 1 - Mt� IN
VA,
1--
/���r,%
Nl.•,5 i I V� - ` E i I — — « 5 �I — I • — — �` — '` t _ _ — `E.r.4
1s F t . N
' .
CJY►,v�it�r[u,f-
I-
-4 CA.OVGA
PC-
I• � I I t.. ) •? ez "n as I •' I � .! / i
6.0 ', --� � ter. - TC•
�... It r \ + \I� .i•� `��. f r - X5.0 -tt _ - ytl- r-
?
t i. X6.0- - • • I- - " -' - A-
4.5
TIN — — — — - - :�-- �..: iI _ t:! - •+: .. • .i ` .•EOM i I �'•I
1 , ; \ 1srf .nELYT ir. _ �• - _i - - _ - ^ -- �-V• `-�- 1 -
4.0
I I i I • •ro.ac t
i I I PLANO F .v
RIAL
FONTANA- _
TIS - t_
COLT ,R a r EOYE ` _ .... - - - - \ S
ONTARIO
i I — — _ nor, �,••. .: _ . 1
r' = ii I .,'t. "'Sr.:' ' I • pt rac ' I I I •t ' ti � � _ i. - I ' ' EY SO °' - �• � � -
° I - EYC.1►
4.5
T CHINO T
k - .,..Y —I -- - \ -T - - - - _ - (- -
•' 4� —I
r - r - - • + _ _ i �' , _ .E,Y, oYw I - - - •,'• i- I: ' IE I I R 2 E-,
! i
\ 5a b t - art E . CQUKT - I r 3.15 •oo
T2S —
25
0 ' 1_CR
3.0
, R W ry 20R2W RI_;
y
+ SAN BERNARDINO C
—'-- — -r — �- — - — FLOOD CONTnil,
goi
-
i sw 2 , v- 4 t -V — J. �� REDUCED DRAWING
VALLEY AREA
I Iroas a,ra .
\T3S SCALE 1= 4 MILES tSCk1YETALS
— - t - X2 — 2 YEAR 24 HOUR
,• f "Szo ON U Lea- %I �.• le, rws
`= 7+0-I - SAN BERNARDINO COUNTY
C NIA APPROVED BY
R8W i , i R7 - - - R6WL J HYDROLOGY MANUALC13-
�3.6ISOLINESMECIPITATION(INCHES) `
v DATE fG�tl /{.[ MG ITa . M2
r 1962 f•Itsa tw0� ! rl 12
1uw= BLOW
B-10 FIGURE B-2
R5 +-" i I 1.9 -I i - _ .rtltT ' - -
1 ! -I R7W I I R t 4W { _ - I— -- :o ' o. R2E �}
' - - - - !_ I I ( I I I I - Tf�u• J! - - - L i L - - 2.3 - - - - -'- T4N
_ I I
, - T - - r+J�r/�- j *- 7.-'- r-- - - 1 - 1 � -- --- - -- ! 30 -` •.�-I� - -t�-I- fi
1 t 'I --r -- - -
I
WT 23 ^'.
I - -f/a` ! _ I� �I I -I .. _ , i �� I �. 4
7- 1 i 1 • t 30 J;• - �� t ' T- -i ` 4--
\4
I I � I ! � 1 •--I - \-I- - I - i— -+ - � • - �- -� - - I -j .-� �'� __ � -� - - i-/ - - \ R•E• �" - s%I � ! - - s - I - - �, � - I I ! �� ;7�
e -Q - -7 - i- I - - - - - T - - - - O''.
4.5
I L 610 t !� i ,- •..4 ~>•. °f I = - _ - - - t- --� - - --! -- iI - I ! I _
! i I ' /I '�. ' '`••• �? I �' I-• T� -a. �'� -- I - -:- - - - --� - •.--� --( _1/Lso
I1 YT $•A •VTPy, - 1 �' . \ I I I I i f' � I . `~ ,�,• 1 � I
14
I <<� a - - I
2N '`°- I
�r i•�! -V�� _ _ _ ao....� _ I I I 1[• 1. ER..M
I _ `7�C I ( I I i I:: •� �c+kZ• - - - - •- - - �-r - - s.s _ i - - - - - -4�- ST �t N
4 tom"+ - •'-tel- .O • - ....1 �--t-'_... _ t- w fuR uRc
- -
* \.. 14 - ,Lt \ j�� I! �I •� t„ 'Y r Ry�.IRf arww•s '! I � 1 1t/. ! _'- `tet I � I !
-% - - + j - '_ ALO. r_ f- • - L _ .� -�, :+ _'� _1� �� `.� T c•4.5. ! ! i1 ! 4
- - - - I-_ - 5.0 -� 1�I ^ ''I
I QJC ' - - = \ r` 5}f.... iuE r 'T'1 '� --J !- r -� - Z sir - �' �� I - I •RToja - �- �f 1� - I 1
o..; _5 I I I i - ;�, ;g : -� I ` `+•;y I s I !. �, la I ... TIN 1
.i
T r
..• • - t t ! .. ; i 3, oe , a J �i, ' I �''" su. l R,..Ro.r'
1 I_ UPLAND •0151
a•R1rawT "� R 1 A 0 •-- ' .. _ Lr - - .. _ - I L-- _ + _ i
FONTANA 2.5 '.. ,,, s. 1. .• \- - s7 di A ` I
TIS -- t - - - :'. s -.i - s - - - : r - - ! -� I - _� i
ONTA 10 33' I OLT T ..x s r T, 3 - - - \jIS i
LANDS
If
_ .. _ _ i
I""" `a I I - 'ti ' - - \ - ER _ _
�{• W« . 1 I •` - '5.01 a
TUC. • � � I 1 I 3.1�
14.E � � T: ! ! � ...• 'ur•W I Y..: F • ! . 1R•M� T[RR�E I � I , ' � � � 4. / I . �
1 - C H 1 N O .. �' :.. -- t1 ~ - -t - - 1 _ - - - - // - - -i - I- -i- -11 • 1
t - - r
.s.o IE I ! i RZE
` " _ T T flv�Rsloc, covey I ; +�••oo
IDE 3. i �' :s T•� - ` i I
)1
Y !' ►moi►� _- __ - __ -�:� #
Row R2W
-iP�fi�� l bZrl
t - I _ J` s _ ! - - - - ' - -- ' -! SAN BERNAROINO C
-� --ISWICT
DRAWINGVALLEY AREA
Rsw
I ! — . �a,Ra.; I - I - �, _ k, _ r� �1 _:... REDUCED
T3S — — — — .•: - - - - SCALE I = 4 MILES goHYETALS
T . -j X3 -100 YEAR 6 HOUR
SAN BERNARDINO COUNTY "'m�".`°�"°"'"`"_•W.'
c IIA - - „i30-
* - - --3-s= - i- �- - - - - - - - - - i FG ND �e«vrcn.r
FLOOD jolTftpL 161
i "'1" I R8W 4.0 ' R R6* i HYDROLOGY MANUAL �� 1982 SZ.� VAD -4 . «I
4_.O IIsOLINES PRECIPITATION (INCH")WESCALE ru[ uo ofta 11610
B-13 FIGURE B
it
,
R8W
RS ,
+ IR5
— -
T4N
IT ,
1
- 4W
J
j,IS
---
-- -- (— RIW �� , 3S RI ^*.
--
R2E
1
EST YAT4.5
..� I
T_ r - - .t •A 0 _ 3.0 �}•�•/-��-�-a� I✓ 1 ..cL.• /_ • e 1
1 I __.L -_, \ a •c I- I
� 0 -, __♦ `• I ; I i 0.01 I I 1
R -i
r
• 1 / , -•� �� i p
o i I ;12.0
22D
4.
Iffia
II I I I s>w Awr, c7 k I 16.0
6o I ' -_ ' �•-� - - `) i =
— I leo
L A,M*0v Ao 1_T J s•cp..•.`'l �` •—Toz I " \I_ — — t- •-? —' •a ♦ - i—
_R,N-/wyLK
•-{-).•1! - �ryN may^.-�_s ♦T- -i 1 ♦ ,' l -� • _— —_ .— 1 �_^ •,\ R�
V AM ell V
L i -. _ y . 1 .>•>.c. •� - b ti - -{ ��\�Runr'K- -`- -i > - - ', �.._ y'u,:, `` • ->.,eT2
ob
�O\IF
�- �S j ' / I ; � •` ,. 'L .! 1 `� .--�'Sl -'� I I c••f% I \ - -� �- ; ?4
- t L _� : 1 - i. •••% -RbYY• vRwsr 1 I tfi •L°>, r
14.0 T
( ' -- i • - - - J� �� i_ - - - _ �T: ; Y _ ',- ` r e
_ -?- - -_w i --1- f
�� : --' - `_- ••RTS t
\: ,� �`{ -�;i `� �� -'— . �+• _9C'� 1 1� t I _
"•,e -
I / �.� �' ` Ino ��► /
Al
- I _ U P IL N D _.} • - _ -. - ii .y i : / •°'-� I s.w l RwARM T i
-• -- _ IZARs>raar ...>s v7 R ,A LTO I � .: ' Yj� I ..r�:.L,, I I S` 1.' I �I `• � 1, • � 1 i I I
Yom._M&A=-;-:-y•' - FONTANA-—
s"
to +
i +� 1 �.• xw
• = _ •r -'.1S_".,• ,tee__ _ - _T -_ _.�-� - •- �- f _ - - - � — ��r �
ONTA ToOLTIONe r 1 P l `� _ IAO
- 1- - —1 - - - - ,F .. ; - -- _ :.•. REDLANDS � Y.. :.....• •S.0 `-7 A ,_y-` _y - --j _' � — — - — �I S
--� I _ _ _ - w.e. ••f -- _ - `rte - --- - 0 N. .- - -
.� 1 t LONA. I{MD4 ; !�• 1 i _.�_-_ �
mw
-�. Ft0 J
•d'a• C •t "a_ y •ALAN• TEA t �h ' • �.c ' TVCA1 A
T CHINO ' ...r j -- ( '4 I .I 7.0
oull
SAN mom
R IDE
R4W
1 - ~ 7 ✓. - s
-R5
W j O 1'L�Q t,'' - i • l� -a ti�
T3 — — •�'" = REDUCED DRAWING
SCALE I"= 4 MILES
_C A - - SAN BERNARDINO COUNTY
Ra w R6w HYDROLOGY MANUAL"o-
pA\ 6.0ISOLINES pRE1:IpITATION (INCHES)
SAN BERNARDINO COUNT`
-FLOODTR ISTRICI
VALLEY AREA
ISOHYETALS
X. -100 YEAR 24 HOUR
"SIM ON U.SD.Cy I}DAA ATLAS 2. rs'T
AlTgafD er �{
FLOOD G�i
MT[�-SUII FLL NO. DrlwG
1982 1 P•26l wRD1 6
24-HOUR SYNTHETIC CRITICAL STORM PATTERN
2 Year
5 Year
10 Year
25 Year
100 Year
Inches
Inches
Inches
Inches
Inches
5 Minute
0.22
0.29
0.35
0.45
0.49
30 Minute
0.43
0.63
0.75
0.93
1.10
1 Hour
0.56
0.82
0.98
1.20
1.50
3 Hour
1.10
1.50
1.80
2.15
2.70
6 Hour
1.75
2.27
2.62
3.05
3.85
24 Hour
3.30
4.75
5.70
7.00
9.00
3.5
0,
3.5
co
w
U
z
z
3
CL
w
0
J
J
L 25
z
a
NI%
11"
3.5
3
v
z
0
0 I I I 10
2 5 10 25 50 100
RETURN PERIOD IN YEARS ! K
NOTE ID
1. FOR INTERMEDIATE RETURN PERIODS PLOT 10 -YEAR AND 100 -YEAR ONE HOUR VALUES FROM MAPS.
THEN CONNECT POINTS AND READ VALUE FOR DESIRED RETURN PERIOD, FOR EXAMPLE GIVEN 10 -YEAR
ONE HOUR 40.95' ANO 100 -YEAR CNE HOUR •1.60". 25 -YEAR ONE HOUR •I.la�.
REFERENGE•NOAA ATLAS ?.VOLUME _.U-CAL.,1973
RAINFALL DEPTH VERSUS
- SAN BERNARDINO COUNTY RETURN PERIOD FOR
HYDROLOGY MANUAL PARTIAL DURATION SERIES
D-7 -M I 11 I l FIGURE D-2
�► I 3.5
3.5
3
3
2.5
w 2.5
U
Z
_Z
= 2
CL I= us 2
w
0
J
J -
LL
Z 1.5
�^ Q
xx
B
L�
0.5
Q5
O` I I I l 0
2 5 10 25 50 100
RETURN PERIOD IN YEARS u
NOTE, 1 ^ i r•
1. FOR INTERMEDIATE RETURN PERIODS PLOT 10 -YEAR AND 100 -YEAR ONE HOUR VALUES FROM MAPS.
THEN CONNECT POINTS AND READ VALUE FOR DESIRED RETURN PERIOD, FOR EXAMPLE GIVEN 10 -YEAR
ONE HOUR • 0.95' AND 100 -YEAR CNE HOUR • 1.60r - 25 -YEAR ONE HOUR ■ I.16'.
REfERENCFANOAA ATLAS Q. VOLUME 2I-CAL_,1973
- SAN BERNARDINO COUNTY RAINFALL
DEPTH VERSUS
� HYDROLOGY MANUAL N PERIOD FOR
"toe PARTIAL DURATION SERIES
D-7 'M Na 110'Ll I - t FIGURE 0-- 2
e
D-7 FIGURE 0-2
(1 n
24-HOUR SYNTHETIC CRITICAL STORM PATTERN
pa
2 Yehr
5 Year
10 Year
25 Year
100 Year
Inches
Inches
Inches
Inches
Inches
5 Minute
0.22
0.29
0.35
0.45
0.49
30 Minute
0.43
0.63
0.75
0.93
1.10
1 Hour
0.56
0.82• "
0.98
1.20
1.50
3 Hour
1.10
1.50
1.80
2.15
2.70
6 Hour
1.75
2.27
2.62
3.05
3.85
24 Hour
3.30
4.75
5.70
7.00
1 9.00
3.5
a-S it
°IPA"
W
_
U
Z
Z
a
W
u. J
J
z
Z
Q
�oh
6a
W
U
Z
Z_
=S9
I-
CL
W
0
J
J
LL4:
Z
Q
L
is
5
5 1
0
5
3- 2 5 10 25 50 100
RETURN PERIOD IN YEARS 12A l��
NOTES � 1�
1. FOR INTERMEDIATE RETURN PERIODS PLOT 10—YEAR AND 100 —YEAR ONE HOUR VALUES FROM MAPS.
THEN CONNECT POINTS AND READ VALUE FOR DESIRED RETURN PERIOD, FOR EXAMPLE GIVEN 10 -YEAR
ONE HOUR -0.95' ANO 100—YEAR CNE HOUR -1.60". Y5—YEAR ONE HOUR -1.16'.
REFERENCEsNOAA ATLAS £. VOLUME 22—CAL,19T3 RAINFALL DEPTH VERSUS
SAN BERNARDINO COUNTY RETURN PERIOD FOR
HYDROLOGY MANUAL PARTIAL DURATION SERIES
r
r
is
5
5 1
0
5
3- 2 5 10 25 50 100
RETURN PERIOD IN YEARS 12A l��
NOTES � 1�
1. FOR INTERMEDIATE RETURN PERIODS PLOT 10—YEAR AND 100 —YEAR ONE HOUR VALUES FROM MAPS.
THEN CONNECT POINTS AND READ VALUE FOR DESIRED RETURN PERIOD, FOR EXAMPLE GIVEN 10 -YEAR
ONE HOUR -0.95' ANO 100—YEAR CNE HOUR -1.60". Y5—YEAR ONE HOUR -1.16'.
REFERENCEsNOAA ATLAS £. VOLUME 22—CAL,19T3 RAINFALL DEPTH VERSUS
SAN BERNARDINO COUNTY RETURN PERIOD FOR
HYDROLOGY MANUAL PARTIAL DURATION SERIES
Offsite Hydrology &
Hydraulic Calculations
,M�
N
Sultana Avenue
Rational Method Hydrology
25 & 100 Storm Event
NJ
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
(Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-95 Advanced Engineering Software (aes)
Ver. 5.1A Release Date: 08/01/95 License ID 1400
Analysis prepared by:
ALLARD ENGINEERING, INC.
6101 CHERRY AVENUE
FONTANA, CALIFORNIA 92336
(909) 899 - 5011
************************** DESCRIPTION OF STUDY **************************
* Tract 16271 Q25 for Sultana at Garfield Drive
*
*
*
*
**************************************************************************
FILE NAME: 16271S.DAT
TIME/DATE OF STUDY: 15:16 6/27/2004
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
--*TIME-OF-CONCENTRATION MODEL* --
USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90
*USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) _ .6000
USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) = 1.2000
*ANTECEDENT MOISTURE CONDITION (AMC III) ASSUMED FOR RATIONAL METHOD*
*USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
1 30.0 20.0 .018/ .018/ .020 67 2.00 .03125 .1670 .01500
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1. Relative Flow -Depth = .00 FEET
as (Maximum Allowable Street Flow Depth) - (Top -of -Curb)
2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 2.1
-------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
ELEVATION DATA: UPSTREAM(FEET) = 1317.00 DOWNSTREAM(FEET) = 1315.00
TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 5.000
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 5.330
SUBAREA Tc AND LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
COMMERCIAL A .07 .80 .10 52 5.00
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA RUNOFF(CFS) _ .33
TOTAL AREA(ACRES) _ .07 PEAK FLOW RATE(CFS) = 33
****************************************************************************
FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE
----------------------------------------------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>(STANDARD CURB SECTION USED)<<<<<
UPSTREAM ELEVATION(FEET) = 1315.00 DOWNSTREAM ELEVATION(FEET) = 1309.00
STREET LENGTH(FEET) = 280.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 20.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
INSIDE STREET CROSSFALL(DECIMAL) _ .020
OUTSIDE STREET CROSSFALL(DECIMAL) _ .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) _ .82
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) _ .22
HALPSTREET FLOOD WIDTH(FEET) = 4.64
AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.44
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) _ .54
STREET FLOW TRAVEL TIME(MIN.) = 1.91 Tc(MIN.) = 6.91
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 4.390
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A .25 .80 .10 52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA AREA(ACRES) _ .25 SUBAREA RUNOFF(CFS) _ .97
EFFECTIVE AREA(ACRES) _ .32 AREA -AVERAGED Fm(INCH/HR) _ .08
AREA -AVERAGED Fp(INCH/HR) _ .80 AREA -AVERAGED Ap = .10
TOTAL AREA(ACRES) _ .32 PEAK FLOW RATE(CFS) = 1.24
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) _ .25 HALFSTREET FLOOD WIDTH(FEET) = 6.02
FLOW VELOCITY(FEET/SEC.) = 2.59 DEPTH*VELOCITY(FT*FT/SEC.) _
.64
****************************************************************************
rr.*. FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 6.1
------------------------------------------------------
» >>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« < <
>>>>>(STANDARD CURB SECTION USED)<<<<<
UPSTREAM ELEVATION(FEET) = 1309.00 DOWNSTREAM ELEVATION(FEET) = 1307.80
STREET LENGTH(FEET) = 140.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 20.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
INSIDE STREET CROSSFALL(DECIMAL) _ .020
OUTSIDE STREET CROSSFALL(DECIMAL) _ .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.42
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = .29
HALFSTREET FLOOD WIDTH(FEET) = 8.04
AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.85
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) _ .53
STREET FLOW TRAVEL TIME(MIN.) = 1.26 TC(MIN.) = 8.17
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.970
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A .10 .80 .10 52
�,. SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA AREA(ACRES) = .10 SUBAREA RUNOFF(CFS) _ .35
EFFECTIVE AREA(ACRES) _ .42 AREA -AVERAGED Fm(INCH/HR) _ .08
AREA -AVERAGED Fp(INCH/HR) _ .80 AREA -AVERAGED Ap = .10
TOTAL AREA(ACRES) = .42 PEAK FLOW RATE(CFS) = 1.47
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = .29 HALFSTREET FLOOD WIDTH(FEET) = 8.18
FLOW VELOCITY(FEET/SEC.) = 1.87 DEPTH*VELOCITY(FT*FT/SEC.) _ .54
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) _ .42 TC(MIN.) = 8.17
EFFECTIVE AREA(ACRES) _ .42 AREA -AVERAGED Fm(INCH/HR)= .08
AREA -AVERAGED Fp(INCH/HR) _ .80 AREA -AVERAGED Ap = .10
PEAK FLOW RATE(CFS) = 1.47
END OF RATIONAL METHOD ANALYSIS
@4
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
(Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-95 Advanced Engineering Software (aes)
Ver. 5.1A Release Date: 08/01/95 License ID 1400
Analysis prepared by:
ALLARD ENGINEERING, INC.
6101 CHERRY AVENUE
FONTANA, CALIFORNIA 92336
(909) 899 - 5011
************************** DESCRIPTION OF STUDY **************************
* Tract 16271 Q100 for Sultana at Garfield Drive
*
*
**************************************************************************
FILE NAME: 16271S.DAT
TIME/DATE OF STUDY: 15:14 6/27/2004
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
--*TIME-OF-CONCENTRATION MODEL* --
USER SPECIFIED STORM EVENT(YEAR) = 100.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90
*USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) _ .6000
USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) = 1.5000
*ANTECEDENT MOISTURE CONDITION (AMC III) ASSUMED FOR RATIONAL METHOD*
*USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
--- ------------- --
1 30.0 20.0 .018/ .018/ .020 .67 2.00 .03125 .1670 .01500
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1. Relative Flow -Depth = .00 FEET
as (Maximum Allowable Street Flow Depth) - (Top -of -Curb)
2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 2.1
--------------------------------------------------=-------------------------
fir., >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
ELEVATION DATA: UPSTREAM(FEET) = 1317.00 DOWNSTREAM(FEET) = 1315.00
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
5.000
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
* 100 YEAR RAINFALL INTENSITY(INCH/HR) =
6.662
SUBAREA Tc AND LOSS RATE
DATA(AMC III):
AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.53
DEVELOPMENT TYPE/
SCS SOIL AREA
Fp
Ap SCS Tc
LAND USE
GROUP (ACRES)
(INCH/HR)
(DECIMAL) CN (MIN.)
COMMERCIAL
A .07
.80
.10 52 5.00
SUBAREA AVERAGE PERVIOUS
LOSS RATE, Fp(INCH/HR) _
.80
SUBAREA AVERAGE PERVIOUS
AREA FRACTION, Ap
= .10
SUBAREA AREA(ACRES) _ .25 SUBAREA RUNOFF(CFS) = 1.22
SUBAREA RUNOFF(CFS) _
.41
.08
AREA -AVERAGED Fp(INCH/HR) _ .80 AREA -AVERAGED Ap = .10
TOTAL AREA(ACRES) _
.07 PEAK FLOW
RATE(CFS)
_ .41
****************************************************************************
FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 6.1
----------------------------------------------------------------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>(STANDARD CURB SECTION USED)<<<<<
UPSTREAM ELEVATION(FEET) = 1315.00 DOWNSTREAM ELEVATION(FEET) = 1309.00
STREET LENGTH(FEET) = 280.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 20.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
INSIDE STREET CROSSFALL(DECIMAL) _ .020
c I
OUTSIDE STREET CROSSFALL(DECIMAL) _ .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.03
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) _ .23
HALFSTREET FLOOD WIDTH(FEET) = 5.37
AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.53
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) _ .59
STREET FLOW TRAVEL TIME(MIN.) = 1.84 Tc(MIN.) = 6.84
* 100 YEAR RAINFALL INTENS.ITY(INCH/HR) = 5.519
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap
SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL)
CN
COMMERCIAL A .25 .80 .10
52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA AREA(ACRES) _ .25 SUBAREA RUNOFF(CFS) = 1.22
EFFECTIVE AREA(ACRES) _ .32 AREA -AVERAGED FM(INCH/HR) _
.08
AREA -AVERAGED Fp(INCH/HR) _ .80 AREA -AVERAGED Ap = .10
TOTAL AREA(ACRES) _ .32 PEAK FLOW RATE(CFS) =
1.57
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) _ .26 HALFSTREET FLOOD WIDTH(FEET) = 6.74
FLOW VELOCITY(FEET/SEC.) = 2.74 DEPTH*VELOCITY(FT*FT/SEC.) _
.71
C�7
****************************************************************************
FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 6.1
-------------------------------------------------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>(STANDARD CURB SECTION USED)<<<<<
UPSTREAM ELEVATION(FEET) = 1309.00 DOWNSTREAM ELEVATION(FEET) = 1307.80
STREET LENGTH(FEET) = 140.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 20.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
INSIDE STREET CROSSFALL(DECIMAL) _ .020
OUTSIDE STREET CROSSFALL(DECIMAL) _ .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.79
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) _ .30
HALFSTREET FLOOD WIDTH(FEET) = 8.91
AVERAGE FLOW VELOCITY(FEET/SEC.) _ . 1.96
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) _ .60
STREET FLOW TRAVEL TIME(MIN.) = 1.19 Tc(MIN.) = 8.03
* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.013
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap
SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL)
CN
COMMERCIAL A .10 .80 .10
52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .80-
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA AREA(ACRES) = .10 SUBAREA RUNOFF(CFS) - .44
EFFECTIVE AREA(ACRES) _ .42 AREA -AVERAGED Fm(INCH/HR) _
.08
AREA -AVERAGED Fp(INCH/HR) _ .80 AREA -AVERAGED Ap = .10
TOTAL AREA(ACRES) _ .42 PEAK FLOW RATE(CFS) =
1.86
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) _ .31 HALFSTREET FLOOD WIDTH(FEET) = 9.05
FLOW VELOCITY(FEET/SEC.) = 1.99 DEPTH*VELOCITY(FT*FT/SEC.) _ .61
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) _ .42 TC(MIN.) = 8.03
EFFECTIVE AREA(ACRES) _ .42 AREA -AVERAGED Fm(INCH/HR)= .08
AREA -AVERAGED Fp(INCH/HR) _ .80 AREA -AVERAGED Ap = .10
PEAK FLOW RATE(CFS) = 1.86
END OF RATIONAL METHOD ANALYSIS
Sultana Avenue
Street Capacity Calculations
Tract 16271, Fontana
Street Capacity Calculation, Sultana Avenue
100 Year Storm Event
************************************************************************
»»STREETFLOW MODEL INPUT INFORMATION««
CONSTANT STREET GRADE(FEET/FEET) = 0.017500
CONSTANT STREET FLOW(CFS) = 1.86
AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000
CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 20.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000
CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.67
CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50
CONSTANT SYMMETRICAL GUTTER-LIP(FEET) = 0.03125
CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) = 0.11000
FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS
001 STREET FLOW MODEL RESULTS:
STREET FLOW DEPTH(FEET) = 0.26
HALFSTREET FLOOD WIDTH(FEET) = 7.57
AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.74
PRODUCT OF DEPTH&VELOCITY = 0.72
Tract 16271, Fontana
Street Capacity Calculation, Sultana Avenue
.. 25 Year Storm Event
************************************************************************
»»STREETFLOW MODEL INPUT INFORMATION««
CONSTANT STREET GRADE(FEET/FEET) = 0.017500
CONSTANT STREET FLOW(CFS) = 1.47
AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000
CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 20.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000
CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.67
CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50
CONSTANT SYMMETRICAL GUTTER-LIP(FEET) = 0.03125
CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) = 0.11000
FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS
STREET FLOW MODEL RESULTS:
----------------------------------------------------------------------
STREET FLOW DEPTH(FEET) = 0.25
HALFSTREET FLOOD WIDTH(FEET) = 6.99
AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.47
PRODUCT OF DEPTH&VELOCITY = 0.62
y
W,
Beech Avenue
Rational Method Hydrology
100 Storm Event
M
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
(Reference. 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-95 Advanced Engineering Software (aes)
Ver. 5.1A Release Date: 08/01/95 License ID 1400
Analysis prepared by:
ALLARD ENGINEERING, INC.
6101 CHERRY AVENUE
FONTANA, CALIFORNIA 92336
(909) 899 - 5011
************************** DESCRIPTION OF STUDY **************************
* Tract 16271 Q100 For North Offsite Lot & Beech Avenue
*
*
**************************************************************************
FILE NAME: 16271OS.DAT
TIME/DATE OF STUDY: 15:45 6/27/2004
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
--*TIME-OF-CONCENTRATION MODEL* --
USER SPECIFIED STORM EVENT(YEAR) = 100.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90
*USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(TC;MIN)) _ .6000
USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) = 1.5000
*ANTECEDENT MOISTURE CONDITION (AMC III) ASSUMED FOR RATIONAL METHOD*
*
*USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
--- ----- -------- -----------
1 30.0 20.0 .018/ .018/ .020 .67 2.00 .03125 .1670 .01500
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1. Relative Flow -Depth = .24 FEET
as (Maximum Allowable Street Flow Depth) - (Top -of -Curb)
2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE 10.00 TO.NODE 1.00 IS CODE = 2.1
-------------------------------------------------- -------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
N
pli
INITIAL SUBAREA FLOW-LENGTH(FEET) = 235.00
ELEVATION DATA: UPSTREAM(FEET) = 1319.00 DOWNSTREAM(FEET) = 1313.00
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.619
* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.174
SUBAREA Tc AND LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
RESIDENTIAL
113-4 DWELLINGS/ACRE" A .40 .80 .60 52 7.62
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60
SUBAREA RUNOFF(CFS) = 1.69
TOTAL AREA(ACRES) = .40 PEAK FLOW RATE(CFS) = 1.69
****************************************************************************
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 6.1
----------------------------------------------------------------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>(STANDARD CURB SECTION USED)<<<<<
--------------------------------------------
UPSTREAM ELEVATION(FEET) = 1313.00 DOWNSTREAM ELEVATION(FEET) = 1308.50
STREET LENGTH(FEET) = 290.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 20.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
INSIDE STREET CROSSFALL(DECIMAL) _ .020
OUTSIDE STREET CROSSFALL(DECIMAL) _ .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
**TRAVEL TIME COMPUTED USING ESTIMATED
FLOW(CFS) =
5.94
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = .32
HALFSTREET FLOOD WIDTH(FEET) = 9.77
AVERAGE FLOW VELOCITY(FEET/SEC.) =
2.77
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.)
_ .89
STREET FLOW TRAVEL TIME(MIN.) = 1.75
Tc(MIN.) =
9.37
* 100 YEAR RAINFALL INTENSITY(INCH/HR) =
4.571
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA
Fp
Ap SCS
LAND UPT? GROUP (ACRES)
(INCH/HR)
(DECIMAL) CN
RESIDENTIAL
113-4 DWELLINGS/ACRE" A 2.30 .80 .60 52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60
SUBAREA AREA(ACRES) = 2.30 SUBAREA RUNOFF(CFS) = 8.47
EFFECTIVE AREA(ACRES) = 2.70 AREA -AVERAGED FM(INCH/HR) _ .48
"AREA -AVERAGED Fp(INCH/HR) = .80 AREA -AVERAGED Ap = .60
TOTAL AREA(ACRES) = 2.70 PEAK FLOW RATE(CFS) = 9.95
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) _ .37 HALFSTREET FLOOD WIDTH(FEET) = 12.16
FLOW VELOCITY(FEET/SEC.) = 3.12 DEPTH*VELOCITY(FT*FT/SEC.) = 1.15
****************************************************************************
FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 6.1
---------------------------------------------------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>(STANDARD CURB SECTION USED) <<<<
UPSTREAM ELEVATION(FEET) = 1308.50 DOWNSTREAM ELEVATION(FEET) = 1306.00
STREET LENGTH(FEET) = 155.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 20.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
INSIDE STREET CROSSFALL(DECIMAL) _ .020
OUTSIDE STREET CROSSFALL(DECIMAL) _ .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 12.22
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = .39
HALFSTREET FLOOD WIDTH(FEET) = 13.10
AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.33
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.29
STREET FLOW TRAVEL TIME(MIN.) = .78 TC(MIN.) = 10.14
* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.358
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
,., LAND USE GROUP - (ACRES) (INCH/HR) (DECIMAL) CN
RESIDENTIAL
113-4 DWELLINGS/ACRE" A 1.30 .80 .60 52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60
SUBAREA AREA(ACRES) = 1.30 SUBAREA RUNOFF(CFS) = 4.54
EFFECTIVE AREA(ACRES) = 4.00 AREA -AVERAGED Fm(INCH/HR) _ .48
AREA -AVERAGED Fp(INCH/HR) = .80 AREA -AVERAGED Ap = .60
TOTAL AREA(ACRES) = 4.00 PEAK FLOW RATE(CFS) = 13.97
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = .40 HALFSTREET FLOOD WIDTH(FEET) = 13.82
FLOW VELOCITY(FEET/SEC.) = 3.44 DEPTH*VELOCITY(FT*FT/SEC.) = 1.39
FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 1
---------------------------------------------------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) = 10.14
'RAINFALL INTENSITY(INCH/HR) = 4.36
AREA -AVERAGED Fm(INCH/HR) = .48
AREA- AVERAGED Fp(INCH/HR) = .80
AREA -AVERAGED Ap = .60
EFFECTIVE STREAM AREA(ACRES) = 4.00
TOTAL STREAM AREA(ACRES) = 4.00
ti1rr+�
PEAK FLOW RATE(CFS) AT CONFLUENCE = 13.97
****************************************************************************
FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 2.1
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW-LENGTH(FEET) = 310.00
ELEVATION DATA: UPSTREAM(FEET) = 1319.00 DOWNSTREAM(FEET) = 1314.00
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.885
* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.498
SUBAREA Tc AND LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
COMMERCIAL A .20 .80 .10 52 6.88
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA RUNOFF(CFS) _ .98
TOTAL AREA(ACRES) _ .20 PEAK FLOW RATE(CFS) _ .98
****************************************************************************
FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 6.1
----------------------------------------------------------------------------
-->>>>>COMPUTESTREET -FLOW TRAVEL -TIME -THRU_SUBAREA« «<
» »--------------------
>(STANDARD CURB SECTION USED) « «<
UPSTREAM ELEVATION(FEET) = 1314.00 DOWNSTREAM ELEVATION(FEET) = 1313.00
STREET LENGTH(FEET) = 280.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) = 20.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
INSIDE STREET CROSSFALL(DECIMAL) _ .020
OUTSIDE STREET CROSSFALL(DECIMAL) _ .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.36
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) _ .34
HALFSTREET FLOOD WIDTH(FEET) = 9.07
AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.34
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) _ .46
STREET FLOW TRAVEL TIME(MIN.) = 3.48 Tc(MIN.) = 10.36
* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.302
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A .20 .80 .10 52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA AREA(ACRES) _ .20 SUBAREA RUNOFF(CFS) _ .76
EFFECTIVE AREA(ACRES) _ .40 AREA -AVERAGED Fm(INCH/HR) _ .08
AREA -AVERAGED Fp(INCH/HR) = .80 AREA -AVERAGED Ap = .10.
TOTAL AREA(ACRES) = .40 PEAK FLOW RATE(CFS) = 1.52
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = .35 HALFSTREET FLOOD WIDTH(FEET) = 9.63
FLOW VELOCITY(FEET/SEC.) = 1.36 DEPTH*VELOCITY(FT*FT/SEC.) _ .48
****************************************************************************
FLOW PROCESS FROM NODE 12.00 TO NODE 3.00 IS CODE = 6.1
----------------------------------------------------------------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>(STANDARD CURB SECTION USED) <<<<
-----------------------------------------------
UPSTREAM ELEVATION(FEET) = 1313.00 DOWNSTREAM ELEVATION(FEET) = 1306.00
STREET LENGTH(FEET) = 335.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 20.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
INSIDE STREET CROSSFALL(DECIMAL) _ .020
OUTSIDE STREET CROSSFALL(DECIMAL) _ .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.03
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = .28
HALFSTREET FLOOD WIDTH(FEET) = 7.68
AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.87
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = .80
STREET FLOW TRAVEL TIME(MIN.) = 1.94 TC(MIN.) = 12.31
* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.880
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap
SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL)
CN
COMMERCIAL A .30 .80 .10
52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA AREA(ACRES) = .30 SUBAREA RUNOFF(CFS) = 1.03
EFFECTIVE AREA(ACRES) _ .70 AREA -AVERAGED Fm(INCH/HR) _
.08
AREA -AVERAGED Fp(INCH/HR) _ .80 AREA -AVERAGED Ap = .10
TOTAL AREA(ACRES) = .70 PEAK FLOW RATE(CFS) =
2.39
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = .29 HALFSTREET FLOOD WIDTH(FEET) = 8.33
FLOW VELOCITY(FEET/SEC.) = 2.95 DEPTH*VELOCITY(FT*FT/SEC.) _
.86
****************************************************************************
FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 1
----------------------------------------------------------------------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) = 12.31
RAINFALL INTENSITY(INCH/HR) = 3.88
SOURCE
AREA -AVERAGED Fm(INCH/HR) _ .08
AREA -AVERAGED Fp(INCH/HR) _ .80
NODE
1 16.2 10.14 4.358 .796( .427) .54 4.6
AREA -AVERAGED Ap = .10
2 14.6 12.31 3.880 .796( .418) .53 4.7
10.00
EFFECTIVE STREAM AREA(ACRES) _
.70
PEAK FLOW RATE(CFS) = 16.19 Tc(MIN.) = 10.14
TOTAL STREAM AREA(ACRES) _ .70
EFFECTIVE AREA(ACRES) = 4.58 AREA -AVERAGED Fm(INCH/HR) _
PEAK FLOW RATE(CFS) AT CONFLUENCE
= 2.39
** CONFLUENCE DATA **
STREAM Q Tc Intensity
Fp(Fm) Ap Ae
SOURCE
NUMBER (CFS) (MIN.) (INCH/HR)
(INCH/HR) . (ACRES)
NODE
1 13.97 10.14 4.358
.80( .48) .60 4.00
10.00
2 2.39 12.31 3.880
.80( .08) .10 .70
10.00
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM Q Tc Intensity Fp(Fm) Ap Ae
SOURCE
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES)
NODE
1 16.2 10.14 4.358 .796( .427) .54 4.6
10.00
2 14.6 12.31 3.880 .796( .418) .53 4.7
10.00
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 16.19 Tc(MIN.) = 10.14
EFFECTIVE AREA(ACRES) = 4.58 AREA -AVERAGED Fm(INCH/HR) _
.43
AREA -AVERAGED Fp(INCH/HR) _ .80 AREA -AVERAGED Ap = .54
TOTAL AREA(ACRES) = 4.70
FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE =
6.1
----------------------------------------------------------------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>(STANDARD CURB SECTION USED)<<<<<
-------------------
UPSTREAM ELEVATION(FEET) = 1306.00 DOWNSTREAM ELEVATION(FEET)
= 1302.00
STREET LENGTH(FEET) = 300.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 20.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
INSIDE STREET CROSSFALL(DECIMAL) _ .020
OUTSIDE STREET CROSSFALL(DECIMAL) _ .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 16.73
***STREET FLOW SPLITS OVER STREET -CROWN***
FULL DEPTH(FEET) _ .53 FLOOD WIDTH(FEET) = 20.00
FULL HALF -STREET VELOCITY(FEET/SEC.) = 3.92
SPLIT DEPTH(FEET) _ .21 SPLIT FLOOD WIDTH(FEET) = 4.43
SPLIT FLOW(CFS) _ .59 SPLIT VELOCITY(FEET/SEC.) = 1.88
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
NOTE: STREET FLOW EXCEEDS TOP OF CURB.
THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION
THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL,
THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED.
STREET FLOW DEPTH(FEET) = .53
= 20.00
too",, HALFSTREET FLOOD WIDTH(FEET) = 20.00
3.92
AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.92
END OF STUDY SUMMARY:
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.06
(CFS)
STREET FLOW TRAVEL TIME(MIN.) = 1.28 Tc(MIN.) = 11.42
TOTAL AREA(ACRES) =
* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.059
TC(MIN.) =
SUBAREA LOSS RATE DATA(AMC III):
EFFECTIVE AREA(ACRES) =
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap
SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL)
CN
COMMERCIAL A .30 .80 .10
52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .80
PEAK FLOW RATE(CFS) =
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
10.00
SUBAREA AREA(ACRES) = .30 SUBAREA RUNOFF(CFS) = 1.07
RATIONAL
EFFECTIVE AREA(ACRES) = 4.88 AREA -AVERAGED Fm(INCH/HR) _
.41
AREA -AVERAGED Fp(INCH/HR) = .80 AREA -AVERAGED Ap = .51
TOTAL AREA(ACRES) = 5.00 PEAK FLOW RATE(CFS) =
16.19
NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = .53 HALFSTREET FLOOD WIDTH(FEET)
= 20.00
FLOW VELOCITY(FEET/SEC.) =
3.92
DEPTH*VELOCITY(FT*FT/SEC.) = 2.06
END OF STUDY SUMMARY:
NUMBER
(CFS)
(MIN.)
TOTAL AREA(ACRES) =
5.00
TC(MIN.) =
11.42
EFFECTIVE AREA(ACRES) =
4.88
AREA -AVERAGED
Fm(INCH/HR)= .41
AREA -AVERAGED Fp(INCH/HR)
_ .80
AREA -AVERAGED
Ap = .51
PEAK FLOW RATE(CFS) =
16.19
10.00
END OF
** PEAK FLOW RATE TABLE **
STREAM
Q
Tc
Intensity
Fp(Fm) Ap Ae
SOURCE
NUMBER
(CFS)
(MIN.)
(INCH/HR)
(INCH/HR) (ACRES)
NODE
1
16.2
11.42
4.059
.796( .406) .51 4.9
10.00
2
14.6
13.61
3.653
.796( .398) .50 5.0
10.00
END OF
RATIONAL
METHOD
ANALYSIS
A
Beech Avenue
Street Capacity Calculation
RN
Ai
Tract 16271
Street Capacity Calculation, Beech Avenue
r✓ 100 Year Storm Event
* ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1
NODE NUMBER "X" COORDINATE "Y" COORDINATE
1 0.00 0.77
2 0.01 0.00
3 1.50 0.13
4 19.00 0.48
SUBCHANNEL SLOPE(FEET/FEET) = 0.020000
SUBCHANNEL MANNINGS FRICTION FACTOR = 0.015000
............................................................................
SUBCHANNEL FLOW(CFS) = 17.0
SUBCHANNEL FLOW AREA(SQUARE FEET) = 3.68
SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 4.615
SUBCHANNEL FROUDE NUMBER = 1.847
SUBCHANNEL FLOW TOP-WIDTH(FEET) = 19.00
SUBCHANNEL HYDRAULIC DEPTH(FEET) = 0.19
TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 16.20
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 16.99
ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
ELEVATION ............................. 0.48
NOTE: WATER SURFACE IS BELOW EXTREME
LEFT AND RIGHT BANK ELEVATIONS.
0.48' = 0.48' , Therefore water is inundating one lane only
IN
100 Year Rational Method
Trapezoidal Earthen Channel
Tributary Area
South of Tract 16271
m
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
(Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-95 Advanced Engineering Software (aes)
Ver. 5.1A Release Date: 08/01/95 License ID 1400
Analysis prepared by:
ALLARD ENGINEERING, INC.
6101 CHERRY AVENUE
FONTANA, CALIFORNIA 92336
(909) 899 - 5011
************************** DESCRIPTION OF STUDY **************************
* Tract 16271
* Offsite - South of Tract 16271
* 100 Year Storm Event
**************************************************************************
FILE NAME: 16271SW.DAT
TIME/DATE OF STUDY: 15:32 8/26/2004
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
----------------
--*TIME-OF-CONCENTRATION MODEL* --
USER SPECIFIED STORM EVENT(YEAR) = 100.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90
*USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) _ .6000
USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) = 1.5000
*ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD*
****************************************************************************
FLOW PROCESS FROM NODE .00 TO NODE 1.00 IS CODE = 2.1
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
--------------------- -
INITIAL SUBAREA FLOW-LENGTH(FEET) 300.00
ELEVATION DATA: UPSTREAM(FEET) = 1306.08 DOWNSTREAM(FEET) = 1300.00
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.211
* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.104
'SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
NATURAL POOR COVER
"GRASS" A .50 .60 1.00 67 11.21
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .60
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
•., SUBAREA RUNOFF(CFS) = 1.58
TOTAL AREA(ACRES) _ .50 PEAK FLOW RATE(CFS) = 1.58
****************************************************************************
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 5.2
----------------------------------------------------------------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
------------------------
ELEVATION DATA: UPSTREAM(FEET) = 1300.00 DOWNSTREAM(FEET) = 1286.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 710.00 CHANNEL SLOPE _ .0197
CHANNEL FLOW THRU SUBAREA(CFS) = 1.58
FLOW VELOCITY(FEET/SEC) = 2.30 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 5.14 Tc(MIN.) = 16.35
****************************************************************************
FLOW PROCESS FROM NODE 2.00 TO NODE 2.00 IS CODE = 8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 16.35
* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.272
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL POOR COVER
"GRASS" A 5.10 .60 1.00 67
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .60
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) = 5.10 SUBAREA RUNOFF(CFS) = 12.27
EFFECTIVE AREA(ACRES) = 5.60 AREA -AVERAGED Fm(INCH/HR) _ .60
AREA -AVERAGED Fp(INCH/HR) _ .60 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 5.60 PEAK FLOW RATE(CFS) = 13.48
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 5.60 TC(MIN.) = 16.35
EFFECTIVE AREA(ACRES) = 5.60 AREA -AVERAGED Fm(INCH/HR)= .60
AREA -AVERAGED Fp(INCH/HR) _ .60 AREA -AVERAGED Ap = 1.00
PEAK FLOW RATE(CFS) = 13.48
END OF RATIONAL METHOD ANALYSIS
Predeveloped
Rational Method Hydrology
2,10,25&100
Year Storm Events
14
14
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
(Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-95 Advanced Engineering Software (aes)
Ver. 5.1A Release Date: 08/01/95 License ID 1400
Analysis prepared by:
ALLARD ENGINEERING, INC.
6101 CHERRY AVENUE
FONTANA, CALIFORNIA 92336
(909) 899 - 5011
************************** DESCRIPTION OF STUDY **************************
* Tract 16271-1 Q2 Predeveloped Condition
*
*
*
*
**************************************************************************
FILE NAME: 16271U -DAT
TIME/DATE OF STUDY: 17:36 6/27/2004
-----------------------------------
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
--*TIME-OF-CONCENTRATION MODEL* --
USER SPECIFIED STORM EVENT(YEAR) = 2.00
,..� SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90
*USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) _ .6000
USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) _ .5600
*ANTECEDENT MOISTURE CONDITION (AMC I) ASSUMED FOR RATIONAL METHOD*
*USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
1 30.0 20.0 .020/ .020/ .020 0.5 2.00 .03125 .1670 .01500
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1. Relative Flow -Depth = .00 FEET
as (Maximum Allowable Street Flow Depth) - (Top -of -Curb)
2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE .00 TO NODE 1.00 IS CODE = 2.1
------------------------------------------------------------
took' >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW-LENGTH(FEET) = 110.00
ELEVATION DATA: UPSTREAM(FEET) = 1314.60 DOWNSTREAM(FEET) = 1312.20
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.395
* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.967
SUBAREA Tc AND LOSS RATE DATA(AMC I ):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp
LAND USE GROUP (ACRES) (INCH/HR)
NATURAL POOR COVER
"GRASS" A .30 .85
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA RUNOFF(CFS) _ .30
TOTAL AREA(ACRES) _ .30 PEAK FLOW RATE(CFS)
Ap SCS Tc
(DECIMAL) CN (MIN.)
1.00 47 7.40
.85
_ .30
****************************************************************************
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 5.2
----------------------------------------------------------------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
------------------------------------- -
ELEVATION DATA: UPSTREAM(FEET) = 1312.20 DOWNSTREAM(FEET) = 1310.20
CHANNEL LENGTH THRU SUBAREA(FEET) = 110.00 CHANNEL SLOPE _ .0182
NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION
CHANNEL FLOW THRU SUBAREA(CFS) _ .30
,•� FLOW VELOCITY(FEET/SEC) = 2.02 (PER LACFCD HYDROLOGY MANUAL)
y. TRAVEL TIME(MIN.) _ .91 Tc(MIN.) = 8.30
****************************************************************************
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE TC(MIN) = 8.30
* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.835
SUBAREA LOSS RATE DATA(AMC I ):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL POOR COVER
"GRASS" A .70 .85 1.00 47
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .85
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) _ .70 SUBAREA RUNOFF(CFS) _ .62
EFFECTIVE AREA(ACRES) = 1.00 AREA -AVERAGED Fm(INCH/HR) _ .85
AREA -AVERAGED Fp(INCH/HR) _ .85 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) _ .89
****************************************************************************
FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 5.2
----------------------------------------------------------------------------
» >>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 1310.20 DOWNSTREAM(FEET) = 1308.60
[
CHANNEL LENGTH THRU SUBAREA(FEET) = 85.00 CHANNEL SLOPE = .0188
�✓ NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION
CHANNEL FLOW THRU SUBAREA(CFS) = .89
FLOW VELOCITY(FEET/SEC) = 2.06 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = .69 Tc(MIN.) = 8.99
****************************************************************************
FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 8.99
* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.749
SUBAREA LOSS RATE DATA(AMC I ):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL POOR COVER
"GRASS" A 1.40 .85 1.00 47
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .85
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) = 1.40 SUBAREA RUNOFF(CFS) = 1.13
EFFECTIVE AREA(ACRES) = 2.40 AREA -AVERAGED Fm(INCH/HR) _ .85
AREA -AVERAGED Fp(INCH/HR) _ .85 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 2.40 PEAK FLOW RATE(CFS) = 1.94
i�"",• FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 5.2
----------------------------------------------------------------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
----------------------------------------------
ELEVATION DATA: UPSTREAM(FEET) = 1308.60 DOWNSTREAM(FEET) = 1304.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 260.00 CHANNEL SLOPE = .0177
CHANNEL FLOW THRU SUBAREA(CFS) = 1.94
FLOW VELOCITY(FEET/SEC) = 2.28 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 1.90 Tc(MIN.) = 10.89
****************************************************************************
FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 10.89
* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.559
SUBAREA LOSS RATE DATA(AMC I ):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL POOR COVER
"GRASS" A 1.10 .85 1.00 47
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR)" .85
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00A(
SUBAREA AREACRES) = 1.10 SUBAREA RUNOFF(CFS) _ .70
EFFECTIVE AREA(ACRES) = 3.50 AREA -AVERAGED Fm(INCH/HR) _ .85
AREA -AVERAGED Fp(INCH/HR) _ .85 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 3.50 PEAK FLOW RATE(CFS) = 2.23
****************************************************************************
FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 5.2
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 1304.00 DOWNSTREAM(FEET) = 1303.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 100.00 CHANNEL SLOPE _ .0100
CHANNEL FLOW THRU SUBAREA(CFS) = 2.23
FLOW VELOCITY(FEET/SEC) = 1.76 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) _ .95 Tc(MIN.) = 11.84
****************************************************************************
FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE =
8.1
------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 11.84
* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.483
SUBAREA LOSS RATE DATA(AMC I ):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap
SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL POOR COVER
"GRASS" A 1.50 .85 1.00
47
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .85
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) = 1.50 SUBAREA RUNOFF(CFS) _
.85
EFFECTIVE AREA(ACRES) = 5.00 AREA -AVERAGED Fm(INCH/HR)
_ .85
AREA -AVERAGED Fp(INCH/HR) _ .85 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 5.00 PEAK FLOW RATE(CFS) =
2.85
FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1
----------------------------------------------------------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) = 11.84
RAINFALL INTENSITY(INCH/HR) = 1.48
AREA -AVERAGED Fm(INCH/HR) _ .85
AREA -AVERAGED Fp(INCH/HR) _ .85
AREA -AVERAGED Ap = 1.00
EFFECTIVE STREAM AREA(ACRES) = 5.00
'TOTAL STREAM AREA(ACRES) = 5.00
PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.85
****************************************************************************
FLOW PROCESS FROM NODE .00 TO NODE 1.00 IS CODE = 2.1
---------------------------------------------------- ---------.---------------
>>»>RATIONAL-METHOD-INITIAL-SUBAREA-ANALYSISTI « <--BARE------------BABA--
-- »USE -TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA -
INITIAL SUBAREA FLOW-LENGTH(FEET) = 120.00
ELEVATION DATA: UPSTREAM(FEET) = 1312.40 DOWNSTREAM(FEET) = 1310.00
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.792
* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.906
SUBAREA Tc AND LOSS RATE DATA(AMC I ):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
NATURAL POOR COVER
"GRASS" A .40 .85 1.00 47 7.79
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .85
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA RUNOFF(CFS) _ .38
TOTAL,AREA(ACRES) = .40 PEAK FLOW RATE(CFS) _ .38
****************************************************************************
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 5.2
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 1310.00 DOWNSTREAM(FEET) = 1307.70
CHANNEL LENGTH THRU SUBAREA(FEET) = 145.00 CHANNEL SLOPE = .0159
NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION
CHANNEL FLOW THRU SUBAREA(CFS) = .38
FLOW VELOCITY(FEET/SEC) = 1.89 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 1.28 Tc(MIN.) = 9.07
****************************************************************************
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 8.1
------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 9.07
* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.740
SUBAREA LOSS RATE DATA(AMC I ):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL POOR COVER
A 70 .85 1.00 47
"GRASS"
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .85
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) = .70 SUBAREA RUNOFF(CFS) _ .56
EFFECTIVE AREA(ACRES) = 1.10 AREA -AVERAGED FM(INCH/HR) _ .85
'AREA -AVERAGED Fp(INCH/HR) _ .85 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 1.10 PEAK FLOW RATE(CFS) _ .88
FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 5.2
----------------------------------------------------
too.+., »»>COMPUTE NATURAL VALLEY CHANNEL FLOW««<
-->>>>>TRAVELTIME- THRU -SUBAREA<< «<_________________________________________
ELEVATION DATA: UPSTREAM(FEET) = 1307.70 DOWNSTREAM(FEET) = 1307.20
CHANNEL LENGTH THRU SUBAREA(FEET) = 75.00 CHANNEL SLOPE _ .0067
NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION
CHANNEL FLOW THRU SUBAREA(CFS) _ •88
FLOW VELOCITY(FEET/SEC) = 1.22 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 1.02 Tc(MIN.) = 10.09
****************************************************************************
FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 8.1
-----------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« < <
MAINLINE Tc(MIN) = 10.09
* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.632
SUBAREA LOSS RATE DATA(AMC I ):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL POOR COVER
"GRASS" A .60 .85 1.00 47
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .85
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) _ .60 SUBAREA RUNOFF(CFS) _ •42
EFFECTIVE AREA(ACRES) = 1.70 AREA -AVERAGED Fm(INCH/HR) _ .85
AREA -AVERAGED Fp(INCH/HR) _ .85 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 1.70 PEAK FLOW RATE(CFS) = 1.20
****************************************************************************
FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 5.2
------------------------------------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 1307.20 DOWNSTREAM(FEET) = 1303.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 350.00 CHANNEL SLOPE _ .0120
CHANNEL FLOW THRU SUBAREA(CFS) = 1.20
FLOW VELOCITY(FEET/SEC) = 1.70 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 3.43 Tc(MIN.) = 13.52
****************************************************************************
FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 8.1
------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 13.52
* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.369
SUBAREA LOSS RATE DATA(AMC I ):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL POOR COVER
A 90 .85 1.00 47
"GRASS"
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .85
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) _ .90 SUBAREA RUNOFF(CFS) _ .42
EFFECTIVE AREA(ACRES) = 2.60 AREA -AVERAGED Fm(INCH/HR) _ .85
AREA -AVERAGED Fp(INCH/HR) _ .85 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 2.60 PEAK FLOW RATE(CFS) = 1.21
****************************************************************************
FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 5.2
----------------------------------------------------------------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 1303.00 DOWNSTREAM(FEET) = 1302.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 60.00 CHANNEL SLOPE _ .0167
CHANNEL FLOW THRU SUBAREA(CFS) = 1.21
FLOW VELOCITY(FEET/SEC) = 2.01 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) _ .50 TC(MIN.) = 14.02
****************************************************************************
FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE TC(MIN) = 14.02
* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.340
SUBAREA LOSS RATE DATA(AMC I ):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL POOR COVER
"GRASS" A .70 .85 1.00 47
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .85
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) _ .70 SUBAREA RUNOFF(CFS) _ .31
EFFECTIVE AREA(ACRES) = 3.30 AREA -AVERAGED Fm(INCH/HR) _ .85
AREA -AVERAGED Fp(INCH/HR) _ .85 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 3.30 PEAK FLOW RATE(CFS) = 1.45
****************************************************************************
FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) = 14.02
RAINFALL INTENSITY(INCH/HR) = 1.34
AREA -AVERAGED Fm(INCH/HR) _ .85
AREA -AVERAGED Fp(INCH/HR) _ .85
AREA -AVERAGED Ap = 1.00
EFFECTIVE STREAM AREA(ACRES) = 3.30
TOTAL STREAM AREA(ACRES) = 3.30
PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.45
** CONFLUENCE
DATA **
Intensity
Fp(Fm) Ap Ae
SOURCE
NUMBER
STREAM
Q
Tc
Intensity
Fp(Fm)
Ap Ae
SOURCE
NUMBER
(CFS)
(MIN.)
(INCH/HR)
(INCH/HR)
(ACRES)
NODE
1
2.85
11.84
1.483
.85( .85)
1.00 5.00
.00
2
1.45
14.02
1.340
.85( .85)
1.00 3.30
.00
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM
Q Tc
Intensity
Fp(Fm) Ap Ae
SOURCE
NUMBER
(CFS) (MIN.)
(INCH/HR)
(INCH/HR) (ACRES)
NODE
1
4.3 11.84
1.483
.850( .850) 1.00 7.8
.00
2
3.7 14.02
1.340
.850( .850) 1.00 8.3
.00
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 4.30 Tc(MIN.) = 11.84
EFFECTIVE AREA(ACRES) = 7.79 AREA -AVERAGED Fm(INCH/HR) _ .85
AREA -AVERAGED Fp(INCH/HR) _ .85 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 8.30
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 8.30 TC(MIN.) = 11.84
EFFECTIVE AREA(ACRES) = 7.79 AREA -AVERAGED Fm(INCH/HR)= .85
AREA -AVERAGED Fp(INCH/HR) _ .85 AREA -AVERAGED Ap = 1.00
PEAK FLOW RATE(CFS) = 4.30
** PEAK FLOW RATE TABLE **
STREAM
Q
Tc
Intensity
Fp(Fm) Ap Ae
SOURCE
NUMBER
(CFS)
(MIN.)
(INCH/HR)
(INCH/HR) (ACRES)
NODE
1
4.3
11.84
1.483
.850( .850) 1.00 7.8
.00
2
3.7
14.02
1.340
.850( .850) 1.00 8.3
.00
END OF
RATIONAL
METHOD ANALYSIS
Rm
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
(Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-95 Advanced Engineering Software (aes)
Ver. 5.1A Release Date: 08/01/95 License ID 1400
Analysis prepared by:
ALLARD ENGINEERING, INC.
6101 CHERRY AVENUE
FONTANA, CALIFORNIA 92336
(909) 899 - 5011
************************** DESCRIPTION OF STUDY **************************
* Tract 16271-1 Q10 Predeveloped Condition
*
*
*
**************************************************************************
FILE NAME: 16271U.DAT
TIME/DATE OF STUDY: 17:39 6/27/2004
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
--*TIME-OF-CONCENTRATION MODEL* --
USER SPECIFIED STORM EVENT(YEAR) = 10.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90
*USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) _ .6000
USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) _ .8200
*ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD*
*USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
1 30.0 20.0 .020/ 020/ 020 0.5 2.00 03125 1670 01500
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1. Relative Flow -Depth = .00 FEET
as (Maximum Allowable Street Flow Depth) - (Top -of -Curb)
2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE .00 TO NODE 1.00 IS CODE = 2.1
--------------------------------------- -----------
METHOD INITIAL SUBAREA ANALYSIS<<<<<
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW-LENGTH(FEET) = 110.00
ELEVATION DATA: UPSTREAM(FEET) = 1314.60 DOWNSTREAM(FEET) = 1312.20
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
7.395
* 10 YEAR RAINFALL
INTENSITY(INCH/HR) =
2.880
SUBAREA Tc AND LOSS
RATE DATA(AMC II):
DEVELOPMENT TYPE/
SCS SOIL AREA
Fp
Ap SCS Tc
LAND USE
GROUP (ACRES)
(INCH/HR)
(DECIMAL) CN (MIN.)
NATURAL POOR COVER
"GRASS"
A .30
.60
1.00 67 7.40
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) =
.60
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap
= 1.00
SUBAREA RUNOFF(CFS)
_ .62
TOTAL AREA(ACRES) =
.30 PEAK FLOW
RATE(CFS)
_ .62
****************************************************************************
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 5.2
----------------------------------------------------------------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<< <<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 1312.20 DOWNSTREAM(FEET) = 1310.20
CHANNEL LENGTH THRU SUBAREA(FEET) = 110.00 CHANNEL SLOPE = .0182
NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION
CHANNEL FLOW THRU SUBAREA(CFS) = .62
FLOW VELOCITY(FEET/SEC) = 2.02 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = .91 Tc(MIN.) = 8.30
****************************************************************************
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<< <<<
MAINLINE Tc(MIN) = 8.30
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.687
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL POOR COVER
"GRASS" A .70 .60 1.00 67
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .60
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) = .70 SUBAREA RUNOFF(CFS) = 1.32
EFFECTIVE AREA(ACRES) = 1.00 AREA -AVERAGED Fm(INCH/HR) _ .60
AREA -AVERAGED Fp(INCH/HR) _ .60 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) = 1.88
****************************************************************************
FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 5.2
----------------------------------------------------------------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<< <<<
------------------------------------------------
ELEVATION DATA: UPSTREAM(FEET) = 1310.20 DOWNSTREAM(FEET) = 1308.60
CHANNEL LENGTH THRU SUBAREA(FEET) = 85.00 CHANNEL SLOPE _ .0188
CHANNEL FLOW THRU SUBAREA(CFS) = 1.88
FLOW VELOCITY(FEET/SEC) = 2.33 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) _ .61 Tc(MIN.) = 8.91
****************************************************************************
FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 8.91
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.575
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL POOR COVER
"GRASS" A 1.40 .60 1.00 67
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .60
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) = 1.40 SUBAREA RUNOFF(CFS) = 2.49
EFFECTIVE AREA(ACRES) = 2.40 AREA -AVERAGED Fm(INCH/HR) _ .60
AREA -AVERAGED Fp(INCH/HR) _ .60 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 2.40 PEAK FLOW RATE(CFS) = 4.27
--FLOW-PROCESS-FROM NODE 3.00 TO NODE 4.00 IS CODE = 5.2
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 1308.60 DOWNSTREAM(FEET) = 1304.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 260.00 CHANNEL SLOPE _ .0177
CHANNEL FLOW THRU SUBAREA(CFS) = 4.27
FLOW VELOCITY(FEET/SEC) = 2.70 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 1.60 Tc(MIN.) = 10.51
****************************************************************************
FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 10.51
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.332
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
"NATURAL POOR COVER
"GRASS" A 1.10 .60 1.00 67
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .60
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) = 1.10 SUBAREA RUNOFF(CFS) = 1.72
rr+ EFFECTIVE AREA(ACRES) = 3.50 AREA -AVERAGED Fm(INCH/HR) _ .60
AREA -AVERAGED Fp(INCH/HR) _ .60 AREA -AVERAGED Ap = 1.00,
AVW TOTAL AREA(ACRES) = 3.50 PEAK FLOW RATE(CFS) = 5.46
****************************************************************************
FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 5.2
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
------------------------------------------
ELEVATION DATA: UPSTREAM(FEET) = 1304.00 DOWNSTREAM(FEET) = 1303.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 100.00 CHANNEL SLOPE _ .0100
CHANNEL FLOW THRU SUBAREA(CFS) = 5.46
FLOW VELOCITY(FEET/SEC) = 2.15 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) _ .77 Tc(MIN.) = 11.29
****************************************************************************
FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 11.29
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.235
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL POOR COVER
"GRASS" A 1.50 .60 1.00 67
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .60
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) = 1.50 SUBAREA RUNOFF(CFS) = 2.21
EFFECTIVE AREA(ACRES) = 5.00 AREA -AVERAGED Fm(INCH/HR) _ .60
AREA -AVERAGED Fp(INCH/HR) _ .60 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 5.00 PEAK FLOW RATE(CFS) = 7.36
****************************************************************************
FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1
----------------------------------------------------------------------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) =
11.29
RAINFALL INTENSITY(INCH/HR) =
2.23
AREA -AVERAGED Fm(INCH/HR) _
.60
AREA -AVERAGED Fp(INCH/HR) _
.60
AREA -AVERAGED Ap = 1.00
EFFECTIVE STREAM AREA(ACRES)
= 5.00
TOTAL STREAM AREA(ACRES) =
5.00
"PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.36
****************************************************************************
FLOW PROCESS -FROM -NODE
-------�00-TO- NODE
------100-IS CODE = 2.1
-----------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW-LENGTH(FEET) = 120.00
ELEVATION DATA: UPSTREAM(FEET) = 1312.40 DOWNSTREAM(FEET) = 1310.00
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.792
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.791
SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp
LAND USE GROUP (ACRES) (INCH/HR)
NATURAL POOR COVER
"GRASS" A .40 .60
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA RUNOFF(CFS) _ .79
TOTAL AREA(ACRES) _ .40 PEAK FLOW RATE(CFS)
Ap SCS Tc
(DECIMAL) CN (MIN.)
1.00 67 7.79
.60
.79
****************************************************************************
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 5.2
----------------------------------------------------------------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
------------------
ELEVATION DATA: UPSTREAM(FEET) = 1310.00 DOWNSTREAM(FEET) = 1307.70
CHANNEL LENGTH THRU SUBAREA(FEET) = 145.00 CHANNEL SLOPE _ .0159
NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION
CHANNEL FLOW THRU SUBAREA(CFS) _ .79
FLOW VELOCITY(FEET/SEC) = 1.89 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 1.28 Tc(MIN.) = 9.07
****************************************************************************
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 9.07
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.548
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL POOR COVER
"GRASS" A .70 .60 1.00 67
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .60
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) _ .70 SUBAREA RUNOFF(CFS) = 1.23
EFFECTIVE AREA(ACRES) = 1.10 AREA -AVERAGED FM(INCH/HR) _ .60
AREA -AVERAGED Fp(INCH/HR) _ .60 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 1.10 PEAK FLOW RATE(CFS) = 1.93
****************************************************************************
Ams FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 5.2
----------------------------------------------------------------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
-- » »>TRAVELTIME-THRU-SUBAREA« «<_________________________________________
ELEVATION DATA: UPSTREAM(FEET) = 1307.70 DOWNSTREAM(FEET) = 1307.20
CHANNEL LENGTH THRU SUBAREA(FEET) = 75.00 CHANNEL SLOPE _ .0067
CHANNEL FLOW THRU SUBAREA(CFS) = 1.93
FLOW VELOCITY(FEET/SEC) = 1.39 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) _ .90 Tc(MIN.) = 9.97
****************************************************************************
FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 9.97
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.408
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL POOR COVER
"GRASS" A .60 .60 1.00 67
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .60
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) _ .60 SUBAREA RUNOFF(CFS) _ .98
EFFECTIVE AREA(ACRES) = 1.70 AREA -AVERAGED Fm(INCH/HR) _ .60
AREA -AVERAGED Fp(INCH/HR) _ .60 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 1.70 PEAK FLOW RATE(CFS) = 2.77
FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 5.2
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
-------------------------------------
ELEVATION DATA: UPSTREAM(FEET) = 1307.20 DOWNSTREAM(FEET) = 1303.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 350.00 CHANNEL SLOPE _ .0120
CHANNEL FLOW THRU SUBAREA(CFS) = 2.77
FLOW VELOCITY(FEET/SEC) = 2.02 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 2.89 Tc(MIN.) = 12.85
FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 12.85
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.067
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL POOR COVER
"GRASS" A .90 .60 1.00 67
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .60
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) = .90
EFFECTIVE AREA(ACRES) = 2.60
AREA -AVERAGED Fp(INCH/HR) _ .60
TOTAL AREA(ACRES) = 2.60
SUBAREA RUNOFF(CFS) = ,1.19
AREA -AVERAGED Fm(INCH/HR) _ .60
AREA -AVERAGED Ap = 1.00
PEAK FLOW RATE(CFS) = 3.44
****************************************************************************
FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 5.2
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
------------------
ELEVATION DATA: UPSTREAM(FEET) = 1303.00 DOWNSTREAM(FEET) = 1302.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 60.00 CHANNEL SLOPE = .0167
CHANNEL FLOW THRU SUBAREA(CFS) = 3.44
FLOW VELOCITY(FEET/SEC) = 2.50 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = .40 Tc(MIN.) = 13.25
****************************************************************************
FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 13.25
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.029
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL POOR COVER
"GRASS" A .70 .60 1.00 67
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .60
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) = .70 SUBAREA RUNOFF(CFS) _ .90
EFFECTIVE AREA(ACRES) = 3.30 AREA -AVERAGED Fm(INCH/HR) _ .60
AREA -AVERAGED Fp(INCH/HR) _ .60 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 3.30 PEAK FLOW RATE(CFS) = 4.25
****************************************************************************
FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1
----------------------------------------------------------------------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) = 13.25
RAINFALL INTENSITY(INCH/HR) = 2.03
AREA -AVERAGED Fm(INCH/HR) = .60
AREA -AVERAGED Fp(INCH/HR) = .60
AREA -AVERAGED Ap = 1.00
EFFECTIVE STREAM AREA(ACRES) = 3.30
TOTAL STREAM AREA(ACRES) = 3.30
PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.25
Ap*- ** CONFLUENCE DATA **
STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
�+ 1 7.36 11.29 2.235 .60( .60) 1.00 5.00 .00
2 4.25 13.25 2.029 .60( .60) 1.00 3.30 .00
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM
Q
Tc
Intensity
Fp(Fm) Ap Ae
SOURCE
NUMBER
(CFS)
(MIN.)
(INCH/HR)
(INCH/HR) (ACRES)
NODE
1
11.5
11.29
2.235
.598( .598) 1.00 7.8
.00
2
10.7
13.25
2.029
.598( .598) 1.00 8.3
.00
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 11.50 Tc(MIN.) = 11.29
EFFECTIVE AREA(ACRES) = 7.81 AREA -AVERAGED Fm(INCH/HR) _ .60
AREA -AVERAGED Fp(INCH/HR) _ .60 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 8.30
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 8.30 TC(MIN.) = 11.29
EFFECTIVE AREA(ACRES) = 7.81 AREA -AVERAGED Fm(INCH/HR)= .60
AREA -AVERAGED Fp(INCH/HR) _ .60 AREA -AVERAGED Ap = 1.00
PEAK FLOW RATE(CFS) = 11.50
** PEAK FLOW RATE TABLE **
STREAM
Q
Tc
Intensity
Fp(Fm) Ap Ae
SOURCE
NUMBER
(CFS)
(MIN.)
(INCH/HR)
(INCH/HR) (ACRES)
NODE
1
11.5
11.29
2.235
.598( .598) 1.00 7.8
.00
2
10.7
13.25
2.029
.598( .598) 1.00 8.3
.00
END OF
RATIONAL
METHOD ANALYSIS
@4
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
(Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-95 Advanced Engineering Software (aes)
Ver. 5.1A Release Date: 08/01/95 License ID 1400
Analysis prepared by:
ALLARD ENGINEERING, INC.
6101 CHERRY AVENUE
FONTANA, CALIFORNIA 92336
(909) 899 - 5011
************************** DESCRIPTION OF STUDY **************************
* Tract 16271-1 Q25 Predeveloped Condition
*
*
**************************************************************************
FILE NAME: 16271U.DAT
TIME/DATE OF STUDY: 17:41 6/27/2004
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
--*TIME-OF-CONCENTRATION MODEL* --
USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90
*USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) _ .6000
USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) _ .9800
*ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD*
*
*
*USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
1 30.0 20.0 .020/ 020/ 020 0.5 2.00 03125 1670 01500
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1. Relative Flow -Depth = .00 FEET
as (Maximum Allowable Street Flow Depth) - (Top -of -Curb)
2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE .00 TO NODE 1.00 IS CODE = 2.1
--- 7 ----------------------------------- -------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 7.395
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.441
SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp
LAND USE GROUP (ACRES) (INCH/HR)
NATURAL POOR COVER
"GRASS" A .30 .60
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) =
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA RUNOFF(CFS) _ .77
TOTAL AREA(ACRES) = .30 PEAK FLOW RATE(CFS)
Ap SCS Tc
(DECIMAL) CN (MIN.)
1.00 67 7.40
.60
.77
****************************************************************************
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 5.2
----------------------------------------------------------------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
--------------------------------------------
ELEVATION DATA: UPSTREAM(FEET) = 1312.20 DOWNSTREAM(FEET) = 1310.20
CHANNEL LENGTH THRU SUBAREA(FEET) = 110.00 CHANNEL SLOPE = .0182
NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION
CHANNEL FLOW THRU SUBAREA(CFS) = .77
FLOW VELOCITY(FEET/SEC) = 2.02 (PER LACFCD HYDROLOGY MANUAL)
rr► TRAVEL TIME(MIN.) _ .91 TC(MIN.) = 8.30
****************************************************************************
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 8.30
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.211
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL POOR COVER
"GRASS" A .70 .60 1.00 67
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .60
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) = .70 SUBAREA RUNOFF(CFS) = 1.65
EFFECTIVE AREA(ACRES) = 1.00 AREA -AVERAGED Fm(INCH/HR) _ .60
AREA -AVERAGED Fp(INCH/HR) _ .60 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) = 2.35
****************************************************************************
FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 5.2
--- ------------------------------------ ------------ -------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
INITIAL SUBAREA
FLOW-LENGTH(FEET)
= 1.10.00
ELEVATION DATA:
UPSTREAM(FEET) =
1314.60 DOWNSTREAM(FEET) = 1312.20
TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 7.395
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.441
SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp
LAND USE GROUP (ACRES) (INCH/HR)
NATURAL POOR COVER
"GRASS" A .30 .60
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) =
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA RUNOFF(CFS) _ .77
TOTAL AREA(ACRES) = .30 PEAK FLOW RATE(CFS)
Ap SCS Tc
(DECIMAL) CN (MIN.)
1.00 67 7.40
.60
.77
****************************************************************************
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 5.2
----------------------------------------------------------------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
--------------------------------------------
ELEVATION DATA: UPSTREAM(FEET) = 1312.20 DOWNSTREAM(FEET) = 1310.20
CHANNEL LENGTH THRU SUBAREA(FEET) = 110.00 CHANNEL SLOPE = .0182
NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION
CHANNEL FLOW THRU SUBAREA(CFS) = .77
FLOW VELOCITY(FEET/SEC) = 2.02 (PER LACFCD HYDROLOGY MANUAL)
rr► TRAVEL TIME(MIN.) _ .91 TC(MIN.) = 8.30
****************************************************************************
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 8.30
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.211
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL POOR COVER
"GRASS" A .70 .60 1.00 67
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .60
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) = .70 SUBAREA RUNOFF(CFS) = 1.65
EFFECTIVE AREA(ACRES) = 1.00 AREA -AVERAGED Fm(INCH/HR) _ .60
AREA -AVERAGED Fp(INCH/HR) _ .60 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) = 2.35
****************************************************************************
FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 5.2
--- ------------------------------------ ------------ -------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 1310.20 DOWNSTREAM(FEET) = 1308.60
CHANNEL LENGTH THRU SUBAREA(FEET) = 85.00 CHANNEL SLOPE _ .0188
CHANNEL FLOW THRU SUBAREA(CFS) = 2.35
FLOW VELOCITY(FEET/SEC) = 2.44 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) _ .58 Tc(MIN.) = 8.88
****************************************************************************
FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 8.1
-----------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 8.88
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.083
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL POOR COVER
"GRASS" A 1.40 .60 1.00 67
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .60
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) = 1.40 SUBAREA RUNOFF(CFS) = 3.13
EFFECTIVE AREA(ACRES) = 2.40 AREA -AVERAGED Fm(INCH/HR) _ .60
AREA -AVERAGED Fp(INCH/HR) _ .60 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 2.40 PEAK FLOW RATE(CFS) = 5.37
( FLOW PROCESS FROM NODE 3.00 -TO -NODE ------400 IS CODE = 5.2
-
--------------------------------- ------------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 1308.60 DOWNSTREAM(FEET) = 1304.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 260.00 CHANNEL SLOPE _ .0177
CHANNEL FLOW THRU SUBAREA(CFS) = 5.37
FLOW VELOCITY(FEET/SEC) = 2.85 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 1.52 Tc(MIN.) .= 10.40
FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 8.1
-----------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE TC(MIN) = 10.40
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.805
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL POOR COVER
"GRASS" A 1.10 .60 1.00 67
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .60
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) = 1.10 SUBAREA RUNOFF(CFS) = 2.18
EFFECTIVE AREA(ACRES) = 3.50 AREA -AVERAGED Fm(INCH/HR) _ .60
AREA -AVERAGED Fp(INCH/HR) = .60 AREA -AVERAGED Ap = 1.00,
TOTAL AREA(ACRES) = 3.50 PEAK FLOW RATE(CFS) = 6.95
****************************************************************************
FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 5.2
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
-------------------------------------------
ELEVATION DATA: UPSTREAM(FEET) = 1304.00 DOWNSTREAM(FEET) = 1303.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 100.00 CHANNEL SLOPE = .0100
CHANNEL FLOW THRU SUBAREA(CFS) = 6.95
FLOW VELOCITY(FEET/SEC) = 2.28 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = .73 Tc(MIN.) = 11.13
****************************************************************************
FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE =
8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
.60
MAINLINE TC(MIN) = 11.13
.60
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.693
SUBAREA LOSS RATE DATA(AMC II):
= 5.00
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap
SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL)
CN
NATURAL POOR COVER
"GRASS" A 1.50 .60 1.00
67
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .60
`�✓ SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) = 1.50 SUBAREA RUNOFF(CFS) = 2.83
EFFECTIVE AREA(ACRES) = 5.00 AREA -AVERAGED Fm(INCH/HR) _
.60
AREA -AVERAGED Fp(INCH/HR) _ .60 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 5.00 PEAK FLOW RATE(CFS) =
9.43
****************************************************************************
FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1
----------------------------------------------------------------------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) = 11.13
RAINFALL INTENSITY(INCH/HR) =
2.69
AREA -AVERAGED Fm(INCH/HR) =
.60
AREA -AVERAGED Fp(INCH/HR) =
.60
AREA -AVERAGED Ap = 1.00
EFFECTIVE STREAM AREA(ACRES)
= 5.00
TOTAL STREAM AREA(ACRES) =
5.00
PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.43
,. FLOW PROCESS FROM NODE .00 TO NODE 1.00 IS CODE = 2.1
---------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
-->>USE-TIME-OF-CONCENTRATION- NOMOGRAPH -FOR -INITIAL -SUBAREA<<---------------
INITIAL SUBAREA FLOW-LENGTH(FEET) = 120.00
ELEVATION DATA: UPSTREAM(FEET) = 1312.40 DOWNSTREAM(FEET) = 1310.00
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.792
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.335
SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp
LAND USE GROUP (ACRES) (INCH/HR)
NATURAL POOR COVER
"GRASS" A .40 .60
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) =
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA RUNOFF(CFS) _ .99
TOTAL AREA(ACRES) = .40 PEAK FLOW RATE(CFS)
Ap SCS Tc
(DECIMAL) CN (MIN.)
1.00 67 7.79
.60
.99
****************************************************************************
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 5.2
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
-------------------
ELEVATION DATA: UPSTREAM(FEET) = 1310.00 DOWNSTREAM(FEET) = 1307.70
CHANNEL LENGTH THRU SUBAREA(FEET) = 145.00 CHANNEL SLOPE = .0159
NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION
CHANNEL FLOW THRU SUBAREA(CFS) = .99
FLOW VELOCITY(FEET/SEC) = 1.89 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 1.28 Tc(MIN.) = 9.07
****************************************************************************
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 9.07
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.045
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL POOR COVER
"GRASS" A .70 .60 1.00 67
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .60
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) = .70 SUBAREA RUNOFF(CFS) = 1.54
EFFECTIVE AREA(ACRES) = 1.10 AREA -AVERAGED FM(INCH/HR) _ .60
AREA -AVERAGED Fp(INCH/HR) _ .60 AREA -AVERAGED Ap = 1.00
"TOTAL AREA(ACRES) = 1.10 PEAK FLOW RATE(CFS) = 2.42
****************************************************************************
FLOWPROCESSFROMNODE200TO NODE 300 -IS CODE = 5.2
--- - - ------ -
----------- ---------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
-- » » >TRAVELTIME-THRU-SUBAREA« «<_________________________________________
ELEVATION DATA: UPSTREAM(FEET) = 1307.70 DOWNSTREAM(FEET) = 1307.20
CHANNEL LENGTH THRU SUBAREA(FEET) = 75.00 CHANNEL SLOPE _ .0067
CHANNEL FLOW THRU SUBAREA(CFS) = 2.42
FLOW VELOCITY(FEET/SEC) = 1.46 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) _ .85 Tc(MIN.) = 9.92
****************************************************************************
FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<< <<<
MAINLINE Tc(MIN) = 9.92
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.885
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL POOR COVER
"GRASS" A .60 .60 1.00 67
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .60
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) _ .60 SUBAREA RUNOFF(CFS) = 1.23
EFFECTIVE AREA(ACRES) = 1.70 AREA -AVERAGED FM(INCH/HR) _ .60
AREA -AVERAGED Fp(INCH/HR) _ .60 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 1.70 PEAK FLOW RATE(CFS) = 3.50
****************************************************************************
FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 5.2
----------------------------------------------------------------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
------------------------------------------------
ELEVATION DATA: UPSTREAM(FEET) = 1307.20 DOWNSTREAM(FEET) = 1303.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 350.00 CHANNEL SLOPE _ .0120
CHANNEL FLOW THRU SUBAREA(CFS) = 3.50
FLOW VELOCITY(FEET/SEC) = 2.13 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 2.74 Tc(MIN.) = 12.67
****************************************************************************
FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 12.67
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.492
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL POOR COVER
"GRASS" A .90 .60 1.00 67
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .60
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) = .90
EFFECTIVE AREA(ACRES) = 2.60
AREA -AVERAGED Fp(INCH/HR) _ .60
TOTAL AREA(ACRES) = 2.60
SUBAREA RUNOFF(CFS) = .1.53
AREA -AVERAGED FM(INCH/HR) _ .60
AREA -AVERAGED Ap = 1.00
PEAK FLOW RATE(CFS) = 4.43
****************************************************************************
FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 5.2
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
-----------------------------------------
ELEVATION DATA: UPSTREAM(FEET) = 1303.00 DOWNSTREAM(FEET) = 1302.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 60.00 CHANNEL SLOPE = .0167
CHANNEL FLOW THRU SUBAREA(CFS) = 4.43
FLOW VELOCITY(FEET/SEC) = 2.65 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = .38 Tc(MIN.) = 13.04
****************************************************************************
FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 13.04
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.448
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL POOR COVER
"GRASS" A .70 .60 1.00 67
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .60
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) = .70 SUBAREA RUNOFF(CFS) = 1.17
EFFECTIVE AREA(ACRES) = 3.30 AREA -AVERAGED Fm(INCH/HR) _ .60
AREA -AVERAGED Fp(INCH/HR) _ .60 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 3.30 PEAK FLOW RATE(CFS) = 5.50
****************************************************************************
FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1
----------------------------------------------------------------------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) = 13.04
RAINFALL INTENSITY(INCH/HR) = 2.45
AREA -AVERAGED FM(INCH/HR) = .60
AREA -AVERAGED Fp(INCH/HR) = .60
AREA -AVERAGED Ap = 1.00
EFFECTIVE STREAM AREA(ACRES) = 3.30
TOTAL STREAM AREA(ACRES) = 3.30
PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.50
** CONFLUENCE DATA **
STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE
NUMBER
(CFS)
(MIN.)
(INCH/HR)
(INCH/HR)
(ACRES)
NODE
.. 1
9.43
11.13
2.693
.60( ..60)
1.00 5.00
.00
2
5.50
13.04
2.448
.60( .60)
1.00 3.30
.00
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM
Q
Tc
Intensity
Fp(Fm) Ap Ae
SOURCE
NUMBER
(CFS)
(MIN.)
(INCH/HR)
(INCH/HR) (ACRES)
NODE
1
14.7
11.13
2.693
.598( .598) 1.00 7.8
.00
2
13.8
13.04
2.448
.598( .598) 1.00 8.3
.00
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) =
14.74
Tc(MIN.) = 11.13
EFFECTIVE AREA(ACRES) =
7.82
AREA -AVERAGED Fm(INCH/HR) _
.60
AREA -AVERAGED Fp(INCH/HR) _ .60
AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) =
8.30
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) =
8.30
TC(MIN.) = 11.13
EFFECTIVE AREA(ACRES) =
7.82
AREA -AVERAGED Fm(INCH/HR)=
.60
AREA -AVERAGED Fp(INCH/HR) _ .60
AREA -AVERAGED Ap = 1.00
PEAK FLOW RATE(CFS) =
14.74
** PEAK FLOW RATE TABLE
**
STREAM Q Tc
Intensity
Fp(Fm) Ap Ae
SOURCE
11001,..
NUMBER (CFS) (MIN.)
(INCH/HR)
(INCH/HR) (ACRES)
NODE
1 14.7 11.13
2.693
.598( .598) 1.00 7.8
.00
2 13.8 13.04
2.448
.598( .598) 1.00 8.3
.00
END OF RATIONAL METHOD
ANALYSIS
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
(Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-95 Advanced Engineering Software (aes)
Ver. 5.1A Release Date: 08/01/95 License ID 1400
Analysis prepared by:
ALLARD ENGINEERING, INC.
6101 CHERRY AVENUE
FONTANA, CALIFORNIA 92336
(909) 899 - 5011
************************** DESCRIPTION OF STUDY **************************
* Tract 16271-1 Q100 Predeveloped Condition
* *
*
*
**************************************************************************
FILE NAME: 16271U.DAT
TIME/DATE OF STUDY: 17:44 6/27/2004
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
----------
--*TIME-OF-CONCENTRATION MODEL* --
USER SPECIFIED STORM EVENT(YEAR) = 100.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .90
*USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) _ .6000
USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) = 1.2000
*ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD*
*USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
-------------------------- -----
1 30.0 20.0 .020/ .020/ .020 0.5 2.00 .03125 .1670 .01500
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1. Relative Flow -Depth = .00 FEET
as (Maximum Allowable Street Flow Depth) - (Top -of -Curb)
2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE .00 TO NODE 1.00 IS CODE = 2.1
----------------------------------------------------------------------------
» » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS -l< < <
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
----------------------------------------------------------------------------
----------------------------------------------------------------------------
INITIAL SUBAREA FLOW-LENGTH(FEET) = 110.00
ELEVATION DATA: UPSTREAM(FEET) = 1314.60 DOWNSTREAM(FEET) = 1312.20
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.395
* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.214
SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp
LAND USE GROUP (ACRES) (INCH/HR)
NATURAL POOR COVER
"GRASS" A .30 .60
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) =
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA RUNOFF(CFS) _ .98
TOTAL AREA(ACRES) = .30 PEAK FLOW RATE(CFS)
Ap SCS Tc
(DECIMAL) CN (MIN.)
1.00 67 7.40
.60
.98
****************************************************************************
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 5.2
----------------------------------------------------------------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 1312.20 DOWNSTREAM(FEET) = 1310.20
CHANNEL LENGTH THRU SUBAREA(FEET) = 110.00 CHANNEL SLOPE = .0182
NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION
CHANNEL FLOW THRU SUBAREA(CFS) = .98
FLOW VELOCITY(FEET/SEC) = 2.02 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = .91 Tc(MIN.) = 8.30
****************************************************************************
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
-------------------------
-------------------------
MAINLINE Tc(MIN) = 8.30
* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.932
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL POOR COVER
"GRASS" A .70 .60 1.00 67
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .60
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) = .70 SUBAREA RUNOFF(CFS) = 2.10
EFFECTIVE AREA(ACRES) = 1.00 AREA -AVERAGED Fm(INCH/HR) _ .60
AREA -AVERAGED Fp(INCH/HR) _ .60 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) = 3.00
****************************************************************************
FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 5.2
----------------------------------------------------------------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
�... ELEVATION DATA: UPSTREAM(FEET) = 1310.20 DOWNSTREAM(FEET) = 1308.60
CHANNEL LENGTH THRU SUBAREA(FEET) = 85.00 CHANNEL SLOPE = .0188
CHANNEL FLOW THRU SUBAREA(CFS) = 3.00
FLOW VELOCITY(FEET/SEC) = 2.58 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = .55 Tc(MIN.) = 8.85
****************************************************************************
FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 8.85
* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.783
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL POOR COVER
"GRASS" A 1.40 .60 1.00 67
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .60
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) = 1.40 SUBAREA RUNOFF(CFS) = 4.01
EFFECTIVE AREA(ACRES) = 2.40 AREA -AVERAGED Fm(INCH/HR) _ .60
AREA -AVERAGED Fp(INCH/HR) _ .60 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 2.40 PEAK FLOW RATE(CFS) = 6.88
****************************************************************************
FLOW PROCESS FROM-NODE------300-TO-NODE------400-IS CODE = 5.2
-
------------------ ---------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
--------------------------------------------------------------------
ELEVATION DATA: UPSTREAM(FEET) = 1308.60 DOWNSTREAM(FEET) = 1304.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 260.00 CHANNEL SLOPE = .0177
CHANNEL FLOW THRU SUBAREA(CFS) = 6.88
FLOW VELOCITY(FEET/SEC) = 3.03 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 1.43 Tc(MIN.) = 10.28
****************************************************************************
FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 10.28
* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.458
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL POOR COVER
"GRASS" A 1.10 .60 1.00 67
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .60
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) = 1.10 SUBAREA RUNOFF(CFS) = 2.83
EFFECTIVE AREA(ACRES) = 3.50 AREA -AVERAGED Fm(INCH/HR) _ .60
�11�✓
AREA -AVERAGED Fp(INCH/HR) = .60 AREA -AVERAGED Ap = 1.00.
�,.. TOTAL AREA(ACRES) = 3.50 PEAK FLOW RATE(CFS) = 9.01
r
****************************************************************************
FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 5.2
-------------------------------------------------------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 1304.00 DOWNSTREAM(FEET) = 1303.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 100.00 CHANNEL SLOPE = .0100
CHANNEL FLOW THRU SUBAREA(CFS) = 9.01
FLOW VELOCITY(FEET/SEC) = 2.43 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = .68 Tc(MIN.) = 10.97
****************************************************************************
FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE =
8.1
---------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
.60
MAINLINE Tc(MIN) = 10.97
.60
* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.327
SUBAREA LOSS RATE DATA(AMC II):
= 5.00
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap
SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL)
CN
NATURAL POOR COVER
"GRASS" A 1.50 .60 1.00
67
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .60
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) = 1.50 SUBAREA RUNOFF(CFS) = 3.68
EFFECTIVE AREA(ACRES) = 5.00 AREA -AVERAGED Fm(INCH/HR) _
.60
AREA -AVERAGED Fp(INCH/HR) _ .60 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 5.00 PEAK FLOW RATE(CFS) =
12.28
****************************************************************************
FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1
-------------------------------------------------------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) = 10.97
RAINFALL INTENSITY(INCH/HR) =
3.33
AREA -AVERAGED Fm(INCH/HR) =
.60
AREA -AVERAGED Fp(INCH/HR) =
.60
AREA -AVERAGED Ap = 1.00
EFFECTIVE STREAM AREA(ACRES)
= 5.00
TOTAL STREAM AREA(ACRES) =
5.00
PEAK FLOW RATE(CFS) AT CONFLUENCE = 12.28
****************************************************************************
FLOW PROCESS FROM NODE .00 TO NODE 1.00 IS CODE = 2.1
Aft------------
-----------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
-->>USE-TIME-OF-CONCENTRATION- NOMOGRAPH -FOR -INITIAL -SUBAREA<<---------------
INITIAL SUBAREA FLOW-LENGTH(FEET) 120.00
ELEVATION DATA: UPSTREAM(FEET) = 1312.40 DOWNSTREAM(FEET) = 1310.00
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.792
* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.084
SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp
LAND USE GROUP (ACRES) (INCH/HR)
NATURAL POOR COVER
"GRASS" A .40 .60
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) =
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA RUNOFF(CFS) = 1.25
TOTAL AREA(ACRES) = .40 PEAK FLOW RATE(CFS)
Ap SCS Tc
(DECIMAL) CN (MIN.)
1.00 67 7.79
.60
1.25
****************************************************************************
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 5.2
----------------------------------------------------------------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
-----------------------------------
ELEVATION DATA: UPSTREAM(FEET) = 1310.00 DOWNSTREAM(FEET) = 1307.70
CHANNEL LENGTH THRU SUBAREA(FEET) = 145.00 CHANNEL SLOPE = .0159
CHANNEL FLOW THRU SUBAREA(CFS) = 1.25
FLOW VELOCITY(FEET/SEC) = 1.97 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 1.22 Tc(MIN.) = 9.02
****************************************************************************
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 9.02
* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.742
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL POOR COVER
"GRASS" A .70 .60 1.00 67
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .60
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) = .70 SUBAREA RUNOFF(CFS) = 1.98
EFFECTIVE AREA(ACRES) = 1.10 AREA -AVERAGED Fm(INCH/HR) _ .60
AREA -AVERAGED Fp(INCH/HR) _ .60 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 1.10 PEAK FLOW RATE(CFS) = 3.11
****************************************************************************
FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 5.2
----------------------------------------------------------------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<< <<<
ELEVATION DATA: UPSTREAM(FEET) = 1307.70 DOWNSTREAM(FEET) = 1307.20
CHANNEL LENGTH THRU SUBAREA(FEET) = 75.00 CHANNEL SLOPE _ .0067
CHANNEL FLOW THRU SUBAREA(CFS) = 3.11
FLOW VELOCITY(FEET/SEC) = 1.55 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) _ .81 Tc(MIN.) = 9.83
****************************************************************************
FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 9.83
* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.554
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL POOR COVER
"GRASS" A .60 .60 1.00 67
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .60
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) _ .60 SUBAREA RUNOFF(CFS) = 1.60
EFFECTIVE AREA(ACRES) = 1.70 AREA -AVERAGED Fm(INCH/HR) _ .60
AREA -AVERAGED Fp(INCH/HR) _ .60 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 1.70 PEAK FLOW RATE(CFS) = 4.52
****************************************************************************
FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 5.2
----------------------------------------------------------------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
---------------------
ELEVATION DATA: UPSTREAM(FEET) = 1307.20 DOWNSTREAM(FEET) = 1303.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 350.00 CHANNEL SLOPE _ .0120
CHANNEL FLOW THRU SUBAREA(CFS) = 4.52
FLOW VELOCITY(FEET/SEC) = 2.26 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 2.58 Tc(MIN.) = 12.41
****************************************************************************
FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 12.41
* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.089
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL POOR COVER
"GRASS" A .90 .60 1.00 67
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR)'= .60
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) _ .90 SUBAREA RUNOFF(CFS) = 2.02
EFFECTIVE AREA(ACRES) = 2.60 AREA -AVERAGED Fm(INCH/HR) _ .60
AREA -AVERAGED Fp(INCH/HR) _ .60 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 2.60 PEAK FLOW RATE(CFS) = 5.83
FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 5.2
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
-----------------------------------------------
ELEVATION DATA: UPSTREAM(FEET) = 1303.00 DOWNSTREAM(FEET) = 1302.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 60.00 CHANNEL SLOPE _ .0167
CHANNEL FLOW THRU SUBAREA(CFS) = 5.83
FLOW VELOCITY(FEET/SEC) = 2.82 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) _ .35 Tc(MIN.) = 12.76
****************************************************************************
FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE =
8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 12.76
* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.037
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap
SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL)
CN
NATURAL POOR COVER
"GRASS" A .70 .60 1.00
67
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .60
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) _ .70 SUBAREA RUNOFF(CFS) = 1.54
EFFECTIVE AREA(ACRES) = 3.30 AREA -AVERAGED Fm(INCH/HR) _
.60
AREA -AVERAGED Fp(INCH/HR) _ .60 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 3.30 PEAK FLOW RATE(CFS) =
7.24
FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1
----------------------------------------------------------------------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) = 12.76
RAINFALL INTENSITY(INCH/HR) = 3.04
AREA -AVERAGED Fm(INCH/HR) _ .60
AREA -AVERAGED Fp(INCH/HR) _ .60
AREA -AVERAGED Ap = 1.00
EFFECTIVE STREAM AREA(ACRES) = 3.30
TOTAL STREAM AREA(ACRES) = 3.30
PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.24
** CONFLUENCE DATA **
STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
1 12.28 10.97 3.327 .60( .60) 1.00 5.00 .00
Avft� 2 7.24 12.76 3.037 .60( .60) 1.00 3.30 .00
1144' RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM Q Tc
Intensity
Fp (Fm)
Ap Ae
SOURCE
NUMBER (CFS) (MIN.)
(INCH/HR)
(INCH/HR)
(ACRES)
NODE
1 19.2 10.97
3.327
.598( .598)
1.00 7.8
.00
2 18.2 12.76
3.037
.598( .598)
1.00 8.3
.00
COMPUTED CONFLUENCE ESTIMATES ARE
AS FOLLOWS:
PEAK FLOW RATE(CFS) =
19.24
Tc(MIN.) =
10.97
EFFECTIVE AREA(ACRES) =
7.84
AREA -AVERAGED Fm(INCH/HR) _
.60
AREA -AVERAGED Fp(INCH/HR) _ .60
AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) =
8.30
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) =
8.30
TC(MIN.) =
10.97
EFFECTIVE AREA(ACRES) =
7.84
AREA -AVERAGED Fm(INCH/HR)=
.60
AREA -AVERAGED Fp(INCH/HR) _ .60
AREA -AVERAGED Ap = 1.00
PEAK FLOW RATE(CFS) =
19.24
** PEAK FLOW RATE TABLE
**
STREAM Q Tc
Intensity
Fp(Fm)
Ap Ae
SOURCE
NUMBER (CFS) (MIN.)
(INCH/HR)
(INCH/HR)
(ACRES)
NODE
1 19.2 10.97
3.327
.598( .598)
1.00 7.8
.00
2 18.2 12.76
3.037
.598( .598)
1.00 8.3
.00
END OF RATIONAL METHOD ANALYSIS
@4
N
Offsite Predeveloped
Onsite Developed
Rational Method Hydrology
2910525 & 100
Year Storm Events
e
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
(Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-95 Advanced Engineering Software (aes)
Ver. 5.1A Release Date: 08/01/95 License ID 1400
Analysis prepared by:
ALLARD ENGINEERING, INC.
6101 CHERRY AVENUE
FONTANA, CALIFORNIA 92336
(909) 899 - 5011
************************** DESCRIPTION OF STUDY **************************
* Tract 16271-1 Q2 Developed Condition
*
*
**************************************************************************
FILE NAME: 16271D.DAT
TIME/DATE OF STUDY: 8:21 6/29/2004
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
--*TIME-OF-CONCENTRATION MODEL* --
USER SPECIFIED STORM EVENT(YEAR) = 2.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90
*USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = .6000
USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) = .5600
*ANTECEDENT MOISTURE CONDITION (AMC III) ASSUMED FOR RATIONAL METHOD*
*
*USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
--- ----- --------- ----------
1 30.0 20.0 .018/ .018/ .020 .67 2.00 .03125 .1670 .01500
2 18.0 9.0 .020/ .020/ --- .50 1.50 .03125 .1250 .01500
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1. Relative Flow -Depth = .24 FEET
as (Maximum Allowable Street Flow Depth) - (Top -of -Curb)
2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE .00 TO NODE 1.00 IS CODE = 2.1
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<.
INITIAL SUBAREA FLOW-LENGTH(FEET) = 110.00
ELEVATION DATA: UPSTREAM(FEET) = 1314.60 DOWNSTREAM(FEET) = 1312.20
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.395
* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.967
SUBAREA Tc AND LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp
LAND USE GROUP (ACRES) (INCH/HR)
NATURAL POOR COVER
"GRASS" A .30 .29
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) =
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA RUNOFF(CFS) _ .45
TOTAL AREA(ACRES) = .30 PEAK FLOW RATE(CFS)
Ap SCS Tc
(DECIMAL) CN (MIN.)
1.00 85 7.40
.29
_ .45
****************************************************************************
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 5.2
----------------------------------------------------------------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 1312.20 DOWNSTREAM(FEET) = 1310.20
CHANNEL LENGTH THRU SUBAREA(FEET) = 110.00 CHANNEL SLOPE = .0182
NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION
CHANNEL FLOW THRU SUBAREA(CFS) = .45
FLOW VELOCITY(FEET/SEC) = 2.02 (PER LACFCD HYDROLOGY MANUAL)
✓ TRAVEL TIME(MIN.) = .91 Tc(MIN.) = 8.30
****************************************************************************
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 8.1
-----------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 8.30
* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.835
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL POOR COVER
"GRASS" A .70 .29 1.00 85
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .29
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) = .70 SUBAREA RUNOFF(CFS) _ .97
EFFECTIVE AREA(ACRES) = 1.00 AREA -AVERAGED Fm(INCH/HR) _ .29
AREA -AVERAGED Fp(INCH/HR) _ .29 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) = 1.39
****************************************************************************
FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 5.2
--------------------------------------------------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 1310.20 DOWNSTREAM(FEET) = 1308.60
CHANNEL LENGTH THRU SUBAREA(FEET) = 90.00 CHANNEL SLOPE _ .0178
CHANNEL FLOW THRU SUBAREA(CFS) = 1.39
FLOW VELOCITY(FEET/SEC) = 2.13 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = .70 Tc(MIN.) = 9.01
****************************************************************************
FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 9.01
* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.747
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL POOR COVER
"GRASS" A 1.40 .29 1.00 85
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .29
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) = 1.40 SUBAREA RUNOFF(CFS) = 1.84
EFFECTIVE AREA(ACRES) = 2.40 AREA -AVERAGED Fm(INCH/HR) _ .29
AREA -AVERAGED Fp(INCH/HR) _ .29 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 2.40 PEAK FLOW RATE(CFS) = 3.15
ce ****************************************************************************
FLOW PROCESS FROM NODE 3.00 TO NODE 6.00 IS CODE = 5.2
----------------------------------------------------------------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
ELEVATION DATA: DATA: UPSTREAM(FEET) = 1308.60 DOWNSTREAM(FEET) = 1306.40
CHANNEL LENGTH THRU SUBAREA(FEET) = 175.00 CHANNEL SLOPE = .0126
CHANNEL FLOW THRU SUBAREA(CFS) = 3.15
FLOW VELOCITY(FEET/SEC) = , 2.13 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 1.37 Tc(MIN.) = 10.38
****************************************************************************
FLOW PROCESS FROM NODE 3.00 TO NODE 6.00 IS CODE = 8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 10.38
* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.605
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
RESIDENTIAL
"3-4 DWELLINGS/ACRE" A .12 .80 .60 52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60
SUBAREA AREA(ACRES) _ .12 SUBAREA RUNOFF(CFS) _ .12
NJ
14
EFFECTIVE AREA(ACRES) = 2.52 AREA -AVERAGED Fm(INCH/HR) _
AREA -AVERAGED Fp(INCH/HR) _ .30 AREA -AVERAGED Ap = .98
TOTAL AREA(ACRES) = 2.52 PEAK FLOW RATE(CFS) _
NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
.30
3.15
****************************************************************************
FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE = 1
----------------------------------------------------------------------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) = 10.38
RAINFALL INTENSITY(INCH/HR) = 1.60
AREA -AVERAGED Fm(INCH/HR) _ .30
AREA -AVERAGED Fp(INCH/HR) _ .30
AREA -AVERAGED Ap = .98
EFFECTIVE STREAM AREA(ACRES) = 2.52
TOTAL STREAM AREA(ACRES) = 2.52
PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.15
****************************************************************************
FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 2.1
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW-LENGTH(FEET) = 205.00
ELEVATION DATA: UPSTREAM(FEET) = 1310.70 DOWNSTREAM(FEET) = 1307.60
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.011
* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.874
SUBAREA Tc AND LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp
LAND USE GROUP (ACRES) (INCH/HR)
RESIDENTIAL
113-4 DWELLINGS/ACRE" A .50 .80
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60
SUBAREA RUNOFF(CFS) _ .63
TOTAL AREA(ACRES) _ .50 PEAK FLOW RATE(CFS)
Ap SCS Tc
(DECIMAL) CN (MIN.)
.60 52 8.01
.80
.63
****************************************************************************
FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE = 6.2
----------------------------------------------------------------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>(STREET TABLE SECTION # 2 USED)<<<<<
UPSTREAM ELEVATION(FEET) = 1307.60 DOWNSTREAM ELEVATION(FEET) = 1306.40
STREET LENGTH(FEET) = 240.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 18.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00
INSIDE STREET CROSSFALL(DECIMAL) _ .020
OUTSIDE STREET CROSSFALL(DECIMAL) _ .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.03
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
2 ARE:
STREET FLOW DEPTH(FEET) _ .28
HALFSTREET FLOOD WIDTH(FEET) = 7.85
AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.41
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) _ .40
STREET FLOW TRAVEL TIME(MIN.) = 2.84 TC(MIN.) = 10.85
* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.562
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap
SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL)
CN
RESIDENTIAL
Ap Ae SOURCE
115-7 DWELLINGS/ACRE" A .77 .80 .50
52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .80
.98 2.52 .00
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50
.54 1.27 4.00
SUBAREA AREA(ACRES) _ .77 SUBAREA RUNOFF(CFS) _ .81
EFFECTIVE AREA(ACRES) = 1.27 AREA -AVERAGED Fm(INCH/HR) _
.43
AREA -AVERAGED Fp(INCH/HR) _ .80 AREA -AVERAGED Ap = .54
TOTAL AREA(ACRES) = 1.27 PEAK FLOW RATE(CFS) =
1.30
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) _ .30 HALFSTREET FLOOD WIDTH(FEET) = 8.69
FLOW VELOCITY(FEET/SEC.) = 1.48 DEPTH*VELOCITY(FT*FT/SEC.) _
.45
****************************************************************************
FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE = 1
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM
2 ARE:
TIME OF CONCENTRATION(MIN.) = 10.85
RAINFALL INTENSITY(INCH/HR) = 1.56
AREA -AVERAGED Fm(INCH/HR) _ .43
AREA -AVERAGED Fp(INCH/HR) _ .80
AREA -AVERAGED Ap = .54
EFFECTIVE STREAM AREA(ACRES) = 1.27
TOTAL STREAM AREA(ACRES) = 1.27
PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.30
** CONFLUENCE DATA **
STREAM Q Tc Intensity Fp(Fm)
Ap Ae SOURCE
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR)
(ACRES) NODE
1 3.15 10.38 1.605 .30( .30)
.98 2.52 .00
2 1.30 10.85 1.562 .80( .43)
.54 1.27 4.00
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM
Q Tc
Intensity
Fp(Fm) Ap Ae .
SOURCE .
NUMBER
(CFS) (MIN.)
(INCH/HR)
(INCH/HR) (ACRES)
NODE
1
4.4 10.38
1.605
.408( .341) .84 3.7
.00
2
4.3 10.85
1.562
.411( .343) .83 3.8
4.00
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 4.43 Tc(MIN.) = 10.38
EFFECTIVE AREA(ACRES) = 3.73 AREA -AVERAGED Fm(INCH/HR) _ .34
AREA -AVERAGED Fp(INCH/HR) _ .41 AREA -AVERAGED Ap = .84
TOTAL AREA(ACRES) = 3.79
****************************************************************************
FLOW PROCESS FROM NODE 6.00 TO NODE 10.00 IS CODE = 6.2
----------------------------------------------------------------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
»»> (STREET TABLE SECTION # 2 USED) ««<
UPSTREAM ELEVATION(FEET) = 1306.40 DOWNSTREAM ELEVATION(FEET) = 1305.40
STREET LENGTH(FEET) = 175.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 18.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00
INSIDE STREET CROSSFALL(DECIMAL) _ .020
OUTSIDE STREET CROSSFALL(DECIMAL) _ .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.75
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
✓ STREET FLOW DEPTH(FEET) _ .42
HALFSTREET FLOOD WIDTH(FEET) = 14.62
AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.11
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) _ .88
STREET FLOW TRAVEL TIME(MIN.) = 1.39 TC(MIN.) = 11.76
* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.489
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
RESIDENTIAL
115-7 DWELLINGS/ACRE" A .64 .80 .50 52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50
SUBAREA AREA(ACRES) _ .64 SUBAREA RUNOFF(CFS) _ .63
EFFECTIVE AREA(ACRES) = 4.37 AREA -AVERAGED Fm(INCH/HR) _ .35
AREA -AVERAGED Fp(INCH/HR) _ .44 AREA -AVERAGED Ap = .79
TOTAL AREA(ACRES) = 4.43 PEAK FLOW RATE(CFS) = 4.48
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) _ .41 HALFSTREET FLOOD WIDTH(FEET) = 14.29
FLOW VELOCITY(FEET/SEC.) = 2.07 DEPTH*VELOCITY(FT*FT/SEC.) _ .86
****************************************************************************
FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE = 1
----------------------------------------------------------------------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
14
****************************************************************************
FLOW PROCESS FROM NODE .00 TO NODE 1.00 IS CODE = 2.1
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW-LENGTH(FEET) = 115.00
ELEVATION DATA: UPSTREAM(FEET) = 1312.40 DOWNSTREAM(FEET) = 1310.00
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
TOTAL NUMBER OF STREAMS = 3
* 2 YEAR RAINFALL
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
1.935
TIME OF CONCENTRATION(MIN.) =
11.76
RATE DATA(AMC III):
RAINFALL INTENSITY(INCH/HR) =
1.49
DEVELOPMENT TYPE/
AREA -AVERAGED Fm(INCH/HR) _
.35
Ap SCS Tc
AREA -AVERAGED Fp(INCH/HR) _
.44
(INCH/HR)
AREA -AVERAGED Ap = .79
NATURAL POOR COVER
EFFECTIVE STREAM AREA(ACRES)
= 4.37
"GRASS"
TOTAL STREAM AREA(ACRES) =
4.43
1.00 85 7.60
PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.48
14
****************************************************************************
FLOW PROCESS FROM NODE .00 TO NODE 1.00 IS CODE = 2.1
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW-LENGTH(FEET) = 115.00
ELEVATION DATA: UPSTREAM(FEET) = 1312.40 DOWNSTREAM(FEET) = 1310.00
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
7.595
* 2 YEAR RAINFALL
INTENSITY(INCH/HR) =
1.935
SUBAREA Tc AND LOSS
RATE DATA(AMC III):
DEVELOPMENT TYPE/
SCS SOIL AREA
Fp
Ap SCS Tc
LAND USE
GROUP (ACRES)
(INCH/HR)
(DECIMAL) CN (MIN.)
NATURAL POOR COVER
"GRASS"
A .30
.29
1.00 85 7.60
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _
.29
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap
= 1.00
SUBAREA RUNOFF(CFS)
_ .44
TOTAL AREA(ACRES) _
.30 PEAK FLOW
RATE(CFS)
_ .44
****************************************************************************
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 5.2
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<< <<<
-------------
ELEVATION DATA: UPSTREAM(FEET) = 1310.00 DOWNSTREAM(FEET) = 1307.70
CHANNEL LENGTH THRU SUBAREA(FEET) = 145.00 CHANNEL SLOPE _ .0159
NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION
CHANNEL FLOW THRU SUBAREA(CFS) _ .44
FLOW VELOCITY(FEET/SEC) = 1.89 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 1.28 Tc(MIN.) = 8.87
****************************************************************************
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 8.1
7 ---------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 8.87
* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.763
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL POOR COVER
"GRASS" A .60 .29 1.00 85
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .29
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) _ .60 SUBAREA RUNOFF(CFS) _ .80
EFFECTIVE AREA(ACRES) _ .90 AREA -AVERAGED Fm(INCH/HR) _ .29
AREA -AVERAGED Fp(INCH/HR) _ .29 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) _ .90 PEAK FLOW RATE(CFS) = 1.19
****************************************************************************
FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE =
5.2
----------------------------------------------------------------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 1307.70 DOWNSTREAM(FEET) =
1307.20
CHANNEL LENGTH THRU SUBAREA(FEET) = 55.00 CHANNEL SLOPE _
.0091
CHANNEL FLOW THRU SUBAREA(CFS) = 1.19
FLOW VELOCITY(FEET/SEC) = 1.48 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) _ .62 Tc(MIN.) = 9.49
****************************************************************************
FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE =
8.1
----------------------------------------------------------------------------
«<-----------------------
-->>>>>ADDITION-OF_SUBAREA-TO-MAINLINE_PEAK_FLOW<<
MAINLINE Tc(MIN) = 9.49
* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.693
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap
SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL)
CN
NATURAL POOR COVER
"GRASS" A .50 .29 1.00
85
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .29
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) _ .50 SUBAREA RUNOFF(CFS) _ .63
EFFECTIVE AREA(ACRES) = 1.40 AREA -AVERAGED Fm(INCH/HR) _
.29
AREA -AVERAGED Fp(INCH/HR) _ .29 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 1.40 PEAK FLOW RATE(CFS) =
1.77
****************************************************************************
FLOW PROCESS FROM NODE 3.00 TO NODE 10.00 IS CODE =
5.2
----------------------------------------------------------------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<< <<<
ELEVATION DATA: UPSTREAM(FEET) = 1307.20 DOWNSTREAM(FEET) =
1305.40
CHANNEL LENGTH THRU SUBAREA(FEET) = 170.00 CHANNEL SLOPE _
.0106
CHANNEL FLOWITHRU SUBAREA(CFS) = 1.77
FLOW VELOCITY(FEET/SEC) = 1.73 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 1.64 Tc(MIN.) = 11.14
****************************************************************************
FLOW PROCESS FROM NODE 3.00 TO NODE 10.00 IS CODE = 8.1
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<< <<<
-------------------------
-------------------------
MAINLINE Tc(MIN) = 11.14
* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.538
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
RESIDENTIAL
113-4 DWELLINGS/ACRE" A .10 .80 .60 52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60
SUBAREA AREA(ACRES) _ .10 SUBAREA RUNOFF(CFS) _ .10
EFFECTIVE AREA(ACRES) = 1.50 AREA -AVERAGED Fm(INCH/HR) _ .30
AREA -AVERAGED Fp(INCH/HR) _ .31 AREA -AVERAGED Ap = .97
TOTAL AREA(ACRES) = 1.50 PEAK FLOW RATE(CFS) = 1.77
NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
****************************************************************************
FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE = 1
----------------------------------------------------------------------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
TOTAL NUMBER OF STREAMS = 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) = 11.14
RAINFALL INTENSITY(INCH/HR) = 1.54
AREA -AVERAGED Fm(INCH/HR) _ .30
AREA -AVERAGED Fp(INCH/HR) _ .31
AREA -AVERAGED Ap = .97
EFFECTIVE STREAM AREA(ACRES) = 1.50
TOTAL STREAM AREA(ACRES) = 1.50
PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.77
****************************************************************************
FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 2.1
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW-LENGTH(FEET) = 205.00
ELEVATION DATA: UPSTREAM(FEET) = 1310.70 DOWNSTREAM(FEET) = 1307.60
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.011
* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.874
SUBAREA Tc AND LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
RESIDENTIAL
"3-4 DWELLINGS/ACRE" A .50 .80 .60 52 8.01
go
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60
SUBAREA RUNOFF(CFS) _ .63
TOTAL AREA(ACRES) = .50 PEAK FLOW RATE(CFS) _ .63
****************************************************************************
FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 6.2
----------------------------------------------------------------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>(STREET TABLE SECTION # 2 USED)<<<<<
----------------------------------------------------------------------------
----------------------------------------------------------------------------
UPSTREAM ELEVATION(FEET) = 1307.60 DOWNSTREAM ELEVATION(FEET) = 1306.40
STREET LENGTH(FEET) = 240.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 18.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00
INSIDE STREET CROSSFALL(DECIMAL) _ .020
OUTSIDE STREET CROSSFALL(DECIMAL) _ .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.10
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = .29
HALFSTREET FLOOD WIDTH(FEET) = 8.11
AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.42
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) _ .41
STREET FLOW TRAVEL TIME(MIN.) = 2.81 TC(MIN.) = 10.82
* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.565
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
RESIDENTIAL
115-7 DWELLINGS/ACRE" A .90 .80 .50 52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50
SUBAREA AREA(ACRES) = .90 SUBAREA RUNOFF(CFS) _ .95
EFFECTIVE AREA(ACRES) = 1.40 AREA -AVERAGED Fm(INCH/HR) _ .43
AREA -AVERAGED Fp(INCH/HR) _ .80 AREA -AVERAGED Ap = .54
TOTAL AREA(ACRES) = 1.40 PEAK FLOW RATE(CFS) = 1.43
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = .31 HALFSTREET FLOOD WIDTH(FEET) = 9.14
FLOW VELOCITY(FEET/SEC.) = 1.51 DEPTH*VELOCITY(FT*FT/SEC.) _ .47
****************************************************************************
FLOW PROCESS FROM NODE 9.00 TO NODE 10.00 IS CODE = 6.2
----------------------------------------------------------------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>(STREET TABLE SECTION # 2 USED)<<<<<
UPSTREAM ELEVATION(FEET) = 1306.40 DOWNSTREAM ELEVATION(FEET) = 1305.40
STREET LENGTH(FEET) = 175.00 CURB-HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 18.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00.
INSIDE STREET CROSSFALL(DECIMAL) _ .020
OUTSIDE STREET CROSSFALL(DECIMAL) _ .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.76
10.00 IS CODE
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
----------------------------------------------------------------------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
STREET FLOW DEPTH(FEET) _ .32
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
HALFSTREET FLOOD WIDTH(FEET) = 9.65
TOTAL NUMBER OF STREAMS = 3
AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.68
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) _ .54
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM
STREET FLOW TRAVEL TIME(MIN.) = 1.74 Tc(MIN.) = 12.56
ARE:
* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.431
TIME OF CONCENTRATION(MIN.) = 12.56
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap
SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL)
CN
RESIDENTIAL
AREA -AVERAGED Fm(INCH/HR) _ .42
115-7 DWELLINGS/ACRE" A .70 .80 .50
52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .80
AREA -AVERAGED Fp(INCH/HR) _ .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50
SUBAREA AREA(ACRES) _ .70 SUBAREA RUNOFF(CFS) _ .65
AREA -AVERAGED Ap = .52
EFFECTIVE AREA(ACRES) = 2.10 AREA -AVERAGED Fm(INCH/HR) _
.42
AREA -AVERAGED Fp(INCH/HR) _ .80 AREA -AVERAGED Ap = .52
EFFECTIVE STREAM AREA(ACRES) = 2.10
TOTAL AREA(ACRES) = 2.10 PEAK FLOW RATE(CFS) =
1.92
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) _ .33 HALFSTREET FLOOD WIDTH(FEET) = 10.04
000- FLOW VELOCITY(FEET/SEC.) = 1.70 DEPTH*VELOCITY(FT*FT/SEC.) _ .56
****************************************************************************
FLOW PROCESS FROM NODE 10.00 TO NODE
10.00 IS CODE
= 1
----------------------------------------------------------------------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
TOTAL NUMBER OF STREAMS = 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM
3
ARE:
TIME OF CONCENTRATION(MIN.) = 12.56
RAINFALL INTENSITY(INCH/HR) = 1.43
AREA -AVERAGED Fm(INCH/HR) _ .42
AREA -AVERAGED Fp(INCH/HR) _ .80
AREA -AVERAGED Ap = .52
EFFECTIVE STREAM AREA(ACRES) = 2.10
TOTAL STREAM AREA(ACRES) = 2.10
PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.92
** CONFLUENCE DATA **
STREAM Q Tc Intensity Fp(Fm)
Ap
Ae
SOURCE
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR)
(ACRES)
NODE
1 4.48 11.76 1.489 .44( .35)
.79
4.37
.00
1 4.40 12.24 1.453 .45( .35)
.78
4.43
4.00
2. 1.77 11.14 1.538 .31( .30)
.97
1.50
.00
3 1.92 12.56 1.431 .80( .42)
.52
2.10
7.00
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 3 STREAMS.
** PEAK
FLOW RATE
TABLE
**
EFFECTIVE AREA(ACRES) =
7.84
AREA -AVERAGED
Fm(INCH/HR) _ .36
STREAM
Q
Tc
Intensity
Fp(Fm)
Ap
Ae
SOURCE
NUMBER
(CFS)
(MIN.)
(INCH/HR)
(INCH/HR)
8.03
(ACRES)
NODE
1
8.1
11.14
1.538
.470( .357)
.76
7.5
.00
2
8.1
11.76
1.489
.472( .357)
.76
7.8
.00
3
8.0
12.24
1.453
.476( .359)
.75
8.0
4.00
4
7.8
12.56
1.431
.477( .359)
.75
8.0
7.00
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) =
8.08
Tc(MIN.) =
11.76
EFFECTIVE AREA(ACRES) =
7.84
AREA -AVERAGED
Fm(INCH/HR) _ .36
AREA -AVERAGED Fp(INCH/HR)
_ .47
AREA -AVERAGED
Ap = .76
TOTAL AREA(ACRES) =
8.03
(ACRES)
NODE
END OF STUDY SUMMARY:
8.1
11.14
1.538
TOTAL AREA(ACRES) =
8.03
TC(MIN.) =
11.76
EFFECTIVE AREA(ACRES) =
7.84
AREA -AVERAGED
Fm(INCH/HR)= .36
AREA -AVERAGED Fp(INCH/HR)
_ .47
AREA -AVERAGED
Ap = .76
PEAK FLOW RATE(CFS) =
8.08
** PEAK FLOW RATE TABLE **
STREAM
Q
Tc
Intensity
Fp(Fm)
Ap
Ae
SOURCE
NUMBER
(CFS)
(MIN.)
(INCH/HR)
(INCH/HR)
(ACRES)
NODE
1
8.1
11.14
1.538
.470( .357)
.76
7.5
.00
2
8.1
11.76
1.489
.472( .357)
.76
7.8
.00
359)==.75=======8=0=======4=00===
4
=====3========8=0===1224====1453===476(-
7.8
12.56
1.431
.477( .359)
.75
8.0
7.00
END OF
RATIONAL
METHOD ANALYSIS
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
(Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-95 Advanced Engineering Software (aes)
Ver. 5.1A Release Date: 08/01/95 License ID 1400
Analysis prepared by:
ALLARD ENGINEERING, INC.
6101 CHERRY AVENUE
FONTANA, CALIFORNIA 92336
(909) 899 - 5011
************************** DESCRIPTION OF STUDY **************************
* Tract 16271-1 Q10 Developed Condition
* *
* *
**************************************************************************
FILE NAME: 16271D.DAT
TIME/DATE OF STUDY: 8:27 6/29/2004
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
--*TIME-OF-CONCENTRATION MODEL* --
USER SPECIFIED STORM EVENT(YEAR) = 10.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90
*USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) _ .6000
USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) _ .9800
*ANTECEDENT MOISTURE CONDITION (AMC III) ASSUMED FOR RATIONAL METHOD*
*USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH' LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
--- ------------------------------- ------ ----- ------ ------------
--- ------------------------------- ------ ----- ------ ----- -------
1 30.0 20.0 .018/ .018/ .020 .67 2.00 .03125 .1670 .01500
2 18.0 9.0 .020/ .020/ --- .50 1.50 .03125 .1250 .01500
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1. Relative Flow -Depth = .24 FEET
as (Maximum Allowable Street Flow Depth) - (Top -of -Curb)
2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
FLOW PROCESS FROM NODE .00 TO NODE 1.00 IS CODE = 2.1
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
�rr'
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<.
INITIAL SUBAREA FLOW-LENGTH(FEET) = 110.00
ELEVATION DATA: UPSTREAM(FEET) = 1314.60 DOWNSTREAM(FEET) = 1312.20
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGER** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.395
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.441
SUBAREA Tc AND LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp
LAND USE GROUP (ACRES) (INCH/HR)
NATURAL POOR COVER
"GRASS" A .30 .29
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) =
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA RUNOFF(CFS) _ .85
TOTAL AREA(ACRES) = .30 PEAK FLOW RATE(CFS)
Ap SCS Tc
(DECIMAL) CN (MIN.)
1.00 85 7.40
.29
.85
****************************************************************************
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 5.2
----------------------------------------------------------------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
------------------------
ELEVATION DATA: UPSTREAM(FEET) = 1312.20 DOWNSTREAM(FEET) = 1310.20
CHANNEL LENGTH THRU SUBAREA(FEET) = 110.00 CHANNEL SLOPE = .0182
NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION
CHANNEL FLOW THRU SUBAREA(CFS) = .85
FLOW VELOCITY(FEET/SEC) = 2.02 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = .91 Tc(MIN.) = 8.30
****************************************************************************
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 8.30
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.211
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap' SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL POOR COVER
"GRASS" A .70 .29 1.00 85
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .29
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) = .70 SUBAREA RUNOFF(CFS) = 1.84
EFFECTIVE AREA(ACRES) = 1.00 AREA -AVERAGED Fm(INCH/HR) _ .29
AREA -AVERAGED Fp(INCH/HR) _ .29 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) = 2.63
****************************************************************************
FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 5.2
A�•� ----------------------------------------------------------------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 1310.20 DOWNSTREAM(FEET) = 1308.60
CHANNEL LENGTH THRU SUBAREA(FEET) = 90.00 CHANNEL SLOPE _ .0178
CHANNEL FLOW THRU SUBAREA(CFS) = 2.63
FLOW VELOCITY(FEET/SEC) = 2.43 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) _ .62 Tc(MIN.) = 8.92
****************************************************************************
FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 8.92
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.076
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL POOR COVER
"GRASS" A 1.40 .29 1.00 85
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .29
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) = 1.40 SUBAREA RUNOFF(CFS) = 3.51
EFFECTIVE AREA(ACRES) = 2.40 AREA -AVERAGED Fm(INCH/HR) _ .29
AREA -AVERAGED Fp(INCH/HR) _ .29 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 2.40 PEAK FLOW RATE(CFS) = 6.02
****************************************************************************
FLOW PROCESS FROM NODE 3.00 TO NODE 6.00 IS CODE = 5.2
----------------------------------------------------------------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
----------------------------------------------
ELEVATION DATA: UPSTREAM(FEET) = 1308.60 DOWNSTREAM(FEET) = 1306.40
CHANNEL LENGTH THRU SUBAREA(FEET) = 175.00 CHANNEL SLOPE _ .0126
CHANNEL FLOW THRU SUBAREA(CFS) = 6.02
FLOW VELOCITY(FEET/SEC) = 2.47 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 1.18 Tc(MIN.) = 10.10
****************************************************************************
FLOW PROCESS FROM NODE 3.00 TO NODE 6.00 IS CODE = 8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE TC(MIN) = 10.10
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.855
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
RESIDENTIAL
113-4 DWELLINGS/ACRE" A .12 .80 .60 52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60
SUBAREA AREA(ACRES) _ .12 SUBAREA RUNOFF(CFS) _ .26
EFFECTIVE AREA(ACRES) = 2.52 AREA -AVERAGED Fm(INCH/HR) _ .30
f� AREA -AVERAGED Fp(INCH/HR) _ .30 AREA -AVERAGED Ap = .98
TOTAL AREA(ACRES) = 2.52 PEAK FLOW RATE(CFS) = 6.02
NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
****************************************************************************
FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE = 1
----------------------------------------------------------------------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) = 10.10
RAINFALL INTENSITY(INCH/HR) = 2.85
AREA -AVERAGED Fm(INCH/HR) _ .30
AREA -AVERAGED Fp(INCH/HR) _ .30
AREA -AVERAGED Ap = .98
EFFECTIVE STREAM AREA(ACRES) = 2.52
TOTAL STREAM AREA(ACRES) = 2.52
PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.02
****************************************************************************
FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 2.1
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
i INITIAL SUBAREA FLOW-LENGTH(FEET) = 205.00
�r ELEVATION DATA: UPSTREAM(FEET) = 1310.70 DOWNSTREAM(FEET) = 1307.60
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.011
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.280
SUBAREA Tc AND LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
RESIDENTIAL
"3-4 DWELLINGS/ACRE" A .50 .80 .60 52 8.01
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60
SUBAREA RUNOFF(CFS) = 1.26
TOTAL AREA(ACRES) _ .50 PEAK FLOW RATE(CFS) = 1.26
****************************************************************************
FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE = 6.2
----------------------------------------------------------------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>(STREET TABLE SECTION # 2 USED)<<<<<
-------------
UPSTREAM ELEVATION(FEET) = 1307.60 DOWNSTREAM ELEVATION(FEET) = 1306.40
STREET LENGTH(FEET) = 240.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 18.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00
INSIDE STREET CROSSFALL(DECIMAL) _ .020
OUTSIDE STREET CROSSFALL(DECIMAL) _ .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
**TRAVEL TIME COMPUTED USING ESTIMATED
FLOW(CFS) =
2.10
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .80
STREET FLOW DEPTH(FEET) = .34
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50
HALFSTREET FLOOD WIDTH(FEET) = 10.75
SUBAREA AREA(ACRES) = .77 SUBAREA RUNOFF(CFS) =
AVERAGE FLOW VELOCITY(FEET/SEC.) =
1.65
EFFECTIVE AREA(ACRES) = 1.27 AREA -AVERAGED FM(INCH/HR)
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.)
_ .56
AREA -AVERAGED Fp(INCH/HR) = .80 AREA -AVERAGED Ap = .54
STREET FLOW TRAVEL TIME(MIN.) = 2.43
Tc(MIN.) =
10.44
* 10 YEAR RAINFALL INTENSITY(INCH/HR) =
2.798
END OF SUBAREA STREET FLOW HYDRAULICS:
SUBAREA LOSS RATE DATA(AMC III):
DEPTH(FEET) = .37 HALFSTREET FLOOD WIDTH(FEET) = 11.97
DEVELOPMENT TYPE/ SCS SOIL AREA
Fp
Ap SCS
LAND UGF GROUP (ACRES)
(INCH/HR)
(DECIMAL) CN
RESIDENTIAL
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
115-7 DWELLINGS/ACRE" A .77 .80 .50
52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50
SUBAREA AREA(ACRES) = .77 SUBAREA RUNOFF(CFS) =
1.66
EFFECTIVE AREA(ACRES) = 1.27 AREA -AVERAGED FM(INCH/HR)
_ .43
AREA -AVERAGED Fp(INCH/HR) = .80 AREA -AVERAGED Ap = .54
TOTAL AREA(ACRES) = 1.27 PEAK FLOW RATE(CFS) =
2.71
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = .37 HALFSTREET FLOOD WIDTH(FEET) = 11.97
FLOW VELOCITY(FEET/SEC.) = 1.74 DEPTH*VELOCITY(FT*FT/SEC.)
_ .64
****************************************************************************
FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE =
1
----------------------------------------------------------------------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<< <<<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) = 10.44
RAINFALL INTENSITY(INCH/HR) = 2.80
AREA -AVERAGED Fm(INCH/HR) = .43
AREA -AVERAGED Fp(INCH/HR) = .80
AREA -AVERAGED Ap = .54
EFFECTIVE STREAM AREA(ACRES) = 1.27
TOTAL STREAM AREA(ACRES) = 1.27
PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.71
** CONFLUENCE DATA **
STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES)
NODE
1 6.02 10.10 2.855 .30( .30) .98 2.52
.00
2 2.71 10.44 2.798 .80( .43) .54 1.27
4.00
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM
Q Tc
Intensity
Fp(Fm) Ap Ae .
SOURCE
NUMBER
(CFS) (MIN.)
(INCH/HR)
(INCH/HR) (ACRES)
NODE
1
8.7 10.10
2.855
.409( .342) .84 3.7
.00
2
8.6 10.44
2.798
.411( .343) .83 3.8
4.00
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 8.70 Tc(MIN.) = 10.10
EFFECTIVE AREA(ACRES) = 3.75 AREA -AVERAGED Fm(INCH/HR) _ .34
AREA -AVERAGED Fp(INCH/HR) _ .41 AREA -AVERAGED Ap = .84
TOTAL AREA(ACRES) = 3.79
****************************************************************************
FLOW PROCESS FROM NODE 6.00 TO NODE 10.00 IS CODE = 6.2
-------------------------------------------------------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>(STREET TABLE SECTION # 2 USED) <<<<
UPSTREAM ELEVATION(FEET) = 1306.40 DOWNSTREAM ELEVATION(FEET) = 1305.40
STREET LENGTH(FEET) = 175.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 18.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00
INSIDE STREET CROSSFALL(DECIMAL) _ .020
OUTSIDE STREET CROSSFALL(DECIMAL) _ .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 9.35
***STREET FLOW SPLITS OVER STREET -CROWN***
FULL DEPTH(FEET) _ .49' FLOOD WIDTH(FEET) = 18.00
FULL HALF -STREET VELOCITY(FEET/SEC.) = 2.40
SPLIT DEPTH(FEET) _ .29 SPLIT FLOOD WIDTH(FEET) = 8.43
SPLIT FLOW(CFS) = 1.30 SPLIT VELOCITY(FEET/SEC.) = 1.57
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) _ .49
HALFSTREET FLOOD WIDTH(FEET) = 18.00
AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.40
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.17
STREET FLOW TRAVEL TIME(MIN.) = 1.22 Tc(MIN.) = 11.31
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.666
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
RESIDENTIAL
115-7 DWELLINGS/ACRE" A .64 .80 .50 52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50
SUBAREA AREA(ACRES) _ .64 SUBAREA RUNOFF(CFS) = 1.31
EFFECTIVE AREA(ACRES) = 4.39 AREA -AVERAGED FM(INCH/HR) _ .35
AREA -AVERAGED Fp(INCH/HR) _ .44 AREA -AVERAGED Ap = .79
"TOTAL AREA(ACRES) = 4.43 PEAK FLOW RATE(CFS) = 9.15
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) _ .49 HALFSTREET FLOOD.WIDTH(FEET) = 18.00
FLOW VELOCITY(FEET/SEC.) = 2.40 DEPTH*VELOCITY(FT*FT/SEC.) = 1.17
rrr FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE = 1
----------------- ----------------------------------------------------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
TOTAL NUMBER OF STREAMS = 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) = 11.31
RAINFALL INTENSITY(INCH/HR) = 2.67
AREA -AVERAGED Fm(INCH/HR) = .35
AREA -AVERAGED Fp(INCH/HR) = .44
AREA -AVERAGED Ap = .79
EFFECTIVE STREAM AREA(ACRES) = 4.39
TOTAL STREAM AREA(ACRES) = 4.43
PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.15
****************************************************************************
FLOW PROCESS FROM NODE .00 TO NODE 1.00 IS CODE = 2.1
----------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW-LENGTH(FEET) = 115.00
ELEVATION DATA: UPSTREAM(FEET) = 1312.40 DOWNSTREAM(FEET) = 1310.00
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
�.. SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.595
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.387
SUBAREA Tc AND LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp
LAND USE GROUP (ACRES) (INCH/HR)
NATURAL POOR COVER
"GRASS" A .30 .29
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) =
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA RUNOFF(CFS) _ .84
TOTAL AREA(ACRES) = .30 PEAK FLOW RATE(CFS)
Ap SCS Tc
(DECIMAL) CN (MIN.)
1.00 85 7.60
.29
.84
****************************************************************************
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 5.2
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 1310.00 DOWNSTREAM(FEET) = 1307.70
CHANNEL LENGTH THRU SUBAREA(FEET) = 145.00 CHANNEL SLOPE = .0159
NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION
CHANNEL FLOW THRU SUBAREA(CFS) = .84
FLOW VELOCITY(FEET/SEC) = 1.89 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 1.28 Tc(MIN.) = 8.87
****************************************************************************
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 8.1
,�••.
-------------------------------------------------------------.---------------
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap
SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL)
MAINLINE Tc(MIN) 8.87
NATURAL POOR COVER
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.085
85
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .29
SUBAREA LOSS RATE DATA(AMC III):
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap
SCS
.29
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL)
CN
TOTAL AREA(ACRES) = 1.40 PEAK FLOW RATE(CFS) =
NATURAL POOR COVER
"GRASS" A .60 .29 1.00
85
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .29
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) _ .60 SUBAREA RUNOFF(CFS) = 1.51
EFFECTIVE AREA(ACRES) _ .90 AREA -AVERAGED Fm(INCH/HR) _
.29
AREA -AVERAGED Fp(INCH/HR) _ .29 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) _ .90 PEAK FLOW RATE(CFS) =
2.26
****************************************************************************
FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 5.2
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
---------------
ELEVATION DATA: UPSTREAM(FEET) = 1307.70 DOWNSTREAM(FEET) = 1307.20
CHANNEL LENGTH THRU SUBAREA(FEET) = 55.00 CHANNEL SLOPE _ .0091
CHANNEL FLOW THRU SUBAREA(CFS) = 2.26
FLOW VELOCITY(FEET/SEC) = 1.68 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) _ .54 Tc(MIN.) = 9.42
****************************************************************************
FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 9.42
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.977
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap
SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL)
CN
NATURAL POOR COVER
"GRASS" A .50 .29 1.00
85
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .29
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) _ .50 SUBAREA RUNOFF(CFS) = 1.21
EFFECTIVE AREA(ACRES) = 1.40 AREA -AVERAGED Fm(INCH/HR) _
.29
AREA -AVERAGED Fp(INCH/HR) _ .29 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 1.40 PEAK FLOW RATE(CFS) =
3.39
****************************************************************************
FLOW PROCESS FROM NODE 3.00 TO NODE 10.00 IS CODE = 5.2
----------------------------------------------------------------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
,,, »»>TRAVELTIME THRU SUBAREA««<
ELEVATION DATA: UPSTREAM(FEET) = 1307.20 DOWNSTREAM(FEET,) = 1305.40
CHANNEL LENGTH THRU SUBAREA(FEET) = 170.00 CHANNEL SLOPE = .0106
CHANNEL FLOW THRU SUBAREA(CFS) = 3.39
FLOW VELOCITY(FEET/SEC) = 1.98 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 1.43 Tc(MIN.) = 10.85
****************************************************************************
FLOW PROCESS FROM NODE 3.00 TO NODE 10.00 IS CODE = 8.1
-------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 10.85
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.735
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
RESIDENTIAL
113-4 DWELLINGS/ACRE" A .10 .80 .60 52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60
SUBAREA AREA(ACRES) = .10 SUBAREA RUNOFF(CFS) _ .20
EFFECTIVE AREA(ACRES) = 1.50 AREA -AVERAGED Fm(INCH/HR) _ .30
AREA -AVERAGED Fp(INCH/HR) _ .31 AREA -AVERAGED Ap = .97
TOTAL AREA(ACRES) = 1.50 PEAK FLOW RATE(CFS) = 3.39
NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
****************************************************************************
FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE
--= 1
----------------------------------------------------------------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
TOTAL NUMBER OF STREAMS = 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) = 10.85
RAINFALL INTENSITY(INCH/HR) = 2.73
AREA -AVERAGED Fm(INCH/HR) = .30
AREA -AVERAGED Fp(INCH/HR) = .31
AREA -AVERAGED Ap = .97
EFFECTIVE STREAM AREA(ACRES) = 1.50
TOTAL STREAM AREA(ACRES) = 1.50
PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.39
****************************************************************************
FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 2.1
----------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW-LENGTH(FEET) = 205.00
ELEVATION DATA: UPSTREAM(FEET) = 1310.70 DOWNSTREAM(FEET) = 1307.60
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.011
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.280
�irr%
SUBAREA Tc AND LOSS RATE DATA(AMC III):
ao.. DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
RESIDENTIAL
113-4 DWELLINGS/ACRE" A .50 .80 .60 52 8.01
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60
SUBAREA RUNOFF(CFS) = 1.26
TOTAL AREA(ACRES) = .50 PEAK FLOW RATE(CFS) = 1.26
****************************************************************************
FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 6.2
------------------------------------------------------------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>(STREET TABLE SECTION # 2 USED)<<<<<
UPSTREAM ELEVATION(FEET) = 1307.60 DOWNSTREAM ELEVATION(FEET) = 1306.40
STREET LENGTH(FEET) = 240.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 18.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00
INSIDE STREET CROSSFALL(DECIMAL) _ .020
OUTSIDE STREET CROSSFALL(DECIMAL) _ .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.24
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
,..,
STREET FLOW DEPTH(FEET) = .35
HALFSTREET FLOOD WIDTH(FEET) = 11.01
AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.68
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) _ .58
STREET FLOW TRAVEL TIME(MIN.) = 2.38 Tc(MIN.) = 10.39
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.807
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap
SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL)
CN
RESIDENTIAL
115-7 DWELLINGS/ACRE" A .90 .80 .50
52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50
SUBAREA AREA(ACRES) = .90 SUBAREA RUNOFF(CFS) = 1.95
EFFECTIVE AREA(ACRES) = 1.40 AREA -AVERAGED Fm(INCH/HR) _
.43
AREA -AVERAGED Fp(INCH/HR) = .80 AREA -AVERAGED Ap = .54
TOTAL AREA(ACRES) = 1.40 PEAK FLOW RATE(CFS) =
3.00
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = .38 HALFSTREET FLOOD WIDTH(FEET) = 12.49
FLOW VELOCITY(FEET/SEC.) = 1.79 DEPTH*VELOCITY(FT*FT/SEC.) _
.67
****************************************************************************
FLOW PROCESS FROM NODE 9.00 TO NODE 10.00 IS CODE = 6.2
--------------------------------------- -----------
STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>(STREET TABLE SECTION # 2 USED) <<<<
�rr►'
----------
---------------------------------------------------- -----------------------
UPSTREAM ELEVATION(FEET) = 1306.40 DOWNSTREAM ELEVATION(FEET) = 1305.40
STREET LENGTH(FEET) = 175.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 18.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00
INSIDE STREET CROSSFALL(DECIMAL) _ .020
OUTSIDE STREET CROSSFALL(DECIMAL) _ .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.69
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) _ .39
HALFSTREET FLOOD WIDTH(FEET) = 13.20
AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.98
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) _ .77
STREET FLOW TRAVEL TIME(MIN.) = 1.47 Tc(MIN.) = 11.86
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.593
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
RESIDENTIAL
115-7 DWELLINGS/ACRE" A .70 .80 .50 52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50
SUBAREA AREA(ACRES) _ .70 SUBAREA RUNOFF(CFS) = 1.38
EFFECTIVE AREA(ACRES) = 2.10 AREA -AVERAGED FM(INCH/HR) _ .42
AREA -AVERAGED Fp(INCH/HR) _ .80 AREA -AVERAGED Ap = .52
41000,
TOTAL AREA(ACRES) = 2.10 PEAK FLOW RATE(CFS) = 4.11
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) _ .40 HALFSTREET FLOOD WIDTH(FEET) = 13.78
FLOW VELOCITY(FEET/SEC.) = 2.04 DEPTH*VELOCITY(FT*FT/SEC.) _ .82
****************************************************************************
FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE
= 1
------------------------------------------------------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
TOTAL NUMBER OF STREAMS = 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
TIME OF CONCENTRATION(MIN.) = 11.86
RAINFALL INTENSITY(INCH/HR) = 2.59
AREA -AVERAGED Fm(INCH/HR) _ .42
AREA -AVERAGED Fp(INCH/HR) _ .80
AREA -AVERAGED Ap = .52
EFFECTIVE STREAM AREA(ACRES) = 2.10
TOTAL STREAM AREA(ACRES) = 2.10
PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.11
** CONFLUENCE DATA **
STREAM Q Tc Intensity Fp(Fm) Ap Ae
SOURCE
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES)
NODE
9.15 11.31 2.666 .44( .35) .79 4.39
.00
1 9.04 11.66 2.619 .45( .35) .78 4.43
4.00
2 3.39 10.85
2.735
.31( .30)
.97
1.50
.00
3 4.11 11.86
2.593
.80( .42)
.52
2.10
7.00
RAINFALL INTENSITY AND TIME OF CONCENTRATION
RATIO
CONFLUENCE FORMULA USED
FOR 3 STREAMS.
** PEAK FLOW RATE TABLE
**
STREAM Q Tc
Intensity
Fp(Fm)
Ap
Ae
SOURCE
NUMBER (CFS) (MIN.)
(INCH/HR)
(INCH/HR)
(ACRES)
NODE
1 16.4 10.85
2.735
.472( .357)
.76
7.6
.00
2 16.5 11.31
2.666
.474( .358)
.76
7.9
.00
3 16.4 11.66
2.619
.477( .359)
.75
8.0
4.00
4 16.2 11.86
2.593
.477( .359)
.75
8.0
7.00
COMPUTED CONFLUENCE ESTIMATES
ARE
AS FOLLOWS:
PEAK FLOW RATE(CFS) =
16.50
Tc(MIN.) =
11.31
EFFECTIVE AREA(ACRES) =
7.89
AREA -AVERAGED Fm(INCH/HR)
_ .36
AREA -AVERAGED Fp(INCH/HR) _ .47
AREA -AVERAGED Ap
= .76
TOTAL AREA(ACRES) =
8.03
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) =
8.03
TC(MIN.) =
11.31
EFFECTIVE AREA(ACRES) =
7.89
AREA -AVERAGED Fm(INCH/HR)=
.36
AREA -AVERAGED Fp(INCH/HR) _ .47
AREA -AVERAGED Ap
= .76
PEAK FLOW RATE(CFS) =
16.50
** PEAK FLOW RATE TABLE
**
STREAM Q Tc
Intensity
Fp(Fm)
Ap
Ae
SOURCE
NUMBER (CFS) (MIN.)
(INCH/HR)
(INCH/HR)
(ACRES)
NODE
1 16.4 10.85
2.735
.472( .357)
.76
7.6
.00
2 16.5 11.31
2.666
.474( .358)
.76
7.9
.00
3 16.4 11.66
2.619
.477( .359)
.75
8.0
4.00
4 16.2 11.86
2.593
.477( .359)
.75
8.0
7.00
END OF RATIONAL METHOD
ANALYSIS
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
(Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-95 Advanced Engineering Software (aes)
Ver. 5.1A Release Date: 08/01/95 License ID 1400
Analysis prepared by:
ALLARD ENGINEERING, INC.
6101 CHERRY AVENUE
FONTANA, CALIFORNIA 92336
(909) 899 - 5011
************************** DESCRIPTION OF STUDY **************************
* Tract 16271-1 Q25 Developed Condition
*
*
*
*
**************************************************************************
FILE NAME: 16271D.DAT
TIME/DATE OF STUDY: 8:33 6/29/2004
-----------------------------------
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
--*TIME-OF-CONCENTRATION MODEL* --
USER SPECIFIED STORM EVENT(YEAR) = 25.00
,,... SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90
*USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) _ .6000
USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) = 1.2000
*ANTECEDENT MOISTURE CONDITION (AMC III) ASSUMED FOR RATIONAL METHOD*
*USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW.MODEL*
HALF- CROWN TO STREET-CROSSFALL:, CURB GUTTER -GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
1 30.0 20.0 .018/ 018/ .020 .67 2.00 .03125 .1670 .01500
2 18.0 9.0 .020/ .020/ --- .50 1.50 .03125 .1250 .01500
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1. Relative Flow -Depth = .24 FEET
as (Maximum Allowable Street Flow Depth) - (Top -of -Curb)
2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE .00 TO NODE 1.60 IS CODE = 2.1
---------------------------------------------------
L>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA«
INITIAL SUBAREA FLOW-LENGTH(FEET) = 110.00
ELEVATION DATA: UPSTREAM(FEET) = 1314.60 DOWNSTREAM(FEET) = 1312.20
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 7.395
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 4.214
SUBAREA Tc AND LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp
LAND USE GROUP (ACRES) (INCH/HR)
NATURAL POOR COVER
"GRASS" A .30 .29
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA RUNOFF(CFS) = 1.06
TOTAL AREA(ACRES) _ .30 PEAK FLOW RATE(CFS)
Ap SCS Tc
(DECIMAL) CN (MIN.)
1.00 85 7.40
.29
1.06
****************************************************************************
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 5.2
----------------------------------------------------------------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
----------------------------------------------
ELEVATION DATA: UPSTREAM(FEET) = 1312.20 DOWNSTREAM(FEET) = 1310.20
CHANNEL LENGTH THRU SUBAREA(FEET) = 110.00 CHANNEL SLOPE _ .0182
CHANNEL FLOW THRU SUBAREA(CFS) = 1.06
�,... FLOW VELOCITY(FEET/SEC) = 2.04 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) _ .90 Tc(MIN.) = 8.29
****************************************************************************
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 8.29
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.934
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL POOR COVER
"GRASS" A .70 .29 1.00 85
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .29
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) _ .70 SUBAREA RUNOFF(CFS) = 2.30
EFFECTIVE AREA(ACRES) = 1.00 AREA -AVERAGED Fm(INCH/HR) _ .29
AREA -AVERAGED Fp(INCH/HR) _ .29 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) = 3.28
****************************************************************************
FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 5.2
-----------------------------------------------------------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 1310.20 DOWNSTREAM(FEET) = 1308.60
CHANNEL LENGTH THRU SUBAREA(FEET) = 90.00 CHANNEL SLOPE _ .0178
CHANNEL FLOW THRU SUBAREA(CFS) = 3.28
FLOW VELOCITY(FEET/SEC) = 2.55 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) _ .59 Tc(MIN.) = 8.88
****************************************************************************
FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 8.88
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.776
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL POOR COVER
"GRASS" A 1.40 .29 1.00 85
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .29
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) = 1.40 SUBAREA RUNOFF(CFS) = 4.39
EFFECTIVE AREA(ACRES) = 2.40 AREA -AVERAGED Fm(INCH/HR) _ .29
AREA -AVERAGED Fp(INCH/HR) _ .29 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 2.40 PEAK FLOW RATE(CFS) = 7.53
****************************************************************************
FLOW PROCESS FROM-NODE------3.00-TO-NODE------600-IS CODE = 5.2
-
------------- -----------------
---------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
------------------
ELEVATION DATA: UPSTREAM(FEET) = 1308.60 DOWNSTREAM(FEET) = 1306.40
CHANNEL LENGTH THRU SUBAREA(FEET) = 175.00 CHANNEL SLOPE _ .0126
CHANNEL FLOW THRU SUBAREA(CFS) = 7.53
FLOW VELOCITY(FEET/SEC) = 2.61 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 1.12 Tc(MIN.) = 10.00
****************************************************************************
FLOW PROCESS FROM NODE 3.00 TO NODE 6.00 IS CODE = 8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 10.00
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.517
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
'RESIDENTIAL
"3-4 DWELLINGS/ACRE" A .12 .80 .60 52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60
AMW SUBAREA AREA(ACRES) _ .12 SUBAREA RUNOFF(CFS) _ .33
EFFECTIVE AREA(ACRES) = 2.52 AREA -AVERAGED Fm(INCH/HR) _ .30
AREA -AVERAGED Fp(INCH/HR) _ .30 AREA -AVERAGED Ap = .98.
TOTAL AREA(ACRES) = 2.52 PEAK FLOW RATE(CFS) = 7.53
NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
****************************************************************************
FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE = 1
----------------------------------------------------------------------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) = 10.00
RAINFALL INTENSITY(INCH/HR) = 3.52
AREA -AVERAGED Fm(INCH/HR) _ .30
AREA -AVERAGED Fp(INCH/HR) _ .30
AREA -AVERAGED Ap = .98
EFFECTIVE STREAM AREA(ACRES) = 2.52
TOTAL STREAM AREA(ACRES) = 2.52
PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.53
****************************************************************************
FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 2.1
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW-LENGTH(FEET) = 205.00
ELEVATION DATA: UPSTREAM(FEET) = 1310.70 DOWNSTREAM(FEET) = 1307.60
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.011
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 4.017
SUBAREA Tc AND LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
RESIDENTIAL
113-4 DWELLINGS/ACRE" A .50 .80 .60 52 8.01
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60
SUBAREA RUNOFF(CFS) = 1.59
TOTAL AREA(ACRES) _ .50 PEAK FLOW RATE(CFS) = 1.59
****************************************************************************
FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE = 6.2
----------------------------------------------------------------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>(STREET TABLE SECTION ## 2 USED)<<<<<
------------------
UPSTREAM ELEVATION(FEET) = 1307.60 DOWNSTREAM ELEVATION(FEET) = 1306.40
STREET LENGTH(FEET) = 240.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 18.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00
INSIDE STREET CROSSFALL(DECIMAL) _ .020
err/
OUTSIDE STREET CROSSFALL(DECIMAL) = .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.65
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = .36
HALFSTREET FLOOD WIDTH(FEET) = 11.84
AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.74
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) _ .63
STREET FLOW TRAVEL TIME(MIN.) = 2.29 Tc(MIN.) = 10.30
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.454
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
RESIDENTIAL
115-7 DWELLINGS/ACRE" A .77 .80 .50 52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50
SUBAREA AREA(ACRES) = .77 SUBAREA RUNOFF(CFS) = 2.12
EFFECTIVE AREA(ACRES) = 1.27 AREA -AVERAGED Fm(INCH/HR) _ .43
AREA -AVERAGED Fp(INCH/HR) _ .80 AREA -AVERAGED Ap = .54
TOTAL AREA(ACRES) = 1.27 PEAK FLOW RATE(CFS) = 3.46
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = .39 HALFSTREET FLOOD WIDTH(FEET) = 13.20
FLOW VELOCITY(FEET/SEC.) = 1.86 DEPTH*VELOCITY(FT*FT/SEC.) _ .73
****************************************************************************
`hrw FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE = 1
----------------------------------------------------------------------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM
2 ARE:
TIME OF CONCENTRATION(MIN.) = 10.30
RAINFALL INTENSITY(INCH/HR) = 3.45
AREA -AVERAGED Fm(INCH/HR) = .43
AREA -AVERAGED Fp(INCH/HR) = .80
AREA -AVERAGED Ap = .54
EFFECTIVE STREAM AREA(ACRES) = 1.27
TOTAL STREAM AREA(ACRES) = 1.27
PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.46
** CONFLUENCE DATA **
STREAM Q Tc Intensity Fp(Fm)
Ap Ae SOURCE
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR)
(ACRES) NODE
1 7.53 10.00 3.517 .30( .30)
.98 2.52 .00
2 3.46 10.30 3.454 .80( .43)
.54 1.27 4.00
'RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES,) NODE
1 11.0 10.00 3.517 .409( .342) .84 3.8 .00
2 10.8 10.30 3.454 .411( .343) .83 3.8 4.00
�r COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 10.95 Tc(MIN.) = 10.00
EFFECTIVE AREA(ACRES) = 3.75 AREA -AVERAGED Fm(INCH/HR) _ .34
AREA -AVERAGED Fp(INCH/HR) _ .41 AREA -AVERAGED Ap = .84
TOTAL AREA(ACRES) = 3.79
****************************************************************************
FLOW PROCESS FROM NODE 6.00 TO NODE 10.00 IS CODE = 6.2
----------------------------------------------------------------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>(STREET TABLE SECTION # 2 USED)<<<<<
------------------------
UPSTREAM ELEVATION(FEET) = 1306.40 DOWNSTREAM ELEVATION(FEET) = 1305.40
STREET LENGTH(FEET) = 175.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 18.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00
INSIDE STREET CROSSFALL(DECIMAL) _ .020
OUTSIDE STREET CROSSFALL(DECIMAL) _ .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 11.78
***STREET FLOW SPLITS OVER STREET -CROWN***
FULL DEPTH(FEET) = .49 FLOOD WIDTH(FEET) = 18.00
FULL HALF -STREET VELOCITY(FEET/SEC.) = 2.40
SPLIT DEPTH(FEET) _ .39 SPLIT FLOOD WIDTH(FEET) = 13.26
SPLIT FLOW(CFS) = 3.73 SPLIT VELOCITY(FEET/SEC.) = 1.99
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = .49
HALFSTREET FLOOD WIDTH(FEET) = 18.00
AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.40
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.17
STREET FLOW TRAVEL TIME(MIN.) = 1.22 Tc(MIN.) = 11.21
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.283
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
RESIDENTIAL
105-7 DWELLINGS/ACRE" A .64 .80 .50 52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50
SUBAREA AREA(ACRES) = .64 SUBAREA RUNOFF(CFS) = 1.66
EFFECTIVE AREA(ACRES) = 4.39 AREA -AVERAGED Fm(INCH/HR) _ .35
AREA -AVERAGED Fp(INCH/HR) = .44 AREA -AVERAGED Ap = .79
TOTAL AREA(ACRES) = 4.43 PEAK FLOW RATE(CFS) = 11.59
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = .49 HALFSTREET FLOOD WIDTH(FEET) = 18.00
FLOW VELOCITY(FEET/SEC.) = 2.40 DEPTH*VELOCITY(FT*FT/SEC.) = 1.17
@4
****************************************************************************
FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE = 1
------- ---------- -------- ---------- -------- -
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
TOTAL NUMBER OF STREAMS = 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) = 11.21
RAINFALL INTENSITY(INCH/HR) = 3.28
AREA -AVERAGED Fm(INCH/HR) _ .35
AREA -AVERAGED Fp(INCH/HR) _ .44
AREA -AVERAGED Ap = .79
EFFECTIVE STREAM AREA(ACRES) = 4.39
TOTAL STREAM AREA(ACRES) = 4.43
PEAK FLOW RATE(CFS) AT CONFLUENCE = 11.59
FLOW PROCESS FROM NODE .00 TO NODE 1.00 IS CODE = 2.1
-------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW-LENGTH(FEET) = 115.00
ELEVATION DATA: UPSTREAM(FEET) = 1312.40 DOWNSTREAM(FEET) = 1310.00
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.595
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 4.147
SUBAREA Tc AND LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp
LAND USE GROUP (ACRES) (INCH/HR)
NATURAL POOR COVER
"GRASS" A .30 .29
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA RUNOFF(CFS) = 1.04
TOTAL AREA(ACRES) _ .30 PEAK FLOW RATE(CFS)
Ap SCS Tc
(DECIMAL) CN (MIN.)
1.00 85 7.60
.29
= 1.04
****************************************************************************
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 5.2
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 1310.00 DOWNSTREAM(FEET) = 1307.70
CHANNEL LENGTH THRU SUBAREA(FEET) = 145.00 CHANNEL SLOPE _ .0159
CHANNEL FLOW THRU SUBAREA(CFS) = 1.04
FLOW VELOCITY(FEET/SEC) = 1.90 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 1.27 Tc(MIN.) = 8.86
****************************************************************************
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 8.1
-------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 8.86
* 25 YEAR RAINFALL INTENSITY(INCH/HR) =
3.780
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA
Fp Ap
SCS
LAND USE GROUP (ACRES)
(INCH/HR) (DECIMAL)
CN
NATURAL POOR COVER
"GRASS" A .60 .29 1.00
85
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .29
SUBAREA AVERAGE PERVIOUS AREA FRACTION,
Ap = 1.00
SUBAREA AREA(ACRES) = .60 SUBAREA RUNOFF(CFS) = 1.88
EFFECTIVE AREA(ACRES) _ .90 AREA -AVERAGED
Fm(INCH/HR) _
.29
AREA -AVERAGED Fp(INCH/HR) _ .29 AREA -AVERAGED
Ap = 1.00
TOTAL AREA(ACRES) = .90 PEAK
FLOW RATE(CFS) =
2.83
****************************************************************************
FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 5.2
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
--------------------------------------------
ELEVATION DATA: UPSTREAM(FEET) = 1307.70 DOWNSTREAM(FEET) = 1307.20
CHANNEL LENGTH THRU SUBAREA(FEET) = 55.00 CHANNEL SLOPE = .0091
CHANNEL FLOW THRU SUBAREA(CFS) = 2.83
FLOW VELOCITY(FEET/SEC) = 1.77 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = .52 Tc(MIN.) = 9.38
****************************************************************************
FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 9.38
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.653
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL POOR COVER
"GRASS" A .50 .29 1.00 85
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .29
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) = .50 SUBAREA RUNOFF(CFS) = 1.51
EFFECTIVE AREA(ACRES) = 1.40 AREA -AVERAGED Fm(INCH/HR) _ .29
AREA -AVERAGED Fp(INCH/HR) _ .29 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 1.40 PEAK FLOW RATE(CFS) = 4.24
****************************************************************************
FLOW PROCESS FROM NODE 3.00 TO NODE 10.00 IS CODE = 5.2
-=--------------------------------------------------------------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 1307.20 DOWNSTREAM(FEET) = 1305.40
CHANNEL LENGTH THRU SUBAREA(FEET) = 170.00 CHANNEL SLOPE = .0106
CHANNEL FLOW THRU SUBAREA(CFS) = 4.24
FLOW VELOCITY(FEET/SEC) = 2.09 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 1.36 Tc(MIN.) = 10.74
****************************************************************************
FLOW PROCESS FROM NODE 3.00 TO NODE 10.00 IS CODE = 8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
-------------------------
-------------------------
MAINLINE Tc(MIN) = 10.74
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.369
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
RESIDENTIAL
113-4 DWELLINGS/ACRE" A .10 .80 .60 52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60
SUBAREA AREA(ACRES) _ .10 SUBAREA RUNOFF(CFS) _ .26
EFFECTIVE AREA(ACRES) = 1.50 AREA -AVERAGED Fm(INCH/HR) _ .30
AREA -AVERAGED Fp(INCH/HR) _ .31 AREA -AVERAGED Ap = .97
TOTAL AREA(ACRES) = 1.50 PEAK FLOW RATE(CFS) = 4.24
NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
****************************************************************************
FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE = 1
----------------------------------------------------------------------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
TOTAL NUMBER OF STREAMS = 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) = 10.74
RAINFALL INTENSITY(INCH/HR) = 3.37
AREA -AVERAGED Fm(INCH/HR) _ .30
AREA -AVERAGED Fp(INCH/HR) _ .31
AREA -AVERAGED Ap = .97
EFFECTIVE STREAM AREA(ACRES) = 1.50
TOTAL STREAM AREA(ACRES) = 1.50
PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.24
****************************************************************************
FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 2.1
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW-LENGTH(FEET) = 205.00
ELEVATION DATA: UPSTREAM(FEET) = 1310.70 DOWNSTREAM(FEET) = 1307.60
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.011
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 4.017
SUBAREA Tc AND LOSS RATE DATA(AMC III):
005411 DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
RESIDENTIAL
113-4 DWELLINGS/ACRE" A .50 .80 .60 52 8.01
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60
SUBAREA RUNOFF(CFS) = 1.59
TOTAL AREA(ACRES) _ .50 PEAK FLOW RATE(CFS) = 1.59
****************************************************************************
FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 6.2
----------------------------------------------------------------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<< <<<
>>>>>(STREET TABLE SECTION # 2 USED)<<<<<
-------------------- -
UPSTREAM ELEVATION(FEET) = 1307.60 DOWNSTREAM ELEVATION(FEET) = 1306.40
STREET LENGTH(FEET) = 240.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 18.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00
INSIDE STREET CROSSFALL(DECIMAL) _ .020
OUTSIDE STREET CROSSFALL(DECIMAL) _ .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.84
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) _ .37
HALFSTREET FLOOD WIDTH(FEET) = 12.17
AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.77
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) _ .66
STREET FLOW TRAVEL TIME(MIN.) = 2.25 TC(MIN.) = 10.27
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.461
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap
SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL)
CN
RESIDENTIAL
115-7 DWELLINGS/ACRE" A .90 .80 .50
52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50
SUBAREA AREA(ACRES) _ .90 SUBAREA RUNOFF(CFS) = 2.48
EFFECTIVE AREA(ACRES) = 1.40 AREA -AVERAGED Fm(INCH/HR) _
.43
AREA -AVERAGED Fp(INCH/HR) _ .80 AREA -AVERAGED Ap = .54
TOTAL AREA(ACRES) = 1.40 PEAK FLOW RATE(CFS) =
3.82
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) _ .40 HALFSTREET FLOOD WIDTH(FEET) = 13.78
FLOW VELOCITY(FEET/SEC.) = 1.90 DEPTH*VELOCITY(FT*FT/SEC.) _
.76
****************************************************************************
'FLOW PROCESS FROM NODE 9.00 TO NODE 10.00 IS CODE = 6.2
----------------------------------------------------------------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>(STREET TABLE SECTION # 2 USED) « <<<
------------
------------------------
UPSTREAM ELEVATION(FEET) = 1306.40 DOWNSTREAM ELEVATION(FEET) = 1305.40
STREET LENGTH(FEET) = 175.00 CURB HEIGHT(INCHES) = 6.0
A0011 STREET HALFWIDTH(FEET) = 18.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00
INSIDE STREET CROSSFALL(DECIMAL) _ .020
OUTSIDE STREET CROSSFALL(DECIMAL) _ .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
**TRAVEL TIME COMPUTED USING ESTIMATED
FLOW(CFS) =
4.71
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
STREET FLOW DEPTH(FEET) = .42
TOTAL NUMBER OF STREAMS = 3
HALFSTREET FLOOD WIDTH(FEET) = 14.55
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3
ARE:
AVERAGE FLOW VELOCITY(FEET/SEC.) =
2.11
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.)
_ .88
STREET FLOW TRAVEL TIME(MIN.) = 1.38
Tc(MIN.) =
11.65
* 25 YEAR RAINFALL INTENSITY(INCH/HR) =
3.208
SUBAREA LOSS RATE DATA(AMC III):
AREA -AVERAGED Ap = .52
DEVELOPMENT TYPE/ SCS SOIL AREA
Fp
Ap SCS
LAND URF GROUP (ACRES)
(INCH/HR)
(DECIMAL) CN
RESIDENTIAL
115-7 DWELLINGS/ACRE" A .70 .80 .50 52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50
SUBAREA AREA(ACRES) = .70 SUBAREA RUNOFF(CFS) = 1.77
EFFECTIVE AREA(ACRES) = 2.10 AREA -AVERAGED Fm(INCH/HR) _ .42
AREA -AVERAGED Fp(INCH/HR) = .80 AREA -AVERAGED Ap = .52
TOTAL AREA(ACRES) = 2.10 PEAK FLOW RATE(CFS) = 5.28
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = .43 HALFSTREET FLOOD WIDTH(FEET) = 15.26
FLOW VELOCITY(FEET/SEC.) = 2.16 DEPTH*VELOCITY(FT*FT/SEC.) _ .93
****************************************************************************
FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE
= 1
----------------------------------------------------------------------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
TOTAL NUMBER OF STREAMS = 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3
ARE:
TIME OF CONCENTRATION(MIN.) = 11.65
RAINFALL INTENSITY(INCH/HR) = 3.21
AREA -AVERAGED Fm(INCH/HR) = .42
AREA -AVERAGED Fp(INCH/HR) = .80
AREA -AVERAGED Ap = .52
EFFECTIVE STREAM AREA(ACRES) = 2.10
TOTAL STREAM AREA(ACRES) = 2.10
PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.28
** CONFLUENCE DATA **
'STREAM Q Tc Intensity Fp(Fm) Ap
Ae
SOURCE
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR)
(ACRES)
NODE
1 11.59 11.21 3.283 .44( .35) .79
4.39
.00
1 11.48 11.52 3.230 .45.( .35) .78
4.43
4.00
2 4.24 10.74 3.369 .31( .30) .97
1.50
.00
3 5.28 11.65 3.208 .80( .42) .52
2.10
7.00
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
g CONFLUENCE FORMULA USED FOR 3 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM
Q
Tc
Intensity
Fp(Fm)
Ap
Ae
SOURCE
NUMBER
(CFS)
(MIN.)
(INCH/HR)
(INCH/HR)
(INCH/HR)
(ACRES)
NODE
1
20.8
10.74
3.369
.472( .358)
.76
7.6
.00
2
20.9
11.21
3.283
.474( .358)
.76
7.9
.00
3
20.8
11.52
3.230
.477( .359)
.75
8.0
4.00
4
20.7
11.65
3.208
.477( .359)
.75
8.0
7.00
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 20.93 Tc(MIN.) = 11.21
EFFECTIVE AREA(ACRES) = 7.91 AREA -AVERAGED Fm(INCH/HR) _ .36
AREA -AVERAGED Fp(INCH/HR) _ .47 AREA -AVERAGED Ap = .76
TOTAL AREA(ACRES) = 8.03
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 8.03 TC(MIN.) = 11.21
EFFECTIVE AREA(ACRES) = 7.91 AREA -AVERAGED Fm(INCH/HR)= .36
AREA -AVERAGED Fp(INCH/HR) _ .47 AREA -AVERAGED Ap = .76
PEAK FLOW RATE(CFS) = 20.93
** PEAK FLOW RATE TABLE **
m
STREAM
Q
Tc
Intensity
Fp(Fm)
Ap
Ae
SOURCE
NUMBER
(CFS)
(MIN.)
(INCH/HR)
(INCH/HR)
(ACRES)
NODE
1
20.8
10.74
3.369
.472( .358)
.76
7.6
.00
2
20.9
11.21
3.283
..474( .358)
.76
7.9
.00
3
20.8
11.52
3.230
.477( .359)
.75
8.0
4.00
4
20.7
11.65
3.208
.477( .359)
.75
8.0
7.00
END OF
RATIONAL
METHOD
ANALYSIS
m
too*,****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
(Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-95 Advanced Engineering Software (aes)
Ver. 5.1A Release Date: 08/01/95 License ID 1400
Analysis prepared by:
ALLARD ENGINEERING, INC.
6101 CHERRY AVENUE
FONTANA, CALIFORNIA 92336
(909) 899 - 5011
************************** DESCRIPTION OF STUDY **************************
* Tract 16271-1 Q100 Developed Condition
*
*
**************************************************************************
FILE NAME: 16271D.DAT
TIME/DATE OF STUDY: 8:37 6/29/2004
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
--*TIME-OF-CONCENTRATION MODEL* --
USER SPECIFIED STORM EVENT(YEAR) = 100.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .90
*USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = .6000
USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) = 1.5000
*ANTECEDENT MOISTURE CONDITION (AMC III) ASSUMED FOR RATIONAL METHOD*
*
*
*USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
--- ----- ---------
1 30.0 20.0 .018/ .018/ .020 .67 2.00 .03125 .1670 .01500
2 18.0 9.0 .020/ .020/ --- .50 1.50 .03125 .1250 .01500
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1. Relative Flow -Depth = .24 FEET
as (Maximum Allowable Street Flow Depth) - (Top -of -Curb)
2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE .00 TO NODE 1.00 IS CODE = 2.1
----------------------------------------------------------------------------
�, >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
�1rrr''
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA«.
INITIAL SUBAREA FLOW-LENGTH(FEET) = 110.00
sir+' ELEVATION DATA: UPSTREAM(FEET) = 1314.60 DOWNSTREAM(FEET) = 1312.20
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.395
* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.268
SUBAREA Tc AND LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap
SCS Tc
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL)
CN (MIN.)
NATURAL POOR COVER
NATURAL POOR COVER
"GRASS" A .30 .29 1.00
85 7.40
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .29
.70 .29 1.00
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .29
SUBAREA RUNOFF(CFS) = 1.34
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
TOTAL AREA(ACRES) _ .30 PEAK FLOW RATE(CFS) = 1.34
****************************************************************************
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE =
5.2
----------------------------------------------------------------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
.29
>>>>>TRAVELTIME THRU SUBAREA<<<<<
AREA -AVERAGED Ap = 1.00
------------
ELEVATION DATA: UPSTREAM(FEET) = 1312.20 DOWNSTREAM(FEET) =
1310.20
CHANNEL LENGTH THRU SUBAREA(FEET) = 110.00 CHANNEL SLOPE _
.0182
CHANNEL FLOW THRU SUBAREA(CFS) = 1.34
FLOW VELOCITY(FEET/SEC) = 2.14 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) _ .86 Tc(MIN.) = 8.25
****************************************************************************
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 8.1
---------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 8.25
* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.932
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL
AREA Fp Ap
SCS
LAND USE GROUP
(ACRES) (INCH/HR) (DECIMAL)
CN
NATURAL POOR COVER
"GRASS" A
.70 .29 1.00
85
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .29
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) _ .70
SUBAREA RUNOFF(CFS) = 2.92
EFFECTIVE AREA(ACRES) = 1.00
AREA -AVERAGED Fm(INCH/HR) _
.29
AREA -AVERAGED Fp(INCH/HR) _ .29
AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 1.00
PEAK FLOW RATE(CFS) =
4.18
****************************************************************************
FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 5.2
--------------------------------------- ----------- =-------------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 1310.20 DOWNSTREAM(FEET) = 1308.60
CHANNEL LENGTH THRU SUBAREA(FEET) = 90.00 CHANNEL SLOPE = .0178
CHANNEL FLOW THRU SUBAREA(CFS) = 4.18
FLOW VELOCITY(FEET/SEC) = 2.70 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = .56 Tc(MIN.) = 8.81
****************************************************************************
FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 8.81
* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.743
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL POOR COVER
"GRASS" A 1.40 .29 1.00 85
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .29
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) = 1.40 SUBAREA RUNOFF(CFS) = 5.61
EFFECTIVE AREA(ACRES) = 2.40 AREA -AVERAGED Fm(INCH/HR) _ .29
AREA -AVERAGED Fp(INCH/HR) _ .29 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 2.40 PEAK FLOW RATE(CFS) = 9.62
****************************************************************************
' FLOW PROCESS FROM NODE 3.00 TO NODE 6.00 IS CODE = 5.2
----------------------------------------------------------------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
--------------
ELEVATION DATA: UPSTREAM(FEET) = 1308.60 DOWNSTREAM(FEET) = 1306.40
CHANNEL LENGTH THRU SUBAREA(FEET) = 175.00 CHANNEL SLOPE = .0126
CHANNEL FLOW THRU SUBAREA(CFS) = 9.62
FLOW VELOCITY(FEET/SEC) = 2.77 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 1.05 Tc(MIN.) = 9.86
FLOW PROCESS FROM NODE 3.00 TO NODE 6.00 IS CODE = 8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 9.86
* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.433
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
"RESIDENTIAL
1-3-4 DWELLINGS/ACRE" A .12 .80 .60 52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60
SUBAREA AREA(ACRES) _ .12 SUBAREA RUNOFF(CFS) _ .43
EFFECTIVE AREA(ACRES) = 2.52 AREA -AVERAGED Fm(INCH/HR) _ .30
AREA -AVERAGED Fp(INCH/HR) _ .30 AREA -AVERAGED Ap = .98.
TOTAL AREA(ACRES) = 2.52 PEAK FLOW RATE(CFS) = 9.62
NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
****************************************************************************
FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE = 1
----------------------------------------------------------------------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) =
9.86
RAINFALL INTENSITY(INCH/HR) =
4.43
AREA -AVERAGED Fm(INCH/HR) _
.30
AREA -AVERAGED Fp(INCH/HR) _
.30
AREA -AVERAGED Ap = .98
EFFECTIVE STREAM AREA(ACRES)
= 2.52
TOTAL STREAM AREA(ACRES) =
2.52
PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.62
****************************************************************************
FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 2.1
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
., INITIAL SUBAREA FLOW-LENGTH(FEET) = 205.00
ELEVATION DATA: UPSTREAM(FEET) = 1310.70 DOWNSTREAM(FEET) = 1307.60
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
8.011
* 100 YEAR RAINFALL INTENSITY(INCH/HR) =
5.021
SUBAREA Tc AND LOSS RATE
DATA(AMC III):
DEVELOPMENT TYPE/
SCS SOIL AREA
Fp
Ap SCS Tc
LAND USE
GROUP (ACRES)
(INCH/HR)
(DECIMAL) CN (MIN.)
RESIDENTIAL
"3-4 DWELLINGS/ACRE"
A .50
.80
.60 52 8.01
SUBAREA AVERAGE PERVIOUS
LOSS RATE, Fp(INCH/HR) _
.80
SUBAREA AVERAGE PERVIOUS
AREA FRACTION, Ap
= .60
SUBAREA RUNOFF(CFS) =
2.04
TOTAL AREA(ACRES) _
.50 PEAK FLOW
RATE(CFS)
= 2.04
****************************************************************************
FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE = 6.2
----------------------------------------------------------------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>(STREET TABLE SECTION # 2 USED)<<<<<
--------------
UPSTREAM ELEVATION(FEET) = 1307.60 DOWNSTREAM ELEVATION(FEET) = 1306.40
STREET LENGTH(FEET) = 240.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 18.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00
INSIDE STREET CROSSFALL(DECIMAL) _ .020
OUTSIDE STREET CROSSFALL(DECIMAL) = .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
**TRAVEL TIME COMPUTED USING ESTIMATED
FLOW(CFS) =
3.42
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50
STREET FLOW DEPTH(FEET) = .39
SUBAREA AREA(ACRES) = .77 SUBAREA RUNOFF(CFS) =
2.74
HALFSTREET FLOOD WIDTH(FEET) = 13.13
_ .43
AREA -AVERAGED Fp(INCH/HR) = .80 AREA -AVERAGED Ap = .54
AVERAGE FLOW VELOCITY(FEET/SEC.) =
1.85
4.48
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.)
_ .72
DEPTH(FEET) = .42 HALFSTREET FLOOD WIDTH(FEET) = 14.68
STREET FLOW TRAVEL TIME(MIN.) = 2.16
Tc(MIN.) =
10.17
* 100 YEAR RAINFALL INTENSITY(INCH/HR) =
4.351
1
SUBAREA LOSS RATE DATA(AMC III):
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
DEVELOPMENT TYPE/ SCS SOIL AREA
Fp
Ap SCS
j,aimD jJGF. GROUP (ACRES)
(INCH/HR)
(DECIMAL) CN
RESIDENTIAL
115-7 DWELLINGS/ACRE" A .77 .80 .50
52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50
SUBAREA AREA(ACRES) = .77 SUBAREA RUNOFF(CFS) =
2.74
EFFECTIVE AREA(ACRES) = 1.27 AREA -AVERAGED Fm(INCH/HR)
_ .43
AREA -AVERAGED Fp(INCH/HR) = .80 AREA -AVERAGED Ap = .54
TOTAL AREA(ACRES) = 1.27 PEAK FLOW RATE(CFS) =
4.48
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = .42 HALFSTREET FLOOD WIDTH(FEET) = 14.68
FLOW VELOCITY(FEET/SEC.) = 1.97 DEPTH*VELOCITY(FT*FT/SEC.)
_ .83
****************************************************************************
FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE =
1
----------------------------------------------------------------------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) = 10.17
RAINFALL INTENSITY(INCH/HR) = 4.35
AREA -AVERAGED Fm(INCH/HR) = .43
AREA -AVERAGED Fp(INCH/HR) = .80
AREA -AVERAGED Ap = .54
EFFECTIVE STREAM AREA(ACRES) = 1.27
TOTAL STREAM AREA(ACRES) = 1.27
PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.48
** CONFLUENCE DATA **
STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES)
NODE
1 9.62 9.86 4.433 .30( .30) .98 2.52
.00
2 4.48 10.17 4.351 .80( .43) .54 1.27
4.00
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
1 14.1 9.86 4.433 .409( .342) .84 3.8 .00
2 13.9 10.17 4.351 .411( .343) .83 3.8 4.00
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 14.06 TC(MIN.) = 9.86
EFFECTIVE AREA(ACRES) = 3.75 AREA -AVERAGED Fm(INCH/HR) _ .34
AREA -AVERAGED Fp(INCH/HR) _ .41 AREA -AVERAGED Ap = .84
TOTAL AREA(ACRES) = 3.79
****************************************************************************
FLOW PROCESS FROM NODE 6.00 TO NODE 10.00 IS CODE = 6.2
----------------------------------------------------------------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>(STREET TABLE SECTION # 2 USED)<<<<<
UPSTREAM ELEVATION(FEET) = 1306.40 DOWNSTREAM ELEVATION(FEET) = 1305.40
STREET LENGTH(FEET) = 175.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 18.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00
INSIDE STREET CROSSFALL(DECIMAL) _ .020
OUTSIDE STREET CROSSFALL(DECIMAL) _ .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 15.13
***STREET FLOW SPLITS OVER STREET -CROWN***
FULL DEPTH(FEET) = .49 FLOOD WIDTH(FEET) = 18.00
FULL HALF -STREET VELOCITY(FEET/SEC.) = 2.40
SPLIT DEPTH(FEET) _ .47 SPLIT FLOOD WIDTH(FEET) = 17.13
SPLIT FLOW(CFS) = 7.08 SPLIT VELOCITY(FEET/SEC.) = 2.32
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = .49
HALFSTREET FLOOD WIDTH(FEET) = 18.00
AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.40
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.17
STREET FLOW TRAVEL TIME(MIN.) = 1.22 TC(MIN.) = 11.07
* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.134
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
RESIDENTIAL
1-5-7 DWELLINGS/ACRE" A .64 .80 .50 52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50
SUBAREA AREA(ACRES) = .64 SUBAREA RUNOFF(CFS) = 2.15
EFFECTIVE AREA(ACRES) = 4.39 AREA -AVERAGED Fm(INCH/HR) _ .35
AREA -AVERAGED Fp(INCH/HR) = .44 AREA -AVERAGED Ap = .79
TOTAL AREA(ACRES) = 4.43 PEAK FLOW RATE(CFS) = 14.96
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = .49 HALFSTREET FLOOD WIDTH(FEET) = 18.00
FLOW VELOCITY(FEET/SEC.) = 2.40 DEPTH*VELOCITY(FT*FT/SEC.) = 1.17
****************************************************************************
FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE = 1
------ -------- ----- ----- ---------- -------- ---------- -------- ----------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
TOTAL NUMBER OF STREAMS = 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) = 11.07
RAINFALL INTENSITY(INCH/HR) = 4.13
AREA -AVERAGED FM(INCH/HR) = .35
AREA -AVERAGED Fp(INCH/HR) = .44
AREA -AVERAGED Ap = .79
EFFECTIVE STREAM AREA(ACRES) = 4.39
TOTAL STREAM AREA(ACRES) = 4.43
PEAK FLOW RATE(CFS) AT CONFLUENCE = 14.96
****************************************************************************
FLOW PROCESS FROM NODE .00 TO NODE 1.00 IS CODE = 2.1
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW-LENGTH(FEET) = 115.00
ELEVATION DATA: UPSTREAM(FEET) = 1312.40 DOWNSTREAM(FEET) = 1310.00
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.595
* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.184
SUBAREA Tc AND LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp
LAND USE GROUP (ACRES) (INCH/HR)
NATURAL POOR COVER
"GRASS" A .30 .29
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) =
SUBAREA AVERAGE PERVIOUS AREA FRACTION,, Ap = 1.00
SUBAREA RUNOFF(CFS) = 1.32
TOTAL AREA(ACRES) = .30 PEAK FLOW RATE(CFS)
Ap SCS Tc
(DECIMAL) CN (MIN.)
1.00 85 7.60
.29
1.32
****************************************************************************
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 5.2
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<< <<<
ELEVATION DATA: UPSTREAM(FEET) = 1310.00 DOWNSTREAM(FEET) = 1307.70
CHANNEL LENGTH THRU SUBAREA(FEET) = 145.00 CHANNEL SLOPE = .0159
CHANNEL FLOW THRU SUBAREA(CFS) = 1.32
FLOW VELOCITY(FEET/SEC) = 1.99 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 1.21 Tc(MIN.) = 8.81
****************************************************************************
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 8.1
--------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 8.81
* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.743
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL
AREA Fp Ap
SCS
LAND USE GROUP
(ACRES) (INCH/HR) (DECIMAL)
CN
NATURAL POOR COVER
"GRASS" A
.60 .29 1.00
85
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .29
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) _ .60
SUBAREA RUNOFF(CFS) = 2.40
EFFECTIVE AREA(ACRES) _ .90
AREA -AVERAGED Fm(INCH/HR) _
.29
AREA -AVERAGED Fp(INCH/HR) _ .29
AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) _ .90
PEAK FLOW RATE(CFS) =
3.61
****************************************************************************
FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 5.2
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
------------------------------------------------
ELEVATION DATA: UPSTREAM(FEET) = 1307.70 DOWNSTREAM(FEET) = 1307.20
CHANNEL LENGTH THRU SUBAREA(FEET) = 55.00 CHANNEL SLOPE _ .0091
CHANNEL FLOW THRU SUBAREA(CFS) = 3.61
FLOW VELOCITY(FEET/SEC) = 1.87 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) _ .49 Tc(MIN.) = 9.30
****************************************************************************
FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 8.1
----------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN) = 9.30
* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.591
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL POOR COVER
"GRASS" A .50 .29 1.00 85
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .29
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) _ .50 SUBAREA RUNOFF(CFS) = 1.94
EFFECTIVE AREA(ACRES) = 1.40 AREA -AVERAGED Fm(INCH/HR) _ .29
AREA -AVERAGED Fp(INCH/HR) _ .29 AREA -AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 1.40 PEAK FLOW RATE(CFS) = 5.42
****************************************************************************
FLOW PROCESS FROM NODE 3.00 TO NODE 10.00 IS CODE = 5.2
----------------------------------------------------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 1307.20 DOWNSTREAM(FEET) = 1305.40
CHANNEL LENGTH THRU SUBAREA(FEET) = 170.00 CHANNEL SLOPE _ .0106
�irr+`
CHANNEL FLOW THRU SUBAREA(CFS) = 5.42
FLOW VELOCITY(FEET/SEC) = 2.21 (PER LACFCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 1.28 Tc(MIN.) = 10.58
****************************************************************************
FLOW PROCESS FROM NODE 3.00 TO NODE 10.00 IS CODE = 8.1
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<< <<<
MAINLINE Tc(MIN) = 10.58
* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.249
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
RESIDENTIAL
113-4 DWELLINGS/ACRE" A .10 .80 .60 52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60
SUBAREA AREA(ACRES) = .10 SUBAREA RUNOFF(CFS) _ .34
EFFECTIVE AREA(ACRES) = 1.50 AREA -AVERAGED Fm(INCH/HR) _ .30
AREA -AVERAGED Fp(INCH/HR) _ .31 AREA -AVERAGED Ap = .97
TOTAL AREA(ACRES) = 1.50 PEAK FLOW RATE(CFS) = 5.42
NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
****************************************************************************
FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE = 1
---------------------------------------------------------------------------
-->>>>>DESIGNATE-INDEPENDENT-STREAM_FOR_CONFLUENCE« «<---------------------
TOTAL NUMBER OF STREAMS = 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) = 10.58
RAINFALL INTENSITY(INCH/HR) = 4.25
AREA -AVERAGED Fm(INCH/HR) = .30
AREA -AVERAGED Fp(INCH/HR) = .31
AREA -AVERAGED Ap = .97
EFFECTIVE STREAM AREA(ACRES) = 1.50
TOTAL STREAM AREA(ACRES) = 1.50
PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.42
****************************************************************************
FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 2.1
--------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW-LENGTH(FEET) = 205.00
ELEVATION DATA: UPSTREAM(FEET) = 1310.70 DOWNSTREAM(FEET) = 1307.60
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.011
* 100 YEAR RAINFALL INTENSITY(INCH/HR). = 5.021
SUBAREA Tc AND LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
�D'
m
H
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
RESIDENTIAL
"3-4 DWELLINGS/ACRE" A .50 .80 .60 52 8.01
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60
SUBAREA RUNOFF(CFS) = 2.04
TOTAL AREA(ACRES) _ .50 PEAK FLOW RATE(CFS) = 2.04
****************************************************************************
FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 6.2
-------------------------------------------------------------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>(STREET TABLE SECTION # 2 USED)<<<<<
UPSTREAM ELEVATION(FEET) = 1307.60 DOWNSTREAM ELEVATION(FEET) = 1306.40
STREET LENGTH(FEET) = 240.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 18.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00
INSIDE STREET CROSSFALL(DECIMAL) _ .020
OUTSIDE STREET CROSSFALL(DECIMAL) _ .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.65
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) _ .40
HALFSTREET FLOOD WIDTH(FEET) = 13.52
AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.88
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) _ .74
STREET FLOW TRAVEL TIME(MIN.) = 2.13 TC(MIN.) = 10.14
* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.358
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND Ucp rPOTTP (ACRES) (INCH/HR) (DECIMAL) CN
RESIDENTIAL
1-5-7 DWELLINGS/ACRE" A .90 .80 .50 52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50
SUBAREA AREA(ACRES) _ .90 SUBAREA RUNOFF(CFS) = 3.21
EFFECTIVE AREA(ACRES) = 1.40 AREA -AVERAGED Fm(INCH/HR) _ .43
AREA -AVERAGED Fp(INCH/HR) _ .80 AREA -AVERAGED Ap = .54
TOTAL AREA(ACRES) = 1.40 PEAK FLOW RATE(CFS) = 4.95
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) _ .43 HALFSTREET FLOOD WIDTH(FEET) = 15.26
FLOW VELOCITY(FEET/SEC.) = 2.02 DEPTH*VELOCITY(FT*FT/SEC.) _ .87
****************************************************************************
'FLOW PROCESS FROM NODE 9.00 TO NODE 10.00 IS CODE = 6.2
--------------------------------------------------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>(STREET TABLE SECTION # 2 USED)<<<<<
UPSTREAM ELEVATION(FEET) = 1306.40 DOWNSTREAM ELEVATION(FEET) = 1305.40
STREET LENGTH(FEET) = 175.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 18.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00
INSIDE STREET CROSSFALL(DECIMAL) _ .020
OUTSIDE STREET CROSSFALL(DECIMAL) _ .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.11
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = .45
HALFSTREET FLOOD WIDTH(FEET) = 16.16
AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.24
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.01
STREET FLOW TRAVEL TIME(MIN.) = 1.30 Tc(MIN.) = 11.45
* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.053
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
RESIDENTIAL
115-7 DWELLINGS/ACRE" A .70 .80 .50 52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50
SUBAREA AREA(ACRES) = .70 SUBAREA RUNOFF(CFS) = 2.30
EFFECTIVE AREA(ACRES) = 2.10 AREA -AVERAGED Fm(INCH/HR) _ .42
AREA -AVERAGED Fp(INCH/HR) _ .80 AREA -AVERAGED Ap = .52
TOTAL AREA(ACRES) = 2.10 PEAK FLOW RATE(CFS) = 6.87
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = .46 HALFSTREET FLOOD WIDTH(FEET) = 16.94
FLOW VELOCITY(FEET/SEC.) = 2.30 DEPTH*VELOCITY(FT*FT/SEC.) = 1.07
****************************************************************************
FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE
= 1
----------------------------------------------------------------------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
TOTAL NUMBER OF STREAMS = 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
TIME OF CONCENTRATION(MIN.) = 11.45
RAINFALL INTENSITY(INCH/HR) = 4.05
AREA -AVERAGED Fm(INCH/HR) = .42
AREA -AVERAGED Fp(INCH/HR) = .80
AREA -AVERAGED Ap = .52
EFFECTIVE STREAM AREA(ACRES) = 2.10
TOTAL STREAM AREA(ACRES) = 2.10
PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.87
** CONFLUENCE DATA **
'STREAM Q Tc Intensity Fp(Fm) Ap Ae
SOURCE
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES)
NODE
1 14.96 11.07 4.134 .44( .35) .79 4.39
.00
1 14.81 11.38 4.066 .45( .35) .78- 4.43
4.00
2 5.42 10.58 4.249 .31( .30) .97 1.50
.00
;mss 3 6.87 11.45 4.053 .80( .42) .52 2.10
7.00
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 3 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM
Q
Tc
Intensity
Fp(Fm)
Ap
Ae
SOURCE
NUMBER
(CFS)
(MIN.)
(INCH/HR)
(INCH/HR)
TOTAL AREA(ACRES) = 8.03
(ACRES)
NODE
1
26.8
10.58
4.249
.473( .358)
.76
7.6
.00
2
27.0
11.07
4.134
.474( .358)
.75
7.9
.00
3
26.8
11.38
4.066
.477( .359)
.75
8.0
4.00
4
26.8
11.45
4.053
.477( .359)
.75
8.0
7.00
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 27.01
Tc(MIN.) = 11.07
EFFECTIVE AREA(ACRES) = 7.92
AREA -AVERAGED Fm(INCH/HR) _
.36
AREA -AVERAGED Fp(INCH/HR) _ .47
AREA -AVERAGED Ap = .75
TOTAL AREA(ACRES) = 8.03
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 8.03
TC(MIN.) = 11.07
EFFECTIVE AREA(ACRES) = 7.92
AREA -AVERAGED Fm(INCH/HR)=
.36
AREA -AVERAGED Fp(INCH/HR) _ .47
AREA -AVERAGED Ap = .75
PEAK FLOW RATE(CFS) = 27.01
** PEAK FLOW RATE TABLE **
STREAM Q Tc Intensity
Fp(Fm) Ap Ae
SOURCE
NUMBER (CFS) (MIN.) (INCH/HR)
(INCH/HR) (ACRES)
NODE
1 26.8 10.58 4.249
.473( .358) .76 7.6
.00
2 27.0 11.07 4.134
.474( .358) .75 7.9
.00
3 26.8 11.38 4.066
.477( .359) .75 8.0
4.00
4 26.8 11.45 4.053
.477( .359) .75 8.0
7.00
END OF RATIONAL METHOD ANALYSIS
Onsite
Hydraulic Calculations
IN
Onsite
Rational Method & Hydraulic
Calculations
10
Onsite
Rational Method
25 & 100 Year Storm Events
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
(Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-95 Advanced Engineering Software (aes)
Ver. 5.1A Release Date: 08/01/95 License ID 1400
Analysis prepared by:
ALLARD ENGINEERING, INC.
6101 CHERRY AVENUE
FONTANA, CALIFORNIA 92336
(909) 899 - 5011
************************** DESCRIPTION OF STUDY **************************
* Tract 16271 Q25 Onsite Only Developed Condition
*
*
*
*
**************************************************************************
FILE NAME: 16271O.DAT
TIME/DATE OF STUDY: 12:56 6/29/2004
---------------------
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
--------------
--*TIME-OF-CONCENTRATION MODEL* --
USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90
*USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(TC;MIN)) _ .6000
USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) = 1.2000
*ANTECEDENT MOISTURE CONDITION (AMC III) ASSUMED FOR RATIONAL METHOD*
*USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
1 30.0 20.0 .018/ .018/ .020 .67 2.00 .03125 .1670 .01500
2 18.0 9.0 .020/ .020/ --- .50 1.50 .03125 .1250 .01500
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1. Relative Flow -Depth = .24 FEET
as (Maximum Allowable Street Flow Depth) - (Top -of -Curb)
2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 2.1
----------------------------------------------------------------------------
AP11` >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW-LENGTH(FEET) = 205.00
ELEVATION DATA: UPSTREAM(FEET) = 1310.70 DOWNSTREAM(FEET) = 1307.60
TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.011
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 4.017
SUBAREA Tc AND LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
RESIDENTIAL
113-4 DWELLINGS/ACRE" A .50 .80 .60 52 8.01
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60
SUBAREA RUNOFF(CFS) = 1.59
TOTAL AREA(ACRES) = .50 PEAK FLOW RATE(CFS) = 1.59
****************************************************************************
FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE = 6.2
---------------------------------------------------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>(STREET TABLE SECTION # 2 USED) <<<<
UPSTREAM ELEVATION(FEET) = 1307.60 DOWNSTREAM ELEVATION(FEET) = 1306.40
STREET LENGTH(FEET) = 240.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 18.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00
INSIDE STREET CROSSFALL(DECIMAL) _ .020
OUTSIDE STREET CROSSFALL(DECIMAL) _ .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.80
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = .37
HALFSTREET FLOOD WIDTH(FEET) = 12.10
AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.77
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) _ .65
STREET FLOW TRAVEL TIME(MIN.) = 2.26 Tc(MIN.) = 10.27
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.461
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
RESIDENTIAL
"3-4 DWELLINGS/ACRE" A .90 .80 .60 52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60
SUBAREA AREA(ACRES) = .90 SUBAREA RUNOFF(CFS) = 2.42
"EFFECTIVE AREA(ACRES) = 1.40 AREA -AVERAGED FM(INCH/HR) _ .48
AREA -AVERAGED Fp(INCH/HR) _ .80 AREA -AVERAGED Ap = .60
TOTAL AREA(ACRES) = 1.40 PEAK FLOW RATE(CFS) = 3.76
Aomok END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = .40 HALFSTREET FLOOD WIDTH(FEET) = 13.65
FLOW VELOCITY(FEET/SEC.) = 1.90 DEPTH*VELOCITY(FT*FT/SEC.) _ .76
****************************************************************************
FLOW PROCESS FROM NODE 6.00 TO NODE 10.00 IS CODE = 6.2
----------------------------------------------------------------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>(STREET TABLE SECTION # 2 USED) <<<<
------------------------
UPSTREAM ELEVATION(FEET) = 1306.40 DOWNSTREAM ELEVATION(FEET) = 1305.40
STREET LENGTH(FEET) = 175.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 18.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00
INSIDE STREET CROSSFALL(DECIMAL) _ .020
OUTSIDE STREET CROSSFALL(DECIMAL) _ .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.57
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) _ .41
HALFSTREET FLOOD WIDTH(FEET) = 14.36
AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.10
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) _ .87
STREET FLOW TRAVEL TIME(MIN.) = 1.39 Tc(MIN.) = 11.66
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.207
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap
SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL)
CN
RESIDENTIAL
"5-7 DWELLINGS/ACRE" A .64 .80 .50
52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50
SUBAREA AREA(ACRES) _ .64 SUBAREA RUNOFF(CFS) = 1.62
EFFECTIVE AREA(ACRES) = 2.04 AREA -AVERAGED Fm(INCH/HR) _
.45
AREA -AVERAGED Fp(INCH/HR) _ .80 AREA -AVERAGED Ap = .57
TOTAL AREA(ACRES) = 2.04 PEAK FLOW RATE(CFS) =
5.06
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) _ .43 HALFSTREET FLOOD WIDTH(FEET) = 15.00
FLOW VELOCITY(FEET/SEC.) = 2.13 DEPTH*VELOCITY(FT*FT/SEC.) _
.91
****************************************************************************
FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE = 1
----------------------------------------------------------------------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
'TIME OF CONCENTRATION(MIN.) = 11.66
RAINFALL INTENSITY(INCH/HR) = 3.21
AREA -AVERAGED Fm(INCH/HR) _ .45
AREA -AVERAGED Fp(INCH/HR) _ .80
AREA -AVERAGED Ap = .57
EFFECTIVE STREAM AREA(ACRES) = 2.04
TOTAL STREAM AREA(ACRES) = 2.04
PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.06
****************************************************************************
FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 2.1
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW-LENGTH(FEET) = 205.00
ELEVATION DATA: UPSTREAM(FEET) = 1310.70 DOWNSTREAM(FEET) = 1307.60
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.011
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 4.017
SUBAREA Tc AND LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp
LAND USE GROUP (ACRES) (INCH/HR)
RESIDENTIAL
113-4 DWELLINGS/ACRE" A .50 .80
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60
SUBAREA RUNOFF(CFS) = 1.59
TOTAL AREA(ACRES) _ .50 PEAK FLOW RATE(CFS)
Ap SCS Tc
(DECIMAL) CN (MIN.)
.60 52 8.01
.80
1.59
****************************************************************************
�,.. FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 6.2
-------------------------------------------------------------
» >>>COMPUTE STREET - FLOW - TRAVEL TIME THRU SUBAREA« <<<
>>>>>(STREET TABLE SECTION # 2 USED)<<<<<
-----------------------------
UPSTREAM ELEVATION(FEET) = 1307.60 DOWNSTREAM ELEVATION(FEET) = 1306.40
STREET LENGTH(FEET) = 240.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 18.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00
INSIDE STREET CROSSFALL(DECIMAL) _ .020
OUTSIDE STREET CROSSFALL(DECIMAL) _ .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.84
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) _ .37
HALFSTREET FLOOD WIDTH(FEET) = 12.17
AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.77
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) _ .66
STREET FLOW TRAVEL TIME(MIN.) = 2.25 Tc(MIN.) = 10.27
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.461
"SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
RESIDENTIAL
"5-7 DWELLINGS/ACRE" A .90 .80 .50 52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50
too"- SUBAREA AREA(ACRES) _ .90 SUBAREA RUNOFF(CFS) = 2.48
EFFECTIVE AREA(ACRES) = 1.40 AREA -AVERAGED Fm(INCH/HR) _ .43
AREA -AVERAGED Fp(INCH/HR) _ .80 AREA -AVERAGED Ap = .54
TOTAL AREA(ACRES) = 1.40 PEAK FLOW RATE(CFS) = 3.82
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) _ .40 HALFSTREET FLOOD WIDTH(FEET) = 13.78
FLOW VELOCITY(FEET/SEC.) = 1.90 DEPTH*VELOCITY(FT*FT/SEC.) _ .76
****************************************************************************
FLOW PROCESS FROM NODE 9.00 TO NODE 10.00 IS CODE = 6.2
----------------------------------------------------------------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
»»> (STREET TABLE SECTION # 2 USED) ««<
UPSTREAM ELEVATION(FEET) = 1306.40 DOWNSTREAM ELEVATION(FEET) = 1305.40
STREET LENGTH(FEET) = 175.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 18.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00
INSIDE STREET CROSSFALL(DECIMAL) _ .020
OUTSIDE STREET CROSSFALL(DECIMAL) _ .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.71
�. STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) _ .42
HALFSTREET FLOOD WIDTH(FEET) = 14.55
AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.11
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) _ .88
STREET FLOW TRAVEL TIME(MIN.) = 1.38 Tc(MIN.) = 11.65
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.208
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
RESIDENTIAL
115-7 DWELLINGS/ACRE" A .70 .80 .50 52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50
SUBAREA AREA(ACRES) _ .70 SUBAREA RUNOFF(CFS) = 1.77
EFFECTIVE AREA(ACRES) = 2.10 AREA -AVERAGED Fm(INCH/HR) _ .42
AREA -AVERAGED Fp(INCH/HR) _ .80 AREA -AVERAGED Ap = .52
TOTAL AREA(ACRES) = 2.10 PEAK FLOW RATE(CFS) = 5.28
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) _ .43 HALFSTREET FLOOD WIDTH(FEET) = 15.26
FLOW VELOCITY(FEET/SEC.) = 2.16 DEPTH*VELOCITY(FT*FT/SEC.) _ .93
****************************************************************************
FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE = 1
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
100,11- >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
TOTAL NUMBER OF STREAMS = 2
Fp(Fm) Ap Ae
SOURCE
Aool*
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM
2 ARE:
NODE
,%m' TIME OF CONCENTRATION(MIN.) = 11.65
.796( .435) .55 4.1
4.00
RAINFALL INTENSITY(INCH/HR) = 3.21
.796( .435) .55 4.1
7.00
AREA -AVERAGED Fm(INCH/HR) _ .42
AS FOLLOWS:
11.65
AREA -AVERAGED Fp(INCH/HR) _ .80
Tc(MIN.) = 11.65
7.00
AREA -AVERAGED Ap = .52
`
.43
EFFECTIVE STREAM AREA(ACRES) = 2.10
AREA -AVERAGED Ap = .55
4.00
TOTAL STREAM AREA(ACRES) = 2.10
RATIONAL
METHOD
PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.28
** CONFLUENCE DATA **
TC(MIN.) = 11.65
STREAM Q Tc Intensity Fp(Fm)
Ap Ae
SOURCE
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR)
(ACRES)
NODE
1 5.06 11.66 3.207 .80( .45)
.57 2.04
4.00
2 5.28 11.65 3.208 .80( .42)
.52 2.10
7.00
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE'TABLE **
STREAM Q Tc Intensity
Fp(Fm) Ap Ae
SOURCE
NUMBER (CFS) (MIN.) (INCH/HR)
(INCH/HR) (ACRES)
NODE
1 10.3 11.66 3.207
.796( .435) .55 4.1
4.00
2 10.3 11.65 3.208
.796( .435) .55 4.1
7.00
COMPUTED CONFLUENCE ESTIMATES ARE
AS FOLLOWS:
11.65
PEAK FLOW RATE(CFS) = 10.33
Tc(MIN.) = 11.65
7.00
.100'- EFFECTIVE AREA(ACRES) = 4.14
AREA -AVERAGED Fm(INCH/HR) _
.43
AREA -AVERAGED Fp(INCH/HR) _ .80
AREA -AVERAGED Ap = .55
4.00
TOTAL AREA(ACRES) = 4.14
RATIONAL
METHOD
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 4.14
TC(MIN.) = 11.65
EFFECTIVE AREA(ACRES) = 4.14
AREA -AVERAGED Fm(INCH/HR)=
.43
AREA -AVERAGED Fp(INCH/HR) _ .80
AREA -AVERAGED Ap = .55
PEAK FLOW RATE(CFS) = 10.33
** PEAK FLOW RATE TABLE **
STREAM
Q
Tc
Intensity
Fp(Fm) Ap Ae
SOURCE
NUMBER
(CFS)
(MIN.)
(INCH/HR)
(INCH/HR) (ACRES)
NODE
1
10.3
11.65
3.208
.796( .435) .55 4.1
7.00
2
10.3
11.66
3.207
.796( .435) .55 4.1
4.00
END OF
RATIONAL
METHOD
ANALYSIS
y
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
(Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-95 Advanced Engineering Software (aes)
Ver. 5.1A Release Date: 08/01/95 License ID 1400
Analysis prepared by:
ALLARD ENGINEERING, INC.
6101 CHERRY AVENUE
FONTANA, CALIFORNIA 92336
(909) 899 - 5011
************************** DESCRIPTION OF STUDY **************************
* Tract 16271 Q100 Onsite Only Developed
*
*
*
**************************************************************************
FILE NAME: 162710.DAT
TIME/DATE OF STUDY: 19:57 7/11/2004
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
--*TIME-OF-CONCENTRATION MODEL* --
USER SPECIFIED STORM EVENT(YEAR) = 100.00
�,,.. SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .90
*USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = .6000
USER SPECIFIED 1 -HOUR INTENSITY(INCH/HOUR) = 1.5000
*ANTECEDENT MOISTURE CONDITION (AMC III) ASSUMED FOR RATIONAL METHOD*
*USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
1 30.0 20.0 .018/ .018/ .020 .67 2.00 .03125 .1670 .01500
2 18.0 9.0 .020/ .020/ --- .50 1.50 .03125 .1250 .01500
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1. Relative Flow -Depth = .24 FEET
as (Maximum Allowable Street Flow Depth) - (Top -of -Curb)
2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 2.1
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA«
INITIAL SUBAREA FLOW-LENGTH(FEET) = 205.00
ELEVATION DATA: UPSTREAM(FEET) = 1310.70 DOWNSTREAM(FEET) = 1307.60
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.011
* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.021
SUBAREA Tc AND LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
RESIDENTIAL
"3-4 DWELLINGS/ACRE" A .50 .80 .60 52 8.01
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60
SUBAREA RUNOFF(CFS) = 2.04
TOTAL AREA(ACRES) _ .50 PEAK FLOW RATE(CFS) = 2.04
****************************************************************************
FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE = 6.2
----------------------------------------------------------------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
»»> (STREET TABLE SECTION # 2 USED) ««<
UPSTREAM ELEVATION(FEET) = 1307.60 DOWNSTREAM ELEVATION(FEET) = 1306.40
STREET LENGTH(FEET) = 240.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 18.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00
INSIDE STREET CROSSFALL(DECIMAL) _ .020
OUTSIDE STREET CROSSFALL(DECIMAL) _ .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.62
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) _ .40
HALFSTREET FLOOD WIDTH(FEET) = 13.46
AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.88
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) _ .74
STREET FLOW TRAVEL TIME(MIN.) = 2.13 Tc(MIN.) = 10.14
* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.358
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
RESIDENTIAL
113-4 DWELLINGS/ACRE" A .90 .80 .60 52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60
SUBAREA AREA(ACRES) _ .90 SUBAREA RUNOFF(CFS) = 3.14
'EFFECTIVE AREA(ACRES) = 1.40 AREA -AVERAGED Fm(INCH/HR) _ .48
AREA -AVERAGED Fp(INCH/HR) _ .80 AREA -AVERAGED Ap = .60
TOTAL AREA(ACRES) = 1.40 PEAK FLOW RATE(CFS) = 4.89
END OF SUBAREA STREET FLOW HYDRAULICS:
q DEPTH(FEET) _ .43 HALFSTREET FLOOD WIDTH(FEET) = 15.20
FLOW VELOCITY(FEET/SEC.) = 2.01 DEPTH*VELOCITY(FT*FT/SEC.) _ .87
****************************************************************************
FLOW PROCESS FROM NODE 6.00 TO NODE 10.00 IS CODE = 6.2
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>(STREET TABLE SECTION # 2 USED)<<<<<
------------------------ ---
UPSTREAM ELEVATION(FEET) = 1306.40 DOWNSTREAM ELEVATION(FEET) = 1305.40
STREET LENGTH(FEET) = 175.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 18.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00
INSIDE STREET CROSSFALL(DECIMAL) _ .020
OUTSIDE STREET CROSSFALL(DECIMAL) _ .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
****************************************************************************
FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE = 1
----------------------------------------------------------------------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
'TIME OF CONCENTRATION(MIN.) = 11.45
RAINFALL INTENSITY(INCH/HR) = 4.05
AREA -AVERAGED Fm(INCH/HR) _ .45
AREA -AVERAGED Fp(INCH/HR) _ .80
Aow AREA -AVERAGED Ap = .57
EFFECTIVE STREAM AREA(ACRES) = 2.04
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.94
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) _ .45
HALFSTREET FLOOD WIDTH(FEET) = 15.97
AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.23
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) _ .99
STREET FLOW TRAVEL TIME(MIN.) = 1.31 Tc(MIN.) = 11.45
* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.052
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap
SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL)
CN
RESIDENTIAL
115-7 DWELLINGS/ACRE" A .64 .80 .50
52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50
SUBAREA AREA(ACRES) _ .64 SUBAREA RUNOFF(CFS) = 2.10
EFFECTIVE AREA(ACRES) = 2.04 AREA -AVERAGED Fm(INCH/HR) _
.45
AREA -AVERAGED Fp(INCH/HR) _ .80 AREA -AVERAGED Ap = .57
TOTAL AREA(ACRES) = 2.04 PEAK FLOW RATE(CFS) =
6.61
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) _ .46 HALFSTREET FLOOD WIDTH(FEET) = 16.68
FLOW VELOCITY(FEET/SEC.) = 2.28 DEPTH*VELOCITY(FT*FT/SEC.) =
1.05
****************************************************************************
FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE = 1
----------------------------------------------------------------------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
'TIME OF CONCENTRATION(MIN.) = 11.45
RAINFALL INTENSITY(INCH/HR) = 4.05
AREA -AVERAGED Fm(INCH/HR) _ .45
AREA -AVERAGED Fp(INCH/HR) _ .80
Aow AREA -AVERAGED Ap = .57
EFFECTIVE STREAM AREA(ACRES) = 2.04
TOTAL STREAM AREA(ACRES) = 2.04
PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.61
****************************************************************************
FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 2.1
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
>>USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW-LENGTH(FEET) = 205.00
ELEVATION DATA: UPSTREAM(FEET) = 1310.70 DOWNSTREAM(FEET) = 1307.60
Tc = K*((LENGTH** 3.00)/(ELEVATION CHANGE)]** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.011
* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.021
SUBAREA Tc AND LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
RESIDENTIAL
113-4 DWELLINGS/ACRE" A .50 .80 .60 52 8.01
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60
SUBAREA RUNOFF(CFS) = 2.04
TOTAL AREA(ACRES) = .50 PEAK FLOW RATE(CFS) = 2.04
****************************************************************************
FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 6.2
----------------------------------------------------------------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>(STREET TABLE SECTION # 2 USED)<<<<<
UPSTREAM ELEVATION(FEET) = 1307.60 DOWNSTREAM ELEVATION(FEET) = 1306.40
STREET LENGTH(FEET) = 240.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 18.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00
INSIDE STREET CROSSFALL(DECIMAL) _ .020
OUTSIDE STREET CROSSFALL(DECIMAL) _ .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.65
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = .40
HALFSTREET FLOOD WIDTH(FEET) = 13.52
AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.88
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) _ .74
STREET FLOW TRAVEL TIME(MIN.) = 2.13 Tc(MIN.) = 10.14
* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.358
-SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
RESIDENTIAL
115-7 DWELLINGS/ACRE" A .90 .80 .50 52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .80
*Owl
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50.
SUBAREA AREA(ACRES) _ .90 SUBAREA RUNOFF(CFS) = 3.21
EFFECTIVE AREA(ACRES) = 1.40 AREA -AVERAGED FM(INCH/HR) _ .43
AREA -AVERAGED Fp(INCH/HR) _ .80 AREA -AVERAGED Ap = .54
TOTAL AREA(ACRES) = 1.40 PEAK FLOW RATE(CFS) = 4.95
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) _ .43 HALFSTREET FLOOD WIDTH(FEET) = 15.26
FLOW VELOCITY(FEET/SEC.) = 2.02 DEPTH*VELOCITY(FT*FT/SEC.) _ .87
****************************************************************************
FLOW PROCESS FROM NODE 9.00 TO NODE 10.00 IS CODE = 6.2
----------------------------------------------------------------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>(STREET TABLE SECTION # 2 USED)<<<<<
----------------------------------
UPSTREAM ELEVATION(FEET) = 1306.40 DOWNSTREAM ELEVATION(FEET) = 1305.40
STREET LENGTH(FEET) = 175.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 18.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00
INSIDE STREET CROSSFALL(DECIMAL) _ .020
OUTSIDE STREET CROSSFALL(DECIMAL) _ .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.11
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) _ .45
HALFSTREET FLOOD WIDTH(FEET) = 16.16
AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.24
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.01
STREET FLOW TRAVEL TIME(MIN.) = 1.30 Tc(MIN.) = 11.45
* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.053
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
RESIDENTIAL
1-5-7 DWELLINGS/ACRE" A .70 .80 .50 52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .80
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50
SUBAREA AREA(ACRES) _ .70 SUBAREA RUNOFF(CFS) = 2.30
EFFECTIVE AREA(ACRES) = 2.10 AREA -AVERAGED FM(INCH/HR) _ .42
AREA -AVERAGED Fp(INCH/HR) _ .80 AREA -AVERAGED Ap = .52
TOTAL AREA(ACRES) = 2.10 PEAK FLOW RATE(CFS) = 6.87
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) _ .46 HALFSTREET FLOOD WIDTH(FEET) = 16.94
FLOW VELOCITY(FEET/SEC.) = 2.30 DEPTH*VELOCITY(FT*FT/SEC.) = 1.07
****************************************************************************
FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE = 1
--------------------------------------------------=-------------------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
TOTAL NUMBER OF STREAMS = 2
Fp(Fm) Ap Ae
SOURCE
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM
2 ARE:
NODE
TIME OF CONCENTRATION(MIN.) = 11.45
.796( .435) .55 4.1
4.00
RAINFALL INTENSITY(INCH/HR) = 4.05
.796( .435) .55 4.1
7.00
AREA -AVERAGED Fm(INCH/HR) _ .42
AS FOLLOWS:
11.45
AREA -AVERAGED Fp(INCH/HR) _ .80
Tc(MIN.) = 11.45
7.00
AREA -AVERAGED Ap = .52
AREA -AVERAGED Fm(INCH/HR) _
.43
EFFECTIVE STREAM AREA(ACRES) = 2.10
AREA -AVERAGED Ap = .55
4.00
TOTAL STREAM AREA(ACRES) = 2.10
RATIONAL
METHOD
PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.87
** CONFLUENCE DATA **
TC(MIN.) = 11.45
STREAM Q Tc Intensity Fp(Fm)
Ap Ae
SOURCE
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR)
(ACRES)
NODE
1 6.61 11.45 4.052 .80( .45)
.57 2.04
4.00
2 6.87 11.45 4.053 .80( .42)
.52 2.10
7.00
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM Q Tc Intensity
Fp(Fm) Ap Ae
SOURCE
NUMBER (CFS) (MIN.) (INCH/HR)
(INCH/HR) (ACRES)
NODE
1 13.5 11.45 4.052
.796( .435) .55 4.1
4.00
2 13.5 11.45 4.053
.796( .435) .55 4.1
7.00
COMPUTED CONFLUENCE ESTIMATES ARE
AS FOLLOWS:
11.45
PEAK FLOW RATE(CFS) = 13.48
Tc(MIN.) = 11.45
7.00
EFFECTIVE AREA(ACRES) = 4.14
AREA -AVERAGED Fm(INCH/HR) _
.43
AREA -AVERAGED Fp(INCH/HR) _ .80
AREA -AVERAGED Ap = .55
4.00
TOTAL AREA(ACRES) = 4.14
RATIONAL
METHOD
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 4.14
TC(MIN.) = 11.45
EFFECTIVE AREA(ACRES) = 4.14
AREA -AVERAGED Fm(INCH/HR)=
.43
AREA -AVERAGED Fp(INCH/HR) _ .80
AREA -AVERAGED Ap = .55
PEAK FLOW RATE(CFS) = 13.48
** PEAK FLOW RATE TABLE **
STREAM
Q
Tc
Intensity
Fp(Fm) Ap Ae
SOURCE
NUMBER
(CFS)
(MIN.)
(INCH/HR)
(INCH/HR) (ACRES)
NODE
1
13.5
11.45
4.053
.796( .435) .55 4.1
7.00
2
13.5
11.45
4.052
.796( .435) .55 4.1
4.00
END OF
RATIONAL
METHOD
ANALYSIS
Onsite
Street Capacity Calculations
Garfield Drive
@4
Tract 16271
�* Street Capacity Calculation, South Side Garfield Drive
25 Year Storm Event
************************************************************************
»»STREETFLOW MODEL INPUT INFORMATION««
CONSTANT STREET GRADE(FEET/FEET) = 0.006000
CONSTANT STREET FLOW(CFS) = 5.70
AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000
CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 18.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00
INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000
CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.50
CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50
CONSTANT SYMMETRICAL GUTTER-LIP(FEET) = 0.03125
CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) = 0.12500
FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS
STREET FLOW MODEL RESULTS:
STREET FLOW DEPTH(FEET) = 0.44
HALFSTREET FLOOD WIDTH(FEET) = 15.68
AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.21
PRODUCT OF DEPTH&VELOCITY = 0.97
0.44 < 0.5 , Therefore water is flowing below top of curb
NO
Tract 16271
Street Capacity Calculation, South Side Garfield Drive
100 Year Storm Event
************************************************************************
»»STREETFLOW MODEL INPUT INFORMATION««
CONSTANT STREET GRADE(FEET/FEET) = 0.006000
CONSTANT STREET FLOW(CFS) = 7.20
AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000
CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 18.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00
INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000
CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.50
CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50
CONSTANT SYMMETRICAL GUTTER-LIP(FEET) = 0.03125
CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) = 0.12500
FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS
STREET FLOW MODEL RESULTS:
��,..
---------------------------------------------------
STREET FLOW DEPTH(FEET) = 0.47
HALFSTREET FLOOD WIDTH(FEET) = 17.23
AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.33
PRODUCT OF DEPTH&VELOCITY = 1.10
0.47' < 0.74' , Therefore water is flowing below right of way
Tract 16271
Street Capacity Calculation, North Side Garfield Drive
25 Year Storm Event
************************************************************************
****
»»STREETFLOW MODEL INPUT INFORMATION««
CONSTANT STREET GRADE(FEET/FEET) = 0.006000
CONSTANT STREET FLOW(CFS) = 17.10
AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000
CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 18.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00
INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000
CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.50
CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50
CONSTANT SYMMETRICAL GUTTER-LIP(FEET) = 0.03125
CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) = 0.12500
FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS
***STREET FLOWING FULL***
STREET FLOW MODEL RESULTS:
STREET FLOW DEPTH(FEET) = 0.50
HALFSTREET FLOOD WIDTH(FEET) = 18.00
AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.42
PRODUCT OF DEPTH&VELOCITY = 1.20
0.5' = 0.5' , Therefore water is flowing at top of curb
Tract 16271
Street Capacity Calculation, North Side Garfield Drive
,,. 100 Year Storm Event
************************************************************************
****
»»STREETFLOW MODEL INPUT INFORMATION««
CONSTANT STREET GRADE(FEET/FEET) = 0.006000
CONSTANT STREET FLOW(CFS) = 21.60
AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000
CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 18.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00
INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000
CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.50
CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50
CONSTANT SYMMETRICAL GUTTER-LIP(FEET) = 0.03125
CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) = 0.12500
FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS
***STREET FLOWING FULL***
STREET FLOW MODEL RESULTS:
NOTE: STREET FLOW EXCEEDS TOP OF CURB.
THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE
ASSUMPTION
THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL.
THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED.
STREET FLOW DEPTH(FEET) = 0.52
HALFSTREET FLOOD WIDTH(FEET) = 18.00
AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.78
PRODUCT OF DEPTH&VELOCITY = 1.43
0.52' < 0.74' , Therefore water is flowing below right of way
m
Catch Basin Calculations
N
@4
Tract 16271
Sump Basin Sizing, Garfield Drive
100 Year storm Event
»»SUMP TYPE BASIN INPUT INFORMATION««
Curb Inlet Capacities are approximated based on the Bureau of
Public Roads nomograph plots for flowby basins and sump basins.
BASIN INFLOW(CFS) = 27.00
BASIN OPENING(FEET) = 0.71
DEPTH OF WATER(FEET) = 0.74
»»CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 14.13
Recommended Width = 21'
N
Wall Opening
Hydraulic Calculation
@4
Wall Openina Hydraulic Calculation
Purpose - to determine maximum water surface over wall opening during 100 year storm event
Q=CLH^(3/2) Equations and Constants were Derived From
Brater, E.F. and King, H.W. 1976. Handbook Of Hydraulics, 65th Edition. McGraw Hill, New York.
H=((Q"2)/(CL"2))"(113)
H = depth of water flowing over weir
C 3.1
Len th 12
Q cfs H = depth ft Invert Elev ft Water Surface ft
27.01 1 0.81 1 1306.14 1 1306.95
Freeboard = Adjacent Pad Elev - Water Surface Elev
Freeboard = 1308.20 - 1306.95 = 1.25 ft
Detention B as -in
Hydrology & Hydraulics
M
R4
Developed Unit Hydrographs
2,10925 & 100 Year Storm Events
10
e
U n i t H y d r o g r a p h A n a l y s i s
Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 1999, Version 6.0
Study date 07/19/04
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
------------------------------------------------------------------------
San Bernardino County Synthetic Unit Hydrology Method
Manual date - August 1986
Allard Engineering, Fontana, California - SIN 643
---------------------------------------------------------------------
Tract 16271 2 Year 24 Hour Developed Condition Unit Hydrograph
Storm Event Year = 2
Antecedent Moisture Condition = 3
English (in -lb) Input Units Used
'ow" English Rainfall Data (Inches) Input Values Used
1%11
English Units used in output format
Area averaged rainfall intensity isohyetal data:
Sub -Area Duration Isohyetal
(Ac.) (hours) (In)
Rainfall data for year 2
9.03 1 0.56
--------------------------------------------------------------------
Rainfall data for year 2
9.03 6 1.75
--------------------------------------------------------------------
Rainfall data for year 2
9.03 24 3.30
--------------------------------------------------------------------
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
******** Area -averaged max loss rate, Fm ********
SCS curve
SCS curve
Area
Area
Fp(Fig C6)
Ap
Fm
No.(AMCII)
NO -(AMC 3)
(Ac.)
Fraction
(In/Hr)
(dec.)
(In/Hr)
32.0
52.0
4.76
0.527
0.785
0.600
0.471
67.0
84.6
4.27
0.473
0.290
1.000
0.290
Area -averaged catchment yield fraction, Y = 0.475
Area -averaged low loss fraction, Yb = 0.525
User entry of time of concentration = 0.196 (hours)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Watershed area = 9.03(Ac.)
Catchment Lag time = 0.157 hours
Unit interval = 5.000 minutes
Unit interval percentage of lag time = 53.1463
Hydrograph baseflow = 0.00(CFS)
Average maximum watershed loss rate(Fm) = 0.385(In/Hr)
Average low loss rate fraction (Yb) = 0.525 (decimal)
VALLEY DEVELOPED S -Graph proportion = 0.527
VALLEY UNDEVELOPED S -Graph proportion = 0.473
FOOTHILL S -Graph proportion = 0.000
MOUNTAIN S -Graph proportion = 0.000
DESERT S -Graph proportion = 0.000
Computed peak 5 -minute rainfall = 0.207(In)
Computed peak 30 -minute rainfall = 0.424(In)
Specified peak 1 -hour rainfall = 0.560(In)
Computed peak 3 -hour rainfall = 1.126(In)
Specified peak 6 -hour rainfall = 1.750(In)
Specified peak 24-hour rainfall = 3.300(In)
Rainfall depth area reduction factors:
Using a total area of 9.03(Ac.) (Ref: fig. E-4)
5 -minute factor = 1.000 Adjusted rainfall = 0.207(In)
30 -minute factor = 1.000 Adjusted rainfall = 0.424(In)
1 -hour factor = 1.000 Adjusted rainfall = 0.560(In)
3 -hour factor = 1.000 Adjusted rainfall = 1.126(In)
6 -hour factor = 1.000 Adjusted rainfall = 1.750(In)
24-hour factor = 1.000 Adjusted rainfall = 3.300(In)
---------------------------------------------------------------------
U n i t H y d r o g r a p h
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Interval 'S' Graph Unit Hydrograph
Number Mean values ((CFS))
---------------------------------------------------------------------
(K = 109.21 (CFS))
1 5.901 6.444
2 34.387 31.109
Area -averaged adjusted
loss rate
Fm (In/Hr) =
0.385
Yb **********
*********
Area -Averaged
low loss
rate fraction,
Area
Area
SCS CN
SCS CN
S
Pervious
(Ac.)
Fract
(AMC2)
(AMC3)
Yield Fr
2.86
0.316
32.0
52.0
9.23
0.060
1.90
0.211
98.0
98.0
0.20
0.929
4.27
0.473
67.0
84.6
1.82
0.549
Area -averaged catchment yield fraction, Y = 0.475
Area -averaged low loss fraction, Yb = 0.525
User entry of time of concentration = 0.196 (hours)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Watershed area = 9.03(Ac.)
Catchment Lag time = 0.157 hours
Unit interval = 5.000 minutes
Unit interval percentage of lag time = 53.1463
Hydrograph baseflow = 0.00(CFS)
Average maximum watershed loss rate(Fm) = 0.385(In/Hr)
Average low loss rate fraction (Yb) = 0.525 (decimal)
VALLEY DEVELOPED S -Graph proportion = 0.527
VALLEY UNDEVELOPED S -Graph proportion = 0.473
FOOTHILL S -Graph proportion = 0.000
MOUNTAIN S -Graph proportion = 0.000
DESERT S -Graph proportion = 0.000
Computed peak 5 -minute rainfall = 0.207(In)
Computed peak 30 -minute rainfall = 0.424(In)
Specified peak 1 -hour rainfall = 0.560(In)
Computed peak 3 -hour rainfall = 1.126(In)
Specified peak 6 -hour rainfall = 1.750(In)
Specified peak 24-hour rainfall = 3.300(In)
Rainfall depth area reduction factors:
Using a total area of 9.03(Ac.) (Ref: fig. E-4)
5 -minute factor = 1.000 Adjusted rainfall = 0.207(In)
30 -minute factor = 1.000 Adjusted rainfall = 0.424(In)
1 -hour factor = 1.000 Adjusted rainfall = 0.560(In)
3 -hour factor = 1.000 Adjusted rainfall = 1.126(In)
6 -hour factor = 1.000 Adjusted rainfall = 1.750(In)
24-hour factor = 1.000 Adjusted rainfall = 3.300(In)
---------------------------------------------------------------------
U n i t H y d r o g r a p h
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Interval 'S' Graph Unit Hydrograph
Number Mean values ((CFS))
---------------------------------------------------------------------
(K = 109.21 (CFS))
1 5.901 6.444
2 34.387 31.109
3
68.999
37.799
4
84.453
16.876
5
90.490
6.593
6
93.306
3.075
7
95.343
2.225
8
96.484
1.246
9
97.323
0.916
10
98.048
0.791
11
98.596
0.599
12
99.029
0.473
13
99.356
0.356
14
99.610
0.277
15
99.861
0.275
16
100.000
0.152
---------------------------------------------------------------------
Peak Unit
Adjusted mass rainfall
Unit rainfall
Number
(In)
(In)
1
0.2072
0.2072
2
0.2734
0.0662
3
0.3215
0.0481
4
0.3607
0.0392
5
0.3944
0.0337
6
0.4242
0.0298
7
0.4512
0.0270
8
0.4760
0.0248
9
0.4989
0.0230
10
0.5204
0.0215
11
0.5406
0.0202
12
0.5598
0.0191
13
0.5890
0.0292
14
0.6174
0.0284
15
0.6452
0.0277
16
0.6722
0.0270
17
0.6986
0.0264
18
0.7245
0.0259
19
0.7499
0.0254
20
0.7747
0.0249
21
0.7992
0.0244
22
0.8232
0.0240
23
0.8468
0.0236
24
0.8700
0.0232
25
0.8929
0.0229
26
0.9155
0.0226
27
0.9377
0.0222
28
0.9597
0.0220
29
0.9814
0.0217
30
1.0028
0.0214
31
1.0239
0.0211
32
1.0448
0.0209
33
1.0655
0.0207
34
1.0859
0.0204
35
1.1061
0.0202
36
1.1261
0.0200
37
1.1459
0.0198
38
1.1655
0.0196
39
1.1849
0.0194
40
1.2042
0.0192
41
1.2232
0.0191
42
1.2421
0.0189
43
1.2608
0.0187
44
1.2794
0.0186
45
1.2978
0.0184
46
1.3161
0.0183
47
1.3342
0.0181
48
1.3522
0.0180
49
1.3700
0.0178
50
1.3878
0.0177
51
1.4053
0.0176
52
1.4228
0.0175
53
1.4401
0.0173
54
1.4574
0.0172
55
1.4745
0.0171
56
1.4915
0.0170
57
1.5083
0.0169
58
1.5251
0.0168
59
1.5418
0.0167
60
1.5584
0.0166
61
1.5748
0.0165
62
1.5912
0.0164
63
1.6075
0.0163
64
1.6237
0.0162
65
1.6397
0.0161
66
1.6557
0.0160
67
1.6717
0.0159
68
1.6875
0.0158
69
1.7032
0.0157
70
1.7189
0.0157
71
1.7345
0.0156
72
1.7500
0.0155
73
1.7610
0.0111
74
1.7720
0.0110
75
1.7829
0.0109
76
1.7938
0.0108
77
1.8045
0.0108
78
1.8152
0.0107
79
1.8258
0.0106
80
1.8364
0.0105
81
1.8468
0.0105
82
1.8572
0.0104
83
1.8676
0.0103
84
1.8778
0.0103
85
1.8880
0.0102
86
1.8982
0.0101
87
1.9082
0.0101
88
1.9182
0.0100
89
1.9282
0.0099
90
1.9381
0.0099
91
1.9479
0.0098
92
1.9577
0.0098
93
1.9674
0.0097
94
1.9770
0.0097
95
1.9866
0.0096
96
1.9962
0.0095
97
2.0056
0.0095
98
2.0151
0.0094
99
2.0245
0.0094
100
2.0338
0.0093
101
2.0431
0.0093
102
2.0523
0.0092
103
2.0615
0.0092
104
2.0706
0.0091
105
2.0797
0.0091
106
2.0887
0.0090
107
2.0977
0.0090
108
2.1067
0.0089
109
2.1156
0.0089
110
2.1244
0.0089
111
2.1333
0.0088
112
2.1420
0.0088
113
2.1508
0.0087
114
2.1595
0.0087
115
2.1681
0.0086
116
2.1767
0.0086
117
2.1853
0.0086
118
2.1938
0.0085
119
2.2023
0.0085
120
2.2107
0.0084
121
2.2191
0.0084
122
2.2275
0.0084
123
2.2359
0.0083
124
2.2442
0.0083
125
2.2524
0.0083
126
2.2606
0.0082
127
2.2688
0.0082
128
2.2770
0.0082
129
2.2851
0.0081
130
2.2932
0.0081
131
2.3013
0.0081
132
2.3093
0.0080
133
2.3173
0.0080
134
2.3252
0.0080
135
2.3331
0.0079
136
2.3410
0.0079
137
2.3489
0.0079
138
2.3567
0.0078
139
2.3645
0.0078
140
2.3723
0.0078
141
2.3800
0.0077
142
2.3877
0.0077
143
2.3954
0.0077
144
2.4031
0.0077
145
2.4107
0.0076
146
2.4183
0.0076
147
2.4259
0.0076
148
2.4334
0.0075
149
2.4409
0.0075
150
2.4484
0.0075
151
2.4558
0.0075
152
2.4633
0.0074
153
2.4707
0.0074
154
2.4780
0.0074
�rrs
155
2.4854
0.0073
156
2.4927
0.0073
157
2.5000
0.0073
158
2.5073
0.0073
159
2.5145
0.0072
160
2.5218
0.0072
161
2.5290
0.0072
162
2.5361
0.0072
163
2.5433
0.0072
164
2.5504
0.0071
165
2.5575
0.0071
166
2.5646
0.0071
167
2.5717
0.0071
168
2.5787
0.0070
169
2.5857
0.0070
170
2.5927
0.0070
171
2.5997
0.0070
172
2.6066
0.0069
173
2.6135
0.0069
174
2.6204
0.0069
175
2.6273
0.0069
176
2.6342
0.0069
177
2.6410
0.0068
178
2.6478
0.0068
179
2.6546
0.0068
180
2.6614
0.0068
181
2.6682
0.0068
182
2.6749
0.0067
183
2.6816
0.0067
?00",
184
2.6883
0.0067
185
2.6950
0.0067
186
2.7016
0.0067
187
2.7083
0.0066
188
2.7149
0.0066
189
2.7215
0.0066
190
2.7281
0.0066
191
2.7346
0.0066
192
2.7412
0.0065
193
2.7477
0.0065
194
2.7542
0.0065
195
2.7607
0.0065
196
2.7672
0.0065
197
2.7736
0.0065
198
2.7800
0.0064
199
2.7865
0.0064
200
2.7928
0.0064
201
2.7992
0.0064
202
2.8056
0.0064
203
2.8119
0.0063
204
2.8183
0.0063
205
2.8246
0.0063
206
2.8309
0.0063
207
2.8372
0.0063
208
2.8434
0.0063
209
2.8497
0.0062
2.8559
0.0062
210
2.8621
0.0062
212
2.8683
0.0062
213
2.8745
0.0062
214
2.8807
0.0062
215
2.8868
0.0062
216
2.8930
0.0061
217
2.8991
0.0061
218
2.9052
0.0061
219
2.9113
0.0061
220
2.9173
0.0061
221
2.9234
0.0061
222
2.9294
0.0060
223
2.9355
0.0060
224
2.9415
0.0060
225
2.9475
0.0060
226
2.9535
0.0060
227
2.9595
0.0060
228
2.9654
0.0060
229
2.9714
0.0059
230
2.9773
0.0059
231
2.9832
0.0059
232
2.9891
0.0059
233
2.9950
0.0059
234
3.0009
0.0059
235
3.0067
0.0059
236
3.0126
0.0058
237
3.0184
0.0058
238
3.0242
0.0058
239
3.0300
0.0058
240
3.0358
0.0058
241
3.0416
0.0058
242
3.0474
0.0058
243
3.0531
0.0058
244
3.0589
0.0057
245
3.0646
0.0057
246
3.0703
0.0057
247
3.0760
0.0057
248
3.0817
0.0057
249
3.0874
0.0057
250
3.0931
0.0057
251
3.0987
0.0057
252
3.1044
0.0056
253
3.1100
0.0056
254
3.1156
0.0056
255
3.1212
0.0056
256
3.1268
0.0056
257
3.1324
0.0056
258
3.1380
0.0056
259
3.1435
0.0056
260
3.1491
0.0055
261
3.1546
0.0055
262
3.1601
0.0055
263
3.1657
0.0055
264
3.1712
0.0055
265
3.1767
0.0055
266
3.1821
0.0055
267
3.1876
0.0055
268
3.1931
0.0055
269
3.1985
0.0054
270
271
3.2039
3.2094
0.0054
0.0054
272
3.2148
0.0054
273
3.2202
0.0054
274
3.2256
0.0054
275
3.2310
0.0054
276
3.2363
0.0054
277
3.2417
0.0054
278
3.2470
0.0053
279
3.2524
0.0053
280
3.2577
0.0053
281
3.2630
0.0053
282
3.2683
0.0053
283
3.2736
0.0053
284
3.2789
0.0053
285
3.2842
0.0053
286
3.2895
0.0053
287
3.2947
0.0053
288
3.3000
0.0052
---------------------------------------------------------------------
Unit
Unit
Unit
Effective
Period
Rainfall
Soil-Loss
Rainfall
(number)
(In)
(In)
(In)
---------------------------------------------------------------------
1
0.0052
0.0028
0.0025
2
0.0053
0.0028
0.0025
3
0.0053
0.0028
0.0025
4
0.0053
0.0028
0.0025
5
0.0053
0.0028
0.0025
6
0.0053
0.0028
0.0025
7
0.0053
0.0028
0.0025
8
0.0053
0.0028
0.0025
9
0.0054
0.0028
0.0025
10
0.0054
0.0028
0.0026
11
0.0054
0.0028
0.0026
12
0.0054
0.0028
0.0026
13
0.0054
0.0029
0.0026
14
0.0054
0.0029
0.0026
15
0.0055
0.0029
0.0026
16
0.0055
0.0029
0.0026
17
0.0055
0.0029
0.0026
18
0.0055
0.0029
0.0026
19
0.0055
0.0029
0.0026
20
0.0055
0.0029
0.0026
21
0.0056
0.0029
0.0026
22
0.0056
0.0029
0.0026
23
0.0056
0.0029
0.0027
24
0.0056
0.0030
0.0027
25
0.0056
0.0030
0.0027
26
0.0057
0.0030
0.0027
27
0.0057
0.0030
0.0027
28
0.0057
0.0030
0.0027
29
0.0057
0.0030
0.0027
30
0.0057
0.0030
0.0027
31
0.0058
0.0030
0.0027
32
0.0058
0.0030
0.0027
33
0.0058
0.0030
0.0028
34
0.0058
0.0031
0.0028
35
0.0058
0.0031
0.0028
+'
36
0.0058
0.0031
0.0028
37
0.0059
0.0031
0.0028
38
0.0059
0.0031
0.0028
39
0.0059
0.0031
0.0028
40
0.0059
0.0031
0.0028
41
0.0060
0.0031
0.0028
42
0.0060
0.0031
0.0028
43
0.0060
0.0032
0.0028
44
0.0060
0.0032
0.0029
45
0.0060
0.0032
0.0029
46
0.0061
0.0032
0.0029
47
0.0061
0.0032
0.0029
48
0.0061
0.0032
0.0029
49
0.0061
0.0032
0.0029
50
0.0062
0.0032
0.0029
51
0.0062
0.0032
0.0029
52
0.0062
0.0033
0.0029
53
0.0062
0.0033
0.0030
54
0.0062
0.0033
0.0030
55
0.0063
0.0033
0.0030
56
0.0063
0.0033
0.0030
57
0.0063
0.0033
0.0030
58
0.0063
0.0033
0.0030
59
0.0064
0.0034
0.0030
60
0.0064
0.0034
0.0030
61
0.0064
0.0034
0.0031
f
62
0.0065
0.0034
0.0031
63
0.0065
0.0034
0.0031
64
0.0065
0.0034
0.0031
65
0.0065
0.0034
0.0031
66
0.0066
0.0034
0.0031
67
0.0066
0.0035
0.0031
68
0.0066
0.0035
0.0031
69
0.0067
0.0035
0.0032
70
0.0067
0.0035
0.0032
71
0.0067
0.0035
0.0032
72
0.0067
0.0035
0.0032
73
0.0068
0.0036
0.0032
74
0.0068
0.0036
0.0032
75
0.0068
0.0036
0.0032
76
0.0069
0.0036
0.0033
77
0.0069
0.0036
0.0033
78
0.0069
0.0036
0.0033
79
0.0070
0.0037
0.0033
80
0.0070
0.0037
0.0033
81
0.0070
0.0037
0.0033
82
0.0071
0.0037
0.0033
83
0.0071
0.0037
0.0034
84
0.0071
0.0037
0.0034
85
0.0072
0.0038
0.0034
86
0.0072
0.0038
0.0034
87
0.0072
0.0038
0.0034
88
0.0073
0.0038
0.0035
89
0.0073
0.0038
0.0035
90
0.0073
0.0039
0..0035
91
0.0074
0.0039
0.0035
92
0.0074
0.0039
0.0035
93
0.0075
0.0039
0.0036
94
0.0075
0.0039
0.0036
95
0.0076
0.0040
0.0036
96
0.0076
0.0040
0.0036
97
0.0077
0.0040
0.0036
98
0.0077
0.0040
0.0036
99
0.0077
0.0041
0.0037
100
0.0078
0.0041
0.0037
101
0.0078
0.0041
0.0037
102
0.0079
0.0041
0.0037
103
0.0079
0.0042
0.0038
104
0.0080
0.0042
0.0038
105
0.0080
0.0042
0.0038
106
0.0081
0.0042
0.0038
107
0.0081
0.0043
0.0039
108
0.0082
0.0043
0.0039
109
0.0082
0.0043
0.0039
110
0.0083
0.0043
0.0039
111
0.0083
0.0044
0.0040
112
0.0084
0.0044
0.0040
113
0.0084
0.0044
0.0040
114
0.0085
0.0045
0.0040
115
0.0086
0.0045
0.0041
116
0.0086
0.0045
0.0041
117
0.0087
0.0046
0.0041
118
0.0087
0.0046
0.0041
119
0.0088
0.0046
0.0042
120
0.0089
0.0047
0.0042
121
0.0089
0.0047
0.0042
122
0.0090
0.0047
0.0043
123
0.0091
0.0048
0.0043
124
0.0091
0.0048
0.0043
125
0.0092
0.0048
0.0044
126
0.0093
0.0049
0.0044
127
0.0094
0.0049
0.0045
128
0.0094
0.0050
0.0045
129
0.0095
0.0050
0.0045
130
0.0096
0.0050
0.0046
131
0.0097
0.0051
0.0046
132
0.0098
0.0051
0.0046
133
0.0099
0.0052
0.0047
134
0.0099
0.0052
0.0047
135
0.0101
0.0053
0.0048
136
0.0101
0.0053
0.0048
137
0.0103
0.0054
0.0049
138
0.0103
0.0054
0.0049
139
0.0105
0.0055
0.0050
140
0.0105
0.0055
0.0050
141
0.0107
0.0056
0.0051
142
0.0108
0.0057
0.0051
143
0.0109
0.0057
0.0052
144
0.0110
0.0058
0.0052
145
0.0155
0.0081
0.0074
146
0.0156
0.0082
0.0074
147
0.0157
0.0083
0.0075
148
0.0158
0.0083
0.0075
/^
149
0.0160
0.0084
0.0076
150
0.0161
0.0085
0.0076
151
0.0163
0.0086
0.0077
152
0.0164
0.0086
0.0078
153
0.0166
0.0087
0.0079
154
0.0167
0.0088
0.0079
155
0.0169
0.0089
0.0080
156
0.0170
0.0089
0.0081
157
0.0172
0.0090
0.0082
158
0.0173
0.0091
0.0082
159
0.0176
0.0092
0.0083
160
0.0177
0.0093
0.0084
161
0.0180
0.0094
0.0085
162
0.0181
0.0095
0.0086
163
0.0184
0.0097
0.0087
164
0.0186
0.0098
0.0088
165
0.0189
0.0099
0.0090
166
0.0191
0.0100
0.0090
167
0.0194
0.0102
0.0092
168
0.0196
0.0103
0.0093
169
0.0200
0.0105
0.0095
170
0.0202
0.0106
0.0096
171
0.0207
0.0109
0.0098
172
0.0209
0.0110
0.0099
173
0.0214
0.0112
0.0102
174
0.0217
0.0114
0.0103
175
0.0222
0.0117
0.0106
176
0.0226
0.0119
0.0107
177
0.0232
0.0122
0.0110
178
0.0236
0.0124
0.0112
179
0.0244
0.0128
0.0116
180
0.0249
0.0131
0.0118
181
0.0259
0.0136
0.0123
182
0.0264
0.0139
0.0125
183
0.0277
0.0146
0.0132
184
0.0284
0.0149
0.0135
185
0.0191
0.0101
0.0091
186
0.0202
0.0106
0.0096
187
0.0230
0.0121
0.0109
188
0.0248
0.0130
0.0117
189
0.0298
0.0157
0.0142
190
0.0337
0.0177
0.0160
191
0.0481
0.0253
0.0228
192
0.0662
0.0321
0.0341
193
0.2072
0.0321
0.1751
194
0.0392
0.0206
0.0186
195
0.0270
0.0142
0.0128
196
0.0215
0.0113
0.0102
197
0.0292
0.0154
0.0139
198
0.0270
0.0142
0.0128
199
0.0254
0.0133
0.0120
200
0.0240
0.0126
0.0114
201
0.0229
0.0120
0.0109
202
0.0220
0.0115
0.0104
203
0.0211
0.0111
0.0100
204
0.0204
0.0107
0..0097
205
0.0198
0.0104
0.0094
206
0.0192
0.0101
0.0091
207
0.0187
0.0098
0.0089
208
0.0183
0.0096
0.0087
209
0.0178
0.0094
0.0085
210
0.0175
0.0092
0.0083
211
0.0171
0.0090
0.0081
212
0.0168
0.0088
0.0080
213
0.0165
0.0087
0.0078
214
0.0162
0.0085
0.0077
215
0.0159
0.0084
0.0076
216
0.0157
0.0082
0.0074
217
0.0111
0.0058
0.0053
218
0.0108
0.0057
0.0051
219
0.0106
0.0056
0.0050
220
0.0104
0.0055
0.0049
221
0.0102
0.0054
0.0048
222
0.0100
0.0053
0.0047
223
0.0098
0.0052
0.0047
224
0.0097
0.0051
0.0046
225
0.0095
0.0050
0.0045
226
0.0093
0.0049
0.0044
227
0.0092
0.0048
0.0044
228
0.0090
0.0047
0.0043
229
0.0089
0.0047
0.0042
230
0.0088
0.0046
0.0042
231
0.0086
0.0045
0.0041
232
0.0085
0.0045
0.0040
`
233
0.0084
0.0044
0.0040
234
0.0083
0.0044
0.0039
235
0.0082
0.0043
0.0039
236
0.0081
0.0042
0.0038
237
0.0080
0.0042
0.0038
238
0.0079
0.0041
0.0037
239
0.0078
0.0041
0.0037
240
0.0077
0.0041
0.0037
241
0.0076
0.0040
0.0036
242
0.0075
0.0040
0.0036
243
0.0075
0.0039
0.0035
244
0.0074
0.0039
0.0035
245
0.0073
0.0038
0.0035
246
0.0072
0.0038
0.0034
247
0.0072
0.0038
0.0034
248
0.0071
0.0037
0.0034
249
0.0070
0.0037
0.0033
250
0.0069
0.0036
0.0033
251
0.0069
0.0036
0.0033
252
0.0068
0.0036
0.0032
253
0.0068
0.0035
0.0032
254
0.0067
0.0035
0.0032
255
0.0066
0.0035
0.0031
256
0.0066
0.0035
0.0031
257
0.0065
0.0034
0.0031
258
0.0065
0.0034
0.0031
259
0.0064
0.0034
0.0030
260
0.0064
0.0033
0.0030
261
0.0063
0.0033
0.0030
262
0.0063
0.0033
0.0030
263
0.0062
0.0033
0.0029
264
0.0062
0.0032
0.0029
265
0.0061
0.0032
0.0029
266
0.0061
0.0032
0.0029
267
0.0060
0.0032
0.0029
268
0.0060
0.0031
0.0028
269
0.0059
0.0031
0.0028
270
0.0059
0.0031
0.0028
271
0.0059
0.0031
0.0028
272
0.0058
0.0031
0.0028
273
0.0058
0.0030
0.0027
274
0.0057
0.0030
0.0027
275
0.0057
0.0030
0.0027
276
0.0057
0.0030
0.0027
277
0.0056
0.0030
0.0027
278
0.0056
0.0029
0.0027
279
0.0056
0.0029
0.0026
280
0.0055
0.0029
0.0026
281
0.0055
0.0029
0.0026
282
0.0055
0.0029
0.0026
283
0.0054
0.0028
0.0026
284
0.0054
0.0028
0.0026
285
0.0054
0.0028
0.0025
286
0.0053
0.0028
0.0025
287
0.0053
0.0028
0.0025
288
0.0053
0.0028
0.0025
{
t"�rr
--------------------------------------------------------------------
--------------------------------------------------------------------
Total
soil rain
loss =
1.65(In)
Total
effective
rainfall =
1.65(In)
Peak
flow rate in
flood hydrograph =
8.14(CFS)
---------------------------------------------------------------------
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24 - H
O U
R S T 0
R M
R
u n o f f
H y d r o
g r a p h
--------------------------------------------------------------------
Hydrograph
in
5
Minute intervals ((CFS))
--------------------------------------------------------------------
Time(h+m)
Volume Ac.Ft
Q(CFS)
0
2.5
5.0 7.5 10.0
-----------------------------------------------------------------------
0+ 5
0.0001
0.02
Q
0+10
0.0008
0.09
Q
0+15
0.0020
0.19
Q
0+20
0.0036
0.23
Q
0+25
0.0053
0.25
Q
0+30
0.0071
0.26
VQ
0+35
0.0089
0.26
VQ
0+40
0.0107
0.27
VQ
0+45
0.0126
0.27
VQ
0+50
0.0145
0.27
VQ
0+55
0.0164
0.27
VQ
1+ 0
0.0183
0.28
VQ
1+ 5
0.0202
0.28
VQ
1+10
0.0221
0.28
VQ
1+15
0.0240
0.28
VQ
1+20
0.0260
0.28
VQ
1+25
0.0279
0.28
VQ
1+30
0.0299
0.28
VQ
1+35
0.0318
0.28
IQ
1+40
0.0338
0.29
IQ
1+45
0.0358
0.29
IQ
1+50
0.0378
0.29
IQ
1+55
0.0397
0.29
IQ
2+ 0
0.0417
0.29
IQ
2+ 5
0.0437
0.29
IQ
2+10
0.0457
0.29
IQ
2+15
0.0477
0.29
IQ
2+20
0.0498
0.29
IQ
2+25
0.0518
0.29
IQ
2+30
0.0538
0.29
IQ
2+35
0.0559
0.30
IQ
2+40
0.0579
0.30
IQ
2+45
0.0599
0.30
IQ
2+50
0.0620
0.30
IQV
2+55
0.0641
0.30
IQV
3+ 0
0.0661
0.30
IQV
3+ 5
0.0682
0.30
IQV
3+10
0.0703
0.30
IQV
3+15
0.0724
0.30
IQV
3+20
0.0745
0.30
IQV
3+25
0.0766
0.31
IQV
3+30
0.0787
0.31
IQV
3+35
0.0808
0.31
IQV
3+40
0.0830
0.31
IQV
3+45
0.0851
0.31
IQV
3+50
0.0873
0.31
IQV
3+55
0.0894
0.31
IQV
4+ 0
0.0916
0.31
IQV
4+ 5
0.0937
0.32
IQ V
4+10
0.0959
0.32
IQ V
4+15
0.0981
0.32
IQ V
4+20
0.1003
0.32
IQ V
4+25
0.1025
0.32
IQ V
4+30
0.1047
0.32
IQ V
4+35
0.1069
0.32
IQ V
4+40
0.1092
0.32
IQ V
4+45
0.1114
0.32
IQ V
4+50
0.1136
0.33
IQ V
4+55
0.1159
0.33
IQ V
5+ 0
0.1182
0.33
IQ V
5+ 5
0.1204
0.33
IQ V
5+10
0.1227
0.33
IQ V
5+15
0.1250
0.33
IQ V
5+20
0.1273
0.33
IQ V
5+25
0.1296
0.34
IQ V
5+30
0.1319
0.34
IQ V
5+35
0.1343
0.34
IQ V
5+40
0.1366
0.34
IQ V
5+45
0.1390
0.34
IQ V
5+50
0.1413
0.34
IQ V
5+55
0.1437
0.34
IQ V
err+'
m
m
6+ 0
0.1461
0.35
IQ
6+ 5
0.1485
0.35
IQ
6+10
0.1509
0.35
IQ
6+15
0.1533
0.35
IQ
6+20
0.1557
0.35
IQ
6+25
0.1581
0.35
IQ
6+30
0.1606
0.36
IQ
6+35
0.1630
0.36
IQ
6+40
0.1655
0.36
IQ
6+45
0.1680
0.36
IQ
6+50
0.1705
0.36
IQ
6+55
0.1730
0.36
IQ
7+ 0
0.1755
0.37
IQ
7+ 5
0.1780
0.37
IQ
7+10
0.1806
0.37
IQ
7+15
0.1831
0.37
IQ
7+20
0.1857
0.37
IQ
7+25
0.1883
0.37
IQ
7+30
0.1909
0.38
IQ
7+35
0.1935
0.38
IQ
7+40
0.1961
0.38
IQ
7+45
0.1987
0.38
IQ
7+50
0.2014
0.38
IQ
7+55
0.2041
0.39
IQ
8+ 0
0.2067
0.39
IQ
8+ 5
0.2094
0.39
IQ
8+10
0.2121
0.39
IQ
8+15
0.2149
0.40
IQ
8+20
0.2176
0.40
IQ
8+25
0.2203
0.40
IQ
8+30
0.2231
0.40
IQ
8+35
0.2259
0.40
IQ
8+40
0.2287
0.41
IQ
8+45
0.2315
0.41
IQ
8+50
0.2344
0.41
IQ
8+55
0.2372
0.41
IQ
9+ 0
0.2401
0.42
IQ
9+ 5
0.2430
0.42
IQ
9+10
0.2459
0.42
IQ
9+15
0.2488
0.43
IQ
9+20
0.2518
0.43
IQ
9+25
0.2547
0.43
IQ
9+30
0.2577
0.43
IQ
9+35
0.2607
0.44
IQ
9+40
0.2637
0.44
IQ
9+45
0.2668
0.44
IQ
9+50
0.2699
0.45
IQ
9+55
0.2729
0.45
IQ
10+ 0
0.2761
0.45
IQ
10+ 5
0.2792
0.46
IQ
10+10
0.2824
0.46
IQ
'10+15
0.2855
0.46
IQ
10+20
0.2887
0.47
IQ
10+25
0.2920
0.47
IQ
10+30
0.2952
0.47
IQ
10+35
0.2985
0.48
IQ
10+40
0.3018
0.48
IQ
V
vI
vI
V
vI
V
vI
VI
VI
vI
VI
VI
VI
VI
VI
VI
VI
VI
10+45
0.3052
0.48
Q
V�
10+50
0.3085
0.49
Q
V�
10+55
0.3119
0.49
IQ
V
11+ 0
0.3153
0.50
IQ
V
11+ 5
0.3188
0.50
Q
V
11+10
0.3223
0.51
Q
V
11+15
0.3258
0.51
Q
V
11+20
0.3293
0.51
Q
V
11+25
0.3329
0.52
Q
V
11+30
0.3365
0.52
Q
V
11+35
0.3401
0.53
Q
V
11+40
0.3438
0.53
Q
IV
11+45
0.3475
0.54
Q
IV
11+50
0.3513
0.55
Q
IV
11+55
0.3551
0.55
Q
IV
12+ 0
0.3589
0.56
Q
IV
12+ 5
0.3629
0.58
Q
IV
12+10
0.3674
0.65
Q
IV
12+15
0.3724
0.73
Q
I V
12+20
0.3777
0.77
I Q
I V
12+25
0.3831
0.79
Q
I V
12+30
0.3887
0.80
Q
I V
12+35
0.3943
0.82
Q
I V
12+40
0.4000
0.82
Q
I V
12+45
0.4057
0.83
Q
I V
12+50
0.4115
0.84
I Q
I V
12+55
0.4174
0.85
Q
I V
13+ 0
0.4233
0.86
Q
I V
13+ 5
0.4293
0.87
Q
I V
13+10
0.4354
0.88
Q
I V
13+15
0.4415
0.89
Q
I V
13+20
0.4477
0.90
Q
I V
13+25
0.4539
0.91
Q
I V
13+30
0.4602
0.92
Q
I V
13+35
0.4666
0.93
Q
I V
13+40
0.4731
0.94
Q
I V
13+45
0.4796
0.95
I Q
I V
13+50
0.4862
0.96
Q
I V
13+55
0.4929
0.97
Q
I V
14+ 0
0.4997
0.99
Q
I V
14+ 5
0.5066
1.00
( Q
V
14+10
0.5136
1.01
I Q
V
14+15
0.5207
1.03
Q
V
14+20
0.5279
1.05
Q
V
14+25
0.5352
1.06
Q
V
14+30
0.5426
1.08
Q
V
14+35
0.5502
1.10
Q
V
14+40
0.5579
1.12
Q
V
14+45
0.5658
1.14
I Q
V
14+50
0.5738
1.17
Q
V
14+55
0.5821
1.19
Q
V
'15+ 0
0.5905
1.22
Q
V1
15+ 5
0.5991
1.25
Q
VI
15+10
0.6080
1.29
Q
V1
15+15
0.6171
1.33
Q
VI
15+20
0.6265
1.37
Q
V
15+25
0.6361
1.38
Q
V
�Irrr
15+30
0.6449
1.28
Q
V
15+35
0.6528
1.15
Q
IV
15+40
0.6607
1.15 (
Q
IV
15+45
0.6691
1.22
Q
IV
15+50
0.6784
1.35
Q
IV
15+55
0.6892
1.56
Q I
I
V
I
16+ 0
0.7027
1.97
Q I
I
V
16+ 5
0.7271
3.53 I
I
Q I
V
I
16+10
0.7785
7.47 I
I
I
V QI
16+15
0.8346
8.14 I
I
I
V I Q
16+20
0.8657
4.51 I
I
Q I
V I
16+25
0.8834
2.58 (
Q
I
V I
16+30
0.8967
1.93 I
Q I
I
V I
16+35
0.9092
1.81 I
Q (
VI
16+40
0.9203
1.61 I
Q I
I
VI
16+45
0.9305
1.49 I
Q I
I
V
16+50
0.9402
1.41 I
Q I
I
V
16+55
0.9493
1.32 I
Q I
I
V
17+ 0
0.9579
1.25
( Q
I
V
17+ 5
0.9661
1.18
I Q I
I
IV
17+10
0.9739
1.13
I Q I
IV
17+15
0.9814
1.09
I Q I
IV
17+20
0.9886
1.04
I Q I
I
IV
17+25
0.9954
0.99
I Q I
I
I V
17+30
1.0020
0.96
I Q I
I
I V
17+35
1.0085
0.94
I Q I
I
I V
17+40
1.0148
0.92
I Q I
I
I V
17+45
1.0210
0.90
I Q I
I
I V
17+50
17+55
1.0270
1.0330
0.88
0.86
I Q I
I Q I
I
I
I V
I V
18+ 0
1.0388
0.85
I Q I
I
I V
18+ 5
1.0444
0.82
I Q I
I
I V
18+10
1.0496
0.74
I Q I
I
I V
18+15
1.0540
0.65
I Q I
I
I V
18+20
1.0582
0.60
I Q I
I
I V
18+25
1.0622
0.58
I Q I
I
I V
18+30
1.0660
0.56
I Q I
I
V
18+35
1.0698
0.54
I Q I
I
I V
18+40
1.0734
0.53
I Q I
I
I V
18+45
1.0770
0.52
I Q I
I
( V
18+50
1.0805
0.51
I Q I
I
I V
18+55
1.0839
0.50
IQ I
I
I V
19+ 0
1.0873
0.49
IQ I
I
( V
19+ 5
1.0906
0.48
IQ I
(
I V
19+10
1.0939
0.47
IQ I
I
I V
19+15
1.0971
0.47
IQ I
I
I V
19+20
1.1003
0.46
IQ I
I
I V
19+25
1.1034
0.45
IQ I
I
I V
19+30
1.1064
0.44
IQ I
I
I V
19+35
1.1094
0.44
IQ I
I
I V
19+40
1.1124
0.43
IQ I
I
I V
'19+45
1.1154
0.43
IQ I
I
I V
19+50
1.1183
0.42
IQ I
I
I V
19+55
1.1211
0.42
IQ I
I
I V
20+ 0
1.1240
0.41
IQ I
I
I V
20+ 5
1.1268
0.41
IQ I
I V
20+10
1.1295
0.40
IQ I
I
I V
20+15
1.1323
0.40
IQ
V
20+20
1.1350
0.39
I Q
v
20+25
1.1377
0.39
IQ
V
20+30
1.1403
0.38
IQ
V
20+35
1.1429
0.38
IQ (
v
20+40
1.1455
0.38
IQ I
I V
20+45
1.1481
0.37
IQ
V
20+50
1.1506
0.37
IQ
V
20+55
1.1531
0.37
IQ
V
21+ 0
1.1556
0.36
IQ
V
21+ 5
1.1581
0.36
IQ
V
21+10
1.1605
0.35
IQ
V
21+15
1.1629
0.35
IQ
V
21+20
1.1653
0.35
IQ
V
21+25
1.1677
0.35
IQ
V
21+30
1.1701
0.34
IQ
V
21+35
1.1724
0.34
IQ
V
21+40
1.1747
0.34
IQ I
I I V
21+45
1.1770
0.33
IQ I
I I V
21+50
1.1793
0.33
IQ I
I I V
21+55
1.1816
0.33
IQ I
I I V
22+ 0
1.1838
0.33
IQ I
I I V
22+ 5
1.1860
0.32
IQ
I I I V
22+10
1.1883
0.32
IQ
I I I V
22+15
1.1905
0.32
IQ
I I I V
22+20
1.1926
0.32
IQ
I I I V
22+25
1.1948
0.31
IQ
I I I V
22+30
1.1969
0.31
IQ
I I I V
.,
22+35
1.1991
0.31
IQ
I I I V
(
22+40
1.2012
0.31
IQ
I I I V
'fir•'
22+45
1.2033
0.30
IQ
I I I V
22+50
1.2054
0.30
IQ
I I I V
22+55
1.2074
0.30
IQ
V
23+ 0
1.2095
0.30
IQ
I I I VI
23+ 5
1.2115
0.30
IQ
V
23+10
1.2136
0.29
IQ
I I I VI
23+15
1.2156
0.29
IQ
V
23+20
1.2176
0.29
IQ
I I I VI
23+25
1.2196
0.29
IQ
V
23+30
1.2215
0.29
IQ
I I I VI
23+35
1.2235
0.29
IQ
I I I VI
23+40
1.2255
0.28
IQ
V
23+45
1.2274
0.28
IQ
I I I VI
23+50
1.2293
0.28
IQ
V
23+55
1.2312
0.28
IQ
I I ( VI
24+ 0
1.2332
0.28
IQ
V
24+ 5
1.2349
0.26
IQ
I I I VI
24+10
1.2362
0.18
Q
I I I VI
24+15
1.2368
0.09
Q
I I I VI
24+20
1.2371
0.04
Q
I I I VI
24+25
1.2372
0.03
Q
I I I VI
24+30
1.2374
0.02
Q
I I I VI
24+35
1.2375
0.01
Q
I I I VI
24+40
1.2375
0.01
Q
I I ( VI
24+45
1.2376
0.01
Q
I ( I VI
24+50
1.2376
0.01
Q
I I I VI
24+55
1.2376
0.00
Q
I I I VI
25+ 0
1.2377
0.00
Q
V1
25+ 5
1.2377
0.00
Q
VI
/0000, 25+10
1.2377
0.00
Q
VI
25+15
-----------------------------------------------------------------------
1.2377
0.00
Q
V
IN,
N
U n i t H y d r o g r a p h A n a l y s i s
Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 1999, Version 6.0
Study date 07/19/04
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
------------------------------------------------------------------------
San Bernardino County Synthetic Unit Hydrology Method
Manual date - August 1986
Allard Engineering, Fontana, California - SIN 643
---------------------------------------------------------------------
Tract 16271 10 Year 24 Hour Developed Condition Unit Hydrograph
Storm Event Year = 10
Antecedent Moisture Condition = 3
English (in -lb) Input Units Used
English Rainfall Data (Inches) Input Values Used
English Units used in output format
Area averaged rainfall intensity isohyetal data:
Sub -Area Duration Isohyetal
(Ac.) (hours) (In)
Rainfall data for year 10
9.03 1 0.98
--------------------------------------------------------------------
Rainfall data for year 10
9.03 6 2.62
--------------------------------------------------------------------
Rainfall data for year 10
9.03 24 5.70
--------------------------------------------------------------------
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
******** Area -averaged max loss rate, Fm ********
SCS curve
SCS curve
Area
Area
Fp(Fig C6)
Ap
Fm
No.(AMCII)
N0.(AMC 3)
(Ac.)
Fraction
- (In/Hr)
(dec.)
(In/Hr)
32.0
52.0
4.76
0.527
0.785
0.600
0.471
67.0
84.6
4.27
0.473
0.290
1.000
0.290
Area -averaged adjusted
loss rate
Fm.(In/Hr) =
0.385
�,�
1OWW *********
Area -Averaged
low loss
rate fraction,
Yb **********
Area
Area
SCS CN
SCS CN
S
Pervious
(Ac.)
Fract
(AMC2)
(AMC3)
Yield Fr
2.86
0.316
32.0
52.0
9.23
0.199
1.90
0.211
98.0
98.0
0.20
0.958
4.27
0.473
67.0
84.6
1.82
0.698
Area -averaged catchment yield fraction, Y = 0.595
Area -averaged low loss fraction, Yb = 0.405
User entry of time of concentration = 0.189 (hours)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Watershed area = 9.03(Ac.)
Catchment Lag time = 0.151 hours
Unit interval = 5.000 minutes
Unit interval percentage of lag time = 55.2608
Hydrograph baseflow = 0.00(CFS)
Average maximum watershed loss rate(Fm) = 0.385(In/Hr)
Average low loss rate fraction (Yb) = 0.405 (decimal)
VALLEY DEVELOPED S -Graph proportion = 0.527
VALLEY UNDEVELOPED S -Graph proportion = 0.473
FOOTHILL S -Graph proportion = 0.000
MOUNTAIN S -Graph proportion = 0.000
DESERT S -Graph proportion = 0.000
Computed peak 5 -minute rainfall = 0.363(In)
Computed peak 30 -minute rainfall = 0.743(In)
Specified peak 1 -hour rainfall = 0.980(In)
Computed peak 3 -hour rainfall = 1.791(In)
Specified peak 6 -hour rainfall = 2.620(In)
Specified peak 24-hour rainfall = 5.700(In)
Rainfall depth area reduction factors:
Using a total area of 9.03(Ac.) (Ref: fig. E-4)
5 -minute factor = 1.000 Adjusted rainfall = 0.363(In)
30 -minute factor = 1.000 Adjusted rainfall = 0.742(In)
1 -hour factor = 1.000 Adjusted rainfall = 0.980(In)
3 -hour factor = 1.000 Adjusted rainfall = 1.791(In)
6 -hour factor = 1.000 Adjusted rainfall = 2.620(In)
24-hour factor = 1.000 Adjusted rainfall = 5.700(In)
---------------------------------------------------------------------
U n i t H y d r o g r a p h
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Interval 'S' Graph Unit Hydrograph
Number Mean values ((CFS))
---------------------------------------------------------------------
(K = 109.21 (CFS))
6.321 6.903
2 36.687 33.161
�irr+'
3
71.329
37.832
4
85.573
15.554
5
91.117
6.055
✓✓
6
93.786
2.915
7
95.675
2.062
8
96.757
1.182
9
97.583
0.902
10
98.273
0.753
11
98.790
0.565
12
99.192
0.438
13
99.483
0.319
14
99.745
0.285
15
100.000
0.279
---------------------------------------------------------------------
Peak Unit
Adjusted mass rainfall
Unit rainfall
Number
(In)
(In)
1
0.3626
0.3626
2
0.4784
0.1158
3
0.5626
0.0842
4
0.6312
0.0686
5
0.6902
0.0589
6
0.7424
0.0522
7
0.7896
0.0472
8
0.8329
0.0433
9
0.8731
0.0402
10
0.9107
0.0376
11
0.9461
0.0354
12
0.9796
0.0335
13
1.0236
0.0440
14
1.0661
0.0425
15
1.1073
0.0412
16
1.1472
0.0399
17
1.1861
0.0388
18
1.2239
0.0378
19
1.2608
0.0369
20
1.2968
0.0360
21
1.3320
0.0352
22
1.3665
0.0345
23
1.4003
0.0338
24
1.4334
0.0331
25
1.4659
0.0325
26
1.4978
0.0319
27
1.5292
0.0314
28
1.5600
0.0308
29
1.5904
0.0304
30
1.6202
0.0299
31
1.6497
0.0294
32
1.6787
0.0290
33
1.7073
0.0286
34
1.7355
0.0282
35
1.7634
0.0278
36
1.7909
0.0275
37
1.8180
0.0271
38
1.8448
0.0268
39
1.8713
0.0265
40
1.8975
0.0262
41
1.9234
0.0259
42
1.9490
0.0256
43
44
1.9743
1.9994
0.0253
0.0251
45
2.0242
0.0248
46
2.0488
0.0246
47
2.0731
0.0243
48
2.0972
0.0241
49
2.1211
0.0239
50
2.1447
0.0237
51
2.1681
0.0234
52
2.1914
0.0232
53
2.2144
0.0230
54
2.2372
0.0228
55
2.2599
0.0226
56
2.2824
0.0225
57
2.3046
0.0223
58
2.3267
0.0221
59
2.3487
0.0219
60
2.3704
0.0218
61
2.3920
0.0216
62
2.4135
0.0214
63
2.4348
0.0213
64
2.4559
0.0211
65
2.4769
0.0210
66
2.4977
0.0208
67
2.5184
0.0207
68
2.5390
0.0206
69
2.5594
0.0204
70
2.5797
0.0203
71
2.5999
0.0202
72
2.6199
0.0200
73
2.6403
0.0203
74
2.6605
0.0202
75
2.6806
0.0201
76
2.7006
0.0200
77
2.7204
0.0199
78
2.7402
0.0198
79
2.7598
0.0196
80
2.7794
0.0195
81
2.7988
0.0194
82
2.8181
0.0193
83
2.8373
0.0192
84
2.8565
0.0191
85
2.8755
0.0190
86
2.8944
0.0189
87
2.9132
0.0188
88
2.9319
0.0187
89
2.9506
0.0186
90
2.9691
0.0185
91
2.9876
0.0185
92
3.0059
0.0184
93
3.0242
0.0183
94
3.0424
0.0182
95
3.0605
0.0181
96
3.0785
0.0184
97
3.0965
0.0179
98
3.1143
0.0179
99
3.1321
0.0178
100
3.1498
0.0177
101
3.1674
0.0176
102
3.1850
0.0175
103
3.2024
0.0175
104
3.2198
0.0174
105
3.2372
0.0173
106
3.2544
0.0173
107
3.2716
0.0172
108
3.2887
0.0171
109
3.3057
0.0170
110
3.3227
0.0170
111
3.3396
0.0169
112
3.3565
0.0168
113
3.3732
0.0168
114
3.3899
0.0167
115
3.4066
0.0166
116
3.4232
0.0166
117
3.4397
0.0165
118
3.4561
0.0165
119
3.4725
0.0164
120
3.4888
0.0163
121
3.5051
0.0163
122
3.5213
0.0162
123
3.5375
0.0162
124
3.5536
0.0161
125
3.5696
0.0160
126
3.5856
0.0160
127
3.6015
0.0159
128
3.6174
0.0159
129
3.6332
0.0158
130
3.6490
0.0158
131
3.6647
0.0157
132
3.6804
0.0157
133
3.6960
0.0156
134
3.7115
0.0156
135
3.7270
0.0155
136
3.7425
0.0155
137
3.7579
0.0154
138
3.7733
0.0154
139
3.7886
0.0153
140
3.8038
0.0153
141
3.8190
0.0152
142
3.8342
0.0152
143
3.8493
0.0151
144
3.8644
0.0151
145
3.8794
0.0150
146
3.8944
0.0150
147
3.9093
0.0149
148
3.9242
0.0149
149
3.9390
0.0148
150
3.9538
0.0148
151
3.9686
0.0148
152
3.9833
0.0147
153
3.9980
0.0147
154
4.0126
0.0146
155
4.0272
0.0146
156
4.0418
0.0145
157
4.0563
0.0145
158
4.0707
0.0145
159
4.0852
0.0144
160
4.0995
0.0144
161
4.1139
0.0143
162
4.1282
0.0143
163
4.1425
0.0143
164
4.1567
0.0142
165
4.1709
0.0142
166
4.1851
0.0142
167
4.1992
0.0141
168
4.2132
0.0141
169
4.2273
0.0140
170
4.2413
0.0140
171
4.2553
0.0140
172
4.2692
0.0139
173
4.2831
0.0139
174
4.2970
0.0139
175
4.3108
0.0138
176
4.3246
0.0138
177
4.3384
0.0138
178
4.3521
0.0137
179
4.3658
0.0137
180
4.3794
0.0137
181
4.3931
0.0136
182
4.4067
0.0136
183
4.4202
0.0136
184
4.4337
0.0135
185
4.4472
0.0135
186
4.4607
0.0135
187
4.4741
0.0134
188
4.4875
0.0134
189
4.5009
0.0134
190
4.5142
0.0133
191
4.5275
0.0133
192
4.5408
0.0133
193
4.5541
0.0132
194
4.5673
0.0132
195
4.5805
0.0132
196
4.5936
0.0132
197
4.6067
0.0131
198
4.6198
0.0131
199
4.6329
0.0131
200
4.6460
0.0130
201
4.6590
0.0130
202
4.6719
0.0130
203
4.6849
0.0130
204
4.6978
0.0129
205
4.7107
0.0129
206
4.7236
0.0129
207
4.7364
0.0128
208
4.7493
0.0128
209
4.7620
0.0128
210
4.7748
0.0128
211
4.7875
0.0127
212
4.8002
0.0127
213
4.8129
0.0127
214
4.8256
0.0127
215
4.8382
0.0126
216
4.8508
0.0126
217
4.8634
0.0126
218
4.8760
0.0126
219
4.8885
0.0125
220
4.9010
0.0125
221
4.9135
0.0125
222
4.9259
0.0125
223
4.9384
0.0124
224
4.9508
0.0124
225
4.9631
0.0124
226
4.9755
0.0124
227
4.9878
0.0123
228
5.0001
0.0123
229
5.0124
0.0123
230
5.0247
0.0123
231
5.0369
0.0122
232
5.0491
0.0122
233
5.0613
0.0122
234
5.0735
0.0122
235
5.0856
0.0121
236
5.0978
0.0121
237
5.1099
0.0121
238
5.1219
0.0121
239
5.1340
0.0121
240
5.1460
0.0120
241
5.1580
0.0120
242
5.1700
0.0120
243
5.1820
0.0120
244
5.1939
0.0119
245
5.2059
0.0119
246
5.2178
0.0119
247
5.2297
0.0119
248
5.2415
0.0119
249
5.2534
0.0118
250
5.2652
0.0118
251
5.2770
0.0118
252
5.2888
0.0118
253
5.3005
0.0118
254
5.3122
0.0117
255
5.3240
0.0117
256
5.3357
0.0117
257
5.3473
0.0117
258
5.3590
0.0117
259
5.3706
0.0116
260
5.3822
0.0116
261
5.3938
0.0116
262
5.4054
0.0116
263
5.4170
0.0116
264
5.4285
0.0115
265
5.4400
0.0115
266
5.4515
0.0115
267
5.4630
0.0115-
268
5.4745
0.0115
269
5.4859
0.0114
�rr✓"
270
5.4974
0.0114
271
5.5088
0.0114
272
5.5202
0.0114
273
5.5315
0.0114
274
5.5429
0.0114
275
5.5542
0.0113
276
5.5655
0.0113
277
5.5768
0.0113
278
5.5881
0.0113
279
5.5994
0.0113
280
5.6106
0.0112
281
5.6218
0.0112
282
5.6330
0.0112
283
5.6442
0.0112
284
5.6554
0.0112
285
5.6666
0.0112
286
5.6777
0.0111
287
5.6888
0.0111
288
5.6999
0.0111
---------------------------------------------------------------------
Unit
Unit
Unit
Effective
Period
Rainfall
Soil -Loss
Rainfall
(number)
(In)
(In)
(In)
---------------------------------------------------------------------
1
0.0111
0.0045
0.0066
2
0.0111
0.0045
0.0066
3
0.0112
0.0045
0.0066
4
0.0112
0.0045
0.0066
5
0.0112
0.0045
0.0067
6
0.0112
0.0045
0.0067
7
0.0113
0.0046
0.0067
8
0.0113
0.0046
0.0067
9
0.0113
0.0046
0.0067
10
0.0113
0.0046
0.0067
11
0.0114
0.0046
0.0068
12
0.0114
0.0046
0.0068
13
0.0114
0.0046
0.0068
14
0.0114
0.0046
0.0068
15
0.0115
0.0046
0.0068
16
0.0115
0.0047
0.0068
17
0.0115
0.0047
0.0069
18
0.0116
0.0047
0.0069
19
0.0116
0.0047
0.0069
20
0.0116
0.0047
0.0069
21
0.0117
0.0047
0.0069
22
0.0117
0.0047
0.0069
23
0.0117
0.0047
0.0070
24
0.0117
0.0048
0.0070
25
0.0118
0.0048
0.0070
26
0.0118
0.0048
0.0070
27
0.0118
0.0048
0.0070
28
0.0119
0.0048
0.0071
29
0.0119
0.0048
0.0071
30
0.0119
0.0048
0.0071
31
0.0120
0.0048
0.0071
32
0.0120
0.0049
0.0071
33
0.0120
0.0049
0.0072
34
0.0121
0.0049
0.,0072
35
0.0121
0.0049
0.0072
36
0.0121
0.0049
0.0072
E
ter✓
37
0.0122
0.0049
0.0072
38
0.0122
0.0049
0.0073
39
0.0122
0.0050
0.0073
40
0.0123
0.0050
0.0073
41
0.0123
0.0050
0.0073
42
0.0123
0.0050
0.0073
43
0.0124
0.0050
0.0074
44
0.0124
0.0050
0.0074
45
0.0125
0.0050
0.0074
46
0.0125
0.0051
0.0074
47
0.0125
0.0051
0.0075
48
0.0126
0.0051
0.0075
49
0.0126
0.0051
0.0075
50
0.0126
0.0051
0.0075
51
0.0127
0.0051
0.0075
52
0.0127
0.0051
0.0076
53
0.0128
0.0052
0.0076
54
0.0128
0.0052
0.0076
55
0.0128
0.0052
0.0076
56
0.0129
0.0052
0.0077
57
0.0129
0.0052
0.0077
58
0.0130
0.0052
0.0077
59
0.0130
0.0053
0.0077
60
0.0130
0.0053
0.0078
61
0.0131
0.0053
0.0078
62
0.0131
0.0053
0.0078
i
63
0.0132
0.0053
0.0078
64
0.0132
0.0054
0.0079
65
0.0133
0.0054
0.0079
66
0.0133
0.0054
0.0079
67
0.0134
0.0054
0.0080
68
0.0134
0.0054
0.0080
69
0.0135
0.0055
0.0080
70
0.0135
0.0055
0.0080
71
0.0136
0.0055
0.0081
72
0.0136
0.0055
0.0081
73
0.0137
0.0055
0.0081
74
0.0137
0.0055
0.0081
75
0.0138
0.0056
0.0082
76
0.0138
0.0056
0.0082
77
0.0139
0.0056
0.0083
78
0.0139
0.0056
0.0083
79
0.0140
0.0057
0.0083
80
0.0140
0.0057
0.0083
81
0.0141
0.0057
0.0084
82
0.0141
0.0057
0.0084
83
0.0142
0.0057
0.0084
84
0.0142
0.0058
0.0085
85
0.0143
0.0058
0.0085
86
0.0143
0.0058
0.0085
87
0.0144
0.0058
0.0086
88
0.0145
0.0059
0.0086
89
0.0145
0.0059
0.0087
�"•
90
0.0146
0.0059
0.0087
91
0.0147
0.0059
0.,0087
92
93
0.0147
0.0148
0.0060
0.0060
0.0088
0.0088
94
0.0148
0.0060
0.0088
95
0.0149
0.0060
0.0089
96
0.0150
0.0061
0.0089
97
0.0151
0.0061
0.0090
98
0.0151
0.0061
0.0090
99
0.0152
0.0062
0.0091
100
0.0153
0.0062
0.0091
101
0.0154
0.0062
0.0091
102
0.0154
0.0062
0.0092
103
0.0155
0.0063
0.0092
104
0.0156
0.0063
0.0093
105
0.0157
0.0063
0.0093
106
0.0157
0.0064
0.0094
107
0.0158
0.0064
0.0094
108
0.0159
0.0064
0.0094
109
0.0160
0.0065
0.0095
110
0.0160
0.0065
0.0095
111
0.0162
0.0065
0.0096
112
0.0162
0.0066
0.0096
113
0.0163
0.0066
0.0097
114
0.0164
0.0066
0.0098
115
0.0165
0.0067
0.0098
116
0.0166
0.0067
0.0099
117
0.0167
0.0068
0.0099
118
0.0168
0.0068
0.0100
119
0.0169
0.0068
0.0101
,,...
120
0.0170
0.0069
0.0101
121
0.0171
0.0069
0.0102
122
0.0172
0.0070
0.0102
123
0.0173
0.0070
0.0103
124
0.0174
0.0070
0.0104
125
0.0175
0.0071
0.0104
126
0.0176
0.0071
0.0105
127
0.0178
0.0072
0.0106
128
0.0179
0.0072
0.0106
129
0.0180
0.0073
0.0107
130
0.0181
0.0073
0.0108
131
0.0183
0.0074
0.0109
132
0.0184
0.0074
0.0109
133
0.0185
0.0075
0.0110
134
0.0186
0.0075
0.0111
135
0.0188
0.0076
0.0112
136
0.0189
0.0077
0.0113
137
0.0191
0.0077
0.0114
138
0.0192
0.0078
0.0114
139
0.0194
0.0079
0.0116
140
0.0195
0.0079
0.0116
141
0.0198
0.0080
0.0118
142
0.0199
0.0080
0.0118
143
0.0201
0.0081
0.0120
144
0.0202
0.0082
0.0120
145
0.0200
0.0081
0.0119
146
0.0202
0.0082
0.0120
147
0.0204
0.0083
0.0122
fir"
148
0.0206
0.0083
0..0122
149
0.0208
0..0084
0.0124
150
0.0210
0.0085
0.0125
�r•�
151
0.0213
0.0086
0.0127
152
0.0214
0.0087
0.0128
153
0.0218
0.0088
0.0130
154
0.0219
0.0089
0.0131
155
0.0223
0.0090
0.0133
156
0.0225
0.0091
0.0134
157
0.0228
0.0092
0.0136
158
0.0230
0.0093
0.0137
159
0.0234
0.0095
0.0139
160
0.0237
0.0096
0.0141
161
0.0241
0.0098
0.0143
162
0.0243
0.0098
0.0145
163
0.0248
0.0100
0.0148
164
0.0251
0.0102
0.0149
165
0.0256
0.0104
0.0152
166
0.0259
0.0105
0.0154
167
0.0265
0.0107
0.0158
168
0.0268
0.0109
0.0160
169
0.0275
0.0111
0.0164
170
0.0278
0.0113
0.0166
171
0.0286
0.0116
0.0170
172
0.0290
0.0117
0.0173
173
0.0299
0.0121
0.0178
174
0.0304
0.0123
0.0181
175
0.0314
0.0127
0.0187
176
0.0319
0.0129
0.0190
�..,,
177
0.0331
0.0134
0.0197
178
0.0338
0.0137
0.0201
179
0.0352
0.0143
0.0210
180
0.0360
0.0146
0.0214
181
0.0378
0.0153
0.0225
182
0.0388
0.0157
0.0231
183
0.0412
0.0167
0.0245
184
0.0425
0.0172
0.0253
185
0.0335
0.0136
0.0199
186
0.0354
0.0143
0.0211
187
0.0402
0.0163
0.0239
188
0.0433
0.0175
0.0258
189
0.0522
0.0211
0.0311
190
0.0589
0.0239
0.0351
191
0.0842
0.0321
0.0521
192
0.1158
0.0321
0.0837
193
0.3626
0.0321
0.3304
194
0.0686
0.0278
0.0408
195
0.0472
0.0191
0.0281
196
0.0376
0.0152
0.0224
197
0.0440
0.0178
0.0262
198
0.0399
0.0162
0.0238
199
0.0369
0.0149
0.0220
200
0.0345
0.0140
0.0205
201
0.0325
0.0132
0.0193
202
0.0308
0.0125
0.0184
203
0.0294
0.0119
0.0175
204
0.0282
0.0114
0.0168
205
0.0271
0.0110
0.0161
206
0.0262
0.0106
0.0156
207
0.0253
0.0103
.0.0151
208
0.0246
0.0099
0.0146
209
0.0239
0.0097
0.0142
210
0.0232
0.0094
0.0138
211
0.0226
0.0092
0.0135
212
0.0221
0.0090
0.0132
213
0.0216
0.0087
0.0129
214
0.0211
0.0086
0.0126
215
0.0207
0.0084
0.0123
216
0.0203
0.0082
0.0121
217
0.0203
0.0082
0.0121
218
0.0200
0.0081
0.0119
219
0.0196
0.0080
0.0117
220
0.0193
0.0078
0.0115
221
0.0190
0.0077
0.0113
222
0.0187
0.0076
0.0111
223
0.0185
0.0075
0.0110
224
0.0182
0.0074
0.0108
225
0.0179
0.0073
0.0107
226
0.0177
0.0072
0.0105
227
0.0175
0.0071
0.0104
228
0.0173
0.0070
0.0103
229
0.0170
0.0069
0.0101
230
0.0168
0.0068
0.0100
231
0.0166
0.0067
0.0099
232
0.0165
0.0067
0.0098
233
0.0163
0.0066
0.0097
234
0.0161
0.0065
0.0096
235
0.0159
0.0064
0.0095
236
0.0158
0.0064
0.0094
237
0.0156
0.0063
0.0093
238
0.0155
0.0063
0.0092
239
0.0153
0.0062
0.0091
240
0.0152
0.0061
0.0090
241
0.0150
0.0061
0.0089
242
0.0149
0.0060
0.0089
243
0.0148
0.0060
0.0088
244
0.0146
0.0059
0.0087
245
0.0145
0.0059
0.0086
246
0.0144
0.0058
0.0086
247
0.0143
0.0058
0.0085
248
0.0142
0.0057
0.0084
249
0.0140
0.0057
0.0084
250
0.0139
0.0056
0.0083
251
0.0138
0.0056
0.0082
252
0.0137
0.0056
0.0082
253
0.0136
0.0055
0.0081
254
0.0135
0.0055
0.0081
255
0.0134
0.0054
0.0080
256
0.0133
0.0054
0.0079
257
0.0132
0.0054
0.0079
258
0.0132
0.0053
0.0078
259
0.0131
0.0053
0.0078
260
0.0130
0.0053
0.0077
261
0.0129
0.0052
0.0077
262
0.0128
0.0052
0.,0076
263
0.0127
0.0052
0.0076
264
0.0127
0.0051
0.0075
265
0.0126
0.0051
0.0075
266
0.0125
0.0051
0.0074
267
0.0124
0.0050
0.0074
268
0.0124
0.0050
0.0074
269
0.0123
0.0050
0.0073
270
0.0122
0.0049
0.0073
271
0.0121
0.0049
0.0072
272
0.0121
0.0049
0.0072
273
0.0120
0.0049
0.0071
274
0.0119
0.0048
0.0071
275
0.0119
0.0048
0.0071
276
0.0118
0.0048
0.0070
277
0.0118
0.0048
0.0070
278
0.0117
0.0047
0.0070
279
0.0116
0.0047
0.0069
280
0.0116
0.0047
0.0069
281
0.0115
0.0047
0.0069
282
0.0115
0.0046
0.0068
283
0.0114
0.0046
0.0068
284
0.0114
0.0046
0.0068
285
0.0113
0.0046
0.0067
286
0.0112
0.0046
0.0067
287
0.0112
0.0045
0.0067
288
0.0111
0.0045
0.0066
--------------------------------------------------------------------
--------------------------------------------------------------------
Total soil rain loss = 2.18(In)
Total effective rainfall = 3.52(In)
Peak flow rate in flood hydrograph = 15.94(CFS)
---------------------------------------------------------------------
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24 - H O U R S T O R M
R u n o f f H y d r o g r a p h
Hydrograph in 5 Minute intervals ((CFS))
--------------------------------------------------------------------
Time(h+m)
Volume Ac.Ft
Q(CFS)
0 5.0 10.0 15.0 20.0
-----------------------------------------------------------------------
0+ 5
0.0003
0.05
Q
0+10
0.0021
0.26
Q
0+15
0.0057
0.52
VQ
0+20
0.0100
0.62
VQ
0+25
0.0145
0.66
VQ
0+30
0.0192
0.68
VQ
0+35
0.0240
0.70
VQ
0+40
0.0289
0.71
VQ
0+45
0.0338
0.71
VQ
0+50
0.0387
0.72
VQ
0+55
0.0437
0.73
VQ
1+ 0
0.0488
0.73
VQ
1+ 5
0.0538
0.73
VQ
1+10
0.0589
0.74
VQ
1+15
0.0640
0.74
VQ
1+20
0.0691
0.74
IQ
1+25
0.0743
0.75
IQ
1+30
0.0794
0.75
IQ
1+35
0.0846
0.75
IQ
1+40
0.0897
0.75
IQ
1+45
0.0949
0.75
IQ
1+50
0.1001
0.75
IQ
1+55
0.1053
0.76
IQ
2+ 0
0.1106
0.76
IQ
2+ 5
0.1158
0.76
IQ
2+10
0.1211
0.76
IQ
2+15
0.1263
0.76
IQ
2+20
0.1316
0.77
IQ
2+25
0.1369
0.77
IQV
2+30
0.1422
0.77
IQV
2+35
0.1475
0.77
IQV
2+40
0.1529
0.77
IQV
2+45
0.1582
0.78
IQV
2+50
0.1636
0.78
IQV
2+55
0.1690
0.78
IQV
3+ 0
0.1743
0.78
IQV
3+ 5
0.1798
0.79
IQV
3+10
0.1852
0.79
IQV
3+15
0.1906
0.79
IQV
3+20
0.1961
0.79
IQV
3+25
0.2015
0.79
IQ V
3+30
0.2070
0.80
IQ V
3+35
0.2125
0.80
IQ V
3+40
0.2181
0.80
IQ V
3+45
0.2236
0.80
IQ V
3+50
0.2291
0.81
IQ V
3+55
0.2347
0.81
IQ V
4+ 0
0.2403
0.81
IQ V
4+ 5
0.2459
0.81
IQ V
4+10
0.2515
0.82
IQ V
4+15
0.2571
0.82
IQ V
4+20
0.2628
0.82
IQ V
4+25
0.2685
0.82
IQ V
4+30
0.2741
0.83
IQ V
4+35
0.2799
0.83
IQ V
4+40
0.2856
0.83
IQ V
4+45
0.2913
0.83
IQ V
4+50
0.2971
0.84
IQ V
4+55
0.3029
0.84
IQ V
5+ 0
0.3086
0.84
IQ V
5+ 5
0.3145
0.84
IQ V
5+10
0.3203
0.85
IQ V
5+15
0.3261
0.85
IQ V
5+20
0.3320
0.85
IQ V
5+25
0.3379
0.86
IQ V
5+30
0.3438
0.86
IQ V
5+35
0.3498
0.86
IQ V
5+40
0.3557
0.86
IQ V
5+45
0.3617
0.87
IQ V
5+50
0.3677
0.87
IQ V
5+55
0.3737
0.87
IQ V
6+ 0
0.3797
0.88
IQ V
6+ 5
0.3858
0.88
IQ
V
6+10
0.3919
0.88
IQ
V
�e�••,
/
6+15
0.3980
0.89
IQ
V
6+20
0.4041
0.89
IQ
V
6+25
0.4103
0.89
IQ
V
6+30
0.4164
0.90
IQ
V
6+35
0.4226
0.90
IQ
V
6+40
0.4288
0.90
IQ
V
6+45
0.4351
0.91
IQ
V
6+50
0.4414
0.91
IQ
V
6+55
0.4476
0.91
IQ
V
7+ 0
0.4540
0.92
IQ
V
7+ 5
0.4603
0.92
IQ
V
7+10
0.4667
0.92
IQ
V
7+15
0.4731
0.93
IQ
V
7+20
0.4795
0.93
IQ
V
7+25
0.4859
0.94
IQ
V
7+30
0.4924
0.94
IQ
V
7+35
0.4989
0.94
IQ
V
7+40
0.5054
0.95
IQ
V
7+45
0.5120
0.95
IQ
V
7+50
0.5186
0.96
IQ
V
7+55
0.5252
0.96
IQ
V
8+ 0
0.5318
0.96
IQ
V
8+ 5
0.5385
0.97
IQ
V
8+10
0.5452
0.97
IQ
V
8+15
0.5519
0.98
IQ
V
8+20
0.5587
0.98
IQ
V
8+25
0.5655
0.99
IQ
V
8+30
0.5723
0.99
IQ
V
8+35
0.5792
1.00
IQ
V
8+40
0.5861
1.00
1
Q
V
8+45
0.5930
1.01
1
Q
V
8+50
0.5999
1.01
1
Q
VI
8+55
0.6069
1.02
Q
VI
9+ 0
0.6140
1.02
Q
VI
9+ 5
0.6210
1.03
Q
VI
9+10
0.6281
1.03
Q
VI
9+15
0.6353
1.04
Q
VI
9+20
0.6424
1.04
Q
VI
9+25
0.6497
1.05
Q
VI
9+30
0.6569
1.05
Q
VI
9+35
0.6642
1.06
Q
V
9+40
0.6715
1.06
Q
V
9+45
0.6789
1.07
Q
V
9+50
0.6863
1.08
Q
V
9+55
0.6938
1.08
Q
V
10+ 0
0.7013
1.09
Q
V
10+ 5
0.7088
1.10
Q
V
10+10
0.7164
1.10
Q
V
10+15
0.7241
1.11
Q
V
"10+20
0.7317
1.12
Q
IV
10+25
0.7395
1.12
Q
IV
10+30
0.7473
1.13
Q
IV
10+35
0.7551
1.14
Q
IV
10+40
0.7630
1.14
Q
IV
10+45
0.7709
1.15
Q
IV
r►'
10+50
0.7789
1.16
Q IV
14011,
10+55
0.7869
1.17
I Q IV
11+ 0
0.7950
1.18
I Q I
V
11+ 5
0.8032
1.18
I Q I
V
11+10
0.8114
1.19
I Q I
V
11+15
0.8197
1.20
( Q I
V
11+20
0.8280
1.21
I Q I
V
11+25
0.8364
1.22
I Q I
V
11+30
0.8449
1.23
I Q I
V
11+35
0.8534
1.24
I Q I
V
11+40
0.8620
1.25
I Q I
V
11+45
0.8707
1.26
I Q I
V
11+50
0.8794
1.27
I Q I
V
11+55
0.8882
1.28
I Q I
V
12+ 0
0.8971
1.29
I Q I
V
12+ 5
0.9061
1.30
I Q I
V
12+10
0.9150
1.30
I Q I
V
12+15
0.9240
1.31
I Q I
V
12+20
0.9331
1.31
I Q I
V
12+25
0.9422
1.32
I Q I
V
12+30
0.9514
1.34
I Q I
V
12+35
0.9607
1.35
( Q I
V
12+40
0.9701
1.36
I Q I
V
12+45
0.9796
1.38
I Q
I V
12+50
0.9892
1.39
I Q
I V
12+55
0.9989
1.41
I Q
I V
13+ 0
1.0087
1.42
I Q
I V
13+ 5
1.0186
1.44
I Q
I V
13+15
1.0388
1.48
I Q
I V
13+20
1.0491
1.50
I Q
I V
13+25
1.0596
1.52
I Q
I V
13+30
1.0701
1.54
I Q
I V
13+35
1.0809
1.56
I Q
I V
13+40
1.0918
1.58
I Q
I V
13+45
1.1028
1.60
I Q
I V
13+50
1.1140
1.63
I Q
I V
13+55
1.1254
1.65
I Q
I V
14+ 0
1.1370
1.68
I Q
I V
14+ 5
1.1488
1.71
I Q
I V
14+10
1.1608
1.74
I Q
I V
14+15
1.1730
1.77
I Q
I V
14+20
1.1854
1.81
I Q
I V
14+25
1.1981
1.85
I Q
I V
14+30
1.2111
1.89
I Q
I V
14+35
1.2244
1.93
I Q
I V
14+40
1.2380
1.97
I Q
I V
14+45
1.2519
2.02
I Q
I V
14+50
1.2662
2.07
I Q
I VI
14+55
1.2809
2.13
I Q
I VI
15+ 0
1.2960
2.20
I Q
I VI
15+ 5
1.3116
2.27
I Q
I VI
15+10
1.3278
2.34
I Q
I V
15+15
1.3445
2.43
I Q
I V
15+20
1.3619
2.53
I Q
I V
15+25
1.3798
2.59
I Q
I V
¢;
15+30
1.3969
2.49
I Q
I IV
15+35
1.4133
2.37
Q
IV
15+40
1.4301
2.45
Q
IV
15+45
1.4484
2.65
Q
IV
15+50
1.4688
2.96
Q
I
V
15+55
1.4926
3.46 I
Q
I
V
16+ 0
1.5235
4.49
Q
I
V
16+ 5
1.5785
7.99
Q I
V
16+10
1.6865
15.68
V
IQ
16+15
1.7963
15.94
V IQ
16+20
1.8557
8.62
Q
V
16+25
1.8909
5.10
Q
V
16+30
1.9175
3.86
Q
V
16+35
1.9414
3.47 I
Q
VI
16+40
1.9623
3.04
Q
VI
16+45
1.9814
2.77 I
Q
VI
16+50
1.9991
2.57
Q
V
16+55
2.0154
2.38
Q
V
17+ 0
2.0307
2.22
Q
V
17+ 5
2.0451
2.08
Q
V
17+10
2.0588
1.98
Q
IV
17+15
2.0718
1.89
Q
IV
17+20
2.0838
1.74
Q
IV
17+25
2.0953
1.68
Q
(V
17+30
2.1065
1.62
Q
IV
17+35
2.1174
1.58
Q
IV
17+40
2.1279
1.53
Q
V
17+45
2.1382
1.49
Q
V
17+50
2.1482
1.45
Q
V
?0.
17+55
2.1580
1.42
( Q
V
18+ 0
2.1676
1.39
Q
V
18+ 5
2.1769
1.36
Q
V
18+10
2.1862
1.34
Q
V
18+15
2.1953
1.32
Q
V
18+20
2.2043
1.30
Q
V
18+25
2.2131
1.28
Q
V
18+30
2.2218
1.26
Q
V
18+35
2.2304
1.24
Q
V
18+40
2.2388
1.22
Q
V
18+45
2.2471
1.21
Q
V
18+50
2.2553
1.19
Q
( V
18+55
2.2634
1.17
I Q
V
19+ 0
2.2713
1.16
Q
V
19+ 5
2.2792
1.14
I Q I
V
19+10
2.2869
1.13
Q
V
19+15
2.2946
1.11
Q
V
19+20
2.3022
1.10
Q
V
19+25
2.3097
1.09
Q
V
19+30
2.3171
1.07
Q
V
19+35
2.3244
1.06
Q
V
19+40
2.3316
1.05
Q
V
19+45
2.3388
1.04
Q
V
19+50
2.3458
1.03
Q
V
19+55
2.3529
1.02
Q
V
20+ 0
2.3598
1.01
Q
V
20+ 5
2.3667
1.00
IQ
V
20+10
2.3735
0.99
IQ
V
20+15
2.3802
0.98
IQ
V
D
N
20+20
2.3869
0.97 IQ
v
20+25
2.3935
0.96 IQ
v
20+30
2.4001
0.95 IQ
v
20+35
2.4066
0.95 IQ
v
20+40
2.4131
0.94 IQ
V I
20+45
2.4195
0.93 IQ
v I
20+50
2.4258
0.92 IQ
v I
20+55
2.4321
0.92 IQ
v I
21+ 0
2.4384
0.91 IQ
v I
21+ 5
2.4446
0.90 IQ
v I
21+10
2.4508
0.89 IQ
v
21+15
2.4569
0.89 IQ
v
21+20
2.4629
0.88 IQ
v
21+25
2.4690
0.88 IQ
v
21+30
2.4750
0.87 IQ
I
v
21+35
2.4809
0.86 IQ
v
21+40
2.4868
0.86 IQ
v
21+45
2.4927
0.85 IQ
v
21+50
2.4985
0.85 IQ
v
21+55
2.5043
0.84
IQ
v
22+ 0
2.5100
0.83
IQ
v
22+ 5
2.5157
0.83
IQ
v
22+10
2.5214
0.82
IQ
v
22+15
2.5270
0.82
IQ
v
22+20
2.5327
0.81
IQ
v
22+25
2.5382
0.81
IQ
v
22+30
2.5438
0.80
IQ
v
22+35
2.5493
0.80
IQ
V
22+40
2.5548
0.80
IQ
v
22+45
2.5602
0.79
IQ
v
22+50
2.5656
0.79
IQ
v
22+55
2.5710
0.78
IQ
v
23+ 0
2.5764
0.78
IQ
v
23+ 5
2.5817
0.77
IQ
v
23+10
2.5870
0.77
IQ
VI
23+15
2.5923
0.77
IQ
v
23+20
2.5975
0.76
IQ
V)
23+25
2.6027
0.76
IQ
v
23+30
2.6079
0.75
IQ I
I I VI
23+35
2.6131
0.75
IQ
V
23+40
2.6182
0.75
IQ I
I I VI
23+45
2.6233
0.74
IQ
v
23+50
2.6284
0.74
IQ (
I I VI
23+55
2.6335
0.74
IQ
v
24+ 0
2.6385
0.73
IQ I
I I VI
24+ 5
2.6432
0.68
IQ I
I I VI
24+10
2.6464
0.46
Q I
( I VI
24+15
2.6478
0.21
Q I
I I VI
24+20
2.6486
0.11
Q I
I I VI
24+25
2.6490
0.07
Q I
I I V)
24+30
2.6493
0.05
Q I
I I VI
24+35
2.6496
0.03
Q I
I I VI
24+40
2.6497
0.02
Q I
I I V1
24+45
2.6498
0.02
Q I
I I v
24+50
2.6499
0.01
Q I
I I v
24+55
2.6500
0.01
Q I
I I v
25+ 0
2.6500
0.01
Q I
I I v
25+ 5 2.6500 0.00 Q VI
25+10 2.6501 0.00 Q V
----- ------
M
�rrr`
U n i t H y d r o g r a p h A n a l y s i s
Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 1999, Version 6.0
Study date 07/19/04
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
------------------------------------------------------------------------
San Bernardino County Synthetic Unit Hydrology Method
Manual date - August 1986
Allard Engineering, Fontana, California - SIN 643
---------------------------------------------------------------------
Tract 16271 25 Year 24 Hour Developed Condition Unit Hydrograph
Storm Event Year = 25
Antecedent Moisture Condition = 3
English (in -lb) Input Units Used
English Rainfall Data (Inches) Input Values Used
English Units used in output format
Area averaged rainfall intensity isohyetal data:
Sub -Area Duration Isohyetal
(Ac.) (hours) (In)
Rainfall data for year 25
9.03 1 1.20
--------------------------------------------------------------------
Rainfall data for year 25
9.03 6 3.05
--------------------------------------------------------------------
Rainfall data for year 25
9.03 24 7.00
--------------------------------------------------------------------
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
******** Area -averaged max loss rate, Fm ********
SCS curve
SCS curve
Area
Area
Fp(Fig C6)
Ap
Fm
No.(AMCII)
NO.(AMC 3)
(Ac.)
Fraction
' (In/Hr)
(dec.)
(In/Hr)
32.0
52.0
4.76
0.527
0.785
0.600
0.471
67.0
84.6
4.27
0.473
0.290
1.000
0.290
Area -averaged adjusted
loss rate
Fm (In/Hr) =
0.385
,...
`'�✓ *********
Area -Averaged
low loss
rate fraction,
Yb **********
Area
Area
SCS CN
SCS CN
S
Pervious
(Ac.)
Fract
(AMC2)
(AMC3)
Yield Fr
2.86
0.316
32.0
52.0
9.23
0.264
1.90
0.211
98.0
98.0
0.20
0.966
4.27
0.473
67.0
84.6
1.82
0.744
Area -averaged catchment yield fraction, Y = 0.639
Area -averaged low loss fraction, Yb = 0.361
User entry of time of concentration = 0.187 (hours)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Watershed area = 9.03(Ac.)
Catchment Lag time = 0.149 hours
Unit interval = 5.000 minutes
Unit interval percentage of lag time = 55.7637
Hydrograph baseflow = 0.00(CFS)
Average maximum watershed loss rate(Fm) = 0.385(In/Hr)
Average low loss rate fraction (Yb) = 0.361 (decimal)
VALLEY DEVELOPED S -Graph proportion = 0.527
VALLEY UNDEVELOPED S -Graph proportion = 0.473
FOOTHILL S -Graph proportion = 0.000
MOUNTAIN S -Graph proportion = 0.000
DESERT S -Graph proportion = 0.000
Computed peak 5 -minute rainfall = 0.444(In)
Computed peak 30 -minute rainfall = 0.909(In)
Specified peak 1 -hour rainfall = 1.200(In)
Computed peak 3 -hour rainfall = 2.126(In)
Specified peak 6 -hour rainfall = 3.050(In)
Specified peak 24-hour rainfall = 7.000(In)
Rainfall depth area reduction factors:
Using a total area of 9.03(Ac.) (Ref: fig. E-4)
5 -minute factor = 1.000 Adjusted rainfall = 0.444(In)
30 -minute factor = 1.000 Adjusted rainfall = 0.909(In)
1 -hour factor = 1.000 Adjusted rainfall = 1.199(In)
3 -hour factor = 1.000 Adjusted rainfall = 2.126(In)
6 -hour factor = 1.000 Adjusted rainfall = 3.050(In)
24-hour factor = 1.000 Adjusted rainfall = 7.000(In)
---------------------------------------------------------------------
U n i t H y d r o g r a p h
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Interval 'S' Graph Unit Hydrograph
Number Mean values ((CFS))
---------------------------------------------------------------------
(K = 109.21 (CFS))
1 6.424 7.015
2 37.237 33.650
`awl
3
71.841
37.790
4
85.825
15.271
5
91.255
5.930
6
93.897
2.885
7
95.750
2.024
8
96.818
1.167
9
97.644
0.902
10
98.322
0.740
11
98.833
0.558
12
99.227
0.430
13
99.513
0.313
14
99.777
0.288
15
100.000
0.244
---------------------------------------------------------------------
Peak Unit
Adjusted mass rainfall
Unit rainfall
Number
(In)
(In)
1
0.4439
0.4439
2
0.5858
0.1418
3
0.6889
0.1031
4
0.7729
0.0840
5
0.8451
0.0722
6
0.9090
0.0639
7
0.9669
0.0578
8
1.0199
0.0530
9
1.0691
0.0492
10
1.1151
0.0460
11
1.1585
0.0433
12
1.1995
0.0410
13
1.2506
0.0511
14
1.2998
0.0492
15
1.3474
0.0476
16
1.3934
0.0461
17
1.4381
0.0447
18
1.4816
0.0435
19
1.5239
0.0423
20
1.5652
0.0413
21
1.6055
0.0403
22
1.6449
0.0394
23
1.6834
0.0385
24
1.7212
0.0377
25
1.7581
0.0370
26
1.7944
0.0363
27
1.8301
0.0356
28
1.8651
0.0350
29
1.8995
0.0344
30
1.9333
0.0338
31
1.9666
0.0333
32
1.9994
0.0328
33
2.0317
0.0323
34
2.0636
0.0318
35
2.0950
0.0314
36
2.1260
0.0310
37
2.1565
0.0305
38
2.1867
0.0302
39
2.2164
0.0298
40
2.2458
0.0294
41
2.2749
0.0291
42
2.3036
0.0287
43
2.3320
0.0284
44
2.3601
0.0281
45
2.3879
0.0278
46
2.4154
0.0275
47
2.4426
0.0272
48
2.4695
0.0269
49
2.4961
0.0267
50
2.5225
0.0264
51
2.5487
0.0261
52
2.5746
0.0259
53
2.6002
0.0257
54
2.6257
0.0254
55
2.6509
0.0252
56
2.6758
0.0250
57
2.7006
0.0248
58
2.7252
0.0246
59
2.7495
0.0244
60
2.7737
0.0242
61
2.7977
0.0240
62
2.8215
0.0238
63
2.8451
0.0236
64
2.8685
0.0234
65
2.8917
0.0232
66
2.9148
0.0231
67
2.9377
0.0229
68
2.9605
0.0227
69
2.9831
0.0226
70
3.0055
0.0224
71
3.0278
0.0223
72
3.0499
0.0221
73
3.0752
0.0253
74
3.1004
0.0252
75
3.1254
0.0250
76
3.1504
0.0249
77
3.1751
0.0248
78
3.1998
0.0246
79
3.2243
0.0245
80
3.2487
0.0244
81
3.2730
0.0243
82
3.2971
0.0242
83
3.3212
0.0240
84
3.3451
0.0239
85
3.3689
0.0238
86
3.3926
0.0237
87
3.4162
0.0236
88
3.4397
0.0235
89
3.4630
0.0234
90
3.4863
0.0233
91
3.5095
0.0232
92
3.5325
0.0231
93
3.5555
0.0230
94
3.5783
0.0229
95
3.6011
0.0228
96
3.6238
0.0227
97
3.6464
0.0226
98
3.6688
0.0225
99
3.6912
0.0224
100
101
3.7135
3.7357
0.0223
0.0222
102
3.7579
0.0221
103
3.7799
0.0220
104
3.8018
0.0219
105
3.8237
0.0219
106
3.8455
0.0218
107
3.8672
0.0217
108
3.8888
0.0216
109
3.9103
0.0215
110
3.9318
0.0215
111
3.9532
0.0214
112
3.9745
0.0213
113
3.9957
0.0212
114
4.0169
0.0212
115
4.0380
0.0211
116
4.0590
0.0210
117
4.0799
0.0209
118
4.1008
0.0209
119
4.1215
0.0208
120
4.1423
0.0207
121
4.1629
0.0207
122
4.1835
0.0206
123
4.2040
0.0205
124
4.2245
0.0204
125
4.2449
0.0204
126
4.2652
0.0203
127
4.2854
0.0203
128
4.3056
0.0202
129
4.3257
0.0201
130
4.3458
0.0201
131
4.3658
0.0200
132
4.3858
0.0199
133
4.4056
0.0199
134
4.4255
0.0198
135
4.4452
0.0198
136
4.4649
0.0197
137
4.4846
0.0196
138
4.5042
0.0196
139
4.5237
0.0195
140
4.5432
0.0195
141
4.5626
0.0194
142
4.5819
0.0194
143
4.6013
0.0193
144
4.6205
0.0193
145
4.6397
0.0192
146
4.6589
0.0191
147
4.6780
0.0191
148
4.6970
0.0190
149
4.7160
0.0190
150
4.7349
0.0189
151
4.7538
0.0189
152
4.7727
0.0188
153
4.7915
0.0188
154
4.8102
0.0187
155
4.8289
0.0187
156
4.8476
0.0186
��.�.
157
4.8662
0.0186
158
4.8847
0.0186
rrr
159
4.9032
0.0185
160
4.9217
0.0185
161
4.9401
0.0184
162
4.9584
0.0184
163
4.9768
0.0183
164
4.9950
0.0183
165
5.0133
0.0182
166
5.0315
0.0182
167
5.0496
0.0181
168
5.0677
0.0181
169
5.0858
0.0181
170
5.1038
0.0180
171
5.1217
0.0180
172
5.1397
0.0179
173
5.1576
0.0179
174
5.1754
0.0178
175
5.1932
0.0178
176
5.2110
0.0178
177
5.2287
0.0177
178
5.2464
0.0177
179
5.2640
0.0176
180
5.2816
0.0176
181
5.2992
0.0176
182
5.3167
0.0175
183
5.3342
0.0175
184 184
5.3 516
0.0174
/001,
185
5.3691
0.0174
186
5.3864
0.0174
187
5.4038
0.0173
188
5.4211
0.0173
189
5.4383
0.0173
190
5.4556
0.0172
191
5.4727
0.0172
192
5.4899
0.0172
193
5.5070
0.0171
194
5.5241
0.0171
195
5.5411
0.0170
196
5.5582
0.0170
197
5.5751
0.0170
198
5.5921
0.0169
199
5.6090
0.0169
200
5.6259
0.0169
201
5.6427
0.0168
202
5.6595
0.0168
203
5.6763
0.0168
204
5.6930
0.0167
205
5.7097
0.0167
206
5.7264
0.0167
207
5.7430
0.0166
208
5.7597
0.0166
209
5.7762
0.0166
210
5.7928
0.0165
211
5.8093
0.0165
,,
212
5.8258
0.0165
213
5.8422
0.0165
�,..�
214
5.8587
0.0164
215
5.8750
0.0164
216
5.8914
0.0164
217
5.9077
0.0163
218
5.9240
0.0163
219
5.9403
0.0163
220
5.9566
0.0162
221
5.9728
0.0162
222
5.9889
0.0162
223
6.0051
0.0162
224
6.0212
0.0161
225
6.0373
0.0161
226
6.0534
0.0161
227
6.0694
0.0160
228
6.0854
0.0160
229
6.1014
0.0160
230
6.1174
0.0160
231
6.1333
0.0159
232
6.1492
0.0159
233
6.1651
0.0159
234
6.1809
0.0158
235
6.1967
0.0158
236
6.2125
0.0158
237
6.2283
0.0158
238
6.2440
0.0157
239
6.2597
0.0157
240
6.2754
0.0157
..
241
6.2911
0.0157
242
6.3067
0.0156
243
6.3223
0.0156
244
6.3379
0.0156
245
6.3534
0.0156
246
6.3689
0.0155
247
6.3845
0.0155
248
6.3999
0.0155
249
6.4154
0.0155
250
6.4308
0.0154
251
6.4462
0.0154
252
6.4616
0.0154
253
6.4769
0.0154
254
6.4923
0.0153
255
6.5076
0.0153
256
6.5229
0.0153
257
6.5381
0.0153
258
6.5534
0.0152
259
6.5686
0.0152
260
6.5838
0.0152
261
6.5989
0.0152
262
6.6141
0.0151
263
6.6292
0.0151
264
6.6443
0.0151
265
6.6593
0.0151
266
6.6744
0.0150
267
6.6894
0.0150
268
6.7044
0.0150
POP,,
269
6.7194
0.0150
270
6.7344
0.0150
too-
271
6.7493
0.0149
272
6.7642
0.0149
273
6.7791
0.0149
274
6.7940
0.0149
275
6.8088
0.0148
276
6.8236
0.0148
277
6.8384
0.0148
278
6.8532
0.0148
279
6.8680
0.0148
280
6.8827
0.0147
281
6.8975
0.0147
282
6.9122
0.0147
283
6.9268
0.0147
284
6.9415
0.0147
285
6.9561
0.0146
286
6.9707
0.0146
287
6.9853
0.0146
288
6.9999
0.0146
---------------------------------------------------------------------
Unit
Unit
Unit
Effective
Period
Rainfall
Soil -Loss
Rainfall
(number)
(In)
(In)
(In)
---------------------------------------------------------------------
1
0.0146
0.0053
0.0093
2
0.0146
0.0053
0.0093
3
0.0146
0.0053
0.0094
4
0.0147
0.0053
0.0094
5
0.0147
0.0053
0.0094
6
0.0147
0.0053
0.0094
,%WW
7
0.0148
0.0053
0.0094
8
0.0148
0.0053
0.0094
9
0.0148
0.0054
0.0095
10
0.0148
0.0054
0.0095
11
0.0149
0.0054
0.0095
12
0.0149
0.0054
0.0095
13
0.0150
0.0054
0.0096
14
0.0150
0.0054
0.0096
15
0.0150
0.0054
0.0096
16
0.0150
0.0054
0.0096
17
0.0151
0.0055
0.0096
18
0.0151
0.0055
0.0097
19
0.0152
0.0055
0.0097
20
0.0152
0.0055
0.0097
21
0.0152
0.0055
0.0097
22
0.0153
0.0055
0.0097
23
0.0153
0.0055
0.0098
24
0.0153
0.0055
0.0098
25
0.0154
0.0056
0.0098
26
0.0154
0.0056
0.0098
27
0.0155
0.0056
0.0099
28
0.0155
0.0056
0.0099
29
0.0155
0.0056
0.0099
30
0.0156
0.0056
0.0099
31
0.0156
0.0056
0.0100
32
0.0156
0.0056
0.0100
33
0.0157
0.0057
0.0100
34
0.0157
0.0057
0..0100
35
36
0.0158
0.0158
0.0057
0.0057
0.0101
0.0101
37
0.0158
0.0057
0.0101
38
0.0159
0.0057
0.0101
39
0.0159
0.0058
0.0102
40
0.0160
0.0058
0.0102
41
0.0160
0.0058
0.0102
42
0.0160
0.0058
0.0102
43
0.0161
0.0058
0.0103
44
0.0161
0.0058
0.0103
45
0.0162
0.0058
0.0103
46
0.0162
0.0059
0.0104
47
0.0163
0.0059
0.0104
48
0.0163
0.0059
0.0104
49
0.0164
0.0059
0.0105
50
0.0164
0.0059
0.0105
51
0.0165
0.0059
0.0105
52
0.0165
0.0060
0.0105
53
0.0165
0.0060
0.0106
54
0.0166
0.0060
0.0106
55
0.0166
0.0060
0.0106
56
0.0167
0.0060
0.0107
57
0.0167
0.0060
0.0107
58
0.0168
0.0061
0.0107
59
0.0168
0.0061
0.0108
60
0.0169
0.0061
0.0108
61
0.0169
0.0061
0.0108
62
0.0170
0.0061
0.0108
63
0.0170
0.0062
0.0109
64
0.0171
0.0062
0.0109
65
0.0172
0.0062
0.0110
66
0.0172
0.0062
0.0110
67
0.0173
0.0062
0.0110
68
0.0173
0.0062
0.0111
69
0.0174
0.0063
0.0111
70
0.0174
0.0063
0.0111
71
0.0175
0.0063
0.0112
72
0.0175
0.0063
0.0112
73
0.0176
0.0064
0.0112
74
0.0176
0.0064
0.0113
75
0.0177
0.0064
0.0113
76
0.0178
0.0064
0.0113
77
0.0178
0.0064
0.0114
78
0.0179
0.0065
0.0114
79
0.0180
0.0065
0.0115
80
0.0180
0.0065
0.0115
81
0.0181
0.0065
0.0116
82
0.0181
0.0066
0.0116
83
0.0182
0.0066
0.0116
84
0.0183
0.0066
0.0117
85
0.0184
0.0066
0.0117
86
0.0184
0.0066
0.0118
87
0.0185
0.0067
0.0118
88
0.0186
0.0067
0.0119
89
0.0186
0.0067
0.0119
90
0.0187
0.0068
0.0119
91
0.0188
0.0068
0..0120
�,�..
92
0.0188
0.0068
0.0120
93
0.0189
0.0068
0.0121
94
0.0190
0.0069
0.0121
95
0.0191
0.0069
0.0122
96
0.0191
0.0069
0.0122
97
0.0193
0.0070
0.0123
98
0.0193
0.0070
0.0123
99
0.0194
0.0070
0.0124
100
0.0195
0.0070
0.0124
101
0.0196
0.0071
0.0125
102
0.0196
0.0071
0.0126
103
0.0198
0.0071
0.0126
104
0.0198
0.0072
0.0127
105
0.0199
0.0072
0.0127
106
0.0200
0.0072
0.0128
107
0.0201
0.0073
0.0129
108
0.0202
0.0073
0.0129
109
0.0203
0.0073
0.0130
110
0.0204
0.0074
0.0130
111
0.0205
0.0074
0.0131
112
0.0206
0.0074
0.0132
113
0.0207
0.0075
0.0132
114
0.0208
0.0075
0.0133
115
0.0209
0.0076
0.0134
116
0.0210
0.0076
0.0134
117
0.0212
0.0076
0.0135
118
0.0212
0.0077
0.0136
119
0.0214
0.0077
0.0137
120
0.0215
0.0077
0.0137
121
0.0216
0.0078
0.0138
122
0.0217
0.0078
0.0139
123
0.0219
0.0079
0.0140
124
0.0219
0.0079
0.0140
125
0.0221
0.0080
0.0141
126
0.0222
0.0080
0.0142
127
0.0224
0.0081
0.0143
128
0.0225
0.0081
0.0144
129
0.0227
0.0082
0.0145
130
0.0228
0.0082
0.0145
131
0.0230
0.0083
0.0147
132
0.0231
0.0083
0.0147
133
0.0233
0.0084
0.0149
134
0.0234
0.0084
0.0149
135
0.0236
0.0085
0.0151
136
0.0237
0.0086
0.0151
137
0.0239
0.0086
0.0153
138
0.0240
0.0087
0.0154
139
0.0243
0.0088
0.0155
140
0.0244
0.0088
0.0156
141
0.0246
0.0089
0.0157
142
0.0248
0.0089
0.0158
143
0.0250
0.0090
0.0160
144
0.0252
0.0091
0.0161
145
0.0221
0.0080
0.0141
146
0.0223
0.0080
0.0142
147
0.0226
0.0082
0.0144
148
0.0227
0.0082
0..0145
149
150
0.0231
0.0232
0.0083
0.0084
0.0147
0.0149
151
0.0236
0.0085
0.0151
152
0.0238
0.0086
0.0152
153
0.0242
0.0087
0.0154
154
0.0244
0.0088
0.0156
155
0.0248
0.0089
0.0158
156
0.0250
0.0090
0.0160
157
0.0254
0.0092
0.0162
158
0.0257
0.0093
0.0164
159
0.0261
0.0094
0.0167
160
0.0264
0.0095
0.0169
161
0.0269
0.0097
0.0172
162
0.0272
0.0098
0.0174
163
0.0278
0.0100
0.0177
164
0.0281
0.0101
0.0179
165
0.0287
0.0104
0.0183
166
0.0291
0.0105
0.0186
167
0.0298
0.0108
0.0190
168
0.0302
0.0109
0.0193
169
0.0310
0.0112
0.0198
170
0.0314
0.0113
0.0201
171
0.0323
0.0117
0.0206
172
0.0328
0.0118
0.0210
173
0.0338
0.0122
0.0216
174
0.0344
0.0124
0.0220
175
0.0356
0.0129
0.0228
176
0.0363
0.0131
0.0232
f,..
177
0.0377
0.0136
0.0241
178
0.0385
0.0139
0.0246
179
0.0403
0.0146
0.0257
180
0.0413
0.0149
0.0264
181
0.0435
0.0157
0.0278
182
0.0447
0.0161
0.0286
183
0.0476
0.0172
0.0304
184
0.0492
0.0178
0.0314
185
0.0410
0.0148
0.0262
186
0.0433
0.0156
0.0277
187
0.0492
0.0178
0.0314
188
0.0530
0.0192
0.0339
189
0.0639
0.0231
0.0408
190
0.0722
0.0261
0.0461
191
0.1031
0.0321
0.0710
192
0.1418
0.0321
0.1097
193
0.4439
0.0321
0.4118
194
0.0840
0.0303
0.0537
195
0.0578
0.0209
0.0369
196
0.0460
0.0166
0.0294
197
0.0511
0.0184
0.0326
198
0.0461
0.0166
0.0294
199
0.0423
0.0153
0.0270
2U
0.0394
0.0142
0.0252
201
0.0370
0.0134
0.0236
202
0.0350
0.0126
0.0224
203
0.0333
0.0120
0.0213
204
0.0318
0.0115
0.0203
205
0.0305
0.0110
0..0195
206
0.0294
0.0106
0.0188
207
0.0284
0.0103
0.0181
208
0.0275
0.0099
0.0176
209
0.0267
0.0096
0.0170
210
0.0259
0.0094
0.0165
211
0.0252
0.0091
0.0161
212
0.0246
0.0089
0.0157
213
0.0240
0.0087
0.0153
214
0.0234
0.0085
0.0150
215
0.0229
0.0083
0.0146
216
0.0224
0.0081
0.0143
217
0.0253
0.0091
0.0162
218
0.0249
0.0090
0.0159
219
0.0245
0.0089
0.0157
220
0.0242
0.0087
0.0154
221
0.0238
0.0086
0.0152
222
0.0235
0.0085
0.0150
223
0.0232
0.0084
0.0148
224
0.0229
0.0083
0.0146
225
0.0226
0.0082
0.0144
226
0.0223
0.0081
0.0142
227
0.0220
0.0080
0.0141
228
0.0218
0.0079
0.0139
229
0.0215
0.0078
0.0138
230
0.0213
0.0077
0.0136
231
0.0211
0.0076
0.0135
232
0.0209
0.0075
0.0133
233
0.0207
0.0075
0.0132
234
0.0204
0.0074
0.0131
235
0.0203
0.0073
0.0129
236
0.0201
0.0072
0.0128
237
0.0199
0.0072
0.0127
238
0.0197
0.0071
0.0126
239
0.0195
0.0071
0.0125
240
0.0194
0.0070
0.0124
241
0.0192
0.0069
0.0123
242
0.0190
0.0069
0.0122
243
0.0189
0.0068
0.0121
244
0.0187
0.0068
0.0120
245
0.0186
0.0067
0.0119
246
0.0185
0.0067
0.0118
247
0.0183
0.0066
0.0117
248
0.0182
0.0066
0.0116
249
0.0181
0.0065
0.0115
250
0.0179
0.0065
0.0115
251
0.0178
0.0064
0.0114
252
0.0177
0.0064
0.0113
253
0.0176
0.0063
0.0112
254
0.0174
0.0063
0.0111
255
0.0173
0.0063
0.0111
256
0.0172
0.0062
0.0110
257
0.0171
0.0062
0.0109
258
0.0170
0.0061
0.0109
259
0.0169
0.0061
0.0108
260
0.0168
0.0061
0.0107
261
0.0167
0.0060
0.0107
262
0.0166
0.0060
0.0106
263
264
0.0165
0.0164
0.0060
0.0059
0.0106
0.0105
265
0.0163
0.0059
0.0104
266
0.0162
0.0059
0.0104
267
0.0162
0.0058
0.0103
268
0.0161
0.0058
0.0103
269
0.0160
0.0058
0.0102
270
0.0159
0.0057
0.0102
271
0.0158
0.0057
0.0101
272
0.0157
0.0057
0.0101
273
0.0157
0.0057
0.0100
274
0.0156
0.0056
0.0100
275
0.0155
0.0056
0.0099
276
0.0154
0.0056
0.0099
277
0.0154
0.0055
0.0098
278
0.0153
0.0055
0.0098
279
0.0152
0.0055
0.0097
280
0.0151
0.0055
0.0097
281
0.0151
0.0054
0.0096
282
0.0150
0.0054
0.0096
283
0.0149
0.0054
0.0095
284
0.0149
0.0054
0.0095
285
0.0148
0.0053
0.0095
286
0.0147
0.0053
0.0094
287
0.0147
0.0053
0.0094
288
--------------------------------------------------------------------
0.0146
0.0053
0.0093
--------------------------------------------------------------------
Total
soil rain
loss =
2.38(In)
Total
effective
rainfall =
4.62(In)
Peak
flow rate in
flood hydrograph = 20.08(CFS)
---------------------------------------------------------------------
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24 - H
O U
R S T O R M
R
u n o f f
H y d r o g r a p h
--------------------------------------------------------------------
Hydrograph
in
5
Minute intervals ((CFS))
--------------------------------------------------------------------
Time(h+m)
Volume Ac.Ft
Q(CFS)
0
7.5 15.0
22.5 30.0
-----------------------------------------------------------------------
0+ 5
0.0004
0.07
Q
0+10
0.0031
0.38
Q
0+15
0.0081
0.73
Q
0+20
0.0141
0.87
VQ
0+25
0.0205
0.93
VQ
0+30
0.0272
0.96
VQ
0+35
0.0339
0.98
VQ
0+40
0.0408
0.99
VQ
0+45
0.0477
1.01
VQ
0+50
0.0547
1.01
VQ
0+55
0.0617
1.02
VQ
1+ 0
0.0688
1.03
VQ
1+ 5
0.0759
1.03
VQ
1+10
0.0831
1.04
VQ
1+15
0.0902
1.04
IQ
1+20
0.0974
1.04
IQ
�..
1+25
0.1046
1.05
IQ
1+30
0.1119
1.05
IQ
1+35
0.1191
1.05
IQ
1+40
0.1264
1.05
IQ
1+45
0.1337
1.06
IQ
1+50
0.1410
1.06
IQ
1+55
0.1483
1.06
IQ
2+ 0
0.1556
1.06
IQ
2+ 5
0.1629
1.07
IQ
2+10
0.1703
1.07
IQ
2+15
0.1777
1.07
IQV
2+20
0.1851
1.07
IQV
2+25
0.1925
1.08
IQV
2+30
0.1999
1.08
IQV
2+35
0.2074
1.08
IQV
2+40
0.2149
1.08
IQV
2+45
0.2224
1.09
IQV
2+50
0.2299
1.09
IQV
2+55
0.2374
1.09
IQV
3+ 0
0.2449
1.10
IQV
3+ 5
0.2525
1.10
IQV
3+10
0.2601
1.10
IQV
3+15
0.2677
1.10
IQ V
3+20
0.2753
1.11
IQ V
3+25
0.2830
1.11
IQ V
3+30
0.2906
1.11
IQ V
3+35
0.2983
1.12
IQ V
,,..
3+40
0.3060
1.12
IQ V
3+45
0.3137
1.12
IQ V
3+50
0.3215
1.12
IQ V
3+55
0.3293
1.13
IQ V
4+ 0
0.3370
1.13
IQ V
4+ 5
0.3448
1.13
IQ V
4+10
0.3527
1.14
IQ V
4+15
0.3605
1.14
IQ V
4+20
0.3684
1.14
IQ V
4+25
0.3763
1.15
IQ V
4+30
0.3842
1.15
IQ V
4+35
0.3922
1.15
IQ V
4+40
0.4001
1.16
IQ V
4+45
0.4081
1.16
IQ V
4+50
0.4161
1.16
IQ V
4+55
0.4242
1.17
IQ V
5+ 0
0.4322
1.17
IQ V
5+ 5
0.4403
1.17
IQ V
5+10
0.4484
1.18
IQ V
5+15
0.4565
1.18
IQ V
5+20
0.4647
1.18
IQ V
5+25
0.4729
1.19
IQ V
5+30
0.4811
1.19
IQ V
5+35
0.4893
1.20
IQ V
5+40
0.4976
1.20
IQ V
5+45
0.5058
1.20
IQ V
5+50
0.5142
1.21
IQ V
5+55
0.5225
1.21
IQ V I
6+ 0
0.5309
1.21
IQ V I
m
6+ 5
0.5392
1.22
IQ
V I
6+10
0.5477
1.22
IQ
V
6+15
0.5561
1.23
IQ
V
6+20
0.5646
1.23
IQ
V I
6+25
0.5731
1.23
IQ
V I
6+30
0.5816
1.24
IQ
V I
6+35
0.5902
1.24
IQ
V I
6+40
0.5988
1.25
IQ
V I
6+45
0.6074
1.25
IQ
V I
6+50
0.6161
1.26
IQ
V I
6+55
0.6247
1.26
IQ
V I
7+ 0
0.6334
1.27
IQ
V I
7+ 5
0.6422
1.27
IQ
V I
7+10
0.6510
1.27
IQ
V I
7+15
0.6598
1.28
IQ
V I
7+20
0.6686
1.28
IQ
V I
7+25
0.6775
1.29
IQ
V I
7+30
0.6864
1.29
IQ
V I
7+35
0.6954
1.30
IQ
V I
7+40
0.7043
1.30
IQ
V I
7+45
0.7134
1.31
IQ
V I
7+50
0.7224
1.31
IQ
V I
7+55
0.7315
1.32
IQ
V I
8+ 0
0.7406
1.32
IQ
V I
8+ 5
0.7498
1.33
IQ
V I
8+10
0.7590
1.34
IQ
V I
8+15
0.7682
1.34
IQ
V I
8+20
0.7775
1.35
IQ
V I
8+25
0.7868
1.35
IQ
VI
8+30
0.7962
1.36
IQ
VI
8+35
0.8055
1.36
IQ
VI
8+40
0.8150
1.37
IQ
VI
8+45
0.8245
1.38
IQ
VI
8+50
0.8340
1.38
IQ
VI
8+55
0.8435
1.39
IQ
VI
9+ 0
0.8532
1.40
IQ
VI
9+ 5
0.8628
1.40
IQ
VI
9+10
0.8725
1.41
IQ
V
9+15
- 0.8822
1.41
IQ
V
9+20
0.8920
1.42
IQ
V
9+25
0.9019
1.43
IQ
V
9t30
0.9118
1.44
IQ
V
9+35
0.9217
1.44
IQ
V
9+40
0.9317
1.45
IQ
V
9+45
0.9417
1.46
IQ
V
9+50
0.9518
1.46
IQ
V
9+55
0.9620
1.47
IQ
IV
10+ 0
0.9722
1.48
IQ
IV
10+ 5
0.9824
1.49
IQ
IV
10+10
0.9927
1.50
IQ
IV
10+15
1.0031
1.50
I Q
IV
10+20
1.0135
1.51
I Q
IV
10+2-9
1.0240
1.52
I Q
IV
10+30
1.0345
1.53
I Q
IV
1Q+35
1.0451
1.54
I Q
I V
10+40
1.0558
1.55
I Q
I V
10+45
1.0665
1.56
I Q
I V
m
10+50
1.0773
1.57
Q
V
10+55
1.0882
1.58
Q
I V
11+ 0
1.0991
1.59
Q
V
11+ 5
1.1101
1.60
Q
V
11+10
1.1212
1.61
Q
I V
11+15
1.1323
1.62
Q
V
11+20
1.1436
1.63
Q
V
11+25
1.1549
1.64
Q
I V
11+30
1.1663
1.65
Q
V
11+35
1.1777
1.66
Q
V
11+40
1.1893
1.68 I
Q
V
11+45
1.2009
1.69
Q
V
11+50
1.2126
1.70
Q
V
11+55
1.2244
1.71
Q
V
12+ 0
1.2363
1.73
Q
V
12+ 5
1.2482
1.73
Q
V
12+10
1.2597
1.67
Q
V
12+15
1.2707
1.60 I
Q
V
12+20
1.2817
1.59
Q
V
12+25
1.2926
1.59
Q
V
12+30
1.3037
1.60
Q
( V
12+35
1.3148
1.61
Q
V
12+40
1.3260
1.63
Q
V
12+45
1.3373
1.65
Q
V
12+50
1.3488
1.66
Q
V
12+55
1.3603
1.68
Q
V
13+ 0
1.3720
1.70
Q
V
13+ 5
1.3839
1.72
Q
V
13+10
1.3959
1.74
Q
V
13+15
1.4081
1.77
Q
V
13+20
1.4204
1.79
Q
V
13+25
1.4329
1.81
Q
V
13+30
1.4456
1.84
Q
V
13+35
1.4584
1.87
Q
V
13+40
1.4715
1.90
Q
V
13+45
1.4848
1.93
Q
V
13+50
1.4982
1.96
Q
V
13+55
1.5120
1.99
Q
V
14+ 0
1.5259
2.03
( Q
V
14+ 5
1.5401
2.06
Q
V
14+10
1.5546
2.10
Q
V
14+15
1.5694
2.15
Q
V
14+20
1.5845
2.19
Q
V
14+25
1.5999
2.24
I Q
V
14+30
1.6157
2.29
Q
V
14+35
1.6318
2.34
Q
V
14+40
1.6483
2.40
Q
V
14+45
1.6653
2.47
Q
VI
14+50
1.6828
2.53
Q
VI
14+55
1.7007
2.61
Q
VI
15+ 0
1.7193
2.69
Q
VI
15+ 5
1.7385
2.78
Q
VI
15+10
1.7583
2.89
Q
V
15+15
1.7790
3.00
Q
V
15+20
1.8006
3.13
Q
V
15+25
1.8228
3.23
Q
V
15+30
1.8444
3.14
Q
IV
15+35
1.8655
3.06
I Q
IV
15+40
1.8875
3.19
Q
IV
15+45
1.9114
3.47
Q
IV
15+50
1.9381
3.89
Q
I V
15+55
1.9696
4.56
Q
I V
16+ 0
2.0109
6.00
( Q I
I
16+ 5
2.0833
10.50
Q
V
16+10
2.2214
20.06
VQ
16+15
2.3597
20.08
QV
16+20
2.4346
10.87
Q
V
16+25
2.4794
6.51Q
V
16+30
2.5133
4.92
Q
V
16+35
2.5433
4.36
Q
V
16+40
2.5694
3.79
Q
VI
16+45
2.5931
3.44
Q
VI
16+50
2.6149
3.17Q
V
16+55
2.6350
2.92
Q
V
17+ 0
2.6537
2.72
Q
V
17+ 5
2.6712
2.54
I Q
V
17+10
2.6878
2.41
Q
V
17+15
2.7035
2.28
Q
IV
17+20
2.7180
2.10
Q
IV
17+25
2.7319
2.02
Q
IV
17+30
2.7453
1.95
Q
IV
17+35
2.7584
1.89
Q
IV
17+40
2.7710
1.83
Q
IV
17+45
2.7833
1.78
Q
I V
17+50
2.7952
1.74
Q
I V
17+55
2.8069
1.69
Q
I V
18+ 0
2.8182
1.65
Q
IV
18+ 5
2.8295
1.63
Q
I V
18+10
2.8409
1.67
Q
IV
18+15
2.8527
1.71
Q
I V
18+20
2.8646
1.72
Q
I V
18+25
2.8763
1.70
I Q
I V
18+30
2.8879
1.68
Q
IV
18+35
2.8993
1.66
Q
I V
18+40
2.9106
1.64
Q
I V
18+45
2.9218
1.62
Q
I V
18+50
2.9328
1.60
Q
IV
18+55
2.9436
1.58
Q
V
19+ 0
2.9544
1.56
Q
V
19+ 5
2.9650
1.54
Q
V
19+10
2.9755
1.53
Q
V
19+15
2.9859
1.51
Q
V
19+20
2.9962
1.49
IQ
V
19+25
3.0064
1.48
IQ
V
19+30
3.0164
1.46
IQ
V
19+35
3.0264
1.45
IQ
V
19+40
3.0362
1.43
IQ
V
19+45
3.0460
1.42
IQ
V
19+50
3.0557
1.40
IQ
V
19+55
3.0653
1.39
IQ
V
20+ 0
3.0748
1.38
IQ
V
20+ 5
3.0842
1.37
IQ
V
20+10
3.0935
1.35
IQ
V
20+15
3.1028
1.34
Q
V
20+20
3.1119
1.33
IQ
V
20+25
3.1210
1.32
IQ
v
20+30
3.1301
1.31
IQ
V
20+35
3.1390
1.30
IQ
V
20+40
3.1479
1.29
IQ
V
20+45
3.1567
1.28
IQ
V
20+50
3.1655
1.27
IQ
V
20+55
3.1742
1.26
IQ
V I
21+ 0
3.1828
1.25
IQ
V I
21+ 5
3.1914
1.24
IQ
V I
21+10
3.1999
1.24
IQ
V I
21+15
3.2084
1.23
IQ
V I
21+20
3.2168
1.22
IQ I
V
21+25
3.2251
1.21
IQ I
V
21+30
3.2334
1.20
IQ I
V
21+35
3.2417
1.20
IQ
V
21+40
3.2499
1.19
IQ
V
21+45
3.2580
1.18
IQ
V
21+50
3.2661
1.17
IQ
V
21+55
3.2741
1.17
IQ
V
22+ 0
3.2821
1.16
IQ I
I I
V
22+ 5
3.2901
1.15
IQ I
I
I V
22+10
3.2980
1.15
IQ
I I
I V
22+15
3.3058
1.14
IQ
I I
I V
22+20
3.3137
1.14
IQ
I I
I V
22+25
3.3214
1.13
IQ
I I
I V
22+30
3.3292
1.12
IQ
I I
I V
22+35
3.3369
1.12
IQ
I I
I V
...
22+40
3.3445
1.11
IQ
I I
I V
22+45
3.3521
1.11
IQ
I I
I V
22+50
3.3597
1.10
IQ
I I
I V
22+55
3.3672
1.09
IQ
I I
I V
23+ 0
3.3747
1.09
IQ
I I
I V
23+ 5
3.3822
1.08
IQ
I I
I V I
23+10
3.3896
1.08
IQ
I I
I V
23+15
3.3970
1.07
IQ
I I
I VI
23+20
3.4043
1.07
IQ
I I
I VI
23+25
3.4117
1.06
IQ
I I
I VI
23+30
3.4190
1.06
IQ
I I
I VI
23+35
3.4262
1.05
IQ
I I
I VI
23+40
3.4334
1.05
IQ
I I
VI
23+45
3.4406
1.04
IQ
I I
I VI
23+50
3.4478
1.04
IQ
I I
I VI
23+55
3.4549
1.03
IQ
I I
I VI
24+ 0
3.4620
1.03
IQ
I I
I VI
24+ 5
3.4686
0.96
IQ
I I
I VI
24+10
3.4730
0.64
Q
I I
I VI
24+15
3.4750
0.29
Q
I I
I VI
24+20
3.4760
0.15
Q
I I
I VI
24+25
3.4766
0.09
Q
I I
I VI
24+30
3.4771
0.06
Q
I I
I VI
24+35
3.4774
0.04
Q
I I
I VI
24+46
3.4776
0.03
Q
I I
I VI
24+45
3.4778
0.02
Q
I I
I VI
24+50
3.4779
0.02
Q
I I
I VI
,,..
24+55
3.4780
0.01
Q
I I
I VI
25+ 0
3.4780
0.01
Q
I (
I V1
25+ 5 3.4781 0.00 Q V
25+10 3.4781 0.00 Q V
-----------------------------------------------------------------------
8
a
N
14
U n i t H y d r o g r a p h A n a l y s i s
Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 1999, Version 6.0
Study date 07/19/04
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
------------------------------------------------------------------------
San Bernardino County Synthetic Unit Hydrology Method
Manual date - August 1986
Allard Engineering, Fontana, California - SIN 643
---------------------------------------------------------------------
Tract 16271 100 Year 24 Hour Developed Condition Unit Hydrograph
Storm Event Year = 100
Antecedent Moisture Condition = 3
English (in -lb) Input Units'Used
English Rainfall Data (Inches) Input Values Used
English Units used in output format
Area averaged rainfall intensity isohyetal data:
Sub -Area Duration Isohyetal
(Ac.) (hours) (In)
Rainfall data for year 100
9.03 1 1.50
--------------------------------------------------------------------
Rainfall data for year 100
9.03 6 3.85
--------------------------------------------------------------------
Rainfall data for year 100
9.03 24 9.00
--------------------------------------------------------------------
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
******** Area -averaged max loss rate, Fm ********
SCS curve
SCS curve
Area
Area
Fp(Fig C6)
Ap
Fm
No.(AMCII)
NO.(AMC 3)
(Ac.)
Fraction
* (In/Hr)
(dec.)
(In/Hr)
32.0
52.0
4.76
0.527
0.785
0.600
0.471
67.0
84.6
4.27
0.473
0.290
1.000
0.290
,r„A,,, Area -averaged adjusted
loss rate
Fm (In/Hr) =
0.385
0.555(In)
Nft"' *********
Area -Averaged
low loss
rate fraction,
Yb **********
Area
Area
SCS CN
SCS CN
S
Pervious
(Ac.)
Fract
(AMC2)
(AMC3)
6 -hour factor =
Yield Fr
2.86
0.316
32.0
52.0
9.23
0.347
1.90
0.211
98.0
98.0
0.20
0.973
4.27
0.473
67.0
84.6
1.82
0.793
Area -averaged catchment yield fraction, Y = 0.690
Area -averaged low loss fraction, Yb = 0.310
User entry of time of concentration = 0.185 (hours)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Watershed area = 9.03(Ac.)
Catchment Lag time = 0.148 hours
Unit interval = 5.000 minutes
Unit interval percentage of lag time = 56.4589
Hydrograph baseflow = 0.00(CFS)
Average maximum watershed loss rate(Fm) = 0.385(In/Hr)
Average low loss rate fraction (Yb) = 0.310 (decimal)
VALLEY DEVELOPED S -Graph proportion = 0.527
VALLEY UNDEVELOPED S -Graph proportion = 0.473
FOOTHILL S -Graph proportion = 0.000
MOUNTAIN S -Graph proportion = 0.000
DESERT S -Graph proportion = 0.000
Computed peak 5 -minute rainfall = 0.555(In)
Computed peak 30 -minute rainfall = 1.137(In)
Specified peak 1 -hour rainfall = 1.500(In)
Computed peak 3 -hour rainfall = 2.674(In)
Specified peak 6 -hour rainfall = 3.850(In)
Specified peak 24-hour rainfall = 9.000(In)
Rainfall depth area reduction factors:
Using a total area of 9.03(Ac.) (Ref: fig. E-4)
5 -minute factor
= 1.000
Adjusted
rainfall =
0.555(In)
30 -minute factor
= 1.000
Adjusted
rainfall =
1.136(In)
1 -hour factor =
1.000
Adjusted
rainfall =
1.499(In)
3 -hour factor =
1.000
Adjusted
rainfall =
2.673(In)
6 -hour factor =
1.000
Adjusted
rainfall =
3.850(In)
24-hour factor =
---------------------------------------------------------------------
1.000
Adjusted
rainfall =
9.000(In)
U n i t H y d r o g r a p h
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Interval 'S' Graph Unit Hydrograph
Number Mean values ((CFS))
(K = 109.21 (CFS))
AWN^, 1 6.567 7.172
2 38.000 34.327
�Ir�
3
72.523
37.701
.,
4
86.165
14.899
rr.r+
5
91.438
5.758
6
94.049
2.850
7
95.851
1.969
8
96.901
1.146
9
97.726
0.901
10
98.388
0.723
11
98.891
0.549
12
99.273
0.417
13
99.554
0.307
14
99.821
0.292
15
100.000
0.195
---------------------------------------------------------------------
Peak Unit
Adjusted mass rainfall
Unit rainfall
Number
(In)
(In)
1
0.5549
0.5549
2
0.7322
0.1773
3
0.8612
0.1289
4
0.9662
0.1050
5
1.0564
0.0902
6
1.1363
0.0799
7
1.2086
0.0723
8
1.2749
0.0663
9
1.3364
0.0615
10
1.3939
0.0575
11
1.4481
0.0542
12
1.4994
0.0513
�,..,
13
1.5639
0.0645
14
1.6261
0.0622
yrrr
15
1.6863
0.0601
16
1.7445
0.0583
17
1.8011
0.0566
18
1.8561
0.0550
19
1.9097
0.0536
20
1.9620
0.0523
21
2.0130
0.0510
22
2.0629
0.0499
23
2.1118
0.0488
24
2.1596
0.0478
25
2.2065
0.0469
26
2.2525
0.0460
27
2.2977
0.0452
28
2.3422
0.0444
29
2.3858
0.0437
30
2.4288
0.0430
31
2.4711
0.0423
32
2.5127
0.0416
33
2.5538
0.0410
34
2.5942
0.0404
35
2.6341
0.0399
36
2.6734
0.0394
37
2.7123
0.0388
38
2.7506
0.0383
39
2.7884
0.0378'
40
2.8258
0.0374
41
2.8628
0.0370
42
2.8993
0.0365
,,..
43
2.9354
0.0361
44
2.9711
0.0357
45
3.0065
0.0353
46
3.0414
0.0350
47
3.0761
0.0346
48
3.1103
0.0343
49
3.1442
0.0339
50
3.1778
0.0336
51
3.2111
0.0333
52
3.2441
0.0330
53
3.2768
0.0327
54
3.3091
0.0324
55
3.3412
0.0321
56
3.3731
0.0318
57
3.4046
0.0316
58
3.4359
0.0313
59
3.4670
0.0310
60
3.4978
0.0308
61
3.5283
0.0306
62
3.5586
0.0303
63
3.5887
0.0301
64
3.6186
0.0299
65
3.6482
0.0296
66
3.6776
0.0294
67
3.7068
0.0292
68
3.7358
0.0290
69
3.7646
0.0288
70
3.7933
0.0286
71
3.8217
0.0284
72
3.8499
0.0282
73
3.8826
0.0327
74
3.9150
0.0325
75
3.9474
0.0323
76
3.9795
0.0322
77
4.0115
0.0320
78
4.0434
0.0318
79
4.0750
0.0317
80
4.1065
0.0315
81
4.1379
0.0314
82
4.1691
0.0312
83
4.2002
0.0311
84
4.2311
0.0309
85
4.2619
0.0308
86
4.2926
0.0306
87
4.3231
0.0305
88
4.3534
0.0304
89
4.3837
0.0302
90
4.4138
0.0301
91
4.4438
0.0300
92
4.4736
0.0298
93
4.5033
0.0297
94
4.5329
0.0296
95
4.5624
0.0295
96
4.5918
0.0294
97
4.6210
0.0292
98
4.6501
0.0291
99
4.6791
0.0290
100
4.7080
0.0289
101
4.7368
0.0288
102
4.7655
0.0287
103
4.7940
0.0286
104
4.8225
0.0285
105
4.8509
0.0284
106
4.8791
0.0282
107
4.9072
0.0281
108
4.9353
0.0280
109
4.9632
0.0279
110
4.9911
0.0278
111
5.0188
0.0277
112
5.0465
0.0276
113
5.0740
0.0276
114
5.1015
0.0275
115
5.1288
0.0274
116
5.1561
0.0273
117
5.1833
0.0272
118
5.2104
0.0271
119
5.2374
0.0270
120
5.2643
0.0269
121
5.2911
0.0268
122
5.3179
0.0267
123
5.3445
0.0267
124
5.3711
0.0266
125
5.3976
0.0265
126
5.4240
0.0264
127
5.4503
0.0263
128
5.4766
0.0262
129
5.5028
0.0262
130
5.5288
0.0261
131
5.5549
0.0260
132
5.5808
0.0259
133
5.6067
0.0259
134
5.6324
0.0258
135
5.6581
0.0257
136
5.6838
0.0256
137
5.7093
0.0256
138
5.7348
0.0255
139
5.7603
0.0254
140
5.7856
0.0253
141
5.8109
0.0253
142
5.8361
0.0252
143
5.8612
0.0251
144
5.8863
0.0251
145
5.9113
0.0250
146
5.9363
0.0249
147
5.9611
0.0249
148
5.9859
0.0248
149
6.0107
0.0247
150
6.0354
0.0247
151
6.0600
0.0246
152
6.0845
0.0246
153
6.1090
0.0245'
154
6.1334
0.0244
155
6.1578
0.0244
156
6.1821
0.0243
157
6.2063
0.0242
158
6.2305
0.0242
159
6.2547
0.0241
160
6.2787
0.0241
161
6.3027
0.0240
162
6.3267
0.0240
163
6.3506
0.0239
164
6.3744
0.0238
165
6.3982
0.0238
166
6.4219
0.0237
167
6.4456
0.0237
168
6.4692
0.0236
169
6.4928
0.0236
170
6.5163
0.0235
171
6.5397
0.0235
172
6.5631
0.0234
173
6.5865
0.0233
174
6.6098
0.0233
175
6.6330
0.0232
176
6.6562
0.0232
177
6.6793
0.0231
178
6.7024
0.0231
179
6.7255
0.0230
180
6.7485
0.0230
181
6.7714
0.0229
182
6.7943
0.0229
183
6.8171
0.0228
F..►
184
6.8399
0.0228
{
185
6.8627
0.0227
186
6.8854
0.0227
187
6.9080
0.0227
188
6.9306
0.0226
189
6.9532
0.0226
190
6.9757
0.0225
191
6.9982
0.0225
192
7.0206
0.0224
193
7.0430
0.0224
194
7.0653
0.0223
195
7.0876
0.0223
196
7.1098
0.0222
197
7.1320
0.0222
198
7.1542
0.0222
199
7.1763
0.0221
200
7.1984
0.0221
201
7.2204
0.0220
202
7.2424
0.0220
203
7.2643
0.0219
204
7.2862
0.0219
205
7.3081
0.0219
206
7.3299
0.0218
207
7.3517
0.0218
208
7.3734
0.0217
209
7.3951
0.0217
210
7.4167
0.0217'
r.
211
7.4383
0.0216
212
7.4599
0.0216
rrr'
213
7.4815
0.0215
�...
214
7.5030
0.0215
215
7.5244
0.0215
216
7.5458
0.0214
217
7.5672
0.0214
218
7.5886
0.0213
219
7.6099
0.0213
220
7.6311
0.0213
221
7.6523
0.0212
222
7.6735
0.0212
223
7.6947
0.0212
224
7.7158
0.0211
225
7.7369
0.0211
226
7.7579
0.0210
227
7.7789
0.0210
228
7.7999
0.0210
229
7.8209
0.0209
230
7.8418
0.0209
231
7.8626
0.0209
232
7.8835
0.0208
233
7.9043
0.0208
234
7.9250
0.0208
235
7.9457
0.0207
236
7.9664
0.0207
237
7.9871
0.0207
238
8.0077
0.0206
239
8.0283
0.0206
240
8.0489
0.0206
�,..
241
8.0694
0.0205
242
8.0899
0.0205
243
8.1104
0.0205
244
8.1308
0.0204
245
8.1512
0.0204
246
8.1715
0.0204
247
8.1919
0.0203
248
8.2122
0.0203
249
8.2324
0.0203
250
8.2527
0.0202
251
8.2729
0.0202
252
8.2931
0.0202
253
8.3132
0.0201
254
8.3333
0.0201
255
8.3534
0.0201
256
8.3734
0.0201
257
8.3935
0.0200
258
8.4135
0.0200
259
8.4334
0.0200
260
8.4534
0.0199
261
8.4733
0.0199
262
8.4931
0.0199
263
8.5130
0.0198
264
8.5328
0.0198
265
8.5526
0.0198
266
8.5723
0.0198
267
8.5920
0.0197
268
8.6117
0.0197
269
8.6314
0.0197
270
8.6510
0.0196
271
8.6707
0.0196
272
8.6902
0.0196
273
8.7098
0.0196
274
8.7293
0.0195
275
8.7488
0.0195
276
8.7683
0.0195
277
8.7878
0.0194
278
8.8072
0.0194
279
8.8266
0.0194
280
8.8459
0.0194
281
8.8653
0.0193
282
8.8846
0.0193
283
8.9039
0.0193
284
8.9231
0.0193
285
8.9424
0.0192
286
8.9616
0.0192
287
8.9807
0.0192
288
8.9999
0.0192
---------------------------------------------------------------------
Unit
Unit
Unit
Effective
Period
Rainfall
Soil -Loss
Rainfall
(number)
(In)
(In)
(In)
---------------------------------------------------------------------
1
0.0192
0.0059
0.0132
2
0.0192
0.0060
0.0132
3
0.0192
0.0060
0.0133
4
0.0193
0.0060
0.0133
5
0.0193
0.0060
0.0133
6
0.0193
0.0060
0.0133
7
0.0194
0.0060
0.0134
8
0.0194
0.0060
0.0134
9
0.0195
0.0060
0.0134
10
0.0195
0.0061
0.0135
11
0.0196
0.0061
0.0135
12
0.0196
0.0061
0.0135
13
0.0196
0.0061
0.0135
14
0.0197
0.0061
0.0136
15
0.0197
0.0061
0.0136
16
0.0198
0.0061
0.0136
17
0.0198
0.0061
0.0137
18
0.0198
0.0062
0.0137
19
0.0199
0.0062
0.0137
20
0.0199
0.0062
0.0137
21
0.0200
0.0062
0.0138
22
0.0200
0.0062
0.0138
23
0.0201
0.0062
0.0139
24
0.0201
0.0062
0.0139
25
0.0202
0.0063
0.0139
26
0.0202
0.0063
0.0139
27
0.0203
0.0063
0.0140
28
0.0203
0.0063
0.0140
29
0.0204
0.0063
0.0140
30
0.0204
0.0063
0.0141
31
0.0205
0.0063
0.0141
..,
32
0.0205
0.0064
0.0141
33
0.0206
0.0064
0.0142
34
0.0206
0.0064
0..0142
35
0.0207
0.0064
0.0143
36
0.0207
0.0064
0.0143
37
0.0208
0.0064
0.0143
38
0.0208
0.0065
0.0143
39
0.0209
0.0065
0.0144
40
0.0209
0.0065
0.0144
41
0.0210
0.0065
0.0145
42
0.0210
0.0065
0.0145
43
0.0211
0.0065
0.0145
44
0.0211
0.0066
0.0146
45
0.0212
0.0066
0.0146
46
0.0212
0.0066
0.0146
47
0.0213
0.0066
0.0147
48
0.0213
0.0066
0.0147
49
0.0214
0.0066
0.0148
50
0.0215
0.0067
0.0148
51
0.0215
0.0067
0.0149
52
0.0216
0.0067
0.0149
53
0.0217
0.0067
0.0149
54
0.0217
0.0067
0.0150
55
0.0218
0.0068
0.0150
56
0.0218
0.0068
0.0150
57
0.0219
0.0068
0.0151
58
0.0219
0.0068
0.0151
59
0.0220
0.0068
0.0152
60
0.0221
0.0068
0.0152
61
0.0222
0.0069
0.0153
62
0.0222
0.0069
0.0153
r.d
63
0.0223
0.0069
0.0154
64
0.0223
0.0069
0.0154
65
0.0224
0.0070
0.0155
66
0.0225
0.0070
0.0155
67
0.0226
0.0070
0.0156
68
0.0226
0.0070
0.0156
69
0.0227
0.0070
0.0157
70
0.0227
0.0071
0.0157
71
0.0228
0.0071
0.0158
72
0.0229
0.0071
0.0158
73
0.0230
0.0071
0.0159
74
0.0230
0.0071
0.0159
75
0.0231
0.0072
0.0160
76
0.0232
0.0072
0.0160
77
0.0233
0.0072
0.0161
78
0.0233
0.0072
0.0161
79
0.0235
0.0073
0.0162
80
0.0235
0.0073
0.0162
81
0.0236
0.0073
0.0163
82
0.0237
0.0073
0.0163
83
0.0238
0.0074
0.0164
84
0.0238
0.0074
0.0164
85
0.0240
0.0074
0.0165
86
0.0240
0.0074
0.0166
87
0.0241
0.0075
0.0166
88
0.0242
0.0075
0.0167
..
89
0.0243
0.0075
0.0168
90
0.0244
0.0076
0.0168
91
0.0245
0.0076
0..0169
92
0.0246
0.0076
0.0169
93
0.0247
0.0077
0.0170
94
0.0247
0.0077
0.0171
95
0.0249
0.0077
0.0172
96
0.0249
0.0077
0.0172
97
0.0251
0.0078
0.0173
98
0.0251
0.0078
0.0173
99
0.0253
0.0078
0.0174
100
0.0253
0.0079
0.0175
101
0.0255
0.0079
0.0176
102
0.0256
0.0079
0.0176
103
0.0257
0.0080
0.0177
104
0.0258
0.0080
0.0178
105
0.0259
0.0080
0.0179
106
0.0260
0.0081
0.0179
107
0.0262
0.0081
0.0180
108
0.0262
0.0081
0.0181
109
0.0264
0.0082
0.0182
110
0.0265
0.0082
0.0183
111
0.0267
0.0083
0.0184
112
0.0267
0.0083
0.0184
113
0.0269
0.0084
0.0186
114
0.0270
0.0084
0.0186
115
0.0272
0.0084
0.0187
116
0.0273
0.0085
0.0188
117
0.0275
0.0085
0.0189
118
0.0276
0.0085
0.0190
119
0.0277
0.0086
0.0191
120
0.0278
0.0086
0.0192
121
0.0280
0.0087
0.0193
122
0.0281
0.0087
0.0194
123
0.0284
0.0088
0.0196
124
0.0285
0.0088
0.0196
125
0.0287
0.0089
0.0198
126
0.0288
0.0089
0.0199
127
0.0290
0.0090
0.0200
128
0.0291
0.0090
0.0201
129
0.0294
0.0091
0.0202
130
0.0295
0.0091
0.0203
131
0.0297
0.0092
0.0205
132
0.0298
0.0093
0.0206
133
0.0301
0.0093
0.0208
134
0.0302
0.0094
0.0209
135
0.0305
0.0095
0.0210
136
0.0306
0.0095
0.0211
137
0.0309
0.0096
0.0213
138
0.0311
0.0096
0.0214
139
0.0314
0.0097
0.0216
140
0.0315
0.0098
0.0217
141
0.0318
0.0099
0.0220
142
0.0320
0.0099
0.0221
143
0.0323
0.0100
0.0223
144
0.0325
0.0101
0.0224
145
0.0282
0.0088
0.0195
146
0.0284
0.0088
0.0196
.,
147
0.0288
0.0089
0.0199
148
0.0290
0.0090
0..0200
149
0.0294
0.0091
0.0203
150
0.0296
0.0092
0.0204
151
0.0301
0.0093
0.0207
152
0.0303
0.0094
0.0209
153
0.0308
0.0096
0.0212
154
0.0310
0.0096
0.0214
155
0.0316
0.0098
0.0218
156
0.0318
0.0099
0.0220
157
0.0324
0.0100
0.0223
158
0.0327
0.0101
0.0225
159
0.0333
0.0103
0.0230
160
0.0336
0.0104
0.0232
161
0.0343
0.0106
0.0236
162
0.0346
0.0107
0.0239
163
0.0353
0.0110
0.0244
164
0.0357
0.0111
0.0246
165
0.0365
0.0113
0.0252
166
0.0370
0.0115
0.0255
167
0.0378
0.0117
0.0261
168
0.0383
0.0119
0.0264
169
0.0394
0.0122
0.0271
170
0.0399
0.0124
0.0275
171
0.0410
0.0127
0.0283
172
0.0416
0.0129
0.0287
173
0.0430
0.0133
0.0296
174
0.0437
0.0135
0.0301
175
0.0452
0.0140
0.0312
,*-
176
0.0460
0.0143
0.0317
177
0.0478
0.0148
0.0330
178
0.0488
0.0152
0.0337
179
0.0510
0.0158
0.0352
180
0.0523
0.0162
0.0361
181
0.0550
0.0171
0.0379
182
0.0566
0.0176
0.0390
183
0.0601
0.0187
0.0415
184
0.0622
0.0193
0.0429
185
0.0513
0.0159
0.0354
186
0.0542
0.0168
0.0374
187
0.0615
0.0191
0.0424
188
0.0663
0.0206
0.0457
189
0.0799
0.0248
0.0551
190
0.0902
0.0280
0.0622
191
0.1289
0.0321
0.0968
192
0.1773
0.0321
0.1452
193
0.5549
0.0321
0.5228
194
0.1050
0.0321
0.0729
195
0.0723
0.0224
0.0498
196
0.0575
0.0178
0.0397
197
0.0645
0.0200
0.0445
198
0.0583
0.0181
0.0402
199
0.0536
0.0166
0.0370
200
0.0499
0.0155
0.0344
201
0.0469
0.0146
0.0324
202
0.0444
0.0138
0.0306
�••.
203
0.0423
0.0131
0.0292
204
0.0404
0.0125
0.0279
Inv
205
0.0388
0.0120
0..0268
.•.
206
0.0374
0.0116
0.0258
207
0.0361
0.0112
0.0249
208
0.0350
0.0108
0.0241
209
0.0339
0.0105
0.0234
210
0.0330
0.0102
0.0227
211
0.0321
0.0100
0.0221
212
0.0313
0.0097
0.0216
213
0.0306
0.0095
0.0211
214
0.0299
0.0093
0.0206
215
0.0292
0.0091
0.0201
216
0.0286
0.0089
0.0197
217
0.0327
0.0101
0.0225
218
0.0322
0.0100
0.0222
219
0.0317
0.0098
0.0218
220
0.0312
0.0097
0.0215
221
0.0308
0.0096
0.0212
222
0.0304
0.0094
0.0209
223
0.0300
0.0093
0.0207
224
0.0296
0.0092
0.0204
225
0.0292
0.0091
0.0202
226
0.0289
0.0090
0.0199
227
0.0286
0.0089
0.0197
228
0.0282
0.0088
0.0195
229
0.0279
0.0087
0.0193
230
0.0276
0.0086
0.0191
231
0.0274
0.0085
0.0189
232
0.0271
0.0084
0.0187
�..•
233
0.0268
0.0083
0.0185
234
0.0266
0.0082
0.0183
235
0.0263
0.0082
0.0182
236
0.0261
0.0081
0.0180
237
0.0259
0.0080
0.0178
238
0.0256
0.0080
0.0177
239
0.0254
0.0079
0.0175
240
0.0252
0.0078
0.0174
241
0.0250
0.0078
0.0172
242
0.0248
0.0077
0.0171
243
0.0246
0.0076
0.0170
244
0.0244
0.0076
0.0168
245
0.0242
0.0075
0.0167
246
0.0241
0.0075
0.0166
247
0.0239
0.0074
0.0165
248
0.0237
0.0074
0.0164
249
0.0236
0.0073
0.0163
250
0.0234
0.0073
0.0161
251
0.0232
0.0072
0.0160
252
0.0231
0.0072
0.0159
253
0.0229
0.0071
0.0158
254
0.0228
0.0071
0.0157
255
0.0227
0.0070
0.0156
256
0.0225
0.0070
0.0155
257
0.0224
0.0069
0.0154
258
0.0222
0.0069
0.0153
259
0.0221
0.0069
0.0153
260
0.0220
0.0068
0.0152
261
0.0219
0.0068
0.0151
262
0.0217
0.0067
0..0150
263
0.0216
0.0067
0.0149
264
0.0215
0.0067
0.0148
265
0.0214
0.0066
0.0147
266
0.0213
0.0066
0.0147
267
0.0212
0.0066
0.0146
268
0.0210
0.0065
0.0145
269
0.0209
0.0065
0.0144
270
0.0208
0.0065
0.0144
271
0.0207
0.0064
0.0143
272
0.0206
0.0064
0.0142
273
0.0205
0.0064
0.0142
274
0.0204
0.0063
0.0141
275
0.0203
0.0063
0.0140
276
0.0202
0.0063
0.0140
277
0.0201
0.0062
0.0139
278
0.0201
0.0062
0.0138
279
0.0200
0.0062
0.0138
280
0.0199
0.0062
0.0137
281
0.0198
0.0061
0.0136
282
0.0197
0.0061
0.0136
283
0.0196
0.0061
0.0135
284
0.0195
0.0061
0.0135
285
0.0194
0.0060
0.0134
286
0.0194
0.0060
0.0134
287
0.0193
0.0060
0.0133
288
--------------------------------------------------------------------
0.0192
0.0060
0.0132
...
--------------------------------------------------------------------
Total
soil rain
loss =
2.62(In)
Total
effective
rainfall =
6.38(In)
Peak
flow rate in flood hydrograph = 26.17(CFS)
---------------------------------------------------------------------
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24 - H
O U
R S T O R M
R u n o f f
H y d r o g r a p h
--------------------------------------------------------------------
Hydrograph in
5
Minute intervals ((CFS))
--------------------------------------------------------------------
Time(h+m)
Volume Ac.Ft Q(CFS)
0
7.5 15.0
22.5 30.0
-----------------------------------------------------------------------
0+ 5
0.0007
0.09
Q
0+10
0.0044
0.55
Q
0+15
0.0116
1.05
VQ
0+20
0.0202
1.25
VQ
0+25
0.0293
1.32
VQ
0+30
0.0388
1.37
VQ
0+35
0.0484
1.39
VQ
0+40
0.0581
1.41
VQ
0+45
0.0679
1.43
VQ
0+50
0.0778
1.44
VQ
0+55
0.0878
1.45
VQ
1+ 0
0.0978
1.46
VQ
1+ 5
0.1079
1.47
VQ
1+10
0.1181
1.47
VQ
1+15
0.1283
1.48
IQ
1+20
0.1385
1.48
IQ
1+25
0.1487
1.48
IQ
1+30
0.1589
1.49
IQ
1+35
0.1692
1.49
IQ
1+40
0.1795
1.49
IQ
1+45
0.1898
1.50
IQ
1+50
0.2001
1.50
IVQ
1+55
0.2105
1.50
IVQ
2+ 0
0.2209
1.51
IVQ
2+ 5
0.2313
1.51
IVQ
2+10
0.2417
1.51
I Q
2+15
0.2522
1.52
I Q
2+20
0.2627
1.52
I Q
2+25
0.2732
1.53
I Q
2+30
0.2837
1.53
I Q
2+35
0.2942
1.53
I Q
2+40
0.3048
1.54
I Q
2+45
0.3154
1.54
I Q
2+50
0.3261
1.54
I Q
2+55
0.3367
1.55
I Q
3+ 0
0.3474
1.55
I Q
3+ 5
0.3581
1.55
I Q
3+10
0.3688
1.56
I QV
3+15
0.3796
1.56
I QV
3+20
0.3904
1.57
I QV
3+25
0.4012
1.57
I QV
3+30
0.4120
1.57
I QV
3+35
0.4229
1.58
I QV
3+40
0.4338
1.58
I QV
3+45
0.4447
1.59
I QV
3+50
0.4557
1.59
I QV
3+55
0.4667
1.59
I QV
4+ 0
0.4777
1.60
I QV
4+ 5
0.4887
1.60
I Q V
4+10
0.4998
1.61
I Q V
4+15
0.5109
1.61
I Q V
4+20
0.5220
1.62
I Q V
4+25
0.5332
1.62
I Q V
4+30
0.5444
1.62
I Q V
4+35
0.5556
1.63
I Q V
4+40
0.5668
1.63
I Q V
4+45
0.5781
1.64
I Q V
4+50
0.5894
1.64
I Q V
4+55
0.6008
1.65
I Q V
5+ 0
0.6122
1.65
I Q V
5+ 5
0.6236
1.66
I Q V
5+10
0.6350
1.66
I Q V
5+15
0.6465
1.67
I Q V
5+20
0.6580
1.67
I Q V
5+25
0.6696
1.68
I Q V
5+30
0.6811
1.68
I Q V
5+35
0.6928
1.69
I Q V
5+40
0.7044
1.69
I Q V
5+45
0.7161
1.70
I Q V
5+50
0.7278
1.70
I Q V
5+55
0.7396
1.71
I Q V
6+ 0
0.7514
1.71
I Q V
N
6+ 5
0.7632
1.72 I
Q
V
6+10
0.7751
1.72 I
Q
V
6+15
0.7870
1.73 I
Q
V
6+20
0.7990
1.74 I
Q
V
6+25
0.8109
1.74 I
Q
V
6+30
0.8230
1.75 I
Q
V
6+35
0.8350
1.75 I
Q
V
6+40
0.8471
1.76 I
Q
V
6+45
0.8593
1.76 I
Q
V
6+50
0.8715
1.77 I
Q
V
6+55
0.8837
1.78 I
Q
V
7+ 0
0.8960
1.78 I
Q
V
7+ 5
0.9083
1.79 I
Q
V
7+10
0.9207
1.80 I
Q
V
7+15
0.9331
1.80 I
Q
V
7+20
0.9455
1.81 I
Q
V
7+25
0.9580
1.81 I
Q
V
7+30
0.9706
1.82
Q
V
7+35
0.9832
1.83
I Q
V
7+40
0.9958
1.83
I Q
V
7+45
1.0085
1.84
I Q
V
7+50
1.0212
1.85
I Q
V
7+55
1.0340
1.86
I Q
V
8+ 0
1.0468
1.86
I Q
V
8+ 5
1.0597
1.87
I Q
V
8+10
1.0727
1.88
I Q
V
8+15
1.0856
1.89
I Q
VI
8+20
1.0987
1.89
I Q
VI
8+25
1.1118
1.90
I Q
VI
8+30
1.1249
1.91
I Q
VI
8+35
1.1381
1.92
I Q
VI
8+40
1.1514
1.93
I Q
VI
8+45
1.1647
1.93
I Q
VI
8+50
1.1781
1.94
I Q
VI
8+55
1.1915
1.95
I Q
VI
9+ 0
1.2050
1.96
Q
V
9+ 5
1.2185
1.97
Q
V
9+10
1.2322
1.98
Q
V
9+15
1.2458
1.99
Q
V
9+20
1.2596
1.99
Q
V
9+25
1.2734
2.00
Q
V
9+30
1.2872
2.01
Q
V
9+35
1.3012
2.02
Q
V
9+40
1.3152
2.03
Q
V
9+45
1.3293
2.04
Q
IV
9+50
1.3434
2.05
I Q
IV
9+55
1.3576
2.06
Q
IV
10+ 0
1.3719
2.07
Q
IV
10+ 5
1.3863
2.09
I Q
IV
10+10
1.4007
2.10
( Q
IV
10+15
1.4152
2.11
I Q
IV
10+20
1.4298
2.12
I Q
IV
10+25
1.4445
2.13
I Q
I V
10+30
1.4593
2.14
I Q
I V
10+35
1.4741
2.16
I Q
I V
10+40
1.4890
2.17
I Q
I V
10+45
1.5041
2.18
I Q
I V
10+50
1.5192
2.19
Q
I V
t"""
10+55
1.5343
2.21
Q
V
11+ 0
1.5496
2.22
Q
I V
11+ 5
1.5650
2.23
Q
I V
11+10
1.5805
2.25
Q
I V
11+15
1.5961
2.26
Q
I V
11+20
1.6118
2.28
Q
V
11+25
1.6275
2.29
Q
I V
11+30
1.6434
2.31
Q
V
11+35
1.6594
2.32
( Q
V
11+40
1.6756
2.34
Q
I V
11+45
1.6918
2.36
Q
V
11+50
1.7081
2.37
Q
V
11+55
1.7246
2.39
Q
V
12+ 0
1.7412
2.41
Q
I V
12+ 5
1.7578
2.40
Q
V
12+10
1.7737
2.31
Q
V
12+15
1.7889
2.21
Q
V
12+20
1.8040
2.19
Q
V
12+25
1.8191
2.19
Q
V
12+30
1.8343
2.21
Q
V
12+35
1.8496
2.22
Q
V
12+40
1.8650
2.24
Q
V
12+45
1.8806
2.26
Q
V
12+50
1.8964
2.29
Q
V
12+55
1.9123
2.31
Q
V
13+ 0
1.9285
2.34
Q
V
13+ 5
1.9448
2.37
Q
V
13+10
1.9613
2.40
Q
V
13+15
1.9780
2.43
Q
V
13+20
1.9950
2.46
Q
V
13+25
2.0121
2.49
Q
V
13+30
2.0296
2.53
Q
V
13+35
2.0472
2.57
Q
V
13+40
2.0652
2.61
Q
V
13+45
2.0834
2.65
Q
V
13+50
2.1020
2.69
Q
V
13+55
2.1208
2.74
Q
V
14+ 0
2.1400
2.78
Q
V
14+ 5
2.1595
2.83
Q
V
14+10
2.1794
2.89
I Q
V
14+15
2.1997
2.95
Q
( V
14+20
2.2204
3.01
Q
V
14+25
2.2415
3.07
Q
V
14+30
2.2631
3.14
Q
V
14+35
2.2853
3.21
Q
VI
14+40
2.3079
3.29
Q
V1
14+45
2.3312
3.38
Q
VI
14+50
2.3551
3.47
Q
VI
14+55
2.3797
3.57
Q
VI
15+ 0
2.4051
3.69
Q
V
15+ 5
2.4314
3.81
Q
V
15+10
2.4586
3.95
Q
( V
15+15
2.4869
4.10
Q
V
15+20
2.5164
4.28
Q
V
...
15+25
2.5467
4.41
Q
IV
15+30
2.5761
4.27
I Q
IV
15+35
2.6046
4.14
Q
IV
15+40
2.6344
4.32
Q
IV
15+45
2.6667
4.69
Q
I V
15+50
2.7030
5.27 I
Q I
I V
15+55
2.7456
6.19
Q
I V
16+ 0
2.8018
8.16
Q
I V
16+ 5
2.8983
14.01 (
1
Q I V
16+10
3.0785
26.17
V I Q
16+15
3.2560
25.76
V I Q
16+20
3.3522
13.97
Q V
16+25
3.4106
8.49
IQ
V
16+30
3.4556
6.53
Q
V
16+35
3.4957
5.82
Q
V1
16+40
3.5308
5.10
Q
VI
16+45
3.5628
4.65
Q
VI
16+50
3.5923
4.28
Q
VI
16+55
3.6196
3.96
Q
V
17+ 0
3.6449
3.69
Q
V
17+ 5
3.6688
3.46
Q
V
17+10
3.6914
3.28
Q
V
17+15
3.7126
3.09
Q
V
17+20
3.7325
2.88
Q
IV
17+25
3.7516
2.77
Q
IV
17+30
3.7700
2.68
Q
IV
17+35
3.7879
2.59
Q (
IV
17+40
3.8052
2.52
Q
IV
17+45
3.8221
2.45
I Q
IV
17+50
3.8385
2.38
Q
V
17+55
3.8545
2.33
Q
I V
18+ 0
3.8702
2.27
Q
I V
18+ 5
3.8856
2.24
Q
I V
18+10
3.9015
2.31
( Q
I V
18+15
3.9179
2.38
Q
V
18+20
3.9343
2.39
Q
I V
18+25
3.9507
2.37
Q
V
18+30
3.9668
2.34
Q
V
18+35
3.9828
2.32
Q
I V
18+40
3.9985
2.29
Q
V
18+45
4.0141
2.26
Q
I V
18+50
4.0295
2.23
Q
V
18+55
4.0447
2.21
Q
I V
19+ 0
4.0597
2.18
Q
V
19+ 5
4.0746
2.16
I Q
I V
19+10
4.0893
2.13
i i
i V
19+15
4.1038
2.11
i Q
V
19+20
4.1182
2.09
Q
V
19+25
4.1324
2.07
Q
V
19+30
4.1465
2.05
Q
V
19+35
4.1605
2.03
Q
V
19+40
4.1743
2.01
I Q
V
19+45
4.1880
1.99
1 Q
V
19+50
4.2016
1.97
Q
V
19+55
4.2151
1.95
Q
V
20+ 0
4.2284
1.94
Q
V
20+ 5
4.2416
1.92
Q
V
20+10
4.2547
1.90
Q
V
20+15
4.2677
1.89
Q
V
Vi
VI
VI
VI
VI
VI
VI
VI
VI
VI
VI
VI
VI
VI
VI
VI
VI
VI
20+20
4.2806
1.87
Q
e^
20+25
4.2934
1.86
Q
20+30
4.3061
1.84
I Q
20+35
4.3187
1.83
Q
20+40
4.3313
1.82
Q
20+45
4.3437
1.80
Q
20+50
4.3560
1.79
Q
20+55
4.3683
1.78
Q
21+ 0
4.3804
1.77
Q
21+ 5
4.3925
1.75
Q
21+10
4.4045
1.74
I Q
21+15
4.4164
1.73
Q
21+20
4.4283
1.72
Q
21+25
4.4400
1.71
Q
21+30
4.4517
1.70
Q
21+35
4.4634
1.69
Q
21+40
4.4749
1.68
Q
21+45
4.4864
1.67
Q
21+50
4.4978
1.66
Q
21+55
4.5092
1.65
Q
22+ 0
4.5205
1.64
Q
22+ 5
4.5317
1.63
Q
22+10
4.5429
1.62
Q
22+15
4.5540
1.61
Q
22+20
4.5650
1.60
Q
22+25
4.5760
1.60
Q
22+30
4.5870
1.59
Q
22+35
4.5978
1.58
Q
22+40
4.6087
1.57
Q
22+45
4.6194
1.56
Q
22+50
4.6302
1.56
Q
22+55
4.6408
1.55
Q
23+ 0
4.6514
1.54
Q
23+ 5
4.6620
1.53
Q
23+10
4.6725
1.53
Q
23+15
4.6830
1.52
Q
23+20
4.6934
1.51
Q
23+25
4.7037
1.51
Q
23+30
4.7141
1.50
IQ
23+35
4.7243
1.49
IQ
23+40
4.7346
1.49
IQ
23+45
4.7448
1.48
IQ
23+50
4.7549
1.47
IQ
23+55
4.7650
1.47
IQ
24+ 0
4.7751
1.46
IQ
24+ 5
4.7844
1.36
IQ
24+10
4.7906
0.90
IQ
24+15
4.7934
0.40
Q
24+20
4.7948
0.20
Q
24+25
4.7956
0.13
Q
24+30
4.7962
0.09
Q
24+35
4.7967
0.06
Q
24+40
4.7970
0.05
Q
24+45
4.7972
0.03
Q
24+50
4.7974
0.02
Q
24+55
4.7975
0.02
Q
25+ 0
4.7975
0.01
Q
Vi
VI
VI
VI
VI
VI
VI
VI
VI
VI
VI
VI
VI
VI
VI
VI
VI
VI
m
25+ 5
4.7976
0.01
Q (
VI
25+10
-----------------------------------------------------------------------
4.7976
0.00
Q
V
m
Detention Basin Volume Table
Basin Routing Input Table
§4
Detention Basin Volume Calculation
Elevation F
Interval FT
Area(FT ^2
Volume(FT "3
Area AC -FT
Cumulative AC -FT
1300.7
0.12
0
2.0
0.31
7.6
3.0
0.5
10.6
1226.3
0.03
0.03
1301.2
4905
0.5
3785.75
0.09
0.12
1301.7
5333
1.0
8508
0.20
0.31
1302.7
6350
1.0
10022.5
0.23
0.54
1303.7
7345
Basin Routina Inout Table
Depth F
Volume(AC/FT)
Outflow CFS
0.5
0.03
0.6
1.0
0.12
3.1
2.0
0.31
7.6
3.0
0.54
10.6
Detention Basin Routing
2, 10,25 & 100 Year Storm Events
.. FLOOD HYDROGRAPH ROUTING PROGRAM
Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2001
Study date: 10/22/04
Tract 16271 2 Year 24 Hour Routed Hydrograph
--------------------------------------------------------------------
Allard Engineering, Fontana, California - SIN 643
--------------------------------------------------------------------
********************* HYDROGRAPH INFORMATION **********************
From study/file name: 162712.rte
****************************HYDROGRAPH DATA****************************
Number of intervals = 303
Time interval = 5.0 (Min.)
Maximum/Peak flow rate = 8.142 (CFS)
Total volume = 1.238 (Ac.Ft)
Status of hydrographs being held in storage
Stream 1 Stream 2 Stream 3 Stream 4 Stream 5
Peak (CFS) 0.000 0.000 0.000 0.000 0.000
Vol (Ac.Ft) 0.000 0.000 0.000 0.000 0.000
***********************************************************************
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 0.000 to Point/Station 1.000
**** RETARDING BASIN ROUTING ****
User entry of depth -outflow -storage data
Total number of inflow hydrograph intervals = 303
Hydrograph time unit = 5.000 (Min.)
Initial depth in storage basin = 0.00(Ft.)
--------------------------------------------------------------------
--------------------------------------------------------------------
Initial basin depth = 0.00 (Ft.)
Initial basin storage = 0.00 (Ac.Ft)
Initial basin outflow = 0.00 (CFS)
---------------------------------------------------------------------
---------------------------------------------------------------------
Depth vs. Storage and
Depth vs.
Discharge data:
Basin Depth
Storage
Outflow (S-O*dt/2)
(S+0*dt/2)
(Ft.)
(Ac.Ft)
(CFS)
(Ac.Ft)
(Ac.Ft)
---------------------------------------------------------------------
0.000
0.000
0.000
0.000
0.000
0.500
0.030
0.600
0.028
0.032
,.� 1.000
0.120
3.100
0.109
0.131
2.000
0.310
7.600
0.284
0.336
3.000 0.540 10.600 0.503 0.577 .
�..,, ---------------------------------------------
Hydrograph Detention Basin Routing
---------------------------- ----------------------------------------
Graph values: 'II= unit inflow; 101=outflow at time shown
Time
Inflow
Outflow
Storage
Depth
(Hours)
(CFS)
(CFS)
(Ac.Ft)
.0
2.0 4.07 6.11 8.14 (Ft.)
0.083
0.02
0.00
0.000
0
I I I I 0.00
0.167
0.09
0.01
0.000
0
I I I I 0.01
0.250
0.19
0.03
0.001
0
I I I I 0.02
0.333
0.23
0.05
0.002
0
I I I I 0.04
0.417
0.25
0.07
0.004
0
I I I I 0.06
0.500
0.26
0.10
0.005
OI
I I I 0.08
0.583
0.26
0.12
0.006
OI
I I I I 0.10
0.667
0.27
0.14
0.007
OI
I I I 0.11
0.750
0.27
0.15
0.008
OI
I I I I 0.13
0.833
0.27
0.17
0.008
OI
I I I I 0.14
0.917
0.27
0.18
0.009
OI
I I I I 0.15
1.000
0.28
0.19
0.010
OI
I I I I 0.16
1.083
0.28
0.20
0.010
OI
I I I I 0.17
1.167
0.28
0.21
0.011
OI
I I I I 0.18
1.250
0.28
0.22
0.011
OI
I I I I 0.19
1.333
0.28
0.23
0.012
OI
I I I I 0.19
1.417
0.28
0.24
0.012
OI
I I I I 0.20
1.500
0.28
0.24
0.012
02
I I I I 0.20
1.583
0.28
0.25
0.012
OI
I I I 0.21
�,....
1.667
0.29
0.25
0.013
OI0.21
I I
1.750
0.29
0.26
0.013
IO
I I I I 0.21
1.833
0.29
0.26
0.013
IO
I I I I 0.22
1.917
0.29
0.26
0.013
IO
I I I I 0.22
2.000
0.29
0.27
0.013
IO
I I I I 0.22
2.083
0.29
0.27
0.014
IO
I I I I 0.23
2.167
0.29
0.27
0.014
IO
I I I I 0.23
2.250
0.29
0.28
0.014
IO
I I I I 0.23
2.333
0.29
0.28
0.014
IO
I I I I 0.23
2.417
0.29
0.28
0.014
IO
I I I I 0.23
2.500
0.29
0.28
0.014
IO
I I I I 0.23
2.583
0.30
0.28
0.014
IO
I I I I 0.24
2.667
0.30
0.29
0.014
IO
I I I I 0.24
2.750
0.30
0.29
0.014
IO
I I I I 0.24
2.833
0.30
0.29
0.014
IO
I I I I 0.24
2.917
0.30
0.29
0.014
IO
I I I I 0.24
3.000
0.30
0.29
0.015
IO
I I ( I 0.24
3.083
0.30
0.29
0.015
IO
I I I I 0.24
3.167
0.30
0.29
0.015
IO
I I I I 0.24
3.250
0.30
0.29
0.015
IO
I I I I 0.25
3.333
0.30
0.30
0.015
IO
I I I 0.25
3.417
0.31
0.30
0.015
IO
I I I I 0.25
3.500
0.31
0.30
0.015
IO
I I I I 0.25
3.583
0.31
0.30
0.015
IO
I I I I 0.25
3.667,
0.31
0.30
0.015
IO
I I I I 0.25
3.750
0.31
0.30
0.015
10
I I I I 0.25
3.833
0.31
0.30
0.015
IO
I I I 0.25
3.917
0.31
0.30
0.015
IO
I I I I 0.25
4.000
0.31
0.31
0.015
IO
I I I 0.25
4.083
0.32
0.31
0.015
10 (
0.26
el,.
4.167
0.32
0.31
0.015
10 I I
I 0.26
4.250
0.32
0.31
0.015
10
0.26
err'
4.333
0.32
0.31
0.016
10
0.26
4.417
0.32
0.31
0.016
10
0.26
4.500
0.32
0.31
0.016
10
0.26
4.583
0.32
0.31
0.016
10 (
0.26
4.667
0.32
0.31
0.016
10
0.26
4.750
0.32
0.32
0.016
10
0.26
4.833
0.33
0.32
0.016
10 I
0.26
4.917
0.33
0.32
0.016
10
0.27
5.000
0.33
0.32
0.016
10
I 0.27
5.083
0.33
0.32
0.016
10
0.27
5.167
0.33
0.32
0.016
10
0.27
5.250
0.33
0.32
0.016
10
0.27
5.333
0.33
0.32
0.016
10
0.27
5.417
0.34
0.33
0.016
10
0.27
5.500
0.34
0.33
0.016
10
0.27
5.583
0.34
0.33
0.016
10
0.27
5.667
0.34
0.33
0.017
10
0.28
5.750
0.34
0.33
0.017
10
0.28
5.833
0.34
0.33
0.017
10
0.28
5.917
0.34
0.33
0.017
10
0.28
6.000
0.35
0.34
0.017
10
0.28
6.083
0.35
0.34
0.017
10
0.28
6.167
0.35
0.34
0.017
10
0.28
6.250
0.35
0.34
0.017
10
0.28
6.333
0.35
0.34
0.017
10
( 0.28
..•
6.417
0.35
0.34
0.017
10
0.29
6.500
0.36
0.34
0.017
10
0.29
6.583
0.36
0.35
0.017
10
0.29
6.667
0.36
0.35
0.017
10
0.29
6.750
0.36
0.35
0.017
10 (
0.29
6.833
0.36
0.35
0.018
10
0.29
6.917
0.36
0.35
0.018
10
0.29
7.000
0.37
0.35
0.018
10
0.29
7.083
0.37
0.36
0.018
10
0.30
7.167
0.37
0.36
0.018
10
0.30
7.250
0.37
0.36
0.018
10
0.30
7.333
0.37
0.36
0.018
10
0.30
7.417
0.37
0.36
0.018
10
I 0.30
7.500
0.38
0.36
0.018
10
0.30
7.583
0.38
0.37
0.018
10
0.30
7.667
0.38
0.37
0.018
10
0.31
7.750
0.38
0.37
0.018
10
0.31
7.833
0.38
0.37
0.019
10
0.31
7.917
0.39
0.37
0.019
10
0.31
8.000
0.39
0.37
0.019
10
I 0.31
8.083
0.39
0.38
0.019
10
0.31
8.167
0.39
0.38
0.019
10
0.32
8.250
0.40
0.38
0.019
10
0.32
8.333
0.40
0.38
0.019
10
0.32
8.417,
0.40
0.38
0.019
10
0.32
8.500
0.40
0.39
0.019
10
0.32
8.583
0.40
0.39
0.019
10
0.32
8.667
0.41
0.39
0.020
10
0.33
*$Wft
8.750
0.41
0.39
0.020
10
0.33
8.833
0.41
0.40
0.020
10 1
0.33
8.917
0.41
0.40
0.020
10 1
0.33
9.000
0.42
0.40
0.020
IO 1
0.33
9.083
0.42
0.40
0.020
10 1
0.34
9.167
0.42
0.40
0.020
10 1
0.34
9.250
0.43
0.41
0.020
10 1
0.34
9.333
0.43
0.41
0.020
10 1
0.34
9.417
0.43
0.41
0.021
10 1
0.34
9.500
0.43
0.41
0.021
10 1
0.35
9.583
0.44
0.42
0.021
10 1
0.35
9.667
0.44
0.42
0.021
10 1
0.35
9.750
0.44
0.42
0.021
10 1
0.35
9.833
0.45
0.43
0.021
10 (
0.35
9.917
0.45
0.43
0.021
10
0.36
10.000
0.45
0.43
0.022
10
( 0.36
10.083
0.46
0.43
0.022
10
0.36
10.167
0.46
0.44
0.022
10
( 0.36
10.250
0.46
0.44
0.022
10
(
0.37
10.333
0.47
0.44
0.022
10
0.37
10.417
0.47
0.45
0.022
10
0.37
10.500
0.47
0.45
0.022
10 1
0.37
10.583
0.48
0.45
0.023
10 1
0.38
10.667
0.48
0.46
0.023
10 1
0.38
10.750
0.48
0.46
0.023
10 1
0.38
10.833
0.49
0.46
0.023
10 1
0.39
10.917
0.49
0.47
0.023
10
1
0.39
11.000
0.50
0.47
0.023
10
1
0.39
11.083
0.50
0.47
0.024
10
1
0.39
11.167
11.250
0.51
0.51
0.48
0.48
0.024
0.024
10
JOI
1
0.40
0.40
11.333
0.51
0.49
0.024
JOI
0.40
11.417
0.52
0.49
0.024
JOI
0.41
11.500
0.52
0.49
0.025
JOI
I
0.41
11.583
0.53
0.50
0.025
JOI
0.41
11.667
0.53
0.50
0.025
JOI
0.42
11.750
0.54
0.51
0.025
JOI
0.42
11.833
0.55
0.51
0.026
1 0
0.43
11.917
0.55
0.52
0.026
1 0
0.43
12.000
0.56
0.52
0.026
1 0
0.43
12.083
0.58
0.53
0.026
1 0
0.44
12.167
0.65
0.54
0.027
0
0.45
12.250
0.73
0.56
0.028
0
0.46
12.333
0.77
0.58
0.029
OI
0.49
12.417
0.79
0.61
0.030
02
0.50
12.500
0.80
0.64
0.032
OI
0.51
12.583
0.82
0.67
0.033
OI
0.51
12.667
0.82
0.70
0.034
OI
0.52
12.750
0.83
0.72
0.034
OI
0.52
12.833
0.84
0.74
0.035
1 OI
0.53
12.917
0.85
0.76
0.036
( OI
0.53
13.000
0.86
0.78
0.036
1 0
1
0.54
13.083
0.87
0.79
0.037
1 0
1
0.54
13.167
0.88
0.81
0.037
( 0
1
0.54
13.250
0.89
0.82
0.038
1 0
1
0.54
13.333
0.90
0.83
0.038
1 0.
1
0.55
13.417
0.91
0.84
0.039
1 0
1
0.55
13.500
0.92
0.86
0.039
1 0 1
0.55
13.583
0.93
0.87
0.040
0
0.55
4000,
13.667
0.94
0.88
0.040
0
I
0.56
13.750
0.95
0.89
0.040
0
I
0.56
13.833
0.96
0.90
0.041
0
0.56
13.917
0.97
0.91
0.041
0
( 0.56
14.000
0.99
0.92
0.042
0
I
0.56
14.083
1.00
0.94
0.042
0
0.57
14.167
1.01
0.95
0.043
0
0.57
14.250
1.03
0.96
0.043
OI
0.57
14.333
1.05
0.97
0.043
OI
0.57
14.417
1.06
0.99
0.044
0I
0.58
14.500
1.08
1.00
0.045
OI
( 0.58
14.583
1.10
1.02
0.045
0
0.58
14.667
1.12
1.03
0.046
0
0.59
14.750
1.14
1.05
0.046
0
0.59
14.833
1.17
1.07
0.047
I 0
0.59
14.917
1.19
1.09
0.048
0
( 0.60
15.000
1.22
1.11
0.048
0
0.60
15.083
1.25
1.13
0.049
0
0.61
15.167
1.29
1.16
0.050
OI
0.61
15.250
1.33
1.18
0.051
OI
0.62
15.333
1.37
1.21
0.052
0I
0.62
15.417
1.38
1.24
0.053
0I
0.63
15.500
1.28
1.26
0.054
OI
0.63
15.583
1.15
1.25
0.053
0
0.63
15.667
1.15
1.23
0.053
( 0
I 0.63
15.750
1.22
1.22
0.052
0
0.62
15.833
1.35
1.23
0.053
( OI
0.63
P....
15.917
1.56
1.27
0.054
( OI
0.63
16.000
1.97
1.36
0.057
0
Il
0.65
16.083
3.53
1.60
0.066
0
1
0.70
16.167
7.47
2.28
0.091
0
I 0.84
16.250
8.14
3.23
0.125
0
I 1.03
16.333
4.51
3.69
0.145
0
lI 1.13
16.417
2.58
3.67
0.144
I 0
1.13
16.500
1.93
3.46
0.135
Il 0
1.08
16.583
1.81
3.22
0.125
Il 0
1.03
16.667
1.61
2.97
0.115
I
0
( 0.97
16.750
1.49
2.73
0.107
I
O
( 0.93
16.833
1.41
2.50
0.098
I
10
0.88
16.917
1.32
2.30
0.091
I I
IO
I 0.84
17.000
1.25
2.13
0.085
I I
0
I 0.81
17.083
1.18
1.97
0.079
I
01
0.77
17.167
1.13
1.83
0.074
I
01
0.75
17.250
1.09
1.70
0.070
I 0
0.72
17.333
1.04
1.59
0.066
I 0
0.70
17.417
0.99
1.49
0.062
I 0
I 0.68
17.500
0.96
1.40
0.059
I 0
0.66
17.583
0.94
1.32
0.056
I 0
( 0.64
17.667
0.92
1.25
0.054
IO
0.63
17.750
0.90
1.19
0.051
IO
0.62
17.833
0.88
1.14
0.049
IO
0.61
17.917
0.86
1.09
0.048
IO
0.60
18.000
0.85
1.05
0.046
IO
I
0.59
18.083
0.82
1.01
0.045
0.
0.58
Aowk
18.167
0.74
0.97
0.043
IO
0.57
18.250
0.65
0.92
0.042
IO
0.56
err°
18.333
0.60
0.87
0.040
IO
0.55
18.417
0.58
0.82
0.038
IO
I
0.54
18.500
0.56
0.78
0.036
IO
0.54
18.583
0.54
0.74
0.035
0
(
0.53
18.667
0.53
0.70
0.034 (
0
0.52
18.750
0.52
0.67
0.033
0
0.51
18.833
0.51
0.65
0.032
0
0.51
18.917
0.50
0.62
0.031 JIO
(
0.50
19.000
0.49
0.60
0.030 JIO
1
0.50
19.083
0.48
0.58
0.029 JIO
0.49
19.167
0.47
0.57
0.029 IIO
0.48
19.250
0.47
0.56
0.028 JIO
0.46
19.333
0.46
0.55
0.027 JIO
1
0.45
19.417
0.45
0.53
0.027 JIO
(
0.44
19.500
0.44
0.52
0.026 JIO
1
0.44
19.583
0.44
0.51
0.026 JIO
1
0.43
19.667
0.43
0.50
0.025 10
1
0.42
19.750
0.43
0.49
0.025 10
1(
0.41
19.833
0.42
0.48
0.024
10
1
0.40
19.917
0.42
0.48
0.024
10
1
0.40
20.000
0.41
0.47
0.023
10
1
0.39
20.083
0.41
0.46
0.023
10
1
0.38
20.167
0.40
0.45
0.023
10
1
0.38
20.250
0.40
0.45
0.022
IO
1
0.37
20.333
0.39
0.44
0.022
10
1
0.37
20.417
0.39
0.43
0.022
10
1(
( 0.36
20.500
0.38
0.43
0.021
10
1
0.36
20.583
0.38
0.42
0.021
10
0.35
20.667
0.38
0.42
0.021
10
0.35
20.750
0.37
0.41
0.021
10
0.34
20.833
0.37
0.41
0.020
10
0.34
20.917
0.37
0.40
0.020
10
0.33
21.000
0.36
0.40
0.020
10
(
0.33
21.083
0.36
0.39
0.020
10
1
0.33
21.167
0.35
0.39
0.019
10
1
0.32
21.250
0.35
0.38
0.019
10
1
0.32
21.333
0.35
0.38
0.019
10
1
0.32
21.417
0.35
0.37
0.019
10
1
0.31
21.500
0.34
0.37
0.019
10
0.31
21.583
0.34
0.37
0.018
10
( 0.31
21.667
0.34
0.36
0.018
IO
0.30
21.750
0.33
0.36
0.018
10
I
(
0.30
21.833
0.33
0.36
0.018
10
I
0.30
21.917
0.33
0.35
0.018
10
0.29
22.000
0.33
0.35
0.017
10
0.29
22.083
0.32
0.35
0.017
10
0.29
22.167
0.32
0.34
0.017
10
0.29
22.250
0.32
0.34
0.017
10
0.28
22.333
0.32
0.34
0.017
10
0.28
22.417
0.31
0.33
0.017
10
I
0.28
22.500
0.31
0.33
0.017
10
0.28
22.583
0.31
0.33
0.016
10
0.27
22.667,
0.31
0.33
0.016
10
0.27
22.750
0.30
0.32
0.016
10
I
0.27
22.833
0.30
0.32
0.016
10
I 0.27
22.917
0.30
0.32
0.016
10
0.27
23.000
0.30
0.32
0.016
10
0.26
****************************HYDROGRAPH DATA****************************
Number of intervals = 304
Time interval = 5.0 (Min.)
Maximum/Peak flow rate = 3.695 (CFS)
Total volume = 1.235 (Ac.Ft)
Status of hydrographs being held in storage
Stream 1 Stream 2 Stream 3 Stream 4 Stream 5
Peak (CFS) 0.000 0.000 0.000 0.000 0.000
Vol (Ac.Ft) 0.000 0.000 0.000 0.000 0.000
***********************************************************************
N
23.083
0.30
0.31
0.016
10
0.26
23.167
0.29
0.31
0.016
10
I 0.26
23.250
0.29
0.31
0.015
10
0.26
23.333
0.29
0.31
0.015
10
0.26
23.417
0.29
0.30
0.015
10 I
(
0.25
23.500
0.29
0.30
0.015
10
0.25
23.583
0.29
0.30
0.015
10
0.25
23.667
0.28
0.30
0.015
10 1
0.25
23.750
0.28
0.30
0.015
10 1
0.25
23.833
0.28
0.29
0.015
10
1
0.25
23.917
0.28
0.29
0.015
10
1
0.24
24.000
0.28
0.29
0.015
IO
1
0.24
24.083
0.26
0.29
0.014
10
1
0.24
24.167
0.18
0.28
0.014
IO
0.23
24.250
0.09
0.26
0.013
IO
0.22
24.333
0.04
0.23
0.012
0
0.20
24.417
0.03
0.21
0.010
0
0.17
24.500
0.02
0.18
0.009
O
0.15
24.583
0.01
0.16
0.008
0
0.14
24.667
0.01
0.14
0.007
O
0.12
24.750
0.01
0.13
0.006
0
0.11
24.833
0.01
0.11
0.006
0
0.09
24.917
0.00
0.10
0.005
0
0.08
25.000
0.00
0.08
0.004
0
0.07
25.083
0.00
0.07
0.004
0
0.06
25.167
0.00
0.06
0.003
0
I 0.05
25.250
0.00
0.06
0.003
O
0.05
25.333
0.00
0.05
0.002
O
0.04
Remaining
water in
basin =
0.00 (Ac.Ft)
****************************HYDROGRAPH DATA****************************
Number of intervals = 304
Time interval = 5.0 (Min.)
Maximum/Peak flow rate = 3.695 (CFS)
Total volume = 1.235 (Ac.Ft)
Status of hydrographs being held in storage
Stream 1 Stream 2 Stream 3 Stream 4 Stream 5
Peak (CFS) 0.000 0.000 0.000 0.000 0.000
Vol (Ac.Ft) 0.000 0.000 0.000 0.000 0.000
***********************************************************************
N
FLOOD HYDROGRAPH ROUTING PROGRAM
Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2001
Study date: 10/22/04
Tract 16271 10 Year 24 Hour Routed Hydrograph
--------------------------------------------------------------------
Allard Engineering, Fontana, California - SIN 643
--------------------------------------------------------------------
********************* HYDROGRAPH INFORMATION **********************
From study/file name: 1627110.rte
****************************HYDROGRAPH DATA****************************
Number of intervals = 302
Time interval = 5.0 (Min.)
Maximum/Peak flow rate = 15.944 (CFS)
Total volume = 2.650 (Ac.Ft)
Status of hydrographs being held in storage
Stream 1 Stream 2 Stream 3 Stream 4 Stream 5
Peak (CFS) 0.000 0.000 0.000 0.000 0.000
Vol (Ac.Ft) 0.000 0.000 0.000 0.000 0.000
***********************************************************************
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 0.000 to Point/Station 1.000
**** RETARDING BASIN ROUTING ****
User entry of
--------------------------------------------------------------------
depth -outflow -storage data
Total number
of inflow
hydrograph intervals =
302
Hydrograph time unit =
5.000 (Min.)
Initial depth
--------------------------------------------------------------------
in storage
basin = 0.00(Ft.)
--------------------------------------------------------------------
Initial basin
depth =
0.00 (Ft.)
Initial basin
storage
= 0.00 (Ac.Ft)
Initial basin
---------------------------------------------------------------------
outflow
= 0.00 (CFS)
--------------------------------------------------------------------
Depth vs. Storage
and
Depth vs. Discharge data:
Basin Depth
Storage
Outflow (S-0*dt/2)
(S+0*dt/2)
(Ft.)
(Ac.Ft)
(CFS) (Ac.Ft)
(Ac.Ft)
---------------------------------------------------------------------
0.000
0.000
0.000 0.000
0.000
0.500
0.030
0.600 0.028
0.032
1.000
0.120
3.100 0.109
0.131
2.000
0.310
7.600 0.284
0.336
3.000
0.540
10.600
0.503 0.577 .
--------------------------------------------------------------------
---------------------------------------------------------------------
Hydrograph
Detention
Basin Routing
Graph values:
'I'= unit
inflow; '0'=outflow
at time shown
---------------------------------------------------------------------
Time
Inflow
Outflow
Storage
Depth
(Hours)
(CFS)
(CFS)
(Ac.Ft)
.0
4.0 7.97 11.96
15.94 (Ft.)
0.083
0.05
0.00
0.000
0
I I I
I 0.00
0.167
0.26
0.02
0.001
0
I I I
I 0.02
0.250
0.52
0.07
0.003
OI
I I I
I 0.06
0.333
0.62
0.13
0.007
0I
I I I
I 0.11
0.417
0.66
0.20
0.010
OI
I I I
I 0.17
0.500
0.68
0.26
0.013
OI
I I I
I 0.22
0.583
0.70
0.32
0.016
OI
I I I
I 0.26
0.667
0.71
0.37
0.018
OI
I I I
I 0.30
0.750
0.71
0.41
0.020
OI
I I I
I 0.34
0.833
0.72
0.45
0.022
OI
I I I
I 0.37
0.917
0.73
0.48
0.024
OI
I I i
I 0.40
1.000
0.73
0.52
0.026
10
I I I
I 0.43
1.083
0.73
0.54
0.027
10
I I I
I 0.45
1.167
0.74
0.57
0.028
10
1 I I
I 0.47
1.250
0.74
0.59
0.030
10
I I (
I 0.49
1.333
0.74
0.61
0.031
10
I I I
I 0.50
1.417
0.75
0.64
0.031
10
I I I
I 0.51
1.500
0.75
0.66
0.032
10
I I I
I 0.51
1.583
0.75
0.67
0.033
10
I I I
I 0.51
1.667
0.75
0.69
0.033
10
I I I
I 0.52
1.750
0.75
0.70
0.033
10
I 1 I
I 0.52
1.833
0.75
0.71
0.034
10
I I I
I 0.52
1.917
0.76
0.72
0.034
10
I I 1
I 0.52
2.000
0.76
0.72
0.034
10
1 I I
( 0.52
2.083
0.76
0.73
0.035
10
I I I
I 0.53
2.167
0.76
0.73
0.035
10
I I I
I 0.53
2.250
0.76
0.74
0.035
10
I I I
( 0.53
2.333
0.77
0.74
0.035
10
I I I
I 0.53
2.417
0.77
0.75
0.035
10
I I I
I 0.53
2.500
0.77
0.75
0.035
10
I I I
I 0.53
2.583
0.77
0.76
0.036
10
I I I
I 0.53
2.667
0.77
0.76
0.036
10
1 1 I
I 0.53
2.750
0.78
0.76
0.036
10
I ( I
I 0.53
2.833
0.78
0.76
0.036
10
I I I
I 0.53
2.917
0.78
0.77
0.036
10
I I I
I 0.53
3.000
0.78
0.77
0.036
10
I I I
I 0.53
3.083
0.79
0.77
0.036
10
I I I
I 0.53
3.167
0.79
0.77
0.036
10
I I I
I 0.53
3.250
0.79
0.78
0.036
10
I I I
I 0.54
3.333
0.79
0.78
0.036
10
I I 1
I 0.54
3.417
0.79
0.78
0.037
10
I I I
I 0.54
3.500
0.80
0.78
0.037
10
I I (
I 0.54
3.583
0.80
0.79
0.037
10
I I I
I 0.54
3.667,
0.80
0.79
0.037
10
I I I
I 0.54
3.750
0.80
0.79
0.037
10
I I I
0.54
3.833
0.81
0.79
0.037
10
I I I
I 0.54
.wk
3.917
0.81
0.80
0.037
10
I I I
0.54
�rr►r
4.000
0.81
0.80
0.037
10
I I I
I 0.54
4.083
0.81
0.80
0.037
10 1 I
I I 0.54
4.167
0.82
0.80
0.037
10 I I
I I 0.54
co 4.250
0.82
0.81
0.037
10 I I
I I 0.54
4.333
0.82
0.81
0.037
10 I I
I I 0.54
4.417
0.82
0.81
0.038
10 I I
I I 0.54
4.500
0.83
0.81
0.038
10 I I
( I 0.54
4.583
0.83
0.82
0.038
10 I I
I I 0.54
4.667
0.83
0.82
0.038
10 I I
I I 0.54
4.750
0.83
0.82
0.038
10 1 I
I I 0.54
4.833
0.84
0.82
0.038
10 I I
( I 0.54
4.917
0.84
0.83
0.038
10 I I
I I 0.55
5.000
0.84
0.83
0.038
10 I I
I I 0.55
5.083
0.84
0.83
0.038
10 I I
I I 0.55
5.167
0.85
0.83
0.038
10 I I
I I 0.55
5.250
0.85
0.84
0.038
10 I I
I I 0.55
5.333
0.85
0.84
0.039
10 I I
I I 0.55
5.417
0.86
0.84
0.039
10 I I
I I 0.55
5.500
0.86
0.84
0.039
10 1 I
I I 0.55
5.583
0.86
0.85
0.039
10 I I
I i 0.55
5.667
0.86
0.85
0.039
10 I I
I I 0.55
5.750
0.87
0.85
0.039
10 I I
I i 0.55
5.833
0.87
0.86
0.039
10 I I
I i 0.55
5.917
0.87
0.86
0.039
10 1 I
I I 0.55
6.000
0.88
0.86
0.039
10 1 I
I i 0.55
6.083
0.88
0.86
0.040
10 1 I
I I 0.55
6.167
0.88
0.87
_0.040
10 1 I
I I 0.55
6.250
0.89
0.87
0.040
10 1 I
I I 0.55
6.333
0.89
0.87
0.040
10 1 I
I I 0.55
�+ 6.417
0.89
0.88
0.040
10 I I
I I 0.56
c✓ 6.500
0.90
0.88
0.040
10 I I
I I 0.56
6.583
0.90
0.88
0.040
10 I I
I I 0.56
6.667
0.90
0.89
0.040
10 I I
I I 0.56
6.750
0.91
0.89
0.040
10 i I
I I 0.56
6.833
0.91
0.89
0.041
10 I I
I I 0.56
6.917
0.91
0.90
0.041
10 1 I
I I 0.56
7.000
0.92
0.90
0.041
10 I I
I I 0.56
7.083
0.92
0.90
0.041
10 i I
I I 0.56
7.167
0.92
0.91
0.041
10 I I
I I 0.56
7.250
0.93
0.91
0.041
10 I I
I I 0.56
7.333
0.93
0.91
0.041
10 1 I
I I 0.56
7.417
0.94
0.92
0.041
10 1 I
I I 0.56
7.500
0.94
0.92
0.042
10 1 I
I I 0.56
7.583
0.94
0.92
0.042
10 1 I
I I 0.56
7.667
0.95
0.93
0.042
10 I I
I I 0.57
7.750
0.95
0.93
0.042
10 I I
I I 0.57
7.833
0.96
0.94
0.042
10 I I
I I 0.57
7.917
0.96
0.94
0.042
10 I I
I I 0.57
8.000
0.96
0.94
0.042
10 I
I I 0.57
8.083
0.97
0.95
0.043
10 I (
I I 0.57
8.167
0.97
0.95
0.043
10 I I
I I 0.57
8.250
0.98
0.96
0.043
10 I i
I 0.57
8.333
0.98
0.96
0.043
10 I I
I I 0.57
8.417.
0.99
0.96
0.043
10 I I
I I 0.57
8.500
0.99
0.97
0.043
10 I I
I 0.57
8.583
1.00
0.97
0.043
10 I I
I 0.57
® 8.667
1.00
0.98
0.044
101 I I
I I 0.58
8.750
1.01
0.98
0.044
101 I I
I 0.58
8.833
1.01
0.99
0.044
IOI I I
I I 0.58
8.917
1.02
0.99
0.044
101 I I
I I 0.58
9.000
1.02
1.00
0.044
IOI I I
I I 0.58
9.083
1.03
1.00
0.044
10 I I
I I 0.58
9.167
1.03
1.01
0.045
10 I I
I I 0.58
9.250
1.04
1.01
0.045
10 I I
I I 0.58
9.333
1.04
1.02
0.045
10 I I
l I 0.58
9.417
1.05
1.02
0.045
10 I I
I I 0.58
9.500
1.05
1.03
0.045
1 0 I I
I I 0.59
9.583
1.06
1.03
0.046
1 0 I I
I I 0.59
9.667
1.06
1.04
0.046
10 I I
I I 0.59
9.750
1.07
1.04
0.046
1 0 I I
I I 0.59
9.833
1.08
1.05
0.046
10 I I
I I 0.59
9.917
1.08
1.05
0.046
10 I I
I I 0.59
10.000
1.09
1.06
0.047
1 0 I I
I I 0.59
10.083
1.10
1.06
0.047
10 I I
I I 0.59
10.167
1.10
1.07
0.047
1 0 I i
I I 0.59
10.250
1.11
1.08
0.047
1 0 I I
I I 0.60
10.333
1.12
1.08
0.047
1 0 I I
I I 0.60
10.417
1.12
1.09
0.048
10 I I
I I 0.60
10.500
1.13
1.10
0.048
1 0 I I
I I 0.60
10.583
1.14
1.10
0.048
10 I I
I ( 0.60
10.667
1.14
1.11
0.048
10 I I
I ( 0.60
10.750
1.15
1.12
0.049
10 I I
I I 0.60
10.833
1.16
1.12
0.049
10 I I
I I 0.60
10.917
1.17
1.13
0.049
10 I I
I I 0.61
11.000
1.18
1.14
0.049
10 I I
I I 0.61
11.083
1.18
1.14
0.050
10 I I
I I 0.61
11.167
1.19
1.15
0.050
10 I I
I I 0.61
11.250
1.20
1.16
0.050
10 I I
I I 0.61
11.333
1.21
1.17
0.050
10 I I
I I 0.61
11.417
1.22
1.18
0.051
10 I I
I I 0.62
11.500
1.23
1.18
0.051
1 0 I I
I I 0.62
11.583
1.24
1.19
0.051
1 0 I I
I I 0.62
11.667
1.25
1.20
0.052
1 0 I I
I I 0.62
11.750
1.26
1.21
0.052
10 I I
t I 0.62
11.833
1.27
1.22
0.052
1 0 I I
I I 0.62
11.917
1.28
1.23
0.053
10 I I
I I. 0.63
12.000
1.29
1.24
0.053
10 I I
I I 0.63
12.083
1.30
1.25
0.053
10 I I
I I 0.63
12.167
1.30
1.26
0.054
10 I I
I I 0.63
12.250
1.31
1.27
0.054
10 I
I I 0.63
12.333
1.31
1.27
0.054
10 I I
I I 0.63
12.417
1.32
1.28
0.055
10 I
I I 0.64
12.500
1.34
1.29
0.055
I O I
I I 0.64
12.583
1.35
1.30
0.055
10 I I
I I 0.64
12.667
1.36
1.31
0.056
10 I I
I I 0.64
12.750
1.38
1.32
0.056
10 I I
I I 0.64
12.833
1.39
1.33
0.056
10 I I
( I 0.65
12.917
1.41
1.34
0.057
1 0 I I
I I 0.65
13.000
1.42
1.36
0.057
1 0 I I
I I 0.65
13.083
1.44
1.37
0.058
10 I I
I I 0.65
13.167.
1.46
1.38
0.058
1 0 I I
I I 0.66
13.250
1.48
1.40
0.059
10 I
I I 0.66
13.333
1.50
1.41
0.059
OI- I
I I 0.66
13.417
1.52
1.43
0.060
I OI I I
I I 0.67
13.500
1.54
1.45
0.060
I OI. I I
I I 0.67
18.333
1.30
1.58
0.065
1 IO I I
I I 0.70
18.417
1.28
1.53
0.064
1 IO I I
I I 0.69
18.500
1.26
1.49
0.062
1 0 I I
I I 0.68
18.583
1.24
1.45
0.060
1 0 I I
( I 0.67
18.667
1.22
1.41
0.059
1 0 I I
I I 0.66
18.750
1.21
1.37
0.058
1 0 I I
I I 0.65
18.833
1.19
1.34
0.057
1 0 I I
I I 0.65
18.917
1.17
1.31
0.056
► 0 I I
I I 0.64
19.000
1.16
1.29
0.055
1 0 I I
I I 0.64
19.083
1.14
1.26
0.054
1 0 I I
I I 0.63
19.167
1.13
1.24
0.053
1 0 I I
I I 0.63
19.250
1.11
1.22
0.052
1 0 I I
I I 0.62
19.333
1.10
1.20
0.052
10 I I
I I 0.62
19.417
1.09
1.18
0.051
10 I I
I I 0.62
19.500
1.07
1.16
0.050
10 I I
I I 0.61
19.583
1.06
1.15
0.050
10 I I
I i 0.61
19.667
1.05
1.13
0.049
10 I I
I I 0.61
19.750
1.04
1.12
0.049
10 I I
I I 0.60
19.833
1.03
1.10
0.048
1 0 I I
I I 0.60
19.917
1.02
1.09
0.048
1 0 I I
I I 0.60
20.000
1.01
1.07
0.047
10 I I
I 1 0.59
20.083
1.00
1.06
0.047
10 i I
I I 0.59
20.167
0.99
1.05
0.046
110 I I
I I 0.59
20.250
0.98
1.04
0.046
110 I I
I I 0.59
20.333
0.97
1.03
0.045
110 I I
I I 0.59
20.417
0.96
1.02
0.045
110 I I
I I 0.58
20.500
0.95
1.01
0.045
110 I I
I I 0.58
20.583
0.95
1.00
0.044
1I0 I I
I I 0.58
20.667
0.94
0.99
0.044
10 I I
I I 0.58
20.750
0.93
0.98
0.044
10 I I
I I 0.58
20.833
0.92
0.97
0.043
10 I I
I I 0.57
20.917
0.92
0.96
0.043
10 I I
I I 0.57
21.000
0.91
0.95
0.043
10 I I
I I 0.57
21.083
0.90
0.94
0.042
10 I I
I I 0.57
21.167
0.89
0.94
0.042
10 I I
I I 0.57
21.250
0.89
0.93
0.042
10 I I
I I 0.57
21.333
0.88
0.92
0.042
10 I I
I I 0.56
21.417
0.88
0.91
0.041
10 I I
I I 0.56
21.500
0.87
0.91
0.041
10 I I
I I 0.56
21.583
0.86
0.90
0.041
10 I I
I I 0.56
21.667
0.86
0.89
0.041
10 I I
I I 0.56
21.750
0.85
0.89
0.040
10 I I
I I 0.56
21.833
0.85
0.88
0.040
10 I I
I I 0.56
21.917
0.84
0.87
0.040
10 I I
I I 0.55
22.000
0.83
0.87
0.040
10 I I
I I 0.55
22.083
0.83
0.86
0.039
10 I I
I I 0.55
22.167
0.82
0.85
0.039
10 I I
I I 0.55
22.250
0.82
0.85
0.039
10 I I
I I 0.55
22.333
0.81
0.84
0.039
10 I I
I I 0.55
22.417
0.81
0.84
0.039
10 I I
I I 0.55
22.500
0.80
0.83
0.038
10 I I
I I 0.55
22.583
0.80
0.83
0.038
10 I I
I I 0.55
22.667.
0.80
0.82
0.038
10 I I
I I 0.54
22.750
0.79
0.82
0.038
10 I
I I 0.54
22.833
0.79
0.81
0.038
10 I I
I I 0.54
22.917
0.78
0.81
0.037
10 I
I I 0.54
23.000
0.78
0.80
0.037
10 I I
I 0.54
Remaining water in basin = 0.00 (Ac.Ft)
****************************HYDROGRAPH DATA****************************
Number of intervals = 306
Time interval = 5.0 (Min.)
Maximum/Peak flow rate = 7.233 (CFS)
Total volume = 2.646 (Ac.Ft)
Status of hydrographs being held in storage
Stream 1 Stream 2 Stream 3 Stream 4 Stream 5
Peak (CFS) 0.000 0.000 0.000 0.000 0.000
Vol (Ac.Ft) 0.000 0.000 0.000 0.000 0.000
***********************************************************************
N
23.083
0.77
0.80
0.037
10 1 1
1 • 1 0.54
23.167
0.77
0.79
0.037
10 1 I
I I 0.54
23.250
0.77
0.79
0.037
10 I I
I I 0.54
23.333
0.76
0.78
0.037
10 I I
I I 0.54
23.417
0.76
0.78
0.036
10 I I
I 0.54
23.500
0.75
0.78
0.036
10 I I
I 0.54
23.583
0.75
0.77
0.036
10 I I
I I 0.53
23.667
0.75
0.77
0.036
10 I I
I 0.53
23.750
0.74
0.76
0.036
10 I I
I I 0.53
23.833
0.74
0.76
0.036
10 I I
I I 0.53
23.917
0.74
0.76
0.036
10 I I
I I 0.53
24.000
0.73
0.75
0.035
10 I I
I I 0.53
24.083
0.68
0.74
0.035
10 I I
I I 0.53
24.167
0.46
0.71
0.034
IO I I
I I 0.52
24.250
0.21
0.65
0.032
IO I I
I I 0.51
24.333
0.11
0.57
0.029
IO I I
I I 0.48
24.417
0.07
0.51
0.025
IO I I
I I 0.42
24.500
0.05
0.45
0.023
0 I I
I I 0.38
24.583
0.03
0.40
0.020
0 I I
I I 0.33
24.667
0.02
0.35
0.018
0 I I
I I 0.29
24.750
0.02
0.31
0.015
0 I I
I I 0.26
24.833
0.01
0.27
0.013
0 I I
I I 0.22
24.917
0.01
0.24
0.012
0 I I
I I 0.20
25.000
0.01
0.21
0.010
0 I I
I I 0.17
25.083
0.00
0.18
0.009
0 I I
I I 0.15
25.167
0.00
0.16
0.008
0 I (
I I 0.13
25.250
0.00
0.14
0.007
0 I I
I I 0.11
25.333
0.00
0.12
0.006
0 1 I
I I 0.10
de^
25.417
0.00
0.10
0.005
0 I I
I I 0.09
25.500
0.00
0.09
0.005
0 I I
I I 0.08
Remaining water in basin = 0.00 (Ac.Ft)
****************************HYDROGRAPH DATA****************************
Number of intervals = 306
Time interval = 5.0 (Min.)
Maximum/Peak flow rate = 7.233 (CFS)
Total volume = 2.646 (Ac.Ft)
Status of hydrographs being held in storage
Stream 1 Stream 2 Stream 3 Stream 4 Stream 5
Peak (CFS) 0.000 0.000 0.000 0.000 0.000
Vol (Ac.Ft) 0.000 0.000 0.000 0.000 0.000
***********************************************************************
N
.. FLOOD HYDROGRAPH ROUTING PROGRAM
Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2001
Study date: 10/22/04
Tract 16271 25 Year 24 Hour Developed Condition Unit Hydrograph
--------------------------------------------------------------------
Allard Engineering, Fontana, California - SIN 643
--------------------------------------------------------------------
********************* HYDROGRAPH INFORMATION **********************
From study/file name: 1627125.rte
****************************HYDROGRAPH DATA****************************
Number of intervals = 302
Time interval = 5.0 (Min.)
Maximum/Peak flow rate = 20.081 (CFS)
Total volume = 3.478 (Ac.Ft)
Status of hydrographs being held in storage
Stream 1 Stream 2 Stream 3 Stream 4 Stream 5
Peak (CFS) 0.000 0.000 0.000 0.000 0.000
Vol (Ac.Ft) 0.000 0.000 0.000 0.000 0.000
***********************************************************************
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 0.000 to Point/Station 1.000
**** RETARDING BASIN ROUTING ****
User entry of depth -outflow -storage data
--------------------------------------------------------------------
Total number of inflow hydrograph intervals = 302
Hydrograph time unit = 5.000 (Min.)
Initial depth in storage basin = 0.00(Ft.)
--------------------------------------------------------------------
--------------------------------------------------------------------
Initial basin
depth =
0.00 (Ft.)
Initial basin
storage
= 0.00
(Ac.Ft)
Initial basin
---------------------------------------------------------------------
outflow
= 0.00 (CFS)
--------------------------------------------------------------------
Depth vs. Storage and
Depth vs. Discharge
data:
Basin Depth
Storage
Outflow
(S-0*dt/2)
(S+0*dt/2)
(Ft.)
(Ac.Ft)
(CFS)
(Ac.Ft)
(Ac.Ft)
---------------------------------------------------------------------
0.000
0.000
0.000
0.000
0.000
0.500
0.030
0.600
0.028
0.032
w 1.000
0.120
3.100
0.109
0.131
2.000
0.310
7.600
0.284
0.336
3.000 0.540 10.600 0.503 1 0.577 .
---------------------------------------------------------
Hydrograph Detention Basin Routing
---------------------------------------------------------
Graph values: 'I'= unit inflow; '0'=outflow at time shown
Time
Inflow
Outflow
Storage
Depth
(Hours)
(CFS)
(CFS)
(Ac.Ft)
.0
5.0 10.04 15.06 20.08 (Ft.)
0.083
0.07
0.00
0.000
0
I I I I 0.00
0.167
0.38
0.03
0.002
0
I I I I 0.03
0.250
0.73
0.10
0.005
OI
I I I I 0.08
0.333
0.87
0.19
0.010
OI
I I I I 0.16
0.417
0.93
0.28
0.014
OI
I I I I 0.24
0.500
0.96
0.37
0.018
OI
I I I I 0.31
0.583
0.98
0.45
0.022
OI
I I I I 0.37
0.667
0.99
0.52
0.026
OI
I I I I 0.43
0.750
1.01
0.58
0.029
OI
I I I I 0.48
0.833
1.01
0.65
0.032
10
I I ( I 0.51
0.917
1.02
0.71
0.034
10
I I I I 0.52
1.000
1.03
0.77
0.036
10
I I I I 0.53
1.083
1.03
0.81
0.038
10
I I I I 0.54
1.167
1.04
0.85
0.039
10
I I I I 0.55
1.250
1.04
0.88
0.040
10
I I I I 0.56
1.333
1.04
0.91
0.041
10
1 I I I 0.56
1.417
1.05
0.94
0.042
10
I I I I 0.57
1.500
1.05
0.96
0.043
10
I I I I 0.57
1.583
1.05
0.97
0.043
10
I I I I 0.57
1.667
1.05
0.99
0.044
10
I I I I 0.58
1.750
1.06
1.00
0.044
10
I I I I 0.58
1.833
1.06
1.01
0.045
10
I I I ( 0.58
1.917
1.06
1.02
0.045
10
( I I I 0.58
2.000
1.06
1.03
0.045
10
I I I ( 0.59
2.083
1.07
1.03
0.046
10
I I I I 0.59
2.167
1.07
1.04
0.046
10
I I I I 0.59
2.250
1.07
1.04
0.046
10
I I I I 0.59
2.333
1.07
1.05
0.046
10
I I I I 0.59
2.417
1.08
1.05
0.046
10
I I I I 0.59
2.500
1.08
1.06
0.046
10
I I I I 0.59
2.583
1.08
1.06
0.047
10
I I I I 0.59
2.667
1.08
1.07
0.047
10
I I I I 0.59
2.750
1.09
1.07
0.047
10
I I I I 0.59
2.833
1.09
1.07
0.047
10
I I I I 0.59
2.917
1.09
1.08
0.047
10
I I I I 0.60
3.000
1.10
1.08
0.047
10
I I I I 0.60
3.083
1.10
1.08
0.047
10
I I I I 0.60
3.167
1.10
1.09
0.047
10
I I I I 0.60
3.250
1.10
1.09
0.048
10
I I I 0.60
3.333
1.11
1.09
0.048
10
I I I I 0.60
3.417
1.11
1.09
0.048
10
I I I I 0.60
3.500
1.11
1.10
0.048
10
I I I I 0.60
3.583
1.12
1.10
0.048
10
I I I I 0.60
3.667.
1.12
1.10
0.048
10
I I 0.60
3.750
1.12
1.11
0.048
10
I I I I 0.60
3.833
1.12
1.11
0.048
10
I I I I 0.60
3.917
1.13
1.11
0.048
10
I I I i 0.60
r►'
4.000
1.13
1.12
0.049
10
I I I I 0.60
4.083
1.13
1.12
0.049
10 1 1
1 • 1 0.60
fir..
4.167
1.14
1.12
0.049
10 1 I
I I 0.60
4.250
1.14
1.12
0.049
10 I I
I I 0.60
4.333
1.14
1.13
0.049
10 I I
I I 0.61
4.417
1.15
1.13
0.049
10 I I
I I 0.61
4.500
1.15
1.13
0.049
10 I I
I I 0.61
4.583
1.15
1.14
0.049
10 I I
I I 0.61
4.667
1.16
1.14
0.049
10 I I
I I 0.61
4.750
1.16
1.14
0.050
10 I I
I I 0.61
4.833
1.16
1.15
0.050
10 I I
I I 0.61
4.917
1.17
1.15
0.050
10 I 1
I I 0.61
5.000
1.17
1.15
0.050
10 I I
I I 0.61
5.083
1.17
1.16
0.050
10 I I
I I 0.61
5.167
1.18
1.16
0.050
10 I I
I I 0.61
5.250
1.18
1.16
0.050
10 I I
I I 0.61
5.333
1.18
1.17
0.050
10 I I
I I 0.61
5.417
1.19
1.17
0.051
10 I I
I I 0.61
5.500
1.19
1.17
0.051
10 I I
I I 0.61
5.583
1.20
1.18
0.051
10 1 I
I I 0.62
5.667
1.20
1.18
0.051
10 I I
I I 0.62
5.750
1.20
1.18
0.051
10 I I
I I 0.62
5.833
1.21
1.19
0.051
10 I I
I I 0.62
5.917
1.21
1.19
0.051
10 I I
I I 0.62
6.000
1.21
1.19
0.051
10 I I
I I 0.62
6.083
1.22
1.20
0.052
10 I I
I I 0.62
6.167
1.22
1.20
0.052
10 I I
I I 0.62
6.250
1.23
1.21
0.052
10 I I
I I 0.62
6.333
1.23
1.21
0.052
10 I I
I I 0.62
.�
6.417
1.23
1.21
0.052
10 I I
I I 0.62
6.500
1.24
1.22
0.052
10 I I
I I 0.62
6.583
1.24
1.22
0.052
10 I I
I I 0.62
6.667
1.25
1.23
0.053
10 I I
I I 0.63
6.750
1.25
1.23
0.053
10 I I
I ( 0.63
6.833
1.26
1.23
0.053
101 I I
I I 0.63
6.917
1.26
1.24
0.053
101 i I
I I 0.63
7.000
1.27
1.24
0.053
101 1 I
I I 0.63
7.083
1.27
1.25
0.053
101 I I
I I 0.63
7.167
1.27
1.25
0.053
101 I I
I I 0.63
7.250
1.28
1.26
0.054
1 0 I I
I I 0.63
7.333
1.28
1.26
0.054
1 0 I I
I I 0.63
7.417
1.29
1.27
0.054
1 0 I I
I I 0.63
7.500
1.29
1.27
0.054
1 0 I I
I I 0.63
7.583
1.30
1.27
0.054
1 0 i I
I I 0.63
7.667
1.30
1.28
0.054
1 0 I I
I I 0.64
7.750
1.31
1.28
0.055
10 I I
I I 0.64
7.833
1.31
1.29
0.055
10 I I
I I 0.64
7.917
1.32
1.29
0.055
1 0 I I
I I 0.64
8.000
1.32
1.30
0.055
1 0 I
I 0.64
8.083
1.33
1.30
0.055
1 0 I I
I I 0.64
8.167
1.34
1.31
0.056
1 0 I I
I I 0.64
8.250
1.34
1.31
0.056
1 0 I I
I I 0.64
8.333
1.35
1.32
0.056
10 I I
I I 0.64
8.417,
1.35
1.32
0.056
10 I I
I 0.64
8.500
1.36
1.33
0.056
1 0 I I
I 0.65
8.583
1.36
1.34
0.056
1 0 I I
I 0.65
,�•
8.667
1.37
1.34
0.057
1 0 I I
I 0.65
8.750
1.38
1.35
0.057
1 0 I
I 0.65
8.833
1.38
1.35
0.057
1 0 I I
I I 0.65
8.917
1.39
1.36
0.057
1 0 I I
I I 0.65
9.000
1.40
1.36
0.058
1 0 I I
I I 0.65
9.083
1.40
1.37
0.058
1 0 I I
I I 0.65
9.167
1.41
1.38
0.058
1 0 I I
I I 0.66
9.250
1.41
1.38
0.058
( 0 I I
I I 0.66
9.333
1.42
1.39
0.058
10 I I
I I 0.66
9.417
1.43
1.39
0.059
1 0 I I
I I 0.66
9.500
1.44
1.40
0.059
10 I I
I I 0.66
9.583
1.44
1.41
0.059
10 I I
I I 0.66
9.667
1.45
1.41
0.059
1 0 I I
I I 0.66
9.750
1.46
1.42
0.060
10 I I
I I 0.66
9.833
1.46
1.43
0.060
1 0 I I
I I 0.67
9.917
1.47
1.44
0.060
l 0 I I
I I 0.67
10.000
1.48
1.44
0.060
10 I I
I I 0.67
10.083
1.49
1.45
0.061
1 0 I I
I I 0.67
10.167
1.50
1.46
0.061
10 I I
I I 0.67
10.250
1.50
1.46
0.061
10 I I
I I 0.67
10.333
1.51
1.47
0.061
1 0 I I
I I 0.67
10.417
1.52
1.48
0.062
10 I I
I I 0.68
10.500
1.53
1.49
0.062
10 I I
I I 0.68
10.583
1.54
1.50
0.062
1 0 I I
I I 0.68
10.667
1.55
1.50
0.063
10 I I
I I 0.68
10.750
1.56
1.51
0.063
1 0 I I
I I 0.68
10.833
1.57
1.52
0.063
1 0 I I
I I 0.68
10.917
1.58
1.53
0.064
10 I I
I I 0.69
11.000
1.59
1.54
0.064
10 I I
I I 0.69
11.083
1.60
1.55
0.064
10 I I
I I 0.69
11.167
1.61
1.56
0.065
1 0 I I
I I 0.69
11.250
1.62
1.57
0.065
10 I I
I I 0.69
11.333
1.63
1.58
0.065
10 I I
I I 0.70
11.417
1.64
1.59
0.066
1 0 I I
I I 0.70
11.500
1.65
1.60
0.066
1 0 I I
I I 0.70
11.583
1.66
1.61
0.066
1 0 I I
I I 0.70
11.667
1.68
1.62
0.067
10 I I
I I 0.70
11.750
1.69
1.63
0.067
1 0 I I
I I 0.71
11.833
1.70
1.64
0.068
10 I I
I I 0.71
11.917
1.71
1.65
0.068
10 I I
I I 0.71
12.000
1.73
1.67
0.068
10 I I
I I 0.71
12.083
1.73
1.68
0.069
10 I I
I I 0.72
12.167
1.67
1.68
0.069
10 I I
I I 0.72
12.250
1.60
1.67
0.069
1 0 I
I I 0.71
12.333
1.59
1.66
0.068
10 I I
f I 0.71
12.417
1.59
1.65
0.068
10 I I
I I 0.71
12.500
1.60
1.64
0.067
1 0 I I
I I 0.71
12.583
1.61
1.63
0.067
1 0 I I
I I 0.71
12.667
1.63
1.63
0.067
10 I I
I I 0.71
12.750
1.65
1.63
0.067
1 0 I I
I 0.71
12.833
1.66
1.64
0.067
1 0 I I
I I 0.71
12.917
1.68
1.64
0.068
1 0 I I
I 0.71
13.000
1.70
1.65
0.068
1 0 I
I I 0.71
13.083
1.72
1.66
0.068
1 0 I I
I I 0.71
13.167,
1.74
1.67
0.069
1 0 I I
0.71
13.250
1.77
1.69
0.069
1 0 I I
I I 0.72
13.333
1.79
1.70
0.070
0 I
I I 0.72
13.417
1.81
1.72
0.070
0 I I
I I 0.72
13.500
1.84
1.74
0.071
1 0 I I
I I 0.73
13. 5B3
1.87
1.76
0.072
0 I i
0.73
13.667
1.90
1.78
0.073
OI
0.74
13.750
1.93
1.80
0.073
01
0.74
13.833
1.96
1.83
0.074
1 OI I
0.75
13.917
1.99
1.85
0.075
1 OI I
0.75
14.000
2.03
1.88
0.076
1 OI I
0.76
14.083
2.06
1.91
0.077
1 0 I
0.76
14.167
2.10
1.94
0.078
1 0 I I
0.77
14.250
2.15
1.97
0.079
0 I I
I 0.77
14.333
2.19
2.01
0.081
0 I
0.78
14.417
2.24
2.04
0.082
1 0 I
I 0.79
14.500
2.29
2.08
0.083
0 I
0.80
14.583
2.34
2.12
0.085
10 I I
I 0.80
14.667
2.40
2.17
0.086
0 i I
I 0.81
14.750
2.47
2.21
0.088
I 0 I
0.82
14.833
2.53
2.26
0.090
1 OI I I
0.83
14.917
2.61
2.32
0.092
OI I I
I 0.84
15.000
2.69
2.37
0.094
I OI i
0.85
15.083
2.78
2.44
0.096
OI I I
i 0.87
15.167
2.89
2.51
0.099
OI I
0.88
15.250
3.00
2.58
0.101
0 I
I 0.90
15.333
3.13
2.67
0.104
I 0 I I
0.91
15.417
3.23
2.76
0.108
I OI I I
I 0.93
15.500
3.14
2.83
0.110
OI I
I 0.95
15.583
3.06
2.88
0.112
I 0 1 I I
0.96
15.667
3.19
2.92
0.114
OI I
I 0.96
15.750
3.47
2.99
0.116
1 OI I I
I 0.98
15.833
3.89
3.11
0.120
0 1 1
I 1.00
15.917
4.56
3.28
0.128
I 0 II I I
1.04
16.000
6.00
3.58
0.140
1 0 II I
I 1.11
16.083
10.50
4.29
0.1.70
I 0 1 I
1.26
16.167
20.06
5.94
0.240
I 10
I II 1.63
16.250
20.08
7.87
0.331
1 0 I
I I 2.09
16.333
10.87
8.52
0.381
1 I 0 II
I I 2.31
16.417
6.51
8.54
0.382
1 I 0 1
I 2.31
16.500
4.92
8.30
0.363
1 II 0 1
I I 2.23
16.583
4.36
7.98
0.339
I I I 0
I 2.13
16.667
3.79
7.65
0.313
I I 0
I 2.02
16.750
3.44
7.07
0.288
1 1 1 0
I 1.88
16.833
3.17
6.50
0.264
1 1 1 0 I
I 1.76
16.917
2.92
5.98
0.242
1 1 10
I 1.64
17.000
2.72
5.50
0.222
1 0 I
I 1.53
17.083
2.54
5.07
0.203
I I 0 I
I 1.44
17.167
2.41
4.68
0.187
1 1 01
1.35
17.250
2.28
4.33
0.172
I I 0 1
I I 1.27
17.333
2.10
4.01
0.158
I 0 1 I
1.20
17.417
2.02
3.71
0.146
1 0 1
I I 1.14
17.500
1.95
3.45
0.135
1 I 0 1
1.08
17.583
1.89
3.22
0.125
1 1 0 I
I 1.03
17.667
1.83
3.00
0.117
I I 0
I 0.98
17.750
1.78
2.79
0.109
1 1 0 I
I 0.94
17.833
1.74
2.61
0.102
I 0 I
0.90
17.917.
1.69
2.46
0.097
1 IO
0.87
18.000
1.65
2.32
0.092
10
1 0.84
18.083
1.63
2.20
0.088
1 10' I
0.82
18.167
1.67
2.10
0.084
1 10
0.80
18.250
1.71
2.03
0.082
110. 1
1 0.79
m
m
18.333
1.72
1.98
0.080
1 IO I I
I I 0.78
18.417
1.70
1.93
0.078
1 IO I I
I I 0.77
18.500
1.68
1.89
0.076
1 IO I I
I I 0.76
18.583
1.66
1.85
0.075
1 0 I I
I I 0.75
18.667
1.64
1.82
0.074
1 0 I I
I I 0.74
18.750
1.62
1.78
0.073
1 0 I I
I 0.74
18.833
1.60
1.75
0.071
1 0 I I
I I 0.73
18.917
1.58
1.72
0.070
1 0 I I
I I 0.72
19.000
1.56
1.70
0.070
1 0 I I
I I 0.72
19.083
1.54
1.67
0.069
1 0 I I
I I 0.71
19.167
1.53
1.65
0.068
1 0 I I
I I 0.71
19.250
1.51
1.63
0.067
1 0 I I
I I 0.71
19.333
1.49
1.60
0.066
1 0 I I
I I 0.70
19.417
1.48
1.58
0.065
1 0 I I
I I 0.70
19.500
1.46
1.56
0.065
1 0 I I
I I 0.69
19.583
1.45
1.54
0.064
1 0 I I
I I 0.69
19.667
1.43
1.53
0.063
1 0 i I
I I 0.69
19.750
1.42
1.51
0.063
1 0 I I
I I 0.68
19.833
1.40
1.49
0.062
1 0 I I
I I 0.68
19.917
1.39
1.47
0.061
1 0 I I
I I 0.67
20.000
1.38
1.46
0.061
1 0 1 1
1 1 0.67
20.083
1.37
1.44
0.060
1 0 1 1
1 1 0.67
20.167
1.35
1.43
0.060
1 0 1 1
1 1 0.67
20.250
1.34
1.42
0.059
1 0 1 1
1 1 0.66
20.333
1.33
1.40
0.059
1 0 1 1
1 1 0.66
20.417
1.32
1.39
0.058
1 0 1 1
1 1 0.66
20.500
1.31
1.38
0.058
1 0 1 1
1 I 0.66
20.583
1.30
1.36
0.058
1 0 1 1
1 I 0.65
20.667
1.29
1.35
0.057
1 0 1 I
I ( 0.65
20.750
1.28
1.34
0.057
1 0 1 I
I I 0.65
20.833
1.27
1.33
0.056
1 0 I I
I I 0.65
20.917
1.26
1.32
0.056
1 0 I I
I I 0.64
21.000
1.25
1.31
0.055
IIO ( I
I I 0.64
21.083
1.24
1.30
0.055
►IO I I
I I 0.64
21.167
1.24
1.29
0.055
IIO I I
I I 0.64
21.250
1.23
1.28
0.054
IIO I I
I I 0.64
21.333
1.22
1.27
0.054
IIO I I
I I 0.63
21.417
1.21
1.26
0.054
IIO I I
I I 0.63
21.500
1.20
1.25
0.053
10 I I
I I 0.63
21.583
1.20
1.24
0.053
10 I I
I I 0.63
21.667
1.19
1.23
0.053
10 I I
I I 0.63
21.750
1.18
1.22
0.052
10 I I
I I 0.62
21.833
1.17
1.22
0.052
10 I I
I I 0.62
21.917
1.17
1.21
0.052
10 I I
I I 0.62
22.000
1.16
1.20
0.052
10 I I
I I 0.62
22.083
1.15
1.19
0.051
10 I I
I I 0.62
22.167
1.15
1.19
0.051
10 I I
I I 0.62
22.250
1.14
1.18
0.051
10 I I
I 0.62
22.333
1.14
1.17
0.051
10 1 I
I 0.61
22.417
1.13
1.16
0.050
10 1 I
I I 0.61
22.500
1.12
1.16
0.050
10 1 I
I I 0.61
22.583
1.12
1.15
0.050
10 1 I
I I 0.61
22.667,
1.11
1.14
0.050
10 1 I
I I 0.61
22.750
l.11
1.14
0.049
10 I
I 0.61
22.833
1.10
1.13
0.049
10 I I
I I 0.61
22.917
1.09
1.13
0.049
10 I I
I I 0.61
23.000
1.09
1.12
0.049
10 I I
I I 0.60
Remaining water in basin = 0.00 (Ac.Ft)
****************************HYDROGRAPH DATA****************************
Number of intervals = 308
Time interval = 5.0 (Min.)
Maximum/Peak flow rate = 8.538 (CFS)
Total volume = 3.474 (Ac.Ft)
Status of hydrographs being held in storage
Stream 1 Stream 2 Stream 3 Stream 4 Stream 5
Peak (CFS) 0.000 0.000 0.000 0.000 0.000
Vol (Ac.Ft) 0.000 0.000 0.000 0.000 0.000
***********************************************************************
IN
23.083
1.08
1.11
0.049
10 I I
I I 0.60
23.167
1.08
1.11
0.048
10 I I
I I 0.60
23.250
1.07
1.10
0.048
10 I I
I I 0.60
0.60
23.333
1.07
1.10
0.048
10 I I
I I
23.417
1.06
1.09
0.048
10 I I
I I 0.60
23.500
1.06
1.09
0.047
10 I I
I I 0.60
23.583
1.05
1.08
0.047
10 I I
I I 0.60
23.667
1.05
1.08
0.047
10 I I
I I 0.60
23.750
1.04
1.07
0.047
10 I I
I I 0.59
23.833
1.04
1.07
0.047
10 I I
I I 0.59
23.917
1.03
1.06
0.047
10 1 ►
I I 0.59
24.000
1.03
1.06
0.046
10 I I
I I 0.59
24.083
0.96
1.04
0.046
10 I I
I I 0.59
24.167
0.64
1.00
0.044
10 I I
I I 0.58
24.250
0.29
0.91
0.041
IO I I
I I 0.56
24.333
0.15
0.79
0.037
IO I I
I I 0.54
24.417
0.09
0.67
0.033
IO I I
I I 0.51
24.500
0.06
0.58
0.029
0 I I
I I 0.48
24.583
0.04
0.51
0.025
0 I I
I I 0.42
24.667
0.03
0.45
0.022
0 I I
I I 0.37
24.750
0.02
0.39
0.020
0 I (
I I 0.33
24.833
0.02
0.35
0.017
0 I I
I I 0.29
24.917
0.01
0.30
0.015
0 I I
I I 0.25
25.000
0.01
0.27
0.013
O I I
I I 0.22
25.083
0.00
0.23
0.012
0 I I
I I 0.19
25.167
0.00
0.20
0.010
0 I I
I I 0.17
25.250
0.00
0.18
0.009
0 I I
i I 0.15
25.333
0.00
0.15
0.008
0 I I
I I 0.13
25.417
0.00
0.13
0.007
0 I I
I I 0.11
25.500
0.00
0.12
0.006
0 I I
I I 0.10
25.583
0.00
0.10
0.005
0 I I
I I 0.08
25.667
0.00
0.09
0.004
0 I I
I I 0.07
Remaining water in basin = 0.00 (Ac.Ft)
****************************HYDROGRAPH DATA****************************
Number of intervals = 308
Time interval = 5.0 (Min.)
Maximum/Peak flow rate = 8.538 (CFS)
Total volume = 3.474 (Ac.Ft)
Status of hydrographs being held in storage
Stream 1 Stream 2 Stream 3 Stream 4 Stream 5
Peak (CFS) 0.000 0.000 0.000 0.000 0.000
Vol (Ac.Ft) 0.000 0.000 0.000 0.000 0.000
***********************************************************************
IN
.. FLOOD HYDROGRAPH ROUTING PROGRAM
Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2001
Study date: 10/22/04
Tract 16271 100 Year 24 Hour Routed Hydrograph
--------------------------------------------------------------------
Allard Engineering, Fontana, California - SIN 643
--------------------------------------------------------------------
********************* HYDROGRAPH INFORMATION **********************
From study/file name: 16271100.rte
****************************HYDROGRAPH DATA****************************
Number of intervals = 302
Time interval = 5.0 (Min.)
Maximum/Peak flow rate = 26.169 (CFS)
Total volume = 4.798 (Ac.Ft)
Status of hydrographs being held in storage
Stream 1 Stream 2 Stream 3 Stream 4 Stream 5
Peak (CFS) 0.000 0.000 0.000 0.000 0.000
Vol (Ac.Ft) 0.000 0.000 0.000 0.000 0.000
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 0.000 to Point/Station 1.000
**** RETARDING BASIN ROUTING ****
User entry of depth -outflow -storage data
--------------------------------------------------------------------
Total number of inflow hydrograph intervals = 302
Hydrograph time unit = 5.000 (Min.)
Initial depth in storage basin = 0.00(Ft.)
--------------------------------------------------------------------
--------------------------------------------------------------------
Initial basin
depth =
0.00 (Ft.)
Initial basin
storage
= 0.00
(Ac.Ft)
Initial basin
---------------------------------------------------------------------
outflow
= 0.00 (CFS)
--------------------------------------------------------------------
Depth vs. Storage and
Depth vs. Discharge
data:
Basin Depth
Storage
Outflow
(S-0*dt/2)
(S+O*dt/2)
(Ft.)
(Ac.Ft)
(CFS)
(Ac.Ft)
(Ac.Ft)
-7 -------------------------------------------------------------------
0.000
0.000
0.000
0.000
0.000
0.500
0.030
0.600
0.028
0.032
1.000
0.120
3.100
0.109
0.131
2.000
0.310
7.600
0.284
0.336
3.000 0.540 10.600 0.503 0.577 .
----------------------------
--Hydrograph Detention Basin Routing
-------------------------------------------------------------
Graph values: 'I'= unit inflow; 'O'=outflow at time shown
Time
Inflow
Outflow
Storage
Depth
(Hours)
(CFS)
(CFS)
(Ac.Ft)
.0
6.5 13.08 19.63 26.17 (Ft.)
0.083
0.09
0.01
0.000
O
0.01
0.167
0.55
0.05
0.002
O
( 0.04
0.250
1.05
0.14
0.007
OI
0.12
0.333
1.25
0.27
0.014
0I
0.23
0.417
1.32
0.40
0.020
OI
0.34
0.500
1.37
0.52
0.026
OI
0.44
0.583
1.39
0.65
0.032
OI
0.51
0.667
1.41
0.78
0.036
0I
0.54
0.750
1.43
0.89
0.040
10
0.56
0.833
1.44
0.99
0.044
10
0.58
0.917
1.45
1.07
0.047
10
0.59
1.000
1.46
1.13
0.049
10
0.61
1.083
1.47
1.19
0.051
10
0.62
1.167
1.47
1.24
0.053
10
0.63
1.250
1.48
1.28
0.055
10
0.64
1.333
1.48
1.32
0.056
10
0.64
1.417
1.48
1.34
0.057
10
0.65
1.500
1.49
1.37
0.058
10
0.65
1.583
1.49
1.39
0.058
10
0.66
1.667
1.750
1.49
1.50
1.41
1.42
0.059
0.060
10
10
0.66
0.66
1.833
1.50
1.44
0.060
10
0.67
1.917
1.50
1.45
0.061
10
0.67
2.000
1.51
1.46
0.061
10
0.67
2.083
1.51
1.47
0.061
10
0.67
2.167
1.51
1.48
0.062
10
0.68
2.250
1.52
1.48
0.062
10
0.68
2.333
1.52
1.49
0.062
10
0.68
2.417
1.53
1.50
0.062
10
0.68
2.500
1.53
1.50
0.062
10
0.68
2.583
1.53
1.51
0.063
10
0.68
2.667
1.54
1.51
0.063
10
0.68
2.750
1.54
1.52
0.063
10
0.68
2.833
1.54
1.52
0.063
10
0.68
2.917
1.55
1.52
0.063
10
0.68
3.000
1.55
1.53
0.063
10
0.69
3.083
1.55
1.53
0.064
10
0.69
3.167
1.56
1.54
0.064
10
0.69
3.250
1.56
1.54
0.064
IO
0.69
3.333
1.57
1.55
0.064
10
0.69
3.417
1.57
1.55
0.064
10
0.69
3.500
1.57
1.55
0.064
10
0.69
9.583
1.58
1.56
0.064
10
0.69
3.667,
1.58
1.56
0.065
10
0.69
3.750
1.59
1.57
0.065
10
0.69
3.833
1.59
1.57
0.065
10
0.69
3.917
1.59
1.57
0.065
10
0.69
4.000
1.60
1.58
0.065
10
0.70
4.083
1.60
1.58
0.065
IO I I
I I 0.70
4.167
1.61
1.59
0.065
IO I I
I I 0.70
4.250
1.61
1.59
0.066
IO I I
I I 0.70
4.333
1.62
1.59
0.066
IO I I
I I 0.70
4.417
1.62
1.60
0.066
IO I I
I I 0.70
4.500
1.62
1.60
0.066
IO I I
I I 0.70
4.583
1.63
1.61
0.066
IO I I
I I 0.70
4.667
1.63
1.61
0.066
IO I I
I I 0.70
4.750
1.64
1.62
0.067
IOI I I
I I 0.70
4.833
1.64
1.62
0.067
IOI I I
I I 0.70
4.917
1.65
1.62
0.067
IOI I I
I I 0.70
5.000
1.65
1.63
0.067
IOI I I
I I 0.71
5.083
1.66
1.63
0.067
IOI0.71
I I
5.167
1.66
1.64
0.067
10 I I
I I 0.71
5.250
1.67
1.64
0.068
I O I I
I I 0.71
5.333
1.67
1.65
0.068
I O I I
I I 0.71
5.417
1.68
1.65
0.068
I O I I
I I 0.71
5.500
1.68
1.66
0.068
I O I I
I I 0.71
5.583
1.69
1.66
0.068
I O I I
I I 0.71
5.667
1.69
1.67
0.068
I O I I
I I 0.71
5.750
1.70
1.67
0.069
I O I I
I I 0.71
5.833
1.70
1.68
0.069
I O I I
I I 0'72
5.917
1.71
1.68
0.069
I O I I
I I 0'72
6.000
1.71
1.69
0.069
I O I I
I I 0'72
6.083
1.72
1.69
0.069
I O I I
I I 0'72
6.167
1.72
1.70
0.069
I O I I
I I 0'72
6.250
1.73
1.70
0.070
I O I I
I I 0'72
6.333
1.74
1.71
0.070
I O I I
I I 0'72
6.417
1.74
1.71
0.070
I O I I
I I 0'72
6.500
1.75
1.72
0.070
I O I I
I I 0'72
6.583
1.75
1.72
0.070
I O I I
I I 0'72
6.667
1.76
1.73
0.071
I O I I
I I 0.73
6.750
1.76
1.73
0.071
I O I I
I I 0.73
6.833
1.77
1.74
0.071
I O I I
I I 0.73
6.917
1.78
1.75
0.071
I O I I
I I 0.73
7.000
1.78
1.75
0.071
10 I I
I I 0.73
7.083
1.79
1.76
0.072
I O I I
I I 0.73
7.167
1.80
1.76
0.072
I O I I
I I 0.73
7.250
1.80
1.77
0.072
I O I I
I I 0.73
7.333
1.81
1.78
0.072
I O I I
I I 0.74
7.417
1.81
1.78
0.073
I O I I
I I 0.74
7.500
1.82
1.79
0.073
I O I I
I I 0.74
7.583
1.83
1.79
0.073
10 I I
I I 0.74
7.667
1.83
1.80
0.073
I O I I
I I 0.74
7.750
1.84
1.81
0.073
I O I I
I I 0.74
7.833
1.85
1.81
0.074
I O I I
I I 0.74
7.917
1.86
1.82
0.074
I O I I
I I 0.74
8.000
1.86
1.83
0.074
I O I I
( I 0.75
8.083
1.87
1.83
0.074
10 I I
I I 0.75
8.167
1.88
1.84
0.075
I O I I
I I 0.75
8.250
1.89
1.85
0.075
I O I I
I I 0.75
8.333
1.89
1.86
0.075
I O I I
I I 0.75
8.417,
1.90
1.86
0.075
I O I I
I I 0.•75
8.500
1.91
1.87
0.076
I O I I
I I 0.75
8.583
1.92
1.88
0.076
10 I I
I I 0.76
8.667
1.93
1.89
0.076
I O I I
I I 0.76
8.750
1.93
1.89
0.077
I 0 I I
I I 0.76
8.833
1.94
1.90
0.077
0
0.76
8.917
1.95
1.91
0.077 I
0 I
I 0.76
9.000
1.96
1.92
0.077
0
0.76
9.083
1.97
1.92
0.078 I
O
0.76
9.167
1.98
1.93
0.078
0
0.77
9.250
1.99
1.94
0.078 I
O
0.77
9.333
1.99
1.95
0.079 I
O
0'77
9.417
2.00
1.96
0.079
0
0'77
9.500
2.01
1.97
0.079
0
0.77
9.583
2.02
1.98
0.080
0
0'78
9.667
2.03
1.99
0.080
0
0.78
9.750
2.04
1.99
0.080
0
0'78
9.833
2.05
2.00
0.081
0
0.78
9.917
2.06
2.01
0.081
0
0'78
10.000
2.07
2.02
0.081
0
0'78
10.083
2.09
2.03
0.082
0
0.79
10.167
2.10
2.04
0.082
I O
0'79
10.250
2.11
2.05
0.082.
0
0'79
10.333
2.12
2.06
0.083
0
0'79
10.417
2.13
2.07
0.083
I O
0'79
10.500
2.14
2.09
0.083
0
0.80
10.583
2.16
2.10
0.084
0
0.80
10.667
2.17
2.11
0.084
I 0
0.80
10.750
2.18
2.12
0.085
0
0.80
10.833
2.19
2.13
0.085
0
0.81
10.917
2.21
2.14
0.086
0
0.81
11.000
2.22
2.16
0.086
0
0.81
11.083
2.23
2.17
0.086
0
0.81
11.167
2.25
2.18
0.087
I 0
0'82
c
11.250
2.26
2.19
0.087
0
0'82
0.82
11.333
2.28
2.21
0.088
0
11.417
2.29
2.22
0.088
0
0.82
11.500
2.31
2.23
0.089
I O
0.83
11.583
2.32
2.25
0.089
0 (
0.83
11.667
2.34
2.26
0.090
I O
0.83
11.750
2.36
2.28
0.090
0
0.84
11.833
2.37
2.29
0.091
0 I
0.84
11.917
2.39
2.31
0.092
0
0.84
12.000
2.41
2.32
0.092
0
0.84
12.083
2.40
2.34
0.093
0
0.85
12.167
2.31
2.34
0.093
0
0.85
12.250
2.21
2.33
0.092
0
0.85
12.333
2.19
2.31
0.091
0
0.84
12.417
2.19
2.29
0.091
0
0.84
12.500
2.21
2.27
0.090
0
0.83
0.83
12.583
2.22
2.26
0.090
0
0.83
12.667
2.24
2.26
0.090
0
0.83
12.750
2.26
2.26
0.090
I O
0.83
12.833
2.29
2.26
0.090
0
0.83
12.917
2.31
2.27
0.090
0
0.84
13.000
2.34
2.28
0.090
I O
0.84
13.083
2.37
2.29
0.091
0
13.167,
2.40
2.31
0.091
0
0.84
13.250
2.43
2.33
0.092
0
0.85
13.333
2.46
2.35
0.093
OI•
0.85
13.417
2.49
2.37
0.094
OI
0.85
13.500
2.53
2.39
0.095
0I
0.86
13.583
2.57
2.42
0.096
OI
0.86
�..,
13.667
2.61
2.45
0.097
OI
(
0.87
13.750
2.65
2.48
0.098
0
0.88
13.833
2.69
2.51
0.099
0
0.88
13.917
2.74
2.55
0.100
0
(
0.89
14.000
2.78
2.59
0.101
0
0.90
14.083
2.83
2.62
0.103
0
(
0.90
14.167
2.89
2.67
0.104
0
I
0.91
14.250
2.95
2.71
0.106
0
(
0.92
14.333
3.01
2.76
0.108
( 0
I (
0.93
14.417
3.07
2.81
0.109
0
(
0.94
14.500
3.14
2.86
0.111
( 0
0.95
14.583
3.21
2.91
0.113
0
0.96
14.667
3.29
2.97
0.115
OI
0.97
14.750
3.38
3.04
0.118
0I
0.99
14.833
3.47
3.10
0.120
0I
1.00
14.917
3.57
3.17
0.123
OI
I
I 1.01
15.000
3.69
3.24
0.126
OI
I
I 1.03
15.083
3.81
3.31
0.129
0
1.05
15.167
3.95
3.40
0.133
( 0
1.07
15.250
4.10
3.49
0.137
02
(
1.09
15.333
4.28
3.60
0.141
OI
1.11
15.417
4.41
3.71
0.146
OI
I
(
1.14
15.500
4.27
3.81
0.150
OI
1.16
15.583
4.14
3.87
0.152
OI
1.17
15.667
4.32
3.92
0.155
OI
(
1.18
15.750
4.69
4.01
0.158
OI
1.20
15.833
5.27
4.16
0.165
OI
1.23
15.917
16.000
6.19
8.16
4.39
4.81
0.175
0.192
0
0
II
lI
1
1.29
1.38
16.083
14.01
5.76
0.232
Ol
lI
1
1.59
16.167
26.17
7.78
0.324
1
10
II
2.06
16.250
25.76
9.35
0.444
0
Il
2.58
16.333
13.97
10.25
0.513
0
II
2.88
16.417
8.49
10.33
0.520
I 0
1
2.91
16.500
6.53
10.09
0.501
Il
0
1
2.83
16.583
5.82
9.75
0.475
Il
0
2.72
16.667
5.10
9.39
0.447
I
I 0
2.60
16.750
4.65
9.00
0.417
I
0
2.47
16.833
4.28
8.61
0.387
I
0
2.34
16.917
3.96
8.22
0.358
I
I 0
I 2.21
17.000
3.69
7.84
0.329
I I
10
I 2.08
17.083
3.46
7.38
0.301
I
10
(
1.95
17.167
3.28
6.78
0.275
I I
0
1.82
17.250
3.09
6.24
0.252
I
01
1.70
17.333
2.88
5.75
0.232
I I
01
1.59
17.417
2.77
5.31
0.213
I 0
I 1.49
17.500
2.68
4.92
0.197
( I 0
( 1.40
17.583
2.59
4.57
0.182
I 0
1.33
17.667
2.52
4.27
0.169
I 0
1.26
17.750
2.45
4.00
0.158
I 0
I
1.20
17.833
2.38
3.76
0.148
I 0
1.15
17.917
2.33
3.55
0.139
I 0
I
1.10
18.000
2.27
3.36
0.131
I 0
1.06
18.083
2.24
3.19
0.124
I I0.
I
I
1.02
18.167
2.31
3.05
0.118
IO
0.99
18.250
2.38
2.92
0.114
IO
0.96
18.333
2.39
2.83
0.110
IO
0.95
OMW-
18.417
2.37
2.75
0.107
IO
0.93
18.500
2.34
2.68
0.105
IO
0.92
°
18.583
2.32
2.62
0.103
IO
0.90
18.667
2.29
2.57
0.101
IO
0.89
18.750
2.26
2.51
0.099
IO
0.88
18.833
2.23
2.47
0.097
IO
0.87
18.917
2.21
2.42
0.096
1 0 I
0.86
19.000
2.18
2.38
0.094
0
0.86
19.083
2.16
2.35
0.093
0
0.85
19.167
2.13
2.31
0.092
0
0.84
19.250
2.11
2.28
0.090
0
0.84
19.333
2.09
2.25
0.089
0
0.83
19.417
2.07
2.22
0.088
O
0.82
19.500
2.05
2.19
0.087
0
0.82
19.583
2.03
2.16
0.086
0 I
0.81
19.667
2.01
2.14
0.085
0
0.81
19.750
1.99
2.11
0.084
0
0.80
19.833
1.97
2.09
0.084
0
0.80
19.917
1.95
2.07
0.083
0
0.79
20.000
1.94
2.05
0.082
0
0.79
20.083
1.92
2.03
0.081
0
0.79
20.167
1.90
2.01
0.081
0
0.78
20.250
1.89
1.99
0.080
0
0.78
20.333
1.87
1.97
0.079
0
0.77
20.417
1.86
1.95
0.079
0 1
0.77
20.500
1.84
1.93
0.078
0
0.77
20.583
1.83
1.92
0.077
0
( 0.76
20.667
1.82
1.90
0.077
0
0.76
o""`
20.750
1.80
1.88
0.076
0
0.76
20.833
1.79
1.87
0.076
I O
0.75
20.917
1.78
1.85
0.075
0
0.75
21.000
1.77
1.84
0.075
I O
0.75
21.083
1.75
1.83
0.074
0
0.75
21.167
1.74
1.81
0.074
0
0.74
21.250
1.73
1.80
0.073
0
0.74
21.333
1.72
1.79
0.073
0
0.74
21.417
1.71
1.77
0.072
0 I
0.73
21.500
1.70
1.76
0.072
O
( 0.73
21.583
1.69
1.75
0.071
0
0.73
21.667
1.68
1.74
0.071
I O I
I 0.73
21.750
1.67
1.73
0.071
0 I I
0.73
21.833
1.66
1.72
0.070
O
0.72
21.917
1.65
1.71
0.070
I O I I
0.72
22.000
1.64
1.69
0.069
0 (
0.72
22.083
1.63
1.68
0.069
JIO
( 0.72
22.167
1.62
1.67
0.069
JIO
0.71
22.250
1.61
1.66
0.068
JIO
0.71
22.333
1.60
1.65
0.068
JIO
0.71
22.417
1.60
1.64
0.068
JIO
0.71
22.500
1.59
1.64
0.067
JIO
0.71
22.583
1.58
1.63
0.067
10
0.71
22.667
1.57
1.62
0.067
10
0.70
22.750
1.56
1.61
0.066
10
0.70
22.833
1.56
1.60
0.066
10
0.70
22.917
1.55
1.59
0.066
10
0.70
'too*"
23.000
1.54
1.58
0.065
10
0.70
Remaining water in basin = 0.00 (Ac.Ft)
****************************HYDROGRAPH DATA****************************
Number of intervals = 309
Time interval = 5.0 (Min.)
Maximum/Peak flow rate = 10.335 (CFS)
Total volume = 4.793 (Ac.Ft)
Status of hydrographs being held in storage
Stream 1 Stream 2 Stream 3 Stream 4 Stream 5
Peak (CFS) 0.000 0.000 0.000 0.000 0.000
Vol (Ac.Ft) 0.000 0.000 0.000 0.000 0.000
***********************************************************************
23.083
1.53
1.58
0.065
10
1
0.70
23.167
1.53
1.57
0.065
10
0.69
23.250
1.52
1.56
0.065
10
0.69
23.333
1.51
1.55
0.064
10
0.69
23.417
1.51
1.54
0.064
10
0.69
23.500
1.50
1.54
0.064
10
I 0.69
23.583
1.49
1.53
0.063
10
0.69
23.667
1.49
1.52
0.063
10
0.68
23.750
1.48
1.52
0.063
10
0.68
23.833
1.47
1.51
0.063
10
1
0.68
23.917
1.47
1.50
0.062
10
(
0.68
24.000
1.46
1.50
0.062
IO
0.68
24.083
1.36
1.48
0.062
IO
0.68
24.167
0.90
1.42
0.059
10
1
0.66
24.250
0.40
1.28
0.055
IO
0.64
24.333
0.20
1.11
0.048
IO
0.60
24.417
0.13
0.95
0.043
IO
0.57
24.500
0.09
0.80
0.037
0
0.54
24.583
0.06
0.67
0.033
0
( 0.51
24.667'
0.05
0.57
0.029
0
0.48
24.750
0.03
0.51
0.025
0
(
0.42
24.833
0.02
0.44
0.022
0
(
0.37
24.917
0.02
0.39
0.019
O
0.32
25.000
0.01
0.34
0.017
0
0.28
25.083
0.01
0.30
0.015
0
0.25
25.167
0.00
0.26
0.013
0
0.22
25.250
0.00
0.23
0.011
0
0.19
25.333
0.00
0.20
0.010
0
0.16
25.417
25.500
0.00
0.00
0.17
0.15
0.009
0.007
0
0
0.14
0.12
25.583
0.00
0.13
0.007
0
(
( 0.11
25.667
0.00
0.11
0.006
0
0.09
25.750
0.00
0.10
0.005
O
0.08
Remaining water in basin = 0.00 (Ac.Ft)
****************************HYDROGRAPH DATA****************************
Number of intervals = 309
Time interval = 5.0 (Min.)
Maximum/Peak flow rate = 10.335 (CFS)
Total volume = 4.793 (Ac.Ft)
Status of hydrographs being held in storage
Stream 1 Stream 2 Stream 3 Stream 4 Stream 5
Peak (CFS) 0.000 0.000 0.000 0.000 0.000
Vol (Ac.Ft) 0.000 0.000 0.000 0.000 0.000
***********************************************************************
Basin Routing Results
Flow Comparison Table
M
Tract 16271- Flow Comparison Table
Storm Intensity
Predevelo ed cfs
0.9 Predevelo ed cfs
Routed cfs
2 YEAR
4.3
3.9
3.7
10 YEAR
11.5
10.4
7.2
25 YEAR
14.7
13.3
8.5
100 YEAR
19.2
17.3
10.3
Emergency Spillway Calculations
Weir Calculation (10 ft Length)
N
Purpose - to determine maximum water surface over weir if outlet pipe fails durino 1000 year storm event and evaluate freeboard
H=((Q^2)/(CL^2))^(1 /3)
H = depth of water flowing over weir
C 3.4
Length 10
Q=1.35* Q100
= 1.35 * 27.0
= 36.45 cfs
Q cfs) H = depth (ft) Elev ft Max WS ft Q cfs) WS Elev ft)
36.45 1.0 1304.0 1305.0 36.45 1305.0
Maximum Water Surface in Detention Basin = 1303.5 (Initial water surface used in Line "B" WSPG)
Freeboard = Top of Berm Elevation - Water Surface
Freeboard = 1308.2 -1305.0 = 3.2 ft
so
V Swale
Water Surface Calculation
N
N
114
8
Tract 16271
V Swale Water Surface Calculation
Interim Condition
************************************************************************
»»CHANNEL INPUT INFORMATION««
CHANNEL Z1(HORIZONTAL/VERTICAL) = 20.00
Z2(HORIZONTAL/VERTICAL) = 20.00
BASEWIDTH(FEET) = 10.00
CONSTANT CHANNEL SLOPE(FEET/FEET) = 0.005000
UNIFORM FLOW(CFS) = 23.80 =10.3 (from basin) + 13.5 (from offsite)
MANNINGS FRICTION FACTOR = 0.0200
NORMAL -DEPTH FLOW INFORMATION:
»»> NORMAL DEPTH(FEET) = 0.49
FLOW TOP-WIDTH(FEET) = 29.45
FLOW AREA(SQUARE FEET) = 9.59
HYDRAULIC DEPTH(FEET) = 0.33
FLOW AVERAGE VELOCITY(FEET/SEC.) = 2.48
UNIFORM FROUDE NUMBER = 0.766
PRESSURE + MOMENTUM(POUNDS) = 236.07
AVERAGED VELOCITY HEAD(FEET) = 0.096
SPECIFIC ENERGY(FEET) = 0.582
CRITICAL -DEPTH FLOW INFORMATION:
CRITICAL FLOW TOP-WIDTH(FEET) = 26.93
CRITICAL FLOW AREA(SQUARE FEET) = 7.81
CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 0.29
CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 3.05
CRITICAL DEPTH(FEET) = 0.42
, CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 227.89
AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 0.144
CRITICAL FLOW SPECIFIC ENERGY(FEET) = 0.567
I
0� I ' i )o/ I
WSPGW
m
"Line A"
Ultimate Mainline
Beech Avenue
11
T1 Tract 16271 0
T2 Ultimate Mainline Storm Drain
T3
SO 3000.0001291.890 1 1295.390
R 3076.6501293.180 1 .013 .000 .000
0
JX 3081.3301294.760 2 .013
R 3190.9001300.900 2 .013 67.500 .000
0
WE 3190.9001300.900 3 .400
SH 3190.9001300.900 3 1300.900
CD 1 4 1 .000 3.500 .000 .000 .000 .00
CD 2 4 1 .000 2.500 .000 .000 .000 .00
CD 3 2 0 .000 4.500 21.000 .000 .000 .00
Q 27.010 .0
FILE: 16271sd2.WSW
W S P
G W- CIVILDESIGN Version
14.03
PAGE 1
Program
Package Serial
Number: 1382
WATER
SURFACE
PROFILE LISTING
Date: 3-17-2005
Time:
8:48:58
Tract
16271
Ultimate
Mainline Storm Drain
Invert
Depth
Water
Q
Vel
Vel I
Energy I
Super
ICriticalIFlow
TopjHeight/
Base Wtj
INo Wth
Station I
Elev
(FT)
Elev
(CFS) I
(FPS)
Head I
Grd.El.1
Elev
I Depth
I Width
Dia.-FTIor
I.D.1
ZL
IPrs/Pip
L/Eleni
•+,trrr,t•*I�.«*t.**tl****r..r,tl*«rr,r«.,trl,r«,r«r,t,t,t*I*,t,t,t,t.+l.*,t**.rl.:•r,e,ter*Ir*r**�*Ir,t,t,t+,t*+I+,t*.•..�I,rr
ICh Slope I
I
I
I
SF Aver
HF ISE
DpthIFroude
NINorm
Dp
I "N"
x,��,r.l.*r��,t•I.•t.,r
I X -Fall
ZR
IType Ch
I*++**,t ,t
3000.000
1291.890
3.500
1295.390
27.01
2.81
.12
1295.51
.00
1.60
.00
3.500
.000
.00
1 .0
.000
.0168
.0007
.00
3.50
.00
1.08
.013
.00
.00
PIPE
3000.000
1291.890
3.500
1295.390
27.01
2.81
.12
1295.51
.00
1.60
.00
3.500
.000
.00
1 .0
19.286
.0168
.0007
.01
3.50
.00
1.08
.013
.00
.00
PIPE
3019.286
1292.215
3.175
1295.390
27.01
2.94
.13
1295.52
.00
1.60
2.03
3.500
.000
.00
1 .0
10.789
.0168
.0007
.01
3.18
.24
1.08
.013
.00
.00
PIPE
3030.075
1292.396
2.987
1295.383
27.01
3.09
.15
1295.53
.00
1.60
2.48
3.500
.000
.00
1 .0
8.242
.0168
.0007
.01
2.99
.29
1.08
.013
.00
.00
PIPE
3038.317
1292.535
2.841
1295.375
27.01
3.23
.16
1295.54
.00
1.60
2.74
3.500
.000
.00
1 .0
HYDRAULIC
JUMP
3038.317
1292.535
.830
1293.365
27.01
15.47
3.71
1297.08
.00
1.60
2.98
3.500
.000
.00
1 .0
2.936
.0168
.0479
.14
.83
3.56
1.08
.013
.00
.00
PIPE
3041.253
1292.584
.824
1293.408
27.01
15.61
3.78
1297.19
.00
1.60
2.97
3.500
.000
.00
1 .0
9.981
.0168
.0520
.52
.82
3.60
1.08
.013
.00
.00
PIPE
3051.234
1292.752
.797
1293.549
27.01
16.37
4.16
1297.71
.00
1.60
2.94
3.500
.000
.00
1 .0
9.137
.0168
.0595
.54
.80
3.85
1.08
.013
.00
.00
PIPE
3060.371
1292.906
.771
1293.677
27.01
17.17
4.58
1298.25
.00
1.60
2.90
3.500
.000
.00
1 .0
8.423
.0168
.0681
.57
.77
4.11
1.08
.013
.00
.00
PIPE
C
A_` 1
FILE: 16271sd2.WSW
W S P
G W- CIVILDESIGN
Version
14.03
PAGE 2
Program
Package Serial Number: 1382
WATER
SURFACE
PROFILE LISTING
Date: 3-17-2005
Time:
8:48:58
Tract 16271
Ultimate Mainline Storm Drain
Invert
Depth
Water
Q
Vel
Vel I
Energy I
Super
ICriticallFlow
TopIHeight/
Base Wtj
INo Wth
Station
I Elev
(FT)
Elev
(CFS) I
(FPS)
Head I
Grd.El.1
Elev
I Depth
I Width
Dia.-FTIor
I.D.I
ZL
IPrs/Pip
L/Elem
�r*+r�*,t*I,t*r,r,r**rel+++++«**I.,e,e,rx,r*t+l+wt,t+*r,tt�*,t,rr•**rl,r***r**I**r:�r�*,rl+*�,r++wl«r+,+.rr+lr««**w,r•I•**+*,t,tlt*r*tw+rl,e�***
SCh Slope
I I
SF Avej
HF ISE
DpthIFroude
NINorm
Dp
I "N"
I X-Fall
ZR
IType Ch
I+•*+**.
3068.794
1293.048
.745
1293.793
27.01
18.01
5.03
1298.83
.00
1.60
2.87
3.500
.000
.00
1 .0
7.855
.0168
.0779
.61
.75
4.39
1.08
.013
.00
.00
PIPE
3076.650
1293.180
.721
1293.901
27.01
18.88
5.54
1299.44
.00
1.60
2.83
3.500
.000
.00
1 .0
JUNCT STR
3376
.0661
.31
1.06
4.68
.013
.00
.00
PIPE
3081.330
1294.760
.934
1295.695
27.01
16.14
4.04
1299.74
.21
1.77
2.42
2.500
.000
.00
1 .0
27.109
.0560
.0468
1.27
1.14
3.42
.90
.013
.00
.00
PIPE
3108.439
1296.279
.959
1297.238
27.01
15.57
3.77
1301.00
.20
1.77
2.43
2.500
.000
.00
1 .0
21.517
.0560
.0418
.90
1.16
3.25
.90
.013
.00
.00
PIPE
3129.956
1297.485
.994
1298.479
27.01
14.85
3.42
1301.90
.18
1.77
2.45
2.500
.000
.00
1 .0
14.193
.0560
.0366
.52
1.17
3.04
.90
.013
.00
.00
PIPE
3144.149
1298.280
1.030
1299.311
27.01
14.16
3.11
1302.42
.16
1.77
2.46
2.500
.000
.00
1 .0
10.302
.0560
.0322
.33
1.19
2.83
.90
.013
.00
.00
PIPE
3154.450
1298.858
1.067
1299.925
27.01
13.50
2.83
1302.75
.15
1.77
2.47
2.500
.000
.00
1 .0
7.817
.0560
.0282
.22
1.22
2.64
.90
.013
.00
.00
PIPE
3162.268
1299.296
1.107
1300.403
27.01
12.87
2.57
1302.98
.14
1.77
2.48
2.500
.000
.00
1 .0
6.179
.0560
.0248
.15
1.24
2.47
.90
.013
.00
.00
PIPE
3168.447
1299.642
1.148
1300.790
27.01
12.27
2.34
1303.13
.13
1.77
2.49
2.500
.000
.00
1 .0
4.958
.0560
.0218
.11
1.27
2.30
.90
.013
.00
.00
PIPE
0
(, )
FILE: 16271sd2.WSW
W S P
G W- CIVILDESIGN Version
14.03
PAGE 3
Program
Package Serial
Number: 1382
WATER
SURFACE
PROFILE LISTING
Date: 3-17-2005
Time:
8:48:58
Tract
16271
Ultimate
Mainline
Storm Drain
Invert
Depth
Water
Q
Vel
Vel I
Energy I
Super
ICriticalIFlow
TopIHeight/
Base Wtj
INo Wth
Station I
Elev
(FT)
Elev
(CFS)
(FPS)
Head I
Grd.El.1
Elev
I Depth
I Width
IDia.-FTIor
I.D.I
ZL
IPrs/Pip
L/Eleni
ttr*t�***I*,+*x,t,r**,+I*+**�*,r,rl+r+«**+��Ir,t*,r,r++,+,tl�+*****I*«+*,t+rl**,rr�**,trl*rrr*�*I+•*,r***,+I+r+�****I,r�,t*x**I�**rr,r�I•:�++
SCh Slope I
I
I
I
SF Aver
HF ISE
DpthIFroude
NINorm Dp
I "N"
I X -Fall
ZR
IType Ch
I*******
3173.405
1299.920
1.191
1301.111
27.01
11.70
2.13
1303.24
.11
1.77
2.50
2.500
.000
.00
1 .0
4.026
.0560
.0192
.08
1.31
2.14
.90
.013
.00
.00
PIPE
3177.430
1300.145
1.236
1301.381
27.01
11.16
1.93
1303.31
.10
1.77
2.50
2.500
.000
.00
1 .0
3.289
.0560
.0169
.06
1.34
2.00
.90
.013
.00
.00
PIPE
3180.719
1300.330
1.283
1301.613
27.01
10.64
1.76
1303.37
.09
1.77
2.50
2.500
.000
.00
1 .0
2.667
.0560
.0149
.04
1.38
1.86
.90
.013
.00
.00
PIPE
3183.387
1300.479
1.333
1301.812
27.01
10.14
1.60
1303.41
.09
1.77
2.49
2.500
.000
.00
1 .0
2.173
.0560
.0131
.03
1.42
1.73
.90
.013
.00
.00
PIPE
3185.560
1300.601
1.385
1301.986
27.01
9.67
1.45
1303.44
.08
1.77
2.49
2.500
.000
.00
1 .0
1.733
.0560
.0116
.02
1.46
1.61
.90
.013
.00
.00
PIPE
3187.292
1300.698
1.440
1302.138
27.01
9.22
1.32
1303.46
.07
1.77
2.47
2.500
.000
.00
1 .0
1.354
.0560
.0103
.01
1.51
1.49
.90
.013
.00
.00
PIPE
3188.647
1300.774
1.498
1302.272
27.01
8.79
1.20
1303.47
.06
1.77
2.45
2.500
.000
.00
1 .0
1.003
.0560
.0091
.01
1.56
1.38
.90
.013
.00
.00
PIPE
3189.649
1300.830
1.560
1302.390
27.01
8.38
1.09
1303.48
.06
1.77
2.42
2.500
.000
.00
1 .0
.712
.0560
.0080
.01
1.62
1.28
.90
.013
.00
.00
PIPE
3190.362
1300.870
1.625
1302.495
27.01
7.99
.99
1303.49
.05
1.77
2.38
2.500
.000
.00
1 .0
.412
.0560
.0071
.00
1.68
1.18
.90
.013
.00
.00
PIPE
FILE: 16271sd2.WSW
W S P G W- CIVILDESIGN Version
14.03
PAGE 4
Program
Package Serial Number: 1382
WATER
SURFACE
PROFILE LISTING
Date: 3-17-2005
Time:
8:48:58
Tract 16271
Ultimate Mainline Storm Drain
t,r*a,r,t�,t,r,r+*�,r,e,r,r*•,r**x***r�*,r*+r+*�+*,r**�««+*,t*t*+***rr+*,r,r*,r,r,r*+**.*,rt+****+r,r�*«,r*,r*,r,e,r,r,r*,r,r,t,t««,t«•,r*«*,r
+tw+r**,tr*,r *+r
,r ,t,+•
*+*,r+rr.*
Invert
Depth Water
Q Vel
Vel I
Energy I
Super
ICriticalIFlow ToplHeight/ Base Wtj
INo Wth
Station
I Elev
(FT) Elev
(CFS) I (FPS)
Head I
Grd.El.1
Elev
I Depth I Width
Dia.-FTIor I.D.1
ZL
IPrs/Pip
L/Eleni
***r,t*+*.I*«*+**,r*�I**+*,ria.l..,r*+*,t,r*I+•*r.t,r,r�l�+«*��rl,e+««rrrlr*�*r«+**It**err*�r++r+rrrl+r*,tt***I**,r**+*I,r++�+**I*.**.
ICh Slope
I (
I I
SF Aver
HF ISE
DpthIFroude
NINorm Dp
I "N" I X -Fall
ZR
IType Ch
I,e++**+r.
3190.774
1300.893
1.695 1302.588
27.01 7.62
.90
1303.49
.05
1.77 2.34
2.500 .000
.00
1 .0
.126
.0560
.0064
.00
1.74
1.09 .90
.013 .00
.00
PIPE
3190.900
1300.900
1.772 1302.672
27.01 7.26
.82
1303.49
.04
1.77 2.27
2.500 .000
.00
1 .0
WALL ENTRANCE
3190.900
-I-
1300.900
-I-
3.081 1303.981
-I- -I-
27.01 .42
-I- -I-
.00
-I-
1303.98
-I-
.00
-I-
.37 21.00
-I- -I-
4.500 21.000
-I- -I-
.00
0 .0
I-
A
"Line B"
Inlet for Detention Basin
R
T1 Tract 16271 Line "B" Detention Basin Inlet 0
T2
T3
SO 1000.0001300.900 1 1303.500
R 1036.0101301.010 4 .013 .000 .000
0
R 1063.4301301.090 10 .013 16.196 .000
0
WE 1063.4301301.090 2 .500
SH 1063.4301301.090 2 - 1301.090
CD 1 4 1 .000 2.500 .000 .000 .000 .00
CD 2 2 0 .000 4.500 3.000 .000 .000 .00
CD 4 4 1 .000 2.500 .000 .000 .000 .00
CD 6 4 1 .000 2.500 .000 .000 .000 .00
CD 8 4 1 .000 2.500 .000 .000 .000 .00
CD 10 4 1 .000 2.500 .000 .000 .000 .00
Q 27.010 .0
10
FILE: 16271in.WSW
W S P
G W- CIVILDESIGN Version
14.03
PAGE 1
Program
Package Serial
Number: 1382
WATER
SURFACE
PROFILE LISTING
Date:10-25-2004
Time:
4: 4:54
Tract
16271
Line "B" Detention
Basin Inlet
Invert ( Depth i
Water
I Q 1
Vel
Vel I
Energy I
Super
ICriticallFlow ToplHeight/lBase Wtl
INo Wth
Station I Elev 1
(FT) I
Elev
I (CFS) I
(FPS)
Head I
Grd.El.I
Elev
I Depth I
Width
IDia.-FTIor I.D.I
ZL
IPrs/Pip
L/Elem ICh Slope I
I
I 1
SF Avel
HF ISE DpthlFroude
NINorm
Dp
I "N" I X -Fall
ZR
(Type Ch
1000.000 1300.900
2.600
1303.500
27.01
5.50
.47
1303.97
.00
1.77
.00
2.500 .000
.00
1 .0
36.010 .0031
.0043
.16
2.60
.00
2.50
.013 .00
.00
PIPE
1036.010 1301.010
2.646
1303.656
27.01
5.50
.47
1304.13
.00
1.77
.00
2.500 .000
.00
1 .0
27.420 .0029
.0043
.12
.00
.00
2.50
.013 .00
.00
PIPE
1063.430 1301.090
2.725
1303.815
27.01
5.50
.47
1304.29
.00
1.77
.00
2.500 000
.00
1 .0
WALL ENTRANCE
1063.430 1301.090
3.252
1304.342
27.01
2.77
.12
1304.46
01
1.36
3.00
4.500 3.000
00
0 .0
"Line U
Outlet for Detention Basin
m
T1
Tract 16271 Detention Basin Outlet
0
T2
T3
SO
1000.0001300.280
5
1300.280
R
1017.5101300.330
5
.013
.000 .000
0
R
1089.7601300.550
13
.013
89.992 .000
0
R
1105.0101300.600
5
.013
.000 .000
0
WE
1105.0101300.600
6
.500
SH
1105.0101300.600
1
1300.600
CD
1 4 1 .000
1.500
.000
.000
.000
.00
CD
3 4 1 .000
1.500
.000
.000
.000
.00
CD
5 4 1 .000
1.500
.000
.000
.000
.00
CD
6 2 0 .000
3.000
10.000
.000
.000
.00
CD
8 4 1 .000
1.500
.000
.000
.000
.00
CD
10 1 0 .000
1.000
10.00020.00020.000
.00
CD
11 1 0 .000
1.000
1.50020.00020.000
.00
CD
13 4 1 .000
1.500
.000
.000
.000
.00
Q
10.335
.0
C',
FILE: 1627ldbo.WSW
W S P
G W- CIVILDESIGN
Version
14.03
PAGE 1
Program
Package Serial Number: 1382
WATER
SURFACE
PROFILE LISTING
Date: 3-17-2005
Time:
8:45:37
Tract 16271 Detention Basin Outlet
Invert
Depth
Water (
Q
Vel
Vel I
Energy (
Super
ICriticalIFlow
ToplHeight/
Base Wtj
(No Wth
Station
I Elev
(FT)
Elev
(CFS) I
(FPS)
Head I
Grd.El.1
Elev
I Depth
I Width
Dia.-FTIor
I.D.1
ZL
IPrs/Pip
L/Elem
•*««��*�,r
ICh Slope I
I �+**,r**** I
I
,r*,rrrr,+t'
I
�***,e*«** I
I
♦,r,tr**,t ,t,r I
*w«�**� I
SF Aver
*,t+�r,r* I
HF ISE
***•tr,t*� I
DpthIFroude
*r*•**,t
NINorm
I ****,r ,t ,r*
DP
I t+r+.•,r**
I "N"
I *,r,r�,r,r,r
I X -Fall
I •r***,r* I
ZR
+,e***
IType Ch
I w+tr*r,r*
1000.000
1300.280
1.237
1301.517
10.34
6.63
.68
1302.20
.00
1.24
1.14
1.500
.000
.00
1 .0
1.295
.0029
.0092
.01
1.24
1.00
1.50
.013
.00
.00
PIPE
1001.295
1300.284
1.307
1301.591
10.34
6.32
.62
1302.21
.00
1.24
1.00
1.500
.000
.00
1 .0
5.856
.0029
.0086
.05
1.31
.87
1.50
.013
.00
.00
PIPE
1007.151
1300.300
1.397
1301.698
10.34
6.03
.56
1302.26
.00
1.24
.76
1.500
.000
.00
1 .0
10.359
.0029
.0087
.09
1.40
.71
1.50
.013
.00
.00
PIPE
1017.510
1300.330
1.490
1301.820
10.34
5.85
.53
1302.35
.00
1.24
.24
1.500
.000
.00
1 .0
1.505
.0030
.0090
.01
1.49
.38
1.50
.013
.00
.00
PIPE
1019.015
1300.335
1.500
1301.835
10.34
5.85
.53
1302.37
1.50
1.24
.00
1.500
.000
.00
1 .0
70.745
.0030
.0093
.66
1.50
.00
1.50
.013
.00
.00
PIPE
1089.160
1300.550
2.074
1302.625
10.34
5.85
.53
1303.16
.00
1.24
.00
1.500
.000
.00
1 .0
15.250
.0033
.0097
.15
2.07
.00
1.50
.013
.00
.00
PIPE
1105.010
1300.600
2.172
1302.772
10.34
5.85
.53
1303.30
.00
1.24
.00
1.500
.000
.00
1 .0
WALL ENTRANCE
1105.010
-I-
1300.600
-I-
2.967
-I-
1303.567
-I-
10.34
-I-
.35
-I-
.00
-I-
1303.57
-I-
.00
-I-
.32
-I-
10.00
-I-
3.000
-I-
10.000
-I-
.00
0 .0
I-
T1
Tract 16271 Detention Basin Outlet
0
T2
T3
SO
1000.0001300.280
5
1300.280
R
1017.5101300.330
5
.013
.000 .000
0
R
1089.7601300.550
13
.013
89.992 .000
0
R
1105.0101300.600
5
.013
.000 .000
0
WE
1105.0101300.600
6
.500
SH
1105.0101300.600
1
1300.600
CD
1 4 1 .000
1.500
.000
.000
.000
.00
CD
3 4 1 .000
1.500
.000
.000
.000
.00
CD
5 4 1 .000
1.500
.000
.000
.000
.00
CD
6 2 0 .000
3.000
10.000
.000
.000
.00
CD
8 4 1 .000
1.500
.000
.000
.000
.00
CD
10 1 0 .000
1.000
10.00020.00020.000
.00
CD
11 1 0 .000
1.000
1.50020.00020.000
.00
CD
13 4 1 .000
1.500
.000
.000
.000
.00
Q
1.000
.0
Q
5.000
.0
Q
10.000
.0
Q
15.000
.0
Q
20.000
.0
m
FILE: 1627ldbo.WSW
W S P
G W- CIVILDESIGN
Version
14.03
PAGE 1
Program
Package Serial Number: 1382
WATER
SURFACE
PROFILE LISTING
Date: 3-17-2005
Time:
1:10: 3
Tract 16271 Detention Basin Outlet
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++
Invert
Depth
Water
Q
Vel
Vel I
Energy I
Super
ICriticalIFlow
ToplHeight/
Base Wtj
INo Wth
Station I
Elev
(FT)
Elev
(CFS) I
(FPS)
Head I
Grd.El.1
Elev
I Depth I
Width
Dia.-FTIor
I.D.1
ZL
IPrs/Pip
L/Eleni
ICh Slope I
I
{
I
SF Aver
HF ISE DpthIFroude
NINorm
Dp I "N"
I X -Fall
ZR
IType Ch
1000.000
1300.280
.373
1300.653
1.00
2.92
.13
1300.79
.00
.37
1.30
1.500
.000
.00
1 .0
.099
.0029
.0046
.00
.37
1.00
.43
.013
.00
.00
PIPE
1000.099
1300.280
.385
1300.665
1.00
2.78
.12
1300.79
.00
.37
1.31
1.500
.000
.00
1 .0
2.575
.0029
.0040
.01
.39
.94
.43
.013
.00
.00
PIPE
1002.674
1300.288
.399
1300.687
1.00
2.65
.11
1300.80
.00
.37
1.33
1.500
.000
.00
1 .0
4.459
.0029
.0035
.02
.40
.88
.43
.013
.00
.00
PIPE
1007.133
1300.300
.412
1300.712
1.00
2.53
.10
1300.81
.00
.37
1.34
1.500
.000
.00
1 .0
10.377
.0029
.0032
.03
.41
.82
.43
.013
.00
.00
PIPE
1017.510
1300.330
.422
1300.752
1.00
2.45
.09
1300.85
.00
.37
1.35
1.500
.000
.00
1 .0
4.641
.0030
.0030
.01
.42
.79
.42
.013
.00
.00
PIPE
1022.151
1300.344
.422
1300.766
1.00
2.46
.09
1300.86
.00
.37
1.35
1.500
.000
.00
1 .0
67.609
.0030
.0030
.20
.42
.79
.42
.013
.00
.00
PIPE
1089.760
1300.550
.422
1300.972
1.00
2.46
.09
1301.07
.00
.37
1.35
1.500
.000
.00
1 .0
15.250
.0033
.0031
.05
.42
.79
.41
.013
.00
.00
PIPE
1105.010
1300.600
.416
1301.016
1.00
2.50
.10
1301.11
.00
.37
1.34
1.500
.000
.00
1 .0
WALL ENTRANCE
1105.010
-I_
1300.600
_I_
.569
_I_
1301.169
_I-
1.00
_I_
.18
_I-
.00
_I_
1301.17
-I_
.00
_I_
.07
-I-
10.00
3.000
_I_ -I_
10.000
_I_
.00
0 .0
I-
0
0
FILE: 1627ldbo.WSW
W S P
G W- CIVILDESIGN
Version
14.03
PAGE 1
Program
Package Serial
Number: 1382
WATER
SURFACE
PROFILE LISTING
Date: 3-17-2005
Time:
1:10: 4
Tract 16271 Detention Basin Outlet
**�r,tr,t**•««*,r*�«wr,t�*•**r•*«,t•*•r*r+r•**«*.**:�.***,e+*rr,e,r«••r*��,t*,t***••**,r**,r�,rtr,t*+rr*•**,+,r,t�••,r**«r***•r**•*t�+�,r***,t
,r•
*,r**•�•,r
Invert
Depth
Water
Q
Vel
Vel I
Energy I
Super
ICriticallFlow
ToplHeight/IBase
WtI
INo Wth
Station
I Elev
(FT)
Elev
(CFS) I
(FPS)
Head I
Grd.El.I
Elev
I Depth I
Width
IDia.-FTIor
I.D.I
ZL
IPrs/Pip
L/Eleni
ICh Slope
I I
I I
SF Avel
HF ISE
DpthlFroude
NINorm
Dp I "N" I
X-Fall)
ZR
IType Ch
1000.000
I I
1300.280
I
.860
1301.140
I I
5.00
4.77
i
.35
i
1301.49
.00
I I
.86
1.48
I I
1.500
I
.000
.00
I
1 .0
.685
.0029
.0054
.00
.86
1.00
1.10
.013
.00
.00
I_
PIPE
1000.685
I
1300.282
I I
.894
1301.176
I I
5.00
4.55
I
.32
I
1301.50
.00
i I
.86
1.47
I I
1.500
I
.000
.00
I
1 .0
-I-
3.977
-I-
.0029
-I-
-i-
-i-
-I-
-I-
.0048
-I-
.02
-I-
.89
-I-
.93
-I-
1.10
-I-
.013
-I-
.00
.00
1-
PIPE
1004.662
I
1300.293
I I
.931
1301.224
I I
5.00
4.34
I
.29
I
1301.52
.00
I I
.86
1.46
I i
1.500
I
.000
.00
I
1 .0
-I-
8.799
-i-
.0029
-I-
-I-
-I-
-I-
-I-
.0043
-I-
.04
-I-
.93
-i-
.86
-I-
1.10
-I-
.013
-I-
.00
.00
1-
PIPE
1013.461
I
1300.318
I I
.970
1301.289
I I
5.00
4.13
I
.27
I
1301.55
.00
i I
.86
1.43
I I
1.500
I
.000
.00
I
1 .0
4.049
.0029
.0039
.02
.97
.79
1.10
.013
.00
.00
PIPE
1017.510
I
1300.330
I I
.982
1301.312
I i
5.00
4.08
I
.26
I
1301.57
.01
I I
.86
1.43
I I
1.500
I
.000
.00
I
1 .0
-I-
30.334
-I-
.0030
-I-
-I-
-I-
-i-
-i-
.0037
-I-
.11
-I-
.99
-I-
.78
1.07
-I- -I-
.013
-I-
.00
.00
1-
PIPE
1047.844
I
1300.422
I
1.024
I
1301.446
I I
5.00
3.89
I
.23
I
1301.68
.01
I
.86
I
1.40
I I
1.500
I
.000
.00
I
1 .0
41.916
.0030
.0033
.14
1.03
.71
1.07
.013
.00
.00
I_
PIPE
1089.760
I
1300.550
I
1.049
I
1301.599
I I
5.00
3.79
I
.22
I
1301.82
.00
I
.86
I
1.38
i
1.500
I I
.000
.00
I
1 .0
15.250
.0033
.0032
.05
1.05
.68
1.04
.013
.00
.00
I_
PIPE
1105.010
I
1300.600
I
1.048
I
1301.648
i I
5.00
3.79
I
.22
i
1301.87
.00
I
.86
I
1.38
I
1.500
I I
.000
.00
I
1 .0
WALL ENTRANCE
I_
1105.010
-I-
I
1300.600
-I-
I
1.425
-I-
I
1302.025
-I-
I I
5.00
-I-
.35
-I-
I
.00
-I-
I
1302.03
-I-
.00
-I-
I
.20
-I-
I
10.00
I
3.000
-I- -I-
I I
10.000
-I-
.00
I
0 .0
I-
FILE: 1627ldbo.WSW
W S P
G W- CIVILDESIGN
Version
14.03
PAGE 1
Program
Package Serial
Number: 1382
WATER SURFACE
PROFILE LISTING
Date: 3-17-2005
Time:
1:10: 4
Tract 16271 Detention Basin Outlet
.�#**+•err*.*,r,r***..«r*.,t+�,s+*,r**r*,r•r*►�r*r*.*,er,t«,t,r+.,r**,e,e*.,r.«««,t*,t*«+e+**.,rt,r,r«ws*+*,r�.��*•**,r*,a,r*�,r*.,+,r.t,t*r,t•,r*•,r+�**
r***«.*,r
Invert
Depth (
Water
Q
Vel Vel I
Energy I
Super
ICriticalIFlow
ToplHeight/
Base Wtj
INo Wth
Station
I Elev
(FT)
Elev
(CFS) I
(FPS) Head I
Grd.El.1
Elev
I Depth I
Width
Dia.-FTIor
I.D.1
ZL
jPrs/Pip
-I-
L/Eleni
-I-
SCh Slope I
-I-
I
-I-
I
-1-
I
-I- -I-
SF Aver
-I-
HF ISE
-I-
DpthIFroude
-I-
NINorm
-I-
Dp
-I-
I "N"
-I-
I X-Fall
ZR
-I
IType Ch
r,r,r,rr*•••I*�*+*�*r*I**ww«�«�I+*,ttr•rrrl+*«•,r,rr+•I*,t*�«*,+I«�*t+rrl*****++Irl♦,r**•••Ir***,+��•I,t+�*t**�I,r*.*++r,rlrs*�+,+wlr,r**•
I•rr**rr
1000.000
1300.280
1.219
1301.499
10.00
6.50 .66
1302.16
.00
1.22
1.17
1.500
.000
.00
1 .0
1.301
.0029
.0088
.01
1.22
1.00
1.50
.013
.00
.00
PIPE
1001.301
1300.284
1.286
1301.570
10.00
6.20 .60
1302.17
.00
1.22
1.05
1.500
.000
.00
1 .0
5.219
.0029
.0082
.04
1.29
.88
1.50
.013
.00
.00
PIPE
1006.520
1300.299
1.368
1301.667
10.00
5.91 .54
1302.21
.00
1.22
.85
1.500
.000
.00
1 .0
10.990
.0029
.0080
.09
1.37
.74
1.50
.013
.00
.00
PIPE
1017.510
1300.330
1.464
1301.794
10.00
5.69 .50
1302.30
.01
1.22
.46
1.500
.000
.00
1 .0
5.714
.0030
.0082
.05
1.47
.51
1.50
.013
.00
.00
PIPE
1023.224
1300.347
1.500
1301.847
10.00
5.66 .50
1302.34
1.50
1.22
.00
1.500
.000
.00
1 .0
66.536
.0030
.0088
.58
1.50
.00
1.50
.013
.00
.00
PIPE
1089.760
1300.550
1.996
1302.546
10.00
5.66 .50
1303.04
.00
1.22
.00
1.500
.000
.00
1 .0
15.250
.0033
.0091
.14
2.00
.00
1.50
.013
.00
.00
PIPE
1105.010
1300.600
2.084
1302.684
10.00
5.66 .50
1303.18
.00
1.22
.00
1.500
.000
.00
1 .0
WALL ENTRANCE
1105.010
1300.600
2.828
1303.428
10.00
.35 .00
1303.43
.00
.31
10.00
3.000
10.000
.00
0 .0
n n n
FILE: 1627ldbo.WSW
W S P G W- CIVILDESIGN Version 14.03
Program Package Serial Number: 1382
WATER SURFACE PROFILE LISTING
Tract 16271 Detention Basin Outlet
PAGE 1
Date: 3-17-2005 Time: 1:10: 4
Invert
Depth
Water
Q
Vel
Vel
Energy I
Super
ICriticallFlow
ToplHeight/
Base Wtj
INo Wth
Station
I Elev
(FT)
Elev
(CFS) I
(FPS)
Head I
Grd.E1.1
Elev
I Depth I
Width
Dia.-FTIor
I.D.1
ZL
IPrs/Pip
L/Eleni
*,r�,►+*,r**I,t*,r****,r•I++r*•r**Irr*•,r•*+rl,rr�w*:**+I,rr**••*I***«+r,e*I*•*,r*****I**+r*,t�I***««r+*I*r�*«*r*I****,tw,tl►�*�**�I****+
ICh Slope I
I
I
I
SF Avel
HF ISE
DpthIFroude
NINorm
Dp
I "N" I
X -Fall
ZR
IType Ch
I•+**,e««
1000.000
1300.280
1.406
1301.686
15.00
8.72
1.18
1302.87
.00
1.41
.73
1.500
.000
.00
1 .0
2.146
.0029
.0183
.04
1.41
1.00
1.50
.013
.00
.00
PIPE
1002.146
1300.286
1.500
1301.786
15.00
8.49
1.12
1302.90
.00
1.41
.00 _
1.500
.000
.00
1 .0
15.364
.0029
.0197
.30
1.50
.00
1.50
.013
.00
.00
PIPE
1017.510
1300.330
1.769
1302.099
15.00
8.49
1.12
1303.22
.00
1.41
.00
1.500
.000
.00
1 .0
72.250
.0030
.0204
1.47
.00
.00
1.50
.013
.00
.00
PIPE
1089.760
1300.550
3.246
1303.796
15.00
8.49
1.12
1304.92
.00
1.41
.00
1.500
.000
.00
1 .0
15.250
.0033
.0204
.31
3.25
.00
1.50
.013
.00
.00
PIPE
1105.010
1300.600
3.507
1304.107
15.00
8.49
1.12
1305.23
.00
1.41
.00
1.500
.000
.00
1 .0
WALL ENTRANCE
1105.010
1300.600
5.184
1305.784
15.00
.29
.00
1305.79
.00
.41
10.00
3.000
10.000
.00
0 .0
0
0
0
FILE: 1627ldbo.WSW
W S P
G W- CIVILDESIGN Version
14.03
PAGE 1
Program
Package Serial
Number: 1382
WATER SURFACE PROFILE LISTING
Date: 3-17-2005
Time:
1:10: 4
Tract 16271 Detention Basin Outlet
r•r*+,t*,t,e,t.,t,t****�,tr,t.«,t**�•,r*.,rr«,r«••,t•w.***,t,r«**,rr*r*�*r«*«,tr*****,t**•r*,r,r.,r*,r*,tr,t+*+t.,r,ra,r**,t,t,trr••,r,e,e,t*,t«***r,t.�,tr.r*,t
,e•**,t**.
I Invert I
Depth I
Water I
Q I
Vel Vel I Energy I
Super
ICriticallFlow
ToplHeight/IBase
Wt1
INo Wth
Station
I EleV I
(FT) I
Elev I
(CFS) I
(FPS) Head I Grd.E1.1
Elev
I Depth
I Width
IDia.-FTIor
I.D.1
ZL
IPrs/Pip
L/Eleni
ICh Slope I
I
I
I
SF Avel HF ISE DpthIFroude
NINorm
Dp
I "N" I
X -Fall)
ZR
IType Ch
1000.000
I I
1300.280
I
1.467
I
1301.747
I
20.00
I I
11.38 2.01 1303.76
.00
I
1.47
I
.44
i I
1.500
I
.000
.00
i
1 .0
.362
.0029
.0331 .01
1.47
1.00
1.50
.013
.00
.00
PIPE
1000.362
1300.281
1.500
1301.781
20.00
11.32 1.99 1303.77
.00
1.47
.00
1.500
.000
.00
1 .0
17.148
.0029
.0350 .60
1.50
.00
1.50
.013
.00
.00
PIPE
1017.510
1300.330
2.073
1302.403
20.00
11.32 1.99 1304.39
.00
1.47
.00
1.500
.000
.00
1 .0
72.250
.0030
.0363 2.62
.00
.00
1.50
.013
.00
.00
PIPE
1089.760
1300.550
4.869
1305.420
20.00
11.32 1.99 1307.41
.00
1.47
.00
1.500
.000
.00
1 .0
15.250
.0033
.0363 .55
4.87
.00
1.50
.013
.00
.00
PIPE
1105.010
1300.600
5.372
1305.972
20.00
11.32 1.99 1307.96
.00
1.47
.00
1.500
.000
.00
1 .0
WALL ENTRANCE
1105.010
_I_
I
1300.600
_I_
I
8.355
_I_
I
1308.955
_I_
I I
20.00
_I_
I I
.24 .00 1308.96
_I_ _I_ _I_
.00
_I_
I
.50
_I_
I
10.00
I
3.000
_I_ _I_
I I
10.000
_I_
.00
I
0 .0
I_
Reference Material
A
City of Fontana
APPENDIX A
DETENTION BASIN POLICY AND DESIGN CRITERIA
A
DETENTION BASIN Pn� ICY AND OES►[`ryg�ITr.�
New development may increa$e flood hazards to downstream properties unless
adequate . drainage facilities are provided to mitigate
Problems- The most desirable drainage
mitigation of potential rainage Problems is the
construction of street improvements and/or permanent drainage facilities to
convey the increased drainage flows generated by the development.
The drainage facilities and/or street system should be connected to an ultimate
drainage system. and, if Possible. the drainage
constructed as part of the City's Comprehensivve em should be designed and
storm drain plan.
Oetentlon basins are often used as a part of the r
or as a temporary part of the Local, uldrnate dra,��s flood
Control system
detention fad ity is norm 9 system. A regional
drainage flows decrease se used to and/or regulate downstream
downstream. drainage
Provide or water consemadon. q 9 systems, or to
Gonstticted as a part of the..San Bernard' o County � bash are normally
system or are *basins; that can bb' � FlOOd Control District
extsdrtg or proposed drainageorporated into the Flood Control's District's
system.
Except for regional detention basins and water conservation basins, .detention
basins will not normally be permftted as a permanent part of the ultimate
drainage system. This is due to the relatively high maatt
nuisance factors, potential safety hazards, and the general lacks factors,
and expertise of the City In mak t8ining such basins.. Of equipment
Except or joint use basins, at locations where such joint use is practical and
desirable. and regional basins are described above, the use of
detention basins will not norm beuse Permanent
detention basins is discussed below and conditions
Permitted'
ore the use � local
provided, of the basins
Definitions of regional, local, interim and joint use basins are provided in B, 1,
'Detention Basin Design Criteria. -
M
2. SSE OF INTERIM t.00AI DETENTION BASIN
In the event it is shown to be uneconomical or otherwise impractical to connect
to an existing portion of the ultimate drainage or flood control system, the use
of interim, local detention basins will be permitted. local detention basins are
difficult to monitor, expensive to maintain, any may become a public nuisance.
Therefore. in detention basins shall only be used when the following
conditions are met:
a. In the opinion of the City Engineer, the construction of an ultimate
drainage system to serve the development is not economically feasible
or practical.
b. The interim basins can be demonstrated to adequately mitigate
downstream drainage flows.
C. Sufficient detafled data to ensure their feasibility shall be provided prior -
to Planning Commission approval.
d. A maintenance and inspection program for the detention basins shall be
established. for each development. Funding shah be assured until such
time as the ultimate drainage system can be constructed.
•. Sufficient design kftmadon and detains shalt be provided to show that
the interim basins can be removed in the future and the development
drainage osy:stem can be integrated into the ultimate drainage system
unless this condition is waived by the City Engineer.
Joint use -basins shall be utilized only in those conditions where it is shown to
be uneconomical or otherwise impractical to construct or connect to an existing
portion of the ultimate drainage system, and ai beneficial Joint use for the*facility
can be demonstrated.
The same general conditions listed in Section A,2 above shalt be met tf the
joint use basin is to be considered a permanent facility, Section A,2,e, will not
be necessary.
The basin shall be site specific and shall be approved by all agencies involved.
C
8' DETENTION BASIN DESIGN
RI
c -o.,
r cnlH
The fallowing design parameters and criteria are provided as
Proper detention basin design, construction and operation.
When
to ensure
solutely
necess* and dependent upon site conditions, P when ab
approved in writin these guidelines may be modified
justify and Support g_ by the City Engineer. An engineering report will be necessary it
PPort any modifications. ry to
�• .DEFINIT7r�Ne
a• Regional Detention Basin
t) A basin which can be incorporated into the Flood
Districts existing or proposed drainage Control
9 system,
2) Basin owned and operated by the Flood Control
although it may be joint use; District,
and
3) A basin which will reduce the downstream
and the necessary downstream storm Peak flow rate
drain si2B.
b• - Local Detention Basin
t) A basin which win not be .
Control District's existin gated into the Flood
9 or Proposed drainage system,
2) A basin owned by an individual or organization other
the Flood Controi Distrix and than
3) A basin which will reduce the downstream
but will not be considered in flow rate,
considered
dovrms'zin9 future
downstream storm drains_
C. Joint Use Detention Basin
A regional or local detention basin which has an additional use
such as football field, parking lot, golf course. lake, etc.
d• Temporary Detention Basin
t) A local detention basin used to reduce downstream peak
flow rates until ultimate storm drain faalftfes can be
constructed as part of a phased development, and
2) Generally, the life of the basin shall not exceed 10 years.
3
9. Design Criteria
Regional detention basins are assumed to- be a part of the
AOMk regional drainage system and. therefore. will be incorporated into
the District drainage system.
M
C
t All regional detention basins will be designed in accordance with
the San Bernardino County Flood Control District's
I Basin Design Criteria.- 'Detention
� m .
an joint ,te b� in � 0
be clAsinned
rdance with theses IT�n,�.,
2. BASIN CAPACITY AND Alm J 1E IN
a. When a basin is to be used to mitigate downstream impacts due
to increased flows generated by a development, the basin
capacity and outlet size shag be such that the post -development
peak flow rate generated by the development shall be less than
or equal to 90% of the Pre -development peak flow rate from the
site for all frequency storms up to and including 100 -year.
1) Only Z 10. 25 and 100 -year storms need to be analyzed.
2) Addrtlonal studies shag be submitted where there exists
more than one basin in the drainage area under review.
The studies shall address .t#ie tinning of the peak flowrates
from the basins to ensure downstream flow rates are not
increased.
b. When a basin (generally regional or regional joint use) is to be
used to reduce the size of a master planned downstream
drainage facility. the basin capacity and outlet size shag be such
that the 100 -year basin peak overflow rate is not greater than the
downstream facility's deskm capacity.
1) If the basin outlets into a Flood Control District channel,
open channel design capacities shall be per the San
Bemardino County Flood Control District criteria and
policy. A permit from the Flood Control District will be
required.
2) Pressure flow ddsed conduits shall be designed such that
the hydraulic grade line is below the ground or street
surface. In those reaches where no surface flow will be
intercepted (now or in the future), a hydraulic grade line
which encroaches on or is slightly higher than the ground
or street surface will be acceptable.
3) Non -pressure flow closed conduit capacities shall be
based on a Ilow depth no greater than 0.8 times the
conduit diameter or height.
C. Where downstream erosion is a major concern, the duration of
erosive flow velocities for all frequency storms shall not be
substantially increased unless other forms of ligation are
provided. This can be accomplished by reducing the peak flow
rate further than that required above. Refer to 'Handbook of
Hydraulics' by Horace Williams IGng and Earnest F. Brater. and
'Open Channel Hydraulics- by Ven To Chow, Ph.d., for erosive
flow velocities. In cases such as this, special studies and design
may be requir9d.
d. When there exists a potential for debris entering the basin, the
basin capacity shall be increased or a desittfng basin provided to
accommodate the debris production generated from a 100 -year
storm. four years after a bum .(o(er the entire watershed). plus
20% due to"maintenance uncerrtaintles.
1) For all basins where a significant am
ount -of deb* ris
accumulation is anticipateda debris disposal area or
areas may be required
2) 7A New Method of Estimating Debris -Storage
Requirements for Debris Basin' by Fred E. Tatum of the
U -S- Army Corps of Engineers shag be used for
determining the 100 -year debris volume.
3) The basin capacity for local detention basins fed by natural
drainage courses or earth channels with undeveloped
watershed less than 0.5 square mile shall be enlarged to
handle an additional five years of accumulated annual
debris based on the attached Figure 1. For basins fed by
natural drainage courses with watersheds larger than 0.5
- square mile, a special debris study may be necessary, or
a regional detention basin shag be utilized,
4) The basin capacity for detention basins located in
watersheds known to have a high risk of burning shall be
increased as determined .by the City Engineer.
C
e. Outlet Drain
✓ 1) The outlet pipe for all banns except temporary basins shall
be a minimum 24 -inch RCP (1,350 D minimum) for local
basins. The outlet pipe or conduit shall be encased with
cutoff collars per the 'Los Angeles County Flood Control
Design Manual - Debris Dams and Basins.' or designed
per 'Section 242, Cut -and -Cover Conduit Detail' of the
Bureau of Redamation's publication 'Design of Small
Dams.'
2) Reinforced concrete collars generally from 2 to 3 feet high,
12 to 18 inches wide, and spaced from 7 to 10 times their
height shall be provided
3) All joints for pipes not encased shall be rubber Basketed.
4) The pipe shall be capable of withstanding H2O We loads
plus the app%able dead loads.
5) Erosion contrd measures shag be provided at the outlet of
the basin outlet pipe.
6) Temporary basino(riiet pipes may be a minimum 244nch
CMP. 12 -gauge with seep rings. Design considerations
shag be as stated above.
7) A metered outlet structure may be necessary to provide
the necessary flow aWmation for ab frequency stoma.
'V' shaped weirs and notched weirs are preferred over.
other alternates because they do not plug with debris and
trash as easily as other designs. 'This condition may be
waived on a case-by-case basis by 'the City Engineer.
depending upon severity of drainage problem,
8) All detention basin outlets should be sized so the basin will
drain within 24 hours after the basin reaches its 100 -year
peak depth/volume. If the basin does not drain in 24
hours, further studies using longer duration storms will be
necessary. The basin storage volume (capacity) may
need to be increased to accommodate subsequent
storms.
9) Trash racks shall be provided at the inlet to the basin
outlet structure(s).
6
10) Where warranted, and at the discretion of the City
Avmftkl a depth gauge shall be provided on the basin outletsuint re
in order to monitor debris deposition and basin structure
11) And -vortex devices shall be provided where warranted.
f• Analysis Methodology
1) Pre -development and post -development peak flow rates shall
be developed during the procedures outlined in the San
Bernardino County Hydrology Manual. ax
below. The input parameters sept as modified
manual shall be modified as foil ) described in the
development peak flow rates: calculating the pro -
a) 10 -Year peak flow rates shall be calculated using
year rainfall,
b) 25 -year peak flow rates shall be calculated using 10 -
year rainfall, and
C) 100 -year peak flow rates shall be calculated using 25 -
year rainfall, and AMCII.
The basin outflow shalle m
pro -development � stared to 9096 of the calculated
opment Peak Bow rates. The past-d�opment
Peak flow rates % the basin shall be calculated in
accordance with the County Hydrology Manual
2) Basin inflow hydrographs shall be developed
procedures outlined in the San Bemardinoo oouuusing the
Manual, as modified. mY Hydrology
3) Basin outflow hydrograph routing shall be developed by the
Modified Puls Method.
4) Channel hydrograph routing shall be calculated by the
convex channel routing methods or by moving the
hydrograph utilizing travel time,
3 WATER SURFACE ELEVATION AND DEPTH
a. Local and Temporary Basins
1) Generally, no more than 50% of the basin's 100 -year storage
depth should be above existing ground, 1. e., 50% or more of
the 100 -year minimum storage depth must be below the
lowest ground outside basin. When feasible, the 100 -year
design water surface elevation should be at or below existing
natural ground.
C
2) The basin's maximum water depth for tO
-year design
should be 8 feet or less. Reference is made to 3.a(3) and
3,b,(2) below.
3) When site conditions warrant and safety can
be
the above depth requirements ma assured,
following conditions are met: Y be modified it the
a) The detention basin is designed in accord
the LAs Angeles County Flood control once with 'DDistrict's .'
-esign Manual - Debris Dams and gasins,�
b) The basin embankment is designed
constructed of material or has a soUd cowhich
does not allow seepage or Piping to occur due to
rodent holes.
b. Regional Basins
1) Depths shag be as approved by the Rood Control ptstrici
and the basin shop be designed in accordanCe with Olstnct
Oetentlon Basin Design Criteria
2) Basins with embankmorf heights greater am or
.25 feet and capacita('ir,eater than or equal to
or a capacity greater than or �af t equal to aas- acre-feet.
height greater than or tsh
feet �d a
and approvedby the State Division Ot Sall
be reviewed
(See Figure 2) of Dams.
C. Joint Use Basins
�) Depths should be shagovv and compatible with the
secondary use,
2) The allowable depth in most cases will be site specific and
shag be approved by all agencies involved.
a. AN detention basin spillways shag be designed *to pass the fully
developed 1,000 -year peak flow rate (O = 1.35 O,co = 2.11 0,d.
b• Spillway outflows -shall be adequately conveyed to a storm drain,
drainage channel, street or an established watercourse.
8
C. Generally, all spillway structures shall be constructed of reinforced
concrete. For temporary detention basins. the spillway may be
constructed with grouted rock or other forms of approved
protection designed to resist maximum design velocities. The
spillway may be waived for small temporary basins at the
-discretion of the City Engineer.
d. When the spillway crest is more than 3 feet above the flowfne of
the facility the spillway outlets into, the spillway shall be
constructed of reinforced concrete.
e• Generally, the spillway crest shall be at or above the basin's
design 100 -year high water line (HWL).
a- Local and temporary basins shall have a minimum 1-fogt 6f
freeboard above the 1,000 -year HWL on the emergency spillway
of 2 feet of freeboard above the 100 -year HWL in the basin,
Whichever is more stringent
b. Joint use basins shag conform to 09 applicable local or regional
freeboard requirements.
6. BASIN EMBANKMENT
a. _ Basin side slopes should be 3:1 or flatter on the wet side and 2:1
or flAtter on the dry side. Steeper slopes may be acceptable on
a caso-by-case basis it rock fined .and recommended in the soils
and geotechnical report
b. Top Width of Levee
1) Regional and local basins - 15 feet minimum"
2) Joint Use - site specific
3) Refer to Section 9,c
It may be possible to deviate from minimum for Temporary
Detention Basins.
C. For design of the embankment abutments and adjacent slopes,
a soils and geotechnical report shall be prepared by a soils and
geotechnical engineer with a demonstrated expertise in earth fill
-
dam design. The report shall include:
1) Site geolo , including g bedding, foliation,
fault, and landslide plan attitudes. fracture. joint,
-2) Seismic conditions, including fault locations and potential
seismic surface
movements respective loadings and
parameters of seismic shaking.
3) Potential impact of reservoir loading on geologic structure
should be evaluated.
4) Detar7ed descriptions, locations and logs of all field
explorations.
5) Field and laboratory tests and analysis descriptions and
results.
S) Groundwater table elevation and analysis of near surface
grounder movement
7) Recommended design'- parameters including. but not
limited to the- dam
and its natural
abWnen; arid'-
V�
reservoir areas:
a) Lateral earth loadings
b) Shear strengths
C) Bearing capacities
d) Permeability
e) Slope stability analysis when saturated and during
rapid drawdown conditions
Sieve analysis
g) Sand equivalents
h) Liquefaction analysis and, if appropriate, mitigation
Q Seismic Seiche analysis
j) UBC Chapter 70
10
CF
i
8) Special design and construction recommendations
including, but not limited to, the following:
a) Foundationr
p eparation requirements
b) Suitability of materials for embankments (gradation,
sand equivalent, etc.) and abutments
C) Compaction methods and minimum requirements
d) Seepage and piping control provisions
9) Potential for settlement
Seismic considerations
9) Minimum design- factors of safety are.-
"
Without Aic.*.s.. VII* S_�c
bariknieM Abtomm 1.5 1.1
gtabfty
Seepage - Pkft
1.5
h) Necessity of impervious core or shear key
Erosion control of abutments
d- Basins not meeting the depth and side slope
forth previously shall be designed in requirements witmer a sat
9 accordance with the los
Angeles County Flood Control Districts 'Design Manual - Debris
Dams. and Basins "
7- BAS1N FI nno
a. A low flow channel shall be provided from the basin inlet(s) to the
basin outlet
1) Where basin slopes exceed 2% or produce erosive now
velocities. the low flow channel should be protected from
erosion with reinforced concrete, rock lining, or other form
of approved erosion protection.
11
2) Joint Use Basins
a) A low flow channel or conduit should be provided
to conduct minor flows around the dual use
facilities wherever possible. Low flow channels may
not be necessary for parking lot basins or other
similar joint uses.
b) Low flow channel m 4'
sy be grass lined if there exists
a maintenance program which included mowing '
and maintenance of turf in good condition, and
velocities of flow through the various stages of
discharge are low enough to be non`,
b. Earth basin floors shall slope at a minimum 0.5% grade to the low
flow channel.
C. Earth basin floors shall have a minimum
inlet to the outlet unless waived by the City
the
8. INLET STRUC UaF
a. Where storm drains enter tt e -basin. energy dissipators and/or
erosion protection shay � -provided.
b. Where natural drainage courses or channels enter the basin,
�+ some form of invert smbft tion, such as reinforced concrete or
grouted stone spOway. shay be provided.
C. Energy dlssipatnrs may be required when the infecting flow
velocities exceed 5 fps.
d. Inletting storm drains shall be a minimum 24 -inch RCP (1.350 p).
a. Access to the detention basin area shall be provided by a
roadway from a public street or public access to the parcel upon
which the basin is constructed. The roadway shag have a
minimum width of 15 feet
b. Access shall be maintained under all weather conditions.
C. If the basin is isolated or not located adjacent to roadways, a 15 -
foot wide roadway shall be provided along the top of
AMWk 12
embankment. The intent of this criteria is to have continuous
access around and to the basin for maintenance Purposes
Under certain circumstances where it
can
recommended top width is not necessary
ay be Modified. for
structural safety arb
be shown the
maintenance, the criteria mstr
1) If access across the Spillway is not
Prowded' turnarounds
or other adequate access as n�eSs
shall be provided on both sides of theSSpay maintenance
2) If there exists adequate access for maintenance, this
requirement may be amended,
d. A 15-f0ot wide access ramp shay be provided to the basin floor.
The width may be reduced to 10
basins. feet for temporary detention
e• The Maximum roadway or access ram
unless the roadway is Paved If the roadway nope shay be 10%
paved. the ma?dM= Slope shag be 1296. The ess ramp is
slope may
be between 10% and 15% for tem b sire
- porary detentlon basins„
10. FFN IgG
a. All basins shall be fence with 6 -foot chain link fimIn
per
Cattrans standards- or other approved balder unb� othegnwise
approved by the Engineering Department. Joint use basin
fencing will be site specific AM must meet the needs of an
agencies utiRzing the basin.
b. Access to the basins shag be gated and locked
11. RIGHTQ.nF-WAY
a. Sufficient rights-of-way shall be provided for the construction and
economical maintenance of the basin(s), including all fill and cut
slopes. and shall include sufficient area to provide for an access
road from a dedicated public street to the basin.
b. Regional basins shall be ' dedicated to the District or other
appropriate agency in fee title.
C. Local, temporary. and joint use basins shall be covered by an
adequate drainage easement:
13
12. Rf FERENCES TO BE USED IN OEStGN
'A New Method of Estimating Debris - Storage Requirements for Debris
Basins.' Tatum, U.S. Army Engineer District, Los Angeles, CA, 1963
'Design of -Small Dams.- U.S. Bureau of Redamation. 1977
"Handbook of Hydraulics,' IGng and Brater, McGraw Hip Book Company,. ;
Latest Edition ?
-los Angeles County Flood Control Manual - Debris Dams and Basins,' Los
Angeles County Flood Control District
"Open -Channel Hydraulics,- Ven To Chow, Ph.d., 1959
'San Bernardino County Hydrology Manual,* San Berardino County, 1986
DBernardino County Standards and Specifications * San Bernardino County
artment of Transportation/Food Control/Airports
C. DETENTION BASINMAINTENANCE FlNAN �w� ME Neru�cu. AND
POLICY
1 SaF.�EBAs. .
Mairdwance responsibilities and related financing mechanism for detention
basins. including joint use fac ilithM must be contained in the conditions of .
approval of each development Detailed requirements must be included which
would indict t the procedure to be followed. identification of responsible entity.
and funding requirements for facWes construction. operation and maintenance.
The joint use of detention basins is recommended where compatible uses. and
adequate maintenance can be assunkt However, the approval of any joint use
activity within detention basins must be contingent upon obtaining funding for
ongoing operation and maintenance.
The lack of adequate maintenance is considered the most significant problem
in the use of detention basins. Detention basins characteristically require more
maintenance than do other storm drainage or flood control facilities. The
Proper functioning of the facility is also much more sensitive to proper
maintenance. Adequate maintenance, including periodic inspection, debris
removal, weed control, rodent and vector control and repalrs, is essential to the
successful use of the basins.
14
Maintenz.nce costs for basins are variable and -can
e
Therefore. adequate funding dedicated solely for basin main enlaynCe�g s
important.
There are a number of methods available for generating funds necessary to
pay for_ opecation and maintenance of detention basins. projects can
financed by some combination of resources and funding technibe
ques Following
is a list of general funding mechanisms and techniques that can be used for the
operation and maintenance of detention basins.
It is assumed a I regional detention basins that area
County Flood Control Districts channel system wPan of the San Bernardino
ip be maintained by the
District. Therefore, the basin maintenance mechanism discussed herein is for
local detention basins.
a. Developer Cash Deposit
The developer would establish a maintenance fund with a lump
sum cash deposit The maintenance -fund to be established
should be based on the rate of-retum on investment and the rate
of inflation as established annually. The hind would be equal to
the present worth of the. rival ma�tenance cost for economic
life of the facilities. The present worth of the inflated cost of each
annual maintenance cost will be treated as a_ single payment in
-dQtermining the amount of the fund The following presents the
procedure for estabUshing the detention -basins maintenance
fund:
�) Estimate average annual maintenance costs at current
year value.
2) Determine maintenance cost for each year in the future for
the 50 -year economic Re of the project Maintenance cost
will be increased each year by the adopted rate of
inflation.
3) Determine the present worth of each year's maintenance
cost at the established rate for return on investment
4) The value of the maintenance fund will equal the sum of
the present worth of each of the maintenance costs. The
maintenance fund to be established for drainage should be
based on the rate of return on investment and the rate of
inflation as established annually by the State of California.
Department of Water Resources; in the preparation of their
annual project update bulletin titled -Management of the
California State Water Project -
b. _Mello -Roos (Community Facilities Act of 1982)
A Mello -Roos Special Tax District can be established by two-
thirds vote of the landowners (when there are 12 or fewer �
registered voters) to construct and maintain deterrtion basins.
The annual tax. rate is established for a given period of time
necessary to pay off bonded indebtedness for the con of
constructing the detention basin and maintaining it for the life of
the tax/bonds. The life of the tax is usually no more than 20-25
years. The tax rate can be reduced, but not increased
Mello -Roos provides for establishment of a special tax which may
be levied on the. area within the district for the purpose of
supporting the issuance of bonds or to otherwise pay the Project
costs as they are increased. If there are more than 12 registered
voters, the election wig be by voters.
C. Homeowners Association
Homeowners AssociabO¢ ' and other private ownerships are
methods often used to maintain facilities after initial construction.
This technique is used often for large, open space areas or
recreational facilities for residential development where the
common areas of. the facilities are owned and maintained by the
Association. Local governments. however, * often express
dissatisfaction with the level of expenditures and effort set forth
by Homeowners Associations, The concern over the
performance.of a Homeowners Association to adequately provide
required maintenance is especially true in the maintenance of
detention basins. The basins are generally not a prominent
feature of the common areas and the maintenance is capital
intensive and technically complicated.
d. Assessment District
Assessment district financing utilizing a combination of
1911/1913/1915 processes can be used to construct the
detention basin and also to operate and maintain the basin
through the life of the bond payoff which is normally limited to 20
years. Maintenance can only be paid for by this method if an
16
assessment distnr:t is formed to fund 'the cost of construction.
The formation of t.i3 district is approved by the City. The district
Will be denied if there is a majority protest of thero e
to be assessed at a public hearing. The cop P rtY owners
g Cost of constructing and
maintaining the basin is added as an annual charge to the
-owner's property tax bill. This method will not increase the initial
price of the single family home, commercial building, etc An
alternative method would have to be established to take effect
after pay oft of the bonds, There is no administrative agency
(such as with a service area of improvement zone) to deal with
the operation and maintenance of facilities constructed by the
assessment district process. The maintenance process would
have to be established at the time of selling the bonds by a.
contractual agreement to ensure maintenance of the facilities for
the . bonding period There would be Ignited flexibility to
accommodate changes In conditions over the length of the bond
payoff. An assessment district cannot be used to finance the
maintenance and operation of parks and recreation facilities.
3• D NTION BASIN WIN TF AMCJE P
a. Local Basins - Prtvate-Oiitrnership
The design of the prfvatWtiS in shall be done such that it will not
be subject to failure and the design shalt be reviewed and
approved by the City in accordance with its standards and policy.
Those basins which are an integral part of a private development,
such As a parking lot, athletic field or a Park, shall be owned and
maintenance by the private property owners.
It will be necessary for the City to inspect the construction,
annually inspect the facaity, and inspect the facility after storm
events to ensure it is being property maintained_
The private property owner shalt be responsible for constructing
the basin(s) and operating and maintaining the basin(s)
thereafter. Funding for the facility maintenance shaJ be insured
through a case trust fund in the name of the City with yearly
interest less inspection fee provided to the Homeowners
Association or the property owner, either of which will be
responsible for the maintenance.
A drainage maintenance district or other acceptable public
financing shall be established to operate and maintain the joint
'- . 17
use facility. Public financing shall be. implementej only in the
event the cash trust is exhausted due to unforese m costs.
b. Local Basins - Public Ownership
-Any local basin that is not an integral part of a private
development will be owned and operated by the City. A cwt
trust to create a sinking fund shall be Provided by the
development and held by the City
inspection of the basin. for the maintenance and,
A drainage maintenance district or other acceptable public
financing to the City shad be established to operate and maintain
the facility. Public financing shad be implemented only in the
event the cash trust is exhausted due to unforeseen costs.
C. Regional Basins
Regional flood control detention basins will be owned and
operated by the Flood Control District:
It may be necessary to fund thb operation, maintenance and
inspection of new regional. bPsins by either method listed above
under public ownersWR* Ibcal ba*m
The operation. maintenance and inspectign of new regional
basins shag be accomplished by coordination and negotiation
with the Flood Control District.
s
r
y
W
196
J
a
50.100
"'.l0. C?0
::
A
J
a.1
�Qnn
0 1 10.5 1 5 In 54
/NIINIG( A111, IN Scull( KIM
r1i.:ul:t l .--Ijisi ;-term soJlmeist yLelds at Selected XILQS In Los Asigeles County. k {torula.
coq