Loading...
HomeMy WebLinkAboutWest End - PM 16661� . ALLARD ENGINEERING mu �w land land, e n v PARCEL MAP No. 16661 Hydrology &Hydraulics Report Original: February 23, 2006 1 Revision: March 27, 2006 2nd Revision: April 4, 2006 3 Revision: June 14, 2007 Prepared For: Carter Creek LLC 6101 Cherry Avenue Fontana, CA. 92336 (909) 463 -0580 QPw�O'�Flii w David S. Hammer, RE 8253 Sierra Avenue Fontana, CA 92335 (909) 356 -1815 * (909) 356 -1795 Table of Contents Discussion Hydrology Reference Material Rational Method - 100 Year Storm Event Parking Lot Capacity Calculations Channel Capacity Calculations CMP Riser Calculations Vegetated Swale Culvert Capacity Calculation WSPG Hydrology Exhibit 0 N Discussion OVERVIEW Parcel Map 16661 is located in the unincorporated area of San Bernardino County. The 7 acre light commercial/industrial project lies directly north of Foothill Avenue between Hemlock Avenue and Redwood Avenue. The natural terrain slopes in a southerly direction at a slope of approximately 2 %. The land is currently vacant but is proposed to become a commercial /industrial development. Soil class A is prevalent throughout the area. PURPOSE The purpose of this study is to quantify the rate of runoff in a 100 year storm event and show that the drainage systems that are comprised of the proposed parking lots, CMP risers, vegetated channels and storm drain are adequately sized. CRITERIA The criteria utilized for hydrologic analysis is the San Bernardino County Hydrology Manual. Civil Cad and AES computer software were utilized to perform computations. �^ CONCLUSION After completing the analysis it is apparent that the parking lots shall have the capacity to convey the 18.5 cfs and 3.3 cfs associated with the 100 year storm event. The two vegetated channels will also have the capacity to convey the 100 year storm event with a minimum of 1 ft available for freeboard between the 100 year water surface and the top of the channel. Within each vegetated swale a culvert will be constructed that will measure 5 feet at the base. The two CMP risers located within each vegetated channel also shall have the capacity to intercept and convey the 100 year storm event in a safe manner. The RCP serving the CMP risers shall be 24" in diameter and convey the total 18.5 cfs. In closing, all of the drainage systems are adequately sized to convey the 100 year storm event in a safe manner. The amount of land that will drain directly to Hilton Drive and Foothill Boulevard will be confined to their respective parkways. A hydrology exhibit and calculations accompany this report to further illustrate these findings. Cm Hydrology Reference Material H 1ft /Va%t' SEP 11978 " D" LOADS — DITCH CONDUITS p'''`' �� - � TRUCK LOADING - CASE Ad & p BEDDING sU ITAIILE a i4 E t 11C - GI(' -IN 3 EDGE BEARING TEST- 0.01 CRACK TeeNC.N Dr PT1-1 x,10 -(`4, -112 it 7VP/Tue� -of) _ c��D_� (LIVE LOAD + DEAD LOAD) 1.25 SAFETY FACTOR v� r ` -, � :� Ai,du: Tv( Trench width = out diameter of pipe + 2 feet. Tots or p feC ExctE. to w DEPTH OF COVER-IN FEET 'iL a o c ar 1 2 3 4 5 6 7 8 9 10 II I2' 13 14 15 16 P1 ° ` 12 3750 /7/0 1510 1370 1.330 /490 1670 /860 1t_ • 2500 2600 2700 . - 27"• T „4.7. r:e 15 3360 / 0 1 20 1330 /300 0t070 2000 2020 2130 2480 2550 ____ I ►, ^ 'r •. • - • 18 + 1570 1460 1300 /280 16 1790 1920 2010 LItO 2240 ..•":-- "- 0 21 0 mq123:1 2 1 £790 / 5 2 0 1410 $260 /2/0 1610 1690 1820 1930 2020 2110 ,2270 = 2320 rial ,x+ 1 24 a /430 1360 1220 /180 1520 1620 1730 1850 1930 2040 2160 1250 234330 A. 27 '• NO • - :1060 1220 1/60 1 470 1960 1660 1760 1870 2020 2070 2190 t320 ' 6b L ;. 30 2220 1J7J 40 1200 1140 ' 1460 1660 1640 1730 1860 1970 2060 2130 2240 1 T' 33 voo /350 - 320 1190 1120 1430 $510 1590 1700 tato 5920 2020 2120 ? • 36 1.530 e 1430 1470 1970 1670 :17 70 1890 1990 2070 2170 LIZ 39 /6e0 /270 1280 1 46 7 1 . 100 1570 1440 1550 430 1'140 1860 1980 2060 2140 22.40 m 42 /730 /230 1 1250 gra + .90 1350, 1440 1930 1630 I7b6 1850 1980 2030 2140 2200 al 45 /720 /2/0 1240 114 % 80 1320 1420 1510 1590 470,1800 1920 2030 2120 2200 48 • / /90 12)0 11 � L. 70 1320 1390 1490 5580 16!10 71750 1900 2000 2090 2180 51 (i/1• /160 5200 I -. 60 1900 1380 1490 1560 1,660 1770 1860 1990 2090 2.100 2 • 54 4 //30 1180 1090 1060 1380 1490 1560 1660 1860 5970 2060 2150 2230 57 0 /120 1160 1080 1050 1270 1360 1460 1580 1660 .1760 1860 1940 2060 21, Al • 60 /030 960 .940 940 1250 1330 1460 1560 1640 1730 1820 1930 2020 MiltC • 63 EM /040 3 930 1240 1330 1440 1840 1640 1720 1810 1920 2010 mit 66 MI 7 820 1230 191.5 ;1430 I • 40 Uni Al 0 ii 10 C 20 69 lift /020 s- 0 $20 12 2 0 13 i•4-.143 0 15 3k: •!03 0 BE 0'1 o •" f o t o ! 10 72 7740 /000 000 sa l 80 .40 1210 13 141420 1514:.1.W.0 Mt1t -.10 wpm ••* 2 ••0 75 LEI .970 84 • )• Q 3), 1 190 13 '141 O 1505 ]4;20 . t500 • 980 20 ••• 0 78 (' 960 8 • • 0 ES= it . • -''300 hill a '' 0 '; . • • 1! 2080 2170 8 1 a , 9 9 0 860 550 030 1 4 1 0 1280~. 00 1500' T't90 .00 Er 1 -, - 0 2070 2170 84 4+.1'1,9 920 010 850 590 t 12= 15'1'380 1430 1580 169 18' 1 ' 1 %0 2060 2160 90 /050 880 •30• • 0 900 MS 1280 1370 1470 158 1690 1780 1890 1960 2060 2160 96 990 060 8•` •._ 0 860 IISO 1250 1850 1450 1560 1670 1780 1890 1960 2060 2150 102 .910 830 7. c r % 1;4.0 860 1150 1240 1330 1450 1550 1650 1770 1850 1950 2060 2140 108 900 800 7i••'` 90 850 1140 1230 1350 1450 1550 1650 1770 1870 1950 2040 2140 114 d 60 770 7 Yy • k - 0 830 )11 0 1230 1320 1450 1550 1650 1760 1860 1950 2040 2140 , 120 820 750 740 70 890 1100 1230 1320 1450 1540 1650 1760 1860 1950 2040 t140 ■ LOAD FACTORS Lc i focebrs on8 thne,vtio of'supoarti/y S1,d = 1.25 SAP *1.50 strength of given bectfeN comeitron to S =2.00 58p' 2.30 a - edg+w ¢eorir'. Scud =250 Scp. 3.50 Cooeitp,&hotra w/1»J/ont /e /feria DEPARTMENT OF COUNTY ENGINEER - COUNTY OF LOS ANGELES COUNTY ENGINEER DESIGN DIVISION C-3(a ) APPROVED i ■ nATL• K_ "? _ e L* �- - - — ..,M; ... „ - - - - - T .r RIw RIE R2E + T4N �• R8 R7W R6W R5W �4W R2W - - 4N I 4t. I I f � i— — � �c v � 5 � . z I o+ I � , �' ✓ �, I I I .r.an I � I I � f I � I I i .y a '�9 z • zz °I' — — I I y � y �,`i �` alvca � � _ \ rt kill N;Wikd �■ .ems. m ap 11 R 4W SAN �� .�►- � I • CO UNTY • HYDROL MANU R2W �, I� "RIB+ REDUCED DRAW1 G SCALE C = 4 MILES C 8 IIS S PRECIPITATION (INCHES) VALLEY AREA gONYETALS Y. -100 YEAR I HOUR •AAW ON u 3Dc MOJU► RTLt [, *” &"*Dow By MT[ .tati /as Mn Ma I>♦{2 r•[al nlle I � d pff ONE 40gr __j " WWI A kill N;Wikd �■ .ems. m ap 11 R 4W SAN �� .�►- � I • CO UNTY • HYDROL MANU R2W �, I� "RIB+ REDUCED DRAW1 G SCALE C = 4 MILES C 8 IIS S PRECIPITATION (INCHES) VALLEY AREA gONYETALS Y. -100 YEAR I HOUR •AAW ON u 3Dc MOJU► RTLt [, *” &"*Dow By MT[ .tati /as Mn Ma I>♦{2 r•[al nlle I � d Pe - 3� I -It k W-F : 10 911 req =1 DR : :13:1 ki FAN 1110 [emote Rational Method 100 Year Storm Event RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING, INC. 6101 CHERRY AVENUE FONTANA, CALIFORNIA 92336 (909) 899 - 5011 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Parcel Map 16661 * Developed Condition * 100 Year Storm Event ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 16661.DAT TIME /DATE OF STUDY: 13: 0 2/23/2006 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL * -- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) _ .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.4800 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE .00 TO NODE 1.00 IS CODE = 2.1 ---------------------------------------------------------------------- - - - - -- >>>>> RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<<<< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 235.00 ELEVATION DATA: UPSTREAM(FEET) = 1260.80 DOWNSTREAM(FEET) = 1257.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.160 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.800 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 1.20 .98 .10 32 6.16 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, AP = .10 SUBAREA RUNOFF(CFS) = 6.16 TOTAL AREA(ACRES) = 1.20 PEAK FLOW RATE(CFS) = 6.16 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 9 ---------------------------------------------------------------------------- >>>>>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA<< <<< UPSTREAM NODE ELEVATION(FEET) = 1257.00 DOWNSTREAM NODE ELEVATION(FEET) = 1254.50 CHANNEL LENGTH THRU SUBAREA(FEET) = 240.00 "V" GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET) _ .083 PAVEMENT LIP(FEET) = .031 MANNING'S N = .0150 PAVEMENT CROSSFALL(DECIMAL NOTATION) _ .02000 MAXIMUM DEPTH(FEET) = 100.00 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.136 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 1.60 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 2.89 AVERAGE FLOW DEPTH(FEET) = .34 FLOOD WIDTH(FEET) = 25.33 "V" GUTTER FLOW TRAVEL TIME(MIN.) = 1.38 TC(MIN.) = 7.54 SUBAREA AREA(ACRES) = 1.60 SUBAREA RUNOFF(CFS) = 7.26 EFFECTIVE AREA(ACRES) = 2.80 AREA- AVERAGED Fm(INCH /HR) _ .10 AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .10 TOTAL AREA(ACRES) = 2.80 PEAK FLOW RATE(CFS) = 12.70 END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = .37 FLOOD WIDTH(FEET) = 28.22 FLOW VELOCITY(FEET /SEC.) = 3.05 DEPTH *VELOCITY(FT *FT /SEC) = 1.12 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 2.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) RAINFALL INTENSITY(INCH /HR) AREA - AVERAGED Fm(INCH /HR) = AREA- AVERAGED Fp(INCH /HR) = AREA- AVERAGED Ap = .10 EFFECTIVE STREAM AREA(ACRES) TOTAL STREAM AREA(ACRES) = PEAK FLOW RATE(CFS) AT CONFL 7.54 5.14 .10 .97 2.80 2.80 UENCE = 12.70 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 20.00 TO NODE 21.00 IS CODE = 2.1 .«.. ---------------------------------------------------------------------------- >> >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<<<< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 370.00 ELEVATION DATA: UPSTREAM(FEET) = 1268.00 DOWNSTREAM(FEET) = 1262.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.748 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.749 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) NATURAL POOR COVER "GRASS" A .80 .60 1.00 67 12.75 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .60 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 2.27 TOTAL AREA(ACRES) _ .80 PEAK FLOW RATE(CFS) = 2.27 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 21.00 TO NODE 2.00 IS CODE = 5.1 >>>>> COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>> TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 1262.00 DOWNSTREAM(FEET) = 1254.40 CHANNEL LENGTH THRU SUBAREA(FEET) = 305.00 CHANNEL SLOPE _ .0249 CHANNEL BASE(FEET) _ .00 "Z" FACTOR = .020 -° MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) _ .67 __>>WARNING: FLOW IN CHANNEL EXCEEDS CHANNEL CAPACITY( NORMAL DEPTH EQUAL TO SPECIFIED MAXIMUM ALLOWABLE DEPTH). AS AN APPROXIMATION, FLOWDEPTH IS SET AT MAXIMUM ALLOWABLE DEPTH AND IS USED FOR TRAVELTIME CALCULATIONS. CHANNEL FLOW THRU SUBAREA(CFS) = 2.27 FLOW VELOCITY(FEET /SEC) = 252.67 FLOW DEPTH(FEET) _ .67 TRAVEL TIME(MIN.) _ .02 Tc(MIN.) = 12.77 == >FLOWDEPTH EXCEEDS MAXIMUM ALLOWABLE DEPTH ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 2.00 IS CODE = 1 ----------------------------------------------------- ----------------- - - - - -- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES <<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 12.77 RAINFALL INTENSITY(INCH /HR) = 3.75 AREA- AVERAGED Fm(INCH /HR) _ .60 - AREA- AVERAGED Fp(INCH /HR) _ .60 AREA- AVERAGED Ap = 1.00 EFFECTIVE STREAM AREA(ACRES) _ .80 TOTAL STREAM AREA(ACRES) = .80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.27 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 12.70 7.54 5.136 .97( .10) .10 2.80 .00 2 2.27 12.77 3.745 .60( .60) 1.00 .80 20.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 14.6 7.54 5.136 .738( .170) .23 3.3 .00 2 11.5 12.77 3.745 .696( .209) .30 3.6 20.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 14.63 Tc(MIN.) = 7.54 SUBAREA LOSS RATE DATA(AMC II): EFFECTIVE AREA(ACRES) = 3.27 AREA- AVERAGED Fm(INCH /HR) _ .17 AREA- AVERAGED Fp(INCH /HR) _ .74 AREA- AVERAGED Ap = .23 (ACRES) (INCH /HR) (DECIMAL) CN TOTAL AREA(ACRES) = 3.60 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 9 >>>>>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA <<<<< UPSTREAM NODE ELEVATION(FEET) = 1254.50 DOWNSTREAM NODE ELEVATION(FEET) = 1253.80 CHANNEL LENGTH THRU SUBAREA(FEET) = 125.00 "V" GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET) _ .083 PAVEMENT LIP(FEET) = .031 MANNING'S N = .0150 PAVEMENT CROSSFALL(DECIMAL NOTATION) _ .02000 MAXIMUM DEPTH(FEET) = 100.00 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.821 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A .20 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 2.48 AVERAGE FLOW DEPTH(FEET) = .43 FLOOD WIDTH(FEET) = 34.32 "V" GUTTER FLOW TRAVEL TIME(MIN.) _ .84 Tc(MIN.) = 8.38 SUBAREA AREA(ACRES) = .20 SUBAREA RUNOFF(CFS) _ .85 EFFECTIVE AREA(ACRES) = 3.47 AREA- AVERAGED Fm(INCH /HR) _ .17 AREA- AVERAGED Fp(INCH /HR) = .74 AREA- AVERAGED Ap = .22 TOTAL AREA(ACRES) = 3.80 PEAK FLOW RATE(CFS) = 14.63 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = .42 FLOOD WIDTH(FEET) = 33.86 FLOW VELOCITY(FEET /SEC.) = 2.48 DEPTH *VELOCITY(FT *FT /SEC) = 1.05 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 9 ---------------------------------------------------------------------------- >> >>>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA <<<<< UPSTREAM NODE ELEVATION(FEET) = 1253.80 DOWNSTREAM NODE ELEVATION(FEET) = 1252.20 CHANNEL LENGTH THRU SUBAREA(FEET) = 155.00 "V" GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET) _ .083 PAVEMENT LIP(FEET) = .031 MANNING'S N = .0150 PAVEMENT CROSSFALL(DECIMAL NOTATION) = .02000 MAXIMUM DEPTH(FEET) = 100.00 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.558 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A .20 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 3.14 AVERAGE FLOW DEPTH(FEET) = .39 FLOOD WIDTH(FEET) = 30.36 "V" GUTTER FLOW TRAVEL TIME(MIN.) _ .82 Tc(MIN.) = 9.20 SUBAREA AREA(ACRES) = .20 SUBAREA RUNOFF(CFS) _ .80 EFFECTIVE AREA(ACRES) = 3.67 AREA- AVERAGED Fm(INCH /HR) _ .16 AREA- AVERAGED Fp(INCH /HR) = .75 AREA- AVERAGED Ap = .22 TOTAL AREA(ACRES) = 4.00 PEAK FLOW RATE(CFS) = 14.63 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = .39 FLOOD WIDTH(FEET) = 30.05 FLOW VELOCITY(FEET /SEC.) = 3.12 DEPTH *VELOCITY(FT *FT /SEC) = 1.20 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE = 8.1 ---------------------------------------------------------------------------- >> >>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <<<<< MAINLINE Tc(MIN) = 9.20 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.558 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A .40 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) = .40 SUBAREA RUNOFF(CFS) = 1.61 EFFECTIVE AREA(ACRES) = 4.07 AREA - AVERAGED Fm(INCH /HR) _ .16 AREA- AVERAGED Fp(INCH /HR) _ .76 AREA- AVERAGED Ap = .20 TOTAL AREA(ACRES) = 4.40 PEAK FLOW RATE(CFS) = 16.14 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 5.2 ---------------------------------------------------------------------- - - - - -- I - >>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW <<<<< » »>TRAVELTIME THRU SUBAREA« «< ------------- -------- - - - - -- ELEVATION DATA: UPSTREAM(FEET) = 1252.20 DOWNSTREAM(FEET) = 1250.90 CHANNEL LENGTH THRU SUBAREA(FEET) = 145.00 CHANNEL SLOPE _ .0090 CHANNEL FLOW THRU SUBAREA(CFS) = 16.14 FLOW VELOCITY(FEET /SEC) = 2.68 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) _ .90 Tc(MIN.) = 10.11 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 8.1 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< MAINLINE Tc(MIN) = 10.11 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.309 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL GOOD COVER "GRASS" A .10 .94 1.00 38 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .94 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) _ .10 SUBAREA RUNOFF(CFS) _ .30 EFFECTIVE AREA(ACRES) = 4.17 AREA- AVERAGED Fm(INCH /HR) _ .17 AREA- AVERAGED Fp(INCH /HR) _ .78 AREA- AVERAGED Ap = .22 TOTAL AREA(ACRES) = 4.50 PEAK FLOW RATE(CFS) = 16.14 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1 ----------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.11 RAINFALL INTENSITY(INCH /HR) = 4.31 AREA- AVERAGED Fm(INCH /HR) _ .17 AREA- AVERAGED Fp(INCH /HR) _ .78 AREA- AVERAGED Ap = .22 EFFECTIVE STREAM AREA(ACRES) = 4.17 TOTAL STREAM AREA(ACRES) = 4.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 16.14 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 9.00 TO NODE 10.00 IS CODE = 2.1 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< <<< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 90.00 ELEVATION DATA: UPSTREAM(FEET) = 1254.60 DOWNSTREAM(FEET) = 1254.20 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 " SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.433 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 6.254 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A .20 .98 .10 32 5.43 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) = 1.11 TOTAL AREA(ACRES) _ .20 PEAK FLOW RATE(CFS) = 1.11 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 9 ---------------------------------------------------------------------------- >> >>>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA <<<<< UPSTREAM NODE ELEVATION(FEET) = 1254.20 DOWNSTREAM NODE ELEVATION(FEET) = 1253.80 CHANNEL LENGTH THRU SUBAREA(FEET) = 82.00 "V" GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET) _ .083 PAVEMENT LIP(FEET) _ .375 MANNING'S N = .0150 PAVEMENT CROSSFALL(DECIMAL NOTATION) _ .02000 MAXIMUM DEPTH(FEET) = 100.00 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.986 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A .10 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 3.32 AVERAGE FLOW DEPTH(FEET) _ .46 FLOOD WIDTH(FEET) = 3.00 "V" GUTTER FLOW TRAVEL TIME(MIN.) _ .41 Tc(MIN.) = 5.84 SUBAREA AREA(ACRES) _ .10 SUBAREA RUNOFF(CFS) _ .53 EFFECTIVE AREA(ACRES) _ .30 AREA- AVERAGED Fm(INCH /HR) _ .10 AREA- AVERAGED Fp(INCH /HR) _ .97 AREA- AVERAGED Ap = .10 TOTAL AREA(ACRES) _ .30 PEAK FLOW RATE(CFS) = 1.59 NOTE:TRAVEL TIME ESTIMATES BASED ON NORMAL DEPTH EQUAL TO [GUTTER -HIKE + PAVEMENT LIP] END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) _ .46 FLOOD WIDTH(FEET) = 3.00 FLOW VELOCITY(FEET /SEC.) = 3.32 DEPTH *VELOCITY(FT *FT /SEC) = 1.52 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 11.00 TO NODE 11.00 IS CODE = 8.1 ---------------------------------------------------------------------------- >> >>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< MAINLINE Tc(MIN) = 5.84 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.986 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL POOR COVER "GRASS" A .40 .60 1.00 67 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .60 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) _ .40 SUBAREA RUNOFF(CFS) = 1.94 EFFECTIVE AREA(ACRES) _ .70 AREA- AVERAGED Fm(INCH /HR) _ .38 AREA - AVERAGED Fp(INCH /HR) _ .62 AREA- AVERAGED Ap = .61 TOTAL AREA(ACRES) _ .70 PEAK FLOW RATE(CFS) = 3.53 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 9 ---------------------------------------------------------------------------- >> >>>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA <<<<< UPSTREAM NODE ELEVATION(FEET) = 1253.80 DOWNSTREAM NODE ELEVATION(FEET) = 1252.90 CHANNEL LENGTH THRU SUBAREA(FEET) = 155.00 "V" GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET) _ .083 PAVEMENT LIP(FEET) _ .031 MANNING'S N = .0150 PAVEMENT CROSSFALL(DECIMAL NOTATION) _ .02000 MAXIMUM DEPTH(FEET) = 100.00 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.276 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A .10 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 1.89 AVERAGE FLOW DEPTH(FEET) _ .28 FLOOD WIDTH(FEET) = 19.08 "V" GUTTER FLOW TRAVEL TIME(MIN.) = 1.37 TC(MIN.) = 7.21 SUBAREA AREA(ACRES) _ .10 SUBAREA RUNOFF(CFS) _ .47 EFFECTIVE AREA(ACRES) _ .80 AREA- AVERAGED Fm(INCH /HR) _ .35 AREA- AVERAGED Fp(INCH /HR) _ .63 AREA- AVERAGED Ap = .55 TOTAL AREA(ACRES) _ .80 PEAK FLOW RATE(CFS) = 3.55 END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) _ .27 FLOOD WIDTH(FEET) = 18.47 FLOW VELOCITY(FEET /SEC.) = 1.89 DEPTH *VELOCITY(FT *FT /SEC) _ .51 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 8.1 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<< <<< MAINLINE TC(MIN) = 7.21 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.276 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A .50 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) _ .50 SUBAREA RUNOFF(CFS) = 2.33 EFFECTIVE AREA(ACRES) = 1.30 AREA- AVERAGED Fm(INCH /HR) _ .25 AREA- AVERAGED Fp(INCH /HR) _ .67 AREA- AVERAGED Ap = .38 TOTAL AREA(ACRES) = 1.30 PEAK FLOW RATE(CFS) = 5.88 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 5.2 ---------------------------------------------------------------------------- >>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<< <<< >>>>>TRAVELTIME THRU SUBAREA <<<<< ------ - - - - -- ELEVATION DATA UPSTREAM(FEET) = 1252.90 DOWNSTREAM(FEET) = 1252.40 CHANNEL LENGTH THRU SUBAREA(FEET) = 170.00 CHANNEL SLOPE = .0029 CHANNEL FLOW THRU SUBAREA(CFS) = 5.88 FLOW VELOCITY(FEET /SEC) = 1.19 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 2.38 Tc(MIN.) = 9.60 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 8.1 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< MAINLINE Tc(MIN) = 9.60 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.445 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL GOOD COVER "GRASS" A .10 .94 1.00 38 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .94 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = .10 SUBAREA RUNOFF(CFS) _ .32 EFFECTIVE AREA(ACRES) = 1.40 AREA- AVERAGED Fm(INCH /HR) _ .30 AREA- AVERAGED Fp(INCH /HR) _ .71 AREA- AVERAGED Ap = .42 TOTAL AREA(ACRES) = 1.40 PEAK FLOW RATE(CFS) = 5.88 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 13.00 TO NODE 5.00 IS CODE = 4.1 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 1252.40 DOWNSTREAM(FEET) = 1250.90 FLOW LENGTH(FEET) = 60.00 MANNING'S N = .013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 6.8 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 8.10 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 5.88 PIPE TRAVEL TIME(MIN.) = .12 Tc(MIN.) = 9.72 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< Fp(Fm) Ap Ae >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< NUMBER (CFS) (MIN.) (INCH /HR) TOTAL NUMBER OF STREAMS = 2 NODE 1 21.9 10.11 4.309 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: 2 17.3 15.48 3.337 TIME OF CONCENTRATION(MIN.) = 9.72 20.00 3 21.8 9.72 4.411 RAINFALL INTENSITY(INCH /HR) = 4.41 9.00 COMPUTED CONFLUENCE ESTIMATES ARE AREA- AVERAGED Fm(INCH /HR) = .30 PEAK FLOW RATE(CFS) = 21.87 AREA - AVERAGED Fp(INCH /HR) = .71 EFFECTIVE AREA(ACRES) = 5.57 AREA- AVERAGED Ap = .42 _ .21 AREA- AVERAGED Fp(INCH /HR) _ .75 EFFECTIVE STREAM AREA(ACRES) = 1.40 TOTAL AREA(ACRES) = 5.90 TOTAL STREAM AREA(ACRES) = 1.40 ********************************************* PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.88 FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE = 4.1 ** CONFLUENCE DATA ** THRU SUBAREA<<<<< STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 16.14 10.11 4.309 .78( .17) .22 4.17 .00 1 12.98 15.48 3.337 .73( .21) .28 4.50 20.00 2 5.88 9.72 4.411 .71( .30) .42 1.40 9.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 21.9 10.11 4.309 .754( .206) .27 5.6 .00 2 17.3 15.48 3.337 .726( .228) .31 5.9 20.00 3 21.8 9.72 4.411 _753( .207) .27 5.4 9.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 21.87 Tc(MIN.) = 10.11 EFFECTIVE AREA(ACRES) = 5.57 AREA- AVERAGED Fm(INCH /HR) _ .21 AREA- AVERAGED Fp(INCH /HR) _ .75 AREA- AVERAGED Ap = .27 TOTAL AREA(ACRES) = 5.90 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE = 4.1 ---------------------------------------------------------------------------- >>>>> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 1250.90 DOWNSTREAM(FEET) = 1242.32 FLOW LENGTH(FEET) = 40.00 MANNING'S N = .013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 7.6 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 25.37 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 21.87 PIPE TRAVEL TIME(MIN.) _ .03 Tc(MIN.) = 10.13 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 5.90 TC(MIN.) = 10.13 EFFECTIVE AREA(ACRES) = 5.57 AREA- AVERAGED Fm(INCH /HR)= .21 AREA- AVERAGED Fp(INCH /HR) _ .75 AREA- AVERAGED Ap = .27 PEAK FLOW RATE(CFS) = 21.87 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 21.8 9.75 4.404 .753( .207) .27 5.4 9.00 2 21.9 10.13 4.303 .754( .206) .27 5.6 .00 3 17.3 15.50 3.333 .726( .228) .31 5.9 20.00 END OF RATIONAL METHOD ANALYSIS Parking Lot Capacity Calculations Tract 16661 Cross Section A Water Surface Calculation 100 Year Storm Event * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 0.00 0.86 2 0.10 0.36 3 17.50 0.06 4 19.00 0.00 5 21.50 0.06 6 45.50 1.06 SUBCHANNEL SLOPE(FEET/FEET) = 0.005600 SUBCHANNEL MANNINGS FRICTION FACTOR = 0.015000 ............................................. ............................... SUBCHANNEL FLOW(CFS) = 17.3 SUBCHANNEL FLOW AREA(SQUARE FEET) = 6.47 SUBCHANNEL FLOW VELOCITY(FEET /SEC.) = 2.674 SUBCHANNEL FROUDE NUMBER = 1.012 SUBCHANNEL FLOW TOP- WIDTH(FEET) = 29.81 SUBCHANNEL HYDRAULIC DEPTH(FEET) = 0.22 ---------------------------------------------------------------------------- .- TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 16.10 COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 17.30 ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE ELEVATION ............................. 0.41 NOTE: WATER SURFACE IS BELOW EXTREME LEFT AND RIGHT BANK ELEVATIONS. ---------------------------------------------------------------------------- ::::::::::::::::::::::::::::::::Results Options. ..... : : :::::::::::::::: : : : : : : :: . ............................... Options:::::::::::::::::::::::::::::::: 1= PRINT current results or (Press RETURN to continue) _> Tract 16661 Cross Section B Water Surface Calculation 100 Year Storm Event * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 0.00 1.11 2 28.50 0.06 3 30.00 0.00 4 31.50 0.06 5 37.00 0.22 6 37.10 0.72 SUBCHANNEL SLOPE(FEET/FEET) = 0.005000 SUBCHANNEL MANNINGS FRICTION FACTOR = 0.015000 .......................................... ............................... SUBCHANNEL FLOW(CFS) = 15.2 SUBCHANNEL FLOW AREA(SQUARE FEET) = 5.23 SUBCHANNEL FLOW VELOCITY(FEET /SEC.) = 2.901 SUBCHANNEL FROUDE NUMBER= 0.985 SUBCHANNEL FLOW TOP- WIDTH(FEET) = 19.41 SUBCHANNEL HYDRAULIC DEPTH(FEET) = 0.27 ---------------------------------------------------------------------------- TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 14.60 COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 15.16 ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE ELEVATION ............................. 0.46 NOTE: WATER SURFACE IS BELOW EXTREME LEFT AND RIGHT BANK ELEVATIONS. To account for right angle turn add one velocity head = V ^2/2g = 0.1 0.46 +0.13 =0.59 Invert Elevation = 1254.39 Water Surface = 1254.39 + 0.59 = 1254.98 Channel Capacity Calculations Tract 1661 Water Surface Calculation — East Channel 100 Year Storm Event » »CHANNEL INPUT INFORMATION «« ---------------------------------------------------------------------------- CHANNEL ZI(HORIZONTAL/VERTICAL) = 3.00 Z2(HORIZONTAL/VERTICAL) = 3.00 BASEWIDTH(FEET) = 5.00 CONSTANT CHANNEL SLOPE(FEET/FEET) = 0.003000 UNIFORM FLOW(CFS) = 5.90 MANNINGS FRICTION FACTOR = 0.0250 NORMAL -DEPTH FLOW INFORMATION: » »> NORMAL DEPTH(FEET) = 0.51 FLOW TOP- WIDTH(FEET) = 8.06 FLOW AREA(SQUARE FEET) = 3.32 HYDRAULIC DEPTH(FEET) = 0.41 FLOW AVERAGE VELOCITY(FEET /SEC.) = 1.77 UNIFORM FROUDE NUMBER = 0.487 PRESSURE + MOMENTUM(POUNDS) = 68.99 AVERAGED VELOCITY HEAD(FEET) = 0.049 SPECIFIC ENERGY(FEET) = 0.558 CRITICAL -DEPTH FLOW INFORMATION: CRITICAL FLOW TOP- WIDTH(FEET) = 6.97 CRITICAL FLOW AREA(SQUARE FEET) = 1.96 CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 0.28 CRITICAL FLOW AVERAGE VELOCITY(FEET /SEC.) = 3.01 CRITICAL DEPTH(FEET) = 0.33 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 53.35 AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 0.140 CRITICAL FLOW SPECIFIC ENERGY(FEET) = 0.468 Tract 16661 Water Surface Calculation — West Channel 100 Year Storm Event » »CHANNEL INPUT INFORMATION«« CHANNEL ZI(HORIZONTAL/VERTICAL) = 3.00 Z2(HORIZONTAL/VERTICAL) = 3.00 BASEWIDTH(FEET) = 7.00 CONSTANT CHANNEL SLOPE(FEET/FEET) = 0.005000 UNIFORM FLOW(CFS) = 16.10 MANNINGS FRICTION FACTOR = 0.0250 NORMAL -DEPTH FLOW INFORMATION: » »> NORMAL DEPTH(FEET) = 0.65 FLOW TOP- WIDTH(FEET) = 10.93 FLOW AREA(SQUARE FEET) = 5.86 HYDRAULIC DEPTH(FEET) = 0.54 FLOW AVERAGE VELOCITY(FEET /SEC.) = 2.75 UNIFORM FROUDE NUMBER = 0.661 PRESSURE + MOMENTUM(POUNDS) = 196.62 AVERAGED VELOCITY HEAD(FEET) = 0.117 SPECIFIC ENERGY(FEET) = 0.771 CRITICAL -DEPTH FLOW INFORMATION: CRITICAL FLOW TOP- WIDTH(FEET) = 10.04 CRITICAL FLOW AREA(SQUARE FEET) = 4.32 CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 0.43 CRITICAL FLOW AVERAGE VELOCITY(FEET /SEC.) = 3.73 CRITICAL DEPTH(FEET) = 0.51 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 180.55 AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 0.216 CRITICAL FLOW SPECIFIC ENERGY(FEET) = 0.723 CMP Riser Calculations CMP Riser Elevation Calculation (24 inch Diameter) •- Equations and Constants were Derived From Brater, E.F. and King, H.W. 1976. Handbook Of Hydraulics, 65th Edition. McGraw Hill, New York. H = (Q /CL) ^(2/3) H = Distance Between Maximum Water Surface and Top of CMP Riser (ft) C = Constant Q = Q100 (cfs) L = Represents The Length Of The Opening And Can Be Calculated Using The Equation 2(Pi)R For A 24 inch Pipe 2(Pi)(12) =75.4 inches = 6.3 ft For A 24 inch Pipe with 12 post = 51.3 inches = 4.3 ft C = 3.087 Q = 5.9 cfs L =4.3ft H = (5.9/(3.087)(4.3)) ^2 /3 H = 0.6 ft CMP Riser Elevation Calculation (24 inch Diameter) Equations and Constants were Derived From Brater, E.F. and King, H.W. 1976. Handbook Of Hydraulics, 65th Edition. McGraw Hill, New York. H = (Q /CL) ^(2/3) H = Distance Between Maximum Water Surface and Top of CMP Riser (ft) C = Constant Q = Q100 (cfs) L = Represents The Length Of The Opening And Can Be Calculated Using The Equation 2(Pi)R For A 24 inch Pipe 2(Pi)(12) =75.4 inches = 6.3 ft For A 24 inch Pipe with 12 post = 51.3 inches = 4.3 ft C = 3.087 Q = 16.1 cfs L =4.3ft H = (16.1)/(3.087)(4.3)) ^2 /3 H =1.1ft Culvert Capacity Calculation Tract 16661 Vegetated Swale Culvert Capacity Calculation — Western Swale 100 Year Storm Event » »CHANNEL INPUT INFORMATION «« CHANNEL Z1(HORIZONTAL/VERTICAL) = 0.00 Z2(HORIZONTAL/VERTICAL) = 0.00 BASEWIDTH(FEET) = 5.00 CONSTANT CHANNEL SLOPE(FEET/FEET) = 0.005000 UNIFORM FLOW(CFS) = 16.10 MANNINGS FRICTION FACTOR = 0.0150 NORMAL -DEPTH FLOW INFORMATION: » »> NORMAL DEPTH(FEET) = 0.69 FLOW TOP- WIDTH(FEET) = 5.00 FLOW AREA(SQUARE FEET) = 3.46 HYDRAULIC DEPTH(FEET) = 0.69 FLOW AVERAGE VELOCITY(FEET /SEC.) = 4.65 UNIFORM FROUDE NUMBER = 0.985 PRESSURE + MOMENTUM(POUNDS) = 219.88 AVERAGED VELOCITY HEAD(FEET) = 0.336 SPECIFIC ENERGY(FEET) = 1.028 CRITICAL -DEPTH FLOW INFORMATION: CRITICAL FLOW TOP- WIDTH(FEET) = 5.00 CRITICAL FLOW AREA(SQUARE FEET) = 3.43 CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 0.69 CRITICAL FLOW AVERAGE VELOCITY(FEET /SEC.) = 4.70 CRITICAL DEPTH(FEET) = 0.69 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 219.86 AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 0.343 CRITICAL FLOW SPECIFIC ENERGY(FEET) = 1.028 Tract 16661 Vegetated Swale Culvert Capacity Calculation — Eastern Swale 100 Year Storm Event » »CHANNEL INPUT INFORMATION «« CHANNEL Z1(HORIZONTAL/VERTICAL) = 0.00 Z2(HORIZONTAL/VERTICAL) = 0.00 BASEWIDTH(FEET) = 5.00 CONSTANT CHANNEL SLOPE(FEET/FEET) = 0.003000 UNIFORM FLOW(CFS) = 5.90 MANNINGS FRICTION FACTOR = 0.0150 NORMAL -DEPTH FLOW INFORMATION: » »> NORMAL DEPTH(FEET) = 0.43 FLOW TOP- WIDTH(FEET) = 5.00 FLOW AREA(SQUARE FEET) = 2.13 HYDRAULIC DEPTH(FEET) = 0.43 FLOW AVERAGE VELOCITY(FEET /SEC.) = 2.77 UNIFORM FROUDE NUMBER = 0.750 PRESSURE + MOMENTUM(POUNDS) = 59.94 AVERAGED VELOCITY HEAD(FEET) = 0.120 SPECIFIC ENERGY(FEET) = 0.545 CRITICAL -DEPTH FLOW INFORMATION: ---------------------------------------------------------------------------- CRITICAL FLOW TOP- WIDTH(FEET) = 5.00 CRITICAL FLOW AREA(SQUARE FEET) = 1.76 CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 0.35 CRITICAL FLOW AVERAGE VELOCITY(FEET /SEC.) = 3.36 CRITICAL DEPTH(FEET) = 0.35 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 57.66 AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 0.175 CRITICAL FLOW SPECIFIC ENERGY(FEET) = 0.526 WSPG T1 Tract 16661 T2 24" Storm Drain T3 100 Year Storm Event SO 1000.0001242.320 1 1248.300 R 1040.0001243.880 1 .013 .000 0 JX 1042.0001243.920 3 5 .013 5.800 1245.920 90.0 65.000 R 1103.0001245.390 3 .013 .000 0 SH 1103.0001245.390 3 1245.390 CD 1 4 1 .000 2.000 .000 .000 .000 .00 CD 2 4 1 .000 2.000 .000 .000 .000 .00 CD 3 4 1 .000 2.000 .000 .000 .000 .00 CD 5 4 1 .000 2.000 .000 .000 .000 .00 Q 16.100 .0 I .000 I FILE: 16661.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 1 Program Package Serial Number: 1382 WATER SURFACE PROFILE LISTING Date: 2 -23 -2006 Time: 2:48: 6 Tract 16661 24" Storm Drain 100 Year Storm Event Invert Depth Water Q Vel Vel I Energy I Super ICriticallFlow ToplHeight /Base Wtj ENO Wth Station I Elev (FT) Elev (CFS) I (FPS) Head I Grd.El.1 Elev I Depth I Width IDia. -FTIor I.D.1 ZL lPrs /Pip L /Elem ICh Slope I I SF Avel HF ISE DpthIFroude NINorm Dp I "N" ( X -Fall ZR IType Ch 1000.000 1242.320 5.980 1248.300 21.90 6.97 .75 1249.05 .00 1.67 .00 2.000 .000 .00 1 .0 40.000 .0390 .0094 .37 5.98 .00 .99 .013 .00 .00 PIPE 1040.000 1243.880 4.795 1248.675 21.90 6.97 .75 1249.43 .00 1.67 .00 2.000 .000 00 1 .0 JUNCT STR .0200 .0072 .07 .00 .00 .013 .00 .00 PIPE 1042.000 1243.920 5.463 1249.383 16.10 5.12 .41 1249.79 .00 1.45 .00 2,000 .000 .00 1 .0 61.000 .0241 .0051 .31 5.46 .00 .95 .013 .00 .00 PIPE 1103.000 1245.390 4.302 1249.692 16.10 5.12 .41 1250.10 .00 1.45 .00 2,000 .000 .00 1 .0