Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Rancho Fontana - Tract 16568
iiir 4" im 4M ON A. 60 oft am to Am r S, O•• Aw to .. 40 NO i� 40 �r ALLARD ENGINEERING � ern loa l e��v Los Cedros Avenue IV5(08 HYDROLOGY &HYDRAULICS REPORT April 14, 2005 Prepared For: Young Homes Inc. 10370 Trademark Street Rancho Cucamonga, CA 91730 Phone (909) 291 -7716 Fax (909) 291 -7633 Prepared under the supervision of: David S Hammer ACE 43976 Exp. 06 -30 -05 q?, �5 H c O � ✓ � C M,� n Z �0. 4,1976 * ExO. \ v 4T C ' V F Or CA_�F0/ 0253 Sierra Avenue Fontana, CA 92335 (909) 356 -1615 * (909) 356 -1795 �r irr r .. oft VM OM on on 40 go (Ilia oft llr Table of Contents Discussion Reference Rational Methods Catawba Avenue I" Set Catch Basins Flow Depth Calculation Catch Basin Interception Calculation Catawba Avenue 2 "d Set Catch Basins Flow Depth Calculation Catch Basin Interception Calculation Almeria Avenue 1 Set Catch Basins Flow Depth Calculation Catch Basin Interception Calculation Almeria Avenue 2nd Set Catch Basins Flow Depth Calculation Catch Basin Interception Calculation Hydrology Exhibit Reference Exhibits 0 Discussion ON The objective of this report is to determine the size and number of catch basins that are �.• necessary on Almeria Avenue and Catawba Avenue in order to intercept the runoff produced by the 100 year storm event. FINDINGS / SUMMARY o Results demonstrate that two additional 21' catch basins on Catawba Avenue are to necessary to intercept the runoff produced by the 100 year storm event. In regard to Almeria Avenue, an additional 28' catch basin and two 21' catch basins are necessary. P Hydraulic calculations and exhibits accompany this report to further illustrate these to results. No IN am as 8 F. OVERVIEW The Almeria Avenue Storm Drain is an incomplete drainage improvement project that is based on the City of Fontana's Storm Drain Master Plan. Catch basins are lacking on �+ Almeria Avenue and Catawba Avenue that are necessary to intercept 100% of the 100 year storm event. CRITERIA The criteria utilized for design is the San Bernardino County Hydrology Manual. Civil Cad, Softdesk and AES computer software were utilized to perform the computations. OBJECTIVE ON The objective of this report is to determine the size and number of catch basins that are �.• necessary on Almeria Avenue and Catawba Avenue in order to intercept the runoff produced by the 100 year storm event. FINDINGS / SUMMARY o Results demonstrate that two additional 21' catch basins on Catawba Avenue are to necessary to intercept the runoff produced by the 100 year storm event. In regard to Almeria Avenue, an additional 28' catch basin and two 21' catch basins are necessary. P Hydraulic calculations and exhibits accompany this report to further illustrate these to results. No IN am as 8 F. Li n HA-1 0-1, Reference Rational Methods N Hz I i I 0 n RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING, INC. 6101 CHERRY AVENUE FONTANA, CALIFORNIA 92336 (909) 899 - 5011 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Subarea Ll Q100 * * * * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 16568OS3.DAT TIME /DATE OF STUDY: 15:53 1/27/2004 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL*- - USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = )z.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .90 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.5500 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* *USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET - CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT - /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 2 30.0 15.0 .020/ .020/ 50 1.50 .03125 .1250 .01500 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = .14 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* t * s t * * * * * t * * * * * k * * * * z * * z * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 11.00 TO NODE 14.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« « < a 0, >>>>>( STREET TABLE SECTION # 2 USED) <<<<< UPSTREAM ELEVATION(FEET) = 1458.00 DOWNSTREAM ELEVATION(FEET) = 1455.00 STREET LENGTH(FEET) = 390.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.56 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .30 HALFSTREET FLOOD WIDTH(FEET) = 8.60 AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.82 ON PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) _ .54 STREET FLOW TRAVEL TIME(MIN.) = 3.57 Tc(MIN.) = 8.57 pa * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.981 60 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS w LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL IN "3 -4 DWELLINGS /ACRE" A .25 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 �w SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = .25 SUBAREA RUNOFF(CFS) _ .99 r EFFECTIVE AREA(ACRES) _ .26 AREA- AVERAGED Fm(INCH /HR) _ .56 AREA- AVERAGED Fp(INCH /HR) _ .91 AREA- AVERAGED Ap = .62 p' TOTAL AREA(ACRES) _ .26 PEAK FLOW RATE(CFS) = 1.03 to END OF SUBAREA STREET FLOW HYDRAULICS: go DEPTH(FEET) = .27 HALFSTREET FLOOD WIDTH(FEET) = 7.09 FLOW VELOCITY(FEET /SEC.) = 1.66 DEPTH *VELOCITY(FT *FT /SEC.) _ .45 FLOW PROCESS FROM NODE 14.00 TO NODE 15.00 IS CODE = 6.2 ---------------------------------------------------------------------------- >> >>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<< <<< >> >>>( STREET TABLE SECTION # 2 USED)<< <<< UPSTREAM ELEVATION(FEET) = 1455.00 DOWNSTREAM ELEVATION(FEET) = 1438.00 4w STREET LENGTH(FEET) = 725.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 a SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.35 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .37 6 HALFSTREET FLOOD WIDTH(FEET) = 12.33 h 4! AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.88 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.44 STREET FLOW TRAVEL TIME(MIN.) = 3.12 Tc(MIN.) = 11.69 i * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.136 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 3.30 .98 .60 32 war SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 �y SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = 3.30 SUBAREA RUNOFF(CFS) = 10.55 w.w EFFECTIVE AREA(ACRES) = 3.56 AREA- AVERAGED Fm(INCH /HR) _ .58 AREA-AVERAGED Fp(INCH /HR) _ .97 AREA- AVERAGED Ap = .60 iw TOTAL AREA(ACRES) = 3.56 PEAK FLOW RATE(CFS) = 11.38 p ' END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .44 HALFSTREET FLOOD WIDTH(FEET) = 15.61 it FLOW VELOCITY(FEET /SEC.) = 4.45 DEPTH *VELOCITY(FT *FT /SEC.) = 1.95 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 3.56 TC(MIN.) = 11.69 EFFECTIVE AREA(ACRES) = 3.56 AREA- AVERAGED Fm(INCH /HR)= .58 AREA- AVERAGED Fp(INCH /HR) _ .97 AREA- AVERAGED Ap = .60 PEAK FLOW RATE(CFS) = 11.38 END OF RATIONAL METHOD ANALYSIS 60 oft ow w.� F E a IN e 0 RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 - 95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 40 Analysis prepared by: OW ALLARD ENGINEERING, INC. go 6101 CHERRY AVENUE FONTANA, CALIFORNIA 92336 (909) 899 - 5011 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * * Subarea U1 Q100 * * * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 16568OSF.DAT TIME /DATE OF STUDY: 9:41 6/ 2/2004 �rs USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL*- - USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) _ .6000 "a USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.5500 III *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* erg *USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET- CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT - /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 .018/ .018/ 020 67 2.00 .03125 .1670 .01500 2 30.0 15.0 .020/ .020/ - -- .50 1.50 .03125 .1250 .01500 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = .14 FEET as (Maximum Allowable Street Flow Depth) - (Top - of - Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* 40 FLOW PROCESS FROM NODE .00 TO NODE 1.00 IS CODE = 2.1 ----------------------------------------------------------- >> >>> RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<< < 8 0 e TOTAL AREA(ACRES) = 11.70 PEAK FLOW RATE(CFS) = 32.58 O a END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .60 HALFSTREET FLOOD WIDTH(FEET) = 23.85 FLOW VELOCITY(FEET /SEC.) = 5.61 DEPTH *VELOCITY(FT *FT /SEC.) *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS, AND L = 870.0 FT WITH ELEVATION -DROP = 19.0 FT, IS WHICH EXCEEDS THE TOP -OF -CURB STREET CAPACITY AT NODE 3.39 19.3 CFS, 2.00 FLOW PROCESS FROM NODE 2.00 TO NODE 2.00 IS CODE = 1 ---------------------------------------------------------------------------- 60 >> >>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: w TIME OF CONCENTRATION(MIN.) = 14.20 RAINFALL INTENSITY(INCH /HR) = 3.68 so AREA- AVERAGED Fm(INCH /HR) = .59 ow AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 EFFECTIVE STREAM AREA(ACRES) = 11.70 wr TOTAL STREAM AREA(ACRES) = 11.70 as PEAK FLOW RATE(CFS) AT CONFLUENCE = 32.58 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE .00 TO NODE 1.00 IS CODE = 2.1 ---------------------------------------------------------------------------- �"� >> >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< <<< W >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< w INITIAL SUBAREA FLOW- LENGTH(FEET) = 630.00 ELEVATION DATA: UPSTREAM(FEET) = 1498.00 DOWNSTREAM(FEET) = 1483.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGER** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.463 s * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.185 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 2.50 .98 .60 32 11.46 OR SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA RUNOFF(CFS) = 8.10 TOTAL AREA(ACRES) = 2.50 PEAK FLOW RATE(CFS) = 8.10 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 6.2 ---------------------------------------------------------------------------- >> >>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<< <<< >> >>>( STREET TABLE SECTION # 2 USED)<< <<< is UPSTREAM ELEVATION(FEET) = 1483.00 DOWNSTREAM ELEVATION(FEET) = 1464.00 d 0 0 STREET LENGTH(FEET) = 870.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 i� SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 12.59 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .46 HALFSTREET FLOOD WIDTH(FEET) = 16.50 a# AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.43 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.02 ow STREET FLOW TRAVEL TIME(MIN.) = 3.27 Tc(MIN.) = 14.73 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.599 do SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS w LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL 11 3 -4 DWELLINGS /ACRE" A 3.30 .98 .60 32 wr SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 ON SUBAREA AREA(ACRES) = 3.30 SUBAREA RUNOFF(CFS) = 8.95 EFFECTIVE AREA(ACRES) = 5.80 AREA- AVERAGED Fm(INCH /HR) _ .59 on AREA- AVERAGED Fp(INCH /HR) _ .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 5.80 PEAK FLOW RATE(CFS) = 15.73 aw END OF SUBAREA STREET FLOW HYDRAULICS: OR DEPTH(FEET) = .49 HALFSTREET FLOOD WIDTH(FEET) = 18.00 FLOW VELOCITY(FEET /SEC.) = 4.68 DEPTH *VELOCITY(FT *FT /SEC.) = 2.28 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 2.00 IS CODE = 1 ---------------------------------------------------------------------------- 4r >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<< <<< to >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<< <<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 14.73 RAINFALL INTENSITY(INCH /HR) = 3.60 AREA- AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 EFFECTIVE STREAM AREA(ACRES) = 5.80 TOTAL STREAM AREA(ACRES) = 5.80 46 PEAK FLOW RATE(CFS) AT CONFLUENCE = 15.73 ** CONFLUENCE DATA ** 40 STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE is NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 32.58 14.20 3.679 .98( .59) .60 11.70 .00 2 15.73 14.73 3.599 .98( .59) .60 5.80 .00 OR W RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO E CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 48.2 14.20 3.679 .975( .585) .60 17.3 .00 ` 2 47.5 14.73 3.599 .975( .585) .60 17.5 .00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 48.15 Tc(MIN.) = 14.20 EFFECTIVE AREA(ACRES) = 17.29 AREA - AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 17.50 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.50 TO NODE 2.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 14.20 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.679 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A .20 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = .20 SUBAREA RUNOFF(CFS) = .56 EFFECTIVE AREA(ACRES) = 17.49 AREA- AVERAGED Fm(INCH /HR) = .58 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 17.70 PEAK FLOW RATE(CFS) = 48.71 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 5.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »>( STREET TABLE SECTION # 2 USED) « «< UPSTREAM ELEVATION(FEET) = 1464.00 DOWNSTREAM ELEVATION(FEET) = 1462.00 STREET LENGTH(FEET) = 390.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 49.03 ** *STREET FLOW SPLITS OVER STREET - CROWN * ** FULL DEPTH(FEET) = .73 FLOOD WIDTH(FEET) = 30.00 FULL HALF - STREET VELOCITY(FEET /SEC.) = 3.17 SPLIT DEPTH(FEET) = .65 SPLIT FLOOD WIDTH(FEET) = 26.13 d r -1 SPLIT FLOW(CFS) = 20.13 SPLIT VELOCITY(FEET /SEC.) = 2.90 qw STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: NOTE: STREET FLOW EXCEEDS TOP OF CURB. do THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. mm THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. op STREET FLOW DEPTH(FEET) = .73 HALFSTREET FLOOD WIDTH(FEET) = 30.00 wr AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.17 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.30 do STREET FLOW TRAVEL TIME(MIN.) = 2.05 Tc(MIN.) = 16.26 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.393 """ SUBAREA LOSS RATE DATA (AMC II) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A .25 .98 .60 32 rIN SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = .25 SUBAREA RUNOFF(CFS) _ .63 EFFECTIVE AREA(ACRES) = 17.74 AREA- AVERAGED Fm(INCH /HR) _ .58 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 wr TOTAL AREA(ACRES) = 17.95 PEAK FLOW RATE(CFS) = 48.71 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE 0 END OF SUBAREA STREET FLOW HYDRAULICS: so DEPTH(FEET) = .73 HALFSTREET FLOOD WIDTH(FEET) = 30.00 FLOW VELOCITY(FEET /SEC.) = 3.17 DEPTH *VELOCITY(FT *FT /SEC.) = 2.30 of fAw FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1 ---------------------------------------------------------------------------- sw >> >>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<< --------------------------------------------------------------------- %IL TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: ow TIME OF CONCENTRATION(MIN.) = 16.26 io RAINFALL INTENSITY(INCH /HR) = 3.39 AREA- AVERAGED Fm(INCH /HR) = .58 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 EFFECTIVE STREAM AREA(ACRES) = 17.74 TOTAL STREAM AREA(ACRES) = 17.95 ANA PEAK FLOW RATE(CFS) AT CONFLUENCE = 48.71 ad ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 40 FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 2.1 ---------------------------------------------------------------------------- >> >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< <<< !! >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 630.00 ELEVATION DATA: UPSTREAM(FEET) 1496.00 DOWNSTREAM(FEET) = 1482.00 A� Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 0 No its ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 6.2 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<< <<< IN >>>>>( STREET TABLE SECTION # 2 USED)<< <<< ----------------- UPSTREAM ELEVATION(FEET) = 1482.00 DOWNSTREAM ELEVATION(FEET) = 1462.00 STREET LENGTH(FEET) = 870.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 w� SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 4w * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 14.08 ow STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: ,y STREET FLOW DEPTH(FEET) = .47 HALFSTREET FLOOD WIDTH(FEET) = 17.06 „ft AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.65 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.17 %L STREET FLOW TRAVEL TIME(MIN.) = 3.12 Tc(MIN.) = 14.74 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.599 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Pp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN 4W RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 3.75 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = 3.75 SUBAREA RUNOFF(CFS) = 10.17 EFFECTIVE AREA(ACRES) = 6.55 AREA- AVERAGED Fm(INCH /HR) _ .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 6.55 PEAK FLOW RATE(CFS) = 17.76 on END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .50 HALFSTREET FLOOD WIDTH(FEET) = 18.67 Alf FLOW VELOCITY(FEET /SEC.) = 4.93 DEPTH *VELOCITY(FT *FT /SEC.) = 2.46 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1 ---------------------------------------------------------- ------------------ SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.622 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.150 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 2.80 .98 .60 32 11.62 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA RUNOFF(CFS) = 8.98 TOTAL AREA(ACRES) = 2.80 PEAK FLOW RATE(CFS) = 8.98 No its ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 6.2 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<< <<< IN >>>>>( STREET TABLE SECTION # 2 USED)<< <<< ----------------- UPSTREAM ELEVATION(FEET) = 1482.00 DOWNSTREAM ELEVATION(FEET) = 1462.00 STREET LENGTH(FEET) = 870.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 w� SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 4w * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 14.08 ow STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: ,y STREET FLOW DEPTH(FEET) = .47 HALFSTREET FLOOD WIDTH(FEET) = 17.06 „ft AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.65 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.17 %L STREET FLOW TRAVEL TIME(MIN.) = 3.12 Tc(MIN.) = 14.74 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.599 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Pp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN 4W RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 3.75 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = 3.75 SUBAREA RUNOFF(CFS) = 10.17 EFFECTIVE AREA(ACRES) = 6.55 AREA- AVERAGED Fm(INCH /HR) _ .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 6.55 PEAK FLOW RATE(CFS) = 17.76 on END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .50 HALFSTREET FLOOD WIDTH(FEET) = 18.67 Alf FLOW VELOCITY(FEET /SEC.) = 4.93 DEPTH *VELOCITY(FT *FT /SEC.) = 2.46 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1 ---------------------------------------------------------- ------------------ a >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: wa TIME OF CONCENTRATION(MIN.) = 14.74 RAINFALL INTENSITY(INCH /HR) = 3.60 im AREA- AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) = .98 iwr AREA- AVERAGED Ap = .60 EFFECTIVE STREAM AREA(ACRES) = 6.55 TOTAL STREAM AREA(ACRES) = 6.55 PEAK FLOW RATE(CFS) AT CONFLUENCE = 17.76 an w FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 2.1 ------------------------------------------------------------------- >> >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS< « < >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 630.00 ELEVATION DATA: UPSTREAM(FEET) = 1496.00 DOWNSTREAM(FEET) = 1482.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.622 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.150 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 2.80 .98 .60 32 11.62 irw SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 *� SUBAREA RUNOFF(CFS) = 8.98 TOTAL AREA(ACRES) = 2.80 PEAK FLOW RATE(CFS) = 8.98 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 6.2 --------------------------------------------------------------------- 4m >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<< <<< >>>( STREET TABLE SECTION # 2 USED)<< <<< UPSTREAM ELEVATION(FEET) = 1482.00 DOWNSTREAM ELEVATION(FEET) = 1462.00 STREET LENGTH(FEET) = 870.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 40 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 14.08 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .47 HALFSTREET FLOOD WIDTH(FEET) = 17.06 0 ww END OF SUBAREA STREET FLOW HYDRAULICS: 0 DEPTH(FEET) = .50 HALFSTREET FLOOD WIDTH(FEET) = 18.67 FLOW VELOCITY(FEET /SEC.) = 4.93 DEPTH *VELOCITY(FT *FT /SEC.) = 2.46 am ** PEAK FLOW RATE FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE 1 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.65 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.17 ----------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< STREET FLOW TRAVEL TIME(MIN.) = 3.12 Tc(MIN.) = 14.74 >> >>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES <<< < * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.599 --------------- SUBAREA LOSS RATE DATA(AMC II): Q 4w DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Ap LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN to NUMBER TIME OF CONCENTRATION(MIN.) = 14.74 (MIN.) RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 3.75 .98 .60 32 04 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 NODE 40 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 82.9 14.74 SUBAREA AREA(ACRES) = 3.75 SUBAREA RUNOFF(CFS) = 10.17 AREA- AVERAGED Fp(INCH /HR) = .98 .60 EFFECTIVE AREA(ACRES) = 6.55 AREA- AVERAGED Fm(INCH /HR) _ .59 AREA- AVERAGED Ap = .60 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 81.8 as TOTAL AREA(ACRES) = 6.55 PEAK FLOW RATE(CFS) = 17.76 ww END OF SUBAREA STREET FLOW HYDRAULICS: 0 DEPTH(FEET) = .50 HALFSTREET FLOOD WIDTH(FEET) = 18.67 FLOW VELOCITY(FEET /SEC.) = 4.93 DEPTH *VELOCITY(FT *FT /SEC.) = 2.46 am 4P RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE 1 ----- ---- ---- ---------- ----------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >> >>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES <<< < --------------- STREAM Q TOTAL NUMBER OF STREAMS = 3 Intensity Fp(Fm) Ap CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: NUMBER TIME OF CONCENTRATION(MIN.) = 14.74 (MIN.) (INCH /HR) ow RAINFALL INTENSITY(INCH /HR) = 3.60 (ACRES) NODE to AREA- AVERAGED Fm(INCH /HR) = .59 82.9 14.74 3.599 AREA- AVERAGED Fp(INCH /HR) = .98 .60 29.2 3.00 AREA- AVERAGED Ap = .60 2 81.8 16.26 EFFECTIVE STREAM AREA(ACRES) = 6.55 .975( .585) .60 30.8 TOTAL STREAM AREA(ACRES) = 6.55 3 80.4 PEAK FLOW RATE(CFS) AT CONFLUENCE = 17.76 3.329 .975( .585) .60 ** CONFLUENCE DATA ** .00 no 4 STREAM Q . Tc Intensity Fp(Fm) Ap Ae SOURCE .975( .585) NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 48.71 16.26 3.393 .98( .58) .60 17.74 .00 1 48.02 16.79 3.329 .98( .58) .60 17.95 .00 2 17.76 14.74 3.599 .98( .59) .60 6.55 3.00 3 17.76 14.74 3.599 .98( .59) .60 6.55 3.00 4P RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. 40 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 82.9 14.74 3.599 .975( .585) .60 29.2 3.00 2 81.8 16.26 3.393 .975( .585) .60 30.8 .00 3 80.4 16.79 3.329 .975( .585) .60 31.0 .00 no 4 82.9 14.74 3.599 .975( .585) .60 29.2 3.00 40 C do w COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: �r PEAK FLOW RATE(CFS) = 82.93 Tc(MIN.) = 14.74 EFFECTIVE AREA(ACRES) = 29.19 AREA- AVERAGED Fm(INCH /HR) _ .58 AREA- AVERAGED Fp(INCH /HR) _ .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 31.05 �e ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 5.00 TO NODE 8.00 IS CODE = 6.2 ------------------------------------------------------------- >> >>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<< <<< >> >>>( STREET TABLE SECTION # 2 USED) <<<<< UPSTREAM ELEVATION(FEET) = 1462.00 DOWNSTREAM ELEVATION(FEET) = 1460.00 STREET LENGTH(FEET) = 390.00 CURB HEIGHT(INCHES) = 6.0 w� STREET HALFWIDTH(FEET) = 30.00 wry DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 i111t SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 so * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 83.24 im ** *STREET FLOWING FULL * ** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: ow NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION mg THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. ow STREET FLOW DEPTH(FEET) _ .80 IN HALFSTREET FLOOD WIDTH(FEET) = 30.00 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.67 wR PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.94 STREET FLOW TRAVEL TIME(MIN.) = 1.77 Tc(MIN.) = 16.51 X11 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.362 SUBAREA LOSS RATE DATA(AMC II): on DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A .25 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) _ .25 SUBAREA RUNOFF(CFS) _ .62 4p EFFECTIVE AREA(ACRES) = 29.44 AREA- AVERAGED Fm(INCH /HR) _ .58 AREA- AVERAGED Fp(INCH /HR) _ .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 31.30 PEAK FLOW RATE(CFS) = 82.93 40 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE it END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .80 HALFSTREET FLOOD WIDTH(FEET) = 30.00 IN FLOW VELOCITY(FEET /SEC.) = 3.66 DEPTH *VELOCITY(FT *FT /SEC.) = 2.93 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 1 ---------------------------------------------------------------------- - - - - -- 40 so , >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< ------------------------------------------------------- TOTAL NUMBER OF STREAMS = 3 r CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 16.51 RAINFALL INTENSITY(INCH /HR) = 3.36 bi AREA- AVERAGED Fm(INCH /HR) = .58 AREA - AVERAGED Fp(INCH /HR) = .98 s� AREA- AVERAGED Ap = .60 EFFECTIVE STREAM AREA(ACRES) = 29.44 TOTAL STREAM AREA(ACRES) = 31.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 82.93 aw fat ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 41 FLOW PROCESS FROM NODE 6.00 TO NODE 7.00 IS CODE = 2.1 ---------------------------------------------------------------------------- II >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< <<< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 630.00 ELEVATION DATA: UPSTREAM(FEET) = 1493.00 DOWNSTREAM(FEET) = 1479.00 ow Tc = K *((LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 Ia SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.622 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.150 +w SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc so LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL 1 "3 -4 DWELLINGS /ACRE" A 2.80 .98 .60 32 11.62 t1 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 im SUBAREA RUNOFF(CFS) = 8.98 TOTAL AREA(ACRES) = 2.80 PEAK FLOW RATE(CFS) = 8.98 6K FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 6.2 ---------------------------------------------------------------------------- 4m >> >>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<< <<< >> >>>( STREET TABLE SECTION # 2 USED) <<<<< -------- - - - - -- UPSTREAM ELEVATION(FEET) = 1479.00 DOWNSTREAM ELEVATION(FEET) = 1460.00 4" STREET LENGTH(FEET) = 870.00 CURB HEIGHT(INCHES) = 6.0 li STREET HALFWIDTH(FEET) = 30.00 4w DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 14.07 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: go STREET FLOW DEPTH(FEET) _ .47 HALFSTREET FLOOD WIDTH(FEET) = 17.23 8 0 pm END OF SUBAREA STREET FLOW HYDRAULICS: wi DEPTH(FEET) = .50 HALFSTREET FLOOD WIDTH(FEET) = 18.84 FLOW VELOCITY(FEET /SEC.) = 4.83 DEPTH *VELOCITY(FT *FT /SEC.) = 2.43 ow aw ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 1 --------------------------------------------------------------- us >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< pw TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: am TIME OF CONCENTRATION(MIN.) = 14.80 RAINFALL INTENSITY(INCH /HR) = 3.59 AREA- AVERAGED Fm(INCH /HR) = .59 y AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 ,.., EFFECTIVE STREAM AREA(ACRES) = 6.55 TOTAL STREAM AREA(ACRES) = 6.55 PEAK FLOW RATE(CFS) AT CONFLUENCE = 17.71 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.00 TO NODE 7.00 IS CODE = 2.1 ----------------------------------------------------------------- >> >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< <<< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 630.00 ELEVATION DATA: UPSTREAM(FEET) = 1493.00 DOWNSTREAM(FEET) = 1479.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGER** .20 v' SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.622 to * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.150 SUBAREA Tc AND LOSS RATE DATA(AMC II): FIR DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 2.80 .98 .60 32 11.62 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = •98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 E AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.56 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.15 STREET FLOW TRAVEL TIME(MIN.) = 3.18 Tc(MIN.) = 14.80 aw * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.589 SUBAREA LOSS RATE DATA(AMC II): 'm DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN a RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 3.75 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = 3.75 SUBAREA RUNOFF(CFS) = 10.14 mw EFFECTIVE AREA(ACRES) = 6.55 AREA- AVERAGED Fm(INCH /HR) _ .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 fw TOTAL AREA(ACRES) = 6.55 PEAK FLOW RATE(CFS) = 17.71 pm END OF SUBAREA STREET FLOW HYDRAULICS: wi DEPTH(FEET) = .50 HALFSTREET FLOOD WIDTH(FEET) = 18.84 FLOW VELOCITY(FEET /SEC.) = 4.83 DEPTH *VELOCITY(FT *FT /SEC.) = 2.43 ow aw ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 1 --------------------------------------------------------------- us >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< pw TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: am TIME OF CONCENTRATION(MIN.) = 14.80 RAINFALL INTENSITY(INCH /HR) = 3.59 AREA- AVERAGED Fm(INCH /HR) = .59 y AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 ,.., EFFECTIVE STREAM AREA(ACRES) = 6.55 TOTAL STREAM AREA(ACRES) = 6.55 PEAK FLOW RATE(CFS) AT CONFLUENCE = 17.71 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.00 TO NODE 7.00 IS CODE = 2.1 ----------------------------------------------------------------- >> >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< <<< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 630.00 ELEVATION DATA: UPSTREAM(FEET) = 1493.00 DOWNSTREAM(FEET) = 1479.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGER** .20 v' SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.622 to * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.150 SUBAREA Tc AND LOSS RATE DATA(AMC II): FIR DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 2.80 .98 .60 32 11.62 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = •98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 E 40 0 SUBAREA RUNOFF(CFS) = 8.98 I� TOTAL AREA(ACRES) = 2.80 PEAK FLOW RATE(CFS) = 8.98 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ow FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 6.2 ---------------------------- >> >>> COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<< >>>>>( STREET TABLE SECTION # 2 USED) <<<<< UPSTREAM ELEVATION(FEET) = 1479.00 DOWNSTREAM ELEVATION(FEET) = 1460.00 STREET LENGTH(FEET) = 870.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 to DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 w INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 rr * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 14.07 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .47 HALFSTREET FLOOD WIDTH(FEET) = 17.23 irr AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.56 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.15 }� STREET FLOW TRAVEL TIME(MIN.) = 3.18 TC(MIN.) = 14.80 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.589 60 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS pm LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN bt RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 3.75 .98 .60 32 pm SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 IN SUBAREA AREA(ACRES) = 3.75 SUBAREA RUNOFF(CFS) = 10.14 EFFECTIVE AREA(ACRES) = 6.55 AREA- AVERAGED Fm(INCH /HR) _ .59 wR AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 irr TOTAL AREA(ACRES) = 6.55 PEAK FLOW RATE(CFS) = 17.71 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .50 HALFSTREET FLOOD WIDTH(FEET) = 18.84 FLOW VELOCITY(FEET /SEC.) = 4.83 DEPTH *VELOCITY(FT *FT /SEC.) = 2.43 dt ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 1 --------------------------------------------- » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >> >>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<< <<< OR TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: n � TIME OF CONCENTRATION(MIN.) = 14.80 RAINFALL INTENSITY(INCH /HR) = 3.59 AREA- AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) = .98 d 4m do ow so wo r ow ow aw AREA- AVERAGED Ap = .60 EFFECTIVE STREAM AREA(ACRES) = 6.55 TOTAL STREAM AREA(ACRES) = 6.55 PEAK FLOW RATE(CFS) AT CONFLUENCE = 17.71 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) 1 82.93 16.51 3.362 .98( .59) 1 81.82 18.04 3.188 .98( .59) 1 80.36 18.58 3.131 .98( .59) 1 82.93 16.51 3.362 .98( .59) 2 17.71 14.80 3.589 .98( .59) 3 17.71 14.80 3.589 .98( .59) urt .60 .60 .60 .60 .60 .60 Ae (ACRES) 29.44 31.09 31.30 29.44 6.55 6.55 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. SOURCE NODE 3.00 .00 .00 3.00 6.00 6.00 ow as ** PEAK FLOW RATE TABLE ** on STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE aw 1 115.9 14.80 3.589 .975( .585) .60 39.5 6.00 2 115.7 16.51 3.362 .975( .585) .60 42.5 3.00 rw 3 115.7 16.51 3.362 .975( .585) .60 42.5 3.00 4 112.5 18.04 3.188 .975( .585) .60 44.2 .00 5 110.4 18.58 3.131 .975( .585) .60 44.4 .00 ... 6 115.9 14.80 3.589 .975( .585) .60 39.5 6.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 115.87 Tc(MIN.) = 14.80 ow EFFECTIVE AREA(ACRES) = 39.49 AREA- AVERAGED Fm(INCH /HR) _ .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 Or TOTAL AREA(ACRES) = 44.40 an ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 8.00 TO NODE 11.00 IS CODE = 6.2 aw --------------------- ------------------------------------------------------- >> >>>COMPUTE.STREET FLOW TRAVEL TIME THRU SUBAREA<< <<< >> >>>( STREET TABLE SECTION # 2 USED)<< <<< ---------------------------------------------- UPSTREAM ELEVATION(FEET) = 1460.00 DOWNSTREAM ELEVATION(FEET) = 1458.00 STREET LENGTH(FEET) = 390.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 115.99 ,w ** *STREET FLOWING FULL * ** ik STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: NOTE: STREET FLOW EXCEEDS TOP OF CURB. 40 THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. rri No iw THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. ws STREET FLOW DEPTH(FEET) = .88 HALFSTREET FLOOD WIDTH(FEET) = 30.00 r AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.18 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 3.70 STREET FLOW TRAVEL TIME(MIN.) = 1.55 Tc(MIN.) = 16.36 w * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.381 SUBAREA LOSS RATE DATA(AMC II): an DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN wo RESIDENTIAL " 3 -4 DWELLINGS /ACRE" A 10 98 60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = .10 SUBAREA RUNOFF(CFS) = 25 EFFECTIVE AREA(ACRES) = 39.59 AREA- AVERAGED F /HR) _ .59 nos AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 44.50 PEAK FLOW RATE(CFS) = 115.87 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: ka DEPTH(FEET) = .88 HALFSTREET FLOOD WIDTH(FEET) = 30.00 FLOW VELOCITY(FEET /SEC.) = 4.19 DEPTH *VELOCITY(FT *FT /SEC.) = 3.70 am rr� ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ■.. FLOW PROCESS FROM NODE 11.00 TO NODE 11.00 IS CODE = 1 -------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<< <<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 16.36 RAINFALL INTENSITY(INCH /HR) = 3.38 AREA- AVERAGED Fm(INCH /HR) = .59 era AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 pm EFFECTIVE STREAM AREA(ACRES) = 39.59 fit TOTAL STREAM AREA(ACRES) = 44.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 115.87 4w FLOW PROCESS FROM NODE 9.00 TO NODE 10.00 IS CODE = 2.1 ----------------------------------- >> >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< <<< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< 46 INITIAL SUBAREA FLOW- LENGTH(FEET) = 630.00 do ELEVATION DATA: UPSTREAM(FEET) = 1491.00 DOWNSTREAM(FEET) = 1477.00 , 4W it Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.622 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.150 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA (ACRES) Tc Fp Ap SCS M (INCH /HR) (DECIMAL) CN (MI N.) LAND USE GROUP , 4W it 0, RESIDENTIAL w� "3 -4 DWELLINGS /ACRE" A 2.80 .98 .60 32 11.62 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA RUNOFF(CFS) = 8.98 TOTAL AREA(ACRES) = 2.80 PEAK FLOW RATE(CFS) = 8.98 FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 6.2 r ---------------------------------------------------------------------------- >> >>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<< <<< » »> (STREET TABLE SECTION # 2 USED) « «< ---------------------------------------------------------------------------- UPSTREAM ELEVATION(FEET) = 1477.00 DOWNSTREAM ELEVATION(FEET) = 1458.00 ON STREET LENGTH(FEET) = 870.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 No DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 w OUTSIDE STREET CROSSFALL(DECIMAL) = 020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 r * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 14.07 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: �* STREET FLOW DEPTH(FEET) _ .47 HALFSTREET FLOOD WIDTH(FEET) = 17.23 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.56 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.15 STREET FLOW TRAVEL TIME(MIN.) = 3.18 Tc(MIN.) = 14.80 im * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.589 SUBAREA LOSS RATE DATA(AMC II): ON DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN iot RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 3.75 .98 .60 32 an SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 go SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = 3.75 SUBAREA RUNOFF(CFS) = 10.14 EFFECTIVE AREA(ACRES) = 6.55 AREA- AVERAGED Fm(INCH /HR) _ .59 AREA- AVERAGED Fp(INCH /HR) _ .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 6.55 PEAK FLOW RATE(CFS) = 17.71 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .50 HALFSTREET FLOOD WIDTH(FEET) = 18.84 FLOW VELOCITY(FEET /SEC.) = 4.83 DEPTH *VELOCITY(FT *FT /SEC.) = 2.43 FLOW PROCESS FROM NODE 11.00 TO NODE 11.00 IS CODE = 1 ---------------------------------------------------------------------------- >> >>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<< <<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- TOTAL NUMBER OF STREAMS = 3 No CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 14.80 i 0 0 RAINFALL INTENSITY(INCH /HR) = 3.59 AREA- AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) = .98 10 AREA- AVERAGED Ap = .60 EFFECTIVE STREAM AREA(ACRES) = 6.55 TOTAL STREAM AREA(ACRES) = 6.55 PEAK FLOW RATE(CFS) AT CONFLUENCE = 17.71 .w ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 9.00 TO NODE 10.00 IS CODE = 2.1 ---------------------------------------------------------------------------- *'� >> >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< <<< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 630.00 A.. ELEVATION DATA: UPSTREAM(FEET) = 1491.00 DOWNSTREAM(FEET) = 1477.00 1w Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 s� SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.622 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.150 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc r. LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 2.80 .98 .60 32 11.62 w* SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA RUNOFF(CFS) = 8.98 TOTAL AREA(ACRES) = 2.80 PEAK FLOW RATE(CFS) = 8.98 im ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** wo FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 6.2 ---------------------------------------------------------------------------- iw >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<< <<< >>>>>( STREET TABLE SECTION # 2 USED) <<<<< UPSTREAM ELEVATION(FEET) = 1477.00 DOWNSTREAM ELEVATION(FEET) = 1458.00 STREET LENGTH(FEET) = 870.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 44 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 14.07 im STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .47 HALFSTREET FLOOD WIDTH(FEET) = 17.23 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.56 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.15 STREET FLOW TRAVEL TIME(MIN.) = 3.18 Tc(MIN.) = 14.80 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.589 SUBAREA LOSS RATE DATA(AMC II): 7 44 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 11+ FLOW PROCESS FROM NODE 11.00 TO NODE 11.00 IS CODE DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL " 3 -4 DWELLINGS /ACRE" A 3.75 98 60 32 Q SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 Fp(Fm) No SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 NUMBER SUBAREA AREA(ACRES) = 3.75 SUBAREA RUNOFF(CFS) = 10.14 (INCH /HR) an EFFECTIVE AREA(ACRES) = 6.55 AREA- AVERAGED Fm(INCH /HR) _ .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 14.80 ire TOTAL AREA(ACRES) = 6.55 PEAK FLOW RATE(CFS) = 17.71 go END OF SUBAREA STREET FLOW HYDRAULICS: on DEPTH(FEET) = .50 HALFSTREET FLOOD WIDTH(FEET) = 18.84 io FLOW VELOCITY(FEET /SEC.) = 4.83 DEPTH *VELOCITY(FT *FT /SEC.) = 2.43 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 11+ FLOW PROCESS FROM NODE 11.00 TO NODE 11.00 IS CODE = 1 "' ----------------------------------------------- >> >>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE- <<< >> >>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<< <<< TOTAL NUMBER OF STREAMS = 3 STREAM Q pa CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 AR Fp(Fm) No TIME OF CONCENTRATION(MIN.) = 14.80 SOURCE NUMBER RAINFALL INTENSITY(INCH /HR) = 3.59 (MIN.) (INCH /HR) an AREA- AVERAGED Fm(INCH /HR) = .59 (ACRES) NODE AREA- AVERAGED Fp(INCH /HR) = .98 148.1 14.80 ire AREA- AVERAGED Ap = .60 .60 48.9 9.00 EFFECTIVE STREAM AREA(ACRES) = 6.55 2 148.8 a.. TOTAL STREAM AREA(ACRES) = 6.55 .975( .585) .60 52.7 PEAK FLOW RATE(CFS) AT CONFLUENCE = 17.71 3 148.8 16.36 3.381 .975( .585) ** CONFLUENCE DATA ** 52.7 6.00 STREAM Q Tc Intensity Fp(Fm) Ap SOURCE ,..� NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) ES) NODE 3.00 1 115.87 16.36 3.381 .98( .59) .60 39.59 6.00 18.06 1 115.67 18.06 3.185 .98( .59) .60 42.64 3.00 55.7 1 115.67 18.06 3.185 .98( .59) .60 42.64 3.00 141.4 1 112.51 19.61 3.032 .98( .59) .60 44.29 .00 .60 1 110.39 20.17 2.982 .98( .59) .60 44.50 .00 1 115.87 16.36 3.381 .98( .59) .60 39.59 6.00 2 17.71 14.80 3.589 .98( .59) .60 6.55 9.00 3 17.71 14.80 3.589 .98( .59) .60 6.55 9.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. LLJ ii ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 148.1 14.80 3.589 .975( .585) .60 48.9 9.00 2 148.8 16.36 3.381 .975( .585) .60 52.7 6.00 3 148.8 16.36 3.381 .975( .585) .60 52.7 6.00 4 146.3 18.06 3.185 .975( .585) .60 55.7 3.00 4m 5 146.3 18.06 3.185 .975( .585) .60 55.7 3.00 ft 6 141.4 19.61 3.032 .975( .585) .60 57.4 .00 LLJ ii 4! do w it 7 138.6 20.17 2.982 .975( .585) .60 57.6 .00 40 8 148.1 14.80 3.589 .975( .585) .60 48.9 9.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 148.83 Tc(MIN.) = 16.36 ° EFFECTIVE AREA(ACRES) = 52.69 AREA- AVERAGED Fm(INCH /HR) _ .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 57.60 �w FLOW PROCESS FROM NODE 11.00 TO NODE 14.00 IS CODE = 6.2 ---------------------------------------------------------------------------- >> >>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<< >> >>>( STREET TABLE SECTION # 2 USED) <<< < �w UPSTREAM ELEVATION(FEET) = 1458.00 DOWNSTREAM ELEVATION(FEET) = 1455.00 +�r STREET LENGTH(FEET) = 390.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 a. DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 60 INSIDE STREET CROSSFALL(DECIMAL) _ .020 w. OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 w SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 �. * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 149.13 ** *STREET FLOWING FULL * ** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: NOTE: STREET FLOW EXCEEDS TOP OF CURB. w• THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION r THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. 4, STREET FLOW DEPTH(FEET) = .90 HALFSTREET FLOOD WIDTH(FEET) = 30.00 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.23 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 4.69 STREET FLOW TRAVEL TIME(MIN.) = 1.24 Tc(MIN.) = 17.60 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.235 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A .25 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = .25 SUBAREA RUNOFF(CFS) _ .60 EFFECTIVE AREA(ACRES) = 52.94 AREA- AVERAGED Fm(INCH /HR) _ .59 OR AREA- AVERAGED Fp(INCH /HR) _ .98 AREA- AVERAGED Ap = .60 IN TOTAL AREA(ACRES) = 57.85 PEAK FLOW RATE(CFS) = 148.83 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .90 HALFSTREET FLOOD WIDTH(FEET) = 30.00 FLOW VELOCITY(FEET /SEC.) = 5.23 DEPTH *VELOCITY(FT *FT /SEC.) = 4.69 0 on i M 4w ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 14.00 TO NODE 14.00 IS CODE = 1 ---------------------------------------------------------------------------- to >> >>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< s o TOTAL NUMBER OF STREAMS = 2 as CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 17.60 an RAINFALL INTENSITY(INCH /HR) = 3.24 AREA- AVERAGED Fm(INCH /HR) = .59 fm AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 EFFECTIVE STREAM AREA(ACRES) = 52.94 TOTAL STREAM AREA(ACRES) = 57.85 PEAK FLOW RATE(CFS) AT CONFLUENCE = 148.83 FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 2.1 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< <<< rrr >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ----------------------------- - - - - -- - r.. INITIAL SUBAREA FLOW- LENGTH(FEET) 630.00 ELEVATION DATA: UPSTREAM(FEET) = 1488.00 DOWNSTREAM(FEET) = 1475.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.795 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.113 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 3.00 .98 .60 32 11.80 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 i1 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA RUNOFF(CFS) = 9.53 on TOTAL AREA(ACRES) = 3.00 PEAK FLOW RATE(CFS) = 9.53 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ** FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 6.2 ---------------------------------------------------------------------------- >> >>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<< <<< >> >>>( STREET TABLE SECTION # 2 USED)<< <<< - ----------------------- ----------------------------------------- UPSTREAM ELEVATION(FEET) = 1475.00 DOWNSTREAM ELEVATION(FEET) = 1455.00 STREET LENGTH(FEET) = 870.00 CURB HEIGHT(INCHES) = 6.0 4" STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 14.93 sNl �fll TO NODE 14.00 IS CODE = 1 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: ---------------------------------------------------------------------------- w STREET FLOW DEPTH(FEET) _ .48 HALFSTREET FLOOD WIDTH(FEET) = 17.45 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<< <<< AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.72 ■r >>>>>AND COMPUTE VARIOUS CONFLUENCED PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.24 VALUES<< <<< STREET FLOW TRAVEL TIME(MIN.) = 3.07 Tc(MIN.) = 14.87 ---------------------------------------------------------------- TOTAL NUMBER OF STREAMS = 2 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.580 SUBAREA LOSS RATE DATA(AMC II): CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 so DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TIME OF CONCENTRATION(MIN.) = 14.87 LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN Is RESIDENTIAL RAINFALL INTENSITY(INCH /HR) = 3.58 "3 -4 DWELLINGS /ACRE" A 4.00 .98 .60 32 an SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 AREA- AVERAGED Fm(INCH /HR) = .59 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 1b SUBAREA AREA(ACRES) = 4.00 SUBAREA RUNOFF(CFS) = 10.78 AREA- AVERAGED Fp(INCH /HR) = .98 EFFECTIVE AREA(ACRES) = 7.00 AREA- AVERAGED Fm(INCH /HR) _ .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 Irr TOTAL AREA(ACRES) = 7.00 PEAK FLOW RATE(CFS) = 18.87 END OF SUBAREA STREET FLOW HYDRAULICS: EFFECTIVE STREAM AREA(ACRES) = DEPTH(FEET) = .51 HALFSTREET FLOOD WIDTH(FEET) = 19.12 iow FLOW VELOCITY(FEET /SEC.) = 5.00 DEPTH *VELOCITY(FT *FT /SEC.) = 2.54 pm RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. EJ to ** PEAK FLOW RATE TABLE ** am FLOW PROCESS FROM NODE 14.00 TO NODE 14.00 IS CODE = 1 �., ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<< <<< ■r >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<< <<< '"` ---------------------------------------------------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 14.87 RAINFALL INTENSITY(INCH /HR) = 3.58 AREA- AVERAGED Fm(INCH /HR) = .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 EFFECTIVE STREAM AREA(ACRES) = 7.00 TOTAL STREAM AREA(ACRES) = 7.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 18.87 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 148.11 16.05 3.420 .98( .59) .60 49.18 9.00 40 1 148.83 17.60 3.235 .98( .59) .60 52.94 6.00 1 148.83 17.60 3.235 .98( .59) .60 52.94 6.00 1 146.32 19.31 3.060 .98( .59) .60 55.99 3.00 1 146.32 19.31 3.060 .98( .59) .60 55.99 3.00 t 1 141.36 20.88 2.920 .98( .59) .60 57.64 .00 1 138.64 21.45 2.873 .98( 59) .60 57.85 .00 1 148.11 16.05 3.420 .98( 59) .60 49.18 9.00 2 18.87 14.87 3.580 .98( .59) .60 7.00 12.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. EJ to ** PEAK FLOW RATE TABLE ** am N 0 r ** PEAK FLOW RATE TABLE ** a" STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE Intensity 1 166.0 16.05 3.420 .975( .585) .60 56.2 9.00 (CFS) 2 166.0 16.05 3.420 .975( .585) .60 56.2 9.00 3 165.5 17.60 3.235 .975( .585) .60 59.9 6.00 52.6 4 165.5 17.60 3.235 .975( .585) .60 59.9 6.00 go 5 161.9 19.31 3.060 .975( .585) .60 63.0 3.00 16.05 6 161.9 19.31 3.060 .975( .585) .60 63.0 3.00 ow 7 156.1 20.88 2.920 .975( .585) .60 64.6 .00 6.00 8 153.1 21.45 2.873 .975( .585) .60 64.8 .00 .60 9 163.8 14.87 3.580 .975( .585) .60 52.6 12.00 3.060 .975( .585) .60 63.0 3.00 7 Oki COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: .975( .585) .60 63.0 3.00 PEAK FLOW RATE(CFS) = 165.96 Tc(MIN.) = 16.05 2.920 .975( .585) .60 EFFECTIVE AREA(ACRES) = 56.18 AREA- AVERAGED Fm(INCH /HR) _ .59 g1 AREA- AVERAGED Fp(INCH /HR) _ .98 AREA- AVERAGED Ap = .60 .00 TOTAL AREA(ACRES) = 64.85 w END OF STUDY SUMMARY: END OF RATIONAL METHOD ANALYSIS TOTAL AREA(ACRES) = 64.85 TC(MIN.) = 16.05 EFFECTIVE AREA(ACRES) = 56.18 AREA- AVERAGED Fm(INCH /HR)= .59 AREA- AVERAGED Fp(INCH /HR) _ .98 AREA- AVERAGED Ap = .60 PEAK FLOW RATE(CFS) = 165.96 r ** PEAK FLOW RATE TABLE ** a" STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE am NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 163.8 14.87 3.580 .975( .585) .60 52.6 12.00 fm 2 166.0 16.05 3.420 .975( .585) .60 56.2 9.00 3 166.0 16.05 3.420 .975( .585) .60 56.2 9.00 No 4 165.5 17.60 3.235 .975( .585) .60 59.9 6.00 5 165.5 17.60 3.235 .975( .585) .60 59.9 6.00 �rw 6 161.9 19.31 3.060 .975( .585) .60 63.0 3.00 7 161.9 19.31 3.060 .975( .585) .60 63.0 3.00 8 156.1 20.88 2.920 .975( .585) .60 64.6 .00 9 153.1 21.45 2.873 .975( .585) .60 64.8 .00 END OF RATIONAL METHOD ANALYSIS 4w a 0 �D O ct c�3 � O O 0 RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -95 Advanced Engineering Software (aes) 4 W Ver. 5.1A Release Date: 08/01/95 License ID 1400 so Analysis prepared by: e*' ALLARD ENGINEERING, INC. No 6101 CHERRY AVENUE FONTANA, CALIFORNIA 92336 an (909) 899 - 5011 fo * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Subarea U2 Q100 * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 16568OS5.DAT aw TIME /DATE OF STUDY: 13:47 1/26/2004 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: rir -- *TIME -OF- CONCENTRATION MODEL*- - USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) _ .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.5500 in *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* w■ *USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET- CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT - /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) W - -- 16 2 30.0 15.0 .020/ .020/ - -- .50 1.50 .03125 .1250 .01500 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = .14 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 2.1 ---------------------------------------------------------------------------- 4" >> >>> RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< <<< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< 8 E 0 ------ - - - - -- INITIAL SUBAREA FLOW- LENGTH(FEET) = 630.00 ELEVATION DATA: UPSTREAM(FEET) = 1488.00 DOWNSTREAM(FEET) = 1475.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 w SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.795 om * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.113 SUBAREA Tc AND LOSS RATE DATA(AMC II): wer DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) so RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 2.00 .98 .60 32 11.80 w• SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 to SUBAREA RUNOFF(CFS) = 6.35 TOTAL AREA(ACRES) = 2.00 PEAK FLOW RATE(CFS) = 6.35 on w ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** a m FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 6.2 ---------------------------------------------------------------------------- ow >> >>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<< >> >>>( STREET TABLE SECTION # 2 USED)<< <<< UPSTREAM ELEVATION(FEET) = 1475.00 DOWNSTREAM ELEVATION(FEET) = 1455.00 STREET LENGTH(FEET) = 870.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 e� * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 9.94 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .42 s�+ HALFSTREET FLOOD WIDTH(FEET) = 14.89 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.26 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.81 STREET FLOW TRAVEL TIME(MIN.) = 3.40 Tc(MIN.) = 15.20 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.533 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 2.70 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = 2.70 SUBAREA RUNOFF(CFS) = 7.16 EFFECTIVE AREA(ACRES) = 4.70 AREA- AVERAGED Fm(INCH /HR) _ .59 AREA - AVERAGED Fp(INCH /HR) _ .97 AREA - AVERAGED Ap = .60 TOTAL AREA(ACRES) = 4.70 PEAK FLOW RATE(CFS) = 12.47 END OF SUBAREA STREET FLOW HYDRAULICS: 40 DEPTH(FEET) _ .45 HALFSTREET FLOOD WIDTH(FEET) = 16.28 FLOW VELOCITY(FEET /SEC.) = 4.50 DEPTH *VELOCITY(FT *FT /SEC.) = 2.04 i 8 W ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 14.00 TO NODE 15.00 IS CODE = 6.2 -------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >> >>>( STREET TABLE SECTION # 2 USED) < <<< w UPSTREAM ELEVATION(FEET) = 1455.00 DOWNSTREAM ELEVATION(FEET) = 1438.00 STREET LENGTH(FEET) = 725.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) _ - .020 ib OUTSIDE STREET CROSSFALL(DECIMAL) - .020 om SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 im ON III wA 0 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 15.44 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .48 HALFSTREET FLOOD WIDTH(FEET) = 17.61 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.79 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.29 STREET FLOW TRAVEL TIME(MIN.) = 2.52 Tc(MIN.) = 17.72 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.222 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 2.50 .98 .60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = 2.50 SUBAREA RUNOFF(CFS) = 5.93 EFFECTIVE AREA(ACRES) = 7.20 AREA- AVERAGED FmJINCH /HR) _ .59 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60 TOTAL AREA(ACRES) = 7.20 PEAK FLOW RATE(CFS) = 17.09 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .49 HALFSTREET FLOOD WIDTH(FEET) = 18.34 FLOW VELOCITY(FEET /SEC.) = 4.91 DEPTH *VELOCITY(FT *FT /SEC.) = 2.42 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 7.20 TC(MIN.) = 17.72 EFFECTIVE AREA(ACRES) = 7.20 AREA- AVERAGED Fm(INCH /HR)= .59 AREA- AVERAGED Fp(INCH /HR) _ .98 AREA- AVERAGED Ap = .60 PEAK FLOW RATE(CFS) = 17.09 END OF RATIONAL METHOD ANALYSIS I!R t -1 f ' I # I f! j t# I# I 1 1 , i I f I r f J'. ,j ""7f # ZU 11 r-4 I, r, cd rA t -1 f ' I # I f! j t# I# I 1 1 , i I f I r f J'. ,j ""7f # ZU 11 r-4 I, r, r � A West Side of Catawba Avenue Flow Depth Calculation ;t- 100 Year Storm Event * * ** » »STREETFLOW MODEL INPUT INFORMATION «« zz ** *STREET FLOW SPLITS OVER STREET - CROWN * ** ,.. FULL DEPTH(FEET) = 0.49 FLOOD WIDTH(FEET) = 18.00 FULL HALF - STREET FLOW(CFS) = 14.29 FULL HALF - STREET VELOCITY(FEET /SEC.) = 4.26 .• SPLIT DEPTH(FEET) = 0.33 SPLIT FLOOD WIDTH(FEET) = 10.01 SPLIT FLOW(CFS) = 3.41 SPLIT VELOCITY(FEET /SEC.) = 3.04 ON L71 STREET FLOW MODEL RESULTS: OR ---------------------------------------------------------------------- r STREET FLOW DEPTH(FEET) = 0.49 HALFSTREET FLOOD WIDTH(FEET) = 18.00 �► AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.26 j PRODUCT OF DEPTH &VELOCITY = 2.07 CONSTANT STREET GRADE(FEET/FEET) = 0.018000 CONSTANT STREET FLOW(CFS) = 17.70' AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 00 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.50 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) = 0.03125 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) = 0.12500 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS ** *STREET FLOW SPLITS OVER STREET - CROWN * ** ,.. FULL DEPTH(FEET) = 0.49 FLOOD WIDTH(FEET) = 18.00 FULL HALF - STREET FLOW(CFS) = 14.29 FULL HALF - STREET VELOCITY(FEET /SEC.) = 4.26 .• SPLIT DEPTH(FEET) = 0.33 SPLIT FLOOD WIDTH(FEET) = 10.01 SPLIT FLOW(CFS) = 3.41 SPLIT VELOCITY(FEET /SEC.) = 3.04 ON L71 STREET FLOW MODEL RESULTS: OR ---------------------------------------------------------------------- r STREET FLOW DEPTH(FEET) = 0.49 HALFSTREET FLOOD WIDTH(FEET) = 18.00 �► AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.26 j PRODUCT OF DEPTH &VELOCITY = 2.07 R West Side of Catawba Avenue Flow By Catch Basin Calculation 100 Year Storm Event ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 40 » »FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« g' ---------------------------------------------------------------------- - - - - -- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. «, STREETFLOW(CFS) = 17.70 GUTTER FLOWDEPTH(FEET) = 0.49 BASIN LOCAL DEPRESSION(FEET) = 0.33 to FLOWBY BASIN ANALYSIS RESULTS: A BASIN WIDTH FLOW INTERCEPTION 3.73 2.79 �.. 4.00 2.97 4.50 3.32 5.00 3.67 ,•• 5.50 4.01 6.00 4.35 6.50 4.69 �* 7.00 5.03 7.50 5.36 8.00 5.70 *� 8.50 6.03 9.00 6.37 9.50 6.70 �► 10.00 7.03 10.50 7.36 11.00 7.69 11.50 7.99 12.00 8.27 12.50 8.55 13.00 8.82 i 13.50 9.09 14.00 9.35 14.50 9.61 15.00 9.87 15.50 10.12 e N an A. am an F IIr 0 iir� 16.00 10.38 16.50 10.63 17.00 10.88 17.50 11.13 18.00 11.38 18.50 11.62 19.00 11.86 19.50 12.10 20.00 12.33 20.50 12.55 21.00 12.77 17.71 -12.77 = 4.94 cfs passes by N an A. am an F IIr 0 iir� 5 Z East Side of Catawba Avenue Flow By Catch Basin Calculation 100 Year Storm Event » »FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION «« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. No A STREETFLOW(CFS) = 17.70 GUTTER FLOWDEPTH(FEET) = 0.49 BASIN LOCAL DEPRESSION(FEET) = 0.33 ---------------------------------------------------------------------------- FLOWBY BASIN ANALYSIS RESULTS: W J ,n ik BASIN WIDTH FLOW INTERCEPTION 3.73 2.79 P W 4.00 2.97 4.50 3.32 5.00 3.67 .. 5.50 4.01 6.00 4.35 6.50 4.69 *■ 7.00 5.03 7.50 5.36 8.00 5.70 .. 8.50 6.03 9.00 6.37 9.50 6.70 10.00 7.03 10.50 7.36 11.00 7.69 11.50 7.99 12.00 8.27 12.50 8.55 13.00 8.82 13.50 9.09 14.00 9.35 14.50 9.61 15.00 9.87 15.50 10.12 W J ,n ik 5 0 w No PW am 0 16.00 10.38 16.50 10.63 17.00 10.88 +i 17.50 11.13 18.00 11.38 ow 18.50 11.62 �► 19.00 11.86 19.50 12.10 20.00 12.33 20.50 12.55 21.00 12.77 w. 17.71 -12.77 = 4.94 cfs passes by ow IN 0 w No PW am 0 -1 , cis -1 , h East Side of Catawba Avenue Flow Depth Calculation 100 Year Storm Event FM » »STREETFLOW MODEL INPUT INFORMATION «« ,., STREET FLOW MODEL RESULTS: ---------------------------------------------------------------------- STREET FLOW DEPTH(FEET) = 0.36 .• HALFSTREET FLOOD WIDTH(FEET) = 11.55 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.40 PRODUCT OF DEPTH &VELOCITY = 1.21 �r "t Y CONSTANT STREET GRADE(FEET/FEET) = 0.018000 O. CONSTANT STREET FLOW(CFS) = 4.94 iW AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 18.00 .� DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.50 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) = 0.03125 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) = 0.12500 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS ,., STREET FLOW MODEL RESULTS: ---------------------------------------------------------------------- STREET FLOW DEPTH(FEET) = 0.36 .• HALFSTREET FLOOD WIDTH(FEET) = 11.55 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.40 PRODUCT OF DEPTH &VELOCITY = 1.21 �r "t Y 0 East Side of Catawba Avenue 2 °d Flow By Catch Basin Calculation ' 100 Year Storm Event » »FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION «« ---------------------------------------------------------------------- - - - - -- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. 1 W STREETFLOW(CFS) = 4.94 GUTTER FLOWDEPTH(FEET) = 0.36 BASIN LOCAL DEPRESSION(FEET) = 0.33 r ---------------------------------------------------------------------------- FLOWBY BASIN ANALYSIS RESULTS: up BASIN WIDTH FLOW INTERCEPTION 1.44 0.72 1.50 0.74 2.00 0.98 2.50 1.21 3.00 1.44 3.50 1.67 4.00 1.90 4.50 2.12 5.00 2.34 +•• 5.50 2.53 6.00 2.71 6.50 2.88 �• 7.00 3.05 . bK 7.50 3.22 8.00 3.39 �^ 8.50 3.55 9.00 3.69 9.50 3.82 10.00 3.95 10.50 4.07 11.00 4.19 11.50 4.31 12.00 4.42 12.50 4.53 13.00 4.64 I�f 13.50 4.75 14.00 4.85 0.09 cfs passes a 14' catch basin, Therefore a 21' would intercept the total 4.94 cfs West Side of Catawba Avenue Flow Depth Calculation 100 Year Storm Event ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = 0.36 HALFSTREET FLOOD WIDTH(FEET) = 11.55 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.40 PRODUCT OF DEPTH &VELOCITY = 1.21 0 [1 0 I L ' » »STREETFLOW MODEL INPUT INFORMATION«« ---------------------------------------------------------------------------- CONSTANT STREET GRADE(FEET/FEET) = 0.018000 CONSTANT STREET FLOW(CFS) = 4.94 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.50 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) = 0.03125 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) = 0.12500 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = 0.36 HALFSTREET FLOOD WIDTH(FEET) = 11.55 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.40 PRODUCT OF DEPTH &VELOCITY = 1.21 0 [1 0 I L ' West Side of Catawba Avenue 2 °d Flow By Catch Basin Calculation 100 Year Storm Event ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * ** » »FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION «« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 4.94 GUTTER FLOWDEPTH(FEET) = 0.36 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN ANALYSIS RESULTS: BASIN WIDTH FLOW INTERCEPTION 1.44 0.72 1.50 0.74 2.00 0.98 2.50 1.21 3.00 1.44 3.50 1.67 4.00 1.90 4.50 2.12 5.00 2.34 5.50 2.53 6.00 2.71 6.50 2.88 7.00 3.05 7.50 3.22 8.00 3.39 8.50 3.55 9.00 3.69 9.50 3.82 10.00 3.95 10.50 4.07 11.00 4.19 11.50 4.31 12.00 4.42 12.50 4.53 13.00 4.64 13.50 4.75 14.00 4.85 0.09 cfs passes a 14' catch basin, Therefore a 21' would intercept the total 4.94 cfs d 04 +m East Side of Catawba Avenue Flow Depth Calculation 100 Year Storm Event �. FULL DEPTH(FEET) = 0.49 FLOOD WIDTH(FEET) = 18.00 FULL HALF- STREET FLOW(CFS) = 14.29 FULL HALF- STREET VELOCITY(FEET /SEC.) = 4.26 SPLIT DEPTH(FEET) = 0.33 SPLIT FLOOD WIDTH(FEET) = 10.01 SPLIT FLOW(CFS) = 3.41 SPLIT VELOCITY(FEET /SEC.) = 3.04 STREET FLOW MODEL RESULTS: ---------------------------------------------------------------------- STREET FLOW DEPTH(FEET) = 0.49 HALFSTREET FLOOD WIDTH(FEET) = 18.00 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.26 A PRODUCT OF DEPTH &VELOCITY = 2.07 » »STREETFLOW MODEL INPUT INFORMATION «« ---------------------------------------------------------------------------- CONSTANT STREET GRADE(FEET/FEET) = 0.018000 w „ CONSTANT STREET FLOW(CFS) = 17.70 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.50 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) = 0.03125 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) = 0.12500 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS ** *STREET FLOW SPLITS OVER STREET - CROWN * ** �. FULL DEPTH(FEET) = 0.49 FLOOD WIDTH(FEET) = 18.00 FULL HALF- STREET FLOW(CFS) = 14.29 FULL HALF- STREET VELOCITY(FEET /SEC.) = 4.26 SPLIT DEPTH(FEET) = 0.33 SPLIT FLOOD WIDTH(FEET) = 10.01 SPLIT FLOW(CFS) = 3.41 SPLIT VELOCITY(FEET /SEC.) = 3.04 STREET FLOW MODEL RESULTS: ---------------------------------------------------------------------- STREET FLOW DEPTH(FEET) = 0.49 HALFSTREET FLOOD WIDTH(FEET) = 18.00 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.26 A PRODUCT OF DEPTH &VELOCITY = 2.07 t 1 a I .A W_A WA 11 [ l [ I [ I [ I [ I l f 1 [ l [ l l! 1 -1 ! I � CD C • CD CD ■A 77 ■" .�i West Side Almeria Avenue Flow Depth Calculation 100 Year Storm Event » »STREETFLOW MODEL INPUT INFORMATION «« M ---------------------------------------------------------------------------- CONSTANT STREET GRADE(FEET/FEET) = 0.017500 'W CONSTANT STREET FLOW(CFS) = 12.50 — ' AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 __ CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 ba INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.50 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 �., CONSTANT SYMMETRICAL GUTTER- LIP(FEET) = 0.03125 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) = 0. 1250Q FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS an v a m STREET FLOW MODEL RESULTS: --------------------------------------------------------------------- r STREET FLOW DEPTH(FEET) = 0.47 ,.� HALFSTREET FLOOD WIDTH(FEET) = 17.23 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.05 PRODUCT OF DEPTH &VELOCITY = 1.91 --------------------------------- own 0 go "o West Side Almeria Avenue Catch Basin Interception Calculation 100 Year Storm Event �. » »FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION «« ---------------------------------------------------------------------- - - - - -- Curb Inlet Capacities are approximated based on the Bureau of ,.. Public Roads nomograph plots for flowby basins and sump basins. �.• STREETFLOW(CFS) = 12.50 GUTTER FLOWDEPTH(FEET) = 0.47 BASIN LOCAL DEPRESSION(FEET) = 0.33 ------------------------------------------------------- - - - - -- FLOWBY BASIN ANALYSIS RESULTS: BASIN WIDTH FLOW INTERCEPTION 2.76 1.95 3.00 2.11 3.50 2.44 4.00 2.77 4.50 3.09 .� 5.00 3.42 5.50 3.74 6.00 4.06 w 6.50 4.37 7.00 4.69 4 7.50 5.00 +� 8.00 5.32 8.50 5.61 9.00 5.88 9.50 6.15 10.00 6.40 10.50 6.65 11.00 6.90 11.50 7.14 12.00 7.38 12.50 7.62 13.00 7.86 OR 13.50 8.10 14.00 8.33 W 14.50 8.5� ii 9 +" go 40 15.00 8.77 15.50 8.98 16.00 9.19 16.50 9.39 17.00 9.57 17.50 9.75 18.00 9.93 18.50 10.10 19.00 10.26 19.50 10.42 .. 20.00 10.58 20.50 10.73 21.00 10.88 .. 21.50 11.03 22.00 11.17 22.50 11.30 23.00 11.44 23.50 11.56 24.00 11.69 24.50 11.81 25.00 11.93 25.50 12.05 26.00 12.16 26.50 12.28 27.00 12.38 27.50 12.49 r. 27.55 12.50 Therefore, a 28' catch basin would intercept 100% of the runoff F 4" id ,,. FULL DEPTH(FEET) = 0.49 FLOOD WIDTH(FEET) = 18.00 FULL HALF - STREET FLOW(CFS) = 16.85 FULL HALF - STREET VELOCITY(FEET /SEC.) = 5.02 .. SPLIT DEPTH(FEET) = 0.27 SPLIT FLOOD WIDTH(FEET) = 7.43 SPLIT FLOW(CFS) = 1.95 SPLIT VELOCITY(FEET /SEC.) = 2.91 "M -- - _____ ___________________ ------ - - - - -- W STREET FLOW MODEL RESULTS: r■ --------------------------------------------------------------------- STREET FLOW DEPTH(FEET) = 0.49 HALFSTREET FLOOD WIDTH(FEET) = 18.00 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.02 PRODUCT OF DEPTH &VELOCITY = 2.44 ii CONSTANT STREET GRADE(FEET/FEET) = 0.025000 �. East Side Almeria Avenue �+ Flow Depth Calculation 100 Year Storm Event do DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 * * ** » »STREETFLOW MODEL INPUT INFORMATION«« .. ---------------------------------------------------------------------- - - - - -- ,,. FULL DEPTH(FEET) = 0.49 FLOOD WIDTH(FEET) = 18.00 FULL HALF - STREET FLOW(CFS) = 16.85 FULL HALF - STREET VELOCITY(FEET /SEC.) = 5.02 .. SPLIT DEPTH(FEET) = 0.27 SPLIT FLOOD WIDTH(FEET) = 7.43 SPLIT FLOW(CFS) = 1.95 SPLIT VELOCITY(FEET /SEC.) = 2.91 "M -- - _____ ___________________ ------ - - - - -- W STREET FLOW MODEL RESULTS: r■ --------------------------------------------------------------------- STREET FLOW DEPTH(FEET) = 0.49 HALFSTREET FLOOD WIDTH(FEET) = 18.00 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.02 PRODUCT OF DEPTH &VELOCITY = 2.44 ii CONSTANT STREET GRADE(FEET/FEET) = 0.025000 �. CONSTANT STREET FLOW(CFS) = 18.80 �+ AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 .. CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.50 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) = 0.03125 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) = 0.12500 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS ** *STREET FLOW SPLITS OVER STREET - CROWN * ** ,,. FULL DEPTH(FEET) = 0.49 FLOOD WIDTH(FEET) = 18.00 FULL HALF - STREET FLOW(CFS) = 16.85 FULL HALF - STREET VELOCITY(FEET /SEC.) = 5.02 .. SPLIT DEPTH(FEET) = 0.27 SPLIT FLOOD WIDTH(FEET) = 7.43 SPLIT FLOW(CFS) = 1.95 SPLIT VELOCITY(FEET /SEC.) = 2.91 "M -- - _____ ___________________ ------ - - - - -- W STREET FLOW MODEL RESULTS: r■ --------------------------------------------------------------------- STREET FLOW DEPTH(FEET) = 0.49 HALFSTREET FLOOD WIDTH(FEET) = 18.00 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.02 PRODUCT OF DEPTH &VELOCITY = 2.44 ii do rri East Side Almeria Avenue Catch Basin Interception Calculation 100 Year Storm Event » »FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION «« ---------------------------------------------------------------------- - - - - -- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. ,�. STREETFLOW(CFS) = 18.80 GUTTER FLOWDEPTH(FEET) = 0.49 BASIN LOCAL DEPRESSION(FEET) = 0.33 ------------------------------------------------------------- FLOWBY BASIN ANALYSIS RESULTS: w BASIN WIDTH FLOW INTERCEPTION 3.97 2.96 4.00 2.98 4.50 3.33 5.00 3.68 5.50 4.02 6.00 4.37 6.50 4.71 t. 7.00 5.05 7.50 5.38 8.00 5.72 8.50 6.06 9.00 6.39 9.50 6.72 10.00 7.06 10.50 7.39 11.00 7.72 11.50 8.04 12.00 8.36 12.50 8.64 13.00 8.92 13.50 9.20 14.00 9.47 14.50 9.74 15.00 10.00 15.50 10.26 A" Mii 0 MR wr oft to 0 e 0 t 0 16.00 10.52 16.50 10.77 17.00 11.03 17.50 11.28 18.00 11.53 18.50 11.78 19.00 12.03 19.50 12.27 20.00 12.52 20.50 12.75 21.00 12.98 21.50 13.21 22.00 13.43 22.50 13.65 23.00 13.86 23.50 14.07 24.00 14.28 24.50 14.47 25.00 14.66 25.50 14.84 26.00 15.03 26.50 15.20 27.00 15.38 27.50 15.55 28.00 15.72 Therefore, 3.1 cfs bypasses the catch basin and continues down Almeria Avenue (U ;z U) (U C id al as do West Side of Almeria Avenue Flow Depth Calculation 100 Year Storm Event » »STREETFLOW MODEL INPUT INFORMATION «« 1:J 0 STREET FLOW MODEL RESULTS: ---------------------------------------------------------------------- STREET FLOW DEPTH(FEET) = 0.39 �. HALFSTREET FLOOD WIDTH(FEET) = 13.10 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.20 PRODUCT OF DEPTH &VELOCITY = 1.63 M D 8 CONSTANT STREET GRADE(FEET/FEET) = 0.025000 CONSTANT STREET FLOW(CFS) = 7.70 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.50 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) = 0.03125 04 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) = 0.12500 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS 1:J 0 STREET FLOW MODEL RESULTS: ---------------------------------------------------------------------- STREET FLOW DEPTH(FEET) = 0.39 �. HALFSTREET FLOOD WIDTH(FEET) = 13.10 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.20 PRODUCT OF DEPTH &VELOCITY = 1.63 M D 8 4* do West Side of Almeria Flow By Catch Basin Interception Calculation 100 Year Storm Event do » »FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 7.70 GUTTER FLOWDEPTH(FEET) = 0.39 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN ANALYSIS RESULTS: BASIN WIDTH FLOW INTERCEPTION 2.07 1.14 2.50 1.37 3.00 1.63 3.50 1.89 4.00 2.15 ' 4.50 2.40 5.00 2.65 5.50 2.90 6.00 3.15 40 6.50 3.39 7.00 3.62 7.50 3.84 8.00 4.04 8.50 4.24 9.00 4.43 9.50 4.62 10.00 4.81 10.50 5.00 �r 11.00 5.18 11.50 5.36 12.00 5.54 12.50 5.70 13.00 5.85 13.50 5.99 14.00 6.13 14.50 6.27 15.00 6.40 0" +r e arrr 15.50 6.53 16.00 6.65 16.50 6.77 A 17.00 6.89 17.50 7.01 40 18.00 7.13 di 18.50 7.24 19.00 7.35 19.50 7.46 • 20.00 7.56 20.50 7.67 20.66 7.70 Therefore, with a 21 ft catch basin 100 % of the runoff is intercepted 0" +r e arrr mAr �i East Side of Almeria Avenue Flow Depth Calculation 100 Year Storm Event » »STREETFLOW MODEL INPUT INFORMATION «« CONSTANT STREET GRADE(FEET/FEET) = 0.025000 .. CONSTANT STREET FLOW(CFS) = 11.40 o. AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 18.00 .. DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 " INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 m• CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.50 ' CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) = 0.03125 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) = 0.12500 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS 4W STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = 0.44 HALFSTREET FLOOD WIDTH(FEET) = 15.68 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.42 PRODUCT OF DEPTH &VELOCITY = 1.95 W _------------------- - - - - -- IR am M East Side of Almeria Avenue Flow By Catch Basin Interception Calculation 100 Year Storm Event do 4 w » »FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« #6 ---------------------------------------------------------------------- - - - - -- +� Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 11.40 GUTTER FLOWDEPTH(FEET) = 0.44 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN ANALYSIS RESULTS: BASIN WIDTH FLOW INTERCEPTION 2.69 1.75 3.00 1.94 3.50 2.24 4.00 2.54 4.50 2.84 5.00 3.14 5.50 3.43 ,. 6.00 3.73 6.50 4.02 7.00 4.31 7.50 4.60 8.00 4.89 8.50 5.15 9.00 5.41 9.50 5.66 10.00 5.89 10.50 6.12 11.00 6.35 11.50 6.57 12.00 6.79 12.50 7.02 13.00 7.23 13.50 7.45 14.00 7.66 14.50 7.87 4" dw 11.4 -10.0 = 1.4 cfs passes by catch basin �t 0 e 15.00 8.07 15.50 8.26 16.00 8.45 girl 16.50 8.63 17.00 8.80 17.50 8.96 4 18.00 9.12 18.50 9.28 19.00 9.43 19.50 9.57 20.00 9.72 20.50 9.86 lit 21.00 10.00 21.50 10.13 22.00 10.26 22.50 10.39 23.00 10.51 23.50 10.63 24.00 10.75 24.50 10.87 25.00 10.98 A 25.50 11.09 26.00 11.20 26.50 11.31 26.94 11.40 11.4 -10.0 = 1.4 cfs passes by catch basin �t 0 e