Loading...
HomeMy WebLinkAboutPM 1556016800 Valley View Avenue • La Mirada, CA 90638 • (714) 521 -4811 • Fax (714) 521 -4173 HYDROLOGY & HYDRAULIC CALCULATIONS FOR JURUPA BUSINESS PARK PREPARED BY BRIAN WEIL UNDER THE SUPERVISION OF QQ t�Of ESS /(1�,� O Dy'. I. A Q �o Syr �ZZ�o� z No. 0=93 DOOK I. AG DATE . R.C.E. 43293 * EXP. 3/31/04 CIV14 of cA�aF �r di. �r { 3 �r INTRODUCTION A: PROJECT LOCATION The project site is located at the northeast comer of Jurupa Avenue and Etiwanda Avenue in the city of Fontana. The San Sevaine Channel borders the site to the east. Please see figure 1 for vicinity map. B: STUDY PURPOSE The purpose of this study is to determine the 100 -year peak flow rates from the site that will ultimately drain to the San Sevaine Channel via a future storm drain system. C: PROJECT STAFF: Thienes Engineering staff involved in this study include: Haidook Aghaian Cesar Raymundo Brian P. Weil DISCUSSION The project site encompasses approximately 50.0 acres. Proposed improvements to the site consist of the construction of two warehouse type buildings, the larger building is approximately 830,000 square feet while the smaller kuilding is approximately 270,000 square feet. Each building will have truck loading/unloading areas. There will be landscaping adjacent to Etiwanda Avenue and Jurupa Avenue with the remainder of the site to be paved for vehicle parking. As a condition of approval for this site, the developer must construct the Master Planned storm drain system that the site is tabled to drain. The City of Fontana's Master Plan of Drainage shows a future storm drain in Jurupa Avenue from Etiwanda Avenue east to the .. San Sevaine Channel. Existing street conditions in Jumpa Avenue do not allow for runoff from the site and areas tributary to Etiwanda Avenue and Jumpa Avenue to be conveyed east to the San Sevaine Channel ( Jurupa at Pacific Avenue is to low to drain to ,.. the channel). In order to construct the Jurupa Avenue Storm Drain system, the storm drain must traverse through the site. This study analyzes all tributary area to the Master Planned storm drain and provides calculations for the sizing of this system. y Offsite area tributary to the upstream portion of the Jumpa Avenue Storm Drain (near the northwest comer of the site) is approximately 44.4 acres. This drainage area consists of .. runoff generated by the area bound by Etiwanda Avenue, Dahlia Street, Santa Ana Street and the railroad tracks as well as a portion of the lot north of the site and south of Dahlia Street (nodes 100 -107 depicted on offsite hydrology map). The 100 -year peak flow rate ,. for this offsite area is approximately 96.5 cfs. .r Runoff in Etiwanda Avenue will be conveyed to the storm drain by a temporary C.M.P. riser and curb opening basins. The storm drain then goes east through the proposed site. Runoff from the easternmost parking area (nodes 100 -118), the northern half of the building, truck yard and parking area north of the buildings (nodes 140 -146) will all drain �- to the City storm drain. Flows from areas north of the site (nodes 120 -122 and 130 -132) will also need to be . *� conveyed to the Master Planned storm drain. Under existing conditions, these areas A surface drain onto the site. With proposed improvements, a storm drain lateral and C.M.P. riser will be provided at two locations to intercept runoff from the different '11 properties. Offsite runoff from the two properties is approximately 38.2 cfs and 39.3 cfs respectively. The Master Planned storm drain then travels south between the two ! proposed buildings then east towards the San Sevaine Channel. ■ Flows from a portion of the southern half of the larger building and the truck loading/unloading area south of the building (nodes 170 -193) as well as the southern half IY of the smaller building and the parking area south of the building (nodes 200 -212) will all drain to a storm drain that confluences with the mainline. The mainline continues east then turns to the south near the southeast corner of the site where the parking area east and south of the smaller building (nodes 220 -233) drains to the mainline. The Master Planned storm drain leaves the site and continues south paralleling the San Sevaine Channel approximately 750' south of Jumpa Avenue to it's point of confluence with the Channel. The pipe must connect at this point since the hydraulic grade line in the channel is too high at locations further upstream. The total 100 -year peak flow rate for this system is approximately 265.0 cfs. While the Master Planned storm drain is capable of conveying 100 -year peak flow rates from Etiwanda, full conveyance from the site would exceed acceptable ponding limits onsite. Approximately 18 cfs will be detained onsite with the remaining 247 cfs to be conveyed in the storm drain. Detention analysis shows that approximately 1.5' of ponding is required in the truck yards on both the north and south sides of the larger building to store water not allowed into the storm drain system. The catch basins on Etiwanda near the northwest comer of the site have been designed to intercept existing condition runoff. While the ultimate design assumed all areas tributary to these basins as commercial development, existing conditions assumes some area to be open space. The existing condition 100 -year peak flow rate at the proposed catch basins is approximately 86 cfs, about 10 cfs less than that under ultimate commercial build out. It is assumed that these basin will not need to intercept ultimate build out since the City storm drain would likely be extended north and future development would not surface drain all runoff to Etiwanda. This study also includes areas tributary to the existing catch basin on the north side of Jurupa Avenue at Pacific Avenue (the existing catch basin will be removed and relocated to accommodate the proposed driveway) since the project site and street improvements have changed the tributary drainage area. Area tributary to this basin includes the eastern half of Etiwanda Avenue south of the proposed catch basins (nodes 320 -323), a portion of the southwest comer of the site (nodes 300 -311), the northern half of Jurupa Avenue, and the proposed landscaping adjacent to both streets (nodes 323 -333). The 100 -year peak flow rate for these areas is approximately 26.8 cfs Runoff tributary to the sump basin at Jurupa Avenue and Pacific Avenue is conveyed. south in Pacific in an existing 24" storm drain. The as built storm drain plans for this facility do not give a design Q or hydraulic grade line. Under existing conditions, the entire site eventually drains to this catch basin. Under proposed conditions, area and peak flow rate tributary to this catch basin has been greatly reduced. Hydraulic calculations show that the existing 24" storm drain can convey about 20.0 cfs by flowing full, therefore to convey 26.8 cfs the system would be need to be under pressure. Without design Q's and hydraulic grade line, it cannot be determined whether or not the existing system can convey 26.8 cfs. In any case, the peak flow rate at the catch basin is Im t o considerably less than that under existing conditions and flows can top the crown of the street and have a secondary outlet to Pacific Avenue as it does under existing conditions. Offsite areas to be tributary to the Jurupa Avenue Storm Drain were given to Thienes Engineering by the city of Fontana. Hydrology calculations were computed using San Bernardino County Ration Method program by Advanced Engineering Software. Los Angeles County Department of Public Works Storm Drain Analysis Program (RD4412) was used for the hydraulic calculation. The soil type is "A" per the San Bernardino County Hydrology Manual (see figure 2). rr - - -�' v' I � W m DESIGNATION _ ° ° ^�E "�'°° HYDROLOGIC SOILS GROUP MAP .GM OF IPMATED SPME SCALE REDUCED BY 1/2 FOR { SOUTHWEST -C AREA APPENDIX TITLE A HYDROLOGY CALCULATIONS B HYDRAULIC CALCULATIONS C DETENTION ANALYSIS D CATCH BASIN CALCULATIONS E HYDROLOGY MAP w r J �r a APPENDIX A HYDROLOGY CALCULATIONS RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1435 Analysis prepared by: THIENES ENGINEERING 16800 VALLEY VIEW AVENUE LA MIRADA, CA X0638 (714) 521 -4811 FAX (714) 521 -4173 + + + + + + + + + + + + + + + + + + + + + + + + ++ DESCRIPTION OF STUDY + + + + + + + + + + + + + + + + + + + + + + + + ++ *JURUPA /ETIWANDA * 100 -YEAR HYDROLOGY * * FILE NAME: X: \2007 \2007HYDA.DAT -- TIME/DATE - O = STUDY: = 15_32 - 10/12/ 2001_______ _______________________________ USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION = MODEL * -- _ USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER- DEFINED LOGARITHMIC-INTERPOLATION USED FOR RAINFALL* MR r SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = 0.6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.2500 w *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD* IIYI r FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21 ---------------------------------------------------------------------------- » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ... >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 600.00 �+ ELEVATION DATA: UPSTREAM(FEET) = 945.00 DOWNSTREAM(FEET) = 937.00 r Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 9.314 �w * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.822 di SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc RR LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 4.10 0.80 0.10 52 9.31 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION,Ap = 0.10 SUBAREA RUNOFF(CFS) = 13.81 E TOTAL AREA(ACRES) = 4.10 PEAK FLOWRATE(CFS)= 13.81 - - FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 51 » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »» >TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< -- __ ----- ---------- _________ _ _ _ _ __ ELEVATION DATA: UPSTREAM(FEET) = 937.00 DOWNSTREAM(FEET) = 931.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 500.00 CHANNEL SLOPE = 0.0120 CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 13.81 �n FLOW VELOCITY(FEET /SEC) = 6.29 FLOW DEPTH(FEET) = 0.66 �Ir TRAVEL TIME(MIN.) = _ 1.32 Tc(MIN.) = 10.64 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 = 1100.00 FEET. �Y FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 81 ---------------------------------------------------------------------------- » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< _ MAINLINE Tc(MIN) = 10.64 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.529 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) . (DECIMAL) CN O COMMERCIAL A 4.10 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = Q.10 SUBAREA AREA(ACRES) = 4.10 SUBAREA RUNOFF(CFS) = 12.73 EFFECTIVE AREA(ACRES) = 8.20 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 8.20 PEAK FLOW RATE(CFS) = 25.46 **************.******************+*********** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 61 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »» >(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION (FEET)-.= 931.00 DOWNSTREAM ELEVATION(FEET) = 929.70 STREET LENGTH(FEET) = 300.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 27.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0149 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 35.29 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.67 �r I" A HALFSTREET FLOOD WIDTH(FEET) = 25.55 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.64 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.76 STREET FLOW TRAVEL TIME(MIN.) = 1.89 Tc(MIN.) = 12.53 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.199 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 7.00 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 7.00 SUBAREA RUNOFF(CFS) = 19.65 EFFECTIVE AREA(ACRES) = 15.20 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA - AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 15.20 PEAK FLOW RATE(CFS) = 42.67 END OF SUBAREA STREET FLOW HYDRAULICS: 4m DEPTH(FEET) = 0.71 HALFSTREET FLOOD WIDTH(FEET) = 29.35 �y FLOW VELOCITY(FEET /SEC.) = 2.76 DEPTH *VELOCITY(FT *FT /SEC.) = 1.95 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 103.00 = 1400.00 FEET. FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE - 61 ---------------------------------------------------------------------------- "" » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< m » »>(STANDARD CURB SECTION USED) « «< ---------------------------------------------------------------------------- ,�, UPSTREAM ELEVATION(FEET) = 929.70 DOWNSTREAM ELEVATION(FEET) = 928.40 STREET LENGTH(FEET) = 300.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 27.00 �r INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 se SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 ItlY STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0149 w! Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 51.73 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.75 0 HALFSTREET FLOOD WIDTH(FEET) = 33.57 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.86 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.14 STREET FLOW TRAVEL TIME(MIN.) = 1.75 Tc(MIN.) = 14.28 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.957 SUBAREA LOSS RATEDATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 7.00 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 7.00 SUBAREA RUNOFF(CFS) = 18.13 EFFECTIVE AREA(ACRES) = 22.20 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 iY1 w TOTAL AREA(ACRES) = 22.20 PEAK FLOW RATE(CFS) = 57.50 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.77 HALFSTREET FLOOD WIDTH(FEET) = 35.89 FLOW VELOCITY(FEET /SEC.) = 2.92 DEPTH *VELOCITY(FT *FT /SEC.) = 2.25 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 104.00 = 1700.00 FEET. FLOW PROCESS FROM NODE 104.00 TO NODE 105.00 IS CODE = 61 ---------------------------------------------------------------------------- » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »» >(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 928.40 DOWNSTREAM ELEVATION(FEET) = 927.00 STREET LENGTH(FEET) = 300.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALLGRADEBREAK(FEET) = 27.00 WW INSIDE STREET CROSSFALL(DECIMAL) _ 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF _= 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0149 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 65.98 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: .,3 STREET FLOW DEPTH(FEET) = 0.79 i HALFSTREET FLOOD WIDTH(FEET) = 38.21 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.08 - PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.45 STREET FLOW TRAVEL TIME(MIN.) = 1.62 Tc(MIN.) = 15.91 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.772 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 7.00 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 y SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 7.00 SUBAREA RUNOFF(CFS) = 16.96 EFFECTIVE AREA(ACRES) = 29.20 AREA-AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA - AVERAGED Ap = 0.10 4 TOTAL AREA(ACRES) = 29.20 PEAK FLOW RATE(CFS) = 70.76 I END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.82 HALFSTREET FLOOD WIDTH(FEET) = 39.65 FLOW VELOCITY(FEET /SEC.) = 2.92 DEPTH *VELOCITY(FT *FT /SEC.) = 2.39 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 105.00 = 2000.00 FEET, FLOW PROCESS FROM NODE 105.00 TO NODE 106.00 IS CODE = 61 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< »» >(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 927.00 DOWNSTREAM ELEVATION(FEET) = 922.00 STREET LENGTH(FEET) = 500.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 50.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 45.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Sect ion (curb-to- curb) = 0.0149 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 79.41 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.92 HALFSTREET FLOOD WIDTH(FEET) = 50.58 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.90 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 4.50 STREET FLOW TRAVEL TIME(MIN.) = 1.70 Tc(MIN.) = 17.61 * 100 YEAR RAINFALL INTENSITY (INCH /HR) = 2.608 SUBAREA. LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 7.60 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 7.60 SUBAREA RUNOFF(CFS) = 17.30 EFFECTIVE AREA(ACRES) = 36.80 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA - AVERAGED Ap = 0.10 TOTAL AREA(ACRES). = 36.80 PEAK FLOW RATE(CFS) = 83.75 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.93 HALFSTREET FLOOD WIDTH(FEET) = 52.17 FLOW VELOCITY(FEET /SEC.) = 4.92 DEPTH *VELOCITY(FT *FT /SEC.) = 4.59 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 106.00 = 2500.00 FEET. x+++ xxxxx+ xxxxxxxxxxxxxxx+ xxxx+ xxx+++++ xxxxxxx + + + +xxxxxxxx + + +xxxxx +x +xx + + + +* FLOW PROCESS FROM NODE 106.00 TO NODE 107.00 IS CODE = 61 �A ---------------------------------------------------------------------------- »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< » » >(STANDARD CURB SECTION USED) « «< UPSTREAM ELEVATION(FEET) = 922.00 DOWNSTREAM ELEVATION(FEET) = 917.00 Y STREET LENGTH(FEET) = 500.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 50.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 45.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section (curb-to-curb) = 0.0149 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 91.93 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: 19 STREET FLOW DEPTH(FEET) = 0.96 HALFSTREET FLOOD WIDTH(FEET) = 54.63 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.01 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 4.81 STREET FLOW TRAVEL TIME(MIN.) = 1.66 Tc(MIN.) = 19.27 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.471 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 7.60 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 7.60 SUBAREA RUNOFF(CFS) = 16.36 EFFECTIVE AREA(ACRES) = 44.40 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA - AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 44.40 PEAK FLOW RATE(CFS) = 95.55 No END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.97 HALFSTREET FLOOD WIDTH(FEET) = 55.68 FLOW VELOCITY(FEET /SEC.) = 5.05 DEPTH *VELOCITY(FT *FT /SEC.) = 4.89 �w LONGEST FLOWPATH FROM NODE 100.00 TO NODE 107.00 = 3000.00 FEET. FLOW PROCESS FROM NODE 107.00 TO NODE 113.00 IS CODE = 31 ---------------------------------------------------------------------------- »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 906.45 DOWNSTREAM(FEET) = 906.17 FLOW LENGTH(FEET) = 107.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 54.0 INCH PIPE IS 43.1 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 7.03 ESTIMATED PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 95.55 PIPE TRAVEL TIME(MIN.) = 0.25 Tc(MIN.) = 19.53 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 113.00 = 3107.00 FEET. - - FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< TOTAL NUMBER OF STREAMS --=- 2_______________ _______________________________ CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION (MIN.) = 19.53 RAINFALL INTENSITY(INCH /HR) = 2.45 AREA - AVERAGED Fm(INCH /HR) - 0.08 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA - AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 44.40 TOTAL STREAM AREA(ACRES) = 44.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 95.55 *xxxxx********x************#***************** * * #x * *aa * # ** * * * #i * *# * # # * * * * * *xx FLOW PROCESS FROM NODE 110.00 TO NODE 111.00 IS CODE = 21 ---------------------------------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 320.00 ELEVATION DATA: UPSTREAM(FEET) = 919.14 DOWNSTREAM(FEET) 916.63 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.054 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.170 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 0.45 0.80 0.20 52 8.05 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 ow SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 1.66 im TOTAL AREA(ACRES) = 0.45 PEAK FLOW RATE(CFS) = 1.66 y FLOW PROCESS FROM NODE 111.00 TO NODE 112.00 IS CODE = 9 ---------------------------------------------------------------------------- » » >COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA««< UPSTREAM NODE ELEVATION(FEET) _ = 916.63 DOWNSTREAM NODE ELEVATION(FEET) = 915.14 CHANNEL LENGTH THRU SUBAREA(FEET) = 240.00 "V" GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET) = 0.170 PAVEMENT LIP(FEET) = 0.030 MANNING'S N = .0150 PAVEMENT CROSSFALL(DECIMAL NOTATION) = 0.01750 MAXIMUM DEPTH(FEET) = 3.00 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.638 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.40 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.30 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 1.94 AVERAGE FLOW DEPTH(FEET) = 0.30 FLOOD WIDTH(FEET) = 14.17 "V" GUTTER FLOW TRAVEL TIME(MIN.) - 2.06 Tc(MIN.) = 10.12 SUBAREA AREA(ACRES) = 0.40 SUBAREA RUNOFF(CFS) = 1.28 EFFECTIVE AREA(ACRES) 0.85 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 0.85 PEAK FLOW RATE(CFS) = 2.72 END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = 0.31 FLOOD WIDTH(FEET) = 15.73 FLOW VELOCITY(FEET /SEC.) = 1.96 DEPTH *VELOCITY(FT *FT /SEC) = 0.61 LONGEST FLOWPATH FROM NODE 110.00 TO NODE 112.00 = 560.00 FEET. FLOW PROCESS FROM NODE 112.00 TO NODE 113.00 IS CODE = 31 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » »> USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 911.31 DOWNSTREAM(FEET) = 907.57 FLOW LENGTH(FEET) = 50.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.8 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 10.06 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 2.72 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) = 10.20 .. LONGEST FLOWPATH FROM NODE 110.00 TO NODE 113.00 - = 610.00 FEET. FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE _ 1 -------------------- - ------------------------------ ------------------------- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< --------------- - - -- TOTAL NUMBER OF STREAMS - 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 10.20 RAINFALL INTENSITY(INCH /HR) = 3.62 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 0.85 TOTAL STREAM AREA(ACRES) = 0.85 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.72 *****}*****}}}****}}}#************}**}*}**}}} * # * } } * } * } } # # * * * * * * } # * * * * } * # # * ** - - FLOW PROCESS FROM NODE 113.00 TO NODE 114.00 IS CODE - 31 ---------------------------------------------------------------------- »» >COMPUTEPIPE -FLOW TRAVEL TIME THRU SUBAREA««< -- »» >USING COMPUTER- ESTIMATED- PIPESIZE- (NON - PRESSURE- FLOW)< << << -- - - - - -_ ELEVATION DATA: UPSTREAM(FEET) = 906.07 DOWNSTREAM(FEET) - 905.91 FLOW LENGTH(FEET) = 56.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 54.0 INCH PIPE IS 42.0 INCHES ** CONFLUENCE DATA ** STREAM Q Tc -. Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CPS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE - 1 95.55 19.53 2.451 0.80( 0.08) 0.10 44.4 100.00 2 2.72 10.20 3.620 0.80( 0.08) 0.10 0.9 110.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity FP(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE �e! 1 97.38 19.53 2.451 0.80( 0.08) 0.10 45.2 100.00 2 77.21 10.20 3.620 0.80( 0.08) 0.10 24.0 110.00 ar COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) - = 97.38 Tc(MIN.) = 19.53 ii EFFECTIVE AREA(ACRES) = 45.25 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA - AVERAGED Ap = 0.10 �1 TOTAL AREA(ACRES) = 45.25 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 113.00 = 3107.00 FEET. *****}*****}}}****}}}#************}**}*}**}}} * # * } } * } * } } # # * * * * * * } # * * * * } * # # * ** - - FLOW PROCESS FROM NODE 113.00 TO NODE 114.00 IS CODE - 31 ---------------------------------------------------------------------- »» >COMPUTEPIPE -FLOW TRAVEL TIME THRU SUBAREA««< -- »» >USING COMPUTER- ESTIMATED- PIPESIZE- (NON - PRESSURE- FLOW)< << << -- - - - - -_ ELEVATION DATA: UPSTREAM(FEET) = 906.07 DOWNSTREAM(FEET) - 905.91 FLOW LENGTH(FEET) = 56.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 54.0 INCH PIPE IS 42.0 INCHES p PIPE -FLOW VELOCITY(FEET /SEC.) = 7.33 ESTIMATED PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 97.38 PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) = 19.65 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 114.00 = 3163.00 FEET. FLOW PROCESS FROM NODE 113.00 TO NODE 114.00 IS CODE = 81 ---------------------------------------------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE TC(MIN) 19.65 + 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.442 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.35 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) - 0.35 SUBAREA RUNOFF(CFS) = 0.74 EFFECTIVE AREA(ACRES) = 45.60 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA-AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 45.60 PEAK FLOW RATE(CFS) = 97.38 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE FLOW PROCESS FROM NODE 114.00 TO NODE 117.00 IS CODE = 31 ---------------------------------------------------------------------------- » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 905.91 = DOWNSTREAM(FEET) = 905.76 FLOW LENGTH(FEET) = 49.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 54.0 INCH PIPE IS 40.7 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 7.56 ESTIMATED PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 97.38 PIPE TRAVEL TIME(MIN.) = 0.11 Tc(MIN.) = 19.76 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 117.00 = 3212.00 FEET. FLOW PROCESS FROM NODE 117.00 TO NODE 117.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 19.76 RAINFALL INTENSITY(INCH /HR) = 2.43 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 45.60 TOTAL STREAM AREA(ACRES) = 45.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 97.38 ON fr FLOW PROCESS FROM NODE 115.00 TO NODE. 116.00 IS CODE = 21 ---------------------------------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 80.00 ■A ELEVATION DATA: UPSTREAM(FEET) = 918.47 DOWNSTREAM(FEET) = 916.13 Tc - K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.000 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.552 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH /HR) COMMERCIAL A 0.35 0.80 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 1.72 Ap SCS Tc (DECIMAL) CN (MIN.) 0.10 52 5.00 0.80 TOTAL AREA(ACRES) = 0.35 PEAK FLOW RATE(CFS) = 1.72 FLOW PROCESS FROM NODE 116.00 TO NODE 117.00 IS CODE = 31 » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< - - » = >> USING - COMPUTER-ESTIMATED - PI = PESIZE - ( NON - PRESSURE FLOW)<<< << -- - - - - -_ ELEVATION DATA: UPSTREAM(FEET) = 912.30 DOWNSTREAM(FEET) = 907.26 FLOW LENGTH(FEET) = 8.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 1.8 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 18.56 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 1.72 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 5.01 LONGEST FLOWPATH FROM NODE 115.00 TO NODE 117.00 = 88.00 FEET. FLOW PROCESS FROM NODE 117.00 TO NODE 117.00 IS CODE = 1 ---------------------------------------------------------------------------- » >>>DESIGNATE INDEPENDENT STREAM FOA CONFLUENCE« «< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES ««< on TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.01 RAINFALL INTENSITY(INCH /HR) = 5.55 AREA- AVERAGED Fm(INCH /HR) = 0.08 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap .= 0.10 EFFECTIVE STREAM AREA(ACRES) = 0.35 TOTAL STREAM AREA(ACRES) = 0.35 PEAK FLOW RATE(CFS) AT CONFLUENCE 1.72 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 97.38 19.76 2.434 0.80( 0.08) 0.10 45.6 100.00 Rk L 1 77.21 10.45 3.568 0.80( 0.08) 0.10 24.4 110.00 2 1.72 5.01 5.547 0.80( 0.08) 0.10 0.3 115.00 I RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO iw CONFLUENCE FORMULA USED FOR 2 STREAMS. AAA ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE w� 1 78.31 10.45 3.568 0.80( 0.08) 0.10 24.7 110.00 2 98.12 19.76 2.434 0.80( 0.08) 0.10 45.9 100.00 No 3 59.72 5.01 5.547 0.80( 0.08) 0.10 12.0 115.00 40 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: 1W PEAK FLOW RATE(CFS) = 98.12 Tc(MIN.) = 19.76 EFFECTIVE AREA(ACRES) = 45.95 AREA - AVERAGED Fm(INCH /HR) - 0.08 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA - AVERAGED Ap = 0.10 1p TOTAL AREA(ACRES) = 45.95 49 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 117.00 = 3212.00 FEET. x+++ x++ xxxxxxxxxx+ xxxxxxxxx+ x++ xxxxxxxxx+++ x+ xxxxxx + + + +xxxxxxxx + + + * + +xxxxxxx FLOW PROCESS FROM NODE 117.00 TO NODE 118.00 IS CODE - 31 r ----- ----------------------------------------------------------------------- » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< w. » » >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 905.76 DOWNSTREAM(FEET) = 905.66 FLOW LENGTH(FEET) = 36.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 54.0 INCH. PIPE IS 42.9 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 7.24 ESTIMATED PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1 .. PIPE- FLOW(CFS) = 98.12 r PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) = 19.84 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 118.00 = 3248.00 FEET. + xxxxx xxxxxxx+++++++ x+ xxxxxx+ xxx+++ xxxxxxxxx+ + +xxxxxxxxxxxxxxxxxxxx + + + + + ++ FLOW PROCESS FROM NODE 117.00 TO NODE 118.00 IS CODE = 81 ---------------------------------------------------------------------------- s » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 19.84 .* * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.428 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.80 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 0.80 SUBAREA RUNOFF(CFS) = 1.69 EFFECTIVE AREA(ACRES) = 46.75 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 46.75 PEAK FLOW RATE(CFS) = 98.80 *+++xxxxxxxxxxxxxxxxxx+xx+x xxxxxxxx xxxxx+xxxx xxx +xxxxxx + + +x +x + +x xxxx + + + + +xx+ FLOW PROCESS FROM NODE 118.00 TO NODE 123.00 IS CODE = 31 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< FLOW PROCESS FROM NODE 123.00 TO NODE 123.00 IS CODE = 1 ---------------------------------------------------------------------------- » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< TOTAL NUMBER OF STREAMS - 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 22.12 RAINFALL INTENSITY(INCH /HR) = 2.27 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA - AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 46.75 TOTAL STREAM AREA(ACRES) = 46.75 PEAK FLOW RATE(CFS) AT CONFLUENCE = 98.80 FLOW PROCESS FROM NODE 120.00 TO NODE 121.00 IS CODE = 21 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 700.00 ELEVATION DATA: UPSTREAM(FEET) = 930.00 DOWNSTREAM(FEET) = 925.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.224 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.418 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE - -GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 7.10 0.80 0.10 52 11.22 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 21.33 TOTAL AREA(ACRES) _ 7.10 PEAK FLOW RATE(CFS) = 21.33 FLOW PROCESS FROM NODE 121.00 TO NODE 122.00 IS CODE = 51 ---------------------------------------------------------------------------- » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW««< -- » » > TRAVELTIME - THRU SUBAREA - (EXISTING - ELEMENT)<< < << ------------------- ELEVATION DATA: UPSTREAM(FEET) = 925.00 DOWNSTREAM(FEET) = 920.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 500.00 CHANNEL SLOPE = 0.0100 CHANNEL BASE(FEET) = 4.00 "Z" FACTOR = 2.000 A "R A » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< OR ELEVATION DATA: UPSTREAM(FEET) = 905.66 DOWNSTREAM(FEET) = 902.49 FLOW LENGTH(FEET) = 1034.00 MANNING'S N = 0.013 im DEPTH OF FLOW IN 54.0 INCH PIPE IS 41.2 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 7.58 O ESTIMATED PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES - 1 A PIPE- FLOW(CFS) = 98.80 PIPE TRAVEL TIME(MIN.) - 2.27 Tc(MIN.) = 22.12 _ LONGEST FLOWPATH FROM NODE 100.00 TO NODE 123.00 = 4282.00 FEET. FLOW PROCESS FROM NODE 123.00 TO NODE 123.00 IS CODE = 1 ---------------------------------------------------------------------------- » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< TOTAL NUMBER OF STREAMS - 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 22.12 RAINFALL INTENSITY(INCH /HR) = 2.27 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA - AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 46.75 TOTAL STREAM AREA(ACRES) = 46.75 PEAK FLOW RATE(CFS) AT CONFLUENCE = 98.80 FLOW PROCESS FROM NODE 120.00 TO NODE 121.00 IS CODE = 21 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 700.00 ELEVATION DATA: UPSTREAM(FEET) = 930.00 DOWNSTREAM(FEET) = 925.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.224 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.418 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE - -GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 7.10 0.80 0.10 52 11.22 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 21.33 TOTAL AREA(ACRES) _ 7.10 PEAK FLOW RATE(CFS) = 21.33 FLOW PROCESS FROM NODE 121.00 TO NODE 122.00 IS CODE = 51 ---------------------------------------------------------------------------- » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW««< -- » » > TRAVELTIME - THRU SUBAREA - (EXISTING - ELEMENT)<< < << ------------------- ELEVATION DATA: UPSTREAM(FEET) = 925.00 DOWNSTREAM(FEET) = 920.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 500.00 CHANNEL SLOPE = 0.0100 CHANNEL BASE(FEET) = 4.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 21.33 FLOW VELOCITY(FEET /SEC) = 3.81 FLOW DEPTH(FEET) = 0.95 TRAVEL TIME(MIN.) = 2.19 Tc(MIN.) = 13.41 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 122.00 = 1200.00 FEET. FLOW PROCESS FROM NODE 121.00 TO NODE 122.00 IS CODE = 81 ---------------------------------------------------------------------------- »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< r MAINLINE Tc(MIN) = 13. 41________________ * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.071 u. SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) .(INCH /HR) (DECIMAL) CN COMMERCIAL A 7.10 0.80 0.10 52 w SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 7.10 SUBAREA RUNOFF(CFS) = 19.12 on EFFECTIVE AREA(ACRES) = 14.20 AREA- AVERAGED .Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA - AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 14.20 PEAK FLOW RATE(CFS) = 38.24 YY FLOW PROCESS FROM NODE 122.00 TO NODE 123.00 IS CODE = 31 ---------------------------------------------------------------------------- w » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 904.30 DOWNSTREAM(FEET) = 903.39 FLOW LENGTH(FEET) = 91.00 MANNING'S N - 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 23.5 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 9.27 �w ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 38.24 PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) = 13.57 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 123.00 = 1291.00 FEET. im FLOW PROCESS FROM NODE 123.00 TO NODE 123.00 IS CODE = 1 ... -- ---------------- ------- -------------------------------------------------- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< m » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES ««< me TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.57 RAINFALL INTENSITY(INCH /HR) = 3.05 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 14.20 TOTAL STREAM AREA(ACRES) = 14.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 38.24 ** CONFLUENCE DATA ** www*+++++++++ x+ x++++++ wx++ w+++++++ ww+ w+++++ ww + + + +xx + + + + + + + + + + + + + + +wxxwxxwx *• FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< -----------------------------------°-------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 22.45 RAINFALL INTENSITY(INCH /HR) = 2.25 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 60.95 TOTAL STREAM AREA(ACRES) = 60.95 PEAK FLOW RATE(CFS) AT CONFLUENCE = 127.07 +++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ www + +wwww +xx + + + + + + * +xx+ +www + +xxxxwwxxxxw STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 79.77 12.91 3.142 0.80( 0.08) 0.10 25.5 110.00 1 98.80 22.12 2.275 0.80( 0.08) 0.10 46.7 100.00 1 62.46 7.66 4.297 0.80( 0.08) 0.10 12.8 115.00 2 38.24 13.57 3.049 0.80( 0.08) 0.10 14.2 120.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER" NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE ro 1 93.12 7.66 4.297 0.80( 0.08) 0.10 20.9 115.00 2 117.28 12.91 3.142 0.80( 0.08) 0.10 39.0 110.00 im 3 127.07 22.12 2.275 0.80( 0.08) 0.10 60.9 100.00 4 119.37 13.57 3.049 0:80( 0.08) 0.10 41.3 120.00 M i COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 127.07 Tc(MIN.) = 22.12 r. EFFECTIVE AREA(ACRES) = 60.95 AREA- AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 im TOTAL AREA(ACRES) = 60.95 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 123.00 = 4282.00 FEET. in + wxw+ ww++ w+ wwwwww+ w++ wwwwwxwwxxx+++ x++ xxx++++ + + +xwwwww + + + +x + + + + : + + + + + + +xxxxx FLOW PROCESS FROM NODE 123.00 TO NODE 133.00 IS CODE = 31 w+ ---------------------------------------------------------------------------- » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 902.39 DOWNSTREAM(FEET) = 901.94 illl FLOW LENGTH(FEET) = 156.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 60.0 INCH PIPE IS 45.9 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 7.89 ESTIMATED PIPE DIAMETER(INCH) = 60.00 NUMBER OF PIPES = 1 iW PIPE- FLOW(CFS) = 127.07 PIPE TRAVEL TIME(MIN.) = 0.33 Tc(MIN.) = 22.45 qo LONGEST FLOWPATH FROM NODE 100.00 TO NODE 133.00 = 4438.00 FEET. www*+++++++++ x+ x++++++ wx++ w+++++++ ww+ w+++++ ww + + + +xx + + + + + + + + + + + + + + +wxxwxxwx *• FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< -----------------------------------°-------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 22.45 RAINFALL INTENSITY(INCH /HR) = 2.25 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 60.95 TOTAL STREAM AREA(ACRES) = 60.95 PEAK FLOW RATE(CFS) AT CONFLUENCE = 127.07 +++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ www + +wwww +xx + + + + + + * +xx+ +www + +xxxxwwxxxxw pm rm FLOW PROCESS FROM NODE 130.00 TO NODE 131.00 IS CODE = 21 »» >RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ----------------------------------- INITIAL SUBAREA FLOW- LENGTH(FEET) = 600.00 IA ELEVATION DATA: UPSTREAM(FEET) = 935.00 DOWNSTREAM(FEET) = 926.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.097 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.877 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 6.70 0.80 0.10 52 9.10 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 22.90 TOTAL AREA(ACRES) = 6.70 PEAK FLOW RATE(CFS) = 22.90 FLOW PROCESS FROM NODE 131.00 TO NODE 132.00 IS CODE = 51 »» >COMPUTE TRAPEZOIDAL CHANNEL FLOW« «< .� »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « «< Iw ___________ ------ ____________________________ _______________________________ ELEVATION DATA: UPSTREAM(FEET) = 926.00 DOWNSTREAM(FEET) = 920.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 550.00 CHANNEL SLOPE = 0.0109 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 50.000 MANNING , S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 22.90 FLOW VELOCITY(FEET /SEC) = 3.36 FLOW DEPTH(FEET) = 0.37 TRAVEL TIME(MIN.) = 2.73 Tc(MIN.) = 11.82 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 132.00 = 1150.00 FEET. FLOW PROCESS FROM NODE 131.00 TO NODE 132.00 IS CODE = 81 ---------------------------------------------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 11.82 ,^ * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.312 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN Rm COMMERCIAL A 6.80 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 6.80 SUBAREA RUNOFF(CFS) = 19.78 EFFECTIVE AREA(ACRES) = 13.50 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0..10 TOTAL AREA(ACRES) = 13.50 PEAK FLOW RATE(CFS) _ 39.28 FLOW PROCESS FROM NODE 132.00 TO NODE 133.00 IS CODE = 31 (� ---------------------------------------------------------------------------- » » >COMPUTEPIPE -FLOW TRAVEL TIME THRU SUBAREA««< IAI iY IN w >>>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< ===== =======---------------------------------------------------------------- ---------------------------------------------------------------------------- ELEVATION DATA: UPSTREAM(FEET) = 904.03 DOWNSTREAM(FEET) _ 903.09 FLOW LENGTH(FEET) = 94.00 MANNING'S N = 0.013 ii DEPTH OF FLOW IN 30.0 INCH PIPE IS 24.1 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 9.28 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = '1 PIPE- FLOW(CFS) = 39.28 PIPE TRAVEL TIME(MIN.) = 0.17 Tc(MIN.) = 11.99 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 133.00 = 1244.00 FEET. FLOW PROCESS FROM NODE 133.00 TO NODE 133.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES« «< TOTAL NUMBER OF STREAMS = 2 YY CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 11.99 RAINFALL INTENSITY(INCH /HR) = 3.28 AREA- AVERAGED Fm(INCH /HR) = 0.08 AREA- AVERAGED Fp(INCH/HR) = 0.80 AREA- AVERAGED Ap = 0.10 n EFFECTIVE STREAM AREA(ACRES) = 13.50 ry TOTAL STREAM AREA(ACRES) = 13.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 39.28 w+ ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 93.12 8.02 4.182 0.80( 0.08) 0.10 20.9 115.00 y 1 117.28 13.25 3.093 0.80( 0.08) 0.10 39.0 110.00 1 127.07 22.45 2.255 0.80( 0.08) 0.10 60.9 100.00 1 119.37 13.91 3.005 0.80( 0.08) 0.10 41.3 120.00 2 39.28 11.99 3.284 0.80( 0.08) 0.10 13.5 130.00 r+ RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO '^ CONFLUENCE FORMULA USED FOR 2 STREAMS. r ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE r 1 126.73 ' 8.02 4.182 0.80( 0.08) 0.10 29.9 115.00 2 154.21 13.25 3.093 0.80( 0.08) 0.10 52.5 110.00 w 3 155.23 13.91 3.005 0.80( 0.08) 0.10 54.8 120.00 46 4 153.73 22.45 2.255 0.80( 0.08) 0.10 74.4 100.00 5 150.74 11.99 3.284 0.80( 0.08) 0.10 48.2 130.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 155.23 Tc(MIN.) = 13.91 EFFECTIVE AREA(ACRES) = 54.76 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 74.45 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 133.00 = 4438.00 FEET. rr FLOW PROCESS FROM NODE 146.00 TO NODE 146.00 IS CODE = 1 ---------------------------------------------------------------------------- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ---------------- -- ------ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM- 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.08 RAINFALL INTENSITY(INCH /HR) = 2.98 AREA - AVERAGED FM(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA - AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 54.76 TOTAL STREAM AREA(ACRES) = 74.45 PEAK FLOW RATE(CFS) AT CONFLUENCE = 155.23 �. FLOW PROCESS FROM NODE 140.00 TO NODE 141.00 IS CODE = 21 ---------------------------------------------------------------------------- » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< +� ===_°_____________ _______________________________ INITIAL SUBAREA FLOW- LENGTH(FEET) = 220.00 ELEVATION DATA: UPSTREAM(FEET) 917.71 DOWNSTREAM(FEET) = 914.00 n. Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.949 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.002 SUBAREA Tc AND LOSS RATE DATA(AMC III): Yi DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 1.50 0.80 0.10 52 5.95 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 6.65 TOTAL AREA(ACRES) = 1.50 PEAK FLOW RATE(CFS) = 6.65 FLOW PROCESS FROM NODE 141.00 TO NODE 142.00 IS CODE = 9 » » >COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA« «< UPSTREAM NODE ELEVATION(FEET) = 914.00 a FLOW PROCESS FROM NODE 133.00 ---------------------------------------------------------------------------- TO NODE 146.00 IS CODE = 31 »» >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< »» >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 901.94 DOWNSTREAM(FEET) = 901.55 FLOW LENGTH(FEET) = 98.00 DEPTH OF FLOW IN 60.0 INCH PIPE MANNING'S N = 0.013 IS 47.6 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 9.29 ESTIMATED PIPE DIAMETER(INCH) = 60.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 155.23 + PIPE TRAVEL TIME(MIN.) = 0.18 Tc(MIN.) = 14.08 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 146.00 = 4536.00 FEET. FLOW PROCESS FROM NODE 146.00 TO NODE 146.00 IS CODE = 1 ---------------------------------------------------------------------------- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ---------------- -- ------ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM- 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.08 RAINFALL INTENSITY(INCH /HR) = 2.98 AREA - AVERAGED FM(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA - AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 54.76 TOTAL STREAM AREA(ACRES) = 74.45 PEAK FLOW RATE(CFS) AT CONFLUENCE = 155.23 �. FLOW PROCESS FROM NODE 140.00 TO NODE 141.00 IS CODE = 21 ---------------------------------------------------------------------------- » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< +� ===_°_____________ _______________________________ INITIAL SUBAREA FLOW- LENGTH(FEET) = 220.00 ELEVATION DATA: UPSTREAM(FEET) 917.71 DOWNSTREAM(FEET) = 914.00 n. Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.949 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.002 SUBAREA Tc AND LOSS RATE DATA(AMC III): Yi DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 1.50 0.80 0.10 52 5.95 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 6.65 TOTAL AREA(ACRES) = 1.50 PEAK FLOW RATE(CFS) = 6.65 FLOW PROCESS FROM NODE 141.00 TO NODE 142.00 IS CODE = 9 » » >COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA« «< UPSTREAM NODE ELEVATION(FEET) = 914.00 a r DOWNSTREAM NODE ELEVATION(FEET) = 912.73 CHANNEL LENGTH THRU SUBAREA(FEET) = 250.00 "V" GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET) = 0.170 PAVEMENT LIP(FEET) = 0.030 MANNING'S N = .0150 PAVEMENT CROSSFALL(DECIMAL NOTATION) = 0.02000 MAXIMUM DEPTH(FEET) = 3.00 slil * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.280 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 3.30 0.80 0.10 52 it SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 12.84 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 2.36 r AVERAGE FLOW DEPTH(FEET) = 0.49 FLOOD WIDTH(FEET) = 32.05 "V" GUTTER FLOW TRAVEL TIME(MIN.) = 1.76 Tc(MIN.) = 7.71 SUBAREA AREA(ACRES) = 3.30 SUBAREA RUNOFF(CFS) = 12.48 EFFECTIVE AREA(ACRES) = 4.80 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 ,,. TOTAL AREA(ACRES) = 4.80 PEAK FLOWRATE(CFS) = 18.15 r END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = 0.54 FLOOD WIDTH(FEET) = 36.97 FLOW VELOCITY(FEET /SEC.) = 2.54 DEPTH *VELOCITY(FT *FT /SEC) = 1.37 r LONGEST FLOWPATH FROM NODE 140.00 TO NODE 142.00 = 470.00 FEET. FLOW PROCESS FROM NODE 142.00 TO NODE 143.00 IS CODE = 9 »» >COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA« «< UPSTREAM NODE ELEVATION(FEET) = 912.73 DOWNSTREAM NODE ELEVATION(FEET) = 911.48 CHANNEL LENGTH THRU SUBAREA(FEET) = 250.00 "V" GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET) = 0.170 b PAVEMENT LIP(FEET) = 0.030 MANNING'S N = .0150 PAVEMENT CROSSFALL(DECIMAL NOTATION) = 0.02000 MAXIMUM DEPTH(FEET) - 3.00 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.825 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS 4" LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 2.40 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 22.20 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 2.62 AVERAGE FLOW DEPTH(FEET) = 0.57 FLOOD WIDTH(FEET) = 40.39 "V" GUTTER FLOW TRAVEL TIME(MIN.) = 1.59 Tc(MIN.) = 9.30 SUBAREA AREA(ACRES) = 2.40 SUBAREA RUNOFF(CFS) = 8.09 EFFECTIVE AREA(ACRES) = 7.20 AREA- AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 7.20 PEAK FLOW RATE(CFS) = 24.27 END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = 0.59 FLOOD WIDTH(FEET) = 41.76 OF tib o FLOW VELOCITY(FEET /SEC.) = 2.69 DEPTH *VELOCITY(FT *FT /SEC) - 1.58 LONGEST FLOWPATH FROM NODE 140.00 TO NODE 143.00 = 720.00 FEET. u I FLOW PROCESS FROM NODE 143.00 TO NODE 144.00 IS CODE = 9 ---------------------------------------------------------------------------- »»> COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA««< UPSTREAM NODE ELEVATION(FEET) = 911.48 DOWNSTREAM NODE ELEVATION(FEET) = 910.18 CHANNEL LENGTH THRU SUBAREA(FEET) = 260.00 "V" GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET) = 0.170 PAVEMENT LIP(FEET) = 0.030 MANNING'S N = .0150 PAVEMENT CROSS FALL (DECIMAL NOTATION) = 0.02000 MAXIMUM DEPTH(FEET) = 3.00 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.487 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 3.30 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION; Ap = 0.10 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 29.33 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 2.79 AVERAGE FLOW DEPTH(FEET) = 0.62 FLOOD WIDTH(FEET) = 45.18 "V" GUTTER FLOW TRAVEL TIME(MIN.) = 1.55 Tc(MIN.) = 10.85 SUBAREA AREA(ACRES) = 3.30 SUBAREA RUNOFF(CFS) = 10.12 - EFFECTIVE AREA(ACRES) = 10.50 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA - AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 10.50 PEAK FLOW RATE(CFS) = 32.20 END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = 0.64 FLOOD WIDTH(FEET) = 46.82 FLOW VELOCITY(FEET /SEC.) = 2.86 DEPTH *VELOCITY(FT *FT /SEC) = 1.83 LONGEST FLOWPATH FROM NODE 140.00 TO NODE 144.00 = 980.00 FEET. +++++++++++++*+++++++++++++++++++++++++++++++ + + + * + + + + + + * * + + + + + + + + + + + + + + + * + ++ FLOW PROCESS FROM NODE 144.00 TO NODE 145.00 IS CODE = 9 ---------------------------------------------------------------------------- »» )COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA««< = UPSTREAM = NODE = ELEVATION(_FEET) = = 910.18 DOWNSTREAM NODE ELEVATION(FEET) = 908.63 CHANNEL LENGTH THRU SUBAREA(FEET) = 310.00 "V" GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET) 0.170 . PAVEMENT LIP(FEET) = 0.030 MANNING'S N = .0150 PAVEMENT CROSSFALL(DECIMAL NOTATION) = 0.02000 MAXIMUM DEPTH(FEET) = 3.00 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.189 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 3.90 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 37.66 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET /SEC.) = 2.96 ." �r AVERAGE FLOW DEPTH(FEET) = 0.67 FLOOD WIDTH(FEET) = 49.83 "V" GUTTER FLOW TRAVEL TIME(MIN.) = 1.74 Tc(MIN.) = 12.60 SUBAREA AREA(ACRES) = 3.90 SUBAREA RUNOFF(CFS) = 10.91 EFFECTIVE AREA(ACRES) = 14.40 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 14.40 PEAK FLOW RATE(CFS) = 40.30 w END OF SUBAREA "V" GUTTER HYDRAULICS: - DEPTH(FEET) = 0.68 FLOOD WIDTH(FEET) = 51.19 FLOW VELOCITY(FEET /SEC.) = 3.01 DEPTH *VELOCITY(FT *FT /SEC) = 2.05 LONGEST FLOWPATH FROM NODE 140.00 TO NODE 145.00 = 1290.00 FEET. ba FLOW PROCESS FROM NODE 145.00 TO NODE 146.00 IS CODE = 31 ---------------------------------------------------------------------------- » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< di ELEVATION DATA: UPSTREAM(FEET) = 903.13 DOWNSTREAM(FEET) = 902.80 FLOW LENGTH(FEET) = 53.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 26.8 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 7.81 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 40.30 PIPE TRAVEL TIME(MIN.) = 0.11 Tc(MIN.) = 12.71 LONGEST FLOWPATH FROM NODE 140.00 TO NODE 146.00 = 1343.00 FEET. we FLOW PROCESS FROM NODE 146.00 TO NODE 146.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< �! » »>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = -= 2 A� CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: < TIME OF CONCENTRATION(MIN.) = 12.71 RAINFALL INTENSITY(INCH /HR) = 3.17 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 14.40 TOTAL STREAM AREA(ACRES)_= 14.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 40.30 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.). (INCH /HR) (INCH /HR) (ACRES) NODE 1 126.73 8.20 4.126 0.80( 0.08) 0.10 29.9 115.00 1 154.21 13.43 3.069 0.80( 0.08) 0.10 52.5 110.00 1 155.23 14.08 2.983 0.80( 0.08) 0.10 54.8 120.00 1 153.73 22.62 2.244 0.80( 0.08) 0.10 74.4 100.00 1 150.74 12.17 3.256 0.80( 0.08) 0.10 48.2 130.00 2 40.30 12.71 3.172 0.80( 0.08) 0.10 14.4 140.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. IF 6 FLOW PROCESS FROM NODE 153.00 TO NODE 153.00 IS CODE = 1 ---------------------------------------------------------------------------- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.55 RAINFALL INTENSITY(INCH /HR) = 3.05 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA - AVERAGED Ap '= 0.10 EFFECTIVE STREAM AREA(ACRES) = 66.95 TOTAL STREAM AREA(ACRES) = 88.85 PEAK FLOW RATE(CFS) AT CONFLUENCE = 193.17 - - FLOW PROCESS FROM NODE 150.00 TO NODE 151.00 IS CODE - 21 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< -- »USE TIME -OF- CONCENTRATION NOMOGRAPH = FOR - INITIAL - SUBAREA« - - - - -- INITIAL SUBAREA FLOW- LENGTH(FEET) = 325.00 ELEVATION DATA: UPSTREAM(FEET) = 915.34 DOWNSTREAM(FEET) = 912.70 f � ** PEAK FLOW RATE TABLE ** Yr STREAM Q Tc Intensity Fp(Fm) Ap .Ae HEADWATER w. NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 160.75 8.20 4.126 0.80( 0.08) 0.10 39.2 115.00 it 2 190.36 12.17 3.256 0.80( 0.08) 0.10 62.0 130.00 3 193.17 13.43 3.069 0.80( 0.08) 0.10 66.9 110.00 4w 4 193.06 14.08 2.983 0.80( 0.08) 0.10 69.2 120.00 5 181.93 22.62 2.244 0.80( 0.08) 0.10 88.8 100.00 6 192.53 12.71 3.172 0.80( 0.08) 0.10 64.4 140.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 193.17 Tc(MIN.) = 13.43 EFFECTIVE AREA(ACRES) = 66.95 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 88.85 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 146.00 = 4536.00 FEET. FLOW PROCESS FROM NODE 146.00 ---------------------------------------------------------------------------- TO NODE 153.00 IS CODE = 31 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » » >USING COMPUTER - ESTIMATED PIPESIZE PRESSURE FLOW) ««< (NON- ELEVATION DATA: UPSTREAM(FEET) = 901.55 DOWNSTREAM(FEET) = 901.38 FLOW LENGTH(FEET) = 61.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 69.0 INCH PIPE IS 56.1 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 8.54 ESTIMATED PIPE DIAMETER(INCH) = 69.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 193.17 PIPE TRAVEL TIME(MIN.) _ 0.12 Tc(MIN.) = 13.55 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 153.00 = 4597.00 FEET. FLOW PROCESS FROM NODE 153.00 TO NODE 153.00 IS CODE = 1 ---------------------------------------------------------------------------- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.55 RAINFALL INTENSITY(INCH /HR) = 3.05 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA - AVERAGED Ap '= 0.10 EFFECTIVE STREAM AREA(ACRES) = 66.95 TOTAL STREAM AREA(ACRES) = 88.85 PEAK FLOW RATE(CFS) AT CONFLUENCE = 193.17 - - FLOW PROCESS FROM NODE 150.00 TO NODE 151.00 IS CODE - 21 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< -- »USE TIME -OF- CONCENTRATION NOMOGRAPH = FOR - INITIAL - SUBAREA« - - - - -- INITIAL SUBAREA FLOW- LENGTH(FEET) = 325.00 ELEVATION DATA: UPSTREAM(FEET) = 915.34 DOWNSTREAM(FEET) = 912.70 f � w di TOTAL AREA(ACRES) = 1.55 PEAK FLOW RATE(CFS) = 5.71 FLOW PROCESS FROM NODE 151.00 TO NODE 152.00 IS CODE = 61 ---------------------------------------------------------------------------- » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< » » >(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 912.70 DOWNSTREAM ELEVATION(FEET) = 911.18 STREET LENGTH(FEET) = 300.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 40.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 35.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.035 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.035 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.016 Manning's FRICTION FACTOR for Streetflow Section (curb- to- curb) = 0.0149 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 9.02 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.58 HALFSTREET FLOOD WIDTH(FEET) = 18.35 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.58 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.49 STREET FLOW TRAVEL TIME(MIN.) = 1.93 Tc(MIN.) = 9.98 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.667 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE .GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 2.05 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 2.05 SUBAREA RUNOFF(CFS) = 6.62 EFFECTIVE AREA(ACRES) = 3.60 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA - AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 3.60 PEAK FLOW RATE(CFS) = 11.62 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.62 HALFSTREET FLOOD WIDTH(FEET) = 22.39 FLOW VELOCITY(FEET /SEC.) = 2.65 DEPTH *VELOCITY(FT *FT /SEC.) = 1.64 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS, AND L = 300.0 FT WITH ELEVATION -DROP - 1.5 FT, IS 7.3 CFS, WHICH EXCEEDS THE TOP -OF -CURB STREET CAPACITY AT NODE 152.00 LONGEST FLOWPATH FROM NODE 150.00 TO NODE 152.00 = 625.00 FEET. Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.). =. 6.048 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.172 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 1.55 0.80 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ 0.10 52 8.05 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 5.71 TOTAL AREA(ACRES) = 1.55 PEAK FLOW RATE(CFS) = 5.71 FLOW PROCESS FROM NODE 151.00 TO NODE 152.00 IS CODE = 61 ---------------------------------------------------------------------------- » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< » » >(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 912.70 DOWNSTREAM ELEVATION(FEET) = 911.18 STREET LENGTH(FEET) = 300.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 40.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 35.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.035 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.035 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.016 Manning's FRICTION FACTOR for Streetflow Section (curb- to- curb) = 0.0149 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 9.02 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.58 HALFSTREET FLOOD WIDTH(FEET) = 18.35 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.58 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.49 STREET FLOW TRAVEL TIME(MIN.) = 1.93 Tc(MIN.) = 9.98 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.667 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE .GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 2.05 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 2.05 SUBAREA RUNOFF(CFS) = 6.62 EFFECTIVE AREA(ACRES) = 3.60 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA - AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 3.60 PEAK FLOW RATE(CFS) = 11.62 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.62 HALFSTREET FLOOD WIDTH(FEET) = 22.39 FLOW VELOCITY(FEET /SEC.) = 2.65 DEPTH *VELOCITY(FT *FT /SEC.) = 1.64 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS, AND L = 300.0 FT WITH ELEVATION -DROP - 1.5 FT, IS 7.3 CFS, WHICH EXCEEDS THE TOP -OF -CURB STREET CAPACITY AT NODE 152.00 LONGEST FLOWPATH FROM NODE 150.00 TO NODE 152.00 = 625.00 FEET. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx FLOW PROCESS FROM NODE 152.00 TO NODE 153.00 IS CODE = 31 ------------------------------------- ---- --------- ----------- » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 907.35 DOWNSTREAM(FEET) = 903.38 FLOW LENGTH(FEET) = 77.42 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.0 INCHES PIPE -FLOW V'ELOCITY(FEET /SEC.) = 13.13 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 11.62 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = 10.08 LONGEST FLOWPATH FROM NODE 150.00 TO NODE 153.00 = 702.42 FEET. � xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx *xxxxxxxxxxxxxxxxx :* FLOW PROCESS FROM NODE 153.00 TO NODE 153.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 10.08 RAINFALL INTENSITY(INCH /HR) = 3.65 AREA - AVERAGED Fm(INCH /HR) _ 0.08 RR AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA - AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 3.60 TOTAL STREAM AREA(ACRES) = 3.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 11.62 ** CONFLUENCE DATA ** w STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 160.75 8.32 4.089 0.80( 0.08) 0.10 39.2 115.00 w 1 190.36 12.29 3.237 0.80( 0.08) 0.10 62.0 130.00 I it 1 193.17 13.55 3.052 0.80( 0.08) 0.10 66.9 110.00 1 193.06 14.20 2.968 0.80( 0.08) 0.10 69.2 120.00 1 181.93 22.74 , 2.237 0.80( 0.08) 0.10 88.8 100.00 1 192.53 12.83 3.154 0.80( 0.08) 0.10 64.4 140.00 YW 2 11.62 10.08 3.645 0.80( 0.08) 0.10 3.6 150.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 171.54 8.32 4.089 0.80( 0.08) 0.10 42.1 115.00 2 200.66 12.29 3.237 0.80( 0.08) 0.10 65.6 130.00 3 202.55 12.83 3.154 0.80( 0.08) 0.10 68.0 140.00 4 202.86 13.55 3.052 0.80( 0.08) 0.10 70.5 110.00 5 202.47 14.20 2.968 0.80( 0.08) 0.10 72.8 120.00 6 188.97 22.74 2.237 0.80( 0.08) 0.10 92.4 100.00 7 185.50 10.08 3.645 0.80( 0.08) 0.10 52.9 150.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 202.86 Tc(MIN.) = 13.55 EFFECTIVE AREA(ACRES) = 70.55 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA - AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 92.45 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 153.00 = 4597.00 FEET. FLOW PROCESS FROM NODE 153.00 TO NODE 162.00 IS CODE = 31 y - '' ----------------------------------------------------------------------- » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< i " ELEVATION DATA: UPSTREAM(FEET) = 901.38 DOWNSTREAM(FEET) 900.26 FLOW LENGTH(FEET) = 352.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 69.0 INCH PIPE IS 55.1 INCHES i y PIPE -FLOW VELOCITY(FEET /SEC.) = 9.12 ESTIMATED PIPE DIAMETER(INCH) = 69.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 202.86 PIPE TRAVEL TIME(MIN.) = 0.64 Tc(MIN.) = 14.19 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 162.00 = 4949.00 FEET. FLOW PROCESS FROM NODE 162.00 TO NODE 162.00 IS CODE = 1 ---------------------------------------------------------------------------- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.19 RAINFALL INTENSITY(INCH /HR) = 2.97 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 70.55 TOTAL STREAM AREA(ACRES) = 92.45 PEAK FLOW RATE(CFS) AT CONFLUENCE = 202.86 FLOW PROCESS FROM NODE . 160.00 TO NODE 161.00 IS CODE = 21 ---------------------------------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 420.00 ELEVATION DATA: UPSTREAM(FEET) = 912.71 DOWNSTREAM(FEET) = 908.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.360 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.078 !( SUBAREA Tc AND LOSS RATE DATA(AMCIII): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 1.45 0.80 0.10 52 6.36 .�, SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 5.22 TOTAL AREA(ACRES) = 1.45 PEAK FLOW RATE(CFS) = 5.22 IYII xxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxx xxx xxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx FLOW PROCESS FROM NODE 161.00 TO NODE 162.00 IS CODE = 31 ■+ ---------------------------------------------------------------------------- » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 903.50 DOWNSTREAM(FEET) = 902.01 rr FLOW LENGTH(FEET) = 25.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.6 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 11.17 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 5.22 PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 8.40 LONGEST FLOWPATH FROM NODE 160.00 TO NODE 162.00 = 445.00 FEET. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx +: *xxxxxxxxxxxxxxxx r - ------------------- --------------------------------------------------------- FLOW PROCESS FROM NODE 162.00 TO NODE 162.00 IS CODE _ l » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES ««< _______________________________ _________________°_°_________ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.40 RAINFALL INTENSITY(INCH /HR) = 4.07 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 1.45 TOTAL STREAM AREA(ACRES) = 1.45 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.22 ** CONFLUENCE DATA ** !A STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CPS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 171.54 8.99 3.905 0.80( 0.08) 0.10 42.1 115.00 1 200.66 12.93 3.139 0.80( 0.08) 0.10 65.6 130.00 1 202.55 13.47 3.063 0.80( 0.08) 0.10 68.0 140.00 1 202.86 14.19 2.969 0.80( 0.08) 0.10 70.5 110.00 1 202.47 14.84 2.890 0.80( 0.08) 0.10 72.8 120.00 . 1 188.97 23.39 2.200 0.80( 0.08) 0.10 92.4 100.00 1 185.50 10.73 3.511 0.80( 0.08) 0.10 52.9 150.00 2 5.22 8.40 4.067 0.80( 0.08) 0.10 1.5 160.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 176.54 8.99 3.905 0.80( 0.08) 0.10 43.6 115.00 2 189.99 10.73 3.511 0.80( 0.08) 0.10 54.3 150.00 3 204.66 12.93 3.139 0.80( 0.08) 0.10 67.0 130.00 4 206.45 13.47 3.063 0.80( 0.08) 0.10 69.5 140.00 5 206.64 14.19 2.969 0.80( 0.08) 0.10 72.0 110.00 6 206.15 14.84 2.890 0.80( 0.08) 0.10 74.2 120.00 7 191.74 23.39 2.200 0.80( 0.08) 0.10 93.9 100.00 8 172.30 8.40 4.067 0.80( 0.08) 0.10 40.8 160.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 206.64 Tc(MIN.) = 14.19 EFFECTIVE AREA(ACRES) = 72.00 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) - 0.80 AREA - AVERAGED Ap = 0.10 6 TOTAL AREA(ACRES) = 93.90 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 162.00 = 4949.00 FEET. m FLOW PROCESS FROM NODE 162.00 TO NODE 214.00 IS CODE = 31 ---------------------------------------------------------------------------- !"' »» >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««< >>>> >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< - - -------- - - - - -- •�, ELEVATION DATA: UPSTREAM(FEET) = 900.26 DOWNSTREAM(FEET) = 899.33 FLOW LENGTH(FEET) = .295.00 MANNING'S N = 0.013 we DEPTH OF FLOW IN 69.0 INCH PIPE IS 56.5 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 9.08 ESTIMATED PIPE DIAMETER(INCH) = 69.00 NUMBER OF PIPES = 1 r PIPE- FLOW(CFS) = 206.64 PIPE TRAVEL TIME(MIN.) = 0.54 Tc(MIN.) = 14.73 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 214.00 =. 5244.00 FEET. FLOW PROCESS FROM NODE 214.00 TO NODE 214.00 IS CODE = 10 go ---- ------------------------------------------------------------------------ »» >MAIN- STREAM MEMORY COPIED ONTO MEMORY BANK # 1 « «< FLOW PROCESS FROM NODE 170.00 TO NODE 171.00 IS CODE = 21 ---------------------------------------------------------------------------- SA » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW- LENGTH(FEET) = 380.00 ELEVATION DATA: UPSTREAM(FEET) = 914.53 DOWNSTREAM(FEET) = 908.59 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 - SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.516 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.347 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 3.90 0.80 0.10 52 7.52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 14.98 TOTAL AREA(ACRES) = 3.90 PEAK FLOW RATE(CFS) = 14.98 FLOW PROCESS FROM NODE 182.00 TO NODE 182.00 IS CODE = 1 -------- ----------- ------ - - - --- !!!� »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 8.41 Yr RAINFALL INTENSITY(INCH /HR) = 4.06 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA- AVERAGED Fp(INCH /HR) = 0.80 r AREA- AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) _ 3.90 *, TOTAL STREAM AREA(ACRES) = 3.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 14.98 r ++++++++++++++++++++*++++++++++++++++++++++** * + + + + + + + + + + + + + + + + + + * + + + + + + + + + ++ FLOW PROCESS FROM NODE 180.00 TO NODE 181.00 IS CODE = 21 ----------------------- ----------------------------------------------------- rW »» >RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< 110 INITIAL SUBAREA FLOW- LENGTH(FEET) = 220.00 ELEVATION DATA: UPSTREAM(FEET) = 912.58 DOWNSTREAM(FEET) = 907.72 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20. SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) - 5.636 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.167 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 3.05 0.80 0.10 52 5.64 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 13.96 TOTAL AREA(ACRES) = 3.05 PEAK FLOW RATE(CFS) = 13.96 FLOW PROCESS FROM NODE 181.00 TO NODE 182.00 IS CODE = 31 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< FLOW PROCESS FROM NODE 171.00 TO NODE 182.00 IS CODE = 31 ---------------------------------------------------------------------------- » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««< A!! » »>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 904.09 DOWNSTREAM(FEET) = 902.72 �w FLOW LENGTH(FEET) = 300.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.2 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 5.61 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 14.98 w PIPE TRAVEL TIME(MIN.) = 0.89 Tc(MIN.) = 8.41 LONGEST FLOWPATH FROM NODE 170.00 TO NODE 182.00 = 680.00 FEET. FLOW PROCESS FROM NODE 182.00 TO NODE 182.00 IS CODE = 1 -------- ----------- ------ - - - --- !!!� »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 8.41 Yr RAINFALL INTENSITY(INCH /HR) = 4.06 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA- AVERAGED Fp(INCH /HR) = 0.80 r AREA- AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) _ 3.90 *, TOTAL STREAM AREA(ACRES) = 3.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 14.98 r ++++++++++++++++++++*++++++++++++++++++++++** * + + + + + + + + + + + + + + + + + + * + + + + + + + + + ++ FLOW PROCESS FROM NODE 180.00 TO NODE 181.00 IS CODE = 21 ----------------------- ----------------------------------------------------- rW »» >RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< 110 INITIAL SUBAREA FLOW- LENGTH(FEET) = 220.00 ELEVATION DATA: UPSTREAM(FEET) = 912.58 DOWNSTREAM(FEET) = 907.72 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20. SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) - 5.636 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.167 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 3.05 0.80 0.10 52 5.64 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 13.96 TOTAL AREA(ACRES) = 3.05 PEAK FLOW RATE(CFS) = 13.96 FLOW PROCESS FROM NODE 181.00 TO NODE 182.00 IS CODE = 31 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< O. r 8 ELEVATION DATA: UPSTREAM(FEET) = 903.47 DOWNSTREAM(FEET) = 902.93 ■ FLOW LENGTH(FEET) = 84.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 16.1 INCHES 'PIPE -FLOW VELOCITY(FEET /SEC.) = 6.24 yy ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 13.96 PIPE TRAVELTIME(MIN.) = 0.22 Tc(MIN.) = 5.86 LONGEST FLOWPATH FROM NODE 180.00 TO NODE 182.00 = 304.00 FEET. YII *` FLOW PROCESS FROM NODE 182.00 TO NODE 182.00 IS CODE = 1 ir ----------------------------------------------------------------t----------- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< ---------------------------------------- - - - --- -- --- --- wo TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.86 RAINFALL INTENSITY(INCH /HR) = 5.05 �r AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 r EFFECTIVE STREAM AREA(ACRES) = 3.05 TOTAL STREAM AREA(ACRES) = 3.05 °^ PEAK FLOW RATE(CFS) AT CONFLUENCE = 13.96 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE r 1 14.98 8.41 4.064 0.80( 0.08) 0.10 3.9 170.00 2 13.96 5.86 5.047 0.80( 0.08) 0.10 3.0 180.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. • ** PEAK FLOW RATE TABLE ** 1 STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE w� 1 26.18 8.41 4.064 0.80( 0.08) 0.10 6.9 170.00 2 26.98 5.86 5.047 0.80( 0.08) 0.10 5.8 180.00 r COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: qm PEAK FLOW RATE(CFS) = 26.98 Tc(MIN.) = 5.86 EFFECTIVE AREA(ACRES) = 5.77 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA - AVERAGED Ap = 0.10 TOTAL AREA(ACRES) .= 6.95 LONGEST FLOWPATH FROM NODE 170.00 TO NODE 182.00 = 680.00 FEET. -- FLOW - PROCESS FROM NODE 182.00 TO NODE 192.00 IS CODE = 31 » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< - - » »> USING - COMPUTER-ESTIMATED - PIPESIZE - (NON- PRESSURE FLOW)<<< << -- - - - - -- ELEVATION DATA: UPSTREAM(FEET) = 902.67 DOWNSTREAM(FEET) = 901.20 FLOW LENGTH(FEET) = 327.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 21.9 INCHES lb PIPE -FLOW VELOCITY(FEET /SEC.) = 6.44 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 26.98 M PIPE TRAVEL TIME(MIN.) = 0.85 Tc(MIN.) = 6.71 iw LONGEST FLOWPATH FROM NODE 170.00 TO NODE 192.00 = 1007.00 FEET. FLOW PROCESS FROM NODE 192.00 TO NODE 192.00 IS CODE = 1 »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< --------------------- - - - - - -- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 6.71 RAINFALL INTENSITY(INCH /HR) = 4.65 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 5.77 TOTAL STREAM AREA(ACRES) = 6.95 PEAK FLOW RATE(CFS) AT CONFLUENCE = 26.98 *****************************************#### * * * * # # * * * # * * * * * * * * * * # # # # # # # * * ## FLOW PROCESS FROM NODE 190.00 TO NODE 191.00 IS CODE = 21 ---------------------------------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = = 270.00 = ELEVATION DATA: UPSTREAM(FEET) = 911.33 DOWNSTREAM(FEET) 907.33 Tc = K *((LENGTH ** 3.00) /(ELEVATION CHANGE))* *0.20 do SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.626 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.688 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 3.10 0.80 0.10 52 6.63 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 12.86 TOTAL AREA(ACRES) = 3.10 PEAK FLOW RATE(CFS) = 12.86 FLOW PROCESS FROM NODE 191.00 TO NODE 192.00 IS CODE = 31 ." ---------------------------------------------------------------------------- » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< ELEVATION DATA UPSTREAM(FEET) = 902.83 DOWNSTREAM(FEET) = 901.67 W FLOW LENGTH(FEET) = 60.00 MANNING'S N - 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.4 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 9.12 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 12.86 PIPE TRAVEL TIME(MIN.) = 0.11 Tc(MIN.) = 6.74 LONGEST FLOWPATH FROM NODE 190.00 TO NODE 192.00 = 330.00 FEET. r� - - FLOW PROCESS FROM NODE 192.00 TO NODE 192.00 IS CODE = 1 ----------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »» >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES ««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6.74 po RAINFALL INTENSITY(INCH /HR) = 4.64 (y AREA - AVERAGED FM(IITCH /HR) = 0.08 AREA- AVERAGED Fp(INCH /HR) = 0.80 ,.. AREA - AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 3.10 r " TOTAL STREAM AREA(ACRES) = 3.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 12.86 w y ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER .. NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 26.18 9.28 3.830 0.80( 0.08) 0.10 6.9 170.00 r " 1 26.98 6.71 4.654 0.80( 0.08) 0.10 5.8 180.00 2 12.86 6.74 4.643 0.80( 0.08) 0.10 3.1 190.00 w, RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 39.82 6.71 4.654 0.80( 0.08) 0.10 8.9 180.00 rr 2 36.75 9.28 3.830 0.80( 0.08) 0.10 10.0 170.00 3 39.83 6.74 4.643 0.80( 0.08) 0.10 8.9 190.00 ww COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: r PEAK FLOW RATE(CFS) = 39.83 Tc(MIN.) = 6.74 EFFECTIVE AREA(ACRES) = 8.88 AREA - AVERAGED Fm(INCH /HR) = 0.08 ° AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA - AVERAGED Ap = 0.10 r TOTAL AREA(ACRES) = 10.05 LONGEST FLOWPATH FROM NODE 170.00 TO NODE 192.00 = 1007.00 FEET. *********##***####****************#***####*** # * * * # # * * * * # # # # # # # * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 192.00 TO NODE 193.00 IS CODE = 31 ---------------------------------------------------------------------------- » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< °--------------------------------------------°__°------------- ELEVATION DATA: UPSTREAM(FEET) - 901.15 DOWNSTREAM(FEET) = 900.60 FLOW LENGTH(FEET) = 185.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 39.0 INCH PIPE IS 29.1 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 5.99 ESTIMATED PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 39.83 PIPE TRAVEL TIME(MIN.) = 0.51 Tc(MIN.) = 7.25 LONGEST FLOWPATH FROM NODE 170.00 TO NODE 193.00 = 1192.00 FEET. e r ILJ ******************************************* k* * * * * * * * # * * * * * * * **# * * * * * * * * * * * ** FLOW PROCESS FROM NODE 192.00 TO NODE 193.00 IS CODE = 81 ---------------------------------------------------------------------------- - - » »> ADDITION - OF - SUBAREA = TO - MAINLINE PEAK FLOW««< ----------------- - - - - -- MAINLINE Tc(MIN) = 7.25 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.442 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.70 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 0.70 SUBAREA RUNOFF(CFS) = 2.75 EFFECTIVE AREA(ACRES) = 9.58 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA - AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 10.75 PEAK FLOW RATE(CFS) = 39.83 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE * * * * * * * * * * * * +a * # + + * * * + * * * * * * * *# aaa * * * + * * * * + + * + * * * * *+ *aaaaaaaaaaaaaaaaa * * * * ** FLOW PROCESS FROM NODE 193.00 TO NODE 202.00 IS CODE = 31 --------------------------------------------------------------- » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««< »»>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< ____________________________________________ Yti ELEVATION DATA: UPSTREAM(FEET) = 900.60 DOWNSTREAM(FEET) = 900.08 FLOW LENGTH(FEET) = 170.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 39.0 INCH PIPE IS 28.8 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 6.07 ESTIMATED PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 39.83 4iF PIPE TRAVEL TIME(MIN.) = 0.47 Tc(MIN.) = 7.72 LONGEST FLOWPATH FROM NODE 170.00 TO NODE 202.00 = 1362.00 FEET. FLOW PROCESS FROM NODE 202.00 TO NODE 202.00 IS CODE = 1 ---------------------------------------------------------------------------- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< ==°-======================================================------=----------- two TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.72 RAINFALL INTENSITY(INCH /HR) = 4.28 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA - AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 9.58 TOTAL STREAM AREA(ACRES) = 10.75 PEAK FLOW RATE(CFS) AT CONFLUENCE = 39.83 FLOW PROCESS FROM NODE 200.00 TO NODE 201.00 IS CODE = 21 ---------------------------------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 230. 00_____ _________________________ m ** CONFLUENCE DATA ** A 1p STREAM Q Tc ELEVATION DATA: UPSTREAM(FEET) = 909.35 DOWNSTREAM(FEET) = 907.34 WY Ae HEADWATER Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 (CFS) (MIN.) �}( SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.907 (ACRES) NODE * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.573 1 39.82 7.69 SUBAREA Tc AND LOSS RATE DATA(AMC III): 0.80( 0.08) 0.10 DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) 3.603 COMMERCIAL A 0.55 0.80 0.10 52 6.91 10.7 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 1 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 4.279 0.80( 0.08) SUBAREA RUNOFF(CFS) = 2.22 a 190.00 TOTAL AREA(ACRES) = 0.55 PEAK FLOW RATE(CFS) = 2.22 2 FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 31 ---------------------------------------------------------------------------- e+ » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< -- » » >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< ---- ------ - - - - -- - - - -- --------- - - - - -- - - - - -- ELEVATION DATA: UPSTREAM(FEET) = 903.51 DOWNSTREAM(FEET) = 900.85 FLOW LENGTH(FEET) = 55.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.8 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 8.12 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 2.22 PIPE TRAVEL TIME(MIN.) = 0.11 Tc(MIN.) = 7.02 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 202.00 = 285.00 FEET. FLOW PROCESS FROM NODE 202.00 TO NODE 202.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 7.02 RAINFALL INTENSITY(INCH /HR) = 4.53 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA - AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 0.55 TOTAL STREAM AREA(ACRES) = 0.55 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.22 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 39.82 7.69 4.288 0.80( 0.08) 0.10 9.6 180.00 1 36.75 10.28 3.603 0.80( 0.08) 0.10 10.7 170.00 1 39.83 7.72 4.279 0.80( 0.08) 0.10 916 190.00 2 2.22 7.02 4.529 0.80( 0.08) 0.10 0.6 200.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx *xxxxx FLOW PROCESS FROM NODE 202.00 TO NODE 213.00 IS CODE = 31 »» >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 900.03 DOWNSTREAM(FEET) = 899.55 FLOW LENGTH(FEET) = 160.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 39.0 INCH PIPE IS 30.4 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 6.05 ESTIMATED PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 41.93 PIPE TRAVEL TIME(MIN.) = 0.44 Tc(MIN.) = 8.16 LONGEST FLOWPATH FROM NODE 170.00 TO NODE 213.00 = 1522.00 FEET. •** x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx *xxxxxxx *xxxxxxxx :xxxx FLOW PROCESS FROM NODE 213.00 TO NODE 213.00 IS CODE = 1 ---------------------------------------------------------------------------- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 8.16 RAINFALL INTENSITY(INCH /HR) = 4.14 AREA - AVERAGED Fm(INCH /HR) = 0.08 ^^ AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA - AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 10.13 TOTAL STREAM AREA(ACRES) = 11.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 41.93 xxxxxxxxxxxx + * +xxxxxxxxx *xxxxxxxxxxxx xxxxxxxxx * *xxxxxxxxxxxxx * * * +xxxxxxxxxxx FLOW PROCESS FROM NODE 210.00 TO NODE 211.00 IS CODE = 21 ------- ----- ----- ---------- -- » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< - ->>USE - TIME -OF- CONCENTRATION- NOMOGRAPH - FOR - INITIAL - SUBAREA« - - - - -- INITIAL SUBAREA FLOW- LENGTH(FEET) = 360.00 ELEVATION DATA: UPSTREAM(FEET) = 915.24 DOWNSTREAM(FEET) = 910.14 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE))* *0.20 ** PEAK FLOW RATE TABLE ** STREAM 4 Tc Intensity FP(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 41.92 7.69 4.288 0.80( 0.08) 0.10 10.1 180.00 2 41.93 7.72 4.279 0.80( 0.08) 0.10 10.1 190.00 3 38.51 10.28 3.603 0.80( 0.08) 0.10 11.3 170.00 4 40.66 7.02 4.529 0.80( 0.08) 0.10 9.3 200.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 41.93 TC(MIN.) = 7 0.08` EFFECTIVE AREA(ACRES) = 10.13 AREA - AVERAGED Fm(INCH /HR) = AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA - AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 11.30 LONGEST FLOWPATH FROM NODE 170.00 TO NODE 202.00 = 1362.00 FEET. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx *xxxxx FLOW PROCESS FROM NODE 202.00 TO NODE 213.00 IS CODE = 31 »» >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 900.03 DOWNSTREAM(FEET) = 899.55 FLOW LENGTH(FEET) = 160.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 39.0 INCH PIPE IS 30.4 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 6.05 ESTIMATED PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 41.93 PIPE TRAVEL TIME(MIN.) = 0.44 Tc(MIN.) = 8.16 LONGEST FLOWPATH FROM NODE 170.00 TO NODE 213.00 = 1522.00 FEET. •** x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx *xxxxxxx *xxxxxxxx :xxxx FLOW PROCESS FROM NODE 213.00 TO NODE 213.00 IS CODE = 1 ---------------------------------------------------------------------------- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 8.16 RAINFALL INTENSITY(INCH /HR) = 4.14 AREA - AVERAGED Fm(INCH /HR) = 0.08 ^^ AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA - AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 10.13 TOTAL STREAM AREA(ACRES) = 11.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 41.93 xxxxxxxxxxxx + * +xxxxxxxxx *xxxxxxxxxxxx xxxxxxxxx * *xxxxxxxxxxxxx * * * +xxxxxxxxxxx FLOW PROCESS FROM NODE 210.00 TO NODE 211.00 IS CODE = 21 ------- ----- ----- ---------- -- » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< - ->>USE - TIME -OF- CONCENTRATION- NOMOGRAPH - FOR - INITIAL - SUBAREA« - - - - -- INITIAL SUBAREA FLOW- LENGTH(FEET) = 360.00 ELEVATION DATA: UPSTREAM(FEET) = 915.24 DOWNSTREAM(FEET) = 910.14 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE))* *0.20 p on iw e. it SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.501 FLOW PROCESS FROM NODE 212.00 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.352 ------------------------------------ SUBAREA Tc AND LOSS RATE DATA(AMC III): TIME THRU SUBAREA««< DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 2.15 0.80 0.10 52 7.50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 = 18 NUMBER OF PIPES = 1 SUBAREA RUNOFF(CFS) = 8.27 TOTAL AREA(ACRES) = 2.15 PEAK FLOW RATE(CFS) = 8.27 s FLOW PROCESS FROM NODE 211.00 TO NODE 212.00 IS CODE = 9 -------------------------------------------------------------------------- » »>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA««< UPSTREAM NODE ELEVATION(FEET) = 910.14 DOWNSTREAM NODE ELEVATION(FEET) = 908.51 CHANNEL LENGTH THRU SUBAREA(FEET) = 200.00 "V" GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET) - 0.170 PAVEMENT LIP(FEET) = 0.030 MANNING'S N = .0150 PAVEMENT CROSSFALL(DECIMAL NOTATION) = 0.01500 MAXIMUM DEPTH(FEET) = 3.00 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.968 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 3.05 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) _ 13.60 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/ SEC.) = 2.67 AVERAGE FLOW DEPTH(FEET) = 0.45 FLOOD WIDTH(FEET) = 35.72 "V" GUTTER FLOW TRAVEL TIME(MIN.) = 1.25 Tc(MIN.) = 8.75 SUBAREA AREA(ACRES) = 3.05 SUBAREA RUNOFF(CFS) = 10.67 EFFECTIVE AREA(ACRES) = 5.20 AREA- AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA - AVERAGED Ap - 0.10 TOTAL AREA(ACRES) = 5.20 PEAK FLOW RATE(CFS) = 18.20 END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = 0.48 FLOOD WIDTH(FEET) = 40.28 FLOW VELOCITY(FEET /SEC.) 2.85 DEPTH *VELOCITY(FT *FT /SEC) = 1.36 LONGEST FLOWPATH FROM NODE 210.00 TO NODE 212.00 = 560.00 FEET. FLOW PROCESS FROM NODE 212.00 TO NODE 213.00 IS CODE = 31 ------------------------------------ ---------------------------------------- »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< USING COMPUTER-ESTIMATED PIPESIZE PRESSURE - FLOW) < < < << -- - - - - -- - - »»> - - ELEVATION DATA: UPSTREAM(FEET) -(NON- = 903.59 DOWNSTREAM(FEET) = 900.27 FLOW LENGTH(FEET) = 18.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.1 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 23.70 ESTIMATED PIPE DIAMETER(INCH) = 18 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 18.'20 m im - PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 8.76 LONGEST FLOWPATH FROM NODE 210.00 TO NODE 213.00 = 578.00 FEET. iw FLOW PROCESS FROM NODE 213.00 TO NODE 213.00 IS CODE = 1 ---------------------------------------------------------------------------- Mw »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< Al »» >AND COMPUTE VARIOUS CONFLUENCED STREAMVALUES««< TOTAL NUMBER OF STREAMS = 2 .CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: W TIME OF CONCENTRATION(MIN') = 8.76 RAINFALL INTENSITY(INCH /HR) = 3.96 AREA- AVERAGED Fm(INCH /HR) = 0.08 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 5.20 ..i TOTAL STREAM AREA(ACRES) = 5.20 r PEAK FLOW RATE(CFS) AT CONFLUENCE = 18.20 �+ ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 41.92 8.13 4.147 0.80( 0.08) 0.10 10.1 180.00 1 41.93 8.16 4.138 0.80( 0.08) 0.10 10.1 190.00 r. 1 38.51 10.72 3.513 0.80( 0.08) 0.10 11.3 170.00 1 40.66 7.46 4.366 0.80( 0.08) 0.10 9.3 200.00 *� 2 18.20 8.76 3.965 0.80( 0.08) 0.10 5.2 210.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ow ry ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER +. NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 57.75 7.46 4.366 0.80( 0.08) 0.10 13.7 200.00 2 59.60 8.13 4.147 0.80( 0.08) 0.10 14.9 180.00 3 59.63 8.16 4.138 0.80( 0.08) 0.10 15.0 190.00 4 54.59 10.72 3.513 0.80( 0.08) 0.10 16.5 170.00 r 5 59.32 8.76 3.965 0.80( 0.08) 0.10 15.6 210.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 59.63 Tc(MIN.) = 8.16 di EFFECTIVE AREA(ACRES) = 14.97 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA - AVERAGED Ap = 0.10 TOTAL AREA(ACRES) - 16.50 LONGEST FLOWPATH FROM NODE 170.00 TO NODE 213.00 = 1522.00 FEET. FLOW PROCESS FROM NODE 213.00 TO NODE 214.00 IS CODE = 31 »»> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««< -- » » >USING COMPUTER-ESTIMATED - PIPESIZE - (NON- PRESSURE FLOW)<< < << -- - - - - -- ELEVATION DATA: UPSTREAM(FEET) = 899.55 DOWNSTREAM(FEET) = 899.33 FLOW LENGTH(FEET) = 75.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 45.0 INCH PIPE IS 34.5 INCHES a PR PIPE -FLOW VELOCITY(FEET /SEC.) = 6.57 ESTIMATED PIPE DIAMETER(INCH) = 45.00 NUMBER OF PIPES = 1 [A PIPE- FLOW(CFS) = 59.63 PIPE TRAVEL TIME(MIN.) = 0.19 Tc(MIN.) = 8.35 LONGEST FLOWPATH FROM NODE 170.00 TO NODE 214.00 = 1597.00 FEET. FLOW PROCESS FROM NODE 214.00 TO NODE 214.00 IS CODE = 11 ---------------------------------------------------------------------------- - - »»> CONFLUENCE MEMORY BANK - # - 1 - WITH - THE - MAIN - STREAM MEMORY««< - - - - -- a ** MAIN STREAM CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 57.75 7.65 4.300 0.80( 0.08) 0.10 13.7 200.00 2 59.60 8.32 4.090 0.80( 0.08) 0.10 14.9 180.00 3 59.63 8.35 4.082 0.80( 0.08) 0.10 15.0 190.00 4 59.32 8.95 3.914 0.80( 0.08) 0.10 15.6 210.00 5 54.59 10.91 3.475 0.80( 0.08) 0.10 16.5 170.00 LONGEST FLOWPATH FROM NODE 170.00 TO NODE 214.00 = 1597.00 FEET. u ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) 1 219.84 7.65 4.300 0.80( 0.08) 0.10 48.6 2 227.04 8.32 4.090 0.80( 0.08) 0.10 52.9 3 227.29 8.35 4.082 0.80( 0.08) 0.10 53.0 4 231.59 8.95 3.914 0.80( 0.08) 0.10 56.4 5 241.79 .10.91 3.475 0.80( 0.08) 0.10 68.6 6 231.61 8.96 3.913 0.80( 0.08) 0.10 56.4 7 234.44 9.55 3.766 0.80( 0.08) 0.10 59.5 8 243.51 11.27 3.409 0.80( 0.08) 0.10 70.8 9 252.62 13.47 3.063 0.80( 0.08) 0.10 83.5 10 253.26 14.01 2.991 0.80( 0.08) 0.10 86.0 11" 252.02 14.73 2.903 0.80( 0.08) 0.10 88.5 12 250.34 15.39 2.828 0.80( 0.08) 0.10 90.7 13 225.34 23.93 2.170 0.80( 0.08) 0.10 110.4 TOTAL AREA(ACRES) = 110.40 HEADWATER NODE 160.00 115.00 150.00 130.00 140.00 110.00 120.00 100.00 0.00 FEET. HEADWATER NODE 200.00 180.00 190.00 210.00 170.00 160.00 115.00 150.00 130.00 140.00 110.00 120.00 100.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 253.26 Tc(MIN.) = 14.014 EFFECTIVE AREA(ACRES) = 86.00 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA - AVERAGED Ap = 0.10 C ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) 1 172.30 8.96 3.913 0.80( 0.08) 0.10 40.8 2 176.54 9.55 3.766 0.80( 0.08) 0.10 43.6 3 189.99 11.27 3.409 0.80( 0.08) 0.10 54.3 4 204.66 13.47 3.063 0.80( 0.08) 0.10 67.0 5 206.45 14.01 2.991 0.80( 0.08) 0.10 69.5 6 206.64 14.73 2.903 0.80( 0.08) 0.10 72.0 7 206.15 15.39 2.828 0.80( 0.08) 0.10 74.2 8 191.74 23.93 2.170 0.80( 0.08) 0.10 93.9 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 214.00 = u ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) 1 219.84 7.65 4.300 0.80( 0.08) 0.10 48.6 2 227.04 8.32 4.090 0.80( 0.08) 0.10 52.9 3 227.29 8.35 4.082 0.80( 0.08) 0.10 53.0 4 231.59 8.95 3.914 0.80( 0.08) 0.10 56.4 5 241.79 .10.91 3.475 0.80( 0.08) 0.10 68.6 6 231.61 8.96 3.913 0.80( 0.08) 0.10 56.4 7 234.44 9.55 3.766 0.80( 0.08) 0.10 59.5 8 243.51 11.27 3.409 0.80( 0.08) 0.10 70.8 9 252.62 13.47 3.063 0.80( 0.08) 0.10 83.5 10 253.26 14.01 2.991 0.80( 0.08) 0.10 86.0 11" 252.02 14.73 2.903 0.80( 0.08) 0.10 88.5 12 250.34 15.39 2.828 0.80( 0.08) 0.10 90.7 13 225.34 23.93 2.170 0.80( 0.08) 0.10 110.4 TOTAL AREA(ACRES) = 110.40 HEADWATER NODE 160.00 115.00 150.00 130.00 140.00 110.00 120.00 100.00 0.00 FEET. HEADWATER NODE 200.00 180.00 190.00 210.00 170.00 160.00 115.00 150.00 130.00 140.00 110.00 120.00 100.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 253.26 Tc(MIN.) = 14.014 EFFECTIVE AREA(ACRES) = 86.00 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA - AVERAGED Ap = 0.10 C TOTAL AREA(ACRES) = 110.40 LONGEST FLOWPATH FROM NODE 170.00 TO NODE 214.00 = 1597.00 FEET. + xx xx x+ x+ x+xx++++ x+x xxxxxxxx xxx+++ x++++xxx xx + + + + + + + + + + + +xxxxxxxxxxxxxxxxx FLOW PROCESS FROM NODE 214.00 TO NODE 214.00 IS CODE = 12 ---------------------------------------------------------------------------- »» >CLEAR MEMORY BANK # 1 « «< ++++++++++++ x+++ xxxxxxx+ kx+ xxxxxx+ x+ xx+ xxx++ xxxx + + + + + + + + + + + + +xxxxxxxxxxx +xxx FLOW PROCESS FROM NODE 214.00 TO NODE 233.00 IS CODE = 31 ---------------------------------------------------------------------------- » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< »» >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 899.33 DOWNSTREAM(FEET) = 897.88 FLOW LENGTH(FEET) = 450.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 75.0 INCH PIPE IS 59.5 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 9.70 ESTIMATED PIPE DIAMETER(INCH) = 75.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 253.26 PIPE TRAVEL TIME(MIN.) = 0.77 Tc(MIN.) = 14.79 LONGEST FLOWPATH FROM NODE 170.00 TO NODE 233.00 = 2047.00 FEET. +++++++++++ xxxxxxxxx xxxxxxxxxx++ x+ x++ xx+ x+ xxx + + + + + + + + + + + + + + + * * + * +xx + +xxxx FLOW PROCESS FROM NODE 233.00 TO NODE 233.00 IS CODE = 10 ---------------------------------------------------------------------------- »» >MAIN- STREAM MEMORY COPIED ONTO MEMORY BANK # 1 « «< ++++ x+ xxxxxxxxxxxxx+ xx++++++++++ xxxxxxxxxx++ xx +axxxxx + + + + + + + * * + * + + + + + + + * + + *+ FLOW PROCESS FROM NODE 220.00 TO NODE 221.00 IS CODE = 21 ---------------------------------------------------------------------------- »» >RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< - - >>USE - TIME -OF- CONCENTRATION - NOMOGRAPH - FOR - INITIAL - SUBAREA «--------- - - - - -- INITIAL SUBAREA FLOW- LENGTH(FEET) = 360.00 ELEVATION DATA: UPSTREAM(FEET) = 915.35 DOWNSTREAM(FEET) = 911.18 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.810 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.248 SUBAREA Tc AND LOSS RATE DATA(AMC III): V DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) R" COMMERCIAL A 1.90 0.80 0.10 52 7.81 jo SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 7.13 TOTAL AREA(ACRES) = 1.90 PEAK FLOW RATE(CFS) = 7.13 it xx++ xxxxxsxxxx+ xx+ x+ xxx+++++ xxxx+++++++++ xxxxxxxxxxx + + +x + +xx + + + + + + +x + + + + +xx A� FLOW PROCESS FROM NODE. 221.00 TO NODE 222.00 IS CODE = 9 ---------------------------------------------------------------------------- » » >COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA « «< UPSTREAM NODE ELEVATION(FEET) 911.18 W p DOWNSTREAM NODE ELEVATION(FEET) = 910.45 CHANNEL LENGTH THRU SUBAREA(FEET) = 150.00 "V" GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET) = 0.170 PAVEMENT LIP(FEET) = 0.030 MANNING'S N = .0150 PAVEMENT CROSSFALL(DECIMAL NOTATION) = 0.03000 MAXIMUM DEPTH(FEET) = 3.00 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.949 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) .(INCH /HR) (DECIMAL) CN COMMERCIAL A 1.80 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 10.27 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 2.47 AVERAGE FLOW DEPTH(FEET) = 0.50 FLOOD WIDTH(FEET) = 22.73 "V" GUTTER FLOW TRAVEL TIME(MIN.) = 1.01 Tc(MIN.) = 8.82 SUBAREA AREA(ACRES) = 1.80 SUBAREA RUNOFF(CFS) = 6.27 EFFECTIVE AREA(ACRES) = 3.70 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA - AVERAGED Ap = 0.10 P. TOTAL AREA(ACRES) = 3.70 PEAK FLOW RATE(CFS) = 12.89 END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = 0.53 FLOOD WIDTH(FEET) = 25.01 FLOW VELOCITY(FEET /SEC.) = 2.59 DEPTH *VELOCITY(FT *FT /SEC) = 1.37 LONGEST FLOWPATH FROM NODE 220.00 TO NODE 222.00 = 510.00 FEET. - - FLOW PROCESS FROM NODE 222.00 TO NODE 232.00 IS CODE = 31 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< - - » »> USING - COMPUTER-ESTIMATED - PIPESIZE - (NON- PRESSURE FLOW)< << << -- - - - - -- ELEVATION DATA: UPSTREAM(FEET) = 906.45 DOWNSTREAM(FEET) = 905.75 FLOW LENGTH(FEET) = 74.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 15.0 INCHES WiW PIPE -FLOW VELOCITY(FEET /SEC.) = 7.02 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 12.89 AIM PIPE TRAVEL TIME(MIN.) = 0.18 Tc(MIN.) = 9.00 LONGEST FLOWPATH FROM NODE 220.00 TO NODE 232.00 = 584.00 FEET. FLOW PROCESS FROM NODE 232.00 TO NODE 232.00 IS CODE = 1 ---------------------------------------------------------------------------- »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 9.00 RAINFALL INTENSITY(INCH /HR) = 3.90 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA - AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 3.70 TOTAL STREAM AREA(ACRES) = 3.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 12.89 R, W o FLOW PROCESS FROM NODE 230.00 TO NODE 231.00 IS CODE = 21 ------- ----- ----- ---------- ---- ---- ---------- ---- ---- ---------------- » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 165.00 ELEVATION DATA: UPSTREAM(FEET) = 915.24 DOWNSTREAM(FEET) = 912.41 Ap SCS Tc (DECIMAL) CN (MIN.) 0.10 52 5.28 0.80 TOTAL AREA(ACRES) = 0.60 PEAK FLOW RATE(CFS) _ 2.86 FLOW PROCESS FROM NODE 231.00 TO NODE 232.00 IS CODE = 31 ---------------------------------------------------------------------------- » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< -------------------------------------------°- ELEVATION DATA: UPSTREAM(FEET) = 912.90 DOWNSTREAM(FEET) = 905.75 FLOW LENGTH(FEET) 36.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.1 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) _ '14.38 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 2.86 PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 5.33 LONGEST FLOWPATH FROM NODE 230.00 TO NODE 232.00 = 201.00 FEET. FLOW PROCESS FROM NODE 232.00 TO NODE 232.00 IS CODE = 1 ---------------------------------------------------------------------------- »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< » »> AND - COMPUTE - VARIOUS - CONFLUENCED STREAM < < < < VALUES < - - --------------- - TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.33 RAINFALL INTENSITY(INCH /HR) = 5.35 AREA - AVERAGED Im INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 0.60 TOTAL STREAM AREA(ACRES) = 0.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.86 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.285 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.370 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH /HR) COMMERCIAL A 0.60 0.80 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 2.86 Ap SCS Tc (DECIMAL) CN (MIN.) 0.10 52 5.28 0.80 TOTAL AREA(ACRES) = 0.60 PEAK FLOW RATE(CFS) _ 2.86 FLOW PROCESS FROM NODE 231.00 TO NODE 232.00 IS CODE = 31 ---------------------------------------------------------------------------- » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< -------------------------------------------°- ELEVATION DATA: UPSTREAM(FEET) = 912.90 DOWNSTREAM(FEET) = 905.75 FLOW LENGTH(FEET) 36.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.1 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) _ '14.38 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 2.86 PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 5.33 LONGEST FLOWPATH FROM NODE 230.00 TO NODE 232.00 = 201.00 FEET. FLOW PROCESS FROM NODE 232.00 TO NODE 232.00 IS CODE = 1 ---------------------------------------------------------------------------- »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< » »> AND - COMPUTE - VARIOUS - CONFLUENCED STREAM < < < < VALUES < - - --------------- - TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.33 RAINFALL INTENSITY(INCH /HR) = 5.35 AREA - AVERAGED Im INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 0.60 TOTAL STREAM AREA(ACRES) = 0.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.86 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER w NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 12.89 9.00 3.903 0.80( 0.08) 0.10 3.7 220.00 en 2 2.86 5.33 5.345 0.80( 0.08) 0.10 0.6 230.00 r RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** W STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CPS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE �A! 1 14.96 9.00 3.903 0.80( 0.08) 0.10 4.3 220.00 do 2 13.36 5.33 5.345 0.80( 0.08) 0.10 2.8 230.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 14.96 Tc(MIN.) = 9.00 EFFECTIVE AREA(ACRES) = 4.30 AREA- AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA - AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 4.30 LONGEST FLOWPATH FROM NODE 220.00 TO NODE 232.00 = 584.00 FEET. llll OR FLOW PROCESS FROM NODE 232.00 TO NODE 233.00 IS CODE _ 31 W ------------------------------- ----- --------- ---------- - - - - -- ---- - --- »» >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< ww »»>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 905.67 DOWNSTREAM(FEET) = 900.38 FLOW LENGTH(FEET) = 170.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.5 INCHES r PIPE -FLOW VELOCITY(FEET /SEC.) = 11.42 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 14.96 PIPE TRAVEL TIME(MIN.) = 0.25 Tc(MIN.) = 9.24 rt LONGEST FLOWPATH FROM NODE 220.00 TO NODE 233.00 = 754.00 FEET. FLOW PROCESS FROM NODE 233.00 ------------------------------------------------------------ TO NODE 233.00 IS CODE ---------------- = ll » »> CONFLUENCE MEMORY BANK # 1 WITH THE MAIN- STREAM MEMORY««< do ** MAIN STREAM CONFLUENCE DATA ** on STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) .(MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 13.36 5.58 5.198 0.80( 0.08) 0.10 2.8 230.00 2 14.96 9.24 3.839 0.80( 0.08) 0.10 4.3 220.00 LONGEST FLOWPATH FROM NODE 220.00 TO NODE 233.00 = 754.00 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER ` NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 219.84 8.45 4.052 0.80( 0.08) 0.10 48.6 200.00 2 227.04 9.11 3.872 0.80( 0.08) 0.10 52.9 180.00 3 227.29 9.14 3.865 0.80( 0.08) 0.10 53.0 190.00 4 231.59 9.75 3.719 0.80( 0.08) 0.10 56.4 210.00 5 231.61 9.75 3.719 0.80( 0.08) 0.10 56.4 160.00 6 234.44 10.32 3.593 0.80( 0.08) 0.10 59.5 115.00 .. 7 241.79 11.69 3.335 0.80( 0.08) 0.10 68.6 170.00 " 8 243.51 12.05 3.275 0.80( 0.08) 0.10 70.8 150.00 9 252.62 14.25 2.962 0.80( 0.08) 0.10 83.5 130.00 10 253.26 14.79 2.896 0.80( 0.08) 0.10 86.0 140.00 r 11 252.02 15.51 2.815 0.80( 0.08) 0.10 88.5 110.00 12 250.34 16.16 2.746 0.80( 0.08) 0.10 90.7 120.00 13 225.34 24.73 2.128 0.80( 0.08) 0.10 110.4 100.00 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 233.00 = 0.00 FEET. r ** PEAK FLOW RATE TABLE ** �+ STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (C FS) (MIN.) (INCH /HR) (INCH /HR) a (ACRES) NODE r 1 200.41 5.58 5.198 0.80( 0.08) 0.10 34.9 230.00 2 242.98 9.24 3.839 0.80( 0.08) 0.10 57.9 220.00 3 234.46 8.45 4.052 0.80( 0.08) 0.10 52.6 200.00 r 4 241.94 9.11 3.872 0.80( 0.08) 0.10 57.1 180.00 5 242.21 9.14 3.865 0.80( 0.08) 0.10 57.3 190.00 ++ 6 246.08 9.75 3.719 0.80( 0.08) 0.10 60.7 210.00 7 246.09 9.75 3.719 0.80( 0.08) 0.10 60.7 160.00 8 248.42 10.32 3.593 0.80( 0.08) 0.10 63.8 115.00 9 254.74 11.69 3.335 0.80( 0.08) 0.10 72.9 170.00 .. 10 256.22 12.05 3.275 0.80( 0.08) 0.10 75.1 150.00 r 11 -- 264.09 14.25 2.962 0.80( 0.08) 0.10 87.8 130.00 12 264.47 14.79 2.896 0.80( 0.08) 0.10 90.3 140.00 .. 13 262.91 15.51 2.815 0.80( 0.08) 0.10 92.8 110.00 14 260.95 16.16 2.746 0.80( 0.08) 0.10 95.0 120.00 ' 15 233.49 24.73 2.128 0.80( 0.08) 0.10 114.7 100.00 TOTAL AREA(ACRES) = 114.70 r COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 264.47 Tc(MIN.) = 14.787 EFFECTIVE AREA(ACRES) = 90.30 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA - AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 114.70 LONGEST FLOWPATH FROM NODE 220.00 TO NODE 233.00 = 754.00 FEET. r FLOW PROCESS FROM NODE 233.00 TO NODE 233.00 IS CODE = 12 .w ---------------------------------------------------------------------------- » » >CLEAR MEMORY BANK # 1 « «< . r END OF STUDY SUMMARY: aw TOTAL AREA(ACRES) = 114.70 TC(MIN.) = 14.79 EFFECTIVE AREA(ACRES) = 90.30 AREA - AVERAGED Fm(INCH /HR)= 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA - AVERAGED Ap = 0.10 PEAK FLOW RATE(CFS) - 264.47 ** PEAK FLOW RATE TABLE ** STREAM Q . Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 200.41 5.58 5.198 0.80( 0.08) 0.10 34.9 230.00 2 234.46 8.45 4.052 0.80( 0.08) 0.10 52.6 200.00 3 241.94 9.11 3.872 0.80( 0.08) 0.10 57.1 180.00 4 242.21 9.14 3.865 0.80( 0.08) 0.10 57.3 190.00 5 242.98 9.24 3.839 0.80( 0.08) 0.10 57.9 220.00 6 246.08 9.75 3.719 0.80( 0.08) 0.10 60.7 210.00 lu 7 246.09 9.75 3.719 0.80( 0.08) 0.10 60.7 160.00 8 .248.42 10.32 3.593 0.80( 0.08) 0.10 63.8 115.00 9 254.74 11.69 3.335 0.80( 0.08) 0.10 72.9 170.00 10 256.22 12.05 3.275 0.80( 0.08) 0.10 75.1 150.00 id 11 264.09 14.25 2.962 0.80( 0.08) 0.10 87.8 130.00 12 264.47 14.79 2.896 0.80( 0.08) 0.10 90.3 140.00 .. 13 262.91 15.51 2.815 0.80( 0.08) 0.10 92.8 110.00 14 260.95 16.16 2.746 0.80( 0.08) 0.10 95.0 120.00 15 233.49 24.73 2.128 0.80( 0.08) 0.10 114.7 100.00 END OF RATIONAL METHOD ANALYSIS _ 1 jr * wwwwwwwwkwkww**** w*#*########## w### w# w## *w *w *wxwka +kw kkkkk w *kk * * #ww kkkf kk ww RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1435 Analysis prepared by: THIENES ENGINEERING 16800 VALLEY VIEW AVENUE LA MIRADA, CA 90638 (714)521 -4811 FAX(714) 521 -4173 *w *w ** +www # # #k + +w * * * *ww #ww DESCRIPTION OF STUDY wwwwwkkkkwwk *w *w * * * *w # # #w# i * JURUPA /ETIWANDA * 100 -YEAR HYDROLOGY * STREET FLOW + wkk #kk *kkww *ww * * * * * # ## www#####+#+######## # * # * *wwww *w * *wwwww * *w #w * #w + + + ++ 4m FILE NAME: C: \HYD \2007 \2007HYDD.DAT TIME /DATE OF STUDY: 09:54 10/11/2001 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: I F -- *TIME -OF- CONCENTRATION MODEL*- - w. USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE - 0.95 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* !IA SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = 0.6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) - 1.2500 go *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD* W **********###************ k* k*** kk* k* k* k***** kkkkkk * * * * * * * * *wkw * * * * * * * # * * * * ** y FLOW PROCESS FROM NODE 320.00 TO NODE 321.00 IS CODE = ---------------------------------------------------------------------------- 21 ,,,� »»> RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<<<< >>USE TIME-OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< .............. _______............ ___________ ° °_______ INITIAL SUBAREA FLOW- LENGTH(FEET) - 280.00 ELEVATION DATA: UPSTREAM(FEET) = 914.68 DOWNSTREAM(FEET) = 912.43 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 Im SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.599 4 ;j * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.319 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Pp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) PUBLIC PARK A 0.40 0.80 0.85 52 12.07 COMMERCIAL A 0.40 0.80 0.10 52 7.60 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.47 ■1 SUBAREA RUNOFF(CFS) = 2.84 TOTAL AREA(ACRES) = 0.80 PEAK FLOW RATE(CFS) = 2.84 xwwxxxxxxxxxwxxxxxxx xxxxxxxxxxx: xxxxxxxxxxwxxxxxxxxxwwwwwwwwxwxxxxxwwwxxxwww FLOW PROCESS FROM NODE 321.00 TO NODE 322.00 IS CODE = 61 ---------------------------------------------------------------------------- »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« << » >>>(STANDARD CURB SECTION USED) <<<<< ----------------------------- UPSTREAM ELEVATION(FEET) = 912.43 DOWNSTREAM ELEVATION(FEET) - 909.68 STREET LENGTH(FEET) = 295.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 52.50 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) 0.010 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0149 Manning''s FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.03 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH (FEET) = 0.33 rr HALFSTREET FLOOD WIDTH(FEET) = 8.70 AVERAGE FLOW VELOCITY(FEET /SEC.) 2.13 �++ PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 0.71 STREET FLOW TRAVEL TIME(MIN.) = 2.31 Tc(MIN.) = 9.91 °o * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.683 SUBAREA LOSS RATE DATA(AMC III): _ DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS +y LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN PUBLIC PARK A 0.40 0.80 0.85 52 w COMMERCIAL A 0.40 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.47 SUBAREA AREA(ACRES) = 0.80 SUBAREA RUNOFF(CFS) = 2.38 EFFECTIVE AREA(ACRES) = 1.60 AREA - AVERAGED FM(INCH /HR) = 0.38 r AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.47 TOTAL AREA(ACRES) = 1.60 PEAK FLOW RATE(CFS) 4.76 MR END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.35 HALFSTREET FLOOD WIDTH(FEET) - 9.42 FLOW VELOCITY(FEET /SEC.) = 2.21 DEPTH *VELOCITY(FT *FT /SEC.) _ 0.77 LONGEST FLOWPATH FROM NODE 320.00 TO NODE 322.00 = 575.00 FEET. *** wxwwxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxwwwxxxxxxxxxxxxxxxxxxxxwxxxx *xxxxx -- FLOW - PROCESS FROM - NODE - -- 322.00 TO NODE 323.00 IS CODE = 61 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA ««< » » >(STANDARD CURB SECTION USED) «« < UPSTREAM ELEVATION(FEET) = = = 909 68 DOWNSTREAM ELEVATION(FEET) = 905.62 STREET LENGTH(FEET) = 332.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 52.50 mu ir DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.010 Manning's FRICTION FACTOR for Streetflow Section (curb- to- curb) = 0.0149 Manning's FRICTION FACTOR for Sack -of -Walk Flow Section = 0.0200 +++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ FLOW PROCESS FROM NODE 323.00 TO NODE 324.00 IS CODE = 61 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<< » » >(STANDARD CURB SECTION USED) <<<<< UPSTREAM ELEVATION(FEET) = 905.62 DOWNSTREAM ELEVATION(FEET) = 905.05 STREET LENGTH(FEET) = 190.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 64.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.025 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.025 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.010 Manning's FRICTION FACTOR for Streetflow Section (curb-to- curb) - 0.0149 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 7.35 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.47 HALFSTREET FLOOD WIDTH(FEET) = 12.77 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CPS) 6.06 ,T STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ 0.36 HALFSTREET FLOOD WIDTH(FEET) = 9.89 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.60 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) - 0.92 STREET FLOW TRAVEL TIME(MIN.) = 2.13 Tc(MIN.) = 12.04 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.276 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN PUBLIC PARK A 0.50 ..0.80 0.85 52 COMMERCIAL A 0.50 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) - 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.48 SUBAREA AREA(ACRES) - 1.00 SUBAREA RUNOFF(CFS) = 2.61 EFFECTIVE AREA(ACRES) = 2.60 AREA- AVERAGED Fm(INCH /HR) = 0.38 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.48 TOTAL AREA(ACRES) _ .2.60 PEAK FLOW RATE(CFS) _ 6.78 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.37 HALFSTREET FLOOD WIDTH(FEET) = 10.43 FLOW VELOCITY(FEET /SEC.) = 2.66 DEPTH *VELOCITY(FT *FT /SEC.) = 0.97 LONGEST FLOWPATH FROM NODE 320.00 TO NODE 323.00 - 907.00 FEET. +++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ FLOW PROCESS FROM NODE 323.00 TO NODE 324.00 IS CODE = 61 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<< » » >(STANDARD CURB SECTION USED) <<<<< UPSTREAM ELEVATION(FEET) = 905.62 DOWNSTREAM ELEVATION(FEET) = 905.05 STREET LENGTH(FEET) = 190.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 64.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.025 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.025 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.010 Manning's FRICTION FACTOR for Streetflow Section (curb-to- curb) - 0.0149 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 7.35 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.47 HALFSTREET FLOOD WIDTH(FEET) = 12.77 FLOW PROCESS FROM NODE 324.00 TO NODE 324.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.95. RAINFALL INTENSITY(INCH /HR) = 3.00 AREA - AVERAGED Fm(INCH /HR) = 0.35 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.44 EFFECTIVE STREAM AREA(ACRES) - 3.05 TOTAL STREAM AREA(ACRES) = 3.05 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.26 FLOW PROCESS FROM NODE 300.00 TO NODE 301.00 IS CODE = 21 W ---- -- - - - - -- - - - - ----------------- --------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 300.00 ELEVATION DATA: UPSTREAM(FEET) = 919.14 DOWNSTREAM(FEET) = 912.68 11 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.414 * 100 YEAR RAINFALL INTENSITY(INCH /HR) - 4.781 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH /HR) COMMERCIAL A 1.00 0.80 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) =' SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 4.23 Ap SCS Tc (DECIMAL) CN (MIN.) 0.10 52 6.41 0.80 TOTAL AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) = 4.23 AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.66 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.)- = 0.77 OR STREET FLOW TRAVEL TIME(MIN.) = 1.91 Tc(MIN.) = 13.95 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.999 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN PUBLIC PARK A 0.10 0.80 0.85 52 COMMERCIAL A 0.35 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.27 SUBAREA AREA(ACRES) = 0.45 SUBAREA RUNOFF(CFS) = 1.13 EFFECTIVE AREA(ACRES) = 3.05 AREA - AVERAGED Fm(INCH /HR) = 0.35 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA - AVERAGED Ap = 0.44 TOTAL AREA(ACRES) _ .3.05 PEAK FLOW RATE(CFS) = 7.26 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.47 HALFSTREET FLOOD WIDTH(FEET) = 12.73 FLOW VELOCITY(FEET /SEC.) = 1.65 DEPTH *VELOCITY(FT *FT /SEC.) = 0.77 LONGEST FLOWPATH FROM NODE 320.00 TO NODE 324.00 = 1097.00 FEET. FLOW PROCESS FROM NODE 324.00 TO NODE 324.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.95. RAINFALL INTENSITY(INCH /HR) = 3.00 AREA - AVERAGED Fm(INCH /HR) = 0.35 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.44 EFFECTIVE STREAM AREA(ACRES) - 3.05 TOTAL STREAM AREA(ACRES) = 3.05 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.26 FLOW PROCESS FROM NODE 300.00 TO NODE 301.00 IS CODE = 21 W ---- -- - - - - -- - - - - ----------------- --------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 300.00 ELEVATION DATA: UPSTREAM(FEET) = 919.14 DOWNSTREAM(FEET) = 912.68 11 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.414 * 100 YEAR RAINFALL INTENSITY(INCH /HR) - 4.781 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH /HR) COMMERCIAL A 1.00 0.80 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) =' SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 4.23 Ap SCS Tc (DECIMAL) CN (MIN.) 0.10 52 6.41 0.80 TOTAL AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) = 4.23 FLOW PROCESS FROM NODE 301.00 TO NODE 324.00 IS CODE = 51 ----------- ------ ------- - - - - -- - -- - - - - -- >>>>> COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « «< ELEVATION DATA: UPSTREAM(FEET) = 912.68 DOWNSTREAM(FEET) - 905. - 07 CHANNEL LENGTH THRU SUBAREA(FEET) = 40.00 CHANNEL SLOPE = 0.1902 CHANNEL BASE(FEET) = 4.00 "Z" FACTOR = 0.000 MANNING 'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 0.67 1w CHANNEL FLOW THRU SUBAREA(CFS) = 4.23 ' FLOW VELOCITY(FEET /SEC) = 9.65 FLOW DEPTH(FEET) = 0.11 TRAVEL TIME(MIN.) = 0.07 Tc(MIN.) = 6.48 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 324.00 = 340.00 FEET. FLOW PROCESS FROM NODE 324.00 TO NODE 324.00 IS CODE - 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< �^ »» >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< r TOTAL NUMBER OF STREAMS = - = = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6.48 im RAINFALL INTENSITY(INCH /HR) = 4.75 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) 1.00 TOTAL STREAM AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.23 FLOW PROCESS FROM NODE 324.00 TO NODE 325.00 IS CODE = 61 0 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 7.26 13.95 2.999 0.80( 0.35) 0.44 3.0 320.00 2 4.23 6.48 4.751 0.80( 0.08) .0.10 1.0 300.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 9.91 13.95 2.999 0.80( 0.29) 0.36 4.1 320.00 2 9.84 6.48 4.751 0.80( 0.24) 0.30 2.4 300.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 9.91 Tc(MIN.) = 13.95 EFFECTIVE AREA(ACRES) = 4.05 AREA - AVERAGED Fm(INCH /HR) = 0.29 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.36 TOTAL AREA(ACRES) = 4.05 LONGEST FLOWPATH FROM NODE 320.00 TO NODE 324.00 = 1097.00 FEET. FLOW PROCESS FROM NODE 324.00 TO NODE 325.00 IS CODE = 61 0 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA ««< >>>>>( STANDARD CURB SECTION USED) ««< -- _=____====_=_===_===================----- ==== = ==== = ====== ======= ============ UPSTREAM ELEVATION(FEET) = 905.07 DOWNSTREAM ELEVATION(FEET) = 904.60 STREET LENGTH(FEET) = 150.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 64.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.025 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.025 z SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.010 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0149 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 10.31 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.51 aw HALFSTREET FLOOD WIDTH(FEET) = -14.53 d AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.83 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 0.94 STREET FLOW TRAVEL TIME(MIN.) = 1.37 TC(MIN.) = 15.32 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.836 99 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN PUBLIC PARK A 0.10 0.80 0.85 52 COMMERCIAL A 0.25 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.31 SUBAREA AREA(ACRES) = 0.35 SUBAREA RUNOFF(CFS) = 0.81 EFFECTIVE AREA(ACRES) = 4.40 AREA - AVERAGED Fm(INCH /HR) - 0.28 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.36 TOTAL AREA(ACRES) = 4.40 PEAK FLOW RATE(CFS) = 10.11 lil END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.51 HALFSTREET FLOOD WIDTH(FEET) = 14.45 it FLOW VELOCITY(FEET /SEC.) = 1.81 DEPTH *VELOCITY(FT *FT /SEC.) = 0.92 LONGEST FLOWPATH FROM NODE 320.00 TO NODE 325.00 = 1247.00 FEET. d FLOW PROCESS FROM NODE 325.00 TO NODE 325.00 IS CODE = 1 - - >>>>> DESIGNATE - INDEPENDENT_ STREAM - FOR CONFLUE«« < === _____________________ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 15.32 RAINFALL INTENSITY(INCH /HR) = 2.84 AREA- AVERAGED Fm(INCH /HR) - 0.28 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.36 EFFECTIVE STREAM AREA(ACRES) = 4.40 TOTAL STREAM AREA(ACRES) = 4.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.11 Mi Ir p FLOW PROCESS FROM NODE 310.00 TO NODE 311.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 200.00 ELEVATION DATA: UPSTREAM(FEET) = 915.45 DOWNSTREAM(FEET) = 912.73 Tc = K *((LENGTH ** 3.00) /(ELEVATION CHANGE))* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.978 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.987 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS 'Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 2.05 0.80 0.10 52 5.98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap - 0.10 SUBAREA RUNOFF(CFS) = 9.05 TOTAL AREA(ACRES) = 2.05 PEAK FLOW RATE(CFS) = 9.05 FLOW PROCESS FROM NODE 311.00 TO NODE 325.00 IS CODE = 51 ---------------------------------------------------------------------------- >> »> COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « «< ELEVATION DATA: UPSTREAM(FEET) = 912.73 DOWNSTREAM(FEET) = 904.60 CHANNEL LENGTH THRU SUBAREA(FEET) = 40.00 CHANNEL SLOPE = 0.2033 CHANNEL BASE(FEET) - 4.00 "Z" FACTOR = 0.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 0.67 CHANNEL FLOW THRU SUBAREA(CFS) = 9.05 FLOW VELOCITY(FEET /SEC) = 13.11 FLOW DEPTH(FEET) - 0.17 TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 6.03 LONGEST FLOWPATH FROM NODE 310.00 TO NODE 325.00 - 240.00 FEET. FLOW PROCESS FROM NODE 325.00 TO NODE 325.00 IS CODE - 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< »» >AND COMPUTE VARIOUS- .CONFLUENCED STREAM VALUES« «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6.03 RAINFALL INTENSITY(INCH /HR) = 4.96 - AREA- AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 2.05 TOTAL STREAM AREA(ACRES) = 2.05 PEAK FLOW RATE(CFS) AT CONFLUENCE _ 9.05 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CPS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE r ft 1 10.11 15.32 2.836 0.80( 0.28) 0.36 4.4 320.00 1 9.95 7.85 4.235 0.80( 0.24) 0.30 2.8 300.00 2 9.05 6.03 4.962 0.80( 0.08) 0.10 2.0 310.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q To Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 17.65 7.85 4.235 0.80( 0.17) 0.22 4.8 300.00 2 15.22 15.32 2.836 0.80( 0.22) 0.27 6.4 320.00 3 18.08 6.03 4.962 0.80( 0.16) 0.20 4.2 310.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 18.08 Tc(MIN.) - 6.03 EFFECTIVE AREA(ACRES) = 4.18 AREA - AVERAGED Fm(INCH /HR) = 0.16 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap - 0.20 TOTAL .AREA(ACRES) = 6.45 LONGEST FLOWPATH FROM NODE 320.00 TO NODE 325.00 = 1247.00 FEET. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx FLOW PROCESS FROM NODE 325.00 TO NODE 327.00 IS CODE - 61 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< > >>>>( STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 904.60 DOWNSTREAM ELEVATION(FEET) 902.50 STREET LENGTH(FEET) = 480.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 54.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.025 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.025 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.010 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0149 Manning's FRICTION FACTOR for Hack -of -Walk Flaw Section - 0.0200 **TRAVEL TIME COMPUTED USING. ESTIMATED FLOW(CFS) = 20.81 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.60 HALFSTREET FLOOD WIDTH(FEET) = 18.03 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.45 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.47 STREET FLOW TRAVEL TIME(MIN.) - 3.26 Tc(MIN.) - 9.29 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.828 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN PUBLIC PARK A 0.25 0.80 0.85 52 COMMERCIAL A 1.40 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.21 SUBAREA AREA(ACRES) = 1.65 SUBAREA RUNOFF(CFS) = 5.43 EFFECTIVE AREA(ACRES) = 5.83 AREA - AVERAGED Fm(INCH /HR) = 0.16 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.21 TOTAL AREA(ACRES) = 8.10 PEAK FLOW RATE(CFS) = 19.21 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.58 HALFSTREET FLOOD WIDTH(FEET) = 17.47 FLOW VELOCITY(FEET /SEC.) = 2.40 DEPTH *VELOCITY(FT *FT /SEC.) = 1.41 LONGEST FLOWPATH FROM NODE 320.00 TO NODE 327.00 = 1727.00 FEET. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx w FLOW PROCESS FROM NODE 327.00 TO NODE 328.00 IS CODE - 61 •r >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<< » » >(STANDARD CURB SECTION USED)<<<<< UPSTREAM ELEVATION(FEET) - 902.50 DOWNSTREAM ELEVATION(FEET) = 900.50 +` STREET LENGTH(FEET) = 385.00 CURB HEIGHT(INCHES) = 8.0 w. STREET HALFWIDTH(FEET) = 54.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) - 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.025 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.025 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.010 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) - 0.0149 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) _ 20.37 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.58 HALFSTREET FLOOD WIDTH(FEET) = 17.28 !!!� AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.60 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.51 STREET FLOW TRAVEL TIME(MIN.) = 2.47 Tc(MIN.) = 11.76 A * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.324 SUBAREA LOSS RATE DATA(AMC III): m DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN pq PUBLIC PARK - A 0.30 0.80 0.85 52 COMMERCIAL A 0.55 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS-.AREA FRACTION, Ap = 0.36 . SUBAREA AREA(ACRES) = 0.85 SUBAREA RUNOFF(CFS) = 2.32 go EFFECTIVE AREA(ACRES) = 6.68 AREA - AVERAGED Fm(INCH /HR) = 0.18 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.23 TOTAL AREA(ACRES) - 8.95 PEAK FLOW RATE(CFS) = 19.21 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF_SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.57 HALFSTREET FLOOD WIDTH(FEET) = 16.84 FLOW VELOCITY(FEET /SEC.) = 2.58 DEPTH *VELOCITY(FT *FT /SEC.) = 1.47 LONGEST FLOWPATH FROM NODE 320.00 TO NODE 328.00 = 2112.00 FEET. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx FLOW PROCESS FROM NODE 328.00 TO NODE 333.00 IS CODE = 61 ---------------------------------------------------------------------------- �, »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA ««< M Yr 1 ik » » >( STANDARD CURB SECTION USED) ««< UPSTREAM = ELEVATION(FEET) = = = 900.50 DOWNSTREAM ELEVATION(FEET) = 898.60 STREET LENGTH(FEET) - 295.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 54.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.025 OUTSIDE STREET CROSS FALL (DECIMAL) = 0.025 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOF_F.- 2 STREET PARKWAY CROSS FALL (DECIMAL) = 0.010 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0149 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 20.06 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: - STREET FLOW DEPTH(FEET) = 0.56 HALFSTREET FLOOD WIDTH(FEET) = 16.47 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.81 ** PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.57.. STREET FLOW TRAVEL TIME(MIN.) = 1.75 Tc(MIN.) = 13.51 r * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.058 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS r LAND USE GROUP .(ACRES) (INCH /HR) (DECIMAL) CN PUBLIC PARK A 0.30 0.80 0.85 52 ... COMMERCIAL A 0.40 0.80 0.10 52 .SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80. r SUBAREA. AVERAGE PERVIOUS AREA FRACTION, Ap = 0.42 SUBAREA AREA(ACRES) = 0.70 SUBAREA RUNOFF(CFS) = 1.72 EFFECTIVE AREA(ACRES) = 7.38 AREA - AVERAGED Fm(INCH /HR) = 0.20 r AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.25 TOTAL AREA(ACRES) = 9.65 PEAK FLOW RATE(CFS) = 19.21 .. NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.55 HALFSTREET FLOOD WIDTH(FEET) - 16.16 .. FLOW VELOCITY(FEET /SEC.) = 2.79 DEPTH *VELOCITY(FT *FT /SEC.) = 1.54 LONGEST FLOWPATH FROM NODE 320.00 TO NODE 333.00 = 2407.00 FEET. FLOW PROCESS FROM NODE 333.00 TO NODE 333.00 IS CODE = 10 » »>MAIN- STREAM MEMORY COPIED ONTO MEMORY BANK # 1 « «< ------------------------------------- rIY xx# x# x# xxxx## xx### xxxxxxxxxxxxxxxxxx# xx##*### x # # #xx * # * # # #xx # # # # # # # # # # # #x #x #x FLOW PROCESS FROM NODE 330.00 TO NODE 331.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 323.00 ELEVATION DATA: UPSTREAM(FEET) = 916.00 DOWNSTREAM(FEET) = 914.00 Tc = K *[(LENGTH ** 3.00)/ (ELEVATION CHANGE)]--0.20 AAA iYi r wu r �n r r r w. w. r w� w r w SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.476 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.045 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) PUBLIC PARK A 0.20 0.80 0.85 52 13.47 COMMERCIAL A 0.45 0.80 0.10 52 8.48 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap - 0.33 SUBAREA RUNOFF(CFS) = 2.21 TOTAL AREA(ACRES) = 0.65 PEAK FLOW RATE(CFS) = 2.21 xx+++ xxxxxxxxxxxxxxx++ xx+ x++++ xx+ x+ x+++ xxx• xxx + + +x +xxxxx +xxxxxxxxxxxxxxxxxxx FLOW PROCESS FROM NODE 331.00 TO NODE 332.00 IS CODE = 61 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< >> » >(STANDARD CURB SECTION USED) <<<<< UPSTREAM ELEVATION(FEET) = 914.00 DOWNSTREAM ELEVATION(FEET) = 906.20 STREET LENGTH(FEET) = 410.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 54.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.025 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.025 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.010 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0149 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.49 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET).= 0.29 HALFSTREET FLOOD WIDTH(FEET) - 5.78 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.92 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 0.86 STREET FLOW TRAVEL TIME(MIN.) = 2.34 Tc(MIN.) = 10.82 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.494 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE - -GROUP (ACRES) (INCH /HR) (DECIMAL) CN PUBLIC PARK A 0.40 0.80 0.85 52 COMMERCIAL A 0.50 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.43 SUBAREA AREA(ACRES) - 0.90 SUBAREA RUNOFF(CFS) = 2.55 EFFECTIVE AREA(ACRES) = 1.55 AREA - AVERAGED Fm(INCH /HR) = 0.31 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.39 TOTAL AREA(ACRES) = 1.55 PEAK FLOW RATE(CFS) = 4.44 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) - 6.66 FLOW VELOCITY(FEET /SEC.) - 3.03 DEPTH *VELOCITY(FT *FT /SEC.) = 0.95 LONGEST FLOWPATH FROM NODE 330.00 TO NODE 332.00 = 733.00 FEET. +++++ x+ xxx+ xx+ xxxx+ xxxxxx+ xx++++ xx+ xxxxxx+++ xx + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ a tl .• yy FLOW PROCESS FROM NODE 332.00 TO NODE 333.00 IS CODE = 61 T >>>> >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< >>>>>(STANDARD CURB SECTION USED)<<<<< ------------------------------------ UPSTREAM ELEVATION(FEET) = 906.20 DOWNSTREAM ELEVATION(FEET) = 898.60 STREET LENGTH(FEET) = 440.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 54.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.025 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.025 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSS FALL (DECIMAL) = 0.010 rr Manning's FRICTION FACTOR for Streetflow Section (curb-to- curb) = 0.0149 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 r * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.36 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.35 HALFSTREET FLOOD WIDTH(FEET) = 8.16 �r AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.16 ... PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.11 STREET FLOW TRAVEL TIME(MIN.) = 2.32 Tc(MIN.) = 13.14 .. * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.109 SUBAREA LOSS RATE DATA(AMC III): - DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN PUBLIC PARK A 0.90 0.80 0.85 52 COMMERCIAL A 0.70 0.80 0.10 52 xw SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 y� SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.52 SUBAREA AREA(ACRES) = 1.60 SUBAREA RUNOFF(CFS) = 3.88 .. EFFECTIVE AREA(ACRES) = 3.15 AREA - AVERAGED Fm(INCH /HR) = 0.36 AREA - AVERAGED Fp(INCH /HR) - 0.80 AREA- AVERAGED Ap = 0.46 TOTAL AREA(ACRES) = 3.15 PEAK FLOW RATE(CFS) = 7.78 END OF SUBAREA STREET FLOW HYDRAULICS: e� DEPTH(FEET) = 0.37 HALFSTREET FLOOD WIDTH(FEET) = 8.97 FLOW VELOCITY(FEET /SEC.) = 3.28 DEPTH *VELOCITY(FT *FT /SEC.) = 1.22 LONGEST FLOWPATH FROM NODE 330.00 TO NODE 333.00 = 1173.00 FEET. zzzzzzxxzzzwzzzzzzzw+ zzzz+ w+ wzwxzzzzzz++ xxxxxxxx + +xx + +x +xx +x + + +xxzzzzzw + + + ++ FLOW PROCESS FROM NODE 333.00 TO NODE 333.00 IS CODE = 11 ------------------- -- --- --------- ---- --- -- -- ---- -- -- - - - - --- >>>>> CONFLUENCE MEMORY BANK # 1 WITH THE MAIN- STREAM MEMORY <<<<< ** MAIN STREAM CONFLUENCE DATA ** STREAM Q Tc Intensity FP(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE . 1 7.78 13.14 3.109 0.80( 0.36) 0.46 3.1 330.00 LONGEST FLOWPATH FROM NODE 330.00 TO NODE 333.00 = 1173.00 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER 6 NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 19.21 13.51 3.056 0.80( 0.20) 0.25 7.4 310.00 2 18.99 15.37 2.831 0.80( 0.20) 0.25 8.0 300.00 3 17.30 23.08 2.217 0.80( 0.22) 0.28 9.6 320.00 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 333.00 = 0.00 FEET. - PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Pp(Fm) Ap As HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 26.80 13.14 3.109 0.80( 0.25) 0.31 10.3 330.00 2 26.84 13.51 3.058 0.80( 0.25) 0.31 10.5 310.00 3 25.98 15.37 2.831 0.80( 0.25) 0.31 11.2 300.00 4 22.56 23.08 2.217 0.80( 0.26) 0.33 12.8 320.00 TOTAL AREA(ACRES) = 12.80 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 26.84 Tc(MIN.) = 13.507 EFFECTIVE AREA(ACRES) = 10.53 AREA - AVERAGED Fm(INCH /HR) = 0.25 r AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.31 TOTAL AREA(ACRES) = 12.80 LONGEST FLOWPATH FROM NODE 330.00 TO NODE 333.00 = 1173.00 FEET. r xxxx* xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx *xxxxtxxxx FLOW PROCESS FROM NODE 333.00 TO NODE 333.00 IS CODE = 12 w. ---------------------------------------------------------------------------- >>>>>CLEAR MEMORY BANK # 1 ««< END OF STUDY SUMMARY: W TOTAL AREA(ACRES) = 12.80 TC(MIN.) = 13.51 EFFECTIVE AREA(ACRES) = 10.53 AREA - AVERAGED Fm(INCH /HR)= 0.25 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.31 �y PEAK FLOW RATE(CFS) = 26.84 ** PEAK FLOW RATE TABLE ** 'STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 26.80 13.14 3.109 0.80( 0.25) 0.31 10.3 330.00 2 26.84 13.51 3.058 0.80( 0.25) 0.31 10.5 310.00 r 3 25.98 15.37 2.831 0.80( 0.25) 0.31 11.2 300.00 4 22.56 23.06 2.217 0.80( 0.26) 0.33 12.8 ___________ °____ 320.00 °___________ aw ---------------------------------------------------------------------------- END OF RATIONAL METHOD ANALYSIS 1 Ir ** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx . *.. * * xxxxx * * * * * * * *. xxxx * * * * xxx RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) Yr (c) Copyright 1983 -99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1435 w Analysis prepared by: THIENES ENGINEERING 16800 VALLEY VIEW AVENUE .+ LA MIRADA, CA 90638 (714)521 -4811 FAX(714) 521 -4173 xxxzxzzzzzxxxxxxxxxxxxx * ** DESCRIPTION OF STUDY xxxxxxzzz * * * * **zzxxxx * *■ ** r * JURUPA /ETIWANDA * 100 -YEAR HYDROLOGY * EXISTING CONDITIONDS TO ETIWANDA ,,,,, xxxxxxxxxzzxzzzzzzzzzzzzzzzzzzzxxxxxxxxzzzxx * * * *xxzzz *• *xxzxxxxxxxxxxxxxxx *� FILE NAME: C: \HYD \2007 \2007HYDE.DAT zr TIME /DATE OF STUDY: 11:36 10/11/2001 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: _..................... * ... ===___________---_--- ___ *== __..... = =. =___ =._ = =.... -- *. TIME -OF- CONCENTRATION MODEL ew USER SPECIFIED STORM EVENT(YEAR) 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* y SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) - 0.6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.2500 *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD* r xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxzxzxzxxxxxxxxxzzzzzzzzzzzz *zzxzzzzzzzzzzzxz r FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21 ---------------------------------------------------------------------------- w ., >>>>> RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< -------- - --- -- --------------------------- INITIAL SUBAREA FLOW- LENGTH(FEET) = 600.00 ELEVATION DATA: UPSTREAM(FEET) = 945.00 DOWNSTREAM(FEET) = 937.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 9.314 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.822 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp AP SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 4.10 0.80 0.10 52 9.31 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, AP = 0.10 SUBAREA RUNOFF(CFS) = 13.81 F" Mr TOTAL AREA(ACRES) = 4.10 PEAK FLOW RATE(CFS) = 13.81 • + + + + + + + + + + +x+ xxxxx + +xx + + + + + + +xxxxxxxx + + + + + + +xx +xx +xxxxxx + + + + + + +x+ +xxxx +xx ++ w FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE - 51 r ---------------------------------------------------- = ----------------------- >>>>> COMPUTE TRAPEZOIDAL CHANNEL FLAW <<<<< +. >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 937.00 DOWNSTREAM(FEET) = 931.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 500.00 CHANNEL SLOPE = 0.0120 CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 2.000 W ' MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 13.81 .. FLOW VELOCITY(FEET /SEC) = 6.29 FLOW DEPTH(FEET) = 0.66 TRAVEL TIME(MIN.) = 1.32 Tc(MIN.) - 10.64 W " LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 = 1100.00 FEET. '^ + + +x+ xxxxxx +xxxxxxxxxxxxxx + + + +x ++ xxx +x + +xx +x+ xxxxx +xs + + + + + ++ +xxx +x+ +xxx + + +xx r FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 81 ---------------------------------------------------------------------------- .. » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 10.64 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.529 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "OPEN BRUSH" A 4.10 0.61 1.00 66 SUBAREA AVERAGE.PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.61 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 4.10 SUBAREA RUNOFF(CFS) - 10.76 W EFFECTIVE AREA(ACRES) = 8.20 AREA - AVERAGED Fm(INCH /HR) = 0.35 AREA- AVERAGED Fp(INCH /HR) - 0.63 AREA- AVERAGED Ap = 0.55 TOTAL AREA(ACRES) = 8.20 PEAK FLOW RATE(CFS) = 23.49 ar xxxxxxxxxxx +xxxxxxxxxxxxx +x +x ++ +xxxxxx + + + + +x+ +xxxxxxx + + + + + + + + + + + + + ++ +xxxxxxx FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 61 ---------------------------------------------------------------------------- ­.,COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA «« r » > >(STANDARD CURB SECTION USED) « «< UPSTREAM ELEVATION(FEET) = 931.00 DOWNSTREAM ELEVATION(FEET) = 929.70 W STREET LENGTH(FEET) - 300.00 CURB HEIGHT(INCHES) - 8.0 STREET HALFWIDTH(FEET) - 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 27.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0149 Manning's FRICTION FACTOR for Sack -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) _ 33.30 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: e r STREET FLOW DEPTH(FEET) = 0.66 HALFSTREET FLOOD WIDTH(FEET) - 24.91 �. AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.60 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.71 dw STREET FLOW TRAVEL TIME(MIN.) = 1.92 Tc(MIN.) = 12.56 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.195 eiw SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS of LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 7.00 0.80 0.10 52 ON SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 m SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap - 0.10 SUBAREA AREA(ACRES) = 7.00 SUBAREA RUNOFF(CFS) = 19.63 Aw EFFECTIVE AREA(ACRES) = 15.20 AREA - AVERAGED Fm(INCH /HR) = 0.22 AREA- AVERAGED Fp(INCH /HR) - 0.65 AREA- AVERAGED,Ap = 0.34 TOTAL AREA(ACRES) = 15.20 PEAK FLOW RATE(CFS) = 40.64 END OF SUBAREA STREET FLOW HYDRAULICS: f DEPTH(FEET) = 0.70 HALFSTREET FLOOD WIDTH(FEET) = 28.40 FLOW VELOCITY(FEET /SEC.) = 2.73 DEPTH *VELOCITY(FT *FT /SEC.) = 1.90 LONGEST FLOWPATH FROM NODE 100.00 TO NODE - 103.00 = 1400.00 FEET. +++++++ wwwww+ w+ w+++++ w++++++ wwwwww+++++++ www+ + + +wwwwwwww + + + + + + + + ++ + + + + + + + + ++ FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 61 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< » » >(STANDARD CURB SECTION USED) « «< UPSTREAM ELEVATION(FEET) = 929.70 DOWNSTREAM ELEVATION(FEET) = 928.40 STREET LENGTH(FEET) = 300.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 27.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0149 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 R+ * *TRAVEL TIME COMPUTED- .USING ESTIMATED FLOW(CFS) = 49.69 ' STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: fir STREET FLOW DEPTH(FEET) = 0.74 HALFSTREET FLOOD WIDTH(FEET) = 32.62 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.84 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.10 STREET FLOW TRAVEL TIME(MIN.) = 1.76 Tc(MIN.) = 14.32 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.953 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 7.00 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) - 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 7.00 SUBAREA RUNOFF(CFS) = 18.10 EFFECTIVE AREA(ACRES) = 22.20 AREA - AVERAGED Fm(INCH /HR) = 0.18 to AREA- AVERAGED Fp(INCH /HR) = 0.67 AREA- AVERAGED Ap - 0.27 TOTAL AREA(ACRES) = 22.20 PEAK FLOW RATE(CFS) = 55.44 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.76 HALFSTREET FLOOD WIDTH(FEET) = 35.04 FLOW VELOCITY(FEET /SEC.) = 2.90 DEPTH *VELOCITY(FT *FT /SEC.) = 2.21 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 104.00 = 1700.00 FEET. zzxwwwzzxxxxxxzzwzwxx: zwzw+ w++ xxxwwx+ z+ z++++ xzzxxx + + +x +xxxw +xwwx + + +xwwwww + ++ FLOW PROCESS FROM NODE 104.00 TO NODE 105.00 IS CODE = 61 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<< >>> >>( STANDARD CURB SECTION USED)««< UPSTREAM ELEVATION(FEET) = 928.40 DOWNSTREAM ELEVATION(FEET) = 927.00 STREET LENGTH(FEET) = 300.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 27.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 �. OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 IY SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) 0.020 WR Manning's FRICTION FACTOR for Streetflow Section (curb- to -curb) = 0.0149 to Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 aw * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 63.91 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: Ym STREET FLOW DEPTH(FEET) = 0.79 HALFSTREET FLOOD WIDTH(FEET) = 37.47 eRA AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.06 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.41 STREET FLOW TRAVEL TIME(MIN.) = 1.63 Tc(MIN.) = 15.95 s * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.768 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN *' COMMERCIAL A 7.00 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 .. SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap - 0.10 SUBAREA AREA(ACRES) = -7.00 SUBAREA RUNOFF(CFS) = 16.94 EFFECTIVE AREA(ACRES) = 29.20 AREA - AVERAGED Fm(INCH /HR) = 0.15 r AREA- AVERAGED Fp(INCH /HR) = 0.68 AREA- AVERAGED Ap = 0.23 TOTAL AREA(ACRES) - 29.20 PEAK FLOW RATE(CFS) = 68.67 END OF SUBAREA STREET .FLOW HYDRAULICS: DEPTH(FEET) - 0.81 HALFSTREET FLOOD WIDTH(FEET) = 39.34 on FLOW VELOCITY(FEET /SEC.) = 2.89 DEPTH *VELOCITY(FT *FT /SEC.) = 2.35 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 105.00 = 2000.00 FEET. YY wxwxzzz++ xw+++ xxx+ xxzxzzxzxxxwwwzz+ �++ xxxz+ xxwzz + + +xxwzzxxxzw + + + +x + + + + + + + + ++ an FLOW PROCESS FROM NODE 105.00 TO NODE 106.00 IS CODE = 61 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<< »» >( STANDARD CURB SECTION USED) « «< !!a r y UPSTREAM ELEVATION(FEET) = 927.00 DOWNSTREAM ELEVATION(FEET) = 922.00 STREET LENGTH(FEET) = 500.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 50.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 45.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF - 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0149 Manning's FRICTION FACTOR for Back - -Walk Flow Section = 0.0200 +� * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 75.48 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: r STREET FLOW DEPTH(FEET) = 0.91 HALFSTREET FLOOD WIDTH(FEET) = 49.35 .w AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.84 ilY PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 4.38 STREET FLOW TRAVEL TIME(MIN.) - 1.72 Tc(MIN.) = 17.67 "^ * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.603 SUBAREA LOSS RATE DATA(AMC III): r DEVELOPMENT TYPE/ - SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER ys "OPEN BRUSH" A 7.60 0.61 1.00 66 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) - 0.61 •s SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 7.60 SUBAREA RUNOFF(CFS) = 13.60 EFFECTIVE AREA(ACRES) = 36.80 AREA - AVERAGED Fm(INCH /HR) = 0.25 AREA- AVERAGED Fp(INCH /HR) = 0.65 AREA- AVERAGED Ap = 0.39 TOTAL AREA(ACRES) = 36.80 PEAK FLOW RATE(CFS) = 77.93 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.91 HALFSTREET FLOOD WIDTH(FEET) = 50.06 FLOW VELOCITY(FEET /SEC.) = 4.89 DEPTH *VELOCITY(FT *FT /SEC.) = 4.46 cif LONGEST FLOWPATH FROM NODE 100.00 TO NODE 106.00 = 2500.00 FEET. + + +xww + + + +xxwxx +xxx +x + + ## +xxx ## # +xxxx + # # # +ww +w +xxx + + # + + + +www +wwwwwxxxwxwwxx+ rx FLOW PROCESS FROM NODE 106.00 TO NODE 107.00 IS CODE = 61 ---------------------------------------------------------------------------- �. » » >COMPUTE STREET FLOW.TRAVEL TIME THRU SUBAREA « «< >>>>>(STANDARD CURB SECTION USED) <<<<< --- ----- - -- --- - - - - -- ---- -- - - - - -- -- -- --------------- - UPSTREAM ELEVATION(FEET) = 922.00 DOWNSTREAM ELEVATION(FEET) = 917.00 STREET LENGTH(FEET) = 500.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 50.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 45.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0149 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 r r r ww r r * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 84.26 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.93 HALFSTREET FLOOD WIDTH(FEET) = 52.17 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.95 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 4.62 STREET FLOW TRAVEL TIME(MIN.) = 1.68 Tc(MIN.) = 19.36 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.464 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER v "OPEN BRUSH" A 7.60 0.61 1.00 66 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.61 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap - 1.00 SUBAREA AREA(ACRES) = 7.60 SUBAREA RUNOFF(CFS) = 12.66 EFFECTIVE AREA(ACRES) = 44.40 AREA- AVERAGED Fm(INCH /HR) = 0.31 AREA- AVERAGED Fp(INCH /HR) = 0.63 AREA- AVERAGED Ap = 0.49 TOTAL AREA(ACRES) = 44.40 PEAK FLOW RATE(CFS) = 86.01 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) - 0.94 HALFSTREET FLOOD WIDTH(FEET) = 52.87 FLOW VELOCITY(FEET /SEC.) - 4.94 DEPTH *VELOCITY(FT *FT /SEC.) = 4.65 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 107.00 = 3000.00 FEET. -----____°-°--- ------- - - - --- END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 44.40 TC(MIN.) = 19.36 EFFECTIVE AREA(ACRES) = 44.40 AREA - AVERAGED Fm(INCH /HR)= 0.31 AREA- AVERAGED Fp(INCH /HR) = 0.63 AREA- AVERAGED Ap = 0.49 PEAK FLOW RATE(CFS) = 86.01 END OF RATIONAL METHOD ANALYSIS 1 a M RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) 1r (c) Copyright 1963 -99 Advanced Engineering Software (sea) Ver. 8.0 Release Date: 01/01/99 License ID 1435 �e w Analysis prepared by: THIEVES ENGINEERING 16800 VALLEY VIEW AVENUE r LA MIRADA, CA 90638 (714)521 -4811 FAX(714) 521 -4173 DESCRIPTION OF STUDY x # * #* #wwww *x * * * * # # # # # # *w *w * JURUPA /ETIWANDA # * 100 -YEAR HYDROLOGY # ... * EXISTING CONDITIONS: NODE 120 -122 r. wxxxxx # # #ww * * *wwwwx *xxx #ww * * * ** wwww * *x * *w *www * * *x * ** #wwww * *ww * *xxxx * # * #w * FILE NAME: C: \HYD \2007 \2007HYDF.DAT TIME /DATE OF STUDY: 13:04 10/11/2001 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: r -- *TIME -OF- CONCENTRATION MODEL*- - USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE 0.95 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* W. SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(TC;MIN)) = 0.6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.2500 *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD* - w. FLOW PROCESS FROM NODE 120.00 To NODE 121.00 IS CODE =__21 >>>>> RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 700.00 ELEVATION DATA: UPSTREAM(FEET) 930.00 DOWNSTREAM(FEET) = 925.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE))-0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 26.066 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.061 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA FP Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) NATURAL FAIR COVER "OPEN BRUSH" A 7.10 0.61 1.00 66 26.07 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.61 SUBAREA AVERAGE PERVIOUS AREA FRACTION, AP = 1.00 Am! SUBAREA RUNOFF(CFS) = 9.25 TOTAL AREA(ACRES) 7.10 PEAK FLOW RATE(CFS) _ 9.25 r .**** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx * * * * * ***xxxxx * * * * * * * *xxxxxxx w FLOW PROCESS FROM NODE 121.00 TO NODE 122.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) < <<< ELEVATION DATA: UPSTREAM(FEET) = 925.00 DOWNSTREAM(FEET) _ 920.00 .. CHANNEL LENGTH THRU SUBAREA(FEET) = 500.00 CHANNEL SLOPE = 0.0100 11r CHANNEL BASE(FEET) = 4.00 "Z" FACTOR = 2.000 a MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00 �,. CHANNEL FLOW THRU SUBAREA(CFS) = 9.25 FLOW VELOCITY(FEET /SEC) = 2.98 FLOW DEPTH(FEET) = 0.60 r TRAVEL TIME(MIN.) = 2.80 Tc(MIN.) = 28.87 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 122.00 = 1200.00 FEET. * xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx * * *xxx * * * * ** * * * * * * * * * * *xx * * * * ** r FLOW PROCESS FROM NODE 121.00 TO NODE 122.00 IS CODE - 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 28.87 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 1.939 SUBAREA LOSS RATE DATA(AMC III): - DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS ,,. LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER 'W "OPEN BRUSH" A 7.10 0.61 1.00 66 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.61 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 im SUBAREA AREA(ACRES) = 7.10 SUBAREA RUNOFF(CFS) = 8.47 EFFECTIVE AREA(ACRES) = 14.20 AREA - AVERAGED Fm(INCH /HR) = 0.61 om AREA- AVERAGED Fp(INCH /HR) = 0.61 AREA- AVERAGED Ap - 1.00 TOTAL AREA(ACRES) = 14.20 PEAK FLOW RATE(CFS) = 16.93 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 14.20 TC(MIN.) = 28.87 EFFECTIVE AREA(ACRES) = 14.20 AREA- AVERAGED Fm(INCH /HR)= 0.61 AREA - AVERAGED Fp(INCH /HR) = 0.61 AREA- AVERAGED Ap = 1.00 PEAK FLOW RATE(CFS) _ _ 16.93 END OF RATIONAL METHOD ANALYSIS A 1 APPENDIX B HYDRAULIC CALCULATIONS ISI ±) t ; � z0 DBL. DRIVE GATEe r 45+ . vs_ ��:� }�+ . .,.•.,.�,�. - -, r. .� .. . _r�,' - �.�� -z as s, ✓'" '` '' d EXIST. 42" PIPE r ..FUTURE' 42" RCP �BY OTHERS). 00 ' w - .mar ...._.....,_ . �.. � .�,,...�......e...,.........,� _u.:_.__..._,.�. I EXISTING CHANNEL CONSTRUCTED END CONSTRUCTION PER JURUPA BASI} OUTLET PLANS UNDER; THIS EASEMENT ( CONTRACT _D 4 CID Yiw PRIOR w 482E . " re 3�31lp1; TO MIT C ` �c� = ANY ER. N � f f AMAGE REVISIONS SAN BERNARDINO COUNTY MARK DATE DESCRIPTION BY FLOOD CONTROL DISTRICT SAN SEVAINE CHANNEL rr PROJECT ENGR.-. 7`7 EVIEWED-BY. PLAN AND PROFILE SUBM ITTED BY: ETIWANDA /SAN SEVAINE „PROJECT MANAGER STA. 45x-00 TO STA. 47 +00 COMMENDED BY: ASSIST FLOOD CONTROL ENgNEER DATE ” SCALE FILE NO. DRAWG. NO. APPROVED BY: GI 99 l�� = 40� i 5 or 10 FLOOD CONTROL. EN INEER M&A COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS KEPT: PC /RD4412.1 (INPUT) DATE: 10/14/01 PAGE 1 �Ir PROJECT: JURUPA AVENUE MASTER PLANNED STORM DRAIN W GESIGNER: B.P.W. TESTA.DAT 'T'D L2 MAX 0 ADJ O LENGTH FL 1 FL 2 CTL /TW D W S RJ RE KM LC L1 L3 L4 Al A3 A4 J N 8 1 901.80 WA'Car- Sv12 Face Ll.l°.1/ �N S►.N SEVP VNE ■. C.hPµ 2 2 246.9 246.9 749.70 889.28 897.15 0.00 78. 0. 3 0.00 0.00 0.22 1 3 0 0 0. 0. 0. 4.66 0.013 W 2 3 246.9 246.9 234.70 897.20 897.88 0.00 78. 0. 3 0.00 0.00 0.18 0 4 0 0 0. 0. 0. 4.66 0.013 ^ 2 4 235.7 235.7 86.86 897.88 898.13 0.00 78. 0. 3 0.00 0.00 0.18 0 5 70 0 0. 90. 0. 1.00 0.013 �2 5 235.7 235.7 362.29 898.18 899.23 0.00 72. 0. 3 0.00 0.00 0.05 0 6 20 0 0. 45. 0. 7.62 0.013 _ 2 6 199.6 199.6 239.18 899.33 900.02 0.00 66. D. 3 0.00 0.00 0.30 0 7 0 0 0. 0. 0. 4.66 0.013 r 2 7 199.6 199.6 51.13 900.12 900.26 0.00 66. 0. 3 0.00 0.00 0.00 0 8 80 0 0. 45, 0. 1.00 0.013 2 8 192.7 192.7 312.05 900.26 901.18 O.OD 66. 0. 3 0.00 0.00 0.05 0 9 0 0 0. 0. 0.._4.66 0.013 Yr MV 2 9 192.7 192.7 35.34 901.28 901.38 0.00 60. 0. 3 0.00 0.00 0.17 0 30 90 0 0. 80. 0. 1.00 0.013 "2 10 186.2 186.2 60.88 901.38 901.55 0.00 60. 0. 3 .0.00 0.00 0.17 0 11 100 0 0. 70. 0. 4.00 0.013 2 11 155.2 155.2 97.42 901.55 901.84 0.00 60. 0. 3 0.00 0.00 0.05 0 12 110 0 0. 45. 0. 7.55 0.013 2 12 127.1 127.1 156.35 901.94 902.39 0.00 60. 0. 3 0.00 0.00 0.00 0 13 120 0 0. 45. 0. 7.55 0.013 2 13 98.8 98.8 1033.69 902.49 905.66 0.00 54. 0. 3 0.00 0.00 0.15 0 14 0 0 0. 0. 0. 1.00 0.013 j ,2 14 98.1 98.1 35.76 905.66 905.76 0.00 54. 0. 3 0.00 0.00 0.00 0 15 130 0 0. 90. 0. 1.00 0.013 " 15 97.4 97.4 105.60 905.76 906.07 0.00 54. 0. 3 0.00 0.00 0.05 0 16 140 0 0. 80. 0. 4.66 0.013 7 2 16 95.6 95.6 87.65 906.17 906.42 0.00 54. 0. 1 0.00 0.00 0.25 0 0 0 0 0. 0. 0. 0.00 0.013 i111 2 20 48.2 48.2 74.00 899.33 899.61 0.00 36. 0. 3 0.00 0.00 0.00 5 21 30 0 0. 45. 0. 5.00 0.012 11�A 2 21 31.3 31.3 160.50 899.61. 900.22 0.00 36. 0. 3 0.00 0.00 0.05 0 22 40 0 0. 60. 0. 4.00 0.012 2 22 29.2 29.2 338.70 900.27 901.63 0.00 36. 0, 3 0.00 0.00 0.22 0 23 50 0 0. 70. 0. 4.00 0.012 2 23 22.0 22.0 326.81 901.68 902.93 0.00 30. 0. 3 0.00 0.00 0.05 0 24 60 0 0. 70. 0, 4.00 0.012 1 2 24 15.0 15.0 299.28 902.98 904.13 908.59 24. 0. 1 0.00 0.20 0.25 0 0 0 0 0. 0. 0. 3.00 0.012 2 30 17.7 17.7 17.68 900.27 903.9D 908.59 24. 0. 1 0.00 0.20 0.00 21 0 0 0 0. 0. 0. 3.00 0.912 1 2 40 2.2 2.2 55.35 900.85 903.51 908.01 18. 0. 1 0.00 0.20 0.00 22 0 0 0 0. 0. D. 3.00 0.012 2 50 7.9 7.9 58.70 901.67 902.83 0.00 18. 0. 1 0.00 0.20 0.00 23 0 0 0 0. 0. 0. 3.00 0.012 1 2 60 9.0 9.0 84.03 902.93 903.47 907.72 18. 0. 1 0.00 0.20 0.00 24 0 0 0 0. 0. 0. 3.00 0.012 1 O JJA COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS KEPT: PC /RD4412.1 (INPUT( DATE: 10/14/01 PAGE 2 PROJECT: JURUPA AVENUE MASTER PLANNED STORM DRAIN (SIGNER: B.P.W. TESTA.DAT L2 MAX 0 ADJ 0 LENGTH FL 1 FL 2 CTL /TW D W S KJ KE KM LC L1 L3 L4 Al A3 A4 J N 2 70 15.5 15.5 100.00 900.38 905.00 0.00 18. 0. 1 0.00 0.20 0.25 4 0 0 0 0. 0. 0. 3.00 D.012 2 80 10.6 10.6 25.33 902.01 903.50 908.00 24. 0. 1 0.00 0.20 0.00 8 0 D 0 0. 0. 0. 3.00 0.012 2 90 6.4 6.4 77.42 903.38 907.35 0.00 18. 0. 1 0.00 0.20 0.17 10 0 0 0 0. 0. 0. 1.00 0.012 2 100 33.3 33.3 48.83 902.83 903.13 908.63 36. 0. 1 0.00 0.2D 0.00 11 0 0 0 0. 0. 0. .3.00 0.012 l4il W2 110 39.3 39.3 87.08 903.16 904.03 0.00 36. 0. 1 0.00 0.20 0.17 12 0 0 0 0. 0. 0. 3.00 0.013 MR2 120 38.2 38.2 91.41 903.39 904.30 0.00 36. 0. 1 0.00 0.20 0.17 13 0 0 0 0. 0. 0. 3.00 0.013 2 130 1.7 1.7 8.22 907.97 912.30 916.13 12. 0. 1 0.00 D.20 0.00 15 0 0 0 0. 0. 0. 3.00 0.012 2 140 2.7 2.7 52.62 907.81 911.31 915.14 18. 0. 1 0.00 0.20 0.00 16 0 0 0 0. D. 0. 3.00 0.012 W W R iw Yu w W iM COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS KEPT: PC/RD4412.2 DATE: 10/14/01 PAGE 1 PROJECT: JURUPA AVENUE MASTER PLANNED STORM DRAIN ' O ' SIGNER: B.P.W. TESTA.DAT *NE Q D W ON DC PLOW SF -FULL V 1 V 2 FL 1 FL 2 HG 1 HG 2 D 1 D 2 TW TW NO (CPS) (IN)(IN) (FT) (FT) TYPE (FT /FT) (FPS) (FPS) (FT) (FT) CALC CALC (FT) (FT) CALC CK REMARKS so 1 HYDRAULIC GRADE LINE CONTROL + 901.80 w 2 246.9 78 0 3.09 4.20 FULL 0.00222 7.4 7.4 889.28 897.15 903.65 12.52 6.50 0.00 0.00 a 3 246.9 78 0 4.71 4.20 PART 0.00222 7.5 7.6 897.20 897.88 903.65 904.09 6.45 6.21 0.00 0.00 w '4 235.7 78 0 4.55 4.10 PART 0.00202 7.1 7.2 897.88 898.13 904.26 904.41 6.38 6.28 0.00 0.00 r 5 235.7 72 0 6.00 4.21 PART 0 8.4 9.6 898.18 899.23 904.13 904.12 5.95 4.89 0.00 0.00 253.3 c� ` { - I. Q N L`S Ooa - ib.(o c.(S Dc-Tkweo e S lack 10 6 199.6 66 0 5.50 3.95 PART 0.00353 8.6 9.3 899.33 900.02 904.51 904.66 5.18 4.64 0.00 0.00 w 7 199.6 66 0 5.50 3.95 PART 0.00353 X9.8 9.9 900.12 900.26 904.53 904.61 4.41 4.35 0.00 0.00 -- W `- 2v c. - to - '1.0_ J-, 8 192.7 66 0 5.50 3.89 PART 0.00329 6.9 14.0 900.26 901.18 904.96 904.27 4.70 3.09 0.00 0.00 HYD JVMP w X 0.00 X(N) = 0.00 X(J) - 297.79 F(J) 101.05 D(BJ) = 3.09 D(AJ) = 4.75 9 192.7 60 0 5.00 3.97 PART 0.00547 11.5 10.6 901.28 901.38 905.25 905.76 3.97 4.38 0.00 0.00 193.2. t "5 1r.1lev-e -e o P- C,&lu, bAS1U G ".4e %5'Z "4 10 186.2 60 0 5.00 3.90 PART 0.00511 9.6 10.1 901.38 901.55 9D6.15 905.97 4.77 4.42 0.00 0.00 rr 193.2 - 1.0 C(s od- min1t_.o 1u - eu v- 1 -. 11 155.2 60 0 5.00 3.57 FULL 0.00355 7.9 7.9 901.55 901.84 906.97 907.31 5.42 5.47 0.00 0.00 No 2 127.1 60 0 3.74 3.22 FULL 0.00238 6.5 6.5 901.94 902.39 907.71 908.08 5.77 5.69 0.00 0.00 w 13 98.8 54 0 3.36 2.91 FULL 0.00252 6.2 6.2 902.49 905.66 908.19 910.80 5.70 5.14 0.00 0.00 00 14 98.1 54 0 3.48 2.90 FULL 0.00249 6.2 6.2 905.66 905.76 910.82 910.90 5.16 5.14 D.00 0.00 w 15 97.4 54 0 3.39 2.89 FULL 0.00245 6.1 6.1 905.76 906.07 910.92 911.18 5.16 5.11 0.00 0.00 sw 16 95.6 54 0 3.37 2.86 FULL 0.00236 6.0 6.0 906.17 906.42 911.22 911.43 5.05 5.01 911.99 0.00 r 117 5 11 e.TKI 4 HYDRAULIC GRADE LINE CONTROL = 904.27 LN 1 rJll 20 48.2 36 0 3.00 2.26 FULL 0.00445 6.8 6.8 899.33 899.61 904.27 904.60 4.94 4.99 0.00 0.00 W21 31.3 36 0 1.86 1.81 FULL 0.00188 4.4 4.4 899.61 900.22 905.14 905.45 5.53 5.23 0.00 0.00 IM2 29.2 36 0 1.74 1.75 FULL 0.00163 4.1 4.1 900.27 901.63 905.53 906.15 5.26 4.52 0.00 0.00 23 22.0 30 0 1.69 1.59 PULL 0.00245 4.5 4.5 901.68 902.93 906.21 907,02 4.53 4.09 O.OD 0.00 24 15.0 24 0 1.62 1.40 PULL 0.00375 4.8 4.8 902.98 904.13 907.12 908.33 4.14 4.20 908.76 908.59 ikA COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS KEPT: PC /RD4412.2 DATE: 10/14/01 PAGE 2 PROJECT: JURUPA AVENUE MASTER PLACATED STORM DRAIN PESIGNER: B.P.W. TESTA.DAT INS 0 D W DN DC FLOW SF -FULL V 1 V 2 FL 1 FL 2 HG 1 HG 2 D 1 D 2 TW TW NO (CFS) (IN)(IN) (FT) (FT) TYPE (FT /FT) (FPS) (FPS) (FT) (FT) CALC CALC (FT) (FT) CALL CK REMARKS 1!R 21 HYDRAULIC GRADE LINE CONTROL - 904.07 L-PI m 30 17.7 24 0 0.54 1.52 SEAL 0.00522 5.6 6.9 900.27 903.90 904.87 905.42 4.60 1.52 906.31 908.59 HYD JUMP iY X = 10.72 X(N) - 0.00 X(J) - 10.72 F(J) 7.66 D(BJ) 0.90 D(AJ) = 2.44 '+ 22 HYDRAULIC GRADE LINE CONTROL - 905.49 j 40 2.2 18 0 0.30 0.56 FULL 0.00037 1.2 1.2 900.85 903.51 905.49 905.52 4.64 2.01 905.54 908.01 r a+23 HYDRAULIC GRADE LINE CONTROL - 906.18 1 p i w - �_ �•. r '50 7.9 18 0 0.74 1.09 FULL 0.00482 4.5 4.5 (' 901.67 902.83 906.18 906.46 4.51 3.63 906.83 0.00 iY !� 24 HYDRAULIC GRADE LINE CONTROL 907.07 �A„� Q 2 T• 60 9.0 18 0 1.21 1.16 FULL 0.00625 5.1 5.1 902.93 903.47 907.07 907.60 4.14 4.13 908.08 907.72 All 4 HYDRAULIC GRADE LINE CONTROL - 904.18 + ti 70 15.5 18 0 0.87 1.41 SEAL 0.01855 8.8 9.0 900.38 905.00 904.18 906.41 3.80 1.41 907.92 0.00 HYD JUMP w X - 62.23 X(N) - 0.00 X(J) - 62.23 F(J) = 6.57 D(BJ) - 1.00 D(AJ) = 2.07 8 HYDRAULIC GRADE LINE CONTROL 904.79 UN ; •• = 1 �• 80 10.6 24 0 0.57 1.16 SEAL 0.00187 3.4 5.6 902.01 903.50 904.79 904.66 2.78 1.16 905.25 908.00 HYD JUMP X = 13.61 X(N) - 0.00 X(J) - 20.07 F(J) 3.17 D(BJ) - 0.87 D(AJ) 1.54 �20 HYDRAULIC GRADE LINE CONTROL - 905.96 Q, 90 6.4 18 0 0.51 0.98 SEAL 0.00316 3.6 5.3 903.38 907.35 905.96 908.33 2.58 0.98 908.84 0.00 HYD JUMP X - 18.44 X(N) - 0.00 X(J) - 18.44 F(J) 2.38 D(13J) - 0.54 D(AJ) - 1.68 rLA COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS KEPT: PC /RD4412.2 DATE: 10/14/01 PAGE 3 PROJECT: JURUPA AVENUE MASTER PLANNED STORM DRAIN DESIGNER: H.P.W. TESTA.DAT MLINE Q D W ON DC FLOW SF -FULL V 1 V 2 FL 1 FL 2 HG 1 HG 2 D 1 D 2 TW TW NO (CPS) (IN)(IN) (FT) (FT) TYPE (FT /FT) (FPS) (FPS) (FT) (FT) CALC CALC (FT) (FT) CALC CK REMARKS 4A jW 11 HYDRAULIC GRADE LINE CONTROL = 906.47 1 100 33.3 36 0 1.65 1.87 FULL 0.00212 4.7 4.7 902.83 903.13 906.47 906.57 3.64 3.44 906.99 908.63 ^A r r ry 12 HYDRAULIC GRADE LINE CONTROL 907.51 - L -110 39.3 36 0 1.66 2. FULL 0.00347 5.6 5.6 903.16 904.03 907.51 907.89 4.35 3.86 908.47 0.00 r �• - '� .C7 - JCS \� t5T A 1 hl L_� � �+ �R.UC. k.. Y AR1 >. r 13 HYDRAULIC GRADE LINE CONTROL 908.13 V ,, LI n1L L ,�. 120 38.2 36 D 1.63 2.01 FULL 0.00328 5.4 5.9 903.39 904.30 908.13 908.51 4.74 4.21 909.06 0.00 4W 35 HYDRAULIC GRADE LINE CONTROL 910.91 L 130 1.7 12 0 0.17 0.55 SEAL 0.00194 2.2 3.8 907.97 912.30 910.91 912.85 2.94 0.55 913.12 916.13 HYD SUMP X = 3.36 X(N) = 0.00 X(J) - 3.38 F(J) = 0.64 D(BJ) - 0.24 D(AJ) = 1.16 AA1 16 HYDRAULIC GRADE LINE CONTROL - 911.20 L� " A '1 4 l 190 2.7 18 0 0.31 0.62 SEAL 0.00056 1.5 3.9 907.01 911.31 911.20 911.93 3.39 0.62 912.22 915.14 HYD JUMP X - 28.69 X(N) - 0.00 X(J) - 35:42 PIJ) - 0.75 DISJ) - 0.36 D(AJ) + 1.02 V 1, FL 1, D 1 AND HG 1 REFER TO DOWNSTREAM END V 2, FL 2, D 2 AND HG 2 REFER TO UPSTREAM END X - DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE SO INTERSECTS SOFFIT IN SEAL CONDITION X(N) - DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE WATER SURFACE REACHES NORMAL DEPTH BY EITHER DRAWDOWN OR BACKWATER X(J) - DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HYDRAULIC JUMP OCCURS IN LINE F(J) - THE COMPUTED FORCE AT THE HYDRAULIC JUMP D(BJ) - DEPTH OF WATER BEFORE THE HYDRAULIC JUMP (UPSTREAM SIDE) D(AJ) - DEPTH OF WATER AFTER THE HYDRAULIC JUMP (DOWNSTREAM SIDE) SEAL INDICATES FLOW CHANGES FROM PART TO FULL OR FROM FULL TO PART HYD JUMP INDICATES THAT FLAW CHANGES FROM SUPERCRITICAL TO .- CRITICAL THROUGH A HYDRAULIC JUMP NJ 0 UJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE UPSTREAM END OF THE LINE NJ 0 DJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE DOWNSTREAM END OF THE LINE EOJ 10/14/2001 1S: 9 iyLA COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS KEPT: PC /RD4412.1 (INPUT( DATE: 10/15/01 �* PAGE 1 r PROJECT: JURUPA AND ETIWANDA �-i'TT • ~ � �� ' DESIGNER: B.P.W. LATA9.DAT 4 "CD L2 MAX Q ADJ Q LENGTH FL 1 FL 2 CTL /TW D W S KJ KE KM LC L1 L3 L4 Al A3 A4 J N 8 1 911.50 2 2 25.4 25.4 9.94 908.10 909.52 915.00 36. 0. 1 0.00 0.20 0.00 1 0 0 0 0. 0. 0. 3.00 0.013 +M a i it r r ,.X COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS KEPT: PC /RD4412.2 DATE: 10/15/01 a PAGE 1 Ar PROJECI: JURUPA AND ETIWANDA DESIGNER: B.P.W. LATA9.DAT A ALINE Q D W DN DC FLOW SF -PULL V 1 V 2 FL 1 FL 2 HG 1 HG 2 D 1 D 2 TW TW NO (CPS) (IN)(IN) (FT) (FT) TYPE (FT /FT) (FPS) (FPS) (FT) (FT) CALC CALC (FT) (FT) CALC CK REMARKS w r 1 HYDRAULIC GRADE LINE CONTROL - 911.50 2 25.4 36 0 0.64 1.62 SEAL 0.00145 3.6 6.5 908.10 909.52 911.50 911.14 3.40 1.62 911.93 915.00 HYD JUMP X - 2.83 X(N) . 0.00 X(J) 8.31 F(J) - 8.52 D(BJ) 1.29 D(AJ) 2.04 r w W API sP W AbA 1118 V 1, FL 1, D 1 AND HG 1 REFER TO DOWNSTREAM END V 2, FL 2, D 2 AND HG 2 REFER TO UPSTREAM END X - DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HG INTERSECTS SOFFIT IN SEAL CONDITION X(N) - DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE WATER SURFACE REACHES NORMAL DEPTH BY EITHER DRAWDOWN OR BACKWATER X(J) - DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HYDRAULIC JUMP OCCURS IN LINE F(J) - THE COMPUTED FORCE AT THE HYDRAULIC JUMP D(RJ) - DEPTH OF WATER BEFORE THE HYDRAULIC JUMP (UPSTREAM SIDE) W D(AJ) - DEPTH OF WATER AFTER THE HYDRAULIC JUMP (DOWNSTREAM SIDE) SEAL INDICATES FLAW CHANGES FROM PART TO FULL OR FROM FULL TO PART HYD JUMP INDICATES THAT FLOW CHANGES FROM SUPERCRITICAL TO SUBCRITICAL THROUGH A HYDRAULIC JUMP iw NJ ® UJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE UPSTREAM END OF THE LINE NJ ® DJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE DOWNSTREAM END OF THE LINE EOJ 10/15/2001 14: S m W ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1435 Analysis prepared by: Yil THIENES ENGINEERING 16800 VALLEY VIEW AVENUE LA MIRADA CA, 90638 (714) 521 -4811 FAX (714) 521 -4173 TIME /DATE OF STUDY: 7:49 4/12/2001 ---------------------------------------------------------------------------- ir * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** !* CAPACITY OF EXISTING 24" PIPE * AT JURUPA AND PACIFIC * * >>>>PIPEFLOW HYDRAULIC INPUT INFORMATION <<<< ---------------------------------------------------------------------------- PIPE DIAMETER(FEET) = 2.000 FLOWDEPTH(FEET) = 2.000 PIPE SLOPE(FEET /FEET) = 0.0078 rr MANNINGS FRICTION FACTOR = 0.013000 >>>>> NORMAL DEPTH FLOW(CFS) = 19.98 1 lilt u IF t APPENDIX C DETENTION ANALYSIS r ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** NON - HOMOGENEOUS WATERSHED AREA- AVERAGED LOSS RATE (Fm) AND LOW LOSS FRACTION ESTIMATIONS ,. (C) Copyright 1989 -99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1435 Analysis prepared by: r THIENES ENGINEERING 16800 VALLEY VIEW AVENUE +�+ LA MIRADA CA 90638 it (714) 521 -4811 FAX: (714) 521 -4173 * ** NON - HOMOGENEOUS WATERSHED AREA- AVERAGED LOSS RATE (Fm) AND LOW LOSS FRACTION ESTIMATIONS FOR AMC III: iYY TOTAL 24 -HOUR DURATION RAINFALL DEPTH = 6.50 (inches) SOIL -COVER AREA PERCENT OF SCS CURVE LOSS RATE TYPE (Acres) PERVIOUS AREA NUMBER Fp(in. /hr.) YIELD 1 15.70 0.00 52.( 32.) 0.742 0.963 TOTAL AREA (Acres) = 15.70 AREA- AVERAGED LOSS RATE, Fm (in. /hr.) = 0.000 AREA- AVERAGED LOW LOSS FRACTION, Y = 0.037 1 1W r Volume of ponding at node 145 Elevation Depth Area Volume E Volume E Volume Discharge (feet) (sq. ft.) (c.f.) (c.f.) (ac -ft) (cfs) 908.63 0.00 0 85 85 0.00 30.4 908.80 0.17 1000 480 565 0.01 31.6 909.00 0.37 3800 1190 1755 0.04 32.7 909.20 0.57 8100 2110 3865 0.09 33.8 909.40 0.77 13000 3020 6885 0.16 34.9 909.60 0.97 17200 3870 10755 0.25 35.9 909.80 1.17 21500 4700 15455 0.35 36.9 910.00 1.37 25500 2675 18130 0.42 37.4 910.10 1.47 28000 w� 0 �r r F TRACT No CIVIL ENGINEERING • LAND SURVEYING no. 16800 Valley View Ave. • La Mirada, CA 90638 • (714) 521 -4811 • Fax (714) 521 -4173 h h�� t'. .5 i.v, Z.10 5.1ti3 33.b 909 ( 3.T5Q X5.5 citU.uc� ' - �tla. acs .- ;M� a.1,S •t. 16800 Valley View Ave. • La Mirada, CA 90638 • (714) 521 -4811 • Fax (714) 521 -4173 SMALL AREA UNIT HYDROGRAPH MODEL (C) Copyright 1989 -99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1435 Analysis prepared by: THIEVES ENGINEERING 16800 VALLEY VIEW AVENUE LA MIRADA CA 90638 (714) 521 -4811 FAX: (714) 521 -4173 RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90 TOTAL CATCHMENT AREA(ACRES) = 14.40 SOIL -LOSS RATE, Fm,(INCH /HR) = 0.000 LOW LOSS FRACTION = 0.037 r TIME OF CONCENTRATION(MIN.) = 12.60 RATIONAL METHOD PEAK FLOW RATE (DEFINED BY USER) IS USED FOR SMALL AREA PEAK Q y ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED RETURN FREQUENCY(YEARS) = 100 .. 5- MINUTE POINT RAINFALL VALUE(INCHES) = 0.52 30- MINUTE POINT RAINFALL VALUE(INCHES) = 1.09 1 -HOUR POINT RAINFALL VALUE(INCHES) = 1.45 3 -HOUR POINT RAINFALL VALUE(INCHES) = 2.43 6 -HOUR POINT RAINFALL VALUE(INCHES) = 3.36 rY 24 -HOUR POINT RAINFALL VALUE(INCHES) = 5.63 ---------------------------------------------------------------------------- TOTAL CATCHMENT RUNOFF VOLUME(ACRE -FEET) = 5.96 �. TOTAL CATCHMENT SOIL -LOSS VOLUME(ACRE -FEET) = 0.79 TIME VOLUME Q 0. 12.5 25.0 37.5 50.0 (HOURS) (AF) (CFS) - ---------------------------------------------------------------------------- 14.11 2.2605 4.88 Q 14.32 2.3470 5.08 Q 14.53 2.4391 5.54 Q 14.74 2.5376 5.81 Q .. 14.95 2.6444 6.50 Q 15.16 2.7611 6.95 Q 15.37 2.8925 8.19 Q 15.58 3.0354 8.27 Q 15.79 3.2060 11.39 Q. 1d 16.00 3.4401 15.58 Q 16.21 3.9425 42.32 Q 16.42 4.3905 9.30 Q ; 16.63 4.5363 7.50 Q 16.84 4.6545 6.13 Q 17.05 4.7536 5.30 Q 17.26 4.8404 4.70 Q 17.47 4.9183 4.28 Q 17.68 4.9896 3.95 Q 17.89 5.0558 3.68 Q ---------------------------'- -------------------------------------------- FLOW - THROUGH DETENTION BASIN MODEL im SPECIFIED BASIN CONDITIONS ARE AS FOLLOWS: CONSTANT HYDROGRAPH TIME UNIT(MINUTES) = 12.600 P+ DEAD STORAGE(AF) = 0.00 iw SPECIFIED DEAD STORAGE(AF) FILLED = 0.00 ASSUMED INITIAL DEPTH(FEET) IN STORAGE BASIN = 0.00 INFLOW V effective depth ------- - - - - -- (and volume) AN detention .... V. ......... .. basin < - -> outflow L g .. ------- - - - - -- stora e F basin outlet V----- - - - - - 10 OUTFLOW r DEPTH -VS.- STORAGE AND DEPTH -VS.- DISCHARGE INFORMATION: TOTAL NUMBER OF BASIN DEPTH INFORMATION ENTRIES = 9 RR *BASIN -DEPTH STORAGE OUTFLOW * *BASIN -DEPTH STORAGE OUTFLOW * (FEET) (ACRE -FEET) (CFS) ** (FEET) (ACRE -FEET) (CFS) * 0.000 0.000 0.000 ** 0.170 0.010 28.000* 0.370 0.012 30.400 ** 0.570 0.040 31.600* * 0.770 0.090 32.700 ** 0.970 0.160 33.800* r * 1.170 0.250 34.900 ** 1.370 0.350 35.900* * 1.470 0.420 36.900 ** ,. BASIN STORAGE, OUTFLOW AND DEPTH ROUTING VALUES: INTERVAL DEPTH (S- O *DT /2) (S +O *DT /2) �- NUMBER (FEET) (ACRE -FEET) (ACRE -FEET) 1 0.00 0.00000 0.00000 2 0.17 - 0.23298 0.25298 3 0.37 - 0.25180 0.27580 4 0.57 - 0.23421 0.31421 5 0.77 - 0.19376 0.37376 6 0.97 - 0.13331 0.45331 7 1.17 - 0.05285 0.55285 8 1.37 0.03847 0.66153 9 1.47 0.09979 0.74021 - - - -- WHERE - S= STORAGE (AF)_O =OUTFLOW(AF /MIN.);DT =UNIT INTERVAL(MIN.) DETENTION BASIN ROUTING RESULTS: NOTE:,COMPUTED BASIN DEPTH, OUTFLOW, AND STORAGE QUANTITIES OCCUR AT THE GIVEN TIME. BASIN INFLOW VALUES REPRESENT THE AVERAGE INFLOW DURING THE RECENT HYDROGRAPH UNIT INTERVAL. l! TIME DEAD - STORAGE INFLOW EFFECTIVE OUTFLOW EFFECTIVE H H YYI (HRS) FILLED(AF) (CFS) DEPTH(FT) (CFS) VOLUME(AF)' ---------------------------------------------------------------------------- *+ 14.110 0.000 4.88 0.06 9.05 0.003 14.320 0.000 5.08 0.06 9.57 0.003 14.530 0.000 5.54 0.06 10.20 0.004. 14.740 0.000 5.81 0.07 10.90 0.004 14.950 0.000 6.50 0.08 11.82 0.004 15.160 0.000 6.95 0.08 12.91 0.005 15.370 0.000 8.19 0.10 14.54 0.006 15.580 0.000 8.27 0.10 15.82 0.006 15.790 0.000 11.39 0.13 18.89 0.008 16.000 0.000 15.56 0.32 25.86 0.012 n 16.210 0.000 42.32 1.46 33.33 0.415 16.420 0.000 9.30 0.20 32.61 0.010 a`(S �,EtA�rit 16.630 0.000 7.50 0.09 21.40 0.005 16.840 0.000 6.13 0.07 13.08 0.004 17.050 0.000 5.30 0.06 10.97 0.004 17.260 0.000 4.70 0.05 9.60 0.003 17.470 0.000 4.28 0.05 8.62 0.003 17.680 0.000 3.95 0.05 7.90 0.003 ---------------------------------------------------------------------------- 17.890 0.000 3.68 0.04 7.33 0.003 .. 1 H H r r r r r A r �w rr r IYYI MI! Volume of ponding at nodes 181 & 191 Elevation Depth Area Volume E Volume E Volume Discharge (feet) (sq. ft.) (c.f.) (c.f.) (ac -ft) (cfs) 907.33 0.00 0 40 40 0.00 10.0 907.60 0.27 300 180 220 0.01 12.5 907.80 0.47 1500 450 a 671 0.02 13.7 908.00 0.67 3000 975 1646 0.04 14.8 908.20 0.87 6750 1765 3410 0.08 15.9 908.40 1.07 10900 2770 6181 0.14 16.8 908.60 1.27 16800 3880 10060 0.23 17.7 908.80 1.47 22000 TRACT No A CIVIL ENGINEERING • LAND SURVEYING no. I A in 16800 Valley View Ave. • La Mirada, CA 90638 • (714) 521 -4811 • Fax (714 ) 521 -4173 t : _. f � 777 -- 9 9.3 90� :2 _ 1: 4 _ C.bc7 1bg Jos,(,. w t $<o = n .4 9 oe,b 90% bo 16800 Valley View Ave. • La Mirada, CA 90638 • (714) 521 -4811 • Fax (714 ) 521 -4173 TRACT No. CIVIL ENGINEERING • LAND SURVEYING no. r H H 16800 Valley View Ave. - La Mirada, CA 90638 - (714) 521 -4811 • Fax (714) 521 -4173 h _ I�35o�; 41 �tol. Z'15 • 5 8 `t o .4 908 bQ h 906 i2" 16800 Valley View Ave. - La Mirada, CA 90638 - (714) 521 -4811 • Fax (714) 521 -4173 SMALL AREA UNIT HYDROGRAPH MODEL rr (C) Copyright 1989 -99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1435 Analysis prepared by: THIENES ENGINEERING r 16800 VALLEY VIEW AVENUE LA MIRADA CA 90638 +• (714) 521 -4811 FAX: (714) 521 -4173 r 3 w+ RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90 TOTAL CATCHMENT AREA(ACRES) = 6.70 SOIL -LOSS RATE, Fm,(INCH /HR) = 0.000 LOW LOSS FRACTION = 0.037 TIME OF CONCENTRATION(MIN.) = 6.70 RATIONAL METHOD PEAK FLOW RATE (DEFINED BY USER) IS USED FOR SMALL AREA PEAK Q USER SPECIFIED RAINFALL VALUES ARE USED RETURN FREQUENCY(YEARS) = 100 5- MINUTE POINT RAINFALL VALUE(INCHES) = 0.45 30- MINUTE POINT RAINFALL VALUE(INCHES) = 0.93 r " 1 -HOUR POINT RAINFALL VALUE(INCHES) = 1.25 3 -HOUR POINT RAINFALL VALUE(INCHES) = 2.10 6 -HOUR POINT RAINFALL VALUE(INCHES) = 3.00 rr 24 -HOUR POINT RAINFALL VALUE(INCHES) = 6.50 - ---------------------------------------------------------------------------- TOTAL CATCHMENT RUNOFF VOLUME(ACRE -FEET) = 3.24 TOTAL CATCHMENT SOIL -LOSS VOLUME(ACRE -FEET) = 0.39 TIME VOLUME Q 0. 7.5 15.0 22.5 30.0 (HOURS) (AF) (CFS) r --------------- ------------------------------------------------------------- 14.10 1.4628 2.03 Q w 14.21 1.4817 2.05` Q 14.32 1.5010 2.14 Q 14.44 1.5210 2.19 Q 14.55 1.5417 2.30 Q 14.66 1.5632 2.36 Q 14.77 1.5856 2.50 Q 14.88 1.6090 2.58 Q "" 14.99 1.6337 2.76 Q Wi 15.11 1.6596 2.87 Q 15.22 1.6873 3.12 Q 15.33 1.7168 3.27 Q 15.44 1.7472 3.33 Q 15.55 1.7790 3.56 Q 15.66 1.8151 4.26 Q 15.78 1.8563 4.66 Q 15.89 1.9077 6.47 Q 16.00 1.9785 8.87 Q 16.11 2.1435 26.90 Q im 16.22 2.2920 5.28 Q 16.33 2.3342 3.87 Q 16.45 2.3680 3.45 Q 16.56 2.3977 2.99 Q 16.67 2.4237 2.66 Q • 16.78 2.4472 2.43 Q 16.89 2.4688 2.24 Q 17.00 2.4888 2.09 Q 17.12 2.5084 2.15 Q 17.23 2.5277 2.04 Q «+ 17.34 2.5461 1.95 Q 17.45 2.5638 1.87 Q "^ 17.56 2.5807 1.80 Q 17.67 2.5970 1.74 Q 17.79 2.6128 1.68 Q 17.90 2.6281 1.63 Q ---------------------------------------------------------------------------- ri ------------------- FLOW- THROUGH DETENTION BASIN MODEL SPECIFIED BASIN CONDITIONS ARE AS FOLLOWS: CONSTANT HYDROGRAPH TIME UNIT(MINUTES) = 6.700 ., DEAD STORAGE(AF) = 0.00 SPECIFIED DEAD STORAGE(AF) FILLED = 0.00 tl ASSUMED INITIAL DEPTH(FEET) IN STORAGE BASIN = 0.00 INFLOW V detention basin ., ------- - - - - -- V OUTFLOW effective depth (and volume) V............ outflow storage basin outlet DEPTH -VS.- STORAGE AND.DEPTH -VS.- DISCHARGE INFORMATION: 8 TOTAL NUMBER OF BASIN DEPTH INFORMATION ENTRIES = *BASIN -DEPTH STORAGE OUTFLOW * *BASIN -DEPTH STORAGE OUTFLOW * (FEET) (ACRE -FEET) (CFS) ** (FEET) (ACRE -FEET) (CFS) * 0.000 0.000 0.000 ** 0.270 0.010 10. * 0.470 0.011 12.500 ** 0.670 0.020 13.700* * 0.870 0.040 14.800 ** 1.070 0.080 15.900 * 1.270 0.140 16.800 ** 1.470 0.230 17.700 ----------------------------------------------------------------- BASIN STORAGE, OUTFLOW AND DEPTH ROUTING VALUES: INTERVAL DEPTH {S- O *DT /2) {S +O *DT /2) NUMBER (FEET) (ACRE -FEET) (ACRE -FEET) 1 0.00 0.00000 0.00000 2 0.27 - 0.03614 0.05614 a 3 0.47 - 0.04668 0.06868 4 0.67 - 0.04322 0.08322 5 0.87 - 0.02829 0.10829 6 1.07 0.00663 0.15337 a. 7 1.27 0.06248 0.21752 8 1.47 0.14833 0.31167 WHERE S= STORAGE (AF);O= OUTFLOW(AF /MIN.);DT =UNIT INTERVAL(MIN.) --------------------------------------------------------------------------- DETENTION BASIN ROUTING RESULTS: NOTE: COMPUTED BASIN DEPTH, OUTFLOW, AND STORAGE QUANTITIES r. OCCUR AT THE GIVEN TIME. BASIN INFLOW VALUES REPRESENT THE AVERAGE INFLOW DURING THE RECENT HYDROGRAPH UNIT INTERVAL. a TIME DEAD- STORAGE INFLOW EFFECTIVE OUTFLOW EFFECTIVE r (HRS) FILLED(AF) (CFS) DEPTH(FT) (CFS) VOLUME(AF) r -------------------- ------------------------------------------------------- 14.102 0.000 2.03 0.09 3.40 0.003 14.213 0.000 2.05 0.09 3.35 0.003 14.325 0.000 2.14 0.09 3.44 0.004 14.437 0.000 2.19 0.10 3.56 0.004 r 14.548 0.000 2.30 0.10 3.69 0.004 14.660 0.000 2.36 0.10 3.83 0.004 14.772 0.000 2.50 0.11 3.99 0.004 14.883 0.000 2.58 0.11 4.17 0.004 14.995 0.000 2.76 0.12 4.39 0.005 15.107 0.000 2.87 0.13 4.62 0.005 15.218 0.000 3.12 0.14 4.92 0.005 ' 15.330 0.000 3.27 0.15 5.25 0.005 15.442 0.000 3.33 0.15 5.43 0.005 15.553 0.000 3.56 0.16 5.67 0.006 15.665 0.000 4.26 0.19 6.43 0.007 15.777 0.000 4.66 0.21 7.33 0.008 15.888 0.000 6.47 0.33 9.19 0.010 16.000 0.000 8.87 0.65 12.15 0.019 16.112 0.000 26.90 1.34 15.34 0.169 16.223 0.000 5.28 1.01 16.32 0.067 16.335 0.000 3.87 0.17 10.96 0.006 1ll.�v L�S 16.447 0.000 3.45 0.15 6.02 0.006 - CAIN GL) 16.558 0.000 2.99 0.13 5.29 0.005 16.670 0.000 2.66 0.12 4.64 0.004 r 16.782 0.000 2.43 0.11 4.19 0.004 16.893 0.000 2.24 0.10 3.84 0.004 "* 17.005 0.000 2.09 0.09 3.56 0.003 17.117 0.000 2.15 0.10 3.49 0.004 17.228 0.000 2.04 0.09 3.44 0.003 qA 17.340 0.000 1.95 0.09 3.28 0.003 17.452 0.000 1.87 0.08 3.14 0.003 17.563 0.000 1.80 0.08 3.02 0.003 17.675 0.000 1.74 0.08 2.91 0.003 17.787 0.000 1.68 0.07 2.81 0.003 17.898 0.000 1.63 0.07 2.72 0.003 - - - - -- , ---------------------------------------------------------------------- 1 a APPENDIX D CATCH BASIN CALCULATIONS CURB OPENING BASIN CALCULATION SHEET Basin Located At GD h = height of catch basin opening •?Q ' H = Maximum depth of ponding at catch basin .Co- ' Use Table "L" to yield t. v cfs/l.f. «,ci at 112 = S. I cfs ( kw )/(Table "L" result) = S 1 / I.(a = 3 =minimum length of opening required to intercept Q. Length of Catch Basin Recommended Basin Located At O h = height of catch basin opening •`4 ' H = Maximum depth of ponding, at catch basin •�' Use Table "L" to yield 1.(,, cfs /l.f. Q , 42 L. atO= Z.L cfs ( ,� /(Table "L" result) minimum length of opening required to intercept Q. Length of Catch Basin Recommended r TRACT No J�- 45 , Jim CIVIL ENGINEERING • LAND SURVEYING no. F 16800 Vallev View Ave. • La Mirada. CA 90638 • (714) 521 -4811 Fax (714) 521 -4173 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01101199 License ID 1435 w Analysis prepared by: THIENES ENGINEERING 16800 VALLEY VIEW AVENUE if LA MIRADA CA, 90638 (714) 521 -4811 FAX (714) 521 -4173 ----------------------------------------------------------------- TIME /DATE OF STUDY: 11:37 10/15/2001 ---------------------------------------------------------------------------- rr * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * FLOW INTERCEPTED IN PROPOSED W * 28' WIDE CURB OPENING CATCH BASIN * * >>>>FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION<<<< ---------------------------------------------------------------------------- ik Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 35.90 GUTTER FLOWDEPTH (FEET) = 0.67 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN WIDTH(FEET) = 28.00 >>>>CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 54.5 » >>CALCULATED ESTIMATED INTERCEPTION(CFS) = 25.4 rl 1 r �+ HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1435 Analysis prepared by: THIENES ENGINEERING 16800 VALLEY VIEW AVENUE Yli LA MIRADA CA, 90638 (714) 521 -4811 FAX (714) 521 -4173 ------------ V --------------------------------------------------- TIME /DATE OF STUDY: 11:38 10/15/2001 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * FLOW INTERCEPTED BY PROPOSED * 14' WIDE CURB OPENING CATCH BASIN * * >>>>FLOWBY - CATCH - BASIN - INLET CAPACITY INPUT INFORMATION< « ---------- ----- ----- ----------------------------------------------------- w Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 10.50 GUTTER FLOWDEPTH(FEET) = 0.67 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN WIDTH(FEET) = 14.00 w >>>>CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 15.9 _ >>>>CALCULATED ESTIMATED INTERCEPTION(CFS) = 10.0 r 1 CIA on ii TRACT No r r r CIVIL ENGINEERING • LAND SURVEYING no. r r 16800 Valley View Ave. • La Mirada, CA 90638 • (714) 521 -4811 • Fax (714) 521 -4173 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1435 Analysis prepared by: THIENES ENGINEERING 16800 VALLEY VIEW AVENUE .+ LA MIRADA CA, 90638 (714) 521 -4811 FAX (714) 521 -4173 r ----------------------- ----------------------------------------------------- TIME /DATE OF STUDY: 11:30 8/13/2001 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW INTERCEPTED BY CATCH BASIN �+ * AT NODE 152 * * ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** — >>>>FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION <<<< r. ---------------------------------------------------------------------------- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 11.60 GUTTER FLOWDEPTH(FEET) = 0.66 BASIN LOCAL DEPRESSION(FEET) = 0.17 FLOWBY BASIN WIDTH(FEET) = 7.00 >>>>CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 22.0 >>>>CALCULATED ESTIMATED INTERCEPTION(CFS) = 6.2 1 HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1435 Analysis prepared by: ■. THIENES ENGINEERING 16800 VALLEY VIEW AVENUE LA MIRADA CA, 90638 (714) 521 -4811 FAX (714) 521 -4173 • ---------------------------------------------------------------------------- TIME /DATE OF STUDY: 11:29 8/13/2001 DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * DEPTH OF FLOW APPROACHING * CATCH BASIN AT NODE 152 * * r >>>>STREETFLOW MODEL INPUT INFORMATION <<<< +r ---------------------------------------------------------------------------- CONSTANT STREET GRADE(FEET /FEET) = 0.005000 ++ CONSTANT STREET FLOW(CFS) = 11.60 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 35.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 3.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.035000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.035000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.68 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 2.00 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) = 0.03125 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) = 0.16700 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS ---------------------------------------------- r STREET FLOW MODEL RESULTS: ----------------------------_------------------------------------------------ STREET FLOW DEPTH(FEET) = 0.66 HALFSTREET FLOOD WIDTH(FEET) = 15.15 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.78 PRODUCT OF DEPTH &VELOCITY = 1.83 * 1 a W y � TRACT No J� r r r � ,fZCr 1 CIVIL ENGINEERING • LAND SURVEYING r. r no. 16800 Valley View Ave. - La Mirada, CA 90638 • (714) 521 -4811 - Fax (714) 521 -4173 rr TRACT No ON CIVIL ENGINEERING • LAND SURVEYING r r wr r A ar 1 A no. 16800 Valley View Ave. • La Mirada, CA 90638 • (714) 521 -4811 • Fax (714) 521 -4173 w (1111 r .r CURB OPENING BASIN CALCULATION SHEET Basin Located At R h = height of catch basin opening A ' 1 H = Maximum depth of ponding at catch basin •C'l ' H/h= J.) 'l ' = 1.'A' Use Table "L" to yield 06 cfs /l.f. at (R= 3,C) cfs (Q ) /(Table "L" result) = 3.O / 1•tO = 1.� = minimum length of opening required to intercept Q. Length of Catch Basin Recommended Basin Located At S h = height of catch basin opening 0. 1/ ' H = Maximum depth of ponding at catch basin A f3 ' H/h = 0- 43'107/7/ ' = 1.17 ' Use Table "L" to yield Z. `/ cfs /l.f. boo at 333 = X? cfs ( roo ) /(Table "L" result) 2. Ll = ll, 2 = minimum length of opening required to intercept Q. Length of Catch Basin Recommended = Iq ' • /0 6 H •6 ' y z 75 2 • 6 7 , f 40 1-5 ti _ _ Q .3 e E, R ® e I. o ./ o .2S3 0 0 0 .04 o .25 .02 z t a . /5 0/ ./S t N/ ' ' TABLE L r • -30- Cf CU(O . r r• .. APPENDIX E ' HYDROLOGY MAP AAI wr 41 m WeIL -p I nv. I MILE TN 't IMN 0 1000 0 no 4 FEET 13%* 10 Printed from TOPOI 01997 Wildflower Productions (www.topo.co o�lpsvrL- W'fbvoL-oG MP L i I h \\ � ■ ^ WI � \, \