Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Falcon Ridge at Summit - I 15
t HYDROLOGY STUDY FOR FALCON RIDGE TOWN CENTER SUMMIT AVENUE AT THE 1 -15 FREEWAY FONTANA, CALIFORNIA Prepared for REGENCY CENTERS 555 SOUTH FLOWER STREET SUITE 3500 LOS ANGELES, CA 90071 Prepared By. DEVELOPMENT RESOURCE CONSULTANTS, INC. 8175 E. Kaiser Blvd. Anaheim Hills, CA 92808 (714) 685 -6860 Project No. 01 -900 June 28, 2002 ` HYDROLOGY STUDY FALCON RIDGE TOWN CENTER — FONTANA, CALIFORNIA TABLE OF CONTENTS SECTION 1.0 NARRATIVE Introduction Project Description Hydrology Methodology Summary SUSMP Compliance SECTION 2.0 HYDROLOGIC INFORMATION SECTION 3.0 EXISTING ON -SITE HYDROLOGY CALCULATIONS EXISTING ON -SITE HYDROLOGY MAP SECTION 4.0 PROPOSED ON -SITE HYDROLOGY CALCULATIONS PROPOSED ON -SITE HYDROLOGY MAP SECTION 5.0 EXISTING OFF -SITE HYDROLOGY CALCULATIONS EXISTING OFF -SITE HYDROLOGY MAP SECTION 6.0 DETENTION BASIN MAP / DETAIL SECTION 7.0 DETENTION BASIN HYDROGRAPHS SECTION 8.0 DETENTION BASIN SIZING / OUTLET REPORTS SECTION 9.0 FLOW THROUGH DETENTION BASIN CALCS 01 -900 Hydrology Report.doc HYDROLOGY STUDY FALCON RIDGE TOWN CENTER — FONTANA, CALIFORNIA J Lam' I% 17 i� DRC 01 -900 Hydrology Report.doc SECTION 1.0 NARRATIVE Introduction Project Description Hydrology Methodology Summary J Lam' I% 17 i� DRC 01 -900 Hydrology Report.doc HYDROLOGY STUDY FALCON RIDGE TOWN CENTER — FONTANA, CALIFORNIA Introduction ' The Project Site is located on approximately 39.5 acres of land, at the northeast corner of the intersection of Summit Avenue and Interstate 15, in the City of Fontana, California. The proposed commercial/retail development (Project) will not change the overall drainage patterns for the Site, and will drain to a proposed concrete box culvert (see Proposed On -Site Hydrology Map, Section 4.0) that will replace an existing open trapezoidal concrete channel located along Summit Avenue, (see Existing On -Site Hydrology Map, Section 3.0). This box culvert is being installed to allow construction of parking areas and driveways over the channel. Project Description Existing Site Conditions. The Project Site consists of barren, agricultural land with few trees. The site topography is uniformly sloped from the north to south, with storm water runoff discharging overland into an existing concrete drainage channel, located along the northern right - of -way of Summit Avenue. The existing drainage channel serves a regional watershed that includes the Site property, and flows in a westerly direction. Proposed Site Development The proposed commercial development includes retail shops, E restaurants, asphalt parking lots, and landscaped areas. The entire Project Site drains to on -site catch basins and inlets that will collect runoff and convey the flows to a proposed 8 -foot w x 4- foot h, reinforced concrete box. The ultimate discharge point for the proposed reinforced concrete box will be an existing box culvert that conveys flows under the I -15 Freeway, (see Existing On -Site Hydrology Map, Section 3.0) The existing concrete drainage channel along Summit Avenue does not have the required capacity to handle the regional watershed in a developed condition. As part of the City of Fontana Master drainage Plan, the existing concrete drainage channel is going to be replaced with a concrete box culvert to be located under Summit Avenue. This box culvert is in addition to the 8 -foot w x 4 -foot h box culvert being constructed on the Regency parcel. The future master plan box culvert will be designed to service the regional watershed in the developed condition. In the interim period prior to construction of the Summit Avenue box culvert, developing sites upstream of the existing concrete drainage channel will be required to construct temporary detention basins to reduce developed storm water discharges to rates equal to 90% of existing conditions peak storm water discharge rates. Hydrology Methodology The proposed development storm water analysis will be performed in accordance with the San Bemadino County Hydrology Manual. A 2, 10, 25, and 100 year storm event analysis will be performed for the pre and post developed site conditions. ' Time of concentration and peak runoff values for the site were developed using Advanced Engineering Software's (AES) Rational Method Hydrology Computer Program Package for San Bemadino County. Detention Basin analysis was performed using a combination of Hydraflow for Hydrographs, version 5.0, by Intellisolve, and AES Small Area Unit Hydrograph and Flow Through Detention Basin Analysis software modules. D 01 -900 Hydrology Reporc.doc HYDROLOGY STUDY FALCON RIDGE TOWN CENTER - FONTANA, CALIFORNIA ' To reduce developed conditions storm water runoff to 90% of the existing condition rates, detention facilities will be utilized to temporarily detain the difference in pre versus post ' developed runoff rates. Detention facilities will be located off -site on the property to the north of the proposed Site. This area is being used under a license agreement with the upstream property owner for a maximum duration of 5 years. Storm water runoff from the adjacent property to the north will be detained in three separate basins, each receiving runoff from one -third of the 90 acre upstream property, and reduced prior to passing through the proposed commercial Site. The combined reduced detained flows from the adjacent property to the north, and the un- detained Site flows will discharge into the proposed 8 -foot w x 4 -foot h drainage channel at rates equal to or less than 90% of the existing conditions, for the retail site. 0 Adjacent P «nfr C;td' - RPfPr to SPetinn 5.0 for Calculations 1V G1L Stone Design an d analysis of proposed drainage and detention facilities will include the following: First, Total Site Peak the determination of the existing and proposed runoff generated from the 39.5 acre Site property. Allowable Pond The difference between 90% of the existing rate and proposed rates will determine the detention Concentration min requirements and reduction of runoff necessary for the "off- site" 90 acre property to the north. Each Basin cfs _ Second, runoff rates for the off -site property will be calculated to determine the inflow into off - 2 site detention basins. Third, detention facilities will be designed to reduce the off -site flow 86.82 discharge through the Site. Lastly, the on site and off site flows will be combined to determine 20.86 total off -site runoff. 16.67 Summary 51.69 The proposed Project Site is 39.5 acres. The following table summarizes the results of the Project 25 Site existing conditions analysis, proposed conditions analysis, and required detention. 186.63 Project Site - "On- Site" - Refer to Sections 3.0 and 4.0 for Calculations 46.15 Storm Ex. Conditions 90 0 /0 Ex. Conditions Prop. Conditions Total Required Individual Basin Peak Runoff cfs Peak Runoff cfs Peak Runoff cfs Storage cfs Storage cfs 15.93 Year 2 52.34 47.11 71.34 24.23 8.08 83.28 10 1 74.73 67.26 110.28 43.02 14.34 128.00 48.17 16.06 F_ 25 1 88.70 79.83 100 1 105.46 94.91 162.99 68.08 22.69 0 Adjacent P «nfr C;td' - RPfPr to SPetinn 5.0 for Calculations 1V G1L Stone - vu -vaw Time of Total Site Peak Peak Flow to Allowable Pond Year Concentration min Runoff cfs Each Basin cfs _ Outflow cfs 2 17.63 86.82 28.94 20.86 10 16.67 155.08 51.69 37.35 25 16.38 186.63 62.21 46.15 100 15.93 249.85 83.28 1 60.59 Each of the three detention basins (see Detention Basin Map, Section 6.0) are designed to reduce the peak inflow to levels equal to or less than the allowable outflow. All three basins have the same volume and outlet structure design. The proposed temporary detention basins have been designed in accordance with Appendix A of the San Bernadino Hydrology Manual. The total storage volume for each basin is approximately 58,500 cubic feet. The basins have a maximum depth of seven feet. Outlet structures for each basin have been designed so that under various storm year events at least one foot of freeboard is maintained. The outlet structure for each basin consists of a three foot diameter riser with a 24" diameter circular orifice located at the basin floor elevation and a 1.5' wide slotted weir located 1.5 feet from the top of the riser. The top of 01 -900 Hydrology Report.doc HYDROLOGY STUDY FALCON RIDGE TOWN CENTER - FONTANA, CALIFORNIA th riser shall remain open and serve as an emergency spillway for the basins. The top of riser has an elevation 1.5' feet lower than the top of the basin. The riser outlet consists of a 24" storm drain pipe. The following table is a summary of the inflow and outflow from one of the three basins. Values are equivalent for each of the three basins. n i Dete 1D_c r +^ eP,.r;nne 0; n 7 0_ R_0 and 9.0 for Illustrations and Calculatio IMULL L7GJU1 Storm - i�b ►va w uvv............. Basin Peak Inflow -, • . -, - -- Allowable Basin - -- - - - Basin Peak Depth of Water in Freeboard Year cfs Outflow cfs Outflow cfs Basin feet feet 2 28.94 20.86 17.17 3.17 3.83 10 51.69 37.35 26.33 4.63 2.37 25 62.21 46.15 35.54 5.11 1.89 100 83.28 1 60.59 1 51.21 1 5.81 1.19 Site unoff Runoff Storm Peak "On- Site" Peak "Off- Peak "Off- Site" Total "Off- Site" "On -Site" + Year Proposed Site" Existing Basin Discharge Discharge (cfs) "Off-Site" Runoff cfs Runoff cfs Runoff cfs cfs 47.11 Runoff 2 71.34 86.82 17.17 51.51 122.85 10 110.28 155.08 26.33 78.99 189.27 25 128.00 186.63 35.54 106.62 1 234.62 100 162.99 249.85 51.21 153.63 1 316.62 Runoff Corr 411JV11 Storm 90% Existing Existing Peak Allowable Total Total "On -Ste" + Year "On- Site" "Off - Site" Peak Runoff (cfs) "Off- Site" Runoff Runoff cfs Runoff cfs cfs 2 47.11 86.82 133.93 122.85 10 67.26 155.08 222.34 189.27 25 79.83 186.63 266.46 234.62 100 94.91 249.85 344.76 316.62 In conclusion, through the incorporation of three off -site detention basins utilized to reduce off - site runoff rates passing through th project site, the total storm water runoff rate meets the criteria of being equal to or less than the 90% of existing flows. In addition, on -site storm drain systems have been designed to accept drainage from the upstream 90 acres as a developed site using a residential scenario with 8 -10 dwellings per acre (2 cfs/acre). If the 90 acres is developed prior to the implementation of the master drainage plan box culvert in Summit Avenue, the 3 detention basins can be enlarged to mitigate the increased storm water flows. it � . M - 01 -900 Hydrology Report.doc HYDROLOGYSTUDY FAT !`nN nmrrF TnWN ('T.NTF.R _ FnNTANA_ CA1.1VnRNTA SECTION 2.0 HYDROLOGIC INFORMATION 01 -900 Hydrology Report.doc I r t . 4 -7� a R K 07 q A .. ... 7 - IV. .IovRc .4mOLpO7:MAP A D j . kkA� 1. Av r L I. - A 'p - 0. x 7 p _ 'rf r 1h 44- e. N V. 1. I v- , 5' 1� ti % j r" o a A .7r V U'. 1. u, U I % k I I r Y! Z A Te.. e .,,Y. • I 1?1:_ 'Y ffey >51 ; M_�Ul • WN t. 'D/ ll.r CZ7 GEOLOOV y rt, D 1 . o ?s 6�fo s RCE� 497t'. SCS- SURV t ,V 7 �Af f 1. ... . .. ..... 0 Z.4 _:r I v Y14": q _ 7 A C, A. 5 : - 7 4' Y; is 4. q A J" ii it k c l 7., L ------ - Z El % A �h.•i'• '�' / [ {, !' _ '^ - �•� crua -y t"':••" ___- `f.:.:� lL"'� - _ 'Si r I_ - „ 't ��'�� "' • t • h �,_—` _� y 4• t. :l ,! - A _ •'�� _ , • 'p,`f _ •.5, -.-L c, .. l i .ran - -- ,+- T�� --�., 9 -- ^�" _ _ • t t A r �4_ eA—F . . . . . . J 1 z7 J 11 a mislE m - MV; z N ve- tl . 0 in • 77 A SAN BERNARDINO COUNTY HYDROLOGY MANUAL -A F7 .7 1371 J A . ..... "T INDEX MAP 1 7- 7, A Ti —Zl T •r. L �= �- 1 4 V 8 ...... A .J I ZAP J_ - lo A- it 7- Zv A r 7 L[GE.0 SOIL GROUP 13OUNOARY A SOIL GROUP DESIGNATION SCALE 1-40P00 BOUNOARY OF INDICATED SOURCE SCALE REDUCED BY 1/2 HY DROL OGIC r)r-%ie-% nit c GROUP KAAD C - 26 FOR SOUTHWEST—A AREA ci,iior r-i-A _`N NN C-2 SAN BERNARD NO COUNTY C-4 INDEX MAP 1 7- 7, A Ti —Zl T •r. L �= �- 1 4 V 8 ...... A .J I ZAP J_ - lo A- it 7- Zv A r 7 L[GE.0 SOIL GROUP 13OUNOARY A SOIL GROUP DESIGNATION SCALE 1-40P00 BOUNOARY OF INDICATED SOURCE SCALE REDUCED BY 1/2 HY DROL OGIC r)r-%ie-% nit c GROUP KAAD C - 26 FOR SOUTHWEST—A AREA ci,iior r-i-A n �w D fl [,I Curve(1) Numbers of HYdroloeic Soil -Cover Complexes For Pervious Areas -AMC 11 Soil Group Cover Type (3) Cover (2) NATURAL COVERS - Barren 73 E6 91 93 (Rockland, eroded and graded land) Chaparral, Broadleaf Poor 33 70 80 E3 (Manzonita, ceanothus and scrub oak) Fair 40 63 73 91 Good 31 37 71 79 Chaparral, Narrowleaf Poor 71 E2 as 91 (Chamise and redshank) Fair 33 72 81 S6 Grass, Annual or Perennial Poor 67 79 86 E9 Fair 30 69 79 E4 Good 33 61 74 90 Meadows or Cienegas Poor 63 77 E3 33 (Areas with seasonally high water table, Fair 31 70 30 E4 principal vegetation is sod forming grass) Good 30 39 71 7E Open Brush Poor 62 76 24 U (Soft wood shrubs - buckwheat, sage, etc.) Fair 46 66 77 93 Good 41. 63 73 ai Woodland Poor 43 66 77 33 (Coniferous or broadleaf trees predominate. Fair 36 60 73 79 Canopy density is at least 30 percent.) Good 23 33 70 77 Woodland, Grass Poor 37 73 E2 E6 (Coniferous or broadleaf trees with canopy Fair 44 63 77 32 density from 20 to 30 percent) Good 33 3E 72 79 URBAN COVERS - Residential or Commercial Landscaping Good 32 36 69 73 (Lawn, shrubs, etc.) Turf Poor 33 74 93 37 (Irrigated and mowed grass) Fair 44 63 77 32 Good 33 3E 72 79 AGRICULTURAL COVERS - Fallow 77 96 91 94 (Land plowed but not tilled or seeded) SAN BERNARDINO COUNTY CURVE NUMBERS FOR HYDROLOGY MANUAL PERVIOUS AREAS r- r, Figure C -3 (I of 2) 0 TABLE C.2. Fm (in /hr) VALUES FOR TYPICAL COVER TYPES SOIL GROUP COVER TYPE A p (1) A B C D NATURAL: Barren Row Crops (good) Grass (fair) Orchards (fair) Woodland (fair) URBAN: Residential (1 DU /AC) Residential (2 DU /AC) Residential (4 DU /AC) Residential (10 DU /AC) Condominium Mobile Home Park Apartments Commercial /Industrial 1.0 0.41 0.27 0.18 0.14 1.0 0.59 0.41 0.29 0.22 1.0 0.82 0.56 0.40 0.31 1.0 0.88 0.62 0.43 0.34 1.0 0.95 0.69 0.50 0.40 0.80 0.78 0.60 0.45 0.37 0.70 0.68 0.53 0.39 0.32 0.60 0.58 0.45 0.34 0.28 0.40 0.39 0.30 0.22 0.18 0.35 0.34 0.26 0.20 0.16 0.25 0.24 0.19 0.14 0.12 0.20 0.19 0.15 0.11 0.09 0.10 0.10 0.08 0.06 0.05 NOTES: (1) Recommended a values from Figure C -4 (2) AMC II assumed for all Fm values (3) CN values obtained from Figure C -3 (4) DU /AC =dwelling unit per acre C -16 • ■■■■■■.■■■■■■■■ :i :iC�::::::!1R Ea i►rl� ■■■► 11111::'! ■ ■ ■ ■ ■ ■ ■ ■ ■■ ■■■■■ N UNND■4=1 .. 11111C:::::� ■ 011"Momooft 1 MENNEN ------ - - - - -- ■■.■ p os l u 1010 s in ...m i■ ■ �■ :\ ■■■q.■ ■o■ 1■ ■W �■ ENO Mon i'iiililii! ill 11 :C::::: :::C:: `: :: 0111111111 C: .■■......■.■... =8111=:1111111 : ■1 = ■ ■ ■ 10 ■ ■ ■■■ ■■ Manz 4 � ,.. • r , R5 =ME • i, 1.; - .W I I .R W R6W I 1 } - + } 4• { . . -S, `i } — — - - - - -- •fit , r I • I I 4 — I — I N •1D ! z I _ . I _ j P 4 W 1 i o • • R2 1 14 r I 1- r R. , RIE ��a • R2E - - `� • � r ! ' r � .7 1 NEWERiA . I _ — ; � ) - — 1-- 1 J _L — 1- .� r _ 91 'y� — !• I ' - t I ' 1 -;- IIII- • - rt - t— T —I ` -- I I =� _ ! I 1 1 1 - .,164•45" - T4N ,,.... • .4 _, I I I — �- - t 1 — \ — r 1 --• - l - — - ' /#- - -- — I > �� _� -- , I I — — I ` I 1.1 � j \ I:—' 1--- ' - - - - --r -1"---t-:_. , • • __ i 1 ` ` uir ! I I 1 -•• ►' 1 � - I - } \ • — r r— t — - ` s ,,,-„Jr- - I - - I- • - i I I l I wu r < ..• .. < f ■ ( k•-• I 1.2 < • • , i : .9 �' T' - -- L — 1 \ t < • r, . R e J� r \ e s �p r I 'f — ._ ., o t —-1-- 1 —— -- - I- +- - - - • 3 - - / — �. r RSN� - 1 - l - - --! - ' — . 1 1 1 • S - � ' • 3 .. . T - - -I- , I '-- • r — t•-• L + A JA •i 4I I, I. I , ;: ?pr °• I 'e , t I T — — i 'r ° i • 1 — I I L ll ` ,• ; s ` ! +<- t T r--,-,-1-7:// �- J - ~ 1 -0 / / w.. I r . I N — 3 I i r � i { -N d , - � . "<N— • „� , L E is a • + c• r ,-- - 1 - � . , •� I � , � ' I �i �. / I r ' 1 � � I - I - b f- - LT _ — I .� '� — •� I - ( N � -4- pri - _. I r 1 �. I ,, 1.4 11 t, I f I '" ! ' �� "QP �1 .3 I S 1 .° / ` rt �� _ "� — I ' ^ <. - � • , �: — t kY d I , �I �� j� �'._ • 1�` �. _ ( i / !- T L. A .. ` i'• ,� 1 — }• ' T2N - f I - • 1 G � I --- - — ' — ...F.,• ••i M - O , , I r 1 1.2 1 I / } • . t om •(� y —� -'- •f t 's• • 1- I • ; :�. • - \`\ lOR I � I • _L — — o % . _ y /` C I 7._ I � L I d 1 3 " ...i (L c l R�c �i. • , - - - • .4.. _ tT - I _ �_ 7:1:L•44::::---: — — L ` � +E + 4 1.0 - i. "«� �— cR[■n ) .... ` � 'b s• I � �3.g, \ ) r I V't <.- �' s.. �•• - - _ xry _. s. • 51 1.4 1 �- ," � Ir - 7— • 011111111111111 ~I d 1.7 ', c.. � ^ �'`I rte • . : - 1 � + -. _ I` J _ 4 \ ' • I I 1 1.4 • � U 1 . .tl - r S �t _� I • I '• I — ` -. - - .� - - - ! � - — �. I % - , . - L. I '..'". I • -- � -- - r- O FD ' fi � ' -• Is - . °_ --' `� ` I • _ -- `3 �'s,_� v`'GI 11 L� L2 �- SMINOS I 1 / I /. • I L♦ l • t 5,... _ utt[. 1 _I • - L r , I 3 y_ - I f ! • I ! 1V 1.1 \ a �[ - "1h 'C,. J ! ,/ • L ,�, -1` - -- i .. I ! I % r _ : mill a` "•/ _ t .- I I T - r ?% - I '` - T - '�c1 -- • • mam �_ �'����� " . �� I ,- I� -- �� 1 __! I� • _ -+ •h . i • ,. • I I • . �rM `'• ,�MLf>6 .5-,..- s / _ -• — - � H a 1 �'.. -- • E a '.7 ' ' - Fe _ - �.'/ r - ! Jr-4/ O , �� ON Mpg• _ �,���. T ON E •� �\ I_ •t '��, ! Vi �� _ ����'� - / _ .� ; — — ' ■ - 'i — REDLANDS ��. I ,.:.. r •.• ..,. 1.1 .., I•tS • t • • • 1 • ! � , , ', CR EST TONE ®® ..,,o, _ i• ' Jae. T.... • • ,1 limiPinfil III ' IA.. t. e • AN - : .,::-:. ..,) • T ®� ® �,� " yVNyF I Mp'' I • J ' �� 7 4RAN0 T[MACF � � 7........,'',,,.."1 ..'i. y; • ... , �� I I /I 1 I - A •. ' .6.„.60 TLS -- [ - - � . 1104.--..,,AFINE/01.- / S- (. -- y - - S A N I ■ERNA DIMO �1 < ., \ :��` y y:' I H .j ,4, • • N. • RIE 1 R E "i,., RIV[RSIOL COUMT � i I I 1• • +• • • 1 I 1 P i 0 SP ~.• • 1 • pr.. I ;w -.. I R3 ' ..��,. .a .jc RIW .. m _s_ / : i z. , RSIDE . I . 1 i, i ► I lL i SAN BERNARDINO .COUNTY • I - - • ' __1 .:. _ _ 1 _ • ' • '-'' F� OOD CONTROL' DISTRICT 1 Si �R R 5W: T 3 S 6 5.M • - - -- ., REDUCED DRAWING VALLEY AREA s I <� SCALE I tt ISOHYETALS y' a * / i, ' •' - D I = MILES � sEO ON u YEAR • A ATLAS 3 HOUR • - - ' `- � •: + SAN BERNARDINO COUNTY .. '° . Ant I , i•ft . , R7w • ._ • Rs ,p - - HYDROLOGY MANUAL LEGEND- . • • . wrnovEOBFL • • •• / .8 ISOLINES PRECI PtTAT10N (INCHES) DATE SG6E FII..E, N0. DawG. Na �J 1982 i'•2�t wno - 3 �t t2 , • R - I I _._..__ _ - 9 1 L♦ 15 .2`. - tale _ 1.7 I I . I 1 - -- — I — - .. _ _ Lis " Lt,• _ ,i 7ipilimop 1 i., T4N I •s RB _ �— R7W , , R6W I I 1 R5W I '4W �.:i o ( •err --R-2W. I- -t �� + rsrIS r,ai+ =o I.e 1 _I _ '_ _ ! — 1 �o RI `� ` ''• R2E I � ��eee T4 N - : 1 -•-; — — — I— ilt , \ \ , / 1 I MIT I I. ..'•5 / � �w - - —1 - — ! • 4 � • ■ ' 2 ` ` � , ! — • C I .,.. ■ , • o I � !. Ar � � ' ! / _ .7 \\ I , ? N I .I N T' r— �- 1 \` t- >- e. _ _ t • O 1 I I wun p* «w r • I 2 I _ 1 \�� NI, -t- / t - t f 9 ' 'O - t I --....-e' T �� f - t .. {_ —1 I I0•• I ' 1 I 1 ' I.9 1 I p -r- I ` ` REIGIOµ ! — — r � _ fir !' -,- ._ Ir . — VE k n • T — _ J I I u I I I t x•• c.0 — S• _ L111 i I '1,.. , 4 1 , ;1 . -!: ,,, 1 :.. ✓ $ ! I , � - I - - - I — i • r - I -- — ' - - ' t ,_0;;\ p ' _ : ° . -L-- , . f � 1 r \ I ' . f 6 � - IL 1 ! 19 ! i ^.2 I 22 • I• ' J' 1. +,y,4 ' ' p; YE �� �, __ .. - i 1/ , . ) , ! i °i • 0 -I '' `' a ; — - - - -- ♦ _ . + rt -1 �• �' 2 I 2.1 e / ' �l — T 3 N • _ ,rya - '- t_ ►��.._ -� a, -c LE /• / �J / / 1 y -�-. _- 1- ;_ -� -- 't, I_I 1 I 41 — 4-- pm ` +� `` � t -) r e, I -I _ k — • �,�.. —i . - '� _ i �� ?:v ' _ _ _ 9 VI__ - - II ( li � L. A�eowX • - QQ�•' ' •, • : „ .: \. I • ,, _±. i i T - I - ! - / G � i s I.. rlq. 1 .` r_ I c 1 6 _ I x,51 � T e. __ I _, — •�/ A _ .. _ _ • '� °• Le �� — i �s La4- n �ti M j �.v 2 N f . AK te I I , .�..�' - LS • _ wl� —' — _� C I ,a •- , — �� , • - c I z. fir, a I �z i ' �� . .� I •• �: ! ! , I 1 I lw �.a'�2 i - - r' �• / 1 . • ' 1 _ ' .1 ! . i . "L I nillialliir T — 1.e -- '� - E T.. . Y - 2. : ... t, 1 ! 1 ` .. 1. 0 ~M1.. .1 .ANTOM — I I a• � I / - - •••• I rME-.... 1. -!, MI IIIII ,e.: 1►' _1 �• -' r �� <•••, fi r • - pb A. Y 5� � �� � Ti•`• TIN ^ • • ,.;:.• • -- i..- • - - - 7 . i. - 1 — • -"-I -- I 4, — i . I 1 .....alleilligISPEIN.11.1.11.11M111111111111111111111111111rAllienilli -; ' , ..i, . ..•( 1- - --, —4 --. . : _' 1 4 _ _ _ I i . : ‘ • :. 1111TIMAIKIWOHE61 . . ; . : I / . i 11111111/111,111111111111111111Mmt• ADI20 111,11,1VIM. ,' ...:`‘. cl A .� ONTANr' m�rE , l�IM %AS.. . • � "hit t� � �� ON 4 _ i m® IQ ! 'MM. ■ .4".a �,,.A COLTION� ���� 1 _� I.. .. ©1iSG��� : REDLANDS.. I. r \�,)S ph. ° • • � !. .1 ± I _ ®® _. as •o` `- ° - -.... rt ' V -4-..--, - • is . ._.J.,.di irmi giOailL111111111W- - _� TUCAI ►A , ! I Le �l® 114 111111/MailL I • � PAWN �� } _ l - _ • �� SAN I BMA DINO OUN f , ,w �� R I I . • ; R 2 t' • 0 RP- T 2 S r ` V _ I / we floc COUN • c A.n . ..r RryEq •, gfror I - REGION ♦ - - - - PaP _Y' _ . - ,,. - j"- _ . . '' . • • ' s \ 1P ' ..� � � �"� R4W R2W RL a; , • + — I — — _ _ . 1. _ � — I -- .. _ . . SAN BERNAROINO CCLNTY I .. ! _ _ ► � ,. C � - FLOW CONTROL DISTRICT' .. I, ° `aI,X,L' REDUCED DRAWING-. • VALLEY AREA • . T3S— - — 1 ' �I • . :N , i I • t` is , . M, _�,�.• SCALE I = 4 M ILES ISOHYETALS . •K �.,. ' : BASED ON Y qo - 1 00 YEARF'HOUR �I -- !- ° -. ..r. ♦'•i.i • __ 4 IWW1 ■ _ •, , " .,�� 130 - S AN BER COUNTY • 8 W •W HYDROLOGY MANUAL C S ISO (INCHES) DATE '`= ►. f� i M Y Iry fflr • OS pRECIPITATI ,sr°.. , ma . rut mg em N ( r•. 1992 f • sea •wi0-r s 4112 �wr •tire • 41 B FIGURF R -4 e t c c c i v c i 3.5 3.3 3 3 2.5 2.5 N W S V Z Z = 2 2 F— a W J 1.58 U. 1.5 (IHZJ 1.5 Z I.07 i (pA2 I 0.5 Q5 0 0 2 5 10 25 50 100 RETURN PERIOD IN YEARS NOTE 1. FOR INTERMEDIATE RETURN PERIODS PLOT 10 —YEAR AND 100 -YEAR ONE HOUR VALUES FROM MAPS, THEN CONNECT POINTS AND READ VALUE FOR DESIRED RETURN PERKM FOR EXAMPLE GIVEN ID -YEAR ONE HOUR • 0.95" AND 100 -YEAR CNE HOUR 0 1.60", tS -YEAR ONE HOUR i 1.19 REFERENCE s N 0 A A ATLAS t. VOLUME =r- CAL.,19T3 RAINFALL DEPTH VERSUS SAN BERNARDINO COUNTY RETURN PERIOD FOR HYDROLOGY MANUAL PARTIAL DURATION SERIES D -7 FIGURE D -2 .I. 1 1 •l- -' - ' 1 i I _ I ! = I - : � . e ...Ae- = - ' `,: c r ' I _ -- r - • t -- 1 - r -- T / LUCERNE - i .. 6 •, I I I W I R • )D I I R5 , 4W 1 1. 0 ,� 1 - - p- r -- - RIW �i'+ Is RIE ° "�•• R2E 'SAr i I •y, I I i 1- r I 1ef h� I I T4N A"r,•io,lo ! • War. t I -- `1 I I I - I ' ' , ST I , . I D o =.•' I I I I I' I . "1 \' I i I a,u ..el�llw.r A it I I . I I I ;a _ - \�'¢ . J I or A Q�• o I f i I I 1 q �� S \ I -•- • -�I- r •„� r r - I - I I - .- - 7- _' :'� = •- y-,. I __ XX E i lC•..� It T I _/4 �1( I •� I , :1 l ' � I \' I I 1 16 �\ T - - - 11 7 C `• -� -I I • j _ °'° .. en., '� I---c .yr..• •••� r. r.a �� :��'Y •I- a /- .WTk_'I - ' L:L- .- I - __ I _- ' I i +' r�d 1 1 •l- -' - ' 1 i I _ I ! = I - : � . e ...Ae- = - ' `,: c r ' I _ -- r - • t -- 1 - r -- T / 4• I i I ,. ,. - � - - L Nr 'SAr i I •y, 1 4.'S I - I I ! L° i 1- r I 1ef 'ear ( I I I I A"r,•io,lo ! • War. t I I I - I ' ' , + , L RRONR[AO RAaD.'I L wr N - ' M., lT roa S \ I _ e iZSR r {� ••- f..y. I __ XX E i lC•..� It T I _/4 �1( I II l ' • i 1 I I r t ` EUC AKDI,DA, - 11 7 C `• -� -I I • j _ °'° `I � . ar• u a.o _ S • �... •. ' .yr..• •••� r. r.a �� :��'Y REAR L4 IVIILA/E �T I c..l� _ ' d ,�.. ,• a , I II. 6M01R I \ j ca °.w • 'I al I 9 1 .-.. -'i - _ J _ - 1 t.',� -•6.S - _ I - I - -_�' - } .o t e.V I I ! I I.. �I r Y1LLn• / r - ! -- � � • - '��6:0 7.0� .a. - , , ') . L � MCI '.- -�!•`- 'p •- Y� -I •- -' T ' �.... • ' -- �+�:•.,. � - r I , � � • r `� `l: '� h ' ' L, Y / I .. � S rRlMU. . �� � l �' t{' I � AR , � —I- - f `� - - f� �� $' i I . \ '? - ,; i!'�•- ! �' !t. a - zF . - - -! r- - �• I � _. rt� -_ i N -4 }- °' •`� �: r - °`t. 17' '` °� TIN I - I - - - {-S I \ l -- _ - 1�- I t, ra,,: 1 h. �J :_ 31. `� ',+ l'Cwtm ' I ... 1 . I L1• TT<LE 4.S a - , / = p ri►ss -_ •A / �� I I I - _ 4.9 y ma c• _gig%. - �\ .! - 7 - - - '• - - - - - -• •- -i - t - ' '• I 'tr`• z0.. , }1 • w- -- r h- i •'[ - --- -. I 3 i• ' Al I 4 IW '� I - •� 3 J - - rs -- 'I - '+ _ •�'_'�. - 3.0 \ ,�. •� - "'•r -} _ 1 I— ... • UPLAND r y , ; I I *: 1 Y y S y • +� '• Y r •� S "� I I• •AR..hO I I` \ I I I I I II 'I '•I I ...i _ we - -- Y - TcLx _;_ - - ..� _ • ., . ,. �. _�.:: .. RIAL F TANA� - t. °,A' °s" L- -- - d a` - \ ! + - - - - - TIS ON TAR 10 I T A" COLTO ran �''`•''• - -� :�,....,� . - - .- „- - = , 3 _•._ - 'C R DLA _. • . _ _ -- -I - ' 1 - ' E I I It ' . - LOYA LINDA - _ y /. 1 ' s .' ^ .' .,. e 6 0 rT _ _ I ° b•- R i ; «.,•.. of MORE ' � \, < - • I D• ..a .°� I a . ... �_• - ! I 1 - - 5.5 I I _ t' _ -1 I ':F < `3< I � � I i I I ' b .., . i i. I = `' s 9 . A TCRRff YYCAI/ 7T i — — ...r C N I N 0 ��- - r - - I - - - �= ' i - - + ; I t - -- -L I �aNA Owo ouN� ... - ••�• } \4•° .r % 4.b ': RIE I I I R 2 E li I " ` '' ! �` ^.o Rirf E OOOMT 1 3.0 •00' S- T2 - - - _ - - - - O• - - - �- ' - ° •° -r - -- �- w�eR ^' - i- 1 ' - • ` I - �- I -- , S __ ..,, r _ •� 1 .�� s '/ _'.. ..a . + - �3 .0 _ - �_ _- I -- -• a J - I" 1. _ - -` ... ' -r - r 1.6 � - - - . - - - °- - ,_ - - • <� _ pD:f 3.0 ! I I I I •'� I I I 2. 0 - R 2.0 L 7 R 2 W \ �,�" I I I SAN BERNARDINO C OUNTY FLOOD CONTROL DISTRICT r• . > a ! ,� r'. ' 1 '' -A -� �� -' - - -- -� - — '- -� - -- ! - 4- - 5w REDUCED DRAWING VALLEY ARE T3S } — — 1 ' I O o " YRI` ' I , IEL C ,. };, ` '" O _ _ - ' SCALE I 4 MILES . 190 i'1YETALS I � - - -_ _ •T- - -1 - _- _ X2 2 Y EAR 24HOUR -� t�.;;, SAN BERNARD {NO COUNTY .ASLOONY. :,.+: ;- A - - / ; J�;D l- _1 LEGEND- I ff OT 1 - ; I R 1 , .; R7. R6W I HYDROLOGY MANUAL ().o ISOLINES Pf1 ECIPITATION (I NCMES) drE SCALE Mn wM. an 1982 r•ala wwo ! w I2 4 T4N 11 .;- R8W - - ,_ PN[LAN i R6 - T r -- ' +- - 4 {, _ - _ "� wAL R 7 I R 5 } W I, ` }- -} wLacr - r R IW R2E - -I— r -� — — ?- _ T —I +- r _ _� _ _ _ I 4 .o _ — T4 N ' I 1 I r CST MIT I I I v — -. --••' _ I ' _' f \ I I •Y ' . I M S.0 I I •I I I ' i '�. CnR' ' a r ---4 I ••* '-' _ I 5 3 ' — 01 OV I 5.0 1 I \ r I g I• I I I �F' j w,tar • P 4 + 6.0 -_ t, I I 'a - 1 ,R %� ' I — I J ! \ R•�•LESNIRc . I .) 4 .� r i - a �. .0 T 12 / 2.0 I a ,rE •s3" • I '� `' ' �, y I f OP. `' ".�, { e< [• - 1 •I�. /- J„TN. -� i +' 1 I I ' ' 2 � 18. t r - < � l'' _ .0 I � I • �: r ,,�'.�a I , � / i I _ 1 I — � I .� — . \ � • i A i s -f- :� I i — I- = i •�` I ;' '+ a I I ' I _ _ - "- �' -- — .T'�'i' �+ —, ' , -_ ;_ - \ ' " �,„i f I I � d9, D.o — 1 [' * <• a - �'r I d I �' — �•i — — ) - — I-- I ! I I " � I ' � ..� 3° 1 3 �,` 'fi o '< — - _ — '' •-� — — .L _1 I � J /L I _ -J \_ •••r \ +j - 4" _ z . i - 1. _ < •e, I I 1 19.0 � I �, � I I I e , ^ , <e„ • , - - " .<•[•,•� ' _ I ( • L. ARROwNEAD �•.•' 1. •'e.e°.a 'L�(.< _ 1 E 3,•I� I J .a- .�' ".E F :,` '�l" _ — / - -1 — I �' I 1 I 1 --� _ _ I — l 1 — I ' I-:� : \�� oj[r!' - - 1 / i _ F� I :[D.uiL _ I — I• _ I •�. c " - u - �,f I o ERY — — — I — — _ ' I I - � - + -- `•, �, d / )�I , cetsr - - - - - � - - 190 T - \ .---• T<E"I P, - _ CR[anlM[ I � , - ERwI� Ll n� , I - -� 1 N .� __ � - L - T � y JCtL _�hC• \ �' fEw : - ' , - L'i 5 ~ ,r .�.(�., --- • r-[ e+.0 e... .- �•" - •�MCf� .. •� .a `7SJ �►'/'��!t � __ of 4 - . •�• - I J 1 � _ Y� — d - Y \ — 1 (.. - l - I �-t IB.O ! sNOW r— r 1�1,� _- - 1 ,� t s.0\ r '` •�/ { LI �.., / ' INB aPA1MCdl r ' 1. 1 ARLOAa / /• , ..!•_� _ :i - ^; . r C\[EEN 14.0 T I I I 12 - _ - - _ P� c t i \� i : : -- - — t'-- -4 e�E I— I _'• ;`� - -1f • " - - � . • :! ;% •I .. � _ �{ • `" - • 120. • -' : • --� _ _ - ,_ r �/- I I <_<..: . oa.l ' I � I .1'_ \I : �•'� ; �_ .v•.,. '.. I: , `C'� ..y- !. � f• !: (4° ./ , - , -_ / �. • ° L flATf — —� - "'t - •r •' -- )-- - 1 .:� _ ,:<, _ \ �� i ,� .)l'.,.°« J cvt,, aj i / -`' - - - - -r • -- r •� -'t� -' Y e7' _ r -- �- • ARTOM I ay ', I - 10.0 - - T I N I I 1 N D• -„ � ° -� — I ,: UP • 3v _ y �;r �` rl, SAN I' "� I ' 1 A 'E'I ,. 1.� I CLAREMONT ALT 0_ e• : ` i ' I e` <, • I I I _' - - ' b!� _ cucA NOA .:.;:�'• FONTANA -" Aa• • L ' 1 $ I 8.0 • r . RAs + O N TA R i O 1 s • ` - ( - -' r - •' t - -�',- '•�; y'' L Th \ , I — OLTON a[c - - ; _ - +•. ...- - _, _ _ 19.0 ` \' - _. REDLANDS a.c. .[ � _ 1 a� � I t TI$• / oN 10.0 ( i1NO� - / 3' ' ... T - 7 • "`! - I t 1 .. `I 1 '• _ - tea a•.o .., _ ' "'icy I _ I l � - -.4-•� - I -. -- - - `.\ rr7 / / / "` •.. 1 i 'D•. ...k '.yi •' ` CREST OR[ t�,_' _ ,ao _ __ _ e,n n[ •1 P �s.Oh " r ' K.0 L • {'�'. ;-j �4, J.0 T d• <[ � i s: .�`a. +uNy I yal•'a • TER •A•.o, I �.; / \� ... OAK [N �. . CHINO oRANI I1 a -• ,' •a , I •,r.,• , I ,,�,Qv: \ •_ - - r< 7.0 ��R =CT/ I T2$ - 1 \• / ♦ 4 e I - _f - - - BAN I B ERNA DIRO . ouNYr °• " ww, ). • \°° .. T ��� RrviRaloc . couNr - - ' I I R I' / Y ,�. — — - - - ' - . _ T IIQG 3 % ' ki t ,.. .. ,..I,3 - - � -� -� .e<on ..a • -- �- — -- • — '� --! — °l 1 • / : / •-•�/ R4W i R s.o R2W \ • ° / RI - R 5 W a.o I I l i t {r:D00 COhiROL• '+- T3 _ ° °i_ / REDUCED DRAWING SCALE 1� 4 MILES fi C A SAN BERNARDINO COUNTY I i I R8 ; - - -- — -1 W ' R6W HYDROLOGY MANUAL L Ho c ISOLINES PRECIPITATION (INCHES) SAN SERNARDINO COUNTY F mQ CONTROu I TRI T - ..VALLEY AREA ISOHYETALS X. '= IOO.YEAR- 24" HOUR. USED ON U.SD.c, !}CAA. ATLAS .2,1973 APPFKNM !r l FL FER DATE SCALE ME w a ' oRWG.NO. 1982 1 "•L WR -1 6 of 12 e E t i 0 0 t c i e (10.5 t0 10 9 9 8 $ W U 2 2 7 H a W D J J u. (o 2 Q � Q: S r l S q 4 3 3 2 5 10 23 50 100 RETURN PERIOD IN YEARS NOTE 1. FOR INTERMEDIATE RETURN PERIODS PLOT 10 -YEAR ANO 100 - YEAR ONE NOUR VALUES FROM MAPS, THEN CONNECT POINTS AND READ VALUE FOR DESIRED RETURN PERIM FOR EXAMPLE GIVEN 10 -YEAR ONE HOUR■ 0.95 AND 100 -YEAR CNE HOUR • 1.60 , 2 5 - YEAR ONE HOUR 91.16 REFEREN ATLAS E, VOLUME =- CAL.,1973 RAINFALL DEPTH VERSUS SAN BERNARDINO COUNTY RETURN PERIOD FOR HYDROLOGY MANUAL PARTIAL DURATION SERIES D -7 FIGURE 0-2 1 HYDROLOGY STUDY FALCON RIDGE TOWN CENTER — FONTANA, CALIFORNIA J SECTION 3.0 EXISTING ON -SITE HYDROLOGY CALCULAT IONS EXISTING ON -SITE HYDROLOGY MAP Ll� 1 1 01 -900 Hydrology Report.doc #ffff+ltffff #RRtfffff ffff ♦ +ftfflflf*ff tf +!!ffff +ff ffff lfffffff \lfffrlwlff lff RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1510 Analysis prepared by: DEVELOPMENT RESOURCE CONSULTANTS, INC. 8175 E. KAISER BLVD. ANAHEIM HILLS, CA 92808 P:(714)685 -6860 F:(714)685 -6801 f ♦• ♦1f Rf 1f rltf f........... DESCRIPTION OF STUDY *rrrrfwf wffwlf+rlrrlrrtrwr * Regency Commercial Property * Existing Conditions Analysis * 2 Year Storm ++ +frf \rfff rffffrt #+ +f♦1t♦ff11f/t1t•tt♦iftl :rRf rfftff ++f r + ++ +ffR• +tr!• + + ++ FILE NAME: 01900EX2.DAT TIME /DATE OF STUDY: 08:45 06/30/2002 ......___: .......................:_.......... ............................... USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ............................................. ............................... - -*TIME -OF- CONCENTRATION MODEL*-- USER SPECIFIED STORM EVENT(YEAR) 2.00 SPECIFIED MINIMUM PIPE SIZE(INCH) 18.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE . 0.95 *USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) . 1.070 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.580 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 2.00 1 -HOUR INTENSITY(INCH /HOUR) = 0.7135 SLOPE OF INTENSITY DURATION CURVE = 0.6000 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* *USER - DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLAW MODEL* HALF- CROWN TO STREET- CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT- /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (PT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLAW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth _ 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth)* (Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER - SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED fflRf +fl +f#ff#fffffff \f if lffffff\tf tf ffff ►fffffitfrfft +f +f !#ffff!!! !ffflff if FLOW PROCESS FROM NODE 0.00 TO NODE 1.00 IS CODE _ 21 ---------------------------------------------------------------------------- » >>> RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA.. _______________________________ INITIAL SUBAREA PLOW - LENGTH (FEET) _ 200.00 ELEVATION DATA: UPSTREAM(FEET) = 1592.00 DOWNSTREAM(FEET) = 1587.00 Tc = K *((LENGTH** 3.00) /(ELEVATION CHANGE)] **0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.141 * 2 YEAR RAINFALL INTENSITY(INCH /HR) = 2.207 SUBAREA Tc AND LASS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA FP Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) NATURAL POOR COVER "BARREN" A 1.29 0.42 1.00 78 9.14 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) . 0.42 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) _ 2.08 TOTAL AREA(ACRES) = 1.29 PEAK FLOW RATE(CPS) = 2.08 •ffflff \1k ♦tlffffffflf ltf tiff tf# tfffff• R1ffi+ f ♦lf +ffffffrtfffff #ffttRffffttf FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW - << ___________________________________________ ___ °_.... ...................._.. MAINLINE Tc(MIN) = 9.14 * 2 YEAR RAINFALL INTENSITY(INCH /HR) = 2.207 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL POOR COVER "BARREN" A 11.25 0.42 1.00 78 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.42 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap _ 1.00 SUBAREA AREA(ACRES) . 11.25 SUBAREA RUNOFF(CPS) = 18.13 EFFECTIVE AREA(ACRES) = 12.54 AREA - AVERAGED Fm(INCH /HR) _ 0.42 AREA - AVERAGED Fp(INCH /HR) = 0.42 AREA - AVERAGED Ap . 1.00 TOTAL AREA(ACRES) 12.54 PEAK FLOW RATE(CFS) = 20.21 frffffr\1ff 1f 1\ fflf•fff•t11r\Rfffttffllfffff•f •ffftltlf ffflff! +•f tf ffff !ffff FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 51 ---------------------------------------------------------------------------- s» >.COMPUTE TRAPEZOIDAL CHANNEL FLOW « «< »» >TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « «< .................. ... ...... . ....................................... ..... :. :. ELEVATION DATA: UPSTREAM(FEET) = 1587.00 DONNSTREAM(FEET) = 1572.00 CHANNEL LENGTH THRU SUBAREA(FEET) . 500.00 CHANNEL SLOPE = 0.0300 CHANNEL BASE(FEET) = 5.00 "Z" FACTOR _ 33.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 0.50 CHANNEL FLAW THRU SUBAREA(CFS) = 20.21 FLAW VELOCITY(FEET /SEC) . 3.08 FLAW DEPTH(FEET) = 0.38 TRAVEL TIME(MIN.) . 2.71 Tc(MIN.) = 11.85 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 3.00 _ 700.00 FEET. ffff ►f•f+ffff !!ffff +!ffflff +f \lR +fi +!!ffff•! tf llfffffRfffffffflRf #ff ;Rfff efr FLAW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE _ 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK PLOW « «< ............................................. ............................... MAINLINE Tc(MIN) = 11.85 * 2 YEAR RAINFALL INTENSITY(INCH /HR) = 1.888 SUBAREA LASS RATE DATA(AMC II): M M M M M r M M M e M a M® r DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CH NATURAL POOR COVER •BARREN" A 26.96 0.42 1.00 78 SUBAREA AVERAGE PERVIOUS LASS RATE, Fp(INCH /HR) = 0.42 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 26.96 SUBAREA RUNOFF(CFS) = 35.73 EFFECTIVE AREA(ACRES) 39.50 AREA - AVERAGED PM(INCH /HR) . 0.42 AREA - AVERAGED Fp(INCH /HR) = 0.42 AREA - AVERAGED Ap . 1.00 TOTAL AREA(ACRES) = 39.50 PEAK FLOW RATE(CFS) . 52.34 ffffff lfflffffffflfffff fff if /* 1111} ffff} ff fff f11ff /}ff1}fff11ff 11f}f 1f ♦11#f} FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 51 ---------------------------------------------------------------------------- » >> COMPUTE TRAPEZOIDAL CHANNEL FLOW« «< » »>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « «< ____ .... ____ ........................................... _.................... ELEVATION DATA: UPSTREAM(FEET) = 1572.00 DOWNSTREAM(FEET) = 1560.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 500.00 CHANNEL SLOPE = 0.0240 CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 33.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 0.50 __ »WARNING: FLOW IN CHANNEL EXCEEDS CHANNEL CAPACITY( NORMAL DEPTH EQUAL TO SPECIFIED MAXIMUM ALLOWABLE DEPTH). AS AN APPROXIMATION, FLOWDEPTH IS SET AT MAXIMUM ALLOWABLE DEPTH AND IS USED FOR TRAVELTIME CALCULATIONS. CHANNEL FLOW THRU SUBAREA(CFS) = 52.34 FLOW VELOCITY(FEET / SEC) = 4.87 FLOW DEPTH(FEET) = 0.50 TRAVEL TIME(MIN.) = 1.71 Tc(MIN.) = 13.56 = = >FLOWDEPTH EXCEEDS MAXIMUM ALLOWABLE DEPTH LONGEST FLOWPATH FROM NODE END OF STUDY SUMMARY: TOTAL AREA(ACRES) _ EFFECTIVE AREA(ACRES) _ AREA - AVERAGED Fp(INCH /HR) PEAK FLOW RATE(CFS) _ END OF RATIONAL METHOD ANA 0.00 TO NODE 5.00 . 1200.00 FEET. . ............. ............................... 39.50 TC(MIN.) = 13.56 39.50 AREA - AVERAGED Fm(INCH /HR)= 0.42 0.42 AREA- AVERAGED Ap = 1.00 52.34 .YS I S ! ♦ #lfflif fff iffftffff iffillff ♦f ffff \f \4 #ftf#if tffff \1f4 }ffffff lff4kffffffff\ RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -2001 Advanced Engineering Software (see) Ver. 8.0 Release Date: 01/01/2001 License ID 1510 Analysis prepared by: DEVELOPMENT RESOURCE CONSULTANTS, INC. 8175 E. KAISER BLVD. ANAHEIM HILLS, CA 92808 P:(714)685 -6860 F:(714)685 -6801 ffff 1f 111}lfff♦ :ffffff if :♦ DESCRIPTION OF STUDY * * * f•!kf fff if if fff \ffffff# Regency Commercial Property Existing Conditions Analysis 10 Year Storm ffff fff /ff }f if if ffffff if ff •ffffiffffff#ffffflf if ♦ffffff lffffffl\tffl4f if if FILE NAME: 01900E10.DAT TIME/DATE OF STUDY: 09:09 06/30/2002 ............................................. ............................... USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ............................................. ............................... -- *TIME-OF- CONCENTRATION MODEL * -- USER SPECIFIED STORM EVENT(YEAR) = 5.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE . 0.95 *USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.070 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) 1.580 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 5.00 1 -HOUR INTENSITY(INCH /HOUR) = 0.9398 SLOPE OF INTENSITY DURATION CURVE = 0.6000 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* *USER - DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFIOW MODEL* HALF- CROWN TO STREET- CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT- /PARK - HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) ___ ----- ......... ................. ...... ..... ...... ..... ....... 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint - 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTTARY PIPE.* *USER - SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED ffffffffff lfff\!1f \!ffffflf fff ♦fffff ffffff !ffff lff}fff \ffff ►ffffflf fff \fff!\ FLOW PROCESS FROM NODE 0.00 TO NODE 1.00 IS CODE = 21 ---------------------------------------------------------------------------- » >>> RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME-OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 200.00 ELEVATION DATA: UPSTREAM(FEET) = 1592.00 DOWNSTREAM(FEET) 1587.00 Tc = K *((LENGTH ** 3.00)/ (ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) . 9.141 * 5 YEAR RAINFALL INTENSITY(INCH /HR) . 2.906 SUBAREA TC AND LASS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) NATURAL POOR COVER "BARREN" A 1.29 0.42 1.00 78 9.14 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) . 0.42 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) 2.89 TOTAL AREA(ACRES) = 1.29 PEAK FLAW RATE(CFS) = 2.89 flit \f if iff if ff \f tlltffff t fff \ff•f if tiff iffffff tff•tffffff tffffflifflf •tftf• FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 81 ---------------------------------------------------------------------------- >>> >ADDITION OF SUBAREA TO MAINLINE PEAK FLAW « «< .::.= s ....................................... ............................... MAINLINE Tc(MIN) = 9.14 * 5 YEAR RAINFALL INTENSITY(INCH /HR) = 2.906 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL POOR COVER "BARREN" A 11.25 0.42 1.00 78 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.42 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 11.25 SUBAREA RUNOFF(CFS) = 25.21 EFFECTIVE AREA(ACRES) = 12.54 AREA - AVERAGED Fm(INCH /HR) = 0.42 AREA - AVERAGED Fp(INCH /HR) = 0.42 AREA- AVERAGED Ap . 1.00 TOTAL AREA(ACRES) = 12.54 PEAK FLOW RATE(CFS) = 28.10 1f lffffif fftllf iff\fff lffif11t1tf if 111f lffftlff \f tllfkf •ffiftffff ♦ ♦fffRifltf FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 51 ---------------------------------------------------------------------------- » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW « «< »» TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) < . ELEVATION DATA: UPSTREAM(FEET) = 1587.00 DOWNSTREAM(FEET) = 1572.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 500.00 CHANNEL SLOPE . 0.0300 CHANNEL BASE(FEET) = 5.00 *Z" FACTOR = 33.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 0.50 CHANNEL FLOW THRU SUBAREA(CFS) = 28.10 FLOW VELOCITY(FEET /SEC) = 3.38 FLOW DEPTH(FEET) = 0.43 TRAVEL TIME(MIN.) = 2.47 Tc(MIN.) = 11.61 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 3.00 = 700.00 FEET. ♦ffftt ltffitRf iff ■1tf 1ffi11 ■\ fff ♦11ff\f llf ff iR••t \iff lffff if \if t1t 1f 1f \f \f if FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE . 81 ---------------------------------------------------------------------------- »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLAW <.<c< ............................................. ............................... MAINLINE Tc(MIN) = 11.61 * 5 YEAR RAINFALL INTENSITY(INCH /HR) = 2.518 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL POOR COVER -BARREN- A 26.96 0.42 1.00 78 SUBAREA AVERAGE PERVIOUS LASS RATE, Fp(INCH /HR) = 0.42 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 26.96 SUBAREA RUNOFF(CFS) = 51.00 EFFECTIVE AREA(ACRES) 39.50 AREA - AVERAGED Fm(INCH /HR) = 0.42 AREA - AVERAGED Fp(INCH /HR) . 0.42 AREA - AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 39.50 PEAK FLAW RATE(CFS) = 74.73 tf lffff\ffifffffffl lfff ♦ \Rfi\f lfflff lfffiff iff ifffff lfltf R\f ttltfff lff••f ♦!t FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 51 ---------------------------------------------------------------------------- » »>COMPUTE TRAPEZOIDAL CHANNEL FLAW <c «< » >>> TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « «< ............................................. ............................... ELEVATION DATA: UPSTREAM(FEET) = 1572.00 DOWNSTREAM(FEET) = 1560.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 500.00 CHANNEL SLOPE . 0.0240 CHANNEL BASE(FEET) . 5.00 "Z" FACTOR = 33.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 0.50 _. »WARNING: FLOW IN CHANNEL EXCEEDS CHANNEL CAPACITY( NORMAL DEPTH EQUAL TO SPECIFIED MAXIMUM ALLOWABLE DEPTH). AS AN APPROXIMATION, FLAWDEPTH IS SET AT MAXIMUM ALLOWABLE DEPTH AND IS USED FOR TRAVELTIME CALCULATIONS. CHANNEL FLOW THRU SUBAREA(CFS) . 74.73 FLAW VELOCITY(FEET /SEC) = 6.95 FLOW DEPTH(FEET) = 0.50 TRAVEL TIME(MIN.) . 1.20 Tc(MIN.) . 12.81 = = >FLOWDEPTH EXCEEDS MAXIMUM ALLOWABLE DEPTH LONGEST FLOWPATH FROM NODE ........................... END OF STUDY SUMMARY: TOTAL AREA(ACRES) _ EFFECTIVE AREA(ACRES) _ AREA - AVERAGED Fp(INCH /HR) PEAK FLOW RATE(CFS) _ ........................... ........... . .............. , END OF RATIONAL METHOD ANA 0.00. TO NODE 5.00 . 1200.00 FEET. ............................................. 39.50 TC(MIN.) = 12.81 39.50 AREA - AVERAGED FM(INCH /HR)= 0.42 0.42 AREA - AVERAGED Ap = 1.00 74.73 ............................................. ............................................. fYSIS ffffif iff♦ flffffftfff •ffffff\f #fffllftffffflf ffffffffffff /fffffff •ffff •fffff RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1510 Analysis prepared by: DEVELOPMENT RESOURCE CONSULTANTS, INC. 8175 E. KAISER BLVD. ANAHEIM HILLS, CA 92808 P:(714)685 -6860 F:(714)685 -6801 ft ♦ifffff lffffffffflffff Rf DESCRIPTION OF STUDY ff#RtRlfffffff if if it•f 1f #t ' Regency Commercial Property ' * Existing Conditions Analysis ' * 25 Year Storm ffffffftf lftlrrffffft Rffff rfftffRff Rf if rf fffftfif RffR #f itfffiffffflfffffff FILE NAME: 01900E25.DAT TIME /DATE OF STUDY: 09:11 06/30/2002 .._:__....: ................:_.._........... ...._.......................... USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: .. ............................. =. ......................................... -- *TIME -OF- CONCENTRATION MODEL * -- USER SPECIFIED STORM EVENT(YEAR) 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) 18.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE - 0.95 *USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL- 10-YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) 1.070 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.580 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT - 10.00 1 -HOUR INTENSITY(INCH /HOUR) - 1.0807 SLOPE OF INTENSITY DURATION CURVE _ 0.6000 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* *USER - DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETPLOW MODEL* HALF- CROWN TO STREET- CROSSFALL: CURB GUTTER- GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT- /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 70 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth - 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth)* (Velocity) Constraint - 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER - SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED fffffff \ff ♦fftf fff #fllfrfflffff if tlRfff if ff iffff if iff \f ifff lffttlf rtffffffff FLOW PROCESS FROM NODE 0.00 TO NODE 1.00 IS CODE - 21 ---------------------------------------------------------------------------- .> ».RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< _______________________________________ INITIAL SUBAREA PLOW - LENGTH (FEET) 200.00 ELEVATION DATA: UPSTREAM(FEET) - 1592.00 DOWNSTREAM(FEET) - 1587.00 Tc _ K *[(LENGTH** 3.00) /(ELEVATION CHANGE))* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) - 9.141 * 10 YEAR RAINFALL INTENSITY(INCH /HR) - 3.342 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) NATURAL POOR COVER •BARREN" A 1.29 0.42 1.00 78 9.14 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) - 0.42 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap - 1.00 SUBAREA RUNOFF(CFS) 3.40 TOTAL AREA(ACRES) - 1.29 PEAK FLOW RATE(CFS) - 3.40 if ffffffffffff#ftfffff if llif if kifff if iff ifffif fff \ff lff if tfffltf #f lfifffffff FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE - 81 ----------------------------------------------- ----------------------- - - - - -- » >>> ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <<<<< _______________________:_:_:_:::__:__::______ ............................... MAINLINE Tc(MIN) - 9.14 * 10 YEAR RAINFALL INTENSITY(INCH /HR) - 3.342 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL POOR COVER -BARREN' A 11.25 0.42 1.00 78 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) - 0.42 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap - 1.00 SUBAREA AREA(ACRES) = 11.25 SUBAREA RUNOFF(CFS) - 29.63 EFFECTIVE AREA(ACRES) 12.54 AREA - AVERAGED Fm(INCH /HR) - 0.42 AREA - AVERAGED Fp(INCH /HR) - 0.42 AREA- AVERAGED Ap - 1.00 TOTAL AREA(ACRES) - 12.54 PEAK FLOW RATE(CFS) - 33.02 fffRf tffffffff ♦r ♦1rflfffff•f!••ifffffilflfflf •liffflfffffffffiff • lfff if! #f Rr FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE - 51 ---------------------------------------------------------------------------- » »>COMPUTE TRAPEZOIDAL CHANNEL FLOW« «< » » >TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « «< ......................................=...... .................=............. ELEVATION DATA: UPSTREAM(FEET) - 1587.00 DOWNSTREAM(FEET) - 1572.00 CHANNEL LENGTH THRU SUBAREA(PEET) = 500.00 CHANNEL SLOPE - 0.0300 CHANNEL BASE(FEET) - 5.00 *Z* FACTOR - 33.000 MANNING'S FACTOR - 0.030 MAXIMUM DEPTH(FEET) - 0.50 CHANNEL FLOW THRU SUBAREA(CFS) - 33.02 FLOW VELOCITY(FEET /SEC) - 3.52 FLOW DEPTH(FEET) - 0.46 TRAVEL TIME(MIN.) - 2.37 Tc(MIN.) - 11.51 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 3.00 = 700.00 FEET. fffffffft #ffrffff \tfffffff if if riff if ff fffilf fffffff f if ifflrfflfffflffffflf rf FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE - 81 ---------------------------------------------------------------------------- . »> .ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< ............................................. ............................... MAINLINE Tc(MIN) - 11.51 * 10 YEAR RAINFALL INTENSITY(INCH /HR) - 2.911 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL POOR COVER "BARREN• A 26.96 0.42 1.00 78 SUBAREA AVERAGE PERVIOUS LOSS RATE, Pp(INCH /HR) . 0.42 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 26.96 SUBAREA RUNOFF(CFS) = 60.54 EFFECTIVE AREA(ACRES) 39.50 AREA - AVERAGED Fm(INCH /HR) = 0.42 AREA - AVERAGED Fp(INCH /HR) . 0.42 AREA - AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 39.50 PEAK FLOW RATE(CFS) = 88.70 ffffffrrrffrfftff#• f rrff # #f #rf #ffrrffff rf rf#ff#frf rff •##••f erfrrffrff ##rf rfr FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 51 ---------------------------------------------------------------------------- >> » COMPUTE TRAPEZOIDAL CHANNEL FLOW<c<< >> » TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)c <ccc ____________................................................................ ELEVATION DATA: UPSTREAM(FEET) = 1572.00 DOWNSTREAM(FEET) = 1560.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 500.00 CHANNEL SLOPE . 0.0240 CHANNEL BASE(FEET) . 5.00 •Z" FACTOR . 33.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 0.50 WARNING: FLOW IN CHANNEL EXCEEDS CHANNEL CAPACITY( NORMAL DEPTH EQUAL TO SPECIFIED MAXIMUM ALLOWABLE DEPTH). AS AN APPROXIMATION, FLOWDEPTH IS SET AT MAXIMUM ALLOWABLE DEPTH AND IS USED FOR TRAVELTIME CALCULATIONS. CHANNEL FLOW THRU SUBAREA(CPS) = 88.70 FLOW VELOCITY(FEET /SEC) = 8.25 FLOW DEPTH(PEET) = 0.50 TRAVEL TIME(MIN.) = 1.01 Tc(MIN.) - 12.52 = = >FLOWDEPTH EXCEEDS MAXIMUM ALLOWABLE DEPTH LONGEST FLOWPATH FROM NODE ..........................: END OF STUDY SUMMARY: TOTAL AREA(ACRES) _ EFFECTIVE AREA(ACRES) _ AREA - AVERAGED Fp(INCH /HR) PEAK FLOW RATE(CFS) _ END = OF = RATIONAL METHOD ANA 0.00 TO NODE 5.00 • 1200.00 FEET. ............................................. 39.50 TC(MIN.) = 12.52 39.50 AREA - AVERAGED FM(INCH /HR). 0.42 0.42 AREA- AVERAGED Ap = 1.00 88.70 LYSIS frf rrf•ff♦rrwfrrrrrrrr ►rttf tf tttffftfffrr•rr • rrrft ►ffRrr►►f ►tf rff effrrf rrttt RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1510 Analysis prepared by: DEVELOPMENT RESOURCE CONSULTANTS, INC. 8175 E. KAISER BLVD. ANAHEIM HILLS, CA 92808 P:(714)685 -6860 F:(714)685 -6801 fffflff lrff#4fffffffff ♦ff• DESCRIPTION OF STUDY fffrrwrrrrrfrrffffrf ►f •ff♦ Regency Commercial Property Existing Conditions Analysis 100 Year Storm ffffffrf #f ifffffff riff rfffifffflfff1f 11rifrffr •rf #ff #f trffiff tfflff tffffff FILE NAME: 01900E1H.DAT TIME /DATE OF STUDY: 09:11 06/30/2002 S;; .. ...................... :__::.......................... _... ...... . USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: .............................. .................. CONCENTRATION MODEL USER SPECIFIED STORM EVENT(YEAR) = 25.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL- 10-YEAR STORM 60- MINUTE INTENSITY(INCH/HOUR) = 1.070 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.580 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT • 25.00 1 -HOUR INTENSITY(INCH /HOUR) . 1.2481 SLOPE OF INTENSITY DURATION CURVE = 0.6000 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* *USER - DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET- CROSSFALL: CURB GUTTER- GBOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT- /PARK - HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) ... ..... ......... ................. ...... ..... ...... ..... ....... 1 30.0 20.0 0.018/0.018 /0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth • 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER- SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED •fr• #ffrff of rrru rfru ♦•f #•frr♦• ♦•r #f♦ffr♦ rrrrrrf rrufff•r rrf •♦• #r #f rr#rrfff FLOW PROCESS FROM NODE 0.00 TO NODE 1.00 IS CODE . 21 ---------------------------------------------------------------------------- » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< __: ........................... : : :._ :............ _.......... INITIAL SUBAREA FLOW- LENGTH(FEET) - 200.00 ELEVATION DATA: UPSTREAM(FEET) - 1592.00 DOWNSTREAM(FEET) = 1587.00 TC = K *](LENGTH ** 3.00)/ (ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) - 9.141 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.860 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) , (DECIMAL) CN (MIN.) NATURAL POOR COVER 'BARREN' A 1.29 0.42 1.00 78 9.14 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) - 0.42 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap - 1.00 SUBAREA RUNOFF(CFS) 4.00 TOTAL AREA(ACRES) - 1.29 PEAK FLOW RATE(CFS) - 4.00 ffflfl fliff! }ft #f!f }tltiffitlfff lfittf ♦f tf fffff tf •ffffftttffff if ifft}lffffff FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE - 81 ---------------------------------------------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOWc «« ............................................. ............................... MAINLINE Tc(MIN) = 9.14 * 25 YEAR RAINFALL INTENSITY(INCH /HR) - 3.860 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL POOR COVER "BARREN" A 11.25 0.42 1.00 78 SUBAREA AVERAGE PERVIOUS LASS RATE, Fp(INCH /HR) - 0.42 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap . 1.00 SUBAREA AREA(ACRES) - 11.25 SUBAREA RUNOFF(CFS) - 34.87 EFFECTIVE AREA(ACRES) = 12.54 AREA - AVERAGED Fm(INCH /HR) = 0.42 AREA - AVERAGED Fp(INCH /HR) = 0.42 AREA- AVERAGED Ap . 1.00 TOTAL AREA(ACRES) = 12.54 PEAK FLAW RATE(CFS) - 38.86 f if ltf lffffffff # fff }f fffff }ffffffff#f}ffff ifti tfffffff tfi#f tf t• #fffffff }ffff FLAW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE - 51 ---------------------------------------------------------------------------- » » >COMPUTE TRAPEZOIDAL CHANNEL FLAW « < c< » > >TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « «< ELEVATION DATA: UPSTREAM(FEET) = 1587.00 DOWNSTREAM(FEET) - 1572.00 CHANNEL LENGTH THRU SUBAREA(FEET) . 500.00 CHANNEL SLOPE - 0.0300 CHANNEL BASE(FEET) - 5.00 'Z" FACTOR . 33.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 0.50 CHANNEL FLAW THRU SUBAREA(CFS) 38.86 FLAW VEIOCITY(FEET /SEC) = 3.71 FLOW DEPTH(FEET) - 0.49 TRAVEL TIME(MIN.) - 2.25 Tc(MIN.) = 11.39 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 3.00 - 700.00 FEET. fff ■f }fffffftffff lfff }fffffffffffflkfffftf ff tf lfffffff ltffff }lfttff }ff•fitff FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE - 81 ---------------------------------------------------------------------------- > » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< ...................... ................................................. MAINLINE Tc(MIN) = 11.39 ■ 25 YEAR RAINFALL INTENSITY(INCH /HR) - 3.382 SUBAREA LASS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN. NATURAL POOR COVER "BARREN" A 26.96 0.42 1.00 78 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) - 0.42 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap - 1.00 SUBAREA AREA(ACRES) - 26.96 SUBAREA RUNOFF(CFS) - 71.98 EFFECTIVE AREA(ACRES) 39.50 AREA - AVERAGED Fm(INCH /HR) - 0.42 AREA - AVERAGED Fp(INCH /HR) - 0.42 AREA - AVERAGED Ap - 1.00 TOTAL AREA(ACRES) = 39.50 PEAK FLOW RATE(CFS) - 105.46 } fff if ttfff•if fffffit }fff if }tfif •ffff•fffffffffff # }t iffllfftf if iff #f •fff lfff FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE - 51 ---------------------------------------------------------------------------- >>> >COMPUTE TRAPEZOIDAL CHANNEL PLOW-.< » » >TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) << - ............................................. ............................... ELEVATION DATA: UPSTREAM(FEET) - 1572.00 DOWNSTREAM(FEET) - 1560.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 500.00 CHANNEL SLOPE - 0.0240 CHANNEL BASE(FEET) - 5.00 "Z" FACTOR = 33.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) - 0.50 __ »WARNING: FLOW IN CHANNEL EXCEEDS CHANNEL CAPACITY( NORMAL DEPTH EQUAL TO SPECIFIED MAXIMUM ALLOWABLE DEPTH). AS AN APPROXIMATION, FLOWDEPTH IS SET AT MAXIMUM ALLOWABLE DEPTH AND IS USED FOR TRAVELTIME CALCULATIONS. CHANNEL FLAW THRU SUBAREA(CFS) - 105.46 FLOW VELOCITY(FEET /SEC) - 9.81 FLAW DEPTH(FEET) - 0.50 TRAVEL TIME(MIN.) = 0.85 Tc(MIN.) . 12.24 == >FLOWDEPTH EXCEEDS MAXIMUM ALLOWABLE DEPTH LONGEST FLOWPATH FROM NODE 0.00 TO NODE 5.00 - 1200.00 FEET. ............................ ............................... END OF STUDY SUMMARY: TOTAL AREA(ACRES) 39.50 TC(MIN.) = 12.24 EFFECTIVE AREA(ACRES) = 39.50 AREA - AVERAGED FM(INCH /HR)= 0.42 AREA - AVERAGED Fp(INCH /HR) . 0.42 AREA- AVERAGED Ap = 1.00 PEAK FLOW RATE(CFS) 105.46 ............................................. ............................... END OF RATIONAL METHOD ANALYSIS 1 HYDROLOGY STUDY FALCON RIDGE TOWN CENTER — FONTANA, CALIFORNIA i L SECTION 4.0 PROPOSED ON -SITE HYDROLOGY CALCULATIONS PROPOSED ON -SITE HYDROLOGY MAP rt� nf- I r I r ' 01 -900 Hydrology Report.doc ...... rtt rtt►+ r+.+ r.r++ rt ttt ....... rtr tt..... ...* .... rttrrtsts + ............. S33d 00'OSOT 00'OOT 3GON OS 00'T 3GON WOtid HSYdMo'Id LSHDNori 6L'OT = ('NIW)0S 28'0 = ('NIw)3wiS 1 I3AYHS 3dId 96'L = (SjO)Mo'Id-3dId T = S3dId d0 mamim 00'0£ _ (HJNI)u3S3wYIa 3dId N3AID 86'L = ('03S /S33d)xSIJO'IHA MOTs -3dId SZHJNI 4'L SI 3dId HONI O'OE NI MOZd d0 Hddaa E10'0 = N S.DNINM 00'004 = (S33d)HSDN3'I MO'Id OOZO' 0 = 3d(YIS 3AISYSN353tidau ............................................. ............................... » » >(SN3W3Z3 DNISSIX3) 3ZIS3dId a3IAIJ3dS -83Sn DNISnccccc » » >Y3HY6nS nWU 3WI8 gHAVHl 140'Id-3dId ZJndWQ7ccccc ---------------------------------------------------------------------------- Tb = 3a0J SI 00'001 3aON OS 00 WON WOtid SSHDOHd MO'Id +r ++ss ++stttrrsrsrsrtst++•srr+ ass +rtrt♦ truss +r+rs +rrrt►ttstrs+s+sttsttrr+ss S33d 00'059 = 00 3aON OS 00'T 3aON WOda HSYdMO'Id LSaDN0'I 06 = ('NIW)oS EL'O = ('NIW)3wIS 'I3Avu.L 3dId 91'L = (SAD)MO'id - 3dId i = S3dId do HEGwnN 00'81 = (HJNI)t13S3WYIa 3dId N3AID ZE'9 = ('J3S /S33d)AIIJO'IHA MO'Id -3dId S3HJNI 6'il SI 3dId HJNI 0'81 NI Mo'Id d0 Husa £TO'0 = N S,JNINNVW 00'05 = (S33d)HSDNSrI MO'id OOTO'0 = 3d0'IS 3AILWASSM321 .................................... = ............................... =....... >(SN3W3'I3 ONISSIX3) 3ZIS3dId a3IAIOHdS -H3Sn DNISn..... » »>Y3HYMS nWiB HNIS 'I3AVH.L MO'id -3dId 3SndW0.')ccccc ---------------------- --- -- -- ------- --- ---- -- - - - - - -- — ---------------------- 14 = 3a00 SI 00 3a0N OS 00'Z 3a0N wova ssaDoud Mold rsrsrrttrsttsrrtst►tr• tsars+►+ start,►, art► s► r +s+srttts►trtsr +►+r►r►tttrsstt• 91 = (Sao)slvd MUM Was 01'6 = (S3tDY)Y32IY 'IYSOS 94'L = (saD)ddONnH Y3uvanS OT'0 = dY 'NOISJYHa vaev SnoiAH3d af)vaaAY Y3HYSnS 86 = (UH /HJNI) dd '3.LYH SSo'i SnoiAuad sowaaAY vzuvE s LL'6 CE 01 86'0 OT'6 Y rmiD I3WWoD ('NIW) NO (ZYWIJ3(l) (HH /HDNI) (S32DY) dnow 3Sn aNYZ DS SOS dY dd Y3HY 'Ilos SOS /3dAl JMWd0'I3A3a : (xi owY) YSYa aiv SSO'i aNY o z varin nS OZT "Z = (IHMONIMLISH31NI 'PIYdNIYN IIY3x Z + OLL'6 = ('NIW)oS WnWINIW a3Sn SISx'IYNY Y3HYSnS OZ' Ort ((3DNVM NOISYA3'I3) / (00' E ++HSDN3'I)) tX = 01 00'EL (S33d)WVHHSSNM0a OE'6L = (S339)wY3MSsdn °YSYa NOId.YA3'I3 00'009 = (S33d)HSON3'I -MO'id VaNWEnS 'IYISINI ................................... . .... .. ........... . ............ =......... »Y3HYSns 'IYISINI Hod HdVHDONON NOISYHSN3JNOO-d0-3WIS 3Sncc » »>SISx'IYNY Y3HYMS 'IYISIHI aOHS3W '1YN0I.LVd cccc ---------------------------------------------------------------------------- iZ = 3aoo SI OO'Z WON OS 00'T 3aON wOHd SS3Do'dd MO'id +•tr♦rsr+ + r• start, r• strs+++ rr+ srttrtrtrrrrs+ ss ++•+s►tttrtstsrssrs►ts►ttrtrsr * - - — - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + Y. ea3Y +------------------------------------------------------------------ ---- - - - -+ +--------------------------------------------------------------------- - - - - -+ UU0 Seax Z sTBAIWW SUOTITpuOD p680d0ad Aa3ado=d 1eT0.19=03 Aoua6ag ---------------------------------- ---- --- ---- ----- ---- ----- - - -- -- — - -- --- - -+ a3SJ3'ias SON SN3WSSrAm 3do'IS omd"wdoS wnWINIW a3I8IJ3dS - H3Snr ,'3dId XHVJnHIUL WVNH.Sdn 3HS OS 'IYnO3 80 MU MUVEHO xSIJYdVD MO'Id Y HSIM 3dId 3ZISt (S /SdrSd) 0'9 = 7uT —a9uoa (AaT00T8A)t(gad8a) 'Z (qstp-lo-doS) - (gadaa Moid aaasaS aig —TXVW) se S33d 00'0 = tiadea -Mold aATaeiaN 'T : SSNI USN0O HSd3a -MO'Id S332TSS 'IYHO'ID OSTO'O L9T'0 ZTEO'O 00 "Z L9'0 OZO "0/810'0/810 "0 0'0Z 0 i ....... ..... ...... ..... ...... ................. ......... ..... ... (u) (Sd) (JA) (Sd) (Sd) AYM /3aIS / 3aIS ( JA) (Sd) ON 'd0lOYd 3MIH dl'i HSQIM nmiaH - XHYd / -.Lno / -NI 'I'IYdSSOND HSOIM DNINNYW :S3I2iS3W030 -HHLMD asm "I'MaSSOHJ-133HSS OS MMOID -d'IYH r'I3aoW MoriamaHSS aNY Mo'Id3dId a3'idnoo Nod SNOISJ3S- S33NSS a3NId3a -dasnr *UoHS3W 'IYNOISYiI Hod CMMSSY II (ONW) NOISIalloO 3HfLLSIOW SN3a3J31NY+ 0009'0 = 3Amo NOISYHna xSISN3SNI d0 3d0'IS SETL'0 = (Hn0H /HONI)ALISN3SNI NnOH -T 00'z = JAMS WHOSS :v.Lva AJISN3SNI 'i'IYdNIvu a3SndwoD 085'2 = (Nfl0H /HDNI)xSISN3SNI 3SnNIW -09 HUMS HWHA -00T OLO'1 = (2ffiOH /HDNI)XIISN3SNI 3SnNIW -09 WHOSS VWX-OT ►'I'IYaxivu vod assn NOISY'Iosuaim oiwmiwdom a3NId3a -ussn+ 56' 0 = 3d0'IS HOI DINA Rod 3Sn 01 (gwiO3a) SSN3IaYHD d0 imossd a3IaiOHdS 00'ZT = (HONI)3ZIS 3dId W MINIW a3IAIDRdS 00' z (uvxA) m A3 waoLs asiamadS assn -- t'I3a0W NOIIVEJ N3'NOO-d0 ::::: :_.___ :_ = = = =' NOISYWBodNI ' 'I3aoN DI'HIYHaxH aNY AD0'IOHOAH a3ISIJ3dS H3Sn .................. = .............. = ............. s = = = = =____. .......... _.___... ZOOz /OE /90 BY:ZT :xanSS d0 3SYa /awu SYa'Zd006T0 °3WYN 3'IId ++++ sass ♦s +rstrttssrss++rr►rt+rrs+ ++ stns++ s++srrsr►t++ +sr►srrtsrs+s +s►++s s UU01S =eax Z + s?sATeuY i3— TaTpuoO pasodoid t Aliadoid leTojamoo AouaBOX trrrtss......r►trttrtssssr ALMS 90 NOIMI7DS3a s+►+rrtsts++s+ +rat ++ +rs + +• T089-S89(VTL) :A 0989- S89(VIL):d 808Z6 YJ 'SRZIH WIZHYNY 'aA'IS HHSIYX '3 SLTS Oxi 'SSNYS7f1SNoJ aDunosav amwdoZ3A3a :Aq paiedead sTsATeuW 01ST al asuaoT'I TOOZ /TO /TO :aaea asealag 0'8 'saA (sae) a3eMa ;0S 6uTaDOUT5U3 pa0uenpY LOOZ - E86T ag6TaAdoo (o) (NOIH3SItD AD0'IOMAH *00 0NIGHYNH38 NYS 9861 :aoua.xa;aa) 3DYXJYd N"DOHd HHJndNW xD0'IOHaxH UGHS3W 'IYNOISYH •++ asst, rrrrttrtrrrsrr• rtrsttrrrrrrrrrtrttsr• ►strrr►+ts +rsttrttrrt++rs +tr++• ® �■ r ELM r o OOTO'0 - 3d(YIS sALLVSNSS3Hd3'd ............................................. ............................... -- (d.Nwns oNISSIX3) sZIS Xos asIamsas -u3Sn 'JNIsn « «< » »>V3rivsns nmu 3WIS 'ISAV91 MO'Id-XOH HUMNOO « «< ---------------------------------------------------------------------------- 94 = 3a0a SI 00'ZOt 3aON OS 00'101 WON WONJ SS330Hd MO'IA rr►+• s+• rsrrrrrrrsrrrrrsarrsrrrr► rrrarrsrrsrr ►rrsrrrrsr►r►aarr►arrrrrrrsa►ra S33d 00' OOZ1 00' 10T WON 01 00' 1 WON WOU HZVdMO'Id .LS3JN0'I TT'OL = ('NIW1uL bZ - ('NIW)HWII 'I3AVHI 3dId bT'8T = (SAO)MO'IA -3dId T = MId dO tiSOMM 00'OE _ (HJNI)ti313WVIa 3dId NZAI0 SZ'OT - COHS /J33a)AZIJ0'I3A MO'Id -3dId SMIDNI L'TT SI 3dId HJNI O'OE HI M na 30 Htd3a E10'0 - N S.DNINNVN 00'051 = (133d)P.WN3'I MO'Id OOZO'O - 3d0'IS 3ALLVIMS3IIdH*d -- (,L[Tdmia OMIISIX3) 3ZI53dld asImads -Assn JNISn « «< - -va IVHIIS ntr u 3WIS 'IHAVHS MO'Id - 3dId 31.ndW0a « «< --------- -- -- ------- ---- -- -- -- --------------------------------------------- Tb = 3aOO SI 00'101 saox oz 00'OOT saoN woua SSzOoHd MO'Id • tarts +►► +► +srs►► ♦ ►►ass�►•+s►rs +•assts+ ass +raa ►star +rr►arsrrrrsaar+r►►rrrasr '133d 00'0501 = 00'00T 3aox ox 00't 3aON WONA H.LVdMOlA ZSHONOZ 60' 01 - (S3iIJV) VESW 'IVZOS Ot' 0 = dV asOVIIHAV -VHHV 86' 0 = OWHONI) dd 03JV33AV -Va" OT-0 - (IIH /HONI)wd a3JVMAV -VMM 9L'6 = (S3HDv) V3iM 3AISJ3dd3 98'6 - ('NIWML bT'8T - (S3J)3.LVH MO'Id XV3d e SMo'I'Iod SV aav S3,LVWIISS 3JN3IMdxoo 08,LndWOJ 00 1 OT'O (01'0 )86'0 E00'Z VC OT 08'LT Z 00'11 8'6 01'0 (OT'O )86'0 80T'Z 98'6 bT'8T T saox (SHHDV) (SH /HJNI) ( dH /HJNI) ('NIW) (SAO) Mlm4m XHIMA0V3H aV dV (wd)dd AITBUOIUI O.L 0 WvZH.LS ►► 3 31.VH Mo'Id XV3d rr ' SWVHH. S Z sod a3Sn vrif oa soxaniamoJ ouva xOISvuNaoxoo d0 3WIS aNV uism,LN1 'I•IFIAmivu 00'11 0'9 OT'O (01'0 )86'0 80T'Z 98'6 06'01 Z 00'T 1'11 OT'0 (OT'O )86'0 E00'Z VC 01 94'L T 3aON (SHWY) (NH /HJNI) (Till /HJNI) ('NIW) (SAO) 2isem" HHIYMOVHH aV dV (wd)dd AlToua7uI u1. 0 NV3tIZS r+ VSVa HONSMaNOJ a+ 06'01 3JN3n'IdNOJ IV (SaD)3,LVH MO'Id XV3d 66'9 = (S32IJV)vauv WV3s1S 'IVSo1. 66"S - (SHUDY) VsXV WV32I.LS 3AIIMIAH OT-0 = dV a3DVH3AV-V3fIV 86'0 - (UH /HJMI)dd a30VH3AV-V32M OT'O - (SH /HJNI)wd CIROY13AV-VaEV TT'Z - (dH /HJNI)JUISNZJAI 'M aNIVH 98'6 - ('NIW)HOI.LVIUMON00 d0 3WIL :32M L waniS imaN3dsaNI 'dod assn S3n'IVA 3JN3nriamo Z - SNVMUIS d0 IISMIN 'MSO.L ............................................. ............................... -- san'IVA m 09JN3M aNOO SnotuvA sinawoo cm-- » » >3JN3nrlalloO IIod wvaaLS immsaaaMI 3ZVN•JIS3a -- ---------------------------------------------- ----- --- -- ---- ----- ----- -- - - -- T = 3aOJ SI 00'001 BaOM OS 00'001 3aox WONA S8300Iid Mo'id ♦►ara♦s♦aar♦ ass►+• assssa► r+•► s♦• ar• ra►+ s ►r++as+►a►+sa♦ ++a►s+ar+sr►►ar►r +►ass '133A 00'008 00 3aoN oS 00' b 3aON moss H.LVdMO'Id SSHOHO'I 98'6 - ('NIW)DZ 60 - ('NIW)HHIS 'IHAVU MIA 06'01 = (SAD)MO'Id-3dId I = S3dId d0 asawnK 00'0£ _ (HJNI)H3l3WVIa 3dId N3AI0 06'8 = ( *OHS /MHA)AZIOMHA MO'Id -3dId SHHJNI 6'8 SI 3dId HONI O'OE NI MOU d0 HSd3a E10'0 - N S JNIMNVW 00' OS = (is3d) H. MMM MOTs OOZO' 0 - 3d0'IS 3AI.LVIMSH IMI ............................................. ............................... » »> (ZHMM3 ONIZSIXS) 3ZIS3dId a3IdIJ3dS -URSn 'JNISn « «< » »>V32MSIIS nIIHI 3WIS 'IHAVffiL MO'Id - 3dId RMclWOJ « «< ---------------------------------------------------------------------------- Tb - 3aoJ SI 00'001 WON OS 00'5 saox W08d SS3JOxd Mou +rras►+rsrrraraa ►tars+ sass► rrsa+• ss► attar► ►• +•srr ►+rsr►ssr►+s +rs ++►assts +►sr 06' 01 = (SdJ) 3.LVd Mold XV3d 66'S = (S3WY) V3HV 'IV.LOS 06'OT = (sao)ddONnH V3ZMHnS OT-0 - dV 'NOIZJViid vast' SnOIAsad 3°JVx3AV V3wM8ns 86' 0 - mH /HJNI) dd 'siva SSo'i SnOIAuad sovuaAV V31i4Hns LL'6 Z£ OT'O 86'0 66'S V 'IVIJ2mofoJ ('NIW) NO M WIJ3a) (SH /HJNI) (S310Y) dnodg asn atm u1. SOS dV dd VREW 'iloS SOS /3dx.L immo'I3A3a : (II JWV) VI.Va 3SViI SSo'I aNV al Vawiws OZT'Z = (tHi /HJNI)AZISN3SNI 'I'MdNIVII WML Z r TLL'6 = ('NIMPI WMINIW a3Sn SISA'IVNV VSWUIMS OZ' O-* ( (3JNVHJ NOIZVA3'I3) / (00' E r+H.LDN3'I) ) +X - 01 00'L9 = (133d) vauiSNMoa OE'6L = (133d)WV3tIZSM °VlVa NOILVA3'I3 00'OSL = (133d)HION3'I -MMA VaUVMS 'IVISINI ............................................. ..... .... =... =..... =........... I'vZWEMS 'IVlblxl Hod HdV2Dowox xoIIvHSN3JxoJ- d0 -3WI.L asn« — > >SIS)LZVNV vanimS 'TdISINI aOH,L3W gvRo Lva-- ---------------------------------------------------------------------------- TZ - 3aOO SI 00'S 3aON 01 00'1' 3aOM Woua ssaooId MO'Id s +r►srs► ►r+raarsssa+r+ rrs+ aa► ss► srrrsass +►s►rrasssr ►srsr ►s►►►rr►r +arts ►a +ass ----------- ----- ---- ------ ---- ----- -- - - -- --- --- ---- --------- ----- ---- - - - - -- 1 .H. ealy I +--------------------------------------------------------------------- - - - - -- 91 'L = somn'iawo SV (Sao) a.Lvu Mo'ia XV3d 01'11 - (SHWV)V3HV WWaHIS W101 (SHWv)Vs2M WV3HSS 3AIlDHAa3 OZ'0 - dV a30Vi13AV -VHHV 86 - (HH /HJNI)dd a30Vii3AV -VaHY OT'O - (HH /IDNI)wa a3oVH3AV -VHHV 00' Z = (UH /HJMI) ASISN3JAI rlrMANIVH VU OT = ('MIW)HOI,LV MOROJ dO 3WIS i auv 1 WV3?I.LS imaNSdsaNI Hod assn SffiFMA 2JN3n'IdNOO Z - SWV3xSS d0 83M4M 'MLOS -- somnriamoa NOd WV3ZLLS I.N3aNsdsaNI 3SVNJIssa -- ---------------------------------------------------------------- T - MOD SI 00'OOT WON OZ 00'OOT saox woda ssaDoId was W m m m OS'iT - ('HINP-1, SO'T - ('xIW)3WI1 'IaAVHS Mo'Id -XOa TB'EZ - (Sa3)MOZd-Xoa SE'9 = ('JaS /S33d)ASIJO'I3A MOTH -XOa J.aad L1'0 SI XOS NI H.Ld3QM0'Id 00'6 (133d)MM13H XOS NaAIO 00'8 - (J.33d)H1aIM3SVH XOH N3AI0 £10'0 - N S.ONINHVW 00'004 - (133d)HJ.ONEn MO'IA 0010 - 3do'IS 3AI.LVJMS"d3H ............................................. .............. .... ...... . .... .. » »> (.LNHNHU3 JNIJSIXa) wis XOH a3IdIoms-assn omst1 « «< » » >VHWIRW nMU SNIL 'IaAVHS MO'Id -XOR axndwoo-- ---------------------------------------------------------------------------- 91 - 3aOJ SI 00'EOT 3aox OS 00'ZOT MON NOVA SSHJOHd MO'Id irrr►rrf sirrss{ sr {trtrf•rstr{firrrsrsrf♦srsrt•f tsrrrrs►s {!{{s {rir•isr{rtrfss ISM 00'0Z£T - 00'Z01 3aON OJ. 00 MON NOHd H.MMO'Id SS30N01 E£'ET - (S3HJV)V3W 'IV.LOL OT'0 = dV aaovaaAV -V3W 86'0 - (UH /HJNI)dd Oa9VHaAV -V3W 01 - (HH /HONI)wd aaOVHanV -Vaal 00'£1 (SZWV)VaW HAIJ.3add3 S1,'OT ('HIW)DS 18'EZ - (SAO) Elva MO'Id XV3d SMO'I'IoA SV saw SHJ.VWI.LS 3JN3n'IdNoO Qa J11dWOJ 00'T E'ET 00'1 0'£T 00'9 i'OT MON (SHUDI H3ZVIMM aV OT (01'0 )86'0 Ti6'T ZE'iT 6T'EZ E 01'0 (01 )86'0 9£0'Z SV OT 18'EZ Z 01'0 (01'0 )86'0 ETS'Z 9£'L WEE T 0 (UH /HJNI) (HH /HJNI) (' NIW) (SAO) HHEMM dV (wd)dd AiTsuajuT 3,L 0 WV3HJS rr a'I8VJ. 3J.VH MOZd XVad r 'SWYaHJs Z Hod aasn varmod HoNanruww OI.LVH NOIJ.VHJ.NHOMOJ dO SN IX aNV A.LISNH.LNI 'I'IVdxIVH 00'9 Z'E 01'0 (01 )86'0 ETS'Z 9E'L 90'L Z 00'1 T'OT 01'0 (01'0 )86'0 116'1 ZE'T1 08'LT T 00 8 OT'0 (01'0 )96'0 9£0'Z 51'01 1T'8T T 3aox (SEEDY) (HH /HJNI) (HH /HJNI) ('xIW) (SAO) Hamim H3.LVMaV3H aV dV (wa)da AlTsualuI oS 0 WVaHS3 {f VZVa 3JNan'IdK0O r! 90'L HOMMIdxOJ SV (SAO)a.LVH M0'I3 XV3d 1,Z'E - (S3HJV)VaW WVZHZS 'IVJ.O.L 1,Z - (S3HJV)V3W WV3H.LS aAIJJ3dd3 OT'0 - dV QaOVH3AV -V3W 86 - (HH /HJNI)dd aa OVHHAV - V3W 01'0 - (HH /HJNI)ula aaOVHaAV -V3W TS' Z - (HH /HOXI)1C.LISNa.LNI 'IZVdxIVH 9£'L - ('HIW)HOIJ,VHJJsoKoD 10 HKIS °3W Z WVaHJS J.NaaN3d3QNI HOd assn San'IVA RDN3n'IdNOJ Z - SWV3H.LS 210 H39WnN 'IVLOL ............................................. ............................... -- san'IVA Kvzu.LS G2JNan snolWA 3indHoo amv-- » » >3ONan'IdHOJ doa wwaHSS J.NaaNadscmi H.WNDISM—" ---------------------------------------------------------------------------- T - aaoD SI 00'Z01 WON OS 00'ZOS 3aox Kom SSaDOHd MO'Id irr{► irirrrrrriir li {rrrt ►•riili ►rlirifrrr ►rif •rirrri ►lirrir {iif •sir ►ririrrr♦ .Laad 00'596 00'ZOT saON OS 00'9 3aox woua H.LVdMo'Id JS3ONOZ 9£'L - ('NIW)DJ. £0'0 - ('HIW)3WI1 'ISAVHJ. SAId 90'L - (SAW MOU -adId T = MIA d0 H3SHM o0'8T - (HJxI)uaJ.aWYIa Uld NHAI0 1 = ('oSS /J.a3d)A.LIJO M0'Id-3dId SMONI 6'8 SI adId HJNI O'8T HI MO'Id d0 HIM £10'0 - N S.ONINNVW 00 - (.13HAMLE)N3'1 MO'Id OOZO' 0 - 3d0'IS aAIJ.VJJMSZHdaH ............................................. ............................... » » >(INSWE'I3 ONISSIXa) 3ZIS3dId aHIHIOHdS - H3Sn ONISn « «< » » >V3WSnS nWU 3WI.L 'ISAVH.L MO'Id-3dId 3JndW0D < "" ---------------------------------------------------------------------------- T1 - saoo SI o0'Z01 aGON OZ 00'L saox WOHd sssooxd MO'Id r• rril fi!{{► miff{• ifrrit lr• { { rf! { { { ♦iiiir• { ► {tiff!!r! {ruff { { {!! ♦rrf!!!•ir 90' L - (SaD)3.LVH MO'Id XVad I Z' E - (SHWV) V3W 'IV.LOJ. 90'L = (SAO)ddONnH VSHVSnS 01'0 - dV 'NOIJ.JVU V3W SnOIAHM 30VHaAV VaWSnS 86 - (HH /HJx1)dd 'aSVH ssoI SnolAsad 30VH3AV V3WSIIS EE'L Z£ OT'0 86'0 1Z'E V 'IVIJH moo ('xIW) NO MMI03a) (HH /HJNI) (SSHJV) dnOHo asn aNV'I DS SOS dV dd V3W 'Ilos SOS /3dxZ ImMo'IaA3a c (II owe)V.LVa 3.LVH sso'I axV 01 VawMS OZS'Z - (HH /HJNI)xbISNH.LNI 'I7VdNIVH MMA Z r BZE'L - ('NINP1 WnwINIW Q3Sn SISE'IVNV VSHVSIIS OZ' Orr [ (30NVHJ HOI.LVAH'IS / (00' E IrH.L )N3'I)) rX - 01 L9'S9 = (Jaad)NWHJSNMOa L9'9L - (J.aad)wVaHJSdn :VLVa NOISVA3'Ia 00 - (J.33d)HJMN3'I -M0'Id VHTIMS 'IVI.LINI ...................... . ................... = ........ = = ....... = ---- = .... =..... »VaWSns mimmI HOd HdVHOOWON NOI.LVHIMON00-90 -3WI.L 3Sn« » » >SISE'IVxV V3W$ns 'IVIJ.INI aOH13W 'IVNOI.LVH< —< ---------------------------------------------------------------------------- TZ - saoD sI 00'L aaON o.L 00'9 3aOM WOHd sssoomd MO'Id sass ssisr{►l tsrssrs• trssrrrl rrsrrrrl ssrsr• rrsrsttisrssirrrsrrrisrssr {!►srssr *------------------------------------------------- ------- ------ --- ---- - --- -+ .0. 2a1V +--------------------------------------------------------------------- - - - - -+ V1 ST = 3JNEWIANOJ J.V (SAO)3SVH MUM XV3d 60'01 - (S3HJV)V3W wVaHSS TdZOS 9L'6 - (S3HJV)VaW WV3HSS aMlozdd3 01'0 - dV aaOVHaAV -V3W 86 - (HH /HJNI)da Q30VH3AV - Vaal OT'0 - (uH /HJxI)wd aaOVHaAV - Vaal 1,0' Z - (HH /HJNI))UISNZM Z'IVdMIVH 911'01 - ('NIW)HOIJ.YMMONOJ d0 3wIS °3W T wvauis J.IIIQNadsaNI dod aaSn S3nZVA HONanJaNOJ Z = SWV3H.LS JO HHUN IH 'IVZOS ............................................. ............................... - -zo 3n'IdNOJ HOd WV3u.S imaNadaaNI H.LvNOISaa - -- ---------------------------------------------------------------------------- T - 3000 SI 00'ZOT 3aox OS 00 3aox NOHa SSROOHd MO'Id srsrr• fsf{ rrrfr♦{• fssrsrtffrfsssrrsrts• s{ rirrrsrr ►rrsriirrrtttisrrrrr►rrrrr• 133d 00'0ZET - 00'ZOT MON OZ 00'T saON WOHd HSVdMO'Id ZSa'JNO'I 91,'01 - ('NIW)ub SE'0 - ('NIN)aWI.L 'IaAVHJ. MO'Id -X08 11'81 - (SaO)M(7IA -X09 9L'S - CORS /133d)AXIJ0'I3A MO'Id -X03 J23d 6£'0 SI XOH NI H.Ld3a140'Id 00'1, - (Za3d)JJDI3H XOH NaAIE) 00'8 - (133AMMINNSV3 XOa NSAIJ E10'0 - N S.ONINHVW 00'OZT - (J. HM&LDN3'I Mo'Id w■ �. f i LA LEI w m �• ► ssrswrw►♦ r► sw►► wwr► r► s►w ssswww►► wrrr♦ sw. a►► r+.►swwrr►wwwr.rwwwrs►►wrr►►►rw 'J.S8a 00 - 00•SOT SCION oZ 00'i SCION WOIIa HSYdMO'Id L.SSONO'I TS'OT - (' NIW)uS 1i'T - (' NIW)SWI.L MMV"dZ MO'Id - XOS TZ'1E - ( SAO)MOU - MI T£' L - ( • Jas /S33a) xZIJO'ISA MO'Id -XOH J33a 85' 0 SI Xos NI H.Ld3CIM0'Id 00'1 - U23d)SHOISH XOS NSAIJ 00'8 - (JZ3d)HJaIMSSVS XOS NSAIJ ETO'O - N S.•JNINNVN 00'OOS - ( J.33d)Hmmm MO'Ia OOTO - 3do'IS 3AI,LY MS31[dall ............................................. ..........................a.... » »> (XNZNS7a ONISSIXS) SZIS XOH CI3IdIJadS-H3Sn JNISn « «< »» >V3HV9[IS flWLL 3WIS 'IaAVHJ. Mom-xos ainawoo — ---------------------------------------------------------------------------- 91 - Saw SI 00 SOON 01 00 SCION WOSa SS33OHd MO'Ia w ►►wwss►s►ww.►rr♦s►►s►►ww ► r► rasa.► rw► sw►w s.r• ►rssr►wr ►s.►w.►►wwrsrswr. ►►wr ►. Mad 00'0ZLT - 00'£OT SCION OZ 00•i SCION WOad HJ.VdMO'Ia ISSJNOI 61'61 - ( sauDv)v3Hv 'MSOS 01'0 - dV CI30VMAV-VSXV L6'0 - ( aH /HJNI)dd O.SJVV3AV -V3HV 01'0 - ( HH /HJNI)ula a3ovHSAV -V3HV 68'91 - ( S32IJV)VRHV SAIJJaad3 LE'6 - (' NIW)ol TZ'VIE - ( SaJ)S.LVH MCMA XVSd 'SMO'I'I0a SV ZHV SSZVNISS3 33Nan'Ialloa CIa.LndWoJ 00'1 Z'6T 00 6 00'8 6'91 00'9 1'ST Boom (SMI H3IVMCIVHH By 00'8 6'S 00'T VET 00'1 VET 00'9 t'OT aaom (S3101 HS,LVMCIVM By 01 (OT )86'0 118'T £E'ZT Z /'ZE 1 OT'0 (01'0 )86'0 9Z6•T WTI L1•EE E 01'0 (01 )86'0 1LT'Z LE'6 TZ'1E Z 01'0 (01 )86'0 ZZE'Z 01'8 WEE T [) (UH /HJNI) (ffii /HJNI) ('NIW) (SaW Hault[IN dV (MA)CIA AlTsuaOuI D.L 0 Wvasis .. 3'ISVl 31Va MO'Id XVSd ►r SWv3uls z Rod OSsn v lfmOd 30MMANOJ OI,Lv,I NOIZvamaJNoJ do 3WI,L CINV ).LISNami 'I'MaxIva 01'0 (01 )86'0 1LI'Z LE•6 L6 Z OT'0 (01'0 )86'0 118 EE'ZT 6T'EZ T 01'0 (OT'0 )86'0 9Z6'1 91'TT T8•EZ T Ot'0 (01'0 )86'0 ZZE'Z 01'8 86'ZZ T f) (HH /HJNI) (HH/HJNI) (•NIW) (SdJ) H3SKM dV (Wd)da AlTsualuI uS 0 WVaH.LS .. VlVa 30NMUNOJ .. L6'01 - SJNan'IdNOJ IV (SdJ)3SVH MO'Id XVSd 98 1 5 - ( Samv)vaxv Wv3ajs 'M,LOS 98'5 - ( SaNDY)WHY WVSUIS SAIMMAS 01'0 - dv CMDVHaAV-VaMV 86'0 - ( ItII/HJMI)da a3JvH8AV - valiv OT'0 - ( aH /HJN1)Uua aZDVHSAV -V3HV LT' Z - (t HMONI) AIISN3SNI 'I'MdNIVa LE•6 - (' NIW)NOI,LVHJJMNOJ do SWIS :311V Z WV32[SS JMaN3d3CINI Hod Oasn S3n'MA 3JMan'IaNOJ z - smau s do uamgm waDi ............................................. ............................... » »>San'MA WVa?ISS OSJN3n'IaxoJ SnOIUVA aindWOJ CINV « «< » » >aJNamaxoo voa Wmus imamadaONI 3.LvN`JIsaa - -- ---------------------------------------------------------------------------- T - SCIOJ SI 00' EOT SCION o.L 00 • £OT SOON WOHd SSSJOHd f4O'IJ ► swwws► sr► srr► swrs► wr► srrr►► wrr►► ssr► sr► ws. rw ► ►►w►►wws►rrwwrsr►s►s►swsrwswsr SSSd 00'595 - 00'EOT SOON OZ 00'8 SCION NONA HivdM(yZd 1S3JN0'I L£'6 EO'0 - (' NIW)SWIS 'ISAVU 3dId L6 - ( sd3)MO'Ia -3dId T - SSdId d0 USSHM 00'8T - ( HJMI)UHMINVICI SdId NSAID TO'6 - (• 38S /J=a)xSIJO`M M07a -adId S3HJNI L'Tt SI 3dId HJNI 0'8T HI MO'Ia d0 HJASa ETO'O - N S.JMINWW 00 - (133a)HJfJNa'I MO'Ia OOZO - SdO'IS SAIlVJMS31Id3H ............................................. ............................... » » >(lNaWSrM ONIJSIX3) 3ZISSdId CI3I8I33dS -H3Sn ONISn ... < »»>VEINVE IS nam 3WIS ZSAval 140 -3dId amdWOJ « «< ---------=------------------------------------------------------------------ T1 - 3CIOJ SI 00•EOT SCION OS 00'6 SCION WONa SSSJOHd MO'Id ► s► w► r► s► rs►► wr► r► wsr► r►+ ss►♦► sr►► rsssrws►► ►r►s►wrarw.asws► ► ►r► ►rrrs►rss►r L6'OT - ( SH0)3.LVH MO'Ia X"d 98 1 9 - ( S3aJV)V3HV rMlOS L6'OT - ( Saw aaoxnII VSIIvBnS Ot'0 - dV 'NOIJJvtm v32M SnoIAaad 30VHSAV varmnS 86'0 - ( HH /HJNI)dd 's va ssoi S[omdad 3JvusAV vauvRris SE'6 Z£ OT 06'0 98•S V 'IVIDUSMOJ ('NIW) NJ ('IVWIJsa) (,dH /HJNI) (Sawn) dnouo 3Sn OMV'I DS SOS dV da v3Hv 'TIOS SOS /adAl INaNdO'IaMa e(II JWv)VSVCI SSVH SSo'I OMV D.L v3uvHns LLT'Z = ( HH /HJNI)AXISHHXNI 'IrMANIVH W43A Z . SW6 - (' NIW)uS KMINIW Oasn SISx'IVNV VSHVMS OZ'Or►((3°JNVHJ NOIIVA3'I3) /(00'E r.HZON3Z)1.X - 01 11' TL - ( L3ad) wavismoCI OS' LL - (lSS ) WVZH,LSdn : V,LVCI NOIIVA3'I3 00'055 - ( 133d)lUf)N3Z -MO'Ia VSHVH[IS 'IVIlINI »vsavans 'IVIJ.IMI Hod Hd"DOWOH NOISVNJMDKOJ 90 -3WIS asn« » »>SISx'IVNv vaavans 'IVIJ.INI aoHiaw 'MNOI.Lvu -- ---------------------------------------------------------------------------- TZ - Sam SI 00'6 SOON OS 00 SOON WOHA SSHOOHd MO'Td ►s►arras rr►..►.... sass► sssr sr► .... ►+..►rr.. r ..►.r+as+.r►►ss ►rr. ........... + *------------------------------------------------ ---- ------ ---- ------- - - -- -+ .ow vaiv ---------------------------------------------------------------------- - - - - -- T9 • EZ 3JN3n'IaNOJ IV (SAD) SIVd MO'Id XV3d £E'ET - ( SSHJV)VBHV WVSHZS gvlOS WET - ( S3HJV)WHY Wv3'ISS SAIZJ3aa3 OT'0 - dv aafmaAV -v3HV 86'0 - ( SH /HJNI)da CI30V2[3AV -V39V OT'0 - ( HH /HJNI)Wa OavvvaAv -vaxv[ Z6 • T - ( HH /HJNI) xSISNSJ.NI 'I'IVdNIVH OS'TT - (•NIW)NOIIV2IZN3JNOJ d0 aWI,L c3Hv T Wvzdjs imaN3d3CINI and assn SanZvA 3JNamaNOJ Z - SKVZH. S do USSR IN 'IVlO.L ............................................. .................. =............ »»>SJNamallo3 Hod wisuis mmamad3ONI SJ.VNOIS3O « «< ---------------------------------------------------------------------------- T - SCIOJ SI 00'EOI SCION OS 00'EOT SCION WOHd SSaDoad Mold r►►►► ►r ► wsr►wwrss►wrwws ►. ► ►► sass► swra►► r. rr ♦r.r►wrss ►wrs►raw►►►►►rs►.►►w ►r JAHA 00" OUT - 00' £01 SOON ox 00' 1 SCION WOHa H.LVdMO'IA LSSONOq m m am OT'0 - dY a3OYH3AY -YBHY 86'0 - (HH /HJNI)dd asJYH3AY -Yaw 01'0 - (HH /HJNI)Wd asJYH8AY -YBHY ZE'Z - (HH /HJNI)ASISNEINI ggVINIYH E6' B - ('NIW) NOI.LYHJJ wNOJ dO 3WIS sHY Z wY3HSS J.HIaNBdsaNI HOd OBSn San'IYA SJmmaNOJ Z - SWY3H.LS d0 H3MMM 'IY.LO.L ............................................. ............................... » »>Sanrm WY3HJS aBJxan'IdNOJ srioiaYA 3.Lnimo axy « «c » » >3JN8n'IdN0J HOd wY3HSS lMaxsdsam mvmiSaac«<c ---------------------------------------------------------------------------- T - BQOJ SI 00'1 MON 01 00'40T BaON wova SS8JOHd MOZd s► tsar►. rsrrsttstrr.. tttttrr. ar. tt ttr. tsrrssrrrrs .•t.ttrsttttr►rrrrs.rrsttr L88d 00'SZL - 00'60T 8aox 01 00'ZT saON WOHA H.LWHOZd SSSONOZ E6'8 SO'0 - ('xIW)aWI.L TdAYHI 3dId 96'TT - (SdJ)MO'Id -3dId T - S3dId d0 SHMIN 00'BT - (HJNI)H3J,3wYIa 3dId NaAIO 91'6 - ('Jas /133d)AJ.IJ073A MOZd -sdld S3H3NI S'ZT SI adId HOW O'8T NI HOW 90 HSd3a E10'0 - N S.JNINNVW 00'SZ - (IM)Nd.'JN3Z NOW OOZO'O - 3dO aAI.LYJ.HIS3Hd3H : ............................................ ............................... -- (Imawa'I3 ONISSIX3) 3ZISadId a3I3IJads -Hasa oxISn -- »»>Yawons f1wu awls 'I3AYHZ MO'Id -3dId 3SndwoJ ««< ---------------------------------------------------------------------------- Tb - 3aOJ SI 00'60T MOx OS 00'ET EGON wOHd SS3JOHd Mo'Id •. rr.. rrrtt.t rrrr.. rrrr. rt. asrtrssr.r r..... r r....t ......... *...r...rs...trr 96'TT - (SdJ)3SYH MMA xYSd L6'S - (SaHJY)YSITY 'IY.LOS WIT - (sao)ddONnH YaHYBns ov o - dY 'xOIZJYHd YaHY Sn0IAH3d 8oYH3AY YBHYBnS 96 - (HH /HJNI)dd '3.LYH SSOI snolAHad soya AY Y3HYBnS SE'8 Z£ OT'0 86'0 L6'S Y 'IYIOUMMOJ ('NIw) NO (7YYIIJ3a) (HH /HJNI) (S3HJY) MONO 3Sn axYZ DS SOS dY da Y3HY 'IIOS SOS /adAS J.ICDOOMA3a °(II JwY)YZYa aZYH SSO'I aNY ox YaHYBnS 6Z£'Z - (HH /HJNI)ASISHIJ.NI '1'IYdNIYH HY3A Z r 98E'8 - ('NIW)OS wnWINIW assn sISA'IYNY Y3HYBnS OZ'O.r((3)NVM MOISYA3Z3) /(00'E s.HS°JHIZ))rM - 01 00'95 (l33a)WYa OS'LL - (J.asd)wYHHZSdn :YJ.Ya NOIZYAa'I8 00'OOL - (133d)HZJNa'I -MM-9 Y3HYSnS 'IYISINI ............................................. ............................... »YaHYBns 7YIZIxI Hod HdYHOOWON xoI.LYH.LDIIJxoJ- dO -awu asn« » » >SISA'IYxY Y3HYBIIS 'IYI.LINI aOHZaW 'IYNOI.LVld" < ---------------------------------------------------------------------------- TZ - 3aOJ SI 00'£T 3aON O.L'00'ZT 3a0N WONA SSMOHd MO'Id stsrss.•ssa♦..•ts ► sssrrrsss.rr..r...rrrsrra rrsr.rs►rr..ttrt ► rrrrsss.arrrr } - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - rdr ea =Y +---------------------------------------------------------------- ----------+ 9L'8 - 33NffiI'Idx03 ZY (Sa3)3J.YH MO'Id )IY3d Mt - (SMOV) VMM WY3H.LS 'IY.LOb ZZ - (SaHJY)Y3HY WY8H.LS 3AIJJ3dd3 OT'0 - dY a3JYH3AY -Y3HY 86'0 - (HH /HJNI)dd a3oYHaAY -Y3HY OT'0 - (HH /HJNI)Wd a8'JYHBAY -Y3HY SE'Z - (HH /HJNI)A.LISHIJ.NI 'I'IYdNIYH ZZ'8 - ('xIW)NOI.LYHJJMNOJ dO 3WIZ :REV T NWHRLS SHIaMd3aNI Hod 03Sn S3n'IYA aJHIn'IdNOJ Z - SNVHHSS d0 HSMMH 'IYSO.L ............................................. ............................... -- aON3n'IdNO3 HOd WISHZS J.HIaNHd3aNI HLYNJIS3a « «< ---------------------------------------------------------------------------- T - MOO SI 00' 40T WON OJ. 00' WOT saox WOHd smoad Mold • ttsttt ttttt•ttttstttttrrrrtttttsa t. a♦ ttsrtttt ttsttssttrsrrrr..a tt.arrrr Jasd 00'OSL - 00'60T saox oS 00'01 3aox WOHd H.LYdMO'Id SSHOMO'I ZZ'8 6Z'0 - ('NIW)aWIJ.'IaAYHJ. adId 9CS - (SAD)MO'Id -BdId T - S3dId 210 MRS14M 00'BT - (HJNI)H3ZaWYIa 3dId HIAIo as'8 - ('J3S /lHHa)A.LIJO'I3A Mo'Id -3dId S3HJNI T'OT SI 3dId HOW 0'8T HI Wrla d0 HSd3a E1O'0 - N S.JNINNYW o0'osl - (J.asd)HJ.JHI'I MOZd OOZO'0 - 3dO'IS aAI.LYJ.HISBHdsH ............................................. ............................... -- (J.[HIYQ'I8 oNI.LSIXa) aZIS3dId aal cads -assn ONISn « «< -- vaHYBnS nHHS aWI.L 'I3AYH.L mma -said 3Jdldwoo - -< ---------------------------------------------------------------------------- Tb = 3aOJ SI 00'40T 3aox oa o0'TT WON WOHd SSa30Hd MO'IA tattar........r ► r.sss • s.r.. tsttttsttttrrsrrtrsrs ►rr.rsrrsrrsrrrsr ► rrrrrrsrrs 9L'8 - (SaD)3SYH MUla )IY3d ZZ'b - (SSHJY)Y3HY TdSO.L 9L'8 - (sao).moNna Y3HYHns OT'0 - dY 'NOIJJYHd Y3HY SnOIAH3d sfJYHZAY YsHYBnS 86 - (HH /HJNI)dd '3.LYH SSO'I snolAH3d 3OYHSAY YaHYHnS Z6'L ZE OT'O 86'0 ZZ'6 Y 'IYIJH34woJ ('NIW) NJ (7YWI03a) (HH /HJNI) (S3HJY) dnOHO asn aNY'I OS SOS dY da Y3HY 'IIOS SOS /adAS imawdulama : (11 JwY) YSYa a.LYH Sso'I aNY o.L YaHYHns 1,04' Z - (HH /HJNI) AZISHIJ.NI 'I'MaNIYH HYSA Z . bZ6'L - ('NIW)OS WMINIW assn SISA'IYNY Y3HYBns OZ' O.r [ ($oNYHJ NOI.LYAS'IH) / (00' E r.HJ.JHI'I)) .X - 01 00'09 - (J3sd)WYSH.LSNMOa S6'LL - (.LBad)wvaH.LSdn °YJ.Ya NOI.LYAS'Is 00'009 - (J.ssd)HJfJHI'1 -MO'Id YsHYBnS 'IYI.LINI ............................................. ............................... »YaHYBns TdI.LINI HOd HdYHOOWON NOISYHJIMONOJ- do -aWIS 3Sn« » »>SISA'IYNY Y3HYBIIS 'IYIJ.INI aOHJZN 'TYNOISYH « «< ---------------------------------------------------------------------------- TZ - saOJ SI 00'TT saON oL 00'OT saON woua SS3JOHd mma .. tttrtrtt► sr♦.... *..rrr .............r. r ...r..............rr.r......... t.r.r }--------------------------------------------------------------------- - - - - -+ ( r3. POAV +----------------------------------------------- ---- ----- -- -- --------- - - - --+ ............................................. ............................... » »> T # NNYH AHOYM O.LNO MMOJ AHOW314 NV3HSS- NIYW «c« ---------------------------------------------------------------------------- OT - aa0O SI 00'SOT 3GON 01 00'SOT 3aox NOMA SS3JOHd Mo'Id EFFECTIVE STREAM AREA(ACRES) . 5.97 TOTAL STREAM AREA(ACRES) = 5.97 PEAK FLOW RATE(CFS) AT CONFLUENCE . 11.96 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CPS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 8.76 8.22 2.352 0.98( 0.10) 0.10 4.2 10.00 2 11.96 8.43 2.316 0.98( 0.10) 0.10 6.0 12.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 20.61 8.22 2.352 0.98( 0.10) 0.10 10.0 10.00 2 20.58 8.43 2.316 0.98( 0.10) 0.10 10.2 12.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 20.61 Tc(MIN.) = 8.22 EFFECTIVE AREA(ACRES) 10.04 AREA - AVERAGED Fm(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap . 0.10 TOTAL AREA(ACRES) . 10.19 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 104.00 . 750.00 FEET r1rr11f :f # #rr111f :w1f wfflrf•: f1r111rr • :rwrw♦f♦1f111r1w♦♦ :rlffff •f :• : } : #w11fr FLOW PROCESS FROM NODE 104.00 TO NODE 105.00 IS CODE = 41 ---------------------------------------------------------------------------- »» .COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< »» >USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) < <c< REPRESENTATIVE SLOPE = 0.0200 FLOW LENGTH(FEET) . 150.00 MANNING'S N = 0.013 DEPTH OF FLAW IN 24.0 INCH PIPE IS 14.2 INCHES PIPE -FLAW VELOCITY(PEET /SEC.) = 10.61 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 20.61 PIPE TRAVEL TIME(MIN.) = 0.24 TC(MIN.) = 8.45 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 105.00 = 900.00 FEET. fff lff #fflfffrf }f}11111r }ff lff if ►flffffffflf ffflfffff ► } /f 11111111wif11f rf•1f FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 11 ---------------------------------------------------------------------------- » »> CONFLUENCE MEMORY BANK # 1 WITH THE MAIN - STREAM MEMORYc «« ............................................. ............................... ** MAIN STREAM CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 20.61 8.45 2.313 0.98( 0.10) 0.10 10.0 10.00 2 20.58 8.67 2.278 0.98( 0.10) 0.10 10.2 12.00 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 105.00 . 900.00 FEET ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 33.50 9.53 2.152 0.98( 0.10) 0.10 15.4 6.00 2 34.21 10.48 2.033 0.98( 0.10) 0.10 16.9 8.00 3 33.47 12.56 1.823 0.98( 0.10) 0.10 18.9 4.00 4 32.42 13.42 1.752 0.98( 0.10) 0.10 19.2 1.00 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 105.00 = 2220.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 52.65 8.45 2.313 0.98( 0.10) 0.10 23.7 10.00 2 52.92 8.67 2.278 0.98( 0.10) 0.10 24.2 12.00 3 52.90 9.53 2.152 0.98( 0.10) 0.10 25.6 6.00 4 52.48 10.48 2.033 0.98( 0.10) 0.10 27.1 8.00 5 49.75 12.56 1.823 0.98( 0.10) 0.10 29.0 4.00 6 48.04 13.42 1.752 0.98( 0.10) 0.10 29.4 1.00 TOTAL AREA(ACRES) . 29.38 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) . 52.92 Tc(MIN.) = 8.665 EFFECTIVE AREA(ACRES) = 24.16 AREA - AVERAGED Fm(INCH /HR) . 0.10 AREA - AVERAGED Fp(INCH /HR) . 0.98 AREA - AVERAGED Ap . 0.10 TOTAL AREA(ACRES) . 29.38 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 105.00 = 2220.00 FEET. •1f :11rr1fffil :rrfffflrlrrf re rr1r11f 11rr11ff1rrlrfffffr :ffferlf rwff lfrlrfff• FLOW PROCESS FROM NODE 105.00 TO NODE 106.00 IS CODE . 46 ---------------------------------------------------------------------------- >> » .COMPUTE BOX -FLOW TRAVEL TIME THRU SUBAREAc< << .>>>>USING USER - SPECIFIED BOX SIZE (EXISTING ELEMENT) « «< ............................................. ............................... REPRESENTATIVE SLOPE = 0.0100 FLOW LENGTH(FEET) . 50.00 MANNING'S N = 0.013 GIVEN BOX BASEWIDTH(FEET) . 8.00 GIVEN BOX HEIGHT(FEET) . 4.00 FLOWDEPTH IN BOX IS 0.77 FEET BOX -FLOW VELOCITY(FEET /SEC.) . 8.55 BOX- FLOW(CFS) = 52.92 BOX -FLOW TRAVEL TIME(MIN.) . 0.10 Tc(MIN.) . 8.76 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 106.00 = 2270.00 FEET. lffffflrflffllrfff lfffflfrRfff if rff 1f 11111 111111 ►f iff /1111 if if ►f ffflfffff ♦f1 FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE . 1 ---------------------------------------------------------------------------- > » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<c< ............................................. ............................... TOTAL NUMBER OF STREAMS . 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) . 8.76 RAINFALL INTENSITY(INCH /HR) . 2.26 AREA - AVERAGED Fm(INCH /HR) . 0.10 AREA - AVERAGED Fp(INCH /HR) . 0.97 AREA- AVERAGED Ap . 0.10 EFFECTIVE STREAM AREA(ACRES) . 24.16 TOTAL STREAM AREA(ACRES) . 29.38 PEAK FLOW RATE(CFS) AT CONFLUENCE = 52.92 + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + Area l G* ) +----------------------------------------------------- ----------- ----- ---- -+ �iffllf if it rf rf lffrffflf rfffllf ifffwfflf 41111 ! ►11ffflrfff 11111 if ff if if •11111 9Z'99 = ( J33d)W143HJSHMOa 68'9L = ( J33d)wY3HJSdn *Y.LYa NOILYAzia 00 = ( JA3d)HLON3'I -MO'Id VHUV flS 'IYIJ.INI ............................................. ............................... >>vasv s 'IYISIMI Hod HdvHJOWON NOI LVXLN3JNo3- ao-3NI.L 3Sn« — > >sISA'IYNY Y3HYSns 7YIJ.INI aOHmaw 'IYNOISYH ««< ---------------------------------------------------------------------------- TZ = SaoJ SI 00'LT 3aox OS 00 3aON WOHa SSROOHd Mo'Id +++.. r+++• ....... +.+► r++...rr+•+.....►.++.. r• +. +.+ +..r.. ..... . ♦ ....... . r.r++ + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + I H. VQJV *-------------------------------------------- ------- ---- ----- ------- -- ---- -+ ............................................. ............................... »»> Z # XNYS Asomw omo a3Idoo AHOW3W wY3HJS -NIYw— — ---------------------------------------------------------------------------- OT = 3aOJ SI 00'80T 3aox 01 00'801 3aON WOHd SS3JOHd Mold sass. r. rssss. r+ +waa +ss +...a ++aaaa..••sr +s...►a •s +..a s►+ss...a+ss►. ' J.33d 00' OLWZ = 00' 80T 3aON ox 00' T 3aOM WOHd H.LYdMO'IA JSHON0'I 11T'6 = (' HINP1 8E'0 = (' NIW)3WI.L 'I3AYH.L MO'Id -XOH 95'55 = (SdO)MO'Id -XOS OL = COHS /.L33d)ASI30'I3A MO'Id -XOS issa 08'0 SI Xos NI HSd3aM(YId 00'11 = ( J.33d)JJWI3H XOH M3AI0 00 = ( J.33d)HJ.aIM3SYS X09 N3AIJ £TO'0 = N S.ONINNYW 00'OOZ = ( JSHA)HJ,oN3'I MO'Id OOIO' 0 = 3dO'IS 3AI.LYJMSHHd3H ............................................. ............................... >>»> (JADmrI3 OMISSIX3) 3ZIS XOS a3I8IJ3d8 -Hann ONISn ««< »»>Y3HYSnS fimm 3WIZ 'I3AYHZ MO'Id -XOS 3JJIdwoJ ««< ---------------------------------------------------------------------------- 911 = 3aOO SI 00'80T 3aON OS 00'90T 3aON Nona sssooad MO'Id +r ► +w... ar r •+..+.+++.. a++s.a.f+. w.a +.a..r...s +s►... r •s sw. • i. +s +a a +s ►w J33d 00'OLZZ = 00'902 WON OS 00'T 3aOx WOHa HJ.Ydmma LsaONoq £L'OE _ ( S3HJY)WHY 'IY.LOZ OT'0 = dY a3OYHHAY -Y3HY 86'0 = ( HH /HJNI)dd a3OYH3AY -Y3HY Oi'0 = ( HH /HJNI)w8 aHD"HAY -Y3HY TS'SZ = ( S3HJY)Y3HY 3AIJJ3d83 9L'8 = (' MIW)DJ. 95'55 = ( S83Mtva MO'Id XY3d :SMO'IZOd SY SHY S3J.YWI.LS3 SON3n'IdNoo as.LndwoJ 00'8 T'LZ 00'9 9'SZ 00'ZT Z'11L 00'01 L'£Z 3aox (Saws H3SY14avaH eY Oi'0 (OT'0 )86'0 ZZO'Z LS'Oi 811'ZS T OT'0 (OT'0 )86'0 OiT'Z Z9'6 06'ZS T O1'0 (OT'0 )86'0 119Z'Z 9L'8 Z6'ZS T OT'0 (OT'0 )86'0 L6Z'Z SS'8 S9'ZS T i) (HH /HJNI) (HH /HJNI) ('NIW) (SaW H38WnN dY (ujj)dd AITBUDIUI OL 0 WY3H.LS ++ YJ.Ya 3JNSWUNOJ .. LO' E - 3JN3n'IdxOJ SY (sao) a.LYH Mo'id XY3d SE'i = Maw)Y3HY wY8HJS 'IY.LOL SE'I = ( S3HJY)Y3HY NMJS 3AIJ.J38d3 OT'0 = dY a3°J'YH3AY -Y3HY 86'0 = ( HH /HOKI)dd a3JYH3AY -Y3HY O1'0 = ( HH /HJMI)MA a3OYHHAY -Y3HY T9' Z = ( HH /HJNI) AIISN3J.NI 'I'IYBMIYH 68'9 = (' NIW)HOI.LYHZ[EDHOJ dO 3WIJ. e 3HY Z wvsus J.N3aN3d3aNI Hod assn S3n'IYA somm moo) Z = SWY3HSS d0 HHEMM 'IYSOJ. ............................................. ............................... -- san'IYA WY3H.LS a80MMUMOJ SnOIHYA 3mmw aNY« «< -- wN3n'IdHOJ Hod mans J.N3aN3d3aNI 3.LYNJIS3G""< ---------------------------------------------------------------------------- T 3aOJ SI 00'90T 3aox oJ. 00'90T WON woua SSROOHd Mo'Id . w++ ra+• sass♦ ss.+ asr+ r++ ar. rrs • +ww +s+w..r+• +a.w....+ssa ++ +s.a s+►+►+• J33d 00'S9£ = 00'901 WON O.L 00'6T WON WOHd H.LYdMO'IA JSHONOZ 68 1 9 = (' HIW)DS 110'0 = (' NIW)3WI.L 'I3AYHS 3dId LO'£ _ ( SAD)MO'Id -3dId T = S3dId d0 H38WnN 00'ZT = ( HJNI)H3J.3WYIa 3dId N3AIO 09 1 9 = ( , OHS /J.33d)AxI3O'IHA Moll -3dId SMOKI 6'9 SI 3dId HOMI 0'ZT NI MO'Id 80 Hdd3a ETO'O = N S.oNINNYW 00'ST = (.L33d)H.L`JN3'I MO'IA OOZO' 0 = 3do'IS 3AII.Vams3Hd3H .......................................... --------------------------------- »> (jxmri3 omusu3) 3Z2S3d2d craiai as -H35n JNISn « «< » » >Y3itYSRS nWU 3WI.L •INAYHS 140'Id -3dId 3.LndWOJ««< ---------------------------------------------------------------------------- i11 = 3aoJ SI 00'90i 3aox ox, 00'Si 3aON WOHd ssaDoad MO'IA +++ s. r+ ss. w... s+++. sass rwr+ r+.►. rr. ssr.+++. w. .s►..rsr+sww..r + + +s ++ +s +wrssr.. LO'E _ ( S8J)3.LYH MO'Id XY3d SE'T = ( SSHJY)Y3HY 'IY.LOL LO'E (sawaaOxm Y3HYSnS 00'i L'OE 02'0 (01 '0 )86'0 SVV T TS'ET SO'OS L OT'0 - dY 'xOIJJYHd Y3HY SnoiAH3d 3OYH3AY Y3HYSnS 00 1 11 11'OE OT'0 (Oi'0 )86'0 STB'T 99'ZT SS' TS 9 86'0 - ( HH /HJxI)dd '3.LYH SSO'I Snomasd 3oYH3AY Y3HYSnS 00 11'BZ OT'0 (Oi'0 ) 86'0 ZZO'Z LS'OT Z8'11S S 58'9 ZE O1'0 86'0 SE'T Y ZYIJH3WWOJ 00'9 6 02'0 (01'0 )86'0 O11T'Z Z9'6 6E'SS 11 ('NIW) No (Tvwio3a) (HH /HJMI) (S3HJY) dno'do asn aNY'I 00'ZT S'SZ 02'0 (01'0 )86'0 119Z'Z 9L'8 9S'SS £ 01 SOS dY dd Y3HY 7IOS SJS /aaxL J.N3Wdo'I3A3a 00'OT 0'SZ OT'0 (01'0 )86'0 L6Z'Z SS'8 EE'SS Z :(II JwY)YSYa 3d.YH SSO'I auv ox Y3HYSAS 00'11T 11'OZ OT'0 (OT'0 )86'0 1119'Z 68'9 E9'TS T EZ9'Z = ( HH /HJNI)A.LISN3J.NI 'I'IYdNIYH HY3A Z . WON (SHWV) (HH /HJMI) (HH /HJNI) ('KIN) (SdJ) asm4 IM 658'9 = (' MIW)ol wnWINIW assn SISA'IYNY Y3HYSIIS H3J.YMavHH OV dV (Wd) dd AlT8u87uI C).L 0 WY3H.LS OZ' O+r [ (3JMYHJ MOIJ.YA3'I3) / (00' E ..HSJN3'I) 1 +X = OS ws 3'I8Y.L 31YH MO'Id XY3d .+ 119'115 (J.338)wY3HJSNMOa 00'Z9 = (J.33d)WY3HSSdn :Y.LYa HOISYA3'I3 'SWY3HZS Z Hod a3Sn Y'Imoa 8Jx3n'IdNOJ 00'OSE _ (133d)HJMN3Z -MORB Y3HYSnS 'IYI.LINI OIJ.YH NOIZYHJMOKOJ dO 3WIJ. axY A.LISN3J,HI 'I'IYdNIYH =______________°____________________________ _______________________________ »Y3HYSnS 'IYISINI Hod HdVHDONOK NOISYHJ.M DNOJ- dO -3WIS 3Sn« 00' 11T 11' T 02' 0 (01' 0 ) 86' 0 11T9' Z 68 , 9 LO' E Z » » >SISA'IYxY Y3HYSns 'IYIZINI aOHI.3W •IYNOI.LYH « «< 00'T 11'62 02'0 (OT'0 )86'0 StU T TS'ET 110'811 T ---------------------------------------------------------------------------- 00'11 0'6Z OT'0 (02'0 )86'0 ST8'1 99'Zi SL'611 i TZ = 3aOJ SI 00'ST 3aox oS 00'11i WON WOHB SS3JOHd MO'Id iii W i m m r �► Tc - K *[(LENGTH ** 3.00) /(ELEVATION CHANGE) )* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) . 9.232 * 2 YEAR RAINFALL INTENSITY(INCH /HR) . 2.193 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 6.97 0.98 0.10 32 9.23 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) . 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap - 0.10 SUBAREA RUNOFF(CFS) - 13.15 TOTAL AREA(ACRES) 6.97 PEAK FLAW RATE(CPS) - 13.15 ffff +ff #f!f ##f ##f\+fiif+ tit }ff rfrffft►flfffftfff#i+fiff ► ♦lf tfff #frriffff! FLAW PROCESS FROM NODE 17.00 TO NODE 107.00 IS CODE = 41 ---------------------------------------------------------------------------- » ».COMPUTE PIPE -FLAW TRAVEL TIME THRU SUBAREA« «< »»>USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) « «< REPRESENTATIVE SLOPE = - 0.0100 -- - - ---------------- ----------------- FLAW LENGTH(FEET) . 550.00 MANNING'S N - 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 11.8 INCHES PIPE -FLAW VELOCITY(FEET /SEC.) - 7.30 GIVEN PIPE DIAMETER(INCH) - 30.00 NUMBER OF PIPES . 1 PIPE- FLAW(CFS) = 13.15 PIPE TRAVEL TIME(MIN.) - 1.26 Tc(MIN.) . 10.49 LONGEST FLOWPATH FROM NODE 16.00 TO NODE 107.00 . 1200.00 FEET. + :t♦ +fff rfrrrrref# ►f►r#\\r +## +f+f+ :#\♦ + # + # # # :r * #f tsfffr\ +r +r #f ►f #ffleff + #\ #♦ FLOW PROCESS FROM NODE 107.00 TO NODE 107.00 IS CODE - 1 ---------------------------------------------------------------------------- »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< _ : ........... ...... . .. ..................... ............................ :.. TOTAL NUMBER OF STREAMS - 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) . 10.49 RAINFALL INTENSITY(INCH /HR) . 2.03 AREA - AVERAGED Pm(INCH /HR) - 0.10 AREA - AVERAGED Fp(INCH /HR) - 0.98 AREA- AVERAGED Ap . 0.10 EFFECTIVE STREAM AREA(ACRES) - 6.97 TOTAL STREAM AREA(ACRES) - 6.97 PEAK FLOW RATE(CFS) AT CONFLUENCE - 13.15 + -------------------------------------------- -- --------------- - ------- -----t I Area "I" I --------------------------------------------- ----------------- -------- -- - - -+ ff+ifff•tfrt+ff ►r 11 ff!#ff\lffr#}f }if+fffffffirf tf •fffflff if if #fff \rf ► ►f l+ ►!♦ FLOW PROCESS FROM NODE 18.00 TO NODE 19.00 IS CODE . 21 ---------------------------------------------------------------------------- » >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «c USE TIME-OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« .....::... . ------ .......................=.... =..._.......................... INITIAL SUBAREA FLOW- LENGTH(FEET) . 500.00 ELEVATION DATA: UPSTREAM(FEET) . 66.87 DOWNSTREAM(FEET) 60.75 Tc - K *[(LENGTH ** 3.00) /(ELEVATION CHANGE))* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) - 8.809 * 2 YEAR RAINFALL INTENSITY(INCH /HR) = 2.256 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 1.81 0.98 0.10 32 8.81 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) . 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap - 0.10 SUBAREA RUNOFF(CFS) . 3.52 TOTAL AREA(ACRES) 1.81 PEAK FLOW RATE(CFS) = 3.52 firrrit•rlf :rf\ :r+rr }fr tf►lff+ ti e♦ +f rtrtr :►f ►f ►f if rr► ►fffr• +f ►f ►r #r i+►• FLOW PROCESS FROM NODE 19,00 TO NODE 107.00 IS CODE - 1 -------------------------------=-------------------------------------------- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< >>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< ............................................. ............................... TOTAL NUMBER OF STREAMS - 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) - 8.81 RAINFALL INTENSITY(INCH /HR) - 2.26 AREA - AVERAGED Fm(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) - 0.98 AREA- AVERAGED Ap - 0.10 EFFECTIVE STREAM AREA(ACRES) - 1.81 TOTAL STREAM AREA(ACRES) - 1.81 PEAK FLOW RATE(CFS) AT CONFLUENCE . 3.52 ** CONFLUENCE DATA ** STREAM 0 Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 13.15 10.49 2.032 0.98( 0.10) 0.10 7.0 16.00 2 3.52 8.81 2.256 0.98( 0.10) 0.10 1.8 18.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM 0 Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 15.84 8.81 2.256 0.98( 0.10) 0.10 7.7 18.00 2 16.30 10.49 2.032 0.98( 0.10) 0.10 8.8 16.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) - 16.30 Tc(MIN.) . 10.49 EFFECTIVE AREA(ACRES) - 8.78 AREA - AVERAGED Fm(INCH /HR) . 0.10 AREA - AVERAGED Fp(INCH /HR) . 0.98 AREA- AVERAGED Ap . 0.10 TOTAL AREA(ACRES) . 8.78 LONGEST FLOWPATH FROM NODE 16.00 TO NODE 107.00 - 1200.00 FEET. • } }•t• }*fff } }} ► \fff tf \f ♦!f+lf+f ♦ffffff #f • fff }} \fff ll+ \ }fllf } \f \ }•ifff+lffiff FLAW PROCESS FROM NODE 107.00 TO NODE 108.00 IS CODE - 41 ---------------------------------------------------------------------------- »> > COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< » >>>USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) < c < ............................................. ............................... REPRESENTATIVE SLOPE . 0.0100 FLOW LENGTH(FEET) • 350.00 MANNING'S N . 0.013 r m m r m r m m m .e m m m m m m tir DEPTH OF FLOW IN 30.0 INCH PIPE IS 13.3 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 7.73 GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES 1 PIPE- FLOW(CFS) = 16.30 Q PIPE TRAVEL TIME(MIN.) = 0.75 Tc(MIN.) . 11.24 Intensity LONGEST FLOWPATH FROM NODE 16.00 TO NODE 108.00 = 1550.00 FEET. fffff4fffffffffffffffffflfffff lffiffffffffffffflfftf fffffffff•ifffff if •fffff FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE . 11 ---------------------------------------------------------------------------- » »> CONFLUENCE MEMORY BANK # 2 WITH THE MAIN - STREAM MEMORY-c< ...... = ......... . ....... = ......... =......................................... *• MAIN STREAM CONFLUENCE DATA ** (CPS) STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 15.84 9.57 2.147 0.98( 0.10) 0.10 7.7 18.00 2 16.30 11.24 1.949 0.98( 0.10) 0.10 8.8 16.00 LONGEST FLOWPATH FROM NODE 16.00 TO NODE 108.00 = 1550.00 FEET. '* MEMORY BANK # 2 CONFLUENCE DATA ** 0.10) STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 51.63 7.28 2.530 0.98( 0.10) 0.10 20.4 14.00 2 55.33 8.92 2.240 0.98( 0.10) 0.10 25.0 10.00 3 55.56 9.12 2.209 0.98( 0.10).0.10 25.5 12.00 4 55.39 9.98 2.093 0.98( 0.10) 0.10 26.9 6.00 5 54.82 10.92 1.983 0.98( 0.10) 0.10 28.4 8.00 6 51.85 13.01 1.785 0.98( 0.10) 0.10 30.4 4.00 7 50.05 13.87 1.718 0.98( 0.10) 0.10 30.7 1.00 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 108.00 = 2470.00 FEET. ** PEAK FLOW RATE TABLE " 4 STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 65.93 7.28 2.530 0.98( 0.10) 0.10 26.3 14.00 2 70.76 8.92 2.240 0.98( 0.10) 0.10 32.2 10.00 3 71.12 9.12 2.209 0.98( 0.10) 0.10 32.8 12.00 4 71.31 9.57 2.147 0.98( 0.10) 0.10 33.9 18.00 5 71.34 9.98 2.093 0.98( 0.10) 0.10 34.8 6.00 6 71.03 10.92 1.983 0.98( 0.10) 0.10 37.0 8.00 7 70.67 11.24 1.949 0.98( 0.10) 0.10 37.5 16.00 8 66.71 13.01 1.785 0.98( 0.10) 0.10 39.2 4.00 9 64.32 13.87 1.718 0.98( 0.10) 0.10 39.5 1.00 TOTAL AREA(ACRES) = 39.51 0.10 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: 8.00 PEAK FLOW RATE(CFS) = 71.34 Tc(MIN.) = 9.981 70.67 EFFECTIVE AREA(ACRES) = 34.84 AREA - AVERAGED Fm(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) . 0.98 AREA - AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 39.51 0.10) LONGEST FLOWPATH FROM NODE 1.00 TO NODE 108.00 = 2470.00 FEET. :...:_:::_:.....:..:.: .....................=. ....... =....................... END OF STUDY SUMMARY: 8 TOTAL AREA(ACRES) 39.51 TC(MIN.) 9.98 13.01 EFFECTIVE AREA(ACRES) 34.84 AREA - AVERAGED Fm(INCH /HR). 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 PEAK FLOW RATE(CFS) = 71.34 0.10 *' PEAK FLOW RATE TABLE ff STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CPS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 65.93 7.28 2.530 0..98( 0.10) 0.10 26.3 14.00 2 70.76 8.92 2.240 0.98( 0.10) 0.10 32.2 10.00 3 71.12 9.12 2.209 0.98( 0.10) 0.10 32.8 12.00 4 71.31 9.57 2.147 0.98( 0.10) 0.10 33.9 18.00 5 71.34 9.98 2.093 0.98( 0.10) 0.10 34.8 6.00 6 71.03 10.92 1.983 0.98( 0.10) 0.10 37.0 8.00 7 70.67 11.24 1.949 0.98( 0.10) 0.10 37.5 16.00 8 66.71 13.01 1.785 0.98( 0.10) 0.10 39.2 4.00 9 64.32 13.87 1.718 0.98( 0.10) 0.10 39.5 1.00 END OF RATIONAL METHOD ANALYSIS 01'0 = (HH /HJNI)wd aH0VH3AV-VHVV WE _ (HH /HJNI)AJ.ISNalKI 'I'IVdNIVH 119'01 = ('NIW)NOIZVEMMONOO 910 BwIS :3HV T NV3HSS ZNaaDZ3d3aNI Hod a3Sn S3nZVA 8JN8n'IAMOO Z = SWV8HJS 80 RHMMM ZVJ.Ol ............................................. ............................... »»>3ON3n'IdNOJ HOd WV3HJ.S JMCMd3aNI SLVN'JIS3a ««< ---------------------------------------------------------------------------- T = 3aoJ SI 00'OOT MON OS 00'00T WON WOHA SS330ad Mo'Id • rrsrrtrsr. ►s.r ++♦rat►tr••tstttttrttstttt+ stir • +s+s.+sssssrrrrrttrtsrt►rtsrt L3ad 00'0501 00'00T 3QON oS 00 3aoN wosa HJ.VdMO'Id Ls3DN(yI 119'OT = ('NIW)01 11L'0 = ('NIW)3WI.L 'I3AVHS 8did 611'TT = (SHJ)MO'Id - 3dId T SHAId d0 H3SNM 00'OE _ (HJNI)HHJ.aWVIa 3dId MAID EO'6 = ('J2lS /J33a)AJ.IJO'I3A MO'IA - 3dId SMOKI Z SI 3dId HOW 0'OE NI MO'Id d0 HJd3a £TO' 0 = N S . JNINNVW 00' 0011 = (133d) HIONa'I MO'Id OOZO' 0 = 3d0'IS 3AIJ.Vd Z3SSHd3H ............................................. ............................... » »> (J.NSIGM 'MUSIX3) 3ZIS3dId aaI osas - assn ONISn « << »> >v VSns num 3WI.L 'IaAVHJ. Mou-saia ammoD«« ---------------------------------------------------------------------------- T11 = MOD SI 00'00T saON oz 00'E 3aON wou sssoodd Mold + r+•str++trr►tt+srtrttttt►ts+t++ rat+++++ rs. r+ s +ss+►+s.r +srrsr•+rs+tsstr++►++ S88d 00'089 00'E 3aON o.L 00'T 3aON WOHd HSVdWMA JS3DNOZ 06'6 = ('NIW)0y ET'O = ('NIW)SWIS 'IBAVHS SdId 611'T1 = (SAD)140'Id - 3dId T = SHAId d0 H3814M 00'BT = (HJNI)H3J.3WKIa HAId MAID (V8HV HOIM3S SSOHJ adId) / (MO'Id rMJ.O.L) = A.LIJO'IHA MO'Id HAId OS' 9 = CO2S /J.3ad) ASIO0'IaA MO'IA -adId 3NI'I3dId E)NIMO'Id -qMJ HMSSV E10'0 = N S.`JNINNVW 00'08 = (J.833)HJ.ONa'I Mold 0010'0 = 3d0'IS 3AI.LVJMSaHd3H : ............................................ ............................... -- > (J.NHW3'I3 `JNI.LSIX3) 3ZIS3dId aaIHIJadS-HBSn JNISn « «< » "V3HVSnS nHHJ. 3WIS gMVHJ. MO'IA-adId 3JJIdWOO " <" ---------------------------------------------------------------------------- 111 = 3aOJ SI 00'E WON OS 00'Z 3aON NONA SSaJOHd MO'Id +• trrrststsrrrsrt trrrrrt►sttrrs+rtsr+++t rat++ +•rts++++►st•s++s++ss. +r++rr +s• 611 TT = ( BAD)3.LVH MO'IA XV3d OT'11 = ( SHROV)VSUV 'IV.LO.L 611'TT (sawaaoNns VaHVSns 01'0 = dV 'NOIJ.JVHA V3HV SnOIAH3d SDVH3AV VBHVSnS 86'0 = (HH /HJNI)dd '3J.VH SSO'I SAOIAH3d 30VHaAV VaHVSnS LL'6 Z£ 01'0 86'0 OT'11 V 4VIONSMOJ ('NIW) NO (mmmaa) (HH /HJNI) (S3HJV) dnOHJ asn aNVZ O.L SOS dV da V3HV MOB SOS /sdA.L SNawdo'IaA3a : (II JwV)V.LVa 3.LVH SSo'I aNV 0S VaHVSns TIV E _ (HH /HJNI)ASISHBINI 'I'IVdNIVH HV3A 01 . OLL'6 = ('NIW)0y wnwINIW Qast1 SISA'IVNV VaHVSns OZ' O.+ ((HDNVM NOI.LVA3'Ia) / ( 00' E + +Hd.%N3'I)) tX = 01 00'£L = ( J33d)wV3HSSNMoa OE'6L = (J38d)k=HZSdn :VZVa HOI.LVA37I3 00' 009 = (J33d) HJ.ONB'I -MO'IA VHHVMS 'IVI.LINI .............................=............... ............................... >>VZHVSIIS 'IVI.LINI NOd HdVHJOWON NOIIVUMONOJ dO - SKIJ. 3Sn« » »>SISA'MNV VBHVSns 'IVILINI aOHJ.34 ZVHOI.LVH ««< ---------------------------------------------------------------------------- TZ = saw SI 00'Z 3aON o.L 00'T 3aON woua SSBJOHd MO'Id •++t++s+ss.►rrsr► arcs►♦ s• r+ s+►..... ++rrt► t.+. .....r. +rr+rrrts +...... +.+t+• ++ Oammas SOH ZN3W.LSnfaw adms oiHd"f)odo.L WIIWINIW Qaiaiosas-Hssnr +'3dId AHVJnSIHS WVBHSSdn 3H1 OZ 'IVn0H NO MnM HHSVBHO ALIOVdVO MO'Id V HZIM 3dId HZIS+ (S /JA.JA) 0' 9 = 7uie=1SUOJ (A3T3018A) + (K3daa) 'Z (%=3- ;o -doZ) - midea AOTd 300315 8 1gewOTTV wmutxew) se MMa 00'0 = gjdaa -word aATIOTeR 'T :SJJZIVHJSNOO H.Ldaa -MOZd J.33HJS 'IVSO'IO OSTO'0 L91"0 ZTEO'0 00'Z L9'0 OZO'0/810'0/8T0'0 0'0Z 0'0£ T ....... ..... ...... ..... ...... .... ;....._...... --------- ..... __. (u) (La) (JA) (J.d) (J.d) AVM /saIS / 3aIS (J.d) (JA) ON HOJ.JVd aXIH AI'I HJ.aIM JJIOIHH - XHVd /-JnO / -NI 'I'IVdSSOHO HIMM ONINNVW :SHIHS8W080- H3lmf) SHAD :'IrmasSOHJ J.83HJ.S OS HMOHO -d'IVH .'I3QOW MO'IAJ.a3HJS aNV MOZdadId aa•IdnOJ HOd SHOIJORS- 133HSS aaNIdaa -HaSnr .aommt 'IVNOI.LVH Hod QawnSSV II (oww) NOIJ.IaNOJ smusIow J.Naaa3amm- 0009'0 = aAHM NOISVHAa A.LISN3ZNI d0 HAMS LO80'T = (HnOH /HJNI) jai Smim HnOH-T 00'OT = UERAH WHOZS :V.LVa AIISNHJ.NI maxIva as.Lndwoo OSS'1 = (HnOH /HJNI))J.ISNa.LNI 3JnHIW -09 WHO.LS HV3A -00i OLO'T = (HAOH /HJNI)ASISN3J.NI 31nNIW -09 WHOSS HV3A -OT .'I'IVdNIVH HOd a3Sn NOI.LV'IOdHaJXI JIWH.LIHVDM a8NIASa -HSSn. 56' 0 = ad0•IS NOIJJIHd HOd 3Sn OZ (mmioaa) SJ.NBIavao do J.Imusa aaiaiDadS 00'ZT (HJNI)3ZIS HdId WnWINIW a3IAIJ8dS 00'01 (HV3A)JNam WHO.LS usiaioadS Hasn -- .gHaOW NOISVHJMONOJ-dO-HWIJ.+ ...... ........= = = = NOI.LVWHOdNI s 'I3aOK OIrMVHaAH (INV AOOZOHaAH a3IdIJ3dS HaSn ............................................. .................... =.......... ZOOZ /O£ /90 E0 :£T :Rams d0 3J.Va /awu 1Va'OTd00610 :3WVN MIA rsa ++ sass+++ s► arcs rrtttt++++ ss++• s+ s++ s+ s+ r+s+ss + ++ + +rrr.r + + s+ss + ++..+s.• + uu oaS JV9A OT . sT9ATeuV suOtItpuoZ) posodo=d , Al=ado=d TwToaemoD A0uo59N . trsr+r+r+sr++t++ +++s• +.... AOAJ.S d0 HOIZdIVOS3a +rrsrt+s• + + + ++rrrrrsr +rrsr 1089- S89(11TL):d 0989- S89(11TL):d 808Z6 VD 'S'I'IIH WIaHVNV 'aA'IS HHSIVX 'a SLIS OKI 'SJ. .LMSNOJ SOMOSHE J.N3WdO'ISMa :Aq pe=edaid sisATRW 01ST QI 8SUDOT'I TOOZ /TO /TO :81ea asealaH 0'8 '28A (sae) a=ewq ;OS BUTISOUT5UH pa0ueepV TOOZ -£86T gg6t=AdoO (o) (NOIH3.LIao A00'IOHam 'oo ONIamme NVS 9861 :a0ua=a ;aH) 30VXJVd WVHJOHd H3JndWW AJO'IONCIM aOH.L3W ZVNOI.LVH •+++ s++ ssrrrrrrsr. tt+t rr+•++• r• rrrrrrtss + +.+s+s.•r♦ +rrssr + +ss+s♦ +a rs...+s• +. LE'OT - (' NIW)NOISYHJmONoO d0 3WIS ' SUY T WYSH.LS IMaNSdSONI Uod assn sSn'IHA 3JM MUNOJ Z - Swv3UJS d0 USSWON 'IYSOX ............................................. .......................... .. ... -- SJN3n'IdNOJ Hoa wwax.Ls J.NSaNSdsaNI s.LvNDisSa -- ---------------------------------------------------------------------------- T = Saw sI 00'ZOT SOON OS 00'ZOT 3aON Mom SS3JOUd MO'Ia swss+ w• s+ s+++ s+ stw+ w+ twt• wswtw++♦ s+ w► ssstrw+♦ +ssw+w+s++rsw♦ ++twwrws+ttw +s+tt '133a 00'OZET - 00'Z01 saox OZ 00'T SOON woos HJ.YdMorm ZSS'JNa'I LE'OT = (' NIW)aL OE'O - (' NIW)SwIS ZSAYUJ. Mo'Id-Xo8 16' LZ - ( SaO) MO'Ia - X08 LL'9 ('JSS /J3Sd)ASIJO'I3A MO'Ia -X08 J.33a ZS'0 SI XOH NI HJ.dsamma 00* 11 = ( J.SSa) JJMISH XOB NSAID 00's - ( J.33a) H.LOIMSSYB Xo8 NSAIO ETO'O - N S.JNIWWW 00'OZT - (J33d)HLJN3'I MO'IJ 0010'0 - Sd0'IS 3AISYJJMSHUd3U ............................................. ............................... -- (J.NSWS'I3 EINISSIx3) 3ZIS Xo8 amaimas -sasn JNISn -- »»>YSUYBnS nmu SWIJ. 'I3AYHS 140'Ia-Xo8 3JJIdWO3« «< ---------------------------------------------------------------------------- 91 = SaOJ SI 00'ZOT SOON 01 00'10T SOON NONA SSH3OHd MO'Id ♦tii N w +i• +s+• +i1►w wsstwi►+ w+ rt+ t+ ws++ trw ww♦ wtt • +wsss +twrws ++wtiw +ww + + ++w +w+ JSSd 00'OOZT = 00'10T SOON OJ. 00 3aON Nova HSYdMO'Id LSHOSO'l LO OT = (' MIW)aS ZZ'0 - ('NIW)SWIJ.'I3AYHS SdId 16'LZ - ( SHJ)MO'Id - SdId T = SSdId dO USBwm 00'0£ _ ( HJNI)HSJ.3WVIa SdId NSAIJ 81' TT - (' J3S /.LHSa) A.LIJO'ISA MO'Ia - 3d Id SHHJNI 6'1T SI SdId HJNI 0'OE NI MO'Ia d0 HJ.dSa ETO'O - N S.•JNINNVW 00'OST - (J.S3d)HWNS'I MO'Ia OOZO' 0 - Sd0'IS SAId.YJMSHHd3U ............................................. ............................... -- (J.N3WS'IS ONI.LSIx3) SZISSdId a3IaIJ3dS -HHSn ONISn —" »»>YSUY8n3 rimu SwIS iaAYHS MO'Ia -SdId minawoo -- ---------------------------------------------------------------------------- T1 BUO3 SI 00'TOT SOON oS 00'OOT SOON WOUd SSSJOHd MO'Id rswwwtwwws ++ was+ st +tw+ssstssr+sws +w ♦ss+ +t+wsssss r#ss++stw +swswsswww+s+ ++wwws SSSa 00'OSOT - 00'001 SOON 0L 00 SOON WOHA HSYdMO'Id ZSHON0'I 60'OT - ( SSUJY)Y3UY 'IY.LO.L OT'0 = dY a3JYUSAY -YSITY 86'0 - ( HH /HJNI)dd aSEIYHSAY - VSITY OT'0 - ( UH /HJNI)wa aSOYH3AY -Y3HY 6L'6 = ( SHWY)V3HY SAIJJSaAH S8'6 - (' MIW)DI 16'LZ - ( S8JIS.LYH MO'Id xv3d SMO'I'IOa SY SHY SSJ.YWIJS3 SJNSnumoo aaandwoo 00'1 T'OT 01'0 (01 )86'0 ZSO'£ 19'OT OS'LZ Z 00'1 8 01'0 (01 )86'0 S61'E S8'6 16'LZ T SOON (SSUJY) (UH /HJNI) (HH /HJNI) ('NIW) (SdJ) USEIPM HHJ,YMUV3H By dY (wa) da AaTsuaauI aJ. 0 kfflmS +w 3 1 I8YJ. 3SYH MO'Id XYSd +t 'SwYSUJS Z HOd assn Y7OWUod SJNSn'Ialloo OISYH NOIJ.YH.LN3JNOJ d0 3WIS aNY 7LJ.ISNSJ.NI 'I'IYdNIYH 00'1 0 OT'0 (01'0 )86'0 561 S8'6 8L'9T Z 00'T T'1 OT'0 (OT'0 )86'0 ZSO'E 19'OT WIT T SOON (SSHJY) (UH /HJNI) (HH /HJNI) ('NIW) (SAO) H38HION U3SYMaVSH QY dY (wa)dd AaTsuaauI a.L 0 w 1 ki3UJS .. Yd.Ya SJN3n'Ialloo w r 8L'9T SJN3n'IBN0J SY (SdJ)3J.YH MO'Id XV3d 66'S - ( S3HJY)YSUY NWHUSB 'IKSO.L 66'S - ( SSUJY)YSUY NYSZI.LS SAIJZZAaS 01'0 - dV aSJYHSAY -VSITY 86'0 - ( UH /HJMI)da a30YH3AY -YSITY OT'0 - (UH /HJMI)wa OHDVlMY -VSUY 6T'E _ ( UH /HJMI)XLISNSSNI''T'MJKIYH S8'6 - (' NIW)NOI.LYH.LNHONOJ d0 ZHU :SHY Z wvsus imaN3dsaNI Uod a3Sn S3n'IYA 3JN3n'IdNOJ Z - SW43H.LS do HROW(IN 'IK.LO.L ........................................................ = ------- = ....... .... » »>S3n'IYA WYSHJS USJNSn'IdNOJ SnOIUYA SZndWOa aNY ««< »»>SJNamaMOJ Hod wY3UJS J.NSaNadsaNI S.LVNDISSa ««< ---------------------------------------------------------------------------- T = Saw SI 00'OOT 3a0N oS 00'OOT SOON WOHA SS3JOUd MO'Td srr+ s++ tww+++ s++► t► w++ w+ s+♦+► r++++ swww+++ w+ sws +►wrt++tsws►sw++++ssw►w +wswws+ J83d 00'008 = 00'OOT SOON OZ 00'1 SOON WOHA HZYdMO'IA LS30N0'I S8'6 - (' NIW)aS 80'0 - (' NIW)SWIJ.'I3AYHJ. SdId 8L'9T - ( SdO)MO'Id -SdId T = S3dId d0 H38WON 00'OE _ ( HJNI)HSJ.SWYIU SdId NHAID 10'OT - (' J3S /ZSSJ)ALIJ0'ISA MO'Id-3dId SSHJNI Z'TT SI SdId HJNI 0'0£ NI IOTA d0 HSd3a ETO'O - N S.ONINNVW 00'08 - ( J.33d)HSJN31 MO'Ia OOZO' 0 = Sd0'IS SAIJ.YJMS3HdSH ............................................. ............................... » » >(ZlIDQI3 DNIZSIx3) 3ZIS3dId a3IaIJSdS -HSSn `JNISn « «< - -va Itlms amu SWI.L 'I3AYH.L 140'Ia -3dId amdWoD -- ---------------------------------------------------------------------------- T1 = SOOJ SI 00'OOT SOON OZ 00'5 3aON WOHH sssoosd Mo'Id r sw+ ss♦ s►++ w+ s+ w+ i+ sass+ str+r w+r s+ ts+ s+ s►•++♦ r+ +wsw+sss + +w+ws++ + + + +s► +ssss+t BL' 9T - ( SaO) SZYH MO'Id Wad 66'S - ( SHUJY) Y3UY 'IY.LOS 8L'9T = ( SAO)JA0NnH HSHVMS OT'0 - dV 'NOIJJYHA Y3UY Sn0IAHSd SOYUSAY YSITYBIIS 86 - ( UH /HJNI)dd 'S.LYH SSO'I sn0IAHSd 30YUSAY Y3HY8nS LL'6 ZE 01 86'0 66'S Y ZYIJHSWWOJ ('MIN) NO (MMIJSW (UH /HJNI) (SSHJY) dnOHO 3Sn aNY'I al SOS dY da YSITY 'IIOs SOS /SdA.L J.Hawdo'ISA3a (ii Jwv) Y.LYa 3.LYH SSO'I aNY aJ. Y3HY8nS TTZ'E _ ( HH /HJNI)AJ.ISNSJ.NI 'I'IYdNIYH MA OT + TLL'6 - (' NIw)aS WOWINIW a3Sn SISA'IYNY vasvmS OZ' Owt I (S`JNYID NOIZYAH'IS) / (00' E wwHlf)N3'I)) +x = 01 00'L9 = ( J339)WVSH.LSNM0a OE'6L - ( J33a)NV3U.LSd1l =Y.LYa N0IJ.YA3'I3 00'OSL - ( J.3Sd)HJ.0N13'I -M0•Id YSITYBnS 'IYI.LINI ............................................. ............................... »YSITYBns 'IYIJ.INI Hod HdvuoowON NOIZYHJdi3JNOJ 3Sn« -- sISAZYNY Y3HY8ns ZYI.LINI aommi 'IYNOIJ.YH<c «< ---------------------------------------------------------------------------- TZ - 3a0O SI 00'S SOON oJ. 00'1 3aoN WOUd SSSJOHd MO'Ia ss+ ttwswww+ sstswswsw +sttwwwwwtsw+s++tr►ss+++s sass ++►+st+tttstt +t►www+ws►rs +♦ 61' TT 3JNSnrimm J.Y (Saa) S.LYU Mo'Id xvsd OT'1 - (S3UJY)Y3HY WV3USS gV.LO.L OT'1 - (SSHJY)Y3HY NYSH.LS 3AIJJSadS OT'0 - dV CIZVV33AV -YSHV 86'0 - ( UH /HJMI)dd a30YH3AY -VSITY ---------------------------------------------------------------------------- IZ - 3aoJ SI 00'6 3aON oI 00'8 ROOM WOad SS3JOad MO'Id ..........+...+.+. r...+►.++.♦ r ............... .......• ++..............r.....+ ZL'9E = aommalloo IY (sawaiva M0'Id XYsd EE'ET - ( Smov)YSHV WVSHIS 'MIol £0'£1 - (SSWV)Y3aY MMUIS 3AIl3Haa3 OT'0 - dY cmDvu AY -YSaY 86'0 - (HH /HJMI)dd asDYasAY -YSaY 01'0 - (aH /HJNI)Ula clzDv sAY -YSaY S6'Z - (aH /HJNI)AIISNUMI 'I'MdHIYa SZ'TT - ('NIW)N0ISY2ISNSJN0O d0 3WII 3HV T W143HIS INSaNSdsaNI and Ossn S3n'IYA 3JN3n'IdNoz) Z - SwWaXIS d0 USSHM 'IYIOI ............................................. ............................... » » >8JN8n'IdNOJ soa NvauLs IMSaNadsaNI gIYNJIS3Qc «< ---------------------------------------------------------------------------- t = saOJ SI 00'EOT 3aON OI 00'EOT saON woad SS3JOad MO'Id rs+sasstst►.►. +a tar+ is+. trrs...........ta.► r. .... *.....rttrrrrssr.rs...... Issd 00'OZL1 - 00'EOT saON OS 00'T saON NOad HLYdMOrM ISSONO'I SZ - ('NIWPI 68'0 = ('NIW)HWII 'ISAWU 140q&-XOH ZL'9E _ (Sdo)Mo'Id-XO8 611'L = ('J3S /IS3d)AIIJO'ISA MO'Ia -XOH ISHA 19'0 SI X08 MI HZd3aMOZd 00'11 = (ISSd)IH0I3H X08 MAID 00'8 - (Isaa MLaIM3SY8 XO8 N3AI0 £10'0 - M S.JNIMM 00'004 - (Z339)HtJNS'I MO'Id 0010 = 3d(YIS 3AI,LYJMS3HdHH ............................................. ............................... »» (JXRWH'IS ONIISIX3) MS X08 a3IHIDUS -83sn JMISn «« < " » >VHYdMS nURI 3WII 'ISAYaI MOU -XO8 a=dW0O«« ---------------------------------------------------------------------------- 9t - saOJ SI 00'E01 3a0N oI 00'ZOT saOH WOad SSaD0Hd MUM s+ sa s ••rrtsa■sts +ta..a.t.tsttaaaas.a star. +s s..assasta♦at.a►.t 'ISSd 00'OZET - 00'ZOT WON OIL 00 saON W08a RMMMa LSHf)NOrl EE'ET - (SHUDY)YSaY 'MIDI OT'0 - dY as°unmv -Y3aY 86'0 - OWHJMI)dd CMDVH3AY -VHW 01'0 - (aH /HJNI)md allD"aAY -Y3aY MET (SHH3V)Y3HW HAIJJ3dd3 9E'OT - ('NIN)CU ZL'9E _ (S8oMm MO'Id XY3d 'SMOR'IOd SY HHV S3.LYWISSS HON3nIANOJ aslndwoo 00'1 E El 00'4 0 ET 00'9 Z'OT saoH (SHUDI asIYMav3H By OT'O (01'0 )86'0 896'Z VT'TT 68'SE E 01'0 (OT'0 )86'0 OOT'E 9E'01 ZL'9E Z 0T'0 (OT'0 )86'0 L08'E 9E'L 9E'S£ T o (IIH /HJNI) (aH /HJNI) ('MIN) (SdJ) asBMIIN dY (wa)dd AOFBuequl a,L 0 wwauls .. 3'IBY,L HIYU MUM XYSd r. swY3a is z aoa assn Y'mwaoa 3oN3n'IdNOo oI,Lva NoI.LYBLmDNoJ d0 sWII aNY AZISN3d.NI 'I'IYAMIYB 00 Z'E 01'0 (01'0 )86'0 00 T'OT 01'0 (OT'0 )86'0 00'11 8'6 0T'0 (Ot'0 186'0 saOM (SRWV) (HH /HJMI) a3IYMaVHH eY dY (WA) CIA LOBE 9E'L 118'01 Z 896'Z 11T'TT OS'LZ T OOT'E 9E'01 116'LZ T (aH /HONI) ('MIN) (SaD) Hasi M A7TeueauI DI a wvzuw +. YIYa 3JN3nlaMOO .. 118' 01 = 3JN3n'IdNOJ IY (SSJ) sIY-I MO'IA XYSd 11Z'E _ (SHUDY)Y3aY wY3als 'IYIol WE _ (S3HDv)vmm WY3aIS HAIlosaas OT'0 - dY asOYasAY-YSaY (aH /HJHI)da a3oYa3AY -Y3aY 01'0 = (aH /IDHI)WH a30Ya8AY -YSaY WE _ (aH /HJHI)ASISN3.LNI 'IZYANIVU 9E'L ('MIw)HOIIY8IN3OMOJ JO sWIL :saY Z wwaass IN8aM3d3aNI aoa assn Ssn'IYA 3JMSIamo Z = SWV3W.LS do XRGWnN WML ............................................. ............................... » » >SSMMA WIMMS CMDMM'IaXW SnoI"A slndwoJ aNY ««< -- mN3n'Ialloz) aoa wY3aIS imaNadsaNI sbYNflISsa«« ---------------------------------------------------------------------------- T - saOJ SI 00'ZOT saOM OI 00'ZOT 3aON WOad SSsDoad Mo'Id ssa..rs.t♦ ♦asrs•t.tatsats a.rt st t..tsssa•t♦ +.....+tat +..ta +. +.► +. t.rr I33d 00'5911 = 00'ZOT 3aOH oI 00'9 saOM woad HSYdMO'Id LSSf)N(YI 9£'L - ('HIW)OI EO'0 = ('NIW)3WI.L 'ISAYaI sdId 48'OT = (SaD)M0'Id -3dId T = S3dId a0 HHHHnN 00'8T - (HJNI)Ia.LswvIa 3dId NHAID 66'8 - ( oas /Iasi)AIIJo'I3A Mo'id-3dId S3HOXI 9'TT SI 3dId HJNI 0'8T NI Mo'Id d0 HSdsa ETO'O - N S.•JNINMYW 00'ST - (I3sd)HLON3'I MO'Id OOZO' 0 = 3d0'IS sAIJ.VJMSSadsa ............................................. ............................... > "" UM3M3'I3 ONIISIXS) 3ZIS3dId a3IdIO3dS -a3Sn JNISn««< »»>Y3a48nS MHI HNI.L 'I3AYaI MO'Id -sdld 3lndwoO " << ---------------------------------------------------------------------------- T6 = 3a0O SI 00'ZOT 3aOM OS 00'L saON WOad Ss3JOad MO'Id •.+sa..s.s.t..s ► r.r.aataar+.s.a.s.s.tsstass. tt s +a.sssttatstar..... 68' 01 = (SZOMLYa Mo'Id XYSd 11Z' E = (SSaJY) YSaY 'IYIOI 118'OT - (SaWaaoxna Y3aY8nS of o - dY 'NOISJYBd YsaY snoIAuad s0Ya3AY rauvE nS 86 - (aH /HJMI)dd 'slYa SS(YI SnOIAHad 3°JYHSAY YsaYBMS £E'L ZE Ot'0 86'0 11Z'E Y 'IYIJxsWWOJ ('NIW) NJ ('IYWIJ3a) (aH /HONI) (SEEDY) MOND 3Sn aNY'I DI SOS dY dd Y3aY 'IIOs SOS /3dAI IBID+Idmama :(II JwY)Y.LYa 3IYa SSoZ aNY --I %auw nS 9TB £ _ (aH /HJNI) ALISN3SNI Z'IYdNIYZI HVHA OT . 8Z£'L = ('NIW)ot wnwIHIW assn SISA'MNY VHHV IS 0Z'0..((H°JMYHJ N0ILYA3Z3)/(00'E . ■HI0N3'I)1tX - oI L9 S9 = (I3sd)wYsaISNMoa L8'9L - (I3sd)WY3HlSdn :YIYa HOISYA3Z3 0o' 056 - (IS3a) HION3'I - Mo'Id Y3uvRnS 'MIIINI ............................................. ............................... — vauvanS 'MIAMI Wa HdYHJOWON N0Id.Y2iJMDK0O- d0-HWI.L 3Sn« » » >SISA'IYMY Y3aYEIIS 'MISINI aOHISW 'MNOIIvd «« ---------------------------------------------------------------------------- 1Z - 3aoJ SI 00'L saOM oI 00'9 3aOM WOad SS3JOad MOW ss► ss +•t.►tsaaaa.a+sssatsa..ar.a►s►a sa s►tta s►ssts. atttaasstt. 116'LZ - 3JMSn'IANOJ LY (SAD)SIVH MO'IA XYSd 60'01 - (S3aJY)YSaY NVHHIS 'IYIOI 6L'6 - (SSaJY)YSaY wYSaIS HAIIDBAA3 01'0 = dY aaova3AY-YSaY 96'0 - (aH /HJNI)dd asOYa3AY -YSaY OT'0 - (aH /HJNI)wa aaovumY -vmm OT' £ - (aH /HONI) "ISNH,LNI 'I'MdMIYH s++ ws. rtss►►• w►►►►+ wrrrr..►• rsrwssrrw. ws. w►►►• ♦s►►►. ► ►►►►►►►r►r.wrw►►►►► WET (SHD)3IYN MO'Ia XYEd ZZ'1, - (S3wv)Y3HY 'IYIOI 91P* El - (Sao)ddoNna Y3wians OT - dY 'NOIJ.DVU WHY SII0IAH3d 3JH33AY Y3?lMS 86'0 = (4H /H3NI)dd '3IYN SSO'I SROIARSd 3'mmAY Y3IIY8 s Z6'L ZE OT'0 86'0 ZZ'1, Y 'IYI33mom ('NIW) NJ (ZYWID3a) (uH /HDNI) (SEEDY) dnovo ESn awn aI SOS dV da VERY 'IIOS SOS /3dAI 1N3W1d0'I3A3a (ii DWY) YIYa a.Lvv SS(yI QTY DI Y3wms T1,9'E _ 01H /HJNI)ALISN3LNI 'PIYaNIYH HY3x OT ► 1,Z6'L - ('NIMP1 WOWINIW a3Sn SISE'IYNY YREMS OZ' 0.+ ((EOHYID HOIIYA3'I3) / (00' E r.H.L0KHrI) 1 ►X - 0I 00'09 = (I33d)WY3HISNM0Q 56'LL - (I33d)WY3NISdn :YIYa NOIIYA3'I3 00'009 = (I33d)HIJN3'I-WYId Y3HYSnS 'IYIIINI ............................................. ............................... »Y3NYSIIS 'IXI.LINI 40d HdYHOOWON NOIIYHIRRONO3-d0-314II 3Sn<c » » >SISx'IKNY vartanS 'IYIIINI aoHI3W .rvxoIIYH « «< ---------------------------------------------------------------------------- TZ - HQOD SI WIT WON OI 00' OT WON 1402id SS3002Id MO'Id r.► s►►►► s+ s+ ssrws►• w► s►• s► srr► ssr+• ss► ssr► ss ►►►rssssrss. ►.►s►s►s►srrws►a►►► ............................................. ............................... » »> T 8 XNYH .CHONHW OINO a3IdoD AROWHN WV3v1S- NIYW « «< ---------------------------------------------------------------------------- OT = 3aOO SI 00'SOT 3aON oI 00'SOT 3a0x WOHa SS3DOHd Mo'Ia ► ............. ..... r +..wr ►.. .stns. +r+ ..... ►. ►+r++.......... r....wt........ 'I33a 00'OZZZ - 00'SOT 3Q0x OI 00'T 3GON MONA HIYdMO'Id ISHON0'I SE'OT - ('NINPI 86'0 ('NIW)3WII 'I3AYH1 140'Ia -XO8 SL'ZS - (SSD)MORa -XOS ES'8 - ('DES /I33d)xLIDO'I3A MO•Id -XOS .133a LL'0 SI XO8 NI HId3aMOZa 00'1, - (I33d)JMI3H XOH N3AI0 00'8 - (I33d)HIQINESYH XOS NSAID ETO'0 - N S.`JNINNYW 00'00S - (I33a)HION31 M('Id OOTO'0 - 3d0'IS EAI.LVJMMSZHdHH ............................................. ............................... » » >(IN3W3'I3 OHIISIX3) 3ZIS XOH a3Id loads - Hasfl `JNISncc<c< - -va venS nIIILL 3WII 'I3AVU MO'Ia -X axndwoo - -c ---------------------------------------------------------------------------- 91, - swo sI 00'501 3aON OI 00'£OT 3aox Noma S oosd mum s..►►tr + ►t star+ tsrrrrrssss►► s► tt+t w+t s+ ssr. . ►..►►►►trsswssss+ww.►ss►strsr+ 88 - 3DNEn'IaROO IY (SaO) 3d.VH MO'Id XY3d 98 - (SEEDY) YEW WYEHIS RYIOI 98'S - (S32IDY)Y3HY WYEHIS EAIIDEaa3 0T'0 - dY aaf)vasAY - vaxv 86' 0 - (2IH /IZ)NI) da a3°JYI HAY -VERY 01'0 - (HH /HDNI)Wa a3JYH3AY - Y32iY 6Z'E _ (HH /HJNI)xIISN3INI 'I'IYaNIYH L£'6 - ( *HIM)HOIIYU.N33NOD aO EMII :3HY Z wmais IN3amad3QNI uod Q3Sn S3nZYA 3DNEn'Iawo Z SWY3H. S d0 HSSMnN 'IYIOI ............................................... ...------ = == = ..... ........... -- san'IKA maxis a3DN3n'Iaxoo SnoixvA 3IndwoD QNY « «< »»>EDN3n'Iaxw aoa wY32LLS S.N3aNHd3QHI 3IYNDisaa -- ---------------------------------------------------------------------------- T - WOO SI 00'E01 3aox oI 00'EOT 3aON Noma SSEDOHd MOZa •► s.►►►• swrsss+ rss► s►► s+ rrwwwr.►►►♦ r+ r+ rsrsrtrrswrs ►►arrr.rsssss +++s.►s ► ►ss 'I33d 00'99S = 00'101 HaOH OI 00'8 3aON WOHa HIYdMo'Ia IS3°JNo'I LE'6 - ('NIW)0I EO'0 = ('NIW)3WII 'I3AYH1 3dId 88'9T = (SaD)MO'Ia - 3dId T S3dId 90 2I38WIIN 00 - (HDNI)H3I3wYIQ 3dId x3AI`J SS'6 - ('DES /IEEa)AIIDO'IEA M0'Id -3dId 3NI'I3dId ONIMO'Id -'Ima HMSSY £TO'0 - x S.JNINNYW 00 - (I33d)H.Lf)xSI Mo'Ia OOZO'0 - 3do'IS 3AIIY1MSHHd3H : :.. :.. :. :.. : : :_ » »> (JJCM'I3 ONI,LSIX3) 3ZIS3dId a3IaID3dS - ?I3Sn DHISn « «< > >>—vaY ms num EWII 'I val. Mo'Ia -3dId 3I[1dwoD -- ---------------------------------------------------------------------------- T1 - 3QOD SI 00'£OT WON OI 00'6 3aOH Woua SSHDOHd Mo'Id sws.• r►► r►► s►► t• ss.►►►►►t r+ sss+ s►►►.►t st+ s. s. ►ts +rrrs►►s +ssss.rw► + + ++t+sttss OI.LVH NOIIYNINSDNOD do EMI L aNY )UISNHINI 'PIYaNIYH 00'8 6'S OT'0 (01 )86'0 Z6Z'E LE'6 88'91 Z 00 VET OVO (OVO )86'0 6E8'Z 00 Et W SE T 00 0'£T OT'O (01'0 )86'0 SS6'Z ZZ'TT ZL'9E T 00'9 Vol OVO (01 )86'0 SSS'E SZ'8 9E'S£ T 3aON MEOW) (HH /HDHI) (NH /HDNI) ('NIW) (Sao) H3Sum tI3.LYMawaH aY dY (WA) di AITSUBIul OL 0 WYEIIIS r. YIYa 3DN3n'IANOO ►. 88 - 3DNEn'IaROO IY (SaO) 3d.VH MO'Id XY3d 98 - (SEEDY) YEW WYEHIS RYIOI 98'S - (S32IDY)Y3HY WYEHIS EAIIDEaa3 0T'0 - dY aaf)vasAY - vaxv 86' 0 - (2IH /IZ)NI) da a3°JYI HAY -VERY 01'0 - (HH /HDNI)Wa a3JYH3AY - Y32iY 6Z'E _ (HH /HJNI)xIISN3INI 'I'IYaNIYH L£'6 - ( *HIM)HOIIYU.N33NOD aO EMII :3HY Z wmais IN3amad3QNI uod Q3Sn S3nZYA 3DNEn'Iawo Z SWY3H. S d0 HSSMnN 'IYIOI ............................................... ...------ = == = ..... ........... -- san'IKA maxis a3DN3n'Iaxoo SnoixvA 3IndwoD QNY « «< »»>EDN3n'Iaxw aoa wY32LLS S.N3aNHd3QHI 3IYNDisaa -- ---------------------------------------------------------------------------- T - WOO SI 00'E01 3aox oI 00'EOT 3aON Noma SSEDOHd MOZa •► s.►►►• swrsss+ rss► s►► s+ rrwwwr.►►►♦ r+ r+ rsrsrtrrswrs ►►arrr.rsssss +++s.►s ► ►ss 'I33d 00'99S = 00'101 HaOH OI 00'8 3aON WOHa HIYdMo'Ia IS3°JNo'I LE'6 - ('NIW)0I EO'0 = ('NIW)3WII 'I3AYH1 3dId 88'9T = (SaD)MO'Ia - 3dId T S3dId 90 2I38WIIN 00 - (HDNI)H3I3wYIQ 3dId x3AI`J SS'6 - ('DES /IEEa)AIIDO'IEA M0'Id -3dId 3NI'I3dId ONIMO'Id -'Ima HMSSY £TO'0 - x S.JNINNYW 00 - (I33d)H.Lf)xSI Mo'Ia OOZO'0 - 3do'IS 3AIIY1MSHHd3H : :.. :.. :. :.. : : :_ » »> (JJCM'I3 ONI,LSIX3) 3ZIS3dId a3IaID3dS - ?I3Sn DHISn « «< > >>—vaY ms num EWII 'I val. Mo'Ia -3dId 3I[1dwoD -- ---------------------------------------------------------------------------- T1 - 3QOD SI 00'£OT WON OI 00'6 3aOH Woua SSHDOHd Mo'Id sws.• r►► r►► s►► t• ss.►►►►►t r+ sss+ s►►►.►t st+ s. s. ►ts +rrrs►►s +ssss.rw► + + ++t+sttss M m m m � m m 88'91 - (BaO)3IYH Mo'Ia XY3d 98'S = (S3NDY)VSHV W101 I339 00'OZLT - 00'EOT 3aON OI 00 Sam woua HIYdMO'Ia IS39N0'I 88'9T - (saw damn vauvans 6T'61 - (SHWV)Y321Y 'IYIOI OT'0 - dY 'NojlovId vaav snoiAH3d 3`JYH3AY Y32IYHns OT'0 - dw a30Y8EAY -Y3HY 86'0 - (m/HDNI) a3E>umv -Y3HY 86'0 - (EH /HDNI)da 'a.LVH SSOI Sn0IAH3d 30YHHAY Y3HYHnS OL'0 - (HH /HONI)Wa a30YHEAY -Y3HY ZT'L1 = (SaHDV)Vaav 3AI103ad3 SE'6 Z£ 01 86'0 98'S Y 'IYIDUHHHOD LE'6 - ('HIW)OL SL'ZS - (SaW atv I MOZd XY3d ('NIW) ND (gvwID3a) (ZHI /HDNI) (SEEDY) dnoao 3Sn aNYZ =SMOTIOa SY 3HY S3d.YWIIS3 3DN3n'IaxQD a3lnd 0 I SOS dV da VERY 'IIOS SOS /3dAI IN3wdo'I3A3Q e(II DWY)YIYa 3IYH SSO'I aNY OI Y3Hvms 00'1 Z'6T OVO (01'0 )86'0 6E8'Z 00'ZT LE'OS 1, 86Z'E _ (HH /HJNI)A1ISN3INI 'PIYdNIYH HY3x 01 . 00'1, 6'8T 01'0 (01 )86'0 SS6'Z ZZ'TT Z8'TS E SI'E'6 - ('NIW)0I WIIWINIW a3Sn SISx'IYNY Y3HYHnS 00 T'L1 OT'0 (01 )86'0 Z6Z'E LE'6 SUES Z 0Z'0.►((3`JHYH3 NOIIYA3'IE) /(00'E ► +HI0N3'111 +X - 3 1 00'9 E'ST OT'0 (01'0 )86'0 SSS'E SZ'8 E1,'ts I EQON (SEEDY) (HH /HOHI) (UH /HDNI) ('HIW1 (Sao) H38WnN 1,1,'TL - (I33d)wY3HZSNMoa OS'LL - (I33a)wvzu.Lsdn °YIYa N0IIYA3'I3 HEIYMaY3H eV dV (Wa)da AlTsua7uI OI O WY3tIIS 00'OSS - (I33a)HIJN3Z - M0'Ia VZHVEnS 'IKIIINI sr 3'IBYI 3IYH MO'Id XY3d •s ............................................. ..............................: »Y3IIYan3 'IYIIINI Hoa HimooWON xOIIYHIN3DNoo a0 - 3WII 3sfK< 'SWYEuIS L soa a3Sn vmmod 3Dx3n'mw >>— sisARYNY Y3xY9nS 'IKIIINI a0HI3W RVNOItVR"c« M m m m � m m 59'TE - ( SdJ)MO'Ia -adld T - S3dId d0 HHMIN 00' YZ - ( HJNI) Hsd.3M1YIa adld Nams MEW NOIZJ3S SSOHJ 3dId) / (MO'IA 7Y101) - ) Ld.IJO'I3A MO'Ia HdId 80'OT - (' OHS /J.33a)XlIJ0'I3A MO'IJ -3dId 3NI'I3dId JNIMOZd- IMA SMSSY ETO'O - N S.DNINNHW 00'OST - ( MMA)HJMNHZ MO'Id OOZO'0 - 3d0'IS HAILWIMSHHdHH ............................................. ............................... » »>(.LNHWHrlH ONISSIXH) HZIS3dId a3IaI33dS -H3Sn ONISn «« < » » >Y3HYSnS flWU 3WI.L 'I3AY91 MO'IA -HdId Hdd1dW0J « «< ---------------------------------------------------------------------------- T6 3aOJ SI 00'SOT WON 01 00'YOT 3a0N WOU SSaJOHd MO'Ia .L33d 00'OSL - 00'60T Ham ox 00'01 mom Noma H.LYdMo'Id LsHJNoq 61' 01 - ( S3TIJY) VMM WWI OT'0 - dY a30YH3AY -Y3HY L6'0 - (ZHI /HJNI)da CMVWl 3AY-Y3HY OT'0 - ( HH/HJNI)u4I aa0YH3AY -YHHY EO'01 - ( SSHJY)Y3HY 3AI.LJ3ad3 6T'8 - (' NIW)OL S9 - ( Sao)stva MO'Ia XY3d SMO'MOd SY 3HY SBIVWISS3 HJNanrimOJ a3ZndWoo WET Z'OT 01'0 (01'0 )86'0 OTS'£ Z4'8 Z9'TE Z 00'OT O'OT 0T'0 (OT'0 )L6'0 69S'E 6T'8 S9'TE T HQON (SHtIJY) (HH /HJNI) (HH/HJNI) ('NIW) (SAD) HHBWON H3ZYMavm aY dY (uta) da dateuaauI O.L 0 NVZ'dlS .r 318YL 3.LYH MO'Id XYHd .. 'SWV3HZS Z HOa a3Sn Y'IMOJ HJN3MMOJ OI.LYH NOI7.YHSN20NOJ dO HWIS aNY XlISNH.LNI 'I'IYdNIYH 00'ZT 0'9 01'0 (OT'0 )86'0 015'E , Zb'8 6E'81 Z 00'OT Z't' 01'0 (OT )86'0 69S'E 6T'8 96'ET T HaON (SHADY) (HH /HJNI) (HH /HJNI) ('NIW) (SaJ) IIasHm Ha.LvmavzH aY dY (uia) da AlTsualuI JS 0 WHIMS .w Y.LYa HJN MaXOJ .+ 6E'81 - a3NHn'IdNOJ XY ( SaJ) 3SYH Mo'Ia XY3d L6'S - ( S3NJY)YHtm WYHH.LS gVLO.L L6'S - ( SaVOV)Y33Y WYaHSS aAI.LJaaaa OT'0 - dY a3`JYH3AY - Y3HY 86 - ( HH /HJMI)da QHOYHHAY -YaHY 01'0 - ( HH /HJNI)WJ a30YHHAY - YHHY TS' E - ( HH /HJNI) IL.LISNami 'I'IYdNIYH Zb'8 - (' NIW)NOI.WMARJNOJ aO HWIS :mm z WYaulS imcmdaam Hod assn S3nZYA HJNan'IdNOJ Z - SWV3'dlS JO 330rInN 'm.LOS ............................................. ............................... » » >San'IYA WYaHZS a3JNan'IaNOJ SnOIHYA 3.LndWOJ aw-- » » >3JNHn'IaNOJ Hoa WVHU.LS JMaNHdaaNI sd.YNDIS3a -- --- ------------- - - ------------ ----------------- -------------------------- T - saw SI 00'b0T HQON 01 00'110T 3aOM WOHa SSaOOHd MOTS .► srrwrss. w. t.. t. t•♦ s• t►+ tswssr #♦.ss.wswrw.r„s.►s. +wwswrw... ►. s...wswttw♦wr '.L33d 00' SZL - 00' VOT MON OS 00' ZT HQON WO" H.LYdMO'Ia SSHJNO'I We - (' NINP-L b0'0 - (' NIW)HWIJ. 'I3AYHl 3dId 6E'ST - ( SAD)MO'Ia - HdId T - S3dId 80 Ham4m 00'8T - ( HJNI)HHZ34KIQ HdId NaAIJ T6'01 - (' J3$ /133d)A.LIJO'IHA 140'Ia -3dId HNI'I3dId JNIMO'Ia- 'I'IIIa HWnSSY ETO' 0 - N S .°JNINNYW 00* 9Z - ( J.3aa) HJ.ONd'I MO'Ia OOZO' 0 - Hd0'IS 3AI.LVJMSHUd3H ......................................=...... ............................. :. » » >(LtIDHZ3 ONIZSIXa) aZISadId a3IdIJads -Hasn omsfi— — » » >Y3HMS nWU 3WI.L 'ISAYH.L MO'IA -3dId a,LndWoD --< ---------------------------------------------------------------------------- It - HQOJ SI 00'i0T 3aoN OZ 00'ET 3aON NOMA SSROOHd Mo'Ia ++++►++►++ sa•...... w• swr.. a+ sr +t+,•aw,a,w++++++... .►www...... 6E'8T (SaJ)3.LYH M079 XYHd L6'S - ( S3HJY)Y3HY 'IY.LOS 6E'8T (Sao)aaONnd MauvRnS OT - dY 'NOIJJYaa YsHY SnOIAsad aJYli3AY YaHYBnS 86 - ( HH /HJNI)da 'SSYH SSO'I SAOIAH3d aDVW AY VHWIMIS BE'8 Z£ 01 86'0 L6'S Y `VIJHHWWOJ ('NIW) NJ ('IYWIJ3a) odvmJNI) (S3HJY) MONO HSn aNY'I at SOS dY da Maim 'IIOS SOS /HdA.L J&MNd0'IaAaa (II JWY)YbYa 3.LYII SSO'I aNY o.L Y3imHnS OZS' E - ( HH /HJNI) A.LISNaZNI 'I'IYdNIYH HY3IL OT , 68E'8 - (' NINP1 WOWINIW a3Sn SISA'IYNY Y3HYSnS OZ' 0+, [ ( 30NYHJ N0I1YA3'I3) / ( 00' £ + wH.LON3'I) ) tX - 3.L 00 - ( 133d)WY3HSSMM0a OS'LL - ( S33a)WY3H.LSdn °YSYa NOIXAM3 00' OOL - ( S3HA) HJMNH'I -MO'Id VSHVEMS 'IYI.LINI ............................................. ............................... »YHHYSnS 'IFILLINI HOa HdYHJOWON NOI,LVuJMONOJ- aO -HWI.L HSn« » » >SISArIYNY Y3HYHnS rMI.LINI Q0HJ,3N 'IYNOI.LYH « «< --------------------------------------------------------------------------- TZ - MOD SI 00' ET MON 01 00' ZT Ham WOHa Ss3JOIid Mo'Ia sr►♦ w, srrswrw ,srss• ♦...asr+r.wwrw.w•,r..,swa a arws.•.a..tr..a.rrr.as.... 94' ET - 3JNan'IaNOJ .LY (SaJ) 3SYH MO'Ia XY3d ZZ'Y - ( S3HJY)Y3HY WYHH.LS 'IYSO.L zZ'4 - ( SHHJY)YHHY WYHH.LS aAIlOHaaH 01'0 - dY as0YH3AY -Y3HY 86 - ( HH /HJNI)da allDVHHAV -VRHV 01 - ( UH /HJNI)wa MOVESAY -Y32m LS' E - ( HH /HJNI) A.LISN3.LNI 'I'IYaNIYH 6T'8 - (' NIW)NOI.LYHSNHJNOJ d0 3WIS : auv T wwamS SNSaNsdsaNI HOa aaSn San'IYA aJNamaNOJ Z - SWYHH.LS aO SHMIN mr,LO,L ............................................. ............................ ... » » >3JNHn'IdN0J HOa WMIS JMaN3dHQNI H.LYNJISHa " —< ---------------------------------------------------------------------------- T saw sI 00't•OT Ham oZ 00'b0T 3aON WOHa SS3JOHd MO'Ia ...w. a. ►,►.w ►,iwwawa►►rrwi,aw.,...++ iii... i.+r.rrrwii..t...wrwr..a.. 133d 00'0SL - 00'b01 HaON OS 00'01 3aON WOHa RMMO'Ia SSHJNO'I 61'8 - (' NINMI, LZ'O - (' NIW)aWIt 'ISAYH.L 3dId 91''£T - ( SAD)140'Ia-3dId T - SadId a0 asamm 00'81 - ( HJNI)IIHSHWYIa 3dId MRAIO TE'6 - (' JHS /J.33d)&LIDUMA Mold -3dId S3HJNI CET SI 3dId HJNI 0'8T NI Mo'Ia a0 H.Ldaa ETO' 0 - N S . JNINNYW 00' OST - ( S33a) H.Lf)NHrI MO'Id OOZO'O - HddIS 3AIZYSNaSHIid3H :.:.:..:: ..................... ....... ... . ....... ........ ------------ m .... ... » »>(SMHWHg3 ONLLSIX3) HZISHdId aal oadS-ussn ONISn «<« »»>YaHYSns nHHZ HWIS 'MAYHS MO'Ia -3dId 3.LndWoJ « «< T6 - HUO3 SI 00'60T HaoN OS 00 WON WOHd SSHJOHd MMa m m m m 68'9 - ('NIW)NOIJ.VHJAl3JNOo d0 SWIS a38V Z WVSHSS JMCLNSd3(INI HOd assn SSnZV 33NMIAMOJ Z - SWVU.LS d0 RMISH N ZYSO,L ............................................. ............................... - -san - m WY",LS anNamaNOO SnOIHVA sinawoo aNV « «< » » >s3NSHIZdMoJ Hod WY3HJS imauN3dsam 3LYNOIS3Q -- ---------------------------------------------------------------------------- T - SQOO SI 00'90T 3QON OZ 00'901 SCION NONA SSSJOHd MO'la i {ii {iii{ iii#•#• tiiifriii{ f. fiii► iii f+ ♦fi# {ii•i#ii ►iii•iii ►•rii►rif iiii•�i►i 'J,SSd 00'S9E - 00'901 SOON 01 00'11T SCION Nova H.LVdwym JSSONOZ ('HIIW)SHIJ, 'I3AVHJ. 3dId TL'4 - (SA3)14OZd-3dId i - S3dId d0 HISS HIHN 00' Zl - (HHOM1) VSJ.3WVla Sala NHAI0 ZT'L - ('JSS /J,3Sd)ASIOO73A MOZd-sdld saHow 11'6 SI SaId How o ti NI MOZd d0 H,Ldsa ETO'0 - N S,ONINNVW 00'ST - (J.33d)HLLON3Z MOZd OOZO' 0 - MUM SAI,LVJNSSBudsu ............................................. ............................... » »> (JJ0 M©Z3 ONISSIXS) SZISShcd a3IdIJSdS -H3Sn JNISn « «< >> —va ims nHIHHZ HWIS 'I3AYHJ. MOZB -sdId 3JJHdWOJ « «< ---------------------------------------------------------------------------- Tb - 3CIOJ SI 00'901 SOON Ol 00'ST SCION NONA SSSJOHHd MOZd +{+ i+ r+ s• sw.i++►{..{{+.i#{•i..ir{ f► t+ t ►{rt.wss + +i+isss +►s +....wsiw+►f Ull - (Sao)3SVH1 MMA Nvad SE's - (SHWV) VMW ZVJ.OS U 11 - (Sao)ddONIIH VZHVHHHS OT - dY 'NOIJJY a Y3HV snOIAH3a sJVH3AV VsXVBns 86'0 - (HH /HJHII)dd '3ZVH SSOZ SnOIAH3d 3OVH3AY VsHVHnS S8'9 ZE 01'0 86'0 SE'T Y ZVIJH3NNOJ ('MIN) No (ZYWIJSa) (HIH /HIJMI) (S3HJV) dn0H0 3Sn WWI 31 SOS dV dd V3HHV 'IIOS SOS / J.N3WdoZSASa :(II JWV)VSVa SLYH SsoZ aNV CIS Y3HYHnS ZL6' E - (HHH /HDNI) x,LISNSJ,NI ZZVdNIVH HHVSA OT f 4S8 - ('NIW)D,L MNINIW aSSn SISA7VNV Y3HYSns OZ'0►f[(HDNVM NOIZVASZS)/(00'£ --H,LDN3Z)1 - 31 119'115 - (,LSsd)WV3HSSNMOa 00'Z9 - (IMA)WVZNJ.Sdn aVJ,Va NOISVA3Z3 00' OSE - Uasd) HSJNSZ -MO'Id Yaw ns ZVIJ.IMI ............................... =........................................ »V3H49nS ZVILINI HOd HdWDOWON NOIIVHJMZ)XOJ- dO -HWIS SSn« » » >SISxZVNV VHWnMS ZVIJ.INI CI0HJ34 ZVNOILVd <"— ---------------------------------------------------------------------------- TZ - Saw SI 00'ST SCION OIL 00'111 SCION WOHd smoaa Mold ►►i ►iii #i•i {ii i...... t ...... iii .......... * .......... *..{iii { ► {Ii ♦fi ►fii{•i ►f 68'18 - 3JN3nZdNOJ J.V (SdO)s.LVH MO'IA XV3d 8E'6Z - (SHWV)Y3HHV N14381S ZYJ.O,L ES'SZ - (SSHJY)VSHV WVSHJS 3AIJJ3dd3 01'0 - dY aSOYH3AV -V3HHV 86'0 - (HH /NONI)dd a3ovvaAY-YSHV OT'O - (HIHMONI Uld a3OYH3AV-V3HV TE'E - (HHH /HJNI)AlISNHlNI ZZVdMIVH 6Z'6 - ('NIW)NOIJ,VHJ.NSJNOJ d0 3WI.L : HHY T WV3HLLS JJMaHZdSaNI HOd asSn SsnZVA SOBIRMANOJ Z - SWVZHJS d0 HISHWIN ZVJM » » >aDNsnZdNoo Hod WV3HJS imaN3dscim 3ZVNJISSa « «< ----------------------- ------- ------ --- -- -------- - --- T - 3QOJ SI 00'90T SCION Ol 00'90T SCION NOVA SS3OOHd MUM ►• ii#{ i► if f. fr......... r♦ s{ ff rri►•►► i ►f► ...... ►i #fi ........ *►if►f... r+{#ssi■ S33d 00'OLZZ - 00'90[ SCION Ol 00'T SCION NOHd HZVdMO'Id SSSONOZ 62'6 - ('NINPS 80'0 - ('NIMMilZ ZsAVHS MOZd-XO9 68'18 - (S8J)MOZd 86'6 - ( /J.33d)xiiooZSA Mold -XOH J33d EO'T SI XOH NI HJdSOMOZd 00'11 - (J33d)JMISH X08 N3AIJ 00'9 - (JSHJ)H,LCIIM3SVH XOS MAIO ETO'0 - N S.VNINNVW 00'OS - (SS3d)H,LON3'I MUM 0010 - saOZS 3A I XIMSSHd3H ............................................. ............................... > -- UHH3WSZ3 ONISSIXS) sZIS XOH asI cads - H3Sn ONISn «« < » »>V31I149nS nWM SWIJ. 'I3AVH,L MO'Id -XOH smdwoo— < ---------------------------------------------------------------------------- 94 - 3CIOJ SI 00'90T SCION oL 00'SOT SCION WOHd SSSJOHd HUM s +{i+s++• {tsssiss►iifiisi ♦fi►f if rs+ s + +i+i►#rsrsi #+ssi►►s+s++++s#isf •++f i++rs ISM 00' OZZZ - 00' 501 SCION OZ 00' T SCION WOHd HLLVdMo'Id LssoNOZ 8E'6Z - (SSHJY)Ysav ZVJ.O,L OT' 0 - dY asovsaAV -YSITY 86' 0 - (HH/HIJNI) dd 03JVH aAV -VSHHV Oi'0 - (HH /HHJNI)wd a30YHsAY-VHW ES'SZ - (S3HHJV)V3HV aMizadds TTZ'6 - ('NIW)DS 68'T8 - (sa3)3.LYH Mold xY3d °SMo'IZod SV SHIV sSJ.VWI,LS3 aommSNoJ amndWoo BE'6Z - (SSHJV)V3HIV 'IV,Lo,L 00'1 b'6Z 01 (01 )86 STL'Z Z6'ZT LO'SL 9 00'11 T'6Z OT'O (OT'O )86'0 9T8'Z 9T'Zi 94'LL S 00'8 E'LZ OT'O (OT'O )86'0 60T'£ TE'OT 9T'T8 11 00'9 S'SZ OT'O (OT '0 )86'0 LZE'E TZ'6 68'T8 E 00'ZT 9'4Z 0T'0 (OT '0 )86'0 6114 L9'8 LB'T8 Z 00 T'11Z OT'O (OT '0 )86'0 90S'E 44'B 6£'18 T SCION (SHWV) (dH /HHJNI) (HH /HJNI) ('NIW) (SA H38WMI HIS,LYMCIV3H aV dV (WA) CIA AlTsuaauI DS 0 NV3HILS i+ 3'IHV.L 3,LVH MMa XV3d iw 133d 00'OZZZ - 00'SOT SCION OS 00'T SCION NOVA HSVdMOZd SSROMOZ 00'T Z'6T OT'0 (OT'O )86'0 STL'Z Z6'ZT LE'OS b 00 6'BT 01'0 (01'0 )86'0 9T9'Z 9T'ZT ZB'TS E 00'8 T'LT OT'O (0T'0 )86'0 60T'E T£'OT SL'ZS Z 00'9 E'ST OT'0 (OT'O )86'0 LZE'E TZ'6 E4'TS T SCION (SMV) (HIHH /HHJNI) (HH /HONI) ('NIW) (SAD) H38NM HISJ.VMCIVSH aV dV (wa)dd AlTsualuI D.L 0 NVSH,LS fi VJ.VCI SJNSnZdNOO T # MM XHOW3W r# ISHA 00'006 - 00'S01 3aON oz 00'02 SOON NOHId H.LVdMOZd .LSsDNOZ 00'ZT Vol 01'0 (OT'O )86'0 6114 L9'8 Z9'TE Z 00'01 0 01'0 (OT'O )L6'0 905 1111 S9 T SOON (s3HIJV) (VH /HONI) (SH /HJNI) ('NIW) (SAO) H3HWnN H3SVMCIV3H aY dY (wd)dd AlTsualuI 31 0 NV3HSS ww YSYa SON3n'IdNOO WV3H.LS NIVW t# .............................................. .............................. » » >1CHONSW WVS'dlS -NIVW SHS H,LIM T # XNVS 7CHOWSW SJNSIH'IaNOO " "< ---------------------------------------------------------------------------- TT - HCIOJ SI 00'501 SCION OZ 00'SOT Sam WOHId ssaDoud Mold . ♦• +i{ ►ri ♦�sis►iiiiff aff►►• ti♦ i{► its► i► ►s►ftir { #• {i{fii►f. {ir {r { {w ►• ►f {r. +i Mail 00 - 00' SOT SCION OS 00' 01 SCION Mai[ HJ.VdMOZd 1SSONO'I 44'8 - ('HIM01 SZ'0 - ('NIN)SWIJ, ZsAYHS 3dld ................................. _ ........................................ __ »V3HV8ns 'ItII.LINI Hoa HdVHOOWON HOI.LVHJNSDNOD- d0 -3WIZ 3sn« -- sisxZVNV V3HVSn8 'IVI,LIHI Q0HJ3W 'IHHOISVV""< ---------------------------------------------------------------------------- LZ = SOOD SI 00'61 SOON ox, 00'8t SOON wou ssaDOHd Mo'Ia • srr. r.+ r♦ ar... r.. asrws+ w.•+. rr. rss. rrra+ r+r•►rrw.++arss+r►r►w.+rrrsr.r. EZ'OZ = 3ommaMoo ZV (SAWSJ.VH MO'Id NV3d L6'9 = (S3H3V)V3HV WV3HJS mLtoa L6'9 = (SSHDV)V3HV WVSUS SAIJ:03da3 Oi'0 = dV CIIJVHSAV -VSHV 86'0 = (VH /HDHI)dd O80VnAV -VHHV OT'0 = (HH /HDNI)uia O3OVH3AV -V3HV Oi'E _ (HH /HDNI)AIISNS.LNI 'I'MaINIVH SCOT = ('NIW)NOIJ.V2I.LlII DO d0 3WIJ. :3HV T wV3HZS J.N3ON3a30NI Hoa O'SSn S3n'IVA zmcmumoo Z = SWV3H. S d0 HSMMN gV101 ............................................. ............................... , >— sDN3n'IdNoD HOa WV3HSS Jmama30NI 3.LVHJI <-- ---------------------------------------------------------------------------- i = HOOD SI 00'LOT 3QON ox. 00'LOi 3o0N wou sssooaa Mo'Ia rwrsr.rsrwr.....w.w ♦rswr • wsrrarr.wr...... rrrw..... wrwrrr........... w w.. wr►r S33d 00'00Zi 00'LOT 3QON OZ 00'9T SOON NOVA H.LVdt4Cgd LSSONOa SE'OT = ('KIW)DS ZL'T = ('HIW)HWIZ 'I3AVHJ. HdId £Z'OZ = (SHD)MO'Ia -3dtd I = SSdId 90 SHMMN 00 _ (HJNI)2isi IQ 3dId NZAI0 Lt'8 = ('D3S /J33a)XlI30'ISA MO'Id -3dId SSHONI t'ST SI 3AIA HDHI 0'OE NI MOTH 80 HSdsa E10 = N S. E)NINNVW 00' OSS = (III HJ,0N3Z MO'Ia OOTO' 0 = Sd0'IS 3AIJ.VSN3SSHd3H ............................................. ............................... » >>>(JXRWHrIS OHIZSIX3) SZISSdtd 03IdIOHdS -H3Sn 'JNISn««< » »>V3W4lM flMU 3WI.L Z3AVHJ. 140'Ia-3dId H.LndW0D"— ---------------------------------------------------------------------------- i6 = MOD SI 00'LOT SOON 01 00'LT SOON NONA SSSDOHd MO'IA ssrsasa. r.+ assrsw.. wwrw++ swaws+► wr+ w.+.► rwwwsrrrw.a.++ssrrs.ws +►r+srrs♦ EZ'OZ = (SdD)3SVH MO'Id XV3d L6'9 = (S3IDV)V3UV ZVJ.OL t EZ'0Z = (SAD)aaONns V3HVEis Oi'0 = dV 'HOIJJVHH V3HV SnOIAHSd ZE)YnAV VSHVSnS 86'0 = (HH /HDHI)dd '3.LVH SSO'I SnOIAN3d 30VHHAV V3HVSnS EZ'6 Z£ OV 0 86'0 L6'9 V 'TVIDHHNNOD ('NIW) NJ MrwmSO) (HH /HDNI) (SSHDV) dnoaD 3sn ONV'I oS SOS dV dd V3HV 'Ilos SOS /3dx.L JMMdo'ISA3O (II DWV) VSVO S.LVH SSo'i ONV aJ. VSHVSns ZZE'E _ (HH /HDNI)AIISMSINI 'I'IVdNIVH HV3x OT r Z£Z'6 = ('NIW)oi mwixiW aria SISx'IVNV VSHVSnS 0Z'0+r((30MVHD NOILVAS'IS)/(00'E ..HJ.ON3Z)].X = 01 9Z'99 = (J33alwV3 ismoa 69'9L = (J33d)WVHH.LSdn :VSVQ HOI.LVA378 00' OS9 = (133a) H.LONS'I -MO'Id VSHVEMS 'IVISINI ............................................. ............................... »VSHVSns rmuiHI HOa HdVHOOWON H0IJ.VHJ.DIIDN0D-a0-aWI L 3Sn« » » >SISX'IVNV VSHVMS 'IVILIHI QOHJ34 WHOLL I««< ---------------------------------------------------------------------------- TZ = HOOD SI 00'LT 3QON OS 00'91 300N NOMA SS3002id Mo'Id rw+ srwrwrrwwrsrsrrwws. a+ sa. ww. rr rs.+ sr. wssrrwssswsw ..w.wwswrrrrsrss+wwswr• ............................................. ............................... » »> Z M XNVH xH0W3W omo 03Idoo xvowsw wV3HiS -NIHW« «< ---------------------------------------------------------------------------- OT •+•+ rswr. r..+ = MOD SI 00'80T WON 01 00'901 3QOH WOHa SSSDOHd MoZa sr. rw. arswr+ r. ra.+..+ wssrrrr r ..wrwrrrra.w+wrr•r.....w.rrrr+• 'J33d 00'00 = 00'801 300N ox. 00'i SOON WOHa HSVdMO'Ia SS3'JNO'I IL 1 11 80'6 E£'0 = ('NIW)3WIL ZSAVHJ. Mo'Ia - XOH 00'T 116'SO = (SdD)Mo'Ia -XoH 9T'OT = ('DHS 1J3Sa)x,LIOM3A MO'Id - XOH J33A 90'1 SI XOH NI H.Ld3QM0Id 00 = (J33a).LHDI3H XOS NHAID 00'8 = (J33a)HJQIMSSV3 XOH MAID LO'SL £10'0 = N S.JNINNVW 00'OOZ = (133d)H.L`JBII'I MO'Id 00'11 0010'0 = HAMS HAId.VJ.PIISSHd3H ............................... ............................................. » »> (J.N3W3Z3 omusix3) 3ZIS Xos miam3dS - Hann oNISn « «< S08'Z »»>V3HVSIIS rimu 3WI L 'I3AVHJ, MO'Ia -XOH 3JJIdwoo -- ---------------------------------------------------------------------------- 96 rw. r+w rrw..+ sw► = HOOD SI 00'BOT Sam oS 00'90i SOON WOUA SSHOOSd MO'Ia swam►. rrr♦. r. a+ ww•♦+..+ s. w ..w.rw.r...a.►.rsrrrrsr►srsrr.r J3Sd 00'OLZZ = 00'901 3QON ox 00't 3QON NOVA H.LVdMO'Id JSSONO'i 01 EL'OE _ (szsov)V3HV ZV.LOJ. S60'f OT'0 = dV 03OVH3AV -V3HV B6'0 = (UHMONI)da 03E)VHSAV -V3HV 01'0 = (HH /HDNI)Wd allDVMV - VERY 66'SZ = (SHHDV)VHHV RAIJJ3a413 00 SL'8 = ('NINP.L. 46'58 = (SdD)SSVH MUM XV3d 01'0 =SMo'I'Ioa sV 3HV S3SVWIS53 3JN3n'IaxoD asindwoD 00'1 L'OE Ot'0 (01'0 )86'0 SOL'Z 00'ET 11Z'SL L 00'4 D" DE 01'0 (01'0 )86'0 908'Z 11Z'ZT LL'OB 9 00'8 L'8Z OVID (01'0 )86'0 S60'E 6E'OT T8'V'S S 00 6'9Z OT'0 (OT'0 )86'0 OIE'£ 6Z'6 tB'S8 11 00 0 OT'0 (01'0 )86'0 OE11'E SL'8 116'SO E 00'10T 11 1 SZ OT'0 (OL'0 )86'0 S811'E ZS'9 ZS'S8 Z 00'III 8'OZ 01'0 (01'0 )86'0 096 69'9 1L'6L t SOON (S32DV) (UH /HDNI) (HIi /HDHI) ('HIW) (SAD) usawnN H3.LVMQV3H aV dV (wa)dd AITSUDIuI 0,L 0 wV3HJS S811'E w. STEVE HIM Mo'Ia Wad .. 'swvauis z HOd assn V7nWHOa 3DNanggNoo oI.LVH NOIJ.VHjmDNoD a0 3WIS ONV AtISNS.LNI 'I'IVdNIVH 00'4T 11 Ot (01 )86'0 096 68'9 IL 1 11 Z 00'T 11'6Z OT'0 (01 )86'0 SOL'Z 00'£T LO'SL T 00'11 i'6Z 01'0 (OT'0 )86'0 S08'Z 11Z'Zt 911'LL T 00'8 E'LZ 01 (01'0 )86'0 S60'f 6E'01 9T'T8 T 00 S'SZ 01'0 (0T'0 )86'0 OTE'E 6Z'6 68'18 t 00'ZT 9'1 OT'0 (01'0 )86'0 OE11'E SL'8 L8'T8 I 00'0T T'11Z Ot'0 (OT'0 )86'0 S811'E ZS'B 6E'T8 t aaox (SMOV) (tHi /HDNI) (HH /HDHI) ('NIW) (SAD) HSBwnN H3SVMQV3H aV dV (ma) da AlToua7uI 3S 0 WVHHJ.S .r VSVO HDN3n'IaNOD r. tL' 4 = 3ON3n'IdNOJ LV (SAO) 3M MO'Id XV3d SU T = (SSHDV)VHHV wV3HJS ZVSO,L SE't = (SHWV)V3HV NVSHIS SAIJ.03aas Ot'0 = dV (moVH3AV-VZNV 86 = (HH /HONI)dd 030VH3AV -VHHV 01'0 = (2Hi /HDNI)Wa 030VH3AV -V3HV WE - (HIi/HONI) JUISN3JJ I 'IgV3KIVH ® m m m s r m m m m m m m m m m m INITIAL SUBAREA FLOW- LENGTH(FEET) = 500.00 STREAM CONFLUENCE DATA ** ELEVATION DATA: UPSTREAM(FEET) = 66.87 DOWNSTREAM(FEET) = 60.75 Tc = K *((LENGTH ** 3.00)/ (ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 8.809 STREAM • 10 YEAR RAINFALL INTENSITY(INCH /HR) = 3.417 Intensity SUBAREA Tc AND LOSS RATE DATA(AMC II): Ap DEVELOPMENT TYPE/ SCS SOIL AREA pp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 1.81 0.98 0.10 32 8.81 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap . 0.10 1 SUBAREA RUNOFF(CFS) = 5.41 3.267 TOTAL AREA(ACRES) = 1.81 PEAK FLOW RATE(CFS) = 5.41 r : :ff rlr :frrr \ \♦rflffrlf ruff rf lrrr :r►\\f \ffffrlr :rrrrr :f rff►\: rf if r\r ♦ :rr1f FLOW PROCESS FROM NODE 19.00 TO NODE 107.00 IS CODE = 1 ---------------------------------------------------------------------------- > > >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< >-AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «c ............... .............................. ............................... TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) . 8.81 RAINFALL INTENSITY(INCH /HR) = 3.42 AREA - AVERAGED Fm(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 1.81 TOTAL STREAM AREA(ACRES) = 1.81 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.41 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 20.23 10.35 3.101 0.98( 0.10) 0.10 7.0 16.00 2 5.41 8.81 3.417 0.98( 0.10) 0.10 1.8 18.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 24.43 8.81 3.417 0.98( 0.10) 0.10 7.7 18.00 2 25.12 10.35 3.101 0.98( 0.10) 0.10 8.8 16.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 25.12 TC(MIN.) = 10.35 EFFECTIVE AREA(ACRES) = 8.78 AREA - AVERAGED Fm(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 8.78 LONGEST FLOWPATH FROM NODE 16.00 TO NODE 107.00 = 1200.00 FEET rflriflr• /f1f \f tfl! \ \1f1fff lff if if rf•1f\ff ♦t•rff \ ► \f111f\rf\frff if \f t\f if r \f FLOW PROCESS FROM NODE 107.00 TO NODE 108.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< >>>>>USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) « «< REPRESBNTATIVB SL0P8 0.0100 FLOW LENGTH(FEET) = 350.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 17.2 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 8.60 GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 25.12 PIPE TRAVEL TIME(MIN.) - 0.68 TC(MIN.) = 11.03 LONGEST FLOWPATH FROM NODE 16.00 TO NODE 108.00 = 1550.00 FEET. •ff kfliif lltf \f 11f 1f 1fffrfffflf ifftf tfr•1f 11\tlt tffrrif lfff\fffffff 1f 1t1rtf! FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE 11 ---------------------------------------------------------------------------- >>>>> CONFLUENCE MEMORY BANK # 2 WITH THE MAIN - STREAM MEMORY « «< _______________________________________•__ ___ °_._.............___.. ° °_... ** MAIN STREAM CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 24.43 9.49 3.267 0.98( 0.10) 0.10 7.7 18.00 2 25.12 11.03 2.985 0.98( 0.10) 0.10 8.8 16.00 LONGEST FLOWPATH FROM NODE 16.00 TO NODE 108.00 = 1550.00 FEET. ** MEMORY BANK # 2 CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Pm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 79.71 7.22 3.850 0.98( 0.10) 0.10 20.8 14.00 2 85.52 8.84 3.410 0.98( 0.10) 0.10 25.4 10.00 3 85.94 9.06 3.359 0.98( 0.10) 0.10 26.0 12.00 4 85.81 9.60 3.246 0.98( 0.10) 0.10 26.9 6.00 5 84.81 10.69 3.042 0.98( 0.10) 0.10 28.7 8.00 6 80.77 12.54 2.765 0.98( 0.10) 0.10 30.4 4.00 7 78.24 13.30 2.668 0.98( 0.10) 0.10 30.7 1.00 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 108.00 = 2470.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 101.71 7.22 3.850 0.98( 0.10) 0.10 26.7 14.00 2 109.29 8.84 3.410 0.98( 0.10) 0.10 32.6 10.00 3 109.94 9.06 3.359 0.98( 0.10) 0.10 33.4 12.00 4 110.26 9.49 3.267 0.98( 0.10) 0.10 34.4 18.00 5 110.28 9.60 3.246 0.98( 0.10) 0.10 34.7 6.00 6 109.78 10.69 3.042 0.98( 0.10) 0.10 37.2 8.00 7 109.19 11.03 2.985 0.98( 0.10) 0.10 37.8 16.00 8 103.97 12.54 2.765 0.98( 0.10) 0.10 39.2 4.00 9 100.61 13.30 2.668 0.98( 0.10) 0.10 39.5 1.00 TOTAL AREA(ACRES) = 39.51 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) . 110.28 Tc(MIN.) = 9.598 EFFECTIVE AREA(ACRES) 34.70 AREA - AVERAGED Fm(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap . 0.10 TOTAL AREA(ACRES) = 39.51 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 108.00 = 2470.00 FEET. ............................................. END OF STUDY SUMMARY: ............................... TOTAL AREA(ACRES) 39.51 TC(MIN.) = 9.60 EFFECTIVE AREA(ACRES) 34.70 AREA - AVERAGED Fm(INCH /HR)= 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 PEAK FLOW RATE(CFS) = 110.28 ** PEAK FLAW RATE TABLE ff STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CPS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 101.71 7.22 3.850 0.98( 0.10) 0.10 26.7 14.00 2 109.29 8.84 3.410 0.98( 0.10) 0.10 32.6 10.00 3 109.94 9.06 3.359 0.98( 0.10) 0.10 33.4 12.00 4 110.26 9.49 3.267 0.98( 0.10) 0.10 34.4 18.00 5 110.28 9.60 3.246 0.98( 0.10) 0.10 34.7 6.00 6 109.78 10.69 3.042 0.98( 0.10) 0.10 37.2 8.00 7 109.19 11.03 2.985 0.98( 0.10) 0.10 37.8 16.00 8 103.97 12.54 2.765 0.98( 0.10) 0.10 39.2 4.00 9 100.61 13.30 2.668 0.98( 0.10) 0.10 39.5 1.00 END OF RATIONAL METHOD ANALYSIS •frrfrrfif iffffaflfflf•fi tff rffrf tf trfffftlif•kf rf if lkffff•fffrffff rffffffff RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -2001 Advanced Engineering Software (sea) Ver. 8.0 Release Date: 01/01/2001 License ID 1510 Analysis prepared by: DEVELOPMENT RESOURCE CONSULTANTS, INC. 8175 E. KAISER BLVD. ANAHEIM HILLS, CA 92808 P:(714)685 -6860 F:(714)685 -6801 ffrrrf raarf •rrf r!lerrar••a DESCRIPTION OF STUDY • * ** *• rrff rf ♦rra►rrifff rfa * Regency Commercial Property r * Proposed Conditions Analysis * 25 Year Storm •farffarf rrf rrff rflf rrttara••ifirrtrarfrrrrif t•lraff•rf tf lafrr•i!►fftifrar FILE NAME: 01900P25.DAT TIME/DATE OF STUDY: 13:04 06/30/2002 __......::___::___:____....__:_____....:_: ... ............................... USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: _._: ...............................::__...... ..._....._..._............. :_.. -- *TIME-OF- CONCENTRATION MODEL*-- USER SPECIFIED STORM EVENT(YEAR) . 25.00 SPECIFIED MINIMUM PIPE SIZE(INCH) . 12.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) 1.070 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) 1.580 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 25.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.2481 SLOPE OF INTENSITY DURATION CURVE = 0.6000 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* *USER - DEFINED STREET- SECTIONS FOR COUPLED PIPEFLOW AND STREETFIAW MODEL* HALF- CROWN TO STREET- CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT - /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint - 6.0 (FT *FT /S) *SIZE PIPE WITH A FLAW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER - SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -+ 25 Year Conceptual Post - Developed Analysis +-------------------------------------------- -- ------------ -------- --- - - - - -+ ® r7l ,. 7 _. --------------------------------- ---- ----- ---------- ------- - - --- - --- ------+ AREA "A" +-------------------------------------------- --- ---------------------- --- - -+ !tfffff rfllt RffRrRf rfffffffkRffflflf ♦•f }fffrf lRfff lfktRlffrf lfff •fR• ■f tfffff FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE . 21 ---------------------------------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< USE TIME-OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ____________________________________ _______________________________ INITIAL SUBAREA FLOW- LENGTH(FEET) - 600.00 ELEVATION DATA: UPSTREAM(FEET) - 79.30 DOWNSTREAM(FEET) = 73.00 Tc = K *((LENGTH ** 3.00) /(ELEVATION CHANGE)) **0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) - 9.770 * 25 YEAR RAINFALL INTENSITY(INCH /HR) . 3.708 SUBAREA Tc AND LASS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 4.10 0.98 0.10 32 9.77 SUBAREA AVERAGE PERVIOUS LASS RATE, Fp(INCH /HR) - 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) - 13.32 TOTAL AREA(ACRES) - 4.10 PEAK FLOW RATE(CFS) - 13.32 fff wff lfff►rf rr }fffrlf tffrlffref!► fr• fflrrrrffff }r }♦ rff• :r}ffffaf rrfffflff}f FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 41 ---------------------------------------------------------------------------- COMPUTE PIPE -FLAW TRAVEL TIME THRU SUBAREA « «< » > >USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) «« < =__°......................................... ............................... REPRESENTATIVE SLOPE = 0.0100 FLOW LENGTH(FEET) . 50.00 MANNING'S N = 0.013 ASSUME FULL- FLOWING PIPELINE PIPE -FLOW VELOCITY(FEET /SEC.) = 7.54 PIPE FLAW VELOCITY - (TOTAL FLOW)/(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) - 18.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 13.32 PIPE TRAVEL TIME(MIN.) - 0.11 Tc(MIN.) = 9.88 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 = 650.00 FEET. ffffiffr #f Rllfffff tf ►l►lftlflfflfff} ►flffffffff lfflffflf �fffffff tf lftlff!!f► FLOW PROCESS FROM NODE 3.00 TO NODE 100.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< > > >USING USER- SPECIFIED PIPESIZE (EXISTING ELEMENT)< « < ____=••________•____•_••______•___•_•___•_= .. ............................... REPRESENTATIVE SLOPE - 0.0200 FLAW LENGTH(FEET) = 400.00 MANNING'S N - 0.013 DEPTH OF FLAW IN 30.0 INCH PIPE IS 9.9 INCHES PIPE -FLOW VELACITY(FEET /SEC.) = 9.42 GIVEN PIPE DIAMETER(INCH) . 30.00 NUMBER OF PIPES - 1 PIPS- FLOW(CFS) - 13.32 PIPE TRAVEL TIME(MIN.) - 0.71 Tc(MIN.) - 10.59 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 100.00 = 1050.00 FEET. f•• fff ►f 1#ff 1f11ff 1f fffRtfffflf Rf ►fff\fffffff iffff• #tfff ■fffffffffllfft!l ltf FLOW PROCESS FROM NODE 100.00 TO NODE 100.00 IS CODE 1 ---------------------------------------------------------------------------- >> » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< TOTAL NUMBER OF STREAMS - 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) . 10.59 RAINFALL INTENSITY(INCH /HR) . 3.53 AREA - AVERAGED Fm(INCH /HR) . 0.10 AREA - AVERAGED Fp(INCH /HR) - 0.98 AREA- AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) - 4.10 TOTAL STREAM AREA(ACRES) - 4.10 PEAK FLAW RATE(CFS) AT CONFLUENCE - 13.32 ♦f tfffff tfffff!! #1 ll ffrfffff #1f 1f1t}f 11ff • fff ■r }fffff #f tfffff \!fff #ffllf tiff FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE - 21 ---------------------------------------------------------------------------- » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS <c «< >>USE TIME-OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ...............................•_•__....__... ..........._•_•___..._.._._._.. INITIAL SUBAREA PLOW- LENGTH(FEET) - 750.00 ELEVATION DATA: UPSTREAM(FEET) - 79.30 DOWNSTREAM(FEET) 67.00 Tc . K *((LENGTH ** 3.00)/(ELEVATION CHANGE))* *0.20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) - 9.771 * 25 YEAR RAINFALL INTENSITY(INCH /HR) - 3.708 SUBAREA Tc AND LASS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 5.99 0.98 0.10 32 9.77 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) - 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap - 0.10 SUBAREA RUNOFF(CFS) = 19.47 TOTAL AREA(ACRES) = 5.99 PEAK FLOW RATE(CFS) - 19.47 11f1f rffrfff tff}f rfrlf tfffff }f lff#frtfff }fflffllf if tfffff \fffflffffffffffflf FLAW PROCESS FROM NODE 5.00 TO NODE 100.00 IS CODE - 41 ---------------------------------------------------------------------------- »»> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » >>>USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) « «< •__• ......................................... ........... :_.._...._.......... REPRESENTATIVE SLOPE = 0.0200 FLOW LENGTH(FEET) = 50.00 MANNING'S N - 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 12.1 INCHES PIPE -FLAW VELOCITY(FEET /SEC.) = 10.45 GIVEN PIPE DIAMETER(INCH) - 30.00 NUMBER OF PIPES . 1 PIPE- FLOW(CFS) - 19.47 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) - 9.85 LONGEST FLOWPATH FROM NODE 4.00 TO NODE 100.00 . 800.00 FEET. f Rf rffff ►fflfftifffffff ►►lfaf•tfffff if tfffff! tf tfffff if!►fffRfffftRfffff if ►f FLOW PROCESS FROM NODE 100.00 TO NODE 100.00 IS CODE = 1 ---------------------------------------------------------------------------- . » DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< »> >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES <<<<< ........................... . ............. ................................... TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE TIME OF CONCENTRATION(MIN.) = 9.85 RAINFALL INTENSITY(INCH /HR) = 3.69 AREA - AVERAGED Pm(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 5.99 TOTAL STREAM AREA(ACRES) = 5.99 PEAK FLOW RATE(CFS) AT CONFLUENCE . 19.47 ** CONFLUENCE DATA ** STREAM 0 Tc Intensity Pp(Fm) Ap Ae HEADWATER NUMBER (CPS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 13.32 10.59 3.534 0.98( 0.10) 0.10 4.1 1.00 2 19.47 9.85 3.690 0.98( 0.10) 0.10 6.0 4.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM 0 Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CPS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 32.43 9.85 3.690 0.98( 0.10) 0.10 9.8 4.00 2 31.94 10.59 3.534 0.98( 0.10) 0.10 10.1 1.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 32.43 Tc(MIN.) = 9.85 EFFECTIVE AREA(ACRES) = 9.80 AREA - AVERAGED Fm(INCH /HR) . 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 10.09 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 100.00 = 1050.00 FEET !f if ifffffff lfff•f•fflfflflflif ffff f iffffffffff fff fffflffflff llfffffffff if if FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 41 ---------------------------------------------------------------------------- »»> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » >>USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) « «< REPRESENTATIVE SLOPE 0.0200 FLOW LENGTH(FEET) . 150.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 16.3 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) . 11.91 GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES . 1 PIPE- FLOW(CFS) . 32.43 PIPE TRAVEL TIME(MIN.) . 0.21 Tc(MIN.) = 10.06 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 101.00 = 1200.00 FEET. fffff #f ffff\ f\ ffffffffffffff} ffffffffffflffff ♦iffiffflfffffRlfff \fff \•ffff!• FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 46 ---------------------------------------------------------------------------- >>>>> COMPUTE BOX -FLOW TRAVEL TIME THRU SUBAREA <<<c< »» >USING USER - SPECIFIED BOX SIZE (EXISTING ELEMENT) « «< ............................................. .................... = =_........ REPRESENTATIVE SLOPE = 0.0100 FLOW LENGTH(FEET) = 120.00 MANNING'S N = 0.013 GIVEN BOX BASEWIDTH(PEET) = 8.00 GIVEN BOX HEIGHT(FEET) = 4.00 FLOWDEPTH IN BOX IS 0.57 FEET BOX -FLOW VELOCITY(FEET /SEC.) . 7.14 BOX- FLOW(CFS) = 32.43 BOX -FLOW TRAVEL TIME(MIN.) = 0.28 Tc(MIN.) = 10.34 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 102.00 = 1320.00 FEET. fit••flfRflf ►* ►ffff fffff•!► \fffffff fffff 1f fff if• ► /fffffff ► ► ► ♦f fffff ► /fffffff FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE-c<< _:__________ ... ___________________________ _______________________ ° °.___ °_ TOTAL NUMBER OP STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) . 10.34 RAINFALL INTENSITY(INCH /HR) . 3.58 AREA - AVERAGED Fm(INCH /HR) = 0.10 AREA - AVERAGED Pp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 9.80 TOTAL STREAM AREA(ACRES) = 10.09 PEAK FLOW RATE(CFS) AT CONFLUENCE . 32.43 ff #f• #fff fffff ffff l fffffff #ffff!••ffffff ♦fffffff lfflffff if if!lffiffflf ffff!• FLOW PROCESS FROM NODE 6.00 TO NODE 7.00 IS CODE 21 -- - --- --- -- --- ---- -- ---- ------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< >>USE TIME-OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA - ........__°°°°_........._____________ ____________ ...... =______ ..° °____ INITIAL SUBAREA FLOW- LENGTH(FEET) = 450.00 ELEVATION DATA: UPSTREAM(FEET) = 76.87 DOWNSTREAM(FEET) 65.67 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.328 * 25 YEAR RAINFALL INTENSITY(INCH /HR) . 4.407 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 3.24 0.98 0.10 32 7.33 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CPS) = 12.57 TOTAL AREA(ACRES) 3.24 PEAK FLOW RATE(CFS) = 12.57 1k1ff1! ►fff lfffff►f •ff #ffff #1f 1f ffff fffff #f llf if if ►fffffff #f }!fffffff FLOW PROCESS FROM NODE 7.00 TO NODE 102.00 IS CODE . 41 ---------------------------------------------------------------------------- if #}fff > >> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) « «< .............. = .................................... _ : :__.._ :_ : :........... REPRESENTATIVE SLOPE = 0.0200 FLOW LENGTH(FEET) . 15.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 9.22 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 12.57 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) . 7.35 LONGEST FLOWPATH FROM NODE 6.00 TO NODE 102.00 = 465.00 FEET. 1f ►f 1ff11ff\f }ffff !fffffff •f lffffRffffffff��f ff ffff # /fffffff \ffRfff ► /fllfff! FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE 1 ---------------------------------------------------------------------------- .. »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE-<c< » »>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES-<< . :. : ... ................................................. :. :.............. .. TOTAL NUMBER OF STREAMS . 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) . 7.35 RAINFALL INTENSITY(INCH /HR) = 4.40 AREA - AVERAGED Fm(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 3.24 TOTAL STREAM AREA(ACRES) . 3.24 PEAK FLOW RATE(CFS) AT CONFLUENCE . 12.57 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(FM) Ap As HEADWATER NUMBER (CPS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 32.43 10.33 3.586 0.98( 0.10) 0.10 9.8 4.00 1 31.94 11.07 3.440 0.98( 0.10) 0.10 10.1 1.00 2 12.57 7.35 4.397 0.98( 0.10) 0.10 3.2 6.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** .STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 41.01 7.35 4.397 0.98( 0.10) 0.10 10.2 6.00 2 42.62 10.33 3.586 0.98( 0.10) 0.10 13.0 4.00 3 41.71 11.07 3.440 0.98( 0.10) 0.10 13.3 1.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 42.62 TC(MIN.) . 10.33 EFFECTIVE AREA(ACRES) = 13.04 AREA - AVERAGED Fm(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) . 13.33 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 102.00 = 1320.00 FEET fflt•fff if fffflf if lffifttffifff #fflfftlff!!rw if rlf •rff ►lfff •fff lf!•fff lf! ♦1f FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 46 --- ---------- - - -- -- ------------------------------------------------------- » »> COMPUTE BOX -FLOW TRAVEL TIME THRU SUBAREA« «< » > >USING USER - SPECIFIED BOX SIZE (EXISTING ELEMENT)< «< ............................................. ............. :._...... : :....... REPRESENTATIVE SLOPE . 0.0100 FLOW LENGTH(FEET) = 400.00 MANNING'S N . 0.013 GIVEN BOX BASEWIDTH(FEET) = 8.00 GIVEN BOX HEIGHT(FEET) 4.00 FLOWDEPTH IN BOX IS 0.67 FEET BOX -FLAW VELOCITY(FEET /SEC.) . 7.90 BOX- FLOW(CFS) = 42.62 BOX -FLAW TRAVEL TIME(MIN.) . 0.84 Tc(MIN.) = 11.18 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 103.00 = 1720.00 FEET. fffffffffflfffifftflf • fflff!!1l1wff 11f 11t1fffflffff• ■ftlf ►ff lffffff lff lfff /! FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE . 1 ---------------------------------------------------------------------------- »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< ............................................. ............................... TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 11.18 RAINFALL INTENSITY(INCH /HR) = 3.42 AREA - AVERAGED Pm(INCH /HR) . 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) . 13.04 TOTAL STREAM AREA(ACRES) = 13.33 PEAK FLOW RATE(CFS) AT CONFLUENCE . 42.62 1lffff lfflfff tf!!lffftfffff #flwfflf tff lff tffttffflti#llf lfff #wlffff tf i!lfiff FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE . 21 --------------------------- -------- --------- -- -- -------- -- ----------------- » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME-OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<c ............................................. ............................... INITIAL SUBAREA FLOW- LENGTH(FEET) = 550.00 _ ELEVATION DATA: UPSTREAM(FEET) . 77.50 DOWNSTREAM(FEET) 71.44 Tc . K *[(LENGTH ** 3.00)/(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 9.345 * 25 YEAR RAINFALL INTENSITY(INCH /HR) . 3.809 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Pp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 5.86 0.98 0.10 32 9.35 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) . 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CPS) 19.57 TOTAL AREA(ACRES) = 5.86 PEAK FLOW RATE(CFS) . 19.57 ! #f!!wflf if ref wrrf kf•!l rffl rl f rf r•!fe ##f :rrf ♦rf lfff #irwf refffff ♦f lfffff if !►f FLOW PROCESS FROM NODE 9.00 TO NODE 103.00 IS CODE = 41 --------------------- ---------- --- ---- ----- ---- ----- - ------- ------ -- - ----- »»> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA <<<<< » »>USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) < <<< ...........:.....:.......::...:.:.:::.....:: . ............................... REPRESENTATIVE SLOPE = 0.0200 FLOW LENGTH(FEET) = 15.00 MANNING'S N = 0.013 ASSUME FULL- FLOWING PIPELINE PIPE -FLOW VELOCITY(FEET /SEC.) = 11.08 GIVEN PIPE DIAMETER(INCH) . 18.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) . 19.57 PIPE TRAVEL TIME(MIN.) = 0.02 TC(MIN.) = 9.37 LONGEST FLOWPATH FROM NODE 8.00 TO NODE 103.00 = 565.00 FEET. ft*tlf tfffff#•1flfflrff!!fflfftwfflwf tftiffwf #fft•lttktftlf lff if ifff if if if if FLAW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE . 1 ---------------------------------------------------------------------------- » >>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES <<<<< ............................................. ............................... TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) . 9.37 RAINFALL INTENSITY(INCH /HR) = 3.80 AREA - AVERAGED Fm(INCH /HR) . 0.10 AREA - AVERAGED Fp(INCH /HR) . 0.98 AREA- AVERAGED Ap . 0.10 EFFECTIVE STREAM AREA(ACRES) = 5.86 TOTAL STREAM AREA(ACRES) . 5.86 PEAK FLAW RATE(CFS) AT CONFLUENCE . 19.57 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM 0 Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 59.60 8.19 4.121 0.98( 0.10) 0.10 15.3 6.00 2 61.22 9.37 3.803 0.98( 0.10) 0.10 17.2 8.00 3 60.20 11.15 3.426 0.98( 0.10) 0.10 18.9 4.00 4 58.62 11.88 3.298 0.98( 0.10) 0.10 19.2 1.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 61.22 Tc(MIN.) = 9.37 EFFECTIVE AREA(ACRES) 17.20 AREA - AVERAGED Fm(INCH /HR) . 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 19.19 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 103.00 = 1720.00 FEET ff1f11f ♦f11f 1fffflflffffff 1f 11ff ►ffff lfftlffifffff lffitffffffff ♦!!f \ff # \if if FLOW PROCESS FROM NODE 103.00 TO NODE 105.00 IS CODE = 46 -- -- - - -- ---------------------------- --- -- ----------- -- ------ -- ----- -- -- -- >>>>>COMPUTE BOX -FLOW TRAVEL TIME THRU SUBAREA « «< »» >USING USER - SPECIFIED BOX SIZE (EXISTING ELEMENT) <<<<< ....... ........................... .. ................ = ................. :....: REPRESENTATIVE SLOPE = 0.0100 FLOW LENGTH(FEET) = 500.00 MANNING'S N = 0.013 GIVEN BOX BASEWIDTH(FEET) = 8.00 GIVEN BOX HEIGHT(FEET) = 4.00 FIOWDEPTH IN BOX IS 0.85 FEET BOX -FLOW VELOCITY(FEET /SEC.) = 9.01 BOX- FLOW(CFS) = 61.22 BOX -FLOW TRAVEL TIME(MIN.) = 0.93 Tc(MIN.) = 10.29 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 105.00 = 2220.00 FEET. iffiffff1111f 11fff1f lf!llf fff iffff1111ff1f\.1fif if if \lf11f 1fffiffffffiff llf• FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 10 ---------------------------------------------------------------------------- »» .MAIN- STREAM MEMORY COPIED ONTO MEMORY BANK # 1 « «< ............................................. ............................... ♦f11f ►lffffifffffffffff\fllf fffifff f lfff lff lflf \f •ffffff \ \f lff #ff if iff if \ff• FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21 ---------------------------------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ............................................. ............................... INITIAL SUBAREA FLOW- LENGTH(FEET) = 600.00 ELEVATION DATA: UPSTREAM(FEET) = 77.95 DOWNSTREAM(FEET) = 60.00 Tc = K *I(LENGTH ** 3.00) /(ELEVATION CHANGE)] **0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.924 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 4.205 Ap SCS Tc (DECIMAL) CN (MIN.) 0.10 32 7.92 0.98 15.60 1f• ♦11fl11f 1ff if► ffiff ♦1fff1111fffffllfff \lfffff1111f 1f11f 1f 1ffffflf ffltffff FLOW PROCESS FROM NODE 11.00 TO NODE 104.00 IS CODE = 41 ---------------------------------------------------------------------------- » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA<. «< >>>>>USING USER - SPECIFIED PIPESIZE ( EXISTING ELEMENT) < -. ..__•_•_•_••___• ............................. ....=_......_.__...._........._ REPRESENTATIVE SLOPE = 0.0200 FLOW LENGTH(FEET) = 150.00 MANNING'S N = 0.013 ASSUME FULL - FLOWING PIPELINE PIPE -FLOW VELOCITY(FEET /SEC.) = 8.83 PIPE FLOW VELOCITY . (TOTAL FL.OW)/(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE- FLOW(CPS) = 15.60 PIPE TRAVEL TIME(MIN.) = 0.28 Tc(MIN.) . 8.21 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 104.00 . 750.00 FEET. f•f flf f#f flf fifffffflffifflflf ►1lfflflff!lf if ff if iff lfffffffffffffiffllf \f #f FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE . 1 ---------------------------------------------------------------------------- >.» DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< ............................................. ............................... TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 8.21 RAINFALL INTENSITY(INCH /HR) = 4.12 AREA - AVERAGED Fm(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap . 0.10 EFFECTIVE STREAM AREA(ACRES) = 4.22 TOTAL STREAM AREA(ACRES) = 4.22 PEAK FLOW RATE(CFS) AT CONFLUENCE = 15.60 •lff ifffffffffllflfllflf lff lffffffffffffff►!\ tf tlff lffff ifffffffflff lfff lffi FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 21 ---------------------------------------------------------------------------- >> » .RATIONAL METHOD INITIAL SUBAREA ANALYSIS« <.< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<. ............................................. ............................... INITIAL SUBAREA FLOW- LENGTH(FEET) = 700.00 ELEVATION DATA: UPSTREAM(FEET) . 77.50 DOWNSTREAM(FEET) 56.00 Tc = K *((LENGTH ** 3.00) /(ELEVATION CHANGE))* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.384 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 4.065 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 5.97 0.98 0.10 32 8.38 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA Tc AND LOSS RATE DATA(AMC I1): ** CONFLUENCE DATA ** DEVELOPMENT TYPE/ SCS SOIL AREA Fp STREAM 0 Tc Intensity Fp(Fm) Ap As HEADWATER LAND USE GROUP (ACRES) (INCH /HR) NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE COMMERCIAL A 4.22 0.98 1 41.01 8.19 4.121 0.98( 0.10) 0.10 10.2 6.00 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ 1 42.62 11.15 3.426 0.98( 0.10) 0.10 13.0 4.00 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 1 41.71 11.88 3.298 0.98( 0.10) 0.10 13.3 1.00 SUBAREA RUNOFF(CFS) = 15.60 2 19.57 9.37 3.803 0.98( 0.10) 0.10 5.9 8.00 TOTAL AREA(ACRES) = 4.22 PEAK FLOW RATE(CFS) RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM 0 Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 59.60 8.19 4.121 0.98( 0.10) 0.10 15.3 6.00 2 61.22 9.37 3.803 0.98( 0.10) 0.10 17.2 8.00 3 60.20 11.15 3.426 0.98( 0.10) 0.10 18.9 4.00 4 58.62 11.88 3.298 0.98( 0.10) 0.10 19.2 1.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 61.22 Tc(MIN.) = 9.37 EFFECTIVE AREA(ACRES) 17.20 AREA - AVERAGED Fm(INCH /HR) . 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 19.19 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 103.00 = 1720.00 FEET ff1f11f ♦f11f 1fffflflffffff 1f 11ff ►ffff lfftlffifffff lffitffffffff ♦!!f \ff # \if if FLOW PROCESS FROM NODE 103.00 TO NODE 105.00 IS CODE = 46 -- -- - - -- ---------------------------- --- -- ----------- -- ------ -- ----- -- -- -- >>>>>COMPUTE BOX -FLOW TRAVEL TIME THRU SUBAREA « «< »» >USING USER - SPECIFIED BOX SIZE (EXISTING ELEMENT) <<<<< ....... ........................... .. ................ = ................. :....: REPRESENTATIVE SLOPE = 0.0100 FLOW LENGTH(FEET) = 500.00 MANNING'S N = 0.013 GIVEN BOX BASEWIDTH(FEET) = 8.00 GIVEN BOX HEIGHT(FEET) = 4.00 FIOWDEPTH IN BOX IS 0.85 FEET BOX -FLOW VELOCITY(FEET /SEC.) = 9.01 BOX- FLOW(CFS) = 61.22 BOX -FLOW TRAVEL TIME(MIN.) = 0.93 Tc(MIN.) = 10.29 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 105.00 = 2220.00 FEET. iffiffff1111f 11fff1f lf!llf fff iffff1111ff1f\.1fif if if \lf11f 1fffiffffffiff llf• FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 10 ---------------------------------------------------------------------------- »» .MAIN- STREAM MEMORY COPIED ONTO MEMORY BANK # 1 « «< ............................................. ............................... ♦f11f ►lffffifffffffffff\fllf fffifff f lfff lff lflf \f •ffffff \ \f lff #ff if iff if \ff• FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21 ---------------------------------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ............................................. ............................... INITIAL SUBAREA FLOW- LENGTH(FEET) = 600.00 ELEVATION DATA: UPSTREAM(FEET) = 77.95 DOWNSTREAM(FEET) = 60.00 Tc = K *I(LENGTH ** 3.00) /(ELEVATION CHANGE)] **0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.924 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 4.205 Ap SCS Tc (DECIMAL) CN (MIN.) 0.10 32 7.92 0.98 15.60 1f• ♦11fl11f 1ff if► ffiff ♦1fff1111fffffllfff \lfffff1111f 1f11f 1f 1ffffflf ffltffff FLOW PROCESS FROM NODE 11.00 TO NODE 104.00 IS CODE = 41 ---------------------------------------------------------------------------- » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA<. «< >>>>>USING USER - SPECIFIED PIPESIZE ( EXISTING ELEMENT) < -. ..__•_•_•_••___• ............................. ....=_......_.__...._........._ REPRESENTATIVE SLOPE = 0.0200 FLOW LENGTH(FEET) = 150.00 MANNING'S N = 0.013 ASSUME FULL - FLOWING PIPELINE PIPE -FLOW VELOCITY(FEET /SEC.) = 8.83 PIPE FLOW VELOCITY . (TOTAL FL.OW)/(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE- FLOW(CPS) = 15.60 PIPE TRAVEL TIME(MIN.) = 0.28 Tc(MIN.) . 8.21 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 104.00 . 750.00 FEET. f•f flf f#f flf fifffffflffifflflf ►1lfflflff!lf if ff if iff lfffffffffffffiffllf \f #f FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE . 1 ---------------------------------------------------------------------------- >.» DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< ............................................. ............................... TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 8.21 RAINFALL INTENSITY(INCH /HR) = 4.12 AREA - AVERAGED Fm(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap . 0.10 EFFECTIVE STREAM AREA(ACRES) = 4.22 TOTAL STREAM AREA(ACRES) = 4.22 PEAK FLOW RATE(CFS) AT CONFLUENCE = 15.60 •lff ifffffffffllflfllflf lff lffffffffffffff►!\ tf tlff lffff ifffffffflff lfff lffi FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 21 ---------------------------------------------------------------------------- >> » .RATIONAL METHOD INITIAL SUBAREA ANALYSIS« <.< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<. ............................................. ............................... INITIAL SUBAREA FLOW- LENGTH(FEET) = 700.00 ELEVATION DATA: UPSTREAM(FEET) . 77.50 DOWNSTREAM(FEET) 56.00 Tc = K *((LENGTH ** 3.00) /(ELEVATION CHANGE))* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.384 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 4.065 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 5.97 0.98 0.10 32 8.38 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) 21.32 TOTAL AREA(ACRES) = 5.97 PEAK FLOW RATE(CFS) = 21.32 t!t \•ffRlfflfffitiff if if ffflfflfff lfffff if \ifffffif tiff if iffff •f It /!ffff •fff FLOW PROCESS FROM NODE 13.00 TO NODE 104.00 IS CODE . 41 ---------------------------------------------------------------------------- > ».COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< .> ».USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< REPRESENTATIVE SLOPE = 0.0200 FLOW LENGTH(FEET) . 25.00 MANNING'S N . 0.013 ASSUME FULL- FLOWING PIPELINE PIPE -FLOW VELOCITY(FEET /SEC.) - 12.06 GIVEN PIPE DIAMETER(INCH) - 18.00 NUMBER OF PIPES - 1 PIPE- FLOW(CFS) - 21.32 PIPE TRAVEL TIME(MIN.) . 0.03 Tc(MIN.) 8.42 LONGEST FLOWPATH FROM NODE 12.00 TO NODE 104.00 - 725.00 FEET. •1}}ff lflfffr } } }ffflf iffifffflfff11ff 1ffffffl rf 1t11fff }f ifff }ff11ff 1f 11f 1f ff FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE . 1 ---------------------------------------------------------------------------- » ».DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE -« >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES <<<<< ................................... . .............. :......................... TOTAL NUMBER OF STREAMS - 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) . 8.42 RAINFALL INTENSITY(INCH /HR) - 4.05 AREA - AVERAGED Fm(INCH /HR) - 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap - 0.10 EFFECTIVE STREAM AREA(ACRES) . 5.97 TOTAL STREAM AREA(ACRES) - 5.97 PEAK FLOW RATE(CFS) AT CONFLUENCE - 21.32 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 15.60 8.21 4.117 0.98( 0.10) 0.10 4.2 10.00 2 21.32 8.42 4.055 0.98( 0.10) 0.10 6.0 12.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. i! PEAL( FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 36.71 8.21 4.117 0.98( 0.10) 0.10 10.0 10.00 2 36.68 8.42 4.055 0.98( 0.10) 0.10 10.2 12.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) . 36.71 Tc(MIN.) - 8.21 EFFECTIVE AREA(ACRES) 10.04 AREA - AVERAGED Pm(INCH /HR) . 0.10 AREA - AVERAGED Fp(INCH /HR) . 0.98 AREA - AVERAGED Ap . 0.10 TOTAL AREA(ACRES) . 10.19 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 104.00 - 750.00 FEET **;:; iffflffffiff iff iffif ifff!! lffffffffffffff••f \ffff!! tiffllffff•t1f if tlf• PROCESS FROM NODE 104.00 TO NODE 105.00 IS CODE = 41 ---------------------------------------------------------------------------- »» .COMPUTE PIPE -PLOW TRAVEL TIME THRU SUBAREA « «< »» .USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) « «< .................................................... ..........a.....sa.aaa.. REPRESENTATIVE SLOPE . 0.0200 FLOW LENGTH(FEET) . 150.00 MANNING'S N - 0.013 ASSUME FULL- PLOWING PIPELINE PIPE -FLAW VELOCITY(FEET /SEC.) = 11.69 PIPE FLAW VELOCITY - (TOTAL FLOW) /(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) - 36.71 PIPE TRAVEL TIME(MIN.) - 0.21 Tc(MIN.) - 8.42 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 105.00 = 900.00 FEET. •tftrtf rff : :rffffff }rRiffrlffrif if ff•f if t :fffrlffrffff ifff rf11ff1rf rf :►rlrrr FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE . 11 ---------------------------------------------------------------------------- CONFLUENCE MEMORY BANK # 1 WITH THE MAIN - STREAM MEMORY « «< ............................................. ............................... ** MAIN STREAM CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 36.71 8.42 4.054 0.98( 0.10) 0.10 10.0 10.00 2 36.68 8.63 3.994 0.98( 0.10) 0.10 10.2 12.00 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 105.00 - 900.00 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 59.60 9.11 3.867 0.98( 0.10) 0.10 15.3 6.00 2 61.22 10.26 3.601 0.98( 0.10) 0.10 17.2 8.00 3 60.20 12.03 3.273 0.98( 0.10) 0.10 18.9 4.00 4 58.62 12.76 3.160 0.98( 0.10) 0.10 19.2 1.00 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 105.00 - 2220.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 94.53 8.42 4.054 0.98( 0.10) 0.10 24.2 10.00 2 95.05 8.63 3.994 0.98( 0.10) 0.10 24.7 12.00 3 95.08 9.11 3.867 0.98( 0.10) 0.10 25.5 6.00 4 94.20 10.26 3.601 0.98( 0.10) 0.10 27.4 8.00 5 90.08 12.03 3.273 0.98( 0.10) 0.10 29.1 4.00 6 87.44 12.76 3.160 0.98( 0.10) 0.10 29.4 1.00 TOTAL AREA(ACRES) = 29.38 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) . 95.08 Tc(MIN.) . 9.113 EFFECTIVE AREA(ACRES) 25.53 AREA - AVERAGED Fm(INCH /HR) . 0.10 AREA - AVERAGED Fp(INCH /HR) . 0.98 AREA- AVERAGED Ap . 0.10 TOTAL AREA(ACRES) - 29.38 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 105.00 - 2220.00 FEET. fff tfffffffflffR•rf llf ffffffff iff \f Rf \ffff•1f •ffff lfriffff• \ff iff•ffffff•tff FLOW PROCESS FROM NODE 105.00 TO NODE 106.00 IS CODE = 46 ---------------------------------------------------------------------------- » »> COMPUTE BOX -FLOW TRAVEL TIME THRU SUBAREA«« » ».USING USER - SPECIFIED BOX SIZE (EXISTING ELEMENT) « «< m m m m m m rn REPRESENTATIVE SLOPS 0.0100 FLOW LENGTH(PEET) 50.00 MANNING'S N - 0.013 GIVEN BOX HASEWIDTH(FEET) - 8.00 GIVEN BOX HEIGHT(FEET) . 4.00 PLOWDEPTH IN BOX IS 1.13 FEET BOX -FLOW VELOCITY(FEET /SEC.) - 10.50 BOX- FLOW(CFS) - 95.08 BOX -FLOW TRAVEL TIME(MIN.) - 0.08 TC(MIN.) . 9.19 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 106.00 - 2270.00 FEET. fffffff\f #fffflf\1f \if \fflf if ll ffffff•• \ \ff\ fff ffffff ►fff •ff\f \•ff •f ♦f ffffff FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE a 1 ---------------------------------------------------------------------------- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< ......=..a..=.=..==a ...............a....=.... ..................._......_.._. TOTAL NUMBER OF STREAMS - 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) a 9.19 RAINFALL INTENSITY(INCH /HR) = 3.85 AREA - AVERAGED Fm(INCH /HR) - 0.10 AREA - AVERAGED Fp(INCH /HR) - 0.98 AREA - AVERAGED Ap - 0.10 EFFECTIVE STREAM AREA(ACRES) - 25.53 TOTAL STREAM AREA(ACRES) - 29.38 PEAK FLOW RATE(CFS) AT CONFLUENCE . 95.08 f \ \ffff \\fflf#lfff \ #f!llff fff \\i•lfif ♦f #f #fflf! #!lffffffllf \ff if \f \ ►ffffff \f PLOW PROCESS FROM NODE 14.00 TO NODE 15.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<.<< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< :_:_:___::._.::===. a.:=.:.:..::::.:: ......... ............................... INITIAL SUBAREA FLOW- LENGTH(Pfi ET) = 350.00 ELEVATION DATA: UPSTREAM(FEET) - 62.00 DOWNSTREAM(FEET) = 54.64 Tc - K *((LENGTH ** 3.00)/ (ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) - 6.854 * 25 YEAR RAINFALL INTENSITY(INCH /HR) - 4.587 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 1.35 0.98 0.10 32 6.85 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) - 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap . 0.10 SUBAREA RUNOFF(CFS) - 5.46 TOTAL AREA(ACRES) - 1.35 PEAK FLOW RATE(CFS) - 5.46 ffflffllf•!!lffflf lffi •ff \•f•f1#f #\ffffffffffffflf if !\f \•f lff\lff ifff if fff!\ FLOW PROCESS FROM NODE 15.00 TO NODE 106.00 IS CODE - 41 ---------------------------------------------------------------------------- >>> > COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREPi« «< >>> >USING USER- SPECIFIED PIPESIZE (EXISTING ELEMENT) « «< s =a.= ass= ss. ss. a=== ss. a= a= a==..=.. s= s= s=.= a .. ...........................sa.= REPRESENTATIVE SLOPE = 0.0200 FLOW LENGTH(FEET) 15.00 MANNING'S N - 0.013 ASSUME FULL- FLOWING PIPELINE PIPE -FLOW VEIOCITY(FEET /SEC.) - 6.95 GIVEN PIPE DIAMETER(INCH) - 12.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) - 5.46 PIPE TRAVEL TIME(MIN.) - 0.04 Tc(MIN.) - 6.89 LONGEST FLOWPATH FROM NODE 14.00 TO NODE 106.00 - 365.00 FEET. ♦ffffff\1ff\ffffff lffll \ffffffffffff lfff if fffff •fffftfflfff if lffff \fffffffff FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE - 1 ---------------------------------------------------------------------------- »- DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< » >>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< . a ... =•__________________a ........... _ ..... ....... ... ......... TOTAL NUMBER OF STREAMS - 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) - 6.89 RAINFALL INTENSITY(INCH /HR) . 4.57 AREA - AVERAGED PM(INCH /HR) - 0.10 AREA - AVERAGED Fp(INCH /HR) . 0.98 AREA- AVERAGED Ap - 0.10 EFFECTIVE STREAM AREA(ACRES) - 1.35 TOTAL STREAM AREA(ACRES) - 1.35 PEAK FLOW RATE(CFS) AT CONFLUENCE . 5.46 ** CONFLUENCE DATA ** STREAM 0 Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CPS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 94.53 8.50 4.032 0.98( 0.10) 0.10 24.2 10.00 1 95.05 8.71 3.973 0.98( 0.10) 0.10 24.7 12.00 1 95.08 9.19 3.848 0.98( 0.10) 0.10 25.5 6.00 1 94.20 10.34 3.585 0.98( 0.10) 0.10 27.4 8.00 1 90.08 12.11 3.261 0.98( 0.10) 0.10 29.1 4.00 1 87.44 12.83 3.149 0.98( 0.10) 0.10 29.4 1.00 2 5.46 6.89 4.573 0.98( 0.10) 0.10 1.4 14.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CPS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 92.63 6.89 4.573 0.98( 0.10) 0.10 21.0 14.00 2 99.33 8.50 4.032 0.98( 0.10) 0.10 25.6 10.00 3 99.78 8.71 3.973 0.98( 0.10) 0.10 26.1 12.00 4 99.65 9.19 3.848 0.98( 0.10) 0.10 26.9 6.00 5 98.45 10.34 3.585 0.98( 0.10) 0.10 28.7 8.00 6 93.94 12.11 3.261 0.98( 0.10) 0.10 30.4 4.00 7 91.16 12.83 3.149 0.98( 0.10) 0.10 30.7 1.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) - 99.78 TC(MIN.) . 8.71 EFFECTIVE AREA(ACRES) a 26.07 AREA - AVERAGED Fm(INCH /HR) - 0.10 AREA - AVERAGED Fp(INCH /HR) - 0.98 AREA- AVERAGED Ap . 0.10 TOTAL AREA(ACRES) - 30.73 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 106.00 - 2270.00 FEET. fff lffffffffffff♦ ►fff #fff fff lfff lffflfffffff \ \!if \f 1#f ##ffffff #ffif ffffff ! #f FLOW PROCESS FROM NODE 106.00 TO NODE 108.00 IS CODE - 46 ---------------------------------------------------------------------------- » »> COMPUTE BOX -FLOW TRAVEL TIME THRU SUBAREA <<<<< »> »USING USER - SPECIFIED BOX SIZE (EXISTING ELEMENT) < <<< ............................................. ............................... REPRESENTATIVE SLOPE - 0.0100 FLOW LENGTH (FEET) - 200.00 MANNING'S N - 0.013 ® ® ® m ® ® _.. m m m m m __ GIVEN BOX BASEWIDTH(FEET) = 8.00 GIVEN BOX HEIGHT(FEET) = 4.00 FLOWDEPTH IN BOX IS 1.17 FEET BOX -FLOW VELOCITY(FEET /SEC.) = 10.67 BOX- FLOW(CFS) = 99.78 BOX -FLOW TRAVEL TIME(MIN.) = 0.31 Tc(MIN.) = 9.02 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 108.00 = 2470.00 FEET. itf\iffffff lffffffftff # #f fflfffff ►!fffff •f \ fff } }ff ltlfffffff •ff •f 1ff1•fffff• FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 10 ---------------------------------------------------------------------------- >>>>>MAIN- STREAM MEMORY COPIED ONTO MEMORY BANK M 2 « «< ........................................ __.................................. if fffff \if if if tf l► fff \11!11! ♦#11f 11f \!ffff if ffff if if if11ff1 ff1t1tfffff Rf ffff FLAW PROCESS FROM NODE 16.00 TO NODE 17.00 IS CODE = 21 ---------------------------------------------------------------------------- »- RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« ....... ... . ........................................ _ ..................... ... INITIAL SUBAREA FLAW- LENGTH(FEET) = 650.00 ELEVATION DATA: UPSTREAM(PEET) = 76.89 DOWNSTREAM(FEET) . 66.26 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.232 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.837 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 6.97 0.98 0.10 32 9.23 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CPS) 23.45 TOTAL AREA(ACRES) = 6.97 PEAK FLOW RATE(CFS) = 23.45 1f# #fffff 1ffffflf fff► fffff # #f fff if ffff ► ►•fffff! !fffff fffff! #f #!fffff }fff ffff FLOW PROCESS FROM NODE 17.00 TO NODE 107.00 IS CODE . 41 ---------------------------------------------------------------------------- » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< » » >USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT). «< REPRESENTATIVE SLOPE = 0.0100 FLOW LENGTH(FEET) = 550.00 MANNING'S N = 0.013 DEPTH OF FLAW IN 30.0 INCH PIPE IS 16.5 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 8.47 GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES . 1 PIPE- FLOW(CFS) . 23.45 PIPE TRAVEL TIME(MIN.) = 1.08 Tc(MIN.) = 10.31 LONGEST FLOWPATH FROM NODE 16.00 TO NODE 107.00 . 1200.00 FEET. 1l !fffff \ \f \if fff \f \ff if !!fffff fffff!! fffff!! fffff ►ff •!fffff 1f 1f 1ffff1fff lf• FLOW PROCESS FROM NODE 107.00 TO NODE 107.00 IS CODE 1 ---------------------------------------------------------------------------- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< ._.:_._....: ................................. ............................... TOTAL NUMBER OF STREAMS 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.31 RAINFALL INTENSITY(INCH /HR) = 3.59 AREA - AVERAGED Fm(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 6.97 TOTAL STREAM AREA(ACRES) = 6.97 PEAK FLOW RATE(CFS) AT CONFLUENCE = 23.45 fffifftlf fff\ ♦kf if if fffff!! #ff fffff!!•! ffff#! tffff1f 1f fflfffff ffff\! fffff #ff FLOW PROCESS FROM NODE 18.00 TO NODE 19.00 IS CODE = 21 ---------------------------------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS< c . >>USE TIME-OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ....: ..............•______._._..._...._...... ......_.._..__.........._____._ INITIAL SUBAREA FLOW- LENGTH(FEET) = 500.00 ELEVATION DATA: UPSTREAM(FEET) = 66.87 DOWNSTREAM(FEET) 60.75 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.809 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.946 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 1.81 0.98 0.10 32 8.81 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH / HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) 6.27 TOTAL AREA(ACRES) = 1.81 PEAK FLAW RATE(CFS) = 6.27 ♦ffff lffflfllf if ►1f flit ♦1f# ♦ffff #lf fff► ffff #!! ffff #f #fftlff fffff! tfffffff lf\ FLAW PROCESS FROM NODE 19.00 TO NODE 107.00 IS CODE = 1 ------- ----- -------- ------------------------------------------------------- » >>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE «< < >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< ...............:__..._...._..............___. _............ ................ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.81 RAINFALL INTENSITY(INCH /HR) = 3.95 AREA - AVERAGED Pm(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) . 0.98 AREA- AVERAGED Ap . 0.10 EFFECTIVE STREAM AREA(ACRES) . 1.81 TOTAL STREAM AREA(ACRES) = 1.81 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.27 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 23.45 10.31 3.590 0.98( 0.10) 0.10 7.0 16.00 2 6.27 8.81 3.946 0.98( 0.10) 0.10 1.8 18.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLAW RATE TABLE ** STREAM Q Tc Intensity Pp(Pm) Ap As HEADWATER NUMBER (CPS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 28.34 8.81 3.946 0.98( 0.10) 0.10 7.8 18.00 2 29.14 10.31 3.590 0.98( 0.10) 0.10 8.8 16.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CPS) = 29.14 Tc(MIN.) = 10.31 EFFECTIVE AREA(ACRES) 8.78 AREA - AVERAGED Fm(INCH /HR) . 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 8.78 LONGEST FLOWPATH FROM NODE 16.00 TO NODE 107.00 = 1200.00 FEET. Rtif•fff tf ifftffttfltRttf /fflfff rffiRlfffr ♦ffff lff ff lfffff iff if ♦fff Rfffffffi FLOW PROCESS FROM NODE 107.00 TO NODE 108.00 IS CODE = 41 ---------------------------------------------------------------------------- » .>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< >>>>>USING USER- SPECIFIED PIPESIZE (EXISTING ELEMENT) « «< __________________________________________•__ ______________________ =....a =.v REPRESENTATIVE SLOPE = 0.0100 FLOW LENGTH(FEET) = 350.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 19.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 8.89 GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 29.14 PIPE TRAVEL TIME(MIN.) = 0.66 Tc(MIN.) . 10.97 LONGEST FLOWPATH FROM NODE 16.00 TO NODE 108.00 = 1550.00 FEET. tffltlffffkflfflfflfffflffff lRlfftlfflfflfffiffffftf lff ♦tffiffRllfff lffff tff FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 11 ---------------------------------------------------------------------------- »» > CONFLUENCE MEMORY BANK # 2 WITH THE MAIN - STREAM MEMORY «« < ..... __ ...... __ ------- _ .................................... _ .......... ______ ** MAIN STREAM CONFLUENCE DATA ** PEAK FLAW RATE(CFS) - 128.00 TC(MIN.) = 9.479 EFFECTIVE AREA(ACRES) STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CPS) (MIN.) (INCH /HR) (INCH /HR) TO NODE 108.00 = 2470.00 (ACRES) NODE 1 28.34 9.47 3.779 0.98( 0.10) 0.10 7.8 18.00 2 29.14 10.97 3.459 0.98( 0.10) 0.10 8.8 16.00 LONGEST FLOWPATH FROM NODE 16.00 TO NODE 108.00 = 1550.00 FEET. ** MEMORY BANK # 2 CONFLUENCE DATA ** NUMBER (CPS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 118.14 7.20 4.452 STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CPS) (MIN.) (INCH /HR) (INCH /HR) 18.00 (ACRES) NODE 1 92.63 7.20 4.452 0.98( 0.10) 0.10 21.0 14.00 2 99.33 8.80 3.948 0.98( 0.10) 0.10 25.6 10.00 3 99.78 9.01 3.894 0.98( 0.10) 0.10 26.1 12.00 4 99.65 9.48 3.776 0.98( 0.10) 0.10 26.9 6.00 5 98.45 10.62 3.527 0.98( 0.10) 0.10 28.7 8.00 6 93.94 12.40 3.215 0.98( 0.10) 0.10 30.4 4.00 7 91.16 13.12 3.108 0.98( 0.10) 0.10 30.7 1.00 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 108.00 = 2470.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 118.14 7.20 4.452 0.98( 0.10) 0.10 26.9 14.00 2 126.89 8.80 3.948 0.97( 0.10) 0.10 32.8 10.00 3 127.58 9.01 3.894 0.97( 0.10) 0.10 33.5 12.00 4 128.00 9.47 3.779 0.98( 0.10) 0.10 34.6 18.00 5 128.00 9.48 3.776 0.98( 0.10) 0.10 34.7 6.00 6 127.41 10.62 3.527 0.98( 0.10) 0.10 37.3 8.00 7 126.71 10.97 3.459 0.98( 0.10) 0.10 37.9 16.00 8 120.97 12.40 3.215 0.98( 0.10) 0.10 39.2 4.00 9 117.25 13.12 3.108 0.98( 0.10) 0.10 39.5 1.00 TOTAL AREA(ACRES) = 39.51 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLAW RATE(CFS) - 128.00 TC(MIN.) = 9.479 EFFECTIVE AREA(ACRES) 34.65 AREA - AVERAGED Fm(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 39.51 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 108.00 = 2470.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 39.51 TC(MIN.) 9.48 EFFECTIVE AREA(ACRES) = 34.65 AREA - AVERAGED FM(INCH /HR)= 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 PEAK FLAW RATE(CFS) 128.00 rr PEAK FLAW RATE TABLE *• STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER. NUMBER (CPS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 118.14 7.20 4.452 0.98( 0.10) 0.10 26.9 14.00 2 126.89 8.80 3.948 0.97( 0.10) 0.10 32.8 10.00 3 127.58 9.01 3.894 0.97( 0.10) 0.10 33.5 12.00 4 128.00 9.47 3.779 0.98( 0.10) 0.10 34.6 18.00 5 128.00 9.48 3.776 0.98( 0.10) 0.10 34.7 6.00 6 127.41 10.62 3.527 0.98( 0.10) 0.10 37.3 8.00 7 126.71 10.97 3.459 0.98( 0.10) 0.10 37.9 16.00 8 120.97 12.40 3.215 0.98( 0.10) 0.10 39.2 4.00 9 117.25 13.12 3.108 0.98( 0.10) 0.10 39.5 1.00 END OF RATIONAL METHOD ANALYSIS lfffff #fltr ♦tffffffl+ +RflffffRf Rf+fffffffffffff 11f 1ffff ♦ff#rffffff +f if +lfff# RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1510 Analysis prepared by: DEVELOPMENT RESOURCE CONSULTANTS, INC. 8175 E. KAISER BLVD. ANAHEIM HILLS, CA 92808 P:(714)685 -6860 F:(714)685 -6801 Rrw + ++f ►rtt + + ++ + ++ + + + + + + ++ DESCRIPTION OF STUDY Regency Commercial Property Proposed Conditions Analysis 100 Year Analysis + : +1fff +#Rff +f rrRff+ lf# fRfR+++ + + + #f + ++ ++ : : +#f +ffff + +f ♦ +!lffff if #rlrr#rf : ++ FILE NAME: 01900P1H.DAT TIME /DATE OF STUDY: 13:05 06/30/2002 _•_• ............................................ ..... ............. ...... : :_: USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ..........._: .....................:_._:__:_.. ........_.__.._._......_.._.... -- *TIME -OF- CONCENTRATION MODEL*-- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE . 0.95 *USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.070 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) • 1.580 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT . 100.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.5800 SLOPE OF INTENSITY DURATION CURVE . 0.6000 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* *USER - DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET- CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT - /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth)* (Velocity) Constraint . 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER- SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED R+fff lfffffRf*fffff rflf #r1+Rffff ++fff llt ifflf tffif ff lffflfffffffffffff + + ♦Rff FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE . 21 ---------------------------------------------------------------------------- » >> RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< >>USE TIME-OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< __ .......................................................... INITIAL SUBAREA FLOW- LENGTH(FEET) . 600.00 ELEVATION DATA: UPSTREAM(FEET) . 79.30 DOWNSTREAM(FEET) 73.00 Tc - K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)) -0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) . 9.770 * 100 YEAR RAINFALL INTENSITY(INCH /HR) - 4.695 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS To LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 4.10 0.98 0.10 32 9.77 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH / HR) - 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap - 0.10 SUBAREA RUNOFF(CFS) 16.96 TOTAL AREA(ACRES) - 4.10 PEAK FLOW RATE(CFS) = 16.96 Rf ► +fff lflllifffiflf llff +1f 11+ffRf llfff#f lffflffRf lffff Rf if tftlklff ♦fffff ♦ff FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE . 41 ---------------------------------------------------------------------------- >> » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« « >>>>>USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) « <<< ............................................. ............................... REPRESENTATIVE SLOPE . 0.0100 FLOW LENGTH(FEET) - 50.00 MANNING'S N = 0.013 ASSUME FULL- FLOWING PIPELINE PIPE -FLOW VELOCITY(FEET /SEC.) - 9.60 PIPE FLOW VELOCITY = (TOTAL FLOW) /(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) - 18.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) - 16.96 PIPE TRAVEL TIME(MIN.) - 0.09 Tc(MIN.) . 9.86 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 650.00 FEET. !fr• :f rftr +rrf +f #R +r +►+f rrrflfrf!lrff+ff + + : +rff RRf lffRfffrrf r + +rR :fffltlrk+t FLOW PROCESS FROM NODE 3.00 TO NODE 100.00 IS CODE - 41 ---------------------------------------------------------------------------- » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA <<<<< » » >USING USER- SPECIFIED PIPESIZE (EXISTING ELEMENT) < <<< ............................................. ............................... REPRESENTATIVE SLOPE = 0.0200 FLOW LENGTH(FEET) . 400.00 MANNING'S N - 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 11.3 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 10.07 GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES - 1 PIPE- FLOW(CFS) - 16.96 PIPE TRAVEL TIME(MIN.) . 0.66 Tc(MIN.) . 10.52 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 100.00 - 1050.00 FEET. ff+ ♦fff# +1fffRfffffff 11111f1r1#flfflffllfr#f!#11f+f lfffff l#rff+ffff /ff lfffff FLOW PROCESS FROM NODE 100.00 TO NODE 100.00 IS CODE 1 ---------------------------------------------------------------------------- .i.>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< TOTAL NUMBER OF STREAMS - 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) . 10.52 RAINFALL INTENSITY(INCH /HR) . 4.49 AREA - AVERAGED Fm(INCH /HR) . 0.10 AREA - AVERAGED Fp(INCH / HR) - 0.98 AREA - AVERAGED Ap . 0.10 r r m s EFFECTIVE STREAM AREA(ACRES) = 4.10 TOTAL STREAM AREA(ACRES) = 4.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 16.96 rfff llf ffffff tffif lfff #lfffliffff ♦ff 1!► ffffff •f ••f lff ffff if iff •f tff ►fflff •ff FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 21 ---------------------------------------------------------------------------- » > >RATIONAL METHOD INITIAL SUBAREA ANALYSIS..... USE TIME-OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« ____======________:_:__::::::__:___ ____ °___________ °____ °_ =______• INITIAL SUBAREA FLOW - LENGTH (FEET) 750.00 ELEVATION DATA: UPSTREAM(FEET) 79.30 DOWNSTREAM(FEET) = 67.00 Tc = K *[(LENGTH ** 3.00)/ (ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 9.771 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.695 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 5.99 0.98 0.10 32 9.77 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 24.78 TOTAL AREA(ACRES) = 5.99 PEAK FLOW RATE(CFS) = 24.78 ffffff rffrlf♦f rffllrif lffrrf rrfffrrrrf• rrrlrf rff♦if fff#r►rf rf rlrfff rff rffffr FLOW PROCESS FROM NODE 5.00 TO NODE 100.00 IS CODE = 41 ---------------------------------------------------------------------------- - -COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA< «< >> » USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< :______________:__=°____________:_____•__ _____•__________•________ =_ °___ REPRESENTATIVE SLOPE = 0.0200 FLAW LENGTH(FEET) = 50.00 MANNING'S N 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 13.9 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 11.14 GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 24.76 PIPE TRAVEL TIME(MIN.) = 0.07 Tc(MIN.) = 9.85 LONGEST FLOWPATH FROM NODE 4.00 TO NODE 100.00 = 800.00 FEET. flrffffffff lff lffffirtfrirffrlf lffffffifffflf ffff lffff•ffftlff!•rffff lffffrf FLOW PROCESS FROM NODE 100.00 TO NODE 100.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <c< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES «cc< ______________:____•_________________:__ _________________ °_____ °_ ° °__ °_ TOTAL NUMBER OF STREAMS 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) : 9.85 RAINFALL INTENSITY(INCH /HR) = 4.67 AREA - AVERAGED Fm(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 5.99 TOTAL STREAM AREA(ACRES) = 5.99 PEAK FLOW RATE(CFS) AT CONFLUENCE = 24.78 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CPS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 16.96 10.52 4.491 0.98( 0.10) 0.10 4.1 1.00 2 24.78 9.85 4.673 0.98( 0.10) 0.10 6.0 4.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Pp(Pm) Ap As HEADWATER NUMBER (CPS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 41.32 9.85 4.673 0.98( 0.10) 0.10 9.8 4.00 2 40.76 10.52 4.491 0.98( 0.10) 0.10 10.1 1.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 41.32 Tc(MIN.) - 9.85 EFFECTIVE AREA(ACRES) = 9.83 AREA - AVERAGED Fm(INCH /HR) = 0.10 AREA- AVERAGED FP(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 10.09 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 100.00 = 1050.00 FEET. #1lf rf rrfffrf rffr ►fffrf lfffrffrrf ►rf rffffirf riff lfff!!lrff iffflf rf r• #ffffff♦ FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 41 ---------------------------------------------------------------------------- » >> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA <<c > »>USING USER- SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ______ = = = == ass = === =____ = = = == ass=====_________ _______________________________ REPRESENTATIVE SLOPE = 0.0200 FLAW LENGTH(FEET) = 150.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 19.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 12.57 GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 41.32 PIPE TRAVEL TIME(MIN.) = 0.20 Tc(MIN.) = 10.04 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 101.00 = 1200.00 FEET. ♦! ►fffffffflff#ffffl!•ff tfffffffflff ffffff ►flf if tf#ifffiffllffffff #tiffrrfff FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 46 ---------------------------------------------------------------------------- » »> COMPUTE BOX -FLOW TRAVEL TIME THRU SUBAREA « «< »» >USING USER - SPECIFIED BOX SIZE (EXISTING ELEMENT) « «< _____________________________________________ _______________________________ REPRESENTATIVE SLOPE = 0.0100 FLOW LENGTH(FEET) = 120.00 MANNING'S N = 0.013 GIVEN BOX BASEWIDTH(FEET) = 8.00 GIVEN BOX HEIGHT(FEET) = 4.00 FLOWDEPTH IN BOX IS 0.66 FEET BOX -FLOW VELOCITY(FEET /SEC.) = 7.81 BOX- FLOW(CFS) = 41.32 BOX -FLOW TRAVEL TIME(MIN.) = 0.26 Tc(MIN.) = 10.30 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 102.00 = 1320.00 FEET. ff► 1f/ fffflffffflfffflfff ♦r #f•f1lf ►f ►f 1tr11f 1tf ifflf lfffffff if fffff ►f 1f 11ttf FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< ______•_____________••__•_•_•_____••___ ___• =___ °_ ° °_ °_________________ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.30 RAINFALL INTENSITY(INCH /HR) = 4.55 AREA - AVERAGED Fm(INCH /HR) = 0.10 s m m m m m m m m m m m m m m m AREA - AVERAGED Fp(INCH /HR) = 0.98 ** CONFLUENCE DATA ** AREA- AVERAGED Ap = 0.10 STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER EFFECTIVE STREAM AREA(ACRES) = 9.83 NUMBER (CPS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE TOTAL STREAM AREA(ACRES) = 10.09 1 41.32 10.30 4.549 0.98( 0.10) 0.10 9.8 4.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 41.32 1 40.76 10.97 4.380 0.98( 0.10) 0.10 10.1 1.00 2 15.98 7.36 5.567 0.98( 0.10) 0.10 3.2 6.00 1111 1111 iffffflffif•fff llf #ff ♦ #ff if ffffffffffff!\f \11fr11f 1f11ffflf!\ \1111 rf FLOW PROCESS FROM NODE 6.00 TO NODE 7.00 IS CODE 21 ------------------------ >>>.>RATIONAL METHOD INITIAL SUBAREA ANALYSIS «« >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< S INITIAL = SUBAREA a FLOWsLENGTH(FEET) __ = 450600 = = = = =_______ : :______.... :_____ ELEVATION DATA: UPSTREAM(FEET) = 76.87 DOWNSTREAM(FEET) = 65.67 Tc = K *((LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) . 7.328 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.579 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH /HR) COMMERCIAL A 3.24 0.98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) 15.98 TOTAL AREA(ACRES) = 3.24 PEAK FLOW RATE(CFS) RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 52.24 7.36 5.567 0.98( 0.10) 0.10 10.3 6.00 2 54.33 10.30 4.549 0.98( 0.10) 0.10 13.1 4.00 3 53.28 10.97 4.380 0.98( 0.10) 0.10 13.3 1.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 54.33 Tc(MIN.) = 10.30 Ap SCS Tc EFFECTIVE AREA(ACRES) = 13.07 AREA - AVERAGED Fm(INCH /HR) = 0.10 (DECIMAL) CN (MIN.) AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 0.10 32 7.33 TOTAL AREA(ACRES) . 13.33 98 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 102.00 = 1320.00 FEET. 15.98 ff 1f 1111 111 1f ffffflfffff l/flffflf if1f11fff #ftf 1111111 1111111 11111 if \11111 \1f FLOW PROCESS FROM NODE 7.00 TO NODE 102.00 IS CODE = 41 ---------------------------------------------------------------------------- » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA - << » »,USING USER - SPECIFIED PIPBSIZE (EXISTING ELEMENT) « «< = REPRESENTATIVE SLOPS = = =0 ............................................ FLOW LENGTH(FEET) 15.00 MANNING'S N = 0.013 ASSUME FULL- FLOWING PIPELINE PIPE -FLOW VELOCITY(FEET /SEC.) = 9.05 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 15.98 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 7.36 LONGEST FLOWPATH FROM NODE 6.00 TO NODE 102.00 = 465.00 FEET. \lfffll kff \11rf•ffifllfff#11ff1rfflff if #f•f•f irfffff f 1f 1f111ffff•1ff #1111 if! FLAW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 1 ---------------------------------------------------------------------------- » »> DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE << « »».AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< __•_• ....................................-. ..._.... =........___........... TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCSNTRATION(MIN.) = 7.36 RAINFALL INTENSITY(INCH /HR) = 5.57 AREA - AVERAGED FM(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 3.24 TOTAL STREAM AREA(ACRES) = 3.24 PEAK FLAW RATE(CFS) AT CONFLUENCE = 15.98 afff \ :f rfflf! \ :ffff►ff►f elf rf r•►f of rf #rr►ff lr♦ \rf if 1111 if •ffrfff # # #f riff ## #r FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE . 46 ---------------------------------------------------------------------------- >>>>> COMPUTE BOX -FLOW TRAVEL TIME THRU SUBAREA « «< >>>>.USING USER - SPECIFIED BOX SIZE (EXISTING ELEMENT) < <<< ........... _................................................................ REPRESENTATIVE SLOPE = 0.0100 FLOW LENGTH(FEET) = 400.00 MANNING'S N = 0.013 GIVEN BOX BASEWIDTH(FEET) = 8.00 GIVEN BOX HEIGHT(PEET) = 4.00 FLONDEPTH IN BOX IS 0.79 FEET BOX -FLOW VELOCITY(FBET /SEC.) = 8.62 BOX- FLOW(CFS) = 54.33 BOX -FLOW TRAVEL TIME(MIN.) = 0.77 Tc(MIN.) = 11.07 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 103.00 = 1720.00 FEET. 111 #11111 1ff#fffff/f 1111!11 \f lff 1111 lff #ff ■f1f# #f lf1kf11ff #f 1111 if •# #1111111 FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE . 1 ---------------------------------------------------------------------------- >> ».DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< ............................................. ............................... TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 11.07 RAINFALL INTENSITY(INCH /HR) . 4.36 AREA - AVERAGED Fm(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 13.07 TOTAL STREAM AREA(ACRES) = 13.33 PEAK FLAW RATE(CFS) AT CONFLUENCE = 54.33 f!lfffff rf 111111 #f lfffll tfffffffll111ffrff if 1111 flffflfflf #fffffff if ♦l1f 1111 FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 21 ---------------------------------------------------------------------------- » ».RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREAc< _________: ------ ____ ....................... __ ....... _....................... INITIAL SUBAREA FLOW- LENGTH(FEET) = 550.00 1f 1f 1f ELEVATION DATA: UPSTREAM(FEET) = 77.50 DOWNSTREAM(FEET) 71.44 Tc = K *((LENGTH ** 3.00) /(ELEVATION CHANGE))* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) . 9.345 Q Tc * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.822 Fp(Fm) SUBAREA Tc AND LOSS RATE DATA(AMC II): Ae DEVELOPMENT TYPE/ SCS SOIL AREA Pp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 5.86 0.98 0.10 32 9.35 SUBAREA AVERAGE PERVIOUS LASS RATE, Fp(INCH /HR) = 0.98 1 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 5.245 SUBAREA RUNOFF(CFS) 24.91 0.10 TOTAL AREA(ACRES) = 5.86 PEAK FLAW RATE(CFS) = 24.91 6.00 fffaRf•\1fflf Rffffffif \fff lf• f ifflif iff rff•ff Rff \ffffffffffRf ♦f lffflffaf lfff FLOW PROCESS FROM NODE 9.00 TO NODE 103.00 IS CODE = 41 ---------------------------------------------------------------------------- »»> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< > > >USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) « «< :__:_•_:_•__...______ E:.: .................... ............................... REPRESENTATIVE SLOPE = 0.0200 FLOW LENGTH(FEET) = 15.00 MANNING'S N = 0.013 ASSUME FULL - FLOWING PIPELINE PIPE -FLOW VELOCITY(FEET /SEC.) = 14.10 GIVEN PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES . 1 PIPE- FLOW(CFS) = 24.91 PIPE TRAVEL TIME(MIN.) . 0.02 Tc(MIN.) = 9.36 LONGEST FLOWPATH FROM NODE 8.00 TO NODE 103.00 . 565.00 FEET. fRllffff if \ffflRffff \fffllfffff ►fflfff affffRl \fff lRf flat if ! ♦ff lfff\ \!1f •ffff FLOW PROCESS FROM NODE 103.00 TO NODE 103'.00 IS CODE = 1 ---------------------------------------------------------------------------- > > >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< -AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< ............................................. ........................... TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 9.36 RAINFALL INTENSITY(INCH /HR) = 4.82 AREA - AVERAGED Fm(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) . 0.98 AREA- AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 5.86 TOTAL STREAM AREA(ACRES) = 5.86 PEAK FLOW RATE(CFS) AT CONFLUENCE = 24.91 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap NUMBER (CPS) (MIN.) (INCH /HR) (INCH /HR) 1 75.82 8.12 5.245 0.98( 0.10) 0.10 2 78.04 9.36 4.816 0.98( 0.10) 0.10 3 76.85 11.04 4.362 0.98( 0.10) 0.10 4 75.00 11.71 4.212 0.98( 0.10) 0.10 As HEADWATER (ACRES) NODE 15.3 6.00 17.3 8.00 18.9 4.00 19.2 1.00 ** CONFLUENCE DATA ff 1f 1f 1f FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21 ---------------------------------------------------------------------------- »» >RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 52.24 8.12 5.245 0.98( 0.10) 0.10 10.3 6.00 1 54.33 11.04 4.362 0.98( 0.10) 0.10 13.1 4.00 1 53.28 11.71 4.212 0.98( 0.10) 0.10 13.3 1.00 2 24.91 9.36 4.816 0.98( 0.10) 0.10 5.9 8.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 78.04 Tc(MIN.) = 9.36 EFFECTIVE AREA(ACRES) = 17.31 AREA - AVERAGED Fm(INCH /HR) = 0.10 AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) . 19.19 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 103.00 = 1720.00 FEET. f ♦fffff lffl ffrlffffffffffffffffffrffllff rfffff if Rfffflfff \f iff \ffff \f \f #f ►fa FLOW PROCESS FROM NODE 103.00 TO NODE 105.00 IS CODE . 46 ---------------------------------------------------------------------------- >. »> COMPUTE BOX -FLOW TRAVEL TIME THRU SUBAREA « «< >>>>>USING USER - SPECIFIED BOX SIZE (EXISTING ELEMENT) < <<< ._: ...........................•_•__.....__. _..._....._..........._.- ...... REPRESENTATIVE SLOPE = 0.0100 FLOW LENGTH(FEET) . 500.00 MANNING'S N . 0.013 GIVEN BOX BASEWIDTH(FEET) = 8.00 GIVEN BOX HEIGHT(FEET) = 4.00 FLOWDEPTH IN BOX IS 0.99 FEET BOX -FLOW VELOCITY(FEET /SEC.) = 9.81 BOX- FLOW(CFS) = 78.04 BOX -FLOW TRAVEL TIME(MIN.) = 0.85 Tc(MIN.) = 10.21 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 105.00 = 2220.00 FEET. 1f 1f * #1fff 1f lRf if if if #frrff iffrf ifffflafffffaff if /lf iff•kaff if rfffffrllrffff FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 10 ---------------------------------------------------------------------------- >>>>>MAIN- STREAM MEMORY COPIED ONTO MEMORY BANK k 1 « «< ............................................. ............................... f\ flfff \lfffffrfflffffffffff111ff1f 1fffffflf if ♦rfifffllff lffffff if 1f 1f 1f 1f 1f FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21 ---------------------------------------------------------------------------- »» >RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< >>USE TIME- OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< _::_:___._::_:__.:____..:_____________ :_..___..._____...__..._._..... INITIAL SUBAREA FLOW- LENGTH(FEET) 600.00 ELEVATION DATA: UPSTREAM(FEET) = 77.95 DOWNSTREAM(FEET) . 60.00 Tc . K *((LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) . 7.924 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.323 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Pp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 4.22 0.98 0.10 32 7.92 SUBAREA AVERAGE PERVIOUS LASS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 19.85 TOTAL AREA(ACRES) 4.22 PEAK FLAW RATE(CFS) = 19.85 ♦r♦•ffrrfffr••ff rf: f urf if rfffffrfffraffrr♦• ffff f :ff ►ff•♦•f lrr♦••rrffffff lff FLOW PROCESS FROM NODE 11.00 TO NODE 104.00 IS CODE = 41 ---------------------------------------------- ------- -------- ------ --- ------ » »> COMPUTE PIPE -FLAW TRAVEL TIME THRU SUBAREA « «< »» >USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) «« < REPRESEWTATIVE SLOPE 0.0200 FLAW LENGTH(FEET) = 150.00 MANNING'S N = 0.013 ASSUME FULL- FLOWING PIPELINE PIPE -FLAW VELOCITY (FEET /SEC.) = 11.23 PIPE FLAW'VEL.00ITY . (TOTAL FLOW) /(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE -FLAW (CFS) = 19.85 PIPE TRAVEL TIME(MIN.) = 0.22 Tc(MIN.) . 8.15 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 104.00 = 750.00 FEET. ftf rfitffrfflfff 1f 1f 1frtfffrf kfffttfrfffrrflf fffiffff if /f tffffff rf tffflrf iff FLAW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 8.15 RAINFALL INTENSITY(INCH /HR) = 5.24 AREA - AVERAGED FM(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) . 4.22 TOTAL STREAM AREA(ACRES) = 4.22 PEAK FLOW RATE(CFS) AT CONFLUENCE . 19.85 f lffffffffflffffffrfffiffffff fff if ifftif tfffffffff if •fff }!It }} }trt }ff lffiff► FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE 21 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< >.USE TIME-OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ° ....................................................................... INITIAL SUBAREA FLOW- LENGTH(FEET) = 700.00 ELEVATION DATA: UPSTREAM(FEET) = 77.50 DOWNSTREAM(PEET) = 56.00 Tc = K *((LENGTH ** 3.00)/ (ELEVATION CHANGE))-0.20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 8.384 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.146 SUBAREA Tc AND LASS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA FP Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 5.97 0.98 0.10 32 8.38 SUBAREA AVERAGE PERVIOUS LASS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 27.13 TOTAL AREA(ACRES) 5.97 PEAK FLAW RATE(CFS) = 27.13 fitf frffffffrfffrf /ftff lff ♦lfffrf ♦rf rfffffff•1l ftrtlffrffffff•lfftrffffffrfi [+LOW PROCESS FROM NODE 13.00 TO NODE 104.00 IS CODE = 41 ---------------------------- 7 ----------------------------------------------- »»> COMPUTE PIPE -FLAW TRAVEL TIME THRU SUBAREA « «< >>>>>USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) «« < ............................................. ............................... REPRESENTATIVE SLOPE = 0.0200 FLOW LENGTH(FEET) . 25.00 MANNING'S N = 0.013 ASSUME FULL- FLAWING PIPELINE PIPE -FLOW VELOCITY(FEET /SEC.) = 15.35 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 27.13 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 8.41 LONGEST FLOWPATH FROM NODE 12.00 TO NODE 104.00 = 725.00 FEET. f111f 111f ff• f lff if rfitf•ff tf lrlffrltrlf rfflff•ff•lf ffff if lrff•fff ► ►ffr•trf rf FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 1 ---------------------------------------------------------------------------- >. - DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< »» >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.41 RAINFALL INTENSITY(INCH /HR) = 5.14 AREA - AVERAGED PM(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 5.97 TOTAL STREAM AREA(ACRES) = 5.97 PEAK FLOW RATE(CFS) AT CONFLUENCE = 27.13 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CPS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 19.85 8.15 5.236 0.98( 0.10) 0.10 4.2 10.00 2 27.13 8.41 5.136 0.98( 0.10) 0.10 6.0 12.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CPS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 46.64 8.15 5.236 0.98( 0.10) 0.10 10.0 10.00 2 46.59 8.41 5.136 0.98( 0.10) 0.10 10.2 12.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 46.64 Tc(MIN.) = 8.15 EFFECTIVE AREA(ACRES) = 10.00 AREA - AVERAGED Fm(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap . 0.10 TOTAL AREA(ACRES) = 10.19 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 104.00 = 750.00 FEET. ♦ffrf rffrffff rffrf :riff •fftf tirffrt :r•rff•f rrf rfrfr►f ♦r♦f•♦f tfftrf rrfffrtrt• FLOW PROCESS FROM NODE 104.00 TO NODE 105.00 IS CODE = 41 ---------------------------------------------------------------------------- » » >COMPUTPE PIPE -FLAW TRAVEL TIME THRU SUBAREA ««< »» >USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) < <<< ___ 6 ............................. _ ........................ _................. REPRESENTATIVE SLOPE = 0.0200 FLOW LENGTH(FEET) = 150.00 MANNING'S N = 0.013 ASSUME FULL- FLOWING PIPELINE PIPE -FLAW VELOCITY(FEET /SEC.) = 14.85 PIPE FLOW VELOCITY . (TOTAL FLAW) /(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES . 1 PIPE -FL.OW (CFS) = 46.64 PIPE TRAVEL TIME(MIN.) = 0.17 Tc(MIN.) = 8.32 ® m e m m m m r_ "mm mm m mmm ® ® m LONGEST FLOWPATH FROM NODE 10.00 TO NODE 105.00 . 900.00 FEET. fff of if #1f # #ffflff •fffffff# tiff# # ♦ff if tff if fffffff ffff /f \f 1f \fff tf tff •f lfffi PLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE . 11 ---------------------------------------------------------------------------- »»> CONFLUENCE MEMORY BANK # 1 WITH THE MAIN - STREAM MEMORY « «< •__• ...............:___.._.._......._........ ......................_...... ** MAIN STREAM CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CPS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 46.64 8.32 5.172 0.98( 0.10) 0.10 10.0 10.00 2 46.59 8.58 5.075 0.98( 0.10) 0.10 10.2 12.00 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 105.00 = 900.00 FEET ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CPS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 75.82 8.97 4.943 0.98( 0.10) 0.10 15.3 6.00 2 78.04 10.18 4.580 0.98( 0.10) 0.10 17.3 8.00 3 76.85 11.85 4.180 0.98( 0.10) 0.10 18.9 4.00 4 75.00 12.51 4.048 0.98( 0.10) 0.10 19.2 1.00 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 105.00 = 2220.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Pm) Ap As HEADWATER NUMBER (CPS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 120.28 8.32 5.172 0.98( 0.10) 0.10 24.2 10.00 2 121.13 8.58 5.075 0.98( 0.10) 0.10 24.9 12.00 3 121.17 8.97 4.943 0.98( 0.10) 0.10 25.5 6.00 4 120.00 10.18 4.580 0.97( 0.10) 0.10 27.5 8.00 5 115.06 11.85 4.180 0.98( 0.10) 0.10 29.1 4.00 6 111.97 12.51 4.048 0.98( 0.10) 0.10 29.4 1.00 TOTAL AREA(ACRES) = 29.38 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 121.17 Tc(MIN.) = 8.966 EFFECTIVE AREA(ACRES) 25.53 AREA - AVERAGED Pm(INCH /HR) . 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap . 0.10 TOTAL AREA(ACRES) = 29.38 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 105.00 . 2220.00 FEET. ff iffflfffffffffffflf lfffff ►ff kf ttfff /fff•lf tfff if lfff if if tRt#f of lrff lfwtfff PLOW PROCESS FROM NODE 105.00 TO NODE 106.00 IS CODE . 46 ---------------------------------------------------------------------------- »»> COMPUTE BOX -FLOW TRAVEL TIME THRU SUBAREA <<<<< »» >USING USER - SPECIFIED BOX SIZE (EXISTING ELEMENT) «c« :_:.::..__•__...:..: ......................... ............................... REPRESENTATIVE SIAPE = 0.0100 FLOW LENGTH(FEET) . 50.00 MANNING'S N . 0.013 GIVEN BOX BASEWIDTH(FEET) = 8.00 GIVEN BOX HEIGHT(FEET) . 4.00 FLOWDEPTH IN BOX IS 1.33 FEET BOX -FLOW VELOCITY(FEET /SEC.) = 11.38 BOX- FLOW(CFS) = 121.17 BOX -FLOW TRAVEL TIME(MIN.) = 0.07 Tc(MIN.) . 9.04 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 106.00 = 2270.00 FEET. /ffflffl4fff11f 1f fftlfffff if fill! ffffflfl llffflftffffff lff •f •iffflf fffff if 4f FLAW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE 1 --------------------------------------------- ------------- --- -- -- ------ -- - -- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< TOTAL NUMBER OF STREAMS 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) . 9.04 RAINFALL INTENSITY(INCH /HR) . 4.92 AREA - AVERAGED Fm(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) . 0.98 AREA- AVERAGED Ap . 0.10 EFFECTIVE STREAM AREA(ACRES) = 25.53 TOTAL STREAM AREA(ACRES) . 29.38 PEAK FLAW RATE(CFS) AT CONFLUENCE = 121.17 faalrff ff# a►►•• 1flffffi# :ra #►r :fffrfft••\llfff :iffflrtf if wf \!ff #rwwwf rf ltlff FLAW PROCESS FROM NODE 14.00 TO NODE 15.00 IS CODE 21 ---------------------------------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<< USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< .............................. INITIAL SUBAREA PLOW- LENGTH(PfifiT) 350.00 ELEVATION DATA: UPSTREAM(FEET) = 62.00 DOWNSTREAM(FEET) 54.64 Tc . K *[(LENGTH ** 3.00)/(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) . 6.854 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.807 SUBAREA Tc AND LASS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 1.35 0.98 0.10 32 6.85 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) . 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) . 6.94 TOTAL AREA(ACRES) . 1.35 PEAK FLAW RATE(CFS) . 6.94 ff fff# f4Rrf /flftf#ffaf /fflff #lfffffftaf lfffr \f4t #fff lffff#wf tfffff tfffff tiff PLOW PROCESS FROM NODE 15.00 TO NODE 106.00 IS CODE . 41 ---------------------------------------------------------------------------- >> »> COMPUTE PIPE -FLAW TRAVEL TIME THRU SUBAREA« «c »» >USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT)c «<< ............................................. ............................... REPRESENTATIVE SLOPE . 0.0200 FLOW LENGTH(FEET) . 15.00 MANNING'S N . 0.013 ASSUME FULL - FLAWING PIPELINE PIPE -FLAW VEIOCITY(FEET /SEC.) = 8.83 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE- PL.OW(CFS) = 6.94 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 6.88 LONGEST FLOWPATH FROM NODE 14.00 TO NODE 106.00 365.00 FEET. fff lfff94rff•llfff1ff41lfft #f RRfffifafatf ifffff •iff\ffffff ■!lf lffttRff lff •f♦ FLAW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE . 1 ---------------------------------------------------------------------------- » .>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< » >>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES << < ............................................. ................. :............. TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) . 6.88 RAINFALL INTENSITY(INCH /HR) . 5.79 ® O l AREA - AVERAGED Fm(INCH /HR) . 0.10 AREA - AVERAGED Fp(INCH /HR) . 0.98 AREA- AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 1.35 TOTAL STREAM AREA(ACRES) = 1.35 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.94 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Pp(Fm) Ap As HEADWATER NUMBER (CPS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 120.28 8.39 5.145 0.98( 0.10) 0.10 24.2 10.00 1 121.13 8.65 5.050 0.98( 0.10) 0.10 24.9 12.00 1 121.17 9.04 4.920 0.98( 0.10) 0.10 25.5 6.00 1 120.00 10.25 4.562 0.97( 0.10) 0.10 27.5 8.00 1 115.06 11.92 4.166 0.98( 0.10) 0.10 29.1 4.00 1 111.97 12.58 4.034 0.98( 0.10) 0.10 29.4 1.00 2 6.94 6.88 5.793 0.98( 0.10) 0.10 1.4 14.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 118.31 6.88 5.793 0.98( 0.10) 0.10 21.2 14.00 2 126.42 8.39 5.145 0.98( 0.10) 0.10 25.6 10.00 3 127.16 8.65 5.050 0.98( 0.10) 0.10 26.2 12.00 4 127.05 9.04 4.920 0.98( 0.10) 0.10 26.9 6.00 5 125.44 10.25 4.562 0.97( 0.10) 0.10 28.9 8.00 6 120.02 11.92 4.166 0.98( 0.10) 0.10 30.5 4.00 7 116.77 12.58 4.034 0.98( 0.10) 0.10 30.7 1.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 127.16 Tc(MIN.) = 8.65 EFFECTIVE AREA(ACRES) 26.22 AREA - AVERAGED Fm(INCH /HR) . 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap . 0.10 TOTAL AREA(ACRES) = 30.73 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 106.00 . 2270.00 FEET. f ifff if lffff111*11f if1fffifffi\f111fffffltf ffff! ffff •lffffitf lfffffltffif fff FLOW PROCESS FROM NODE 106.00 TO NODE 108.00 IS CODE = 46 ---------------------------------------------------------------------------- » ».COMPUTE BOX -FLOW TRAVEL TIME THRU SUBAREA<cccc »»> USING USER - SPECIFIED BOX SIZE (EXISTING ELEMENT) « «< ............................................. ............................... REPRESENTATIVE SLOPE . 0.0100 FLAW LENGTH(FEET) = 200.00 MANNING'S N . 0.013 GIVEN BOX BASEWIDTH(FEET) = 8.00 GIVEN BOX HEIGHT(FEET) = 4.00 FLOWDEPTH IN BOX IS 1.37 FEET BOX -FLOW VELOCITY(FEET /SEC.) = 11.60 BOX- FLOW(CFS) = 127.16 BOX -FLOW TRAVEL TIME(MIN.) = 0.29 Tc(MIN.) . 8.94 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 108.00 = 2470.00 FEET. •lffftlfffffffffl ffff•! ffffffffffflfflfflffffflllfffff ffff! \•f 1f if tff ffffllf FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE . 10 ---------------------------------------------------------------------------- » » >MAIN- STREAM ME240RY COPIED ONTO MEMORY BANK # 2 ««< .................................... . ............... - ................... ... fff ifffl!•f if if ffff•ff•f\fflfffffffff • fff•1f ffffff! llf ••if 1ff 11f if 11f \f if lff FLAW PROCESS FROM NODE 16.00 TO NODE 17.00 IS CODE = 21 ------------------------------ ---------------------------------------------- » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< _______•_:______....._:.:...:..._: ........... .......................... : :___ INITIAL SUBAREA FLOW- LENGTH(FfifiT) = 650.00 ELEVATION DATA: UPSTREAM(FEET) . 76.89 DOWNSTREAM(FEET) = 66.26 Tc = K *((LENGTH ** 3.00) /(ELEVATION CHANGE))* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) . 9.232 * 100 YEAR RAINFALL INTENSITY(INCH /HR) . 4.857 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 6.97 0.98 0.10 32 9.23 SUBAREA AVERAGE PERVIOUS LASS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap . 0.10 SUBAREA RUNOFF(CFS) . 29.86 TOTAL AREA(ACRES) . 6.97 PEAK FLAW RATE(CFS) = 29.86 fffff#fffff llffff�lffllff #if 111ffffffffff #f if ffff ffff ifff #fff #ffff #11 \ff• #tf FLOW PROCESS FROM NODE 17.00 TO NODE 107.00 IS CODE = 41 ---------------------------------------------------------------------------- >> »> COMPUTE PIPE -FLAW TRAVEL TIME THRU SUBAREA « «< >>>>.USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) « c« ............................................. ............................... REPRESENTATIVE SLOPE . 0.0100 FLAW LENGTH(FEET) . 550.00 MANNING'S N = 0.013 DEPTH OF FLAW IN 30.0 INCH PIPE IS 19.3 INCHES PIPE -FLAW VELOCITY(FEET /SEC.) = 8.93 GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES . 1 PIPE- FLOW(CFS) = 29.86 PIPE TRAVEL TIME(MIN.) . 1.03 Tc(MIN.) = 10.26 LONGEST FLOWPATH FROM NODE 16.00 TO NODE 107.00 1200.00 FEET. ff ifffflff11ff 1f ifff ►ffff•fff1f11flf11f1l1tf 1ff if ifff ffff if ♦•f ifffffffffflff FLOW PROCESS FROM NODE 107.00 TO NODE 107.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< ............................................. ............................... TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) . 10.26 RAINFALL INTENSITY(INCH /HR) . 4.56 AREA - AVERAGED Fm(INCH /HR) . 0.10 AREA - AVERAGED Fp(INCH /Hit) = 0.98 AREA - AVERAGED Ap . 0.10 EFFECTIVE STREAM AREA(ACRES) . 6.97 TOTAL STREAM AREA(ACRES) = 6.97 PEAK FLOW RATE(CFS) AT CONFLUENCE . 29.86 •ffff! 11f 1f 1ff if if ♦1f if if ffffff! ff ffllf \ ffffff! ♦•ffffff ►f •f •f 1f •fif lff /f ffff FLOW PROCESS FROM NODE 18.00 TO NODE 19.00 IS CODE . 21 ---------------------------------------------------------------------------- >> » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ............................................. ............................... INITIAL SUBAREA FLAW- LENGTH(FEET) = 500.00 ELEVATION DATA. UPSTREAM(FEET) . 66.87 DOWNSTREAM(PEET) - 60.75 Tc . K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) . 8.809 * 100 YEAR RAINFALL INTENSITY(INCH /HR) . 4.996 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 1.81 0.98 0.10 32 8.81 SUBAREA AVERAGE PERVIOUS LASS RATE, Fp(INCH /HR) . 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap . 0.10 SUBAREA RUNOFF(CFS) - 7.98 TOTAL AREA(ACRES) - 1.81 PEAK FLOW RATE(CFS) - 7.98 +++ af# r+++ fff ►fwawf\ \fffr+tf #• :+• + :+ :if•ff if rr ##if #rwr!•\ffr♦ +f +f ►w ♦ffr +tai: FLOW PROCESS FROM NODE 19.00 TO NODE 107.00 IS CODE - 1 ------------------------- > > > >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE- -e < > > >.AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< :.....:........:.::....: .................... ............................... TOTAL NUMBER OF STREAMS - 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) . 8.81 RAINFALL INTENSITY(INCH /HR) . 5.00 AREA - AVERAGED Fm(1NCH /HR) . 0.10 AREA - AVERAGED Fp(INCH /HR) . 0.98 AREA - AVERAGED Ap . 0.10 EFFECTIVE STREAM AREA(ACRES) - 1.81 TOTAL STREAM AREA(ACRES) - 1.81 PEAK FLOW RATE(CFS) AT CONFLUENCE - 7.98 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CPS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 29.86 10.26 4.559 0.98( 0.10) 0.10 7.0 16.00 2 7.98 8.81 4.996 0.98( 0.10) 0.10 1.8 18.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLAW RATE TABLE ** STREAM Q Tc Intensity Pp(Pm) Ap As HEADWATER NUMBER (CPS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 36.12 8.81 4.996 0.98( 0.10) 0.10 7.8 18.00 2 37.12 10.26 4.559 0.98( 0.10) 0.10 8.8 16.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLAW RATE(CFS) - 37.12 Tc(MIN.) - 10.26 EFFECTIVE AREA(ACRES) . 8.78 AREA - AVERAGED Fm(INCH /HR) . 0.10 AREA - AVERAGED Fp(INCH /HR) . 0.98 AREA- AVERAGED Ap - 0.10 TOTAL AREA(ACRES) . 8.78 LONGEST FLOWPATH FROM NODE 16.00 TO NODE 107.00 . 1200.00 FEET lff of rffffaff Rfwff \ft }+af•Rf of lffflflrffffff }t•iff +af *Riff lfff+wfff \ff if \fff PLOW PROCESS FROM NODE 107.00 TO NODE 108.00 IS CODE . 41 ---------------------------------------------------------------------------- » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA<<« »» .USING USER - SPECIFIED PIPESIZE (EXISTING ELBMENT)< «« ............................................. ............................... REPRESENTATIVE SLOPE . 0.0100 FLOW LENGTH(FEET) . 350.00 MANNING'S N = 0.013 DEPTH OF FLAW IN 30.0 INCH PIPE IS 22.9 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) . 9.25 GIVEN PIPE DIAMETER(INCH) . 30.00 NUMBER OF PIPES . 1 PIPE- FLOW(CFS) . 37.12 PIPE TRAVEL TIME(MIN.) - 0.63 Tc(MIN.) . 10.89 LONGEST FLOWPATH FROM NODE 16.00 TO NODE 108.00 . 1550.00 FEET. / frf+} laff ♦•frlfft#f #rf•+f #aff \fifffRf if ffff +f +f \•fflffi#f ■1t•fffffftRtiff ►t FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE . 11 ---------------------------------------------------------------------------- . >> CONFLUENCE MEMORY BANK # 2 WITH THE MAIN - STREAM MEMORYc< <<< ............................................. ............................... ** MAIN STREAM CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 36.12 9.44 4.792 0.98( 0.10) 0.10 7.8 18.00 2 37.12 10.89 4.399 0.98( 0.10) 0.10 8.8 16.00 LONGEST FLOWPATH FROM NODE 16.00 TO NODE 108.00 . 1550.00 FEET. ** MEMORY BANK # 2 CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CPS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 118.31 7.17 5.652 0.98( 0.10) 0.10 21.2 14.00 2 126.42 8.67 5.045 0.98( 0.10) 0.10 25.6 10.00 3 127.16 8.92 4.957 0.98( 0.10) 0.10 26.2 12.00 4 127.05 9.30 4.834 0.98( 0.10) 0.10 26.9 6.00 5 125.44 10.51 4.492 0.97( 0.10) 0.10 28.9 8.00 6 120.02 12.19 4.111 0.98( 0.10) 0.10 30.5 4.00 7 116.77 12.84 3.985 0.98( 0.10) 0.10 30.7 1.00 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 108.00 . 2470.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap As HEADWATER NUMBER (CPS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 150.77 7.17 5.652 0.98( 0.10) 0.10 27.2 14.00 2 161.37 8.67 5.045 0.98( 0.10) 0.10 32.7 10.00 3 162.50 8.92 4.957 0.98( 0.10) 0.10 33.6 12.00 4 162.97 9.30 4.834 0.98( 0.10) 0.10 34.6 6.00 5 162.99 9.44 4.792 0.98( 0.10) 0.10 34.9 18.00 6 162.30 10.51 4.492 0.97( 0.10) 0.10 37.4 8.00 7 161.35 10.89 4.399 0.97( 0.10) 0.10 38.0 16.00 8 154.66 12.19 4.111 0.98( 0.10) 0.10 39.2 4.00 9 150.32 12.84 3.985 0.98( 0.10) 0.10 39.5 1.00 TOTAL AREA(ACRES) - 39.51 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 162.99 Tc(MIN.) . 9.441 EFFECTIVE AREA(ACRES) . 34.90 AREA - AVERAGED Fm(INCH /HR) • 0.10 AREA - AVERAGED Fp(INCH /HR) . 0.98 AREA - AVERAGED Ap . 0.10 TOTAL AREA(ACRES) . 39.51 LONGEST FLOWPATH FROM NODE 1.00 .......................................... TO NODE 108.00 - 2470.00 FEET. END OF STUDY SUMMARY: ............................... TOTAL AREA(ACRES) - 39.51 TC(MIN.) . 9.44 EFFECTIVE AREA(ACRES) - 34.90 AREA - AVERAGED Fm(INCH /HR). 0.10 AREA - AVERAGED Fp(INCH /HR) • 0.98 AREA- AVERAGED Ap . 0.10 i r_pl m r2l m WIN m PEAK FLOW RATE(CFS) - 162.99 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity FP(FM) Ap As HEADWATER NUMBER (CPS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 150.77 7.17 5.652 0.98( 0.10) 0.10 27.2 14.00 2 161.37 8.67 5.045 0.98( 0.10) 0.10 32.7 10.00 3 162.50 8.92 4.957 0.98( 0.10) 0.10 33.6 12.00 4 162.97 9.30 4.834 0.98( 0.10) 0.10 34.6 6.00 5 162.99 9.44 4.792 0.98( 0.10) 0.10 34.9 18.00 6 162.30 10.51 4.492 0.97( 0.10) 0.10 37.4 8.00 7 161.35 10.89 4.399 0.97( 0.10) 0.10 38.0 16.00 8 154.66 12.19 4.111 0.98( 0.10) 0.10 39.2 4.00 9 150.32 12.84 3.985 0.98( 0.10) 0.10 39.5 1.00 END OF RATIONAL METHOD ANALYSIS HYDROLOGY STUDY FALCON RIDGE TOWN CENTER — FONTANA, CALIFORNIA SECTION 5.0 EXISTING OFF -SITE HYDROLOGY CALCULAT IONS EXISTING OFF-SITE HYDROLOGY MAP i� DRC &- 01 -900 Hydrology Report.doc ■ 0 N M M M N M = = = = = = = = M. = M r ffffffffff : ►wfltf :t♦lfff rf► fffaffrr!!! f# ffeffraawffffaawa #w♦rr ► ► ► ►► ► ► :a #r!f RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (References 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1510 Analysis prepared by: DEVELOPMENT RESOURCE CONSULTANTS, INC. 8175 E. KAISER BLVD. ANAHEIM HILLS, CA 92808 P:(714)685 -6860 F:(714)685 -6801 raaaf : ►w ►lr # # #f :f� ► #♦ #1111 DESCRIPTION OF STUDY fr►arffffffff rf rrff of raf r♦ * Off -Site Property * Existing Conditions Analysis * 2 Year Storm #frflf affff lffffffwlf 1111! #f ►fkflffffffllfwfffff wrff of ►f aaf if #f affff #!1f #f FILE NAME:_ 01900R2.DAT TIME /DATE OF STUDY: 14:52 06/30/2002 ............................................. ............................... USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ............ == ....................................... = ........ .............. -- *TIME -OF- CONCENTRATION MODEL*-- USER SPECIFIED STORM EVENT(YEAR) = 2.00 SPECIFIED MINIMUM PIPE SIZE(INCH) 18.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE - 0.95 *USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) 1.070 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) 1.580 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 2.00 1 -HOUR INTENSITY(INCH /HOUR) - 0.7135 SLOPE OF INTENSITY DURATION CURVE - 0.6000 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* *USER - DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET- CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT- /PARK - HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth - 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth)* (Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER - SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED 1111! lfffffflf 1111! aff 1111 ►ffarfff #1111 lfffffffr f if of ►ffwlfffafffffrffffflrf PLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE . 21 ---------------------------------------------------------------------------- » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< .== .......................................... ............................... INITIAL SUBAREA FLOW- LENGTH(FEET) - 300.00 ELEVATION DATA: UPSTREAM(FEET) . 1665.00 DOWNSTREAM(FEET) . 1656.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE))• *0.20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) - 10.365 * 2 YEAR RAINFALL INTENSITY(INCH /HR) = 2.046 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL . AREA Pp Ap SCS Tc LAND USE . GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) NATURAL POOR COVER "BARREN" A 2.00 0.42 1.00 78 10.37 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.42 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) 2.93 TOTAL AREA(ACRES) 2.00 PEAK FLOW RATE(CFS) - 2.93 aaral llw•► alf ►rf :lflfr #►ef #rrrlfrrrfffref tr fffffrfffffff lfr ttrf► ►a :af of arffr FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 52 --- --- - --=-- » » >COMPUTE NATURAL VALLEY CHANNEL FLOW « «< » » >TRAVELTIME THRU SUBAREA « «< ......................•____•_••_____...__•___ •__•_•____•____..__........._.. ELEVATION DATA: UPSTREAM(FEET) = 1656.00 DOWNSTREAM(FEET) = 1641.00 CHANNEL LENGTH THRU SUBAREA(FEET) - 500.00 CHANNEL SLOPE - 0.0300 CHANNEL FLOW THRU SUBAREA(CFS) = 2.93 FLOW VEI.00ITY(FEET /SEC) - 3.24 (PER LACFCD /RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) - 2.57 TC(MIN.) . 12.94 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 - 800.00 FEET. fff/ f♦w faa# afflaffaflfffllffflff rf!l1f11#ffff if 1111 #fa if of of of #f lff #lf affff• FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE - 81 ---------------------------------------------------------------------------- »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«c ......................... MAINLINE Tc(MIN) = 12.94 * 2 YEAR RAINFALL INTENSITY(INCH /HR) - 1.791 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL POOR COVER .BARREN. A 28.00 0.42 1.00 78 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.42 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap - 1.00 SUBAREA AREA(ACRES) - 28.00 SUBAREA RUNOFF(CFS) - 34.65 EFFECTIVE AREA(ACRES) 30.00 AREA - AVERAGED Fm(INCH /HR) = 0.42 AREA - AVERAGED Fp(INCH /HR)•= 0.42 AREA- AVERAGED Ap = 1.00 TOTAL AREA(ACRES) 30.00 PEAK FLOW RATE(CFS) - 37.13 ♦aaf aff##► ffffffitlaffrffff# ff ►•fffffffffffffffffffffflfffff if 1111 #lkf rff afa FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE - 52 ---------------------------------------------------------------------------- » » >COMPUTE NATURAL VALLEY CHANNEL PLOW « «< » ..TRAVELTIME THRU SUBAREA « «< ......== ..................................... ............................... ELEVATION DATA: UPSTREAM(FEET) = 1641.00 DOWNSTREAM(FEET) = 1612.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 1000.00 CHANNEL SLOPE = 0.0290 CHANNEL FLOW THRU SUBAREA(CPS) = 37.13 FLOW VELOCITY(FEET /SEC) = 6.05 (PER L.ACFCD /RCFC4WCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) - 2.75 TC(MIN.) = 15.60 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 6.00 = 1800.00 FEET. a F es F ff•1f if if iffffffffflff fitfff /fff lffif iff 1111• /f f/f \fff111t 1f ffi # #flttfffffff FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 81 ---------------------------------------------------------------------------- » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< MAINLINE TC(MIN) = 14.82 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.888 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL POOR COVER ° BARREN " A 30.00 0.42 1.00 78 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.42 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap . 1.00 SUBAREA AREA(ACRES) = 30.00 SUBAREA RUNOFF(CFS) = 66.73 EFFECTIVE AREA(ACRES) 60.00 AREA - AVERAGED Fm(INCH /HR) = 0.42 AREA - AVERAGED Fp(INCH /HR) = 0.42 AREA- AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 60.00 PEAK FLOW RATE(CFS) = 133.47 •fff \fff lffffff ifff#ff tffff lf\ f!\f 1f 11ff /f ltltf tttif itffffflffflfffffff /f fff FLOW PROCESS FROM NODE 9.00 TO NODE 10.00 IS CODE = 52 ---------------------------------------------------------------------------- » COMPUTE NATURAL VALLEY CHANNEL FLOW« « < >>>>>TRAVELTIME THRU SUBAREA « «< ___: .... ____ ........................... :_:.:.................... _........... ELEVATION DATA: UPSTREAM(FEET) = 1612.00 DOWNSTREAM(FEET) = 1590.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 800.00 CHANNEL SLOPE = 0.0275 CHANNEL FLOW THRU SUBAREA(CFS) = 133.47 FLOW VELOCITY(FEET /SEC) = 8.59 (PER LACFCD /RCFC &WCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.55 Tc(MIN.) = 16.38 LONGEST PLOWPATH FROM NODE 1.00 TO NODE 10.00 = 2600.00 FEET. fflfflff// ffr#/ fffffffllfffflfff##lfffilfflfff lffffffffif if if ff /f lfffff #•fff FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 81 ---------------------------------------------------------------------------- > > >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <<<c ______________•____:__:__:__________________ _. :_____ : : : ° : :_ :____._......... MAINLINE TC(MIN) - 16.38 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.720 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Pp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL POOR COVER "BARREN" A 30.00 0.42 1.00 78 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.42 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 30.00 SUBAREA RUNOFF(CFS) = 62.21 EFFECTIVE AREA(ACRES) 90.00 AREA - AVERAGED Fm(INCH /HR) = 0.42 AREA - AVERAGED Fp(INCH /HR) = 0.42 AREA - AVERAGED Ap . 1.00 TOTAL AREA(ACRES) = 90.00 PEAK FLOW RATE(CFS) = 186.63 ___•_______• ...................... ...:_ ............. _.......... 8ND OF STUDY SUMMARY: TOTAL AREA(ACRES) 90.00 TC(MIN.) 16.38 EFFECTIVE AREA(ACRES) = 90.00 AREA - AVERAGED FM(INCH /HR)= 0.42 AREA - AVERAGED Fp(INCH /HR) = 0.42 AREA - AVERAGED Ap . 1.00 PEAK FLOW RATE(CFS) = 186.63 ............... °. : : °_. :__. :___.. : °. °. °..: SND OF RATIONAL METHOD ANALYSIS fffffff#t #fffff lffffffiff ♦f if tfffffffffffflfffffflf lfff fff ifff1111ff #ff if tff RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -2001 Advanced Engineering Software (sea) Ver. 8.0 Release Date: 01/01/2001 License ID 1510 Analysis prepared by: DEVELOPMENT RESOURCE CONSULTANTS, INC. 8175 E. KAISER BLVD. ANAHEIM HILLS, CA 92808 P:(714)685 -6860 F:(714)685 -6801 ff /1f /f rf rf lffffffllffff\ DESCRIPTION OF STUDY •fff of trf if♦ tf /t ►f lfflf + Off -Site Property + * Existing Conditions Analysis + • 100 -Year Storm + lffffflfffffff lfffffflfff lfffff lfffffffflff ♦11ff1f ifflffffffff11f 1f 11f #fi FILE NAME: 01900R1H.DAT TIME /DATE OF STUDY: 14:54 06/30/2002 ....................................... __ ........... ____.................... USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ........................................ _................................... -- *TIME -OF- CONCENTRATION MODEL•- - USER SPECIFIED STORM EVENT(YEAR) 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) 1.070 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) 1.580 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.5800 SLOPE OF INTENSITY DURATION CURVE = 0.6000 -ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* * USER - DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET- CROSSFALL: CURB GUTTER- GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT- /PARK - HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 70 70 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLAW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER - SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED f if lfffffff llff lffffff! fffl• /ffffffffff ♦ ►ff�fff if lffffff ►f lffffff ♦lfffffff if FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21 ---------------------------------------------------------------------------- » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA.< ............................................. ............................... INITIAL SUBAREA FLAW- LENGTH(FEET) = 300.00 ELEVATION DATA: UPSTREAM(PEET) . 1665.00 DOWNSTREAM(FEET) = 1656.00 Tc = K *[(LENGTH ■* 3.00)/ (ELEVATION CHANGE))* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.365 * 100 YEAR RAINFALL INTENSITY(INCH /HR) . 4.531 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) NATURAL POOR COVER "BARREN" A 2.00 0.42 1.00 78 10.37 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.42 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 7.41 TOTAL AREA(ACRES) = 2.00 PEAK FLOW RATE(CFS) = 7.41 Rffff if if tf #\ff if# tfflRff rfffiffffllffffftRr• \111ffff \lffiffif fffRffffffiffi FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 52 ---------------------------------------------------------------------------- »» COMPUTE NATURAL VALLEY CHANNEL FLOW .<<<< » >>>TRAVELTIME THRU SUBAREA - «< saaa. aa.= a. aa... s=.=... s.. a..a as.. s. a=:...... sa..= ...............=...s. =.... ELEVATION DATA: UPSTREAM(FEET) = 1656.00 DOWNSTREAM(FEET) 1641.00 CHANNEL LENGTH THRU SUBAREA(FEET) . 500.00 CHANNEL SLOPE = 0.0300 CHANNEL FLAW THRU SUBAREA(CFS) = 7.41 FLOW VELOCITY(PEET /SEC) a 4.02 (PER LACFCD /RCFC &WCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 2.07 Tc(MIN.) . 12.44 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 = 800.00 FEET. ffffRR♦:\fffrii #:riiif lf♦tr#erir :♦wff ♦iirff if rRRfflf ♦rirllfiR•iRRrffii ► f #r1t FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 81 ------------------------------------------------ -------- --------- --- - - - - -- » > >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< ..................................................... p ...................... MAINLINE Tc(MIN) = 12.44 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.061 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL POOR COVER "BARREN" A 28.00 0.42 1.00 78 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.42 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap . 1.00 SUBAREA AREAIACRES) = 28.00 SUBAREA RUNOFF(CFS) = 91.86 EFFECTIVE AREA(ACRES) = 30.00 AREA - AVERAGED FM(INCH /HR) = 0.42 AREA - AVERAGED Fp(INCH /HR) = 0.42 AREA- AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 30.00 PEAK FLOW RATE(CFS) = 98.42 i \fffRlRff lfRRf #f 11f \fflflf f# ♦fff••f ifff rf•1\ ♦1f ►f iffif lrfR \f#/f if iff ifff \ff FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE = 52 ---------------------------------------------------------------------------- » » >COMPUTE NATURAL VALLEY CHANNEL FLOW «<c< > » >TRAVELTIME THRU SUBAREA « «< BLEVATION DATA: UPSTREAMIFEET) 1641.00 DOWNSTREAM(PEST) 1612.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 1000.00 CHANNEL SLOPE . 0.0290 CHANNEL FLOW THRU SUBAREA(CFS) = 98.42 FLOW VELOCITY(PEET /SEC) . 8.04 (PER L.ACFCD /RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 2.07 Tc(MIN.) . 14.51 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 6.00 = 1800.00 FEET. tf1}fffffffRfffftf • fffffffffi \ffffffffffiffiffff lffff ifffffr \f if•tfffff•ff lr FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<c«< ................_.........._.........._....._ ........._......_.............. MAINLINE Tc(MIN) = 14.51 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.703 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL POOR COVER -BARREN- A 30.00 0.42 1.00 78 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.42 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 30.00 SUBAREA RUNOFF(CFS) . 88.74 EFFECTIVE AREA(ACRES) 60.00 AREA - AVERAGED Fm(INCH /HR) = 0.42 AREA - AVERAGED Fp(INCH /HR) = 0.42 AREA- AVERAGED Ap = 1.00 TOTAL AREA(ACRES) . 60.00 PEAK FLOW RATE(CPS) . 177.48 tR ftiR♦ tlffif♦ 1\ f /1f•fffkf ♦ff#RiRfttffRRffifR ##R lffffRRif lRtf if tf iii #f if ifff FLOW PROCESS FROM NODE 9.00 TO NODE 10.00 IS CODE = 52 ---------------------------------------------------------------------------- »» >COMPUTE NATURAL VALLEY CHANNEL FLOW « «< » » >TRAVELTIME THRU SUBAREA <<<<< .::::::: ................==a=.==..=a. a.. ......... ......_.............. ELEVATION DATA: UPSTREAM(FEET) 1612.00 DOWNSTREAM(FEET) = 1590.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 800.00 CHANNEL SLOPE = 0.0275 CHANNEL FLOW THRU SUBAREA(CFS) = 177.48 FLOW VELOCITY(FEET /SEC) = 9.37 (PER LACFCD /RCFC &WCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) . 1.42 Tc(MIN.) . 15.93 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 10.00 . 2600.00 FEET. lftfff Rf if lffffiR•fflfflf rfffffffff if tfft► ff ffff • \ffffllf Riffflf ff ♦f rf if rrtf FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 81 ------------------------------------------------------ ------------ ---- - - - - -- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< ::.:.._..:.: ................................. ............................... MAINLINE TC(MIN) = 15.93 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.501 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL POOR COVER 'BARREN' A 30.00 0.42 1.00 78 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.42 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 30.00 SUBAREA RUNOFF(CFS) . 83.28 EFFECTIVE AREA(ACRES) 90.00 AREA - AVERAGED Fm(INCH /HR) . 0.42 AREA- AVERAGED Fp(INCH /HR) . 0.42 AREA - AVERAGED Ap = 1.00 TOTAL AREA(ACRES) . 90.00 PEAK FLOW RATE(CFS) = 249.85 ............................................. ............................... END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 90.00 TC(MIN.) = 15.93 EFFECTIVE AREA(ACRES) = 90.00 AREA - AVERAGED FM(INCH /HR)= 0.42 AREA - AVERAGED Fp(INCH /HR) . 0.42 AREA - AVERAGED Ap = 1.00 PEAK FLAW RATE(CFS) = 249.85 END OF RATIONAL METHOD ANALYSIS HYDROLOGY STUDY FALCON RIDGE TOWN CENTER — FONTANA, CALIFORNIA SECTION 6.0 DETENTION BASIN MAP / DETAILS L !Iati III 01 -900 Hydrology Report.doc 00'9591 = (L333)WY3ELLSNMOa 00'5991 = (S33d)WV3NSSdn :YSVQ NOISYA3I3 'Mad 00'0081 = 00'9 SOON OS 00'T SOON woad HZYdMOZd SSaoNOZ 00'00E _ (S33d)HIDN3Z -MO'Il YadYBnS 'IYIIdNI Z8'4T = ('NIW)D.L SZ'Z = ('NIW)3WIS Z3AYK.L (IYf1NYW ADO'IONaAH aDmsoa3N /aDa0v1 N3d) t4'L = (33S /Iaaa)ASI0O'IaA MO'Id »Y3t1Y8nS ZYIZINI NOd HdYaOOWON NOISYtLLNWJN0O-a0-3WIZ 3Sn« Z8'4L = (SdD)v3HY8nS ntIH.L MOZd ZaNNYHO » » >SISAIYNV Y3NY8nS ZYIZINI WHIM ZYNOLLYM ««< 06E0'0 = aaOZS 13NNYID 00'000T = (S33d)YadY8nS ntIH.L HSON3I Z3NNYK 00'Z19t = (.1.3ad)WY3t!.LSNMOa 00't1 = (Iaaa)WVaLLSdn :Y.LYQ NOISYA3Z3 TZ = 3QO3 SI 00'2 SOON 01 00'T SOON NOtId SS3JOtId MOIL » >Y3tIY8nS ntIH.L 3WIJ.Z3AYM.L « «< » » >MOZd Z3NNYHJ A3ZZYA ZYHn.LYN 3d1104OO « «< Q35J3ISS SON SIID'ISSn2QY 3dOZS DIHdYM° dO.L WnNINIW a3I8IZ 2dS- ti3Sn. ■'adId ANVSn8IN5 WY3NSSd0 3HS OS ZVf1O3 NO ZS = 5000 SI 00'9 SOON OS 00'5 SOON WON4 SSSOONd MOM NYHS NSLV3NID ASIDYdYD MO'IA V HSIM 3dId 3ZIS. (S /S4.S4) 0'9 = 7UTvilsuO3 (ATTDO aA).(q;deu) •L (g ;o - d 0 1) - (q;dea Motd 39323S aigenoTTY wnwtxvw) se Z8'4L = (SAO)3SVN MOZd )1V8d 00'0E _ (SSE0Y)Y3NY lvSOS Iaaa 00'0 = g7daa -rnoid ant;eiag •I 00't = dv a3DVNSAV -YSNV Zb'O = (NH /HJNI)dd a3DYNSAY -V3NV :SSNIYNSSNOO HSd3Q -MOZl S33NS5 :mow (NH /HONI)wd QaDVNSAV -YSNV 00'0£ _ (SSNOY)vauv 3AISJ3daS E8'69 = (Sdo)d.ONnN Y3NY8ns 00'9Z = (SHHOV)v3NV YSNV8nS 0510'0 L9t'0 ZTEO'0 00'Z L9'0 OZO'0/8t0'0/810'0 0'OZ O'OE t 00'1 = dv 'NOIZOVN. YWNY SQOIAN3d S)VN3AY VSNY8nS =________ 24'0 = (NH /HDNI)dd '8SYH SSOZ SfOiAN3d 3DVNSAV VSNV8nS (U) (IA) (S3) (SA) (Sd) AVM /3QIS / 3QIS (Sd) (Id) 'ON 8L 00'1 24'0 00'8Z V •NSNNVS. dOSOVA 3)IIH dIl HSQIM SHDISH - )INVd /-SnO / -NI ZZVASSONO HSQIM NSAOO wood ZVNf.LVN ONINNVW :S3INS5WOa0- N35.LfD SHOO :ZZVdSSONJ- IaaaIS OS NMONJ -AZVH No (ZYWIOSQ) (NH /HoNI) (SSNOY) dnOND 3Sn arm .Za0OW MOlAS33NSS aNY MO'IdShcd a3ZdnOO sod SNOILOSS- S33NSS Q3NId3Q -NSSn. SOS dv dg VswV IIOS SOS Maki. SN3WdO/3Aaa :(II owv)v.VQ 3.LYN ssO' v3Nvans rQOHSSW /VNOISVN NOd a3Wnssv II (OWN) NOI.LIQNOO 3Nn.SIOW .LNSQSOaLNY. L8t'£ _ (NH /HONI)ASISN3SNI ZZVANIYN Nv3A SZ • 0009'0 = 3ANCO NOISvwna ASISNSSNI dO 3dOZS 8S'Zt = (NIW)3.L 3NI7NIVW t84Z't = (NnoH /HJNI)A.LISNaLNI NtIOH -t 00'SZ = SNSA3 MOSS _________ ...... :___.___.__:___:_.____:_______ .._ :_ : _____ :___________________ • , VIVO ASISN3SNI lIVANIVN QSSndWOO » » >MO'Id )IV3d 3NIZNIYW OS VSNY8nS dO NOISIQUV« « < 085'1 = (NnOH /HONI)ASISNSSNI 3Jd)NIW -09 MOSS NV3A -001 OLO't = (wnoH /HONI)ASISNaLNI SIONIW -09 WNOSS NVSA -OT T8 = 3000 SI 00'4 SOON OS 00'E SOON WONd SSSOONd MOld •TIVANIVN NOd QSSn NOISY'IOdNSSNI OIWHSINFI` I QSNId3Q -NSSf. 56'0 = 3dO'IS NOISOINA NOd 3Sn 0.L (ZYWIOSQ)SSNaIavND do SN23N3d QSIAIOSdS 00'8t = (HONI)3ZIS 3dId WnWINIW 0SIdIO3dS 'S33d 00'008 = 00'E SOON OS 00'T SOON WONA HIVdMOZd SSSDN0'I 00'SZ = (NVHA)SN3A3 MOSS QaIdIOadS NSSn 85'Zi = ('NIW)o.L TZ'Z = ('NI103WI1 l3AVNS --.930OW NOISVNSNamoo-dO-3WIS.-- ('YnNYW ADO'IoNUIH Q0M'93d0N1 /0043V'I Had) LL'E _ (J3S /S33d)ASIOOl3A Mold =___ 69'S = (sdo)vaavans nuHS MO'Id ZSNNYHO :NOISVWNOANI 12O0W JIZfMNQAH QNY AJO'IONQAH USIAIO3dS NSSn 00E0'0 - 3dOZS ZSNNVHO 00'00S = (.Laad)v3NVans nNHS HSDNSZ l3NNYHJ _ __________________ 00'1491 = (laaa)WYaN.LSNMou 00'9591 = (S33d)WYaN.Lsdn :Nava NOIJYASZ3 ZOOZ /OE/90 ES:bt :Auns.s 3o aIva /3WIS = SVQ' SZd006t0 :3WVN 3'123 »> »VSNY8nS nNH.L 3W1Zl3AVNS « «< » » >MO'Id ZSNNVHO ASZZVA'WNfl.VN 3SffdNOD « «< • wio ).s =eaA SZ stsAteuy suot;tpuoO 6ut;stx3 • Z5 - 3000 SI 00'E 3aON 01 00'2 SOON NOM ssaoowd MOW • Agzado.d aa'S - ; ;o • AQf.LS dO NOISdIIDSSQ 69'S = (SA0)3SVN NOW dYSd 00'Z = (S3N0V)YaNV ZVSOS 1089- S89(1 :d 0989- 589(4tL) :d 69'S = (SdD)ddONnN VSNV8nS 80826 YJ SZZIH WISITYNV 00'1 = dv 'NOISJYNd Y3NY snOIAlIad 3DVNSAY YaNV8ns 'OAZB NSSIYS 'a SL18 24'0 = (NH /HoNI)dd '3SYN SSOZ SnOIAN3d 3DVNmAv YSNV8nS 'ONI • SSNYS'IfSNOO SOHnOSSN SNSWdol3ASQ LE'OI SL 00'T Zb'0 00'Z V .N3NNV8. N3AOO HOOd 'IvNnSYN :Aq pazedaid sisATeuy ('NIW) No ('IVWIJ3a) (uH /HONI) (saNDY) dOOND 3Sn aNYl 31 SOS dy dd 'MTV ZIOS SOS /3dAI SN3WdO'ISASQ OTST QI esue3tl t002/t0/T0 :94ea aeeataN 0.8 'Jail :(II oWV)v.YQ 35VN SSOZ ONY DI vauvanS (see) aieM ; ;os fiuiaaeut6u3 peouenpY t00Z-£861 I1.16t2AdOo (o) 6L5'£ _ (NH /HONI)ASISNSSNI TIVANIVN iiv3A SZ . (NOINSSINO ADO'IONQAH 'O0 ONIQNVNN38 NYS 9861 :aovaia ;aN) 59£'01 = ('NIW)3J. WnWINIW QaSn SISAZYNY vSNvanS 3DY)DYd WVNDONd NaIndWOO ADO'IONIQAH 00HS2W ZYNOISYN OZ'0..((3DNYID NOISvAaZ3) /(00'E ..HSON3l))0d = 3S t t 11 I .! 1 11 L 1 11 [ Al L. t 11 1 . i I l t .i 1 11 t AI 111 tAl 1,-11 [ 11 1 11 00'959T - (J33a)WYaH.LSNMOO 00'599T = (J33A)WY3HJSdf :VIVO NOISVA3'I3 SISA'IYNV QOHJ3W ZVNOILY1 d0 QN3 00'OOE _ (J33d)HSDN3Z -MO'IA Y3NYHf1S IYISINI »VHBVS IS ZYISINI HOd HdV8DOWON NOISY IN33NOD- AO -3WI I. 3Sn« £9' 981 - (SADI SIV3 MO'I6 )IV3d »» >SISAZYNV VaNYSOS 'IYISINI OOH13W 2YNOIJ.Y11« « < 00'T - dV a3DV113AV -Y3HY L4'0 = (1111/HDNI)dd O3DVHSAY -Y3HY 24'0 - (HN /HONI)WA 013DV33AV-Y3IV 00'06 - (53IoV)V3)1Y 3AIJO3aa3 TZ = 3003 SI 00'Z SOON O.1 00't SOON WONA SS33O0d MOZd 8E'9T = ('NIW)DS 00'06 = (S31DV)Y3HY ZV.LO. :ANVWW(IS AanLS dO OIL'S 03JJ313S .LON .LNaW.SOraV 3dO'IS OIHdVNDOdO.L WfWINIW OSIAIO2dS - HSSf. E9'981 = (Sd3)3ZY11 MO'Id )(VW 00'06 - (S3IOY)Y3HY 'IY.LO.L ■'3dId ANVIGHINI WY3i.Sdn 33.1 O.L ZVn03 110 00'T - dV OSDY113AY -Y3IY Zb'0 = (1111 /HONI)dd O5DYI3AY -V3HY NYHJ. NSZV311D ASIDYdYD MOW V HIIM 3dld 3ZIS. Zb'0 = (NH /HDNI)WA a3DV1ISAY -V3HY 00'06 - (S3NOV)VsHV 3AIJ.DSAAS (S /Zd.13) 0'9 - 3utss3suop (AlTooisA).(g3de0) 'Z TZ'Z9 = (SdD)dAON(1H V311V8(1S 00'0E _ (SSSOV)Y311V Y3HVSOS (ginO- ;o -do.L) - (gfdaQ Mold 99q o1TV wnwtxsw) se 00'T = dV 'NOI.DYHA V3HY SOOIAN3d 3DYII3AY V311YHf1S Z33d 00'0 - gtdeQ - Mold ent1slaH '1 Z4'0 = (NH /HDNI)dd '3SV11 SSOI SfOIAH3d 3DVISAY V3IY8fS :SJ.NIV3SSHOD H.Ld30 - MO'Id ISSHJS 'TYMOM 8L 00'T Zb'0 00'0E V .N31111VH. HSAOO SODA 'IYHf.YN OSLO'0 L91'0 ZtE0'0 00'Z L9'0 0Z0'0/8T0'0/8t0'0 0'OZ 0'OE t ND ('IVWIDaO) (HH /HDNI) (S3)13Y) 400)10 3S(1 amyl _= SDS dY dd Y3HY 'IIOS SOS /34LL .LNSWaO'ISA3a (u) (,LM) (J.d) (La) (.LA) AYM /3018 / 3018 (.LA) (LA) 'ON 1(I1 owv)Y.LYa 3.LY2i SSO'I V311V8ns HO.LJYd 3)IIS dIZ HSOIM SHDIMH - )IHYd / -10O / -NI TIYASSO)1D H.LOIM OZL'Z = ()1H /HONI)ASISN3.LNI TIVANIY1 IIVSA SZ • DNINNYW :S3IHZ3WO3D- N3ZJ00 HEM :Z2YdSSO113- J33)JS OZ NMOND -ATM 8E'St = (NIW)DZ 3NPINIVW .Z3O0W MO'Id.33).LS ONY MO'Id3dId 0314000 11Od 53015 38-1331.18 OSNIdSO -H3S0■ » »>MO2A xvSd 3NIZNIYW 01 Y31YSOS dO NOISIQOY « <« ■O0HJ3W 2YNOIZVH NO4 (MOSSY II (DWY) NOISIGNOD S)OSSIOW .NSOSOS.NY. 0009'0 = 3A11OD NOISV11la ALISN3LN1 dO 34018 T8 = HOOD SI 00'ZT SCION OZ 00'TT SOON WONA SSSOO)d MOZd 0085'1 = (HOOH /HDNI)ALISNSJ.NI HfOH -T 00'00T = SNSA3 W11OSS :VIVO ASISNSJ.NI TIVANIY11 03Sf1dWOD 085'T = (HOOH /HDNI)AZISNSSNI 3J.ONIW -09 W0O1S HVHA-00T 'ISM 00'009Z - 00'01 SOON 01 00'1 SOON WONA HSVdMOZd SSSDNOZ OLO'T - (11noH /H3NI)ASISNSLNI 3J11NIW -09 W1105.S )YHA -0t 8E'9T - ('NIW)o.L 5S'T = ('NIW)SWIS ZSAVNS ■TIYANIY)1 BOA OSS(1 NOI.YlOdN3.LNI OIWHSIIIYDO'I 03NId30-113S0. ('IYONYW ADOZONQAH aOM9OAON /aOAoY2 sad) 65'8 = (DHS /5.33d)AZIOOISA MOld S6'0 = 34028 NOILD'S& NOd 380 OS (2YWIDao)SSNSIQYND dO .LNS0N34 QSIdIO3d8 Lb'EET = (SdD)V3HYBOS OHM MO2d ZSNNYHD 00'81 = (HDNI)SZIS 34Id W0WINIW QSIdID3dS SLZO'0 = 3dOZS 23NNYHO 00'008 = (Z33d)Y3HYHOS (1)1HS HSDNSZ ZSNNYHD 00'00T = (NYSA)J.NSA3 14)10.1.8 OHIdIDSdS 1138(1 00'065T - (J33d)WY33ZSNMOO 00'2191 = (J33A)WY5NZSdn :VIVO NOISYASZ3 --.130014 NOI.LV)LLNS3NO3-dO- SWI.L. -- _____ _____ ° °__________ __ »» >YSNYSf1S (111ILL 3WIS23AVH.L « «< :NOIZVW)OdNI 13O0W DII0YNQAH aNY ADOZONCAH OSIdID3dS 113S(1 >>>>>M0 Z3NNYHD ASTIYA ZYHOSYN 3SndWOD «<« ZOOZ /0E/90 45 :4T :MIDIS dO 3SYQ /SWII. ZS = HOOD SI 00'01 SOON OZ 00'6 SOON WONd 88300)14 MOZd ZYQ'HTH006t0 :3WVN 3114 . W1o3S 1e9A -00t ■ Lb'EE1 = (Sd3)3SY3 MOZd )IY3d 00'09 = (8330Y)V51Y ZVSOS • stsATeuY suot3TpuoD 6ut3stx3 ■ 00'T = dV u3DVif3AY -Y3)1Y Zb'0 - (IUH /HDNI)da OSDV)ISAV -V3IY • A31adosd alts -330 • Zb'0 = (IH /HDNI)wd OSDY13AV -VSNY 00'09 = (S3)1DV)YSNV 3AISD3dd3 AUDIS dO NOIJ4I)DSSO EL'99 - (Sd3)ddON(1N VW/VMS 00'0E _ (SSNDV)Y3HY YSNYHOS 00'T = dV 'NOIJJV)Id V3HY SOOIA)13d SDYN3AV Y3IYSOS t089-S89(4tL) :d 0989- 589(btL) :d 24'0 = (1111 /HONI)dd '3.LV11 SSO2 SOOIANSd 3DY13AY Y3)1YSns 80826 VD 'SZUIH WI3HYNY 8k 00't Zb'0 00'0E V .NMIMYS. 'UAW 13SIYI '3 SLt8 IMAOD 1004 'IYNn.LYN 'DNI 'SJ.N%LIOSNOO 33)1(108311 ZNSWdO23ASO ND (ZYWIOSO) (as /HONI) (sauov) a(10)1D 380 aNY2 SOS dy dd YSNY ZIOS SOS /3dA.L JJLdwdOZaA3a :Aq paiede.zd stsdIeuY :(II DWY)YSYa 3SYS SSO2 YSNYSOS 888'Z - (1111 /3331)ASISNSLNI ZZYANIYI )1V5A SL . OTST 0I asua3t2 T00Z/t0/t0 :83eQ aseataN 0'8 '39A Z8'bt = (NIW)3.1. SNIINIYW (see) a15M3 ;os SuTiaaut6u3 peouenpy t00Z -E86t 346t2AdoD (3) (NOI)13ZI)3 ADOZO)10AH 'OD ONIQ)YN)38 NYS 986T :93u818;011) » » >MO'Td )IY3d 3NIZNIYW O.1. YSNYSO8 d0 NOISIOOY« « < 3DY)IDYd WYNDO1d 113Sn4WO3 ADO'IONaAH WHIM ZVNOIIVE 18 - 3003 SI 00'8 SOON OZ 00'L SOON 140114 SS30ON4 NOW I, I t 11 t .I t Al t Al I I t I ,; t .;i t Al t _.J [. 1 11 4 .I t 11 I I-11 t I t -AI SISX'IYNY aoHISW 'IYNOLLYtI dO ON3 'I33d 00'008t ■ 00'9 SOON OI 00'T SOON WOaa H.LYdMOId ISSDNO'I 15'41 - ('NIW) LO'Z - ('NIW)SNII 'ISAYHS S8'6tE - (SdO)a.LYH MO'Id )IYSd ('IYRNYW ADO'IOSQAH OJM9J1Ja /a3d3Y'I NSd) b0'8 = (J3S /I3aa)AIIDOISA MO'Id 00'T ■ oft OSDYNSAY-YSNY Zb'0 ■ (NH /HJNI)dd 0 3DYa3AY-YSNY Zb'86 = (Sd3)YSNYSRS maim NOW 'ISNNYID Zb'0 =(NH /HJNI)Wa a3DYHSAY-YSNY 00'06 = (S3U3Y)YSNY aAIJJSda3 0620'0 - SdO'IS 'ISNNYHJ 00'0001 - (SSS.)YsiYSns RNHI HIDNS'I 'ISNNYHJ E6'St - ('NIW)JI 00'06 - (S3N3Y)YSNY 1Y.LOI 00'Zt9t - (J.3Sd)WY3N.LSNMOa 00'11 - (JI3d)WYSNISdf :VIVO NOIIYARIS :xNYwWQS AafLS dO aNS »»>Y€NYSRS RNHI SWIIT3AYNI « << S8'62 = (S.3)SLYN NOW )IYSd 00'06 - (SSHJY)YSNY TdIOI » » >MO'II 'ISNNYHO ASTWA 'IYNR.LYN SJJ1dWOJ « «< 00'1 - dY QSDYNSAY-Y3ay Zb'0 = (NH /HJNI)dd a 3DYNsAY -Yaav Zb'0 - (NH /HJNI)Wa OSDYNSAY -Y3NY 00'06 - (SSNOY)YSNY 3AIJOSdd3 ZS - saw SI 00'9 SOON OI 00'S SOON NOaa SSSJONd MO'Id 8Z'E8 - (SdD)daONII YSNYBRS 00'0E _ (SSNJY)YSNY YSNYSRS 00'i - (IV 'NOIJJYHa WHY SROIAN3d SDYNSAY YSNYSRS Zb'0 - (NH /SONI)dd 'SIYH SSOZ SROIANSd SDYHaAY YNNYSRS Zb'86 - (SdO)SIYN MO'Id )IYSd 00'0E _ (SSNOY)YSNY 'IY.LO.L 8L 00'T Zb'0 00 V uNSNNYB. 00'1 = dY a3DYNSAY -YSNY Zb'0 - (NH /HJNI)dd a3DYHSAY-YNNY NSAOO HOW 'IYNRZYN Zb'0 = (NH /HONI)Wd 03DYNSAY - Y3NY 00'0E _ (SSNOY)YSNY SAIIOSad3 NO ('IYWIJao) (NH /HONI) (SsNJY) dmOND ssn aNYZ 98'16 - (saD)ddONRN YSNYSRS 00 = (SSNJY)YSNY Y3NYSRS SOS dy da Y3NY IIOS SOS /SMAI INHNdO'IaAaa 00'T = dY 'NOISJYNd YSNY SROIAN3d soYHaAY Yswwsns :(II OWY)YIYa MN SSO'I vas st.o = (NH /HONI)dd 'sIYN SSO'I SROIANad SOYNSAY 'amens I05'E _ (NH /HJNI)AIISNSINI TIYdNIYN NVSA 001 s 8L 00'T Zb'0 00'8Z Y uNSNNYHa E6'ST = (NIW)3I SNI'INIYW NSAOO NOOd TiNRJYN = NO ('IYWIJso) (NH /HJNI) (S3NOY) damp ssn QNY'I » » >MO'I. XV3d SNIINIYW OS YSNYSRS d0 NOIIIQOY « «< SOS dy dd YSNY 'IIOS SOS /SdAI INHWdO'ISASQ '(II JwY)YSYa RAYS sSOZ YSNYBRS 18 = 3000 SI 00'ZT SOON 01. 00'11 SOON WONA SSSOONd MOW 190'' = (NH /HJNI)AIISNSINI TIYdNIYN NYSA 001 • bb'ZT = (NIW)'I SNI'INIYW 'I33d 00'009Z = 00'0T SOON OI 00'T SOON WONd H.LYdMO'Id .LSSONOR » »>MO'Id EY3d SNI'INIVW OI YSNYSOS dO NOIIIQQY « «< E6'S1 = ('NIW)DI Zb't = ('NIW)S141.L 'ISAYHI (ZYRNYW ADO'IONOAH 0OM4OdON /aOBJY'I Had) L£'6 - (JsS /Saad)ASIJO'ISA NOW 18 = saw SI 00'1, SOON OI 00 SOON WONd SSSOONd MO'Id 8b'LL1 - (Sdo)YSNYsns RNHI MO'Ia 'ISNNYHO SLZO'0 - SdO'IS 'ISNNYHJ 00'008 = (Za3a)YSNYSRS RNHI HIONS'I 'ISNNYIIJ 00'065t = (SSSd)WYSN.SNMOQ 00'Z19t - (IaSa)WYSNISdn :YIYQ NOI.LVAS'IS 'ISM 00'008 = 00'E SOON OI 00'1 SOON WONA HIYdMO'Id ISSONO'I bb'ZT = ('NIW)OI LO'Z = ('NIW)3WII 'ISAYNI » »>YSNYHRS REH.L SWIIZSAYHI « «< ('IYIINYW ADO'IONOAH ooM'9OdON /aodOYZ Had) ZO'b = (OSS /I3ad)AIIJO'ISA MOW » » >MO'I. 'ISNNYHJ ASTIYA 'IYNRJ.YN SIRdWOO « «< Lb'L = (S.3)YSNYSRS RNHJ. MO'Id 'ISNNYHJ 00E0'0 = SdO'IS 'ISNNYIt) 00' 005 = (.LSad)YSNYHRS RNH.L H.LDNMI 'ISNNYHO ZS = S000 SI 00'01 SOON OI 00'6 SOON WON. SSSOONd MO'Id 00'Tb9i - (SaSd)WYHN.SNMOQ 00'9591 = (.LaSd)WYSNSSdn =YIYQ NOIIYAS'IS » » >YSNY9fls RNHI SWII'ISAYNI « «< 81,'1.1.1 = (SdO)SIYN mow )IYSd 00'09 = (SSNJY)YSNY WW1 ›""MO'Id 'ISNNYHO ASTIYA 'IYNRIYN SIRdWOJ« « 00'1 = dY OSDYNSAY -YSNY Zb'0 - (NH /HON1)dd O SDYNSAY -Y3NY Zb'0 - (NH /HONI)Wd OSDYNSAY - YSNY 00'09 = (SSNOY)YSNY SAIJ.OSddS ZS - 3000 SI 00'E SOON OI 00'2 SOON mud SSSJONd MO'Id 1L'88 = (S.0)ddONRN YSNYHRS 00.0E _ (SSNJY)YSNY YSNYHRS 00'1 = dY 'NOIJ.OYNd YSNY SROIAN3d SDYNSAY Y3NYSRS Zb'0 = (NH /HONI)dd 'SIYN SSO'l SROIANSd 3DYNSAY YSNYHls tb'L = (S.J)3IYH MO'Id NYSd 00'2 - (SSNOY)YSNY 'IYIOI 8L 00'1 Zb'0 00 Y uNSNNYHu Tb'L - (SdO)3dONRN YSNYHRS N2A00 NOOd TdNILLYN 00'1 = dY 'NOILOYNd YSNY SROIANSd 3OYNSAY YSNYBls NO (TdwIJSO) (NH /HJNI) (SSNOY) dfOND aSR QNY'I Zb'0 = (NH /HONI)dd '3IYN SSO'I SROIAN3d SDYNSAY YSNYSIls SOS dY dd YSNY 'IIOS SOS /SdAI INSWUO'ISASO LE'0t 81. 00'1 Zb'0 00'! Y uNSNNYHu :(II OWY)YIYO SIYH SSO'I YSNYSRS NSAOO NOOd 'IYNRIYN EOL'E _ (NH /HJNI)ALISNSINI 'ITddNIYN NY3A 001 • ('NIW) NJ (TdWIOSO) (NH /HJNI) (SSNOY) dfOND ssn QNY'I TS'bT = (NIW)0I SNI'INIYW OI SOS dy dd YSNY 'IIOS SOS /SdAI INswaORSASO :(IT JWY) YIYa 3IYN sso'I aNY OI YSNYSIls » »>MO'Id )IYSd SNI'INIYW OI YSNYSRS d0 NOIIIa0Y « « < TES'b = (NH /HJNI)AIISNSINI 'ITdaNIYH NYSA 00T • 59£'01 = ('NIW) °J. WRWINIW OSSR SISATdNY YSNYSRS T8 = 3000 SI 00'8 SOON OI 00'1. SOON WOad SSSOONd MO'Ia 0Z'0sa[(SDNYHO NOIIYAa'I3) /(OO'E suHLDNS'I))s)I - oI [ i t' t 1 t i I II f 11 i 1 t 1 t _Il t II t I I II 1 :I 1 :11 t :11 1 AI t I t o 1 11 HYDROLO STUDY FALCON RIDGE TOWN CENTER — FONTANA, CALIFORNIA C �i SECTION 7.0 DETENTION BASIN HYDROGRAPHS n u I 01 -900 Hydrology Report.doc ® ® ® 1".1 rTml s fif if\i ## #ffff if ffffffff #fff \\#f\fffff iffff ltffffff \f \ititfffffffff #lfffff NON - HOMOGENEOUS WATERSHED AREA - AVERAGED LOSS RATE (Fm) AND LOW LOSS FRACTION ESTIMATIONS (C) Copyright 1989 -2001 Advanced Engineering Software (sea) Ver. 8.0 Release Date: 01/01/2001 License ID 1510 Analysis prepared by: DEVELOPMENT RESOURCE CONSULTANTS, INC. 8175 E. KAISER BLVD. ANAHEIM HILLS, CA 92808 P: (714)685 -6860 F: (714)685 -6801 *•\ NON - HOMOGENEOUS WATERSHED AREA - AVERAGED LOSS RATE (Fm) AND LOW LOSS FRACTION ESTIMATIONS FOR AMC II. t TOTAL 24 -HOUR DURATION RAINFALL DEPTH 3.90 (inches) Z YEAR SOIL -COVER AREA PERCENT OF SCS CURVE LOSS RATE TYPE (Acres) PERVIOUS AREA NUMBER Pp(in. /hr.) YIELD 1 30.00 100.00 84. 0.308 0.585 TOTAL AREA (Acres) = 30.00 AREA - AVERAGED LASS RATE, Fm (in. /hr.) 0.308 AREA - AVERAGED LAW LASS FRACTION, Y = 0.415 f\f1 \f if #fffiif \\ #ffffffk# iff \4if ifflf \iff iff \ \•ififfff \fff if Yf if iff #lfffff\ SMALL AREA UNIT HYDROGRAPH MODEL (C) Copyright 1989 -2001 Advanced Engineering Software (see) Ver. 8.0 Release Date: 01/01/2001 License ID 1510 Analysis prepared by: DEVELOPMENT RESOURCE CONSULTANTS, INC. 8175 E. KAISER BLVD. ANAHEIM HILLS, CA 92808 P: (714)685 -6860 F: (714)685 -6801 RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90 TOTAL CATCHMENT AREA(ACRES) = 30.00 SOIL -LASS RATE, Fm,(INCH /HR) = 0.308 LOW LASS FRACTION = 0.415 TIME OF CONCENTRATION(MIN.) = 17.63 RATIONAL METHOD PEAK FLAW RATE (DEFINED BY USER) IS USED FOR SMALL AREA PEAK Q ORANGE COUNTY "VALLEY' RAINFALL VALUES ARE USED RETURN FREQUENCY(YEARS) = 2 5- MINUTE POINT RAINFALL VALUE(INCHES) = 0.19 30- MINUTE POINT RAINFALL VALUE(INCHES) = 0.40 1 -HOUR POINT RAINFALL VALUE(INCHES) = 0.53 3 -HOUR POINT RAINFALL VALUE(INCHES) = 0.89 6 -HOUR POINT RAINFALL VALUE(INCHES) = 1.22 24 -HOUR POINT RAINFALL VALUE(INCHES) = 2.05 ---------------------------------------------------------------------------- TOTAL CATCHMENT RUNOFF VOLUME(ACRE -FEET) = 2.96 TOTAL CATCHMENT SOIL -LASS VOLUME(ACRE -FEET) = 2.17 #fffffffffff #fff lffifit#ifffYff \kfff iff Yfffff ifff iff if \Yff#f \ff #iif tffifffff TIME VOLUME Q 0. 7.5 15.0 22.5 30.0 (HOURS) (AF) (CFS) ---------------------------------------------------------------------------- 0.13 0.0000 0.00 Q 0.43 0.0000 0.51 Q 0.72 0.0124 0.51 Q 1.01 0.0250 0.52 Q 1.31 0.0377 0.53 Q 1.60 0.0506 0.54 Q 1.90 0.0637 0.54 Q 2.19 0.0769 0.55 Q 2.48 0.0903 0.55 Q 2.78 0.1038 0.56 Q 3.07 0.1176 0.57 Q 3.37 0.1315 0.58 Q 3.66 0.1457 0.59 Q 3.95 0.1601 0.60 Q 4.25 0.1746 0.60 Q 4.54 0.1894 0.62 Q 4.83 0.2045 0.62 Q 5.13 0.2197 0.64 Q 5.42 0.2353 0.64 Q 5.72 0.2511 0.66 Q 6.01 0.2672 0.67 Q 6.30 0.2835 0.68 Q 6.60 0.3002 0.69 Q 6.89 0.3172 0.71 Q 7.18 0.3345 0.72 Q 7.48 0.3522 0.74 Q 7.77 0.3703 0.75 Q 8.07 0.3888 0.77 Q 8.36 0.4076 0.78 Q 8.65 0.4270 0.81 Q 8.95 0.4468 0.82 Q 9.24 0.4671 0.85 Q 9.54 0.4879 0.87 Q 9.83 0.5093 0.90 Q 10.12 0.5314 0.92 Q 10.42 0.5541 0.96 Q 10.71 0.5776 0.98 Q 11.00 0.6018 1.02 Q 11.30 0.6269 1.05 Q 11.59 0.6530 1.10 Q 11.89 0.6801 1.13 Q 12.18 0.7097 1.31 .Q 12.47 0.7438 1.50 Q 12.77 0.7813 1.59 Q 13.06 0.8206 1.64 Q _. _ 13.36 0.8619 1.76 Q 13.65 0.9055 1.83 Q 13.94 0.9520 2.00 Q 14.24 1.0020 2.12 Q 14.53 1.0573 2.44 Q 14.82 1.1185 2.60 Q 15.12 1.1873 3.07 Q 15.41 1.2660 3.41 Q 15.71 1.3574 4.11 Q 16.00 1.4767 5.72 Q 16.29 1.8975 28.94 Q . 16.59 2.2936 3.68 Q 16.88 2.3723 2.81 Q 17.18 2.4343 2.30 Q 17.47 2.4854 1.91 Q 17.76 2.5292 1.70 Q 18.06 2.5686 1.54 Q 18.35 2.6014 1.16 Q 18.64 2.6286 1.07 Q 18.94 2.6538 1.00 Q 19.23 2.6772 0.94 Q 19.53 2.6993 0.88 Q 19.82 2.7202 0.84 Q 20.11 2.7400 0.80 .Q 20.41 2.7589 0.76 Q 20.70 2.7769 0.73 Q 21.00 2.7943 0.70 Q 21.29 2.8110 0.67 Q 21.58 2.8270 0.65 Q 21.88 2.8426 0.63 Q 22.17 2.8576 0.61 Q 22.46 2.8722 0.59 Q 22.76 2.8864 0.57 Q 23.05 2.9001 0.56 Q 23.35 2.9135 0.54 Q 23.64 2.9266 0.53 Q 23.93 2.9393 0.52 Q 24.23 2.9517 0.51 Q 24.52 2.9579 0.00 Q 1 1f 1f 1Rf /ffif•f•Rffiff /1Rfff #Rf ♦tfR# /lf ff\ f Rff \ff•Rf tff /•i•tfff if Rf tf Rffitif# NON - HOMOGENEOUS WATERSHED AREA - AVERAGED LASS RATE (Fm) AND LAW LASS FRACTION ESTIMATIONS (C) Copyright 1989 -2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1510 Analysis prepared by: DEVELOPMENT RESOURCE CONSULTANTS, INC. 8175 E. KAISER BLVD. ANAHEIM HILLS, CA 92808 P: (714)685 -6860 F: (714)685 -6801 * *• NON- HOMOGENEOUS WATERSHED AREA - AVERAGED LOSS RATE (Fm) AND LOW LASS FRACTION ESTIMATIONS FOR AMC II: TOTAL 24 -HOUR DURATION RAINFALL DEPTH 6.60 (inches) '*V40 • ) SqR SOIL -COVER AREA PERCENT OF SCS CURVE LOSS RATE TYPE (Acres) PERVIOUS AREA NUMBER Fp(in. /hr.) YIELD 1 30.00 100.00 84. 0.308 0.721 TOTAL AREA (Acres) - 30.00 AREA - AVERAGED LOSS RATE, Fm (in. /hr.) 0.308 AREA - AVERAGED LOW LOSS FRACTION, Y = 0.279 fflf /f lff /ff Rf tf i##/ f/ Rf\ ift f #tffff /ffflRtRtf \Rf # /ffR #itf i #f1 /t1f #f /1f #ttff# SMALL AREA UNIT HYDROGRAPH MODEL (C) Copyright 1989 -2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1510 Analysis prepared by: DEVELOPMENT RESOURCE CONSULTANTS, INC. 8175 E. KAISER BLVD. ANAHEIM HILLS, CA 92808 P: (714)685 -6860 F: (714)685 -6801 RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90 TOTAL CATCHMENT AREA(ACRES) = 30.00 SOIL -LASS RATE, FM,(INCH /HR) = 0.308 LOW LASS FRACTION = 0.279 TIME OF CONCENTRATION(MIN.) = 16.67 RATIONAL METHOD PEAR FLOW RATE (DEFINED BY USER) IS USED FOR SMALL AREA PEAK Q ORANGE COUNTY "VALLEY* RAINFALL VALUES ARE USED RETURN FREQUENCY(YEARS) = 10 5- MINUTE POINT RAINFALL VALUE(INCHES) = 0.34 30- MINUTE POINT RAINFALL VALUE(INCHES) = 0.72 1 -HOUR POINT RAINFALL VALUE(INCHES) . 0.95 3 -HOUR POINT RAINFALL VALUE(INCHES) - 1.59 6 -HOUR POINT RAINFALL VALUE(INCHES) . 2.20 24 -HOUR POINT RAINFALL VALUE(INCHES) = 3.68 ---------------------------------------------------------------------------- TOTAL CATCHMENT RUNOFF VOLUME(ACRE -FEET) . 6.21 TOTAL CATCHMENT SOIL -LOSS VOLUME(ACRE -FEET) . 2.99 1f 111ff1f Yf if if if lfffffi # #fff tff iffffif11f 11ffY ►fif if #f YfYYf /f iff lffff ♦iffff TIME VOLUME Q 0. 15.0 30.0 45.0 60.0 (HOURS) (AF) (CFS) ---------------------------------------------------------------------------- 0.16 0.0075 1.11 Q 0.44 0.0330 1.11 Q 0.72 0.0588 1.13 Q 1.00 0.0849 1.14 Q 1.27 0.1113 1.16 Q 1.55 0.1380 1.17 Q 1.83 0.1650 1.19 Q 2.11 0.1923 1.20 Q 2.39 0.2200 1.22 Q 2.66 0.2481 1.23 Q 2.94 0.2765 1.25 Q 3.22 0.3052 1.26 Q 3.50 0.3344 1.28 Q 3.78 0.3640 1.29 Q 4.05 0.3940 1.32 Q 4.33 0.4244 1.33 Q 4.61 0.4552 1.36 Q 4.89 0.4866 1.37 Q 5.16 0.5184 1.40 Q 5.44 0.5507 1.42 Q 5.72 0.5836 1.45 Q 6.00 0.6170 1.46 Q 6.28 0.6510 1.50 Q 6.55 0.6856 1.52 Q 6.83 0.7208 1.55 Q 7.11 0.7567 1.57 Q 7.39 0.7932 1.61 Q 7.66 0.8305 1.64 Q 7.94 0.8686 1.68 Q 8.22 0.9075 1.71 Q 8.50 0.9472 1.76 Q 8.78 0.9879 1.78 .Q 9.05 1.0295 1.84 Q 9.33 1.0721 1.87 .Q 9.61 1.1159 1.94 Q 9.89 1.1608 1.97 Q 10.17 1.2069 2.05 Q 10.44 1.2544 2.09 Q 10.72 1.3034 2.18 Q 11.00 1.3540 2.22 Q 11.28 1.4063 2.33 Q 11.55 1.4604 2.39 Q 11.83 1.5166 2.51 Q 12.11 1.5751 2.58 Q 12.39 1.6442 3.44 Q Owl m 12.67 1.7242 3.53 Q 12.94 1.8077 3.74 Q 13.22 1.8949 3.86 Q 13.50 1.9867 4.13 Q 13.78 2.0834 4.29 Q 14.06 2.1864 4.68 Q 14.33 2.2964 4.91 Q 14.61 2.4159 5.49 Q 14.89 2.5464 5.87 Q 15.17 2.6934 6.93 Q 15.44 2.8615 7.71 Q 15.72 3.0564 9.26 Q 16.00 3.3141 13.18 Q . 16.28 4.0588 51.69 Q 16.56 4.7447 8.05 Q 16.83 4.9099 6.34 Q 17.11 5.0422 5.18 Q 17.39 5.1530 4.47 Q 17.67 5.2501 3.99 Q 17.94 5.3376 3.63 Q 18.22 5.4146 3.07 Q 18.50 5.4779 2.45 Q 18.78 5.5321 2.28 Q 19.06 5.5827 2.13 Q 19.33 5.6303 2.01 Q 19.61 5.6752 1.90 Q 19.89 5.7179 1.81 Q 20.17 5.7586 1.73 Q 20.45 5.7975 1.66 Q 20.72 5.8348 1.59 Q 21.00 5.8707 1.53 Q 21.28 5.9053 1.48 Q 21.56 5.9387 1.43 Q 21.83 5.9710 1.39 Q 22.11 6.0024 1.34 Q 22.39 6.0328 1.31 Q 22.67 6.0624 1.27 Q 22.95 6.0911 1.24 Q 23.22 6.1192 1.21 Q 23.50 6.1465 1.18 Q 23.78 6.1732 1.15 Q 24.06 6.1993 1.12 Q 24.34 6.2122 0.00 Q ---------------------------------------------------------------------------- 1 f if lf•llfflfffrtftif tffiff lfffltf if lffftft /lf itf lffffffftfiffflffffffitfff NON - HOMOGENEOUS WATERSHED AREA - AVERAGED LOSS RATE (Fm) AND LOW LOSS FRACTION ESTIMATIONS (C) Copyright 1989 -2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1510 Analysis prepared by: DEVELOPMENT RESOURCE CONSULTANTS, INC. 8175 E. KAISER BLVD. ANAHEIM HILLS, CA 92808 P: (714)685 -6860 F: (714)685 -6801 # *# NON- HOMOGENEOUS WATERSHED AREA - AVERAGED LOSS RATE (FM) AND LOW LOSS FRACTION ESTIMATIONS FOR AMC II: f TOTAL 24 -HOUR DURATION RAINFALL DEPTH 8.00 (inches) ZT •"�"�I�� jg SOIL -COVER AREA PERCENT OF SCS CURVE LASS RATE TYPE (Acres) PERVIOUS AREA NUMBER Fp(in. /hr.) YIELD 1 30.00 100.00 84. 0.308 0.762 TOTAL AREA (Acres) - 30.00 AREA - AVERAGED LOSS RATE, Fm (in. /hr.) 0.308 AREA - AVERAGED LOW LOSS FRACTION, Y - 0.238 ff #ff #tfflff iffff ##titffff lf• f ifff #1f1f#f#t #ffff # #tfftff tf if # # ♦f tfftf #•#ffff SMALL AREA UNIT HYDROGRAPH MODEL (C) Copyright 1989 -2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1510 Analysis prepared by: DEVELOPMENT RESOURCE CONSULTANTS, INC. 8175 E. KAISER BLVD. ANAHEIM HILLS, CA 92808 P: (714)685 -6860 F: (714)685 -6801 RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90 TOTAL CATCHMENT AREA(ACRES) - 30.00 SOIL -LOSS RATE, Fm,(INCH /HR) = 0.308 LOW LASS FRACTION - 0.238 TIME OF CONCENTRATION(MIN.) - 16.38 RATIONAL METHOD PEAK FLOW RATE (DEFINED BY USER) IS USED FOR SMALL AREA PEAK Q ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED RETURN FRBOUENCY(YEARS) = 25 5- MINUTE POINT RAINFALL VALUE(INCHES) - 0.40 30- MINUTE POINT RAINFALL VALUE(INCHES) - 0.87 1 -HOUR POINT RAINFALL VALUE(INCHES) - 1.15 3 -HOUR POINT RAINFALL VALUE(INCHES) - 1.94 6 -HOUR POINT RAINFALL VALUE(INCHES) - 2.71 24 -HOUR POINT RAINFALL VALUE(INCHES) - 4.49 ---------------------------------------------------------------------------- TOTAL CATCHMENT RUNOFF VOLUME(ACRE -FEET) = 7.89 TOTAL CATCHMENT SOIL -LOSS VOLUME(ACRE -FEET) = 3.34 ff trf # #rf tftt## rf► r r rtff••1r ####rlrf#fr # #r1r # # # # #f #rrfflrfrtff # # #rrfrf #ff••# TIME VOLUME Q 0. 17.5 35.0 52.5 70.0 (HOURS) (AF) (CPS) ---------------------------------------------------------------------------- 0.17 0.0000 0.00 Q 0.44 0.0000 1.42 Q 0.71 0.0321 1.43 Q 0.99 0.0645 1.45 Q 1.26 0.0973 1.46 Q 1.53 0.1305 1.48 Q 1.80 0.1641 1.49 Q 2.08 0.1981 1.52 Q 2.35 0.2325 1.53 Q 2.62 0.2673 1.56 Q 2.90 0.3026 1.57 Q 3.17 0.3384 1.60 Q 3.44 0.3746 1.61 Q 3.72 0.4114 1.64 Q 3.99 0.4486 1.66 Q 4.26 0.4864 1.69 Q 4.53 0.5247 1.71 Q 4.81 0.5636 1.74 Q 5.08 0.6031 1.76 Q 5.35 0.6432 1.80 Q 5.63 0.6840 1.82 Q 5.90 0.7254 1.86 Q 6.17 0.7675 1.88 Q 6.45 0.8104 1.92 Q 6.72 0.8540 1.95 Q 6.99 0.8985 1.99 Q 7.26 0.9438 2.02 Q 7.54 0.9900 2.07 Q 7.81 1.0371 2.10 Q 8.08 1.0851 2.16 Q 8.36 1.1343 2.19 Q 8.63 1.1845 2.26 Q 8.90 1.2359 2.29 Q 9.18 1.2885 2.37 Q 9.45 1.3424 2.41 Q 9.72 1.3977 2.50 Q 9.99 1.4545 2.54 Q 10.27 1.5130 2.64 Q 10.54 1.5731 2.69 Q 10.81 1.6352 2.81 Q 11.09 1.6992 2.87 Q 11.36 1.7655 3.01 Q 11.63 1.8341 3.08 Q 11.90 1.9054 3.24 Q 12.18 1.9796 3.33 Q 12.45 2.0697 4.65 . Q 12.12 2.1759 4.77 Q 13.00 2.2865 5.04 Q 13.27 2.4021 5.20 Q 13.54 2.5234 5.56 Q 13.82 2.6512 5.77 Q 14.09 2.7870 6.27 Q 14.36 2.9309 6.49 Q 14.63 3.0859 7.25 Q 14.91 3.2550 7.74 Q 15.18 3.4451 9.11 Q 15.45 3.6621 10.13 Q 15.73 3.9122 12.04 Q 16.00 4.2455 17.50 Q. 16.27 5.1447 62.21 Q 16.55 5.9638 10.40 Q 16.82 6.1753 8.35 Q 17.09 6.3466 6.84 Q 17.36 6.4914 6.00 Q 17.64 6.6197 5.37 Q 17.91 6.7356 4.90 Q 18.18 6.8417 4.51 Q 18.46 6.9282 3.16 Q 18.73 6.9970 2.94 Q 19.00 7.0611 2.75 Q 19.28 7.1213 2.59 .Q 19.55 7.1781 2.45 .Q 19.82 7.2321 2.33 Q 20.09 7.2835 2.23 .Q 20.37 7.3326 2.13 .Q 20.64 7.3798 2.05 Q 20.91 7.4251 1.97 Q 21.19 7.4687 1.90 Q 21.46 7.5109 1.84 Q 21.73 7.5516 1.78 Q 22.01 7.5911 1.72 Q 22.28 7.6295 1.67 Q 22.55 7.6667 1.63 Q 22.83 7.7030 1.58 Q 23.10 7.7383 1.54 Q 23.37 7.7727 1.51 Q 23.64 7.8063 1.47 Q 23.92 7.8391 1.44 Q 24.19 7.8712 1.41 Q 24.46 7.8870 0.00 Q 1 f•fffiif•RfffffffffflfffiflRf RRRffflii if Rffffiff ♦if iflRf iffRRRf iR #f 1 #fffffli NON - HOMOGENEOUS WATERSHED AREA - AVERAGED LOSS RATE (Fm) AND LOW LOSS FRACTION ESTIMATIONS (C) Copyright 1989 -2001 Advanced Engineering Software (sea) Ver. 8.0 Release Date: 01/01/2001 License ID 1510 Analysis prepared by: DEVELOPMENT RESOURCE CONSULTANTS, INC. 8175 E. KAISER BLVD. ANAHEIM HILLS, CA 92808 P: (714)685 -6860 F: (714)685 -6801 i.: NON- HOMOGENEOUS WATERSHED AREA - AVERAGED LOSS RATE (Fm) AND LOW LOSS FRACTION ESTIMATIONS FOR AMC II: A�y.�� TOTAL 24 -HOUR DURATION RAINFALL DEPTH = 10.50 (inches) /W = SOIL -COVER AREA PERCENT OF SCS CURVE LOSS RATE TYPE (Acres) PERVIOUS AREA NUMBER Pp(in. /hr.) YIELD 1 30.00 100.00 84. 0.308 0.811 TOTAL AREA (Acres) = 30.00 AREA - AVERAGED LASS RATE, Fm (in. /hr.) 0.308 AREA - AVERAGED LOW LOSS FRACTION, Y = 0.189 #ffiRf if iffiflf Rifflf Rff #fff iffRkffffifRlf ffffff !•RffffffiRlRffff if #Rff ifiti SMALL AREA UNIT HYDROGRAPH MODEL (C) Copyright 1989 -2001 Advanced Engineering Software (see) Ver. 8.0 Release Date. 01/01/2001 License ID 1510 Analysis prepared by: DEVELOPMENT RESOURCE CONSULTANTS, INC. 8175 E. KAISER BLVD. ANAHEIM HILLS, CA 92808 P: (714)685 -6860 F: (714)685 -6801 RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90 TOTAL CATCHMENT AREA(ACRES) = 30.00 SOIL -LOSS RATE, Fm,(INCH /HR) = 0.308 LAW LASS FRACTION = 0.189 TIME OF CONCBNTRATION(MIN.) = 15.93 RATIONAL METHOD PEAK FLOW RATE (DEFINED BY USER) IS USED FOR SMALL AREA PEAK Q ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED RETURN FREQUENCY(YEARS) = 100 5- MINUTE POINT RAINFALL VALUE(INCHES) = 0.52 30- MINUTE POINT RAINFALL VALUE(INCHES) = 1.09 MEN . : . : 1 -HOUR POINT RAINFALL VALUE(INCHES) = 1.45 3 -HOUR POINT RAINFALL VALUE(INCHES) 2.43 6 -HOUR POINT RAINFALL VALUE (INCHES) = 3.36 24 -HOUR POINT RAINFALL VALUE(INCHES) 5.63 ---------------------------------------------------------------------------- TOTAL CATCHMENT RUNOFF VOLUME(ACRE -FEET) 10.50 TOTAL CATCHMENT SOIL -LOSS VOLUME (ACRE -FEET) = 3.57 ttftt #i#ititf #ttitifffttttf if# f# i# ititff ftf ifitfffi #•f #i#f tiif•i ►i#ffffftiii TIME VOLUME Q 0, 22.5 45.0 67.5 90.0 (HOURS) (AF) (CFS) ---------------------------------------------------------------------------- 0.07 0.0000 0.00 Q 0.34 0.0000 1.92 Q 0.60 0.0424 1.94 Q 0.87 0.0852 1.97 Q 1.13 0.1285 1.98 Q 1.40 0.1723 2.01 Q 1.66 0.2166 2.03 Q 1.93 0.2614 2.06 Q 2.19 0.3067 2.07 Q 2.46 0.3525 2.11 Q 2.73 0.3989 2.12 Q 2.99 0.4459 2.16 Q 3.26 0.4935 2.18 Q 3.52 0.5417 2.22 Q 3.79 0.5906 2.24 Q 4.05 0.6401 2.28 Q 4.32 0.6902 2.30 Q 4.58 0.7411 2.34 .Q 4.85 0.7928 2.36 .Q 5.11 0.8451 2.41 .Q 5.38 0.8983 2.44 Q 5.65 0.9523 2.49 Q 5.91 1.0072 2.51 Q 6.18 1.0629 2.57 Q 6.44 1.1196 2.60 Q 6.71 1.1773 2.66 Q 6.97 1.2359 2.69 .Q 7.24 1.2957 2.76 Q 7.50 1.3566 2.79 Q 7.77 1.4186 2.86 Q 8.03 1.4819 2.90 Q 8.30 1.5465 2.98 Q 8.57 1.6124 3.03 Q 8.83 1.6798 3.12 Q 9.10 1.7488 3.17 Q 9.36 1.8194 3.27 Q 9.63 1.8917 3.32 Q 9.89 1.9658 3.44 .Q 10.16 2.0420 3.50 Q 10.42 2.1203 3.63 .Q 10.69 2.2008 3.71 .Q 10.96 2.2839 3.86 .Q 11.22 2.3695 3.95 .Q 11.49 2.4582 4.13 Q 11.75 2.5499 4.23 Q 12.02 2.6453 4.46 Q 12.28 2.7521 5.28 Q 12.55 2.8762 6.04 Q 12.81 3.0105 6.20 Q 13.08 3.1506 6.57 Q 13.35 3.2971 6.78 Q 13.61 3.4511 7.26 Q 13.88 3.6136 7.54 Q 14.14 3.7866 8.23 Q 14.41 3.9720 8.67 Q 14.67 4.1735 9.70 Q 14.94 4.3936 10.36 Q 15.20 4.6414 12.22 Q 15.47 4.9248 13.60 Q 15.73 5.2517 16.74 Q 16.00 5.6930 22.94 Q 16.27 6.8583 83.28 Q 16.53 7.9269 14.12 Q 16.80 8.2046 11.18 Q 17.06 8.4276 9.14 Q 17.33 8.6141 7.86 Q 17.59 8.7772 7.01 Q 17.86 8.9241 6.38 Q 18.12 9.0586 5.89 Q 18.39 9.1709 4.34 Q 18.66 9.2628 4.04 Q 18.92 9.3485 3.78 .Q 19.19 9.4292 3.57 .Q 19.45 9.5054 3.38 Q 19.72 9.5777 3.22 Q 19.98 9.6467 3.07 .Q 20.25 9.7127 2.94 Q 20.51 9.7760 2.83 Q 20.78 9.8369 2.72 Q 21.04 9.8956 2.63 Q 21.31 9.9523 2.54 Q 21.58 10.0072 2.46 Q 21.84 10.0603 2.39 Q 22.11 10.1120 2.32 Q 22.37 10.1622 2.26 Q 22.64 10.2110 2.20 Q 22.90 10.2586 2.14 Q 23.17 10.3050 2.09 Q 23.43 10.3503 2.04 Q 23.70 10.3946 2.00 Q 23.97 10.4379 1.95 Q 24.23 10.4804 1.92 Q 24.50 ---------------------------------------------------------------------------- 10.5014 0.00 Q 1 ' HYDROLOGY STUDY FALCON RIDGE TOWN CENTER — FONTANA, CALIFORNIA it SECTION &0 DETENTION BASIN SIZING / OUTLET REPORTS it f! 1� Ll 01 -900 Hydrology Report.doc Stage / Storage / Discharge Table Stage Storage Elevation Culy. A Culy. B Culy. C Weir A Weir B Weir C Discharge (ft) (cuft) (ft) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) Reservoir Report 00 72.00 0.00 - - 0.00 Page 1 1 0.1 291 72.10 2.05 - - 0.00 0.00 - Reservoir No. 1 0.2 581 72.20 4.78 - - 0.00 Pond A 4.78 0.3 872 72.30 5.86 - Culvert / Orifice Structures 0.00 - Weir Structures 0.4 0.5 1,162 1,453 72.40 72.50 6.76 - 7.56 - - 0.00 - 0.00 0.00 - 0.00 - 6.76 7.56 0.6 1,743 [A►] [B] [C] - 0.00 [A►] [B] [C] 0.7 Rise (in) = 24.0 0.0 0.0 Crest Len (ft) = 1.5 6.3 0.0 Span (in) = 24.0 0.0 0.0 Crest El. (ft) = 75.00 76.50 0.00 9.57 No. Barrels = 1 0 0 Weir Coeff. = 3.00 3.00 3.00 0.00 - Invert El. (ft) = 72.00 0.00 0.00 Eqn. Exp. = 1.50 1.50 1.50 - 0.00 Length (ft) = 1.0 0.0 0.0 Multi -Stage = No No No 11.22 - Slope ( %) = 1.00 0.00 0.00 11.22 1.2 4,172 73.20 N -Value = .013 .013 .013 0.00 11.72 1.3 4,806 Orif. Coeff. = 0.60 0.60 0.60 - 0.00 - 0.00 12.20 1.4 Multi -Stage = - No No Tailwater Elevation = 70.00 ft 0.00 - 12.66 Note: All oultlows have been analyzed under inlet and outlet control. 6,073 73.50 13.10 - 0.00 0.00 Stage / Storage / Discharge Table Stage Storage Elevation Culy. A Culy. B Culy. C Weir A Weir B Weir C Discharge (ft) (cuft) (ft) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) Continues on next page... 0.0 00 72.00 0.00 - - 0.00 0.00 - 0.00 0.1 291 72.10 2.05 - - 0.00 0.00 - 2.05 0.2 581 72.20 4.78 - - 0.00 0.00 - 4.78 0.3 872 72.30 5.86 - - 0.00 0.00 - 5.86 0.4 0.5 1,162 1,453 72.40 72.50 6.76 - 7.56 - - 0.00 - 0.00 0.00 - 0.00 - 6.76 7.56 0.6 1,743 72.60 8.29 - - 0.00 0.00 - 8.29 0.7 2,034 72.70 8.95 - - 0.00 0.00 - 8'.95 0.8 2,324 72.80 9.57 - - 0.00 0.00 - 9.57 0.9 2,615 72.90 10.15 - - 0.00 0.00 - 10.15 1.0 2,905 73.00 10.70 - - 0.00 0.00 - 10.70 1.1 3,539 73.10 11.22 - - 0.00 0.00 - 11.22 1.2 4,172 73.20 11.72 0.00 0.00 11.72 1.3 4,806 73.30 _- 12.20 - 0.00 - 0.00 12.20 1.4 5,439 73.40 12.66 - - 0.00 0.00 - 12.66 1.5 6,073 73.50 13.10 - 0.00 0.00 13.10 1.6 6,707 73.60 13.53 - 0.00 _- 0.00 13.53 1.7 7,340 73.70 13.95 - - 0.00 0.00 - 13.95 1.8 7,974 73.80 14.35 - - 0.00 0.00 - 14.35 1.9 8,607 73.90 14.74 0.00 0.00 14.74 1 2.0 9,241 74.00 - 15.12 - 0.00 - 0.00 15.12 2.1 9,984 74.10 15.86 - - 0.00 0.00 - 15.86 ' 2.2 2.3 10,727 11,469 74.20 74.30 16.57 - 17.24 - 0.00 0.00 0.00 - 0.00 16.57 17.24 2.4 12,212 74.40 17.90 0.00 0.00 17.90 2.5 12,955 74.50 18.52 - - 0.00 0.00 - 18.52 Continues on next page... j F' 11 d i i 0 H n I I u Pond A Page 2 Stage / Storage / Discharge Table Stage Storage Elevation Culy. A Culv. B Culy. C Weir A Weir B Weir C Discharge (ft) (cult) (ft) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) 2.6 13,698 74.60 19.13 - - 0.00 0.00 - 19.13 2.7 14,441 74.70 19.72 - - 0.00 0.00 - 19.72 2.8 15,183 74.80 20.29 - - 0.00 0.00 - 20.29 2.9 15,926 74.90 20.85 - - 0.00 0.00 - 20.85 3.0 16,669 75.00 21.39 - - 0.00 0.00 - 21.39 3.1 17,527 75.10 21.60 - - 0.14 0.00 - 21.74 3.2 18,384 75.20 22.43 - - 0.40 0.00 - 22.84 3.3 19,242 75.30 22.94 - - 0.74 0.00 - 23.68 3.4 20,099 75.40 23.43 - - 1.14 0.00 - 24.57 3.5 20,957 75.50 23.91 - - 1.59 0.00 - 25.51 3.6 21,815 75.60 24.39 - - 2.09 0.00 - 26.48 3.7 22,672 75.70 24.85 - - 2.64 0.00 - 27.49 3.8 23,530 75.80 25.31 - - 3.22 0.00 - 28.53 3.9 24,387 75.90 25.76 - - 3.84 0.00 - 29.60 4.0 25,245 76.00 26.20 - - 4.50 0.00 - 30.70 4.1 26,223 76.10 26.63 - - 5.19 0.00 - 31.82 4.2 27,201 76.20 27.06 - - 5.92 0.00 - 32.97 4.3 28,180 76.30 27.48 - - 6.67 0.00 - 34.15 4.4 29,158 76.40 27.89 - - 7.45 0.00 - 35.34 4.5 30,136 76.50 28.30 - - 8.27 0.00 - 36.56 4.6 31,114 76.60 28.70 - - 9.11 0.60 - 38.40 4.7 32,092 76.70 29.09 - - 9.97 1.68 - 40.75 4.8 33,071 76.80 29.48 - - 10.87 3.10 - 43.45 4.9 34,049 76.90 29.87 - - 11.79 4.77 - 46.42 5.0 35,027 77.00 30.25 - - 12.73 6.66 - 49.64 5.1 36,131 77.10 30.63 - - 13.69 8.76 - 53.08 5.2 37,236 77.20 31.00 - - 14.68 11.03 - 56.71 5.3 38,340 77.30 31.36 - - 15.70 13.48 - 60.54 5.4 39,444 77.40 31.73 - - 16.73 16.09 - 64.54 5.5 40,549 77.50 32.08 - - 17.79 18.84 - 68.71 5.6 41,653 77.60 32.44 - - 18.87 21.74 - 73.04 5.7 42,757 77.70 32.79 - - 19.96 24.77 - 77.52 5.8 43,861 77.80 33.14 - - 21.08 27.92 - 82.15 5.9 44,966 77.90 33.48 - - 22.22 31.21 - 86.91 6.0 46,070 78.00 33.82 - - 23.38 34.61 - 91.81 6.1 47,306 78.10 34.16 - - 24.56 38.13 - 96.85 6.2 48,542 78.20 34.49 - - 25.76 41.76 - 102.01 6.3 49,778 78.30 34.82 - - 26.98 45.50 - 107.29 6.4 51,014 78.40 35.15 - - 28.21 49.34 - 112.70 6.5 52,250 78.50 35.47 - - 29.47 53.29 - 118.22 6.6 53,486 78.60 35.79 - - 30.74 57.33 - 123.86 6.7 54,722 78.70 36.11 - - 32.03 61.48 - 129.61 6.8 55,958 78.80 36.43 - - 33.33 65.72 - 135.47 6.9 57,194 78.90 36.74 - - 34.66 70.05 - 141.44 7.0 58,430 79.00 37.05 - - 36.00 74.47 - 147.52 Stage / Discharge s 6 Stage (ft) 4 oe 2 0 0 50 100 150 Discharge (cfs) Stage / Storage s 6 Stage (ft) 4 2 0 0 10000 20000 30000 40000 50000 60000 Storage (cult) Continues on next page... Reservoir Report Page 1 Reservor No. 2 l ' Pond B Culvert / Orifice Structures Weir Structures [A] [B] [C] [A] [B] [C] Rise (in) = 24.0 0.0 0.0 Crest Len (ft) = 1.5 6.3 0.0 Span (in) = 24.0 0.0 0.0 Crest El. (ft) = 87.00 88.50 0.00 No. Barrels = 1 0 0 Weir Coeff. = 3.00 3.00 3.00 Invert El. (ft) = 84.00 0.00 0.00 Eqn. Exp. = 1.50 1.50 1.50 Length (ft) = 1.0 0.0 0.0 Multi -Stage = No No No Slope ( %) = 1.00 0.00 0.00 N -Value = .013 .013 .013 Orif. Coeff. = 0.60 0.60 0.60 Multi -Stage = - No No Tailwater Elevation = 80.00 ft iri Noce: All outflows have been analyzed under inlet and outlet control. E I Stage / Storage / Discharge Table Stage Storage Elevation Culy. A Culy. B Culy. C Weir A Weir B Weir C Discharge (ft) (cuft) (ft) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) 0.0 00 84.00 0.00 - - 0.00 0.00 - 0.00 0.1 291 84.10 2.05 - - 0.00 0.00 - 2.05 0.2 581 84.20 4.78 - - 0.00 0.00 - 4.78 0.3 872 84.30 5.86 - - 0.00 0.00 - 5.86 0.4 1,162 84.40 0.5 1,453 84.50 6.76 - 7.56 - - 0.00 - 0.00 0.00 0.00 - - 6.76 7.56 0.6 1,743 84.60 8.29 - - 0.00 0.00 - 8.29 0.7 2,034 84.70 8.95 - - 0.00 0.00 - 8.95 0.8 2,324 84.80 9.57 - - 0.00 0.00 - 9.57 0.9 2,615 84.90 10.15 - - 0.00 0.00 - 10.15 1.0 2,905 85.00 10.70 - - 0.00 0.00 - 10.70 1.1 3,539 85.10 11.22 - - 0.00 0.00 - 11.22 1.2 4,172 85.20 11.72 - - 0.00 0.00 0.00 - 11.72 12.20 1.3 4,806 85.30 12.20 - - 0.00 - 1.4 5,439 85.40 12.66 - - 0.00 0.00 - 12.66 1.5 6,073 85.50 13.10 - - 0.00 0.00 - 13.10 1.6 6,707 85.60 13.53 - - 0.00 0.00 - 13.53 1.7 7,340 85.70 13.95 - - 0.00 0.00 - 13.95 1.8 7,974 85.80 14.35 - - 0.00 0.00 - 14.35 1.9 8,607 85.90 14.74 - - 0.00 0.00 - 14.74 2.0 9,241 86.00 15.12 - - 0.00 0.00 - 15.12 2.1 9,984 86.10 15.86 - - 0.00 0.00 - 15.86 2.2 10,727 86.20 2.3 11,469 86.30 16.57 - 17.24 - 0.00 0.00 0.00 0.00 - 16.57 17.24 2.4 12,212 86.40 17.90 - 0.00 0.00 _ 17.90 2.5 12,955 86.50 18.52 - - 0.00 0.00 - 18.52 Continues on next page... u C Pond B Page 2 Stage / Storage / Discharge Table Stage Storage Elevation Culy. A Culv. B Culy. C Weir A Weir B Weir C Discharge (ft) (cuft) (ft) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) 2.6 13,698 86.60 19.13 - - 0.00 0.00 - 19.13 2.7 14,441 86.70 19.72 - - 0.00 0.00 - 19.72 2.8 15,183 86.80 20.29 - - 0.00 0.00 - 20.29 2.9 15,926 86.90 20.85 - - 0.00 0.00 - 20.85 3.0 16,669 87.00 21.39 - - 0.00 0.00 - 21.39 3.1 17,527 87.10 21.60 - - 0.14 0.00 - 21.74 3.2 18,384 87.20 22.43 - - 0.40 0.00 - 22.84 3.3 19,242 87.30 22.94 - - 0.74 0.00 - 23.68 3.4 20,099 87.40 23.43 - - 1.14 0.00 - 24.57 3.5 20,957 87.50 23.91 - - 1.59 0.00 - 25.51 3.6 21,815 87.60 24.39 - - 2.09 0.00 - 26.48 3.7 22,672 87.70 24.85 - - 2.64 0.00 - 27.49 3.8 23,530 87.80 25.31 3.22 0.00 - 28.53 I 3.9 24,387 87.90 25.76 - - 3.84 0.00 29.60 4.0 25,245 88.00 26.20 - - 4.50 0.00 - 30.70 4.1 26,223 88.10 26.63 - - 5.19 0.00 - 31.82 4.2 27,201 88.20 27.06 - - 5.92 0.00 - 32.97 4.3 28,180 88.30 27.48 - - 6.67 0.00 - 34.15 4.4 29,158 88.40 27.89 - - 7.45 0.00 - 35.34 4.5 30,136 88.50 28.30 - - 8.27 0.00 - 36.56 4.6 31,114 88.60 28.70 - - 9.11 0.60 - 38.40 4.7 32,092 88.70 29.09 - - 9.97 1.68 - 40.75 4.8 33,071 88.80 29.48 - - 10.87 3.10 - 43.45 4.9 34,049 88.90 29.87 - - 11.79 4.77 - 46.42 5.0 35,027 89.00 30.25 - - 12.73 6.66 - 49.64 5.1 36,131 89.10 30.63 - - 13.69 8.76 - 53.08 5.2 37,236 89.20 31.00 - - 14.68 11.03 - 56.71 5.3 38,340 89.30 31.36 - - 15.70 13.48 - 60.54 5.4 39,444 89.40 31.73 - - 16.73 16.09 - 64.54 5.5 40,549 89.50 32.08 - - 17.79 18.84 - 68.71 5.6 41,653 89.60 32.44 18.87 21.74 - 73.04 5.7 42,757 89.70 32.79 - - 19.96 24.77 77.52 5.8 43,861 89.80 33.14 - - 21.08 27.92 - 82.15 5.9 44,966 89.90 33.48 - - 22.22 31.21 - 86.91 6.0 46,070 90.00 33.82 23.38 34.61 - 91.81 6.1 47,306 90.10 34.16 - - 24.56 38.13 96.85 6.2 48,542 90.20 34.49 - - 25.76 41.76 - 102.01 6.3 49,778 90.30 34.82 26.98 45.50 107.29 6.4 51,014 90.40 35.15 - - 28.21 - 49.34 112.70 6.5 52,250 90.50 35.47 29.47 53.29 118.22 6.6 53,486 90.60 35.79 - - 30.74 57.33 - 123.86 6.7 54,722 90.70 36.11 32.03 61.48 - 129.61 6.8 55,958 90.80 36.43 - - 33.33 65.72 135.47 6.9 57,194 90.90 36.74 - - 34.66 70.05 - 141.44 7.0 58,430 91.00 37.05 - - 36.00 74.47 - 147.52 u C t c i �J Stage / Discharge 6 Stage (ft) 4 2 0 0 50 100 150 Discharge (cfs) e Stage / Storage s 6 Stage (ft) 4 2 0 0 10000 20000 30000 40000 50000 60000 Storage (cult) Reservoir Report Pa , Reservoir No. 3 Pond C Culvert / Orifice Structures Weir Structures [A►] [B] [C] [A►] [B] [C] Rise (in) = 24.0 0.0 0.0 Crest Len (ft) = 1.5 6.3 0.0 Span (in) = 24.0 0.0 0.0 Crest El. (ft) = 89.00 90.50 0.00 No. Barrels = 1 0 0 Weir Coeff. = 3.00 3.00 3.00 Invert El. (ft) = 86.00 0.00 0.00 Eqn. Exp. = 1.50 1.50 1.50 Length (ft) = 1.0 0.0 0.0 Multi -Stage = No No No Slope ( %) = 1.00 0.00 0.00 N -Value = .013 .013 .013 Orif. Coeff. = 0.60 0.60 0.60 Multi -Stage = - No No Tailwater Elevation = 80.00 ft Note: All outflows have been analyzed under inlet and outlet control. Stage / Storage / Discharge Table Stage Storage Elevation Culy. A Culy. B Culy. C Weir A Weir B Weir C Discharge (ft) (cuft) (ft) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) 0.0 00 86.00 0.00 - - 0.00 0.00 - 0.00 0.1 291 86.10 2.05 0.00 0.00 2.05 0.2 581 86.20 _ 4.78 _ 0.00 0.00 _ 4.78 0.3 872 86.30 5.86 - - 0.00 0.00 - 5.86 0.4 1,162 86.40 6.76 � 0.00 0.00 6.76 0.5 1,453 86.50 7.56 = 0.00 0.00 = 7.56 0.6 1,743 86.60 8.29 -,- 0.00 0.00 8.29 0.7 2,034 86.70 8.95 - - 0.00 0.00 - 8.95 0.8 2,324 86.80 9.57 - - 0.00 0.00 - 9.57 0.9 2,615 86.90 10.15 - - 0.00 0.00 - 10.15 1.0 2,905 87.00 10.70 - - 0.00 0.00 - 10.70 1.1 3,539 87.10 11.22 0.00 0.00 11.22 1.2 4,172 87.20 11.72 � 0.00 � 0.00 11.72 1.3 4,806 87.30 12.20 0.00 0.00 12.20 1.4 5,439 87.40 12.66 - - 0.00 0.00 - 12.66 1.5 6,073 87.50 13.10 - - 0.00 0.00 - 13.10 1.6 6,707 87.60 13.53 - - 0.00 0.00 - 13.53 1.7 7,340 87.70 13.95 - - 0.00 0.00 - 13.95 1.8 7,974 87.80 14.35 - - 0.00 0.00 - 14.35 1.9 8,607 87.90 14.74 - - 0.00 0.00 - 14.74 2.0 9,241 88.00 15.12 - - 0.00 0.00 - 15.12 2.1 9,984 88.10 15.86 - - 0.00 0.00 - 15.86 2.2 10,727 88.20 16.57 0.00 0.00 16.57 2.3 11,469 88.30 17.24 � 0.00 0.00 = 17.24 2.4 12,212 88.40 17.90 r 0.00 0.00 17.90 2.5 12,955 88.50 18.52 - - 0.00 0.00 - 18.52 Confinues on next page... J1 0 L' Pond C Page 2 Stage / Storage / Discharge Table Stage Storage Elevation Culy. A Culy. B Culv. C Weir A Weir B Weir C Discharge (ft) (cuft) (ft) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) 2.6 13,698 88.60 19.13 - - 0.00 0.00 - 19.13 2.7 14,441 88.70 19.72 - - 0.00 0.00 - 19.72 2.8 15,183 88.80 20.29 - - 0.00 0.00 - 20.29 2.9 15,926 88.90 20.85 - - 0.00 0.00 - 20.85 3.0 16,669 89.00 21.39 - - 0.00 0.00 - 21.39 3.1 17,527 89.10 21.60 - - 0.14 0.00 - 21.74 3.2 18,384 89.20 22.43 - - 0.40 0.00 - 22.84 3.3 19,242 89.30 22.94 - - 0.74 0.00 - 23.68 Im ' 3.4 3.5 20,099 20,957 89.40 89.50 23.43 23.91 - - 1.14 - - 1.59 0.00 - 0.00 - 24.57 25.51 3.6 21,815 89.60 24.39 - - 2.09 0.00 - 26.48 3.7 22,672 89.70 24.85 - - 2.64 0.00 - 27.49 MR 3.8 23,530 89.80 25.31 - - 3.22 0.00 - 28.53 L 3.9 24,387 89.90 25.76 - - 3.84 0.00 - 29.60 4.0 25,245 90.00 26.20 - - 4.50 0.00 - 30.70 4.1 26,223 90.10 26.63 - - 5.19 0.00 - 31.82 4.2 27,201 90.20 27.06 - - 5.92 0.00 - 32.97 4.3 28,180 90.30 27.48 - - 6.67 0.00 - 34.15 4.4 29,158 90.40 27.89 - - 7.45 0.00 - 35.34 4.5 30,136 90.50 28.30 - - 8.27 0.00 - 36.56 4.6 31,114 90.60 28.70 - - 9.11 0.60 - 38.40 4.7 32,092 90.70 29.09 - - 9.97 1.68 - 40.75 4.8 33,071 90.80 29.48 - - 10.87 3.10 - 43.45 4.9 34,049 90.90 29.87 11.79 4.77 46.42 5.0 35,027 91.00 30.25 _ - 12.73 - 6.66 49.64 5.1 36,131 91.10 30.63 - - 13.69 8.76 - 53.08 5.2 5.3 37,236 38,340 91.20 91.30 31.00 31.36 - - 14.68 - - 15.70 11.03 - 13.48 - 56.71 60.54 5.4 39,444 91.40 31.73 - - 16.73 16.09 - 64.54 5.5 40,549 91.50 32.08 - - 17.79 18.84 - 68.71 5.6 41,653 91.60 32.44 - - 18.87 21.74 - 73.04 E 5.7 42,757 91.70 32.79 - - 19.96 24.77 - 77.52 5.8 43,861 91.80 33.14 - - 21.08 27.92 - 82.15 5.9 44,966 91.90 33.48 - - 22.22 31.21 - 86.91 6.0 46,070 92.00 33.82 - - 23.38 34.61 - 91.81 6.1 47,306 92.10 34.16 - - 24.56 38.13 - 96.85 6.2 48,542 92.20 34.49 - - 25.76 41.76 - 102.01 6.3 49,778 92.30 34.82 - - 26.98 45.50 - 107.29 6.4 51,014 92.40 35.15 - - 28.21 49.34 - 112.70 6.5 52,250 92.50 35.47 - - 29.47 53.29 - 118.22 6.6 53,486 92.60 35.79 - - 30.74 57.33 - 123.86 6.7 54,722 92.70 36.11 - - 32.03 61.48 - 129.61 6.8 55,958 92.80 36.43 - - 33.33 65.72 - 135.47 6.9 57,194 92.90 36.74 - - 34.66 70.05 - 141.44 7.0 58,430 93.00 37.05 - - 36.00 74.47 - 147.52 J1 0 L' 6 1 1 1 1 B L' Stage / Discharge s 6 Stage (ft) 4 2 0 0 50 100 150 Discharge (cfs) Stage / Storage s 6 Stage (ft) 4 2 0 0 10000 20000 30000 40000 50000 60000 Storage (cult) HYDROLOGY STUDY FALCON RIDGE TOWN CENTER — FONTANA, CALIFORNIA SECTION 9.0 FLOW THROUGH DETENTION BASIN CALCULATIONS kl N 0 1 01 -900 Hydrology Report.doc r. 83 0.00 fffffff iiiff if♦ ff fifff flf iffiffffl lffffl lflfff ilf!!fl ff!lfff if kfff iffff fffff---------------------------------------------------------------------- - - - - -- USER SPECIFIED INFLOW HYDROGRAPH (C) Copyright 1989 -2001 Advanced Engineering Software (see) Ver. 8.0 Release Date: 01/01/2001 License ID 1510 _______.____.____._.___..... FLAW - THROUGH DETENTION BASIN MODEL Analysis prepared by: SPECIFIED BASIN CONDITIONS ARE AS FOLLOWS: DEVELOPMENT RESOURCE CONSULTANTS, INC. CONSTANT HYDROGRAPH TIME UNIT(MINUTES) = 17.143 8175 E. KAISER BLVD. DEAD STORAGE(AF) = 0.00 ANAHEIM HILLS, CA 92808 SPECIFIED DEAD STORAGE(AF) FILLED = 0.00 P: (714)685 -6860 F: (714)685 -6801 ASSUMED INITIAL DEPTH(FEET) IN STORAGE BASIN - 0.00 ................. . ............................... ="A�. CONSTANT HYDROGRAPH TIME UNIT(MIN.) = 17.14 TOTAL NUMBER OF INFLOW HYDROGRAPH DATA PAIRS = 38 --------------- INTERVAL .----- --- ------ --------- -- - - -- ------------------------------- FLOW NUMBER (CFS) 1 0.00 5 0.53 10 0.56 15 0.60 20 0.66 25 0.72 30 0.81 35 0.92 40 1.10 41 1.13 42 1.31 43 1.50 44 1.59 45 1.64 46 1.76 47 1.83 48 2.00 49 2.12 50 2.44 51 2.60 52 3.07 53 3.41 54 4.11 55 5.72 56 28.94 57 3.68 58 2.81 59 2.30 60 1.91 61 1.70 62 1.54 63 1.16 64 1.07 65 1.00 70 0.76 75 0.63 80 0.54 INFLOW V effective depth ------- - - - - -- _ (and volume) detention V ............. basin outflow --- ---- - - - - -- \ storage basin outlet V -- --- - - - - -- OUTFLOW DEPTH -VS.- STORAGE AND DEPTH -VS.- DISCHARGE INFORMATION: TOTAL NUMBER OF BASIN DEPTH INFORMATION ENTRIES - 20 *BASIN -DEPTH STORAGE OUTFLOW *•BASIN -DEPTH STORAGE OUTFLOW * • (FEET) (ACRE -FEET) (CFS) ** (FEET) (ACRE -FEET) (CFS) * • 0.000 0.000 0.000 * 0.500 0.033 7.560 + 1.000 0.067 10.700 ** 1.500 0.139 13.100* * 2.000 0.212 15.120•• 2.500 0.297 18.520• * 3.000 0.383 21.390 ** 3.200 0.422 22.840* * 3.500 0.481 25.510 ** 3.700 0.521 27.490• * 4.000 0.580 30.700 * 4.200 0.624 32.970* • 4.500 0.692 36.560!* 4.700 0.737 40.750* * 5.000 0.804 49.640•• 5.200 0.855 56.710* *. 5.500 0.931 68.710 ** 5.700 0.982 77.520* * 6.000 1.058 91.810!* 6.500 1.199 118.220* ---------------------------------------------------------------------------- BASIN STORAGE, OUTFLOW AND DEPTH ROUTING VALUES: INTERVAL DEPTH (S- 0•DT /2) (S +O *DT /2) NUMBER (FEET) (ACRE -FEET) (ACRE -FEET) 1 0.00 0.00000 0.00000 2 0.50 - 0.05586 0.12266 3 1.00 - 0.05963 0.19303 4 1.50 - 0.01526 0.29406 5 2.00 0.03359 0.39061 6 2.50 0.07875 0.51605 7 3.00 0.13016 0.63524 8 3.20 0.15234 0.69166 9 3.50 0.17992 0.78228 10 3.70 0.19594 0.84506 11 4.00 0.21704 0.94196 12 4.20 0.23514 1.01366 1.78 0.008 13 4.50 0.26016 1.12344 2.04 0.010 14 4.70 0.25559 1.21781 2.25 0.010 15 5.00 0.21803 1.39017 2.35 0.011 16 5.20 0.18526 1.52434 2.47 0.011 17 5.50 0.11968 1.74212 2.61 0.012 18 5.70 0.06637 1.89683 2.79 0.013 19 6.00 - 0.02594 2.14194 3.00 0.014 20 6.50 - 0.19625 2.59525 3.32 0.016 WHERE S= STORAGE (AF);O =OUTFLOW(AF /MIN.);DT =UNIT INTERVAL(MIN.) ---------------------------------------------------------------------------- DETENTION BASIN ROUTING RESULTS: 2.60 0.25 NOTE: COMPUTED BASIN DEPTH, OUTFLOW, AND STORAGE QUANTITIES OCCUR AT THE GIVEN TIME. BASIN INFLOW VALUES REPRESENT THE AVERAGE INFLOW DURING THE RECENT HYDROGRAPH UNIT INTERVAL. TIME DEAD - STORAGE INFLOW EFFECTIVE OUTFLOW EFFECTIVE (HRS) FILLED(AF) (CPS) DEPTH(FT) (CPS) VOLUME(AF) ---------------------------------------------------------------------------- 0.286 0.000 0.00 0.00 0.00 0.000 0.571 0.000 0.13 0.01 0.10 0.001 0.857 0.000 0.26 0.03 0.29 0.002 1.143 0.000 0.40 0.04 0.48 0.003 1.429 0.000 0.53 0.05 0.67 0.003 1.714 0.000 0.54 0.05 0.78 0.003 2.000 0.000 0.54 0.05 0.78 0.003 2.286 0.000 0.55 0.05 0.79 0.004 2.571 0.000 0.55 0.05 0.80 0.004 2.857 0.000 0.56 0.05 0.81 0.004 3.143 0.000 0.57 0.05 0.82 0.004 3.429 0.000 0.58 0.06 0.83 0.004 3.714 0.000 0.58 0.06 0.84 0.004 4.000 0.000 0.59 0.06 0.86 0.004 4.286 0.000 0.60 0.06 0.87 0.004 4.571 0.000 0.61 0.06 0.88 0.004 4.857 0.000 0.62 0.06 0.90 0.004 5.143 0.000 0.64 0.06 0.92 0.004 5.429 0.000 0.65 0.06 0.93 0.004 5.714 0.000 0.66 0.06 0.95 0.004 6.000 0.000 0.67 0.06 0.97 0.004 6.286 0.000 0.68 0.07 0.99 0.004 6.571 0.000 0.70 0.07 1.00 0.004 6.857 0.000 0.71 0.07 1.02 0.005 7.143 0.000 0.72 0.07 1.04 0.005 7.429 0.000 0.74 0.07 1.06 0.005 7.714 0.000 0.76 0.07 1.09 0.005 8.000 0.000 0.77 0.07 1.11 0.005 8.286 0.000 0.79 0.08 1.14 0.005 8.571 0.000 0.81 0.08 1.17 0.005 8.857 0.000 0.83 0.08 1.19 0.005 9.143 0.000 0.85 0.08 1.23 0.005 9.429 0.000 0.88 0.08 1.26 0.006 9.714 0.000 0.90 0.09 1.29 0.006 10.000 0.000 0.92 0.09 1.32 0.006 10.286 0.000 0.96 0.09 1.37 0.006 10.571 0.000 0.99 0.10 1.42 0.006 10.857 0.000 1.03 0.10 1.47 0.007 11.143 0.000 1.06 0.10 1.52 0.007 11.429 0.000 1.10 0.11 1.57 0.007 11.714 0.000 1.13 0.11 1.62 0.007 12.000 0.000 1.31 0.13 1.78 0.008 12.286 0.000 1.50 0.14 2.04 0.010 12.571 0.000 1.59 0.15 2.25 0.010 12.857 0.000 1.64 0.16 2.35 0.011 13.143 0.000 1.76 0.17 2.47 0.011 13.429 0.000 1.83 0.18 2.61 0.012 13.714 0.000 2.00 0.19 2.79 0.013 14.000 0.000 2.12 0.20 3.00 0.014 14.286 0.000 2.44 0.23 3.32 0.016 14.571 0.000 2.60 0.25 3.67 0.017 14.857 0.000 3.07 0.30 4.13 0.020 15.143 0.000 3.41 0.33 4.72 0.022 15.429 0.000 4.11 0.40 5.47 0.026 15.714 0.000 5.72 0.59 7.05 0.039 16.000 0.000 28.94 3.17 15.37 0.416 16.286 0.000 3.68 1.21 17.17 0.098 16.571 0.000 2.81 0.27 7.90 0.018 16.857 0.000 2.30 0.22 3.72 0.015 17.143 0.000 1.91 0.18 3.06 0.012 17.429 0.000 1.70 0.16 2.63 0.011 17.714 0.000 1.54 0.15 2.36 0.010 18.000 0.000 1.16 0.11 1.96 0.007 18.286 0.000 1.07 0.10 1.62 0.007 18.571 0.000 1.00 0.10 1.51 0.006 18.857 0.000 0.95 0.09 1.42 0.006 19.143 0.000 0.90 0.09 1.35 0.006 19.429 0.000 0.86 0.08 1.28 0.006 19.714 0.000 0.81 0.08 1.21 0.005 20.000 0.000 0.76 0.07 1.14 0.005 20.286 0.000 0.73 0.07 1.09 0.005 20.571 0.000 0.71 0.07 1.05 0.005 20.857 0.000 0.68 0.07 1.01 0.004 21.143 0.000 0.66 0.06 0.97 0.004 21.429 0.000 0.63 0.06 0.94 0.004 21.714 0.000 0.61 0.06 0.90 0.004 22.000 0.000 0.59 0.06 0.88 0.004 22.286 0.000 0.58 0.06 0.85 0.004 22.571 0.000 0.56 0.05 0.83 0.004 22.857 0.000 0.54 0.05 0.80 0.003 23.143 0.000 0.36 0.03 0.65 0.002 23.429 0.000 0.18 0.02 0.39 0.001 23.714 0.000 0.00 0.00 0.13 0.000 ---------------------------------------------------------------------------- 1 R#tfffffffi #Rffifff #fftif if tf►1flfffff # ►# ►f Rff ttfflf t►►tt►lf Rf iffit ► ♦ffff #fi USER SPECIFIED INFLOW HYDROGRAPH =......... _______:____::_.__.. ___._.___---------------------- .............. FLOW - THROUGH DETENTION BASIN MODEL (C) Copyright 1989 -2001 Advanced Engineering Software (sea) Ver. 8.0 Release Date: 01/01/2001 License ID 1510 SPECIFIED BASIN CONDITIONS ARE AS FOLLOWS: CONSTANT HYDROGRAPH TIME UNIT(MINUTES) - 16.364 Analysis prepared by: DEAD STORAGE(AF) - 0.00 SPECIFIED DEAD STORAGE(AF) FILLED 0.00 DEVELOPMENT RESOURCE CONSULTANTS, INC. ASSUMED INITIAL DEPTH(FEET) IN STORAGE BASIN - 0.00 8175 E. KAISER BLVD. ANAHEIM HILLS, CA 92808 P. (714)685 -6860 F: (714)685 -6801 INFLOW I POND Ab Y6 AK 1 I ........................ ............................... ................ V depth _effective ------- - - - - -- 1 (and volume) CONSTANT HYDROGRAPH TIME UNIT(MIN.) - 16.36 1 1 1 1 TOTAL NUMBER OF INFLOW HYDROGRAPH DATA PAIRS - 35 1 detention 1 1....V ............. -------------------------------------------------------- -------------- --- - -- 1 basin 1< - - al outflow INTERVAL FLOW 1 1 I......... NUMBER (CPS) ------- - -- --- I T \ 1 1.11 1 1 storage I basin outlet 5 1.16 V ----- - - - - -- 10 1.23 OUTFLOW 15 1.32 20 1.42 25 1.55 DEPTH -VS.- STORAGE AND DEPTH -VS.- DISCHARGE INFORMATION: 30 1.71 TOTAL NUMBER OF BASIN DEPTH INFORMATION ENTRIES - 20 35 1.94 *BASIN -DEPTH STORAGE OUTFLOW * *BASIN -DEPTH STORAGE OUTFLOW 40 2.22 • (FEET) (ACRE -FEET) (CFS) *► (FEET) (ACRE -FEET) (CPS) 45 3.44 • 0.000 0.000 0.000•• 0.500 0.033 7.560• 46 3.53 ** + 1.000 0.067 10.700 1.500 0.139 13.100* 47 3.74 * 2.000 0.212 15.120 ** 2.500 0.297 18.520* 48 3.86 * 3.000 0.383 21.390 ** 3.200 0.422 22.840* 49 4.13 * 3.500 0.481 25.510 *• 3.700 0.521 27.490• 50 4.29 * 4.000 0.580 30.700 *• 4.200 0.624 32.970* 51 4.68 * 4.500 0.692 36.560 ** 4.700 0.737 40.750* 52 4.91 • 5.000 0.804 49.640 ** 5.200 0.855 56.710* 53 5.49 * 5.500 0.931 68.710 ** 5.700 0.982 77.520• 54 5.87 * 6.000 1.058 91.810 ** 6.500 1.199 118.220* 55 6.93 ---------------------------------------------------------------------------- 56 7.71 BASIN STORAGE, OUTFLOW AND DEPTH ROUTING VALUES: 57 9.26 INTERVAL DEPTH (8- 0•DT /2) (S+O•DT /2) 58 13.18 NUMBER (FEET) (ACRE -FEET) (ACRE -FEET) 59 51.69 1 0.00 0.00000 0.00000 60 8.05 2 0.50 - 0.05180 0.11860 61 6.34 3 1.00 - 0.05389 0.18729 62 5.18 4 1.50 - 0.00823 0.28703 63 4.47 5 2.00 0.04170 0.38250 64 3.99 6 2.50 0.08869 0.50611 65 3.63 7 3.00 0.14164 0.62376 70 2.01 8 3.20 0.16460 0.67940 75 1.59 9 3.50 0.19361 0.76859 80 1.34 10 3.70 0.21070 0.83030 85 1.18 11 4.00 0.23352 0.92548 BB 0.00 12 4.20 0.25284 0.99596 --------------------------------------------- ---- -- ------------ ----- ---- - - -- 13 4.50 0.27978 1.10382 14 4.70 0.27746 1.19594 15 5.00 0.24467 1.36353 4.77 0.022 16 5.20 0.21570 1.49390 5.01 0.022 17 5.50 0.15656 1.70524 5.22 0.024 18 5.70 0.10797 1.85523 5.46 0.025 19 6.00 0.02333 2.09267 5.74 0.026 20 6.50 - 0.13280 2.53180 6.05 0.027 WHERE S- STORAGE (AF);0= OUTFLOW(AF /MIN.);DT-UNIT INTERVAL(MIN.) ---------------------------------------------------------------------------- DETENTION BASIN ROUTING RESULTS: 0.44 6.44 NOTE: COMPUTED BASIN DEPTH, OUTFLOW, AND STORAGE QUANTITIES OCCUR AT THE GIVEN TIME. BASIN INFLOW VALUES REPRESENT THE AVERAGE INFLOW DURING THE RECENT HYDROGRAPH UNIT INTERVAL. TIME DEAD- STORAGE INFLOW EFFECTIVE OUTFLOW EFFECTIVE (HRS) FILLED(AF) (CPS) DEPTH(FT) (CPS) VOLUME (AF) ---------------------------------------------------------------------------- 0.273 0.000 1.11 0.11 0.80 0.007 0.545 0.000 1.12 0.11 1.60 0.007 0.818 0.000 1.13 0.11 1.62 0.007 1.091 0.000 1.15 0.11 1.64 0.007 1.364 0.000 1.16 0.11 1.66 0.007 1.636 0.000 1.17 0.11 1.68 0.007 1.909 0.000 1.19 0.11 1.70 0.008 2.182 0.000 1.20 0.11 1.72 0.008 2.455 0.000 1.22 0.12 1.74 0.008 2.727 0.000 1.23 0.12 1.76 0.008 3.000 0.000 1.25 0.12 1.78 0.008 3.273 0.000 1.27 0.12 1.81 0.008 3.545 0.000 1.28 0.12 1.83 0.008 3.818 0.000 1.30 0.12 1.86 0.008 4.091 0.000 1.32 0.13 1.88 0.008 4.364 0.000 1.34 0.13 1.91 0.009 4.636 0.000 1.36 0.13 1.94 0.009 4.909 0.000 1.38 0.13 1.97 0.009 5.182 0.000 1.40 0.13 2.00 0.009 5.455 0.000 1.42 0.13 2.03 0.009 5.727 0.000 1.45 0.14 2.06 0.009 6.000 0.000 1.47 0.14 2.10 0.009 6.273 0.000 1.50 0.14 2.13 0.010 6.545 0.000 1.52 0.14 2.17 0.010 6.818 0.000 1.55 0.15 2.21 0.010 7.091 0.000 1.58 0.15 2.25 0.010 7.364 0.000 1.61 0.15 2.30 0.010 7.636 0.000 1.65 0.16 2.34 0.010 7.909 0.000 1.68 0.16 2.39 0.011 8.162 0.000 1.71 0.16 2.43 0.011 8.455 0.000 1.76 0.17 2.49 0.011 8.727 0.000 1.80 0.17 2.56 0.011 9.000 0.000 1.85, 0.18 2.62 0.012 9.273 0.000 1.89 0.18 2.69 0.012 9.545 0.000 1.94 0.18 2.75 0.012 9.818 0.000 2.00 0.19 2.83 0.013 10.091 0.000 2.05 0.19 2.91 0.013 10.364 0.000 2.11 0.20 2.99 0.013 10.636 0.000 2.16 0.21 3.07 0.014 10.909 0.000 2.22 0.21 3.15 0.014 11.182 0.000 2.46 0.23 3.36 0.016 11.455 0.000 2.71 0.26 3.72 0.017 11.727 0.000 2.95 0.28 4.07 0.019 12.000 0.000 3.20 0.30 4.42 0.020 12.273 0.000 3.44 0.33 4.77 0.022 12.545 0.000 3.53 0.34 5.01 0.022 12.818 0.000 3.74 0.36 5.22 0.024 13.091 0.000 3.86 0.37 5.46 0.025 13.364 0.000 4.13 0.39 5.74 0.026 13.636 0.000 4.29 0.41 6.05 0.027 13.909 0.000 4.68 0.44 6.44 0.030 14.182 0.000 4.91 0.47 6.89 0.031 14.455 0.000 5.49 0.54 7.42 0.036 14.727 0.000 5.87 0.60 7.99 0.040 15.000 0.000 6.93 0.77 8.73 0.052 15.273 0.000 7.71 0.90 9.68 0.060 15.545 0.000 9.26 1.11 10.65 0.082 15.818 0.000 13.18 1.55 12.26 0.147 16.091 0.000 51.69 4.63 26.33 0.722 16.364 0.000 8.05 2.31 28.29 0.265 16.636 0.000 6.34 1.13 14.29 0.086 16.909 0.000 5.18 0.49 9.39 0.033 17.182 0.000 4.47 0.42 6.93 0.028 17.455 0.000 3.99 0.38 6.08 0.025 17.727 0.000 3.63 0.34 5.47 0.023 18.000 0.000 3.31 0.31 4.98 0.021 18.273 0.000 2.98 0.28 4.52 0.019 18.545 0.000 2.66 0.25 4.05 0.017 18.818 0.000 2.33 0.22 3.59 0.015 19.091 0.000 2.01 0.19 3.12 0.013 19.364 0.000 1.93 0.18 2.83 0.012 19.636 0.000 1.84 0.18 2.71 0.012 19.909 0.000 1.76 0.17 2.59 0.011 20.182 0.000 1.67 0.16 2.47 0.011 20.455 0.000 1.59 0.15 2.34 0.010 20.727 0.000 1.54 0.15 2.25 0.010 21.000 0.000 1.49 0.14 2.18 0.009 21.273 0.000 1.44 0.14 2.10 0.009 21.545 0.000 1.39 0.13 2.03 0.009 21.818 0.000 1.34 0.13 1.96 0.009 22.091 0.000 1.31 0.12 1.90 0.008 22.364 0.000 1.28 0.12 1.86 0.008 22.636 0.000 1.24 0.12 1.81 0.008 22.909 0.000 1.21 0.12 1.76 0.008 23.182 0.000 1.18 0.11 1.72 0.007 23.454 0.000 0.79 0.07 1.41 0.005 23.727 0.000 0.39 0.04 0.85 0.002 24.000 0.000 0.00 0.00 0.28 0.000 ---------------------------------------------------------------------------- 1 85 1.54 ♦*+*••*••+\!***+***+++**.•**•*.+ s*+.►*:**:* r* +*..* *+***+* *•++* +*• + +••w ++*+++ 90 0.00 USER SPECIFIED INFLOW HYDROGRAPH ---------------------------------------------------------------------------- (C) Copyright 1989 -2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1510 Analysis prepared by: __________________•______________:°_____ ________._.__.___ FLAW- THROUGH DETENTION BASIN MODEL °__________ :__ DEVELOPMENT RESOURCE CONSULTANTS, INC. SPECIFIED BASIN CONDITIONS ARE AS FOLLOWS: 8175 E. KAISER BLVD. CONSTANT HYDROGRAPH TIME UNIT(MINUTES) - 16.000 ANAHEIM HILLS, CA 92808 DEAD STORAGE(AF) - 0.00 P. (714)685 -6860 F: (714)685 -6801 SPECIFIED DEAD STORAGE(AF) FILLED 0.00 ASSUMED INITIAL DEPTH(FEET) IN STORAGE BASIN - 0.00 P o" " A " u sYEAR ___________________ `______ ___ °__________ ° °________ __ _ _'_= INFLOW CONSTANT HYDROGRAPH TIME UNIT(MIN.) = 16.00 TOTAL NUMBER OF INFLOW HYDROGRAPH DATA PAIRS - 39 -------------------------------------------------------- ----------- --- - - - - -- V depth INTERVAL FLOW _effective ------- - - - - -- land volume) NUMBER (CFS) 1 0.00 detention V ............. 5 1.46 basin outflow 10 1.56 ......... 15 1.66 ---- --- - - - - -- 20 1.80 ( storage basin outlet 25 1.95 V ----- - - - - -- 30 2.16 OUTFLOW 35 2.41 40 2.81 45 3.33 DEPTH -VS.- STORAGE AND DEPTH-VS.-DISCHARGE INFORMATION: 46 4.65 TOTAL NUMBER OF BASIN DEPTH INFORMATION ENTRIES - 20 47 4.77 +BASIN -DEPTH STORAGE OUTFLOW * *BASIN -DEPTH STORAGE OUTFLOW * 48 5.04 • (FEET) (ACRE -FEET) (CFS) +* (FEET) (ACRE -FEET) (CFS) 49 5.20 * 0.000 0.000 0.000 ** 0.500 0.033 7.560* 50 5.56 * 1.000 0.067 10.700 ** 1.500 0.139 13.100* 51 5.77 • 2.000 0.212 15.120 ** 2.500 0.297 18.520• 52 6.27 * 3.000 0.383 21.390 ** 3.200 0.422 22.840* 53 6.49 * 3.500 0.481 25.510 ** 3.700 0.521 27.490• 54 7.25 * 4.000 0.580 30.700 ** 4.200 0.624 32.970* 55 7.74 * 4.500 0.692 36.560 ** 4.700 0.737 40.750* 56 9.11 * 5.000 0.804 49.640 ** 5.200 0.855 56.710• 57 10.13 * 5.500 0.931 68.710 ** 5.700 0.982 77.520* 58 12.04 * 6.000 1.058 91.810 ** 6.500 1.199 118.220• 59 17.50 ---------------------------- -------- --------- - - - - -- ------------------------ 60 62.21 BASIN STORAGE, OUTFLOW AND DEPTH ROUTING VALUES: 61 10.40 INTERVAL DEPTH (S- O *DT /2) (S +O *DT /2) 62 8.35 NUMBER (FEET) (ACRE -FEET) (ACRE -FEET) 63 6.84 1 0.00 0.00000 0.00000 64 6.00 2 0.50 - 0.04991 0.11671 65 5.37 3 1.00 - 0.05121 0.18461 66 4.90 4 1.50 - 0.00495 0.28375 67 4.51 5 2.00 0.04549 0.37871 68 3.16 6 2.50 0.09332 0.50148 69 2.94 7 3.00 0.14700 0.61840 70 2.75 8 3.20 0.17032 0.67368 75 2.13 9 3.50 0.20000 0.76220 80 1.78 10 3.70 0.21758 0.82342 11 4.00 0.24121 0.91779 4.09 0.018 12 4.20 0.26109 0.98771 4.23 0.019 13 4.50 0.28893 1.09467 4.38 0.020 14 4.70 0.28766 1.18574 4.53 0.020 15 5.00 0.25710 1.35110 4.68 0.021 16 5.20 0.22990 1.47970 5.70 0.029 17 5.50 0.17376 1.68803 6.72 0.030 18 5.70 0.12739 1.83581 7.00 0.032 19 6.00 0.04632 2.06968 7.31 0.033 20 6.50 - 0.10320 2.50220 7.63 0.036 WHERE S-STORAGE(AF);O =OUTFLOW(AF /MIN.) ;DT =UNIT INTERVAL(MIN.) ---------------------------------------------------------------------------- DETENTION BASIN ROUTING RESULTS: 5.77 0.58 NOTE: COMPUTED BASIN DEPTH, OUTFLOW, AND STORAGE QUANTITIES OCCUR AT THE GIVEN TIME. BASIN INFLOW VALUES REPRESENT THE AVERAGE INFLOW DURING THE RECENT HYDROGRAPH UNIT INTERVAL. TIME DEAD- STORAGE INFLOW EFFECTIVE OUTFLOW EFFECTIVE (HRS) FILLED(AF) (CPS) DEPTH(FT) (CPS) VOLUME(AF) ---------------------------------------------------------------------------- 0.267 0.000 0.00 0.00 0.00 0.000 0.533 0.000 0.36 0.03 0.26 0.002 0.800 0.000 0.73 0.07 0.78 0.005 1.067 0.000 1.09 0.10 1.30 0.007 1.333 0.000 1.46 0.14 1.82 0.009 1.600 0.000 1.48 0.14 2.10 0.009 1.867 0.000 1.50 0.14 2.13 0.009 2.133 0.000 1.52 0.14 2.16 0.010 2.400 0.000 1.54 0.15 2.18 0.010 2.667 0.000 1.56 0.15 2.21 0.010 2.933 0.000 1.58 0.15 2.24 0.010 3.200 0.000 1.60 0.15 2.27 0.010 3.467 0.000 1.62 0.15 2.30 0.010 3.733 0.000 1.64 0.15 2.33 0.010 4.000 0.000 1.66 0.16 2.36 0.010 4.267 0.000 1.69 0.16 2.39 0.011 4.533 0.000 1.72 0.16 2.43 0.011 4.800 0.000 1.74 0.16 2.47 0.011 5.067 0.000 1.77 0.17 2.51 0.011 5.333 0.000 1.80 0.17 2.55 0.011 5.600 0.000 1.83 0.17 2.59 0.012 5.867 0.000 1.86 0.18 2.63 0.012 6.133 0.000 1.89 0.18 2.68 0.012 6.400 0.000 1.92 0.18 2.72 0.012 6.667 0.000 1.95 0.18 2.76 0.012 6.933 0.000 1.99 0.19 2.81 0.013 7.200 0.000 2.03 0.19. 2.87 0.013 7.467 0.000 2.08 0.20 2.93 0.013 7.733 0.000 2.12 0.20 2.99 0.013 8.000 0.000 2.16 0.20 3.05 0.014 8.267 0.000 2.21 0.21 3.12 0.014 8.533 0.000 2.26 0.21 3.19 0.014 8.800 0.000 2.31 0.22 3.26 0.015 9.067 0.000 2.36 0.22 3.33 0.015 9.333 0.000 2.41 0.23 3.40 0.015 9.600 0.000 2.49 0.24 3.50 0.016 9.867 0.000 2.57 0.24 3.61 0.016 10.133 0.000 2.65 0.25 3.73 0.017 10.400 0.000 2.73 0.26 3.84 0.017 10.667 0.000 2.81 0.27 3.95 0.018 10.933 0.000 2.91 0.28 4.09 0.018 11.200 0.000 3.02 0.28 4.23 0.019 11.467 0.000 3.12 0.29 4.38 0.020 11.733 0.000 3.23 0.30 4.53 0.020 12.000 0.000 3.33 0.31 4.68 0.021 12.267 0.000 4.65 0.44 5.70 0.029 12.533 0.000 4.77 0.45 6.72 0.030 12.800 0.000 5.04 0.48 7.00 0.032 13.067 0.000 5.20 0.49 7.31 0.033 13.333 0.000 5.56 0.54 7.63 0.036 13.600 0.000 5.77 0.58 7.94 0.039 13.867 0.000 6.27 0.66 8.30 0.044 14.133 0.000 6.49 0.69 8.67 0.046 14.400 0.000 7.25 0.82 9.16 0.055 14.667 0.000 7.74 0.90 9.80 0.060 14.933 0.000 9.11 1.08 10.57 0.079 15.200 0.000 10.13 1.19 11.36 0.095 15.467 0.000 12.04 1.41 12.14 0.126 15.733 0.000 17.50 2.03 13.98 0.217 16.000 0.000 62.21 5.11 34.35 0.831 16.267 0.000 10.40 2.38 35.54 0.277 16.533 0.000 8.35 1.41 15.18 0.126 16.800 0.000 6.84 0.75 10.90 0.050 17.067 0.000 6.00 0.61 8.71 0.041 17.333 0.000 5.37 0.51 7.96 0.034 17.600 0.000 4.90 0.46 7.32 0.031 17.867 0.000 4.51 0.43 6.72 0.028 18.133 0.000 3.16 0.30 5.47 0.020 18.400 0.000 2.94 0.28 4.35 0.019 18.667 0.000 2.75 0.26 4.06 0.017 18.933 0.000 2.63 0.25 3.84 0.017 19.200 0.000 2.50 0.24 3.66 0.016 19.467 0.000 2.38 0.22 3.48 0.015 19.733 0.000 2.25 0.21 3.31 0.014 20.000 0.000 2.13 0.20 3.13 0.013 20.267 0.000 2.06 0.19 2.99 0.013 20.533 0.000 1.99 0.19 2.89 0.013 20.800 0.000 1.92 0.18 2.79 0.012 21.067 0.000 1.85 0.17 2.69 0.012 21.333 0.000 1.78 0.17 2.59 0.011 21.600 0.000 1.73 0.16 2.51 0.011 21.867 0.000 1.68 0.16 2.44 0.011 22.133 0.000 1.64 0.15 2.37 0.010 22.400 0.000 1.59 0.15 2.30 0.010 22.667 0.000 1.54 0.15 2.23 0.010 22.933 0.000 1.23 0.12 1.98 0.008 23.200 0.000 0.92 0.09 1.54 0.006 23.467 0.000 0.62 0.06 1.10 0.004 23.733 0.000 0.31 0.03 0.66 0.002 24.000 0.000 0.00 0.00 0.22 0.000 85 2.26 •*►►►•►►•••►***••*•*••*'*••**'*•***••►►•••*•• •► ► ►**► ►•••' *• *'• * *' ►► ►* * * ► ► ► *► 90 2.00 USER SPECIFIED INFLOW HYDROGRAPH 93 0.00 (C) ----------------------- Copyright 1989 -2001 Advanced Engineering Software (aes) ------------ -------- - - - - - -- ------------------------- Ver. 8.0 Release Date: 01/01/2001 License ID 1510 Analysis prepared by: ............................................. ............................... FLAW- THROUGH DETENTION BASIN MODEL DEVELOPMENT RESOURCE CONSULTANTS, INC. 8175 E. KAISER BLVD. SPECIFIED BASIN CONDITIONS ARE AS FOLLOWS: ANAHEIM HILLS, CA 92808 CONSTANT HYDROGRAPH TIME UNIT(MINUTES) . 15.484 P: (714)685 -6860 F: (714)685 -6801 DEAD STORAGE(AF) = 0.00 SPECIFIED DEAD STORAGE(AF) FILLED . 0.00 ASSUMED INITIAL DEPTH(FEET) IN STORAGE BASIN = 0.00 ............................................. PoNb "A" 100 -YeAR ............................... . INFLOW CONSTANT HYDROGRAPH TIME UNIT(MIN.) . 15.48 TOTAL NUMBER OF INFLOW HYDROGRAPH DATA PAIRS = 40 ---------------------------------------------------------------------------- INTERVAL FLOW V effective depth NUMBER (CFS) _ ------- - - - - -- ( and volume) 1 0.00 5 1.98 detention V ............. 10 2.11 basin outflow 15 2.24 ......... 20 2.41 ---- --- - - - --- I I \ 25 2.60 1 1 storage I basin outlet 30 2.86 V ----- - - - - -- 35 3.17 OUTFLOW 40 3.63 45 4.23 46 4.46 DEPTH -VS.- STORAGE AND DEPTH -VS.- DISCHARGE INFORMATION: 47 5.28 TOTAL NUMBER OF BASIN DEPTH INFORMATION ENTRIES = 20 48 6.04 *BASIN -DEPTH STORAGE OUTFLOW * *BASIN -DEPTH STORAGE OUTFLOW 49 6.20 • (FEET) (ACRE -FEET) (CPS) •* (FEET) (ACRE -FEET) (CPS) 50 6.57 * 0.000 0.000 0.000 ** 0.500 0.033 7.560► 51 6.78 • * 1.000 0.067 10.700 * 1.500 0.139 13.100• 52 7.26 • 2.000 0.212 15.120 ** 2.500 0.297 18.520* 53 7.54 * 3.000 0.383 21.390•* 3.200 0.422 22.840* 54 8.23 * 3.500 0.481 25.510 *' 3.700 0.521 27.490* 55 8.67 * 4.000 0.580 30.700 ** 4.200 0.624 32.970* 56 9.70 * 4.500 0.692 36.560 *• 4.700 0.737 40.750* 57 10.36 * 5.000 0.804 49.640•► 5.200 0.855 56.710* 58 12.22 • 5.500 0.931 68.710 ** 5.700 0.982 77.520* 59 13.60 • 6.000 1.058 91.810 ** 6.500 1.199 118.220* 60 16.74 --------------------------------=---------------------------------- 61 22.94 BASIN STORAGE, OUTFLOW AND DEPTH ROUTING VALUES: 62 83.28 INTERVAL DEPTH (S- O•DT /2) (S+O *DT /2) 63 14.12 NUMBER (FEET) (ACRE -FEET) (ACRE -FEET) 64 11.18 1 0.00 0.00000 0.00000 65 9.14 2 0.50 - 0.04722 0.11402 66 7.86 3 1.00 - 0.04740 0.18080 67 7.01 4 1.50 - 0.00030 0.27910 68 6.38 5 2.00 0.05086 0.37334 69 5.89 6 2.50 0.09991 0.49489 70 4.34 7 3.00 0.15460 0.61080 75 3.22 8 3.20 0.17844 0.66556 80 2.63 9 3.50 0.20907 0.75313 10 3.70 0.22735 0.81365 5.07 0.023 11 4.00 0.25212 0.90688 5.22 0.023 12 4.20 0.27281 0.97599 5.39 0.024 13 4.50 0.30193 1.08167 5.56 0.025 14 4.70 0.30215 1.17125 5.73 0.026 15 5.00 0.27475 1.33345 5.90 0.026 16 5.20 0.25005 1.45955 6.14 0.028 17 5.50 0.19819 1.66361 6.89 0.033 18 5.70 0.15494 1.80826 7.86 0.041 19 6.00 0.07895 2.03705 8.34 0.042 20 6.50 - 0.06118 2.46018 8.60 0.046 WHERE S= STORAGE (AF);O =OUTFLOW(AF /MIN.);DT =UNIT INTERVAL(MIN.) ---------------------------------------------------------------------------- DETENTION BASIN ROUTING RESULTS: 6.78 0.73 NOTE: COMPUTED BASIN DEPTH, OUTFLOW, AND STORAGE QUANTITIES OCCUR AT THE GIVEN TIME. BASIN INFLOW VALUES REPRESENT THE AVERAGE INFLOW DURING THE RECENT HYDROGRAPH UNIT INTERVAL. TIME DEAD- STORAGE INFLOW EFFECTIVE OUTFLOW EFFECTIVE (HRS) ---------------------------------------------------------------------------- FILLED(AF) (CFS) DEPTH(FT) (CPS) VOLUME(AF) 0.258 0.000 0.00 0.00 0.00 0.000 0.516 0.000 0.50 0.05 0.35 0.003 0.774 0.000 0.99 0.09 1.05 0.006 1.032 0.000 1.49 0.14 1.75 0.009 1.290 0.000 1.98 0.19 2.45 0.012 1.548 0.000 2.01 0.19 2.82 0.013 1.806 0.000 2.03 0.19 2.86 0.013 2.065 0.000 2.06 0.19 2.89 0.013 2.323 0.000 2.08 0.19 2.93 0.013 2.581 0.000 2.11 0.20 2.97 0.013 2.839 0.000 2.14 0.20 3.00 0.013 3.097 0.000 2.16 0.20 3.04 0.014 3.355 0.000 2.19 0.20 3.08 0.014 3.613 0.000 2.21 0.21 3.11 0.014 3.871 0.000 2.24 0.21 3.15 0.014 4.129 0.000 2.27 0.21 3.19 0.014 4.387 0.000 2.31 0.22 3.24 0.014 4.645 0.000 2.34 0.22 3.29 0.015 4.903 0.000 2.38 0.22 3.34 0.015 5.161 0.000 2.41 0.23 3.38 0.015 5.419 0.000 2.45 0.23 3.43 0.015 5.677 0.000 2.49 0.23 3.49 0.016 5.935 0.000 2.52 0.24 3.54 0.016 6.194 0.000 2.56 0.24 3.60 0.016 6.452 0.000 2.60 0.24 3.65 0.016 6.710 0.000 2.65 0.25 3.71 0.017 6.968 0.000 2.70 0.25 3.79 0.017 7.226 0.000 2.76 0.26 3.86 0.017 7.484 0.000 2.81 0.26 3.93 0.018 7.742 0.000 2.86 0.27 4.01 0.018 8.000 0.000 2.92 0.27 4.09 0.018 8.258 0.000 2.98 0.28 4.18 0.019 8.516 0.000 3.05 0.28 4.26 0.019 8.774 0.000 3.11 0.29 4.35 0.019 9.032 0.000 3.17 0.30 4.44 0.020 9.290 0.000 3.26 0.31 4.55 0.020 9.548 0.000 3.35 0.31 4.68 0.021 9.806 0.000 3.45 0.32 4.81 0.022 10.065 0.000 3.54 0.33 4.94 0.022 10.323 0.000 3.63 0.34 5.07 0.023 10.581 0.000 3.75 0.35 5.22 0.023 10.839 0.000 3.87 0.36 5.39 0.024 11.097 0.000 3.99 0.37 5.56 0.025 11.355 0.000 4.11 0.38 5.73 0.026 11.613 0.000 4.23 0.40 5.90 0.026 11.871 0.000 4.46 0.42 6.14 0.028 12.129 0.000 5.28 0.49 6.89 0.033 12.387 0.000 6.04 0.61 7.86 0.041 12.645 0.000 6.20 0.64 8.34 0.042 12.903 0.000 6.57 0.70 8.60 0.046 13.161 0.000 6.78 0.73 8.89 0.049 13.419 0.000 7.26 0.81 9.24 0.054 13.677 0.000 7.54 0.85 9.62 0.057 13.935 0.000 8.23 0.96 10.11 0.064 14.194 0.000 8.67 1.02 10.63 0.070 14.452 0.000 9.70 1.13 11.07 0.086 14.710 0.000 10.36 1.20 11.51 0.096 14.968 0.000 12.22 1.41 12.16 0.126 15.226 0.000 13.60 1.56 12.99 0.148 15.484 0.000 16.74 1.94 14.11 0.204 15.742 0.000 22.94 2.67 17.19 0.326 16.000 0.000 83.28 5.81 51.21 1.010 16.258 0.000 14.12 2.22 49.77 0.250 16.516 0.000 11.18 1.67 15.21 0.164 16.774 0.000 9.14 1.16 12.62 0.090 17.032 0.000 7.86 0.90 10.77 0.060 17.290 0.000 7.01 0.77 9.65 0.051 17.548 0.000 6.38 0.67 8.91 0.044 17.806 0.000 5.89 0.59 8.35 0.039 18.065 0.000 4.34 0.41 7.12 0.027 18.323 0.000 4.12 0.38 5.98 0.026 18.581 0.000 3.89 0.36 5.66 0.024 18.839 0.000 3.67 0.34 5.35 0.023 19.097 0.000 3.44 0.32 5.03 0.022 19.355 0.000 3.22 0.30 4.71 0.020 19.613 0.000 3.10 0.29 4.47 0.019 19.871 0.000 2.98 0.28 4.30 0.019 20.129 0.000 2.87 0.27 4.14 0.018 20.387 0.000 2.75 0.26 3.97 0.017 20.645 0.000 2.63 0.25 3.80 0.016 20.903 0.000 2.56 0.24 3.67 0.016 21.161 0.000 2.48 0.23 3.56 0.016 21.419 0.000 2.41 0.23 3.46 0.015 21.677 0.000 2.33 0.22 3.35 0.015 21.935 0.000 2.26 0.21 3.25 0.014 22.194 0.000 2.21 0.21 3.16 0.014 22.452 0.000 2.16 0.20 3.09 0.013 22.710 0.000 2.10 0.20 3.01 0.013 22.968 0.000 2.05 0.19 2.94 0.013 23.226 0.000 2.00 0.19 2.87 0.012 23.484 0.000 1.33 0.12 2.36 0.008 23.742 0.000 0.67 0.06 1.41 0.004 24.000 0.000 0.00 0.00 0.47 0.000