Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Kaiser Fontana Medical Center
HYDROLOGY AND FLOODPLAIN HYDRAULICS ANALYSIS FOR THE KAISER FONTANA MEDICAL CENTER 9961 Sierra Ave, Fontana, CA Prepared for: HMC Architects 3546 Concours Street Ontario, CA 91764 -5583 David Rose, 909 - 989 -9979 and Kaiser Permanente 9961 Sierra Avenue Fontana, CA 92335 Jim Herrington, 909 - 427 -4115 Prepared by: RBF Consulting 14725 Alton Pkwy Irvine, CA 92618 Rebecca Kinney, RCE 58797 Detlef Kopp, RCE 70995 Xavier Pfister, RCE 71579 Adriana Griffith, RCE 70385 Phone: 949 - 472 -3505 JN: 10- 105573.010 Prepared on: September 15, 2008 M Table of Contents 1.0 Introduction ............................................................... ............................... 4 1.1 Kaiser Fontana Medical Center .......................................... ..............................4 1.2 Flood Insurance Rate Map ................................................. ..............................4 2.0 Previous Hydrology Studies and Recommendations ........................... 5 2.1 Master Hydrology Study of the Palmetto Master Drainage Area ......................5 2.1.1 Assumptions and Recommendations ............. ..............................5 3.0 Existing Conditions .................................................. ............................... 6 3.1 Sierra Avenue Storm Drain System ................................... ..............................6 3.2 Sump on Marygold Avenue ................................................ ..............................6 3.3 Valley Boulevard Storm Drain System to 1 -10 Channel West ...........................6 3.4 Valley Boulevard Storm Drain System to 1 -10 Channel East ............................7 3.5 Median at Marygold Avenue and Mango Avenue ............... ..............................7 4.0 Hydrology and Hydraulic Analysis .......................... ............................... 7 4.1 General Methodology ....................................................... ............................... 7 4.2 Hydrologic Modeling Assumptions ..................................... ..............................8 4.3 Summary of Results .......................................................... ..............................9 4.4 Marygold Avenue ............................................................... ..............................9 5.0 Proposed Improvements .......................................... .............................10 5.1 Storm Drain from Marygold sump to Sierra Ave CB .......... .............................10 5.2 Additional Catch Basin on Marygold Avenue .................... .............................11 5.3 Increase size of Existing Catch Basins ............................. .............................11 6 .0 Conclusions .............................................................. .............................12 A. Appendix A — Reference Maps ........................................ ............................... i • Vicinity Map ....................................................................... ............................... i • Soils Map ........................................................................... ............................... i • Isohyetal Maps .................................................................. ............................... i • FIRM Map .......................................................................... ............................... i B. Appendix B — Street Cross Section Capacity Calculations ........................ ii B.1 Street Cross Sections for Intersection Details ..................... "' . ............................III B.2 Street Cross Sections for Sierra Avenue ......................... ............................... iv HAPdata \10105573Wdmin \reports \Hydrology \KFMC_Hydrology.doc 2 C. Appendix C — Pipe, Catch basin, and Weir Capacity Calculations............ v C.1 Pipe Capacity Calculations .............................................. ............................... vi C.2 Catch Basin Capacity Calculations ...... ............................... ............................vii C.3 Catch Basin Outlet Capacity Calculations (Orifice) ............ ...........................VIII CA Weir Capacity Calculation ............................................... ............................... ix D. Appendix D — Hydrology Calculations .......................... ............................... x D.1 10 Year Storm Calculations ............................................. ............................... xi D.2 100 Year Storm Calculations .............................................. ............................xii E. Appendix E — Hydraulics Calculations ....................... ............................... AN F. Appendix F — Drainage Structure Photography ......... ............................... xiv G. Appendix G — Referenced Hydrology Reports ........... ............................... xv H . Appendix H — Exhibits ................................................. ............................... xvi • Offsite Hydrology Map ........................ ............................... ............................xvi • Onsite Hydrology Map ........................ ............................... ............................xvi • Intersection Details and Calculations .. ............................... ............................xvi • Proposed SD Improvements ............... ............................... ............................xvi H: \Pdata \10105573\Hdmin\ reports \Hydrology \KFMC_Hydrology.doc 3 1.0 Introduction This hydrology and floodplain hydraulics report was prepared by RBF Consulting on behalf of HMC Architects and Kaiser Permanente. The entire existing Kaiser Permanente Medical Center, located at 9961 Sierra Avenue in the city of Fontana, is within a Zone A floodplain. The Zone A floodplain is shown in the Flood Insurance Rate Map (FIRM) prepared by the Federal Emergency Management Agency (FEMA). (See Appendix A) For the approval of the new hospital, the Office of Statewide Health and Planning Development (OSHPD) required that the building be located outside of the Zone A floodplain. Therefore, this report was initiated to study the cause of the 100 -year flooding and to propose potential measures to mitigate for it. It was found that the flooding originated outside of the Kaiser campus, therefore a total of approximately 400 acres (see Exhibits 1 and 2, Appendix H) was analyzed using computer generated hydrologic and hydraulic models and calculations. The methodology and results are presented in detail below. 1.1 Kaiser Fontana Medical Center The existing hospital consists of approximately 50 acres of hospital buildings, medical offices, a central utilities plant, parking structures and parking lots. The parking lots are spread throughout the campus with the neighboring Sedlachek property (for which the hospital has a 20 year lease) also used as a parking area. All the parking lots drain into catch basins connected to the onsite storm drain system. Existing storm drain and utility layouts suggest that the original infrastructure was constructed as part of the original hospital with many additions and expansions. This expansion of buildings created a complicated network of pipes, some of which will need to be replaced or removed when the new facilities are constructed. The new hospital consists of two (2) Patient Towers, a Diagnostic and Treatment wing (D &T), a Hospital Support Building (HSB), and a Central Utility Plant (CUP). To make room for the new hospital, some of the buildings of the existing hospital will be demolished. The site will be designed so that storm water is directed away from the buildings and into stormwater treatment devices such as bioretention areas or planter boxes. Additionally, porous pavement will be used in some parking lots to infiltrate runoff into the ground. Overflow from these areas will be captured in catch basins and discharged into the storm drain system. 1.2 Flood Insurance Rate Map The Flood Insurance Rate Map (Panel No. 0602748658H, effective date March 18 1996) prepared by FEMA for the area shows the hospital to be located within a Zone A floodplain. Zone A floodplains do not have any flood depths associated with them. In this case there was no backup documentation available from FEMA explaining how the Zone A was established. Historically, the Kaiser Hospital has experienced flooding HAPdata \10105573Wdmin \reports \Hydrology \KFMC_Hydrology.doc 4 along Marygold Avenue at a sump which overflows onto the site (see Exhibit 3 in Appendix H). Since the original hospital was constructed in the 1950s prior to FEMA FIRM mapping of the area in 1987, it is likely that the floodplain was placed over the site due to historical flooding. 2.0 Previous Hydrology Studies and Recommendations Several hydrology studies have been prepared for this area. The primary hydrology report is the "Master Hydrology Study of the Palmetto Master Drainage Area" by Wagner Pacific Inc., dated July 1991. Other reports include the "Hydrologic & Hydraulic Analysis of Kaiser Permanente Medical Center and Surrounding Areas, Fontana, California" by Wagner- Stanford Consultants, dated March 4th, 1985, "Hydrology Study for Kaiser Permanente Proposed Site Improvements and Surrounding Master Plan Drainage Area in the City of Fontana, California" by Wagner Pacific Inc., dated July 18th, 1990, and "Hydraulic Analysis of the Valley Boulevard Storm Drain in the Palmetto Master Drainage Area, City of Fontana, California" by Wagner Pacific Inc., dated March 1992. See Appendix G for excerpts of each report. 2.1 Master Hydrology Study of the Palmetto Master Drainage Area The hydrology study that is most useful for the study area related to the sump on Marygold Avenue is the "Master Hydrology Study of the Palmetto Master Drainage Area ". This study examined the magnitude of storm water runoff for the 10- and 100 - year storms. The study also laid out the master storm drainage system that needed to be implemented by the City of Fontana. At the build out of the master storm drain system, flooding would be largely contained within street right of ways. The exception was the only sump condition within the study area on Marygold Avenue. The study recommended to mitigate the 10 -year flood event, however no recommendation was made for the 100 -year flood event (see Appendix G). 2.1.1 Assumptions and Recommendations Key assumptions for the master storm drainage system were made in the Master Hydrology report to validate its conclusions. First, it was assumed that all water north of Randall Avenue would by captured in a separate storm drain system and not contribute to flows going south towards the Kaiser hospital for the 10 -year storm event. Second, it was assumed that the master storm drain lines would all be built. This includes lines on San Bernardino Avenue, Marygold Avenue, Valley Boulevard, Mango Avenue, Blanchard Avenue, and Palmetto Avenue. Third, it was assumed that a 36" storm drain line would be built on Marygold Avenue joining the Sierra Avenue storm drain system in order to reduce flooding at the sump. A HAPdata \10105573Wdmin \reports \Hydrology \KFMC_Hydrology.doc 5 3.0 Existing Conditions Today, recommendations made 17 years ago have only partially been constructed. A portion of the master storm drainage system has been built from the Kaiser hospital along Valley Boulevard discharging to the 1 -10 channel going east. There is no storm drain system north of the hospital and east of Sierra Avenue. The result of this situation is that storm water runoff flows on the surface instead of being at least partially captured in catch basins and discharged in storm drains. 3.1 Sierra Avenue Storm Drain System The storm drain on Sierra Avenue extends from the 1 -10 Channel to San Bernardino Avenue (see Exhibit 1, Appendix H). The system was designed to carry the 10 -year storm without overflowing. A 33" Reinforced Concrete Pipe (RCP) is located at San Bernardino Avenue intersection and gradually increases in size to a 48" RCP before discharging into the 1 -10 Channel. Even though the first catch basin is located at San Bernardino Avenue, water from as far north as Ceres Avenue, over a mile away, is colleted by this storm drain. The tributary area is approximately 150 acres. The majority of the west side of the Kaiser Hospital drains to this storm drain via inlets and pipes. 3.2 Sump on Marygold Avenue The sump on Marygold Avenue is drained by three catch basins and two storm drain lines going east, an 18 "x29" Corrugated Metal Pipe Arch (CMPA) and a 15" RCP (see Exhibit 1, Appendix H). The flow capacity of this system is not sufficient for higher rainfall events. Although improvements on the downstream end of the system (new storm drain in Healthcare Parkway and Valley Boulevard flowing east) have improved the situation, overflow into the Kaiser Campus at the Marygold Avenue sump for large rainfall events is still imminent. Overland relief occurs through the Kaiser Hospital because the high points at Sierra Avenue and Healthcare Parkway are both higher than the Kaiser driveways off of Marygold Avenue. Overflow into the campus will flood the low lying loading dock of the Central Plant and threaten flooding of adjacent buildings as well. See Appendix F for photographs of the various drainage structures. 3.3 Valley Boulevard Storm Drain System to 1 -10 Channel West Runoff collected from the Marygold Avenue sump can be conveyed to either the section of the 1 -10 Channel flowing west or the section of the same 1 -10 Channel flowing east (see Exhibit 1, Appendix H). The storm drain system discharging to the section of the I- 10 Channel flowing west begins on the north side of the Kaiser Hospital at Healthcare Parkway as a 27 RCP and increases to a 30" RCP midway through the site. This storm drain collects water from Parking Structure #3, the Medical Office Building (MOB) #3 drop off area, and the existing CUP (see Exhibit 4, Appendix H). It also collects water from catch basins located on Marygold Avenue at Kempster Avenue. At Valley HAPdata \10105573Wdmin\reports \Hydrology \KFMC_Hydrology.doc 6 Boulevard, the storm drain turns west to Sierra Avenue collecting runoff from the south portion of the Kaiser hospital via catch basins located on Valley Boulevard. Runoff from a majority of retail stores at the northeast corner of Sierra Avenue and Valley Boulevard is also collected. The storm drain then turns south on Siena Avenue and increases in size to 48 ". It then parallels the Sierra Avenue storm drain line and outlets into the 1 -10 Channel going west via a 42" pipe. 3.4 Valley Boulevard Storm Drain System to 1 -10 Channel East A portion of the water collected from the Marygold Avenue sump follows the curvature of Healthcare Parkway and exits the hospital at the main entrance on Valley Boulevard. The storm drain line starts as the 18 "x29" CMPA and changes to a 24" RCP and eventually to a 30" RCP before leaving the site. Water is collected from the street and parking lots via catch basins as well as drainage inlets in landscaped areas. Parking Structures #1 and #2 as well as Medical Office Buildings 1 and 2 drain to this storm drain line (see Exhibit 4, Appendix H). At Valley Boulevard the storm drain turns east and travels approximately 1500' while increasing to 72" in diameter. It then turns south through some properties via an easement to discharge into the 1 -10 Channel going east. 3.5 Median at Marygold Avenue and Mango Avenue At the intersection of Marygold Avenue and Mango Avenue a median was constructed to direct traffic into the site as well as prevent flooding into the site from water flowing down Mango Avenue (See Exhibit 3, Appendix H). The result is that more water is directed to the Marygold Avenue sump than the existing drainage devices can handle during heavy rainfall, causing flooding at the sump. 4.0 Hydrology and Hydraulic Analysis In order to understand the existing and proposed conditions, hydrologic and hydraulic analyses were performed to model these conditions. The program used to model the hydrologic characteristics of the area was the Rational Method Analysis by Advanced Engineering Software (AES). The program used to model the hydraulic characteristics of the storm drains was the Water Surface Pressure Gradient (WSPG) program by CIVILDESIGN. FlowMaster by Haestad Methods was also used to determine normal depths in street cross sections. 4.1 General Methodology Data needed to construct the hydrology model include the boundary limit of the study area, land use, flow paths, soils type, subarea acreage, and point rainfall data. The boundary, land use, and flow paths were obtained by a field survey of the entire area. The soil type was found using the soils exhibit (see Appendix A), and the subarea acreage was determined using an aerial of the area. The point rainfall data was determined using 10 -year and 100 -year Isohyetal maps provided by San Bernardino County (see Isohyetal Exhibits, Appendix A). With this information a link -node model HAPdata \10105573\Admin \reports \Hydrology \KFMC_Hydrology.doc 7 was created to predict the response of the drainage system. The individual subareas have hydrologic processes which occur at concentration points or `nodes'. The hydrologic nodes are connected by hydraulic `links' to model the conveyance process. Using this modeling procedure coupled with regional rainfall data enables the program to calculate peak runoff flows for the area in question. WSPG uses Bernoulli's equation for the total energy at each section of pipe and Manning's formula to calculate the friction loss for each reach. Using flowrates determined from the hydrologic model, the hydraulic grade line (HGL) in each storm drain system can be determined. If the HGL is within the pipe, the water is flowing as partial flow. If the HGL is above the pipe, the water is flowing by pressure and if the HGL is above the finish grade, the water is overflowing at the inlets and catch basins into the street. 4.2 Hydrologic Modeling Assumptions Several assumptions were made for the development of the hydrologic model. First, based on current San Bernardino County hydrologic modeling methods, the Antecedent Moisture Condition II (AMC ll) was used to determine the 100 -year flowrates for the floodplain mapping. The Antecedent Moisture Condition is a factor that refers to the amount of moisture contained in the voids of the soil. The rate of infiltration or infiltration capacity is influenced by this factor. AMC I refers to dry conditions, AMC II average conditions, and AMC III wet or saturated conditions. Typically, AMC III is used for 100 - year storm modeling but the San Bernardino Flood Control District is allowing AMC II to be used as this has given more realistic floodplain results. Second, the northern boundary of the Sierra Avenue watershed was assumed to be at the railway line just north of Ceres Avenue (see Exhibit 1, Appendix H). There is a raised berm for the railway which provides a natural boundary for storm water runoff. Third, the northern boundary of the Mango Avenue watershed was assumed to be at the intersection of Mango Avenue and Merrill Avenue. At the northern end of this intersection runoff is diverted both east and west and does not contribute to the watershed (see Exhibit 3, Appendix H). Forth, when the HGL is shown as being above the finish grade of the road, the water level at that point is determined by the normal depth of the street cross section. The flow in the street is determined by subtracting the amount of water the full storm drain can convey from the peak flow calculated from the hydrology. When needed, the water surface level determined by FlowMaster is then used as the HGL for lines upstream of that point. Fifth, the methods for calculating storm water runoff traveling through intersections depended on the type of street it was on. The primary north -south streets analyzed were Sierra Avenue and Mango Avenue. Mango Avenue is a collector street being intersected by secondary or primary streets. Sierra Avenue is a major street being intersected by collector, secondary, and primary streets. For Mango Avenue, as flood waters reach an intersection, a portion of the water is carried down the intersected street ® and out of the study area. It is unlikely that much water will be directed to minor streets intersecting Sierra, since it is a primary street. As water travels on Mango Avenue, H: \Pdata \10105573\Admin \reports \Hydrology \KFMC_Hydrology.doc 8 portions of it are directed down Randall Avenue, San Bernardino Avenue, and Marygold Avenue. As water travels down Sierra Avenue it is contained in the street and remains that way through intersections (see Exhibit 1, Appendix H). Sixth, existing storm drain pipes were not modeled in Sierra Avenue. This was done to produce more accurate peak flows for the 100 -year storm. During the 100 -year storm the storm drain system would be over capacity and water would be overflowing from all catch basins along the road. In areas where the actual street flow was needed, WSPG was run between catch basins to determine the maximum amount of water that could be conveyed by the storm drain pipe under pressure. This amount was then subtracted from the peak flow calculated by the hydrologic model. 4.3 Summary of Results The study area was split into three major subareas: Sierra Avenue watershed (Area 'A'), Mango Avenue watershed (Area 'B'), and the Kaiser Hospital/Valley Boulevard West watershed (Area 'C'). Areas 'A' and 'B' were grouped under Offsite Hydrology while Area 'C' was grouped under Onsite Hydrology. Peak flows and time of concentrations for both the 10 -year and 100 -year storms for all three areas are summarized below in Table 1. Tohln 4 • Cnmmary of Rpcults Technical data for the hydrology can be found in Appendix D for both the 10- and 100 - year storms. In Appendix H, Exhibit 1 "Sierra Avenue and Mango Avenue Watersheds" and Exhibit 2 "Kaiser Hospital and Valley Boulevard West Watershed" show the subareas in the hydrology modeling. The hydraulic calculations determined that the existing storm drain pipes could not handle the 100 -year flows and water would be flowing in the streets. Cross sections of the streets with estimated flowrates can be found in Appendix B. Exhibit 3 "Intersection Details" in Appendix H can be referenced to locate specific cross sections. 4.4 Marygold Avenue The primary reason for flooding into the Kaiser Hospital is the geometric design of Marygold Avenue. Marygold Avenue has the only sump condition in the entire study HAPdata \10105573\Admin \reports \Hydrology \KFMC_Hydrology.doc 9 - -- -^Area Q10 Q100 Description Land Use (Ac) Tc Peak Flow Tc Peak Flow Min ) (CFS) Min CFS Residential Area 'A' Public Park 184.3 47.1 107.7 42.8 209.9 Commercial Public Area 'B' Street 143.7 39.2 139.3 35.2 232.0 Area'C' Commercial 37.8 15.7 75.2 15.1 112.2 Technical data for the hydrology can be found in Appendix D for both the 10- and 100 - year storms. In Appendix H, Exhibit 1 "Sierra Avenue and Mango Avenue Watersheds" and Exhibit 2 "Kaiser Hospital and Valley Boulevard West Watershed" show the subareas in the hydrology modeling. The hydraulic calculations determined that the existing storm drain pipes could not handle the 100 -year flows and water would be flowing in the streets. Cross sections of the streets with estimated flowrates can be found in Appendix B. Exhibit 3 "Intersection Details" in Appendix H can be referenced to locate specific cross sections. 4.4 Marygold Avenue The primary reason for flooding into the Kaiser Hospital is the geometric design of Marygold Avenue. Marygold Avenue has the only sump condition in the entire study HAPdata \10105573\Admin \reports \Hydrology \KFMC_Hydrology.doc 9 area. From the hydrology calculations, it follows that 78.2 CFS of flow reaches Marygold Avenue by way of Mango Avenue (see Exhibit 3 "Intersection Details ", Appendix H). The distribution of flow at that point is influenced by the existing median built at the intersection. It directs most of the flow west down Marygold Avenue and prevents overflow down Healthcare Parkway into the Kaiser hospital campus. Of the 78.2 CFS flow, 13.7 CFS overflows to Marygold Avenue going east (see Exhibit 3 "Intersection Details ", Appendix H and Weir Capacity Calculation, Appendix C) and 10 CFS is captured by the 7' long catch basin at the corner of Mango Avenue and Marygold Avenue (see Hydraulic Calculations, Appendix D). The remaining 54.5 CFS flows west on Marygold Avenue towards the sump. (Refer to Exhibit 3 "Intersection Details ", Appendix H and Street Cross Sections for Intersection Details, Appendix B for the following descriptions). The median on Marygold Avenue keeps the runoff on the north half of the street initially. Section D -4 shows that the north half of the street can handle the 55 CFS flow and the peak flow rate based on the hydrologic calculations is 54.5 CFS; therefore no runoff overflows the crown and flows on the south side. At Section D- 5, the calculations show that the north half of Marygold Avenue has the capacity to handle the 55 CFS flow. At Section D -6, the total runoff increases by 3 CFS because of runoff from adjacent areas to the north, increasing the total runoff flow to 57.5 CFS. At this point, the capacity of the north half of the street is 26.2 CFS and 29.7 CFS can be handled by the southerly half, resulting in 1.6 CFS overflowing in the hospital campus. At Section D -7, the street section has a capacity of 50.0 CFS. Runoff has overflowed the crown and is flowing on both sides of the street with 8 CFS overflowing into the Kaiser Hospital campus before reaching the sump. The low point in Marygold Avenue collects 49.5 CFS flow from the east and 12.5 CFS flow from the west for a total of 62 CFS. Drainage at the sump is provided by three �Ir+' existing catch basins. The limiting factor, however, is not the catch basins but the pipes built to convey the water after it has been collected. The two parallel pipes combined can only convey 10 CFS of water (see Pipe Capacity Calculations, Appendix C). With 62 CFS of water traveling to the sump, this leaves 52 CFS to overflow into the Kaiser Hospital (see Exhibit 3 "Intersection Details ", Appendix H). Combined with the 8 CFS overflowing into the Kaiser Hospital before reaching the sump, the total overflow reaches 60 CFS. 5.0 Proposed Improvements In order to eliminate the flooding through the Kaiser Hospital, several measures are possible. The completion of the storm drain master plan by building storm drain lines in Randall Avenue and San Bernardino Avenue would mitigate most of the flooding. However, the City of Fontana does not have the money to do this. Alternatively, larger catch basins and a new storm drain from the sump on Marygold Avenue to the storm drain system on Sierra Avenue can be built. In addition, a catch basin along Marygold Avenue can be constructed to reduce the flow going towards the sump. 5.1 Storm Drain from Marygold sump to Sierra Ave CB To alleviate the flooding problem at the Marygold Avenue sump, the 1991 Hydrology ® Study (Master Hydrology Study of the Palmetto Master Drainage Area) proposed to build H: \Pdata \10105573\Hdmin \reports \Hydrology \KFMC_Hydrology.doc 10 a new 36" storm drain from the sump going west to join the existing 42" storm drain at the intersection of Marygold Avenue and Sierra Avenue. However, this solution is not sufficient for the 100 -year storm event. To mitigate the 100 -year flood we propose to build a new 48" storm drain going west on Marygold Avenue and south on Sierra Avenue to connect to an existing catch basin on Sierra Avenue just north of Permanente Drive (Detail D, See Exhibit 3, Appendix H). This design provides sufficient head to drain the 100 -year flow at the sump without overflowing, while the storm drain in Sierra Avenue is in overflow mode (see Hydraulics Calculations, Appendix E). For the 100 -year event, the catch basins on Sierra Avenue act as overflow basins, preventing the sump catch basins on Marygold Avenue from overflowing. Several cross - sections of Sierra Avenue were modeled to analyze the effects of the additional 62 CFS on the existing storm water runoff (see Street Cross Section Capacity Calculations in Appendix B). The smallest section on Sierra Avenue downstream of the catch basin accepting flow from the sump can handle 130 CFS before water will overflow into the parking lot to the west. The 48" storm drain in Sierra Avenue has a capacity of 160 CFS when flowing full (see Pipe Capacity Calculations in Appendix C) and the hydrology calculations show a flow of 210 CFS needing to be conveyed by both street and pipe at that point (see 100 Year Hydrology Calculations for Sierra Avenue watershed in Appendix D). With the additional 62 CFS from the sump, the total needing to be carried by pipe and street becomes 272 CFS. Subtracting the 160 CFS able to be carried by the pipe leaves 112 CFS to be carried by the street. Since the aforementioned smallest cross section can handle 130 CFS, the adjacent properties to Sierra Avenue will not be flooded. 5.2 Additional Catch Basin on Marygold Avenue To protect the Kaiser Campus from flooding into the existing central plant, an additional catch basin is needed. The catch basin will be placed east of the driveway entrance to the central plant. This will help reduce the street flow at this point and prevent water from overflowing into the driveway and down into the loading area. The catch basin will be tied into the existing 18 °x29" CMPA storm drain in Marygold Avenue flowing east to Healthcare Parkway. This storm drain originally tied into the sump catch basins which will now be directed towards Sierra Avenue. The 8 CFS capacity this system can handle without overflowing was calculated using WSPG (see Hydraulics Calculations, Appendix E). With this additional catch basin, the total amount of runoff traveling to the sump is reduced from 70 CFS to 62 CFS. 5.3 Increase size of Existing Catch Basins A number of catch basins need to be upsized to accommodate the new storm drain line. First, the catch basins at the Marygold Avenue sump needs to be increased to 14' (see Catch Basin Capacity Calculations in Appendix C). The increase in size will assure that the 100 -year flow directed to the sump will be collected and conveyed to Sierra Avenue. Second, the catch basin at Sierra Avenue needs to be checked to confirm that the 62 CFS coming from the sump can be discharged onto Sierra Avenue (see Catch Basin Capacity Calculations (Orifice) in Appendix C). From the calculations it was determined that the existing catch basin was sufficient to handle the increased discharge. HAPdata\10105573\Admin \reports \Hydrology \KFMC_Hydrology.doc 11 6.0 Conclusions The Kaiser Fontana Medical Center experienced flooding in the past. Due to overflowing of the existing sump on Marygold Avenue, Kaiser Permanente and the City of Fontana have both taken measures to mitigate the problem but have not eliminated it. FEMA has designated the entire hospital site in a Zone A floodplain on its FIRM map. This caused concern by OSHPD for the building of new hospital facilities. This study was therefore initiated to analyze the existing drainage system and find a solution to mitigate the flooding problem. The solution was determined by calculating which of the surrounding streets were at or over capacity during a 100 -year storm and which streets were under capacity. Using this method, it was established that Marygold Avenue was over capacity at its sump and Sierra Avenue was under capacity due to the storm drain pipes under the street and the wider street cross - section. To reduce the threat of flooding to the Kaiser Hospital, the sump at Marygold Avenue needed to be relieved by conveying the runoff to Sierra Avenue without flooding adjacent properties. The recommended improvements to achieve this result consist of the construction of a 48" RCP storm drain from the Marygold Avenue sump to a catch basin on Sierra Avenue. In addition, catch basins in the sump need to be upgraded and a new catch basin needs to be added east of the driveway into the Kaiser Hospital Central Plant on Marygold Avenue. It cannot be assumed that no flooding will ever occur at the Kaiser Hospital as there is the chance for a storm greater than the 100 -year storm. However, with these improvements, flooding of the Kaiser Hospital campus during a 100 -year storm should be prevented. It is intended to use this report to file a Conditional Letter of Map Revision (CLOMR) with FEMA to remove the flood Zone A designation from the Kaiser Hospital campus. A HAPdata \10105573\Admin \reports \Hydrology \KFMC_Hydrology.doc 12 A. Appendix A — Reference Maps • Vicinity Map Soils Map • Isohyetal Maps FIRM Map m H: \Pdata \10105573\Admin\ reports \Hydrology \KFMC_Hydrology.doc ;W] • PBF 0 O 1,000 2,000 3,000 Feet Kaiser Medical Center Fontana Replacement Hospital N Vicinity Map C i Map Document: (M: \Mdata\ 10105573\ GIS \KaiserSiteUcinityMap_t.mxd) - 9/15/2008 L 1 • C�IN� O 0 1,000 2,000 3,000 Feet Kaiser Medical Center Fontana Replacement Hospital Soil Map Map Document: (M: \Mdata\ 10105573 \GIS \Landuse_Soils2.mxd) - 9115/2008 ARROW BLVD r� M r ` RRILL AVE 77 �� I F- I I 1 1 I ... RA DALL AVE c m C/) m 1� D r M m Fl, m D M OA �.. r l BERNARDI � :ttSA OLD AV 1 I 1 1 1 1 I VA LEY BLVD I I `1 1 I SLOVER AVE Legend i j Study Area Soil Type A Soil Type B C�IN� O 0 1,000 2,000 3,000 Feet Kaiser Medical Center Fontana Replacement Hospital Soil Map Map Document: (M: \Mdata\ 10105573 \GIS \Landuse_Soils2.mxd) - 9115/2008 \IJ T4N — 9•JD R5W I - - - R2E I -- - -- - - - - - R6W 1 4W „�1 ", -. e — R2W RIW �` �`•-, RIE •�, T r — I I I ►ESr IT j 9 ti T3N _ 14 L 1 zz � , 1;; a — - _ IS . i — _ -_ — i _ .� - � W - 26 . c z iKA _ ` I✓K•M1 ', I - J _ - _o� �'r.. - I l MT T ?M10 � 1 • ~• ' I' I •i. ♦� b ! ~ - _'' -- _ - - 1 r \ - - - __ j.•`l•f 13 I /�I I - � — � _ �' .y I Ir • • L. ARRO—EAD 4, J •. — _ _ T2N I a' . �f� - - - - — — ' a aDwlh t - -_ -- Mir i i , ♦- �. — •�•• •�\_ . \_.�\ (DRY( GR 1 •�IE n. c.w _ - ( \ — Cyaw "_ •1• LAR[ � - a ` _ JARLOA- • MMM " -F a.M L1 - - ..i - \- - ± .....,,.. : ' ci �Cw. (= -- *. _` _. •► t n►ra ON ;•;� -- ,o.. - =t - ` - - -• -..fr w _ v .,+,.,.,,,r..•V,` - - — ? — f `4 ` y : w J .. '- - - ` ' - - ( - -i T I N - CLARdIOMF I R I A LTO FONT AN -= I l0Z'. • wa •' rt C TON• ''ter. -- REDL NDS y - I- � - \T.1S • ?••• • • - CREST11011E •0•• — ale •Dw ' ', -` T a _ — „ . P< -.. • � _ y [RAM[ TCRR1CC f 1 ►A Ss CHINO' — - ✓ — G o . •r CAN ootk T2 S Rn�RnO[ . court o. ' i- ii R I E R E B - I FIGURE B -3 RSILit - w w Avt • • ,. R4W R3 -.[., R2W .. —I- �_ Y• T ; S I - - - I - F RADt Rp ` I I D .. t '• AS _ R5W: REDUCED DRAWING f ••' SCAN BERN,ARDINO SCALE I"=4 MILES A COUNTY • 'R a , R7W R IS ••• HYDROLOGY MANUAL LEGEND: � .8 ISOLINES PRECIPITATION (INCHES) B - I FIGURE B -3 B -12 FIGURE B -4 I 1 tie � . r �,� "I■ =fad ®��1��.��.`��- !��lll.� =�. �.,mm•� _ _ �_ PAN MAE C AI P � V R ' 5 P4 e � ED DRA i SCALE s• s • • ' Emm 1� .7 PIN r 7 B -12 FIGURE B -4 B. Appendix B — Street Cross Section Capacity Calculations C7 H: \Pdata \10105573\Adm in \reports \Hydrology \KF MC_Hydrology.doc B.1 Street Cross Sections for Intersection Details C7 H APdata \10105573\Admin\reports \Hydrology \KFMC_Hydrology.doc Cross Section Al Cross Section for Irregular Channel Project Description Worksheet Street - Mango S/O Merrill Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Mannings 0.015 Coefficient Slope 0.014700 ft/ft Water Surface 1,234.77 ft Elevation Elevation Range 1,233.89 to 1,234.82 Discharge 138.76 cfs 1,234.90, 1,234.60 - - 1,234.40 1,234.20 1,234.00 1,233.80 0 +00 0 +05 0 +10 0 +15 0 +20 0 +25 0 +30 0 +35 0 +40 0 +45 0 +50 0 +55 0 +60 V:10.0 N H:1 NTS Project Engineer: RBF Consulting h: \...\ hydro \flowmaster\mango _ s- o_merrill.fm2 RBF Consulting FlowMaster v6.1 (614k] 9/5/2008 4:03:49 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755 -1666 Page 1 Cross Section 131 Cross Section for Irregular Channel Project Description ic Worksheet Flow Element Method Solve For D Mango - N/O Randall Irregular Channel Manning's Formula Discharge Section Data Mannings Coefficient Slope Water Surface Elevation Elevation Range Discharge 1,194.303- 1,193.90 1,193.60: 1,193.30 0 +00 0.015 0.020000 ft/ft 1,194.29 ft 1,193.38 to 1,194.29 157.15 cfs 0 +10 0 +20 0 +30 0 +40 0 +50 0 +60 0 +70 V:10.0N H:1 NTS on Project Engineer: RBF Consulting h: \...\calcs\ hydro \flowmaster\mangc_at_randall.fm2 RBF Consulting FlowMaster v6.1 [614k] 9/5/2008 4:08:53 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755 -1666 Page 1 Cross Section 132 Cross Section for Irregular Channel Project Description Worksheet Mango - S/O Randall Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Mannings 0.015 Coefficient Slope 0.016000 ft/ft Water Surface 1,191.38 ft Elevation Elevation Range 1,190.56 to 1,191.52 Discharge 187.66 cfs 1,191.60 G - 1,191.10 1,190.80 1,190.50 0 +00 0 +10 0 +20 0 +30 0 +40 0 +50 0 +60 0 +70 V:10.0N H:1 NTS 0 Project Engineer: RBF Consulting h: \... \calcs\ hydro \flowmaster\mango_at_randall.fm2 RBF Consulting FlowMaster v6.1 [614k] 9/5/2008 4:09:13 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755 -1666 Page 1 Cross Section 133 Cross Section for Irregular Channel Project Description Worksheet Randall - E/O Mango Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Mannings 0.015 Coefficient Slope 0.002000 ft/ft Water Surface 1,192.76 ft Elevation Elevation Range 1,191.87 to 1,193.15 Discharge 43.02 cfs 1,193.20 1,192.60 1,192.20' 1,191.80 ' 0 +00 0 +10 0 +20 0 +30 0 +40 0 +50 0 +60 0 +70 0 +80 0 +90 V:10.0N H:1 NTS Project Engineer: RBF Consulting h: \... \calcs\ hydro \flowmaster\mango_at_randall.fm2 RBF Consulting FlowMaster v6.1 [614k] 9/5/2008 4:09:37 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755 -1666 Page 1 Cross Section 134 Cross Section for Irregular Channel Project Description Worksheet Randall - Further E/O Mango Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Mannings 0.015 Coefficient Slope 0.002000 ft/ft Water Surface 1,192.76 ft Elevation Elevation Range 1,191.87 to 1,193.15 Discharge 43.02 cfs 1,193.20 1,192.60 1,192.20. 1,191.80 0 +00 0 +10 0 +20 0 +30 0 +40 0 +50 0 +60 0 +70 0 +80 0 +90 V:10.0N H:1 NTS C7 Project Engineer: RBF Consulting h: \... \calcs\ hydro \flowmaster\mango_at_randall.fm2 RBF Consulting FlowMaster v6.1 [614k] 9/512008 4:05:49 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755 -1666 Page 1 Cross Section C1 Cross Section for Irregular Channel Project Description Worksheet Mango - N/O San Bernardino Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Mannings 0.015 Coefficient Slope 0.030000 ft/ft Water Surface 1,157.94 ft Elevation Elevation Range 1,157.06 to 1,157.99 Discharge 210.98 cfs 1,158.0 1,157.60; 1,157.30 1,157.00 0 +00 0 +10 0 +20 0 +30 0 +40 I 0 +50 0 +60 0 +70 V:1 0.0 H:1 NTS Project Engineer: RBF Consulting h: \... \calcs\ hydro \flowmaster\mango_at_randall.fm2 RBF Consulting FlowMaster v6.1 [614k] 9/5/2008 4:12:19 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755 -1666 Page 1 Cross Section C2 Cross Section for Irregular Channel N Project Description Worksheet San Bernardino — E/O Mango Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Mannings 0.015 Coefficient Slope 0.003300 ft/ft Water Surface 1,155.92 ft Elevation Elevation Range 1,155.00 to 1,155.92 Discharge 73.16 cfs 1,156.00 1,155.40'1 1,155.00' -0+10 0 +00 0 +10 0 +20 0 +30 0 +40 0 +50 0 +60 0 +70 0 +80 0 +90 VA0.0N H:1 NTS A Project Engineer: RBF Consulting h: \... \hydro \flowmaster\kaiser flood calcs.fm2 RBF Consulting FlowMaster v6.1 [614k] 9/5/2008 4:11:11 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755 -1666 Page 1 Cross Section D1 Cross Section for Irregular Channel Project Description Worksheet Flow Element Method Solve For Section Data Marygold Full Width E of Mango Irregular Channel Manning's Formula Discharge Mannings Coefficient Slope Water Surface Elevation Elevation Range Discharge 0.015 0.002000 ft/ft 1,139.93 ft 1,139.03 to 1,139.96 30.91 cfs 1,140.0k 1,139.60 1,139.30 - 1,139.00 0 +00 0 +10 0 +20 0 +30 0 +40 0 +50 0 +60 0 +70 V:10.0 N H:1 NTS A Project Engineer: RBF Consulting h: \... \hydro \flowmaster\kaiser flood calcs.fm2 RBF Consulting FlowMaster v6.1 [614k] 9/12/2008 6:59:28 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755 -1666 Page 1 Cross Section D2 Cross Section for Irregular Channel - C Project Description 14 M Worksheet Marygold N'ly Half Width E of Mango with Median Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data 0.015 0.002000 ft/ft 1,139.99 ft 1,139.26 to 1,141.07 12.24 cfs Mannings Coefficient Slope Water Surface Elevation Elevation Range Discharge 1,141.20 1,141.00 1,140.80 1,140.60 1,140.40 1,140.20 1,140.00 1,139.80 1,139.60 1,139.40 1,139.20 -0+05 0 +30 VA 0.0� H:1 NTS Project Engineer: RBF Consulting h: \... \hydro\flowmaster\kaiser flood calcs.fm2 RBF Consulting FlowMaster v6.1 [614k] 9/12/2008 6:47:03 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755 -1666 Page 1 0 +00 0 +05 0 +10 0 +15 0 +20 0 +25 Cross Section D3 Cross Section for Irregular Channel �41]0 Project Description Worksheet Marygold N'ly Half Width W of Mango with Median Flow Element Irregular Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficient Slope Water Surface Elevation Elevation Range Discharge 1,140.60 1,140.40 1,140.20 1,140.00 1,139.80 1,139.60 1,139.40 1,139.20 1,139.00 1,138.80 -0+05 0.015 0.003600 ft/ft 1,139.99 ft 1,138.90 to 1,140.47 65.00 cfs 0 +00 0 +05 0 +10 0 +15 0 +20 0 +25 0 +30 V:10.0N H:1 NITS 6A Project Engineer: RBF Consulting h: \...\hydro \flowmaster\kaiser flood calcs.fm2 RBF Consulting FlowMaster v6.1 [614k] 9/12/2008 6:47:59 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755 -1666 Page 1 Cross Section D4A Cross Section for Irregular Channel D V" Project Description Worksheet Marygold N'ly Half Width W of Mango Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Mannings Coefficient Slope Water Surface Elevation Elevation Range Discharge 1,140.40 1,140.20 1,140.00 1,139.80: 1,139.60; 1,139.40 1,139.20 1,139.00. 1,138.80 1,138.60 -0+05 0.015 0.004600 ft/ft 1,139.75 ft 1,138.71 to 1,140.33 54.75 cfs 0 +00 0 +05 0 +10 0 +15 0 +20 0 +25 0 +30 0 +35 V:10.0 N H:1 NTS A Project Engineer: RBF Consulting h: \... \hydro \flowmaster\kaiser flood calcs.frn2 RBF Consulting FlowMaster v6.1 [614k] 9/12/2008 6:51:11 PM © Haestad Methods, Inc. 37,Brookside Road Waterbury, CT 06708 USA (203) 755 -1666 Page 1 Cross Section 13413 Cross Section for Irregular Channel IN Project Description Worksheet Marygold S'ly Half Width W of Mango Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Mannings Coefficient Slope Water Surface Elevation Elevation Range Discharge 1,139.8 1,139.6 1,139.4 1,139.2 1,139.0 1,138.8 1,138.60 0 +00 0.015 0.004600 ft/ft 1,139.56 ft 1,138.73 to 1,139.75 19.42 cfs 0 +05 0 +10 0 +15 0 +20 0 +25 0 +30 0 +35 VA 0.0N H:1 NTS CA Project Engineer: RBF Consulting h: \...\hydro \flowmaster\kaiser flood calcs.fm2 RBF Consulting FlowMaster v6.1 [614k] 9/12/2008 6:51:55 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755 -1666 Page 1 Cross Section D5A Cross Section for Irregular Channel Project Description Worksheet Marygold W of Mango N'ly Half Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Mannings Coefficient Slope Water Surface Elevation Elevation Range Discharge 1,140.00 1,139.80; 1,139.60' 1,139.40: 1,139.20 1,139.00 1,138.80 1,138.60 1,138.40 1,138.20 -0+05 0.015 0.004600 ft/ft 1,139.39 ft 1,138.39 to 1,139.97 65.85 cfs 0 +00 0 +05 0 +10 0 +15 0 +20 0 +25 0 +30 0 +35 V:10.0N H:1 NTS Project Engineer: RBF Consulting h: \... \hydro \flowmaster\kaiser flood ca1cs.fm2 RBF Consulting FlowMaster v6.1 [614k] 9/12/2008 6:53:52 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755 -1666 Page 1 Cross Section D513 Cross Section for Irregular Channel D Project Description Worksheet Marygold W of Mango S'ly Half Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Mannings Coefficient Slope Water Surface Elevation Elevation Range Discharge 1,139.40 IN 1,139.10 1,138.90 1,138.70 1,138.50 1,138.30 0 +30 0.015 0.004600 ft/ft 1,139.12 ft 1,138.39 to 1,139.39 17.62 cfs 0 +35 0 +40 0 +45 0 +50 0 +55 0 +60 0 +65 V:10.0N H:1 NTS Project Engineer: RBF Consulting h: \... \hydro \flowmaster\kaiser flood calcs.fm2 RBF Consulting FlowMaster v6.1 (614k] 9/12/2008 6:54:39 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755 -1666 Page 1 Cross Section D6A Cross Section for Irregular Channel Project Description Worksheet Marygold W of Mango N'ly Half Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Mannings Coefficient Slope Water Surface Elevation Elevation Range Discharge 0.015 0.004600 ft/ft 1,138.75 ft 1,137.78 to 1,139.45 26.22 cfs 1,139.60 1,139.40 1,139.20 1,139.00 1,138.80 1,138.60' - 1,138.40 1,138.20 1,138.00 1,137.80; 1,137.60 -0+05 0 +00 0 +35 V:10.0N H:1 NTS Project Engineer: RBF Consulting h: \... \hydro \flowmaster \kaiser flood calcs.fm2 RBF Consulting FlowMaster v6.1 [614k] 9/1512008 9:39:35 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755 -1666 Page 1 0 +05 0 +10 0 +15 0 +20 0 +25 0 +30 Cross Section D613 Cross Section for Irregular Channel Allk Project Description Worksheet Marygold W of Mango S'ly Half Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Mannings Coefficient 0.015 Slope 0.004600 ft/ft Water Surface Elevation 1,138.59 ft Elevation Range 1,137.73 to 1,138.75 Discharge 29.74 cfs 1,138.80 i 1,138.60 1,138.40 1,138.20 1,138.00 1,137.80 1,137.60 0 +30 0 +35 0 +40 0 +45 0 +50 0 +55 0 +60 r 0 +65 V:1 0.0 H:1 NTS Project Engineer. RBF Consulting h: \... \hydro \flowmaster\kaiser flood calcs.fm2 RBF Consulting FlowMaster v6.1 [614k] 9/12/2008 6:57:12 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755 -1666 Page 1 Cross Section D7 Cross Section for Irregular Channel Project Description Worksheet Marygold Full Width W of Mango Flow Element Irregular Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficient Slope Water Surface Elevation Elevation Range Discharge 1,139.20 1,138.80 1,138.40 1,138.00 1,137.60 1,137.20 -0 +10 0.015 0.004600 ft/ft 1,138.10 ft 1,137.35 to 1,139.09 50.00 cfs 0 +00 0 +10 0 +20 0 +30 0 +40 0 +50 0 +60 0 +70 V:10.0 N H:1 NTS Project Engineer: RBF Consulting h: \...\hydro \flowmasterUkaiser flood calcs.fm2 RBF Consulting FlowMaster v6.1 [614k] 9/12/2008 6:58:11 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755 -1666 Page 1 Cross Section D8(Water Depth) Cross Section for Irregular Channel Project Description Worksheet Mango N of Marygold -Water Depth Flow Element Irregular Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficient Slope Water Surface Elevation Elevation Range Discharge 0.015 0.007900 ft/ft 1,140.88 ft 1,139.96 to 1,141.19 78.20 cfs 1,141.20• 1,140.60: 1,140.20' 1,139.80 -0+30 -0+20 -0+10 0 +00 0 +10 0 +20 0 +30 0 +40 0 +50 0 +60 0 +70 V:10.0 N H:1 NTS LM Project Engineer: RBF Consulting h: \... \hydro \flowmaster\kaiser flood calcs.fm2 RBF Consulting FlowMaster v6.1 [614k] 9/12/2008 7:02:33 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755 -1666 Page 1 m A B.2 Street Cross Sections for Sierra Avenue H: \Pdata \10105573\Adm in\reports \Hydrology \KFMC_Hydrology. doc iv Cross Section E1 Cross Section for Irregular Channel Project Description Worksheet Flow Element Method Solve For Sierra _No_San Bernardino Irregular Channel Manning's Formula Discharge Section Data Mannings 0.015 Coefficient Slope 0.013300 ft/ft Water Surface 99.48 ft Elevation Elevation Range 98.60 to 100.00 Discharge 122.26 cfs 100.00 99.60 9920 98.80 98.40 0 +00 0 +20 0 +40 0 +60 0 +80 1 +00 VA0.0N H:1 NTS A Project Engineer: RBF Consulting h: \...\ hydro \flowmaster\sierra_ valley- sanbem.fm2 RBF Consulting FlowMaster v6.1 [614k] 9/5/2008 6:24:11 PM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755 -1666 Page 1 Cross Section E2 Cross Section for Irregular Channel 0 +60 0 +80 1 +00 1 +20 V:10.0N H:1 NITS Project Engineer: RBF Consulting h: \...\ hydro \flowmaster\sierra_ valley- sanbern.fm2 RBF Consulting FlowMaster v6.1 [614k] 9/5/2008 6:25:14 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755 -1666 Page 1 Project Description Worksheet Sierra s /o San Bernardino Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Mannings 0.015 Coefficient Slope 0.016700 ft/ft Water Surface 99.92 ft Elevation Elevation Range 99.04 to 100.00 Discharge 194.15 cfs 100.00 99.40 99.00 0 +00 0 +20 0 +40 0 +60 0 +80 1 +00 1 +20 V:10.0N H:1 NITS Project Engineer: RBF Consulting h: \...\ hydro \flowmaster\sierra_ valley- sanbern.fm2 RBF Consulting FlowMaster v6.1 [614k] 9/5/2008 6:25:14 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755 -1666 Page 1 Cross Section E3 Cross Section for Irregular Channel Project Description Worksheet Sierra _n /o_Marygold Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Mannings Coefficient Slope Water Surface Elevation Elevation Range Discharge N 100.60 100.20 99.80 99.40 99.00 0 +00 0.015 0.013100 ft/ft 100.00 ft 99.12 to 100.52 121.16 cfs V:10.0N H:1 NTS A Project Engineer: RBF Consulting h: \...\ hydro \flowmaster\sierra _valley- sanbem.fm2 RBF Consulting FlowMaster v6.1 [614k] 9/5/2008 6:25:59 PM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755 -1666 Page 1 0 +20 0 +40 0 +60 0 +80 1 +00 Cross Section E4 Cross Section for Irregular Channel M C7 Project Description Worksheet Sierra_s /o_Marygold Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Mannings Coefficient Slope Water Surface Elevation Elevation Range Discharge 100.60 100.20 99.80 99.40 99.00 0 +00 0.015 0.014666 ft/ft 100.00 ft 99.12 to 100.52 128.20 cfs Y i 0 +20 0 +40 0 +60 0 +80 1 +00 VA0.0N H:1 NTS Project Engineer: RBF Consulting h:\... \hydro\flowmaster\sierra _valley- sanbem.fm2 RBF Consulting FlowMaster v6.1 [614k] 9/5/2008 6:26:51 PM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755 -1666 Page 1 Cross Section E5 Cross Section for Irregular Channel Project Description Worksheet Sierra Half- Street N of Bus Turnout West Side Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Mannings 0.015 Coefficient Slope 0.014666 ft/ft Water Surface 1,129.95 ft Elevation Elevation Range 1,129.15 to 1,130.30 Discharge 47.63 cfs 1,130.40 1,130.20 1,130.0 1,129.80 1,129.60 1,129.40 1,129.20 1,129.00 0 +00 0 +05 0 +10 0 +15 0 +20 0 +25 0 +30 0 +35 0 +40 0 +45 0 +50 VA 0.0 N H:1 NTS Project Engineer: RBF Consulting h:\...\ hydro\ flowmaster \sierra_valley- sanbem.fm RBF Consulting FlowMaster v6.1 [614k] © 9/5/2008 6:28:00 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755 -1666 Page 1 Cross Section E6 Cross Section for Irregular Channel Project Description Worksheet Sierra Half- Street N of Bus Turnout East Side Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Mannings 0.015 Coefficient Slope 0.014666 ft/ft Water Surface 1,130.30 ft Elevation Elevation Range 1,129.28 to 1,130.34 Discharge 100.33 cfs 1,130.40 1,130.20 1,130.00 1,129.80 1,129.60 1,129.40 1,129.20 0 +50 0 +55 0 +60 0 +65 0 +70 0 +75 0 +80 0 +85 0 +90 0 +95 1 +00 V:10.0 N H:1 NTS N Project Engineer: RBF Consulting h: \...\ hydro \flowmaster\sierravalley- sanbem.fm2 RBF Consulting FlowMaster v6.1 [614k) 9/5/2008 6:29:00 PM ©_ Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755 -1666 Page 1 Cross Section E7 Cross Section for Irregular Channel Project Description Worksheet Seirra Half Street S of Bus Turnout West Side Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Mannings 0.015 Coefficient Slope 0.014666 ft/ft Water Surface 1,127.19 ft Elevation Elevation Range 1,126.33 to 1,128.04 Discharge 50.20 cfs 1,128.20 1,128.00 1,127.80 1,127.60 _ 1,127.40 1,127.20 1,127.00 1,126.80 1,126.60 1,126.40 1,126.20 0 +00 0 +05 0 +10 0 +15 0 +20 0 +25 0 +30 0 +35 0 +40 0 +45 0 +50 0 +55 0 +60 V:10.0N H:1 NTS Project Engineer: RBF Consulting h: \...\ hydro\ flowmaster \sierra_valley- sanbem.fm2 RBF Consulting FlowMaster v6.1 [614k] 9/5/2008 6:34:40 PM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755 -1666 Page 1 Cross Section E8 Cross Section for Irregular Channel Project Description Worksheet Seirra Half Street S of Bus Turnout East Side Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Mannings Coefficient 0.015 Slope 0.014666 ft/ft Water Surface Elevation 1,127.48 ft Elevation Range 1,126.77 to 1,127.98 Discharge 56.36 cfs 1,128.00 1,127.80 1,127.60 1,127.40 1,127.20 1,127.00 1,126.80 1,126.60, 0 +45 0 +50 0 +55 0 +60 0 +65 0 +70 0 +75 0 +80 0 +85 0 +90 0 +95 1 +00 V:10.0N H:1 NTS A Project Engineer: RBF Consulting h: \...\ hydro \flowmaster\sierra_ valley- sanbern.fm RBF Consulting FlowMaster v6.1 [614k] 9/12/2008 7:07:50 PM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755 -1666 Page 1 Cross Section E9 Cross Section for Irregular Channel Project Description Worksheet Sierra_n /o valley Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Mannings 0.015 Coefficient Slope 0.014666 ft/ft Water Surface 100.00 ft Elevation Elevation Range 99.12 to 100.39 Discharge 177.41 cfs 100.40 99.80 99.40 ; 99.00 0 +00 0 +20 0 +40 0 +60 0 +80 1 +00 V:10.0 N H:1 NTS Project Engineer: RBF Consulting h: \... \hydro \flowmaster\sierra valley- sanbem.fm2 RBF Consulting FlowMaster v6.1 [614k] 9/5/2008 6:35:39 PM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755 -1666 Page 1 C. Appendix C — Pipe, Catch basin, and Weir Capacity Calculations m H: \Pdata \10105573Wdmin \reports \Hydrology \KF MC_Hydrology.doc CA Pipe Capacity Calculations N r� L H: \Pdata \10105573\Admin \reports \Hydrology \KFMC_Hydrology.doc Vi Cross Section Cross Section for Circular Channel Project Description Worksheet Pressure flow for CMPA from parking to Flow Element Circular Channel Method Manning's Formula Solve For Full Flow Capacity Section Data Mannings Coeffic 0.024 Slope 004125 ft/ft Depth 2.00 ft Diameter 24 in Discharge 7.8 cfs 2.00 ft 24 in V:1 H:1 NTS A Project Engineer: RBF Consulting h: \... \hydro \flowmaster\kaiser flood calcs.fm2 RBF Consulting FlowMaster v6.1 [614k) 09/05/08 03:14:06 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755 -1666 Page 1 of 1 Worksheet Worksheet for Circular Channel Project Description Worksheet 15" SD from Marygol( Flow Element Circular Channel Method Manning's Formula Solve For Full F low Capacity Input Data Mannings Coeffic 0.013 Slope 001000 ft/ft Diameter 15 in Results Depth 1.25 ft Discharge 2.04 cfs Flow Area 1.2 ft Wetted Perime 3.93 ft Top Width 0.00 ft Critical Depth 0.57 ft Percent Full 100.0 % Critical Slope 005506 ft/ft Velocity 1.66 ft/s Velocity Head 0.04 ft Specific Energ: 1.29 ft Froude Numbe 0.00 Maximum Disc 2.20 cfs Discharge Full 2.04 cfs Slope Full 001000 ft/ft Flow Type N/A Project Engineer: RBF Consulting h: \... \hydro\flowmaster \kaiser flood calcs.fm2 RBF Consulting FlowMaster v6.1 [614k] 09/08/08 10:41:31 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755 -1666 Page 1 of 1 Worksheet Worksheet for Circular Channel Project Description Worksheet 18 "x29" CMPA from Mary! Flow Element Circular Channel Method Manning's Formula Solve For F Flow Capacity Input Data Mannings Coeffic 0.024 Slope 004000 ft/ft Diameter 24 in Results Depth 2.00 ft Discharge 7.75 cfs Flow Area 3.1 ftz Wetted Perime 6.28 ft Top Width 0.00 ft Critical Depth 0.99 ft Percent Full 100.0 % Critical Slope 016541 ft/ft Velocity 2.47 ft/s Velocity Head 0.09 ft Specific Energ, 2.09 ft Froude Numbe 0.00 Maximum Disc 8.34 cfs Discharge Full 7.75 cfs Slope Full 004000 ft/ft Flow Type N/ A A Project Engineer: RBF Consulting h: \... \hydro \flowmaster\kaiser flood calcs.fm2 RBF Consulting FlowMaster v6.1 [614k] 09/08/08 10:41:38 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755 -1666 Page 1 of 1 A C.2 Catch Basin Capacity Calculations H: \Pdata \10105573\Adm in\ reports \Hydrology \KFMC_Hydrology.doc Vii Proposed Marygold Sump CB - Northerly Worksheet for Curb Inlet In Sag Project Description Worksheet My New Marygold Sump CB Type Curb Inlet In Sag Solve For Spread Input Data Discharge 37.40 cfs Gutter Width 2.00 ft Gutter Cross Slope 0.083330 ft/ft Road Cross Slope 0.060100 ft/ft Curb Opening Length 14.00 ft Opening Height 0.67 ft Curb Throat Type Horizontal Local Depression 2.0 in Local Depression Width 2.00 ft Results Spread 15.78 ft Throat Incline Angle 90.00 degrees Depth 1.00 ft Gutter Depression 0.6 in Total Depression 2.6 in Project Engineer: RBF Consulting h: \... \calcs \hydro \flowmaster\sump_calcs.fm2 RBF Consulting FlowMaster v6.1 [614k] 9/12/2008 5:23:15 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755 -1666 Page 1 Proposed Marygold Sump CB - Southerly Worksheet for Curb Inlet In Sag Project Description Worksheet S'ly New Marygold Sump CB Type Curb Inlet In Sag Solve For Spread Input Data Discharge 24.90 cfs Gutter Width 2.00 ft Gutter Cross Slope 0.083330 ft/ft Road Cross Slope 0.046000 ft/ft Curb Opening Length 14.00 ft Opening Height 0.67 ft Curb Throat Type Horizontal Local Depression 2.0 in Local Depression Width 2.00 ft Results Spread 15.72 ft Throat Incline Angle 90.00 degrees Depth 0.80 ft Gutter Depression 0.9 in Total Depression 2.9 in D Project Engineer: RBF Consulting h: \... \calcs \hydro \flowmaster\sump_calcs.fm2 RBF Consulting FlowMaster v6.1 [614k] 9/12/2008 5:24:06 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755 -1666 Page 1 Proposed Flow -by CB Worksheet for Curb Inlet On Grade Project Description Worksheet Marygold CB Flowby at CUP Driveway Type Curb Inlet On Grade Solve For Efficiency Input Data Discharge 58.00 cfs Slope 0.004660 ft/ft Gutter Width 1.50 ft Gutter Cross Slope 0.083300 ft/ft Road Cross Slope 0.020000 fUft Mannings Coefficient 0.013 Curb Opening Length 7.00 ft Local Depression 2.0 in Local Depression Width 3.50 ft Results Efficiency 0.16 Intercepted Flow 9.42 cfs Bypass Flow 48.58 cfs Spread 35.12 ft Depth 0.80 ft Flow Area 12.4 ft Gutter Depression 1.1 in Total Depression 3.1 in Velocity 4.68 ft/s Equivalent Cross Slope 0.029073 fUft Length Factor 0.09 Total Interception Length 74.62 ft 5q Project Engineer: RBF Consulting h: \... \hydro \flowmaster\kaiser flood calcs.fm2 RBF Consulting FlowMaster v6.1 [614k] 9115/2008 10:45:28 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755 -1666 Page 1 N A C.3 Catch Basin Outlet Capacity Calculations (Orifice) H: \Pdata \10105573Wdm in\ reports \Hydrology \KFMC_Hydrology.doe Vlli - . i CB Outlet Capacity Worksheet for Generic Orifice Project Description Worksheet Sierra CB Outlet Capacity Type Generic Orifice Solve For Discharge Input Data Headwater Elevation 1,137.70 ft Centroid Elevation 1,132.73 ft Tailwater Elevation 1,133.23 ft Discharge Coefficient 1.00 Opening Area 9.4 f: Results Discharge 159.08 cfs Headwater Height Above Centroid 4.97 ft Tailwater Height Above Centroid 0.50 ft Velocity 16.96 ft/s A Project Engineer: RBF Consulting h: \... \hydro \flowmaster\kaiser flood calcs.fm2 RBF Consulting FlowMaster v6.1 [614k] 9/15/2008 10:48:00 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755 -1666 Page 1 m CA Weir Capacity Calculation H: \Pdata \10105573Wdm in\reports \Hydrology \KFMC_Hyd rology.doc ix Cross Section - Walkway Through Marygold Median Cross Section for Sharp Crested Rectangular Weir Project Description Worksheet Walkway thru Marygold Median Type Sharp Crested Rectangular Weir Solve For Discharge Section Data Discharge 1.38 cfs Headwater Elevation 1,139.99 ft Crest Elevation 1,139.80 ft Tailwater Elevation 1,139.80 ft Discharge Coefficient 3.33 U S Crest Length 5.00 ft Number of Contractions 0 0.19 ft 5.00 f V:10.0N H:1 NTS A Project Engineer: RBF Consulting h: \...\hydro \flowmaster\kaiser flood calcs.fm2 RBF Consulting FlowMaster v6.1 [614k] 9/12/2008 7:10:32 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755 -1666 Page 1 0 D. Appendix D — Hydrology Calculations N CA H: \Pdata \10105573Wdm in \reports \Hydrology \KFMC_Hydrology.doc DA 10 Year Storm Calculations H: \Pdata \10105573\Admin\reports \Hydrology \KFMC_Hydrology.doc A 14 OFFST- 10.RES RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -2004 Advanced Engineering Software (aes) Ver. 10.0 Release Date: 01/01/2004 License ID 1264 Analysis prepared by: RBF Consulting 14725 Alton Parkway Irvine, California 92618 m A _KAISER MEOCA�__G�EQ- FQ4TANA ___ -- orFSITE__ 4 7JP�� FILE NAME: OFFST- 10.DAT TIME /DATE OF STUDY: 14:01 09/04/2008 --- ---------------------- - - - - -- - - -- - - -- -- - - - - -- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -------------------------------------------------------------- -- *TIME -OF- CONCENTRATION MODEL * -- USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(TC;MIN)) = 0.6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 0 .9500 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* *USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET- CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT - /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW - DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER- SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 1.01 IS CODE = 21 ---------------------------------------------------------------------------- » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< AK EA >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< A !- t INITIAL SUBAREA FLOW- LENGTH(FEET) = 1000.00 ELEVATION DATA: UPSTREAM(FEET) = 1233.00 DOWNSTREAM(FEET) = 1224.00 TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGI SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = * 10 YEAR RAINFALL INTENSITY(INCH /HR) = SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA LAND USE GROUP (ACRES) PUBLIC PARK A 9.30 Page :)]* *0.20 19.638 1.857 Fp AP SCS TC (INCH /HR) (DECIMAL) CN (MIN.) 0.98 0.85 32 19.64 1 OFFST- 10.RES SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.85 SUBAREA RUNOFF(CFS) = 8.60 TOTAL AREA(ACRES) = 9.30 PEAK FLOW RATE(CFS) = 8.60 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.02 TO NODE 1.03 IS CODE = 62 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA ««< » » >( STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1236.00 DOWNSTREAM ELEVATION(FEET) = 1229.00 STREET LENGTH(FEET) = 595.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 8.60 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.39 HALFSTREET FLOOD WIDTH(FEET) = 12.62 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.66 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.03 ,�•+� STREET FLOW TRAVEL TIME(MIN.) = 3.72 TC(MIN.) = 23.36 (�✓ * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 1 .673 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 EFFECTIVE AREA(ACRES) = 9.30 AREA - AVERAGED F /HR) = 0.83 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA-AVERAGED Ap = 0.85 TOTAL AREA(ACRES) = 9.30 PEAK FLOW RATE(CFS) = 8.60 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.39 HALFSTREET FLOOD WIDTH(FEET) = 12.62 FLOW VELOCITY(FEET /SEC.) = 2.66 DEPTH *VELOCITY(FT * FT /SEC.) = 1.03 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 1. = 1595 .00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.03 TO NODE 1.03 IS CODE = 81 ---------------------------------------------------------------------------- » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< MAINLINE TC(MIN) = 23.36 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 1 .673 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS AREq A -7- LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL GOOD COVER "GRASS" A 2.71 0.94 1.00 38 PUBLIC PARK A 1.03 0.98 0.85 32 RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 0.46 0.98 0.60 32 COMMERCIAL A 12.50 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.95 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.31 SUBAREA AREA(ACRES) = 16.70 SUBAREA RUNOFF(CFS) = 20.76 EFFECTIVE AREA(ACRES) = 26.00 AREA - AVERAGED F /HR) = 0.48 Page 2 10 m A OFFST- 10.RES AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 26.00 PEAK FLOW RATE(CFS) = 27.82 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.03 TO NODE 1.04 IS CODE = 62 ---------------------------------------------------------------------------- » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA ««< » » >( STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1229.00 DOWNSTREAM ELEVATION(FEET) = 1213.00 STREET LENGTH(FEET) = 936.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = Z STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning'S FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning'S FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 27.82 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.50 HALFSTREET FLOOD WIDTH(FEET) = 19.02 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.06 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.04 STREET FLOW TRAVEL TIME(MIN.) = 3.84 TC(MIN.) = 27.20 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 1.527 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 EFFECTIVE AREA(ACRES) = 26.00 AREA - AVERAGED FM(INCH /HR) _ AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 26.00 PEAK FLOW RATE(CFS) _ NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE 0.48 27.82 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.50 HALFSTREET FLOOD WIDTH(FEET) = 19.02 FLOW VELOCITY(FEET /SEC.) = 4.06 DEPTH *VELOCITY(FT *FT /SEC.) = 2.04 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 1.04 = 2531.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.04 TO NODE 1.04 IS CODE = 81 ---------------------------------------------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< MAINLINE TC(MIN) = 27.20 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 1.527 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL AREA A "3 -4 DWELLINGS /ACRE" A 6.74 0.98 0.60 32 PUBLIC PARK A 9.08 0.98 0.85 32 COMMERCIAL A 10.38 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.49 SUBAREA AREA(ACRES) = 26.20 SUBAREA RUNOFF(CFS) = 24.78 EFFECTIVE AREA(ACRES) = 52.20 AREA - AVERAGED FM(INCH /HR) = 0.48 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.49 TOTAL AREA(ACRES) = 52.20 PEAK FLOW RATE(CFS) = 49.18 Page 3 A -3 OFFST- 10.RES FLOW PROCESS FROM NODE - -- 1_04 - TO - NODE - - - - -- 1_05 - IS - CODE - = 62 ------ - - - - -- -------- - - - - -- »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< » » >( STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1213.00 DOWNSTREAM ELEVATION(FEET) = 1196.00 STREET LENGTH(FEET) = 1055.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 49.18 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.59 HALFSTREET FLOOD WIDTH(FEET) = 24.18 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.54 PRODUCT OF DEPTH &VELOCITY(FT * FT /SEC.) = 2.70 STREET FLOW TRAVEL TIME(MIN.) = 3.87 TC(MIN.) = 31.07 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 1.410 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 EFFECTIVE AREA(ACRES) = 52.20 AREA - AVERAGED Fm(INCH /HR) = 0.48 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.49 TOTAL AREA(ACRES) = 52.20 PEAK FLOW RATE(CFS) = 49.18 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.59 HALFSTREET FLOOD WIDTH(FEET) = 24.18 FLOW VELOCITY(FEET /SEC.) = 4.54 DEPTH *VELOCITY(FT *FT /SEC.) = 2.70 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 1.05 = 3586.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.05 TO NODE 1.05 IS CODE = 81 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< MAINLINE TC(MIN) = 31.07 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 1.410 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA FP Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN AREA A 4 RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 15.77 0.98 0.60 32 COMMERCIAL A 9.73 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.41 SUBAREA AREA(ACRES) = 25.50 SUBAREA RUNOFF(CFS) = 23.20 EFFECTIVE AREA(ACRES) = 77.70 AREA - AVERAGED Fm(INCH /HR) = 0.45 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.47 TOTAL AREA(ACRES) = 77.70 PEAK FLOW RATE(CFS) = 66.87 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.05 TO NODE 1.06 IS CODE = 62 ---------------------------------------------------------------------------- »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA ««< » » >( STREET TABLE SECTION # 1 USED) ««< Page =4 OFFST- 10.RES UPSTREAM ELEVATION(FEET) = 1196.00 DOWNSTREAM ELEVATION(FEET) = 1181.00 STREET LENGTH(FEET) = 1000.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning'S FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning'S FRICTION FACTOR for Back -of -Walk NOW Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 66.87 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.66 HALFSTREET FLOOD WIDTH(FEET) = 27.62 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.77 PRODUCT OF DEPTH &VELOCITY(FT * FT /SEC.) = 3.13 STREET FLOW TRAVEL TIME(MIN.) = 3.49 TC(MIN.) = 34.57 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 1.323 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 EFFECTIVE AREA(ACRES) = 77.70 AREA- AVERAGED FM(INCH /HR) = 0.45 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.47 TOTAL AREA(ACRES) = 77.70 PEAK FLOW RATE(CFS) = 66.87 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.66 HALFSTREET FLOOD WIDTH(FEET) = 27.62 FLOW VELOCITY(FEET /SEC.) = 4.77 DEPTH *VELOCITY(FT *FT /SEC.) = 3.13 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 1.06 = 4586.00 FEET. FLOW PROCESS FROM NODE 1.06 TO NODE 1.06 IS CODE = 81 ---------------------------------------------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< MAINLINE TC(MIN) = 34.57 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 1.323 n SUBAREA LOSS RATE DATA(AMC II): A A 5 DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 1.40 0.98 0.10 32 RESIDENTIAL '5 -7 DWELLINGS /ACRE" A 23.50 0.98 0.50 32 NATURAL GOOD COVER "GRASS" A 7.20 0.94 1.00 38 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.96 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.59 SUBAREA AREA(ACRES) = 32.10 SUBAREA RUNOFF(CFS) = 21.71 EFFECTIVE AREA(ACRES) = 109.80 AREA - AVERAGED FM(INCH /HR) = 0.49 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 109.80 PEAK FLOW RATE(CFS) = 82.48 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.06 TO NODE 1.07 IS CODE = 62 ---------------------------------------------------------------------------- » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA ««< » » >( STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1181.00 DOWNSTREAM ELEVATION(FEET) = 1158.00 STREET LENGTH(FEET) = 1630.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 Page 5 OFFST- 10.RES DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 82.48 ** *STREET FLOWING FULL * ** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.70 HALFSTREET FLOOD WIDTH(FEET) = 31.80 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.91 PRODUCT OF DEPTH &VELOCITY(FT * FT /SEC.) = 3.45 STREET FLOW TRAVEL TIME(MIN.) = 5.53 TC(MIN.) = 40.09 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 1.210 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 EFFECTIVE AREA(ACRES) = 109.80 AREA - AVERAGED F /HR) = 0.49 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 109.80 PEAK FLOW RATE(CFS) = 82.48 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.70 HALFSTREET FLOOD WIDTH(FEET) = 31.80 FLOW VELOCITY(FEET /SEC.) = 4.91 DEPTH *VELOCITY(FT *FT /SEC.) = 3.45 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 1.07 = 6216.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE - - - - -- 1_07 - TO NODE - - -- - 1_07 IS CODE = 81 ----------------------- - - ---- - ------------------------ »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< MAINLINE TC(MIN) = 40.09 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 1.210 SUBAREA LOSS RATE DATA(AMC II): w pt� CC4 A DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS /y LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 6.70 0.98 0.10 32 RESIDENTIAL "5 -7 DWELLINGS /ACRE A 34.40 0.98 0.50 32 NATURAL GOOD COVER "GRASS" A 2.20 0.94 1.00 38 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.46 SUBAREA AREA(ACRES) = 43.30 SUBAREA RUNOFF(CFS) = 29.62 EFFECTIVE AREA(ACRES) = 153.10 AREA - AVERAGED F /HR) = 0.48 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.49 TOTAL AREA(ACRES) = 153.10 PEAK FLOW RATE(CFS) = 100.97 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.07 TO NODE 1.08 IS CODE = 62 ---------------------------------------------------------------------------- » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< » »>( STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1158.00 DOWNSTREAM ELEVATION(FEET) = 1140.00 STREET LENGTH(FEET) = 1485.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 Page 6 OFFST- 10.RES INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning'S FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning'S FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 100.97 ** *STREET FLOWING FULL * ** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.75 HALFSTREET FLOOD WIDTH(FEET) = 34.30 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.03 PRODUCT OF DEPTH &VELOCITY(FT * FT /SEC.) = 3.78 STREET FLOW TRAVEL TIME(MIN.) = 4.92 TC(MIN.) = 45.02 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 1.129 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 EFFECTIVE AREA(ACRES) = 153.10 AREA - AVERAGED FM(INCH /HR) = 0.48 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.49 TOTAL AREA(ACRES) = 153.10 PEAK FLOW RATE(CFS) = 100.97 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.75 HALFSTREET FLOOD WIDTH(FEET) = 34.30 FLOW VELOCITY(FEET /SEC.) = 5.03 DEPTH *VELOCITY(FT *FT /SEC.) = 3.78 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 1.08 = 7701.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.08 TO NODE 1.08 IS CODE = 81 ---------------------------------------------------------------------------- - - » »> ADDITION - OF - SUBAREA - TO - MAINLINE - PEAK - FLOW < < < < < --------------- - - - -- MAINLINE Tc(MIN) = 45.02 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 1.129 SUBAREA LOSS RATE DATA(AMC II): A97-61dr DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 15.70 0.98 0.50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA AREA(ACRES) = 15.70 SUBAREA RUNOFF(CFS) = 9.06 EFFECTIVE AREA(ACRES) = 168.80 AREA - AVERAGED FM(INCH /HR) = 0.48 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.49 TOTAL AREA(ACRES) = 168.80 PEAK FLOW RATE(CFS) = 100.97 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.08 TO NODE 1.09 IS CODE = 62 ---------------------------------------------------------------------------- » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA ««< » » >( STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1140.00 DOWNSTREAM ELEVATION(FEET) = 1137.30 STREET LENGTH(FEET) = 480.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 Page 7 OFFST- 10.RES STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 100.97 ** *STREET FLOWING FULL * ** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.83 HALFSTREET FLOOD WIDTH(FEET) = 38.39 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.88 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 3.24 STREET FLOW TRAVEL TIME(MIN.) = 2.06 TC(MIN.) = 47.08 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 1.099 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 EFFECTIVE AREA(ACRES) = 168.80 AREA - AVERAGED FM(INCH /HR) = 0.48 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.49 TOTAL AREA(ACRES) = 168.80 PEAK FLOW RATE(CFS) = 100.97 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.83 HALFSTREET FLOOD WIDTH(FEET) = 38.39 FLOW VELOCITY(FEET /SEC.) = 3.88 DEPTH *VELOCITY(FT *FT /SEC.) = 3.24 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 1.09 = 8181.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.09 TO NODE 1.09 IS CODE = 81 ---------------------------------------------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< MAINLINE TC(MIN) = 47.08 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 1.099 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS /fin ge p LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN AA- A - O COMMERCIAL A 14.70 0.98 0.10 32 NATURAL GOOD COVER "GRASS" A 0.80 0.94 1.00 38 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.96 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.15 SUBAREA AREA(ACRES) = 15.50 SUBAREA RUNOFF(CFS) = 13.36 EFFECTIVE AREA(ACRES) = 184.30 AREA - AVERAGED FM(INCH /HR) = 0.45 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.46 TOTAL AREA(ACRES) = 184.30 PEAK FLOW RATE(CFS) = 107.65 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 184.30 TC(MIN.) = 47.08 EFFECTIVE AREA(ACRES) = 184.30 AREA - AVERAGED FM(INCH /HR)= 0.45 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.46 PEAK FLOW RATE(CFS) = 107.65 END OF RATIONAL METHOD ANALYSIS m Page 8 SIERRA10.RES ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Ve 10.0 1 Relea s se 4 Date: 01 /01 /22004erLicense Sof 126 es) 4 Analysis prepared by: RBF Consulting 14725 Alton Parkway Irvine, California 92618 O�SfR meow C�rT�- �rrigiA------ o�srre mD& oGy Aw46 FILE NAME: SIERRA10.DAT — 10 i EAE TIME /DATE OF STUDY: 17:48 09/11/2008 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ------------------------- - - - - -- ------------------- -- *TIME -OF- CONCENTRATION MODEL * -- USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) v5. LOG(TC;MIN)) = 0.6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 0 .9500 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* *USER- DEFINED STREET- SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET- CROSSFALL: CURB GUTTER- GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT - /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -curb) 2. (Depth) *(velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER- SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 2.01 IS CODE = 21 -------------------------------------------------------------------------- » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< Anr >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< AMA 5 - 4. INITIAL SUBAREA FLOW- LENGTH(FEET) = 1000.00 ELEVATION DATA: UPSTREAM(FEET) = 1250.79 DOWNSTREAM(FEET) = 1231.73 TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGI SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = * 10 YEAR RAINFALL INTENSITY(INCH /HR) = SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA LAND USE GROUP (ACRES) COMMERCIAL A 9.74 Page _)]* *0.20 10.638 2.682 Fp AP SCS TC (INCH /HR) (DECIMAL) CN (MIN.) 0.98 0.10 32 10.64 1 slum SIERRA10.RES SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 22.66 TOTAL AREA(ACRES) = 9.74 PEAK FLOW RATE(CFS) = 22.66 FLOW PROCESS FROM NODE 2.01 TO NODE 2.01 IS CODE = 81 -------------------------------------------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< * A "-A S MAINLINE TC(MIN) = 10.64 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.682 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 17.95 0.98 0.50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA AREA(ACRES) = 17.95 SUBAREA RUNOFF(CFS) = 35.46 EFFECTIVE AREA(ACRES) = 27.69 AREA - AVERAGED FM(INCH /HR) = 0.35 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.36 TOTAL AREA(ACRES) = 27.69 PEAK FLOW RATE(CFS) = 58.12 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.01 TO NODE 2.02 IS CODE = 62 ---------------------------------------------------------------------------- »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< »» >( STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1231.73 DOWNSTREAM ELEVATION(FEET) = 1219.98 STREET LENGTH(FEET) = 855.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk FLOW Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 58.12 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.64 HALFSTREET FLOOD WIDTH(FEET) = 26.60 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.46 PRODUCT OF DEPTH &VELOCITY(FT * FT /SEC.) = 2.84 STREET FLOW TRAVEL TIME(MIN.) = 3.19 TC(MIN.) = 13.83 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.291 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 EFFECTIVE AREA(ACRES) = 27.69 AREA - AVERAGED FM(INCH /HR) = 0.35 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.36 TOTAL AREA(ACRES) = 27.69 PEAK FLOW RATE(CFS) = 58.12 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.64 HALFSTREET FLOOD WIDTH(FEET) = 26.60 FLOW VELOCITY(FEET /SEC.) = 4.46 DEPTH *VELOCITY(FT * FT /SEC.) = 2.84 LONGEST FLOWPATH FROM NODE 2.00 TO NODE 2.02 = 1855.00 FEET. Page 2 SIERRA10.RES + - - FLOW - PROCESS - FROM - NODE - - - - -- 2_02 - TO - NODE - - - - -- 2_02 - IS CODE = 81 fir+ -------A--�------------ » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< AREA $ n �. MAINLINE TC(MIN) = 13.83 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.291 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 14.05 0.98 0.10 32 RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 0.74 0.98 0.50 32 NATURAL GOOD COVER "GRASS" A 0.68 0.94 1.00 38 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.96 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.16 SUBAREA AREA(ACRES) = 15.47 SUBAREA RUNOFF(CFS) = 29.77 EFFECTIVE AREA(ACRES) = 43.16 AREA - AVERAGED Fm(INCH /HR) = 0.28 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.29 TOTAL AREA(ACRES) = 43.16 PEAK FLOW RATE(CFS) = 78.14 FLOW PROCESS FROM NODE 2.02 TO NODE 2.03 IS CODE = 62 ---------------------------------------------------------------------------- » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA ««< »»>( STREET TABLE SECTION # 1 USED) « «< ------------------ ------------------------- - - - - -- -------------------------- UPSTREAM ELEVATION(FEET) = 1219.98 DOWNSTREAM ELEVATION(FEET) = 1208.73 STREET LENGTH(FEET) = 819.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = Z STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning'S FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning'S FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 78.14 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.69 HALFSTREET FLOOD WIDTH(FEET) = 31.21 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.80 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 3.33 STREET FLOW TRAVEL TIME(MIN.) = 2.85 TC(MIN.) = 16.68 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.048 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 EFFECTIVE AREA(ACRES) = 43.16 AREA - AVERAGED F /HR) = 0.28 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.29 TOTAL AREA(ACRES) = 43.16 PEAK FLOW RATE(CFS) = 78.14 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.69 HALFSTREET FLOOD WIDTH(FEET) = 31.21 FLOW VELOCITY(FEET /SEC.) = 4.80 DEPTH *VELOCITY(FT /SEC.) = 3.33 LONGEST FLOWPATH FROM NODE 2.00 TO NODE 2.03 = 2674.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.03 TO NODE 2.03 IS CODE = 81 ------------------------ - - - - -- P ---- - - - - -- - - ------- - - - - -- »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< Ae� 6 � 4+ SIERRA10.RES == MAINLINE TC( MIN)=°== 16. 68__________________ _______________________________ * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.048 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 6.63 0.98 0.10 32 RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 4.87 0.98 0.50 32 NATURAL GOOD COVER "GRASS" A 0.54 0.94 1.00 38 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.30 SUBAREA AREA(ACRES) = 12.04 SUBAREA RUNOFF(CFS) = 19.02 EFFECTIVE AREA(ACRES) = 55.20 AREA - AVERAGED F /HR) = 0.28 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.29 TOTAL AREA(ACRES) = 55.20 PEAK FLOW RATE(CFS) = 87.71 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.03 TO NODE 2.04 IS CODE = 62 ---------------------------------------------------------------------------- » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< » » >( STREET TABLE SECTION # 1 USED) « «< ------------------------- - - -- ------------------------------- - - - - -- - - - - - -- UPSTREAM ELEVATION(FEET) = 1208.73 DOWNSTREAM ELEVATION(FEET) = 1194.63 STREET LENGTH(FEET) = 1026.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning'S FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning'S FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 87.71 ** *STREET FLOWING FULL * ** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.71 HALFSTREET FLOOD WIDTH(FEET) = 32.41 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.99 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 3.57 STREET FLOW TRAVEL TIME(MIN.) = 3.42 TC(MIN.) = 20.10 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 1.831 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 EFFECTIVE AREA(ACRES) = 55.20 AREA - AVERAGED FM(INCH /HR) = 0.28 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.29 TOTAL AREA(ACRES) = 55.20 PEAK FLOW RATE(CFS) = 87.71 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.71 HALFSTREET FLOOD WIDTH(FEET) = 32.41 FLOW VELOCITY(FEET /SEC.) = 4.99 DEPTH *VELOCITY(FT * FT /SEC.) = 3.57 LONGEST FLOWPATH FROM NODE 2.00 TO NODE 2.04 = 3700.00 FEET. FLOW PROCESS FROM NODE 2.04 TO NODE 2.04 IS CODE = 81 ------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « « <--- -Aev.A � � - - - -- ___________________________________________________________ MAINLINE TC(MIN) = 20.10 Page 4 SIERRA10.RES * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 1.831 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 11.59 0.98 0.10 32 NATURAL GOOD COVER "GRASS" A 0.86 0.94 1.00 38 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.96 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.16 SUBAREA AREA(ACRES) = 12.45 SUBAREA RUNOFF(CFS) = 18.77 EFFECTIVE AREA(ACRES) = 67.65 AREA - AVERAGED FM(INCH /HR) = 0.26 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.27 TOTAL AREA(ACRES) = 67.65 PEAK FLOW RATE(CFS) = 95.70 FLOW PROCESS FROM NODE 2.04 TO NODE 2.05 IS CODE = 62 ---------------------------------------------------------------------------- » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< »» >( STREET TABLE SECTION # 1 USED) « «< ------------------ ------------------------- - - - - -- -------- - - - - -- -- - - - - - -- UPSTREAM ELEVATION(FEET) = 1194.63 DOWNSTREAM ELEVATION(FEET) = 1180.91 STREET LENGTH(FEET) = 1013.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning'S FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning'S FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 95.70 ** *STREET FLOWING FULL * ** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.73 HALFSTREET FLOOD WIDTH(FEET) = 33.26 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.12 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 3.75 STREET FLOW TRAVEL TIME(MIN.) = 3.30 TC(MIN.) = 23.40 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 1.671 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 EFFECTIVE AREA(ACRES) = 67.65 AREA - AVERAGED F /HR) = 0.26 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.27 TOTAL AREA(ACRES) = 67.65 PEAK FLOW RATE(CFS) = 95.70 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.73 HALFSTREET FLOOD WIDTH(FEET) = 33.26 FLOW VELOCITY(FEET /SEC.) = 5.12 DEPTH *VELOCITY(FT *FT /SEC.) = 3.75 LONGEST FLOWPATH FROM NODE 2.00 TO NODE 2. = 4713 .00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.05 TO NODE 2.05 IS CODE = 81 ---------------------------------------------------------------------------- » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< __________ �� __-- _ MAINLINE TC(MIN) = 23.40 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 1.671 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN Page 5 SIERRA10.RES COMMERCIAL A 8.91 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 8.91 SUBAREA RUNOFF(CFS) = 12.62 EFFECTIVE AREA(ACRES) = 76.56 AREA - AVERAGED FM(INCH /HR) = 0.24 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.25 TOTAL AREA(ACRES) = 76.56 PEAK FLOW RATE(CFS) = 98.61 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.05 TO NODE 2.06 IS CODE = 62 ---------------------------------------------------------------------------- » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< » » >( STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1180.91 DOWNSTREAM ELEVATION(FEET) = 1169.77 STREET LENGTH(FEET) = 823.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning'S FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning'S FRICTION FACTOR for Back -of -walk Flow section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 98.61 ** *STREET FLOWING FULL * ** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.74 HALFSTREET FLOOD WIDTH(FEET) = 33.51 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.19 PRODUCT OF DEPTH &VELOCITY(FT*FT /SEC.) = 3.82 STREET FLOW TRAVEL TIME(MIN.) = 2.64 TC(MIN.) = 26.04 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 1.567 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 EFFECTIVE AREA(ACRES) = 76.56 AREA - AVERAGED FM(INCH /HR) = 0.24 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.25 TOTAL AREA(ACRES) = 76.56 PEAK FLOW RATE(CFS) = 98.61 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.74 HALFSTREET FLOOD WIDTH(FEET) = 33.51 FLOW VELOCITY(FEET /SEC.) = 5.19 DEPTH *VELOCITY(FT *FT /SEC.) = 3.82 LONGEST FLOWPATH FROM NODE 2.00 TO NODE 2.06 = 5536.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.06 TO NODE 2.06 IS CODE = 81 ---------------------------------------------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< WA MAINLINE TC(MIN) = 26.04 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 1.567 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 8.23 0.98 0.10 32 NATURAL GOOD COVER "GRASS" A 1.72 0.94 1.00 38 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.95 C, SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.26 SUBAREA AREA(ACRES) = 9.95 SUBAREA RUNOFF(CFS) = 11.87 Page 6 SIERES EFFECTIVE AREA(ACRES) = 86.51 AREA-AVERAGED Fm(INCH /HR) = 0.24 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.25 TOTAL AREA(ACRES) = 86.51 PEAK FLOW RATE(CFS) = 103.31 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.06 TO NODE 2.07 IS CODE = 62 ---------------------------------------------------------------------------- » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< » » >( STREET TABLE SECTION # 1 USED) « «< ------------------ ------------------------- - - - - -- -------------------------- UPSTREAM ELEVATION(FEET) = 1169.77 DOWNSTREAM ELEVATION(FEET) = 1159.90 STREET LENGTH(FEET) = 729.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning'S FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning'S FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 103.31 ** *STREET FLOWING FULL * ** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.75 HALFSTREET FLOOD WIDTH(FEET) = 33.99 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.25 PRODUCT OF DEPTH &VELOCITY(FT * FT /SEC.) = 3.92 STREET FLOW TRAVEL TIME(MIN.) = 2.31 TC(MIN.) = 28.36 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 1.489 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 EFFECTIVE AREA(ACRES) = 86.51 AREA - AVERAGED FM(INCH /HR) = 0.24 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.25 TOTAL AREA(ACRES) = 86.51 PEAK FLOW RATE(CFS) = 103.31 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.75 HALFSTREET FLOOD WIDTH(FEET) = 33.99 FLOW VELOCITY(FEET /SEC.) = 5.25 DEPTH *VELOCITY(FT *FT /SEC.) = 3.92 LONGEST FLOWPATH FROM NODE 2.00 TO NODE 2.07 = 6265.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.07 TO NODE 2.07 IS CODE = 81 -------------------------------------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< MAINLINE TC(MIN) = 28.36 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 1.489 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 8.43 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 8.43 SUBAREA RUNOFF(CFS) = 10.56 EFFECTIVE AREA(ACRES) = 94.94 AREA - AVERAGED FM(INCH /HR) = 0.23 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.24 TOTAL AREA(ACRES) = 94.94 PEAK FLOW RATE(CFS) = 107.79 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.07 TO NODE 2.08 IS CODE = 62 Page 7 SIERRA10.RES C-1 ---------------------------------------------------------------------------- » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< » » >( STREET TABLE SECTION # 1 USED) ««< UPSTREAM ELEVATION(FEET) = 1159.90 DOWNSTREAM ELEVATION(FEET) = 1140.70 STREET LENGTH(FEET) = 1325.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning'S FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning'S FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 107.79 ** *STREET FLOWING FULL * ** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.75 HALFSTREET FLOOD WIDTH(FEET) = 34.06 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.46 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 4.08 STREET FLOW TRAVEL TIME(MIN.) = 4.05 TC(MIN.) = 32.41 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 1 .375 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 EFFECTIVE AREA(ACRES) = 94.94 AREA - AVERAGED F /HR) = 0.23 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.24 TOTAL AREA(ACRES) = 94.94 PEAK FLOW RATE(CFS) = 107.79 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.75 HALFSTREET FLOOD WIDTH(FEET) = 34.06 FLOW VELOCITY(FEET /SEC.) = 5.46 DEPTH *VELOCITY(FT *FT /SEC.) = 4.08 LONGEST FLOWPATH FROM NODE 2.00 TO NODE 2.08 = 7590.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.08 TO NODE 2.08 IS CODE = 81 ---------------------------------------------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< A��_AO ^ MAINLINE TC(MIN) = 32.41 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 1 .375 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 26.50 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACkES) = 26.50 SUBAREA RUNOFF(CFS) = 30.46 EFFECTIVE AREA(ACRES) = 121.44 AREA - AVERAGED F /HR) = 0.20 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.21 TOTAL AREA(ACRES) = 121.44 PEAK FLOW RATE(CFS) = 128.47 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.08 TO NODE 2.09 IS CODE = 62 ---------------------------------------------------------------------------- » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »>( STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1140.70 DOWNSTREAM ELEVATION(FEET) = 1122.76 ® STREET LENGTH(FEET) = 1283.00 CURB HEIGHT(INCHES) = 8.0 Page 8 STREET HALFWIDTH(FEET) = 30.00 SIERRA10.RES DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning'S FRICTION FACTOR for Streetflow Section(curb -to - curb) = 0.0150 Manning'S FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 128.47 ** *STREET FLOWING FULL * ** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.79 HALFSTREET FLOOD WIDTH(FEET) = 36.01 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.71 PRODUCT OF DEPTH &VELOCITY(FT * FT /SEC.) = 4.49 STREET FLOW TRAVEL TIME(MIN.) = 3.74 TC(MIN.) = 36.15 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 1.288 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 EFFECTIVE AREA(ACRES) = 121.44 AREA - AVERAGED FM(INCH /HR) = 0.20 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.21 TOTAL AREA(ACRES) = 121.44 PEAK FLOW RATE(CFS) = 128.47 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.79 HALFSTREET FLOOD WIDTH(FEET) = 36.01 FLOW VELOCITY(FEET /SEC.) = 5.71 DEPTH *VELOCITY(FT *FT /SEC.) = 4.49 LONGEST FLOWPATH FROM NODE 2.00 TO NODE 2.09 = 8873.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.09 TO NODE 2.09 IS CODE = 81 ---------------------------------------------------------------------------- »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< A gE4v $ 40 MAINLINE TC(MIN) = 36.15 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 1.288 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 18.99 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 18.99 SUBAREA RUNOFF(CFS) = 20.34 EFFECTIVE AREA(ACRES) = 140.43 AREA - AVERAGED FM(INCH /HR) = 0.19 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.19 TOTAL AREA(ACRES) = 140.43 PEAK FLOW RATE(CFS) = 139.26 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.09 TO NODE 2.10 IS CODE = 62 ---------------------------------------------------------------------------- »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< » » >( STREET TABLE SECTION # 1 USED) ««< UPSTREAM ELEVATION(FEET) = 1122.76 DOWNSTREAM ELEVATION(FEET) = 1111.50 STREET LENGTH(FEET) = 1000.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 C . Page 9 SIERRA10.RES SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning'S FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning'S FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 139.26 ** *STREET FLOWING FULL * ** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.83 HALFSTREET FLOOD WIDTH(FEET) = 38.08 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.45 PRODUCT OF DEPTH &VELOCITY(FT * FT /SEC.) = 4.51 STREET FLOW TRAVEL TIME(MIN.) = 3.06 TC(MIN.) = 39.21 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 1.226 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 EFFECTIVE AREA(ACRES) = 140.43 AREA - AVERAGED Fm(INCH /HR) = 0.19 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.19 TOTAL AREA(ACRES) = 140.43 PEAK FLOW RATE(CFS) = 139.26 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.83 HALFSTREET FLOOD WIDTH(FEET) = 38.08 FLOW VELOCITY(FEET /SEC.) = 5.45 DEPTH *VELOCITY(FT * FT /SEC.) = 4.51 LONGEST FLOWPATH FROM NODE 2.00 TO NODE 2.10 = 9873.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.10 TO NODE 2.10 IS CODE = 81 ---------------------------------------------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< Apv& exid. MAINLINE TC(MIN) = 39.21 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 1.226 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 3.25 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 3.25 SUBAREA RUNOFF(CFS) = 3.30 EFFECTIVE AREA(ACRES) = 143.68 AREA - AVERAGED Fm(INCH /HR) = 0.18 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.19 TOTAL AREA(ACRES) = 143.68 PEAK FLOW RATE(CFS) = 139.26 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 143.68 TC(MIN.) = 39.21 EFFECTIVE AREA(ACRES) = 143.68 AREA - AVERAGED Fm(INCH /HR)= 0.18 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.19 PEAK FLOW RATE(CFS) = 139.26 END OF RATIONAL METHOD ANALYSIS Page 10 KAISER10.RES RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -2001 Advanced Engineering Software (aes) ver. 8.0 Release Date: 01/01/2001 License ID 1264 Analysis prepared by: RBF Consulting 14725 Alton Parkway Irvine, CA 92618 --- 01SFJ: L -rAM (,* l. - - - FoNrwx ------ ONSM- "mmLV&q -In`ffo FILE NAME: KAISER10.DAT TIME /DATE OF STUDY: 11:38 09/08/2008 --------------------- - - - - -- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- ^TIME -OF- CONCENTRATION MODEL * -- USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 0 .950 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.400 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 10.00 1 -HOUR INTENSITY(INCH /HOUR) = 0 .9595 SLOPE OF INTENSITY DURATION CURVE = 0.6000 *ANTECEDENT MOISTURE *USER- DEFINED STREET HALF- CROWN TO WIDTH CROSSFALL NO. (FT) (FT) - - - -- --- - - - - -- 1 30.0 20.0 CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* STREET- CROSSFALL: CURB GUTTER- GEOMETRIES: MANNING IN- / OUT - /PARK- HEIGHT WIDTH LIP HIKE FACTOR SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW - DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable street Flow Depth) - (Top -of -curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER- SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED FLOW PROCESS FROM NODE 1.00 TO NODE 1.01 IS CODE = 21 »»> RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< Apr >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< I"f�T INITIAL SUBAREA FLOW- LENGTH(FEET) = 400.00 ELEVATION DATA: UPSTREAM(FEET) = 1136.70 DOWNSTREAM(FEET) = 1134.80 TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 9 .736 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.857 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC Page 1 KAISER10.RES LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 2.50 0.98 0.10 32 9.74 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 6.21 TOTAL AREA(ACRES) = 2.50 PEAK FLOW RATE(CFS) = 6.21 FLOW PROCESS FROM NODE 1.01 TO NODE 1.02 IS CODE = 41 ---------------------------------------------------------------------------- » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » »>USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) « «< ---------------------------------------------------------------------------- ELEVATION DATA: UPSTREAM(FEET) = 1133.00 DOWNSTREAM(FEET) = 1126.50 FLOW LENGTH(FEET) = 350.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.5 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 7.51 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 6.21 PIPE TRAVEL TIME(MIN.) = 0.78 TC(MIN.) = 10.51 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 1.02 = 750.00 FEET. FLOW PROCESS FROM NODE 1.02 TO NODE 1.03 IS CODE = 41 ---------------------------------------------------------------------------- » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< » » >USING USER- SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 1126.50 DOWNSTREAM(FEET) = 1123.80 FLOW LENGTH(FEET) = 150.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 7.2 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 7.23 GIVEN PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 6.21 PIPE TRAVEL TIME(MIN.) = 0.35 TC(MIN.) = 10.86 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 1. = 900 .00 FEET. FLOW PROCESS FROM NODE 1.03 TO NODE 1.03 IS CODE = 1 ---------------------------------------------------------------------------- »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< -- ---------------------------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.86 RAINFALL INTENSITY(INCH /HR) = 2.68 AREA - AVERAGED FM(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 2.50 TOTAL STREAM AREA(ACRES) = 2.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.21 FLOW PROCESS FROM NODE 1.04 TO NODE 1.03 IS CODE = 21 ---------------------------------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< A ntA_ C�$ >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< H KEA INITIAL SUBAREA FLOW- LENGTH(FEET) = 900.00 ELEVATION DATA: UPSTREAM(FEET) = 1135.00 DOWNSTREAM(FEET) = 1131.00 TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 Page 2 KAI5ER10.RE5 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 13.646 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.333 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 8.70 0.98 0.10 32 13.65 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 17.50 TOTAL AREA(ACRES) = 8.70 PEAK FLOW RATE(CFS) = 17.50 FLOW PROCESS FROM NODE 1.03 TO NODE 1.03 IS CODE = 1 ---------------------------------------------------------------------------- »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< -------- ------------------------- - - - - -- - TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.65 RAINFALL INTENSITY(INCH /HR) = 2.33 AREA - AVERAGED FM(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 8.70 TOTAL STREAM AREA(ACRES) = 8.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 17.50 ** CONFLUENCE DATA ** STREAM Q TC Intensit Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 6.21 10.86 2.676 0.98( 0.10) 0.10 2.5 1.00 2 17.50 13.65 2.333 0.98( 0.10) 0.10 8.7 1.04 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 22.27 10.86 2.676 0.97( 0.10) 0.10 9.4 1.00 2 22.89 13.65 2.333 0.98( 0.10) 0.10 11.2 1.04 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 22.89 TC(MIN.) = 13.65 EFFECTIVE AREA(ACRES) = 11.20 AREA - AVERAGED Fm(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 11.20 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 1.03 = 900.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.03 TO NODE 9.00 IS CODE = 41 ---------------------------------------------------------------------------- » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » » >USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) « «< ELEVATION DATA: UPSTREAM(FEET) = 1123.80 DOWNSTREAM(FEET) = 1118.00 FLOW LENGTH(FEET) = 600.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 16.7 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 8.14 GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 22.89 PIPE TRAVEL TIME(MIN.) = 1.23 TC(MIN.) = 14.87 Page 3 KAI5ER10.RE5 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 9.00 = 1500.00 FEET. FLOW PROCESS FROM NODE 9.00 TO NODE 9.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.87 RAINFALL INTENSITY(INCH /HR) = 2.22 AREA - AVERAGED FM(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 11.20 TOTAL STREAM AREA(ACRES) = 11.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 22.89 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.05 TO NODE 9.00 IS CODE = 21 ---------------------------------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< G.C. >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« V INITIAL SUBAREA FLOW- LENGTH(FEET) = 1000.00 ELEVATION DATA: UPSTREAM(FEET) = 1135.00 DOWNSTREAM(FEET) = 1130.00 TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 13.902 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.307 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 1.70 0.98 0.10 32 13.90 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 3.38 TOTAL AREA(ACRES) = 1.70 PEAK FLOW RATE(CFS) = 3.38 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 9.00 TO NODE 9.00 IS CODE = 1 ---------------------------------------------------------------------------- »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.90 RAINFALL INTENSITY(INCH /HR) = 2.31 AREA - AVERAGED FM(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 1.70 TOTAL STREAM AREA(ACRES) = 1.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.38 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 9.00 IS CODE = 21 ---------------------------------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< A >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< A INITIAL SUBAREA FLOW- LENGTH(FEET) = 700.00 ELEVATION DATA: UPSTREAM(FEET) = 1139.00 DOWNSTREAM(FEET) = 1124.00 Page 4 KAI5ER10.RE5 TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 10.669 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.704 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) CONDOMINIUMS A 3.80 0.98 0.35 32 10.67 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.35 SUBAREA RUNOFF(CFS) = 8.08 TOTAL AREA(ACRES) = 3.80 PEAK FLOW RATE(CFS) = 8.08 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 9.00 TO NODE 9.00 IS CODE = 1 ---------------------------------------------------------------------------- »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< ------------------------------------------- TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 10.67 RAINFALL INTENSITY(INCH /HR) = 2.70 AREA - AVERAGED FM(INCH /HR) = 0.34 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.35 EFFECTIVE STREAM AREA(ACRES) = 3.80 TOTAL STREAM AREA(ACRES) = 3.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.08 ** CONFLUENCE DATA ** STREAM Q TC Intensit FP(FM) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 22.27 12.09 2.508 0.97( 0.10) 0.10 9.4 1.00 1 22.89 14.87 2.216 0.98( 0.10) 0.10 11.2 1.04 2 3.38 13.90 2.307 0.98( 0.10) 0.10 1.7 1.05 3 8.08 10.67 2.704 0.98( 0.34) 0.35 3.8 2.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q TC Intensity Fp(FM) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 32.39 10.67 2.704 0.97( 0.17) 0.17 13.4 2.00 2 32.89 12.09 2.508 0.98( 0.16) 0.16 14.7 1.00 3 32.78 13.90 2.307 0.98( 0.16) 0.16 16.1 1.05 4 32.54 14.87 2.216 0.98( 0.15) 0.16 16.7 1.04 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 32.89 TC(MIN.) = 12.09 EFFECTIVE AREA(ACRES) = 14.70 AREA - AVERAGED FM(INCH /HR) = 0.16 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.16 TOTAL AREA(ACRES) = 16.70 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 9.00 = 1500.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 9.00 TO NODE 9.01 IS CODE = 41 ---------------------------------------------------------------------------- » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< » » >USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT)« «< ELEVATION DATA: UPSTREAM(FEET) = 1118.00 DOWNSTREAM(FEET) = 1116.00 Page 5 KAISER10.RES FLOW LENGTH(FEET) = 500.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 36 .0 INCH PIPE IS 24.8 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 6.32 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 32.89 PIPE TRAVEL TIME(MIN.) = 1.32 TC(MIN.) = 13.41 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 9.01 = 2000.00 FEET. FLOW PROCESS FROM NODE 9.01 TO NODE 9.01 IS CODE = 1 ---------------------------------------------------------------------------- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< --------------------------------------------- TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.41 RAINFALL INTENSITY(INCH /HR) = 2.36 AREA - AVERAGED F /HR) = 0.16 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.16 EFFECTIVE STREAM AREA(ACRES) = 14.70 TOTAL STREAM AREA(ACRES) = 16.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 32.89 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3.00 TO NODE 9.01 IS CODE = 21 ---------------------------------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< A Q/=w-r- GS /�►� INITIAL SUBAREA FLOW- LENGTH(FEET) = 470.00 [ ELEVATION DATA: UPSTREAM(FEET) = 1125.00 DOWNSTREAM(FEET) = 1123.00 TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 10 .615 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.713 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 0.60 0.98 0.10 32 10.62 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 1.41 TOTAL AREA(ACRES) = 0.60 PEAK FLOW RATE(CFS) = 1.41 FLOW PROCESS FROM NODE 9.01 TO NODE 9.01 IS CODE = 1 ---------------------------------------------------------------------------- »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< -------------------------------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 10.62 RAINFALL INTENSITY(INCH /HR) = 2.71 AREA - AVERAGED F /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 0.60 TOTAL STREAM AREA(ACRES) = 0.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.41 cl ** CONFLUENCE DATA *° Page 6 KAI5ER10.RE5 STREAM Q TC Intensit Fp(FM) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR� (INCH /HR) (ACRES) NODE 1 32.39 11.99 2.521 0.97( 0.17) 0.17 13.4 2.00 1 32.89 13.41 2.357 0.98( 0.16) 0.16 14.7 1.00 1 32.78 15.22 2.185 0.98( 0.16) 0.16 16.1 1.05 1 32.54 16.20 2.105 0.98( 0.15) 0.16 16.7 1.04 2 1.41 10.62 2.713 0.98( 0.10) 0.10 0.6 3.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q TC Intensit Fp(FM) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 32.41 10.62 2.713 0.98( 0.16) 0.17 12.5 3.00 2 33.70 11.99 2.521 0.97( 0.16) 0.17 14.0 2.00 3 34.11 13.41 2.357 0.98( 0.16) 0.16 15.3 1.00 4 33.90 15.22 2.185 0.98( 0.15) 0.16 16.7 1.05 5 33.62 16.20 2.105 0.98( 0.15) 0.15 17.3 1.04 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 34.11 TC(MIN.) = 13.41 EFFECTIVE AREA(ACRES) = 15.30 AREA - AVERAGED F /HR) = 0.16 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.16 TOTAL AREA(ACRES) = 17.30 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 9.01 = 2000.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 9.01 TO NODE 9.01 IS CODE = 10 ---------------------------------------------------------------------------- -- »»>MAIN- STREAM MEMORY - COPIED - ONTO - MEMORY - BANK - # 1 - < < < << -------- - - - - -- ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 4.00 TO NODE 4.01 IS CODE = 21 ---------------------------------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< AMA Cl* INITIAL SUBAREA FLOW- LENGTH(FEET) = 370.00 ELEVATION DATA: UPSTREAM(FEET) = 1119.00 DOWNSTREAM(FEET) = 1114.50 TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] * 0.20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 7.819 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 3.259 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 2.50 0.98 0.10 32 7.82 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 7.11 TOTAL AREA(ACRES) = 2.50 PEAK FLOW RATE(CFS) = 7.11 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 4.01 TO NODE 4.02 IS CODE = 41 ---------------------------------------------------------------------------- » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< » » >USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT)« «< ELEVATION DATA: UPSTREAM(FEET) = 1123.40 DOWNSTREAM(FEET) = 1122.50 FLOW LENGTH(FEET) = 90.00 MANNING'S N = 0.010 ASSUME FULL - FLOWING PIPELINE Page 7 KAISERI0.RES_ PIPE -FLOW VELOCITY(FEET /SEC.) = 13.04 PIPE FLOW VELOCITY = (TOTAL FLOW) /(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 10.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 7.11 PIPE TRAVEL TIME(MIN.) = 0.12 TC(MIN.) = 7.93 LONGEST FLOWPATH FROM NODE 4.00 TO NODE 4. = 460 .00 FEET. FLOW PROCESS FROM NODE 4.02 TO NODE 4.02 IS CODE = 1 ---------------------------------------------------------------------------- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.93 RAINFALL INTENSITY(INCH /HR) = 3.23 AREA - AVERAGED F /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 2.50 TOTAL STREAM AREA(ACRES) = 2.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.11 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 4.03 TO NODE 4.02 IS CODE = 21 ---------------------------------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< /� >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< K INITIAL SUBAREA FLOW- LENGTH(FEET) = 950.00 ELEVATION DATA: UPSTREAM(FEET) = 1135.50 DOWNSTREAM(FEET) = 1122.50 TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 11 .136 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2 .636 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 2.90 0.98 0.10 32 11.14 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 6.62 TOTAL AREA(ACRES) = 2.90 PEAK FLOW RATE(CFS) = 6.62 FLOW PROCESS FROM NODE 4.02 TO NODE 4.02 IS CODE = 1 »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< » »>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 11.14 RAINFALL INTENSITY(INCH /HR) = 2.64 AREA - AVERAGED F /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 2.90 TOTAL STREAM AREA(ACRES) = 2.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.62 ** CONFLUENCE DATA ** ' STREAM Q TC Intensity FP(Fm) Ap Ae HEADWATER Page 8 KAI5ERI0.RE5 NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 7.11 7.93 3.230 0.98( 0.10) 0.10 2.5 4.00 2 6.62 11.14 2.636 0.97( 0.10) 0.10 2.9 4.03 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q TC Intensity Fp(FM) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 12.94 7.93 3.230 0.98( 0.10) 0.10 4.6 4.00 2 12.39 11.14 2.636 0.98( 0.10) 0.10 5.4 4.03 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 12.94 TC(MIN.) = 7.93 EFFECTIVE AREA(ACRES) = 4.57 AREA - AVERAGED FM(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 5.40 LONGEST FLOWPATH FROM NODE 4.03 TO NODE 4.02 = 950.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 4.02 TO NODE 9.01 IS CODE = 11 ---------------------------------------------------------------------------- » »> CONFLUENCE MEMORY BANK # 1 WITH THE MAIN- STREAM MEMORY « «< ** MAIN STREAM CONFLUENCE DATA ** STREAM Q TC Intensit FP(FM) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 12.94 7.93 3.230 0.98( 0.10) 0.10 4.6 4.00 2 12.39 11.14 2.636 0.98( 0.10) 0.10 5.4 4.03 LONGEST FLOWPATH FROM NODE 4.03 TO NODE 9.01 = 950.00 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM Q Tc Intensity FP(FM) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 32.41 10.62 2.713 0.98( 0.16) 0.17 12.5 3.00 2 33.70 11.99 2.521 0.97( 0.16) 0.17 14.0 2.00 3 34.11 13.41 2.357 0.98( 0.16) 0.16 15.3 1.00 4 33.90 15.22 2.185 0.98( 0.15) 0.16 16.7 1.05 5 33.62 16.20 2.105 0.98( 0.15) 0.15 17.3 1.04 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 9.01 = 2000.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM Q TC Intensit FP(FM) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 42.08 7.93 3.230 0.98( 0.14) 0.15 13.9 4.00 2 44.89 10.62 2.713 0.98( 0.14) 0.15 17.7 3.00 3 45.29 11.14 2.636 0.98( 0.14) 0.15 18.5 4.03 4 45.53 11.99 2.521 0.98( 0.15) 0.15 19.4 2.00 5 45.14 13.41 2.357 0.98( 0.14) 0.15 20.7 1.00 6 44.09 15.22 2.185 0.98( 0.14) 0.14 22.1 1.05 7 43.42 16.20 2.105 0.98( 0.14) 0.14 22.7 1.04 TOTAL AREA(ACRES) = 22.70 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 45.53 TC(MIN.) = 11.992 EFFECTIVE AREA(ACRES) = 19.42 AREA - AVERAGED FM(INCH /HR) = 0.15 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.15 TOTAL AREA(ACRES) = 22.70 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 9.01 = 2000.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** Page 9 KAISER10.RES FLOW PROCESS FROM NODE 9.01 TO NODE 9.02 IS CODE = 41 »» >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< » » >USING USER- SPECIFIED PIPESIZE (EXISTING ELEMENT) « «< ELEVATION DATA: UPSTREAM(FEET) = 1116.00 DOWNSTREAM(FEET) = 1115.30 FLOW LENGTH(FEET) = 230.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 42.0 INCH PIPE IS 30.1 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 6.16 GIVEN PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 45.53 PIPE TRAVEL TIME(MIN.) = 0.62 TC(MIN.) = 12.61 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 9.02 = 2230.00 FEET. FLOW PROCESS FROM NODE 9.02 TO NODE 9.02 IS CODE = 1 ---------------------------------------------------------------------------- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 12.61 RAINFALL INTENSITY(INCH /HR) = 2.45 AREA - AVERAGED FM(INCH /HR) = 0.15 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.15 EFFECTIVE STREAM AREA(ACRES) = 19.42 TOTAL STREAM AREA(ACRES) = 22.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 45.53 FLOW PROCESS FROM - NODE - - - - -- 5_00 - TO NODE - - - -- 5_01 -- CODE = 21 ------ -------- ----- - - ---- - --------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< AP-.4 C6A INITIAL SUBAREA FLOW- LENGTH(FEET) = 940.00 ELEVATION DATA: UPSTREAM(FEET) = 1139.50 DOWNSTREAM(FEET) = 1130.50 TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] *0.20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 11.910 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.532 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 3.60 0.98 0.10 32 11.91 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 7.89 TOTAL AREA(ACRES) = 3.60 PEAK FLOW RATE(CFS) = 7.89 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 5.01 TO NODE 9.02 IS CODE = 41 ---------------------------------------------------------------------- » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< »» >USING USER- SPECIFIED PIPESIZE (EXISTING ELEMENT) « «< ELEVATION DATA: UPSTREAM(FEET) = 1121.10 DOWNSTREAM(FEET) = 1115.30 FLOW LENGTH(FEET) = 480.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 9.6 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 6.76 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 ' PIPE- FLOW(CFS) = 7.89 Page 10 KAI5ER10.RE5 PIPE TRAVEL TIME(MIN.) = 1.18 TC(MIN.) = 13.09 LONGEST FLOWPATH FROM NODE 5.00 TO NODE 9.02 = 1420.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 9.02 TO NODE 9.02 IS CODE = 81 --------------------------------------------------- - - - - -I - s� - -- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< (jam ----------------------------------------------------------------- MAINLINE TC(MIN) = 13.09 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2 .392 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 3.50 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 3.50 SUBAREA RUNOFF(CFS) = 7.23 EFFECTIVE AREA(ACRES) = 7.10 AREA - AVERAGED F /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 7.10 PEAK FLOW RATE(CFS) = 14.66 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 9.02 TO NODE 9.02 IS CODE = 1 ---------------------------------------------------------------------------- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< - ------------------------------------------ - - - - -- - TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.09 RAINFALL INTENSITY(INCH /HR) = 2.39 AREA - AVERAGED FM(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 7.10 TOTAL STREAM AREA(ACRES) = 7.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 14.66 ** CONFLUENCE DATA ** STREAM Q TC Intensit FP(FM) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INC H /HR� (INCH /HR) (ACRES) NODE 1 42.08 8.56 3.085 0.98( 0.14) 0.15 13.9 4.00 1 44.89 11.24 2.621 0.98( 0.14) 0.15 17.7 3.00 1 45.29 11.76 2.551 0.98( 0.14) 0.15 18.5 4.03 1 45.53 12.61 2.446 0.98( 0.15) 0.15 19.4 2.00 1 45.14 14.04 2.294 0.98( 0.14) 0.15 20.7 1.00 1 44.09 15.85 2.133 0.98( 0.14) 0.14 22.1 1.05 1 43.42 16.82 2.058 0.98( 0.14) 0.14 22.7 1.04 2 14.66 13.09 2.392 0.98( 0.10) 0.10 7.1 5.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q TC Intensity Fp(FM) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 54.57 8.56 3.085 0.98( 0.13) 0.13 18.5 4.00 2 58.73 11.24 2.621 0.98( 0.13) 0.14 23.8 3.00 3 59.37 11.76 2.551 0.98( 0.13) 0.14 24.8 4.03 4 59.98 12.61 2.446 0.98( 0.13) 0.14 26.3 2.00 5 60.06 13.09 2.392 0.98( 0.13) 0.14 27.0 5.00 6 59.18 14.04 2.294 0.98( 0.13) 0.13 27.8 1.00 7 57.10 15.85 2.133 0.98( 0.13) 0.13 29.2 1.05 Page 11 KAISER10.RES Adw 8 55.95 16.82 2.058 0.98( 0.13) 0.13 29.8 1.04 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 60.06 TC(MIN.) = 13.09 EFFECTIVE AREA(ACRES) = 26.95 AREA - AVERAGED FM(INCH /HR) = 0.13 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.14 TOTAL AREA(ACRES) = 29.80 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 9.02 = 2230.00 FEET. FLOW PROCESS FROM NODE 9.02 TO NODE 9.03 IS CODE = 41 ---------------------------------------------------------------------------- » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««< »» >USING USER- SPECIFIED PIPESIZE (EXISTING ELEMENT) « «< --------------- ELEVATION DATA: UPSTREAM(FEET) = 1115.30 DOWNSTREAM(FEET) = 1114.00 FLOW LENGTH(FEET) = 410.00 MANNING'S N = 0.013 ASSUME FULL - FLOWING PIPELINE PIPE -FLOW VELOCITY(FEET /SEC.) = 6.24 PIPE FLOW VELOCITY = (TOTAL FLOW) /(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 60.06 PIPE TRAVEL TIME(MIN.) = 1.09 TC(MIN.) = 14.19 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 9.03 = 2640.00 FEET. FLOW PROCESS FROM NODE 9.03 TO NODE 9.03 IS CODE = 1 ---------------------------------------------------------------------------- » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< -------------------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.19 RAINFALL INTENSITY(INCH /HR) = 2.28 AREA - AVERAGED FM(INCH /HR) = 0.13 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.14 EFFECTIVE STREAM AREA(ACRES) = 26.95 TOTAL STREAM AREA(ACRES) = 29.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 60.06 FLOW PROCESS FROM NODE 6.00 TO NODE 6.01 IS CODE = 21 ---------------------------------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< AMA CODA >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 700.00 ELEVATION DATA: UPSTREAM(FEET) = 1135.50 DOWNSTREAM(FEET) = 1123.00 TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 9.344 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.928 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 1.20 0.98 0.10 32 9.34 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 3.06 TOTAL AREA(ACRES) = 1.20 PEAK FLOW RATE(CFS) = 3.06 Page 12 KAISERI0.RES -- FLOW - PROCESS -FROM- NODE - - - - -- 6_01 -TO- NODE - - - - -- 9_03 -IS -CODE = 62 ------------------- » »> COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< »» >( STREET TABLE SECTION # 1 USED)« «< UPSTREAM ELEVATION(FEET) = 1123.00 DOWNSTREAM ELEVATION(FEET) = 1122.00 STREET LENGTH(FEET) = 380.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning'S FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning'S FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.06 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.36 HALFSTREET FLOOD WIDTH(FEET) = 11.05 AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.19 PRODUCT OF DEPTH &VELOCITY(FT * FT /SEC.) = 0.43 STREET FLOW TRAVEL TIME(MIN.) = 5.32 TC(MIN.) = 14.67 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.234 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 EFFECTIVE AREA(ACRES) = 1.20 AREA - AVERAGED FM(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 1.20 PEAK FLOW RATE(CFS) = 3.06 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.36 HALFSTREET FLOOD WIDTH(FEET) = 11.05 FLOW VELOCITY(FEET /SEC.) = 1.19 DEPTH *VELOCITY(FT * FT /SEC.) = 0.43 LONGEST FLOWPATH FROM NODE 6.00 TO NODE 9.03 = 1080.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 9.03 TO NODE 9.03 IS CODE = 81 ---------------------------------------------------------------------------- » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< - - -� -- MAINLINE TC(MIN) TC(MIN) = 14.67 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.234 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 3.80 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 3.80 SUBAREA RUNOFF(CFS) = 7.31 EFFECTIVE AREA(ACRES) = 5.00 AREA - AVERAGED F /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 5.00 PEAK FLOW RATE(CFS) = 9.61 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 9.03 TO NODE 9.03 IS CODE = 1 ---------------------------------------------------------------------------- » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< » »>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES« «< -------------------------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: Page 13 KAI5ERI0.RE5 TIME OF CONCENTRATION(MIN.) = 14.67 RAINFALL INTENSITY(INCH /HR) = 2.23 AREA - AVERAGED FM(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 5.00 TOTAL STREAM AREA(ACRES) = 5.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.61 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(FM) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 54.57 9.77 2.851 0.98( 0.13) 0.13 18.5 4.00 1 58.73 12.36 2.476 0.98( 0.13) 0.14 23.8 3.00 1 59.37 12.87 2.417 0.98( 0.13) 0.14 24.8 4.03 1 59.98 13.71 2.327 0.98( 0.13) 0.14 26.3 2.00 1 60.06 14.19 2.279 0.98( 0.13) 0.14 27.0 5.00 1 59.18 15.15 2.192 0.98( 0.13) 0.13 27.8 1.00 1 57.10 17.00 2.045 0.98( 0.13) 0.13 29.2 1.05 1 55.95 18.00 1.976 0.98( 0.13) 0.13 29.8 1.04 2 9.61 14.67 2.234 0.98( 0.10) 0.10 5.0 6.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensit FP(FM) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 62.83 9.77 2.851 0.98( 0.13) 0.13 21.9 4.00 2 67.75 12.36 2.476 0.98( 0.13) 0.13 28.0 3.00 3 68.52 12.87 2.417 0.98( 0.13) 0.13 29.2 4.03 ce 4 69.36 13.71 2.327 0.97( 0.13) 0.13 30.9 2.00 5 69.55 14.19 2.279 0.98( 0.13) 0.13 31.8 5.00 6 69.23 14.67 2.234 0.98( 0.13) 0.13 32.4 6.00 7 68.60 15.15 2.192 0.98( 0.13) 0.13 32.8 1.00 8 65.86 17.00 2.045 0.98( 0.12) 0.13 34.2 1.05 9 64.40 18.00 1.976 0.98( 0.12) 0.13 34.8 1.04 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 69.55 TC(MIN.) = 14.19 EFFECTIVE AREA(ACRES) = 31.79 AREA- AVERAGED FM(INCH /HR) = 0.13 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.13 TOTAL AREA(ACRES) = 34.80 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 9.03 = 2640.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 9.03 TO NODE 9.04 IS CODE = 41 ---------------------------------------------------------------------------- » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< » » >USING USER- SPECIFIED PIPESIZE (EXISTING ELEMENT) « «< ELEVATION DATA: UPSTREAM(FEET) = 1114.00 DOWNSTREAM(FEET) = 1113.60 FLOW LENGTH(FEET) = 200.00 MANNING'S N = 0.013 ASSUME FULL - FLOWING PIPELINE PIPE -FLOW VELOCITY(FEET /SEC.) = 7.23 PIPE FLOW VELOCITY = (TOTAL FLOW) /(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 69.55 PIPE TRAVEL TIME(MIN.) = 0.46 TC(MIN.) = 14.65 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 9.04 = 2840.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 9.04 TO NODE 9.04 IS CODE = 1 Page 14 KAI5ER10.RE5 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< -------------------- - - - - -- -- - -------- - - - - -- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.65 RAINFALL INTENSITY(INCH /HR) = 2.24 AREA - AVERAGED F /HR) = 0.13 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.13 EFFECTIVE STREAM AREA(ACRES) = 31.79 TOTAL STREAM AREA(ACRES) = 34.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 69.55 FLOW PROCESS FROM NODE 7.00 TO NODE 9.04 IS CODE = 21 --------------------------------------------- >>USERTIMEN INITIAL SUBAREA OF- CONCENTRATION NOMOGRAPH A FOR Y < INITIAL SUBAREA<< /gwTlC C�- INITIAL SUBAREA FLOW- LENGTH(FEET) = 300.00 ELEVATION DATA: UPSTREAM(FEET) = 1125.00 DOWNSTREAM(FEET) = 1122.50 TC = K *[(LENGTH * 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 7 .755 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 3.275 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 1.00 0.98 0.10 32 7.75 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 2.86 TOTAL AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) = 2.86 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 9.04 TO NODE 9.04 IS CODE = 1 ---------------------------------------------------------------------------- »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< -- -------------- - - - - -- --------------- - - - - -- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 7.75 RAINFALL INTENSITY(INCH /HR) = 3.27 AREA - AVERAGED F /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 1.00 TOTAL STREAM AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.86 ** CONFLUENCE DATA ** STREAM Q Tc Intensit Fp(FM) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR� (INCH /HR) (ACRES) NODE 1 62.83 10.28 2.765 0.98( 0.13) 0.13 21.9 4.00 1 67.75 12.83 2.421 0.98( 0.13) 0.13 28.0 3.00 1 68.52 13.33 2.366 0.98( 0.13) 0.13 29.2 4.03 1 69.36 14.17 2.281 0.97( 0.13) 0.13 30.9 2.00 1 69.55 14.65 2.236 0.98( 0.13) 0.13 31.8 5.00 1 69.23 15.13 2.193 0.98( 0.13) 0.13 32.4 6.00 1 68.60 15.61 2.152 0.98( 0.13) 0.13 32.8 1.00 1 65.86 17.49 2.011 0.98( 0.12) 0.13 34.2 1.05 Page 15 FLOW PROCESS FROM NODE 9.04 TO NODE 9.05 IS CODE = 41 ---------------------------------------------------------------------------- » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< - - » »> USING USER-SPECIFIED - PIPESIZE - (EXISTING - ELEMENT) < << < < ------- - - - - -- ELEVATION DATA: UPSTREAM(FEET) = 1114.00 DOWNSTREAM(FEET) = 1112.50 FLOW LENGTH(FEET) = 125.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 42.0 INCH PIPE IS 25.5 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 11.70 GIVEN PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 71.48 PIPE TRAVEL TIME(MIN.) = 0.18 TC(MIN.) = 14.83 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 9.05 = 2965.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 9.05 TO NODE 9.06 IS CODE = 41 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< » »> USING USER- SPECIFIED PIPESIZE (EXISTING ELEMENT) « «< ---------------------------------------------------------------------------- ELEVATION DATA: UPSTREAM(FEET) = 1112.50 DOWNSTREAM(FEET) = 1110.00 FLOW LENGTH(FEET) = 450.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 48.0 INCH PIPE IS 29.7 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 8.75 GIVEN PIPE DIAMETER(INCH) = 48.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 71.48 PIPE TRAVEL TIME(MIN.) = 0.86 TC(MIN.) = 15.68 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 9.06 = 3415.00 FEET. FLOW PROCESS FROM NODE 9.06 TO NODE 9.06 IS CODE = 1 ---------------------------------------------------------------------------- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< TOTAL NUMBER OF STREAMS --=- 2_______________ _______________________________ Page 16 KAISERIO.RES 1 64.40 18.50 1.944 0.98( 0.12) 0.98( 0.10) 0.13 0.10 34.8 1.0 1.04 7.00 2 2.86 7.75 3.275 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q TC Intensity Fp(FM) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 59.40 7.75 3.275 0.98( 0.12) 0.13 17.5 7.00 2 65.23 10.28 2.765 0.98( 0.12) 0.13 22.9 4.00 3 69.84 12.83 2.421 0.98( 0.13) 0.13 29.0 3.00 4 70.56 13.33 2.366 0.98( 0.13) 0.13 30.2 4.03 5 71.32 14.17 2.281 0.97( 0.13) 0.13 31.9 2.00 6 71.48 14.65 2.236 0.98( 0.13) 0.13 32.8 5.00 7 71.12 15.13 2.193 0.98( 0.13) 0.13 33.4 6.00 8 70.45 15.61 2.152 0.98( 0.12) 0.13 33.8 1.00 9 67.58 17.49 2.011 0.98( 0.12) 0.13 35.2 1.05 10 66.06 18.50 1.944 0.98( 0.12) 0.13 35.8 1.04 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 71.48 TC(MIN.) = 14.65 EFFECTIVE AREA(ACRES) = 32.79 AREA - AVERAGED FM(INCH /HR) = 0.13 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.13 TOTAL AREA(ACRES) = 35.80 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 9.04 = 2840.00 FEET. FLOW PROCESS FROM NODE 9.04 TO NODE 9.05 IS CODE = 41 ---------------------------------------------------------------------------- » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< - - » »> USING USER-SPECIFIED - PIPESIZE - (EXISTING - ELEMENT) < << < < ------- - - - - -- ELEVATION DATA: UPSTREAM(FEET) = 1114.00 DOWNSTREAM(FEET) = 1112.50 FLOW LENGTH(FEET) = 125.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 42.0 INCH PIPE IS 25.5 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 11.70 GIVEN PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 71.48 PIPE TRAVEL TIME(MIN.) = 0.18 TC(MIN.) = 14.83 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 9.05 = 2965.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 9.05 TO NODE 9.06 IS CODE = 41 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< » »> USING USER- SPECIFIED PIPESIZE (EXISTING ELEMENT) « «< ---------------------------------------------------------------------------- ELEVATION DATA: UPSTREAM(FEET) = 1112.50 DOWNSTREAM(FEET) = 1110.00 FLOW LENGTH(FEET) = 450.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 48.0 INCH PIPE IS 29.7 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 8.75 GIVEN PIPE DIAMETER(INCH) = 48.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 71.48 PIPE TRAVEL TIME(MIN.) = 0.86 TC(MIN.) = 15.68 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 9.06 = 3415.00 FEET. FLOW PROCESS FROM NODE 9.06 TO NODE 9.06 IS CODE = 1 ---------------------------------------------------------------------------- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< TOTAL NUMBER OF STREAMS --=- 2_______________ _______________________________ Page 16 KAI5ER10.RE5 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 15.68 RAINFALL INTENSITY(INCH /HR) = 2.15 AREA - AVERAGED F /HR) = 0.13 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.13 EFFECTIVE STREAM AREA(ACRES) = 32.79 TOTAL STREAM AREA(ACRES) = 35.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 71.48 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 8.00 TO NODE 9.06 IS CODE = 21 ---------------------------------------------------------------------------- » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< D CQ� >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< �nr l+ INITIAL SUBAREA FLOW- LENGTH(FEET) = 550.00 ELEVATION DATA: UPSTREAM(FEET) = 1122.00 DOWNSTREAM(FEET) = 1115.50 TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 9.215 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2 .953 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 2.00 0.98 0.10 32 9.22 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 5.14 TOTAL AREA(ACRES) = 2.00 PEAK FLOW RATE(CFS) = 5.14 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 9.06 TO NODE 9.06 IS CODE = 1 ---------------------------------------------------------------------------- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< --------------------------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 9.22 RAINFALL INTENSITY(INCH /HR) = 2.95 AREA - AVERAGED F /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 2.00 TOTAL STREAM AREA(ACRES) = 2.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.14 ** CONFLUENCE DATA ** STREAM Q TC Intensit Fp(FM) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR� (INCH /HR) (ACRES) NODE 1 59.40 8.83 3.029 0.98( 0.12) 0.13 17.5 7.00 1 65.23 11.34 2.608 0.98( 0.12) 0.13 22.9 4.00 1 69.84 13.87 2.310 0.98( 0.13) 0.13 29.0 3.00 1 70.56 14.37 2.262 0.98( 0.13) 0.13 30.2 4.03 1 71.32 15.21 2.186 0.97( 0.13) 0.13 31.9 2.00 1 71.48 15.68 2.146 0.98( 0.13) 0.13 32.8 5.00 1 71.12 16.17 2.107 0.98( 0.13) 0.13 33.4 6.00 1 70.45 16.65 2.070 0.98( 0.12) 0.13 33.8 1.00 1 67.58 18.53 1.942 0.98( 0.12) 0.13 35.2 1.05 1 66.06 19.55 1.880 0.98( 0.12) 0.13 35.8 1.04 2 5.14 9.22 2.953 0.98( 0.10) 0.10 2.0 8.00 Page 17 m Page 18 KAI5ER10.RE5 RAINFALL INTENSITY AND TIME OF CONCENTRATION 2 STREAMS. RATIO CONFLUENCE FORMULA USED FOR ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity FP(FM) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 64.46 8.83 3.029 0.98( 0.12) 0.12 19.4 7.00 2 65.43 9.22 2.953 0.98( 0.12) 0.12 20.3 8.00 3 69.75 11.34 2.608 0.98( 0.12) 0.13 24.9 4.00 4 73.82 13.87 2.310 0.98( 0.12) 0.13 31.0 3.00 5 74.46 14.37 2.262 0.98( 0.12) 0.13 32.2 4.03 6 75.08 15.21 2.186 0.97( 0.12) 0.13 33.9 2.00 7 75.17 15.68 2.146 0.98( 0.12) 0.13 34.8 5.00 8 74.74 16.17 2.107 0.98( 0.12) 0.13 35.4 6.00 9 74.00 16.65 2.070 0.98( 0.12) 0.13 35.8 1.00 10 70.90 18.53 1.942 0.98( 0.12) 0.13 37.2 1.05 11 69.27 19.55 1.880 0.98( 0.12) 0.13 37.8 1.04 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 75.17 TC(MIN.) = 15.68 EFFECTIVE AREA(ACRES) = 34.79 AREA - AVERAGED FM(INCH /HR) = 0.12 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.13 TOTAL AREA(ACRES) = 37.80 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 9.06 = 3415.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 37.80 TC(MIN.) = 15.68 EFFECTIVE AREA(ACRES) = 34.79 AREA - AVERAGED FM(INCH /HR)= 0.12 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.13 PEAK FLOW RATE(CFS) = 75.17 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensit FP(FM) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 64.46 8.83 3.029 0.98( 0.12) 0.12 19.4 7.00 2 65.43 9.22 2.953 0.98( 0.12) 0.12 20.3 8.00 3 69.75 11.34 2.608 0.98( 0.12) 0.13 24.9 4.00 4 73.82 13.87 2.310 0.98( 0.12) 0.13 31.0 3.00 5 74.46 14.37 2.262 0.98( 0.12) 0.13 32.2 4.03 6 75.08 15.21 2.186 0.97( 0.12) 0.13 33.9 2.00 7 75.17 15.68 2.146 0.98( 0.12) 0.13 34.8 5.00 8 74.74 16.17 2.107 0.98( 0.12) 0.13 35.4 6.00 9 74.00 16.65 2.070 0.98( 0.12) 0.13 35.8 1.00 10 70.90 18.53 1.942 0.98( 0.12) 0.13 37.2 1.05 11 69.27 19.55 1.880 0.98( 0.12) 0.13 37.8 1.04 END OF RATIONAL METHOD ANALYSIS m Page 18 D.2 100 Year Storm Calculations Aawwk 14 H: \Pdata \10105573\Admin\ reports \Hydrology \KFMC_Hydrology.doc XI i OFFSITE.RES RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -2004 Advanced Engineering software (aes) Ver. 10.0 Release Date: 01/01/2004 License ID 1264 Analysis prepared by: RBF Consulting 14725 Alton Parkway Irvine, California 92618 ---- 1Se _F_pU }L _CEnr1'C-�.- FOtJi WA, ----- 0P_F'�[ _ N�� 32:1- - 1 O YE AR. FILE NAME: OFFSITE.DAT TIME /DATE OF STUDY: 13:48 09/04/2008 — ------------------------------ USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ------------------------- -- *TIME -OF- CONCENTRATION MODEL*-- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 0 .950 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.400 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.4000 SLOPE OF INTENSITY DURATION CURVE = 0.6000 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* *USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET- CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT - /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW - DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER- SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 1.01 IS CODE = 21 ---------------------------------------------------------------------------- »»> RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< /,ps► >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< APEA A INITIAL SUBAREA FLOW- LENGTH(FEET) = 1000.00 ELEVATION DATA: UPSTREAM(FEET) = 1233.00 DOWNSTREAM(FEET) = 1224.00 TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGI SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = * 100 YEAR RAINFALL INTENSITY(INCH /HR) = SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Page )]* *0.20 19.638 2.736 Fp Ap SCS TC 1 OFFSITE.RES LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) PUBLIC PARK A 9.30 0.98 0.85 32 19.64 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.85 SUBAREA RUNOFF(CFS) = 15.97 TOTAL AREA(ACRES) = 9.30 PEAK FLOW RATE(CFS) = 15.97 FLOW PROCESS FROM NODE 1.02 TO NODE 1.03 IS CODE = 62 ---------------------------------------------------------------------------- » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< »»>( STREET TABLE SECTION # 1 USED)« «< ----------------------- - - - - -- ------------------------------- - - - - -- - - - - - -- UPSTREAM ELEVATION(FEET) = 1236.00 DOWNSTREAM ELEVATION(FEET) = 1229.00 STREET LENGTH(FEET) = 595.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning'S FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning'S FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 15.97 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.45 HALFSTREET FLOOD WIDTH(FEET) = 16.37 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.09 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.40 STREET FLOW TRAVEL TIME(MIN.) = 3.21 TC(MIN.) = 22.85 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.499 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 EFFECTIVE AREA(ACRES) = 9.30 AREA - AVERAGED FM(INCH /HR) = 0.83 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.85 TOTAL AREA(ACRES) = 9.30 PEAK FLOW RATE(CFS) = 15.97 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.45 HALFSTREET FLOOD WIDTH(FEET) = 16.37 FLOW VELOCITY(FEET /SEC.) = 3.09 DEPTH *VELOCITY(FT *FT /SEC.) = 1.40 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 1.03 = 1595.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.03 TO NODE 1.03 IS CODE = 81 ---------------------------------------------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< AWA A 2.. - - -- ------------------------------------ - - MAINLINE TC(MIN) = 22.85 - - -- --------------------------- * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.499 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL GOOD COVER "GRASS" A 2.71 0.94 1.00 38 PUBLIC PARK A 1.03 0.98 0.85 32 RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 0.46 0.98 0.60 32 COMMERCIAL A 12.50 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.95 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.31 Page 2 SUBAREA AREA(ACRES) = 16.70 EFFECTIVE AREA(ACRES) = 26.00 AREA- AVERAGED Fp(INCH /HR) = 0.97 TOTAL AREA(ACRES) = 26.00 OFFSITE.RES SUBAREA RUNOFF(CFS) = 33.16 AREA - AVERAGED FM(INCH /HR) = 0.48 AREA - AVERAGED Ap = 0.50 PEAK FLOW RATE(CFS) = 47.14 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.03 TO NODE 1.04 IS CODE = 62 ---------------------------------------------------------------------------- » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< » » >( STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1229.00 DOWNSTREAM ELEVATION(FEET) = 1213.00 STREET LENGTH(FEET) = 936.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 47.14 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.58 HALFSTREET FLOOD WIDTH(FEET) = 23.48 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.61 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.68 STREET FLOW TRAVEL TIME(MIN.) = 3.39 TC(MIN.) = 26.24 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.300 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 EFFECTIVE AREA(ACRES) = 26.00 AREA - AVERAGED FM(INCH /HR) = 0.48 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 26.00 PEAK FLOW RATE(CFS) = 47.14 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.58 HALFSTREET FLOOD WIDTH(FEET) = 23.48 FLOW VELOCITY(FEET /SEC.) = 4.61 DEPTH *VELOCITY(FT *FT /SEC.) = 2.68 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 1.04 = 2531.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.04 TO NODE 1.04 IS CODE = 81 ---------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< A a A AS MAINLINE Tc(MIN) = 26.24 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.300 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 6.74 0.98 0.60 32 PUBLIC PARK A 9.08 0.98 0.85 32 COMMERCIAL A 10.38 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.49 SUBAREA AREA(ACRES) = 26.20 SUBAREA RUNOFF(CFS) = 43.00 EFFECTIVE AREA(ACRES) = 52.20 AREA - AVERAGED FM(INCH /HR) = 0.48 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.49 i TOTAL AREA(ACRES) = 52.20 PEAK FLOW RATE(CFS) = 85.48 Page 3 OFFSITE.RES FLOW PROCESS FROM NODE 1.04 TO NODE 1.05 IS CODE = 62 ---------------------------------------------------------------------------- » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< » » >( STREET TABLE SECTION # 1 USED) « «< ---------------- ------------- ------------ - - - - -- - -------------------------- UPSTREAM ELEVATION(FEET) = 1213.00 DOWNSTREAM ELEVATION(FEET) = 1196.00 STREET LENGTH(FEET) = 1055.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning'S FRICTION FACTOR for Streetflow section(curb -to -curb) = 0.0150 Manning'S FRICTION FACTOR for Back -of -walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 85.48 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.70 HALFSTREET FLOOD WIDTH(FEET) = 31.36 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.22 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 3.63 STREET FLOW TRAVEL TIME(MIN.) = 3.37 TC(MIN.) = 29.61 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2 .139 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 EFFECTIVE AREA(ACRES) = 52.20 AREA - AVERAGED FM(INCH /HR) = 0.48 AREA- AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.49 TOTAL AREA(ACRES) = 52.20 PEAK FLOW RATE(CFS) = 85.48 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.70 HALFSTREET FLOOD WIDTH(FEET) = 31.36 FLOW VELOCITY(FEET /SEC.) = 5.22 DEPTH *VELOCITY(FT *FT /SEC.) = 3.63 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 1. = 3586 .00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.05 TO NODE 1.05 IS CODE = 81 ---------------------------------------------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< Q�-. A MAINLINE TC(MIN) = 29.61 r � * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2 .139 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 15.77 0.98 0.60 32 COMMERCIAL A 9.73 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.41 SUBAREA AREA(ACRES) = 25.50 SUBAREA RUNOFF(CFS) = 39.93 EFFECTIVE AREA(ACRES) = 77.70 AREA - AVERAGED F /HR) = 0.45 /� AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.47 O.W < 4M TOTAL AREA(ACRES) = 77.70 PEAK FLOW RATE(CFS) = 11 7.86 Q „ mommm * * * * * * * ** ************************************ * * * * * * * * * * * * * * * * * * * * * * * * * * * **8n Hd nip FLOW PROCESS FROM NODE 1.05 TO NODE 1.06 IS CODE = 62 »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< Page 4 OFFSITE.RES » » >( STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1196.00 DOWNSTREAM ELEVATION(FEET) = 1181.00 STREET LENGTH(FEET) = 1000.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 117.86 ** *STREET FLOWING FULL * ** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.76 HALFSTREET FLOOD WIDTH(FEET) = 34.73 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.70 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 4.34 STREET FLOW TRAVEL TIME(MIN.) = 2.92 TC(MIN.) = 32.53 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.021 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 EFFECTIVE AREA(ACRES) = 77.70 AREA - AVERAGED Fm(INCH /HR) = 0.45 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.47 TOTAL AREA(ACRES) = 77.70 PEAK FLOW RATE(CFS) = 117.86 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.76 HALFSTREET FLOOD WIDTH(FEET) = 34.73 FLOW VELOCITY(FEET /SEC.) = 5.70 DEPTH *VELOCITY(FT *FT /SEC.) = 4.34 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 1.06 = 4586.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.06 TO NODE 1.06 IS CODE = 81 ------------------------------------------------------------- - - - - -- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< A cj -------------------------------------------------- - - - - - ------------------------------------------------------- MAINLINE TC(MIN) = 32.53 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.021 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 1.40 0.98 0.10 32 RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 23.50 0.98 0.50 32 NATURAL GOOD COVER "GRASS" A 7.20 0.94 1.00 38 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.96 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.59 SUBAREA AREA(ACRES) = 32.10 SUBAREA RUNOFF(CFS) = 41.90 EFFECTIVE AREA(ACRES) = 109.80 AREA - AVERAGED Fm(INCH /HR) = 0.49 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 109.80 PEAK FLOW RATE(CFS) = 151.54 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.06 TO NODE 1.07 IS CODE = 62 ---------------------------------------------------------------------- - - - - -- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< » » >( STREET TABLE SECTION # 1 USED) « «< C-1Page = S===== ___________________________ OFFSITE.RES AVftL UPSTREAM ELEVATION(FEET) = 1181.00 DOWNSTREAM ELEVATION(FEET) = 1158.00 STREET LENGTH(FEET) = 1630.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning'S FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning'S FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 151.54 ** *STREET FLOWING FULL * ** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.82 HALFSTREET FLOOD WIDTH(FEET) = 37.78 AVERAGE FLOW VELOCITY(FEET /SEC.) = 6.04 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 4.96 STREET FLOW TRAVEL TIME(MIN.) = 4.50 TC(MIN.) = 37.03 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 1.870 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 EFFECTIVE AREA(ACRES) = 109.80 AREA - AVERAGED FM(INCH /HR) = 0.49 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 109.80 PEAK FLOW RATE(CFS) = 151.54 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.82 HALFSTREET FLOOD WIDTH(FEET) = 37.78 FLOW VELOCITY(FEET /SEC.) = 6.04 DEPTH *VELOCITY(FT *FT /SEC.) = 4.96 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 1.07 = 6216.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.07 TO NODE 1.07 IS CODE = 81 ---------------------------------------------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< AM A6 - - -- ------------------------------ - - - - -- -- MAINLINE TC(MIN) = 37.03 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 1.870 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 6.70 0.98 0.10 32 RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 34.40 0.98 0.50 32 NATURAL GOOD COVER "GRASS" A 2.20 0.94 1.00 38 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.46 SUBAREA AREA(ACRES) = 43.30 SUBAREA RUNOFF(CFS) = 55.35 EFFECTIVE AREA(ACRES) = 153.10 AREA - AVERAGED F /HR) = 0.48 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.49 wloo M fl TOTAL AREA(ACRES) = 153.10 PEAK FLOW RATE(CFS) = 191.94 V ��� �.� ****************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** Q�� FLOW PROCESS FROM NODE 1.07 TO NODE 1.08 IS CODE 62 n D�nQ ------------------------------------------------------------- ------- - - - - -- -Arc . » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »>( STREET TABLE SECTION # 1 USED) « «< ---------------------------------------------------------------------------- UPSTREAM ELEVATION(FEET) = 1158.00 DOWNSTREAM ELEVATION(FEET) = 1140.00 STREET LENGTH(FEET) = 1485.00 CURB HEIGHT(INCHES) = 8.0 Page 6 A STREET HALFWIDTH(FEET) = 30.00 OFFSITE.RES DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = Z STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to - curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 191.94 ** *STREET FLOWING FULL * ** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.90 HALFSTREET FLOOD WIDTH(FEET) = 41.62 AVERAGE FLOW VELOCITY(FEET /SEC.) = 6.15 PRODUCT OF DEPTH &VELOCITY(FT * FT /SEC.) = 5.53 STREET FLOW TRAVEL TIME(MIN.) = 4.02 TC(MIN.) = 41.06 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 1.758 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 EFFECTIVE AREA(ACRES) = 153.10 AREA - AVERAGED F /HR) = 0.48 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.49 TOTAL AREA(ACRES) = 153.10 PEAK FLOW RATE(CFS) = 191.94 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.90 HALFSTREET FLOOD WIDTH(FEET) = 41.62 FLOW VELOCITY(FEET /SEC.) = 6.15 DEPTH *VELOCITY(FT *FT /SEC.) = 5.53 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 1.08 = 7701.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.08 TO NODE 1.08 IS CODE = 81 ---------------------------------------------------------------------------- » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< } - - -- MAINLINE TC(MIN) = 41.06 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 1.758 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 - 7 DWELLINGS /ACRE" A 15.70 0.98 0.50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA AREA(ACRES) = 15.70 SUBAREA RUNOFF(CFS) = 17.95 EFFECTIVE AREA(ACRES) = 168.80 AREA - AVERAGED F /HR) = 0.48 ^ AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.49 O TOTAL AREA(ACRES) = 168.80 PEAK FLOW RATE(CFS) = 194.42 FLOW PROCESS FROM NODE - - - - -- 1_08 - TO - NODE 1.09 IS CODE = 62 Nla�y�pc/� ---------------- - - - - -- ----------------------------- - - - - -- » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA ««< » » >( STREET TABLE SECTION # 1 USED) ««< UPSTREAM ELEVATION(FEET) = 1140.00 DOWNSTREAM ELEVATION(FEET) = 1137.30 STREET LENGTH(FEET) = 480.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 Page 7 OFFSITE.RES SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 194.42 ** *STREET FLOWING FULL * ** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 1.02 HALFSTREET FLOOD WIDTH(FEET) = 47.54 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.65 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 4.74 STREET FLOW TRAVEL TIME(MIN.) = 1.72 TC(MIN.) = 42.77 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 1.715 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 EFFECTIVE AREA(ACRES) = 168.80 AREA - AVERAGED F /HR) = 0.48 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.49 TOTAL AREA(ACRES) = 168.80 PEAK FLOW RATE(CFS) = 194.42 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 1.02 HALFSTREET FLOOD WIDTH(FEET) = 47.54 FLOW VELOCITY(FEET /SEC.) = 4.65 DEPTH *VELOCITY(FT *FT /SEC.) = 4.74 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 1.09 = 8181.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.09 TO NODE 1.09 IS CODE = 81 ---------------------------------------------------------------------------- » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< A2Z4 AS MAINLINE TC(MIN) = 42.77 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 1.715 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 14.70 0.98 0.10 32 NATURAL GOOD COVER "GRASS" A 0.80 0.94 1.00 38 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.96 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.15 SUBAREA AREA(ACRES) = 15.50 SUBAREA RUNOFF(CFS) = 21.96 EFFECTIVE AREA(ACRES) = 184.30 AREA - AVERAGED F /HR) = 0.45 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.46 TOTAL AREA(ACRES) = 184.30 PEAK FLOW RATE(CFS) = 209.90 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 184.30 TC(MIN.) = 42.77 EFFECTIVE AREA(ACRES) = 184.30 AREA - AVERAGED F /HR)= 0.45 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.46 -- PEAK - FLOW - RATE(CFS)-- -_ - - - 209_90 -- TEJt�AL- FLOW - -Ml MM _�(�P ON =_______________________ END OF RATIONAL METHOD ANALYSIS Page 8 SIERRA.RES RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -2004 Advanced Engineering Software (aes) Ver. 10.0 Release Date: 01/01/2004 License ID 1264 Analysis prepared by: RBF Consulting 14725 Alton Parkway Irvine, California 92618 J- AI 2. _ M a &,L --p !_v_r_ - r _ f ANA - -- i-t'E _ �±y_r,� k , 4W6 FILE NAME: SIERRA.DAT aice" — woy e, TIME /DATE OF STUDY: 17:44 09/11/2008 ---------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ------------------------------------------------------- - - - - -- - -- *TIME -OF- CONCENTRATION MODEL * -- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 0 .950 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.400 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.4000 SLOPE OF INTENSITY DURATION CURVE = 0.6000 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* *USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET- CROSSFALL: CURB GUTTER- GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT- /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER- SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 2.01 IS CODE = 21 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< /Vr D ,� >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< *6A 1 INITIAL SUBAREA FLOW- LENGTH(FEET) = 1000.00 ELEVATION DATA: UPSTREAM(FEET) = 1250.79 DOWNSTREAM(FEET) = 1231.73 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] * 0.20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 10 .638 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3 .953 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc Page 1 I LAND USE GROUP (AACRES) RES) (I (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 9.74 0.98 0.10 32 10.64 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 33.80 TOTAL AREA(ACRES) = 9.74 PEAK FLOW RATE(CFS) = 33.80 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.01 TO NODE 2.01 IS CODE = 81 ---------------------------------------------------------------------------- » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< AP�� 82 -------------------------------------------- MAINLINE TC(MIN) = 10.64 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3 .953 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 - 7 DWELLINGS /ACRE" A 17.95 0.98 0.50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA AREA(ACRES) = 17.95 SUBAREA RUNOFF(CFS) = 55.98 EFFECTIVE AREA(ACRES) = 27.69 AREA - AVERAGED F /HR) = 0.35 Q 100 o AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.36 TOTAL AREA(ACRES) = 27.69 PEAK FLOW RATE(CFS) = 89.78 S1�1 ra„ �..�• ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * �fCG Of FLOW PROCESS FROM NODE 2.01 TO NODE 2.02 IS CODE = 62 -------------------------------------------------------------------------- - -'� » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< - - » »>( STREET - TABLE - SECTION - # - - 1 - USED)<<< < < ----------------------------- UPSTREAM ELEVATION(FEET) = 1231.73 DOWNSTREAM ELEVATION(FEET) = 1219.98 STREET LENGTH(FEET) = 855.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning'S FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning'S FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 89.78 ** *STREET FLOWING FULL * ** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.72 HALFSTREET FLOOD WIDTH(FEET) = 32.59 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.04 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 3.62 STREET FLOW TRAVEL TIME(MIN.) = 2.83 TC(MIN.) = 13.46 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3 .432 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 EFFECTIVE AREA(ACRES) = 27.69 AREA - AVERAGED F /HR) = 0.35 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.36 TOTAL AREA(ACRES) = 27.69 PEAK FLOW RATE(CFS) = 89.78 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.72 HALFSTREET FLOOD WIDTH(FEET) = 32.59 FLOW VELOCITY(FEET /SEC.) = 5.04 DEPTH *VELOCITY(FT *FT /SEC.) = 3.62 Page 2 SIERRA.RES LONGEST FLOWPATH FROM NODE 2.00 TO NODE 2. = 1855 .00 FEET. FLOW PROCESS FROM NODE 2.02 TO NODE 2.02 IS CODE = 81 ---------------------------------------------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< Q Q - 0� - - - -- MAINLINE TC(MIN) = 13.46 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3 .432 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 14.05 0.98 0.10 32 RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 0.74 0.98 0.50 32 NATURAL GOOD COVER "GRASS" A 0.68 0.94 1.00 38 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.96 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.16 SUBAREA AREA(ACRES) = 15.47 SUBAREA RUNOFF(CFS) = 45.65 EFFECTIVE AREA(ACRES) = 43.16 AREA - AVERAGED F /HR) = 0.28 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.29 TOTAL AREA(ACRES) = 43.16 PEAK FLOW RATE(CFS) = 122.44 FLOW PROCESS FROM NODE 2.02 TO NODE 2.03 IS CODE = 62 ---------------------------------------------------------------------------- » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< » » >( STREET TABLE SECTION # 1 USED)««< ----------------------- - - - - -- --------------------------------------------- UPSTREAM ELEVATION(FEET) = 1219.98 DOWNSTREAM ELEVATION(FEET) = 1208.73 STREET LENGTH(FEET) = 819.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning'S FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning'S FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 122.44 ** *STREET FLOWING FULL * ** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.78 HALFSTREET FLOOD WIDTH(FEET) = 35.58 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.60 PRODUCT OF DEPTH &VELOCITY(FT * FT /SEC.) = 4.36 STREET FLOW TRAVEL TIME(MIN.) = 2.44 TC(MIN.) = 15.90 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.105 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 EFFECTIVE AREA(ACRES) = 43.16 AREA - AVERAGED Fm(INCH /HR) = 0.28 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.29 TOTAL AREA(ACRES) = 43.16 PEAK FLOW RATE(CFS) = 122.44 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.78 HALFSTREET FLOOD WIDTH(FEET) = 35.58 FLOW VELOCITY(FEET /SEC.) = 5.60 DEPTH *VELOCITY(FT * FT /SEC.) = 4.36 LONGEST FLOWPATH FROM NODE 2.00 TO NODE 2. = 2674 FEET. Page SIERRA.RES FLOW PROCESS FROM NODE 2.03 TO NODE 2.03 IS CODE = 81 ------------------------------------------------------------------ » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< Q(jFA ------------------------------------------------------- ------------------------------------------------------------------ MAINLINE TC(MIN) = 15.90 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.105 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 6.63 0.98 0.10 32 RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 4.87 0.98 0.50 32 NATURAL GOOD COVER "GRASS" A 0.54 0.94 1.00 38 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.30 SUBAREA AREA(ACRES) = 12.04 SUBAREA RUNOFF(CFS) = 30.48 EFFECTIVE AREA(ACRES) = 55.20 AREA - AVERAGED FM(INCH /HR) = 0.28 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.29 TOTAL AREA(ACRES) = 55.20 PEAK FLOW RATE(CFS) = 140.25 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.03 TO NODE 2.04 IS CODE = 62 ---------------------------------------------------------------------------- »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< » » >( STREET TABLE SECTION # 1 USED) « «< - -------------------------------------------------- UPSTREAM ELEVATION(FEET) = 1208.73 DOWNSTREAM ELEVATION(FEET) = 1194.63 STREET LENGTH(FEET) = 1026.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = Z STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning'S FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning'S FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 140.25 ** *STREET FLOWING FULL * ** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.81 HALFSTREET FLOOD WIDTH(FEET) = 37.05 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.84 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 4.72 STREET FLOW TRAVEL TIME(MIN.) = 2.93 TC(MIN.) = 18.83 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.806 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 EFFECTIVE AREA(ACRES) = 55.20 AREA - AVERAGED FM(INCH /HR) = 0.28 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.29 TOTAL AREA(ACRES) = 55.20 PEAK FLOW RATE(CFS) = 140.25 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.81 HALFSTREET FLOOD WIDTH(FEET) = 37.05 FLOW VELOCITY(FEET /SEC.) = 5.84 DEPTH *VELOCITY(FT *FT /SEC.) = 4.72 LONGEST FLOWPATH FROM NODE 2.00 TO NODE 2.04 = 3700.00 FEET. FLOW PROCESS FROM NODE 2.04 TO NODE 2.04 IS CODE = 81 Page 4 SIERRA.RES ------------------------------------------------------------ »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< A MAINLINE TC(MIN) = 18.83 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.806 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 11.59 0.98 0.10 32 NATURAL GOOD COVER "GRASS" A 0.86 0.94 1.00 38 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.96 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.16 SUBAREA AREA(ACRES) = 12.45 SUBAREA RUNOFF(CFS) = 29.70 EFFECTIVE AREA(ACRES) = 67.65 AREA - AVERAGED F /HR) = 0.26 /`1'� do AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.27 ��rr TOTAL AREA(ACRES) = 67.65 PEAK FLOW RATE(CFS) = 155.07 &um M FLOW PROCESS FROM NODE 2.04 TO NODE 2.05 IS CODE = 62 ---------------------------------------------------------------------------- » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< » » >( STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1194.63 DOWNSTREAM ELEVATION(FEET) = 1180.91 STREET LENGTH(FEET) = 1013.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning'S FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning'S FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 155.07 ** *STREET FLOWING FULL * ** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.83 HALFSTREET FLOOD WIDTH(FEET) = 38.27 AVERAGE FLOW VELOCITY(FEET /SEC.) = 6.00 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 4.99 STREET FLOW TRAVEL TIME(MIN.) = 2.81 TC(MIN.) = 21.64 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.581 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 EFFECTIVE AREA(ACRES) = 67.65 AREA - AVERAGED F /HR) = 0.26 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.27 TOTAL AREA(ACRES) = 67.65 PEAK FLOW RATE(CFS) = 155.07 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.83 HALFSTREET FLOOD WIDTH(FEET) = 38.27 FLOW VELOCITY(FEET /SEC.) = 6.00 DEPTH *VELOCITY(FT * FT /SEC.) = 4.99 LONGEST FLOWPATH FROM NODE 2.00 TO NODE 2. = 4713 .00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.05 TO NODE 2.05 IS CODE = 81 ---------------------------------------------------------------------------- »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< MAINLINE TC(MIN) = 21.64 Page 5 SIERRA.RES * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.581 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 8.91 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 8.91 SUBAREA RUNOFF(CFS) = 19.92 EFFECTIVE AREA(ACRES) = 76.56 AREA - AVERAGED FM(INCH /HR) = 0.24 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.25 TOTAL AREA(ACRES) = 76.56 PEAK FLOW RATE(CFS) = 161.29 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.05 TO NODE 2.06 IS CODE = 62 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA ««< »» >( STREET TABLE SECTION # 1 USED) « «< ------------------ ------------------------- - - - - -- -------------------------- UPSTREAM ELEVATION(FEET) = 1180.91 DOWNSTREAM ELEVATION(FEET) = 1169.77 STREET LENGTH(FEET) = 823.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning'S FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning'S FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 Ce * * TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 161.29 ** *STREET FLOWING FULL * ** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.84 HALFSTREET FLOOD WIDTH(FEET) = 38.75 AVERAGE FLOW VELOCITY(FEET /SEC.) = 6.06 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 5.10 STREET FLOW TRAVEL TIME(MIN.) = 2.26 TC(MIN.) = 23.91 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.432 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 EFFECTIVE AREA(ACRES) = 76.56 AREA - AVERAGED FM(INCH /HR) = 0.24 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.25 TOTAL AREA(ACRES) = 76.56 PEAK FLOW RATE(CFS) = 161.29 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.84 HALFSTREET FLOOD WIDTH(FEET) = 38.75 FLOW VELOCITY(FEET /SEC.) = 6.06 DEPTH *VELOCITY(FT *FT /SEC.) = 5.10 LONGEST FLOWPATH FROM NODE 2.00 TO NODE 2.06 = 5536.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.06 TO NODE 2.06 IS CODE = 81 ---------------------------------------------------------------------------- » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « « < -- MAINLINE TC(MIN) = 23.91 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.432 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 8.23 0.98 0.10 32 NATURAL GOOD COVER Page 6 SIERRA.RES "GRASS" A 1.72 0.94 1.00 38 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.95 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.26 SUBAREA AREA(ACRES) = 9.95 SUBAREA RUNOFF(CFS) = 19.60 EFFECTIVE AREA(ACRES) = 86.51 AREA - AVERAGED FM(INCH /HR) = 0.24 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.25 TOTAL AREA(ACRES) = 86.51 PEAK FLOW RATE(CFS) = 170.60 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.06 TO NODE 2.07 IS CODE = 62 ---------------------------------------------------------------------------- » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA ««< » » >( STREET TABLE SECTION # 1 USED) « «< ------------------ ------------ ------------- - - - - -- -------------------------- UPSTREAM ELEVATION(FEET) = 1169.77 DOWNSTREAM ELEVATION(FEET) = 1159.90 STREET LENGTH(FEET) = 729.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning'S FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning'S FRICTION FACTOR for Back -of -walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 170.60 ** *STREET FLOWING FULL * ** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: Avwft STREET FLOW DEPTH(FEET) = 0.86 HALFSTREET FLOOD WIDTH(FEET) = 39.43 AVERAGE FLOW VELOCITY(FEET /SEC.) = 6.17 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 5.28 STREET FLOW TRAVEL TIME(MIN.) = 1.97 TC(MIN.) = 25.88 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.319 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 EFFECTIVE AREA(ACRES) = 86.51 AREA - AVERAGED FM(INCH /HR) = 0.24 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.25 TOTAL AREA(ACRES) = 86.51 PEAK FLOW RATE(CFS) = 170.60 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.86 HALFSTREET FLOOD WIDTH(FEET) = 39.43 FLOW VELOCITY(FEET /SEC.) = 6.17 DEPTH *VELOCITY(FT *FT /SEC.) = 5.28 LONGEST FLOWPATH FROM NODE 2.00 TO NODE 2.07 = 6265.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.07 TO NODE 2.07 IS CODE = 81 ---------------------------------------------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< A ---------------------------------------------------------------------------- MAINLINE TC(MIN) = 25.88 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.319 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 8.43 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 8.43 SUBAREA RUNOFF(CFS) = 16.85 EFFECTIVE AREA(ACRES) = 94.94 AREA - AVERAGED FM(INCH /HR) = 0.23 AREA- AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.24 Page 7 Ca on Slew., SIERRA.RES V " M of TOTAL AREA(ACRES) = 94.94 PEAK FLOW RATE(CFS) = 178.67 Q_. ��,,��,,�tt ************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * *�- *** n W1�1At" FLOW PROCESS FROM NODE 2.07 TO NODE 2.08 IS CODE = 62 ---------------------------------------------------------------------------- » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< »» >( STREET TABLE SECTION # 1 USED) « «< ----------------------- - - - - -- ------------------------------- - - - - -- - - - - - -- UPSTREAM ELEVATION(FEET) = 1159.90 DOWNSTREAM ELEVATION(FEET) = 1140.70 STREET LENGTH(FEET) = 1325.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 178.67 ** *STREET FLOWING FULL * ** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.86 HALFSTREET FLOOD WIDTH(FEET) = 39.55 AVERAGE FLOW VELOCITY(FEET /SEC.) = 6.42 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 5.50 STREET FLOW TRAVEL TIME(MIN.) = 3.44 TC(MIN.) = 29:32 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.152 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 EFFECTIVE AREA(ACRES) = 94.94 AREA - AVERAGED F /HR) = 0.23 AREA- AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.24 TOTAL AREA(ACRES) = 94.94 PEAK FLOW RATE(CFS) = 178.67 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.86 HALFSTREET FLOOD WIDTH(FEET) = 39.55 FLOW VELOCITY(FEET /SEC.) = 6.42 DEPTH *VELOCITY(FT *FT /SEC.) = 5.50 LONGEST FLOWPATH FROM NODE 2.00 TO NODE 2.08 = 7590.00 FEET. A ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.08 TO NODE 2.08 IS CODE = 81 ---------------------------------------------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< ---------------------------------------------------------------------------- MAINLINE TC(MIN) = 29.32 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.152 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 26.50 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 26.50 SUBAREA RUNOFF(CFS) = 48.99 EFFECTIVE AREA(ACRES) = 121.44 AREA - AVERAGED F /HR) = 0.20 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.21 TOTAL AREA(ACRES) = 121.44 PEAK FLOW RATE(CFS) = 213.36 � of FLOW PROCESS FROM NODE 2.08 TO NODE 2.09 IS CODE = 62 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< Page 8 SIERRA.RES » >>>( STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1140.70 DOWNSTREAM ELEVATION(FEET) = 1122.76 STREET LENGTH(FEET) = 1283.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning'S FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning'S FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 213.36 ** *STREET FLOWING FULL * ** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.91 HALFSTREET FLOOD WIDTH(FEET) = 42.11 AVERAGE FLOW VELOCITY(FEET /SEC.) = 6.66 PRODUCT OF DEPTH &VELOCITY(FT * FT /SEC.) = 6.05 STREET FLOW TRAVEL TIME(MIN.) = 3.21 TC(MIN.) = 32.53 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.021 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 EFFECTIVE AREA(ACRES) = 121.44 AREA - AVERAGED F /HR) = 0.20 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.21 TOTAL AREA(ACRES) = 121.44 PEAK FLOW RATE(CFS) = 213.36 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.91 HALFSTREET FLOOD WIDTH(FEET) = 42.11 FLOW VELOCITY(FEET /SEC.) = 6.66 DEPTH *VELOCITY(FT * FT /SEC.) = 6.05 LONGEST FLOWPATH FROM NODE 2.00 TO NODE 2.09 = 8873.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.09 TO NODE 2.09 IS CODE = 81 ---------------------------------------------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< ME* 610 MAINLINE TC(MIN) = 32.53 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.021 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 18.99 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 18.99 SUBAREA RUNOFF(CFS) = 32.88 EFFECTIVE AREA(ACRES) = 140.43 AREA - AVERAGED F /HR) = 0.19 en Seim- AREA-AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.19 Q��D TOTAL AREA(ACRES) = 140.43 PEAK FLOW RATE(CFS) = 232.03 (rkf-QM L" FLOW PROCESS FROM NODE 2.09 TO NODE 2.10 IS CODE = 62 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » » >( STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1122.76 DOWNSTREAM ELEVATION(FEET) = 1111.50 STREET LENGTH(FEET) = 1000.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 Page 9 SIERRA.RES DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = Z STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning'S FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0 .0150 Manning'S FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 232.03 ** *STREET FLOWING FULL * ** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.96 HALFSTREET FLOOD WIDTH(FEET) = 44.86 AVERAGE FLOW VELOCITY(FEET /SEC.) = 6.30 PRODUCT OF DEPTH &VELOCITY(FT * FT /SEC.) = 6.08 STREET FLOW TRAVEL TIME(MIN.) = 2.64 TC(MIN = 35.17 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 1 .929 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 EFFECTIVE AREA(ACRES) = 140.43 AREA - AVERAGED F /HR) = 0.19 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.19 TOTAL AREA(ACRES) = 140.43 PEAK FLOW RATE(CFS) = 232.03 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.96 HALFSTREET FLOOD WIDTH(FEET) = 44.86 FLOW VELOCITY(FEET /SEC.) = 6.30 DEPTH *VELOCITY(FT *FT /SEC.) = 6.08 LONGEST FLOWPATH FROM NODE 2.00 TO NODE 2.10 = 9873.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** -- FLOW - PROCESS - FROM - NODE -- 2.10 TO NODE 2.10 IS CODE - = - - 81 -- -------- ---- ---- ------ ---- -- - - - - -- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< A MAINLINE TC(MIN) = 35.17 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 1 .929 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 3.25 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 3.25 SUBAREA RUNOFF(CFS) = 5.36 EFFECTIVE AREA(ACRES) = 143.68 AREA - AVERAGED F /HR) = 0.18 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.19 TOTAL AREA(ACRES) = 143.68 PEAK FLOW RATE(CFS) = 232.03 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 143.68 TC(MIN = 35.17 EFFECTIVE AREA(ACRES) = 143.68 AREA - AVERAGED F /HR)= 0.18 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.19 PEAK FLOW RATE(CFS) = 232.03 ---- - -AL -��T -- ---------------------------------------- -- - - -- rug END OF RATIONAL METHOD ANALYSIS - SI �Q,�,q GQ�NG Page 10 KAISER.RES RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -2001 Advanced Engineering Software (aes) ver. 8.0 Release Date: 01/01/2001 License ID 1264 Analysis prepared by: RBF Consulting 14725 Alton Parkway Irvine, CA 92618 - Y-A ►SCR_ ►' MCAL _ _GE.t�► i2- C��1"� "! -_ _ _ _ _ - - - -_ _ Ot4611 S _l4jc by - 1 001 AR. FILE NAME: KAISER.DAT TIME /DATE OF STUDY: 14:41 09/04/2008 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL*-- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 0 .950 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.400 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.4000 SLOPE OF INTENSITY DURATION CURVE = 0.6000 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* *USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET- CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT - /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER- SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 1.01 IS CODE = 21 » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< Antp >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< A CIA INITIAL SUBAREA FLOW- LENGTH(FEET) = 400.00 ELEVATION DATA: UPSTREAM(FEET) = 1136.70 DOWNSTREAM(FEET) = 1134.80 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] * 0.20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 9 .736 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4 .169 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp AP SCS Tc Page 1 LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 2.50 0.98 0.10 32 9.74 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 9.16 TOTAL AREA(ACRES) = 2.50 PEAK FLOW RATE(CFS) = 9.16 FLOW PROCESS FROM NODE 1.01 TO NODE 1.02 IS CODE = 41 ---------------------------------------------------------------------------- » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< » » >USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) « «< ---------------------------------------------------------------------------- ELEVATION DATA: UPSTREAM(FEET) = 1133.00 DOWNSTREAM(FEET) = 1126.50 FLOW LENGTH(FEET) = 350.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.8 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 8.25 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 9.16 PIPE TRAVEL TIME(MIN.) = 0.71 TC(MIN.) = 10.44 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 1.02 = 750.00 FEET. FLOW PROCESS FROM NODE 1.02 TO NODE 1.03 IS CODE = 41 ---------------------------------------------------------------------------- » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< »» >USING USER- SPECIFIED PIPESIZE (EXISTING ELEMENT) « «< ---------------------------------------------------------------------------- ELEVATION DATA: UPSTREAM(FEET) = 1126.50 DOWNSTREAM(FEET) = 1123.80 FLOW LENGTH(FEET) = 150.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 8.9 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 8.07 GIVEN PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 9.16 PIPE TRAVEL TIME(MIN.) = 0.31 TC(MIN.) = 10.75 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 1.03 = 900.00 FEET. FLOW PROCESS FROM NODE 1.03 TO NODE 1.03 IS CODE = 1 ---------------------------------------------------------------------------- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.75 RAINFALL INTENSITY(INCH /HR) = 3.93 AREA - AVERAGED Fm(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 2.50 TOTAL STREAM AREA(ACRES) = 2.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.16 FLOW PROCESS FROM NODE 1.04 TO NODE 1.03 IS CODE = 21 ---------------------------------------------------------------------------- RN OF- CONCENTRATION < >>USE TIME SUBAREA<< AW COLB INITIAL SUBAREA FLOW- LENGTH(FEET) = 900.00 ELEVATION DATA: UPSTREAM(FEET) = 1135.00 DOWNSTREAM(FEET) = 1131.00 TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 Page 2 KAISER.RES SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 13.646 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.404 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 8.70 0.98 0.10 32 13.65 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 25.89 TOTAL AREA(ACRES) = 8.70 PEAK FLOW RATE(CFS) = 25.89 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.03 TO NODE 1.03 IS CODE = 1 ---------------------------------------------------------------------------- » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< - - ------------------------------ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.65 RAINFALL INTENSITY(INCH /HR) = 3.40 AREA - AVERAGED FM(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 8.70 TOTAL STREAM AREA(ACRES) = 8.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 25.89 ** CONFLUENCE DATA ** STREAM Q TC Intensit FP(FM) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 9.16 10.75 3.927 0.98( 0.10) 0.10 2.5 1.00 2 25.89 13.65 3.404 0.98( 0.10) 0.10 8.7 1.04 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q TC Intensity FP(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 32.79 10.75 3.927 0.98( 0.10) 0.10 9.4 1.00 2 33.80 13.65 3.404 0.98( 0.10) 0.10 11.2 1.04 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 33.80 TC(MIN.) = 13.65 EFFECTIVE AREA(ACRES) = 11.20 AREA - AVERAGED FM(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 11.20 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 1.03 = 900.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.03 TO NODE 9.00 IS CODE = 41 ---------------------------------------------------------------------------- » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< » » >USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) « «< ---------------------------------------------------------------------------- ELEVATION DATA: UPSTREAM(FEET) = 1123.80 DOWNSTREAM(FEET) = 1118.00 FLOW LENGTH(FEET) = 600.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 21.9 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 8.80 GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 33.80 PIPE TRAVEL TIME(MIN.) = 1.14 TC(MIN.) = 14.78 Page 3 KAISER.RES LONGEST FLOWPATH FROM NODE 1.00 TO NODE 9.00 = 1500.00 FEET. FLOW PROCESS FROM NODE 9.00 TO NODE 9.00 IS CODE = 1 ---------------------------------------------------------------------------- » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< -------------------------------------- TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.78 RAINFALL INTENSITY(INCH /HR) = 3.24 AREA - AVERAGED F /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 11.20 TOTAL STREAM AREA(ACRES) = 11.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 33.80 FLOW PROCESS FROM NODE 1.05 TO NODE 9.00 IS CODE = 21 ---------------------------------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< � >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ANA ------------------------------------------------------------------ INITIAL SUBAREA FLOW- LENGTH(FEET) = 1000.00 ELEVATION DATA: UPSTREAM(FEET) = 1135.00 DOWNSTREAM(FEET) = 1130.00 TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] *0.20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 13.902 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3 .366 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 1.70 0.98 0.10 32 13.90 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 5.00 TOTAL AREA(ACRES) = 1.70 PEAK FLOW RATE(CFS) = 5.00 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 9.00 TO NODE 9.00 IS CODE = 1 ---------------------------------------------------------------------------- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< - ----------------------------------------- - - - - -- - TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.90 RAINFALL INTENSITY(INCH /HR) = 3.37 AREA - AVERAGED F /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 1.70 TOTAL STREAM AREA(ACRES) = 1.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.00 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 9.00 IS CODE = 21 ---------------------------------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< C 2 >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW- LENGTH(FEET) - 700.00 ELEVATION DATA: UPSTREAM(FEET) = 1139.00 DOWNSTREAM(FEET) = 1124.00 Page 4 KAISER.RES TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 10 .669 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3 .946 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) CONDOMINIUMS A 3.80 0.98 0.35 32 10.67 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.35 SUBAREA RUNOFF(CFS) = 12.33 TOTAL AREA(ACRES) = 3.80 PEAK FLOW RATE(CFS) = 12.33 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 9.00 TO NODE 9.00 IS CODE = 1 ---------------------------------------------------------------------------- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< - - ---------------------------------- TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 10.67 RAINFALL INTENSITY(INCH /HR) = 3.95 AREA - AVERAGED F /HR) = 0.34 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.35 EFFECTIVE STREAM AREA(ACRES) = 3.80 TOTAL STREAM AREA(ACRES) = 3.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 12.33 ** CONFLUENCE DATA ** STREAM Q TC Intensit Fp(FM) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR� (INCH /HR) (ACRES) NODE 1 32.79 11.89 3.697 0.98( 0.10) 0.10 9.4 1.00 1 33.80 14.78 3.245 0.98( 0.10) 0.10 11.2 1.04 2 5.00 13.90 3.366 0.98( 0.10) 0.10 1.7 1.05 3 12.33 10.67 3.946 0.98( 0.34) 0.35 3.8 2.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q TC Intensit Fp(FM) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 48.30 10.67 3.946 0.98( 0.17) 0.17 13.5 2.00 2 48.98 11.89 3.697 0.98( 0.16) 0.17 14.6 1.00 3 48.84 13.90 3.366 0.98( 0.15) 0.16 16.1 1.05 4 48.55 14.78 3.245 0.98( 0.15) 0.16 16.7 1.04 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 48.98 TC(MIN.) = 11.89 EFFECTIVE AREA(ACRES) = 14.61 AREA - AVERAGED F /HR) = 0.16 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.17 TOTAL AREA(ACRES) = 16.70 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 9.00 = 1500.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 9.00 TO NODE 9.01 IS CODE = 41 ---------------------------------------------------------------------------- » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< »» >USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 1118.00 DOWNSTREAM(FEET) = 1116.00 Page 5 KAISER.RES FLOW LENGTH(FEET) = 500.00 MANNING'S N = 0.013 ASSUME FULL - FLOWING PIPELINE PIPE -FLOW VELOCITY(FEET /SEC.) = 6.93 PIPE FLOW VELOCITY = (TOTAL FLOW) /(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 48.98 PIPE TRAVEL TIME(MIN.) = 1.20 TC(MIN.) = 13.10 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 9.01 = 2000.00 FEET. FLOW PROCESS FROM NODE 9.01 TO NODE 9.01 IS CODE = 1 ---------------------------------------------------------------------------- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.10 RAINFALL INTENSITY(INCH /HR) = 3.49 AREA - AVERAGED FM(INCH /HR) = 0.16 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.17 EFFECTIVE STREAM AREA(ACRES) = 14.61 TOTAL STREAM AREA(ACRES) = 16.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 48.98 FLOW PROCESS FROM NODE 3.00 TO NODE 9.01 IS CODE = 21 ---------------------------------------------------------------------------- » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< Awe G3 INITIAL SUBAREA FLOW- LENGTH(FEET) = 470.00 ELEVATION DATA: UPSTREAM(FEET) = 1125.00 DOWNSTREAM(FEET) = 1123.00 TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 10.615 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.958 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 0.60 0.98 0.10 32 10.62 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 2.08 TOTAL AREA(ACRES) = 0.60 PEAK FLOW RATE(CFS) = 2.08 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 9.01 TO NODE 9.01 IS CODE = 1 ---------------------------------------------------------------------------- »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES« «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 10.62 RAINFALL INTENSITY(INCH /HR) = 3.96 AREA - AVERAGED FM(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 0.60 TOTAL STREAM AREA(ACRES) = 0.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.08 Page 6 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 9.01 TO NODE 9.01 IS CODE = 10 ---------------------------------------------------------------------------- -- » » >MAIN_ STREAM MEMORY - COPIED - ONTO - MEMORY - BANK - #- 1 - < << << -------- - - - - -- ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 4.00 TO NODE 4.01 IS CODE = 21 ---------------------------------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< �}� C4A >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« ----------------------------------- INITIAL SUBAREA FLOW- LENGTH(FEET) = 370.00 ELEVATION DATA: UPSTREAM(FEET) = 1119.00 DOWNSTREAM(FEET) = 1114.50 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 7.819 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.755 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 2.50 0.98 0.10 32 7.82 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 10.48 TOTAL AREA(ACRES) = 2.50 PEAK FLOW RATE(CFS) = 10.48 FLOW PROCESS FROM NODE 4.01 TO NODE 4.02 IS CODE = 41 ---------------------------------------------------------------------------- »» >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » » >USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) « «< - ----------------------------------------- ELEVATION DATA: UPSTREAM(FEET) = 1123.40 DOWNSTREAM(FEET) = 1122.50 FLOW LENGTH(FEET) = 90.00 MANNING'S N = 0.010 Page 7 KAISER.RES ** CONFLUENCE DATA ** ! C i STREAM Q TC Intensity FP(FM) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 48.30 11.89 3.698 0.98( 0.17) 0.17 13.5 2.00 1 48.98 13.10 3.489 0.98( 0.16) 0.17 14.6 1.00 1 48.84 15.11 3.203 0.98( 0.15) 0.16 16.1 1.05 1 48.55 16.00 3.095 0.98( 0.15) 0.16 16.7 1.04 2 2.08 10.62 3.958 0.98( 0.10) 0.10 0.6 3.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensit Fp(FM) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 48.38 10.62 3.958 0.97( 0.16) 0.17 12.7 3.00 2 50.24 11.89 3.698 0.98( 0.16) 0.17 14.1 2.00 3 50.81 13.10 3.489 0.98( 0.16) 0.16 15.2 1.00 4 50.52 15.11 3.203 0.98( 0.15) 0.16 16.7 1.05 5 50.16 16.00 3.095 0.98( 0.15) 0.15 17.3 1.04 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 50.81 TC(MIN.) = 13.10 EFFECTIVE AREA(ACRES) = 15.21 AREA - AVERAGED FM(INCH /HR) = 0.16 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.16 TOTAL AREA(ACRES) = 17.30 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 9.01 = 2000.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 9.01 TO NODE 9.01 IS CODE = 10 ---------------------------------------------------------------------------- -- » » >MAIN_ STREAM MEMORY - COPIED - ONTO - MEMORY - BANK - #- 1 - < << << -------- - - - - -- ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 4.00 TO NODE 4.01 IS CODE = 21 ---------------------------------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< �}� C4A >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« ----------------------------------- INITIAL SUBAREA FLOW- LENGTH(FEET) = 370.00 ELEVATION DATA: UPSTREAM(FEET) = 1119.00 DOWNSTREAM(FEET) = 1114.50 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 7.819 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.755 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 2.50 0.98 0.10 32 7.82 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 10.48 TOTAL AREA(ACRES) = 2.50 PEAK FLOW RATE(CFS) = 10.48 FLOW PROCESS FROM NODE 4.01 TO NODE 4.02 IS CODE = 41 ---------------------------------------------------------------------------- »» >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » » >USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) « «< - ----------------------------------------- ELEVATION DATA: UPSTREAM(FEET) = 1123.40 DOWNSTREAM(FEET) = 1122.50 FLOW LENGTH(FEET) = 90.00 MANNING'S N = 0.010 Page 7 KAISER.RES ASSUME FULL - FLOWING PIPELINE PIPE -FLOW VELOCITY(FEET /SEC = 19.21 PIPE FLOW VELOCITY = (TOTAL FLOW) /(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 10.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 10.48 PIPE TRAVEL TIME(MIN.) = 0.08 TC(MIN.) = 7.90 LONGEST FLOWPATH FROM NODE 4.00 TO NODE 4. = 460 .00 FEET. FLOW PROCESS FROM NODE 4.02 TO NODE 4.02 IS CODE = 1 ---------------------------------------------------------------------------- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< - - - -------------------------------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.90 RAINFALL INTENSITY(INCH /HR) = 4.73 AREA - AVERAGED F /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 2.50 TOTAL STREAM AREA(ACRES) = 2.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.48 FLOW PROCESS FROM NODE 4.03 TO NODE 4.02 IS CODE = 21 ---------------------------------------------------------------------------- >>USE OF- CONC < SUBAREA<< /4(?k� G4$ INITIAL SUBAREA FLOW- LENGTH(FEET) 950.00 ELEVATION DATA: UPSTREAM(FEET) = 1135.50 DOWNSTREAM(FEET) = 1122.50 TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 11 .136 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3 .846 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 2.90 0.98 0.10 32 11.14 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 9.78 TOTAL AREA(ACRES) = 2.90 PEAK FLOW RATE(CFS) = 9.78 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 4.02 TO NODE 4.02 IS CODE = 1 ---------------------------------------------------------------------------- »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< ------------------------------------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 11.14 RAINFALL INTENSITY(INCH /HR) = 3.85 AREA - AVERAGED F /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 2.90 TOTAL STREAM AREA(ACRES) = 2.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.78 ** CONFLUENCE DATA ** Page 8 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 4.02 TO NODE 9.01 IS CODE = 11 ---------------------------------------------------------------------------- » »> CONFLUENCE MEMORY BANK # 1 WITH THE MAIN - STREAM MEMORY « «< ** MAIN STREAM CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(FM) NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) 1 19.05 7.90 4.726 0.97( 0.10) 2 18.27 11.14 3.846 0.98( 0.10) LONGEST FLOWPATH FROM NODE 4.03 TO NODE ** MEMORY BANK # 1 CONFLUENCE DATA STREAM Q NUMBER (CFS) 1 48.38 2 50.24 3 50.81 4 50.52 5 50.16 LONGEST FLOWPATI TC Intensity (MIN.) (INCH /HR) 10.62 3.958 11.89 3.698 13.10 3.489 15.11 3.203 16.00 3.095 i FROM NODE Fp(FM) (INCH /HR) 0.97( 0.16) 0.98( 0.16) 0.98( 0.16) 0.98( 0.15) 0.98( 0.15) 1.00 TO NODE ** PEAK FLOW RATE TABLE ** Ap Ae HEADWATER (ACRES) NODE 0.10 4.6 4.00 0.10 5.4 4.03 9.01 = 950 .00 FEET. Ap Ae HEADWATER (ACRES) NODE 0.17 12.7 3.00 0.17 14.1 2.00 0.16 15.2 1.00 0.16 16.7 1.05 0.15 17.3 1.04 9.01 = 2000.00 FEET. STREAM Q TC Intensit KAISER.RES Ap Ae HEADWATER Aoft STREAM Q TC Intensity Fp(FM) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) 0.15 (ACRES) NODE 1 10.48 7.90 4.726 0.98( 0.10) 0.10 2.5 4.00 2 9.78 11.14 3.846 0.97( 0.10) 0.10 2.9 4.03 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO 0.15 CONFLUENCE FORMULA USED FOR 2 STREAMS. 5 67.34 13.10 3.489 0.98( 0.14) 0.15 ** PEAK FLOW RATE TABLE *° 6 65.65 15.11 3.203 0.98( 0.14) 0.14 STREAM Q TC Intensity Fp(FM) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) 22.70 (ACRES) NODE 1 19.05 7.90 4.726 0.97( 0.10) 0.10 4.6 4.00 2 18.27 11.14 3.846 0.98( 0.10) 0.10 5.4 4.03 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.15 TOTAL AREA(ACRES) = PEAK FLOW RATE(CFS) = 19.05 TC(MIN.) = 7.90 LONGEST FLOWPATH FROM EFFECTIVE AREA(ACRES) = 4.56 AREA - AVERAGED F /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 5.40 LONGEST FLOWPATH FROM NODE 4.03 TO NODE 4. 02 = 950 .00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 4.02 TO NODE 9.01 IS CODE = 11 ---------------------------------------------------------------------------- » »> CONFLUENCE MEMORY BANK # 1 WITH THE MAIN - STREAM MEMORY « «< ** MAIN STREAM CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(FM) NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) 1 19.05 7.90 4.726 0.97( 0.10) 2 18.27 11.14 3.846 0.98( 0.10) LONGEST FLOWPATH FROM NODE 4.03 TO NODE ** MEMORY BANK # 1 CONFLUENCE DATA STREAM Q NUMBER (CFS) 1 48.38 2 50.24 3 50.81 4 50.52 5 50.16 LONGEST FLOWPATI TC Intensity (MIN.) (INCH /HR) 10.62 3.958 11.89 3.698 13.10 3.489 15.11 3.203 16.00 3.095 i FROM NODE Fp(FM) (INCH /HR) 0.97( 0.16) 0.98( 0.16) 0.98( 0.16) 0.98( 0.15) 0.98( 0.15) 1.00 TO NODE ** PEAK FLOW RATE TABLE ** Ap Ae HEADWATER (ACRES) NODE 0.10 4.6 4.00 0.10 5.4 4.03 9.01 = 950 .00 FEET. Ap Ae HEADWATER (ACRES) NODE 0.17 12.7 3.00 0.17 14.1 2.00 0.16 15.2 1.00 0.16 16.7 1.05 0.15 17.3 1.04 9.01 = 2000.00 FEET. STREAM Q TC Intensit Fp(FM) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR� (INCH /HR) (ACRES) NODE 1 62.33 7.90 4.726 0.97( 0.14) 0.15 14.0 4.00 2 66.78 10.62 3.958 0.97( 0.14) 0.15 17.9 3.00 3 67.41 11.14 3.846 0.97( 0.14) 0.15 18.6 4.03 4 67.79 11.89 3.698 0.98( 0.15) 0.15 19.5 2.00 5 67.34 13.10 3.489 0.98( 0.14) 0.15 20.6 1.00 6 65.65 15.11 3.203 0.98( 0.14) 0.14 22.1 1.05 7 64.77 16.00 3.095 0.98( 0.14) 0.14 22.7 1.04 TOTAL AREA(ACRES) = 22.70 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 67.79 TC(MIN.) = 11.889 EFFECTIVE AREA(ACRES) = 19.50 AREA - AVERAGED F /HR) = 0.15 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.15 TOTAL AREA(ACRES) = 22.70 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 9.01 = 2000.00 FEET. Page 9 KAISER.RES D A FLOW PROCESS FROM NODE 9.01 TO NODE 9.02 IS CODE = 41 ---------------------------------------------------------------------------- »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««< »» >USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) « «< ---------------------------------------------------------------------------- ELEVATION DATA: UPSTREAM(FEET) = 1116.00 DOWNSTREAM(FEET) = 1115.30 FLOW LENGTH(FEET) = 230.00 MANNING'S N = 0.013 ASSUME FULL - FLOWING PIPELINE PIPE -FLOW VELOCITY(FEET /SEC.) = 7.05 PIPE FLOW VELOCITY = (TOTAL FLOW) /(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 67.79 PIPE TRAVEL TIME(MIN.) = 0.54 TC(MIN.) = 12.43 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 9.02 = 2230.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 9.02 TO NODE 9.02 IS CODE = 1 ---------------------------------------------------------------------------- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< - - -------------------------------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 12.43 RAINFALL INTENSITY(INCH /HR) = 3.60 AREA - AVERAGED F /HR) = 0.15 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.15 EFFECTIVE STREAM AREA(ACRES) = 19.50 TOTAL STREAM AREA(ACRES) = 22.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 67.79 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 5.00 TO NODE 5.01 IS CODE = 21 ---------------------------------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< � I C >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« CS ----------------------------- - - - - -- -------------------------------------- INITIAL SUBAREA FLOW- LENGTH(FEET) 940.00 ELEVATION DATA: UPSTREAM(FEET) = 1139.50 DOWNSTREAM(FEET) = 1130.50 TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 11.910 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3 .694 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 3.60 0.98 0.10 32 11.91 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 11.65 TOTAL AREA(ACRES) = 3.60 PEAK FLOW RATE(CFS) = 11.65 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 5.01 TO NODE 9.02 IS CODE = 41 ---------------------------------------------------------------------------- » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< » »>USING USER- SPECIFIED PIPESIZE (EXISTING ELEMENT) « «< ---------------------------------------------------------------- ELEVATION DATA: UPSTREAM(FEET) = 1121.10 DOWNSTREAM(FEET) = 1115.30 FLOW LENGTH(FEET) = 480.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 11.9 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 7.49 Page 10 KAISER.RES GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 11.65 PIPE TRAVEL TIME(MIN.) = 1.07 TC(MIN.) = 12.98 LONGEST FLOWPATH FROM NODE 5.00 TO NODE 9.02 = 1420.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 9.02 TO NODE 9.02 IS CODE = 81 -------------------------------------------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< AWA C56 MAINLINE TC(MIN) = 12.98 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.508 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 3.50 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 3.50 SUBAREA RUNOFF(CFS) = 10.74 EFFECTIVE AREA(ACRES) = 7.10 AREA - AVERAGED F /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 7.10 PEAK FLOW RATE(CFS) = 21.79 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 9.02 TO NODE 9.02 IS CODE = 1 ---------------------------------------------------------------------------- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< ---------------------------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 12.98 RAINFALL INTENSITY(INCH /HR) = 3.51 AREA- AVERAGED F /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 7.10 TOTAL STREAM AREA(ACRES) = 7.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 21.79 ** CONFLUENCE DATA ** STREAM Q TC Intensity FP(FM) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 62.33 8.49 4.526 0.97( 0.14) 0.15 14.0 4.00 1 66.78 11.17 3.839 0.97( 0.14) 0.15 17.9 3.00 1 67.41 11.68 3.737 0.97( 0.14) 0.15 18.6 4.03 1 67.79 12.43 3.600 0.98( 0.15) 0.15 19.5 2.00 1 67.34 13.64 3.404 0.98( 0.14) 0.15 20.6 1.00 1 65.65 15.67 3.133 0.98( 0.14) 0.14 22.1 1.05 1 64.77 16.57 3.030 0.98( 0.14) 0.14 22.7 1.04 2 21.79 12.98 3.508 0.98( 0.10) 0.10 7.1 5.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensit Fp(FM) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR� (INCH /HR) (ACRES) NODE 1 80.84 8.49 4.526 0.98( 0.13) 0.13 18.6 4.00 2 87.35 11.17 3.839 0.98( 0.13) 0.14 24.0 3.00 3 88.34 11.68 3.737 0.98( 0.13) 0.14 25.0 4.03 4 89.22 12.43 3.600 0.98( 0.13) 0.14 26.3 2.00 5 89.38 12.98 3.508 0.98( 0.13) 0.14 27.1 5.00 Page 11 KAISER.RES 6 88.47 13.64 3.404 0.98( 0.13) 0.13 27.7 1.00 7 85.05 15.67 3.133 0.98( 0.13) 0.13 29.2 1.05 8 83.51 16.57 3.030 0.98( 0.13) 0.13 29.8 1.04 A COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 89.38 TC(MIN.) = 12.98 EFFECTIVE AREA(ACRES) = 27.10 AREA - AVERAGED F /HR) = 0.13 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.14 TOTAL AREA(ACRES) = 29.80 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 9.02 = 2230.00 FEET. FLOW PROCESS FROM NODE 9.02 TO NODE 9.03 IS CODE = 41 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< » » >USING USER- SPECIFIED PIPESIZE (EXISTING ELEMENT)« «< ELEVATION DATA: UPSTREAM(FEET) = 1115.30 DOWNSTREAM(FEET) = 1114.00 FLOW LENGTH(FEET) = 410.00 MANNING'S N = 0 .013 ASSUME FULL - FLOWING PIPELINE PIPE -FLOW VELOCITY(FEET /SEC.) = 9.29 PIPE FLOW VELOCITY = (TOTAL FLOW) /(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 89.38 PIPE TRAVEL TIME(MIN.) = 0.74 TC(MIN.) = 13.71 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 9.03 = 2640.00 FEET. FLOW PROCESS FROM NODE 9.03 TO NODE 9.03 IS CODE = 1 ---------------------------------------------------------------------------- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.71 RAINFALL INTENSITY(INCH /HR) = 3.39 AREA - AVERAGED F /HR) = 0.13 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.14 EFFECTIVE STREAM AREA(ACRES) = 27.10 TOTAL STREAM AREA(ACRES) = 29.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 89.38 FLOW PROCESS FROM NODE 6.00 TO NODE 6.01 IS CODE = 21 ---------------------------------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< .,� C � A >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< �1�JCJ�t INITIAL SUBAREA FLOW- LENGTH(FEET) = 700.00 ELEVATION DATA: UPSTREAM(FEET) = 1135.50 DOWNSTREAM(FEET) = 1123.00 TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 9 .344 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.273 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH /HR) COMMERCIAL A 1.20 0.98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 4.51 Ap SCS TC (DECIMAL) CN (MIN.) 0.10 32 9.34 mm TOTAL AREA(ACRES) = 1.20 PEAK FLOW RATE(CFS) _ Page 12 4.51 KAISER.RES FLOW PROCESS FROM NODE 6.01 TO NODE 9.03 IS CODE = 62 ---------------------------------------------------------------------------- » »> COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »>( STREET TABLE SECTION # 1 USED) ««< - - -------------------------------------------------- UPSTREAM ELEVATION(FEET) = 1123.00 DOWNSTREAM ELEVATION(FEET) = 1122.00 STREET LENGTH(FEET) = 380.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning'S FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning'S FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.51 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.40 HALFSTREET FLOOD WIDTH(FEET) = 13.16 AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.29 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 0.51 STREET FLOW TRAVEL TIME(MIN.) = 4.89 TC(MIN.) = 14.24 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3 .319 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 EFFECTIVE AREA(ACRES) = 1.20 AREA - AVERAGED F /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 1.20 PEAK FLOW RATE(CFS) = 4.51 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.40 HALFSTREET FLOOD WIDTH(FEET) = 13.16 FLOW VELOCITY(FEET /SEC.) = 1.29 DEPTH *VELOCITY(FT *FT /SEC.) = 0.51 LONGEST FLOWPATH FROM NODE 6.00 TO NODE 9.03 = 1080.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 9.03 TO NODE 9.03 IS CODE = 81 --------------------------------------------------------------�------♦--_-- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< A D V�• Co D f 5 o MAINLINE TC(MIN) = 14.24 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3 .319 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 3.80 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 3.80 SUBAREA RUNOFF(CFS) = 11.02 EFFECTIVE AREA(ACRES) = 5.00 AREA - AVERAGED F /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 5.00 PEAK FLOW RATE(CFS) = 14.50 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 9.03 TO NODE 9.03 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< » >>>AND COMPUTE VARIOUS CONFLUENCED STREAM- VALUES < << < < ---------------- _______________________________ Page 13 KAISER.RES TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 14.24 RAINFALL INTENSITY(INCH /HR) = 3.32 AREA - AVERAGED FM(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 5.00 TOTAL STREAM AREA(ACRES) = 5.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 14.50 ** CONFLUENCE DATA ** STREAM Q TC Intensit Fp(FM) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 80.84 9.30 4.284 0.98( 0.13) 0.13 18.6 4.00 1 87.35 11.92 3.692 0.98( 0.13) 0.14 24.0 3.00 1 88.34 12.43 3.601 0.98( 0.13) 0.14 25.0 4.03 1 89.22 13.17 3.477 0.98( 0.13) 0.14 26.3 2.00 1 89.38 13.71 3.394 0.98( 0.13) 0.14 27.1 5.00 1 88.47 14.39 3.298 0.98( 0.13) 0.13 27.7 1.00 1 85.05 16.44 3.044 0.98( 0.13) 0.13 29.2 1.05 1 83.51 17.35 2.947 0.98( 0.13) 0.13 29.8 1.04 2 14.50 14.24 3.319 0.98( 0.10) 0.10 5.0 6.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q TC Intensity Fp(FM) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 93.15 9.30 4.284 0.98( 0.13) 0.13 21.9 4.00 2 100.89 11.92 3.692 0.97( 0.13) 0.13 28.2 3.00 3 102.10 12.43 3.601 0.98( 0.13) 0.13 29.4 4.03 4 103.30 13.17 3.477 0.98( 0.13) 0.13 30.9 2.00 5 103.67 13.71 3.394 0.98( 0.13) 0.13 31.9 5.00 6 103.17 14.24 3.319 0.98( 0.13) 0.13 32.6 6.00 7 102.87 14.39 3.298 0.98( 0.13) 0.13 32.7 1.00 8 98.31 16.44 3.044 0.98( 0.12) 0.13 34.2 1.05 9 96.34 17.35 2.947 0.98( 0.12) 0.13 34.8 1.04 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 103.67 TC(MIN.) = 13.71 EFFECTIVE AREA(ACRES) = 31.91 AREA - AVERAGED FM(INCH /HR) = 0.13 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.13 TOTAL AREA(ACRES) = 34.80 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 9.03 = 2640.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 9.03 TO NODE 9.04 IS CODE = 41 ---------------------------------------------------------------------------- » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< » » >USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) « «< - --------------- ELEVATION DATA: UPSTREAM(FEET) = 1114.00 DOWNSTREAM(FEET) = 1113.60 FLOW LENGTH(FEET) = 200.00 MANNING'S N = 0.013 ASSUME FULL - FLOWING PIPELINE PIPE -FLOW VELOCITY(FEET /SEC.) = 10.78 PIPE FLOW VELOCITY = (TOTAL FLOW) /(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 103.67 PIPE TRAVEL TIME(MIN.) = 0.31 TC(MIN.) = 14.02 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 9.04 = 2840.00 FEET. Page 14 KAISER.RES FLOW PROCESS FROM NODE 9.04 TO NODE 9.04 IS CODE = 1 ---------------------------------------------------------------------------- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< --------------------------------------------------------- - - - - -- - -- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.02 RAINFALL INTENSITY(INCH /HR) = 3.35 AREA - AVERAGED Fm(INCH /HR) = 0.13 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.13 EFFECTIVE STREAM AREA(ACRES) = 31.91 TOTAL STREAM AREA(ACRES) = 34.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 103.67 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 7.00 TO NODE 9.04 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD N L NOMOGRAPH A FOR Y INITIAL < >>USEIM SUBAREA<< AMA C INITIAL SUBAREA FLOW- LENGTH(FEET) 300.00 ELEVATION DATA: UPSTREAM(FEET) = 1125.00 DOWNSTREAM(FEET) = 1122.50 TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 7 .755 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.778 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 1.00 0.98 0.10 32 7.75 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 4.21 TOTAL AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) = 4.21 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 9.04 TO NODE 9.04 IS CODE = 1 ---------------------------------------------------------------------------- »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< --------------------------------------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 7.75 RAINFALL INTENSITY(INCH /HR) = 4.78 AREA - AVERAGED F /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 1.00 TOTAL STREAM AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.21 ** CONFLUENCE DATA ** STREAM Q TC Intensit Fp(FM) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR � (INCH /HR) (ACRES) NODE 1 93.15 9.65 4.192 0.98( 0.13) 0.13 21.9 4.00 1 100.89 12.24 3.634 0.97( 0.13) 0.13 28.2 3.00 1 102.10 12.74 3.547 0.98( 0.13) 0.13 29.4 4.03 1 103.30 13.48 3.429 0.98( 0.13) 0.13 30.9 2.00 1 103.67 14.02 3.349 0.98( 0.13) 0.13 31.9 5.00 1 103.17 14.55 3.276 0.98( 0.13) 0.13 32.6 6.00 Page 15 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 9.05 TO NODE 9.06 IS CODE = 41 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< »» >USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) « «< ELEVATION DATA: UPSTREAM(FEET) = 1112.50 DOWNSTREAM(FEET) = 1110.00 FLOW LENGTH(FEET) = 450.00 MANNING'S N = 0.013 ASSUME FULL - FLOWING PIPELINE PIPE -FLOW VELOCITY(FEET /SEC.) = 8.48 PIPE FLOW VELOCITY = (TOTAL FLOW) /(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 48.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 106.60 PIPE TRAVEL TIME(MIN.) = 0.88 TC(MIN.) = 15.10 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 9.06 = 3415.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** C, FLOW PROCESS FROM NODE 9.06 TO NODE 9.06 IS CODE = 1 Page 16 KAISER.RES 1 102.87 14.70 3.256 0.98( 0.13) 0.13 32.7 1.00 1 98.31 16.77 3.008 0.98( 0.12) 0.13 34.2 1.05 1 96.34 17.69 2.914 0.98( 0.12) 0.13 34.8 1.04 2 4.21 7.75 4.778 0.98( 0.10) 0.10 1.0 7.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q TC Intensity Fp(FM) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 89.90 7.75 4.778 0.98( 0.12) 0.13 18.6 7.00 2 96.83 9.65 4.192 0.98( 0.12) 0.13 22.9 4.00 3 104.08 12.24 3.634 0.97( 0.13) 0.13 29.2 3.00 4 105.21 12.74 3.547 0.98( 0.13) 0.13 30.4 4.03 5 106.29 13.48 3.429 0.98( 0.13) 0.13 31.9 2.00 6 106.60 14.02 3.349 0.98( 0.13) 0.13 32.9 5.00 7 106.03 14.55 3.276 0.98( 0.13) 0.13 33.6 6.00 8 105.71 14.70 3.256 0.98( 0.12) 0.13 33.7 1.00 9 100.93 16.77 3.008 0.98( 0.12) 0.13 35.2 1.05 10 98.87 17.69 2.914 0.98( 0.12) 0.13 35.8 1.04 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 106.60 TC(MIN.) = 14.02 EFFECTIVE AREA(ACRES) = 32.91 AREA - AVERAGED FM(INCH /HR) = 0.13 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.13 TOTAL AREA(ACRES) = 35.80 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 9.04 = 2840.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 9.04 TO NODE 9.05 IS CODE = 41 ---------------------------------------------------------------------------- » >>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< » » >USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) « «< ELEVATION DATA: UPSTREAM(FEET) = 1114.00 DOWNSTREAM(FEET) = 1112.50 FLOW LENGTH(FEET) = 125.00 MANNING'S N = 0.013 ASSUME FULL - FLOWING PIPELINE PIPE -FLOW VELOCITY(FEET /SEC.) = 11.08 PIPE FLOW VELOCITY = (TOTAL FLOW) /(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 106.60 PIPE TRAVEL TIME(MIN.) = 0.19 TC(MIN.) = 14.21 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 9.05 = 2965.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 9.05 TO NODE 9.06 IS CODE = 41 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< »» >USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) « «< ELEVATION DATA: UPSTREAM(FEET) = 1112.50 DOWNSTREAM(FEET) = 1110.00 FLOW LENGTH(FEET) = 450.00 MANNING'S N = 0.013 ASSUME FULL - FLOWING PIPELINE PIPE -FLOW VELOCITY(FEET /SEC.) = 8.48 PIPE FLOW VELOCITY = (TOTAL FLOW) /(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 48.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 106.60 PIPE TRAVEL TIME(MIN.) = 0.88 TC(MIN.) = 15.10 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 9.06 = 3415.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** C, FLOW PROCESS FROM NODE 9.06 TO NODE 9.06 IS CODE = 1 Page 16 KAISER.RES » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< ----------------------------------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 15.10 RAINFALL INTENSITY(INCH /HR) = 3.20 AREA - AVERAGED FM(INCH /HR) = 0.13 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.13 EFFECTIVE STREAM AREA(ACRES) = 32.91 TOTAL STREAM AREA(ACRES) = 35.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 106.60 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 8.00 TO NODE 9.06 IS CODE = 21 ---------------------------------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< w ^ p > >USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< O A vJcA ---------------------------------------------------------------------------- INITIAL SUBAREA FLOW- LENGTH(FEET) = 550.00 ELEVATION DATA: UPSTREAM(FEET) = 1122.00 DOWNSTREAM(FEET) = 1115.50 TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 9.215 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.308 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 2.00 0.98 0.10 32 9.22 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 j SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 7.58 TOTAL AREA(ACRES) = 2.00 PEAK FLOW RATE(CFS) = 7.58 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 9.06 TO NODE 9.06 IS CODE = 1 ---------------------------------------------------------------------------- »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< - - ------------------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 9.22 RAINFALL INTENSITY(INCH /HR) = 4.31 AREA - AVERAGED FM(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 2.00 TOTAL STREAM AREA(ACRES) = 2.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.58 ** CONFLUENCE DATA ** STREAM Q TC Intensity Fp(FM) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 89.90 8.75 4.445 0.98( 0.12) 0.13 18.6 7.00 1 96.83 10.63 3.954 0.98( 0.12) 0.13 22.9 4.00 1 104.08 13.31 3.455 0.97( 0.13) 0.13 29.2 3.00 1 105.21 13.83 3.377 0.98( 0.13) 0.13 30.4 4.03 1 106.29 14.56 3.275 0.98( 0.13) 0.13 31.9 2.00 1 106.60 15.10 3.204 0.98( 0.13) 0.13 32.9 5.00 1 1 106.03 105.71 15.62 15.78 3.139 3.120 0.98( 0.13) 0.98( 0.12) 0.13 0.13 33.6 33.7 6.00 1.00 Page 17 KAISER.RES 1 100.93 17.75 2.907 0.98( 0.12) 0.13 35.2 1.05 1 98.87 18.67 2.821 0.98( 0.12) 0.13 35.8 1.04 2 7.58 9.22 4.308 0.98( 0.10) 0.10 2.0 8.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q TC Intensity Fp(FM) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 97.33 8.75 4.445 0.97( 0.12) 0.12 20.5 7.00 2 99.20 9.22 4.308 0.98( 0.12) 0.12 21.7 8.00 3 103.78 10.63 3.954 0.98( 0.12) 0.13 24.9 4.00 4 110.12 13.31 3.455 0.97( 0.12) 0.13 31.2 3.00 5 111.11 13.83 3.377 0.98( 0.12) 0.13 32.4 4.03 6 112.01 14.56 3.275 0.98( 0.12) 0.13 33.9 2.00 7 112.19 15.10 3.204 0.98( 0.12) 0.13 34.9 5.00 8 111.51 15.62 3.139 0.98( 0.12) 0.13 35.6 6.00 9 111.15 15.78 3.120 0.98( 0.12) 0.13 35.7 1.00 10 105.98 17.75 2.907 0.98( 0.12) 0.13 37.2 1.05 11 103.77 18.67 2.821 0.98( 0.12)'0.13 37.8 1.04 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 112.19 TC(MIN.) = 15.10 EFFECTIVE AREA(ACRES) = 34.91 AREA - AVERAGED F /HR) = 0.12 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.13 TOTAL AREA(ACRES) = 37.80 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 9. = 3415 .00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 37.80 TC(MIN.) = 15.10 EFFECTIVE AREA(ACRES) = 34.91 AREA - AVERAGED F /HR)= 0.12 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.13 PEAK FLOW RATE(CFS) = 112.19 ** PEAK FLOW RATE TABLE ** STREAM Q TC Intensit Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR� (INCH /HR) (ACRES) NODE 1 97.33 8.75 4.445 0.97( 0.12) 0.12 20.5 7.00 2 99.20 9.22 4.308 0.98( 0.12) 0.12 21.7 8.00 3 103.78 10.63 3.954 0.98( 0.12) 0.13 24.9 4.00 4 110.12 13.31 3.455 0.97( 0.12) 0.13 31.2 3.00 5 111.11 13.83 3.377 0.98( 0.12) 0.13 32.4 4.03 6 112.01 14.56 3.275 0.98( 0.12) 0.13 33.9 2.00 7 112.19 15.10 3.204 0.98( 0.12) 0.13 34.9 5.00 8 111.51 15.62 3.139 0.98( 0.12) 0.13 35.6 6.00 9 111.15 15.78 3.120 0.98( 0.12) 0.13 35.7 1.00 10 105.98 17.75 2.907 0.98( 0.12) 0.13 37.2 1.05 11 103.77 18.67 2.821 0.98( 0.12) 0.13 37.8 1.04 --------------- END OF RATIONAL METHOD ANALYSIS Page 18 E. Appendix E — Hydraulics Calculations H APdata \10105573\Admin\ reports \Hydrology \KFMC_Hydrology.doc XI i i FILE: I10full48.wsw W S P G W- CIVILDESIGN Version 14.06 PAGE 1 Program Package serial Number: 1373 WATER SURFACE PROFILE LISTING Date 9 - 16 - 2008 Time: 2:57: 6 SIERRA AVENUE STORM DRAIN 48 INCH STORM DRAIN OUTLET TO I -10 CHANNEL e- ^e^GIt'y G krUL_^ - nc j VStN(„ Tap o(- T -tv GNANNEL Ars STAA'fffSG 416+1. Invert I Depth I water I Q I Vel Vel I Energ 1 Su ICritica11 ToplHeight /IBase wti INo Wth Station I Elev 1 (FT) I Elev I (CFS) I (FPS) Head I Grd. E �i.I Elev I Depth I Width IDia. -FTIor I.D.1 ZL IPrs /Pip L /Elem ICh Slope I I I I SF Ave] HF ISE DpthIFroude NlNorm DP I "N" I X -Fa111 ZR IType Ch 183.500 I 1106.300 I I 4.080 1110.380 I I 160.06 12.74 I 2.52 1112.90 I .00 I 3.67 I .00 I 4.000 I I .000 .00 I 0 .0 WALL EXIT 183.500 I 1106.300 I i 4.080 1110.380 I I 160.06 12.74 I 2.52 1112.90 I .00 I 3.67 I .00 I 4.000 I I .000 .00 I 1 .0 -I- 104.000 -I- .0064 -I- -I- -I- -I- -I- .0124 -I- 1.29 -I- 4.08 -I- .00 -I- 4.00 -I- .013 -I- .00 .00 1- PIPE 287.500 I 1106.970 I I 4.701 1111.671 I I 160.06 12.74 I 2.52 1114.19 I .00 I 3.67 I .00 I 4.000 I I .000 .00 I 1 .0 -I- 214.560 -I- .0078 -I- -I- -I- -I- -I- .0124 -I- 2.66 -I- 4.70 -I- .00 -I- 4.00 -I- .013 -I- .00 .00 1- PIPE 502.060 I 1108.650 I I 5.685 1114.335 I I 160.06 12.74 I 2.52 1116.85 I .00 I 3.67 I .00 I 4.000 I I .000 .00 I 1 .0 -I- JUNCT STR -I- .0660 -I- -I- -I- -I- -I- .0124 -I- .06 -I- 5.69 -I- .00 -I- -I- .013 -I- .00 .00 I- PIPE 507.060 I 1108.980 I I 5.418 1114.398 I I 160.05 12.74 I 2.52 1116.92 I .00 I 3.67 I .00 I 4.000 I I .000 .00 I 1 .0 37.280 .0075 .0124 .46 5.42 .00 4.00 .013 .00 .00 PIPE 544.340 i 1109.260 I I 5.601 1114.861 I I 160.05 12.74 I 2.52 1117.38 I .00 I 3.67 I .00 I 4.000 I I .000 .00 I 1 .0 -I- 7.760 -I- .0077 -I- -I- -I- -I- -I- .0124 -I- .10 -I- .00 -I- .00 -I- 4.00 -I- .013 -I- .00 .00 1- PIPE 552.100 I 1109.320 I I 5.816 1115.136 I I 160.05 12.74 I 2.52 1117.66 I .00 I 3.67 I .00 I 4.000 I I .000 .00 I 1 .0 382.470 .0075 .0124 4.75 5.82 .00 4.00 .013 .00 .00 PIPE 934.570 I 1112.190 I I 7.695 I 1119.885 I 160.05 12.74 I 2.52 1122.40 I .00 I 3.67 I .00 I 4.000 I I .000 .00 I 1 .0 -I- JUNCT STR -I- .0500 -I- -I- -I- -I- -I- .0124 -I- .06 -I- 7.69 -I- .00 -I- -I- .013 -I- .00 .00 I- PIPE 939.570 I 1112.440 I I 7.507 I 1119.947 I 160.05 12.74 I 2.52 1122.47 I .00 I 3.67 I .00 I 4.000 I I .000 .00 I 1 .0 -I- 4.000 -I- .0050 -I- -I- -I- -I- -I- .0124 -I- .05 -I- 7.51 -I- .00 -I- 4.00 -I- .013 -I- .00 .00 1- PIPE U U U FILE: I10full48.wsw W S P G W- CIVILDESIGN Version 14.06 PAGE 2 Program Package serial Number: 1373 WATER SURFACE PROFILE LISTING Date 9 - 16 - 2008 Time: 2:57: 6 SIERRA AVENUE STORM DRAIN 48 INCH STORM DRAIN OUTLET TO I -10 CHANNEL Invert I Depth I water I Q I vel vel I Energ 1 Su ICriticalIFlow ToplHeight /IBase Wt1 INO wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd. E �i.I Elev I Depth I width IDia. -FTIor I.D.I ZL IPrs /Pip -I- L /Elem Ich -1- Slope I -I- I -I- -I- I I -I- -I- SF Ave1 -I- HF -I- ISE DpthIFroude -I- NINorm -I- Dp -I- I "N I X -I- -Fall) ZR -I IType Ch I 943.570 I 1112.460 I 7.536 I 1119.996 I 160.05 12.74 I 2.52 1122.52 I .00 I 3.67 I .00 I I 4.000 I .000 .00 I 1 .0 -I- JUNCT STR -I- .0810 -I- -I- -I- -I- -I- .0124 -I- .08 -I- 7.54 -I- .00 -I- -I- .013 -I- .00 .00 I- PIPE I 949.740 I 1112.960 I 7.113 1120.073 I I 160.05 12.74 I 2.52 1122.59 I .00 I 3.67 I .00 I I 4.000 I .000 .00 I 1 .0 -I- 50.410 -I- .0065 -I- -I- -I- -I- -I- .0124 -I- .63 -I- 7.11 -I- .00 -I- 4.00 -I- .013 -I- .00 .00 1- PIPE I 1000.150 I 1113.290 I 7.409 1120.699 I I 160.05 12.74 I 2.52 1123.22 I .00 I 3.67 I .00 I I 4.000 I .000 .00 I 1 .0 -I- 25.480 -I- .0067 -I- -I- -I- -I- -I- .0124 -I- .32 -I- .00 -I- .00 -I- 4.00 -I- .013 -I- .00 .00 1- PIPE I 1025.630 I 1113.460 I 7.817 I 1121.277 I 160.05 12.74 I 2.52 1123.80 I .00 I 3.67 I .00 I I 4.000 I .000 .00 I 1 .0 -I- 20.050 -I- .0067 -I- -I- -I- -I- -I- .0124 -I- .25 -I- 7.82 -i- .00 -I- 4.00 -I- .013 -I- .00 .00 1- PIPE I 1045.680 I 1113.594 I 7.932 1121.526 I I 160.05 12.74 I 2.52 1124.04 I .00 I 3.67 I .00 I I 4.000 I .000 .00 I 1 .0 -I- JUNCT STR -I- .0067 -I- -I- -I- -I- -I- .0124 -I- .02 -I- 7.93 -I- .00 -I- -I- .013 -I- .00 .00 I- PIPE I 1047.180 I 1113.604 I 7.941 I 1121.545 I 160.04 12.74 I 2.52 1124.06 I .00 I 3.67 I .00 I I 4.000 I .000 .00 I 1 .0 - 22.960 - .0067 - - - I - - - .0124 - I - .29 - 7.94 - I - .00 - 4.00 - .013 - .00 .00 1- PIPE I 1070.140 I 1113.757 I 8.073 I 1121.830 I 160.04 12.74 I 2.52 1124.35 I .00 I 3.67 I .00 I I 4.000 I .000 .00 I 1 .0 -I- 63.710 -I- .0067 -I- -I- -I- -I- -I- .0124 -I- .79 -I- .00 -I- .00 -I- 4.00 -I- .013 -I- .00 .00 1- PIPE I 1133.850 I 1114.181 I 8.702 I 1122.883 I 160.04 12.74 I 2.52 1125.40 I .00 I 3.67 I .00 I I 4.000 I .000 .00 I 1 .0 -I- JUNCT STR -I- .0761 -I- -I- -I- -I- -I- .0124 -I- .10 -I- 8.70 -I- .00 -I- -I- .013 -I- .00 .00 I- PIPE I 1141.850 I 1114.790 I 8.194 I 1122.984 I 160.02 12.73 I 2.52 1125.50 I .00 I 3.67 I .00 I I 4.000 I .000 .00 I 1 .0 -I- 673.100 -I- .0124 -I- -I- -I- -I- -I- .0124 -I- 8.35 -I- 8.19 -I- .00 -I- 3.28 -I- .013 -I- .00 .00 1- PIPE U U U FILE: I10full48.WsW W S P G W- CIVILDESIGN Version 14.06 PAGE 3 Program Package serial Number: 1373 WATER SURFACE PROFILE LISTING Date: 9 -16 -2008 Time: 2:57: 6 SIERRA AVENUE STORM DRAIN 48 INCH STORM DRAIN OUTLET TO I -10 CHANNEL Invert I Depth I Water I Q I Vel Vel I Energyy 1 Su er ICriticallFloW ToplHeight /IBase Wt1 INo Wth Station I Elev I (FT) 1 Elev l (CFS) I (FPS) Head I Grd.E1.I Elev I Depth I Width IDia. -FTIor I.D.1 ZL IPrs /Pip L /Elem ICh Slope I I I I -I SF Avel HF ISE DpthlFroude NINorm Dp I ° N ° I X -Fall) ZR IType Ch I I I I I I I I I I I I I 1814.950 1123.140 8.197 1131.337 160.02 12.73 2.52 1133.85 .00 3.67 .00 4.000 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- I- ]UNCT STR .0133 .0124 .02 8.20 .00 .013 .00 .00 PIPE I I I I I I I I I I I I I 1816.450 1123.160 8.196 1131.356 160.01 12.73 2.52 1133.87 .00 3.67 .00 4.000 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- 47.220 .0123 .0124 .59 8.20 .00 3.30 .013 .00 .00 PIPE I I I I I I I I I I I I I 1863.670 1123.740 8.202 1131.942 160.01 12.73 2.52 1134.46 .00 3.67 .00 4.000 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- I- 7UNCT STR .0313 .0124 .10 8.20 .00 .013 .00 .00 PIPE I I I I I I I I I I I I I 1871.670 1123.990 8.052 1132.042 160.00 12.73 2.52 1134.56 .00 3.67 .00 4.000 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- I- U U U Program Package Serlal Number: 1373 48IN SD FROM SUMP TO SIERRA Date 9- 5 -2008 T I me 10 21 45 F I ( e: sump48. WSW I No. I TYPE OPERATION STATION INV ELEV WATER LEVEL CHAN HT TYPE CHANNEL 'N' #PIER /PIP FLOW RATE VELOCITY TOP WIDTH CHAN WDTH PIER WIDTH .000 .000 (FT) (FT) (FT) (FT) , 000 .000 2. 547 (CFS) (FT /S) (FT) (FT) (FT) 1 11 SYSTEM OUTLET .000 1124.500 8.730 4.000 PIPE .013 1 71.000 5.650 .000 4.000 .000 I 21 REACH 345,000 1126. 200 7.873 4.000 PIPE .013 1 71,000 5.650 .000 4.000 .000 I 31 REACH 415, 000 1126. 550 7. 793 4.000 PIPE .013 1 71.000 5,650 , 000 4.000 000 1 41 HEADWORKS 1172, 830 1130, 500 5.694 4.000 PIPE .013 1 71,000 5.650 .000 4.000 .000 ZL ZR SUPEL RT B SUPEL LT B CRIT DPTH RADIUS /<PT RMKS (FT) (FT) (FT) (FT OR < ) 000 000 .000 .000 2.547 . 000 .000 000 , 000 .000 2. 547 45, 000 .000 000 .000 .000 2. 547 000 , 000 000 000 .000 2. 547 000 x rn D d S 0 x N i SYSTEM OUTLET FILE: sump48.WSW W S P G W- CIVILDESIGN Version 14.06 PAGE 1 Program Package Serial Number: 1373 WATER SURFACE PROFILE LISTING Date: 9- 5 -2008 Time:10:21:45 481N SD FROM SUMP TO SIERRA Invert I Depth I Water I Q I Vel vel I Energyy 1 Su er ICriticallFloW ToplHeight /IBase wtI INO Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.E1.I Elev I Depth 1 Width IDia. -FT1or I.D.1 ZL IPrs /Pip L /Elem ICh Slope I I I I -I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X -Fall) ZR IType Ch .000 I 1124.500 I I 8.730 1133.230 I I 71.00 5.65 I .50 1133.73 I .00 I 2.55 I .00 I I 4.000 -I- I .000 -I- .00 I 1 .0 1- -I- 345.000 -I- .0049 -I- -I- -I- -I- -I- .0024 .84 -I- -I- 8.73 -I- .00 -I- 2.48 I .013 I I .00 I .00 PIPE I 345.000 I 1126.200 I I 7.873 1134.073 I I 71.00 5.65 I .50 1134.57 I .00 I 2.55 .00 -I- 4.000 -I- .000 -I- .00 1 .0 1- -I- 70.000 -I- .0050 -I- -I- -I- -I- -I- .0024 .17 -I- -I- .00 -I- .00 2.46 .013 I .00 I .00 PIPE i 415.000 I 1126.550 I I 7.793 1134.343 I I 71.00 5.65 I .50 1134.84 I .00 I 2.55 I .00 I 4.000 -I- .000 -I- .00 1 .0 1- -I- 757.830 -I- .0052 -I- -I- -I- -I- -I- .0024 1.85 -I- -I- 7.79 -I- .00 -I- 2.43 .013 I I .00 I .00 PIPE I 1172.830 -I- I 1130.500 -I- I I 5.694 -I- 1136.194 -I- I I 71.00 -I- 5.65 -I- I .50 -I- 1136.69 I .00 -I- -I- I 2.55 -I- I .00 -I- 4.000 -I- .000 -I- .00 1 .0 I- f:L= !137.02 Program Package Serial Number: 1373 Date: 8 -25 -2008 Time: 2: 5:30 File:sierra48.WSW SIERRA AVENUE STORM DRAIN 48 INCH STORM DRAIN OUTLET TO I -10 CHANNEL C No, 7 TYPE OPERATION STATION INV ELEV WATER LEVEL CHAN HT TYPE CHANNEL 'N' #PIER /PIP FLOW RATE VELOCITY TOP WIDTH CHAN WDTH PIER WIDTH ZL ZR SUPEL RT B SUPEL LT B CRIT DPTH RADIUS /<PT RMKS (FT) (FT) (FT) (FT) (CFS) (FT /S) (FT) (FT) (FT) (FT) (FT) (FT) (FT OR < ) C 11 SYSTEM OUTLET 183. 500 1106, 300 5, 080 4, 000 PIPE 013 0 283, 111 22, 529 000 4. 000 000 000 000 000 000 3. 960 000 C 21 REACH 183. 500 1106, 300 5, 080 4. 000 PIPE 013 1 283, 111 22. 529 000 4, 000 000 000 000 000 000 3. 960 000 C 31 REACH 287. 500 1106, 970 8, 450 4, 000 PIPE 013 1 283, 111 22. 529 000 4, 000 000 000 000 000 000 3. 960 000 C 41 REACH 502. 060 1108, 650 15, 105 4, 000 PIPE 013 1 283, 111 22. 529 000 4, 000 000 000 000 000 000 3, 960 000 C 51 JUNCTION 507. 060 1108. 980 15, 648 4, 000 PIPE 013 1 276, 911 22. 036 000 4, 000 000 000 000 000 000 3. 957 000 C 61 REACH 544, 340 1109, 260 16, 753 4, 000 PIPE 013 1 276, 911 22. 036 000 4. 000 000 000 000 000 000 3. 957 39. 035 C 71 REACH 552. 100 1109, 320 17. 518 4. 000 PIPE 013 1 276, 911 22, 036 000 4, 000 000 000 000 000 000 3. 957 000 C 81 REACH 934, 570 1112. 190 28. 862 4. 000 PIPE 013 1 276, 911 22, 036 000 4, 000 000 000 000 000 000 3. 957 000 C 91 JUNCTION 939, 570 1112. 440 28, 798 3, 500 PIPE 013 1 276, 911 28. 782 000 3, 500 000 000 000 000 000 3, 490 000 C 101 REACH 943, 570 1112. 460 29, 081 3, 500 PIPE 013 1 276, 911 28, 782 000 3, 500 000 000 000 000 000 3, 490 000 C 117 JUNCTION 949, 740 1112. 960 29. 048 3. 500 PIPE 013 1 276, 911 28. 782 000 3, 500 000 000 000 000 000 3. 490 000 C 121 REACH 1000, 150 1113. 290 32, 537 3. 500 PIPE 013 1 276, 911 28. 782 000 3, 500 000 000 000 000 000 3, 490 59, 999 C 131 REACH 1025. 630 1113, 460 35, 634 3. 500 PIPE 013 1 276. 911 28, 782 000 3. 500 000 000 000 000 000 3. 490 000 C 141 REACH 1045. 680 1113. 594 37, 019 3. 500 PIPE 013 1 276, 911 28. 782 000 3, 500 000 000 000 000 000 3. 490 000 C 151 JUNCTION 1047. 180 1113, 604 37, 125 3, 500 PIPE 013 1 276, 901 28, 781 000 3, 500 000 000 000 000 000 3. 490 000 C 161 REACH 1070, 140 1113. 757 38, 711 3. 500 PIPE 013 1 276. 901 28. 781 000 3. 500 000 000 000 000 000 3. 490 150, 003 C 177 REACH 1133. 850 1114, 181 44, 450 3. 500 PIPE 013 1 276. 901 28 781 000 3, 500 000 000 000 000 000 3, 490 000 C 187 JUNCTION 1141. 850 1114, 790 49, 582 3, 500 PIPE 013 1 242, 701 25, 226 000 3, 500 000 000 000 000 000 3, 483 000 C 19l REACH 1814, 950 1123, 140 80. 401 3, 500 PIPE 013 1 242, 701 25, 226 000 3. 500 000 000 000 000 000 3. 483 000 C 201 JUNCTION 1816, 450 1123. 160 81, 367 3. 500 PIPE 013 1 237. 101 24,644 000 3, 500 000 000 000 000 000 3, 481 000 C 211 REACH 1863. 670 1123, 740 83, 410 3, 500 PIPE 013 1 237, 101 24, 644 000 3. 500 000 000 000 000 000 3, 481 000 C 221 JUNCTION 1871. 670 1123, 990 83, 957 3, 250 PIPE 013 1 234, 801 28 304 000 3, 250 000 000 000 000 000 3, 242 000 C 231 REACH 2392, 530 1131, 700 118, 368 3, 250 PIPE 013 1 234, 801 28, 304 000 3, 250 000 000 000 000 000 3. 242 000 C 241 JUNCTION 2400. 530 1131, 950 121. 199 3. 000 PIPE 013 1 202. 901 28. 705 000 3. 000 000 000 000 000 000 2, 994 000 C 251 REACH 2920. 670 1138, 400 162. 883 3. 000 PIPE 013 1 202. 901 28, 705 000 3. 000 000 000 000 000 000 2, 994 000 C 261 JUNCTION 2928. 670 1138. 650 163, 940 3, 000 PIPE 013 1 183. 601 25, 974 000 3, 000 000 000 000 000 000 2, 991 000 C 271 REACH 3695, 990 1149. 700 211. 033 3, 000 PIPE 013 1 183, 601 25, 974 000 3, 000 000 000 000 000 000 2. 991 000 1 281 JUNCTION 3701, 990 1150, 200 230, 034 3. 000 PIPE 013 1 . 001 1 000 000 3. 000 000 000 .000 000 000 . 010 000 FILE: sierra48.WSW W S P G W- CIVILDESIGN Version 14.06 PAGE 1 Program Package serial Number: 1373 WATER SURFACE PROFILE LISTING Date: 8 -25 -2008 Time: 2: 5:30 SIERRA AVENUE STORM DRAIN 48 INCH STORM DRAIN OUTLET TO I -10 CHANNEL Invert I Depth I Water I Q I vel vel I EnergyY 1 Super ICriticallFloW ToplHeight /IBase Wt1 INO Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.I Elev I_ Depth Depth I Width IDia. -FTIor I.D.I ZL IPrs /Pip L /Elem ICh Slope I I I I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X -Fall) ZR IType Ch 183.500 I I 1106.300 I 5.080 I 1111.380 I 283.11 22.53 I 7.88 1119.26 I .00 I 3.96 I .00 I I 4.000 I .000 .00 I 0 .0 WALL EXIT 183.500 I I 1106.300 I 5.080 1111.380 I I 283.11 22.53 I 7.88 1119.26 I .00 I 3.96 I .00 I I 4.000 I .000 .00 I 1 .0 -I- 104.000 -I- .0064 -I- -I- -I- -I- -I- .0388 -I- 4.04 -I- 5.08 -I- .00 -I- 4.00 -I- .013 -I- .00 .00 1- PIPE 287.500 I I 1106.970 I 8.450 1115.420 I I 283.11 22.53 I 7.88 1123.30 I .00 I 3.96 I .00 I I 4.000 I .000 .00 I 1 .0 -I- 214.560 -I- .0078 -I- -I- -I- -I- -I- .0388 -I- 8.33 -I- 8.45 -I- .00 -I- 4.00 -I- .013 -I- .00 .00 1- PIPE 502.060 I I 1108.650 I 15.105 1123.755 I I 283.11 22.53 I 7.88 1131.64 I .00 I 3.96 I .00 I I 4.000 I .000 .00 I 1 .0 -I- JUNCT STR -I- .0660 -I- -I- -I- -I- -I- .0380 -I- .19 -I- 15.10 -I- .00 -I- -I- .013 -I- .00 .00 I- PIPE 507.060 I I 1108.980 I 15.648 1124.628 I I 276.91 22.04 I 7.54 1132.17 I .00 I 3.96 I .00 I I 4.000 I .000 .00 I 1 .0 37.280 .0075 .0372 1.39 15.65 .00 4.00 .013 .00 .00 PIPE 544.340 I I 1109.260 I 16.753 I 1126.013 I 276.91 22.04 I 7.54 1133.55 I .00 I 3.96 I .00 I I 4.000 I .000 .00 I 1 .0 -I- 7.760 -I- .0077 -I- -I- -I- -I- -I- .0372 -I- .29 -I- .00 -i- .00 -I- 4.00 -I- .013 -I- .00 .00 1- PIPE 552.100 I I 1109.320 I 17.518 I 1126.838 I 276.91 22.04 I 7.54 1134.38 I .00 I 3.96 I .00 I I 4.000 I .000 .00 I 1 .0 -I- 382.470 -I- .0075 -I- -I- -I- -I- -I- .0372 -I- 14.21 -I- 17.52 -I- .00 -I- 4.00 -I- .013 -I- .00 .00 1- PIPE 934.570 I I 1112.190 I 28.862 I 1141.052 I 276.91 22.04 I 7.54 1148.59 I .00 I 3.96 I .00 I I 4.000 I .000 .00 I 1 .0 -I- JUNCT STR -I- .0500 -I- -I- -I- -I- -I- .0372 -I- .19 -I- 28.86 -I- .00 -I- -I- .013 -i- .00 .00 I- PIPE 939.570 I I 1112.440 I 28.798 I 1141.238 I 276.91 28.78 I 12.86 1154.10 I .00 I 3.49 I .00 I I 3.500 I .000 .00 I 1 .0 -I- 4.000 -I- .0050 -I- -I- -I- -I- -I- .0758 -I- .30 -I- 28.80 -I- .00 -I- 3.50 -I- .013 -I- .00 .00 1- PIPE UL n n FILE: sierra48.WSW W S P G W- CIVILDESIGN Version 14.06 PAGE 2 Program Package serial Number: 1373 WATER SURFACE PROFILE LISTING Date: 8 -25 -2008 Time: 2: 5:30 SIERRA AVENUE STORM DRAIN 48 INCH STORM DRAIN OUTLET TO I -10 CHANNEL Invert I Depth I Water I Q I vel vel I Energy 1 Super ICriticallFlow ToplHeight /1Base wt1 INO Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.E1.I Elev I Depth I Width IDia. -FTIor I.D.1 ZL IPrs /Pip -I- L /Elem -I- ICh Slope I -1- I -1- -I- I I -1- -1- SF Ave1 -I- HF -I- ISE DpthlFroude -1- -1- NINorm Dp -I- I "N" -1- I X -Fall) ZR -1 IType Ch 943.570 I 1112.460 I I 29.081 1141.541 I I 276.91 28.78 I 12.86 1154.40 I .00 I I 3.49 .00 I 3.500 I I .000 .00 I 1 .0 -I- 7UNCT STR -I- .0810 -I- -I- -I- -I- -I- .0758 -I- .47 -I- 29.08 -I- .00 -I- -I- .013 -I- .00 .00 I- PIPE 949.740 I 1112.960 I I 29.048 1142.008 I I 276.91 28.78 I 12.86 1154.87 I .00 I 3.49 I .00 I 3.500 I I .000 .00 I 1 .0 -I- 50.410 -I- .0065 -I- -I- -I- -I- -I- .0758 -I- 3.82 -I- 29.05 -I- .00 -I- 3.50 -I- .013 -I- .00 .00 1- PIPE 1000.150 I 1113.290 I I 32.537 1145.827 I I 276.91 28.78 I 12.86 1158.69 I .00 I I 3.49 .00 I 3.500 I I .000 .00 I 1 .0 -I- 25.480 -I- .0067 -I- -I- -I- -I- -I- .0758 -I- 1.93 -I- .00 -I- .00 -I- 3.50 -I- .013 -I- .00 .00 1- PIPE 1025.630 I 1113.460 I I 35.635 1149.094 I I 276.91 28.78 I 12.86 1161.96 I .00 I 3.49 I .00 I 3.500 I I .000 .00 I 1 .0 -I- 20.050 -I- .0067 -I- -I- -I- -I- -I- .0758 -I- 1.52 -I- 35.63 -I- .00 -I- 3.50 -I- .013 -I- .00 .00 1- PIPE 1045.680 I 1113.594 I I 37.019 1150.613 I I 276.91 28.78 I 12.86 1163.48 I .00 I I 3.49 .00 I I 3.500 I .000 .00 I 1 .0 -I- 7UNCT STR -I- .0067 -I- -I- -I- -I- -I- .0758 -I- .11 -I- 37.02 -I- .00 -I- -I- .013 -I- .00 .00 I- PIPE 1047.180 I 1113.604 I I 37.125 1150.729 I I 276.90 28.78 I 12.86 1163.59 I .00 I I 3.49 .00 I I 3.500 I .000 .00 I 1 .0 22.960 .0067 .0757 1.74 37.12 .00 3.50 .013 .00 .00 PIPE 1070.140 I 1113.757 I I 38.711 1152.468 I I 276.90 28.78 I 12.86 1165.33 I .00 I I 3.49 .00 I I 3.500 I .000 .00 I 1 .0 -I- 63.710 -I- .0067 -I- -I- -I- -I- -I- .0757 -I- 4.83 -I- .00 -I- .00 -I- 3.50 -I- .013 -I- .00 .00 1- PIPE 1133.850 I 1114.181 I I 44.450 1158.631 I I 276.90 28.78 I 12.86 1171.49 I .00 I I 3.49 .00 I 3.500 I I .000 .00 I 1 .0 -I- 7UNCT STR -I- .0761 -I- -I- -I- -I- -I- .0670 -I- .54 -I- 44.45 -I- .00 -I- -I- .013 -I- .00 .00 I- PIPE 1141.850 I 1114.790 I I 49.582 1164.372 I I 242.70 25.23 I 9.88 1174.25 I .00 I I 3.48 .00 I I 3.500 I .000 .00 i 1 .0 673.100 .0124 .0582 39.17 49.58 .00 3.50 .013 .00 .00 PIPE 0 0 FILE: sierra48.WSW W S P G W- CIVILDESIGN Version 14.06 PAGE 3 Program Package Serial Number: 1373 WATER SURFACE PROFILE LISTING Date: 8 -25 -2008 Time: 2: 5:30 SIERRA AVENUE STORM DRAIN 48 INCH STORM DRAIN OUTLET TO I -10 CHANNEL Invert I Depth I Water I Q I Vel Vel I Energyy I Su7er ICriticallFloW ToplHeight /[Base WtI INO Wth Station I Elev I (FT) ( Elev l (CFS) I (FPS) Head I Grd.EI.I Elev I Depth I Width IDia. -FTIor I.D.I ZL IPrs /Pip L /Elem ICh Slope I I I I SF Avel HF ISE Dpth _ _I_ I Froude NINorm Dp I "N" I X -Fa11I ZR IType Ch 1814.950 I I 1123.140 I 80.401 1203.541 I I 242.70 25.23 I 9.88 1213.42 I .00 I I 3.48 .00 I 3.500 I I .000 .00 I 1 .0 -I- JUNCT STR' -I- .0133 -I- -I- -I- -I- -I- .0569 -I- .09 -I- 80.40 -I- .00 -I- -I- .013 -I- .00 .00 I- PIPE 1816.450 I I 1123.160 I 81.367 1204.527 I I 237.10 24.64 I 9.43 1213.96 I .00 I I 3.48 .00 I 3.500 I I .000 .00 I 1 .0 -I- 47.220 -I- .0123 -I- -I- -I- -I- -I- .0555 -I- 2.62 -I- 81.37 -I- .00 -I- 3.50 -I- .013 -I- .00 .00 1- PIPE 1863.670 I I 1123.740 I 83.410 1207.150 I I 237.10 24.64 I 9.43 1216.58 I .00 I I 3.48 .00 I 3.500 I I .000 .00 I 1 .0 -I- JUNCT STR -I- .0313 -I- -I- -I- -I- -I- .0550 -I- .44 -I- 83.41 -I- .00 -I- -I- .013 -I- .00 .00 I- PIPE 1871.670 I I 1123.990 I 83.957 1207.947 I I 234.80 28.30 I 12.44 1220.39 I .00 I I 3.24 .00 I 3.250 I I .000 .00 I 1 .0 -I- 520.860 -I- .0148 -I- -I- -I- -I- -I- .0809 -I- 42.12 -I- 83.96 -I- .00 -I- 3.25 -I- .013 -I- .00 .00 1- PIPE 2392.530 I I 1131.700 I 118.368 1250.068 I I 234.80 28.30 I 12.44 1262.51 I .00 I I 3.24 .00 I 3.250 I i .000 .00 I 1 .0 -I- JUNCT STR -I- .0313 -I- -I- -I- -I- -I- .0867 -I- .69 -I- 118.37 -I- .00 -I- -I- .013 -I- .00 .00 I- PIPE 2400.530 I I 1131.950 I 121.199 1253.149 I I 202.90 28.70 I 12.79 1265.94 I .00 I I 2.99 .00 I 3.000 I I .000 .00 I 1 .0 -I- 520.140 -I- .0124 -I- -I- -I- -I- -I- .0925 -I- 48.13 -I- 121.20 -I- .00 -I- 3.00 -I- .013 -I- .00 .00 1- PIPE 2920.670 I I 1138.400 I 162.883 1301.283 I I 202.90 28.70 I 12.79 1314.08 I .00 I I 2.99 .00 I 3.000 I I .000 .00 I 1 .0 -I- JUNCT STR -I- .0313 -I- -I- -I- -I- -I- .1065 -I- .85 -I- 162.88 -I- .00 -I- -I- .013 -I- .00 .00 I- PIPE 2928.670 I I 1138.650 I 163.940 1302.590 I I 183.60 25.97 I 10.48 1313.07 I .00 I I 2.99 .00 I 3.000 I I .000 .00 I 1 .0 -I- 767.320 -I- .0144 -I- -I- -I- -I- -I- .0758 -I- 58.14 -I- 163.94 -I- .00 -I- 3.00 -I- .013 -I- .00 .00 1- PIPE 3695.990 I I 1149.700 I 211.033 1360.733 I I 183.60 25.97 I 10.48 1371.21 I .00 I I 2.99 .00 I 3.000 I I .000 .00 I 1 .0 -I- JUNCT STR -I- .0833 -I- -I- -I- -I- -I- .0379 -I- .23 -I- 211.03 -I- .00 -I- -I- .013 -I- .00 .00 I- PIPE n n RE FILE: sierra48.WSW W S P G W- CIVILDESIGN Version 14.06 PAGE 4 Program Package Serial Number: 1373 WATER SURFACE PROFILE LISTING Date: 8 -25 -2008 Time: 2: 5:30 SIERRA AVENUE STORM DRAIN 48 INCH STORM DRAIN OUTLET TO 1 -10 CHANNEL Invert I Depth I Water I Q I vel vel I Energy 1 Super ICritica11F1oW ToplHeight /IBase wt► INO Wth Station I Elev 1 (FT) I Elev I (CFS) I (FPS) Head I Grd.El.I Elev I Depth I Width IDia. -FTIor I.D.1 ZL IPrs /Pip L /Elem ICh Slope I I I I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X -Fall) ZR IType Ch -------------- - - - - -- WARNING - Junction Analysis - Large Lateral FlOW(s) ------------------ I I I I I I I I I I I 1 1 3701.990 1150.200 230.034 1380.234 .00 .00 .00 1380.23 .00 .01 .00 3.000 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- I- Program Package Ser at Number 137 10105573 EXISTING SD HGL TEST AT VALLEY C No, ] TYPE OPERATION STATION Date 9- 5 -2008 T i roe 11 31; 23 F i t el hg t test2, WSW INV ELEV WATER LEVEL CHAN HT TYPE CHANNEL 'N' #PIER /PIP FLOW RATE VELOCITY TOP WIDTH CHAN WDTH PIER WIDTH ZL ZR SUPEL RT B SUPEL LT B CRIT DPTH RADIUS /<PT RMKS (FT) ( FT) ( FT) ( CFS) ( FT /S) ( FT) ( FT) ( FT) ( FT) ( FT) ( FT) < FT OR < ) 1123.780 B. 420 2.500 PIPE 015 1 42.501 8.658 000 2.500 000 000 000 000 000 21 180 000 1124. 440 B. 766 2. 250 PIPE 013 1 25, 501 6, 414 000 2. 250 000 000 000 000 000 1. 764 000 1124, 810 B. 491 2. 250 PIPE 015 1 25. 501 6. 414 000 2. 250 000 000 000 000 000 1. 764 000 1124. 880 S. 448 2. 250 PIPE 013 1 25. 501 6, 414 000 2. 250 000 000 000 000 000 1. 764 000 1126, 550 B. 230 2, 250 PIPE 013 1 25. 501 6. 414 000 2. 250 000 000 .000 000 000 1. 764 000 1126, 590 B. 222 2. 250 PIPE 013 1 25, 500 6. 413 000 2, 250 000 000 000 000 000 1. 764 000 1126. 630 B. 218 2, 250 PIPE 013 1 25. 500 6. 413 000 2. 250 000 000 000 000 000 1. 764 000 1126.670 8.943 2.250 PIPE 013 1 16.500 4. 150 000 2.250 000 000 000 000 000 1.417 000 1127. 370 8. 477 2, 250 PIPE 015 1 16. 500 4. 150 000 2. 250 000 000 . 000 000 000 1. 417 000 1127. 390 B. 469 2. 250 PIPE 013 1 16. 500 4, 150 000 2. 250 000 000 000 000 000 1. 417 000 1129. 770 6. 933 2. 250 PIPE 015 1 16. 500 4. 150 000 2. 250 000 000 000 000 000 1. 417 5, 093 1130. 770 6. 282 1. 250 PIPE 013 1 10. 000 B. 149 000 1. 250 000 000 .000 000 000 1. 184 000 1133, 130 5. 335 1. 250 PIPE 013 1 10. 000 8. 149 000 1. 250 000 000 . 000 000 000 1. 184 000 (FT) C C C C C C C C C C C C C 11 SYSTEM OUTLET 2] REACH 3] REACH 41 JUNCTION 5] REACH 61 JUNCTION 7] REACH 81 JUNCTION 9] REACH 10] JUNCTION 11] REACH 121 JUNCTION 131 HEADWORKS 2489. 300 2492. 000 2506. 080 2509, 080 2723, 170 2727, 840 2733, 170 2737. 840 2820. 500 2823. 500 3120. 870 3124, 870 3183. 870 r r D D 1 M !T1 f'l D D r r „ W u N L C H z --I n M i 3 o M c -i N r cn rri + -I O 0 N " A O + W OD W 0 mm U10�� L L n z o ❑ z z N N -I V + + W w W W " V u n r ru L N W D, W m c �- N - O X - z ma w z J l� J � ;q 4 > '(�,� �j J' n n � FILE: hgltest2.WSW W S P G W- CIVILDESIGN Version 14.06 PAGE 1 Program Package serial Number: 1373 WATER SURFACE PROFILE LISTING Date 9 - 5 - 2008 Time: 1:31:23 10105573 EXISTING SO HGL TEST AT HEALTHCARE PKWY Invert I Depth I Water I Q ( vel vel I Energy 1 Super ICriticallFloW TOplHeight /IBase Wtl INO Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd .El.I Elev I Depth I Width IDia. -FTIor I.D.1 ZL IPrs /Pip L /Elem ICh Slope I I I I -I SF Avel HF ISE DpthlFroude NlNorm Dp I "N" I X -Fa11I ZR IType Ch 2489.300 I I 1123.780 I 8.420 I 1132.200 I 42.50 8.66 I 1.16 1133.36 I .00 I I 2.18 .00 I 2.500 -I- I I .000 -I- .00 I 1 .0 I- -I- 7UNCT STR -I- .2444 -I- -I- -I- -I- -I- .0117 -I- .03 -I- 8.42 -I- .00 -I- .015 .00 I I .00 PIPE I 2492.000 I I 1124.440 I 8.766 1133.206 I I 25.50 6.41 I .64 1133.84 I .00 I I 1.76 .00 I 2.250 .000 -I- .00 1 .0 1- -I- 14.080 -I- .0263 -I- -I- -I- -I- -I- .0068 -I- .10 -I- 8.77 -I- .00 -I- 1.14 -I- .013 .00 I I .00 PIPE I 2506.080 I I 1124.810 I 8.491 1133.301 I I 25.50 6.41 I .64 1133.94 I .00 I 1.76 I .00 I 2.250 .000 -I- .00 1 .0 I- -I- 7UNCT STR -I- .0233 -I- -I- -I- -I- -I- .0090 -I- .03 -I- 8.49 -I- .00 -I- -I- .015 .00 I I .00 PIPE I 2509.080 I I 1124.880 8.448 I 1133.328 I I 25.50 6.41 I .64 1133.97 I .00 I 1.76 I .00 I 2.250 .000 -I- .00 1 .0 1- -I- 214.090 -I- .0078 -I- -I- -I- -I- -I- .0068 -I- 1.45 -I- 8.45 -I- .00 -I- 1.72 -I- .013 .00 I .00 PIPE I 2723.170 I I 1126.550 I 8.230 1134.780 I I 25.50 6.41 I .64 1135.42 I .00 I 1.76 I .00 I 2.250 -I- I .000 -I- .00 1 .0 I- -I- 7UNCT STR -I- .0085 -I- -I- -I- -I- -I- .0068 -I- .03 -I- 8.23 -I- .00 -I- .013 .00 I I .00 PIPE I 2727.840 I I 1126.590 8.222 I 1134.812 I I 25.50 6.41 I .64 1135.45 I .00 I 1.76 I .00 I 2.250 -I- .000 -I- .00 1 .0 1- -I- 5.330 -I- .0075 -I- -I- -I- -I- -I- .0068 -I- .04 -I- 8.22 -I- .00 -I- 1.75 .013 I .00 I I .00 PIPE I 2733.170 I I 1126.630 8.218 I 1134.848 I I 25.50 6.41 I .64 1135.49 I .00 I 1.76 I .00 2.250 -I- .000 .00 1 .0 I- -I- ]UNCT STR -I- .0086 -I- -I- -I- -I- -I- .0048 -I- .02 -I- 8.22 -I- .00 -I- .013 -I- .00 I .00 PIPE I 2737.840 I I 1126.670 8.943 I 1135.613 I I 16.50 4.15 I .27 1135.88 I .00 I 1.42 I .00 I 2.250 I .000 .00 1 .0 1- -I- 82.660 -I- .0085 -I- -I- -I- -I- -I- .0028 -I- .23 -I- 8.94 -I- .00 -I- 1.23 -I- .013 -I- .00 .00 PIPE 2820.500 1127.370 8.477 1135.847 16.50 4.15 .27 1136.11 .00 1.42 .00 2.250 -I- .000 -I- .00 1 .0 I- -I- ]UNCT STR -I- .0067 -I- -I- -I- -I- -I- .0038 -I- .01 -I- 8.48 -I- .00 -I- .015 .00 .00 PIPE n n n FILE: hgltest2.wsw W S P G W- CIVILDESIGN version 14.06 PAGE 2 Program Package serial Number: 1373 WATER SURFACE PROFILE LISTING Date: 9- 5 -2008 Time: 1:31:23 10105573 EXISTING SD HGL TEST AT HEALTHCARE PKWY Invert I Depth I water I Q I vel vel I Energy 1 Supper IcriticallFloW ToplHeight /IBase Wtl INo wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.E1.I Elev I Depth 1 width IDia. -FTIor I.D.1 ZL 1Prs /Pip L /Elem ICh slope I I I I -I SF Ave1 HF ISE DpthIFroude NINorm Dp I "N" I X -Fa111 ZR IType Ch I I I I I I I I I I I I I 2823.500 1127.390 8.469 1135.859 16.50 4.15 .27 1136.13 .00 1.42 .00 2.250 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- 297.370 .0080 .0028 .84 8.47 I I I I I .00 1.25 .013 .00 .00 PIPE I I I I I I I I 3120.870 1129.770 6.933 1136.703 16.50 4.15 .27 1136.97 .00 1.42 .00 2.250 -I- .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- I- 7UNCT STR .2500 .0026 .01 .00 .00 .015 .00 .00 PIPE I I I I I I I I I I I I I 3124.870 1130.770 6.282 1137.052 10.00 8.15 1.03 1138.08 .00 1.18 .00 1.250 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- 59.000 .0400 .0240 1.41 6.28 .00 .83 I .013 .00 .00 PIPE I I I I I I I I I I I I 3183.870 1133.130 5.335 1138.465 10.00 8.15 1.03 1139.50 .00 1.18 .00 1.250 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- I- Program Package Ser i a t Number 1373 Date: 8 -27 -2008 T i me: 8: 27: 22 F t l e: S IERRA42. WSW 10105573 EXISTING SD - 61G�R,Q�r�(fV.l fi'y 5Ta r'1 09A1 2008 -08 -20 SCOOK C No, 7 TYPE OPERATION STATION INV ELEV WATER LEVEL CHAN HT TYPE CHANNEL 'N' #PIER /PIP FLOW RATE VELOCITY TOP WIDTH CHAN WDTH PIER WIDTH ZL ZR SUPEL RT B SUPEL LT B CRIT DPTH RADIUS /<PT RMKS (FT) (FT) (FT) (FT) (CFS) (FT /S) (FT) (FT) (FT) (FT) ( FT) (FT) (FT OR < ) C 11 SYSTEM OUTLET -332. 000 1106. 250 5. 000 4. 000 RECTANGULAR 015 0 129, 003 1. 290 20. 000 20. 000 000 000 000 000 000 1. 089 000 C 21 REACH -322. 000 1106. 300 4. 950 4, 000 RECTANGULAR 013 0 129, 003 1, 303 20, 000 20. 000 000 000 000 000 000 1, 089 000 C 31 WALL ENTR -322. 000 1106. 300 3. 567 3. 500 PIPE 013 1 129. 003 13. 408 000 3, 500 000 000 000 000 000 3, 303 -45,000 C 47 REACH -306, 000 1106. 360 3. 979 3. 500 PIPE 013 1 129. 003 13, 408 000 3, 500 000 000 000 000 000 3, 303 -22, 600 C 57 REACH -213, 000 1106, 690 5, 177 3. 500 PIPE 013 1 129. 003 13, 408 000 3. 500 000 000 .000 000 000 3, 303 000 C 61 REACH -3, 890 1109, 930 5, 375 3, 500 PIPE 015 1 129, 003 13. 408 000 3. 500 000 000 000 000 000 3. 303 000 C 71 JUNCTION -, 780 1110, 000 6, 789 4, 000 PIPE 013 1 123. 503 9. 828 000 4.000 000 000 000 000 000 3. 340 000 C 81 REACH 447.220 1112. 460 7. 641 4. 000 PIPE 015 1 123. 503 9, 828 000 4, 000 000 000 000 000 .000 3. 340 .000 C 91 JUNCTION 451, 890 1112, 960 6. 170 3, 500 PIPE 013 1 123, 502 12, 837 000 3, 500 000 000 000 000 000 3, 272 , 000 C 101 REACH 514, 630 1113. 310 6. 766 3, 500 PIPE 013 1 123, 502 12, 837 000 3, 500 000 000 000 000 000 3. 272 23, 000 C 111 REACH 550, 260 1113, 510 7. 611 3. 500 PIPE 013 1 123, 502 12, 837 000 3, 500 000 000 .000 000 000 3. 272 , 000 C 121 REACH 570. 720 1113, 610 7. 819 3. 500 PIPE 015 1 123. 502 12. 837 000 3. 500 000 000 000 .000 000 3. 272 .000 C 131 JUNCTION 575. 390 1113. 620 B. 146 3. 500 PIPE 013 1 120, 502 12. 525 000 3. 500 '000 000 000 000 000 3, 252 .000 C 141 REACH 897. 260 1114. 260 12, 124 3, 500 PIPE 015 1 120. 502 12. 525 000 3. 500 000 000 000 000 000 3. 252 000 C 151 JUNCTION 901, 960 1114, 280 13, 250 3, 500 PIPE 013 1 106, 502 11, 070 000 3, 500 000 000 .000 000 000 3, 137 000 C 167 REACH 1225, 300 1116, 330 14, 823 3, 500 PIPE 015 1 106, 502 11, 070 000 3, 500 000 000 000 000 000 3, 137 000 C 171 JUNCTION 1229, 970 1116, 340 16. 279 3. 500 PIPE 013 1 84. 502 B. 783 000 3. 500 000 000 000 000 000 2, 864 .000 C 181 REACH 1439, 970 1116. 960 17. 141 3, 500 PIPE 015 1 84. 502 8. 783 000 3. 500 000 000 000 000 000 2. 864 000 C 191 JUNCTION 1444. 640 1116. 980 17. 814 3. 500 PIPE 013 1 67, 502 7. 016 000 3, 500 000 000 000 000 000 2, 575 000 C 201 REACH 1462. 960 1115, 970 18, 906 3. 500 PIPE 015 1 67, 502 7. 016 000 3, 500 000 000 000 000 000 2, 575 000 C 211 JUNCTION 1467, 630 1116. 460 17, 964 3, 000 PIPE 013 1 65. 502 9, 267 000 3, 000 000 000 000 000 000 2. 593 .000 C 221 REACH 1876. 630 1117, 960 20, 408 3. 000 PIPE 015 1 65, 502 9. 267 000 3.000 000 000 000 000 000 2, 593 1, 910 C 231 JUNCTION 1879, 630 1118, 460 19. 984 2. 500 PIPE 013 1 49, 502 10. 084 000 2, 500 000 000 .000 000 000 2, 293 000 C 241 REACH 2197. 670 1121, 250 21. 827 2. 500 PIPE 015 1 49, 502 10, 084 000 2. 500 000 000 000 000 000 2. 293 000 C 251 JUNCTION 2202. 340 1121. 290 21, 877 2. 500 PIPE 013 1 49, 502 10, 084 000 2. 500 000 000 000 000 000 2. 293 000 C 261 REACH 2489, 300 1123. 780 23, 567 2. 500 PIPE 015 1 49. 502 10. 084 000 2.500 000 000 000 000 .000 2,293 000 C 271 JUNCTION 2492, 000 1124, 440 24. 385 2. 250 PIPE 013 1 25, 502 6, 414 000 2, 250 000 000 .000 000 000 1. 764 000 C 281 REACH 2506, 080 1124, 810 24. 111 2. 250 PIPE 015 1 25, 502 6, 414 000 2, 250 000 000 000 000 000 1. 764 000 C 291 JUNCTION 2509, 080 1124. 880 24, 068 2. 250 PIPE 013 1 25. 502 6. 414 000 2, 250 .000 000 000 000 000 1. 764 000 C 301 REACH 2723, 170 1126, 550 23, 849 2, 250 PIPE 013 1 25. 502 6. 414 000 2.250 000 000 000 000 .000 1. 764 .000 C 311 JUNCTION 2727. 840 1126, 590 23, 841 2, 250 PIPE 013 1 25, 501 6. 414 000 2. 250 000 000 .000 000 000 1. 764 000 C 321 REACH 2733, 170 1126, 630 23, 837 2, 250 PIPE 013 1 25, 501 6, 414 000 2, 250 000 000 000 000 000 1. 764 000 C 331 JUNCTION 2737. 840 1126, 670 24, 834 2, 250 PIPE 013 1 11, 501 2, 893 000 2, 250 000 000 000 000 000 1. 174 000 C 341 REACH 2820, 500 1127, 370 24, 248 2, 250 PIPE 015 1 11, 501 2, 893 000 2. 250 000 000 000 .000 .000 1, 174 000 C 351 JUNCTION 2823, 500 1127, 390 24. 233 2. 250 PIPE 013 1 11, 501 2. 893 000 2. 250 000 000 000 000 .000 1. 174 000 C 361 REACH 3120. 870 1129. 770 22. 263 2. 250 PIPE 015 1 11. 501 2. 893 000 2, 250 000 000 000 000 000 1. 174 2, 546 C 371 JUNCTION 3124. 870 1130,020 22.242 1.250 PIPE 013 1 001 001 000 1.250 000 000 000 000 000 012 000 C 381 REACH 3360, 790 1132. 400 19, 862 1, 250 PIPE 015 1 001 001 000 1, 250 000 000 000 000 000 012 000 C 391 JUNCTION 3362, 720 1132, 420 19. 842 1, 250 PIPE 013 1 001 001 000 1, 250 000 000 000 000 000 012 000 C 401 REACH 3435, 300 1134, 190 16, 072 1, 250 PIPE 013 1 001 001 000 1, 250 000 000 000 000 000 012 000 1 411 HEADWORKS 3550.370 1134.310 17,952 1 ,250 PIPE 013 1 001 001 000 1.250 000 000 000 000 000 012 000 j FILE: SIERRA42.WSW W S P G W- CIVILDESIGN Version 14.06 PAGE 1 Program Package Serial Number: 1373 WATER SURFACE PROFILE LISTING Date: 8 - 27 - 2008 Time: 8:27:22 10105573 EXISTING SD S(R2�VAj.Le. STblerq 01 2008 -08 -20 SCOOK I Invert I Depth I Water I Q I Vel Vel I Energ 1 Su ICriticallFloW T OPI H eight /►Base wt1 INO wth Station I EleV I (FT) I Elev I (CFS) I (FPS) Head I Grd .El.I Elev I Depth I Width IDia. -FTIor I.D.1 ZL IPrs /Pip L /Elem ICh Slope I I I I SF Ave1 HF _I_ ISE DpthIFroude _I_ NINorm Dp I "N" I X -Fall) ZR IType Ch - 332.000 I I 1106.250 5.000 I I 1111.250 I 129.00 1.29 I .03 1111.28 j .00 I 1.09 I 20.00 I 4.000 I I 20.000 .00 I 0 .0 -I- 10.000 -I- .0050 -I- -I- -I- -I- -I- .0000 -I- .00 -I- 5.00 -I- .10 -I- .99 -I- .015 -I- .00 .00 1- RECTANG - 322.000 I I 1106.300 4.950 I I 1111.250 I 129.00 1.30 I .03 1111.28 I .00 I 1.09 I 20.00 I 4.000 I I 20.000 .00 I 0 .0 WALL ENTRANCE - 322.000 I I 1106.300 3.567 I I 1109.867 I 129.00 13.41 I 2.79 1112.66 I .00 I 3.30 I .00 I 3.500 I I .000 .00 I 1 .0 -I- 16.000 -I- .0037 -I- -I- -I- -I- -I- .0164 -I- .26 -I- 3.57 -I- .00 -I- 3.50 -I- .013 -I- .00 .00 1- PIPE - 306.000 I I 1106.360 3.979 I I 1110.339 I 129.00 13.41 I 2.79 1113.13 I .00 I 3.30 I .00 I 3.500 I I .000 .00 I 1 .0 -I- 93.000 -I- .0035 -I- -I- -I- -I- -I- .0164 -I- 1,53 -I- 3.98 -I- .00 -I- 3.50 -I- .013 -I- .00 .00 1- PIPE - 213.000 I I 1106.690 5.178 I I 1111.867 I 129.00 13.41 I 2.79 1114.66 I .00 I 3.30 I .00 I 3.500 I I .000 .00 I 1 .0 -I- 209.110 -I- .0155 -I- -I- -I- -I- -I- .0164 -I- 3.44 -I- 5.18 -I- .00 -I- 2.97 -I- .013 -I- .00 .00 1- PIPE -3.890 I I 1109.930 5.375 I I 1115.305 I 129.00 13.41 I 2.79 1118.10 I .00 I 3.30 I .00 I 3.500 I I .000 .00 I 1 .0 -I- ]UNCT STR -I- .0225 -I- -I- -I- -I- -I- .0159 -I- .05 -I- 5.38 -I- .00 -I- -I- .015 -I- .00 .00 I- PIPE -.780 I I 1110.000 6.789 I I 1116.789 I 123.50 9.83 I 1.50 1118.29 I .00 I 3.34 I .00 I 4.000 I I .000 .00 I 1 .0 -I- 448.000 -I- .0055 -I- -I- -I- -I- -I- .0074 -I- 3.31 -I- 6.79 -I- .00 -I- 4.00 -I- .013 -I- .00 .00 1- PIPE 447.220 I I 1112.460 7.641 I I 1120.101 I 123.50 9.83 I 1.50 1121.60 I .00 I 3.34 I .00 I 4.000 I I .000 .00 I 1 .0 -I- ]UNCT STR -I- .1071 -I- -I- -I- -I- -I- .0150 -I- .07 -I- 7.64 -I- .00 -I- -I- .015 -I- .00 .00 I- PIPE 451.890 I I 1112.960 6.170 I I 1119.130 I 123.50 12.84 I 2.56 1121.69 I .00 I 3.27 I .00 I 3.500 I I .000 .00 I 1 .0 -I- 62.740 -I- .0056 -I- -I- -I- -I- -I- .0151 -I- .95 -I- 6.17 -I- .00 -I- 3.50 -I- .013 -I- .00 .00 1- PIPE U U U FILE: SIERRA42.WSW W S P G W- CIVILDESIGN Version 14.06 PAGE 2 Program Package Serial Number: 1373 WATER SURFACE PROFILE LISTING Date: 8 -27 -2008 Time: 8:27:22 10105573 EXISTING SD 2008 -08 -20 SCOOK Invert I Depth I Water ( Q I Vel Vel I Ener YY 1 Su er ICriticallFlow ToplHeight /1Base Wtl INo Wth Station I Elev 1 (FT) 1 Elev 1 (CFS) I (FPS) Head Grd.EI.I Elev I Depth I width IDia. -FTIor I.D.1 ZL IPrs /Pip L /Elem ICh Slope I I I I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X -Fall) ZR IType Ch I 514.630 I 1113.310 I 6.766 I 1120.076 I 123.50 12.84 I 2.56 1122.63 I .00 I 3.27 I .00 I 3.500 I I .000 .00 I 1 .0 -I- 35.630 -I- .0056 -I- -I- -I- -I- -I- .0151 -I- .54 -I- .00 -I- .00 -I- 3.50 -I- .013 -I- .00 .00 1- PIPE I 550.260 I 1113.510 I 7.611 I 1121.121 I 123.50 12.84 I 2.56 1123.68 I .00 I 3.27 I .00 I 3.500 I I .000 .00 I 1 .0 -I- 20.460 -I- .0049 -I- -I- -I- -I- -I- .0151 -I- .31 -I- 7.61 -I- .00 -I- 3.50 -I- .013 -I- .00 .00 1- PIPE I 570.720 I 1113.610 I 7.819 I 1121.429 I 123.50 12.84 I 2.56 1123.99 I .00 I 3.27 I .00 I 3.500 I I .000 .00 I 1 .0 -I- JUNCT STR -I- .0021 -I- -I- -I- -I- -I- .0196 -I- .09 -I- 7.82 -I- .00 -I- -I- .015 -I- .00 .00 I- PIPE I 575.390 I 1113.620 I 8.146 I 1121.766 I 120.50 12.52 I 2.44 1124.20 I .00 I 3.25 I .00 I 3.500 I I .000 .00 I 1 .0 -I- 321.870 -I- .0020 -I- -I- -I- -I- -I- .0143 -I- 4.62 -I- 8.15 -I- .00 -I- 3.50 -I- .013 -I- .00 .00 1- PIPE I I 897.260 I 1114.260 I 12.124 I 1126.384 I 120.50 12.52 I 2.44 1128.82 I .00 I 3.25 I .00 I 3.500 I I .000 .00 1 .0 I- -I- JUNCT STR -I- .0043 -I- -I- -I- -i- -I- .0170 -I- .08 -I- 12.12 -I- .00 -I- -I- .015 -I- .00 .00 PIPE I I 901.960 I 1114.280 I 13.250 I 1127.530 I 106.50 11.07 I 1.90 1129.43 I .00 I 3.14 I .00 I 3.500 I I .000 .00 1 .0 1- -I- 323.340 -I- .0063 -I- -I- -I- -I- -I- .0112 -I- 3.62 -I- 13.25 -I- .00 -I- 3.50 -I- .013 -I- .00 .00 PIPE I 1225.300 I 1116.330 I 14.823 I 1131.153 I 106.50 11.07 I 1.90 1133.06 I .00 I 3.14 I .00 I 3.500 I I .000 .00 I 1 .0 I- -I- JUNCT STR -I- .0021 -I- -I- -I- -I- -I- .0122 -I- .06 -I- 14.82 -I- .00 -I- -I- .015 -I- .00 .00 PIPE I 1229.970 I 1116.340 I 16.279 I 1132.619 I 84.50 8.78 I 1.20 1133.82 I .00 I 2.86 I .00 I 3.500 I I .000 .00 I 1 .0 1- -I- 210.000 -I- .0030 -I- -I- -I- -I- -I- .0071 -I- 1.48 -i- 16.28 -I- .00 -I- 3.50 -I- .013 -I- .00 .00 PIPE I 1439.970 I 1116.960 17.141 I I 1134.101 I 84.50 8.78 I 1.20 1135.30 I .00 I 2.86 I .00 I 3.500 I I .000 .00 I 1 .0 I- -I- JUNCT STR -I- .0043 -I- -I- -I- -I- -I- .0077 -I- .04 -I- 17.14 -I- .00 -I- -I- .015 -I- .00 .00 PIPE U U U FILE: SIERRA42.WSW W S P G W- CIVILDESIGN Version 14.06 PAGE 3 Program Package Serial Number: 1373 WATER SURFACE PROFILE LISTING Date: 8 -27 -2008 Time: 8:27:22 10105573 EXISTING SD 2008 -08 -20 SCOOK Invert I Depth I water I Q I vel vel I EnergyY I supper IcriticallFlOW TOplHeight /IBase wtI INO wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.E1.I Elev I Depth I width IDia. -FTIor I.D.I ZL IPrs /Pip L /Elem ICh Slope I I I I -I SF Avel HF ISE DpthlFroude NlNorm Dp I ° N ° I X -Fall) ZR IType Ch I I I I I 1444.640 I I 1116.980 I 17.814 I 1134.794 I 67.50 7.02 I .76 1135.56 I .00 I 2.58 .00 3.500 -I- -I- .000 -I- .00 1 .0 1- -I- 18.320 -I- -.0551 -I- -I- -I- -I- -I- .0045 -I- .08 -I- 17.81 -I- .00 .00 .013 I .00 I I .00 PIPE I 1462.960 I I 1115.970 18.906 I I 1134.876 I 67.50 7.02 I .76 1135.64 I .00 I 2.58 I .00 3.500 -I- -I- .000 -I- .00 1 .0 I- -I- JUNCT STR -I- .1049 -I- -I- -I- -I- -I- .0094 -I- .04 -I- 18.91 -I- .00 .015 I .00 I I .00 PIPE I 1467.630 I I 1116.460 17.964 I I 1134.424 I 65.50 9.27 I 1.33 1135.76 I .00 I 2.59 I .00 3.000 -I- -I- .000 -I- .00 1 .0 1- -I- 409.000 -I- .0037 -I- -I- -I- -I- -I- .0096 -I- 3.94 -I- 17.96 -I- .00 3.00 .013 I .00 I I .00 PIPE I 1876.630 I I 1117.960 20.408 I I 1138.368 I 65.50 9.27 I 1.33 1139.70 I .00 I 2.59 I .00 3.000 -I- -I- .000 -I- .00 1 .0 I- -I- JUNCT STR -I- .1667 -I- -I- -I- -I- -I- .0161 -I- .05 -I- .00 -I- .00 .015 I .00 I I .00 PIPE I 1879.630 I I 1118.460 19.984 I I 1138.444 I 49.50 10.08 I 1.58 1140.02 I .00 I 2.29 I .00 2.500 -I- -t- .000 -I- .00 1 .0 1- -I- 318.040 -I- .0088 -I- -I- -I- -I- -I- .0146 4.63 -I- -I- 19.98 -I- .00 2.50 .013 I .00 I .00 I PIPE I 2197.670 I I 1121.250 21.827 I I 1143.077 I 49.50 10.08 I 1.58 1144.66 I .00 I 2.29 I .00 2.500 - I - -I- .000 -I .00 1 .0 I- -I- JUNCT STR - I - .0086 - I - - I - - I - -I -I .0194 .09 - I - - I - 21.83 - I - .00 .015 .00 I .00 I PIPE I 2202.340 I 1121.290 I 21.877 i I 1143.167 I 49.50 10.08 I 1.58 1144.75 I .00 I 2.29 I .00 I 2.500 -I- -I- .000 -I- .00 1 .0 1- -I- 286.960 -I- .0087 -I- -I- -I- -I- -I- .0146 4.18 -I- -I- 21.88 -I- .00 2.50 .013 I .00 I .00 I PIPE I 2489.300 I 1123.780 I 23.567 I I 1147.347 I 49.50 10.08 I 1.58 1148.93 I .00 I 2.29 I .00 2.500 -I- -I- .000 -I- .00 1 .0 I- -I- JUNCT STR -I- .2444 -I- -I- -I- -I- -I- .0142 .04 -I- -I- 23.57 -I- .00 .015 I .00 I .00 I PIPE I 2492.000 I 1124.440 I 24.385 I I 1148.825 I 25.50 6.41 I .64 1149.46 I .00 I 1.76 I .00 2.250 -I- -I- .000 -I- .00 1 .0 1- -I- 14.080 -I- .0263 -I- -I- -I- -I- -I- .0068 .10 -I- -I- 24.39 -I- .00 1.14 .013 .00 .00 PIPE U U U FILE: SIERRA42.WSW W S P G W- CIVILDESIGN Version 14.06 PAGE 4 Program Package serial Number: 1373 WATER SURFACE PROFILE LISTING Date: 8 -27 -2008 Time: 8:27:22 10105573 EXISTING SD 2008 -08 -20 SCOOK Invert I Depth I water I Q I Vel vel I Energ I Su ICriticalI ToplHeight /IBase wtI INo wth station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd .E1.I Elev I Depth I width IDia. -FTIor I.D.1 ZL IPrs /Pip -I L / Ich slope -i - -i- -i- - -►- - SF Ave -I- HF p - ISE D th -I- Froude NINorm D p - -I- -I- "N" I X -Fa111 ZR T e Ch YP it s4 k it Y is Y ie iv I is it is fr � * fr i it I * it it Y tF � it it I it ie s4 F ie'it de ok 4e I ie ie ie ie Y is Y k ie I it it x nir ie F it I & s4 'h ie ie k fr I ie ie fc it t i vk 1t I Y is F �r �t it a1r I it it F is th �r * 1F 14e Y th it is it it it I ie is fr is i * k I 'h t it it it k ak I ie �r 4r it it I it �r * it 4 Y Y 2506.080 I I 1124.810 I 24.111 I 1148.921 I 25.50 6.41 I .64 1149.56 I .00 I 1.76 I .00 I I 2.250 I .000 .00 I 1 .0 7UNCT STR .0233 .0090 .03 24.11 .00 .015 I .00 I .00 PIPE I 2509.080 I I 1124.880 24.068 I I 1148.948 I 25.50 6.41 I .64 1149.59 I .00 I 1.76 I .00 I 2.250 .000 -I- .00 1 .0 1- -I- 214.090 -I- .0078 -I- -I- -I- -I- -I- .0068 -I- 1.45 -I- 24.07 -I- .00 -I- 1.72 -I- .013 I .00 t .00 PIPE I 2723.170 I I 1126.550 23.849 I I 1150.399 I 25.50 6.41 I .64 1151.04 I .00 I 1.76 I .00 I 2.250 -I- .000 -I- .00 1 .0 I- -I- 7UNCT STR -I- .0085 -I- -I- -I- -I- -I- .0068 -I- .03 -I- 23.85 -I- .00 -I- .013 I .00 I .00 PIPE I 2727.840 I I 1126.590 23.841 I I 1150.431 I 25.50 6.41 I .64 1151.07 I .00 I 1.76 I .00 I 2.250 -I- .000 -I- .00 1 .0 1- -I- 5.330 -I- .0075 -I- -I- -I- -I- -I- .0068 -I- .04 -I- 23.84 -I- .00 -I- 1.75 .013 I .00 I .00 PIPE I 2733.170 I I 1126.630 23.837 I I 1150.467 I 25.50 6.41 I .64 1151.11 I .00 I 1.76 I .00 I 2.250 -I- .000 -I- .00 1 .0 I- -I- ]UNCT STR -I- .0086 -I- -I- -I- -I- -I- .0041 -I- .02 -I- 23.84 -I- .00 -I- .013 I I .00 I .00 PIPE I 2737.840 I I 1126.670 24.834 I I 1151.504 I 11.50 2.89 I .13 1151.63 I .00 I 1.17 I .00 -I- 2.250 -I- .000 -I- .00 1 .0 1- -I- 82.660 -I- .0085 -I- -I- -I- -I- -I- .0014 -I- .11 -I- 24.83 -I- .00 .99 .013 I .00 I .00 PIPE I 2820.500 I I 1127.370 24.248 I I 1151.618 I 11.50 2.89 I .13 1151.75 I .00 I 1.17 I .00 I 2.250 -I- .000 -I- .00 1 .0 I- -I- JUNCT STR -I- .0067 -I- -I- -I- -I- -I- .0018 -I- .01 -I- 24.25 -I- .00 -I- I .015 I I .00 I .00 PIPE I 2823.500 I I 1127.390 24.233 I I 1151.623 I 11.50 2.89 I .13 1151.75 I .00 I 1.17 .00 -I- 2.250 -I- .000 -I- .00 1 .0 1- -I- 297.370 -I- .0080 -I- -I- -I- -I- -I- .0014 -I- .41 -I- 24.23 -I- .00 1.01 .013 I I .00 I .00 PIPE I 3120.870 I I 1129.770 22.263 I I 1152.033 I 11.50 2.89 I .13 1152.16 I .00 I 1.17 I .00 -I- 2.250 -I- .000 -I- .00 1 .0 I- -I- ]UNCT STR -I- .0625 -I- -I- -I- -I- -I- .0009 -I- .00 -I- .00 -I- .00 .015 .00 .00 PIPE U U U FILE: SIERRA42.WSW W S P G W- CIVILDESIGN version 14.06 PAGE 5 Program Package serial Number: 1373 WATER SURFACE PROFILE LISTING Date: 8 -27 -2008 Time: 8:27:22 10105573 EXISTING SO 2008 -08 -20 SCOOK rtrt rtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrt rtrtrtrtrtrtrtrt Invert I Depth I water I Q I Vel vel I Energy 1 Super ICriticallFloW ToplHeight /IBase wti INO wth - Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.E1.I Elev I Depth I Width IDia. -FTlor I.D.1 ZL IPrs /Pip L /Elem ICh slope I I I I SF Avel HF ISE DpthlFroude NINorm Dp I N" I X -Fa111 ZR IType Ch rtrtrtrtrtrtrtrtrtlrtrtrtrtrtrtrtrtrtlrtrtrtrtrtrtrtrtlrtrtrt Irtrtrtrtrtrtrt I 3124.870 I 1130.020 22.242 I I 1152.262 I .00 .00 I .00 1152.26 ! .00 I .01 I .00 I 1.250 I I .000 -I- .00 I 1 .0 1- -I- 235.920 -I- .0101 -I- -I- -I- -I- -I- .0000 -I- .00 -I- 22.24 -I- .00 -I- .01 -I- .013 .00 I I .00 PIPE I I 3360.790 I 1132.400 19.862 I I 1152.262 I .00 .00 I .00 1152.26 I .00 I .01 I .00 I 1.250 .000 -I- .00 1 .0 l- -I- 7UNCT STR -I- .0104 -I- -I- -I- -I- -i- .0000 -I- .00 -I- 19.86 -I- .00 -I- -I- .015 .00 I I .00 PIPE I I 3362.720 I 1132.420 19.842 I I 1152.262 I .00 .00 I .00 1152.26 I .00 I .01 I .00 I 1.250 .000 .00 1 .0 1- -I- 72.580 -I- .0244 -I- -I- -I- -I- -I- .0000 -I- .00 -I- 19.84 -I- .00 -I- .01 -I- .013 -I- .00 I .00 PIPE I I 3435.300 I 1134.190 18.072 I I 1152.262 I .00 .00 I .00 1152.26 I .00 I .01 I .00 I 1.250 I .000 -I- .00 1 .0 1- -I- 115.070 -I- .0010 -I- -I- -I- -I- -I- .0000 -I- .00 -I- 18.07 -I- .00 -I- .02 -I- .013 .00 I I .00 PIPE I I 3550.370 -I- I 1134.310 -I- 17.952 -I- I I 1152.262 -I- I .00 -I- .00 -I- I .00 -I- 1152.26 -I- I .00 -I- I .01 -I- I .00 -I- I 1.250 -I- .000 -I- .00 1 .0 I- U U U F. Appendix F — Drainage Structure Photography w 01 w H: \Pdata \10105573Wdmin\ reports \Hydrology \KFMC_Hydrology.doc XIV , ...„:, • ■ V. . , 1 • ,l. UNI v. II • 1p I , - • . • CC - • . lit . 1 • , , ,/ . 41' ....,. 1 %,.• 1.411 . . i 1 1 1 . • F.- I 9 . • , , , _ , • . , 1 , . ,,. • • , , ■ *-' • • . .. 1 • • - 1- I • •:.• ' • - .. • . , t , , , , ›.$ ; . t ' 4. • .. i EL , r . . - • 4 . 4— ' •1 . . , . . . . (43 • . t ._,........thSfr • ' C.) Ai $ .■ •• ..i, P. . I = 4—$ ■ a) ! I II • I .. 0 ; : 1 i 1 i. s ' i ' 1 . 15 1 l'a 1 . o OP '\ 2 .1••' I . i 1 , • ' 1 , 1 u) . . i' . • -`"- ! . , (i) I , i 0 - . i- , .1 , •!. : . , 1 0 ..:. - i • . , ' , . .., ' :1 1 -... . ,,,,,_ cc ., '.. • ,,,,,..., E, ":- -la. '' _ . • . , . 116.111ti'' ''' 7 I I • C " a );(51° 1 1 1 il - . - - .-_-_ , - , ■I . 1 I •I , I : ' - • . . • if - 1 . , .._-_ . I . . . . . , , L c • Im= . . FT = . 73 . , 1 - _ . ' • , «, 'Ar ' ' - al i . 2- ,........ -. - • ... ,. 2 ■ -2-22.22+ -222.-, —.2- , 4 ' '; ■ . ---•-• .... , ' - • - W , . ■ ' E ..,. , . i , 4 1 ....„. , 1 , • ' 13 a) ,, u) „ . ._ 41, as , L.. o . _ , . I . ... -. - ._ . > . - ----mik...0.--- -- • 1 - i 1 . 1 ).. ,\ ..., > 41) • ; . . . , _ . -0 .... - . .. - .... .-. •... .. .. . • / .„..., .. -.- 0 ,., . . . - 1 — 1 4 .- ... . . • . , . . 0' I , - ___ ..: . ._,,..... .:10.-. . — ,, :::,..- -•.. . ...._..... , - ,, • 1 , • . . I E ._ 0 . \ , 0 . , ',...., . . , 0 . . , .._ ... _ . .. . 1 , l' ; • r - - > •.; . ,,; cc , . . . 0 ',... ' ; 4 • -sii„. ,.• ..,.. - . , -- , , • . r. • . I la) ! f 1 4, I c , fe • ,, „ ....,- ..:. . . . . I as 5 . . ---- 1 : . .... , . - i _ . • . 1 • • • . :,,,.: • , .. ) , , . . , ... re.- , - I * . . . . . . immull - ), bi r . T I . 0 1, ■ x i . rite 1 �— __ — r i 1„,7" ; t 7 r •t_ r r.Sr '- 13F. 'X y am + r., {. - _ -* ' ' , I,- '''ir7.....6. L.- .. : *.e: `. .t.:. a ...s - '' i ..♦ �, r .• "'i -" - •.:. ': - _ sF+'- sL� .+ _ .w.�1��{� 4SiwX f y/hj► .� L T , aR " M i4 +h�' _� . Y C ^ -� ,. � tf�{:.+r � `v..y 7fi ,}� �. r +. ..?.21--- ..a -.., a s-.. `� T ` -.714.: -. - .' " s a"" : : --`+.' to . ,ix,, ':� f4 "", 5 (_ n 5 4 x F T z. rf '�cM.�� ,'S,'j; {rte 4 s, N 'X �-; - 4 r , x ns`',"'i�y'T !' .r `,�..'fd.. 4 ' � ` aF,r2 � �'. -_.�� / T f F .�*' - .CIS r, -'�. /'' 4 - • 3�n J3�i s f�xr r { < i Marygold Ave facing end west; view of flow -by catch basi near intersection with Mango Ave and of r median. PICTURE 2 . .. , ill • ,t t . , ., . .. • . • . 0, .41.4. . •) . idrIto --, ..r,... 1,„„. r .* 4.0 1,1%. ' 0 4 . a • 't ,,, • ' - ,.. , , ■ I a miNaii h —I 149711."' — leimif ! ..-, 1 i l 41111101 I — - - PI . 1 . t. " '''' — . I Pt . . . . _ ....4644.14.....4. ,......... .., .,, \ . IIIINMIIIIIIIIMINIIIMMlmmmnbo...... .. , . . . „ . . ,:. Along Marygold Ave facing driveway approach to Existing Central Utilities Plant. PICTURE 3 1 r _ .. ,,��� 1 ■ 1 �. ._ ___ - h - - - - . - -4- " Ire zr.„ - : ...iii i„ --....pri - __ ic..- , .. ,. 41011111,11111011111111 '..- ' . •■r , •M • ti .." ?: " ....14, r .. _ - - i ••••- k t r. «. 4 7s .'F 3 ,k p , . i . s t CRS• '[� !R y _. tl } Y • • t AT 't T _ EZK t. �+}s ) t ' Ilat'R' M"� T :' ti :it _ . t r . �. k . Y ~ ' .r , - te r. 7may ° ' .- -- w :44 ! = 4 .. k. _ it ,` y ''ors. - , Facing east along Marygold Ave; existing catch basin north of existing sump catch basin on southerly side of Marygold Ave. PICTURE 7 .4. . w cc ' I ! ,) , .. 4 * . . 0 C I" r 4. ,. 4 ■ ''' , 1 . . . . TrL ? ' i. ■ . ' , • , t f '1 k 44 • .tji,..j/ , .V ..... -Is 4, , 4 „Ii. - IN, i , . / t), 1,' ` ''..:i?t,',,, ' : II i" 45 ,, e &:,-ti 7 • - IX:01 '-' e ' J"..:% 'I'', 40,z 9. ,, ,1 , . . , , i .', ...$N , elf ,t , , , ,,,e- _ 1 , , c li / a; < .- A 1 ✓ Z 15) , t ' t. O co 2 , .- , 0 ' CI 1 I , I I , - 4—, *--4 --- ' C Vt. 4, r r C . r i .• 1:7) ' ' k, . ,_ - , ‘,..„, , • --4.„..,.. "F) ea 1 .c 1 1 4 . . . ( ' , 1 St i • ' i • 41'' 4 ' ' " , S. ■ 4.0 al , r i , -) l' ' l' ,0A',....,,,01, N.L. ,. '• o a. ■ , 4 , itditi.V. "4. ... . E • If I 1 . ).,, i ' . ./ "' 4 i — L \ i 0 ' ' 4 yv ',1, ',..,1,, '''';,.' •''-'' il" ''''', ' '.' ' ' • (/) ", , - 'ir■Y. li '',I A'', r,f „ t c co ''' , '• , 1 :P ,), , `' .'0■. ''... X '2, ' '•'''. ', 0/4 4 .''.' lr , i ' ■I '11 w ' , 'J. ,+.1,714 '; , , Av. , .tt;; , -7, 0 :), , o ' • - . 1 ., 4 , , ' 1 I , .,:, , , . , 1 t.,,,, , 1 k r# , 4 1., „; y v , ,A,4 , ,, • • ,, ' 1, '10' ': +4 .4 i s t,,_. .. A ' Irvoi- ,' 1 \ ' ■ 11111 , , ' . It t. * I. IIIII K . moms* vosteum ii =1:1=0 Im _ . _ • . A a ■ a M ' s • e r a. - - - I •� • 1 , 1 `ap�,l' i. -',.,–.-..A..,, 1 i'l , i , , ILI I' loilifit , - , , , iiilloilivio # 1I �I� itc.„41' W -- t - :Ra - .. " . _ _ M Y .. a:• lib z1 S .a Facing east along Marygold Ave; existing sump catch basin on southerly side of Marygold Ave. PICTURE 6 0. air 00 /01 /e 00u,0, 0190 x30NrDm ress\ 0. 0e00 .3 \0NY1\00VJ \rLssoioi \vivae\.0 !r . i 1 r . Mr . ' t 5 tIr 45 * r , , 'h >- ti j,. y . # � 111#oi 1! S1H), 0 V O a. * � a y + r F;!n►Lel•IZTI HEALTH - E . v z c9 • x _ r . , . , 7 iti , ozwo ... .: r .r LU . Iv A i r. ;� w " • • n. a , 40 - 4r r . } , .. 1 * J . .. 19 .. • 1. I 4 + ' } ' , .tr I 1 i .'y sitiogox :„. .�' ;. a .a 1 4 ...' , • ,.. , - ._ ctr_ , aa1■. r jai l . "' , it . 1t...ti. • ”suU• , .i , I • i IL! . .... t I I 1 4 I ' - < I . i y i r �9s T f l I ... 1 , • • 0 w 'mss • : : s� : "\ tit,4 PM 141 } r IIII Az ... es.L., _,.. , r ✓ , 1 3_ ' , I 411 41 16!‘ * I .4 I iiii 11*111112* i ik. : . , - ,4 . p A , ± r• * ., , . • a xe : , i w me # 0,0060.404000,...00pr.. O. '*.- • 0. L ‘• ; 4, • • . U CC G. P • • • ' ,' u ;,x ��� ' ,, F y ` 4 � '' 1 k • ( f � , 1 .tip s'� ' s 1 r + 8 fi i "'4� d . i CO � �,.4.`...!,'-i.:.'3:', r xtk ■ O t :r .•. i t 21 . 1 ' . ",,r 7 -`,'i . 144r-it 41.7',,,,,, i e ?i s t �` +•t ` r 0 • f .� • �, rlf R - Q n E ' 1 1 j ;S .• {, • i fit' fw ,� ; c &X I i t ■ • ■ :- % tt 0 1 I I -, s r ♦ 5 t' • - , - -? / II CO ,i : CC • r M I— v a .ice ,1: ∎ \ . _ 3, e c� ' Sg s a l . g 0 CD , f a ; .., 4411110.141." ,„.• . • ii , O I • (A O r 11 .? - CO - - l .I.' " t6 a/ I . .. fA ' an r O i FZ t I . f ' ; i 0 " - . 7 i gr ! - a r_ a- J j 1 1;;..- r - ' F ' - 4 p. �.` ‘, ,. G. Appendix G — Referenced Hydrology Reports A H : \Pdata \10105573Wdmin\ reports \Hydrology\KFMC_Hydrology.doc XV i� i i i i 1 I 1 I 1 i J s ,, - 0 - 3484 N , Y . A 8 - M ,T J91D lgof ,#1-y 25..',; 1�41 btr- 0 19 Uehk ZkOJOAt ,$4#h - eve lAqki P. 'Ac rQJ., YGRR.U. B'S Consultant's, T -Ei'. dakn4gle b suits Tdb Pad zE!O-kfiAr4#0--,- CA &ibs& 9440 0 1* 4.1 0 4AUX.- , 1`Zls'ar airs uOkIkio;'r, t4#T 4190 City 1 0 WO :h4lVP rlovio*-Al "A mixl*t 0 j dq Th lo liz d Par 0 flopding tu. can tie xOttRV94 by.. ext -1.u4 .,pl SaRterly grid. jm _pq, , oten trom tho existl 4sain In "Alerm Avenge;.: is red wel - &;�O p u al Mask gold and ;p2dVidae dome: aadakonal" Cal a �Itq- fm tha efAi�--j #t 0 #dpwtl �A 10 w4oy g-Oq4y T e', -4 ikrA� ,b.ttg - a"p 1pict t-b p t OpkW* 1 0 1 4t "NIMY444 MO#tM'XML5kQ A V'. K 60 064 t n , V gg4t � 4 :5h the -PIAO 404: - �Ckdoit iktik * w 14. §Ti�axk4 1 08 enclosing two. x0�d of the report for your acceptance - and approval on bohaifof fire Oity of' Pbritona.,, alien endlqsad aria your Fast' plan check comments. Tha;*. YOU fOg your attentto;t to th-'iS_ px.pj qi;t:, do not e ste r bk tb, se I to, taw�� 4joy qqop, t-VO 40cki-t-Imi in ;lt f L u onj. hesitate to cafe this. office. Yeky tinily you#g, S N. M iaw "aar 94 W&A ritouNq t)avL-. Hunt Felipe 9011 nos Patti Ste#-�O RAdy. EmEammmm=p fezr..1wwaw 201 FAST (C LINDA BLVD fiZak PLACENIIIA, CA 92670=3418 714993-4500 - F.AX714 993-6837 ro" April 8, 1991 Job No- 352. (Revised April 19 10i) Wagner Mr. Steve Black Pacific BSI Consultants, trio- 685 E. Carnegie Drive, Suite 200 CIV!L EWGINEE San Bernardino, CA SURVEYORS SUBJECT': paimettp Master Drainage Area frOM, Randall Avenue to the r-lo Channel Dear Mr. Black: We are pleased to ., resubmit this report for Kaiser Permanente Medical Center/Robert G. Hoskind„ AIA, and the City of Fontana. We have, reviewed and Substantially complied with your comments. Calculation sheets for R.O.W. storm flows, 49W 1 i4e900Wpepte.,diti.es have been added. 156- en_y.pqx,xetl*404,4-#PriA._.1-; - :k4:140*40: P4 000: in order have responded to your comments in the report and on the plan in green. Your review and - comments on this report are appreciated. We are also enclosing your 3rd check comment set. If you have any questions, caMments; or require additional information, please do not hesitate to contact this affide. Thank you for your attention to this project. Very truly yours-, WAGNER PACIFIC, INC: Leonard A. Beasley Project Manager Enclosure cc: Edgar Casasola, Aadociate Engineer Felipe Molina?, Senior Engineering Services Ron Watson, Robert Hi:Skins David Hunt, KaiSer Permanente Sam Sunada, kaiser Permanente 1 A M 9 aa ld, 1991, X3 ' E dgar AbAPOTAt* A "4 Ott Cie. . to sierra Avenue .na, 6k fi7mi xti;�Ai io Mea Ar, ca�d"Ou; 'Ve axia pleased: kb: resUbr& Vhla repdrittl for Ra-l T;eMA:nd!�ie xedit*l' Ce',t 0P!/Rqbeg G. e &AY pr - W , *g#Og ri Ao. bb -t;4 — d 4 '66p4os of too 444 OL44W,41-66: '10owl jalboo h, �90 "r '4 v UP P Vol JP Ad- t 4 the SSI kydrO' Olt AvverW re r. a Aljoho;� ast fqr : the , ini nd Empire. - kall dater becpmh!ir J4"Oi Ana 'he 1 ,04rior,-dtaatpra' "Wyaroldqla and lfydrauila f dated March jff#t:. POopkas of all the coopul-er input,. Aaka were blit-ainod fa r: eadh report. -an(i +.hv reports ware chec Pat t4O ft4�ft 4�A 144 4 tQ -4 tOl: 40aff b01,41idPitiam and tO d ON: ar. od-on t ftiq Tljg� 'cry;` thi.b 1,1�e th hyifrdjo y map wi.'Lh arse expeT&lo.n. That pne exception is i:ha- s=e as: is ranted in the t 9 brain "I q= -and Ue WbLgft9r-!rP_tapf4rd- OVdealogic ajad llydraUllc; * " t §LnA - �Y-jlllq thaii. all Water kxort'h dz Tte 'v0dil , tL LA to r4: Ili aepted ia�- Rai*il- Ny -knI4 liat contrib4to to the ,#.4i44i4o bk-dih, bOtAgf Your review and comments. on this study are sppreciate rallcurivq- t - he reporb. In an -aptpendix with p td, su partin t*1 0 0 .. I I , � - q te6�n-ipa-j d A;a 4i�( 'c en at Yc kdlo§y P w . 4. - tib#g ..Xt "aa hAv.,4 4Aj( a 4h Oxmit p d kbL addiblonAl lr% lqn, p! a o not liewitqate tQt coni-aA thl w = offfltca;. bang s. lialladay-, iA-. VOIO-e; 'P.kdsident 1?.Sif Ij If. Enclosure Cc , , ih6s, Senior x. ci F. Mol nginotr tag Serv-tcov 1 TAbLLl Or, Oa NTENTS B�RI VARA 4 OF T�w Tn I.; f3B�7EIitE OF BKdXdROdRb gNik liEft'Pidit tt IIX- 4C �m ATT9 r-HUMAPT9KInxes I tv., - VAdCOVAR ft h bdye ANA'' f t I VD.i BA$T STXYA R . , Q? 'PM T Yll: CONOWSION jiffikb#b Nt§ b&T -, :kbTlm - ikTx 6 -Apamqw KaSTZP, m" XAVROV�- NTS Cf3 7 V ITOR(MM)ITS *009 ZSTTXA" a BASIS OF 6661' tSft Mttt,, !W3hE 6-1. .9; P OF STUDY t&D dit MO! ,� TABVE�iTEDt HYP4C' 04NTA (IG, 25 Cc 10CYTEAR , . I. -OBJECTIVE OF STUDYt The pUrpOSe of this study is to evaluate the existing hydrologic _conditions which are contributory to the, Palmetto Drainage Basin as well - ae- th e Kaiser Permanente Medical 'Center., To present an efficient system of drainage taciiities, that are to be part of a City Master Plan of ‘prairiage conforming to boded.: hydrologic and hydraulic design 'Criteria and accommodating the ociptHi and planned future dootitanti4t, of the area This report defines the drainage probleMe that exist surrounding the Palniettd Drainage Basin and =Kaiser Pet Mane-Ate Medical Center and determines solutions to those problems, as well aEi. Outline a. comprehensive master plan,ot drainage: for the "City of kiontana to follow when constructing storm drain facilities in the area of the project Study: BACKGROUND AND RESEARCH': . , A. hydrology report„ prepared by James M. Montgomery (JMM) in 1988 for the San Bernardino County Flood Control District, was used for reference in this study, ThiS report titled "CoMprehensive Storm brain Plan, Project 3-3; yualto Channel Drainage Area" represents a large complex wateri3hed of, approximately 26 square - miles that is divided into 10 major sub.-basins, denoted as lines "A" - through "J".. Wagner Pacific's study involves a portion of line 4. ff"', the Palmetto brain, hereinafter referred to as, Feeder Line "M-1". The computer model indicated by feeder line "B-1" is on a macroscopic scale, and the results are used for sizing the .1}1,e1" The following study analyzes all of the drainage .problems that occur within the !'13-1 '! tributary area which included Kaiser Permanente Medical Center's contributing porticin. III. LOCATION & SITE CHARACTERISTI CS: The "PalmettO Master Drainage Area" is located in the City of Fontana, County of San 'Bernardino, State of California, It is bounded on the north by Randall 'Avenue, on the south by - Valley toulev-ard, the west partially by Sierra Avenue, and on the east, xnid-way between Palmetto Avenue and Tamarind AVenue. The area drains in a southerly direction with 1* 2% slope's and confluences at the Channel located adjacent. to and just northerly of the I-10 San Bernardino .Freeway, The drainage. area is nearly fully developed:with residential and commercial _properties, :and inclUdee approxiniately 301 acres': 1 2V. .PROCEDURE OF HYDROLOGIC ANALYSIS: :Design discharges were modeled. by use of the AEs computer program ""RATSB (Rational ,Method, San Bernardino County) conforming to the procedures ( outlined in the - "San Bernardino County Hydrology Manual" as expressed by the equation; ¢ -CIA Where: __. Q P eak= 'discharge in cubic .feet: per :second. (cfs) C s" A runoff coefficient .representing the ratio of runoff depth to rainfall depth. (dinieneionleas) i = ,The time- average rainfall intensity for a. storm 3 - duration equal to the time of concentration (inches /hour:) A = Drainage Area (Acres) The time of corycentration,!long with the intensity - duration curves using a log -log elope q f. (1, 6 are used to establish the rainfall intensity. Tables 'in the hydrology manual were the basis of estimating runoff coefficients from land use and soil type. information. The Rational. Method was used for this study as recommended in the County's Flydrology Manual for areas leas than one square mile. V, ANALYSIS: This report includes analysis for three different storm frequencies, a 10, 25 and 100 year storm. Following is a brief summary fox each storm event; A) 10 Year Storm The 10 year storm analyais is used to determine the flowrate necessary to size the 'storm drain systeni shown .on the hydrology map: The hydrology program gives a computer specified pipe size. The computer pipe size is determined for non - pressure flow at approximately 75% capacity. It should be noted that the pipe sizes determined from the analysis are preliminary. A more accurate sizing will be determined when a hydraulic study of the storm drain profile is completed. This study gives an accurate account of the amount of storm runoff that can be expected to reach the various concentration points. B) 25 Year.. Storer. • The 25. year storm analysis combines storm drain an „ _ d street capacity flows. tT ie difference between the 10, year ,and the, ` 25 ' xyear. peak S d ',SOhazgev s carri``ed in the street Wher3 flows :exceed the street capacity the storm drain iii increased, accordingly. The d.M.M.. report indicated that a 25' ,year Storm design be used for all major 1 east -west lateral drains due. to the flat slopes along these streets, The palmetto Basin area requires 25 year storm drain laterals along San -Bernar.dino Avenue and pipe sizing has been adjusted to accommodate these flows. 2 • C) 100 Year Storm The .100 year storm analysis is appropriate for regional flood control. The J'.M:M. study indicated the only facilities in this area required to handle the 100 -year .flows, is the= exiating I =10 Channel. • # All excea$ above the 10 year storm must be oonveysd wsthir; the r street right pf; wa Tlie `100 y ear "flow is "` alas used "for sump ` `concT fion analysis. The 'results of the model runs for the 10, 25 and 160 year $tor xis are tabulated in•the attached Rational Study Tables. The computer, outpyt data for the above: 'stoics are included iii the appendix, Pipe and inlet locations were determined by calculating, the point where the street section is inadequate to: convey the 10 year storm flow. A sump :condition exists at San Bernardino Avenue a- d' X eiapster Avenue. The flows Were collected and conveyed east to palmetto Avenue„ To correctly size this pipe :elevations ' were input to direct grade to the „east„ although the street. drains west to the above mentioned sump. 'Field information, basin delineation and other pertinent .information required to compile this report was obtained $ by field observations, .review cif 'as- built plans, U.S._G.:S. "Quad" sheets and input from the City of Fontana. VI. BASIS OF COST ESTIMATE Unit pricing for construction costs are based on the Engineering New Record (E January 1986. Obtained from JMM report Table 6 -1, a 4.0% per year increase was used to obtain the current unit cost. Costs include contingencies of 15% for engineering and 5% for administrative costs. A copy of the ENR, January, 1986 is attached, along with Wagner Pacific, Inc. 1 cost estimates. The costs were broken into three (3) separate systems: 1. Master Plan Iittprovements: the required storm System for. the "Palmetto Drainage Area conveying the 10 year storm. 2. Additional Master Plan Improvements:. pick .up flows in valley Boulevard- and :connect private - .improvements to the master plait 1 improvements: 3. Private Improvements: to collect. flows from the "Itaiser Permanente Medical Center" and adjacent offsite flows, and convey them to a public storm, drain system. The construction cost estimates for these improvements are attached. 3 • VII. CONCLUSION . . 1 This study Of the Paltetto Drainage Area was prepared to determine the hydrologic conditions of the basin and. to conceive a preliminary scheme for the design and,constructios of, a storm drain syetem will become part of the City of Fontana's Master Planned Storm Drainage Program. 1 The results of theetUdy indicate that a storm drin pi tie system reaching from north of saO Bernardino Avenue at Acacia Street, along 7 Sin-5erncrdino Avenue; south on PalffiettoAyenue, east on Valley -Boulevard and then south to join the existing =flood control channel - north of the r•-ici San per:needing Freeway is feasible, and that such a ayateMie capable Of conveying a 10- storm freqUee0y rate 'which Protee.s.ting local streetafrOMflOoding under 25-year ttotlRfteguencyconditiobs: The total length of pipe proposed for the:system include 15,416 feet of public drains and 1,130 feet of private. drains located on the Kaiser Medical Center site. The size of the public storm drains range from .18' at the upstream end. of the system to 18" where the system dieallOrgee'inte 1 the 1 Channel. 'The private system consists of 18" and 30" pipes. The configurations of these syeteMa ate shown OnPage.5 of this report and the hydrology map included at the dhd bf this keport: For purpose a of post estimating for this study, the storm drain improvements are separated into, three -categories, 1) . Math tine Master Plan Improvements, 2) Additional Master Plan improvements and, 3) Privat Improvements. The total estimated costs are as folloWs: Master Plan Improvements $ 3,601,776.00 Additional Master Plan. Improvements 165,504.00 TOTAL MASTER PLAN COSTS $ 3,767,280.00 Kaiser Permanente Private Improvements 146,352.00 TOTAL IMPROVEMENT COSTS $ 3,913,632.00 Itemized summaries of the individual:cost estimates are attached. • " • 4 VA49. Pit Pacific P X. PIPING., I PR0VUEfiTT EIHiHIfi "Am 1 I , - CITY OF FONTANA PALMETTO DRAINAGE AREA STORM DRAIN SYSTEM MASTER PLAN IMPROVEMENTS 1 i DESCRIPTION QUANTITY UNIT UNIT COST EXTENSION 18" R.C.P. .1060. L.F. $ 80.00 $ 84,800.00 24" R.C.P. 2230 L.F. 106.00 236,380.00 27" R.C.P. 1550 L.F. 111.00 172,050.00 1 I 30" R.C.P. 1200 L.F. 117.00 140,400.00 33" R.C.P. 1200 L.F. '125.00 150,000.00 i 36" R.O.P. 850 L.P.. 130.00 110,500.0G 39" R.C.P. 400 7.J.F. 138.00 55,200.00 I 48" R.C.P. 680 L.F. 155.00 105,400.00 i 51" R.C.P. 500 L.F. 163.00 81,500.00 60" R.C.P. 670 L.F. 182.00 121,940.00 66" R.C.P. 1190 L.F. 205.00 243,950.00 69" R.C.P. 400 L.F. _ 215.00 86,000.00 72" R.C.P. 1300 L.F. 227.00 295,100.00 78" R.C.P. 1785 L.F. 250.00 446,250.00 Manholes 24 EA. 2,000.00 48,000.00 Inlets 52 EA. 2,500.00 130,000.00 Paving Removal & 164,670 S.F. 3.00 494,010.00 Replacement Subtotal $3,001,480,00 20% Cont. 600,296.00 Total $3,501,776.00 -, - .... 1 I . , — i — CITY OF FONTANA PALMETTO D ' AREA STORM D4aSYS'ITIVI ADDMONAL ISIASP wArylmeRoviimENTs (Connecting Drain on Valley Boulev rel 111, of Palmetto Avenue A to Kai r -Site Drain) 49 DESCRIPTION OUANTITY UNIT UNIT COST EXTENSION 18" R.C.P. 80 L.F. 5' 80.00 $ 6,400.po 39" R.C.P. 510 L.F. 138.00 70,380.00 45" R.C.P. 175 L.F. 152.00 26,600.00 Manholes 1 EA. 2,000.00 2,000.00 Inlets 2 EA. 2,500.00 5,000.00 Paving Removal & 9,180 S.F. 3.00 21,540.00 Replacement _ Subtotal $ 137,920.00 . - . 20% Cont. 27,584.00 Total $ 165,504.00 7 ,— — , , I CITY OF FONTANA FALMETTO DRAINAGE AREA 1 STORM DRAIN SYSTEM KAISER PERMANENTE MEDICAL CENTER 1 PRIVATE IMMOVEMENTS 1 1 1 3 DESCRIPTION QUANTITY UNIT. UNIT COST EXTENSION ; I 18" R.C.P. 650 L.F. $ 80.00 f $ 52,000.00 30" R.C.P. 4S0 L.F. 117.00 56,160.00 Manholes 1 EA. 2,000.00 2,000.00 Inlets 4 EP.. 2,500.00 10,000.00 Paving Removal & 600 S. 1, 800.00 3.00 1 800.00 Replacement Subtotal $ 121,960.00 20% Cont. 24,392.00 - --Total $ 146,352.00 • . , , . _. , 8 1 1 7$n4is Qf Cosi Etsrunates ptli 0- Oligffide - Viet: P. 11 SUO 7 12 14 2 4 98 -, Srl 92. .94 07 9.9 tai VD4 24 Yi -92 W2 105. tog 27 30 - Pas 11-5. 30 33 4.04 112; 115 1.. V6 III MO 36 3 If$ t 11:9 1 T. 1 129 04 10 42 1 U 1.23 J341 14-0 42 4 2 135 4. 4 29 '143' AS 14B IJ 3 V 134 1237 146 1. S J 47 -. 5 1, $4 T 4 14 1:50 151 156 .11 169 57 14.4 15 4 i$o 159 162 16 1 77 .557 f7Q' 175 1 &5 66 63 1.67 02 ils t4,� 1$-� 194 .6-3 A 1-7-5 - 85 194 J."91. lot 1 99� IQ 66 40 . 7 . 2 199 206 Ilia 12 75 1. 21 "2 2,34 75 q 2 2_ ip 43.§ --4 7.4 2" 2150 253 i 34 1.9 S r. vl.�. 3 96 306 312 3:2.1. i 00,m 1.39c . i purpon. (pirf .64fi.g of mur - adn"g. xxag .-Ow, with a CPA -Per Yeat IiiLlreas7o E�� °ciF�e�. - frieen►a tfto �nttw;, lblwnsa.., ut�i"iYiY.Cp1�i�' Y: ;� > >: RDA 7.3 su -42A no I 1AS, LEGEND 6.5 0 INDICATES AREA IN ACRES. 7 3.2 $ 5 0 INDICATES NODE NUMBER. ro EM—CU126 INLET t RN .4 64.5 PROPOSED REINFORCED CONCRETE PIPE. j, g", O &/ INDICATES PIPE SIZE IN INCHES. PIPE SIZES SHOWN ARE ESTIMATED PIPE SIZES DETERMINED FROM THE HYDROLOGY CALCULATIONS. EXISTINr. 1.10 CHANNIL. 6 & a LINE "HS" 48" A INDICATES AREA DETERMINED FROM 4 4. —v%r 33 i --W .--4 ---. r HYDRAULIC ANALYSIS MARCH 4, 1985. L INDICATES AREA DETERMINED FROM /tA �y PHASE I H YDROLOGY STUDY FOR KAISER 1-0 PERMANENTE PRIMARY CARE CENTER DATED JULY 1990. INDICATES AREA DETERMINED FROM PHASE li HYDROLOGY STUDY FOR p KAISER ERMANENTF PRIMARY CARE TU L K CENTER DATED JULY 1990. NOTE: THE AFOREMENTIONED STUDIES WERE PREPARED BY WAGNER PACIFIC INC. 9 EIF� ION LISED 5 7 � roq" To FOR PC5rrrVE F=Lovi. 4— NOTE: 1135 THIS HYDROLOGY STUDY ASSUMES THAT THE PROPOSED RANDALL AVENUE STORM DRAIN INTERCEPTS 1007 OF THE FLOW. REFER TO tnt See AOt-16— A,e /I 41ee.., J.M.M. EPORT DATED APRIL, 1988. FOR 01A��A'7 r.. /- TO T RANDALL AVENUE RE FEREN CE 'STORM t. TWIS A— '0.3 DRAIN. W1,01 M y 0 ------ --------- PROPOSED r. PARKING STRUCTURE .T- - -1. 11 3"S -0 > W M oe .2 Mo. I I. t, L r all j 30 R11-, 122 12 Ed STING 4Z RCP A L L E Y' 411" FLOW EXISTING 1-10 CHANNEL 7� 'A R D I N 0 F R W Y. SAN . . . . . . . . . . tE AM J SHEET PLANS APP ROVED BY: CITY OF FONTANA SUPERVISION,'W'. COUNTY OF SAN BERNARDINO I OF I V4�l! Pacific qYDROL06Y MAP SHEETS F012- me NO, PALMETTO DRAIN fp & DANA S. HAQ ADAV DATE -7 MASTER DRAIIQh4E STUDY R.C.E. NO.34751'p)PIRES 9-3-91 DAT u— ;-- - — - - mw - - - - - - - - - - mm INE - - - - - - - - - - A 6.1 1.5 I 813 alit" RDA 7.3 su -42A no I 1AS, LEGEND 6.5 0 INDICATES AREA IN ACRES. 7 3.2 $ 5 0 INDICATES NODE NUMBER. ro EM—CU126 INLET t RN .4 64.5 PROPOSED REINFORCED CONCRETE PIPE. j, g", O &/ INDICATES PIPE SIZE IN INCHES. PIPE SIZES SHOWN ARE ESTIMATED PIPE SIZES DETERMINED FROM THE HYDROLOGY CALCULATIONS. EXISTINr. 1.10 CHANNIL. 6 & a LINE "HS" 48" A INDICATES AREA DETERMINED FROM 4 4. —v%r 33 i --W .--4 ---. r HYDRAULIC ANALYSIS MARCH 4, 1985. L INDICATES AREA DETERMINED FROM /tA �y PHASE I H YDROLOGY STUDY FOR KAISER 1-0 PERMANENTE PRIMARY CARE CENTER DATED JULY 1990. INDICATES AREA DETERMINED FROM PHASE li HYDROLOGY STUDY FOR p KAISER ERMANENTF PRIMARY CARE TU L K CENTER DATED JULY 1990. NOTE: THE AFOREMENTIONED STUDIES WERE PREPARED BY WAGNER PACIFIC INC. 9 EIF� ION LISED 5 7 � roq" To FOR PC5rrrVE F=Lovi. 4— NOTE: 1135 THIS HYDROLOGY STUDY ASSUMES THAT THE PROPOSED RANDALL AVENUE STORM DRAIN INTERCEPTS 1007 OF THE FLOW. REFER TO tnt See AOt-16— A,e /I 41ee.., J.M.M. EPORT DATED APRIL, 1988. FOR 01A��A'7 r.. /- TO T RANDALL AVENUE RE FEREN CE 'STORM t. TWIS A— '0.3 DRAIN. W1,01 M y 0 ------ --------- PROPOSED r. PARKING STRUCTURE .T- - -1. 11 3"S -0 > W M oe .2 Mo. I I. t, L r all j 30 R11-, 122 12 Ed STING 4Z RCP A L L E Y' 411" FLOW EXISTING 1-10 CHANNEL 7� 'A R D I N 0 F R W Y. SAN . . . . . . . . . . tE AM J SHEET PLANS APP ROVED BY: CITY OF FONTANA SUPERVISION,'W'. COUNTY OF SAN BERNARDINO I OF I V4�l! Pacific qYDROL06Y MAP SHEETS F012- me NO, PALMETTO DRAIN fp & DANA S. HAQ ADAV DATE -7 MASTER DRAIIQh4E STUDY R.C.E. NO.34751'p)PIRES 9-3-91 DAT u— ;-- - — - - mw - - - - - - - - - - mm INE - - - - - - - - - - 6.1 1.5 I 813 8 II RDA 7.3 su -42A no I 1AS, LEGEND 6.5 0 INDICATES AREA IN ACRES. 7 3.2 $ 5 0 INDICATES NODE NUMBER. ro EM—CU126 INLET t RN .4 64.5 PROPOSED REINFORCED CONCRETE PIPE. j, g", O &/ INDICATES PIPE SIZE IN INCHES. PIPE SIZES SHOWN ARE ESTIMATED PIPE SIZES DETERMINED FROM THE HYDROLOGY CALCULATIONS. EXISTINr. 1.10 CHANNIL. 6 & a LINE "HS" 48" A INDICATES AREA DETERMINED FROM 4 4. —v%r 33 i --W .--4 ---. r HYDRAULIC ANALYSIS MARCH 4, 1985. L INDICATES AREA DETERMINED FROM /tA �y PHASE I H YDROLOGY STUDY FOR KAISER 1-0 PERMANENTE PRIMARY CARE CENTER DATED JULY 1990. INDICATES AREA DETERMINED FROM PHASE li HYDROLOGY STUDY FOR p KAISER ERMANENTF PRIMARY CARE TU L K CENTER DATED JULY 1990. NOTE: THE AFOREMENTIONED STUDIES WERE PREPARED BY WAGNER PACIFIC INC. 9 EIF� ION LISED 5 7 � roq" To FOR PC5rrrVE F=Lovi. 4— NOTE: 1135 THIS HYDROLOGY STUDY ASSUMES THAT THE PROPOSED RANDALL AVENUE STORM DRAIN INTERCEPTS 1007 OF THE FLOW. REFER TO tnt See AOt-16— A,e /I 41ee.., J.M.M. EPORT DATED APRIL, 1988. FOR 01A��A'7 r.. /- TO T RANDALL AVENUE RE FEREN CE 'STORM t. TWIS A— '0.3 DRAIN. W1,01 M y 0 ------ --------- PROPOSED r. PARKING STRUCTURE .T- - -1. 11 3"S -0 > W M oe .2 Mo. I I. t, L r all j 30 R11-, 122 12 Ed STING 4Z RCP A L L E Y' 411" FLOW EXISTING 1-10 CHANNEL 7� 'A R D I N 0 F R W Y. SAN . . . . . . . . . . tE AM J SHEET PLANS APP ROVED BY: CITY OF FONTANA SUPERVISION,'W'. COUNTY OF SAN BERNARDINO I OF I V4�l! Pacific qYDROL06Y MAP SHEETS F012- me NO, PALMETTO DRAIN fp & DANA S. HAQ ADAV DATE -7 MASTER DRAIIQh4E STUDY R.C.E. NO.34751'p)PIRES 9-3-91 DAT u— iA HYDROLOGIC & AYDRAULIC ANALYSIS OF KAISER PEAMANOTEMEDICAL LEN TER AND SURROUNDING AREAS FONTANA, CALiFokNiA Job .No.. 345 Prepared For; Kaiser Pennanente Medical Center And W-C Architects, Ind. 500, 8. 'E." Street Ontar-16, CA 81. Prepared ay Wagper ord'.Cqnspl#94 201' E.1 Yorba Linda Boulevard 4 + 'A jmw %' Placentia, CA, 92670 klw� (714) 993-4500 KAISER PERMANENTS MEDICAL CENT-.9k. HYDROLOGY AND 5k 'ANALYSIS JOB NO. 345-01-8. 5 FEBRUARY - 27, 15815 I. Obiective of Stii&v the o of the hydrology study dono bj W ' aqne°rQ--$tanfpzd C. 0 riqu, . 1tants 'was to access the impact of the drainage cprid-i I t . ions surrounding, Raiser Vdt�ian6ftt.o-% Medical; , Cen-ter, 4&�ipe. . the drainage; problems that exist and detera.iffie . possible solutions 'tb the p. robl e%s The hydrqlogy study was also meant to act as 4 precursor for discuss . 1,qns with the City of Fontana c.6nd0rhihg the Clty inVblvdi4nt in future storm drain construction. Procedure. af'Hydrologic Analysis: The study was, conducted following, procedures as adtl1aed by the Sah.gexha °rdiad County Hydrology tja4pal 1 (19 .83 Edition) . fotmAtion. des re Ing master pi.4nned -storm drainage And ftom it jo. 11" systems and watershed areas from the City: of Fontatia. and the San. Bernardino County Flood Cdntkol District. Cop " 14t stu es a 4to�,m drain ..P1 .. of existang hydrology I ap iaatteik, PIAhs .day ��. tiisidit6d in. new hydeblogy maps pOrt'TayiAg the. ��t orm. rund ff kdvact, on the Me.alg�l Ce , nte�r and tie City ter _e ippa , ct , a nt ' i ' cipated once the Ci ' df FdritWiA mat plan of s t o r m 4ra-ins is compI-eted, The technical data. used, to c reate the hydrology study was - . - I the 1 1 It . 1 0 , I I. 1. 'y - a . - thO 'C Pofttap, Nan des ign, criteria p6 th*' Hydko10 I T iy-sl p used. anuA be a e 5y X a .0i.; tainfall ifattthtitY And a,`91.0pe for the intensil ty-duration curve at the rdoomni 10.h, Of, Thg an.a:lyzis d rain` assumed that all storm, dttjjrj pj 11tel are acce tul 11 capacijj'tliq�i and that p 's, as, shown on the u ltimate. t n. - n i mp.r o v ei'm P�ht * ia ntas:&er stprp. dr.aih plan, will be constructed. R N KAIOR PARMAtIENTE MEDICAL CENTER I HYDROLCOY A JfYMAO ND %1C ANALYSTS PACE.: 2 ggttjlts of Hydrologic Aasilv*sis• - The hy- ftbLogy. studies 'perf0.r-)49d.. compared Pres.ant day drain Age pattdr.hl. w ith 'those ,ptev Dusky tab for the adide p-p-evii-dUt studies, basin surrolUjadihq the 1hodj.q.ja..1..- qeft,te,X.. .,T,-. 1 10 th e exi storm .tu4i es d ... I one. in 197- were : used to sli... I � x. ain A rygold; Avehile-Aild VAI AY m: - vv7, AtS 1,1 - a The dvttbAl rag#�, . lts of the pett h,yd`rbl69Y. stddi ets it:h."Ow 4:a of tributary area cohttibutirig large increase in tho albOO.Z., -cQ - to the runoff reaching . the zizdio-A-1 q:ft_rt�,erz And. a4e qu.dntly a large . 44c.1 . �easq in the amount of tiirfadid 'runoff.. the dlrect comparison is shown below: rgaterghed- Area Reno CF /Acre 101 Study 96.5 Acres 113 CPS 24. This tudy Acres - 251 CC'S 11(46 The drastic increase in runoff potent,1A.1. can be attributed nd . t only 'to an increase in thek c6ntkiJbu,t:if1g' drainage Area, but also to an increase in the percentage of developed land contributing runoffi. A hydrology study was prepared which determined the a nticipated . nt4cipate,d drainage pattekng which will ho couso,;& by the City of P Taster plan of stoth,' dtAins. _AW9,11 that si6rldwa dtal xO-ge s� jg� the -p1lahfi ei'd.. ptbb1-& Ai r,is, * W1 Akisf, Oven , dt n - Viii dd.ngErUdt6d. 'Th i &MO01 : tuyloii -th C l'be expected e P to. reach t: h e : me d ica l & e* i i t A f * W'i 11 el* -d - 0. 64 tff4- t h ,acfty of t e, jt'�r built both a 'th. talzi-b.il -cent exis ting storm ra ;, ., - " I le . )rAO go Kaxtygp-�d AVerid" e dt666 Ae-Aititizz• Vi n. t e V a a lley B s W ed showing the drainage A sep arate hydj:olbgy. map i ag.. PTqpq_r.. 'I patterns for the medical canter Y, :Ali Jiy4r6, 'Pgy map t the- - e took into account all ex stint. dxainag e 'd Vise s 4� 'coaritt.r and -1444e prov... for firt-ure lot, and bdtld I ing ' e.eFgan.sionq . 'Tlie hy.drolqgy. ; tt6.s ;ed that al- though draTnagO ptoble-m!s� plague the 'cerite% 'presentjay- they can be- alleviate witt- `t'16' Ad8ft�'on.-of: new storm ft- ins d ° ra.i.ning to the Valley BMilevakd storm dealin. and to" t-be storm drain that is presently proposed fd. Sliefta AtrenUe-- All hydrology maps prepared for this report, are included in the apperici4i-.. 1 4 KAISER VERMA.XENTS MEDICAL .CENTER qYbitoLo . GY AND . HYDMOL IC ANALYSIS GE 3 The hydraulic chaVaqtevistics of t.ho eXist rg stp a ri-n d g.a+rygo:l.d+ AveMAA and 0 the lineq in ValleY B%)U,.Iev+'a+r 'b li ',d medical center 'atitd were rev,ipWed_; fox.. EhAit- - a , -ty t mu capacities of c�qftvey the storm run* riffs_ expected: M:OLX . r i'th an o proposed , alofi4 w. f the'. pibos' Were date I dr ' ' st d a t;r be �btri, . t stotit, cP that W 110 l t o - pr,6v,Mee adequate pipe flow capac-ity f6t fill conveyance Of runbf waters.. thi The hydr aulic aulle calculcalculations were applie ... to ..b s study in tw option -. orm drz,in! sys tem ik any pro!- 1. analysis of the existing 'st� + is t M of storm rim atAin a x Ions ppsed. sto d'di'E' np; 4S - lEth. Orains was to be built as per t:he ci,yll's plan v fthcrdt a n y alterations. 2. AhalysiS Of the. existing. storm : de system w ith any iti n a d.dqq ind-Idd cert proposed :story dtai, : Ilt maser plan, Of storm dtains .q ions ' f the City a ;' .. 1 center and its surround that would benefit the medl.' inj areas. The hydraulit calculations' rains W are based' can the astujaptiolis that the master .. � . - I plan of sto . rm . be btii:l:t and that any storm drain improvemen propos�ed . that do not take . ment -u . f into account the master plan are ned6h6micAl and. un ea s14.1e. Fig 1 a-hd 2 on the . €61 lowing pag es sh the storm d aj a ' systems as they presently exist' 'antl �hov they are proposed to be mod fi IV. Discussion of _t)esfat.i Alternatives, The, storm drain, construdtl altetnatiVea as shown in j!igur-- and 2 depkc.'t tile tvo f- '; asibfe S J600. t'6 the l - erhAtive , NO, a*'i 0, jeMs 46 t.-he pedldal dehtbr�. age pr .mo S . .. b to cOhtttuctlon is ddn6id,6"red to be the, __ t, - d. e, siraIe due sttzints in Alt6tuati'v.e v, 1 and the necessit Of - com�pl the - nAstet Planned stor.,-M, I,: isteel below 'i 'a za'�A� a ion qu cOmPd-r'' 16 th . two .design indlUdes� oAly 'Cost ikoie::� This estimate s pipe line cohstrVrtion.) R q'' Q W o, V 1 ' odid „.�2 7�771��dd dome QBYHONVIG N °�'67f7O Q -,9 ;Cb' ':�a " odld L's lX3 h VO 19 -Y �P:Oo way S4, 1 �' . � +M ' r' %'■s■.■.■wrr r ■wM ■1.wus ■:� +rs ■rMti M ■Oc �� rr'.■,i • *� ..`� � `,� r. ■. '0 �. � � V .1 2 15 r l�L/ 9d /d.rr6E .""Yew :6/Q�`a+. i1' >C? Zk Adlc!N6E LU O : d �d J Sr 51'iYk57: . ` Q wr■.w ■rr ■.;ra rrwwa■ii, � � . '+..1 .Syl? 001. = ” • • ■ C7 : . fO.DOxSb''a�d/cfr'�0''�1S /Xa?' :7 90.1 ..� �.: Q r . • } � y� .�'dld it �• , 77aMy'G�,'CJ��i�ti/; °f.�!/O "O .51N':3d1c%:irf+ L SJX3 . :H:.'..d s i i�� ri ir`rga �r l�Yi.i��r�r� a► r� rrr� �.� r w w �.wilk � Mi.w,rr r wlr.r�r rr r.� rrtr r �r� �a�� �.� r.w N� Rw' ►.. ■.....;�::::......w. ` ..... 3nNIAY . 0 Gob T a - � �• eiir R. • • t. -N I kq 0 % ob SC ALE lll;= 40,0.' 014 AO C w/o A012 OwIrsi Q /07 7S C. _AVENUE.,-�¢- 4ak AC, ;r • ;rn, Qtb r-46 C-AlS. c in 0 0 1 M Z�VSr�S 56'"RIP61 A r 64.fR1,FS r0 C: ca C3 q 141 C. AS, - 27 you.. - z �Wwlbe r N % W y .-Xgx avw 00 KEMP-5TER Tj ' D SLANCH MR Ra CEN TER KAXSEjR _NtNTE MEDICAL CENT 1 0 0 6LOGY ANP - VtDRAULrC:ANALYqI:S PAGE 6 STORK ZRAM PIPELINE OUANTXTX' WM The follo0big :ddmpaklsoh is made betvfeen No.: I and: No..,: 2 - and, takes t storm, drain piV'.e - 1 1 q4. 1 � va d. Mlity-19:0-1 es fog 0�torm drain tmp emetvto: on VAlley Bou ;a x A Aveooe;p. pe aptit q master .improvements on t cal center alt those: prop6sV4 %"or Sierra goLx..Jovard- r plan improvemdnts� and � ' sate;.. rqpp-r �ip 1pose.s:. of ppo . quon� 0 '1. nav v4 pell'-Ae pa.rioqn-.,� the quantity eatloate- only, inclu&es cons truct =" I'l. COST/UNIT QUANTITY 1. Valley Mlvd,. Storm, Dr 39-u RI.'C": 99 /L.R. 0.010 L.F. 4V Z.0, pi, q5/L'F-. 25 0. L.P. L,,�P. .. :7 8 o ,0.0,0 105 5. 0,0,* L.P. 4223,540, 1,250 L,Fo $:1*35*000 600; ; P* 6 .0 L, P. SUBTOTAL: 2 L.F. 2. Oo—Site Mddidal Centet 27 SUBTOTAL:: 1 L,0 COST .00 AnTITY COST ,t5.4j:00,0; 0 0 2-3. t .7 5.0 &O'D. L 57 74:, . L,,�P. .. :7 8 o ,0.0,0 BL 25,0 0 0 4223,540, 1,250 L,Fo $:1*35*000 0 0 42 ""0. 06 0 0 9 4.# ; 000: 00 0 0. 0 � n Art& . ATSER P'EgMANENTE MEDICAL CENTqR `HYDROLOGY ANO tYDRJWLIC 'ANALYSIS -PAGE- 7 3. Marygolcl Storm, Dxa.ins - Maa(ter Plan Ekten6ibn on Alt., fjo, 2:-, 70/L.'P. 200 39" R.C.,P. 90A.21. 0 SUBTOTAL,; U0 $ I4- 4. Sie.rra AvehUe St:btm Drain - -Proposed Cdnattuction fot Summer Of 18r R.C.P. 36" 35* 45 ' /L., F., 0 o /t, F 85 /L. P. SUBTOTAL: 5. 'Master' Planned. S.t Drairtt AV R.C.2.. P 125/L. P. OUBTOTAL.-t. 540 ' .35,000 550 L..Fi 16,500 I, TroPi 00 3,00 L.F. - 13,500 100: L...1" 1 ., 13, 5001 000 L.,F 4.0 ' b 60 64..& I.;w F. 6L'. _50 1 L. F.. il.19 .. I to 0 L:.,P.. 112, 700 L.X. 03 r 0"D 70 0 -L.F. 63 3,000: L.P-'. $24 :50.0 3 1 0'00 L. F $243,500 65.0; t."Vp.: 55- UD L F i50. .650: L: F 68.i:260. 6°5:0 L .. F 6L'. _50 1,000 L..P.- 14 5,,;000 I!, 15'o: L:.,P.. 112, 1,500, L.O. 187 3 3 5 0. L:. V, 4 11,T50 5 . JF '. I 1 V US 6, 0,0 0 5-i 8.0,0 L... F'. $04 TOTAL E$TXP%!r'xM $TO 94 T Li .Feet. of 'IoproVegtgat$4 12,850 )4;aF., Tot'al'' Ratliated C4stgs*..- l HYJD GY AND HYDRA PAGE 8 extends far- into: th,& ae sdrrdgoAin th� The study nt study 41 of and of storm.: drainage viill not elimina.t.e.. tike.. .^ of the gxist.ing d.ra�jnagg conditions Research aqo 'A roblems 14ad to -the �= reaches Valley gouldvdid. Alternative. No, 1 rgqpires storm dra�ft An Valley Boulevard and on the medical- Center - MArylpld Avenue down, ValleY E�oulova axid fol ' low Sierra Avenue. to join the existin: flood control 9 channeI at the San tto to MA 6116 Road and' then vies:t.: to Acacia A..Venuo, tension of* the storm dta'ift IU Oh Katygo.0 AT, r ,Whicb 4s pi ,K CENTER = VL16 ANALYSIS. HYD.RQL='Agb PAGE 9' Dez-j4n Aitetnotive No. I appears. tbb* the to 'd esir a ble of the two Alt:Orhatllet for the folldVinj tvalonsl 1, The constructidh costs, associated with Alternative No. 2 are lower, 2: AltetnatIve Rqi, proyt-des for: .construction 0 f A ifiteqtal, Portion of the 'storm drain mas'te'r p 'art ... 3. Alternative No. 2 alleViAtes the drainage problems impacting the .medical center prior to the runoff ne�ch.inqthe; qgnter not aftek. 4.. Thd, proposed a,11,qnment for Alternat�ve Voi. 21 v't,ovI46s ease in ' d )ri b ecause X* - is to. be Nxilt for more tttl-O 1 A igt . o on, st with terutive No.. I n6 .1ower- t4aft-10 V and I�bg - sme VAcan nd.;. lIt. �Iily ho I. tt e a _�, _0 t t contend r. a with 'the high tia-ki.je volumes at Sierfa AVe Q.0 and Valley Bodlte.var-d, but 4140 the t vithin the medical cente This concludes the hydrology hydraulic study for M4diOaI Cen the ` iser - ' Permanente. ter, which was intended to identify the - impacts and problems associate with storm runoff at the medical , exist near center-. The study determined that drainage probl ems: the medical centex and that soltitions to the dr.aI,nagO-.probK*mS are p00 The study also pgoposed that A pO.rtl6ft., of the Cit of jrdntana master plat of. pC..; drains be. constructed, Which i Would iiicllid6 drainage areas: that contribute 'to. f lo&lijig t at - e. tli medical center. q I MINING MARYGOLD'ANNEX I Lf5 C/Y /C EAK /NE. SEE INSERT BELOW - M 'k ! • , - MARYBQLD • - - ' - A - ".. �.�.- -- • ^- -- - - ^' — —1 ^._ ..---- --' -- M8912AV— —�_— " S W S - 4 , + ° V!. _��. . O19F. rb bo LLind7 9 a • G /Z�SO. -- - - -'— ' -- acen/ia, lo. 9267 pwffRic / �— ^i� -- -- - -- -- —� 2� rx/ r j j71/ 993.4500 ! -1 pm� IV moss NN j... . - - P , Harr a \\ � .. ,,. • . , I I _ ... , , Lu - - -- - - - -- �/` `\ ,� /� Z�` ter/ �\\ 1 1 f ' - - -- � _ -- — ... ,- -- - - -- �• ' I - Bi 2 - `.- --- _ �'4 - ,W,. z y PUMP \ \\ - .\ .� rr o f 00. z _ f `... r r ` . I W a ih r. L. o- a 7) O W -- - I mere in /. ^,1 O a d. _ ,- co UJ co -- -_ ,u Z T77 _ t ; - - _ = H -- 3 3D - I uj ornee .. mtoicl NE Kos. En -- - - L ! ! Ij i t\ ..� I i 14 11 i I IS i ,• .) I -: O �- I � I " � - .. !� ' � .�� . 1p vruer •nnen L-1 . \•\ I ! .. !. � ! �. I '- i I I '. 1 — ^. {� ^ .. j - _. � � � - - ��'.,.; � .. 82 ac. .• � ! i � I r .. i � �� i L. I !, I I I __ � ' _ I I ! 7 • j feVISIOnS date - - -. - >z:. _ - _ '.�,. • -' fi r �. r UXI.. p� t : L f .. .:• date: Job no: • RCP - - - -- -- - - - - -� T - _ RCP �: "RCP - - _ — - - - drawn: f b =2P8CF5 t VALLEY BLVD. VALLEY - _ �--- - $Gale' I 60 I - - - -- - - - -- ° pkvD - - — 3•. kk • -- -- - �--� -- -�___ - - - 1 - -- - ' - - - -- - - - - - -- - - -' - _ - I _�1 � Sheet title: ' F s LEGEND MAR;oolo TOPOGRAPHY < ;s O - DRAINAGE BOUNDARY - DRAINAGE AREA, ACRES ; - - EXISTING -STORN DRAIN IHPROVEH£NTS Sheet number: ='s ` - PROPOSED ST.ORH DRAIN IMPROVEMENTS' MARYOOLD ANNEX 'e _0-FL ON RATE IN HYDROLOGY AREA 4 . Y & -- INDICATES HYDRAULIC NODE CALLS. Of H it III_. I� b. ACACIA u uu � o.� o A KWU E=-=] QO o� OD F ❑ E EL nc f T =,, a _-wv%PRO1 S7MA-f 4)UAl —ZT-41 D :7'R ) STORM AOF41AI 'V 6,E AREA - ACRES W BOUVDARY LrlsTlma sronvavw ImpRohrlwArrs PROPOSW SMR"aVIN IMP)MMEWS 0-fZOWM7T /A/ HYDROLOGY AREA CcP &/'V" SURFACE plow lmolvms 11ravilue 1voDf, maAAawg. 7777 7' t-777.-. 7 �7 - :77 o� L o I w J, q ........... n _- nn�_� T 1 � •,ate SCAZ E 400' I'll siw OA kh, OIA V 'CO Y A rZ W& 1: 9 Y. A "A mi. 4,4 M AE= wzwsdip Z;011 17 ?Q0 Ay"I"lla'ap. 5t6V : .rR cwz (714) "S -45W o1w A 0 4v 0 -)'R, .96' .owa -Loa VMR PERNTE VV W MOM Cv HrDROWCr,v -Ulie, CGUYST, RUCT!'tiY g T! R -:77 IMS 3 Z 4VXf4 u uu � o.� o A KWU E=-=] QO o� OD F ❑ E EL nc f T =,, a _-wv%PRO1 S7MA-f 4)UAl —ZT-41 D :7'R ) STORM AOF41AI 'V 6,E AREA - ACRES W BOUVDARY LrlsTlma sronvavw ImpRohrlwArrs PROPOSW SMR"aVIN IMP)MMEWS 0-fZOWM7T /A/ HYDROLOGY AREA CcP &/'V" SURFACE plow lmolvms 11ravilue 1voDf, maAAawg. 7777 7' t-777.-. 7 �7 - :77 o� L o I w J, q ........... n _- nn�_� T 1 � •,ate SCAZ E 400' I'll siw OA kh, OIA V 'CO Y A rZ W& 1: 9 Y. A "A mi. 4,4 M AE= wzwsdip Z;011 17 ?Q0 Ay"I"lla'ap. 5t6V : .rR cwz (714) "S -45W o1w A 0 4v 0 -)'R, .96' .owa -Loa VMR PERNTE VV W MOM Cv HrDROWCr,v -Ulie, CGUYST, RUCT!'tiY g T! R -:77 HYDROLOGY STUDY 'FOR AND SURROUNDING )(Asft,R PLAN DRAINAGE AREAS OF FONTAM, CAL'XFORNIA N Prepared For; gaiset Permariehte Medical Center Submitted To: City of Pdntah Pp.b.l,.. Works uppartment: Prepared By WAGNER-STANFORD 201 K. Yorb h'inda Blvd. Placentia, tallfolmia 926,70 tu'lii) "q Page 1 of 26 1-4 L7 9 P. 2 P:f 26 'KAISER PEPJIMNT-E MEDICAL CENTER 1 CALIPORIOIA JOB NO. 3-4t-0 TABn OF CONT XNTRODbOTIO14 SUMMARY ........... "bk0LOGY CLACULATION8 FOR THE :�- --., ON i t 1��oq lCONDI* HYDROLOGY CALCULATIONS FOR THE PROPOSED CONDITION ...... 14 H - DP P ff iDWG)t 0 EXISTING CONDITION HYDROLOGY MAP*. PROPOSED CONDITION' HYDROLOGY MAP: ONSITE A P .. 3 61P 2 6 RAISER: PERMASONTE "IttO10" CINTER FOWTAM., CALIFORNIA ,JOB NO. 345-01-95 Rk OUR) ADOW4.1080 ThId study is An :assessment on the impact ot -oxistin5 and ulti =mate drainage pdtterht on 'the medid-Al center And ultimately on. the existz4g S'... orm draln: system in Valley- tddlev.Atd. Thec bydrqjo'9y study 4011 -W. xes specified by was condiapted .0 ing; proce Au th'kk San Berhardirib do"ty H',vcjr0l M anual`, (1993j. The h id' * Ri ' " analysis tisbd, a 10"�da'k starts frd4dbhoy for y ro- ogy. ana.: s M. ralqfalll itens'it n, - the recommendation of the City staf a s -y and, a� lope of 0" .05 for t4 tepslty�- 8uratiqn cur used foe Rational leO04 hydrologic analysis Thg. analysis assumes that th6 City bf FontAhAIA matter plan bi' of sto.rb dras wi ultim4tply be cojigtruotod. A MOA. obdective of the hydrology analysis is to determine the ca,mcity ot' 'ie' existing: storm drain systems surrounding the medioaI center a n d to, determine wh h at further storm drain improve- mefitt if Any, are required to Adequately handle, the storm C�7 M P.4 of 26 KAISER - PERM*$1&R MtOl $ftO MEDIC C PONTAM, CALIFORNIA J60 fqo*.. 1455-0 85 A MMUMM The PrOV" i'QUs ad thA;, f Fonta bYdralolgy studies 49 SUPP. by e CI f6k - the FiAtefshdd AreAi� si1ftbUftdiniy the K4iladjr Permam��nt e Medical Center show a much smaller. runoff itbaii it indicated f rbiw this hy. study T . a: - lniqr cease ' i r unoff predicted can be attri- tributar u f4 larger tr y areas in- the watershed. basin tta'4 or .97 8 0di d - b, X N-� 0 and due l, I ginea 'y' data in the i i i 1p�s. " Xy, j to. t he 1"n6red8ed-PercehtAga of develqp6d lan d6�ftr. ng runoff-. T,fie 'results of this hydrology study are ppmpgro4 beiow with the from the 1 hydrology studie h ruji-off'am�llrit ,d etermined Wic were used to § the Valley Bbul4vatd -st- (ItA 'Because the Val BouleVAid storm drain was des ighed origina 1Y at tU 1 ca padity the tjpp.Act on the storm drain from an increased amount of runoff can easily * be q ee.A* WATERSU=.AM Btrupf-P CF-S/ACRE 1971 . Study $6',:*,5 Acres 113 OFS 1.24 this " 1.84.2: acres isi- Cr$ .Analysis :of the pipe hydrAq.1 - i for the Valley.-Bodlevard storm, draip looiiaOe that the system does not 4-g- . vg qoqugh qapac:ity to hArr4lp tho runoff krobi the 10.11 study and th.ar'afb - d have to )M w ould oV ; greatly to addonudbdatei the'rir qob4i""' tio'ns. A tV 4- O .to r-14 Z. Aq .. l _ :_J I ----------- C:l 77 - ovilybeky �A V V 09*0 ,mv m • VJ JJ ff (VI 0 y . am A� O STUDY ' z4' n. Y� , t: R °Q R j TSAR . P�MA11TE1�1`�F •s � . � 3 try± as s i RO r i s t F , ' .. .It+¢OCkNCf�7l t Mbi�"te f h� • � ':2t . FS� TER; , PICT DRAINAGE . ARE I1�T THE ` 1 PREPARED FO& 'IfAISEI YLRMAN NTE <: ° MFl)i e ATs CWTER , To OONtIIN' MOM` TIM THEE CITY OF VONTANA f SIVBMITTED -TO: ` Crtr. OF FONTANA �'IIBI,IC "O1tI£S :DEi'ARTIsIE13T , - - I'REF'ARE,U`.BSt; ���� �'�l:�IFiti IN1C .I'OII�II+TDA'.HLYI3:74 :: ... 0 APF1 CA. : 92367 1`75 ' , � »'s :< A ��s= ' ✓ ( ^ � :;T - . - - . an am 841401" UffE 295 �, 4& S CA 923W (61 . V).94!6-4.7-A FAX , —." F . (4191944-4781 Maur 35, 1990 .mr. 'Robert..W. waddle P-ja:- 352-o5 -grO #V ] Pq iteer 1P tv Of 9'0T)'*h ela$'3 Pottaila-i CA 923-3,5 'qut eat�-' Review, and ikevision at Oydralogy for Raiser Termanente Proposed Site 'Improvements - X - aster -Plan Rydroio Cal ci%lat aids f0f t]4e 'Ra lMt;to :ftan f; of RqfidaVT.', 4venud to the, 1?rai:1ka#0 CjTa#n!el- WAPL-RAq #352-05-90 Dear .9r. Weddle,, P. t. We are pleased to have 'ha the opportuni to prepare this report p rt f or to iaU tua I I benefit And i ;d a*po .#t Ot dt bo)r Oij4��i K _X Perhidrfdift6 MddicAl C 044ter7R6bort G. Ho&k5its, Ar Fiitect and - A ' --- d the: .City of f9soCiA 6.0 Fpntana,, Our fiTt, Wagner Pacitic, Ina-, has obtained cop es at the eheng, -Stortm Dr4�-;,j 1 6, the BS-1 H CqmVr , ive . . Plan* v.ql. S , thrq � . ]k aloirg Sierra Avenue preitinred got. 'p m Arid th pire Mall dated t$6t6xnbi,--.r 1989 .end the 'Waint 8 tiford Hydrolog!ld and. Hyaratilip :Ahal . sis ti y dated. Aarch 1985. Obpies of all the input data. for the hydrology calculations were also Dlbtalned for each I report. Each report qtd and tide 40totgtation q�e re-VIeVred and then utilit,e- to establith 4 44-- j5bLra;;A#bra og t1ji epp and._ -Ist44 Wagnet 'J dif iQi Xi.xc.r co Ote - 4 1 a -field for4ev" 16f °fhd dtikloig6, basin to confirm the bydtolox gic boundarles and exjsting. conditIons. The 'f imain-gs Of this field review are reflected -*n; "the: hxarology: MAP. The tie same as ;Lp- 4o"4 �-A th one exception 0� -FX,,P, dqmpre� ensi-ve 4t pt*�h plait 4�� t�he VagnL-f—,St4rkgQiff,(a RYAkbIOb*c ag4 Jfydraul:t�c l :)�qdp J, qn ' b 6,9 Randall, A '* rhi'd to be . lrtterde}?ted ig Oai±cla Avehiu-- and. :c�Orie4 east in 'a s4erate Master Manned` system. LIN T Mr. Robert W. Weddle, P.E. 352 -05 -90 City of Fontana Kaiser Permanente Proposed Site Improvements May 25, 1990 Master Plan Report & Revision of Hydrology Page 2 for the Palmetto Basin A copy of our computer output, the hydrology map and estimated pipe sizes with cost estimates are included as an appendix to this report. If you have any questions, or require additional information, please d^ not hesitate t ^ Cn t ac t +„hi8 office. Sincerely, WAGNEK PACIFIC, INC. p RO ESS/0 Dana S. Halladay, P. E. DC .� m Vice President �p R.C. 34751 / it „ "'�".... . /l Keith E. Wallace l ( OF GAt� Project Manager KEW:jj AVK:1 -009 Enclosures cc: J. Strodtbeck, Project Coordinator F. Molinos, Senior Engineering Services D. Hunt, Kaiser Permanente R. Hoskins, Robert G. Hoskins & Associates Wagner P�a�c4fi�c. �tIhVSYOR�' XAISER PERMAUENTE'NEWCAt CENTER SMMOMM=C; MASTER PTJM DRAINAGE AREAS ftYDROL6Gk .ANALYSIS abn No.. 24AY .1251 1999 I OBJACTXYB-,TQ -STUDY Vb6 Obj&dtiLV?_ of the hydrology study dons * br wagileir racili '3:hc4 is . to evaluate. the existing= hydrdicigir. C63ftd "t "'h" h tributary to titisev• Pormanente Medical Cox.itlAet ass f eqcl*r l "Aw71Y as indicated in the - " i CiOmpO4p#s oi* pr�. Ia I?x, :pXoject tykt gt� * 3-3, :Rialto Cha=ei Draipdje Ax4aa jgrapAte4 by dames : Montgomery consultipq encj.4#040'. T4is hy¢iCology ti_ will define the tahich exist surrounding Kaiser: Permanen.te Medical ari4 determifte so! utions to the problems. I. X. tAdKG'kDdSb AM RESEARCS. A 'hydrdip.gy report wad prepared . jAfa44- K. Mdht4omeky in 3,988 �.ov' the a4h piarnaNdi 40 gqur� ty Flood° Con.t�l Ijistrict- This report qntitIO4, *Comprehensive $torm Pra-tu Plan;: Project, 3-U Rialto. Cbanheil 'Drqi3aa q.q A r j� 4eson 5 t. r.m. a, sto drain plan. for the areas tribviLary . to the 3,Ualto' Avenue Channel. The following hydrology �t4de analyzes only one of the many storm drain lines proposed by -O'q study. This is indicated by feeder - 131ne i rff: "o The _4 o4 model indicated by feeder_ line 4 H=1 i ' is vxk. A zqacrosc6pip scale and the results are used fox " A.LzI fipk the *H-L lirid..; The fallowing study analyzes All of the dx"ai.Aatro, p leins 'which occur within. the "H-l" 'tributkr' . area as a6 the Pd4tAIi#tt6 Medical CgntOk site.. A3,s.0 refer to the two hydrology reports prepared cogeurereox y 'with this report entitled, 'Etycirology ritu4y .for 'Kaiser .Ptimary Center- n' The r esul = ts this Ot ijjjp�ut t t$ )qdj"� are riser In, 6 the master plaft j O_tb. tend OTOCIOY 4944skr- al)*4 PAP U to the next Conflti6xfca PO . ipt, r�;E, PROCEDURE Or. 1 WMROL6GIC AftLYS19 The results of tI* I Ydrplogy analysis - *Of using the AkS toilfpiitdr - Thqt b _ompu.e�r program Js moe• an f-41 S4# AO Zpdnty hydrology manual. The c6ni .... puter output tables summarize the concentration point nodes And ob" of each subarea Vhete item's are 6 wb on d Ara h. the hydrology map included at the end of this: gdpott, A Who, :tpchnidal dAta U to .C' te i�ha- hydrology study was determined te.4, Wy. r.i;��iandatiqns;. from• the C-Ity of' Fontana and design ;ozriterfa peY the hydrology mar %xal.. The analysis used a, 0.56 for the intensity-duration, curves at the suggestion of thei* City of Fontana. ti. XwAttim§ This report in-diu&&g analysis f'ok. t',i -. Atokm .' Uen',cies- f Otoht� fp A),: The '-10 ye4 -!it6rn► f ke -at 6'Sj� a' Alysi4 i4 used. to 4etetnfine the fl&Wr4td to $j*6 the- s'torm drain system - a. the hydrology program gives a sl�owom qA, 't hy, -Tology map. c4*pii.ter s I pip Size is sized pecifled pipe, s ize: the. computed p fox non-press flow of, aboiA 7.5 capacity. 'It shbul-A be noted; that the pkp!3 s zes; -4e. erM' t Aej!y .f rloiti thy: jr a lysio are only A md3p',! accurate pipe "zo 'cain, be IdAte;*ipeO wbpA a h J:Aftllb- ah*jysa-S, of the storm drain profile is determined. tfif study gives an accurate account of the amount of, storm runoff that can. . be expected, to reach the various concefttka ppi;itd, AOWR.. RI The 25 yd;*r stOkq freq ieric h - d i iiaoqy analysis - is used to dete3#in6 :t)le flowr4b which is used do determine the location of storm drain : laterals•. The 2-5 year storm tiowrats mot previously pi cked up by the storm drain system shall be maintained between the street curbs: When the depth of flow in the street dkc6eds the top of tUrb eleVatigho then A storm drai shall be located to p 116 c ck -up t�hq� s: f lQ*. T, omp er Printout iAdipittes whett the f lcW "oeeds. top of curb - C) The 100 'Year storm frequency hydrology analysis .is used to det6xmine the flp-*,rate, similar to -the .15 year storm frequen-cy, except that the excess flow must fiPi; maintained between the street T, I Ye 100 'year. f lowrate is also dddd for sump :conditioix,aii I* 4 ylls R-efO_-r fo.,t4e street cxass S466,t'% - C Ut ad in. computer output, .1at . i�Cl - d fbr the j#);.*6t se�qt ioq .used in the calculwL.ions to model the b fu 3. h-rVyi*j 4i4p'O'ity Of t. street. spot e1evat ons of the Areets . n axare s1lown oq the. hydrology map•. 'These - eva, uatl;ons were determined by researchivgas= buiVE street plans at this dilty of Fontana. A 1 I r 'I 4 �l�l�I.IC ANALYSIS of t STORM D'PA in the PAIGMUrfO 1 M$TER DRAINAGE AREA CITY OF ]FONTANA, CAUFORNIA PREPARED Rilt: PkEPAREb B*.: KAI SER CAI� CENTER :;' CITY OF FO'* WAGNER PACIFIC, INC. 291 E-YOPA, 11�PA.PLVD. CEN A .92670' ( 14 � , 9 , 0 IiSl CQ ULTANTq,'INr,. R, �El E 1: V E Q MAR 16 1992 NO. ii.QEWM 4 Ex jt" p k 352-05-90 EAST YORBA LINDA BLVD. �. 17 •° {N' 201 � � w - �;, PLACENIIA, CA 92670-3418 794 993 -4500 FAX 714 993.6837` � March 11, 1992 Joh No. 352 -05 -90 1 :. Wagner Mr. Edgar Casasola ?cf1 Associate Engineer City of Fontana � CIVIL V E 0 0 8353 Sierra Avenue - —' > •ta Fontana, CA 923 ]5 1'Vll t�allla, VA J.GJJJ RE: Valley Boulevard Storm Drain Dear Mr. Casasola: We are pleased to resubmit the Valley Boulevard storm drain improvement plans and hydraulic analysis, which is part of the "Master Hydrology Study of the Palmetto Master Drainage Area" in. the City of Fontana, California. We have reviewed BSI Consultants' comments and have revised the plans and responded to their comments accordingly. Please note that the junction structure to the Caltrans I -10 Channel has been revised to a 30° confluence as required by Caltrans. Thank you for your attention to this project. If you have any questions or need additional information, please contact Bob Talafus or me at this office. Very truly yours, WAGNER PACIFIC, INC. 2c2L Leonard A. Beasley Project Engineer LAB:pkw { cc: Felipe Molinos w /Enclosure Andy Wheeler Vance Furukawa Bob Hoskins 152039011/47.ayascse Pam Steele 204.wr YOROA UNbA wa 1 PAAC5 W. ICA 92670-3416 1 1 1 110 953.4-5W - 1 _ M!4499736837 I le M Deddnibek 6; 1.991 24r4: kagar Casaso.la Associate Engineer city of Fontana 61t -sierra Avenue Foritank:j CA 92335 'PaIi . ?I Valley Boulevard ktorabrain near Mr. Casasolaz jol` : Ro.: W4 are pleased to opbtit; tM WaleY Boulevard storm drain improvement pia ' ' n'd Me a hydras Uq analysis, 0111ch ifs Vttt of the "Raster #ydrology 6tudy o, the Palmetto Master Drainage Area in th6 Ojtt� , 6"f"; 70ontana, California. The storm drain., catch basin a an' A- de ijoed using a: 25. -gear storm d� P"4Q#0P P I pes we're. A freqtvency as tec`omftekdsd ii VhO Mik t'. E -AePIP 'Study. This was due to the t4-gioal slope of valley B9uj s An. east /west . street. Our calculat take: intty account tie h0bunt of fli* Xkc�iti OUkb: to Curb -An a lt year, P3.#Pr •a4 the R for a IQQ-ydsik iitbxm,; Tfiiir determines tfid amou##. tu 0. a wil be that j led Based on this iniotmaijo4, it wto diate: Wptd that. the 25 -year f 1-00W sass #-h6 most re6trict-1ve. The sizing of catch basins and ZdnnOptot: Pipes 14. VhIlley Boulevard were based upon Los Angeles County r1q Cbritk6l, gistr'ibtf methods. The 'Water surface Pre drAcUenb: (NfSPG) cor ;ft gips d Oput6r p- 09(e* w4a used to determine the main, line an Pe sit hyArg'.4lic . grad libei,& The H06-2 ' program was utilIged for the ctanfluence Aoalyvia at chaiiiii 1. the 1-10 channel is under Caltra s ju#izdiCtibhi plans and the bydtaulid analysis have been submitted th` paltirajis . for their review and approv al. A portion of thepkcip"04* storm drain Lai located within the daun't of San, AiWnar4,L and plans have be4jr submitted to- the County for their review and approval, Th#xpk ydu for your Attention to this projeoi. If ycnA h4vo 4ny questio A or need 4dditlona 4.nformat-ion, please contact Bob T4lafW3 d at this 6ffl-ce... Very truly yours, WAdIVER' PACIFIC, WC Leonard A.. Beasley PX-qjebt: ZxIgLh6ar kia4pe H&U w/tnelosure Andy Va#dO Fugitkkikk :Bob HOA kins Pam Steele I I TABLE OF CONITIM T. Srm, L VAP it tk"C BASIN TRIBVTARIES AND MDROGLO= OAU -LOCATION M"- 1-00-UAR 8TORM III. CATCH BASIN CALCULATIONS a Z-- YEAR ,STORM 100-YVAR STORM ivi LATERAL M40 AND CATCH BASIN DEPTHS V. WATEK SURFACE PROFILE ' AL S AN Y ..IS Vi. HEC-2 A b CONFLUENCE ANALYSIS ■ ND 01MALL DETAIL ■ HEC-2, ANALYSIS m G. Appendix G — Exhibits CADocuments and Settings\XPFISTER \Desktop \KFMC_Hydrology.doc XV 4.8 11 Btawrw �n i : • i t u tt �lIIO1ER7N M I pt. CD N T n n n n :4 n. n n n n r n n n tt .s _.tt fl - - _ f BOULEVARD - - - J 1=73 KAISER MEDICAL CENTER �T Q - s SCAU: ...........:.......,.�., FONTANA — — — — 'T — °AT- ■ 1..� REPLACEMENT HOSPITAL / 09/18/08 corasu ITING wlasa. twa raa.m....1r... EXHIBIT 4 SCNED Y: PROPOSED SD IMPROVEMENTS �.AC of 1 sH1s. _ • {• 1 F I s $t g 1133.2 o w o 0 +00.74 ft 1134.0 x18.41 124.69 i N 13 : 1134.6 i I I N 1135.0 I II35.2 I I I N N 1135.8 I 1138.0 I I I I W 1138.3 1137.0 I I I I u N 1137.1 I I 1137.9 I I A 1138.0 1 a59. 4 EC 1130.43 I I I 1139.2 i I I v 1139.0 I 1128.2) I I 1139.0 I I N 1139.4 I 1140.0 5 +22.45 1126.59 C I I N UI 1140.0 I Q 1140.0 I 8 I P 1140.0 1140.0 I � I P N 1140.0 1190.0 I I I I s 1140.0 I � I 1140,0 m 1139.6 1139.2 I m + I138.B I 1138.5 ' I m to 1139.0 I 1139.0 I 1139.0 I I m g s y � z m � 1139.0 ! I � 0 0 m N K 1139.0 0 1139.0 I I I � C i � + ° o 1139.0 • Z 1139.0 I I i I I n 11 39.0 1139.0 I I l i I F 1139.0 I I13B.8 I I m . 1138.5 1 38.5 I I I N o v 0 1138.4 I 1138,0 I I I138.0 6 Z � 2 CO) C ,2 +40.7, � 1130.33 0 "U r ?o m 1138.0 1 a59. 4 EC 1130.43