Loading...
HomeMy WebLinkAboutTract 16478 Hydrology & Hydraulics Reporta� ALLARD ENGINEERING L! h ma UU roa hme e �m g H TRACT No. 16478 Hydrology &Hydraulics Report October 6, 2003 Revised February 11, 2004 Revised March 11, 2004 Revised April 13, 2004 Revised April 27, 2004 N Prepared For: Young Homes 10370 Trademark Street Rancho Cucamonga, CA. 91730 (909) 291 -7600 Fax (909) .291 -7633 Prepared under the supervision of: 0253 Sierra Avenue Fontana, CA 92335 (909) 356 -1815 * (909) 356 -1795 Table of Contents Discussion Hydrology Reference Material Developed Rational Method for 25 Year Storm Event Developed Rational Method for 100 Year Storm Event Street Capacity Calculations Catch Basin Sizing Calculations Downstream Existing Storm Drain WSPG Storm Drain WSPG Lateral A WSPG Overflow Swale Calculation Wall Opening Hydraulic Calculation ® Offsite Undeveloped Rational Method for 100 Year Storm Event Walnut Street Rational Method for 100 Year Storm Event WSPG for 48" Almeria Lateral (conveying 100 % of Q100) WSPG for Proposed Location 36" Riser on Walnut Storm Drain (for conveying 100 % of Q100) CMP Riser Elevation Calculation For 48" CMP Riser (Existing Condition) CMP Riser Elevation Calculation For 36" CMP Riser (Modified Condition) Walnut Hydrology Exhibit Map Pocket - Offsite Hydrology Exhibit Map Pocket - Onsite Hydrology Exhibit Map Pocket - Reference Plans - Downstream Storm Drain (Approved 5- 14 -03, DWG 3277) Map Pocket - Reference Plans - 48" Almeria Lateral - Line `B" (Approved 4- 16 -92, DWG 1949) Map Pocket - Reference Plans - 36" Walnut Main - Line "A" (Approved 12- 19 -96, DWG 2450) r U Hydrology Report Tract 16478 Discussion OVERVIEW Tract 16478 is located in north Fontana of San Bernardino County. The tract lies north of Baseline Road, directly south of Walnut Avenue, between Beech Avenue and Citrus Avenue. The natural terrain flows in a south to southwesterly direction at a slope of approximately 2 %. The site currently consists of natural ground and is proposed for a 9.4 acre single family residential subdivision. CRITERIA The criteria utilized for design is the San Bernardino County Hydrology Manual. Civil Cad, Softdesk and AES computer software were utilized to perform the computations. ONSITE OBJECTIVE The onsite objective of this drainage study is to quantify the rate of runoff that would occur in 25 year and 100 year storm events, assess whether or not the streets have the capacity to contain flows, and finally size the catch basins, outlet pipe and emergency overflow swale. Onsite flows will be collected in two catch basins that convey the flows to the proposed storm drainpipe located in the southwestern corner of the tract. ® Emergency Overflow Swale An emergency overflow swale has been designed to convey the flows resulting from a 100 year storm in a worst case scenario when the storm drain is plugged. The swale has been placed in the southwestern corner of the property and has been designed so that none of the adjacent pad elevations would be threatened with inundation. Pad elevations have been set a minimum of one foot (1417.4- 1416.3 = 1.1') above the maximum water surface elevation. The swale outlets the flows downstream to the school parking lot. From there, runoff will surface flow in a southwestern direction. WSPG calculations will assume that the proposed Line A is an extension of the existing Line B. OFFSITE OBJECTIVE Quantify Offsite Flows The offsite objective of this drainage study is to quantify the existing condition volume of runoff that would occur offsite in a 100 year storm event and asses whether the existing 36" storm drain pipe has the capacity to contain the flows. The objective is to prevent off site storm water runoff from entering the tract. After completing the analysis it becomes apparent that either offsite pipe has the capacity to contain the flows. In addition, Walnut's Street capacity was also addressed and it is obvious that there is ample capacity to convey the 100 year flows. However, as shown by the water surface calculation for the 36" CMP Riser, 1.6 ft of ponding occurs over the top of the CMP Riser during the 100 year storm event. As a ® result, the CMP Riser will be lowered to an elevation of 1430.1 ft in order to allow for ponding. This will result in a maximum water surface of 1431.7 ft. Once the CMP Riser is lowered there will be no threat of inundation from offsite flows to Tract 16478. If the CMP riser should clog, the offsite storm water will drain westerly in Walnut Avenue. In conclusion, no offsite flows enter 16478. The existing 48" CMP riser and storm drain line located on the adjacent Tract 12314 are not a part of the present study, as shown on tract No. 16478 offsite drainage exhibit included in this report. Asses Walnut Street Capacity In addition, street capacity calculations were applied to Walnut Street in order to prove that no surface flow on Walnut Street would enter Tract 16478. A rational method is included that was taken from a previously approved hydrology study for Tract 16258. This rational method quantifies the amount of surface flow that will occur on Walnut during the 100 year storm event. The results in this report support these findings. N] x Hydrology Reference Material 0 x 1.; W i 1 I R R6W RS i 4W __ - - _ - e - N -r - -- -- I b.: i ! I I „„11, y R2W r- - �� _ RW 4 "r RIE T4 °» R2E y 1 I • I me .n' ' 1 ' •{ .7 �-- -i - L I 'riy _ -'- _- I ._ _ _ - •` •S - T4N • 1 r --f r � - 1 +- T, -i- - - I I 1 � I I fi— __ _ • � 1I ... i I I r 1.2 AA I '• I f ! t 13N - -f- 11 - •.•, `s i ° i . I s I z u+ I `•,./ Ve `` /I ! 1 I �' a^ h i I {_ 0 I LE - - ' •1• :• IA I. * i n � zx I �,y• Ii -laFS" - T. - _ - '/ T 1.4 \_�.' ' _ 29 ~ � •• wRf,- �frl� � I � I•% -- I . -'}' -1 -+ `� T'`- d� ` /�`. T � - � __ - _- __ E l - - I - I / � I 1.7 — — - — I I • . - :�lo- � k ,� l a I • •�. •j• I � _ I y - r �' Y 1 r � J _- .�'�'~ � _ I �r� ,• w,, I ( 1 di (, • Y{� ,. r- � _�- a T2 12 `'• ../RR��[ \ • , • • • • � • -^ cry burl --,E t •• I i _'' , Ie - - - - _ar.•w _ i .,I I' .r°i� y, 1 I a cel. -• not E �r 1 7`• - . _ . 1,4,9T ?N � A d l j� [IR • � �- Y• r..., _ _ _ �. - - - i. 'r4'I - -rF = a \_ _ 1,� .�I _ 1.1 J 1 Iv<lY[ \�•7rT �(� . i - I I I T L r pmm I j •' u*aw I / I ' - -- - ` _ _ 9 l \\ � p 1. i.. , ,w ^ - I t ' -- f-- - y _ - '4 - ? - • - - _ _ ~ a'_'..c - `..._ YT" - - L wi c_acc I I I F - _ - - ` } _ s..,�a. ,; - •Y WI•'C+ �� ,1 yy — OM «a \dr I _ -TIN �-- --i - 41 1 •`. c am•: T� l ti l } -'- - -+ - -� .- - c i ,\ \• <) -- t I I : •. I 3 s i f ti f t r ^ -- r -) a_ I •D + � • I ,•h 4A PL N a[Il�lot G N R IALTO_ __ ` d ate` ~ r 1 I • ' 1 + 4- FONTAN TIS /L _ t ON T ��?" • •t • a • C TON • +•. ?� - - REDLAND •. a - . ;} yam, % j•IS If - - •t '• j � i _ I •GfM - c•r9 � '� - i -.�Y - ' _ _._ __.4 _ - \ , ' _ •j � - .p+ I �; w • 'uNUrf : I , M.Iq f[MI�C[ I Ya. ' - r - IM T is CHINO .. r - - -- - �_ ��•a i - - � �- I -- f - - �- '•� - -- P f - - RIE - :I R E s I (I A ■1701[10[ . coulm Woo RSIDE t - - �. - - -- a - '��E'A • . Sj''f f ••.w -� 1 •• • ,• � fa , : r ...... , ', '' .•a , R4W R3 «...... R 2 W t - r - 1 - -- F LOOD AN BERNARDINO COUNTY i - I I• ••J0.i•Jl R5W: T3s — — _ •., •s� : VALLE R EDUCED DRAWING aoHTA SCALE I 4 MILE'S !LE' ••' - '- - SAN 6ERNARDINO COUNTY Yp - 10 YEAR HOUR f Ylf[D ON U.iD.C, NpAA IY6Af 2, W3 ' ! 1 A 'I)J I - •Rew R7W •`':• , R6 - HYDROLOGY MANUAL =sr€ "� FL . ,•••••••••••••••••.•••••.••.••' / ,. ISCILINESPR[CPITATION(INCHES) DIQE WAU l 1[0. DRMm y 1952 r•E[L 1MtD-1 ! K 12 N -II FIGURE 8 -3 .at R8 I R7W R6W — r - — R8 + T4N Li I — I — — — I I ...... .•. I I R / I 4W I hlri,i 4 — R2W 'RIW „Jx RIE R2E I I. ; f— —I — — fi/ - - r 1.1 — t t . — I - _ • ' I , I Lt I T'4N f•. 'C. � • • � I �csr �- - -- 1'2 — �- I s II - - ( / /��•� - J \ — — - - - � — - - I . r �' -� � L � I T --.{ �. �•C• I 5 1I • � 2 I , I I I � -1 ' �_ I i ! � q � I !- • 1' I I I I i 9 I o t— � I_ _, r J \ I I i r... I+• I I � I } } I t y ' \4 I � I: J I i � r T / 1 � � -- R � -1 � i ' e e , ' , ♦ ,sJ �'t — I — t -+ ---) — �-. - ` 1 /— — -+ _ s •r• _ , J - 1.7 ' - — -�• I —I ± SSi Lt — - I' -- — t - I t '-- — : zz ,r' , 1 •+1SyC — t - - - / — — — �' I i T! -� — •D—I — I y \� I - — - + ° ` =Fr • I - t - —1 —' -c'� : - �[I -'- — It 1 I I I fa• r.�r � ` 1 r /�, I j � - ' d` -) ♦ —i — .>L a� - - _--� � � 1 — f I — I — � `,I► V } (_ 7 1 f . = . ' : !rp10� ' tea Q ' ri t . • . • . • — I — I — .arr � J. i, 1 , li , ��\ '� i � 1 t. EII�M l a.-.,T? N Lt — � — - -- - 1 t. . ' � 14� ° � d I \ / ' S = � f ,4 � � �r _ I � a•`I'% ' I I / i � %� T I N — ' lT — I — - i L-- - - •�" �-- 1\ ., ' ,v, 1 I ~ - - r - r - C ' 1,1 �•• — I L 5 • a «�. I I • \� - t 1'. �; F 'O .1.� °i FLAB I fe PL s • r I ,•�d I. / �f �f 1 _ _• • ' •' I F ' 3'1 r• ''',.. I sal. MA � - a•�arr g TIS • - _f t— •f YM • aya t Harr ♦•/ •I L_ - I'— + - ON TA 10��•. ! COT { _ , • -- T; - f 1 — ` I j N LANDS t • .. -- I. — _ ps •••• 1 .1.2 I • "''•' '_ Qame - - _ _ aw •.a .a• ' _ •' 1 t } --- •--, _ -� T _ ;. I r. ^. [•ash rt••lu CN 0 • ti:. Ilk— T 2 S — _ ° — s� / 'r arVT W. I ` y I ( R s f Woo - 1 ERSIDE -- � I-- J - -BEN •^ ,� I � N ` .. N.''_ R4W .I.S R3 .k.r, . R2W RI 1 — _ � —• - - - � `,.;4;J `� ~. -- -- � -" - - SAN SERNA NO COtNTY - - E6000 CON OL DISTRKI-- -' R5 -.00 VALLEY AREA - - I �� REDUCED DRAW T3S WING •.� . SCALE 1' = 4 ISOMYETALt 1• • - __tt MIL Yoo -100 YEAR I HOUR M - - - SAN BERNAR ®INO COUNTY A 1, "am ON U e.�� ItlAI &L" t. //t • � • 8 I � raoll� tr W W HYDROLOGY MANUAL � LEA • -' .............................. �( � 1.8 ISOLINES PRECIPITATION ( INCHES) I DATE UNA At Im MIS\ Ma B -12 I�t2 , f•tu tlMi 4 d It FIGURE B -4 44 a. I , - ,. -4,-,,,...4%. ,,,,, .-,• \ •I'' r. 1 ' : , • , i , .i.,it . ?: 1 ,... - •,, ' ' ' L. I • 1 .1,0...,'4 . 4._ . .! , ... r o. , .-_,I,,...-.., ,, ,,. • , --- C '- . ■• . ' '' ' 1 , il l ' c . ,''' ' . 7 : a , , e 6 . k2 , . . . i ; ' .' 1 ., , i i I 7 ' ' ; ' , : ' • ' : 1 . . ' ' ' ' A ' i (t ".. ) ' '' ' ' ? • If .-. . I --- / ' . Ateif,;,--.. J--( - '. 2'N' i t 'l_ ' - \ , ... . , ? i ,,..„ I , ..,-.2- t 'f% .. ii 6 \ a :'' I :- 1 ,.1. , 7 '' "• - L . ' : , -: 4 7 r..... ' IA'' - . 4 .. '• a ,'... :4 . j.G51, 1 I„, ' : . ..• , , / t- • , , . il , I ir I 1 4 '1 -1 i.al l I . , A .. m . ' -c- • ,, , . ' Ia . ''' . • ' '' ; . / - . "Zi"* i ,., • .,, \ „4 ,. __ ..4 .. 4 . • 1 .- r , , 4 • • 4 „ r• - •• L i r n ., ,-,- . /..)../ ,- , ev• , •-•.• i'" „"•\ ., i "I .,,,,, at • 4 • , 0 Ct i l 't , \ , , .N.,„ ...,•, .,,-: i , 4 l y. . ; , .,-4 - .. 0 ' kiTNI' ..)) i It r , 4 , ,--1 ..,, .. II, . .- , .!.• ,1 '," • • •-:, ,■••• ' Cr ( , -6‘,. • •; - ,1'. - 3..,,1 ,,.' • . If ,• . 4 ,,• .- t. - ' I t , I , 4 ;'• '• - 1 * t . i III . . ' Ii 1 .'.4••*•.! • 0 1 lir '' - • J ' .1 A,Ii, . r7' _5, ,, - ,/„ ,/ ,(i' ; -•'-'' A - e ,,, , , , Ii , , .‘ . ' . 1 in i n ‘ ,- I A - .., • ..._..- cf) 4 4 / ,, ,•/ ,-/ l ,.-' M. . ,.,.: 4 0 ,,cr ,/ . , i- ' .Y . ,/ ' ' - '.4 - ,; '- ', .3' - 1-■ .•,' in 1 S - -, -- .' -0 :. '- :: ' 1 ... ;..,_-__ ... _ )., ,..._...‘ 17' - , - , - , A , ',. \ I , / „ YEE .. . L. 4 44 -. , k• , •• • • , 7 •-• ,14 .1.•-. -1 •••-•-•..---4- .., . t„ i ot..24.••••. 1 I ; • , - •• I 4. . 4, . , ' ,.- T. 7 . ) ,,.r. oPtc ".• • ' a y ok, Ir al,. '• . ,:. It ..4 .4wee • 4.: 1, , • 1 ----T , -- , ,_ .,..,,, .., ..,..,,,,, . Iff i dime _J All L ..,1, ' !, ., • 12 I ' t_ _, .... ■ j , .$,", _. (1 !-,. ' t- : .'‘,-..,- .,' • ,-;., -' 7 ' ''' ; 0 - - , . , 61i 1 ' ' . A r ■i l t -•1/4 ''' '' * e, .....,,-4.-..:.. - :. . t ,..-,• _ .. 1 --,- ,-4...... , • ...... . - ,---., , ,.....,- , ,.- :Ifti , L...,. , ; -- -- 1 • ' ;; NI.; .t _I k ; ; : ."7...iiii I ..,....., 4 .... . ,- . • .4,,,,.4 .„.- ___-- ,-- i . .44 , , 1 - -. ? 1r ' ' ' At -,-,0-) . - li....-'-' • . -. , .,r...‘ *-3. , , or, g •-• ,./ I. 11 , ;,. i i.''' - ' 1 - ' '-, '. itil‘ . . • • , I/ .. .; ,, r i r ' ;1 P',\'.; ". Fa • -__-!,,; - , (....) i IN gir ”••• •,. • ' -..• ,, i , , i, • . -1' •.', " i ' - ., l' !„-- ' ' 2 ) ' : - • .. '4- • - 0 10 • , •• •I ,f,' ' , , t , , , . t .4,..... , , ,.. , , • ' ' . - - ' - t 7, ''.' ' . i 1 1 ' ` - • • ' ' - ' , - - ' , , 101 .,._ . :- • _ (...D 1 ' rr'll .,., ,.. ,.... H 1 / 0 D ., . - , - , 1.4.. , :, , . ...J ifillit c ..14-744il "f ; •-•-• -- -.. - • _ 1 ,•,,,,. ••. ._ .,••=_. - - . • , . , • i . ,-., • • it ) '-,. , ) , .r. . . , I lk4 1 0 f . . r .' ,.Ifi ' M ;4 • ,;',..0 ..:' . 7 ' - 18 I , .:" d b e ' :4 . ... t • -; D," \ ' ' AIL ' 1 115 , ,Gliv..14, ,,, 'I/0,i:- •'- ..i.;,',..,.. ,,,,,,, :., ,1,1 4,4, -,.,,---.4.-.0 \ )1.. ,,,.., , 1, - , . 7,,,,. , A ....t ,i•••, H,•••:',... ,:".,...,..'. ,,. „ 4 , ,. , . _s_ c , __-..„..., , i / , 1 '' -4, -- -_-••• -- ,--,,,.•,.", . --:- - 1 '.1:1-- , ,- , j.,! i . ... _ , .. , _. .., . ...., 1 -,rr- ...", , 1 1 .- . •-% Z - ••, 1 ).• ,' t r r. , r1 pl ' • , ,r_ , r■ r• :^ t 0 F.; "(04143'4 •• /•:'. "trI • : • '1. •^. .• ...N I': ,•-'. .."`' ,Ar: '. • riolgt ,,LL , • : / .4- • ," :_./..0 L„„ - _ /__- \ ...,, 4.4 ":',.= ...4,W. t,d',1I•• '''•,!'' ' ..., "— , 4 '4' .!'••••.. tl A-: .1:- :',-i .- -7v., .- .1,- ,...1 , \- tib, , 1 ..../ , 1' - i ' ', ' , .4. '; - , V" l ' ,'• F ,, , f .I.-, 1 ..._ >-. d ‘; _ :._ , r v ... -... .., ''• ....,,e., 1, .,;,,,„..- . ".!,-.-,;, , . ... k I , ,, -••• ... , , '''._,. 6 , , t,! ..j .„,i 1‘+ ;, ,,t, , •-- ,_ ,- ;- - 4:- ' ,,, ''-',.' .i ' ; 211: . 1i ' 1 4 14, 1 4' , ... V ir, 4 ii... .' ''" L e ,„ 10.. ..., 1 1; •. ,';', f-'1, . . , - ''',e • - ;,:1%, 1,$"Zstkiiit -0 - 1 ' • • -- It k ,. k "'I '• • ijt ...,.,;,, 1 , , ,% - .. 1 , :' AI ; . 4,„ i :•-•,.. ,. r ,..- _ •-. • ,',_.„:.„,__,,,,„:„ - .-- ,, ,, r ' - ' ' N I , ••••• i l• ,,,: of., '',.•• .r'•, F. : '". ja 'VII 'I,. 4 ,.,4. ...... .,:,\---....____ * lam. _oil 1 ....;'7,4' '' ':'-: . •--- 7.;:,. ' ''. ;:! :P. • A :I'' ' \ O *P t ,Pii 4 ?1'.., .•';' ‘ I , . ,„.. '• i i „itly . .. • . , .*:,.- .- . \,. ; ) - - - ..._ I LLij 41' ---• ie ?.,',. %'' ' '.. ",-4 Y ' ,' . ji ,'''' r 5" • '',' .' :.-.•• • : ....,...e.A 1 / - .1 '',- .0 •• ., , Oa '. - • ° Vid:X I 'i t . • ' ''' - L ' " i '. .i 1 . - - 0 ,' 1 -t. - -.- I, - -,$ / \-,,.. ,,‘ •,. -• ,• ,...!--- . ,".v',.. -. tif,1 ,x,v,4,,'• • . ' , ..•.•'.•••,",, ,, P , ...' -_!'..,*_ . --/... P ''.',,-, , .;4 Il • . ,,. ,, ._ ,, . ' ; lei') ,# - - , - .„, , `4' '• '. ••••‘, - , ‘. \ , 'AILF ow '::. :," ; ,. i i II _ • '._ r,-"D ',,,-,: i ,. , 1 , - ''''`` - l t r ,- 4. 4. ' '' 1, ' 7- - 4-# • '' '' : ' .' `,7''' ii ', ' , , . -., , - ,, ./., ,, ...-A• - , . 4 - , • 4 4C 0.11,,,a e - ' • • .., • e 1 7 ," ' • . , ' • • . 5. -• s r. 6 ■ • ••- • - L '\ ;11' '',), -,-- \ , ,,, )I * - ' '-' ' ' • . • 4 '-',35 .^' ''. ' , , ' . . - . . , ; - .. i„l'-' 7 1.,`- , ' \ • ,., ,;'' 4:.,',',--,-,'-.N, , ' I, ,,i ' - ,, 1 ' , . , ' 'N,, t ` '-, , , ..,, . _._. 6 " Ira 4..,‘„ r . , t '.'' ''.. ', ' ' ' i ' . ' ••••-4- • t '': .- , ' ', ' I CI ,.. „ Ir.e ...,„ • -.-....- .1 4 ,,,,.. - , - . , .,,..,. ,,- ,..0„.,-- , ,.., • , ,,, \s , ,,,,:-., ,.. -- - .. :).,\ !_.,,,„.,,.. , 1..-____.... .14fteamm . _,.._ ___,_ ' ' 4.- -• ' - 11 ILI . ...• ' ' ' , • ' . *, - , 4 t,I?" ' . 4 ' , ti-*f••• ' ''', ''. , , , , , . _ . •.., -,1,wi et-, \ , ' ' I ' ' . 1 ( A ' IA ' ' ; ' 10. .._ •Ii , 1 1 1 • ' , f 1 or ' ft 1- ! AA , ' 1 • 1 I ., ',-, . ' - f * ',' L • • ^ --•••,., I • ! V ;it , , . . . i ' I 1 - n . ,-,---' , ( 1 1 , ......... , 1 CI _.. ; , .., 1J, , .. /Art"' , 1 ' ■ ' .' - 1 L'i ' '. ' . • .,.,,.. (1 11 , I CC -4 ,7 --- ", L 7117, - , .,,,,,,,,,,-t , , ,, , : .. '. • , : - ' , , ; r , ) ,.'...,,, .,' , :3 ,, i'i ''. ''. . ; ' • .•''-• . ,' . -• . f..•- .;.'• - .-'...'''..1 ''' ' ix,,,,, . 1 1 Ull 1 .., ....1 :,-,... : . -- . - ,,. ,,,,-.0 -, • . ,.., , ,;, , f tilt \ . ••••• - N ' ' -• li ' ,, • .- . • • '' ' • ' • ..' '' \ IN • • ' • 1 1 • 5." 1 (n • '• e% •- • . / • ".•• •••?' • • • ..l • •-•,.• ••, , • . 1 : 4 .Aft''; t „ • ', ti • - A r,(4) r I., 1 t ) r ) 1 i • 1 t ' . 1 S i• , I 44 .) 1 r' 1 , , . . . ' 1% c ) 31?" ,14. 2a : t i - F I I '! L. virds.q1 --,., - , . I 1.5.1.• . 7 . ' I ' ..----- - - ;.'; ) Ir.' NV' - 1 %gr -.,t. .' i. - 1•■" ot , , ' ... ,,,,thrUltlitint.V ,' , ,,d1I7A ' --.=-,- iiiid Ile '' - ='' li , -- i• ''' - , ., 'I , '' • '. :'. '4,'• -, : Vii`, '„,"••• „. ,.,. ,..,...• ,,, • . ,„,, . , ,, -- " , 111. V t!. 1 , ii, At . a lit • . . , . . ' . . 4. - B% - ' 1 , ' ,'•• .. - ,. dit -r,--:-: : 1... - 14nr sl. , -• ---- (4' ''•'• '1 . . ' : '••• . '• • .* T IVO X irnolo ' ' • . ' ', * I 'IL. I , 1- - "IL: '' ' A -•!R ' '''' r ' 1 ' 4 ',..., n• i .. . '• ' '''.' ' , ' • - ' - -- , ' •'•.'.- ' ;4' ..-. isliss■._-. "g' • -- ...1-• .. -s 1 -I - ')(11'S 9 ,' 1' : - ' - , - • , 1,, -''' -;48 .ki4 . 4' ma .. ' ipmp.i - -Alp- - 1 F :.; ,, •W:.•• 4 iil $ ., , , . litio .... , -..,--_, 14 - 1 - 1 , 7 1 -, ,:-...! . , , :7 -,,' _ , \ , , . . 1 , ' , „' k.',... '..' ' IL r -• ;lig 'MI '.... Ai, lit .,.. 1 ir k '2' . 1 ;Irv ' "- - -- - ----'.. -' N - . • - '..,;i01, , . ' ''.,. ..„ , ., , . , 4-... , -' 1..- ..10•1Triallti . , .,, • ‘ v..t, .- . — . i.. - , .'f.) •,-: . .. , -4.' - -,- — - - ' ' -14 4,1 711 ' Il• a . .........., , , ,... ,,, •• - • . • ( . -.. :,,-_-.:,;.■ noK, - ... , 4., , , 4 1.1 _ ,,,,_,•,, , ,:, ,,,,,, ,. . .. I ,. ,._ ... . . 1 - ..-. . • - •.,,.- .141 1 .. lir ,,,- g•-• 4 ,•-•••••• • v: , ,:',,, a - , .„ , - ,- adllhir- - -.An ..... .- ik.,,, , , • , -...,.. +ft., ,.. 1 it . • I ■ pr 4 i ..... . ,.,,,,,, . , , „ , . .- - - , -.. . ,. , -. • .. '..,,„'„,. ;' 4 ,.:,..t.ibig .1111114N. ,, 4 ' .....1e • ‘1.. , 1_ ' . 7 • :•Se• . . r 4, : ' ' . . ' '. '",.. .,.. ' ' ' , . . • 44 jilg,;, riikti . 11; I I 1 4 ......7, h - ', ,. 6, - 2 _RA' • 1 1\ ,.... , . . • .... .,.• , , , ..,..„1....1";0110 Ilk . . eft i _ piiiiii .,,A li f i o, a - - ,ntil i „Cum''' I , . " ' - ' -- '' '''' '' A ILL 011r A I Ill 1,1a:WEI . :.[ - ' _ .1 „:.' I: ' - IIW - - • IN *it .. ' I Mt me' 4 ....N.e .4 .' 4' .., I '.1 1 ;T '.,' ...., 4 . " .' ,4' ".• .',I 4 ' ", ' ' ' ' .. : . . •,,' ... ',.- ' .4..,,,,,,4 , k'..0 ' ' ' , 4.0 i mr,,,Ir I 2 :-::,7 .4/0 4 - 7,, •■ 1 '' ,'. Aill',...krid -. • Iti 't, , 'I ••• t II,P, ,•••••••-•". •-...-- ..." , ', , .., • ,, , , ,,,,,,,,, • .. • . • , . • • .... .!•".:,.••• Ha. '" r • ,7,1,,77.7. i al a 1: ilt ..S 77 3, ' 4ji■iglitt "■ 2 , , LL ) ') ': ,: ' ' ' . .,„-..• . .., .,. - itro:r4:1filk),VIT,Aliaii - 1.;-..7 i . 1-- ,.;',. ;74,;, 1, . rtf"- 4, *NA') . 4 414:14 * .-1""0 • ' .:. i ) ' .',. 4-.. ,......; •';'- P Itilifirin•..7in t.: t II, 1,, ^71',:.7910,1!„' , • 4",:4 ,t ••-....••• .. sf.v.:,...4.N•■• '' .-- - *.( , .* -4 ,,, . . ,,,, 1* ''',.: .:•,...• '''.". L i L. ' L :4 4 iit 7 ti V ' '' '. i - N ' ' fr 1 :Al .. .istl 11 . itil•It.it MaIlltr likrz. . **:•-t::;.1° :1 4t I s° 1 -4..4'4%L.'' ' '4°"'P If' 'L'''''ll''".... 'L: '''''''4 'r :r-- i.,"-,-.17f-- e "' *.-,.- ' ' i '''.. ', ' i 7 r ' ' t Itif.t.'::::?.':, +t;i11,;;;;;Xi.y.;),, tit 3..44 • , '.,‘ ... it,, ••,. '..,..g", ,, k,(*,,.-L-,,,.. ,•••)i • I - 'x - y " , , .' , i '•'.N . ' _ , , ; . •-,- ' • ''•-•'' , r'''' ..:..." limy 4 ••••••• • a 1 1 Itti Alin Iiii 0, 0 _ _ ._ ..,, •,.....,,- . 1 . • 0 _ - .....• _.- ''.''••••• 4 .N" ..-Tit,41,.... „ ,,, ....-.- tql. ' 'i,44. q ., ). te - 4147 , kit■ ‘' ,' L imon r • - , '1 4_ ,I..,-.L;; t:',. *1111 . 1141 4N. -.. !III, V!'sIP. ,:i re i 216 7 '-' 4 4, lethir. '.V., ) : 2 ' „ : 4$ , • ,,i, ,k , ,. 1/4"s....37 2 :.‘,,,,,,,.., ! ,.. , ,,t. " V . ) ,, t , 111.1?: 7; , ., ito pr i4 .4... 1 41 11111 1011111101r amim aal• - •' .......^,,.•-%•, r t sp t rol, I , , , . 1,‘1*:._, ,,,,,t, f. ,,:•...7 51, , ,,,,,, t 1- ; ,7 1 ,. , , z i : . , 1::‘ , - 4 , Vi ;,li -- , ... , s , :\1,4,,,?'. •,,'-ip :..itilliottsli 1 1 ------ 1 _r, i ...,. , „.:..„,,,,.,, .,.-..,,,-,?.. .-'1111 7 . 1,' ,F.: 44 .;•'-. -- , 4 4 141 , 4 4":,'''' <`,.1/4.. . 11 * - ' - c '.- I ' , ' ,; '.;' $„.,-' itrot .. ' -' " - \ --'''! - t 1 1, : `., '117" ''.,, i 4 -1 ;SI 4 '",,;„ As' .-' , .4'1, =••e,,, *I 'k , -r, -. -. i__ - ', Alm,. i I A ini.,WIri, It!,...1 Li:4 ..,`: 1 v.s' ...ni To I, 1 1 1 F 1 1 •1,11.2.r., -.7 ‘,-- - v. - _-_,..- • 'c ' - -s -1 -H ' . ' ' " ' - v - ~"-"-, - ,--,:,-.._-, L C ' ' ' . . . ' '- ' ' . 1 '11 W ' . . . . .4•11111111111111115E0•1r it,,1!. . It tr:::;•14Tilreld:1111.11M51;111; ,•,;•_ , :AA %NA - r .. i , : m:- I rip infilimilistri Ali, •• • , z t Ili.. 'te L.4 1 :.L. - '* ft':' ,, '''' • ", '..- ' .. ,,,,..--"" ..' :' ...f,, ' ' '-'4 X - . • / , '1 ./ 1, 9 S •• N .. t .,*: f,s..„ , • ,,',..:‘ ip.,.. prolimillii .,, ,, .A.,-,,,, - - •• - , ' ''''' - ":-F - ...;:tti, - ,1.."',1.* ''' • , If' ' ' aid 11 " •1).74/414-1,,Y- ..1c13„,lit • , twit, ' ,..,,,Eli ,,,,.. ,,,.. , ,... a_ L - . ' '.SI' Id ' . 2:7" ; L '''' ` • - 'L k * --L. t-;,' Yr -,.,- , - . 1` ;!' r ' - - . . . . • f: -- 4 0, , 1 r41' ,........ ( 0 1 ; ,, . •I;! . - '_';',, --: Is L, " &, 7 ---4L itrr . l' .` • • .•*, 'Y'. • • '' " 4 i ••• NW ;lg. iii ft• ,.. 1 ;It Iii! . 2 1 krisit , 4: liFl ' ' i w •• Di' . , . ,,I,c,:.,' *e•XA ! .._. , ( " 4 /1 , " , Ji.• , , ‘• ' - a , ., .• /., - - • '",••• ,,: • ...•• ' 1) i 1:' E. .,, , ' 1 , ' f '`''" tit' ')'' •''' ' ' ' ! ' ; ' 1- ' :- ''''" • •i' " 1 ' -''' ''''' . '" ' --r ' li 1*-• ' ' '-'- ' 1.-F ,.--- -' /.: - - • [. ;-- :--,--,_ , .... - I- : - , --.1 : t. -•._ ,• . -,„ , .-( -,„,- .,-4. :___. . z - ,,.....- ,' e ,.- . , .'-e - ' 1,,-.. , ,i,-' - - , ". - '';-. 4;. - .- -,,, ,' .'rl' ' 5 ' ---• •• e' r' ',' - j._ ''' A ,' •-•‘ i '4, tl: t ? I' ' pk - - ,i , , t , , - \ \ • , ' , / , ■,•-r - 7,t -400;12,-- ,:.. U' ‘, ,,,, , N • • 1 4 73'4 . 1 . ;•, „ : . ',... 1", L'am. . • r tx to 1 , ,1,-,,2 4 ;11$ r 7, ,- , : 4'7' I , , t . '). If, , 4, •' 'PI ' ' ' , %z -, ''''," ''''' ' 4 -\ ' ' 7-• ..43 /..e. , • 4 .."%.. 4 .ga L .,. ,IT''. -`' ..s---' 1 . ,,, ,z._ ‘.-, ,,,,- 'r ,„,-,' .t. ..sl , , .,:), , , ...... 1 ,,,,,-,,:,-,,. r.,,:- . ,t,,, , -, ,., .. .0 .-„ 1 1 ,. ,.„. r• ‘: •-• . / ‘44.1 ). • . r . ' ''••••'. ' •• .t.' .. •.•. * . 4 • ' 1 . - / • • • ;0,4•' ••:, 41 ft,- : .• r' • 17V. .1, , '•" y ' r , ,...* *•;'• .'... 1 . ,„r ' i! 0 _i, ,:,.;..7-1 - ..,::, - , ,,,,,z, Vi) •4 31,.., ,.,e --: .e, ‘. s. •` ...• 4 - • .„..,, 1.4.-I - , • : , 1 • .. /VT" . ." • f ,4 4.4•44 , . ' \ I i .: 77 '*•••*; 7 1''''•I / -:. .i:11: v. Ilk " - ' ',';'1:1.• 't '', L• • - - ;" I.` 7. 5", V ,,:. - , ',` '"Z s $44'.', 1,2 ., '•,? k -',. t< , \ '''; '.• .,; • ' . , - { . IA' . '* . „ .., .4 . „ \ 1 -• , -i--- - ' ----,-f-- ,-.-'-..---, 4 - 7: ', - ) e r - 7 1,A-,"e - ---- - t . . . 4 6, , ,..,.., „ ' % -,," ... -,. • . 0 ,.0 4ft' - : . „ , !1 1 +•,7 ' - ,I72. \, J , I ' t. i t: ' . it.- At iillb*..- 115 =.1.-.4. , -71 '.,..- 5,„ :,, -, . . ,, :_, . • )..!,„? . . - 7 , ri``1/1 .1 :•plIII7 In ;," zoittyfic....af 1..4 .,.,, '! 1 4c`i C*Ak • 1 ' ' •' ■ :' ''''' ' • '' , ' * ' • . ,c1,'"Z -4„ ' '.r. -).',, .. - ai,-"„ ' , . 'z .:,. ,, , lurvf try. ' t 17,, ,i ,, Irk 14 n 0),..ig , -., 4,,* I \.., '• 1 t , -.....„.......: ..,..1r. ;A i , _...,,. , , .,„ _._. .., r... , , \ , J : A. ,,,,,,, ,.-.: -, , -44 ,•,' . ..'',..k. - ;,' . A. ; „,:, -1,.:, • -.--..... - • l' ,,, - " . ,,,,,m , AI .• , • ,..., , le : ,,..„, ., „ ,,, -.--.... „,ra - • , 4 il*.1 - `• E . ' `; - -"•' \ ' ‘" -`.t, r/ "'",':-+ ' ' - , " ',-; `Ci '-".`'I:1 ." '. ,''' -..- Wag f ilir 'V - 1 4 .7 „•&14 , 71 a 0. - . ...1 i , .„-r , -I ,._ • %,;, '.......; o;, • , ..„. i )■■ ) , f ' , 'I','I .. ,, , ,,4:1.•• I '• I tf If ... ,',Y.trt , .... '',, ' )- , A t ,.! F' 1. • i 'j I i',N1 , ' , '-■'.. • '• .',- ' ° ---• --- -- - - -r. - v- - , - .."` --, ,t",i - 7 i',7 ,pt :'''"' iimi..- )1 7, ,,,, i. ' ,Ii "i', ilf!.. 4 . 4 . 1!r„ j „. 2 .... 6 . 41_ ,6 , ------- ••„-' • , '' ' " .-"_- 1 • 4- • ,i,: 7. • 1 ' , 1 „ "" , . ," .....4.-^, !. - , Ell -- 's 01 ' I' . 1 t••St • a 44 '", 44 '",,,,!•• ' ' . '''• . i !, 4 q,',4 „'," 7 ;. otA "'' i if'7, . '--- .', _ .,, !Ili 1..iimi Aniur-tr---, L fi ' ', y ' , . ,- . ., , ' -, ••• •, it": ', 7. ' . ,. , ,.i ; , ..,,,, , '-. ,): .. -, ::, -;„,•,, , :.,,,, - , ,,, -,•.,-•-,,.; 1, ,, .‘ • . "F. - ;cc; 1,, ,•• a L • 0.1,,,t 4 0 ;:e'ozit r,': • 1 - ',",-•. /, ? ',J , ‘,.,„ .,. ' _ .. ,, , ` ,, .. t, ‘,• ; ■ , : , • '151:t •-- ' I ',' i;..• ..': '. ' , '1, • ,-: %;;1,..;ii.... :::c.: hir,i167 J i- . ,, 1 ",4 .- . ,.. ...,:'t, ,,,' ,',....-: ,', -,, ' ‘-_, - -,-.,. ,.-, , -- , ,----,i.-. ,'■,-, --..,. ,,•- -,-, - ...... vr •,, 7 - , a 211 - - 4 . A. .7........V 1 1■R, „ e a ,=, ..,: .,,, Ir „... II A . ' • -, -. ,... - - ' ,L. . ' 't !. ; ,, , (,,,, '. - . ■ ',- -, ..1 it •.-V -,( . ., : ...- ...• -;..., . . . • . Acc.--. § ry:lor;r:0 LT: ikr.;1=3,11 j: _. A; ., yr, , - ;', , 'i'i` : i) ;.-- ''' 4ft,' .._,-.' ", ',.: • ' ,'; , r 1. ,'".•'(-* ''.. -:'-.''') '.-• ' . 1 - 1...-- - f-' •••. 4- • •- .( \ , ' - '. -!-- , ■ As ,-_-0,4, mAiraguil ....,.;:,-,...„3•711-41, ...•:III . .-4 • — ., •i. ----, . ' .,, , •• -- , - ,-....' ,- • .') r ■ ‘ F . ''''' ' ' :If....■ 1 . \ , 1 -..... * 1 .. ' ,' ';'' . : ,i' , •.. ' . q . 'e -• ".'. .! - :. 1 ' e;r0, . 4'....... r . ' a r i --, ;.:=1; / ' -1 1/I IP i ' I ,,,„„ ',. ,1 ' . '','' ' t-, :' , ' l'' ""( '.. - • . Y '-,'", - ,- 1 . .' 1 : ',„ - • • •'' , . ' 4 A 4 ‘ 44 :-: - . 3.--4 *F"', • ''' I'' l',..'‘ 4 ' . . - ;f4:h;.,.. -. . ..- • .1...-. w.... I ! ; y ., , ;,, - , ,,, , ■ I ,,',,. • „,:,. 1 . , 'r ,/, ' ,, . , „ '• • r\ i , ■7' ,c ' .1,f •,-; .77i r..' ...,, -It vh. . ''',% myli411111 PilPf r IN , ' ''•- ' L, --,f_:-• -.• - '1/4. --,', -, - . ,,, • 1 , 1- ' , -1‘' :.- ..1 •",!'i ..,,' , -- 4 -- - --. .:Thi- ,-?; • , roglign_r.ji . , • ' \-)...., ' I -- -. ... , -- , • , - ', .,.. ■,', ,,, ,, ,I.,:-.-. ' 1 ,j, lc v •••• ' ' .. - - AN. • • 4-431, • , ro .... ' itui illt4111 , 1, ' . i • . ,, ,-- ,- .1;,, i'_,,e. ei 1,: - , i ' - 2.- - • • 4 N''...'.'•!.7i I '44 f' ' : ''' ■I 4 {t".4 4 4./.• 4 SO isilkIlinill= • , . .: , , , •I':--'- , •,./.) 7,,,,..,.,,I j ! , .)--.-_-- - , ...., \ ,-, '- --„...., ), -, - , ,, ...-:::11 A ,,'" ,,„, Iffe: 1• - ,i , arvieG,' , -. -- (it , . e , , , ,........._ , . , 1, --', , T .____, ' , -,..0, , ,, ,, , .& .. , .. iL, :..!_ ,• '-,,. 7 _." ,-:'.••■ . ‘:",. 7.11 - ......_-, !., •:/„."24 troll . ,.. , --, • , '------ ,- --- , 4 , ,, 4 7 11Twuk . ,,7 1 •17, Ir. 4 1 c its .... a SPM• •• . ,•1010 .. (0 i If illia ;II ' '... . i '.. S. - ' I 4 E1'4r:re •"411‘ vi.,`,11fi In • • ''''. 1 ' —I- '''''-' / r ' t....k et" N Vale . . 4 i .• lE,,,Eilr $4// . ...,1 . ..-•-.. ,.,.- 's ot` ,A• , , ' . ,...** e. , t 4 Omar; 11111 RI Z -j ,.....i. Ellt - 4 rsi. • .r "-rfr.!-; - It ' • '•1; Till .'-' P t ' 7 ' 7 - •••••••• • , ; ;WINK' •gr ''''..-., -...1' • / - 7•". '' • .,/ alms r .. -- , 71, f • ri• CI loc -14 1/111 , •,,-1 4 5y - ,11 ' • ..,, , .1 1 .'si a"' ti n 7,p cr z i .. 4 .,,,, • • ..,.- . A-4z ,, 1: . ,, czt -„ s - ti-,! t, , „ii 7 N , - ' - , ' • .r.. ' 1011 ,,,,,, .., ff.- - / , ), . -.-.-"'• ■ „- . -14; 1 : 1 . „_ . ,i'i 0 • i,; ; - 1 ? 1 4 ."' v . '' ' " • , - - - - Z nq .,•teralp-__! • '' • . ,,. .t, . ........ -„,., (-, nth: ,,, t , ,. , • I Ct ›- \el t Jii;riie • ei• .... , i ,, , -,.. 1170%...r. 0 t4 — hi""-04,' ''' ' ‘' " -- ■ ,("-- - 1' • 'cc 1 "' V/4 ''' LI 0 • 1 prcri,ii,..ah... `,' •, '' ' '1'• • . • ( ' 4, ' (r• .I.: - ' 4\ ' 4- • '•• lira ' Iiihr. r errilir' , • , • , it 1.; ( -0 ' i.,.., • •, •, s • I, 43/4. _ „ Le; ,i., 03 --J 111 ' - -": 1- " '• '1 I 4" k \ ' t: . '' ) t 'gel *L'LL. ,'L .a' . , 46‘ C i 0 Oil 7 4114. • ' • .„''. • 1 , 4 ' ' • f ` r11411 - • ;g:„..g.trl, , ,r....- . )1 ji .._',, ;,,,,,,,,_-. ,,:. 4 c,...c 8 J; Ili"! ..- ' oRito.4._ 47. -..--,-;.■,,..' A ,,,,i, -7.--, . . , , i,, v.,, . - - IN C RETURN PERIOD IN YEARS NOTE v I. FOR INTERMEDIATE RETURN PERIODS PLOT 10 -YEAR AND 100 -YEAR ONE HOUR VALUES FROM MAPS, THEN CONNECT POINTS AND READ VALUE FOR DESIRED RETURN PERIOD. FOR EXAMPLE GIVEN lo- YEAR ONE HOUR 0.95" AND 100-YEAR CNE HOUR -i 1.60 ", 2S-YEAR ONE HOUR ■ I.IA REFERENCE tNOAA ATLAS 2, VOLUME =-CAL.,1973 RAINFALL DEPTH VERSUS SAN BERNARDINO COUNTY RETURN PERIOD FOR HYDROLOGY MANUAL PARTIAL DURATION SERIES 6-7 FIGURE D -2 NO Rational Method 25 Year Storm Event M 0 RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING, INC. 6101 CHERRY AVENUE FONTANA, CALIFORNIA 92336 (909) 899 - 5011 + + + + + + * + + + * + + + * + + + * * + + + + ++ DESCRIPTION OF STUDY + + + + + + + + + + + + + + + + + + + * + + + + ++ * Tract 16478 Q25 + + + + ++++++++*+*+++++++++++++++++++++*+*++++++++ + + + + + + + + + + + + + + + + + + + + + + + * + + + + + *+ FILE NAME: 16478 -2.DAT TIME /DATE OF STUDY: 10:34 12/10/2003 --------------------------------------- ---------------- - USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL * -- USER SPECIFIED STORM EVENT(YEAR) = 25.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.2000 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* *USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET- CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT- /PARK HEIGHT WIDTH LIP HIKE FACTOR N0. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) - - (n) 2 20.0 10.0 .020/ .020/ --- .50 1.50 .03125 .1250 .01500 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = .14 FEET as (Maximum Allowable Street Flow Depth) - (Top -of - Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* ++++++++++++**++++*++*+*+*+++++++++++++*+++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + *+ FLOW PROCESS FROM NODE .00 TO NODE 1.00 IS CODE = 2.1 ---- ---------- ----------------------------- ® >> >>> RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ® INITIAL SUBAREA FLOW- LENGTH(FEET) = 756.00 ELEVATION DATA: UPSTREAM(FEET) = 1430.00 DOWNSTREAM(FEET) = 1418.00 Tc = K *((LENGTH * 3.00) /(ELEVATION CHANGE)) ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.625 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.057 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.00 .98 .50 32 12.62 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 4.63 TOTAL AREA(ACRES) = 2.00 PEAK FLOW RATE(CFS) 4 : 63 FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 6.2 ----------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<< >>>>>( STREET TABLE SECTION # 2 USED) < <<< UPSTREAM ELEVATION(FEET) = 1418.00 DOWNSTREAM ELEVATION(FEET) = 1415.00 STREET LENGTH(FEET) = 200.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.50 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .38 HALFSTREET FLOOD WIDTH(FEET) = 12.74 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.16 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.20 STREET FLOW TRAVEL TIME(MIN.) = 1.06 Tc(MIN.) = 13.68 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.914 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A .80 .98 50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = ..50 SUBAREA AREA(ACRES) = .80 SUBAREA RUNOFF(CFS) = 1.75 EFFECTIVE AREA(ACRES) = 2.80 AREA- AVERAGED FM(INCH /HR) _ .49 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .50 6.11 TOTAL AREA(ACRES) = 2.80 PEAK FLOW RATE(CFS) _ END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .39 HALFSTREET FLOOD WIDTH(FEET) = 13.32 FLOW VELOCITY(FEET /SEC.) = 3.23 DEPTH *VELOCITY(FT *FT /SEC.) = 1.27 ® ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.50 TO NODE 2.00 IS CODE = 8.1 --------------------------------------------------------------------------- >> >>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<< <<< MAINLINE Tc(MIN) = 13.68 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.914 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 1.90 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.90 SUBAREA RUNOFF(CFS) = 4.15 EFFECTIVE AREA(ACRES) = 4.70 AREA- AVERAGED Fm(INCH /HR) _ .49 AREA - AVERAGED Fp(INCH /HR) _ .98 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 4.70 PEAK FLOW RATE(CFS) = 10.26 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 2.00 IS CODE = 1 ---------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.68 RAINFALL INTENSITY(INCH /HR) = 2.91 AREA- AVERAGED Fm(INCH /HR) = .49 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 4.70 TOTAL STREAM AREA(ACRES) = 4.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.26 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE .00 TO NODE 1.00 IS CODE = 2.1 ------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<<<< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 756.00 ELEVATION DATA: UPSTREAM(FEET) = 1430.00 DOWNSTREAM(FEET) = 1418.00 TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.625 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.057 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL 10 "5 -7 DWELLINGS /ACRE" A 2.10 .98 .50 32 12.62 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 1 14�wl SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 4.86 TOTAL AREA(ACRES) = 2.10 PEAK FLOW RATE(CFS) = 4.86 FLOW PROCESS FROM NODE 1.50 TO NODE 1.00 IS CODE = 8.1 ------------------------------------------------------------- >> >>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< MAINLINE Tc(MIN) = 12.62 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.057 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 1.60 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.60 SUBAREA RUNOFF(CFS) = 3.70 EFFECTIVE AREA(ACRES) = 3.70 AREA- AVERAGED Fm(INCH /HR) _ .49 AREA- AVERAGED Fp(INCH /HR) _ .98 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 3.70 PEAK FLOW RATE(CFS) = 8.56 FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 6.2 ---------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<< >> >>>( STREET TABLE SECTION # 2 USED) < <<< UPSTREAM ELEVATION(FEET) = 1418.00 DOWNSTREAM ELEVATION(FEET) = 1415.00 STREET LENGTH(FEET) = 200.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) _ STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .43 HALFSTREET FLOOD WIDTH(FEET) = 15.34 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.51 PRODUCT OF DEPTH&VELOCITY(FT *FT /SEC.) = 1.52 STREET FLOW TRAVEL TIME(MIN.) = .95 Tc(MIN.) _ * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.927 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH /HR) RESIDENTIAL "5 -7 DWELLINGS /ACRE" A .10 •98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .10 SUBAREA RUNOFF(CFS 8.67 13.58 Ap SCS (DECIMAL) CN .50 32 98 .22 EFFECTIVE AREA(ACRES) = 3.80 AREA- AVERAGED Fm(INCH /HR) _ .49 AREA- AVERAGED Fp(INCH /HR) _ .98 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 3.80 PEAK FLOW RATE(CFS) = 8.56 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .43 HALFSTREET FLOOD WIDTH(FEET) = 15.27 FLOW VELOCITY(FEET /SEC.) = 3.49 DEPTH *VELOCITY(FT *FT /SEC.) = 1.51 FLOW PROCESS FROM NODE 2.50 TO NODE 2.00 IS CODE = 8.1 ------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<< <<< MAINLINE Tc(MIN) = 13.58 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.927 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 1.30 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.30 SUBAREA RUNOFF(CFS) = 2.85 EFFECTIVE AREA(ACRES) = 5.10 AREA- AVERAGED Fm(INCH /HR) _ .49 AREA- AVERAGED Fp(INCH /HR) _ .98 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 5.10 PEAK FLOW RATE(CFS) = 11.20 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 2.00 IS CODE = 1 ---------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES <<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.58 RAINFALL INTENSITY(INCH /HR) = 2.93 AREA- AVERAGED Fm(INCH /HR) _ .49 AREA- AVERAGED Fp(INCH /HR) _ .98 AREA- AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 5.10 TOTAL STREAM AREA(ACRES) = 5.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 11.20 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 10.26 13.68 2.914 .98( .49) .50 4.70 .00 2 11.20 13.58 2.927 .98( .49) .50 5.10 .00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) 9.8 NODE 1 21.4 13.68 2.914 .975( .488) .50 .00 2 21.4 13.58 2.927 .975( .488) .50 9.8 .00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 21.44 Tc(MIN.) = 13.58 EFFECTIVE AREA(ACRES) = 9.76 AREA- AVERAGED Fm(INCH /HR) _ • AREA- AVERAGED Fp(INCH /HR) _ .98 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 9.80 ------------------------- - - - - -- ---- - - - - -- END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 9.80 TC(MIN.) = 13.58 EFFECTIVE AREA(ACRES) = 9.76 AREA- AVERAGED Fm(INCH /HR)= 49 AREA- AVERAGED Fp(INCH /HR) _ .98 AREA- AVERAGED Ap = .50 PEAK FLOW RATE(CFS) = 21.44 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 21.4 13.58 2.927 .975( .488) .50 9.8 .00 2 21.4 13.68 2.914 .975( .488) .50 9.8 .00 --------- - - - - -- ---------------- ------------------ END OF RATIONAL METHOD ANALYSIS r u Rational Method 100 Year Storm Event C7 :�E RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING, INC. 6101 CHERRY AVENUE FONTANA, CALIFORNIA 92336 (909) 899 - 5011 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * * Tract 16478 Q100 * * * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 16478 -2.DAT TIME /DATE OF STUDY: 10:40 12/10/2003 ----------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: - - -- -- *TIME -OF- CONCENTRATION MODEL * -- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.5000 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* *USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET- CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT - /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 2 20.0 10.0 .020/ .020/ - -- .50 1.50 .03125 .1250 .01500 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = .14 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE .00 TO NODE 1.00 IS CODE = 2.1 » >>> RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<<<< r >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 756.00 ELEVATION DATA: UPSTREAM(FEET) = 1430.00 DOWNSTREAM(FEET) = 1418.00 DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.00 .98 .50 32 12.62 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 6.00 TOTAL AREA(ACRES) = 2.00 PEAK FLOW RATE(CFS) = 6.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)) ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.625 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.822 SUBAREA Tc AND LOSS RATE DATA(AMC II): ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 6.2 ----------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<< >>>>>( STREET TABLE SECTION # 2 USED) < <<< UPSTREAM ELEVATION(FEET) = 1418.00 DOWNSTREAM ELEVATION(FEET) = 1415.00 STREET LENGTH(FEET) = 200.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 7.14 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .41 HALFSTREET FLOOD WIDTH(FEET) = 14.18 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.35 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.37 STREET FLOW TRAVEL TIME(MIN.) = .99 Tc(MIN.) = 13.62 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.652 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL 11 5 -7 DWELLINGS /ACRE" A .80 .98 .50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .80 SUBAREA RUNOFF(CFS) = 2.28 EFFECTIVE AREA(ACRES) = 2.80 AREA- AVERAGED Fm(INCH /HR) _ AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 2.80 PEAK FLOW RATE(CFS) = 7 32 49 97 ® END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .42 HALFSTREET FLOOD WIDTH(FEET) = 14.83 �q FLOW PROCESS FROM NODE 2.50 TO NODE 2.00 IS CODE = 8.1 ------------------------------------------------------------------ >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <<<<< FLOW VELOCITY(FEET /SEC.) = 3.44 DEPTH *VELOCITY(FT *FT /SEC.) = 1.45 MAINLINE Tc(MIN) = 13.62 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.652 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 1.90 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.90 SUBAREA RUNOFF(CFS) = 5.41 EFFECTIVE AREA(ACRES) = 4.70 AREA- AVERAGED Fm(INCH /HR) _ .49 AREA - AVERAGED Fp(INCH /HR) _ .98 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 4.70 PEAK FLOW RATE(CFS) = 13.38 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 2.00 IS CODE = 1 ---------------------------------------------------------------,---- >> >>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< k ' ; TOTAL NUMBER OF STREAMS = 2 w+ CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.62 RAINFALL INTENSITY(INCH /HR) = 3.65 AREA - AVERAGED Fm(INCH /HR) _ .49 AREA- AVERAGED Fp(INCH /HR) _ .98 AREA- AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 4.70 TOTAL STREAM AREA(ACRES) = 4.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 13.38 FLOW PROCESS FROM NODE .00 TO NODE 1.00 IS CODE = 2.1 ----------------------------------------------------------------- >> >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS «< < >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 756.00 ELEVATION DATA: UPSTREAM(FEET) = 1430.00 DOWNSTREAM(FEET) = 1418.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)) ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.625 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.822 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) ® RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.10 .98 .50 32 12.62 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 6.30 TOTAL AREA(ACRES) = 2.10 PEAK FLOW RATE(CFS) = 6.30 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.50 TO NODE 1.00 IS CODE = 8.1 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <<<<< MAINLINE Tc(MIN) = 12.62 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.822 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL 11 5 -7 DWELLINGS /ACRE" A 1.60 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.60 SUBAREA RUNOFF(CFS) = 4.80 EFFECTIVE AREA(ACRES) = 3.70 AREA- AVERAGED Fm(INCH /HR) _ .49 AREA - AVERAGED Fp(INCH /HR) _ .98 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 3.70 PEAK FLOW RATE(CFS) = 11.10 FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 6.2 ------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<< »»> (STREET TABLE SECTION # 2 USED) ««< UPSTREAM ELEVATION(FEET) = 1418.00 DOWNSTREAM ELEVATION(FEET) = 1415.00 STREET LENGTH(FEET) = 200.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 11.25 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .47 HALFSTREET FLOOD WIDTH(FEET) = 17.00 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.74 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.74 STREET FLOW TRAVEL TIME(MIN.) = .89 Tc(MIN.) = 13.52 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.668 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A .10 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 ® SUBAREA AREA(ACRES) = �10 SUBAREA RUNOFF(CFS) = •29 EFFECTIVE AREA(ACRES) 3.80 = AREA- AVERAGED Fm(INCH /HR) _ .49 AREA AVERAGED Fp(INCH /HR) .98 AREA AVERAGED Ap = .50 TOTAL AREA(ACRES) = 3.80 PEAK FLOW RATE(CFS) = 11.10 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .46 HALFSTREET FLOOD WIDTH(FEET) = 16.93 FLOW VELOCITY(FEET /SEC.) = 3.72 DEPTH *VELOCITY(FT *FT /SEC.) = 1.73 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.50 TO NODE 2.00 IS CODE = 8.1 --------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< MAINLINE Tc(MIN) = 13.52 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.668 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 1.30 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.30 SUBAREA RUNOFF(CFS) = 3.72 EFFECTIVE AREA(ACRES) = 5.10 AREA - AVERAGED Fm(INCH /HR) _ .49 AREA- AVERAGED Fp(INCH /HR) _ .98 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 5.10 PEAK FLOW RATE(CFS) = 14.60 ********************************************* * * * * * * * * * * ** * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 2.00 IS CODE = 1 ------------------------------------------------------------------------ >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<< « TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.52 RAINFALL INTENSITY(INCH /HR) = 3.67 AREA- AVERAGED Fm(INCH /HR) = .49 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 5.10 TOTAL STREAM AREA(ACRES) = 5.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 14.60 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 13.38 13.62 3.652 .98( .49) .50 4.70 .00 2 14.60 13.52 3.668 .98( .49) .50 5.10 .00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO ® CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE ® NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 27.9 13.62 3.652 .975( .488) .50 9.8 •00 2 28.0 13.52 3.668 .975( .488) .50 9.8 .00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 27.95 Tc(MIN.) = 13.52 EFFECTIVE AREA(ACRES) = 9.76 AREA- AVERAGED Fm(INCH /HR) _ .49 AREA- AVERAGED Fp(INCH /HR) _ .98 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 9.80 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 9.80 TC(MIN.) = 13.52 EFFECTIVE AREA(ACRES) = 9.76 AREA- AVERAGED F /HR)= .49 AREA- AVERAGED Fp(INCH /HR) _ .98 AREA- AVERAGED Ap = .50 PEAK FLOW RATE(CFS) = 27.95 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 28.0 13.52 3.668 .975( .488) .50 9.8 .00 2 27.9 13.62 3.652 .975( .488) .50 9.8 .00 END OF RATIONAL METHOD ANALYSIS A �161 . FILE: 2581ineb.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 4 Program Package Serial Number: 1382 WATER SURFACE PROFILE LISTING Date: 3 -17 -2004 Time: 3:11:34 Young Homes Tract 16258 -1 Existing line "B" plus proposed line "A" Final Invert Depth Water Q Vel Vel Energy Super CriticaliFlow Top Height/ Base Wt No Wth Station Elev (FT) Elev (CFS) (FPS) Head Grd.El. Elev Depth I Width Dia. -FT or I.D. ZL Prs /Pip L /Elem Ch Slope SF Ave HF SE Dpth Froude NINorm Dp "N" X -Fall ZR Type Ch 2521.490 1399.510 1.234 1400.744 27.98 11.59 2.09 1402.83 .00 1.80 2.50 2.500 .000 .00 1 .0 JUNCT STR .0129 .0197 .09 1.23 2.08 .013 .00 .00 PIPE 2526.150 1399.570 1.225 1400.795 27.98 11.70 2.13 1402.92 .00 1.80 2.50 2.500 .000 .00 1 .0 79.699 .0202 .0196 1.56 1.22 2.11 1.22 .013 .00 .00 PIPE 2605.849 1401.176 1.237 1402.413 27.98 11.54 2.07 1404.48 .00 1.80 2.50 2.500 .000 .00 1 .0 67.686 .0202 .0181 1.22 1.24 2.07 1.22 .013 .00 .00 PIPE 2673.535 1402.541 1.285 1403.826 27.98 11.00 1.88 1405.71 .00 1.80 2.50 2.500 .000 .00 1 .0 28.915 .0202 .0159 .46 1.29 1.92 1.22 .013 .00 .00 PIPE 2702.450 1403.123 1.334 1404.457 27.98 10.49 1.71 1406.17 .00 1.80 2.49 2.500 .000 .00 1 .0 16.791 .0202 .0141 .24 1.33 1.79 1.22 .013 .00 .00 PIPE 2719.241 1403.462 1.387 1404.849 27.98 10.00 1.55 1406.40 .00 1.80 2.48 2.500 .000 .00 1 .0 11.144 .0202 .0124 .14 1.39 1.66 1.22 .013 .00 .00 PIPE 2730.385 1403.686 1.442 1405.128 27.98 9.54 1.41 1406.54 .00 1.80 2.47 2.500 .000 .00 1 .0 7.625 .0202 .0110 .08 1.44 1.54 1.22 .013 .00 .00 PIPE 2738.010 1403.840 1.501 1405.340 27.98 9.09 1.28 1406.62 .00 1.80 2.45 2.500 .000 .00 1 .0 JUNCT STR .0129 .0102 .05 1.50 1.43 .013 .00 .00 PIPE 2742.670 1403.900 1.513 1405.413 27.98 9.00 1.26 1406.67 .00 1.80 2.44 2.500 .000 .00 1 .0 68.650 .0101 .0100 .69 1.51 1.41 1.51 .013 .00 .00 PIPE FILE: 2581ineb.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 5 Program Package Serial Number: 1382 WATER SURFACE PROFILE LISTING Date: 3 -17 -2004 Time: 3:11:34 Young Homes Tract 16258 -1 Existing line "B" plus proposed line "A" Final + rr+ r++r a+• rrrrrrar++rf rrf► rr r+ rr+ rraaf► rrfffr rwrf+ rff• fwrar ffarrrt++ frr+ fr+•f• t rrwr• ++ +rwrtaffrrrffra• +►rra+ff wrrwr►r +f +• r +w• + +rr Invert Depth Water Q Vel Vel I Energy I Super ICriticallFlow ToplHeight/ Base Wtj ENO Wth Station I Elev (FT) Elev (CFS) I (FPS) Head I Grd.El.1 Elev I Depth I Width IDia. -FTIor I.D.1 ZL IPrs /Pip L /Elem ICh Slope I SF Aver HF ISE DpthIFroude NINorm Dp I "N" I X -Fall ZR IType Ch + # + +rrf ►f lrf iffr rfrlfr+# rtt+ Itfr+ fir4rltf t+► rr# rl+ rt lrrMlffflrrrl +rtri +rrrlrtrfffflrrftrf4rlftf rf rfrlfr +iflrlfRfft #f lrrr +t IR ♦f tr r4 2811.320 1404.590 1.516 1406.106 27.98 8.99 1.25 1407.36 .00 1.80 2.44 2.500 .000 .00 1 .0 4.670 .0107 .0099 .05 1.52 1.40 1.48 .013 .00 .00 PIPE 2815.990 1404.640 1.519 1406.159 27.98 8.96 1.25 1407.41 .22 1.80 2.44 2.500 .000 .00 1 .0 48.130 .0100 .0099 .48 1.74 1.40 1.52 .013 .00 .00 PIPE 2864.120 1405.120 1.524 1406.644 27.98 8.93 1.24 1407.88 .00 1.80 2.44 2.500 .000 .00 1 .0 72.116 .0100 .0093 .67 1.52 1.39 1.52 .013 .00 .00 PIPE 2936.236 1405.839 1.585 1407.424 27.98 8.52 1.13 1408.55 .00 1.80 2.41 2.500 .000 .00 1 .0 19.950 .0100 .0082 .16 1.59 1.29 1.52 .013 .00 .00 PIPE 2956.187 1406.037 1.653 1407.690 27.98 8.12 1.02 1408.72 .00 1.80 2.37 2.500 .000 .00 1 .0 8.388 .0100 .0073 .06 1.65 1.19 1.52 .013 .00 .00 PIPE 2964.575 1406.121 1.724 1407.845 27.98 7.75 .93 1408.78 .00 1.80 2.31 2.500 .000 .00 1 .0 1.915 .0100 .0065 .01 1.72 1.09 1.52 .013 .00 .00 PIPE 2966.490 1406.140 1.803 1407.943 27.98 7.38 .85 1408.79 .00 1.80 2.24 2.500 .000 .00 1 .0 JUNCT STR .1178 .0052 .02 1.80 1.00 .013 .00 .00 PIPE 2971.160 1406.690 2.265 1408.95 14.60 4.65 .34 1409.29 .00 1.38 .00 2.000 .000 .00 1 .0 16.838 .0199 .0041 .07 2.26 .00 .95 .013 .00 .00 PIPE 2987.998 1407.025 2.000 1409.025 14.60 4.65 .34 1409.36 .00 1.38 .00 2.000 .000 .00 1 .0 9.454 .0199 .0039 .04 2.00 .00 .95 .013 .00 .00 PIPE o v o FILE: 2581ineb.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 6 Program Package Serial Number: 1382 WATER SURFACE PROFILE LISTING Date: 3 -17 -2004 Time: 3:11:34 Young Homes Tract 16258 -1 Existing line "B" plus proposed line "A" Final ++• rffrwrwrrr ►aaa• :rr +aarrra +rrr ++faa +awf aarfrf♦• ra• aaawwfraafffwrfrrrrr +a►rafa♦ +rawrawarrarwf •awaf ►aaraar►rrarrararrrfrwr ♦rrw +wwr I Invert I Depth I Water I Q I Vel Vel I Energy I Super ICriticallFlow ToplHeight /lBase Wtl INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.l Elev I Depth I Width IDia. -FTIor I.D.I ZL IPrs /Pip L /Elem ICh •+ rfrwfrflfw+• Slope I rwwawlwarwaaf+ I Iarwatawwalrawffrawfl+ I I aaw++ rlw+• SF Avel afaalra+♦ HF ISE waaaflffffawwlfa:♦ DpthlFroude NINorm Dp I "N" waralwffwwwf +Iraawwfflwra I X -Fall) +fwrlaawaw ZR IType Ch Iafawwwr I 2997.452 I 1407.212 I 1.814 I 1409.026 I 14.60 4.87 I .37 I 1409.40 I .00 1.38 I 1.16 i 2.000 I I .000 .00 I 1 .0 1_ 4.109 .0199 .0038 .02 1.81 .53 .95 .013 .00 .00 PIPE t I 3001.561 I 1407.294 I 1.706 I 1409.000 I 14.60 5.11 I .41 I 1409.41 I .00 1.38 I 1.42 I 2.000 I I .000 .00 1 .0 HYDRAULIC JUMP I I I 3001.561 I 1407.294 I 1.080 I 1408.374 I 14.60 8.44 I 1.10 I 1409.48 I .00 1.38 I 1.99 I 2.000 I .000 -i- .00 1 .0 1- -I- 4.719 -I- .0199 -I- -I- -I- -I- -I- .0121 -I- .06 -I- 1.08 -I- 1.60 .95 -I- -I- .013 .00 I .00 PIPE i I 3006.280 1407.388 I I 1.122 I 1408.510 I 14.60 8.04 I 1.00 I 1409.51 .00 I 1.38 i 1.99 I 2.000 I .000 .00 1 .0 5.036 .0199 .0107 .05 1.12 1.48 .95 .013 .00 I .00 PIPE I I 3011.315 1407.488 I 1.167 I I 1408.655 I 14.60 7.67 I .91 I 1409.57 .00 I 1.38 I 1.97 I 2.000 I .000 -I- .00 1 .0 1- -I- 3.354 -I- .0199 -I- -I- -I- -I- -I- .0095 -I- .03 -I- 1.17 1.37 -I- .95 -I- -I- .013 .00 I .00 PIPE I I 3014.670 1407.555 I 1.215 I I 1408.770 14.60 I 7.31 .83 I I 1409.60 .00 I 1.38 I 1.95 I 2.000 I .000 .00 1 .0 2.209 .0199 .0084 .02 1.22 1.27 .95 .013 .00 .00 I PIPE I 3016.879 I 1407.599 I 1.265 I I 1408.864 14.60 I 6.97 .75 I 1409.62 I .00 I 1.38 I 1.93 I 2.000 I .000 .00 1 .0 I_ 1.249 .0199 .0074 .01 1.27 1.18 .95 .013 .00 .00 I PIPE I 3018.128 I 1407.623 i 1.318 I I 1408.942 14.60 I 6.64 .69 I 1409.63 I .00 I 1.38 I 1.90 I 2.000 I .000 .00 1 .0 .332 .0199 .0066 .00 1.32 1.09 .95 .013 .00 I .00 I PIPE I 3018.460 I 1407.630 I 1.377 I I 1409.007 14.60 I 6.33 .62 I 1409.63 I .00 I 1.38 I 1.85 I 2.000 .000 .00 1 .0 I_ WALL ENTRANCE U U V o n PC FILE: 2581ineb.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 7 Program Package Serial Number: 1382 WATER SURFACE PROFILE LISTING Date: 3 -17 -2004 Time: 3:11:34 Young Homes Tract 16258 -1 Existing line "B" plus proposed line "A" Final 4RlRffif lff!• ■if ifff Rfllt*• it111ff ffi*f* k* f11f *f!f*fff•f*lffff!!flff! *ffflf Rfflf if *M * * # *l11f!l ►1f4lffR *!f!f!*ff t #lfff• /1ff f!!R*!!! Invert Depth Water Q Vel Vel I Energy I Super ICriticallFlow ToplHeight /Base Wt) INo Wth Station I Elev (FT) Elev I (CFS) I (FPS) Head I Grd.El.1 Elev I Depth ( Width IDia. - FTIor I.D.1 ZL jPrs /Pip L /Elem ICh Slope I I I I SF Avel HF ISE DpthIFroude NINorm Dp I "N" I X -Fall ZR I Type Ch f•! f* f** RIRM* Rf* ff* Iff11f1filf* 1fff11flffR1f11ffl lfflf ►fllf *1Rff111f11f iff lfRff* f* If* fffiflliffffffRl * * * *lff�fR * * * *f If!!!f (flff*1f 3018.460 1407.630 2.347 1409.977 14.60 .62 .01 1409.98 .00 .40 10.00 7.400 10.000 .00 0 .0 Line "B" Lateral WSPG 0 0 772 T1 Tract 16478 Lateral Simulation T2 T3 SO 1002.4101406.640 1 1408.954 R 1042.3501407.440 1 .013 .000 WE 1042.3501407.440 2 .200 SH 1042.3501407.440 2 1407.440 CD 1 4 1 .000 2.000 .000 .000 .000 .00 CD 2 2 0 .000 7.550 10.000 .000 .000 .00 Q 13.380 .0 000 0 x 0 0 FILE: 16478lat.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 1 Program Package Serial Number: 1382 WATER SURFACE PROFILE LISTING Date: 3 -17 -2004 Time: 3:51:51 Tract 16478 Lateral Simulation RfR #! #fR!!lf RffflfffR Invert # #RRR#!ff!!!!ff! Depth #f Water Rfffff# Rfff!! Q lffff# Vel fffffif# Vel I lffif fRf•! Energy I fRlRfffR# flMflR ! Super ICriticallFlow #lRfflfflR!!!f \f # ►1fflffRRflRf ToplHeight /Base Wtj RR! #Rfft ENO Wth Station I Elev (FT) Elev ( (CFS) I (FPS) Head ( Grd.El.1 Elev I Depth I Width [Dia. -FTIor I.D.1 ZL IPrs /Pip L /Elem ICh Slope I I SF Avel HF ISE DpthIFroude NINorm Dp I "N" I X -Fall ZR I Type Ch Y #R #RRRRfItRfffffffl #f!!flff �ffiffffff lffff #!!!!I!lffitf lfffRffflffl MR Rl fl lf# ff lfRlff ! ►flfRlff *!! #ffIlR!!lffltlf lfff�fMfff I#flRfR! 1002.410 1406.640 2.314 1408.954 13.38 4.26 .28 1409.24 .00 1.32 .00 2.000 .000 .00 1 .0 18.994 .0200 .0035 .07 2.31 .00 .90 .013 .00 .00 PIPE 1021.404 1407.020 2.000 1409.020 13.38 4.26 .28 1409.30 .00 1.32 .00 2.000 .000 .00 1 .0 9.339 .0200 .0032 .03 2.00 .00 .90 .013 .00 .00 PIPE 1030.743 1407.207 1.814 1409.021 13.38 4.47 .31 1409.33 .00 1.32 1.16 2.000 .000 .00 1 .0 4.567 .0200 .0032 .01 1.81 .49 .90 .013 .00 .00 PIPE 1035.310 1407.299 1.706 1409.005 13.38 4.68 .34 1409.35 .00 1.32 1.42 2.000 .000 .00 1 .0 3.248 .0200 .0034 .01 1.71 .58 .90 .013 .00 .00 PIPE 1038.558 1407.364 1.618 1408.982 13.38 4.91 .37 1409.36 .00 1.32 1.57 2.000 .000 .00 1 .0 2.492 .0200 .0038 .01 1.62 .66 .90 .013 .00 .00 PIPE 1041.050 1407.414 1.540 1408.954 13.38 5.15 .41 1409.37 .00 1.32 1.68 2.000 .000 .00 1 .0 1.300 .0200 .0041 .01 1.54 .73 .90 .013 .00 .00 PIPE 1042.350 1407.440 1.492 1408.932 13.38 5.32 .44 1409.37 .00 1.32 1.74 2.000 .000 .00 1 .0 WALL ENTRANCE 1042.350 1407.440 2.227 1409.667 13.38 .60 .01 1409.67 .00 .38 10.00 7.550 10.000 .00 0 .0 C' Overflow Swale Calculation H Tract 16478 Emergency Overflow Swale Drainage Escape Water Surface Depth Calculation ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » »CHANNEL INPUT INFORMATION «« CHANNEL ZI(HORIZONTAL/VERTICAL) = 3.00 Z2(HORIZONTAUVERTICAL) = 20.00 BASEWIDTH(FEET) = 0.00 CONSTANT CHANNEL SLOPE(FEET/FEET) = 0.005000 UNIFORM FLOW(CFS) = 27.95 MANNINGS FRICTION FACTOR = 0.0250 NORMAL -DEPTH FLOW INFORMATION: » »> NORMAL DEPTH(FEET) = 0.97 FLOW TOP- WIDTH(FEET) = 22.33 FLOW AREA(SQUARE FEET) = 10.84 HYDRAULIC DEPTH(FEET) = 0.49 FLOW AVERAGE VELOCTTY(FEET /SEC.) = 2.58 UNIFORM FROUDE NUMBER = 0.652 PRESSURE + MOMENTUM(POUNDS) = 358.55 AVERAGED VELOCITY HEAD(FEET) = 0.103 SPECIFIC ENERGY(FEET) = 1.074 CRITICAL -DEPTH FLOW INFORMATION: CRITICAL FLOW TOP- WIDTH(FEET) = 18.84 CRITICAL FLOW AREA(SQUARE FEET) = 7.71 CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 0.41 CRITICAL FLOW AVERAGE VELOCITY(FEET /SEC.) = 3.62 CRITICAL DEPTH(FEET) = 0.82 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 327.66 AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 0.204 CRITICAL FLOW SPECIFIC ENERGY(FEET) = 1.023 n =.025, Mannings N value were Derived From Dingman, S.L. 1994. Physical Hydrology, Prentice Hall, New Jersey. N U Wall Opening Hvdraulic Calculation m n Garden Wall Oaenina Hydraulic Calculation n A Purpose - to determine maximum water surface over wall opening durina 100 year storm event Q= CLH "(3/2) Equations and Constants were Derived From Brater, E.F. and King, H.W. 1976. Handbook Of Hydraulics, 65th Edition. McGraw Hill, New York. H= ((0"2) /(CL "2)) "(113) H = depth of water flowing over weir C 3.1 Length 10 Q cfs H = depth ft Elev ft total ft Q cfs WS Elev ft 28 0.9 1 1415.5 1416.4 28 1416.4 Freeboard = Adjacent Pad Elev - Water Surface Elev Freeboard = 1417.4 - 1416.4 = 1.0 ft Undeveloped Rational Method for 100 Year Storm Event Cam] RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING, INC. 6101 CHERRY AVENUE FONTANA, CALIFORNIA 92336 (909) 899 - 5011 # # # # # * * # # * * * # * # * * # * * # * * * ** DESCRIPTION OF STUDY * * * * * * # * # * * # # # * * * # # # * # # * #* • Q100 Undeveloped Condition For Lot North of Macnaughtons * • TRACT 16478 * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 55555.DAT TIME /DATE OF STUDY: 9:25 9/ 3/2003 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL * -- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 30.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.5500 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* *USER- DEFINED STREE' HALF- CROWN TO WIDTH CROSSFALL NO. (FT) (FT) 1 30.0 20.0 C- SECTIONS FOR COUP STREET- CROSSFALL: IN- / OUT- /PARK- SIDE / SIDE/ WAY 018/ .018/ .020 LED PIPEFLOW AND STREETFLOW MODEL* CURB GUTTER - GEOMETRIES: MANNING HEIGHT WIDTH LIP HIKE FACTOR (FT) (FT) (FT) (FT) (n) .67 2.00 .03125 .1670 .01500 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = .00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* #######*##******#********#**#****##*#****##*# * * * # # * * * # # * * # # # * # # * # * * # * # # # * # ## FLOW PROCESS FROM NODE .00 TO NODE 1.00 IS CODE = 2.1 --------------------------------------------------------------- >> >>> RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ----------------------------------- ---------------------- ® INITIAL SUBAREA FLOW- LENGTH(FEET) = 500.00 ELEVATION DATA: UPSTREAM(FEET) = 1515.00 DOWNSTREAM(FEET) = 1498.00 Tc = K *[(LENGTH ** 3.00)/(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 16.676 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.342 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) NATURAL FAIR COVER "GRASS" A 1.80 .82 1.00 50 16.68 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .82 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 4.09 TOTAL AREA(ACRES) = 1.80 PEAK FLOW RATE(CFS) = 4.09 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 5.2 >> >>>COMPUTE NATURAL VALLEY CHANNEL FLOW<< <<< >>>>>TRAVELTIME THRU SUBAREA <<<<< ------------------------------------------------------- ELEVATION DATA: UPSTREAM(FEET) = 1498.00 DOWNSTREAM(FEET) = 1493.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 620.00 CHANNEL SLOPE _ .0081 CHANNEL FLOW THRU SUBAREA(CFS) = 4.09 FLOW VELOCITY(FEET /SEC) = 1.81 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 5.72 Tc(MIN.) = 22.39 FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 8.1 ---------------------------------------------------------------------------- >> >>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <<<<< MAINLINE Tc(MIN) = 22.39 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.800 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "GRASS" A 5.10 .82 1.00 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .82 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 5.10 SUBAREA RUNOFF(CFS) = 9.09 EFFECTIVE AREA(ACRES) = 6.90 AREA- AVERAGED Fm(INCH /HR) _ .82 AREA- AVERAGED Fp(INCH /HR) _ .82 AREA- AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 6.90 PEAK FLOW RATE(CFS) = 12.30 FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 5.2 ---------------------------------------------------------------------------- ® >> >>>COMPUTE NATURAL VALLEY CHANNEL FLOW<< <<< >> >>>TRAVELTIME THRU SUBAREA <<<<< ELEVATION DATA: UPSTREAM(FEET) = 1493.00 DOWNSTREAM(FEET) = 1491.00 ® CHANNEL LENGTH THRU SUBAREA(FEET) = 620.00 CHANNEL SLOPE = .0032 CHANNEL FLOW THRU SUBAREA(CFS) = 12.30 FLOW VELOCITY(FEET /SEC) = 1.50 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 6.90 Tc(MIN.) = 29.30 FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 8.1 ----------------------------------------------------------------------- >> >>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<< <<< MAINLINE Tc(MIN) = 29.30 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.383 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "GRASS" A 5.10 .82 1.00 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .82 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 5.10 SUBAREA RUNOFF(CFS) = 7.17 EFFECTIVE AREA(ACRES) = 12.00 AREA- AVERAGED Fm(INCH /HR) _ .82 AREA- AVERAGED Fp(INCH /HR) = .82 AREA- AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 12.00 PEAK FLOW RATE(CFS) = 16.88 FLOW PROCESS FROM NODE 13.00 - TO - NODE ---- - - - .00 IS CODE = 5.2 - ----- -------- ----- ----- ---------- --------------------- >>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW <<<<< >> >>>TRAVELTIME THRU SUBAREA <<<<< ELEVATION DATA: UPSTREAM(FEET) = 1491.00 DOWNSTREAM(FEET) = 1484.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 770.00 CHANNEL SLOPE = .0091 CHANNEL FLOW THRU SUBAREA(CFS) = 16.88 FLOW VELOCITY(FEET /SEC) = 2.73 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 4.70 Tc(MIN.) = 34.00 FLOW PROCESS FROM NODE 13.00 TO NODE .00 IS CODE = 8.1 ---------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<< <<< MAINLINE Tc(MIN) = 34.00 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.179 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL GOOD COVER "GRASS" A 7.80 .94 1.00 38 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .94 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 7.80 SUBAREA RUNOFF(CFS) = 8.73 EFFECTIVE AREA(ACRES) = 19.80 AREA- AVERAGED Fm(INCH /HR) _ .87 10 AREA- AVERAGED Fp(INCH /HR) = .87 AREA-AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 19.80 PEAK FLOW RATE(CFS) = 23.41 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE .00 TO NODE 1.00 IS CODE = 5.2 >> >>>COMPUTE NATURAL VALLEY CHANNEL FLOW <<<<< >> >>>TRAVELTIME THRU SUBAREA<< <<< ------------------------------- - - - - -- ------- - - - - -- ELEVATION DATA: UPSTREAM(FEET) = 1484.00 DOWNSTREAM(FEET) = 1480.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 200.00 CHANNEL SLOPE = .0200 CHANNEL FLOW THRU SUBAREA(CFS) = 23.41 FLOW VELOCITY(FEET /SEC) = 4.42 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = .75 Tc(MIN.) = 34.75 FLOW PROCESS FROM NODE .00 TO NODE 1.00 IS CODE = 8.1 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<< <<< MAINLINE Tc(MIN) = 34.75 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.151 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL GOOD COVER "GRASS" A 6.30 .94 1.00 38 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .94 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 6.30 SUBAREA RUNOFF(CFS) = 6.89 EFFECTIVE AREA(ACRES) = 26.10 AREA- AVERAGED Fm(INCH /HR) _ .88 AREA- AVERAGED Fp(INCH /HR) = .88 AREA- AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 26.10 PEAK FLOW RATE(CFS) = 29.79 FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 5.2 >>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW <<<<< >>>>>TRAVELTIME THRU SUBAREA <<<<< ELEVATION DATA: UPSTREAM(FEET) = 1480.00 DOWNSTREAM(FEET) = 1473.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 560.00 CHANNEL SLOPE = .0125 CHANNEL FLOW THRU SUBAREA(CFS) = 29.79 FLOW VELOCITY(FEET /SEC) = 3.74 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 2.50 Tc(MIN.) = 37.25 FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 8.1 ----------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <<<<< MAINLINE TC(MIN) = 37.25 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.063 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS ® LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL GOOD COVER "GRASS" A 10.90 .94 1.00 38 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .94 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 10.90 SUBAREA RUNOFF(CFS) = 11.06 EFFECTIVE AREA(ACRES) = 37.00 AREA- AVERAGED Fm(INCH /HR) _ .90 AREA- AVERAGED Fp(INCH /HR) _ .90 AREA- AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 37.00 PEAK FLOW RATE(CFS) = 38.79 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 5.2 >>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<< »»>TRAVELTIME THRU SUBAREA « «< ELEVATION DATA: UPSTREAM(FEET) = 1473.00 DOWNSTREAM(FEET) = 1453.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 590.00 CHANNEL SLOPE _ .0339 CHANNEL FLOW THRU SUBAREA(CFS) = 38.79 FLOW VELOCITY(FEET /SEC) = 6.63 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.48 Tc(MIN.) = 38.73 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 8.1 ------------------------------------------------------------------------ >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<< <<< MAINLINE TC(MIN) = 38.73 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.015 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL GOOD COVER "GRASS" A 11.00 .94 1.00 38 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .94 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 11.00 SUBAREA RUNOFF(CFS) = 10.69 EFFECTIVE AREA(ACRES) = 48.00 AREA- AVERAGED Fm(INCH /HR) _ .91 AREA- AVERAGED Fp(INCH /HR) _ .91 AREA- AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 48.00 PEAK FLOW RATE(CFS) = 47.89 FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 5.2 >>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW <<<<< >>>>>TRAVELTIME THRU SUBAREA<<<<< ELEVATION DATA: UPSTREAM(FEET) = 1453.00 DOWNSTREAM(FEET) = 1441.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 525.00 CHANNEL SLOPE _ .0229 CHANNEL FLOW THRU SUBAREA(CFS) = 47.89 FLOW VELOCITY(FEET /SEC) = 5.78 (PER LACFCD HYDROLOGY MANUAL) ® TRAVEL TIME(MIN.) = 1.51 Tc(MIN.) = 40.25 FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 8.1 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <<<<< MAINLINE Tc(MIN) = 40.25 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 1.970 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL GOOD COVER "GRASS" A 9.40 .94 1.00 38 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .94 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 9.40 SUBAREA RUNOFF(CFS) = 8.74 EFFECTIVE AREA(ACRES) = 57.40 AREA- AVERAGED Fm(INCH /HR) _ .91 AREA- AVERAGED Fp(INCH /HR) _ .91 AREA- AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 57.40 PEAK FLOW RATE(CFS) = 54.65 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 5.2 >>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW <<<<< >> >>>TRAVELTIME THRU SUBAREA <<<<< ELEVATION DATA: UPSTREAM(FEET) = 1441.00 DOWNSTREAM(FEET) = 1429.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 375.00 CHANNEL SLOPE _ .0320 CHANNEL FLOW THRU SUBAREA(CFS) = 54.65 FLOW VELOCITY(FEET /SEC) = 7.10 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) _ .88 Tc(MIN.) = 41.13 FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 8.1 ------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <<<<< MAINLINE TC(MIN) = 41.13 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 1.944 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL GOOD COVER "GRASS" A 7.40 .94 1.00 38 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .94 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 7.40 SUBAREA RUNOFF(CFS) = 6.71 EFFECTIVE AREA(ACRES) = 64.80 AREA- AVERAGED FM(INCH /HR) _ .91 AREA- AVERAGED Fp(INCH /HR) _ .91 AREA- AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 64.80 PEAK FLOW RATE(CFS) = 60.05 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 64.80 TC(MIN.) = 41.13 EFFECTIVE AREA(ACRES) = 64.80 AREA- AVERAGED Fm(INCH /HR)= .91 AREA- AVERAGED Fp(INCH /HR) _ .91 AREA- AVERAGED Ap = 1.00 PEAK FLOW RATE(CFS) = 60.05 END OF RATIONAL METHOD ANALYSIS 10 H r Walnut Street Rational Method for 100 Year Storm Event 59 C7 u� San Bernardino County Rational Hydrology Program ? ® (Hydrology Manual Date - August 1986) CIVILCADD /CIVILDESIGN Engineering Software, (c) 1989 -1999 Version 6.2 r Rational Hydrology Study Date: 03/11/02 ------------------------------------------------------------------------ Tract No. 16158 -2 Walnut Avenue Study 100 Year Event Storm Analysis for street Capacity by: D. Hammer, File Name: Walnut 7_ 4 ------------------------------------------------------------------ - - - - -- Allard Engineering, Fontana, California - SIN 643 ------------------------------------------------------------------------ ********* Hydrology Study Control Information * * * * * * * * ** i ------------------------------------------------------------------------ Rational hydrology study storm event year is 100.0 - Computed rainfall intensity: d Storm year = 100.00 1 hour rainfall = 1.500 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 2 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 30.000 to Point /Station 31.000 * * ** INITIAL AREA EVALUATION * * ** COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In /Hr) Initial subarea data: Initial area flow distance = 690.000(Ft.) Top (of initial area) elevation = 1439.000(Ft.) Bottom (of initial area) elevation = 1434.700(Ft.) Difference in elevation = 4.300(Ft.) Slope = 0.00623 s(V)= 0.62 TC = k(0.304) *[(length "3) /(elevation change)] "0.2 Initial area time of concentration = 11.468 min. Rainfall intensity = 4.048(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q =KCIA) is C 0.878 Subarea runoff = 2.489(CFS) Total initial stream area = 0.700(Ac.) Pervious area fraction = 0.100 Initial area Fm value = 0.098(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 31.000 to Point /Station 32.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 1434.700(Ft.) End of street segment elevation = 1427.900(Ft.) Length of street segment = 740.000(Ft.) Height of curb above gutter flowline = 8.0(In.) width of half street (curb to crown) = 20.000(Ft. e � Distance from crown to crossfall grade break = 10.000(Ft.) Slope from gutter to grade break (v /hz) = 0.020 ® Slope from grade break to crown (v /hz) = 0.020 Street flow is on (1) side(s) of the street Distance from curb to property line = 18.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.110(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.733(CFS) Depth of flow = 0.232(Ft.), Average velocity = 2.350(Ft /s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12.665(Ft.) Flow velocity = 2.35(Ft /s) Travel time = 5.25 min. TC = 16.72 min. Adding area flow to street COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In /Hr) Rainfall intensity = 3.229(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.873 Subarea runoff = 1.457(CFS) for 0.700(Ac.) Total runoff = 3.946(CFS) Effective area this stream = 1.40(Ac.) /., Total Study Area (Main Stream No. 1) = 1.40(Ac.) [ `1✓ Area averaged Fm value = 0.098(In /Hr) Street flow at end of street = 3.946(CFS) Half street flow at end of street = 3.946 (CFS) Depth of flow = 0.238(Ft.), Average velocity = 2.383(Ft /s) Flow width (from curb towards crown)= 12.927(Ft.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 32.000 to Point /Station 33.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 1427.900(Ft.) End of street segment elevation = 1421.900(Ft.) Length of street segment = 580.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 10.000(Ft.) Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 Street flow is on (1) side(s) of the street Distance from curb to property line = 18.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.110(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.791(CFS) ® Depth of flow = 0.251(Ft.), Average velocity = 2.616(Ft /s) 13/14 Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 13.591(Ft.) Flow velocity = 2.62(Ft /s) Travel time = 3.70 min. TC = 20.41 min. Adding area flow to street COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In /Hr) Rainfall intensity = 2.865(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area, (total area with modified rational method)(Q =KCIA) is C = 0.869 Subarea runoff = 1.035(CFS) for 0.600(Ac.) Total runoff = 4.980(CFS) Effective area this stream = 2.00(Ac.) Total Study Area (Main Stream No. 1) = 2.00(Ac.) Area averaged Fm value = 0.098(In /Hr) Street flow at end of street = 4.980(CFS) _ Halt street flow at end of street = 4.980(CFS) Depth of flow = 0.255(Ft.), Average velocity = 2.642(Ft/s) Flow width (from curb towards crown)= 13.788(Ft.) End of computations, Total Study Area = 2.00 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation. Area averaged pervious area fraction(Ap) = 0.100 Area averaged SCS curve number = 32.0 I A4/t,4 HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -95 Advanced Engineering Software (aes) Ver. 5.1 Release Date: 01/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 6101 CHERRY AVE FONTANA CA. TEL (909) 899 - 5011 FAX (909) 899 -5014 ---------------------------------------------------------------------------- TIME /DATE OF STUDY: 9:18 12/ 8/2003 # * * * # * * * * * * # # # * * * * * * * # * * #* DESCRIPTION OF STUDY * * * # * * # * * * * * * * # * # * * * * * * # ** * Tract 16478 Walnut Street Capacity * 100 Year Storm Analysis for Street Capacity * by: J. Miller **#**##*************#*#**********##******#* * * * * * * * * * * * * * # # * # * * * # * # * * * * * * ** *#**##****************#************#*****#*** * * * * * # * * * * * * # # * # * * # * # * * * # * * * * ** >>>>STREETFLOW MODEL INPUT INFORMATION<< << --------------------------------------------------------------------------- CONSTANT STREET GRADE(FEET /FEET) = .010000 CONSTANT STREET FLOW(CFS) = 3.90 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 25.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020000 OUTSIDE STREET CROSSFALL(DECIMAL) = .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = .50 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) = .03125 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) = .12500 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES STREET FLOW MODEL RESULTS: ---------------------------------------------------------------------------- STREET FLOW DEPTH(FEET) = .31 HALFSTREET FLOOD WIDTH(FEET) = 9.21 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.02 PRODUCT OF DEPTH &VELOCITY = .63 MO Street Capacity Calculations 0 ® HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -95 Advanced Engineering Software (aes) Ver. 5.1 Release Date: 01/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 6101 CHERRY AVE FONTANA CA. TEL (909) 899 - 5011 FAX (909) 899 -5014 ------------------------------------------- TIME /DATE OF STUDY: 14: 5 3/ 9/2004 # * # * * * * # * # * # * # # * # # # # * # * # ** DESCRIPTION OF STUDY # # * * * # * * # * * # * * # # # * # # # # # # *# # * Tract 16478 Walnut Street Capacity * 100 Year Storm Analysis for Street Capacity * by: J.Miller *######*#*##***###**###*#*#***#*##*#*#*#**# * * # * # * * # * # * # * * * * * # * * * # * * * # * # * ** *#****###*####*####*#*#*#*#***##*#**##*#**##* * * * # * * # # * * # * # * # * * * * # * * * * # # # # # *# >> >>STREETFLOW MODEL INPUT INFORMATION <<<< ------------------------------------------- CONSTANT STREET GRADE(FEET /FEET) = .010000 ® CONSTANT STREET FLOW(CFS) = 3.90 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 25.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020000 OUTSIDE STREET CROSSFALL(DECIMAL) = .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = .50 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) = .03125 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) = .12500 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES --------------- - STREET FLOW MODEL RESULTS: ------------------------------------------- STREET FLOW DEPTH(FEET) = .31 HALFSTREET FLOOD WIDTH(FEET) = 9.21 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.02 PRODUCT OF DEPTH &VELOCITY = .63 (Flow Line on Walnut) - (High Point in Gutter) = (Height water must crown on Walnut in order to enter Tract 16478) 1432.69 - 1432.28 = 0.41 ft During 100 Year Storm Event water surface is 0.31 ft on Walnut Ave. 0.31 < 0.41, therefore flows do not enter Tract 16478 H HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -95 Advanced Engineering Software (aes) Ver. 5.1 Release Date: 01/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 6101 CHERRY AVE FONTANA CA. TEL (909) 899 - 5011 FAX (909) 899 -5014 ---------------------------------------------------------------------- TIME /DATE OF STUDY: 14:26 3/ 9/2004 * # # * * # * * # # * * # * * # * * * * * * * * *# DESCRIPTION OF STUDY # * * * * # * * * # * # * * * * # # * # # * * # ## • Tract 16478 Street Capacity Calculation # * • Q100 • Britney Drive North Side **#**#***##*###*#*##*###**#***#*###*###**** * * # # * # # * * * * # * * # * # * * * # * # * # * # * # *# ##**#**#***#*##*##**#**###*##******###***#*** # # # # * * # # # * * # * # * # * # # # # * # * * * # # # #* >>>>STREETFLOW MODEL INPUT INFORMATION <<<< ---------------------------------------------------------------------- CONSTANT STREET GRADE(FEET /FEET) _ .015000 CONSTANT STREET FLOW(CFS) = 14.60 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020000 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) _ .50 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) _ .03125 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) _ .12500 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: ---------------------------------------------------------------------- STREET FLOW DEPTH(FEET) _ .50 HALFSTREET FLOOD WIDTH(FEET) = 18.55 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.10 PRODUCT OF DEPTH &VELOCITY = 2.04 - - - -- (0.5 < 0.64) therefore water is flowing below right of way m HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -95 Advanced Engineering Software (aes) Ver. 5.1 Release Date: 01/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 6101 CHERRY AVE FONTANA CA. TEL (909) 899 - 5011 FAX (909) 899 -5014 --------------------------------------------------------------------------- TIME /DATE OF STUDY: 14:26 3/ 9/2004 + + + + + + + + + + + + + + + + + + + + + + + + ++ DESCRIPTION OF STUDY + + + + + + + + + + + + + + + + + + + + + + + + ++ • Tract 16478 Street Capacity Calculation + + • Q100 • Britney Drive South Side + +++++++++++**++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ >>>>STREETFLOW MODEL INPUT INFORMATION<< << -------------------------------------------------------------------------- CONSTANT STREET GRADE(FEET /FEET) = .015000 CONSTANT STREET FLOW(CFS) = 13.38 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET).= 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020000 OUTSIDE STREET CROSSFALL(DECIMAL) = .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = .50 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) = .03125 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) = .12500 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: ------------------------------------------------------------------------ STREET FLOW DEPTH(FEET) = .49 HALFSTREET FLOOD WIDTH(FEET) = 17.98 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.99 PRODUCT OF DEPTH &VELOCITY = 1.94 (0.49 < 0.64) therefore water is flowing below right of way for Q100 [40] HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -95 Advanced Engineering Software (aes) Ver. 5.1 Release Date: 01/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 6101 CHERRY AVE FONTANA CA. TEL (909) 899 - 5011 FAX (909) 899 -5014 ------------------------------------------------------------------ TIME /DATE OF STUDY: 14:26 3/ 9/2004 # # * # * * # * * * # * * * * # * # * * * * * # *# DESCRIPTION OF STUDY # * * # * * * * # * # * # * # * # * * * * * * * #* • Tract 16478 Street Capacity Calculation # • Q25 • Britney Drive North Side *#**#******#*#*#**#*****#**##**###*#***#*** # * # * * * * * # * # * * # * # * # # * * # * # * # * # # #* >> >>STREETFLOW MODEL INPUT INFORMATION <<<< ----------------------------------------------------------------- CONSTANT STREET GRADE(FEET /FEET) = .015000 CONSTANT STREET FLOW(CFS) = 11.20 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020000 OUTSIDE STREET CROSSFALL(DECIMAL) = .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = .50 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) = .03125 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) = .12500 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: ------------------------------------------------------------------ STREET FLOW DEPTH(FEET) = .46 HALFSTREET FLOOD WIDTH(FEET) = 16.82 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.80 PRODUCT OF DEPTH&VELOCITY = 1.76 (0.46 < 0.5) therefore water is flowing below top of curve 0 HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -95 Advanced Engineering Software (aes) Ver. 5.1 Release Date: 01/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 6101 CHERRY AVE FONTANA CA. TEL (909) 899 - 5011 FAX (909) 899 -5014 ------------------------------------------------------------------------ TIME /DATE OF STUDY: 14:26 3/ 9/2004 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * # * * * * * * * * * * * * * * * * * * * ** • Tract 16478 Street Capacity Calculation * • Q25 • Britney Drive South Side **********#******************************** * * * * * # * * * * # * # * * * * * * * * * * * * * * * * ** ********************************************* # * * * * * # * * * * * * * * * * * * * * * * * * * # * * ** >>>>STREETFLOW MODEL INPUT INFORMATION <<<< ------------------------------------------------------------------------ CONSTANT STREET GRADE(FEET /FEET) = .015000 CONSTANT STREET FLOW(CFS) = 10.30 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ .015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020000 OUTSIDE STREET CROSSFALL(DECIMAL) = .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = .50 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) = .03125 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) = .12500 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: ------------------------------------------------------------------------ STREET FLOW DEPTH(FEET) = .45 HALFSTREET FLOOD WIDTH(FEET) = 16.24 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.74 PRODUCT OF DEPTH &VELOCITY = 1.69 (0.45 < 0.5) therefore water is flowing below top of curve x � Catch Basin Sizing Calculations a HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License ID 1400 Analysis prepared by: ---------------------------------------------------------------------------- TIME /DATE OF STUDY: 16:27 03/17/2004 Problem Descriptions: Tract 16478 NorthSide Catch Basin Width Calculation North Side Britney Drive >> >>SUMP TYPE BASIN INPUT INFORMATION<< << ---------------------------------------------------------------------- - - - - -- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 13.38 BASIN OPENING(FEET) = 0.71 DEPTH OF WATER(FEET) = 0.83 >>>>CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 6.16 W needed = 7.0' Use W = 10.0' HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License ID 1400 Analysis prepared by: ---------------------------------------------------------------------------- TIME /DATE OF STUDY: 16:24 03/17/2004 Problem Descriptions: Tract 16478 NorthSide Catch Basin Width Calculation North Side Britney Drive ###****##***##**##****####*###****###*******# # * * * # # # * * * # # * * * * # # * # * * # * # * # * * ## >>>>SUMP TYPE BASIN INPUT INFORMATION<< << ---------------------------------------------------------------------- - - - - -- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 14.60 BASIN OPENING(FEET) = 0.71 DEPTH OF WATER(FEET) = 0.83 >>>>CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 6.72 W needed = 7.0' Use W = 10.0' L X Existing Line "B" & proposed Storm Drain WSPG Line "A" N L T1 Young Homes Tract 16258 -1 0 T2 Existing line "B" plus proposed line "A" T3 Final SO 1002.3901376.430 1 1381.873 R 1032.2701376.860 1 .013 .000 .000 0 R 1067.6301377.340 1 .013 45.014 .000 0 R 1234.7901379.640 1 .013 .000 .000 0 R 1305.4801380.600 1 .013 90.000 .000 0 JX 1310.1401380.660 6 .013 R 1580.2401385.550 1 .013 .000 .000 0 JX 1584.9001385.600 12 .013 R 1854.9901390.480 1 .013 .000 .000 0 JX 1859.6001390.980 7 .013 R 1930.9301391.690 7 .013 - 62.241 .000 0 JX 1933.5901391.730 7 4 .013 33.710 1392.050 50.0 .000 R 1964.8601392.030 7 .013 - 27.879 .000 0 R 2117.1901393.560 7 .013 .000 .000 0 R 2187.9401394.260 7 .013 90.051 .000 0 JX 2192.6001394.310 7 .013 R 2463.8901398.600 7 .013 .000 .000 0 R 2480.7501398.860 7 .013 21.276 .000 0 R 2504.6301399.240 7 .013 .000 .000 0 R 2521.4901399.510 7 .013 - 21.276 .000 0 JX 2526.1501399.570 7 .013 R 2738.0101403.840 7 .013 .000 .000 0 JX 2742.6701403.900 13 .013 R 2811.3201404.590 7 .013 .000 .000 0 R 2815.9901404.640 7 .013 .000 .000 0 R 2864.1201405.120 7 .013 100.000 .000 0 R 2966.4901406.140 7 .013 .0 .000 0 JX 2971.1601406.690 15 14 .013 13.380 1406.170 60.0 6 0.000 R 3018.4601407.630 15 .013 .000 .000 0 WE 3018.4601407.630 16 .500 SH 3018.4601407.630 16 1407.630 CD 1 4 1 .000 3.000 .000 .000 .000 .00 CD 2 4 1 .000 2.500 .000 .000 .000 .00 CD 3 4 1 .000 3.000 .000 .000 .000 .00 CD 4 4 1 .000 2.000 .000 .000 .000 .00 CD 5 4 1 .000 2.000 .000 .000 .000 .00 CD 6 4 1 .000 3.000 .000 .000 .000 .00 CD 7 4 1 .000 2.500 .000 .000 .000 .00 CD 8 4 1 .000 2.500 .000 .000 .000 .00 CD 9 4 1 .000 2.500 .000 .000 .000 .00 CD 10 4 1 .000 1.000 .000 .000 .000 .00 CD 12 4 1 .000 3.000 .000 .000 .000 .00 CD 13 4 1 .000 2.500 .000 .000 .000 .00 CD 14 4 1 .000 2.000 .000 .000 .000 .00 CD 15 4 1 .000 2.000 .000 .000 .000 .00 CD 16 2 0 .000 7.400 10.000 .000 .000 .00 CD 17 4 1 .000 2.500 .000 .000 .000 .00 Q 14.600 .0 o n o FILE: 2581ineb.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 1 Program Package Serial Number: 1382 WATER SURFACE PROFILE LISTING Date: 3 -17 -2004 Time: 3:11:34 Young Hones Tract 16258 -1 Existing line "B" plus proposed line " A " Final *} ff* f* l4flff ► * *!*** * #flf*ffll * # *f #1f # #ll }f *f # # #f} # #** fit *#*#•11f #f #f ## flit* ##ff *# ♦*f # # # * # *f} #1f * }f }}lf \* *ffll ♦f #ff * * #if l* f *# *f **f Invert Depth Water Q Vel Vel I Energy I Super ICriticalIFlow ToplHeight /lBase Wtj INo Wth Station I Elev (FT) Elev (CFS) I (FPS) Head I Grd.El.1 Elev I Depth I Width IDia. -FTIor I.D.1 ZL IPrs /Pip L /Elem ICh Slope I SF Avel HF SSE DpthIFroude NINorm Dp I "N" I X -Fall ZR IType Ch •ff} * }f }f llllf *#f }}�1fff11f *� # }# } # #f #flffflf if }fI # }• } } }flfff lf# flRf # #Rif•#If }}•f } }� #f * #4 #}#I /11f1f 1f l } ## } * # #Il# *fffllfff#R I * }f * }}# 1002.390 1376.430 5.443 1381.873 61.69 8.73 1.18 1383.06 .00 2.53 .00 3.000 .000 .00 1 .0 29.880 .0144 .0086 .26 5.44 .00 1.98 .013 .00 .00 PIPE 1032.270 1376.860 5.269 1382.129 61.69 8.73 1.18 1383.31 .00 2.53 .00 3.000 .000 .00 1 .0 35.360 .0136 .0086 .30 .00 .00 2.02 .013 .00 .00 PIPE 1067.630 1377.340 5.258 1382.598 61.69 8.73 1.18 1383.78 .00 2.53 .00 3.000 .000 .00 1 .0 167.160 .0138 .0086 1.43 5.26 .00 2.01 .013 .00 .00 PIPE 1234.790 1379.640 4.388 1384.028 61.69 8.73 1.18 1385.21 .00 2.53 .00 3.000 .000 .00 1 .0 70.690 .0136 .0086 .60 .00 .00 2.02 .013 .00 .00 PIPE 1305.480 1380.600 4.270 1384.870 61.69 8.73 1.18 1386.05 .00 2.53 .00 3.000 .000 .00 1 .0 JUNCT STR .0129 .0086 .04 4.27 .00 .013 .00 .00 PIPE 1310.140 1380.660 4.249 1384.909 61.69 8.73 1.18 1386.09 .00 2.53 .00 3.000 .000 .00 1 .0 94.456 .0181 .0086 .81 4.25 .00 1.83 .013 .00 .00 PIPE 1404.596 1382.370 3.347 1385.718 61.69 8.73 1.18 1386.90 .00 2.53 .00 3.000 .000 .00 1 .0 HYDRAULIC JUMP 1404.596 1382.370 1.827 1384.197 61.69 13.68 2.91 1387.11 .00 2.53 2.93 3.000 .000 .00 1 .0 175.644 .0181 .0180 3.17 1.83 1.94 1.83 .013 .00 .00 PIPE 1580.240 1385.550 1.833 1387.383 61.69 13.64 2.89 1390.27 .00 2.53 2.93 3.000 .000 .00 1 .0 JUNCT STR .0107 .0181 .08 1.83 1.93 .013 .00 .00 PIPE o n e FILE: 2581ineb.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 2 Program Package Serial Number: 1382 WATER SURFACE PROFILE LISTING Date: 3 -17 -2004 Time: 3:11:34 Young Homes Tract 16258 -1 Existing line "B" plus proposed line " A " Final ♦ffffffffff*f #f # fffffffRfffffffffff# f#*f ffffffffffffffffRlflfff #ffffffffffffff#f ## #Miff ifffRfff *!fffff # # #f #fR #ff *fffff!• ## *fff#4 ** Invert Depth Water Q Vel Vel I Energy I Super ICriticalIFlow ToplHeight /lBase Wtj INo Wth Station I Elev (FT) Elev (CFS) (FPS) Head I Grd.El.I Elev I Depth I Width IDia. -FTIor I.D.1 ZL IPrs /Pip L /Elem ICh Slope I I SF Avel HF ISE DpthIFroude NINorm Dp I "N" I X -Fall ZR IType Ch ♦!fffff #f lffffffffflf• #• fffff ► *R #f #fffliffffff*fl #fffffflfff fffff #f # #f #f #fff #fffff ffff #f *fl #!!fffff fff if fff fffff! *ffff #ff fff if if 1584.900 1385.600 1.820 1387.420 61.69 13.74 2.93 1390.35 .00 2.53 2.93 3.000 .000 .00 1 .0 113.517 .0181 .0187 2.12 1.82 1.96 1.83 .013 .00 .00 PIPE 1698.417 1387.651 1.795 1389.446 61.69 13.97 3.03 1392.48 .00 2.53 2.94 3.000 .000 .00 1 .0 102.400 .0181 .0203 2.08 1.80 2.01 1.83 .013 .00 .00 PIPE 1800.817 1389.501 1.725 1391.226 61.69 14.66 3.34 1394.56 .00 2.53 2.97 3.000 .000 .00 1 .0 54.173 .0181 .0230 1.25 1.73 2.17 1.83 .013 .00 .00 PIPE 1854.990 1390.480 1.660 1392.140 61.69 15.37 3.67 1395.81 .00 2.53 2.98 3.000 .000 .00 1 .0 JUNCT STR .1085 .0221 .10 1.99 2.34 .013 .00 .00 PIPE 1859.600 1390.980 2.404 1393.384 61.69 12.73 2.52 1395.90 .04 2.40 .96 2.500 .000 .00 1 .0 3.096 .0100 .0206 .06 2.44 1.00 2.50 .013 .00 .00 PIPE 1862.696 1391.011 2.500 1393.511 61.69 12.57 2.45 1395.96 2.50 2.40 .00 2.500 .000 .00 1 .0 68.234 .0100 .0220 1.50 2.50 .00 2.50 .013 .00 .00 PIPE 1930.930 1391.690 3.763 1395.453 61.69 12.57 2.45 1397.91 .00 2.40 .00 2.500 .000 .00 1 .0 JUNCT STR .0151 .0136 .04 .00 .00 .013 .00 .00 PIPE 1933.590 1391.730 6.184 1397.914 27.98 5.70 .50 1398.42 .00 1.80 .00 2.500 .000 .00 1 .0 31.270 .0096 .0047 .15 .00 .00 1.54 .013 .00 .00 PIPE 1964.860 1392.030 6.086 1398.116 27.98 5.70 .50 1398.62 .00 1.80 .00 2.500 .000 .00 1 .0 152.330 .0100 .0047 .71 6.09 .00 1.51 .013 .00 .00 PIPE o n o FILE: 2581ineb.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 3 Program Package Serial Number: 1382 WATER SURFACE PROFILE LISTING Date: 3 -17 -2004 Time: 3:11:34 Young Homes Tract 16258 -1 Existing line "B" plus proposed line " A " Final * \ffff }11fff *R *R4 ♦1R} }1f # #111f 1f R* fff** f* if!*f f# fff► fff ►f #f #ff1RR* **fff* #* fff* #*M *f #RRf 1f Rf * *f * *f *iffff#1f #lffffffR1f 1f4 ►/ }}f ** #1f Invert Depth Water Q Vel Vel I Energy I Super ICriticalIFlow ToplHeight /lBase Wtj ENO Wth Station I Elev (FT) Elev (CFS) I (FPS) Head I Grd.El.1 Elev I Depth I Width IDia. -FTIor I.D.1 ZL IPrs /Pip L /Elem ICh Slope I SF Avel HF ISE DpthIFroude NINorm Dp I "N" I X -Fall ZR IType Ch fff * \ffff lfllfRffffl \Yfff }1f lffflf Rlff lffif*\* 1* IR1ff R}} Ififf f if if #f 1Rf RfflfRfRRf #IfRff*f Rf lfiff #Rf•IfffRflRl#ff } * # *IfR ►1f �fif 11f1 2117.190 1393.560 5.265 1398.825 27.98 5.70 .50 1399.33 .00 1.80 .00 2.500 .000 .00 1 .0 70.750 .0099 .0047 .33 .00 .00 1.52 .013 .00 .00 PIPE 2187.940 1394.260 4.995 1399.255 27.98 5.70 .50 1399.76 .00 1.80 .00 2.500 .000 .00 1 .0 JUNCT STR .0107 .0047 .02 5.00 .00 .013 .00 .00 PIPE 2192.600 1394.310 4.967 1399.277 27.98 5.70 .50 1399.78 .00 1.80 .00 2.500 .000 .00 1 .0 221.039 .0158 .0046 1.02 4.97 .00 1.31 .013 .00 .00 PIPE 2413.639 1397.805 2.500 1400.305 27.98 5.70 .50 1400.81 .00 1.80 .00 2.500 .000 .00 1 .0 3.339 .0158 .0044 .01 2.50 .00 1.31 .013 .00 .00 PIPE 2416.978 1397.858 2.458 1400.317 27.98 5.72 .51 1400.82 .00 1.80 .64 2.500 .000 .00 1 .0 HYDRAULIC JUMP 2416.978 1397.858 1.291 1399.149 27.98 10.95 1.86 1401.01 .00 1.80 2.50 2.500 .000 .00 1 .0 46.912 .0158 .0169 .79 1.29 1.91 1.31 .013 .00 .00 PIPE 2463.890 1398.600 1.281 1399.881 27.98 11.05 1.90 1401.78 .21 1.80 2.50 2.500 .000 .00 1 .0 16.860 .0154 .0174 .29 1.49 1.94 1.32 .013 .00 .00 PIPE 2480.750 1398.860 1.269 1400.129 27.98 11.19 1.94 1402.07 .00 1.80 2.50 2.500 .000 .00 1 .0 23.880 .0159 .0182 .43 1.27 1.97 1.31 .013 .00 .00 PIPE 2504.630 1399.240 1.250 1400.490 27.98 11.40 2.02 1402.51 .22 1.80 2.50 2.500 .000 .00 1 .0 16.860 .0160 .0190 .32 1.47 2.03 1.31 .013 .00 .00 PIPE U WSPG 48" Almeria Lateral (conveying 100 % of Q 100) M 0 T1 Walnut Street "Line B" Almeria Storm Drain Lateral 0 T2 T3 SO 1000.000 417.480 1 424.900 R 1092.220 421.160 1 .013 - 117.418 .000 1 R 1418.500 422.460 1 .013 .000 .000 1 R 1602.560 423.200 1 .013 .000 90.000 0 WE 1602.560 423.200 2 .500 SH 1602.560 423.200 2 423.200 CD 1 4 1 .000 4.000 .000 .000 .000 .00 CD 2 4 1 .000 4.000 .000 .000 .000 .00 Q 60.050 .0 (7) o FILE: walnut- lat.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 1 Program Package Serial Number: 1382 WATER SURFACE PROFILE LISTING Date: 3- 9 -2004 Time: 3:56:21 Walnut Street "Line B" Almeria Storm Drain Lateral * *xaxrx * * * *rf xrrraf xrrxffxa• rf \f xfr* rRfffr} rrfrf rrrffrrrfrrrf }lrrrfr }rff ♦r ♦frr \}rr } } *rf rfrrrf rffrrfrrrff}r}f • rfrr rrra * *xf Invert Depth Water Q Vel Vel I Energy I Super ICriticalIFlow ToplHeight /Base Wtj INo Wth Station I Elev (FT) Elev (CFS) I (FPS) Head I Grd.El.I Elev I Depth I Width IDia. -FTIor I.D.1 ZL jPrs /Pip L /Elem ICh Slope I I SF Avel HP SSE DpthIFroude NINorm Dp I "N" I X -Fall ZR IType Ch rxrrraa•rlrfrrwr♦ of lrrr*aa :f �fxfrrrr}rl►a affrr }rlrrrrx ralaawar•} I}}} arr} rrlrxrrxxrl** rra• aalrrf *f ravel *aaxrrrlrrr rrrrlrax*a lafrax►x 1000.000 417.480 7.420 424.900 60.05 4.78 .35 425.25 .00 2.33 .00 4.000 .000 .00 1 .0 92.217 .0399 .0017 .16 .00 .00 1.24 .013 .00 .00 PIPE 1092.220 421.160 3.999 425.159 60.05 4.78 .35 425.51 .00 2.33 .13 4.000 .000 .00 1 .0 141.856 .0040 .0016 .23 4.00 .08 2.38 .013 .00 .00 PIPE 1234.076 421.725 3.629 425.354 60.05 5.01 .39 425.74 .00 2.33 2.32 4.000 .000 .00 1 .0 73.687 .0040 .0016 .12 3.63 .39 2.38 .013 .00 .00 PIPE 1307.763 422.019 3.413 425.432 60.05 5.26 .43 425.86 .00 2.33 2.83 4.000 .000 .00 1 .0 59.031 .0040 .0017 .10 3.41 .46 2.38 .013 .00 .00 PIPE 1366.794 422.254 3.236 425.490 60.05 5.51 .47 425.96 .00 2.33 3.14 4.000 .000 .00 1 .0 51.706 .0040 .0019 .10 3.24 .52 2.38 .013 .00 .00 PIPE 1418.500 422.460 3.081 425.541 60.05 5.78 .52 426.06 .00 2.33 3.37 4.000 .000 .00 1 .0 45.988 .0040 .0021 .10 3.08 .58 2.37 .013 .00 .00 PIPE 1464.488 422.645 2.940 425.585 60.05 6.06 .57 426.16 .00 2.33 3.53 4.000 .000 .00 1 .0 42.028 .0040 .0023 .10 2.94 .64 2.37 .013 .00 .00 PIPE 1506.516 422.814 2.812 425.626 60.05 6.36 .63 426.25 .00 2.33 3.66 4.000 .000 .00 1 .0 39.957 .0040 .0026 .10 2.81 .70 2.37 .013 .00 .00 PIPE 1546.474 422.975 2.693 425.668 60.05 6.67 .69 426.36 .00 2.33 3.75 4.000 .000 .00 1 .0 37.779 .0040 .0029 .11 2.69 .76 2.37 .013 .00 .00 PIPE o n u FILE: walnut- lat.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 2 Program Package Serial Number: 1382 WATER SURFACE PROFILE LISTING Date: 3- 9 -2004 Time: 3:56:21 Walnut Street "Line B" Almeria Storm Drain Lateral if# Yffl ffl fRl f##1 fff# RRfffl ff#}# f# f## R} Y fflffYfffffff/# }YYff!! ##f#ffRlf YYf if #ff!lf RffY ffff#if # }Yffff! #! }•!f!f } #ffff if #ff #! # #!f }Yff Invert Depth Water Q Vel Vel I Energy I Super ICriticallFlow ToplHeight /IBase Wt1 INo Wth Station I Elev (FT) Elev (CFS) I (FPS) Head I Grd.E1.1 Elev I Depth I Width IDia. -FTIor I.D.1 ZL IPrs /Pip L /Elem ICh Slope I SF Avel HF ISE DpthIFroude NINorm Dp I "N" I X -Fall ZR IType Ch fffY!► fl flY#}l Rft ffl# ffM} ff}IfRYffY#Y11RRlffflfRlffffRRf lfY! }! ♦fIflff• #f Rf lfffflfllff #lftfllRR#fff lfllfRMff}I #liff!}IfRf !• IfffRf }f I I I I I I I I I I I I I 1584.253 423.126 2.583 425.710 60.05 7.00 .76 426.47 .00 2.33 3.83 4.000 .000 .00 1 .0 _I_ _I_ _I_ _I_ _I_ _I_ _I_ _I_ _I_ -I_ _I_ _I_ _I_ I- 18.307 .0040 .0032 .06 2.58 .82 2.37 .013 .00 .00 PIPE WALL ENTRANCE I I I I I I I I I I I 1 1 1602.560 423.200 2.534 425.734 60.05 7.16 .80 426.53 .00 2.33 3.86 4.000 .000 .00 0 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- I- W SPG 36" Walnut Storm Drain (conveying 100 % of Q 100) T1 Walnut Avenue Storm Drain 0 T2 T3 SO 7250.0001421.010 1 1422.800 R 7655.5001425.120 1 .013 .000 .000 1 WE 7655.5001425.120 2 .500 SH 7655.5001425.120 2 1425.120 CD 1 4 1 .000 3.000 .000 .000 .000 .00 CD 2 4 1 .000 3.000 .000 .000 .000 .00 Q 60.050 .0 FILE: walnut.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 1 Program Package Serial Number: 1382 WATER SURFACE PROFILE LISTING Date: 3- 8 -2004 Time: 3: 8:16 Walnut Avenue Storm Drain Invert Depth Water Q Vel Vel Energy Super CriticaliFlow Top Height/ Base Wt No Wth Station Elev (FT) Elev (CFS) (FPS) Head Grd.E1. Elev Depth I Width Dia. -FT or I.D. ZL Prs /Pip L /Elem Ch Slope SF Ave HF SE Dpth Froude NINorm Dp "N" X -Fall ZR Type Ch 7250.000 1421.010 2.213 1423.223 60.05 10.74 1.79 1425.02 .00 2.50 2.64 3.000 .000 .00 1 .0 233.098 .0101 .0101 2.36 2.21 1.30 2.21 .013 .00 .00 PIPE 7483.098 1423.373 2.213 1425.586 60.05 10.74 1.79 1427.38 .00 2.50 2.64 3.000 .000 .00 1 .0 120.131 .0101 .0099 1.19 2.21 1.30 2.21 .013 .00 .00 PIPE 7603.229 1424.590 2.264 1426.854 60.05 10.49 1.71 1428.56 .00 2.50 2.58 3.000 .000 .00 1 .0 44.085 .0101 .0091 .40 2.26 1.24 2.21 .013 .00 .00 PIPE 7647.314 1425.037 2.375 1427.412 60.05 10.00 1.55 1428.97 .00 2.50 2.44 3.000 .000 .00 1 .0 8.186 .0101 .0083 .07 2.38 1.12 2.21 .013 .00 .00 PIPE WALL ENTRANCE 7655.500 1425.120 2.503 1427.623 60.05 9.53 1.41 1429.03 .00 2.50 2.23 3.000 .000 .00 0 .0 - I - - I - - I - - I - - I - - I - - I - -I- CMP Riser Elevation Calculation 48" CMP Riser (Existing Condition) 0 0 CMP Riser Elevation Calculation (48 inch Diame Equations and Constants were Derived From Brater, E.F. and King, H.W. 1976. Handbook Of Hydraulics. 65th Edition. McGraw Hill, New York. H = (Q/CL) "(2/3) H = Distance Between Maximum Water Surface and Top of CMP Riser (ft) C = Constant Q = Q100 (cfs) L = Represents The Length Of The Opening And Can Be Calculated Using The Equation 2(Pi)R For A 48 inch Pipe 2(Pi)(24) =150.8 inches = 12.57 ft C = 3.087 Q = 60.1 cfs L = 12.57 ft H = (60.1/(3.087)(12.6)) ^ 2 /3 H = 1.3 ft A H CMP Riser Elevation Calculation 36" CMP Riser (Modified Condition) m X0 CMP Riser Elevation Calculation ( 36 inch Diameter Pipe) to serve the northern undeveloped portion of the lot Equations and Constants were Derived From Brater, E.F. and King, H.W. 1976. Handbook Of Hydraulics, 65th Edition. McGraw Hill, New York. H = (Q /CL) ^(2/3) H = Distance Between Maximum Water Surface and Top of CMP Riser (ft) C = Constant Q = Q100 (cfs) L = Represents The Length Of The Opening And Can Be Calculated Using The Equation 2(Pi)R For A 36 inch Pipe 2(Pi)(1 8)=1 13.1 inches = 9.42 ft C = 3.087 Q = 60.1 cfs L = 9.4 ft H = ((60/(3.087)(9.4)) ^2 /3 H =1.6ft Therefore water will pond 1.6 ft during 100 year storm event Iq Walnut Street Hydrology Exhibit Scale: 1' =200' It ® INDICATES HYDROLOGY NODE WALMF AVE. HYDROLOGY --w v �� m. . kk\W—\15oozV"MVW M1Uft,*,"