HomeMy WebLinkAboutBrown-Strauss SteelHYDROLOGY AND HYDRAULIC REPORT
BROWN - STRAUSS STEEL
PARCEL MAP 19073
FONTANA, CALIFORNIA
COUNTY OF SAN BERNARDINO
PREPARED FOR: BROWN STRAUSS -STEEL
c/o Wilson Income Properties
Coto de Caza, CA 92679
(949) 888 -9200
PREPARED BY: HALLADAY & MIM MACK, INC.
1181 California Avenue, Suite 102
Corona, CA 92881
(951) 278 -9700
HALLADAY
MIM MACK
Incorporated
CIVIL ENGINEERS
SUR VEYORS
Prepar Under tf
a . Halladay,
August 2008
ion of:
w
34751
? m
A No. R.C.E. 34751
q CMS 2��
J N 918 -01 -08
Hydrology and Hydraulic Report
Parcel Map 19073
Fontana, CA
County of San Bernardino
HYROLOGY AND HYDRAULIC REPORT
BROWN- STRAUSS STEEL
PARCEL MAP 19073 - FONTANA, CALIFORNIA
COUNTY OF SAN BERNARDINO
TABLE OF CONTENTS
I. INTRODUCTION AND SITE DESCRIPTION
Il. METHODOLOGY
111. RATIONAL HYDROLOGY
IV. CONCLUSION
APPENDENCES
APPENDIX "A" -Reference Material
• Figure C -11; hydrology manual - SQC Hydrologic Soils Group Map for Southcentral Area
• Figure B -3 SBC flood control district valley area isohyetals —10 year 1 hour
Ell • Figure B-4 SBC flood control district valley area isohyetals —100 year 1 hour
• Figure C -3 SBC hydrology manual curve numbers of hydrologic soil cover
APPENDIX "B"— Maps
• Vicinity Map / Location Exhibit
• Hydrology Map — Post Development Condition
APPENDIX "C" — Hydrology Analysis
AES Rational Method Hydrology Analysis
• 10-year— I hour storm event/ Developed Conditions
• 25 -year —1 hour storm event / Developed Conditions
• 100-year— 1 hour storm event/ Developed Conditions
• Flow- and Volume -Based BMP Design Calculations
APPENDIX "D" — Hydraulic Analysis
Hydraulics Analysis
• Line "A° - Q10 (WSPGW Analysis)
• Inlet Study
• Parkway Culverts
• Concrete "U" Ditch
i
Fontana, CA
Brown - Strauss Steel i
HydrologyMydraubc Report
Parcel Map 19073
Fontana, CA
County of San Bernardino
HYDROLOGY/HYDRAULIC REPORT
PARCEL MAP 19073
BROWN- STRAUSS STEEL
I. INTRODUCTION
This study presents a quantitative assessment of potential storm water runoff that would
impact Parcel Map 19073 in the City of Fontana, County of San Bernardino, California. The
project site is located at the northwest comer of Jurupa Avenue and Live Oak Avenue on a
7.4 -acre gross parcel. The parcel is bounded on the north by Parcel 1, PM 6980, PMB 67/41,
and on the south by Jurupa Avenue, on the west by small rural residential parcels and on the
east by Live Oak Road. The site is currently vacant with gentle grades throughout the entire
site. The proposed project consists of 129,870 s.f. of warehouse, 2,248 s.f. of office, 92,071
s.f. of paving and approximately 48,600 s.f. of landscaping.
For the purpose of this Hydrology Study, we have analyzed the developed condition of the 7.4-
acre project site to determine the impact of storm water runoff. The project site and adjacent
land is gently sloped and generally drains from the north to the south and flows toward Jurupa
Avenue. The proposed site will drain approximately one -third (1/3) of the parcel toward an
existing 42" storm drain line on Jurupa Avenue with two-thirds (2/3) of the parcel draining
toward a 48" storm drain line in Live Oak Avenue. The drainage from the 42° and 48° storm
drain lines confluence near the intersection of Live Oak and Jurupa Avenues and drain
southerly in an existing MDP 69" storm line that outfalls into the Declez Channel.
II. METHODOLOGY
Hydrologic calculations to determine the storm design discharges for this project were
performed using the San Bernardino County Rational Method. The rational method equation
relates rainfall intensity, a runoff coefficient and drainage area size the direct peak runoff from
the drainage area.
Brown - Strauss Steel 1
Fontana, CA
u
Hydrology/Hydraulic Report
Parcel Map 19073
Fontana, CA
County of San Bernardino
The design discharges were calculated by modeling the project site into tributary sub - areas.
Each sub -area contributes to the main line flow. The following guidelines and assumptions
apply to the rational method:
1. Run-on drainage from the northerly parcel, Parcel 1, PM 6980, PMB 67/41, will pass
through under the new block wall at temporary block -outs left open at the base of the
wail. The run-on from approximately 4.0 acres of the adjacent parcel will be collected as
part of drainage Area A of the on -site drainage system. In the future, when this parcel
develops, the temporary block -outs will be replaced with permanent blocks. The
adjacent new development will be required to collect its own drainage and connect to
and extend the proposed MDP 48" storm drain line in Live Oak Avenue.
2. The proposed project is divided into five sub - areas; Area A being 2.38 acres, Area B
being 1.85 acres, Area C being 1.87 acres, Area D being 0.11 acres and Area E being
0.14 acres. (See Hydrology Map).
a. Sub -area A drains to the west side of the parcel, collected by on -site inlets that
drain into Line "A ". Line "A" will contain an in -line weir box that discharges the
high flows southerly to the MDP Line "D -1 ". Line "D -1" is a 42" storm drain in
Jurupa Avenue that flows easterly for approximately 550 feet to the intersection
of Live Oak Avenue. At that point, Line "D-1" confluences with MPD Line "D ", an
existing 69" storm drain line. Line "D" flows south for approximately 1,000 feet
where it outfalls into the Declez Channel. The Declez Channel flows
southwesterly for 2 % mites where it confluences with the San Servaine Channel
that runs southerly for 3 % miles where it outfalls into Reach 3 of the Santa Ana
River, just south of Limonite Road. The low flows will be treated in an on -site
underground infiltration system on the western side of the parcel to
accommodate the run -off volume calculated as required by San Bernardino
County. (See Appendix C)
Brown-Strauss Steel 2
Fontana, CA
HydrologyMydraulic Report
Parcel Map 19073
Fontana, CA
County of San Bernardino
b. Sub -area B collects a portion of the proposed industrial building roof drainage
and flows towards the west side of the parcel into a proposed onsite storm drain
lines. The proposed storm drain line runs along the west and south sides of the
building to inlet Gl#1 and discharges the high flows to the proposed street inlet
on the west side of Live Oak Avenue. The low flows will be treated in an on -site
underground infiltration system on the easterly side of the parcel to
accommodate the run -off volume calculated as required by San Bernardino
County. (See Appendix C)
c. Sub -areas C collect a portion of the proposed industrial building roof drainage
and flows towards the east side of the parcel into a proposed swale that is
PR collected in on -site inlets GI#3 and GI#4. The low flows will be treated in an on-
6 site underground infiltration system on the easterly side of the parcel to
accommodate the run -off volume calculated as required by San Bernardino
County. (See Appendix C) The high flows will discharge to the proposed street
inlet on the west side of Live Oak Avenue.
d. Sub -area D collects a portion of the landscaping strip along the south side of the
proposed building and flows in a grass swale that is collected and discharged
r through a proposed parkway drain onto north side of Jurupa Avenue.
e. Sub -area E collects a landscaped area at the southwesterly comer of the parcel
into a concrete °U" channel and discharges into Jurupa Avenue through a
proposed parkway drain.
3. The rational method equation is only applicable where the rainfall intensity is assumed
to be uniformly distributed over the drainage area at a uniform rate throughout the
duration of the storm.
Brown - Strauss Steel 3
Fontana, CA
HydrologyMydraulic Report
Parcel Map 19073
Fontana, CA
county of San Bernardino
4. The equation includes the element of the soil surface characteristics. The soils map
from the Hydrology Manual indicates the existing soils of the project consist of soil Type
A. Soil ratings are based on a scale of A to D, where A is the most pervious. The
pervious rate is also affected by the type of vegetation and /or ground cover and the
percentage of impervious surfaces (i.e.: asphalt concrete).
5. The nomograph used to determine the time of concentration of the initial area is based
on the Kirpich formula. The hydrology manual specifies that the initial area shall be less
than 10 acres and the flow pathless than 1000 feet.
6. Pipe travel times were calculated based on preliminary pipe sizes, with a minimum pipe
size of 18" diameter specified in the program.
7. Standard intensity - duration curve data was taken from the San Bernardino County
Hydrology manual, dated October 1986.
The results of the hydrologic calculations are included in this report. The relevant portions of
related hydrology reports have been included for reference.
® III. RATIONAL HYDROLOGY
Hydrologic calculations were performed in accordance with the County of San Bernardino
Hydrology Manual guidelines. Runoff flow rates and volumes were determined for the 10 year
and 100 year frequency storm events. Based on these calculations, it is possible to design
storm drain improvements for Parcel Map No. 19073 that will provide the County mandated
storm drainage protection.
The proposed land use is commercial with 90% impervious cover. The 100 -yr /1 -hour rainfall
depth is 1.35 - inches based on standard intensity - duration curve data Figure B-4 as published
in the Hydrology Manual.
Brown - Strauss Steel 4
Fontana, CA
0
Hydrology /Hydraulic Report
Parcel Map 19073
Fontana, CA
County of San Bernardino
Storm water runoff flow rates were estimated using Advanced Engineering Software (AES)
N I
i Rational Method V.11.0, 2005. The existing drainage area is currently flowing southerly
to toward Jurupa Avenue.
The total flows generated by the site in the proposed condition are tabulated as follows:
Table 1
Rational Method Peak Flow for Developed Conditions
U 1141
■ The drainage patterns for the proposed industrial development are dependent on using parking
lots and grass swales as conveyance and placing inlets at low points. The inlets will drain to
the proposed underground storm drain system.
G
Brown- Strauss Steel 5
Fontana, CA
Drainage Sub -Areas
A
B
C
D
E
Acreage
2.38
1.85
1.87
0.11
0.14
10 year Time of Concentration; Tc
17.38
12.70
6.96
10.47
10.80
10 year Peak Runoff; Q10
9.9
3.6
6.0
0.20
0.24
25 year Time of Concentration; Tc
17.21
12.6
6.87
10.47
10.80
25 year Peak Runoff; Q
12.0
4.3
7.1
0.2
0.3
100 year Time of Concentration; Tc
16.97
12.41
6.74
10.47
10.80
100 year Peak Runoff; Q 100
16.8
5.9
9.5
0.4
0.4
■ The drainage patterns for the proposed industrial development are dependent on using parking
lots and grass swales as conveyance and placing inlets at low points. The inlets will drain to
the proposed underground storm drain system.
G
Brown- Strauss Steel 5
Fontana, CA
Hydrology /Hydraulic Report
Parcel Map 19073
Fontana, CA
County of San Bernardino
IV. HYDRAULICS
Hydraulic calculations were performed using the Los Angeles County Department of Public
Works computer modeling code Water Surface Pressure Gradient (WSPG), version 14.05,
compiled by CivilDesign Corporation, copyright 1991 -2002.
The offsite storm drain system consists of an 18 "- reinforced concrete pipe (RCP) connecting
upstream catch basins and discharging into existing Master Plan of Drainage facilities in
Jurupa and Live Oak Avenues respectively.
The on -site storm drain system is composed of two lines; Line A, an 18" line that collects the
run-on flows from the adjacent parcel to the north and onsite flows from the westerly portion of
the project and Line B; which collects run -off from the roof and the easterly portion of the
project. Line "B" ranges in size from 10 to 18- inches. A total of five (5) drop inlets, one (1)
curb inlet and two (2) parkway drains are also part of the collection system. They are all
designed to maintain a maximum water surface elevation, or hydraulic grade line (HGL), at 6-
inches below the normal flow line at catch basin inlets for a 1 -hour, 25 year storm.
The results of the WSPG calculations for Line "A" are in Appendix "D ". Results of the inlet
studies, parkway culvert and the concrete "U" channel calculations, are also in Appendix "D ".
V. CONCLUSION
The Hydrology /Hydraulic analysis reveals that storm drainage improvements can be
constructed to safely convey storm waters from the proposed industrial development. A
Majority of the drainage is intercepted and conveyed through drainage systems in Parcel Map
19073 and flows within pipes with a minimum slope of 0.5% for the 10 -year and 25 -year storm
periods.
Brown- Strauss Steel 6
Fontana, CA
G
L
L
APPENDIX A
REFERENCE MATERIALS
f =1
F
0
u
is
T4N I.!} W ' R ; R6W , R5 + t a I 1 ,,- �: - acT '
— r — I -- - - - — M•..: .;7. 1 4W CIS �a t R2W RIW 4 1 y RIE R2E
- - - — - „Da ier
r I
L T • - - - - ` - - ' — — - c 9
::•I I I - r % I .. - - _ _ -�� SPY - I I.I I I
WEST IT
—
1 4 1.
' I ' - I " - - � - i ' o - - - - -- f - - Cr ' ,a eQ C. } I r I g - I 1 �„ I 'I 't I k I I
7 - - •• �, RE T e 9 o t
LC
c - 7 -- v T t t + - 1.3 f O` •T ij q bf Y I I i I O
� s•` - q I I i
T3N I — R- I •a ' h s {- r - —' — - �/• — j f � J E 3 — - T- R LE 1. _ r•f - YtI — - — I 9
IA
_+ - - - I - -- F , l L _ - ;9 �`^ , zz �• •` •A I. - - - - - -- I a;•, - . _ _ i - 1.8 I I !- I ' r• 1 O . I I s° t::..
L_ I I __ 29 I T t t + �" t _ • _ - ' \ `� �M`t �• • I I I I 1
+ - - -- - � 1 1.5 Li q+ - I �' � I .�� t' J • L�,,,
- - ' ryyhR • ••. sLOwIN T
T2N - -.��.• - --- - - - ° - -- *�° I f '� - I • • 1, � � - � _ •• ' ITS �.'t - - L
; - - - _ .'t -- tc.•.RC. _ __ h• N .. • • e,• tt ,� LIT,Y -- -- - -- -- —,
i _ .' - _._ J � ,1 — � _ I.I � ' i `. L GR�6 Rt .. _ • — — 1 E IN L I S
.. + AEt + -- • '' . _ wt • I-i - . 3•^13 N
ZVI
I 14 $ -
j.
� ail _ \. § p• ,,11 . I • I ... -...; � C •A Y '�_ _ . _ ' ' -t_ a • a l J l� / _ � T I
— — — - - - -- PROJECT -
_ — SITE •, T�.TE - - -� -
PL F e�. -
ND • 4 }' •!° /'� / SAN RNARO;N �—
` •- ww — - ',�.;,.:; FONTAN
TIS
_ 0 101• • car v i _
•� 3 •. - N REDL \ �•IS
• � • � - +- a1 • , •u•" I i' - � a•w,• we - } ms i- :� . . r : � -
t • • • • •.. g hnM1P CREST
T — y y ` ugr : •
op
WRANOTER y _ IM
lis CHINO `'• 4 r — _• i w6G3
+-34 -
T2 S \ - = ac i - r I„v4nEIDe . I5° RIE I R E
R4W R2W
1 — _ s au DONA C OUNTY
CONRL DISTRICT
_ ._ _ • •'RADO
SIN 7
_ REDUCED DRAWING
DAM VALLEY AREA
A SCALE I "= 4 MILES - 10 AR I
Y YE
HOUR
— Y.a y r.: A 3: SAN KftNARDfNO COUNTY kun ON U-sme, I�."ffLAf z, W3
7 1 .3'
I•Few I I RTW R6 HYDROLOGY MANUAL �s F
•'••••••••••••••••••••.....•••� / ,6 ISOLINES PRECIPITATION (INCHES) DATE so" fSE Na WIU6 NQ
\J 19112 (' -am wRD4 3 et It
8 -11 FIGURE 8 -3
L{ L{
9y7 R8 ! R7W ' R6W !.•.1 R 4W 1 , 15 . R2W ' — - 1- R 4�� RIE R2E yi9s
T4N — - - - r.[a.N .n•3s I _..) r 1 I 1,1 T '
1.• j .. _� '° — — — — - — - 4N
J 4- +.« I - .. I L•
1. ,� a �: � I 4• I I
I r s. - -- ♦ - '� - r r W 'r
FPO
1 I h YL► - \ r -. -- - t ; 4 --� /' - y i "F - fl _ A3• - 1 L• � I �
rr *° LI c -1 T
j t �y ' �` 3 — 39 - /,( I ' - - I • __ -r _ ` _ %
YYY 0 • 1 e�
NT SAN ! N.0 l I I• -- ♦-. � �� S aC '•aa
dr/ - - D< ---I a- _ "F•- t.. — r 1 wIw•s' — •�' • \ : L. „ F c • • 1 _
L. AIMO�N ' • • PsLDMIN L
- -t / �/' moo. , •' • [,I• ••� .R... \. \ ,Opn i
--- '- --1
T -
0 1 5 . 1 — ' NC ,: I '! i _ _ \I — tT [uM }a l c`+c{ LL�� I L. ` ERRMI L I 1 7 ' •
- J"'°�- ' I i• wpPZp. - h - - L{ -- t - r3
_ LAKE Al
4- LT VL"M K4 1.9
I
Ilg;n f — _ 'L� — — r A • L.
TIN - u — - x 1 7 '-'•e os
Lr ` F �\ I'T , +� 4 MIIrOM r�
* t- -- -- PROJECT - - ::- - - - ►- �� �;, I
y - SITE ,A
AL
• 3 I - .:' c i �'•" -/ SAN RNAROINO I
Jd �• is I F• ai I j ` ,
T A WG$"
I —s ONTA 10�+' "• COLT N f 1 + , 1.{a• S
At.. - ' -- * -, .l ` -- I 1 - ' RE L ND ... I �y�% 1• ,\ _ _
• •. • • I IR •• '� • h I1011f j•9 r -_ . [ r _ a• • _ - __ - ' - L - I " s — —_
. I _ - > #a :` I w I •♦ i +• • 1.2 -Y rUCAIM OYI EM ' Q /r '- - I 1_•
.a�, 'sG � I ;, v •" I •RA/l� T[RRI�CE I � h ' I � I
J 5495
y * 39
• rl 1 I ZP' ..el s' aau[, •vc. ,
R4W R3 R2W RI
LOW
_ ,
�I Z
T3S I — I CNNTRO`' I REDUCED DRAWING '
�•.� I Le °A SCALE I" - 4 MILES Yleo— IOOYEAR I HO UR
°1701 - - D£RNARDiNO COUNTY �� ".°`."°...".`''"
SAN
ngis S W
W ....................•'• HYDROLOGY MANUAL ��
••••.'• ... ..• ( 1.® ISOLINEi PRECIPITATION IRrCNESI Dam .. E
�'-� NNIY P.lsa
g -12 FIGURE 8-4
,4 • n '° i 7i�7
7�4� �f�l A Sy �}.ht $�� Y `I► r 1.� { �n.y 1.
ti rrt
A
• 'I A==:4--1IIEl"=4I,
ACTUAL IMPERVI ®U COVER
Land Use (1)
Natural or Agriculture
Public Park
School
Single Family Residential: (3)
2.5 acre lots
1 acre lots
2 dwellings /acre
3-4 dwellings /acre
5 ®7 dwellings /acre
8 -10 dwellings /acre
More than 10 dwellings /acre
Multiple Family Residential:
Condominiums
Apartments
Mobile Home Park
Commercial, Downtown Business
or Industrial
Notes:
0
15
40
5 ®
15
10
10 e
25
20
20 ®
40
30
30 m
50
40
35 ®
55
50
50 0
70
60
65 ®
90
80
45 a
70
65
65 -
90
80
60 v
85
75
80 a 100
{ 90 l
1. Land use should be based on ultimate development of the watershed. Long
range master plans for the County and incorporated cities should be reviewed
to insure reasonable land use assumptions.
2. Recommended values are based on average conditions which may not apply to
a particular study area. The percentage impervious may vary greatly even on
comparable sized lots due to differences in dwelling size, improvements, etc.
Landscape practices should also be considered as it is common in some areas
to use ornamental gravels underlain by impervious plastic materials in place of
lawns and shrubs. A field investigation of a study area shall always be made,
and a review of aerial photos, where available, may assist in estimating the
percentage of impervious cover in developed areas.
3. For typical equestrian subdivisions increase ;impervious area 5 percent over the
values recommended in the table above.
ACTUAL IMPERVIOUS COVER
SAN BERNARDINO COUNTY O
HYDROLOGY MANUAL DEVELOPED AREAS
C -8
Figure Cs4
1 ;,
APPENDIX B
MAPS
Preliminary Hydrology Report
Tract 19073
Fontana, CA
County of San Bernardino
Vicinity Map
MULBERRY AVE.
CHERRY AVE �c
Q
� Q
10
� Q
IS/TE I (f)
LIVE OAK AWE.
CITRUS AVE
oc
SIERRA AVE.
VICINITY MAP
NOT TO SCALE
1
1
11
Brown - Strauss Steel
Fontana, CA
APPENDIX C
AES RATIONAL METHOD HYDROLOGY
10 -YEAR -1 HOUR STORM EVENT
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
(Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983 -2008 Advanced Engineering Software (aes)
Ver. 15.0 Release Date: 04/01/2008 License ID 1340
Analysis prepared by:
Halladay & Mim Mack, Inc.
1181 California Avenue, Suite 102
Corona, CA 92881
Tel: 951 - 278 -9700 Fax: 951 - 278 -2729
* * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * **
* TPM 19073
* CITY OF FONTANA
* 10 -YEAR ON -SITE STUDY
*
******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FILE NAME: Q10PROP.DAT
TIME/DATE OF STUDY: 11:38 08/04/2008
-- - - - - -- --------------------------- -
------------------------------
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --
- - - -- - --
- --
-- * TIME - OF - CONCENTRATION MODEL*--
USER SPECIFIED STORM EVENT(YEAR) = 10.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 6.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE
= 0.95
* USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) =
0.6500
USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 0.9000
*ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
* USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW
MODEL*
HALF- CROWN TO STREET CROSSFALL: CURB GUTTER GEOMETRIES:
MANNING
WIDTH CROSSFALL IN- / OUT - /PARK- HEIGHT WIDTH LIP HIKE
FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT)
(n)
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167
0.0150
2 30.0 25.0 0.034/0.034/0.020 0.50 2.00 0.0312 0.167
0.0150
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1. Relative Flow -Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) - (Top -of -Curb)
2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
* USER- SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
********************************************* * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * **
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21
------------------------------------------
A_{
» »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««<
USE TIME - OF - CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW LENGTH(FEET) = 410.00
ELEVATION DATA: UPSTREAM(FEET) = 965.00 DOWNSTREAM(FEET) = 959.00
Tc = K * [(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 13.558
* 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.367
SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.)
NATURAL POOR COVER
"BARREN" A 2.41 0.42 1.000 78 13.56
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.42
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
SUBAREA RUNOFF(CFS) = 4.23
TOTAL AREA(ACRES) = 2.41 PEAK FLOW RATE(CFS) = 4.23
FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 91 A-2-
----------------
» » >COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA««<
UPSTREAM NODE ELEVATION(FEET) = 959.00
DOWNSTREAM NODE ELEVATION(FEET) = 955.33
CHANNEL LENGTH THRU SUBAREA(FEET) = 145.00
"V" GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET) = 0.110
PAVEMENT LIP(FEET) = 0.030 MANNING'S N = .0150
PAVEMENT CROSSFALL(DECIMAL NOTATION) = 0.02000
MAXIMUM DEPTH(FEET) = 1.00
* 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.296
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL A 0.50 0.98 0.100 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.73
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 3.74
AVERAGE FLOW DEPTH(FEET) = 0.26 FLOOD WIDTH(FEET) = 14.51
"V" GUTTER FLOW TRAVEL TIME(MIN.) = 0.65 Tc(MIN.) = 14.20
SUBAREA AREA(ACRES) = 0.50 SUBAREA RUNOFF(CFS) = 0.99
EFFECTIVE AREA(ACRES) = 2.91 AREA AVERAGED Fm(INCH /HR) = 0.36
AREA- AVERAGED Fp(INCH /HR) = 0.43 AREA AVERAGED Ap = 0.85
TOTAL AREA(ACRES) = 2.9 PEAK FLOW RATE(CFS) = 5.07
END OF SUBAREA "V" GUTTER HYDRAULICS:
DEPTH(FEET) = 0.26 FLOOD WIDTH(FEET) = 15.01
FLOW VELOCITY(FEET /SEC.) = 3.79 DEPTH * VELOCITY(FT *FT /SEC) = 0.99
LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 = 555.00 FEET.
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 81 A -3
-----------------------------------------------
— >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«« <
MAINLINE Tc(MIN.) = 14.20
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.296
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
NATURAL POOR COVER
"BARREN" A 1.60 0.42 1.000 78
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.42
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
SUBAREA AREA(ACRES) = 1.60 SUBAREA RUNOFF(CFS) = 2.71
EFFECTIVE AREA(ACRES) = 4.51 AREA - AVERAGED Fm(INCH /HR) = 0.38
AREA - AVERAGED Fp(INCH /HR) = 0.42 AREA - AVERAGED Ap = 0.90
TOTAL AREA(ACRES) = 4.5 PEAK FLOW RATE(CFS) = 7.77
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
, FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 56 A -4
» »COMPUTE TRAPEZOIDAL CHANNEL FLOW « «<
» » >TRAVELTIME THRU SUBAREA «« <
ELEVATION DATA: UPSTREAM(FEET) = 955.33 DOWNSTREAM(FEET) = 951.23
CHANNEL LENGTH THRU SUBAREA(FEET) = 517.00 CHANNEL SLOPE = 0.0079
GIVEN CHANNEL BASE(FEET) = 1.00 CHANNEL FREEBOARD(FEET) = 1.0
"Z" FACTOR = 30.000 MANNING'S FACTOR = 0.015
*ESTIMATED CHANNEL HEIGHT(FEET) = 1.32
* 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.014
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE! SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL A 1.88 0.98 0.100 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 9.40
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 2.72
AVERAGE FLOW DEPTH(FEET) = 0.32 TRAVEL TIME(MIN.) = 3.17
Tc(MIN.) = 17.38
SUBAREA AREA(ACRES) = 1.88 SUBAREA RUNOFF(CFS) = 3.24
EFFECTIVE AREA(ACRES) = 6.39 AREA- AVERAGED Fm(INCH /HR) = 0.30
AREA- AVERAGED Fp(INCH /HR) = 0.45 AREA- AVERAGED Ap = 0.66
TOTAL AREA(ACRES) = 6.4 PEAK FLOW RATE(CFS) = 9.87
GIVEN CHANNEL BASE(FEET) = 1.00 CHANNEL FREEBOARD(FEET) = 1.0
"Z" FACTOR = 30.000 MANNING'S FACTOR = 0.015
*ESTIMATED CHANNEL HEIGHT(FEET) = 1.33
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.33 FLOW VELOCITY(FEET /SEC.) = 2.73
LONGEST FLOWPATH FROM NODE 1.00 TO NODE 4.00 = 1072.00 FEET.
'\ ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21 8 -i
»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «<
»USE TIME-OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA«
INITIAL SUBAREA FLOW - LENGTH(FEET) = 228.00
ELEVATION DATA: UPSTREAM(FEET) = 957.80 DOWNSTREAM(FEET) = 955.30
Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20
I
I
I
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.450
* 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.803
SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.)
PUBLIC PARK A 0.37 0.98 0.850 32 10.45
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
SUBAREA RUNOFF(CFS) = 0.66
TOTAL AREA(ACRES) = 0.37 PEAK FLOW RATE(CFS) = 0.66
FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 31
-------------------------------------------
>>>>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «<
» » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««<
ELEVATION DATA: UPSTREAM(FEET) = 953.30 DOWNSTREAM(FEET) = 951.93
FLOW LENGTH(FEET) = 126.00 MANNING'S N = 0.011
DEPTH OF FLOW IN 6.0 INCH PIPE IS 4.8 INCHES
PIPE -FLOW VELOCITY(FEET /SEC.) = 3.91
ESTIMATED PIPE DIAMETER(INCH) = 6.00 NUMBER OF PIPES = 1
PIPE- FLOW(CFS) = 0.66
PIPE TRAVEL TIME(MIN.) = 0.54 Tc(MIN.) = 10.99
LONGEST FLOWPATH FROM NODE 10.00 TO NODE 12.00 = 354.00 FEET_
-- FLOW - PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 81 13.,2-
-------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN.) = 10.99
* 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.713
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL, A 0.37 0.98 0.100 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
SUBAREA AREA(ACRES) = 0.37 SUBAREA RUNOFF(CFS) = 0.87
EFFECTIVE AREA(ACRES) = 0.74 AREA AVERAGED Fm(INCH /HR) = 0.46
AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA AVERAGED Ap = 0.47
TOTAL AREA(ACRES) = 0.7 PEAK FLOW RATE(CFS) = 1.50
FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 31
------------------------------------------ - - - - -- _.
>>>>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA«« <
>> » > USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««<
ELEVATION DATA: UPSTREAM(FEET) = 951.93 DOWNSTREAM(FEET) = 949.55
FLOW LENGTH(FEET) = 197.00 MANNING'S N = 0.011
DEPTH OF FLOW IN 9.0 INCH PIPE IS 5.6 INCHES
PIPE -FLOW VELOCITY(FEET /SEC.) = 5.17
ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1
PIPE- FLOW(CFS) = 1.50
PIPE TRAVEL TIME(MIN.) = 0.64 Tc(MIN.) = 11.62
rlr LONGEST FLOWPATH FROM NODE 10.00 TO NODE 13.00 = 551.00 FEET.
FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 81 $ :3
frr
----------------------------------------------------------------------------
» » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««<
y MAINLINE Tc(MIN.) = 11.62
* 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.616
ewa SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL A 0.33 0.98 0.100 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
SUBAREA AREA(ACRES) = 0.33 SUBAREA RUNOFF(CFS) = 0.75
EFFECTIVE AREA(ACRES) = 1.07 AREA - AVERAGED Fm(INCH /HR) = 0.35
AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.36
�w TOTAL AREA(ACRES) = 1.1 PEAK FLOW RATE(CFS) = 2.18
FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 31
iwr
----------------------------------------------------------------------------
» » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «<
» » >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««<
ELEVATION DATA: UPSTREAM(FEET) = 949.55 DOWNSTREAM(FEET) = 947.82
FLOW LENGTH(FEET) = 284.00 MANNING'S N = 0.011
DEPTH OF FLOW IN 12.0 INCH PIPE IS 7.3 INCHES
PIPE -FLOW VELOCITY(FEET /SEC.) = 4.39
ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1
r.. PIPE- FLOW(CFS) = 2.18
PIPE TRAVEL TIME(MIN.) = 1.08 Tc(MIN.) = 12.70
LONGEST FLOWPATH FROM NODE 10.00 TO NODE 14.00 = 835.00 FEET.
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 14.00 TO NODE 14_00 IS CODE = 81
a
» » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «<
MAINLINE Tc(MIN.) = 12.70
a.w
* 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.469
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
+�
COMMERCIAL A 0.59 0.98 0.100 32
so
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
SUBAREA AREA(ACRES) = 0.59 SUBAREA RUNOFF(CFS) = 1.26
EFFECTIVE AREA(ACRES) = 1.66 AREA - AVERAGED Fm(INCH /HR) = 0.26
AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA AVERAGED Ap = 0.27
i
TOTAL AREA(ACRES) = 1.7 PEAK FLOW RATE(CFS) = 3.30
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 14.00 TO NODE 14.00 IS CODE = 81
13 - 5
°�"
» » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
dw
--------------------------------------
MAINLINE Tc(MIN.) = 12.70
* 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.469
m SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCHIHR) (DECIMAL) CN
PUBLIC PARK A 0.19 0.98 0.850 32
+r SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
SUBAREA AREA(ACRES) = 0.19 SUBAREA RUNOFF(CFS) = 0.28
EFFECTIVE AREA(ACRES) 1.85 AREA - AVERAGED Fm(INCH /HR) = 0.32
+� AREA- AVERAGED
Fp(INCHIHR) = 0.98 AREA- AVERAGED Ap = 0.33
TOTAL AREA(ACRES) = 1.9 PEAK FLOW RATE(CFS) = 3.58
FLOW PROCESS FROM NODE 30.00 TO NODE 31.00 IS CODE = 21 c -f
*. ----------------------------------------------------------------------------
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««<
>>USE TIME CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW- LENGTH(FEET) = 54.00
y� ELEVATION DATA: UPSTREAM(FEET) = 958.70 DOWNSTREAM(FEET) = 957.10
i
w. Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE))* *0.20
SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 5.000
* 10 YEAR RAINFALL INTENSITY(INCH /HR) = 4.526
SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.)
PUBLIC PARK A 0.06 0.98 0.850 32 5.00
�. SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
SUBAREA RUNOFF(CFS) = 0.20
TOTAL AREA(ACRES) = 0.06 PEAK FLOW RATE(CFS) = 0.20
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS CODE = 31
----------------------------------------------------------------------------
» » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «<
» » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «<
--------------------------------
■.. ELEVATION DATA: UPSTREAM(FEET) = 957.10 DOWNSTREAM(FEET) = 955.60
FLOW LENGTH(FEET) = 135.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 6.0 INCH PIPE IS 2.4 INCHES
PIPE -FLOW VELOCITY(FEET /SEC.) = 2.68
ESTIMATED PIPE DIAMETER(INCH) = 6.00 NUMBER OF PIPES = 1
PIPE- FLOW(CFS) = 0.20
t PIPE TRAVEL TIME(MIN.) = 0.84 Tc(MIN.) = 5.84
LONGEST FLOWPATH FROM NODE 30.00 TO NODE 32.00 = 189.00 FEET.
FLOW PROCESS FROM NODE 32.00 TO NODE 32.00 IS CODE = 81 -z
----------------------------------------------------------------------------
» » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««<
MAINLINE Tc(MIN.) = 5.84 - - --
* 10 YEAR RAINFALL INTENSITY(INCH /HR) = 4.091
wo
dw
am
lw SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
on LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
ow PUBLIC PARR A 0.18 0.98 0.850 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
SUBAREA AREA(ACRES) = 0.18 SUBAREA RUNOFF(CFS) = 0.53
EFFECTIVE AREA {ACRES) = 0.24 AREA - AVERAGED Fm (INCH /HR) = 0.83
AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.85
law TOTAL AREA(ACRES) = 0.2 PEAK FLOW RATE(CFS) = 0.70
- -FLOW - - -
PROCESS FROM NODE 32.00 TO NODE 32.00 IS CODE = 81 C-3
,." ------- ---- ---- ---------- --- ---- - ----
- ------------------------------
» » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «<
MAINLINE Tc(MIN.) = 5.84
* 10 YEAR RAINFALL INTENSITY(INCH /HR) = 4.091
+rM SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL A 0.71 0.98 0.100 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
SUBAREA AREA(ACRES) = 0.71 SUBAREA RUNOFF(CFS) = 2.55
EFFECTIVE AREA(ACRES) = ' 0.95 AREA - AVERAGED Fm(INCH /HR) = 0.28
AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.29
!. TOTAL AREA(ACRES) = 0.9 PEAK FLOW RATE(CFS) = 3.26
ir
OR FLOW PROCESS FROM NODE 32.00 TO NODE 33.00 IS CODE = 31
----------------------------------------------------------
» » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «<
» » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««<
ELEVATION DATA: UPSTREAM(FEET) = 953.10 DOWNSTREAM(FEET) = 951.80
FLOW LENGTH(FEET) = 187.00 MANNING'S N = 0.011
DEPTH OF FLOW IN 12.0 INCH PIPE IS 9.3 INCHES
PIPE -FLOW VELOCITY(FEET /SEC.) = 4.96
ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1
PIPE- FLOW(CFS) = 3.26
PIPE TRAVEL TIME(MIN.) = 0.63 Tc(MIN.) = 6.47
LONGEST FLOWPATH FROM NODE 30.00 TO NODE 33.00 = 376.00 FEET.
+�
- -FLOW - PROCESS FROM NODE 33.00 TO NODE
---------------------------------------------
33.00
IS CODE = 81 c-4
- -
» » >ADDITION OF SUBAREA TO MAINLINE PEAK
FLOW « «<
----------------------
MAINLINE Tc(MIN.) 6.47
* 10 YEAR RAINFALL INTENSITY(INCH /HR) =
3.828
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
Fp
Ap SCS
LAND USE GROUP (ACRES)
(INCH /HR)
(DECIMAL) CN
COMMERCIAL A 0.66
0.98
0.100 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) =
0.97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap
= 0.100
W
om
T O
mm
0
SUBAREA AREA(ACRES) = 0.66 SUBAREA RUNOFF(CFS) = 2.22
EFFECTIVE AREA(ACRES) = 1.61 AREA - AVERAGED Fm(INCH /HR) = 0.21
AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.21
TOTAL AREA(ACRES) = 1.6 PEAK FLOW RATE(CFS) = 5.25
ilk
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
' - - FLOW PROCESS FROM NODE 33.00 TO NODE 33.00 IS CODE = 81 C-5
--------------------------------
» » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «<
-------------------------- --------------------- ______
MAINLINE Tc(MIN.) = 6.47
* 10 YEAR RAINFALL INTENSITY(INCH /HR) = 3.828
SUBAREA LOSS RATE DATA(AMC II):
*� DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
PUBLIC PARK A 0.26 0.98 0.850 32
SUBAREA AVERAGE PERVIOUS LASS RATE, Fp(INCH /HR) = 0.98
s SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
1� SUBAREA AREA(ACRES) = 0.26 SUBAREA RUNOFF(CFS) = 0.70
EFFECTIVE AREA(ACRES) = 1.87 AREA - AVERAGED Fm(INCH /HR) = 0.29
AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA AVERAGED Ap = 0.30
im TOTAL AREA(ACRES) = 1.9 PEAK FLOW RATE(CFS) = 5.95
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 33.00 TO NODE 34.00 IS CODE = 31
----------------------------------------------------
------------------------
» » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««<
,,. » » >USING COMPUTER - ESTIMATED PIPESIZE (NON PRESSURE FLOW) « «<
wo ELEVATION DATA: UPSTREAM(FEET) = 951.80 DOWNSTREAM(FEET) = 946.33
FLOW LENGTH(FEET) = 263.00 MANNING'S N = 0.011
DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.0 INCHES
PIPE -FLOW VELOCITY(FEET /SEC.) = 8.97
ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1
PIPE- FLOW(CFS) = 5.95
PIPE TRAVEL TIME(MIN.) = 0.49 Tc(MIN.) = 6.96
0 LONGEST FLOWPATH FROM NODE 30.00 TO NODE 34.00 = 639.00 FEET.
FLOW PROCESS FROM NODE 40.00 TO NODE 41.00 IS CODE = 21 D
--------------------------------------------------
» » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «<
>>USE TIME-OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
-------------------------------------
INITIAL SUBAREA FLOW- LENGTH(FEET) = 205.00
ELEVATION DATA: UPSTREAM(FEET) = 951.00 DOWNSTREAM(FEET) = 949.20
Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.470
* 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.799
SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
w LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.)
PUBLIC PARK A 0.11 0.98 0.850 32 10.47
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
SUBAREA RUNOFF(CFS) = 0.20
±�N
m
+Nr
sm
rrr
TOTAL AREA(ACRES) =
0.11 PEAK FLOW RATE(CFS) = 0.20
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) =
0.1
TC(MIN.) = 10.47
EFFECTIVE AREMACRES) =
0
AREA FM(INCH/HR)= 0.83
AREA Fp(INCH/HR)
= 0 . 9 8
AREA Ap = 0-850
PEAK FLOW RATE(CFS) =
0.20
END OF RATIONAL METHOD ANALYSIS
rr
sm
rrr
4"
■r
4W
rrr
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
(Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
rr (c) Copyright 1983 -2008 Advanced Engineering Software (aes)
Ver. 15.0 Release Date: 04/01/2008 License ID 1340
aw
Analysis prepared by:
Halladay & Mim Mack, Inc.
1181 California Avenue, Suite 102
Corona, CA 92881
Tel: 951 - 278 -9700 Fax: 951- 278 -2729
* * * * * * * * * * * * * * * ** * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * **
* PM 19073
w
* CITY OF FONTANA
* AREA "E ", 10 -YEAR FREQUENCY
Aw FILE NAME: E -Q10 . DAT
TIME/DATE OF STUDY: 09:52 08/05/2008
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
-- *TIME-OF- CONCENTRATION MODEL * --
USER SPECIFIED STORM EVENT(YEAR) = 10.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 6.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
*USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = 0.6500
USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 0.9000
IN
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1. Relative Flow -Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) - (Top -of -Curb)
2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
w " s OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
*USER- SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 50.00 TO NODE 51.00 IS CODE = 21
ii ------------------------------------------ ----------------------------------
» »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««<
w >>USE TIME-OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
04
r
*ANTECEDENT MOISTURE
CONDITION (AMC) II
ASSUMED FOR RATIONAL METHOD*
*USER- DEFINED STREET- SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW
MODEL*
w*
HALF- CROWN TO
STREET- CROSSFALL:
CURB
GUTTER - GEOMETRIES:
MANNING
WIDTH CROSSFALL
IN- / OUT - /PARK-
HEIGHT
WIDTH LIP HIKE
FACTOR
NO. (FT) (FT)
SIDE / SIDE/ WAY
(FT)
(FT) (FT) (FT)
(n)
1 30.0 20.0
0.018/0.018/0.020
0.67
2.00 0.0312 0.167
0.0150
IN
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1. Relative Flow -Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) - (Top -of -Curb)
2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
w " s OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
*USER- SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 50.00 TO NODE 51.00 IS CODE = 21
ii ------------------------------------------ ----------------------------------
» »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««<
w >>USE TIME-OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
04
r
111M1
ow
do
No
vw
w
�I
w�
nw
w.
+rr
nrr
INITIAL SUBAREA FLOW- LENGTH(FEET) = 250.00
wo
ELEVATION DATA: UPSTREAM(FEET) = 950.60 DOWNSTREAM(FEET)
947.80
im
Tc = K *((LENGTH ** 3.00 M ELEVATION CHANGE))* *0.20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.796
1n
* 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.744
to
SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap
SCS Tc
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL)
CN (MIN.)
PUBLIC PARK A 0.14 0.98 0.850
32 10.80
r
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
SUBAREA RUNOFF(CFS) = 0.24
TOTAL AREA(ACRES) = 0.14 PEAK FLOW RATE(CFS) = 0.24
----------------------------------------------------------------------------
----------------------------------------------------------------------------
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 0.1 TC(MIN.) = 10.80
�1
EFFECTIVE AREA(ACRES) = 0.14 AREA - AVERAGED FM(INCH /HR)=
0.83
AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.850
rrr
PEAK FLOW RATE(CFS) = 0.24
----------------------------------------------------------------------------
----------------------------------------------------------------------------
----------------------------------------------------------------------------
END OF RATIONAL METHOD ANALYSIS
un
111M1
ow
do
No
vw
w
�I
w�
nw
w.
r
r.
rr
am
r
am
I
rr
25 -YEAR —1 HOUR STORM EVENT
an
w.
w
an
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
(Reference: 1986 SAN BERNARDINO CO_ HYDROLOGY CRITERION)
so (c) Copyright 1983 -2008 Advanced Engineering Software (aes)
Ver. 15.0 Release Date: 04/01/2008 License ID 1340
on
Analysis prepared by:
Halladay & Mim Mack, Inc.
1181 California Avenue, Suite 102
Corona, CA 92881
Tel: 951- 278 -9700 Fax: 951- 278 -2729
* * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * **
16 * TPM 19073
* CITY OF FONTANA
*
25 -YEAR ON -SITE STUDY
*
w FILE NAME: Q25PROP.DAT
TIME/DATE OF STUDY: 13 :04 08/04/2008
---------------------------------------------
------------------------
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
_ _ _ __
-- * TIME - OF - CONCENTRATION MODEL * --
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1. Relative Flow -Depth = 0.00 FEET
*0 as (Maximum Allowable Street Flow Depth) - (Top - of -Curb)
2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
*USER- SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21 A - 1
iln -
Q
USER SPECIFIED STORM EVENT(yEAR) = 25.00
am
SPECIFIED MINIMUM PIPE SIZE(INCH) = 6.00
iro
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE
* USER
= 0:95
- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
go
10 -YEAR STORM 60 MINUTE INTENSITY(INCH /HOUR) = 0.900
io
100 -YEAR STORM 60 MINUTE INTENSITY(INCH /HOUR) = 1.350
COMPUTED RAINFALL INTENSITY DATA:
STORM EVENT = 25.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.0580
SLOPE OF INTENSITY DURATION CURVE = 0.6500
to
*ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
*USER - DEFINED STREET- SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET CROSSFALL: CURB GUTTER - GEOMETRIES:
MANNING
WIDTH CROSSFALL IN- / OUT- /PARK- HEIGHT WIDTH LIP HIKE
FACTOR
*,
NO_ - (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (FT)
(n)
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167
0.0150
2 30.0 25.0 0.034/0.034/0.020 0.50 2.00 0.0312 0.167
0.0150
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1. Relative Flow -Depth = 0.00 FEET
*0 as (Maximum Allowable Street Flow Depth) - (Top - of -Curb)
2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
*USER- SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21 A - 1
iln -
Q
v
tir
--------------------------------------------------
» » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««<
>>USE TIME CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW LENGTH(FEET) = 410.00
ELEVATION DATA: UPSTREAM(FEET) = 965.00 DOWNSTREAM {FEET) = 959.00
Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 13.558
* 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.782
SUBAREA TC AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.)
NATURAL POOR COVER
RREN A 2.41 0.42 1.000 78 13.56
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.42
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
SUBAREA RUNOFF(CFS) = 5.13
TOTAL AREA(ACRES) = 2.41 PEAK FLOW RATE(CFS) = 5.13
FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 91 A-2- -------------------------------------------------------------------
» » >COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA ««<
UPSTREAM NODE ELEVATION(FEET) = 959.00
DOWNSTREAM NODE ELEVATION(FEET) = 955.33
a.� CHANNEL LENGTH THRU SUBAREA(FEET) = 145.00
"V" GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET) = 0.110
Irr PAVEMENT LIP(FEET) = 0.030 MANNING'S N = .0150
PAVEMENT CROSSFALL(DECIMAL NOTATION) = 0.02000
*� MAXIMUM DEPTH(FEET) = 1.00
* 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.701
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP
(ACRES) {INCHIHR} (DECIMAL) CN
COMMERCIAL A 0.50 0.98 0.100 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.72
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 3.83
AVERAGE FLOW DEPTH(FEET) = 0.27 FLOOD WIDTH(FEET) = 16.02
"V" GUTTER FLOW TRAVEL TIME(MIN.) = 0.63 TC(MIN.) = 14.19
SUBAREA AREA(ACRES) = 0.50 SUBAREA RUNOFF(CFS) = 1.17
EFFECTIVE AREA(ACRES) = 2.91 AREA AVERAGED Fm(INCH /HR) = 0.36
AREA- AVERAGED Fp(INCH /HR) = 0.43 AREA AVERAGED Ap = 0.85
TOTAL AREA(ACRES) = 2.9 PEAK FLOW RATE(CFS) = 6.13
."r
END OF SUBAREA "V" GUTTER HYDRAULICS:
*� DEPTH(FEET) = 0.28 FLOOD WIDTH(FEET) = 16.52
FLOW VELOCITY(FEET /SEC.) = 3.89 DEPTH * VELOCITY(FT *FT /SEC) = 1.07
LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 = 555.00 FEET.
s
11r -- FLOW - PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 81 ,A 3
------------------------------- - - - - --
------------------------------
** » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «<
an
ON
C"
•e
MAINLINE Tc(MIN.) = 14.19
* 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.701
SUBAREA LOSS RATE DATA(AMC II):
Am DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
w� NATURAL POOR COVER
"BARREN" A 1.60 0.42 1.000 78
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.42
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
SUBAREA AREA(ACRES) = 1.60 SUBAREA RUNOFF(CFS) = 3.29
EFFECTIVE AREA(ACRES) = 4.51 AREA - AVERAGED Fm(INCH /HR) = 0.38
AREA - AVERAGED Fp(INCH /HR) = 0.42 AREA AVERAGED Ap = 0.90
,.. TOTAL AREA(ACRES) = 4.5 PEAK FLOW RATE(CFS) = 9.42
-- FLOW - - - -
PROCESS FROM NODE - - - - - 3.00 - TO NODE 4.00 IS CODE 56 A-4
------- - - - - -
-- ---- ---------- --- ----- ----------------
» » >COMPUTE TRAPEZOIDAL CHANNEL FLOW « «<
» » >TRAVELTIME THRU SUBAREA« «<
ELEVATION DATA: UPSTREAM(FEET) = 955.33 DOWNSTREAM(FEET) = 951.23
CHANNEL LENGTH THRU SUBAREA(FEET) = 517.00 CHANNEL SLOPE = 0.0079
GIVEN CHANNEL BASE(FEET) = 1.00 CHANNEL FREEBOARD(FEET) = 1.0
"Z" FACTOR = 30.000 MANNING'S FACTOR = 0.015
*ESTIMATED CHANNEL HEIGHT(FEET) = 1.35
* 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.382
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
�1M LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL A 1.88 0.98 0.100 32
ww SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 11.35
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 2.85
AVERAGE FLOW DEPTH(FEET) = 0.35 TRAVEL TIME(MIN.) = 3.02
Tc(MIN.) = 17.21
SUBAREA AREA(ACRES) = 1.88 SUBAREA RUNOFF(CFS) = 3.87
EFFECTIVE AREA(ACRES) = 6.39 AREA - AVERAGED Fm(INCH /HR) = 0.30
AREA- AVERAGED Fp(INCH /HR) = 0.45 AREA AVERAGED Ap = 0.66
TOTAL AREA(ACRES) = 6.4 PEAK FLOW RATE(CFS) = 11.99
GIVEN CHANNEL BASE(FEET) = 1.00 CHANNEL FREEBOARD(FEET) = 1.0
"Z" FACTOR = 30.000 MANNING'S FACTOR = 0.015
*ESTIMATED CHANNEL HEIGHT(FEET) = 1.36
+w END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.36 FLOW VELOCITY(FEET /SEC.) = 2.89
LONGEST FLOWPATH FROM NODE 1.00 TO NODE 4.00 = 1072.00 FEET.
an
- - FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21 $ �{
--- ------- ----- ----- ---------- ---- - ---
» » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «<
wee >>USE TIME CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW LENGTH(FEET) = 228.00
ELEVATION DATA: UPSTREAM(FEET) 957.80 DOWNSTREAM(FEET) = 955.30
�1
am
M
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 12_00 TO NODE 12.00 IS CODE = 81 B-2.
e� ------------------------------------------------ ----------------------------
» » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««<
MAINLINE Tc(MIN.) = 10.94
* 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.198
io SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL A 0.37 0.98 0.100 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
�w SUBAREA AREA(ACRES) = 0.37 SUBAREA RUNOFF(CFS) = 1.03
im EFFECTIVE AREA(ACRES) = 0.74 AREA - AVERAGED Fm(INCH /HR) = 0.46
AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.47
TOTAL AREA(ACRES) = 0.7 PEAK FLOW RATE(CFS) = 1.82
FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 31
----------------------------------------------------------------------------
» » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««<
r� »» >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «<
------------------------ - -- - --
wi ELEVATION DATA: UPSTREAM(FEET) = 951.93 DOWNSTREAM(FEET) = 949.55
FLOW LENGTH(FEET) = 197.00 MANNING'S N = 0.011
4 ,
DEPTH OF FLOW IN 9.0 INCH PIPE IS 6.5 INCHES
PIPE -FLOW VELOCITY(FEET /SEC.) = 5.35
ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1
i_:
Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE))* *0.20
A
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.450
* 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.295
SUBAREA Tc AND LOSS RATE DATA(AMC II).
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
Tc
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
(MIN.)
girl
PUBLIC PARK A 0.37 0.98 0.850 32
10.45
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
V
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
SUBAREA RUNOFF(CFS) = 0.82
TOTAL AREA(ACRES) = 0.37 PEAK FLOW RATE(CFS) = 0.82
FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 31
------------------------------------------------------------------------
w
» »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««<
» » >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««<
im
---------------------
-
-------------------
ELEVATION DATA: UPSTREAM(FEET) = 953.30 DOWNSTREAM(FEET) = 951.93
FLOW LENGTH(FEET) = 126.00 MANNING'S N = 0.011
DEPTH OF FLOW IN 9.0 INCH PIPE IS 4.0 INCHES
PIPE -FLOW VELOCITY(FEET /SEC.) = 4.27
ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1
PIPE- FLOW(CFS) = 0.82
PIPE TRAVEL TIME(MIN.) = 0.49 Tc(MIN.) = 10.94
LONGEST FLOWPATH FROM NODE 10.00 TO NODE 12.00 = 354.00
FEET.
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 12_00 TO NODE 12.00 IS CODE = 81 B-2.
e� ------------------------------------------------ ----------------------------
» » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««<
MAINLINE Tc(MIN.) = 10.94
* 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.198
io SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL A 0.37 0.98 0.100 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
�w SUBAREA AREA(ACRES) = 0.37 SUBAREA RUNOFF(CFS) = 1.03
im EFFECTIVE AREA(ACRES) = 0.74 AREA - AVERAGED Fm(INCH /HR) = 0.46
AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.47
TOTAL AREA(ACRES) = 0.7 PEAK FLOW RATE(CFS) = 1.82
FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 31
----------------------------------------------------------------------------
» » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««<
r� »» >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «<
------------------------ - -- - --
wi ELEVATION DATA: UPSTREAM(FEET) = 951.93 DOWNSTREAM(FEET) = 949.55
FLOW LENGTH(FEET) = 197.00 MANNING'S N = 0.011
4 ,
DEPTH OF FLOW IN 9.0 INCH PIPE IS 6.5 INCHES
PIPE -FLOW VELOCITY(FEET /SEC.) = 5.35
ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1
i_:
m
0
PIPE- FLOW(CFS) = 1.82
PIPE TRAVEL TIME(MIN.) = 0.61 Tc(MIN.) = 11.55
LONGEST FLOWPATH FROM NODE 10.00 TO NODE 13.00 = 551.00 FEET.
-- FLOW - - - -
- -----
PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 81 $ -3
------- ---- ---- ---- ----- -
-----------------------
yr » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «<
MAINLINE Tc(MIN.) = 11.55
* 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.087
r SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
^' LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL A 0.33 0.98 0.100 32
rw SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
.. SUBAREA AREA(ACRES) = 0.33 SUBAREA RUNOFF(CFS) = 0.89
rrr EFFECTIVE AREA(ACRES) = 1.07 AREA - AVERAGED FM(INCH /HR) = 0.35
AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.36
+� TOTAL AREA(ACRES) = 1.1 PEAK FLOW RATE(CFS) = 2.63
FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 31
----------------
------------------------
» » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««<
» » >USING COMPUTER- ESTIMATED PIPESIZE PRESSURE FLOW) « «<
ELEVATION DATA: UPSTREAM(FEET) = 949.55 DOWNSTREAM(FEET) 947.82
FLOW LENGTH(FEET) = 284.00 MANNING'S N = 0.011
DEPTH OF FLOW IN 12.0 INCH PIPE IS 8.3 INCHES
PIPE -FLOW VELOCITY(FEET /SEC.) = 4.55
ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1
PIPE- FLOW(CFS) = 2.63
w. PIPE TRAVEL TIME(MIN.) = 1.04 Tc(MIN.) = 12.60
LONGEST FLOWPATH FROM NODE 10.00 TO NODE 14.00 = 835.00 FEET.
A -- FLOW - PROCESS FROM NODE 14.00 TO NODE 14.00 IS CODE = 81 $�
------- ----- ----- ---------- ---- ---- ---------- ---- ---- ----------------
» » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
�'• MAINLINE Tc(MIN.) = 12.60
* 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.918
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL A 0.59 0.98 0.100 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
SUBAREA AREA(ACRES) = 0.59 SUBAREA RUNOFF(CFS) = 1.50
EFFECTIVE AREA(ACRES) = 1.66 AREA - AVERAGED FM(INCH /HR) = 0.26
AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA AVERAGED Ap = 0.27
TOTAL AREA(ACRES) = 1.7 PEAK FLOW RATE(CFS) = 3.97
FLOW PROCESS FROM NODE 14.00 TO NODE 14.00 IS CODE = 81 3-5
r�r
am
.j
on
to
----------------------------------------------------------
------------------
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
MAINLINE Tc(MIN.) = 12.60
* 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.918
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
PUBLIC PARK A 0.19 0.98 0.850 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
SUBAREA AREA(ACRES) = 0.19 SUBAREA RUNOFF(CFS) = 0.36
EFFECTIVE AREA(ACRES) = 1.85 AREA - AVERAGED Fm(INCH /HR) = 0.32
** AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA AVERAGED Ap = 0.33
Yrr
TOTAL AREA(ACRES) = 1.9 PEAK FLOW RATE(CFS) = 4.33
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW - PROCESS - FROM NODE 30.00 TO NODE 31.00 IS CODE = 21 C..i
» » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««<
.� >>USE TIME CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW LENGTH(FEET) = 54.00
ELEVATION DATA: UPSTREAM(FEET) = 958.70 DOWNSTREAM(FEET) = 957.10
Tc = K *[(LENGTH ** 3.00 M ELEVATION CHANGE)]* *0.20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.000
* 25 YEAR RAINFALL INTENSITY (INCH /HR) = 5.320
SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.)
PUBLIC PARK A 0.06 0.98 0.850 32 5.00
■r SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0_98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
SUBAREA RUNOFF(CFS) = 0.24
TOTAL AREA(ACRES) = 0.06 PEAR FLOW RATE(CFS) = 0.24
rrr
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
*s FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS CODE = 31
-------------------------
-- -------------------
» » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «<
» » >USING COMPUTER - ESTIMATED PIPESIZE (NON PRESSURE FLOW) ««<
ELEVATION DATA: UPSTREAM(FEET) = 957.10 DOWNSTREAM(FEET) = 955.60
FLOW LENGTH(FEET) = 135.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 6.0 INCH PIPE IS 2.7 INCHES
PIPE -FLOW VELOCITY(FEET /SEC.) = 2:77
ESTIMATED PIPE DIAMETER(INCH) = 6.00 NUMBER OF PIPES = 1
PIPE- FLOW(CFS) = 0.24
PIPE TRAVEL TIME(MIN.) = 0.81 Tc(MIN.) = 5.81
LONGEST FLOWPATH FROM NODE 30.00 TO NODE 32.00 = 189.00 FEET.
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
-- FLOW - PROCESS FROM NODE 32.00 TO NODE 32.00 IS CODE = 81 C
-------------------------------------
»» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «<
MAINLINE Tc(MIN.) = 5.81
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 4.824
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE! SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
PUBLIC PARK A 0.18 0.98 0.850 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
SUBAREA AREA(ACRES) = 0.18 SUBAREA RUNOFF(CFS) = 0.65
EFFECTIVE AREA(ACRES) = 0.24 AREA - AVERAGED Fm(INCH /HR) = 0.83
AREA - AVERAGED Fp(INCH/HR) = 0.98 AREA- AVERAGED Ap = 0.85
TOTAL AREA(ACRES) = 0.2 PEAK FLOW RATE(CFS) = 0.86
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 32.00 TO NODE 32.00 IS CODE = 81 C -
» »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW «
MAINLINE Tc(MIN.) = 5.81
* 25 YEAR RAINFALL INTENSITY(INCH /HR) = 4.824
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL A 0.71 0.98 0.100 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
SUBAREA AREA(ACRES) = 0.71 SUBAREA RUNOFF(CFS) = 3.02
EFFECTIVE AREA(ACRES) = 0.95 AREA - AVERAGED Fm(INCH /HR) = 0.28
AREA - AVERAGED Fp(INCH/HR) = 0.98 AREA - AVERAGED Ap = 0.29
TOTAL AREA(ACRES) = 0.9 PEAK FLOW RATE(CFS) = 3.88
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 32.00 TO NODE 33.00 IS CODE = 31
» »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «<
» »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «<
ELEVATION DATA: UPSTREAM(FEET) = 953.10 DOWNSTREAM(FEET) = 951.80
FLOW LENGTH(FEET) = 187.00 MANNING'S N = 0.011
DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.6 INCHES
PIPE -FLOW VELOCITY(FEET /SEC.) = 5.34
ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1
PIPE- FLOW(CFS) = 3.88
PIPE TRAVEL TIME(MIN.) = 0.58 Tc(MIN.) = 6.40
LONGEST FLOWPATH FROM NODE 30.00 TO NODE 33.00 = 376.00 FEET.
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 33.00 TO NODE 33.00 IS CODE = 81 C ^1{
» »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««<
MAINLINE Tc(MIN.) = 6.40
* 25 YEAR RAINFALL INTENSITY(INCH /HR) = 4.533
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE! SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL A 0.66 0.98 0.100 32
on
ow
rrr SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
e� SUBAREA AREA(ACRES) = 0.66 SUBAREA RUNOFF(CFS) = 2.63
EFFECTIVE AREA(ACRES) = 1.61 AREA - AVERAGED Fm(INCH /HR) = 0.21
AREA- AVERAGED
Fp(ZNCH /HR) = 0.98 AREA AVERAGED Ap = 0.21
TOTAL AREA(ACRES) = 1.6 PEAK FLOW RATE(CFS) = 6.27
FLOW PROCESS FROM NODE 33.00 TO NODE 33.00 IS CODE = 81 C.5
.wr ------ -------- ----- ----- ---------- ---- ----
----------------------------------
» » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «<
------------------------______--
____________________
MAINLINE Tc(MIN.) = 6.40
* 25 YEAR RAINFALL INTENSITY(INCH /HR) = 4.533
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
aws LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
PUBLIC PARK A 0.26 0.98 0.850 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
SUBAREA AREA(ACRES) = 0.26 SUBAREA RUNOFF(CFS) = 0.87
EFFECTIVE AREA(ACRES) = 1.87 AREA - AVERAGED Fm(INCH /HR) = 0.29
AREA- AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.30
TOTAL AREA(ACRES) = 1.9 PEAK FLOW RATE(CFS) = 7.14
FLOW PROCESS FROM NODE 33.00 TO NODE 34.00 IS CODE = 31
--------------------------------------------
--------------------------------
» » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «<
» » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««<
ELEVATION DATA: UPSTREAM(FEET) = 951.80 DOWNSTREAM(FEET) = 946.33
FLOW LENGTH(FEET) = 263.00 MANNING'S N = 0.011
DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.9 INCHES
w PIPE -FLOW VELOCITY(FEET /SEC.) = 9.36
ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1
PIPE- FLOW(CFS) = 7.14
PIPE TRAVEL TIME(MIN.) = 0.47 Tc(MIN.) = 6.87
LONGEST FLOWPATH FROM NODE 30.00 TO NODE 34.00 = 639.00 FEET.
w -- FLOW - PROCESS FROM NODE 40.00 TO NODE 41.00 IS CODE = 21
-----------------------------------
---------------
» » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «<
USE TIME CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
---------------------____---
_____________________
INITIAL SUBAREA FLOW LENGTH(FEET) = 205.00
ELEVATION DATA: UPSTREAM(FEET) = 951.00 DOWNSTREAM(FEET) = 949.20
Tc = K *((LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20
Y11 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.470
* 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.291
I SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.)
PUBLIC PARK A 0.11 0.98 0.850 32 10.47
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
W,
m
Z'
r
0
IN
im
F
w
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
SUBAREA RUNOFF(CFS) = 0.24
TOTAL AREA(ACRES) = 0.11 PEAK FLOW RATE(CFS) = 0.24
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 0.1 TC(MIN.) = 10.47
EFFECTIVE AREA(ACRES) = 0.11 AREA - AVERAGED FM(INCH /HR)= 0.83
AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA AVERAGED AP = 0.850
PEAK FLOW RATE(CFS) = 0.24
END OF RATIONAL METHOD ANALYSIS
M
ft
r
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
(Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983 -2008 Advanced Engineering Software (aes)
Ver. 15.0 Release Date: 04/01/2008 License ID 1340
lei Analysis prepared by:
+�• Halladay & Mim Mack, Inc.
1181 California Avenue, Suite 102
Corona, CA 92881
Tel: 951 -278 -9700 Fax: 951- 278 -2729
rw
* * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * **
* PM 19073
we * CITY OF FONTANA
* AREA "E ", Q -25 FREQUENCY
******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FILE NAME: E- Q25.DAT
TIME/DATE OF STUDY: 09:57 08/05/2008
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
----------------------------------------------------------------------------
----------------------------------------------------------------------------
-- *TIME-OF- CONCENTRATION MODEL * --
on USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 6.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
*USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 0.900
100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.350
{ COMPUTED RAINFALL INTENSITY DATA:
STORM EVENT = 25.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.0580
SLOPE OF INTENSITY DURATION CURVE = 0.6500
*ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1. Relative Flow -Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) - (Top - of - Curb)
WA 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
+CIA *USER - SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 50.00 TO NODE 51.00 IS CODE = 21
----------------------------------------------------------------------------
tlll
*USER- DEFINED STREET -
SECTIONS FOR COUPLED PIPEFLOW AND
STREETFLOW
MODEL*
HALF-
CROWN TO
STREET- CROSSFALL:
CURB
GUTTER -
GEOMETRIES:
MANNING
WIDTH
CROSSFALL
IN- / OUT - /PARK-
HEIGHT
WIDTH
LIP HIKE
FACTOR
NO. (FT)
(FT)
SIDE / SIDE/ WAY
(FT)
(FT)
(FT) (FT)
(n)
1 30.0
20.0
0.018/0.018/0.020
0.67
2.00
0.0312 0.167
0.0150
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1. Relative Flow -Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) - (Top - of - Curb)
WA 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
+CIA *USER - SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 50.00 TO NODE 51.00 IS CODE = 21
----------------------------------------------------------------------------
tlll
.w
» »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««<
>>USE TIME CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW- LENGTH(FEET) = 250.00
�M ELEVATION DATA: UPSTREAM(FEET) = 950.60 DOWNSTREAM(FEET) = 947.80
im Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE))* *0.20
ja SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.796
* 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.226
SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
III LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.)
PUBLIC PARK A 0.14 0.98 0.850 32 10.80
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
SUBAREA RUNOFF(CFS) = 0.30
TOTAL AREA(ACRES) = 0.14 PEAK FLOW RATE(CFS) = 0.30
-------------------------- --------------
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 0.1 TC(MIN.) = 10.80
EFFECTIVE AREA(ACRES) = 0.14 AREA - AVERAGED Fm(INCH /HR)= 0.83
AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.850
PEAK FLOW RATE(CFS) = 0.30
----------------------------------
END OF RATIONAL METHOD ANALYSIS
rrr
100 -YEAR -1 HOUR STORM EVENT
N
E
0
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
(Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983 -2008 Advanced Engineering Software (aes)
Ver. 15.0 Release Date: 04/01/2008 License ID 1340
Analysis prepared by:
Halladay & Mim Mack, Inc.
1181 California Avenue, Suite 102
Corona, CA 92881
Tel: 951 - 278 -9700 Fax: 951 - 278 -2729
* * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * **
* TPM 19073 *
* CITY OF FONTANA *
* 100 -YEAR ON -SITE STUDY *
******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FILE NAME: Q100PROP.DAT
TIME /DATE OF STUDY: 13:15 08/04/2008
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
-- *TIME-OF- CONCENTRATION MODEL*- -
USER SPECIFIED STORM EVENT(YEAR) = 100.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 6.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
*USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = 0.6500
USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.3500
*ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD*
*USER - DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET - CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT- /PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150
2 30.0 25.0 0.034/0.034/0.020 0.50 2.00 0.0312 0.167 0.0150
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1. Relative Flow -Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
*USER - SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21 A-1
> »RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
USE TIME CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW LENGTH(FEET) = 410.00
ELEVATION DATA: UPSTREAM(FEET) = 965.00 DOWNSTREAM(FEET) = 959.00
Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE))* *0,20
SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 13.558
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.550
SUBAREA Tc AND LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.)
NATURAL POOR COVER
"BARREN" A 2.41 0.18 1.000 93 13.56
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.18
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
SUBAREA RUNOFF(CFS) = 7.31
TO'T'AL AREA(ACRES) = 2.41 PEAK FLOW RATE(CFS) = 7.31
-- FLOW - PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE 91
--- AREA --- ------------ - - - - --
» » >COMPUTE "V' GUTTER FLOW TRAVEL TIME THRU SUBAREA« «<
UPSTREAM NODE ELEVATION(FEET) = 959.00
DOWNSTREAM NODE ELEVATION(FEET) = 955.33
CHANNEL LENGTH THRU SUBAREA(FEET) = 145.00
"V' GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET) = 0.110
PAVEMENT LIP(FEET) = 0.030 MANNING'S N = .0150
PAVEMENT CROSSFALL(DECIMAL NOTATION) = 0.02000
MAXIMUM DEPTH(FEET) = 1.00
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.452
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL A 0.50 0.74 0.100 52
SUBAREA AVERAGE PERVIOUS LOSS RATE, FP(INCH /HR) = 0.74
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 8.07
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 4.05
AVERAGE FLOW DEPTH(FEET) = 0.30 FLOOD WIDTH(FEET) = 18.87
"V" GUTTER FLOW TRAVEL TIME(MIN.) = 0.60 Tc(MIN.) = 14.15
SUBAREA AREA(ACRES) = 0.50 SUBAREA RUNOFF(CFS) = 1.52
EFFECTIVE AREA(ACRES) = 2.91 AREA - AVERAGED Fm(INCH /HR) = 0.16
AREA - AVERAGED Fp(INCH /HR) = 0.19 AREA- AVERAGED Ap = 0.85
TOTAL AREA(ACRES) = 2.9 PEAK FLOW RATE(CFS) = 8.C2
END OF SUBAREA "V' GUTTER HYDRAULICS:
DEPTH(FEET) = 0.30 FLOOD WIDTH(FEET) = 19.38
FLOW VELOCITY(FEET /SEC.) = 4.13 DEPTH * VELOCITY(FT *FT /SEC) = 1.25
LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 = 555.00 FEET.
-- FLOW - PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 81 -3
--------------------------------------
» » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «<
® MAINLINE Tc(MIN.) = 14.15
4 ..
7
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.452
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
NATURAL POOR COVER
"BARREN" A 1.60 0.18 1.000 93
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.18
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
SUBAREA AREA(ACRES) = 1.60 SUBAREA RUNOFF(CFS) = 4.71
EFFECTIVE AREA(ACRES) = 4.51 AREA - AVERAGED Fm(INCH/HR) = 0.17
AREA - AVERAGED Fp(INCH /HR) = 0.19 AREA- AVERAGED Ap = 0.90
TOTAL AREA(ACRES) = 4.5 PEAK FLOW RATE(CFS) = 13.33
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 56 A-4
» »>COMPUTE TRAPEZOIDAL CHANNEL FLOW ««<
»»>TRAVELTIME THRU SUBAREA ««<
ELEVATION DATA: UPSTREAM(FEET) = 955.33 DOWNSTREAM(FEET) = 951.23
CHANNEL LENGTH THRU SUBAREA(FEET) = 517.00 CHANNEL SLOPE = 0.0079
GIVEN CHANNEL BASE(FEET) = 1.00 CHANNEL FREEBOARD(FEET) = 1.0
"Z" FACTOR = 30.000 MANNING'S FACTOR = 0.015
*ESTIMATED CHANNEL HEIGHT(FEET) = 1.40
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.068
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS -
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL A 1.88 0.74 0.100 52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.74
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 15.86
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 3.06
AVERAGE FLOW DEPTH(FEET) = 0.40 TRAVEL TIME(MIN.) = 2.82
Tc(MIN.) = 16.97
SUBAREA AREA(ACRES) = 1.88 SUBAREA RUNOFF(CFS) = 5.06
EFFECTIVE AREA(ACRES) = 6.39 AREA - AVERAGED Fm(INCH /HR) = 0.14
AREA - AVERAGED Fp(INCH/HR) = 0.21 AREA- AVERAGED Ap = 0.66
TOTAL AREA(ACRES) = 6.4 PEAK FLOW RATE(CFS) = 16.83
GIVEN CHANNEL BASE(FEET) = 1.00 CHANNEL FREEBOARD(FEET) = 1.0
"Z" FACTOR = 30.000 MANNING'S FACTOR = 0.015
*ESTIMATED CHANNEL HEIGHT(FEET) = 1.41
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.41 FLOW VELOCITY(FEET /SEC.) = 3.13
LONGEST FLOWPATH FROM NODE 1.00 TO NODE 4.00 = 1072.00 FEET.
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21 73-1
» »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «<
»USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA«
INITIAL SUBAREA FLOW - LENGTH(FEET) = 228.00
ELEVATION DATA: UPSTREAM(FEET) = 957.80 DOWNSTREAM(FEET) = 955.30
Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.450
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.204
SUBAREA Tc AND LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.)
PUBLIC PARK A 0.37 0.74 0.850 52 10.45
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.74
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
SUBAREA RUNOFF(CFS) = 1.19
TOTAL AREA(ACRES) = 0.37 PEAK FLOW RATE(CFS) = 1.19
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 31
» »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «<
» »>USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««<
ELEVATION DATA: UPSTREAM(FEET) = 953.30 DOWNSTREAM(FEET) = 951.93
FLOW LENGTH(FEET) = 126.00 MANNING'S N = 0.011
DEPTH OF FLOW IN 9.0 INCH PIPE IS 5.0 INCHES
PIPE -FLOW VELOCITY(FEET /SEC.) = 4.71
ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1
PIPE - FLOW(CFS) = 1.19
PIPE TRAVEL TIME(MIN.) = 0.45 Tc(MIN.) = 10.90
LONGEST FLOWPATH FROM NODE 10.00 TO NODE 12.00 = 354.00 FEET.
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 81 33-1
» »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««<
MAINLINE Tc(MIN.) = 10.90
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.092
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL A 0.37 0.74 0.100 52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.74
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
SUBAREA AREA(ACRES) = 0.37 SUBAREA RUNOFF(CFS) = 1.34
EFFECTIVE AREA(ACRES) = 0.74 AREA - AVERAGED Fp(INCH/HR) = 0.35
AREA- AVERAGED Fp(INCH /HR) = 0.74 AREA- AVERAGED Ap = 0.47
TOTAL AREA(ACRES) = 0.7 PEAK FLOW RATE(CFS) = 2.49
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 31
» »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««<
» »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««<
ELEVATION DATA: UPSTREAM(FEET) = 951.93 DOWNSTREAM(FEET) = 949.55
FLOW LENGTH(FEET) = 197.00 MANNING'S N = 0.011
DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.4 INCHES
PIPE -FLOW VELOCITY(FEET /SEC.) = 5.88
ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1
PIPE - FLOW(CFS) = 2.49
PIPE TRAVEL TIME(MIN.) = 0.56 Tc(MIN.) = 11.45
0
rir
mw
ft LONGEST FLOWPATH FROM NODE 10.00 TO NODE 13.00 = 551.00 FEET.
aw *** t* r***************** r****************** r* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
- - FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 81 $_3
-- -- -------- ----- ----- --------- - --- ---------- ---- ---- ------------ ----
» >>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «<
40 MAINLINE Tc(MIN.) = 11.45
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.961
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL A 0.33 0.74 0.100 52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.74
o , SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
SUBAREA AREA(ACRES) = 0.33 SUBAREA RUNOFF(CFS) = 1.15
EFFECTIVE AREA(ACRES) = 1.07 AREA - AVERAGED Fm(INCH /HR) = 0.27
AREA - AVERAGED Fp(INCH /HR) = 0.74 AREA- AVERAGED Ap = 0.36
+rD TOTAL AREA(ACRES) = 1.1 PEAK FLOW RATE(CFS) = 3.56
FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 31
r .
-------------------------------------------------
» » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «<
» » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «<
ELEVATION DATA: UPSTREAM(FEET) = 949.55 DOWNSTREAM(FEET) = 947.82
w� FLOW LENGTH(FEET) = 284.00 MANNING'S N = 0.011
DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.5 INCHES
�r PIPE -FLOW VELOCITY(FEET /SEC.) = 4.97
ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1
PIPE- FLOW(CFS) = 3.56
ar PIPE TRAVEL TIME(MIN.) = 0.95 Tc(MIN.) = 12.41
LONGEST FLOWPATH FROM NODE 10.00 TO NODE 14.00 = 835.00 FEET.
ww
iM -- FLOW - PROCESS FROM NODE 14.00 TO NODE 14.00 IS CODE 81 3.,4
----------------------------
""""' » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««<
MAINLINE Tc(MIN.) = 12.41
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.761
s SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
wrr COMMERCIAL A 0.59 0.74 0.100 52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.74
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
SUBAREA AREA(ACRES) = 0.59 SUBAREA RUNOFF(CFS) = 1.96
EFFECTIVE AREA(ACRES) = 1.66 AREA - AVERAGED Fm(INCH /HR) = 0.20
AREA- AVERAGED Fp(INCH /HR) = 0.74 AREA- AVERAGED Ap = 0.27
TOTAL AREA(ACRES) = 1.7 PEAK FLOW RATE(CFS) = 5.32
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 14.00 TO NODE 14.00 IS CODE = 81 -�
----------------------------- - - - B 5 -
"""' » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «<
=w
go
..
MAINLINE Tc(MIN.) = 12.41
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.761
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap
SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL)
CN
PUBLIC PARK A 0.19 0.74 0.850
52
as
SUBAREA AVERAGE.PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.74
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
+�
SUBAREA AREA(ACRES) = 0.19 SUBAREA RUNOFF(CFS) = 0.54
EFFECTIVE AREA(ACRES) = 1.85 AREA - AVERAGED FM(INCH /HR)
= 0.24
AREA - AVERAGED Fp(INCH /HR) = 0.74 AREA- AVERAGED Ap = 0.33
ww
TOTAL AREA(ACRES) = 1.9 PEAK FLOW RATE(CFS) =
5.86
FLOW PROCESS FROM NODE 30.00 TO NODE 31.00 IS CODE =
21 C -1
----------------------------------------------------------------------------
» » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «<
>>USE TIME-OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW- LENGTH(FEET) = 54.00
ELEVATION DATA: UPSTREAM(FEET) = 958.70 DOWNSTREAM(FEET) =
957.10
Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE))* *0.20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.000
w
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 6.789
SUBAREA Tc AND LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA pp Ap
SCS Tc
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL)
CN (MIN.)
PUBLIC PARK A 0.06 0.74 0.850
52 5.00
+w
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.74
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
�Irt
SUBAREA RUNOFF (CFS) = 0.33
TOTAL AREA {ACRES) = 0.06 PEAK FLOW RATE(CFS) = 0.33
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS CODE = 31
! ----------------------------------------------------------------------------
40 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «<
» » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««<
-------------------------- - - ----
ELEVATION DATA: UPSTREAM(FEET) = 957.10 DOWNSTREAM(FEET) = 955.60
io FLOW LENGTH(FEET) = 135.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 6.0 INCH PIPE IS 3.3 INCHES
PIPE -FLOW VELOCITY(FEET /SEC.) = 3.03
ESTIMATED PIPE DIAMETER (INCH) = 6.00 NUMBER OF PIPES = 1
PIPE- FLOW(CFS) = 0.33
1_
PIPE TRAVEL TIME(MIN.) = 0.74 Tc(MIN.) = 5.74
LONGEST FLOWPATH FROM NODE 30.00 TO NODE 32.00 = 189.00 FEET.
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 32.00 TO NODE 32.00 IS CODE = 81 2
go »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
--------------------------
MAINLINE Tc(MIN.) = 5.74
no * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 6.205
0
m
s.
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
PUBLIC PARK A 0.18 0.74 0.850 52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.74
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
SUBAREA AREA(ACRES) = 0.18 SUBAREA RUNOFF(CFS) = 0.90
kw EFFECTIVE AREA(ACRES) = 0.24 AREA - AVERAGED Fm(INCH /HR) = 0.63
AREA - AVERAGED Fp(INCH /HR) = 0.74 AREA - AVERAGED Ap = 0.85
TOTAL AREA(ACRES) = 0.2 PEAK FLOW RATE(CFS) = 1.20
Ism - - FLOW PROCESS FROM NODE 32.00 TO NODE 32.00 IS CODE = 81 C-3
----------------------------------------------------
-------------------
r » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««<
- - - - -- - - - -- -- - - - - - -- - -
ww MAINLINE Tc(MIN.) = 5.74
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 6.205
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
... LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL A 0.71 0.74 0.100 52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.74
,.. SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
SUBAREA AREA {ACRES) = 0.71 SUBAREA RUNOFF(CFS) = 3.92
4w EFFECTIVE AREA(ACRES) = 0.95 AREA - AVERAGED Fm(INCH /HR) = 0.21
AREA- AVERAGED Fp(INCH /HR) = 0.74 AREA- AVERAGED Ap = 0.29
TOTAL AREA(ACRES) = 0.9 PEAK FLOW RATE(CFS) = 5.12
rn
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 32.00 TO NODE 33.00 IS CODE = 31
-----------------------------------------------------------------
» » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««<
» » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««<
ELEVATION DATA: UPSTREAM(FEET) = 953.10 DOWNSTREAM(FEET) 951.80
i
FLOW LENGTH(FEET) = 187.00 MANNING'S N = 0.011
DEPTH OF FLOW IN 15.0 INCH PIPE IS 10.4 INCHES
PIPE -FLOW VELOCITY(FEET /SEC.) = 5.65
60 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1
PIPE- FLOW(CFS) = 5.12
w� PIPE TRAVEL TIME(MIN.) = 0.55 Tc(MIN.) = 6.29 - - -
LONGEST FLOWPATH FROM NODE 30.00 TO NODE 33.00 = 376.00 FEET.
FLOW PROCESS FROM NODE 33.00 TO NODE 33.00 IS CODE = 81 C -mot
----------------------------------------------------------------------------
» » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «<
MAINLINE Tc(MIN.) = 6.29
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.846
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
I
COMMERCIAL A 0.66 0.74 0.100 52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.74
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
rrt
w
i
m
00
to SUBAREA AREA(ACRES) = 0.66 SUBAREA RUNOFF(CFS) = 3.43
EFFECTIVE AREA(ACRES) = 1.61 AREA - AVERAGED Fm(INCH /HR) = 0.16
AREA - AVERAGED Fp(INCH /HR) = 0.74 AREA- AVERAGED Ap = 0.21
TOTAL AREA(ACRES) = 1.6 PEAK FLOW RATE(CFS) = 8,24
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
- - FLOW PROCESS FROM NODE 33.00 TO NODE 33.00 IS CODE = 81 -5
----------------- - - - - -- ---------------------------------------
» » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «<
ww - - - -- --------------- - --
MAINLINE Tc(MIN.) = 6.29
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.846
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
w LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
PUBLIC PARK A 0.26 0.74 0.850 52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.74
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
n!i SUBAREA AREA(ACRES) = 0.26 SUBAREA RUNOFF(CFS) = 1.22
EFFECTIVE AREA(ACRES) = 1.87 AREA - AVERAGED Fm(INCH /HR) = 0.22
�+ AREA - AVERAGED Fp(INCH /HR) = 0.74 AREA- AVERAGED Ap = 0.30
TOTAL AREA(ACRES) = 1.9 PEAK FLOW RATE(CFS) = 9.46
IIIM
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 33.00 To NODE 34.00 IS CODE = 31
-------------------------------------
---------------------------------------
» » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «<
�w » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««<
ELEVATION DATA: UPSTREAM(FEET) = 951.80 DOWNSTREAM {FEET) = 946.33
FLOW LENGTH(FEET) = 263.00 MANNING'S N = 0.011
DEPTH OF FLOW IN 15.0 INCH PIPE IS 10.9 INCHES
PIPE -FLOW VELOCITY(FEET /SEC.) = 9.87
ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1
PIPE- FLOW(CFS) = 9.46
PIPE TRAVEL TIME(MIN.) = 0.44 Tc(MIN.) = 6.74
irlr LONGEST FLOWPATH FROM NODE 30.00 TO NODE 34.00 = 639.00 FEET.
i
-- FLOW - PROCESS FROM NODE 40.00 TO NODE 41.00 IS CODE = 21
-----------------------------------------------
e�w
» » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««<
>>USE TIME CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
to
INITIAL SUBAREA FLOW- LENGTH(FEET) = 205.00
as ELEVATION DATA: UPSTREAM(FEET) = 951.00 DOWNSTREAM(FEET) = 949.20
Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]*
*0.20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
10.470
* 100 YEAR RAINFALL INTENSITY(INCH /HR) =
4.199
SUBAREA Tc AND LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA
Fp Ap SCS Tc
LAND USE GROUP (ACRES)
(INCH /HR) (DECIMAL) CN (MIN.)
PUBLIC PARK A 0.11
0.74 0.850 52 10.47
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH
/HR) = 0.74
t
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap
= 0.850
SUBAREA RUNOFF(CFS) = 0.35
w
w�
TOTAL AREA(ACRES) =
0.11 PEAK FLOW RATE(CFS) = 0.35
END OF STUDY SUMMARY:
TOTAL AREA {ACRES) =
0.1
TC(MIN.) = 10.47
EFFECTIVE AREA(ACRES) =
0.11
AREA— AVERAGED Fm(INCH /HR)= O.63
AREA— AVERAGED Fp(INCH /HR)
= 0.74
AREA— AVERAGED Ap = 0.850
PEAR FLOW RATE(CFS) =
0.35
�"""
------------------------------------------
END OF RATIONAL METHOD ANALYSIS
bw
rr
Oft
e�w
�rf
s_
wrr
IYr
yrr
■w
4
it
t
6
Vft
awr
f"
HYDRAULIC ELEMENTS - I PROGRAM PACKAGE
(C) Copyright 1982 -2008 Advanced Engineering Software (aes)
as ver. 15.0 Release Date: 04/01/2008 License ID 1340
am Analysis prepared by:
Halladay & Mim Mack, Inc.
�+ 1181 California Avenue, Suite 102
Corona, CA 92881
Tel: 951 - 278 -9700 Fax: 951- 278 -2729
- ---------------------- - - - - -- - -- -
w '"" TIME /DATE OF S 13:23 08/01/2008
�* Problem Descriptions: �— —
SIZING CATCH BASIN #1
Vw Q - 25
» »SUMP TYPE BASIN INPUT INFORMATION ««
---------------------------------------------------------------------- - - - - --
curb Inlet capacities are approximated based on the Bureau of
Public Roads nomograph plots for flowby basins and sump basins.
w
0M BASIN INFLOW(CFS) = 12.00
BASIN OPENING(FEET) = 0.50
wo DEPTH OF WATER(FEET) = 0.83
aft »>>CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 6.44
0M
4w
MR
.m
Iwr
i
w.
w
Mlr
+wwr
r
r�
wA
so
rw
40
VW
******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
(Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983 -2008 Advanced Engineering Software (aes)
Ver. 15.0 Release Date: 04/01/2008 License ID 1340
PAM
r
Analysis prepared by:
Halladay & Mim Mack, Inc.
1181 California Avenue, Suite 102
ow Corona, CA 92881
Tel: 951 - 278 -9700 Fax: 951 - 278 -2729
* * * * * * * * * * * * * * * * * * * ** * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * **
PM 19073
*
* CITY OF FONTANA
AREA °E ", 100 -YEAR FREQUENCY
■ri
M ,,,, FILE NAME: E -Q100. DAT
TIME/DATE OF STUDY: 10:00 08/05/2008
---------------------------
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
-----------------------------
irr
-- * TIME - OF - CONCENTRATION MODEL*- -
... USER SPECIFIED STORM EVENT(YEAR) = 100.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 6.00
urr SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
*USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = 0.6500
USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.3500
*ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD*
*USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
.w„ HALF- CROWN TO STREET- CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT- /PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
O ft 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150
it
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
wu 1. Relative Flow -Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) - (Top -of -Curb)
2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
*USER - SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
+Alwr
FLOW PROCESS FROM NODE 50.00 TO NODE 51.00 IS CODE = 21
----------------------------------------------------------------------------
» »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
awr >>USE TIME-OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
w
m
aw
w�
Ur
am
we
+w
INITIAL SUBAREA FLOW- LENGTH(FEET) = 250.00
ELEVATION DATA: UPSTREAM(FEET) = 950.60 DOWNSTREAM(FEET) = 947.80
Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.796
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.116
SUBAREA Tc AND LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.)
PUBLIC PARK A 0.14 0.74 0.850 52 10.80
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.74
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
SUBAREA RUNOFF(CFS) = 0.44
TOTAL AREA(ACRES) = 0.14 PEAK FLOW RATE(CFS) = 0.44
END OF STUDY SUMMARY:
TOTAL AREA {ACRES) = 0.1 TC(MIN.) = 10.80
EFFECTIVE AREA(ACRES) = 0.14 AREA- AVERAGED Fm(INCH /HR)= 0.63
AREA- AVERAGED Fp(INCH /HR) = 0.74 AREA- AVERAGED Ap = 0.850
PEAK FLOW RATE(CFS) = 0.44
END OF RATIONAL METHOD ANALYSIS
air
rr
on
10
4w
mo
so
w�
ow
40
aw
on
iffo
a.
BMP DESIGN CALCULATIONS
f
AREA 'A
PAVEMENT
2.10 AC.
LANDSCAPING
0.35 AC.
TOTAL
2.45 AC.
AREA " B*
BUILDING
1.66 AC.
LANDSCAPING
0.19 AC.
TOTAL
1.85 AC.
AREA "C'
PAVEMENT
0.04 AC.
BUILDING
0.66 AC.
LANDSCAPING
0.22 A C.
TOTAL
0.92 AC.
AREA • D"
BUILDING
0.71 AC.
LANDSCAPING
0.24 AC.
TOTAL
0.95 AC.
GRAPHIC SCALE
100 0 50 100
( IN FEET )
1 inch = 100 ft.
W
W
Q
Q
FOR
BROWN- STRAUSS STEEL
FONTANA, CA
LIVE OAK AVENUE
P � G �c,Q�O
Q �O
BMP AREA EXHIBIT
1
I
i
f
E
I
f
E
f
f
4
a
i
r
m
X
4f
5
{
a
m
x
4
b
'f a
a
f
c f
F
U
c E
o t
i
m
G
P E
4M
00
am
U9
oft
em
rr+
w
r.r
am
am
Om
it
.M
41W
.w
rw
am
,r
4M
rr
sm
rrr
it
4W
mr
4=
AEI
Design Procedure for BMP Design Volume
Designer. Richard Godina
Company: Halladay Mim Mack, Inc.
Date. 8/1/2008 AREA "A"
Project: Brown-Strauss Steel (APN 0236 - 201 -01,02,13)
Location. Fontana, CA San Bernardino County
1. BMP Drainage Area:
Identify the "BMP Drainage Area" that drains to the proposed BMP element_
This includes all areas that will drain to the proposed BMP element, including
2.45 Acres
previous areas, impervious areas, and off -site areas, whether or not they
directly or indirectly connected to the BMP element. Calculate the BMP
Drainage Area (A) in acres.
2. Site Location:
Outline the Drainage Area on the NOAA Atlas 14 Precipitation Depths
(See Figure D-1)
(2 -year 1 -hour Rainfall) map (Figure D -1).
3. Value Per Map:
Determine the area - averaged 2 -year 1 -hour rainfall value for the Drainage
0.55 inches
Area outlined above. ( In inches )
4. Calculated Watershed Impervious Ratio "i"
Calculate the "Watershed imperviousness Ratio ", i, which is equal to the
percent of impervious area in the BMP Drainage Area divided by 100_
Paving 2.10 @ 95% 2.00
Buildings 0.00 @ 100% 0.00
i = 0.82
Landscaping 0.35 @ 5% 0.02
2.01
"i" = 2.01 = 0.82 82%
2.45
5. Calculate Composite Run-Off coef. "C BMP "
Calculate the composite runoff coefficient CBMP for the Drainage Area
above using the following equation.
C BMP = 0.8580 - 0.78i + 0.774i + 0.04
CMP = 0.63
Where: C BMP = composite runoff coefficient; and,
"i" = watershed imperviousness ratio_
+° L & HydraulicsViydrology Ca1cs16MP Flows\2008-08-01 Oesign Procedure for BMP Area A 1
W
rrr
rir
Ow
rr
i.r
.R
ar
r
r
rw
aw
r
.w
r
w
am
do
6.Determine the Region - "Valley"
Determine which Region of Drainage Area is Located in
(Valley, Mountain or Desert).
Per Table D -1 => Regression Coef. for a: Valley region = 1.4807
P = 1.4807 * 2 -year 1 hour Rainfall Value
P = 0.81 inches
7. Calculate Maximum Detention Volume (inches)
Determine the area - averaged "6 -hour Mean Storm Rainfall", P 6 , for the
Drainage Area. This is calculated by multiplying the area averaged
2 -year 1 -hour value by the appropriate regression coefficient from Table 1.
Determine the appropriate drawdown time. Use the regression constant
a = 1.582 for 24 hours and a = 1.963 for 48 hours. Note: Regression
constants are provided for both 24 hour and 48 hour drawdown times;
however, 48 hour drawdown times should be used in most areas of
California. Drawdown times in excess of 48 hours should be used with
caution as vector breeding can be a problem after water has stood in
excess of 72 hours_ (Use of the 24 hour drawdown time should be limited
to drainage areas with coarse soils that readily seftle and to watersheds
where warming may be detrimental to downstream fisheries.)
P a *C *P
1.00 inches
Where: P = Maximized Detention Volume in inches,
a = 1.582 for 24 hour drawdown
a= 1.963 for 48 -hour drawdown
CBMP = Composite Runoff Coefficient
P = 6-hour Mean Storm Rainfall, in inches_
Assume a = 1.963
8. Calculate the Target Volume: (Ac - Ft)
0.20 Ac-Ft
V. = (P * A) / 12
8886 c.f.
L• 191801081ProductionWydrology & HydraulicsWydrology Calcs\BMP FlowsX2008- 08-01 \Design Procedure for BMP Area A 2
III
ray
ww
irr
.m
ar
ow
rrr
P"
+r
OM
iew
4M
do
irr
1111
4M
am
trt
Design Procedure for BMP Design Flowrate
Designer. Richard Godina
Company. Halladay Mim Mack, Inc.
Date: 811/2008 AREA "A"
Project Brown - Strauss Steel (APN 0236 - 201 -01,02,13)
Location. Fontana, CA San Bernardino County
1. BMP Drainage Area:
Identify the "BMP Drainage Area" that drains to the proposed BMP element.
This includes all areas that will drain to the proposed BMP element, including
2.45 Acres
previous areas, impervious areas, and off -site areas, whether or not they
directly or indirectly connected to the BMP element. Calculate the BMP
Drainage Area (A) in acres.
2. Site Location:
Outline the Drainage Area on the NOAA Atlas 14 Precipitation Depths
(See Figure D -1)
(2 -year 1 -hour Rainfall) map (Figure D-1).
3. Value Per Map:
Determine the area - averaged 2 -year 1-hour rainfall value for the Drainage
0.55 inches
Area outlined above. (In inches)
4. Calculated Watershed Impervious Ratio "i"
Calculate the "Watershed Imperviousness Ratio ", i, which is equal to the
percent of impervious area in the BMP Drainage Area devided by 100_
Paving 2.10 @ 95% 2.00
Buildings 0.00 @ 100% 0.00
i = 0.82
Landscaping 0.35 @ 5% 0.02
2.01
"i" = 2.01 = 0.82 82%
2.45
5. Calculate Composite Run -Off coef. "C
Calculate the composite runoff coefficient C BMP for the Drainage Area
above using the following equation.
C = 0.858i - 0.78i + 0.774i + 0.04
C = 0.63
Where_ C = composite runoff coefficient; and,
"i" = watershed imperviousness ratio.
"� L191801081ProductionUiydrology & HydraulicsViydrology Calcs\BMP Flows12008- 08-01 \Design Procedure for BMP Area A 1
.w,
OR
fu
am
No
4W
1W
no
go
ww
rr
"M
ON
an
F
40M
so
rrr
0
F
4"
M
OR
rr
6-Calculate I amp
Determine which Region of Drainage Area is Located in
(Valley, Mountain or Desert).
Per Table D -1 => Regression Coef. for a : Valley region = 0.2787
1 BW = 0.31 inches/hr
I a = 0.2787 * 2 -year 1 hour Rainfall Value * Safety Factor (S.F.)
S.F. = 2.00
7. Calculate The Target BMP Flow Rate (ft' /sec)
Q = CeMP * I * A
0.47 felsec
Where: Q = Target BMP Flowrate in ft' /sec
Camp = Composite Runoff Coefficient
l = BMP design rainfall intensity, in inches/hour
A = BMP drainage Area in acres
LA9180108\ProductionUHydrology & Hydraul"ics\Hydrology Calcs\BMP Flows\2008- 08-010esign Procedure for BMP Area A 2
so
www.halladaymimmack.com l 1181 California Avenue l Suite 1021 Corona l California( 928811 951- 278 -9700 1 fax 951- 278 -2729
Project: BROWN - STRAUSS STEEL - ARE A
StormTech®
By: Richard Godina
Detention •Relention-Recharge
Units: Im erial
Point of Contact HALLADAY & MIM MACK, INC.
Subsurface Stormwater Management"
Date: 8/1/2008
System Requirements
Required Storage Volume
8,886 CF
Select Stormtech Chamber System
SC -740
ss (2440 mm)
Stone Porosity (Industry Standard = 40 %)
40%
PAVEMENT 18 (MIN mm)
FOR UNPAVED INSTALI ,TION 1 T ERE RUTTING PRM
O
Stone Foundation Depth
C
Inches
VEHICLES MAY OCCUR, INCRI —T COVER TO - MINIMUM.
Storage Volume Per Chamber
81.70 CF
6 (150 mm) MIN
Avg Cover over Chambers (18 in min. & 96 in max.)
Inches
30 in (762 mm)
Number of Chambers Required
109 Each
12 in (305 mm)
Required Bed Size
3,987 SF
Tons of Stone Required
567 Tons
Volume of Excavation
812 CY
Area of Filter Fabric
1,150 SY
s^ MIN. 12' MIN. TYP.
# of End Caps Required
22 Each
Length of ISOLATOR ROW
71.2 FT
ISOLATOR FABRIC
40 SY
Is the limiting dimension for the bed the width or length? ienath
Controlled by Width (Rows)
Controlled by Length
Width
MFT
Length FT
# of Chambers Long
- EA
# of Chambers Long 10 EA
# of Rows
- EA
# of Rows 11 EA
Actual Length
- FT
Actual Length 74.80 FT
Actual Width
- FT
Actual Width 53.75 FT
1 of the chambers rows will contain only 9 chambers
www.halladaymimmack.com l 1181 California Avenue l Suite 1021 Corona l California( 928811 951- 278 -9700 1 fax 951- 278 -2729
+rr
No
10
.err
00
Ir
No"
NW
go
00
+w
■Ir
r
On
aw
rwr
4M
rrl
4M
so
an
rM
Design Procedure for BMP Design Volume
Designer Richard Godina
Company. Halliday Mim Mack, Inc.
Date: 8/1/2008 AREA "B +C +D"
Project Brown -Strauss Steel (APN 0236- 201 - 01,02,13)
Location: Fontana, CA San Bernardino County
1. BMP Drainage Area:
Identify the "BMP Drainage Area" that drains to the proposed BMP element.
This includes all areas that will drain to the proposed BMP element, including
3.72 Acres
previous areas, impervious areas, and off -site areas, whether or not they
directly or indirectly connected to the BMP element. Calculate the BMP
Drainage Area (A) in acres.
2. Site Location:
Outline the Drainage Area on the NOAA Atlas 14 Precipitation Depths
(See Figure D-1)
(2 -year 1 -hour Rainfall) map (Figure D -1).
3. Value Per Map:
Determine the area - averaged 2 -year 1 -hour rainfall value for the Drainage
0.55 inches
Area outlined above. ( In inches)
4. Calculated Watershed Impervious Ratio "i"
Calculate the "Watershed Imperviousness Ratio ", i, which is equal to the
percent of impervious area in the BMP Drainage Area divided by 100.
Paving 0.04 @ 95% 0.04
Buildings 3.03 @ 100% 3.03
i = 0.83
Landscaping 0.65 @ 5 0 /6 0.03
3.10
"i" = 3.10 = 0.83 83%
3.72
S. Calculate Composite Run-Off coef. "C
Calculate the composite runoff coefficient CBMP for the Drainage Area
above using the following equation_
C = 0.858i - 0.78i + 0.774i + 0.04
CBS = 0.64
Where: C = composite runoff coefficient; and,
"i" = watershed imperviousness ratio_
'""" L:191801081Production\Hydrology & HydraulicslHydrology Ca1cs1BMP Flows\2008- 08- 01 \Design Procedure for BMP Area B +C +D 1
rrW'
4M
so
r..
4M
No
.w
Im
am
ar
on
rr
4OR
r
4N
nr
+w
rlr
irrrr
r
..
Im
6.Determine the Region - "Valley"
Determine which Region of Drainage Area is Located in
(Valley, Mountain or Desert)_
Per Table D -1 => Regression Coef_ for a: Valley region = 1.4807
P = 1.4807 * 2-year 1 hour Rainfall Value
P = 0.81 inches
7. Calculate Maximum Detention Volume (inches)
Determine the area- averaged "6 -hour Mean Storm Rainfall ", P for the
Drainage Area. This is calculated by multiplying the area averaged
2 -year 1 -hour value by the appropriate regression coefficient from Table 1.
Determine the appropriate drawdown time. Use the regression constant
a = 1.582 for 24 hours and a =1.963 for 48 hours. Note: Regression
constants are provided for both 24 hour and 48 hour drawdown times;
however, 48 hour drawdown times should be used in most areas of
California. Drawdown times in excess of 48 hours should be used with
caution as vector breeding can be a problem after water has stood in
excess of 72 hours. (Use of the 24 hour drawdown time should be limited
to drainage areas with coarse soils that readily settle and to watersheds
where warming may be detrimental to downstream fisheries.)
P = a " CBMP * P6
1.02 inches
Where: P = Maximized Detention Volume in inches,
a = 1.582 for 24 hour drawdown
a = 1.963 for 48 -hour drawdown
CBMP = Composite Runoff Coefficient
P6 = 6-hour Mean Storm Rainfall, in inches_
Assume a = 1.963
8. Calculate the Target Volume: (Ac - Ft)
0.32 Ac -Ft
V. = (P - A) / 12
13817 c.f.
""� L V 80108\Production\Hydrology & Hydraulics\Hydrology CaicslBMP FlowsXM8 -08-01 Design Procedure for BMP Area B +C +O 2
OR
10
rrr
rir
am
am
"t
r
am
No
om
No
r
E
4M
to
w
40
w
oil
iW
OM
MW
om
No
Design Procedure for BMP Design Flowrate
Designer Richard Godina
Company: Halladay Mim Mack, Inc.
Date: 8/1 /2008 AREA "B+C +D"
Project. Brown - Strauss Steel (APN 0236-201-01,02,13)
Location: Fontana, CA San Bernardino County
1. BMP Drainage Area:
Identify the "BMP Drainage Area" that drains to the proposed BMP element.
This includes all areas that will drain to the proposed BMP element, including
3.72 Acres
previous areas, impervious areas, and off -site areas, whether or not they
directly or indirectly connected to the BMP element. Calculate the BMP
Drainage Area (A) in acres.
2. Site Location:
Outline the Drainage Area on the NOAA Atlas 14 Precipitation Depths
(See Figure D-1)
(2 -year 1 -hour Rainfall) map (Figure D-1).
3. Value Per Map:
Determine the area - averaged 2 -year 1 -hour rainfall value for the Drainage
0.55 inches
Area outlined above. ( In inches)
4. Calculated Watershed Impervious Ratio 'T'
Calculate the "Watershed Imperviousness Ratio ", i, which is equal to the
percent of impervious area in the BMP Drainage Area devided by 100.
Paving 0.04 @ 95% 0.04
Buildings 3.03 @ 100% 3.03
i = 0.83
Landscaping 0.65 @ 5% 0.03
3.10
3.10 = 0.83 83%
3.72
5. Calculate Composite Run -Off coef. " CBMP"
Calculate the composite runoff coefficient CBMP for the Drainage Area
above using the following equation_
C BMP = 0.858i - 0.78i + 0.774i + 0.04
C BMP = 0.64
Where: C BMP = composite runoff coefficient; and,
"i" = watershed imperviousness ratio.
' L:191801081ProductionW drol
y ogy & HydraulicsWydrology Catcsl6MP Flows12008- 08- 01 1Design Procedure for BMP Area B+C +D 1
rr
on
vo
r
rr
.r
r�rr
r
rr
6.Calculate I sew
Determine which Region of Drainage Area is Located in
(Valley, Mountain or Desert).
Per Table D -1 => Regression Coef. for a: Valley region = 0.2787
1 m = 0.31 inches /hr
I Bw = 0.2787 `2 -year 1 hour Rainfall Value * Safety Factor (S.F.)
S.F. = 2.00
7. Calculate The Target BMP Flow Rate (Wlsec)
Q. = Cww 1 13MP"A
0.73 ft/sec
Where: Q = Target BMP Flowrate in fe /sec
CwP = Composite Runoff Coefficient
113mP = BMP design rainfall intensity, in inchesthour
A = BMP drainage Area in acres
a�w L k91801081ProductionViydrology & HydraulicsXHydrology Ca1cs\BMP Flows12008-08-010esign Procedure for BMP Area B +C +D 2
gat
Project: BROWN - STRAUSS STEEL - AREA IIB +C +D"
StormTech®
By: Richard Godina
Detention• Retenlion•Recharge
Units: Im erial
Point of Contact HALLADAY & MIM MACK, INC.
Subsurface Stormwater Management"
Date:
8/1/2008
System Requirements
Required Storage Volume
13,817 JCF
Select Stormtech Chamber System
SC -740
96" (2440 mm)
MAX.
Stone Porosity (Industry Standard = 40 %)
40oy
PAVEMENT
18 460 mm)
MIN.
FOR UNPAVED INSTALLATION WHERE RUTTING FROM
Stone Foundation Depth
OlInches
VEHICLES MAY OCCUR, INCREAST COVER TO MINIMUM,
IMIN
Storage Volume Per Chamber
81.70 CF
s'I 160 mm)
Avg Cover over Chambers (18 in min. & 96 in max.)
Inches
30 in (762 mm)
Number of Chambers Required
170 Each
12 in (305 mm)
Required Bed Size
6,167 SF
Tons of Stone Required
875 Tons
Volume of Excavation
1,256 CY
Area of Filter Fabric
1,821 SY
s" MIN.
12" MIN. TYP.
# of End Caps Required
12 Each
Length of ISOLATOR ROW
206.48 FT
ISOLATOR FABRIC
115 SY
Is the limiting dimension for the bed the width or length?
width
Controlled by Width (Rows)
Controlled by Length
Width
30 FT
Length
FT
# of Chambers Long
29 EA
# of Chambers Long
- EA
# of Rows
6 EA
# of Rows
- EA
Actual Length
210.08 FT
Actual Length
- FT
Actual Width
30.00 FT
Actual Width
- FT
4 of the chambers rows will contain only 28
www.halladaymimmack.com 11181 California Avenue I Suite 1021 Corona I California 1928811951-278-97001 fax 951- 278 -2729
ur
rri
APPENDIX D
WSPGW HYDRAULIC CALCULATIONS
wm
00
8
,.
I.
to
go
4
r
grr
rr
aw
Tl
LINE "A"
0
T2
Q -10 FREQUENCY
.w
T3
FONTANA J.N. 918 -01
-08
SO
1011.440
941.040
1
943.390
R
1047.230
943.330
1
.013
44.710
.000
0
R
1070.340
944.810
1
.013
0
.000
.000
R
1107.590
944.940
1
.011
.000
.000
0
R
1284.070
945.560
1
.011
.000
.000
0
irr
R
1319.410
945.690
1
.011
90.000
.000
0
..
R
1367.410
945.850
1
.011
.000
.000
2
R
1390.970
946.490
1
.011
60.000
.000
0
*�
R
1418.010
947.230
1
.011
.000
.000
0
r.�
WE
1418.010
947.230
1
.500
„
SH
1418.010
947.230
1
947.230
CD
1 4 1
.000
1.500
.000
.000 .000 .00
rr
CD
2 4 1
.000
1.000
.000
.000 .000 .00
own
Q
9.900
.0
m
r
grr
rr
aw
E I a I a I E I a I a I 1 1 [ 1 11 11 [ l r l [ 1 [ 1 [ I [ i t I t I a
FILE: LINE_A.WSW
W S P
G W- CIVILDESIGN Version
14.05
PAGE 1
Program Package
Serial Number: 1502
WATER
SURFACE
PROFILE LISTING
Date: 8-
1 -2008
Time:11:43:12
LINE
"A"
Q -10
FREQUENCY
Invert
Depth
Water
Q
Vel
Vel I
Energy I
Super
ICriticalIFlow
ToplHeight/
Base Wtj
INo Wth
Station
Elev
(FT)
Elev (
(CFS) I
(FPS)
Head I
Grd.El.1
Elev
I Depth
I Width
IDia. -FTIor
I.D.1
ZL
IPrs /Pip
L /Elem
ICh Slope I
I
I
SF Aver
HF ISE DpthIFroude
NINorm
Dp
I "N"
( X -Fall
ZR
IType Ch
* * + * +,r * **
I +�. * * * * *� I
* + * * +.,r* I
� * » +. * * *� I r,r
r * * * * ** I
• * * + * *. �
+ *,r ,r * +* I
,r• *,r * * * +* I,r
*. * * **
I *. * * * * **
I *,t ,r + * *,+*
I * * + * *�+
I *,r ,r * *..
,r,r * +*
:t,rr + + **
1011.440
941.040
2.350
943.390
9.90
5.60
.49
943.88
.00
1.21
.00
1.500
.000
.00
1 .0
3.483
.0640
.0089
.03
.00
.00
.63
.013
.00
.00
PIPE
1014.923
941.263
2.164
943.427
9.90
5.60
.49
943.91
.00
1.21
.00
1.500
.000
.00
1 .0
HYDRAULIC
JUMP
1014.923
941.263
.663
941.926
9.90
13.14
2.68
944.61
.17
1.21
1.49
1.500
.000
.00
1 .0
14.911
.0640
.0512
.76
.84
3.26
.63
.013
.00
.00
PIPE
1029.834
942.217
.687
942.904
9.90
12.52
2.44
945.34
.16
1.21
1.49
1.500
.000
.00
1 .0
10.277
.0640
.0450
.46
,85
3.03
.63
.013
.00
.00
PIPE
1040.111
942.875
.713
943.588
9.90
11.94
2.21
945.80
.14
1.21
1.50
1.500
.000
.00
1 .0
7.119
.0640
.0396
.28
.86
2.83
.63
.013
.00
.00
PIPE
1047.230
943.330
.741
944.071
9.90
11.38
2.01
946.08
.00
1.21
1.50
1.500
.000
,00
1 .0
4.532
.0640
.0352
.16
.74
2.63
.63
.013
.00
.00
PIPE
1051.762
943.620
.764
944.384
9.90
10.93
1.85
946.24
.00
1.21
1.50
1.500
.000
.00
1 .0
4.229
.0640
.0313
.13
.76
2.48
.63
.013
.00
.00
PIPE
1055.992
943.891
.794
944.685
9.90
10.42
1.69
946.37
.00
1.21
1.50
1.500
.000
.00
1 .0
3.354
.0640
.0276
.09
.79
2.31
.63
.013
.00
.00
PIPE
1059.346
944.106
.825
944.931
9.90
9.94
1.53
946.46
.00
1.21
1.49
1.500
.000
.00
1 .0
2.679
0640
.0243
.07
.83
2.14
.63
.013
.00
.00
PIPE
I I a I ! I 1 1 K 1 a I 11 11 I I [ 1 11 11 11 1 1 I I [ I t 1 I I It I
FILE: LINE_A.WSW
W S P
G W-
CIVILDESIGN Version
14.05
PAGE 2
Program Package
Serial Number: 1502
WATER
SURFACE
PROFILE LISTING
Date: 8-
1 -2008
Time:11:43:12
LINE
"A"
Q -10 FREQUENCY
�xxxxxxxxxxx�*
xx+ xxxxxxxxxxxxxxxxxxxx*
x• �**
xxxxxx+
a* x xxx*+,
rx* xx* x+*
xxxxxxxrxxxx*
x, rxx*
xx* xxxxxxxx *x,rxxxx
*x * *x *�xxxx *xxx
*x.x
xx *xx *x*
Invert
Depth
Water
Q
Vel
Vel I
Energy I
Super
ICriticallFlow
ToplHeight/
Base Wtj
INo Wth
Station I
Elev
(FT)
Elev
(CFS) I
(FPS)
Head I
Grd.El,I
Elev
I Depth
I Width
IDia -FTIor
I.D.1
ZL
IPrs /Pip
L /Elem (Ch Slope I
I
I
SF Avel
HF ISE
DpthIFroude
NINorm
Dp
I "N"
I X -Fall
ZR
I Type Ch
** xxxxxxxlxxxrxx*
xxlxxxxxxxxl.,
rx* xx* x* Ixx.
xxx, rxxlx**
xx, rxl.**
xxx. Ix**
x+ x** xl**,
r: rxxxlxxx,++
xx*
Ixxx * *xxxlxxxxx
*,rlxxx,r
*�xl+rxxxx
I *xxxxxx
1062.025
944,278
.858
945.136
9.90
9.47
1.39
946.53
.00
1.21
1.48
1.500
.000
.00
1 .0
2.179
.0640
.0215
.05
.86
1.99
.63
.013
.00
.00
PIPE
1064.204
944.417
.892
945.309
9.90
9.03
1.27
946.58
,00
1.21
1.47
1.500
,000
.00
1 .0
1.737
.0640
.0190
.03
.89
1.85
.63
.013
.00
.00
PIPE
1065.941
944.528
.929
945.457
9,90
8.61
1.15
946.61
.00
1.21
1.46
1.500
.000
.00
1 .0
1.414
.0640
.0169
.02
.93
1.71
.63
.013
.00
.00
PIPE
1067.355
944.619
.967
945.586
9.90
8.21
1.05
946.63
.00
1.21
1.44
1.500
.000
.00
1 .0
1.084
.0640
.0150
.02
.97
1.58
.63
.013
.00
.00
PIPE
1068.439
944.688
1.009
945.697
9,90
7.83
.95
946.65
.00
1.21
1.41
1.500
.000
.00
1 .0
.839
,0640
.0133
.01
1.01
1.46
.63
.013
.00
.00
PIPE
1069.277
944.742
1,053
945.795
9.90
7.46
.87
946.66
.00
1.21
1.37
1.500
.000
.00
1 .0
.588
.0640
.0119
.01
1.05
1.34
.63
.013
.00
.00
PIPE
1069.865
944.780
1.101
945.881
9.90
7.12
.79
946.67
.00
1.21
1.33
1.500
.000
.365
.0640
.0107
.00
1.10
1.22
.63
.013
.00
.00
PIPE
1070.231
944,803
1.153
945.956
9.90
6.79
.72
946.67
.00
1.21
1.26
1.500
.000
.00
1 .0
.109
.0640
.0096
.00
1.15
1.11
.63
.013
.00
.00
PIPE
1070.340
944.810
1.213
946.023
9.90
6.47
.65
946.67
.00
1.21
1.18
1.500
.000
.00
1 .0
2.524
.0035
.0062
.02
1.21
1.00
1.50
.011
.00
100
PIPE
FILE: LINE_A.WSW
W S P
G W- CIVILDESIGN Version
14.05
PAGE 3
Program
Package Serial
Number: 1502
WATER
SURFACE
PROFILE LISTING
Date: 8-
1 -2008
Time:11:43:12
LINE
"A"
Q -10
FREQUENCY
*.**+: r*+**+ �k, r*+****.* �*****, t�*.
r*.**+**+* t* a, t+ r, r**:
r�.* r*+*, t�****, t,
r+ r, t�+, t.***,
r**+***+., t .,t,r * * * *,t,t,t *+t,t *�.,t
*,r *,t *,t ,te,t *,t * +,t *,t
* «,t•
*,t ++r ,t ,t **
Invert
Depth
Water
Q
Vel
Vel I
Energy I
Super
ICriticalIFlow
TopIHeight/
Base Wtj
INo Wth
Station
I Elev
(FT)
Elev
(CFS) I
(FPS)
Head I
Grd.El.1
Elev
I Depth
I Width
IDia. - FTIor
I.D.1
ZL
IPrs /Pip
L /Elem
ICh Slope I
I
SF Aver
HF ISE
DpthIFroude
NINorm
Dp
I "N"
I X -Fall
ZR
IType Ch
**.***.**
I*+• �** �*. rl****.*+*
I***+*****
I*,
e.**+,+., rl******,
rI***++*.
I*:
r+*.*, r*+ I**+,
r** rl.
r.*+«**
I+*« *,. * * *I,+
* * * + *,rl,r
* * * * *.I
* * * **
I +. *,r.,+*
1072.864
944.819
1.279
946.098
9.90
6.16
.59
946.69
.00
1.21
1.06
1.500
.000
.00
1 .0
12.055
.0035
10058
.07
1.28
.88
1.50
.011
.00
.00
PIPE
1084.919
944.861
1.360
946.221
9.90
5.88
.54
946.76
.00
1.21
.87
1.500
.000
.00
1 .0
22.671
.0035
.0056
.13
1.36
.75
1.50
.011
.00
.00
PIPE
1107.590
944.940
1.444
946.384
9.90
5.67
.50
946.88
.00
1.21
.57
1.500
.000
.00
1 .0
19.623
.0035
.0057
.11
1,44
.57
1.50
.011
.00
.00
PIPE
1127.213
945.009
1.500
946.509
9190
5.60
.49
947.00
.00
1.21
.00
1.500
.000
.00
1 .0
156.857
.0035
.0061
,96
1.50
.00
1.50
.011
.00
.00
PIPE
1284.070
945.560
1.946
947.506
9.90
5.60
.49
947.99
.00
1.21
.00
1.500
.000
.00
1 .0
35.340
.0037
.0064
.22
.00
.00
1.50
.011
.00
.00
PIPE
1319.410
945.690
2.139
947.829
9.90
5.60
.49
948.32
.00
1.21
.00
1.500
.000
.00
1 .0
48.000
.0033
.0064
.31
2.14
.00
1.50
.011
.00
00
PIPE
1367.410
945.850
2.333
948.183
9.90
5.60
.49
948.67
.00
1.21
.00
1.500
.000
.00
1 .0
23.560
.0272
.0064
.15
.00
.00
.74
.011
.00
.00
PIPE
1390.970
946.490
1.922
948.412
9.90
5.60
.49
948.90
.00
1.21
.00
1.500
.000
.00
1 .0
20.094
.0274
.0063
.13
1.92
.00
.73
.011
.00
.00
PIPE
1411.064
947.040
1.500
948.540
9.90
5.60
.49
949.03
.00
1.21
.00
1.500
.000
.00
1 .0
2.880
.0274
.0059
.02
1.50
.00
.73
.011
.00
.00
PIPE
a 1 a i a 1 ! 1 t 1 t 1 11 1 1 1 1 [ 1 1 1 1 1 1 1 1 1 1 1 1 1 a 1 1 1 a I
FILE: LINE_A.WSW
W S P
G W- CIVILDESIGN Version
14.05
PAGE 4
Program Package Serial
Number: 1502
WATER
SURFACE
PROFILE LISTING
Date: 8-
1 -2008
Time:11:43:12
LINE
"A"
Q -10
FREQUENCY
Invert
Depth
Water
Q
Vel
Vel I
Energy I
Super
ICriticalIFlow
ToplHeight/
Base Wtj
INo Wth
Station I
Elev
(FT)
Elev
(CFS) I
(FPS)
Head I
Grd.El.1
Elev
I Depth I
Width
jDia. -FTIor
I.D.)
ZL
IPrs /Pip
L /Elem ICh
Slope I
I
I
SF Aver
HF ISE
DpthIFroude
NINorm
Dp
I "N" I
X -Fall
ZR
IType Ch
1413.944
947,119
1.360
948.479
9.90
5.88
.54
949.02
.00
1.21
.87
1.500
.000
.00
1 .0
HYDRAULIC
JUMP
1413.944
947.119
1.009
948.128
9.90
7.83
.95
949.08
.00
1.21
1.41
1.500
.000
.00
1 .0
1.161
.0274
.0095
.01
1.01
1.46
.73
.011
.00
.00
PIPE
1415.105
947.151
1.053
948.204
9.90
7.46
.87
949.07
.00
1.21
1.37
1.500
.000
.00
1 .0
1,626
.0274
.0085
.01
1.05
1.34
.73
.011
.00
.00
PIPE
1416.731
947.195
1.101
948.296
9,90
7,12
.79
949.08
100
1.21
1.33
1.500
.000
.00
1 .0
.988
.0274
.0076
.01
1.10
1.22
.73
.011
.00
.00
PIPE
1417.720
947.222
1.153
948.375
9.90
6.79
.72
949.09
.00
1.21
1.26
1.500
.000
.00
1 .0
.290
.0274
.0069
.00
1.15
1.11
.73
.011
.00
.00
PIPE
WALL ENTRANCE
1418.010
-I-
947.230
-I-
1.214
-I-
948.444
-I-
9.90
-I-
6.46
-I-
.65
-I-
949.09
-I-
.00
-I-
1.21
-I-
1.18
-I-
1.500
-I-
I 1
.000
-I-
.00
1
0 .0
I-
rrl
or
rn
rir
OR
ow
4m
as
m
go
on
10
INLET STUDY
rr
w
er
.r
4M
M
wo
IN
r
f�11
M
111
r
M
r
�o
•
•
s
tp
2
B
me
W
oft
t
aI
= 0.1
W 0:
0.�
Q:
d =0.2! a
6iQ rE inr�E r1
Q10 g /A CF-5
c,A VA IL. = 0.3'
i��nrr
�II�L
■�III�I�(Ifl�ll�
INEWENNIN
ON�IIIII
I Ed
�00* Pi
P4
Man
2 3 . s 6 a to
—Qlo =1,4 CFS OIiQtAJti>E n Wr
20 30 40 so •0
GRATE INLET CAPACITY W SUMP COND
(Table assumes no clogging.)
USE f 6 "x /6 / / GR4 -TE- (P= 5 -3 �
ci = 0,21'< 0,3'
5 -51
Figure 5 -18
.sr
irr
�r
aw
4w
Ow
M
3
I
E
W '
= OA
r Q
e
a
1-1�
o., -
I
�o
r
s
_
4
.sr
irr
�r
aw
4w
Ow
M
3
I
E
W '
= OA
r Q
e
a
1-1�
o., -
I
2 �s 4 S s • 10 20 30 40 90 ego
Q10= 2'7 a fFT
GRATE DILET CAPACITY W SUMP COND
(Table assumes no clogging.)
USE 16 l6" 161YSE'd /N w f6;z,4TF
d = 0,53'< 1,46'
5 -51
Figure 5 -18
FAI;A-
rAflil
W,
MOMENEWIMA
d I A
0 �
0 P OA O 0
0
2 �s 4 S s • 10 20 30 40 90 ego
Q10= 2'7 a fFT
GRATE DILET CAPACITY W SUMP COND
(Table assumes no clogging.)
USE 16 l6" 161YSE'd /N w f6;z,4TF
d = 0,53'< 1,46'
5 -51
Figure 5 -18
,rtr
11MMEMrr
io
a
I
IJI/,'L
rift
�
of
rr
t
i
1
OA
s
0.
03
3 4 5 t • 10 t0 30 40 so so
Qlo = 3 .1 oe:cx n jrr
r GRATE INLET CAPACITY IN SUMP CONDITIONS
(Table assumes no clogging.)
USE JE NSEN 16 I A -/C 6R*17E 11V1-ET
5 -51 Figure 5 -18
11MMEMrr
a
I
IJI/,'L
rr
of
3 4 5 t • 10 t0 30 40 so so
Qlo = 3 .1 oe:cx n jrr
r GRATE INLET CAPACITY IN SUMP CONDITIONS
(Table assumes no clogging.)
USE JE NSEN 16 I A -/C 6R*17E 11V1-ET
5 -51 Figure 5 -18
11MMEMrr
I
IJI/,'L
s��������11.
%f1
■i
=
nns,
0 F;OA
, 'PAP
P
�A
3 4 5 t • 10 t0 30 40 so so
Qlo = 3 .1 oe:cx n jrr
r GRATE INLET CAPACITY IN SUMP CONDITIONS
(Table assumes no clogging.)
USE JE NSEN 16 I A -/C 6R*17E 11V1-ET
5 -51 Figure 5 -18
10
iv
rrr
s
WANWAA
wW
4
w�
■■�n�i�souu
3
1114
�
2
�
s
.A
0.3
dw
s
0.
46
03
rw
0.
0.
0, 1 9 1
02
.w
��
■�IlI�III
01
3 4 S t s 10 20 30 40 so s0
DUCLUU Q gR 3 1V
GRATE INLET CAPAWY IN SUMP CONDITIONS
..� (Table assumes no clogging.)
Of V5 E JEN SEN (6 16'' :R4TE INLE r (P=
d = 0,1p < 0,5
5 -51 Figure 5 -18
WANWAA
��
■■�n�i�souu
��
■�IlI�III
�/,l��I
CURG
P
WAP
na
3 4 S t s 10 20 30 40 so s0
DUCLUU Q gR 3 1V
GRATE INLET CAPAWY IN SUMP CONDITIONS
..� (Table assumes no clogging.)
Of V5 E JEN SEN (6 16'' :R4TE INLE r (P=
d = 0,1p < 0,5
5 -51 Figure 5 -18
w
r
A
..
ow
PARKWAY CULVERTS
ww
om
aw
0
am
w
,o
10
m
aW
SIZING PRKWY CULVERT.txt
HYDRAULIC ELEMENTS - I PROGRAM PACKAGE
(C) Copyright 1982 -2008 Advanced Engineering Software (aes)
Ver. 15.0 Release Date: 04/01/2008 License ID 1340
Analysis prepared by:
Halladay & Mim Mack, Inc.
1181 California Avenue, Suite 102
Corona, CA 92881
Tel: 951- 278 -9700 Fax: 951- 278 -2729
TIME /DATE OF STUDY: 13:57 07/16/2008
Problem Descriptions:
SIZING PARKWAY CULVERT AT NODE 41
********************************************* * * * * * * * * * * * * * * * * * * * * * * ** * * * * * **
» »CHANNEL INPUT INFORMATION ««
NORMAL DEPTH(FEET) = 0.23
CHANNEL Z1(HORIZONTAL /VERTICAL) = 0.00
Z2(HORIZONTAL /VERTICAL) = 0.00
CONSTANT CHANNEL SLOPE(FEET /FEET) = 0.020000
UNIFORM FLOW(CFS) = 0.40
MANNINGS FRICTION FACTOR = 0.0150
NORMAL -DEPTH FLOW INFORMATION:
» »> BASEWIDTH(FEET) = 0.51 < USE RECTANG. PIPE 8 "x3.5"
FLOW TOP- WIDTH(FEET) = 0.51 PER CITY STD. 3001
FLOW AREA(SQUARE FEET) = 0.12
HYDRAULIC DEPTH(FEET) = 0.23
FLOW AVERAGE VELOCITY(FEET /SEC.) = 3.43
UNIFORM FROUDE NUMBER = 1.259
PRESSURE + MOMENTUM(POUNDS) = 3.49
AVERAGED VELOCITY HEAD(FEET) = 0.182
SPECIFIC ENERGY(FEET) = 0.412
CRITICAL -DEPTH FLOW INFORMATION:
CRITICAL FLOW TOP - WIDTH(FEET) = 0.51
CRITICAL FLOW AREA(SQUARE FEET) = 0.14
CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 0.27
CRITICAL FLOW AVERAGE VELOCITY(FEET /SEC.) = 2.94
CRITICAL DEPTH(FEET) = 0.27
CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 3.42
AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 0.134
CRITICAL FLOW SPECIFIC ENERGY(FEET) = 0.402
Page 1
we
No
0
am
io
am
im
uw
ma
IN
40
No
on
to
CONCRETE "U" CHANNEL
m
do
rrll
0
HYDRAULIC ELEMENTS - I PROGRAM PACKAGE
'm (C) Copyright 1982 -2008 Advanced Engineering Software (aes)
Ver. 15.0 Release Date: 04/01/2008 License ID 1340
Analysis prepared by:
Halladay & Mim Mack, Inc.
r. 1181 California Avenue, Suite 102
Corona, CA 92881
Tel: 951- 278 -9700 Fax: 951 - 278 -2729
------------------------------------------------------------------------
i.r TIME /DATE OF STUDY: 11:55 08/05/2008
Nit. Problem Descriptions:
SIZING CONCRETE U-CHANNEL BETWEEN NODES 50 & 51
0
» »CHANNEL INPUT INFORMATION ««
aw
------------------------------------------------------------------------
CHANNEL Z1(HORIZONTAL /VERTICAL) =
0.00
rrr
Z2(HORIZONTAL /VERTICAL) =
0.00
BASEWIDTH(FEET) = 3.00
.�a
CONSTANT CHANNEL SLOPE(FEET /FEET) =
0.011700
nr
UNIFORM FLOW(CFS) = 16.80
w,.
MANNINGS FRICTION FACTOR = 0.0140
------------------------------------------------------------------------
------------------------------------------------------------------------
w
NORMAL -DEPTH FLOW INFORMATION:
------------------------------------------------------------------------
>>>>> NORMAL DEPTH(FEET) = 0.76
+�w
FLOW TOP- WIDTH(FEET) = 3.00
FLOW AREA(SQUARE FEET) =
2.29
HYDRAULIC DEPTH(FEET) = 0.76
FLOW AVERAGE VELOCITY(FEET /SEC.) =
7.32
UNIFORM FROUDE NUMBER = 1.475
PRESSURE + MOMENTUM(POUNDS) =
293.13
AVERAGED VELOCITY HEAD(FEET) =
0.832
SPECIFIC ENERGY(FEET) = 1.597
ew
to ----- - - --- -- ------------------- -----------------------------------------
------------------------------------------------------------------------
CRITICAL -DEPTH FLOW INFORMATION:
0
+r
am
so
ww
aw
s
rrr
+e�
it
N
0-
an
go
0
------------------------------------------------------------------------
CRITICAL
FLOW TOP- WIDTH(FEET) = 3.00
CRITICAL
FLOW AREA(SQUARE FEET) = 2.97
CRITICAL
FLOW HYDRAULIC DEPTH(FEET) = 0.99
CRITICAL
FLOW AVERAGE VELOCITY(FEET /SEC.) = 5.65
CRITICAL
DEPTH(FEET) = 0.99
CRITICAL
FLOW PRESSURE + MOMENTUM(POUNDS) = 275.90
AVERAGED
CRITICAL FLOW VELOCITY HEAD(FEET) = 0.496
CRITICAL
FLOW SPECIFIC ENERGY(FEET) = 1.487
aw
------------------------------------------------------------------------
ww
aw
am
so
ww
aw
s
rrr
+e�
it
N
0-
an
go
0