Loading...
HomeMy WebLinkAboutBrown-Strauss SteelHYDROLOGY AND HYDRAULIC REPORT BROWN - STRAUSS STEEL PARCEL MAP 19073 FONTANA, CALIFORNIA COUNTY OF SAN BERNARDINO PREPARED FOR: BROWN STRAUSS -STEEL c/o Wilson Income Properties Coto de Caza, CA 92679 (949) 888 -9200 PREPARED BY: HALLADAY & MIM MACK, INC. 1181 California Avenue, Suite 102 Corona, CA 92881 (951) 278 -9700 HALLADAY MIM MACK Incorporated CIVIL ENGINEERS SUR VEYORS Prepar Under tf a . Halladay, August 2008 ion of: w 34751 ? m A No. R.C.E. 34751 q CMS 2�� J N 918 -01 -08 Hydrology and Hydraulic Report Parcel Map 19073 Fontana, CA County of San Bernardino HYROLOGY AND HYDRAULIC REPORT BROWN- STRAUSS STEEL PARCEL MAP 19073 - FONTANA, CALIFORNIA COUNTY OF SAN BERNARDINO TABLE OF CONTENTS I. INTRODUCTION AND SITE DESCRIPTION Il. METHODOLOGY 111. RATIONAL HYDROLOGY IV. CONCLUSION APPENDENCES APPENDIX "A" -Reference Material • Figure C -11; hydrology manual - SQC Hydrologic Soils Group Map for Southcentral Area • Figure B -3 SBC flood control district valley area isohyetals —10 year 1 hour Ell • Figure B-4 SBC flood control district valley area isohyetals —100 year 1 hour • Figure C -3 SBC hydrology manual curve numbers of hydrologic soil cover APPENDIX "B"— Maps • Vicinity Map / Location Exhibit • Hydrology Map — Post Development Condition APPENDIX "C" — Hydrology Analysis AES Rational Method Hydrology Analysis • 10-year— I hour storm event/ Developed Conditions • 25 -year —1 hour storm event / Developed Conditions • 100-year— 1 hour storm event/ Developed Conditions • Flow- and Volume -Based BMP Design Calculations APPENDIX "D" — Hydraulic Analysis Hydraulics Analysis • Line "A° - Q10 (WSPGW Analysis) • Inlet Study • Parkway Culverts • Concrete "U" Ditch i Fontana, CA Brown - Strauss Steel i HydrologyMydraubc Report Parcel Map 19073 Fontana, CA County of San Bernardino HYDROLOGY/HYDRAULIC REPORT PARCEL MAP 19073 BROWN- STRAUSS STEEL I. INTRODUCTION This study presents a quantitative assessment of potential storm water runoff that would impact Parcel Map 19073 in the City of Fontana, County of San Bernardino, California. The project site is located at the northwest comer of Jurupa Avenue and Live Oak Avenue on a 7.4 -acre gross parcel. The parcel is bounded on the north by Parcel 1, PM 6980, PMB 67/41, and on the south by Jurupa Avenue, on the west by small rural residential parcels and on the east by Live Oak Road. The site is currently vacant with gentle grades throughout the entire site. The proposed project consists of 129,870 s.f. of warehouse, 2,248 s.f. of office, 92,071 s.f. of paving and approximately 48,600 s.f. of landscaping. For the purpose of this Hydrology Study, we have analyzed the developed condition of the 7.4- acre project site to determine the impact of storm water runoff. The project site and adjacent land is gently sloped and generally drains from the north to the south and flows toward Jurupa Avenue. The proposed site will drain approximately one -third (1/3) of the parcel toward an existing 42" storm drain line on Jurupa Avenue with two-thirds (2/3) of the parcel draining toward a 48" storm drain line in Live Oak Avenue. The drainage from the 42° and 48° storm drain lines confluence near the intersection of Live Oak and Jurupa Avenues and drain southerly in an existing MDP 69" storm line that outfalls into the Declez Channel. II. METHODOLOGY Hydrologic calculations to determine the storm design discharges for this project were performed using the San Bernardino County Rational Method. The rational method equation relates rainfall intensity, a runoff coefficient and drainage area size the direct peak runoff from the drainage area. Brown - Strauss Steel 1 Fontana, CA u Hydrology/Hydraulic Report Parcel Map 19073 Fontana, CA County of San Bernardino The design discharges were calculated by modeling the project site into tributary sub - areas. Each sub -area contributes to the main line flow. The following guidelines and assumptions apply to the rational method: 1. Run-on drainage from the northerly parcel, Parcel 1, PM 6980, PMB 67/41, will pass through under the new block wall at temporary block -outs left open at the base of the wail. The run-on from approximately 4.0 acres of the adjacent parcel will be collected as part of drainage Area A of the on -site drainage system. In the future, when this parcel develops, the temporary block -outs will be replaced with permanent blocks. The adjacent new development will be required to collect its own drainage and connect to and extend the proposed MDP 48" storm drain line in Live Oak Avenue. 2. The proposed project is divided into five sub - areas; Area A being 2.38 acres, Area B being 1.85 acres, Area C being 1.87 acres, Area D being 0.11 acres and Area E being 0.14 acres. (See Hydrology Map). a. Sub -area A drains to the west side of the parcel, collected by on -site inlets that drain into Line "A ". Line "A" will contain an in -line weir box that discharges the high flows southerly to the MDP Line "D -1 ". Line "D -1" is a 42" storm drain in Jurupa Avenue that flows easterly for approximately 550 feet to the intersection of Live Oak Avenue. At that point, Line "D-1" confluences with MPD Line "D ", an existing 69" storm drain line. Line "D" flows south for approximately 1,000 feet where it outfalls into the Declez Channel. The Declez Channel flows southwesterly for 2 % mites where it confluences with the San Servaine Channel that runs southerly for 3 % miles where it outfalls into Reach 3 of the Santa Ana River, just south of Limonite Road. The low flows will be treated in an on -site underground infiltration system on the western side of the parcel to accommodate the run -off volume calculated as required by San Bernardino County. (See Appendix C) Brown-Strauss Steel 2 Fontana, CA HydrologyMydraulic Report Parcel Map 19073 Fontana, CA County of San Bernardino b. Sub -area B collects a portion of the proposed industrial building roof drainage and flows towards the west side of the parcel into a proposed onsite storm drain lines. The proposed storm drain line runs along the west and south sides of the building to inlet Gl#1 and discharges the high flows to the proposed street inlet on the west side of Live Oak Avenue. The low flows will be treated in an on -site underground infiltration system on the easterly side of the parcel to accommodate the run -off volume calculated as required by San Bernardino County. (See Appendix C) c. Sub -areas C collect a portion of the proposed industrial building roof drainage and flows towards the east side of the parcel into a proposed swale that is PR collected in on -site inlets GI#3 and GI#4. The low flows will be treated in an on- 6 site underground infiltration system on the easterly side of the parcel to accommodate the run -off volume calculated as required by San Bernardino County. (See Appendix C) The high flows will discharge to the proposed street inlet on the west side of Live Oak Avenue. d. Sub -area D collects a portion of the landscaping strip along the south side of the proposed building and flows in a grass swale that is collected and discharged r through a proposed parkway drain onto north side of Jurupa Avenue. e. Sub -area E collects a landscaped area at the southwesterly comer of the parcel into a concrete °U" channel and discharges into Jurupa Avenue through a proposed parkway drain. 3. The rational method equation is only applicable where the rainfall intensity is assumed to be uniformly distributed over the drainage area at a uniform rate throughout the duration of the storm. Brown - Strauss Steel 3 Fontana, CA HydrologyMydraulic Report Parcel Map 19073 Fontana, CA county of San Bernardino 4. The equation includes the element of the soil surface characteristics. The soils map from the Hydrology Manual indicates the existing soils of the project consist of soil Type A. Soil ratings are based on a scale of A to D, where A is the most pervious. The pervious rate is also affected by the type of vegetation and /or ground cover and the percentage of impervious surfaces (i.e.: asphalt concrete). 5. The nomograph used to determine the time of concentration of the initial area is based on the Kirpich formula. The hydrology manual specifies that the initial area shall be less than 10 acres and the flow pathless than 1000 feet. 6. Pipe travel times were calculated based on preliminary pipe sizes, with a minimum pipe size of 18" diameter specified in the program. 7. Standard intensity - duration curve data was taken from the San Bernardino County Hydrology manual, dated October 1986. The results of the hydrologic calculations are included in this report. The relevant portions of related hydrology reports have been included for reference. ® III. RATIONAL HYDROLOGY Hydrologic calculations were performed in accordance with the County of San Bernardino Hydrology Manual guidelines. Runoff flow rates and volumes were determined for the 10 year and 100 year frequency storm events. Based on these calculations, it is possible to design storm drain improvements for Parcel Map No. 19073 that will provide the County mandated storm drainage protection. The proposed land use is commercial with 90% impervious cover. The 100 -yr /1 -hour rainfall depth is 1.35 - inches based on standard intensity - duration curve data Figure B-4 as published in the Hydrology Manual. Brown - Strauss Steel 4 Fontana, CA 0 Hydrology /Hydraulic Report Parcel Map 19073 Fontana, CA County of San Bernardino Storm water runoff flow rates were estimated using Advanced Engineering Software (AES) N I i Rational Method V.11.0, 2005. The existing drainage area is currently flowing southerly to toward Jurupa Avenue. The total flows generated by the site in the proposed condition are tabulated as follows: Table 1 Rational Method Peak Flow for Developed Conditions U 1141 ■ The drainage patterns for the proposed industrial development are dependent on using parking lots and grass swales as conveyance and placing inlets at low points. The inlets will drain to the proposed underground storm drain system. G Brown- Strauss Steel 5 Fontana, CA Drainage Sub -Areas A B C D E Acreage 2.38 1.85 1.87 0.11 0.14 10 year Time of Concentration; Tc 17.38 12.70 6.96 10.47 10.80 10 year Peak Runoff; Q10 9.9 3.6 6.0 0.20 0.24 25 year Time of Concentration; Tc 17.21 12.6 6.87 10.47 10.80 25 year Peak Runoff; Q 12.0 4.3 7.1 0.2 0.3 100 year Time of Concentration; Tc 16.97 12.41 6.74 10.47 10.80 100 year Peak Runoff; Q 100 16.8 5.9 9.5 0.4 0.4 ■ The drainage patterns for the proposed industrial development are dependent on using parking lots and grass swales as conveyance and placing inlets at low points. The inlets will drain to the proposed underground storm drain system. G Brown- Strauss Steel 5 Fontana, CA Hydrology /Hydraulic Report Parcel Map 19073 Fontana, CA County of San Bernardino IV. HYDRAULICS Hydraulic calculations were performed using the Los Angeles County Department of Public Works computer modeling code Water Surface Pressure Gradient (WSPG), version 14.05, compiled by CivilDesign Corporation, copyright 1991 -2002. The offsite storm drain system consists of an 18 "- reinforced concrete pipe (RCP) connecting upstream catch basins and discharging into existing Master Plan of Drainage facilities in Jurupa and Live Oak Avenues respectively. The on -site storm drain system is composed of two lines; Line A, an 18" line that collects the run-on flows from the adjacent parcel to the north and onsite flows from the westerly portion of the project and Line B; which collects run -off from the roof and the easterly portion of the project. Line "B" ranges in size from 10 to 18- inches. A total of five (5) drop inlets, one (1) curb inlet and two (2) parkway drains are also part of the collection system. They are all designed to maintain a maximum water surface elevation, or hydraulic grade line (HGL), at 6- inches below the normal flow line at catch basin inlets for a 1 -hour, 25 year storm. The results of the WSPG calculations for Line "A" are in Appendix "D ". Results of the inlet studies, parkway culvert and the concrete "U" channel calculations, are also in Appendix "D ". V. CONCLUSION The Hydrology /Hydraulic analysis reveals that storm drainage improvements can be constructed to safely convey storm waters from the proposed industrial development. A Majority of the drainage is intercepted and conveyed through drainage systems in Parcel Map 19073 and flows within pipes with a minimum slope of 0.5% for the 10 -year and 25 -year storm periods. Brown- Strauss Steel 6 Fontana, CA G L L APPENDIX A REFERENCE MATERIALS f =1 F 0 u is T4N I.!} W ' R ; R6W , R5 + t a I 1 ,,- �: - acT ' — r — I -- - - - — M•..: .;7. 1 4W CIS �a t R2W RIW 4 1 y RIE R2E - - - — - „Da ier r I L T • - - - - ` - - ' — — - c 9 ::•I I I - r % I .. - - _ _ -�� SPY - I I.I I I WEST IT — 1 4 1. ' I ' - I " - - � - i ' o - - - - -- f - - Cr ' ,a eQ C. } I r I g - I 1 �„ I 'I 't I k I I 7 - - •• �, RE T e 9 o t LC c - 7 -- v T t t + - 1.3 f O` •T ij q bf Y I I i I O � s•` - q I I i T3N I — R- I •a ' h s {- r - —' — - �/• — j f � J E 3 — - T- R LE 1. _ r•f - YtI — - — I 9 IA _+ - - - I - -- F , l L _ - ;9 �`^ , zz �• •` •A I. - - - - - -- I a;•, - . _ _ i - 1.8 I I !- I ' r• 1 O . I I s° t::.. L_ I I __ 29 I T t t + �" t _ • _ - ' \ `� �M`t �• • I I I I 1 + - - -- - � 1 1.5 Li q+ - I �' � I .�� t' J • L�,,, - - ' ryyhR • ••. sLOwIN T T2N - -.��.• - --- - - - ° - -- *�° I f '� - I • • 1, � � - � _ •• ' ITS �.'t - - L ; - - - _ .'t -- tc.•.RC. _ __ h• N .. • • e,• tt ,� LIT,Y -- -- - -- -- —, i _ .' - _._ J � ,1 — � _ I.I � ' i `. L GR�6 Rt .. _ • — — 1 E IN L I S .. + AEt + -- • '' . _ wt • I-i - . 3•^13 N ZVI I 14 $ - j. � ail _ \. § p• ,,11 . I • I ... -...; � C •A Y '�_ _ . _ ' ' -t_ a • a l J l� / _ � T I — — — - - - -- PROJECT - _ — SITE •, T�.TE - - -� - PL F e�. - ND • 4 }' •!° /'� / SAN RNARO;N �— ` •- ww — - ',�.;,.:; FONTAN TIS _ 0 101• • car v i _ •� 3 •. - N REDL \ �•IS • � • � - +- a1 • , •u•" I i' - � a•w,• we - } ms i- :� . . r : � - t • • • • •.. g hnM1P CREST T — y y ` ugr : • op WRANOTER y _ IM lis CHINO `'• 4 r — _• i w6G3 +-34 - T2 S \ - = ac i - r I„v4nEIDe . I5° RIE I R E R4W R2W 1 — _ s au DONA C OUNTY CONRL DISTRICT _ ._ _ • •'RADO SIN 7 _ REDUCED DRAWING DAM VALLEY AREA A SCALE I "= 4 MILES - 10 AR I Y YE HOUR — Y.a y r.: A 3: SAN KftNARDfNO COUNTY kun ON U-sme, I�."ffLAf z, W3 7 1 .3' I•Few I I RTW R6 HYDROLOGY MANUAL �s F •'••••••••••••••••••••.....•••� / ,6 ISOLINES PRECIPITATION (INCHES) DATE so" fSE Na WIU6 NQ \J 19112 (' -am wRD4 3 et It 8 -11 FIGURE 8 -3 L{ L{ 9y7 R8 ! R7W ' R6W !.•.1 R 4W 1 , 15 . R2W ' — - 1- R 4�� RIE R2E yi9s T4N — - - - r.[a.N .n•3s I _..) r 1 I 1,1 T ' 1.• j .. _� '° — — — — - — - 4N J 4- +.« I - .. I L• 1. ,� a �: � I 4• I I I r s. - -- ♦ - '� - r r W 'r FPO 1 I h YL► - \ r -. -- - t ; 4 --� /' - y i "F - fl _ A3• - 1 L• � I � rr *° LI c -1 T j t �y ' �` 3 — 39 - /,( I ' - - I • __ -r _ ` _ % YYY 0 • 1 e� NT SAN ! N.0 l I I• -- ♦-. � �� S aC '•aa dr/ - - D< ---I a- _ "F•- t.. — r 1 wIw•s' — •�' • \ : L. „ F c • • 1 _ L. AIMO�N ' • • PsLDMIN L - -t / �/' moo. , •' • [,I• ••� .R... \. \ ,Opn i --- '- --1 T - 0 1 5 . 1 — ' NC ,: I '! i _ _ \I — tT [uM }a l c`+c{ LL�� I L. ` ERRMI L I 1 7 ' • - J"'°�- ' I i• wpPZp. - h - - L{ -- t - r3 _ LAKE Al 4- LT VL"M K4 1.9 I Ilg;n f — _ 'L� — — r A • L. TIN - u — - x 1 7 '-'•e os Lr ` F �\ I'T , +� 4 MIIrOM r� * t- -- -- PROJECT - - ::- - - - ►- �� �;, I y - SITE ,A AL • 3 I - .:' c i �'•" -/ SAN RNAROINO I Jd �• is I F• ai I j ` , T A WG$" I —s ONTA 10�+' "• COLT N f 1 + , 1.{a• S At.. - ' -- * -, .l ` -- I 1 - ' RE L ND ... I �y�% 1• ,\ _ _ • •. • • I IR •• '� • h I1011f j•9 r -_ . [ r _ a• • _ - __ - ' - L - I " s — —_ . I _ - > #a :` I w I •♦ i +• • 1.2 -Y rUCAIM OYI EM ' Q /r '- - I 1_• .a�, 'sG � I ;, v •" I •RA/l� T[RRI�CE I � h ' I � I J 5495 y * 39 • rl 1 I ZP' ..el s' aau[, •vc. , R4W R3 R2W RI LOW _ , �I Z T3S I — I CNNTRO`' I REDUCED DRAWING ' �•.� I Le °A SCALE I" - 4 MILES Yleo— IOOYEAR I HO UR °1701 - - D£RNARDiNO COUNTY �� ".°`."°...".`''" SAN ngis S W W ....................•'• HYDROLOGY MANUAL �� ••••.'• ... ..• ( 1.® ISOLINEi PRECIPITATION IRrCNESI Dam .. E �'-� NNIY P.lsa g -12 FIGURE 8-4 ,4 • n '° i 7i�7 7�4� �f�l A Sy �}.ht $�� Y `I► r 1.� { �n.y 1. ti rrt A • 'I A==:4--1IIEl"=4I, ACTUAL IMPERVI ®U COVER Land Use (1) Natural or Agriculture Public Park School Single Family Residential: (3) 2.5 acre lots 1 acre lots 2 dwellings /acre 3-4 dwellings /acre 5 ®7 dwellings /acre 8 -10 dwellings /acre More than 10 dwellings /acre Multiple Family Residential: Condominiums Apartments Mobile Home Park Commercial, Downtown Business or Industrial Notes: 0 15 40 5 ® 15 10 10 e 25 20 20 ® 40 30 30 m 50 40 35 ® 55 50 50 0 70 60 65 ® 90 80 45 a 70 65 65 - 90 80 60 v 85 75 80 a 100 { 90 l 1. Land use should be based on ultimate development of the watershed. Long range master plans for the County and incorporated cities should be reviewed to insure reasonable land use assumptions. 2. Recommended values are based on average conditions which may not apply to a particular study area. The percentage impervious may vary greatly even on comparable sized lots due to differences in dwelling size, improvements, etc. Landscape practices should also be considered as it is common in some areas to use ornamental gravels underlain by impervious plastic materials in place of lawns and shrubs. A field investigation of a study area shall always be made, and a review of aerial photos, where available, may assist in estimating the percentage of impervious cover in developed areas. 3. For typical equestrian subdivisions increase ;impervious area 5 percent over the values recommended in the table above. ACTUAL IMPERVIOUS COVER SAN BERNARDINO COUNTY O HYDROLOGY MANUAL DEVELOPED AREAS C -8 Figure Cs4 1 ;, APPENDIX B MAPS Preliminary Hydrology Report Tract 19073 Fontana, CA County of San Bernardino Vicinity Map MULBERRY AVE. CHERRY AVE �c Q � Q 10 � Q IS/TE I (f) LIVE OAK AWE. CITRUS AVE oc SIERRA AVE. VICINITY MAP NOT TO SCALE 1 1 11 Brown - Strauss Steel Fontana, CA APPENDIX C AES RATIONAL METHOD HYDROLOGY 10 -YEAR -1 HOUR STORM EVENT ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -2008 Advanced Engineering Software (aes) Ver. 15.0 Release Date: 04/01/2008 License ID 1340 Analysis prepared by: Halladay & Mim Mack, Inc. 1181 California Avenue, Suite 102 Corona, CA 92881 Tel: 951 - 278 -9700 Fax: 951 - 278 -2729 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * TPM 19073 * CITY OF FONTANA * 10 -YEAR ON -SITE STUDY * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: Q10PROP.DAT TIME/DATE OF STUDY: 11:38 08/04/2008 -- - - - - -- --------------------------- - ------------------------------ USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- - - - -- - -- - -- -- * TIME - OF - CONCENTRATION MODEL*-- USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 6.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 * USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = 0.6500 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 0.9000 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* * USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET CROSSFALL: CURB GUTTER GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT - /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 2 30.0 25.0 0.034/0.034/0.020 0.50 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* * USER- SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21 ------------------------------------------ A_{ » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< ­USE TIME - OF - CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW LENGTH(FEET) = 410.00 ELEVATION DATA: UPSTREAM(FEET) = 965.00 DOWNSTREAM(FEET) = 959.00 Tc = K * [(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 13.558 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.367 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) NATURAL POOR COVER "BARREN" A 2.41 0.42 1.000 78 13.56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.42 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000 SUBAREA RUNOFF(CFS) = 4.23 TOTAL AREA(ACRES) = 2.41 PEAK FLOW RATE(CFS) = 4.23 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 91 A-2- ---------------- » » >COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA««< UPSTREAM NODE ELEVATION(FEET) = 959.00 DOWNSTREAM NODE ELEVATION(FEET) = 955.33 CHANNEL LENGTH THRU SUBAREA(FEET) = 145.00 "V" GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET) = 0.110 PAVEMENT LIP(FEET) = 0.030 MANNING'S N = .0150 PAVEMENT CROSSFALL(DECIMAL NOTATION) = 0.02000 MAXIMUM DEPTH(FEET) = 1.00 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.296 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.50 0.98 0.100 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.73 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 3.74 AVERAGE FLOW DEPTH(FEET) = 0.26 FLOOD WIDTH(FEET) = 14.51 "V" GUTTER FLOW TRAVEL TIME(MIN.) = 0.65 Tc(MIN.) = 14.20 SUBAREA AREA(ACRES) = 0.50 SUBAREA RUNOFF(CFS) = 0.99 EFFECTIVE AREA(ACRES) = 2.91 AREA AVERAGED Fm(INCH /HR) = 0.36 AREA- AVERAGED Fp(INCH /HR) = 0.43 AREA AVERAGED Ap = 0.85 TOTAL AREA(ACRES) = 2.9 PEAK FLOW RATE(CFS) = 5.07 END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = 0.26 FLOOD WIDTH(FEET) = 15.01 FLOW VELOCITY(FEET /SEC.) = 3.79 DEPTH * VELOCITY(FT *FT /SEC) = 0.99 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 = 555.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 81 A -3 ----------------------------------------------- — >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«« < MAINLINE Tc(MIN.) = 14.20 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.296 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL POOR COVER "BARREN" A 1.60 0.42 1.000 78 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.42 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000 SUBAREA AREA(ACRES) = 1.60 SUBAREA RUNOFF(CFS) = 2.71 EFFECTIVE AREA(ACRES) = 4.51 AREA - AVERAGED Fm(INCH /HR) = 0.38 AREA - AVERAGED Fp(INCH /HR) = 0.42 AREA - AVERAGED Ap = 0.90 TOTAL AREA(ACRES) = 4.5 PEAK FLOW RATE(CFS) = 7.77 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** , FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 56 A -4 » »COMPUTE TRAPEZOIDAL CHANNEL FLOW « «< » » >TRAVELTIME THRU SUBAREA «« < ELEVATION DATA: UPSTREAM(FEET) = 955.33 DOWNSTREAM(FEET) = 951.23 CHANNEL LENGTH THRU SUBAREA(FEET) = 517.00 CHANNEL SLOPE = 0.0079 GIVEN CHANNEL BASE(FEET) = 1.00 CHANNEL FREEBOARD(FEET) = 1.0 "Z" FACTOR = 30.000 MANNING'S FACTOR = 0.015 *ESTIMATED CHANNEL HEIGHT(FEET) = 1.32 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.014 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE! SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 1.88 0.98 0.100 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 9.40 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 2.72 AVERAGE FLOW DEPTH(FEET) = 0.32 TRAVEL TIME(MIN.) = 3.17 Tc(MIN.) = 17.38 SUBAREA AREA(ACRES) = 1.88 SUBAREA RUNOFF(CFS) = 3.24 EFFECTIVE AREA(ACRES) = 6.39 AREA- AVERAGED Fm(INCH /HR) = 0.30 AREA- AVERAGED Fp(INCH /HR) = 0.45 AREA- AVERAGED Ap = 0.66 TOTAL AREA(ACRES) = 6.4 PEAK FLOW RATE(CFS) = 9.87 GIVEN CHANNEL BASE(FEET) = 1.00 CHANNEL FREEBOARD(FEET) = 1.0 "Z" FACTOR = 30.000 MANNING'S FACTOR = 0.015 *ESTIMATED CHANNEL HEIGHT(FEET) = 1.33 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.33 FLOW VELOCITY(FEET /SEC.) = 2.73 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 4.00 = 1072.00 FEET. '\ ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21 8 -i »»RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< »USE TIME-OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 228.00 ELEVATION DATA: UPSTREAM(FEET) = 957.80 DOWNSTREAM(FEET) = 955.30 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 I I I SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.450 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.803 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) PUBLIC PARK A 0.37 0.98 0.850 32 10.45 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA RUNOFF(CFS) = 0.66 TOTAL AREA(ACRES) = 0.37 PEAK FLOW RATE(CFS) = 0.66 FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 31 ------------------------------------------- >>>>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 953.30 DOWNSTREAM(FEET) = 951.93 FLOW LENGTH(FEET) = 126.00 MANNING'S N = 0.011 DEPTH OF FLOW IN 6.0 INCH PIPE IS 4.8 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 3.91 ESTIMATED PIPE DIAMETER(INCH) = 6.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 0.66 PIPE TRAVEL TIME(MIN.) = 0.54 Tc(MIN.) = 10.99 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 12.00 = 354.00 FEET_ -- FLOW - PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 81 13.,2- ------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< MAINLINE Tc(MIN.) = 10.99 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.713 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL, A 0.37 0.98 0.100 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 SUBAREA AREA(ACRES) = 0.37 SUBAREA RUNOFF(CFS) = 0.87 EFFECTIVE AREA(ACRES) = 0.74 AREA AVERAGED Fm(INCH /HR) = 0.46 AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA AVERAGED Ap = 0.47 TOTAL AREA(ACRES) = 0.7 PEAK FLOW RATE(CFS) = 1.50 FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 31 ------------------------------------------ - - - - -- _. >>>>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA«« < >> » > USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 951.93 DOWNSTREAM(FEET) = 949.55 FLOW LENGTH(FEET) = 197.00 MANNING'S N = 0.011 DEPTH OF FLOW IN 9.0 INCH PIPE IS 5.6 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 5.17 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 1.50 PIPE TRAVEL TIME(MIN.) = 0.64 Tc(MIN.) = 11.62 rlr LONGEST FLOWPATH FROM NODE 10.00 TO NODE 13.00 = 551.00 FEET. FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 81 $ :3 frr ---------------------------------------------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< y MAINLINE Tc(MIN.) = 11.62 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.616 ewa SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.33 0.98 0.100 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 SUBAREA AREA(ACRES) = 0.33 SUBAREA RUNOFF(CFS) = 0.75 EFFECTIVE AREA(ACRES) = 1.07 AREA - AVERAGED Fm(INCH /HR) = 0.35 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.36 �w TOTAL AREA(ACRES) = 1.1 PEAK FLOW RATE(CFS) = 2.18 FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 31 iwr ---------------------------------------------------------------------------- » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 949.55 DOWNSTREAM(FEET) = 947.82 FLOW LENGTH(FEET) = 284.00 MANNING'S N = 0.011 DEPTH OF FLOW IN 12.0 INCH PIPE IS 7.3 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 4.39 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 r.. PIPE- FLOW(CFS) = 2.18 PIPE TRAVEL TIME(MIN.) = 1.08 Tc(MIN.) = 12.70 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 14.00 = 835.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 14.00 TO NODE 14_00 IS CODE = 81 a » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< MAINLINE Tc(MIN.) = 12.70 a.w * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.469 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN +� COMMERCIAL A 0.59 0.98 0.100 32 so SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 SUBAREA AREA(ACRES) = 0.59 SUBAREA RUNOFF(CFS) = 1.26 EFFECTIVE AREA(ACRES) = 1.66 AREA - AVERAGED Fm(INCH /HR) = 0.26 AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA AVERAGED Ap = 0.27 i TOTAL AREA(ACRES) = 1.7 PEAK FLOW RATE(CFS) = 3.30 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 14.00 TO NODE 14.00 IS CODE = 81 13 - 5 °�" » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< dw -------------------------------------- MAINLINE Tc(MIN.) = 12.70 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.469 m SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCHIHR) (DECIMAL) CN PUBLIC PARK A 0.19 0.98 0.850 32 +r SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA AREA(ACRES) = 0.19 SUBAREA RUNOFF(CFS) = 0.28 EFFECTIVE AREA(ACRES) 1.85 AREA - AVERAGED Fm(INCH /HR) = 0.32 +� AREA- AVERAGED Fp(INCHIHR) = 0.98 AREA- AVERAGED Ap = 0.33 TOTAL AREA(ACRES) = 1.9 PEAK FLOW RATE(CFS) = 3.58 FLOW PROCESS FROM NODE 30.00 TO NODE 31.00 IS CODE = 21 c -f *. ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< >>USE TIME CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 54.00 y� ELEVATION DATA: UPSTREAM(FEET) = 958.70 DOWNSTREAM(FEET) = 957.10 i w. Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE))* *0.20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 5.000 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 4.526 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) PUBLIC PARK A 0.06 0.98 0.850 32 5.00 �. SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA RUNOFF(CFS) = 0.20 TOTAL AREA(ACRES) = 0.06 PEAK FLOW RATE(CFS) = 0.20 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS CODE = 31 ---------------------------------------------------------------------------- » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< -------------------------------- ■.. ELEVATION DATA: UPSTREAM(FEET) = 957.10 DOWNSTREAM(FEET) = 955.60 FLOW LENGTH(FEET) = 135.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 6.0 INCH PIPE IS 2.4 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 2.68 ESTIMATED PIPE DIAMETER(INCH) = 6.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 0.20 t PIPE TRAVEL TIME(MIN.) = 0.84 Tc(MIN.) = 5.84 LONGEST FLOWPATH FROM NODE 30.00 TO NODE 32.00 = 189.00 FEET. FLOW PROCESS FROM NODE 32.00 TO NODE 32.00 IS CODE = 81 -z ---------------------------------------------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< MAINLINE Tc(MIN.) = 5.84 - - -- * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 4.091 wo dw am lw SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS on LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN ow PUBLIC PARR A 0.18 0.98 0.850 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA AREA(ACRES) = 0.18 SUBAREA RUNOFF(CFS) = 0.53 EFFECTIVE AREA {ACRES) = 0.24 AREA - AVERAGED Fm (INCH /HR) = 0.83 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.85 law TOTAL AREA(ACRES) = 0.2 PEAK FLOW RATE(CFS) = 0.70 - -FLOW - - - PROCESS FROM NODE 32.00 TO NODE 32.00 IS CODE = 81 C-3 ,." ------- ---- ---- ---------- --- ---- - ---- - ------------------------------ » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< MAINLINE Tc(MIN.) = 5.84 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 4.091 +rM SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.71 0.98 0.100 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 SUBAREA AREA(ACRES) = 0.71 SUBAREA RUNOFF(CFS) = 2.55 EFFECTIVE AREA(ACRES) = ' 0.95 AREA - AVERAGED Fm(INCH /HR) = 0.28 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.29 !. TOTAL AREA(ACRES) = 0.9 PEAK FLOW RATE(CFS) = 3.26 ir OR FLOW PROCESS FROM NODE 32.00 TO NODE 33.00 IS CODE = 31 ---------------------------------------------------------- » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 953.10 DOWNSTREAM(FEET) = 951.80 FLOW LENGTH(FEET) = 187.00 MANNING'S N = 0.011 DEPTH OF FLOW IN 12.0 INCH PIPE IS 9.3 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 4.96 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 3.26 PIPE TRAVEL TIME(MIN.) = 0.63 Tc(MIN.) = 6.47 LONGEST FLOWPATH FROM NODE 30.00 TO NODE 33.00 = 376.00 FEET. +� - -FLOW - PROCESS FROM NODE 33.00 TO NODE --------------------------------------------- 33.00 IS CODE = 81 c-4 - - » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< ---------------------- MAINLINE Tc(MIN.) 6.47 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 3.828 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.66 0.98 0.100 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 W om T O mm 0 SUBAREA AREA(ACRES) = 0.66 SUBAREA RUNOFF(CFS) = 2.22 EFFECTIVE AREA(ACRES) = 1.61 AREA - AVERAGED Fm(INCH /HR) = 0.21 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.21 TOTAL AREA(ACRES) = 1.6 PEAK FLOW RATE(CFS) = 5.25 ilk ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ' - - FLOW PROCESS FROM NODE 33.00 TO NODE 33.00 IS CODE = 81 C-5 -------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< -------------------------- --------------------- ______ MAINLINE Tc(MIN.) = 6.47 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 3.828 SUBAREA LOSS RATE DATA(AMC II): *� DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN PUBLIC PARK A 0.26 0.98 0.850 32 SUBAREA AVERAGE PERVIOUS LASS RATE, Fp(INCH /HR) = 0.98 s SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 1� SUBAREA AREA(ACRES) = 0.26 SUBAREA RUNOFF(CFS) = 0.70 EFFECTIVE AREA(ACRES) = 1.87 AREA - AVERAGED Fm(INCH /HR) = 0.29 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA AVERAGED Ap = 0.30 im TOTAL AREA(ACRES) = 1.9 PEAK FLOW RATE(CFS) = 5.95 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 33.00 TO NODE 34.00 IS CODE = 31 ---------------------------------------------------- ------------------------ » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««< ,,. » » >USING COMPUTER - ESTIMATED PIPESIZE (NON PRESSURE FLOW) « «< wo ELEVATION DATA: UPSTREAM(FEET) = 951.80 DOWNSTREAM(FEET) = 946.33 FLOW LENGTH(FEET) = 263.00 MANNING'S N = 0.011 DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 8.97 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 5.95 PIPE TRAVEL TIME(MIN.) = 0.49 Tc(MIN.) = 6.96 0 LONGEST FLOWPATH FROM NODE 30.00 TO NODE 34.00 = 639.00 FEET. FLOW PROCESS FROM NODE 40.00 TO NODE 41.00 IS CODE = 21 D -------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< >>USE TIME-OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ------------------------------------- INITIAL SUBAREA FLOW- LENGTH(FEET) = 205.00 ELEVATION DATA: UPSTREAM(FEET) = 951.00 DOWNSTREAM(FEET) = 949.20 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.470 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.799 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc w LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) PUBLIC PARK A 0.11 0.98 0.850 32 10.47 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA RUNOFF(CFS) = 0.20 ±�N m +Nr sm rrr TOTAL AREA(ACRES) = 0.11 PEAK FLOW RATE(CFS) = 0.20 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 0.1 TC(MIN.) = 10.47 EFFECTIVE AREMACRES) = 0 AREA FM(INCH/HR)= 0.83 AREA Fp(INCH/HR) = 0 . 9 8 AREA Ap = 0-850 PEAK FLOW RATE(CFS) = 0.20 END OF RATIONAL METHOD ANALYSIS rr sm rrr 4" ■r 4W rrr ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) rr (c) Copyright 1983 -2008 Advanced Engineering Software (aes) Ver. 15.0 Release Date: 04/01/2008 License ID 1340 aw Analysis prepared by: Halladay & Mim Mack, Inc. 1181 California Avenue, Suite 102 Corona, CA 92881 Tel: 951 - 278 -9700 Fax: 951- 278 -2729 * * * * * * * * * * * * * * * ** * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * PM 19073 w * CITY OF FONTANA * AREA "E ", 10 -YEAR FREQUENCY Aw FILE NAME: E -Q10 . DAT TIME/DATE OF STUDY: 09:52 08/05/2008 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME-OF- CONCENTRATION MODEL * -- USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 6.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = 0.6500 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 0.9000 IN GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN w " s OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER- SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 50.00 TO NODE 51.00 IS CODE = 21 ii ------------------------------------------ ---------------------------------- » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< w >>USE TIME-OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< 04 r *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* *USER- DEFINED STREET- SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* w* HALF- CROWN TO STREET- CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT - /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 IN GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN w " s OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER- SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 50.00 TO NODE 51.00 IS CODE = 21 ii ------------------------------------------ ---------------------------------- » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< w >>USE TIME-OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< 04 r 111M1 ow do No vw w �I w� nw w. +rr nrr INITIAL SUBAREA FLOW- LENGTH(FEET) = 250.00 wo ELEVATION DATA: UPSTREAM(FEET) = 950.60 DOWNSTREAM(FEET) 947.80 im Tc = K *((LENGTH ** 3.00 M ELEVATION CHANGE))* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.796 1n * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.744 to SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) PUBLIC PARK A 0.14 0.98 0.850 32 10.80 r SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA RUNOFF(CFS) = 0.24 TOTAL AREA(ACRES) = 0.14 PEAK FLOW RATE(CFS) = 0.24 ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 0.1 TC(MIN.) = 10.80 �1 EFFECTIVE AREA(ACRES) = 0.14 AREA - AVERAGED FM(INCH /HR)= 0.83 AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.850 rrr PEAK FLOW RATE(CFS) = 0.24 ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- END OF RATIONAL METHOD ANALYSIS un 111M1 ow do No vw w �I w� nw w. r r. rr am r am I rr 25 -YEAR —1 HOUR STORM EVENT an w. w an RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO_ HYDROLOGY CRITERION) so (c) Copyright 1983 -2008 Advanced Engineering Software (aes) Ver. 15.0 Release Date: 04/01/2008 License ID 1340 on Analysis prepared by: Halladay & Mim Mack, Inc. 1181 California Avenue, Suite 102 Corona, CA 92881 Tel: 951- 278 -9700 Fax: 951- 278 -2729 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** 16 * TPM 19073 * CITY OF FONTANA * 25 -YEAR ON -SITE STUDY * w FILE NAME: Q25PROP.DAT TIME/DATE OF STUDY: 13 :04 08/04/2008 --------------------------------------------- ------------------------ USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: _ _ _ __ -- * TIME - OF - CONCENTRATION MODEL * -- GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET *0 as (Maximum Allowable Street Flow Depth) - (Top - of -Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER- SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21 A - 1 iln - Q USER SPECIFIED STORM EVENT(yEAR) = 25.00 am SPECIFIED MINIMUM PIPE SIZE(INCH) = 6.00 iro SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE * USER = 0:95 - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* go 10 -YEAR STORM 60 MINUTE INTENSITY(INCH /HOUR) = 0.900 io 100 -YEAR STORM 60 MINUTE INTENSITY(INCH /HOUR) = 1.350 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 25.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.0580 SLOPE OF INTENSITY DURATION CURVE = 0.6500 to *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* *USER - DEFINED STREET- SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT- /PARK- HEIGHT WIDTH LIP HIKE FACTOR *, NO_ - (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 2 30.0 25.0 0.034/0.034/0.020 0.50 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET *0 as (Maximum Allowable Street Flow Depth) - (Top - of -Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER- SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21 A - 1 iln - Q v tir -------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< >>USE TIME CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW LENGTH(FEET) = 410.00 ELEVATION DATA: UPSTREAM(FEET) = 965.00 DOWNSTREAM {FEET) = 959.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 13.558 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.782 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) NATURAL POOR COVER RREN A 2.41 0.42 1.000 78 13.56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.42 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000 SUBAREA RUNOFF(CFS) = 5.13 TOTAL AREA(ACRES) = 2.41 PEAK FLOW RATE(CFS) = 5.13 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 91 A-2- ------------------------------------------------------------------- » » >COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA ««< UPSTREAM NODE ELEVATION(FEET) = 959.00 DOWNSTREAM NODE ELEVATION(FEET) = 955.33 a.� CHANNEL LENGTH THRU SUBAREA(FEET) = 145.00 "V" GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET) = 0.110 Irr PAVEMENT LIP(FEET) = 0.030 MANNING'S N = .0150 PAVEMENT CROSSFALL(DECIMAL NOTATION) = 0.02000 *� MAXIMUM DEPTH(FEET) = 1.00 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.701 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) {INCHIHR} (DECIMAL) CN COMMERCIAL A 0.50 0.98 0.100 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.72 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 3.83 AVERAGE FLOW DEPTH(FEET) = 0.27 FLOOD WIDTH(FEET) = 16.02 "V" GUTTER FLOW TRAVEL TIME(MIN.) = 0.63 TC(MIN.) = 14.19 SUBAREA AREA(ACRES) = 0.50 SUBAREA RUNOFF(CFS) = 1.17 EFFECTIVE AREA(ACRES) = 2.91 AREA AVERAGED Fm(INCH /HR) = 0.36 AREA- AVERAGED Fp(INCH /HR) = 0.43 AREA AVERAGED Ap = 0.85 TOTAL AREA(ACRES) = 2.9 PEAK FLOW RATE(CFS) = 6.13 ."r END OF SUBAREA "V" GUTTER HYDRAULICS: *� DEPTH(FEET) = 0.28 FLOOD WIDTH(FEET) = 16.52 FLOW VELOCITY(FEET /SEC.) = 3.89 DEPTH * VELOCITY(FT *FT /SEC) = 1.07 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 = 555.00 FEET. s 11r -- FLOW - PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 81 ,A 3 ------------------------------- - - - - -- ------------------------------ ** » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< an ON C" •e MAINLINE Tc(MIN.) = 14.19 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.701 SUBAREA LOSS RATE DATA(AMC II): Am DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN w� NATURAL POOR COVER "BARREN" A 1.60 0.42 1.000 78 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.42 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000 SUBAREA AREA(ACRES) = 1.60 SUBAREA RUNOFF(CFS) = 3.29 EFFECTIVE AREA(ACRES) = 4.51 AREA - AVERAGED Fm(INCH /HR) = 0.38 AREA - AVERAGED Fp(INCH /HR) = 0.42 AREA AVERAGED Ap = 0.90 ,.. TOTAL AREA(ACRES) = 4.5 PEAK FLOW RATE(CFS) = 9.42 -- FLOW - - - - PROCESS FROM NODE - - - - - 3.00 - TO NODE 4.00 IS CODE 56 A-4 ------- - - - - - -- ---- ---------- --- ----- ---------------- » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW « «< » » >TRAVELTIME THRU SUBAREA« «< ELEVATION DATA: UPSTREAM(FEET) = 955.33 DOWNSTREAM(FEET) = 951.23 CHANNEL LENGTH THRU SUBAREA(FEET) = 517.00 CHANNEL SLOPE = 0.0079 GIVEN CHANNEL BASE(FEET) = 1.00 CHANNEL FREEBOARD(FEET) = 1.0 "Z" FACTOR = 30.000 MANNING'S FACTOR = 0.015 *ESTIMATED CHANNEL HEIGHT(FEET) = 1.35 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.382 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS �1M LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 1.88 0.98 0.100 32 ww SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 11.35 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 2.85 AVERAGE FLOW DEPTH(FEET) = 0.35 TRAVEL TIME(MIN.) = 3.02 Tc(MIN.) = 17.21 SUBAREA AREA(ACRES) = 1.88 SUBAREA RUNOFF(CFS) = 3.87 EFFECTIVE AREA(ACRES) = 6.39 AREA - AVERAGED Fm(INCH /HR) = 0.30 AREA- AVERAGED Fp(INCH /HR) = 0.45 AREA AVERAGED Ap = 0.66 TOTAL AREA(ACRES) = 6.4 PEAK FLOW RATE(CFS) = 11.99 GIVEN CHANNEL BASE(FEET) = 1.00 CHANNEL FREEBOARD(FEET) = 1.0 "Z" FACTOR = 30.000 MANNING'S FACTOR = 0.015 *ESTIMATED CHANNEL HEIGHT(FEET) = 1.36 +w END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.36 FLOW VELOCITY(FEET /SEC.) = 2.89 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 4.00 = 1072.00 FEET. an - - FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21 $ �{ --- ------- ----- ----- ---------- ---- - --- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< wee >>USE TIME CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW LENGTH(FEET) = 228.00 ELEVATION DATA: UPSTREAM(FEET) 957.80 DOWNSTREAM(FEET) = 955.30 �1 am M ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 12_00 TO NODE 12.00 IS CODE = 81 B-2. e� ------------------------------------------------ ---------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< MAINLINE Tc(MIN.) = 10.94 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.198 io SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.37 0.98 0.100 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 �w SUBAREA AREA(ACRES) = 0.37 SUBAREA RUNOFF(CFS) = 1.03 im EFFECTIVE AREA(ACRES) = 0.74 AREA - AVERAGED Fm(INCH /HR) = 0.46 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.47 TOTAL AREA(ACRES) = 0.7 PEAK FLOW RATE(CFS) = 1.82 FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 31 ---------------------------------------------------------------------------- » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< r� »» >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< ------------------------ - -- - -- wi ELEVATION DATA: UPSTREAM(FEET) = 951.93 DOWNSTREAM(FEET) = 949.55 FLOW LENGTH(FEET) = 197.00 MANNING'S N = 0.011 4 , DEPTH OF FLOW IN 9.0 INCH PIPE IS 6.5 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 5.35 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 i_: Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE))* *0.20 A SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.450 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.295 SUBAREA Tc AND LOSS RATE DATA(AMC II). DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) girl PUBLIC PARK A 0.37 0.98 0.850 32 10.45 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 V SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA RUNOFF(CFS) = 0.82 TOTAL AREA(ACRES) = 0.37 PEAK FLOW RATE(CFS) = 0.82 FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 31 ------------------------------------------------------------------------ w » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< im --------------------- - ------------------- ELEVATION DATA: UPSTREAM(FEET) = 953.30 DOWNSTREAM(FEET) = 951.93 FLOW LENGTH(FEET) = 126.00 MANNING'S N = 0.011 DEPTH OF FLOW IN 9.0 INCH PIPE IS 4.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 4.27 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 0.82 PIPE TRAVEL TIME(MIN.) = 0.49 Tc(MIN.) = 10.94 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 12.00 = 354.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 12_00 TO NODE 12.00 IS CODE = 81 B-2. e� ------------------------------------------------ ---------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< MAINLINE Tc(MIN.) = 10.94 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.198 io SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.37 0.98 0.100 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 �w SUBAREA AREA(ACRES) = 0.37 SUBAREA RUNOFF(CFS) = 1.03 im EFFECTIVE AREA(ACRES) = 0.74 AREA - AVERAGED Fm(INCH /HR) = 0.46 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.47 TOTAL AREA(ACRES) = 0.7 PEAK FLOW RATE(CFS) = 1.82 FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 31 ---------------------------------------------------------------------------- » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< r� »» >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< ------------------------ - -- - -- wi ELEVATION DATA: UPSTREAM(FEET) = 951.93 DOWNSTREAM(FEET) = 949.55 FLOW LENGTH(FEET) = 197.00 MANNING'S N = 0.011 4 , DEPTH OF FLOW IN 9.0 INCH PIPE IS 6.5 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 5.35 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 i_: m 0 PIPE- FLOW(CFS) = 1.82 PIPE TRAVEL TIME(MIN.) = 0.61 Tc(MIN.) = 11.55 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 13.00 = 551.00 FEET. -- FLOW - - - - - ----- PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 81 $ -3 ------- ---- ---- ---- ----- - ----------------------- yr » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< MAINLINE Tc(MIN.) = 11.55 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.087 r SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS ^' LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.33 0.98 0.100 32 rw SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 .. SUBAREA AREA(ACRES) = 0.33 SUBAREA RUNOFF(CFS) = 0.89 rrr EFFECTIVE AREA(ACRES) = 1.07 AREA - AVERAGED FM(INCH /HR) = 0.35 AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.36 +� TOTAL AREA(ACRES) = 1.1 PEAK FLOW RATE(CFS) = 2.63 FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 31 ---------------- ------------------------ » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » » >USING COMPUTER- ESTIMATED PIPESIZE PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 949.55 DOWNSTREAM(FEET) 947.82 FLOW LENGTH(FEET) = 284.00 MANNING'S N = 0.011 DEPTH OF FLOW IN 12.0 INCH PIPE IS 8.3 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 4.55 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 2.63 w. PIPE TRAVEL TIME(MIN.) = 1.04 Tc(MIN.) = 12.60 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 14.00 = 835.00 FEET. A -- FLOW - PROCESS FROM NODE 14.00 TO NODE 14.00 IS CODE = 81 $� ------- ----- ----- ---------- ---- ---- ---------- ---- ---- ---------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< �'• MAINLINE Tc(MIN.) = 12.60 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.918 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.59 0.98 0.100 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 SUBAREA AREA(ACRES) = 0.59 SUBAREA RUNOFF(CFS) = 1.50 EFFECTIVE AREA(ACRES) = 1.66 AREA - AVERAGED FM(INCH /HR) = 0.26 AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA AVERAGED Ap = 0.27 TOTAL AREA(ACRES) = 1.7 PEAK FLOW RATE(CFS) = 3.97 FLOW PROCESS FROM NODE 14.00 TO NODE 14.00 IS CODE = 81 3-5 r�r am .j on to ---------------------------------------------------------- ------------------ »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN.) = 12.60 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.918 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN PUBLIC PARK A 0.19 0.98 0.850 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA AREA(ACRES) = 0.19 SUBAREA RUNOFF(CFS) = 0.36 EFFECTIVE AREA(ACRES) = 1.85 AREA - AVERAGED Fm(INCH /HR) = 0.32 ** AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA AVERAGED Ap = 0.33 Yrr TOTAL AREA(ACRES) = 1.9 PEAK FLOW RATE(CFS) = 4.33 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW - PROCESS - FROM NODE 30.00 TO NODE 31.00 IS CODE = 21 C..i » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< .� >>USE TIME CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW LENGTH(FEET) = 54.00 ELEVATION DATA: UPSTREAM(FEET) = 958.70 DOWNSTREAM(FEET) = 957.10 Tc = K *[(LENGTH ** 3.00 M ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.000 * 25 YEAR RAINFALL INTENSITY (INCH /HR) = 5.320 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) PUBLIC PARK A 0.06 0.98 0.850 32 5.00 ■r SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0_98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA RUNOFF(CFS) = 0.24 TOTAL AREA(ACRES) = 0.06 PEAR FLOW RATE(CFS) = 0.24 rrr ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** *s FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS CODE = 31 ------------------------- -- ------------------- » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 957.10 DOWNSTREAM(FEET) = 955.60 FLOW LENGTH(FEET) = 135.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 6.0 INCH PIPE IS 2.7 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 2:77 ESTIMATED PIPE DIAMETER(INCH) = 6.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 0.24 PIPE TRAVEL TIME(MIN.) = 0.81 Tc(MIN.) = 5.81 LONGEST FLOWPATH FROM NODE 30.00 TO NODE 32.00 = 189.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** -- FLOW - PROCESS FROM NODE 32.00 TO NODE 32.00 IS CODE = 81 C ------------------------------------- »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN.) = 5.81 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 4.824 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE! SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN PUBLIC PARK A 0.18 0.98 0.850 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA AREA(ACRES) = 0.18 SUBAREA RUNOFF(CFS) = 0.65 EFFECTIVE AREA(ACRES) = 0.24 AREA - AVERAGED Fm(INCH /HR) = 0.83 AREA - AVERAGED Fp(INCH/HR) = 0.98 AREA- AVERAGED Ap = 0.85 TOTAL AREA(ACRES) = 0.2 PEAK FLOW RATE(CFS) = 0.86 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 32.00 TO NODE 32.00 IS CODE = 81 C - » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « MAINLINE Tc(MIN.) = 5.81 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 4.824 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.71 0.98 0.100 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 SUBAREA AREA(ACRES) = 0.71 SUBAREA RUNOFF(CFS) = 3.02 EFFECTIVE AREA(ACRES) = 0.95 AREA - AVERAGED Fm(INCH /HR) = 0.28 AREA - AVERAGED Fp(INCH/HR) = 0.98 AREA - AVERAGED Ap = 0.29 TOTAL AREA(ACRES) = 0.9 PEAK FLOW RATE(CFS) = 3.88 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 32.00 TO NODE 33.00 IS CODE = 31 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< » »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 953.10 DOWNSTREAM(FEET) = 951.80 FLOW LENGTH(FEET) = 187.00 MANNING'S N = 0.011 DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.6 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 5.34 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 3.88 PIPE TRAVEL TIME(MIN.) = 0.58 Tc(MIN.) = 6.40 LONGEST FLOWPATH FROM NODE 30.00 TO NODE 33.00 = 376.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 33.00 TO NODE 33.00 IS CODE = 81 C ^1{ » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< MAINLINE Tc(MIN.) = 6.40 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 4.533 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE! SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.66 0.98 0.100 32 on ow rrr SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 e� SUBAREA AREA(ACRES) = 0.66 SUBAREA RUNOFF(CFS) = 2.63 EFFECTIVE AREA(ACRES) = 1.61 AREA - AVERAGED Fm(INCH /HR) = 0.21 AREA- AVERAGED Fp(ZNCH /HR) = 0.98 AREA AVERAGED Ap = 0.21 TOTAL AREA(ACRES) = 1.6 PEAK FLOW RATE(CFS) = 6.27 FLOW PROCESS FROM NODE 33.00 TO NODE 33.00 IS CODE = 81 C.5 .wr ------ -------- ----- ----- ---------- ---- ---- ---------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< ------------------------______-- ____________________ MAINLINE Tc(MIN.) = 6.40 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 4.533 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS aws LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN PUBLIC PARK A 0.26 0.98 0.850 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA AREA(ACRES) = 0.26 SUBAREA RUNOFF(CFS) = 0.87 EFFECTIVE AREA(ACRES) = 1.87 AREA - AVERAGED Fm(INCH /HR) = 0.29 AREA- AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.30 TOTAL AREA(ACRES) = 1.9 PEAK FLOW RATE(CFS) = 7.14 FLOW PROCESS FROM NODE 33.00 TO NODE 34.00 IS CODE = 31 -------------------------------------------- -------------------------------- » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 951.80 DOWNSTREAM(FEET) = 946.33 FLOW LENGTH(FEET) = 263.00 MANNING'S N = 0.011 DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.9 INCHES w PIPE -FLOW VELOCITY(FEET /SEC.) = 9.36 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 7.14 PIPE TRAVEL TIME(MIN.) = 0.47 Tc(MIN.) = 6.87 LONGEST FLOWPATH FROM NODE 30.00 TO NODE 34.00 = 639.00 FEET. w -- FLOW - PROCESS FROM NODE 40.00 TO NODE 41.00 IS CODE = 21 ----------------------------------- --------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< ­USE TIME CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ---------------------____--- _____________________ INITIAL SUBAREA FLOW LENGTH(FEET) = 205.00 ELEVATION DATA: UPSTREAM(FEET) = 951.00 DOWNSTREAM(FEET) = 949.20 Tc = K *((LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 Y11 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.470 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.291 I SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) PUBLIC PARK A 0.11 0.98 0.850 32 10.47 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 W, m Z' r 0 IN im F w SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA RUNOFF(CFS) = 0.24 TOTAL AREA(ACRES) = 0.11 PEAK FLOW RATE(CFS) = 0.24 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 0.1 TC(MIN.) = 10.47 EFFECTIVE AREA(ACRES) = 0.11 AREA - AVERAGED FM(INCH /HR)= 0.83 AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA AVERAGED AP = 0.850 PEAK FLOW RATE(CFS) = 0.24 END OF RATIONAL METHOD ANALYSIS M ft r ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -2008 Advanced Engineering Software (aes) Ver. 15.0 Release Date: 04/01/2008 License ID 1340 lei Analysis prepared by: +�• Halladay & Mim Mack, Inc. 1181 California Avenue, Suite 102 Corona, CA 92881 Tel: 951 -278 -9700 Fax: 951- 278 -2729 rw * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * PM 19073 we * CITY OF FONTANA * AREA "E ", Q -25 FREQUENCY ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: E- Q25.DAT TIME/DATE OF STUDY: 09:57 08/05/2008 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- -- *TIME-OF- CONCENTRATION MODEL * -- on USER SPECIFIED STORM EVENT(YEAR) = 25.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 6.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 0.900 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.350 { COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 25.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.0580 SLOPE OF INTENSITY DURATION CURVE = 0.6500 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top - of - Curb) WA 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* +CIA *USER - SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 50.00 TO NODE 51.00 IS CODE = 21 ---------------------------------------------------------------------------- tlll *USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET- CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT - /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top - of - Curb) WA 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* +CIA *USER - SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 50.00 TO NODE 51.00 IS CODE = 21 ---------------------------------------------------------------------------- tlll .w » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< >>USE TIME CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 250.00 �M ELEVATION DATA: UPSTREAM(FEET) = 950.60 DOWNSTREAM(FEET) = 947.80 im Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE))* *0.20 ja SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.796 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.226 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc III LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) PUBLIC PARK A 0.14 0.98 0.850 32 10.80 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA RUNOFF(CFS) = 0.30 TOTAL AREA(ACRES) = 0.14 PEAK FLOW RATE(CFS) = 0.30 -------------------------- -------------- END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 0.1 TC(MIN.) = 10.80 EFFECTIVE AREA(ACRES) = 0.14 AREA - AVERAGED Fm(INCH /HR)= 0.83 AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.850 PEAK FLOW RATE(CFS) = 0.30 ---------------------------------- END OF RATIONAL METHOD ANALYSIS rrr 100 -YEAR -1 HOUR STORM EVENT N E 0 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -2008 Advanced Engineering Software (aes) Ver. 15.0 Release Date: 04/01/2008 License ID 1340 Analysis prepared by: Halladay & Mim Mack, Inc. 1181 California Avenue, Suite 102 Corona, CA 92881 Tel: 951 - 278 -9700 Fax: 951 - 278 -2729 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * TPM 19073 * * CITY OF FONTANA * * 100 -YEAR ON -SITE STUDY * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: Q100PROP.DAT TIME /DATE OF STUDY: 13:15 08/04/2008 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME-OF- CONCENTRATION MODEL*- - USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 6.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = 0.6500 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.3500 *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD* *USER - DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET - CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT- /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 2 30.0 25.0 0.034/0.034/0.020 0.50 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER - SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21 A-1 > »RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ­USE TIME CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW LENGTH(FEET) = 410.00 ELEVATION DATA: UPSTREAM(FEET) = 965.00 DOWNSTREAM(FEET) = 959.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE))* *0,20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 13.558 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.550 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) NATURAL POOR COVER "BARREN" A 2.41 0.18 1.000 93 13.56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.18 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000 SUBAREA RUNOFF(CFS) = 7.31 TO'T'AL AREA(ACRES) = 2.41 PEAK FLOW RATE(CFS) = 7.31 -- FLOW - PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE 91 --- AREA --- ------------ - - - - -- » » >COMPUTE "V' GUTTER FLOW TRAVEL TIME THRU SUBAREA« «< UPSTREAM NODE ELEVATION(FEET) = 959.00 DOWNSTREAM NODE ELEVATION(FEET) = 955.33 CHANNEL LENGTH THRU SUBAREA(FEET) = 145.00 "V' GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET) = 0.110 PAVEMENT LIP(FEET) = 0.030 MANNING'S N = .0150 PAVEMENT CROSSFALL(DECIMAL NOTATION) = 0.02000 MAXIMUM DEPTH(FEET) = 1.00 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.452 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.50 0.74 0.100 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, FP(INCH /HR) = 0.74 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 8.07 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 4.05 AVERAGE FLOW DEPTH(FEET) = 0.30 FLOOD WIDTH(FEET) = 18.87 "V" GUTTER FLOW TRAVEL TIME(MIN.) = 0.60 Tc(MIN.) = 14.15 SUBAREA AREA(ACRES) = 0.50 SUBAREA RUNOFF(CFS) = 1.52 EFFECTIVE AREA(ACRES) = 2.91 AREA - AVERAGED Fm(INCH /HR) = 0.16 AREA - AVERAGED Fp(INCH /HR) = 0.19 AREA- AVERAGED Ap = 0.85 TOTAL AREA(ACRES) = 2.9 PEAK FLOW RATE(CFS) = 8.C2 END OF SUBAREA "V' GUTTER HYDRAULICS: DEPTH(FEET) = 0.30 FLOOD WIDTH(FEET) = 19.38 FLOW VELOCITY(FEET /SEC.) = 4.13 DEPTH * VELOCITY(FT *FT /SEC) = 1.25 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 = 555.00 FEET. -- FLOW - PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 81 -3 -------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< ® MAINLINE Tc(MIN.) = 14.15 4 .. 7 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.452 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL POOR COVER "BARREN" A 1.60 0.18 1.000 93 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.18 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000 SUBAREA AREA(ACRES) = 1.60 SUBAREA RUNOFF(CFS) = 4.71 EFFECTIVE AREA(ACRES) = 4.51 AREA - AVERAGED Fm(INCH/HR) = 0.17 AREA - AVERAGED Fp(INCH /HR) = 0.19 AREA- AVERAGED Ap = 0.90 TOTAL AREA(ACRES) = 4.5 PEAK FLOW RATE(CFS) = 13.33 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 56 A-4 » »>COMPUTE TRAPEZOIDAL CHANNEL FLOW ««< »»>TRAVELTIME THRU SUBAREA ««< ELEVATION DATA: UPSTREAM(FEET) = 955.33 DOWNSTREAM(FEET) = 951.23 CHANNEL LENGTH THRU SUBAREA(FEET) = 517.00 CHANNEL SLOPE = 0.0079 GIVEN CHANNEL BASE(FEET) = 1.00 CHANNEL FREEBOARD(FEET) = 1.0 "Z" FACTOR = 30.000 MANNING'S FACTOR = 0.015 *ESTIMATED CHANNEL HEIGHT(FEET) = 1.40 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.068 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS - LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 1.88 0.74 0.100 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.74 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 15.86 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 3.06 AVERAGE FLOW DEPTH(FEET) = 0.40 TRAVEL TIME(MIN.) = 2.82 Tc(MIN.) = 16.97 SUBAREA AREA(ACRES) = 1.88 SUBAREA RUNOFF(CFS) = 5.06 EFFECTIVE AREA(ACRES) = 6.39 AREA - AVERAGED Fm(INCH /HR) = 0.14 AREA - AVERAGED Fp(INCH/HR) = 0.21 AREA- AVERAGED Ap = 0.66 TOTAL AREA(ACRES) = 6.4 PEAK FLOW RATE(CFS) = 16.83 GIVEN CHANNEL BASE(FEET) = 1.00 CHANNEL FREEBOARD(FEET) = 1.0 "Z" FACTOR = 30.000 MANNING'S FACTOR = 0.015 *ESTIMATED CHANNEL HEIGHT(FEET) = 1.41 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.41 FLOW VELOCITY(FEET /SEC.) = 3.13 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 4.00 = 1072.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21 73-1 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 228.00 ELEVATION DATA: UPSTREAM(FEET) = 957.80 DOWNSTREAM(FEET) = 955.30 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.450 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.204 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) PUBLIC PARK A 0.37 0.74 0.850 52 10.45 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.74 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA RUNOFF(CFS) = 1.19 TOTAL AREA(ACRES) = 0.37 PEAK FLOW RATE(CFS) = 1.19 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 31 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< » »>USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 953.30 DOWNSTREAM(FEET) = 951.93 FLOW LENGTH(FEET) = 126.00 MANNING'S N = 0.011 DEPTH OF FLOW IN 9.0 INCH PIPE IS 5.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 4.71 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 1.19 PIPE TRAVEL TIME(MIN.) = 0.45 Tc(MIN.) = 10.90 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 12.00 = 354.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 81 33-1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< MAINLINE Tc(MIN.) = 10.90 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.092 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.37 0.74 0.100 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.74 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 SUBAREA AREA(ACRES) = 0.37 SUBAREA RUNOFF(CFS) = 1.34 EFFECTIVE AREA(ACRES) = 0.74 AREA - AVERAGED Fp(INCH/HR) = 0.35 AREA- AVERAGED Fp(INCH /HR) = 0.74 AREA- AVERAGED Ap = 0.47 TOTAL AREA(ACRES) = 0.7 PEAK FLOW RATE(CFS) = 2.49 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 31 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««< » »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 951.93 DOWNSTREAM(FEET) = 949.55 FLOW LENGTH(FEET) = 197.00 MANNING'S N = 0.011 DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.4 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 5.88 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 2.49 PIPE TRAVEL TIME(MIN.) = 0.56 Tc(MIN.) = 11.45 0 rir mw ft LONGEST FLOWPATH FROM NODE 10.00 TO NODE 13.00 = 551.00 FEET. aw *** t* r***************** r****************** r* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** - - FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 81 $_3 -- -- -------- ----- ----- --------- - --- ---------- ---- ---- ------------ ---- » >>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< 40 MAINLINE Tc(MIN.) = 11.45 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.961 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.33 0.74 0.100 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.74 o , SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 SUBAREA AREA(ACRES) = 0.33 SUBAREA RUNOFF(CFS) = 1.15 EFFECTIVE AREA(ACRES) = 1.07 AREA - AVERAGED Fm(INCH /HR) = 0.27 AREA - AVERAGED Fp(INCH /HR) = 0.74 AREA- AVERAGED Ap = 0.36 +rD TOTAL AREA(ACRES) = 1.1 PEAK FLOW RATE(CFS) = 3.56 FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 31 r . ------------------------------------------------- » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 949.55 DOWNSTREAM(FEET) = 947.82 w� FLOW LENGTH(FEET) = 284.00 MANNING'S N = 0.011 DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.5 INCHES �r PIPE -FLOW VELOCITY(FEET /SEC.) = 4.97 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 3.56 ar PIPE TRAVEL TIME(MIN.) = 0.95 Tc(MIN.) = 12.41 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 14.00 = 835.00 FEET. ww iM -- FLOW - PROCESS FROM NODE 14.00 TO NODE 14.00 IS CODE 81 3.,4 ---------------------------- """"' » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< MAINLINE Tc(MIN.) = 12.41 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.761 s SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN wrr COMMERCIAL A 0.59 0.74 0.100 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.74 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 SUBAREA AREA(ACRES) = 0.59 SUBAREA RUNOFF(CFS) = 1.96 EFFECTIVE AREA(ACRES) = 1.66 AREA - AVERAGED Fm(INCH /HR) = 0.20 AREA- AVERAGED Fp(INCH /HR) = 0.74 AREA- AVERAGED Ap = 0.27 TOTAL AREA(ACRES) = 1.7 PEAK FLOW RATE(CFS) = 5.32 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 14.00 TO NODE 14.00 IS CODE = 81 -� ----------------------------- - - - B 5 - """' » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< =w go .. MAINLINE Tc(MIN.) = 12.41 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.761 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN PUBLIC PARK A 0.19 0.74 0.850 52 as SUBAREA AVERAGE.PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.74 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 +� SUBAREA AREA(ACRES) = 0.19 SUBAREA RUNOFF(CFS) = 0.54 EFFECTIVE AREA(ACRES) = 1.85 AREA - AVERAGED FM(INCH /HR) = 0.24 AREA - AVERAGED Fp(INCH /HR) = 0.74 AREA- AVERAGED Ap = 0.33 ww TOTAL AREA(ACRES) = 1.9 PEAK FLOW RATE(CFS) = 5.86 FLOW PROCESS FROM NODE 30.00 TO NODE 31.00 IS CODE = 21 C -1 ---------------------------------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< >>USE TIME-OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 54.00 ELEVATION DATA: UPSTREAM(FEET) = 958.70 DOWNSTREAM(FEET) = 957.10 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE))* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.000 w * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 6.789 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA pp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) PUBLIC PARK A 0.06 0.74 0.850 52 5.00 +w SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.74 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 �Irt SUBAREA RUNOFF (CFS) = 0.33 TOTAL AREA {ACRES) = 0.06 PEAK FLOW RATE(CFS) = 0.33 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS CODE = 31 ! ---------------------------------------------------------------------------- 40 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< -------------------------- - - ---- ELEVATION DATA: UPSTREAM(FEET) = 957.10 DOWNSTREAM(FEET) = 955.60 io FLOW LENGTH(FEET) = 135.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 6.0 INCH PIPE IS 3.3 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 3.03 ESTIMATED PIPE DIAMETER (INCH) = 6.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 0.33 1_ PIPE TRAVEL TIME(MIN.) = 0.74 Tc(MIN.) = 5.74 LONGEST FLOWPATH FROM NODE 30.00 TO NODE 32.00 = 189.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 32.00 TO NODE 32.00 IS CODE = 81 2 go »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< -------------------------- MAINLINE Tc(MIN.) = 5.74 no * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 6.205 0 m s. SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN PUBLIC PARK A 0.18 0.74 0.850 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.74 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA AREA(ACRES) = 0.18 SUBAREA RUNOFF(CFS) = 0.90 kw EFFECTIVE AREA(ACRES) = 0.24 AREA - AVERAGED Fm(INCH /HR) = 0.63 AREA - AVERAGED Fp(INCH /HR) = 0.74 AREA - AVERAGED Ap = 0.85 TOTAL AREA(ACRES) = 0.2 PEAK FLOW RATE(CFS) = 1.20 Ism - - FLOW PROCESS FROM NODE 32.00 TO NODE 32.00 IS CODE = 81 C-3 ---------------------------------------------------- ------------------- r » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< - - - - -- - - - -- -- - - - - - -- - - ww MAINLINE Tc(MIN.) = 5.74 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 6.205 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS ... LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.71 0.74 0.100 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.74 ,.. SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 SUBAREA AREA {ACRES) = 0.71 SUBAREA RUNOFF(CFS) = 3.92 4w EFFECTIVE AREA(ACRES) = 0.95 AREA - AVERAGED Fm(INCH /HR) = 0.21 AREA- AVERAGED Fp(INCH /HR) = 0.74 AREA- AVERAGED Ap = 0.29 TOTAL AREA(ACRES) = 0.9 PEAK FLOW RATE(CFS) = 5.12 rn ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 32.00 TO NODE 33.00 IS CODE = 31 ----------------------------------------------------------------- » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 953.10 DOWNSTREAM(FEET) 951.80 i FLOW LENGTH(FEET) = 187.00 MANNING'S N = 0.011 DEPTH OF FLOW IN 15.0 INCH PIPE IS 10.4 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 5.65 60 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 5.12 w� PIPE TRAVEL TIME(MIN.) = 0.55 Tc(MIN.) = 6.29 - - - LONGEST FLOWPATH FROM NODE 30.00 TO NODE 33.00 = 376.00 FEET. FLOW PROCESS FROM NODE 33.00 TO NODE 33.00 IS CODE = 81 C -mot ---------------------------------------------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN.) = 6.29 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.846 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN I COMMERCIAL A 0.66 0.74 0.100 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.74 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 rrt w i m 00 to SUBAREA AREA(ACRES) = 0.66 SUBAREA RUNOFF(CFS) = 3.43 EFFECTIVE AREA(ACRES) = 1.61 AREA - AVERAGED Fm(INCH /HR) = 0.16 AREA - AVERAGED Fp(INCH /HR) = 0.74 AREA- AVERAGED Ap = 0.21 TOTAL AREA(ACRES) = 1.6 PEAK FLOW RATE(CFS) = 8,24 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** - - FLOW PROCESS FROM NODE 33.00 TO NODE 33.00 IS CODE = 81 -5 ----------------- - - - - -- --------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< ww - - - -- --------------- - -- MAINLINE Tc(MIN.) = 6.29 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.846 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS w LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN PUBLIC PARK A 0.26 0.74 0.850 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.74 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 n!i SUBAREA AREA(ACRES) = 0.26 SUBAREA RUNOFF(CFS) = 1.22 EFFECTIVE AREA(ACRES) = 1.87 AREA - AVERAGED Fm(INCH /HR) = 0.22 �+ AREA - AVERAGED Fp(INCH /HR) = 0.74 AREA- AVERAGED Ap = 0.30 TOTAL AREA(ACRES) = 1.9 PEAK FLOW RATE(CFS) = 9.46 IIIM ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 33.00 To NODE 34.00 IS CODE = 31 ------------------------------------- --------------------------------------- » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< �w » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 951.80 DOWNSTREAM {FEET) = 946.33 FLOW LENGTH(FEET) = 263.00 MANNING'S N = 0.011 DEPTH OF FLOW IN 15.0 INCH PIPE IS 10.9 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 9.87 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 9.46 PIPE TRAVEL TIME(MIN.) = 0.44 Tc(MIN.) = 6.74 irlr LONGEST FLOWPATH FROM NODE 30.00 TO NODE 34.00 = 639.00 FEET. i -- FLOW - PROCESS FROM NODE 40.00 TO NODE 41.00 IS CODE = 21 ----------------------------------------------- e�w » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< >>USE TIME CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< to INITIAL SUBAREA FLOW- LENGTH(FEET) = 205.00 as ELEVATION DATA: UPSTREAM(FEET) = 951.00 DOWNSTREAM(FEET) = 949.20 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.470 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.199 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) PUBLIC PARK A 0.11 0.74 0.850 52 10.47 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.74 t SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA RUNOFF(CFS) = 0.35 w w� TOTAL AREA(ACRES) = 0.11 PEAK FLOW RATE(CFS) = 0.35 END OF STUDY SUMMARY: TOTAL AREA {ACRES) = 0.1 TC(MIN.) = 10.47 EFFECTIVE AREA(ACRES) = 0.11 AREA— AVERAGED Fm(INCH /HR)= O.63 AREA— AVERAGED Fp(INCH /HR) = 0.74 AREA— AVERAGED Ap = 0.850 PEAR FLOW RATE(CFS) = 0.35 �""" ------------------------------------------ END OF RATIONAL METHOD ANALYSIS bw rr Oft e�w �rf s_ wrr IYr yrr ■w 4 it t 6 Vft awr f" HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -2008 Advanced Engineering Software (aes) as ver. 15.0 Release Date: 04/01/2008 License ID 1340 am Analysis prepared by: Halladay & Mim Mack, Inc. �+ 1181 California Avenue, Suite 102 Corona, CA 92881 Tel: 951 - 278 -9700 Fax: 951- 278 -2729 - ---------------------- - - - - -- - -- - w '"" TIME /DATE OF S 13:23 08/01/2008 �* Problem Descriptions: �— — SIZING CATCH BASIN #1 Vw Q - 25 » »SUMP TYPE BASIN INPUT INFORMATION «« ---------------------------------------------------------------------- - - - - -- curb Inlet capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. w 0M BASIN INFLOW(CFS) = 12.00 BASIN OPENING(FEET) = 0.50 wo DEPTH OF WATER(FEET) = 0.83 aft »>>CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 6.44 0M 4w MR .m Iwr i w. w Mlr +wwr r r� wA so rw 40 VW ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -2008 Advanced Engineering Software (aes) Ver. 15.0 Release Date: 04/01/2008 License ID 1340 PAM r Analysis prepared by: Halladay & Mim Mack, Inc. 1181 California Avenue, Suite 102 ow Corona, CA 92881 Tel: 951 - 278 -9700 Fax: 951 - 278 -2729 * * * * * * * * * * * * * * * * * * * ** * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** PM 19073 * * CITY OF FONTANA AREA °E ", 100 -YEAR FREQUENCY ■ri M ,,,, FILE NAME: E -Q100. DAT TIME/DATE OF STUDY: 10:00 08/05/2008 --------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ----------------------------- irr -- * TIME - OF - CONCENTRATION MODEL*- - ... USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 6.00 urr SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = 0.6500 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.3500 *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD* *USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* .w„ HALF- CROWN TO STREET- CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT- /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) O ft 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 it GLOBAL STREET FLOW -DEPTH CONSTRAINTS: wu 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER - SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** +Alwr FLOW PROCESS FROM NODE 50.00 TO NODE 51.00 IS CODE = 21 ---------------------------------------------------------------------------- » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< awr >>USE TIME-OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< w m aw w� Ur am we +w INITIAL SUBAREA FLOW- LENGTH(FEET) = 250.00 ELEVATION DATA: UPSTREAM(FEET) = 950.60 DOWNSTREAM(FEET) = 947.80 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.796 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.116 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) PUBLIC PARK A 0.14 0.74 0.850 52 10.80 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.74 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA RUNOFF(CFS) = 0.44 TOTAL AREA(ACRES) = 0.14 PEAK FLOW RATE(CFS) = 0.44 END OF STUDY SUMMARY: TOTAL AREA {ACRES) = 0.1 TC(MIN.) = 10.80 EFFECTIVE AREA(ACRES) = 0.14 AREA- AVERAGED Fm(INCH /HR)= 0.63 AREA- AVERAGED Fp(INCH /HR) = 0.74 AREA- AVERAGED Ap = 0.850 PEAK FLOW RATE(CFS) = 0.44 END OF RATIONAL METHOD ANALYSIS air rr on 10 4w mo so w� ow 40 aw on iffo a. BMP DESIGN CALCULATIONS f AREA 'A PAVEMENT 2.10 AC. LANDSCAPING 0.35 AC. TOTAL 2.45 AC. AREA " B* BUILDING 1.66 AC. LANDSCAPING 0.19 AC. TOTAL 1.85 AC. AREA "C' PAVEMENT 0.04 AC. BUILDING 0.66 AC. LANDSCAPING 0.22 A C. TOTAL 0.92 AC. AREA • D" BUILDING 0.71 AC. LANDSCAPING 0.24 AC. TOTAL 0.95 AC. GRAPHIC SCALE 100 0 50 100 ( IN FEET ) 1 inch = 100 ft. W W Q Q FOR BROWN- STRAUSS STEEL FONTANA, CA LIVE OAK AVENUE P � G �c,Q�O Q �O BMP AREA EXHIBIT 1 I i f E I f E f f 4 a i r m X 4f 5 { a m x 4 b 'f a a f c f F U c E o t i m G P E 4M 00 am U9 oft em rr+ w r.r am am Om it .M 41W .w rw am ,r 4M rr sm rrr it 4W mr 4= AEI Design Procedure for BMP Design Volume Designer. Richard Godina Company: Halladay Mim Mack, Inc. Date. 8/1/2008 AREA "A" Project: Brown-Strauss Steel (APN 0236 - 201 -01,02,13) Location. Fontana, CA San Bernardino County 1. BMP Drainage Area: Identify the "BMP Drainage Area" that drains to the proposed BMP element_ This includes all areas that will drain to the proposed BMP element, including 2.45 Acres previous areas, impervious areas, and off -site areas, whether or not they directly or indirectly connected to the BMP element. Calculate the BMP Drainage Area (A) in acres. 2. Site Location: Outline the Drainage Area on the NOAA Atlas 14 Precipitation Depths (See Figure D-1) (2 -year 1 -hour Rainfall) map (Figure D -1). 3. Value Per Map: Determine the area - averaged 2 -year 1 -hour rainfall value for the Drainage 0.55 inches Area outlined above. ( In inches ) 4. Calculated Watershed Impervious Ratio "i" Calculate the "Watershed imperviousness Ratio ", i, which is equal to the percent of impervious area in the BMP Drainage Area divided by 100_ Paving 2.10 @ 95% 2.00 Buildings 0.00 @ 100% 0.00 i = 0.82 Landscaping 0.35 @ 5% 0.02 2.01 "i" = 2.01 = 0.82 82% 2.45 5. Calculate Composite Run-Off coef. "C BMP " Calculate the composite runoff coefficient CBMP for the Drainage Area above using the following equation. C BMP = 0.8580 - 0.78i + 0.774i + 0.04 CMP = 0.63 Where: C BMP = composite runoff coefficient; and, "i" = watershed imperviousness ratio_ +° L & HydraulicsViydrology Ca1cs16MP Flows\2008-08-01 Oesign Procedure for BMP Area A 1 W rrr rir Ow rr i.r .R ar r r rw aw r .w r w am do 6.Determine the Region - "Valley" Determine which Region of Drainage Area is Located in (Valley, Mountain or Desert). Per Table D -1 => Regression Coef. for a: Valley region = 1.4807 P = 1.4807 * 2 -year 1 hour Rainfall Value P = 0.81 inches 7. Calculate Maximum Detention Volume (inches) Determine the area - averaged "6 -hour Mean Storm Rainfall", P 6 , for the Drainage Area. This is calculated by multiplying the area averaged 2 -year 1 -hour value by the appropriate regression coefficient from Table 1. Determine the appropriate drawdown time. Use the regression constant a = 1.582 for 24 hours and a = 1.963 for 48 hours. Note: Regression constants are provided for both 24 hour and 48 hour drawdown times; however, 48 hour drawdown times should be used in most areas of California. Drawdown times in excess of 48 hours should be used with caution as vector breeding can be a problem after water has stood in excess of 72 hours_ (Use of the 24 hour drawdown time should be limited to drainage areas with coarse soils that readily seftle and to watersheds where warming may be detrimental to downstream fisheries.) P a *C *P 1.00 inches Where: P = Maximized Detention Volume in inches, a = 1.582 for 24 hour drawdown a= 1.963 for 48 -hour drawdown CBMP = Composite Runoff Coefficient P = 6-hour Mean Storm Rainfall, in inches_ Assume a = 1.963 8. Calculate the Target Volume: (Ac - Ft) 0.20 Ac-Ft V. = (P * A) / 12 8886 c.f. L• 191801081ProductionWydrology & HydraulicsWydrology Calcs\BMP FlowsX2008- 08-01 \Design Procedure for BMP Area A 2 III ray ww irr .m ar ow rrr P" +r OM iew 4M do irr 1111 4M am trt Design Procedure for BMP Design Flowrate Designer. Richard Godina Company. Halladay Mim Mack, Inc. Date: 811/2008 AREA "A" Project Brown - Strauss Steel (APN 0236 - 201 -01,02,13) Location. Fontana, CA San Bernardino County 1. BMP Drainage Area: Identify the "BMP Drainage Area" that drains to the proposed BMP element. This includes all areas that will drain to the proposed BMP element, including 2.45 Acres previous areas, impervious areas, and off -site areas, whether or not they directly or indirectly connected to the BMP element. Calculate the BMP Drainage Area (A) in acres. 2. Site Location: Outline the Drainage Area on the NOAA Atlas 14 Precipitation Depths (See Figure D -1) (2 -year 1 -hour Rainfall) map (Figure D-1). 3. Value Per Map: Determine the area - averaged 2 -year 1-hour rainfall value for the Drainage 0.55 inches Area outlined above. (In inches) 4. Calculated Watershed Impervious Ratio "i" Calculate the "Watershed Imperviousness Ratio ", i, which is equal to the percent of impervious area in the BMP Drainage Area devided by 100_ Paving 2.10 @ 95% 2.00 Buildings 0.00 @ 100% 0.00 i = 0.82 Landscaping 0.35 @ 5% 0.02 2.01 "i" = 2.01 = 0.82 82% 2.45 5. Calculate Composite Run -Off coef. "C Calculate the composite runoff coefficient C BMP for the Drainage Area above using the following equation. C = 0.858i - 0.78i + 0.774i + 0.04 C = 0.63 Where_ C = composite runoff coefficient; and, "i" = watershed imperviousness ratio. "� L191801081ProductionUiydrology & HydraulicsViydrology Calcs\BMP Flows12008- 08-01 \Design Procedure for BMP Area A 1 .w, OR fu am No 4W 1W no go ww rr "M ON an F 40M so rrr 0 F 4" M OR rr 6-Calculate I amp Determine which Region of Drainage Area is Located in (Valley, Mountain or Desert). Per Table D -1 => Regression Coef. for a : Valley region = 0.2787 1 BW = 0.31 inches/hr I a = 0.2787 * 2 -year 1 hour Rainfall Value * Safety Factor (S.F.) S.F. = 2.00 7. Calculate The Target BMP Flow Rate (ft' /sec) Q = CeMP * I * A 0.47 felsec Where: Q = Target BMP Flowrate in ft' /sec Camp = Composite Runoff Coefficient l = BMP design rainfall intensity, in inches/hour A = BMP drainage Area in acres LA9180108\ProductionUHydrology & Hydraul"ics\Hydrology Calcs\BMP Flows\2008- 08-010esign Procedure for BMP Area A 2 so www.halladaymimmack.com l 1181 California Avenue l Suite 1021 Corona l California( 928811 951- 278 -9700 1 fax 951- 278 -2729 Project: BROWN - STRAUSS STEEL - ARE A StormTech® By: Richard Godina Detention •Relention-Recharge Units: Im erial Point of Contact HALLADAY & MIM MACK, INC. Subsurface Stormwater Management" Date: 8/1/2008 System Requirements Required Storage Volume 8,886 CF Select Stormtech Chamber System SC -740 ss (2440 mm) Stone Porosity (Industry Standard = 40 %) 40% PAVEMENT 18 (MIN mm) FOR UNPAVED INSTALI ,TION 1 T ERE RUTTING PRM O Stone Foundation Depth C Inches VEHICLES MAY OCCUR, INCRI —T COVER TO - MINIMUM. Storage Volume Per Chamber 81.70 CF 6 (150 mm) MIN Avg Cover over Chambers (18 in min. & 96 in max.) Inches 30 in (762 mm) Number of Chambers Required 109 Each 12 in (305 mm) Required Bed Size 3,987 SF Tons of Stone Required 567 Tons Volume of Excavation 812 CY Area of Filter Fabric 1,150 SY s^ MIN. 12' MIN. TYP. # of End Caps Required 22 Each Length of ISOLATOR ROW 71.2 FT ISOLATOR FABRIC 40 SY Is the limiting dimension for the bed the width or length? ienath Controlled by Width (Rows) Controlled by Length Width MFT Length FT # of Chambers Long - EA # of Chambers Long 10 EA # of Rows - EA # of Rows 11 EA Actual Length - FT Actual Length 74.80 FT Actual Width - FT Actual Width 53.75 FT 1 of the chambers rows will contain only 9 chambers www.halladaymimmack.com l 1181 California Avenue l Suite 1021 Corona l California( 928811 951- 278 -9700 1 fax 951- 278 -2729 +rr No 10 .err 00 Ir No" NW go 00 +w ■Ir r On aw rwr 4M rrl 4M so an rM Design Procedure for BMP Design Volume Designer Richard Godina Company. Halliday Mim Mack, Inc. Date: 8/1/2008 AREA "B +C +D" Project Brown -Strauss Steel (APN 0236- 201 - 01,02,13) Location: Fontana, CA San Bernardino County 1. BMP Drainage Area: Identify the "BMP Drainage Area" that drains to the proposed BMP element. This includes all areas that will drain to the proposed BMP element, including 3.72 Acres previous areas, impervious areas, and off -site areas, whether or not they directly or indirectly connected to the BMP element. Calculate the BMP Drainage Area (A) in acres. 2. Site Location: Outline the Drainage Area on the NOAA Atlas 14 Precipitation Depths (See Figure D-1) (2 -year 1 -hour Rainfall) map (Figure D -1). 3. Value Per Map: Determine the area - averaged 2 -year 1 -hour rainfall value for the Drainage 0.55 inches Area outlined above. ( In inches) 4. Calculated Watershed Impervious Ratio "i" Calculate the "Watershed Imperviousness Ratio ", i, which is equal to the percent of impervious area in the BMP Drainage Area divided by 100. Paving 0.04 @ 95% 0.04 Buildings 3.03 @ 100% 3.03 i = 0.83 Landscaping 0.65 @ 5 0 /6 0.03 3.10 "i" = 3.10 = 0.83 83% 3.72 S. Calculate Composite Run-Off coef. "C Calculate the composite runoff coefficient CBMP for the Drainage Area above using the following equation_ C = 0.858i - 0.78i + 0.774i + 0.04 CBS = 0.64 Where: C = composite runoff coefficient; and, "i" = watershed imperviousness ratio_ '""" L:191801081Production\Hydrology & HydraulicslHydrology Ca1cs1BMP Flows\2008- 08- 01 \Design Procedure for BMP Area B +C +D 1 rrW' 4M so r.. 4M No .w Im am ar on rr 4OR r 4N nr +w rlr irrrr r .. Im 6.Determine the Region - "Valley" Determine which Region of Drainage Area is Located in (Valley, Mountain or Desert)_ Per Table D -1 => Regression Coef_ for a: Valley region = 1.4807 P = 1.4807 * 2-year 1 hour Rainfall Value P = 0.81 inches 7. Calculate Maximum Detention Volume (inches) Determine the area- averaged "6 -hour Mean Storm Rainfall ", P for the Drainage Area. This is calculated by multiplying the area averaged 2 -year 1 -hour value by the appropriate regression coefficient from Table 1. Determine the appropriate drawdown time. Use the regression constant a = 1.582 for 24 hours and a =1.963 for 48 hours. Note: Regression constants are provided for both 24 hour and 48 hour drawdown times; however, 48 hour drawdown times should be used in most areas of California. Drawdown times in excess of 48 hours should be used with caution as vector breeding can be a problem after water has stood in excess of 72 hours. (Use of the 24 hour drawdown time should be limited to drainage areas with coarse soils that readily settle and to watersheds where warming may be detrimental to downstream fisheries.) P = a " CBMP * P6 1.02 inches Where: P = Maximized Detention Volume in inches, a = 1.582 for 24 hour drawdown a = 1.963 for 48 -hour drawdown CBMP = Composite Runoff Coefficient P6 = 6-hour Mean Storm Rainfall, in inches_ Assume a = 1.963 8. Calculate the Target Volume: (Ac - Ft) 0.32 Ac -Ft V. = (P - A) / 12 13817 c.f. ""� L V 80108\Production\Hydrology & Hydraulics\Hydrology CaicslBMP FlowsXM8 -08-01 Design Procedure for BMP Area B +C +O 2 OR 10 rrr rir am am "t r am No om No r E 4M to w 40 w oil iW OM MW om No Design Procedure for BMP Design Flowrate Designer Richard Godina Company: Halladay Mim Mack, Inc. Date: 8/1 /2008 AREA "B+C +D" Project. Brown - Strauss Steel (APN 0236-201-01,02,13) Location: Fontana, CA San Bernardino County 1. BMP Drainage Area: Identify the "BMP Drainage Area" that drains to the proposed BMP element. This includes all areas that will drain to the proposed BMP element, including 3.72 Acres previous areas, impervious areas, and off -site areas, whether or not they directly or indirectly connected to the BMP element. Calculate the BMP Drainage Area (A) in acres. 2. Site Location: Outline the Drainage Area on the NOAA Atlas 14 Precipitation Depths (See Figure D-1) (2 -year 1 -hour Rainfall) map (Figure D-1). 3. Value Per Map: Determine the area - averaged 2 -year 1 -hour rainfall value for the Drainage 0.55 inches Area outlined above. ( In inches) 4. Calculated Watershed Impervious Ratio 'T' Calculate the "Watershed Imperviousness Ratio ", i, which is equal to the percent of impervious area in the BMP Drainage Area devided by 100. Paving 0.04 @ 95% 0.04 Buildings 3.03 @ 100% 3.03 i = 0.83 Landscaping 0.65 @ 5% 0.03 3.10 3.10 = 0.83 83% 3.72 5. Calculate Composite Run -Off coef. " CBMP" Calculate the composite runoff coefficient CBMP for the Drainage Area above using the following equation_ C BMP = 0.858i - 0.78i + 0.774i + 0.04 C BMP = 0.64 Where: C BMP = composite runoff coefficient; and, "i" = watershed imperviousness ratio. ' L:191801081ProductionW drol y ogy & HydraulicsWydrology Catcsl6MP Flows12008- 08- 01 1Design Procedure for BMP Area B+C +D 1 rr on vo r rr .r r�rr r rr 6.Calculate I sew Determine which Region of Drainage Area is Located in (Valley, Mountain or Desert). Per Table D -1 => Regression Coef. for a: Valley region = 0.2787 1 m = 0.31 inches /hr I Bw = 0.2787 `2 -year 1 hour Rainfall Value * Safety Factor (S.F.) S.F. = 2.00 7. Calculate The Target BMP Flow Rate (Wlsec) Q. = Cww 1 13MP"A 0.73 ft/sec Where: Q = Target BMP Flowrate in fe /sec CwP = Composite Runoff Coefficient 113mP = BMP design rainfall intensity, in inchesthour A = BMP drainage Area in acres a�w L k91801081ProductionViydrology & HydraulicsXHydrology Ca1cs\BMP Flows12008-08-010esign Procedure for BMP Area B +C +D 2 gat Project: BROWN - STRAUSS STEEL - AREA IIB +C +D" StormTech® By: Richard Godina Detention• Retenlion•Recharge Units: Im erial Point of Contact HALLADAY & MIM MACK, INC. Subsurface Stormwater Management" Date: 8/1/2008 System Requirements Required Storage Volume 13,817 JCF Select Stormtech Chamber System SC -740 96" (2440 mm) MAX. Stone Porosity (Industry Standard = 40 %) 40oy PAVEMENT 18 460 mm) MIN. FOR UNPAVED INSTALLATION WHERE RUTTING FROM Stone Foundation Depth OlInches VEHICLES MAY OCCUR, INCREAST COVER TO MINIMUM, IMIN Storage Volume Per Chamber 81.70 CF s'I 160 mm) Avg Cover over Chambers (18 in min. & 96 in max.) Inches 30 in (762 mm) Number of Chambers Required 170 Each 12 in (305 mm) Required Bed Size 6,167 SF Tons of Stone Required 875 Tons Volume of Excavation 1,256 CY Area of Filter Fabric 1,821 SY s" MIN. 12" MIN. TYP. # of End Caps Required 12 Each Length of ISOLATOR ROW 206.48 FT ISOLATOR FABRIC 115 SY Is the limiting dimension for the bed the width or length? width Controlled by Width (Rows) Controlled by Length Width 30 FT Length FT # of Chambers Long 29 EA # of Chambers Long - EA # of Rows 6 EA # of Rows - EA Actual Length 210.08 FT Actual Length - FT Actual Width 30.00 FT Actual Width - FT 4 of the chambers rows will contain only 28 www.halladaymimmack.com 11181 California Avenue I Suite 1021 Corona I California 1928811951-278-97001 fax 951- 278 -2729 ur rri APPENDIX D WSPGW HYDRAULIC CALCULATIONS wm 00 8 ,. I. to go 4 r grr rr aw Tl LINE "A" 0 T2 Q -10 FREQUENCY .w T3 FONTANA J.N. 918 -01 -08 SO 1011.440 941.040 1 943.390 R 1047.230 943.330 1 .013 44.710 .000 0 R 1070.340 944.810 1 .013 0 .000 .000 R 1107.590 944.940 1 .011 .000 .000 0 R 1284.070 945.560 1 .011 .000 .000 0 irr R 1319.410 945.690 1 .011 90.000 .000 0 .. R 1367.410 945.850 1 .011 .000 .000 2 R 1390.970 946.490 1 .011 60.000 .000 0 *� R 1418.010 947.230 1 .011 .000 .000 0 r.� WE 1418.010 947.230 1 .500 „ SH 1418.010 947.230 1 947.230 CD 1 4 1 .000 1.500 .000 .000 .000 .00 rr CD 2 4 1 .000 1.000 .000 .000 .000 .00 own Q 9.900 .0 m r grr rr aw E I a I a I E I a I a I 1 1 [ 1 11 11 [ l r l [ 1 [ 1 [ I [ i t I t I a FILE: LINE_A.WSW W S P G W- CIVILDESIGN Version 14.05 PAGE 1 Program Package Serial Number: 1502 WATER SURFACE PROFILE LISTING Date: 8- 1 -2008 Time:11:43:12 LINE "A" Q -10 FREQUENCY Invert Depth Water Q Vel Vel I Energy I Super ICriticalIFlow ToplHeight/ Base Wtj INo Wth Station Elev (FT) Elev ( (CFS) I (FPS) Head I Grd.El.1 Elev I Depth I Width IDia. -FTIor I.D.1 ZL IPrs /Pip L /Elem ICh Slope I I I SF Aver HF ISE DpthIFroude NINorm Dp I "N" ( X -Fall ZR IType Ch * * + * +,r * ** I +�. * * * * *� I * + * * +.,r* I � * » +. * * *� I r,r r * * * * ** I • * * + * *. � + *,r ,r * +* I ,r• *,r * * * +* I,r *. * * ** I *. * * * * ** I *,t ,r + * *,+* I * * + * *�+ I *,r ,r * *.. ,r,r * +* :t,rr + + ** 1011.440 941.040 2.350 943.390 9.90 5.60 .49 943.88 .00 1.21 .00 1.500 .000 .00 1 .0 3.483 .0640 .0089 .03 .00 .00 .63 .013 .00 .00 PIPE 1014.923 941.263 2.164 943.427 9.90 5.60 .49 943.91 .00 1.21 .00 1.500 .000 .00 1 .0 HYDRAULIC JUMP 1014.923 941.263 .663 941.926 9.90 13.14 2.68 944.61 .17 1.21 1.49 1.500 .000 .00 1 .0 14.911 .0640 .0512 .76 .84 3.26 .63 .013 .00 .00 PIPE 1029.834 942.217 .687 942.904 9.90 12.52 2.44 945.34 .16 1.21 1.49 1.500 .000 .00 1 .0 10.277 .0640 .0450 .46 ,85 3.03 .63 .013 .00 .00 PIPE 1040.111 942.875 .713 943.588 9.90 11.94 2.21 945.80 .14 1.21 1.50 1.500 .000 .00 1 .0 7.119 .0640 .0396 .28 .86 2.83 .63 .013 .00 .00 PIPE 1047.230 943.330 .741 944.071 9.90 11.38 2.01 946.08 .00 1.21 1.50 1.500 .000 ,00 1 .0 4.532 .0640 .0352 .16 .74 2.63 .63 .013 .00 .00 PIPE 1051.762 943.620 .764 944.384 9.90 10.93 1.85 946.24 .00 1.21 1.50 1.500 .000 .00 1 .0 4.229 .0640 .0313 .13 .76 2.48 .63 .013 .00 .00 PIPE 1055.992 943.891 .794 944.685 9.90 10.42 1.69 946.37 .00 1.21 1.50 1.500 .000 .00 1 .0 3.354 .0640 .0276 .09 .79 2.31 .63 .013 .00 .00 PIPE 1059.346 944.106 .825 944.931 9.90 9.94 1.53 946.46 .00 1.21 1.49 1.500 .000 .00 1 .0 2.679 0640 .0243 .07 .83 2.14 .63 .013 .00 .00 PIPE I I a I ! I 1 1 K 1 a I 11 11 I I [ 1 11 11 11 1 1 I I [ I t 1 I I It I FILE: LINE_A.WSW W S P G W- CIVILDESIGN Version 14.05 PAGE 2 Program Package Serial Number: 1502 WATER SURFACE PROFILE LISTING Date: 8- 1 -2008 Time:11:43:12 LINE "A" Q -10 FREQUENCY �xxxxxxxxxxx�* xx+ xxxxxxxxxxxxxxxxxxxx* x• �** xxxxxx+ a* x xxx*+, rx* xx* x+* xxxxxxxrxxxx* x, rxx* xx* xxxxxxxx *x,rxxxx *x * *x *�xxxx *xxx *x.x xx *xx *x* Invert Depth Water Q Vel Vel I Energy I Super ICriticallFlow ToplHeight/ Base Wtj INo Wth Station I Elev (FT) Elev (CFS) I (FPS) Head I Grd.El,I Elev I Depth I Width IDia -FTIor I.D.1 ZL IPrs /Pip L /Elem (Ch Slope I I I SF Avel HF ISE DpthIFroude NINorm Dp I "N" I X -Fall ZR I Type Ch ** xxxxxxxlxxxrxx* xxlxxxxxxxxl., rx* xx* x* Ixx. xxx, rxxlx** xx, rxl.** xxx. Ix** x+ x** xl**, r: rxxxlxxx,++ xx* Ixxx * *xxxlxxxxx *,rlxxx,r *�xl+rxxxx I *xxxxxx 1062.025 944,278 .858 945.136 9.90 9.47 1.39 946.53 .00 1.21 1.48 1.500 .000 .00 1 .0 2.179 .0640 .0215 .05 .86 1.99 .63 .013 .00 .00 PIPE 1064.204 944.417 .892 945.309 9.90 9.03 1.27 946.58 ,00 1.21 1.47 1.500 ,000 .00 1 .0 1.737 .0640 .0190 .03 .89 1.85 .63 .013 .00 .00 PIPE 1065.941 944.528 .929 945.457 9,90 8.61 1.15 946.61 .00 1.21 1.46 1.500 .000 .00 1 .0 1.414 .0640 .0169 .02 .93 1.71 .63 .013 .00 .00 PIPE 1067.355 944.619 .967 945.586 9.90 8.21 1.05 946.63 .00 1.21 1.44 1.500 .000 .00 1 .0 1.084 .0640 .0150 .02 .97 1.58 .63 .013 .00 .00 PIPE 1068.439 944.688 1.009 945.697 9,90 7.83 .95 946.65 .00 1.21 1.41 1.500 .000 .00 1 .0 .839 ,0640 .0133 .01 1.01 1.46 .63 .013 .00 .00 PIPE 1069.277 944.742 1,053 945.795 9.90 7.46 .87 946.66 .00 1.21 1.37 1.500 .000 .00 1 .0 .588 .0640 .0119 .01 1.05 1.34 .63 .013 .00 .00 PIPE 1069.865 944.780 1.101 945.881 9.90 7.12 .79 946.67 .00 1.21 1.33 1.500 .000 .365 .0640 .0107 .00 1.10 1.22 .63 .013 .00 .00 PIPE 1070.231 944,803 1.153 945.956 9.90 6.79 .72 946.67 .00 1.21 1.26 1.500 .000 .00 1 .0 .109 .0640 .0096 .00 1.15 1.11 .63 .013 .00 .00 PIPE 1070.340 944.810 1.213 946.023 9.90 6.47 .65 946.67 .00 1.21 1.18 1.500 .000 .00 1 .0 2.524 .0035 .0062 .02 1.21 1.00 1.50 .011 .00 100 PIPE FILE: LINE_A.WSW W S P G W- CIVILDESIGN Version 14.05 PAGE 3 Program Package Serial Number: 1502 WATER SURFACE PROFILE LISTING Date: 8- 1 -2008 Time:11:43:12 LINE "A" Q -10 FREQUENCY *.**+: r*+**+ �k, r*+****.* �*****, t�*. r*.**+**+* t* a, t+ r, r**: r�.* r*+*, t�****, t, r+ r, t�+, t.***, r**+***+., t .,t,r * * * *,t,t,t *+t,t *�.,t *,r *,t *,t ,te,t *,t * +,t *,t * «,t• *,t ++r ,t ,t ** Invert Depth Water Q Vel Vel I Energy I Super ICriticalIFlow TopIHeight/ Base Wtj INo Wth Station I Elev (FT) Elev (CFS) I (FPS) Head I Grd.El.1 Elev I Depth I Width IDia. - FTIor I.D.1 ZL IPrs /Pip L /Elem ICh Slope I I SF Aver HF ISE DpthIFroude NINorm Dp I "N" I X -Fall ZR IType Ch **.***.** I*+• �** �*. rl****.*+* I***+***** I*, e.**+,+., rl******, rI***++*. I*: r+*.*, r*+ I**+, r** rl. r.*+«** I+*« *,. * * *I,+ * * * + *,rl,r * * * * *.I * * * ** I +. *,r.,+* 1072.864 944.819 1.279 946.098 9.90 6.16 .59 946.69 .00 1.21 1.06 1.500 .000 .00 1 .0 12.055 .0035 10058 .07 1.28 .88 1.50 .011 .00 .00 PIPE 1084.919 944.861 1.360 946.221 9.90 5.88 .54 946.76 .00 1.21 .87 1.500 .000 .00 1 .0 22.671 .0035 .0056 .13 1.36 .75 1.50 .011 .00 .00 PIPE 1107.590 944.940 1.444 946.384 9.90 5.67 .50 946.88 .00 1.21 .57 1.500 .000 .00 1 .0 19.623 .0035 .0057 .11 1,44 .57 1.50 .011 .00 .00 PIPE 1127.213 945.009 1.500 946.509 9190 5.60 .49 947.00 .00 1.21 .00 1.500 .000 .00 1 .0 156.857 .0035 .0061 ,96 1.50 .00 1.50 .011 .00 .00 PIPE 1284.070 945.560 1.946 947.506 9.90 5.60 .49 947.99 .00 1.21 .00 1.500 .000 .00 1 .0 35.340 .0037 .0064 .22 .00 .00 1.50 .011 .00 .00 PIPE 1319.410 945.690 2.139 947.829 9.90 5.60 .49 948.32 .00 1.21 .00 1.500 .000 .00 1 .0 48.000 .0033 .0064 .31 2.14 .00 1.50 .011 .00 00 PIPE 1367.410 945.850 2.333 948.183 9.90 5.60 .49 948.67 .00 1.21 .00 1.500 .000 .00 1 .0 23.560 .0272 .0064 .15 .00 .00 .74 .011 .00 .00 PIPE 1390.970 946.490 1.922 948.412 9.90 5.60 .49 948.90 .00 1.21 .00 1.500 .000 .00 1 .0 20.094 .0274 .0063 .13 1.92 .00 .73 .011 .00 .00 PIPE 1411.064 947.040 1.500 948.540 9.90 5.60 .49 949.03 .00 1.21 .00 1.500 .000 .00 1 .0 2.880 .0274 .0059 .02 1.50 .00 .73 .011 .00 .00 PIPE a 1 a i a 1 ! 1 t 1 t 1 11 1 1 1 1 [ 1 1 1 1 1 1 1 1 1 1 1 1 1 a 1 1 1 a I FILE: LINE_A.WSW W S P G W- CIVILDESIGN Version 14.05 PAGE 4 Program Package Serial Number: 1502 WATER SURFACE PROFILE LISTING Date: 8- 1 -2008 Time:11:43:12 LINE "A" Q -10 FREQUENCY Invert Depth Water Q Vel Vel I Energy I Super ICriticalIFlow ToplHeight/ Base Wtj INo Wth Station I Elev (FT) Elev (CFS) I (FPS) Head I Grd.El.1 Elev I Depth I Width jDia. -FTIor I.D.) ZL IPrs /Pip L /Elem ICh Slope I I I SF Aver HF ISE DpthIFroude NINorm Dp I "N" I X -Fall ZR IType Ch 1413.944 947,119 1.360 948.479 9.90 5.88 .54 949.02 .00 1.21 .87 1.500 .000 .00 1 .0 HYDRAULIC JUMP 1413.944 947.119 1.009 948.128 9.90 7.83 .95 949.08 .00 1.21 1.41 1.500 .000 .00 1 .0 1.161 .0274 .0095 .01 1.01 1.46 .73 .011 .00 .00 PIPE 1415.105 947.151 1.053 948.204 9.90 7.46 .87 949.07 .00 1.21 1.37 1.500 .000 .00 1 .0 1,626 .0274 .0085 .01 1.05 1.34 .73 .011 .00 .00 PIPE 1416.731 947.195 1.101 948.296 9,90 7,12 .79 949.08 100 1.21 1.33 1.500 .000 .00 1 .0 .988 .0274 .0076 .01 1.10 1.22 .73 .011 .00 .00 PIPE 1417.720 947.222 1.153 948.375 9.90 6.79 .72 949.09 .00 1.21 1.26 1.500 .000 .00 1 .0 .290 .0274 .0069 .00 1.15 1.11 .73 .011 .00 .00 PIPE WALL ENTRANCE 1418.010 -I- 947.230 -I- 1.214 -I- 948.444 -I- 9.90 -I- 6.46 -I- .65 -I- 949.09 -I- .00 -I- 1.21 -I- 1.18 -I- 1.500 -I- I 1 .000 -I- .00 1 0 .0 I- rrl or rn rir OR ow 4m as m go on 10 INLET STUDY rr w er .r 4M M wo IN r f�11 M 111 r M r �o • • s tp 2 B me W oft t aI = 0.1 W 0: 0.� Q: d =0.2! a 6iQ rE inr�E r1 Q10 g /A CF-5 c,A VA IL. = 0.3' i��nrr �II�L ■�III�I�(Ifl�ll� INEWENNIN ON�IIIII I Ed �00* Pi P4 Man 2 3 . s 6 a to —Qlo =1,4 CFS OIiQtAJti>E n Wr 20 30 40 so •0 GRATE INLET CAPACITY W SUMP COND (Table assumes no clogging.) USE f 6 "x /6 / / GR4 -TE- (P= 5 -3 � ci = 0,21'< 0,3' 5 -51 Figure 5 -18 .sr irr �r aw 4w Ow M 3 I E W ' = OA r Q e a 1-1� o., - I �o r s _ 4 .sr irr �r aw 4w Ow M 3 I E W ' = OA r Q e a 1-1� o., - I 2 �s 4 S s • 10 20 30 40 90 ego Q10= 2'7 a fFT GRATE DILET CAPACITY W SUMP COND (Table assumes no clogging.) USE 16 l6" 161YSE'd /N w f6;z,4TF d = 0,53'< 1,46' 5 -51 Figure 5 -18 FAI;A- rAflil W, MOMENEWIMA d I A 0 � 0 P OA O 0 0 2 �s 4 S s • 10 20 30 40 90 ego Q10= 2'7 a fFT GRATE DILET CAPACITY W SUMP COND (Table assumes no clogging.) USE 16 l6" 161YSE'd /N w f6;z,4TF d = 0,53'< 1,46' 5 -51 Figure 5 -18 ,rtr 11MMEMrr io a I IJI/,'L rift � of rr t i 1 OA s 0. 03 3 4 5 t • 10 t0 30 40 so so Qlo = 3 .1 oe:cx n jrr r GRATE INLET CAPACITY IN SUMP CONDITIONS (Table assumes no clogging.) USE JE NSEN 16 I A -/C 6R*17E 11V1-ET 5 -51 Figure 5 -18 11MMEMrr a I IJI/,'L rr of 3 4 5 t • 10 t0 30 40 so so Qlo = 3 .1 oe:cx n jrr r GRATE INLET CAPACITY IN SUMP CONDITIONS (Table assumes no clogging.) USE JE NSEN 16 I A -/C 6R*17E 11V1-ET 5 -51 Figure 5 -18 11MMEMrr I IJI/,'L s��������11. %f1 ■i = nns, 0 F;OA , 'PAP P �A 3 4 5 t • 10 t0 30 40 so so Qlo = 3 .1 oe:cx n jrr r GRATE INLET CAPACITY IN SUMP CONDITIONS (Table assumes no clogging.) USE JE NSEN 16 I A -/C 6R*17E 11V1-ET 5 -51 Figure 5 -18 10 iv rrr s WANWAA wW 4 w� ■■�n�i�souu 3 1114 � 2 � s .A 0.3 dw s 0. 46 03 rw 0. 0. 0, 1 9 1 02 .w �� ■�IlI�III 01 3 4 S t s 10 20 30 40 so s0 DUCLUU Q gR 3 1V GRATE INLET CAPAWY IN SUMP CONDITIONS ..� (Table assumes no clogging.) Of V5 E JEN SEN (6 16'' :R4TE INLE r (P= d = 0,1p < 0,5 5 -51 Figure 5 -18 WANWAA �� ■■�n�i�souu �� ■�IlI�III �/,l��I CURG P WAP na 3 4 S t s 10 20 30 40 so s0 DUCLUU Q gR 3 1V GRATE INLET CAPAWY IN SUMP CONDITIONS ..� (Table assumes no clogging.) Of V5 E JEN SEN (6 16'' :R4TE INLE r (P= d = 0,1p < 0,5 5 -51 Figure 5 -18 w r A .. ow PARKWAY CULVERTS ww om aw 0 am w ,o 10 m aW SIZING PRKWY CULVERT.txt HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -2008 Advanced Engineering Software (aes) Ver. 15.0 Release Date: 04/01/2008 License ID 1340 Analysis prepared by: Halladay & Mim Mack, Inc. 1181 California Avenue, Suite 102 Corona, CA 92881 Tel: 951- 278 -9700 Fax: 951- 278 -2729 TIME /DATE OF STUDY: 13:57 07/16/2008 Problem Descriptions: SIZING PARKWAY CULVERT AT NODE 41 ********************************************* * * * * * * * * * * * * * * * * * * * * * * ** * * * * * ** » »CHANNEL INPUT INFORMATION «« NORMAL DEPTH(FEET) = 0.23 CHANNEL Z1(HORIZONTAL /VERTICAL) = 0.00 Z2(HORIZONTAL /VERTICAL) = 0.00 CONSTANT CHANNEL SLOPE(FEET /FEET) = 0.020000 UNIFORM FLOW(CFS) = 0.40 MANNINGS FRICTION FACTOR = 0.0150 NORMAL -DEPTH FLOW INFORMATION: » »> BASEWIDTH(FEET) = 0.51 < USE RECTANG. PIPE 8 "x3.5" FLOW TOP- WIDTH(FEET) = 0.51 PER CITY STD. 3001 FLOW AREA(SQUARE FEET) = 0.12 HYDRAULIC DEPTH(FEET) = 0.23 FLOW AVERAGE VELOCITY(FEET /SEC.) = 3.43 UNIFORM FROUDE NUMBER = 1.259 PRESSURE + MOMENTUM(POUNDS) = 3.49 AVERAGED VELOCITY HEAD(FEET) = 0.182 SPECIFIC ENERGY(FEET) = 0.412 CRITICAL -DEPTH FLOW INFORMATION: CRITICAL FLOW TOP - WIDTH(FEET) = 0.51 CRITICAL FLOW AREA(SQUARE FEET) = 0.14 CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 0.27 CRITICAL FLOW AVERAGE VELOCITY(FEET /SEC.) = 2.94 CRITICAL DEPTH(FEET) = 0.27 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 3.42 AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 0.134 CRITICAL FLOW SPECIFIC ENERGY(FEET) = 0.402 Page 1 we No 0 am io am im uw ma IN 40 No on to CONCRETE "U" CHANNEL m do rrll 0 HYDRAULIC ELEMENTS - I PROGRAM PACKAGE 'm (C) Copyright 1982 -2008 Advanced Engineering Software (aes) Ver. 15.0 Release Date: 04/01/2008 License ID 1340 Analysis prepared by: Halladay & Mim Mack, Inc. r. 1181 California Avenue, Suite 102 Corona, CA 92881 Tel: 951- 278 -9700 Fax: 951 - 278 -2729 ------------------------------------------------------------------------ i.r TIME /DATE OF STUDY: 11:55 08/05/2008 Nit. Problem Descriptions: SIZING CONCRETE U-CHANNEL BETWEEN NODES 50 & 51 0 » »CHANNEL INPUT INFORMATION «« aw ------------------------------------------------------------------------ CHANNEL Z1(HORIZONTAL /VERTICAL) = 0.00 rrr Z2(HORIZONTAL /VERTICAL) = 0.00 BASEWIDTH(FEET) = 3.00 .�a CONSTANT CHANNEL SLOPE(FEET /FEET) = 0.011700 nr UNIFORM FLOW(CFS) = 16.80 w,. MANNINGS FRICTION FACTOR = 0.0140 ------------------------------------------------------------------------ ------------------------------------------------------------------------ w NORMAL -DEPTH FLOW INFORMATION: ------------------------------------------------------------------------ >>>>> NORMAL DEPTH(FEET) = 0.76 +�w FLOW TOP- WIDTH(FEET) = 3.00 FLOW AREA(SQUARE FEET) = 2.29 HYDRAULIC DEPTH(FEET) = 0.76 FLOW AVERAGE VELOCITY(FEET /SEC.) = 7.32 UNIFORM FROUDE NUMBER = 1.475 PRESSURE + MOMENTUM(POUNDS) = 293.13 AVERAGED VELOCITY HEAD(FEET) = 0.832 SPECIFIC ENERGY(FEET) = 1.597 ew to ----- - - --- -- ------------------- ----------------------------------------- ------------------------------------------------------------------------ CRITICAL -DEPTH FLOW INFORMATION: 0 +r am so ww aw s rrr +e� it N 0- an go 0 ------------------------------------------------------------------------ CRITICAL FLOW TOP- WIDTH(FEET) = 3.00 CRITICAL FLOW AREA(SQUARE FEET) = 2.97 CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 0.99 CRITICAL FLOW AVERAGE VELOCITY(FEET /SEC.) = 5.65 CRITICAL DEPTH(FEET) = 0.99 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 275.90 AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 0.496 CRITICAL FLOW SPECIFIC ENERGY(FEET) = 1.487 aw ------------------------------------------------------------------------ ww aw am so ww aw s rrr +e� it N 0- an go 0