HomeMy WebLinkAboutPalermo Luxury Apts Onsite StudyL
Palermo Luxury Apartments
Onsite
Hydrology Study
L
PM
January 15, 2008
Job # 208.02.01
Prepared For:
SC Development
14841 Yorba Street, Suite 205
Tustin, CA 92780
Phone (714) 505 -7090
6
Quo - --
Prepare under the supervision of:Q�`pg•HA�yyj? ti
V40. 4397
VP WWII
3. m
d
David S. Hammer, P.E. ACE 43976 Exp. 06 -30 -09
8253 Sierra Avenue Fontana, CA 92335 (909) 356 -1815 * (909) 356 -1795
Table of Contents
Discussion
Hydrology Reference Material
Rational Method
Hydraulic Calculations
Street Capacity Calculations
Inlet Calculations
WSPG
Line A
Line B
Line C
Hydrology Exhibit
0
FS FS Discussion
Introduction
f
The Palermo Luxury Apartments is a proposed 6.3 acre multi- family residential
development located on the southeast corner of Foothill Blvd. and Live Oak Avenue, in
the City of Fontana. It is bounded on the west by Live Oak Avenue, on the south side by
several single family lots, on the east side by vacant property and on the north side by
* Foothill Blvd. The City of Fontana's Master Drainage Plan shows that there is an
j r , existing drainage system on Foothill Blvd. (72" pipe) that serves as a barrier for all the
storm water runoff coming from the north side of the project. The project site currently
PM drains from the northeast to the southwest at a slope of approximately 1.8 %.
Or
This site was only recently annexed into the City of Fontana. The project was approved
ps by the County of San Bernardino Planning Commission on July 5, 2007. A hydrology
study ( Palermo Luxury Apartments Live Oak Avenue Hydrology Study, Revised Date:
February 15, 2007) was prepared by Allard Engineering and approved by the County
Public Works Department, Land Development Division prior to the County Planning
V Commission action. The report addressed downstream runoff.
Once developed, Palermo Luxury Apartments will drain into an onsite underground
6 retention system which will serve as the projects treatment control BMP. In small event
storms, storm water will leave the retention system only by infiltration into the ground. In
larger event storms, storm water will fill the retention system and will "bubble" up
through 3 parallel pipes to an onsite parkway drain transition structure. Some of the storm
water will drain to Live Oak Avenue in a 6' wide parkway drain. In major storms, some
of the water will "bubble" out of the transition structure and surface drain to Live Oak
Avenue.
The vacant land east of Palermo Luxury Apartments is proposed to develop as a
condominium project to be named Hampton Place III. Hampton Place III will be
required to mitigate its increase in runoff (See the previous study titled Palermo Luxury
Apartments Live Oak Avenue Hydrology Study). Hampton Place III will have a private
storm drain pipe that will serve as the future outlet for the site.
Purpose
This report will quantify the 100 year peak flow rates for the site and demonstrate that the
onsite drainage structures are adequately sized to convey the runoff in a safe manner.
Criteria
The criteria utilized for hydrologic analysis is the San Bernardino County Hydrology
Manual. AES computer software was utilized to perform computations.
r
Results
Rational method analysis demonstrates that the site will produce 22.8 cfs during the 100
year storm event. Onsite street capacity analysis demonstrates that the streets have the
�w capacity to convey the 100 year storm event below the target depth of 0.3 feet. Streets in
conjunction with the onsite storm drain system will convey the runoff through the site in
a safe manner. A storm drain system that comprises of a primary and a secondary system
ON will be constructed to covey runoff through the site. The primary system which consist of
Line A, Line B and Line C along with the onsite streets will convey the 100 year storm
event. The pipes of the primary system are no less than 12" diameter. The secondary
r+ system which consist of extensions of Line A and Line C will serve small area drains
L which were sized based on the 2 year storm event. The pipes of the secondary system do
not exceed 8" diameter. The primary system was designed under the assumption the
secondary system was plugged. Calculations and an exhibit accompany this discussion to
further illustrate these findings.
�r
P"
L
i
4
ko
a
I,
r
0
Hydrology Reference Material
i
' ■{ 1f
1.7 R8 ' R7W R6W R5W �t4W o - J -- -- - -- , - r - - - - i— - RIW \ •! , "�.. --- T4
I 1 „ - 2w RIE R2E
= R
yri I.s
�-- I { - - - - — r- Ir _ • : z �;.•`f - +'r •° ..5 2 3 - - - .�_� ' - -r y 1 - - T g IY 1
t T — t — — - = a - - r ♦ �y�M
s•s -� z � _ ` B `` � i
� a ` � L .PROrN' h • • y • P•L Ora L�
- - - 1 r - _R.' •t•" ern.
A - - = �`
• 'S' ITS 'T - —Y - - - - -- - - I — '� _ � �'' ' �' � cPrIM L , ' `.'�. DI
3 V • L ~ � � PLO.• � I
TIN — - c — y •C• ~ _- « 4 . *Too f` I • c «..
?F -, =- -
-- - -- •- ---� -- + ..K. • 1,{ 1 .� � 3 -= � �' it - _ - -ter -_. `' *�— - ? - -, —! — ' !-- I —
1 n 3 I � `' _ 1. •�•` S•M IP..PC:IIO t J
cuPO.orr R I A LT 0_
- - -�t • COLT N - L{ . -- -
:., i - = j s
01 A la; -' t•- rt - REOL MO -
•``
.••- -- - - P - — - uwr r • �� t - �.�
am cis
zz t
4 .2 TUC.IM • �I
73
Tzs , }�;d _ - _ '�1t.1r - - -': - -- :• - �j I ERSIDE
R4W R3 R2W - .� RI VI_ U►.T1�1iL.�{
ti. e�I ........•• e , -
` SAN K MINTY
LOW
R5
a .•oL REDUCED DRAWING
T3S — — — — — - YEA[ iSlB
. /t{ SCALE I�� = 4 MILES Yeo -100 �'F� "T*1011R
A
� 411
SAN BERI�IARDINO COUNTY ""°°""j°`'"``""""''"
- - •� , - - ., - - - .wrorm er
— •-� L
e w w HYDROLOGY MANUAL
( 1.8 ISOlINE8 PRE':IPITATION (INCHES) M1�HA � � Mi �
•' •
............................ • C Ifi2 l MAI d 1!
g -12 FIGURE 8 -4
VALLE
i4N R6W R5W — 4W o RIW 4J ', RIE w ' °. R2E T
_� - - - - -- `— — -- - -' y• fl _ — I _ � _ _ I I •� I °° T4
Y
• — ' I -- r — . — — — - — — - v B — — — -'' - i • ''•• 4.
r .;• I I --r / I l 'REST IT 1 - - - - -- -- . ;., - I - ' - ;- - - - , r<: - +- -*
- I I I 1 _ I ••«•• �A•u wuw.. �yQt I '7- f 1.2
' — � � '..., � ` ' � I ° z � u� A '� I � � � I € � � � ti � w..n . •el � � ,i t I (
1.3
�' ( << t . �• J r a s c L0 _ 1l- -+ - - - - - - - = I. - •r -- - y -- - -'� - I - 1 - -_ �- 7
• .. �rt - T I �• I J I J
•,
1. I RfiION mwNt - I 1 - » _ - - - ' o ♦ ✓
T3N Y - - -- �- - - a,a•, «1• s s _ 7 _ L cnr, o i ° s � _6 -_ I r� - ` -6 - _ "`�/
I I 1.7 `i I +' - - - -- - -` -- t , °�IL,�° t >. a_i • ` ` - r/ 1,B 1 r 1 I S�j t I • j ={
I I I p• iz ,. •s r< ' r ." • "'•~ }_ — — /) — — ->t- 1.7
, Yi r -4.? -fir I I I 1 .., /I � I y Y �� — � I .<a• 1 _ • � ��-n �.
1 i 3 .• 1.°
6 1 I r
i - _ -- -- _ b � LE ( ARROrYE AO 4•• ' .lii • .LOw,ry
T _- •.}►��w- :4 - -'� I _ !; .•s!. 1 \r^ I •tY ury - -tr
• `� � I ' '• i �. - - - - - - - -. _ - •EAR - -
_._. __ - - _ 1 _ o _ 1.1 `� b - �i - �s41_'s2h. •• LB• r pG - � r _ � L 'N - 7•°'772
— s - +
LAN
14 IN
—_ T _ - T -l- ♦) `' ' / -L`. - -- _ ' r V - - t_ r " •. t i ` nutpine 3mmes
1 l •.,� '..e y f � C 1.2 w ne.o.r � I
I_ g � L3 - li -; '�' - _ - '�` `•' -- -- 1 F - -- . � - �•^ - - __ Try �
n •`• _ .. � .
r _ r ' ^•� TL
- — -- -- - i i \ l 3 _ J s � ► -
I � DeM LI - pry - r � - - 1 " ,. - - . SYr•eo+ :,� : ' e. _ �_, - _ - C~ ` - � - - . _ - .. - � ' - _ ► aN - - _ ai i
- r -- t - - -- -- - v I \ ` - - -
' LO _ _ F' .. :L�( 1 _ E 3' ti 5 --� - — —_ , -_•_—
. •D W
AL TA
UPL /R N E w . AN n _ �- - •�_... ; r► I
CIJA>t0011T _ 1 ' ..°• _R
cucA YOA �. FONTAN
TI$ - -- as r •• �% ° r - — - - '�:e
I - 4 _ _ _ • • - - -
- ONT LO-q- a C TON -. :.� �..• a i _ -- — - _ �.�5
REDLANOS
- -- � - •`• - ' T - - - IOYA IINOA - _ - _ ..r _r - c _ � �'�` _ -•� - - - �r - -- - -- � ` --`
• • • • w
At - w.a. 'h.. • E _ _ CREST YORE { _ _ - i _ �_.` `. -_ LI _ _r _ -__ \ a•_ - --
EN
r•• S I ... -�. I I w.- F r IPA
WnNAAWN; TV
:.,_ ! i■ _ _
-47 i a 3 �'. • 'uryur -< • • •RAN• TERRfCE _ —
CHINO
i !AN •ERNA OINO - " r 1
\ 6 .- - — 1 Q F i 1, R ouY ° _ _ _ \3 RIE R E Irl.•oo
RIVER3101 COUNT J4� _ _ -
T2S -` -- -,� - YF 1- - - T•O
- �= I RSIDE
r
I •. • N !!�' A .,'. � - R4W ° s R3 '- R2Wc
±
'
°
SERNARDIN
FLOOD CONTROL t)I TR T
4
R 5 'o
~r �
VALLEY AREA
T3s
- _
; . >, r.
•� �.
CED DRA
REDU wlry
I 4 MILES
ISOHYETALS
SCALE
OUR3
--
SAN_ BERNARDINO
COUNTY
---
"SEO ON KOAA.wu
•,'
A
0j"ADVE0 BY
alas • p B W I
•
R 7 W
-
R6 HYDROLOGY MANUAL
LEGEND:
FL
GATE
I SCALE
FILE Nn 011MK' N0.
ISOLlNES P +£CifITATION (INCHES)
........................... •
1992
C -2 W-
Yron -. . _. ..,
I"
iw
Lo
it
D-7 FIGURE O-Z
■ ■ ALLARD ENGINEERING DESCRIPTION
■ civil engineering • land surveying • land planning 1M�4* AALrA
Fontana • Victorville JOB# SHEET OF
Z�roOZ
DESIGNED BY I DATE
r'
T t -
I !
I ,
i
T
i
,
l I l —
i
�
! �I �t�
. - .
t
I
s
,
I
E '
8253 Sierra Ave. • Fontana, EA 92335
•
APPROVED
t'h (909) 356-1815 • Fax
(909) 356-1795 www.allardeng.com
i
I
-
-Z?
- -
,
E i
L
,
I
I
i
•� I
�
o , ZQS.
'` . 1 2,E 8zu
s �
t7,
3 h
r'
T t -
I !
I ,
i
T
i
,
l I l —
i
�
! �I �t�
. - .
t
I
s
,
I
E '
MURRAYSTORM
DIRECTOR. EMA
r -
.4 : U N-r-y (D ��� _ DIRECTOR Of REGULATION
-
LOCAj10N. _
i a 44 DOCIVIC CENTif, DRIVE -WEST
1= r A
- S VTA ANA CALIFORNIA
RANGE , - -_ - - -- _.- - -
-- :; - - - -- - - --
-- : -MAIL ING ADDAESSi -
-- _ P.O. aOX 404a
ENVIRONMENTAL MANAGEMENT AGENCY �AMTA Atle_' 91'.L'2 - 4048 _
REGULATION
(71a) 814.2 626
FILE _.
�I TO: Designers /Developers of Frivate /Semi- Private Drainage Devices
FROM: E'4: -. Drainage Unit
The Drainage Unit has been assigned the task of reviewing parking areas, . streets,
and storm drains which are not publicly owned for hydrological /hydraulic adequacy.
This memo will allow the Unit to provide you our thoughts at this time and s6licir_
Lhe private sectors for comments.
Attached to this Demo you will find our proposed methodology and several proposed
structural sections which we feel provide the necessary protection. Our inti-nr
is to provide a standard structure which is easy to engineer with minimum.. install
. 1 -
ation cost and . ^- •af.imum protection.
Considerable effort was made to contact producers of structures suitable for
private drainage structures. Eased upon their response, we have identiffe -e se-era'
! structures as suitable by reference to the manufacturer's liter-ature. S•:e are not
specifying any given manufacturer, only the concept.
A" Any corrnents regarding our preliminary standards for private /semi - private dra rage
L will be appreciated. Please direct your comments to Jerry Sterling, telephone
number (714) 834 -5060, or to the above address. - - - - --
L We anticipate including the proposed standards in the ne::t rrirtino of our Drainage
Design and Criteria Aids.
JDS:lc
[ I
PRIVATE AND ASSOCIATION DRAINAGE DEFINITIONS ---- -- - --
Pl' — `A = Area, - -- in - s ware - - f eet — - - -- - — =— - --
V = Velocity, in feet peL second
y - Depth of -water in approaching gutter, in feet
d = Depth of water over catch basin, in feet
- '- t Thickness of bars in catch basin, in feet
-- - - -- — W = Width of - slot
s — — -- -_.
Q = Capacity of grate, cfs
' L min. length of catch basin, in feet
!fr P =Netted perimeter, in feet
W = Width of street flow, in feet
P = Wetted perimeter of alley gutter, in feet
�1+
Lmin.
�5
PM
1 1 -
F1. —�.. --17
N
a --
i -
i
d
P
9
47
-
-" , ' - -- - - -_ -- - PRIVATE AND ASSOCIATION DRAINAGE CRITERIA �� -- -' -- -
= Z DEFINITION - - OF PRIVATE -ND ASSOCIATION DRAINAGE -- - -- -- _ - -" -- ==
Private and association drainage is that drainage which ultimate operation
and maintenance responsibility will fall to a group of persons or
-- homeowners association. This definition - will - not - include works which - are -
-----with in- Light-of-way. - -- - - - -- — - -- -- -- - - -- - -
Public maintenance will begin when public waters are intercepted, there
after the system will be public and shall be designed in accordance with
public works criteria. ,
II. —INSTRUCTIONS FOR PREPARATION OF PRIVATE DRAINAGE PLANS
General Instruction
A. Submit a plan drainage for entire drainage area along with a
topographic map having a scale of 1:1000 or larger, (e.g., 1:200).
B. Submit plans of proposed private driveways with the proposed
grades and street sections. This maybe grading plan if one sheet.
C. Submit a plan showing the drainage areas being considered, runoff from
each area, the Q's on each side of drive /streets, Q's intercepted by
catch basins, and Q's in pipes and other structures, (i.e., Breakdown
of all Q's) .
D. Submit all calculations with references to charts, tables and /or
methods used.
E. Private storm drains shall be shown on Improvement Plans and labeled
'Private Storm Drain - Not maintained by County or OCFCD."
Design Criteria for Private drainage Systems
Note: When standard street sections are specified use public street
criteria.
A. All buildings shall be protected from flooding during 100 -year
frequency storm.
B. 1. Onsite design storm is a 10 year frequency. In sump conditions
for catch basins and the connecting storm drains, use a 25 year
frequency,
2. Offsite design storm frequency subject to individual review by the
Agenoy and should be in accordance with the Hydrology Manual.
C. -Catch basins (bicycle type) may be of the grate type if street slope
does not exceed 5 %.
a:
-- - -
_'D. If street slope exceeds_6% side inlet catch basins with local
- -
- -- -- -
depressions shall be used. - -- --- - --
= E. Design shalf pro�-3de for minimum number - of - cross - glitters, - - - _
F. A positive secondary overflow from site shall be provided in grated
sump catch basin designs.
5 treet shall die contahned - in concrete alley gutter - a - -- -
minimum of 4' wide or a standard curb and gutter.
ib H. Curb drains (Grading Section requires min. 4" drains) are acceptable
if opening is 3" less then curb height.. Use examples on page 10.
bw I. Storm drains may use ACP if D load is 1.5 times D loading specified in
OCFCD design Manual, and velocities are 10 fps or less (per Grading
Manual, Sec. 11.5).
J. All storm drains in driveways shall maintain 30" minimum cover.
O" R. Yard drains will not be considered as storm drain devices.
III. G PXItz - INLET CAPACI DESIGN
Genera Discussion
1 A. The ability of the grate to intercept storm water is the most
fo -.
important function a grate can perform. The main considerations in
design are the geometry and the flow - through area of the openings.
Although text book formulas are available they appear to be inadequate
for the solution of most real life situations,
6
An inlet grate must act as a strainer and prevent harmful debris from
1� entering storm drains. However, grates designed with closely sbaced
bars for strength and safety become easily clogged from very small but
always prevalent debris. -As the spacing of the bars increases there
poses the problem of bicycle_ safety_ Following are general
grate /bicycle design criteria:
I. Openings consist of at least 501 of total area of the grate.
6 2. Minimum clear spacing between bars shall be 1 ".
3. For.bicycle safety cross bars shall be provided at a maximum
spacing of 9" (a 24" diameter bicycle wheel will not drop down
more than about 1 ").
4. Grates shall'be cast iron or galvanized steel.
Inlets on a Continuous Grade
A. Where the gutter is on a continuous grade, grate inlets with efficient
openings can be expected to intercept all the water flowing in the
part of the gutter cross - section above the grating.
-3-
�1
R.
E
The bars =shall - run' - paralle l' - t o '
run - paralle l t o the - direction of - flow. - . - ' -
2. The unobstructed opening,._parallel to the direction o _ fl ow,
dllin th=ough__? e, - opening to_ - - --
- -- clear the downstream end of the slot dep`rids upon the depth and -
velocity of flow in the approach gutter and the thickness of the
grate. The minimum length of slot may be estimated by the
:_ -- - -- -- - =— - - following formula: —
L min = .675V (y + t)
Where
L min = minimum length of slot (in feet)
V = mean velocity of flow in the approach gutter (fps)
y = depth of water in approach gutter (ft.)
t = thickness of grate at downstream end of the slot (ft.)
3. The capacity of a grate inlet, where the gutter is on a continuous
on grade, increases rapidly when part of the flow is allowed to go
L O past the inlet. This is due to the increased depth in the cross
section of flow over the grating.
1 . , j 4. A curb opening placed upstream from the grate on a continuous
fir` grade tends to take off debris brought down as flow begins, thus
reducing the probability of the grate becoming clogged.
f'
L O B. Design Procedure for Grate Inlets on Continuous Grad
1. Determine normal flow conditions using street capacity charts or
alley capacity formulas as appropriate.
2. Determine capacity of grate.
,
Qg = width of grate x V x (depth of water over grate)
3. Check to see if grate is long enough using the formula.
L min - •675V (y + t)
Note: 251 - clogging and 108 cross -bar allowances have been
included in this equation.
Sump - Inlets
A. The capacity of the grate depends upon the area of the openings and
the depth of the water at.the grate. Experiments have determined t:,at
a grate will act as a weir and follow the weir formula for depths
(heads) on the grate up to 0.4 ft. It will act as an orifice and
follow the orifice formula for heads of 1.4 ft. and over. For heads
-4-
-
` -- "- 'between ft� ° the -- operation_Is indefinite_ because of_______.__
- - - - - - -- - ... -- - - - _
vortices and eddies over the grate.
- - -— When aroposing a sump condition the desaaneac Gust _i�er.ify._ 09- ear --
_. ef�Y ...of,_Y,abi areas assuming _t he grate %.- This
will require a secondary emergency outlet of the sump waters which
should provide a minimum of 1.0..foot,free..board between maximum W.S,
elevation and minimum, finish 11 " ..elevation.' i This emergency outlet
system direct o � o ei the r - beam sffie - O or na --
�.. conveyance system. Point of discharge must be analyzed with - regards
to prevention of downstream problems. Such a system need not consist
of additional structures but may simply require modification of
surrounding grading allowing water to flew between dwelling units.
9. If th'e required head falls between 0.4 ft. and 1.4 -ft. the actual
head may be anywhere between (a) and (b). Use the value that
gives the most conservative result, being sure to use line (a)-
with Q/P and line (b) with Q /A.
- -- -5-
t
C. Design Procedure for Sump Grates
1.
In the usual problem the following are given:
60
a. An assumption of orate configuration with dimensions. Include
grate detail with calculations.
b. A design discharge (Q) or information as to drainage area,
rainfall intensities and runoff coefficients from which a
discharge can be estimateed.
irr
2.
Compute the perimeter of the grate opening (P) ignoring the bars
and omitting any side over which the water does not enter, such as
when one side is against the face of a curb. Divide the result_ by
2. This allows for partial clogging of the grate by assuming that
only half of the perimeter will be effective.
3.
Compute the Q/P ratio.
4.
Compute the total area of clear opening (A), excluding area taken
bars,
up by and divide by 2. This allows for partial clogging of
the grate by assuming-that only half of the area will be
effective.
Ir
5.
Compute the Q/A ratio. -
6.
Enter the chart at the bottom scale using line (a) with the Q/P
value and line (b) with the QA value and read the required head
in feet at the left margin.
7.
If the required head falls below 0.4 ft., (a) only will apply.
-- -
This is the usual case.
8.
If the head falls 1.4 ft.,
required above (b) only will apply.
9. If th'e required head falls between 0.4 ft. and 1.4 -ft. the actual
head may be anywhere between (a) and (b). Use the value that
gives the most conservative result, being sure to use line (a)-
with Q/P and line (b) with Q /A.
- -- -5-
t
10; 1- Y 1 j 11 1 111 j ,.�L,,U:j.i�l1:F 1 1 1 1 (� • f
b - - - -- -- - - -- - - - - - - -
S
-P 2 (a+b)
ml ;
FF
�. 1 I I ! t 1 . 1 I l l l t 1 1 1 ( l i t l l i l 1 :,
�,,, - = _� , I I I II ( l�v_� 1 ' ! i � I !• .' 1 � Is. i�IH�= 1 - � -
_
�3_OH'fz I
W ' 1
o� � I 1 1 i I� t 1 =•
1 I 1 1 1 1 i I l l t I I 1 1 1 1 1 1 1 1! I ::
L. • rw
H t w
_ Aps U TO 1 1Q4 1 =:
HEADS A� OYE I IA 6 k+ILI ES I I I III I l i l l
PI H EARS 8 kT1n�EEN 4 at L' , IT A � ION I - 1 F1 I I I I I
L - S E CTO R Ia► OPg 'RA:T J O H I I S 1 I'H 10 L 1 HIT
�_ I• !_ 11 !� 1 i; ;_ I _
• I l l i i l 1 1 1 I i -I I 1 1 1 1 1 1 I �;
i i J
• I I- � i(� I I (� �� (� I I - I I I I � _�
�- q
I G �•.�,� R� ° ER '��' O P ' �r}r• t IS�H R E Pe I O I T OFi E' /'
I , S • - 1', - 1 ..1•• /•� •} II....I;.1•. ,1•L.,.L..� «I 11 1 0.1111. •1..1.1!..1!•1• t.•a.. 1 . + .1 1 1 11 11•.1
• r
ql .2 1 , .3 _�} .S _C .T .i.f Lo 2 ' 3 4 S 6 7 8 9 to
BUREAU OF PU$LIC ROADS CAPACITY 0F GRATE 1,NLET 1N SUM?
DIVISIOQ "rwo WASH D - WATER PONOEO ON GRATE
ASSUME 50 C�_
10. If _the..inletis_a_ combination -type with grate and -curb opening .the__-
recommended procedure is the same as with a grate alone except the
perimeter and area are not divided _4!y 2,_The reason_ for this is -
`_ " - - -_ - that the ope iing Will - serve as a - relief in event the grate -
iWl
becom clogged. • With the grate operating freely it fs
questionable whether much water will get to the curb opening until
�!- the discharge is sufficient to submerge the entire grate.
IV: Ada it o ial`Ii,forinaua — -- - - -- -� - --
- A. The inlet floor must have a substantial slope toward the outlet. In a shallow
drain system where conservation of head is essential, or any system where the
preservation of a nonsilting velocity is necessary, the half -round floor shown
?" below should be used when a pipe continues through the inlet.
Irrr
D. Recent hydraulic tests have shown the 'vane' type grate will accept more water
than any of the conventional grate styles under virtually all flow conditions.
Even with extremely high volume and velocity conditions in the gutter there
will be very little if any water that the grate will not capture, providing
the water passes over it. In addition to its increased capacity, the vane
grate is also bicycle safe. For these reasons it is the most desirable of
styles available.
A
t
itr
tilt
f�
%-4
f�
CAPACITY COMPARISON CF GRATE TYPES
GRATE
TYPES
L7
T*rPE A
LL
C�r�C
`-
C
J am,
1. 2
r.•PE C
C_
. �.
S
�_J
C
TYPQ D
SEEN
1% 2- 3% 4 y; 5 6%,
TYPE Da-Dc
SLOPE
.«
LONGITUDINAL
The above curt Shows flume test results using
r,,.�iaoaaa
r 17'•x ?O'• full size grates in the s!x types detailed
rrPEL
!op rion! A cons:3nl !ransverse or gutter slope of 6, was
used to contain more water over the grate. The gutter
f :ow .r. the channel was set at 2 cfs. Note the improved
performance of the Type L' and 'V" Vane Grates.
Q►� -�-� =���%
TYPE v
—7—
fft�
IIIIIIIIIIIIIItIIIt��
—7—
4. R - A/P -
5. V = 1.49 R2/3 5
I T -
CHECK
AV
-
°' - - -` -' -
- - - -
-- ALLEY CAPACITY FO RMULAS FOR DETERMINATION OF DEPTH OF WATER
-- -
— OVER GRATE INLETS
- - -- - -
GIVEN - '----- - - - - --
�
W3
Z1
Z2
—
— O — —
Q 0 (per criteria on page 9
o
'e
ASSUME
d
GUTTER
Area
= AG = •08 W + .06 W3 = 0.10 W3
Z
WETTED
CALCULATE
PERIMET -.R PG = 2
-
(0.08)2 ( 3 ) 2 + 0.13
1. W = W + W + W
1 2 3
i1r
W = d -0.15
Z
dfull
= 0.15'
W
= d - 0.15
Z2
2. P =Pl +P2 +PG
w,
W
w wz
P = (d - 0.15) 2 + W
I P2
-
Y (�) 2 + W
I
r
3. A= Al +A2 +A3 +AG
Al = d -0.15 W1
A2 d -0.15 W2
4. R - A/P -
5. V = 1.49 R2/3 5
I T -
CHECK
AV
PO
(ir - -
i
,C vc
fir
Yn
bw
f
o n
Due to the effects of momentum on the velocity of water, the design slope (S
should be based on the distance of the inlet from a vertical curve. The
following formula and accompanying graph shall be used.
S =S +b (s 2 - s 1 )
0.3
-Q 0.2
0.1
where
L = length of vertical curve
= distance downstream of B.V.C.
—9—
0 0./L 02L„ 0.3L 0.4L,c
• _, �._ - - - — — ___ - alt" �...
7EaRaCE SIDEWALK -
CUMS CAST
GUTTER Ir
-ol Section showing curb width.
M
A ..
t
IIo
rtE fWM F00 NDF— Y
ADAPTORS — ROUND TO RECTANGULAR PIPE
r�
`.
I.
Ir
Catalog Dimensions in inches wt. I �-
No. A a C C -C E E -E F T Lb-.
1- 3262.1 5 is 4 4 6 5 7 1 - 20 � CC
R- 3262 -2 6 ir; 4 4 6 yya 5 6 2 ii 20 u m
9- 3262 -3 5 L4 4 5% 6 6'r: V1 1 20 f C l
2-3262-4 5 r iZ 4 16 7 17 6� 2 45
R- 3262 -5 6 1: 5 5 6 6 s5 8 2 30 E I EE +�
R- 3262 -6 6( it 6 6 8 7 9 2 30
ROUND
RECT.
LAYING
ROUND
PIPE
RECT. LATtrlt:
PIPE LENGTH
PIPE
PIPE
LENGTH
*
3
8
�Jc P: '� � ✓.'i 1�' ; K.E4'�(Kr< Ct,'� -P: HsK•
A —480
4 nrt —
- + r
EOOD
I �/ --
J �= O-L .r.
GLJQL WAIN] tXAN1ft't5
P.h-I- 4/!?
Zr 7
-- _ PARTIAL LYS`r OF GRATE MANUFACTURERS
- -- - 1. Alhambra Foundry -- - -- -- -- -
- - - - -- - - - - -- --
1147 Meridian Avenue
. Alhambra, CA 91802
(223) 289 -4294
- - 2.— brooks- Products - - -- - -- - - -- - - - ' - --
g 10141 Olney Street
�+ El Monte, CA 91734
(213) 283 -0637
3. Neenah Foundry
P.O. Box 729
Neenah, WI 54956
(414) 725 -7000
frri
s
d
it
W
Manufacturers may be added to this list by submitting a catalog and
design information to the Drainage Unit.
JS:gvRD07 -2
1/31/83
:i�
Part Number
1242 HNP
12.13 HHP
1.818 HHP
MOW
3836 1�ta11�c
� �836°Paakwa/
3
T /WParb ay
T-rafS' Parkway
Tmfticl Away
Par fa my
width to inches
T4.' l6
19.147 5
19;1873
25:1805
U.0075.
35010
length In Inches
:14.5
14.5
1$:73
25:5
39:375
3:1:75
# of Fiat bars
: 29-
39
39
51.
3-1
31
Fb Thickness
0.1875
0.1675
0.1875
0.18478
0.25
# of Cross bats
3
3
4
6
9
9
Cb lhldcness
0.305
0:305
0.305
0.305
0:375
0:305
Gross area
20
27 8.2488
378;,=
x.281
137!54641
142355469
Less bar area
.8253
123:5878
1'87:8306
283;9 69
423A703
3�:352rL
=net open area
I!;*' 8SU
154:63G9
21'1.4 6
352.; 44
952`.5$38
'!0£(. U47
net area l gross area a'�. open'
lfli,3S1G
b5:58•�G
53 7 'x:
54:88
69:3 E;
ltle 9G
:i�
�w
war
e�
ir.
1r
�w
PIPE SIZE
0.5%
1%
2%
4%
4"
0.15
0.21
0.30
0.42
6"
0.46
0.65
0.92
1.30
8"
0.99
1.40
1.98
2.80
12"
2.91
4.12
5.82
8.23
18"
8.58
12.13
17.16
24.27
24"
18.48
26.13
36.96
52.27
Notes:
1. Mannings n = 0.011 For PVC Pipe
Vr 2. Table Based on d/D =0.80 and is in units of CFS
For 1% Pipe Slope
Q = CIA C = 0.85, 1 = 2.6in /hr
Q = 0.85(2.6)A
Q = 2.2A
r..
A = Q/2.2
r.i
Pipe Size Q(CFS) Max Area (Acres) Max Area (S.F.)
In
do
4"
0.21
0.10
4158
6"
0.65
0.30
12870
8"
1.4
0.64
27720
go
err
Rational Method
m
0
E
a
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
(Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983 -2003 Advanced Engineering Software (aes)
Ver. 8.0 Release Date: 01/01/2003 License ID 1400
Analysis prepared by:
Allard Engineering
8253 Sierra Avenue
Fontana Ca. 92335
PM
* * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * **
Palermo Luxury Apartments
* Developed Condition
!^ * 100 Year Storm Event
bw
F
FILE NAME: PALERMO.DAT
TIME /DATE OF STUDY: 12:32 12/18/2007
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
}" ==-=================---- -*----TIME -OF- CONCENTRATION -------------_____= __MODEL= __*_- _-
================= = = = = ==
(
11r
USER SPECIFIED STORM EVENT(YEAR) = 100.00
po
SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
W SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
*USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = 0.6000
USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.4500
P *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
*USER- DEFINED STREET- SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET- CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT- /PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
PR 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1. Relative Flow -Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) - (Top -of -Curb)
2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
*USER- SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE - 0.00 TO NODE - -- - 1.00 IS CODE = 21
>>>>> RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< <<<
>>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
J,
H
INITIAL SUBAREA FLOW- LENGTH(FEET) = 115.00
ELEVATION DATA: UPSTREAM(FEET) = 1248.70 DOWNSTREAM(FEET) = 1247.40
J
Tc = K *((LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.299
op * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 6.219
SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
fm LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.)
APARTMENTS A 0.15 0.98 0.20 32 5.30
�I SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.20
on SUBAREA RUNOFF(CFS) = 0.81
TOTAL AREA(ACRES) = 0.15 PEAK FLOW RATE(CFS) = 0.81
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 91
----------------------------------------------------------------------------
>>>>>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA <<<<<
----------------------------------------------------------------------------
UPSTREAM NODE ELEVATION(FEET) = 1247.40
DOWNSTREAM NODE ELEVATION(FEET) = 1245.30
CHANNEL LENGTH THRU SUBAREA(FEET) = 205.00
"V" GUTTER WIDTH(FEET) = 5.00 GUTTER HIKE(FEET) = 0.050
° PAVEMENT LIP(FEET) = 0.031 MANNING'S N = .0150
PAVEMENT CROSSFALL(DECIMAL NOTATION) = 0.02000
MAXIMUM DEPTH(FEET) = 0.30
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.293
1rr SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
ion LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
br APARTMENTS A 0.44 0.98 0.20 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.20
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.81
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 2.09
AVERAGE FLOW DEPTH(FEET) = 0.15 FLOOD WIDTH(FEET) = 11.92
"V" GUTTER FLOW TRAVEL TIME(MIN.) = 1.63 Tc(MIN.) = 6.93
SUBAREA AREA(ACRES) = 0.44 SUBAREA RUNOFF(CFS) = 2.02
EFFECTIVE AREA(ACRES) = 0.59 AREA - AVERAGED Fm(INCH /HR) = 0.19
AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.20
TOTAL AREA(ACRES) = 0.59 PEAK FLOW RATE(CFS) = 2.71
END OF SUBAREA "V" GUTTER HYDRAULICS:
DEPTH(FEET) = 0.18 FLOOD WIDTH(FEET) = 14.48
FLOW VELOCITY(FEET /SEC.) = 2.25 DEPTH *VELOCITY(FT *FT /SEC) = 0.40
LONGEST FLOWPATH FROM NODE 0.00 TO NODE 2.00 = 320.00 FEET.
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 31
----------------------------------------------------------------------------
>>>>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>> USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) < <<<
ELEVATION DATA: UPSTREAM(FEET) = 1245.30 DOWNSTREAM(FEET) = 1243.20
FLOW LENGTH(FEET) = 240.00 MANNING'S N = 0.013
H
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.6 INCHES
PIPE -FLOW VELOCITY(FEET /SEC.) = 4.57
ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
PIPE- FLOW(CFS) = 2.71
PIPE TRAVEL TIME(MIN.) = 0.88 Tc(MIN.) = 7.81
III LONGEST FLOWPATH FROM NODE 0.00 TO NODE 3.00 = 560.00 FEET.
FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 81
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
----------------------------------------------------------------------------
----------------------------------------------------------------------------
MAINLINE Tc(MIN) = 7.81
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.928
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
L APARTMENTS A 0.47 0.98 0.20 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.20
SUBAREA AREA(ACRES) = 0.47 SUBAREA RUNOFF(CFS) = 2.00
EFFECTIVE AREA(ACRES) = 1.06 AREA- AVERAGED Fm(INCH /HR) = 0.19
AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.20
TOTAL AREA(ACRES) = 1.06 PEAK FLOW RATE(CFS) = 4.52
FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 81
p"
» »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «<
----------------------------------------------------------------------------
----------------------------------------------------------------------------
MAINLINE Tc(MIN) = 7.81
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.928
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
60 APARTMENTS A 0.17 0.98 0.20 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.20
? SUBAREA AREA(ACRES) = 0.17 SUBAREA RUNOFF(CFS) = 0.72
EFFECTIVE AREA(ACRES) = 1.23 AREA- AVERAGED Fm(INCH /HR) = 0.19
AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.20
TOTAL AREA(ACRES) = 1.23 PEAK FLOW RATE(CFS) = 5.24
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 3.00 TO NODE - - - -- 4.00 - IS - CODE = 31
>>>>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA<< <<<
>>>>>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) <<<<<
ELEVATION DATA UPSTREAM(FEET) = 1243.20 DOWNSTREAM(FEET) = 1242.40
FLOW LENGTH(FEET) = 165.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.7 INCHES
PIPE -FLOW VELOCITY(FEET /SEC.) = 4.31
ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
PIPE- FLOW(CFS) = 5.24
PIPE TRAVEL TIME(MIN.) = 0.64 Tc(MIN.) = 8.45
LONGEST FLOWPATH FROM NODE 0.00 TO NODE 4.00 = 725.00 FEET.
FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE = 81
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <<<<<
MAINLINE Tc(MIN) = 8.45
L * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.702
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
�y LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
APARTMENTS A 0.46 0.98 0.20 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 -
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.20
SUBAREA AREA(ACRES) = 0.46 SUBAREA RUNOFF(CFS) - 1.87
EFFECTIVE AREA(ACRES) = 1.69 AREA - AVERAGED Fm(INCH /HR) = 0.19
to" AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.20
6w
TOTAL AREA(ACRES) = 1.69 PEAK FLOW RATE(CFS) = 6.85
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE = 81
�r ----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<< <<<
------------------------------------
MAINLINE Tc(MIN) = 8.45
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.702
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
APARTMENTS A 1.20 0.98 0.20 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
7 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.20
bw SUBAREA AREA(ACRES) = 1.20 SUBAREA RUNOFF(CFS) = 4.87
EFFECTIVE AREA(ACRES) = 2.89 AREA- AVERAGED Fm(INCH /HR) = 0.19
On AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.20
L TOTAL AREA(ACRES) = 2.89 PEAK FLOW RATE(CFS) = 11.72
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
-- FLOW - PROCESS - FROM - NODE - - - - -- 400 - TO - NODE - - - -- - 5.00 IS CODE = 31
------------------------
>>>>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) < <<<
ELEVATION DATA: UPSTREAM(FEET) = 1242.40 DOWNSTREAM(FEET) = 1241.60
FLOW LENGTH(FEET) = 155.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.7 INCHES
PIPE -FLOW VELOCITY(FEET /SEC.) = 5.40
ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1
PIPE- FLOW(CFS) = 11.72
PIPE TRAVEL TIME(MIN.) = 0.48 Tc(MIN.) = 8.92
LONGEST FLOWPATH FROM NODE 0.00 TO NODE 5.00 = 880.00 FEET.
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 81
» >>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <<<<<
a
FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1
----------------------------------------------------------------------------
!" >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
TOTAL NUMBER OF STREAMS = 2
A CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) = 8.92
RAINFALL INTENSITY(INCH /HR) = 4.55
AREA - AVERAGED Fm(INCH /HR) = 0.19
A AREA- AVERAGED Fp(INCH /HR) = 0.97
AREA- AVERAGED Ap = 0.20
EFFECTIVE STREAM AREA(ACRES) = 3.21
TOTAL STREAM AREA(ACRES) = 3.21
PEAK FLOW RATE(CFS) AT CONFLUENCE = 12.58
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
�.. FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< <<<
>>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW- LENGTH(FEET) = 150.00
ELEVATION DATA: UPSTREAM(FEET) = 1248.50 DOWNSTREAM(FEET) = 1247.00
Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20
SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 6.039
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.750
SUBAREA TC AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.)
APARTMENTS A 0.10 0.98 0.20 32 6.04
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.20
SUBAREA RUNOFF(CFS) = 0.50
TOTAL AREA(ACRES) = 0.10 PEAK FLOW RATE(CFS) = 0.50
FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 31
-----------------------------------------------------------------------
>>>>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW)<< <<<
MAINLINE Tc(MIN) = 8.92
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.549
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap
SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL)
CN
on
APARTMENTS A 0.32 0.98 0.20
32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.20
SUBAREA AREA(ACRES) = 0.32 SUBAREA RUNOFF(CFS) = 1.25
r
EFFECTIVE AREA(ACRES) = 3.21 AREA- AVERAGED Fm(INCH /HR)
= 0.19
ift
AREA- AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.20
TOTAL AREA(ACRES) = 3.21 PEAK FLOW RATE(CFS) =
12.58
FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1
----------------------------------------------------------------------------
!" >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
TOTAL NUMBER OF STREAMS = 2
A CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) = 8.92
RAINFALL INTENSITY(INCH /HR) = 4.55
AREA - AVERAGED Fm(INCH /HR) = 0.19
A AREA- AVERAGED Fp(INCH /HR) = 0.97
AREA- AVERAGED Ap = 0.20
EFFECTIVE STREAM AREA(ACRES) = 3.21
TOTAL STREAM AREA(ACRES) = 3.21
PEAK FLOW RATE(CFS) AT CONFLUENCE = 12.58
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
�.. FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< <<<
>>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW- LENGTH(FEET) = 150.00
ELEVATION DATA: UPSTREAM(FEET) = 1248.50 DOWNSTREAM(FEET) = 1247.00
Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20
SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 6.039
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.750
SUBAREA TC AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.)
APARTMENTS A 0.10 0.98 0.20 32 6.04
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.20
SUBAREA RUNOFF(CFS) = 0.50
TOTAL AREA(ACRES) = 0.10 PEAK FLOW RATE(CFS) = 0.50
FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 31
-----------------------------------------------------------------------
>>>>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW)<< <<<
0
ELEVATION DATA: UPSTREAM(FEET) = 1247.00 DOWNSTREAM(FEET) = 1245.20
FLOW LENGTH(FEET) = 330.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.2 INCHES
6 PIPE -FLOW VELOCITY(FEET /SEC.) = 2.38
ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
to PIPE- FLOW(CFS) = 0.50
PIPE TRAVEL TIME(MIN.) = 2.31 Tc(MIN.) = 8.35
LONGEST FLOWPATH FROM NODE 10.00 TO NODE 12.00 = 480.00 FEET.
L FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 81
----------------------------------------------------------------------------
>>>>> ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <<<<<
err MAINLINE Tc(MIN) = 8.35
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.734
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
APARTMENTS A 0.90 0.98 0.20 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.20
SUBAREA AREA(ACRES) = 0.90 SUBAREA RUNOFF(CFS) = 3.68
e. EFFECTIVE AREA(ACRES) = 1.00 AREA- AVERAGED Fm(INCH /HR) = 0.20
i AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.20
bw TOTAL AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) = 4.09
FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 81
----------------------------------------------------------------------------
- ->> »> ADDITION - OF - SUBAREA - TO_ MAINLINE - PEAK - FLOW<< «<-----------------------
MAINLINE TC(MIN) 8.35
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.734
SUBAREA LOSS RATE DATA (AMC IV:
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
APARTMENTS A 0.33 0.98 0.20 32
I SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97
�Yr SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.20
SUBAREA AREA(ACRES) = 0.33 SUBAREA RUNOFF(CFS) = 1.35
EFFECTIVE AREA(ACRES) = 1.33 AREA- AVERAGED Fm(INCH /HR) = 0.19
AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.20
TOTAL AREA(ACRES) = 1.33 PEAK FLOW RATE(CFS) = 5.43
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 31
----------------------------------------------------------------------------
>>>>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA<< <<<
-- >>>>>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) < <<<
ELEVATION DATA: UPSTREAM(FEET) = 1245.20 DOWNSTREAM(FEET) = 1243.20
FLOW LENGTH(FEET) = 195.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.4 INCHES
PIPE -FLOW VELOCITY(FEET /SEC.) = 5.82
a
r.�
ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
PIPE- FLOW(CFS) = 5.43
PIPE TRAVEL TIME(MIN.) = 0.56 Tc(MIN.) = 8.91
LONGEST FLOWPATH FROM NODE 10.00 TO NODE 13.00 = 675.00 FEET.
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 81
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <<<<<
----------------------------------------------------------------------------
----------------------------------------------------------------------------
po MAINLINE Tc(MIN) = 8.91
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.554
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
r LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
it APARTMENTS A 0.50 0.98 0.20 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
p" SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.20
SUBAREA AREA(ACRES) = 0.50 SUBAREA RUNOFF(CFS) = 1.96
b ` EFFECTIVE AREA(ACRES) = 1.83 AREA - AVERAGED Fm(INCH /HR) = 0.19
AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.20
TOTAL AREA(ACRES) = 1.83 PEAK FLOW RATE(CFS) = 7.18
ir.
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
!. FLOW PROCESS FROM NODE 13.00 TO NODE 5.00 IS CODE = 31
----------------------------------------------------------------------------
>>>>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA <<<<<
>>>>>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) < <<<
--------- - - - - -- ----- - - - - --
ELEVATION DATA: UPSTREAM(FEET) = 1243.20 DOWNSTREAM(FEET) = 1241.60
FLOW LENGTH(FEET) = 250.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.4 INCHES
PIPE -FLOW VELOCITY(FEET /SEC.) = 5.10
�+ ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
PIPE- FLOW(CFS) = 7.18
PIPE TRAVEL TIME(MIN.) = 0.82 Tc(MIN.) = 9.72
LONGEST FLOWPATH FROM NODE 10.00 TO NODE 5.00 = 925.00 FEET.
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
¢ FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 81
frr ---------------------------------- ------------------------------------------
>> >>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <<<<<
-------------------------
-------------------------
MAINLINE Tc(MIN) = 9.72
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.320
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
APARTMENTS A 0.86 0.98 0.20 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.20
SUBAREA AREA(ACRES) = 0.86 SUBAREA RUNOFF(CFS) = 3.19
EFFECTIVE AREA(ACRES) = 2.69 AREA- AVERAGED Fm(INCH /HR) = 0.20
AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.20
TOTAL AREA(ACRES) = 2.69 PEAK FLOW RATE(CFS) = 9.99
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
0
e
r-
FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1
------ -------- ----- ----- ---------- ---- ---- ---------- ---- ---- ----------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) = 9.72
RAINFALL INTENSITY(INCH /HR) = 4.32
AREA - AVERAGED Fm(INCH /HR) = 0.20
p' AREA- AVERAGED Fp(INCH /HR) = 0.98
AREA- AVERAGED Ap = 0.20
EFFECTIVE STREAM AREA(ACRES) = 2.69
TOTAL STREAM AREA(ACRES) = 2.69
PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.99
ilr
** CONFLUENCE DATA **
po STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER
I NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE
1 12.58 8.92 4.549 0.97( 0.19) 0.20 3.2 0.00
2 9.99 9.72 4.320 0.98( 0.20) 0.20 2.7 10.00
y RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
A
** PEAK FLOW RATE TABLE **
bw STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER
NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE
0 1 22.25 8.92 4.549 0.98( 0.19) 0.20 5.7 0.00
Yr 2 21.91 9.72 4.320 0.98( 0.20) 0.20 5.9 10.00
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
L PEAK FLOW RATE(CFS) = 22.25 Tc(MIN.) = 8.92
L EFFECTIVE AREA(ACRES) = 5.68 AREA- AVERAGED Fm(INCH /HR) = 0.19
AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.20
fa TOTAL AREA(ACRES) = 5.90
LONGEST FLOWPATH FROM NODE 10.00 TO NODE 5.00 = 925.00 FEET.
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 5.90 TC(MIN.) = 8.92
6w EFFECTIVE AREA(ACRES) = 5.68 AREA- AVERAGED Fm(INCH /HR)= 0.19
AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.20
�1A PEAK FLOW RATE(CFS) = 22.25
** PEAK FLOW RATE TABLE **
STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER
NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE
1 22.25 8.92 4.549 0.98( 0.19) 0.20 5.7 0.00
2 21.91 9.72 4.320 0.98( 0.20) 0.20 5.9 10.00
----------------
END OF RATIONAL METHOD ANALYSIS
9
0
0
Hydraulic Calculations
'0
60
4
Inlet Calculations
�r
L
Flow By Grate at Cross Section A
Q = W *V *D
W =Width of Grate
V = Mean Velocity of Flow
D = Depth of Water over Grate
W ft =
1 3.0
V (ft/S) =
1.77
D = ft
0.23
Q cfs =
1.22
1.22 cfs will be intercepted
1.49 cfs bypasses basin
Flow By Grate at Cross Section C
Q = W *V *D
W = Width of Grate
V = Mean Velocity of Flow
D = Depth of Water over Grate
W ft =
3.0
V ft/s =
1.69
D = ft
0.3
Q (cfs) =
1.52
1.52 cfs will be intercepted
3.75 - 1.52 = 2.23 cfs bypasses basin
Flow By Grate at Cross Section D
Q = W *V *D
W = Width of Grate
V = Mean Velocity of Flow
D = Depth of Water over Grate
W ft =
3.0
V ft/s =
2.38
57= ft
0.28
Q cfs =
2.00
2.0 cfs will be intercepted
5.43 - 2.0 = 3.43 cfs bypasses basin
�1
» »SUMP TYPE BASIN INPUT INFORMATION ««
----------------------------------------------------------------------------
it
bw
pw
A
t
L
6
Curb Inlet Capacities are approximated based on the Bureau of
Public Roads nomograph plots for flowby basins and sump basins.
BASIN INFLOW(CFS) = 18.00
BASIN OPENING(FEET) = 0.50
DEPTH OF WATER(FEET) = 0.67
i
» »CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) =
`S-
ALLARD ENGINEERING DESCRIPTION
. civil engineering • land surveying • land planning UNE 5 �t U E P `DLt�u �c
Fontana • Victorville
JOB# SHEET OF
�PcC.ERw�o Lux i t
8253 Sierra Ave. •Fontana, CA 92335 DESIGNED BY DATE 07
APPROVED
h. (909) 356 -1815 Fax (909) 356 -1795 V"l-W ailardeng.com
}
+Z`
!
I
`{a� -t- - - -, -- -� - - -
ffff ,
r
H 1 ; 1 - -- - - - -, -1-
-- -! -E
- -- 1 i � I -
•
L
Z.'
i
j I
1-
d 47 FT
j
}
�j
j
i
v
j
I I
o ,r67 �,9�1 ? _ t +?4 t;4
- -- +
kA S
i } �
I
-I- -- - - - - ---- - - - - -- - -- -- - - - - - - - - - - - -
ft
i
:
}
;
0
m
fir
too
Street Capacity Calculations
�w
I"
L
m
0
4
! TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 2.71
kw COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 2.96
ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
ELEVATION ............................. 46.01
NOTE: WATER SURFACE IS BELOW EXTREME
LEFT AND RIGHT BANK ELEVATIONS.
f
Cross Section A
4�
------------------------------------
• ENTERED INFORMATION FOR SUBCHANNEL NUMBER I
NODE NUMBER "X" COORDINATE "Y" COORDINATE
on
1 0.00 46.62
g
2 0.01 46.12
3 30.00 45.89
4 31.50 45.78
5 33.00 45.89
6 47.70 46.40
SUBCHANNEL SLOPE(FEET/FEET) = 0.010000
SUBCHANNEL MANNINGS FRICTION FACTOR= 0.015000
................................... ...............................
SUBCHANNEL FL0W(CFS) = 3.0
SUBCHANNEL FLOW AREA(SQUARE FEET) = 1.67
SUBCHANNEL FLOW VELOCITY(FEET /SEC_) = 1.770
SUBCHANNEL FROUDE NUMBER= 1.135
1m
SUBCHANNEL FLOW TOP- WIDTH(FEET) = 22.10
SUBCHANNEL HYDRAULIC DEPTH(FEET) = 0.08
! TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 2.71
kw COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 2.96
ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
ELEVATION ............................. 46.01
NOTE: WATER SURFACE IS BELOW EXTREME
LEFT AND RIGHT BANK ELEVATIONS.
f
4�
Cross Section B
- - - - -- ------ -------------- -- -- - - - - -- -
ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1
on
NODE NUMBER "X" COORDINATE "Y" COORDINATE
g
1 0.00 44.41
2 0.01 43.91
3 14.00 43.51
4 15.50 43.40
5 17.00 43.51
6 31.00 43.80
SUBCHANNEL SLOPE(FEET/FEET) = 0- 050000
SUBCHANNEL MANNINGS FRICTION FACTOR = 0.015000
............................................. ........................ .......
SUBCHANNEL FLOW(CFS) = 3.6
SUBCHANNEL FLOW AREA(SQUARE FEET) = 0.88
SUBCHANNEL FLOW VELOCITY(FEET /SEC.) = 4.035
1m
SUBCHANNEL FROUDE NUMBER = 2.549
SUBCHANNEL FLOW TOP- WIDTH(FEET) = 11.32
60
SUBCHANNEL HYDRAULIC DEPTH(FEET) = 0.08
TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED= 3.03
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 3.55
ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
ELEVATION ............................. 43.61
NOTE: WATER SURFACE IS BELOW EXTREME
LEFT AND RIGHT BANK ELEVATIONS.
m
d
0
IN TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED= 5.43
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 5.86
on ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
ELEVATION ............................. 45.12
La NOTE: WATER SURFACE IS BELOW EXTREME
LEFT AND RIGHT BANK ELEVATIONS.
N
* ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1
NODE NUMBER "X" COORDINATE "Y" COORDINATE
Cross Section C
-- -- - - -- ---------------------------------------------------------
* ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
NODE NUMBER "X" COORDINATE "Y" COORDINATE
1 0.00 44.37
2 0.01 43.87
3 28.00 43.09
(
4 29.50 42.98
5 31.00 43.09
6 60.00 43.70
7 60.01 44.20
t�
SUBCHANNEL SLOPE(FEET/FEET) = 0.005000
io
SUBCHANNEL MANNINGS FRICTION FACTOR= 0.015000
............................................. ...............................
SUBCHANNEL FLOW(CFS) = 3.8
fa
SUBCHANNEL FLOW AREA(SQUARE FEET) = 2.24
SUBCHANNEL FLOW VELOCITY(FEET /SEC.) = 1.693
SUBCHANNEL FROUDE NUMBER= 0.865
SUBCHANNEL FLOW TOP-WIDTH(FEET) = 18.85
f^
SUBCHANNEL HYDRAULIC DEPTH(FEET) = 0.12
- _---------- ------ - -- - -- -----------------------
TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 3.75
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 3.79
ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
ELEVATION ............................. 43.28
NOTE: WATER SURFACE IS BELOW EXTREME
LEFT AND RIGHT BANK ELEVATIONS.
-- - --- - ------ --- -------- - ----------- ---- ------- - ----------- -------
Cross Section D
IN TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED= 5.43
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 5.86
on ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
ELEVATION ............................. 45.12
La NOTE: WATER SURFACE IS BELOW EXTREME
LEFT AND RIGHT BANK ELEVATIONS.
N
* ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1
NODE NUMBER "X" COORDINATE "Y" COORDINATE
1 0.00 45.50
2 14.50 44.95
3 16.00 44.84
4 17.50 44.95
5 30.90 45.08
6 31.00 45.58
SUBCHANNEL SLOPE(FEET/FEET) = 0.010000
SUBCHANNEL MANNINGS FRICTION FACTOR = 0.015000
............................. ...............................
SUBCHANNEL FLOW(CFS) = 5.9
SUBCHANNEL FLOW AREA(SQUARE FEET) = 2.46
SUBCHANNEL FLOW VELOCITY(FEET /SEC.) = 2.378
SUBCHANNEL FROUDE NUMBER= 1.221
SUBCHANNEL FLOW TOP- WIDTH(FEET) = 20.89
SUBCHANNEL HYDRAULIC DEPTH(FEET) = 0.12
IN TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED= 5.43
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 5.86
on ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
ELEVATION ............................. 45.12
La NOTE: WATER SURFACE IS BELOW EXTREME
LEFT AND RIGHT BANK ELEVATIONS.
N
N"
z Cross Section E
0
ll�*
f
0
• ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
NODE NUMBER "X" COORDINATE "Y" COORDINATE
1 0.00 43.07
2 0.01 42.57
3 32.50 41.92
4 34.00 41.81
5 35.50 41.92
6 49.00 42.08
7 49 42.58
SUBCHANNEL SLOPE(FEET/FEET) = 0.005000
SL
SUBCHANNEL MANNINGS FRICTION FACTOR = 0.015000
........... .......................................... I ................. .....
SUBCHANNEL FLOW(CFS) = 8.3
SUBCHANNEL FLOW AREA(SQUARE FEET) = 4.20
SUBCHANNEL FLOW VELOCITY(FEET /SEC.) = 1.974
SUBCHANNEL FROUDE NUMBER = 0.898
SUBCHANNEL FLOW TOP- WIDTH(FEET) = 28.00
SUBCHANNEL HYDRAULIC DEPTH(FEET) = 0.15
— TOTAL
IRREGULAR CHANNEL FLOW(CFS) WANTED = 7.76
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 8.29
ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
ELEVATION ............................. 42.15
NOTE: WATER SURFACE IS BELOW EXTREME
LEFT AND RIGHT BANK ELEVATIONS.
A-----------------------------------------------------
t
�r
0
ll�*
f
0
0
fr
WSPG
OW
L o
M
HI,
+'
IR
�!
0
T1
Palermo Luxury Apartments
T2
Line A -12"
T3
100 Year Storm
SO
1002.3001229.970
2
1240.900
R
1006.0001231.500
2
.013
.000
R
1426.7001234.460
2
.013
.000
WE
1426.7001234.460
3
.500
SH
1426.7001234.460
3
1234.460
CD
2 4 1 .000
1.000
.000
.000 .000 .00
CD
3 2 0 .000
5.430
50.000
.000 .000 .00
A
4
Q
2.000
.0
it
F
ill
4
L
t
to.
FILE: Palermo_Line_A.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 1
Program Package Serial Number: 1382
WATER SURFACE PROFILE LISTING Date:12 -20 -2007 Time:11:48: 3
Palermo Luxury Apartments
Line A -12"
100 Year Storm
I Invert I Depth I Water I Q I Vel Vel I Energy I Super ICriticallFlow ToplHeight /IBase Wtl INo Wth
Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.l Elev I Depth I Width IDia. -FTIor I.D.I ZL IPrs /Pip
- I - -I- -I- -I- -I- -I- -I- -I- - I- -I- -I- -I- -I- -I
L /Elem ICh Slope I I I I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X -Fa111 ZR IType Ch
I I I I I I I I I I I I I
1002.300 1229.970 10.930 1240.900 2.00 2.55 .10 1241.00 .00 .60 .00 1.000 .000 .00 1 .0
- I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - 1-
3.700 .4135 .0032 .01 10.93 .00 .20 .013 .00 .00 PIPE
I I I I I I I I I I I I I
1006.000 1231.500 9.412 1240.912 2.00 2.55 .10 1241.01 .00 .60 .00 1.000 .000 .00 1 .0
- I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - 1
420.700 .0070 .0032 1.33 9.41 .00 .60 .013 .00 .00 PIPE
I I I I I I I I I I I I I
1426.700 1234.460 7.777 1242.237 2.00 2.55 .10 1242.34 .00 .60 .00 1.000 .000 .00 1 .0
WALL ENTRANCE
I I I I I I I I I I I I I
1426.700 1234.460 7.929 1242.388 2.00 .01 .00 1242.39 .00 .04 50.00 5.430 50.000 .00 0 .0
-I- -I- -I- -I- -I- -I- -I- -I- - I- - I - -I- -I- -I- I-
On
Tl
Palermo Luxury Apartments
0
T2
3 18" Pipes
T3
100 Year Storm Event
Me
SO
1019.0001239.000 1
1240.140
WX
1019.0001239.000 2
R
1052.0001239.100 2 .013
.000 .000
0
WE
1052.0001239.100 3 .500
SH
1052.0001239.100 3
1239.100
CD
1 4 1 .000 1.500 .000
.000 .000 .00
CD
2 4 1 .000 1.500 .000
.000 .000 .00
CD
3 4 1 .000 8.000 .000
.000 .000 .00
Q
7.600 .0
L
P'
i
L
W
�M
a
FILE: Pa.lermo_Line_B.WSW
W S P
G W- CIVILDESIGN
Version
14.03
PAGE 1
Program
Package Serial Number: 1382
WATER
SURFACE
PROFILE LISTING
Date:12 -14 -2007
Time:
2:23:30
Palermo Luxury
Apartments
3
18" Pipes
100 Year Storm
Event
I Invert I
Depth I
Water I
Q I
Vel
Vel I
Energy
I Super
ICriticallFlow
ToplHeight /1Base Wtl
INo Wth
Station
Elev I
(FT) I
Elev I
(CFS) I
(FPS)
- I -
Head I
- I -
Grd.El.1
Elev
- I -
I Depth
- I -
I Width
IDia. -FT1or I.D.1
- I - - I -
ZL
1Prs /Pip
- I
- I -
L /Elem
- I -
ICh Slope I
- I -
I
- I -
I
- I -
I
SF Avel
- I -
HF
ISE DpthlFroude
NINorm
Dp
- I -
I "N" I X -Fall)
ZR
1Type Ch
1019.000
i I
1239.000
I
1.140
I
1240.140
I
7.60
5.27
I
.43
1240.57
I
.00
I
1.07
I
1.28
I I I
1.500 .000
.00
I
0 .0
WALL EXIT
1019.000
I I
1239.000
I
1.141
I
1240.141
I
7.60
5.27
I
.43
1240.57
- I -
I
.00
- I -
I
1.07
- I -
I
1.28
I I I
1.500 .000
- I -
.00
I
1 .0
- I -
6.168
- I -
.0030
- I -
- I -
- I -
- I -
- I -
.0058
.04
1.14
.88
1.50
- I - - I -
.013 .00
.00
1-
PIPE
1025.168
I
1239.019
I I
1.197
I
1240.216
I
7.60
5.02
I
.39
1240.61
I
.00
I
1.07
I
1.20
I I I
1.500 .000
.00
I
1 .0
12.742
.0030
.0053
.07
1.20
.79
1.50
.013 .00
.00
PIPE
1037.910
I
1239.057
I I
1.261
I
1240.318
I
7.60
4.79
I
.36
1240.67
I
.00
I
1.07
I
1.10
I I I
1.500 .000
.00
I
1 .0
- I -
14.090
-I-
.0030
-I-
-I-
-I-
-I-
-I-
.0049
-I-
.07
-I-
1.26
-I-
.70
1.50
-I- -I- -I-
.013 .00
.00
1-
PIPE
1052.000
I
1239.100
I I
1.309
I
1240.409
I
7.60
4.65
I
.34
1240.74
I
.00
I
1.07
I
1.00
I I I
1.500 .000
.00
I
1 .0
WALL ENTRANCE
1052.000
- I -
I
1239.100
-I-
I
1.915
-I-
I I
1241.015
-I-
I
7.60
-I-
.82
-I-
I
.01
-I-
1241.03
-I-
I
.00
-I-
I
.67
-I-
I
6.83
I I I
8.000 .000
-I- -I- -I-
.00
I
0 .0
I-
1�
Tl
Palermo Luxury Apartments
0
T2
12" Line C
T3
100 Year Storm
P
SO
1002.3001229.970
1
1240.900
R
1006.0001231.500
1
.013
.000 .000
0
R
1286.4001233.460
1
.013
.000 .000
0
IN
WE
1286.4001233.460
2
.500
SH
1286.4001233.460
2
1233.460
on
CD
1 4 1 .000
1.000
.000
.000 .000 .00
CD
2 2 0 .000
12.320
50.000
.000 .000 .00
Q
1.220
.0
�r
FILE: Palermo_Line_C.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 1
Program Package Serial Number: 1382
WATER SURFACE PROFILE LISTING Date:12 -21 -2007 Time: 2:38:47
Palermo Luxury Apartments
12" Line C
100 Year Storm
Invert I Depth I Water I Q I Vel Vel I Energy I Super ICritical(Flow ToplHeight /IBase Wtl INo Wth
Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.E1.1 Elev I Depth I Width IDia. -FTIor I.D.1 ZL IPrs /Pip
L /Elem ICh Slope I I I I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X -Fa111 ZR IType Ch
I I I I I I I I I I I I I
1002.300 1229.970 10.930 1240.900 1.22 1.55 .04 1240.94 .00 .47 .00 1.000 .000 .00 1 .0
-I- - I - - I - - I - - I - - I- - I - - I - - I - -I- - I - -I- - I- I
3.700 .4135 .0012 .00 10.93 .00 .16 .013 .00 .00 PIPE
I I I I I I I I I I I I I
1006.000 1231.500 9.404 1240.904 1.22 1.55 .04 1240.94 .00 .47 .00 1.000 .000 .00 1 .0
-I- - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - 1-
280.400 .0070 .0012 .33 9.40 .00 .45 .013 .00 .00 PIPE
I I I I I I I I I I I I I
1286.400 1233.460 7.773 1241.233 1.22 1.55 .04 1241.27 .00 .47 .00 1.000 .000 .00 1 .0
WALL ENTRANCE
I I I I I I I I I I I I I
1286.400 1233.460 7.829 1241.289 1.22 .00 .00 1241.29 .00 .03 50.00 12.320 50.000 .00 0 .0