Loading...
HomeMy WebLinkAboutPalermo Luxury Apts Onsite StudyL Palermo Luxury Apartments Onsite Hydrology Study L PM January 15, 2008 Job # 208.02.01 Prepared For: SC Development 14841 Yorba Street, Suite 205 Tustin, CA 92780 Phone (714) 505 -7090 6 Quo - -- Prepare under the supervision of:Q�`pg•HA�yyj? ti V40. 4397 VP WWII 3. m d David S. Hammer, P.E. ACE 43976 Exp. 06 -30 -09 8253 Sierra Avenue Fontana, CA 92335 (909) 356 -1815 * (909) 356 -1795 Table of Contents Discussion Hydrology Reference Material Rational Method Hydraulic Calculations Street Capacity Calculations Inlet Calculations WSPG Line A Line B Line C Hydrology Exhibit 0 FS FS Discussion Introduction f The Palermo Luxury Apartments is a proposed 6.3 acre multi- family residential development located on the southeast corner of Foothill Blvd. and Live Oak Avenue, in the City of Fontana. It is bounded on the west by Live Oak Avenue, on the south side by several single family lots, on the east side by vacant property and on the north side by * Foothill Blvd. The City of Fontana's Master Drainage Plan shows that there is an j r , existing drainage system on Foothill Blvd. (72" pipe) that serves as a barrier for all the storm water runoff coming from the north side of the project. The project site currently PM drains from the northeast to the southwest at a slope of approximately 1.8 %. Or This site was only recently annexed into the City of Fontana. The project was approved ps by the County of San Bernardino Planning Commission on July 5, 2007. A hydrology study ( Palermo Luxury Apartments Live Oak Avenue Hydrology Study, Revised Date: February 15, 2007) was prepared by Allard Engineering and approved by the County Public Works Department, Land Development Division prior to the County Planning V Commission action. The report addressed downstream runoff. Once developed, Palermo Luxury Apartments will drain into an onsite underground 6 retention system which will serve as the projects treatment control BMP. In small event storms, storm water will leave the retention system only by infiltration into the ground. In larger event storms, storm water will fill the retention system and will "bubble" up through 3 parallel pipes to an onsite parkway drain transition structure. Some of the storm water will drain to Live Oak Avenue in a 6' wide parkway drain. In major storms, some of the water will "bubble" out of the transition structure and surface drain to Live Oak Avenue. The vacant land east of Palermo Luxury Apartments is proposed to develop as a condominium project to be named Hampton Place III. Hampton Place III will be required to mitigate its increase in runoff (See the previous study titled Palermo Luxury Apartments Live Oak Avenue Hydrology Study). Hampton Place III will have a private storm drain pipe that will serve as the future outlet for the site. Purpose This report will quantify the 100 year peak flow rates for the site and demonstrate that the onsite drainage structures are adequately sized to convey the runoff in a safe manner. Criteria The criteria utilized for hydrologic analysis is the San Bernardino County Hydrology Manual. AES computer software was utilized to perform computations. r Results Rational method analysis demonstrates that the site will produce 22.8 cfs during the 100 year storm event. Onsite street capacity analysis demonstrates that the streets have the �w capacity to convey the 100 year storm event below the target depth of 0.3 feet. Streets in conjunction with the onsite storm drain system will convey the runoff through the site in a safe manner. A storm drain system that comprises of a primary and a secondary system ON will be constructed to covey runoff through the site. The primary system which consist of Line A, Line B and Line C along with the onsite streets will convey the 100 year storm event. The pipes of the primary system are no less than 12" diameter. The secondary r+ system which consist of extensions of Line A and Line C will serve small area drains L which were sized based on the 2 year storm event. The pipes of the secondary system do not exceed 8" diameter. The primary system was designed under the assumption the secondary system was plugged. Calculations and an exhibit accompany this discussion to further illustrate these findings. �r P" L i 4 ko a I, r 0 Hydrology Reference Material i ' ■{ 1f 1.7 R8 ' R7W R6W R5W �t4W o - J -- -- - -- , - r - - - - i— - RIW \ •! , "�.. --- T4 I 1 „ - 2w RIE R2E = R yri I.s �-- I { - - - - — r- Ir _ • : z �;.•`f - +'r •° ..5 2 3 - - - .�_� ' - -r y 1 - - T g IY 1 t T — t — — - = a - - r ♦ �y�M s•s -� z � _ ` B `` � i � a ` � L .PROrN' h • • y • P•L Ora L� - - - 1 r - _R.' •t•" ern. A - - = �` • 'S' ITS 'T - —Y - - - - -- - - I — '� _ � �'' ' �' � cPrIM L , ' `.'�. DI 3 V • L ~ � � PLO.• � I TIN — - c — y •C• ~ _- « 4 . *Too f` I • c «.. ?F -, =- - -- - -- •- ---� -- + ..K. • 1,{ 1 .� � 3 -= � �' it - _ - -ter -_. `' *�— - ? - -, —! — ' !-- I — 1 n 3 I � `' _ 1. •�•` S•M IP..PC:IIO t J cuPO.orr R I A LT 0_ - - -�t • COLT N - L{ . -- - :., i - = j s 01 A la; -' t•- rt - REOL MO - •`` .••- -- - - P - — - uwr r • �� t - �.� am cis zz t 4 .2 TUC.IM • �I 73 Tzs , }�;d _ - _ '�1t.1r - - -': - -- :• - �j I ERSIDE R4W R3 R2W - .� RI VI_ U►.T1�1iL.�{ ti. e�I ........•• e , - ` SAN K MINTY LOW R5 a .•oL REDUCED DRAWING T3S — — — — — - YEA[ iSlB . /t{ SCALE I�� = 4 MILES Yeo -100 �'F� "T*1011R A � 411 SAN BERI�IARDINO COUNTY ""°°""j°`'"``""""''" - - •� , - - ., - - - .wrorm er — •-� L e w w HYDROLOGY MANUAL ( 1.8 ISOlINE8 PRE':IPITATION (INCHES) M1�HA � � Mi � •' • ............................ • C Ifi2 l MAI d 1! g -12 FIGURE 8 -4 VALLE i4N R6W R5W — 4W o RIW 4J ', RIE w ' °. R2E T _� - - - - -- `— — -- - -' y• fl _ — I _ � _ _ I I •� I °° T4 Y • — ' I -- r — . — — — - — — - v B — — — -'' - i • ''•• 4. r .;• I I --r / I l 'REST IT 1 - - - - -- -- . ;., - I - ' - ;- - - - , r<: - +- -* - I I I 1 _ I ••«•• �A•u wuw.. �yQt I '7- f 1.2 ' — � � '..., � ` ' � I ° z � u� A '� I � � � I € � � � ti � w..n . •el � � ,i t I ( 1.3 �' ( << t . �• J r a s c L0 _ 1l- -+ - - - - - - - = I. - •r -- - y -- - -'� - I - 1 - -_ �- 7 • .. �rt - T I �• I J I J •, 1. I RfiION mwNt - I 1 - » _ - - - ' o ♦ ✓ T3N Y - - -- �- - - a,a•, «1• s s _ 7 _ L cnr, o i ° s � _6 -_ I r� - ` -6 - _ "`�/ I I 1.7 `i I +' - - - -- - -` -- t , °�IL,�° t >. a_i • ` ` - r/ 1,B 1 r 1 I S�j t I • j ={ I I I p• iz ,. •s r< ' r ." • "'•~ }_ — — /) — — ->t- 1.7 , Yi r -4.? -fir I I I 1 .., /I � I y Y �� — � I .<a• 1 _ • � ��-n �. 1 i 3 .• 1.° 6 1 I r i - _ -- -- _ b � LE ( ARROrYE AO 4•• ' .lii • .LOw,ry T _- •.}►��w- :4 - -'� I _ !; .•s!. 1 \r^ I •tY ury - -tr • `� � I ' '• i �. - - - - - - - -. _ - •EAR - - _._. __ - - _ 1 _ o _ 1.1 `� b - �i - �s41_'s2h. •• LB• r pG - � r _ � L 'N - 7•°'772 — s - + LAN 14 IN —_ T _ - T -l- ♦) `' ' / -L`. - -- _ ' r V - - t_ r " •. t i ` nutpine 3mmes 1 l •.,� '..e y f � C 1.2 w ne.o.r � I I_ g � L3 - li -; '�' - _ - '�` `•' -- -- 1 F - -- . � - �•^ - - __ Try � n •`• _ .. � . r _ r ' ^•� TL - — -- -- - i i \ l 3 _ J s � ► - I � DeM LI - pry - r � - - 1 " ,. - - . SYr•eo+ :,� : ' e. _ �_, - _ - C~ ` - � - - . _ - .. - � ' - _ ► aN - - _ ai i - r -- t - - -- -- - v I \ ` - - - ' LO _ _ F' .. :L�( 1 _ E 3' ti 5 --� - — —_ , -_•_— . •D W AL TA UPL /R N E w . AN n _ �- - •�_... ; r► I CIJA>t0011T _ 1 ' ..°• _R cucA YOA �. FONTAN TI$ - -- as r •• �% ° r - — - - '�:e I - 4 _ _ _ • • - - - - ONT LO-q- a C TON -. :.� �..• a i _ -- — - _ �.�5 REDLANOS - -- � - •`• - ' T - - - IOYA IINOA - _ - _ ..r _r - c _ � �'�` _ -•� - - - �r - -- - -- � ` --` • • • • w At - w.a. 'h.. • E _ _ CREST YORE { _ _ - i _ �_.` `. -_ LI _ _r _ -__ \ a•_ - -- EN r•• S I ... -�. I I w.- F r IPA WnNAAWN; TV :.,_ ! i■ _ _ -47 i a 3 �'. • 'uryur -< • • •RAN• TERRfCE _ — CHINO i !AN •ERNA OINO - " r 1 \ 6 .- - — 1 Q F i 1, R ouY ° _ _ _ \3 RIE R E Irl.•oo RIVER3101 COUNT J4� _ _ - T2S -` -- -,� - YF 1- - - T•O - �= I RSIDE r I •. • N !!�' A .,'. � - R4W ° s R3 '- R2Wc ± ' ° SERNARDIN FLOOD CONTROL t)I TR T 4 R 5 'o ~r � VALLEY AREA T3s - _ ; . >, r. •� �. CED DRA REDU wlry I 4 MILES ISOHYETALS SCALE OUR3 -- SAN_ BERNARDINO COUNTY --- "SEO ON KOAA.wu •,' A 0j"ADVE0 BY alas • p B W I • R 7 W - R6 HYDROLOGY MANUAL LEGEND: FL GATE I SCALE FILE Nn 011MK' N0. ISOLlNES P +£CifITATION (INCHES) ........................... • 1992 C -2 W- Yron -. . _. .., I" iw Lo it D-7 FIGURE O-Z ■ ■ ALLARD ENGINEERING DESCRIPTION ■ civil engineering • land surveying • land planning 1M�4* AALrA Fontana • Victorville JOB# SHEET OF Z�roOZ DESIGNED BY I DATE r' T t - I ! I , i T i , l I l — i � ! �I �t� . - . t I s , I E ' 8253 Sierra Ave. • Fontana, EA 92335 • APPROVED t'h (909) 356-1815 • Fax (909) 356-1795 www.allardeng.com i I - -Z? - - , E i L , I I i •� I � o , ZQS. '` . 1 2,E 8zu s � t7, 3 h r' T t - I ! I , i T i , l I l — i � ! �I �t� . - . t I s , I E ' MURRAYSTORM DIRECTOR. EMA r - .4 : U N-r-y (D ��� _ DIRECTOR Of REGULATION - LOCAj10N. _ i a 44 DOCIVIC CENTif, DRIVE -WEST 1= r A - S VTA ANA CALIFORNIA RANGE , - -_ - - -- _.- - - -- :; - - - -- - - -- -- : -MAIL ING ADDAESSi - -- _ P.O. aOX 404a ENVIRONMENTAL MANAGEMENT AGENCY �AMTA Atle_' 91'.L'2 - 4048 _ REGULATION (71a) 814.2 626 FILE _. �I TO: Designers /Developers of Frivate /Semi- Private Drainage Devices FROM: E'4: -. Drainage Unit The Drainage Unit has been assigned the task of reviewing parking areas, . streets, and storm drains which are not publicly owned for hydrological /hydraulic adequacy. This memo will allow the Unit to provide you our thoughts at this time and s6licir_ Lhe private sectors for comments. Attached to this Demo you will find our proposed methodology and several proposed structural sections which we feel provide the necessary protection. Our inti-nr is to provide a standard structure which is easy to engineer with minimum.. install . 1 - ation cost and . ^- •af.imum protection. Considerable effort was made to contact producers of structures suitable for private drainage structures. Eased upon their response, we have identiffe -e se-era' ! structures as suitable by reference to the manufacturer's liter-ature. S•:e are not specifying any given manufacturer, only the concept. A" Any corrnents regarding our preliminary standards for private /semi - private dra rage L will be appreciated. Please direct your comments to Jerry Sterling, telephone number (714) 834 -5060, or to the above address. - - - - -- L We anticipate including the proposed standards in the ne::t rrirtino of our Drainage Design and Criteria Aids. JDS:lc [ I PRIVATE AND ASSOCIATION DRAINAGE DEFINITIONS ---- -- - -- Pl' — `A = Area, - -- in - s ware - - f eet — - - -- - — =— - -- V = Velocity, in feet peL second y - Depth of -water in approaching gutter, in feet d = Depth of water over catch basin, in feet - '- t Thickness of bars in catch basin, in feet -- - - -- — W = Width of - slot s — — -- -_. Q = Capacity of grate, cfs ' L min. length of catch basin, in feet !fr P =Netted perimeter, in feet W = Width of street flow, in feet P = Wetted perimeter of alley gutter, in feet �1+ Lmin. �5 PM 1 1 - F1. —�.. --17 N a -- i - i d P 9 47 - -" , ' - -- - - -_ -- - PRIVATE AND ASSOCIATION DRAINAGE CRITERIA �� -- -' -- - = Z DEFINITION - - OF PRIVATE -ND ASSOCIATION DRAINAGE -- - -- -- _ - -" -- == Private and association drainage is that drainage which ultimate operation and maintenance responsibility will fall to a group of persons or -- homeowners association. This definition - will - not - include works which - are - -----with in- Light-of-way. - -- - - - -- — - -- -- -- - - -- - - Public maintenance will begin when public waters are intercepted, there after the system will be public and shall be designed in accordance with public works criteria. , II. —INSTRUCTIONS FOR PREPARATION OF PRIVATE DRAINAGE PLANS General Instruction A. Submit a plan drainage for entire drainage area along with a topographic map having a scale of 1:1000 or larger, (e.g., 1:200). B. Submit plans of proposed private driveways with the proposed grades and street sections. This maybe grading plan if one sheet. C. Submit a plan showing the drainage areas being considered, runoff from each area, the Q's on each side of drive /streets, Q's intercepted by catch basins, and Q's in pipes and other structures, (i.e., Breakdown of all Q's) . D. Submit all calculations with references to charts, tables and /or methods used. E. Private storm drains shall be shown on Improvement Plans and labeled 'Private Storm Drain - Not maintained by County or OCFCD." Design Criteria for Private drainage Systems Note: When standard street sections are specified use public street criteria. A. All buildings shall be protected from flooding during 100 -year frequency storm. B. 1. Onsite design storm is a 10 year frequency. In sump conditions for catch basins and the connecting storm drains, use a 25 year frequency, 2. Offsite design storm frequency subject to individual review by the Agenoy and should be in accordance with the Hydrology Manual. C. -Catch basins (bicycle type) may be of the grate type if street slope does not exceed 5 %. a: -- - - _'D. If street slope exceeds_6% side inlet catch basins with local - - - -- -- - depressions shall be used. - -- --- - -- = E. Design shalf pro�-3de for minimum number - of - cross - glitters, - - - _ F. A positive secondary overflow from site shall be provided in grated sump catch basin designs. 5 treet shall die contahned - in concrete alley gutter - a - -- - minimum of 4' wide or a standard curb and gutter. ib H. Curb drains (Grading Section requires min. 4" drains) are acceptable if opening is 3" less then curb height.. Use examples on page 10. bw I. Storm drains may use ACP if D load is 1.5 times D loading specified in OCFCD design Manual, and velocities are 10 fps or less (per Grading Manual, Sec. 11.5). J. All storm drains in driveways shall maintain 30" minimum cover. O" R. Yard drains will not be considered as storm drain devices. III. G PXItz - INLET CAPACI DESIGN Genera Discussion 1 A. The ability of the grate to intercept storm water is the most fo -. important function a grate can perform. The main considerations in design are the geometry and the flow - through area of the openings. Although text book formulas are available they appear to be inadequate for the solution of most real life situations, 6 An inlet grate must act as a strainer and prevent harmful debris from 1� entering storm drains. However, grates designed with closely sbaced bars for strength and safety become easily clogged from very small but always prevalent debris. -As the spacing of the bars increases there poses the problem of bicycle_ safety_ Following are general grate /bicycle design criteria: I. Openings consist of at least 501 of total area of the grate. 6 2. Minimum clear spacing between bars shall be 1 ". 3. For.bicycle safety cross bars shall be provided at a maximum spacing of 9" (a 24" diameter bicycle wheel will not drop down more than about 1 "). 4. Grates shall'be cast iron or galvanized steel. Inlets on a Continuous Grade A. Where the gutter is on a continuous grade, grate inlets with efficient openings can be expected to intercept all the water flowing in the part of the gutter cross - section above the grating. -3- �1 R. E The bars =shall - run' - paralle l' - t o ' run - paralle l t o the - direction of - flow. - . - ' - 2. The unobstructed opening,._parallel to the direction o _ fl ow, dllin th=ough__? e, - opening to_ - - -- - -- clear the downstream end of the slot dep`rids upon the depth and - velocity of flow in the approach gutter and the thickness of the grate. The minimum length of slot may be estimated by the :_ -- - -- -- - =— - - following formula: — L min = .675V (y + t) Where L min = minimum length of slot (in feet) V = mean velocity of flow in the approach gutter (fps) y = depth of water in approach gutter (ft.) t = thickness of grate at downstream end of the slot (ft.) 3. The capacity of a grate inlet, where the gutter is on a continuous on grade, increases rapidly when part of the flow is allowed to go L O past the inlet. This is due to the increased depth in the cross section of flow over the grating. 1 . , j 4. A curb opening placed upstream from the grate on a continuous fir` grade tends to take off debris brought down as flow begins, thus reducing the probability of the grate becoming clogged. f' L O B. Design Procedure for Grate Inlets on Continuous Grad 1. Determine normal flow conditions using street capacity charts or alley capacity formulas as appropriate. 2. Determine capacity of grate. , Qg = width of grate x V x (depth of water over grate) 3. Check to see if grate is long enough using the formula. L min - •675V (y + t) Note: 251 - clogging and 108 cross -bar allowances have been included in this equation. Sump - Inlets A. The capacity of the grate depends upon the area of the openings and the depth of the water at.the grate. Experiments have determined t:,at a grate will act as a weir and follow the weir formula for depths (heads) on the grate up to 0.4 ft. It will act as an orifice and follow the orifice formula for heads of 1.4 ft. and over. For heads -4- - ` -- "- 'between ft� ° the -- operation_Is indefinite_ because of_______.__ - - - - - - -- - ... -- - - - _ vortices and eddies over the grate. - - -— When aroposing a sump condition the desaaneac Gust _i�er.ify._ 09- ear -- _. ef�Y ...of,_Y,abi areas assuming _t he grate %.- This will require a secondary emergency outlet of the sump waters which should provide a minimum of 1.0..foot,free..board between maximum W.S, elevation and minimum, finish 11 " ..elevation.' i This emergency outlet system direct o � o ei the r - beam sffie - O or na -- �.. conveyance system. Point of discharge must be analyzed with - regards to prevention of downstream problems. Such a system need not consist of additional structures but may simply require modification of surrounding grading allowing water to flew between dwelling units. 9. If th'e required head falls between 0.4 ft. and 1.4 -ft. the actual head may be anywhere between (a) and (b). Use the value that gives the most conservative result, being sure to use line (a)- with Q/P and line (b) with Q /A. - -- -5- t C. Design Procedure for Sump Grates 1. In the usual problem the following are given: 60 a. An assumption of orate configuration with dimensions. Include grate detail with calculations. b. A design discharge (Q) or information as to drainage area, rainfall intensities and runoff coefficients from which a discharge can be estimateed. irr 2. Compute the perimeter of the grate opening (P) ignoring the bars and omitting any side over which the water does not enter, such as when one side is against the face of a curb. Divide the result_ by 2. This allows for partial clogging of the grate by assuming that only half of the perimeter will be effective. 3. Compute the Q/P ratio. 4. Compute the total area of clear opening (A), excluding area taken bars, up by and divide by 2. This allows for partial clogging of the grate by assuming-that only half of the area will be effective. Ir 5. Compute the Q/A ratio. - 6. Enter the chart at the bottom scale using line (a) with the Q/P value and line (b) with the QA value and read the required head in feet at the left margin. 7. If the required head falls below 0.4 ft., (a) only will apply. -- - This is the usual case. 8. If the head falls 1.4 ft., required above (b) only will apply. 9. If th'e required head falls between 0.4 ft. and 1.4 -ft. the actual head may be anywhere between (a) and (b). Use the value that gives the most conservative result, being sure to use line (a)- with Q/P and line (b) with Q /A. - -- -5- t 10; 1- Y 1 j 11 1 111 j ,.�L,,U:j.i�l1:F 1 1 1 1 (� • f b - - - -- -- - - -- - - - - - - - S -P 2 (a+b) ml ; FF �. 1 I I ! t 1 . 1 I l l l t 1 1 1 ( l i t l l i l 1 :, �,,, - = _� , I I I II ( l�v_� 1 ' ! i � I !• .' 1 � Is. i�IH�= 1 - � - _ �3_OH'fz I W ' 1 o� � I 1 1 i I� t 1 =• 1 I 1 1 1 1 i I l l t I I 1 1 1 1 1 1 1 1! I :: L. • rw H t w _ Aps U TO 1 1Q4 1 =: HEADS A� OYE I IA 6 k+ILI ES I I I III I l i l l PI H EARS 8 kT1n�EEN 4 at L' , IT A � ION I - 1 F1 I I I I I L - S E CTO R Ia► OPg 'RA:T J O H I I S 1 I'H 10 L 1 HIT �_ I• !_ 11 !� 1 i; ;_ I _ • I l l i i l 1 1 1 I i -I I 1 1 1 1 1 1 I �; i i J • I I- � i(� I I (� �� (� I I - I I I I � _� �- q I G �•.�,� R� ° ER '��' O P ' �r}r• t IS�H R E Pe I O I T OFi E' /' I , S • - 1', - 1 ..1•• /•� •} II....I;.1•. ,1•L.,.L..� «I 11 1 0.1111. •1..1.1!..1!•1• t.•a.. 1 . + .1 1 1 11 11•.1 • r ql .2 1 , .3 _�} .S _C .T .i.f Lo 2 ' 3 4 S 6 7 8 9 to BUREAU OF PU$LIC ROADS CAPACITY 0F GRATE 1,NLET 1N SUM? DIVISIOQ "rwo WASH D - WATER PONOEO ON GRATE ASSUME 50 C�_ 10. If _the..inletis_a_ combination -type with grate and -curb opening .the__- recommended procedure is the same as with a grate alone except the perimeter and area are not divided _4!y 2,_The reason_ for this is - `_ " - - -_ - that the ope iing Will - serve as a - relief in event the grate - iWl becom clogged. • With the grate operating freely it fs questionable whether much water will get to the curb opening until �!- the discharge is sufficient to submerge the entire grate. IV: Ada it o ial`Ii,forinaua — -- - - -- -� - -- - A. The inlet floor must have a substantial slope toward the outlet. In a shallow drain system where conservation of head is essential, or any system where the preservation of a nonsilting velocity is necessary, the half -round floor shown ?" below should be used when a pipe continues through the inlet. Irrr D. Recent hydraulic tests have shown the 'vane' type grate will accept more water than any of the conventional grate styles under virtually all flow conditions. Even with extremely high volume and velocity conditions in the gutter there will be very little if any water that the grate will not capture, providing the water passes over it. In addition to its increased capacity, the vane grate is also bicycle safe. For these reasons it is the most desirable of styles available. A t itr tilt f� %-4 f� CAPACITY COMPARISON CF GRATE TYPES GRATE TYPES L7 T*rPE A LL C�r�C `- C J am, 1. 2 r.•PE C C_ . �. S �_J C TYPQ D SEEN 1% 2- 3% 4 y; 5 6%, TYPE Da-Dc SLOPE .« LONGITUDINAL The above curt Shows flume test results using r,,.�iaoaaa r 17'•x ?O'• full size grates in the s!x types detailed rrPEL !op rion! A cons:3nl !ransverse or gutter slope of 6, was used to contain more water over the grate. The gutter f :ow .r. the channel was set at 2 cfs. Note the improved performance of the Type ­L' and 'V" Vane Grates. Q►� -�-� =���% TYPE v —7— fft� IIIIIIIIIIIIIItIIIt�� —7— 4. R - A/P - 5. V = 1.49 R2/3 5 I T - CHECK AV - °' - - -` -' - - - - - -- ALLEY CAPACITY FO RMULAS FOR DETERMINATION OF DEPTH OF WATER -- - — OVER GRATE INLETS - - -- - - GIVEN - '----- - - - - -- � W3 Z1 Z2 — — O — — Q 0 (per criteria on page 9 o 'e ASSUME d GUTTER Area = AG = •08 W + .06 W3 = 0.10 W3 Z WETTED CALCULATE PERIMET -.R PG = 2 - (0.08)2 ( 3 ) 2 + 0.13 1. W = W + W + W 1 2 3 i1r W = d -0.15 Z dfull = 0.15' W = d - 0.15 Z2 2. P =Pl +P2 +PG w, W w wz P = (d - 0.15) 2 + W I P2 - Y (�) 2 + W I r 3. A= Al +A2 +A3 +AG Al = d -0.15 W1 A2 d -0.15 W2 4. R - A/P - 5. V = 1.49 R2/3 5 I T - CHECK AV PO (ir - - i ,C vc fir Yn bw f o n Due to the effects of momentum on the velocity of water, the design slope (S should be based on the distance of the inlet from a vertical curve. The following formula and accompanying graph shall be used. S =S +b (s 2 - s 1 ) 0.3 -Q 0.2 0.1 where L = length of vertical curve = distance downstream of B.V.C. —9— 0 0./L 02L„ 0.3L 0.4L,c • _, �._ - - - — — ___ - alt" �... 7EaRaCE SIDEWALK - CUMS CAST GUTTER Ir -ol Section showing curb width. M A .. t IIo rtE fWM F00 NDF— Y ADAPTORS — ROUND TO RECTANGULAR PIPE r� `. I. Ir Catalog Dimensions in inches wt. I �- No. A a C C -C E E -E F T Lb-. 1- 3262.1 5 is 4 4 6 5 7 1 - 20 � CC R- 3262 -2 6 ir; 4 4 6 yya 5 6 2 ii 20 u m 9- 3262 -3 5 L4 4 5% 6 6'r: V1 1 20 f C l 2-3262-4 5 r iZ 4 16 7 17 6� 2 45 R- 3262 -5 6 1: 5 5 6 6 s5 8 2 30 E I EE +� R- 3262 -6 6( it 6 6 8 7 9 2 30 ROUND RECT. LAYING ROUND PIPE RECT. LATtrlt: PIPE LENGTH PIPE PIPE LENGTH * 3 8 �Jc P: '� � ✓.'i 1�' ; K.E4'�(Kr< Ct,'� -P: HsK• A —480 4 nrt — - + r EOOD I �/ -- J �= O-L .r. GLJQL WAIN] tXAN1ft't5 P.h-I- 4/!? Zr 7 -- _ PARTIAL LYS`r OF GRATE MANUFACTURERS - -- - 1. Alhambra Foundry -- - -- -- -- - - - - - -- - - - - -- -- 1147 Meridian Avenue . Alhambra, CA 91802 (223) 289 -4294 - - 2.— brooks- Products - - -- - -- - - -- - - - ' - -- g 10141 Olney Street �+ El Monte, CA 91734 (213) 283 -0637 3. Neenah Foundry P.O. Box 729 Neenah, WI 54956 (414) 725 -7000 frri s d it W Manufacturers may be added to this list by submitting a catalog and design information to the Drainage Unit. JS:gvRD07 -2 1/31/83 :i� Part Number 1242 HNP 12.13 HHP 1.818 HHP MOW 3836 1�ta11�c � �836°Paakwa/ 3 T /WParb ay T-rafS' Parkway Tmfticl Away Par fa my width to inches T4.' l6 19.147 5 19;1873 25:1805 U.0075. 35010 length In Inches :14.5 14.5 1$:73 25:5 39:375 3:1:75 # of Fiat bars : 29- 39 39 51. 3-1 31 Fb Thickness 0.1875 0.1675 0.1875 0.18478 0.25 # of Cross bats 3 3 4 6 9 9 Cb lhldcness 0.305 0:305 0.305 0.305 0:375 0:305 Gross area 20 27 8.2488 378;,= x.281 137!54641 142355469 Less bar area .8253 123:5878 1'87:8306 283;9 69 423A703 3�:352rL =net open area I!;*' 8SU 154:63G9 21'1.4 6 352.; 44 952`.5$38 '!0£(. U47 net area l gross area a'�. open' lfli,3S1G b5:58•�G 53 7 'x: 54:88 69:3 E; ltle 9G :i� �w war e� ir. 1r �w PIPE SIZE 0.5% 1% 2% 4% 4" 0.15 0.21 0.30 0.42 6" 0.46 0.65 0.92 1.30 8" 0.99 1.40 1.98 2.80 12" 2.91 4.12 5.82 8.23 18" 8.58 12.13 17.16 24.27 24" 18.48 26.13 36.96 52.27 Notes: 1. Mannings n = 0.011 For PVC Pipe Vr 2. Table Based on d/D =0.80 and is in units of CFS For 1% Pipe Slope Q = CIA C = 0.85, 1 = 2.6in /hr Q = 0.85(2.6)A Q = 2.2A r.. A = Q/2.2 r.i Pipe Size Q(CFS) Max Area (Acres) Max Area (S.F.) In do 4" 0.21 0.10 4158 6" 0.65 0.30 12870 8" 1.4 0.64 27720 go err Rational Method m 0 E a ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -2003 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2003 License ID 1400 Analysis prepared by: Allard Engineering 8253 Sierra Avenue Fontana Ca. 92335 PM * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** Palermo Luxury Apartments * Developed Condition !^ * 100 Year Storm Event bw F FILE NAME: PALERMO.DAT TIME /DATE OF STUDY: 12:32 12/18/2007 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: }" ==-=================---- -*----TIME -OF- CONCENTRATION -------------_____= __MODEL= __*_- _- ================= = = = = == ( 11r USER SPECIFIED STORM EVENT(YEAR) = 100.00 po SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 W SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = 0.6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.4500 P *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* *USER- DEFINED STREET- SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET- CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT- /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) PR 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER- SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE - 0.00 TO NODE - -- - 1.00 IS CODE = 21 >>>>> RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< <<< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< J, H INITIAL SUBAREA FLOW- LENGTH(FEET) = 115.00 ELEVATION DATA: UPSTREAM(FEET) = 1248.70 DOWNSTREAM(FEET) = 1247.40 J Tc = K *((LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.299 op * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 6.219 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc fm LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) APARTMENTS A 0.15 0.98 0.20 32 5.30 �I SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.20 on SUBAREA RUNOFF(CFS) = 0.81 TOTAL AREA(ACRES) = 0.15 PEAK FLOW RATE(CFS) = 0.81 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 91 ---------------------------------------------------------------------------- >>>>>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA <<<<< ---------------------------------------------------------------------------- UPSTREAM NODE ELEVATION(FEET) = 1247.40 DOWNSTREAM NODE ELEVATION(FEET) = 1245.30 CHANNEL LENGTH THRU SUBAREA(FEET) = 205.00 "V" GUTTER WIDTH(FEET) = 5.00 GUTTER HIKE(FEET) = 0.050 ° PAVEMENT LIP(FEET) = 0.031 MANNING'S N = .0150 PAVEMENT CROSSFALL(DECIMAL NOTATION) = 0.02000 MAXIMUM DEPTH(FEET) = 0.30 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.293 1rr SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS ion LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN br APARTMENTS A 0.44 0.98 0.20 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.20 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.81 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 2.09 AVERAGE FLOW DEPTH(FEET) = 0.15 FLOOD WIDTH(FEET) = 11.92 "V" GUTTER FLOW TRAVEL TIME(MIN.) = 1.63 Tc(MIN.) = 6.93 SUBAREA AREA(ACRES) = 0.44 SUBAREA RUNOFF(CFS) = 2.02 EFFECTIVE AREA(ACRES) = 0.59 AREA - AVERAGED Fm(INCH /HR) = 0.19 AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.20 TOTAL AREA(ACRES) = 0.59 PEAK FLOW RATE(CFS) = 2.71 END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = 0.18 FLOOD WIDTH(FEET) = 14.48 FLOW VELOCITY(FEET /SEC.) = 2.25 DEPTH *VELOCITY(FT *FT /SEC) = 0.40 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 2.00 = 320.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>> USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) < <<< ELEVATION DATA: UPSTREAM(FEET) = 1245.30 DOWNSTREAM(FEET) = 1243.20 FLOW LENGTH(FEET) = 240.00 MANNING'S N = 0.013 H ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.6 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 4.57 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 2.71 PIPE TRAVEL TIME(MIN.) = 0.88 Tc(MIN.) = 7.81 III LONGEST FLOWPATH FROM NODE 0.00 TO NODE 3.00 = 560.00 FEET. FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- MAINLINE Tc(MIN) = 7.81 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.928 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN L APARTMENTS A 0.47 0.98 0.20 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.20 SUBAREA AREA(ACRES) = 0.47 SUBAREA RUNOFF(CFS) = 2.00 EFFECTIVE AREA(ACRES) = 1.06 AREA- AVERAGED Fm(INCH /HR) = 0.19 AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.20 TOTAL AREA(ACRES) = 1.06 PEAK FLOW RATE(CFS) = 4.52 FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 81 p" » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- MAINLINE Tc(MIN) = 7.81 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.928 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN 60 APARTMENTS A 0.17 0.98 0.20 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.20 ? SUBAREA AREA(ACRES) = 0.17 SUBAREA RUNOFF(CFS) = 0.72 EFFECTIVE AREA(ACRES) = 1.23 AREA- AVERAGED Fm(INCH /HR) = 0.19 AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.20 TOTAL AREA(ACRES) = 1.23 PEAK FLOW RATE(CFS) = 5.24 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3.00 TO NODE - - - -- 4.00 - IS - CODE = 31 >>>>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA<< <<< >>>>>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) <<<<< ELEVATION DATA UPSTREAM(FEET) = 1243.20 DOWNSTREAM(FEET) = 1242.40 FLOW LENGTH(FEET) = 165.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.7 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 4.31 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 5.24 PIPE TRAVEL TIME(MIN.) = 0.64 Tc(MIN.) = 8.45 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 4.00 = 725.00 FEET. FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <<<<< MAINLINE Tc(MIN) = 8.45 L * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.702 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS �y LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN APARTMENTS A 0.46 0.98 0.20 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 - SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.20 SUBAREA AREA(ACRES) = 0.46 SUBAREA RUNOFF(CFS) - 1.87 EFFECTIVE AREA(ACRES) = 1.69 AREA - AVERAGED Fm(INCH /HR) = 0.19 to" AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.20 6w TOTAL AREA(ACRES) = 1.69 PEAK FLOW RATE(CFS) = 6.85 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE = 81 �r ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<< <<< ------------------------------------ MAINLINE Tc(MIN) = 8.45 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.702 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN APARTMENTS A 1.20 0.98 0.20 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 7 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.20 bw SUBAREA AREA(ACRES) = 1.20 SUBAREA RUNOFF(CFS) = 4.87 EFFECTIVE AREA(ACRES) = 2.89 AREA- AVERAGED Fm(INCH /HR) = 0.19 On AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.20 L TOTAL AREA(ACRES) = 2.89 PEAK FLOW RATE(CFS) = 11.72 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** -- FLOW - PROCESS - FROM - NODE - - - - -- 400 - TO - NODE - - - -- - 5.00 IS CODE = 31 ------------------------ >>>>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) < <<< ELEVATION DATA: UPSTREAM(FEET) = 1242.40 DOWNSTREAM(FEET) = 1241.60 FLOW LENGTH(FEET) = 155.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.7 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 5.40 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 11.72 PIPE TRAVEL TIME(MIN.) = 0.48 Tc(MIN.) = 8.92 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 5.00 = 880.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 81 » >>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <<<<< a FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1 ---------------------------------------------------------------------------- !" >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< TOTAL NUMBER OF STREAMS = 2 A CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 8.92 RAINFALL INTENSITY(INCH /HR) = 4.55 AREA - AVERAGED Fm(INCH /HR) = 0.19 A AREA- AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.20 EFFECTIVE STREAM AREA(ACRES) = 3.21 TOTAL STREAM AREA(ACRES) = 3.21 PEAK FLOW RATE(CFS) AT CONFLUENCE = 12.58 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** �.. FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< <<< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 150.00 ELEVATION DATA: UPSTREAM(FEET) = 1248.50 DOWNSTREAM(FEET) = 1247.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 6.039 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.750 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) APARTMENTS A 0.10 0.98 0.20 32 6.04 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.20 SUBAREA RUNOFF(CFS) = 0.50 TOTAL AREA(ACRES) = 0.10 PEAK FLOW RATE(CFS) = 0.50 FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 31 ----------------------------------------------------------------------- >>>>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW)<< <<< MAINLINE Tc(MIN) = 8.92 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.549 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN on APARTMENTS A 0.32 0.98 0.20 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.20 SUBAREA AREA(ACRES) = 0.32 SUBAREA RUNOFF(CFS) = 1.25 r EFFECTIVE AREA(ACRES) = 3.21 AREA- AVERAGED Fm(INCH /HR) = 0.19 ift AREA- AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.20 TOTAL AREA(ACRES) = 3.21 PEAK FLOW RATE(CFS) = 12.58 FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1 ---------------------------------------------------------------------------- !" >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< TOTAL NUMBER OF STREAMS = 2 A CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 8.92 RAINFALL INTENSITY(INCH /HR) = 4.55 AREA - AVERAGED Fm(INCH /HR) = 0.19 A AREA- AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.20 EFFECTIVE STREAM AREA(ACRES) = 3.21 TOTAL STREAM AREA(ACRES) = 3.21 PEAK FLOW RATE(CFS) AT CONFLUENCE = 12.58 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** �.. FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< <<< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 150.00 ELEVATION DATA: UPSTREAM(FEET) = 1248.50 DOWNSTREAM(FEET) = 1247.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 6.039 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.750 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) APARTMENTS A 0.10 0.98 0.20 32 6.04 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.20 SUBAREA RUNOFF(CFS) = 0.50 TOTAL AREA(ACRES) = 0.10 PEAK FLOW RATE(CFS) = 0.50 FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 31 ----------------------------------------------------------------------- >>>>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW)<< <<< 0 ELEVATION DATA: UPSTREAM(FEET) = 1247.00 DOWNSTREAM(FEET) = 1245.20 FLOW LENGTH(FEET) = 330.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.2 INCHES 6 PIPE -FLOW VELOCITY(FEET /SEC.) = 2.38 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 to PIPE- FLOW(CFS) = 0.50 PIPE TRAVEL TIME(MIN.) = 2.31 Tc(MIN.) = 8.35 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 12.00 = 480.00 FEET. L FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>> ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <<<<< err MAINLINE Tc(MIN) = 8.35 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.734 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN APARTMENTS A 0.90 0.98 0.20 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.20 SUBAREA AREA(ACRES) = 0.90 SUBAREA RUNOFF(CFS) = 3.68 e. EFFECTIVE AREA(ACRES) = 1.00 AREA- AVERAGED Fm(INCH /HR) = 0.20 i AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.20 bw TOTAL AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) = 4.09 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 81 ---------------------------------------------------------------------------- - ->> »> ADDITION - OF - SUBAREA - TO_ MAINLINE - PEAK - FLOW<< «<----------------------- MAINLINE TC(MIN) 8.35 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.734 SUBAREA LOSS RATE DATA (AMC IV: DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN APARTMENTS A 0.33 0.98 0.20 32 I SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 �Yr SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.20 SUBAREA AREA(ACRES) = 0.33 SUBAREA RUNOFF(CFS) = 1.35 EFFECTIVE AREA(ACRES) = 1.33 AREA- AVERAGED Fm(INCH /HR) = 0.19 AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.20 TOTAL AREA(ACRES) = 1.33 PEAK FLOW RATE(CFS) = 5.43 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA<< <<< -- >>>>>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) < <<< ELEVATION DATA: UPSTREAM(FEET) = 1245.20 DOWNSTREAM(FEET) = 1243.20 FLOW LENGTH(FEET) = 195.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.4 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 5.82 a r.� ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 5.43 PIPE TRAVEL TIME(MIN.) = 0.56 Tc(MIN.) = 8.91 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 13.00 = 675.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- po MAINLINE Tc(MIN) = 8.91 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.554 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS r LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN it APARTMENTS A 0.50 0.98 0.20 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 p" SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.20 SUBAREA AREA(ACRES) = 0.50 SUBAREA RUNOFF(CFS) = 1.96 b ` EFFECTIVE AREA(ACRES) = 1.83 AREA - AVERAGED Fm(INCH /HR) = 0.19 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.20 TOTAL AREA(ACRES) = 1.83 PEAK FLOW RATE(CFS) = 7.18 ir. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** !. FLOW PROCESS FROM NODE 13.00 TO NODE 5.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA <<<<< >>>>>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) < <<< --------- - - - - -- ----- - - - - -- ELEVATION DATA: UPSTREAM(FEET) = 1243.20 DOWNSTREAM(FEET) = 1241.60 FLOW LENGTH(FEET) = 250.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.4 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 5.10 �+ ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 7.18 PIPE TRAVEL TIME(MIN.) = 0.82 Tc(MIN.) = 9.72 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 5.00 = 925.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ¢ FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 81 frr ---------------------------------- ------------------------------------------ >> >>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <<<<< ------------------------- ------------------------- MAINLINE Tc(MIN) = 9.72 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.320 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN APARTMENTS A 0.86 0.98 0.20 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.20 SUBAREA AREA(ACRES) = 0.86 SUBAREA RUNOFF(CFS) = 3.19 EFFECTIVE AREA(ACRES) = 2.69 AREA- AVERAGED Fm(INCH /HR) = 0.20 AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.20 TOTAL AREA(ACRES) = 2.69 PEAK FLOW RATE(CFS) = 9.99 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 0 e r- FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1 ------ -------- ----- ----- ---------- ---- ---- ---------- ---- ---- ---------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 9.72 RAINFALL INTENSITY(INCH /HR) = 4.32 AREA - AVERAGED Fm(INCH /HR) = 0.20 p' AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.20 EFFECTIVE STREAM AREA(ACRES) = 2.69 TOTAL STREAM AREA(ACRES) = 2.69 PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.99 ilr ** CONFLUENCE DATA ** po STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER I NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 12.58 8.92 4.549 0.97( 0.19) 0.20 3.2 0.00 2 9.99 9.72 4.320 0.98( 0.20) 0.20 2.7 10.00 y RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. A ** PEAK FLOW RATE TABLE ** bw STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 0 1 22.25 8.92 4.549 0.98( 0.19) 0.20 5.7 0.00 Yr 2 21.91 9.72 4.320 0.98( 0.20) 0.20 5.9 10.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: L PEAK FLOW RATE(CFS) = 22.25 Tc(MIN.) = 8.92 L EFFECTIVE AREA(ACRES) = 5.68 AREA- AVERAGED Fm(INCH /HR) = 0.19 AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.20 fa TOTAL AREA(ACRES) = 5.90 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 5.00 = 925.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 5.90 TC(MIN.) = 8.92 6w EFFECTIVE AREA(ACRES) = 5.68 AREA- AVERAGED Fm(INCH /HR)= 0.19 AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.20 �1A PEAK FLOW RATE(CFS) = 22.25 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 22.25 8.92 4.549 0.98( 0.19) 0.20 5.7 0.00 2 21.91 9.72 4.320 0.98( 0.20) 0.20 5.9 10.00 ---------------- END OF RATIONAL METHOD ANALYSIS 9 0 0 Hydraulic Calculations '0 60 4 Inlet Calculations �r L Flow By Grate at Cross Section A Q = W *V *D W =Width of Grate V = Mean Velocity of Flow D = Depth of Water over Grate W ft = 1 3.0 V (ft/S) = 1.77 D = ft 0.23 Q cfs = 1.22 1.22 cfs will be intercepted 1.49 cfs bypasses basin Flow By Grate at Cross Section C Q = W *V *D W = Width of Grate V = Mean Velocity of Flow D = Depth of Water over Grate W ft = 3.0 V ft/s = 1.69 D = ft 0.3 Q (cfs) = 1.52 1.52 cfs will be intercepted 3.75 - 1.52 = 2.23 cfs bypasses basin Flow By Grate at Cross Section D Q = W *V *D W = Width of Grate V = Mean Velocity of Flow D = Depth of Water over Grate W ft = 3.0 V ft/s = 2.38 57= ft 0.28 Q cfs = 2.00 2.0 cfs will be intercepted 5.43 - 2.0 = 3.43 cfs bypasses basin �1 » »SUMP TYPE BASIN INPUT INFORMATION «« ---------------------------------------------------------------------------- it bw pw A t L 6 Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 18.00 BASIN OPENING(FEET) = 0.50 DEPTH OF WATER(FEET) = 0.67 i » »CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = `S- ALLARD ENGINEERING DESCRIPTION . civil engineering • land surveying • land planning UNE 5 �t U E P `DLt�u �c Fontana • Victorville JOB# SHEET OF �PcC.ERw�o Lux i t 8253 Sierra Ave. •Fontana, CA 92335 DESIGNED BY DATE 07 APPROVED h. (909) 356 -1815 Fax (909) 356 -1795 V"l-W ailardeng.com } +Z` ! I `{a� -t- - - -, -- -� - - - ffff , r H 1 ; 1 - -- - - - -, -1- -- -! -E - -- 1 i � I - • L Z.' i j I 1- d 47 FT j } �j j i v j I I o ,r67 �,9�1 ? _ t +?4 t;4 - -- + kA S i } � I -I- -- - - - - ---- - - - - -- - -- -- - - - - - - - - - - - - ft i : } ; 0 m fir too Street Capacity Calculations �w I" L m 0 4 ! TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 2.71 kw COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 2.96 ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE ELEVATION ............................. 46.01 NOTE: WATER SURFACE IS BELOW EXTREME LEFT AND RIGHT BANK ELEVATIONS. f Cross Section A 4� ------------------------------------ • ENTERED INFORMATION FOR SUBCHANNEL NUMBER I NODE NUMBER "X" COORDINATE "Y" COORDINATE on 1 0.00 46.62 g 2 0.01 46.12 3 30.00 45.89 4 31.50 45.78 5 33.00 45.89 6 47.70 46.40 SUBCHANNEL SLOPE(FEET/FEET) = 0.010000 SUBCHANNEL MANNINGS FRICTION FACTOR= 0.015000 ................................... ............................... SUBCHANNEL FL0W(CFS) = 3.0 SUBCHANNEL FLOW AREA(SQUARE FEET) = 1.67 SUBCHANNEL FLOW VELOCITY(FEET /SEC_) = 1.770 SUBCHANNEL FROUDE NUMBER= 1.135 1m SUBCHANNEL FLOW TOP- WIDTH(FEET) = 22.10 SUBCHANNEL HYDRAULIC DEPTH(FEET) = 0.08 ! TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 2.71 kw COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 2.96 ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE ELEVATION ............................. 46.01 NOTE: WATER SURFACE IS BELOW EXTREME LEFT AND RIGHT BANK ELEVATIONS. f 4� Cross Section B - - - - -- ------ -------------- -- -- - - - - -- - ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 on NODE NUMBER "X" COORDINATE "Y" COORDINATE g 1 0.00 44.41 2 0.01 43.91 3 14.00 43.51 4 15.50 43.40 5 17.00 43.51 6 31.00 43.80 SUBCHANNEL SLOPE(FEET/FEET) = 0- 050000 SUBCHANNEL MANNINGS FRICTION FACTOR = 0.015000 ............................................. ........................ ....... SUBCHANNEL FLOW(CFS) = 3.6 SUBCHANNEL FLOW AREA(SQUARE FEET) = 0.88 SUBCHANNEL FLOW VELOCITY(FEET /SEC.) = 4.035 1m SUBCHANNEL FROUDE NUMBER = 2.549 SUBCHANNEL FLOW TOP- WIDTH(FEET) = 11.32 60 SUBCHANNEL HYDRAULIC DEPTH(FEET) = 0.08 TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED= 3.03 COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 3.55 ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE ELEVATION ............................. 43.61 NOTE: WATER SURFACE IS BELOW EXTREME LEFT AND RIGHT BANK ELEVATIONS. m d 0 IN TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED= 5.43 COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 5.86 on ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE ELEVATION ............................. 45.12 La NOTE: WATER SURFACE IS BELOW EXTREME LEFT AND RIGHT BANK ELEVATIONS. N * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 NODE NUMBER "X" COORDINATE "Y" COORDINATE Cross Section C -- -- - - -- --------------------------------------------------------- * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 0.00 44.37 2 0.01 43.87 3 28.00 43.09 ( 4 29.50 42.98 5 31.00 43.09 6 60.00 43.70 7 60.01 44.20 t� SUBCHANNEL SLOPE(FEET/FEET) = 0.005000 io SUBCHANNEL MANNINGS FRICTION FACTOR= 0.015000 ............................................. ............................... SUBCHANNEL FLOW(CFS) = 3.8 fa SUBCHANNEL FLOW AREA(SQUARE FEET) = 2.24 SUBCHANNEL FLOW VELOCITY(FEET /SEC.) = 1.693 SUBCHANNEL FROUDE NUMBER= 0.865 SUBCHANNEL FLOW TOP-WIDTH(FEET) = 18.85 f^ SUBCHANNEL HYDRAULIC DEPTH(FEET) = 0.12 - _---------- ------ - -- - -- ----------------------- TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 3.75 COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 3.79 ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE ELEVATION ............................. 43.28 NOTE: WATER SURFACE IS BELOW EXTREME LEFT AND RIGHT BANK ELEVATIONS. -- - --- - ------ --- -------- - ----------- ---- ------- - ----------- ------- Cross Section D IN TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED= 5.43 COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 5.86 on ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE ELEVATION ............................. 45.12 La NOTE: WATER SURFACE IS BELOW EXTREME LEFT AND RIGHT BANK ELEVATIONS. N * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 0.00 45.50 2 14.50 44.95 3 16.00 44.84 4 17.50 44.95 5 30.90 45.08 6 31.00 45.58 SUBCHANNEL SLOPE(FEET/FEET) = 0.010000 SUBCHANNEL MANNINGS FRICTION FACTOR = 0.015000 ............................. ............................... SUBCHANNEL FLOW(CFS) = 5.9 SUBCHANNEL FLOW AREA(SQUARE FEET) = 2.46 SUBCHANNEL FLOW VELOCITY(FEET /SEC.) = 2.378 SUBCHANNEL FROUDE NUMBER= 1.221 SUBCHANNEL FLOW TOP- WIDTH(FEET) = 20.89 SUBCHANNEL HYDRAULIC DEPTH(FEET) = 0.12 IN TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED= 5.43 COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 5.86 on ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE ELEVATION ............................. 45.12 La NOTE: WATER SURFACE IS BELOW EXTREME LEFT AND RIGHT BANK ELEVATIONS. N N" z Cross Section E 0 ll�* f 0 • ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 0.00 43.07 2 0.01 42.57 3 32.50 41.92 4 34.00 41.81 5 35.50 41.92 6 49.00 42.08 7 49 42.58 SUBCHANNEL SLOPE(FEET/FEET) = 0.005000 SL SUBCHANNEL MANNINGS FRICTION FACTOR = 0.015000 ........... .......................................... I ................. ..... SUBCHANNEL FLOW(CFS) = 8.3 SUBCHANNEL FLOW AREA(SQUARE FEET) = 4.20 SUBCHANNEL FLOW VELOCITY(FEET /SEC.) = 1.974 SUBCHANNEL FROUDE NUMBER = 0.898 SUBCHANNEL FLOW TOP- WIDTH(FEET) = 28.00 SUBCHANNEL HYDRAULIC DEPTH(FEET) = 0.15 — TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 7.76 COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 8.29 ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE ELEVATION ............................. 42.15 NOTE: WATER SURFACE IS BELOW EXTREME LEFT AND RIGHT BANK ELEVATIONS. A----------------------------------------------------- t �r 0 ll�* f 0 0 fr WSPG OW L o M HI, +' IR �! 0 T1 Palermo Luxury Apartments T2 Line A -12" T3 100 Year Storm SO 1002.3001229.970 2 1240.900 R 1006.0001231.500 2 .013 .000 R 1426.7001234.460 2 .013 .000 WE 1426.7001234.460 3 .500 SH 1426.7001234.460 3 1234.460 CD 2 4 1 .000 1.000 .000 .000 .000 .00 CD 3 2 0 .000 5.430 50.000 .000 .000 .00 A 4 Q 2.000 .0 it F ill 4 L t to. FILE: Palermo_Line_A.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 1 Program Package Serial Number: 1382 WATER SURFACE PROFILE LISTING Date:12 -20 -2007 Time:11:48: 3 Palermo Luxury Apartments Line A -12" 100 Year Storm I Invert I Depth I Water I Q I Vel Vel I Energy I Super ICriticallFlow ToplHeight /IBase Wtl INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.l Elev I Depth I Width IDia. -FTIor I.D.I ZL IPrs /Pip - I - -I- -I- -I- -I- -I- -I- -I- - I- -I- -I- -I- -I- -I L /Elem ICh Slope I I I I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X -Fa111 ZR IType Ch I I I I I I I I I I I I I 1002.300 1229.970 10.930 1240.900 2.00 2.55 .10 1241.00 .00 .60 .00 1.000 .000 .00 1 .0 - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - 1- 3.700 .4135 .0032 .01 10.93 .00 .20 .013 .00 .00 PIPE I I I I I I I I I I I I I 1006.000 1231.500 9.412 1240.912 2.00 2.55 .10 1241.01 .00 .60 .00 1.000 .000 .00 1 .0 - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - 1 420.700 .0070 .0032 1.33 9.41 .00 .60 .013 .00 .00 PIPE I I I I I I I I I I I I I 1426.700 1234.460 7.777 1242.237 2.00 2.55 .10 1242.34 .00 .60 .00 1.000 .000 .00 1 .0 WALL ENTRANCE I I I I I I I I I I I I I 1426.700 1234.460 7.929 1242.388 2.00 .01 .00 1242.39 .00 .04 50.00 5.430 50.000 .00 0 .0 -I- -I- -I- -I- -I- -I- -I- -I- - I- - I - -I- -I- -I- I- On Tl Palermo Luxury Apartments 0 T2 3 18" Pipes T3 100 Year Storm Event Me SO 1019.0001239.000 1 1240.140 WX 1019.0001239.000 2 R 1052.0001239.100 2 .013 .000 .000 0 WE 1052.0001239.100 3 .500 SH 1052.0001239.100 3 1239.100 CD 1 4 1 .000 1.500 .000 .000 .000 .00 CD 2 4 1 .000 1.500 .000 .000 .000 .00 CD 3 4 1 .000 8.000 .000 .000 .000 .00 Q 7.600 .0 L P' i L W �M a FILE: Pa.lermo_Line_B.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 1 Program Package Serial Number: 1382 WATER SURFACE PROFILE LISTING Date:12 -14 -2007 Time: 2:23:30 Palermo Luxury Apartments 3 18" Pipes 100 Year Storm Event I Invert I Depth I Water I Q I Vel Vel I Energy I Super ICriticallFlow ToplHeight /1Base Wtl INo Wth Station Elev I (FT) I Elev I (CFS) I (FPS) - I - Head I - I - Grd.El.1 Elev - I - I Depth - I - I Width IDia. -FT1or I.D.1 - I - - I - ZL 1Prs /Pip - I - I - L /Elem - I - ICh Slope I - I - I - I - I - I - I SF Avel - I - HF ISE DpthlFroude NINorm Dp - I - I "N" I X -Fall) ZR 1Type Ch 1019.000 i I 1239.000 I 1.140 I 1240.140 I 7.60 5.27 I .43 1240.57 I .00 I 1.07 I 1.28 I I I 1.500 .000 .00 I 0 .0 WALL EXIT 1019.000 I I 1239.000 I 1.141 I 1240.141 I 7.60 5.27 I .43 1240.57 - I - I .00 - I - I 1.07 - I - I 1.28 I I I 1.500 .000 - I - .00 I 1 .0 - I - 6.168 - I - .0030 - I - - I - - I - - I - - I - .0058 .04 1.14 .88 1.50 - I - - I - .013 .00 .00 1- PIPE 1025.168 I 1239.019 I I 1.197 I 1240.216 I 7.60 5.02 I .39 1240.61 I .00 I 1.07 I 1.20 I I I 1.500 .000 .00 I 1 .0 12.742 .0030 .0053 .07 1.20 .79 1.50 .013 .00 .00 PIPE 1037.910 I 1239.057 I I 1.261 I 1240.318 I 7.60 4.79 I .36 1240.67 I .00 I 1.07 I 1.10 I I I 1.500 .000 .00 I 1 .0 - I - 14.090 -I- .0030 -I- -I- -I- -I- -I- .0049 -I- .07 -I- 1.26 -I- .70 1.50 -I- -I- -I- .013 .00 .00 1- PIPE 1052.000 I 1239.100 I I 1.309 I 1240.409 I 7.60 4.65 I .34 1240.74 I .00 I 1.07 I 1.00 I I I 1.500 .000 .00 I 1 .0 WALL ENTRANCE 1052.000 - I - I 1239.100 -I- I 1.915 -I- I I 1241.015 -I- I 7.60 -I- .82 -I- I .01 -I- 1241.03 -I- I .00 -I- I .67 -I- I 6.83 I I I 8.000 .000 -I- -I- -I- .00 I 0 .0 I- 1� Tl Palermo Luxury Apartments 0 T2 12" Line C T3 100 Year Storm P SO 1002.3001229.970 1 1240.900 R 1006.0001231.500 1 .013 .000 .000 0 R 1286.4001233.460 1 .013 .000 .000 0 IN WE 1286.4001233.460 2 .500 SH 1286.4001233.460 2 1233.460 on CD 1 4 1 .000 1.000 .000 .000 .000 .00 CD 2 2 0 .000 12.320 50.000 .000 .000 .00 Q 1.220 .0 �r FILE: Palermo_Line_C.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 1 Program Package Serial Number: 1382 WATER SURFACE PROFILE LISTING Date:12 -21 -2007 Time: 2:38:47 Palermo Luxury Apartments 12" Line C 100 Year Storm Invert I Depth I Water I Q I Vel Vel I Energy I Super ICritical(Flow ToplHeight /IBase Wtl INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.E1.1 Elev I Depth I Width IDia. -FTIor I.D.1 ZL IPrs /Pip L /Elem ICh Slope I I I I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X -Fa111 ZR IType Ch I I I I I I I I I I I I I 1002.300 1229.970 10.930 1240.900 1.22 1.55 .04 1240.94 .00 .47 .00 1.000 .000 .00 1 .0 -I- - I - - I - - I - - I - - I- - I - - I - - I - -I- - I - -I- - I- I 3.700 .4135 .0012 .00 10.93 .00 .16 .013 .00 .00 PIPE I I I I I I I I I I I I I 1006.000 1231.500 9.404 1240.904 1.22 1.55 .04 1240.94 .00 .47 .00 1.000 .000 .00 1 .0 -I- - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - 1- 280.400 .0070 .0012 .33 9.40 .00 .45 .013 .00 .00 PIPE I I I I I I I I I I I I I 1286.400 1233.460 7.773 1241.233 1.22 1.55 .04 1241.27 .00 .47 .00 1.000 .000 .00 1 .0 WALL ENTRANCE I I I I I I I I I I I I I 1286.400 1233.460 7.829 1241.289 1.22 .00 .00 1241.29 .00 .03 50.00 12.320 50.000 .00 0 .0