Loading...
HomeMy WebLinkAboutSierra Gateway AMIN I FUSCOE 2500 Redhill Avenue, Suite 100 PROJECT: PROJECT NO: 21 3 Santa Ana, CA 92705 WIL LIAMS (714) 250 -1500 By: I DATE: -z-84 CHECK: DATE: LIND GREN 1 & SH ORT Civil Engineers • Land Surveyors SHEET 1 OF 5 HYDROLOGY & HYDRAULIC CALCULATIONS FOR SIERRA GATEWAY 1 (DR89.31) MESSENGER INVESTMENT CO. fss No. 31135 m /, I t &TO / y : i1 BY: J.R. REVISED DATE: OCT. 2, 1989 1 From the hydrology calculations prepared by Kruper Engineering for Sierra Industrial Park, we have determined that the street flaw contributed from Business Drive at the intersection is 13.2 cfs. Furthermore, we also have determined that the two existing catch basins (L=14') can only intercept a total of 4.62 cfs or 2.31 cfs for each existing catch basin. Moreover, we have assumed that 8.58 cfs (13.25 - 4.62 cfs) will be carried through Santa Ana Avenue by the two existing cross gutters. Therefore each cross gutter will be carried 4.29 cfs (8.58 cfs /2 =4.29 cfs) . Please see sheet 16 for detailed calculation. 1 1 NM1101 144.2103 The Q = 146.00•CFS was taken fran a supplemental drainage analysis for Sierra Industrial Park, Tract No. 13605, by Krueper Engineering and Associates, Inc. This value was used because according to their calculations, they provided two (2) stubs at the storm drain line that runs south of Santa Ana Avenue through Jurupa Basin which for this development will not be utilize by the project. 1.48 CFS was then added to Q = 146.00 CFS giving it a total value of Q (total) 1: = 147.48 CFS because it was determined as the difference between Q = 8.58 CFS, the amount of flow, that goes into the existing catch basins at the south side of Santa Ana Avenue right at the intersection of Business Drive and Santa Ana Avenue, (see sheet of for calculations) and the amount of flow, Q = 7.56 f, CFS, that is being generated by A -15 and A -14 (see hydrology map for the loca- tions) alone. These values were needed in order to establish the hydraulic grade line (HGL)of the existing junction structure at Santa Ana Avenue which was then used as the control in determining the hydraulic grade line for Line "D" & "F" (sheet 2 of 1: 6 - storm drain plan for Sierra Gateway). 1: 1 NM1102 144.2103 ' a ��\`' B V )- v _ = � v f �� i'• r � C ^V r '•'-� �•` ' = •'•r��r,^'f .. r'.- .•�� .•as.{ .af'..` .,X.. -y , t �'J � 7' + ._. + •J �+ ..i'. _.awe � � .r ' � �, c _ i { i a - 1 • - - • ,f . r� - -!• i "�f I •-� f � _ �'� � i •' -•� . 1- �- 1 '� }. I , I + - I B_ \^ - %, - i� I - '�� to.. 'r y �r _ I,i�. �� . y - ' :�' , ' 1' -.: 1 '',. =.'j = tI. , A? / - /� •b! � f '` ," • �f .• J �iT ,�•• ��+ F ./ • - J ' I B r t. ��' 1 a ^ �i - i' F - .1 :fl - �! _ _ - Ii •f - . �•.i` w '•�' t. •v � 1 - �•' '�• � •,_ i __. ', 4 '7 "; ^t•t J l i.. ••. J ai' �{ . , "7 - �:: 4 r i � - ', , r . ma c... _ r • 1 ... . o f ' •>_• '�. r • _ :� . a S1 • +.. 1; F - .!•, / 1 "' 2 ". �r t` tl _ ..:.- . ..• r ', . "• .. . - � . i� _ � ::� •. . . ,: .• _• , .: . - -. .. . - ,. „ c ..- .....� .. . _: » ._ r � ..; : _._ -• 1 �• -. .-,•- -. ,:.., � - Jar. L ', -' 'Y, t` e�?"• +• ::a4'...., :- : {^ 1.+ �` "�'aJ_ _t ��� •+,rJrj7'j�..._ �- . s.z` -. � - _ ':7 ... __�- 1 � }. •-�J� `i: - � 1 • _ �:r;�� : Sk. ..�� �l" :••:,e - �i h' --- •'a �1.�.:= :+:� � v� - y = - • - - J. _ - • i - .�.1: } f ": % .Il _:•r , t,c t.. y ..:_,�. :J ,a .r., ti 1, :r • ��t :> • t : - 2 - t J! .�." t. . '.�'.> � r . �., � . _ I ;._.� t �i'' ' _ •:•:" =,: 'i `�5.. - : i p � i t:: 1 �� • r' - '� a - �T 'J - -- - .- '" : , a , . . �� z \, .... "1'... _ - �.• J ,� �n •4 .� ' i _ •`�._..• 'f �v;: -.i' `:l "... "r t - .__ - �'x . }� S '' � ,'� .. • i �,y_:- ;a , ,fir •' ..rL _ � 11.x.. r • . � - C '� _ � 1 -� - �*. • -1 • S _ • .j _ r f '�• - yi .� � C _ .� -�• _ _ _ f - _ - -� 1. • Ih w / � f , ' .[ �` � •� ` �. _ t _ •• L' • ''�• �i I d` �� - �a i '. 1_ - . � �; :� y � 1 , • h : - � •{ may. A� � _ ,/ _ _ 'j : Y... j ,,^ ' - .": i -�. v �J . Iy ,4y r< D - �' -� �.- - - mil.' , 'f' -:. �"' Q - !. $" .�.ZG' : � r Via. /�� - - ��;�r ,r _ - = j- r..�� - ,... -ti - -i " .�. - r. _ J ffY� �ti' , a _ >:.._�` �. � - �:.� - ... - � - - . ' - f. ' ,tom. r.--.. _i -C - 7+ t r . f'.. ,` .'�. ./ '�.F' ,..�� ='r ;�:, �' - - �'. -2'' _- �'�,. .-2f` x'3[!7 'R -�'% `. . - t �>. :'.�'.' � P •4 ~ t r -_ •N 4 � j ,r ���: �� - f - _ _ L -r: � L:: •' ' I�Y��� ' h' J � _ - . _ r �' ✓. rte 't' � ri . 4 . t }I. '' •i {'' ✓. .. {.� C� .i' ,( ' r�� - � - �■•� � `�l "ht• '•Y. �: �' y- 'tea- i_-✓ -•. t+•'• •:- -: `+ ~,` - , ��/ - � - - ) •`�: -' � � �.� t �.� ' 1 �r .p � f.'''a�. /:: '1' I / -- - -, c r ' .J' i `.t•�,i:x �� -J • '- _ ,C � .G � � .nr ,,� t _ - - - -t - r'' =' t " - - - �• �• } .�';. � ; . - '�? 'r - _ !■■.•� - .. '4 i � .r%.:...' ( :'n' Ir _ - {� .. t �� ,; R�' y - _ r - _ - 't - 1. r - 9 � S.) • � +/ - �• •\ Y f {� �_ - - - - , J� ri . .fi T'"": - , � - - '� � .-v >_ _ f � -, � •. 'j _ ( �( ..j,� 1 ��� - �: �•• . V . I ` 71 � it ' _X _ _ _ - tir. , -. ... _ '. 3 - - �i 7 - ," .+ -� A - F ' - .1 P - - •+. - - h ' :• -_ ti � • = j � "- ��C Jt' - � "1 - - 'ice.: - � L �{ \ - a - ( �. w. - r= .. ( " �' -�-;= :sue !�■s " =+, �� - - _ � •' '�_ �I - �� i "� j '• ! • ✓ 1 I r. '� _`��' • r • V <h: - :19•` ' _"'S >'��`> � off: - � ,7. .f r - ,__ _....�. t„ _ _ J �_ � .. � ,, �. , . I .J Al •t : w'�=� - r ` "x� . .... _.�_ .•� :�� .� ' `f • ti.:�.:'. %`_ 'I � r ,j '�. / � "'� �>ft�' �.l -,�'.• � -- Y.• .-S' �::J. �f �r �•�•i�• `�'• i•,�: . �� _LLJj =J - ]7 - ,).� -.. _ : !+� • �,�• , rte .- _ /:. •_':'.'I..y,•w. _`r_! �r' --._; 3 : � " "^ _ -� r =n' =1191 T ^' _a' t . +: �i- .,-,: L :.. r-•�i _"`t- v ` 's - ' '4 _ _ _ S. _ _ _ br ..y, :..::.. - 'tty.: - '�,r'.., +� J _� `- Y • 1 - mil( - -. .�`, /v'V .} J ' \ "� f 'Kam. 7 - - 1v - 1 „Fr ^' •-a ..at n•. -1' .,�, -�. --F.. =t I .. - - - � _ •� - - l- •Y, - _ � - 1 ^! � ,Y` .. T• :e - - j.:+ : \ :ice • 1 - -� - to - r: ( r \. . _ 1.. ^'7 �.v'.. _ �•' / -. .� f 7�` n • _ - t' _ - '.�"L �y , J - - - - : T• �•- - tir3 � mil_- _ 'f, .': /. � ',� v _ _ - - ''t • 1 . � ••�. J V 4 a.L - - L - - - _4- - �i� - �::a - =i : • � ;- - `�` - - _ - � - _ �) _ � =�: =��: -'r` _ - - _ - =� �: . �•, � ` .;• �' - - _ -�- t� - - :r °r _• - � --' - -9 1 . -t ..i - - -ter y \. .i� - ' 1 _ I r � Ir "` - - . _-a: _ _ 1 _�._ .a' e - _ � _ - �� - V _ �:` -_ -'� _ _ ;`: ° r *�•- - - - - _a`.. - 'rte' - ';r ��'f- '�,. ai. r = ��.. I - - � -- �= w; Via. :� �.. i S l�ncxt* - - 1. - '/. - V' '�h� - . �` _ • =S =''' `�•, �.,. .Ft... \ , F � _ - _ - 'L... � _ _ n t r - _ `� I L . `, a- - - 1 I _ _ ` , - .r. .v- - - - - _ 5 ���SSS _ - . s. : �1 - ' Y -. l • ": j; _ �', - i' �, r 1, _ r' e. ,. yy-- _r:- - :.� _ .. - ! _ - - �;� •� - - •�- �• -- .� ,�;_ 1- - - - _:�: =' :ice -.';` .� >. ` +• '- - - �- =�' ri . I n -' - r ;*. .TlluE - _ _ - - - ��7 - - ..��� W ++... +- - - z�i► i p - _, . �- ,��= -= r - _ ��J ==�, _ _ 'L _ L e � ,.� °, I u f I n ..4 `L - _ X5/11 •� ��`` t- � ,r ^^ ,�F - . =cu��� - 1.•r'- ;•:.a -- ., � . - IILIIl�!. ■itt y ��Jil � 1- - _ �"•' I � �/ �r. �� r a �. - k .. "'�•t� - - ,•..... � �.. , - i ar r _ � ..7 -- -' � 1' t r,.. J - -� ,1, i'•.^ �, a t.:- ;. _,: `�i -..' r _+aa: _ J � - &.. .:..r. "- .., _ - .:1 : � - - - 11LIIT�It" - �r - Lt__ �_ _ _ .+. "" .�'�r• 1. ' � • • .�_:..� ,/� ' _ tr r ��-.: .- =c.:. b . � ` �- � �.�Iri'i.rY.'�I (L.,�II�C� - `I I■ 'I >�� "= - -.. �✓_ _ = _ .:w � 7 � .•f _ .�. .>� .:.�. _ _ f.•�,x;r;r• ;.i7r+ - "- - � . f + I�/ n - lu �� 1, aT.� 111 ,y � .. :` - _ - - - 2 -�' •f ,. -.. - .`s.�r•r .ca . J; .._ '`,� S 1 r" �I/�r�� .. ���' aw '�Y��� • r; �. ...t•I .. ��• - .r2 `-t' {,� t `k r.: - S: �,,.:+:...`.....: ir.. - ia- i .' �,'`' ` ► vl�n'1 ei:�'• I�r I- ti f „r .'!_ + _ '�f .'' _.�- -� - ``� s `' ° ! �r , � ('' �w• .'' !•�Y: ''>r1: ••' 'ai/'� . -:rte:' - 'Y,' �.Y" ,r. r. 4 ....: .. , =_, _� t. '•t= ' •J.� ' � _ 1 9 � � _ � G.�� _ 1g RI /,1lf� - l a -L'-^ �� _ t�_� _ .�✓,. ��1. R�rq= "�.�..�.i •1t .� .a:.. � .�. -fir. �''?•' _, i:- r _ _.1 ��� �.. s• _ S r - .;. • i.' � "�� �� - � .R" X75 �_ ••�• , <, t. _ - � - i■t -e H!A- t 7 - - _ ..�. y ..�- � r �.K � ":i•T2r�__'}" s %i' C �� I �1�r. ; w' • ti. •' -�: - (� _ �� o �. zs�lf�C 1 � �-�.: � I' - _ 1 -I .� - - - � :'%i {,,,� • �, - - "�i. r � • ,•� . at_.,.- ,i..�.3 �- `,r:.. ' -'� � . �..._ _ - r! ."s I r _ J�_ ClLelS.�itk -•.'t; /� L i -, -. -• �•s._�. �` ,-=.:` r `�.:r�. {; '� .r: ,. n= �'':�"•R�w -' - �°_i', -.. �y ` '`T � :..I�; rr � .� _ - . it � - i.'t111r ` i f y . • - - -'i'} • F+' s. = -` � J� - - -Y�- 'i ' .l •'.��P ` ' "- _ _ � .�- .eq� - ter` - - lz • A 11' / � � � .� �' I tAt� � ` - = �=:G - ..,.. � �4�4:a� r._ � ;-!� - _ t .�..r, n � - !� �..•. %Itll.' /1! L• � r -�-. a .t � t By F �' - - - • -_ - ac .. -wt• .=-��' - -1'1" `�:` C' .. .�' ...� . r. '"' _ ..a H�11._� :4-- - ✓" _. � i 1 - ���..• ��� 1 _ sYl-n �+- � - lil:.r- rs�, ,`,; �� , 7�vM •J,. t �2s ••*� Y� •t, - = :�. -.J' �•. ..f -i - J� 1 �.d1�L� � ' \R1111::�•.:.�.�.� ••H I . 3'_- _ 'I .�.�a. =:__� .8 - ` "�:.. '= . %'.5;,,;;t9'Cr' - `.r T._ y /�a� r• .t��.��` �� �� •: ' - � �Ol31•.�� � �_ �� �1 �•., - � �•11 `J. - t� � • _i . �_ �`r �.! y .. J'1: �;�! r vi' r �e'� ^T ate•.'... "�-. ��y, 'i��j ' 7• "�' .'.I :� _ � f " p ^ �S .�.' � � - :ir.�.. � fa - 4 . _ 'I c ) � �Y . / � -"` ���C••a„• � r•J" -'. ` \`�- . . .:`_ �,•_ i..' .5.� - .! f t '} 7' ' rte � :._- � .:i' - t �: _ ,, - �J�.'�.e - ."`..�.�- r . �� _ - . - •. `Pa - :- .�Lbi•• ',r. �.; • s. .. _ - "` t ' _.rtit'"`�'ir::- .a. :Y-� - :_'f . �` c � -- - -- - .1 z`�- .- - -j _ -.Iii o.ru. •r^ :..• .r. "~lam ':S n , �-_ �....�� - ,�[ .� +•� - - • F�� -_. r - � -✓�: 1 - >�. �I - - �. ..'t'..: �-' T s P - ■ � l -t T '� 1 q� - ie'i. - SI- aG O 1 ' �1 Y ry `�_�' . // - ID ' � � . : t 1 1. _ • �, - 6L. - 1 t� �r_ f1,.1 ,f..� ..• a .. :'�i •-^[ _ .,.. •pd.w ,Ji.':�.. ` -�• _ - A - - 'f - t� - .� �� -: .r.. - - t - �- - .B•:,.:t r--. _ _ _ , -�- - c. • 1 -.: _ y t� _ - I l! i' - _ 1 I. - - M - _ _ t,� 1� -. - w. - - .. �•i e A� J , »'= - I q •1 - Y , J - _ • �`. t' ` 1 J _ `� . �1 _ � -= t ` 7 - > . - �+ .- . .. '.i. fib { �y • - - - - 1 \' �IID f��- .a,�, ..- .-- ..•. '..r � � P •7 -�. J a�,�� _ ,.'�= :.,!.�. ��� - _ -.' - - ►. ! 1 .1.?- �� �►� L�y� � '•�, .1-- _ `•9" _ 1 i i � _ S •- �.�..- - ;'�.a: `�s.:'•` /, r-. f. t.; �� ':>!• .s;� _ - • . � - n ` - - +-'�S' . - : ..' 1 - - - .� r • I ; SOURC!• 6EOL06Y. � -•Ft- .. �.L.� : - %" - .. , _ ." _ - _ . . r - - _ - r •� . sr• . ..ir.. _ � .. � • , y • �� 1 _ i ` . .. ._ .. _ _ - •"Y� i a+ - •tee , _ -3 r" - - .. TI _ - i - ! SOURGE�.19>'4 SGS ".SORY � �. - pn.:•..m7. ", : -.. _ _ _ :Ir v J�' r - ` ..�" Y " •__ � _ __ f _ B`' � � - .. _ _ '�'.. 4'� -• -..i • yl _ t ro il - _ -�'_ _ - a �� ' - - - _ _ . -. i -s. =-. - ..�.- ' .T .. � .,. � , r ^. ,j � ' ': s� - T` � j - j�. y _ Fall t. o 'r v�.o fj _ ♦ S. v _ ,. �.. ._j�_�,, p �' -- _ • .-'i Il.a r , _I� I r __ .v I f _: -� � J _ {{�\ '1 -'. 'A _ .,il �) - Al ♦ ('-� -. 'IU I - .r-: - _ _ ::1 : . •_ir _ 1 � _ � ������: fR ♦. .. �.1 - - I :�,. _ -- _6 - : 1 . 1 1. " -. r• _ - .rt�.....•eL d-- • - -... _. _, .- ,: .,. , ��. . , • . -�� ... ,. �1. �* �' 1. -$ _ J. :1 \U I� �I C -- _- . "�j � .•f _ _,.I _ _ .�',.r: i. r."^' ad._� Je , - _ _ _ _ F.. - M y •- ! •.1 •- � �: .. .. i._ �- �. ,!rte <� : - 1 r fi �, k _ , ." J , - ` te -�• -- �- - �Z: •, �• .� - .�--' -. -- � -- -.�. - I a't7 A..1. {{� � _1 _`�_� - - - _ • R't �.. 'h'e..* - ,� A. ��.��rta � v • r;'- ..... -.. _ - - 11 11 -• 1 : -lr - u � - __'tip :� ,� �? _ *`t,_ =' ,,.. -_ ..;• �� y •• .•tn�^- - - - �z:. - - Wit, ., - �ti '' -.''. � _ �- - - •T - •�.d.. - _ I. _./r'i! ^ �_ - may.:'' Z...' = - ; -,r -` i . _ - > - - - . h. / _ _ , • �, r r • , ..- ��.� . . ,� .1. ^..! , � r .• �"j {,_ 1 - �,�"[/+(��'• } _ _ L - _ - ? l - -- _ _ r_ rf . .E y a _ a' . -mot-' - -- j - "�•, - _ r ^ - i - , - - � r-?. _ \ .r y - r - � - :�, 1 ".,.- _ _ � _ = - ':e. � ^" _ -+r- _ - - - _ -- v ' - is _ - t'� - _ .,�� f �y �. " .. ;- - .. ✓i . ,•_� - _ � � - � t 1 .: -.?.- 3'K•s �'Ut _ _ - _ ` ...,. .'.� � .'4 iCj:cY�,. _ _,'- r _ - - - - � .1 - _ ! - S A - - .f _7 _ _ _ _a�a���.V= _.c�:__�: _4 /�.'. ..K� 1 �� �:`. - � I - - O .. - _ ,. 1 - .. .. - '\ ,� �!. � - _ t - - _ r - •ice -� ` - _ _ _ _ _ f� _ _ �`� _ - - tea. ,,.:_ - - �. ,,,� `• _ ` �:: t ' i� ~`: - l� - - - - - = �- \ �. ; - �'` p -•' t - - _ _.'l- "1. l _ - - .� :�. y. . - !.` ,__ . , - .. .. -., .- ._ ,!. �. : -: ... , .1 • � ��; G sue- _ ` •,l+ ^ _ _ I - �1''t � " '7r i - :., "" , , - � _ u � = - _ _ �F, � u`' ; ' �i - ..>� _ _ �/� •: i - -f � • r ,rt `'� t d f _ { � - - _ - �.� - _ _ - _ � '�: .�:. .�. - emu' 3" .` i. y � • f _. -1� _ �!r _ - i r Y - / Mf , 1 • l �'s ' _ .y • ✓ r _ _ �}, _ .1+ �.' '- .. �� :.. ., 1 . . .. .. r _�.- . .- .. - - • :. "� .:: _�.: _ f - . /f /' - V =i+. l -�J_j r `e "af 1'_' y `fir. -' - h =" •, _-� - � _ �• � . r ,Y C �... ,�} i � t : +tr . n.•ft•= � - -r -s . - � w �. _w �, �.. �ti rso��r •� ,{� _ �) - � . j.� ::v(` . a,, +:'o •+•. ,.,,. •; -:.L . •.,w . - - •� - �s..X� •_ • 'may * � "__ - - - -- sr t �S•r- _ - _.�•� • > _ - .}'� ti'Y•�' � _ - � r. `:: ^-• =r 'ti. � - _ -:� .�k: � is - - i. . ,.,RU � . .7fy ;." , i "t c. -e , +. �' ,^'tip _ �'ir • '� ..-+- �'� - � - ' _ - .. ..�i, l_ . ;�•' • iK.i .4 u _ s Gam: � � �� - t ,,.y '. {'•- - _ : , '`tom -- _ - - -- j • C7 p:� .tom.. L., .y ^ �� r �.. r 1 - _ _ _ �i.: l - - Y ,..., ..;, �. � "+ice (� � :.�'r� 4 �� �a ^,"3' 1 �s .C .�y� , J� � J.'`� :.. � � f - - r e '.� , } i� • d • . -1 � ..- � Via' �:•' - _ _ : � ��� ) A_' - -r^-_. .� - :�5= '� '+tip � - - : �U, •+•+ . .S! _ I..r:� ', - - ' tea :•}'•: , ma f ._�i ��� '1:'' _ _tr� - "Jf v .+ ,�'e •'�.. / - _�� 1 ' _ i ,R'' _ = t 1 � a - �...� ,.�: :-� lA ' C.J. ":•'....� } •: ^.: / �' , `j _ _. • '.iy:. -�3._ �e•9• - - 'Y --, - r ._ -- � � , iS�_I� . J�:,;,>!�. �iI "�1�CY i1 ,�• „1•. -.. r - / _ V..1..• - - -- - �' ► -� _ : , bit / -4 . d„� _ - _ (�� s �y � r..•`J� ^ "! - `�.. N..?: s F.:� r.•t, / _ _ _ _ _ - ,�• : ,� ��+'' / /� •T' L �--/ � - Y . � _ _ - .:-hy. � _ _ - • r" _ _ t - , - ;-- .: -��:: � ��.:. ..ate' -. � � '• � •� _ - y ..w`' - - .�a'� .;�:K•. - _ .+�e{� r •� i a. •r�' _a.- +'!'eIT' -• ` -'2a 1 �- � -- -- - � a'y.. - �l'�: , • P * 1 - _ - -• -r„al� -..i - - - .� � : "i ,.+•'Y7'. .. . o - . • . . �_ - 1pURCF, • J � • _ 1 - �.e'i.2' a: ey ��.. -: . .. � . : - _ � L1 1971 SCS -_ ..- - .. •-. ::'LS » ,+:....... �- - s . �na+\ :ti.r _ P '31 _ .1. -• ��z : iaiF'' ++ 1� ?• • ,�. =• _ -- - -- - .. r k •„ .. . . - ... .. _ - � j ... P •- � - - J•_� o. _� .r: > , -tir_ r - _. -=+: +' '•£.•(, ..�•iTr F_:v;, •• -F�..- .�ti. •: c....- ice' .' � = _ :\ -„ �ca- � - { ' 1 �. \. Gtotw - . - _ _ - _ I � - f \, SOIL GROUP 80UNDAAY � -.I� - - �- ` -' � � A SOIL GROUPOESIGNATION !� S` ° " "'°�°°° HYDROLOGIC SOILS GROUP MAP F SAN BERNAROINfl COUNTY i SAN BERNARD WO ODt)NTY i - - -- _�.� o 1 \ 1 � 30UNDARY Of INOICA7ED SOURCE SCALE REDtiCED BY � /2 ` �- � �._.r.. -.� FOR HYDROLOGY MANUAL �_� -B � -3 �_4 SOUTHWEST - D AREA INDEX MAP x: r �I p A 4, k s FUSCOE 601A:ParkcenterDr. -Suite 104 PROJECT: (3c,4ca PROJECT NO: X4+. W ILL Santa Ana, California 94455 DATE: (714) 8.36 -44.55 BY: DATE: CHECK: LINDGREN & SHORT A Civil Engineers • Land Surveyors SHEET 3 OF HYDROLOGY 100 YEAR STUDY RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PAC[ (Refer-ence: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) Especially prepared for: FUSCOE WILLIAMS LINDGREN & SHORT DESCRIPTION OF STUDY ************************** GATEWAY - MESSENGER JOB # 144.2103 * * 100��YEAR HYDROLOGY STUDY * * BY J.R. � ************************************************************************** m� FILE NAME: 1442103.DAT ==TIME/DATE = OF = STUDY: =11:07===2-OCT_89====================================== USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TIME-OF-CONCENTRATION MODEL*-- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 8.00 8l SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* APR SLOPE OF INTENSITY DURATION CURVE = 0.6000 6111 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 1.3300 **************************************************************************** � FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 2 1w --------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS ============================================================================ DE VELOPMENT IS COMMERCIAL N� * [( GT * 3.00)/(ELEVATION CHANGE)]**0.20 N� S FLOW-LENGTH(FEET) = 390.00 PSTRFAMFiFVATION(FEET) = 952.90 DOWNSTREAM ELEVATION(FEET) = 945.64 ELEVATION DIFFERENCE(FEET) = 7.26 TC(MlN ^) = 0.304*[( 390.00** 3.00)/( 7.26)]**0.20 = 7.334 0� 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.694 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = 0.0970 SUBAREA RUNOFF(CFS) 0� TOTAL AREA(ACRES) = 1.65 PEAK FLOW RATE(CFS) = 6.83 **************************************************************************** FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 6 _________________________-________________________________________ >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< ============================================================================ T N(FEET) = 45.64 DOWNSTREAM ELEVATION(FEET) = 939.24 STREET� LENGTH (FEET) = 598.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 95.50 DISTANCE FROM CROWN TO CROSSFALL GRADE REAK(FEET) = 94.49 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 N� OUTSIDE STREET CROSSFALL(DEClMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) 14.94 STREET FLOW MODEL RESULTS: --'-' STREET STREET - RES ULTS ARE BASED ON THE ASSUMPTION THAT FOLLOWING G- RS OUTSIDE OF THE STREET CHANNEL. THAT ALL- � FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. -' RE ET �LOW DEPTH(FEET) = 0.54 m� LF EET FLOOD WIDTH(FEET) = 20.57 �- AVERAGE OW VE Y(FEET/SEC.) = 3.44 PRODUCT OF DEPTH&VELOCITY = 1.85 STREET FLOW TRAVEL T7ME(MIN.) = 2.90 TC(MIN.) = 10.23 ~~ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.843 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE Fm(INCH/HR) = 0.0970 SUBAREA AREA(ACRES) = 4.7� SUBAREA RUNOFF(CFS) = 16.12 EFFECTIVE AREA(ACRES) 6.43 AVERAGED Fm(INCH/HR) 0.10 TOTAL AREA(ACRES) = 6.43 PEAK FLOW RATE(CFS) = 21.68 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.60 HALFSTREET FLOOD WIDTH(FEET) = 23.53 FLOW VELOCITY(FEET/SEC.) = 3.84 DEPTH*VELOCITY = 2.29 FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 7 ____________________________________________________________________________ >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< m� VALUES ARE AS FOLLOWS: USER-SPECIFIED TC(MI = RAINFALL INTENSITY(INCH/HR) = 3.84 EFFEC AREA(ACRES) = 6^43 TOTAL A 6,43 P EAK FLOW RATE(CFS) = y14^12\�( AVERAGED LOSS RATE Fm(INCH/HR) = 1.405 ' - NOTE: EFFECTIVE R�A IS USED AS THE TOTAL CONTRIBUTING AREA FOR ALL CONFLUENCE ANALYSES. y� Fog Fw»*/~us`r �Arma ew�*� ����w�A Ttm~\ ) ** �� * �° m �� * ���**��*******************************************��************ ~~ FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 6 _______________________________________________----------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA-f<<<< UPSTREAM ELEVATION(FEET) = 939.24 DOWNSTREAM ELEVATION(FEET) = 938.46 - STREET LENGTH(FEET) = 71.00 CURB HEIGTH(INCHES) = 6. _ STREET HALFWIDTH(FEET) = 95.50 &� T DE (FEET) = 94.49 E ' ''�' - INTERIOR -' LT = 0�����7�����4�) = 0 OUTSIDE STREET RuS 020 . SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 14.12 STREET FLOW MODEL RESULTS: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLlBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. T HAT ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET �LOW DEPTH(FEET) = 0.52 HALFSTREET FLOOD WIDTH(FEET) = 19.83 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.48 PRODUCT OF DEPTH&VELOCITY = 1.82 STREET FLOW TRAVEL TIME(MIN.) = 0.34 TC(MIN.) = 10.57 RAINFAL 100 YEAR INTENSITY(INCH/HOUR) = 3.770 SOIL CLASSIFICATION IS "A" -' COMMERCIAL ---'R-A) � - � 0970 SUBAREA -- ().U) SUBAREA NOFF(CFS) 6 AVERAGED /HR) = 1.�� �''�~'^` AREA(ACR 6.43 PEAK FLOW RATE(CFS) = 14.12 E ll E ND OF - - �� AREA STREET FLOW H C DEPTH(FEET) = 0.52 HALFSTREET FLOOD WIDTH(FEET) = 19.83 FLOW _PROCESS _FROM _NODE 4.00_TO_ NODE 4.00_lS_ CODE _=8------------ -� >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ ~_ A IN ENSITY(INCH/HOUR) = 3.770 ~ " " N IS A �-- LOSS RAT Fm(lNCH/HR) = 0.0970 ) = 2. � SUBAREA RUNOFF(CFS) = 8.46 EFFECTIVE -- AREA(A = 8.99 0� �� I H/HR) = 1.033 S> = 8.99 PEAK - FLOW RATE(CFS) = 22.15 TC(MIN) = 10.57 ~~ **************************************************************************** FLOW PROCESS _FROM _____4�00 - TO - NODE _____5.00 -IS _CODE_=___6____________ �------------- - STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< 0� ============================================================================ - UPSTREAM ELEVATION(FEET) = 938.46 DOWNSTREAM ELEVATION(FEET) = 936.40 STREET LENGTH(FEET) = 193.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 95.50 DISTANCE F CROWN O CROSSFALL GRADE K(FEET) = 94.49 INTERIOR STREET C LL(DECIMAL) = 0.020 OUTSIDE STREET CRnqqFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 (P **TRAVEL. TIME D USING MEAN FLOW(CFS) = 25.40 STREET FLOW MODEL RE NO STREET FLOW EXCEEDS T P OF CURB. ING TREEOW RESULT ARE BASED ON THE ASSUMPTION N� ''' BLE FLOW RS OUTSIDE OF THE STREET CHANNEL. THAT IS ~~ THAT -- LL FLOW ALONG THE PARKWAY, ETC', IS NEGLECTED. STR EET �LOW DEPTH(FEET) = 0.63 HALFSTREET FLOOD WIDTH(FEET) = 25.00 0� AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.99 N� PRODUCT OF DEPTH&VELOCITY = 2.50 STREET FLOW TRAVEL TIME(MIN.) = 0.81 TC(MIN.) = 11.38 100 YEAR RAINFALL I ENSITY(INCH/HOUR) = 3.607 m� SOIL CLASSIFICATION LOSS RATE Fm(INCH/HR) = 0.0970 ~ = 2.0 SUBAREA RUNOFF(CFS) = 6.51 EFFECTIVE � ^''----'S) = 11.05 AVERAGED Fm(INCH/HR) = 0.86 TOTAL AREA(ACRES) = 11.05 PEAK FLOW RATE(CFS) = 27.34 E END ~'UF~~~')'''�''0--� S HALFSTREFT FLOOD WIDTH(FEET) = 25.74 FLOW ~�` ^ 'VE��'ITY(�� /SEC.) = 4.05 DEPTH*VELOCITY = 2.60 **************************************************************************** __FLOW - PROCESS - FROM NODE _____5.00 - TO - NODE --- -- 5.00 - IS CODE =__ 8 ____________ >>>>>ADDITION OF SUBAREA =TO= MAINLINE =PEAK =FLOW<<<<<======================= v *ww 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.607 SOIL CLASSIFICATION IS "A" COMMERCIAL LOSS RATE Fm(INCH/HR) = 0.0970 SUBAREA SUBAREA R ) = 1.0� SUBAREA RUNOFF(CFS) = 3.16 EFFECTIVE AREA(ACRES) = 12.05 AVERAGED Fm(INCH/HR) = 0.795 � TOTAL AREA(ACRES) = 12.05 PEAK FLOW RATE0CFS> = 30.50 TC(MIN) = 11.38 **************************************************************************** __FLOW_PROCESS_FROM_NODE_____ >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<===================== TOTAL NUMBER OF STREAMS 2 USED FOR INDEPENDENT STREAM 1 ARE: CON FLUE N CE TIME OF TION(MIN.) = 11.38 - Y(INCH/HR) = 3.61 - ' AVE RAGED Fm(INCH/HR) = 0.79 TIVE STR AREA(A = 12.05 El '-' .�". .�._ �T - -'�-'' . AREA(ACRES) = 12.05 E(CFS) AT CONFLUENCE = 30.50 .. **************************************************************************** __FLOW_PROCESS_FROM_NODE____ E >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<======================== DEVELOPMENT IS COMMERCIAL )]**0.20 580.00 UPSTREAM 956.50 DOWNSTREAM ELEVATION(FEET) = 946.00 ELEVATION .50 3.0())/( 10.50)3**0.20 = 8.644 '~`''^'` ITY(INCH/HOUR) = 4.253 SOIL CLASSIFICATION IS " S RATE, Fm(INCH/HR) = 0.0970 SUBAREA -RUNOFF(CFS) = 12.72 TOTAL AREA(ACRES) = 3.40 PEAK FLOW RATE(CFS) = 12.72 **************************************************************************** FLOW PROCESS _FROM - NODE ____14�00_TO -NODE ____15..__IS CODE =6____________ ------- STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<==================== UPSTRE E~' (FEET) = 946.0o DOWNSTREAM ELEVATION(FEET) = 940.50 LE = 370.OV CURB HEIGTH(INCHES) = 6. STREET ~'---' --LFWIDTH(FEET) = 45.50 - DISTANCE CROWN TO CROSSFALL GRADE E (FEET) = 44.49 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 N� SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 12.72 A STREET FLOW MODEL RESULTS: - STREET FLOW DEPTH(FEET) = 0.49 HALFSTREET FLOOD WIDTH(FEET) = 18.04 AVERAGE FLOW VEL ITY(FEET/SEC.) = 3.77 PRODUCT OF DEPTH&VELOCITY = 1.84 STREET FLOW TRAVEL TIME(MIN.) = 1.64 TC(MIN.) = 10.28 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.833 ~= SOIL CLAS SIFICATION S "A" COMMERCIAL SUBAREA LOSS RATE Fm(INCH/HR) = 0.0970 SUBAREA AREA(ACRES) = 00 SUBAREA = 0.00 EFFECTIVE AREA(ACRES) = 3 AVERAGED Fm(INCH/HR) = 0.10 T� AREA(ACRES) = 3.40 OW RATE(CFS) = 12.72 END � ~� TOTAL - EA STREET FLOW HYDRAULICS: DEPTH(FEET)'= 0.49 HALFSTREET FLOOD WIDTH(FEET) = 18.04 FLOW VELOCITY(FEET/SEC.) = 3.77 DEPTH*VELOCITY = 1.84 FLOW PROCESS FROM NODE 15.00 TO NODE 15.00 IS CODE = 8 _______________________________ >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-'X<<< -- 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.833 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE Fm(INCH/HR) = 0.0970 %w SUBAREA AREA(ACRES) = 6.N) 2� SUBAREA RUNOFF(CFS) = 20.85 EFFECTIVE AREA(ACRES) = 9.60 AVE RAGED Fm(INCH/HR) = 0.097 TO TAL AREA(ACRES) = 9.�0 6EK F - W RATE(CFS) = 32'.28 8 D� TC(MIN) = 10.28 **************************************************************************** FLOW PROCESS FROM NODE 15.00 TO NODE 3.00 IS CODE = 3 __________________ >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.9 INCHES �� PI LOW VELOCITY(FEET/SEC.> = 14.6 UPSTREAM NODE ELEVATION(FEET) = 935.50 DO WNSTREAM NODE ELEVATION(FEET) = 934.00 OW LENGTH(FEET) = 40.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 32.28 TRAVEL TIME(MIN.) = 0.05 TC(MIN.) = 10.32 m� FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 7 _____________ >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< ============================================================================ 0� USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN.) = 10 RAINFALL INTENSlTY(INCH/HR) = 3.82 EFFECTIVE AREA(ACRES) = 9^60 TOTAL A 9,60 P EAK FLOW RATE(CFS) = 39.84 =���'�19 AVERAGED LOSS RATE Fm(INCH/HR) = 0.001 NOTE: EFFECTIVE AR�A IS USED AS THE TOTAL CONTRIBUTING AREA FOR ALL ~- CONFLUENCE ANALYSES. 15 *�`�c�^���"q o� �_`'*��** 0� FLOW PROCESS FROM NODE 3.00 TO NODE 5.00 IS CODE = 3 _______________________________________________________________________ >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SU8AREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< N� DEPTH OF FLOW IN 33.0 INCH PIPE IS 22.2 INCHES PIPE-FLOW VE O I Y( EET C. ) = 9.4 UPSTREAM NODE ELEVATION(FEET) = 934,00 DOWNSTREAM NODE ELEVATION(FEET) = 931.40 FLOW LENGTH( FEET) = 260.00 MANNINB'S N = 0.013 0� ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 39.84 TRAVEL TIME(MIN.) = 0.46 TC(MIN.) = 10.78 FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1 _______________________ >>>>>DE3IGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< -- ============================================================================ NA 0 H-1- Hll� TOTAL NUMBER F STREAMS = 2 CONFLUENCE VALUES USED FOR NT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 10.76 RAINFALL INTENSITY(INCH/HR) = 3.72 AVERAGED Fm(INCH/HR) = o.00 EFFECTIVE STREAM AREA(AC = 9.60 TOTAL STREAM AREA(ACRES) = 9.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 39.84 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** Q(CFS) Tc(MIN.) Fm(INCH/HR) Ae(ACRES) 1 69.08 11.38 0.443 21.65 2 69.96 10.78 0.432 21.02 ESTIMATES ARE AS FO C OMP U TED � A �C ONFLUENCE FLOW RATE(CFS) = 69.96 Tc(MIN.) = 10.782 ' - FECTIVE AREA(ACRES) = 21.02 AVERAGED Fm(INCH/HR) = 0.43 TOTAL AREA(ACRES) = 21.65 **************************************************************************** FLOW PROCESS FROM NODE 5.00 TO NODE 7.00 IS CODE = 3 ____________________________________________________________________________ >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA-c.'<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.7 INCHES P CITY(FEET/SEC.) = 191.9 UPSTREAM NODE ELEVATION(FEET) = 931.40 DOWNSTREAM NODE ELEVATION(FEET) = 27.50 FLOW LENGTH(FEET) = 40.00 MANNING'S N = 0.013 E PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 69.96 TRAVEL TlME(MIN.) = 0.00 TC(MIN.) = 10.79 **************************************************************************** FLOW PROCESS FROM NODE 7.00 TO NODE 7.00 IS CODE = 1 ________________________________________________________________ >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL ============================================================================ S TREAMS 2 NUMB V U FOR INDEPENDENT STREAM 1 ARE: T IME OF CONCE TRATION(MIN.) = 10.79 R AINFALL INTENSITY(INCH/HR) = 3.72 A VERAGED Fm(INCH/HR) = 0.43 EFFECTIVE STREAM AREA(ACRES) = 21.02 TOTAL STREAM AREA(ACRES) = 21.65 PEAK FLOW RATE(CFS) AT CONFLUENCE = 69.96 **************************************************************************** FLOW PROCESS FROM NODE 16.00 TO NODE 10.00 IS CODE = 2 ______________________________________________________________________ >>>>>RATIONAL METHOD INITIAL SUBAREA AwALvSzox<*<<x DEVELOPMENT IS C OMMERCI AL (ELEVATION CHANGE)]**0.20 INITIAL SUBAREA FLOW-LEN = 270.00 UPSTREAM ELEVATION(FEET) = 942.40 DOWNSTREAM T) = 936. ELEVATION E( T) = n .00** 3.o0)�( 6.10)]**0.20 = 6.090 100 YEAR RAINFALL ' -'NSITY(INCH/HOUR) = 5.248 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBA LOSS RATE, Fm(INCH/HR) = 0.0970 CFS> = 2.69 SUB '- '-F� �S) = 0.58 PEAK FLOW RATE(CFS) = 2.69 **************************************************************************** FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 6 ____________________________________________________________________________ >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< ============================================================================ UPSTREAM ELEVATION(FEET) = 936.30 DOWNSTREAM ELEVATION(FEET) = 933.80 STREET LENGTH(FEET) = 450.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 72.50 DISTANCE FROM CROWN TO CROSSFALL G (FEET) = 71.49 INTERIOR L(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 � � 0 hit 0 0 H. **TRAVEL TIME COMP UTED USING MEAN FLOW(CFS) = 7.42 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = 0.48 H TREET FLOOD WIDTH(FEET) = 17.49 A � FLOW V OC Y(FEET/SEC.) = 2.34 PRODUCT OF DEPTH&VELOCITY = 1.11 STREET FLOW TRAVEL TIME(MIN.) = 3.21 TC(MIN.) = 9.30 100 YEAR RAINFALL SITY(INCH/HOUR) = 4.070 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA H 0.097 SUBAREA AREA(ACRES) = -- 2.6� SUBAREA RUNOFF(CFS) = 9.37 EFFECTIVE AREA(ACRES) 3.2f) AVERAG /HR) = 0.10 TOTAL AREA(ACRES) = 3.20 PEAK FLOW RATE(CFS) = 11.44 END OF SUBARE STREE DEPTH(FEET) = 0 HALFqTRFET FLOOD WIDTH(FEET) = 20.84 **************************************************************************** FLOW _PROCESS _FROM _NODE 11.00_TO_ NODE ____11�00_IS_ CODE _=___8____________ >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.070 SOIL CLASSIFICATION IS "A" SUBAREA LOSS RATE Fm(INCH/HR) = 0.0970 SUBAREA COMMERCIAL ) = 0.9� SUBAREA RUNOFF(CFS) = 3.29 RES) = 4 12 EFFEC ""EA`~~ AVERAGED F m(INCH/ HR) = 0.09� TOT AREA(ACRES) = 4.12 PEAK FLOW RATE(CFS) = 14.73 TC(MIN) = 9.30 **************************************************************************** FLOW _PROCESS _FROM _NODE ____11�0O_TO_ NODE _____7�O0_IS_ CODE _ >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA-'<<X< >>>>>USING COMPUTER-ESTIMATED =PIPESIZE=(NON-PRESSURE=FLOW)<<<<<=========== ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 70.1 UPSTREAM NODE ELEVATION(FEET) = 930.00 ~ OWNSTREAM NODE ELEVATION(FEET) = 27.50 FLOW LENGTH(FEET) = 190.00 MANNING'S N = 0.013 E STIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 14.73 TRAVEL TIME(MIN.) = 0.05 TC(MIN.) = 9.35 **************************************************************************** FLOW _PROCESS _FROM NODE _____7�00_TO_ NODE ___ 7.00 IS CODE _ >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<====�==�=========== TOTAL NUMBER OF STREAMS 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF ) = 9.35 RAINFALL NCH/HR) = 4.06 / = 0.10 �� 4.12 TOTAL STREAM ) = 4.12 PEAK FLOW RATE(CFS) AT CONFLUENCE 14.73 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE * W(CFS) /c(nIm. 1 83.45 10.79 2 82.13 11.38 3 81.51 9.35 Fm(INCH/HR) Ae S> 0 .377 25.14 0.388 25.77 0.371 22.33 COMP UTED T ESTIMATES = 83.45 Tc(MIN.) = 10.786 PEAK EFFECTIVE , '`�' ~ C - ES) = 25.14 AVERAGED Fm(INCH/HR) = 0.38 TOTAL AREA(ACRES) = 25.77 **************************************************************************** FLOW PROCESS _FROM _NODE _____7�00_TO NODE ___17�00_IS_CODE_=___3____________ '' ------ >OMPU PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< |'> �OMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< E ============================================================================ DEPTH OF FLOW IN 30.0 INCH PIPE IS 24.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 19.7 UPSTREAM NODE ELEVATION(FEET) = 27.50 DOWNSTREAM NODE ELEVATION(FEET) = 25.60 L = 40.00 MANNING'S N = 0.013 -- ESTIMA I E DIAMETE ( ("H) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 83.45 TRAVEL TIME(MIN.).= 0.03 TC(MIN.) = 10.82 **************************************************************************** FLOW PROCESS FROM NODE 1.00 TO NODE 9.00 IS CODE = 2 __________________________________________________________ >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< -����������������������������������������������������__________________ DEVELOPMENT IS COMMERCIAL -- �� 3 00)/(ELEVATION CHANGE)]**0.20 INITI SUBAREA FLOW-LENGTH(FEET) = 300.00 0� UPSTREAM ELEVATION(FEET) = 952.90 DOWNSTREAM ELEVATION(FEET) = 952.50 ELEVATION DIFFERENCE(FEET) = 0.40 TC(MIN.) = . 4*[( 300.00** 3.00)/( 0.40)]**0.20 = 11.187 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.643 0� SO CLASSIFICATION IS " COMMERCIAL S UBAREA LOSS RATE, Fm(INCH/HR) = 0.0970 SUBAREA RUNOFF(CFS) = 3.13 m� TOTAL AREA(ACRES) = 0.98 PEAK FLOW RATE(CFS) = 3.13 ~~ **************************************************************************** FLOW PROCESS FROM NODE 9.00 TO NODE 8.00 IS CODE = 6 _____________________________________________________________________ >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< ============================================================================ - AM ELEVATION(FEET) = 952.50 DOWNSTREAM ELEVATION(FEET) = 935.50 U PSTRE AM LENGTH(FEET) = 1410.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 44.50 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 43.49 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 9.67 STREET FLOW MODEL RESULTS: STRE FLOW DEPTH(FEET) = 0.47 -- FSTREET FLOOD WIDTH(FEET) = 16.98 AVE RAGE FLOW VELOCITY(FEET/SEC.) = 3.22 PRODUCT OF DEPTH&VELOCITY = 1.50 STREET FLOW TRAVEL TIME(MIN.) = 7.29 TC(MIN.) = 18.48 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.696 - SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE Fm(INCH/HR) = 0.0970 SUBAREA AREA(ACRES) = 5.51 SUBAREA NOFF(CFS) = 12.89 @� EFFECT AREA( ACRES) = 6.49 AVERAGED Fm(INCH/HR) = 0.10 TOTAL ARE (A 9 PEAK FLOW RATE(CFS) = 15.18 ND OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.52 HALFSTREET FLOOD WIDTH(FEET) = 19.70 FLOW VELOCITY(FEET/SEC.) = 3.80 DEPTH*VELOCITY = 1.98 **************************************************************************** FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 8 ____________________________________________________ >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.696 SOIL ON IS "A" RATE Fm(INCH/HR) 0 �" ` COMMERCIAL -=-- 0.4� SUBAREA RUNOFF(CFS) = 1.08 EF FECTIVE AREA(ACRES) = 6.95 AVERAGED /HR) = 0.097 TOT AREA(ACRES) = 6.95 PEAK FLOW RATE(CFS) = 16.26 TC(MIN) = 18.48 **************************************************************************** FLOW PROCESS FROM NODE 20.00 TO NODE 21.00 IS CODE = 2 _____________________________________-___________________________ >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ D IS COMMERCIAL ' C= K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 �� I NITIAL SUBAREA FLOW-LENGTH(FEET) = 677.00 r U PSTREAM ELEVATION(FEET} = 957.46 DOWNSTREAM ELEVATION(FEET- = 949.50 \I ELEV TI D E(FEET) � 7.96 T .) 0� 6 77. ()()** 3.00)/( 7.96)]**0.20 = 10.024 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.891 SOIL CLASS ~= COMMERCIAL SUBARE LOSS RATE, Fm(INCH/HR) = 0.0970 SUBAREA RUNOFF(CFS) = 1.81 TOTAL AREA(ACRES) = 0.5:7, PEAK FLOW RATE(CFS) **************************************************************************** FLOW PROCESS FROM NODE 22.00 TO NODE 23.00 IS CODE = 2 ________________________ >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< DEVELOPMEN C OMMERCIAL E * 3.0 )/(ELEVATION CHAN13E)]**0.20 INITIAL SUBAREA FLO W-LENGTH(FEET) = 500.00 UPSTREAM ELEVATION(FEET) = 952.70 m� DOWNSTREAM ELEV ATION(FEET) = 949.50 EL DIFFERENCE(FEET) = 3.20 -) (MI = 0.304*1( 00.00** 3.00)/( 3.20)]**0.20 = 100 YEAR RAINFALL I E ITY(INCH/HOUR) = 3.891 10.028 ATION IS "A" SUBARE LOSS RATE, Fm(INCH/HR) = 0.0970 SUBAREA RUNOFF(CFS) = 2.90 TOTAL AREA(ACRES) = 0.85 PEAK FLOW RATE(CFS) = 2.90 FLOW PROCESS FROM NODE 23.00 TO NODE 23.00 IS CODE = 8 ~ ________________________________________________ >>>>>ADDlTION OF SUBAREA TO MAINLINE PEAK FLOW-:**.-- ======= ===================================================================== YEAR 100 RAINFALL INTENSITY(INCH/HOUR) = 3.891 SOIL CLAS SIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE Fm(INCH/HR) = 0.0970 AREA AREA(ACRES) = 0 5� SUBAREA RUNOFF(CFS) = �o ^ ' 1.95 EFFECTIVE AREA(ACRES) = 1.42 AVERAGED Fm(INCH/HR) = 0.097 TOTAL AREA(ACRES) = 1.42 PEAK FLOW RATE(CFS) = 4.85 �O TC(MIN) = 10.03 D OF STUDY SUMMARY: T OTAL AREA(ACRES) = 1.42 TC(MIN.) = 10.03 EFFECTIVE AREA(ACRES) = 1.42 AVERAGED Fm(INCH/HR)= 0.10 PEAK FLOW RATE(CFS) = 4.85 ============================================================================ END OF RATIONAL METHOD ANALYSIS r 13 1 ODE 3 r'j Q %Pc Pt.od� 3 2.zg -lr - 7.� 3 �. 84 aS, 5 DEPTH OF FLOW -y - FEET C ' 03 04 05 06 .06 .10 .2 .3 4 s 6 0 1 0 .I (0) DISCHARGE PER FOOT OF ' _ LENGTH OF CURB OPENING- - - r INLET _. HEN INTERCEPTING -- 100 % OF GUTTER FLOW �Qi�� o� i 1 . i ru ' L emui� ozz own I i ' T' H'i /1 ( r I I PARTIAL INTER- CEPTION RATIO. FOR INLETS OF LENGTH LESS THAN L 10 DS .06 . 06 .10 .2 14 TABLE M BUREAU o PUBLIC R0 CAPACITY OF CURB OPENING INLETS DIVISION Two . WASH., 0. C. -34- ' ON CONTINUOUS GRADE 0 6 r .6 .s .4 2 L 10 06 .06 ,OS .04 .03 .02 .01 1.0 .e .s .4 �Qi�� i ru emui� ozz own �� ~�***********************************************+*************************** ^ HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-88 Advanced Engineering Software(aes) . 0� Ver 217A Release Date: 6/25788 Serial # UE172 3 Especially prepared for: FUSCOE WILLIAMS LINDGREN & SHORT -�______________________________________________________________________-____ TIME/DATE OF STUDY: 12:59 21_JUL_89====================================== ************************** DESCRIPTION OF STUDY ************************** * SIERRA GATEWAY -M^I^C^ EXISTING INLET STRUCTURES AT BUSINESS DRIVE * STREET FLOW ANALYSIS �ux * NOEL *S.*MATEO** JULY *21,*1989********************************************* ************************************************************* �>``clREETFLOW MODEL INPUT INFORMATION<<<< -----------------------------------------------------��������������������� CONSTANT STREET GRADE(FEET/FEET) = 0.012000 CONSTANT STREET FLOW(CFS) = 6.60 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 &� SYMMETRICAL STREET HALF-WIDTH(FEET) = 26.00 w� T `"' " ~~~~''-' SYMMETRICAL STREET CROSSFALL(DECIMAL) = 0.020000 ~~~~'''' SYMMETRICAL CURB HEIGTH(FEET) = 0.67 ~~~~'^~' SYMMETRICAL GUTTER-WIDTH(FEET) = 2.00 Cuno'""' SYMMETRICAL GUTTER-LIP(FEET) = 0.03125 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) = 0.16700 FLOW ASS UMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREETFLOW_ MODEL _RESULTS: _______________________________________________ ___________-- STREET FLOWDEPTH(FEET) = 0.45 HA FSTREET FLOODWIDTH(FEET) = 14.38 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.93 PRDUCT OF DEPTH&VELOCITY 0 16 2500 Redhill Avenue, Suite 100 PROJECT: PROJECT NO: Santa Ana, CA 92705 SiE�R`�^� ��•2103 FIJSCOE I WILLULMS '7141250-1500 BY: S , DATE: 10-2-03 CHECK: DATE: UNDGREN mac. F� ArL•� -Y�1� �g „ HESS pR�� •, & SHORT Civil Engineers • Land Surveyors FPfv1 1t�L.E SHEET OF Q,Q ... 6. (o,o C�5 a O Q = o. 7L La 3/ CAS L = 1 t Le - 14 -- = 1. o z 0.73 CI E o. 35 Co o. 35 c 0) ,rain ex% %ALt - T sT�uatvgE .C�.29 GFS y��1.L � LOYf ITl TO E� t�w7c'C Srv"e NUfe QTOTkL - $, 58 cF - - S �� 4.85 t A -Vi a. 9• (k G frS aoc� 23 l7 E so1 A: ParkcenterDr.• Suitelo4 PROJECT: c Jl�q G PROJECT NO: 14+ 94Q3 Ana, Calirornia 52705 (714)836 -4455 BY: DATE: CHECK: DATE: r REN RT • Land Surveyors SHEET j� OF � i HYDROLOGY Im 10 YEAR STUDY L L L 18 EIMPENEDEMINEMENINEMMMMENINEFRENRIMINEEN 9.0 IMIENEMEINIMMEMMEMMENOMMMERIMMENEM. 8.0 MIOREMEIVEMEMOIMM 7.0 6.0 BILIMME® EEMIN�M®��E+ © ®IVEN®KS ®® 5.0 EISMIO I MIS 4.° ggEgEffi P.giii.VArdELMMEIKINER 2 2.0 elaaa � M .Wf =Nw 0.I :N - M •raxa tti 1E .. orasNM..wm � ."... T. 1N. t.\ Y�N��/. ��. 1 ........\yw�CwNN = '.�L[i =..�wq.�I�YwY..... ���.�N..�1' �i'/7C.�..=.. i... �..t'N� w N. w Y t �1\'S • «' •-'•' \M HM. �.wt.MY\ ..wl�.-��M�■w.M • ••••\,..1.. .. \.\\\.M YwwYY. N '/ w w M .I IN ww A � A.wMwwNwwww _ • MNI •U•iw'�•:•••• CAI � ..wlw.wll.�w.1 Yw1.1NR1 IINS1 M __ a I...N\M.w1.w. 1 = N f 1 Y MI� Y.I •.N\ �\...\N_ • v, NII�MN w �1. MNNgNI\ I. tw w. N. ..N.Y ..m = -- w .tW. ~..N/1 w M.1.NIfIN.N. • w/ .NN. w .I W / w w N w �N.1�11•n MnwAIMrAIIMf�fN .MM.M...n�www�N.11A.�tn...n..n �rNw A..NN.M wAwNnA.l wIM nlw •AN..NAYN ww... MMI .. " ....\ . M � rN...11 N....N. .... �M t/ Y . � _ ■■.•..•. IN �. 1?- MrN N.. NN VwM I M1w� � R/M �f �ftlff M ff M,.w iNt11n NtY1NM11111011l ti . t /�w M111 1U ~ Z IIIYYY � �rflf��0 / /Wt�w�J� //RMUIMYAIf1U ■ffN/ / / RM M usue 1111NYwll��ff /f////tsenwontwarefff//NmmunN ✓ AlttA 1Iff�If�fN ffA/ 1// U1111tI//1If�11t1ffNMM/ MtA ftlN/ U/ MI�Yt tIW \f►`./RYUItItAII.MIMItI /fOf/tlM fl.t1N11 MI p ti111fn p/ rg i 1111f1 If /NHINU MMII 0 t l >. 1 ��IqM o 1- 41NN nn/n I M NNI IIII uun 11 u � p N 1nnmuw. muum MIHU a s in , t � llllM d a m u um' mu � 1 �1l Q OIIIAIINl11unuuu rue u s .u1MU uw. ...fI.wuIIMIIM w IMI . � s � �p na � =N g N1 ff f1lu 11/I .Ii nenmM � IMIjIM 0 0.9 1.0 ��� � =a EN - . si 3 o>»3 a e:..=::: =el c. -1�E E l i N . .. .1 .•� •IV E . � 1 . I 1 . �• 4 ... I N I I .. ..� .w1. ww rw...w. ►\ L .471PNPE .'t- r. .2 y Yr MYwN\ AN\I•.\.tt\ Nww.MMwM.w)...•NN■ �.\WY�IMY N.. I...IM �..N. = .. N MIA. Z O . T ��w =.11 I NN Nw• NN\\ \ \I M w w . M .. N.w.N wwYMMM.. wMw Y- ■ .M.•.INN.••.www�.1 MII ,11 1 w M M IIM ODOIM• N. M � N. M p!_ _ KINI MM.11.11.NNNN.NN A RM /fN\ NI.MI MMMMM r1 1 :3= Mn111MaN . .N = J A��MIMM.1!�tIM/t NM N__ . r.! / MMeNMMNIM.1 N..NM/MMMMM•.••.A..a O•.. aM u..••n•.aNI wWN rr. wNl•• N•I....IIwIwNMw�MM.InA1N•nu/.•I .AIMYw11M.1 N.NIIAON. M IF . 1 g Mg EIP42 Win Q ..1 . :_..a .. = Enn f a 01 ^:_ = -'' •'- .... .EFI E t+- 0.5 r �s..� :• rs a===° =ii:a..raceu :. n:e�- °.-�a:c..... -s �• Zt Cr 0.4 c s:. s:a�uaFs'�__ "Ee =::res sc. �� Sucre•• • sseee..:::�"'4.^. r •ems - - -- :a» Nw1A.M.MM . � 1• 1 . .�.IN II•I =�..L� 1 ..w�.�� .� www..1 ..N.NM=1i 1=i EhrinUF"'" •w Mn.w. Ell wMNMNN.�..l\..\..N 11.x' •.M ..N.1•. www Ml\Y..•w•..� w.N..Y• N.. Y. .1. ...•w.. ......M. M • I..Iw�AM�MN�1MqMM��•.NN■�I %.1...•1.N M w.•�.I NN. 1 NM.•.. I..1..1N.N.•.�.1.1- .INM..w 1■ ■ MMM.MNMNN.•NN nM �.....IR ..I MwMU. ...••.• IA• . ' '..II.INInN.'.N M M.M�II..F. I// w.w•. A: \� M\• �MI�. ���MIIMM.1•.nNNN W1I /M M/ . En �.I .... MM ....N w M �.N .w..M. N�.`MMMw.1.• +.IA1 t•N\wANIMYM.I NN•.wN 1M M1N 0.3 M ~'N.1 -•N .MM.� i..••n�.� MMiI •.�•MMM...•. MIN .MM M.M .MI •.•w tali MM1w/M •.. .•IYN Nw. N. � g � � - v� - �s - es�. - e;:?s �g r s�:: : si�r� 0.2 MEMEN®NE � �tmN1&4 1 1 ri-- a.. Ni ER M //..1.Y1 /. •• •• •��.//:- ..N/�NN�.y. �a +_ �-aN .t�.j1.Ir N.�iyl��j.� �a a;�::a M•..to1N A.Ni� ' �o® ii1.- Mw `� 1:rAww.. N q :1�N..yM•w mp :$•• • • �•� AA w��MM�•.�M..Iw.1wwwwwlr.� • �j�j IMM 1 �\ ���1• N' w�• N� .MMM. . ...�.��. N ..w�AI.I...w ����IYIw�!..illotimm •..••• _It•/It�11I}. • ►'q� V• F..am.F..a�.N•....7L4 1I U.w � ww-�i/ � w = t�. i°w eiii..... MRIT �w1l : Meld I , Lf rill NI MIT Y�Ww /�� =� tt/I/NIII u r i' i 7 � yy� 11 fff/ 1/ IIf ssi MIII�fI���btl Er � .f./t Itm IItt1 /Iflltt�flffffflf f�� � Mr/ rUf1Y�t1/ nf 1 N / / 1 / Iffllllf.ffNf•.ttftilfRfM /1I m i w 1 i iu in ninNiN 11 1 U iiYU • 1 • il NMILI f/1NMIMMHI WMMre i i n illith i i %u1�. u � i ll 0.1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 TO 80 90 • STORM DURATION (MINUTES) DESIGN STORM FREQUENCY = l0 YEARS ONE HOUR POINT RAINFALL = ° INCHES • LOG -LOG SLOPE = Q to • PROJECT LOCATION = 6AWTA AAA AV.. 9. MULBERRY AVE. • SAN BERNARDINO COUNTY INTENSITY - DURATION - CURVES HYDROLOGY MANUAL CALCULATION SHEET • D -8 FIGURE D -3 .4 p -mill - F! RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1963-88 Advanced Engi,,ering Software (ae5) Ver. 5.2A Release Date: 7/08 88 Serial # DE1723 Especially prepared for: FUSCOE WILLIAMS LINDGREN & SHORT ************************** DESCRIPTION OF STUDY ************************** * MESSENGER JOB # 144.2103 * * 10 YEAR HYDROLOGY STUDY ' * * BY * J.R. * ************************************************************* **** FILE NAME: 1442103.DAT TIME/DATE OF STUDY: 11:05===2_OCT_89====================================== USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:�================== =��������� --*TIME-OF-CONCENTRATION MODEL*-- S STORM EVENT (YEAR) = 10.00 N] ~~^~' PIPE SIZE(INCH) = 18 0 2� SPECIFIED �lm� ^ GRADIENTS(DECIMAL) U SE FOR FRICTION SLOPE = 0.90 ~~ SPECI '" - LOG A R ITHMIC INTERPOLATION USED FOR RAINFALL* �� SLOPE OF INTENSITY DURATION CURVE = 0.6000 �� USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 0.8800 **************************************************************************** Au -- ----- - --- ---- - ---- - ---- ----- - - -- - -- - ---- ------ - - -- - -- - - --- - - -- - - ------------ >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<======================== DEVELOPMENT IS COMMERCIAL k' TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 m� INI TIAL SUBAREA FLOW-LENGTH(FEET) = 390.00 UPSTREAM ELEVATION(FEET) = 952 DOWNSTREAM ELEVATION(FEET) = 945.64 0� ELE»n//u'" D ` "E'`~E` EE'' - 7' �0** 3 00�/T 7 26)]**0.20 = 334 (MIN ^ ^ lo YEAR RAINFALL '� q7TY(INCH/HOUR) = 3.106 SOIL IFICATION IS "A" B A LOSS RATE, Fm(INCH/HR) = 0.0970 - SUBARE = 1 4^47 pEAK FLOW RATE(CFS) = 4 47 N� TOTAL AREA(ACRES) = .�o . **************************************************************************** �i FLOW PROCESS FROM NODE_____ �----------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<==================== == UP REA '' E EVATION(FEET) = 945.64 DOWNSTREAM ELEVATION(FEET) = 939.24 xc� �==""` 0� ST T (FEET) = 598.00 CURB HEIGTH(INCHES) = 6. N� STT DTH(FEET) = 95.50 DISTANCE FROM C (FEET) = 94.49 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME ED USING MEAN FLOW(CFS) = 9.72 N� STREET FLOW MODEL RESULTS: STREET '- D TH(F T) = 0.HALFS46 TR-- T'FLOOD WIDTH(FEET) = 16.AVERA88 G OW VELOCITY(FEET/SEC.) = 3.27 '""~~ CT OF DEPTH&VELOCITY = 1.52 Q� STREET TRAVEL TIME(MIN.) = 3.04 TC(MlN.) = 10.38 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2 522 SOIL CLASSIFICATION IS "A" N� C ) = 10.43 - oUBA"EA '""-A~-~^E~'S) = ''7-43 - AVFRAGED Fm(INCH/HR) = 0.10 c,,=�'^ V � �'`~-`~~^- -' 6.43 PEAK FLOW RATE(CFS) = 14.03 '-'�-F�- ~~�BARFA�STREET FLOW HYDRAULI : "�' ="" " T''(FEET) = 0.52 HALFSTREET FLOOD WIDTH(FEET) = 19.83 N� FLO = 3.46 DEPTH*VELOCITY = 1.81 � = 0 **************************************************************************** __FLOW_PROCESS FROM _NODE _____3�00_TO_ NODE _____3�00_IS_ CODE _=___7____________ >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< ============================================================================ USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN.) = 10.23 RAINFALL INTENSITY(INCH/HR) = 2.54 EFFECTIVE AREA(ACRES) = 6.43 TOTAL AREA(ACRES) = 6.43 PEAK FLOW RATE(CFS) = 14.12 AVERAGED LOSS TE Fm(INCH/HR) = 1.405 NOTE: EFFECTIVE AREA IS USED AS THE TOTAL CONTRIBUTING AREA FOR ALL CONFLUENCE ANALYSES. ************************** FLOW PROCESS FROM NODE __________________________ >>>>>COMPUTE STREET FLOW UPSTREAM ========================== ELEVATION(FEET) STREET LENGTH(FEET) = STREET HALFWIDTH(FEET) = ************************************************** 3.00 TO NODE 4.00 IS CODE = 6 -------------------------------------------------- TRAVEL TIME THRU SUBAREA<<<<< ================================================== = 939.24 DOWNSTREAM ELEVATION(FEET) = 938.46 71.00 CURB HEIGTH(INCHES) = 6. 95.50 DISTANCE FROM CROWN TO CROSS GRADE (FEET) = 94.49 INTER--R STREET L(DECIMAL) = 0.020 OUTSI STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 COMPUTE **TRAVEL TIME USING MEAN FLOW(CFS) = 14.12 STREET FLOW MODEL RESULTS: NOTE: O STREET G FLOW EEXCEEDS RESULTS BASED ON THE ASSUMPTION THE '----'-'E ��nW OUTSIDE OF THE STREET . ''''' ------ ALONG THE PARKWAY, ETC., IS NEGLECTED. ' T � OW DEPTH(FEET) = 0.52 -'--- EFLOOD WIDTH(FEET) = 19.83 AVERAG TY(FEET/SEC.) = 3.48 DEPT LOCITY = 1.82 PRODUCT -' TIM�7��� ) 0 34 TC(MIN ) = 10 57 STREET FLOW TRAVEL . = . . . 10 YEAR RAI NFALL I TENSITY(INCH/HOUR) = 2.494 SOIL CLASSIFICATION IS "A" RATE Fm(INCH/HR) = 0.0970 � 0.0� SUBAREA RUN FF(CFS) = 0.00 SU BAREA S) = 6.43 AVERAGED Fm(INCH/HR) = 1.40 EF FECTIVE ~^�^`^-'= 6.43 PEAK FLOW RATE(CFS) = 14.12 '-��- OF �' SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET = 0.52 HALFSTREET FLOOD WIDTH(FEET) = 19.83 **************************************************************************** __FLOW_PROCESS_FROM_NODE_____4�00 TO_NODE _____ = ___ 8 ____________ >>>>>ADDITION SUBAREA =TO= MAINLINE =PEAK=FLOW<<<<<============�==�======� YE AR RAINFALL I TEN ITY(INCH/HOUR) = 2.494 SO IL CLASSIFICATION IS "A" COMMERCIAL SUBAREA m 0970 SUBAREA AREA(ACRES) =-- �-. � SUBAREA RUNOFF(CFS) = 5.52 ) = 8.99 AVERAGED ) = 1.033 = 8.99 PEAK - FLOW RATE(CFS) = 14.12 TC(MIN) = 10.57 **************************************************************************** FLOW PROCESS FROM _NODE _____4�00_TO_ NODE ____ 5�00_IS CODE =___6____________ N� ------------ FLOW TRAVEL TIME THRU SU8AREA<<<<< >>> UPSTREAM ELEVATION(FEET) . -N(FEET) = 938 46 DOWNSTREAM ELEVATION(FEET) = 936.40 STREET LENG ''= CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 95.50 DIS TANCE FROM CROWN TO CROSSFALL GRADE (FEET) = 94.49 INTERIOR -T' T L( L) = 0.026 OUTSIDE STREET CRnqqFALL(DECIMAL) = 0.020 0� SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL IME COMPUTED USING MEAN FLOW(CFS) = 16.23 STREET FLOW MODEL RESULTS: �� NOTE: STREET FLOW EXCEEDS TOP OF CURB._ HIT THE F STREET FLOW RESULTS ARE BASED ON THE ASbuMp11UN THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS AiL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET �LO� DEPTH(FEET) = 0.54 HALFSTRFET FLOOD WIDTH(FEET) = 20.57 AVERAGE FLOW VE OCITY(FEET/SEC.) = 3.73 PRODUCT OF DEPTH&VELOCITY = 2.01 STREET FLOW TRAVEL TIME(MIN.) = 0.86 TC(MIN.) = 11.43 R RAINFALL INTENSITY(INCH/HOUR) = 2.380 SOIL CLASSIFICATION IS "A" CO SUBAREA LOSS RATE, Fm(INCH/HR) = 0.0970 23 SUBAREA AREA(ACRES) = 2.06 SUBAREA x U m O FF( FS = ) 4 . AREA(ACRES) = 11.05 AVERAGED Fm(INCH/HR) = 0.86 EFFECTIVE AREA = 11.05 PEAK FLOW RATE(CFS) = 15.13 N TOT O AREA STREET FLOW HYDRAULICS: ~E' T''(FEET) = 0.54 HALFSTREET FLOOD WIDTH(FEET) = 20.57 FLO = 3.48 DEPTH*VELOCITY = 1.87 **************************************************************************** FLOW PROCESS _FROM _NODE _____5�00_TO_ NODE _____5�00_IS 8 _CODE =___ ___________ >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.380 SOIL CLASSIFICATION IS "A" CO MMERCIAL LOSS RATE Fm(INCH/HR) = 0.0970 SUBAREA AREA(ACRES) = 1.M SUBAREA RUNOFF(CFS) = 2.05 EFFECTIVE AREA(ACRES) = 12.O5 AVERA Fm(INCH/HR) = 0.795 TOTAL AREA(ACRES) = 12.05 PEAK FLOW RATE(CFS) TC(MIN) = 11.43 **************************************************************************** __FLOW_PRDCESS_FROM_NODE_____ >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<===================== TOTAL NUMBER OF STREAMS = 2 FOR INDEPENDENT STREAM 1 ARE: 0� CONFLUEN rnNCENTRATION(MIN.) = 11.43 '^ � RA INFAL L Y INCH/HR> = 2.38 FRAGED Fm(INCH/HR) = 0.79 E STREAM AREA(ACRES) = 12.05 TOTAL STREAM AREA(ACRES) = 12.05 0� PEAK FLOW RATE(CFS) AT CONFLUENCE = 17.19 **************************************************************************** __FLOW_PROCESS_FROM_NODE____ >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<======================== DEVELOPMENT IS AL Q� >]**0.20 _- .00 UPSTREAM ELEVATION(FEET) = 956.50 ELEVATION T 0** 3.00)/( 10.50) ]**0.20 = 8.644 0� 10 YEAR RAINFALL '~ / ITY(INCH/HOUR) = 2.814 IS SOIL "A" COMMERCIAL SUBAREA CLASSIFICATIO RATE, Fm(INCH/HR) = 0.0970 SUBAREA UNOFF(CFS) = 8.31 TO A(ACRES) = 3.40 PEAK FLOW RATE(CFS) = 8.31 **************************************************************************** FLOW _PROCESS _FROM _NODE ____14�00_TO_ NODE ____15�00_lS_ CODE _=___6____________ w� >>>>>COMPUTE STREET = FLOW = TRAVEL =TIME =THRU=SUBAREA<<<<<==================== --- ------- � DOWNSTREAM ELEVATION(FEET) = 940.50 UPSTR ELEVATION(FEET) EH(F) = 370.00 CURB HEIGTH(lNCHES) = 6. 0� STREET ~'---� HALFWIDTH(FEET) = 45.50 DISTANCE FROM CROWN TO CROSSFALL G ADE AK(FEET) = 44.49 INTERIOR STREET SSFALL(DECIMAL ) = 0 . n2o OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 N� SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 8.31 STREET FLOW MODEL RESULTS: N� STREET FLOW DEPTH(FEET) = 0.43 71 HALFSTREET FLOOD WIDTH(FEET) = 15.26 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.40 PRODUCT OF DEPTH&VELOCITY = 1.47 STREET FLOW TRAVEL TIME(MIN.) = 1.81 TC(MIN.) = 10.46 m� I TY(INCH/HOUR) = 2.510 SOIL CLASSIFICATION IS ''A'' Fm(INCH/HR) = 0.0970 SUBAREA - 4RE4(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 EFFECTIVE AREA(ACRES) = 3.40 AVERAGED Fm(INCH/HR) = 0.10 TOT AREA(ACRES) = 3 PEAK FLOW RATE(CFS) = 8.31 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.43 HALFSTREET FLOOD WIDTH(FEET) = 15.26 FLOW VELOCITY(FEET/SEC.) = 3.40 DEPTH*VELOCITY = 1.47 **************************************************************************** FLOW PROCESS FROM NODE 15.00 TO NODE 15.00 IS CODE = 8 ____________________________________________________________________________ N� >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.510 S OIL CLASSIFICATION IS "A" N� C SUBAREA LOSS RATE Fm(INCH/HR) = 0.0970 N� SUBAREA AREA(ACRES) = 6.20 SUBAREA RUNOFF(CFS) = 13.47 E FFECTIVE AR A(A RES) = 9.60 AVERAGED F ( N H/HR) = 0.097 TOTAL AREA(ACRES) = 9.60 PEAK FLOW RATE(CFS) = 20.85 m� TC(MIN) = 10.46 **************************************************************************** M� FLOW PROCESS FROM NODE 15.00 TO NODE 3.00 IS CODE = 3 ~~ ---- _------- _---- _---- ____----- ____ ---- _____---- ____ ---- __________-_______ >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA- >>>>>USlNG COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< �� D TH OF FLOW IN 21.0 INCH PIPE IS 13.1 INCHES -- PIPE-FLOW VELOCITY(FEET/SEC.) = 13.2 UPSTREAM NODE ELEVATION(FEET) = 935.50 DOWNSTREAM NODE ELEVATION(FEET) = 934.00 FLOW LENGTH(FEET) = 40.00 MANNING'S N = 0.013 N� ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 20.85 TRAVEL TIME(MIN.) = 0.05 TC(MIN.) = 10.51 FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 7 ____________________________________________________________________________ >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< m� USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN.) = 10.32 RAINFALL INTENSITY(INCH/HR) = 2.53 EFFECTIVE AREA(ACRES) = 9.60 TOTAL AREA(ACRES) = 9.60 PEAK FLOW RATE(CFS) = 39.84 �U AVERAGED LOSS RATE Fm(INCH/HR) = 0'001 m� NOTE: EFFECTIVE LA IS USED AS THE TOTAL CONTRIBUTING AREA FOR ALL CONFLUENCE ANALYSES. ~~ FLOW PROCESS FROM NODE 3.00 TO NODE 5.00 IS CODE = 3 ____________________________________________________________________________ >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< - 33.0 INCH PIPE IS 22.2 INCHES P IPE-FLOW V LO ITY E T/ E . = 9.4 UPSTREAM NODE ELEVATION(FEET) = 934.00 DOWNSTR NODE ELEVATION(FEET) = 931.40 ' L W = 260.00 MANNING'S N = 0.013 E STIMAT E D PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) = 39.84 TRAVEL TIME(MIN.) = 0.46 TC(MIN.) = 10.78 **************************************************************************** FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1 ____________________________________________________________________________ >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< w� >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES-(<<<X ============================================================================ T OTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: R� TIME OF CnNCENTRATION(MIN.) = 10.78 - RAINFALL INTENSITY(INCH/HR) = 2.46 2aL AVERAGED Fm(INCH = 0.00 EFF ECTIVE AREA(ACRES) = 9.60 TOTAL STREAM AREA(ACRES) = 9.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 39.84 N� RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** Q(CFS) Tc(MIN.) Fm(INCH/HR) Ae(ACRES) m� 1 55.65 11.43 0.443 21.65 2 56.92 10.78 0.431 20.97 COMPUTED CONFLU CE ESTIMATES ARE AS FOLLOWS: FLOW RATE(CFS) = 56.92 Tc(MIN.) = 10.782 P EAK AREA(ACRES) = 20.97 AVERAGED Fm(INCH/HR) = 0.43 TOTAL AREA(ACRES) = 21.65 ~� FLOW PROCESS FROM NODE 5.00 TO NODE 7.00 IS CODE = 3 ____________________________________________________________________________ >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SU8AREA0<<< 0� >>>>>USlNG COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ � ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 D EP T H FLOW IN 18.0 INCH PIPE IS 4.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 180.8 0� UPSTREAM NODE ELEVATION(FEET) = 931.40 - DOWNSTREAM NODE ELEVATION(FEET) = 27.50 ��LENGTH(FEET) = 40.00 MANNING'S N = 0.013 E PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 56.92 TRAVEL TIME(MIN.) = 0.00 TC(MIN') = 10.79 m� **************************************************************************** FLOW PROCESS FROM NODE 7.00 TO NODE 7.00 IS CODE = 1 ____________________________________________________ >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ============================================================================ ER F STREAMS = 2 TOT CONF USED FOR INDEPENDENT STREAM 1 ARE: TIME OF C NC T ON(MIN.) = 10.79 RAINF INT TY (INCH/HR) = 2.46 AVERAGED Fm(INCH/HR) EFFECTIVE STREAM AREA(ACRES) = 20.97 TOTAL STREAM AREA(ACRES) = 21.65 PEAK FLOW RATE(CFS) AT CONFLUENCE = 56.92 **************************************************************************** FLOW PROCESS FROM NODE 16.00 TO NODE 10.00 IS CODE = 2 �-------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS-- ============================================================================ COMMERCIAL Q� DEVELOPMENT )]**0.20 INITIAL .00 UPSTREAM ELEVATION(FEET) = 942.40 DOWNSTREAM ELEVATION(FEET) = 936.30 ELEVATION DIFFERENCE(FEET) = 6.10 ��o0** 3.0)/( 6.10)]**0.20 = 6.090 m� 10 YEAR RAINFALL '"`''^ - ~ � 0ENSITY(INCH/HOUR) = 3.472 SO IL CLASSIFICATION IS "A" COMMERCIAL SUB AREA LOSS RATE, Fm(INCH/HR) = 0.0970 SUBAREA RUNOFF(CFS) = 1.76 TOTAL AREA(ACRES) = 0.58 PEAK FLOW RATE(CFS) = 1.76 **************************************************************************** FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 6 - ----------------------------------------------------------- -- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< ============================================================================ UPSTREAM ELEVATION(FEET) = 936.30 DOWNSTREAM ELEVATION(FEET) = 933.80 STREET LENGTH(FEET) = 450.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 72.50 ^ DISTANCE FROM CROWN TO CROSSFA L GRADE REAK(FEET) = 71.49 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 ... SIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 4.78 STREET FLOW MODEL RESULTS: �= STREET FLOW DEPTH(FEET) = 0.42 mi HALFSTREET FLOOD WIDTH(FEET) = 14.69 ~~ AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.10 PRODUCT OF DEPTH&VELOCITY = 0.88 STREET FLOW TRAVEL TIME(MIN.) = 3.57 TC(MIN.) = 9.66 10 YEAR RAINFALL INTENSITY(INCH/HOUR) 2.632 SOIL CLASSIFICATION IS "A" COMMERCIAL L ��.�� SUBAREA RUNOFF(CFS) = 5.98 SUB ' AREA(ACRES) (ACRES) 3 Fm(INCH/HR) = 0.10 TOTAL AREA(ACRES) = 3.20 PEAK FLOW �''�~'^` '- ) = 7.30 END OF FLOW HYDRAULICS: DEPTH(FEET�)'R = A 0.48 STR EET H4LFSTREET FLOOD WIDTH(FEET) = 17.49 FLOW VELOCITY(FEET/SEC.) = 2.30 DEPTH*VELOCITY = 1.09 **************************************************************************** FLOW PROCESS FROM NODE 11.00 TO NODE 11.00 IS CODE = 8 ________________________________________________________________ >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.632 SOIL CLASSIFICATION IS "A" �O SUBAREA LOSS RATE Fm(INCH/HR) = 0.0970 SUBAREA COMMERCIAL AREA(ACRES) = 0.9� SUBAREA RUNOFF(CFS) = 2.10 -- EFFECTIVE AREA(ACRES) = 4.12 AVERAGED Fm(INCH/HR) = 0.097 TOTAL AREA(ACRES) = 4.12 �� PEAK FLOW RATE(CFS) = 9.40 �� TC(MIN) = 9.66 1�1� P **************************************************************************** FLOW _PROCESS _FROM _NODE ____11�00_TO_ NODE _____7�00_IS_ CODE _=___3____________ >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA-'-'-' << >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2'6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 61.3 UPSTREAM NODE ELEVATION(FEET) = 930.00 DOWNSTREAM NODE ELEVATION(FEET) = 27.50 FLOW LEN TH(FEET) = 190.00 MANNING'S N = 0.013 ESTIMATE PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 9.40 TRAVEL TIME(MIN.) = 0.05 TC(MIN.) = 9.71 **************************************************************************** FLOW _PROCESS _FROM _NODE _____7�00_TO NODE _____7.}0_IS_ CODE _ >>>>>DESIGNATE I �� < INDEPENDENT STREAM FOR CONFLUENCE<<<< >>>>>AND COMPUTE��R�OUS CONFLUENCED STREAM VALUES<<<<< ============================================================================ TOTAL 2 INDEPENDENT STREAM 2 ARE: TIME - OF C TRATI (MIN ) = 9.71 RAINFALL INTENSITY(INCH/HR) = 2.62 AVERAGED Fm(INCH/HR) = 0.10 EFFECTIVE STREAM REA (ACRES) .= 4.12 TOTAL STREAM AREA(ACRES) = 4.12 PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.40 INTENSI RAINFALL AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE * 65.73 10.79 2 64.14 11.44 3 64.69 9.71 Fm(INCH/HR) > 0 .376 25 .09 �� ..~.. ��'.7 COMPUTED CONFLUENCE ESTIMAT ARE AS FOLLOWS: 6573 (M = 10.78 EFFECTIVE ' ) = 75.09 AVERAGED Fm(INCH/HR) = 0.38 TOTAL AREA(ACRES) = 25.77 **************************************************************************** FLOW PROCESS FROM NODE _____7�00 - TO - NODE ____ 17.. __ IS _ CODE _ = _ ----------------------�� >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON_PRESSURE=FLOW)<<<<<=========== D OF FLOW IN 30.0 INCH PIPE IS 19.8 INCHES PIPE-FLOW ��E OW VELOCITY(FEET/SEC.) = 19.1 U PSTR E AM NODE ELEVATION(FEET) = 27.50 DOWNSTREAM NODE ELEVATION(FEET) = 25.60 � FLOW LENGTH(FEET) = 40.00 MANNING' N = ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 -- PIPE-FLOW(CFS) = 65.73 TRAVEL TIME(MIN.) = 0.07; TC(MIN.) = 10.82 ********it**3iii***********************it***A*A**** FLOW PROCESS FROM NODE 1.00 TO NODE 9.00 IS CODE = 2 >>> >>RATIONAL METHOD INITIAL SUBAREA ANALYSIS _______ _ -==____ _ DEVELOPMENT COMMERCIAL TC = K*[ (LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00 UPSTREAM ELEVATION(FEET) = 952 DOWNSTREAM ELEVATION(FEET) = 952.50 ELEVATION DIFFERENCE(FEET) = 0.40 TC(MIN.) = 0.304*[( 300.00** 3.00)/( 0.40)]**0.20 = 11.187 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.411 SOIL CLASSIFICATION IS ^A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = 0.0970 SUBAREA RUNOFF(CFS) = 2.04 TOTAL AREA(ACRES) = 0./8 PEAK FLOW RATE(CFS) = 2.04 **************************************************************************** FLOW PROCESS FROM NODE 9.00 TO NODE 8.00 IS CODE = 6 >>>>> COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA UPSTREAM ELEVATION(FEET) = 952.50 DOWNSTREAM ELEVATION(FEET) = 935.50 STREET LENGTH(FEET) = 1410.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 44.50 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 43.49 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 6.16 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = 0.41 HALFSTREET FLOOD WIDTH(FEET) = 14.26 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.86 PRODUCT OF DEPTH&VELOCITY = 1.18 STREET FLOW TRAVEL TIME(MIN.) = 8.21 TC(MIN.) = 19.39 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.733 SOIL CLASSIFICATION IS "A^ COMMERCIAL SUBAREA LOSS RATE Fm(INCH/HR) = 0.0970 SUBAREA AREA(ACRES) = 5.5� SUBAREA RUNOFF(CFS) = 8.11 EFFECTIVE AREA(ACRES) = 6.49 AVERAGED Fm(INCH/HR) = 0.10 TOTAL AREA(ACRES) = 6.49 PEAK FLOW RATE(CFS) = 9.56 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.45 HALFSTREET FLOOD WIDTH(FEET) = 16.30 FLOW VELOCITY(FEET/SEC.) = 3.44 DEPTH*VELOCITY = 1.56 **************************************************************************** FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 8 >>> , ,, ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 10 YEAR RAINFALL TENSITY(INCH/HOUR) = 1.733 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE Fm(INCH/HR) = 0.0970 SUBAREA = 0.4l SUBAREA RUNOFF(CFS) = 0.68 EFFECTIVE AREA(ACRES) = 6.95 AVERAGED Fm(INCH/HR) = 0.097 TOTAL AREA(ACRES) = 6.95 PEAK FLOW RATE(CFS) = 10.23 TC(MIN) = 19.39 **************************************************************************** FLOW PROCESS FROM NODE 20.00 TO NODE 21.00 IS CODE = 2 >>>>> RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<< DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)3**0.20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 677.00 UPSTREAM ELEVATION(FEET) = 957.46 DOWNSTREAM ELEVATION(FEET) = 949.50 ELEVATION DIFFERENCE(FEET) = 7.96 TC(MIN.) = 0.304*[( 677.00** 3.00)/( 7.96)]**0.20 = 10.024 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.575 26� ION IS "A" COMMERCIAL SUBAREA S L OSS RATE, Fm(INCH/HR) = 0.0970 SUBAREA S) = 0.1^18 PEAK FLOW RATE(CFS) = 1.18 TOTAL AREA(ACRES) ************************ 22.00 TO NODE 23.00 IS CODE = 2 FLOW PROCESS FROM NOm=�______________________-____-_ --------------------- D INITIAL SUBAREA ANALYSIS< - ______<<<< ==== >>>>>RATIONAL ME COMMERCIAL EVELOpn�m� ]**0.20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 00 TION(FEET) 952.70 UPSTREAM ELEVA 949.50 ~ DIFFERENCE FEET) 3.00 zo � � " 3.20>]**0.20 = 10.028 C MIN 500- 0 0 " = 2^574 "All ~� IL ^=S RATE, Fm<INCH/HR) = 0.0970 COMMERCIAL SUBAREA RUNO F F (CFS) 1^90 PEAK FLOW RATE(CFS) = 1.90 TOTAL AREA(ACR = 0.85 ********************** E 23 = 8 FLOW PROCESS FROM NODE 00 TO NODE 23.00 IS CODE _______�______________________-______________________ --- --------------------REA TO MAINLINE PEAK FLOW<<<<< ==== 10 YEAR >>>>>ADDITION FALL Im ----TENSITY(INCH/HOUR) = 2.574 SOIL CLASSIFICATION IS "A" TE Fm(INCH/HR) = Q.0970 COMMERCIAL SUBAREA LOSS RA 1.2`7 EFFECTIVE AREA(ACRES) 1.4-2- AVERAGED Fm(INCH/HR) 0.097 TOTAL AREA(ACRES) = 1.42 PEAK FLOW RATE(CFS) TC(MIN) 10- END OF STUDY SUMMARY: 1.42 TC(MIN.) 10.03 TOTAL AREA(ACRES) 1.42 AVERAGED Fm(INCH/HR)= 0-10 EFFECTIVE AREA(ACRES) PEAK FLO END O� RATIONAL =~�-------NAL METHOD ANALYSIS �� F L R; HJ; W7 601A PROJECT: S erra GmfCw PROJECT NO: 144 -L105 FuSCOE VWLL� Santa Ana. C (714) 8 . 3 94 (714) 836 -4455 BY: DATE: CHECK: DATE: I UNDGREN & SHORT Civil Engineers • Land Surveyors SHEET 19 OF HYDRAULICS PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-88 Advanced Engineering Software (aes) Ver. 3.0A Release Date:12/27/88 Serial # DE1723 Especially prepared for: FUSCOE WILLIAMS LINDGREN & SHORT ************************** DESCRIPTION OF STUDY ************************** * SIERRA GATEWAY - MESSENGER JOB # 144.2103 * * HYDRAULIC STUDY FOR LINE A * BY J.R. * FILE NAME: 14421.DAT TIME/DATE OF STUDY: 16:46 2-OCT-89 ~� N OTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA NODE NUMBER = 0.00 FLOWLINE ELEVATION = 908.50 PIPE DIAMETER(INCH) = 36.00 PIPE FLOW(CFS) = 83.4-5 pvk ASSUMED DOWNSTREAM CONTROL HGL = 926.000 928.164>;FLOWLINE= < 908.500> ============================================================================ PRESSURE FLOW PROCESS FROM NODE 0.00 TO NODE 172.00 IS CODE = 1 UPSTREAM NODE 172.00 ELEVATION = 925.60 ____________________________________________________________________________ CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 83.45 CFS PIPE DIAMETER = 36.00 INCHES P IPE LENGTH = 172.00 FEET MANNINGS N = 0.01300 F= (Q/K)**2 = (( 83.45)/( 666.983))**2 = 0.0156539 HF=L*SF = ( 172.00)*( 0.0156539> = 2.692 NODE 172.00 : HGL= < 928.692>;EGL= < 930.857>;FLOWLINE= < 925.600> ============================================================================ PRESSURE FLOW PROCESS FROM NODE 100.00 TO NODE 101.78 IS CODE = 5 UPSTREAM NODE 101.78 ELEVATION = 926.50 ____________________________________________________________________________ CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 83.4 36.00 7.069 11.806 45.000 2. 16 4 83.4 36.00 7.069 11.806 -- 2.164 3 0.0 0.00 0.000 0.000 0.000 - 4 0.0 0.00 0.000 0.000 0.00A - 5 0.0===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*CO5(DELTA3) Q4*V4*COS(DELTA4))/((A1+A2)*16.1) LOSSE UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.01565 DOWNSTREAM FRICTION SLOPE = 0.01565 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01565 JUNCTION LENGTH(FEET) = 6.50 FRICTION LOSS = 0.102 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = 1.268+ 2.164- 2.164+( 0 02)+( 0.000) = 1.370 NODE 101.78 : HGL= < 930.062>;EGL= < 932.226>;FLOWLINE= < 926.500> -- PRESSURE FLOW PROCESS FROM NODE 101.78 TO NODE 114.34 IS CODE = 1 UPSTREAM NODE 114.34 ELEVATION = 926.73 ____________________________________________________ CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): __ P__IPE ____ FLOW _____ _______ = B3__.45 CFS PIPE DIAMETER = 36.00 INCHES PIP E LENGTH = 12.56 FEET MANNINGS N = 0.01300 SF= (Q7K)**7 = (( 83.45>/( 666.983))**2 = 0.0156539 HF=L*SF = ( 12.56)*( 0.0156539) = 0.197 NODE 114.34 : HG= < 93.259>;EGL= < 93�.423>;FLOWLINE= < 926.730> �� go ============================================================================ H PPESSURE FLOW PROCESS FROM NODE 114.34 TO NODE 132.01 IS CODE = 3 UPSTREAM NODE 132.01 ELEVATION = 927.05 ____________________________________________________________________________ CALCULATE PRESSURE FLOW PIPE-BEND LOSSES(OCEMA): PI PF FLOW 83.45 CFa PIPE DIAMETER = 36.00 INCHES CENTRAL ANGLE = 45.000 DEGREES PIPE LENGTH = 17.67 FEET MANNINGS N = 0.01300 PRESSURE FLOW AREA = 7.069 SQUARE FEET FLOW VELOCITY = 11.81 FEET PER SECOND VELOCITY HEAD = 2.164 BEND COEFFICIENT(KB) = 0.1768 HB=KB*(VELOCITY HEAD) = ( 0.177)*( 2.164) = 0.383 PIPE CONVEYANCE FACTOR = 666.983 FRICTION SLOPE(SF) = 0.0156539 FRICTION LOSSES = L*SF = ( 17.67>*( 0.0156539) = 0.277 NODE 132.01 : HGL= < 930.918>;EGL= < 933.082>;FLOWLINE= < 927.050> to ============================================================================ PRESSURE FLOW PROCESS FROM NODE 132.01 TO NODE 140.28 IS UPSTREAM NODE 140.28 ELEVATION = 927.20 CODE = 1 ____________________________________________________________________________ CALCULATE PRESSURE FLOW FRICTION LOSSE LA CD): PIPE FLOW = 83.45 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 8.27 FEET MANNINGS N = 0.01300 S=(Q/K)**2 = (( 83.45)/( 666.983))**2 = 0.0156539 HF=L*SF = ( 8.27)*( 0.0156539) = 0.129 NODE 140.28 : HGL= < 931.047>;EGL= < 933.211>;FLOWLINE= < 927.200> PRESSURE FLOW PROCESS FROM NODE 140.28 TO NODE 142.56 IS UPSTREAM NODE 142.56 ELEVATION = 927.50 ---------------------------------------------------------- CODE = 5 �^ ___ CALCULATE _________ P__RESSUR______E FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 70.0 36.00 7.069 9.897 45.000 1.521 Z 83.4 36.00 7.069 11.806 -- 2.164 3 13.5 24.00 3.142 4.297 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0===Q5 EQUALS BASIN INPUT=== �^ LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) CA UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 U STREAM FRICTION SLOPE = 0.01100 DOWNSTREAM � FRICTION SLOPE = 0.01565 AV FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01333 J LENGTH(FEET) = 6.00 FRICTION LOSS ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = 1.922+ 1.521- 2.164+( 0.080)+( 0.000) = 1.359 N 142.56 : HGL= < 933.050>;EGL= < 934.571>;FLOWLINE= < 927.500> PRESSURE FLOW PROCESS FROM NODE 142.56 TO NODE 167.15 IS UPSTREAM NODE 167'15 ELEVATION = 927.60 CODE = 1 &� CALCULATE PRESSURE FLOW FRICTION L ACFCD): PIPE FLOW = 69.96 CF� PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 24.60 FEET MANNINGS N = 0.01300 F=(Q/K)**2 = (( 69.96)/( 666.9831>**2 = 0.0110020 HF=L*SF = ( 24.60)*( 0.0110020) = 0.271 NODE 167.15 : HGL= < 933.320>;EGL= < 934.841>;FLOWLINE= < 927.600> ============================================================================ PRESSURE FLOW PROCESS FROM NODE 167.15 TO NODE 201.65 IS UPSTREAM NODE 201.65 ELEVATION = 927.80 CODE = 3 ~~ `- _________________________________________________________________________-__ CALCULATE PRESSURE FLOW PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 69.96 CFS PIPE DIAMETER = 36.00 INCHES CENTRAL ANGLE = 45.000 DEGREES PIPE LENGTH = 34.50 FEET MANNINGS N = 0.01300 PRESSURE FLOW AREA = 7.069 SQUARE FEET OW VELOCITY = 9.90 FEET PER SECOND V ELOCITY HEAD = 1.521 BEND COEFFICIENT(KB) = 0.1768 HB= B*( ` E ITY HEAD) = ( ( 1.521) = 0.269 PIPE CO FACTOR = 666.9877 FRICTION SLOPE(SF) = FRICTION LOSSES = L*SF = ( 34.50)*( 0.0110020) = 0.380 NODE 201.65 : HGL= < 933.969>;EGL= < 935'490>;FLOWLINE= 0.0110020 < 927.800> 2q PRESSURE FLOW PROCESS FROM NODE 201.65 TO NODE 322.06 IS CODE = 1 ~� UPSTREAM NODE 322.06 ELEVATION = 928.40 30 ____________________________________________________________________________ CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 69.96 CFS PIPE DIAMETER = 36 INCHES PIPE LENGTH = 120.41 FEET MANNINGS N = 0.0�` � /K)**2 = (( 6 9.96)/( 666.983))**2 = 0. 0.013 020 AF=L*SF = ( 120.41)*( 0.0110020) = 1.325 NODE 322.06 : HGL= < 935.293>;EGL= < 936.814>;FLOWLINE= < 928.400> ============================================================================ PRESSURE FLOW PROCESS FROM NODE 322.06 TO NODE 332.06 IS CODE = 5 UPSTREAM NODE 332.06 ELEVATION = 928.50 ---------- _-------- ----- _--------- _------- _________________________________- CALCULATE PRESSURE JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 39.8 36.00 7.069 5.636 0.000 0.493 2 70.0 36.00 7.069 9.897 -- 1.521 3 0.0 0.00 0.000 0.000 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 30.1===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=<Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3) `- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N = 0 01300 DOWNSTREAM MANNINGS N = 0.0130f) UPSTREAM FRICTION OP C1.00357 FRICTION SLOPE = ��'- 0.01100 DOW ION SLOPE IN JUNCTION ASSUMED AS 0.00728 JUN CTION LENGTH(FEET) = 10.00 FRICTION LOSS = 0.073 ''ANC E = 0.304 J U N CTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION L = 2.056+ 0.493- 1.521+( 0.073)+( 0.304) = 1.405 N 313 �06 : HGL= < 937.726>;EGL= < 938.219>;FLOWLINE= < 928.500> ============================================================================ PRESSURE FLOW PROCESS FROM NODE 332.06 TO NODE 584.31 IS CODE = 1 UPSTREAM NODE 584.31 ELEVATION = 929.80 ____________________________________________________________________________ CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 39.84 CFS PIPE DIAMETER = 36.00 INCHES P IPE LENGTH = 252.25 FEET MANNINGS N = 0.01300 SF= (Q/K)**2 = (( 39.84)/( 666.983))**2 = 0.0035679 HF=L*SF = ( 252.25)*( 0.0035679) = 0.900 NODE 584.31 : HGL= < 938.626>;EGL= < 939.119>;FLOWLINE= < 929.800> ============================================================================ PRESSURE FLOW PROCESS FROM NODE 584.31 TO NODE 591.56 IS CODE = 5 UPSTREAM NODE 591.56 ELEVATION = 930.00 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 32.3 33.00 5.940 5.435 45.000 0.459 2 39 36.00 7.069 5.636 -- 0.493 3 0.0 0.00 0.000 0.000 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 7.6===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V C S(DELTA1)-Q3*V3*COS(DELTA3) Q4*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N = 0.01 DOW NSTREAM MANNINGS N = 0.01300 U PSTREAM FRICTION SLOPE = 0.00373 DO WNSTREAM FRICTION SLOPE = 0.00357 AVERAGED AGED RICTION SLOPE IN JUNCTION ASSUMED AS 0.00365 J LENGTH(FEET) = 10.00 FRICTION LOSS = 0.036 ~- E NTRANCE O E = 0-099 ` T U T^�� ON LOSSES = DY+HV1-HV2+(FRICTION LO S)+(ENTRAN E LOSSES) ULOSSES = 0.480+ 0.459- 0.493+( 0.036)+( 0.099)= 0,580 NODE 591.56 : HGL= < 939.241>;EGL= ( 939.7oo/;FLuwLIN < �= 930. 000> =============== PRESSURE FLOW UPSTREAM NODE _____________ CALCULATE PRE PIPE FLOW = PIPE LENGTH = m� HF=L*SF = ( ========================================================= PROCESS FROM NODE 591.56 TO NODE 652.45 IS CODE = 1 652.45 ELEVATION = 932.00 --------------------------------------------------------- SSURE FLOW FRICTION LOSSES(LACFCD): 32.28 C FS PIPE DIAMETER = 33.00 INCHES 60.e9 FEET MANNINGS N = 0.01300 528.866)>**2 = 0.0037254 60.89)*( 0.0037254) = 0 .227 r l NODE 652.45 : HGL= < V39.468>;EGL= < 939.927>;FLOWLINE= < 932.000> 3\ PRESSURE FLOW PROCESS FROM NODE 652.45 TO NODE 652.45 IS CODE = 8 UPSTREAM NODE 652.45 ELEVATION = 932.75 . ____________________________________________________________________________ C ALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW(CFS> = 32.28 PIPE DIAMETER(INCH) �� PRESSURE FLOW VELOCITY HEAD = 33.00 D = 0.459 CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.459) = 0.092 NODE 652.45 : HGL= < 940.018>;EGL= < 940.018>;FLOWLINE= < 932.750> �� ======================�==--= ======= ============================ 0J END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM 0 IN 4� bw m * **** * ** ****** *****.* _* * * *** *** **** ****** * * * * * * * * * * * *** * * * *** 4. PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-88 Advanced / En�ineering a Software 2 (aes) Especially prepared for: �B FUSCOE WILLIAMS LINDGREN & SHORT ************************** DESCRIPTION OF STUDY ************************** * SIERRA GATEWAY - MESSENGER JOB # 144.2103 * * HYDRAULIC REPORT FOR LINE 'B' * �( * BY J.R. * FILE NAME: 144210B.DAT TIME/DATE OF STUDY: 16:56 2-OCT-89 ============================================================================ NO TE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DO WNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 104.50 FLO LINE ELEVATION = 928.30 PIPE DIAMETER(INCH) = 24'00 PIPE FLOW(CFS) = 14.73 ASSUMED DOWNSTREAM CONTROL HGL = 933.100 3; NODE 104.50 : HGL= < 933.100>;EGL= < 933.441>;FLOWLINE= < 928.300> c' ============================================================================ PRESSURE FLOW PROCESS FROM NODE 104.50 TO NODE 232.22 IS = 929.05 CODE = 1 UPSTREAM NODE 232.22 ELEVATION __ -------- _--------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 14.73 CFS PIPE DIAMETER = 24.00 INCHES &i PIPE LENGTH = 127.72 FEET MANNINGS N = 0.01300 SF= (Q/K) **2 = (( 14.73)/( 226.224))**2 = 0.0042396 HF=L*SF = ( 127.72)*( 0.0042396) = 0.541 NODE 232.22 : HGL= < 933.641>;EGL= < 933. 983' < 929.050> PRESSURE FLOW PROCESS FROM NODE 232.22 TO NODE 249.89 IS CODE = 3 UPSTREAM NODE _____________________________________________------------------------------- 249.89 ELEVATION = 929.15 -^ CALCULATE PRESSURE FLOW PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 14.73 CFS PIPE DIAMETER = 24.00 INCHES CENTRAL GLE = 45'000 DEGREES PIPE17.67 FEET MANNINGS N = 0.01300 97 PRESSURE FLOW AREA = 3.142 SQUARE FEET FLOW VELOCITY = 4.69 FEET PER SECOND ~~ VELOC HEAD = 0.341 BEND COEFFICIENT(KB) = 0.1768 HB=K (VE ITY HEAD) = ( 0.177)*( 0.341) = 0.06 ~' PIPE CONVEYANCE FRICTION LOSSES FACTOR = 226.224 FRICTION SLOPE(SF) = = L*SF = ( 17.67)*( 0.0042396) = 0.075 0.0042396 NODE 249.89 : HGL= < 933.777>;EGL= < 934.118>;FLOWLINE= < 929.150> ============================================================================ PRESSURE FLOW PROCESS FROM NODE 249.89 TO NODE 274.66 IS = 929.30 CODE = 1 UPSTREAM NODE 274.66 ELEVATION ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSS S(L FCD): P PE W = PE LENGTH = 14.73 CFS PIPE DIAMETER = 24 INCHES 24.77 FEET MANNINGS N = 0.01300 ' '` =( )**2 = (( 14.73)/( 226.224))**2 = 0.0042396 - =L*SF= ( 24.77)*( 0.0042396) = 0.105 ~ DE 274.66 : HGL= < 933.882>;EGL= < 934.223>;FLOWLINE= < 929.300> PRESSURE FLOW PROCESS FROM NODE 274.66 TO NODE 274.66 IS CODE = 8 UPSTREAM _ NODE ___274�66_____ ELEVATION _=___930�05___________________________ CATCH BASIN ENTRANCE LOSSES(LACFCD): CALCULATE PRESSURE FLOW PIPE FLOW(CFS) = 14.73 PIPE DIAMETER(INCH) = 24.00 PRESSURE FLOW VELOCITY HEAD = 0.341 CATCH "A SIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.341) = HGL= < 934.291>;EGL= < 934.291>;FLOWLINE= 0.068 < 930.050> NODE 2 74.66 : =============== 3; r l END OF PRESSURE FLOW H`t'DF;AUI._ I CS PIPE SYSTEM 33 d 8 IL H C e PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD, OCEMA HYDRAULICS CRITERION) (c) Copyright 1982 -88 Advanced Engineering Software (aes) Ver. 3.c?A Release Date:1 /27/88 Serial # DE1723 Especially prepared for: FUSCOE WILLIAMS LINDGREN ?< SHORT * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * # * * * * * * * * * ** * SIERRA GATEWAY 144,2103 MESSENGER # * HYDRAULIC REPORT FOR LINE C: DATA FILE:144210C # * BY J.R. FILE NAME: 144210C.DAT TIME / DATE OF STUDY: 14:26 29- SEP_ -89 _ _ NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS a BASED �ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 100.00 FLOWLINE ELEVATION = 914.65 PIPE DIAMETER(INCH) = 24.0o PIPE FLOW(CFS) = 16.26 ASSUMED DOWNSTREAM CONTROL HGL = 927.800 NODE - 100.00 HGL= 927. 8s �i �::> ; EGL= < - 928. 216:; ; FLOWL I NE= < 914. 65i? :> PRESSURE FLOW PROCESS FROM NODE 103.39 TO NODE 109.69 IS CODE = 1 UPSTREAM NODE 109.69 ELEVATION = 916.34 -----------------------•----------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 16.26 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 6.3o FEET MANNINGS N = 0.01300 SF= (Q /k::) * *2 = (( 16.26)/( 226.224)) * *2 = 0.0051661 HF =L *SF = ( 6.3o)*( 0.0051661) = 0.033 NODE 109.69 : HGL= < 927.833: >;EGL = <: 928.248: >;FLOWLINE = < 916.340> PRESSURE FLOW PROCESS FROM NODE 109.69 TO NODE 127.04 IS CODE _ _ UPSTREAM NODE 127.04 ELEVATION = 921.03 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 16.26 CFS PIPE DIAMETER = 24.00 INCHES CENTRAL ANGLE = 45.000 DEGREES PIPE LENGTH = 17.34 FEET MANNINGS N = 0.01300 PRESSURE FLOW AREA = 3.142 SQUARE FEET FLOW VELOCITY = 5.18 FEET PER SECOND VELOCITY HEAD = (").416 BEND COEFFICIENT(KB) = 0.1768 HB =KB* (VELOCITY HEAD) _ ( 0.177)*( 0.416) = 0.074 PIPE CONVEYANCE FACTOR = 226.224 FRICTION SLOPE(SF) = 0.0051661 FRICTION LOSSES = L *SF = ( 17.34)*( 0.0051661) = 0.090 NODE 127.04 : HGL= < 927. 996: >; EGL= ' 928. 412 >; FLOWLINE= < 921.030> PRESSURE FLOW PROCESS FROM NODE 127.04 TO NODE 150.00 IS CODE = 1 UPSTREAM NODE 150.00 ELEVATION - 927.23 ------------------------ ------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 16.26 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 22.96 FEET MANNINGS N = 0.01300 SF= (Q /K) * *2 = (( 16.26)/( 226.224)) * *2 = 0.0051661 HF =L *SF = ( 96) *( 0.0051661) = 0.119 NODE 150. i rc i HGL= <: _928_ 1 14 > ; EGL = <:: - 928.53 r�; FLOWL I NE= 927.230'. -------------------------------- ------------------ - - - - -- - - - - -- ------------------ PRESSURE FLOW ASSUMPTION USED TO- ADJUST HGL AND ESL LOST PRESSURE HEAD USING SOFFIT CONTROL = 1.12 NODE 150.00 � : HGL= 929. 23� r ; EGL= 929. 646'.> ; FLOWL I NE= 927. 23c �:> ODE1Jir,i_rci TO NODE 355.85 IS CODE PRESSURE FLOW PROCESS FROM N UPSTREAM NODE 355.85 ELEVATION = 929.29 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW_= 16.26 CFS DIAMETER 24.00 INCHES 3¢ 0� pzpE u=mUIH = HF=L*SF = ( NODE 355.85 ---------- ----- ----------- PRESSURE FLOW LOST PRESSURE NODE 355.85 2 ,oz�oo 1 <( 20z,un +tE| rmmmImub 205.85)*( 0.0051661) = 1.063 : HGL= < 930.294>;EGL= < 930.709>;FLOWLINE= < ----- ----------- --- ------------------------------- ASSUMPTION USED TO ADJUST HGL AND EG HEAD USING SOFFIT CONTROL = 1.00 : HGL= < 931.290>;EGL= < 931.706>;FLOWLINE= < m� 929.290> 929.290> PRESSURE FLOW UPSTREAM NODE ___-__________________________________________-________-____________________ CALCULATE PRESSURE PIPE FLOW = PROCESS FROM NODE 355.85 TO NODE 373.52 IS 373.52 ELEVATION = 929.47 FLOW PIPE-BEND LOSSES(OCEMA): 16.26 CFS PIPE DIAMETER = 24.00 INCHES CODE = 3 -- CENT RAL ANGLE = 45.000 DEGREES PIPE LENGTH = 17,67 FEET MANNINGS N = 0.01300 PRESSURE FLOW AREA = 3.142 SQUARE FEET FLOW VELOCITY = 5.18 FEET PER SECON - Cf = 0.416 BEND COEFFICIENT(KB) = 0.1768 B* C = ( 0.177)*( 0.416 ) = 0.074 PIPE CONVEYANCE FACTOR = 226.224 FRICTION SLOPE(SF) = FRICTION LOSSES = L*SF = ( 17.67)*( 0.0051661) = 0.091 NODE 373.52 : HGL= < 931.455>;EGL= < 931.871>;FLOWLINE= < _-_______-------------------- 0.0051661 929.470> _____ ------------------------------------------ PRESSURE FLOW LOST PRESSURE NODE 373.52 ASSUMPTION USED TO ADJUST HGL AND EGL HEAD USING SOFFIT CONTROL = 0.02 : HGL= < 931.470>;EGL= < 931.886>;FLOWLINE= < 929.470> ============================================================================ PRESSURE FLOW UPSTREAM NODE PROCESS FROM NODE 373.52 TO NODE 426.56 IS 426.56 ELEVATION = 930.00 CODE = 1 ]� __________________________________________________________________ CALCULATE PRESSURE FLOW FRICTION LOSSES(-ACFCD): PIPE FLOW = 16.26 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 53.04 FEET MANNlNGS N = 0.01300 `Q�)**2 = (( 6.26)/( 226.224))**2 = 0.0051661 F � F=- *SF = ( 53.04)*( 0.0051661> = 0.274 ' N OD E 426.56 : HGL= < 931.744>;EGL= < 932.160>;FLOWLlNE= < _________--------------------- 930.000> _____ PRESSURE FLOW LOST PRESSURE NODE 426.56 -------------------------- ASSUMPTION USED TO ADJUST HGL AND EG HEAD USING SOFFIT CONTROL = 0.26 : HGL= < 932.000>;EGL= < 932.416>;FLOWLINE= < 930.000> ============================================================================ PRESSURE FLOW UPSTREAM NODE PROCESS FROM NODE 426.56 TO NODE 426.56 IS 426.56 ELEVATION = 930.75 CODE = 8 -- - ____________________________________________________________________________ CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE -- ) = 16.26 PIPE DIAMETER(INCH) = 24.00 PRESSURE FLOW VELOCITY HEAD = 0.416 CATCH BASIN ENERGY = .2*(VELOCITY HEAD) = .2*( 0.416) = NODE 5 < 932.499>;EGL= < 932.499>;FLOWLINE= < ____________________________________________________________________________ PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL L~~' '''----'- SO CONTROL = 0.25 < 932.750>;FLOWLINE= < 0.083 930.750> 930.750> �� ============================================================================ END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Refet-ence: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-88 Advanced En�ineering Software (aes) Ver. 3.0A Release Date: 12/27/88 Serzal # DE1723 Especially prepared for: FUSCOE WILLIAMS LINDGREN & SHORT ************************** DESCRIPTION OF * SIERRA GATEWAY : 144.2103 MESSENGER * HYDRAULIC REPORT FOR LINE D DATA E d * BY JR ***************************************** STUDY ************************** FILE: 14421D * * ********************************* FILE NAME: 14421D.DAT ==TIME/DATE =OF= STUDY: =15:31==29_SEP_89====================================== ----�� OW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST NO TE: ~' FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN CONSERVATIVE MANUALS. RE PIPE FLOW CONTROL DOWNSTREAM P 100.00 FLOWLINE ELEVATION = 935.50 ~ TER(INCH) = 24.00 PIPE FLOW(CFS) = 15.24 PIPE � AS SUMED DOWNSTREAM CONTROL HGL = 941.740 _____________________ ============================================================================ PRESSURE FLOW PROCESS FROM NODE 100.00 TO NODE 144.30 IS CODE = 1 UPSTREAM _NODE ___144�30_____ ELEVATION _=___943�89___________________________ PRESSURE FLOW FRICTION LOSSES(LACFCD): CALCULATE W = 15.24 CFS PIPE DIAMETER = 24.00 INCHES PIPE -- GTH = 40.00 FEET MANNINGS N = 0.01300 ' ' --- Q**2 = (( 5.24)/( 226.224))**2 = 0.0045383 ��=* -= ( 4O.00)*( 0.0045383) = 0.182 _ �`�_�' 144.30_:_HGL=_<941.922>;EGL=_<942.287>;FLOWLINE=_<__943�890>___ PRESSURE FLOW ASSUMPTION H8L AND EGL LOST PRESSURE HEAD USING SOFFIT Cuw/*uL = 3.97 NODE 144.30 : HGL= < 945.890>;EGL= < 946.255>;FLOWLINE= < 943.890> PRESSURE FLOW PROCESS FROM NODE 144.30 TO NODE 144.30 IS CODE = 5 UPSTREAM NODE 144.30 ELEVATION _=___944�26----------- -------- ---- ���------ �����--------- @� CALCULATE PRESSURE FLOW JUNCTION LOSSES: DISCHAR -' DIA �AREA VELOCITY DELTA HV '` ^ � 2 4.0 0 3.142 1.945 45.000 0.059 15'2 2 4.00 3.142 4.851 -- 0.365 3 ~^''1 18.0V 1. 5.167 90.000 - 4 0 0.00 0.000 0.000 0.000 - m� 5 0===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=( - � *�-QI*Vl*CnS(DELTA1)-Q3*V3*COS(DELTA 4*V4*COS(DELTA4))/((A1+A2)* 0.01300 UPSTREAM FRICTION SLOPE = 0.00073 DOWNSTREAM FRICTION L��� IN JUNCTION ASSUMED AS 0.00263 JUNCTION ~`� FRICTION E = 10.00 FRICTION LOSS = 0.026 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION NCTION L"SSES = 0.648+ 0.059- 0.365+( 0.026)+( 0.000) = 0.367 - DE 14430 : HGL= < 946.564>;EGL= < 946.623>;FLOWLINE= < 944.260> ============================================================================ PRESSURE FLOW PROCESS FROM NODE 144.30 TO NODE 191.12 IS CODE = 1 __UPSTREAM_NODE___ CALCULATE PRESSURE FLOW FRICTION L SSES(-ACFCD): PI W = 6.11 11 CS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH 42.00 FEET MANNINGS N = 0.01300 x� �� LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=<Q2* V1*COs(m=L}*u)-W3*v (oEL/*3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) 0-01 DOWNSTREAM FRICTION SLOP IN JUNCTION ASSUMED AS 0.00206 JUNCTION LENGTH(FEET) = 10.00 FRICTION LOSS = 0.021 ENTRANCE LOSSES = 0.000 JU NCTION LOSSES = DY+HV1_HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = -0.039+ 0.186- 0.059+( 0.021)+( 0.000) = 0.109 NODE 191.12 : HGL= < 947.712>;EGL= < 947.898>;FLOWLINE= < 945.930> ============================================================================ PRESSURE FLOW PROCESS FROM NODE 191.12 TO NODE 205.58 IS CODE = 1 UPSTREAM NODE 205.58 ELEVATION = 946.00 CALCULATE PRESSURE FLOW FRICTION L S ES (LACFCD): PIPE FLOW = 6.11 CFS PIPE DIAMETER = 18.00 INCHES LE NGTH = 13.04 ET MANNINGS N = 0.01300 ' /I'*)**2 = (( 6.11)/( 1 5.043))**2 = 0.0033833 HF=L*SF = ( 13.04)*( 0.0033833) = 0.044 ~- NODE 205.58 : HGL= < 947.756>;EGL= < 947.942>;FLOWLINE= < 946.000> ============================================================================ PRESSURE FLOW PROCESS FROM NODE 205.58 TO NODE 205.58 IS CODE = 8 UPSTREAM NODE 205.58 ELEVATION = 946.30 ____________________________________________________________________________ CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW(CFS) = 6.11 PIPE DIAMETER(INCH) = 18.00 PR ESSURE FLOW '-CITY HEAD = 0.186 H BASIN EN LOSS = .2*(VELOCITY HEAD) = .2*( 0.186) = 0.037 NODE ~^^- �' �' 205.58 �HGL= < 947.979>;EGL= < 947.979>;FLOWLINE= < 946.3005 ___ END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM =(Q/K) **2 = �� 45.11 //( �:2 /**:2 = o.000// HF=L*SF = ( 42.00)*( 0.0007295) = 0.031 �7 NODE 191.12 : HGL= < 946.595>;EGL= < 946.654>;FLOWLINE= < 945.730> ~� -------------------- PRE SSURE LOST PRESSURE ________________________________________________ ASSUMPTION USED TO ADJUST HGL AND GL HEAD USING SOFFIT CONTROL = 1.14 NODE 191.12 : HGL= < 947.730>;EGL= < 947.789>;FLOWLINE= < 945.730> FROM NODE 191.12 TO NODE 191.12 IS CODE = 5 - PRESSURE FLOW UPSTREAM NODE PROCESS 191.12 ELEVATION = 945.93 ____________________________________________________________________________ CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV - 1 6.1 18.00 1.767 3.458 45.000 0.186 .1 24.00 3.142 1.945 -- 0.059 3 0.0 0. 0.000 0.000 0.000 - 4 0.0 0.00 0.000 0.000 0.00O - �W 5 0.0===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=<Q2* V1*COs(m=L}*u)-W3*v (oEL/*3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) 0-01 DOWNSTREAM FRICTION SLOP IN JUNCTION ASSUMED AS 0.00206 JUNCTION LENGTH(FEET) = 10.00 FRICTION LOSS = 0.021 ENTRANCE LOSSES = 0.000 JU NCTION LOSSES = DY+HV1_HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = -0.039+ 0.186- 0.059+( 0.021)+( 0.000) = 0.109 NODE 191.12 : HGL= < 947.712>;EGL= < 947.898>;FLOWLINE= < 945.930> ============================================================================ PRESSURE FLOW PROCESS FROM NODE 191.12 TO NODE 205.58 IS CODE = 1 UPSTREAM NODE 205.58 ELEVATION = 946.00 CALCULATE PRESSURE FLOW FRICTION L S ES (LACFCD): PIPE FLOW = 6.11 CFS PIPE DIAMETER = 18.00 INCHES LE NGTH = 13.04 ET MANNINGS N = 0.01300 ' /I'*)**2 = (( 6.11)/( 1 5.043))**2 = 0.0033833 HF=L*SF = ( 13.04)*( 0.0033833) = 0.044 ~- NODE 205.58 : HGL= < 947.756>;EGL= < 947.942>;FLOWLINE= < 946.000> ============================================================================ PRESSURE FLOW PROCESS FROM NODE 205.58 TO NODE 205.58 IS CODE = 8 UPSTREAM NODE 205.58 ELEVATION = 946.30 ____________________________________________________________________________ CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW(CFS) = 6.11 PIPE DIAMETER(INCH) = 18.00 PR ESSURE FLOW '-CITY HEAD = 0.186 H BASIN EN LOSS = .2*(VELOCITY HEAD) = .2*( 0.186) = 0.037 NODE ~^^- �' �' 205.58 �HGL= < 947.979>;EGL= < 947.979>;FLOWLINE= < 946.3005 ___ END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM �� �, PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM E (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-88 Advanced En�ineering Software (aes) Ver. 3.0A Release Date:12/27/88 Serial # DE1723 Especially prepared for: FUSCOE WILLIAMS LINDGREN & SHORT ************************** DESCRIPTION OF STUDY ************************** * SIERRA GATEWAY - MESSENGER: 144.2103 * * HYDRAULIC STUDY FOR LINE F DATA FILE: 14421F * BY J.R. * FILE NAME: 14421F.DAT TIME/DATE OF STUDY: 15:46 29-SEP-89 NOTE: STEADY LOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. PRESSURE PIPE FLOW CONTROL DATA: ~~ NODE ER = 100.00 FLOWLINE ELEVATION = 944.10 PIPE DIAMETER(INCH) = 18.00 PIPE FLOW(CFS) = 9.13 ASSUMED DOWNSTREAM CONTROL HGL = 946.600 ============================================================================ NODE 100.00 : HGL= < 946.600>;EGL= < 947.014>;FLOWLINE= < 944.100> ============================================================================ H" PRESSURE FLOW PROCESS FROM 100.00 T DE 114.41 IS CODE = 1 UPSTREAM NODE 114.41 ELEVATION = 945.96 __________________________________________________________________________ C ALCULATE PRESSURE FLOW FRICTION LOS ES< ACFCD>: PIPE FLOW = 9.13 CFS PIPE DIAMETER = 18.00 INCHES 0� PIPE LENGTH = 13.50 FEET MANNINGS N = 0.01300 SF=(Q/K)**2 = (( 9.13)/( 105.043))**2 = 0.0075545 HF=L*SF = ( 13.50>*( 0.0075545) = 0.102 NODE 114.41 : HGL= < 946.702>;EGL= < 947.116>;FLOWLINE= < 945.960> PRESSURE FLOW __ ------------------------- ______�____---------------- ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 0.76 NODE 114.41 : HGL= < 947.460>;EGL= < 947.875>;FLOWLINE= < 945.960> ~~ PRESSURE FLOW PROCESS FROM NODE 114.41 TO NODE 114.41 IS CODE = 8 UPSTREAM NODE 114.41 ELEVATION = 946.71 ____________________________________________________________________________ CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): F ) = 9.l31 PIPE DIAMETER(INCH) = 18.00 - PRESSURE FLOW VELOCITY HEAD = 0.414 CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.414) = 0.083 NODE 114.41 : HGL= < 947.957>;EGL= < 947.957>;FLOWLINE= < 946.710> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 0.25 NODE 114.41 : HGL= < 948.210>;EGL= < 948.210>;FLQWLINE= < 946.710> ============================================================================ �� END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM H" PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) Z (c) Copyright 1982-88 Advanced Engineering Software (aes) Ver. 3.0A Release Date:12/27/88 Serial # DE1723 Especially prepared for: FUSCOE WILLIAMS LINDGREN & SHORT ************************** DESCRIPTION OF STUDY ************************ • SIERRA GATEWAY - MESSENGER JOB # 144 * • HYDRAULIC �Y Nq�/JR CALCULATIONS TIN� S.D. A SANTA ANA AVE. * • � * ****************** * � *************************** FILE NAME: 144210A.DAT TIME/DATE OF STUDY: 13:23 2-OCT-89 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. PRESSURE PIPE FLOW CONTROL DATA: DOWNSTREAM NUMBER = 0.00 FLOWLINE ELEVATION = 905.38 ~~-- IAMTER(INCH> = 54.00 PIPE FLOW(CFS> = 154.97 PIP UMED DOWNSTREAM CONTROL H8L = 926.000 NODE 0.00 : HGL= < 926.000>;EGL= < 927.474>;FLOWLINE= < 905.380> ============================================================================ 0� PRESSURE FLOW PROCESS FROM NODE 0.00 TO NODE 20.52 IS CODE = 1 UPSTRE NODE 20.52 ELEVATION = 912.07 ---- ---------------------------����������������������������� CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): E FLOW = 154.97 CFS PIPE DIAMETER = 54.00 INCHES ' PIPE LENGTH = 185.52 FEET MANNINGS N = 0.01300 F=(Q/1-")**2 = (( 154.97)/( 1966.489))**2 = 0.0062103 HF=L*SF = ( 185.52)*( 0.0062103) = 1.152 NODE 20.52 : HGL= < 927.152>;EGL= < 928.626>;FLOWLINE= < 912.070> =~ ============================================================================ PRE FLOW PROCESS FROM NODE 20.52 TO NODE 41.08 IS CODE = 1 UPS TREAM NODE 41.08 ELEVATION = 912.15 ____________________________-______________________________-________________ CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 154.97 CFS PIPE DIAMETER = 54.00 INCHES PIPE LENGTH = 20.56 FEET MANNINGS N = 0.01300 S ' Q/t:::>**2 = (( 154.97)/( 19 .489))**2 = 0.0062103 H=L*SF = 7 20.56>*( 0.0062103) = 0.128 ============================================================================ PRESSURE FLOW PROCESS FROM NODE 41.08 TO NODE 46.58 IS CODE = 5 UPSTREAM NODE 46.58 ELEVATION 912.22 -- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1^ 147.5 54.00 15.904 9.273 0.000 1.335 2 155.0 54.00 15.904 9.744 -- 1.474 3 7.5 24.00 3.142 2.384 45.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0===Q5 EQUALS BASIN INPUT=== ~� LACF D AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=( - 2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA 4*V4*COS(DELTA4))/((A1+A2)*1 UPSTREAM MANNINGS N = 0.0 DOWNSTREAM FRICTION S SLOPE JUNCTION ASSUMED AS 0.00592 AVERAGED FRICTION HE = 6.50 FRICTION LOSS = 0.038 ENTRAN LOSSES = 0.000 ON S = DY+HV1-HV2+(FRI TION LO S NTRA E LOSSES) JUNC TION � ~�S = 0 253+ 1 335- � 474+( 0.038)+( 0.}00) = 0.153 NODE �um�/� �u�oc ^ 4 6.58 : HGL= <' 927 < 9�8.907>;FLOWLlNE= < 912.220> �� [� �� r� H" PRESSURE FLOW PROCESS FROM NODE 46.58 TO NODE 25.00 IS CODE = 1 UPSTREAM NODE 25.00 ELEVATION = 919.88 ____________________________________________________________________________ CALCULATE PRESSURE FLOW FRICTION S(-ACFCD): PIPE FLOW = 147.48 CFS PIPE DIAMETER = 54.00 INCHES PIPE LENGTH = 600.00 FEET MANNINGS N = 0.01300 SF=(Q/K)**2 = <( 147.48)/( 1966.489))**2 = 0.0056245 HF=L*SF = ( 600.00>*( 0.0056245) = 3.375 NODE 25.00 : HGL= < 930.946>;EGL= < 932.282>;FLOWLINE= < 919.880> ============================================================================ PRESSURE FLOW PROCESS FROM NODE 25.00 TO NODE 25.00 IS CODE = 5 UPSTREAM NODE 25.00 ELEVATION = 920.08 ____________________________________________________________________________ CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 147.5 54.00 15.904 9.273 0.000 1.335 2 147.5 54.00 15.904 9.273 -- 1.335 3 0.0 0.00 0.000 0.000 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3) Q4*V4*COS(DELTA4))/((A1+A2)*16.1) UPS TREAM MANNINGS N = 0.01300 DOW NSTREAM MANNINGS N = 0.01300 UPS TREAM FRICTION SLOPE = 0.00562 DOWNSTREAM FR CTION SLOPE = 0.00562 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00562 JUNCTION LENGTH(FEET) = 5.00 FRICTION LOSS = 0.028 ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = 0.000 MANHOLE LOSSES = 0.067 JUNCTION LOSSES = (MANHOLE LOSSES)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.067)+( 0.028)+( 0.000) = 0.095 NODE 25.00 : HGL= < 931.041>;EGL= < 932.377>;FLOWLINE= < 920.080> ============================================================================ PRESSURE FLOW PROCESS FROM NODE 25.00 TO NODE 60.00 IS CODE = 1 UPSTREAM NODE 60.00 ELEVATION = 925.68 ____________________________________________________________________________ CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 147.48 CFS PIPE DIAMETER = 54.00 INCHES PIPE LENGTH = 431.00 FEET MANNINGS N = 0.01300 =(Q/K)**2 = (( 147.48)/( 19 6.489))**2 = 0.0056245 HF=L*SF = ( 431.0(:j)*( 0.0056245) = 2.424 NODE 60.00 : HGL= < 933.466>;EGL= < 934.801>;FLOWLINE= < 925.680> ============================================================================ PRESSURE FLOW PROCESS FROM NODE 60.00 TO NODE 60.00 IS CODE = 5 UPSTREAM NODE 60.00 ELEVATION = 925.88 ____________________________________________________________________________ CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 147.5 48.00 12.566 11.736 0.000 2.139 2 147.5 54.00 15.904 9.273 -- 1.335 3 0.0 0.00 0.000 0.000 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1 (DELlAz)-W3* u(uELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1 UPSTREAM MANNINGS N = 00 DOWNSTREAM DOWNSTREAM MANNINGS N = 0.0130o UPSTREAM FRICTION SLOPE = 0.01054 'UNCTION ASSUMED AS 0.00808 JUNCTION LENGTH(FEET) = 5.00 FRICTION LOSS = 0.040 ENTRANCE LOSSES = 0.000 ^ MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES M OMENTUM LOSSES = 0.011 MANHOLE LOSSES = 0.067 JUNCTION LOSSES = (MANHOLE LOSSES)-'-(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.067)+( 0.040)+( 0.000) = 0.107 NODE 60.00 : HGL= < 932.769>;EGL= < 934.908>;FLOWLINE= < 925.880> ' ============================================================================ PRESSURE FLOW PROCESS FROM NODE 60.00 TO NODE 350.00 IS CODE = 1 �� UPSTREAM NODE 350.00 ELEVATION = 929.63 ____________________________________________________________________________ ~~ CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIE FLOW = 147.48 CFS PIPE DIAMETER = 48.00 � INCHES PI PE LENGTH = 2 MANNINGS N = 0.01300 F=(Q/K)**2 = (( 147.48)/( 4 431))**2 = 0.0105414 HF=L*SF = ( 288.00)*( 0.0105414) = 3.036 -- NODE 350.00 : HGL= < 935.805>;EGL= < 937.944>;FLOWLINE= < 929.630> ����������������������������������==�==========�=================�====== PRESSURE FLOW PROCESS FROM NODE 350.00 TO NODE 379.50 IS CODE = 1 UPSTREAM NODE 379.50 ELEVATION = 929.93 ____________________________________________________________________________ CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 147.48 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 21.63 FEET MANNINGS N = 0.01300 =(Q/K)**2 = (( 147.48)/( 1436.431))**2 = 0.0105414 HF=L*SF = < 21.63>*( 0.0105414) = 0.228 NODE 379.50 : HGL= < 936.033>;EGL= < 938.172>;FLOWLINE= < 929.930> ============================================================================ PRESSURE FLOW PROCESS FROM NODE 379.50 TO NODE 702.21 IS UPSTREAM NODE 702.21 ELEVATION = 930.20 CODE = 3 ~~ ____________________-_______________________________________________________ CALCULATE PRESSURE FLOW PIPE-BEND LOSSES(OCEMA): PIPE OW = 147.48 CFS PIPE DIAMETER = 48.00 INCHES CENTRA ANGLE = 90.000 DEGREES PIPE LENGTH = 35.39 FEET MANNINGS N = 0.01300 PRESSURE FLOW AREA = 12.566 SQUARE FEET -- FLOW VELOCITY = 11.74 FEET PER SECOND VELOCITY HEAD = 2.139 BEND COEFFICIENT(KB) = 0.2500 HB=KB*(VELOCITY HEAD) = ( 0.250>*( 2.139) = 0.535 PIPE CONVEYANCE FACTOR = 1436.431 FRICTION SLOPE(SF) = 0.0105414 FRICTION LOSSES = L*SF = ( 35.39)*( 0.0105414) = 0.373 - NODE 702.21 : HGL= < 936.941>;EGL= < 939.080>;FLOWLINE= < 930.200> PRESSURE FLOW PROCESS FROM NODE 702.21 TO NODE 711.00 IS CODE = 1 UPSTREAM NODE 711'00 ELEVATION = 930.40 ____________________________________________________________________________ CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 147.48 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 8.79 FEET MANNINGS N = 0.01300 F=(Q/K)**2 = (( 147.48)/( 14 6.431))**2 = 0.0105414 HF=L*SF = ( 8.79)*( 0.0105414) = 0.093 NODE 711.00 : HGL= < 937.033>;EGL= < 939.172>;FLOWLINE= < 930.400> ============================================================================ PRESSURE FLOW PROCESS FROM NODE 711.00 TO NODE 711.00 IS CODE = 5 UPSTREAM NODE 711.00 ELEVATION = 930.50 ____________________________________________________________-_______________ CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 147.5 48. (- 12. 66 11.736 0.000 2.139 %1 7 147.5 48.00 12.566 11.73 -- 2.139 i6 3 0.0 0.00 0.000 0.000 0.0O0 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0===Q5 EQUALS BASIN INPUT=== ' LACF �PRESSURE FL JUNCTION FORMULAE USED: DY=(Q2*V2-QI*V�1*Cnq(DELTA1)-Q3*V3*COS(DELTA3) Q4*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N = 0.01 300 DOWNSTREAM MANNINGS N = 0.01300 m� UPSTREAM FRICTION = 0.01054 D FR ICTION SLOPE = 0.01054 A FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01054 JUNCTI H(FEET) = 5.00 FRICTION LOSS = 0.053 ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = 0.000 MANHOLE LOSSES = 0.107 JUNCTION LOSSES = (MANHOLE LOSSES)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.107)+( 0.053)+( 0.000) = 0.160 NODE 711.00 : HGL= < 937.193>;EGL= < 939.332>;FLOWLINE= < 930.500> ==================================================================~========= PRESSURE FLOW PROCESS FROM '--- 711.00 TO NODE 2110.00 IS = 935.40 CODE = 1 UPSTREAM NODE 2110.00 ATION C ALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 147.48 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 395.00 FEET MANNINGS N = 0.01300 JUNCTIO LACFCD AND OCEMA PRESSURE FLOW FORMULAE USED: DY=<Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N = 0.0130 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.01188 DO WNSTREAM FRICTION SLOPE = 0.01054 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01121 JUN LENGTH(FEET) = 5.00 FRICTION LOSS = 0.056 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = 0.270+ 2.211- 2.139+( 0.056)+( 0.000) = 0.399 NODE 2110.00 : HGL= < 941.6&,:!:,* PRESSUR < 943.894>;FLOWLINE= < 935.600> FLOW PROCESS FROM NODE 2110.00 TO NODE 2143.11 IS CODE = 1 UPSTREAM NODE 2143.11 ELEVATION = 936.60 ____________________________________________________________________________ CALCULATE PRESSURE FLOW FRICTION L SS S( CFCD): PIPE LOW = 131.80 CFS PIPE DIAMETER = 45.00 INCHES P IPE LENGTH = 30.61 FEET MANNlNGS N = 0.01300 qF=(Q/ )**2 = (( 131.80)/( 1209.321))**2 = 0.0118781 HF=L*SF = ( 3().61)*( (.').0118781Y = 0.364 NODE 2143.11 : HG= < 94.047>;EGL= < 944.258>;FLOWLINE= < 936.600> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM HF=L*�5F 4.16* NODE 2110.00 : HGL= < 941.357>;EGL= < 943.496>;FLOWLINE= < 935.400> PRESSURE FLOW PROCESS FROM NODE 2110.00 TO NODE 2110.00 IS CODE = 5 -- UPSTREAM NODE 2110.00 ELEVATION = 935.60 ____________________________________________________________________________ CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 131.8 45.00 11.045 11.933 0.000 2.211 2 147.5 48.00 12.566 11.736 -- 2.139 3 15.7 24.00 3.142 4.991 45.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0===Q5 EQUALS BASIN INPUT=== JUNCTIO LACFCD AND OCEMA PRESSURE FLOW FORMULAE USED: DY=<Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N = 0.0130 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.01188 DO WNSTREAM FRICTION SLOPE = 0.01054 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01121 JUN LENGTH(FEET) = 5.00 FRICTION LOSS = 0.056 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = 0.270+ 2.211- 2.139+( 0.056)+( 0.000) = 0.399 NODE 2110.00 : HGL= < 941.6&,:!:,* PRESSUR < 943.894>;FLOWLINE= < 935.600> FLOW PROCESS FROM NODE 2110.00 TO NODE 2143.11 IS CODE = 1 UPSTREAM NODE 2143.11 ELEVATION = 936.60 ____________________________________________________________________________ CALCULATE PRESSURE FLOW FRICTION L SS S( CFCD): PIPE LOW = 131.80 CFS PIPE DIAMETER = 45.00 INCHES P IPE LENGTH = 30.61 FEET MANNlNGS N = 0.01300 qF=(Q/ )**2 = (( 131.80)/( 1209.321))**2 = 0.0118781 HF=L*SF = ( 3().61)*( (.').0118781Y = 0.364 NODE 2143.11 : HG= < 94.047>;EGL= < 944.258>;FLOWLINE= < 936.600> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM Gi; en: 30.12 Cr•S (b) Curb. t Solution: Io e s of a)U". ; :)b) _ 1.5�` i:;c);es From Cnar ►: ' _• = C C, pi: 2.30 C. = o • !2 ! 2 30 - - ! /e f� L r ccvirec 3 4 L= USE CROW Given: _ - 7.10 Cr•S (b) Curb. type '?� Solution: at Olt u,c",c ); (heighA of c,Pr- r,:ng) 7 i:;cl:es F rom + _ 7 / 1 2.3 :�. L rcGUired - - ;- L—Lo f t. USE C. 13. 0 Cjjr.r-.'OP7 (SUMP) Given: (a) Discharge Q. 100- CFS (b) Curb, type Solution: L at op(-ni ();eight Of o".)L-ning) _ 5 1A Fromi Chart: ta 01 open 'i required ro. 1(# 77- 10 L U s B 13 C. Cllrr 0 P T, N IN G (SUMN Given: (a) Discharge Q- _]o_ _ 14.3 C FS (b) Curb. type Solution: � )i (depth �t opening) - idnc';es 115 i;;cl.es 1.33 From Chart: 2 30 C: 14 3 I 2.3 = 6.40 f L required = L = � it. U S E C. L3 . J Ctj OP)-:,NJ 'G (SUMP) Given: (a) Discharge Q - - LO—O:_ = CFS (b) Curb type Solution: / 0 ' li (dept); at opcni:;g) = _ - i J,c '„es h theight of open 7 , 5 opening) - , i:;cl;es ]3 �31 From Chart: lft. Gi G - ! - It L required - 0 1. 13 Z • � - �•' 11 ' E ll 4. O ft. USE z= I wi Sri 1 C. 13. PE N IN G (SUM G iv e n: (a) Discharge (b) Curb, type Solution-, Q. IS -AOo C F at opc:ni,,-jg) C c s i nche s t of c )3/'.h = IQ./ - � - L-5 = From Ch.-- .rA C, rcq*,jired = Cv 1 '3 0 U s E L= 4= f t. use fc,,5 7 8 /0 6 i Q 9 4 2 7S 2 7 6.3 !.0 /.o Al PP r o� o� g .06 ` • 3 �3 . /S L o./ '', Lao/ Dtov�rxs� rcl i ' -3a TABLE L B..ieo� c♦ Pi..c:c c. ac's �e�-, -�r�a� for c.�avc.•I;• ci taib