Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Southridge Village - Tract 14758 MPSD DZ-5
OLEANDER AVENUE ST8RM DRAIN ( FONTANA MASTER PLAN LINE D7- -5) DRAINAGE REPORT Job No. 5147 Prepared for THE CITY OF FONTANA 8353 Sierra Avenue Fontana, CA 92335 (909)350 -7613 Prepared by. HALL & FOREMAN, INC. 545 North Mountain Avenue, Suite 106 Upland, California 91786 (909) 982 -7777 cc L� OvIL f OF CAL�E� Harold A. Garcelon, R.C.E. 31681 License Expires 12/31/99 January 5, 1999 Revised: April 13, 1999 or Hall & Foreman, Inc. A Civil Engineering • Planning • Surveying • Public Works TABLE OF CONTENTS • Design Criteria /Overview Study • Hydrology Map • Hydrology Calculations • Hydraulics Calculations • WSPG Calculations • HEC -RAS Calculations • Cost and Quanti ty Estimate • San Bernardino County Flood Control Letter • Structural Calculations • Box Culvert Parapet Wall and Stiffener • Retaining Wall Calculations \W FICORPZONTADMIN %51471REPORTSIDRAIN.DOC a9i OLEANDER AVENUE STORM DRAIN DESIGN CRITERIA/OVERVIEW This Storm Drain Improvement was processed with the City of Fontana and San Bernardino County for "Preliminary Approval" between January 29 -,1 -993 and October 31, 1995. County and City review was generally favorable pending final plan details, Hydrology was approved in the county letter of September 6, 1995. The size of the connection to the Declez Channel has varied during the design process and we have settled on 12 feet wide by 7 feet high. State of California Standard- Plans are referenced for the box culvert and headwall. Retaining Wall Calculations are included for your review using 62.4 lbs. per foot for equivalent fluid pressure to determining the wall loading. This plan is based on a field survey for horizontal and vertical control. Hydrology The Oleander Avenue storm drain is designated as DZ -5 on the City of Fontana Master Storm Drainage Plan ( CFMSDP). It serves a tributary area of 449 acres. The peak flow rate from the CFMSDP is 595 cfs. At the request of the San Bernardino County Flood Control District, the "Q" for the Oleander Drainage Study area was calculated given the Master Plan land use provided by the City of Fontana. The "Q" was calculated to be 759 cfs. The Declez Channel was designed for a "Q" of 2530 cfs at Oleander Avenue, as noted on the Improvement Plans which include this study area. The Drainage Study by Psomas Engineering for South Park off -sites (revised July, 1989) on Page 2.16 indicates 1947 cfs peak flow for the 9'x 14' box in Jurupa Ave.. Adding the 759 cfs to the 1947 cfs from the Psomas study totals to 2706 cfs, which is greater than the 2530 cfs on the Declez Channel plans. The 2706 cfs will apply to the Declez Channel downstream of this new inlet and the 1947 cfs will apply to the Declez Channel upstream of this connection. Hydraulics Hydraulic calculations contained herein for Oleander Avenue lateral are based on the 759 cfs from the CFMSDP and the HGL is reflected in the profile portion of the included plan. The controlling elevation is the HGL for the 2530 cfs in the Declez Channel. The hydraulic grade line calculations were based on providing a minimum of 2' hydraulic grade for the future catch basins on Oleander Ave. north of Jurupa Ave. The 83 acres bounded by Jurupa /Cypress /Santa Ana /Oleander is intended to be picked up by a 48" RCP lateral located somewhere north of Jurupa Avenue. GM14AREPORTSORAIN.W PD F1 Entry of the 759 cfs into the Declez Channel will increase the depth of flow upstream of the entry point to approximately 10.2' which is higher than the channel wall. Water surface profile calculations were made using the water surface pressure gradient (WSPG) soft ware to determine the height and extent of the over topping of the Declez Channel walls. The HGL for 100 year storms were calculated to determine hydraulic jump location and definition. The HGL is reflected in the profile portion of Declez Channel plan (sheet 3). An independent concrete block wall higher than the channel is proposed to be constructed as profiled and detailed on the plan. The wall was ■* extended an additional 50 feet per the request of S.B.C.F.C.D. To prevent water from wr escaping onto the service road, the access ramp will also be raised as shown. At the request of S.B.C.F.C.D. for comparison and verification, calculations were also �i performed using Haestad Methods, "HEC -RAS - River Analysis System ". Analysis was performed starting at Station 238 + 00.00 to station 242 + 42.12, which includes the ` portions of the block wall, transition maintenance ramp and the incoming Oleander Drain junction. A flow of 1947 cfs was used prior to the junction, 759 cfs for the Oleander Drain and a confluence amount of 2706 cfs after the junction. A controlling HGL elevation of 1011.02 was used at station 238 + 00.00 and an HGL elevation of 1015.12 at Station 242 + 42.12. These elevations are the WSPG calculated elevations. The highest water surface elevation for this Section of channel is 1016.13', occurring at Station 241 + 22.12, The WSPG HGL elevation at the same point is 1015.76', the top of the wall elevation is 1017.0 at this point. The difference between the two HGL elevations is 0.38' or a little more than 4 inches. This is the largest difference for this analysis. This validates the WSPG calculation and the design set forth on these plans. k F1 1 GM147%REP0RTSADRAIN.W PD MP F Hall & Fbreman��tc. -- - - i Civil Engineering • Planning - Surveying : Pubfic Works SUBJECT BY DATE JOB NO SHEET OF ` M`C0MOLOCAY MAt� r l 1 ' ' S LOVE 2 4 � SANTA � p► N A ac N tU :z W 4X e a el 1' a W V 4 u STUDY DRAIN �u Ru Pp. zc>* . .y � U pEac.l.�z HANK 13821 Newport Avenue, Suite 200 Tustin, California 92680 -7803 Tel 714/544 -3404 Fax 714/544 -3155 ■ Hall & Fbrejjjdji][nc: - ■�� .a Civil Engineering • Planning • Surveying • Public Works SUBJECT BY DATE JOB NO SHEET OF H COVLOLOCiY ' MNf* 7 -34 4013 -06 � �O FRE�WAy �s 3 © 4 Io IOA OAc 10A, Sy2 S31 �� S32 Sr`oV�2 zo -Ac- Res denfiGI S3 � S33 QM H: 3 b Akre 31 A 0 3/ Ac © 31 Ac v 1 i H Mob;1 Now,e pK b S a Syy 4 �Q' Say 4 S39 a �o A 51 Ac r. SAP�tTA O N u1 0 U syCi C I. z w cZ Z STUDY DRAIN JURU PA - s� � eKtsr 9' 14' RG $otic �x1sTtNy p�c.l.t=z �Hak x�:� 13821 Newport Avenue, Suite 200 Tustin, Caldomia 92680 -7803 Tel 714/544 -3404 Fax 7141544 -3155 _ -■ ■- 7 F5 ; ,:• 7 .s 323 .... s■. a i l e r - i_' r I v 3 ark �'3�0 • dl(o •� w �D ' • ' ...: • • •• Drive -ins • a �0$2.. •o •• o2 e�• —• :•� e I I �� i it ;I !! i, ' I —E- 4 LANE all a. as ® fi • � � ° • • © t° '� h • as M o� �B 2oAC.• AV 9 •. •. 1 067 • • • o� • • • o Trailer r� !F , ■ .. • . ' :. • • V ark 25 Y,?. •I _ ' 3rAC. — �o - 31f�C = 11:331 Res Q to e W ......... • . _, , � • h 10 one H . M �• I t V J upa Hi - �__ - -- i s • N ch • SEE �` � !�' - I � � h • •' E w 1 ��� • • ' �/� •. • • ■�o. •� '• • • • �% y lo � ,� N IQGiP 0 IN S 3 �( A�' 1 A• s A h I� l � 2 a. CD I s N N N s • - - -- D _5 =__ GOOD I �• — • •' • • o �o . °�`•� Z' '�- • a v ' + d oh .. o : Zip v 4 • �l © •. �i4'' 549. ''49' 2p �. N$ -- - •- - - ` -- A— _ .+ q .� r. - - - ail n, Q _ • 3i � B5Ac. • '� � � � 83 �J6'. . .- c��• h a R 1� � �t• - � `o yl � �, - - - . . o N ti v o . .- 11� 20 a ONO - R-9 00. � 4 M 1 N la, • • N to °� . IGYI �� j�:� :rte' o�' `, �C� .. - - - - • 4, ` G _ ' p / • OEM 9 O/ - /030 .'/ 5 l4�TGF5 ' y , 157 �"1 35 j 5 ,o� ��+ - It /q�Y�l°i /Q7 �N -- - -- -- ° - - - -• - -•- -- - - - - -• -- II ICJ 99 - "- -- - - -- - - "Boom a so via ga - - - - - -- 9 VA L--J Uzz U) Z 0 44 1 0 C) 0 -j 0 r . 977"1 UA VA VIA U.:4 U U;-'A U-72 rm C1 0 - 1 ttttffttttttttfttttftttiftitftttttNttt iiMttfifNtttittttfttftffftt tttfttit RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1996 SAN BERNARDINO CO. HYDROLOGY CRITERION) (o) Copyright 1983 -88 Advanced Enginbaing Software (ses) Ver. 5.2A Release Date: 7/08/88 Serial # 2929 Analysis Prepared bar HALL 8t FOREMAN, INC. w sasatssssssitssssstNt * ** DESCRIPTION OF STUDY tssaNNNttsaNNNN*Nt * S. FONTANA MASTER s . PLAN, LINES D7.4, DZ-5, DZ6, DZ-7 • * 100 YEAR STORM, DESIGN Q FOR LJNE DZ-5 ONLY • * J.N. 4013 tttttttgtttitttttftttffttttitttftiftftt NNtittttttttittttftftttitttttftt FILE NAME: SFONTD4.100 TBMEJDATE OF STUDY: 10:30 6121/1995 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: — *TIME -OF- CONCENTRATION MODEL*— USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .95 *USER DEFINED IOGAR1Timc INTERPOLATION USED FOR RAINFALL* 10 -YEAR STORM 60- MDiUTE DMgNsnY(INCH/HOUR) = 910 100 -YEAR STORM 60 -MIN M Ild'L ENSITY(AJCH/HOUR) = 1.350 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1 -HOUR D ENSITY(INCH/HOUR) =1.3500 SLOPE OF INTENSITY DURATION CURVE _ .6000 f ttNf tttttfftgsf tttgtgttssif sttttttttHittsff tttifisiitgf ttpgstsigii FLOW PROCESS FROM NODE 545.00 TO NODE 545.10 IS CODE — 2 » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< DEVELOPMENT IS AGRICULTURE TC - K *[(LENGTH ** 3.00y(EI.EVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW- IENGTH(FEET) = 950.00 UPSTREAM ELEVATION(FEET) - 1063.00 DOWNSTREAM ELEVATION(FEEI) = 1054.00 ELEVATION DWFERENCE(FF.ET) = 9.00 TC(MIN.) _ .525 *1( 950.00 ** 3.00y( 9.00)] ** .20 = 20.699 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.557 SOIL CLASSIFICATION IS *W AGRICULTURE "ROWCROPS" SUBAREA LOSS RATE, Fm(INCHIBR) _ .4100 SUBAREA RUNOFF(CFS) — 1932 TOTAL AREA(ACRES) - 10.00 PEAK FLOW RATE(CFS) = 1932 NtNttggtttNtsifttitttistf ttNftttitttgtttttNf ttttNNNttgtgtqf f f t FLOW PROCESS FROM NODE 545.10 TO NODE 546.10 IS CODE — 6 » »>COMPLTYE STREET FLOW TRAVEL TIME THRU SUBAREA « «< UPSTREAM ELEVATION(FEET) =1054.00 DOWNSTREAM ELEVATION(FEET) =1050.00 STREET LENGTH(FEET) - 650.00 CURB HEIGTH(INCHES) - 6. STREET HAL FWIDTH(FEET) =18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 e.X4013 -087\R4013DZ5xes 1 6/95 E E INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF - 2 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 1932 STREET FLOW MODEL RESULTS: NOTE: STREET FLOW EXCEEDS TOP OF CURB 711 � FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGUBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) _ .60 HALFSTREET FLOOD WIDTHOTE1) = 17.06 - - - - - - - - j�y AVERAGE FLAW VELOCITY(FEET/SEC.) = 2.65 PRODUCT OF DEPTH&VELOCITY = 1.58 STREET FLOW TRAVEL TIME(M]N.) = 4.09 TC(bfIN.) = 24.79 s� tgtgt**** titpittttHl ttttgittitl qpil tstiit !lttt!lttt*tttitgtitttitlq FLAW PROCESS FROM NODE 546.00 TO NODE 546.101S CODE = 8 » » >ADDITION OF SUBAREA TO MAR&M PEAK FLAW « «< 100 YEAR RAINFALL INTENSITY(WCWHOUR) = 2.294 SOIL CLASSIFICATION IS "B" AGRICULTURE "ROWCROPS" SUBAREA LASS RATE, Fm(INCH/HR) _ .4100 SUBAREA AREA(ACRES) = 10.00 SUBAREA RUNOFF(CFS) = 16.% EFFECTIVE AREA(ACRES) = 20.00 AVERAGED Fm(INCH/HR) _ .410 TOTAL AREA(ACRES) = 20.00 PEAK FLOW RATE(CFS) = 33.92 TC(MIN) = 24.79 sst fsffaiiasrisiiifiitssssfsissiisss assf lfssissrsrrssssfssssssfsistssss FLAW PROCESS FROM NODE 546.10 TO NODE 547.10 IS CODE = 6 » »>C0MPUTE STREET FLOW TRAVEL TIME THRU SUBAREA ««< UPSTREAM ELEVATION(FEET) - 1050.00 DOWNSTREAM ELEVATION(FEET) =1047.00 STREET LENGTH(FEET) = 650.00 CURB HEIGTH(INCHES) = 8. STREET = 26.00 100 YEAR RAINFALL VrMSITY(1NCH/HOUR) = 2.294 SOIL CLASSIFICATION IS "B" AGRICULTURE "ROWCROPS" SUBAREA LASS RATE, Fm(INCH/HR) _ .4100 SUBAREA AREA(ACRES) = 00 SUBAREA RUNOFF(CFS) _ .00 EFFECTIVE AREA(ACRES) = 10.00 AVERAOED Fm(INCH/11R) _ Al TOTAL AREA(ACRES) = 10.00 PEAK FLAW RATE(CFS) = 1932 END OF SUBAREA STREET FLAW HYDRAULICS: DEPTH(FEET) _ .60 HAL.FSTREET FLOOD WIDTH(FEE7) =17.06 FLAW VELOCITY(FEET/SEC.) = 2.65 DEPTH*VELOCITY = 1.58 } THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. tgtgt**** titpittttHl ttttgittitl qpil tstiit !lttt!lttt*tttitgtitttitlq FLAW PROCESS FROM NODE 546.00 TO NODE 546.101S CODE = 8 » » >ADDITION OF SUBAREA TO MAR&M PEAK FLAW « «< 100 YEAR RAINFALL INTENSITY(WCWHOUR) = 2.294 SOIL CLASSIFICATION IS "B" AGRICULTURE "ROWCROPS" SUBAREA LASS RATE, Fm(INCH/HR) _ .4100 SUBAREA AREA(ACRES) = 10.00 SUBAREA RUNOFF(CFS) = 16.% EFFECTIVE AREA(ACRES) = 20.00 AVERAGED Fm(INCH/HR) _ .410 TOTAL AREA(ACRES) = 20.00 PEAK FLOW RATE(CFS) = 33.92 TC(MIN) = 24.79 sst fsffaiiasrisiiifiitssssfsissiisss assf lfssissrsrrssssfssssssfsistssss FLAW PROCESS FROM NODE 546.10 TO NODE 547.10 IS CODE = 6 » »>C0MPUTE STREET FLOW TRAVEL TIME THRU SUBAREA ««< UPSTREAM ELEVATION(FEET) - 1050.00 DOWNSTREAM ELEVATION(FEET) =1047.00 STREET LENGTH(FEET) = 650.00 CURB HEIGTH(INCHES) = 8. STREET = 26.00 e :44013 -087\R4013DZ5.res 2 6/95 C DISTANCE FROM CROWN TO CROSSFALL ORADEBREAK(FEET) = 18.00 INTERIOR STREET CROSSFAIL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 33.92 STREET FLOW MODEL RESULTS: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEOL IBLE FLAW OCCURS OUTSIDE OF THE STREET CHANNEL THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLAW DEPTH(FEET) _ .75 HAI XSTREET FLOOD WIDTHRTZI) = 23.47 AVERAGE FLAW VELOCLTY(FEET/SEC.) = 2.69 e :44013 -087\R4013DZ5.res 2 6/95 C F "ll �1 war 77 » »>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA« «< » » >USINO COMPUTER ESTIMATED PIPESIZE (NON - PRESSURE FL OW)<«« DEPTH OF FLAW IN 39.0 INCH PIPE IS 28.7 INCHES PIPE -FLAW VELOCITY(FEET/SEC.) - 9.3 UPSTREAM NODE ELEVATION(FEET) - 1047.00 DOWNSTREAM NODE ELEVATION(FEET) - 1042.00 FIAW IENOTH(FEET) - 700.00 MANNINGS N - .013 ESTIMATED PIPE DIAMETER(INCH) - 39.00 NUMBER OF PIPES = PIPE- FIAW(CFS) - 60.71 TRAVEL TI E(MIN.) - 1.26 TC(MIN.) - 30.07 ittitNttttttttNNttttttNtptttttsttttgttttttNttttNttttitttttttNttttii Opp PRODUCT OF DEPTH&VEIACITY - 2.01 iw STREET FLAW TRAVEL TIIuIF(MIN.) - 4.02 TC(MIN.) - 28.81 100 YEAR RAINFALL INTENSTTY{INCH/HOUR) - 2.096 im SOIL CLASSIFICATION IS "A" AGRICULTURE "ROWCROPS" SUBAREA LASS RATE, Fm(lNCH/HR) = .5900 SUBAREA AREA(ACRES) - 00 SUBAREA RUNOFF(CFS) - .00 EFFECTIVE AREA(ACRES) - 20.00 AVERAGED Fm(1NCHM R) - .41 TOTA1,. AREA(ACRES) - 20.00 PEAK FLAW RATE(CFS) - 33.92 END OF SUBAREA STREET FLAW HYDRAULICS: DEPTH(FEET) - .75 HAL.FSTRF.ET FLOOD WIDTH(FEET) - 23.47 1 FLOW VELOCITY( m/SEC.) - 2.69 DEPTH•VELOCITY - 2.01 „ PEAK FLAW RATE(CFS) - 60.71 �1 war 77 » »>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA« «< » » >USINO COMPUTER ESTIMATED PIPESIZE (NON - PRESSURE FL OW)<«« DEPTH OF FLAW IN 39.0 INCH PIPE IS 28.7 INCHES PIPE -FLAW VELOCITY(FEET/SEC.) - 9.3 UPSTREAM NODE ELEVATION(FEET) - 1047.00 DOWNSTREAM NODE ELEVATION(FEET) - 1042.00 FIAW IENOTH(FEET) - 700.00 MANNINGS N - .013 ESTIMATED PIPE DIAMETER(INCH) - 39.00 NUMBER OF PIPES = PIPE- FIAW(CFS) - 60.71 TRAVEL TI E(MIN.) - 1.26 TC(MIN.) - 30.07 ittitNttttttttNNttttttNtptttttsttttgttttttNttttNttttitttttttNttttii Opp FLAW PROCESS FROM NODE 547.00 TO NODE 547.10 IS CODE - 8 iw » » >ADDTTION OF SUBAREA TO MAINLINE PEAK FLAW « «< » » >ADDITION OF SUBAREA TO MAINLINE PEAK F1OW««< it SOIL CLASSIFICATION IS "B" 100 YEAR RAINFALL INTENSITY(INCH/HOUR) - 2.096 SOIL CLASSIFICATION IS "B" AGRICULTURE "ROWCROPS" SUBAREA LOSS RATE, Fm(INCH/HR) = .4100 SUBAREA AREA(ACRES) - 20.00 SUBAREA RUNOFF(CFS) - 30.36 EFFECTIVE AREA(ACRES) - 40.00 AVERAGED Fm(INCHM R) - .410 1 TOTAL AREA(ACRES) - 40.00 „ PEAK FLAW RATE(CFS) - 60.71 TC(MIN) - 28.81 � tfNNtNittfitigiititttttittiitffiitttitttiitftttttttttttttitittiirifittit FLOW PROCESS FROM NODE 547.10 TO NODE 548.10 LS CODE = 3 �1 war 77 » »>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA« «< » » >USINO COMPUTER ESTIMATED PIPESIZE (NON - PRESSURE FL OW)<«« DEPTH OF FLAW IN 39.0 INCH PIPE IS 28.7 INCHES PIPE -FLAW VELOCITY(FEET/SEC.) - 9.3 UPSTREAM NODE ELEVATION(FEET) - 1047.00 DOWNSTREAM NODE ELEVATION(FEET) - 1042.00 FIAW IENOTH(FEET) - 700.00 MANNINGS N - .013 ESTIMATED PIPE DIAMETER(INCH) - 39.00 NUMBER OF PIPES = PIPE- FIAW(CFS) - 60.71 TRAVEL TI E(MIN.) - 1.26 TC(MIN.) - 30.07 e:\4013-0M40I3DZ5.res 6/95 0 ssstsstssNNtstssiss sssissststNSSSSSSaffsssNNSN «srssrsssssss Opp FLAW PROCESS FROM NODE 548.00 TO NODE 548.10 IS CODE - 8 iw » » >ADDTTION OF SUBAREA TO MAINLINE PEAK FLAW « «< 100 YEAR RAINFALL Drn NSITY(INCH/HOUR) - 2.043 SOIL CLASSIFICATION IS "B" AGRICULTURE "ROWCROPS" SUBAREA LOSS RATE, Fm(INCWHR) = .4100 SUBAREA AREA(ACRES) - 20.00 SUBAREA RUNOFF(CFS) - 29.40 EFFECTIVE AREA(ACRES) - 60.00 AVERAGED Fm(INCH/HR) - .410 TOTAL AREA(ACRES) - 60.00 PEAK FLAW RATE(CFS) - 88.20 TC(MIN) - 30.07 s NSSSasssisssssstsNSNNSSSS SSSSSS rssssNNissNNfrrsrsNrssssasr sassssr FLAW PROCESS FROM NODE 548.10 TO NODE 549.10 IS CODE - 3 » »>(bMPUTE PIPE -FIAW TRAVEL TIME THRU SUBAREA ««< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW)<«« e:\4013-0M40I3DZ5.res 6/95 0 J DEPTH OF FLOW IN 48.0 INCH PIPE is 333 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) - 8.9 LPSTREAM NODE ELEVATION(FEET) - 104100 DOWNSTREAM NODE ELEVATION(FFM - 1038.30 FLOW LENGTII(FEET) - 700.00 MANNING'S N - .013 ESTIMATED PIPE DIAMETER(INCH) - 48.00 NUMBER OF PIPES - PIPE- FLOW(CFS) - 88.20 TRAVEL TIME(MIIJ.) - 131 TC(MIN.) - 31.38 DEPTH OF FLAW IN S 1.0 INCH PIPE IS 363 INCHES PIP&FIAW VELOCITY(FEET/SEC.) - 10.9 ! UPSTREAM NODE ELEVATION(FEET) - 1038.50 DOWNSTREAM NODE ELEVATIONOTZn - 1029.00 FLOW LENGTH(FEVI) - 1350.00 MANNING'S N - .013 ESTIMATED PIPE DIAMETER(INCH) - 51.00 NU16 BER OF PIPES - PIPE- FLOW(CFS) - 118.15 TRAVEL TIME(MIN.) - 2.06 TC(MIN.) = 33.44 Fl sssssasustsutssssusutsutsssssssstssasuussas sssssssusssussststssaus FLOW PROCESS FROM NODE 549.01 TO NODE 549.11 IS CODE - 8 » » >ADDITLON OF SUBAREA TO I AR41INE PEAK FLAW ««< 100 YEAR RAINFALL 1NTENSITY(INCH/HOUR) 1.917 SOIL CLASSIFICATION IS "B" AGRICULTURE "ROWCROPS" SUBAREA LOSS RATE, Fm(INCH/HR) - .4100 SUBAREA AREA(ACRES) - 83.00 SUBAREA RUNOFF(CFS) - 112.59 EFFECTIVE AREA(ACRES) - 166.00 AVERAGED Fm(INCH/HR) - .410 TOTAL AREA(ACRES) - 166.00 PEAK FLOW RATE(CFS) - 225.18 TC(MIN) - 33.44 ssssssssssussauttstsutsssasssssstssssssuussssssusuutssuttssssusss FLAW PROCESS FROM NODE 530.00 TO NODE 530.1015 CODE - 2 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< DEVELOPMENT IS COMMERCIAL TC - KR[(LENOTHRt 3.00Y(ELEVATION CHANGE)]** .20 DOTAL SUBAREA FLAW- LENGTH(FEET) - 900.00 UPSTREAM ELEVATION(FEET) - 1109.00 DOWNSTREAM ELEVATION(FEET) = 1095.00 e:W013- OM4013DZ5.res 6/95 a tfftiiiiiRNtiitsitttttittiitiif RRitiftsittiiuiiiitiiifiiitititfitttitutti FLOW PROCESS FROM NODE 549.00 TO NODE 549.10IS CODE - 8 to » » >ADDTCION OF SUBAREATO MAINLINE PEAK FLAW « «< - 100 YEAR RAINFALL INTENSITY(INCH/HOUR) - 1.992 SOILCLASSIFICATION IS "B" AGRICULTURE "ROWCROPS" SUBAREA LASS RATE, Fm(INCH/HR) - .4100 SUBAREA AREA(ACRES) - 23.00 SUBAREA RUNOFF(CFS) - 32.74 EFFECTIVE AREA(ACRES) - 83.00 on AVERAGED Fm(1NCH/HR) - .410 TOTAL AREA(ACRES) - 83.00 PEAK FLAW RATE(CFS) - 118.15 TC(MIN)- 3138 � itiitifftftttittfitttttttiititttiifRRRtitititutiitittitiuttuttttttttutti FLAW PROCESS FROM NODE 549.10 TO NODE 549.11 IS OODE - 3 »»>COMPUTE PIPE -FLAW TRAVEL TLMETHRU SUBAREA « «< » » >UMNO COMPUTER-ESTIMATED PIPESIZE (NON - PRESSURE FL OW)<«« DEPTH OF FLAW IN S 1.0 INCH PIPE IS 363 INCHES PIP&FIAW VELOCITY(FEET/SEC.) - 10.9 ! UPSTREAM NODE ELEVATION(FEET) - 1038.50 DOWNSTREAM NODE ELEVATIONOTZn - 1029.00 FLOW LENGTH(FEVI) - 1350.00 MANNING'S N - .013 ESTIMATED PIPE DIAMETER(INCH) - 51.00 NU16 BER OF PIPES - PIPE- FLOW(CFS) - 118.15 TRAVEL TIME(MIN.) - 2.06 TC(MIN.) = 33.44 Fl sssssasustsutssssusutsutsssssssstssasuussas sssssssusssussststssaus FLOW PROCESS FROM NODE 549.01 TO NODE 549.11 IS CODE - 8 » » >ADDITLON OF SUBAREA TO I AR41INE PEAK FLAW ««< 100 YEAR RAINFALL 1NTENSITY(INCH/HOUR) 1.917 SOIL CLASSIFICATION IS "B" AGRICULTURE "ROWCROPS" SUBAREA LOSS RATE, Fm(INCH/HR) - .4100 SUBAREA AREA(ACRES) - 83.00 SUBAREA RUNOFF(CFS) - 112.59 EFFECTIVE AREA(ACRES) - 166.00 AVERAGED Fm(INCH/HR) - .410 TOTAL AREA(ACRES) - 166.00 PEAK FLOW RATE(CFS) - 225.18 TC(MIN) - 33.44 ssssssssssussauttstsutsssasssssstssssssuussssssusuutssuttssssusss FLAW PROCESS FROM NODE 530.00 TO NODE 530.1015 CODE - 2 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< DEVELOPMENT IS COMMERCIAL TC - KR[(LENOTHRt 3.00Y(ELEVATION CHANGE)]** .20 DOTAL SUBAREA FLAW- LENGTH(FEET) - 900.00 UPSTREAM ELEVATION(FEET) - 1109.00 DOWNSTREAM ELEVATION(FEET) = 1095.00 e:W013- OM4013DZ5.res 6/95 a F assssasssasssssssssaststtsssasatatsssesttsttttssssaas lssslssitslssssi FLOW PROCESS FROM NODE 530.10 TO NODE 531.10 IS CODE - 6 m. » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< UPSTREAM ELEVATIONffZI) - 1095.00 DOWNSTREAM ELEVATION(FEET) =1092.00 STREET LENGTHMMI) - 700.00 CURB HEIOTH(INCHES) - 6. - STREET - 26.00 DISTANCE FROM CROWN TO CROSSFALL ORADEBRF.AK(FEET) - 18.00 DMMIOR STREET CROSSFALL(DECIMAL) - .020 OUTSIDE STREET CROSSFALL(DECIMAL) - .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF - 2 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) - 33.46 ELEVATION DIFFERENCE TZI) - 14.00 TC(MIN.) - .304*[( 900.00** 3.00y( 14.00)) ** .20 - 10.622 100 YEAR RAINFALL INTENSITY(INCH/HOUR) - 3.815 SOIL CLASSIFICATION IS "A" 4AS COMMERCIAL SUBAREA LASS RATE, Fm(INCH/M) - .0970 SUBAREA RUNOFF(CFS)- 33.46 dill TOTAL AREA(ACRES) - 10.00 PEAK FLAW RATE(CFS) - 33.46 assssasssasssssssssaststtsssasatatsssesttsttttssssaas lssslssitslssssi FLOW PROCESS FROM NODE 530.10 TO NODE 531.10 IS CODE - 6 m. » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< UPSTREAM ELEVATIONffZI) - 1095.00 DOWNSTREAM ELEVATION(FEET) =1092.00 STREET LENGTHMMI) - 700.00 CURB HEIOTH(INCHES) - 6. - STREET - 26.00 DISTANCE FROM CROWN TO CROSSFALL ORADEBRF.AK(FEET) - 18.00 DMMIOR STREET CROSSFALL(DECIMAL) - .020 OUTSIDE STREET CROSSFALL(DECIMAL) - .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF - 2 Yr 100 YEAR RAINFALL INTENSITY(INCH/HOUR) - 3.105 SOIL CLASSIFICATION IS "A" uw COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) - .0970 SUBAREA AREA(ACRES) - 00 SUBAREA RUNOFF(CFS) _ .00 EFFECTIVE AREA(ACRES) - 10.00 AVERAGED Fm(INCH/HR) _ .10 TOTAL AREA(ACRES) - 10.00 PEAK FLAW RATE(CFS) - 33.46 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) - .73 HAIFSTREET FLOOD WIDTH _ (FEET) =23.47 FLAW VELOCITY(FEET/SEC.) - 2.68 DEPTH *VELOCITY = 1.94 ittttitttttttitttttttttiitititttittitttttttitttttttttttt ltittttltttiiittitti FLOW PROCESS FROM NODE 531.00 TO NODE 531.10 IS CODE - 8 » » >ADDTITON OF SUBAREA TO MAINL NE PEAK FLOW ««< * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) - 33.46 STREET FLAW MODEL RESULTS: NOTE: STREET FLAW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLAW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGL IBLE FLAW OCCURS OUTSIDE OF THE STREET CHANNEL 4AS THAT I% ALL FLAW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLAW DEPTH(FEET) - .73 dill HALFSTREET FLOOD WIDT1I0EET) - 23.47 AVERAGE FLAW VEIACTf Y(FEET/SEC.) - 2.68 PRODUCT OF DEPTH&VELOCITY - 1.94 STREET FLAW TRAVEL TBff0 LIN.) - 4.35 TC(1vIIN.) - 14.98 Yr 100 YEAR RAINFALL INTENSITY(INCH/HOUR) - 3.105 SOIL CLASSIFICATION IS "A" uw COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) - .0970 SUBAREA AREA(ACRES) - 00 SUBAREA RUNOFF(CFS) _ .00 EFFECTIVE AREA(ACRES) - 10.00 AVERAGED Fm(INCH/HR) _ .10 TOTAL AREA(ACRES) - 10.00 PEAK FLAW RATE(CFS) - 33.46 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) - .73 HAIFSTREET FLOOD WIDTH _ (FEET) =23.47 FLAW VELOCITY(FEET/SEC.) - 2.68 DEPTH *VELOCITY = 1.94 ittttitttttttitttttttttiitititttittitttttttitttttttttttt ltittttltttiiittitti FLOW PROCESS FROM NODE 531.00 TO NODE 531.10 IS CODE - 8 » » >ADDTITON OF SUBAREA TO MAINL NE PEAK FLOW ««< e.W013 -0M4013DZ5.res 5 6/95 �I 100 YEAR RAINFALL INTENSITY(INCH/HOUR) - 3.105 SOIL CLASSIFICATION IS "A" AGRICULTURE "ROWCROPS" SUBAREA LOSS RATE. Fm(INCH/HR) _ .5900 SUBAREA AREA(ACRES) - 10.00 SUBAREA RUNOFF(CFS) - 22.63 EFFECTIVE AREA(ACRES) - 20.00 AVERAGED Fm(INCH/HIt) - .343 TOTAL AREA(ACRES) - 20.00 PEAK FLOW RATE(CFS) - 49.70 TC(MIN) - 14.98 tttttti!!l ttitiitiitti ttttttittittttl ttittiiitiitttttttitttiittt ltttittfttt! FLOW PROCESS FROM NODE 531.10 TO NODE 532.10 IS CODE = 6 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< e.W013 -0M4013DZ5.res 5 6/95 �I �l UPSTREAM ELEVATION(FEET) - 1092.00 DOWNSTREAM ELEVATION(FEET) - 1082.30 STREET LENOTH(FEM - 700.00 CURB HEIOTH(INCHES) - S. un STREET - 26.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAKUTZI) - 18.00 INTERIOR STREET CROSSFAI.4DECIMAL) - .020 OUTSIDE STREET CROSSFALL(DECIMAL) - .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF - 2 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) - 49.70 STREET FLAW MODEL RESULTS: NOTE. STREET FLAW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ONTHEASSUMPTION THAT NFOLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLAW ALONG THE PARKWAY, ETC, IS NEGLECTED. STREET FLOW DEPT110TET) - .71 HALFSTREET FLOOD WIDTH(FEET) - 21.78 AVERAGE FLOW VELOCIIY(FEET/SEC.) - 4.49 PRODUCT OF DEPTH&VELOCITY - 3.21 STREET FLAW TRAVEL TIIff(MIN.) - 2.60 TC(MIN.) - 17.57 100 YEAR RAINFALL INTENSITY(INCH/HOUR) - 2.820 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LASS RATE, Fm(INCH/HR) - .0970 SUBAREA AREA(ACRES) - .00 SUBAREA RUNOFF(CFS) - .00 EFFECTIVE AREA(ACRES) - 20.00 AVERAGED Fm(INCH/IIR) - 34 TOTAL AREA(ACRES) - 20.00 PEAK FLOW RATE(CFS) - 49.70 END OF SUBAREA STREET FLOW HYDRAIJUCS: DEPTH(FEET) - .71 HALFSI'REET FLOOD WIDIIL(FEEI) - 21.78 FLOW VEIOCITY(FEET/SEC.)- 4.49 DEPTH*VELACTIY- 3.21 * ttttttittttsgtiitttttttttititttttgtstttqiitititiiqtiiiititttttittttttit FLAW PROCESS FROM NODE 532.00 TO NODE 532.10 IS CODE - 8 » » >ADDPITON OF SUBAREA TO MAINLJNE PEAK FLAW « «< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) - 2.820 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LASS RATE, Fm(INCH/HR) - .0970 SUBAREA AREA(ACRES) - 20.00 SUBAREA RUNOFF(CFS) - 49.02 EFFECTIVE AREA(ACRES) - 40.00 AVERAGED Fm(INCH/HR) - .220 TOTAL AREA(ACRES) - 40.00 PEAK FLAW RATE(CFS) - 93.61 TC(MIN) - 17.57 sgttttttttitittitttttttiiitttiigitqttttiiqtttftqttqtiqttiiitttttitsq FLAW PROCESS FROM NODE 532.10 TO NODE 533.10 IS CODE - 3 » »>COMPUTE PIPE -FLAW TRAVEL TIME THRU SUBAREA ««< » »> USING COMPUI ER- ESTIMATED PIPESIZE (NON PRESSURE FLOW)<«« DEPTH OF FLAW IN 42.0 INCH PIPE IS 32.4 INCHES PIPE -FLAW VELOCITY(FEET/SEC.) - 11.8 UPSTREAM NODE ELEVATION(FEEI) - 108230 DOWNSTREAM NODE ELEVATION(FEEI) - 1072.00 FLOW LENGTH(FEET) - 1000.00 MANNINGS N - .013 ESTIMATED PIPE DIAMETER(INCH) - 42.00 NUMBER OF PIPES - PIPE- FLOW(CFS) - 93.61 TRAVEL IIME(MIN.) - 1.42 TC(MIN.) - 18.99 sssasssnggsqasssqssqtsssssssstssqsqqsqsasiqssssasaqsassisisqsis FLOW PROCESS FROM NODE 533.00 TO NODE 533.101S CODE - 8 e:41013 -087\R4013 DZ5.m 6/95 0 M » » >ADDTITON OF SUBAREA TO MAINLINE PEAK FLOW« «< OR 100 YEAR RAINFALL INTENSPPY(INCH/HOUR) - 2.692 SOEL CLASSIFICATION IS "B" ' MOBIIE HOME PARK SUBAREA LASS RATE, Fm(INCH=) - .1875 SUBAREA AREA(ACRES) - 31.00 SUBAREA RUNOFF(CFS) - 69.88 EFFECTIVE AREA(ACRES) - 71.00 AVERAGED Fm(INCHAM) - .206 TOTALAREA(ACRES) - 71.00 PEAK FLAW RATE(CFS) - 158.87 TC(mm- 1 &99 X111 asasssstssssasasstssasasssssasaassssassssasssssssssasssssssssssss FLOW PROCESS FROM NODE 533.10 TO NODE 534.10 IS CODE - 3 » »>COMPVI'E PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< » »>USING COMPUTER ESTIMATED PIPESIZE (NON - PRESSURE FLOW)<«« DEPTH OF FLOW IN 54.0 INCH PIPE IS 40.0 INCHES PI T,A,OW VELOCITY(FEET/SEC.) - 12.6 UPSTREAM NODE ELEVATION(FEET) - 1072.00 DOWNSTREAM NODE ELEVATION(FEET) m 1058.00 FLOW LENGTH(FEET) - 1650.00 MANNINO'S N - .013 ESTIMATED PIPE DIAMETER(INCH) - 54.00 NUMBER OF PIPES - 1 PIPE- FLOW(CFS) - 158.87 TRAVEL TIM (MIN.) - 2.19 TC(MIN.) = 21.18 sassssassaatttsstssstasssassssssasssssasssaaasssasssssssstassassss FLAW PROCESS FROM NODE 534.00 TO NODE 534.10 IS CODE - 8 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< . p" 100 YEAR RAINFALL INTENSITY(INCH/HOUR) - 2.522 SOIL CLASSIFICATION IS "B" RESIDENT IAL> 34 DWELLINOS/ACRE SUBAREA LASS RATE, Fm(INCH/HR) - .4500 SUBAREA AREA(ACRES) - 51.00 SUBAREA RUNOFF(CFS) - 95.09 EFFECTIVE AREA(ACRES) - 122.00 AVERAGED Fm(INCH/HR) = 308 TOTAL AREA(ACRES) - 122.00 PEAK FLAW RATE(CFS) - 243.06 on TC(MiN) - 21.18 sassssasaasssstsstsssssssssssssasssssssssssssssss sssssssssssasssssssssas FLAW PROCESS FROM NODE 534.10 TO NODE 539.10 IS CODE = 3 » »>COMPUTE PIPE-FLAW TRAVEL TIME THRU SUBAREA««< » » >USING COMPUTER ESTIMATED PIPESIZE (NON PRESSURE FLOW)<«« DEPTH OF FLOW IN 66.0 INCH PIPE IS 49.4 INCHES PIPE -FLAW VELOCITY(FEET/SEC.) - 12.7 UPSTREAM NODE ELEVATION(FEET) - 105 &00 DOWNSTREAM NODE ELEVATIONOTM) - 1049.00 FLAW LENGTH(FEET) - 1350.00 MANNINGS N - .013 ESTIMATED PIPE DIAMETER(INCH) - 66.00 NUMBER OF PIPES = 1 PIPE- FLAW(CFS) - 243.06 TRAVEL TIME(IuIIN.) - 1.77 TC(MIN.) - 22.94 e :\4013 -0871R4013DZ5.res 7 6195 0 sssssastsssss ssastsasssstsssssssststsssssssssss ssssssssssssssassssssssss FLOW PROCESS FROM NODE 539.10 TO NODE 539.10 IS CODE - 1 » »> DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< TOTAL NUMBER OF STREAMS - 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: e :\4013 -0871R4013DZ5.res 7 6195 0 E TIME OF CONCENTRATION(MIN.) - 22.94 RAINFALL INTENSITY(INCH/HR) - 2.40 AVERAGED Fm(INCH/HR) - 31 EFFECTIVE STREAM AREA(ACRES) - _122.00 TOTAL STREAM AREA(ACRES) - 122.00 PEAK FLAW RATE(CFS) AT CONFLUENCE - 243.06 tt* ttttgttttitgtittqtitistttttffftiitiRttfttqpttttittHtti *tsttisttsiif FLAW PROCESS FROM NODE 535.00 TO NODE 535.10 IS CODE - 2 itittss** tttttiitttttttttttititttittttttiit* ittttitfisfttttttiftiititiittiss FLOW PROCESS FROM NODE 535.10 TO NODE 536.10 IS CODE - 6 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< UPSTREAM EIEVATIONffZI) - 1091.00 DOWNSTREAM ELEVATION(FEET) - 1089.00 STREET IENGTH(FEEP) - 650.00 CURB HEIGTH(INCHES) - 6. STREET HAIFWIDTH(FEET) = 26.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 18.00 INTERIOR STREET CROSSFALL(DECIMAL) - .020 OUTSIDE STREET CROSSFALL(DECIMAL) - .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< F. DEVELOPMENT IS COMMERCIAL TC - Ki[(I.FNG1*s 3.00Y(EIEVA1ION CHANGE)]" .20 BU17AL SUBAREA FLAW -L ENOTH(FEET) - 900.00 UPSTREAM ELEVATION(FEET) - 1100.00 DOWNSTREAM ELEVATION(FEET) - 1091.00 ELEVATION DIFFERENCE(I•EET) - 9.00 TC(M1N.) - 304'[( 900.00" 3.00y( 9.00)1-.20 - 11.603 100 YEAR RAINFALL INTENSITY(INCH/HOUR) - 3.618 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(LNCH/HR) - .0970 SUBAREA RUNOFF(CFS) - 31.69 TOTAL AREA(ACRES) - 10.00 PEAK FLOW RATE(CFS) - 31.69 itittss** tttttiitttttttttttititttittttttiit* ittttitfisfttttttiftiititiittiss FLOW PROCESS FROM NODE 535.10 TO NODE 536.10 IS CODE - 6 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< UPSTREAM EIEVATIONffZI) - 1091.00 DOWNSTREAM ELEVATION(FEET) - 1089.00 STREET IENGTH(FEEP) - 650.00 CURB HEIGTH(INCHES) - 6. STREET HAIFWIDTH(FEET) = 26.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 18.00 INTERIOR STREET CROSSFALL(DECIMAL) - .020 OUTSIDE STREET CROSSFALL(DECIMAL) - .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 afftstitttfptssssst* asst' s*'** tgtttsssasttststsssssftffaittsasiitsssss FLOW PROCESS FROM NODE 536.00 TO NODE 536.10 IS CODE = 8 e:\4013 -087\R4013DZ5.res 8 6195 0 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) - 31.69 STREET FLAW MODEL RESULTS: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLAW DEPTH(FEET) - .75 HALFSTREET FLOOD WIDTIL(FEET) - 24.59 AVERAGE FLOW VELOCITY(FEET/SEC.) - 2.34 PRODUCT OF DEP Ti &VELOCITY - 1.75 STREET FLAW TRAVEL TIME(MIN.) - 4.64 TC(MIN.) - 16.24 100 YEAR RAINFALL INTENSITY(INCH/HOUR) - 2.957 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LASS RATE, Fm(INCH/HR) - .0970 SUBAREA AREA(ACRES) - .00 SUBAREA RUNOFF(CFS) - .00 EFFECTIVE AREA(ACRES) - 10.00 AVERAGED Fm(INCH/HR) = .10 TOTAL AREA(ACRES) - 10.00 PEAK FLOW RATE(CFS) - 31.69 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTHOTZ17 - .75 HALFSTREET FLOOD WIDTH(FEET) - 24.59 FLOW VELOCITY(FEET/SEC.) - 2.34 DEPTH *VELOCITY = 1.75 afftstitttfptssssst* asst' s*'** tgtttsssasttststsssssftffaittsasiitsssss FLOW PROCESS FROM NODE 536.00 TO NODE 536.10 IS CODE = 8 e:\4013 -087\R4013DZ5.res 8 6195 0 0 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.957 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LASS RATE, Fm(INCH/HR) _ .0970 SUBAREA AREA(ACRES) - 10.00 SUBAREA RUNOFF(CFS) = 25.74 EFFECTIVE AREA(ACRES) = 20.00 AVERAGED Fm(INCH/HR) _ .097 TOTAL-AREA(ACRES)- 20.00 PEAK FLOW RATE(CFS) - 51.48 TC(MLN) - 16.24 ssstssasastssssassssssssssssssssssssssssssssssssssasssssssssssssss sssssss FLAW PROCESS FROM NODE 536.10 TO NODE 537.10 IS CODE - 6 »»>COMPUTE STREET FLAW TRAVEL TIME THRU SUBAREA « «< UPSTREAM ELEVATION(FEET) =1089.00 DOWNSTREAM ELEVATION(FEET) =1081.50 STREET LENGTIVEET) - 650.00 CURB HEIGTH(INCHES) = 8 STREET HALFWIDTHOWEn - 26.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) - 18.00 INTERIOR STREET CROSSFALI.(DECIMAL) _ .020 OUTSIDE STREET CROSSFAL 4DECLMAL) _ .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 "TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) - 51.48 STREET FLAW MODEL RESULTS: NOTE: STREET FLAW EXCEEDS TOP OF CURB, THE FOLLOWING STREET FLAW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLAW OCCURS OUTSIDE OF THE STREET CHANNEL THAT IS, ALL FLAW ALONG THE PARKWAY, ETC., IS NEGIECTED. STREET FLOW DEPTH(FEET) _ .74 HALFSTRFET FLOOD WIDTH(FEET) - 22.91 AVERAGE FLAW VELOCITY(FEET/SEC.) - 4.26 PRODUCT OF DEPTH&VELOCITY - 3.14 STREET FLOW TRAVEL TIME(MIN.) - 2.54 TC(MIN.) - 18.78 100 YEAR RAINFALL INTENSITY(INCH/HOUR) - 2.710 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LASS RATE, Fm(INCH/HR) _ .0970 SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) = .00 EFFECTIVE AREA(ACRES) - 20.00 AVERAGED Fm(INCH/HR) = .10 TOTAL AREA(ACRES) - 20.00 PEAK FLAW RATE(CFS) = 51 AS END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .74 HALFSTREET FLOOD WIDTHTEET) = 22.91 FLOW VELOCTTY(FEET/SEC.) = 4.26 DEPTHsVELOCITY - 3.14 sssggssassssasassstssssssssssssts sstsssssssssssssssassttsssssssssssssss FLOW PROCESS FROM NODE 537.00 TO NODE 537.101S CODE - 8 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLAW « «< e :\4013 -087\R4013DZ5.res 9 6/95 F 100 YEAR RAINFALL INTENSITY(INCHWOUR) = 2.710 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LASS RATE, Fm([NCH/HR) _ .0970 SUBAREA AREA(ACRES) - 20.00 SUBAREA RUNOFF(CFS) - 47.04 EFFECTIVE AREA(ACRES) = 40.00 AVERAGED Fm(INCH/HR) _ .097 TOTAL AREA(ACRES) - 40.00 PEAK FLAW RATE(CFS) = 94.07 TC(MIN) - 18.78 sssssssssssssssssssssssssssssassssss sssassssss ssssssssssssssssssssssssssss e :\4013 -087\R4013DZ5.res 9 6/95 F FLOW PROCESS FROM NODE 537.10 TO NODE 538.10 IS CODE = 3 » » >COMPVfE PIPE-FLOW TRAVEL TIME THRU SUBAREA « «< » »>USING OOMPLTL ER ESTIMATED PIPESIZE (NON - PRESSURE FLOW)<«« DEPTH OF FLOW IN 42.0 INCH PIPE IS 29.1 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 131 UPSTREAM NODE ELEVATTON(FEET) - 1081.50 DOWNSTREAM NODE ELEVATION(FEET) = 1068.00 FLOW LENGTTL(FEEL) = 1000.00 MANNING'S N - .013 ESTIMATED PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = i PIPE•FLOW(CFS) = 94.07 TRAVEL TIME(MIN.) - 1.26 TC(MIN.) - 20.04 - - - - - - - - t{tttttigtNNtftffgtttf titttt {titttt {itt {tisff f fftgfftfttfttgtfttfftfft FLOW PROCESS FROM NODE 538.00 TO NODE 538.10 IS CODE = 8 » » >ADDTRON OF SUBAREA TO MAINLINE PEAK FLOW « «< 100 YEAR RAINFALL INTENSITY(INCHIHOUR) = 2.607 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA AREA(ACRES) - 31.00 SUBAREA RUNOFF(CFS) - 70.02 EFFECTIVE AREA(ACRES) - 71.00 AVERAGED Fm(INCH/HR) _ .097 TOTAL AREA(ACRES) = 71.00 PEAK FLOW RAIWCFS) = 160.36 TC(MIN) - 20.04 i ssfaamsstssassffsssaasssssasss{ ssstgttssssttsses ssssstasasstasfss ys ' FLOW PROCESS FROM NODE 538.10 TO NODE 539.10 IS CODE - 3 » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< » » >USING COMPUTER-ESTIMATED PIPESIZE (NON - PRESSURE FLOW)<«« DEPTH OF FLOW IN 51.0 INCH PIPE IS 38.1 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 14.1 UPSTREAM NODE EIEVATION(FEET) - 1068.00 DOWNSTREAM NODE ELEVATION(FEET) = 1049.00 FLAW LENGTH(FEET) - 1650.00 MANNING'S N - .013 ESTIMATED PIPE DIAMETER(INCH) - 51.00 NUMBER OF PIPES - 1 PIPE- FLOW(CFS) - 160.36 TRAVEL TIME(MIN.) = 1.95 TC(MIN.) = 21.99 � satsssste sssfststttsssssssstssft asss ss sss sfffsffsssafsssf {ffssassstfsssgst ys ' FLAW PROCESS FROM NODE 539.00 TO NODE 539.10 IS CODE = 8 » » >ADDIT/0N OF SUBAREA TO MAINLINE PEAK FLAW « «< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.465 SOIL CLASSIFICATION IS "B" SCHOOL SUBAREA LASS RATE, Fm(INCH/HR) _ .4500 SUBAREA AREA(ACRES) - 51.00 SUBAREA RUNOFF(CFS) = 92.50 EFFECTIVE AREA(ACRES)- 122.00 AVERAGED Fm(INCH4M) _ .245 TOTAL AREA(ACRES) = 122.00 PEAK FLAW RATE(CFS) = 243.84 TC(MIN) = 21 ffs{ sassssss ss ss fffs sss sstssssssstsssss« fffsssssssassassttfs {{sfasststsf FLAW PROCESS FROM NODE 539.10 TO NODE 539.10 IS CODE = 1 >» »DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES ««< e.\4013 -0VM4013DZ5.res 10 6/95 pl � L� TOTAL NUMBER OF STREAMS - 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) - 21.99 RAINFALL INTENSITY(INCHIHR) - 2.47 - - - - - - - - AVERAGED Fm(INCH/HR) _ .24 EFFECTIVE STREAM AREA(ACRES) - 122.00 TOTAL STREAM AREA(ACRES) - 122.00 PEAK I+TOW RATE(CFS) AT CONFLUENCE - 243.84 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. s• PEAK FLOW RATE TABLE •• Q(CFS) Tc(MIN.) Fm(WCH/HR) Ae(ACRES) 1 480.09 22.94 .276 244.00 2 483.69 21.99 .276 23893 COMPUPFA CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) - 483.69 TcOM.) = 21992 EFFECTIVE AREA(ACRES) = 238.93 AVERAGED Fm(INCH/HR) _ 18 TOTAL AREA(ACRES) = 244.00 sssssatssssssssssssssssssssssssssssssasssssssssssssssssssssassssssasssss FLOW PROCESS FROM NODE 539.10 TO NODE 544.10 IS CODE - 3 e :44013 -0M4013DZ5.ra 11 6/95 »»>COMPUfE PIPE -FIAW TRAVEL TIME THRU SUBAREA « «< » » >USINO COMPUTER-ESTIMATED PIPESIZE (NON - PRESSURE FIAW)<«« 37 DEPTH OF FLAW IN 96.0 INCH PIPE IS 78.6 INCHES PIPE -FLOW VEIACITY(FEET/SEC.)- 11.0 UPSTREAM NODE ELEVATION(FEET) - 1049.00 DOWNSTREAM NODE ELEVATION(FEET) - 1045.00 FLAW LENGTH(FEET) = 1350.00 MANNING'S N - .013 ESTIMATED PIPE DIAMETER(INCH) - 96.00 NUMBER OF PIPES = 1 PIPE- FLAW(CFS) = 483.69 TRAVEL TIME(MIN.) = 105 TC(MIN.) - 24.04 assssssssssssssssssssssssssssssssassssssssssstsssstsssssstsssssssssssssssss FLAW PROCESS FROM NODE 544.00 TO NODE 544.10 IS CODE - 8 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLAW « «< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.337 SOIL CLASSIFICATION IS "B" RESIDENTIAL,> 3-4 DWEUlNGS/ACRE SUBAREA LASS RATE, Fm(INCHMR) _ .4500 SUBAREA AREA(ACRES) - 51.00 SUBAREA RUNOFF(CFS) = 86.61 EFFECTIVE AREA(ACRES) = 289.93 AVERAGED Fm(INCH/HR) _ .306 TOTAL AREA(ACRES) _ .295.00 PEAK FLOW RATE(CFS) = 529.88 I'C(MIN) - 24.04 asss sssssttssssassssssssssssssssssssssssssssssstsssstssssssssssas »sssssss FLAW PROCESS FROM NODE 544.10 TO NODE 544.10 IS CODE - 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(bM.) = 24.04 RAINFALL INTENSITY(INCH/IiR) - 2.34 AVERAGED Fm(INCHIHR) _ .31 EFFECTIVE STREAM AREA(ACRES) = 289.93 TOTAL STREAM AREA(ACRES) = 295.00 e :44013 -0M4013DZ5.ra 11 6/95 PEAK FLOW RATE(CFS) AT CONFLUENCE = 529.88 sssspttststsassasssssssssssssssstsassssssssssssssssssssssssssssnssssssss FLOW PROCESS FROM NODE 540.00 TO NODE - 54030- ISCODE -- 2 - - -- - - » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< » »>COMPUTIE STREET FLOW TRAVEL TIME THRU SUBAREA ««< UPSTREAM ELEVATION(FEET) - 1087.00 DOWNSTREAM ELEVATION(FFZI) =1084.00 STREET LENGTH(FEET) - 700.00 CURB HE[GTH(INCHES) - 6. STREET -18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) - 10.00 INTERIOR STREET CROSSFALL(DECIMAL) - .020 OUTSIDE STREET CROSSFALL(DECI)AAL) _ .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF - 2 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) - 31.69 ***STREET FLOWING FULLsss STREET FLAW MODEL RESULTS: NOTE: STREET FLAW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLAW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLAW OCCURS OUTSIDE OF THE STREET CHANNEL THAT IS, ALL FLAW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) - .70 HALFSTREET FLOOD WIDTH(FEET) - 18.00 AVERAGE FLOW VELOCITY(FEET/SEC.) - 2.85 PRODUCT OF DEPTH&VELOCITY - 2.01 STREET FLAW TRAVEL TIME(MIN.) - 4.09 TC(MIN.) = 15.70 100 YEAR RAINFALL INTENSITY(INCH/HOUR) - 3.018 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) - .0970 SUBAREA AREA(ACRES) - .00 SUBAREA RUNOFF(CFS) - .00 EFFECTIVE AREA(ACRES) - 10.00 AVERAGED Fm(INCH/HR) - .10 TOTAL AREA(ACRES) - 10.00 PEAK FLAW RATE(CFS) - 31.69 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) - .70 HAL STREET FLOOD W1DTH(FEET) =18.00 FLAW VEIOCITY(FEET/SEC.) - 2.85 DEPTH•VELOCITY - 2.01 sssssagtsssssssstssstststssssasssssssssssssssssssssssssusssssssssasssss FLAW PROCESS FROM NODE 541.00 TO NODE 541.10 IS CODE - 8 » » >ADDTIION OF SUBAREA TO MAINLINE PEAK FLAW « «< ' 100 YEAR RAINFALL RTMNSTTY(INCH/HOUR) - 3.018 SOIL CLASSIFICATION IS "A" e.- W013- 0M40I3DZ5.rcs 12 6/95 0 DEVELOPMENT IS COMMERCIAL TIC - K*[(LENOTH" 3.00y(ELEVATION CHANGE)]" .20 INITIAL SUBAREA FLAW LENGTH(FEET) - 900.00 - UPSTREAM LLEVATTON(FEEI) - 1096.00 DOWNSTREAM ELEVATION(FEEI) - 1087.00 ELEVATION DIFFEMWCE(FEET) - 9.00 TC(MIN.) - .304'[( 900.00•• 3.00X 9.00)1-.20 - 11.603 100 YEAR RAINFALL INTENSITY(WCH/HOUR) - 3.618 g, SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(WCHlHR) - .0970 SUBAREARUNOFF(CFS) - 31.69 TOTAL AREA(ACRES) - 10.00 PEAK FLAW RATE(CFS) - 31.69 stgstpstssstgsqsqtsfsitttiisqttqssisqsqsfspitsupiqstttsqqtttt FLAW PROCESS FROM NODE 540.10 TO NODE 541.10 IS CODE - 6 » »>COMPUTIE STREET FLOW TRAVEL TIME THRU SUBAREA ««< UPSTREAM ELEVATION(FEET) - 1087.00 DOWNSTREAM ELEVATION(FFZI) =1084.00 STREET LENGTH(FEET) - 700.00 CURB HE[GTH(INCHES) - 6. STREET -18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) - 10.00 INTERIOR STREET CROSSFALL(DECIMAL) - .020 OUTSIDE STREET CROSSFALL(DECI)AAL) _ .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF - 2 **TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) - 31.69 ***STREET FLOWING FULLsss STREET FLAW MODEL RESULTS: NOTE: STREET FLAW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLAW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLAW OCCURS OUTSIDE OF THE STREET CHANNEL THAT IS, ALL FLAW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) - .70 HALFSTREET FLOOD WIDTH(FEET) - 18.00 AVERAGE FLOW VELOCITY(FEET/SEC.) - 2.85 PRODUCT OF DEPTH&VELOCITY - 2.01 STREET FLAW TRAVEL TIME(MIN.) - 4.09 TC(MIN.) = 15.70 100 YEAR RAINFALL INTENSITY(INCH/HOUR) - 3.018 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) - .0970 SUBAREA AREA(ACRES) - .00 SUBAREA RUNOFF(CFS) - .00 EFFECTIVE AREA(ACRES) - 10.00 AVERAGED Fm(INCH/HR) - .10 TOTAL AREA(ACRES) - 10.00 PEAK FLAW RATE(CFS) - 31.69 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) - .70 HAL STREET FLOOD W1DTH(FEET) =18.00 FLAW VEIOCITY(FEET/SEC.) - 2.85 DEPTH•VELOCITY - 2.01 sssssagtsssssssstssstststssssasssssssssssssssssssssssssusssssssssasssss FLAW PROCESS FROM NODE 541.00 TO NODE 541.10 IS CODE - 8 » » >ADDTIION OF SUBAREA TO MAINLINE PEAK FLAW « «< ' 100 YEAR RAINFALL RTMNSTTY(INCH/HOUR) - 3.018 SOIL CLASSIFICATION IS "A" e.- W013- 0M40I3DZ5.rcs 12 6/95 0 r S6/9 £f mu "SZa£Iolrv"0 » »>(M07d 3NfISS3Nd 3ZIS3did a3.LVWLLS'3 o3 omSfK «« »» >V3HVanS f12IH.L 3M TJAVILL MOr - aaid ajndwoo<< <<< £ = 3a0O SI OI'£K MON 0101"ZK 3aON MOM SS33ONd MaU s »» sssssss » »»s »ss »s »s»ss » » »» »ss» »ssss »s » »sssss » »sss »» 80'81 - (NIYOaL ££'96 - (Sd ALV2l MaU XV3d 00'06 - (S3NOV)V3NV'IVML L60 _ (NH/HONL)md a30VN3AV 00'06 - (MOV)V3W 3ALL'Y.UW LI'86 - (S3O)MONfIN V3iIVEMS 00'OZ - (S3NOV)V3NV V3NVUf1S OL60' = (NH/HONI)wd `UVN SSO'I V32 OnS'IVIOYAMOO X. SI NOLLVOLESSYM MOS £LL "Z - OdnoH/HON)AJJSNum TIV wV3A 00i » » >mam }IV3d 3HI'INIVw cm V3uVSns d0 NOLLIaaV « «< 8 = 3000 SI OI"Z6S 3aON OZ 00'ZK MON NOVA SS33014I Mau »ssssssssss» »sssssss» ssss» s »»sss»stt»ssssttsss »sss »»ssstt »ssss O£"£ = AI IOM'aA.HIAUa SS'6 - ('33S/133d)AJJOOTAA MO'I3 VE-ZZ = U333)H.LQIM QOOU J.3aW SnVH £L' _ ( J 33&UMG :SOI'IfIVNa)LH A%aU 133XU V3WEW 210 aN3 HIS - (SA3)3.i.VN MaU Wad 00'OZ - (M3V)VM'IVIaL 01" _ (IIH 3M)WCI a30VN3AV 00'OZ - (SU3VNM 3ALMSM 00" = (S3O)ddONn - d V3NVSfIS 00' _ (S3NOV)v'm V3NVS[lS OL60' - ( NH/HONL)md `uv SSO'I V3NVSfL4'IVIO2I3NmOO .V. SI NOLLVOLIISSd'IO'HOS £LLIZ - ( UnOWH3N1IAJJSNU II TIVdNIVN TnA 001 80'81 = ('NU'i)D L 8£'Z = ('NlF0MM T3AV U IAaU J.332LiS 0£'£ = AJJOO'I3AVHJAHa d0 J.Of laOZld SS'6 = ('O3S/.L33d)AJJOO - I3A M07d 30VN3AV 4£'ZZ = (mawHIMM 00074 J.33NJSd'IVH £L' - ( L33dVM3a MUM 139XU m= nom SI `am AvA%xwd mu ONO'M M07d w I si xviLL 'IINNVHO MUM MU 30 3aISJnO SufIOOO MO'Id 31SI'I03N IVHJ. NOLLdYY[LSSV mu HO a3SVS 3NV SJ.'If M MOrM J.33NJS ONLMOTIOd 3HJ. SNfIO 30 dO.L Sa33OX3 MaU JZ"M :&WN :&L'I M'MGOn M07d J33NJS 8S"ZS - WO)MOU NVHn OMSfl a3J11dYHOO 3M TAAV ZLss Z = ddONAII ONIAUWD U23USXIVH 30 MEEM N aMdIO3dS 060' _ (' m3aa)TIVdSsowa J.33NJS 3aium OZO' - ('IVYYI33aYmassOIIO J.33NdS IIOIiI3LM 00'81 - 3NS3aVN0 TIVdSSOila Ol NMOI13 MONA 30NVJSIa 00'92 = J.33xu 8 = (szHo DHJ rdH SNAG 00'OS9 - UxAd)HJON3'I J.3'um 00' SLOT = (.L33d)NOLLVA3'13 NId3N.LSNMOa 00"t'80i - ( mi NOLLVAam FtY'dii sm » » >V321vansnim 3M 73AVILL IAaU J.33N.LS 3Jdldl^IOO« «< 9 - 3000 SI Oi'ZK 3aON O.L OI'IK MON NIOILI SSiIOOIId M07d » ssssstssss »ssssss»s »sssss»s »sts»ssssssss »sssssss »ssss » »tsssss »s 0 - - OL'SI - (NwihL 8S "ZS - (S3O)&Lvll tAam xV3d 00 "OZ - (S3NOV)nw ivjnL L60' _ (IUHO d CMDVN3AV 00'OZ - (MOV)VM SAU' V &M 6Z "9Z - (Sd3)ddONflll v ms 00'01 - (SnovN3NV V3NV m OL60' -(? IH/ IIONI- d'3J.VNSSO'IV3NVSf13'MO2I3mOO H n it DEPTH OF FLAW IN 39.0 INCH PIPE IS 31.2 INCHES PIP E-FLAW VEIACITY(FEET /SEC.) - 13.5 UPSTREAM NODE ELEVA7ION(FEE1) - 1075.00 ..... - - - - - -- -- - - DOWNSTREAM NODE ELEVATLON(FEE'L) - 1060.00 - FLAW LENOTH(FFZn - 1000.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) - 39.00 NUMBER OFFIPES = 1 PIPE-FLAW(CFS) - %.33 TRAVEL. TIME(MIN.) - 1.23 TC(MIN.) = 19.31 � sssassassssssssssssssssssstaattatsasassssssssssssssttstsssssssssssssss FLOW PROCESS FROM NODE 543.00 TO NODE 543.10 IS CODE _ - 8 - - - - - 8I� - -- --- --- » » >ADDITION OF SUBAREA TO MAINLEQE PEAK FLOW « «< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) - 2.666 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LASS RATE, Fm(INCH/HR) _ .0970 SUBAREA AREA(ACRES) - 31.00 SUBAREA RUNOFF(CFS) = 71.66 on EFFECTIVE AREA(ACRES) - 71.00 AVERAGED Fm(INCH/HR) _ .097 im TOTAL AREA(ACRES) - 71.00 PEAK FLOW RATE(CFS) - 164.13 TC(MIN) - 19.31 sssgsssssgstsssssssssssssssssssssssssssssssssssssssstsssssassssssasssssssa FLAW PROCESS FROM NODE 543.10 TO NODE 544.10 IS CODE - 3 » »>COMPiTIE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » » >USING COMPUTER-ESTIMATED PIPESIZE (NON - PRESSURE FLOW)<«« DEPTH OF FLAW IN $4.0 INCH PIPE IS 40.0 INCHES PIPE -FLAW VELACITY(FEET/SEC.) = 13.0 UPSTREAM NODE ELEVATION(FEET) - 1060.00 DOWNSTREAM NODE EIEVATION(FEET) = 1045.00 FLAW LENGTH(FEE ) - 1650.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) - 164.13 TRAVEL TIME(MIN.) = 2.12 TC(MIN.) = 21.42 Awe sssssssstsasssssssssasswssssssssssssassssssssssssssssassssssssstssssssssst FLAW PROCESS FROM NODE 544.10 TO NODE 544.10 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< » » >AND COMPUTE VARIOUS CONFLUIENCED STREAM VALUES««< i1111i TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(IvIIN.) - 21.42 RAINFALL INTENSITY(INCH/HR) - 2.50 AVERAGED Fm(INCH/HR) _ .10 EFFECTIVE STREAM AREA(ACRES) = 71.00 TOTAL STREAM AREA(ACRES) - 71.00 ® PEAK FLOW RATE(CFS) AT CONFLUENCE = 164.13 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ss PEAK FLAW RATE TABLE ss Q(CFS) Tc(MIN.) Fm(INCHM R) Ae(ACRES) 1 682.59 24.04 .265 360.93 2 673.87 24.99 .266 366.00 3 675.22 21.42 .261 329.36 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: e:\4013 -0871R4013DZ5.res 14 6/95 �i PEAK FLOW RATE(CFS) - 682.59 Tc(MIN.) - 24.042 EFFECTIVE AREA(ACRES) - 360.93 AVERAGED Fm(INCH/HR) _ .27 TOTAL AREA(ACRES) - 3600 sasatasssssstssssststpssssssssssasasssssssssasssssassssssssssssssasss FLOW PROCESS FROM NODE 544.10 TO NODE 549.12 IS CODE = 3 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » »>USING COMPUTER ESTIMATED PIPESIZE (NON - PRESSURE FLOW)<«« DEPTH OF FLOW IN 93.0 INCH PIPE IS 70.7 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) - 17.7 UPSTREAM NODE ELEVATION(FEET) - 1045.00 DOWNSTREAM NODE ELEVATION(FEE7) - 1023.00 FLOW LENGTH(FEET) - 2700.00 MANNING'S N - .013 •'" ESTIMATED PIPE DIAMETER(INCH) - 93.00 NUMBER OF PIPES = PIPE- FLOW(CFS) - 682.59 ow TRAVEL TIME(MIN.) - 2.54 TC(MIN.) - 26.58 sssasasssssasssssssssssssssssssssssssssssssaasssssssssssassssssssssass FLOW PROCESS FROM NODE 549.02 TO NODE 549.12 IS CODE = 8 » » >ADDTITON OF SUBAREA TO MAINLINE PEAK FLOW « «< FLOW PROCESS FROM NODE 549.12 TO NODE 549.13 IS CODE - 3 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » » >USING COMPUTER ESTIMATED PIPESIZE (NON - PRESSURE FLAW)« «< DEPTH OF FLAW IN 108.0 INCH PIPE IS 85.0 INCHES PIPE-FLOW VELOCTTY(FEET/SEC.) - 14.1 UPSTREAM NODE ELEVATION(FEET) - 1023.00 DOWNSTREAM NODE EI.EVATION(FEET) - 1019.00 FLAW LENOTH(FEE1) - 950.00 MANNINGS N - .013 ESTIMATED PIPE DIAMETER(INCH) - 108.00 NUMBER OF PIPES - 1 PIPE- FLOW(CFS) - 759.44 TRAVEL TIME(MIN.) - 1.12 TC(MIN.) - 27.70 END OF STUDY SUMMARY: TOTAL AREA(ACRES) - 449.00 TC(MIN.) = 27.70 EFFECTIVE AREA(ACRES) - 443.93 AVERAGED Fm(INCH/HR)= .30 PEAK FLAW RATE(CFS) - 759.44 sss PEAK FLAW RATE TABLE sss Q(CFS) Tc(MIN.) Fm(INCH/HR) Ae(ACRES) 1 759.44 27.70 300 443.93 2 748.62 28.70 300 449.00 3 757.05 25.13 .299 41236 END OF RATIONAL METHOD ANALYSIS D e.\4013 -0871R4013DZ5.res 15 6/95 0 100 YEAR RAINFALL INTENSTTY(INCH/HOUR) = 2.200 SOIL CLASSIFICATION IS "B" RESIDENTIAL -> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .4500 SUBAREA AREA(ACRES) - 83.00 SUBAREA RUNOFF(CFS) = 130.76 EFFECTIVE AREA(ACRES) = 443.93 AVERAGED Fm(INCH/HR) _ .300 TOTAL AREA(ACRES) - 449.00 PEAK FLOW RATE(CFS) - 759.44 TC(MIN) - 26.58 irr FLOW PROCESS FROM NODE 549.12 TO NODE 549.13 IS CODE - 3 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » » >USING COMPUTER ESTIMATED PIPESIZE (NON - PRESSURE FLAW)« «< DEPTH OF FLAW IN 108.0 INCH PIPE IS 85.0 INCHES PIPE-FLOW VELOCTTY(FEET/SEC.) - 14.1 UPSTREAM NODE ELEVATION(FEET) - 1023.00 DOWNSTREAM NODE EI.EVATION(FEET) - 1019.00 FLAW LENOTH(FEE1) - 950.00 MANNINGS N - .013 ESTIMATED PIPE DIAMETER(INCH) - 108.00 NUMBER OF PIPES - 1 PIPE- FLOW(CFS) - 759.44 TRAVEL TIME(MIN.) - 1.12 TC(MIN.) - 27.70 END OF STUDY SUMMARY: TOTAL AREA(ACRES) - 449.00 TC(MIN.) = 27.70 EFFECTIVE AREA(ACRES) - 443.93 AVERAGED Fm(INCH/HR)= .30 PEAK FLAW RATE(CFS) - 759.44 sss PEAK FLAW RATE TABLE sss Q(CFS) Tc(MIN.) Fm(INCH/HR) Ae(ACRES) 1 759.44 27.70 300 443.93 2 748.62 28.70 300 449.00 3 757.05 25.13 .299 41236 END OF RATIONAL METHOD ANALYSIS D e.\4013 -0871R4013DZ5.res 15 6/95 0 U) Z 0 D H r E Yw WSPG CALCULATIONS 0 L' G - .V 471REPORTSIDRAIN.WPD F 0 5 1 5 P PAGE NO 3 WATER SURFACE PROFILE - TITLE CARD LISTING HEADING LINE NO 1 IS - DECLEZ CHANNEL HEADING LINE NO 2 IS - WATER SURFACE CHANNEL HEADING LINE NO 3 IS - CITY OF FONTANA, CALIFORNIA F ko a �l II 9 DATE: 1/21/1997 TIME: 9: 9 F0515P WATER SURFACE PROFILE - CHANNEL DEFINITION LISTING PAGE 1 �" """ j CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) CODE NO TYPE PIERS WIDTH DIAMETER WIDTFI DROP CD 1 2 0 0.00 9.00 24.00 0.00 CD 2 2 0 0.00 9.00 36.00 0.00 cxa CD 3 3 0 0.00 5.00 11.00 0.00 0.00 0.00 CD 4 3 0 0.00 9.00 14.00 0.00 0.00 0.00 CD 5 5 0 0.00 ko a �l II 9 a a s DATE: 1/21/1997 TIME: 9: 9 WATER SURFACE F0515P PROFILE - CROSS SECTION POINT LISTING PAGE -2 CARD SECT NO OF X(1) , Y(1) X(2) , Y(21 X(3) , Y(3) X(4) , Y(4) X(5) , Y(5) X(6) , Y(6) X(7) , Y;7) ' CODE NO POINTS X(8) , Y(8) X(9) , Y(9) X(10) ,Y(10) X(11) ,Y(11) X(N) , Y(N) X(N +1),Y(N +1) X(99) ,Y(99) PTS 5 6 1.00 10.00 1.00 1.00 25.00 1.00 25.00 5.50 37.00 5.50 37.00 10.00 a a s IAI11 F 0 5 1 5 P PAGE NO 2 WATER SURFACE PROFILE - ELEMENT CARD LISTING ELEMENT NO 1 IS A SYSTEM OUTLET U/S DATA STATION INVERT SECT W S ELEV 23800.00 1004.24 1 1010.70 ELEMENT NO 2 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 24069.87 1005.07 1 0.013 0.00 0.00 0.00 0 ELEMENT NO 3 IS A JUNCTION * * * * * * * U/S DATA STATION INVERT SECT LAT -1 LAT -2 N Q3 Q4 INVERT -3 INVERT -4 PHI 3 PHI 4 24089.45 1005.15 1 3 0 0.013 759.0 0.0 1006.70 0.00 30.00 0.00 ELEMENT NO 4 IS A TRANSITION U/S DATA STATION INVERT SECT N 24120.39 1005.29 2 0.013 ELEMENT NO 5 IS A TRANSITION U/S DATA STATION INVERT SECT N 24167.12 1005.34 5 0.013 ELEMENT NO 6 IS A TRANSITION U/S DATA STATION INVERT SECT N 24212.12 1005.48 1 0.013 ELEMENT NO 7 IS A TRANSITION U/S DATA STATION INVERT SECT N 24242.12 1006.18 4 0.013 ELEMENT NO 8 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 24242.12 1006.18 4 0.013 0.00 0.00 0.00 0 ELEMENT NO 9 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 24254.70 1006.21 4 0.013 0.00 0.00 0.00 0 ELEMENT NO 10 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 24357.94 1006.21 4 0.013 0.00 0.00 0.00 0 ELEMENT NO 11 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 24614.20 1006.72 4 0.013 0.00 0.00 0.00 0 ELEMENT NO 12 IS A SYSTEM HEADWORKS U/S DATA STATION INVERT SECT W S ELEV 24614.21 1006.72 4 1016.36 NO EDIT ERRORS ENCOUNTERED- COMPUTATION IS NOW BEGINNING M 8 LICENSEE: HALL 6 FOREMAN F0515P PAGE 1 WATER SURFACE PROFILE LISTING DECLEZ CHANNEL WATER SURFACE CHANNEL -- CITY OF FONTANA, CALIFORNIA STATION INVERT DEPTH W.S. Q VEL VEL ENERGY SUPER CRITICAL HGT/ BASE/ ZL NO AVBPR ELEV OF FLOW ELEV HEAD GRD.EL. '.- ELEV DEPTH DIA ID NO. PIER "? L /ELEM SO SF AVE HF NORM DEPTH ZR ++++++++++ rrrrr+ rr++ rrtr++++++ r++ rr+ r++++++ rtrrr++++ r+ rrr++t+++++++++ rrrr+++++++ rrrr+ rr++++ rr++ rrrrrr +rrr + +r +r + +rrr +rrrr +rr + + + + +rr+ 23800.00 1004.24 6.779 1011.019 2706.0 16.63 4.296 1015.315 0.00 7.338 9.00 24.00 0.00 0 0.00 ■111 220.14 0.00308 .002869 0.63 6.719 0.00 24020.14 1004.92 6.996 1011.913 2706.0 16.12 4.039 1015.947 0.00 7.338 9.00 24.00 0.00 0 0.00 IA 49.73 0.00308 .002567 0.13 6.719 0.00 24069.87 1005.07 7.338 1012.408 2706.0 15.37 3.666 1016.074 0.00 7.338 9.00 24.00 0.00 0 0.00 JUNCT STR 0.00409 .001466 0.03 0.00 an 24089.45 1005.15 9.913 1015.063 1947.0 8.18 1.040 1016.103 0.00 5.892 9.00 24.00 0.00 0 0.00 TRANS STR 0.00453 .000351 0.01 0.00 24120.39 1005.29 10.473 1015.763 1947.0 5.16 0.414 1016.177 0.00 4.496 9.00 36.00 0.00 0 0.00 TRANS STR 0.00107 .000227 0.01 0.00 24167.12 1005.34 10.296 1015.636 1947.0 6.15 0.587 1016.223 5.996 5 0 0.00 TRANS STR 0.00311 .000423 0.02 24212.12 1005.48 9.793 1015.273 1947.0 8.28 1.066 1016.339 0.00 5.892 9.00 24.00 0.00 0 0.00 TRANS STR 0.02333 0.00 24242.12 1006.18 8.440 1014.620 1947.0 16.48 4.216 1018.836 0.00 8.440 9.00 14.00 0.00 0 0.00 12.58 0.00238 .003339 0.04 9.000 0.00 24254.70 1006.21 8.703 1014.913 1947.0 15.98 3.965 1018.878 0.00 8.440 9.00 14.00 0.00 0 0.00 !#w 17.65 0.00000 .003082 0.05 0.000 0.00 24272.35 1006.21 9.000 1015.210 1947.0 15.48 3.722 1018.932 0.00 8.440 9.00 14.00 0.00 0 0.00 OR 85.59 0.00000 .004800 0.41 0.000 0.00 24357.94 1006.21 9.411 1015.621 1947.0 15.48 3.722 1019.343 0.00 8.440 9.00 14.00 0.00 0 0.00 256.26 0.00199 .004800 1.23 9.000 0.00 M 8 F 3 LICENSEE: HALL 6 FOREMAN F0515P PAGE 2 WATER SURFACE PROFILE LISTING DECLEZ CHANNEL WATER SURFACE CHANNEL IN CITY OF FONTANA, CALIFORNIA STATION INVERT DEPTH W.S. Q VEL VEL ENERGY SUPER CRITICAL HGT/ BASE/ ZL NO AVBPR ELEV OF FLOW ELEV HEAD GRD.EL. ELEV DEPTH DIA ID NO. PIER am L/ELEM SO SF AVE HF NORM DEPTH ZR + xxxxxxxxxxxxxttxxxxxx+ xxx+ xx+++++++++++++++++++++++++++++++++ t+++++++++++++++++++++++++++++++++++++ + + + + + + + +xx +x + + + + +xx + + + + + + + + +x ++ 24614.20 1006.72 10.131 1016.851 1947.0 15.48 3.722 1020.573 0.00 8.440 9.00 14.00 0.00 0 0.00 F 10 E-1 v vi F 0 5 1 5 P WATER SURFACE PROFILE - TITLE CARD LISTING OLEANDER AVENUE STORM DRAIN TRACT 14758 FILE: 5147A1.INP /OUT Fl v 1�1 0 8 DATE: 1/ 6/1999 TIME: 9:58 FOS15P s WATER SURFACE PROFILE — CHANNEL DEFINITION LISTING PAGE 1 CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) CODE NO TYPE PIERS WIDTH DIAMETER WIDTH DROP CD 102 4 8.50 3 CD 1 3 0 0.00 7.00 12.00 0.00 0.00 0.00 CD 2 3 0 0.00 5.50 9.00 0.00 0.00 0.00 1�1 0 8 F, F 0 5 1 5 P PAGE NO 2 WATER SURFACE PROFILE - ELEMENT CARD LISTING ELEMENT NO 1 IS A SYSTEM OUTLET U/S DATA STATION INVERT SECT W S ELEV 31.22 1005.75 1 1015.06 ELEMENT NO 2 IS A REACH ' U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT VAN H 67.93 1005.82 1 0.013 0.00 60.00 0.00 0 ELEMENT NO 3 IS A REACH • • • - U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 101.74 1005.89 1 0.013 0.00 0.00 0.00 0 ELEMENT NO 4 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 00 164.44 1006.02 1 0.013 0.00 30.00 0.00 0 " Im ELEMENT NO 5 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 227.14 1006.14 1 0.013 0.00 30.00 0.00 0 ELEMENT NO 6 IS A TRANSITION U/S DATA STATION INVERT SECT N 247.14 1006.18 102 0.013 ELEMENT NO 7 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 326.61 1006.33 102 0.013 0.00 0.00 0.00 1 ELEMENT NO 8 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 417.95 1006.52 102 0.013 0.00 0.00 0.00 0 ELEMENT NO 9 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 489.35 1006.67 102 0.013 0.00 90.00 0.00 0 ELEMENT NO 10 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT V.AN H 572.54 1006.84 102 0.013 0.00 0.00 0.00 0 0 ELEMENT NO 11 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 656.39 1007.00 102 0.013 0.00 40.00 0.00 0 ELEMENT NO 12 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 664.37 1007.02 102 0.013 0.00 40.00 0.00 0 iw ELEMENT NO 13 IS A TRANSITION U/S DATA STATION INVERT SECT N 684.37 1007.06 2 0.013 iw 3 om ow Fl. r t e 1 5 P PAGE NO 3 F 0 5 WATER SURFACE PROFILE - ELEMENT CARD LISTING ELEMENT NO 14 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MA:7 H 704.37 1007.10 2 0.013 0.00 0.00 0.00 0 ELEMENT NO 15 IS A TRANSITION U/S DATA STATION INVERT SECT N 724.37 1007.14 102 0.013 ELEMENT NO 16 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 788.03 1007.65 102 0.013 0.00 50.00 0.00 0 ELEMENT NO 17 IS A SYSTEM HEADWORKS + r U/S DATA STATION INVERT SECT W S ELEV 788.03 1007.65 102 0.00 NO EDIT ERRORS ENCOUNTERED- COMPUTATION IS NOW BEGINNING ** WARNING NO. 2 +* - WATER SURFACE ELEVATION GIVEN IS LESS THAN OR EQUALS INVERT ELEVATION IN HDWKDS, W.S.ELEV - INV + DC r t e vIll B LICENSEE: HALL & FOREMAN F0515P PA 1 WATER SURFACE PROFILE LISTING OLEANDER AVENUE STORM DRAIN OR TRACT 14758 FILE: 5147A1.INP /OUT STATION INVERT DEPTH W.S. Q VEL VEL ENERGY SUPER CRITICAL HGT/ BASE/ ZL NO AVBPR ELEV OF FLOW ELEV HEAD GRD.EL. ELEV DEPTH DIA ID NO. PIER L /ELEM SO SF AVE HF NORM DEPTH ZR 'aT „� 41f �f /�lfltffk4ftlf *�frffRAf R \f+kR! }ttkf *4Rf 4ff ttl4R ff��4ff/rRitt��tftifltltif 4f #ttif kff4R *ff ►1'ff R! #tfttli+! }ftltilf i�lttRt ►�fflf �rf eft 31.22 1005.75 9.310 1015.060 759.0 9.06 1.275 1016.335 0.00 4.991 7.00 12.00 0.00 0 " - 0.00 36.71 0.00191 .002192 0.08 6.069 0.00 67.93 1005.82 9.529 1015.349 759.0 9.06 1.275 1016.624 0.00 4.991 7.00 12.00 0.00 0 0.00 33.81 0.00207 .002192 0.07 5.884 0.00 101.74 1005.89 9.533 1015.423 759.0 9.06 1.275 1016.698 0.00 4.991 7.00 12.00 0.00 0 0.00 62.70 0.00207 .002192 0.14 5.881 0.00 164.44 1006.02 9.687 1015.707 759.0 9.06 1.275 1016.982 0.00 4.991 7.00 12.00 0.00 0 0.00 62.70 0.00191 .002192 0.14 6.060 0.00 227.14 1006.14 9.852 1015.992 759.0 9.06 1.275 1017.267 0.00 4.991 7.00 12.00 0.00 0 0.00 on TRANS STR 0.00200 .003602 0.07 0.00 247.14 1006.18 8.682 1014.862 759.0 13.38 2.778 1017.640 0.00 6.886 8.50 0.00 0.00 0 0.00 On 79.47 0.00189 .005012 0.40 8.500 0.00 326.61 1006.33 9.069 1015.399 759.0 13.38 2.778 1018.177 0.00 6.886 8.50 0.00 0.00 0 0.00 91.34 0.00208 .005012 0.46 8.500 0.00 417.95 1006.52 9.337 1015.857 759.0 13.38 2.778 1018.635 0.00 6.886 8.50 0.00 0.00 0 0.00 8f� 71.40 0.00210 .005012 0.36 8.500 0.00 450 489.35 1006.67 10.100 1016.770 759.0 13.38 2.776 1019.548 0.00 6.886 8.50 0.00 0.00 0 0.00 83.19 0.00204 .005012 0.42 8.500 0.00 572.54 1006.84 10.347 1017.187 759.0 13.38 2.778 1019.965 0.00 6.886 8.50 0.00 0.00 0 0.00 00 83.85 0.00191 .005012 0.42 8.500 0.00 656.39 1007.00 10.978 1017.978 759.0 13.38 2.778 1020.756 0.00 6.886 8.50 0.00 0.00 0 0.00 OR 7.98 0.00251 .005012 0.04 8.500 0.00 vIll B PI LICENSEE: HALL & FOREMAN F0515P PAGE 2 WATER SURFACE PROFILE LISTING OLEANDER AVENUE STORM DRAIN OR TRACT 14758 FILE: 5147A1.INP /OUT STATION INVERT DEPTH W.S. Q VEL VEL ENERGY SUPER CRITICAL HGT/ BASE/ ZL NO AVBPR ELEV OF FLOW ELEV HEAD GRD.EL. ELEV DEPTH DIA ID NO. PIER IBA L /ELEM SO SF AVE HF NORM DEPTH ZR l fffff•ftflf♦lfR;tfl 4l ff1R..ffttil f!*•■}• t*!fRl f......tf• f•♦ .. ............................... ...... ............................... 664.37 1007.02 11.368 1018.388 759.0 13.38 2.778 1021.166 0.00 6.886 8.50 0.00 0.00 0 0.00 IA�1 TRANS STR 0.00200 .006991 0.14 0.00 684.37 1007.06 10.740 1017.800 759.0 15.41 3.688 1021.488 0.00 5.500 5.50 9.00 0.00 0 0.00 0�1 20.00 0.00200 .008971 0.18 5.500 0.00 704.37 1007.10 10.880 1017.980 759.0 15.41 3.688 1021.668 0.00 5.500 5.50 9.00 0.00 0 0.00 TRANS STR 0.00200 .006991 0.14 0.00 1RA 724.37 1007.14 11.981 1019.121 759.0 13.38 2.778 1021.899 0.00 6.886 '8.50 0.00 0.00 0 0.00 63.66 0.00801 .005012 0.32 5.703 0.00 788.03 1007.65 12.204 1019.854 759.0 13.38 2.778 1022.632 0.00 6.886 8.50 0.00 0.00 0 0.00 am im om t ri 8r C2 W -4-1 0 r m N Lf) C6 C6 GO CV O� tu O ti LL: Z 8 W 0 IF711 If7jil JFQJ t� t� "A US Me V -j L,.A U,- ILIS VAI It-I 9,,,,'-,J W711 IFPS IFMII FV fWl err iii DECLEZ CHANNEL DECLEZ 1 4/12/99 River =DECLEZ Reach =DECLEZ STA242+42.12 RS=10 1018- .013 Legend EG PF 1 WS PF I m — — — — — — — — — — — -- — — — — — — — — — — — — — — — — — — Ground • Bank Sta 1016 1014 0 1012 Ei 1010 1008 100% . . . . . . . . . . . . . . . . . . . . -, 25 30 35 40 45 5 Station (ft) FIN E. l!A OW DECLEZ CHANNEL DECLEZ 1 4/12/99 River = DECLEZ Reach = DECLEZ STA 241 +90.12 3/4 RAMP RS = 8.5 1018 .013 Legend EG PF 1 WS PF 1 ----------------------- Ground • Bank Sta 1016 1014 1012 c a N UJ 1010 1008 1006 1004 20 30 40 50 60 70 Station (ft) i 40 7 46 eo ir6 Aw V DECLEZ CHANNEL DECLEZ 1 4/12/99 River = DECLEZ Reach = DECLEZ STA 241 +68.12 HALF RAMP RS = 8 1018- .013 Legend EGPF1 WS PF 1 ----------------------- Ground • Bank Sta 1016 1014 1012 c 0 W 1010 1008 1006 1004 20 30 40 50 60 70 Station (ft) i All CIA e� ew 4 " DECLEZ CHANNEL DECLEZ 1 4/12/99 River = DECLEZ Reach = DECLEZ STA 241 +44.62 QUARTER RAMP RS = 7.5 1018- .013 Legend E W PF i Ground Bank Sta 1016 1014 1012 iK c 0 p W 1010 1008 1006 1004 20 30 40 50 60 70 Station (ft) 0 DECLEZ CHANNEL DECLEZ 1 4/12/99 River = DECLEZ Reach = DECLEZ STA 241+22.12 END RAMP RS = 7 1018- .013 Legend EGPF1 WS PF 1 Crit PF 1 Ground 1016- • Bank Sta 1014- 1012- 0 Ul 1010- ----------------------------- -------------------------------- --------------------------- 1008- 1006- 1004 . . . . . . . . . . . . . . . . . . . . 20 30 40 50 60 70 Station (ft) iffy dif OR ad iiri im am to oft ow on aw 3 20 25 30 35 40 45 50 Station (ft) on am IN 40 I 20 25 30 35 40 45 50 Station (ft) di OR rrr err trr rrr FI 0 10 20 30 40 50 60 70 Station (ft) on di rr it ur dW dd Nw iw err w. W. I m Ali di 1018- ------------------------------- 1016- DECLEZ CHANNEL DECLEZ 1 4/12/99 —OLEANDER S.D Legend EG PF 1 WS P171 --------- I --------- Crit PF 1 0 Ground 1014- 1012- 0 ui 1010- 1008- 1006- 10041 . . . . . . . . . . . 0 50 100 150 200 Main Channel Distance (ft) \ \ . ,.....4.41. -, ,.'..--1A- %, 1 7.175'4.2.1; :- \N:=;idt - '-`...`'..-4i2-';..- 5 . :.' . :... s mss . . .,„„ —,,,,,t -,f., ,,,,,.„-. , .2,...,,,,,, ,, ,,....,,,,,,, ‘,,,,,,,,,..,,,,,,,,,,...„.„„,,,,„„: ..,,,,,,,,-„,: .7 ,,,_: ":1:4 41. l " ,�� i EIS >lue8 • puncu I dd SM I pua6a-j 66/Z Lit b Z3133 19NNVH3 Z31034 DECLEZ CHANNEL DECLEZ 1 4/12/99 Legend WS PF 1 Ground Bank Sta Plan: T1 River: OLEANDER S.D Reach:OLEANDER S.D Riv Sta: 2 Profile: PF 1 t. eV K) ,,,.' 1016.61 'Elerrrentf'F ° : _' '" .' f�eft = $'Chaniie[ Right OB %i Ftead(ftj: ?=` :. _`" 0.64 Wt:"n -Val .. ' `' . 0.013 `{ Attek=(ftj , ;:. :.. 1015.97 '. teach Len. ° {ft) 196.00 196.00 196.00 1: . . y . ; r1E;W�S (ft} x Ftow`Area {sq fti }' 117.79 � E;G :6.16 Rift) ;' 0.000551 ' Area �■ " 61: . : - . ;>��` 117.79 '0 759.00 sflorv'{cfs) g.°''7 759.00 • ;:T,o• } . :' it)� ;.t ;- : 12.00 TTo „Wiath- ft .t:A :" 12.00 ofa f _: t 6.44 ei l , f)t .:. 6.44 ,Avg: Vet: (ft/s �¢ q ua " , M - ' i). t }sc:: 9.82 , 'Hdr . . e*t ft h 9.82 • 0. 7 s 32345.6 C6ny cf`s 32345.6 1 g ft 196.00 :Wetter 7{ftj 31.63 x I t; # ; 1006.15 a °:Si.je'i'K. b ff 0.13 Aph 1.00 ' Y P wer Is' = 0.82 xFr v s; ftj' ' 0.10 tCum !/otume` {a gftjl', 0.78 :6 4 :145 7 1:V 0.00 `Cum S A `(acres) 0.03 Plan: T1 River: OLEANDER S.D Reach:OLEANDER S.D Riv Sta: 1 Profile: PF 1 :; .� �„i, -'rte;. e .� � `ta =: � ?�. .n,�#. =rr , re6XEIev 0,14 V;" . 1016.51 rE1e'me�nt: VAl \ :..Ceft'OB : '.Rieht061 to ., {ft . ` , .. . i .�=° � 0 .60 = =Wt...n -Val. ��, =r 0.013 `Wi .0, 1015.90 Reach`l:en(ft� , ' - : 10.00 10.00 10.00 r6:: k' i f . 121.86 C t3( �s � °ftj �,r -�=° 1010.73 . Mow i�rea"tsq ft1 ", �� G,SIo■eaff/ft 0.000506 NAiea=tsq ft '';.;4.� � ! .: 121.86 te. 24 o - . vda 759 00 `Fk t (cfs 1 `. 759.00 'f ,. dth {ftj ° , . `ri 12.00 ?Top'.IiVI theft} .1. 12.00 Ai 4 1. o at �;T : 6.23 fAvgAVet:(ft/sj ° ° �� 6.23 ,=Maio h l)cithAft) 10.15 :Hydra =:D`eptEi (ftj. -. 10.15 '�Ci'1i� Cis 33747.7 V "( ). ', or1. � )'Y Con cfs a . ���'�:` 33747.7 L ng 1Nf {ft)`£ 10.00 ';yW(etced Per if)= 4t 32.31 iita Ei!'(ft) ' a, 1005.75 _SCiear (Ibtsq ftj. a ? 6 0.12 1AiSha 4 < `` 1.00 Stream`P er (iblfcs)- < <4 0.74 ° Frc n"L o;a& (tj "-. '.`.Cum ` Volume {ac a It)s° 0.03 i'C' &`_E`Loss it °$ Cu im Si4 { cres) g Plan: T1 River: DECLEZ Reach:DECLEZ Riv Sta: 10 Profile: PF 1 ` E G Eleetf) 4:V. , 1016.78 - :Elemeni ,. f >` ' _ : eft OB Cfia iniei : Rigtit'OB .Vet;.Fiead: {ft) ''. - 1.13 Wt: n-VaL 0.013 iV1! (ev'(fti : . ". 1015.6 Reacfi Leh 3(ft) --b° -' 30.00 30.00 30.00 " "` 228.28 °e ftt; N.. F[ow'Area(sq ftj`:. !jEope(ft/:16;f= . 0.000638 Area `,< 228.28 .QAo_ `cfsjt ', 1947.00 Flo (cfs)' >::`' 1947.00 Top`,: gdth.(ft} X' 26.00 Toj "Wiadi ft' ". "; 26.00 hVei f tigi.: , 8.53 Avg: Vet. 8.53 wi� 8.78 �IVt;Gh��Dptii�. {ftj`;�`: 9.47 "Hyctr. UeptIt�f[):�, �. ;� -, . oft t otal (cfsj 77098.4 '.Cori ccfst4 ,.:' r 77 098.4 . t . .% 44.94 o g - - fd� ftj::? : 30.00 =1Nettd"P er�ft � ���' _i ;E4; ` _: 1006.18 '' Iiiii ' , , :} 0.20 � Aii 1.00 '.:Streati Powe , ft s �, ; 1.72 F 6!e •ss (ft) 0.02 Cum V um o acre -ftj ; 0.82 E - 'oss "(ft)10 " 0.02 C SAS acres 0.08 Plan: T1 River: DECLEZ Reach:DECLEZ Riv Sta: 9 Profile: PF 1 '=E:G'0:Elev (ft)- ' :,I 1016.75 e . Element" , . , ` =1,et.OB = : `Channel .,y Right OB VelRead (11)- , 1.07 " Wt: n =:1 1 , ' . ° ` i 0.013 i, SfEtev {ft}: P -: _ 1015.68 . Reach Cee(ft E 21.99 21.99 21.99 Gnt : ::§ fi Fi Area. {s ftj 'l '•::•' 234.61 :EdG lope..6ft} :'' 0.000591 Area: 'eft t1 ', ' 234.61 Q 'O t;. 1947.00 Ffo '(cfs '' , 1947.00 4,T . . th' ft) 26.00 -- Tiip ∎ t6 7 11= 26.00 } el ota1R(ftt 8.30 " $ . �A�g�..V s � �,. : 8.30 Ma Cfil:Dpth {ft }`=_ 9.72 1 ":' 9.02 RCon" .. 80117.6 614060 ° < >;,+ 80117.6 =Le gth 1/Utd (ftjA - 21.99 .Wetted Pe cft . 'f' ` ' ` 45.43 `"� ` r St ear lb -filM C atvlin�Ch:EI.(ft)��. . 1005.96 { sq. j, ,�� -: -i -::: 0.19 -Alpha ; , ", 1. 00 ,St e Powe (lh %fts) 1.58 , Frctni- os };,d- =;- 0.01 'Cui»:.Volume.(acre -ft) _`. " 0.66 C &'ELoss ft , `:- 0.12 "�� " ~ � y ( ) ,Cum SA'`(acresiV. 0.06 Plan: T1 River: DECLEZ Reach:DECLEZ Riv Sta: 8.5 Profile: PF 1 :GIsV (ft) lip; 1016.62 ; <Efement ', . ' : `''Left:OB ` .m °- C[unriel;: Right OB . tol;);,[ead (ft}, 0.68 1iJt: n-1%a[ .t. _ •' : 0.013 l Firekt) ',_.' 1015.94 = "Reach Len (ft), '\'; ;:: 21.99 21.99 21.99 ;CnOY:0ft6 ' ?A' ' Ftow Area-(sci=ft)< : : 293.57 t E G Slope (fttftj 'r; , 0.000390 rea (s ft)" < 2 93.57 `!.QZa#ar(cfsftr;: > 1947.00 F(ow (cfs)' , 1947.00 'iipi7Wi3tli'(ftW- P. 'c I 38.00 ,: Top'<Width (ft) 38.00 Ve(Total (ftisj" .. 6.63 , :Avg: Vef.' (fi/s) `. , , . 6.63 M k p'(h'{ 6 10.14 'Hyde �D pthl(ft }" . ... 7.73 ,t V f'ot cfs) 98615.1 :Cenim: (cfsj , 4 .:a .- 98615.1 gttllltd(ftj° 21.99 :;ifi% f dP f t).�= 58.27 `Min:Ch E ft) p =. - 1005.80 =Sh ar (Ib/ . :ft) *. ` ` 0.12 Afptia _' 1.00 = S am Pourer (i61ft's)`" 0.81 F ct Ti..Vi (ft)1'i`= 0.01 `Cum Vo ume:(cre -ft) 0.53 'fCr& E Loss ft 0.03 , ,` es) ( };"� ; Cu`m S A�.(acres)«': ; 0.05 Plan: T1 River: DECLEZ Reach:DECLEZ Riv Sta: 8 Profile: PF 1 1016.58" °'Left - =Riht = OB �e1 He ds (ft) 0.58 �" 3 ; ° 0.01 1016.00 R�cft�[en ,, 21.99 21.99 21.99 .£, a .t. �;? °- 318.05 1low Area ft z.;= E G'.o ) tam 318.05 o r { 1947.00 [0 Cfs �� 1947.00 To W�" 38.00 38.00 6.12 i :>:y =� 6.12 e:a 10.37 Hdr peg f t" 8.37 Pon :. 112100 5 Conv c s 112100.5 iiiiiitat 21.99 W 58.74- �� 1005.6 3 hear Ib/ 0.10 too P ow l ii /,ft 0.62 rzaa."1/6. „,,, . .2 0.01 ; � _a cre- 0.37 �G'& '� 0.04 __� , 0.03 Plan: T1 River: DECLEZ Reach:DECLEZ Riv Sta: 7 Profile: f E G i e, ftj Ate 10 ' Element ` : - PF he ft i� ' Channel :. Right OB (V 'lea ' ft „ 0.38 - W��rt=Val: 0.0 11f:S t o " x eaC . each • � I _s 1009.79 , E 1016.13 � 10.00 10.00 1 0.00 G[ity;,': a �` 393.57 ft Iow'Are f ft),. . " G y p Ap ft' .' s, 0.000151 Area ( s q `f t �x 393.57 �� 1947.00 =Flow(Cfs } �� 1947.00 f t Ift } A 38. Top Wlith ft 38.00 Ve 1"[o�{ft/s 4 `- A= YeI(f[/s) 4.95 N 1� C ti l t + { ft) _° . 10.83 'H cl De:ti ft ; . 10.36 Con a ta { j 158231 -Cony. (CO' 158231.6 . -_; ,,- - y .4 _ � 59.66 t�eng _„ td' ft$ . `,> ;> 10.00 > Wetteif Per. ft . sMi l Ctt E {ft) ''k.,":::1' 1005.30 5[iear Is 4 "-- 44 t- ftj "-- 0.06 At:._a 'Stream Power {16lfts 0.31 ;Frr�: s, {ft)° Cani:Volame.tac're -ftj > 0.06 i .s^ f,.,« .- tea) -- >, Cii . Zr taltft} :. m SA {acres)'' = Plan: T1 River: DECLEZ CONF. Reach:DECLEZ CONF. Riv Sta: 5 Profile: PF 1 't-G Elev (ffj < ::. 1 016.51 I° 'Element ,4. 1 . - - ° Left OB ''- Channel Right OB 'Vel`Head (ft) .::: _' : 2.43 .Wt: n -Vat: '''' a = _ 0.013 W.S (ft), >_.,."._ 1014.08. Re Len., N.:11 -':.. 262.00 262.00 262.00 Crit W.S.'(ft) FlowArea }`.` 216.27 E G'. Slope (ft%ft)'- 0.001349 sArea sift - 216.27 O .TVtal (cfsj, ; ='r 2706.00 Flow (c fs`), t- ° a = 2706.00 ,O Vidtti (ft) 24.00 Top 111'fal(fij 24.00 4Vel otal (0g01,'' 12.51 , FAV RVe ft/s O = 12.51 f * Chl;Dpth;_(ft)': 9.01 :-.1-fidaltfiVoW0 9.01 <Co ittafi (cfs W 73685.4. Co n . (� s 73685.4 ` legg . �Wtd(ft 262.00 We d P.e ft) 42.02 tIV .E[ {ft). ' s , 1005.07 ,, Shear ftb sq ) f t � � • � -:.% 0.43 A(lAV: ` ` 1.00 :Stream Po erg. {Ib /fGs }.. 5.42 '1'6* ss`(ft) 0.46: Cum Vo ume acre -ft 2.24 C &;E L'oss( , . 0.12 - Cuiii (acres)` £ a 0.29 Plan: T1 River: DECLEZ CONF. Reach:DECLEZ CONF. Riv Sta: 4 Profile: PF 1 ..a �L dam.. ..: F •,: #�s�a b =E:G1=r (flit , 1015.92 ` Rlement.' 4M `Left OB ' ..': =Ch kJ! t OB Ve> ead. (ft 3.67 0.013 VT$ tie!i (ftj` u 1012.25 Reach " Len ft _,-.42:4-i7 262.00 262.00 262.00 ' 1012.25 :Flow,.. red ft r 175.98 - z. /f x . <EC tope:(tJft,= . 0.002400 EXtiterUkTiFIM 175.98 Q 2706.00 � a 1 C Cfs }` =Flow (cfsC 2706.00 .1 ":81 Vidttl ;` 24.00 .To: Vail - aft < 24.00 VeI.I'o a1(ftV) 15.38 '-AAVg 1/el. ftls) 1 ,- 15.38 M470111)000 (ft) - 7.33 ` lidr )eeptli (ft) .. . 7.33 le.Or Total (cfs) 55241.4 : v; cfs g"`VaiV 55241.4 •ten �tti Wtd., (ft) ::.' :.' 262.00 t, 9 Wetted Per�(ft 4 -� 4`.. 38.66 '`KAir C i El (ft)_ 1 1 _ ` , , 1004.92 ; Sliea ` 1bIs ∎ ft - A 0.68 . :411p, a. *. _ 1.00 ' Stream;Powec / fts 1, 10.48 F ctn Loss _ (ft) : ` , 0. acr O : Cur Volume�(acre =ft 1.06 'C & 0.00 Cum'SA(acres) ` 1 1 0.14 Plan: T1 River: DECLEZ CONF. Reach:DECLEZ CONF. Riv Sta: 3 Profile: PF 1 - E G EIIev (ft) >; :1 1015.28 4,1e144.. . ` a .. Left OB Channel _ _ Right OB ale } eaCilit) 3.68 Wt:11= 9at: 0.013 iWV:k ev.(ft)_r ..= 1011.61 ,; Reach" I:e`n (ft)44' _ , Cn iW Sl(ftit " . 1011.61 , =FIowA A rea sq`ft) Fes; 175.87 : Sl elkft) =,"= 0.002404 = Area let t) '�l -tii 175.87 ,',4.„ Q o cfs}p : 2706.00 F1ow '� 2706.00 'op Y :111, (ft) <> L 24.00 Top Width ,<: 24.00 =Vein o al - s 15.3 'Avgg E ll s) ; :. .. 15.39 ::Max, Clf(bptli':(ft) _ ` 7.33 , tiyd'r.15e*i (ffj` 7.33 ,Con „Tota( : ,:. 55193.3 . Gon cfs) 55193.3 L ne ilfI t`U(ft) Wens 2 4 (ft)' s. 38.66 :Min Ch,EI.(ft 1004.28 a ,- , ,. { }''° :Shea /sq = ft }� :!'` 0.68 -,'Alpha itit. .... 1.00 Stream Power (1b /fti) . 10.50 :Wati iass.(ft) _' . Cunt- Volume (acre -ft) s :,OX 't loss (ft)' , r-Cti tyr SA (acres) ;) HEC-RAS Plan_ Ti River DECLEZ CONF Reach: DECLEZ CONF. Reath -- - .„'-'Q'Ttitiliii I4JciiitCli.8`,' " Olt WS: ' .yE.G. Mew , ' E.G. Slope 'WI ClAni...' ''sfft(iw Area' , ,Toii'imifiti: - , ' FroVde f Chl ( ,Z+, 7 . , 41.(6). , (,::, :, ,,-; Or —:, - ;' -- (ft) ' i '-(ft/ft) '(lt/s) DECLEZ CONF. - :r- 5 ' ' . . 2706 00 1005.07 1014 08 1016.51 0.001349 12.51 216.27 24.00 0.73 DECLEZ CONF. :. - 4 - 2706 00 1004 92 1012.25 1012 25 1015.92 0.002400 15.38 175.98 24.00 1 00 DECLF_Z CONF. _3 2700 1004 28 1011.61 1011 61 1015 28 0.002404 15.39 175.87 24.00 1 00 HEC -RAS Plan. T1 River. OLEANDER S.D Reach: OLEANDER S.D Reach ' River Sta -:, �'Q Total ° ',, Mid Ch El .., a WS: Elev 'Grit W.S. •d E.G, Elev E.G. Slope , Vel Chnl:� Flow Area::; Top Width _ >, Froude # Chi (c ) F , ', (ft) , '''.A-P(11).','' 6) • ,.( " (ft) . ' (6H)" -(ft/s) : (sgft) . 1,-- _ - � a4, 1ft)E; = . i '1' ' OLEANDER S.D 2 ' , 759.00 1006 15 1015.97 1016.61 0 000551 644 117.79 12.00 0 36 OLEANDER S.D _1 759.00 1005.75 1015.90 1010.73 1016 51 0.000506 6 23 121.86 12.00 0.54 HEC -RAS Plan: T1 River: DECLEZ Reach: DECLEZ . 3.iReach'.i , =RiverSta. ).,Q TotaE : ; f Min'Ch El '. W.S. EIevL< ,Grit WS: i E.G. Elev E.G. Slope = Vel Chnl ' .Flow Area : Top Width, Froude'# Chi < (cfsl : , z :oft) .:„ ... {ft)' ; ' ' {ft) ' '2r.::(10:::: ' (9/ t) ;; {ft/s) . (Sq ft) (fti DECLEZ 10..; 1947.00 1006.18 1015.65 1016.78 0.000638 8.53 228.28 26.001 0.51 DECLEZ.„' 9 1947.00 1005.96 1015.68 1016.75 0.000591 8.30 234.61 26.001 0.49 DECLEZ 8.5:= 1947.00 1005.80 1015.94 1016.62 0.000390 6.63 293.57 38.001 0.42 DECLEZ. ; 8 }: . 1947.00 1005.63 1016.00 1016.58 0.000302 6.12 318.05 38.001 0.37 DECLEZ - 7.5 ;;1r- - 1947.00 1005.47 1016.08 1016.54 0.000205 5.44 358.16 38.001 0.31 DECLEZ 7. :' 1947.00 1005.30 1016.13 1009.79 1016.51 0.000151 4.95 393.57 38.001 0.42 HEC -RAS September 1998 Version 2.2 U.S. Army Corp of Engineers Hydrologic Engineering Center 609 Second Street, Suite D Davis, California 95616 -4687 (916) 756 -1104 ii �w X X XXXXXX XXXX XXXX XX XXXX X X X X X X X X X X X X X X X X X X X XXXXXXX XXXX X XXX XXXX XXXXXX XXXX ens X X X X X X X X X W X X X X X X X X X X X X XXXXXX XXXX X X X X XXXXX ` W PROJECT DATA Iii Project Title: DECLEZ CHANNEL Project File : 5147.prj Run Date and Time: 4/12/99 2:00:14 PM Project in English units PLAN DATA Plan Title: DECLEZ 1 Plan File : C: \HEC \RAS \5147.p01 Geometry Title: DECLEZ Geometry File : C: \HEC \RAS \5147.g01 im Flow Title : FLOW Flow File : C: \HEC \RAS \5147.f01 irr Plan Summary Information: Number of: Cross Sections = 11 Mulitple Openings = 0 Culverts 0 Inline Weirs = 0 Bridges 0 Computational Information Water surface calculation tolerance = 0.01 Critical depth calculaton tolerance = 0.01 Maximum number of interations = 20 Maximum difference tolerance = 0.3 Flow tolerance factor = 0.001 Computation Options Critical depth computed only where necessary Conveyance Calculation Method: Between every coordinate point (HEC2 Style) Friction Slope Method: Average Conveyance Computational Flow Regime: Subcritical Flow r I 4i wl A �w #Iw 60 FLOW DATA Flow Title: FLOW Flow File : C: \HEC \RAS \5147.f01 Flow Data (cfs) River Reach RS PF 1 OLEANDER S.D OLEANDER S.D 2 759 DECLEZ DECLEZ 10 1947 DECLEZ CONF. DECLEZ CONF. 5 2706 Boundary Conditions River Reach Profile Downstream OLEANDER S.D OLEANDER S.D PF 1 DECLEZ DECLEZ PF 1 DECLEZ CONF. DECLEZ CONF.... PF.1, Known WS = 1011.02 GEOMETRY DATA Geometry Title: DECLEZ Geometry File : C: \HEC \RAS \5147.g01 Reach Connection Table River Reach OLEANDER S.D OLEANDER S.D DECLEZ DECLEZ DECLEZ CONF. DECLEZ CONF. JUNCTION INFORMATION Name: JCT. Description: Momentum computation Method Add Friction Do Not Add Weight Length across Junction River Reach Angle DECLEZ DECLEZ Upstream Critical Known WS = 1015.18 Upstream Boundary Downstream Boundary JCT. JCT. JCT. Tributary River to DECLEZ CONF. Reach Length DECLEZ CONF. 10 OLEANDER S.D OLEANDER S.D to DECLEZ CONF. DECLEZ CONF. 10 30 CROSS SECTION RIVER: OLEANDER S.D REACH: OLEANDER S.D RS: 2 INPUT Description: STA 227 +14 Station Elevation Data num= 4 OR Sta Elev Sta Elev Sta Elev Sta Elev 10 1013.15 10 1006.15 22 1006.15 22 1013.15 do Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 10 .013 10 .013 22 .013 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. Yw 10 22 196 196 196 0 0 CROSS SECTION OUTPUT Profile #PF 1 E.G. Elev (ft) 1016.61 Element Left OB 4M Channel Right OB Vel Head (ft) -0.64- Wt. .n-Val. - 0.013 W.S. Elev (ft) 1015.97 Reach Len. (ft) 196.00 196.00 196.00 Crit W.S. (ft) Flow Area (sq ft) 117.79 E.G. Slope (ft /ft) 0.000551 Area (sq ft) 117.79 �i Q Total (cfs) 759.00 Flow (cfs) 759.00 �* Top Width (ft) 12.00 Top Width (ft) 12.00 Vel Total (ft /s) 6.44 Avg. Vel. (ft /s) 6.44 �. Max Chl Dpth (ft) 9.82 Hydr. Depth (ft) 9.82 Conv. Total (cfs) 32345.6 Conv. (cfs) 32345.6 Length Wtd. (ft) 196.00 Wetted Per. (ft) 31.63 Min Ch El (ft) 1006.15 Shear (lb /sq ft) 0.13 Alpha 1.00 Stream Power (lb /ft s) 0.82 Frctn Loss (ft) 0.10 Cum Volume (acre -ft) 0.78 C & E Loss (ft) 0.00 Cum SA (acres) 0.03 CROSS SECTION RIVER: OLEANDER S.D REACH: OLEANDER S.D RS: 1 INPUT Description: STA 31.22 Station Elevation Data num= 4 Sta Elev Sta Elev Sta Elev Sta Elev 10 1012.75 10 1005.75 22 1005.75 22 1012.75 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 10 .013 10 .013 22 .013 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 10 22 0 0 0 0 0 CROSS SECTION OUTPUT Profile #PF 1 1111) E.G. Elev (ft) 1016.51 Element Left OB Channel Right OB rri Vel Head (ft) 0.60 Wt. n -Val. 0.013 W.S. Elev (ft) 1015.90 Reach Len. (ft) 10.00 10.00 10.00 Crit W.S. (ft) 1010.73 Flow Area (sq ft) 121.86 �. E.G. Slope (ft /ft) 0.000506 Area (sq ft) 121.86 Q Total (cfs) 759.00 Flow (cfs) 759.00 .. Top Width (ft) 12.00 Top Width (ft) 11� 12.00 Vel Total (ft /s) 6.23 Avg. Vel. (ft /s) w" 6.23 Max Chl Dpth (ft) 10.15 Hydr. Depth (ft) 10.15 Conv. Total (cfs) 33747.7 Conv. (cfs) a 33747.7 di Length Wtd. (ft) 10.00 Wetted Per. (ft) 32.31 Min Ch E1 (ft) 1005.75 Shear (lb /sq ft) 0.12 Alpha 1.00 Stream Power (lb /ft s) 0.74 Frctn Loss (ft) Cum Volume (acre -ft) 0.03 C & E Loss (ft) Cum SA (acres) ad ay CROSS SECTION RIVER: DECLEZ REACH: DECLEZ RS: 10 INPUT Description: STA 242 +42.12 Station Elevation Data num= 10 Wt Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 22 1016.33 23 1016.33 23 1015.18 24 1015.18 24 1006.18 48 1006.18 48 1015.18 49 1015.18 49 1016.33 50 1016.33 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 22 .025 22 .013 50 .025 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 22 50 30 30 30 .1 .3 CROSS SECTION OUTPUT Profile #PF 1 E.G. Elev (ft) 1016.78 Element Left OB �j Channel Right OB Vel Head (ft) 1.13 Wt. n -Val. 0.013 W.S. Elev (ft) 1015.65 Reach.Len. (ft) 30.00 +� 30.00 30.00 Crit W.S. (ft) Flow Area (sq ft) 228.28 ad E.G. Slope (ft /ft) 0.000638 Area (sq ft) 228.28 Q Total (cfs) 1947.00 Flow (cfs) .o 1947.00 so Top Width (ft) 26.00 Top Width (ft) 26.00 Vel Total (ft /s) 8.53 Avg. Vel. (ft /s) 8.53 Max Chl Dpth (ft) 9.47 Hydr. Depth (ft) 8.78 Conv. Total (cfs) 77098.4 Conv. (cfs) 77098.4 Length Wtd. (ft) 30.00 Wetted Per. (ft) 44.94 Min Ch El (ft) 1006.18 Shear (lb /sq ft) 0.20 Alpha 1.00 Stream Power (lb /ft s) 1.72 Frctn Loss (ft) 0.02 Cum Volume (acre -ft) 0.82 C & E Loss (ft) 0.02 Cum SA (acres) 0.08 ay CROSS SECTION RIVER: DECLEZ REACH: DECLEZ RS: 9 INPUT Description: STA 242 +12.12 START RAMP Station Elevation Data num= 10 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 22 1016.33 23 1016.33 23 1014.96 24 1014.96 24 1005.96 48 1005 96 48 1014 96 49 1014.96 49 1016.33 50 1016.33 ww Yd Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 22 .025 22 .013 50 .025 Bank Sta: Left Right Lengths: Left Channel Right Expan. 22 50 21.99 21.99 21.99 CROSS SECTION OUTPUT Profile #PF 1 Coeff Contr. .1 E.G. Elev (ft) 1016.75 Element Channel Right OB Vel Head (ft) 1.07 Wt. n -Val. 0.013 W.S. Elev (ft) 1015.68 Reach Len. (ft) 21.99 21.99 Crit W.S. (ft) Flow Area (sq ft) 234.61 E.G. Slope (ft /ft) 0.000591 Area (sq ft) 234.61 Q Total (cfs) 1947.00 Flow (cfs) 1947.00 Top Width (ft) 26.00 Top Width (ft) 26.00 Vel Total (ft /s) 8.30 Avg. Vel. (ft /s) 8.30 Max Chl Dpth (ft) 9.72 Hydr. Depth (ft) 9.02 Conv. Total (cfs) 80117.6 Conv. (cfs) 80117.6 Length Wtd. (ft) 21.99 Wetted Per. (ft) 45.43 Min Ch E1 (ft) 1005.96 Shear (lb /sq ft) 0.19 Alpha 1.00 Stream Power (lb /ft s) 1.58 Frctn Loss (ft) 0.01 Cum Volume (acre -ft) 0.66 C & E Loss (ft) 0.12 Cum SA (acres) 0.06 Left OB 21.99 .3 di CROSS SECTION RIVER: DECLEZ REACH: DECLEZ RS: 8.5 INPUT Description: STA 241 +90.12 3/4 RAMP Station Elevation Data num= 12 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 22 1017 23 1017 23 1014.39 24 1014.39 24 1005.8 48 1005.8 48 1012 60 1012 60 1014.39 61 1014.39 61 1017 62 1017 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 22 .025 22 .013 62 .025 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 22 62 21.99 21.99 21.99 .1 .3 CROSS SECTION OUTPUT Profile #PF 1 E.G. Elev (ft) 1016.62 Element Left OB Channel Right OB Vel Head (ft) 0.68 Wt. n -Val. 0.013 W.S. Elev (ft) 1015.94 Reach Len. (ft) 21.99 21.99 21.99 Crit W.S. (ft) Flow Area (sq ft) 293.57 E.G. Slope (ft /ft) 0.000390 Area (sq ft) 293.57 Q Total (cfs) 1947.00 Flow (cfs) 1947.00 Top Width (ft) 38.00 Top Width (ft) 38.00 Vel Total (ft /s) 6.63 Avg. Vel. (ft /s) 6.63 Max Chl Dpth (ft) 10.14 Hydr. Depth (ft) 7.73 Conv. Total (cfs) 98615.1 Conv. (cfs) 98615.1 Length Wtd. (ft) 21.99 Wetted Per. (ft) 58.27 Min Ch E1 (ft) 1005.80 Shear (lb /sq ft) 0.12 Alpha 1.00 Stream Power (lb /ft s) 0.81 Frctn Loss (ft) 0.01 Cum Volume (acre -ft) 0.53 C & E Loss (ft) 0.03 Cum SA (acres) 0.05 CROSS SECTION RIVER: DECLEZ REACH: DECLEZ RS: 8 INPUT Description: STA 241 +68.12 HALF RAMP Station Elevation Data num= 12 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 22 1017 23 1017 23 1014.63 24 1014.63 24 1005.63 48 1005.63 48 1010.46 60 1010.46 60 1014.63 61 1014.63 61 1017 62 1017 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 22 .025 22 .013 62 .025 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 22 62 21.99 21.99 21.99 .1 .3 CROSS SECTION OUTPUT Profile #PF 1 iw E.G. Elev (ft) 1016.58 Element Left OB Channel Right OB Vel Head (ft) 0 -.58 Wt. n -Val. 0.013 do W.S. Elev (ft) 1016.00 Reach Len. (ft) 21.99 21.99 21.99 Crit W.S. (ft) Flow Area (sq ft) 318.05 E.G. Slope (ft /ft) 0.000302 Area (sq ft) 318.05 Q Total (cfs) 1947.00 Flow (cfs) 1947.00 Top Width (ft) 38.00 Top Width (ft) 38.00 .A Vel Total (ft /s) 6.12 Avg. Vel. (ft /s) 6.12 Max Chl Dpth (ft) 10.37 Hydr. Depth (ft) 8.37 Conv. Total (cfs) 112100.5 Conv. (cfs) 112100.5 Length Wtd. (ft) 21.99 Wetted Per. (ft) 58.74 Min Ch E1 (ft) 1005.63 Shear (lb /sq ft) 0.10 Alpha 1.00 Stream Power (lb /ft s) 0.62 Frctn Loss (ft) 0.01 Cum Volume (acre -ft) 0.37 C & E Loss (ft) 0.04 Cum SA (acres) 0.03 CROSS SECTION RIVER: DECLEZ REACH: DECLEZ RS: 7.5 INPUT w ri �i 1W F I Description: STA 241 +44.62 QUARTER RAMP Station Elevation Data num= 12 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 22 1017 23 1017 23 1014.47 24 1014.47 24 1005.47 48 1005.47 48 1007.72 60 1007.72 60 1014.47 61 1014.47 61 1017 62 1017 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 22 .025 22 .013 62 .025 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 22 62 21.99 21.99 21.99 .1 .3 CROSS SECTION OUTPUT Profile #PF 1 E.G. Elev (ft) 1016.54 Element Left OB Channel Right OB Vel Head (ft) 0.46 Wt. n -Val. 0.013 W.S. Elev (ft) 1016.08 Reach Len. (ft) 21.99 21.99 21.99 Crit W.S. (ft) F1owAArea (sq ft) 358.16 E.G. Slope (ft /ft) 0.000205 Area (sq ft) 358.16 Q Total (cfs) 1947.00 Flow (cfs) 1947.00 Top Width (ft) 38.00 Top Width (ft) 38.00 Vel Total (ft /s) 5.44 Avg. Vel. (ft /s) 5.44 Max Chl Dpth (ft) 10.61 Hydr. Depth (ft) 9.43 Conv. Total (cfs) 135896.4 Conv. (cfs) 135896.4 Length Wtd. (ft) 21.99 Wetted Per. (ft) 59.22 Min Ch E1 (ft) 1005.47 Shear (lb /sq ft) 0.08 Alpha 1.00 Stream Power (lb /ft s) 0.42 Frctn Loss (ft) 0.00 Cum Volume (acre -ft) 0.20 C & E Loss (ft) 0.02 Cum SA (acres) 0.01 CROSS SECTION RIVER: DECLEZ REACH: DECLEZ RS: 7 INPUT Description: STA 241 +22.12 END RAMP Station Elevation Data num= 11 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 22 1017 23 1017 23 1014.3 24 1014.3 24 1005.3 48 1005.3 60 1005.3 60 1014.3 61 1014.3 61 1017 62 1017 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 22 .025 22 .013 62 .025 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 22 62 53 53 53 .1 .3 d CROSS SECTION OUTPUT Profile #PF 1 E.G. Elev (ft) 1016.51 Element Left OB Channel Right OB Vel Head (ft) 0.38 Wt. n -Val. 0.013 o W.S. Elev (ft) 1016.13 Reach Len. (ft) 10.00 10.00 10.00 Crit W.S. (ft) 1009.79 Flow Area (sq ft) *� 393.57 E.G. Slope (ft /ft) 0.000151 Area (sq ft) 393.57 Q Total (cfs) 1947.00 Flow (cfs) 1947.00 Top Width (ft) 38.00 Top Width (ft) 38.00 Vel Total (ft /s) 4.95 Avg. Vel. (ft /s) i 4.95 dw Max Chl Dpth (ft) 10.83 Hydr. Depth (ft) 10.36 am Conv. Total (cfs) 158231.6 Conv. (cfs) 158231.6 Length Wtd. (ft) 10.00 Wetted Per. (ft) 59.66 Min Ch El (ft) 1005.30 Shear (lb /sq ft) +w 0.06 Alpha 1.00 Stream Power (lb /ft s) 0.31 Frctn Loss (ft) Cum Volume (acre -ft) 0.06 C & E Loss (ft) Cum SA (acres) CROSS SECTION RIVER: DECLEZ CONF. REACH: DECLEZ CONF. RS: 5 INPUT Description: STA 240 +69.87 -GRADE BREAK Station Elevation Data num= 10 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 22 1015.62 23 1015.62 23 1014.18 24 1014.18 24 1005.07 48 1005.07 48 1014.18 49 1014.18 49 1015.62 50 1015.62 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 22 .025 22 .013 48 .025 +11A E q Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. ... Expan. 22 48 262 262 262 .1 .3 CROSS SECTION OUTPUT Profile #PF 1 di E.G. Elev (ft) 1016.51 Element Left OB Channel Right OB Vel Head (ft) 2.43 Wt. n -Val. 0.013 W.S. Elev (ft) 1014.08 Reach Len. (ft) 262.00 262.00 262.00 Crit W.S. (ft) Flow Area (sq ft) 216.27 E.G. Slope (ft /ft) 0.001349 Area (sq ft) 216.27 ," Q Total (cfs) 2706.00 Flow (cfs) 2706.00 Top Width (ft) 24.00 Top Width (ft) 24.00 Vel Total (ft /s) 12.51 Avg. Vel. (ft /s) 12.51 Max Chl Dpth (ft) 9.01 Hydr. Depth (ft) 9.01 itlri Conv. Total (cfs) 73685.4 Conv. (cfs) 73685.4 am Length Wtd. (ft) 262.00 Wetted Per. (ft) 42.02 Min Ch E1 (ft) 1005.07 Shear (lb /sq ft) 0.43 Alpha 1.00 Stream Power (lb /ft s) 5.42 Frctn Loss (ft) 0.46 Cum Volume (acre -ft) „ 2.24 C & E Loss (ft) 0.12 Cum SA (acres) 0.29 CROSS SECTION RIVER: DECLEZ CONF. REACH: DECLEZ CONF. RS: 4 INPUT Description: STA 240 +20.09- BEGIN WALL Station Elevation Data num= 10 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 22 1015.47 23 1015.47 23 1014.03 24 1014.03 24 1004.92 48 1004.92 48 1014.03 49 1014.03 49 1015.47 50 1015.47 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 22 .025 22 .013 48 .025 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 22 48 262 262 262 .1 .3 CROSS SECTION OUTPUT Profile #PF 1 E.G. Elev (ft) 1015.92 Element Left OB Channel Right OB Vel Head (ft) 3.67 Wt. n -Val. 0.013 W.S. Elev (ft) 1012.25 Reach Len. (ft) 262.00 262.00 262.00 Crit W.S. (ft) 1012.25 Flow Area (sq ft) 175.98 .� E.G. Slope (ft /ft) 0:002400 Area (sq ft) rr 175.98 Q Total (cfs) 2706.00 Flow (cfs) .n 2706.00 Top Width (ft) 24.00 Top Width (ft) do 24.00 Vel Total (ft /s) 15.38 Avg. Vel. (ft /s) 15.38 �j Max Chl Dpth (ft) 7:33 Hydr. Depth (ft) 7.33 Conv. Total (cfs) 55241.4 Conv. (cfs) 55241.4 d Length Wtd. (ft) 262.00 Wetted Per. (ft) 38.66 Min Ch E1 (ft) 1004.92 Shear (lb /sq ft) 0.68 Alpha 1.00 Stream Power (lb /ft s) 10.48 Frctn Loss (ft) 0.63 Cum Volume (acre -ft) 1.06 C & E Loss (ft) 0.00 Cum SA (acres) 0.14 CROSS SECTION RIVER: REACH: DECLEZ CONF. DECLEZ RS: 3 CONF. INPUT Description: STA 238.08 di Station Elevation Data num= 6 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 6 1012.96 22 1013.28 22 1004.28 46 1004.28 46 1013.28 62 1012.96 Manning's n Values Sta n Val Sta num= n Val 3 Sta n Val 6 .025 22 .013 46 .025 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 22 46 0 0 0 .1 .3 CROSS SECTION OUTPUT Profile #PF 1 E.G. Elev (ft) 1015.28 Element Left OB Channel Right OB arl River:DECLEZ CONF. Reach River Sta. nl n2 n3 DECLEZ CONF. 5 .025 .013 .025 1 DECLEZ CONF. 4 .025 .013 .025 Ali Vel Head (ft) 3.68 Wt. n -Val. 0.013 W.S. Elev (ft) 1011.61 Reach Len. (ft) Crit W.S. (ft) 1011.61 Flow Area (sq ft) 175.87 E.G. Slope (ft /ft) 0.002404 Area (sq ft) 175.87 Q Total (cfs) 2706.00 Flow (cfs) 2706.00 Top Width (ft) 24.00 Top Width (ft) 24.00 Vel Total (ft /s) 15.39 Avg. Vel. (ft /s) 15.39 Max Chl Dpth (ft) 7.33 Hydr. Depth (ft) 7.33 Conv. Total (cfs) 55193.3 Conv. (cfs) 55193.3 Length Wtd. (ft) Wetted Per. (ft) 38.66 Min Ch E1 (ft) 1004.28 Shear (lb /sq ft) 0.68 Alpha 1.00 Stream Power (lb /ft s) 10.50 Frctn Loss (ft) Cum Volume (acre -ft) �! C & E Loss (ft) Cum SA (acres) SUMMARY OF MANNING'S N VALUES River:OLEANDER S.D 11111 Reach River Sta. nl n2 n3 OLEANDER S.D 2 .013 .013 .013 OLEANDER S.D 1 .013 .013 .013 11� River:DECLEZ Reach River Sta. nl n2 n3 DECLEZ 10 .025 .013 .025 DECLEZ 9 .025 .013 .025 DECLEZ DECLEZ 8.5 8 .025 .013 .025 .013 .025 .025 DECLEZ 7.5 .025 .013 .025 DECLEZ 7 .025 .013 .025 River:DECLEZ CONF. Reach River Sta. nl n2 n3 DECLEZ CONF. 5 .025 .013 .025 1 DECLEZ CONF. 4 .025 .013 .025 Ali DECLEZ 10 30 30 30 DECLEZ DECLEZ CONF. 3 .025 .013 .025 DECLEZ 8.5 21.99 21.99 21.99 DECLEZ 8 21.99 21.99 21.99 DECLEZ SUMMARY OF REACH LENGTHS 21.99 21.99 DECLEZ River: OLEANDER S.D 53 53 River: DECLEZ CONF. Reach River Sta. Left Channel Right Reach River Sta. Left Channel Right DECLEZ CONF. OLEANDER S.D 2 196 196 196 DECLEZ CONF. OLEANDER S.D 1 0 0 0 DECLEZ CONF. 3 0 0 0 River: DECLEZ Reach River Sta. Left Channel Right DECLEZ 10 30 30 30 DECLEZ 9 21.99 21.99 21.99 DECLEZ 8.5 21.99 21.99 21.99 DECLEZ 8 21.99 21.99 21.99 DECLEZ 7.5 21.99 21.99 21.99 DECLEZ 7 53 53 53 River: DECLEZ CONF. Reach River Sta. Left Channel Right DECLEZ CONF. 5 262 262 262 DECLEZ CONF. 4 262 262 262 DECLEZ CONF. 3 0 0 0 SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS River: OLEANDER S.D Reach River Sta. Contr. Expan. OLEANDER S.D 2 0 0 OLEANDER S.D 1 0 0 River: DECLEZ Reach River Sta. Contr. Expan. DECLEZ 10 .1 .3 DECLEZ 9 .1 .3 DECLEZ 8.5 .1 .3 DECLEZ 8 .1 .3 DECLEZ 7.5 .1 .3 DECLEZ 7 .1 .3 River: DECLEZ CONF. a Reach River Sta. Contr. Expan. DECLEZ CONF. 5 .1 .3 DECLEZ CONF. 4 .1 .3 DECLEZ CONF. 3 .1 .3 W LLIU F- OU) 0 C) Z W OC IF711 IF711 F711 IrAll It A IF A U�J J.111 211 U T L J t j t � ll t j irq A F'Al IF' I OLEANDER AVENUE STORM DRAIN STUDY PRELIMINARY COST /QUANTITY ESTIMATE Item Description Quantity Unit Unit Price Amount 1 Connect to Channel 1 I.S. $8,000.00 $8,000.00 2 Channel Wall Raising 373 If $35.00 $13,053.00 3 PCC Access Road 600 s.f. $3.00 $900.00 4 R.C. Box 223 If $450.00 $100,494.00 5 Transition Structures 60 If $500.00 $30,000.00 6 108" RCP 481 If $400.00 $192,400.00 7 Manhole Structure 2 each $4,000.00 $8,000.00 8 Manhole Shaft only 1 each $1,000.00 $1,000.00 9 Trench Repair 5500 s.f. $2.00 $11,000.00 10 Sheeting, Shoring and Bracing 1 I.s. $10,000.00 $10,000.00 Subtotal $374,849.00 Engineering/Survey @ 25% $93,712.00 Contingencies @ 10% $37,484.00 GRAND TOTAL $506,046.00 d Notes: 1. This cost estimate has been prepared at the request of the City of Fontana, prior to finalization of Plans and Specifications, and therefore is subject to change. 2. This cost estimate is an estimate only These figures are supplied as a guide only. This firm is not responsible for fluctuation of material, labor or components, or unforeseen contingencies. Prepared by: HALL & FOREMAN, INC. 545 North Mountain Avenue, Suite 106 Upland, California 91786 (909) 982 -7777 g:%51 a7VeportsXdramaye.wpd M SAN BERNARDINO COUNTY FLOOD CONTROL LETTER g -.W 47Veportsm rainege.wpd irRAWSPORTATION/FLO( CONTROL DEPARTMENT East Third Street • San Bernardino, CA 92415 -0835 • (909) 387 -2800 Fax No. (909) 387 -2667 Hall & Foreman, Inc. 3602 Inland EWire Boulevard, Suite C -320 Ontario, CA 91764 -4900 RECEIVED Attention: Harold Garcelon, P.E. Production Manager /Associate Re: Dear Mr. Garvelcrn: COUNTY OF SAN BERNARDINO PUBLIC WORKS GROUP KEN A. MILLER Director August 30, 1993 File: 2- 124/2.04 A!J G i5'33 V14 a ell Zone 2, Declez Channel PEYM NO. P- 293069 Zhe District is in receipt of your letter on behalf of the City of Fontana dated August 2, 1993, requesting the District to sign your letter consenting that the District has no abjection to the proposed cm ection of a 4.5' X 9' RCB to the Declez Channel, at Sta. 240+60, south of Junlpa Avenue and west of Knoll Crest Drive, in the City of Fontana. as The District has reviewed your letter and could not sign your letter as drafted. It appears that the alignment of the proposed RCP is ally feasible. As discussed at the meeting on July 19, 1993, District approval is subject to review and approval of the plans, hydrology and hydraulic calculations. The calculations mist : mwnstrate that Declez Channel is capable of handling additional flows at the point of connection without significant adverse impact to the downstream reach of the charml. Fl Regarding your statement that "Zhe problems involving transferring the Declez Channel are independmit of this letter and are assumed to be resolved or the county could not issue a permit," please be advised the Flood Control District issued a permit for the construction of Declez Channel so that the District could provide inspection of the d viel during construction. To date, the right- of-ray for this reach of the channel dawn to Live Oak has not been dedicated to the District. nerefore, at this time, the District is not responsible for the operation and maintenance of this reach of Declez Camel. 7he District will not accept this reach of channel until it is returned to its original condition and is acceptable to the District. Depending on when the District is deeded the right- of-way will determine when the District assumes responsibility for operation and maintenance of this reach of channel. HAIL, & FOP,N, INC. August 30, 1993 +* Page wo Sinoe this District will ultimately be responsible for this reach of camel, the District will issue a permit for this connection once the plans are approved by the District. Depending on when the connection is constructed and the right- of-way is deeded to the District and the cha ml acoq*md by the District for operation arid- - mainterlarroe will determine if an additional approval- will be "required by the city - of Fontana. If the City has not deeded the right- of-way to the District and the ,.� District has not accepted the channel for operation and maintenanoe, then the City of Fontana will also have to issue a perm and,/or approve the connection. Also, the pro dmity of the connection to the existing 14' X 9' RCB could ooristitute maintenance problems to the District. 7 he District recommends cambinirxd the two RCBs prior to connection to Declez Ommel. If you have any questions regarding the above, please contact the undersigned at (909) 387 -2633. �i M C:KCE:eh oc: Bob Weddle, City of Fontana w 0 Very truly yours. - - -- - WIISSAM�LUM P.E. , Chief Field Engineering Division 9 �_'l D +rr Hall & Foreman, Inc. Civil Engineering • Planning -Surveying • Public Works September 10, 1993 Mr. William M. Collins, P.E., Chief.Field Engineering Division San Bernardino County Transportation and Flood Control District 825 East Third Street San Bernardino, CA 92415 Regarding: Declez Channel, Future Connection West of Oleander Dear Mr. Collins; J.N. 4013 -082 I am in receipt of your letter of August 30, 1993 and pursuant to our telephone conversation of last week, please consider redrafting your letter. The statement, "It appears that the alignment of the proposed RCP is conceptually feasible." was a good start. The second and third sentence would also be o.k. except the flow is not "additional" since the acreage was always in the design "Q ". We are only moving the connection point down stream to help the upstream hydraulics. The next to last paragraph would be counter - productive to the reason all of this is being done and is not an option. I only mention "the problem involving transferring the Declez Channel" to head off entangling my letter with the maintenance issues. The City of Fontana will own and maintain the new storm drain and will issue a permit for its construction. It may help to fax me a draft of the letter to prevent an additional round of correspondence. Please call me at (909) 941 -3570 if any of this is unclear. Our fax number is (909) 941 -7510. Very truly yours, 3 HALL & INC. 3 Harold Garcelon, P.E. Production Manager /Associate /comb cc: Felipe Molinos, City of Fontana John Hogan, H &F 3602 Inland Empire Blvd., Suite C-320 Ontario, California 91764 -4900 +�! Tel 909/941 -3570 Fax 909/941 -7510 dw ]rRANSPORTATION/FLC D CONTROL DEPARTMENT East Third Street • San Bernardino, CA 92415 -0835 • (909) 387 -2800 Fax No. (909) 387 -2667 October 5, 1993 File: 2- 124/2.04 Hall & Forman, Inc. 3602 Inland Empire Boulevard, Suite C -320 irlil Ontario, CA 91764 -4900 Attention: Harold Garnelon, P.E. Production Manager /Associate F Fi IF I R7 4 q t: COUNTY OF SAN BERNARDINO PUBLIC WORKS GROUP KEN A. MILLER Director Re: Zane 2, Declez Channel PERM NO. P- 293069 The District is in receipt of your letter dated September 10, 1993, regarding your request for a conceptual review of a proposed 4.5 X 9 RCB side drain correction into Declez Om mel, south of Jurupa Avenue, in the City of Fontana. The District is reviewing your request; please allow three to fair weeks for this review. If you have any questions regarding the above, please contact the undersigned at (909) 387 -2633. W Yours, EKE, P.E. rol Permit Engineer KCE:DF:eh i:R e 3 TRANSPORTATION /FL00r `CONTROL COUNTY OF SAN BERNARDINO DEPARTMENT PUBLIC WORKS GROUP "825 East Third Street • San Bernardino, CA 92415 -0835 • 1909) 387- 2800 ° " " / / ° " " / / \`�J KEN A. MILLER Fax No. (909) 387 -2667 ��ll Director February 2, 1994 No File: 2- 124/2.04 ow ,s, Hall & Foreman, Inc. 3602 Inland Expire Boulevard, Suite C -320 Ontario, CA 91764 -4900 +wr Attention: Harold Garcelon, P.E. '^ Production Manager /Associate im Re: Zone 2, Declez Channel PFRMrT NO. P- 293069 Dear Mr. Garnelon: The District is in receipt of your letter dated September 10, 1993, regarding the District's August 30, 1993, letter concerning your request for a conceptual review of a proposed 4.5' X 9' RCB side drain connection into Declez Channel, south of Jurupa Avenue, in the City of Fontana. The word 'additional' was inadvertently added and should not be in the last sentence of the second paragraph of the District's August 30, 1993, letter. The District's main concern is that the channel function hydraulically downstream of the new connection. The District expects all its concerns, as indicated in the letter dated August 30, 1993, to be incorporated on the plans prior to the approval for construction of the proposed connection of a 4.5' X 9' RCB to Declez Channel. If you have any questions regarding the above, please contact the undersigned at (909) 387 -2633. REC ,' ' vED FEB 4 1994 KCE:JL:eh tau dV V ", Q,c ONTARIO `)`mpis5 eta „ ± a;t! Very yours, jK M C. EKE, P. E. Flood Control Permit Engineer 'a =aokG .A 1,ARE' '1ALKEF; ttth D ;, VIA J. tau dV V ", Q,c ONTARIO `)`mpis5 eta „ ± a;t! Very yours, jK M C. EKE, P. E. Flood Control Permit Engineer 'a =aokG .A 1,ARE' '1ALKEF; ttth D ;, ]T JN • COUNTY OF SAN BERNARDINO DEPARTMENT -COUNTY SURVEYOR PUBLIC WORKS GROUP East Third Street • San Bernardino, CA 92415 -0835 • 1909) 387 -2800 Fax No. 1909) 387 -2667 go eti 40 44 01. Hall & Foreman, Inc. *� 3602 Inland Empire Boulevard, Suite C -320 Ontario, CA 91764 -4900 "" 1 Attention: Harold Garcelon, P.E. .r Production Manager /Associate September 6, 1995 File: 2- 124/2.04 KEN A. MILLER Director Re: Zone 2, Declez Channel PERMIT NO. P- 293069 Dear Mr. Garcelon: .ii , The District is in receipt of your revised submittal on behalf of the City of Fontana dated June 27, 1995, requesting a permit to connect a 5.5' X 13' RCB into Declez Channel, 10 south of 'A' Street, in the City of Fontana. The District has reviewed your submittal and offers the following comments. " 1. The proposed concrete block wall shall be tied to the existing channel wall. miiil Construction details along with structural calculations shall be included on the plans. 2. Plans shall include construction details for the proposed RCB connection to the existing channel. Provide structural calculations for the proposed junction structure if non - standard detail is provided. 3. The revised hydrology study is acceptable, however, the HGL has not been revised to reflect the revised Q. 4. Provide structural calculations and details for the proposed blockwalls. HALL & FOREMAN, INC. September 6, 1995 Page Two A b. District review shows that the flows may not be contained within the channel at approximate Sta. 242 +42.12. Please certify that flows will be contained in the channel with adequate freeboard. 6. Sheet 2 of 2 shall be revised to reflect the accurate size of RCB and the revised Q. After the above coniiiments 'have been incot int0 your plans, the District will di require four sets of plans, three sets of revised hydraulic calculations, and a cover letter addressing the District's comments for further review. Please allow three to four weeks for this review. If you have any questions regarding the above, please contact the undersigned at 4' (909) 387 -2633. .r Very trul ours, 1 K TH C. EKE, P.E. " Flood Control Permit Engineer KCE:JL:eh �r di 40 d t 0 ■ ■� Hall & Fbrema n, Inc. 9 a C - . Eno - eerin • Plannin 9 N • Surve 'n - Works October 10, 1995 Mr. Kenneth C. Eke, P.E., Flood Control Permit Engineer Transportation/Flood Control Department - County Surveyor County of San Bernardino 825 E. Third Street San Bernardino, CA 92415 -0835 Via: California Overnight Re: File 2- 124/2.04 Dear W. Eke, Job No. 4013 In reference to your letter dated September 6, 1995, regarding the connection of the Oleander Storm Drain to the Declez Channel, south of IF' street in the City of Fontana, we are submitting a revised set of plans and calculations. Please note: a permit is not requested at this time, a letter of Concept Approval is requested. • Comment no. 3 was addressed by showing the current HGL on both . sheets as given by WSPG calculations. • Regarding comment no. 5 the minimum freeboard occurs at approximate station 242 +42.12, 4111 the freeboard being approximately 2 feet. This indicates the flows will be contained within 610 the channel, since the wall is now uniform height, not stepped. • Comment no. 6 was addressed by showing the 5.5'x13' RCB and the revised Q on sheet 2. • Comments 1, 2, and 4 are not addressed at this time since they are not a part of our scope of service. These items will be addressed when the permit application is made. If you have any questions, please do not hesitate to contact me. 4' Very truly yours, Hall & Foreman, c. Harold Garcelon, P.E. Production Manager /Associate cc: Bob Weddle, City of Fontana John Hogan, HFI 3602 Inland Empire Blvd., Suite C -320 Ontario, Califorrpa 91764 -4900 +41 Tel 909/941 - 3570 a Fax 909/941 -7510 ad IRAN SPORTATION/FLOI ) CONTROL DEPARTMENT - COUNTY SURVEYOR COUNTY OF SAN BERNARDINO PUBLIC WORKS GROUP East Third Street • Son Bernardino, CA 92415-0835 e (909) 387-2800 Fax No. (909) 387-2667 KEN A. MILLER Director October 31, 1995 File: 2-124/2.04 Hall & Foreman, Inc. 3602 Inland Empire Boulevard, Suite C-320 Ontario, CA 91764-4900 Attention: Harold Garcelon, P.E. Production Manager/Associate Dear Mr. Garcelon: Re: Zone 2, Declez Channel PERMIT NO. P-293069 The District is in receipt of your revised submittal on behalf of the City of Fontana dated October 10, 1995, regarding a proposed 5.5' X 13' RCB connection into Declez Channel, south of 'A' Street, in the City of Fontana. The District is reviewing the submittal, however, the District cannot recommend conceptual approval until all of the items in the District's letter dated September 6, 1995, (copy attached) are addressed. If you have any questions regarding the above, please contact the undersigned at (909) 387-2633. Very trul ours, X 0 I r ENNETH C. EKE, P.E. FI d Control Permit Engineer KCE:JL:eh Attachment ale r C NTR 3 TRANSPORTATIOWFLOOD L 0 0 DEPARTMENT- SURVEYOR �� couNnr of s o m i ,, _ PUB L CE &GROUP 825 East Third Street • San Bernardino, CA 92415-0835 • (909) 387 -2800 KEN A. MILLER Fax (909) 387 -2687 Director �. RECEIVED September 8, 1998 File: 2- 124/2.04 C E P Q 9 1998 qa& & 9a4e W4 c, 7. e,. Hall & Foreman, Inc. 545 North Mountain Avenue, Suite 106 Upland, CA 91786 -9997 Attention: Steve Reiner, P.E. Vice President/Associate """ RE: ZONE 2, DECLEZ CHANNEL, PERMIT NO. P- 293069 Will ., Dear Mr. Reiner: Reference is made to your latest submittal dated July 2, 1998, and to a field meeting between District Representatives and Harold Garcelon regarding the City's request for a permit to construct, operate and maintain a 7' X 10' RCB connection into the Declez Channel, south of 'A' Street, in the City of Fontana. The District has reviewed your submittal and offers the following comments. 1. Previous District comments requested a structural detail be shown on the plans depicting how the proposed side inlet would tie to the existing channel. This has not yet been incorporated into your plans. Future submittal will not be reviewed until junction details are provided. 2. The longitudinal slope of the proposed access ramp extension shall not exceed 10 %. Ramp profile shall be shown on the plans. 3. Approved fencing is required on top of the proposed block wall. Also, show on the plans how the new fencing will tie to the existing fencing. Special Drawing I (attached) shall be used in lieu of APWA Standard Drawing No. 600 -1 as shown on sheet 5 of 5. JAMES J. HLAWEK County Administrative Officer r!M KELLY Assiciatnt Coonty fi, imini =t {arcs F�,Wfc serviC' -: Grab,; Doard of Supervisors KATHY A. DAVIS..... . First Dig >trict DENNIS HANSBERGER Third Dist JON D MIKELS Second D! Wct LARRY WALKER .... ..... Fourth Dis: JERRY EA` EF . Fifth 0 stric! h Z HALL & FOREMAN, INC. September 8, 1998 Page Two 4. The proposed side inlet connection is located at the down ramp transition. The District believes the WSPG program in unable to appropriately calculate the HGL in d i the main line. It is requested that the junction be analyzed manually by using the pressure and momentum theory, and wall heights be raised on the downstream side *� of the connection, as applicable. Contrary to the District's experience, the WSPG analysis, included in the submitted report, does not show a significant increase in the water surfaces elevation on the downstream side of the inlet connection. 5. The submitted hydrology calculations are generally within the guidelines outlined in the 1986 San Bernardino County Hydrology Manual. The 100 -year peak flow rate of 760 cfs is acceptable as submitted, however, it appears that the proposed 7' x 10' RCB connection may not be adequate. 6. Access between the proposed block wall and right -of -way is only 13 -feet ± on the north side of the channel. Please show on the plans the removal limits for the existing District right -of -way fencing and replacement with a 6' block wall off District right -of -way as discussed in the August 26, 1998, field meeting. After the above comments have been incorporated into your plans, the District will require four sets of revised plans, three sets of revised hydrology and hydraulic calculations and a cover letter addressing the District's comments for further review. Please allow three to four weeks for this review. If you have any questions regarding the above, please contact the undersigned at (909) 387 -2633. e n, C. EKE, P.E. Flood Control Permit Engineer E:MS:ks City of Fontana HFRMN827.DOC 0 L C/) 0 0 0 0 z C/) t HALL & FOREMAN Title : OLEANDER STORM DRAIN 545 N. MOUNTAIN AVENUE Job # : 4013 -082 Dsgnr: HG Date: OCT 27,1996 SUITE 106 Description.... UPLAND, CA. 91786 -9997 (909) 982 -7777 CANTILEVERED RETAINING WALL DESIGN Page 1 of GENERAL SOIL DATA - Retained Height - 5.00 ft - Allow Soil Bearing - 2,000.0 psf Wall height above retained soil = 0.00 ft Equivalent Fluid Pressure Method ' Slope Behind Wall = 0.00:1 Active Soil Pressure - Heel Side = 62.4 psf 411111 Height of Soil over Toe = 24.00 in Active Soil Pressure - Toe Side = 30.0 pcf Passive Pressure = 250.0.pcf 41 Soil Density = _ 110.00 pq( Water table height over heel = 0.0ft 3 dill FOOTING DATA SLIDING DATA Toe Width = 3.00 ft Friction Factor @ Footing & Soil = 0.300 Heel Width = 0.67 ...neglect ht. for passive = 0.00in Total Footing Width = 3.67 Footing Thickness = 12.00 in Lateral Sliding Force = 988.2 less Passive Pressure Force = - 1,125.0lbs KEY DATA less Friction Force = - 480.7lbs 'ei Distance from Toe = 0.00 ft _ Added Restraint Force Required - O.Olbs Width = 0.00 in Depth = 0.00 in di FOOTING DESIGN RESULTS 4% rc = 2,000 psi Minimum Footing Rebar Options...... Minimum As % = 0.00 8 psi Toe Side...... Heel Side.... Rebar Cover @ Top = 2.00 in Rebar Cover @ Bottom = 3.00 in Toe Heel ACI Factored Soil Pressure = 2,004 0 psf Mu': From Upward Loads = 0 0 ft-# Mu': From Downward Loads = 0 14 ft-# Mu: Used For Design = 2,142 14 ft-# Actual One -Way Shear = 6.76 Key Reinforcement: 0.03 psi Allowable One -Way Shear = 76.03 76.03 psi DESIGN SUMMARY Total Bearing Load = 1,602 Ibs Summary of Stem Section Designs.... ...resultant ecc. = 13.07 in Top: 8 in Mas, #6 @16.00 in @Edge, From 5.0 ft to 0.0 it Soil Pressure @ Toe = 1,432 <= 2,000 psf Soil Pressure @ Heel = 0 <= 2,000 psf ACI Factored Press @ Toe 2,004 psf ACI Factored Press @ Heel = 0 psf Footing Shear @ Toe 6.8 <= Footing Shear @ Heel 0.0 <= 76.0 psi 76.0 psi WALL STABILITY RATIOS Overturning Stability Ratio = 1.57 Sliding Ratio Ratio 1.62 t I HALL & FOREMAN Title OLEANDER STORM DRAIN 545 N. MOUNTAIN AVENUE Job # : 4013 -082 Dsgnr: HG Date: OCT 27,1996 SUITE 106 Description.... UPLAND, CA. 91786 -9997 (909) 982 -7777 CANTILEVERED RETAINING WALL DESIGN Page 2of2 dd SUMMARY OF OVERTURNING & RESISTING FORCES & MOMENTS e r 01 d y Item Heel Active Pressure Soil Over Heel Sloped Soil Over Heel Surcharge Over Heel Adjacent Footing Load Axial Dead Load on Stem Toe Active Pressure Soil Over Toe Surcharge Over Toe Stem Weight(s) Earth @ Stem Transitions Footing Weight Key Weight Vert. Component Added Lateral Load Load @ Stem Above Soil Force Distance Moment Force Distance Moment Ibs ft ft-# Ibs ft ft-# = 1,123.2 ~2.00 2,246.4 - 1.8 3.67 6.7 -135.0 1.00 -135.0 0.00 660.0 1.50 990.0 390.0 3.33 1,300.0 550.5 1.84 1,010.2 TOTALS = 988.2 O.T.M. = 2,111.4 1,602.3 R.M. = 3,306.9 Vertical component of active pressure used for soil pressure Toe Surcharge Not Used To Resist Overturning Resisting /Overturning Ratio - 1.57 Heel Surcharge Not Used To Resist Overturning STEM CONSTRUCTION & DESIGN Top Stem Stem OK Design at this height above ftg = 0.00ft Wall Material Above "Ht" = Masonry Thickness = 8.00 in Rebar Size = # 6 Rebar Spacing = 16.00 in Rebar Placed at = Edge Design Data fb/FB + fa/Fa = 0.874 Total Force @ Section = 720.0lbs Moment.... Actual = 1,260.0ft-# Moment..... Allowable = 1,440.8ft-# Shear..... Actual = 12.90lbs pslilOpi9 8 CONSTRUCTION NOTES & QUANTITIES: GENERAL NOTES 1. THE CONSTRUCTION OF ALL PUBLIC IMPROVEMENTS SHALL CONFORM TO THESE PLANS AND TO THE REQUIREMENTS OF THE CITY STANDARD SPECIFICATIONS, PUBLIC WORKS DEPARTMENT, CITY OF FONTANA AND SAN BERNARDINO COUNTY DEPARTMENT OF TRANSPORTATION AND FLOOD CONTROL STANDARDS AND STANDARD SPECIFICATIONS FOR PUBLIC WORKS CONSTRUCTION (GREEN BOOK), LATEST EDITION. 2. CONSTRUCTION PERMITS SHALL BE OBTAINED FROM FONTANA ENGINEERING DIVISION PRIOR TO START OF ANY WORK WITHIN THE CITY LIMITS. ALL INSPECTIONS SHALL BE REQUESTED THROUGH THE CITY OF FONTANA ENGINEERING DIVISION AT LEAST 24 HOURS PRIOR TO THE START OF ANY WORK AT (909) 350 -76/0 3. STATIONING REFERS TO THE CENTERLINE OF STORM DRAINS, EXCEPT WHERE OTHERWISE NOTED. 4. EXISTING UNDERGROUND UTILITIES ARE AS PER AVAILABLE RECORDS. THE CONTRACTOR SHALL BE RESPONSIBLE FOR VERIFYING THE ACTUAL LOCATION AND ELEVATION IN THE FIELD. CONTRACTOR SHALL CALL EACH UTILITY COMPANY PRIOR TO ANY WORK. 5. THE CONTRACTOR SHALL DESIGN THE SHORING SYSTEM WITH ANTICIPATED VEHICULAR SURCHARGE PER SOILS ENGINEER'S REQUIREMENTS. 6. THE CONTRACTOR(S) SHALL COORDINATE CONSTRUCTION WITH ALL UTILITIES AND OTHER IMPROVEMENTS INCLUDING, BUT NOT LIMITED TO GAS, TELEPHONE, ELECTRICAL, LIGHTING, TELEVISION CABLE, LANSCAPING, LANDSCAPING IRRIGATION, DOMESTIC WATER, RECLAIMED WATER, SEWER, STORM DRAINAGE, FLOOD CONTROL SYSTEMS, ETC. 7. AS BUILT PLANS SHALL BE PROVIDED TO THE ENGINEER OF RECORD BY THE CONTRACTOR. THE ENGINEER, OF RECORD SHALL PROVIDE "RECORD DRAWINGS" TO THE CITY PRIOR TO CITY ACCEPTANCE OF THE STORM DRAIN SYSTEM. 8. MANHOLES INPAVEMENT SHALL BE CONSTRUCTED 6" BELOW PAVEMENT GRADE AND BROUGHT TO FINISH GRADE BY THE PAVING CONTRACTOR AFTER PAVEMENT IS PLACED, MANHOLES IN DIRT AREAS SHALL BE CONSTRUCTED 18" ABOVE SURROUNDING GRADE. 9. CONTRACTOR IS INSTRUCTED TO REFER TO THESE PLANS AND THE SPECIFICATIONS, AND WHERE THERE IS OR MAY BE A CONFLICT SHALL IMMEDIATELY REPORT SAID CONFLICT OR POSSIBLE CONFLICT TO THE OWNER'S REPRESENTATIVE. 10. STERILANT REQUIRED UNDER ALL A.C. PAVEMENT AND CONCRETE. 11. NO CONCRETE SHALL BE PLACED UNTIL THE FORMS AND REINFORCING STEEL HAS BEEN PLACED, INSPCECTED AND APPROVED, BY THE CITY ENGINEER. 12. THE WALLS AND FACES OF ALL EXCAVATIONS GREATER THAN FIVE (5) FEET IN DEPTH SHALL BE EFFECTIVELY GUARDED BY A SHORING SYSTEM, SLOPING OF THE GROUND OR OTHER EQUIVALENT MEANS. TRENCHES LESS THAN FIVE (5) FEET IN DEPTH SHALL ALSO BE GUARDED WHEN EXAMINATION INDICATES HAZARDOUS GROUND MOVEMENT MAY BE EXPECTED. 13. THE CONTRACTOR(S) SHALL OBTAIN A PERMIT TO PERFORM EXCAVATION OR TRENCH WORK AS DESCRIBED IN NOTE 12 ABOVE FROM CAL /OSHA 14. NO TRENCH BACKFILL SHALL TAKE PLACE WITHOUT PRIOR APPROVAL OF THE CITY'S INSPECTOR. 15. ALL UTILITY COMPANIES SHALL BE GIVEN 48 HOURS NOTICE PRIOR TO WORKING AROUND THEIR FACILITIES, 16. IF DURING CONSTRUCTION GROUND WATER IS ENCOUNTERED A SYSTEM APPROVED BY THE CITY ENGINEER SHALL BE INSTALLED TO DEWATER SAID AREA AT THE DIRECTION OF THE SOILS ENGINEER. Underground Service Alert Cali: TOLL FREE 1 -800 422 -4133 TWO WORKM DAYS �@ BEFORE YOU DIG PRIVATE ENGINEER'S NOTICE TO CONTRACTORS THE CONTRACTOR AGREES THAT HE SHALL ASSUME SOLE AND COMPLETE RESPONSIBILITY FOR JOB SITE CONDITIONS DURING THE COURSE OF CONSTRUCTION OF THIS PROJECT, INCLUDING SAFETY OF ALL PERSONS AND PROPERTY: THAT THIS REQUIREMENT SHALL APPLY CONTINUOUSLY AND NOT BE LIMITED TO NORMAL WORKING HOURS, AND THAT THE CONTRACTOR SHALL DEFEND, INDEMNIFY, AND HOLD THE OWNER AND THE ENGINEER HARMLESS FROM ANY AND ALL VABILTY, REAL OR ALLEGED, IN CONNECTION NTH THE PERFORMANCE OF WORK ON THIS PROJECT, EXCEPTING FOR UABIUTY ARISING FROM THE SOLE NEGLIGENCE OF THE OWNER OR THE ENGINEER. UNDERGROUND UTILITIES & STRUCTURES THE EXISTENCE AND LOCATION OF ANY UNDERGROUND UTILITIES OR STRUCTURES SHOWN ON THESE PLANS WAS OBTAINED BY A SEARCH OF AVAILABLE RECORDS. TO THE BEST OF OUR KNOWLEDGE THERE ARE NO EXISTING UTILITIES EXCEPT THOSE SHOWN ON THESE PLANS. THE CONTRACTOR IS REQUIRED TO TAKE ALL PRECAUTIONARY MEASURES TO PROTECT THE UTILITIES SHOWN, AND IS RESPONSIBLE FOR THE PROTECTION OF AND ANY DAMAGE TO THESE LINES OR STRUCTURES. "CAUTION: THE ENGINEER PREPARING THESE PLANS WALL NOT BE RESPONSIBLE FOR OR UABLE FOR, UNAUTHORIZED CHANGES OR USES OF THESE PLANS. ALL CHANGES TO THE PLANS MUST BE IN WRITING AND MUST BE APPROVED BY THE PREPARER OF THESE PLANS." GENERAL NOTES CONTRACTOR SHALL NOTIFY UNERGROUND SERVICE ALERT BEFORE START OF CONSTRUCTION (800) 422 -4133. CONTRACTOR SHALL POT HOLE AND VERIFY EXISTING LOCATION OF UTILITIES AS NECESSARY TO IDENTIFY LOCATION. INFORMATION ON THE DRAWINGS RELATING TO EXISTING UTILITY LINES AND SERVICES IS FROM THE BEST SOURCES PRESENTLY AVAILABLE, ALL SUCH INFORMATION IS FURNISHED ONLY FOR INFORMATION AND IS NOT GUARANTEED THE CONTRACTOR SHALL EXCAVATE TEST PITS AS REQUIRED TO DETERMINE EXACT LOCATIONS OF EXISTING UTILITIES. CALL UTILITY LOCATING SERVICE FOR PRECISE UTILITY LOCATIONS BEFORE BEGINNING ANY WORK. UNDERGROUND SERVICE ALERT (800) 422 -4133. UTILITY REQUIREMENTS THE CONTRACTOR IS ADVISED OF THE EXISTENCE OF THE UTILITY NOTIFICATION SERVICE PROVIDED BY UNDERGROUND SERVICE ALERT (USA). USA MEMBER UTILITIES WILL PROVIDE THE CONTRACTOR WITH THE PRECISE LOCATIONS OF THEIR SUBSTRUCTURES IN THE CONSTRUCTION AREA WHEN THE CONTRACTOR GIVES AT LEAST 48 HOURS NOTICE TO THE UNDERGROUND SERVICE ALERT BY CALLING 1 -800- 422 -4133. THE CONTRACTOR SHALL NOTIFY THE FOLLOWING AGENCIES AT LEAST 48 HOURS IN ADVANCE OF EXCAVATING AROUND ANY OF THEIR STRUCTURES. THE UTILITY COMPANIES LISTED BELOW CAN BE CONTACTED AS INDICATED. 1. SOUTHERN CALIFORNIA GAS CO. 1981 LUGONIA AVE. REDLANDS, CA 92374 (909) 335 -7744 ATTN: JOHN OATES EMERGENCIES: (800) 427 -2200 2. PACIFIC BELL 3939 E. CORONADO STREET ANAHEIM, CA. 92807 (714) 666 -5467 ATTN: VIRGINIA BECKER & SOUTHERN CALIFORNIA EDISON CO. 300 N. PEPPER AVE. RIALTO, CA. 92376 ) 8 TRANSMISSIONS: ( (909)875-5100 PIPELINES: (213 6 DISTRIBUTION: ( 09� 357 -6233 4. FONTANA WATER COMPANY 8440 NUEVO AVENUE FONTANA, CA. 92335 (909) 822 -2201 ATTN: MICHAEL J. McGRAW 5. COMCAST CABLE 1205 DUPONT AVE. ONTARIO, CA. 91761 (909) 390 -4738 ATTN: JACK HAYES 6. CITY OF FONTANA 8353 SERRA AVE. FONTANA, CA. 92335 (909) 350 -6632 ATTN: CARLOS NAVARRO THE CAUFORNIA PUBUC UTILITIES COMMISSION MANDATES THAT, IN THE INTEREST OF PUBLIC SAFETY, MAIN LINE GAS VALVES BE MAINTAINED IN A MANNER TO BE READILY ACCESSIBLE AND IN GOOD OPERATING CONDITION. THE CONTRACTOR SHALL NOTIFY THE SOUTHERN CALIFORNIA GAS COMPANY'S HEADQUARTERS PLANNING OFFICE AT (714) 634 -3258 AT LEAST TWO (2) WORKING DAYS PRIOR TO THE START OF CONSTRUCTION. BENCHMARK RR SPIKE ON P.P. 1 674320 O INT. N.W. MULBERRY & lURUPA. ELEV. 918.40 -DR._ STORM DRAIN IMPROVEMENT PLANS Iku OLEANDER AVENUE TRACT NO. 14758 F ► h1.1y CITY OF FONTANA COUNTY OF SAN BERNARDINO SLOPE TRENCH SIDES 1 17 OSHA R£OU/R£AI£N7S (M?) BEDDING F71: !ECIED RU • M/N. TABLE: 200- 1.2(A) BEDDING REINFORCED CONCRETE PIPE SEE GENERAL N07E NO. 2,5,12, 13 & 14. 1. BEDDING A" SHALL BE COMPACTED 112" CRUSHED ROCK PER SID. SPECS: FOR PUBLIC W17RKS C0NS77?UC770N TABLE 200- 1.2(A) AS SHOWN HE7P£ON AND SHALL BE SHAPED 70 1HE BOTTOM OF THE PIPE. 2. BEDDING b" SHALL BE S40VD OR 01HER GRANULAR A647ER.K AS APPROVED AND SHALL BE COMPACTED PRIOR TO PLACING BALANCE OF BASKFILL. 2. SELECT f7LL SHALL BE AM77W M47ER[AL FREE OF LARGE ROCKS, DEBRIS & ORGWICS (J AND SHALL B£ PLACED IN B" "V.. LOOSE LIFTS AND COMPACTED TO 95X STANDARD PROCTOR WT77N PUBLIC S7R£E7S 70 9OX STANDAI?V PROCTOR W7771V UNIMPROVED AREAS PIPE BEDDING DETAIL NOT TO SCALE RE SIEVE SIZE % PASSING 1 1/2 LF 1" - 3/4" 100 1/2' 90 -1DO 243 20 -60 NO. 4 0-15 NO. 8 0-5 ASTM 131 TEST GRADING B I' j HESS/ �OQ PAU( P f Ko. / } Ems. 3/3 03 } 0 vlt OF CALM Q CONST. 7' X 12' R.C.B. PER CALTRANS STD. PLAN D80 & DETAIL ON SHT. 4/6. • 196 LF OZ REMOVE AND REPLACE EXISTING CONC. BLK, WALL PER SECTION 'A" ON SHT. 2. 1 LS O3 CONST. 102' DIA. R.C.P.13500, BEDDING PER DETAIL ON SHT. 1/6. 243 LF O CONST. TRANS STRUCT. PER AR.W.A. STD. PLAN 342 -0 & DET. ON SHT. 4/6. 1 EA O CONST. MANHOLE PER AR.W.A. STD. PLAN 320 -0. 1 EA © CONSTRUCT CONCRETE BULKHEAD PER R.C.F.C.D & DET ON SHT 4/6. 1 EA O REMOVE AND REPLACE EXISTING STREET IMPROVEMENTS. 1 LS ® CONST. CONCRETE BLOCK WALL PER SECTION "A" HEREON. • 347 LF O9 CONST. 6" THICK PCC PAVEMENT ON 8" AGGREGATE BASE. • 400 SF 10 CONST. PARAPET PER CALTRANS STD. PLAN D82 & DETAIL ON SHT 5/6. 42 SF 11 REMOVE EXISTING CHANNEL WALL, SEE PROFILE DETAIL. 252 SF 12 CONST 6' CHAIN LINK FENCE PER S. B. C. F. C. D. SPEC. DRWG. 1 340 LF a I CONST. MANHOLE SHAFT INTO EX. JUNCTION STRUCTURE PER APWA STD. PLAN 342 -0. 1 LS + ALL CONCRETE WITHIN DISTRICT RIGHT OF WAY SHALL BE PER /25 OF THE PERMIT APPLICATION CHECKUST. I Er r Hall & Fbreman, Inc. ♦ it Enpneering " Planning " Surveying • Public Works 54 Hwnta n Ste. 106 • UPIDnd, CA 91786 -9997 111-182 V V ` X i DA 51, -- CITY OF FONTANA, CALIFORNIA VICINITY MAP N.T.S. LWN BY SCALE: VIAS STORM DRANV NONE JGNED BY VMS OLEANIM AVEIS :CKED BY DATE: HAG 'F ACT M 11418 1/06/99 1 NO. 'ra DR. NO SHT. N0, 5147 PROVED _F!•1___ CITY EN GINEER R.C.E. 25126 2724 1 OF 6 II { I I!t-t u -1 � +it +'t' �'iti +r 4 ti+il •-{+,-i r+!r �It{I t o a rl '4 I +J +,m { '+' a }.try,i;. «'f;,. 1}.t "7 1 s ,f � v ° v o w i r' -i + Iil t t 1iJ. uj n n n I Q -I I I Ih`i t l p m`I I a g x a n it Z � 1 virio < ~ '4 i F-- .. +,: }L 1 II �� c I� Z ^r r , ' - +Itl +" 'i !'mot r �' t'r t : }' I f '+11 iL: "II Ir`♦r"i r { t 'i 1 _i Q �l .Fi +t, >1 +' H - { Q W z 4. Z l l.' t't' 1 ♦•- i { 1 I' x g z� Ib <°> lir+l+�iwl `'`,'*I'"�;!�*1�' :•.} ,}Ll �jt-.I j hhl' 1 !t '` -4 >{ +�,'':l (n IL+a+i.+ #++ I +*i- , J.{:,- ZZ °� J a F.. p Li 11 1 O EO N S J 00 t I , + {}* r {rt r lr �'; ++,, T}} ++stt µ+� Ir !, .i +a 1 Hi � I }?H, '+ ', {J,�, 2 +.i,1, it ',', "i t} • a w z u a � �• � s J � a ttiKj + N,r ''{*lA Tti + „'`(•fr t 4a +' l ,p++urt ” �, 1 r1 1 ` O U aj ° a ° o z U it l \i v L r J I t "f —Z 1 1 1 ,MT {t' + � o Y ~ ° z n ° o �yJ t+i IL ul � c v v z ,. U ( rf to ! a r a a� 7d 8 n x N z M a Q 'x T d z p, z /� '`r +y 1{ rf' n •t+ j '1,� , 't*tti t!' J f r l. l r' +r{ + wL i 4 "; (r i ',.1 = U A jrl u1 (� +7ti IS to a 3 r j �� ti N Z ' I, t '�N 1 1 j'H}*rf H41 r,; r +. }tf .1. , µ+ II' „rl« �.' �-• 1- �tl:+ -t t r r: w a M &,n Q o r � I �! 1 lnvr I!�rJ- } +I I ' +„ +, '' i+. 1 + 1 1 ' µ li I' O M O 1 I $ ni P f . +y.i.+ y. i „I ° Or Oi O p p �' W w F m i In N 3 f / Z a W Q Z ci KQ w W 5 051ZO +,'ti'+l lr-•' 1 I t}I } ! 1 o Z W W a >z Y O 7 i - I Ir t,r{ a Z WO I I', F• _ J I II < m U 0 W U K N W C jN _I -a 7r r '+J t•' t + j', .I- H 1 +,{ " ta< ,1 ! U +t 1 U r w a z z B N o m ° z � ¢w . f � K m / -. Q � i f ".�..' ; rl 1 }, `` 1 r I I i t t1 1 't+•'* i 111 'I "ff p tl. 'i7 rT+ 'riLt ;1., U N � ; � U z LL V/ ' !I J '[ ` 'h1+" I Nt} n +3 + r i �h:, U U ,lii;• {T+!.S+ {,y °+h W o a < oL I'^N H a �< W � � OF - � �4 o � 1 t 11 it a a � � � � yW� W .+Y C 'I+r+^*'T' `I't ' .jar�++l+ +tlI-idl it ,�(� I,.+1'!,rl +r •r! li� + l y }� ' I' r ! I u' 1 I,'' {1 I �JI ' ( ; �t II !j �ir' ,' U1 � r�. � F W w � g � f'•1 �— r l ± Ih !' 'I I III'I It 11 Z W r ,rl II i I i I,I � ( iv ° Z x z = Z H w ' i• 1 , , !t .i yy+�� 1•`}`j`' 11H ""i';''?' t, It . 1, .. { '+'i � 1 � a z Z o z f +: y.�` Y i� N w ",�j ijtl '` I , "!"T�`li i•j'irir! 0 z c a O _ ,y Q �'� (._) z z�' Y a z < � � � �S 0 I `Irw+�'+L •+�+ }r; N } }�{- ri1�f{ +I { + { I;I tr +}r}+}'i �+ 4 { -tt{+ { ll +r � � + ( 1 �n o N N N N o N I I I� 1 I rl � 1 1 I � � I I i i' I I I I 1 I T''{ I l{+ll(• ftr`t', } '� � •• a a v � 1 -j r 1 i 1 ( �� ' t ++ i»,♦• } +l:i .+{-; ty �.,1 +,'u - +I t� I i ' � 1 t' ' I I I I! I I il' I l /j \ ) M m n z� \ " J -U..'t !; I!? "' }I lli' }�1iii. Ii„ t+,ii �,lt+ r4} ",{ }{ -`"�ri .I�+f, F, {i It �t rt;:,� � H*i .7j1�1.14jl `•f�! it+?!+.j' + r +u. +, i, ( e l M c� � �� ;'{ a 7i 1 TI I t I , ;, 'ri ti ,I lj.11 "' III l � j' l 11 1 1 t 1 'I , {II rl 4i- �+ k+lr,µ �y,A -ly 1 + ..,;1�la.JSn l {+4r •+411.j r „ } � X � w aL pp� }✓� tt',�I +i'f1TITT ±ili'Iti' {tl ?I j{�`h�t: ff�ri"Ytnj I }{f+jt r Iilli iki r , I_.I'll 1 � 1 1 11 � I I I•I I 1 fi�I j 1 I I :I, �Y�Ir'I 1 , i I r i : , d � �L•+ J . I'^,'' �j 00 ` \`� •' \ ''� \4 � F a a; a ' I! , V• �" ilig N� a r-a I {:111 r N d I ';lLI .lTij .. } j t,:rnrftlii.,, Tyr' ;;1; a'� \,� �m� •II I U �Q< �Irh'1Li:i I a' I IIi h;h �li 1 i h 1'r'y!i. fill ' i'111 'I ; �I li:;�;,,,�, r ,ji!i 'lli I j7i :'i I. I'r II ,I��,It,IrNfit:�lilii.r � u�l�if hi+'ihan }i4t ' \ cN+!r o zoo �'l 1 1 Ir I i + ?- +'++tr' I{+ntl }ht 'f ' 1 *t r r~T{ t In rh � � \ • �\ 2\ IS < F �I - III ! �, r I III' I� \ *\ '� o A.- iJ , ,rk �I •'� \ ` �y yf Z" c � t' � "t, � � , • \ 1 I' OF \ , y �- +�.1'>1}` .,x{ri .+++ -. +•tl+ 'r ry.. r t 'I .1, {, t + Ill I +! 1 II r 1 +i 1 t "t✓� - t l ;- \ \'. \ 0 X0 0 xw 4- 17i a l i l i li I I' I I l r`1 1 1 I , 1 '�r •+.itt'r -d t G_ -� {I X O \NEER r g w i +, �"iTl" rr!+� +.i+t�t� `tu +Mr'� �I, } - #� 4+ r +^•, 1 + - � � ' � i r I jt!t + tj I lTlr { mhr '} j"{'+ ! n t.' �I I� I ! 1 I I I "ii - '} 1 t ! �}: ♦ ! } + t' II Ifll I '1 11 f L ; I i I 1 i I r I ' + 1 J +, 1 +..; ;.µ, I' `I 1 i+ ' f I ' •f I !1 � \\ - y �; � A � W eA ! I h �I I { Ii i t 1 j I ' fi i I � f '� r � +t''i { � a 7 � "� •\ �/ �� // i ) n l I+ 0.11i + it I . I to "*k"Ifl{I' 1 } ' t 1 {+) t >♦»+i �A+y.u,i{l --*"}+ !t rj wtt : " i / / { i "" 1 r} +} �'' I ,1 .., ti' � {' t 4 , rl t,.t 1 "+t - I i r � } r '•t -IiIP � F / ., +tN-1 N, Ii I' - 1 i') + '; ' I 'In,� 1 III, 11111 •4 , :•rr; ; �'t'; i 't l 'ft '�' .. J1 q +j lx JII 11 I ll' I ', -I II i I 1 ' I '' i'n C/• / ,r '1 t 1 }jt t h� rr 1, Ilf I +}{ N 7J1 �} r t r ?- `O o• �, i,+t + ri `+ r a �+i } t 1,.., 1 O ! 1 1 It ' T ��I��� " " " " " "������ tt r M+ 1 1 I" I! 'i' 1 1 r♦I O ' 1 '1 Yr' t I 1 1 -1 } ., TMi' -} {+ t i+ri fjri f' +, t, t ' * r' It{ • s�, oy x / l y } } ++ ?,I It t�l,T iJ i ''•.nr r +� 1 +U 1 'J ++ 1. i. '1 S7j�� ca I J I ti 1 1 1 1 t r i t I 1! th it I - I - I*} I l 1 � r a, It+ A u+r'f{'+ - + y +rf, .y { - 1 { '+ t t rr t r 'µ4 .r � 1 '4 +� It i i I III I '„ 1 i I. , a � / ti� S / �•' 'TI L�, {�} I Ott 1,�. { h,}+f', ', J i l i, •'!4+ + ,. 1 I I I r J +Jt 1 L + �i'i. ri I t { I ' i L , 1 �' / v 09y / r/ �: +>jJ++Jr +m.H 'r't+� H+..J' r ++, l;} I I . I si i.µ.4,! 1 _ / ' <4"• /' / /•t l(y , I I t,n 1 1'': r 1'T;1` "} I IH,F; h ri T'+l' t < {�,+''-++ }• 1 rt { rTw t i tJ#". (' to / "'" � / c>�' :HT +t r } } +t' t !+- i±•! t u `.+ + 1 I U 11 •II / i-}rt17>,.+ II1 r. ; � I 1 � I I I t 1 X14" ,+ -In 1 1 t •r J,' w i, J � O m li It I N I, I '"' r r 1 r 'r 1 t ;-•J t- x -'}+ 4} /� ,s .., 1 1 l i lt . ' I 11 1 i 1 i +r, I- 4' ti fi { y h H, P'' } itl u r l`^ y7'*++ +.-tH} "'� {i'tu{ i' I "'. + +*. -+}{ r 1 � r `'*^r.+r ,•-' °�'- -•{, a i�a.i I 11:Li+ -- -'*' I� ! rl I I �{ + { ! I I h •, ',i� I «i j+ I� t ++, I +'I I, {+ a t •� 'y r rt t'I, fi L - �„'{fr, t� ','„ + II I 1 11 tI' II i I ',1 11 1 Il,rr i ,r ti, r { h 't1 M li,+ -,'I ') ,1 1 '''1 1 ' 4'J .,t 1 1 �. v: 1 r {t} }, i :r'.i W } "' +•;, ., ( f r l t r' ,v i }„ ,�., u " a, 1 •J 0\ � �\ 1 1 I I I J4 I µ'-t' } y,' ^ 1 � # + 1, 1'f 'i I ti^-+ t }' i „�i I "'�,� I I � � ' •S 1 1 ~"1 1 7, �t J 1 + k++ I I T } 't f} l 1 +I i '' 1+{-s rl l I I {I ; + 'ti �•l.) \ p �'• \ 11 ,tix `fi ' 1 + I' �,-' I t•-, ''lt +- r i I L ' 1♦ '( hut+ '',I i{-+ i, jH 'T I' N i I I 1 +64.44 P.R.0 h N Lrj it I if It I 1 n I r - ,{ 1 1 r d � l+ ' +I t 't✓ U. I I 1 1 I 1 � t l )) � / / �♦ 1 141+ ,n- +i a,rl 1 II '. .i ' lil I. I 'j 1 it " I i' r r'r!' -1•rH •M 7 / / -.� /� / l.: LL, I t rl I --i I'i ' tl r!-`♦ r + I, + 1 ! r'; u l J � 1 � / / ,y / ��;• i � l tI L ,+ 1 4 ry 11't t t r + ',�z. (•, } t- r{+ 'I h 1 I / � / I '' " IIi , I' I '`�I f + 'r �+ T i {+rt' r I'A""'I 1 i I Tii t, i 1 t r 1 •?,{ t«,+r- ~..+4tµ ! / O / AC if fi' II } �r•+tr r t ++ I + a !+ rtt' +r`+f 1 *' "11. !+ , r a 11r t ar ' + 1 11 �I + tt1 1 ' {{,1} ` n r k::+.+ - i i t+ rt t L y. I I ' '' 'Ili! tl,l 1 i 1 ri l ,r { � /' // .s ! tt t 1 ) 1 r f , r ra 1+1 + m +• r-tu+ •1, ' +, > .® !1 1 h i ; `rt'1 -I- {+ r LIr+J+il r liu, I Ir ,J i 14', � 1 +J }' {Il iJ.tt„ 1 } Il+ + I I+ llit,71 I' i i ' ,.' // //•/ 1 ' t •{4 1. P t, I - +i +-i-r, I I h •, t ~^` * 1 µ 1 ,N + I L t' -,- AI t i'' +y 11 } r+l'1 I r l '+ d // '' 1 , II I t I ,; I I ' ' ij t I ! f I', .'}I `1 I { r I L Ltl, �{ a;, .� � ®✓ +1 Pi 1- I{, r ', iiJt , t+ � •j {W''} - rit r +{- + + 1 »'+ 1 i ,! t f I �-+- t+� J }{ ' }. as _, tJ r +{i-H ry ,+,r } h 'i }Ir µ -' rr I t+ t I I. , t' 1 5 1 t+1 + +i I t1 i +,! -, i, {+ •J -+.', i I {i h „+' "I h} 1 1 1 h ki I r': H',�•' ' {I +1''t r t � +> j'�}+ i {jl; t }I' t' r +w -!">� i ' j I I w,�+ r} !� I r -tj7 �; 1 , +• t'L H++ - t �rl {4.t.' 1 1{ �+Mi # 1 ! ' 1 1 I 1 I t', t r^i+, - Fi.l. {} t"✓ I, t 'il{t `1*j �'!', l Ttii " *r 1 >♦x { hul, r I ,{ i .t- N „' - JI' a 4 q tt � i*iia j�iiF,Tn + +trH t L }t+r;', t l.d 'r+•,riTni hUi 1•ry +I i +JJ {' 44' rl I I:„ , . 1j:; rc u� 0 � V fi w xr / / X10- V N Ito g ' z vi �s V T� :E - a� - ,q - T - 4 4 -T 47 4 T-- A - 1 --- ----- --- A g '7 H -!Z� H -7 4 ------- A -T + T u J T- 4 -4 .4 q= f A—E- 4z 5v i7 1 - . - - �t - I _ �T F , -Ifff T 2� :z 7 R �: -�-- T- PT� H_ V - A -7 - j M- , / , - -- , L= i� L, - --i�i -K 4- E 77 7 o0ow - - - - - - W i 04" 4- - �P zF- T� - 41 �E w-t T f 4�tt� t q1 ---- -- - _4 T 3 j- - �ff - - -i� f f - --- - -A -A t- ' t A L -� A -4 f _q f; i� n� zi 4 F� f 4::� 4 �� --- 2 q -q 4 , - A f j T.- --T j7 - 4 FIL 4 HORIZ. q� q t t- 4- 7 Qf y j 238+00 239+00 240+00 241+00 242+00 243+00 244+00 245+00 246+00 R/W R/W EXISTING CHANNEL WALL PROPOSED BLOCK WALL TRACT BLOCK WALL EXISTING C.L. FENCE CABLE RAILING BE OUTSIDE OF CHAIN LINK FENCE -\ ,I, PROPOSED BLOCK ". FLOOD CONTROL R/W PROPOSED P i+U- T N INSTALL C.L. FENCE 01� L TO ` ISi1NG PROPOSED C.L ACCESS C AND PROPOSED FENCES ` ACCESS ROAD FIL GAP BEI --------- ..... SCALE: 1"=40' _CHANNEL MAINTENANCE RAMP C.L. CONNECTION DETAILS C.L. SECTION "B-13" 5Z 12 10 GRADE 1015 k. 4-- -f--T T 10 -J 1 005 143 44 : i -i 241+00 242+00 243+00 PROFILE MAINTENANCE RAMP r ".U., sm. ow f— 2000PA F1- GO p 0 16 Vwt III Edp #4 0 21• H PROVIDE WATER 1IGHT JOINT EXISTING CHANNEL WA FALL CHAIN LINK FENCE PER SBCFCD CIAL DWG. I ON TOP OF BLOCK WALL IN CONCRETE IN BLOCK CELLS. I E .4, 12 SECTION "A" BLOCK WALL DETAILS I, RELOCATE z EXISTING GATE z + R i EXISTING FENCE TO REMAIN r NO. 2 20' 241+00 242+00 44 43 240+61, z NE I: F-- I - — - ----- -- +------ -----I------ - - - --- --- NEWN 46 RELOCATE 0+00 NEW STORM DRAIN — — — — — — — — EXISTING GATE 47 12 (�) PROPOSEt TRACj WALL .. E)USTING FENCE TO REMAIN 9 " D O IN ICTC -T-- %\ 1W I M28 I A EXIST MAINTENAPtE RAMP \ \—JOIN NEW FENCE TO SEE HEREON 48 443 ID, L A INSTALL CHAIN LINK CONNECTION EXIST. C.L. FENCE. 239+00 240+W 241.00 2�2100 TO EXISTING FENCE 8 12 CLEZ AN EXIST. CABLE tA of :3 + JOIN NEW FENCE TO g v ESS Z JOIN NEW FENCE TOY z 0,U4 EXIST. CA- FENCE. EXIST. C.I. FENCE. CHAIN LINK FENCE LOCATION C' z CONSTRUCTION NOTES: or CAL CONST. CONCRETE BLOCK WALL PER SECTION "A HEREON. CITY OF F❑NTANA, CALIFORNIA CONST. 6 THICK PCC PAVEMENT ON 8" AGGREGATE BASE. 3: CONST. PARAPET PER CALTRANS STD. PLAN D82 AND SHT. 4/5. + Z DRAWN BY SCALE. Hall ■ & Fbreman, 1w. REMOVE EXISTING CHANNEL WALL, SEE PROFILE DETAIL 7 + 0 04 VMS STORM DRAIN HORIZ=4' + F a — F, Manning • Surveying - Public ftrks DESI VERT : GNED B) ,I:=4 � O qw Engineering CONST. 6' CHAIN LINK FENCE PER A.P.W.A. SM. PLAN NO. 600-1 12 54 z VMS OLEANM AVBW AND DETAIL ON SHT. 5/6. te. 106 - Upl and, CA 91786-9997 - 909-982-11 CHECKED BY DATE- HAG 7�F NO. UM 4/06/99 NO APPROVAL JOB DA TE clu — 4117 5147' 4PPROVED W�T NO • SHT. NO. APPROVAL REVISIONS ATE DATE- 'CITY ENGINEER RZ1. 251261 e724 1 3 OF 6 04:705-199 ,_ q S lOCE " M O" R[R Ro TO K ' R TS - a ! NM•31 TIE - 1P .-MID W spat Ct tC 4-EOIaKI, E 6108 A Sri .. ls` -]9 L ' SFE NOTE 2 F,. G X Q sus - 1Oar]I TIE WR 6ARVLa TS I•N (19 OC. 1.t • � fEE NOTE 9 ]- IS1ENi � FM6 I.1 • IY-M a•ro9 LoK m rag a DETAIL 'N' IWMT.AOPL SMS ADO s SO TO F 4 a HAW"Lfi` Nz NVh II MINtl aHD COrD1 AMT bMOWHI PLAN Mu 11on D MXAFT NOT SHOWN AT an NO STREET Mp WV pl Op WaOE am. PLAN 690 sa � 1049 WMIOLE BNAFT Im err SO PIPE BEAT LEYFl, PER STD. 13'e2'1 `LM ]H PIPE BEaT i $ 9fE MOTE 9 900 - 1]•-09 E am$ r� Tr aARs a E BMS _1 BTEPs 4 IS To aM -� t 6. p a.* Im er IS P J BARS • P ROUMI EOEE ]•1 A SPRSoo- I - T ~� ~ IaNNNI r 4S0 INLE x aE BOTH ELEYaTON WAGE POINIL s TO K I Ufw APPLES TE { 1NIIEM R la If00 er THIS POINT 60� W a SECTION B -B SECTION A -A CONCRETE RIMY PAN ST *�TIE GRADE PUN I L2 nr NYC) WT TM STEP IM PAVED SEE TALE s TREETVMIABLE ISO 41w -S er Of.) fIIK OR NI P, (`BEETS a a50 r 41 STREEARS ND s TO Ia SECTION C -C AIrJtlCAN PIIBIJC WORI(B AKOCNTMN - 80URIHtl1 GLFgWN C111WTER MANHOLE PIPE TO PIPE MAIN LINE I fth OR GER 320-1 119lRWOR SKET,IM. �L I irZ1 TTPi ^ 11�� ® Fill_ ISIFSI ';T[71171•DO2'Zi797FS'='^I[F9)♦ MANHOLE PIPE TO PIPE MAINLINE REF: A.P.WA STD DWG N0, 320 -1 1l 9 -a1eD WrERr FLAT MIYEM Y _M008L IBMCFd� MVFAT ' ALmwrNNE Nvexrs e... , ROOF SECTION .�i.�.wr rwr n ww1... w,~ix SPANS 3O m TND 4.3 to c. e.Prrr• w a s.4r n.nr sh. man rr � wa s � >..s «.r• a... Ma.. a • � w+0o � .ow, r• 31.1pr.1Nw CAST -IN -PLACE MALL SECTION ASUIPARCED CONCRETE EPAN3 3A n TNNI 1.3 SIRBLE BOX CULVERT NG scALE CAST IN PLACE R.C.B. CULVER REF: CALTRANS STD. DWG. NO DSO {, GYP Hft 1 S {T9a / g s ♦ 4jF NOTES 1. WHEN DEPTH M FROM STREET GRADE TO THE TOP OF THE BOX IS LESS THAN 867 wA l2' -10 I /2.1 FOR PAVED STREETS OR 1060 - (3-61 FOR UN- PAVED STREETS. CONSTRUCT MONOLITHIC SHAFT PER SECTION C -C AND DETAIL -W. SHAFT FOR ANY DEPTH OF MANHOLE MAY BE CONSTRUCTED PER SECTION C -C. WHEN DIAMETER 0 IS 1200 as (48') OR LESS, CENTER OF SHAFT MAY BE LOCATED PER NOTE 2. 2. CENTER OF MANHOLE SHAFT SHALL BE LOCATED OVER CENTER LIE OF STORM DRAIN WHEN DIAMETER DI IS 1200 wN (481 OR LESS. IN WHICH CASE PLACE E BARS SYN E ICALLY AROUND SHAFT AT 45' WITH CENTER LINE AID OMIT J BARS, 3. L AND P SMALL HAVE THE FOLLOWING VALUES UNLESS OTHERWISE SHOWN ON THE PROJECT DRAWINGS: A D 1Bn1198'1 OR LESS. L•1.7 m I5• -6.1. P•130 mm 0 a. DE OVER 2400 n9 196•). L•1.8 m (6-04L P-00 nw (B•) L MAY BE INCREASED OR LOCATION OF MANHOLE SHIFTED TO MEET PIPE ENDS. WHEN L GREATER THAN THAT SHOWN ABOVE IS SPECIFIED, D BMS SHALL BE CONTINUED 150 111 (6') OC. 4. STATIONS OF MANHOLES SHOWN ON PROJECT DRAWINGS APPLY AT CENTER LINE OF SHAFT. ELEVATIONS ME SHOWN AT CENTER LINE OF SHAFT AND REFER TO THE PROLONGED INVERT GRADE LINES. S. REINFORCEMENT SHALL CONFORM TO ASTM A 6151, GRADE 300 (ASTM A 613, OR= 40), AND SHALL TERMINATE 40 nee If 1/2') CLEAR OF CONCRETE SUR- FACES UNLESS OTHERWISE SHOWN. 6, FLOOR OF MANHOLE SMALL BE STEEL TROWELED TO SPRING LIME. 7. BODY OF MANHOLE SMALL BE POURED IN ONE CONTINUOUS OPERATION EXCEPT THAT A CONSTRUCTION JOINT WITH A LONGITUDINAL KEYWAY MAY BE PLACED AT SPRING LINE. S. THICKNESS OF THE DECK SHALL VARY WHEN NECESSARY TO PROVIDE A LEVEL SEAT BUT SHALL NOT BE LESS THAN THE TABULAR VALUES FOR F SHOWN ON TABLE SM. IL 9. 0 BARS SHALL RE 1510(•4) FOR 0:•975 439') OR LESS. 13M•5) FOR Os -10 0 mm ( (4r) T OVER.M (84 INCLUSIVE AND 2016) FOR 10. CENTER LINE OF INLET PIPE SHALL INTERSECT INSIDE FACE OF CONE AT SPRING LINE UNLESS OTHERWISE SHOWN. II. STEPS SHALL CONFORM TO STANDARD PLAN 635 OR 636 UNLESS OTHERWISE SHOWN, STEPS SHALL BE UNIFORMLY SPACED 350 mm (14 TO 375 Rn1 (159 OC. THE LOWEST STEP SHALL NOT BE MORE THAN 600 mm 424 ABOVE THE INVERT. 12. THE FOLLOWING CRITERIA SHALL BE USED FOR THIS MANHOLE A MAIN LINE • 900 - 136 INSIDE DIAMETER OR LARGER. EXCEPT IF THE MAIN LINE RCP DOWNSTREAM OF MANHOLE IS 900 - (369 TO 1050 - L42 INSIDE DIAMETER AND THE MAIN LINE RCP UPSTREAM IS 825 - 1334 OR LESS STANDARD PLAN 321 SHALL BE USED. S. THE OUTSIDE DIAMETER OF THE LATERAL MUST BE LESS THAN OR EQUAL TO 1/2 THE INSIDE DIAMETER OF THE MAIN LINE. IF THE UPSTREAM AND DOWNSTREAM DIAMETERS OF THE MANHOLE ME NOT THE SAME, THE GOVERNING INSIDE DIAMETER OF THE WIN LINE SMALL BE CONSIDERED TO BE THAT WERE THE EXTENDED MITER LINE OF THE LATERAL ENTERS THE MANHOLE. C. IN NO INSTANCE SHALL THE INSIDE DIAMETER OF THE LATERAL TO THE MANHOLE BE GREATER THAN 730 - (309. 13. MANHOLE FRAME AND COVER SHALL CONFORM TO STANDARD PLAN 630 UNLESS OTHERWISE SHOWN. 14. MANHOLE SHAFT SHALL CONFORM TO STAIDARO PLAN 324 UNLESS OTHERWISE SHOWN. 15. WHERE A MANHOLE SHAFT - 900 - (361 WITHOUT REDUCER IS SPECIFIED REFER TO STANDARD PLAN 326. N. WHERE A PRESSURE MANHOLE SHAFT - WITH ECCENTRIC REDUCER IS SPECIFIED REFER TO STANDARD PLAN 328. 17. WHERE A PRESSURE MANHOLE SHAFT - 914 MA (36•) WITHOUT REDUCER IS SPECIFIED REFER TO STANDARD PLAN 329. 18. DIMENSIONS SHOWN ON THIS PLAN FOR METRIC AND ENGLISH UNITS ARE NOT EXACT EQUAL VALUES. IF METRIC VALUES ARE USED. ALL VALUES USED FOR CONSTRUCTION SHAM BE METRIC VALUES. EXCEPT REINFORCING BAR SIZES IN ENGLISH UNITS MAY BE SUBSTITUTED FOR METRIC BM SIZES. IF ENGLISH UNITS ARE USED. Al VALUES USED FOR CONSTRUCTION SHALL BE ENGLISH UNITS. THE FOLLOWING STANDARD PLANS ARE INCORPORATED HEREIN 324 MANHOLE SHAFT - WITH ECCENTRIC REDUCER 326 MANHOLE SHAFT - 900 - (369 WITHOUT REDUCER 328 PRESSURE MANHOLE SHAFT - WITH ECCENTRIC 329 PRESSURE MANGLE SHAFT 914 mm (36 WITHOUT REDUCER 630 640 mm (24') MANHOLE FRAME AND COVER 633 914 Aa (369 MANHOLE FRAME AND COVER 635 STEEL STEP 636 POLYPROPYLENE PLASTIC STEP NOTES 1. THE HORIZONTAL ANGLE OF DIVERGENCE OR CONVERGENCE, B, SHALL NOT EXCEED 5'45'. 2. REINFORCING STEEL BAR SIZES. SPACING, PATTERN AND COVER OVER' THE STEEL SHALL BE AS FOLLOWS RCB TO RCP AND RCB TO ARCH - THAT OF RCB SECTION. ARCH TO RCP - THAT OF ARCH SECTION. ARCH TO ARCH - THAT OF ARCH SECTION HAYING THE THICKER WALLS. THE BAR LENGTHS SMALL VARY UNIFORMLY THROUGHOUT THE TRANSITION. 3. THE CONCRETE THICKNESS SHALL BE AS FOLLOWS: RCS TO RCP AND ARCH TO RCP - THAT OF ARCH OR RCS SECTION UNLESS THE WALL THICKNESS OF THE RCP PLUS IOOmm (41 GREATER. IN WHICH CASE THE CONCRETE THICKNESS SHALL VARY UNIFORMLY FROM THAT OF THE ARCH OR RCS SECTION TO THAT OF THE RCP WALL PLUS IOOmm (4'). RCS TO ARCH AND ARCH TO ARCH - THAT OF THE ADJOINING RCS OR ARCH SECTION AT EACH END OF THE TRANSITION AND SHALL VARY UNIFORMLY BETWEEN THE TWO ENDS. 4. THE INTERIOR SURFACE SHALL BE SMOOTH AND VARY UNIFORMLY BETWEEN THE TWO ADJOINING SECTIONS. 5. AT RCP JUNCTURE. EMBEDMENT P SHALL BE 130mm (S -) FOR PIPE SIZE OF 2400- (96') OR LESS. AND 200m l8') FOR PIPE SIZES OVER 2400mm (96'). 6, Tj • 28 MPo (4000 PSI) AT 28 DAYS AND THE CONCRETE SHALL BE THE SAME MIX AS THE ADJACENT RCS. 7. ALL STEEL, EXCEPT LONGITUDINAL STEEL SHALL BE GRADE 400(601 BILLET STEEL CONFORMING TO ASTM A 615 M (A 615) AND SHALL TERMINATE 40m (1 1/21 CLEAR OF CONCRETE SURFACE UNLESS OTHERWISE SHOWN. S. KEYED CONSTRUCTION JOINTS OF THE SAKE DIMENSIONS AS THOSE OF THE RCS OR ARCH SECTION MAY BE CARRIED THROUGH THE TRANSITION STRUCTURE AT THE CONTRACTOR'S OPTION. SEE SECTION 0-8. 9. THE TRANSITION STRUCTURE SHALL BE CONSTRUCTED IN ACCORDANCE WITH THE STRUCTURAL NOTES APPLYING TO RCS OR ARCH STRUCTURES SHOWN ON THE PROJECT DRAWINGS. 10. DIMENSIONS SHOWN ON THIS PLAN FOR METRIC AND ENGLISH UNITS ARE HOT EXACT EQUAL VALUES. IF METRIC VALUES ARE USED. ALL VALUES USED FOR CONSTRUCTION SHALL BE METRIC VALUES, IF ENGLISH UNITS ARE USED, ALL VALUES USED FOR CONSTRUCTION SHALL BE ENGLISH UNITS. AMERICAN PUBLIC WORKS ASSOCIATION - SOUTFIERN CALIFORFRA CHAPTER srANDAD nAN TRANSITION gq"2 `� RCS TO PIPE W13 T]oF: TRANSITION STRUCTURE REF: A.P.W.A STD. DWG. NO. 342 -1 M W�Q KrMKK rri R =1RITE tl7 B'K`TEFRI E7E1_M a-72 f-D' MVTw t DaIDKTE MMALL N EAftle .:,.. . TS -70 f.e O: sTKL K CE ROWD M YNENQ rATN MMIMj XMAS 70aNRM WRIO[ RAR OF I -Sa WARNER I'-4' L WS�MIE EGIMrAETE MLIREAD R WARD rRTN AND e D 1<. (MIAMI K KTMDMED BV TIIE NOa11T 4 or-" 7K aCi ' O LOUTS SMALL GEE WITM SAME MML 61AMETER /9146YDAR VW cADtc MROIIaX f!-DS E+F' COAT IOWOD POIITIDN aF ' IIORMOMTAL A' DAR K +Z ANL[ LMAa WITH M APMVM MYIKMCOB PIUNr NNa TO "C""HK TKrCLL At i --- ��-- -tA ri aRaH f W A aN. .k B 3 • PLAN . ARMH YY NAME A NORa6aN0E- MHAPFA CiRCULM, MR sINLM ELLIPYM4 H.TNas KCTDN, a $ k l \ 1 . a SLAY. � STA. arr. STA. II S _ L V SECTION A -A sTla PATTDw sXnA1 u AIL MLY. atE aOTp _ � �n� GWaTRUCnoM RM 011 MW TO IOU USE CONST. JOINT M RM OR MARL Ol UK COMET, J RC O D E 1a� SECTION 8-B AMERICAN PUBLIC VMMASSOCMTMM- SOUFFIERII CALFMM CHAPTER TRANSITION STRUCTURE RCS TO PIPE 342 - 1 wMBMarANDN1DaFwrwtMrl6MruMlcwOwnamrDa :NOM eNEETIOr� {, GYP Hft 1 S {T9a / g s ♦ 4jF NOTES 1. WHEN DEPTH M FROM STREET GRADE TO THE TOP OF THE BOX IS LESS THAN 867 wA l2' -10 I /2.1 FOR PAVED STREETS OR 1060 - (3-61 FOR UN- PAVED STREETS. CONSTRUCT MONOLITHIC SHAFT PER SECTION C -C AND DETAIL -W. SHAFT FOR ANY DEPTH OF MANHOLE MAY BE CONSTRUCTED PER SECTION C -C. WHEN DIAMETER 0 IS 1200 as (48') OR LESS, CENTER OF SHAFT MAY BE LOCATED PER NOTE 2. 2. CENTER OF MANHOLE SHAFT SHALL BE LOCATED OVER CENTER LIE OF STORM DRAIN WHEN DIAMETER DI IS 1200 wN (481 OR LESS. IN WHICH CASE PLACE E BARS SYN E ICALLY AROUND SHAFT AT 45' WITH CENTER LINE AID OMIT J BARS, 3. L AND P SMALL HAVE THE FOLLOWING VALUES UNLESS OTHERWISE SHOWN ON THE PROJECT DRAWINGS: A D 1Bn1198'1 OR LESS. L•1.7 m I5• -6.1. P•130 mm 0 a. DE OVER 2400 n9 196•). L•1.8 m (6-04L P-00 nw (B•) L MAY BE INCREASED OR LOCATION OF MANHOLE SHIFTED TO MEET PIPE ENDS. WHEN L GREATER THAN THAT SHOWN ABOVE IS SPECIFIED, D BMS SHALL BE CONTINUED 150 111 (6') OC. 4. STATIONS OF MANHOLES SHOWN ON PROJECT DRAWINGS APPLY AT CENTER LINE OF SHAFT. ELEVATIONS ME SHOWN AT CENTER LINE OF SHAFT AND REFER TO THE PROLONGED INVERT GRADE LINES. S. REINFORCEMENT SHALL CONFORM TO ASTM A 6151, GRADE 300 (ASTM A 613, OR= 40), AND SHALL TERMINATE 40 nee If 1/2') CLEAR OF CONCRETE SUR- FACES UNLESS OTHERWISE SHOWN. 6, FLOOR OF MANHOLE SMALL BE STEEL TROWELED TO SPRING LIME. 7. BODY OF MANHOLE SMALL BE POURED IN ONE CONTINUOUS OPERATION EXCEPT THAT A CONSTRUCTION JOINT WITH A LONGITUDINAL KEYWAY MAY BE PLACED AT SPRING LINE. S. THICKNESS OF THE DECK SHALL VARY WHEN NECESSARY TO PROVIDE A LEVEL SEAT BUT SHALL NOT BE LESS THAN THE TABULAR VALUES FOR F SHOWN ON TABLE SM. IL 9. 0 BARS SHALL RE 1510(•4) FOR 0:•975 439') OR LESS. 13M•5) FOR Os -10 0 mm ( (4r) T OVER.M (84 INCLUSIVE AND 2016) FOR 10. CENTER LINE OF INLET PIPE SHALL INTERSECT INSIDE FACE OF CONE AT SPRING LINE UNLESS OTHERWISE SHOWN. II. STEPS SHALL CONFORM TO STANDARD PLAN 635 OR 636 UNLESS OTHERWISE SHOWN, STEPS SHALL BE UNIFORMLY SPACED 350 mm (14 TO 375 Rn1 (159 OC. THE LOWEST STEP SHALL NOT BE MORE THAN 600 mm 424 ABOVE THE INVERT. 12. THE FOLLOWING CRITERIA SHALL BE USED FOR THIS MANHOLE A MAIN LINE • 900 - 136 INSIDE DIAMETER OR LARGER. EXCEPT IF THE MAIN LINE RCP DOWNSTREAM OF MANHOLE IS 900 - (369 TO 1050 - L42 INSIDE DIAMETER AND THE MAIN LINE RCP UPSTREAM IS 825 - 1334 OR LESS STANDARD PLAN 321 SHALL BE USED. S. THE OUTSIDE DIAMETER OF THE LATERAL MUST BE LESS THAN OR EQUAL TO 1/2 THE INSIDE DIAMETER OF THE MAIN LINE. IF THE UPSTREAM AND DOWNSTREAM DIAMETERS OF THE MANHOLE ME NOT THE SAME, THE GOVERNING INSIDE DIAMETER OF THE WIN LINE SMALL BE CONSIDERED TO BE THAT WERE THE EXTENDED MITER LINE OF THE LATERAL ENTERS THE MANHOLE. C. IN NO INSTANCE SHALL THE INSIDE DIAMETER OF THE LATERAL TO THE MANHOLE BE GREATER THAN 730 - (309. 13. MANHOLE FRAME AND COVER SHALL CONFORM TO STANDARD PLAN 630 UNLESS OTHERWISE SHOWN. 14. MANHOLE SHAFT SHALL CONFORM TO STAIDARO PLAN 324 UNLESS OTHERWISE SHOWN. 15. WHERE A MANHOLE SHAFT - 900 - (361 WITHOUT REDUCER IS SPECIFIED REFER TO STANDARD PLAN 326. N. WHERE A PRESSURE MANHOLE SHAFT - WITH ECCENTRIC REDUCER IS SPECIFIED REFER TO STANDARD PLAN 328. 17. WHERE A PRESSURE MANHOLE SHAFT - 914 MA (36•) WITHOUT REDUCER IS SPECIFIED REFER TO STANDARD PLAN 329. 18. DIMENSIONS SHOWN ON THIS PLAN FOR METRIC AND ENGLISH UNITS ARE NOT EXACT EQUAL VALUES. IF METRIC VALUES ARE USED. ALL VALUES USED FOR CONSTRUCTION SHAM BE METRIC VALUES. EXCEPT REINFORCING BAR SIZES IN ENGLISH UNITS MAY BE SUBSTITUTED FOR METRIC BM SIZES. IF ENGLISH UNITS ARE USED. Al VALUES USED FOR CONSTRUCTION SHALL BE ENGLISH UNITS. THE FOLLOWING STANDARD PLANS ARE INCORPORATED HEREIN 324 MANHOLE SHAFT - WITH ECCENTRIC REDUCER 326 MANHOLE SHAFT - 900 - (369 WITHOUT REDUCER 328 PRESSURE MANHOLE SHAFT - WITH ECCENTRIC 329 PRESSURE MANGLE SHAFT 914 mm (36 WITHOUT REDUCER 630 640 mm (24') MANHOLE FRAME AND COVER 633 914 Aa (369 MANHOLE FRAME AND COVER 635 STEEL STEP 636 POLYPROPYLENE PLASTIC STEP NOTES 1. THE HORIZONTAL ANGLE OF DIVERGENCE OR CONVERGENCE, B, SHALL NOT EXCEED 5'45'. 2. REINFORCING STEEL BAR SIZES. SPACING, PATTERN AND COVER OVER' THE STEEL SHALL BE AS FOLLOWS RCB TO RCP AND RCB TO ARCH - THAT OF RCB SECTION. ARCH TO RCP - THAT OF ARCH SECTION. ARCH TO ARCH - THAT OF ARCH SECTION HAYING THE THICKER WALLS. THE BAR LENGTHS SMALL VARY UNIFORMLY THROUGHOUT THE TRANSITION. 3. THE CONCRETE THICKNESS SHALL BE AS FOLLOWS: RCS TO RCP AND ARCH TO RCP - THAT OF ARCH OR RCS SECTION UNLESS THE WALL THICKNESS OF THE RCP PLUS IOOmm (41 GREATER. IN WHICH CASE THE CONCRETE THICKNESS SHALL VARY UNIFORMLY FROM THAT OF THE ARCH OR RCS SECTION TO THAT OF THE RCP WALL PLUS IOOmm (4'). RCS TO ARCH AND ARCH TO ARCH - THAT OF THE ADJOINING RCS OR ARCH SECTION AT EACH END OF THE TRANSITION AND SHALL VARY UNIFORMLY BETWEEN THE TWO ENDS. 4. THE INTERIOR SURFACE SHALL BE SMOOTH AND VARY UNIFORMLY BETWEEN THE TWO ADJOINING SECTIONS. 5. AT RCP JUNCTURE. EMBEDMENT P SHALL BE 130mm (S -) FOR PIPE SIZE OF 2400- (96') OR LESS. AND 200m l8') FOR PIPE SIZES OVER 2400mm (96'). 6, Tj • 28 MPo (4000 PSI) AT 28 DAYS AND THE CONCRETE SHALL BE THE SAME MIX AS THE ADJACENT RCS. 7. ALL STEEL, EXCEPT LONGITUDINAL STEEL SHALL BE GRADE 400(601 BILLET STEEL CONFORMING TO ASTM A 615 M (A 615) AND SHALL TERMINATE 40m (1 1/21 CLEAR OF CONCRETE SURFACE UNLESS OTHERWISE SHOWN. S. KEYED CONSTRUCTION JOINTS OF THE SAKE DIMENSIONS AS THOSE OF THE RCS OR ARCH SECTION MAY BE CARRIED THROUGH THE TRANSITION STRUCTURE AT THE CONTRACTOR'S OPTION. SEE SECTION 0-8. 9. THE TRANSITION STRUCTURE SHALL BE CONSTRUCTED IN ACCORDANCE WITH THE STRUCTURAL NOTES APPLYING TO RCS OR ARCH STRUCTURES SHOWN ON THE PROJECT DRAWINGS. 10. DIMENSIONS SHOWN ON THIS PLAN FOR METRIC AND ENGLISH UNITS ARE HOT EXACT EQUAL VALUES. IF METRIC VALUES ARE USED. ALL VALUES USED FOR CONSTRUCTION SHALL BE METRIC VALUES, IF ENGLISH UNITS ARE USED, ALL VALUES USED FOR CONSTRUCTION SHALL BE ENGLISH UNITS. AMERICAN PUBLIC WORKS ASSOCIATION - SOUTFIERN CALIFORFRA CHAPTER srANDAD nAN TRANSITION gq"2 `� RCS TO PIPE W13 T]oF: TRANSITION STRUCTURE REF: A.P.W.A STD. DWG. NO. 342 -1 M W�Q KrMKK rri R =1RITE tl7 B'K`TEFRI E7E1_M a-72 f-D' MVTw t DaIDKTE MMALL N EAftle .:,.. . TS -70 f.e O: sTKL K CE ROWD M YNENQ rATN MMIMj XMAS 70aNRM WRIO[ RAR OF I -Sa WARNER I'-4' L WS�MIE EGIMrAETE MLIREAD R WARD rRTN AND e D 1<. (MIAMI K KTMDMED BV TIIE NOa11T 4 or-" 7K aCi ' O LOUTS SMALL GEE WITM SAME MML 61AMETER /9146YDAR VW cADtc MROIIaX f!-DS E+F' COAT IOWOD POIITIDN aF ' IIORMOMTAL A' DAR K +Z ANL[ LMAa WITH M APMVM MYIKMCOB PIUNr NNa TO "C""HK TKrCLL CONCRETE BULKHEAD„ REF: R.C.F.C. & F.C.D. STD. DWG. NO M816P SPANS 62 n TAW 2.4 m TYPICAL SECTION S 3A n MANIA 4.3 n LATERAL LOAD - 20 PSF STEM LATERAL LOAD - 10 PSI REINFORCING BARS STEM SPACING, INCHES O.C. FOOTING 1 REINFORCING BARS CUTOFF SPACING, INCHES O.C. H I T WI W2 F q A O C 3' -1 6' tO' 1'-6' V -6' 2'-4• 30• . •4046• -- 3' -8' B• 12• 2•-0 i' -10' 2' -10' 30' tA, .4046. •4046 10'-O' 0' 12' 2'-10` 2' - 3' -9• 30• •4 @32£F •4032. •4032 LATERAL LOAD - 20 PSF STEM LATERAL LOAD = 15 PSF REINFORCING BARS STEM SPACING, INCHES O.C. FOOTING 1 REINFORCING BARS CUTOFF SPACING, INCHES O.C. H t T ON W2 F q A B - C 3' -1 6' 10• 2' -0' V-10• 2'-9' 30• •4040. .4040» -- 3' -8' B• 12• 2' -8' 1 2'-4' 3' -3' 30' •4032. e4__ 2 •4032 10'-O' 8' 12' 3' -6• 3' -0' 3' -9• 30• •4 @32£F •4032. •5@32 LATERAL LOAD - 20 PSF STEM FOOTING REINFORCING BARS CUTOFF SPACING, INCHES O.C. H 1 T WI W2 F h A e C 6' -O' 6• 12• 2' -6' 2' -2' 3' -1 25' •5032 •4032 •4046 e• -0' 0' 12• 3'-2' 2'-B' 3' -8' 30• •4032EF .4 @32. •4032 10'-0' 4' -2' 3' -4` 4' -2• 42' •5@32E> •4032e , •5 @32 R.C. BOX , ,« . wo e LATERAL LOAD = 25 PSF STEM FOOTING REINFORCING BARS CUTOFF SPACING, INCHES O.C. H I T W1 W2 F A A B C 6' -0• A 6' 12' 2'-9• 2'-6' 3' -4' 25• •5016 •4032 •4032 B' -O' 6' 12' 3'-B' 3' -0' 4' -0' 30 - - ---- - •4@32. •4032 10' -O• e' IT 4'-6• 3' -0' 4' -T 50• •SN6EF N @32• •4024 -MIN. REINF. FOR SEISMIC ZONES NO.3 AND NO.4 :'WALL - .4032' O.C. O"WALL - •4024' O.C, OR •5032' O.C. Ri WWORM COMM BLOCK WALL GENERAL NOTES I. GROUND LIKE TO BE AT THE SAME ELEVATION ON BOTH SIDES OF THE WALL. WALL SHALL NOT BE USED TO RETAIN EARTH. 2. DISTANCE OF THE FOOTING FROM DESCENDING SLOPE SHALL BE PER UBC SECTION 2907(03 OR PER AGENCY REQUIREMENTS. 3. ALL CONCRETE SHALL BE POURED IN ACCORDANCE WITH SSPWC SECT 300 -3.3. 4. SPECIAL INSPECTION IS NOT REQUIRED FOR WALLS, 5. PROVIDE FULL MORTAR BED AT THE BOTTOM OF THE FIRST COURSE AND OMIT MORTAR BETWEEN VERTICAL JOINTS OF FIRST COURSE. 6. FOR TYPE OF BLOCKS, BOND PATTERN AND JOINT FINISH. SEE PLAN, 7. WHEN BLOCKS ARE LAID IN STACKED BOND, CONTINUOUS JOINT REINFORCEMENT SPACED AT 4'-6' O.C. SHALL BE PROVIDED IN ADDITION TO THE BOND BEAM REINFORCEMENT. LOCATE REINFORCEMENT IN JOINTS THAT ARE APPROXIMATE MIDPOINT BETWEEN BOND BEAMS. 0. GROUT ALL CELLS WITH REINFORCING BARS. 9. HORIZONTAL JOINTS SHALL BE TOOLED CONCAVE OR WEATHERED, VERTICAL IOtNTS SHALL BE TOOLED CONCAVE OR RAKED. WEATHERED AND RAKED JOINTS ARE NOT PERMITTED FOR SLUMPED BLOCKS. 10, HOLLOW MASONRY UNITS... ASTIR C -90. GRADE N. TYPE 1 OR I1, NORMAL WEIGHT UNITS WITH MAXIMUM LINEAR SHRINKAGE OF 0.06%. MORTAR .. 1:1/2224 1/2 PORTLAND CEMENT - LIME -SAND RATIO. GROUT...., 1:3 :2 PORTLAND CEMENT -SAND -PEA GRAVEL RATIO, 2.000 PSI R. REINFORCING SHALL BE LAPPED A MINIMUM 40 BAR DIA. GRADE 40 UNLESS NOTED OTHERWISE PER SSPWC SECTION 201 -2. JOINT REINFORCING WIRE: ASTM A02. 12. USE TABULAR INFORMATION FOR THE NEXT HIGHER H FOR INTERMEDIATE WALL HEIGHTS THAT ARE BETWEEN THE H'S GIVEN. 13. BONO BEAMS SHALL BE PLACED AT TOP OF WALL AND SUBSEQUENTLY SPACED NOT TO EXCEED 4'-0' O.C. BELOW. 14, THE BLOCK WALL SHALL BE CONSTRUCTED IN ACCORDANCE WIT" SSPWC SECTION 303 -4.1. 15. CONCRETE SHALL BE 500 -C -2500 PER SSPWC SECTION 201 -2. AMMM;AN PUBIlO W"" AMOCMTNIM -MMWM CALWOIr11A CNAPM I • _ OIHI SOc J. / TYPICAL FENCE DETAIL ..' & NS -. CONCRETE BLOCK WAIL PER SECTION "A" ON SHT 3. / ..w --- gatftqLL �b CUT L CO .3 10 CONST. PARAPET PER CALTRANS STD, PLAN D82 AND HEREON. - H n -e' ww. a - >. •r -r ,_ i « .�__ . CUt E70SRNG $TEED: � �. 'tNTR AND BEND 1 .. < REMOVE TO AT ut 12 CONST. 6' CHAIN LINK FENCE PER A.P.W.A. STD. PLAN NO. 600 -1 . '.: IN TO NL�'1'_ CONSTRUCTION '. `: . ' ": i .' . . m EX STARTER WALL HEREON. _ •+• w• a - " _r �T1.. - EX CHANNEL AND DETAIL .. .r . .-.,2• r « f «6� - - _ - 7I_7151'STJ7�l1'2�1�7��' .�l_Z7_TSS�J_I_I�L- / � ": " - :;�::':. , u„, ?:�= :+: � EX FOOTING / w. ew�.ew TO REMAIN „� w ��' -rw.w ,r PROFILE VIEW � REMOVAL DETAIL __- _===- == E5,0I WALL- = = = =____ ___ ____ _______ =_ /. DOUBLE DRIVE GATE DETAIL r••.` CONSTRUCT PARAPET PER CALTRANS STD DETAIL D82 / EXISTING CHANNEL 240 +50 / 41 +00 $1 OUTSIDE OF EXTEND EX STEEL c w R.C. BOX INTO NEW PARAPET, 'O TYPICAL +OJ +; +� BEND EX HORIZONTAL 240 +61.46 0= ° j •� $ ^ TOP OF El STEEL INTO NEW BOX ^ Z o _ EX TOP yy O On F PARAPET WALL, TYPICAL + W g m ± a EXPANSI INSIDEC, BOXr MATEfBAL EL 1005.75 EX TOP OF PLAN VIEW O 510 STARTER WALL c1.• 4 EX CHANNEL SIDE INLET DETAILS h 75 ' 7-7-7-72Z x- _,_7-7-7 --Z__ a E EX FOOTIN \ \ �Y f1 BEND EX STEEL INT D X1005'16) ' TO REMAIN NEW BOX BOTTOM, TYPICAL PROFILE VIEW * � 01'Ii CONNECTION DETAIL WALK GATE DETAIL CHAIN LINK FENCE, REF: A,P.W.A. STD. DWG. NC 600 -1 - r+•T ._� PIPE MATERIAL LIST km z�r- n:..M GENERAL NOTES �•� ti��•«ww •w we.r.,w �i •• .,w " � • M �xw.iw w•w w wu. ww� . w SAN BERNARDINO COUNTY FLOOD CONTROL DISTRICT 6' CHAIN LI(�K„FENCE ___. __- even om.a x CAST IN PLACE PARAPET REF: CALTRANS STD. DWG. NO. D82 .. ALONG FACE OF EX CHANNEL WALL � �»• " 19.73' 1 11.95'_. . .•. • • « « w. w, �, :e,�2*r A fE7'x12' R R.C. BOX , ,« . wo e e E CONSTRUCTION NOTES: .;. w EX TOP OF C CONSTRUCT PARAPET PER CALTRANS STD DETAIL D82 / EXISTING CHANNEL 240 +50 / 41 +00 $1 OUTSIDE OF EXTEND EX STEEL c w R.C. BOX INTO NEW PARAPET, 'O TYPICAL +OJ +; +� BEND EX HORIZONTAL 240 +61.46 0= ° j •� $ ^ TOP OF El STEEL INTO NEW BOX ^ Z o _ EX TOP yy O On F PARAPET WALL, TYPICAL + W g m ± a EXPANSI INSIDEC, BOXr MATEfBAL EL 1005.75 EX TOP OF PLAN VIEW O 510 STARTER WALL c1.• 4 EX CHANNEL SIDE INLET DETAILS h 75 ' 7-7-7-72Z x- _,_7-7-7 --Z__ a E EX FOOTIN \ \ �Y f1 BEND EX STEEL INT D X1005'16) ' TO REMAIN NEW BOX BOTTOM, TYPICAL PROFILE VIEW * � 01'Ii CONNECTION DETAIL WALK GATE DETAIL CHAIN LINK FENCE, REF: A,P.W.A. STD. DWG. NC 600 -1 - r+•T ._� PIPE MATERIAL LIST km z�r- n:..M GENERAL NOTES �•� ti��•«ww •w we.r.,w �i •• .,w " � • M �xw.iw w•w w wu. ww� . w SAN BERNARDINO COUNTY FLOOD CONTROL DISTRICT 6' CHAIN LI(�K„FENCE ___. __- even om.a x CAST IN PLACE PARAPET REF: CALTRANS STD. DWG. NO. D82 WALK GATE DETAIL CHAIN LINK FENCE, REF: A,P.W.A. STD. DWG. NC 600 -1 - r+•T ._� PIPE MATERIAL LIST km z�r- n:..M GENERAL NOTES �•� ti��•«ww •w we.r.,w �i •• .,w " � • M �xw.iw w•w w wu. ww� . w SAN BERNARDINO COUNTY FLOOD CONTROL DISTRICT 6' CHAIN LI(�K„FENCE ___. __- even om.a x CAST IN PLACE PARAPET REF: CALTRANS STD. DWG. NO. D82 GENERAL NOTES �•� ti��•«ww •w we.r.,w �i •• .,w " � • M �xw.iw w•w w wu. ww� . w SAN BERNARDINO COUNTY FLOOD CONTROL DISTRICT 6' CHAIN LI(�K„FENCE ___. __- even om.a x CAST IN PLACE PARAPET REF: CALTRANS STD. DWG. NO. D82 INSIDE OF RCS 08 6) bore / ,I{r, (6) PLACES 1.0' T -- — — .. JIB TOP BARSn-- 2.5' —'� D� ETAIL N.T.S. bas µ TIES 0 1 'z' Bar Bar 8.5' t8 bars "x Bar 'a' Bar 5.0' --� 'X' BAR LNMT N.T.S NOTE: EXTEND 'C' BARS FROM SIDE WALL TO THE PARAPET WALL ALL THE WAY UNTIL REGULAR BOX SECTION. 'i BARS (SIZE d SPACING PER STANDARD PLAN) V BARS (SIZE 3 SPACING / PER STANDARD PLAN) f BARS (SIZE k SPACING PER STANDARD PLAN) 0 ALTERNATE LOCATION. '%' 8AR5 9.0" —SEE DETAIL (A) HEREON CONSTRUCTION NOTES: 70 ONST. PARAPET PER CALTRANS STD. PLAN D82 AND DETAIL SHEET HEREON 7'rt2' R.C. BOX / REGULAR BOX SECTION S PLAN D82 AREA DETAILED HEREON EXISTING CHANNEL WALL m i EXISTING CHAN E 3 240 +61.4$ ow d= r gw N m n PLAN VIEW N.T.S. (3)0 REBARS 6.5 6.5' (3)#8 REBARS.__._; (2)/B REBARS - . - - -- 2)18 REBARS #4 ® 12" O.C. µ 1 0 12" ox. BOX TOP SLAB ..�,............�...- j(2)#8 Rr-BA-RS (2 REBARS (3N8 REBARS -_ (3)/8 (2)#8 (6 TOTAL) SEE DETAIL A �'4 TIES S E A {. #.1__ 2.5 I SEC ON _ N`� T,S, �gpFESS/ sS�PAU� Y� ~ ww /31/ * E. 3/3 { CIYI OF at J SEE DETAIL (A) HEREON (B) i 10 1 +00 m r J O J gio as C SIDE WALL TO PARAPET WALL N. T.s OR s iii/ STRUCTURAL CALCULATIONS BOX CULVERT PARAPET WALL AND STIFFENER STORM DRAIN - OLEANDER AVENUE TRACT NO. 14758 CITY OF FONTANA, CA. No. 46158 J �' CIV11. ��� 9 C CAUF�� Prepared by: HALL AND FOREMAN, INC. 203 N. Golden Circle Drive, Suite 300 Santa Ana, California 92705 -4010 JN No. 5147 -001 March 18,1999 In Introduction: a These structural calculations are conducted to evaluate the size and reinforcing requirement for the box culvert parapet wall. The box culvert is a standard Caltrans single - barrel box culvert 7 feet high and 12 feet wide. The said culvert is to join an 4� existing rectangular channel with an effective skew angle of 67 degrees, expanding the opening from 12 feet to clear span of 30.7 feet. Hence, the parapet wall is hereby analyzed with the longer span. Design Criteria: The structure is analyzed using the AASHTO HS20 -44 truck loading. Concrete and earth have specific weights of 150 and 140 pounds per cubic foot (pcf), respectively. Steel shall have yield stress of 60 ksi for main reinforcement and 40 ksi for #4 bars, stirrups and ties, while concrete ultimate stress is at 3250 psi. W ACI ultimate stress design method is used in the calculations. The proposed masonry block wall is not taken into consideration in the design of the parapet wall. The block wall crosses the culvert at the culvert's regular section and too far from the parapet wall to impose a load reaction. Further, the box culvert section is designed for a maximum of 10 -ft surcharge while the actual cover is barely 4 feet. Conclusion and Recommendation: The parapet wall, as per standard plan, will have a base width of 12 inches. Its height was increased to 24 inches to add more depth. This section, at midspan, will have 3 of no. 8 bottom bars and 2 #8 top bars. At support, the beam shall have 2 #8 bottom bars and 3 #8 40 top bars. To transfer the end moments at the support, the culvert side walls are thickened to act as stiffener. The stiffener has an effective section of 18" thick, measured perpendicular to the side wall, by 30" wide, extending from the parapet wall to the bottom slab. There is no need to extend the section beneath the culvert. The box culvert #4 bar longitudinal reinforcements shall extend to the parapet wall and will terminate with a standard hook or bend. For top slab main reinforcement that will not extend to the opposite side wall but will intersect the parapet wall, the ends of these rebars shall be bent with stand hooks and will be embedded into the parapet wall. r I MF Hall & Foreman, Inc. Civil Engineering • Planning • Surveying • Public Works SUBJECT BY X- I DAT� JOB NO. I SHEET OF 5 l4 7 — 00 , I t C ) 140 �G = 2 S c,� Cpl Z GV�4 -7 oe Lu A4 � I "TO Lo W ju C,a Grsc ` all 4 aA.4,A- 203 North Golden Circle Drive, Suite 300, Santa Ana, California 92705 -4010 • Tel 714/664 -0570 • Fax 714/664 -0596 Mpr .Hall & Foreman, Inc. Civil Engineering • Planning • Surveying • Public Works SUBJECT BY n Of- Rio 7 o 'Z� DATE % JOB NO. SHEET OF 3 -I� - 11 1 5 W] -00 2— Id- -+ 31.4- _ -- - o -� 7 ,I) / v � (/d � I S — r r 43• I� � C��) �3• II (4-0 j5� AA �- _ y Y \� Tf M � 203 North Golden Circle Drive, Suite 300, Santa Ana, California 92705 -4010 • Tel 714/664 -0570 • Fax 714/664 -0596 Hall & Foreman, Inc. ® Civil Engineering • Planning • Surveying • Public Works 1 203 North Golden Circle Drive, Suite 300, Santa Ana, California 92705 -4010 • Tel 714/664 -0570 • Fax 714/664 -0596 1 0pr Hall & Foreman, Inc. Civil Engineering • Planning • Surveying • Public Works SUBJECT BY DATE JOB NO. SHEET OF 3 - 15 - q°I I s (47 -00 1 1 3*1 3 7, r b - � g S D �g � 87, s� -� � �• 43 f 1 I L ;4 ©,-,s-(o�¢��- o� 4-,-, d z '�V'5 f 3•Zs rUL (1 - 2- S 0 AA UA > 170` Q � 203 North Golden Circle Drive, Suite 300, Santa Ana, California 92705-401 • Tel 714/664 -0570 • Fax 714/664 -0596 Hall & Foreman, Inc. Civil Engineering • Planning • Surveying - Public Works 4 ad 203 North Golden Circle Drive, Suite 300, Santa Ana, California 92705 -4010 • Tel 714/664 -0570 • Fax 714/664 -0596 UPF Hall & Foreman, Inc. Civil Engineering • Planning • Surveying • Public Works ®r Hall & Foreman, Inc. Civil Engineering • Planning • Surveying • Public Works SUBJECT OF 14 BY 7�7 00 DATE JOB NO. 7 EET a -r(N ell \ v rc)� Ll L C �6 °� T � Iz 1� 203 North Golden Circle Drive, Suite 300, Santa Ana, California 92705 -4010 • Tel 714/664 -0570 • Fax 714/664 -0596 00 rc)� Ll L C �6 °� T � Iz 1� 203 North Golden Circle Drive, Suite 300, Santa Ana, California 92705 -4010 • Tel 714/664 -0570 • Fax 714/664 -0596 ® Mall & Foreman, Inc. Civil Engineering • Planning • Surveying • Public Works SUBJECT BY DATE JOB NO. SHEET OF 14-7 -0 pI g 1 � Z4 -� A�a Ma F oi � [K'�4 9' rr M- 203 North Golden Circle Drive, Suite 300, Santa Ana, California 92705 -4010 • Tel 714/664 -0570 • Fax 714/664 -0596 Hall & Foreman, Inc. Civil Enoineerino • Plannina • Survevino • Public Works SUBJECT BY DATE JOB NO. SHEET OF 79 5 4 ji 203 North Golden Circle Drive, Suite 300, Santa Ana, California 92705-4010 • Tel 714/664-0570 • Fax 714/664-0596 jorr Hall & Foreman, Inc. # Civil Engineering • Planning • Surveying • Public Works SUBJECT BY n DATE I /�] JOB NO. SHEET n ��t V J -L / l • 1 l - 7 —00 to COX --E-4 t� —VAf V�Aw 1- �T A-44- 0 wry = (o * 7' �AV t ' A — 1, s7 C j 7-7 S7/((S A Z7 ( oy P 203 North Golden Circle Drive, Suite 300, Santa Ana, California 92705 -4010 • Tel 714/664 -0570 • Fax 714/664 -0596 a OOO 0 0 1 '001I io i w� c� cn 0o U; O N M II � f O •� v ,/" / + x ,0'` i o 400 op 4 � 2 0004-� P � � / / %.� ears s�mo■rsmaA I ••a" ears L ^a ^ears s" Note ©e v N - SPANS 10' THRU 14' ©oom■�■�m■amm Optional Corot Jt- ©en ^a. ear - •4 ea 025 S "wn r Y. • ^ ©oroomman�ommroo Optional Corm it I •spars W T •4 s M N om See No ®�■oom�■mmm E RCe r cover own Sos Note 7 M . , - e 3or � • :�'r�r•7:a+.•rr—r i71 o�c» CIO IV ears I 7CJ o�nf�nc�n�ne�nc�c��c�F�nF�n�c�e�noo�odc��ndc��nF •4 C eM �Ei'] See Note 4 CIFi] •� e M Yom ClFi141Fi]!'_lF7F:]FIF:lF;7ClFil fRCS Corot Jt �t it r yD Altorrotl" OFilC7F7 C] Fi7 C7 F7E7F:7F7F�C7F,7111F7�Fi]OF�7 4 Ses Note 4 Canaf it — ;•>tn� ��' '.. - nnnnnn�'A�i�:��:�c: [7ClA[l[JAVCInL'A 70[ 7L7G: �Q1Afl.' err. �l✓ nFrAnnnnnnnnnnnnr�nr 7ClACl.' 1G: IQIADG:' 7GJAL�JADIA® FlA�!/ .�n�'nnc�n��c,�n�nr�nn�rnr�nn 1C�7E,'ACL�Q�QIAC�G�AC3'AG'nG✓n UAmOmC7Uj lL10IIr © - r�nr�r�n�nnc�nnnnan�nonnn�; ✓Ant,�Anr >nnr err, Inc. �r�nr�nanrr .... ,�nr�nn�n ©a�rrnnr�nnvnr.�n�r. - oor�ririe�no. �nc��n�An�nr�nnnnnr>. " M ... Monnnunnucannnounun....onon000n nonnr�rinnnnnnnf,�nnor�onc�c>.o ��� racaraMM nnniannc�nric�n�nr�A��r�A�nrr, nnnr�n[ �nnnnririnnnrinniar�nnur�r�nl�annnouunnoncinr�n �ncr, �ntr�nFru��a' nna�c. �a 'n�'Aan�Ae.i��rinrinnr�nr�nnc✓n ® nc�onc�nnnolononnn.... inonnnlr�nnnnnnnnns�n ©nnnn � '^.7] nnnnnr�nnoonnr�nnnnnrir ®FID ®E�7F�I11 F�7F�DFID F�1F',�7FII]F�]ET]E�]F57 Fg7F�l ....nnririnnnn.....n.nnn ®FID ® ® ®E�]C�FSI ®f SILIDISI ® ®�FL�� ©f�3[S7C�'J """"•' ��� �E�1: �l��m: f�] F47 :L:lE�fa7 ®[�7fL'':[�[�l[�C�l�I1 LID ®LIIL ® ® ®LC![ Sal[ Llm [rl[L][LImC�lmC�m�mC€]�Cfi] [ �nc�n[ in[ �nnnunonc�r�r�nnnonnnnnnnnnnnonnnnon4no ears • awe NoTO 7 •• see Note i I ••a" ears L ^a ^ears s" Note ©e v N - SPANS 10' THRU 14' ©oom■�■�m■amm Optional Corot Jt- b ^a. ear - •4 ea 025 S "wn r Y. • ^ Optional Corm it I •spars W T •4 s M N om See No ®�■oom�■mmm E RCe r cover own Sos Note 7 M . , - e 3or � • :�'r�r•7:a+.•rr—r i71 pp�E. CIO IV ears I 7CJ •4 C eM �Ei'] See Note 4 CIFi] •� e M Yom ClFi141Fi]!'_lF7F:]FIF:lF;7ClFil fRCS Corot Jt �t it r yD Altorrotl" OFilC7F7 C] Fi7 C7 F7E7F:7F7F�C7F,7111F7�Fi]OF�7 4 Ses Note 4 Canaf it — ��' �[ lG7AdC7A lOOE7[ [7ClA[l[JAVCInL'A 70[ 7L7G: �Q1Afl.' 1G' �OCIClAfl. 7ClACl.' 1G: IQIADG:' 7GJAL�JADIA® FlA�!/ FJndnFlAgl,' 1C�7E,'ACL�Q�QIAC�G�AC3'AG'nG✓n UAmOmC7Uj lL10IIr [ �mr�mmm�mr�nr�nnr��� ✓Ant,�Anr >nnr ✓nut .... ;�u�rnr��:�.cr�crA�nr✓nnmr��An " M ... Monnnunnucannnounun....onon000n ��� racaraMM nnnr�n[ �nnnnririnnnrinniar�nnur�r�nl�annnouunnoncinr�n : �a�ononnnonoc�uuc�urilnrinrinnonunnciuuuuuuuuuonnono � '^.7] 3DFdDF�DFL] ®FID ®E�7F�I11 F�7F�DFID F�1F',�7FII]F�]ET]E�]F57 Fg7F�l ®FID ® ® ®E�]C�FSI ®f SILIDISI ® ®�FL�� ©f�3[S7C�'J """"•' ��� �E�1: �l��m: f�] F47 :L:lE�fa7 ®[�7fL'':[�[�l[�C�l�I1 LID ®LIIL ® ® ®LC![ Sal[ Llm [rl[L][LImC�lmC�m�mC€]�Cfi] [ �nc�n[ in[ �nnnunonc�r�r�nnnonnnnnnnnnnnonnnnon4no ® .....00uuun nu000uunuoou..........."....... ears • awe NoTO 7 •• see Note i I ••a" ears L ^a ^ears s" Note 9 -- v N - SPANS 10' THRU 14' 4s 0I0 Np � Optional Corot Jt- b ^a. ear - •4 ea 025 S "wn r Y. • ^ Optional Corm it I •spars W T ears • I ••a" ears L ^a ^ears 3/4^ IIYI foots. I Sol See Note T ROOF SECTION - SPANS 10' THRU 14' Optional Corot Jt- b �r= - •4 ea 025 S "wn • ^ r e" ate •4 s M N om See No y E RCe r cover own Sos Note 7 M . , - e 3or •4 � eM - CIO IV ears I •4 C eM See Note 4 I •� e M Yom fRCS Corot Jt �t it r yD Altorrotl" Corot it — 4 Ses Note 4 Canaf it — ears """ bars - o - bars ••a" ears s" Note i L I Sol See Note T ROOF SECTION totals I SPANS 10' THRU 14' •4 — J •4 e M Max' Typ �s A Span TYPICAL SECTION - 1'A Sam SPANS 4' THRU 8' TYPICAL SECTION - SPANS 10' THRU 14 WMT SAILAR p "e" Dora Jt - a" bore So @ Noe S WALL SECTION SPANS 10' THRU 14' ••d•• ear for earth wavers to and I Ig r a N• Number s 6 T i 9 10 Q M j il « , T7 SLOPED INVERT elverr _ Sbpe (W goo 4.1 ENv Elw fi �t S/4 FLAT INVERT V INVERT T TRAPEZOIDAL INVERT ALTERNATIVE INVERTS NOTES 1. For boxes with spin or height Is" than any of those shown In td No, use next greater SIZe box concrete dimensions and reinforcement. Make rocessry changes In bar Nxgths and wonfltlss. 2. 01antItles are cWproxlmlate and for design purposes orgy. S. For box" with span or height or cover greater than those shown N tab" o soee design Is rewired. 4, M Is M Masoble to eliminate the Me hooks an every other W. S - e" bare are of half spockV Wow M•-M• only), S. "a" bars are of half spacing (spans Io• -N• only), T. Provide paving notch when top to exposed and when pavement Is prtkwW cement concrete. and oQust quantities. s. For design and detogs not shown, see atondo-d Plan pit. 9. For exposed fop. provide •4 e M mad way 12• lop ••c•• bars or full spon) and od"t. STATE OF CALFORNA DEPARTMENT OF TRANSPORTATION CAST -IN -PLACE REINFORCED CONCRETE SINGLE BOX CULVERT NO SCALE D N 0 r - • ACI BUILDING CODE/COMMENTARY 318/31BR -61 CHAPTER 7 — DETAILS OF REINFORCEMENT CODE COMMENTARY 7.0 - Notation d = distance from extreme compression fiber to centroid of tension reinforcement, in. d = nominal diameter of bar, wire, or prestress- ing strand, in. f = specified yield strength of nonprestressed reinforcement, psi ,* = development length, in. See Chapter 12 Recommended methods and standards for preparing de- sign drawings, typical details, and drawings for the fab- rication and placing of reinforcing steel in reinforced concrete structures are given in ACI Detailing Manual -1988, reported by ACI Committee 315. All provisions in this code relating to bar, wire, or strand diameter (and area) are based on the nominal dimensions of the reinforcement as given in the appropriate ASTM specification. Nominal dimensions are equivalent to those of a circular area having the same weight per foot as the ASTM designated bar, wire, or strand sizes. Cross - sectional area of reinforcement is based on nominal di- mensions. 7.1- Standard hooks R7.1— Standard hooks The term "standard hook" as used in this code shall mean one of the following: 7.1.1 -180 -deg bend plus 4db extension, but not less than 2-1/2 in. at free end of bar. 7.1.2 — 90-deg bend plus 12db extension at free end of bar. 7.1.3. — For stirrup and tie hooks* (a) No. 5 bar and smaller, 90-deg bend plus 6db extension at free end of bar, or (b) No. 6, No. 7, and No. 8 bar, 90-deg bend plus 12db extension at free end of bar, or (c) No. 8 bar and smaller, 135 -deg bend plus 6d extension at free end of bar. 7.2 - Minimum bend diameters R7.1.3 – Standard stirrup and tie hooks are limited to No. 8 bars and smaller, and the 90 -deg hook with 6d exten- sion is further limited to No. 5 bars and smaller, in both cases as the result of research showing that larger bar sizes with 90 -deg hooks and six -bar- diameter extensions tend to "pop out" under high load. R7.2 — Minimum bend diameters 7.2.1— Diameter of bend measured on the inside of the bar, other than for stirrups and ties in sizes No. 3 through No. 5, shall not be less than the values in Table 7.2. 7.2.2 — Inside diameter of bend for stirrups and ties I shall not be less than 4db for No. 5 bar and smaller. For bars larger than No. 5, diameter of bend shall b in accordance with Table 7.2. A 'Fa doftl ftTVnd owftL ual — wound ties defined as hoops in Chapter 21, a 135-deg bend plus an extension of at least 6db but not less than 3 in. (See definition of "hoop" in 21.1.) Standard bends in reinforcing bars are described in terms of the inside diameter of bend since this is easier to measure than the radius of bend. The primary factors affecting the minimum bend diameter are feasibility of bending without breakage and avoidance of crushing the concrete inside the bend. R7.2.2 – The minimum four - bar - diameter bend for the bar sizes commonly used for stirrups and ties is based on accepted industry practice in the United States. Use of a stirrup bar size not greater than No. 5 for either the 90 deg or 135 deg standard stirrup hook will permit multiple bending on standard stirrup bending equipment. 3 - '• 318/.318R -62 E CODE ACI STANDARD /COMMITTEE REPORT �LK 7.2.3 — Inside diameter of bend in welded wire fabric (plain or deformed) for stirrups and ties shall not be less than 4db for deformed wire larger than D6 and 2db for all other wires. Bends with inside diameter of less than 8db shall not be less than 4d from nearest Table 7.2 — MINIMUM DIAMETERS OF BEND Bar size Minimum diameter No. 3 through No. 8 6d No. 9, No. 10, and No. 11 8d No. 14 and No. 18 10d 7.3 - Bending 7.3.1 –All reinforcement shall be bent cold, unless otherwise permitted by the Engineer. 7.3.2 – Reinforcement partially embedded in con- crete shall not be field bent, except as shown on the design drawings or permitted by the Engineer. COMMENTARY � t Q� ('4 R7.2.3 — Welded wire fabric, of smooth or deformed wire, can be used for stirrups and ties. The wire at welded intersections does not have the same uniform ductility and bendability as in areas which were not heated. These effects of the welding temperature are usually dissipated in a distance of approximately four wire diameters. Min- imum bend diameters permitted are in most cases the same as those required in the ASTM bend tests for wire ma- terial. R7.3 — Bending R7.3.1— The Engineer may be the design engineer or architect or the engineer or architect employed by the owner to perform inspection. For unusual bends with inside diameters less than ASTM bend test requirements, special fabrication may be required. R7.3.2 — Construction conditions may make it necessary to bend bars that have been embedded in concrete. Such field bending should not be done without authorization of the Engineer. The Engineer must determine whether the bars should be bent cold or if heating should be used. Bends should be gradual and must be straightened as required. Tests have shown that A 615 Grade 40 and Grade 60 reinforcing bars can be cold bent and straightened up to 90 deg at or near the minimum diameter specified in 7.2. If cracking or breakage is encountered, heating to a maximum temperature of 1500 F should be beneficial for avoiding this condition for the remainder of the bars. Bars that fracture during bending or straightening can be spliced outside the bend region. Heating must be performed in a manner that will avoid damage to the concrete. If the bend area is within ap- proximately 6 in. of the concrete, some protective insu- lation may need to be applied. Heating of the bar should be controlled by temperature- indicating crayons or other suitable means. The heated bars should not be artificially cooled (with water or forced air) until after cooling to at least 600 F. 0 7.4 - Surface conditions of reinforcement 7.4.1 – At time concrete is placed, metal reinforce- ment shall be free from mud, oil, or other nonmetallic coatings that decrease bond. Epoxy coatings of bars in accord with standards in this code are permitted. R7.4 — Surface conditions of reinforcement Specific limits on rust are based on tests,' 4 plus a review of earlier tests and recommendations. Reference 7.4 pro- vides guidance with regard to the effects of rust and mill scale on bond characteristics of deformed reinforcing bars. Research has shown that a normal amount of rust increases bond. Normal rough handling generally re-