Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Tract 13325-1 & 13325-2 Hydrology Report
TRACTS 13325 -1, AND 13325 -2 HYDROLOGY AND STORM DRAIN HYDRAULICS PREPARED FOR CITATION BUILDERS PREPARED BY THE KEITH COMPANIES OCTOBER 10, 1987 F 069X2004 N LJ DISCUSSION HYDROLOGY FOR TRACT 13325 I. PURPOSE: The purpose of this hydrologic analysis was to determine the necessary storm drain facilities to adequately protect the proposed residential development in this tract 13325, and to provide for future development as dictated in the "Storm Drain Master Plan" and the The hydraulics were performed using the STORM computer program by Civil Soft. The capacity of the catch basins was based on the Orange County Environmental Management Agency's "Drainage Design Criteria and Aids (4th Printing) ". The depth of flow along the curbs was from taken from the values computed by the Hydrology Program and are shown in the printouts. a di I" 069X2004 "Master Plan of Developed Hydrology" by Hall and Foreman, Inc. (Prints dated July 29, 1986.) The lines shown to be necessary according to this analysis are proposed master drainage plan facilities. That is, lines required to contain the 10 year storm within top of curb. Additionally, the 100 year storm is maintained within the street right of way. The hydrology was performed using the computer program by Advanced Engineering software (AES). This program is based on the hydrology manual for San Bernardino County. The hydrology for the catch basins and catch basins laterals was performed using initial subareas tributary to each basin to get the peak flow into the basin. All lines and basins were sized for the 10 year storm except those in sump conditions. The only true sump on the site is the area north and east of Village Parkway, which was sized for 100 year runoff. As an interim condition, a CSP inlet will be placed to contain runoff from this undeveloped land. The hydraulics were performed using the STORM computer program by Civil Soft. The capacity of the catch basins was based on the Orange County Environmental Management Agency's "Drainage Design Criteria and Aids (4th Printing) ". The depth of flow along the curbs was from taken from the values computed by the Hydrology Program and are shown in the printouts. a di I" 069X2004 ri HYDROLOGY b Am 40 err rrr 100 Year Sump Condition 10 Year Study Hydrology for Catch Basin Design -■ >I J L4 u f_ �� RIE R2E �. - I — I R7W \ R6W R 14W :.f "4)``> ft2W t— r — RIW R8 • 4N •_ _ J._ — } rw ...• I I I — J — � I I I t ► L • snr wr 9 1 - I -• ,. 4, }"�', r j � : I ,y .I I 1. � 1 - _4 I I � f I j { ` ' � ` I I I Ila u t — I — f —� — I -"f — ' �— : -s y i � 1 t' — —— — - • � � '� fi T j- � — .— — ••• I q ( I I 1 I -1'' 4; - w� • •. `•!<j I� y I � , I \ �f'A • i / 4 .' f h I xx I 'I• I+` j i. I ' yf+ / o� _ — 4- — xx -} T LO It - - . i - i � 1 � �_- - • ' n m' _ __ _ __- -tom — L AW i �! � i� -j � tj '. .� -f - .z•= - , -- �• '� -� � - -- , - - �� — • 'T�'�' -'. ' ti I f ' TIN u - - - `� - -_ /+ - -•.\ - - ` t - ,! k -. �li j�? — - - �-- t ��' 1_` 1 t� `°r y !� I � - -TIN ta -- t- u. 7 1 I.t _ •-:[:-•`•� } - -' - ' � ' \ '�1�'�I° `. ' t I ••� 1 • , - -.�'. . ., ij .,•'•" l :� ,r" r r 1 1 ��, . / . \ - IT • . - �I — I- I _ I - I ; .. I . ' Ij : r.. 1 " 'u i"=�.': � ' 1: ?I - •,ti"st. � C — _ 1 IV PL antn)rr t I ALT x f - -_ ' - �� +- = } — L — #— } — •� ONTAMAP ONTA ►O►+•. ' CQL N ;?; '_ R f « ,,.., y _ - I — — • RE LAND • -� * ti .— .r .� °► � � }�j_ — '�^ *` art t.ut � a 1 i_a ; ,• I j 1a Y I ..I ;''• T :!1 C"1410 o„ + ±� Ti. +i —T _ _ �--? r -} — — ~ .d•) ' i - - - - - -:' - -l. _ _ }� - •.�- . ' — i a i • T -ti • — , -r W -�- <r /' T 21 ': i •,, I ERSIDE .I� , � ,3 >:.�,.. � _ ._ - --; -, � . M ...•...�� • 1 I j _ R4W ,•.�,) R3 • ww,... - - R2W COK COUNTY DISTRICT — r i —, - �_ - j' nth, - "'?' — �-_ - - - ( - + . _ ('-- • _ -f R5 VALLEY AREA REDUCED D "WING T3S — — — ' — ,r •- - -- I - - - - •' goNrETALs SCALE I 'MILES Ytoo -100 YEAR =hHOUR • f ' 1: , ttli ►7!D ON uaac. M" AL" a. on �•� ,� ; u oW "yYV - -ra A _. - ,,, - 1,0 -- SAN BERNARDINO COUNTY are A PPFVM by At - -- _ .;,,. w HYDROLOGY MANUAL JUMM •• r.8 ISOLINES PRECIPITATION (INCHES) "n WAX fiat m Ml�a M° T4N _ �,'�. RIE R2E UXZFM- W t` R R6W R 4W R2W RIW . —(. '; I !— I" I •' I M I r3o •••a I I / I I � hrai I - T •! T •', � , r0 r Ii.• .� T /� � , + �-- -� i - 1. - - a1- - -� - I - - I - - 1 - Ir Rr ���111 • QQQI ... „ • >. R o ES.. • T3N 1 - I- ( } -- JN S ,. �• h�•� I r3 I • '3 I I Ir I' / x.. ai, 1 - ! �.-� - i T • ,K I• - �- -/ f I - -� `- _ I 3 , s', • - f IA t L .� I 1 ,y I z � I z z I� Imo ,�- I 1. "I �� I.l;•: F — ?- — ? — — — — -!- —� r 1 ' 1 _ t k .� _ ` - fi' 1-" ' d �4- I • -r — t — -+ - ; a A- - —I — - - -- - — — I — 1 c 1 1 34 (. //C 7T i y L - - _I.T a - ,_��T� '. - - - { - l ( T •', •� In C � P ma - - r VI / t. r • • I- A AO N b �aa• 1. //p�� • • • • 1 • • • , L �` K bMI a I � ` - ' I ' I _ ��, f /•i- t- �.- - r •�� . = - _ tL -- � ' �� +- - - - . ..' • 1 - - - - - - ,- Iii • T2 I —I 1 1 :•s'' �r� ` j1�{ — ` 1 1• ' f ' V1lF� . `� _— — I--t ' e. r I� \I ' I` • ' • • • • • •_ • • �t.eZ N• - — ' _•r E .M a — — — 1 ,1 -T ?N' I I ►. - i ` I 1 i t , ' .1 , E ; " 1 1' _ 1 +,. .+, t r >trwr.• t o.• /� d :. y ,$ �} I ! 1• Trw —` y. — ll� t ' l ♦ e• � —; \c— — i � { I w � ' ; r f \_ l �.F� c �• _ \ J .1.`� r �•• ,,! • _ .. � i - r - _.a.• is _ 1 - _ - �� �� CI •°• �I rf r 4� J Y , i ' / ° L IAA "• I� •,'1 �. r no �� - �,�;_T 1 N I {, 1 3 A 1 • '• . ; . R I E 7PJ • 3At1 ANA00 � _-- ! r � v _.,�. � r, • I uu i • TIr „t. � `�. '- S�'•ii• � �� .� _z.' :,`:• S . -,_ - ; .•. _ 1' .k tk ,� / - �' - e••_ � - - L.... - •f _• t .i• ''�' "' .` •• ai� • �' ' •• t•• r„r •' C TON - - - — — - - - .�. ' I �_ -t: �' • yy • - - -- • ' "" -- °'7 •__ . - ?"'a •:. • – _ _ A A .. A� C • ••a •Y. j . •'• � • • ••, ~ .Y�r } � - �ti , ~ � •..t „a'w OIIOIYOIIE , �`•'f E<. -_ s 1• +Rr ` � r _ �, y � - ♦- - - F. - -- - i .-�' -7 - y_� _ TERT ,l = - v RIE f 34-00 • T _ I I RSIDE I ` .• _ i ._ -� I -, t t � j . "� - T - .f j - -- - - - -- r . - .-1CM• • _ i '. 5 � ► - _ r � - __ � _._ 1 __ _ - . i - ..� ^_ c.•'°j - - - � � •'' �� , l�� ` i,�► i R4W R3 acw. •n' R2W \ � a . r t — r -� ' -- rt .<<,,,�,� ; -- — �- ' - - - • -- - -- : say eERNaRaNO caWY CONTROL DISTRICT , . MADO - =:. - - - - ! RSw:. VALLEY AREA I: 1 ( ( I• Sa : ,. , R EDUCED DRAWING_ T S — _ _ �. i •::,; "' "' - J SCALE I 9 MILES Yl — IO R 1 HOUR • t aw cs: -_'�' �� r•:, : SAN BERNARDINO COUNTY .A.m oN uaac maw OL" Ian 1 A _ - Ar.prao f " i •R 7 I 8W i I • .,• - - - RTW R6 •., ,••••••••••......•••••••••••,,• :� HYDROLOGY M/�INUAt LEGENOr � ��• Cis ISOLINESPRECIPITATION(INCHES) � DNIL �GNS ma DMIL"a It d.! \J E A t' - �' - ��: - ' - ��—. gar:' �; f m1�.. ; � -ai. 'f%� `e �: - L.�. Z S. :7 - Vtj A - k s. $F- . ...... -_S _ r Lt - . ,. - -� '~ ' '°s 7 t .. � "x• - - - _ - .. -; -ra•_ � — , r� .TCT-- � - « - y--� .ter - - - � _�' _ - .: __�.... -y 1 � } - �,� 6 -_ _ � � - � r ti y a 0 t 4- . -- . .I. +=- •�-tir_,�+.r -•tK•. - vn. 1 � � �.�� • .C / -- `:�� -�' , y- +^ '�. �" -. •w - - w�."'��" _ � -i- �--• r ----------------- Samar d N" SAN BERNARDINO COUNTY HYDROLOGY MANUAL A INDEX MAP j - 7� Ai r GL N's 0- �7 - 7�X . -j- ;pk" �7 IL t� rl - IF. A ull to t h -A A ARIO A. m- t w . gem SOIL GROUP BOUNDARY Z A SOIL GROUP DESIGNATION SCALE ti BOUNDARY of INDICATED SOURCE SCALE REDUCED BY 102 HYDROLOGIC SOILS GROUP MAP FOR SOUTHWEST-A AREA C FIGURE C-13 CA - 1 -7 SAN BERMAROW40 COUNTY -7 C-0 C-t C-4 INDEX MAP j - 7� Ai r GL N's 0- �7 - 7�X . -j- ;pk" �7 IL t� rl - IF. A ull to t h -A A ARIO A. m- t w . gem SOIL GROUP BOUNDARY Z A SOIL GROUP DESIGNATION SCALE ti BOUNDARY of INDICATED SOURCE SCALE REDUCED BY 102 HYDROLOGIC SOILS GROUP MAP FOR SOUTHWEST-A AREA C FIGURE C-13 I- 11 p [l 0 ii d J 100 YEAR SUMP CONDITION H ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) * ** PRELIMINARY /EXPERIMENTAL VERSION * ** Copyright 1983,86,87 Advanced Engineering Software (aes) Ver. 4.1B Release Date: 2/20/87 Serial # BETA06 Especially prepared for: * BETA TEST SITE EVALUATION ONLY * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** CITATION FONTANA - 100 YEAR PORTION (SUMP) MAIN LINE SYSTEM * KEITH COMPANIES - TOM BRAUN ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: B:FONT100.DAT TIME /DATE OF STUDY: 14:58 9/11/1987 - -- '------ _ = - -- -c - - - - -- USER SPECIFIED - HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME-OF- CONCENTRATION MODEL*-- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 ' SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE = .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.5000 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 2 ---------------------------------------------------------------------------- » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< DEVELOPMENT IS COMMERCIAL TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH = 1000.00 UPSTREAM ELEVATION = 1360.00 DOWNSTREAM ELEVATION = 1343.00 ELEVATION DIFFERENCE = 17.00 TC = 304 *[( 1000.00 ** 3.00)/( 17.00)] ** .20 = 10.884 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.177 SOIL CLASSIFICATION IS "A COMMERCIAL SUBAREA LASS RATE, Fm(INCH /HR) _ .0970 SUBAREA RUNOFF(CFS) = 30.85 TOTAL AREA(ACRES) = 8.40 PEAK FLOW RATE(CFS) = 30.85 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLAW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 8 ---- -------- ----- ----- --------- ---- ---- --------- ---- ---- ------------------ » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.177 SOIL CLASSIFICATION IS "A COMMERCIAL SUBAREA LASS RATE, Fm(INCH /HR) _ .0970 SUBAREA AREA(ACRES) = 8.80 SUBAREA RUNOFF(CFS) = 32.32 EFFECTIVE AREA(ACRES) = 17.20 AVERAGED Fm(INCH /HR) _ .097 TOTAL AREA(ACRES) = 17.20 PEAK FLOW RATE(CFS) = 63.17 TC(MIN) = 10.88 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 3 ---------------------------------------------------------------------- - - - - -- » » >COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA« «< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< DEPTH OF FLOW IN 33.0 INCH PIPE IS 23.9 INCHES ' PIPEFLOW VELOCITY(FEET /SEC.) = 13.7 UPSTREAM NODE ELEVATION = 1343.00 DOWNSTREAM NODE ELEVATION = 1330.00 FLOWLENGTH(FEET) = 630.00 MANNINGS N .013 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 63.17 TRAVEL TIME(MIN.) = .77 TC(MIN.) = 11.65 FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 8 --------------------------------------------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< ----- - - - - -- 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.010 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LASS RATE, Fm(INCH /HR) _ .4850 SUBAREA AREA(ACRES) = 9.20 SUBAREA RUNOFF(CFS) = 29.19 EFFECTIVE AREA(ACRES) = 26.40 AVERAGED Fm(INCH /HR) _ .232 TOTAL AREA(ACRES) = 26.40 PEAK FLOW RATE(CFS) = 89.76 TC(MIN) = 11.65 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS - - -- FROM NODE 103.00 --- 00 TO NODE104_ - - 00 IS CODE - _--- 3------ - - - - -- » » >COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA « «< »» >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< - - - -_ - -- DEPTH OF FLOW IN 45.0 INCH PIPE IS 32.3 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 10.6 UPSTREAM NODE ELEVATION = 1330.00 DOWNSTREAM NODE ELEVATION = 1325.00 FLOWLENGTH(FEET) = 610.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 45.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 89.76 TRAVEL TIME(MIN.) = .96 TC(MIN.) = 12.61 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 8 ---------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.824 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .4850 SUBAREA AREA(ACRES) = 11.20 SUBAREA RUNOFF(CFS) = 33.66 EFFECTIVE AREA(ACRES) = 37.60 AVERAGED Fm(INCH /HR) _ .308 TOTAL AREA(ACRES) = 37.60 PEAK FLOW RATE(CFS) = 119.00 L TC(MIN) = 12.61 ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 104.00 TO NODE 105.00 IS CODE = 3 - » » >COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA « «< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< DEPTH OF FLOW IN 45.0 INCH PIPE IS 34.3 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 13.2 UPSTREAM NODE ELEVATION = 1325.00 DOWNSTREAM NODE ELEVATION = 1316.00 FLOWLENGTH(FEET) = 720.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 45.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 119.00 TRAVEL TIME(MIN.) _ .91 TC(MIN.) = 13.52 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 37.60 EFFECTIVE AREA(ACRES) _ 37.60 PEAK FLOW RATE(CFS) 119.00 END OF RATIONAL METHOD ANALYSIS �l Ci t i] F F G 0 Q D E 0 RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) * ** PRELIMINARY /EXPERIMENTAL VERSION * ** Copyright 1983,86,87 Advanced Engineering Software (aes) Ver. 4.1B Release Date: 2/20/87 Serial # BETA06 Especially prepared for: * BETA TEST SITE EVALUATION ONLY * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** CITATION FONTANA - 10 YEAR PORTION MAIN LINE SYSTEM * KEITH COMPANIES - TOM BRAUN FILE NAME: B:FONT10.DAT TIME /DATE OF STUDY: 15: 8 9/11/1987 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1 -- *TIME -OF- CONCENTRATION MODEL*-- USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE = .6000 ' USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.0000 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 2 ---------------------------------------------------------------------------- » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< ------------------------------------------ DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3 -4 DWELLINGS /ACRE TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW- LENGTH = 1000.00 UPSTREAM ELEVATION = 1339.80 DOWNSTREAM ELEVATION = 1331.80 ELEVATION DIFFERENCE = 8.00 TC = 412 *[( 1000.00 ** 3.00)/( 8.00)] ** .2.0 = 17.151 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.120 SOIL CLASSIFICATION IS "A RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 SUBAREA RUNOFF(CFS) = 7.06 TOTAL AREA(ACRES) = 5.10 PEAK FLOW RATE(CFS) = 7.06 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 202.00 TO NODE 203.00 IS CODE = 6 ------------ ----------- ----------- ----- ------------- ---------------------- » »>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA ««< UPSTREAM ELEVATION = 1332.00 DOWNSTREAM ELEVATION = 1327.50 STREET LENGTH(FEET) = 280.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 �I OUTSIDE STREET CROSSFALL(DECIMAL) _ .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 7.91 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) .48 HALFSTREET FLOODWIDTH(FEET) = 11.38 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.90 PRODUCT OF DEPTH &VELOCITY = 1.89 STREETFLOW TRAVELTIME(MIN) = 1.20 TC(MIN) = 18.35 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.036 SOIL CLASSIFICATION IS " A " RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 SUBAREA AREA(ACRES) = 1.30 SUBAREA RUNOFF(CFS) = 1.70 EFFECTIVE AREA(ACRES) = 6.40 AVERAGED Fm(INCH /HR) _ .582 TOTAL AREA(ACRES) = 6.40 PEAK FLOW RATE(CFS) = 8.37 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) _ .50 HALFSTREET FLOODWIDTH(FEET) = 12.13 FLOW VELOCITY(FEET /SEC.) = 3.80 DEPTH *VELOCITY = 1.89 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 203.00 TO NODE 204.00 IS CODE = 3 ---------------------------------------------------------------------------- » » >COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA« «< » »> USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.1 INCHES ' PIPEFLOW VELOCITY(FEET /SEC.) = 7. -3 UPSTREAM NODE ELEVATION = 1327.50 DOWNSTREAM NODE ELEVATION = 1319. FLOWLENGTH(FEET) - 580.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 8.37 TRAVEL TIME(MIN.) = 1.32 TC(MIN.) = 19.67 ********************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * ** FLOW PROCESS FROM NODE 204.00 TO NODE 204.00 IS CODE = 8 ------------------------------------------------------------------ 1->-->->-;A--D-DITION OF SUBAREA TO MAINLINE PEAK FLOW « «< 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.953 SOIL CLASSIFICATION IS " A " RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 SUBAREA AREA(ACRES) = 7.20 SUBAREA RUNOFF(CFS) = 8.88 ' EFFECTIVE AREA(ACRES) = 13.60 AVERAGED Fm(INCH /HR) _ .582 TOTAL AREA(ACRES) = 13.60 PEAK FLOW RATE(CFS) = 16.78 TC(MIN) = 19.67 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 204.00 TO NODE 105.00 IS CODE = 3 -------------------------------------------------------------------- - - - - -- » » >COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA « «< »» >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< S DEPTH OF FLOW IN 21.0 INCH PIPE IS 16.9 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 8.1 UPSTREAM NODE ELEVATION = 1319.10 DOWNSTREAM NODE ELEVATION = 1316.00 FLOWLENGTH(FEET) = 240.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 16.78 TRAVEL TIME(MIN.) = .49 TC(MIN.) = 20.16 FLOW PROCESS FROM NODE 105.00 TO NODE - 105.00 IS CODE = 1 --------------------------------------------------------------------- - - - - -- » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 20.16 RAINFALL INTENSITY (INCH. /HOUR) = 1.92 EFFECTIVE STREAM AREA(ACRES) = 13.60 TOTAL STREAM AREA(ACRES) = 13.60 PEAK FLOW RATE(CFS).AT CONFLUENCE = 16.78 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** - FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 7 -------- ----- ----- --------- ---- ---- --------- ---- ---- ------------ - - - - -- » » >USER SPECIFIED HYDROLOGY INFORMATION AT NODE « «< USER- SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 13.52 RAIN INTENSITY(INCH /HOUR) = 2.45 EFFECTIVE AREA(ACRES) = 37.60 TOTAL AREA(ACRES) = 37.60 PEAK FLOW RATE(CFS) = 119.00 AVERAGED LOSS RATE, FM(IN /HR) = .308 FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 1 ---------------------------------------------------------------------------- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES ««< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: 1 TIME OF CONCENTRATION(MINUTES) = 13.52 RAINFALL INTENSITY (INCH. /HOUR) = 2.45 EFFECTIVE STREAM AREA(ACRES) = 37.60 TOTAL STREAM AREA(ACRES) = 37.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 119.00 CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN..) (INCH /HOUR) (IN /HR) AREA(ACRES) ------------------------------------------------------ - - - - -- 1 16.78 20.16 1.924 .58 13.60 ' 2 119.00 13.52 2.445 .31 37.60 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) --------------------------------------------- 1 106.76 51.20 2 134.62 46.72 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 134.62 TIME(MINUTES) = 13.520 EFFECTIVE AREA(ACRES) = 46.72 TOTAL AREA(ACRES) = 51.20 i1 FLOW PROCESS FROM NODE 105.00 TO NODE 106.00 IS CODE = 3 ------------------------------------------------------------------------ » >>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA « «< » »> USING COMPUTER- ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< ' DEPTH OF FLOW IN 45.0 INCH PIPE IS 34.5 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 14.8 UPSTREAM NODE ELEVATION = 1316.00 DOWNSTREAM NODE ELEVATION = 1307.50 FLOWLENGTH(FEET) = 540.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 45.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 134.62 TRAVEL TIME(MIN.) = .61 TC(MIN.) = 14.13 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLAW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 1 --------------------------------------------------------------------- - - - - -- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) 14.13 RAINFALL INTENSITY (INCH. /HOUR) = 2.38 EFFECTIVE STREAM AREA(ACRES) = 46.72 TOTAL STREAM AREA(ACRES) = 51.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 134.62 ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 301.00 TO NODE 302.00 IS CODE = 2 ---------------------------------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3 -4 DWELLINGS /ACRE TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW- LENGTH = 1000.00 UPSTREAM ELEVATION = 1334.00 DOWNSTREAM ELEVATION = 1319.40 ELEVATION DIFFERENCE = 14.60 TC = .412 *[( 1000.00 ** 3.00)/( 14.60)] ** .20 = 15.206 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.279 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, FM(INCH /HR) _ .5820 SUBAREA RUNOFF(CFS) = 7.18 ' TOTAL AREA(ACRES) = 4.70 PEAK FLOW RATE(CFS) = 7.18 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 302.00 TO NODE 303.00 IS CODE = 6 ------------ ----------- ----------- ----- ------------- ---------------------- » » >COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA« «< UPSTREAM ELEVATION = 1319.40 DOWNSTREAM ELEVATION = 1318.40 STREET LENGTH(FEET) = 100.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) _ 7.18 STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) = .51 HALFSTREET FLOODWIDTH(FEET) = 12.88 AVERAGE FLAW VELOCITY(FEET /SEC.) = 3.00 PRODUCT OF DEPTH &VELOCITY = 1.54 STREETFLOW TRAVELTIME(MIN) = .56 TC(MIN) = 15.76 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.230 SOIL CLASSIFICATION IS " A " RESIDENTIAL -> -3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 ` SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) _ .00 EFFECTIVE AREA(ACRES) = 4.70 AVERAGED Fm(INCH /HR) _ .582 TOTAL AREA(ACRES) = 4.70 PEAK FLOW RATE(CFS) = 7.18 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .51 HALFSTREET FLOODWIDTH(FEET) = 12.88 FLOW VELOCITY(FEET /SEC.) 3.00 DEPTH *VELOCITY = 1.54 FLOW PROCESS FROM NODE 303.00 TO NODE 303.00 IS CODE 8 -- ----------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.230 SOIL CLASSIFICATION IS " A " RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 SUBAREA AREA(ACRES) = 1.40 SUBAREA RUNOFF(CFS) = 2.08 EFFECTIVE AREA(ACRES) = 6.10 AVERAGED Fm(INCH /HR) _ .582 TOTAL AREA(ACRES) = 6.10 PEAK FLOW RATE(CFS) = 9.05 TC(MIN) = 15.76 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 303.00 TO NODE 304.00 IS CODE = 3 ------------------------------------------------------------------ » » >COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA « «< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.4 INCHES PIPEFLOW VELOCITY {FEET /SEC.) = 6.4 UPSTREAM NODE ELEVATION = 1319.40 I DOWNSTREAM NODE ELEVATION = 1313.40 FLOWLENGTH(FEET) = 600.00 MANNINGS N = 013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 ' PIPEFLOW THRU SUBAREA(CFS) = 9.05 TRAVEL TIME(MIN.) = 1.56 TC(MIN.) = 17.33 ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 304.00 TO NODE 304.00 IS CODE = 8 ----------------------------------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< ------------------- 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.107 SOIL CLASSIFICATION IS " A " ESIDENTIAL-> 3 -4 DWELLINGS /ACRE SUBAREA LASS RATE, Fm(INCH /HR) _ .5820 UBAREA AREA(ACRES) = 10.80 SUBAREA RUNOFF(CFS) = 14.82 FFECTIVE AREA(ACRES) = 16.90 AVERAGED Fm(INCH /HR) _ .582 OTAL AREA(ACRES) = 16.90 EAK FLOW RATE(CFS) = 23.19 TC(MIN) = 17.33 FLOW PROCESS - FROM - NODE - -- 304_00 TO NODE 305.00 IS CODE = 3 -- ---------------------------------- »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA « «< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.4 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 24.9 UPSTREAM NODE ELEVATION = 1313.40 DOWNSTREAM NODE ELEVATION = 1207.80 FLOWLENGTH(FEET) = 560.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 23.19 TRAVEL TIME(MIN.) = .37 TC(MIN.) = 17.70 FLOW PROCESS FROM NODE 305.00 TO NODE 305.00 IS CODE = 8 ---------------------- ----------------------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.080 SOIL CLASSIFICATION IS " A " RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 SUBAREA AREA(ACRES) = 9.10 SUBAREA RUNOFF(CFS) = 12.27 EFFECTIVE AREA(ACRES) = 26.00 AVERAGED Fm(INCH /HR) _ .582 TOTAL AREA(ACRES) = 26.00 PEAK FLOW RATE(CFS) = 35.06 TC(MIN) = 17.70 FLOW PROCESS FROM NODE 305.00 TO NODE 106.00 IS CODE = 3 t >>>>>COMPUTE - PIPEFIA)W - TRAVELTIME - THRU - SUBAREA<<<<< »» >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW )« «< DEPTH OF FLOW IN 30.0 INCH PIPE IS 22.3 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 9.0 UPSTREAM NODE ELEVATION = 1207.80 DOWNSTREAM NODE ELEVATION = 1207.00 FLOWLENGTH(FEET) = 80.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 35.06 TRAVEL TIME(MIN.) _ .15 TC(MIN.) = 17.85 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS - FROM - NODE - -- 106_00 TO NODE - 106_00 - IS - CODE - _ 1 - - - - -- --- - - - - -- ---------------- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< = »» >AND_COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< I CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 17.85 RAINFALL INTENSITY (INCH. /HOUR) = 2.07 [ EFFECTIVE STREAM AREA(ACRES) = 26.00 TOTAL STREAM AREA(ACRES) = 26.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 35.06 CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN.) (INCH /HOUR) (IN /HR) AREA(ACRES) ------------------------------------------------------------- 1 134.62 14.13 2.381 .36 46.72 2 35.06 17.85 2.070 .58 26.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ' SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) --------------------------------------- - - - - -- 1 168.18 67.30 2 148.90 72.72 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 168.18 TIME(MINUTES) = 14.128 EFFECTIVE AREA(ACRES) .= 67.30 TOTAL AREA(ACRES) = 77.20 FLOW PROCESS FROM NODE 106.00 TO NODE 107.00 IS CODE = 3 ------------------------------------------------------------------------------ » » >COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA ««< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< DEPTH OF FLOW IN 54.0 INCH PIPE IS 40.1 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 13.3 UPSTREAM NODE ELEVATION = 1307.00 DOWNSTREAM NODE ELEVATION = 1305.40 FLOWLENGTH(FEET) = 160.00 MANNINGS N = .013 I ESTIMATED PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 168.18 TRAVEL TIME(MIN.) = .20 TC(MIN.) = 14.33 ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 107.00 TO NODE 107.00 IS CODE = 8 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.361 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 SUBAREA AREA(ACRES) = 6.80 SUBAREA RUNOFF(CFS) = 10.89 EFFECTIVE AREA(ACRES) = 74.10 AVERAGED Fm(INCH /HR) _ .443 TOTAL AREA(ACRES) = 84.00 PEAK FLOW RATE(CFS) = 168.18 TC(MIN) = 14.33 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS - FROM NODE - -- 107_00 - TO NODE - -- 108_00 - IS CODE = 3 » » >COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA« «< i » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< t DEPTH OF FLOW IN 54.0 INCH PIPE IS 40.1 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 13.3 UPSTREAM NODE ELEVATION = 1305.40 DOWNSTREAM NODE ELEVATION = 1305.00 FLOWLENGTH(FEET) = 40.00 MANNINGS ESTIMATED PIPE DIAMETER(INCH) = 54.00 PIPEFLOW THRU SUBAREA(CFS) = 168.18 TRAVEL TIME(MIN.) = .05 TC(MIN.) N = .013 NUMBER OF PIPES = = 14.38 1 L FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 8 ---------------------------------------------------------------------------- ■ » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< ------------------ - - - --- 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2 - .356 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 SUBAREA AREA(ACRES) = 2.60 SUBAREA RUNOFF(CFS) = 4.15 EFFECTIVE AREA(ACRES) = 76.70 AVERAGED Fm(INCH /HR) _ .448 TOTAL AREA(ACRES) = 86.60 PEAK FLOW RATE(CFS) = 168.18 TC(MIN) = 14.38 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS - FROM NODE 108.00 TO NODE 109_00 - IS - CODE _ --- 3 - -- ------ - - - - -- » » >COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA « «< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< DEPTH OF FLOW IN 51.0 INCH PIPE IS 39.3 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 14.3 UPSTREAM NODE ELEVATION = 1305.00 DOWNSTREAM NODE ELEVATION = 1296.40 FLOWLENGTH(FEET) = 690.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 51.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 168.18 TRAVEL TIME(MIN.) = .80 TC(MIN.) = 15.18 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 109.00 TO NODE 109.00 IS CODE = 8 ---- -------- ----- ----- --------- ---- ---- --------- ---- ---- ------------------ » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< -------- - - - - -- 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.281 SOIL CLASSIFICATION IS " A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .4850 SUBAREA AREA(ACRES) = 7.20 SUBAREA RUNOFF(CFS) = 11.64 EFFECTIVE AREA(ACRES) = 83.90 AVERAGED Fm(INCH /HR) _ .451 TOTAL AREA(ACRES) = 93.80 PEAK FLOW RATE(CFS) = 168.18 TC(MIN) = 15.18 FLOW PROCESS FROM NODE 109.00 TO NODE 110.00 IS CODE = 3 ---------------------------------------------------------------------------- » » >COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA « «< »» >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLAW) « «< DEPTH OF FLOW IN 51.0 INCH PIPE IS 40.0 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 14.1 UPSTREAM NODE ELEVATION = 1296.40 DOWNSTREAM NODE ELEVATION = 1295.80 FLOWLENGTH(FEET) = 50.00 MANNINGS ESTIMATED PIPE DIAMETER(INCH) = 51.00 PIPEFLOW THRU SUBAREA(CFS) = 168.18 TRAVEL TIME(MIN.) = .06 TC(MIN.) N = .013 NUMBER OF PIPES = = 15.24 1 LJ ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** _FLOW PROCESS FROM NODE 110.00 TO NODE 110.00 IS CODE = 8 ---------------------------------------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< 10 YEAR RAINFALL INTENSITY(INCH /HOUR) 2.276 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS "RATE, Fm(INCH /HR) _ .4850 t SUBAREA AREA(ACRES) = 4.50 SUBAREA RUNOFF(CFS) = 7.25 EFFECTIVE AREA(ACRES) = 88.40 AVERAGED Fm(INCH /HR) _ .453 TOTAL AREA(ACRES) = 98.30 PEAK FLOW RATE(CFS) = 168.18 TC(MIN) = 15.24 FLOW PROCESS FROM NODE 110.00 TO NODE 111.00 IS CODE = 3 ---------------------------------------------------------------------- - - - - -- » » >COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA « «< » » >USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< ---- ------------- -------------------- DEPTH OF FLOW IN 51.0 INCH PIPE IS 38.3 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 14.7 UPSTREAM NODE ELEVATION = 1295.80 DOWNSTREAM NODE ELEVATION = 1289.20 FLOWLENGTH(FEET) = 500.00 MANNINGS ESTIMATED PIPE DIAMETER(INCH) 51.00 PIPEFLOW THRU SUBAREA(CFS) = 168.18 TRAVEL TIME(MIN.) = .57 TC(MIN.) N = .013 NUMBER OF PIPES = = 15.81 1 FLOW PROCESS FROM NODE 111.00 TO NODE 111.00 IS CODE = 8 f ------------------------- -------------------------------------------- - - - - -- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.226 SOIL CLASSIFICATION IS " A " RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .4850 SUBAREA AREA(ACRES) = 6.20 SUBAREA RUNOFF(CFS) = 9.72 EFFECTIVE AREA(ACRES) = 94.60 AVERAGED Fm(INCH /HR) _ .455 TOTAL AREA(ACRES) = 104.50 PEAK FLOW RATE(CFS) = 168.18 TC(MIN) = 15.81 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 111.00 TO NODE 112.00 IS CODE = 3 ----------------------------------- -------------------------- » » >COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA ««< »» >USING COMPUTER- ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< DEPTH OF FLOW IN 51.0 INCH PIPE IS 38.2 INCHES - PIPEFLOW VELOCITY(FEET /SEC.) = 14.8 , UPSTREAM NODE ELEVATION = 1289.20 DOWNSTREAM NODE ELEVATION = 1288.80 FLOWLENGTH(FEET) = 30.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 51.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 168.18 TRAVEL TIME(MIN.) = .03 TC(MIN.) = 15.84 V LOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 1 n ----------------------------------------------------- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< ___________--------- - - - - -- -- - - - - -- ---------- CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 15.84 RAINFALL INTENSITY (INCH. /HOUR) = 2.22 EFFECTIVE STREAM AREA(ACRES) = 94.60 TOTAL STREAM AREA(ACRES) = 104.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 168.18 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS - - -- FROM NODE 501.00 TO NODE 502.00 IS CODE = 2 ----------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS«.« DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL - -> 3 -4 DWELLINGS /ACRE TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW- LENGTH = 850.00 UPSTREAM ELEVATION = 1325.00 . DOWNSTREAM ELEVATION = 1310.00 ELEVATION DIFFERENCE = 15.00 TC = 412 *[( 850.00 ** 3.00)/( 15.00)] ** .20 = 13.719 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.424 SOIL CLASSIFICATION IS " A " RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 SUBAREA RUNOFF(CFS) 14.59 TOTAL AREA(ACRES) = 8.80 PEAK FLOW RATE(CFS) = 14.59 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 501.00 TO NODE 502.00 IS CODE = 2 ---------------------------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3 -4 DWELLINGS /ACRE TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW- LENGTH = 1000.00 UPSTREAM ELEVATION = 1325.00 DOWNSTREAM ELEVATION = 1310.00 ELEVATION DIFFERENCE = 15.00 TC = . 412 *[( 1000.00 ** 3.00)/( 15.00)] ** .20 = 15.124 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.286 SOIL CLASSIFICATION IS " A " RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 SUBAREA RUNOFF(CFS) = 15.49 TOTAL AREA(ACRES) = 10.10 PEAK FLOW RATE(CFS) = 15.49 FLOW PROCESS FROM NODE 502.00 TO NODE 503.00 IS CODE = 6 l - >>>>>COMPUTE - STREETFLOW - TRAVELTIME - THRU - SUBAREA<<<<< UPSTREAM ELEVATION = 1310.00 DOWNSTREAM ELEVATION = 1302.00 STREET LENGTH(FEET) = 700.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 24.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 16.63 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .66 HALFSTREET FLOODWIDTH(FEET) 18.87 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.82 PRODUCT OF DEPTH &VELOCITY = 2.51 STREETFLOW TRAVELTIME(MIN) = 3.05 TC(MIN) = 18.18 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.047 SOIL CLASSIFICATION IS " A " COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) _ .0970 SUBAREA AREA(ACRES) = 1.30 SUBAREA RUNOFF(CFS) = 2.28 EFFECTIVE AREA(ACRES) = 11.40 AVERAGED Fm(INCH /HR) _ .527 TOTAL AREA(ACRES) = 11.40 PEAK FLOW RATE(CFS) = 15.60 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) _ ..64 HALFSTREET FLOODWIDTH(FEET) = 18.13 FLOW VELOCITY(FEET /SEC.) = 3.83 DEPTH *VELOCITY = 2.45 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** - - FLOW PROCESS FROM NODE 503.00 TO NODE 503.00 IS CODE = 8 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< 0 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.047 SOIL CLASSIFICATION IS " A " r RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 SUBAREA AREA(ACRES) = 9.70 SUBAREA RUNOFF(CFS) = 12.79 EFFECTIVE AREA(ACRES) = 21.10 AVERAGED Fm(INCH /HR) _ .552 TOTAL AREA(ACRES) = 21.10 PEAK FLOW RATE(CFS) = 28.39 TC(MIN) = 18.18 ************************************ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 503.00 TO NODE 504. * * * * * * ** F >> >>>COMPUTE -PIPEFLOW 00 IS CODE 3 - - TRAVELTIME - THRU -SUBAREA ««< -- ---------------------- »> USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< --- ------------------------------------ DEPTH OF FLOW IN 27.0 INCH PIPE IS 20.1 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 8.9 UPSTREAM NODE ELEVATION = 1302.00 DOWNSTREAM NODE ELEVATION = 1294.00 FLOWLENGTH(FEET) = 700.00 MANNINGS N = 013 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 28.39 TRAVEL TIME(MIN.) = 1.30 TC(MIN.) = 19.48 FLOW PROCESS FROM NODE 504.00 TO NODE 504.00 IS CODE = 8 ----------------------- -------------------------------------------------- - » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.964 SOIL CLASSIFICATION IS " A" SCHOOL SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 , SUBAREA AREA(ACRES) = 11.00 SUBAREA RUNOFF(CFS) = 13.68 EFFECTIVE AREA(ACRES) = 32.10 AVERAGED Fm(INCH /HR) _ .562 TOTAL AREA(ACRES) = 32.10 PEAK FLOW RATE(CFS) = 40.49 TC(MIN) = 19.48 - - FLOW PROCESS FROM NODE 504.00 TO NODE 504.00 IS CODE = 8 - » » >ADDITION OF SUBAREA -TO- MAINLINE - PEAK===== ------------ ---------- - - - - -- FLOW « «< ---- -- -- - - - - -- 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.964 SOIL CLASSIFICATION IS " A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .4850 SUBAREA AREA(ACRES) = .85 SUBAREA RUNOFF(CFS) = 1.13 EFFECTIVE AREA(ACRES) = 32.95 AVERAGED Fm(INCH /HR) _ .560 TOTAL AREA(ACRES) = 32.95 PEAK FLOW RATE(CFS) = 41.62 TC(MIN) = 19.48 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 504.00 TO NODE 112.00 IS CODE = 3 ------------- --------- ----------- ----- ------------- ------------------------ » »> COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA « «< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< ------------------ DEPTH OF FLOW IN 33.0 INCH PIPE IS 22.9 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 9.4 UPSTREAM NODE ELEVATION = 1294.00 DOWNSTREAM NODE ELEVATION = 1289.20 FLOWLENGTH(FEET) = 480.00 MANNINGS N = 013 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 41.62 TRAVEL TIME(MIN.) = .85 TC(MIN.) = 20.33 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** EL FLOW PROCESS FROM NODE - - - 112.00 TO NODE 112.00 IS CODE = 1 ------ -- ---- --- ------ --- ----- -- ---------------- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< ---------------------------- CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 20.33 RAINFALL INTENSITY (INCH. /HOUR) = 1.91 EFFECTIVE STREAM AREA(ACRES) = 32.95 TOTAL STREAM AREA(ACRES) = 32.95 PEAK FLOW RATE(CFS) AT CONFLUENCE = 41.62 CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN.) ( INCH /HOUR) (IN /HR) AREA(ACRES) 1 168.18 15.84 2.223 .45 94.60 2 41.62 20.33 1.914 .56 32.95 t RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. SUMMARY RESULTS: ' STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) --------------------------------------------- 1 208.02 120.27 2 180.41 127.55 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 208.02 TIME(MINUTES) = 15.841 EFFECTIVE AREA(ACRES) = 120.27 TOTAL AREA(ACRES) = 137.45 L FLOW PROCESS FROM NODE 112.00 TO NODE 113.00 IS CODE = 3 ---------------------------------------------------------------------------- » » >COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA « «< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< c== ssxssxsxxxsxs s s ---- sc���a---- sss--- s-------- ------- x- �---- - - - - -- p u DEPTH OF FLAW IN 57.0 INCH PIPE IS 42.9 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 14.5 UPSTREAM NODE ELEVATION = 1289.20 DOWNSTREAM NODE ELEVATION = 1287.20 FLOWLENGTH(FEET) = 180.00 MANNINGS ESTIMATED PIPE DIAMETER(INCH) = 57.00 PIPEFLOW THRU SUBAREA(CFS) = 208.02 TRAVEL TIME(MIN.) = .21 TC(MIN.) N = .013 NUMBER OF PIPES = = 16.05 1 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 8 [ - ; --- >> - A -- D -- T - I - 0 -- N -------- ----------------------------------------------------- » DI OF SUBAREA TO MAINLINE PEAK FLOW « «< === sxssxssxxsssxsssassss= asxxssssss= sss= == == x =sss =� -- ___�_________________ 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.206 SOIL CLASSIFICATION IS " A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 SUBAREA AREA(ACRES) = 4.00 SUBAREA RUNOFF(CFS) = 5.85 EFFECTIVE AREA(ACRES) = 124.27 AVERAGED Fm(INCH /HR) _ .481 TOTAL AREA(ACRES) = 141.45 PEAK FLOW RATE(CFS) = 208.02 TC(MIN) = 16.05 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 141.45 EFFECTIVE AREA(ACRES) = 124.27 PEAK FLOW RATE(CFS) = 208.02 E J END OF RATIONAL METHOD ANALYSIS I�] 0 fd L HYDROLOGY FOR CATCH BASIN DESIGN C 1�, I1 0 IR ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) E6 * ** PRELIMINARY /EXPERIMENTAL VERSION * ** Copyright 1983,86,87 Advanced Engineering Software (aes) Ver. 4.1B Release Date: 2/20/87 Serial # BETA06 Especially prepared for: * BETA TEST SITE EVALUATION ONLY * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** TRACT 13325 INITIAL AREA CALCS FOR SIZING OF CATCH BASINS LINE A - 100 YEAR (SUMP) PORTION * KEITH COMPANIES - TOM BRAUN ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: B:FONTACB.DAT TIME/DATE OF STUDY: 17:54 9/13/1987 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL*-- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE = .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.5000 ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 2 E >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< -------------------------------------------------------------------------- DEVELOPMENT IS COMMERCIAL TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW- LENGTH = 700.00 UPSTREAM ELEVATION = 1337.70 DOWNSTREAM ELEVATION = 1326.00 ELEVATION DIFFERENCE = 11.70 TC = .304 *[( 700.00 ** 3.00)/( 11.70)] ** .20 = 9.469 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.542 SOIL CLASSIFICATION IS " A " COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) _ .0970 SUBAREA RUNOFF(CFS) = 6.00 TOTAL AREA(ACRES) = 1.50 PEAK FLOW RATE(CFS) = 6.00 ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 6 ----------------------------------------------------------------------- » » >COMPUTE STREETFLOW TRAVELTIME RU SUBAREA««< UPSTREAM ELEVATION = 1326.00 DOWNSTREAM ELEVATION = 1325.90 STREET LENGTH(FEET) = 8.70 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 'INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 6.00 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .47 HALFSTREET FLOODWIDTH(FEET) = 10.63 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.22 PRODUCT OF DEPTH &VELOCITY = 1.51 STREETFLOW TRAVELTIME(MIN) _ .05 TC(MIN) = 9.51 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.529 SOIL CLASSIFICATION IS " A " COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) _ .0970 SUBAREA AREA(ACRES) _ .00 SUBAREA RUNOFF(CFS) _ .00 EFFECTIVE AREA(ACRES) = 1.50 AVERAGED Fm(INCH /HR) _ .097 TOTAL AREA(ACRES) = 1.50 PEAK FLOW RATE(CFS) = 6.00 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) _ .47 HALFSTREET FLOODWIDTH(FEET) = 10.63 FLOW VELOCITY(FEET /SEC.) = 3.22 DEPTH *VELOCITY = 1.51 ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 2 ---------------------------------------------------------------------- - - - - -- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< NATURAL POOR COVER TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW- LENGTH = 900.00 UPSTREAM ELEVATION = 1360.00 DOWNSTREAM ELEVATION = 1343.00 E ELEVATION DIFFERENCE = 17.00 TC = .525 *[( 900.00 ** 3.00)/( 17.00)] ** .20 = 17.645 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.126 SOIL CLASSIFICATION IS " A " NATURAL POOR COVER "BARREN" SUBAREA LOSS RATE, Fm(INCH /HR) _ .4100 SUBAREA RUNOFF(CFS) = 20.53 TOTAL AREA(ACRES) = 8.40 PEAK FLOW RATE(CFS) = 20.53 ******* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ,FLOW PROCESS - - E FROM NOD 102.00 TO NODE 104.00 IS CODE = 5 ------- ----------- ------ ---- ---- --------- ---- ---- ------------------ » » >COMPUTE TRAPEZOIDAL - CHANNEL FLOW « «< » » >TRAVELTIME THRU SUBAREA « «< , UPSTREAM NODE ELEVATION = 1343.00 DOWNSTREAM NODE ELEVATION = 1326.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 700.00 CHANNEL BASE(FEET) = 15.00 "Z" FACTOR = 3.000 INGS FACTOR = .035 MAXIMUM DEPTH(FEET) = 5.00 HANNEL FLOW THRU SUBAREA(CFS) = 20.53 FLOW VELOCITY(FEET /SEC) = 3.43 FLOW DEPTH(FEET) _ .37 F RAVEL TIME(MIN.) = 3.40 TC(MIN.) = 21.04 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** LOW - - - PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 8 ------------ --- ------- ---- ---- --- ------ - -- - ---- --- ------ - -- - ---- -- ---- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.813 RATE, Fm(INCH /HR) = .4100 RUNOFF(CFS) = 60.55 FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE 3 * * * * * ** -------------------------------- ------------------------------------------ » » >COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA ««< » » >USING COMPUTER- ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< -------------------------------------------- DEPTH OF FLOW IN 36.0 INCH PIPE IS 26.2 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 14.3 UPSTREAM NODE ELEVATION = 1326.00 DOWNSTREAM NODE ELEVATION = 1325.00 FLOWLENGTH(FEET) = 50.00 MANNINGS N = 013 ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 78.71 TRAVEL TIME(MIN.) _ .06 TC(MIN.) = 21.10 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 2 ---------------------------------------- - - - - -- >>>>> RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< N ATURAL POOR COVER ----- - - - - -- TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH = 1600.00 UPSTREAM ELEVATION = 1360.00 DOWNSTREAM ELEVATION = 1326.00 ELEVATION DIFFERENCE = 34.00 TC = .525 *[( 1600.00 ** 3.00)/( 34.00)] ** .20 = 21.694 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.762 SOIL CLASSIFICATION IS " A " NATURAL POOR COVER "BARREN" SUBAREA LOSS RATE, Fm(INCH /HR) _ .4100 SUBAREA RUNOFF(CFS) = 77.04 TOTAL AREA(ACRES) = 36.40 PEAK FLOW RATE(CFS) 77.04 ------- -------------------- - - - - -- END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 36.40 EFFECTIVE AREA(ACRES) = 36.40 PEAK FLOW RATE(CFS) = 77.04 END OF RATIONAL METHOD ANALYSIS � I 0 SOIL CLASSIFICATION IS " A " NATURAL POOR COVER "BARREN" SUBAREA LOSS SUBAREA AREA(ACRES) = 28.00 SUBAREA EFFECTIVE AREA(ACRES) = 36.40 AVERAGED Fm(INCH /HR) _ .410 TOTAL AREA(ACRES) = 36.40 PEAK FLOW RATE(CFS) = 78.71 TC(MIN) = 21.04 RATE, Fm(INCH /HR) = .4100 RUNOFF(CFS) = 60.55 FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE 3 * * * * * ** -------------------------------- ------------------------------------------ » » >COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA ««< » » >USING COMPUTER- ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< -------------------------------------------- DEPTH OF FLOW IN 36.0 INCH PIPE IS 26.2 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 14.3 UPSTREAM NODE ELEVATION = 1326.00 DOWNSTREAM NODE ELEVATION = 1325.00 FLOWLENGTH(FEET) = 50.00 MANNINGS N = 013 ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 78.71 TRAVEL TIME(MIN.) _ .06 TC(MIN.) = 21.10 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 2 ---------------------------------------- - - - - -- >>>>> RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< N ATURAL POOR COVER ----- - - - - -- TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH = 1600.00 UPSTREAM ELEVATION = 1360.00 DOWNSTREAM ELEVATION = 1326.00 ELEVATION DIFFERENCE = 34.00 TC = .525 *[( 1600.00 ** 3.00)/( 34.00)] ** .20 = 21.694 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.762 SOIL CLASSIFICATION IS " A " NATURAL POOR COVER "BARREN" SUBAREA LOSS RATE, Fm(INCH /HR) _ .4100 SUBAREA RUNOFF(CFS) = 77.04 TOTAL AREA(ACRES) = 36.40 PEAK FLOW RATE(CFS) 77.04 ------- -------------------- - - - - -- END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 36.40 EFFECTIVE AREA(ACRES) = 36.40 PEAK FLOW RATE(CFS) = 77.04 END OF RATIONAL METHOD ANALYSIS � I 0 4 RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) * ** PRELIMINARY /EXPERIMENTAL VERSION * ** Copyright 1983,86,87 Advanced Engineering Software (aes) Ver. 4.1B Release Date: 2/20/87 Serial # BETA06 Especially prepared for: * BETA TEST SITE EVALUATION ONLY * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** TRACT 13325 -1 - INITIAL AREA CALCS FOR CATCH BASIN SIZING 'LINE A p yQ k* drkak* tk7k* k* k* ick�c** tktk�ic* ic*** ak�ktik* �r�c* Iek�kakk�kk* �lrkk�k�k* �kak�r�rak�k** k *akititkk�r�iciek * *� FILE NAME: B:FONTACBI.DAT TIME/DATE OF STUDY: 12: 8 9/12/1987 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL*- - USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 E SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE = .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.0000 ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 203.00 TO NODE 107.00 IS CODE = 2 ---------------------------------------------------------------------------- » »> RATIONAL METHOD INITIAL - SUBAREA ANALYSIS « «< ----- - - - - -- ------------------------------------ DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3 -4 DWELLINGS /ACRE TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH = 1100.00 UPSTREAM ELEVATION = 1328.50 DOWNSTREAM ELEVATION = 1305.40 ELEVATION DIFFERENCE = 23.10 TC = .412 *[( 1100.00 ** 3.00)/( 23.10)] ** .20 = 14.690 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.326 CLASSIFICATION IS " A , SOIL " RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 SUBAREA RUNOFF(CFS) = 6.28 TOTAL AREA(ACRES) = 4.00 PEAK FLAW RATE(CFS) = 6.28 ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLAW PROCESS FROM NODE 107.00 TO NODE 107.00 IS CODE = 6 »»>COMPUTE STREETFIAW TRAVELTIME THRU SUBAREA ««< UPSTREAM ELEVATION = 1305.40 DOWNSTREAM ELEVATION = 1305.30 STREET LENGTH(FEET) = 10.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 J I OUTSIDE STREET CROSSFALL(DECIMAL) = .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 6.28 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .48 HALFSTREET FLOODWIDTH(FEET) = 11.38 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.09 PRODUCT OF DEPTH &VELOCITY = 1.50 STREETFLOW TRAVELTIME(MIN) = .05 TC(MIN) = 14.74 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.321 SOIL CLASSIFICATION IS " A " RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) _ .00 EFFECTIVE AREA(ACRES) = 4.00 AVERAGED Fm(INCH /HR) _ .582 TOTAL AREA(ACRES) = 4.00 PEAK FLOW RATE(CFS) = 6.28 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .48 HALFSTREET FLOODWIDTH(FEET) = 11.38 FLOW VELOCITY(FEET /SEC.) = 3.09 DEPTH *VELOCITY = 1.50 ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 107.00 TO NODE 107.00 IS CODE = 8 ---------------------------------------------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< ----------- _________ ------- _ ______________________________ 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.321 SOIL CLASSIFICATION IS " A " RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 SUBAREA AREA(ACRES) = 2.80 SUBAREA RUNOFF(CFS) = 4.38 EFFECTIVE AREA(ACRES) = 6.80 AVERAGED Fm(INCH /HR) _ .582 TOTAL AREA(ACRES) = 6.80 PEAK FLOW RATE(CFS) = 10.64 TC(MIN) = 14.74 FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 2 --------------------------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3 -4 DWELLINGS /ACRE t TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH = 950.00 , UPSTREAM ELEVATION = 1315.20 DOWNSTREAM ELEVATION = 1305.10 ELEVATION DIFFERENCE = 10.10 TC = .412 *[( 950.00 ** 3.00)/( 10.10)] ** .20 = 15.873 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.221 SOIL CLASSIFICATION IS " A " RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 SUBAREA RUNOFF(CFS) = 3.83 ' TOTAL AREA(ACRES) = 2.60 PEAK FLOW RATE(CFS) = 3.83 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 6 -------------------------------------------------------------------- - - - - -- » » >COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA « «< UPSTREAM ELEVATION = 1305.10 DOWNSTREAM ELEVATION = 1305.00 STREET LENGTH(FEET) = 8.70 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 3.83 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .41 HALFSTREET FLOODWIDTH(FEET) = 7.80 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.92 PRODUCT OF DEPTH &VELOCITY = 1.19 STREETFLOW TRAVELTIME(MIN) = .05 TC(MIN) = 15.92 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.217 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) _ .00 EFFECTIVE AREA(ACRES) = 2.60 AVERAGED Fm(INCH /HR) _ .582 TOTAL AREA(ACRES) = 2.60 PEAK FLAW RATE(CFS) = 3.83 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .41 HALFSTREET FLOODWIDTH(FEET) = 7.80 FLOW VELOCITY(FEET /SEC.) = 2.92 DEPTH *VELOCITY = 1.19 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 401.40 TO NODE 401.50 IS CODE = 2 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW- LENGTH = 1000.00 UPSTREAM ELEVATION = 1316.00 DOWNSTREAM ELEVATION = 1301.80 ELEVATION DIFFERENCE = 14.20 TC = .389 *[( 1000.00 ** 3.00)/( 14.20)] ** .20 = 14.438 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.351 SOIL CLASSIFICATION IS " A " RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .4850 SUBAREA RUNOFF(CFS) = 6.72 TOTAL AREA(ACRES) = 4.00 PEAK FLOW RATE(CFS) = 6.72 FLOW PROCESS FROM NODE 401.50 TO NODE 109.00 IS CODE = 6 ------------ ------------------------------------------------ - -- ---- -- ---- » » >COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA « «< UPSTREAM ELEVATION = 1301.80 DOWNSTREAM ELEVATION = 1296.40 STREET LENGTH(FEET) = 400.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 7.63 STREETFLOW MODEL RESULTS: is STREET FLOWDEPTH(FEET) = .50 HALFSTREET FLOODWIDTH(FEET) = 12.13 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.46 PRODUCT OF DEPTH &VELOCITY = 1.73 STREETFLOW TRAVELTIME(MIN) = 1.93 TC(MIN) = 16.36 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.181 SOIL CLASSIFICATION IS - "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .4850 SUBAREA AREA(ACRES) = 1.20 SUBAREA RUNOFF(CFS) = 1.83 EFFECTIVE AREA(ACRES) = 5.20 AVERAGED Fm(INCH /HR) _ .485 TOTAL AREA(ACRES) = 5.20 PEAK FLOW RATE(CFS) = 7.93 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .50 HALFSTREET FLOODWIDTH(FEET) = 12.13 FLOW VELOCITY(FEET /SEC.) = 3.60 DEPTH *VELOCITY = 1.79 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 109.00 TO NODE 109.00 IS CODE = 8 -------------------------------------------------------------------------- » » >ADDITiON OF SUBAREA TO MAINLINE PEAK FLOW « «< 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.181 L SOIL CLASSIFICATION IS " A " RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .4850 SUBAREA AREA(ACRES) = 2.00 SUBAREA RUNOFF(CFS) = 3.05 EFFECTIVE AREA = 7.20 AVERAGED Fm(INCH /HR) _ .485 TOTAL AREA(ACRES) = 7.20 PEAK FLAW RATE(CFS) = 10.99 TC(MIN) = 16.36 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 111.00 TO NODE 111.00 IS CODE = 2 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW- LENGTH = 1000.00 UPSTREAM ELEVATION = 1303.70 DOWNSTREAM ELEVATION = 1289.20 ELEVATION DIFFERENCE = 14.50 � TC = .389 *[( 1000.00 ** 3.00)/( 14.50)] ** .20 = 14.377 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.357 SOIL CLASSIFICATION IS " A " RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .4850 ' SUBAREA RUNOFF(CFS) = 8.09 TOTAL AREA(ACRES) = 4.80 PEAK FLAW RATE(CFS) = 8.09 FLOW PROCESS FROM NODE 111.00 TO NODE 111.00 IS CODE = 6 ---------------------------------------------------------------------------- ■ » » >COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA « «< UPSTREAM ELEVATION = 1289.20 DOWNSTREAM ELEVATION = 1289.10 STREET LENGTH(FEET) = 4.70 CURB HEIGTH(INCHES) = 6. I STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 UTSIDE STREET CROSSFALL(DECIMAL) = .040 0 1 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 8.09 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .47 HALFSTREET FLOODWIDTH(FEET) = 10.63 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.34 PRODUCT OF DEPTH &VELOCITY = 2.03 ' STREETFLOW TRAVELTIME(MIN) _ .02 TC(MIN) = 14.40 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.355 1 SOIL CLASSIFICATION IS " A " RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .4850 SUBAREA AREA(ACRES) _ .00 SUBAREA RUNOFF(CFS) _ .00 EFFECTIVE AREA(ACRES) = 4.80 I AVERAGED Fm(INCH /HR) _ .485 TOTAL AREA(ACRES) = 4.80 PEAK FLOW RATE(CFS) = 8.09 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) _ .47 HALFSTREET FLOODWIDTH(FEET) = 10.63 FLOW VELOCITY(FEET /SEC.) = 4.34 DEPTH *VELOCITY = 2.03 * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 111.00 TO NODE 111.00 IS CODE = 2 -------------------------------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< ------------------------------------------------------------- DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW- LENGTH = 480.00 UPSTREAM ELEVATION = 1297.40 DOWNSTREAM ELEVATION = 1289.20 ELEVATION DIFFERENCE = 8.20 TC = .389 *[( 480.00 ** 3.00)/( 8.20)] ** .20 = 10.374 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.866 SOIL CLASSIFICATION IS " A " RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .4850 SUBAREA RUNOFF(CFS) = 3.00 TOTAL AREA(ACRES) = 1.40 PEAK FLOW RATE(CFS) = 3.00 FLOW PROCESS FROM NODE 111.00 TO NODE 111.00 IS CODE = 6 ----- ---------------------------------------------------------------------- ,»»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA « «< --------------- -- UPSTREAM ELEVATION = 1289.20 DOWNSTREAM ELEVATION = 1289.10 STREET LENGTH(FEET) = 4.70 CURB HEIGTH(INCHES) = 6. (STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 F NTERIOR STREET CROSSFALL(DECIMAL) _ .020 UTSIDE STREET CROSSFALL(DECIMAL) _ .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 3.00 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .34 - HALFSTREET FLOODWIDTH(FEET) = 6.17 AVERAGE FLOW VELOCITY(FEET /SEC.) 3.50 PRODUCT OF DEPTH &VELOCITY = 1.20 STREETFLOW TRAVELTIME(MIN) _ .02 TC(MIN) = 10.40 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.863 SOIL CLASSIFICATION IS " A " RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .4850 SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) _ .00 EFFECTIVE AREA(ACRES) = 1.40 AVERAGED Fm(INCH /HR) _ .485 TOTAL AREA(ACRES) = 1.40 PEAK FLOW RATE(CFS) = 3.00 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .34 HALFSTREET FLOODWIDTH(FEET) = 6.17 FLOW VELOCITY(FEET /SEC.) = 3.50 DEPTH *VELOCITY = 1.20 - - - - -- ---------------------------------------------------- END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 1.40 EFFECTIVE AREA(ACRES) = 1.40 PEAK FLOW RATE(CFS) = 3.00 END OF RATIONAL METHOD ANALYSIS { F r D 0 0 u- RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) * ** PRELIMINARY /EXPERIMENTAL VERSION * ** Copyright 1983,86,87 Advanced Engineering Software (aes) Ver. 4.lB Release Date: 2/20/87 Serial # BETA06 Especially prepared for: * BETA TEST SITE EVALUATION ONLY * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** TRACT 13325 - LINE B INITIAL AREA CALCS FOR SIZING CATCH BASINS * KEITH COMPANIES - TOM BRAUN ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: B:FONTBCB.DAT TIME /DATE OF STUDY: 18: 8 9/13/1987 1 7' ------------=----==__________________-------- -SER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL*-- USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE = .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.0000 FLOW PROCESS FROM NODE 204.00 TO NODE 204.00 IS CODE = 2 ------------------------------------------------------------------------ » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< --------------------------------------------------------- DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3 -4 DWELLINGS /ACRE I TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW- LENGTH = 1000.00 UPSTREAM ELEVATION = 1337.00 DOWNSTREAM ELEVATION = 1320.20 ELEVATION DIFFERENCE = 16.80 TC = .412 *[( 1000.00 ** 3.00)/( 16.80)] ** .20 = 14'.785 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.317 SOIL CLASSIFICATION IS " A " RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 SUBAREA RUNOFF(CFS) = 6.72 TOTAL AREA(ACRES) = 4.30 PEAK FLOW RATE(CFS) = 6.72 ********************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 204.00 TO NODE 204.00 IS CODE = 6 ------------------------------------------------------------------ 1 >>>>>COMPUTESTREETFLOWTRAVELTIMETHRU SUBAREA « «< ------------------------ , UPSTREAM ELEVATION = 1320.20 DOWNSTREAM ELEVATION = 1319.10 STREET LENGTH(FEET) = 80.00 CURB HEIGTH(INCHES) 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 7.86 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .50 HALFSTREET FLOODWIDTH(FEET) = 12.13 AVERAGE FLAW VELOCITY(FEET /SEC.) = 3.57 PRODUCT OF DEPTH &VELOCITY = 1.78 STREETFLOW TRAVELTIME(MIN) = .37 TC(MIN) = 15.16 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.283 SOIL CLASSIFICATION IS " A " RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 SUBAREA AREA(ACRES) = 1.50 SUBAREA RUNOFF(CFS) 2.30 EFFECTIVE AREA(ACRES) = 5.80 AVERAGED Fm(INCH /HR) _ .582 TOTAL AREA(ACRES) = 5.80 PEAK FLOW RATE(CFS) = 8.88 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .51 HALFSTREET FLOODWIDTH(FEET) = 12.88 FLOW VELOCITY(FEET /SEC.) = 3.71 DEPTH *VELOCITY = 1.91 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 204.00 TO NODE 204.00 IS CODE = 8 ---------------------------------------------------------------------------- » » >ADDITION` OF SUBAREA TO MAINLINE PEAK FLOW««< 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.283 SOIL CLASSIFICATION IS " A " RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 SUBAREA AREA(ACRES) = 1.40 SUBAREA RUNOFF(CFS) = 2.14 EFFECTIVE AREA(ACRES) = 7.20 AVERAGED Fm(INCH /HR) _ .582 TOTAL AREA(ACRES) = 7.20 PEAK FLOW RATE(CFS) = 11.02 TC(MIN) = 15.16 Li END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 7.20 EFFECTIVE AREA(ACRES) = 7.20 PEAK FLOW RATE(CFS) = 11.02 END OF RATIONAL METHOD ANALYSIS 0 C r, ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) * ** PRELIMINARY /EXPERIMENTAL VERSION * ** Copyright 1983,86,87 Advanced Engineerinq Software (aes) Ver. 4.1B Release Date: 2/20/87 Serial # BETA06 Especially prepared for: * BETA TEST SITE EVALUATION ONLY * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** TRACT 13324 -1 LINE C INITIAL AREAS * * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: B:FONTCCB.DAT TIME/DATE OF STUDY: 12:35 9/12/1987 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME-OF- CONCENTRATION MODEL*-- USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE = .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.0000 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 303.00 TO NODE 303.00 IS CODE = 2 ---------------------------------------------------------------------------- » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3 -4 DWELLINGS /ACRE TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW- LENGTH = 1000.00 UPSTREAM ELEVATION = 1333.00 ' DOWNSTREAM ELEVATION = 1319.40 ELEVATION DIFFERENCE = 13.60 TC = .412 *[( 1000.00 ** 3.00)/( 13.60)] ** .20 = 15.424 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.259 SOIL CLASSIFICATION IS " A " RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 SUBAREA RUNOFF(CFS) = 4.53 TOTAL AREA(ACRES) = 3.00 PEAK FLOW RATE(CFS) = 4.53 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 303.00 TO NODE 304.00 IS CODE = 6 -------------------------------------------------------------------------- » » >COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA« «< ' UPSTREAM ELEVATION = 1319.40 DOWNSTREAM ELEVATION = 1313.40 STREET LENGTH(FEET) = 600.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 5.63 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .47 HALFSTREET FLOODWIDTH(FEET) = 10.63 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.02 PRODUCT OF DEPTH &VELOCITY = 1.41 STREETFLOW TRAVELTIME(MIN) = 3.31 TC(MIN) = 18.74 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.010 SOIL CLASSIFICATION IS " A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 SUBAREA AREA(ACRES) = 1.70 SUBAREA RUNOFF(CFS) = 2.19 EFFECTIVE AREA(ACRES) = 4.70 AVERAGED Fm(INCH /HR) _ .582 TOTAL AREA(ACRES) = 4.70 PEAK FLOW RATE(CFS) = 6.04 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .48 HALFSTREET FLOODWIDTH(FEET) = 11.38 FLOW VELOCITY(FEET /SEC.) = 2.98 DEPTH *VELOCITY = 1.44 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 304.00 TO NODE 304.00 IS CODE = 2 - » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< ------------- ----------------------- -_____ DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3 -4 DWELLINGS /ACRE TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH = 1000.00 UPSTREAM ELEVATION = 1328.00 DOWNSTREAM ELEVATION = 1313.40 ELEVATION DIFFERENCE = 14.60 TC = .412 *[( 1000.00 ** 3.00)/( 14.60)] ** .20 = 15.206 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.279 SOIL CLASSIFICATION IS " A " RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 SUBAREA RUNOFF(CFS) = 8.40 TOTAL AREA(ACRES) = 5.50 PEAK FLOW RATE(CFS) = 8.40 * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS - - --- FROM NODE 304.00 TO NODE 304.00 IS CODE = 6 ------------ ---- ---- ---- ------ - -- - ---- --- ------ - -- ----- -- ---- » » >COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA« «< ------------------------------- ' UPSTREAM ELEVATION = 1313.40 DOWNSTREAM ELEVATION = 1313.30 STREET LENGTH(FEET) = 10.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 ' SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 8.86 STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLAW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) = .54 11 HALFSTREET FLOODWIDTH(FEET) = 14.38 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.16 PRODUCT OF DEPTH &VELOCITY = 1.72 STREETFLOW TRAVELTIME(MIN) _ .05 TC(MIN) = 15.26 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.274 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 SUBAREA AREA(ACRES) _ .60 SUBAREA RUNOFF(CFS) _ .91 EFFECTIVE AREA(ACRES) = 6.10 AVERAGED Fm(INCH /HR) _ .582 TOTAL AREA(ACRES) = 6.10 PEAK FLOW RATE(CFS) = 9.29 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) _ .54 HALFSTREET FLOODWIDTH(FEET) = 14.38 FLOW VELOCITY(FEET /SEC.) = 3.31 DEPTH *VELOCITY = 1.80 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 104.00 TO NODE 105.50 IS CODE = 2 - - - » » >RATIONAL INITIAL_ SUBAREA ANALYSIS « «< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3 TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW- LENGTH = 1000.00 UPSTREAM ELEVATION = 1328.40 DOWNSTREAM ELEVATION = 1312.20 ELEVATION DIFFERENCE = 16.20 TC = .412 *[( 1000.00 ** 3.00)/( 16.20)] ** .20 = 14.893 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.307 SOIL CLASSIFICATION IS " A " RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 SUBAREA RUNOFF(CFS) = 6.21 TOTAL AREA(ACRES) = 4.00 PEAK FLOW RATE(CFS) = 6.21 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS - FROM - - -- NODE 105_ - 105.50 TO NODE 305.00 IS CODE = 6 ---------------------------------------- » » >COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA « «< ------ -- UPSTREAM ELEVATION = 1312.20 DOWNSTREAM ELEVATION = 1307.80 STREET LENGTH(FEET) = 260.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 7.53 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .47 HALFSTREET FLOODWIDTH(FEET) = 10.63 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.04 PRODUCT OF DEPTH &VELOCITY = 1.89 STREETFLOW TRAVELTIME(MIN) = 1.07 TC(MIN) = 15.97 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.213 ' SOIL CLASSIFICATION IS " A " RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 SUBAREA AREA(ACRES) = 1.80 SUBAREA RUNOFF(CFS) = 2.64 EFFECTIVE AREA(ACRES) = 5.80 AVERAGED Fm(INCH /HR) _ .582 iI TOTAL AREA(ACRES) = 5.80 PEAK FLOW RATE(CFS) = 8.51 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .50 HALFSTREET FLOODWIDTH(FEET) = 12.13 FLOW VELOCITY(FEET/SEC.) = 3.86 DEPTH*VELOCITY = 1.93 FLOW PROCESS-FROM NODE 305.00 TO NODE 305.00 IS CODE = 8 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.213 SOIL CLASSIFICATION IS "All RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) .5820 SUBAREA AREA(ACRES) = 3.30 SUBAREA RUNOFF(CFS) = 4.84 EFFECTIVE AREA(ACRES) = 9.10 AVERAGED Fm(INCH/HR) = 582 TOTAL AREA(ACRES) = 9.10 PEAK FLOW RATE(CFS) = 13.36 , = 15.97 ======== ........ --- - -------- END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 9.10 EFFECTIVE AREA(ACRES) = 9.10 PEAK FLOW RATE(CFS) = 13.36 END OF RATIONAL METHOD ANALYSIS I I I 1 I L ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) * ** PRELIMINARY /EXPERIMENTAL VERSION * ** Copyright 1983,86,87 Advanced Engineering Software (aes) - Ver. 4.1B Release Date: 2/20/87 Serial # BETA06 IF Especially prepared for: * BETA TEST SITE EVALUATION ONLY C INE DESCRIPTION OF STUDY RACT 13325 -1 CATCH BASINS D * * ****************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: B:FONTDCB.DAT TIME/DATE OF STUDY: 13: 4 9/12/1987 F USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME-OF- CONCENTRATION MODEL*- - E USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE = .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.0000 ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 401.00 TO NODE 402.00 IS CODE = 2 ---------------------------------------------------------------------------- » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW- LENGTH = 850.00 UPSTREAM ELEVATION = 1310.10 DOWNSTREAM ELEVATION = 1300.50 ELEVATION DIFFERENCE = 9.60 = TC = .389 *[( 850.00 ** 3.00) /( 9.60)] ** .20 14.163 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.378 CLASSIFICATION IS " A " ,SOIL RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .4850 SUBAREA RUNOFF(CFS) = 6.13 TOTAL AREA(ACRES) = 3.60 PEAK FLOW RATE(CFS) = 6.13 ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 402.00 TO NODE 402.00 IS CODE = 6 1 ------------------------------------------------------------------------- >>>>>COMPUTESTREETFLOWTRAVELTIMETHRUSUBAREA<<<<< UPSTREAM ELEVATION = 1300.50 DOWNSTREAM ELEVATION = 1300.40 LTREE TREET LENGTH(FEET) = 8.30 CURB HEIGTH(INCHES) = 6. HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 d OUTSIDE STREET CROSSFALL(DECIMAL) _ .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 6.90 STREETFL0W MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .48 HALFSTREET FLOODWIDTH(FEET) = 11.38 AVERAGE FLAW VELOCITY(FEET /SEC.) = 3.40 PRODUCT OF DEPTH &VELOCITY = 1.64 ISTREETFLOW TRAVELTIME(MIN) _ .04 TC(MIN) = 14.20 END OF RATIONAL METHOD ANALYSIS n I� 0 G 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.374 SOIL CLASSIFICATION IS " A " RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LASS RATE, Fm(INCH /HR) _ .4850 SUBAREA AREA(ACRES) _ .90 SUBAREA RUNOFF(CFS) = 1.53 EFFECTIVE AREA(ACRES) = 4.50 AVERAGED Fm(INCH /HR) _ .485 TOTAL AREA(ACRES) = 4.50 PEAK FLAW RATE(CFS) = 7.65 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) _ .50 HALFSTREET FLOODWIDTH(FEET) = 12.13 FLOW VELOCITY(FEET /SEC.) = 3.47 DEPTH *VELOCITY = 1.73 END OF STUDY SUMMARY: TOTAL AREA(ACRES) - 4.50 EFFECTIVE AREA(ACRES) = 4.50 PEAK FLOW RATE(CFS) = 7.65 END OF RATIONAL METHOD ANALYSIS n I� 0 G J ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) * ** PRELIMINARY /EXPERIMENTAL VERSION * ** Copyright 1983,86,87 Advanced Engineering Software (aes) Ver. 4.1B Release Date: 2/20/87 Serial # BETA06 Especially prepared for: * BETA TEST SITE EVALUATION ONLY * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** TRACT 13325 -1 CATCH BASINS LINE E * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: B:FONTECB.DAT TIME /DATE OF STUDY: 13: 8 9/12/1987 - --- - - - - -- - - -- - -- ------ - - - - -- --------------- - USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME-OF- CONCENTRATION MODEL*-- USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE = .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.0000 x E FLOW PROCESS FROM NODE 504.00 TO NODE 504.00 IS CODE = 2 ---------------------------------------------------------------------------- » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE E TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW- LENGTH = 350.00 UPSTREAM ELEVATION = 1300.80 , DOWNSTREAM ELEVATION = 1293.80 ELEVATION DIFFERENCE = 7.00 TC = .389 *[( 350.00 ** 3.00)/( 7.00)] ** .20 = 8.859 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.151 SOIL CLASSIFICATION IS " A " ' RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .4850 SUBAREA RUNOFF(CFS) = 2.04 TOTAL AREA(ACRES) _ .85 PEAK FLOW RATE(CFS) = 2.04 ************************ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 504.00 TO NODE 504.00 IS CODE = 6 - ----------------------------------------------------------------------- i >>>>>COMPUTESTREETFLOWTRAVELTIMETHRUSUBAREA<<<<< --- - - - - -- ------------- - - - - -- _____ ELEVATION = 1293.80 DOWNSTREAM ELEVATION = 1293.70 , UPSTREAM STREET LENGTH(FEET) = 4.70 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 2.04 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .29 HALFSTREET FLOODWIDTH(FEET) = 4.95 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.48 PRODUCT OF DEPTH &VELOCITY = 1.02 ESTREETFLOW TRAVELTIME(MIN) = .02 TC(MIN) = 8.88 go 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.146 SOIL CLASSIFICATION IS " A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) _ .00 EFFECTIVE AREA(ACRES) _ .85 AVERAGED Fm(INCH /HR) _ .485 TOTAL AREA(ACRES) = .85 PEAK FLOW RATE(CFS) = 2.04 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .29 HALFSTREET FLOODWIDTH(FEET) = 4.95 FLOW VELOCITY(FEET /SEC.) = 3.48 DEPTH *VELOCITY = 1.02 .4850 END OF STUDY SUMMARY: TOTAL AREA(ACRES) _ .85 EFFECTIVE AREA(ACRES) _ .85 PEAK FLOW RATE(CFS) = 2.04 CEND OF RATIONAL METHOD ANALYSIS I I r 1 1 v C L: HYDRAuucS Catch Basins Storm Drains `J i 1 CATCH BASIN CALCULATIONS 0 k Ll 1 069X2004 N a M S 1 0 gh/ of Opening (h) .o !re/ to LN p v C* to o �� I n C000ci/y o oer lod of le-1.0h W open.-, <Q /L) , n` c fs ,xr loot o iti w N � c, ck It � ( � L• (. I , 1 , 1,1.1 � 1 � I ���i`1�1� 1 � • Z �r N� %%X% �• ` r It It It ^ho of oWh of -vkr 0# ea *V /o heiglh/ off' cpeno o OWN i; `, 111f1 ��� tit l ; 1 it C. B. ft ,6-f - f 1-10L? E� , 24____— C - LTRF,' OPE, I ' (SU \IP) Given: (a) Discharge Q �Of:) CFS (b) Curb type "A -2" "D" 4" Rolled 6" Rolled Solution: 11 (depth at opening) inches h (height of opening) inches if /h From Chart: Q /ft. of opening = .2 CFS L required = CL. �Ci l .� = 2 ft. U S E L= ft. " C11r,r,' 0PENI'N'G (SUNIN Given: (a) Discharge Q _ _ 0-51 CFS , (b) Curb type "A-2" "D" 4" Rolled 6" Rolled Solution: sr_. if (depth at opening) = .1'Q, r-�C_ inches r h (height of opening) = inches if /h = I C2.0- 5 = ,1 From Chart: Q /ft. of opening CFS L required U S E L = �� ft. ; 1 1 1 C. U. N ? �OIFD cur, r' 0PEN•r'NiG (SUNIP) Given: (a) Discharge Q kO = CFS (b) Curb type "A -2" "D" 4" Rolled 6" Rolled Solution: li (depth at opening) inches h (height of opening) inches From Chart: Q /ft. of opening = 2,j CFS ' L required = / �1,�J = P�,�5 ft. U S E L= ft. 1 1. C. B . �C l curs orrNrNIG (SUNcr) r Given: (a) Discharge Q tO (b) Curb type "A -2" "D" 4" Rolled 6" Rolled r Solution: if (depth at opening) _ inches h (height of opening) _ r inches From Chart: • Q /ft. of opening = �, `J CFS • � � ft. L required U S E L= ft. " r• C. B . ;T I Ol ctrr.r:' 0PENTING (SUacr) Given: (a) Discharge Q � D_ = I0 01'51 CFS (b) Curb type "A -2" "D" 4" Rolled 6" Rolled Solution: if (depth at opening) inches h (height of opening) _ 7,tf — p inches H /h From Chart: Q /ft. of opening = Q_ CFS L required = / _ -7 ft. U S E L= ft. t E i 1 C. B. C17RIt' OP G (SU'.-\[r) Given: (a) Discharge Q 1C = 1n,(D CM. (b) Curb type "A -2" "D" 4" Rolled 6" Rolled Solution: Il (depth at opening) _ °(� Cam_ inches h (height of opening) _ inches x/h From Chart: Q /ft. of opening CFS L required 0 4- ��- _ y ft. U S R L = ft. " r' DEPTH OF FLOW - y - FEET .01 CZ 03 0• .05 06 C06 .10 b u v I ,I�iII� r �_ __i �/ .6 l C �� 4-1 DISCHARGE PER FOOT 1 LENGTH O CURB OPENING -.5 — 'I - I N LE T ',',',u, E N INTERCEPTING 4 ---rl00% OF GUTTER FLOW r . gi L oil /�/{ i I om as as A13 At cro- KH+ Ad jr -r s ,ri o CEPTION RATIO FOR INLETS OF T LENGTH LESS THAN L it • .05 .06 .06 10 .3 TABLE ZT Or- CURB OPENING INLL -Z) CAPACITY BUREAU OF PUBLIC ROAOS -k&m 1"-"DAn$7 C. B. ) CUR13 OPENI \`G ( Interception Given: (a) discharge Q 10 = � 1 e5s C FS (b) street slope S = r. / (c) curb type "A -2" "D" (d) half street width = ft. ire � Solution: Q /S �z = /( = Therefore y- O Q /L = q- 1P L N -2 (L for total interception) TRY: I--ps ____,___ YL a/y = .33/__ Q�Q QP_ X_ = CFS (Intercepted) QC =�� __ = CFS(Carryove 0 t c c c 0 c c c c i c CURB OPENING ( Interception ) Given: (a) discharge Q = 2, CFS (b) street slope S = , 6? CO2t;j - (c) curb type "A -2" "D" (d) half street width = ao ft. Solution: Q /S". /( ) Z = Therefore Q /L ��- L / _ ?, (L for total interception) TRY: I. ft. `p' L - -- /--- a/y = .33/______ _ V — Q X = CFS (Intercepted) Q _ _ C FS (Carryover) -35- t 0 0 c c 'E C L L b i 1 1 1 1 1 1 C. B. I &-� L / ��s� CUR13 OPENIN + G ( Intcrccption ) discharge Q OO C f S Given: (a) - (b) street slope S (c) curb type "A -2++ + +D++ (d) half street width = 20 ft. Solution: Q/S /( ) / 2= Therefore y O• Q /L = Oak L / (L for total interception) _ _ TRY: L YL a/y = .33/____.__ ?J Q QP= X = CFS (Intercepted) Qc= _ CFS(Carryover) -35- i 6 0 C 1 L P1 C C OR El 1 i 1 1 1 1 CURB OPENI\ ( interception ) Given: (a) discharge Q 1n L = crs (b) street slope S = Q , 02 V ;J (c) curb type "A -2" "D" (d) half street width = R• Solution: Q /Syz= / ) / Z= Therefore y o �-, Q /L . . (L for total interception) L = �2�_ ' � � L TRY: Y L / Q a/y = .331 __ Q/Q = QPO P X CFS (Intercepted) Qc= = CFS(Carryover) -35- i E 1 i i i i 1 1 1 1 F 1 1 1 1 1 6 C. 8 . 1 �� CURB OPENI \TG ( interception ) Given: (a) discharge Q kO = �,.Q� CrS (b) street slope S (c) curb type "A -2" "D" (d) half street width = \ Q ft. Solution: Q /S Q / L =� L TRY: L YL = _ a/y = .33/ / ) / 2= Therefore y 0, (L for total interception) it. • G/Q = Q X = CFS (Intercepted) Qc= - C FS(Carryover) -35- KEITH DATE ENGINEERING, -K-i INC. 2900 S. Bristol St. Suns 8205 Costa Mesa CA 92626 (714) 250 -0300 Q �0 = t-t "a- 1 "Cv Q �i2 elf- 15,oC, a TRACT NO. PAGE OF 4 0 � Ft - - HYDRAULICS H H 0 k 17 069X2004 G [fill 0 C 0 u I STORM DRAIN EXHIBIT 1 N T5 . T ,.... SW _ tili to 6 Ito to kip, • t }} 1 � ' i ' cr,,,- I IP' rl .T. CO ' 41 M C, C•) I C) M F9 M ='1 4') k') C*) ra l) 1 c") in C,) C") M r X , r o 0 l a o O O O ,O 0 O 0 , o o rJ o o - 0 S ! 1 0 O 1 . o !c o IQ o to o o l0 0 o b O, : o r , j 10 0 C C? o -i0 0 f1 v' , 0 O O '0 .0 0 0 ( 0 0 '.0 •0 '0 O 0.0 0 0 O O. f") y0 O 1 N O O Ia ,{• ,IO a O O 1 . • �0 • , • O I O I `O • • • • • y14 0 0 10 0 O 0 { i0 0 ' v' 'C' 0 'O 0 p CO !A (,4 P O Q 1 I .0 O :0 0 1 1 •'r'.y • 1 • • • i • • 1 C 0 0 0 47 ' 0 O 0 .0 O 10 0 1 0 0 O O j+, O 'p 0 0 0 0 a M ' C III��A"""l/) 1 M i 0 O 'O N !O O O .b 'ul N O '.O O i0 O O O L7 O G 0 0 0 • O 0 '.0 O i O O 0 O O O '.O O 0 O 0 0 O O 0 O 0 O r> O I , I a O M is F'O 0 0 !0 0 �!0 0 0 O IO 0 v O I0 0 O O O :. . C V 0 Cl 10 0 a .3 - 0 O ' 0 0 •O 0 ' ' . O O i0 0 10 0 IO O 0 0 '0 , 0) 0 0 M V' ,47 U' n m r1 CO 10 O H v' 190 .0 I j , ,-1 , ,-. _. r ,.-■ e-. M 4 t) 1N N la , N , 1 • U -.' _ 3 .3 0 0 0 , 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 • r1 0 cr C. 0 0 4 . 4 0 44 1 0 vC I n .. 10 N 0 • E. u, .-4 0 C. N 0 V -. rs 0' 0 Cl 0 N , 0 0 10 0 1 41 ! O o O O ti ''.O O - -- O 'o o o 0 o , • 0 0 o IO O 'O O 'O O !O 0 0 0 1!0 O '.0 O 0 0 0 0 .0 0 0 0 O 0 O O 0 O 10 0 lo 0 0 0 10 . 6 '0 0 l 44 00 00100000 0 .0 0 , 0 0 `` 10 -.0 ,0 0 1 0 . 0 0 0 10 0 1 (0 �s. 0 0 co O '0 0 0 0 0 0 1 0 O i 0 O IO 0 1 .0 O 0 0 0 '0 o 0 77-- 0 0 0 J' 0 O O 0 '. 0 0 10 0 0 0 I. O i0 0 ' '. 0 0 ! Qc. - .� 0 0' 0 0 0 0! 0 0 1 0 0 I0 0 O 0 . O "r. c) C) ^) ,..,)^ m c� Cr, 1+ ( Ln N CO CO IN CI CO CO e') CO M CO w11` ^ ' " u ,x, .3 'O 0 jo 0 }0 O { O _ .3 0 .10 o 1‹; o !o o O. 0 � o p Io 0 . • 'j F 1 I ' ! ! I "•• 111 Y. 1• r �` 1 i ca s i s a .r • a' • la ••r '.r r j r Q ' w w I a fa •M• v a ja m u 1 0 41 I0 0 IN N N , 0 N. N to IN N IIr. N IV) N N 'N ,to P • 1 , 47- 0 o f0 0 10 0 1 0 0 ' 0 0 O 0 1 0 0 0. 0 10 O O 0 O 'O I O o f j ~ ] A ° Co 10 o jo .3 ,0 0 1 4 0 O j0 0 I0 0! 0 0 0 0 j0 0 0 0 �0 O j0 0 1 ! . ' 10 O I0 0 0 I0 0 i0 0 10 ' 0 0 0 0 0 _ 1 0 O 0 0 10 0 10 0 1 1 rt. ao 1 1 i i - i I .0 1 1 0 .-• .1 m 0 0 .O ! 0 0 .0 t. 1 0 N N N CO v' CO N Q � '0 01 N ' • C1 m :10 I v' C N • .' N N 40 0 0 m C') .y N .•• C)' v' 0 N .• j i .. •1. • C .4 N } n 40 • LO 10 • 03 03 aQ • 0 j • 0 • 1 • V M • 1f a0 .D t : 0 c • w ; m m CG m Im m m '(''3 m c 0 m c a 0 m c ?c c+ 7,1 z , N N �Nr4 iN N N 0 N NNjN i n4 ' INN =01NN "N N j I i. 0 1 r. . - . .0 ' . - � N 0 0... .a 0 . - . • 1 s. r. I 0 0 1 71 71 •■•• 0 71 '71 . 0 •-• i { •N o f ( m 7 ' m o -. 1 0 i CO •Z n o 1 r0 M e m at o m o ' z • - • C .v c o N I ` . ) a • .-a PI ( D N .0 O N 0 : OD --• o N .-. 1 CO ,w' 0) 0 I 1 0 ■ , • . 1 . . ; • . • • • • . . i 1 4 i N N I m v' 30 .7 i n Oo m W m O j 0 .. '4 N N to 0 `u' m m F. 144 .) S . m O) m m m , m 0 CO ' m CI 0' .3 0" 0 6' 0 1 G" C. 0 0' - .1 44 144 N N Cl ;CO IN 44 n N ;CO 104 0. n N i N N ' N N N N 'N 44 4-4 . 1 {-. I ' 0 r. 1.-1 7 n. .-• r• ,-a 1 .. r1 M e' .' .• ( r - .Y -1 '- .-. i.-• r• r. .-• n ; r...314 _ ') 0 0 t, j r o) l., v. •-• r'T U' N 1� 0t CO j n N ra j 1 i ((AA O I P co • S • CO . O) 0 ■ C o 7 'V • • I E• • ; a . • T N • • G' , . • ,Co. •7 N. Q h 1 .-. 0 1 1 - 7 , 03 • 1 Vi u • • s II • • • • • l .-. N0 1z {v' o 1 o_. CO O 1 CO r- m I . O CO C 40 0 0 0 1 m .3 10 .. a _ . C7 •1•1•,• 0 N J• 0 1 .3 w ,a c1 N i w .. -,m r1,n` ... . a TN 0 I 0 N jN �0 ! . I. • �.'t , ,•1 1 1 .r 1 .. .• PI ..• Z .a) 1 f 3 1 fi 1 t. Z zz ;.3 ! o Io O 0 O , O 1 0 O ".O 0 1 1 O o o o to v 0 o O 'o 10 O • ' Qj .•] 1 m m i co m 1 m co CO m I W CO i C4 ZOtt m C 0' m 0) ab m m - 0 m v� 1 x 1 a o o .0 .0 1.9 .9 0 0 .0 0 1 0 .0 m 0 a� ^ri o 0 a ! .4 4. t0 .0 0) Z u3 I Q ci ci ;H .. ... 17 '' .-1 71 ! 71 .-1 ..i, ! ,1 t,.4j4 I .-. -• 74 t :.-. 1 .•. 71 1 !j u: ,ZF . O O 1 O 10 O O 0 O 0' O O.O 0 O O 1 0 O ' l O O 10 i0 IO 0 t ii i6 OF 1 . . _ • ,. . _ . 1 z HQ X 1 m 3 1 m m 140 _ Ca 4D m 0 W 043W0)0).40 'co m CU m 1 m a + cox Q O O v " 0 :0 .0 ' J • .1 0 0 O .Q 0 .O O .9 .0 .O 0 9 1 0 ' W C7 z x ' ,--. ..^. L w . z ("4 - CO CO '4 m 10 0. CO L. .. i .3 CO 4 0 0. 0- , 0 m 1 0 • - n 'co a N { ' S ;oz. .•a . ' .-4 .+ 4 ' .. .y i 7 1. N N - CI Ca N 01 ' :.-• n - 04:I ! W .xW Q - O N N n C'� N N N Ca : a! N n N N CO N I Cl 44 1N N CI N r]' N 1 i �. _ ! • Y SA U.. , 1 j yr y + V ••••, _. 1 • ' ^� ' � - KEITH mwnzwcxnzmo, INC. oroor oo^L,ono o»p JOB R441 -'417t2,1, / vo DATE 6-mcT-8 '� �r�:�� F pxn�zz STORM DRAIN 13325 CITATION Fo*zomo J . PAM z uaozooso MATTHEW v«wosxouasa �, r`/| §L -Er " | - oa 4 2 27 C 134.0 134.0 46.16 2 20 134.0 or ' - 130 | 2 29 134.0 • /� 2 oo 134.0 13*.0 16.76 1308'47 0.00 | ^_ _- ____ --_-�_ '� / 2 31 u9.o 119:0 ^n.*� 1000'oa 1309.12 0.00 - 4 - 3. -- 0. .Jo o.0v0.22 0 �- N / 2 32 119.0 119.0 277.78 1309'12 1313.34 0.00 48. 0. .00 0.00 0.00 0 33 0 0 o' 0. 0. *.66 0.013 o� �5� 119.0 �l����i��o�1u'��1�i5�6 0.00 48.[ .00 0.00 0 0 V0�v� n�0 _ n�o�� ''-1 ( [ ' ' ' -- 2 L 34 119.0 119.0 91.51 1315.56 1316.95 0.00 48. 0. o •.00 0.00 0.14 0 35 0 0 o' 0. o' o ��o 0.013 ` 0 - u oo 119.0 119,0 1318.75 1325. 48. 3 .00 0.20 0[00 --- 36 o 7r n. -- o�n. n.ozn ----j ( 2 36 78.7 78.7 6.72 1319.25 1319.35 0.00 48. 0. 3 i.ov 0.00 0.00 0 37 0 0 o' 0. 0. 4.66 0.013 C � 2 37 78.7 78.7 ua'oo mm'*u 1319.83 -�.' 0. „ ~_~ ~..' � 0 - n - 0 n-n�-n:--w�-o:��-nrnrn�---- / ( / i - ` 2 38 41.6 39.8 3.83 1282.91 1282'93 0.00 oa' 0. 3 - .00 0.00 0.00 4 39 0 0 0. o' o' 0.00 0.013 i t L 2 39 m]641�v'yo 1282.93 �����99 0.00 36. O. a `.o07��` -- no v' o o. EDIT ----: ' ( 2 40 41'6 .41'6 475.36 1282.99 1286.03 1293.65 36. 0. 3 .vo 0.20 0.00 0 41 0 0 o' o' o' 3.25 0.013 4 40.0 40.0 200.00 1286.53 1286.72 1uv8.Orm6. 0. z`' . 0.20 m -x�-7r- - c o 0 � ' K 3.0 3.0 31.11 1284.11 12 .ra 1291'22 30. ^ ' .00 0.20' 0.00 6 0 0 0 w' w' o' 0.00 0.013 / ' C `-------' 8.1 ---' .114.i4�84J1ib§�72I59i.l0b0.O. 1 .00 0.20 o.o0 n - ` - nr7> �n. - - 1. - n. - ozm - n .xzn - ( T *x r'r 7.7 13.13 1289'54 1289'72 0.00 u«' O. o'' .00 0.00 0.00 12 45 0 0 O. O. O. 0.00 0.013 N�. , [ 2 45 7.7 7.7 1e'03 1289.72 0.00 24. 0. o '.00 �0v 0 0. - x' o� 'o13 « ` o 1289.89 24. 47 � � � ` i 46 x v 1293.18 0.00 u 0. 3 �oo 0.00 0.00 0 0 ' .�w. o. o. o,00 0.013 �i W � - - ____^__�___~ �zy*'l� z 1 `/'��v n��v o.o 0 0 O � 0 ~ o�� o� i:uz���~ �, � ` , r )293.19 --- 11.0 11.0 15'23 1290.17 1291'09 1296'22 24. 0. 'I. .00 0.20 0.00 .'' - i30 - 0 � o 'o � v' - o.0E��''^�"'"4 4- ( r-- 49 3.8 3.8 1��'� 1298.65 1304.77 1 ' - �� ��7c 07 -- 07: - mT -2- 50 10.6 10.6 15^2* 1297.8 1299.37 130*'99 zm' o - 1� ' . o o o . ' - 21 o o ' 0. 0. 0.00 0.013 ' � "� _ _ -- � __-- -_____I ( 4 __ ________ -- 1 117 f~ ' _- '_- ( 4 | ------' -- -'--- --- (! ' ' < :_ � - __ ___�� _-__ _ _ - I -_- -- -� _� _- -_ . . �( . � _ -- ��___ __ __ `� - _____ - - --� - - -- �� __ -'-_ --__-- -_ - ` ! ' i '_- ` ,,,= i XEITH ENGINEERING. INC. STORM DRAM ANALYSIS EDP JOB R441< (IN , T) GATE 6-01'41 ( PROJECT STORM GRAIN 13325 CITATION FONTANA FAME 3 � DESIGNER MATT1!EW VA.NDERBURGE CD L2 MAX U ADJ 0 LENGTH FL 1 EI 2 CTLITW D W S K3 KE KM LC L1 1.3 LA' `a A3 A4 - "3 IJ ; ( 2 51 35.1 33.6 3 90 1299.52 1299 56 0.00 30. 0. 3 - .00 0.00 0.00 2 5 52 0 0 0 0 0. 0 0.“,;:: I 2 52 35.1 35.1 7.84 1299.56 1299.64 0.00 30. 0. 3 1.00 0.00 0.08 0 53 0 0 O. 0. 0. 0.00 0.01' t 2 53 35.1 35.1 27.76 1299.64 1299.92 0.00 30 0. 3 X,00 0.00 0.03 0 54 56 0 J. 30. 0. 0.00 ".+113 4r 2 59 23:2 23.2 .,. 18.51 1299.92 1300.10 0.00 30, O. 3 .00 -0".b- 0.0_3 .. 0_ 55 " -a 0 _ - 0_. -.._ 0: 0:--- 0-.0 0 . 0 . 1 . T . ,_.- I 2 55 23.2 23.2 88.11 1300.10 1300.98 0.00 30. 0. 1'.'+.00 0.00 0.00 0 0 0 0 0. 0. 0. 0.00 0.013 4 2 56 13.4 11.9 23 03 1300.64 1301.69 1306.96 18. 0. 1 x.+.00 0.20 0.00 0' 0 0 0.__ 0. U 0.00 '01 t 2 57 16.8 15.6 6.59 1309.62 1309.78 0.00 24. 0. 3'+.00 0.00 0.00 31 58 0 0 0. 0. 0. 0.00 0.013 4P ;. 1 58 16.8 16.8 8.11 1309.78 1309.97 To 24. O. 3 '..00 0,00 0.0 - 0 5 . 6 _ 0 ^ - O. 0. 0:00 "07013 ( I 2 59 16.8 16.8 180.91 1309.97 1314.24 0.00 24. 0. 3„ .00 0.00 0.00 0 - 60 0 64 0. 0. 30. 4.00 0.013 ; A' 2 GO 8.4 8.4 293.64 1314,33 1317.97 0.00 24. 0. 3 e%.00 0.00 0.00 - 0 �' - '�'b - . 0. 0. 5:50 0. - 2 61 8.4 8.4 175.34 1318.04 1320.21 0.00 24. J. 3 . .00 0.00 0.00 0 62 0 0 0. 0. 0. 0.00 0.013 f' I 2 62 8 4 1.4 107.33 1320.21 1321.54 0.00 24. 0. 3 +.00 0.00 0.15 - 0 - 61 r15 - 0 0. - 0. 0._ 0 0.013 1 2 63 8.4 8.4 37.35 1321.54 1322.01 1327.08 24. 0. _ r .00 0.20 0.00 0 0 0 0 0. 0. 0. 0.00 0.013 2 64 11.0 8.4 26.50 1314.57 1315.47 1318.71 18. 0. 1 '• .00 0.20 0.00 60 0 0 0 _ O. 0, O. -0-:00- 0.013 ._ C ( i L -_ _ . _ - T P d -3 - - - - 1 f ( ( ( t 1 1 , - • LOS ANGELES COUNTY ROAD DEPARTMENT STORM DRAII (.NALYSiS --__-.,==ummdcllif============1 ( PROJECT STORM DRAIN 13325 CITATION tONTANA RAN- 1 1.FS/ONER MATTHEW VANDERBUME t f 11Ni -- D W ON DC FLOW SF-FULL V 1 V 2 Fi tit FL : MG 1 H6 j Ill DI T 714 4 NO (CFS) (IN) IN) (PT) (FT) TYRE (FT/FT) (FPS) (FPS) )FT) Z 'RI) CALL CALL (FT) ■PT) CALL CK REMAP', ,, `-- 1 - MY MAO L f O L 1 I4E- CONTROL - ..- #2137.98 - • 2 208.0 GO 0 3.00 4.10 FULL 0.00638 10.6 10.6 1:f1.45 ,,, .81 J2P7.°: ,288.8f (.48 2.05 ( 0.0k. '0 - 5 . - 4 - .,-1-0- FULL- 0.o003t3 - 1-0,-6---40.t. 1,74-41.-..-ia It , .,45 2,4,643..-Z5 125P '1' - 2_.a..- _2 .._42_ _ D ..0.0. 0.4 • 4 168.0 54 0 2.42 3.77 FULL 0.00730 10.6 10.6 1.282.3i ,,J..50 1289.78 1290.12 7.43 7.62 -0.00 0.00 1 41 -- 6 -168,0-64- -4- 2,40 2-,77---FULL- 4.04-730- 10.4 44,4- 1.292-.12.83...11 229012 1291) 11 _7.62_ 7...20__-__MQ- -O.Q.Q t 6 168.0 54 0 2.40 3.77 FULL 0.00730 10.6 10.6 1293.34741284.46 1290.36 1290.72 7.02 6.24 0.00 0.00 7 168.0 --5.4-- -0- 3 ....03 3,27--FULL 4,40220 1.A.6--10 .4 1284.4 8 L55 1290-7 1291-r17 6...2.4 6.3Z i .. ( i 8 168.0 54 0 3.30 3.77 FULL 0.00730 10.6 10.6 1 v 286.91 1291.67 1292.93 6.37 6.02 0.00 0.00 i f 1-----9-----1-6.8,0 -54 - 0-- -3 -.al. 3-77 FULL -0...00-7-30---10...6.---10.4- 28.7-56. 1292..93 1292.48 A.02 6.32 0.4.0___ ..Q.A0Q- ( 10 168.0 54 0 3.53 3.77 FULL 0.00730 10.6 10.6 1287.56l288.10 1293.88 1294.38 6.32 6.28 0.00 0.0,.. , r r--11--468 -4-8118 3 77 FULL a A07q0 10 6 10_A .: $' 41$1 9.9 1294 18,1294.79 __6..78 6.50 0.00 O.QO ( 1 12 168.0 54 0 3.54 3.77 FULL 0.00730 10,6 10.6 1288.3 288.56 1294.80 1295.30 6.47 6.74 0.00 0.00 ' t 1 I 1 ---13---168-4--54----0--2,-12 -3.72- -FULL -0.00730 la 6 10 6 1288 . , RA R7 1295 '25_ 1295.14. 6.49. 6.87 0.00 _0.00 __ _ ____ ( 14 168.0 54 0 3.53 3.77 FULL 0.00730 10.6 10.6 1288.6 290.00 1295.54 1296.76 6.87 6.76 0.00 0.00 f 15 168 0 --54 -A 31 3- EUIL 0 00730 in ,1", 10 & 19q. $4 290.7 1296.7.6 1297.71 6.76 7.14 0.00 0.00 - --7 ( , 16 168.0 54 0 2.99 3.77 FULL, 0.00730 10.6 10.6 1290.1 291.87 1297.71 1298.50 7.f4 6.63 0.00 0.00 f - 17 1_66...0........5.4 6_ .7-99 3,77 mil a 00230_10.6 _10.2_ 129 ^ 214 15 1216.53_ 1300._01._ 6.60 5.66 MD. Q.00 ( 18 168.0 54 0 2.99 3.77 FULL 0.00730 10.6 10.6 1294.35 295.18 1300.01 1300.63 5.66 5.45 0.00 0.00 x 1,* f - 4411 - 4 - 54 0 2-48 3 7.2- viLl 0 00730 .10-2 10..6 ') : , 95.54 1100.62 120_0_.92 5.44_ 5.38 0A.0 ,Q,00 R: 1 'a ( 2- 168.0 54 0 3.00 3.77 FULL 0.00730 10.6 10.6 1,195.5 296.18 1 1301.70 5.38 5.52 0.00 0.00 4 ---24 -168.4- 54 --0 -2-26 2-27 FU11 6_00790 • . . . -. :, ")q4.,74.5 1 1301-94_ -.41 5.55 _0.94 0.00 ( 22 168.0 54 0 3.02 3.77 FULL 0.00730 10.6 10.6 1296.8 , 296:40 18-01 5.55 5.53 0.00 -0.00 ' 4 2 99 3_77 _vol. 0.00220_ to r., 10 179r, * 298-32_130.1.93 1.3.(13-2..a -5.53 4.93 AL.00 0.00 , 24 168.0 54 0 2.94 3.77 FULL 0.00730 10.6 10.6 1298.33 298.52 1303.26 1303.57 4.93 5.05 0.00 0.00 -.._ ( 25 -424.4- 48 0 -2-84- 3_45 SEAL -0-004170 10-.7. 20.2_ 179B CO 299 15 1201. 1301a24 5-3A 2.09 _0_.40 0.00 HID JO} . X = 9.71 X(N) = 0.00 x(3) = 9.71 F(J) = 85.9 D(113) ,--, 2.18 D(AJ) = 5.30 (. , ( .., . _ \ 4.. 1----- ..... _ - - - - - ---- - ■ ' ( ( : ( , • - . . ( i . ' ,---- - .__-_ - 1 _ t ■ 4 ( .. I 1 1 1 1.) 1 1 1 1 1 ; 1 LOS ANGELES COUNTY ROAL DEPARTMENT STORM DRA ;;NALYSIS E ATDP 10P 8£ a OCT- 4412 } P : .1,,64 g, - pppp 22gg DATE STO RM D RAIND13325 CITATION ' rONTANA DA 2 ir -THNE pp D i lii DC fptL OpN SEPULL S -PULL V 11 - fl FL 2 O 1 HO 2 D 1 fi !W _ _ - _u -� NO (CFS) (TN)(IN) (FT) (FT) TYPE (E71 T) - LIPS) BPS) (FT (FT) (11 CALC (FT) (E CAI.0 K REMAR“S 1 Ak., -26 ..I64.0- 48 0 --2,89---3-45-- -PART . 0,:00876 -- ..2 20- .16-2 -1-29-9- 345.93_1301 13.06_ . _2.$9 2.51 _0.00 0.00_ i : . 27 134.0 48 0 2.09 3.45 PART :.00870 16.2 13.' ' 1306.44 1308.18 2,51 2.86 0.00 0.00 IP 1 28 124.4 - -4 & -- .- -2-.6 - - _3.45 - -- DART.- , 1 _- - 06870 1:i.- 9 - ._ -_ - 1:1 , ° 305 .. 7 6 _ az,_ _ _ oA- ia- 130.6-114 - ___2 -87 _ .. 2,-E1EL_ _0- .4.4_._ . _ 0.00 • j 29 134.0 48 0 2.92 3.45 PART 0.00870 13.9 12.1 1305.7 208.47 130:84 .1311.77 2.88 3.30 0.00 0.00 t `--2A 134,0...._48.._ A.. -3-24----2-411i- - -8683 -(i. 110$70 ...1.^._1--.11 . 130$.4 308- _0.00 ___...3x30 - --3.31 _0.00 _.. x._44 ; ( 31 119.0 49 0 2.86 3.28 PART 0.00686 14.3 15.1 1308.66-A309.12 1311.17 1311.52 2.51 2.40 0.00 0.00 ft' F--2-2---146.-0-48 -0- 2-40 _3,28 --- PART. -0-. 00686._ 45-.1. - 15..1-_ 1369. ;1.3.1311, 52_1315 -.Z4 -. -- - 2.A8 .._2.. 0.04 _ 0...a. - _ X = 0.00 X(N) 22.64 4' ( f 33 119.0 48 0 2.40 3.28 PART 0.00686 14.9 14.6 1313.4 315.56 1315.84 1318.03 2.43 .2.47 0.00 0.00 II �4 - 1- I-9-. -0 -- 48 -- 0_4.40 - - 3-.28 _ - - -0::00684 - -.- 14-.6_- -1 .0- -3 "( 34_ 316 -95 13 1319...5 1 ___._ 2. _ _ 2..56 9„09_. , 0.00 35 119.0 48 0 2.40 3.28 PART ^.00686 14.0 10.8 1316.95.1 1319.51 1322.03 2.56 3.28 0.00 0.00 Ir ,- 70.7 -48 -0- •- 0-A030 -- .6 - -3___ 6 3 ._1219-2-\,i319.15 3j44 .13. - - -- -4 58 . _1,22 _. 0.00 0 _00 _.. 37 78.7 36 0 2.35 2.76 FULL. 0.01392 11.1 11.1 1319.42'«. 319.83 1322.92 1323.29 3.50 2.46 1325.80 1325.03 4 HYDRAULIC GRADE LINE CONTROL = 1289.55 I 38 41.6 36 0 2.15 2.10 FULL 0.00389 5.9 5.9 1282,9 - ( . I 282 93;1289.55 12$9.56_.64 6.G - 3 " __..- - � _-- � - 39 41.G 36 0 1.88 2.10 FULL 0.00389 5.9 5.9 1.282 X 282.99'1289.56 1289.71 6.63 6.72 0.00 0.00 ' C 40 41.6 36 0 1.99 . 2 :..30 FULL 0.00369 5.9 5.9 1282.99s ?86.03 1289.71 129175 6.72 - 3.�3 -0.40 `6.00 x 41 40.0 36 0 3.00 2.06 FULL 0.00360 5.7 5.7 1286.5 286.72 1291.76 1292.48 5.23 5.76 1293.08 1298.80 t c , . _-- ;- --6- - =74xDR MMAX- &RADE CCATUnl _ Y 34 ,#, • 42' _ 3.d' "30 ` - - 0 0.38 - `0:56 FULL 0.6 0.6 1284. ' .> 284 76 1 411:94 1290.34 6. -23 5.5P 1290.35 129-14;22.-------5.-_ . 1 6 HYDRAULIC GRADE LINE CONTROL : 1290.34 ' f 43 8.1 30 0 0.52 0.95 FULL 0.00039 1.7 1.7 1284.11 284.72 1290.34120. 4 6.23 .62 1290:39 - -- .. _ ... _ yt • 4 ( . ' t . 1 _ _ v 1r4 r i LOS ANGELES COUNTY ROAD DEPARTMENT STORM 4RA11. ANALYSIS EDP JOB R441 " DATE 6 -OCT- 11 ( PROJECT STORM DRAIN 13325 CITATION FONTANA PAGE 3 1 MATTHEW V, ^NDERBURGE r' - LINE -- O D N AN DC FLOW SE -FULL V , V r ___. FL 17 FL 2 HG U0 2 0 r ( NO (CFS) (IN)(IN) (FT) (FT) TYPE (FT /FT) (FPS, (FPS) (FT) (FT) CALC CALC (FT) (FT) CALL Ch RrMA:WS is --- HYDRAULIC- LGRA-DE 1,-INS GBNT ROL- = -1- 294.79- <- f 44 7., 24 0 0.74 0.99 FULL O.Ok 16 2.Z 1289.54/ 289.72 1294.79 1294.81 _. >23 5.09 0.00 '.O .r . --45---7.-7--24 ._0. ..- x3 -•.7- 9ti319- FULL -4- 49114. - . :.;e.- ___2.._S -.._ -1289- ' 289 _ :a�.1i.i.. .. 1.9.9_ __0...4 -. . 4___ . - 0 U' _ EE 46 7.7 24 0 0.73 0.99 SEAL 0.00116 2.5 • 2.5 1289.8 293.18 1294.83 1295.10 4,94 1.92 0.00 0.00 X a 229.16 X(N) . 0.00 47- .. -._ -7 5-- 24 - _A 0--.. ?3 ._0 99- ___EAItT___O- .AIl1 ..5 - _5 16__...2_ 3.., .0-_.1231 294.12 _ . L1.''.. -_0_. 99_121..68.17.9 -2..:11 -H-XD_ MP_ 0 X = 0, X(N) = 0.00 X(1) = 43.86 F(J) = 1.9 DM]) = 0.78 D(AJ) = 1.n 4 ( 12 HYDRAULIC GRADE LINE CONTROL = 1295.28 48 11.4.- _.24... ...4_41-60. _1-1.9. _ FttLL 0.04236__ . 5___-_3.5__... -$ 291..112 1295.28 1295.31 __ 5.11 _ __ 9.22_1119$ . _ 129b..22 4r 1 18 HYDRAULIC GRADE LINE CONTROL = 1300.63 - • 1 49 3.8 18 0 0.34 0.74 FULL 0.00131 2.2 2.2 1296.9,', 298.65 1300.63 1300.65 3.64 2.00 1300.73 1304.77 t ( 4 -- 2.- 0------ -rl-YltR4W4C_6 DE LANE CONTRn = t ao_3_6., ( i 50 10.6 18 0 0.60 1.25 FULL 0.01018 6.0 6.0 1297.•] 299.37 1301.65 1301.81 3.67 2.44 1302.48 1304.99 ( 25 HYDRAULIC GRADE LINE CONTROL = 1303.75 II ' 51 35.1 30.: 0 1.76 2.01 - FULL 0.667T2 1299. 1 299.56 1303:75 1303.78 4.23 - 4.22 - 0:60 - - 0.00 5235.1 30 0 1.77 2.01 FULL 0.00732 7.2 7.2 1299.5. 299.64 1303.78 1303.90 4.22 4.26 0.00 0.00 i•, . 53 35.1 30 0 1.77 .2 01 'BULL 0.00732 7.2 7.2 1299.6 299.92 1303.:90 - I3a .:11 .26. - 1.21 0.13Z -0: __ _ Dg 113.2 Ur - 0''1.56 PAL' 0.00320 4.7 4.7 1299.92.' 300.10 1304.58 1304.65 4.66 4.55 0.00 O.OG f 55 - '23.2 30 ... 0 , 1.35 1.63 " FULL- .00320 " 4 7 4.7 3300. '309.98 1304.65 I304.94 4''55 O.9 13O5:2H - - - - - 0 00 - 4 , _ - _ _ 4 4' I - .. L.- 4 ,. LOS ANRFLES COUNTY RO.P DEPARTMENT STORM DRAj1: ANALYSTS EDP J08 R441 �r-`. t ( PROJECT STORM DRAIN 13325 CITATION FONTANA PAGE 4 OCT- L'ESiGNE M ATTHEW VANUERBURGE pp pD {� D ppCC L p y 8 -F' LL 1 ? FL 1 FL g P2 i PR L2 I " D 2 T� Ta ( f LINE (CF 8) (IN)(IN) (PT) (FT) TYPE tFT5VT) ( (pi (FT) (FT) CAL C ( (FT) C CY. FEMABK$ ) . i . 54 ---- H *Ii8401,1G GRADS- , L4N£- 68NT'118L - 1304.36 - _ f ( e(, 13.4 10 0 0.64 1.36 FULL 0.01627 7.r. 7., 1300.69001.69 1304.36 1304.73 3.72 3.04 1305.80 1306.96 or r _--- -- _ _ ,._ - _r . - 30 HYDRAULIC GRADE LINE CONTROL = 1311.77 • 57 - 16.8 24 0 0 . 9 71 . 4 8 0 . 0 o 5 5 1 5.3 11.0 1309.6 . : : 'I 309.78 1311.77 1310.76 2.15 �0.98 0.00 0 : - NW 2TfR - P -' ' ( X = 0.51 X(N) = 0.00 X(J) = 0.51 P(J) = 6.'; D(BJ) = 0.98 D(AJ) = 2.14 68 --..- - 6-.-& _ -34-__ _0_ - 0.-48 ._ _1-.46--P-ART -_ .0_ 00551_ ...- 1.1 -..0 1 ..13A9 : ', 309-92_ 1110.7r, 1910.9.5 - 0.98. _- _0.28. _. 0.00 ._x.00_ ---- ( 59 16.8 24 0 0.98 1.48 PART 0.00551 11.0 6.8 1309.V 314.24 1310.95 1315.72 0.98 1.48 0.00 0.00 X = 0.00 X(N) = 61.51 it' ' 60-- -_--8 4 -- 2-4-- -0- - - A , -88 -- 1,1)3 - --- PARS-- Pr04138 -- -3-.3- 317-87-13 R2 1318_73 ._- - _1.A9-- _S1 -7_6_ _._0.00____0..:09__ NMI _Il12hE _ ____ X = 0.00 X(N) = 77.51 X(3) = 11.35 F(3) = 2. .: D(HJ) = 0.80 D(AJ) = 1.31 61 8.4 24 0 0.80 1.03 PART 0.00138 7.2 7.2 1318.0 320.21 1318.84 1321.00 0.80 0.79 0.00 0.00 f' ------x------ -H: 66 -4444 -113.72- - -- - - = 62 8.4 24 0 0.80 1.03 PART 0.00138 7.2 6.9 1320.2 } I . -3):0-0 - 321.54 1321.01 1322.36 0.80 5 :87 _ - `„( 40 - - " - i X= 0.00 X <N) 50.92 L 63 8.4 24 0 0.79 1.03 PART 0.00138 6.9 5.1 1321.5 }322.01 1322.36 1323.04 0.82 1.03 1323.53 1327.08 C 60 LINE C0NTA = - 1315 . - 72 - .- -- -- -- - 4 E ( L 64 11.0 18 0 0.81 1.27 PART 0.01097 7.3 6.9 1314.5 : 1315.77 1316.74 1.20 1.27 1317.62 1318.71 f. ( 1 > -. - - - - - - ( ....L.;.......:.;.. ._ ..1......1,;.- .._: _ . _..ra...r.......v._.. uiJS -. . , - _•i... ..vaY.s -. ... RS 1 _ . ( Ai- ( . 1 ( ! ( �` — r • ,.i V 1, FL 1, D 1 AND HG I REFER TO DOWNSTREAM END C V 2, FL 2 D 2 AND HG 2 REFER IO UPSTREAM END ' f k -- DISTANCE IN FEET FROM 1 END TO POINT WHERE H0 1,ITERS£CTS SOFFIT IN SEAL CONDITION X(N) -- DISTANCE IN FEET FROM DOWNSTREAM CND TO POINT WHERE WATER SURFACE BEACHES NORMAL DEPTH BY EITHER DRAWOOWN ON BACi(wA'T£R „-- - -- X4Sl - -- . - D - ISTANLTr S34– EEET....E&D11- IIIILiNSTR.E.AM, ENG_-.:::u._ JdL Y AIII ._DCCURS IN L ME. __ .. r F(J) – THE COMPUTED FORCE AT THE HYDRAULIC JUMP ( D(BJ) - DEPTH OF WATER BEFORE THE HYDRAULIC JUMP UJFSTREAM S ) z ' D (AJ) DEPTH OF WATER AFTER -THE HYDRAULTC JUMP (DOWNSTREAM ) -- - ' ' SEYI'L ' INDICATE3--Ft-OW- -CHANGES FROM FART -T ( FJU -DA 4RO$ - FUZZ. –T RT- '.. HYD JUMP INDICATES THAT FLOW CHANGES FROM SUPERCRITICAL TO SUB ITICAL THROUGH A HYDRAULIC JUMP g HJ @ UJT INDICATES THAT HYDRAU:IC JUMP 0C+'URS AT THE JUNCTION, THE UPSTREAM END OF THE LINE HJ @ UJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION THE DOWNSTREAM END OF THE LINE .y - - . t 3 .. .. ; ..( . c r - — Ir ' — — w�. A i ar (c ... . ( ...._ i . _ . ........ ... ,„. ;:,„. ._____________. , i ______ _ _ , . — _______, i C • a - ( N . i