Loading...
HomeMy WebLinkAboutPalermo Luxury ApartmentsC 1 1 E 1 i 1 1 1 1 1 1 1 C M m ALLARD ENGINEERING c cil Palermo Luxury Apartments Live Oak Ave. Hydrology Study February 8, 2007 Revised February 15, 2007 Job # 208.02.01 Prepared For: SC Development 14841 Yorba Street, Suite 205 Tustin, CA 92780 Phone (714) 505 -7090 under the supervision of: David S. Hammer, P.E. ACE 43976 8253 Sierra Avenue Fontana, CA 92335 (909) 356 -1815 * (909) 356 -1795 1 Discussion Introduction t The Palermo Luxury Apartments is a proposed 6.3 acre multi - family residential development located on the southeast corner of Foothill Boulevard and Live Oak Avenue, in the unincorporated area of Fontana. It is bounded on the west by Live Oak Avenue, on the south side by several single family lots, on the east side by vacant property and on the north side by Foothill Blvd. The City of Fontana's Master Drainage Plan shows that there is an existing drainage system on Foothill Blvd. (72" pipe) that serves as a barrier for all the storm water runoff coming from the north side of the project. The project site currently drains from the northeast to the southwest at a slope of approximately 1.8 %. Once developed, Palermo Luxury Apartments will drain to Live Oak Avenue and then south to Arrow Highway. Presently, a RCP culvert beneath Arrow Highway intercepts low flow events and conveys the runoff further south down Live Oak Avenue. However, the culvert has limited capacity and during larger storm events the runoff drains west to Cherry Avenue. From Cherry Avenue the runoff goes south and drains into the West Fontana Channel, through a couple of catch basins. ' The vacant land east of Palermo Luxury Apartments is proposed to develop as a condominium project to be named Hampton Place III. Hampton Place III will be required to mitigate its increase in runoff. However, Hampton Place III will most likely have a private storm drain pipe that will be installed through Palermo Luxury Apartments as shown on the hydrology map. Purpose This report will consider the increase in storm runoff by developing Palermo Luxury Apartments, the impact to Live Oak Avenue and the adjacent properties from the project boundary to a point approximately 300 fee south of Yucca Avenue, which is a distance of approximately 600 feet. This report does not fully address the onsite drainage system for Palermo Luxury Apartments. A subsequent report for that purpose will be necessary to support the sizing of the onsite storm drain system. I Criteria The criteria utilized for hydrologic analysis is the San Bernardino County Hydrology Manual. AES computer software 'was utilized to perform computations. i� H. IAd mmIPropo15ommervil le- Contel� ston.do t I Results Live Oak Avenue, from the site to a point 300 feet south of Yucca Avenue is only partially constructed (as shown on Exhibit "A "). The street drains south and at its mildest slope, is pitched at a rate of approximately 0.5% (100 feet ± south of Yucca Avenue). At that point, the east side of the street is estimated to have the capacity to convey approximately 4.3 cfs. If the east of the street is fully constructed, the east side will convey approximately 32.5 cfs (Exhibit "B "). In its entirely, the fully improved street could convey approximately 126.2 cfs. It is anticipated that upon completion of Palermo Luxury Apartments constructions, the reach in question would have approximately 68.6 cfs, running in it during a '! 100 year event storm. It must be noted that only 30 feet (measured from the centerline) of right of way exists for the east half of Live Oak Avenue, and an additional 14 feet of dedication would need to be obtained to construct the ultimate improvements. If the additional 14 feet of street dedication could not be obtained, some widening of the east half of Live Oak Avenue (as shown on Exhibit "C ") would increase the half street capacity to 19.4 cfs, an increase of approximately 15.1 cfs. This is approximately the increase in runoff, the 100 year event storm, due to developing the site (1 cfs per acre x 6 acres = cfs, for the pre - developed condition, an increase of 13.4 cfs). Conclusion If an additional 14 feet of right of way for the reach in question and the ultimate improvements are constructed, Live Oak Avenue will have a greatly increased capacity to convey the 100 year event storm water runoff. If the additional right of way cannot be obtained, an alternate solution is to construct widening per Exhibit "C ". This will increase the street capacity equal to or greater than the runoff increase from the project. In either case, existing private improvements, that are located in the existing right of way, would need to be relocated to outside the right of way. 1 1 H. UdmmlPropolSommenille- Conzelman Discnssion.doc I FS G �i�E, oA� Avg loo 94 NOCZ A p r ?A o f J. oar I VC,4-0, PKe m o . co CA cn m TM UlM r 91) CD w wS . a co co y. o o ti W LA S. U o w y c w c �+ . n m Lo W "' M y w Ln trj Q y "r `', rL m b o p Z^ 0 m O m C/) Cl) O z m p co O -< z DI m O T j ALLARD ENGINEERING DESCRIPTION . civil engineering • land surveying • land planning Fontana • Victorville JOB# SHEET OF DESIGNED BY DATE 8253 Sierra Ave. • Fontana, CA 92335 APPROVED h. (909) 356 -1815 • Fax (909) 356 -1795 • www.allardeng.com i I-- �a I[ aJ en w N" in 1 7 Q. 6 T 0 L O ,� V - N" in 1 C ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -2003 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2003 License ID 1400 Analysis prepared by: Allard Engineering 8253 Sierria Avenue Fontana Ca. 92335 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Palermo Luxury Apartments * 100 Year Intensity Storm Analysis of Live Oak Avenue * Approximately 300' South of Yucca Avenue (by DSH) ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: PALERMO.DAT TIME /DATE OF STUDY: 11:07 02/12/2007 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: _____________________________________________ _______________________________ -- *TIME -OF- CONCENTRATION MODEL * -- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.85 *USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = 0.6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.4500 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* *USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF - CROWN TO STREET- CROSSFALL: CURB GUTTER- GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT- /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 52.0 20.0 0.002/0.002/0.020 0.67 1.50 0.0313 0.125 0.0150 2 32.0 20.0 0.020/0.020/0.020 0.67 1.50 0.0313 0.125 0.0150 3 22.0 10.0 0.020/0.020/0.020 0.67 1.50 0.0313 0.125 0.0150 4 18.0 10.0 0.020/0.020/0.020 0.67 1.50 0.0313 0.125 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.24 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER- SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ' FLOW PROCESS FROM NODE 1.01 TO NODE 1.02 IS CODE = 21 ------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS, «< - - >>USE - TIME -OF- CONCENTRATION NOMOGRAPH - FOR - INITIAL - SUBAREA << --------- - - - - -- INITIAL SUBAREA FLOW- LENGTH(FEET) = 150.00 ELEVATION DATA: UPSTREAM(FEET) = 1247.00 DOWNSTREAM(FEET) = 1246.20 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.848 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.332 SUBAREA Tc AND LOSS RATE DATA(AMC II): ' DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) APARTMENTS A 0.80 0.98 0.20 32 6.85 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.20 SUBAREA RUNOFF(CFS) = 3.70 TOTAL AREA(ACRES) = 0.80 PEAK FLOW RATE(CFS) = 3.70 FLOW PROCESS FROM NODE 1.02 TO NODE 1.03 IS CODE = 92 ------------------------------------------------------------------- >>>>>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA <<<<< UPSTREAM NODE ELEVATION(FEET) = 1246.20 DOWNSTREAM NODE ELEVATION(FEET) = 1245.50 CHANNEL LENGTH THRU SUBAREA(FEET) = 150.00 "V" GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET) = 0.125 PAVEMENT LIP(FEET) = 0.031 MANNING'S N = .0150 PAVEMENT CROSSFALL(DECIMAL NOTATION) = 0.02500 MAXIMUM DEPTH(FEET) = 1.00 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.823 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN APARTMENTS A 0.80 0.98 0.20 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.20 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.37 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 2.00 AVERAGE FLOW DEPTH(FEET) = 0.37 FLOOD WIDTH(FEET) = 19.81 "V" GUTTER FLOW TRAVEL TIME(MIN.) = 1.25 Tc(MIN.) = 8.10 SUBAREA AREA(ACRES) = 0.80 SUBAREA RUNOFF(CFS) = 3.33 EFFECTIVE AREA(ACRES) = 1.60 AREA - AVERAGED FM(INCH /HR) = 0.20 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.20 TOTAL AREA(ACRES) = 1.60 PEAK FLOW RATE(CFS) = 6.66 END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = 0.39 FLOOD WIDTH(FEET) = 21.79 ' FLOW VELOCITY(FEET /SEC.) = 2.09 DEPTH *VELOCITY(FT *FT /SEC) = 0.82 LONGEST FLOWPATH FROM NODE 1.01 TO NODE 1.03 = 300.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ' - FLOW - PROCESS FROM - NODE - - - - -- 1.03 - TO - NODE - - - - -- 104 - IS CODE = 92 ------ - - - - -- --------------------- » >>>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA <<<<< Hil L ' UPSTREAM NODE ELEVATION(FEET) = 1245.50 DOWNSTREAM NODE ELEVATION(FEET) = 1241.90 CHANNEL LENGTH THRUSUBAREA(FEET) = 250.00 "V" GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET) = 0.125 - PAVEMENT LIP(FEET) 0.031 MANNING'S N = .0150 PAVEMENT CROSSFALL(DECIMAL NOTATION) = 0.02500 MAXIMUM DEPTH(FEET) = 1.00 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.443 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN APARTMENTS A 1.20 0.98 0.20 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.20 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 8.96 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 3.51 AVERAGE FLOW DEPTH(FEET) = 0.36 FLOOD WIDTH(FEET) = 19.28 "V" GUTTER FLOW TRAVEL TIME(MIN.) = 1.19 Tc(MIN.) = 9.28 SUBAREA AREA(ACRES) = 1.20 SUBAREA RUNOFF(CFS) = 4.59 EFFECTIVE AREA(ACRES) = 2.80 AREA - AVERAGED Fm(INCH /HR) = 0.19 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.20 TOTAL AREA(ACRES) = 2.80 PEAK FLOW RATE(CFS) = 10.71 END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = 0.38 FLOOD WIDTH(FEET) = 20.86 FLOW VELOCITY(FEET /SEC.) = 3.63 DEPTH *VELOCITY(FT *FT /SEC) = 1.38 LONGEST FLOWPATH FROM NODE 1.01 TO NODE 1.04 = 550.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.04 TO NODE 1.05 IS CODE = 92 ---------------------------------------------------------------------------- >>>>>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA<<<<< UPSTREAM NODE ELEVATION(FEET) = 1241.90 DOWNSTREAM NODE ELEVATION(FEET) = 1240.50 CHANNEL LENGTH THRU SUBAREA(FEET) = 180.00 "V" GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET) = 0.125 PAVEMENT LIP(FEET) = 0.031 MANNING'S N = .0150 PAVEMENT CROSSFALL(DECIMAL NOTATION) = 0.02500 MAXIMUM DEPTH(FEET) = 1.00 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.168 SUBAREA LOSS RATE DATA(AMC II): 1 DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN APARTMENTS A 0.50 0.98 0.20 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 ' SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.20 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 11.60 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 2.88 ' AVERAGE FLOW DEPTH(FEET) = 0.43 FLOOD WIDTH(FEET) _ - 24.69 " V" GUTTER FLOW TRAVEL TIME(MIN.) = 1.04 Tc(MIN.) = 10.32 SUBAREA AREA(ACRES) = 0.50 SUBAREA RUNOFF(CFS) - 1.79 EFFECTIVE AREA(ACRES) = 3.30 AREA - AVERAGED FM(INCH /HR) = 0.19 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.20 TOTAL AREA(ACRES) = 3.30 PEAK FLOW RATE(CFS) = 11.80 END OF SUBAREA "V" GUTTER HYDRAULICS: J DEPTH(FEET) = 0.43 FLOOD WIDTH(FEET) = 24.82 FLOW VELOCITY(FEET /SEC.) = 2.90 DEPTH *VELOCITY(FT *FT /SEC) = 1.24 LONGEST FLOWPATH FROM NODE 1.01 TO NODE 1.05 = 730.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.05 TO NODE 1.05 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.32 RAINFALL INTENSITY(INCH /HR) = 4.17 AREA- AVERAGED Fm(INCH /HR) = 0.19 AREA- AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.20 EFFECTIVE STREAM AREA(ACRES) = 3.30 TOTAL STREAM AREA(ACRES) = 3.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 11.80 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM - NODE - - - - -- 101 - TO - NODE - - - - -- 106 - IS - CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<<<< - - >>USE - TIME -OF- CONCENTRATION - NOMOGRAPH - FOR - INITIAL - SUBAREA« - - - - -- INITIAL SUBAREA FLOW- LENGTH(FEET) = 430.00 ELEVATION DATA: UPSTREAM(FEET) = 1247.00 DOWNSTREAM(FEET) = 1243.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 C SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.337 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.427 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) APARTMENTS A 1.30 0.98 0.20 32 9.34 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.20 SUBAREA RUNOFF(CFS) = 4.95 TOTAL AREA(ACRES) = 1.30 PEAK FLOW RATE(CFS) = 4.95 FLOW PROCESS FROM NODE 106 NODE - - - - -- 105 - IS - CODE = 92 - TO - - - - - - -- >>>>>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA <<<<< ' UPSTREAM NODE ELEVATION(FEET) = 1243.00 DOWNSTREAM NODE ELEVATION(FEET) = 1240.50 CHANNEL LENGTH THRU SUBAREA(FEET) = 300.00 "V" GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET) = 0.125 ' PAVEMENT LIP(FEET) = 0.031 MANNING'S N = .0150 PAVEMENT CROSSFALL(DECIMAL NOTATION) = 0.02500 MAXIMUM DEPTH(FEET) = 1.00 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.963 1 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN C APARTMENTS A 1.00 0.98 0.20 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.20 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.65 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 2.64 AVERAGE FLOW DEPTH(FEET) = 0.36 FLOOD WIDTH(FEET) = 19.15 "V" GUTTER FLOW TRAVEL TIME(MIN.) = 1.89 Tc(MIN.) = 11.23 SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 3.39 EFFECTIVE AREA(ACRES) = 2.30 AREA - AVERAGED Fm(INCH /HR) = 0.20 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.20 TOTAL AREA(ACRES) = 2.30 PEAK FLOW RATE(CFS) = 7.80 r END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = 0.37 FLOOD WIDTH(FEET) = 20.47 FLOW VELOCITY(FEET /SEC.) = 2.74 DEPTH *VELOCITY(FT *FT /SEC) = 1.03 LONGEST FLOWPATH FROM NODE 1.01 TO NODE 1.05 = 730.00 FEET. FLOW PROCESS FROM NODE 1.05 TO NODE 1.05 IS CODE = 1 ---------------------------------------------------------------------------- >> » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« « < >>>>> AND_ COMPUTE - VARIOUS - CONFLUENCED STREAM - VALUES<< «<------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: Ej TIME OF CONCENTRATION(MIN.) = 11.23 RAINFALL INTENSITY(INCH /HR) = 3.96 AREA- AVERAGED Fm(INCH /HR) = 0.20 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.20 EFFECTIVE STREAM AREA(ACRES) = 2.30 TOTAL STREAM AREA(ACRES) = 2.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.80 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 11.80 10.32 4.168 0.97( 0.19) 0.20 3.3 1.01 2 7.80 11.23 3.963 0.98( 0.20) 0.20 2.3 1.01 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE ' 1 19.36 10.32 4.168 0.97( 0.19) 0.20 5.4 1.01 2 18.99 11.23 3.963 0.98( 0.19) 0.20 5.6 1.01 ' COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 19.36 Tc(MIN.) = 10.32 EFFECTIVE AREA(ACRES) = 5.41 AREA - AVERAGED Fm(INCH /HR) = 0.20 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.20 TOTAL AREA(ACRES) = 5.60 LONGEST FLOWPATH FROM NODE 1.01 TO NODE 1.05 = 730.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** i ' FLOW PROCESS FROM NODE 1.05 TO NODE 1.14 IS CODE = 1 ---------------------------------------------------------------------------- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE" «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.32 RAINFALL INTENSITY(INCH /HR) = 4.17 AREA - AVERAGED Fm(INCH /HR) = 0.20 AREA - AVERAGED Fp(INCH /HR) = 0.97 IF L AREA- AVERAGED Ap = 0.20 L EFFECTIVE STREAM AREA(ACRES) = 5.41 TOTAL STREAM AREA(ACRES) = 5.60 .� PEAK FLOW RATE(CFS) AT CONFLUENCE = 19.36 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.10 TO NODE 1.11 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<<<< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 200.00 ELEVATION DATA: UPSTREAM(FEET) = 1257.00 DOWNSTREAM(FEET) = 1256.30 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.843 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.916 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 0.30 0.98 0.10 32 7.84 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 1.30 TOTAL AREA(ACRES) = 0.30 PEAK FLOW RATE(CFS) = 1.30 FLOW PROCESS FROM NODE 1.11 TO NODE 1.12 IS CODE = 62 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<< >>>>>( STREET TABLE SECTION # 1 USED)<<<<< ------------------------------------- 1 UPSTREAM ELEVATION(FEET) = 1256.30 DOWNSTREAM ELEVATION(FEET) = 1254.50 STREET LENGTH(FEET) = 400.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 52.00 ' DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.002 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.002 ' SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 ' Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.18 I STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: Li STREET FLOW DEPTH(FEET) = 0.25 HALFSTREET FLOOD WIDTH(FEET) = 47.94 AVERAGE FLOW VELOCITY(FEET /SEC.) = 0.89 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 0.22 STREET FLOW TRAVEL TIME(MIN.) = 7.45 Tc(MIN.) = 15.30 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.292 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.60 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 0.60 SUBAREA RUNOFF(CFS) = 1.73 EFFECTIVE AREA(ACRES) = 0.90 AREA - AVERAGED Fm(INCH /HR) = 0.10 AREA- AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 0.90 PEAK FLOW RATE(CFS) = 2.59 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.26 HALFSTREET FLOOD WIDTH(FEET) = 51.06 FLOW VELOCITY(FEET /SEC.) = 0.94 DEPTH *VELOCITY(FT *FT /SEC.) = 0.24 LONGEST FLOWPATH FROM NODE 1.10 TO NODE 1.12 = 600.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.12 TO NODE 1.13 IS CODE = 62 E -------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<< >>>>>( STREET TABLE SECTION # 1 USED) <<<<< UPSTREAM ELEVATION(FEET) = 1254.50 DOWNSTREAM ELEVATION(FEET) = 1249.80 STREET LENGTH(FEET) = 590.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 52.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.002 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.002 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.59 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.26 HALFSTREET FLOOD WIDTH(FEET) = 51.69 AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.28 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 0.33 STREET FLOW TRAVEL TIME(MIN.) = 7.69 Tc(MIN.) = 22.99 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.578 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.90 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 0.90 SUBAREA RUNOFF(CFS) = 2.01 i EFFECTIVE AREA(ACRES) = 1.80 AREA- AVERAGED Fm(INCH /HR) = 0.10 L ' AREA- AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 1.80 PEAK FLOW RATE(CFS) = 4.02 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.26 HALFSTREET FLOOD WIDTH(FEET) = 52.00 FLOW VELOCITY(FEET /SEC.) = 1.27 DEPTH *VELOCITY(FT *FT /SEC.) = 0.33 LONGEST FLOWPATH FROM NODE 1.10 TO NODE 1.13 = 1190.00 FEET. FLOW PROCESS FROM NODE 1.13 TO NODE 1.14 IS CODE = 62 --------------------------------- ------------------------------------------- >>>>> COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>( STREET TABLE SECTION # 2 USED) < <<< UPSTREAM ELEVATION(FEET) = 1249.80 DOWNSTREAM ELEVATION(FEET) = 1238.00 STREET LENGTH(FEET) = 590.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.06 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.36 HALFSTREET FLOOD WIDTH(FEET) = 11.63 1 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.44 - PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.23 STREET FLOW TRAVEL TIME(MIN.) = 2.86 Tc(MIN.) 25.85 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.403 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 1.00 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 2.08 EFFECTIVE AREA(ACRES) = 2.80 AREA - AVERAGED Fm(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 2.80 PEAK FLOW RATE(CFS) = 5.81 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.37 HALFSTREET FLOOD WIDTH(FEET) = 12.27 FLOW VELOCITY(FEET /SEC.) = 3.58 DEPTH *VELOCITY(FT *FT /SEC.) = 1.33 ' LONGEST FLOWPATH FROM NODE 1.10 TO NODE 1.14 = 1780.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.14 TO NODE 1.14 IS CODE = 1 » >>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< it ' TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 25.85 RAINFALL INTENSITY(INCH /HR) = 2.40 AREA - AVERAGED FM(INCH /HR) = 0.10 AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 2.80 TOTAL STREAM AREA(ACRES) = 2.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.81 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 19.36 10.32 4.168 0.97( 0.19) 0.20 5.4 1.01 1 18.99 11.23 3.963 0.98( 0.19) 0.20 5.6 1.01 2 5.81 25.85 2.403 0.98( 0.10) 0.10 2.8 1.10 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 23.46 10.32 4.168 0.97( 0.18) 0.18 6.5 1.01 2 23.22 11.23 3.963 0.98( 0.18) 0.18 6.8 1.01 3 16.94 25.85 2.403 0.98( 0.16) 0.17 8.4 1.10 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 23.46 Tc(MIN.) = 10.32 EFFECTIVE AREA(ACRES) = 6.53 AREA - AVERAGED Fm(INCH /HR) = 0.18 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.18 TOTAL AREA(ACRES) = 8.40 LONGEST FLOWPATH FROM NODE 1.10 TO NODE 1.14 = 1780.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** - - FLOW PROCESS FROM NODE 1.14 TO NODE 1.15 IS CODE = 62 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<< >>>>>( STREET TABLE SECTION # 2 USED) <<<<< ---------------------------------------- UPSTREAM ELEVATION(FEET) = 1238.00 DOWNSTREAM ELEVATION(FEET) = 1233.70 1 STREET LENGTH(FEET) = 320.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 ' SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 ' * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 25.31 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.60 HALFSTREET FLOOD WIDTH(FEET) = 23.76 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.39 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.64 STREET FLOW TRAVEL TIME(MIN.) = 1.21 Tc(MIN.) = 11.54 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.899 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.30 0.98 0.10 32 RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 0.90 0.98 0.60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.47 SUBAREA AREA(ACRES) = 1.20 SUBAREA RUNOFF(CFS) = 3.71 EFFECTIVE AREA(ACRES) = 7.73 AREA - AVERAGED Fm(INCH /HR) = 0.22 AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.23 TOTAL AREA(ACRES) = 9.60 PEAK FLOW RATE(CFS) = 25.59 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.60 HALFSTREET FLOOD WIDTH(FEET) = 23.84 FLOW VELOCITY(FEET /SEC.) = 4.41 DEPTH *VELOCITY(FT *FT /SEC.) = 2.66 LONGEST FLOWPATH FROM NODE 1.10 TO NODE 1.15 = 2100.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ON -- FLOW - PROCESS FROM - NODE - - - - -- 1.15 - TO NODE -- 115 - IS - CODE = 10 -- - - - - -- -------------------- » >>>MAIN- STREAM MEMORY COPIED ONTO - MEMORY BANK # 1 <<<<< --------------------- - - - - -- -- -- FLOW PROCESS FROM NODE 1.10 TO NODE 2.11 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<<<< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 210.00 ELEVATION DATA: UPSTREAM(FEET) = 1257.00 DOWNSTREAM(FEET) = 1251.70 Tc = K *((LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.387 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 6.158 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 0.20 0.98 0.10 32 5.39 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 1.09 TOTAL AREA(ACRES) = 0.20 PEAK FLOW RATE(CFS) = 1.09 FLOW PROCESS FROM NODE 2.11 TO NODE 2.12 IS CODE = 62 ---------------------------------------------------------------------------- ' >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<< >>>>>( STREET TABLE SECTION # 3 USED) <<<<< -------------------- ' UPSTREAM ELEVATION(FEET) = 1251.70 DOWNSTREAM ELEVATION(FEET) = 1246.50 STREET LENGTH(FEET) = 400.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 22.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.94 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) = 8.43 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.34 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 0.69 STREET FLOW TRAVEL TIME(MIN.) = 2.85 Tc(MIN.) = 8.24 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.773 SUBAREA LOSS RATE DATA(AMC II): pq DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.40 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 E SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 0.40 SUBAREA RUNOFF(CFS) = 1.68 EFFECTIVE AREA(ACRES) = 0.60 AREA - AVERAGED Fm(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 0.60 PEAK FLOW RATE(CFS) = 2.52 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) = 9.50 FLOW VELOCITY(FEET /SEC.) = 2.47 DEPTH *VELOCITY(FT *FT /SEC.) = 0.78 LONGEST FLOWPATH FROM NODE 1.10 TO NODE 2.12 = 610.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.12 TO NODE 2.13 IS CODE = 62 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>( STREET TABLE SECTION # 3 USED) <<<<< ------------------ UPSTREAM ELEVATION(FEET) = 1246.50 DOWNSTREAM ELEVATION(FEET) = 1241.00 STREET LENGTH(FEET) = 340.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 22.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.08 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: ' STREET FLOW DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) = 9.83 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.84 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 0.92 STREET FLOW TRAVEL TIME(MIN.) = 2.00 Tc(MIN.) = 10.23 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.190 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.30 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 0.30 SUBAREA RUNOFF(CFS) EFFECTIVE AREA(ACRES) = 0.90 AREA - AVERAGED Fm(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 0.90 PEAK FLOW RATE(CFS) = 3.32 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 10.15 FLOW VELOCITY(FEET /SEC.) = 2.88 DEPTH *VELOCITY(FT *FT /SEC.) = 0.95 LONGEST FLOWPATH FROM NODE 1.10 TO NODE 2.13 = 950.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.13 TO NODE 2.14 IS CODE = 62 ------------------------------------------------------------ >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<< iiiWWW >>>>> ( STREET TABLE SECTION # 4 USED) < <<< UPSTREAM ELEVATION(FEET) = 1241.00 DOWNSTREAM ELEVATION(FEET) = 1239.70 STREET LENGTH(FEET) = 150.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 E , Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.10 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.38 HALFSTREET FLOOD WIDTH(FEET) = 12.65 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.38 ' PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 0.90 STREET FLOW TRAVEL TIME(MIN.) = 1.05 Tc(MIN.) = 11.28 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.952 ' SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.10 0.98 0.10 32 RESIDENTIAL 11 3 -4 DWELLINGS /ACRE" A 0.40 0.98 0.60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 ' SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA AREA(ACRES) = 0.50 SUBAREA RUNOFF(CFS) = 1.56 EFFECTIVE AREA(ACRES) = 1.40 AREA - AVERAGED Fm(INCH /HR) = 0.24 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.24 TOTAL AREA(ACRES) = 1.40 PEAK FLOW RATE(CFS) = 4.68 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.39 HALFSTREET FLOOD WIDTH(FEET) = 13.35 FLOW VELOCITY(FEET /SEC.) = 2.46 DEPTH *VELOCITY(FT *FT /SEC.) = 0.97 LONGEST FLOWPATH FROM NODE 1.10 TO NODE 2.14 = 1100.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.14 TO NODE 2.14 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <<<<< --------------------------------- MAINLINE Tc(MIN) = 11.28 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.952 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 0.80 0.98 0.60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA AREA(ACRES) = 0.80 SUBAREA RUNOFF(CFS) = 2.42 EFFECTIVE AREA(ACRES) = 2.20 AREA- AVERAGED Fm(INCH /HR) = 0.36 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.37 TOTAL AREA(ACRES) = 2.20 PEAK FLOW RATE(CFS) = 7.11 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.14 TO NODE 2.15 IS CODE = 62 ---------------------------------------------------------------------------- >> >>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<< >>>>>( STREET TABLE SECTION # 4 USED) <<<<< ------------------------------- UPSTREAM ELEVATION(FEET) = 1239.70 DOWNSTREAM ELEVATION(FEET) = 1237.20 STREET LENGTH(FEET) = 640.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 18.00 N DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 7.92 ** *STREET FLOW SPLITS OVER STREET- CROWN * ** FULL DEPTH(FEET) = 0.49 FLOOD WIDTH(FEET) = 18.00 FULL HALF - STREET VELOCITY(FEET /SEC.) = 1.98 SPLIT DEPTH(FEET) = 0.31 SPLIT FLOOD WIDTH(FEET) = 9.13 SPLIT FLOW(CFS) = 1.26 SPLIT VELOCITY(FEET /SEC.) = 1.33 ' STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.49 HALFSTREET FLOOD WIDTH(FEET) = 18.00 N 0 � N 0 0 J �J I� AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.98 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 0.96 STREET FLOW TRAVEL TIME(MIN.) = 5.38 Tc(MIN.) = 16.66 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.128 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) COMMERCIAL A 0.60 0.98 0.10 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 0.60 SUBAREA RUNOFF(CFS) = 1. EFFECTIVE AREA(ACRES) = 2.80 AREA - AVERAGED Fm(INCH /HR) AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.31 TOTAL AREA(ACRES) = 2.80 PEAK FLOW RATE(CFS) = SCS CN 32 64 0.31 7.11 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.49 HALFSTREET FLOOD WIDTH(FEET) = 18.00 FLOW VELOCITY(FEET /SEC.) = 1.98 DEPTH *VELOCITY(FT *FT /SEC.) = 0.96 LONGEST FLOWPATH FROM NODE 1.10 TO NODE 2.15 = 1740.00 FEET. FLOW PROCESS FROM NODE 2.15 TO NODE 2.15 IS CODE = 1 ----------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 16.66 RAINFALL INTENSITY(INCH /HR) = 3.13 AREA - AVERAGED Fm(INCH /HR) = 0.31 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.31 LAND USE EFFECTIVE STREAM AREA(ACRES) = 2.80 TOTAL STREAM AREA(ACRES) = 2.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.11 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.16 TO NODE 2.17 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<<<< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 150.00 ELEVATION DATA: UPSTREAM(FEET) = 1244.00 DOWNSTREAM(FEET) = 1241.30 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.447 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.529 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH /HR) RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 0.70 0.98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA RUNOFF(CFS) = 3.18 TOTAL AREA(ACRES) = 0.70 PEAK FLOW RATE(CFS) Ap SCS Tc (DECIMAL) CN (MIN.) 0.50 32 6.45 0.98 3.18 0 C 7 p ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.17 TO NODE 2.18 IS CODE = 62 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<< »»> (STREET TABLE SECTION ## 4 USED) « «< ----------------------------------- UPSTREAM ELEVATION(FEET) = 1241.30 DOWNSTREAM ELEVATION(FEET) = 1240.00 STREET LENGTH(FEET) = 250.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.16 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.38 HALFSTREET FLOOD WIDTH(FEET) = 12.49 AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.83 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 0.69 STREET FLOW TRAVEL TIME(MIN.) = 2.27 Tc(MIN.) = 8.72 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.613 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL 14 5 -7 DWELLINGS /ACRE" A 1.60 0.98 0.50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA AREA(ACRES) = 1.60 SUBAREA RUNOFF(CFS) = 5.94 EFFECTIVE AREA(ACRES) = 2.30 AREA - AVERAGED Fm(INCH /HR) _ AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 2.30 PEAK FLOW RATE(CFS) = 32 0.49 8.54 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.41 HALFSTREET FLOOD WIDTH(FEET) = 14.29 FLOW VELOCITY(FEET /SEC.) = 1.98 DEPTH *VELOCITY(FT *FT /SEC.) = 0.81 LONGEST FLOWPATH FROM NODE 2.16 TO NODE 2.18 = 400.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM - NODE - - - - -- 218 - TO - NODE - - - - -- 219 - IS CODE = 62 ------------------- --------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< »»> (STREET TABLE SECTION ## 4 USED) « «< ------------------------------------- UPSTREAM ELEVATION(FEET) = 1240.00 DOWNSTREAM ELEVATION(FEET) = 1238.50 STREET LENGTH(FEET) = 300.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 L ' OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 11.61 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.45 HALFSTREET FLOOD WIDTH(FEET) = 16.24 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.11 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 0.95 STREET FLOW TRAVEL TIME(MIN.) = 2.37 TC(MIN.) = 11.09 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.992 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 2.00 0.98 0.60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA AREA(ACRES) = 2.00 SUBAREA RUNOFF(CFS) = 6.13 EFFECTIVE AREA(ACRES) = 4.30 AREA- AVERAGED Fm(INCH /HR) = 0.53 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.55 TOTAL AREA(ACRES) = 4.30 PEAK FLOW RATE(CFS) = 13.39 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.47 HALFSTREET FLOOD WIDTH(FEET) = 17.18 FLOW VELOCITY(FEET /SEC.) = 2.18 DEPTH *VELOCITY(FT *FT /SEC.) = 1.02 LONGEST FLOWPATH FROM NODE 2.16 TO NODE 2.19 = 700.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.19 TO NODE 2.15 IS CODE = 62 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<< ` >>>>>( STREET TABLE SECTION # 4 USED) <<<<< --------------- - - - - -- UPSTREAM ELEVATION(FEET) = 1238.50 DOWNSTREAM ELEVATION(FEET) = 1237.20 STREET LENGTH(FEET) = 170.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 18.00 ' DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 1 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 14.25 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: t STREET FLOW DEPTH(FEET) = 0.45 HALFSTREET FLOOD WIDTH(FEET) = 16.16 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.61 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.17 STREET FLOW TRAVEL TIME(MIN.) = 1.09 Tc(MIN.) = 12.18 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.775 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 0.60 0.98 0.60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA AREA(ACRES) = 0.60 SUBAREA RUNOFF(CFS) = 1.72 EFFECTIVE AREA(ACRES) = 4.90 AREA - AVERAGED Fm(INCH /HR) = 0.54 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.55 TOTAL AREA(ACRES) = 4.90 PEAK FLOW RATE(CFS) = 14.27 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.45 HALFSTREET FLOOD WIDTH(FEET) = 16.24 FLOW VELOCITY(FEET /SEC.) = 2.59 DEPTH *VELOCITY(FT *FT /SEC.) = 1.17 P^ LONGEST FLOWPATH FROM NODE 2.16 TO NODE 2.15 = 870.00 FEET. FLOW PROCESS FROM NODE 2.15 TO NODE 2.15 IS CODE = 1 ---------------- ------------ ------- ---- ---------------- --------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 12.18 RAINFALL INTENSITY(INCH /HR) = 3.77 E AREA - AVERAGED Fm(INCH /HR) = 0.54 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.55 EFFECTIVE STREAM AREA(ACRES) = 4.90 TOTAL STREAM AREA(ACRES) = 4.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 14.27 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 7.11 16.66 3.128 0.97( 0.31) 0.31 2.8 1.10 2 14.27 12.18 3.775 0.98( 0.54) 0.55 4.9 2.16 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 20.66 12.18 3.775 0.98( 0.47) 0.48 6.9 2.16 2 18.53 16.66 3.128 0.97( 0.45) 0.47 7.7 1.10 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 20.66 Tc(MIN.) = 12.18 EFFECTIVE AREA(ACRES) = 6.95 AREA- AVERAGED Fm(INCH /HR) = 0.47 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.48 TOTAL AREA(ACRES) = 7.70 LONGEST FLOWPATH FROM NODE 1.10 TO NODE 2.15 = 1740.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** -- FLOW - PROCESS - FROM - NODE - - - - -- 215 - TO - NODE - - - - -- 215 - IS - CODE = 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <<<<< MAINLINE Tc(MIN) = 12.18 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.775 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA pp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.60 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 0.60 SUBAREA RUNOFF(CFS) = 1.99 ii EFFECTIVE AREA(ACRES) = 7.55 AREA - AVERAGED Fm(INCH /HR) = 0.44 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.45 TOTAL AREA(ACRES) = 8.30 PEAK FLOW RATE(CFS) = 22.64 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** -- FLOW - PROCESS FROM - NODE - - - - -- 215 - TO - NODE - - - - -- 115 - IS - CODE - = 62 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< >>>>>( STREET TABLE SECTION # 4 USED) <<<<< UPSTREAM ELEVATION(FEET) = 1237.20 DOWNSTREAM ELEVATION(FEET) = 1233.70 STREET LENGTH(FEET) = 410.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) ** *STREET FLOWING FULL * ** = 24.95 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.51 HALFSTREET FLOOD WIDTH(FEET) = 18.00 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.22 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.66 STREET FLOW TRAVEL TIME(MIN.) = 2.12 Tc(MIN.) = 14.30 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.428 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.60 0.98 0.10 32 RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 1.10 0.98 0.60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.42 SUBAREA AREA(ACRES) = 1.70 SUBAREA RUNOFF(CFS) = 4.61 ' EFFECTIVE AREA(ACRES) = 9.25 AREA- AVERAGED Fm(INCH /HR) = 0.44 u AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.45 TOTAL AREA(ACRES) = 10.00 PEAK FLOW RATE(CFS) = 24.90 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.51 HALFSTREET FLOOD WIDTH(FEET) = 18.00 FLOW VELOCITY(FEET /SEC.) = 3.21 DEPTH *VELOCITY(FT *FT /SEC.) = 1.65 LONGEST FLOWPATH FROM NODE 1.10 TO NODE 1.15 = 2150.00 FEET. FLOW PROCESS FROM NODE 1.15 TO NODE 1.15 IS CODE = 1 ---------------------------------------------------------------------------- » >>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.30 RAINFALL INTENSITY(INCH /HR) = 3.43 AREA - AVERAGED FM(INCH /HR) = 0.44 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.45 EFFECTIVE STREAM AREA(ACRES) = 9.25 TOTAL STREAM AREA(ACRES) = 10.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 24.90 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3.01 TO NODE 3.02 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 200.00 ELEVATION DATA: UPSTREAM(FEET) = 1256.00 DOWNSTREAM(FEET) = 1252.70 ® TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 13.357 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.571 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) NATURAL FAIR COVER "GRASS" A 0.50 0.82 1.00 50 13.36 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.82 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 1.24 TOTAL AREA(ACRES) = 0.50 PEAK FLOW RATE(CFS) = 1.24 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3.02 TO NODE 3.03 IS CODE = 52 ---------------------------------------------------------------------------- >>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<< »» >TRAVELTIME THRU SUBAREA <<<<< ELEVATION DATA: UPSTREAM(FEET) = 1252.70 DOWNSTREAM(FEET) = 1251.50 CHANNEL LENGTH THRU SUBAREA(FEET) = 165.00 CHANNEL SLOPE = 0.0073 CHANNEL FLOW THRU SUBAREA(CFS) = 1.24 FLOW VELOCITY(FEET /SEC) = 1.33 (PER LACFCD /RCFC &WCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 2.06 Tc(MIN.) = 15.42 LONGEST FLOWPATH FROM NODE 3.01 TO NODE 3.03 = 365.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3.03 TO NODE 3.04 IS CODE = 52 ---------------------------------------------------------------------------- >>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA <<<<< ELEVATION DATA: UPSTREAM(FEET) = 1251.50 DOWNSTREAM(FEET) = 1249.60 CHANNEL LENGTH THRU SUBAREA(FEET) = 205.00 CHANNEL SLOPE = 0.0093 CHANNEL FLOW THRU SUBAREA(CFS) = 3.54 FLOW VELOCITY(FEET /SEC) = 1.88 (PER LACFCD /RCFC &WCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.82 Tc(MIN.) = 17.24 LONGEST FLOWPATH FROM NODE 3.01 TO NODE 3.04 = 570.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** -- FLOW - PROCESS FROM - NODE 3.04 TO NODE 3.04 IS CODE = 81 ----------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <<<<< ---------------------------------------------------------------------------- MAINLINE Tc(MIN) = 17.24 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.064 SUBAREA LOSS RATE DATA(AMC II): ' DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "GRASS" A 2.20 0.82 1.00 50 ' SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.82 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 2.20 SUBAREA RUNOFF(CFS) = 4.44 EFFECTIVE AREA(ACRES) = 3.80 AREA - AVERAGED Fm(INCH /HR) = 0.82 AREA- AVERAGED Fp(INCH /HR) = 0.82 AREA- AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 3.80 PEAK FLOW RATE(CFS) = 7.67 FLOW PROCESS FROM NODE 3.04 TO NODE 3.05 IS CODE = 52 ---------------------------------------------------------------------- - - - - -- ' » » >COMPUTE NATURAL VALLEY CHANNEL FLOW<< <<< ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3_03 NODE - -- 3.03 - IS CODE = 81 - TO -- - - - - - - - -- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< == MAINLINE Tc(MIN) = 15.42 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.276 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "GRASS" A 1.10 0.82 1.00 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.82 AVERAGE PERVIOUS AREA EA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 1.10 SUBAREA RUNOFF(CFS) = 2.43 EFFECTIVE AREA(ACRES) = 1.60 AREA - AVERAGED Fm(INCH /HR) = 0.82 AREA - AVERAGED Fp(INCH /HR) = 0.82 AREA- AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 1.60 PEAK FLOW RATE(CFS) = 3.54 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3.03 TO NODE 3.04 IS CODE = 52 ---------------------------------------------------------------------------- >>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA <<<<< ELEVATION DATA: UPSTREAM(FEET) = 1251.50 DOWNSTREAM(FEET) = 1249.60 CHANNEL LENGTH THRU SUBAREA(FEET) = 205.00 CHANNEL SLOPE = 0.0093 CHANNEL FLOW THRU SUBAREA(CFS) = 3.54 FLOW VELOCITY(FEET /SEC) = 1.88 (PER LACFCD /RCFC &WCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.82 Tc(MIN.) = 17.24 LONGEST FLOWPATH FROM NODE 3.01 TO NODE 3.04 = 570.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** -- FLOW - PROCESS FROM - NODE 3.04 TO NODE 3.04 IS CODE = 81 ----------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <<<<< ---------------------------------------------------------------------------- MAINLINE Tc(MIN) = 17.24 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.064 SUBAREA LOSS RATE DATA(AMC II): ' DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "GRASS" A 2.20 0.82 1.00 50 ' SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.82 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 2.20 SUBAREA RUNOFF(CFS) = 4.44 EFFECTIVE AREA(ACRES) = 3.80 AREA - AVERAGED Fm(INCH /HR) = 0.82 AREA- AVERAGED Fp(INCH /HR) = 0.82 AREA- AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 3.80 PEAK FLOW RATE(CFS) = 7.67 FLOW PROCESS FROM NODE 3.04 TO NODE 3.05 IS CODE = 52 ---------------------------------------------------------------------- - - - - -- ' » » >COMPUTE NATURAL VALLEY CHANNEL FLOW<< <<< >>>>>TRAVELTIME THRU SUBAREA <<<<< ELEVATION DATA: UPSTREAM(FEET) = 1249.60 DOWNSTREAM(FEET) = 1246.80 CHANNEL LENGTH THRU SUBAREA(FEET) = 180.00 CHANNEL SLOPE = 0.0156 CHANNEL FLOW THRU SUBAREA(CFS) = 7.67 FLOW VELOCITY(FEET /SEC) = 2.92 (PER LACFCD /RCFC &WCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.03 Tc(MIN.) = 18.27 LONGEST FLOWPATH FROM NODE 3.01 TO NODE 3.05 = 750.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ON FLOW PROCESS FROM NODE - - - - -- 305 - TO - NODE - - - - -- 305 - IS CODE = 81 ------------ ----- - - - - -- --------------------- »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <<<<< _____________________________________________ _______________________________ MAINLINE Tc(MIN) = 18 27 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.959 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "GRASS" A 2.70 0.82 1.00 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.82 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 2.70 SUBAREA RUNOFF(CFS) = 5.20 �! EFFECTIVE AREA(ACRES) = 6.50 AREA - AVERAGED Fm(INCH /HR) = 0.82 AREA - AVERAGED Fp(INCH /HR) = 0.82 AREA- AVERAGED Ap = 1.00 Ali TOTAL AREA(ACRES) = 6.50 PEAK FLOW RATE(CFS) = 12.52 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** m FLOW PROCESS FROM NODE 3.05 TO NODE 3.06 IS CODE = 52 ---------------------------------------------------------------------------- >>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW <<<<< >>>>>TRAVELTIME THRU SUBAREA<<<<< ELEVATION DATA: UPSTREAM(FEET) = 1246.80 DOWNSTREAM(FEET) = 1243.50 CHANNEL LENGTH THRU SUBAREA(FEET) = 190.00 CHANNEL SLOPE = 0.0174 CHANNEL FLOW THRU SUBAREA(CFS) = 12.52 FLOW VELOCITY(FEET /SEC) = 3.49 (PER LACFCD /RCFC &WCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 0.91 Tc(MIN.) = 19.18 LONGEST FLOWPATH FROM NODE 3.01 TO NODE 3.06 = 940.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** -- FLOW - PROCESS - FROM - NODE - - - - -- 306 - TO - NODE - - - -- - 306 IS CODE = 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <<<<< MAINLINE Tc(MIN) = 19.18 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.875 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "GRASS" A 4.30 0.82 1.00 50 ' SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.82 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 4.30 SUBAREA RUNOFF(CFS) = 7.95 EFFECTIVE AREA(ACRES) = 10.80 AREA- AVERAGED Fm(INCH /HR) = 0.82 AREA- AVERAGED Fp(INCH /HR) = 0.82 AREA- AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 10.80 PEAK FLOW RATE(CFS) = 19.97 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3.06 TO NODE 3.07 IS CODE = 31 ---------------------------------------------------------------------------- >>>>> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA «« < - - >>>>> USING - COMPUTER-ESTIMATED - PIPESIZE (NON - PRESSURE FLOW)<< « <----- - - - - -- ELEVATION DATA: UPSTREAM(FEET) = 1239.50 DOWNSTREAM(FEET) = 1235.30 FLOW LENGTH(FEET) = 430.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 19.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 7.47 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 19.97 PIPE TRAVEL TIME(MIN.) = 0.96 Tc(MIN.) = 20.14 LONGEST FLOWPATH FROM NODE 3.01 TO NODE 3.07 = 1370.00 FEET. FLOW PROCESS FROM NODE 3.07 TO NODE 1.15 IS CODE = 36 ---------------------------------------------------------------------------- i >>>>> COMPUTE BOX -FLOW TRAVEL TIME THRU SUBAREA <<<<< >>>>> USING COMPUTER - ESTIMATED BOX SIZE (PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 1235.30 DOWNSTREAM(FEET) = 1233.70 FLOW LENGTH(FEET) = 310.00 MANNING'S N = 0.014 GIVEN HEIGHT /BASEWIDTH RATIO = 0.50 *ESTIMATED BOX BASEWIDTH(FEET) = 3.00 ESTIMATED HEIGHT(FEET) = 1.50 BOX -FLOW VELOCITY(FEET /SEC.) = 4.43 BOX- FLOW(CFS) = 19.97 BOX -FLOW TRAVEL TIME(MIN.) = 1.17 Tc(MIN.) = 21.30 LONGEST FLOWPATH FROM NODE 3.01 TO NODE 1.15 = 1680.00 FEET. FLOW PROCESS FROM NODE 1.15 TO NODE 1.15 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES <<<<< ---------------------------------- } TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 21.30 RAINFALL INTENSITY(INCH /HR) = 2.70 AREA- AVERAGED Fm(INCH /HR) = 0.82 AREA - AVERAGED Fp(INCH /HR) = 0.82 AREA- AVERAGED Ap = 1.00 EFFECTIVE STREAM AREA(ACRES) = 10.80 TOTAL STREAM AREA(ACRES) = 10.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 19.97 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE ' 1 24.90 14.30 3.428 0.98( 0.44) 0.45 9.2 2.16 1 22.28 18.88 2.901 0.97( 0.43) 0.44 10.0 1.10 2 19.97 21.30 2.699 0.82( 0.82) 1.00 10.8 3.01 1 ' RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 43.51 Tc(MIN.) = 14.30 EFFECTIVE AREA(ACRES) = 16.50 AREA - AVERAGED Fm(INCH /HR) = 0.60 AREA - AVERAGED Fp(INCH /HR) = 0.88 AREA- AVERAGED Ap = 0.69 TOTAL AREA(ACRES) = 20.80 LONGEST FLOWPATH FROM NODE 1.10 TO NODE 1.15 = 2150.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.15 TO NODE 1.15 IS CODE = 11 >>>>> CONFLUENCE MEMORY BANK # 1 WITH THE MAIN- STREAM MEMORY <<<<< ** PEAK FLOW RATE TABLE ** STREAM Q STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER (CFS) NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) NODE (ACRES) NODE 43.51 1 2 43.51 41.89 14.30 18.88 3.428 2.901 0.88( 0.60) 0.87( 0.62) 0.69 0.71 16.5 19.6 2.16 1.10 41.89 3 40.42 21.30 2.699 0.86( 0.63) 0.73 20.8 3.01 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 43.51 Tc(MIN.) = 14.30 EFFECTIVE AREA(ACRES) = 16.50 AREA - AVERAGED Fm(INCH /HR) = 0.60 AREA - AVERAGED Fp(INCH /HR) = 0.88 AREA- AVERAGED Ap = 0.69 TOTAL AREA(ACRES) = 20.80 LONGEST FLOWPATH FROM NODE 1.10 TO NODE 1.15 = 2150.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.15 TO NODE 1.15 IS CODE = 11 >>>>> CONFLUENCE MEMORY BANK # 1 WITH THE MAIN- STREAM MEMORY <<<<< COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 67.93 Tc(MIN.) = 14.301 EFFECTIVE AREA(ACRES) = 24.71 AREA- AVERAGED Fm(INCH /HR) = 0.48 AREA- AVERAGED Fp(INCH /HR) = 0.89 AREA- AVERAGED Ap = 0.52 TOTAL AREA(ACRES) = 30.40 LONGEST FLOWPATH FROM NODE 1.10 TO NODE 1.15 = 2150.00 FEET. u ** MAIN STREAM CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 43.51 14.30 3.428 0.88( 0.60) 0.69 16.5 2.16 2 41.89 18.88 2.901 0.87( 0.62) 0.71 19.6 1.10 3 40.42 21.30 2.699 0.86( 0.63) 0.73 20.8 3.01 LONGEST FLOWPATH FROM NODE 1.10 TO NODE 1.15 = 2150.00 FEET. MEMORY BANK # 1 CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 25.59 11.54 3.899 0.98( 0.22) 0.23 7.7 1.01 2 25.29 12.45 3.725 0.98( 0.22) 0.23 8.0 1.01 3 18.42 27.17 2.332 0.98( 0.20) 0.21 9.6 1.10 LONGEST FLOWPATH FROM NODE 1.10 TO NODE 1.15 = 2100.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 66.55 11.54 3.899 0.89( 0.46) 0.52 21.0 1.01 2 67.15 12.45 3.725 0.89( 0.47) 0.52 22.4 1.01 3 67.93 14.30 3.428 0.89( 0.48) 0.53 24.7 2.16 4 64.17 18.88 2.901 0.88( 0.49) 0.56 28.3 1.10 5 61.58 21.30 2.699 0.88( 0.50) 0.57 29.8 3.01 6 51.69 27.17 2.332 0.88( 0.49) 0.56 30.4 1.10 TOTAL AREA(ACRES) = 30.40 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 67.93 Tc(MIN.) = 14.301 EFFECTIVE AREA(ACRES) = 24.71 AREA- AVERAGED Fm(INCH /HR) = 0.48 AREA- AVERAGED Fp(INCH /HR) = 0.89 AREA- AVERAGED Ap = 0.52 TOTAL AREA(ACRES) = 30.40 LONGEST FLOWPATH FROM NODE 1.10 TO NODE 1.15 = 2150.00 FEET. u FLOW PROCESS FROM NODE 1.15 TO NODE 1.15 IS CODE = 81 ---------------------------------------------------------------------------- - - >>>>> ADDITION - OF - SUBAREA - TO - MAINLINE - PEAK - FLOW <<<<< ----------------- - - - - -- MAINLINE Tc(MIN) = 14.30 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.428 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.90 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 0.90 SUBAREA RUNOFF(CFS) = 2.70 EFFECTIVE AREA(ACRES) = 25.61 AREA - AVERAGED Fm(INCH /HR) = 0.46 AREA - AVERAGED Fp(INCH /HR) = 0.89 AREA- AVERAGED Ap = 0.52 TOTAL AREA(ACRES) = 31.30 PEAK FLOW RATE(CFS) = 68.35 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 68.13 11.54 3.899 0.89( 0.45) 0.50 21.9 1.01 2 68.56 12.45 3.725 0.89( 0.45) 0.51 23.3 1.01 3 68.35 14.30 3.428 0.89( 0.46) 0.52 25.6 2.16 4 64.17 18.88 2.901 0.88( 0.48) 0.55 29.2 1.10 5 61.58 21.30 2.699 0.88( 0.49) 0.56 30.7 3.01 6 52.09 27.17 2.332 0.88( 0.48) 0.55 31.3 1.10 NEW PEAK FLOW DATA ARE: PEAK FLOW RATE(CFS) = 68.56 Tc(MIN.) = 12.45 AREA-AVERAGED Fm(INCH /HR) = 0.45 AREA - AVERAGED Fp(INCH /HR) = 0.89 AREA- AVERAGED Ap = 0.51 EFFECTIVE AREA(ACRES) = 23.28 FLOW PROCESS FROM NODE 1.15 TO NODE 4.01 IS CODE = 62 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<< >>>>>( STREET TABLE SECTION # 1 USED) < <<< --------------------------- UPSTREAM ELEVATION(FEET) = 1233.70 DOWNSTREAM ELEVATION(FEET) = 1229.50 STREET LENGTH(FEET) = 340.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 52.00 ' DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.002 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.002 ' SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 70.53 ** *STREET FLOWING FULL * ** ' STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.39 HALFSTREET FLOOD WIDTH(FEET) = 52.00 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.60 END OF RATIONAL METHOD ANALYSIS i F, 1 u PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.41 STREET FLOW TRAVEL TIME(MIN.) = 1.57 Tc(MIN.) = 14.02 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.468 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.70 0.98 0.10 32 RESIDENTIAL 11 3 -4 DWELLINGS /ACRE" A 0.70 0.98 0.60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.35 SUBAREA AREA(ACRES) = 1.40 SUBAREA RUNOFF(CFS) = 3.94 EFFECTIVE AREA(ACRES) = 24.68 AREA - AVERAGED Fm(INCH /HR) = 0.45 AREA - AVERAGED Fp(INCH /HR) = 0.90 AREA- AVERAGED Ap = 0.50 3 TOTAL AREA(ACRES) = 32.70 PEAK FLOW RATE(CFS) = 68.56 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.39 HALFSTREET FLOOD WIDTH(FEET) = 52.00 FLOW VELOCITY(FEET /SEC.) = 3.57 DEPTH *VELOCITY(FT *FT /SEC.) = 1.38 LONGEST FLOWPATH FROM NODE 1.10 TO NODE 4.01 = 2490.00 FEET, END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 32.70 TC(MIN.) = 14.02 �! EFFECTIVE AREA(ACRES) = 24.68 AREA - AVERAGED Fm(INCH /HR)= 0.45 AREA- AVERAGED Fp(INCH /HR) = 0.90 AREA- AVERAGED Ap = 0.50 ii PEAK FLOW RATE(CFS) = 68.56 ** PEAK FLOW RATE TABLE ** Eli STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 68.13 13.12 3.610 0.90( 0.44) 0.49 23.3 1.01 2 68.56 14.02 3.468 0.90( 0.45) 0.50 24.7 1.01 3 68.35 15.88 3.219 0.89( 0.46) 0.51 27.0 2.16 4 64.17 20.51 2.761 0.88( 0.47) 0.54 30.6 1.10 5 61.58 22.95 2.581 0.88( 0.48) 0.55 32.1 3.01 6 52.09 28.93 2.246 0.88( 0.48) 0.54 32.7 1.10 END OF RATIONAL METHOD ANALYSIS i F, 1 u E� s ► ► o La) ** RESULTS OF IRREGULAR CHANNEL ANALYSIS ** CALCULATIONS BASED ON MANNINGS EQUATION WITH ALL DIMENSIONS IN FEET OR FEET AND SECONDS ----------------------------------------------------- (c) Copyright 1983 -2003 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2003 License ID 1400 Analysis prepared by: Allard Engineering 8253 Sierria Avenue Fontana Ca. 92335 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Live Oak Ave Existing Half Strret Capacity Approximately 200 * Feet South of Yucca Ave, by: DSH * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** TIME /DATE OF STUDY: 12:10 02/12/2007 ---------------------------------------------------------------------------- * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 0.00 0.30 2 12.00 0.06 3 13.00 0.00 4 18.00 0.30 5 30.00 1.30 SUBCHANNEL SLOPE(FEET /FEET) = 0.005000 SUBCHANNEL MANNINGS FRICTION FACTOR = 0.016000 .. SUBCHANNEL FLOW(CFS) - 4.3 - SUBCHANNEL FLOW AREA (SQUARE FEET) 2.46 SUBCHANNEL FLOW VELOCITY(FEET /SEC.) = 1.742 SUBCHANNEL FROUDE NUMBER = 0.830 SUBCHANNEL FLOW TOP- WIDTH(FEET) = 18.00 SUBCHANNEL HYDRAULIC DEPTH(FEET) = 0.14 ---------------------------------------------------------------------------- TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 4.00 COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 4.28 ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE ELEVATION ............................. 0.30 1 NOTE: WATER SURFACE IS BELOW EXTREME LEFT AND RIGHT BANK ELEVATIONS. » »STREETFLOW MODEL INPUT INFORMATION «« CONSTANT STREET GRADE(FEET/FEET) = 0.005000 CONSTANT STREET FLOW DEPTH(FEET) = 0.91 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.67 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) = 0.03125 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) = 0.12500 FLOW ASSUMED TO FILL STREET ON ONE SIDE. STREET FLOW MODEL RESULTS: WARNING: STREET FLOW SPLITS OVER STREET - CROWN. NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLI 3LE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) = 0.91 HALFSTREET FLOOD WIDTH(FEET) = 32.00 HALFSTREET FLOW(CFS) = 63.07 co Z. (.0 _ c F.s AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.20 PRODUCT OF DEPTH &VELOCITY = 3.82 0 0 id w L 10 1 r 0 O LTA " G,0001 1 » »STREETFLOW MODEL INPUT INFORMATION «« CONSTANT STREET GRADE(FEET/FEET) = 0.005000 CONSTANT STREET FLOW DEPTH(FEET) = 0.83 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.67 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) = 0.03125 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) = 0.12500 FLOW ASSUMED TO FILL STREET ON ONE SIDE. STREET FLOW MODEL RESULTS: WARNING: STREET FLOW SPLITS OVER STREET - CROWN. NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) = 0.83 HALFSTREET FLOOD WIDTH(FEET) = 32.00 HALFSTREET FLOW(CFS) = 46.12_ I x Z 5 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.70 p� PRODUCT OF DEPTH &VELOCITY = 3.07 JZ C(�, G » »STREETFLOW MODEL INPUT INFORMATION «« - - - - --------------------------------------------------------------- CONSTANT STREET GRADE(FEET/FEET) = 0.005000 CONSTANT STREET FLOW DEPTH(FEET) = 0.76 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.67 E I CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) = 0.03125 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) = 0.12500 r FLOW ASSUMED TO FILL STREET ON ONE SIDE. STREET FLOW MODEL RESULTS: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) = 0.76 HALFSTREET FLOOD WIDTH(FEET) = 31.69 HALFSTREET FLOW(CFS) = 32.45 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.19 PRODUCT OF DEPTH &VELOCITY = 2.43 0 1 11 L-Tssz, �A L)Tr�� v� » »STREETFLOW MODEL INPUT INFORMATION «« - - - - --------------------------------------------------------------- CONSTANT STREET GRADE(FEET/FEET) = 0.005000 CONSTANT STREET FLOW DEPTH(FEET) = 0.67 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 24.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.035000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.67 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 0.10 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) = 0.01000 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) = 0.01000 "! FLOW ASSUMED TO FILL STREET ON ONE SIDE. STREET FLOW MODEL RESULTS: tw STREET FLOW DEPTH(FEET) = 0.67 HALFSTREET FLOOD WIDTH(FEET) = 23.67 HALFSTREET FLOW(CFS) = 19.44 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.91 PRODUCT OF DEPTH &VELOCITY = 1.95 D 1 1 L6 1•� - r T - -- 1 i - - ! -- rt — R2W - - r- . " RIW \` Rlf R2E .7 Rg ' R7W R6W R5 I i �t4W ,_' -1,,, o - - -- - -- — -- - - -- - - �� - -! — — — — - — _ . 1- 30 R ! 1 %VW T I r —r I - ..pan . F•;A I 4 9 TiaTi Nu i I � , • � ' _ _ r' dig s AV i ,,•} _ _ • i ' � ,y z '..• zz • "�. •'� .✓, 1 +�+ - "._•jb 23 ^__ ~LI ' � r 5th ° - w 4 � • �.• !. 4 c , cy i T -- .• s' — a. ' ; IA A•. kra. — 1� • •a011 I "1- too TIN — — — - s — �— ., - T �, .•� = 1�7`_ Aft Z it PL RI LT arleiol* • +» ON TA — 1's� •' _ ♦ �' - - .r - f- — — i • :• — i - - - - - - -- - - - - - - L� - • -- - - - _— j•IS 71S -- - - -- - .S _ �• • COLT N - <s - ONTA 1oa -'' � - Rf L NO "°• _- r ,..°} - - <� -- -.t.� ,,_ � — TwAeft CHAO ol • - ♦._ - — Lull wa - - —� `.�" — .-. - Ica•, -._ - _ � '` _ �OOCVC►V►. 1AV►.11TrT�ii1� R2W RI .4064T ....... �► R4W W4V AREA i REDUCED DRAWING w° i = 4 MILES Yin -100 I ,h . -- • - SCALE T3S - - - - - - '' •.. • - .am ar aao�.1►ww t>.Iws °r L6 - SAN BERNARDINO COUNTY - //pIbllm or - •• J w - HYDROLOGY MANUAL �� �` • .,< 8 W ( 1.8 ISOLINEf PRE':IPITATtON (INCHES) `✓ 1N2 M1aa t1�F� = K 8-12 FIGURE 8 -4 VKAXV R R6W R�j T4N R W 04W R2W Riw RIE R2E T .7 T4N A 4 T NZ! t 4 i C 71 6 T3N 31* 1.4 Nil T2N 34-T2 N 0 i — — — — �� r - -- Lt r -f- �� - • 1 •\• 1 1 .� �s I y / � w I r - —'! — - `�.— — — — - — -- '— LAW 14 17 4- / 12 -7L 01 r l Tm 4 b ig c- Ll - T T LN r LOW -4 N --. A SA% OLAND 4 u I ALTO F TAN 7 TIS z � I 104P TON ps REPLAND .......... c"Imo S4 RIE RTE T2S I RUDE -:7 N R4W R3 R2W Al ZA Zo w + SAN X :=UNTY MTIWT -AaG W- T3S R5 MALLIREA - REDUCED DRAWING 1111OPM SCALE 1"Z 4 k1LES Yo - 10 WARM ALS I H" &%M ft V"Jr, NOAA. AMA t. WS A SAN BERNARDINO COUNTY Aralo•I�o ax J R 8 W R7W R6 HYDROLOGY MANUAL _Lf_G E .40 ............................ ISOLINES P,:ECI PITATION INC14ES I OIRE 02 !C-t1t-L f!T3 t172 FIGURE 8-3 e c t c c c c c c c e "coz:::rTwL -- -- eL\lQ R, i °IfW ( SEE STD. 109 ) TYPICAL SECTION WITH RAISED MEDIAN R/W TYPICAL SECTION WITH CONTINUOUS LEFT TURN LANE NOTES: 1. STRUCTURAL SECTION OF ROADWAY SMALL BE DETERMINED FROM SOILS TESTS AND SO INDICATED ON CONSTRUCTION PLANS. 2. DRAINAGE FACILITIES SNALL BE PROVIDED TO DEWATER RAISED MEDIAN AREAS. 3. 10' SMOULDER AREAS MAY BE DESIGNATED AS A DIKE LANE AND EMERGENCY PARKING ONLY. WMARDINO COUNTY TRANSPORTATION DEP" JOHN R. SHONE DIRECTOR OF TRANSPORTATION R/W MAJOR ARTERIAL 1100 (SEE STO.109 ) e c c e I N e- C) 44 4 44' ( SEE STD. 109) c NOTES: TYPICAL SECTION I. STRUCTURAL SECTION OF ROADWAY SHALL BE DETERMINED FROM SOILS TESTS AND SO INDICATED ON CONSTRUCTION PLANS. 2 8' SHOULDER AREAS MAY BE DESIGNATED AS A BIKE LANE AND EMERGEN- CY PARKING ONLY. SAN KRNARDINO COUNTY TRANSPORTATION OVORTMENT QATE ✓OHN R. SHONE SECONDARY HIGHWAY 102 ." DIRECTOR Of TRANSPORTATION e c c E L C C L G 1 1 1 1 1 8 C I 0 0.00' 0.36' 0.14' 036 0.76 1.02 0.69' 0.36 0.00 0.19' (0.03) 0.19' 0.76' O.Id O-V 0.19' c c c TYPICAL SECTION NOTES: 1. THIS TYPICAL SECTION SHALL BE-USED ONLY ON LOCAL STREETS SUCH AS CUL DE -SACS, LOOPS - AND STREETS THAT DO NOT CARRY THROUGH TYPE TRAFFIC. THE USE SHALL BE LIMITED TO STREETS WHICH ARE PROJECTED TO CARRY LESS THAN K>DO ADT UPON ULTIMATE DEVELOPMENT OF THE AREA. 2. STRUCTURAL SECTION OF ROADWAY SHALL BE DETERMINED FROM SOIL TESTS AND SO INDICATED ON CONSTRUCTION PLANS. , 3. CONSTRUCTION OUTSIDE. R/W LINE- SHALL'RECUIRE. SLOPE'�EASEMENTS. . 4. TILT SECTION SHALL CONFORM TO LOCAL STREET STANDARD NO. 104. 3t. B' WIDE SIDEWALK AND PUBLIC UTILITIES EASEMENT AT THE OPTION OF THE OWNER, THIS AREA MAY BE DEDICATED AS ROAD RIGHT -OF -WAY. SAN.BERNARDINO COUNTY TRANSPORTATION DEPARTMENT DATE- 1W R ` JOHN R. SHONE LOCAL STREET 104 DIRECTOR OF TRANSPORTATION ( LESS THAN 1000 ADT) A e c c e c c EXPANSION JOINT AT END OF RETURN, AND STRUCTURES e -CURB LINE — -, - GUTTER LINE PLAN 0.0635 CUBIC YARDS PER LINEAL FOOT. 1B.T LINEAL FEET PER CUBIC YARD. .Survey reference point(;010 Round Head Bross Screw, minimum length 11/4 )-set CURB flush at end of curb return during construction. ELEVATION - - �CURB LINE I /2 "R� 1\ 6" �j- -i/2 "R PLACE PAVEMENT 1/4 "ABOVE GUTTER ° 2 O B rl/2" R -"R I I/2 " / • A e d d \ PREMOLDED ` GXPANSION Vq_ JOINT FILLER EXPANSION JOINT L. CURB AND GUTTER SHALL BE .CONSTRUCTED MONOLITHICALLY OF .CLASS . ".B" CONCRETE. 1 2. wIDTHS OF ' STREET'SECTIONS= SHOWN'�ON - PLANS 7WE�TO"CURB''L'INE' UNLESS OTHERWISE INDICATED. 3 WEAKENED PLANE JOIN73 SHALL BE CONSTRUCTED AT 10 -FOOT INTERVAL.S,EXCEPT THAT THE INTERVAL SMALL BE VARIED TO ALLOW MATCHING OF JOINTS IN ADJACENT EXISTING IMPROVE ` 4. GUR1NG COMPOUND SMALL BE SPRAYED UNIFORMLY ON EXPOSED SURFACES. '.S WHEN CURB AND IS PLACED BY AN EXTRUSION MACHINE MINOR FINISHING MAY BE DONE TO PROVIDE AN ACCEPTABLE FINISH AND THE WEAKENED PLANE JOINTS MAY BE SAwCUT. 8 CURB AND GUTTER 1 U R/W R /W 60 r� 3d 30 E " 12' IS Id 12 led me 5S 59 123 Ks z SLOP VS �q� C ��� ��. 1 . - 2.0 % SEE NOTES SIDEVAIA UNE -- I jr CURB 8 GUTTER TYPICAL SECTION ALTERNATE SIOEW LEVEL (IF SHOWN ON PLAN) L It 12.5' 5.5' 5.5' 123' I LEVEL LINE 3.0% 2.0%_ TYPI CA L SECTION TILT �� e CURB LEVEL TILT 6" CURB LEA TILT A B C 0 0.00 033 0.22 033 0.44 0.6E .0.30 033 0.00 o.IE OAS' oit 0.44' 0.49 033 O.IE 1 NOTE u I. STRUCTURAL SECTION OF ROADWAY SHALL BE DETERMINED FROM SOILS TESTS AND 30 INDICATED ON CONSTRUCTION PLANS. 2. MINIMUM DESIGN PAVING THICKNESS SHALL BE 0.20 ASPHALT CONCRETE- 3. CONSTRUCTION OUTSIDE R/W WILL REQUIRE SLOPE EASEMENTS 4 WHEN PREPARING SIJSGRADE FOR PRANP, CENTERLINE - CROWN ON THE IEVEL SECTION" SMALL BE RELOCATED EITHER LEFT OR RIGHT 0.50 10 MATCH CROWN BREAK N WAVING MACHINE. SAN BERNARDINO COW" ROAD DEPl4RTM&O °'T f ` ,loan R Snono LOCAL STREET 104 COUNTY HIGHWAY EN61NEE1t THIS MAP IS FOR THE PURPOSE Of AD VALOREM TAXATION ONLY, Ph. C.W.Roger's Sub. M.B. 11/32 N N M N N C=> N N O O F-- —*E WL 0-E 130 1 300 90 90 I 1 I I I o O � I I 66.81 T I I ' 81.81 m O O �0 I 1 I , 1 U Q o O o o 0 � � I I I I 300 90 �I , U Q I 1 � I G O N 1 , 1 1 I o U _ Q G � I I I 1 U o r� I M i I J T I J 1 i U 1 Q 1 O 1 I 1 1 I 1 I 1 1 13012 1 i Y WE — VAR — — t1=11 < O r� — r 180 700 o � r 100 U O V o v 180 U N tr7 CO CV �— O Fontana Unified 0230— 0 8 Tax Rate Area 74032 G ��7 111I N If?! II CV C-4 \ Cl CV O N N N O O p O - T — l 100 1 62 1 o LO v t— LO 100 (130) o .� 62 it /� 50 326.64 � — N — 4 1 O ^ 1 I 1 I b 75 0 1 0 75 U O ¢ o - M O O o o� Lr,) m O O O 0 0 0 0� 0 0 120 aD � U 60 0 0 60 �J 00 � oQ 6 X63 ��5 Ptn. Fontana Arrow Route Tract No. 2102, M.8. 31/11 -15 February 2004 Tract No. 10598, M.8. 163 /85- 86- Condcminlum Plan,O.R. 82- 202479 I I O ( 'n O I O m I � m 326.83 v ck 180 — LO \V/ � 1 1 327.13 I O N 75 0 52 72 O O O 52� 1 0 REVISED 01/11/06 GW Ph. N.E. 1/4, Sec. 11 T.1 S., R.6 W. Assessor's flap Book 0230 Page 08 San Bernardino County 1 1 1 1 81 81 O 0 81.81 r+� N I _ 66.81 81.81 61.8 �0 b 75 0 1 0 75 U O ¢ o - M O O o o� Lr,) m O O O 0 0 0 0� 0 0 120 aD � U 60 0 0 60 �J 00 � oQ 6 X63 ��5 Ptn. Fontana Arrow Route Tract No. 2102, M.8. 31/11 -15 February 2004 Tract No. 10598, M.8. 163 /85- 86- Condcminlum Plan,O.R. 82- 202479 I I O ( 'n O I O m I � m 326.83 v ck 180 — LO \V/ � 1 1 327.13 I O N 75 0 52 72 O O O 52� 1 0 REVISED 01/11/06 GW Ph. N.E. 1/4, Sec. 11 T.1 S., R.6 W. Assessor's flap Book 0230 Page 08 San Bernardino County �J 00 � oQ 6 X63 ��5 Ptn. Fontana Arrow Route Tract No. 2102, M.8. 31/11 -15 February 2004 Tract No. 10598, M.8. 163 /85- 86- Condcminlum Plan,O.R. 82- 202479 I I O ( 'n O I O m I � m 326.83 v ck 180 — LO \V/ � 1 1 327.13 I O N 75 0 52 72 O O O 52� 1 0 REVISED 01/11/06 GW Ph. N.E. 1/4, Sec. 11 T.1 S., R.6 W. Assessor's flap Book 0230 Page 08 San Bernardino County Cb 0- f, 't N O O A -, 0 -, 0 -= - o --o -1=) ro ro cv ro cv R 18 o • z o z z z z O O O O O -� O N Ci C_� Ol� -o — oo �v c.c cry • � rn ti 0 N CO W C.n cn ao a O O N O O to Mm O O N CD O y � N o w� 1 oN � n Q oco� CD C7 O o C V O � Cr Ln n :-J 1 1 I 0 15 — -- OV4 A— ( -S-N —s Ea a-e- 4*0--, + — { s-T A 1 E "w r—) - - -- ------------------- ___________________________ 315____ o _- 610 113.52 0 53 66.14 81.65 315 60 33 Par. 1 °° Par. 2 I Z , 1,57 AC 10 11 100 48 N �c Par. 3 427 ' CO 1 03 04 •,(i 4.54 AC. „(i 4.55 AC. Par. 3 , 1 d 1 I m os �j `r Ij 0 6.13 AC. l I I I 1 3 3 — — --M— . -- - - -- 315 31 S Ptn. Lot p5 18 6 V � C T n o n z � o x S b r-i C7 � z o T 'L CD L 54 NO R 18 • LT.J C D /\ VV N N 06 331 259.78 327,91 660 30 N _ ° Par, 2 � Par. 3 29 02 1 .� 2 8 U w �, " J ti v 7 8.43 176.46 " . io 1.15 AC. -- 2.37 AC. • 2 1 8 86 90.62 176.46 6 Par. 4 /f Par. 1 p6 Z: 30 6'u u o3 J m 27 115 AC. 2.37 AC. I 1 33 w 298.04 328.97 ^ ^ 85 330.01 1 O I u 21 Par. 1 3 6 °r (4.75 AC.) 1.24 AC. 86 1 1.13 AC. '+y 330.01 627.02 I 1� w Par 2 4.75 AC. 2 3a AC. 2 / / f 30 627 ,01 30 360 _.._ 15 88 87 I 1.2 AC. 14 05 3 6 1 2 AC. 2.82 AC I I p O C=) 13 O6 I N o 1.58 AC 191 AC 1 n o 330 sso 110 110 sso 110 75 75 150 m C 89 90 Par. 1 Par. 2 Par. 3 17 $ CD a 20 129 0 23 24 N ti ,o > 31 32 33 a v O- J 1.69 AC. 19 9 1.03 AC. L24 AC. A d j 26 9 25 08 w 1 33 1 20 1 110 110 109.99 I I N - — —p�Rg — _ , L_-—-— 180 {-Pf-R-R-I tvf- )— — — N 150 6p 1 ° =200 1 0 5 L, 54 NO THIS MAP - IS FOR THE 'JKPOS= U' AD VALGF.EM TAXAT UV 'NL7. Tract Map No. 16337, M.B. 3125 -7 Fontana unified 0230 -38 Tax Rate Area 74032 p 1" =100' i1 8 R REVISSED11 Ph. NE 1/4, Sec. 11 T C R f Assessor's Map Book 0230 Page 38 Cnn RarnnrAinn r nlinly lOS.tG 4 ; 5 6 6 7 8 9 10 %6 6`_ J 130.3) 11 12 13 /\ •D � as 3 s� ;0a 1 (c los .� 0s' i1 G '� iii 7 �% f � U 14 �, 4 60 o 08) L-' I �STIUR� - - r�� �' -� CBUR�— o 2 \1 v �s 15 19 99 60 > N i � ( 01; z5 �. 24 23 22 21 20 19 18 17 16 50.01 I o I 2 49 -99 60 \ ;2.46 R REVISSED11 Ph. NE 1/4, Sec. 11 T C R f Assessor's Map Book 0230 Page 38 Cnn RarnnrAinn r nlinly THIS YAP is FOR IN PURPOSE Tract No. 15664 -1, M.8. 259/77 -79 Fontana Unified OF AR VALOREM TAXATION ORLY. Tax Rate Area 74032 61, J 0230- 29 72.47 t30 10 !t 110 !t f0 134 !0 130 49.0 33 » 17 « - 32 47 « 62 16 18 31 33 = 46 48 61 63 17 • 32 1 � •, it 16 11.13 16 31 33 0 O S� 31.1] J ))/ 46 31.11 46 k1 / 61 3l.ts 03 6! )!) t.' � !0 � 7 7 • � � 1 */ 11 J J X16. ?/ +) ,� J \t 0. 1S 15 1R 19 30 3@ " 3+ 34 . 45 4s a 44 49 60 6o a 64 1 {.t! 3.52 , 3.12 3.31 w O O w w 64 ►� 1t1.17 2.7 1.7 111.17 119.91 2.01 1 i2S.34 120.33 r ,� I20.53 i g t4 14 ~ la 20 = 29 29 9/ 3s 35 » 44 14 = Y '~ so SO 59 is 65 I i32.3 w 130 170 I 130 130 130 130 I 130.44 13 13 _ 21 21 Z' 28 2 s 3t 36 43 +y s1 51 s 58 56 1 60 66 1 I 132.34 I 130 19 130 1s0 130 I 130 130 I 130.01 1 12 it I 12 `1� 22 : 27 n 1 s 37 37 ° 42 +2 I = 52 52 s 57 s7 1 _ 47 67 3331 112. u - 130 130 130 130 130 130 130.77 4 : 11 s 23 23 ° 26 26 ( a 36 38 = 41 I 53 `��` 1 ax 4t ae ti S3 TT 56 56 60 68 I 1 w 172.01 a 130 1]0 130 130 0 130 130 110.03 1 • O I 10 10 « 24 24 2 25 is I 39 39 40 +@ a s+ 54 55 ss w :. 6s 69 2S 2s iJ is ZS i ii !! r 2S 2S fit w 132. 7 116.07 .'' i 1. r 325.07 .�' 1 1 1. 7 lr1.t7 ,'' I 507 24 • 1 ---- Si ViL{ f - ..__- _ --i-__ .�- - - - - -- --- ----- ffE"f - -- c 40.2 "A 01.3 46.1 6. t6.s p.3 19.3 11. 10.3 "'J p.3 68.3 00. 00.3 00.3 6013 $4.15 1 ay O1 01 03 @4 a @S 06 07 _ 0@ 69 7@ 11 76 75 7{ 13 72 71 70 �, y 1 2 3 4 S 6 7 8 9 78 77 76 75 74 73 72 71 70 I 44 EI 1 60.3 1 60.3 0.3 1 11.! 1 46.3 it.] 08.3 94.3 1 16.1 1 Wa L 68.3 1 60.3 1 61.1 1 60.3 1 18.3 1 75.17 33 44 " fabraary 2004 Trott N@. 15664, Y.B. 261/66 -68 Assessor's Map Book 0230 Page 29 San Bernardino County o2a2 oz REVISED INIS YAP 15 fOR �PYRFOOWStE,(. Of AO VALOREM IA Tract No. 3838, M.B. 49/99 -100 o� Fontana Unified 0230 — 8 Tax Rate Area 7432 1 446 90 9a 6 44.19 of 1 52 S1 50 49 48 47 46 45 44 43 42 41 40 39 s - _ 36 01 Z = 03 0{ O5 — 06 07 Oa 09 10 11 12 13 14 15 — « 16 t7 �� 76 120 0 0 0 0 0 0 0_ - (00 1 1 :0 96 ° 37 32 21 1 1 I t I I J 2E , 1 t . I I I 120 40 t 6 j — kYEN1kf— 1 29 23 e I 90 log-to ,► a oa a7 oa a9 l0 11 12 117.73 + I 120 90 b 65 t7 = 02 7 os a{ os ac o7 oa o9 l0 11 It 13 t+ 120 ' f a 24 d 30 2/ 03 4 53 54 55 56 57 58 59 60 61 62 63 64 66 la 00 16 17 I _ 3 » of S _ 9 16 11 n .. at 5 .. 80 79 78 77 76 75 74 73 72 71 70 69 67 1 :0 120 O1 6 32 31 30 29 2a 27 2i 25 2{ 2J 22 21 w 68 20 J ,20 o 447 22 36 » ^ 33 I I I I t t 44.44 t 20 35 »» 34 23 I �1 1° 1 126 I I 1 t I I r ,00.9 no t t 2 26 27 2) = ( I I ro.0 I 1 10.l: ,zo 'r 19 25 2a 22 ,°• I 1 S r _ ��� _�___________ t 6 j — kYEN1kf— 1 29 23 e I 90 16 117.73 + I 120 90 b = 02 7 os a{ os ac o7 oa o9 l0 11 It 13 t+ Is ' f a 24 d 30 2/ 16 17 I _ 3 » of S _ 9 10 11 12 t3 14 15 16 17 1E i8 20 21 22 23 31 2 5 I 1 :0 9a t t so 1 0s 110.61 1 +9.44 I r 007 Fabruory 2004 REVISED Assessor's Map Book 0230 Page 18 Son Bernardino county