HomeMy WebLinkAboutPalermo Luxury ApartmentsC
1
1
E
1
i
1
1
1
1
1
1
1
C
M m ALLARD ENGINEERING
c cil
Palermo Luxury Apartments
Live Oak Ave. Hydrology Study
February 8, 2007
Revised February 15, 2007
Job # 208.02.01
Prepared For:
SC Development
14841 Yorba Street, Suite 205
Tustin, CA 92780
Phone (714) 505 -7090
under the supervision of:
David S. Hammer, P.E. ACE 43976
8253 Sierra Avenue Fontana, CA 92335 (909) 356 -1815 * (909) 356 -1795
1 Discussion
Introduction
t The Palermo Luxury Apartments is a proposed 6.3 acre multi - family residential
development located on the southeast corner of Foothill Boulevard and Live Oak
Avenue, in the unincorporated area of Fontana. It is bounded on the west by
Live Oak Avenue, on the south side by several single family lots, on the east side
by vacant property and on the north side by Foothill Blvd. The City of Fontana's
Master Drainage Plan shows that there is an existing drainage system on Foothill
Blvd. (72" pipe) that serves as a barrier for all the storm water runoff coming
from the north side of the project. The project site currently drains from the
northeast to the southwest at a slope of approximately 1.8 %. Once developed,
Palermo Luxury Apartments will drain to Live Oak Avenue and then south to
Arrow Highway. Presently, a RCP culvert beneath Arrow Highway intercepts low
flow events and conveys the runoff further south down Live Oak Avenue.
However, the culvert has limited capacity and during larger storm events the
runoff drains west to Cherry Avenue. From Cherry Avenue the runoff goes south
and drains into the West Fontana Channel, through a couple of catch basins.
' The vacant land east of Palermo Luxury Apartments is proposed to develop as a
condominium project to be named Hampton Place III. Hampton Place III will be
required to mitigate its increase in runoff. However, Hampton Place III will most
likely have a private storm drain pipe that will be installed through Palermo
Luxury Apartments as shown on the hydrology map.
Purpose
This report will consider the increase in storm runoff by developing Palermo
Luxury Apartments, the impact to Live Oak Avenue and the adjacent properties
from the project boundary to a point approximately 300 fee south of Yucca
Avenue, which is a distance of approximately 600 feet. This report does not fully
address the onsite drainage system for Palermo Luxury Apartments. A
subsequent report for that purpose will be necessary to support the sizing of the
onsite storm drain system.
I Criteria
The criteria utilized for hydrologic analysis is the San Bernardino County
Hydrology Manual. AES computer software 'was utilized to perform
computations.
i�
H. IAd mmIPropo15ommervil le- Contel� ston.do
t
I Results
Live Oak Avenue, from the site to a point 300 feet south of Yucca Avenue is only
partially constructed (as shown on Exhibit "A "). The street drains south and at its
mildest slope, is pitched at a rate of approximately 0.5% (100 feet ± south of
Yucca Avenue). At that point, the east side of the street is estimated to have the
capacity to convey approximately 4.3 cfs. If the east of the street is fully
constructed, the east side will convey approximately 32.5 cfs (Exhibit "B "). In its
entirely, the fully improved street could convey approximately 126.2 cfs. It is
anticipated that upon completion of Palermo Luxury Apartments constructions,
the reach in question would have approximately 68.6 cfs, running in it during a
'! 100 year event storm. It must be noted that only 30 feet (measured from the
centerline) of right of way exists for the east half of Live Oak Avenue, and an
additional 14 feet of dedication would need to be obtained to construct the
ultimate improvements.
If the additional 14 feet of street dedication could not be obtained, some widening
of the east half of Live Oak Avenue (as shown on Exhibit "C ") would increase the
half street capacity to 19.4 cfs, an increase of approximately 15.1 cfs. This is
approximately the increase in runoff, the 100 year event storm, due to developing
the site (1 cfs per acre x 6 acres = cfs, for the pre - developed condition, an
increase of 13.4 cfs).
Conclusion
If an additional 14 feet of right of way for the reach in question and the ultimate
improvements are constructed, Live Oak Avenue will have a greatly increased
capacity to convey the 100 year event storm water runoff. If the additional right
of way cannot be obtained, an alternate solution is to construct widening per
Exhibit "C ". This will increase the street capacity equal to or greater than the
runoff increase from the project. In either case, existing private improvements,
that are located in the existing right of way, would need to be relocated to outside
the right of way.
1
1 H. UdmmlPropolSommenille- Conzelman Discnssion.doc
I
FS G
�i�E, oA� Avg loo 94 NOCZ A
p r ?A o f J. oar I VC,4-0, PKe
m
o . co
CA
cn m
TM
UlM
r
91) CD
w wS
. a
co
co y.
o o
ti W
LA S.
U o
w y
c w c �+
. n m
Lo
W "' M
y w
Ln trj
Q
y "r `',
rL
m b
o p Z^
0 m O m
C/) Cl)
O z
m p
co O
-< z
DI m
O
T
j
ALLARD ENGINEERING DESCRIPTION
. civil engineering • land surveying • land planning
Fontana • Victorville
JOB# SHEET OF
DESIGNED BY DATE
8253 Sierra Ave. • Fontana, CA 92335 APPROVED
h. (909) 356 -1815 • Fax (909) 356 -1795 • www.allardeng.com
i I--
�a
I[
aJ
en
w
N"
in
1
7
Q.
6 T
0
L
O
,�
V
-
N"
in
1
C
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
(Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983 -2003 Advanced Engineering Software (aes)
Ver. 8.0 Release Date: 01/01/2003 License ID 1400
Analysis prepared by:
Allard Engineering
8253 Sierria Avenue
Fontana Ca. 92335
* * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * **
* Palermo Luxury Apartments
* 100 Year Intensity Storm Analysis of Live Oak Avenue
* Approximately 300' South of Yucca Avenue (by DSH)
******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FILE NAME: PALERMO.DAT
TIME /DATE OF STUDY: 11:07 02/12/2007
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
_____________________________________________ _______________________________
-- *TIME -OF- CONCENTRATION MODEL * --
USER SPECIFIED STORM EVENT(YEAR) = 100.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE
= 0.85
*USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) =
0.6000
USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.4500
*ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
*USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW
MODEL*
HALF - CROWN TO STREET- CROSSFALL: CURB GUTTER- GEOMETRIES:
MANNING
WIDTH CROSSFALL IN- / OUT- /PARK- HEIGHT WIDTH LIP HIKE
FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT)
(n)
1 52.0 20.0 0.002/0.002/0.020 0.67 1.50 0.0313 0.125
0.0150
2 32.0 20.0 0.020/0.020/0.020 0.67 1.50 0.0313 0.125
0.0150
3 22.0 10.0 0.020/0.020/0.020 0.67 1.50 0.0313 0.125
0.0150
4 18.0 10.0 0.020/0.020/0.020 0.67 1.50 0.0313 0.125
0.0150
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1. Relative Flow -Depth = 0.24 FEET
as (Maximum Allowable Street Flow Depth) - (Top -of -Curb)
2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
*USER- SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
********************************************* * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * **
'
FLOW PROCESS FROM NODE 1.01 TO NODE 1.02 IS CODE = 21
-------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS, «<
- - >>USE - TIME -OF- CONCENTRATION NOMOGRAPH - FOR - INITIAL - SUBAREA << --------- - - - - --
INITIAL SUBAREA FLOW- LENGTH(FEET) = 150.00
ELEVATION DATA: UPSTREAM(FEET) = 1247.00 DOWNSTREAM(FEET) = 1246.20
Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.848
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.332
SUBAREA Tc AND LOSS RATE DATA(AMC II):
' DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.)
APARTMENTS A 0.80 0.98 0.20 32 6.85
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.20
SUBAREA RUNOFF(CFS) = 3.70
TOTAL AREA(ACRES) = 0.80 PEAK FLOW RATE(CFS) = 3.70
FLOW PROCESS FROM NODE 1.02 TO NODE 1.03 IS CODE = 92
-------------------------------------------------------------------
>>>>>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA <<<<<
UPSTREAM NODE ELEVATION(FEET) = 1246.20
DOWNSTREAM NODE ELEVATION(FEET) = 1245.50
CHANNEL LENGTH THRU SUBAREA(FEET) = 150.00
"V" GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET) = 0.125
PAVEMENT LIP(FEET) = 0.031 MANNING'S N = .0150
PAVEMENT CROSSFALL(DECIMAL NOTATION) = 0.02500
MAXIMUM DEPTH(FEET) = 1.00
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.823
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
APARTMENTS A 0.80 0.98 0.20 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.20
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.37
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 2.00
AVERAGE FLOW DEPTH(FEET) = 0.37 FLOOD WIDTH(FEET) = 19.81
"V" GUTTER FLOW TRAVEL TIME(MIN.) = 1.25 Tc(MIN.) = 8.10
SUBAREA AREA(ACRES) = 0.80 SUBAREA RUNOFF(CFS) = 3.33
EFFECTIVE AREA(ACRES) = 1.60 AREA - AVERAGED FM(INCH /HR) = 0.20
AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.20
TOTAL AREA(ACRES) = 1.60 PEAK FLOW RATE(CFS) = 6.66
END OF SUBAREA "V" GUTTER HYDRAULICS:
DEPTH(FEET) = 0.39 FLOOD WIDTH(FEET) = 21.79
' FLOW VELOCITY(FEET /SEC.) = 2.09 DEPTH *VELOCITY(FT *FT /SEC) = 0.82
LONGEST FLOWPATH FROM NODE 1.01 TO NODE 1.03 = 300.00 FEET.
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
' - FLOW - PROCESS FROM - NODE - - - - -- 1.03 - TO - NODE - - - - -- 104 - IS CODE = 92
------ - - - - -- ---------------------
» >>>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA <<<<<
Hil
L
' UPSTREAM NODE ELEVATION(FEET) = 1245.50
DOWNSTREAM NODE ELEVATION(FEET) = 1241.90
CHANNEL LENGTH THRUSUBAREA(FEET) = 250.00
"V" GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET) = 0.125 -
PAVEMENT LIP(FEET) 0.031 MANNING'S N = .0150
PAVEMENT CROSSFALL(DECIMAL NOTATION) = 0.02500
MAXIMUM DEPTH(FEET) = 1.00
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.443
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
APARTMENTS A 1.20 0.98 0.20 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.20
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 8.96
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 3.51
AVERAGE FLOW DEPTH(FEET) = 0.36 FLOOD WIDTH(FEET) = 19.28
"V" GUTTER FLOW TRAVEL TIME(MIN.) = 1.19 Tc(MIN.) = 9.28
SUBAREA AREA(ACRES) = 1.20 SUBAREA RUNOFF(CFS) = 4.59
EFFECTIVE AREA(ACRES) = 2.80 AREA - AVERAGED Fm(INCH /HR) = 0.19
AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.20
TOTAL AREA(ACRES) = 2.80 PEAK FLOW RATE(CFS) = 10.71
END OF SUBAREA "V" GUTTER HYDRAULICS:
DEPTH(FEET) = 0.38 FLOOD WIDTH(FEET) = 20.86
FLOW VELOCITY(FEET /SEC.) = 3.63 DEPTH *VELOCITY(FT *FT /SEC) = 1.38
LONGEST FLOWPATH FROM NODE 1.01 TO NODE 1.04 = 550.00 FEET.
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 1.04 TO NODE 1.05 IS CODE = 92
----------------------------------------------------------------------------
>>>>>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA<<<<<
UPSTREAM NODE ELEVATION(FEET) = 1241.90
DOWNSTREAM NODE ELEVATION(FEET) = 1240.50
CHANNEL LENGTH THRU SUBAREA(FEET) = 180.00
"V" GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET) = 0.125
PAVEMENT LIP(FEET) = 0.031 MANNING'S N = .0150
PAVEMENT CROSSFALL(DECIMAL NOTATION) = 0.02500
MAXIMUM DEPTH(FEET) = 1.00
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.168
SUBAREA LOSS RATE DATA(AMC II):
1 DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
APARTMENTS A 0.50 0.98 0.20 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
' SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.20
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 11.60
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 2.88
' AVERAGE FLOW DEPTH(FEET) = 0.43 FLOOD WIDTH(FEET) _ - 24.69
" V" GUTTER FLOW TRAVEL TIME(MIN.) = 1.04 Tc(MIN.) = 10.32
SUBAREA AREA(ACRES) = 0.50 SUBAREA RUNOFF(CFS) - 1.79
EFFECTIVE AREA(ACRES) = 3.30 AREA - AVERAGED FM(INCH /HR) = 0.19
AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.20
TOTAL AREA(ACRES) = 3.30 PEAK FLOW RATE(CFS) = 11.80
END OF SUBAREA "V" GUTTER HYDRAULICS:
J
DEPTH(FEET) = 0.43 FLOOD WIDTH(FEET) = 24.82
FLOW VELOCITY(FEET /SEC.) = 2.90 DEPTH *VELOCITY(FT *FT /SEC) = 1.24
LONGEST FLOWPATH FROM NODE 1.01 TO NODE 1.05 = 730.00 FEET.
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 1.05 TO NODE 1.05 IS CODE = 1
----------------------------------------------------------------------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) = 10.32
RAINFALL INTENSITY(INCH /HR) = 4.17
AREA- AVERAGED Fm(INCH /HR) = 0.19
AREA- AVERAGED Fp(INCH /HR) = 0.97
AREA- AVERAGED Ap = 0.20
EFFECTIVE STREAM AREA(ACRES) = 3.30
TOTAL STREAM AREA(ACRES) = 3.30
PEAK FLOW RATE(CFS) AT CONFLUENCE = 11.80
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM - NODE - - - - -- 101 - TO - NODE - - - - -- 106 - IS - CODE = 21
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<<<<
- - >>USE - TIME -OF- CONCENTRATION - NOMOGRAPH - FOR - INITIAL - SUBAREA« - - - - --
INITIAL SUBAREA FLOW- LENGTH(FEET) = 430.00
ELEVATION DATA: UPSTREAM(FEET) = 1247.00 DOWNSTREAM(FEET) = 1243.00
Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20
C
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.337
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.427
SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp
Ap SCS Tc
LAND USE GROUP (ACRES) (INCH /HR)
(DECIMAL) CN (MIN.)
APARTMENTS A 1.30 0.98
0.20 32 9.34
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) =
0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.20
SUBAREA RUNOFF(CFS) = 4.95
TOTAL AREA(ACRES) = 1.30 PEAK FLOW RATE(CFS)
= 4.95
FLOW PROCESS FROM NODE 106 NODE - - - - -- 105 - IS
- CODE = 92
- TO -
- - - - - --
>>>>>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA
<<<<<
'
UPSTREAM NODE ELEVATION(FEET) = 1243.00
DOWNSTREAM NODE ELEVATION(FEET) = 1240.50
CHANNEL LENGTH THRU SUBAREA(FEET) = 300.00
"V" GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET)
= 0.125
'
PAVEMENT LIP(FEET) = 0.031 MANNING'S N = .0150
PAVEMENT CROSSFALL(DECIMAL NOTATION) = 0.02500
MAXIMUM DEPTH(FEET) = 1.00
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.963
1
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp
Ap SCS
LAND USE GROUP (ACRES) (INCH /HR)
(DECIMAL) CN
C
APARTMENTS A 1.00 0.98 0.20 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.20
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.65
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 2.64
AVERAGE FLOW DEPTH(FEET) = 0.36 FLOOD WIDTH(FEET) = 19.15
"V" GUTTER FLOW TRAVEL TIME(MIN.) = 1.89 Tc(MIN.) = 11.23
SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 3.39
EFFECTIVE AREA(ACRES) = 2.30 AREA - AVERAGED Fm(INCH /HR) = 0.20
AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.20
TOTAL AREA(ACRES) = 2.30 PEAK FLOW RATE(CFS) = 7.80
r
END OF SUBAREA "V" GUTTER HYDRAULICS:
DEPTH(FEET) = 0.37 FLOOD WIDTH(FEET) = 20.47
FLOW VELOCITY(FEET /SEC.) = 2.74 DEPTH *VELOCITY(FT *FT /SEC) = 1.03
LONGEST FLOWPATH FROM NODE 1.01 TO NODE 1.05 = 730.00 FEET.
FLOW PROCESS FROM NODE 1.05 TO NODE 1.05 IS CODE = 1
----------------------------------------------------------------------------
>> » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« « <
>>>>> AND_ COMPUTE - VARIOUS - CONFLUENCED STREAM - VALUES<< «<-------------------
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
Ej TIME OF CONCENTRATION(MIN.) = 11.23
RAINFALL INTENSITY(INCH /HR) = 3.96
AREA- AVERAGED Fm(INCH /HR) = 0.20
AREA - AVERAGED Fp(INCH /HR) = 0.98
AREA- AVERAGED Ap = 0.20
EFFECTIVE STREAM AREA(ACRES) = 2.30
TOTAL STREAM AREA(ACRES) = 2.30
PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.80
** CONFLUENCE DATA **
STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER
NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE
1 11.80 10.32 4.168 0.97( 0.19) 0.20 3.3 1.01
2 7.80 11.23 3.963 0.98( 0.20) 0.20 2.3 1.01
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER
NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE
' 1 19.36 10.32 4.168 0.97( 0.19) 0.20 5.4 1.01
2 18.99 11.23 3.963 0.98( 0.19) 0.20 5.6 1.01
' COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 19.36 Tc(MIN.) = 10.32
EFFECTIVE AREA(ACRES) = 5.41 AREA - AVERAGED Fm(INCH /HR) = 0.20
AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.20
TOTAL AREA(ACRES) = 5.60
LONGEST FLOWPATH FROM NODE 1.01 TO NODE 1.05 = 730.00 FEET.
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
i
' FLOW PROCESS FROM NODE 1.05 TO NODE 1.14 IS CODE = 1
----------------------------------------------------------------------------
» » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE" «<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) = 10.32
RAINFALL INTENSITY(INCH /HR) = 4.17
AREA - AVERAGED Fm(INCH /HR) = 0.20
AREA - AVERAGED Fp(INCH /HR) = 0.97
IF L AREA- AVERAGED Ap = 0.20
L EFFECTIVE STREAM AREA(ACRES) = 5.41
TOTAL STREAM AREA(ACRES) = 5.60
.� PEAK FLOW RATE(CFS) AT CONFLUENCE = 19.36
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 1.10 TO NODE 1.11 IS CODE = 21
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<<<<
>>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW- LENGTH(FEET) = 200.00
ELEVATION DATA: UPSTREAM(FEET) = 1257.00 DOWNSTREAM(FEET) = 1256.30
Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.843
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.916
SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.)
COMMERCIAL A 0.30 0.98 0.10 32 7.84
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
SUBAREA RUNOFF(CFS) = 1.30
TOTAL AREA(ACRES) = 0.30 PEAK FLOW RATE(CFS) = 1.30
FLOW PROCESS FROM NODE 1.11 TO NODE 1.12 IS CODE = 62
----------------------------------------------------------------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<<
>>>>>( STREET TABLE SECTION # 1 USED)<<<<<
-------------------------------------
1 UPSTREAM ELEVATION(FEET) = 1256.30 DOWNSTREAM ELEVATION(FEET) = 1254.50
STREET LENGTH(FEET) = 400.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) = 52.00
' DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
INSIDE STREET CROSSFALL(DECIMAL) = 0.002
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.002
' SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150
' Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200
* *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.18
I STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
Li
STREET FLOW DEPTH(FEET) = 0.25
HALFSTREET FLOOD WIDTH(FEET) = 47.94
AVERAGE FLOW VELOCITY(FEET /SEC.) =
0.89
PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.)
= 0.22
STREET FLOW TRAVEL TIME(MIN.) = 7.45
Tc(MIN.) =
15.30
* 100 YEAR RAINFALL INTENSITY(INCH /HR) =
3.292
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
Fp
Ap SCS
LAND USE GROUP (ACRES)
(INCH /HR)
(DECIMAL) CN
COMMERCIAL A 0.60
0.98
0.10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
SUBAREA AREA(ACRES) = 0.60 SUBAREA RUNOFF(CFS) = 1.73
EFFECTIVE AREA(ACRES) = 0.90 AREA - AVERAGED Fm(INCH /HR) = 0.10
AREA- AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.10
TOTAL AREA(ACRES) = 0.90 PEAK FLOW RATE(CFS) = 2.59
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = 0.26 HALFSTREET FLOOD WIDTH(FEET) = 51.06
FLOW VELOCITY(FEET /SEC.) = 0.94 DEPTH *VELOCITY(FT *FT /SEC.) = 0.24
LONGEST FLOWPATH FROM NODE 1.10 TO NODE 1.12 = 600.00 FEET.
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 1.12 TO NODE 1.13 IS CODE = 62
E --------------------------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<<
>>>>>( STREET TABLE SECTION # 1 USED) <<<<<
UPSTREAM ELEVATION(FEET) = 1254.50 DOWNSTREAM ELEVATION(FEET) = 1249.80
STREET LENGTH(FEET) = 590.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) = 52.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
INSIDE STREET CROSSFALL(DECIMAL) = 0.002
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.002
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150
Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200
* *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.59
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.26
HALFSTREET FLOOD WIDTH(FEET) = 51.69
AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.28
PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 0.33
STREET FLOW TRAVEL TIME(MIN.) = 7.69 Tc(MIN.) = 22.99
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.578
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL A 0.90 0.98 0.10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
SUBAREA AREA(ACRES) = 0.90 SUBAREA RUNOFF(CFS) = 2.01
i EFFECTIVE AREA(ACRES) = 1.80 AREA- AVERAGED Fm(INCH /HR) = 0.10
L
' AREA- AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.10
TOTAL AREA(ACRES) = 1.80 PEAK FLOW RATE(CFS) = 4.02
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = 0.26 HALFSTREET FLOOD WIDTH(FEET) = 52.00
FLOW VELOCITY(FEET /SEC.) = 1.27 DEPTH *VELOCITY(FT *FT /SEC.) = 0.33
LONGEST FLOWPATH FROM NODE 1.10 TO NODE 1.13 = 1190.00 FEET.
FLOW PROCESS FROM NODE 1.13 TO NODE 1.14 IS CODE = 62
--------------------------------- -------------------------------------------
>>>>> COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>( STREET TABLE SECTION # 2 USED) < <<<
UPSTREAM ELEVATION(FEET) = 1249.80 DOWNSTREAM ELEVATION(FEET) = 1238.00
STREET LENGTH(FEET) = 590.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) = 32.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
INSIDE STREET CROSSFALL(DECIMAL) = 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150
Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200
* *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.06
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.36
HALFSTREET FLOOD WIDTH(FEET) = 11.63
1 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.44 -
PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.23
STREET FLOW TRAVEL TIME(MIN.) = 2.86 Tc(MIN.) 25.85
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.403
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL A 1.00 0.98 0.10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 2.08
EFFECTIVE AREA(ACRES) = 2.80 AREA - AVERAGED Fm(INCH /HR) = 0.10
AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.10
TOTAL AREA(ACRES) = 2.80 PEAK FLOW RATE(CFS) = 5.81
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = 0.37 HALFSTREET FLOOD WIDTH(FEET) = 12.27
FLOW VELOCITY(FEET /SEC.) = 3.58 DEPTH *VELOCITY(FT *FT /SEC.) = 1.33
' LONGEST FLOWPATH FROM NODE 1.10 TO NODE 1.14 = 1780.00 FEET.
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 1.14 TO NODE 1.14 IS CODE = 1
» >>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
it
'
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM
2 ARE:
TIME OF CONCENTRATION(MIN.) = 25.85
RAINFALL INTENSITY(INCH /HR) = 2.40
AREA - AVERAGED FM(INCH /HR) = 0.10
AREA- AVERAGED Fp(INCH /HR) = 0.98
AREA- AVERAGED Ap = 0.10
EFFECTIVE STREAM AREA(ACRES) = 2.80
TOTAL STREAM AREA(ACRES) = 2.80
PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.81
** CONFLUENCE DATA **
STREAM Q Tc Intensity Fp(Fm)
Ap Ae
HEADWATER
NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR)
(ACRES)
NODE
1 19.36 10.32 4.168 0.97( 0.19)
0.20 5.4
1.01
1 18.99 11.23 3.963 0.98( 0.19)
0.20 5.6
1.01
2 5.81 25.85 2.403 0.98( 0.10)
0.10 2.8
1.10
RAINFALL INTENSITY AND TIME OF CONCENTRATION
RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM Q Tc Intensity Fp(Fm)
Ap Ae
HEADWATER
NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR)
(ACRES)
NODE
1 23.46 10.32 4.168 0.97( 0.18)
0.18 6.5
1.01
2 23.22 11.23 3.963 0.98( 0.18)
0.18 6.8
1.01
3 16.94 25.85 2.403 0.98( 0.16)
0.17 8.4
1.10
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 23.46 Tc(MIN.) = 10.32
EFFECTIVE AREA(ACRES) = 6.53 AREA - AVERAGED Fm(INCH /HR) = 0.18
AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.18
TOTAL AREA(ACRES) = 8.40
LONGEST FLOWPATH FROM NODE 1.10 TO NODE 1.14 = 1780.00 FEET.
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
- - FLOW PROCESS FROM NODE 1.14 TO NODE 1.15 IS CODE = 62
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<<
>>>>>( STREET TABLE SECTION # 2 USED) <<<<<
----------------------------------------
UPSTREAM ELEVATION(FEET) = 1238.00 DOWNSTREAM ELEVATION(FEET) = 1233.70
1 STREET LENGTH(FEET) = 320.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) = 32.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
INSIDE STREET CROSSFALL(DECIMAL) = 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
' SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150
Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200
' * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 25.31
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.60
HALFSTREET FLOOD WIDTH(FEET) = 23.76
AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.39
PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.64
STREET FLOW TRAVEL TIME(MIN.) = 1.21 Tc(MIN.) = 11.54
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.899
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL A 0.30 0.98 0.10 32
RESIDENTIAL
"3 -4 DWELLINGS /ACRE" A 0.90 0.98 0.60 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.47
SUBAREA AREA(ACRES) = 1.20 SUBAREA RUNOFF(CFS) = 3.71
EFFECTIVE AREA(ACRES) = 7.73 AREA - AVERAGED Fm(INCH /HR) = 0.22
AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.23
TOTAL AREA(ACRES) = 9.60 PEAK FLOW RATE(CFS) = 25.59
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = 0.60 HALFSTREET FLOOD WIDTH(FEET) = 23.84
FLOW VELOCITY(FEET /SEC.) = 4.41 DEPTH *VELOCITY(FT *FT /SEC.) = 2.66
LONGEST FLOWPATH FROM NODE 1.10 TO NODE 1.15 = 2100.00 FEET.
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
ON
-- FLOW - PROCESS FROM - NODE - - - - -- 1.15 - TO NODE -- 115 - IS - CODE = 10
-- - - - - -- --------------------
» >>>MAIN- STREAM MEMORY COPIED ONTO - MEMORY BANK # 1 <<<<<
--------------------- - - - - -- -- --
FLOW PROCESS FROM NODE 1.10 TO NODE 2.11 IS CODE = 21
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<<<<
>>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW- LENGTH(FEET) = 210.00
ELEVATION DATA: UPSTREAM(FEET) = 1257.00 DOWNSTREAM(FEET) = 1251.70
Tc = K *((LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.387
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 6.158
SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.)
COMMERCIAL A 0.20 0.98 0.10 32 5.39
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
SUBAREA RUNOFF(CFS) = 1.09
TOTAL AREA(ACRES) = 0.20 PEAK FLOW RATE(CFS) = 1.09
FLOW PROCESS FROM NODE 2.11 TO NODE 2.12 IS CODE = 62
----------------------------------------------------------------------------
' >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<<
>>>>>( STREET TABLE SECTION # 3 USED) <<<<<
--------------------
' UPSTREAM ELEVATION(FEET) = 1251.70 DOWNSTREAM ELEVATION(FEET) = 1246.50
STREET LENGTH(FEET) = 400.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) = 22.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
INSIDE STREET CROSSFALL(DECIMAL) = 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150
Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200
* *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.94
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.29
HALFSTREET FLOOD WIDTH(FEET) = 8.43
AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.34
PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 0.69
STREET FLOW TRAVEL TIME(MIN.) = 2.85 Tc(MIN.) = 8.24
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.773
SUBAREA LOSS RATE DATA(AMC II):
pq DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL A 0.40 0.98 0.10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97
E SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
SUBAREA AREA(ACRES) = 0.40 SUBAREA RUNOFF(CFS) = 1.68
EFFECTIVE AREA(ACRES) = 0.60 AREA - AVERAGED Fm(INCH /HR) = 0.10
AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.10
TOTAL AREA(ACRES) = 0.60 PEAK FLOW RATE(CFS) = 2.52
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) = 9.50
FLOW VELOCITY(FEET /SEC.) = 2.47 DEPTH *VELOCITY(FT *FT /SEC.) = 0.78
LONGEST FLOWPATH FROM NODE 1.10 TO NODE 2.12 = 610.00 FEET.
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 2.12 TO NODE 2.13 IS CODE = 62
----------------------------------------------------------------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>( STREET TABLE SECTION # 3 USED) <<<<<
------------------
UPSTREAM ELEVATION(FEET) = 1246.50 DOWNSTREAM ELEVATION(FEET) = 1241.00
STREET LENGTH(FEET) = 340.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) = 22.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
INSIDE STREET CROSSFALL(DECIMAL) = 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150
Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200
* *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.08
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
' STREET FLOW DEPTH(FEET) = 0.32
HALFSTREET FLOOD WIDTH(FEET) = 9.83
AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.84
PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 0.92
STREET FLOW TRAVEL TIME(MIN.) = 2.00 Tc(MIN.) = 10.23
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.190
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL A 0.30 0.98 0.10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
SUBAREA AREA(ACRES) = 0.30 SUBAREA RUNOFF(CFS)
EFFECTIVE AREA(ACRES) = 0.90 AREA - AVERAGED Fm(INCH /HR) = 0.10
AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.10
TOTAL AREA(ACRES) = 0.90 PEAK FLOW RATE(CFS) = 3.32
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 10.15
FLOW VELOCITY(FEET /SEC.) = 2.88 DEPTH *VELOCITY(FT *FT /SEC.) = 0.95
LONGEST FLOWPATH FROM NODE 1.10 TO NODE 2.13 = 950.00 FEET.
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 2.13 TO NODE 2.14 IS CODE = 62
------------------------------------------------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<<
iiiWWW >>>>> ( STREET TABLE SECTION # 4 USED) < <<<
UPSTREAM ELEVATION(FEET) = 1241.00 DOWNSTREAM ELEVATION(FEET) = 1239.70
STREET LENGTH(FEET) = 150.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) = 18.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
INSIDE STREET CROSSFALL(DECIMAL) = 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150
E , Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200
* *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.10
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.38
HALFSTREET FLOOD WIDTH(FEET) = 12.65
AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.38
' PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 0.90
STREET FLOW TRAVEL TIME(MIN.) = 1.05 Tc(MIN.) = 11.28
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.952
' SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL A 0.10 0.98 0.10 32
RESIDENTIAL
11 3 -4 DWELLINGS /ACRE" A 0.40 0.98 0.60 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
' SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50
SUBAREA AREA(ACRES) = 0.50 SUBAREA RUNOFF(CFS) = 1.56
EFFECTIVE AREA(ACRES) = 1.40 AREA - AVERAGED Fm(INCH /HR) = 0.24
AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.24
TOTAL AREA(ACRES) = 1.40 PEAK FLOW RATE(CFS) = 4.68
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = 0.39 HALFSTREET FLOOD WIDTH(FEET) = 13.35
FLOW VELOCITY(FEET /SEC.) = 2.46 DEPTH *VELOCITY(FT *FT /SEC.) = 0.97
LONGEST FLOWPATH FROM NODE 1.10 TO NODE 2.14 = 1100.00 FEET.
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 2.14 TO NODE 2.14 IS CODE = 81
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <<<<<
---------------------------------
MAINLINE Tc(MIN) = 11.28
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.952
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
RESIDENTIAL
"3 -4 DWELLINGS /ACRE" A 0.80 0.98 0.60 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60
SUBAREA AREA(ACRES) = 0.80 SUBAREA RUNOFF(CFS) = 2.42
EFFECTIVE AREA(ACRES) = 2.20 AREA- AVERAGED Fm(INCH /HR) = 0.36
AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.37
TOTAL AREA(ACRES) = 2.20 PEAK FLOW RATE(CFS) = 7.11
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 2.14 TO NODE 2.15 IS CODE = 62
----------------------------------------------------------------------------
>> >>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<<
>>>>>( STREET TABLE SECTION # 4 USED) <<<<<
-------------------------------
UPSTREAM ELEVATION(FEET) = 1239.70 DOWNSTREAM ELEVATION(FEET) = 1237.20
STREET LENGTH(FEET) = 640.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) = 18.00
N
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
INSIDE STREET CROSSFALL(DECIMAL) = 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150
Manning's FRICTION FACTOR for Back -of -Walk Flow Section =
0.0200
* *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
7.92
** *STREET FLOW SPLITS OVER STREET- CROWN * **
FULL DEPTH(FEET) = 0.49 FLOOD WIDTH(FEET) = 18.00
FULL HALF - STREET VELOCITY(FEET /SEC.) = 1.98
SPLIT DEPTH(FEET) = 0.31 SPLIT FLOOD WIDTH(FEET) =
9.13
SPLIT FLOW(CFS) = 1.26 SPLIT VELOCITY(FEET /SEC.) =
1.33
'
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.49
HALFSTREET FLOOD WIDTH(FEET) = 18.00
N
0
�
N
0
0
J
�J
I�
AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.98
PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 0.96
STREET FLOW TRAVEL TIME(MIN.) = 5.38 Tc(MIN.) = 16.66
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.128
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL)
COMMERCIAL A 0.60 0.98 0.10
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
SUBAREA AREA(ACRES) = 0.60 SUBAREA RUNOFF(CFS) = 1.
EFFECTIVE AREA(ACRES) = 2.80 AREA - AVERAGED Fm(INCH /HR)
AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.31
TOTAL AREA(ACRES) = 2.80 PEAK FLOW RATE(CFS) =
SCS
CN
32
64
0.31
7.11
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = 0.49 HALFSTREET FLOOD WIDTH(FEET) = 18.00
FLOW VELOCITY(FEET /SEC.) = 1.98 DEPTH *VELOCITY(FT *FT /SEC.) = 0.96
LONGEST FLOWPATH FROM NODE 1.10 TO NODE 2.15 = 1740.00 FEET.
FLOW PROCESS FROM NODE 2.15 TO NODE 2.15 IS CODE = 1
-----------------------------------------------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.)
= 16.66
RAINFALL INTENSITY(INCH /HR)
= 3.13
AREA - AVERAGED Fm(INCH /HR) =
0.31
AREA - AVERAGED Fp(INCH /HR) =
0.97
AREA- AVERAGED Ap = 0.31
LAND USE
EFFECTIVE STREAM AREA(ACRES)
= 2.80
TOTAL STREAM AREA(ACRES) =
2.80
PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.11
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 2.16 TO NODE 2.17 IS CODE = 21
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<<<<
>>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW- LENGTH(FEET) = 150.00
ELEVATION DATA: UPSTREAM(FEET) = 1244.00 DOWNSTREAM(FEET) = 1241.30
Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
6.447
* 100 YEAR RAINFALL INTENSITY(INCH /HR) =
5.529
SUBAREA Tc AND LOSS RATE
DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
Fp
LAND USE
GROUP (ACRES)
(INCH /HR)
RESIDENTIAL
"5 -7 DWELLINGS /ACRE"
A 0.70
0.98
SUBAREA AVERAGE PERVIOUS
LOSS RATE, Fp(INCH /HR) =
SUBAREA AVERAGE PERVIOUS
AREA FRACTION, Ap
= 0.50
SUBAREA RUNOFF(CFS) =
3.18
TOTAL AREA(ACRES) =
0.70 PEAK FLOW
RATE(CFS)
Ap SCS Tc
(DECIMAL) CN (MIN.)
0.50 32 6.45
0.98
3.18
0
C 7
p
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 2.17 TO NODE 2.18 IS CODE = 62
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<<
»»> (STREET TABLE SECTION ## 4 USED) « «<
-----------------------------------
UPSTREAM ELEVATION(FEET) = 1241.30 DOWNSTREAM ELEVATION(FEET) = 1240.00
STREET LENGTH(FEET) = 250.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) = 18.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
INSIDE STREET CROSSFALL(DECIMAL) = 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150
Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200
* *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.16
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.38
HALFSTREET FLOOD WIDTH(FEET) = 12.49
AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.83
PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 0.69
STREET FLOW TRAVEL TIME(MIN.) = 2.27 Tc(MIN.) = 8.72
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.613
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
RESIDENTIAL
14 5 -7 DWELLINGS /ACRE" A 1.60 0.98 0.50
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50
SUBAREA AREA(ACRES) = 1.60 SUBAREA RUNOFF(CFS) = 5.94
EFFECTIVE AREA(ACRES) = 2.30 AREA - AVERAGED Fm(INCH /HR) _
AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.50
TOTAL AREA(ACRES) = 2.30 PEAK FLOW RATE(CFS) =
32
0.49
8.54
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = 0.41 HALFSTREET FLOOD WIDTH(FEET) = 14.29
FLOW VELOCITY(FEET /SEC.) = 1.98 DEPTH *VELOCITY(FT *FT /SEC.) = 0.81
LONGEST FLOWPATH FROM NODE 2.16 TO NODE 2.18 = 400.00 FEET.
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM - NODE - - - - -- 218 - TO - NODE - - - - -- 219 - IS CODE = 62
------------------- ---------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
»»> (STREET TABLE SECTION ## 4 USED) « «<
-------------------------------------
UPSTREAM ELEVATION(FEET) = 1240.00 DOWNSTREAM ELEVATION(FEET) = 1238.50
STREET LENGTH(FEET) = 300.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) = 18.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
INSIDE STREET CROSSFALL(DECIMAL) = 0.020
L
' OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150
Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200
* *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 11.61
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.45
HALFSTREET FLOOD WIDTH(FEET) = 16.24
AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.11
PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 0.95
STREET FLOW TRAVEL TIME(MIN.) = 2.37 TC(MIN.) = 11.09
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.992
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
RESIDENTIAL
"3 -4 DWELLINGS /ACRE" A 2.00 0.98 0.60 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60
SUBAREA AREA(ACRES) = 2.00 SUBAREA RUNOFF(CFS) = 6.13
EFFECTIVE AREA(ACRES) = 4.30 AREA- AVERAGED Fm(INCH /HR) = 0.53
AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.55
TOTAL AREA(ACRES) = 4.30 PEAK FLOW RATE(CFS) = 13.39
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = 0.47 HALFSTREET FLOOD WIDTH(FEET) = 17.18
FLOW VELOCITY(FEET /SEC.) = 2.18 DEPTH *VELOCITY(FT *FT /SEC.) = 1.02
LONGEST FLOWPATH FROM NODE 2.16 TO NODE 2.19 = 700.00 FEET.
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 2.19 TO NODE 2.15 IS CODE = 62
----------------------------------------------------------------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<<
` >>>>>( STREET TABLE SECTION # 4 USED) <<<<<
--------------- - - - - --
UPSTREAM ELEVATION(FEET) = 1238.50 DOWNSTREAM ELEVATION(FEET) = 1237.20
STREET LENGTH(FEET) = 170.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) = 18.00
' DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
INSIDE STREET CROSSFALL(DECIMAL) = 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
1 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150
Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200
* *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 14.25
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
t STREET FLOW DEPTH(FEET) = 0.45
HALFSTREET FLOOD WIDTH(FEET) = 16.16
AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.61
PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.17
STREET FLOW TRAVEL TIME(MIN.) = 1.09 Tc(MIN.) = 12.18
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.775
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
RESIDENTIAL
"3 -4 DWELLINGS /ACRE" A 0.60 0.98 0.60 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60
SUBAREA AREA(ACRES) = 0.60 SUBAREA RUNOFF(CFS) = 1.72
EFFECTIVE AREA(ACRES) = 4.90 AREA - AVERAGED Fm(INCH /HR) = 0.54
AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.55
TOTAL AREA(ACRES) = 4.90 PEAK FLOW RATE(CFS) = 14.27
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = 0.45 HALFSTREET FLOOD WIDTH(FEET) = 16.24
FLOW VELOCITY(FEET /SEC.) = 2.59 DEPTH *VELOCITY(FT *FT /SEC.) = 1.17
P^ LONGEST FLOWPATH FROM NODE 2.16 TO NODE 2.15 = 870.00 FEET.
FLOW PROCESS FROM NODE 2.15 TO NODE 2.15 IS CODE = 1
---------------- ------------ ------- ---- ----------------
---------------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) = 12.18
RAINFALL INTENSITY(INCH /HR) = 3.77
E AREA - AVERAGED Fm(INCH /HR) = 0.54
AREA - AVERAGED Fp(INCH /HR) = 0.98
AREA- AVERAGED Ap = 0.55
EFFECTIVE STREAM AREA(ACRES) = 4.90
TOTAL STREAM AREA(ACRES) = 4.90
PEAK FLOW RATE(CFS) AT CONFLUENCE = 14.27
** CONFLUENCE DATA **
STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER
NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE
1 7.11 16.66 3.128 0.97( 0.31) 0.31 2.8 1.10
2 14.27 12.18 3.775 0.98( 0.54) 0.55 4.9 2.16
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER
NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE
1 20.66 12.18 3.775 0.98( 0.47) 0.48 6.9 2.16
2 18.53 16.66 3.128 0.97( 0.45) 0.47 7.7 1.10
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 20.66 Tc(MIN.) = 12.18
EFFECTIVE AREA(ACRES) = 6.95 AREA- AVERAGED Fm(INCH /HR) = 0.47
AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.48
TOTAL AREA(ACRES) = 7.70
LONGEST FLOWPATH FROM NODE 1.10 TO NODE 2.15 = 1740.00 FEET.
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
-- FLOW - PROCESS - FROM - NODE - - - - -- 215 - TO - NODE - - - - -- 215 - IS - CODE = 81
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <<<<<
MAINLINE Tc(MIN) = 12.18
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.775
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA pp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL A 0.60 0.98 0.10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
SUBAREA AREA(ACRES) = 0.60 SUBAREA RUNOFF(CFS) = 1.99
ii EFFECTIVE AREA(ACRES) = 7.55 AREA - AVERAGED Fm(INCH /HR) = 0.44
AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.45
TOTAL AREA(ACRES) = 8.30 PEAK FLOW RATE(CFS) = 22.64
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
-- FLOW - PROCESS FROM - NODE - - - - -- 215 - TO - NODE - - - - -- 115 - IS - CODE - = 62
» » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «<
>>>>>( STREET TABLE SECTION # 4 USED) <<<<<
UPSTREAM ELEVATION(FEET) = 1237.20 DOWNSTREAM ELEVATION(FEET) = 1233.70
STREET LENGTH(FEET) = 410.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) = 18.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
INSIDE STREET CROSSFALL(DECIMAL) = 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150
Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200
* *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS)
** *STREET FLOWING FULL * **
= 24.95
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.51
HALFSTREET FLOOD WIDTH(FEET) = 18.00
AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.22
PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.66
STREET FLOW TRAVEL TIME(MIN.) = 2.12 Tc(MIN.) =
14.30
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.428
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp
Ap SCS
LAND USE GROUP (ACRES) (INCH /HR)
(DECIMAL) CN
COMMERCIAL A 0.60 0.98
0.10 32
RESIDENTIAL
"3 -4 DWELLINGS /ACRE" A 1.10 0.98
0.60 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) =
0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.42
SUBAREA AREA(ACRES) = 1.70 SUBAREA RUNOFF(CFS) = 4.61
'
EFFECTIVE AREA(ACRES) = 9.25 AREA- AVERAGED
Fm(INCH /HR) = 0.44
u
AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.45
TOTAL AREA(ACRES) = 10.00 PEAK FLOW RATE(CFS) = 24.90
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = 0.51 HALFSTREET FLOOD WIDTH(FEET) = 18.00
FLOW VELOCITY(FEET /SEC.) = 3.21 DEPTH *VELOCITY(FT *FT /SEC.) = 1.65
LONGEST FLOWPATH FROM NODE 1.10 TO NODE 1.15 = 2150.00 FEET.
FLOW PROCESS FROM NODE 1.15 TO NODE 1.15 IS CODE = 1
----------------------------------------------------------------------------
» >>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) = 14.30
RAINFALL INTENSITY(INCH /HR) = 3.43
AREA - AVERAGED FM(INCH /HR) = 0.44
AREA - AVERAGED Fp(INCH /HR) = 0.98
AREA- AVERAGED Ap = 0.45
EFFECTIVE STREAM AREA(ACRES) = 9.25
TOTAL STREAM AREA(ACRES) = 10.00
PEAK FLOW RATE(CFS) AT CONFLUENCE = 24.90
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 3.01 TO NODE 3.02 IS CODE = 21
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
>>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW- LENGTH(FEET) = 200.00
ELEVATION DATA: UPSTREAM(FEET) = 1256.00 DOWNSTREAM(FEET) = 1252.70
® TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 13.357
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.571
SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.)
NATURAL FAIR COVER
"GRASS" A 0.50 0.82 1.00 50 13.36
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.82
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA RUNOFF(CFS) = 1.24
TOTAL AREA(ACRES) = 0.50 PEAK FLOW RATE(CFS) = 1.24
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 3.02 TO NODE 3.03 IS CODE = 52
----------------------------------------------------------------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
»» >TRAVELTIME THRU SUBAREA <<<<<
ELEVATION DATA: UPSTREAM(FEET) = 1252.70 DOWNSTREAM(FEET) = 1251.50
CHANNEL LENGTH THRU SUBAREA(FEET) = 165.00 CHANNEL SLOPE = 0.0073
CHANNEL FLOW THRU SUBAREA(CFS) = 1.24
FLOW VELOCITY(FEET /SEC) = 1.33 (PER LACFCD /RCFC &WCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 2.06 Tc(MIN.) = 15.42
LONGEST FLOWPATH FROM NODE 3.01 TO NODE 3.03 = 365.00 FEET.
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 3.03 TO NODE 3.04 IS CODE = 52
----------------------------------------------------------------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA <<<<<
ELEVATION DATA: UPSTREAM(FEET) = 1251.50 DOWNSTREAM(FEET) = 1249.60
CHANNEL LENGTH THRU SUBAREA(FEET) = 205.00 CHANNEL SLOPE = 0.0093
CHANNEL FLOW THRU SUBAREA(CFS) = 3.54
FLOW VELOCITY(FEET /SEC) = 1.88 (PER LACFCD /RCFC &WCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 1.82 Tc(MIN.) = 17.24
LONGEST FLOWPATH FROM NODE 3.01 TO NODE 3.04 = 570.00 FEET.
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
-- FLOW - PROCESS FROM - NODE 3.04 TO NODE 3.04 IS CODE = 81
-----------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <<<<<
----------------------------------------------------------------------------
MAINLINE Tc(MIN) = 17.24
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.064
SUBAREA LOSS RATE DATA(AMC II):
' DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
NATURAL FAIR COVER
"GRASS" A 2.20 0.82 1.00 50
' SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.82
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) = 2.20 SUBAREA RUNOFF(CFS) = 4.44
EFFECTIVE AREA(ACRES) = 3.80 AREA - AVERAGED Fm(INCH /HR) = 0.82
AREA- AVERAGED Fp(INCH /HR) = 0.82 AREA- AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 3.80 PEAK FLOW RATE(CFS) = 7.67
FLOW PROCESS FROM NODE 3.04 TO NODE 3.05 IS CODE = 52
---------------------------------------------------------------------- - - - - --
' » » >COMPUTE NATURAL VALLEY CHANNEL FLOW<< <<<
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 3_03 NODE - -- 3.03 - IS CODE =
81
- TO
-- - - - - - - - --
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
== MAINLINE Tc(MIN) = 15.42
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.276
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap
SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL)
CN
NATURAL FAIR COVER
"GRASS" A 1.10 0.82 1.00
50
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.82
AVERAGE PERVIOUS AREA EA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) = 1.10 SUBAREA RUNOFF(CFS) = 2.43
EFFECTIVE AREA(ACRES) = 1.60 AREA - AVERAGED Fm(INCH /HR)
= 0.82
AREA - AVERAGED Fp(INCH /HR) = 0.82 AREA- AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 1.60 PEAK FLOW RATE(CFS) =
3.54
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 3.03 TO NODE 3.04 IS CODE = 52
----------------------------------------------------------------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA <<<<<
ELEVATION DATA: UPSTREAM(FEET) = 1251.50 DOWNSTREAM(FEET) = 1249.60
CHANNEL LENGTH THRU SUBAREA(FEET) = 205.00 CHANNEL SLOPE = 0.0093
CHANNEL FLOW THRU SUBAREA(CFS) = 3.54
FLOW VELOCITY(FEET /SEC) = 1.88 (PER LACFCD /RCFC &WCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 1.82 Tc(MIN.) = 17.24
LONGEST FLOWPATH FROM NODE 3.01 TO NODE 3.04 = 570.00 FEET.
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
-- FLOW - PROCESS FROM - NODE 3.04 TO NODE 3.04 IS CODE = 81
-----------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <<<<<
----------------------------------------------------------------------------
MAINLINE Tc(MIN) = 17.24
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.064
SUBAREA LOSS RATE DATA(AMC II):
' DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
NATURAL FAIR COVER
"GRASS" A 2.20 0.82 1.00 50
' SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.82
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) = 2.20 SUBAREA RUNOFF(CFS) = 4.44
EFFECTIVE AREA(ACRES) = 3.80 AREA - AVERAGED Fm(INCH /HR) = 0.82
AREA- AVERAGED Fp(INCH /HR) = 0.82 AREA- AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 3.80 PEAK FLOW RATE(CFS) = 7.67
FLOW PROCESS FROM NODE 3.04 TO NODE 3.05 IS CODE = 52
---------------------------------------------------------------------- - - - - --
' » » >COMPUTE NATURAL VALLEY CHANNEL FLOW<< <<<
>>>>>TRAVELTIME THRU SUBAREA <<<<<
ELEVATION DATA: UPSTREAM(FEET) = 1249.60 DOWNSTREAM(FEET) = 1246.80
CHANNEL LENGTH THRU SUBAREA(FEET) = 180.00 CHANNEL SLOPE = 0.0156
CHANNEL FLOW THRU SUBAREA(CFS) = 7.67
FLOW VELOCITY(FEET /SEC) = 2.92 (PER LACFCD /RCFC &WCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 1.03 Tc(MIN.) = 18.27
LONGEST FLOWPATH FROM NODE 3.01 TO NODE 3.05 = 750.00 FEET.
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
ON FLOW PROCESS FROM NODE - - - - -- 305 - TO - NODE - - - - -- 305 - IS CODE = 81
------------ ----- - - - - -- ---------------------
»» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <<<<<
_____________________________________________ _______________________________
MAINLINE Tc(MIN) = 18 27
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.959
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
NATURAL FAIR COVER
"GRASS" A 2.70 0.82 1.00 50
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.82
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) = 2.70 SUBAREA RUNOFF(CFS) = 5.20
�! EFFECTIVE AREA(ACRES) = 6.50 AREA - AVERAGED Fm(INCH /HR) = 0.82
AREA - AVERAGED Fp(INCH /HR) = 0.82 AREA- AVERAGED Ap = 1.00
Ali TOTAL AREA(ACRES) = 6.50 PEAK FLOW RATE(CFS) = 12.52
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
m FLOW PROCESS FROM NODE 3.05 TO NODE 3.06 IS CODE = 52
----------------------------------------------------------------------------
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW <<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 1246.80 DOWNSTREAM(FEET) = 1243.50
CHANNEL LENGTH THRU SUBAREA(FEET) = 190.00 CHANNEL SLOPE = 0.0174
CHANNEL FLOW THRU SUBAREA(CFS) = 12.52
FLOW VELOCITY(FEET /SEC) = 3.49 (PER LACFCD /RCFC &WCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 0.91 Tc(MIN.) = 19.18
LONGEST FLOWPATH FROM NODE 3.01 TO NODE 3.06 = 940.00 FEET.
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
-- FLOW - PROCESS - FROM - NODE - - - - -- 306 - TO - NODE - - - -- - 306 IS CODE = 81
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <<<<<
MAINLINE Tc(MIN) = 19.18
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.875
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
NATURAL FAIR COVER
"GRASS" A 4.30 0.82 1.00 50
' SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.82
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) = 4.30 SUBAREA RUNOFF(CFS) = 7.95
EFFECTIVE AREA(ACRES) = 10.80 AREA- AVERAGED Fm(INCH /HR) = 0.82
AREA- AVERAGED Fp(INCH /HR) = 0.82 AREA- AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 10.80 PEAK FLOW RATE(CFS) = 19.97
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 3.06 TO NODE 3.07 IS CODE = 31
----------------------------------------------------------------------------
>>>>> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA «« <
- - >>>>> USING - COMPUTER-ESTIMATED - PIPESIZE (NON - PRESSURE FLOW)<< « <----- - - - - --
ELEVATION DATA: UPSTREAM(FEET) = 1239.50 DOWNSTREAM(FEET) = 1235.30
FLOW LENGTH(FEET) = 430.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 19.0 INCHES
PIPE -FLOW VELOCITY(FEET /SEC.) = 7.47
ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1
PIPE- FLOW(CFS) = 19.97
PIPE TRAVEL TIME(MIN.) = 0.96 Tc(MIN.) = 20.14
LONGEST FLOWPATH FROM NODE 3.01 TO NODE 3.07 = 1370.00 FEET.
FLOW PROCESS FROM NODE 3.07 TO NODE 1.15 IS CODE = 36
----------------------------------------------------------------------------
i
>>>>> COMPUTE BOX -FLOW TRAVEL TIME THRU SUBAREA <<<<<
>>>>> USING COMPUTER - ESTIMATED BOX SIZE (PRESSURE FLOW)<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 1235.30 DOWNSTREAM(FEET) = 1233.70
FLOW LENGTH(FEET) = 310.00 MANNING'S N = 0.014
GIVEN HEIGHT /BASEWIDTH RATIO = 0.50
*ESTIMATED BOX BASEWIDTH(FEET) = 3.00 ESTIMATED HEIGHT(FEET) = 1.50
BOX -FLOW VELOCITY(FEET /SEC.) = 4.43
BOX- FLOW(CFS) = 19.97
BOX -FLOW TRAVEL TIME(MIN.) = 1.17 Tc(MIN.) = 21.30
LONGEST FLOWPATH FROM NODE 3.01 TO NODE 1.15 = 1680.00 FEET.
FLOW PROCESS FROM NODE 1.15 TO NODE 1.15 IS CODE = 1
----------------------------------------------------------------------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES <<<<<
----------------------------------
}
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) = 21.30
RAINFALL INTENSITY(INCH /HR) = 2.70
AREA- AVERAGED Fm(INCH /HR) = 0.82
AREA - AVERAGED Fp(INCH /HR) = 0.82
AREA- AVERAGED Ap = 1.00
EFFECTIVE STREAM AREA(ACRES) = 10.80
TOTAL STREAM AREA(ACRES) = 10.80
PEAK FLOW RATE(CFS) AT CONFLUENCE = 19.97
** CONFLUENCE DATA **
STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER
NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE
' 1 24.90 14.30 3.428 0.98( 0.44) 0.45 9.2 2.16
1 22.28 18.88 2.901 0.97( 0.43) 0.44 10.0 1.10
2 19.97 21.30 2.699 0.82( 0.82) 1.00 10.8 3.01
1
' RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 43.51 Tc(MIN.) = 14.30
EFFECTIVE AREA(ACRES) = 16.50 AREA - AVERAGED Fm(INCH /HR) = 0.60
AREA - AVERAGED Fp(INCH /HR) = 0.88 AREA- AVERAGED Ap = 0.69
TOTAL AREA(ACRES) = 20.80
LONGEST FLOWPATH FROM NODE 1.10 TO NODE 1.15 = 2150.00 FEET.
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 1.15 TO NODE 1.15 IS CODE = 11
>>>>> CONFLUENCE MEMORY BANK # 1 WITH THE MAIN- STREAM MEMORY <<<<<
** PEAK
FLOW RATE TABLE
**
STREAM
Q
STREAM
Q
Tc
Intensity
Fp(Fm)
Ap
Ae
HEADWATER
(CFS)
NUMBER
(CFS)
(MIN.)
(INCH /HR)
(INCH /HR)
NODE
(ACRES)
NODE
43.51
1
2
43.51
41.89
14.30
18.88
3.428
2.901
0.88( 0.60)
0.87( 0.62)
0.69
0.71
16.5
19.6
2.16
1.10
41.89
3
40.42
21.30
2.699
0.86( 0.63)
0.73
20.8
3.01
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 43.51 Tc(MIN.) = 14.30
EFFECTIVE AREA(ACRES) = 16.50 AREA - AVERAGED Fm(INCH /HR) = 0.60
AREA - AVERAGED Fp(INCH /HR) = 0.88 AREA- AVERAGED Ap = 0.69
TOTAL AREA(ACRES) = 20.80
LONGEST FLOWPATH FROM NODE 1.10 TO NODE 1.15 = 2150.00 FEET.
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 1.15 TO NODE 1.15 IS CODE = 11
>>>>> CONFLUENCE MEMORY BANK # 1 WITH THE MAIN- STREAM MEMORY <<<<<
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 67.93 Tc(MIN.) = 14.301
EFFECTIVE AREA(ACRES) = 24.71 AREA- AVERAGED Fm(INCH /HR) = 0.48
AREA- AVERAGED Fp(INCH /HR) = 0.89 AREA- AVERAGED Ap = 0.52
TOTAL AREA(ACRES) = 30.40
LONGEST FLOWPATH FROM NODE 1.10 TO NODE 1.15 = 2150.00 FEET.
u
** MAIN
STREAM CONFLUENCE DATA **
STREAM
Q
Tc
Intensity
Fp(Fm)
Ap
Ae
HEADWATER
NUMBER
(CFS)
(MIN.)
(INCH /HR)
(INCH /HR)
(ACRES)
NODE
1
43.51
14.30
3.428
0.88( 0.60)
0.69
16.5
2.16
2
41.89
18.88
2.901
0.87( 0.62)
0.71
19.6
1.10
3
40.42
21.30
2.699
0.86( 0.63)
0.73
20.8
3.01
LONGEST
FLOWPATH
FROM
NODE
1.10 TO NODE
1.15 =
2150.00 FEET.
MEMORY BANK #
1 CONFLUENCE DATA **
STREAM
Q
Tc
Intensity
Fp(Fm)
Ap
Ae
HEADWATER
NUMBER
(CFS)
(MIN.)
(INCH /HR)
(INCH /HR)
(ACRES)
NODE
1
25.59
11.54
3.899
0.98( 0.22)
0.23
7.7
1.01
2
25.29
12.45
3.725
0.98( 0.22)
0.23
8.0
1.01
3
18.42
27.17
2.332
0.98( 0.20)
0.21
9.6
1.10
LONGEST
FLOWPATH
FROM
NODE
1.10 TO NODE
1.15 =
2100.00 FEET.
** PEAK
FLOW RATE TABLE **
STREAM
Q
Tc
Intensity
Fp(Fm)
Ap
Ae
HEADWATER
NUMBER
(CFS)
(MIN.)
(INCH /HR)
(INCH /HR)
(ACRES)
NODE
1
66.55
11.54
3.899
0.89( 0.46)
0.52
21.0
1.01
2
67.15
12.45
3.725
0.89( 0.47)
0.52
22.4
1.01
3
67.93
14.30
3.428
0.89( 0.48)
0.53
24.7
2.16
4
64.17
18.88
2.901
0.88( 0.49)
0.56
28.3
1.10
5
61.58
21.30
2.699
0.88( 0.50)
0.57
29.8
3.01
6
51.69
27.17
2.332
0.88( 0.49)
0.56
30.4
1.10
TOTAL
AREA(ACRES) =
30.40
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 67.93 Tc(MIN.) = 14.301
EFFECTIVE AREA(ACRES) = 24.71 AREA- AVERAGED Fm(INCH /HR) = 0.48
AREA- AVERAGED Fp(INCH /HR) = 0.89 AREA- AVERAGED Ap = 0.52
TOTAL AREA(ACRES) = 30.40
LONGEST FLOWPATH FROM NODE 1.10 TO NODE 1.15 = 2150.00 FEET.
u
FLOW PROCESS FROM NODE 1.15 TO NODE 1.15 IS CODE = 81
----------------------------------------------------------------------------
- - >>>>> ADDITION - OF - SUBAREA - TO - MAINLINE - PEAK - FLOW <<<<< ----------------- - - - - --
MAINLINE Tc(MIN) = 14.30
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.428
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL A 0.90 0.98 0.10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
SUBAREA AREA(ACRES) = 0.90 SUBAREA RUNOFF(CFS) = 2.70
EFFECTIVE AREA(ACRES) = 25.61 AREA - AVERAGED Fm(INCH /HR) = 0.46
AREA - AVERAGED Fp(INCH /HR) = 0.89 AREA- AVERAGED Ap = 0.52
TOTAL AREA(ACRES) = 31.30 PEAK FLOW RATE(CFS) = 68.35
** PEAK FLOW RATE TABLE **
STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER
NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE
1 68.13 11.54 3.899 0.89( 0.45) 0.50 21.9 1.01
2 68.56 12.45 3.725 0.89( 0.45) 0.51 23.3 1.01
3 68.35 14.30 3.428 0.89( 0.46) 0.52 25.6 2.16
4 64.17 18.88 2.901 0.88( 0.48) 0.55 29.2 1.10
5 61.58 21.30 2.699 0.88( 0.49) 0.56 30.7 3.01
6 52.09 27.17 2.332 0.88( 0.48) 0.55 31.3 1.10
NEW PEAK FLOW DATA ARE:
PEAK FLOW RATE(CFS) = 68.56 Tc(MIN.) = 12.45
AREA-AVERAGED Fm(INCH /HR) = 0.45 AREA - AVERAGED Fp(INCH /HR) = 0.89
AREA- AVERAGED Ap = 0.51 EFFECTIVE AREA(ACRES) = 23.28
FLOW PROCESS FROM NODE 1.15 TO NODE 4.01 IS CODE = 62
----------------------------------------------------------------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<<
>>>>>( STREET TABLE SECTION # 1 USED) < <<<
---------------------------
UPSTREAM ELEVATION(FEET) = 1233.70 DOWNSTREAM ELEVATION(FEET) = 1229.50
STREET LENGTH(FEET) = 340.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) = 52.00
' DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
INSIDE STREET CROSSFALL(DECIMAL) = 0.002
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.002
' SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150
Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200
* *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 70.53
** *STREET FLOWING FULL * **
' STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.39
HALFSTREET FLOOD WIDTH(FEET) = 52.00
AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.60
END OF RATIONAL METHOD ANALYSIS
i
F,
1
u
PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.41
STREET FLOW TRAVEL TIME(MIN.) =
1.57 Tc(MIN.) = 14.02
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.468
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL
AREA Fp Ap
SCS
LAND USE GROUP
(ACRES) (INCH /HR) (DECIMAL)
CN
COMMERCIAL A
0.70 0.98 0.10
32
RESIDENTIAL
11 3 -4 DWELLINGS /ACRE" A
0.70 0.98 0.60
32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.35
SUBAREA AREA(ACRES) = 1.40
SUBAREA RUNOFF(CFS) = 3.94
EFFECTIVE AREA(ACRES) = 24.68
AREA - AVERAGED Fm(INCH /HR)
= 0.45
AREA - AVERAGED Fp(INCH /HR) = 0.90
AREA- AVERAGED Ap = 0.50
3
TOTAL AREA(ACRES) = 32.70
PEAK FLOW RATE(CFS) =
68.56
NOTE: PEAK FLOW RATE DEFAULTED TO
UPSTREAM VALUE
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = 0.39 HALFSTREET FLOOD WIDTH(FEET) = 52.00
FLOW VELOCITY(FEET /SEC.) = 3.57
DEPTH *VELOCITY(FT *FT /SEC.)
= 1.38
LONGEST FLOWPATH FROM NODE 1.10
TO NODE 4.01 = 2490.00
FEET,
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 32.70
TC(MIN.) = 14.02
�!
EFFECTIVE AREA(ACRES) = 24.68
AREA - AVERAGED Fm(INCH /HR)=
0.45
AREA- AVERAGED Fp(INCH /HR) = 0.90
AREA- AVERAGED Ap = 0.50
ii
PEAK FLOW RATE(CFS) = 68.56
** PEAK FLOW RATE TABLE **
Eli
STREAM Q Tc Intensity
Fp(Fm) Ap Ae HEADWATER
NUMBER (CFS) (MIN.) (INCH /HR)
(INCH /HR) (ACRES) NODE
1 68.13 13.12 3.610
0.90( 0.44) 0.49 23.3
1.01
2 68.56 14.02 3.468
0.90( 0.45) 0.50 24.7
1.01
3 68.35 15.88 3.219
0.89( 0.46) 0.51 27.0
2.16
4 64.17 20.51 2.761
0.88( 0.47) 0.54 30.6
1.10
5 61.58 22.95 2.581
0.88( 0.48) 0.55 32.1
3.01
6 52.09 28.93 2.246
0.88( 0.48) 0.54 32.7
1.10
END OF RATIONAL METHOD ANALYSIS
i
F,
1
u
E� s ► ► o La)
** RESULTS OF IRREGULAR CHANNEL ANALYSIS **
CALCULATIONS BASED ON MANNINGS EQUATION
WITH ALL DIMENSIONS IN FEET OR FEET AND SECONDS
-----------------------------------------------------
(c) Copyright 1983 -2003 Advanced Engineering Software (aes)
Ver. 8.0 Release Date: 01/01/2003 License ID 1400
Analysis prepared by:
Allard Engineering
8253 Sierria Avenue
Fontana Ca. 92335
* * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * **
* Live Oak Ave Existing Half Strret Capacity Approximately 200
* Feet South of Yucca Ave, by: DSH
*
******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
TIME /DATE OF STUDY: 12:10 02/12/2007
----------------------------------------------------------------------------
* ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
NODE NUMBER "X" COORDINATE "Y" COORDINATE
1 0.00 0.30
2 12.00 0.06
3 13.00 0.00
4 18.00 0.30
5 30.00 1.30
SUBCHANNEL SLOPE(FEET /FEET) = 0.005000
SUBCHANNEL MANNINGS FRICTION FACTOR = 0.016000
.. SUBCHANNEL FLOW(CFS) - 4.3 -
SUBCHANNEL FLOW AREA (SQUARE FEET) 2.46
SUBCHANNEL FLOW VELOCITY(FEET /SEC.) = 1.742
SUBCHANNEL FROUDE NUMBER = 0.830
SUBCHANNEL FLOW TOP- WIDTH(FEET) = 18.00
SUBCHANNEL HYDRAULIC DEPTH(FEET) = 0.14
----------------------------------------------------------------------------
TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 4.00
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 4.28
ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
ELEVATION ............................. 0.30
1
NOTE: WATER SURFACE IS BELOW EXTREME
LEFT AND RIGHT BANK ELEVATIONS.
» »STREETFLOW MODEL INPUT INFORMATION ««
CONSTANT STREET GRADE(FEET/FEET) = 0.005000
CONSTANT STREET FLOW DEPTH(FEET) = 0.91
AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000
CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 32.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000
CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.67
CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50
CONSTANT SYMMETRICAL GUTTER- LIP(FEET) = 0.03125
CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) = 0.12500
FLOW ASSUMED TO FILL STREET ON ONE SIDE.
STREET FLOW MODEL RESULTS:
WARNING: STREET FLOW SPLITS OVER STREET - CROWN.
NOTE: STREET FLOW EXCEEDS TOP OF CURB.
THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION
THAT NEGLI 3LE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL.
THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED.
STREET FLOW DEPTH(FEET) = 0.91
HALFSTREET FLOOD WIDTH(FEET) = 32.00
HALFSTREET FLOW(CFS) = 63.07 co Z. (.0 _ c F.s
AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.20
PRODUCT OF DEPTH &VELOCITY = 3.82
0
0
id
w
L
10
1
r
0
O LTA " G,0001 1
» »STREETFLOW MODEL INPUT INFORMATION ««
CONSTANT STREET GRADE(FEET/FEET) = 0.005000
CONSTANT STREET FLOW DEPTH(FEET) = 0.83
AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000
CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 32.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000
CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.67
CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50
CONSTANT SYMMETRICAL GUTTER- LIP(FEET) = 0.03125
CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) = 0.12500
FLOW ASSUMED TO FILL STREET ON ONE SIDE.
STREET FLOW MODEL RESULTS:
WARNING: STREET FLOW SPLITS OVER STREET - CROWN.
NOTE: STREET FLOW EXCEEDS TOP OF CURB.
THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION
THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL.
THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED.
STREET FLOW DEPTH(FEET) = 0.83
HALFSTREET FLOOD WIDTH(FEET) = 32.00
HALFSTREET FLOW(CFS) = 46.12_ I x Z 5
AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.70 p�
PRODUCT OF DEPTH &VELOCITY = 3.07 JZ
C(�, G
» »STREETFLOW MODEL INPUT INFORMATION ««
- - - - ---------------------------------------------------------------
CONSTANT STREET GRADE(FEET/FEET) = 0.005000
CONSTANT STREET FLOW DEPTH(FEET) = 0.76
AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000
CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 32.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000
CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.67
E I CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50
CONSTANT SYMMETRICAL GUTTER- LIP(FEET) = 0.03125
CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) = 0.12500
r FLOW ASSUMED TO FILL STREET ON ONE SIDE.
STREET FLOW MODEL RESULTS:
NOTE: STREET FLOW EXCEEDS TOP OF CURB.
THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION
THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL.
THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED.
STREET FLOW DEPTH(FEET) = 0.76
HALFSTREET FLOOD WIDTH(FEET) = 31.69
HALFSTREET FLOW(CFS) = 32.45
AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.19
PRODUCT OF DEPTH &VELOCITY = 2.43
0
1
11
L-Tssz, �A L)Tr�� v�
» »STREETFLOW MODEL INPUT INFORMATION ««
- - - - ---------------------------------------------------------------
CONSTANT STREET GRADE(FEET/FEET) = 0.005000
CONSTANT STREET FLOW DEPTH(FEET) = 0.67
AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000
CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 24.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00
INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.035000
CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.67
CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 0.10
CONSTANT SYMMETRICAL GUTTER- LIP(FEET) = 0.01000
CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) = 0.01000
"! FLOW ASSUMED TO FILL STREET ON ONE SIDE.
STREET FLOW MODEL RESULTS:
tw STREET FLOW DEPTH(FEET) = 0.67
HALFSTREET FLOOD WIDTH(FEET) = 23.67
HALFSTREET FLOW(CFS) = 19.44
AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.91
PRODUCT OF DEPTH &VELOCITY = 1.95
D
1
1
L6 1•� - r T - -- 1 i - - ! -- rt — R2W - - r- . " RIW \` Rlf R2E
.7 Rg ' R7W R6W R5 I i �t4W ,_' -1,,, o - - -- - -- — -- - - -- - - �� - -! — — — — - — _ . 1- 30 R
! 1 %VW T I r
—r I - ..pan . F•;A I 4 9
TiaTi Nu i I � , • � ' _ _ r' dig
s
AV
i ,,•} _ _
• i ' � ,y z '..• zz • "�. •'� .✓, 1 +�+ - "._•jb 23 ^__ ~LI ' �
r 5th ° - w 4 � • �.• !. 4 c , cy i
T -- .• s' — a. ' ; IA A•. kra. — 1�
• •a011 I "1-
too
TIN — — — - s — �— ., - T �, .•� = 1�7`_
Aft Z
it
PL
RI LT
arleiol* • +» ON TA — 1's� •' _ ♦ �' - - .r - f- — —
i • :• — i - - - - - - -- - - - - - - L� - • -- - - - _— j•IS
71S -- - - -- - .S _ �• • COLT N -
<s -
ONTA 1oa -'' � - Rf L NO "°• _- r ,..°} - - <� -- -.t.� ,,_ � —
TwAeft
CHAO
ol
• - ♦._ - — Lull wa - - —�
`.�" — .-. - Ica•, -._ - _ � '` _ �OOCVC►V►. 1AV►.11TrT�ii1�
R2W RI .4064T
....... �► R4W
W4V AREA
i
REDUCED DRAWING
w°
i = 4 MILES Yin
-100
I ,h . -- • - SCALE
T3S - - - - - - '' •.. • - .am ar aao�.1►ww t>.Iws
°r
L6 - SAN BERNARDINO COUNTY
- //pIbllm or -
•• J
w - HYDROLOGY MANUAL �� �`
• .,< 8 W ( 1.8 ISOLINEf PRE':IPITATtON (INCHES)
`✓ 1N2 M1aa t1�F� =
K
8-12 FIGURE 8 -4
VKAXV
R R6W
R�j
T4N R W 04W R2W Riw RIE
R2E
T
.7
T4N
A 4
T
NZ!
t 4
i C
71
6
T3N
31*
1.4
Nil
T2N
34-T2 N
0 i — — — — ��
r - -- Lt r -f- �� - • 1 •\• 1 1 .� �s I y / � w I r - —'! — - `�.— — — — - — -- '— LAW
14
17
4-
/
12 -7L
01
r l
Tm
4
b ig
c-
Ll
- T T LN
r
LOW
-4
N --. A SA%
OLAND
4
u I ALTO
F TAN
7
TIS z
� I
104P
TON
ps
REPLAND
..........
c"Imo
S4 RIE
RTE
T2S
I RUDE -:7
N
R4W R3 R2W
Al ZA
Zo w
+
SAN X :=UNTY
MTIWT
-AaG W-
T3S R5 MALLIREA -
REDUCED DRAWING
1111OPM
SCALE 1"Z 4 k1LES Yo - 10 WARM ALS I H"
&%M ft V"Jr, NOAA. AMA t. WS
A SAN BERNARDINO COUNTY
Aralo•I�o ax
J R 8 W R7W R6
HYDROLOGY MANUAL _Lf_G E .40
............................ ISOLINES P,:ECI PITATION INC14ES I OIRE
02 !C-t1t-L f!T3 t172
FIGURE 8-3
e
c
t
c
c
c
c
c
c
c
e
"coz:::rTwL -- -- eL\lQ
R,
i
°IfW
( SEE STD. 109 )
TYPICAL SECTION
WITH RAISED MEDIAN
R/W
TYPICAL SECTION
WITH CONTINUOUS LEFT TURN LANE
NOTES:
1. STRUCTURAL SECTION OF ROADWAY SMALL BE DETERMINED FROM SOILS TESTS
AND SO INDICATED ON CONSTRUCTION PLANS.
2. DRAINAGE FACILITIES SNALL BE PROVIDED TO DEWATER RAISED MEDIAN AREAS.
3. 10' SMOULDER AREAS MAY BE DESIGNATED AS A DIKE LANE AND EMERGENCY
PARKING ONLY.
WMARDINO COUNTY TRANSPORTATION DEP"
JOHN R. SHONE
DIRECTOR OF TRANSPORTATION
R/W
MAJOR ARTERIAL 1100
(SEE STO.109 )
e
c
c
e
I N e- C)
44 4
44'
( SEE STD. 109)
c
NOTES:
TYPICAL SECTION
I. STRUCTURAL SECTION OF ROADWAY SHALL BE DETERMINED FROM SOILS
TESTS AND SO INDICATED ON CONSTRUCTION PLANS.
2 8' SHOULDER AREAS MAY BE DESIGNATED AS A BIKE LANE AND EMERGEN-
CY PARKING ONLY.
SAN KRNARDINO COUNTY TRANSPORTATION OVORTMENT
QATE ✓OHN R. SHONE SECONDARY HIGHWAY 102
."
DIRECTOR Of TRANSPORTATION
e
c
c
E
L
C
C
L
G
1
1
1
1
1
8
C
I 0
0.00'
0.36'
0.14'
036
0.76
1.02
0.69'
0.36
0.00
0.19'
(0.03)
0.19'
0.76'
O.Id
O-V
0.19'
c
c
c
TYPICAL SECTION
NOTES:
1. THIS TYPICAL SECTION SHALL BE-USED ONLY ON LOCAL STREETS SUCH AS CUL
DE -SACS, LOOPS - AND STREETS THAT DO NOT CARRY THROUGH TYPE TRAFFIC.
THE USE SHALL BE LIMITED TO STREETS WHICH ARE PROJECTED TO CARRY
LESS THAN K>DO ADT UPON ULTIMATE DEVELOPMENT OF THE AREA.
2. STRUCTURAL SECTION OF ROADWAY SHALL BE DETERMINED FROM SOIL TESTS AND
SO INDICATED ON CONSTRUCTION PLANS. ,
3. CONSTRUCTION OUTSIDE. R/W LINE- SHALL'RECUIRE. SLOPE'�EASEMENTS. .
4. TILT SECTION SHALL CONFORM TO LOCAL STREET STANDARD NO. 104.
3t. B' WIDE SIDEWALK AND PUBLIC UTILITIES EASEMENT AT THE OPTION OF THE
OWNER, THIS AREA MAY BE DEDICATED AS ROAD RIGHT -OF -WAY.
SAN.BERNARDINO COUNTY TRANSPORTATION DEPARTMENT
DATE- 1W R ` JOHN R. SHONE LOCAL STREET 104
DIRECTOR OF TRANSPORTATION ( LESS THAN 1000 ADT) A
e
c
c
e
c
c
EXPANSION JOINT AT END OF RETURN,
AND STRUCTURES
e -CURB LINE —
-, - GUTTER LINE
PLAN 0.0635 CUBIC YARDS PER LINEAL FOOT.
1B.T LINEAL FEET PER CUBIC YARD.
.Survey reference point(;010 Round Head Bross Screw, minimum length 11/4 )-set
CURB
flush at end of curb return during construction.
ELEVATION - - �CURB LINE
I /2 "R� 1\ 6" �j- -i/2 "R PLACE PAVEMENT 1/4 "ABOVE GUTTER
° 2
O B rl/2" R -"R
I I/2 " /
•
A e
d d
\ PREMOLDED
` GXPANSION
Vq_ JOINT FILLER
EXPANSION JOINT
L. CURB AND GUTTER SHALL BE .CONSTRUCTED MONOLITHICALLY OF .CLASS . ".B" CONCRETE.
1 2. wIDTHS OF ' STREET'SECTIONS= SHOWN'�ON - PLANS 7WE�TO"CURB''L'INE' UNLESS
OTHERWISE INDICATED.
3 WEAKENED PLANE JOIN73 SHALL BE CONSTRUCTED AT 10 -FOOT INTERVAL.S,EXCEPT THAT THE
INTERVAL SMALL BE VARIED TO ALLOW MATCHING OF JOINTS IN ADJACENT EXISTING IMPROVE
` 4. GUR1NG COMPOUND SMALL BE SPRAYED UNIFORMLY ON EXPOSED SURFACES.
'.S WHEN CURB AND IS PLACED BY AN EXTRUSION MACHINE MINOR FINISHING MAY BE DONE
TO PROVIDE AN ACCEPTABLE FINISH AND THE WEAKENED PLANE JOINTS MAY BE SAwCUT.
8
CURB AND GUTTER 1
U
R/W R /W
60
r�
3d 30
E " 12' IS Id 12
led me 5S 59 123 Ks
z SLOP
VS �q� C ��� ��. 1 .
- 2.0 % SEE NOTES SIDEVAIA UNE
-- I
jr
CURB 8 GUTTER
TYPICAL SECTION ALTERNATE SIOEW
LEVEL (IF SHOWN ON PLAN)
L It
12.5' 5.5' 5.5' 123'
I
LEVEL LINE
3.0% 2.0%_
TYPI CA L SECTION
TILT
��
e CURB LEVEL
TILT
6" CURB LEA
TILT
A
B
C
0
0.00
033
0.22
033
0.44
0.6E
.0.30
033
0.00
o.IE
OAS'
oit
0.44'
0.49
033
O.IE
1
NOTE u
I. STRUCTURAL SECTION OF ROADWAY SHALL BE DETERMINED FROM SOILS TESTS
AND 30 INDICATED ON CONSTRUCTION PLANS.
2. MINIMUM DESIGN PAVING THICKNESS SHALL BE 0.20 ASPHALT CONCRETE-
3. CONSTRUCTION OUTSIDE R/W WILL REQUIRE SLOPE EASEMENTS
4 WHEN PREPARING SIJSGRADE FOR PRANP, CENTERLINE - CROWN ON THE IEVEL SECTION" SMALL BE
RELOCATED EITHER LEFT OR RIGHT 0.50 10 MATCH CROWN BREAK N WAVING MACHINE.
SAN BERNARDINO COW" ROAD DEPl4RTM&O
°'T f ` ,loan R Snono LOCAL STREET 104
COUNTY HIGHWAY EN61NEE1t
THIS MAP IS FOR THE PURPOSE
Of AD VALOREM TAXATION ONLY,
Ph. C.W.Roger's Sub.
M.B. 11/32
N N
M N
N C=> N N
O O
F--
—*E WL 0-E
130
1
300
90
90
I
1 I I
I
o
O
�
I
I
66.81
T I
I
'
81.81
m O
O
�0
I 1
I
,
1
U
Q
o O
o
o
0
�
� I
I
I
I
300
90
�I
,
U
Q
I
1 �
I
G
O
N
1 ,
1
1
I
o
U
_ Q
G �
I
I
I
1
U
o r�
I
M
i
I
J
T I
J 1
i U
1 Q
1 O
1
I 1
1
I
1
I 1
1
13012 1 i Y
WE — VAR — —
t1=11
< O
r� — r
180 700
o � r
100
U
O V
o v
180
U
N
tr7 CO
CV �—
O
Fontana Unified 0230— 0 8
Tax Rate Area
74032
G
��7 111I N
If?! II
CV C-4 \ Cl
CV O N N N O
O p O
- T —
l 100 1
62 1
o
LO v t—
LO
100 (130)
o .� 62
it
/� 50
326.64 �
— N —
4
1
O ^
1
I
1
I
b 75
0
1 0 75
U
O ¢
o -
M
O O
o
o�
Lr,) m
O
O
O
0 0
0 0�
0 0
120
aD �
U 60
0
0 60
�J 00
�
oQ 6
X63 ��5
Ptn. Fontana Arrow Route Tract No. 2102, M.8. 31/11 -15
February 2004 Tract No. 10598, M.8. 163 /85- 86- Condcminlum Plan,O.R. 82- 202479
I
I
O (
'n O I
O m I
� m
326.83 v
ck
180 —
LO \V/
� 1
1
327.13 I
O N
75 0 52
72
O O O
52�
1
0
REVISED
01/11/06 GW
Ph. N.E. 1/4, Sec. 11
T.1 S., R.6 W.
Assessor's flap
Book 0230 Page 08
San Bernardino County
1
1
1
1
81 81
O
0 81.81
r+�
N
I
_
66.81
81.81
61.8
�0
b 75
0
1 0 75
U
O ¢
o -
M
O O
o
o�
Lr,) m
O
O
O
0 0
0 0�
0 0
120
aD �
U 60
0
0 60
�J 00
�
oQ 6
X63 ��5
Ptn. Fontana Arrow Route Tract No. 2102, M.8. 31/11 -15
February 2004 Tract No. 10598, M.8. 163 /85- 86- Condcminlum Plan,O.R. 82- 202479
I
I
O (
'n O I
O m I
� m
326.83 v
ck
180 —
LO \V/
� 1
1
327.13 I
O N
75 0 52
72
O O O
52�
1
0
REVISED
01/11/06 GW
Ph. N.E. 1/4, Sec. 11
T.1 S., R.6 W.
Assessor's flap
Book 0230 Page 08
San Bernardino County
�J 00
�
oQ 6
X63 ��5
Ptn. Fontana Arrow Route Tract No. 2102, M.8. 31/11 -15
February 2004 Tract No. 10598, M.8. 163 /85- 86- Condcminlum Plan,O.R. 82- 202479
I
I
O (
'n O I
O m I
� m
326.83 v
ck
180 —
LO \V/
� 1
1
327.13 I
O N
75 0 52
72
O O O
52�
1
0
REVISED
01/11/06 GW
Ph. N.E. 1/4, Sec. 11
T.1 S., R.6 W.
Assessor's flap
Book 0230 Page 08
San Bernardino County
Cb
0-
f,
't
N
O
O
A
-, 0 -, 0 -= - o --o -1=)
ro
ro cv ro cv
R
18
o
•
z o
z z z z
O
O O O O
-� O
N Ci C_� Ol�
-o —
oo
�v c.c cry
•
� rn
ti
0
N
CO
W
C.n
cn ao a
O O N
O O to
Mm O
O N
CD O y
� N o
w�
1
oN
� n Q
oco�
CD
C7
O o
C V
O
� Cr Ln n
:-J
1 1 I 0
15
— -- OV4 A— ( -S-N —s Ea a-e- 4*0--, + — { s-T A 1 E "w r—) -
- --
------------------- ___________________________ 315____ o _-
610 113.52 0 53 66.14 81.65 315 60
33 Par. 1 °° Par. 2 I
Z
, 1,57 AC 10
11 100 48 N �c
Par. 3
427
'
CO 1 03 04
•,(i 4.54 AC. „(i 4.55 AC.
Par. 3 , 1 d 1
I m os �j `r Ij
0
6.13 AC.
l I
I
I
1 3 3 — — --M— . -- - - -- 315 31 S
Ptn. Lot p5
18 6
V �
C T
n
o n
z
� o
x S
b r-i
C7 �
z
o T
'L CD
L
54
NO
R
18
•
LT.J
C D
/\
VV
N N
06
331 259.78
327,91
660
30
N
_
° Par, 2
�
Par. 3
29
02
1
.� 2 8
U
w �,
"
J
ti
v 7 8.43 176.46
" . io
1.15 AC.
--
2.37 AC.
•
2 1 8 86
90.62 176.46
6
Par. 4 /f
Par. 1
p6
Z:
30 6'u
u
o3
J
m
27
115 AC.
2.37 AC.
I
1 33 w 298.04
328.97
^ ^
85
330.01
1
O
I
u
21
Par. 1
3 6
°r (4.75 AC.)
1.24 AC.
86
1
1.13 AC.
'+y
330.01
627.02 I
1�
w
Par 2
4.75 AC.
2 3a AC.
2
/ /
f
30
627 ,01
30
360
_.._
15
88
87
I
1.2 AC.
14
05
3 6
1
2 AC.
2.82 AC
I
I
p O
C=)
13
O6
I
N o
1.58 AC
191 AC
1
n o
330
sso
110 110
sso
110 75
75 150
m
C
89
90
Par. 1 Par.
2 Par. 3
17
$
CD
a
20
129
0 23
24
N ti ,o
> 31 32
33 a v
O-
J 1.69 AC.
19
9
1.03 AC.
L24 AC.
A d
j
26
9
25 08
w
1 33
1
20 1
110 110
109.99
I
I
N
- — —p�Rg — _ ,
L_-—-—
180
{-Pf-R-R-I tvf- )— — —
N 150
6p
1 ° =200
1 0 5
L,
54
NO
THIS MAP - IS FOR THE 'JKPOS=
U' AD VALGF.EM TAXAT UV 'NL7.
Tract Map No. 16337, M.B. 3125 -7 Fontana unified 0230 -38
Tax Rate Area
74032
p
1" =100'
i1
8
R
REVISSED11
Ph. NE 1/4, Sec. 11
T C R f
Assessor's Map
Book 0230 Page 38
Cnn RarnnrAinn r nlinly
lOS.tG
4 ;
5 6
6
7 8
9 10
%6 6`_ J 130.3)
11 12 13
/\ •D �
as
3 s� ;0a
1
(c los
.�
0s' i1
G
'�
iii 7 �% f
�
U 14
�,
4
60
o
08)
L-'
I
�STIUR�
- - r��
�'
-�
CBUR�—
o
2
\1
v
�s 15
19 99
60
>
N
i �
( 01; z5 �.
24
23 22
21 20 19
18 17
16
50.01 I
o I
2 49 -99
60
\ ;2.46
R
REVISSED11
Ph. NE 1/4, Sec. 11
T C R f
Assessor's Map
Book 0230 Page 38
Cnn RarnnrAinn r nlinly
THIS YAP is FOR IN PURPOSE Tract No. 15664 -1, M.8. 259/77 -79 Fontana Unified
OF AR VALOREM TAXATION ORLY.
Tax Rate Area
74032
61, J
0230- 29
72.47 t30 10 !t 110 !t f0 134 !0 130 49.0 33
» 17 « - 32 47 « 62
16 18 31 33 = 46 48 61 63
17 • 32
1 � •, it
16 11.13 16 31 33 0 O
S� 31.1] J ))/ 46 31.11 46 k1 / 61 3l.ts 03 6!
)!) t.' � !0 � 7 7 • � � 1 */ 11 J J X16. ?/ +) ,� J \t 0.
1S 15 1R 19 30 3@ " 3+ 34 . 45 4s a 44 49 60 6o a 64 1
{.t! 3.52 , 3.12 3.31 w O O w w 64
►� 1t1.17 2.7 1.7 111.17 119.91 2.01
1 i2S.34 120.33 r ,� I20.53
i g t4 14 ~ la 20 = 29 29 9/ 3s 35 » 44 14 = Y '~ so SO 59 is 65 I
i32.3 w 130 170 I 130 130 130 130 I 130.44
13 13 _ 21 21 Z' 28 2 s 3t 36 43 +y s1 51 s 58 56 1 60 66 1
I 132.34 I 130 19 130 1s0 130 I 130 130 I 130.01
1 12 it I 12 `1� 22 : 27 n 1 s 37 37 ° 42 +2 I = 52 52 s 57 s7 1 _ 47 67 3331
112. u - 130 130 130 130 130 130 130.77
4 : 11 s 23 23 ° 26 26 ( a 36 38 = 41 I 53 `��`
1 ax 4t ae ti S3
TT 56 56 60 68 I
1 w 172.01 a 130 1]0 130 130 0 130 130 110.03 1
• O
I 10 10 « 24 24 2 25 is I 39 39 40 +@ a s+ 54 55 ss w :. 6s 69
2S 2s iJ is ZS i ii !! r 2S 2S
fit
w
132. 7 116.07 .'' i 1. r 325.07 .�' 1 1 1. 7 lr1.t7 ,'' I 507 24 • 1
---- Si ViL{ f - ..__- _ --i-__ .�- - - - - -- --- ----- ffE"f - --
c 40.2 "A 01.3 46.1 6. t6.s p.3 19.3 11. 10.3 "'J p.3 68.3 00. 00.3 00.3 6013 $4.15
1
ay O1
01 03 @4 a @S 06 07 _ 0@ 69 7@ 11 76 75 7{ 13 72 71 70 �,
y 1 2 3 4 S 6 7 8 9 78 77 76 75 74 73 72 71 70
I 44 EI 1 60.3 1 60.3 0.3 1 11.! 1 46.3 it.] 08.3 94.3 1 16.1 1 Wa L 68.3 1 60.3 1 61.1 1 60.3 1 18.3 1 75.17 33
44 "
fabraary 2004 Trott N@. 15664, Y.B. 261/66 -68
Assessor's Map
Book 0230 Page 29
San Bernardino County
o2a2
oz
REVISED
INIS YAP 15 fOR �PYRFOOWStE,(. Of AO VALOREM IA
Tract No. 3838, M.B. 49/99 -100
o�
Fontana Unified 0230 — 8
Tax Rate Area
7432
1 446 90 9a 6 44.19
of 1 52 S1 50 49 48 47 46 45 44 43 42 41 40 39
s - _ 36
01 Z = 03 0{ O5 — 06 07 Oa 09 10 11 12 13 14 15 — « 16 t7 �� 76 120
0 0 0 0 0 0 0_ - (00 1 1 :0 96 ° 37 32 21
1 1
I
t
I
I
J
2E ,
1
t
. I
I
I
120
40
t 6 j
— kYEN1kf—
1
29 23 e
I
90
log-to ,►
a
oa
a7
oa
a9
l0
11
12
117.73 + I
120
90
b
65 t7
= 02 7
os
a{
os
ac
o7
oa
o9
l0
11
It
13
t+
120
' f a 24
d 30 2/
03 4
53
54
55
56
57
58
59
60
61
62
63
64
66 la
00
16 17
I
_
3
» of S _
9
16
11
n
.. at 5 ..
80
79
78
77
76
75
74
73
72
71
70
69
67
1 :0
120
O1 6
32
31
30
29
2a
27
2i
25
2{
2J
22
21
w 68 20
J
,20
o
447
22
36 » ^ 33 I I
I I t
t 44.44 t
20 35 »» 34 23 I
�1
1° 1 126 I I
1
t I I
r ,00.9 no t
t 2 26 27 2) = ( I
I ro.0 I 1
10.l: ,zo
'r 19
25
2a
22 ,°• I 1
S
r _
��� _�___________
t 6 j
— kYEN1kf—
1
29 23 e
I
90
16
117.73 + I
120
90
b
= 02 7
os
a{
os
ac
o7
oa
o9
l0
11
It
13
t+
Is
' f a 24
d 30 2/
16 17
I
_
3
» of S _
9
10
11
12
t3
14
15
16
17
1E
i8
20
21
22 23
31 2 5 I
1 :0
9a
t t
so
1 0s 110.61
1 +9.44 I r
007
Fabruory 2004
REVISED
Assessor's Map
Book 0230 Page 18
Son Bernardino county