Loading...
HomeMy WebLinkAboutTract 14196 Village of Heritage VILLAGE OF HERITAGE TRACT 14196 HYDROLOGY - HYDRAULICS • • � OQRpFESSIpN co • ��� C. H O � �\ , /r ,, O ; r`,--I c * xp.3 -11.90 a 9 IE OF C Al. \F 0 � .J JUNE 16, 1989 0. THE C COMMUNITY DEVELOPMENT DEPARTMENT 47,1:1 CITY OF FONTANA •Iiu Nq Ati� v912.448 Felipe Molinos NC(' Lao ?- ff 1 PRINCIPAL ENGINEER r 1/02 /Q a FAX (909) 350 -6618 II ?./4140er l lv Cr 1 8353 SIERRA AVENUE, FONTANA, CA 92335 (909) 350 -6641 3170 REDHILL AVENUE • COSTA MESA, CA 92828 -3428 • (714) 841 -8777 CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING wr r TRACT 14196 INDEX 1) HYDROLOGY (100 —YEAR FREQUENCY) 2) HYDROLOGY MAP wr 3) CATCH BASIN SIZE CALCULATIONS 4) LATERAL CALCULATIONS 5) STREET CAPACITY CALCULATIONS +� 6) MISCELLANEOUS ai a rr all ®rr aan r arr a~. 1111 iyDR 01 061 y did =.12_ 100 \.(R aam a. a.n a a a a a a aatr a t Error detected while printing, cannot continue SAN BERNARDINO COUNTY RATIONAL PROGRAM 1 rr Copyright (c) CivilDesign /CivilCadd, 1988 Rational Hydrology Study Date: 5- 5 -89 m HYDROLOGY FOR TRACT 14196 Q = 100 YR FREQUENCY • P.M.L., J.N. 3826, 05 -05 -1989 *SPECIFIED HYDROLOGY INFORMATION* 10.0 year storm 1 hour rainfall (Inches) = .980 100.0 year storm 1 hour rainfall (Inches) = 1.470 Computed rainfall intensity: • Storm year = 100.00 1 hour rainfall (Inches) = 1.4700 Slope used for intensity curve = .6000 .,, Soil Antecedent Moisture Condition(AMC) = 3 ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ "" Process from Point /Station 10.00 to Point /Station 11.00 * ** INITIAL AREA EVALUATION * ** Decimal Fraction Soil Group A = 1.000 • Decimal Fraction Soil Group B = .000 Decimal Fraction Soil Group C = .000 - Decimal Fraction Soil Group D = .000 RESIDENTIAL(3 - 4 DU /AC) "" SCS Curve Number for Soil(AMC 2) = 32.0 Adjusted SCS Curve Number for AMC 3 = 52.0 - Pervious ratio(AP) = .600 Max loss rate(FM)= .471(In /Hr) Subarea is RESIDENTIAL (3 - 4 DU /AC) Initial subarea flow length = 800.00(Ft.) Upstream elevation = 1218.70(Ft.) Downstream elevation = 1206.37(Ft.) N' Elevation difference = 12.33(Ft.) Slope = .01541 S( %) = 1.54 Tc = K( .412) *[(Length - 3) /(Elevation Change)] - 0.2 Initial area time of concentration = 13.758 min. 100.00 Year computed rainfall intensity = 3.557 In /Hr Effective Runoff Coefficient used for total area (Q =CIA) is C = .781 a Subarea runoff = 9.054(CFS) Total initial stream area = 3.26(Ac.) -• Pervious area fraction = .600 Initial area FM value = .471(In /Hr) +++++++++++++±++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 11.00 to Point /Station 11.00 * ** CONFLUENCE OF MINOR STREAMS * ** w "' 100.00 Year computed rainfall intensity = 3.557 In /Hr air _ILONG THE MAIN STREAM NUMBER: 1 The flow values used for the stream: 1 are: - Time of concentration(min.) = 13.76 2 • Rainfall intensity (in. /hr /) = 3.56 Total flow area (Acres) = 3.26 .. Total runoff (CFS) at confluence point = 9.05 Area averaged loss rate (FM) = .471 40 Area averaged pervious ratio (AP) = .600 ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 12.00 to Point /Station 12.10 * ** INITIAL AREA EVALUATION * ** dr Decimal Fraction Soil Group A = 1.000 . Decimal Fraction Soil Group B = .000 Decimal Fraction Soil Group C = .000 "" Decimal Fraction Soil Group D = .000 RESIDENTIAL(3 - 4 DU /AC) SCS Curve Number for Soil(AMC 2) = 32.0 Adjusted SCS Curve Number for AMC 3 = 52.0 mi Pervious ratio(AP) = .600 Max loss rate(FM)= .471(In /Hr) Subarea is RESIDENTIAL (3 - 4 DU /AC) Initial subarea flow length = 840.00(Ft.) Upstream elevation = 1220.80(Ft.) lownstream elevation = 1210.51(Ft.) Elevation difference = 10.29(Ft.) Slope = .01225 S( %) = 1.23 Tc = K( .412) *[(Length"'3) /(Elevation Change)] Initial area time of concentration = 14.689 min. 100.00 Year computed rainfall intensity = 3.420 In /Hr Effective Runoff Coefficient used for total area (Q =CIA) is C = .776 .. Subarea runoff = 5.043(CFS) Total initial stream area = 1.19(Ac.) d" Pervious area fraction = .600 Initial area FM value = .471(In /Hr) ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ar Process from Point /Station 12.10 to Point /Station 11.00 * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * ** a Upstream Elevation = 1210.51(Ft.) • Downstream Elevation = 1206.37(Ft.) Street Length = 280.00(Ft.) ' Curb Height = 6.(In.) Street Halfwidth = 25.00(Ft.) • Distance From Crown to Crossfall Grade Break = 10.00(Ft.) Slope from Gutter to Grade Break (V /HZ) = .040 Slope from Grade Break to Crown (V /HZ) = .020 a a 3 rr umber of Halfstreets Carrying Runoff = 1 Distance from curb to property line = 7.00(Ft.) de Slope from curb to property line (V /HZ) = .020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) 3 Estimated mean flow rate at MIDPOINT of street = 7.723(CFS) Depth of flow = .510(Ft.) ''r Average Velocity = 3.311(Ft /S) "" WARNING: DEPTH OF FLOW EXCEEDS TOP OF CURB Distance that curb overflow reaches into property is = .513(Ft.) sr Streetflow Hydraulics at MIDPOINT of street travel Ai Halfstreet Flow Width = 10.59(Ft.) Flow Velocity = 3.31(Ft /S) Depth *Velocity = 1.69 Travel time = 1.41 min. TC = 16.10 min. Adding Area Flow To Street • 100.00 Year computed rainfall intensity = 3.237 In /Hr Decimal Fraction Soil Group A = 1.000 Decimal Fraction Soil Group B = .000 Decimal Fraction Soil Group C = .000 • Decimal Fraction Soil Group D = .000 ESIDENTIAL(3 - 4 DU /AC) SCS Curve Number for Soil(AMC 2) = 32.0 Adjusted SCS Curve Number for AMC 3 = 52.0 WA Pervious ratio(AP) = .600 Max loss rate(FM)= .471(In /Hr) Effective Runoff Coefficient used for area (Q =CIA) is C = .769 Subarea runoff = 4.716(CFS) for 2.02(Ac.) ar Total runoff = 9.758(CFS) Total area = 3.92(Ac.) Area averaged FM value = .471(In /Hr) Depth of flow = .557(Ft.) m Average Velocity = 3.333(Ft/S) i11 WARNING: DEPTH OF FLOW EXCEEDS TOP OF CURB • Distance that curb overflow reaches into property is = 2.832 Streetflow Hydraulics at ENDPOINT of street travel Halfstreet Flow Width = 11.75(Ft.) as Flow Velocity = 3.31(Ft /S) Depth *Velocity = 1.84 a ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ • Process from Point /Station 11.00 to Point /Station 11.00 a * ** CONFLUENCE OF MINOR STREAMS * ** ,rr * ** Compute Various Confluenced Flow Values * ** 100.00 Year computed rainfall intensity = 3.237 In /Hr • ALONG THE MAIN STREAM NUMBER: 1 The flow values used for the stream: 2 are: 4 a Time of concentration(min.) = 16.10 Rainfall intensity (in. /hr /) = 3.24 �• Total flow area (Acres) = 3.92 Total runoff (CFS) at confluence point = 9.76 4111 Area averaged loss rate (FM) = .471 Area averaged pervious ratio (AP) = .600 tir Confluence information: - Stream runoff Time Intensity Number (CFS) (min.) (inch /hour) 1 9.05 13.76 3.557 2 9.76 16.10 3.237 QSMX(1) = +1.000 *1.000* 9.1) +1.116* .855* 9.8) = 18.358 m QSMX(2) _ + .896 *1.000* 9.1) +1.000 *1.000* 9.8) 17.874 a ainfall intensity and time of concentration - used for 2 streams. Individual stream flow values are: 9.05 9.76 Possible confluenced flow values are: 18.36 17.87 .c a Individual Stream Area values are: � a 3.26 3.92 - Effective Total Area values are: 6.61 7.18 " Computed confluence estimates are: Runoff(CFS) = 18.36 Time(min.) = 13.758 Effective area as adjusted for time (Acres) = 6.61 gr Total main stream study area (Acres) = 7.18 - Total study area average pervious area fraction(AP) = .600 Total study area average soil loss rate(FM) = .471 - ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 11.00 to Point /Station 20.00 * ** PIPEFLOW TRAVEL TIME (PROGRAM ESTIMATED SIZE) * ** a Upstream point elevation = 1206.37(Ft.) Downstream point elevation = 1206.09(Ft.) r Vft ea , low length = 54.50(Ft.) Mannings N = .013 Ao. of pipes = 1 Required pipe flow = 18.358(CFS) Nearest Pipe Diameter = 27.00(In.) Calculated Individual Pipe flow = 18.358(CFS) Normal flow depth in pipe = 18.73(In.) a Flow top width inside pipe = 24.89(In.) Velocity = 6.24(Ft /S) Travel time = .15 min. TC = 13.90 min. ow ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 20.00 to Point /Station 20.00 * ** CONFLUENCE OF MAIN STREAMS * ** a FOLLOWING DATA INSIDE MAIN STREAM ARE CALCULATED a 100.00 Year computed rainfall intensity = 3.535 In /Hr The flow values used for the stream: 1 are: Time of concentration(min.) = 13.90 Rainfall intensity (in. /hr /) = 3.53 Total flow area (Acres) = 6.61 Total runoff (CFS) at confluence point = 18.36 m Area averaged loss rate (FM) = .471 Area averaged pervious ratio (AP) = .600 " Program is now starting with MAIN STREAM NO. 2 ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ err Process from Point /Station 22.00 to Point /Station 22.10 * ** INITIAL AREA EVALUATION * ** a Decimal Fraction Soil Group A = 1.000 Decimal Fraction Soil Group B = .000 -• Decimal Fraction Soil Group C = .000 Decimal Fraction Soil Group D = .000 RESIDENTIAL(3 - 4 DU /AC) SCS Curve Number for Soil(AMC 2) = 32.0 Adjusted SCS Curve Number for AMC 3 = 52.0 a Pervious ratio(AP) _ .600 Max loss rate(FM)= .471(In /Hr) Subarea is RESIDENTIAL (3 - 4 DU /AC) Initial subarea flow length = 1000.00(Ft.) Upstream elevation = 1224.64(Ft.) Downstream elevation = 1218.00(Ft.) Elevation difference = 6.64(Ft.) qo Slope = .00664 S( %) = .66 Tc = K( . *[(Length'3) /(Elevation Change)] Initial area time of concentration = 17.802 min. 100.00 Year computed rainfall intensity = 3.047 In /Hr Effective Runoff Coefficient used for total area rrr (Q =CIA) is C = .761 Subarea runoff = 6.353(CFS) rw am as as `'otal initial stream area = 2.74(Ac.) _•ervious area fraction = .600 Initial area FM value = .471(In /Hr) ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ air Process from Point /Station 22.10 to Point /Station 20.00 * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * ** ill Upstream Elevation = 1218.00(Ft.) Downstream Elevation = 1206.09(Ft.) Street Length = 720.00(Ft.) Curb Height = 6.(In.) Street Halfwidth = 25.00(Ft.) Distance From Crown to Crossfall Grade Break = 10.00(Ft.) Slope from Gutter to Grade Break (V /HZ) = .040 IN Slope from Grade Break to Crown (V /HZ) = .020 Number of Halfstreets Carrying Runoff = 1 Distance from curb to property line = 7.00(Ft.) Slope from curb to property line (V /HZ) = .020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) d o Estimated mean flow rate at MIDPOINT of street = 9.599(CFS) .. Depth of flow = .544(Ft.) Average Velocity = 3.492(Ft/S) a 'ARNING: DEPTH OF FLOW EXCEEDS TOP OF CURB """ Distance that curb overflow reaches into property is = 2.197(Ft.) Streetflow Hydraulics at MIDPOINT of street travel Halfstreet Flow Width = 11.43(Ft.) oar Flow Velocity = 3.49(Ft /S) Depth *Velocity = 1.90 -- Travel time = 3.44 min. TC = 21.24 min. - Adding Area Flow To Street - 100.00 Year computed rainfall intensity = 2.741 In /Hr Decimal Fraction Soil Group A = 1.000 Decimal Fraction Soil Group B = .000 ,.. Decimal Fraction Soil Group C = .000 Decimal Fraction Soil Group D = .000 RESIDENTIAL(3 - 4 DU /AC) SCS Curve Number for Soil(AMC 2) = 32.0 - Adjusted SCS Curve Number for AMC 3 = 52.0 Pervious ratio(AP) = .600 Max loss rate(FM)= .471(In /Hr) Effective Runoff Coefficient used for area (Q =CIA) is C = .745 Subarea runoff = 4.966(CFS) for 2.80(Ac.) Total runoff = 11.319(CFS) Total area = 5.54(Ac.) rro Area averaged FM value = .471(In /Hr) ■r° ;aa - - )epth of flow = .573(Ft.) .- verage Velocity = 3.572(Ft/S) WARNING: DEPTH OF FLOW EXCEEDS TOP OF CURB Distance that curb overflow reaches into property is = 3.625 aia Streetflow Hydraulics at ENDPOINT of street travel Halfstreet Flow Width = 12.15(Ft.) ar Flow Velocity = 3.49(Ft /S) Depth *Velocity = 2.00 - ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 20.00 to Point /Station 20.00 * ** CONFLUENCE OF MINOR STREAMS * ** a 100.00 Year computed rainfall intensity = 2.741 In /Hr - ALONG THE MAIN STREAM NUMBER: 2 The flow values used for the stream: 1 are: Time of concentration(min.) = 21.24 • Rainfall intensity (in. /hr /) = 2.74 Total flow area (Acres) = 5.54 Total runoff (CFS) at confluence point = 11.32 .. Area averaged loss rate (FM) = .471 Area averaged pervious ratio (AP) = .600 ar - ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ar Process from Point /Station 21.00 to Point /Station 20.00 * ** INITIAL AREA EVALUATION * ** gar Decimal Fraction Soil Group A = 1.000 Decimal Fraction Soil Group B = .000 A- Decimal Fraction Soil Group C = .000 Decimal Fraction Soil Group D = .000 - RESIDENTIAL(3 - 4 DU /AC) SCS Curve Number for Soil(AMC 2) = 32.0 - Adjusted SCS Curve Number for AMC 3 = 52.0 Pervious ratio(AP) = .600 Max loss rate(FM)= .471(In /Hr) Subarea is RESIDENTIAL (3 - 4 DU /AC) .,., Initial subarea flow length = 540.00(Ft.) Upstream elevation = 1210.94(Ft.) - Downstream elevation = 1206.09(Ft.) Elevation difference = 4.85(Ft.) "" Slope = .00898 S( %) = .90 Tc = K( .412) *[(Length "3) /(Elevation Change)] Initial area time of concentration = 13.097 min. 100.00 Year computed rainfall intensity = 3.664 In /Hr Effective Runoff Coefficient used for total area ■r (Q =CIA) is C = .784 Subarea runoff = 4.252(CFS) ar w "" - 'otal initial stream area = 1.48(Ac.) :ervious area fraction = .600 Initial area FM value = .471(In /Hr) S ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ wr Process from Point /Station 20.00 to Point /Station 20.00 * ** CONFLUENCE OF MINOR STREAMS * ** a * ** Compute Various Confluenced Flow Values * ** ' 100.00 Year computed rainfall intensity = 3.664 In /Hr ALONG THE MAIN STREAM NUMBER: 2 The flow values used for the stream: 2 are: Time of concentration(min.) = 13.10 Rainfall intensity (in. /hr /) = 3.66 Total flow area (Acres) = 1.48 Total runoff (CFS) at confluence point = 4.25 Area averaged loss rate (FM) = .471 • Area averaged pervious ratio (AP) = .600 is Confluence information: Stream runoff Time Intensity Number (CFS) (min.) (inch /hour) • 1 11.32 21.24 2.741 2 4.25 13.10 3.664 "" QSMX (1) = +1.000 *1.000* 11.3) + .711 *1.000* 4.3) 14.342 QSMX(2) = or +1.406* .617* 11.3) +1.000 *1.000* 4.3) - = 14.068 '"' Rainfall intensity and time of concentration used for 2 streams. - Individual stream flow values are: � 13. 11.32 4.25 Possible confluenced flow values are: 14.34 14.07 Individual Stream Area values are: +r 5.54 1.48 Effective Total Area values are: 7.02 4.90 Computed confluence estimates are: Runoff(CFS) = 14.34 Time(min.) = 21.238 Effective area as adjusted for time (Acres) = 7.02 Total main stream study area (Acres) = 7.02 a Total study area average pervious area fraction(AP) = .600 .a. err a 7 "otal study area average soil loss rate(FM) = .471 ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 20.00 to Point /Station 20.00 * ** CONFLUENCE OF MAIN STREAMS * ** * ** Compute Various Confluenced Flow Values * ** FOLLOWING DATA INSIDE MAIN STREAM ARE CALCULATED 100.00 Year computed rainfall intensity = 2.741 In /Hr The flow values used for the stream: 2 are: Time of concentration(min.) = 21.24 Rainfall intensity (in. /hr /) = 2.74 r Total flow area (Acres) = 7.02 Total runoff (CFS) at confluence point = 14.34 °- Area averaged loss rate (FM) = .471 Area averaged pervious ratio (AP) = .600 • Confluence information: Stream runoff Time Intensity Number (CFS) (min.) (inch /hour) 1 18.36 13.90 3.535 2 14.34 21.24 2.741 `SMX(1) = - *1.000 *1.000* 18.4) +1.349* .655* 14.3) 31.029 QSMX(2) = + .741 *1.000* 18.4) rw +1.000 *1.000* 14.3) 27.946 Rainfall intensity and time of concentration Al used for 2 MAIN streams. Individual stream flow values are: 18.36 14.34 • Possible confluenced flow values are: 31.03 27.95 - Individual Stream Area values are: 6.61 7.02 Effective Total Area values are: 11.21 13.63 Computed confluence estimates are: Runoff(CFS) = 31.03 Time(min.) = 13.904 Effective area as adjusted for time (Acres) = 11.21 Total main stream study area (Acres) = 13.63 Total study area average pervious area fraction(AP) _ .600 Iv ON • "'otal study area average soil loss rate(FM) = .471 ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 31.00 to Point /Station 30.00 * ** INITIAL AREA EVALUATION * ** Decimal Fraction Soil Group A = 1.000 Decimal Fraction Soil Group B = .000 Decimal Fraction Soil Group C = .000 Decimal Fraction Soil Group D = .000 RESIDENTIAL(3 - 4 DU /AC) 0. SCS Curve Number for Soil(AMC 2) = 32.0 Adjusted SCS Curve Number for AMC 3 = 52.0 Pervious ratio(AP) = .600 Max loss rate(FM)= .471(In /Hr) N• Subarea is RESIDENTIAL (3 - 4 DU /AC) Initial subarea flow length = 600.00(Ft.) -• Upstream elevation = 1219.70(Ft.) Downstream elevation = 1211.14(Ft.) 4111 Elevation difference = 8.56(Ft.) Slope = .01427 S( %) = 1.43 Tc = K( .412) *[(Length ^ 3) /(Elevation Change)] ^ 0.2 40 Initial area time of concentration = 12.454 min. 100.00 Year computed rainfall intensity = 3.776 In /Hr „ Effective Runoff Coefficient used for total area (Q =CIA) is C = .788 * d` Subarea runoff = 3.956(CFS) 13- 'otal initial stream area = 1.33(Ac.) - Pervious area fraction = .600 4110 Initial area FM value = .471(In /Hr) ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 30.00 to Point /Station 40.00 �ww * ** PIPEFLOW TRAVEL TIME (PROGRAM ESTIMATED SIZE) * ** Upstream point elevation = 1211.14(Ft.) I " Downstream point elevation = 1209.86(Ft.) Flow length = 118.00(Ft.) Mannings N = .013 4 * No. of pipes = 1 Required pipe flow = 3.956(CFS) 0 Nearest Pipe Diameter = 15.00(In.) Calculated Individual Pipe flow = 3.956(CFS) , Normal flow depth in pipe = 8.27(In.) Flow top width inside pipe = 14.92(In.) m Velocity = 5.70(Ft /S) Travel time = .34 min. TC = 12.80 min. ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 48 Process from Point /Station 40.00 to Point /Station 40.00 * ** CONFLUENCE OF MAIN STREAMS * ** rr 000 11 " , OLLOWING DATA INSIDE MAIN STREAM ARE CALCULATED 100.00 Year computed rainfall intensity = 3.715 In /Hr The flow values used for the stream: 1 are: Time of corcentration(min.) = 12.80 n Rainfall intensity (in. /hr /) = 3.71 Total flow area (Acres) = 1.33 «. Total runoff (CFS) at confluence point = 3.96 Area averaged loss rate (FM) = .471 m Area averaged pervious ratio (AP) = .600 Program is now starting with MAIN STREAM NO. 2 ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 41.00 to Point /Station 40.00 * ** INITIAL AREA EVALUATION * ** Decimal Fraction Soil Group A = 1.000 • Decimal Fraction Soil Group B = .000 Decimal Fraction Soil Group C = .000 • Decimal Fraction Soil Group D = .000 RESIDENTIAL(3 - 4 DU /AC) SCS Curve Number for Soil(AMC 2) = 32.0 ,., Adjusted SCS Curve Number for AMC 3 = 52.0 Pervious ratio(AP) = .600 Max loss rate(FM)= .471(In /Hr) • Subarea is RESIDENTIAL (3 - 4 DU /AC) nitial subarea flow length = 670.00(Ft.) - Jpstream elevation = 1219.70(Ft.) Downstream elevation = 1209.86(Ft.) Elevation difference = 0 9.84 (Ft.) Slope = .01469 S(%) = 1.47 Tc = K( .412) *[(Length - 3) /(Elevation Change)] - 0.2 err Initial area time of concentration = 12.940 min. 100.00 Year computed rainfall intensity = 3.690 In /Hr -N Effective Runoff Coefficient used for total area (Q =CIA) is C = .785 44 Subarea runoff = 6.953(CFS) Total initial stream area = 2.40(Ac.) Pervious area fraction = .600 Initial area FM value = .471(In /Hr) - ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 40.00 to Point /Station 40.00 * ** CONFLUENCE OF MAIN STREAMS * ** * ** Compute Various Confluenced Flow Values * ** sr FOLLOWING DATA INSIDE MAIN STREAM ARE CALCULATED ar 100.00 Year computed rainfall intensity = 3.690 In /Hr The flow values used for the stream: 2 are: err • - lime of concentration(min.) = 12.94 _rainfall intensity (in. /hr /) = 3.69 Total flow area (Acres) = 2.40 Total runoff (CFS) at confluence point = 6.95 Area averaged loss rate (FM) = .471 ,,arr Area averaged pervious ratio (AP) = .600 Confluence information: 41 r Stream runoff Time Intensity Number (CFS) (min.) (inch /hour) 1 3.96 12.80 3.715 ma 2 6.95 12.94 3.690 QSMX(1) = +1.000 *1.000* 4.0) arr +1.008* .989* 7.0) 10.885 «• QSMX(2) = + .992 *1.000* 4.0) 41 ' +1.000 *1.000* 7.0) 10.879 Rainfall intensity and time of concentration used for 2 MAIN streams. • Individual stream flow values are: 3.96 6.95 At Possible confluenced flow values are: 10.89 10.88 n Individual Stream Area values are: 1.33 2.40 • Effective Total Area values are: 3.70 3.73 �rw Computed confluence estimates are: Runoff(CFS) = 10.89 Time(min.) = 12.798 •� Effective area as adjusted for time (Acres) = 3.70 Total main stream study area (Acres) = 3.73 • Total study area average pervious area fraction(AP) = .600 "" Total study area average soil loss rate(FM) = .471 ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 40.00 to Point /Station 40.00 me * ** CONFLUENCE OF MINOR STREAMS * ** * ** Compute Various Confluenced Flow Values * ** 100.00 Year computed rainfall intensity = 3.715 In /Hr ALONG THE MAIN STREAM NUMBER: 1 it The flow values used for the stream: 1 are: AIM ■ ■r - 'ime of concentration(min.) = 12.80 rtainfall intensity (in. /hr /) = 3.71 Total flow area (Acres) = 3.70 Total runoff (CFS) at confluence point = 10.89 Area averaged loss rate (FM) = .471 a Area averaged pervious ratio (AP) = .600 Confluence information: Stream runoff Time Intensity Number (CFS) (min.) (inch /hour) 1 10.89 12.80 3.715 QSMX(1) = +1.000 *1.000* 10.9) 10.885 wr Rainfall intensity and time of concentration — used for 1 streams. Individual stream flow values are: 10.89 Possible confluenced flow values are: 10.89 Individual Stream Area values are: 3.70 Effective Total Area values are: 3.70 m Computed confluence estimates are: .unoff(CFS) = 10.89 Time(min.) = 12.798 - Effective area as adjusted for time (Acres) = 3.70 mm Total main stream study area (Acres) = 3.70 Total study area average pervious area fraction(AP) = .600 Total study area average soil loss rate(FM) = .471 ..� ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 61.00 to Point /Station 60.00 * ** INITIAL AREA EVALUATION * ** Decimal Fraction Soil Group A = 1.000 Decimal Fraction Soil Group B = .000 - Decimal Fraction Soil Group C = .000 Decimal Fraction Soil Group D = .000 wr RESIDENTIAL(3 - 4 DU /AC) SCS Curve Number for Soil(AMC 2) = 32.0 �* Adjusted SCS Curve Number for AMC 3 = 52.0 Pervious ratio(AP) = .600 Max loss rate(FM)= .471(In /Hr) Subarea is RESIDENTIAL (3 - 4 DU /AC) Initial subarea flow length = 870.00(Ft.) - Upstream elevation = 1224.64(Ft.) in Downstream elevation = 1211.13(Ft.) Elevation difference = 13.51(Ft.) AN Aft w r " 'lope = .01553 S(%) = 1.55 �c = K( .412) *[(Length "3) /(E1evation Change) ] "0.2 Initial area time of concentration = 14.206 min. 100.00 Year computed rainfall intensity = 3.489 In /Hr Effective Runoff Coefficient used for total area • r (Q =CIA) is C = .778 Subarea runoff = 16.759(CFS) �- Total initial stream area = 6.17(Ac.) Pervious area fraction = .600 Initial area FM value = .471(In /Hr) "- ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ • Process from Point /Station 60.00 to Point /Station 50.00 * ** PIPEFLOW TRAVEL TIME (PROGRAM ESTIMATED SIZE) * ** Upstream point elevation = 1211.13(Ft.) Downstream point elevation = 1210.74(Ft.) Flow length = 60.00(Ft.) Mannings N = .013 No. of pipes = 1 Required pipe flow = 16.759(CFS) • Nearest Pipe Diameter = 24.00(In.) Calculated Individual Pipe flow = 16.759(CFS) Normal flow depth in pipe = 18.12(In.) • Flow top width inside pipe = 20.65(In.) Velocity = 6.59(Ft /S) Travel time = .15 min. TC = 14.36 min. • ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ rocess from Point /Station 50.00 to Point /Station 50.00 CONFLUENCE OF MAIN STREAMS * ** FOLLOWING DATA INSIDE MAIN STREAM ARE CALCULATED 100.00 Year computed rainfall intensity = 3.467 In /Hr The flow values used for the stream: 1 are: Time of concentration(min.) = 14.36 Rainfall intensity (in. /hr /) = 3.47 Total flow area (Acres) = 6.17 Total runoff (CFS) at confluence point = 16.76 • Area averaged loss rate (FM) _ .471 Area averaged pervious ratio (AP) _ .600 Program is now starting with MAIN STREAM NO. 2 • ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 51.00 to Point /Station 50.00 * ** INITIAL AREA EVALUATION * ** r■ Decimal Fraction Soil Group A = 1.000 Decimal Fraction Soil Group B = .000 .rr ■ e 0 "" - )ecimal Fraction Soil Group C = .000 Decimal Fraction Soil Group D = .000 RESIDENTIAL(3 - 4 DU /AC) SCS Curve Number for Soil(AMC 2) = 32.0 Adjusted SCS Curve Number for AMC 3 = 52.0 err Pervious ratio(AP) = .600 Max loss rate(FM)= .471(In /Hr) Subarea is RESIDENTIAL (3 - 4 DU /AC) Initial subarea flow length = 370.00(Ft.) Upstream elevation = 1214.95(Ft.) 11111 Downstream elevation = 1210.74(Ft.) Elevation difference = 4.21(Ft.) ' Slope = .01138 S( %) = 1.14 40 Tc = K( .412) *[(Length "3) /(Elevation Change)] "0.2 Initial area time of concentration = 10.739 min. 100.00 Year computed rainfall intensity = 4.127 In /Hr Effective Runoff Coefficient used for total area +r (Q =CIA) is C = .797 Subarea runoff = 9.871(CFS) - Total initial stream area = 3.00(Ac.) Pervious area fraction = .600 411 Initial area FM value = .471(In /Hr) ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 4 1 Process from Point /Station 50.00 to Point /Station 50.00 * ** CONFLUENCE OF MINOR STREAMS * ** 100.00 Year computed rainfall intensity = 4.127 In /Hr "" ALONG THE MAIN STREAM NUMBER: 2 • The flow values used for the stream: 1 are: Time of concentration(min.) = 10.74 Rainfall intensity (in. /hr /) = 4.13 ION Total flow area (Acres) = 3.00 Total runoff (CFS) at confluence point = 9.87 Area averaged loss rate (FM) = .471 Area averaged pervious ratio (AP) = .600 or - ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + ++ + + + + + + + + + + + + + + + + + + + + ++ At„ Process from Point /Station 52.00 to Point /Station 50.00 * ** INITIAL AREA EVALUATION * ** . Decimal Fraction Soil Group A = 1.000 Decimal Fraction Soil Group B = .000 '"" Decimal Fraction Soil Group C = .000 Decimal Fraction Soil Group D = .000 RESIDENTIAL(3 - 4 DU /AC) SCS Curve Number for Soil(AMC 2) = 32.0 Adjusted SCS Curve Number for AMC 3 = 52.0 ,rr Pervious ratio(AP) = .600 Max loss rate(FM)= .471(In /Hr) Subarea is RESIDENTIAL (3 - 4 DU /AC) ar / W • .All - nitial subarea flow length = 600.00(Ft.) Jpstream elevation = 1221.17(Ft.) Downstream elevation = 1210.74(Ft.) .. Elevation difference = 10.43(Ft.) Slope = .01738 S( %) = 1 .74 me Tc = K( .412) *[(Length"3) /(Elevation Change)] Initial area time of concentration = 11.971 min. ., 100.00 Year computed rainfall intensity = 3.867 In /Hr Effective Runoff Coefficient used for total area (Q =CIA) is C = .790 Subarea runoff = 7.334(CFS) ' Total initial stream area = 2.40(Ac.) err Pervious area fraction = .600 Initial area FM value = .471(In /Hr) • ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ +r Process from Point /Station 50.00 to Point /Station 50.00 * ** CONFLUENCE OF MINOR STREAMS * ** 411 * ** Compute Various Confluenced Flow Values * ** 4 ' 100.00 Year computed rainfall intensity = 3.867 In /Hr ALONG THE MAIN STREAM NUMBER: 2 The flow values used for the stream: 2 are: Time of concentration(min.) = 11.97 r Rainfall intensity (in. /hr /) = 3.87 'otal flow area (Acres) = 2.40 Total runoff (CFS) at confluence point = 7.33 Area averaged loss rate (FM) = .471 • Area averaged pervious ratio (AP) = .600 1 ✓ Confluence information: Stream runoff Time Intensity . Number (CFS) (min.) (inch /hour) a 1 9.87 10.74 4.127 2 7.33 11.97 3.867 - QSMX(1) = taw +1.000 *1.000* 9.9) +1.077* .897* 7.3) " = 16.955 QSMX(2) = rr + .929 *1.000* 9.9) +1.000 *1.000* 7.3) • = 16.502 a Rainfall intensity and time of concentration used for .2 streams. Individual stream flow values are: 9.87 7.33 Possible confluenced flow values are: • 0 16.95 16.50 .individual Stream Area values are: 3.00 2.40 Effective Total Area values are: � ICJ. l� 5.15 5.40 to Computed confluence estimates are: Runoff(CFS) = 16.95 Time(min.) = 10.739 Effective area as adjusted for time (Acres) = 5.15 Total main stream study area (Acres) = 5.40 Total study area average pervious area fraction(AP) = .600 Total study area average soil loss rate(FM) = .471 AO ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 50.00 to Point /Station 50.00 arr * ** CONFLUENCE OF MAIN STREAMS * ** * ** Compute Various Confluenced Flow Values * ** FOLLOWING DATA INSIDE MAIN STREAM ARE CALCULATED 100.00 Year computed rainfall intensity = 4.127 In /Hr los The flow values used for the stream: 2 are: ... Time of concentration(min.) = 10.74 Rainfall intensity (in. /hr /) = 4.13 we Total flow area (Acres) = 5.15 otal runoff (CFS) at confluence point = 16.95 area averaged loss rate (FM) = .471 Area averaged pervious ratio (AP) = .600 Confluence information: 4, Stream runoff Time Intensity Number (CFS) (min.) (inch /hour) 1 16.76 14.36 3.467 2 16.95 10.74 4.127 QSMX(1) = +1.000 *1.000* 16.8) + .819 *1.000* 17.0) 30.653 , QSMX(2) _ +1.220* .748* 16.8) err +1.000 *1.000* 17.0) 32.251 Rainfall intensity and time of concentration used for 2 MAIN streams. Individual stream flow values are: 16.76 16.95 . m Possible confluenced flow values are: 30.65 32.25 /L 0 - "ndividual Stream Area values are: 0 _ 6.17 5.15 Effective Total Area values are: 11.32 9.77 • Computed confluence estimates are: Runoff(CFS) = 32.25 Time(min.) = 10.739 - Effective area as adjusted for time (Acres) = 9.77 Total main stream study area (Acres) = 11.32 Total study area average pervious area fraction(AP) = .600 - Total study area average soil loss rate(FM) = .471 ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 82.00 to Point /Station 82.10 • * ** INITIAL AREA EVALUATION * ** Decimal Fraction Soil Group A = 1.000 • Decimal Fraction Soil Group B = .000 Decimal Fraction Soil Group C = .000 Decimal Fraction Soil Group D = .000 nr RESIDENTIAL(3 - 4 DU /AC) SCS Curve Number for Soil(AMC 2) = 32.0 •• Adjusted SCS Curve Number for AMC 3 = 52.0 Pervious ratio(AP) _ .600 Max loss rate(FM)= .471(In /Hr) "" Subarea is RESIDENTIAL (3 - 4 DU /AC) nitial subarea flow length = 700.00(Ft.) Upstream elevation = 1226.43(Ft.) Downstream elevation = 1216.14(Ft.) Elevation difference = 10.29(Ft.) Slope = .01470 S( %) = 1.47 Tc = K( .412) *[(Length - 3) /(Elevation Change)] • Initial area time of concentration = 13.167 min. 100.00 Year computed rainfall intensity = 3.652 In /Hr - Effective Runoff Coefficient used for total area (Q =CIA) is C = .784 . Subarea runoff = 17.520(CFS) Total initial stream area = 6.12(Ac.) Pervious area fraction = .600 .. Initial area FM value = .471(In /Hr) ,.. ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 82.10 to Point /Station 80.00 • * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * ** Upstream Elevation = 1216.74(Ft.) Downstream Elevation = 1214.72(Ft.) Street Length = 455.00(Ft.) Curb Height = 8.(In.) • Street Halfwidth = 25.00(Ft.) Distance From Crown to Crossfall Grade Break = 10.00(Ft.) Sr AW '" 'lope from Gutter to Grade Break (V /HZ) = .040 _lope from Grade Break to Crown (V /HZ) = .020 Number of Halfstreets Carrying Runoff = 1 Distance from curb to property line = 7.00(Ft.) Slope from curb to property lire (V /HZ) = .020 m Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Estimated mean flow rate at MIDPOINT of street = 21.471(CFS) Depth of flow = .856(Ft.) `"' Average Velocity = 2.470(Ft /S) WARNING: DEPTH OF FLOW EXCEEDS TOP OF CURB - Distance that curb overflow reaches into property is = 9.488(Ft.) Streetflow Hydraulics at MIDPOINT of street travel Halfstreet Flow Width = 21.00(Ft.) Flow Velocity = 2.47(Ft /S) Depth *Velocity = 2.12 Travel time = 3.07 min. TC = 16.24 min. a Adding Area Flow To Street 100.00 Year computed rainfall intensity = 3.220 In /Hr Decimal Fraction Soil Group A = 1.000 41 . Decimal Fraction Soil Group B = .000 'ecimal Fraction Soil Group C = .000 - Decimal Fraction Soil Group D = .000 RESIDENTIAL(3 - 4 DU /AC) SCS Curve Number for Soil(AMC 2) = 32.0 Adjusted SCS Curve Number for AMC 3 = 52.0 Pervious ratio(AP) = .600 Max loss rate(FM)= .471(In /Hr) ON Effective Runoff Coefficient used for area (Q =CIA) is C = .768 Subarea runoff = 4.452(CFS) for 2.76(Ac.) — Total runoff = 21.972(CFS) Total area = 8.88(Ac.) Area averaged FM value = .471(In /Hr) Depth of flow = .862(Ft.) "" Average Velocity = 2.483(Ft/S) WARNING: DEPTH OF FLOW EXCEEDS TOP OF CURB ,,. Distance that curb overflow reaches into property is = 9.744 Streetflow Hydraulics at ENDPOINT of street travel Halfstreet Flow Width = 21.00(Ft.) Flow Velocity = 2.47(Ft /S) Depth *Velocity = 2.13 ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 80.00 to Point /Station 80.00 * ** CONFLUENCE OF MAIN STREAMS * ** ,w, ar i°r FOLLOWING DATA INSIDE MAIN STREAM ARE CALCULATED 100.00 Year computed rainfall intensity = 3.220 In /Hr The flow values used for the stream: 1 are: Time of concentration(min.) = 16.24 - Rainfall intensity (in. /hr /) = 3.22 Total flow area (Acres) = 8.88 m Total runoff (CFS) at confluence point = 21.97 Area averaged loss rate (FM) = .471 - Area averaged pervious ratio (AP) = .600 Program is now starting with MAIN STREAM NO. 2 a ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 81.00 to Point /Station 80.00 * ** INITIAL AREA EVALUATION * ** Decimal Fraction Soil Group A = 1.000 Decimal Fraction Soil Group B = .000 Decimal Fraction Soil Group C = .000 Decimal Fraction Soil Group D = .000 RESIDENTIAL(3 - 4 DU /AC) SCS Curve Number for Soil(AMC 2) = 32.0 m Adjusted SCS Curve Number for AMC 3 = 52.0 ervious ratio(AP) = .600 Max loss rate(FM)= .471(In /Hr) °- Subarea is RESIDENTIAL (3 - 4 DU /AC) Initial subarea flow length = 500.00(Ft.) Ili Upstream elevation = 1225.70(Ft.) Downstream elevation = 1214.70(Ft.) Elevation difference = 11.00(Ft.) Slope = .02200 S( %) = 2.20 Tc = K( .412) *[(Length "3) /(Elevation Change)] "0.2 ,.. Initial area time of concentration = 10.617 min. 100.00 Year computed rainfall intensity = 4.155 In /Hr m Effective Runoff Coefficient used for total area (Q =CIA) is C = .798 "' Subarea runoff = 4.841(CFS) Total initial stream area = 1.46(Ac.) Pervious area fraction = .600 Initial area FM value = .471(In /Hr) m ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 80.00 to Point /Station 80.00 * ** CONFLUENCE OF MAIN STREAMS * ** * ** Compute Various Confluenced Flow Values * ** a FOLLOWING DATA INSIDE MAIN STREAM ARE CALCULATED err' Nr 100.00 Year computed rainfall intensity = 4.155 In /Hr 2he flow values used for the stream: 2 are: im Time of concentration(min.) = 10.62 Rainfall intensity (in. /hr /) = 4.16 Total flow area (Acres) = 1.46 Total runoff (CFS) at confluence point = 4.84 Area averaged loss rate (FM) = .471 - Area averaged pervious ratio (AP) = .600 Confluence information: ""' Stream runoff Time Intensity Number (CFS) (min.) (inch /hour) 1 21.97 16.24 3.220 2 4.84 10.62 4.155 QSMX(1) = +1.000 *1.000* 22.0) - + .746 *1.000* 4.8) 25.585 `"" QSMX(2) = +1.340* .654* 22.0) +1.000 *1.000* 4.8) 24.095 Rainfall intensity and time of concentration used for 2 MAIN streams. am Individual stream flow values are: 21.97 4.84 �% • - Possible confluenced flow values are: 25.58 24.09 Individual Stream Area values are: 8.88 1.46 - Effective Total Area values are: ISM 10.34 7.27 . Computed confluence estimates are: Runoff(CFS) = 25.58 Time(min.) = 16.237 4. Effective area as adjusted for time (Acres) = 10.34 Total main stream study area (Acres) = 10.34 Total study area average pervious area fraction(AP) = .600 Total study area average soil loss rate(FM) = .471 m ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 80.00 to Point /Station 70.00 * ** PIPEFLOW TRAVEL TIME (PROGRAM ESTIMATED SIZE) * ** Upstream point elevation = 14.70(Ft.) - Downstream point elevation = 14.50(Ft.) air Flow length = 60.00(Ft.) Mannings N = .013 No. of pipes = 1 Required pipe flow = 25.585(CFS) G4 i11 m - 'earest Pipe Diameter = 33.00(In.) .:alculated Individual Pipe flow = 25.585(CFS) Normal flow depth in pipe = 23.11(In.) Flow top width inside pipe = 30.24(In.) Velocity = 5.76(Ft /S) w Travel time = .17 min. TC = 16.41 min. - ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 71.00 to Point /Station 70.00 * ** INITIAL AREA EVALUATION * ** , Decimal Fraction Soil Group A = 1.000 Decimal Fraction Soil Group B = .000 - Decimal Fraction Soil Group C = .000 Decimal Fraction Soil Group D = .000 RESIDENTIAL(3 - 4 DU /AC) SCS Curve Number for Soil(AMC 2) = 32.0 M° Adjusted SCS Curve Number for AMC 3 = 52.0 Pervious ratio(AP) = .600 Max loss rate(FM)= .471(In /Hr) 4rn Subarea is RESIDENTIAL (3 - 4 DU /AC) Initial subarea flow length = 1000.00(Ft.) Upstream elevation = 1222.86(Ft.) ,mo Downstream elevation = 1214.50(Ft.) Elevation difference = 8.36(Ft.) • Slope = .00836 S( %) = .84 Tc = K( .412) *[(Length ^ 3) /(Elevation Change)] 41 Initial area time of concentration = 17.000 min. 100.00 Year computed rainfall intensity = 3.133 In /Hr - Effective Runoff Coefficient used for total area �r (Q =CIA) is C = .765 Subarea runoff = 12.840(CFS) (2- E>: - Total initial stream area = 5.36(Ac.) Pervious area fraction = .600 m Initial area FM value = .471(In /Hr) ^^^ ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 70.00 to Point /Station 70.00 4111 * ** CONFLUENCE OF MAIN STREAMS * ** „n, * ** Compute Various Confluenced Flow Values * ** - FOLLOWING DATA INSIDE MAIN STREAM ARE CALCULATED 100.00 Year computed rainfall intensity = 3.133 In /Hr The flow values used for the stream: 2 are: Time of concentration(min.) = 17.00 Rainfall intensity (in. /hr /) = 3.13 Total flow area (Acres) = 5.36 Total runoff (CFS) at confluence point = 12.84 Area averaged loss rate (FM) = .471 arr Area averaged pervious ratio (AP) = .600 40 arr . ,: onfluence information: au Stream runoff Time Intensity Number (CFS) (min.) (inch /hour) 1 21.97 16.24 3.220 2 12.84 17.00 3.133 - QSMX(1) = +1.000 *1.000* 22.0) +1.033* .955* 12.8) 34.639 - QSMX(2) = + .968 *1.000* 22.0) +1.000 *1.000* 12.8) - = 34.113 AN Rainfall intensity and time of concentration used for 2 MAIN streams. -I" Individual stream flow values are: 21.97 12.84 Possible confluenced flow values are: 34.64 34.11 - Individual Stream Area values are: 8.88 5.36 Effective Total Area values are: 14.00 14.24 al Computed confluence estimates are: 'unoff(CFS) = 34.64 Time(min.) = 16.237 "' Effective area as adjusted for time (Acres) = 14.00 Total main stream study area (Acres) = 14.24 Total study area average pervious area fraction(AP) = .600 Total study area average soil loss rate(FM) = .471 Atm End of computations, total study area = 45.20(Ac.) The following figures may be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation. AREA AVERAGED PERVIOUS AREA FRACTION(AP) = .600 AREA AVERAGED SCS CURVE NUMBER = 32.0 . ADJUSTED SCS CURVE NUMBER FOR AMC 3 = 52.0 ■r .10 al 1•1 , wo E A \ B • N AN 10M C&L INI AN 10 wok IN .e, L C. B • l! Cur: D' OPENING (SUMP) Given: y2 oc Iy 1 !, is 2... err (a) Discharge Q soo = . CFS " (b) Curb type "A -2" "):P 4" Rolled 6" Rolled Solution: �. TI (depth at opening) = ! inches • h (height of opening) = inches 11 /h = / = • a ' From Chart: • Q /ft. of opening = CFS L required = f(z) / _ 7, 7� _ ft. as U S F L = ( ft. Ai a -31- C • 13 . ll a 'r C t1I;I ;• OPENING (SUMP) Given: (a) Discharge Q 1 0-r ) = _ CFS (b) Curb type "A -2" "D"• 4" Rolled 6" Rolled L (02 " C-L ) E , • wr Solution: tiMit 11 (depth at opening) = inches • h (height of opening) _ �� • inches 11 /h = / �� • • • • • From Chart: "' • Q /ft. of opening = CFS • L required = j (o �� / - g . ft. - U S E L= 0 , I ft. • AO me AO -31- ' C . 1 3 . "" cur r OPENING (SUMP) • Given: ww (a) Discharge Q loo = . CFS ww (b) Curb type "A -2" -- 4" Rolled 6" Rolled W J J i • Solution: .. Ii (depth at opening) = - inches h (height of opening) - inches • • w „ From Chart: • Q/ft. of opening = CFS 41. • L required = ? / — = / , 3 g ft. • US L L= ft. s • • ,rr -31- C. 13. 11 1 CUED' OPENING (SUMP) 411 Given: (a) Discharge Q ,y p = v� . CFS (b) Curb type "A -2" 4" Rolled 6" Rolled Solution: 11 (depth at opening) _ J inches • h (height of opening) - ^ inches ar 11th= N / :-� a !,a I • • From Chart: • Q /ft. of opening = 7 CFS L required = / Z = > ft. err U S F L= i ft. IMO Avft or -31- Asi C. B . 1, • Ct1I;Ii OPENING (SUMP) • Given: Ati r (a) Discharge Q ion - (, -• _ CFS ' (b) Curb type "A -2" J4" Rolled 6" Rolled Cug..5 Solution: Tl (depth at opening) = inches • h (height of opening) - inches TIM = i / Q i • From Chart: • Q/ft. of opening = CFS L required = ft. • USE L= ft. a ar -31- C. B. II tU �' CURD' OPENING (SUMP) •- Given: (a) Discharge Q ion = � (� ,� (,, CFS • i (b) Curb type "A -2" ",DP' 4" Rolled 6" Rolled • Solution: II (depth at opening) = I D inches • h (height of opening) _ -�, inches II /h = / =I 1 1 • From Chart: — • Q /ft. of opening = CFS L required = / 2-, . ft. • U S F L= ft. • -31- C. I3. 11 CUr;ri• OPENING (SUMP) Given: ( 7 (a) Discharge Q tan = _ CFS (b) Curb type "A -2" ""):>"--- 4" Rolled 6" Rolled e rr CF d • i Solution: Solution: .rr Ii (depth at opening) = ( inches h (height of opening) _ ! inches Ti /h = i / " � 1 • From Chart: •• • Q /ft. of opening = 7 CFS L required = 2 a I ! _ ). ft. • U S L L= ft. w sr —31— C. 13 . 1, 8 OPENJNG (SUMP) Given: / ^ (a) Discharge Q too = CFS (b) Curb type "A -2" "0" 4" Rolled 6" Rolled g C F _ Solution: „� 11 (depth at opening) = inches • h (height of opening) = inches li /h = From Chart: • Q /ft. of opening = z CFS L required = 2 ? / 2 r = ) ft U S F L ft. a • -31- • 411 WO 4W 41 LA. I • 4W IMO C4 I c \ s di •••■ 4W 4W • ••■ en 'MN •INN .or woe 111 ... IN ig .1 -Atte g i?ofteilaut, Rite. „ii lommir CIVIL ENGINEEDINO • LAND PLANNING • LAND SUFIVE VINO ,... - All SUSIECT • BY --- -) : OAK - 101 NO. !HUT or ., CZ/TA Aet.S if/c(.44 Kikr -A,„ 1 L,:-.....- - -../2 411 . .mi 0 7 0 • i ' --.'" -- T:. \ t r ■ " ( (- ' - . . ff ft eL # I //or tie >12 1 ! p ; ic . I --- ' " - r{.(7! _ ::. —.. ----_ --, ..... . :51( 0/ C1/.1 ........ .......... 1 L------ " ---- ■.e.........4 -'..- ----. .. .,_,.-3,%. ...,... -,.. ..-... ..17' -• ..... -'•-- r I --■ • -)*-- : 1 I 411 • - \ -••■ ( ' ' 'if 1 .) I. 1 i t _ I \ \ - 4 L' ' ....... [ _ . • • . . I'- 0/4 .. ' , '--:.'.._ FPS 1 C.8 0 Ti. - ' ..- NCl., /1 1 • ...)(Z.-= (94 ( , .) ----.-7. IL.:1 .:... "..12..-'1 . 41:4/446LE Ar x -°- ( d5) t RECJ:D. li ar N6 Ctts - - . ,r A'CP (I t .? Cre" ,1 ro4 / "/:^4...., of -IT fir, I use Ct°61 If // 1/ DEPThi, 411 _ -.. 1 .4=111•11■1111111111011111•11111111111111■ I 31851_ AIRWAY AVENUE • COSTA MESA. cnuronNin 92r326-4875 • (714) 841•8171 .0 .. w .. ?/4,4 g 2oie,600,40.1., ate. ®NP CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING As SUBJECT . I SHEET I BY �1J1( DATE JOB NOOF 3 _ 7 ' . ' _ ? :. .si air , , art , i 0 a 6 ‘ / II m. ' ___SZ.� �; A MU..Sr BE > ✓2/2 ,, .SFL v ,_ 7 , 1]/,2 ar - ... .5 L= _( , ,iq J Al CO AVNI O vz L , `1zo /- ) b �9 = ... 7-A L _ j/)2L_ /16.35" . ).2 ; =__ 52_ /„.7_ //L ( / C i 414/z A 4L hi _ _ g', 7' j _ � .PEa 9 // f"7 Ali ,0 MCP : , L OF Z = " Cf Fe 74" / 2 ✓�9''c A-7,- Alli 47SE71 '' iv/pEPTy All 3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92626-3428 • (714) 641 -8777 ... i .... ,,.. ,.. •. r .,... Xze d?oftecoetut Pi t e 1 at M® CIVIL ENOINEERINO • LAND PLANNING • LAND SURVEYING SU IC! • er 9Ar[ ,. IOe NO emir p 2 . • _ _ � � 7 - . II h l MWT fE >i2 2 :w , t SQL - 1! 1 i : r . ., r ..:, ,, ... _. - i - _, _ i :._;,..., r , �.. ,y /, I an NI L ; y \ r . . . y- v ,A . Fe! C C8 0 . 0, r-4,. , ,-- , . 4g /-.17 .: T.C. r „ ,. T 1 r .QJ /L 4 &E #7" 14 s (CA 4 T,5) = r 0 kE�;l�, 4' QNNG kcP ' ' 1. L F O - Cie y rZ3 4 / 2 1/-2 1 d= . fir, - - . I, // uSE _, - Y DES, r i 411•111•1111111111•1111111•111111 1 A. 3t86.( AIRWAY AVENUE • COSTA MESA, CALIfOf1NIA 929284875 • (714) 641.8777 Ai :.:. .. Xter g 249 Rot. .t. „ ea IIIIIMIIIP CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE - JOB NO. SHEET OF �ATN B9S /�t/A.c/ALYS /S 01 C ✓ "�'� _` _. _• as l '--- 1 " V - L \ .- mum 1• _ as - -- -�- ' AI ° M!/ST BE > v2 /ZQ t sFL ;( /Z ' , PE K FLOW L �. AN 4 1 ..-._ f]/,2 ay ...:, s, °"' .z_= I I -- ,.P-= r � AM v ° --= , �' ' 1 fPS ' 0 c8 v�9 =- � 7 � �2 ��y I/ 6L I . { / 4. ,4! 4/L A6LE N = _ gF t ,a _ ?: ,PEa' FT. 4111 . i ... 3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92626 -3428 • (714) 641 -8777 it ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** .r PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) ,aat ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ««««««««««««««««««<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>» (C) Copyright 1982,1986 Advanced Engineering Software [AES] Especially prepared for: aar HALL & FOREMAN, INC. 4 1< « « «« « ««« « < « «« ««««« <»» » » » »»» » » »» »» » » » » » m * * * * * * * * *DESC IPTION OF RESUfTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * TkPCr 14 g , C_ a �+' � c• ;. S * * �a * ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** „ ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST - CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA ;SIGN MANUALS. — DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 12.72 FLOWLINE ELEVATION = 1202.30 PIPE DIAMETER(INCH) = 30.00 PIPE FLOW(CFS) = 32.25 ASSUMED DOWNSTREAM CONTROL HGL = 1206.130 NODE 12.72 : HGL= < 1206.130 >;EGL = < 1206.800 >;FLOWLINE = < 1202.300> ««««««««««<««««««««<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 41/ Advanced Engineering Software [AES] SERIAL No. I00820 VER. 2.3C RELEASE DATE: 2/21/86 ,ar « « « « « « « « « « « « « « « « « « « » » » » » » » » » » » » » » » » » » » 401 gar PRESSURE FLOW PROCESS FROM NODE 12.72 TO NODE 165.70 IS CODE = 1 TTPSTREAM NODE 165.70 ELEVATION = 1202.99 ,parr CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 32.25 CFS PIPE DIAMETER = 30.00 INCHES - PIPE LENGTH = 152.98 FEET MANNINGS N = .01300 a SF= (Q /K) * *2 = (( 32.25)/( 410.171)) * *2 = .0061820 HF =L *SF = ( 152.98) *( .0061820) = .946 7 NODE 165.70 : HGL= < 1207.076 >;EGL = < 1207.746 >;FLOWLINE = < 1202.990> ,. PRESSURE FLOW PROCESS FROM NODE 165.70 TO NODE 170.37 IS CODE = 5 UPSTREAM NODE 170.37 ELEVATION = 1203.14 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 16.9 24.00 3.142 5.367 5.860 .447 2 32.3 30.00 4.909 6.570 -- .670 3 15.4 18.00 1.767 8.709 90.000 - 4 .0 .00 .000 .000 .000 - 5 .0 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY= (Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) #_; UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00555 DOWNSTREAM FRICTION SLOPE = .00618 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00587 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .027 ENTRANCE LOSSES = .000 JNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = .940+ .447- .670 +( .027) +( .000) = .745 7- NODE 170.37 : HGL= < 1208.043 >;EGL = < 1208.491 >;FLOWLINE = < 1203.140> PRESSURE FLOW PROCESS FROM NODE 170.37 TO NODE 218.37 IS CODE = 1 UPSTREAM NODE 218.37 ELEVATION = 1203.36 e" ill CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 16.86 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 48.00 FEET MANNINGS N = .01300 z:; SF= (Q /K) * *2 = (( 16.86)/( 226.224)) * *2 = .0055544 HF =L *SF = ( 48.00) *( .0055544) = .267 NODE 218.37 : HGL= < 1208.310 >;EGL = < 1208.757 >;FLOWLINE = < 1203.360> PRESSURE FLOW PROCESS FROM NODE 218.37 TO NODE 218.37 IS CODE = 8 UPSTREAM NODE 218.37 ELEVATION = 1203.36 CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW(CFS) = 16.86 PIPE DIAMETER(INCH) = 24.00 r'RESSURE FLOW VELOCITY HEAD = .447 1 ITCH BASIN ENERGY LOSS = .2 *(VELOCITY HEAD) = .2 *( .447) = .089 ii 218.37 : HGL= < 1208.847 >;EGL = < 1208.847 >;FLOWLINE = < 1203.360> 1 1 END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM di ,.. 1 ... a •.6„,.. 00 iite(411,9 MEM CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING StfeltCT BY — KM HO. 111411,,.... O - C f 1170 Z4.7/4 4//4L Kris '! f\l■ i 7 - : '1-- - ,,..., .. ,_ , , ... . 44. , = , ..- V ) ) . Ft- • • 1,:- • A ) # • 4 0 I P V e )i LC' \er - I _ . . ...• // 1.1, A — ... II vas,* GE > /. 2 /,:o , ` I 071 4 „ 1 o.- ., ,.....:„........,._ s. . . '.,€:;- ."c rt..t,A -----__ -- t - 1CF:.' 1208-04- • _ • .... ... __ . H-GL-- • • a . , ':::.......L I --......,. r -..........,..?..:._, . 1 7. • --... • \iP , p -5 lcsli ...________.-`:-_—_—_--...... , i • ..• t . Pi 0/4 '`' g - 72 FP S i • 7:c. 12 NJ/ re 42 V 1 - 4- 2 t ile, . h )1 r Is 4- • ) 1 ,. _ 674 --- ( 7iii .!-- . ( ---- ,,. 2. 5 - 4 4/Z/Z4445ZE /r se "'” L Ity / die Na 0 = I 5 - 4 - 0 c,:s k koo )2- iF o ,r F i Sy c:;, / 4 /2 142 ,/.^,..../ dz.. . fr, P i,74)7 : .i L aSE II // Y G IE P771 . le,2 1 o - 23 ____,,-' - I2 fc.) -3O I, -" E...........................-....... i., iiii 3185•1 AIRWAY AVENUE • COSTA MESA. CALWORNIA 92926-4875 • (714) 64 I •8777 ., . . 3 id , •ir J. ill IIIIIIIIIIIIMP CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING fri SUflitCf ,At_E _ ,. ..), - 1011 ,_, OHM t- Of . C4774' &5/ AvAizsris ev i - ki \L , ..; _ .: _ •-) ,.. • • •,,:-. .. -1_,----?[--. . .,.. \,\_,,,,,.?•_. \ , /..„,...-- < -2.,._ \ 0 rz/c 2-- ': _ i : - .. r __ _ . ___ - •-• fl „. /I/ i , '- - -4-/,' -.: • I.. # Aiasr Ge >/.2 /...r A ,5,-I Z . t „ " I ,: '...7 - FA L -,.. , • ; If (7 •rr• j',,4 .11/0/t. .-r ...... I 0 ..... ....... -..... . .. / 0/ •ti ! --------. . 0 -•:::::::.... ....--- t ,. ria • , q_,,- \ - ----- -- 4 -..o, , ),tn,/ .`, 17: • C '-' - ,/21 ,,,,.) ,. I f / . - IA f / ' "--.,.. ...... I , L \,..„ - C-- i ... r . .., 1,- ,.. :=-,,..... FPS 4. 1 CS 0 Y rc . i 6 11 / ....?-L • ).. ' 4/21/14szt /,' . = (c/•,/,E,5)=-_ -t kEtV:49. $4' eye A./4 CPS # . h'0 3:Z. pt, „i.. " - ,, uSE 2 , ,55-- V .OEPTli , 4 .!. ri ..................--...............,1 illi 3185-1 AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92 • (7 1 4) 841.8777 4 4 h g 261/aeoteutiata 11 _,_ CIVIL ENGINEERING • • LAND PLANNING • LAND SURVEYING SUBJECT IBY. I . . DATE JO NP B N. .., - !SHEET c OF CifreY/ ...5'/A/ ,4,v,42 K575. • 2 - '''-) - ,-; - - I \'- il \ 4 mit \ - .----- u ri, CZ I r•. °. -, :,: e."' \ ( 7.‘ , ., P...., , . V :%• 1 ,7 1# ItlaS'r .5E > " /Z9 7`" SFL • -1r 1• \,12.1 ' 4 l2 I/ ..'. 4 • ' ' - ,40 c eZ P'S" X F / o7/ L 'ffinglicmi .c. I: (..),..:).-s-- 7 , 1 V , f"*" • 1 ‘ -27 !!" //= - aj4 -= ' • - . • 1 i ailli ci3 0 V = ( 2 :- 1./ ___CI Poo /2,5 jai TA /' , / I 7- i • 51Z = (P/0 ---/ I i-)9 v•-',,7 . --. 7 - urn , 1 / eV / 4/Z A&E /if -.:: -..- g'F f" , 2 A /Z._ p ; Z.F 71 ii r; , 7'r// 3170 2 .i.1, wili 1 3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92626-3428 • (714) 641-8777 Li L.) CID fl 1,11 Fl 1 VA 1 -11 131 1 LA t 1 1 L1 1171 1 11 1 LI ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** CHANNEL FLOW CALCULATIONS * * * * ** owl ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 10 ALCULATE CHANNEL CAPACITY GIVEN: Channel Slope = .010000 (Ft. /Ft.) = 1.0000 % Depth of Flow = .640 Feet Rog Z Flovv rv\c * ** OPEN CHANNEL FLOW - STREET FLOW * ** Street Slope (Ft. /Ft.) = .0100 Mannings "n" value for street = .015 Curb Height (In.) = 6. !! Street d Distance a From Crown to Crossfall Grade Break (Ft.) = 10.00 Slope from Gutter to Grade Break (Ft. /Ft.) = .040 Slope from Grade Break to Crown (Ft. /Ft.) = .020 Number of Halfstreets Carrying Runoff = 1 Distance from curb to property line (Ft.) = 7.00 Slope from curb to property line (Ft. /Ft.) = .020 um Gutter width (Ft.) = 2.000 Gutter hike from flowline (In.) = 2.000 Mannings "n" value for gutter and sidewalk = .013 Depth of flow = .640 (Ft.) Average Velocity = 3.88 (Ft. /Sec.) WARNING: DEPTH OF FLOW EXCEEDS TOP OF CURB Distance that curb overflow reaches into property is = 7.000 (Ft.) Streetflow Hydraulics : ±e Halfstreet Flow Width(Ft.) = 13.83 L.; Flow Velocity(Ft. /Sec.) = 4.37 Depth *Velocity = 2.80 Calculated flow rate of total street channel = 17.09 (CFS) °" Flow rate in gutter = 4.85 (CFS) tra Velocity of flow in gutter and sidewalk area = 3.024 (Ft. /Sec.) Average velocity of total street channel = 3.881 (Ft. /Sec.) STREET FLOW CROSS SECTION NOTE: The following critical depth calculations are for: Channel 1 - If STREET, property line to outside edge of gutter - If V- GUTTER, property line to start of V- Gutter ql Channel 2 - STREET, outside edge of gutter to crown V- Gutter, in V- Gutter itself Channel 3 - V- Gutter, 2nd half of street CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 1: Subchannel Critical Flow Top Width(Ft.) = 9.00 Subchannel Critical Flow Velocity(Ft. /Sec.) = 2.589 Subchannel Critical Flow Area(Sq. Ft.) = 1.87 ai • Froude Number Calculated = 1.000 Subchannel Critical Depth above invert elevation = .670 I CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 2: Subchannel Critical Flow Top Width(Ft.) = 15.83 ;:- _ Subchannel Critical Flow Velocity(Ft. /Sec.) = 2.919 Subchannel Critical Flow Area(Sq. Ft.) = 4.19 Froude Number Calculated = .999 Subchannel Critical Depth above invert elevation = .743 9 irm ii * * * * * * * * * * * * * * * * * * * * * ** CHANNEL CROSS - SECTION PLOT * * * * * * * * * * * * * * * * * * * * * * ** oft Depth of flow = .64 Feet ,= "W" MO HALF - STREET FLOW CROSS SECTION s i l i; Critical depth for Channel No.1= .67 Feet , = "c" Critical depth for Channel No.2= .74 Feet , = "c" il X (Feet) Y(Feet) Y- Axis -> .0 .2 .4 .6 .9 .00 .64 X il ill 1.00 .62 XW c 2.00 .60 XW 3.00 .58 X W 4.00 .56 X W Mg 5.00 .54 X W 6.00 .52 X W 7.00 .50 X W 'R 8.00 .08 X W illi 9.00 .17 X W 10.00 .21 X W c 11.00 .25 X W c IN 12.00 .29 X W c 13.00 .33 X W c 14.00 .37 X W c " ! 15.00 .41 X W c iii 16.00 .45 X W c 17.00 .49 X W C 18.00 .53 X W c ., 19.00 .57 X W c hi 20.00 .61 XW c 21.00 .65 X c en 22.00 .69 X c ilk 23.00 .71 X c 24.00 .73 Xc 25.00 .75 X " 26.00 .77 X Mil 27.00 .79 X 28.00 .81 X pp. 29.00 .83 X 30.00 .85 X Si 31.00 .87 X 32.00 .89 X +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++++++++++ ill di WI ill PI se +ig lid wi iii Ai ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** '^ * * * * ** CHANNEL FLOW CALCULATIONS * * * * ** ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** -ALCULATE CHANNEL CAPACITY GIVEN: Channel Slope = .010000 (Ft. /Ft.) = 1.0000 % Depth of Flow = .500 Feet CB l da Flow Nic C TaQ Co e_18 * ** OPEN CHANNEL FLOW - STREET FLOW * ** Street Slope (Ft. /Ft.) = .0100 Mannings "n" value for street = .015 Curb Height (In.) = 6. Street Halfwidth (Ft.) = 25.00 Distance From Crown to Crossfall Grade Break (Ft.) = 10.00 Slope from Gutter to Grade Break (Ft. /Ft.) = .040 Slope from Grade Break to Crown (Ft. /Ft.) = .020 Number of Halfstreets Carrying Runoff = 1 Distance from curb to property line (Ft.) = 7.00 Slope from curb to property line (Ft. /Ft.) = .020 11 Gutter width (Ft.) = 2.000 Gutter hike from flowline (In.) = 2.000 Mannings "n" value for gutter and sidewalk = .013 SRI Depth of flow = .500 (Ft.) Average Velocity = 3.95 (Ft. /Sec.) Streetflow Hydraulics : PI Halfstreet Flow Width(Ft.) = 10.33 'low Velocity(Ft. /Sec.) = 3.46 Depth *Velocity = 1.73 Calculated flow rate of total street channel = 8.77 (CFS) Flow rate in gutter = 3.96 (CFS) STREET FLOW CROSS SECTION NOTE: The following critical depth calculations are for: ..„ Channel 1 - If STREET, property line to outside edge of gutter - If V- GUTTER, property line to start of V- Gutter Channel 2 - STREET, outside edge of gutter to crown V- Gutter, in V- Gutter itself ^ Channel 3 - V- Gutter, 2nd half of street CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 1: wo Subchannel Critical Flow Top Width(Ft.) = 9.00 Mi Subchannel Critical Flow Velocity(Ft. /Sec.) = 2.419 Subchannel Critical Flow Area(Sq. Ft.) = 1.64 Froude Number Calculated = 1.000 Subchannel Critical Depth above invert elevation = .644 " " ! CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 2: Subchannel Critical Flow Top Width(Ft.) = 9.79 Subchannel Critical Flow Velocity(Ft. /Sec.) = 2.509 m1 Subchannel Critical Flow Area(Sq. Ft.) = 1:92 Froude Number Calculated = .999 Subchannel Critical Depth above invert elevation = .558 ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Ii ‘t elp di * * * * * * * * * * * * * * * * * * * * * ** CHANNEL CROSS - SECTION PLOT * * * * * * * * * * * * * * * * * * * * * * ** Depth of flow = .50 Feet ,= "W" HALF- STREET FLOW CROSS SECTION il Critical depth for Channel No.1= .64 Feet , = "c" mo: Critical depth for Channel No.2= .56 Feet , = "c" X (Feet) Y(Feet) Y- Axis -> .0 .2 .4 .6 .9 41; .00 .64 Xc 1.00 .62 X c 2.00 .60 X c 3.00 .58 X c 4.00 .56 X C 5.00 .54 X C 6.00 .52 X c 7 7.00 .50 X c iii 8.00 .08 X W c 9.00 .17 X W C 10.00 .21 X W c 11.00 .25 X W c 12.00 .29 X W c 13.00 .33 X W c 14.00 .37 X W c 15.00 .41 X W C 16.00 .45 X W C 17.00 .49 XW C "I 18.00 .53 X c Le 19.00 .57 X 20.00 .61 X gm 21.00 .65 X 22.00 .69 X Ai 23.00 .71 X 24.00 .73 X 44 25.00 .75 X 26.00 .77 X In 27.00 .79 X 28.00 .81 X "' 29.00 .83 X 6 30.00 .85 X 31.00 .87 X Po 32.00 .89 X ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ii di Am Ali Ili iiii WI ii'1 7- d�lll ******************************************** * * * *** * * * * *** ** * * * * * * * * * * ** ** ** 1 . 1 4 * * * * ** CHANNEL FLOW CALCULATIONS * * * * ** ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** CALCULATE CHANNEL CAPACITY GIVEN: Channel Slope = .010000 (Ft. /Ft.) = 1.0000 Depth of Flow = .520 Feet ml Cf3 ce.ovvr\t . * ** OPEN CHANNEL FLOW - STREET FLOW * ** Street Slope (Ft. /Ft.) = .0100 Mannings "n" value for street = .015 3 Curb Height (In.) = 6. Street Halfwidth (Ft.) = 25.00 Distance From Crown to Crossfall Grade Break (Ft.) = 10.00 r Slope from Gutter to Grade Break (Ft. /Ft.) = .040 Slope from Grade Break to Crown (Ft. /Ft.) = .020 Number of Halfstreets Carrying Runoff = 1 !e Distance from curb to property line (Ft.) = 7.00 Slope from curb to property line (Ft. /Ft.) = .020 Gutter width (Ft.) = 2.000 Gutter hike from flowline (In.) = 2.000 Mannings "n" value for gutter and sidewalk = .013 I Depth of flow = .520 (Ft.) Average Velocity = 3.73 (Ft. /Sec.) dARNING: DEPTH OF FLOW EXCEEDS TOP OF CURB Distance that curb overflow reaches into property is = 1.000 (Ft.) ppm Streetflow Hydraulics : Half street Flow Width(Ft.) = 10.83 Flow Velocity(Ft. /Sec.) = 3.60 Depth *Velocity = 1.87 Calculated flow rate of total street channel = 9.10 (CFS) Flow rate in gutter = 3.49 (CFS) iirr Velocity of flow in gutter and sidewalk area = 3.951 (Ft. /Sec.) Average velocity of total street channel = 3.725 (Ft. /Sec.) STREET FLOW CROSS SECTION NOTE: The following critical depth calculations are for: Channel 1 - If STREET, property line to outside edge of gutter - If V- GUTTER, property line to start of V- Gutter Channel 2 - STREET, outside edge of gutter to crown V- Gutter, in V- Gutter itself Channel 3 - V- Gutter, 2nd half of street IW CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 1: Subchannel Critical Flow Top Width(Ft.) = 8.13 "11 Subchannel Critical Flow Velocity(Ft. /Sec.) = 2.401 Subchannel Critical Flow Area(Sq. Ft.) = 1.45 Froude Number Calculated = 1.000 Subchannel Critical Depth above invert elevation = .623 I CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 2: iir Subchannel Critical Flow Top Width(Ft.) = 10.41 * * * * * * * * * * * * * * * * * * * * * ** CHANNEL CROSS - SECTION PLOT * * * * * * * * * * * * * * * * * * * * * * ** Depth of flow = .52 Feet ,= "W" HALF- STREET FLOW CROSS SECTION Critical depth for Channel No.1= .62 Feet , = "c" Critical depth for Channel No.2= .58 Feet , = "c" X (Feet) Y(Feet) Y- Axis -> .0 .2 .4 .6 .9 .00 .64 X 1.00 .62 Xc 2.00 .60 Xc 3.00 .58 X c 4.00 .56 X c 5.00 .54 X c 6.00 .52 X c 7.00 .50 XW c 8.00 .08 X W c 9.00 .17 X W c 10.00 .21 X W c 11.00 .25 X W c 12.00 .29 X W c 13.00 .33 X W c 14.00 .37 X W c 15.00 .41 X W c 16.00 .45 X W c 17.00 .49 X W c 18.00 .53 X c 19.00 .57 Xc li 20.00 .61 X 21.00 .65 X 22.00 .69 X 23.00 .71 X 24.00 .73 X 25.00 .75 X 26.00 .77 X 27.00 .79 X 28.00 .81 X II 29.00 .83 X 30.00 .85 X 31.00 .87 X 32.00 .89 X ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ter, ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** CHANNEL FLOW CALCULATIONS * * * * ** ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** _ALCULATE CHANNEL CAPACITY GIVEN: Channel Slope = .005200 (Ft. /Ft.) = .5200 % Depth of Flow = .500 Feet E4 Flog ' tA5 (. Tap -' Cur * ** OPEN CHANNEL FLOW - STREET FLOW * ** Street Slope (Ft. /Ft.) = .0052 Mannings "n" value for street = .015 Curb Height (In.) = 6. I Street Halfwidth (Ft.) = 25.00 Distance From Crown to Crossfall Grade Break (Ft.) = 10.00 Slope from Gutter to Grade Break (Ft. /Ft.) _ .040 Slope from Grade Break to Crown (Ft. /Ft.) _ .020 Number of Halfstreets Carrying Runoff = 1 Distance from curb to property line (Ft.) = 7.00 Slope from curb to property line (Ft. /Ft.) = .020 I Gutter width (Ft.) = 2.000 Gutter hike from flowline (In.) = 2.000 Mannings "n" value for gutter and sidewalk = .013 Depth of flow = .500 (Ft.) Average Velocity = 2.84 (Ft. /Sec.) Streetflow Hydraulics : II Halfstreet Flow Width(Ft.) = 10.33 'low Velocity(Ft. /Sec.) = 2.50 Depth *Velocity = 1.25 Calculated flow rate of total street channel = 6.32 (CFS) I; Flow rate in gutter = 2.86 (CFS) STREET FLOW CROSS SECTION NOTE: The following critical depth calculations are for: Channel 1 - If STREET, property line to outside edge of gutter - If V- GUTTER, property line to start of V- Gutter Channel 2 - STREET, outside edge of gutter to crown V- Gutter, in V- Gutter itself Channel 3 - V- Gutter, 2nd half of street CRITICAL FLOW CALCULATIONS FOR. CHANNEL NO. 1: II Subchannel Critical Flow Top Width(Ft.) = 2.00 Subchannel Critical Flow Velocity(Ft. /Sec.) = 3.584 Subchannel Critical Flow Area(Sq. Ft.) = .80 Froude Number Calculated = 1.000 Subchannel Critical Depth above invert elevation = .482 CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 2: Subchannel Critical Flow Top Width(Ft.) = 8.58 Subchannel Critical Flow Velocity(Ft. /Sec.) = 2.352 Subchannel Critical Flow Area(Sq. Ft.) = 1.47 Froude Number Calculated = 1.000 Subchannel Critical Depth above invert elevation = .510 ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 4F * * * * * * * * * * * * * * * * * * * * * ** CHANNEL CROSS - SECTION PLOT * * * * * * * * * * * * * * * * * * * * * * ** Depth of flow = .50 Feet ,= "W" HALF- STREET FLOW CROSS SECTION I Critical depth for Channel No.1= .48 Feet , = "c" I Critical depth for Channel No.2= .51 Feet , _ "c" II X (Feet) Y(Feet) Y- Axis -> .0 .2 .4 .6 .9 .00 .64 X 1.00 .62 X 2.00 .60 X 3.00 .58 X I 4.00 .56 X 5.00 .54 X 6.00 .52 X 7.00 .50 X 8.00 .08 X cW 9.00 .17 X cW 10.00 .21 X Wc 11.00 .25 X Wc 12.00 .29 X We 13.00 .33 X Wc 14.00 .37 X Wc 15.00 .41 X Wc 16.00 .45 X We 17.00 .49 XWc I 18.00 .53 X 19.00 .57 X 20.00 .61 X 21.00 .65 X 22.00 .69 X 23.00 .71 X 24.00 .73 X 25.00 .75 X 26.00 .77 X 27.00 .79 X 28.00 .81 X 29.00 .83 X 30.00 .85 X 31.00 .87 X 32.00 .89 X I ++++++++++++++++++++++++++++++++++++++++++++ ++ + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ I I I ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** CHANNEL FLOW CALCULATIONS * * * * ** ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** :ALCULATE CHANNEL CAPACITY GIVEN: MI Channel Slope = .005200 (Ft. /Ft.) = .5200 % II Depth of Flow = .640 Feet c e 3fg F(ovv * ** OPEN CHANNEL FLOW - STREET FLOW * ** I Street Slope (Ft. /Ft.) = .0052 Mannings "n" value for street = .015 Curb Height (In.) = 6. ▪ Street Halfwidth (Ft.) = 25.00 ▪ Distance From Crown to Crossfall Grade Break (Ft.) = 10.00 Slope from Gutter to Grade Break (Ft. /Ft.) = .040 Slope from Grade Break to Crown (Ft. /Ft.) = .020 I Number of Halfstreets Carrying Runoff = 1 Distance from curb to property line (Ft.) = 7.00 Slope from curb to property line (Ft. /Ft.) = .020 Gutter width (Ft.) = 2.000 Gutter hike from flowline (In.) = 2.000 Mannings "n" value for gutter and sidewalk = .013 Depth of flow = .640 (Ft.) II Average Velocity = 2.80 (Ft. /Sec.) WARNING: DEPTH OF FLOW EXCEEDS TOP OF CURB ▪ Distance that curb overflow reaches into property is = 7.000 (Ft.) Streetflow Hydraulics : Halfstreet Flow Width(Ft.) = 13.83 Flow Velocity(Ft. /Sec.) = 3.15 Depth *Velocity = 2.02 Calculated flow rate of total street channel = 12.32 (CFS) Flow rate in gutter = 3.50 (CFS) Velocity of flow in gutter and sidewalk area = 2.181 (Ft. /Sec.) Average velocity of total street channel = 2.798 (Ft. /Sec.) STREET FLOW CROSS SECTION NOTE: The following critical depth calculations are for: Channel 1 - If STREET, property line to outside edge of gutter - If V- GUTTER, property line to start of V- Gutter Channel 2 - STREET, outside edge of gutter to crown V- Gutter, in V- Gutter itself Channel 3 - V- Gutter, 2nd half of street 4 ] CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 1: Subchannel Critical Flow Top Width(Ft.) = 8.15 Subchannel Critical Flow Velocity(Ft. /Sec.) = 2.398 Subchannel Critical Flow Area(Sq. Ft.) = 1.46 Froude Number Calculated = .999 Subchannel Critical Depth above invert elevation = .623 CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 2: Subchannel Critical Flow Top Width(Ft.) = 12.48 Subchannel Critical Flow Velocity(Ft. /Sec.) = 2.835 Subchannel Critical Flow Area(Sq. Ft.) = 3.11 Froude Number Calculated = 1.000 Subchannel Critical Depth above invert elevation = .666 ir► * * * * * * * * * * * * * * * * * * * * * ** CHANNEL CROSS - SECTION PLOT * * * * * * * * * * * * * * * * * * * * * * ** Depth of flow = .64 Feet ,= "W" HALF- STREET FLOW CROSS SECTION Critical depth for Channel No.1= .62 Feet , = "c" Critical depth for Channel No.2= .67 Feet , = "c" II X (Feet) Y(Feet) Y- Axis -> .0 .2 .4 .6 .9 11 .00 .64 X 1.00 .62 XW 2.00 .60 XW F 3.00 .58 X W I 4.00 .56 X W 5.00 .54 X W 6.00 .52 X W 7.00 .50 X W I 8.00 .08 X W 9.00 .17 X W 10.00 .21 X W I 11.00 .25 X W 12.00 .29 X W 13.00 .33 X W 14.00 .37 X W II 15.00 .41 X W 16.00 .45 X W 17.00 .49 X W c 18.00 .53 X W I 19.00 .57 X W 20.00 .61 XW c 21.00 .65 Xc I 22.00 .69 X } 23.00 .71 X 24.00 .73 X 25.00 .75 X I 26.00 .77 X 27.00 .79 X 28.00 .81 X I 29.00 .83 X 30.00 .85 X 31.00 .87 X 32.00 .89 X II ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ I I II ******************************************* * ** * ** * **** *** * * ** ** ** *'J * *'1 ** I * * * * ** CHANNEL FLOW CALCULATIONS * * * * ** ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** I CALCULATE CHANNEL CAPACITY GIVEN: Channel Slope = .005200 (Ft. /Ft.) = .5200 % Depth of Flow = .520 Feet C (� 3 * ** OPEN CHANNEL FLOW - STREET FLOW * ** Street Slope (Ft. /Ft.) = .0052 Mannings "n" value for street = .015 Curb Height (In.) = 6. Street Halfwidth (Ft.) = 25.00 Distance From Crown to Crossfall Grade Break (Ft.) = 10.00 I Slope from Gutter to Grade Break (Ft. /Ft.) = .040 Slope from Grade Break to Crown (Ft. /Ft.) .020 Number of Halfstreets Carrying Runoff = 1 ■ Distance from curb to property line (Ft.) = 7.00 I Slope from curb to property line (Ft. /Ft.) = .020 Gutter width (Ft.) = 2.000 II Gutter hike from flowline (In.) = 2.000 Mannings "n" value for gutter and sidewalk = .013 Depth of flow = .520 (Ft.) Average Velocity = 2.69 (Ft. /Sec.) II DARNING: DEPTH OF FLOW EXCEEDS TOP OF CURB Distance that curb overflow reaches into property is = 1.000 (Ft.) Streetflow Hydraulics : Halfstreet Flow Width(Ft.) = 10.83 Flow Velocity(Ft. /Sec.) = 2.59 Depth *Velocity = 1.35 Calculated flow rate of total street channel = 6.57 (CFS) II Flow rate in gutter = 2.52 (CFS) Velocity of flow in gutter and sidewalk area = 2.849 (Ft. /Sec.) Average velocity of total street channel = 2.686 (Ft. /Sec.) I STREET FLOW CROSS SECTION NOTE: The following critical depth calculations are for: Channel 1 - If STREET, property line to outside edge of gutter - If V- GUTTER, property line to start of V- Gutter Channel 2 - STREET, outside edge of gutter to crown V- Gutter, in V- Gutter itself Channel 3 - V- Gutter, 2nd half of street I CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 1: Subchannel Critical Flow Top Width(Ft.) = 2.00 Subchannel Critical Flow Velocity(Ft. /Sec.) = 3.435 Subchannel Critical Flow Area(Sq. Ft.) = .73 Froude Number Calculated = 1.000 Subchannel Critical Depth above invert elevation = .450 CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 2: Subchannel Critical Flow Top Width(Ft.) = 9.13 * * * * * * * * * * * ** * * * * * * * * ** CHANNEL CROSS - SECTION PLOT * * * * * * * * * * * * * * * * * * * * * * ** Depth of flow = .52 Feet ,= "W" I HALF- STREET FLOW CROSS SECTION Critical depth for Channel No.1= .45 Feet , _ "c" II Critical depth for Channel No.2= .53 Feet , = "c" X (Feet) Y(Feet) Y- Axis -> .0 .2 .4 .6 .9 .00 .64 X 1.00 .62 X I 2.00 .60 X 3.00 .58 X 4.00 .56 X 5.00 .54 X I 6.00 .52 X 7.00 .50 XW 8.00 .08 X C W II 9.00 .17 X C W 10.00 .21 X W 11.00 .25 X W 12.00 .29 X W I 13.00 .33 X W 14.00 .37 X W 15.00 .41 X W II 16.00 .45 X W 17.00 .49 X W 18.00 .53 X ii 19.00 .57 X 20.00 .61 X 21.00 .65 X li 22.00 .69 X 23.00 .71 X 24.00 .73 X 25.00 .75 X I 26.00 .77 X 27.00 .79 X 28.00 .81 X I 29.00 .83 X 30.00 .85 X 31.00 .87 X I 32.00 .89 X ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ I II II 0 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** CHANNEL FLOW CALCULATIONS * * * * ** ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** CALCULATE CHANNEL CAPACITY GIVEN: Channel Slope = .016000 (Ft. /Ft.) = 1.6000 % ;. Depth of Flow = .640 Feet C. 5'4 C0 F (D vcf ( G @ ___ I * ** OPEN CHANNEL FLOW - STREET FLOW * ** II Street Slope (Ft. /Ft.) = .0160 Mannings "n" value for street = .015 Curb Height (In.) = 6. I Street Halfwidth (Ft.) = 25.00 Distance From Crown to Crossfall Grade Break (Ft.) = 10.00 Slope from Gutter to Grade Break (Ft. /Ft.) = .040 Slope from Grade Break to Crown (Ft. /Ft.) = .020 ll Number of Halfstreets Carrying Runoff = 1 II Distance from curb to property line (Ft.) = 7.00 Slope from curb to property line (Ft. /Ft.) = .020 Gutter width (Ft.) = 2.000 Gutter hike from flowline (In.) = 2.000 Mannings "n" value for gutter and sidewalk = .013 Depth of flow = .640 (Ft.) ii Average Velocity = 4.91 (Ft. /Sec.) WARNING: DEPTH OF FLOW EXCEEDS TOP OF CURB Distance that curb overflow reaches into property is = 7.000 (Ft.) E Streetflow Hydraulics : Halfstreet Flow Width(Ft.) = 13.83 Flow Velocity(Ft. /Sec.) = 5.53 Depth *Velocity = 3.54 Calculated flow rate of total street channel = 21.62 (CFS) Flow rate in gutter = 6.13 (CFS) Velocity of flow in gutter and sidewalk area = 3.825 (Ft. /Sec.) Average velocity of total street channel = 4.909 (Ft. /Sec.) STREET FLOW CROSS SECTION NOTE: The following critical depth calculations are for: Channel 1 - If STREET, property line to outside edge of gutter - If V- GUTTER, property line to start of V- Gutter Channel 2 - STREET, outside edge of gutter to crown V- Gutter, in V- Gutter itself 1 Channel 3 - V- Gutter, 2nd half of street I CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 1: Subchannel Critical Flow Top Width(Ft.) = 9.00 Subchannel Critical Flow Velocity(Ft. /Sec.) = 2.799 Subchannel Critical Flow Area(Sq. Ft.) = 2.19 I Froude Number Calculated = 1.000 Subchannel Critical Depth above invert elevation = .705 CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 2: Subchannel Critical Flow Top Width(Ft.) = 18.68 Subchannel Critical Flow Velocity(Ft. /Sec.) = 2.989 Subchannel Critical Flow Area(Sq. Ft.) = 5.18 Froude Number Calculated = 1.000 Subchannel Critical Depth above invert elevation = .800 i i , _ ,,_,i_ 1111. -J- '-l_ - ++ +-F ++++ ++ +'F++++ "'I "' +++++ +"+"++ F'+I++++ ++++ ++++ ++ i , * * * * * * * * * * * * * * * * * * * * * ** CHANNEL CROSS - SECTION PLOT * * * * * * * * * * * * * * * * * * * * * * ** Depth of flow = .64 Feet ,= "W" HALF- STREET FLOW CROSS SECTION Critical depth for Channel No.1= .71 Feet , = "c" Critical depth for Channel No.2= .80 Feet , = "c" II X (Feet, Y(Feet) Y- Axis -> .0 .2 .4 .6 .9 .00 .64 X c II 1.00 .62 XW c 2.00 .60 XW c 3.00 .58 X W c 4.00 .56 X W c 5.00 .54 X W C 6.00 .52 X W c 7.00 .50 X W c 8.00 .08 X W c 9.00 .17 X W c 10.00 .21 X W C 11.00 .25 X W C 12.00 .29 X W c 13.00 .33 X W c 14.00 .37 X W c il 15.00 .41 X W c 16.00 .45 X W C 17.00 .49 X W c 18.00 .53 X W c ii 19.00 .57 X W C 20.00 .61 XW c 21.00 .65 X c ii 22.00 .69 X c 23.00 .71 X C 24.00 .73 X c 25.00 .75 X c 26.00 .77 X C 27.00 .79 Xc 28.00 .81 X 29.00 .83 X 30.00 .85 X 31.00 .87 X 32.00 .89 X ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ I I II J✓ { ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** CHANNEL FLOW CALCULATIONS * * * * ** ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** CALCULATE CHANNEL CAPACITY GIVEN: Channel Slope = .016000 (Ft. /Ft.) = 1.6000 % Depth of Flow = .520 Feet * ** OPEN CHANNEL FLOW - STREET FLOW * ** Street Slope (Ft. /Ft.) = .0160 Mannings "n" value for street = .015 I Curb Height (In.) = 6. Street Halfwidth (Ft.) = 25.00 Distance From Crown to Crossfall Grade Break (Ft.) = 10.00 Slope from Gutter to Grade Break (Ft. /Ft.) = .040 Slope from Grade Break to Crown (Ft. /Ft.) = .020 Number of Halfstreets Carrying Runoff = 1 Distance from curb to property line (Ft.) = 7.00 Slope from curb to property line (Ft. /Ft.) = .020 Gutter width (Ft.) = 2.000 Gutter hike from flowline (In.) = 2.000 I Mannings "n" value for gutter and sidewalk = .013 Depth of flow = .520 (Ft.) Average Velocity = 4.71 (Ft. /Sec.) I gARNING: DEPTH OF FLOW EXCEEDS TOP OF CURB Distance that curb overflow reaches into property is = 1.000 (Ft.) I; Streetflow Hydraulics : Halfstreet Flow Width(Ft.) = 10.83 Flow Velocity(Ft. /Sec.) = 4.55 Depth *Velocity = 2.37 Calculated flow rate of total street channel = 11.52 (CFS) Flow rate in gutter = 4.42 (CFS) Velocity of flow in gutter and sidewalk area = 4.998 (Ft. /Sec.) Average velocity of total street channel = 4.712 (Ft. /Sec.) STREET FLOW CROSS SECTION NOTE: The following critical depth calculations are for: Channel 1 - If STREET, property line to outside edge of gutter - If V- GUTTER, property line to start of V- Gutter Channel 2 - STREET, outside edge of gutter to crown V- Gutter, in V- Gutter itself Channel 3 - V- Gutter, 2nd half of street I CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 1: Subchannel Critical Flow Top Width(Ft.) = 9.00 Subchannel Critical Flow Velocity(Ft. /Sec.) = 2.508 Subchannel Critical Flow Area(Sq. Ft.) = 1.76 Froude Number Calculated = .999 Subchannel Critical Depth above invert elevation = .657 IF CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 2: Subchannel Critical Flow Top Width(Ft.) = 11.43 ii * * * * * * * * * * * * * * * * * * * * * ** CHANNEL CROSS - SECTION PLOT * * * * * * * * * * * * * * * * * * * * * * ** Depth of flow = .52 Feet ,= "W" ii HALF- STREET FLOW CROSS SECTION Critical depth for Channel No.1= .66 Feet = "c" P , Critical depth for Channel No.2= .62 Feet , = "c" X (Feet) Y(Feet) Y- Axis -> .0 .2 .4 .6 .9 ii . 00 .64 Xc a 1.00 .62 X c 2.00 .60 X c 3.00 .58 X c 4.00 .56 X c 5.00 .54 X c ii 6.00 .52 X c 7.00 .50 XW c 8.00 .08 X W c 9.00 .17 X W c 10.00 .21 X W c 11.00 .25 X W c il 12.00 .29 X W c 13.00 .33 X W c 14.00 .37 X W c 15.00 .41 X W c ii 16.00 .45 X W c 17.00 .49 X W c 18.00 .53 X c I; 19.00 .57 X c 20.00 .61 Xc 21.00 .65 X ii 22.00 .69 X 23.00 .71 X 24.00 .73 X 25.00 .75 X 26.00 .77 X 27.00 .79 X 28.00 .81 X 29.00 .83 X 30.00 .85 X 31.00 .87 X 32.00 .89 X ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ I a i r- 1 9 ii ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** CHANNEL FLOW CALCULATIONS * * * * ** ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** CALCULATE CHANNEL CAPACITY GIVEN: il Channel Slope = .016000 (Ft. /Ft.) = 1.6000 % Depth of Flow = .500 Feet ( . Tar p- Cues * ** OPEN CHANNEL FLOW - STREET FLOW * ** ii Street Slope (Ft. /Ft.) = .0160 Mannings "n" value for street = .015 Curb Height (In.) = 6. Street Halfwidth (Ft.) = 25.00 Distance From Crown to Crossfall Grade Break (Ft.) = 10.00 Slope from Gutter to Grade Break (Ft. /Ft.) = .040 Slope from Grade Break to Crown (Ft. /Ft.) = .020 Number of Halfstreets Carrying Runoff = 1 Distance from curb to property line (Ft.) = 7.00 Slope from curb to property line (Ft. /Ft.) = .020 Gutter width (Ft.) = 2.000 Gutter hike from flowline (In.) = 2.000 Mannings "n" value for gutter and sidewalk = .013 Depth of flow = .500 (Ft.) Average Velocity = 4.99 (Ft. /Sec.) Streetflow Hydraulics : il Halfstreet Flow Width(Ft.) = 10.33 Flow Velocity(Ft. /Sec.) = 4.38 Depth *Velocity = 2.19 Calculated flow rate of total street channel = 11.09 (CFS) 7 Flow rate in gutter = 5.01 (CFS) STREET FLOW CROSS SECTION NOTE: The following critical depth calculations are for: Channel 1 - If STREET, property line to outside edge of gutter ii - If V- GUTTER, property line to start of V- Gutter Channel 2 - STREET, outside edge of gutter to crown V- Gutter, in V- Gutter itself Channel 3 - V- Gutter, 2nd half of street CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 1: Subchannel Critical Flow Top Width(Ft.) = 9.00 Subchannel Critical Flow Velocity(Ft. /Sec.) = 2.618 Subchannel Critical Flow Area(Sq. Ft.) = 1.91 Froude Number Calculated = 1.000 . 0 Subchannel Critical Depth above invert elevation = .675 x ii CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 2: Subchannel Critical Flow Top Width(Ft.) = 10.75 Subchannel Critical Flow Velocity(Ft. /Sec.) = 2.630 Subchannel Critical Flow Area(Sq. Ft.) = 2.31 Froude Number Calculated = 1.000 Subchannel Critical Depth above invert elevation = .597 ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Iii S ✓ ii * * * * * * * * * * * * * * * * * * * * * ** CHANNEL CROSS - SECTION PLOT * * * * * * * * * * * * * * * * * * * * * * ** li Depth of flow = .50 Feet ,= "W" HALF- STREET FLOW CROSS SECTION li Critical depth for Channel No.1= .67 Feet , = "c" Critical depth for Channel No.2= .60 Feet , = "c" 11 X (Feet) Y(Feet) Y- Axis -> .0 .2 .4 .6 .9 .00 .64 X 1.00 .62 X c 2.00 .60 X c 3.00 .58 X c 4.00 .56 X c 5.00 .54 X c 6.00 .52 X c 7.00 .50 X c 8.00 .08 X W c 9.00 .17 X W c 10.00 .21 X W c I' 11.00 .25 X W c 12.00 .29 X W c 13.00 .33 X W c 14.00 .37 X W c 15.00 .41 X W c 16.00 .45 X W c 17.00 .49 XW c 18.00 .53 X c 19.00 .57 Xc 20.00 .61 X 21.00 .65 X ii 22.00 .69 X 23.00 .71 X 24.00 .73 X 1 25.00 .75 X I: 26.00 .77 X 27.00 .79 X 28.00 .81 X L i 29.00 .83 X 30.00 .85 X a 31.00 .87 X i 32.00 .89 X ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ i 4 4 ********************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** CHANNEL FLOW CALCULATIONS * * * * ** ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** CALCULATE CHANNEL CAPACITY GIVEN: i Channel Slope = .005600 (Ft. /Ft.) = .5600 % Depth of Flow = .810 Feet g 14E P(O\NII * ** OPEN CHANNEL FLOW - STREET FLOW * ** I Street Slope (Ft. /Ft.) = .0056 Mannings "n" value for street = .015 { Curb Height (In.) = 8. Street I Distance a From d Crown to Crossfall Grade Break (Ft.) = 10.00 Slope from Gutter to Grade Break (Ft. /Ft.) = .040 Slope from Grade Break to Crown (Ft. /Ft.) = .020 I Number of Halfstreets Carrying Runoff = 1 Distance from curb to property line (Ft.) = 7.00 Slope from curb to property line (Ft. /Ft.) = .020 Gutter width (Ft.) = 2.000 I Gutter hike from flowline (In.) = 2.000 Mannings "n" value for gutter and sidewalk = .013 Depth of flow = .810 (Ft.) I Average Velocity = 3.36 (Ft. /Sec.) !!WARNING: WATER IS ABOVE LEFT OR RIGHT BANK ELEVATIONS. Flow capacity is extrapolated by increasing bank heights WARNING: DEPTH OF FLOW EXCEEDS TOP OF CURB Distance that curb overflow reaches into property is = 7.166 (Ft.) Streetflow Hydraulics : Halfstreet Flow Width(Ft.) = 21.00 Flow Velocity(Ft. /Sec.) = 3.66 i! Depth *Velocity = 2.96 Calculated flow rate of total street channel = 24.66 (CFS) Flow rate in gutter = 5.04 (CFS) Velocity of flow in gutter and sidewalk area = 2.563 (Ft. /Sec.) Average velocity of total street channel = 3.364 (Ft. /Sec.) STREET FLOW CROSS SECTION NOTE: The following critical depth calculations are for: Channel 1 - If STREET, property line to outside edge of gutter - If V- GUTTER, property line to start of V- Gutter Channel 2 - STREET, outside edge of gutter to crown V- Gutter, in V- Gutter itself Channel 3 - V- Gutter, 2nd half of street CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 1: Subchannel Critical Flow Top Width(Ft.) = 8.85 I Subchannel Critical Flow Velocity(Ft. /Sec.) = 2.638 Subchannel Critical Flow Area(Sq. Ft.) = 1.91 Froude Number Calculated = 1.001 Subchannel Critical Depth above invert elevation = .804 .RITICAL FLOW CALCULATIONS FOR CHANNEL NO. 2: Subchannel Critical Flow Top Width(Ft.) = 21.64 Subchannel Critical Flow Velocity(Ft. /Sec.) = 3.080 Subchannel Critical Flow Area(Sq. Ft.) = 6.37 Froude Number Calculated = 1.000 Subchannel Critical Depth above invert elevation = .859 9 i * * * * * * * * * * * * * * * * * * * * * ** CHANNEL CROSS - SECTION PLOT * * * * * * * * * * * * * * * * * * * * * * ** Depth of flow = .81 Feet ,= "W" HALF - STREET FLOW CROSS SECTION II Critical depth for Channel No.1= .80 Feet , = "c" Critical depth for Channel No.2= .86 Feet , = "c" II X (Feet) Y(Feet) Y- Axis -> .0 .2 .4 .6 .9 .00 .81 X I 1.00 .79 XW 2.00 .77 X W 3.00 .75 X W 4.00 .73 X W 5.00 .71 X W 6.00 .69 X W 7.00 .67 X W 8.00 .08 X W 9.00 .17 X W 10.00 .21 X W c 11.00 .25 X W c 12.00 .29 X W c 13.00 .33 X W c 14.00 .37 X W c 15.00 .41 X W c 16.00 .45 X W c i 17.00 .49 X W c 18.00 .53 X W c 19.00 .57 X W c 20.00 .61 X W c i 21.00 .65 X W c 22.00 .69 X W c ii 23.00 .71 X W c 24.00 .73 X W c 25.00 .75 X W c ii 26.00 .77 X W c 27.00 .79 XW c • 28.00 .81 X c 29.00 .83 Xc i: 30.00 .85 X 31.00 .87 X 32.00 .89 X ' ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ll i I i * * * * * * * * * * * * * * * * * * * * * * * * * * * ** *************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** CHANNEL FLOW CALCULATIONS * * * * ** ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** CALCULATE CHANNEL CAPACITY GIVEN: Channel Slope = .005600 (Ft. /Ft.) = .5600 % Depth of Flow = .667 Feet C o .� Top a1- Cd-6 * ** OPEN CHANNEL FLOW - STREET FLOW * ** I Street Slope (Ft. /Ft.) = .0056 Mannings "n" value for street = .015 Curb Height (In.) = 8. 1 Street Halfwidth (Ft.) = 25.00 II Distance From Crown to Crossfall Grade Break (Ft.) = 10.00 Slope from Gutter to Grade Break (Ft. /Ft.) = .040 Slope from Grade Break to Crown (Ft. /Ft.) = .020 I Number of Halfstreets Carrying Runoff = 1 Distance from curb to property line (Ft.) = 7.00 Slope from curb to property line (Ft. /Ft.) = .020 I Gutter width (Ft.) = 2.000 Gutter hike from flowline (In.) = 2.000 Mannings "n" value for gutter and sidewalk = .013 Depth of flow = .667 (Ft.) Average Velocity = 3.63 (Ft. /Sec.) WARNING: DEPTH OF FLOW EXCEEDS TOP OF CURB Distance that curb overflow reaches into property is = .016 (Ft.) Streetflow Hydraulics : Halfstreet Flow Width(Ft.) = 14.51 Flow Velocity(Ft. /Sec.) = 3.39 Depth *Velocity = 2.26 Calculated flow rate of total street channel = 15.58 (CFS) Flow rate in gutter = 4.96 (CFS) Velocity of flow in gutter and sidewalk area = 4.250 (Ft. /Sec.) Average velocity of total street channel = 3.627 (Ft. /Sec.) STREET FLOW CROSS SECTION NOTE: The following critical depth calculations are for: Channel 1 - If STREET, property line to outside edge of gutter - If V- GUTTER, property line to start of V- Gutter Channel 2 - STREET, outside edge of gutter to crown V- Gutter, in V- Gutter itself Channel 3 - V- Gutter, 2nd half of street I CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 1: Subchannel Critical Flow Top Width(Ft.) = 8.68 Subchannel Critical Flow Velocity(Ft. /Sec.) = 2.639 Subchannel Critical Flow Area(Sq. Ft.) = 1.88 Froude Number Calculated = .999 Subchannel Critical Depth above invert elevation = .800 1 CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 2: Subchannel Critical Flow Top Width(Ft.) = 14.07 Subchannel Critical Flow Velocity(Ft. /Sec.) = 2.895 Subchannel Critical Flow Area(Sq. Ft.) = 3.67 Froude Number Calculated = .999 Subchannel Critical Depth above invert elevation = .708 * * * * * * * * * * * * * * * * * * * * * ** CHANNEL CROSS - SECTION PLOT * * * * * * * * * * * * * * * * * * * * * * ** Depth of flow = .67 Feet ,= "W" HALF- STREET FLOW CROSS SECTION Critical depth for Channel No.1= .80 Feet , = "c" • Critical depth for Channel No.2= .71 Feet , = "c" I X (Feet) Y(Feet) Y- Axis -> .0 .2 .4 .6 .9 II .00 .81 X 1.00 .79 Xc 2.00 .77 X c 3.00 .75 X c 4.00 .73 X c 5.00 .71 X c 6.00 .69 X c 7.00 .67 X c 8.00 .08 X W c 9.00 .17 X W c 10.00 .21 X Wc 11.00 .25 X Wc 12.00 .29 X Wc 13.00 .33 X Wc 14.00 .37 X Wc II 15.00 .41 X Wc 16.00 .45 X Wc 17.00 .49 X Wc 18.00 .53 X Wc 19.00 .57 X Wc 20.00 .61 X Wc 21.00 .65 XWc 22.00 .69 Xc ii 23.00 .71 X 24.00 .73 X 25.00 .75 X 26.00 .77 X 27.00 .79 X 28.00 .81 X 29.00 .83 X 30.00 .85 X 31.00 .87 X 32.00 .89 X ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ t 1 1 i II * * * * * * ************************ * * * ** * * ** * * * * ** * * * * * * * * ** * * * * ** *'fit * * * * * * ** * * ** * * * * ** CHANNEL FLOW CALCULATIONS * * * * ** I ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * mi CALCULATE CHANNEL CAPACITY GIVEN: Channel Slope = Depth of Flow = .005600 (Ft. /Ft.) = .5600 II 6 17el_ .520 Feet (o i * ** OPEN CHANNEL FLOW - STREET FLOW * ** Street Slope (Ft. /Ft.) = .0056 1 Mannings "n" value for street = .015 I Curb Height (In.) = 8. Street Halfwidth (Ft.) = 25.00 Distance From Crown to Crossfall Grade Break (Ft.) = 10.00 Slope from Gutter to Grade Break (Ft. /Ft.) = .040 Slope from Grade Break to Crown (Ft. /Ft.) = .020 Number of Halfstreets Carrying Runoff = 1 I Distance from curb to property line (Ft.) = 7.00 Slope from curb to property line (Ft. /Ft.) = .020 i Gutter width (Ft.) = 2.000 Gutter hike from flowline (In.) = 2.000 II Mannings "n" value for gutter and sidewalk = .013 Depth of flow = .520 (Ft.) Average Velocity = 3.04 (Ft. /Sec.) Streetflow Hydraulics : Halfstreet Flow Width(Ft.) = 10.83 II Flow Velocity(Ft. /Sec.) = 2.69 Depth *Velocity = 1.40 I Calculated flow rate of total street channel = 7.39 (CFS) Flow rate in gutter = 3.19 (CFS) II STREET FLOW CROSS SECTION III NOTE: The following critical depth calculations are for: Channel 1 - If STREET, property line to outside edge of gutter - If V- GUTTER, property line to start of V- Gutter Channel 2 - STREET, outside edge of gutter to crown V- Gutter, in V- Gutter itself Channel 3 - V- Gutter, 2nd half of street a CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 1: Subchannel Critical Flow Top Width(Ft.) = 2.00 I Subchannel Critical Flow Velocity(Ft. /Sec.) = 3.717 Subchannel Critical Flow Area(Sq. Ft.) = .86 ? Froude Number Calculated = 1.000 Subchannel Critical Depth above invert elevation = .512 1 I CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 2: Subchannel Critical Flow Top Width(Ft.) = 9.27 Subchannel Critical Flow Velocity(Ft. /Sec.) = 2.442 IF Subchannel Critical Flow Area(Sq. Ft.) = 1.72 Froude Number Calculated = .999 Subchannel Critical Depth above invert elevation = .538 II I i *********************** CROSS-SECTION CHANNEL CROSS SECTION PLO T * * * * * * * * * * * * * * * * * * * * * * ** Depth of flow = .52 Feet ,= "W" HALF- STREET FLOW CROSS SECTION II Critical depth for Channel No.1= .51 Feet , = "c" Critical depth for Channel No.2= .54 Feet , = "c" X (Feet) Y(Feet) Y- Axis -> .0 .2 .4 .6 .9 .00 .81 X 1.00 .79 X 2.00 .77 X I 3.00 .75 X 4.00 .73 X 5.00 .71 X I 6.00 .69 X 7.00 .67 X 8.00 .08 X W 9.00 .17 X W I 10.00 .21 X Wc 11.00 .25 X Wc 12.00 .29 X Wc I 13.00 .33 X Wc 14.00 .37 X Wc 15.00 .41 X Wc 16.00 .45 X Wc 17.00 .49 X Wc 18.00 .53 Xc ii 19.00 .57 X 20.00 .61 X 21.00 .65 X 22.00 .69 X II 23.00 .71 X 24.00 .73 X 25.00 .75 X 26.00 .77 X 27.00 .79 X 28.00 .81 - X II 29.00 .83 X 30.00 .85 X 31.00 .87 X 32.00 .89 X ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ii ii II /AB/ Es RAP//5 } 1 I al h g A ate. MEW CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE HO. SHEET OF I 1 , I JOB I ' F eadi UPPEi� Et- MOVE 'f 0 NODE Cop L G'rH A 2� R kJ<S ;1 6 ( Go I z4 "' 870 Co. 1l 1 Co C) So s (1.13 51 4 C) 3 3.6 a 1 Sz s° 3 111111,1 1.7 1 6r-S° 5-v.( ■ I zi4' ' . 115 . it Z� 1( I i 1 '7 l 7 5:3 I 1 ,i1 A t P r P J J 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626 -3428 • (714) 641 -8777 1 in 7/ae g 2ftemag, ate. I CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING 0 'I [ sI JDATE 3 i ( -81 1JSHEET OF F20M , TD NODE GM - UPPER LANG A 2�A Rew 2.KS Mme • - et . r I I l 0 ( 1 i- o , 3, ?.(A . I ti 1O 10 1a (12. 1 12 10 I 191-7 .mot 40 L 1 1 d 20 S^ G 7 5 P, pe--00,4 22. zo 3 i 5-.5-y ■ . . I ZI z 3 .� 8 I zc . ( S . 3 1 , 30 1 . 1 i1H G,60 1.3 30 `i 5 �.� j < < 8 ' I i 4 1-! 2 -t0 3 z ! .ito fib.( 15 , I I I 1 I .„- I i . 1 3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92626 -3428 • (714) 641 -8777 Emu w ' ® NON MN NM UM N IMP EN B • e 11 I.. ...., ' C n / /eigh/ of Opening (h) in / &e/ • :It) VI tV • t,,, i\ 11 J Q v^ O.. lh I I , , 1 , i 1 • 1 . t I r , _ _ _ _ _ _ _ � , 1 l I l „ k i • I , i 1 . 4 , I J .„ , 1 r 1 I i i ti 1 . ), , i ), I I 1 1. 1 t 1 • (\ N r l,, I t„ �, n v, I UD O, , 1 �o v kr i ) u i, • /fsigh/ of c o 'miy \ \ (h) in /nches r, r • • \ . • • �\ x 0 .v \ ro \' I O \ `l \ t C000ci/y per foo/ of /eng /» of oocwmg (Q /L) in c. fs. per foot / vp \ \ N / \i O ti w Obi N v., . Oo O 4s r ?� o, �' L M 1 i l 1 1 1 1 1 111liil,i J 11( I I i\ttltlil,l I l I 1 II/1 I, I, l,( ( 1 1 �fl • i �. �_ : i= r. rc � p 't..) �� I : / .-1 Q y `\ 1 W Ro /io of oofh of wo/er of opening fo heigh/ of opeoin4 C/f /h) /ii \ f /f/ ' • 1 . , , , 1 . , . , I • , t • I 1 ( I [ T i 1 l - T ( 1 ( 1 I T 1 1 1 1 1 1 1 1 I I I I F I N. (\I U.) L1 0, v • i I ,4 ' 4 •