HomeMy WebLinkAboutTract 14196 Village of Heritage VILLAGE OF HERITAGE
TRACT 14196
HYDROLOGY - HYDRAULICS
•
• � OQRpFESSIpN co
• ��� C. H O � �\ , /r
,, O ; r`,--I
c * xp.3 -11.90
a
9 IE OF C Al. \F 0 �
.J
JUNE 16, 1989
0. THE C COMMUNITY DEVELOPMENT DEPARTMENT
47,1:1
CITY OF FONTANA
•Iiu
Nq Ati� v912.448
Felipe Molinos NC(' Lao ?- ff 1
PRINCIPAL ENGINEER r 1/02 /Q a FAX (909) 350 -6618
II ?./4140er l lv
Cr 1 8353 SIERRA AVENUE, FONTANA, CA 92335 (909) 350 -6641
3170 REDHILL AVENUE • COSTA MESA, CA 92828 -3428 • (714) 841 -8777
CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING
wr
r
TRACT 14196
INDEX
1) HYDROLOGY (100 —YEAR FREQUENCY)
2) HYDROLOGY MAP
wr
3) CATCH BASIN SIZE CALCULATIONS
4) LATERAL CALCULATIONS
5) STREET CAPACITY CALCULATIONS
+� 6) MISCELLANEOUS
ai
a
rr
all
®rr
aan
r
arr
a~.
1111 iyDR 01 061 y
did
=.12_ 100 \.(R
aam
a.
a.n
a
a
a
a
a
a
aatr
a
t
Error detected while printing, cannot continue
SAN BERNARDINO COUNTY RATIONAL PROGRAM 1
rr
Copyright (c) CivilDesign /CivilCadd, 1988
Rational Hydrology Study Date: 5- 5 -89
m HYDROLOGY FOR TRACT 14196
Q = 100 YR FREQUENCY
• P.M.L., J.N. 3826, 05 -05 -1989
*SPECIFIED HYDROLOGY INFORMATION*
10.0 year storm 1 hour rainfall (Inches) = .980
100.0 year storm 1 hour rainfall (Inches) = 1.470
Computed rainfall intensity:
• Storm year = 100.00 1 hour rainfall (Inches) = 1.4700
Slope used for intensity curve = .6000
.,, Soil Antecedent Moisture Condition(AMC) = 3
++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
"" Process from Point /Station 10.00 to Point /Station 11.00
* ** INITIAL AREA EVALUATION * **
Decimal Fraction Soil Group A = 1.000
• Decimal Fraction Soil Group B = .000
Decimal Fraction Soil Group C = .000
- Decimal Fraction Soil Group D = .000
RESIDENTIAL(3 - 4 DU /AC)
"" SCS Curve Number for Soil(AMC 2) = 32.0
Adjusted SCS Curve Number for AMC 3 = 52.0
- Pervious ratio(AP) = .600 Max loss rate(FM)= .471(In /Hr)
Subarea is RESIDENTIAL (3 - 4 DU /AC)
Initial subarea flow length = 800.00(Ft.)
Upstream elevation = 1218.70(Ft.)
Downstream elevation = 1206.37(Ft.)
N' Elevation difference = 12.33(Ft.)
Slope = .01541 S( %) = 1.54
Tc = K( .412) *[(Length - 3) /(Elevation Change)] - 0.2
Initial area time of concentration = 13.758 min.
100.00 Year computed rainfall intensity = 3.557 In /Hr
Effective Runoff Coefficient used for total area
(Q =CIA) is C = .781
a Subarea runoff = 9.054(CFS)
Total initial stream area = 3.26(Ac.)
-• Pervious area fraction = .600
Initial area FM value = .471(In /Hr)
+++++++++++++±++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 11.00 to Point /Station 11.00
* ** CONFLUENCE OF MINOR STREAMS * **
w
"' 100.00 Year computed rainfall intensity = 3.557 In /Hr
air
_ILONG THE MAIN STREAM NUMBER: 1
The flow values used for the stream: 1 are:
- Time of concentration(min.) = 13.76 2
• Rainfall intensity (in. /hr /) = 3.56
Total flow area (Acres) = 3.26
.. Total runoff (CFS) at confluence point = 9.05
Area averaged loss rate (FM) = .471
40 Area averaged pervious ratio (AP) = .600
++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 12.00 to Point /Station 12.10
* ** INITIAL AREA EVALUATION * **
dr
Decimal Fraction Soil Group A = 1.000
. Decimal Fraction Soil Group B = .000
Decimal Fraction Soil Group C = .000
"" Decimal Fraction Soil Group D = .000
RESIDENTIAL(3 - 4 DU /AC)
SCS Curve Number for Soil(AMC 2) = 32.0
Adjusted SCS Curve Number for AMC 3 = 52.0
mi
Pervious ratio(AP) = .600 Max loss rate(FM)= .471(In /Hr)
Subarea is RESIDENTIAL (3 - 4 DU /AC)
Initial subarea flow length = 840.00(Ft.)
Upstream elevation = 1220.80(Ft.)
lownstream elevation = 1210.51(Ft.)
Elevation difference = 10.29(Ft.)
Slope = .01225 S( %) = 1.23
Tc = K( .412) *[(Length"'3) /(Elevation Change)]
Initial area time of concentration = 14.689 min.
100.00 Year computed rainfall intensity = 3.420 In /Hr
Effective Runoff Coefficient used for total area
(Q =CIA) is C = .776
.. Subarea runoff = 5.043(CFS)
Total initial stream area = 1.19(Ac.)
d" Pervious area fraction = .600
Initial area FM value = .471(In /Hr)
++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
ar
Process from Point /Station 12.10 to Point /Station 11.00
* ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * **
a
Upstream Elevation = 1210.51(Ft.)
• Downstream Elevation = 1206.37(Ft.)
Street Length = 280.00(Ft.)
' Curb Height = 6.(In.)
Street Halfwidth = 25.00(Ft.)
• Distance From Crown to Crossfall Grade Break = 10.00(Ft.)
Slope from Gutter to Grade Break (V /HZ) = .040
Slope from Grade Break to Crown (V /HZ) = .020
a
a
3
rr
umber of Halfstreets Carrying Runoff = 1
Distance from curb to property line = 7.00(Ft.)
de
Slope from curb to property line (V /HZ) = .020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.) 3
Estimated mean flow rate at MIDPOINT of street = 7.723(CFS)
Depth of flow = .510(Ft.)
''r Average Velocity = 3.311(Ft /S)
"" WARNING: DEPTH OF FLOW EXCEEDS TOP OF CURB
Distance that curb overflow reaches into property is = .513(Ft.)
sr
Streetflow Hydraulics at MIDPOINT of street travel
Ai Halfstreet Flow Width = 10.59(Ft.)
Flow Velocity = 3.31(Ft /S) Depth *Velocity = 1.69
Travel time = 1.41 min. TC = 16.10 min.
Adding Area Flow To Street
• 100.00 Year computed rainfall intensity = 3.237 In /Hr
Decimal Fraction Soil Group A = 1.000
Decimal Fraction Soil Group B = .000
Decimal Fraction Soil Group C = .000
• Decimal Fraction Soil Group D = .000
ESIDENTIAL(3 - 4 DU /AC)
SCS Curve Number for Soil(AMC 2) = 32.0
Adjusted SCS Curve Number for AMC 3 = 52.0
WA
Pervious ratio(AP) = .600 Max loss rate(FM)= .471(In /Hr)
Effective Runoff Coefficient used for area (Q =CIA) is C = .769
Subarea runoff = 4.716(CFS) for 2.02(Ac.)
ar Total runoff = 9.758(CFS) Total area = 3.92(Ac.)
Area averaged FM value = .471(In /Hr)
Depth of flow = .557(Ft.)
m Average Velocity = 3.333(Ft/S)
i11 WARNING: DEPTH OF FLOW EXCEEDS TOP OF CURB
• Distance that curb overflow reaches into property is = 2.832
Streetflow Hydraulics at ENDPOINT of street travel
Halfstreet Flow Width = 11.75(Ft.)
as Flow Velocity = 3.31(Ft /S) Depth *Velocity = 1.84
a
++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
• Process from Point /Station 11.00 to Point /Station 11.00
a
* ** CONFLUENCE OF MINOR STREAMS * **
,rr
* ** Compute Various Confluenced Flow Values * **
100.00 Year computed rainfall intensity = 3.237 In /Hr
• ALONG THE MAIN STREAM NUMBER: 1
The flow values used for the stream: 2 are: 4
a Time of concentration(min.) = 16.10
Rainfall intensity (in. /hr /) = 3.24
�• Total flow area (Acres) = 3.92
Total runoff (CFS) at confluence point = 9.76
4111 Area averaged loss rate (FM) = .471
Area averaged pervious ratio (AP) = .600
tir
Confluence information:
- Stream runoff Time Intensity
Number (CFS) (min.) (inch /hour)
1 9.05 13.76 3.557
2 9.76 16.10 3.237
QSMX(1) =
+1.000 *1.000* 9.1)
+1.116* .855* 9.8)
= 18.358
m QSMX(2) _
+ .896 *1.000* 9.1)
+1.000 *1.000* 9.8)
17.874
a
ainfall intensity and time of concentration
- used for 2 streams.
Individual stream flow values are:
9.05 9.76
Possible confluenced flow values are:
18.36 17.87 .c
a Individual Stream Area values are: � a
3.26 3.92
- Effective Total Area values are:
6.61 7.18
" Computed confluence estimates are:
Runoff(CFS) = 18.36 Time(min.) = 13.758
Effective area as adjusted for time (Acres) = 6.61
gr Total main stream study area (Acres) = 7.18
- Total study area average pervious area fraction(AP) = .600
Total study area average soil loss rate(FM) = .471
- ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 11.00 to Point /Station 20.00
* ** PIPEFLOW TRAVEL TIME (PROGRAM ESTIMATED SIZE) * **
a Upstream point elevation = 1206.37(Ft.)
Downstream point elevation = 1206.09(Ft.)
r
Vft
ea
, low length = 54.50(Ft.) Mannings N = .013
Ao. of pipes = 1 Required pipe flow = 18.358(CFS)
Nearest Pipe Diameter = 27.00(In.)
Calculated Individual Pipe flow = 18.358(CFS)
Normal flow depth in pipe = 18.73(In.)
a Flow top width inside pipe = 24.89(In.)
Velocity = 6.24(Ft /S)
Travel time = .15 min. TC = 13.90 min.
ow ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 20.00 to Point /Station 20.00
* ** CONFLUENCE OF MAIN STREAMS * **
a
FOLLOWING DATA INSIDE MAIN STREAM ARE CALCULATED
a
100.00 Year computed rainfall intensity = 3.535 In /Hr
The flow values used for the stream: 1 are:
Time of concentration(min.) = 13.90
Rainfall intensity (in. /hr /) = 3.53
Total flow area (Acres) = 6.61
Total runoff (CFS) at confluence point = 18.36
m Area averaged loss rate (FM) = .471
Area averaged pervious ratio (AP) = .600
" Program is now starting with MAIN STREAM NO. 2
++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
err Process from Point /Station 22.00 to Point /Station 22.10
* ** INITIAL AREA EVALUATION * **
a Decimal Fraction Soil Group A = 1.000
Decimal Fraction Soil Group B = .000
-• Decimal Fraction Soil Group C = .000
Decimal Fraction Soil Group D = .000
RESIDENTIAL(3 - 4 DU /AC)
SCS Curve Number for Soil(AMC 2) = 32.0
Adjusted SCS Curve Number for AMC 3 = 52.0
a Pervious ratio(AP) _ .600 Max loss rate(FM)= .471(In /Hr)
Subarea is RESIDENTIAL (3 - 4 DU /AC)
Initial subarea flow length = 1000.00(Ft.)
Upstream elevation = 1224.64(Ft.)
Downstream elevation = 1218.00(Ft.)
Elevation difference = 6.64(Ft.)
qo Slope = .00664 S( %) = .66
Tc = K( . *[(Length'3) /(Elevation Change)]
Initial area time of concentration = 17.802 min.
100.00 Year computed rainfall intensity = 3.047 In /Hr
Effective Runoff Coefficient used for total area
rrr (Q =CIA) is C = .761
Subarea runoff = 6.353(CFS)
rw
am
as
as
`'otal initial stream area = 2.74(Ac.)
_•ervious area fraction = .600
Initial area FM value = .471(In /Hr)
++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
air Process from Point /Station 22.10 to Point /Station 20.00
* ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * **
ill Upstream Elevation = 1218.00(Ft.)
Downstream Elevation = 1206.09(Ft.)
Street Length = 720.00(Ft.)
Curb Height = 6.(In.)
Street Halfwidth = 25.00(Ft.)
Distance From Crown to Crossfall Grade Break = 10.00(Ft.)
Slope from Gutter to Grade Break (V /HZ) = .040
IN Slope from Grade Break to Crown (V /HZ) = .020
Number of Halfstreets Carrying Runoff = 1
Distance from curb to property line = 7.00(Ft.)
Slope from curb to property line (V /HZ) = .020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
d o Estimated mean flow rate at MIDPOINT of street = 9.599(CFS)
.. Depth of flow = .544(Ft.)
Average Velocity = 3.492(Ft/S)
a
'ARNING: DEPTH OF FLOW EXCEEDS TOP OF CURB
""" Distance that curb overflow reaches into property is = 2.197(Ft.)
Streetflow Hydraulics at MIDPOINT of street travel
Halfstreet Flow Width = 11.43(Ft.)
oar Flow Velocity = 3.49(Ft /S) Depth *Velocity = 1.90
-- Travel time = 3.44 min. TC = 21.24 min.
- Adding Area Flow To Street
- 100.00 Year computed rainfall intensity = 2.741 In /Hr
Decimal Fraction Soil Group A = 1.000
Decimal Fraction Soil Group B = .000
,.. Decimal Fraction Soil Group C = .000
Decimal Fraction Soil Group D = .000
RESIDENTIAL(3 - 4 DU /AC)
SCS Curve Number for Soil(AMC 2) = 32.0
- Adjusted SCS Curve Number for AMC 3 = 52.0
Pervious ratio(AP) = .600 Max loss rate(FM)= .471(In /Hr)
Effective Runoff Coefficient used for area (Q =CIA) is C = .745
Subarea runoff = 4.966(CFS) for 2.80(Ac.)
Total runoff = 11.319(CFS) Total area = 5.54(Ac.)
rro Area averaged FM value = .471(In /Hr)
■r°
;aa
- - )epth of flow = .573(Ft.)
.- verage Velocity = 3.572(Ft/S)
WARNING: DEPTH OF FLOW EXCEEDS TOP OF CURB
Distance that curb overflow reaches into property is = 3.625
aia
Streetflow Hydraulics at ENDPOINT of street travel
Halfstreet Flow Width = 12.15(Ft.)
ar
Flow Velocity = 3.49(Ft /S) Depth *Velocity = 2.00
- ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 20.00 to Point /Station 20.00
* ** CONFLUENCE OF MINOR STREAMS * **
a
100.00 Year computed rainfall intensity = 2.741 In /Hr
- ALONG THE MAIN STREAM NUMBER: 2
The flow values used for the stream: 1 are:
Time of concentration(min.) = 21.24
• Rainfall intensity (in. /hr /) = 2.74
Total flow area (Acres) = 5.54
Total runoff (CFS) at confluence point = 11.32
.. Area averaged loss rate (FM) = .471
Area averaged pervious ratio (AP) = .600
ar
- ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
ar Process from Point /Station 21.00 to Point /Station 20.00
* ** INITIAL AREA EVALUATION * **
gar Decimal Fraction Soil Group A = 1.000
Decimal Fraction Soil Group B = .000
A- Decimal Fraction Soil Group C = .000
Decimal Fraction Soil Group D = .000
- RESIDENTIAL(3 - 4 DU /AC)
SCS Curve Number for Soil(AMC 2) = 32.0
- Adjusted SCS Curve Number for AMC 3 = 52.0
Pervious ratio(AP) = .600 Max loss rate(FM)= .471(In /Hr)
Subarea is RESIDENTIAL (3 - 4 DU /AC)
.,., Initial subarea flow length = 540.00(Ft.)
Upstream elevation = 1210.94(Ft.)
- Downstream elevation = 1206.09(Ft.)
Elevation difference = 4.85(Ft.)
"" Slope = .00898 S( %) = .90
Tc = K( .412) *[(Length "3) /(Elevation Change)]
Initial area time of concentration = 13.097 min.
100.00 Year computed rainfall intensity = 3.664 In /Hr
Effective Runoff Coefficient used for total area
■r (Q =CIA) is C = .784
Subarea runoff = 4.252(CFS)
ar
w
"" - 'otal initial stream area = 1.48(Ac.)
:ervious area fraction = .600
Initial area FM value = .471(In /Hr)
S
++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
wr Process from Point /Station 20.00 to Point /Station 20.00
* ** CONFLUENCE OF MINOR STREAMS * **
a * ** Compute Various Confluenced Flow Values * **
' 100.00 Year computed rainfall intensity = 3.664 In /Hr
ALONG THE MAIN STREAM NUMBER: 2
The flow values used for the stream: 2 are:
Time of concentration(min.) = 13.10
Rainfall intensity (in. /hr /) = 3.66
Total flow area (Acres) = 1.48
Total runoff (CFS) at confluence point = 4.25
Area averaged loss rate (FM) = .471
• Area averaged pervious ratio (AP) = .600
is Confluence information:
Stream runoff Time Intensity
Number (CFS) (min.) (inch /hour)
• 1 11.32 21.24 2.741
2 4.25 13.10 3.664
"" QSMX (1) =
+1.000 *1.000* 11.3)
+ .711 *1.000* 4.3)
14.342
QSMX(2) =
or +1.406* .617* 11.3)
+1.000 *1.000* 4.3)
- = 14.068
'"' Rainfall intensity and time of concentration
used for 2 streams.
- Individual stream flow values are: � 13.
11.32 4.25
Possible confluenced flow values are:
14.34 14.07
Individual Stream Area values are:
+r 5.54 1.48
Effective Total Area values are:
7.02 4.90
Computed confluence estimates are:
Runoff(CFS) = 14.34 Time(min.) = 21.238
Effective area as adjusted for time (Acres) = 7.02
Total main stream study area (Acres) = 7.02
a
Total study area average pervious area fraction(AP) = .600
.a.
err
a
7
"otal study area average soil loss rate(FM) = .471
++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 20.00 to Point /Station 20.00
* ** CONFLUENCE OF MAIN STREAMS * **
* ** Compute Various Confluenced Flow Values * **
FOLLOWING DATA INSIDE MAIN STREAM ARE CALCULATED
100.00 Year computed rainfall intensity = 2.741 In /Hr
The flow values used for the stream: 2 are:
Time of concentration(min.) = 21.24
Rainfall intensity (in. /hr /) = 2.74
r Total flow area (Acres) = 7.02
Total runoff (CFS) at confluence point = 14.34
°- Area averaged loss rate (FM) = .471
Area averaged pervious ratio (AP) = .600
• Confluence information:
Stream runoff Time Intensity
Number (CFS) (min.) (inch /hour)
1 18.36 13.90 3.535
2 14.34 21.24 2.741
`SMX(1) =
- *1.000 *1.000* 18.4)
+1.349* .655* 14.3)
31.029
QSMX(2) =
+ .741 *1.000* 18.4)
rw +1.000 *1.000* 14.3)
27.946
Rainfall intensity and time of concentration
Al used for 2 MAIN streams.
Individual stream flow values are:
18.36 14.34
• Possible confluenced flow values are:
31.03 27.95
- Individual Stream Area values are:
6.61 7.02
Effective Total Area values are:
11.21 13.63
Computed confluence estimates are:
Runoff(CFS) = 31.03 Time(min.) = 13.904
Effective area as adjusted for time (Acres) = 11.21
Total main stream study area (Acres) = 13.63
Total study area average pervious area fraction(AP) _ .600
Iv
ON
• "'otal study area average soil loss rate(FM) = .471
++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 31.00 to Point /Station 30.00
* ** INITIAL AREA EVALUATION * **
Decimal Fraction Soil Group A = 1.000
Decimal Fraction Soil Group B = .000
Decimal Fraction Soil Group C = .000
Decimal Fraction Soil Group D = .000
RESIDENTIAL(3 - 4 DU /AC)
0.
SCS Curve Number for Soil(AMC 2) = 32.0
Adjusted SCS Curve Number for AMC 3 = 52.0
Pervious ratio(AP) = .600 Max loss rate(FM)= .471(In /Hr)
N• Subarea is RESIDENTIAL (3 - 4 DU /AC)
Initial subarea flow length = 600.00(Ft.)
-• Upstream elevation = 1219.70(Ft.)
Downstream elevation = 1211.14(Ft.)
4111 Elevation difference = 8.56(Ft.)
Slope = .01427 S( %) = 1.43
Tc = K( .412) *[(Length ^ 3) /(Elevation Change)] ^ 0.2
40 Initial area time of concentration = 12.454 min.
100.00 Year computed rainfall intensity = 3.776 In /Hr
„ Effective Runoff Coefficient used for total area
(Q =CIA) is C = .788 *
d` Subarea runoff = 3.956(CFS) 13-
'otal initial stream area = 1.33(Ac.)
- Pervious area fraction = .600
4110 Initial area FM value = .471(In /Hr)
++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 30.00 to Point /Station 40.00
�ww * ** PIPEFLOW TRAVEL TIME (PROGRAM ESTIMATED SIZE) * **
Upstream point elevation = 1211.14(Ft.)
I " Downstream point elevation = 1209.86(Ft.)
Flow length = 118.00(Ft.) Mannings N = .013
4 * No. of pipes = 1 Required pipe flow = 3.956(CFS)
0 Nearest Pipe Diameter = 15.00(In.)
Calculated Individual Pipe flow = 3.956(CFS)
, Normal flow depth in pipe = 8.27(In.)
Flow top width inside pipe = 14.92(In.)
m Velocity = 5.70(Ft /S)
Travel time = .34 min. TC = 12.80 min.
++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
48 Process from Point /Station 40.00 to Point /Station 40.00
* ** CONFLUENCE OF MAIN STREAMS * **
rr
000
11 " , OLLOWING DATA INSIDE MAIN STREAM ARE CALCULATED
100.00 Year computed rainfall intensity = 3.715 In /Hr
The flow values used for the stream: 1 are:
Time of corcentration(min.) = 12.80
n Rainfall intensity (in. /hr /) = 3.71
Total flow area (Acres) = 1.33
«. Total runoff (CFS) at confluence point = 3.96
Area averaged loss rate (FM) = .471
m Area averaged pervious ratio (AP) = .600
Program is now starting with MAIN STREAM NO. 2
++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 41.00 to Point /Station 40.00
* ** INITIAL AREA EVALUATION * **
Decimal Fraction Soil Group A = 1.000
• Decimal Fraction Soil Group B = .000
Decimal Fraction Soil Group C = .000
• Decimal Fraction Soil Group D = .000
RESIDENTIAL(3 - 4 DU /AC)
SCS Curve Number for Soil(AMC 2) = 32.0
,., Adjusted SCS Curve Number for AMC 3 = 52.0
Pervious ratio(AP) = .600 Max loss rate(FM)= .471(In /Hr)
• Subarea is RESIDENTIAL (3 - 4 DU /AC)
nitial subarea flow length = 670.00(Ft.)
- Jpstream elevation = 1219.70(Ft.)
Downstream elevation = 1209.86(Ft.)
Elevation difference = 0 9.84 (Ft.)
Slope = .01469 S(%) = 1.47
Tc = K( .412) *[(Length - 3) /(Elevation Change)] - 0.2
err Initial area time of concentration = 12.940 min.
100.00 Year computed rainfall intensity = 3.690 In /Hr
-N Effective Runoff Coefficient used for total area
(Q =CIA) is C = .785
44 Subarea runoff = 6.953(CFS)
Total initial stream area = 2.40(Ac.)
Pervious area fraction = .600
Initial area FM value = .471(In /Hr)
- ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 40.00 to Point /Station 40.00
* ** CONFLUENCE OF MAIN STREAMS * **
* ** Compute Various Confluenced Flow Values * **
sr
FOLLOWING DATA INSIDE MAIN STREAM ARE CALCULATED
ar 100.00 Year computed rainfall intensity = 3.690 In /Hr
The flow values used for the stream: 2 are:
err
•
- lime of concentration(min.) = 12.94
_rainfall intensity (in. /hr /) = 3.69
Total flow area (Acres) = 2.40
Total runoff (CFS) at confluence point = 6.95
Area averaged loss rate (FM) = .471
,,arr Area averaged pervious ratio (AP) = .600
Confluence information:
41 r Stream runoff Time Intensity
Number (CFS) (min.) (inch /hour)
1 3.96 12.80 3.715
ma
2 6.95 12.94 3.690
QSMX(1) =
+1.000 *1.000* 4.0)
arr +1.008* .989* 7.0)
10.885
«•
QSMX(2) =
+ .992 *1.000* 4.0)
41 ' +1.000 *1.000* 7.0)
10.879
Rainfall intensity and time of concentration
used for 2 MAIN streams.
• Individual stream flow values are:
3.96 6.95
At Possible confluenced flow values are:
10.89 10.88
n Individual Stream Area values are:
1.33 2.40
• Effective Total Area values are:
3.70 3.73
�rw Computed confluence estimates are:
Runoff(CFS) = 10.89 Time(min.) = 12.798
•� Effective area as adjusted for time (Acres) = 3.70
Total main stream study area (Acres) = 3.73
•
Total study area average pervious area fraction(AP) = .600
"" Total study area average soil loss rate(FM) = .471
++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 40.00 to Point /Station 40.00
me * ** CONFLUENCE OF MINOR STREAMS * **
* ** Compute Various Confluenced Flow Values * **
100.00 Year computed rainfall intensity = 3.715 In /Hr
ALONG THE MAIN STREAM NUMBER: 1
it
The flow values used for the stream: 1 are:
AIM
■
■r
- 'ime of concentration(min.) = 12.80
rtainfall intensity (in. /hr /) = 3.71
Total flow area (Acres) = 3.70
Total runoff (CFS) at confluence point = 10.89
Area averaged loss rate (FM) = .471
a Area averaged pervious ratio (AP) = .600
Confluence information:
Stream runoff Time Intensity
Number (CFS) (min.) (inch /hour)
1 10.89 12.80 3.715
QSMX(1) =
+1.000 *1.000* 10.9)
10.885
wr
Rainfall intensity and time of concentration
— used for 1 streams.
Individual stream flow values are:
10.89
Possible confluenced flow values are:
10.89
Individual Stream Area values are:
3.70
Effective Total Area values are:
3.70
m Computed confluence estimates are:
.unoff(CFS) = 10.89 Time(min.) = 12.798
- Effective area as adjusted for time (Acres) = 3.70
mm
Total main stream study area (Acres) = 3.70
Total study area average pervious area fraction(AP) = .600
Total study area average soil loss rate(FM) = .471
..� ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 61.00 to Point /Station 60.00
* ** INITIAL AREA EVALUATION * **
Decimal Fraction Soil Group A = 1.000
Decimal Fraction Soil Group B = .000
- Decimal Fraction Soil Group C = .000
Decimal Fraction Soil Group D = .000
wr RESIDENTIAL(3 - 4 DU /AC)
SCS Curve Number for Soil(AMC 2) = 32.0
�* Adjusted SCS Curve Number for AMC 3 = 52.0
Pervious ratio(AP) = .600 Max loss rate(FM)= .471(In /Hr)
Subarea is RESIDENTIAL (3 - 4 DU /AC)
Initial subarea flow length = 870.00(Ft.)
- Upstream elevation = 1224.64(Ft.)
in Downstream elevation = 1211.13(Ft.)
Elevation difference = 13.51(Ft.)
AN
Aft
w
r
" 'lope = .01553 S(%) = 1.55
�c = K( .412) *[(Length "3) /(E1evation Change) ] "0.2
Initial area time of concentration = 14.206 min.
100.00 Year computed rainfall intensity = 3.489 In /Hr
Effective Runoff Coefficient used for total area
• r (Q =CIA) is C = .778
Subarea runoff = 16.759(CFS)
�- Total initial stream area = 6.17(Ac.)
Pervious area fraction = .600
Initial area FM value = .471(In /Hr)
"- ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
• Process from Point /Station 60.00 to Point /Station 50.00
* ** PIPEFLOW TRAVEL TIME (PROGRAM ESTIMATED SIZE) * **
Upstream point elevation = 1211.13(Ft.)
Downstream point elevation = 1210.74(Ft.)
Flow length = 60.00(Ft.) Mannings N = .013
No. of pipes = 1 Required pipe flow = 16.759(CFS)
• Nearest Pipe Diameter = 24.00(In.)
Calculated Individual Pipe flow = 16.759(CFS)
Normal flow depth in pipe = 18.12(In.)
• Flow top width inside pipe = 20.65(In.)
Velocity = 6.59(Ft /S)
Travel time = .15 min. TC = 14.36 min.
• ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
rocess from Point /Station 50.00 to Point /Station 50.00
CONFLUENCE OF MAIN STREAMS * **
FOLLOWING DATA INSIDE MAIN STREAM ARE CALCULATED
100.00 Year computed rainfall intensity = 3.467 In /Hr
The flow values used for the stream: 1 are:
Time of concentration(min.) = 14.36
Rainfall intensity (in. /hr /) = 3.47
Total flow area (Acres) = 6.17
Total runoff (CFS) at confluence point = 16.76
• Area averaged loss rate (FM) _ .471
Area averaged pervious ratio (AP) _ .600
Program is now starting with MAIN STREAM NO. 2
• ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 51.00 to Point /Station 50.00
* ** INITIAL AREA EVALUATION * **
r■ Decimal Fraction Soil Group A = 1.000
Decimal Fraction Soil Group B = .000
.rr
■
e
0
"" - )ecimal Fraction Soil Group C = .000
Decimal Fraction Soil Group D = .000
RESIDENTIAL(3 - 4 DU /AC)
SCS Curve Number for Soil(AMC 2) = 32.0
Adjusted SCS Curve Number for AMC 3 = 52.0
err Pervious ratio(AP) = .600 Max loss rate(FM)= .471(In /Hr)
Subarea is RESIDENTIAL (3 - 4 DU /AC)
Initial subarea flow length = 370.00(Ft.)
Upstream elevation = 1214.95(Ft.)
11111 Downstream elevation = 1210.74(Ft.)
Elevation difference = 4.21(Ft.)
' Slope = .01138 S( %) = 1.14
40 Tc = K( .412) *[(Length "3) /(Elevation Change)] "0.2
Initial area time of concentration = 10.739 min.
100.00 Year computed rainfall intensity = 4.127 In /Hr
Effective Runoff Coefficient used for total area
+r (Q =CIA) is C = .797
Subarea runoff = 9.871(CFS)
- Total initial stream area = 3.00(Ac.)
Pervious area fraction = .600
411 Initial area FM value = .471(In /Hr)
++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
4 1 Process from Point /Station 50.00 to Point /Station 50.00
* ** CONFLUENCE OF MINOR STREAMS * **
100.00 Year computed rainfall intensity = 4.127 In /Hr
"" ALONG THE MAIN STREAM NUMBER: 2
• The flow values used for the stream: 1 are:
Time of concentration(min.) = 10.74
Rainfall intensity (in. /hr /) = 4.13
ION Total flow area (Acres) = 3.00
Total runoff (CFS) at confluence point = 9.87
Area averaged loss rate (FM) = .471
Area averaged pervious ratio (AP) = .600
or
- ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + ++ + + + + + + + + + + + + + + + + + + + + ++
At„ Process from Point /Station 52.00 to Point /Station 50.00
* ** INITIAL AREA EVALUATION * **
. Decimal Fraction Soil Group A = 1.000
Decimal Fraction Soil Group B = .000
'"" Decimal Fraction Soil Group C = .000
Decimal Fraction Soil Group D = .000
RESIDENTIAL(3 - 4 DU /AC)
SCS Curve Number for Soil(AMC 2) = 32.0
Adjusted SCS Curve Number for AMC 3 = 52.0
,rr Pervious ratio(AP) = .600 Max loss rate(FM)= .471(In /Hr)
Subarea is RESIDENTIAL (3 - 4 DU /AC)
ar
/ W
•
.All
- nitial subarea flow length = 600.00(Ft.)
Jpstream elevation = 1221.17(Ft.)
Downstream elevation = 1210.74(Ft.)
.. Elevation difference = 10.43(Ft.)
Slope = .01738 S( %) = 1 .74
me Tc = K( .412) *[(Length"3) /(Elevation Change)]
Initial area time of concentration = 11.971 min.
., 100.00 Year computed rainfall intensity = 3.867 In /Hr
Effective Runoff Coefficient used for total area
(Q =CIA) is C = .790
Subarea runoff = 7.334(CFS)
' Total initial stream area = 2.40(Ac.)
err Pervious area fraction = .600
Initial area FM value = .471(In /Hr)
•
++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
+r Process from Point /Station 50.00 to Point /Station 50.00
* ** CONFLUENCE OF MINOR STREAMS * **
411 * ** Compute Various Confluenced Flow Values * **
4 ' 100.00 Year computed rainfall intensity = 3.867 In /Hr
ALONG THE MAIN STREAM NUMBER: 2
The flow values used for the stream: 2 are:
Time of concentration(min.) = 11.97
r Rainfall intensity (in. /hr /) = 3.87
'otal flow area (Acres) = 2.40
Total runoff (CFS) at confluence point = 7.33
Area averaged loss rate (FM) = .471
• Area averaged pervious ratio (AP) = .600
1
✓ Confluence information:
Stream runoff Time Intensity
. Number (CFS) (min.) (inch /hour)
a 1 9.87 10.74 4.127
2 7.33 11.97 3.867
- QSMX(1) =
taw +1.000 *1.000* 9.9)
+1.077* .897* 7.3)
" = 16.955
QSMX(2) =
rr + .929 *1.000* 9.9)
+1.000 *1.000* 7.3)
• = 16.502
a Rainfall intensity and time of concentration
used for .2 streams.
Individual stream flow values are:
9.87 7.33
Possible confluenced flow values are:
•
0
16.95 16.50
.individual Stream Area values are:
3.00 2.40
Effective Total Area values are: � ICJ. l�
5.15 5.40
to Computed confluence estimates are:
Runoff(CFS) = 16.95 Time(min.) = 10.739
Effective area as adjusted for time (Acres) = 5.15
Total main stream study area (Acres) = 5.40
Total study area average pervious area fraction(AP) = .600
Total study area average soil loss rate(FM) = .471
AO
++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 50.00 to Point /Station 50.00
arr * ** CONFLUENCE OF MAIN STREAMS * **
* ** Compute Various Confluenced Flow Values * **
FOLLOWING DATA INSIDE MAIN STREAM ARE CALCULATED
100.00 Year computed rainfall intensity = 4.127 In /Hr
los
The flow values used for the stream: 2 are:
... Time of concentration(min.) = 10.74
Rainfall intensity (in. /hr /) = 4.13
we Total flow area (Acres) = 5.15
otal runoff (CFS) at confluence point = 16.95
area averaged loss rate (FM) = .471
Area averaged pervious ratio (AP) = .600
Confluence information:
4, Stream runoff Time Intensity
Number (CFS) (min.) (inch /hour)
1 16.76 14.36 3.467
2 16.95 10.74 4.127
QSMX(1) =
+1.000 *1.000* 16.8)
+ .819 *1.000* 17.0)
30.653
, QSMX(2) _
+1.220* .748* 16.8)
err +1.000 *1.000* 17.0)
32.251
Rainfall intensity and time of concentration
used for 2 MAIN streams.
Individual stream flow values are:
16.76 16.95
. m Possible confluenced flow values are:
30.65 32.25
/L
0
- "ndividual Stream Area values are:
0 _ 6.17 5.15
Effective Total Area values are:
11.32 9.77
• Computed confluence estimates are:
Runoff(CFS) = 32.25 Time(min.) = 10.739
- Effective area as adjusted for time (Acres) = 9.77
Total main stream study area (Acres) = 11.32
Total study area average pervious area fraction(AP) = .600
- Total study area average soil loss rate(FM) = .471
++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 82.00 to Point /Station 82.10
• * ** INITIAL AREA EVALUATION * **
Decimal Fraction Soil Group A = 1.000
• Decimal Fraction Soil Group B = .000
Decimal Fraction Soil Group C = .000
Decimal Fraction Soil Group D = .000
nr RESIDENTIAL(3 - 4 DU /AC)
SCS Curve Number for Soil(AMC 2) = 32.0
•• Adjusted SCS Curve Number for AMC 3 = 52.0
Pervious ratio(AP) _ .600 Max loss rate(FM)= .471(In /Hr)
"" Subarea is RESIDENTIAL (3 - 4 DU /AC)
nitial subarea flow length = 700.00(Ft.)
Upstream elevation = 1226.43(Ft.)
Downstream elevation = 1216.14(Ft.)
Elevation difference = 10.29(Ft.)
Slope = .01470 S( %) = 1.47
Tc = K( .412) *[(Length - 3) /(Elevation Change)]
• Initial area time of concentration = 13.167 min.
100.00 Year computed rainfall intensity = 3.652 In /Hr
- Effective Runoff Coefficient used for total area
(Q =CIA) is C = .784
. Subarea runoff = 17.520(CFS)
Total initial stream area = 6.12(Ac.)
Pervious area fraction = .600
.. Initial area FM value = .471(In /Hr)
,.. ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 82.10 to Point /Station 80.00
• * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * **
Upstream Elevation = 1216.74(Ft.)
Downstream Elevation = 1214.72(Ft.)
Street Length = 455.00(Ft.)
Curb Height = 8.(In.)
• Street Halfwidth = 25.00(Ft.)
Distance From Crown to Crossfall Grade Break = 10.00(Ft.)
Sr
AW
'" 'lope from Gutter to Grade Break (V /HZ) = .040
_lope from Grade Break to Crown (V /HZ) = .020
Number of Halfstreets Carrying Runoff = 1
Distance from curb to property line = 7.00(Ft.)
Slope from curb to property lire (V /HZ) = .020
m Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Estimated mean flow rate at MIDPOINT of street = 21.471(CFS)
Depth of flow = .856(Ft.)
`"' Average Velocity = 2.470(Ft /S)
WARNING: DEPTH OF FLOW EXCEEDS TOP OF CURB
- Distance that curb overflow reaches into property is = 9.488(Ft.)
Streetflow Hydraulics at MIDPOINT of street travel
Halfstreet Flow Width = 21.00(Ft.)
Flow Velocity = 2.47(Ft /S) Depth *Velocity = 2.12
Travel time = 3.07 min. TC = 16.24 min.
a Adding Area Flow To Street
100.00 Year computed rainfall intensity = 3.220 In /Hr
Decimal Fraction Soil Group A = 1.000
41 . Decimal Fraction Soil Group B = .000
'ecimal Fraction Soil Group C = .000
- Decimal Fraction Soil Group D = .000
RESIDENTIAL(3 - 4 DU /AC)
SCS Curve Number for Soil(AMC 2) = 32.0
Adjusted SCS Curve Number for AMC 3 = 52.0
Pervious ratio(AP) = .600 Max loss rate(FM)= .471(In /Hr)
ON Effective Runoff Coefficient used for area (Q =CIA) is C = .768
Subarea runoff = 4.452(CFS) for 2.76(Ac.)
— Total runoff = 21.972(CFS) Total area = 8.88(Ac.)
Area averaged FM value = .471(In /Hr)
Depth of flow = .862(Ft.)
"" Average Velocity = 2.483(Ft/S)
WARNING: DEPTH OF FLOW EXCEEDS TOP OF CURB
,,. Distance that curb overflow reaches into property is = 9.744
Streetflow Hydraulics at ENDPOINT of street travel
Halfstreet Flow Width = 21.00(Ft.)
Flow Velocity = 2.47(Ft /S) Depth *Velocity = 2.13
++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 80.00 to Point /Station 80.00
* ** CONFLUENCE OF MAIN STREAMS * **
,w,
ar
i°r FOLLOWING DATA INSIDE MAIN STREAM ARE CALCULATED
100.00 Year computed rainfall intensity = 3.220 In /Hr
The flow values used for the stream: 1 are:
Time of concentration(min.) = 16.24
- Rainfall intensity (in. /hr /) = 3.22
Total flow area (Acres) = 8.88
m Total runoff (CFS) at confluence point = 21.97
Area averaged loss rate (FM) = .471
- Area averaged pervious ratio (AP) = .600
Program is now starting with MAIN STREAM NO. 2
a ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 81.00 to Point /Station 80.00
* ** INITIAL AREA EVALUATION * **
Decimal Fraction Soil Group A = 1.000
Decimal Fraction Soil Group B = .000
Decimal Fraction Soil Group C = .000
Decimal Fraction Soil Group D = .000
RESIDENTIAL(3 - 4 DU /AC)
SCS Curve Number for Soil(AMC 2) = 32.0
m Adjusted SCS Curve Number for AMC 3 = 52.0
ervious ratio(AP) = .600 Max loss rate(FM)= .471(In /Hr)
°- Subarea is RESIDENTIAL (3 - 4 DU /AC)
Initial subarea flow length = 500.00(Ft.)
Ili Upstream elevation = 1225.70(Ft.)
Downstream elevation = 1214.70(Ft.)
Elevation difference = 11.00(Ft.)
Slope = .02200 S( %) = 2.20
Tc = K( .412) *[(Length "3) /(Elevation Change)] "0.2
,.. Initial area time of concentration = 10.617 min.
100.00 Year computed rainfall intensity = 4.155 In /Hr
m Effective Runoff Coefficient used for total area
(Q =CIA) is C = .798
"' Subarea runoff = 4.841(CFS)
Total initial stream area = 1.46(Ac.)
Pervious area fraction = .600
Initial area FM value = .471(In /Hr)
m ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 80.00 to Point /Station 80.00
* ** CONFLUENCE OF MAIN STREAMS * **
* ** Compute Various Confluenced Flow Values * **
a FOLLOWING DATA INSIDE MAIN STREAM ARE CALCULATED
err'
Nr
100.00 Year computed rainfall intensity = 4.155 In /Hr
2he flow values used for the stream: 2 are:
im
Time of concentration(min.) = 10.62
Rainfall intensity (in. /hr /) = 4.16
Total flow area (Acres) = 1.46
Total runoff (CFS) at confluence point = 4.84
Area averaged loss rate (FM) = .471
- Area averaged pervious ratio (AP) = .600
Confluence information:
""' Stream runoff Time Intensity
Number (CFS) (min.) (inch /hour)
1 21.97 16.24 3.220
2 4.84 10.62 4.155
QSMX(1) =
+1.000 *1.000* 22.0)
- + .746 *1.000* 4.8)
25.585
`"" QSMX(2) =
+1.340* .654* 22.0)
+1.000 *1.000* 4.8)
24.095
Rainfall intensity and time of concentration
used for 2 MAIN streams.
am Individual stream flow values are:
21.97 4.84 �% •
- Possible confluenced flow values are:
25.58 24.09
Individual Stream Area values are:
8.88 1.46
- Effective Total Area values are:
ISM 10.34 7.27
. Computed confluence estimates are:
Runoff(CFS) = 25.58 Time(min.) = 16.237
4. Effective area as adjusted for time (Acres) = 10.34
Total main stream study area (Acres) = 10.34
Total study area average pervious area fraction(AP) = .600
Total study area average soil loss rate(FM) = .471
m ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 80.00 to Point /Station 70.00
* ** PIPEFLOW TRAVEL TIME (PROGRAM ESTIMATED SIZE) * **
Upstream point elevation = 14.70(Ft.)
- Downstream point elevation = 14.50(Ft.)
air Flow length = 60.00(Ft.) Mannings N = .013
No. of pipes = 1 Required pipe flow = 25.585(CFS)
G4
i11
m
- 'earest Pipe Diameter = 33.00(In.)
.:alculated Individual Pipe flow = 25.585(CFS)
Normal flow depth in pipe = 23.11(In.)
Flow top width inside pipe = 30.24(In.)
Velocity = 5.76(Ft /S)
w Travel time = .17 min. TC = 16.41 min.
- ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 71.00 to Point /Station 70.00
* ** INITIAL AREA EVALUATION * **
, Decimal Fraction Soil Group A = 1.000
Decimal Fraction Soil Group B = .000
- Decimal Fraction Soil Group C = .000
Decimal Fraction Soil Group D = .000
RESIDENTIAL(3 - 4 DU /AC)
SCS Curve Number for Soil(AMC 2) = 32.0
M° Adjusted SCS Curve Number for AMC 3 = 52.0
Pervious ratio(AP) = .600 Max loss rate(FM)= .471(In /Hr)
4rn Subarea is RESIDENTIAL (3 - 4 DU /AC)
Initial subarea flow length = 1000.00(Ft.)
Upstream elevation = 1222.86(Ft.)
,mo Downstream elevation = 1214.50(Ft.)
Elevation difference = 8.36(Ft.)
• Slope = .00836 S( %) = .84
Tc = K( .412) *[(Length ^ 3) /(Elevation Change)]
41 Initial area time of concentration = 17.000 min.
100.00 Year computed rainfall intensity = 3.133 In /Hr
- Effective Runoff Coefficient used for total area
�r (Q =CIA) is C = .765
Subarea runoff = 12.840(CFS) (2- E>:
- Total initial stream area = 5.36(Ac.)
Pervious area fraction = .600
m Initial area FM value = .471(In /Hr)
^^^ ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 70.00 to Point /Station 70.00
4111 * ** CONFLUENCE OF MAIN STREAMS * **
„n, * ** Compute Various Confluenced Flow Values * **
- FOLLOWING DATA INSIDE MAIN STREAM ARE CALCULATED
100.00 Year computed rainfall intensity = 3.133 In /Hr
The flow values used for the stream: 2 are:
Time of concentration(min.) = 17.00
Rainfall intensity (in. /hr /) = 3.13
Total flow area (Acres) = 5.36
Total runoff (CFS) at confluence point = 12.84
Area averaged loss rate (FM) = .471
arr Area averaged pervious ratio (AP) = .600
40
arr
. ,: onfluence information:
au
Stream runoff Time Intensity
Number (CFS) (min.) (inch /hour)
1 21.97 16.24 3.220
2 12.84 17.00 3.133
- QSMX(1) =
+1.000 *1.000* 22.0)
+1.033* .955* 12.8)
34.639
- QSMX(2) =
+ .968 *1.000* 22.0)
+1.000 *1.000* 12.8)
- = 34.113
AN Rainfall intensity and time of concentration
used for 2 MAIN streams.
-I" Individual stream flow values are:
21.97 12.84
Possible confluenced flow values are:
34.64 34.11
- Individual Stream Area values are:
8.88 5.36
Effective Total Area values are:
14.00 14.24
al Computed confluence estimates are:
'unoff(CFS) = 34.64 Time(min.) = 16.237
"' Effective area as adjusted for time (Acres) = 14.00
Total main stream study area (Acres) = 14.24
Total study area average pervious area fraction(AP) = .600
Total study area average soil loss rate(FM) = .471
Atm
End of computations, total study area = 45.20(Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
Note: These figures do not consider reduced effective area
effects caused by confluences in the rational equation.
AREA AVERAGED PERVIOUS AREA FRACTION(AP) = .600
AREA AVERAGED SCS CURVE NUMBER = 32.0
. ADJUSTED SCS CURVE NUMBER FOR AMC 3 = 52.0
■r
.10
al
1•1
, wo
E A \ B • N
AN
10M
C&L
INI
AN
10
wok
IN
.e, L
C. B • l!
Cur: D' OPENING (SUMP)
Given: y2 oc Iy 1 !, is 2...
err
(a) Discharge Q soo = . CFS
" (b) Curb type "A -2" "):P 4" Rolled 6" Rolled
Solution:
�. TI (depth at opening) = ! inches
• h (height of opening) = inches
11 /h = / =
•
a '
From Chart: •
Q /ft. of opening = CFS
L required = f(z) / _ 7, 7� _ ft.
as
U S F L = ( ft.
Ai
a
-31-
C • 13 . ll a
'r C t1I;I ;• OPENING (SUMP)
Given:
(a) Discharge Q 1 0-r ) = _ CFS
(b) Curb type "A -2" "D"• 4" Rolled 6" Rolled
L (02 " C-L ) E ,
•
wr
Solution:
tiMit 11 (depth at opening) = inches
• h (height of opening) _ �� • inches
11 /h = / �� •
•
•
•
•
From Chart:
"' • Q /ft. of opening = CFS
•
L required = j (o �� / - g . ft. -
U S E L= 0 , I ft.
•
AO
me
AO -31-
' C . 1 3 .
"" cur r OPENING (SUMP)
•
Given:
ww
(a) Discharge Q loo = . CFS
ww (b) Curb type "A -2" -- 4" Rolled 6" Rolled
W J J i
•
Solution:
.. Ii (depth at opening) = - inches
h (height of opening) - inches
•
•
w „ From Chart: •
Q/ft. of opening = CFS
41. •
L required = ? / — = / , 3 g ft. •
US L L= ft.
s
•
•
,rr
-31-
C. 13. 11 1
CUED' OPENING (SUMP)
411
Given:
(a) Discharge Q ,y p = v� . CFS
(b) Curb type "A -2" 4" Rolled 6" Rolled
Solution:
11 (depth at opening) _ J inches
• h (height of opening) - ^ inches
ar
11th= N / :-� a !,a I •
•
From Chart: •
Q /ft. of opening = 7 CFS
L required = / Z = > ft.
err
U S F L= i ft.
IMO
Avft
or
-31-
Asi
C. B . 1,
•
Ct1I;Ii OPENING (SUMP)
•
Given:
Ati
r
(a) Discharge Q ion - (, -• _ CFS
' (b) Curb type "A -2" J4" Rolled 6" Rolled
Cug..5
Solution:
Tl (depth at opening) = inches
• h (height of opening) - inches
TIM = i / Q i •
From Chart: •
Q/ft. of opening = CFS
L required = ft.
•
USE L= ft.
a
ar -31-
C. B. II tU
�' CURD' OPENING (SUMP)
•- Given:
(a) Discharge Q ion = � (� ,� (,, CFS
• i
(b) Curb type "A -2" ",DP' 4" Rolled 6" Rolled
•
Solution:
II (depth at opening) = I D inches
• h (height of opening) _ -�, inches
II /h = / =I 1 1 •
From Chart:
— • Q /ft. of opening = CFS
L required = / 2-, . ft. •
U S F L= ft.
•
-31-
C. I3. 11
CUr;ri• OPENING (SUMP)
Given: ( 7
(a) Discharge Q tan = _ CFS
(b) Curb type "A -2" ""):>"--- 4" Rolled 6" Rolled
e rr CF d •
i
Solution:
Solution:
.rr Ii (depth at opening) = ( inches
h (height of opening) _ ! inches
Ti /h = i / " � 1 •
From Chart:
•• • Q /ft. of opening = 7 CFS
L required = 2 a I ! _ ). ft. •
U S L L= ft.
w
sr —31—
C. 13 . 1, 8
OPENJNG (SUMP)
Given: / ^
(a) Discharge Q too = CFS
(b) Curb type "A -2" "0" 4" Rolled 6" Rolled
g C F _
Solution:
„� 11 (depth at opening) = inches
• h (height of opening) = inches
li /h =
From Chart: •
Q /ft. of opening = z CFS
L required = 2 ? / 2 r = ) ft
U S F L ft.
a
•
-31-
•
411
WO
4W
41
LA.
I •
4W
IMO
C4 I c \ s
di
•••■
4W
4W •
••■
en
'MN
•INN
.or
woe
111
...
IN
ig
.1 -Atte g i?ofteilaut, Rite.
„ii lommir CIVIL ENGINEEDINO • LAND PLANNING • LAND SUFIVE VINO
,... -
All SUSIECT • BY --- -) : OAK - 101 NO. !HUT or .,
CZ/TA Aet.S if/c(.44 Kikr -A,„ 1 L,:-.....- - -../2
411 .
.mi 0 7 0 • i ' --.'" --
T:. \ t r ■ " ( (- '
- . . ff ft
eL
#
I //or tie >12
1 ! p ;
ic
.
I
--- ' " - r{.(7!
_
::. —..
----_ --,
..... . :51( 0/ C1/.1
........ ..........
1 L------ " ---- ■.e.........4 -'..- ----. ..
.,_,.-3,%. ...,...
-,.. ..-...
..17' -• .....
-'•-- r I
--■ • -)*--
:
1 I
411 • - \ -••■
( ' ' 'if 1 .)
I. 1
i
t _
I \ \
- 4 L' ' ....... [ _
. •
• . .
I'- 0/4 .. ' , '--:.'.._ FPS
1 C.8 0
Ti. - ' ..-
NCl., /1 1 • ...)(Z.-= (94 ( , .)
----.-7. IL.:1
.:...
"..12..-'1 .
41:4/446LE Ar x -°- ( d5)
t RECJ:D. li ar N6
Ctts
- - . ,r
A'CP (I t .? Cre" ,1 ro4 / "/:^4...., of -IT fir,
I
use Ct°61 If //
1/ DEPThi,
411 _
-..
1 .4=111•11■1111111111011111•11111111111111■ I
31851_ AIRWAY AVENUE • COSTA MESA. cnuronNin 92r326-4875 • (714) 841•8171
.0
..
w
.. ?/4,4 g 2oie,600,40.1., ate.
®NP CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING
As
SUBJECT . I SHEET I BY �1J1( DATE JOB NOOF 3 _ 7 ' . ' _ ? :.
.si
air , ,
art , i 0 a 6 ‘
/ II
m. ' ___SZ.� �; A MU..Sr BE > ✓2/2 ,, .SFL
v ,_
7 , 1]/,2 ar - ...
.5
L= _( ,
,iq J Al
CO AVNI O vz L , `1zo /- ) b
�9 =
... 7-A L _ j/)2L_ /16.35" . ).2 ; =__ 52_ /„.7_ //L ( / C
i 414/z A 4L hi _ _ g', 7' j _ � .PEa 9 // f"7
Ali
,0 MCP : , L OF Z = " Cf Fe 74" / 2 ✓�9''c A-7,-
Alli
47SE71 '' iv/pEPTy
All
3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92626-3428 • (714) 641 -8777
...
i ....
,,..
,.. •. r .,...
Xze d?oftecoetut Pi t e 1
at
M® CIVIL ENOINEERINO • LAND PLANNING • LAND SURVEYING
SU IC! • er 9Ar[ ,. IOe NO emir p
2 .
•
_ _
� � 7 - . II h l MWT fE >i2 2 :w , t SQL
- 1! 1 i : r . .,
r ..:, ,,
... _.
- i -
_, _ i :._;,..., r ,
�.. ,y /, I
an NI
L ; y \
r . . .
y- v ,A . Fe!
C C8 0 . 0,
r-4,. , ,-- , . 4g /-.17 .:
T.C.
r „ ,. T 1 r
.QJ /L 4 &E #7" 14 s (CA 4 T,5) =
r 0 kE�;l�, 4' QNNG
kcP ' ' 1. L F O - Cie y rZ3 4 / 2 1/-2 1 d= . fir,
- - . I, //
uSE _, - Y DES,
r i 411•111•1111111111•1111111•111111 1
A. 3t86.( AIRWAY AVENUE • COSTA MESA, CALIfOf1NIA 929284875 • (714) 641.8777
Ai
:.:. ..
Xter g 249 Rot.
.t. „
ea
IIIIIMIIIP CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING
SUBJECT BY DATE - JOB NO. SHEET OF
�ATN B9S /�t/A.c/ALYS /S 01 C ✓ "�'� _` _. _•
as
l '--- 1 " V - L
\ .-
mum
1• _
as - -- -�- ' AI ° M!/ST BE > v2 /ZQ t sFL
;( /Z ' , PE K FLOW L �.
AN 4 1 ..-._ f]/,2 ay ...:,
s,
°"' .z_= I I --
,.P-=
r �
AM v ° --= , �' ' 1 fPS '
0 c8 v�9 =- � 7 � �2 ��y
I/ 6L I . { /
4. ,4! 4/L A6LE N = _ gF t ,a _ ?: ,PEa' FT.
4111 .
i
... 3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92626 -3428 • (714) 641 -8777
it
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
.r PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE
(Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION)
,aat
******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
««««««««««««««««««<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>»
(C) Copyright 1982,1986 Advanced Engineering Software [AES]
Especially prepared for:
aar
HALL & FOREMAN, INC.
4 1< « « «« « ««« « < « «« ««««« <»» » » » »»» » » »» »» » » » » »
m * * * * * * * * *DESC IPTION OF RESUfTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
* TkPCr 14 g , C_ a �+' � c• ;. S *
*
�a *
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
„ ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST
- CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
;SIGN MANUALS.
— DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA:
NODE NUMBER = 12.72 FLOWLINE ELEVATION = 1202.30
PIPE DIAMETER(INCH) = 30.00 PIPE FLOW(CFS) = 32.25
ASSUMED DOWNSTREAM CONTROL HGL = 1206.130
NODE 12.72 : HGL= < 1206.130 >;EGL = < 1206.800 >;FLOWLINE = < 1202.300>
««««««««««<««««««««<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
41/ Advanced Engineering Software [AES]
SERIAL No. I00820
VER. 2.3C RELEASE DATE: 2/21/86
,ar
« « « « « « « « « « « « « « « « « « « » » » » » » » » » » » » » » » » » » »
401
gar PRESSURE FLOW PROCESS FROM NODE 12.72 TO NODE 165.70 IS CODE = 1
TTPSTREAM NODE 165.70 ELEVATION = 1202.99
,parr CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD):
PIPE FLOW = 32.25 CFS PIPE DIAMETER = 30.00 INCHES
- PIPE LENGTH = 152.98 FEET MANNINGS N = .01300
a
SF= (Q /K) * *2 = (( 32.25)/( 410.171)) * *2 = .0061820
HF =L *SF = ( 152.98) *( .0061820) = .946
7 NODE 165.70 : HGL= < 1207.076 >;EGL = < 1207.746 >;FLOWLINE = < 1202.990>
,. PRESSURE FLOW PROCESS FROM NODE 165.70 TO NODE 170.37 IS CODE = 5
UPSTREAM NODE 170.37 ELEVATION = 1203.14
CALCULATE PRESSURE FLOW JUNCTION LOSSES:
NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV
1 16.9 24.00 3.142 5.367 5.860 .447
2 32.3 30.00 4.909 6.570 -- .670
3 15.4 18.00 1.767 8.709 90.000 -
4 .0 .00 .000 .000 .000 -
5 .0 = = =Q5 EQUALS BASIN INPUT = ==
LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED:
DY= (Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)-
Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1)
#_; UPSTREAM MANNINGS N = .01300
DOWNSTREAM MANNINGS N = .01300
UPSTREAM FRICTION SLOPE = .00555
DOWNSTREAM FRICTION SLOPE = .00618
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00587
JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .027
ENTRANCE LOSSES = .000
JNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES)
JUNCTION LOSSES = .940+ .447- .670 +( .027) +( .000) = .745
7- NODE 170.37 : HGL= < 1208.043 >;EGL = < 1208.491 >;FLOWLINE = < 1203.140>
PRESSURE FLOW PROCESS FROM NODE 170.37 TO NODE 218.37 IS CODE = 1
UPSTREAM NODE 218.37 ELEVATION = 1203.36
e"
ill CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD):
PIPE FLOW = 16.86 CFS PIPE DIAMETER = 24.00 INCHES
PIPE LENGTH = 48.00 FEET MANNINGS N = .01300
z:; SF= (Q /K) * *2 = (( 16.86)/( 226.224)) * *2 = .0055544
HF =L *SF = ( 48.00) *( .0055544) = .267
NODE 218.37 : HGL= < 1208.310 >;EGL = < 1208.757 >;FLOWLINE = < 1203.360>
PRESSURE FLOW PROCESS FROM NODE 218.37 TO NODE 218.37 IS CODE = 8
UPSTREAM NODE 218.37 ELEVATION = 1203.36
CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD):
PIPE FLOW(CFS) = 16.86 PIPE DIAMETER(INCH) = 24.00
r'RESSURE FLOW VELOCITY HEAD = .447
1 ITCH BASIN ENERGY LOSS = .2 *(VELOCITY HEAD) = .2 *( .447) = .089
ii 218.37 : HGL= < 1208.847 >;EGL = < 1208.847 >;FLOWLINE = < 1203.360>
1 1 END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM
di
,.. 1 ...
a
•.6„,..
00 iite(411,9
MEM CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING
StfeltCT BY — KM HO. 111411,,.... O -
C f 1170 Z4.7/4 4//4L Kris '! f\l■ i 7 - : '1-- -
,,..., .. ,_ , , ... .
44. ,
= ,
..-
V
) ) . Ft- •
•
1,:- • A ) # •
4 0 I P V
e )i LC'
\er -
I
_ . .
...• // 1.1, A
— ... II vas,* GE > /. 2 /,:o , ` I 071 4 „
1
o.- ., ,.....:„........,._ s.
. .
'.,€:;- ."c rt..t,A
-----__ --
t - 1CF:.' 1208-04-
• _ • .... ... __ . H-GL--
• • a . , ':::.......L I
--......,.
r
-..........,..?..:._, . 1 7.
• --...
• \iP , p
-5 lcsli
...________.-`:-_—_—_--...... ,
i •
..•
t .
Pi 0/4 '`' g - 72 FP S
i • 7:c. 12 NJ/ re 42 V 1 - 4- 2
t ile,
. h )1 r Is 4- • ) 1 ,. _
674 --- ( 7iii .!-- . ( ---- ,,. 2. 5
- 4 4/Z/Z4445ZE /r se "'”
L Ity /
die Na
0 = I 5 - 4 - 0 c,:s k
koo )2- iF o ,r F i Sy c:;, / 4 /2 142 ,/.^,..../ dz.. . fr,
P i,74)7
: .i
L aSE II //
Y G IE P771 .
le,2 1 o - 23
____,,-'
- I2 fc.) -3O
I, -"
E...........................-.......
i.,
iiii 3185•1 AIRWAY AVENUE • COSTA MESA. CALWORNIA 92926-4875 • (714) 64 I •8777
., . .
3
id
, •ir J.
ill
IIIIIIIIIIIIMP CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING
fri
SUflitCf ,At_E _ ,. ..), - 1011 ,_, OHM t- Of .
C4774' &5/ AvAizsris ev i - ki \L , ..; _
.: _ •-)
,.. •
•
•,,:-. .. -1_,----?[--. .
.,.. \,\_,,,,,.?•_.
\ , /..„,...-- < -2.,._ \
0 rz/c 2-- ': _ i : - .. r __ _ . ___ - •-• fl „. /I/
i , '- - -4-/,' -.: • I.. # Aiasr Ge >/.2 /...r A ,5,-I Z .
t „
" I ,: '...7
- FA L -,.. , • ;
If (7 •rr• j',,4 .11/0/t.
.-r ......
I
0 ..... ....... -..... . .. / 0/ •ti
!
--------. . 0 -•:::::::.... ....---
t ,.
ria • , q_,,-
\ - ----- -- 4 -..o, , ),tn,/ .`, 17:
• C '-' - ,/21 ,,,,.)
,. I
f
/ .
- IA f / '
"--.,..
...... I ,
L
\,..„
- C-- i
...
r .
..,
1,- ,.. :=-,,..... FPS
4. 1
CS 0
Y
rc .
i 6 11 / ....?-L • ).. '
4/21/14szt /,' . = (c/•,/,E,5)=-_ -t kEtV:49. $4' eye A./4
CPS
#
. h'0 3:Z.
pt,
„i..
"
- ,,
uSE 2 , ,55-- V .OEPTli ,
4 .!.
ri
..................--...............,1
illi 3185-1 AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92 • (7 1 4) 841.8777
4
4
h g 261/aeoteutiata
11 _,_ CIVIL ENGINEERING • • LAND PLANNING • LAND SURVEYING
SUBJECT IBY. I
. . DATE JO NP B N.
.., - !SHEET c OF
CifreY/ ...5'/A/ ,4,v,42 K575. • 2 - '''-) - ,-; - - I
\'- il \ 4
mit \ -
.----- u
ri, CZ I r•. °. -, :,: e."' \ ( 7.‘ ,
., P...., , . V :%• 1 ,7 1# ItlaS'r .5E > " /Z9 7`" SFL •
-1r 1• \,12.1 ' 4
l2 I/ ..'. 4 • ' ' - ,40 c eZ P'S" X F / o7/ L 'ffinglicmi
.c. I: (..),..:).-s--
7 , 1 V
,
f"*" • 1 ‘ -27
!!" //= - aj4 -= ' • - . •
1 i
ailli
ci3 0 V = ( 2 :- 1./ ___CI
Poo /2,5
jai TA
/' ,
/ I 7- i • 51Z = (P/0 ---/ I i-)9 v•-',,7 . --. 7 -
urn
, 1
/ eV / 4/Z A&E /if -.:: -..- g'F f" , 2 A /Z._
p ; Z.F
71
ii
r; , 7'r//
3170 2
.i.1,
wili 1
3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92626-3428 • (714) 641-8777
Li
L.)
CID
fl 1,11 Fl 1 VA 1 -11 131 1 LA t 1 1 L1 1171 1 11 1 LI
******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
* * * * ** CHANNEL FLOW CALCULATIONS * * * * **
owl
******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
10
ALCULATE CHANNEL CAPACITY GIVEN:
Channel Slope = .010000 (Ft. /Ft.) = 1.0000 %
Depth of Flow = .640 Feet
Rog Z Flovv rv\c
* ** OPEN CHANNEL FLOW - STREET FLOW * **
Street Slope (Ft. /Ft.) = .0100
Mannings "n" value for street = .015
Curb Height (In.) = 6.
!! Street d
Distance a From Crown to Crossfall Grade Break (Ft.) = 10.00
Slope from Gutter to Grade Break (Ft. /Ft.) = .040
Slope from Grade Break to Crown (Ft. /Ft.) = .020
Number of Halfstreets Carrying Runoff = 1
Distance from curb to property line (Ft.) = 7.00
Slope from curb to property line (Ft. /Ft.) = .020
um Gutter width (Ft.) = 2.000
Gutter hike from flowline (In.) = 2.000
Mannings "n" value for gutter and sidewalk = .013
Depth of flow = .640 (Ft.)
Average Velocity = 3.88 (Ft. /Sec.)
WARNING: DEPTH OF FLOW EXCEEDS TOP OF CURB
Distance that curb overflow reaches into property is = 7.000 (Ft.)
Streetflow Hydraulics :
±e Halfstreet Flow Width(Ft.) = 13.83
L.; Flow Velocity(Ft. /Sec.) = 4.37
Depth *Velocity = 2.80
Calculated flow rate of total street channel = 17.09 (CFS)
°" Flow rate in gutter = 4.85 (CFS)
tra Velocity of flow in gutter and sidewalk area = 3.024 (Ft. /Sec.)
Average velocity of total street channel = 3.881 (Ft. /Sec.)
STREET FLOW CROSS SECTION
NOTE: The following critical depth calculations are for:
Channel 1 - If STREET, property line to outside edge of gutter
- If V- GUTTER, property line to start of V- Gutter
ql Channel 2 - STREET, outside edge of gutter to crown
V- Gutter, in V- Gutter itself
Channel 3 - V- Gutter, 2nd half of street
CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 1:
Subchannel Critical Flow Top Width(Ft.) = 9.00
Subchannel Critical Flow Velocity(Ft. /Sec.) = 2.589
Subchannel Critical Flow Area(Sq. Ft.) = 1.87
ai
• Froude Number Calculated = 1.000
Subchannel Critical Depth above invert elevation = .670
I
CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 2:
Subchannel Critical Flow Top Width(Ft.) = 15.83
;:- _ Subchannel Critical Flow Velocity(Ft. /Sec.) = 2.919
Subchannel Critical Flow Area(Sq. Ft.) = 4.19
Froude Number Calculated = .999
Subchannel Critical Depth above invert elevation = .743
9
irm
ii
* * * * * * * * * * * * * * * * * * * * * ** CHANNEL CROSS - SECTION PLOT * * * * * * * * * * * * * * * * * * * * * * **
oft
Depth of flow = .64 Feet ,= "W"
MO
HALF - STREET FLOW CROSS SECTION
s i l i; Critical depth for Channel No.1= .67 Feet , = "c"
Critical depth for Channel No.2= .74 Feet , = "c"
il X (Feet) Y(Feet) Y- Axis -> .0 .2 .4 .6 .9
.00 .64 X
il
ill 1.00 .62 XW c
2.00 .60 XW
3.00 .58 X W
4.00 .56 X W
Mg 5.00 .54 X W
6.00 .52 X W
7.00 .50 X W
'R 8.00 .08 X W
illi 9.00 .17 X W
10.00 .21 X W c
11.00 .25 X W c
IN 12.00 .29 X W c
13.00 .33 X W c
14.00 .37 X W c
" ! 15.00 .41 X W c
iii 16.00 .45 X W c
17.00 .49 X W C
18.00 .53 X W c
., 19.00 .57 X W c
hi 20.00 .61 XW c
21.00 .65 X c
en 22.00 .69 X c
ilk 23.00
.71 X c
24.00 .73 Xc
25.00 .75 X
" 26.00 .77 X
Mil 27.00 .79 X
28.00 .81 X
pp. 29.00 .83 X
30.00 .85 X
Si 31.00 .87 X
32.00 .89 X
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++++++++++
ill
di
WI
ill
PI
se
+ig
lid
wi
iii
Ai
******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
'^ * * * * ** CHANNEL FLOW CALCULATIONS * * * * **
******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
-ALCULATE CHANNEL CAPACITY GIVEN:
Channel Slope = .010000 (Ft. /Ft.) = 1.0000 %
Depth of Flow = .500 Feet
CB l da Flow Nic C TaQ Co e_18
* ** OPEN CHANNEL FLOW - STREET FLOW * **
Street Slope (Ft. /Ft.) = .0100
Mannings "n" value for street = .015
Curb Height (In.) = 6.
Street Halfwidth (Ft.) = 25.00
Distance From Crown to Crossfall Grade Break (Ft.) = 10.00
Slope from Gutter to Grade Break (Ft. /Ft.) = .040
Slope from Grade Break to Crown (Ft. /Ft.) = .020
Number of Halfstreets Carrying Runoff = 1
Distance from curb to property line (Ft.) = 7.00
Slope from curb to property line (Ft. /Ft.) = .020
11 Gutter width (Ft.) = 2.000
Gutter hike from flowline (In.) = 2.000
Mannings "n" value for gutter and sidewalk = .013
SRI Depth of flow = .500 (Ft.)
Average Velocity = 3.95 (Ft. /Sec.)
Streetflow Hydraulics :
PI Halfstreet Flow Width(Ft.) = 10.33
'low Velocity(Ft. /Sec.) = 3.46
Depth *Velocity = 1.73
Calculated flow rate of total street channel = 8.77 (CFS)
Flow rate in gutter = 3.96 (CFS)
STREET FLOW CROSS SECTION
NOTE: The following critical depth calculations are for:
..„ Channel 1 - If STREET, property line to outside edge of gutter
- If V- GUTTER, property line to start of V- Gutter
Channel 2 - STREET, outside edge of gutter to crown
V- Gutter, in V- Gutter itself
^ Channel 3 - V- Gutter, 2nd half of street
CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 1:
wo Subchannel Critical Flow Top Width(Ft.) = 9.00
Mi Subchannel Critical Flow Velocity(Ft. /Sec.) = 2.419
Subchannel Critical Flow Area(Sq. Ft.) = 1.64
Froude Number Calculated = 1.000
Subchannel Critical Depth above invert elevation = .644
" " ! CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 2:
Subchannel Critical Flow Top Width(Ft.) = 9.79
Subchannel Critical Flow Velocity(Ft. /Sec.) = 2.509
m1 Subchannel Critical Flow Area(Sq. Ft.) = 1:92
Froude Number Calculated = .999
Subchannel Critical Depth above invert elevation = .558
++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Ii
‘t
elp
di
* * * * * * * * * * * * * * * * * * * * * ** CHANNEL CROSS - SECTION PLOT * * * * * * * * * * * * * * * * * * * * * * **
Depth of flow = .50 Feet ,= "W"
HALF- STREET FLOW CROSS SECTION
il Critical depth for Channel No.1= .64 Feet , = "c"
mo: Critical depth for Channel No.2= .56 Feet , = "c"
X (Feet) Y(Feet) Y- Axis -> .0 .2 .4 .6
.9
41; .00 .64 Xc
1.00 .62 X c
2.00 .60 X c
3.00 .58 X c
4.00 .56 X C
5.00 .54 X C
6.00 .52 X c
7 7.00 .50 X c
iii 8.00 .08 X W c
9.00 .17 X W C
10.00 .21 X W c
11.00 .25 X W c
12.00 .29 X W c
13.00 .33 X W c
14.00 .37 X W c
15.00 .41 X W C
16.00 .45 X W C
17.00 .49 XW C
"I 18.00 .53 X c
Le 19.00 .57 X
20.00 .61 X
gm 21.00 .65 X
22.00 .69 X
Ai 23.00 .71 X
24.00 .73 X
44 25.00 .75 X
26.00 .77 X
In 27.00 .79 X
28.00 .81 X
"' 29.00 .83 X
6 30.00 .85 X
31.00 .87 X
Po
32.00 .89 X
++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
ii
di
Am
Ali
Ili
iiii
WI
ii'1
7-
d�lll
******************************************** * * * *** * * * * *** ** * * * * * * * * * * ** ** **
1 . 1 4 * * * * ** CHANNEL FLOW CALCULATIONS * * * * **
******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
CALCULATE CHANNEL CAPACITY GIVEN:
Channel Slope = .010000 (Ft. /Ft.) = 1.0000
Depth of Flow = .520 Feet
ml
Cf3 ce.ovvr\t
. * ** OPEN CHANNEL FLOW - STREET FLOW * **
Street Slope (Ft. /Ft.) = .0100
Mannings "n" value for street = .015
3 Curb Height (In.) = 6.
Street Halfwidth (Ft.) = 25.00
Distance From Crown to Crossfall Grade Break (Ft.) = 10.00
r Slope from Gutter to Grade Break (Ft. /Ft.) = .040
Slope from Grade Break to Crown (Ft. /Ft.) = .020
Number of Halfstreets Carrying Runoff = 1
!e Distance from curb to property line (Ft.) = 7.00
Slope from curb to property line (Ft. /Ft.) = .020
Gutter width (Ft.) = 2.000
Gutter hike from flowline (In.) = 2.000
Mannings "n" value for gutter and sidewalk = .013
I Depth of flow = .520 (Ft.)
Average Velocity = 3.73 (Ft. /Sec.)
dARNING: DEPTH OF FLOW EXCEEDS TOP OF CURB
Distance that curb overflow reaches into property is = 1.000 (Ft.)
ppm
Streetflow Hydraulics :
Half street Flow Width(Ft.) = 10.83
Flow Velocity(Ft. /Sec.) = 3.60
Depth *Velocity = 1.87
Calculated flow rate of total street channel = 9.10 (CFS)
Flow rate in gutter = 3.49 (CFS)
iirr Velocity of flow in gutter and sidewalk area = 3.951 (Ft. /Sec.)
Average velocity of total street channel = 3.725 (Ft. /Sec.)
STREET FLOW CROSS SECTION
NOTE: The following critical depth calculations are for:
Channel 1 - If STREET, property line to outside edge of gutter
- If V- GUTTER, property line to start of V- Gutter
Channel 2 - STREET, outside edge of gutter to crown
V- Gutter, in V- Gutter itself
Channel 3 - V- Gutter, 2nd half of street
IW CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 1:
Subchannel Critical Flow Top Width(Ft.) = 8.13
"11 Subchannel Critical Flow Velocity(Ft. /Sec.) = 2.401
Subchannel Critical Flow Area(Sq. Ft.) = 1.45
Froude Number Calculated = 1.000
Subchannel Critical Depth above invert elevation = .623
I
CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 2:
iir Subchannel Critical Flow Top Width(Ft.) = 10.41
* * * * * * * * * * * * * * * * * * * * * ** CHANNEL CROSS - SECTION PLOT * * * * * * * * * * * * * * * * * * * * * * **
Depth of flow = .52 Feet ,= "W"
HALF- STREET FLOW CROSS SECTION
Critical depth for Channel No.1= .62 Feet , = "c"
Critical depth for Channel No.2= .58 Feet , = "c"
X (Feet) Y(Feet) Y- Axis -> .0 .2 .4 .6 .9
.00 .64 X
1.00 .62 Xc
2.00 .60 Xc
3.00 .58 X c
4.00 .56 X c
5.00 .54 X c
6.00 .52 X c
7.00 .50 XW c
8.00 .08 X W c
9.00 .17 X W c
10.00 .21 X W c
11.00 .25 X W c
12.00 .29 X W c
13.00 .33 X W c
14.00 .37 X W c
15.00 .41 X W c
16.00 .45 X W c
17.00 .49 X W c
18.00 .53 X c
19.00 .57 Xc
li
20.00 .61 X
21.00 .65 X
22.00 .69 X
23.00 .71 X
24.00 .73 X
25.00 .75 X
26.00 .77 X
27.00 .79 X
28.00 .81 X
II 29.00 .83 X
30.00 .85 X
31.00 .87 X
32.00 .89 X
++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
ter,
******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
* * * * ** CHANNEL FLOW CALCULATIONS * * * * **
******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
_ALCULATE CHANNEL CAPACITY GIVEN:
Channel Slope = .005200 (Ft. /Ft.) = .5200 %
Depth of Flow = .500 Feet
E4 Flog ' tA5 (. Tap -' Cur
* ** OPEN CHANNEL FLOW - STREET FLOW * **
Street Slope (Ft. /Ft.) = .0052
Mannings "n" value for street = .015
Curb Height (In.) = 6.
I Street Halfwidth (Ft.) = 25.00
Distance From Crown to Crossfall Grade Break (Ft.) = 10.00
Slope from Gutter to Grade Break (Ft. /Ft.) _ .040
Slope from Grade Break to Crown (Ft. /Ft.) _ .020
Number of Halfstreets Carrying Runoff = 1
Distance from curb to property line (Ft.) = 7.00
Slope from curb to property line (Ft. /Ft.) = .020
I Gutter width (Ft.) = 2.000
Gutter hike from flowline (In.) = 2.000
Mannings "n" value for gutter and sidewalk = .013
Depth of flow = .500 (Ft.)
Average Velocity = 2.84 (Ft. /Sec.)
Streetflow Hydraulics :
II Halfstreet Flow Width(Ft.) = 10.33
'low Velocity(Ft. /Sec.) = 2.50
Depth *Velocity = 1.25
Calculated flow rate of total street channel = 6.32 (CFS)
I; Flow rate in gutter = 2.86 (CFS)
STREET FLOW CROSS SECTION
NOTE: The following critical depth calculations are for:
Channel 1 - If STREET, property line to outside edge of gutter
- If V- GUTTER, property line to start of V- Gutter
Channel 2 - STREET, outside edge of gutter to crown
V- Gutter, in V- Gutter itself
Channel 3 - V- Gutter, 2nd half of street
CRITICAL FLOW CALCULATIONS FOR. CHANNEL NO. 1:
II Subchannel Critical Flow Top Width(Ft.) = 2.00
Subchannel Critical Flow Velocity(Ft. /Sec.) = 3.584
Subchannel Critical Flow Area(Sq. Ft.) = .80
Froude Number Calculated = 1.000
Subchannel Critical Depth above invert elevation = .482
CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 2:
Subchannel Critical Flow Top Width(Ft.) = 8.58
Subchannel Critical Flow Velocity(Ft. /Sec.) = 2.352
Subchannel Critical Flow Area(Sq. Ft.) = 1.47
Froude Number Calculated = 1.000
Subchannel Critical Depth above invert elevation = .510
++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
4F
* * * * * * * * * * * * * * * * * * * * * ** CHANNEL CROSS - SECTION PLOT * * * * * * * * * * * * * * * * * * * * * * **
Depth of flow = .50 Feet ,= "W"
HALF- STREET FLOW CROSS SECTION
I Critical depth for Channel No.1= .48 Feet , = "c"
I Critical depth for Channel No.2= .51 Feet , _ "c"
II X (Feet) Y(Feet) Y- Axis -> .0 .2 .4 .6 .9
.00 .64 X
1.00 .62 X
2.00 .60 X
3.00 .58 X
I 4.00 .56 X
5.00 .54 X
6.00 .52 X
7.00 .50 X
8.00 .08 X cW
9.00 .17 X cW
10.00 .21 X Wc
11.00 .25 X Wc
12.00 .29 X We
13.00 .33 X Wc
14.00 .37 X Wc
15.00 .41 X Wc
16.00 .45 X We
17.00 .49 XWc
I 18.00 .53 X
19.00 .57 X
20.00 .61 X
21.00 .65 X
22.00 .69 X
23.00 .71 X
24.00 .73 X
25.00 .75 X
26.00 .77 X
27.00 .79 X
28.00 .81 X
29.00 .83 X
30.00 .85 X
31.00 .87 X
32.00 .89 X
I ++++++++++++++++++++++++++++++++++++++++++++ ++ + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
I
I
I
******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
* * * * ** CHANNEL FLOW CALCULATIONS * * * * **
******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
:ALCULATE CHANNEL CAPACITY GIVEN:
MI Channel Slope = .005200 (Ft. /Ft.) = .5200 %
II Depth of Flow = .640 Feet
c e 3fg F(ovv
* ** OPEN CHANNEL FLOW - STREET FLOW * **
I Street Slope (Ft. /Ft.) = .0052
Mannings "n" value for street = .015
Curb Height (In.) = 6.
▪ Street Halfwidth (Ft.) = 25.00
▪ Distance From Crown to Crossfall Grade Break (Ft.) = 10.00
Slope from Gutter to Grade Break (Ft. /Ft.) = .040
Slope from Grade Break to Crown (Ft. /Ft.) = .020
I Number of Halfstreets Carrying Runoff = 1
Distance from curb to property line (Ft.) = 7.00
Slope from curb to property line (Ft. /Ft.) = .020
Gutter width (Ft.) = 2.000
Gutter hike from flowline (In.) = 2.000
Mannings "n" value for gutter and sidewalk = .013
Depth of flow = .640 (Ft.)
II Average Velocity = 2.80 (Ft. /Sec.)
WARNING: DEPTH OF FLOW EXCEEDS TOP OF CURB
▪ Distance that curb overflow reaches into property is = 7.000 (Ft.)
Streetflow Hydraulics :
Halfstreet Flow Width(Ft.) = 13.83
Flow Velocity(Ft. /Sec.) = 3.15
Depth *Velocity = 2.02
Calculated flow rate of total street channel = 12.32 (CFS)
Flow rate in gutter = 3.50 (CFS)
Velocity of flow in gutter and sidewalk area = 2.181 (Ft. /Sec.)
Average velocity of total street channel = 2.798 (Ft. /Sec.)
STREET FLOW CROSS SECTION
NOTE: The following critical depth calculations are for:
Channel 1 - If STREET, property line to outside edge of gutter
- If V- GUTTER, property line to start of V- Gutter
Channel 2 - STREET, outside edge of gutter to crown
V- Gutter, in V- Gutter itself
Channel 3 - V- Gutter, 2nd half of street
4 ] CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 1:
Subchannel Critical Flow Top Width(Ft.) = 8.15
Subchannel Critical Flow Velocity(Ft. /Sec.) = 2.398
Subchannel Critical Flow Area(Sq. Ft.) = 1.46
Froude Number Calculated = .999
Subchannel Critical Depth above invert elevation = .623
CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 2:
Subchannel Critical Flow Top Width(Ft.) = 12.48
Subchannel Critical Flow Velocity(Ft. /Sec.) = 2.835
Subchannel Critical Flow Area(Sq. Ft.) = 3.11
Froude Number Calculated = 1.000
Subchannel Critical Depth above invert elevation = .666
ir►
* * * * * * * * * * * * * * * * * * * * * ** CHANNEL CROSS - SECTION PLOT * * * * * * * * * * * * * * * * * * * * * * **
Depth of flow = .64 Feet ,= "W"
HALF- STREET FLOW CROSS SECTION
Critical depth for Channel No.1= .62 Feet , = "c"
Critical depth for Channel No.2= .67 Feet , = "c"
II X (Feet) Y(Feet) Y- Axis -> .0 .2 .4 .6 .9
11 .00 .64 X
1.00 .62 XW
2.00 .60 XW F
3.00 .58 X W
I 4.00 .56 X W
5.00 .54 X W
6.00 .52 X W
7.00 .50 X W
I 8.00 .08 X W
9.00 .17 X W
10.00 .21 X W
I 11.00 .25 X W
12.00 .29 X W
13.00 .33 X W
14.00 .37 X W
II 15.00 .41 X W
16.00 .45 X W
17.00 .49 X W c
18.00 .53 X W
I 19.00 .57 X W
20.00 .61 XW c
21.00 .65 Xc
I 22.00 .69 X }
23.00 .71 X
24.00 .73 X
25.00 .75 X
I 26.00 .77 X
27.00 .79 X
28.00 .81 X
I 29.00 .83 X
30.00 .85 X
31.00 .87 X
32.00 .89 X
II ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
I
I
II
******************************************* * ** * ** * **** *** * * ** ** ** *'J * *'1 **
I * * * * ** CHANNEL FLOW CALCULATIONS * * * * **
******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
I CALCULATE CHANNEL CAPACITY GIVEN:
Channel Slope = .005200 (Ft. /Ft.) = .5200 %
Depth of Flow = .520 Feet
C (� 3
* ** OPEN CHANNEL FLOW - STREET FLOW * **
Street Slope (Ft. /Ft.) = .0052
Mannings "n" value for street = .015
Curb Height (In.) = 6.
Street Halfwidth (Ft.) = 25.00
Distance From Crown to Crossfall Grade Break (Ft.) = 10.00
I Slope from Gutter to Grade Break (Ft. /Ft.) = .040
Slope from Grade Break to Crown (Ft. /Ft.) .020
Number of Halfstreets Carrying Runoff = 1
■ Distance from curb to property line (Ft.) = 7.00
I Slope from curb to property line (Ft. /Ft.) = .020
Gutter width (Ft.) = 2.000
II Gutter hike from flowline (In.) = 2.000
Mannings "n" value for gutter and sidewalk = .013
Depth of flow = .520 (Ft.)
Average Velocity = 2.69 (Ft. /Sec.)
II DARNING: DEPTH OF FLOW EXCEEDS TOP OF CURB
Distance that curb overflow reaches into property is = 1.000 (Ft.)
Streetflow Hydraulics :
Halfstreet Flow Width(Ft.) = 10.83
Flow Velocity(Ft. /Sec.) = 2.59
Depth *Velocity = 1.35
Calculated flow rate of total street channel = 6.57 (CFS)
II Flow rate in gutter = 2.52 (CFS)
Velocity of flow in gutter and sidewalk area = 2.849 (Ft. /Sec.)
Average velocity of total street channel = 2.686 (Ft. /Sec.)
I STREET FLOW CROSS SECTION
NOTE: The following critical depth calculations are for:
Channel 1 - If STREET, property line to outside edge of gutter
- If V- GUTTER, property line to start of V- Gutter
Channel 2 - STREET, outside edge of gutter to crown
V- Gutter, in V- Gutter itself
Channel 3 - V- Gutter, 2nd half of street
I CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 1:
Subchannel Critical Flow Top Width(Ft.) = 2.00
Subchannel Critical Flow Velocity(Ft. /Sec.) = 3.435
Subchannel Critical Flow Area(Sq. Ft.) = .73
Froude Number Calculated = 1.000
Subchannel Critical Depth above invert elevation = .450
CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 2:
Subchannel Critical Flow Top Width(Ft.) = 9.13
* * * * * * * * * * * ** * * * * * * * * ** CHANNEL CROSS - SECTION PLOT * * * * * * * * * * * * * * * * * * * * * * **
Depth of flow = .52 Feet ,= "W"
I HALF- STREET FLOW CROSS SECTION
Critical depth for Channel No.1= .45 Feet , _ "c"
II Critical depth for Channel No.2= .53 Feet , = "c"
X (Feet) Y(Feet) Y- Axis -> .0 .2 .4 .6 .9
.00 .64 X
1.00 .62 X
I 2.00 .60 X
3.00 .58 X
4.00 .56 X
5.00 .54 X
I 6.00 .52 X
7.00 .50 XW
8.00 .08 X C W
II 9.00 .17 X C W
10.00 .21 X W
11.00 .25 X W
12.00 .29 X W
I 13.00 .33 X W
14.00 .37 X W
15.00 .41 X W
II 16.00 .45 X W
17.00 .49 X W
18.00 .53 X
ii 19.00 .57 X
20.00 .61 X
21.00 .65 X
li 22.00 .69 X
23.00 .71 X
24.00 .73 X
25.00 .75 X
I 26.00 .77 X
27.00 .79 X
28.00 .81 X
I 29.00 .83 X
30.00 .85 X
31.00 .87 X
I 32.00 .89 X
++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
I
II
II
0
******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
* * * * ** CHANNEL FLOW CALCULATIONS * * * * **
******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
CALCULATE CHANNEL CAPACITY GIVEN:
Channel Slope = .016000 (Ft. /Ft.) = 1.6000 % ;.
Depth of Flow = .640 Feet
C. 5'4 C0 F (D vcf ( G @ ___
I
* ** OPEN CHANNEL FLOW - STREET FLOW * **
II Street Slope (Ft. /Ft.) = .0160
Mannings "n" value for street = .015
Curb Height (In.) = 6.
I Street Halfwidth (Ft.) = 25.00
Distance From Crown to Crossfall Grade Break (Ft.) = 10.00
Slope from Gutter to Grade Break (Ft. /Ft.) = .040
Slope from Grade Break to Crown (Ft. /Ft.) = .020
ll Number of Halfstreets Carrying Runoff = 1
II Distance from curb to property line (Ft.) = 7.00
Slope from curb to property line (Ft. /Ft.) = .020
Gutter width (Ft.) = 2.000
Gutter hike from flowline (In.) = 2.000
Mannings "n" value for gutter and sidewalk = .013
Depth of flow = .640 (Ft.)
ii Average Velocity = 4.91 (Ft. /Sec.)
WARNING: DEPTH OF FLOW EXCEEDS TOP OF CURB
Distance that curb overflow reaches into property is = 7.000 (Ft.)
E
Streetflow Hydraulics :
Halfstreet Flow Width(Ft.) = 13.83
Flow Velocity(Ft. /Sec.) = 5.53
Depth *Velocity = 3.54
Calculated flow rate of total street channel = 21.62 (CFS)
Flow rate in gutter = 6.13 (CFS)
Velocity of flow in gutter and sidewalk area = 3.825 (Ft. /Sec.)
Average velocity of total street channel = 4.909 (Ft. /Sec.)
STREET FLOW CROSS SECTION
NOTE: The following critical depth calculations are for:
Channel 1 - If STREET, property line to outside edge of gutter
- If V- GUTTER, property line to start of V- Gutter
Channel 2 - STREET, outside edge of gutter to crown
V- Gutter, in V- Gutter itself 1
Channel 3 - V- Gutter, 2nd half of street
I CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 1:
Subchannel Critical Flow Top Width(Ft.) = 9.00
Subchannel Critical Flow Velocity(Ft. /Sec.) = 2.799
Subchannel Critical Flow Area(Sq. Ft.) = 2.19
I Froude Number Calculated = 1.000
Subchannel Critical Depth above invert elevation = .705
CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 2:
Subchannel Critical Flow Top Width(Ft.) = 18.68
Subchannel Critical Flow Velocity(Ft. /Sec.) = 2.989
Subchannel Critical Flow Area(Sq. Ft.) = 5.18
Froude Number Calculated = 1.000
Subchannel Critical Depth above invert elevation = .800
i i , _ ,,_,i_ 1111. -J- '-l_ - ++ +-F ++++ ++ +'F++++ "'I "' +++++ +"+"++ F'+I++++ ++++ ++++ ++
i ,
* * * * * * * * * * * * * * * * * * * * * ** CHANNEL CROSS - SECTION PLOT * * * * * * * * * * * * * * * * * * * * * * **
Depth of flow = .64 Feet ,= "W"
HALF- STREET FLOW CROSS SECTION
Critical depth for Channel No.1= .71 Feet , = "c"
Critical depth for Channel No.2= .80 Feet , = "c"
II X (Feet, Y(Feet) Y- Axis -> .0 .2 .4 .6 .9
.00 .64 X c
II 1.00 .62 XW c
2.00 .60 XW c
3.00 .58 X W c
4.00 .56 X W c
5.00 .54 X W C
6.00 .52 X W c
7.00 .50 X W c
8.00 .08 X W c
9.00 .17 X W c
10.00 .21 X W C
11.00 .25 X W C
12.00 .29 X W c
13.00 .33 X W c
14.00 .37 X W c
il 15.00 .41 X W c
16.00 .45 X W C
17.00 .49 X W c
18.00 .53 X W c
ii 19.00 .57 X W C
20.00 .61 XW c
21.00 .65 X c
ii 22.00 .69 X c
23.00 .71 X C
24.00 .73 X c
25.00 .75 X c
26.00 .77 X C
27.00 .79 Xc
28.00 .81 X
29.00 .83 X
30.00 .85 X
31.00 .87 X
32.00 .89 X
++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
I
I
II
J✓ {
******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
* * * * ** CHANNEL FLOW CALCULATIONS * * * * **
******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
CALCULATE CHANNEL CAPACITY GIVEN:
Channel Slope = .016000 (Ft. /Ft.) = 1.6000 %
Depth of Flow = .520 Feet
* ** OPEN CHANNEL FLOW - STREET FLOW * **
Street Slope (Ft. /Ft.) = .0160
Mannings "n" value for street = .015
I Curb Height (In.) = 6.
Street Halfwidth (Ft.) = 25.00
Distance From Crown to Crossfall Grade Break (Ft.) = 10.00
Slope from Gutter to Grade Break (Ft. /Ft.) = .040
Slope from Grade Break to Crown (Ft. /Ft.) = .020
Number of Halfstreets Carrying Runoff = 1
Distance from curb to property line (Ft.) = 7.00
Slope from curb to property line (Ft. /Ft.) = .020
Gutter width (Ft.) = 2.000
Gutter hike from flowline (In.) = 2.000
I Mannings "n" value for gutter and sidewalk = .013
Depth of flow = .520 (Ft.)
Average Velocity = 4.71 (Ft. /Sec.)
I gARNING: DEPTH OF FLOW EXCEEDS TOP OF CURB
Distance that curb overflow reaches into property is = 1.000 (Ft.)
I;
Streetflow Hydraulics :
Halfstreet Flow Width(Ft.) = 10.83
Flow Velocity(Ft. /Sec.) = 4.55
Depth *Velocity = 2.37
Calculated flow rate of total street channel = 11.52 (CFS)
Flow rate in gutter = 4.42 (CFS)
Velocity of flow in gutter and sidewalk area = 4.998 (Ft. /Sec.)
Average velocity of total street channel = 4.712 (Ft. /Sec.)
STREET FLOW CROSS SECTION
NOTE: The following critical depth calculations are for:
Channel 1 - If STREET, property line to outside edge of gutter
- If V- GUTTER, property line to start of V- Gutter
Channel 2 - STREET, outside edge of gutter to crown
V- Gutter, in V- Gutter itself
Channel 3 - V- Gutter, 2nd half of street
I CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 1:
Subchannel Critical Flow Top Width(Ft.) = 9.00
Subchannel Critical Flow Velocity(Ft. /Sec.) = 2.508
Subchannel Critical Flow Area(Sq. Ft.) = 1.76
Froude Number Calculated = .999
Subchannel Critical Depth above invert elevation = .657
IF
CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 2:
Subchannel Critical Flow Top Width(Ft.) = 11.43
ii
* * * * * * * * * * * * * * * * * * * * * ** CHANNEL CROSS - SECTION PLOT * * * * * * * * * * * * * * * * * * * * * * **
Depth of flow = .52 Feet ,= "W"
ii HALF- STREET FLOW CROSS SECTION
Critical depth for Channel No.1= .66 Feet = "c"
P ,
Critical depth for Channel No.2= .62 Feet , = "c"
X (Feet) Y(Feet) Y- Axis -> .0 .2 .4 .6 .9
ii . 00 .64 Xc
a 1.00 .62 X c
2.00 .60 X c
3.00 .58 X c
4.00 .56 X c
5.00 .54 X c
ii 6.00 .52 X c
7.00 .50 XW c
8.00 .08 X W c
9.00 .17 X W c
10.00 .21 X W c
11.00 .25 X W c
il 12.00 .29 X W c
13.00 .33 X W c
14.00 .37 X W c
15.00 .41 X W c
ii 16.00 .45 X W c
17.00 .49 X W c
18.00 .53 X c
I; 19.00 .57 X c
20.00 .61 Xc
21.00 .65 X
ii 22.00 .69 X
23.00 .71 X
24.00 .73 X
25.00 .75 X
26.00 .77 X
27.00 .79 X
28.00 .81 X
29.00 .83 X
30.00 .85 X
31.00 .87 X
32.00 .89 X
++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
I
a
i r-
1
9
ii
******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
* * * * ** CHANNEL FLOW CALCULATIONS * * * * **
******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
CALCULATE CHANNEL CAPACITY GIVEN:
il Channel Slope = .016000 (Ft. /Ft.) = 1.6000 %
Depth of Flow = .500 Feet
( . Tar p- Cues
* ** OPEN CHANNEL FLOW - STREET FLOW * **
ii Street Slope (Ft. /Ft.) = .0160
Mannings "n" value for street = .015
Curb Height (In.) = 6.
Street Halfwidth (Ft.) = 25.00
Distance From Crown to Crossfall Grade Break (Ft.) = 10.00
Slope from Gutter to Grade Break (Ft. /Ft.) = .040
Slope from Grade Break to Crown (Ft. /Ft.) = .020
Number of Halfstreets Carrying Runoff = 1
Distance from curb to property line (Ft.) = 7.00
Slope from curb to property line (Ft. /Ft.) = .020
Gutter width (Ft.) = 2.000
Gutter hike from flowline (In.) = 2.000
Mannings "n" value for gutter and sidewalk = .013
Depth of flow = .500 (Ft.)
Average Velocity = 4.99 (Ft. /Sec.)
Streetflow Hydraulics :
il Halfstreet Flow Width(Ft.) = 10.33
Flow Velocity(Ft. /Sec.) = 4.38
Depth *Velocity = 2.19
Calculated flow rate of total street channel = 11.09 (CFS)
7 Flow rate in gutter = 5.01 (CFS)
STREET FLOW CROSS SECTION
NOTE: The following critical depth calculations are for:
Channel 1 - If STREET, property line to outside edge of gutter
ii - If V- GUTTER, property line to start of V- Gutter
Channel 2 - STREET, outside edge of gutter to crown
V- Gutter, in V- Gutter itself
Channel 3 - V- Gutter, 2nd half of street
CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 1:
Subchannel Critical Flow Top Width(Ft.) = 9.00
Subchannel Critical Flow Velocity(Ft. /Sec.) = 2.618
Subchannel Critical Flow Area(Sq. Ft.) = 1.91
Froude Number Calculated = 1.000 .
0 Subchannel Critical Depth above invert elevation = .675
x
ii CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 2:
Subchannel Critical Flow Top Width(Ft.) = 10.75
Subchannel Critical Flow Velocity(Ft. /Sec.) = 2.630
Subchannel Critical Flow Area(Sq. Ft.) = 2.31
Froude Number Calculated = 1.000
Subchannel Critical Depth above invert elevation = .597
++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Iii
S ✓
ii
* * * * * * * * * * * * * * * * * * * * * ** CHANNEL CROSS - SECTION PLOT * * * * * * * * * * * * * * * * * * * * * * **
li Depth of flow = .50 Feet ,= "W"
HALF- STREET FLOW CROSS SECTION
li Critical depth for Channel No.1= .67 Feet , = "c"
Critical depth for Channel No.2= .60 Feet , = "c"
11 X (Feet) Y(Feet) Y- Axis -> .0 .2 .4 .6 .9
.00 .64 X
1.00 .62 X c
2.00 .60 X c
3.00 .58 X c
4.00 .56 X c
5.00 .54 X c
6.00 .52 X c
7.00 .50 X c
8.00 .08 X W c
9.00 .17 X W c
10.00 .21 X W c
I' 11.00 .25 X W c
12.00 .29 X W c
13.00 .33 X W c
14.00 .37 X W c
15.00 .41 X W c
16.00 .45 X W c
17.00 .49 XW c
18.00 .53 X c
19.00 .57 Xc
20.00 .61 X
21.00 .65 X
ii 22.00 .69 X
23.00 .71 X
24.00 .73 X
1 25.00 .75 X
I: 26.00 .77 X
27.00 .79 X
28.00 .81 X
L i 29.00 .83 X
30.00 .85 X
a 31.00 .87 X
i 32.00 .89 X
++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
i
4
4
********************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
* * * * ** CHANNEL FLOW CALCULATIONS * * * * **
******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
CALCULATE CHANNEL CAPACITY GIVEN:
i Channel Slope = .005600 (Ft. /Ft.) = .5600 %
Depth of Flow = .810 Feet
g 14E P(O\NII
* ** OPEN CHANNEL FLOW - STREET FLOW * **
I Street Slope (Ft. /Ft.) = .0056
Mannings "n" value for street = .015
{ Curb Height (In.) = 8.
Street I Distance a From d Crown to Crossfall Grade Break (Ft.) = 10.00
Slope from Gutter to Grade Break (Ft. /Ft.) = .040
Slope from Grade Break to Crown (Ft. /Ft.) = .020
I Number of Halfstreets Carrying Runoff = 1
Distance from curb to property line (Ft.) = 7.00
Slope from curb to property line (Ft. /Ft.) = .020
Gutter width (Ft.) = 2.000
I Gutter hike from flowline (In.) = 2.000
Mannings "n" value for gutter and sidewalk = .013
Depth of flow = .810 (Ft.)
I Average Velocity = 3.36 (Ft. /Sec.)
!!WARNING: WATER IS ABOVE LEFT OR RIGHT BANK ELEVATIONS.
Flow capacity is extrapolated by increasing bank heights
WARNING: DEPTH OF FLOW EXCEEDS TOP OF CURB
Distance that curb overflow reaches into property is = 7.166 (Ft.)
Streetflow Hydraulics :
Halfstreet Flow Width(Ft.) = 21.00
Flow Velocity(Ft. /Sec.) = 3.66
i! Depth *Velocity = 2.96
Calculated flow rate of total street channel = 24.66 (CFS)
Flow rate in gutter = 5.04 (CFS)
Velocity of flow in gutter and sidewalk area = 2.563 (Ft. /Sec.)
Average velocity of total street channel = 3.364 (Ft. /Sec.)
STREET FLOW CROSS SECTION
NOTE: The following critical depth calculations are for:
Channel 1 - If STREET, property line to outside edge of gutter
- If V- GUTTER, property line to start of V- Gutter
Channel 2 - STREET, outside edge of gutter to crown
V- Gutter, in V- Gutter itself
Channel 3 - V- Gutter, 2nd half of street
CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 1:
Subchannel Critical Flow Top Width(Ft.) = 8.85
I Subchannel Critical Flow Velocity(Ft. /Sec.) = 2.638
Subchannel Critical Flow Area(Sq. Ft.) = 1.91
Froude Number Calculated = 1.001
Subchannel Critical Depth above invert elevation = .804
.RITICAL FLOW CALCULATIONS FOR CHANNEL NO. 2:
Subchannel Critical Flow Top Width(Ft.) = 21.64
Subchannel Critical Flow Velocity(Ft. /Sec.) = 3.080
Subchannel Critical Flow Area(Sq. Ft.) = 6.37
Froude Number Calculated = 1.000
Subchannel Critical Depth above invert elevation = .859
9
i
* * * * * * * * * * * * * * * * * * * * * ** CHANNEL CROSS - SECTION PLOT * * * * * * * * * * * * * * * * * * * * * * **
Depth of flow = .81 Feet ,= "W"
HALF - STREET FLOW CROSS SECTION
II Critical depth for Channel No.1= .80 Feet , = "c"
Critical depth for Channel No.2= .86 Feet , = "c"
II X (Feet) Y(Feet) Y- Axis -> .0 .2 .4 .6 .9
.00 .81 X
I 1.00 .79 XW
2.00 .77 X W
3.00 .75 X W
4.00 .73 X W
5.00 .71 X W
6.00 .69 X W
7.00 .67 X W
8.00 .08 X W
9.00 .17 X W
10.00 .21 X W c
11.00 .25 X W c
12.00 .29 X W c
13.00 .33 X W c
14.00 .37 X W c
15.00 .41 X W c
16.00 .45 X W c
i 17.00 .49 X W c
18.00 .53 X W c
19.00 .57 X W c
20.00 .61 X W c
i 21.00 .65 X W c
22.00 .69 X W c
ii 23.00 .71 X W c
24.00 .73 X W c
25.00 .75 X W c
ii 26.00 .77 X W c
27.00 .79 XW c •
28.00 .81 X c
29.00 .83 Xc
i:
30.00 .85 X
31.00 .87 X
32.00 .89 X '
++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
ll
i
I
i
* * * * * * * * * * * * * * * * * * * * * * * * * * * **
*************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
* * * * ** CHANNEL FLOW CALCULATIONS * * * * **
******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
CALCULATE CHANNEL CAPACITY GIVEN:
Channel Slope = .005600 (Ft. /Ft.) = .5600 %
Depth of Flow = .667 Feet
C
o .� Top a1- Cd-6
* ** OPEN CHANNEL FLOW - STREET FLOW * **
I Street Slope (Ft. /Ft.) = .0056
Mannings "n" value for street = .015
Curb Height (In.) = 8.
1 Street Halfwidth (Ft.) = 25.00
II Distance From Crown to Crossfall Grade Break (Ft.) = 10.00
Slope from Gutter to Grade Break (Ft. /Ft.) = .040
Slope from Grade Break to Crown (Ft. /Ft.) = .020
I Number of Halfstreets Carrying Runoff = 1
Distance from curb to property line (Ft.) = 7.00
Slope from curb to property line (Ft. /Ft.) = .020
I Gutter width (Ft.) = 2.000
Gutter hike from flowline (In.) = 2.000
Mannings "n" value for gutter and sidewalk = .013
Depth of flow = .667 (Ft.)
Average Velocity = 3.63 (Ft. /Sec.)
WARNING: DEPTH OF FLOW EXCEEDS TOP OF CURB
Distance that curb overflow reaches into property is = .016 (Ft.)
Streetflow Hydraulics :
Halfstreet Flow Width(Ft.) = 14.51
Flow Velocity(Ft. /Sec.) = 3.39
Depth *Velocity = 2.26
Calculated flow rate of total street channel = 15.58 (CFS)
Flow rate in gutter = 4.96 (CFS)
Velocity of flow in gutter and sidewalk area = 4.250 (Ft. /Sec.)
Average velocity of total street channel = 3.627 (Ft. /Sec.)
STREET FLOW CROSS SECTION
NOTE: The following critical depth calculations are for:
Channel 1 - If STREET, property line to outside edge of gutter
- If V- GUTTER, property line to start of V- Gutter
Channel 2 - STREET, outside edge of gutter to crown
V- Gutter, in V- Gutter itself
Channel 3 - V- Gutter, 2nd half of street
I CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 1:
Subchannel Critical Flow Top Width(Ft.) = 8.68
Subchannel Critical Flow Velocity(Ft. /Sec.) = 2.639
Subchannel Critical Flow Area(Sq. Ft.) = 1.88
Froude Number Calculated = .999
Subchannel Critical Depth above invert elevation = .800
1 CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 2:
Subchannel Critical Flow Top Width(Ft.) = 14.07
Subchannel Critical Flow Velocity(Ft. /Sec.) = 2.895
Subchannel Critical Flow Area(Sq. Ft.) = 3.67
Froude Number Calculated = .999
Subchannel Critical Depth above invert elevation = .708
* * * * * * * * * * * * * * * * * * * * * ** CHANNEL CROSS - SECTION PLOT * * * * * * * * * * * * * * * * * * * * * * **
Depth of flow = .67 Feet ,= "W"
HALF- STREET FLOW CROSS SECTION
Critical depth for Channel No.1= .80 Feet , = "c"
• Critical depth for Channel No.2= .71 Feet , = "c"
I X (Feet) Y(Feet) Y- Axis -> .0 .2 .4 .6 .9
II .00 .81 X
1.00 .79 Xc
2.00 .77 X c
3.00 .75 X c
4.00 .73 X c
5.00 .71 X c
6.00 .69 X c
7.00 .67 X c
8.00 .08 X W c
9.00 .17 X W c
10.00 .21 X Wc
11.00 .25 X Wc
12.00 .29 X Wc
13.00 .33 X Wc
14.00 .37 X Wc
II 15.00 .41 X Wc
16.00 .45 X Wc
17.00 .49 X Wc
18.00 .53 X Wc
19.00 .57 X Wc
20.00 .61 X Wc
21.00 .65 XWc
22.00 .69 Xc
ii 23.00 .71 X
24.00 .73 X
25.00 .75 X
26.00 .77 X
27.00 .79 X
28.00 .81 X
29.00 .83 X
30.00 .85 X
31.00 .87 X
32.00 .89 X
++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
t
1
1
i
II
* * * * *
* ************************ * * * ** * * ** * * * * ** * * * * * * * * ** * * * * ** *'fit * * * * * * ** * * **
* * * * ** CHANNEL FLOW CALCULATIONS * * * * **
I ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
mi CALCULATE CHANNEL CAPACITY GIVEN:
Channel Slope =
Depth of Flow = .005600 (Ft. /Ft.) = .5600
II 6 17el_ .520 Feet (o
i
* ** OPEN CHANNEL FLOW - STREET FLOW * **
Street Slope (Ft. /Ft.) = .0056
1 Mannings "n" value for street = .015
I Curb Height (In.) = 8.
Street Halfwidth (Ft.) = 25.00
Distance From Crown to Crossfall Grade Break (Ft.) = 10.00
Slope from Gutter to Grade Break (Ft. /Ft.) = .040
Slope from Grade Break to Crown (Ft. /Ft.) = .020
Number of Halfstreets Carrying Runoff = 1
I Distance from curb to property line (Ft.) = 7.00
Slope from curb to property line (Ft. /Ft.) = .020
i Gutter width (Ft.) = 2.000
Gutter hike from flowline (In.) = 2.000
II Mannings "n" value for gutter and sidewalk = .013
Depth of flow = .520 (Ft.)
Average Velocity = 3.04 (Ft. /Sec.)
Streetflow Hydraulics :
Halfstreet Flow Width(Ft.) = 10.83
II Flow Velocity(Ft. /Sec.) = 2.69
Depth *Velocity = 1.40
I Calculated flow rate of total street channel = 7.39 (CFS)
Flow rate in gutter = 3.19 (CFS)
II STREET FLOW CROSS SECTION
III NOTE: The following critical depth calculations are for:
Channel 1 - If STREET, property line to outside edge of gutter
- If V- GUTTER, property line to start of V- Gutter
Channel 2 - STREET, outside edge of gutter to crown
V- Gutter, in V- Gutter itself
Channel 3 - V- Gutter, 2nd half of street
a
CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 1:
Subchannel Critical Flow Top Width(Ft.) = 2.00
I Subchannel Critical Flow Velocity(Ft. /Sec.) = 3.717
Subchannel Critical Flow Area(Sq. Ft.) = .86
? Froude Number Calculated = 1.000
Subchannel Critical Depth above invert elevation = .512
1
I CRITICAL FLOW CALCULATIONS FOR CHANNEL NO. 2:
Subchannel Critical Flow Top Width(Ft.) = 9.27
Subchannel Critical Flow Velocity(Ft. /Sec.) = 2.442
IF Subchannel Critical Flow Area(Sq. Ft.) = 1.72
Froude Number Calculated = .999
Subchannel Critical Depth above invert elevation = .538
II
I
i
*********************** CROSS-SECTION CHANNEL CROSS SECTION PLO T * * * * * * * * * * * * * * * * * * * * * * **
Depth of flow = .52 Feet ,= "W"
HALF- STREET FLOW CROSS SECTION
II Critical depth for Channel No.1= .51 Feet , = "c"
Critical depth for Channel No.2= .54 Feet , = "c"
X (Feet) Y(Feet) Y- Axis -> .0 .2 .4 .6 .9
.00 .81 X
1.00 .79 X
2.00 .77 X
I 3.00 .75 X
4.00 .73 X
5.00 .71 X
I 6.00 .69 X
7.00 .67 X
8.00 .08 X W
9.00 .17 X W
I 10.00 .21 X Wc
11.00 .25 X Wc
12.00 .29 X Wc
I 13.00 .33 X Wc
14.00 .37 X Wc
15.00 .41 X Wc
16.00 .45 X Wc
17.00 .49 X Wc
18.00 .53 Xc
ii 19.00 .57 X
20.00 .61 X
21.00 .65 X
22.00 .69 X
II 23.00 .71 X
24.00 .73 X
25.00 .75 X
26.00 .77 X
27.00 .79 X
28.00 .81 - X
II 29.00 .83 X
30.00 .85 X
31.00 .87 X
32.00 .89 X
++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
ii
ii
II
/AB/ Es
RAP//5
}
1
I al h g A ate.
MEW CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING
SUBJECT BY DATE HO. SHEET OF
I 1 , I JOB
I ' F eadi UPPEi� Et-
MOVE 'f 0 NODE Cop L G'rH A 2� R kJ<S
;1
6 ( Go I z4 "' 870 Co. 1l
1 Co C) So s (1.13
51 4 C) 3 3.6
a 1 Sz s° 3 111111,1 1.7
1
6r-S° 5-v.( ■
I zi4' ' . 115
.
it Z� 1(
I i
1 '7 l 7 5:3
I
1
,i1 A
t
P r
P
J
J
3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626 -3428 •
(714) 641 -8777
1 in 7/ae g 2ftemag, ate.
I CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING
0 'I [ sI JDATE 3 i ( -81 1JSHEET OF
F20M , TD NODE GM - UPPER LANG A 2�A Rew 2.KS
Mme • - et .
r I I l 0 ( 1 i- o , 3, ?.(A .
I ti 1O 10 1a (12.
1 12 10 I 191-7 .mot 40
L
1 1 d 20 S^ G 7 5 P, pe--00,4
22. zo 3 i 5-.5-y
■ . .
I ZI z 3 .�
8
I zc . ( S .
3 1 , 30 1 . 1 i1H G,60 1.3
30 `i 5 �.� j < < 8
' I i
4 1-! 2 -t0 3 z
! .ito fib.( 15 ,
I I
I 1 I .„-
I i .
1 3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92626 -3428 • (714) 641 -8777
Emu w ' ® NON MN NM UM N IMP EN B • e 11 I.. ....,
' C
n
/ /eigh/ of Opening (h) in / &e/
•
:It) VI tV • t,,, i\ 11 J Q v^ O.. lh
I I , , 1 , i 1 • 1 . t I r , _ _ _ _ _ _ _ � , 1 l I l „ k i • I , i 1 . 4 , I J .„ , 1 r 1 I i i ti 1 . ), , i ), I I 1 1. 1 t
1 •
(\ N r l,, I t„ �, n v, I UD O, , 1 �o v kr i
) u i,
•
/fsigh/ of c o 'miy \ \ (h) in /nches r, r •
• \ . •
• �\ x
0
.v \ ro
\' I
O \ `l
\
t C000ci/y per foo/ of /eng /» of oocwmg (Q /L) in c. fs. per foot
/
vp \ \ N /
\i O ti w Obi N v., . Oo O 4s r ?� o, �'
L M 1 i l 1 1 1 1 1 111liil,i J 11( I I i\ttltlil,l I l I 1 II/1 I, I, l,( ( 1
1 �fl •
i �. �_ : i= r.
rc
� p
't..) ��
I : /
.-1 Q y `\
1 W
Ro /io of oofh of wo/er of opening fo heigh/ of opeoin4 C/f /h) /ii \ f /f/
'
• 1 . , , , 1 . , . , I • , t • I 1 ( I [ T i 1 l - T ( 1 ( 1 I T 1 1 1 1 1 1 1 1 I I I I F I
N. (\I U.) L1 0, v • i I ,4 ' 4
•