Loading...
HomeMy WebLinkAboutEngineering Report/Fontana Master Plan Line T-1 ENGINEERING REPORT FOR THE FOOTHILL BOULEVARD /JUNIPER AVENUE STORM DRAIN (Fontana Master Plan Line T -1) Prepared For: CITY OF FONTANA 8353 Sierra Avenue Fontana, California 92335 �QFESS�� Prepared By: , N TKE Engineering, Inc. E No 69984 * Exa 9isoi � 4446 Central Avenue Riverside, CA 92506 9 Civil. O NO . Telephone: (951) 680 -0440 TF CF C111.0`' Fax: (951) 680 -0490 1 M � '"I Terry enner, P.E. R.C.E. 69984 DC , February, 2007 r, c, "JF RING Table of Contents CITY OF FONTANA Foothill Boulevard/Juniper Avenue Storm Drain di Engineering Report February, 2007 DESCRIPTION PAGE I. EXECUTIVE SUMMARY 1 II. INTRODUCTION 2 A. Study Area 2 B. Existing Runoff Patterns 3 C. Existing Land Usage 4 D. Existing Storm Drainage Facilities 4 E. Other Proposed Improvements 4 4 F. Design Criteria 5 III. STUDY 5 A. Hydrology 5 1. Rainfall 5 2. Infiltration 6 3. Runoff 6 B. Hydraulics 7 1. Storm Drain 7 2. Streets 8 3. Connector Piping 8 4. Inlets 8 IV. TABLE Table Ia - Storm Drain Summary 9 Table lb - Inlets and Connector Piping Summary 10 Table II - Rainfall Data 11 Table IIIa - Hydrologic Analysis Input Data 12 Table IIIb - Hydrologic Analysis Results 15 de Table IV - Hydraulic Analysis Data 16 Table V - Street Hydrologic Capacity Calculations 17 Table VI - Connector Piping Calculations 18 de Table VII - Inlet Hydraulic Calculations 19 V. FIGURES Figure 1 - Location Map 20 Figure 2 - Land Use Map 21 Figure 3 - Hydrology Map 22 VI. APPENDICES APPENDIX `A' rr Figure B -3 (Valley Area Isohyetals 10 -Year 1 -Hour) Figure B -4 ( Valley Area Isohyetals 100 -Year 1 -Hour) Figure D -2 (Rainfall Depth Versus Return Period for Partial Duration Series Chart) sar Table of Contents (Cont.) APPENDIX `B' Figure C -15 (Hydrologic Soils Group Map for Southwest — A Area) APPENDIX `C' 4s 100 -Year Storm Event Rational Method Hydrology Data Output APPENDIX `D' Storm Drain Main Water Surface Profile Data APPENDIX `E' Storm Drain Laterals Water Surface Profile Data APPENDIX `F' Figure D -26 (Los Angeles County Flood Control District Catch Basin for Sump m Condition) Figure D -10A, 10 -B, and 10 -C (Los Angeles County Flood Control District Curb Opening Catch Basin Capacities) Street Hydraulic Capacity Calculation Tables APPENDIX `G' Storm Drain Construction Drawings (Reduced to 11" x 17") 4r 4111 Al r rr 41 41 CITY OF FONTANA February, 2007 FOOTHILLBOULEVARD /JUNIPER AVENUE STORM DRAIN ENGINEERING REPORT • EXECUTIVE SUMMARY The City of Fontana (City) proposes to construct a portion of the T1 Master Plan storm drain line. The proposed portion of storm drain system will be constructed along Foothill Boulevard is from Sierra Avenue to Juniper Avenue and along Juniper Avenue from Foothill Boulevard to approximately 300 feet South of Foothill Boulevard. For the interim, the proposed storm drain system will be constructed with two catch basins at the downstream end that will have gravel bottoms to allow the collected runoff to percolate into the ground. During high flows the catch basins will act as water outlet structures releasing the runoff back into Juniper Avenue where it will flow south to inlets at Orange Way. Ultimately at the downstream end of the system, the future storm drain will connect to an existing 54" diameter storm drain located at the intersection of Juniper Avenue and Orange Way. The ultimate storm drain will be designed to convey runoff from a 100 -year storm event (together with hydraulic capacity of ultimate street improvements for Citrus Avenue) for ultimate development conditions. The interim storm drain will convey runoff from a 100 -year storm event once the future storm drain connects to the existing storm drain in Orange Way. The purpose of the study was to determine appropriate storm drain diameters, connector pipe diameters, and inlet opening sizes to convey runoff from areas tributary to Juniper Avenue to downstream existing drainage facilities. The results of the study are presented in Table Ia and Ib. 41 CITY OF FONTANA February, 2007 11 FOOTHILLBOULEVARD /JUNIPER AVENUE STORM DRAIN ENGINEERING REPORT 411 II. INTRODUCTION 4, The City proposes to construct a portion of the T1 Master Plan storm drain line along Foothill Boulevard from Sierra Avenue to Juniper Avenue and along Juniper Avenue from Foothill Boulevard to approximately 300 feet South of Foothill Boulevard, to relieve drainage problems along Foothill Boulevard and Juniper Avenue. In order to determine the required facilities to adequately provide the drainage service to areas tributary to Foothill Boulevard/Juniper Avenue Storm Drain, areas tributary to the proposed storm drain were identified. 4. In the following paragraphs, a description and limits of the study area, existing runoff patterns, existing land usage, existing storm drainage facilities, ultimate land usage, other proposed improvements, and design criteria are presented. A. STUDY AREA 4. To establish the limits of the study area, records were assembled including the City's Master Storm Drainage Plan prepared by Hall & Foreman, Inc., dated June 23, 1992 and existing storm drain record drawings. In addition, field surveys and reviews were performed for the study area �r to ensure the study area limits are correctly identified. 4. The study area is located in the incorporated areas of City. The area is generally bounded by the Fontana Channel to the south, Miller Avenue to the north, Sierra Avenue to the east, and Juniper 4r 4. 2 a CITY OF FONTANA February, 2007 FOOTHILLBOULEVARD /JUNIPER AVENUE STORM DRAIN ENGINEERING REPORT to Avenue to the west. The study area is shown on the attached Location Map as Figure 1. The study area consists of approximately 293 acres. 41 The City's Master Storm Drainage Plan shows a future storm drain along Miller Avenue between Cypress Avenue and Sierra Avenue. Runoff from areas north of Miller Avenue will be collected 4 by future storm drain and, therefore, is not included. The southern boundary of the study site is the Fontana Channel. Storm drain inlets exist at the intersection of Juniper Avenue and Orange Way. 4 B. EXISTING RUNOFF PATTERNS All existing runoff from the study area currently is routed through streets, which have curbs, and by surface flow in a southeasterly direction towards the intersection of Juniper Avenue and Orange Way. �r ■ Runoff from properties on Fairfax Street, Malaga Street, and Reed Street are conveyed towards Sierra Avenue. Conveyed runoff then flows south to Foothill Boulevard where it flows west 4 along Foothill Boulevard toward Juniper Avenue. Flows from Pain Street and Bennett Avenue are combined with the flows on Foothill Boulevard. Flows from Reed Street and Barbee Street are conveyed onto Juniper Avenue and are combined with flows from Juniper Avenue. The Juniper Avenue flows are then combined with the flows from Foothill Boulevard at the intersection of Foothill Boulevard and Juniper Avenue. Through a series of under street culverts at the intersection of Foothill Boulevard and Juniper Avenue the combined runoff then flow • 3 CITY OF FONTANA February, 2007 FOOTHILLBOULEVARD /JUNIPER AVENUE STORM DRAIN ENGINEERING REPORT south along Juniper Avenue to Orange Way where the runoff is collected in existing catch basins and conveyed in an existing 54 -inch storm drain to the Fontana Channel. Runoff from the areas rn between Juniper Avenue and Sierra Avenue, south of Foothill Boulevard, not mentioned in the previous section, flow in a southwesterly direction. C. EXISTING LAND USAGE The study area currently consists of single family, medium and medium -high density residential, p%va commercial and open space usages. Most areas include sparse vegetation coverage with little to e' no asphalt or concrete coverage. Current land usages are shown on Figure 2. D. EXISTING STORM DRAINAGE FACILITIES The proposed Foothill Boulevard/Juniper Avenue Storm Drain will connect to an existing 54" RCP storm drain located at the intersection of Juniper Avenue and Orange Way. Two 18 -foot curb opening inlets, with 24" lateral storm drain pipes, connect to the existing 54" storm drain and are located on the northwest and northeast corners of the intersection. The existing 54" storm drain connects to the Fontana Channel through a reduced 36" pipe, which conveys a limited amount of drainage southerly to the Fontana Channel. 4 E. OTHER PROPOSED IMPROVEMENTS r 4 In addition to the storm drain improvements, the City will construct street improvements along the North side of Foothill Boulevard from West of Sierra Avenue to Juniper Avenue. Also, long- 4 4 CITY OF FONTANA February, 2007 41 FOOTHILLBOULEVARD /JUNIPER AVENUE STORM DRAIN ENGINEERING REPORT 41 term improvements include future channel improvements by the County of San Bernardino Flood Control District to increase the capacity of the Fontana Channel. • F. DESIGN CRITERIA The storm drain, connector pipes, and inlets will be designed to convey runoff from a 100 -year storm event utilizing the hydraulic capacity of the future Citrus Avenue for ultimate land usages. III. STUDY To determine the appropriate diameters for storm drains and connector pipes for the Foothill Boulevard/Juniper Avenue Storm Drain, study area hydrology and system hydraulic calculations were prepared. Each are described in the following paragraphs: A. HYDROLOGY Hydrology calculations are performed to estimate runoff quantities and are prepared in accordance with Standards and Practices outlined in the San Bernardino County Hydrology Manual (1986) (Hydrology Manual). To estimate runoff quantities, rainfall and infiltration estimates must be prepared by mapping the tributary area. The hydrology map is attached as Figure 3. Each together with runoff are discussed in the following paragraphs: 5 iqv CITY OF FONTANA February, 2007 ar FOOTHILLBOULEVARD /JUNIPER AVENUE STORM DRAIN ENGINEERING REPORT 1. Rainfall Rainfall data for the study area was based on the Hydrology Manual's Isohyetal Maps (Figure B- Ar 3 and Figure B -4). The isohyetal maps are attached in Appendix `A'. Since the study area is considered relatively small, one -hour storm event will provide the largest peak runoff quantity. Therefore, 10 -year 1 -hour event and 100 -year 1 -hour event are used. Using the 10 -year and 100 - year rainfall intensities, together with the Hydrology Manual's Rainfall Depth Versus Return Period for Partial Duration Series Chart (Figure D -2), the 25 -year 1 -hour storm event rainfall intensity was estimated. 10 -year 1 -hour event, 100 -year 1 -hour event Hydrology Manual Isohyetal Maps, and Figure D -2 are attached in Appendix `A'. The rainfall intensities are presented in Table II. 2. Infiltration The Hydrology Manual bases infiltration rate on land usage, Antecedent Moisture Content (AMC), and soil type. As specified by the Manual, AMC Type II was used. The Manual categorizes soils into one of four different hydrologic soils groups based on the soil's infiltration characteristics. The hydrologic soil group for the entire study area consists of Type "A" soil. The Hydrology Manuals, "Hydrologic Soils Group Map for Southwest Area" (Figure C -15) is attached in Appendix `B'. 3. Runoff • Runoff quantities are estimated using the Rational Method Hydrologic Analysis Software a prepared by CivilDesign Corporation. 100 -Year storm events were estimated. Output data for 40 the hydrologic analysis is presented in Appendix `C'. Input data for the Hydrologic Analysis is 40 6 or CITY OF FONTANA February, 2007 FOOTHILLBOULEVARD /JUNIPER AVENUE STORM DRAIN ENGINEERING REPORT 41 shown on Table IIIa and detailed results (runoff quantities and areas) from the analysis are summarized on Table Ia and IIIb. The following assumptions were used for the computerized analysis: 1. 24" Minimum Storm Drain Diameter for all storm drains per San Bernardino County Standards. 2. 0.6 Intensity Duration Log -Log Slope per Hydrology Manual. B. HYDRAULICS Hydraulic calculations are performed to estimate storm drain diameters and connector pipe diameters. All hydraulic calculations were based on the construction of the ultimate storm drain. The hydraulic gradient on the drawings does not account for the interim construction condition. Each are discussed in the following paragraphs: 1. Storm Drain Hydraulic calculations were performed using the Water Surface Pressure Gradient (WSPG) computerized software prepared by CivilDesign Corporation to establish water surface elevations. Storm drain diameters were adjusted as required to determine the most efficient system. Diameters were adjusted to establish pressurized flow and to maintain water surface elevations below ground surface elevations to ensure runoff will enter the system. The downstream water surface elevation was estimated at the existing pipe soffit as the Juniper a Avenue Storm Drain and Sewer from A.T. & S.F. R.R. to Orange Way construction drawings 7 CITY OF FONTANA February, 2007 FOOTHILLBOULEVARD /JUNIPER AVENUE STORM DRAIN ENGINEERING REPORT (Drawing No. 1186) do not include hydraulic gradient data. Output data for the storm drain main is attached in Appendix `D'. Input data for the WSPG analysis is shown in Table IV. 2. Streets Street hydraulic capacity calculations for the ultimate street section are presented on Table V. Table V demonstrates that the drainage system (storm drain and ultimate street) will have adequate capacity to convey 100 -year runoff. • 3. Connector Piping Connector piping hydraulic analysis was performed on each lateral to determine water surface elevations within the inlet structures. Connector piping calculations for each inlet are shown on Table VI. Inlet water surface elevations were compared to estimate ultimate ground surface elevations to ensure runoff will enter the system during 100 -year storm events. Output data for the storm drain laterals is attached in Appendix `E'. 4. Inlets Inlet hydraulic calculations are presented on Table VII. As demonstrated in the street hydraulic capacity calculations the runoff flows far surpass the capacity of the street and therefore water depths in Foothill Boulevard were estimated at full curb height. To determine inlet widths for sump condition inlets, Los Angeles County Flood Control District's Plat D -26 was used and is 4 attached in Appendix `F'. To determine inlet widths for non -sump conditions, Los Angeles County Flood Control District's Figure D -10A, 10B, 10C were used. Each are attached in Appendix `F'. a Reduced storm drain construction drawings are attached in Appendix `G'. 8 at Table la City of Fontana Foothill Boulevard Storm Drain Preliminary Engineering Storm Drain Summary Stream Subarea 100 -Yr Tributary Area Runoff 100 -Yr Total Runoff (cfs) (cfs) A 6 13.513 13.5 5 19.512 33.0 4 36.849 69.9 •� 3 20.685 90.6 2 19.592 110.2 1 10.75 120.9 Stream A Total: 120.9 C 5 11.94 11.9 4 6.36 18.3 3 10.5 28.8 Stream C Sub Total: 28.8 Confluenced Streams A & C Sub Total: 144.5 C 2 0 144.5 1 1.925 146.4 Stream C Sub Total: 146.4 B 7 20.701 20.7 6 8.556 29.3 5 19.69 48.9 4 5.266 54.2 ,r 3 11.974 66.2 2 24.053 90.2 1 0.673 90.9 Stream B Total: 90.9 Confluenced Streams A -C Total: 226.7 D 1 31.075 257.8 2 29.45 287.2 1 0 287.2 D 3 21.23 308.5 4 29.68 338.2 E 2 0 338.2 D 5 22.151 360.3 6 30.251 390.6 E 3 0 390.6 Confluenced Streams A - E Total: 390.6 Sierra to Juniper Report Tables Table IA Page 9 2/1/2007 11 ti ad 1 a i ail ail a r a i a i , is a a i a a ill 6. r lila Si is it i Table IB City of Fontana Foothill Boulevard Storm Drain Preliminary Engineering Inlets & Connector Piping Summary Connector Piping Connector Piping At Node Side of Node Design Flow'' Total Inlet Length Length Diameter st 28.8 14' Inlet 93 30 102 Northeast 65.9 28' and 21' Inlets 34 30 102 Northwest 38.2 2 -14' Inlets 80 24 101 Northeast 0.0 7' Inlet 26 24 101 Northwest 0.0 7' Inlet 26 24 101 Northwest 12.7 10' Inlet 47 24 100 Northeast 1.9 7' Inlet 41 24 100 Northeast 76.4 21' Inlets 30 24 100 Northwest 14.5 14' Inlet 27 24 Notes: 1.) Data from Table VI 2.) Connector Piping Length from Construction Plans 3) Data from Table VI Sierra to Juniper Report Tables Table IB 2/1/2007 Page 10 Table II City of Fontana Foothill Boulevard Storm Drain 4 Preliminary Engineering Rainfall Data Storm Event Rainfall Intensity (yr) (in /hr) 10 1.00 25 1.28 100 1.49 4 9 i 9 Sierra to Juniper Report Tables Table II 2/1/2007 Page 11 ti k 1 Li Li ti i t i Ik a l a 1 L i i i i i k 1 i 1 1'1 its ii ii iiii el it Table Ilia City of Fontana Foothill Boulevard Storm Drain Preliminary Engineering Hydrologic Analysis Input Data Upstream Downstream Length Between Runoff Course Tributary From Node To Node Description Elevation''I Elevation'' Nodes Assumptions Ultimate Land Usage Soil Group Side Subarea (feet) (feet) (feet) (Acres) 105 104 Initial Area 1320 1319.68 280 Overland Flow Commercial A 3.36 North of foothill (Subarea C5) 104 103 Street Flow and 1319.68 1319.32 315 Street Flow 2I Commercial A 2.71 North of Foothill Subarea C4 103 102 Street Flow and 1319.32 1318.5 720 Street Flow 2I Commercial A 6.21 Northeast of Subarea C3 Sierra/Foothill 102 102 Initial Confluence ofA and C 111 109 Initial Area 1363.25 1353.98 990 Overland Flow Residential (5 - 7 Northwest of A 7.05 (Subarea A5) dwl /acre) Sierra/Fairfax 111 109 Initial Area Northwest of 1363.25 1353.98 990 Overland Flow Commercial A 0.54 (Subarea A5) Sierra /Fairfax Street Flow and Residential (3 - 4 s l 110 109 Subarea A6 1365.2 1353.98 990 Street Flow dwl /acre) A 3.4 East of Sierra 110 109 Street Flow and 1365.2 1353.98 990 Street Flow 3) Commercial A 3.8 East of Sierra Subarea A6 Street Flow and Residential (3 - 4 3.� 109 108 Subarea A4 1353.98 1340 815 Street Flow dwl /acre) A 6.27 East of Sierra 109 108 Street Flow and 1353.98 1340 815 Street Flow I Residential (5 - 7 A 3.7 East of Sierra Subarea A4 dwl /acre) 109 108 Street Flow and 1353.98 1340 815 Street Flow 3l Commercial A 8.83 East of Sierra Subarea A4 Street Flow and 1353.98 1340 815 Street Flow 3'l Residential (5 - 7 109 108 Subarea A3 dwl /acre) A 2.42 West of Sierra Street Flow and Residential (8 - 10 a 109 108 Subarea A3 1353.98 1340 815 Street Flow dwl /acre) A 5.21 West of Sierra 109 108 Street Flow and 1353.98 1340 815 Street Flow 3I Commercial A 4.84 West of Sierra Subarea A3 Street Flow and Residential (3 - 4 3.i 108 107 Subarea Al 1340 1332.5 465 Street Flow dwl /acre) A 1.82 West of Sierra Sierra to Juniper Report Tables Table Ilia Page 12 2/1/2007 i if i tt !it I i i * fe Ili 4 iit s i I A i i i * i li f i t ii i fi t & i ii $ ei i I J Upstream Downstream Length Between Runoff Course Tributary From Node To Node Description , , Ultimate Land Usage Soil Group Side Elevation a Elevation a Nodes Assumptions Subarea (feet) (feet) (feet) (Acres) Street Flow and a Residential (8 - 10 108 107 Subarea Al 1340 1332.5 465 Street Flow dwl /acre) A 3.26 West of Sierra 108 107 Street Flow and 1340 1332.5 465 Street Flow 3 Commercial A 2.13 West of Sierra Subarea Al 107 106 Street Flow 1332.5 1324.54 495 Street Flow 3.) Commercial A 0 West of Sierra 108 106 Street Flow and 1340 1324.54 960 Street Flow I Commercial A 11.69 East of Sierra Subarea A2 Street Flow and s t Residential (5 - 7 108 106 Subarea A2 1340 1324.54 960 Street Flow dwl /acre) A 3.3 East of Sierra 106 102 Street Flow 1324.54 1318.5 375 Street Flow 3.t Commercial A 0 North of Sierra/Foothill 102 102 Final Confluence of A and C 102 101 Street Flow and 1318.5 1317 670 Street Flow z.1 Commercial A 5.78 North of Foothill Subarea C2 101 100 Street Flow and 1317 1315 650 Street Flow z.l Commercial A 5.56 North of Foothill Subarea C1 100 100 Initial Confluence of B and C 118 116 Initial Area 1361.32 1350.34 830 Overland Flow Residential (3 - 4 A 3.28 West of Juniper (Subarea B6) dwl /acre) Street Flow and a.t Residential (3 - 4 117 116 Subarea B7 1363.11 1350.34 990 Street Flow dwl /acre) A 4.77 East of Juniper Street Flow and a Residential (8 - 10 117 116 Subarea B7 1363.11 1350.34 990 Street Flow dwl /acre) A 5.23 East of Juniper Street Flow and a Residential (8 - 10 A 116 115 Subarea B5 1350.34 1338.64 660 Street Flow dwl /acre) 9.95 East of Juniper Street Flow and a Residential (8 - 10 115 114 Subarea B3 1338.64 1330.4 465 Street Flow dwl /acre) A 3.37 East of Juniper Street Flow and , t Residential (3 - 4 115 114 Subarea B3 1338.64 1330.4 465 Street Flow dwl /acre) A 3.55 East of Juniper Street Flow and a t Residential (3 - 4 116 113 Subarea B4 1350.34 1326.95 1320 Street Flow dwl /acre) A 3.89 West of Juniper 116 113 Street Flow and 1350.34 1326.95 1320 Street Flow 4.) Park A 2.67 West of Juniper Subarea B4 Street Flow and Residential (3 - 4 n t 114 112 Subarea 62 1330.4 1321.64 495 Street Flow dwl /acre) A 12.66 East of Juniper Sierra to Juniper Report Tables Table Ilia 2/1/2007 Page 12 ii k i i t >lk ► e i + g i l l it ; i d i i & s i i Upstream Downstream Length Between Runoff Course Tributary From Node To Node Description Side ElevatioElevation" ElevatioElevation" Nodes Assumptions Ultimate Land Usage Soil Group Subarea (feet) (feet) (feet) (Acres) 114 112 Street Flow and 1330.4 1321.64 495 Street Flow 4,) Commercial A 2.3 East of Juniper Subarea B2 112 100 Street Flow 1321.64 1315 375 Street Flow 4 ' ) Commercial A 0 East of Juniper 113 100 Street Flow and 1326.95 1315 675 Street Flow 4.) Commercial A 1.7 West of Juniper Subarea B1 Street Flow and Residential (3 - 4 4 ,1 113 100 Subarea 61 1326.95 1315 675 Street Flow dwl /acre) A 0.51 West of Juniper Street Flow and Residential (8 - 10 a .l 113 100 Subarea 61 1326 1315 675 Street Flow dwl /acre) A 0.98 West of Juniper 100 100 Final Confluence of B and C Total: 146.7 Acres 1,) From June '99 Topographic Data Prepared by APS �) 76' Width, 8" Curb, 2% Street Cross -Slope (n= 0.015), 2% Parkway Cross -Slope (n= 0.020) 3,) 66' Width, 8" Curb, 2% Street Cross -Slope (n= 0.015), 2% Parkway Cross -Slope (n= 0.020) 411 40' Width, 8" Curb, 2% Street Cross -Slope (n= 0.015), 2% Parkway Cross -Slope (n= 0.020) Sierra to Juniper Report Tables Table Ilia Page 12 2/1/2007 Table Illb City of Fontana Foothill Boulevard Storm Drain Preliminary Engineering Hydrologic Analysis Results a Stream Subarea Total Area 100 -Year Runoff (ac) (cfs) A 1 7.2 10.8 2 15.0 19.6 3 12.5 20.7 4 18.8 36.8 5 7.6 19.5 6 7.2 13.5 B 1 3.2 0.7 2 15.0 24.1 3 6.9 12.0 4 6.6 5.3 5 10.0 19.7 6 3.3 8.6 7 10.0 20.7 c 1 5.6 1.9 2 5.8 0.0 3 6.2 10.5 4 2.7 6.4 sa 5 3.4 11.9 Total: 146.7 226.7 w Sierra to Juniper Report Tables Table IIIb 2/1/2007 Page 15 i i $ i i k i & & a i ii i 4 0 i 1 i 4 i1[3 i i 1 i i i 4 Table IV City of Fontana Foothill Boulevard Storm Drain Preliminary Engineering Hydraulic Analysis Input Data Upstream Connection Connection Inlet Initial Water Surface Node Description From Station To Station Invert Pipe Diameter Radius N. Inlet Size Angle Inlet Flow S. Inlet Size Angle Inlet Flow Elevation Elevation'' Initial Flow (ft) (ft) (ft) (Degrees) (cfs) (ft) (Degrees) (cfs) (cfs) System Outlet - 10 +00.00 1293.15 4.5 - - - - - - - - 1293.15 - Reach 10 +00.00 13 +44.84 1295.91 4.5 - - - - - - - - - - Junction 13 +44.84 13 +61.70 1296.04 4.5 - 2.5 -90 0 2.5 90 0 1295.93 - - Reach 13 +61.70 15 +19.36 1297.30 4.5 Reach 15 +19.36 15 +28.92 1297.38 4.5 22.5 - - - - - - - - - Reach 15 +28.92 15 +38.48 1297.46 4.5 -22.5 - - - - - - - - - Reach 15 +38.48 16 +15.63 1298.07 4.5 - - - - - - - - - - Junction 16 +15.63 16 +33.31 1298.22 4.5 22.5 3 -10 90.9 - - - 1299.01 - - Reach 16 +33.31 16 +50.98 1298.36 4.5 22.5 - - - - - - - - - Reach 16 +50.98 16 +67.14 1298.49 4.5 - - - - - - - - - - Junction 16 +67.14 16 +73.77 1298.54 4.5 - 2 -45 1.93 - - - 1300 - - Reach 16 +73.77 21 +84.95 1302.63 4.5 - - - - - - - - - - Junction 21 +84.95 21 +91.58 1302.68 4.5 - 2 -45 12.7 - - - 1304.14 - - Reach 21 +91.58 22 +64.00 1303.26 4.5 - - - - - - - - - - Junction 22 +64.00 22 +72.07 1303.34 4,5 - 2 -45 0 - - - 1304.8 - - Reach 22 +72.07 29 +34.66 1309.37 4.5 - - - - - - - - - - Reach 29 +34.66 29 +69.80 1309.65 4.5 -22.5 - - - - - - - - - Junction 29 +69.80 29 +76.88 1309.70 4.5 - - - - 2.5 45 28.8 1310.68 - - Reach 29 +76.88 30 +27.75 1310.11 4.5 - - - - - - - - - - Junction 30 +27.75 30 +35.07 1310.17 4.5 - 2 -60 38.2 2.5 60 65.9 1312.13 - - Reach 30 +35.07 30 +43.07 1310.23 4.5 - - - - - - - - - - System Headworks 30 +43.07 - - 4.5 - - - - - - - - - - Sierra to Juniper Report Tables Table IV 2/1/2007 Page 16 it tit ti t a; a; a; al a, iF: 4 € i ; a; ail ip r it a aka i a al al Table V City of Fontana Foothill Boulevard Storm Drain Preliminary Engineering Street Hydraulic Capacity Calculations Maximum Manning Wetted Hydraulic Calculated Half- Cumulative 100- Required Inlet From To Depth Slope Coefficient" Area Perimeter Radius Street Capacity year Flow Capacity Node Node dmax S n A P R Q Qua) Q1oo (ft) (ft/ft) (ft (ft) (ft) (cfs) (cfs) (cfs) Foothill Boulevard 102 101 0.67 0.0034 0.015 5.64 21.09 0.27 12.8 12.7 12.7 101 100 0.67 0.0010 0.015 3.69 12.74 0.29 5.1 1.9 1.9 Notes: 1.) Combined Manning's Roughness Coefficient 2.) Sump Condition at Intersection (Node 100) Collects All Runoff from Area C2 and 8.3 cfs Overflow from Node 113 3.) See Appendix 'F for street capacity calculations Sierra to Juniper Report Tables Table V 2/1/2007 Page 17 1 i iii e ➢ *11 ii, 1 ii ii 1 ii I , i , ii it it 1 61 Ili, 1 ilt i, i 1 *1 1 ! Table VI City of Fontana Foothill Boulevard Storm Drain Preliminary Engineering Connector Piping Calculations Water Proposed Entrance Water Street Flowline Surface Lateral Connector Assumed Friction Friction Pipe and Exit Total Surface Elevation at Node Elevation" Side Length Flow" Pipe Diameter Coefficent Slope" Loss" Velocity" Losses" Loss" in Inlet" Inlet Comments L Q D K S h V h h (ft) (cfs) (in) (ft/ft) (ft) (fps) (ft) (ft) 102 1318.1 Northwest 80 38.2 24 226.2 0.02852 2.28 12.16 2.76 2.50 1320.6 1320.6 OK 102 1318.1 Northeast 34 65.9 30 410.1 0.02582 0.87 13.43 3.36 0.90 1319.0 1320.0 OK 102 1317.5 Northeast 93 28.8 30 410.1 0.00493 0.46 5.87 0.64 1.10 1318.6 1318.9 OK 101 1313.7 North 64 0 24 226.2 0.00000 0.00 0.00 0.00 0.00 1313.7 1316.7 OK 101 1313.1 Northwest 47 12.7 24 226.2 0.00315 0.15 4.04 0.30 0.45 1313.5 1316.2 OK 100 1310.1 Northeast 41 1.93 24 226.2 0.00007 0.00 0.61 0.01 0.01 1310.1 1315.5 OK 100 1308.4 North 85 90.91 36 666.9 0.01858 1.58 12.86 3.08 4.66 1313.1 1316.0 OK Notes: '.> Data from WSPG 6.> h = 1.2 * V / 2g 2.> S= ( Q /K) per LACFCD Figure B -11 71 h= h h 3> hr= S * L 64 WSE in Inlet = WSE in SD + h 4.) V = Q / (nD / 4) B> Existing Street Centerline Elevation with 6.> V = Q / (nD / 4) Ultimate Street Section and 1% Cross Slopes Sierra to Juniper Report Tables Table VI 2/1/2007 Page 18 it i I I C i 4 1 its 4 i la likilliliiiiilikilkiiitlikliiitilli Table VII City of Fontana Foothill Boulevard Storm Drain Preliminary Engineering Inlet Hydraulic Calculations Inlet Calculations (wl Sump) Node Side Design Street Water Depth Design Use Inlet Differential Q Comments Flow Slope Width ' t Flow Q S Q1S d W Q (cfs) ( ft/ft) (ft) (ft) (ft) (cfs) (cfs) Will collect 6 cfs of potential 102 Northeast 28.8 0.0029 534.80 0.83 11.39 14 35.4 -6.6 overflow from catch basin on Sierra Ave. Will collect 15 cfs of potential 100 Northeast 1.93 0.0032 34.12 0.83 0.76 7 17.7 -15.8 overflow from catch basin on Juniper Ave. Inlet Calculations (w/o Sump) Design Street Water Design Design Width Revised Street Revised Water Design Design Width Use Node Side Flow Slope Depth Width Capacity Design Flow Slope Depth Width Capacity" Q S °/S112 d L Qa Q S Q1S d L Qd (cfs) (ft/ft) (ft) (ft) (cfs) (cfs) (ft/ft) (ft) (ft) (cfs) (ft) 102 Northwest 38.2 0.0221 256.96 0.83 14 21.3 17.0 0.0221 114.02 0.83 14.0 21.3 2 -14' Inlets 102 Northeast 65.9 0.0221 443.29 0.83 28 37.5 28.4 0.0221 191.04 0.83 21.0 29.3 28' and 21' Inlets 101 Northeast 0.0 0.0210 0.00 0.67 7 8.0 - - - - - - 7' Inlet 101 Northwest 0.0 0.0210 0.00 0.67 7 8.0 - - - - - - 7' Inlet 101 Northwest 12.7 0.0010 401.61 0.83 10 14.0 - - - - - - 10' Inlet 21' Inlet (Excess Q will 100 Northeast 76.4 0.0185 561.70 0.83 21 29.8 46.7 - - - - - be collected upon future extension) 100 Northwest 14.5 0.0185 106.61 0.83 14 21.3 - - - - - - 14' Inlet Notes: 1) From LACFCD Plate D -1 OA,10B,10C Catch Basin Capacities for Non -Sump Condition 21 From LACFCD Plate D-26, Catch Basin Capacities for Sump Conditions Sierra to Juniper Report Tables Table VII Page 19 2/1/2007 CITY OF FONTANA FOOTHILL STORM DRAIN LOCATION MAP PROJECT __ ___________::_: LOCATION - _= _=__- ___ -___ _=_____=_ -___ 1 lir M ILLER'' AVE .177 ■ _40....y. r w w w > > > a a a FOOTHIL BLVD ,I Ai, / ARROW BLVD / / w /1-1-I w a o w Q_ Et C 7 0_ / z ,EI a U j cn ORANGE 2 WAY FONTANA CH A N EL 9 A / MERRILL AVE i as TKE ENGINEERING, INC. CITY FONTANA 1 4446 CENTRAL AVENUE RIVERSIDE, CA 92506 951 680 -0440, OFFICE FIGURE 1 N.T.S. ■ Jc; rJ EERINO 951 680 -0490, FAX PAGE 20 CITY OF FONTANA FOOTHILL STORM DRAIN; :LAND USE MAP 1. 8 . 1I ■ W m ®2■�1■ . f/1 , J i i 1 FA+RfAXST -__ r -- } 1.1 I i M ALAGA ST 1117 . k .....1 :ED S 1111/4 E ST 11111 • 11111 1 ■..11 ■■1 111111 1111 'r � ij Mt �111111 11111111 � ��� - -- . — .1111111 ■ , I;!I — _ V III _ , III I 1 1 11 1 , �,11 1,111 6 6 _ — ! •OTHILL BLVD 1 1111 ill 1 tl P id 1 WHIM= Mil i1 ■r Iiii �.. •I 1 R— ii mi. 11111 I 0�7 1.1 ■ IIII� v i _ 1 Z -- Ill 1:•-•i r -- P �P � � u lik MI. as 4� v C �T R - V P 4 GENERAL PLAN _ LAND USE LEGEND t- I . � L— SPRING RESIDENTIAL C C — ro - srr?IN � ; m r I I I R —SF SINGLE FAMILY LERNER MI t RESIDENTIAL Cl_ R —M MEDIUM DESNSITY ALLEY —� „,:< `" i RESIDENTIAL R —MH MEDIUM —HIGH — DENSITY RESIDENTIAL I i " ime COMMERCIAL ItiRmk I C -0 OFFICE PROFESSIONAL C —C COMMUNITY V - =_ w ._ COMMERCIAL I � 1 iiir C —G GENERAL VAL[NCIA AV VALENCIA AV — COMMERCIALI — 1 < < I <R X11 H INDUSTRIAL - o 1 o 1 1 I —P PLANNED INDUSTRIAL 'I1 W_ Z J a Z w PUBLIC FACILITY 1 m ^' z f Z - P —R RECREATIONAL I — P p— p — r� P —PF PUBLIC FACILITY IIIIIIIIIIIINIII P —I INSTITUTIONAL Y P le V TKE ENGINEERING, INC. CITY OF FONTANA N , 4446 CENTRAL AVENUE RIVERSIDE, CA 92506 951 680-0440, SCALE: 1" =600' ■NCINEERING ( 951 ) 680 -0490, FAX FIGURE 2 PAGE 21 1 I I i CITY OF FONTANA FOOTHILL STORM DRAIN HYDROLOGY MAP > ,....> .,, , ,'• 1"%k ! / -**1 7 ------/ - L., '' § I --, 'N'o L.. __ [ 1 i ; ...,_ 1 ,_ __I__ , La • m MILLER AV , - - B6 /'(?; 1- - 1 T j --- ,,, 1 1 'jMI —4.15± CI—i----- 2; ' q -- A 1---- A6 Ej t" la A5 'O ; 1 1 1 I , 7 i 1 0.0 • I - T v 7. 59/ , w I ' a ..gc - L=9! • --, I T j F.--c:‘.',11 __ 1 L 990' 1 :7__-.: . . 'l_i _ L .. _ _ --- , — , ----- 1 1 A 4 A3 -1-1 r i . ...- aT 8, 8 1 1 , ' -- r ' . 1 I. •■•55s". B5 -- --- — -- ----- 2. 47 -- - 14i — , I MAI T LAGA 71 - — - -- 2 '.Hi _-:-..: 1;_i -5. !!.• ------, r , 1 6 . 5 6 ciTLU 111/1F f-- -. 1 IlL REED ST La III ...., , " , 1 Vir -'-' A2 -- 1 -- r - '1 - 1 , 1 7 . ■ , ' f 1 1 ' 1 I , . -- .. ,, ] 1 I i re , In BARBEE ST i _ < [___LL z tic H____ I 7 4.9 ,..— Ic.5 '-c • /sr ' r , 1 B [ T ,, I 2 L L Z ji- 1 , g ,, -,,- -1 1 B1 , 1 ■-• - T _LE___ ■ 3.19 A 1 i L i L ., i i 1 [ 1 ' I u-) , rAirc 'LT • . r---7 r - is, 1 Aar . 4 mi AL An ( , .,., 1 4 , - .• 00 II 7, ---- 5.56 ----, 1 1 . Id I 1 6.21 2. 71 , 1, _ — L :-... . ___— , ....j- -;,: . I ------ — --- - — ' • L31 ' --- t=280 -- , _ 6.66 I i 1 f l , - 1 1 ' .t. • c) ' 1. D1 1 _ '_■ AD •■•• \ 4)1, , --- --i MB_ ° ' ■■■ KU I , . . -• IVY AV ___ i _ 1 1 I ' _ _ 1 ----- 1 i ,,: , > - --- , .. —0- .. _ <, c, _..= _ .>4 viww.. >, r . _ c_______ 4 6 II I 7 7 1— 1- La , < La , _1 ta, _ 0 1- ,-- ----L" -- .0- N q _ ___. 1 1 1 0_ -- - w 0, LI , 1 ID — -- -- i - - - al ------ 1,---, -- A L. _ I 1°3. t z i i , - J' 1 , ___ mow E2 1711 -- ___L 1 1 . -- - 1' - - -- — -- • 6.41 Al.' .- 1_431k , _ L 1:11=11J = VIII 1 (1) my _ _ , ____ =Ai] III - Il■ Viltk.... -1 , _ _- . - .___ .._ 0 -- - - 1 -- [ 7, [ _ _ 1 , -- tk/iLLtiv _ . _ 1-- r . - --7 -- --- .7 7 - - - - 1 _ __E 1 S1 1 a SPRING ST , _____ -- - - t . _ ______ __ .... .1. 1 II M 17 17 7 1 1 .• -- - - ill: : 4:RNER-7::: 1 60 --- l(cs, -- -- ,,... I . , N Ii 1 ••, , I I 1 I - i 1 1 1 1 : __ — .-.... , . , i i_ 1 ARROW OLVD • - 1 7 – - , 1 -- iff. I 1- --) [ [ lik ---- 1 in,-- __ 1_ , _ _ g ___ _____ ,-„..,„,,= __ _ N _ _ I I ' I 7: NI rail - 1 [ 1 - s. lair - _.__ KEY \--\°- r 7 [t, _ AL I 1[ ih__J [ ----- L ij E__ _1 1 1 -- Ae V CNCIA AV VALENCIA AV --- - _____ ._ ___ T — ___ ----- > 1 — - 7 7 i > < - [_-_-_- Sub Area ) IT 1 — - 77--- 1 ' .7):EA L ) -1T < y 1„ L EA - IT 1 . E _17. --------- Li Lir- - 0_ __ 'I _ ____ 14.2 [ 1 1 ' _± 1 '1' I. [----- &- AM Lc8 --- - z '--- ----- x [ - Mr , f - i 1--- '1 i Iv _ - 1 - 1 — 1 r - i, d I [ , 1 : ---- I rill LITI lir TKE ENGINEERING, INC. 4446 CENTRAL AVENUE RIVERSIDE, CA 92506 CITY OF FONTANA (951) 680-0440, OFFICE FIGURE 3 SCALE n ' : 1=600 1,..,,-,1,1L ERING (951) 680-0490, FAX PAGE 22 1 APPENDIX `A' , - - , . . . . . , -- • AP' Vt i or0, A . 7 , I , i ---••• i. i . i R W , , , R 6W R 5 W , , - -,-- r- - - i ± - -= - t 1 -1. I I • .- ---J'i .4 , ; ! v \ , .. 4W 1 ,..-1.5` g. 4 • R2147 --- ' -- - r-- -1- - Ft I W - '. 1 11 R I E -- 7 1 " 3 "1 1 .111111 R 2 E , , T LIN 1 , _ T __ • .___ =__ 1 1 i •,• , 'l : 41111111h 1 .7 I - HESPERIA - - ',,t-i • I- - - - - - 'ittai , . I I - I I ;#411111 • ■ .1 .b . - - .3 - 1_ ........,._._ - 7 T !--- ! -- j - - Vim= FiE. • - , j ' : I • I 1 1.1 • I 1 ;-- ., . . 1 • • I T : - - -- t --- rs"--t---:--.. L4 _ __ _ ;___ 4 _._; _ % ., --, - ' . ' _ ._. _..._; .. 0 - - •1 I • : )1 ..1 \ N , - AII7 ; , , , I . . -' - i 7 -1 . 2- Sill' 7look aillillh". . .U1.1' / i 't7,:.„ 1 1 . • • ... 4 ,..• . . .9 to.. • ' I 011111111114116 I 1 Atil • •••- 4... , - "Illiak ab il ! . __ -,,,p 1 VAI.I. I 1 !MAIM AIWIDANT , 1 . • . ri 2 .""". ".'.. ' - .................. ••••"••••••• V■\..... I , , c , I / . `A `-‘,, „...,,,, A II0 NT 7114. !.: 7 1 '- . '7 I ' . i . I I ; -‘91°6 1.3 ' l ,‘"/ ' , ; • •-■ ,f I 1 -.. .o , • • __11 .../ ' LI \ , -- .• I • _ 7 ... 1 ,... _ ... -.1.- -: - .- - 1-- - ! - it_ . 7 11° ......7 _ .....). __I __ _,,_ H - . •-. -44 • _ _ _ ..... ? I I • \ II1 t,t,-. •-± . RE.7:( 7 •‘. 61 9 , G I , - ,. \ 4 - 1 T -- # -''. ---- I", I- : - '' . 1.--.! %-rT k -.. 4 17- ..- --, - i---e -,-. -_, . _ \ RA LE V - 0 _ • I •". - , I * \ • i• ; ...; r 4. ' • I.- I 1111 ' .44... REelp,X 3. 'V?' •Ii•'s c WAN/17 ' 4 W ' I • , / / ,„. ;XV. ARAI • , -•-•,./. PA 7' N. ..j. ( _ S . 1 0 7 4' j'- T 3 N \ . ' • Al . '5 4 ' I I I 1 --•-• I 1... s . s , - '"? , T- - ;- - --; - - - 7., . _L - -, , V : 16 .1 4 b. .. : I 1 1 . • , ,, / ! i• A - !•'' • . 4.......,, _ • -.9.. -.- IA I ' 1 ___ ', s'' • ` i ' 1 ,9 ! z 1 %2 , 1 zz • mw ,- I 1 I. - - - I. - , -- Ns I Le, ,\ i , 4ii ,....,, •,-:.,-„,„_, urd ,... 0 ,.,.......„ . ,....-_.,,..„:.,..„, .,••,,,,,,„_,. • a. , ,. ,... ....,.. „..., _ . _,. _ _ 4_ , -t.: - ;--,f- --;- ' .... _ ,„,.. . . , .,„2 9 . I . 1 I 1 411111111. ! -' .pat. 11 . .. ,... I Th. tn.. •r•.. • II, • ..„, . , ....... _ ,,,._ 1.7 __j _ 1._..-_ 3. *. • - - 1 , , .. . AiL I Ailifilla ; I i V , la 1 ' ' I "' ..■Iiiii>l• • 46 e&., . 44:3 .' N i . 11 ,,.. oti ,- w aerf , AI P . ::; .., 7 i • , -- I r _ of I T I S 4 1.3 e \ • N . 64, 1 - • . . •■•• - - - . - i-1 - 11, -4. --- _ 4-_ 4 _ I i__. , N i • i---_,_ a . ..„ Lo \II„,.-. 1.3 , . i • • • , ARROWHEAD . - . 1 : • BERNA k I -ook -' (") 6011. ii." -i. ---- z , , - .,• . tr _ , r 1 1.2 , , . • , ..5,...._. ....ROW 9 _ Vol' . -; _''' . • g • - 1 . - __ - 7.-- - =' - .,,... L'• an - - '-.. - -..---- - 11: 1 7 __ • • I T2N - I- - -- -.. - 48..: . ..... MC. . IAL. - . ■ --r34 ..! '• T7- . 4.47 _ S kiN . 1__, _ , ...- L. - - ......- - `• - A% ...it" . '' ' _•_•_ ' . ' 1 71 : _ . * -.../%/. . 1111:3 ;iW - . E 44 L ' 1 r'. ' , 5, , ...... _„„ . 4. • , ' r L IlitL, jell): . - - : -•.. • - V,,, l' 34• ST ? N _J. ..._ ......... _., ,. - , _, ,..... (.1= : __.„, • 1 ___ i I - - WEE .4 111L, - I - - Wl■• ...:Y ivi. LANE ].. 4_ _ - .. 4111 1 liiill - ,. . .1.0-,- .: (+-- ---4. __ _„....__ • •••._ ... N. • ,7 ' - - ! `. i, -° r - ---„i r - ' '41111 444 8griatak i.4 .v..‘ ' 4 /Vs • . 4.1 . \ _ _,_ _ _ . 4 1 0 - --- • ,, • " I ' • , I .6r • .., 1.... 4a ilill ik i L I; .. : • 16: A _ _ _. - --..; - -;- --. . \---' - .. . 2 NUIRE 14111111111161116151 k ---2 - - N I " , , I tor • 199■••.-- gli6... • •- 01 ,.."..mii 4114 fra Nk illi 1.4 ' - • 4 • 6 /,,..'ZlIllt:;FFCIIIIIIMMqinllk\7"1lIllRlli"Il"gn- J- ' 19.04 SPAR/. i P''' i . .. , . • AR1.13■1 i , ..,].... 1 -7- ... I -- - r -- • r-" • ta- . 1 1 ._ 4_, 5- \ . - --- • . .. '''N , _ ...„ _ , _. ... _..... 8 .... . , ; 4 .. .. .. , , , -- I' 2 ' 1. • : '4116 - ".-- - •'-- -•••/ --- - - 4 --i- e4 I -- ' . . LA • ' . y ••• ,I .••• • ., • .- 1 -.. . t -4- ___ - ■ . -... _. -- ....• • • sir 'illamilliallP2 • ''. '. 4 - ' . -7 • i d .7 .. . I P4: I N II- - --' - ;- ' ,- • .... . r . ...' .I ., . k.. ' p .:..‘. ..-,--, r 7,,,..!: -. ,:• .. .:„- mi .c.,- ...r- ... . I - t' -- .P7- -- -- 1 -. -f - -,.. .. • --" . ._. 0,21.... ?oho .... _ _.......... 2 41 _ ,_ ; [ 7:) .g_ . 1 SL1F• - I.• • - - - - -_ • #111.. _...-., _ _.. 1 ,.. : _:_ ._.\. ,... • ,. , 2 i t . w,..,.,., .,. .,...: _. .•''' ^ri 4- - - ; - 0 . '•• , 1: .* • _ _./.. ,./ ., .: el-- _ ,_ / •Ii. oN - \ • 7 IR ,* I I ! i k ii -4,4. . \ • , ." , : l. • SPA_ ' 7 - EtA 7„ ... - / ,.... 1 _ :, , ..., .... /" ..., , ... ,..., -. - 4. _._ . s ... . _ . _ _ _ ., - t - 7 t - I - . _ . . - -, . ,... ....,,,...... .,..,;,,,,.•. ..„ ..__. ..... , „,..,,,,. v. .... . ,,, - -- . aoi..... ...sTi . ' 1 4 4 •, •!. . I & y/ • . • - ' co 6) . .... # -,... • ' . 46 l". r•-' - l I T 7„.7. T I N - , - r -'--, f 7. .-- - ...t. -4- - ".• I - - 1-- .....-1 _ _ .„. _. .1 • , -,,,... .., • -- - -., - • • ), . ' • I Il •- /ilaiiiiMMEMEINIIIIIIMPI Il■ 1111111 4. ' -I "' - \ s - -! ,1. '--, ' '.--:: H --- --', \-- • i Ad -.ma • AI 1 • . 1 , iiim..rim IIP.IP%1 .iimmommulmy . ... a... .- . ,! 1,... alligniallh , , • !....., 1 • ' .. •• ' .. U PIA N CI .7, • . • i • 111 -61111=Waffilli, '.,. IIP2 AllinlIPMEMTIL - DI 2 0 IIIMENIENik • „..„, . 'Rill • - . •-r i , . . • • • - . - 10504c. :i..,... i_.,4si....: . in iv...:;, ; : aims .74 gem R I A L T 0_ L ., , Iffilii•Wit M iii : . - riallIP ,.,.. ' Fird,"•• ma; , ..4.••• I . t .. k irmi . . •. • R OM OE • •-• . .11111iP:Arile •-• • . - • _ .., . t r s i , 1 111/111111kk . ....„... -- . ...:. ....--.......... 7 .---.. ..N.....d ' . .-.1- --.. - . • .9. .- 4 • .. --- i. - ... ,,,, .• „v • 77 . • , ACAAI7Cr • • 8 .... -- --14/ .4 T 1 S offal - P : ' • • !: Is ,..''.' ..... ..• . '' . ___ .... 1 .. .._ _ , .. 1 --- \ ..• . , . 111.1=1., * ON 1146 .111.11Ellagall.11.1 . A d ON T • - 104:„ • -..- 4 ..n 1 - 1 -- I iimmim".1.1111.1491,1 - I - ' ",-- - • - ' - r - -- - - VS 1.2 Clow.-"VICIED. • .... . 7.- ''' " 3 IN Vi • • -- `.1 'g- allIllk - 1 • ,--- ---. ligm REDLANDS NEI= ' ." I • - 0 -.AA • : . :: • I: - • I . . . "'"'ILI •rit • • ' • - ' ■ - .• . _ . . . . i • I■ '. I pellig ----'•- _ •-: • !.. . Pwi ' - -- -t IllagallE Ilbrp,..._••=Wil ...' _ _, ••,, _.1.1 , .4, i' ..- 4MM 01E571/ORE li d 111111 ...- AIIIIIIIradLp. I gm .-- • 1. • • , alp .1 : ^. ...;41011N11111 IN11111■A., ' - ! lir LIM , • . . , .•••• .. . . ' ; .• .. , ' - u..c ( - ' t i : - IPA • 1 • . ' f .-- 1 . • 1 • • ' " ! 1 .i • ......` /10.115411 • - _ . .. _ ., . , • . . . 71111711111 .0 140 • s A Al11 ettrillig11111111111.1HIIM Kg ■ i • . .... ' • • -. • ' e. „ A 111111, 7M1 • T Nrs I-1111 CHINO IN ...,,_.....ligiliw....i.. ,-..-..- r , SAN . .., 1 't_ _•„,1111 'ERNA DINO \ - .2 1171111111"14 11111" Vligo..._.-sliki' . . - ,---1 - -- r -- r - - 1 -- ,I • I -- I, - I R 1 E . I :i R • E 5 !. 1 • . 1 1101 11 min . - RIVERSIDE . COUNT '' _. ,. - , . ' • 4.34•03' L 2 , . of.- k' r . rii • T 2S - ` - r- - : ,' ' - = '.. I , -. 4 - --- • i ... RSIDE ; - .. ..9•,. 1 '/ - - . . li • ,'• . ( . ' / _,.. _ ..,_:?„ , • _._ __ ••-• p 'WV .-- - . • 5 - • --_ - ,. - `.... • -; ... •. • • . L 1 •.• dr .... I ' • . ---' • - .. : 4 • .. - - - - •• • . ; : , . • ... Ids ; p i ...... VIP • A .. ig .,w avt ... . 1 ; ; \ 11 ' li '.01; •• , ..,:. 46 ,....--;- . R 4 W - • . I R 3 R 2W . ; i ; NI • r! -, i 1-:- . , . I I • , , . ; ''''11 ; 0 ., . ,,,,.., • . • • • • .11 . \ SAN BERNARDINO •COUNTY 1 FLOOD CONTROL DISTRICT 1 • i .,. . 1111 i _ _ .. • . . ,... ...,,,.. . . R 5W: . . . f VALLEY AREA . • REDUCED DRAWING 1 . • , ... ,•,.••0 , - . , „ --.- . --- I -1.--- •••""'; I.-.. - '-''II:- !III : , _ . ISOHYETALS . . SCALE 1 ' - 4 MILES Yio - 10 YEAR 1 HOUR U -..,, 2 'Datt,....• ...• • ..-'' SAUD ON U.S.D.C., NO.A.A.KfLAS 2, 1973 • , ,. ._. t • • ., SAN BERNARDINO COUNTY _ . , 1 ..• : 4 --..--!- - • - -- ••• -.,..3,-, e ... . _ - _ . _ ?. 3 el W .. 4 3 A. . AMMO BY U .. _ , , ..7.,4_, . .R , i, . 8 W i 1 R 7 W - - .0 -. • ' • . R 6 - . i • . • • • . LEG END: Dont FLOWleggigrAllegerfr- I FILE NO. CAY.S. NO. • • . HYDROLOGY M ANUAL 1992 . r.2141, w9D-1 3 41' 12 •••••• .. C1 ISOLINESpRECINTATION (INCHES) IICALE• ".... '.1 .....• . 1,I . .i. „„. • B- I I FIGURE 8-3 -. . _ 1.7 R8•S I R7 W! © Irl I 5 21w id - I �• ,RiELDt n.c.u, - _ - _ f, T4N L s li L I ' ' '‘ . iiiii ' '' - r ' I " M 4� �'b L I1 � a5 2 1 \ , 3e _ Z i . 1, 1 f • 2 `\ c• I I. t _ A I I I I � a I ! I ' I.{ I I / E ] . - ;•,T Z �\ I `#% 9 ...� 9 10 1_ ,T.4 f .. N +_ --' / . _ - —1 _6_ `'-- ' —1 — — V- . I — 1 \ 1. -� • w 191 r t-t — — r "*'. . - I- . — -F .A ar;iPIIIIIN I + � 1.8 ./ of 1 \ I � l:Ai: r+ 4 1 a' RE91. • IT I 1.7 T' - ! xr. eat - � �1 — - ;� $ s31"' S:^ _ I • 1 1 I v .+. ° i \ 'I: r! 5� • ✓r t R — I —\ - - '- -- — • -•".' ! - -- - - - et.i 0.5;t:•.;1‘. , 3 ••L - i. of/ / 1.9 i b ■ I o : ��{{] w " r I :2 i • .�.. PEE / - ` .A - - T 3N ` ! hok 4A. t li''""'i +' - .0 -1 d 9 - I► ei- , - LE oleic 2 !�•.', . . 'fig -r 2 00'. 1 • :; 1 ;, L ►° 41... ,.. _ __ . -`i\ ! , -- 1 . RN -- -' R40P h L - • 7 AR OW . F " BE L:'r 1 , , (' • • 2.1' �. ,• \`.\ to r> : 15.:' i iii N 11111 1.5 1" 1 119 1 1 f j.. . \ ,.. #a fay _ I L8 -i 1 � ' � r��.(L' r'� • 2` - y • _1� - -, I: T _ - • Nrr - . `T� -® .__ _ _ - ` I. -' _ _[C. I ) -•i + '� -tit. /. ..t J Is - �T r i ' •F`E r :' I.T ! . - - hl - _. i, - 7� N � - ERww L 1.. • a I . : "f - -? I L wEeZ r21/10".. , 1.9 �. �. � 3.,aT N v,,., 'U Kg I 1K � ` ` � /. r ( f I 67 r ' � ._ i . T.,. - .411k, ` ' L 7 ._ . - LAKE -� •� I •'_� .- . f o`s,I sc. easy, —a. - 2 . - L ct � � V 1 -N S I P- 101 . 1 116-21r 7 AW • .( I . ‘.4 . ' I ¢ 6 1 �i * 1 �� r ' 2, a � . , 1 ',. i _ �' ' I . 1 I Ala °CIO. /I .4 r* - ,` -- , ,1 �. Utab�yy��3i��s. ' E \� � _ `• - -T: - 1 , , • ' ti - I.,.. ys -' - 1�"" • 1 - _ - - _ .- TN -f .41— i_ _h — ' i � 1,9 , ;� . / . _ I ' .t — -- - - c .._ . - -*- - =• -i=ce ° T• -'+�. +..' — 1 — L ,a� d - — L{ — _. !y _ ._ .- . . . ..._ _ . :� s / \\ t �..., ` Rs "• `. , � AR toM FLA ,\ —\ I � a~o � / f , - Li 1 1 I F' • •4 ♦ ..sk` - `1 frrea, b j ';.a`" � :* _ 1 ; P �� _ _ __. -� \ � �' I c sae_T M L{ . t s - r ..n.+ . „ 44 ' ,. "' , ' -_•t -” 1- -- r -- - r _ „�aa=� .,r �r,. 4 . _ a - • . ' y` __ .. _ _ , _. - — 1 I I 1T '� I <•` 1 _- 1 . t . - , ,,0 ' . . _:!. i Mg ' A- :- - : ;A:yII 1 . i I / =' ®i� �,� A !'. ►����® ar ®� � � ; ', s'" : AR�Ir° Alliiii ' m , M11111 . �.li � �1 «� ®I C I - ' DI • �� V • �! I . I ' _ ... ; I , /�i��lra ommuma �j Air.' AB R I ALTO_ Wit i¢� a �.� • ti :- o ; f ff.....F..�� a: IA . „:„.......4,-,-13 ON TAN +Y7 ti�rL # CA111� � , � ras \ • r � } -1 - ' NI ® CO L TONw NI �! ) - ... - - -. -. . • _ 11111 Mil L ems' � - . REDLANDS Pa.., AAA, \ �i� ` :.+. -r!'• • _ + � i �� . : r tai _ t. . �'•� s- ._ ' _ • -�� ��� � � _. '� `{ ' 'INCA ® ® ?FAD" at - L \ xvillillintLi„, • A ‘7 . ''':., "" -:.L. A. . .41111... ad ,, i I.i R . L _ ppoW lAN • FRNA OWO . oA 1 I • I Q � - 1, 1 1 . off' R2 IF 05 ' .. � - � � - • • ' 3x•00 ... :,,,i .: _ 1 ,. "Il . - . EA ,,,,..,,,..: i _ 4 - i ER S I E i , , ; ---,___ , 7,; :,,, - . .i.;.• :: IRE / :iim I \ ,,., gip Maillk . . . '. : i .1.... .ss?Ipr,. '.• :.........-.. Nrillr i t ew illilli ----: w--Y" — —Ai, Allideirf - -0-`' .... , Af 1111104 - All , ':; , NINN ,:•' S AN BERNARDINO COU_JTY " :' — I , 5J —1 R5 • VALLEY AREA - . ' • I REDUCE DRAWING - -'- T - . -.o cO.anot. i - - - 3S � IF _ - _ . SCALE I II 4 MILES • YIO•-I� I I ■ HOUR YEAR 1 c 311A1../ _L3 • SAN , p.� �� A' �� D ® j COUNTY • �. BASED ON U.SOl. MOAA RL.►f I. Ng) ? v i '' �, { _ fey: �I.5 t4 s dlo — - V N B N f iiiaii • !• t LEGEND i - <, : s j W :�• W _.. HYDROLOGY M ANUAL t fe • . 08 ISOLINES PR ECIPITATION (INCHES) . WALE Kt feel Ira ® 1992 r•2� 980-I a w 12 j 5- B - 12 FIGURE B -4 s . zt g , 3.5 , 3.5 a „ 3 3 P t i 2.5 2.5 to W U Z , Z 2 2 , = 0. J J � � 1.5 Z • I � 1 /� 0.5 - 0.5 �.,' i I 0 0 2 5 10 25 50 100 RETURN PERIOD IN YEARS NOTE' I. FOR INTERMEDIATE RETURN PERIODS PLOT 10 —YEAR AND 100 -YEAR ONE HOUR VALUES FROM MAPS, THEN CONNECT POINTS AND READ VALUE FOR DESIRED RETURN PERIOD. FOR EXAMPLE GIVEN 10 -YEAR ONE HOUR ■ 0.95” AND 100 -YEAR CNE HOUR *LSO", 25 -YEAR ONE HOUR' 1.1$ ". REFERENCE'NOAA ATLAS 2, VOLUME IL — CAL.,1973 RAINFALL DEPTH VERSUS SAN BERNARDINO COUNTY RETURN PERIOD FOR HYDROLOGY MANUAL PARTIAL DURATION SERIES D - 7 FIGURE D -2 i t z W ■ FRE rmi FRE FREI PEI F"! rgy [ .1 I I t 1 FRE rill rim FM PE FIE FAO I • _ 7 ;' ., -'�/.•, ..�: . i /;� .j ii)j Y� .,':.it. ., ';1Ti.1 -t. y� �, � , `� , jy .�.r,' ---- ,��'! ...L':.�. � ' ilj �'�k -� . ,,.:�.,- :�:+- } __I, u:4 '.ii' i; ��,i � 1 ...•I� � , .c •�..- ''� f� �'r 1. /. • -/ • l. t:- "1,[( -''I /: I'V :., ,11. I� 1 IJ i!T�. 1.. . �e'I .I I�tI ' y' c � 4,e: I I �' • .�j � , c • - -- - ; ;/. y.., /f�-�. .'- �!, i f /� �,� � s •. '�, -�.; f ',;. L _ .�J. _ • 4r ,�° '�i� :_,,'�I Lt; p_' ; I 1 i,F:: -1.., - :( - • .0 ' 1 a _ - - - -- _ 4+ -� , '.�- i � I ,,, � "' :� /i• , 1 � .... °'�_ -. �� • J' 1 . ., .. ,1, :n: ° yl)<i1.1 • 1 ' . _I i,.l • � fT' - 1 ! ' -- F •- 3''� �\ f r ` \` a � / • ri m �e e.. + ' ` ��a�... "( _ . P .Ir '� I ' I _ ▪ a Q '� - - + -" j: J�' ••K� _.r�•. _max: .. , � y st , /' .Y`� .�y'.� �' � r; r':P �R, �I� : �' I� � t�° ,� � Y -1 - . !''' -_ r t � a . \• r: _ ;:r.it _ y. %'••.;, I r- . ' ^_ - ;�'YC '.' r5 5,�'I I'r'' - ' p "r p -•� W I - - :. ✓ �: _ a ' '.:.' . �. � <• � t ; _ J' ' L_ 1 � . I : t'':�• elj' t2 r J{� II''i.�.'`� 1 1 - ,Vi ".1 °L,-,:... � ✓ , I f . � ,� /,� /' " f .J:; r. ~ � ,•1�; �} i �` I ,':' - a - l m aly i.ii.- �I �.a'�rili' t�:� �, - .!• c .. O (�l� ./ �'!�•. }:�12 ?..i t.v. '; 1 I ��'� � r j J ' � Q �1�, ( ' +: - I•'�I: � `' _� I! �L -. s 1 `� / Y -• _ , :. ' _ j I� • :: N - {�• / � w p, I ▪ 1 �! -. ; 111'.. i+ � .. _: �I a' '�.':�•Y•� V ',` / - • 1� - I - ,. I :. �... �. + r ,�.�. .� I� °ip _ � � •a �� .i: '�_ - �l / r _� •. I �,li� � �'l,: <�,e',. � ,1 't�.: 1 ,•��' i ' I 1 . I' 1 - Q , t_ 5i - t:' ; �• .1,'. L °� 1�1- _ - � '_ - - I Q 'I>�. .,!': ; - _.:a.. r'v. w'.- •:• -' "1. = , 1":ti`.: :,.:.. • •, 1 � i - -- ---- - 1 .er 4.'_J .�.� :v!3r.'1_ .fs• 111►• - u_ �1,.��a �:•i- d��s ; I .. � � I i / _� �_ _ .'S �i �._. ur��- _ \ � `� L� f! 'llr� .j� r4.. `•i - � I ` t:JAN�' • ' ' f.. ' ,fl ' '�, ,4 � LL. ' Lam, ��, • .'.J � : �' ° r � 1 ' I �• r r: -'" .�..., _ r i � r T - _ 1.; • + ,� � �' 'I r- r i'' , �, I ' j' J � f - 'L Q t� I _ % � , -•• . -. t :. ^I'- '. p' - v `}' � - _ r �• .... y ..... -.s ,YS -rl' ,.t� •1�1,1�/ -' �'F'3IIIII �t :!i. ..�. • _ _ .. u.. .: : 2t� ;^ f� 1' i .' Y r � ' - ti . -. .', .• t'. ' n � a =1 ^,� - ��• ' 1'��; 'J�j W .. � J '• • .* r' •._.,� .,� ".�F:h ``I l ! • i r `: + t �:,;,. ... !_ � , r'1 -; a< w =', �'.l:iF J! °� 11 -1 � rif „__ / Ir L :!kt - 1 "'/ 4 t _ .� - :._S: '��.'P - � 4 j - ,/ .� ..•[t•.� . „, J .' .' +\. L - :�.�..i�;.,r � - ,,;,, ��> - - - - �� � - ._ . : �' f • ,.: ,: , . _d • _ , :;r' 1 a t; � ^ �;� ::,., ! I t� �. v �.• ;i - o.. __�'-' -- - --- -•�r= .'. 4' yl� •M,i�?F•, � ^.�,:_•� ..._ r:: '� , .! -1l,-- L it _ , 'i .;• 'P 1..�`�,;� 1 'i'J:��' al J •'!. r{ •_ . t';� � ` r._ - e_ �'r� >- . s.f:i °` -'r` , e { ,U n.�:': ;_ ` _ � .. �` . �- � � ; : _ I . _ • � 4 ��i.:', ; - �:. ��' :a•.ry :a r i.�i� v r'�i .: 1 �... ; - ! .r: (, ' - (���s 1!�Lr�� I� ?" i' y i p _ „I. ,,�r_j"�x .✓i,�s `��.. ~ r ?K,rP - x:.r. hi- ,. tJ,r",, ?l'(,; i" Y7�`��''� �� i ( .r. ��. y ,J i 1-(.i't> .r ��� �';i'• �ti` -.: ;� Ir - - �. J rr.'�•; „i }� 1 i - � }_.. � . \, { ��'''.._ _ ( a 'm�• '1_.JL:. -'i� a;, /.:) .E_ O `' :-e ° N' � �; •,M1. �:+' -�� ' �k• . r t; f � � `K";!' �����1:. • .R i r �' .. {�.. �.- , � r _ _ :,.: :I - _-- 's': : i - ;: �;. •: � ., i � i� •'F: f : 4 9 S `� ��ii .M_: -: 1 d \ • 1 ' ' { _• � r ,� ' ` u , •� J - .. . >i r . • . _ ., y � �i {� r e� . t• �•., � � .�,: .� %. � r'- ;':l _ ' �iJ 5'r j Jr�: ',' �,,�� ,11. - _ -r� :.. `.�'':: �4 r 'Ir!l . - `:'�'�,`: sJ:,.1 ; -. �� f � r• ,° t a •: r" '.: � : �:. r' ..:.r; `�:i:,.;c . r- 4,i;r . L", { ., ; ��;. ^ "�r^���1>E j� ..,, '' � � , ~(� _ �..i . -.r . _ ,._,. -�' y1 ��l :.,: :: - - .D� _ 1 /. '(` - Y. + ' Rr_ `i1'tj�. t �''.�� - .. .g q�'h_;;,m1 :' r 1 ( ,.. .�P' =. T . i ` 'i.1�. ,r l :-f�..: a.,•.,1 .a �=k" �` •! `, �I'•:;:-�+s ':'�` - J � \ r �'�:� --I� .,�.•., C I �._ - - - - t' ! - .�>�"' ° . ,Ir - .I. - \ _ �.1�: o- j. •, ',,Js+ '�.: { � ' �.':",:r�� =o a '�'2'>: � 1� �^` : �• ( ,i rr.)t� .1 i ^.d'.. ` • .� ! l r!t, �,�; • j r.� d I' _ r �. gg ^ 1:'{' ` :;R � ;�''ri`x' ri�� �ii.'3_n?:5,�" �L...,. '` �s��:�, / __a __ ! � 4• .e_ '"' - 1 • _y�l( �.fi - \>. f,E; -' i'. a:: .�L J. - � .� ;'YA.,,>;,,�:. ..I - / �..:. �i�': _: 1:.}i`F `� i r:�`.t ,,v. t'S� :; �:, t.1 �+•f w- .•,�',;:.. {.•J i — ' t ' - :1�� +��7,.r' I r'' �� • :x It ,) r • 9.5 `.• t �' -. U;i"r, " - t, � ,r I�•1 �1 r_: _�:_�' •� r:.:. F,. :t ��'.�I� rr. _'a }• � Lt; .� o {�.':f`l` �i. �► 1 t �r �� r'•' p .i�- � _r .. ��• "'�" ,�J: _r.:�l!'�`rJt `'�.:.r..�i,tl� -m �•„' _, ••� :,.\ ': „ •)•.i ,C.� �-i':rtlll „ 1 .j.i 1' :�r �i�- _!E� J - +± =� r �����;;;:i•`i:; :: �� ` m .. - 'i'Y ' _ - _ -•- ... 't r�' 1 _.r � r } 1 f r'� r �; 'n; 11,x : /�� 1 `' - ' _ S ,��.�,,3"`' r' �� �" . i'";.— _ ��Y'�'�'1 -- --"�_F: ' �- '3ir� °.•�. �.- "� I ' f :�!._ :1 �' J' ;�r h� sue'•; ':yo-. -\L - _ 1 J ' °Il:n �.. �, �: , 'r:`�'` a �i +�" .> i'./,.k �, �{ 1� I I 1 • � \4c �� / i •�� � 'f r f • - -'�' j i :, ' � rur� :' ;:. :- .Y ". � ::1..�':� {__ .:��Y, \ I `' 3k•Yi ira �}. i� � ' � _v ' �.. _ ^ ) � Y" t! -i:! �' � ' 1 � -� t ..S :N � 1 n •'�,. " J � ?li "Cry ' - f - e`:� • 3 � .•i - ' �;, 1 u. _ . � I / 01 I' r � Q . - I, - t •: � � I,� .: � -_ ;.: ,{� x � 1� a y �, •,/ t- _ ' y - �:. �...i ` -• w,'3J+;.. .fC.Y'�t;� ;J - r , ' :� 1, I� I I ' .':, -• ''. : I r� T�ri• 3^ �`..- �l' - :.f! '��r %• �.:i •' � _ _.. 1 - 'y!'..: J �i _i' i. � , :. t, � ,. .� . , .. • _ _ �� f . .. k,. 4.t� -'Y:'. .1 - • C::;ir '.Eti'Y-5n e�i.., 1 : y, r. .. �I � -_' '� T. L: --'`•- � �"e- �±k > *sy..rw„'• -:-'Y• +Y � •,.. _ '. W. ; , .�yyy �S' i:ii _ _ y r . L � : r < : +.v... -: • � '�' -.2'. :. .:�.:: ; ; :.:� - /.,g•' i ,: }�� ...�::� .'1� : 1' 'R' 1�1 +';i'4 "ty: t� - "t', -•i:_. _ .;�" .<f't < �a ..�rz�-,. i., .J. � ry�t.. �i.:••.�,'�a 4 r. '�7_ , 1P l i • • r •.� =_ _ ca" � ry �'� Z - (2 ;k} :t � i, 1 � �" ' ; . b, \ r ,� r - i �"t .'ai F• - •�?-•• c. r• 1 - •-•' • c= •;. 41� j `.]! r r ii3 ii; ; • + R .','- - '.,d.'�j � � - � ' :v � : � ' : J: [ j . � t t T� - r "' - j / '�%y/ r �'• r ]. .r :y. �! . ( ,1 1� ,.- � .. r ' .�1 �' .1'� 0 ° - *,� ti ` :•, ...\ � � \\ ! ( I- 1�' j._!• -.�:1 . e •_ I , ! ..1, i 1 . �:.. y:: �1I : :fi :i� r;' f "` "' ��r_ -", �,=s�: 'o '� �. �i' tl .�•h •, ;� , 1'''�:'PI,) w.C� }�'� 4 •�j.l� t `� '_ `'w,; y" = # �"?'9:�.. i��f •�II: •� i""�11 N'. M : : j s •` :. 'R' . };f.'t�%.;' -° . -,. .� r • '.�r� `�� •x� } � � X11 � \ \`, + `- �h �r -�„n�k rZR,°r'' ( iii - �', �''` Ill : , 1 W _ � ,�- y' 7 � -�' i�l r_1 � ( . ` v ,�%�, ^ J , - I .x.,ir y- �t� � \�!r fit' , -✓ F �,'i�' } :.- -' ,. - y '�.. '� � � j .. �'_` .; �� 1 �i.':,�', ,: i f"' f ` , , ' _ , 2 � yr�-:'•�( t J J • J � � r� a �� �, � `r ' a �Inl �i ' a' �1`� '�:.: ►. i• ;, �' , 4 ,'S,1 � ( - x i : 7 f d . 1 iS . Y * - �,l� : ��+ :/- : .I� � � � � \ •�•}I' ' L i 1 � 1 I 1 ! i �' Q I �1 r i _ ,�L' ; 'JY i . 1 .f, 4� � •� '_�SL: µ� �, t� - �a71`�. ec _ '1 _ - , r 5 ...1�. _ ._ < re. 1,l - � � :�.:tiFr_�' � .P� ...L..,•. {'_ f ..�� : l. - 4�L f _' � ^_ +� - _ - ^• y __ . �4':"a_ - _:4.r�, _ • _ _ • a' • ' 1 �� •.3��:'F ��-� l 4��1!• ac' ,7'�; ,� � r4o3 �r , �' 4, 7 � ' i , i �',i � I r 1 ' I'4. •1 5 `� ' ( i'�� .r� I , '�.- _ I L Itl " t? : -,.1� - y. .rt..,.{ r ' . '_l � �lt��rl� � :� ' :�'•:' ,�:, 1 r •', 1 � _. , 6 1 ..y '�7: 'S ,f � � t �'� r •_ � :9 '3i� ��" -:�`a . � LU4 . "��� �', �', •; + _ i �, ..:��■ :�r :o I i; _� � ,1 it� V �y� rtt :.. ��;.,}` t ( Ij �l �L. C I 1 ' itr� -�: vji�Z••!_�t- }' �1��•:Si:••'l. •/ �� � - 1 , '1, }' 1 ! ' 1 , '. R 1 _ ..N� p -, ,( .. n - _ ti � t .Y { 1 YY55 _..- � .. -�: Ta •�� ,n�:�: g. ` .:,. "��t':s =r= � �!('� • {1 !tI 1 .' ( •l -� ! '�� � i r.� r� i . II �( _ 1 ,`5., :1. .. a � ` �y [a''.'•�'5".Ji:: ^i,,r„�"_- i ' 4 l : l l :- fi. "• •C,'`�,l��,' •'� •a.. •' �;,I � 111 1 I I. `I ,,, 'j y �1 I , �1 j 1 �1 111 ` J I..�I ���.5�_}�ir -�.,.. ��.�.'.Si. �''�j' �'�j'/,(:'�. '�t-.1L'�'ti'{i'." n : '.�.: ���(l�, 5t {,, z . ._: i �.. �,j` j !'! '1 -' �. ` ? ''I i 7 � , �. '- M @ I � i a ' «� ��. - Je �, 1 / -g _;pi"i�, + G. :.. =7 <rj 1... t '�..L_ 1..__i � ., j . {, ,.Y , �_� III� I N ,�;y�,- 1"�a"1' -t � t ' , : � ; ` � !1V c/' %7•.�� .. � ^,J �' •� "� �l .� .�,i'^" i ` � ' I r y�y�'(� '1 I ➢; iI':+' r' � } 1 -; k t, �� � ��i' � �� ' 2., r: I 1 , 1 Y � i. 1 ' 1 1 � + ' �,__ �•', . n - -. v - -- /Y - ht" "rs.1' •: li,.T.:�' \:' tl X ='•' � • j 1 ,"F.•. 1•k�_ y� •t (1 :. ! ! ` }' r_ - � �,..., � 1 k : ' ;, � r.', tie ��r .'. i,� - � --•` t f 1 . ,� " i I 1 I I t t r `' •I L , { �p • ' • , ,•�Y;.. -� s tom-' -� =rte; .�: ''- � , � r , � • = ( � j y r , �';i;C�'��� '�" ` � �: ., . r f y _ . ,+ti , I ra .. •a)y � -.�ij� =� `Z� � .6 -:Y�" 1 ' " : T'� �`Il tl� :i �: + L 1 �'� I -'�' , � _.- .I I � � �... �.�' - , '1, a.- F� i.'/.•'�.� ��`� ;1(',.�1 ty% Yi :a �� -- 1.. ..1..+..:...:...:....a 1 r i f I • I ,, :.. _ - 1 -.. .r� '� �. `.:1�� • - `I��' • }� ' ' _I • J 1 G I im r f . , • .. . ' 7r. a -� , .: : _ 1 � - .,.... `) W - a y t -� I mo' �` ��t� .� � .� � �•:.:s:�,., ���..... ���,�. .1�; � � . , , � ...,•, J ; .. � • � ;�' �..1 - '�, - >1 V (/� r.. ,��� ��.."� �- �!'� ' ='!''L V•1� � r Ir y -`• • \ I: / �I '1• , �._�•j .`... �.,_ .I 'h y r;I `? L' '!1.. , t! r .'�� y'7� %F� Cj. ��/�Y.. �� ! � =. L•i_'JJ.``'�fi� . , i�j <�'�'��;c a' ; �y 41 .l l . � I ,' �• �. i ::e_... % S� I... -, .. t •' � ' �� - I • •' r .. .. I � s t k i 41 i� V / •;y-. �� ,;.o j7'. r` �F :.`4s`' '"i F'' ., " �k�� : •eC ':I :'• j ' � N � �' � r i� � � ' �' � � i I � ,� ;• '�-� -.•', � :tF��f13::� ° "r -• ''.. %.'..,. ��1 1. .`�• '��, � `y; �I�.� ('..• _.....•`'� •!� 1 m f �r n .i�, .i. ' ,i. t - Y �t-. ' "`CCC3JJ ,r.•'. 1 - J' f 1 1 i a r n • �.• ' >y�"� .�� � � i rL I � I I • is i I 1 .3,� I , i a?';��, L��.. t�. }� �,. K �. . r:of � I . ��,.. � L" i' , •. • . �-' I� r � `' I � ] I7II • ;� � , _ i ��'. _ `' 1 •' I (• �' � I 1 , � � f �" ;�`� I � - 'k •,., -�r ` `f:�. � '- _'1!i� �`rw �,.� `' 1 - ;�!� �ff.' i ? �. �- 1 '�.i - ^F�- -'r� =� :. n � • - r ' - - .,•.'': � • M � 'l�S�: ' ;'� ' � � + _ � j••.s`. y �,;.. , v.+r .; 1 t '�., r \' ' Y i i r } i 1 9 1 •n: - � _i \ r �1.` 1 .0 . i r. �• `„�• �,:J' ` F • • f• .< � .. �nc`F��' i��I� 1.' - : - . 1. •: e �� _ 1 ( _ 'a I t w •a j � � . ` � .t?.:���f' ✓r , 1 .'! . - r:. #`''` " . I,: i ,' _ �If ::4 1. I � `i' u ti<: �<l, � 4 ��'•_ - � �� ��.!' � ' ,o•' ,. t'; : �.. t L.�.. - S�� � -(� Y . ' r � �.' � ' 4 � `� _ vJ - � (� itli ' � f' ¢ •'e �3�1$�" �( 1 . � ' �.1 p�! <A`' l �.%P� > %.t�� ►,r j �:Ej.S � 1 `•:'+`: + ., I. �! - r.� �I.��`�:1;::} C!!Jr - .. o ' ` .; �� '1. \��.•� r �. ••'�^�" °r' s: �'i.��" _ - '{•:'- { '�v`• ��:`' f ?' I -� 1 .7 ` i� r �'lm :I, �•• ! �x 1 - � t, ': >.• ,.: � �! _ Z rn j #,�' -. � :. �`•::��5�€ "'=` • K�f'_'tSS -�t_t - � .t+ t t.. v ; ' �, i�� '::. \ 1' I 'r .1 ,� _ :, . � rt�.' J. - (-' ,,,{g I_ .. ' a. J , L- w j - . ,.� t: a y*� •`r.. /;y �C°. ht �a':'l::s.�� dx �: ' :�,.2. 1 r },, / \ 't':� _`rl�:. � fl' <' ts :!I�jlll -O 2! H !' �!�. �i, .I z I � �v t� iii+ "�/ '. �� ,t'�l, f . - :4• ` �t1�� 'Tt�,: �cv�r 1 'r' III i � 'J ' � "�' •1 ' , , ��' 1f •� V _ .�i. � rk:_ S� r' ' � u �' - L - >+'4"_ 4 f °i ° ��_'•' •.. � w - • r Y �i' f: _• 1 1 •Il• J-.a ''• ar.: tw.. \ p p r I - = �= i �• j , <b�;l ..il ' - • ' '�. - .:`` # r?Ulr�'l a ti, c . d' y•r �^ i' r!: ., I , tf � .I a 1 �f` y� �(' t ''m ff ' _ o ' w Z ,Y' �� 4, "'r�l �;�,�� v .��YJ '� `(t' r:. i t, < - i ;jr �' a :'1 1 - (_. �*•�+ �11. �, 1�. , " �' '. � �' -' 11 � 1 , _ l. '` I � ' m r tr �' �.i� } hj1F: `. �%`,�t:.r� 'lr f . - 1 y )��� txJ1E' 6 FI'. r�..1.' r l `/ r m ...� `iF-l� Lt1. _ '� i .11`' • �L S � ') 1 } ° a 1111 - Fl:. n ti i v "k - t� "tip' t. � r• O' l a i .[,r�: - ,_�i � a a o ' f - � +r� �! � �:'�.•ifi,+l ,11�. � i 'y r�: V�'r �' ' • �. � � � `L. � :i , ��'� 'aP 1 �I lr. i" \ ::� ° � l,3* Kid ; i a: �r •y ����' - t' i :x • \mot''; . �.>{ �� - �.iRti,� r' ( , '_.kkk � �a r . �I%. -•!�� ; rs t l; .� �:� r' 1 � a,.'-- - _ ! '\ a II tl 1 ;,: %- t ` `� .Y �; 4 '`j `.� �S,i �. a� - 'i: .s^�,�:-};�+', ,"' .�;` y'• .,\ �r� ��Cp.. 1.�� i_ �L :� 1 - `1', u u rl" ' < �l, /�Y.; t ..- �:!>�•+�'�, - .�'y . L� , 4, �2 Y� � - Tll�•. Jt��l. .`, t I � 4' �I�3�"�1: I�'�'��.• ' I mo. is I It I• I li�� � ' '�, t } J J y _ +s _ �.� r y� . J� . •' 7 � i . q '. � -'�.• ,- Ir,''2L� >; z �? C,l�`i~ n.s:4 (�j,t ..� - 11 � � 1 / t f � _L •(� !•• 7 'I � 4r' I i N w i _ - I' - ,- - �r,, , ,. a'' 1'. �, . f r ... _`r } If • - , t -, � �._ !!. - rm, � � �° �j r ''... r + �j ' y J- y 'r�'' -•- 't•�.; �F -:: ,,,,r.:: .. : - . • s• ���r ��- 'r . I ' �' 1 y�_ ��fT - �,. Is��J�.,�. . =...�. i�..._ ?I•'i- � - �' t, =' �i,`; S .A .�,_ �,' ��fii l� ;'a,f �, , r!Jr,i � {' ",< -I�I _ it �: � � � l.''. i^:' : ' r � � ' ��ws, �� {;: .l C!: - r ✓ • ,•' , � . ;t tj t !� ]"� °�:?�e'L.� -' ', ,,� _ �. � � `� .rl.; �, C � � 1 :�fw� ,e -'I 1 \�., sr! •,Fw" :;;.R�' �� '� t.: -$ .It,r �. * � � y �: �'j � :n. ld 1. �,H r: � � , I rw. •rr•.a %i=+�'. t > „�h�!���4���1 .S * �i �,$a'!k: �,� • '1� , _�° I r _ _ :II� � -pl I, °r: L.- rl�'I1 - --- � .�� ry: '-4, I �xF.. . e!nsy � a ",. .1 'ti 't \'.. m. � �• �a �,: I r c '°. w I e � e1 R' � Y � - a �: �"� �/, ,e� _ ��• ▪ - .-� =�-�, r v �° � .. �1 -1. 1.' �: Ij� �. ' II•. , �,� �s..'I�.�ill -- - -.3i � - :,�•. ' - t'; r ;- it ` :. �t:' '.yi;;"'_ ;t. •,r .y,�' I 1. �� °' it i( ; ,1 "i ' I. _ .f, ,,.. �` r .f' . -_ �., - - r i :..,� ,, �c:_ I - -•, . , s,� 1 • r �l: 1 .1 i : i ::.*'` l { 4 1 11 * 81�',� i . r _::. I, '� ern .,:,id '11`r _�l�:�1 .a , I i 1I! i`�3 'i.••- %t •.�� - 1 'Cv.; -, I, •.. •fir__ ..d .t (3 ..�. . t- .1 � ..L.�.a.r 1. ' !f Y_ 1 1 /ne }. ;l�t� f I��Mr -� .• -:�. ' r ,]`. _ _ \: - 1. 4. /. ��:. -t: JT �'�. • �y:�� • '. 1 �p:5'' �, :I :U 1 _ i'L if.. 'l 11'1 •L'�.10 ' 1 $ ' _,:�'- :I - c, ,r: a., .y. ,,.:Y�' ay� 1:.. � rl :.t• :N �. �� III, �1t. 'x � ",'�y - -: , 'i' :.�::, `7r 'r.;l I'I '�- e:��-' °; ' rF , F i I 'J� •- �`!u i� .� ' it _�`'' 'r - ! •I�`�': - -- :ii..;�; t = �,.�I•'''i +.�'. E6• Ill(N �' .w j' `..A I �SC.N .1�' `' . - -.1 - ;l .. x�. ":K.- '1-: ^.,;: Y.i.. r J,�� , .a' ���.a,'4i.y ._. i'+� �I . 1� J] �1 9r 11 Ili, if511lf 'p : i ..Y`,_ ii -_' .:J. �•�. r�: ,Pam �J. !�•� -, )�• : � •.rr , • ,'j - 'I�u a �:. 1 n .. ! '��' '.'is` _`1 .1�_,•�,ai!i:r�.-1 r,:.• .... ji......� -�. {: .11.' r'....r.u9?I II' li. L 11111 i ..'1� _ =t! o �%+:� Vi i _ � _ `� _jll - �,- . �,,.,�r� :: t ~, : L ' '�' l':.'' t:,s.: ' ,1 ( 1.� ■ L :�:,-: � -�_ � : ~�:iJ.. _' ..��_ -._ _ •:1.� �.. F y ,1 '1 , � II .il�i I r bli.... a' � i�, , I . - " o c - r - t. :/.: :<:. '}- '''- ' C'`�pe' >''•6: .,i!. -.. I ,�5 :h .ar w A "1 ■■ I' .11 •n ■ Ili�i� �Htli�� I ail ttt `m' .t :F,f��' -.�. :L'': ;:�t�:.: �,1 f ��r ` 'Y el. �4 •:. . <\ �/ 'wt:..IT 1 •I..' .1l l \1 r'.'= k _ 1 � Q.� i ` 1 � �h` r' I �11'� L.�.r P.�c: r p�`�iiiI 1 11 \ !; ., :.�`riy� r ?.+�t:_'.;c3 `.r � "' `� 'r��". ! ��� r'_` �s I , 1 � ' ` ' t.' ' ' t - t ' 1 : -' `• a:.,:..i �':••� �.:. /: { ':: ^ ` !! ' " �.�jlf :. � -J_+•. ''�� � � ' �.1 ..m�,�} v.aule I!4i�' 1�� •. � �. 1�^��� a4ari3 ', ' ■ c I �°, `. : _ � c,. s f: •- - L - � •';t .�..tr L .�rii ' -T���. •�� .�,r.4 � _ilk• {f ' 11�*• °� d` - Ntl - . • y�... 1�u�. .ii �Z�i P a :,�, - k .. ,. �. ;2. .• 1 it O, � /,, . 4:� dt ��.. { 1 •u. \Iva �h. I � lctia.,l 1. ' � i _ I �•+� -r _ / �i•i�,': A��F `�rY � ��� •�I� �:1 I�.. l''L'1 ©'' ��� n• ■n a a _ i.' .S' : , ' `I • : .-7. f S'!t: 'r•r:.. ;L:a.r • � uVW,� '� • ' r i ■ f,. ■II _ f. I.,. •in 1 f<. r I , ���.� .�: � % %;i' i'I�r; = '�- ��J. .'t%� •.4t r � �'Ii ���� 7 1 q •� „ 'rf:: � � .��I p h • D ..J 1� ( �r i 1 �q .. ii' r '1. .l }��,- .:r-t...� ..> v,: /., ;,��'.' 4y+ � <. '!• Ll{� .�� .�.��� :�11. � I�''I�� : r� >/ j :�: .- � + = Y - � - •' -sY�a • :e�l> .. i�" :.i;} ' .:i: �'.- µ' '�1�, .� .. _ pis: t . - - �� �a 1. ± It 1: F.. cal , r = _ •� ����\� - -- � :. 1. .I } :: F: ' ._I j� i .1: •r'� 1� .iR' '1. _ "t���i _ iR IL.�I. + - � % r • I - -��: _ - ,; i ... 1,- __:,� > :- V:.''° • ,•_, �� ." •�., .i^' . }r' - ., .1� 1 Q.,. u•. � 4 �IIkI � y - _ '� I II -lil �11nrIr1 n� •�•' �J F- - � :r. {i �-: ,� I� ) •:�r;:'' "•:' �'�! .c 11'S's. i , t ';l - .iS,1�..`. IJ �, � ,1 I • ��.1 7i iC ° " ' 1 1 i } / _ I r � J „� �`3 ,' `F, ' _ i � �'.+ 4.:: I r _ I� i �i''1:� '':... ��I - 1��6 •r.� pe. / p 5 \ - ir�' wl �: . �` t � °�fu.5 .. I ... _ . L � 1 �s �, • - . 1 �:� \ �l' I� " i y rl J.r t „�Y' �1 : t}' 1 I tS, A'. E ... - � - a I a `_- i "� "''• t •; 1 r �.: I - -. "''' - ' tll 3 � '.IE r.' .:.�t"�., C. r r i. .fr.l 3 x . 1 1i: , r 1 M W • , 'r:: � I r. ' i - .. _- �� -�,, , - -`� -� - - - {- -- �, I 4 + �. - _ 511 ' ,.:� • •. _ =: .,�: .. 1 ' � I r:.. 1 1� �, ..�•�;t. -- I . �-_,` :` -,`i - J • : � ; _,_.. ' . �('' "+'' - .i +' ''� J+lf � �_i��� � *t' . u Q i u g • - r t � - ' \ °• ^ a , i �,t Y; �kl'_.` - :-.:I ` o.i �•- • i , � / i. :1, Z '- �! �S'. ':t ' S,: - `d�..e; `�a J Zz '�•....- ' Ng '�5. '�1_. f I Ir' I ''9, LL' 1� f t��ll � s ,� E,,, ' tl .: . jt, J •; �` .'; ? ; i - ._� i . ,r y�„ , ,t . ~..� �y� II. 1 p `\.. ' ��4 1 •l�l - a� . 9 ���� � ::w. w31r1'' �. I rc I �r � , .!t' .j �• {�.:1'1 `I _•t - `��' ''}2.',��i It�' �� �ag I �j I .7' �. -' r .j.. t� �•i .1 ' m -t' ;1. 1 :�: ^s : ` } �• ., 1 a a•,.. /<e 9. ' � '�' w . �l. .B.r. ,t�lll) .�''rtr: I ' i � �'M ,�1�' 'r�y '`J J'1 C '1 viz � r I.Y:4 � - - a, \;`(tH�•� �I� : 1'.C J. ,.., �.r f .�t :1_ ;' . '3J• . { �-� -.r - � z • ',� - ��... .. •. .. ... .,. ,. _ . ,. , ,} `,. ,. } \ Iv• •, i';:.,. _ :.. .. :... .... _ _ - �`'r� - �1'rl }, ... t ".t 5'.1' ]•�'�•- ,r' j ...�r' ::,. - I a a . j :� {'- ; :i r ' t , � i}' } ` , {,.e�:�;'q\- '.�•'r !., j • J . ` Z " i j' i x F l li f]VS t m u I �.. /.� T.. - :,. .';, I'' �,'r', ,�. ;r.�;4yx., <• .. -. � :�'���.; 'i.:.�!� _ 17. '�� � :< i .�i: i� i" : 1 ',,�:i a. � ;�.o :� L' • E. • '..:.!� : r: C:'J' .c,: ..� ji � <!' II ;, L. y;y�. ir•.li !. ` +�i�! f h: hi! . .t 3:,. �. 'K a _ ��,^ ::T,` _ •: "= ���' ..:..,.._: !_•'% -sti. � '' i _.ter.': ; >•ir, .h . , v ' :P :I� ''IS '' � '� - '' . .�� p� .l:li r i �'�' -�-- .. ! :�. - - % - _ ' -"`�:� . "I • `r , -,--_ 1 . '��:,, --;• r_J 1:1_I : ,: ,:, a,. � ili a .� '1.1 ::� u . ;.. _ �' _ _ -, __may ` .. 1 „ -' rvR -. - • . . `_F , .,. _ , •: - r +. S} a I ,, ; i Cn•. � q � >, r d . �`„ � 1. i : i _ T L '''i'�_.:' ��i ` : 5.'�i;'.,'.' }. t <'G 3',�'�,. ��+am:::ar. 1 ,�. �...�. . 5 Ri% � J'._ Sl�> . -'a, . r�-� ",� ;� I - „ -_, �`.:: , : _ ic, - r.; „l.::''�� l;:' 1 ,i r ;' ^r, I:. ° -� -R' `� •r li" • •_ '!'1"'t I� ` II !� ♦ {'' �"4 e ms• 4a' `'J`r� II ` I•o - � � - _ �� IJ�,:txi; '!, -, r f „ 2'.• - � � '�Ssr.F ! �- 'f.:.2r n '�t 1!l:. u' ' '�F. i. ,yL . I�i' eRle � :I �`'•� - ! , ^ t ` � t e ,'�.: i:]. 'S . ��l :� 1`ir' -Y: , �"+a:' 1'.... e• .- . 1 �. .rl- �I� t � ( ' � '� , .1 ,�� •.l "� _ r � /`;_* L..4.,.'r_' ..i;t..t� i 1�. . :. :.''l$� 'I Y 1 �{� • .1,� � j � /-t� U " �if ' i -` \ r 1 L °�, .h, (,- �.._� _a: x... .. ,.rf�'� ''�' ;�" n,�.17�:= ..F' , 1. . J 'I. t � - .1,, , \::. 'n ' 'i' ( 't ,'.�t I . . �:: r .ff',w 'I.. �'j� - .. �+j, �•.. e. { ..Jr! r .r� . '���I °'fie ?' ♦ 1 �L�. i r: ;r�` •"� i P . 'if: y..� .$!.S " 'Yi : il, I�i�i rlt q 1. � {��: 1 r:A 1II � �-,:•. � • 1 %y :.. _ .1- - �'"� 5 ` - ;;�.�_ ° �+ , SI L - r - =� �7� t t: •. }- <.: -..:. � _ J JT r. �' 1 , k„ - r � t fl ~. 1;: : I . r 1. - p t•, .F:. ":..,jj ' Li tiT i ' / +•''6i �,'tn1 -,'L. , `- 1 � jY 1: �;,1 1 J of / t ` - � 'Y • ��_'� ,�i: 1 -. (� ` L - ' i l '? � l,(J� -l: - t .,F :.., ��.. r • a r, r> - , l + : �� 1 . r "Ir �.. L33 �i � 1'^'', -� � {. _ ! ��. % .f' .''f�,l % _ I i" i " ' ? '�:.'ier_�t !' .('Il�!�'l �a,I-,n, 1 ;1 L �,�' t 1+r: � "1 L ■S .� � G: 1 r'ta te • �'�'1 ���� >j , )i: ? .� „�; 'r`i y •. I .s �1 i :Ct R. rt�.� - .III IE� f1I` �M . �.� I,Iii r ,r :,• ;` • �1 tl - • � t •. h , , "" , ' r, . ir.;� :,j. -ti: r � ? ' �' .Jj * d ✓! I•' L 'IILt - Gg`T�-O,� ■ .1 � -, t / t .1,.`V:;. /' :it:” ::`• s ;'rJ.' ;, 3 '� a 1 - � r:' II a ly' � i . n }'�' ,r.' - - ''�:.l...i.iiidl,r'�- ?1. +.. • "' , .�:% i�._, {.. �r.,IIY� L r. u� �.�a.,., 7 1 : \ - •r . . ' •' ` y'; .. ..'�I�} LL' - �•y :,••• „ :...)irif a_f. C l• t ��i'.. �r.�! , II� :a.f Cu.. 1 l • t �� '��:��', - ,:• rr .T, _ „�• . r `'���trl �>Ar :.�,.i Li lai� f�� �I �6 �1: ('..; - 5�.,. _ .' � *, �.,'.,s.:!, .:a ;c• r �': ,n ,_, tir, ,�?�1j;� :vl�., a■4 e.i �r - ,E�"n� �� _ �' �"J _ �,. _ - i �;_ - ; ' `t� • •I' .1` .a. �><{. . %I i :�'1" • ' SLss ' (o t i f . , : } �1.1 ��±.�. ��,. -;� >, � ";�''�'- '�r,T:�``�,,, ..7: :_.: �ar >;.!' *1- .,: „. a. y r. .5.� ,L'1l� �-'.'°a`.C.L �i.�. �� ►,t u .:i, i,�� { i }1 c - � 1: - .. ��.y:. : ,v :r.'1.1.�1:��, •!.,±i Aty "�' p'' 1 ] v to { _ � �R' 7 _ •t�:�.�•�`�: ^ ;i r, : ' '�,,,_ ,r._ �i:,<�'�., � i,, 'YL .A. ,,�rl. ,.., rtiu •a - Y:t. .I - - .. - �•`�: ^" � c` ; 3 f' � - �I,'�1.r, s i .. ,.. , r n �- .5�� , F✓ �� y�� y� J. �r 1 '1 • = 1 L. I _ - _ +1� 1 .n _ ���. ri '�' �� -_ �..1::....,:.4<,y:� .,J - i (�''' Y' `' '� :h:c.` 1J#o+: � ''^■f ,��1'y , '• ql.. '� '! . :.�.: Zi:: . } 1�5•: ' .:' % �.� � � �' a `j=+, m": '.n.;r�..• yYl.•• � ,`� .�t'..n' r 'F. •� A� M I _ 1 t!- • i; ' � } ! - : ��. -�1 . }- . I t'f.'L . , �.i•'r _ ._ -•?'fir 1 �J f. � '.L �: \ 1 �qR��i. i � •^�\ - l ' • •'r.: ' 'f +`.; :�. C'. ��,. r: ?� c- ;�e - -S'� y ''Rj•a "...i � r ` \�!a<” �i��•� �ti:- d� Iii•:• �! + }.•,� I �L' t �' L • .../ -- i'. �;� - 'r %s` ;�;d t,: r:, �i::. ' �.r•� 1 1.�'•�- - -.tt ��1: I 1[Kc 5 k "r_' t' , l, 0,/ I LII'!L. -- - -- ,li - -= : � ..1: ::. i t'. ,c''.., � , ,r;;.. , .�_�:'�•f•`'• �r�'. �� �..'�. t�-". • �_-� ,'- J� •. � q {'y �'f11 �]!, -u, I O - �. '.. '-- n'. ` l:J -''C. .' - 'L�' • l'..'". . •. �� til:..:n -;. L. � � a r, . � + � �fC � LI•I F r ` a -r`r?`• a e e a e t' . f_ - i" - ; �►,�,, - !1 � �i '` � '`�;.rA 1 � r f • �� I EI � �� r � ' � �"' r � .as �rlr�� �!' V .,,. -', J � a .,. � ' � 'lli' � '; jJ `, 1.'r 1 Vl� 1�1t ! r n ; .J , �c ,ti. i � i f ,r }(, s,' : ::fi .���,��'il.;. '`� :,ti �/. �•� � rt�u � Z J gdy �;� - r rsY �yI y � r y`�f� F ;• ��•� 1 ■ ` -�' �,u - "s �•� J.`'9i- �•��;►" r , I l:�?i; 'O w��.v P a C I S : , ` , ' ,. I Ir i 6 rJ { ,..,� � _ ► Q Q 1 r�� -.y p �� i ��� !•'� }j..i�'l�: 1 (iv',. r i - 1�`. • ' r ' Z► � � �' rf P• ' f fYa � is ' �.�r,�, t ..�'. ,, � i � " � � }- ,. t � � j ,.;.'jAi;- l r I�� EIt1' "i?t+ =�4 � �4•� st /t�;i''a.., l,•�'�' �� �g : Y tr >1 s 13 1 �t 1 Uirr;� � � `�*.a.. ` -'` t� ti S�,�+"rk, . " � 1 .� t r' y + r `v'`�+i,tvf�P � © y „� • a, .,-- � ( J u as� f�s ll�� � �J ��`�� r* �f e � ( � r��� v1��+4 +" '�* � ' wt � q .if,`'� � � t � ' y j ��1?r � r r � ' `p'i�O1B r ' v. :,l Aa� �S 5 i J. /�� 1 :; �t"°'lxq �q�' a S. '�'.r•. r �:u'�.s�� r �f 5 /• eer: , Y - \ d t ' �t 1"?�a, � ` � Af ltE+(II� - �� I - L , �� - �A.�� � , � � �,� ; �, , �, M S:. , ,,a j' p ,' ^ �f } 4. s °� �_�.. R� � � '� :, �T t • #i^ , � �,,!'sl� 3 r .L' a���' ' .i . 1�1 � �. "sL t �R+F^P, 3 I$ tx -?�t3 �, ���.1'� r, c +,; � a .7 k , j�... � ., _ � - v +� t if.- 7 a 9 i, �sf '�,� r 5 ry :* f , 5 ' �1z6 i'St '��vns k \ ��.0 - Y �Y' -.rf t "{ 1�,'ph '�k'�Ifi j � s 7y � 1 _sw t � , isn •r ,� 3 � 'i �.:3' � ^ >..�� L.t �s t vim, 1 •� u-� k " � ���` s:_.'J+s�r� Y."'':: a t+ �� E: i � ;�;�i --:�.- "' �'•,.� -�.� �„ �� >� t'. P4. x vPfa". irt7 ":E"' - >r ---� �• -- 't. t: N 4 a.� � �-s�r �'i ert } _ '4, � ry7 �X4 i�'1'.?.,R, e } �n n � � ,�. ,� i�, � � _ a;, r 7 e ,,. -s •, f r �� �� aIS% �y 'jt,�P�,.��it �- �b ?i - - -- ' . r : n- _. + i t J:. .� , � ��,�r, � , r� '� �n 4Y �~k � Y�'t '� > t s _ � � :; �, 1tw,C�>§ ' � ;rpaH'' ,, ,'�; r r : r- .' e � 1''� t'. .. _ - s3asYfi T3k' ,� � "�. ., ... I.m :r .. .. � %•, trg a`' � s, .. w .k:w',�� € p,���.` _r{ . ,_ y . .. ... } t cd gLi z 1 II I a l l 1 11 I 1 1 II II I i Vi I i II II rill VII rill rill 11"11 VII 1 mow 4 1 San Bernardino County Rational Hydrology Program t (Hydrology Manual Date - August 1986) CIVILCADD /CIVILDESIGN Engineering Software, (c) 1989 -2004 Version 7.0 Rational Hydrology Study Date: 11/08/06 *AI di ,: Program License Serial Number 4040 * * * * * * * ** Hydrology Study Control Information * * * * * * * * ** Rational hydrology study storm event year is 100.0 Computed rainfall intensity: Storm year = 100.00 1 hour rainfall = 1.480 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 2 di Process from Point /Station 105.000 to Point /Station 104.000 * * ** INITIAL AREA EVALUATION * * ** COMMERCIAL subarea type .s Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 MN Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 +.. SCS curve number for soil(AMC 2) = 32.00 a Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In /Hr) Initial subarea data: am, Initial area flow distance = 280.000(Ft.) di Top (of initial area) elevation = 1320.000(Ft.) Bottom (of initial area) elevation = 1319.680(Ft.) Difference in elevation = 0.320(Ft.) Slope = 0.00114 s(%)= 0.11 MI TC = k(0.304) *[(length"3) /(elevation change)]A0.2 Initial area time of concentration = 11.224 min. Rainfall intensity = 4.046(In /Hr) for a 100.0 year storm di Effective runoff coefficient used for area (Q =KCIA) is C = 0.878 Subarea runoff = 11.941(CFS) Total initial stream area = 3.360(Ac.) Pervious area fraction = 0.100 di Initial area Fm value = 0.098(In /Hr) 3 +++++++++++++++++++++++++++++++++++++++ + + + + + + + ++ + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 104.000 to Point /Station 103.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** 411; Top of street segment elevation = 1319.680(Ft.) End of street segment elevation = 1319.320(Ft.) Length of street segment = 315.000(Ft.) ! Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 38.000(Ft.) Distance from crown to crossfall grade break = 36.500(Ft.) Slope from gutter to grade break (v /hz) = 0.083 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1] side(s) of the street r :ii Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 1.500(Ft.) qii Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Iiii Estimated mean flow rate at midpoint of street = 15.149(CFS) Depth of flow = 0.610(Ft.), Average velocity = 1.529(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 31.499(Ft.) Flow velocity = 1.53(Ft /s) Travel time = 3.43 min. TC = 14.66 min. Adding area flow to street :I COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 III Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In /Hr) Rainfall intensity = 3.448(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.874 Subarea runoff = 6.360(CFS) for 2.710(Ac.) lil Total runoff = 18.300(CFS) Effective area this stream = 6.07(Ac.) Total Study Area (Main Stream No. 1) = 6.07(Ac.) 10 Area averaged Fm value = 0.098(In /Hr) id Street flow at end of street = 18.300(CFS) Half street flow at end of street = 18.300(CFS) Depth of flow = 0.657(Ft.), Average velocity = 1.603(Ft /s) '■' Flow width (from curb towards crown)= 33.809(Ft.) W ii Process from Point /Station 103.000 to Point /Station 102.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** MI Top of street segment elevation = 1319.320(Ft.) ill End of street segment elevation = 1318.500(Ft.) Length of street segment = 720.000(Ft.) Iii Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 38.000(Ft.) Distance from crown to crossfall grade break = 36.500(Ft.) Slope from gutter to grade break (v /hz) = 0.083 3 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v /hz) = 0.020 :I Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 23.586(CFS) Depth of flow = 0.736(Ft.), Average velocity = 1.638(Ft /s) mill Warning: depth of flow exceeds top of curb Distance that curb overflow reaches into property = 3.49(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 37.801(Ft.) Flow velocity = 1.64(Ft /s) Travel time = 7.32 min. TC = 21.98 min. :1 Ar 41114: Adding area flow to street COMMERCIAL subarea type Decimal fraction soil group A = 1.000 qui Decimal fraction soil group B = 0.000 id Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 mil Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In/Hr) Rainfall intensity = 2.703(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified mil rational method)(Q =KCIA) is C = 0.867 Subarea runoff = 10.498(CFS) for 6.210(Ac.) Total runoff = 28.798(CFS) Effective area this stream = 12.28(Ac.) Iii Total Study Area (Main Stream No. 1) = 12.28(Ac.) Area averaged Fm value = 0.098(In /Hr) Street flow at end of street = 28.798(CFS) 1111 Half street flow at end of street = 28.798(CFS) Depth of flow = 0.789(Ft.), Average velocity = 1.729(Ft /s) di Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. 40 4 Distance that curb overflow reaches into property = 6.13(Ft.) Ili Flow width (from curb towards crown)= 38.000(Ft.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ di Process from Point /Station 102.000 to Point /Station 102.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** 3 The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 12.280(Ac.) 'n Runoff from this stream = 28.798(CFS) al Time of concentration = 21.98 min. Rainfall intensity = 2.703(In /Hr) ,.. Area averaged loss rate (Fm) = 0.0978(In /Hr) Area averaged Pervious ratio (Ap) = 0.1000 di Program is now starting with Main Stream No. 2 in di +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + ++ + + + + + + + + + + + + ++ Process from Point /Station 111.000 to Point /Station 109.000 * * ** INITIAL AREA EVALUATION * * ** qm ili RESIDENTIAL(5 - 7 dwl /acre) Decimal fraction soil group A = 1.000 "l Decimal fraction soil group B = 0.000 dil Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.489(In /Hr) Initial subarea data: Initial area flow distance = 990.000(Ft.) "411 Top (of initial area) elevation = 1363.250(Ft.) di Bottom (of initial area) elevation = 1353.980(Ft.) Difference in elevation = 9.270(Ft.) Slope = 0.00936 s(%). 0.94 4111 TC = k(0.389) *[(length"3) /(elevation change)]AC.2 di Initial area time of concentration = 15.628 min. Rainfall intensity = 3.317(In /Hr) for a 100.0 year storm 41 Effective runoff coefficient used for area (Q =KCIA) is C = 0.767 di Subarea runoff = 17.947(CFS) Total initial stream area = 7.050(Ac.) Id A Ai Pervious area fraction = 0.500 S Initial area Fm value = 0.489(In /Hr) !il +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + ++ ++ ++ + + + ++ + + ++ ++ Process from Point /Station 111.000 to Point /Station 109.000 * * ** SUBAREA FLOW ADDITION * * ** il COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 ": Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In /Hr) il Time of concentration = 15.63 min. Rainfall intensity = 3.317(In /Hr) for a 100.0 year storm ,! Effective runoff coefficient used for area,(total area with modified il rational method)(Q =KCIA) is C = 0.775 Subarea runoff = 1.565(CFS) for 0.540(Ac.) Total runoff = 19.512(CFS) t Effective area this stream = 7.59(Ac.) di Total Study Area (Main Stream No. 2) = 19.87(Ac.) Area averaged Fm value = 0.461(In /Hr) mot di +++++++++++++++++++++++++++++++++++++++ + + + + + + + + ++ ++ ++ ++ + + + ++ + + + + ++ + + ++ Process from Point /Station 110.000 to Point /Station 109.000 pm * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** id Top of street segment elevation = 1365.200(Ft.) End of street segment elevation = 1353.980(Ft.) 11% Length of street segment = 990.000(Ft.) di Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 33.000(Ft.) ,,,,,s Distance from crown to crossfall grade break = 31.500(Ft.) di Slope from gutter to grade break (v /hz) = 0.083 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1] side(s) of the street ""'i Distance from curb to property line = 17.000(Ft.) di Slope from curb to property line (v /hz) = 0.020 Gutter width = 1.500(Ft.) *A Gutter hike from flowline = 0.125(In.) . Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 :i Estimated mean flow rate at midpoint of street = 21.556(CFS) Depth of flow = 0.448(Ft.), Average velocity = 3.947(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 23.401(Ft.) gidi Flow velocity = 3.95(Ft /s) Travel time = 4.18 min. TC = 19.81 min. Adding area flow to street RESIDENTIAL(3 - 4 dwl /acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 ii SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.587(In /Hr) ,— Rainfall intensity = 2.878(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified �, rational method) (Q =KCIA) is C = 0.744 • Subarea runoff = 4.006(CFS) for 3.400(Ac.) dl Total runoff = 23.518(CFS) Effective area this stream = 10.99(Ac.) Total Study Area (Main Stream No. 2) = 23.27(Ac.) Ill ili Area averaged Fm value = 0.500(In /Hr) Street flow at end of street = 23.518(CFS) Half street flow at end of street = 23.518(CFS) giii Depth of flow = 0.464(Ft.), Average velocity = 4.034(Ft /s) Flow width (from curb towards crown)= 24.176(Ft.) :I +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 110.000 to Point /Station 109.000 * * ** SUBAREA FLOW ADDITION * * ** :I COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 qiiii Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098 (In /Hr) Time of concentration = 19.81 min. Rainfall intensity = 2.878(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.776 ii Subarea runoff = 9.507(CFS) for 3.800(Ac.) Total runoff = 33.025(CFS) elm Effective area this stream = 14.79(Ac.) Total Study Area (Main Stream No. 2) = 27.07(Ac.) II Area averaged Fm value = 0.397(In /Hr) am ill +++++++++++++++++++++++++++++++++++++++ + + ++ + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 109.000 to Point /Station 108.000 ,,,,, * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** MI Top of street segment elevation = 1353.980(Ft.) End of street segment elevation = 1340.000(Ft.) '" Length of street segment = 815.000(Ft.) Mi Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 33.000(Ft.) Distance from crown to crossfall grade break = 31.500(Ft.) au di Slope from gutter to grade break (v /hz) = 0.083 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 17.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 37.610(CFS) 4 :11 Depth of flow = 0.514(Ft.), Average velocity = 5.300(Ft /s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 26.667(Ft.) qii Flow velocity = 5.30(Ft /s) Travel time = 2.56 min. TC = 22.37 min. Adding area flow to street RESIDENTIAL(3 - 4 dwl /acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 3 Decimal fraction soil group C = 0.000 iii Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.587(In /Hr) iii Rainfall intensity = 2.675(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.748 q1 Subarea runoff = 9.088(CFS) for 6.270(Ac.) di Total runoff = 42.113(CFS) Effective area this stream = 21.06(Ac.) Total Study Area (Main Stream No. 2) = 33.34(Ac.) Area averaged Fm value = 0.453(In /Hr) Street flow at end of street = 42.113(CFS) Half street flow at end of street = 42.113(CFS) Depth of flow = 0.537(Ft.), Average velocity = 5.452(Ft/s) iiii Flow width (from curb towards crown)= 27.820(Ft.) giii +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 109.000 to Point /Station 108.000 * * ** SUBAREA FLOW ADDITION * * ** :1 RESIDENTIAL(5 - 7 dwl /acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 di Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 +*• Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.489(In /Hr) Time of concentration = 22.37 min. 01 Rainfall intensity = 2.675(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified .. rational method)(Q =KCIA) is C = 0.746 y Subarea runoff = 7.280(CFS) for 3.700(Ac.) Total runoff = 49.393(CFS) — Effective area this stream = 24.76(Ac.) Total Study Area (Main Stream No. 2) = 37.04(Ac.) di Area averaged Fm value = 0.459(In /Hr) gm Process from Point /Station 109.000 to Point /Station 108.000 * * ** SUBAREA FLOW ADDITION * * ** 01 COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 :1 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In /Hr) Time of concentration = 22.37 min. Rainfall intensity = 2.675(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified :1 rational method)(Q =KCIA) is C = 0.778 Subarea runoff = 20.481(CFS) for 8.830(Ac.) Total runoff = 69.874(CFS) qiii Effective area this stream = 33.59(Ac.) Total Study Area (Main Stream No. 2) = 45.87(Ac.) Area averaged Fm value = 0.364(In /Hr) I i i ii +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Ali qui Process from Point /Station 109.000 to Point /Station 108.000 di * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** 1 Top of street segment elevation = 1353.980(Ft.) Al End of street segment elevation = 1340.000(Ft.) Length of street segment = 815.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 33.000(Ft.) Distance from crown to crossfall grade break = 31.500(Ft.) Slope from gutter to grade break (v /hz) = 0.083 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 17.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 q i i Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 69.946(CFS) Depth of flow = 0.651(Ft.), Average velocity = 6.236(Ft/s) Note: depth of flow exceeds top of street crown. giiii Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 33.000(Ft.) Flow velocity = 6.24(Ft /s) III Travel time = 2.18 min. TC = 24.55 min. Ai Adding area flow to street RESIDENTIAL(5 - 7 dwl /acre) mm Decimal fraction soil group A = 1.000 di Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 '6 SCS curve number for soil(AMC 2) = 32.00 Ili Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.489(In /Hr) Rainfall intensity = 2.530(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.768 it Subarea runoff = 0.061(CFS) for 2.420(Ac.) Total runoff = 69.935(CFS) on Effective area this stream = 36.01(Ac.) lid Total Study Area (Main Stream No. 2) = 48.29(Ac.) Area averaged Fm value = 0.372(In /Hr) ,x,11 Street flow at end of street = 69.935(CFS) Half street flow at end of street = 69.935(CFS) iii Depth of flow = 0.651(Ft.), Average velocity = 6.236(Ft/s) Note: depth of flow exceeds top of street crown. Flow width (from curb towards crown)= 33.000(Ft.) 2 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 109.000 to Point /Station 108.000 * * ** SUBAREA FLOW ADDITION * * ** RESIDENTIAL(8 - 10 dwl /acre) gill Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 il SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.4000 Max loss rate(Fm)= 0.391(In /Hr) Time of concentration = 24.55 min. Rainfall intensity = 2.530(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified p tiiil qi rational method)(Q =KCIA) is C = 0.767 iiii Subarea runoff = 10.029(CFS) for 5.210(Ac.) Total runoff = 79.964(CFS) +1 Effective area this stream = 41.22(Ac.) di Total Study Area (Main Stream No. 2) = 53.50(Ac.) Area averaged Fm value = 0.375(In /Hr) qiii +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + ++ + + + + + + + + + + + + ++ Process from Point /Station 109.000 to Point /Station 108.000 * * ** SUBAREA FLOW ADDITION * * ** COMMERCIAL subarea type Decimal fraction soil group A = 1.000 gliii Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In /Hr) Time of concentration = 24.55 min. Rainfall intensity = 2.530(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified :I rational method)(Q =KCIA) is C = 0.777 Subarea runoff = 10.595(CFS) for 4.840(Ac.) Total runoff = 90.559(CFS) di Effective area this stream = 46.06(Ac.) Total Study Area (Main Stream No. 2) = 58.34(Ac.) Area averaged Fm value = 0.345(In /Hr) s ill Process from Point /Station 108.000 to Point /Station 107.000 '' * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** El Top of street segment elevation = 1340.000(Ft.) ,,,, End of street segment elevation = 1332.500(Ft.) di Length of street segment = 465.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 33.000(Ft.) "R Distance from crown to crossfall grade break = 31.500(Ft.) di Slope from gutter to grade break (v /hz) = 0.083 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1] side(s) of the street llii Distance from curb to property line = 17.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 1.500(Ft.) :11 Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 ilii Estimated mean flow rate at midpoint of street = 90.663(CFS) Depth of flow = 0.727(Ft.), Average velocity = 6.562(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. ;I Distance that curb overflow reaches into property = 3.01(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 33.000(Ft.) Flow velocity = 6.56(Ft /s) Travel time = 1.18 min. TC = 25.73 min. Adding area flow to street RESIDENTIAL(3 - 4 dwl /acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 11 Ail 1 Decimal fraction soil group C = 0.000 di Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 11 41; Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.587(In /Hr) Rainfall intensity = 2.460(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.770 iiii Subarea runoff = 0.153(CFS) for 1.820(Ac.) Total runoff = 90.712(CFS) Effective area this stream = 47.88(Ac.) 4:111 Total Study Area (Main Stream No. 2) = 60.16(Ac.) Area averaged Fm value = 0.355(In /Hr) Street flow at end of street = 90.712(CFS) Half street flow at end of street = 90.712(CFS) :1 Depth of flow = 0.727(Ft.), Average velocity = 6.563(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 3.01(Ft.) ;1 Flow width (from curb towards crown)= 33.000(Ft.) Process from Point /Station 108.000 to Point /Station 107.000 * * ** SUBAREA FLOW ADDITION * * ** RESIDENTIAL(8 - 10 dwl /acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 :111 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.4000 Max loss rate(Fm)= 0.391(In /Hr) Time of concentration = 25.73 min. di Rainfall intensity = 2.460(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified #A rational method) (Q =KCIA) is C = 0.769 di Subarea runoff = 6.069(CFS) for 3.260(Ac.) Total runoff = 96.781(CFS) Effective area this stream = 51.14(Ac.) lill Total Study Area (Main Stream No. 2) = 63.42(Ac.) Area averaged Fm value = 0.357(In /Hr) qi: ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point /Station 108.000 to Point /Station 107.000 * * ** SUBAREA FLOW ADDITION * * ** :I COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 4 4; Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 :I; Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In /Hr) Time of concentration = 25.73 min. Rainfall intensity = 2.460(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified Iii rational method)(Q =KCIA) is C = 0.773 Subarea runoff = 4.528(CFS) for 2.130(Ac.) Total runoff = 101.309(CFS) Effective area this stream = 53.27(Ac.) l il Total Study Area (Main Stream No. 2) = 65.55(Ac.) Area averaged Fm value = 0.347(In /Hr) il +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 107.000 to Point /Station 106.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 1332.500(Ft.) End of street segment elevation = 1324.540(Ft.) Length of street segment = 495.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 33.000(Ft.) Distance from crown to crossfall grade break = 31.500(Ft.) Slope from gutter to grade break (v /hz) = 0.083 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 17.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 MO Manning's N from grade break to crown = 0.0150 di Estimated mean flow rate at midpoint of street = 101.356(CFS) Depth of flow = 0.760(Ft.), Average velocity = 6.734(Ft/s) Warning: depth of flow exceeds top of curb - :41; Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property 4.68(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 33.000(Ft.) Flow velocity = 6.73(Ft /s) Travel time = 1.23 min. TC = 26.96 min. Adding area flow to street j � COMMERCIAL subarea type r Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Ai Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In /Hr) The area added to the existing stream causes a a lower flow rate of Q = 98.269(CFS) therefore the upstream flow rate of Q = 101.309(CFS) is being used Rainfall intensity = 2.392(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.770 Subarea runoff = 0.000(CFS) for 0.100(Ac.) "di Total runoff = 101.309(CFS) Effective area this stream = 53.37(Ac.) Total Study Area (Main Stream No. 2) = 65.65(Ac.) Area averaged Fm value = 0.346(In /Hr) mit Street flow at end of street = 101.309(CFS) Half street flow at end of street = 101.309(CFS) Depth of flow = 0.760(Ft.), Average velocity = 6.733(Ft/s) "di Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 4.68(Ft.) Flow width (from curb towards crown)= 33.000(Ft.) 41 111; +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 108.000 to Point /Station 106.000 :1 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** mum j r► Top of street segment elevation = 1340.000(Ft.) End of street segment elevation = 1324.540(Ft.) Length of street segment = 960.000(Ft.) 4 Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 33.000(Ft.) Distance from crown to crossfall grade break = 31.500(Ft.) Slope from gutter to grade break (v /hz) = 0.083 Scope from grade break to crown (v /hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 17.000(Ft.) 141. Slope from curb to property line (v /hz) = 0.020 Ai Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 108.483(CFS) Depth of flow = 0.781(Ft.), Average velocity = 6.849(Ft/s) "Ai Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 5.71(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 33.000(Ft.) Flow velocity = 6.85(Ft /s) Travel time = 2.34 min. TC = 29.29 min. 441 Adding area flow to street COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In /Hr) id Rainfall intensity = 2.276(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified w.e rational method)(Q =KCIA) is C = 0.781 Subarea runoff = 14.285(CFS) for 11.690(Ac.) Total runoff = 115.594(CFS) Effective area this stream = 65.06(Ac.) Total Study Area (Main Stream No. 2) = 77.34(AC.) Area averaged Fm value = 0.301(In /Hr) Street flow at end of street = 115.594(CFS) 7 1 Half street flow at end of street = 115.594(CFS) di Depth of flow = 0.801(Ft.), Average velocity = 6.956(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 6.71(Ft.) Flow width (from curb towards crown)= 33.000(Ft.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 108.000 to Point /Station 106.000 * * ** SUBAREA FLOW ADDITION * * ** RESIDENTIAL(5 - 7 dwl /acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.489(In /Hr) Time of concentration = 29.29 min. Rainfall intensity = 2.276(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.777 Subarea runoff = 5.307(CFS) for 3.300(Ac.) Total runoff = 120.900(CFS) Effective area this stream = 68.36(Ac.) Total Study Area (Main Stream No. 2) = 80.64(Ac.) Area averaged Fm value = 0.311(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + ++++ Process from Point /Station 106.000 to Point /Station 102.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 1324.540(Ft.) End of street segment elevation = 1318.500(Ft.) Ad Length of street segment = 375.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 33.000(Ft.) Distance from crown to crossfall grade break = 31.500(Ft.) Slope from gutter to grade break (v /hz) = 0.083 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1] side(s) of the street di Distance from curb to property line = 17.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 1.500(Ft.) :1 Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 id Estimated mean flow rate at midpoint of street = 120.944(CFS) Depth of flow = 0.815(Ft.), Average velocity = 7.033(Ft /s) Warning: depth of flow exceeds top of curb 11 Note: depth of flow exceeds top of street crown. id Distance that curb overflow reaches into property = 7.43(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 33.000(Ft.) Flow velocity = 7.03(Ft /s) Travel time = 0.89 min. TC = 30.18 min. Adding area flow to street COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In /Hr) The area added to the existing stream causes a a lower flow rate of Q = 118.604(CFS) therefore the upstream flow rate of Q = 120.900(CFS) is being used Rainfall intensity = 2.235(In /Hr) for a 100.0 year storm di Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.775 Subarea runoff = 0.000(CFS) for 0.100(Ac.) Total runoff = 120.900(CFS) Effective area this stream = 68.46(Ac.) Total Study Area (Main Stream No. 2) = 80.74(Ac.) Area averaged Fm value = 0.310(In /Hr) Street flow at end of street = 120.900(CFS) Half street flow at end of street = 120.900(CFS) Depth of flow = 0.815(Ft.), Average velocity = 7.032(Ft /s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 7.42(Ft.) 4 ®A Flow width (from curb towards crown)= 33.000(Ft.) di In +++++++++++++++++++++++++++++++++++++++ + + + + + + ++ + ++ + + ++ + + + + + + + + + + + + ++ ++ ii Process from Point /Station 102.000 to Point /Station 102.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** *V The following data inside Main Stream is listed: ii In Main Stream number: 2 Stream flow area = 68.460(Ac.) 1 Runoff from this stream = 120.900(CFS) II Time of concentration = 30.18 min. Rainfall intensity = 2.235(In /Hr) Area averaged loss rate (Fm) = 0.3102(In /Hr) soi Area averaged Pervious ratio (Ap) = 0.3173 di Summary of stream data: m , Stream Flow rate Area TC Fm Rainfall Intensity di No. (CFS) (Ac.) (min) (In /Hr) (In /Hr) "R 1 28.80 12.280 21.98 0.098 2.703 il 2 120.90 68.460 30.18 0.310 2.235 Qmax(1) = 1.000 * 1.000 * 28.798) + 1.243 * 0.728 * 120.900) + = 138.273 ii Qmax(2) _ 0.820 * 1.000 * 28.798) + a+ 1.000 * 1.000 * 120.900) + = 144.523 S i Total of 2 main streams to confluence: Flow rates before confluence point: s' 29.798 121.900 W Maximum flow rates at confluence using above data: 138.273 144.523 es Area of streams before confluence: 12.280 68.460 Si Effective area values after confluence: 62.141 80.740 se di Results of confluence: Total flow rate = 144.523(CFS) - Time of concentration = 30.181 min. i; Effective stream area after confluence 80.740(Ac.) Study area average Pervious fraction(Ap) = 0.284 qii Study area average soil loss rate(Fm) = 0.278(In /Hr) Study area total = 80.74(Ac.) Ill lig +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 102.000 to Point /Station 101.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** AI Top of street segment elevation = 1318.500(Ft.) End of street segment elevation = 1317.000(Ft.) Length of street segment = 670.000(Ft.) IS Height of curb above gutter flowline = 8.0(In.) il Width of half street (curb to crown) = 38.000(Ft.) Distance from crown to crossfall grade break = 36.500(Ft.) Slope from gutter to grade break (v /hz) = 0.083 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1] side(s) of the street MO Si Distance from curb to property line = 12.000(Ft.) di Slope from curb to property line (v /hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) di Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 qg Estimated mean flow rate at midpoint of street = 144.563(CFS) Depth of flow = 1.215(Ft.), Average velocity = 3.843(Ft/s) Warning: depth of flow exceeds top of curb + Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 27.43(Ft.) _ Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 38.000(Ft.) q4; Flow velocity = 3.84(Ft /s) Travel time = 2.91 min. TC = 33.09 min. Adding area flow to street 71 COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In /Hr) The area added to the existing stream causes a a lower flow rate of Q = 144.006(CFS) therefore the upstream flow rate of Q = 144.523(CFS) is being used Rainfall intensity = 2.115(In /Hr) for a 100.0 year storm *11, Effective runoff coefficient used for area,(total area with modified i rational method)(Q =KCIA) is C = 0.787 Subarea runoff = 0.000(CFS) for 5.780(Ac.) Total runoff = 144.523(CFS) w.e Effective area this stream = 86.52(Ac.) ei Total Study Area (Main Stream No. 1) = 86.52(Ac.) Area averaged Fm value = 0.266(In /Hr) •w Street flow at end of street = 144.523(CFS) Half street flow at end of street = 144.523(CFS) OW Depth of flow = 1.215(Ft.), Average velocity = 3.842(Ft/s) Warning: depth of flow exceeds top of curb m° ' Note: depth of flow exceeds top of street crown. di Distance that curb overflow reaches into property = 27.43(Ft.) Flow width (from curb towards crown)= 38.000(Ft.) al +++++++++++++++++++++++++++++++++++++++ + + ++ + + + + ++ ++ + + + + + + + + + + ++ + +++ + ++ Process from Point /Station 101.000 to Point /Station 100.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 1317.000(Ft.) End of street segment elevation = 1315.000(Ft.) Length of street segment = 650.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 38.000(Ft.) Distance from crown to crossfall grade break = 36.500(Ft.) Slope from gutter to grade break (v /hz) = 0.083 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 "! Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 145.516(CFS) Depth of flow = 1.150(Ft.), Average velocity = 4.239(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 24.15(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 38.000(Ft.) Flow velocity = 4.24(Ft /s) Travel time = 2.56 min. TC = 35.64 min. Adding area flow to street COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In /Hr) Rainfall intensity = 2.023(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.786 Subarea runoff = 1.925(CFS) for 5.560(Ac.) Total runoff = 146.448(CFS) Effective area this stream = 92.08(Ac.) „ Total Study Area (Main Stream No. 1) = 92.08(Ac.) Area averaged Fm value = 0.256(In /Hr) Ai Street flow at end of street = 146.448(CFS) Half street flow at end of street = 146.448(CFS) "' Depth of flow = 1.152(Ft.), Average velocity = 4.250(Ft /s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 24.28(Ft.) Flow width (from curb towards crown)= 38.000(Ft.) Process from Point /Station 100.000 to Point /Station 100.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 92.080(Ac.) „ul Runoff from this stream = 146.448(CFS) di Time of concentration = 35.64 min. Rainfall intensity = 2.023(In /Hr) Area averaged loss rate (Fm) = 0.2557(In/Hr) Area averaged Pervious ratio (Ap) = 0.2615 Program is now starting with Main Stream No. 2 Process from Point /Station 118.000 to Point /Station 116.000 * * ** INITIAL AREA EVALUATION * * ** RESIDENTIAL(3 - 4 dwl /acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.587(In /Hr) Initial subarea data: Initial area flow distance = 830.000(Ft.) Top (of initial area) elevation = 1361.320(Ft.) Al Bottom (of initial area) elevation = 1350.340(Ft.) Difference in elevation = 10.980(Ft.) Slope = 0.01323 s( %)= 1.32 TC = k(0.412) *[(length'"3) /(elevation change)]"0.2 Initial area time of concentration = 14.395 min. Rainfall intensity = 3.485(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q =KCIA) is C = 0.748 Subarea runoff = 8.556(CFS) Total initial stream area = 3.280(Ac.) Pervious area fraction = 0.600 Initial area Fm value = 0.587(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 117.000 to Point /Station 116.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 1363.110(Ft.) End of street segment elevation = 1350.340(Ft.) Length of street segment = 990.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v /hz) = 0.083 Slope from grade break to crown (v /hz) = 0.020 1i Street flow is on [1] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Mi Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 di Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 12.901(CFS) .,., Depth of flow = 0.358(Ft.), Average velocity = 3.643(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 18.857(Ft.) Flow velocity = 3.64(Ft /s) Travel time = 4.53 min. TC = 18.92 min. dd Adding area flow to street RESIDENTIAL(3 - 4 dwl /acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.587(In /Hr) Rainfall intensity = 2.958(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.721 Subarea runoff = 8.621(CFS) for 4.770(Ac.) Total runoff = 17.177(CFS) NON Effective area this stream = 8.05(Ac.) di Total Study Area (Main Stream No. 2) = 100.13(Ac.) Area averaged Fm value = 0.587(In /Hr) Street flow at end of street = 17.177(CFS) '^ Half street flow at end of street = 17.177(CFS) Depth of flow = 0.396(Ft.), Average velocity = 3.989(Ft/s) Note: depth of flow exceeds top of street crown. Flow width (from curb towards crown)= 20.000(Ft.) di � r. ....... . ... .... Process from Point /Station 117.000 to Point /Station 116.000 * * ** SUBAREA FLOW ADDITION * * ** 1 1 RESIDENTIAL(8 - 10 dwl /acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 di Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.4000 Max loss rate(Fm)= 0.391(In /Hr) Time of concentration = 18.92 min. Rainfall intensity = 2.958(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.745 Subarea runoff = 12.080(CFS) for 5.230(Ac.) Total runoff = 29.258(CFS) Effective area this stream = 13.28(Ac.) Total Study Area (Main Stream No. 2) = 105.36(Ac.) Area averaged Fm value = 0.510(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + ++ + + + + + + + + + + + ++ Process from Point /Station 116.000 to Point /Station 115.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** :1 Top of street segment elevation = 1350.340(Ft.) End of street segment elevation = 1338.640(Ft.) mik Length of street segment = 660.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) ..I Slope from gutter to grade break (v /hz) = 0.083 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1] side(s) of the street ... Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) .m Manning's N in gutter = 0.0150 id Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 39.140(CFS) Depth of flow = 0.503(Ft.), Average velocity = 6.088(Ft /s) Note: depth of flow exceeds top of street crown. Streetflow hydraulics at midpoint of street travel: 44i Halfstreet flow width = 20.000(Ft.) Flow velocity = 6.09(Ft /s) Travel time = 1.81 min. TC = 20.73 min. Adding area flow to street RESIDENTIAL(8 - 10 dwl /acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.4000 Max loss rate(Fm)= 0.391(In /Hr) Rainfall intensity = 2.800(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.753 Subarea runoff = 19.690(CFS) for 9.950(Ac.) Total runoff = 48.948(CFS) Effective area this stream = 23.23(Ac.) Total Study Area (Main Stream No. 2) = 115.31(Ac.) Area averaged Fm value = 0.459(In /Hr) Street flow at end of street = 48.948(CFS) MI Half street flow at end of street = 48.948(CFS) Depth of flow = 0.549(Ft.), Average velocity = 6.651(Ft /s) Note: depth of flow exceeds top of street crown. Flow width (from curb towards crown)= 20.000(Ft.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + ++ + + + + ++ + + + + + + + + + ++ Process from Point /Station 115.000 to Point /Station 114.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 1338.640(Ft.) End of street segment elevation = 1330.400(Ft.) Length of street segment = 465.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v /hz) = 0.083 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 1.500(Ft.) di Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 **e Manning's N from grade break to crown = 0.0150 di Estimated mean flow rate at midpoint of street = 51.571(CFS) Depth of flow = 0.561(Ft.), Average velocity = 6.789(Ft/s) Note: depth of flow exceeds top of street crown. 41411 Streetflow hydraulics at midpoint of street travel: di Halfstreet flow width = 20.000(Ft.) Flow velocity = 6.79(Ft /s) I Travel time = 1.14 min. TC = 21.87 min. di Adding area flow to street RESIDENTIAL(8 - 10 dwl /acre) Decimal fraction soil group A = 1.000 '"" Decimal fraction soil group B = 0.000 lid Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 „me SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.4000 Max loss rate(Fm)= 0.391(In /Hr) Rainfall intensity = 2.712(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.751 Subarea runoff = 5.185(CFS) for 3.370(Ac.) Total runoff = 54.133(CFS) Effective area this stream = 26.60(Ac.) Total Study Area (Main Stream No. 2) = 118.68(Ac.) Area averaged Fm value = 0.450(In /Hr) Street flow at end of street = 54.133(CFS) Half street flow at end of street = 54.133(CFS) di Depth of flow = 0.572(Ft.), Average velocity = 6.921(Ft /s) Note: depth of flow exceeds top of street crown. Flow width (from curb towards crown)= 20.000(Ft.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 115.000 to Point /Station 114.000 * * ** SUBAREA FLOW ADDITION * * ** qiii RESIDENTIAL(3 - 4 dwl /acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 1 Decimal fraction soil group C = 0.000 dl Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.587(In /Hr) AI Time of concentration = 21.87 min. Rainfall intensity = 2.712(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified gqii rational method) (Q =KCIA) is C = 0.745 Subarea runoff = 6.789(CFS) for 3.550(Ac.) Total runoff = 60.922(CFS) Effective area this stream = 30.15(Ac.) Total Study Area (Main Stream No. 2) = 122.23(Ac.) Area averaged Fm value = 0.466(In /Hr) Iiii +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + ++ + + + + + ++ Process from Point /Station 116.000 to Point /Station 113.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Iiii Top of street segment elevation = 1350.340(Ft.) End of street segment elevation = 1326.950(Ft.) Length of street segment = 1320.000(Ft.) Iii Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) :1 Slope from gutter to grade break (v /hz) = 0.083 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) all Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 ii Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 61.568(CFS) qiiiii Depth of flow = 0.604(Ft.), Average velocity = 7.281(Ft /s) Note: depth of flow exceeds top of street crown. Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 20.000(Ft.) qii Flow velocity = 7.28(Ft /s) Travel time = 3.02 min. TC = 24.89 min. Adding area flow to street iii RESIDENTIAL(3 - 4 dwl /acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 qii Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.587(In /Hr) gill Rainfall intensity = 2.509(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.728 Subarea runoff = 1.234(CFS) for 3.890(Ac.) ;1 Total runoff = 62.156(CFS) Effective area this stream = 34.04(Ac.) Total Study Area (Main Stream No. 2) = 126.12(Ac.) , Area averaged Fm value = 0.480(In /Hr) Street flow at end of street = 62.156(CFS) di Half street flow at end of street = 62.156(CFS) wA am Depth of flow = 0.606(Ft.), Average velocity = 7.309(Ft /s) di Note: depth of flow exceeds top of street crown. Flow width (from curb towards crown)= 20.000(Ft.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 116.000 to Point /Station 113.000 * * ** SUBAREA FLOW ADDITION * * ** PARK subarea Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 i Pervious ratio(Ap) = 0.8500 Max loss rate(Fm)= 0.831(In /Hr) Time of concentration = 24.89 min. ,,, Rainfall intensity = 2.509(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified di rational method)(Q =KCIA) is C = 0.719 Subarea runoff = 4.032(CFS) for 2.670(Ac.) Total runoff = 66.188(CFS) di Effective area this stream = 36.71(Ac.) Total Study Area (Main Stream No. 2) = 128.79(Ac.) Area averaged Fm value = 0.506(In /Hr) di +++++++++++++++++++++++++++++++++++++++ + + + + + ++ ++ ++ + + + + + + + + ++ + + + + + + + + ++ *+m Process from Point /Station 114.000 to Point /Station 112.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** di Top of street segment elevation = 1330.400(Ft.) End of street segment elevation = 1321.640(Ft.) Length of street segment = 495.000(Ft.) Height of curb above gutter flowline = 8.0(In.) ... Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v /hz) = 0.083 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v /hz) = 0.020 ,� Gutter width = 1.500(Ft.) d} Gutter hike from flowline = 0.125(In.) di Gutter N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 75.811(CFS) Depth of flow = 0.661(Ft.), Average velocity = 7.902(Ft /s) Note: depth of flow exceeds top of street crown. MR Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 20.000(Ft.) Flow velocity = 7.90(Ft /s) gdi Travel time = 1.04 min. TC = 25.94 min. Adding area flow to street RESIDENTIAL(3 - 4 dwl /acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 di Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.587(In /Hr) Rainfall intensity = 2.448(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.706 Subarea runoff = 19.188(CFS) for 12.660(Ac.) Total runoff = 85.376(CFS) Effective area this stream = 49.37(Ac.) Total Study Area (Main Stream No. 2) = 141.45(Ac.) Area averaged Fm value = 0.526(In /Hr) qui Street flow at end of street = 85.376(CFS) di Half street flow at end of street = 85.376(CFS) Depth of flow = 0.718(Ft.), Average velocity = 7.909(Ft /s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 2.55(Ft.) Flow width (from curb towards crown)= 20.000(Ft.) di +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 114.000 to Point /Station 112.000 * * ** SUBAREA FLOW ADDITION * * ** COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 di Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In /Hr) Time of concentration = 25.94 min. `""" Rainfall intensity = 2.448(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified el rational method)(Q =KCIA) is C = 0.713 Subarea runoff = 4.865(CFS) for 2.300(Ac.) Total runoff = 90.240(CFS) alt Effective area this stream = 51.67(Ac.) Total Study Area (Main Stream No. 2) = 143.75(Ac.) •.+ Area averaged Fm value = 0.507(In /Hr) ilr +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + ++ + + + + + ++ + ++ '1 Process from Point /Station 112.000 to Point /Station 100.000 ii * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 1321.640(Ft.) End of street segment elevation = 1315.000(Ft.) Length of street segment = 375.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v /hz) = 0.083 Slope from grade break to crown (v /hz) = 0.020 AR Street flow is on [1] side(s) of the street Ai Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v /hz) = 0.020 111 Gutter width = 1.500(Ft.) Ai Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 90.284(CFS) Depth of flow = 0.744(Ft.), Average velocity = 7.911(Ft /s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 3.88(Ft.) AA Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 20.000(Ft.) Flow velocity = 7.91(Ft /s) Travel time = 0.79 min. TC = 26.73 min. Adding area flow to street COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In /Hr) The area added to the existing stream causes a a lower flow rate of Q = 88.417(CFS) therefore the upstream flow rate of Q = 90.240(CFS) is being used Rainfall intensity = 2.404(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.710 Subarea runoff = 0.000(CFS) for 0.100(Ac.) Total runoff = 90.240(CFS) Effective area this stream = 51.77(Ac.) mid; Total Study Area (Main Stream No. 2) = 143.85(Ac.) Area averaged Fm value = 0.507(In /Hr) Street flow at end of street = 90.240(CFS) Half street flow at end of street = 90.240(CFS) wig Depth of flow = 0.744(Ft.), Average velocity = 7.911(Ft /s) di Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. "*e Distance that curb overflow reaches into property = 3.87(Ft.) Flow width (from curb towards crown)= 20.000(Ft.) wn di Process from Point /Station 113.000 to Point /Station 100.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** .w� Top of street segment elevation = 1326.950(Ft.) ilk End of street segment elevation = 1315.000(Ft.) Length of street segment = 675.000(Ft.) "" Height of curb above gutter flowline = 8.0(In.) Mi Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v /hz) = 0.083 we Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v /hz) = 0.020 di Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 90.287(CFS) Depth of flow = 0.744(Ft.), Average velocity = 7.910(Ft /s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 3.88(Ft.) Streetflow hydraulics at midpoint of street travel: di Halfstreet flow width = 20.000(Ft.) Flow velocity = 7.91(Ft /s) „ok Travel time = 1.42 min. TC = 28.15 min. j Adding area flow to street ai COMMERCIAL subarea type im ma Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 'e Decimal fraction soil group D = 0.000 di SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In /Hr) The area added to the existing stream causes a di a lower flow rate of Q = 88.402(CFS) therefore the upstream flow rate of Q = 90.240(CFS) is being used Rainfall intensity = 2.331(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified di rational method)(Q =KCIA) is C = 0.709 Subarea runoff = 0.000(CFS) for 1.700(Ac.) Total runoff = 90.240(CFS) Effective area this stream = 53.47(Ac.) di Total Study Area (Main Stream No. 2) = 145.55(Ac.) Area averaged Fm value = 0.494(In /Hr) - Street flow at end of street = 90.240(CFS) di Half street flow at end of street = 90.240(CFS) Depth of flow = 0.744(Ft.), Average velocity = 7.910(Ft /s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. MI Distance that curb overflow reaches into property = 3.87(Ft.) Flow width (from curb towards crown)= 20.000(Ft.) Process from Point /Station 113.000 to Point /Station 100.000 woo * * ** SUBAREA FLOW ADDITION * * ** mi RESIDENTIAL(3 - 4 dwl /acre) Decimal fraction soil group A = 1.000 MEI Decimal fraction soil group B = 0.000 rr Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 .•+ SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.587(In /Hr) No The area added to the existing stream causes a a lower flow rate of Q = 89.203(CFS) therefore the upstream flow rate of Q = 90.240(CFS) is being used Time of concentration = 28.15 min. Rainfall intensity = 2.331(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.709 Subarea runoff = 0.000(CFS) for 0.510(Ac.) Total runoff = 90.240(CFS) Effective area this stream = 53.98(Ac.) Total Study Area (Main Stream No. 2) = 146.06(Ac.) Area averaged Fm value = 0.494(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 113.000 to Point /Station 100.000 * * ** SUBAREA FLOW ADDITION * * ** RESIDENTIAL(8 - 10 dwl /acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.4000 Max loss rate(Fm)= 0.391(In /Hr) di Time of concentration = 28.15 min. i1r 1 iii Rainfall intensity = 2.331(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.710 1 Subarea runoff = 0.673(CFS) for 0.980(Ac.) di Total runoff = 90.913(CFS) Effective area this stream = 54.96(Ac.) Total Study Area (Main Stream No. 2) = 147.04(Ac.) I N ii Area averaged Fm value = 0.493(In/Hr) 44 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 100.000 to Point /Station 100.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** gili; The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 54.960(Ac.) ill Runoff from this stream = 90.913(CFS) il Time of concentration = 28.15 min. Rainfall intensity = 2.331(In /Hr) Area averaged loss rate (Fm) = 0.4926(In /Hr) 'p Area averaged Pervious ratio (Ap) = 0.5038 di Summary of stream data: Stream Flow rate Area TC Fm Rainfall Intensity e s No. (CFS) (Ac.) (min) (In /Hr) (In /Hr) li ..ill 1 146.45 92.080 35.64 0.256 2.023 2 90.91 54.960 28.15 0.493 2.331 ii Qmax(1) = 1.000 * 1.000 * 146.448) + Nil 0.833 * 1.000 * 90.913) + = 222.142 ii Qmax(2) = 1.174 * 0.790 * 146.448) + ... 1.000 * 1.000 * 90.913) + = 226.716 id Total of 2 main streams to confluence: Flow rates before confluence point: °' 147.448 91.913 ■i Maximum flow rates at confluence using above data: 222.142 226.716 _ Area of streams before confluence: 92.080 54.960 di Effective area values after confluence: 147.040 127.685 ii Results of confluence: Total flow rate = 226.716(CFS) ii Time of concentration = 28.151 min. Effective stream area after confluence = 127.685(Ac.) Study area average Pervious fraction(Ap) = 0.352 ii; Study area average soil loss rate(Fm) = 0.344(In /Hr) Study area total = 147.04(Ac.) 411; ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point /Station 100.000 to Point /Station 90.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** 1 Top of street segment elevation = 1315.000(Ft.) End of street segment elevation = 1304.000(Ft.) ONO irr milmommommommom ql Length of street segment = 630.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 30.000(Ft.) IN Distance from crown to crossfall grade break = 28.500(Ft.) Ai Slope from gutter to grade break (v /hz) = 0.083 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 7.500(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 238.710(CFS) Depth of flow = 1.027(Ft.), Average velocity = 9.741(Ft /s) Warning: depth of flow exceeds top of curb , Note: depth of flow exceeds top of street crown. Ai Distance that curb overflow reaches into property = 17.99(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 30.000(Ft.) '*R Flow velocity = 9.74(Ft /s) di Travel time = 1.08 min. TC = 29.23 min. Adding area flow to street COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 4104 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In /Hr) Rainfall intensity = 2.279(In /Hr) for a 100.0 year storm .., Effective runoff coefficient used for area,(total area with modified mi rational method)(Q =KCIA) is C = 0.774 Subarea runoff = 23.933(CFS) for 14.450(Ac.) Total runoff = 250.649(CFS) Effective area this stream = 142.13(Ac.) Total Study Area (Main Stream No. 1) = 161.49(Ac.) Area averaged Fm value = 0.319(In /Hr) 9.111 Street flow at end of street = 250.649(CFS) Ni Half street flow at end of street = 250.649(CFS) Depth of flow = 1.046(Ft.), Average velocity = 9.933(Ft/s) „, Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. di Distance that curb overflow reaches into property = 18.96(Ft.) Flow width (from curb towards crown)= 30.000(Ft.) di +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 100.000 to Point /Station 90.000 * * ** SUBAREA FLOW ADDITION * * ** RESIDENTIAL(3 - 4 dwl /acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 IN SCS curve number for soil(AMC 2) = 32.00 di Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.587(In /Hr) Time of concentration = 29.23 min. ,^ Rainfall intensity = 2.279(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified 'M rational method)(Q =KCIA) is C = 0.771 ..e Iii ;1 Subarea runoff = 7.142(CFS) for 4.690(Ac.) Total runoff = 257.791(CFS) Effective area this stream = 146.82(Ac.) :1 Total Study Area (Main Stream No. 1) = 166.18(Ac.) Area averaged Fm value = 0.328(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 90.000 to Point /Station 80.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** di Top of street segment elevation = 1304.000(Ft.) End of street segment elevation = 1290.000(Ft.) Length of street segment = 715.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 30.000(Ft.) Distance from crown to crossfall grade break = 28.500(Ft.) Slope from gutter to grade break (v /hz) = 0.083 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 7.500(Ft.) Slope from curb to property line (v /hz) = 0.020 Al Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 263.752(CFS) "'ok Depth of flow = 1.043(Ft.), Average velocity = 10.492(Ft /s) Warning: depth of flow exceeds top of curb di Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 18.84(Ft.) Streetflow hydraulics at midpoint of street travel: • Halfstreet flow width = 30.000(Ft.) Flow velocity = 10.49(Ft /s) ■.. Travel time = 1.14 min. TC = 30.36 min. - Adding area flow to street COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In/Hr) Rainfall intensity = 2.227(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.773 Subarea runoff = 11.837(CFS) for 9.730(Ac.) Total runoff = 269.628(CFS) Effective area this stream = 156.55(Ac.) Total Study Area (Main Stream No. 1) = 175.91(Ac.) Area averaged Fm value = 0.313(In /Hr) Street flow at end of street = 269.628(CFS) Half street flow at end of street = 269.628(CFS) Depth of flow = 1.052(Ft.), Average velocity = 10.585(Ft /s) MI Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. 1 Distance that curb overflow reaches into property = 19.28(Ft.) Flow width (from curb towards crown)= 30.000(Ft.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + ++ + + + + + + + + + + + + + + + + ++ Process from Point /Station 90.000 to Point /Station 80.000 * * ** SUBAREA FLOW ADDITION * * ** di RESIDENTIAL(3 - 4 dwl /acre) ;1 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.587(In /Hr) Time of concentration = 30.36 min. :1 Rainfall intensity = 2.227(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method) (Q =KCIA) is C = 0.767 Subarea runoff = 14.468(CFS) for 9.800(Ac.) 14; Total runoff = 284.096(CFS) Effective area this stream = 166.35(Ac.) Total Study Area (Main Stream No. 1) = 185.71(Ac.) Area averaged Fm value = 0.330(In /Hr) di +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + ++ + + + + + + + + + + + ++ Process from Point /Station 90.000 to Point /Station 80.000 * * ** SUBAREA FLOW ADDITION * * ** SCHOOL subarea di Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 Ai SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.587(In /Hr) Time of concentration = 30.36 min. Rainfall intensity = 2.227(In /Hr) for a 100.0 year storm 41 Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.766 '*n Subarea runoff = 3.145(CFS) for 2.130(Ac.) Total runoff = 287.241(CFS) di Effective area this stream = 168.48(Ac.) Total Study Area (Main Stream No. 1) = 187.84(Ac.) mpg Area averaged Fm value = 0.333(In /Hr) di di Process from Point /Station 100.000 to Point /Station 80.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 1315.000(Ft.) i End of street segment elevation = 1290.000(Ft.) Length of street segment = 1345.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 30.000(Ft.) Distance from crown to crossfall grade break = 28.500(Ft.) Slope from gutter to grade break (v /hz) = 0.083 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 7.500(Ft.) Slope from curb to property line (v /hz) = 0.020 4 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 287.285(CFS) 1 Depth of flow = 1.090(Ft.), Average velocity = 10.689(Ft /s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 21.15(Ft.) ;1 Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 30.000(Ft.) Flow velocity = 10.69(Ft /s) Travel time = 2.10 min. TC = 32.46 min. Adding area flow to street COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In /Hr) The area added to the existing stream causes a a lower flow rate of Q = 286.215(CFS) therefore the upstream flow rate of Q = 287.241(CFS) is being used Rainfall intensity = 2.140(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.764 Subarea runoff = 0.000(CFS) for 6.660(Ac.) Total runoff = 287.241(CFS) Effective area this stream = 175.14(Ac.) :1 Total Study Area (Main Stream No. 1) = 194.50(Ac.) Area averaged Fm value = 0.324(In /Hr) Street flow at end of street = 287.241(CFS) Half street flow at end of street = 287.241(CFS) Depth of flow = 1.090(Ft.), Average velocity = 10.688(Ft /s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. ..� Distance that curb overflow reaches into property = 21.15(Ft.) • Flow width (from curb towards crown)= 30.000(Ft.) MO Process from Point /Station 80.000 to Point /Station 70.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** d i Top of street segment elevation = 1290.000(Ft.) End of street segment elevation = 1284.000(Ft.) . Length of street segment = 615.000(Ft.) gi Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 30.000(Ft.) Distance from crown to crossfall grade break = 28.500(Ft.) Slope from gutter to grade break (v /hz) = 0.083 Slope from grade break to crown (v /hz) = 0.020 Street flow is on (1] side(s) of the street Distance from curb to property line = 7.500(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 290.326(CFS) Depth of flow = 1.248(Ft.), Average velocity = 8.847(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. IP Distance that curb overflow reaches into property = 29.08(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 30.000(Ft.) i Flow velocity = 8.85(Ft /s) Travel time = 1.16 min. TC = 33.62 min. Adding area flow to street COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 :1 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In /Hr) Rainfall intensity = 2.095(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.765 Subarea runoff = 6.116(CFS) for 7.880(Ac.) Total runoff = 293.357(CFS) Effective area this stream = 183.02(Ac.) Total Study Area (Main Stream No. 1) = 202.38(Ac.) Area averaged Fm value = 0.314 (In /Hr) Street flow at end of street = 293.357(CFS) Half street flow at end of street (= 293.357(CFS) Depth of flow = 1.254(Ft.), Average velocity = 8.884(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 29.35(Ft.) gni Flow width (from curb towards crown)= 30.000(Ft.) di +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 80.000 to Point /Station 70.000 di * * ** SUBAREA FLOW ADDITION * * ** RESIDENTIAL(5 - 7 dwljacre) di Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.489(In /Hr) Time of concentration = 33.62 min. Rainfall intensity = 2.095(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.761 Subarea runoff = 13.458(CFS) for 9.310(Ac.) Total runoff = 306.815(CFS) Effective area this stream = 192.33(Ac.) Total Study Area (Main Stream No. 1) = 211.69(Ac.) Area averaged Fm value = 0.323(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 80.000 to Point /Station 70.000 * * ** SUBAREA FLOW ADDITION * * ** SCHOOL subarea Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.587(In /Hr) 4 Time of concentration = 33.62 min. Rainfall intensity = 2.095(In /Hr) for a 100.0 year storm ■ Effective runoff coefficient used for area,(total area with modified sw Y rational method)(Q =KCIA) is C = 0.761 AO Subarea runoff = 1.656(CFS) for 1.220(Ac.) Total runoff = 308.471(CFS) 1 .11 Effective area this stream = 193.55(Ac.) di Total Study Area (Main Stream No. 1) = 212.91(Ac.) Area averaged Fm value = 0.324(In /Hr) Ai +++++++++++++++++++++++++++++++++++++++ + + + + + ++ + + + + + + ++ ++ ++ + + + + + + + + + + ++ Process from Point /Station 70.000 to Point /Station 60.000 n, * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 1284.000(Ft.) End of street segment elevation = 1272.000(Ft.) Length of street segment = 690.000(Ft.) 41 Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 30.000(Ft.) „ Distance from crown to crossfall grade break = 28.500(Ft.) Slope from gutter to grade break (v /hz) = 0.083 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 7.500(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 321.995(CFS) Depth of flow = 1.156(Ft.), Average velocity = 10.967(Ft /s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 24.47(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 30.000(Ft.) •�, Flow velocity = 10.97(Ft /s) Travel time = 1.05 min. TC = 34.67 min. X11 Adding area flow to street COMMERCIAL subarea type " Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 Ai SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In /Hr) Rainfall intensity = 2.057(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified di rational method)(Q =KCIA) is C = 0.767 Subarea runoff = 26.994(CFS) for 19.090(Ac.) Total runoff = 335.465(CFS) Effective area this stream = 212.64(Ac.) Total Study Area (Main Stream No. 1) = 232.00(Ac.) Area averaged Fm value = 0.304(In /Hr) Street flow at end of street = 335.465(CFS) Ai Half street flow at end of street = 335.465(CFS) Depth of flow = 1.175(Ft.), Average velocity = 11.148(Ft /s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 25.44(Ft.) Flow width (from curb towards crown)= 30.000(Ft.) ,ri Process from Point /Station 70.000 to Point /Station 60.000 * * ** SUBAREA FLOW ADDITION * * ** SCHOOL subarea Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.587(In /Hr) ;14 Time of concentration = 34.67 min. Rainfall intensity = 2.057(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.766 Subarea runoff = 2.686(CFS) for 2.030(Ac.) Total runoff = 338.151(CFS) Effective area this stream = 214.67(Ac.) Total Study Area (Main Stream No. 1) = 234.03(Ac.) Area averaged Fm value = 0.307(In /Hr) di Process from Point /Station 80.000 to Point /Station 60.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** di Top of street segment elevation = 1290.000(Ft.) End of street segment elevation = 1272.000(Ft.) Length of street segment = 1305.000(Ft.) 'l Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 30.000(Ft.) Distance from crown to crossfall grade break = 28.500(Ft.) Slope from gutter to grade break (v /hz) = 0.083 .., Slope from grade break to crown (v /hz) = 0.020 mi Street flow is on [1] side(s) of the street Distance from curb to property line = 7.500(Ft.) '•N Slope from curb to property line (v /hz) = 0.020 Gutter width = 1.500(Ft.) mi Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 di Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 338.184(CFS) Depth of flow = 1.237(Ft.), Average velocity = 10.433(Ft /s) Warning: depth of flow exceeds top of curb Mi Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 28.54(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 30.000(Ft.) Flow velocity = 10.43(Ft /s) Travel time = 2.08 min. TC = 36.75 min. Adding area flow to street COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In/Hr) The area added to the existing stream causes a a lower flow rate of Q = 333.645(CFS) therefore the upstream flow rate of Q = 338.151(CFS) is being used Rainfall intensity = 1.986(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified 4L rational method)(Q =KCIA) is C = 0.763 Subarea runoff = 0.000(CFS) for 5.400(Ac.) Total runoff = 338.151(CFS) Effective area this stream = 220.07(Ac.) Total Study Area (Main Stream No. 1) = 239.43(Ac.) Area averaged Fm value = 0.301(In /Hr) Street flow at end of street = 338.151(CFS) Half street flow at end of street = 338.151(CFS) Depth of flow = 1.237(Ft.), Average velocity = 10.433(Ft /s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 28.54(Ft.) Flow width (from curb towards crown)= 30.000(Ft.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 80.000 to Point /Station 60.000 * * ** SUBAREA FLOW ADDITION * * ** PARK subarea Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.8500 Max loss rate(Fm)= 0.831(In /Hr) The area added to the existing stream causes a a lower flow rate of Q = 334.695(CFS) "q therefore the upstream flow rate of Q = 338.151(CFS) is being used Mi Time of concentration = 36.75 min. Rainfall intensity = 1.986(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified MIN rational method)(Q =KCIA) is C = 0.762 Subarea runoff = 0.000(CFS) for 1.010(Ac.) Total runoff = 338.151(CFS) ,.., Effective area this stream = 221.08(Ac.) di Total Study Area (Main Stream No. 1) = 240.44(Ac.) Area averaged Fm value = 0.304(In /Hr) di +++++++++++++++++++++++++++++++++++++++ + + ++ + + + + + ++ + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 60.000 to Point /Station 50.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** di Top of street segment elevation = 1272.000(Ft.) End of street segment elevation = 1261.000(Ft.) :1 Length of street segment = 650.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 30.000(Ft.) Distance from crown to crossfall grade break = 28.500(Ft.) Slope from gutter to grade break (v /hz) = 0.083 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 7.500(Ft.) I:11 Slope from curb to property line (v /hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 345.456(CFS) Depth of flow = 1.196(Ft.), Average velocity = 11.188(Ft /s) di Warning: depth of flow exceeds top of curb .q Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 26.49(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 30.000(Ft.) Flow velocity = 11.19(Ft /s) Travel time = 0.97 min. TC = 37.72 min. Adding area flow to street COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In /Hr) Rainfall intensity = 1.955(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.766 Subarea runoff = 14.549(CFS) for 14.430(Ac.) Total runoff = 352.700(CFS) Effective area this stream = 235.51(Ac.) Total Study Area (Main Stream No. 1) = 254.87(Ac.) Area averaged Fm value = 0 2291(In /Hr) Street flow at end of street = 352.700(CFS) Half street flow at end of street = 352.700(CFS) umw Depth of flow = 1.207(Ft.), Average velocity = 11.281(Ft /s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 27.01(Ft.) ma i Flow width (from curb towards crown)= 30.000(Ft.) di Process from Point /Station 60.000 to Point /Station 50.000 * * ** SUBAREA FLOW ADDITION * * ** RESIDENTIAL(8 - 10 dwl /acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.4000 Max loss rate(Fm)= 0.391(In /Hr) Time of concentration = 37.72 min. Rainfall intensity = 1.955(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.765 Subarea runoff = 7.602(CFS) for 5.400(Ac.) Total runoff = 360.302(CFS) Effective area this stream = 240.91(Ac.) Total Study Area (Main Stream No. 1) = 260.27(Ac.) Area averaged Fm value = 0.294(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 50.000 to Point /Station 40.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** ;1 Top of street segment elevation = 1261.000(Ft.) End of street segment elevation = 1251.000(Ft.) Length of street segment = 610.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 30.000(Ft.) Distance from crown to crossfall grade break = 28.500(Ft.) Slope from gutter to grade break (v /hz) = 0.083 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 7.500(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 364.722(CFS) Depth of flow = 1.232(Ft.), Average velocity = 11.325(Ft /s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. 71 Distance that curb overflow reaches into property = 28.26(Ft.) Ai Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 30.000(Ft.) Flow velocity = 11.32(Ft /s) Travel time = 0.90 min. TC = 38.62 min. Adding area flow to street COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 - SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm) 0.098(In /Hr) Rainfall intensity = 1.928(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.766 Subarea runoff = 8.768(CFS) for 8.930(Ac.) Total runoff = 369.069(CFS) Effective area this stream = 249.84(Ac.) di Total Study Area (Main Stream No. 1) = 269.20(Ac.) Area averaged Fm value = 0.287(In /Hr) .. Street flow at end of street = 369.069(CFS) Half street flow at end of street = 369.069(CFS) di Depth of flow = 1.238(Ft.), Average velocity = 11.379(Ft /s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. di Distance that curb overflow reaches into property = 28.57(Ft.) Flow width (from curb towards crown)= 30.000(Ft.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 50.000 to Point /Station 40.000 gip * * ** SUBAREA FLOW ADDITION * * ** di RESIDENTIAL(8 - 10 dwl /acre) Decimal fraction soil group A = 1.000 IR Decimal fraction soil group B = 0.000 di Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.4000 Max loss rate(Fm)= 0.391(In /Hr) Time of concentration = 38.62 min. Rainfall intensity = 1.928(In /Hr) for a 100.0 year storm MR1 Effective runoff coefficient used for area,(total area with modified di rational method)(Q =KCIA) is C = 0.764 Subarea runoff = 13.167(CFS) for 9.520(Ac.) Rol Total runoff = 382.236(CFS) Effective area this stream = 259.36(Ac.) Total Study Area (Main Stream No. 1) = 278.72(Ac.) Area averaged Fm value = 0.290(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + ++ + + ++ + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 50.000 to Point /Station 40.000 * * ** SUBAREA FLOW ADDITION * * ** SCHOOL subarea Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 ;I Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.587(In /Hr) Time of concentration = 38.62 min. Rainfall intensity = 1.928(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.761 di Subarea runoff = 8.316(CFS) for 6.890(Ac.) Total runoff = 390.552(CFS) Effective area this stream = 266.25(Ac.) Total Study Area (Main Stream No. 1) = 285.61(Ac.) Area averaged Fm value = 0.298(In /Hr) +++++++++++++++++++++++++++++++++++++++ + ++ + + + + + ++ + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 60.000 to Point /Station 40.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** MN Top of street segment elevation = 1272.000(Ft.) End of street segment elevation = 1251.000(Ft.) Length of street segment = 1260.000(Ft.) owl Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 30.000(Ft.) Distance from crown to crossfall grade break = 28.500(Ft.) +, Slope from gutter to grade break (v /hz) = 0.083 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 7.500(Ft.) ". Slope from curb to property line (v /hz) = 0.020 di Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) „ Manning's N in gutter = 0.0150 Ai Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 390.588(CFS) Depth of flow = 1.263(Ft.), Average velocity = 11.697(Ft /s) di Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 29.84(Ft.) m Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 30.000(Ft.) Flow velocity = 11.70(Ft /s) Travel time = 1.80 min. TC = 40.41 min. Adding area flow to street COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In /Hr) The area added to the existing stream causes a mm a lower flow rate of Q = 388.066(CFS) therefore the upstream flow rate of Q = 390.552(CFS) is being used Rainfall intensity = 1.876(In /Hr) for a 100.0 year storm +ml1 Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.759 Subarea runoff = 0.000(CFS) for 6.210(Ac.) Total runoff = 390.552(CFS) Effective area this stream = 272.46(Ac.) Total Study Area (Main Stream No. 1) = 291.82(Ac.) Area averaged Fm value = 0.293(In /Hr) ;1 Street flow at end of street = 390.552(CFS) Half street flow at end of street = 390.552(CFS) Depth of flow = 1.263(Ft.), Average velocity = 11.697(Ft /s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 29.84(Ft.) Flow width (from curb towards crown)= 30.000(Ft.) MI +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 60.000 to Point /Station 40.000 * * ** SUBAREA FLOW ADDITION * * ** COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In /Hr) The area added to the existing stream causes a a lower flow rate of Q = 390.003(CFS) ggim therefore the upstream flow rate of Q = 390.552(CFS) is being used di Time of concentration = 40.41 min. Rainfall intensity = 1.876(In /Hr) for a 100.0 year storm goo Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.760 di Subarea runoff = 0.000(CFS) for 1.210(Ac.) Total runoff = 390.552(CFS) Effective area this stream = 273.67(Ac.) Total Study Area (Main Stream No. 1) = 293.03(Ac.) Area averaged Fm value = 0.293(In /Hr) End of computations, Total Study Area = 293.03 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation. Area averaged pervious area fraction(Ap) = 0.303 Area averaged SCS curve number = 32.0 :1 ONO el T APPENDIX `D' E 1 t l 1E-1/ O ..A s..1 WI 1i ) I I I 1 i IL I I L I 1 . 1 ILA m:i ILLJI L. i L i ILA FILE: FOOTHILL - SIERRA- JUNIPER.WSW W S P G W- CIVILDESIGN Version 14.06 PAGE 1 Program Package Serial Number: 1740 WATER SURFACE PROFILE LISTING Date:11 -10 -2006 Time:11: 4:34 Invert Depth Water Q Vel Vel Energy Super CriticallFlow Top Height/ Base Wt • No Wth Station Elev (FT) Elev (CFS) (FPS) Head Grd.E1. Elev Depth 1 Width Dia. -FT or I.D. ZL Prs /Pip L /Elem Ch Slope SF Ave HF SE Dpth Froude NINorm Dp "N" X -Fall ZR Type Ch * * * * * * * ** * * * * * * * ** * * * * * * ** * * * * * * * ** * * * * * * * ** * * * * * * *I * * * * * ** * * * * * * * ** * * * * * ** * * * * * * * *I * * * * * * ** * * * * * ** * * * * * ** * * * ** * * * * * ** I 1000.000 1293.150 4.235 1297.385 238.47 15.36 3.66 1301.05 .00 4.24 2.12 4.500 .000 .00 1 .0 17.093 .0080 .0134 .23 4.24 1.00 4.50 .013 .00 .00 PIPE I 1017.093 1293.287 4.500 1297.787 238.47 14.99 3.49 1301.28 .00 4.24 .00 4.500 .000 .00 1 .0 327.747 .0080 .0144 4.72 4.50 .00 4.50 .013 .00 .00 PIPE I 1344.840 1295.910 6.697 1302.607 238.47 14.99 3.49 1306.10 .00 4.24 .00 4.500 .000 .00 1 .0 JUNCT STR .0077 .0147 .25 6.70 .00 .013 .00 .00 PIPE I 1361.700 1296.040 6.816 1302.856 238.45 14.99 3.49 1306.35 .00 4.23 .00 4.500 .000 .00 1 .0 157.660 .0080 .0147 2.32 6.82 .00 4.50 .013 .00 .00 PIPE I 1519.360 1297.300 7.874 1305.174 238.45 14.99 3.49 1308.66 .00 4.23 .00 4.500 .000 .00 1 .0 9.560 .0084 .0147 .14, .00 .00 4.50 .013 .00 .00 PIPE I 1528.920 1297.380 8.297 1305.677 238.45 14.99 3.49 1309.17 .00 4.23 .00 4.500 .000 .00 1 .0 9.560 .0084 .0147 .14 .00 .00 4.50 .013 .00 .00 PIPE I 1538.480 1297.460 8.721 1306.181 238.45 14.99 3.49 1309.67 .00 4.23 .00 4.500 .000 .00 1 .0 77.150 .0079 .0147 1.13 8.72 .00 4.50 .013 .00 .00 PIPE 1615.630 1298.070 9.246 1307.316 238.45 14.99 3.49 1310.81 .00 4.23 .00 4.500 .000 .00 1 .0 JUNCT STR .0085 .0102 .18 .00 .00 .013 .00 .00 PIPE I 1633.310 1298.220 11.429 1309.649 147.55 9.28 1.34 1310.99 .00 3.57 .00 4.500 .000 .00 1 .0 17.670 .0079 .0056 .10 .00 .00 3.17 .013 .00 .00 PIPE 1 i I .. J & ,,M ILA lk,1 ..J LA ILA IL :.1 ILI IltAl ILIA ILA ILA ILA ILA ILA ILA ILA FILE: FOOTHILL - SIERRA- JUNIPER.WSW W S P G W- CIVILDESIGN Version 14.06 PAGE 2 Program Package Serial Number: 1740 WATER SURFACE PROFILE LISTING Date:11 -10 -2006 Time:11: 4:34 r************************************ rr**************************************************** *** * ****** * *** * *** *** ** **** * *** * ** * ** ** Invert Depth Water Q Vel Vel Energy Super CriticallFlow Top Height/ Base Wt No Wth Station Elev (FT) Elev (CFS) (FPS) Head Grd.E1. Elev Depth I Width Dia. -FT or I.D. ZL Prs /Pip L /Elem Ch Slope SF Ave HF SE Dpth Froude NINorm Dp "N" X -Fall ZR Type Ch * * * * * * * ** * * * * * * * ** * * * * * * ** * * * * * * * ** * * * * * * * ** * * * * * * *I * * * * * ** * * * * * * * ** * * * * * ** * * * * * * * *I * * * * * * ** * * * * * ** * * * * * ** * * * ** * * * * * ** 1650.980 1298.360 11.578 1309.938 147.55 9.28 1.34 1311.27 .00 3.57 .00 4.500 .000 .00 1 .0 16.160 .0080 .0056 .09 11.58 .00 3.15 .013 .00 .00 PIPE I 1667.140 1298.490 11.539 1310.029 147.55 9.28 1.34 1311.37 .00 3.57 .00 4.500 .000 .00 1 .0 JUNCT STR .0075 .0056 .04 11.54 .00 .013 .00 .00 PIPE 1673.770 1298.540 11.593 1310.133 145.62 9.16 1.30 1311.44 .00 3.54 .00 4.500 .000 .00 1 .0 511.180 .0080 .0055 2.80 11.59 .00 3.12 .013 .00 .00 PIPE 2184.950 1302.630 10.371 1313.001 145.62 9.16 1.30 1314.30 .00 3.54 .00 4.500 .000 .00 1 .0 JUNCT STR .0075 .0050 .03 10.37 .00 .013 .00 .00 PIPE 2191.580 1302.680 10.718 1313.398 132.92 8.36 1.08 1314.48 .00 3.39 .00 4.500 .000 .00 1 .0 72.420 .0080 .0046 .33 10.72 .00 2.92 .013 .00 .00 PIPE 2264.000 1303.260 10.469 1313.729 132.92 8.36 1.08 1314.81 .00 3.39 .00 4.500 .000 .00 1 .0 JUNCT STR .0719 .0046 .04 10.47 .00 .013 .00 .00 PIPE I 2272.070 1303.340 9.926 1313.766 132.91 8.36 1.08 1314.85 .00 3.39 .00 4.500 .000 .00 1 .0 662.590 .0083 .0046 3.03 9.93 .00 2.88 .013 .00 .00 PIPE 2934.660 1309.370 7.477 1316.847 132.91 8.36 1.08 1317.93 .00 3.39 .00 4.500 .000 .00 1 .0 35.140 .0080 .0046 .16 .00 .00 2.93 .013 .00 .00 PIPE 2969.800 1309.650 7.574 1317.224 132.91 8.36 1.08 1318.31 .00 3.39 .00 4.500 .000 .00 1 .0 JUNCT STR .0071 .0037 .03 7.57 .00 .013 .00 .00 PIPE FILE: FOOTHILL - SIERRA - JUNIPER.WSW W S P G W- CIVILDESIGN Version 14.06 PAGE 1 Program Package Serial Number: 1740 WATER SURFACE PROFILE LISTING Date:11 -10 -2006 Time:11: 4:34 * * * * * * * * *** ***** ************************************************************************** ** ** **** *** *** ** ** *** ***t* *** ** ******** Invert Depth Water Q Vel Vel Energy Super Critical Flow Top Height/ Base Wt • No Wth Station Elev (FT) Elev (CFS) (FPS) Head Grd.El. Elev Depth Width Dia. -FT or I.D. ZL Prs /Pip L /Elem Ch Slope SF Ave HF SE Dpth Froude N Norm Dp "N" X -Fall ZR Type Ch * * * * * * * ** * * * * * * * ** * * * * * * ** * * * * * * * ** * * * * * * * ** * * * * * * *I * * * * * ** * * * * * * * ** * * * * * ** * * * * * * ** * * * * * * ** * * * * * ** * * * * * ** * * * ** * * * * * ** 1000.000 1293.150 4.235 1297.385 238.47 15.36 3.66 1301.05 .00 4.24 2.12 4.500 .000 .00 1 .0 17.093 .0080 .0134 .23 4.24 1.00 4.50 .013 .00 .00 PIPE 1017.093 1293.287 4.500 1297.787 238.47 14.99 3.49 1301.28 .00 4.24 .00 4.500 .000 .00 1 .0 327.747 .0080 .0144 4.72 4.50 .00 4.50 .013 .00 .00 PIPE 1344.840 1295.910 6.697 1302.607 238.47 14.99 3.49 1306.10 .00 4.24 .00 4.500 .000 .00 1 .0 JUNCT STR .0077 .0147 .25 6.70 .00 .013 .00 .00 PIPE 1361.700 1296.040 6.816 1302.856 238.45 14.99 3.49 1306.35 .00 4.23 .00 4.500 .000 .00 1 .0 157.660 .0080 .0147 2.32 6.82 .00 4.50 .013 .00 .00 PIPE 1519.360 1297.300 7.874 1305.174 238.45 14.99 3.49 1308.66 .00 4.23 .00 4.500 .000 .00 1 .0 9.560 .0084 .0147 .14 .00 .00 4.50 .013 .00 .00 PIPE 1528.920 1297.380 8.297 1305.677 238.45 14.99 3.49 1309.17 .00 4.23 .00 4.500 .000 .00 1 .0 9.560 .0084 .0147 .14 .00 .00 4.50 .013 .00 .00 PIPE 1538.480 1297.460 8.721 1306.181 238.45 14.99 3.49 1309.67 .00 4.23 .00 4.500 .000 .00 1 .0 77.150 .0079 .0147 1.13 8.72 .00 4.50 .013 .00 .00 PIPE 1615.630 1298.070 9.246 1307.316 238.45 14.99 3.49 1310.81 .00 4.23 .00 4.500 .000 .00 1 .0 JUNCT STR .0085 .0102 .18 .00 .00 .013 .00 .00 PIPE 1633.310 1298.220 11.429 1309.649 147.55 9.28 1.34 1310.99 .00 3.57 .00 4.500 .000 .00 1 .0 17.670 .0079 .0056 .10 .00 .00 3.17 .013 .00 .00 PIPE FILE: FOOTHILL - SIERRA- JUNIPER.WSW W S P G W- CIVILDESIGN Version 14.06 PAGE 2 Program Package Serial Number: 1740 WATER SURFACE PROFILE LISTING Date:11 -10 -2006 Time:11: 4:34 ************************************************************************************ * **** **** ** ** ******* ** ** * * *** ** *wart ** ** * * * * ** Invert Depth Water Q Vel Vel Energy Super Critical1Flow Top Height/ Base Wt No Wth Station Elev (FT) Elev (CFS) (FPS) Head Grd.E1. Elev Depth 1 Width Dia. -FT or I.D. ZL Prs /Pip L /Elem Ch Slope SF Ave HF SE Dpth Froude N1Norm Dp "N" X -Fall ZR Type Ch * * * * * * * ** * * * * * * * ** * * * * * * ** * * * * * * * ** * * * * * * * ** * * * * * * *1* * * * * ** * * * * * * * ** * * * * * ** * * * * * * * *1* * * * * * ** * * * * * ** * * * * * ** * * * ** * * * * * ** 1 1650.980 1298.360 11.578 1309.938 147.55 9.28 1.34 1311.27 .00 3.57 .00 4.500 .000 .00 1 .0 16.160 .0080 .0056 .09 11.58 .00 3.15 .013 .00 .00 PIPE 1 1667.140 1298.490 11.539 1310.029 147.55 9.28 1.34 1311.37 .00 3.57 .00 4.500 .000 .00 1 .0 JUNCT STR .0075 .0056 .04 11.54 .00 .013 .00 .00 PIPE 1 1673.770 1298.540 11.593 1310.133 145.62 9.16 1.30 1311.44 .00 3.54 .00 4.500 .000 .00 1 .0 -- - 1 - -- -- - I - -- 511.180 .0080 .0055 2.80 11.59 .00 3.12 .013 .00 .00 PIPE 1 2184.950 1302.630 10.371 1313.001 145.62 9.16 1.30 1314.30 .00 3.54 .00 4.500 .000 .00 1 .0 JUNCT STR .0075 .0050 .03 10.37 .00 .013 .00 .00 PIPE 1 2191.580 1302.680 10.718 1313.398 132.92 8.36 1.08 1314.48 .00 3.39 .00 4.500 .000 .00 1 .0 72.420 .0080 .0046 .33 10.72 .00 2.92 .013 .00 .00 PIPE 1 2264.000 1303.260 10.469 1313.729 132.92 8.36 1.08 1314.81 .00 3.39 .00 4.500 .000 .00 1 .0 JUNCT STR .0719 .0046 .04 10.47 .00 .013 .00 .00 PIPE 1 2272.070 1303.340 9.926 1313.766 132.91 8.36 1.08 1314.85 .00 3.39 .00 4.500 .000 .00 1 .0 662.590 .0083 .0046 3.03 9.93 .00 2.88 .013 .00 .00 PIPE 1 2934.660 1309.370 7.477 1316.847 132.91 8.36 1.08 1317.93 .00 3.39 .00 4.500 .000 .00 1 .0 35.140 .0080 .0046 .16 .00 .00 2.93 .013 .00 .00 PIPE 1 2969.800 1309.650 7.574 1317.224 132.91 8.36 1.08 1318.31 .00 3.39 .00 4.500 .000 .00 1 .0 JUNCT STR .0071 .0037 .03 7.57 .00 .013 .00 .00 PIPE FILE: FOOTHILL- SIERRA-JUNIPER.WSW W S P G W- CIVILDESIGN Version 14.06 PAGE 3 Program Package Serial Number: 1740 WATER SURFACE PROFILE LISTING Date:l1 -10 -2006 Time:11: 4:34 * * *** * * **** ** * * *** *** ************************************* * ** * * ** ** ** * * * *** ** * **** * * * **** ** * ** * * * * * ***** * ** ** * * * * ** * ** **** * **** * ** Invert Depth Water Q Vel Vel Energy Super CriticallFlow Top Height/ Base Wt No Wth Station Elev (FT) Elev (CFS) (FPS) Head Grd.E1. Elev Depth I Width Dia. -FT or I.D. ZL Prs /Pip L /Elem Ch Slope SF Ave HF SE Dpth Froude NINorm Dp "N" X -Fall ZR Type Ch * * * * * * * ** * * * * * * * ** * * * * * * ** * * * * * * * ** * * * * * * * ** * * * * * * * * * * * * ** * * * * * * * ** * * * * * ** * * * * * * * *I * * * * * * ** * * * * * ** * * * * * ** * * * ** * * * * * ** 2976.880 1309.700 8.024 1317.724 104.11 6.55 .67 1318.39 .00 3.00 .00 4.500 .000 .00 1 .0 50.870 .0081 .0028 .14 8.02 .00 2.49 .013 .00 .00 PIPE 3027.750 1310.110 7.756 1317.866 104.11 6.55 .67 1318.53 .00 3.00 .00 4.500 .000 .00 1 .0 JUNCT STR .0082 .0014 .01 7.76 .00 .013 .00 .00 PIPE 3035.070 1310.170 8.372 1318.542 .01 .00 .00 1318.54 .00 .03 .00 4.500 .000 .00 1 .0 8.000 .0075 .0000 .00 8.37 .00 .03 .013 .00 .00 PIPE 3043.070 1310.230 8.312 1318.542 .01 .00 .00 1318.54 .00 .03 .00 4.500 .000 .00 1 .0 APPENDIX `E' FILE: FoothillSDLatA.WSW W S P G W- CIVILDESIGN Version 14.06 PAGE 1 Program Package Serial Number: 1740 WATER SURFACE PROFILE LISTING Date:11 -15 -2006 Time: 3:10:50 ************************** ** * * ** * * * * * ** *** * ** *** *** * ***** ********************************** ** *** ** * ** ** *** ***** *** ** *** * ** * * * * * *** Invert Depth Water Q Vel Vel Energy Super Critical Flow Top Height/ Base Wt No Wth Station Elev (FT) Elev (CFS) (FPS) Head Grd.El. Elev Depth Width Dia. -FT or I.D. ZL Prs /Pip L /Elem Ch Slope SF Ave HF SE Dpth Froude N Norm Dp "N" X -Fall ZR Type Ch * * * * * * * ** * * * * * * * ** * * * * * * ** * * * * * * * ** * * * * * * * ** * * * * * * *I * * * ** ** * * * * * * * ** * * * * * ** * * * * * * ** * * * * * * ** * * * * * ** * * * * * ** * * * ** * * * * * ** .000 1295.930 6.730 1302.660 1.00 .20 .00 1302.66 .00 .32 .00 2.500 .000 .00 1 .0 6.500 .0046 .0000 .00 6.73 .00 .32 .013 .00 .00 PIPE 6.500 1295.960 6.700 1302.660 1.00 .20 .00 1302.66 .00 .32 .00 2.500 .000 .00 1 .0 17.230 .0052 .0000 .00 6.70 .00 .31 .013 .00 .00 PIPE 23.730 1296.050 6.610 1302.660 1.00 .20 .00 1302.66 .00 .32 .00 2.500 .000 .00 1 .0 FILE: FoothillSDLatB.WSW W S P G W- CIVILDESIGN Version 14.06 PAGE 1 Program Package Serial Number: 1740 WATER SURFACE PROFILE LISTING Date:11 -15 -2006 Time: 3:13:38 * ** * ** * ******** ************************************* ** ** * ** * *** * ** * ** * * * ** ** * * ** *** * ** * ** * * * ******** * * **** * ** * ** * **** *mot* * *** * *** Invert Depth Water Q Vel Vel Energy Super CriticallFlow Top Height/ Base Wt No Wth Station Elev (FT) Elev (CFS) (FPS) Head Grd.E1. Elev Depth 1 Width Dia. -FT or I.D. ZL Prs /Pip L /Elem Ch Slope SF Ave HF SE Dpth Froude NINorm Dp "N" X -Fall ZR Type Ch * * * * * * * ** * * * * * * * ** * * * * * * ** * * * * * * * ** * * * * * * * ** ** * * * * *I * * ** * ** * * * * * * * ** * * * * * ** * * * * * * * *I * * * * * * ** * * * * * ** * * * * * ** * * * ** * * * * * ** .000 1295.980 6.770 1302.750 1.00 .20 .00 1302.75 .00 .32 .00 2.500 .000 .00 1 .0 6.500 .0046 .0000 .00 6.77 .00 .32 .013 .00 .00 PIPE 6.500 1296.010 6.740 1302.750 1.00 .20 .00 1302.75 .00 .32 .00 2.500 .000 .00 1 .0 17.230 .0052 .0000 .00 6.74 .00 .31 .013 .00 .00 PIPE 23.730 1296.100 6.650 1302.750 1.00 .20 .00 1302.75 .00 .32 .00 2.500 .000 .00 1 .0 FILE: FoothillSDLatC.WSW W S P G W- CIVILDESIGN Version 14.06 PAGE 1 Program Package Serial Number: 1740 WATER SURFACE PROFILE LISTING Date:11 -15 -2006 Time: 3:20:43 ** * ** ** * ** * **** ********************************************************************** ** **** ** * * * * * * * * * * * * * * ** ** * * * ** *art ** r. * * * * * ** Invert Depth Water Q Vel Vel Energy I Super CriticaliFlow Top Height/ Base Wt No Wth Station Elev (FT) Elev (CFS) (FPS) Head Grd.E1.I Elev Depth I Width Dia. -FT or I.D. ZL Prs /Pip L /Elem Ch Slope SF Ave HF ISE Dpth Froude NINorm Dp "N" X -Fall ZR Type Ch * * * * * * * ** * * * * * * * ** * * * * * * ** * * * * * * * ** * * * * * * * ** * * * * * * *I * * * * * ** * * * * * * * * *I * * * * * ** * * * * * * * * * * * * * * ** * * * * * ** * * * * * ** * * * ** * * * * * ** I .000 1295.930 6.730 1302.660 1.00 .20 .00 1302.66 .00 .32 .00 2.500 .000 .00 1 .0 6.500 .0031 .0000 .00 6.73 .00 .36 .013 .00 .00 PIPE I 6.500 1295.950 6.710 1302.660 1.00 .20 .00 1302.66 .00 .32 .00 2.500 .000 .00 1 .0 29.690 .0034 .0000 .00 6.71 .00 .35 .013 .00 .00 PIPE I 36.190 1296.050 6.610 1302.660 1.00 .20 .00 1302.66 .00 .32 .00 2.500 .000 .00 1 .0 - - - - - - - I - - I - - - - - FILE: FoothillSDLatD.WSW W S P G W- CIVILDESIGN Version 14.06 PAGE 1 Program Package Serial Number: 1740 WATER SURFACE PROFILE LISTING Date:ll -15 -2006 Time: 3:22:49 ******************************************************************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ******* Invert Depth Water Q Vel Vel Energy Super Critical Flow Top Height/ Base Wt No Wth Station Elev (FT) Elev (CFS) (FPS) Head Grd.E1. Elev Depth Width Dia. -FT or I.D. ZL Prs /Pip L /Elem Ch Slope SF Ave HF SE Dpth Froude N Norm Dp "N" X -Fall ZR Type Ch * * * * * * * ** * * * * * * * ** * * * * * * ** * * * * * * * ** * * * * * * * ** * * * * * * *I * * * * * ** * * * * * * * ** * * * * * ** * * * * * * ** * * * * * * ** * * * * * ** * * * * * ** * * * ** * * * * * ** .000 1295.980 6.770 1302.750 1.00 .20 .00 1302.75 .00 .32 .00 2.500 .000 .00 1 .0 6.500 .0031 .0000 .00 6.77 .00 .36 .013 .00 .00 PIPE 6.500 1296.000 6.750 1302.750 1.00 .20 .00 1302.75 .00 .32 .00 2.500 .000 .00 1 .0 29.890 .0033 .0000 .00 6.75 .00 .35 .013 .00 .00 PIPE 36.390 1296.100 6.650 1302.750 1.00 .20 .00 1302.75 .00 .32 .00 2.500 .000 .00 1 .0 FILE: FOOTHILLSDLATE.WSW W S P G W- CIVILDESIGN Version 14.06 PAGE 1 Program Package Serial Number: 1740 WATER SURFACE PROFILE LISTING Date:ll -29 -2006 Time: 1:28: 5 ******************************************************************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * ** Invert Depth Water Q Vel Vel Energy Super Critical Flow Top Height/ Base Wt No Wth Station Elev (FT) Elev (CFS) (FPS) Head Grd.E1. Elev Depth Width Dia. -FT or I.D. ZL Prs /Pip L /Elem Ch Slope SF Ave HF SE Dpth Froude N Norm Dp "N" X -Fall ZR Type Ch * * * * * * * ** * * * * * * * ** * * * * * * ** * * * * * * * ** * * * * * * * ** * * * * * * *I * * * * * ** * * * * * * * ** * * * * * ** * * * * * * ** * * * * * * ** * * * * * ** * * * * * ** * * * ** * * * * * ** .000 1298.070 9.250 1307.320 90.91 5.72 .51 1307.83 .00 2.80 .00 4.500 .000 .00 1 .0 JUNCT STR .1960 .0104 .18 9.25 .00 .013 .00 .00 PIPE 16.940 1301.390 4.349 1305.739 90.91 12.86 2.57 1308.31 .00 2.85 .00 3.000 .000 .00 1 .0 51.500 .0080 .0186 .96 4.35 .00 3.00 .013 .00 .00 PIPE 68.440 1301.800 4.896 1306.696 90.91 12.86 2.57 1309.26 .00 2.85 .00 3.000 .000 .00 1 .0 JUNCT STR .0082 .0093 .08 4.90 .00 .013 .00 .00 PIPE 77.020 1301.870 7.474 1309.344 .01 .00 .00 1309.34 .00 .03 .00 3.000 .000 .00 1 .0 8.000 .0075 .0000 .00 7.47 .00 .03 .013 .00 .00 PIPE 85.020 1301.930 7.414 1309.344 .01 .00 .00 1309.34 .00 .03 .00 3.000 .000 .00 1 .0 FILE: FoothillSDLatF.WSW W S P G W- CIVILDESIGN Version 14.06 PAGE 1 Program Package Serial Number: 1740 WATER SURFACE PROFILE LISTING Date:ll -15 -2006 Time: 4:21:22 ************************ ** ** *** * * * * * * * * * * * * ** * * * * * * * *** ************* * * * * * * * * * * * * * * * * * * * * * * * * * * *** ** * * * * * * * * * * ***** * * * * * * ** * * * * * * ** Invert Depth Water 4 Vel Vel Energy Super Critical Flow Top Height/ Base Wt No Wth Station Elev (FT) Elev (CFS) (FPS) Head Grd.E1. Elev Depth Width Dia. -FT or I.D. ZL Prs /Pip L /Elem Ch Slope SF Ave HF SE Dpth Froude N Norm Dp "N" X -Fall ZR Type Ch * * * * * * * ** * * * * * * * ** * * * * * * ** * * * * * * * ** * * * * * * * ** * * * * * * *I * * * * * ** * * * * * * * ** * * * * * ** * * * * * * ** * * * * * * ** * * * * * ** * * * * * ** * * * ** * * * * * ** .000 1301.810 9.630 1311.440 14.50 4.62 .33 1311.77 .00 1.37 .00 2.000 .000 .00 1 .0 6.690 .3647 .0041 .03 9.63 .00 .44 .013 .00 .00 PIPE 6.690 1304.250 7.217 1311.467 14.50 4.62 .33 1311.80 .00 1.37 .00 2.000 .000 .00 1 .0 18.303 .2892 .0041 .07 7.22 .00 .47 .013 .00 .00 PIPE 24.993 1309.543 2.000 1311.543 14.50 4.62 .33 1311.87 .00 1.37 .00 2.000 .000 .00 1 .0 - - - I .153 .2892 .0038 .00 2.00 .00 .47 .013 .00 .00 PIPE 25.146 1309.587 1.952 1311.539 14.50 4.64 .33 1311.87 .00 1.37 .61 2.000 .000 .00 1 .0 - - - I HYDRAULIC JUMP 25.146 1309.587 .938 1310.525 14.50 10.02 1.56 1312.08 .00 1.37 2.00 2.000 .000 .00 1 .0 .274 .2892 .0196 .01 .94 2.08 .47 .013 .00 .00 PIPE 25.420 1309.666 .962 1310.628 14.50 9.70 1.46 1312.09 .00 1.37 2.00 2.000 .000 .00 1 .0 .355 .2892 .0177 .01 .96 1.98 .47 .013 .00 .00 PIPE 25.775 1309.768 .998 1310.767 14.50 9.25 1.33 1312.10 .00 1.37 2.00 2.000 .000 .00 1 .0 .302 .2892 .0155 .00 1.00 1.84 .47 .013 .00 .00 PIPE 26.077 1309.856 1.037 1310.892 14.50 8.82 1.21 1312.10 .00 1.37 2.00 2.000 .000 .00 1 .0 - 1 .253 .2892 .0137 .00 1.04 1.71 .47 .013 .00 .00 PIPE 26.329 1309.929 1.077 1311.005 14.50 8.41 1.10 1312.10 .00 1.37 1.99 2.000 .000 .00 1 .0 .208 .2892 .0121 .00 1.08 1.59 .47 .013 .00 .00 PIPE FILE: FoothillSDLatF.WSW W S P G W- CIVILDESIGN Version 14.06 PAGE 2 Program Package Serial Number: 1740 WATER SURFACE PROFILE LISTING Date:ll -15 -2006 Time: 4:21:22 * **************************************** * * * ** * ** ** * * * * * * * * * * * * * * * ** * *** ****************** * * ** * * * * * * * * * * * * * * * **** * * * * * * ** * * * * * * ** Invert Depth Water Q Vel Vel Energy Super Critical Flow Top Height/ Base Wt 1No Wth Station Elev (FT) Elev (CFS) (FPS) Head Grd.El. Elev Depth Width Dia. -FT or I.D. ZL Prs /Pip L /Elem Ch Slope SF Ave HF SE Dpth Froude N Norm Dp "N" X -Fall ZR Type Ch * * * * * * * ** * * * * * * * ** * * * * * * ** * * * * * * * ** * * * * * * * ** * * * * * * *I * * * * * ** * * * * * * * ** * * * * * ** * * * * * * ** * * * * * * ** * * * * * ** * * * * * ** * * * ** * * * * * ** 26.537 1309.989 1.119 1311.108 14.50 8.02 1.00 1312.11 .00 1.37 1.99 2.000 .000 .00 1 .0 .166 .2892 .0107 .00 1.12 1.48 .47 .013 .00 .00 PIPE 26.703 1310.037 1.164 1311.200 14.50 7.65 .91 1312.11 .00 1.37 1.97 2.000 .000 .00 1 .0 .127 .2892 .0094 .00 1.16 1.37 .47 .013 .00 .00 PIPE 26.829 1310.073 1.211 1311.284 14.50 7.29 .83 1312.11 .00 1.37 1.96 2.000 .000 .00 1 .0 .089 .2892 .0084 .00 1.21 1.27 .47 .013 .00 .00 PIPE 26.918 1310.099 1.261 1311.360 14.50 6.95 .75 1312.11 .00 1.37 1.93 2.000 .000 .00 1 .0 .054 .2892 .0074 .00 1.26 1.18 .47 .013 .00 .00 PIPE 26.972 1310.115 1.314 1311.429 14.50 6.63 .68 1312.11 .00 1.37 1.90 2.000 .000 .00 1 .0 - H - .018 .2892 .0066 .00 1.31 1.09 .47 .013 .00 .00 PIPE 26.990 1310.120 1.372 1311.492 14.50 6.31 .62 1312.11 .00 1.37 1.86 2.000 .000 .00 1 .0 - 1 - - I - -I I- FILE: FoothillSDLatG.WSW W S P G W- CIVILDESIGN Version 14.06 PAGE 1 Program Package Serial Number: 1740 WATER SURFACE PROFILE LISTING Date:11 -16 -2006 Time: 8:39:55 ******************************************************************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * ** Invert Depth Water Q Vel Vel Energy Super Critical Flow Top Height/ Base Wt No Wth Station Elev (FT) Elev (CFS) (FPS) Head Grd.El. Elev Depth Width Dia. -FT or I.D. ZL Prs /Pip - H - - - - - - - - - - - - - - L/Elem Ch Slope SF Ave HF SE Dpth Froude N Norm Dp "N" X -Fall ZR Type Ch * * * * * * * ** * * * * * * * ** * * * * * * ** * * * * * * * ** * * * * * * * ** * * * * * * *I * * * * * ** * * * * * * * ** * * * * * ** * * * * * * ** * * * * * * ** * * * * * ** * * * * * ** * * * ** * * * * * ** .000 1301.810 9.630 1311.440 76.40 24.32 9.18 1320.62 .00 2.00 .00 2.000 .000 .00 1 .0 - 1 6.020 .1030 .1141 .69 9.63 .00 1.75 .013 .00 .00 PIPE 6.020 1302.430 9.696 1312.127 76.40 24.32 9.18 1321.31 .00 2.00 .00 2.000 .000 .00 1 .0 - 1 - - 4.550 .0220 .1141 .52 9.70 .00 2.00 .013 .00 .00 PIPE 10.570 1302.530 10.116 1312.646 76.40 24.32 9.18 1321.83 .00 2.00 .00 2.000 .000 .00 1 .0 20.120 .3817 .1141 2.29 10.12 .00 1.05 .013 .00 .00 PIPE 30.690 1310.210 4.730 1314.940 76.40 24.32 9.18 1324.12 .00 2.00 .00 2.000 .000 .00 1 .0 -1 FILE: FoothillSDLatH.WSW W S P G W- CIVILDESIGN Version 14.06 PAGE 1 Program Package Serial Number: 1740 WATER SURFACE PROFILE LISTING Date:11 -20 -2006 Time: 2:32:49 * * ** * ** ***** * * * ** * *** * ** r****************************************************************** * * * * * * * * *** * * * ** * * * ** * * * * * ** * ** * * * *** ** Invert Depth Water Q Vel Vel Energy Super CriticallFlow Top Height/ Base Wt No Wth Station Elev (FT) Elev (CFS) (FPS) Head Grd.E1. Elev Depth I Width Dia. -FT or I.D. ZL Prs /Pip L /Elem Ch Slope SF Ave HF SE Dpth Froude NINorm Dp "N" X -Fall ZR Type Ch * * * * * * * ** * * * * * * * ** * * * * * * ** * * * * * * * ** * * * * * * * ** * * * * * * *I * * * * * ** * * * * * * * ** * * * * * ** * * * * * * * *I * * * * * * ** * * * * * ** * * * * * ** * * * ** * * * * * ** .000 1298.500 11.550 1310.050 1.93 .61 .01 1310.06 .00 .48 .00 2.000 .000 .00 1 .0 6.740 .3042 .0001 .00 11.55 .00 .17 .013 .00 .00 PIPE I I 6.740 1300.550 9.500 1310.051 1.93 .61 .01 1310.06 .00 .48 .00 2.000 .000 .00 1 .0 I 1 6.230 .0803 .0001 .00 9.50 .00 .24 .013 .00 .00 PIPE I I I 12.970 1301.050 9.001 1310.051 1.93 .61 .01 1310.06 .00 .48 .00 2.000 .000 .00 1 .0 17.670 .0821 .0001 .00 .00 .00 .24 .013 .00 .00 PIPE I I I 30.640 1302.500 7.553 1310.053 1.93 .61 .01 1310.06 .00 .48 .00 2.000 .000 .00 1 .0 - I - - I 1 11.140 .0817 .0001 .00 7.55 .00 .24 .013 .00 .00 PIPE I I I 41.780 1303.410 6.644 1310.054 1.93 .61 .01 1310.06 .00 .48 .00 2.000 .000 .00 1 .0 FILE: FoothillSDLatI.WSW W S P G W- CIVILDESIGN Version 14.06 PAGE 1 Program Package Serial Number: 1740 WATER SURFACE PROFILE LISTING Date:11 -20 -2006 Time: 2:55:21 ********************* ************ * * * * * * * * * * * * * ** * * * * * * * * * ** * **** **** * * * * * * *** * * * * * * * * * * * ** * * * * * * * ** *mot * * * *** * * * * * * * * * * ** * * ** * *** Invert Depth Water Q Vel Vel Energy Super Critical Flow Top Height/ Base Wt No Wth Station Elev (FT) Elev (CFS) (FPS) Head Grd.El. Elev Depth Width Dia. -FT or I.D. ZL Prs /Pip L /Elem Ch Slope SF Ave HF SE Dpth Froude N Norm Dp "N" X -Fall ZR Type Ch * * * * * * * ** * * * * * * * ** * * * * * * ** * * * * * * * ** ** * * * * * ** * * * * * * *I * * * * * ** * * * * * * * ** * * * * * ** * * * * * * ** * * * * * * ** * * * * * ** * * * * * ** * * * ** * * * * * ** .000 1302.640 10.440 1313.080 12.70 4.04 .25 1313.33 .00 1.28 .00 2.000 .000 .00 1 .0 6.740 .4614 .0032 .02 10.44 .00 .39 .013 .00 .00 PIPE 6.740 1305.750 7.351 1313.101 12.70 4.04 .25 1313.35 .00 1.28 .00 2.000 .000 .00 1 .0 34.062 .1598 .0032 .11 7.35 .00 .51 .013 .00 .00 PIPE 40.802 1311.193 2.017 1313.209 12.70 4.04 .25 1313.46 .00 1.28 .00 2.000 .000 .00 1 .0 HYDRAULIC JUMP 40.802 1311.193 .784 1311.977 12.70 11.11 1.92 1313.89 .00 1.28 1.95 2.000 .000 .00 1 .0 .209 .1598 .0298 .01 .78 2.56 .51 .013 .00 .00 PIPE 41.011 1311.226 .784 1312.010 12.70 11.11 1.92 1313.93 .00 1.28 1.95 2.000 .000 .00 1 .0 1.106 .1598 .0280 .03 .78 2.56 .51 .013 .00 .00 PIPE 42.117 1311.403 .813 1312.215 12.70 10.59 1.74 1313.96 .00 1.28 1.96 2.000 .000 .00 1 .0 .952 .1598 .0246 .02 .81 2.39 .51 .013 .00 .00 PIPE 43.069 1311.555 .843 1312.397 12.70 10.10 1.58 1313.98 .00 1.28 1.98 2.000 .000 .00 1 .0 .818 .1598 .0216 .02 .84 2.23 .51 .013 .00 .00 PIPE 43.887 1311.685 .874 1312.559 12.70 9.63 1.44 1314.00 .00 1.28 1.98 2.000 .000 .00 1 .0 .700 .1598 .0190 .01 .87 2.08 .51 .013 .00 .00 PIPE 44.587 1311.797 .906 1312.703 12.70 9.18 1.31 1314.01 .00 1.28 1.99 2.000 .000 .00 1 .0 .596 .1598 .0167 .01 .91 1.94 .51 .013 .00 .00 PIPE FILE: FoothillSDLatI.WSW W S P G W- CIVILDESIGN Version 14.06 PAGE 2 Program Package Serial Number: 1740 WATER SURFACE PROFILE LISTING Date:11 -20 -2006 Time: 2:55:21 ******************************************************************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * ** Invert Depth Water Q Vel Vel Energy Super Critical Flow Top Height/ Base Wt No Wth Station Elev (FT) Elev (CFS) (FPS) Head Grd.El. Elev Depth Width Dia. -FT or I.D. ZL Prs /Pip L /Elem Ch Slope SF Ave HF SE Dpth Froude N Norm Dp "N" X -Fall ZR Type Ch * * * * * * * ** * * * * * * * ** * * * * * * ** * * * * * * * ** * * * * * * * ** * * * * * * *!* * * * * ** * * * * * * * ** * * * * * ** * * * * * * ** * * * * * * ** * * * * * ** * * * * * ** * * * ** * * * * * ** 45.182 1311.892 .940 1312.832 12.70 8.76 1.19 1314.02 .00 1.28 2.00 2.000 .000 .00 1 .0 .502 .1598 .0147 .01 .94 1.81 .51 .013 .00 .00 PIPE 45.684 1311.973 .975 1312.948 12.70 8.35 1.08 1314.03 .00 1.28 2.00 2.000 .000 .00 1 .0 .416 .1598 .0129 .01 .98 1.69 .51 .013 .00 .00 PIPE 46.101 1312.039 1.012 1313.052 12.70 7.96 .98 1314.04 .00 1.28 2.00 2.000 .000 .00 1 .0 .340 .1598 .0114 .00 1.01 1.57 .51 .013 .00 .00 PIPE 46.441 1312.094 1.051 1313.145 12.70 7.59 .89 1314.04 .00 1.28 2.00 2.000 .000 .00 1 .0 .269 .1598 .0100 .00 1.05 1.46 .51 .013 .00 .00 PIPE 46.710 1312.136 1.092 1313.229 12.70 7.24 .81 1314.04 .00 1.28 1.99 2.000 .000 .00 1 .0 .204 .1598 .0088 .00 1.09 1.36 .51 .013 .00 .00 PIPE 46.914 1312.169 1.135 1313.304 12.70 6.90 .74 1314.04 .00 1.28 1.98 2.000 .000 .00 1 .0 .143 .1598 .0078 .00 1.14 1.26 .51 .013 .00 .00 PIPE 47.057 1312.192 1.181 1313.373 12.70 6.58 .67 1314.04 .00 1.28 1.97 2.000 .000 .00 1 .0 .084 .1598 .0069 .00 1.18 1.17 .51 .013 .00 .00 PIPE 47.141 1312.205 1.229 1313.434 12.70 6.27 .61 1314.05 .00 1.28 1.95 2.000 .000 .00 1 .0 .029 .1598 .0061 .00 1.23 1.08 .51 .013 .00 .00 PIPE 47.170 1312.210 1.281 1313.491 12.70 5.97 .55 1314.05 .00 1.28 1.92 2.000 .000 .00 1 .0 FILE: FoothillSDLatJ.WSW W S P G W- CIVILDESIGN Version 14.06 PAGE 1 Program Package Serial Number: 1740 WATER SURFACE PROFILE LISTING Date:l1 -20 -2006 Time: 3: 6:39 ****************************************************************************************-*** ****** * * ** * * ** * * * * * * * * * * * * * * *** * * * * * * ** Invert Depth Water Q Vel Vel Energy Super Critical Flow Top Height/ Base Wt No Wth Station Elev (FT) Elev (CFS) (FPS) Head Grd.El. Elev Depth Width Dia. -FT or I.D. ZL Prs /Pip L /Elem Ch Slope SF Ave HF SE Dpth Froude N Norm Dp "N" X -Fall ZR Type Ch * * * * * * * ** * * * * * * * ** * * * * * * ** * * * * * * * ** * * * * * * * ** * * * * * **I * * * * * ** * * * * * * * ** * * * * * ** * * * * * * ** * * * * * * ** * * * * * ** * * * * * ** * * * ** * * * * * ** .000 1303.300 10.440 1313.740 .02 .01 .00 1313.74 .00 .05 .00 2.000 .000 .00 1 .0 7.680 .1966 .0000 .00 10.44 .00 .02 .013 .00 .00 PIPE 7.680 1304.810 8.930 1313.740 .02 .01 .00 1313.74 .00 .05 .00 2.000 .000 .00 1 .0 -- -- -- - I - - I - -- -- - 2.320 .0043 .0000 .00 8.93 .00 .06 .013 .00 .00 PIPE I 10.000 1304.820 8.920 1313.740 .02 .01 .00 1313.74 .00 .05 .00 2.000 .000 .00 1 .0 - - - I - - I - - - - - - - - 17.670 .0023 .0000 .00 .00 .00 .07 .013 .00 .00 PIPE I 27.670 1304.860 8.880 1313.740 .02 .01 .00 1313.74 .00 .05 .00 2.000 .000 .00 1 .0 -- -- - I - - I - -- -- -- - 20.620 .0029 .0000 .00 8.88 .00 .06 .013 .00 .00 PIPE I 48.290 1304.920 8.820 1313.740 .02 .01 .00 1313.74 .00 .05 .00 2.000 .000 .00 1 .0 - - - I - - I - - - - - JUNCT STR .0025 .0000 .00 8.82 .00 .014 .00 .00 PIPE 56.290 1304.940 8.800 1313.740 .00 .00 .00 1313.74 .00 .01 .00 2.000 .000 .00 1 .0 8.000 .0025 .0000 .00 8.80 .00 .02 .013 .00 .00 PIPE I 64.290 1304.960 8.780 1313.740 .00 .00 .00 1313.74 .00 .01 .00 2.000 .000 .00 1 .0 - I - - I - - - - - - - - - FILE: FoothillSDLatK.WSW W S P G W- CIVILDESIGN Version 14.06 PAGE 1 Program Package Serial Number: 1740 WATER SURFACE PROFILE LISTING Date:ll -21 -2006 Time: 8: 2: 7 ******************************************** * * ** **** * ****** ************ ** *, **************** * *** * ** * *** * * * ** * * * *** * ******** * ** *** ** Invert Depth Water Q Vel Vel Energy Super CriticallFlow Top Height/ Base Wt No Wth Station Elev (FT) Elev (CFS) (FPS) Head Grd.El. Elev Depth I Width Dia. -FT or I.D. ZL Prs /Pip L /Elem Ch Slope SF Ave HF SE Dpth Froude NiNorm Dp "N" X -Fall ZR Type Ch * * * * * * * ** * * * * * * * ** * * * * * * ** * * * * * * * ** * * * * * * * ** * * * * * * *I * * * * * ** * * * * * * * ** * * * * * ** * * * * * * * *I * * * * * * ** * * * * * ** * * * * * ** * * * ** * * * * * ** .000 1304.920 8.820 1313.740 .01 .00 .00 1313.74 .00 .03 .00 2.000 .000 .00 1 .0 5.470 .2102 .0000 .00 8.82 .00 .02 .013 .00 .00 PIPE 5.470 1306.070 7.670 1313.740 .01 .00 .00 1313.74 .00 .03 .00 2.000 .000 .00 1 .0 20.730 .2098 .0000 .00 7.67 .00 .02 .013 .00 .00 PIPE 26.200 1310.420 3.320 1313.740 .01 .00 .00 1313.74 .00 .03 .00 2.000 .000 .00 1 .0 FILE: FoothillSDLatL.WSW W S P G W- CIVILDESIGN Version 14.06 PAGE 1 Program Package Serial Number: 1740 WATER SURFACE PROFILE LISTING Date:11 -21 -2006 Time: 8: 8:42 ******************************************************************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * ** Invert Depth Water Q Vel Vel Energy Super Critical Flow Top Height/ Base Wt No Wth Station Elev (FT) Elev (CFS) (FPS) Head Grd.El. Elev Depth Width Dia. -FT or I.D. ZL Prs /Pip L /Elem Ch Slope SF Ave HF SE Dpth Froude N Norm Dp "N" X -Fall ZR Type Ch * * * * * * * ** * * * * * * * ** * * * * * * ** * * * * * * * ** * * * * * * * ** * * * * * * *1* * * * * ** * * * * * * * ** * * * * * ** * * * * * * ** * * * * * * ** * * * * * ** * * * * * ** * * * ** * * * * * ** .000 1304.920 8.820 1313.740 .01 .00 .00 1313.74 .00 .03 .00 2.000 .000 .00 1 .0 5.490 .2131 .0000 .00 8.82 .00 .02 .013 .00 .00 PIPE 5.490 1306.090 7.650 1313.740 .01 .00 .00 1313.74 .00 .03 .00 2.000 .000 .00 1 .0 20.590 .2127 .0000 .00 7.65 .00 .02 .013 .00 .00 PIPE 26.080 1310.470 3.270 1313.740 .01 .00 .00 1313.74 .00 .03 .00 2.000 .000 .00 1 .0 FILE: FoothillSDLatM.WSW W S P G W- CIVILDESIGN Version 14.06 PAGE 1 Program Package Serial Number: 1740 WATER SURFACE PROFILE LISTING Date:ll -21 -2006 Time: 9:16:41 * *** * **** * * * * * * * * * * *** ***********************************,************** * ** ** ** * * * * * * * * * * * * ** *** *** * *** * * * * * * * * * * *** * * * * ** * * ****** Invert Depth Water Q Vel Vel Energy Super Critical Flow Top Height /IBase Wt No Wth Station Elev (FT) Elev (CFS) (FPS) Head Grd.El. Elev Depth Width Dia. -FTlor I.D. ZL Prs /Pip L /Elem Ch Slope SF Ave HF SE Dpth Froude N Norm Dp "N" I X -Fall ZR Type Ch * * * * * * * ** * * * * * * * ** * * * * * * ** * * * * * * * ** * * * * * * * ** * * * * * * *I * * * * * ** * * * * * * * ** * * * * * ** * * * * * * ** * * * * * * ** * * * * * * * * * * * * ** * * * ** * * * * * ** .000 1309.680 7.790 1317.470 28.80 5.87 .53 1318.00 .00 1.83 .00 2.500 .000 .00 1 .0 - 1 - - 6.510 .1874 .0049 .03 7.79 .00 .68 .013 .00 .00 PIPE 6.510 1310.900 6.602 1317.502 28.80 5.87 .53 1318.04 .00 1.83 .00 2.500 .000 .00 1 .0 1.100 .0363 .0049 .01 .00 .00 1.05 .013 .00 .00 PIPE 7.610 1310.940 6.586 1317.526 28.80 5.87 .53 1318.06 .00 1.83 .00 2.500 .000 .00 1 .0 16.370 .0348 .0049 .08 .00 .00 1.06 .013 .00 .00 PIPE 23.980 1311.510 6.170 1317.680 28.80 5.87 .53 1318.21 .00 1.83 .00 2.500 .000 .00 1 .0 46.960 .0347 .0049 .23 6.17 .00 1.06 .013 .00 .00 PIPE 70.940 1313.140 4.771 1317.911 28.80 5.87 .53 1318.45 .00 1.83 .00 2.500 .000 .00 1 .0 - - -1- - I - - 1 - 17.670 .0351 .0049 .09 .00 .00 1.06 .013 .00 .00 PIPE 88.610 1313.760 4.314 1318.074 28.80 5.87 .53 1318.61 .00 1.83 .00 2.500 .000 .00 1 .0 - - - - - H - H - I - - I - - I - - - -�- -�- - 4.400 .0341 .0049 .02 4.31 .00 1.07 .013 .00 .00 PIPE 93.010 1313.910 4.186 1318.096 28.80 5.87 .53 1318.63 .00 1.83 .00 2.500 .000 .00 1 .0 FILE: FoothillSDLatN.WSW W S P G W- CIVILDESIGN Version 14.06 PAGE 1 Program Package Serial Number: 1740 WATER SURFACE PROFILE LISTING Date:11 -21 -2006 Time:10:10:37 ********************* * * * * * * * * **** * *** * * * * * * * * * * * * *** * * **** ********************************* * * * * * * * * * * * * * * * * *** * * *** * ** * * ** * * * * * * ** Invert Depth Water Q Vel Vel Energy Super Critical Flow Top Height/ Base Wt No Wth Station Elev (FT) Elev (CFS) (FPS) Head Grd.El. Elev Depth I Width Dia. -FT or I.D. ZL Prs /Pip L /Elem Ch Slope SF Ave HF SE Dpth Froude NINorm Dp "N" X -Fall ZR Type Ch * * * * * * * ** * * * * * * * ** * * * * * * ** * * * * * * * ** * * * * * * * ** * * * * * * *I * * * * * ** * * * * * * * ** * * * * * ** * * * * * * * * * * * * * * ** * * * * * ** * * * * * ** * * * ** * * * * * ** .000 1310.130 7.970 1318.100 65.90 13.43 2.80 1320.90 .00 2.42 .00 2.500 .000 .00 1 .0 6.040 .3808 .0258 .16 7.97 .00 .87 .013 .00 .00 PIPE 6.040 1312.430 5.826 1318.256 65.90 13.43 2.80 1321.05 .00 2.42 .00 2.500 .000 .00 1 .0 28.360 .0913 .0258 .73 5.83 .00 1.30 .013 .00 .00 PIPE 34.400 1315.020 3.968 1318.988 65.90 13.43 2.80 1321.79 .00 2.42 .00 2.500 .000 .00 1 .0 FILE: FoothillSDLatO.WSW W S P G W- CIVILDESIGN Version 14.06 PAGE 1 Program Package Serial Number: 1740 WATER SURFACE PROFILE LISTING Date:ll -21 -2006 Time: 9:35:53 *************************************************************************************** *** * * * * * * * * * *** * ** *** * * * **** *** *tit **** * *** Invert Depth Water Q Vel Vel Energy Super CriticaljFlow Top Height/ Base Wt No Wth Station Elev (FT) Elev (CFS) (FPS) Head Grd.El. Elev Depth I Width Dia. -FT or I.D. ZL Prs /Pip L /Elem - Ch Slope SF Ave HF SE Dpth Froude N1Norm Dp "N" X -Fall ZR Type Ch * * * * * * * ** * * * * * * * ** * * * * * * ** * * * * * * * ** * * * * * * * ** * * * * * * *I * * * * * ** * * * * * * * ** * * * * * ** * * * * * * * *I * * * * * * ** * * * * * ** * * * * * ** * * * ** * * * * * ** .000 1310.130 7.970 1318.100 38.20 12.16 2.30 1320.40 .00 1.94 .00 2.000 .000 .00 1 .0 6.040 .3874 .0285 .17 7.97 .00 .71 .013 .00 .00 PIPE 6.040 1312.470 5.802 1318.272 38.20 12.16 2.30 1320.57 .00 1.94 .00 2.000 .000 .00 1 .0 49.580 .0561 .0285 1.41 5.80 .00 1.25 .013 .00 .00 PIPE 1 55.620 1315.250 4.436 1319.686 38.20 12.16 2.30 1321.98 .00 1.94 .00 2.000 .000 .00 1 .0 11.780 .0560 .0285 .34 .00 .00 1.25 .013 .00 .00 PIPE 67.400 1315.910 4.377 1320.287 38.20 12.16 2.30 1322.58 .00 1.94 .00 2.000 .000 .00 1 .0 - - - - - I - - - - I - - I - - - - 12.430 .0570 .0285 .35 4.38 .00 1.24 .013 .00 .00 PIPE 79.830 1316.618 4.023 1320.641 38.20 12.16 2.30 1322.94 .00 1.94 .00 2.000 .000 .00 1 .0 - - -- -- -- - 1 - - I - -- -- -- - 1 - -- APPENDIX `F' Page G SUMP FORMULA Q : 4.3 AD SUBMERGENCE) 1111•••••1•111•111•111••••MBI/INIIIIIMI MI WM OIMINMIMMISIMII MIMI • A = AREA OF OPEN (W x 0.656). NM MIBMINNIIIIHIMIIIIIIIII MINN. 1111•111111•1111111111111111111111/P • ■ Ili MaliiiiMillIMIMIAI Ilir All as 400 W = LENGTH (FEET) OF CATCH BASIN ---===-....-=-..-=...-,.......... = ..•••••••••■••••••. • of of. .1•1111.01101 . 0 . 11: OPENING .-.......- -.- . - -........- .•-.......... 0.10,01.0.11.004. • • al1.0 a0.1.• OW ...OM Y... • ........... IN.. a Dr. DEPTH (FEET) OF FLOW ABOVE MY ...... •• a. ilm.mr 0.• 300 ........... , ....2........ . /0111•1•,••••••• gmft• • INIMIMP• AM!. ,• 6 NORMAL GUTTER GRADE • ••• -AMMON l.11•••••• .6••••••■• 1/•••■•••• AI ••■••••■•••• .." •••• 11.• osmium MiliMMIN .. mannilv. gm ea 1 •■•111•111••••• a IIIIIIIMMI all 1•111110•• 4lifir q.v.. NW air:Am 8" NORMAL C.F. , 9" C.F. AT C.B. MOW 4111111/00N4WI I • .411111111.111 WNW AS MP .4•11111111■ - .lear Ur . 01111110•11 MIN J/W1141111111IVALINI IL t • '.111111111111W/111 200 • IOW MI •1111111VANMPIr 0' all non wroP■s as 11111114115111 SP:41111111. . a WI HUI Pl. intl Si OMNI IMP 1111111111W41111 IP!. Mill 1111111111Mii 11.11111r. din IN k . rani inn MI ' a d11111111:1111111Prg1111111•1 II NMI 111111, aninimanniuniamels Mir.411110%.11111111110 181111‘11111lnill11111117 IIIIIIIIMIIIIIIIIMIIIIII111111111111 IIIIIIPUM111111110n111111111111111111 too -i..E...: -a - -- _:. mom. UMW ••••• me. ION.11..,...... Yam.. mom. • MM.". I IIII. .11 . •11/1/ 1 WIMIROMOlg .....M.1 0.1•06 1......111.9... Yr mg../ 40.0... milm. . 0 id .11 MINYMY00.0.ms ..................Y m.o.. mm•Y 0. • •• - ..00.0.....MUYIMIY• .0.•■•■•10.2.... ......100■•••MM.....01. .0110 - OA • IBA ' 6 0 ......................... ------ 0111. N.. ....... 01.1.101M 01010M.MINIHIMMIM, •- m , =,............r....:-....x.....3. t93:....Tr.....z...........=.....a. 1 ------ .011.1.0.11:: •••■••••0•••1 BUYS • WW1 SUMS ----- Ili. NNW ■•■••••••'..••••■••••••••••••• =••••••111•1•11••••••11 Ille••• II Nell Mt -- • iii ••••=;1% ■•■•••• - • ■••11 50 OP .. I rims asatausal swam ems nut us ----- u suil war war ...... amour. . • -.am eases Nu ------- e % ilia•SMIONION4U11111111•1111111111111111111111111141CIMH Mt lar.011111101111111•11111111 MI I 1.• Min MO inn 11/1•11111011W NMI UN IN II on , -..amullI1111011/"... 1 - - = = = - - . Ir.. = = ;17=7.11: =1' :=::::::: : ::: a 7....----. ..z...--.: - == -.........=, o -.==== 40 4 4 1.001.0 rm. ••••• ==.mm Yr = ...... ..,% . ... === ■:;:' ===r . •■•■:= OMNI.= 1.......1 IIIMMIMIO =MIMS al..... .. .1.................Y ....., 0.010100 . MA RIO •••■•■■•■•• YMI00.11.0.110.10.0m...00 ...........■ a. , ine. 0•0410...010.0.M.• MOM.. ...".''...."': 30 Z =.11:= === = .... 101 OM .. •• ... IMM1.11.0.1.1.....11. .... :::::: GYM NM,. Ni•I Mon= .... .... . •••••■=0 r..•MI • uas 1••••• SY= MY IIMINO•f•11••••• WIN 12•111.B•ts 41111•1•1•2•111•11MMII•••■•• .. war seas. NM IP•107/18 mem ... re um mu 1111 ... ow wesumwar ...... It ISIIIII•1111•1•11•11111 ........ i 471•/•/•111111111•1•1••••••••• sass. 1 INI111111111 IHMISIN BOHM pun 11111111 4111 NM= MEM IOW ... Cri MIIIM111,1111112111111110BINI UM Mel I HII Ili i 1 U111111•11111111111•11MMIIIIMIll MI u: MEM MGM MU WHIM KIM VIM MIS IV 011114•1111111111111•11M111111111111•11111111• •11111111111111 2 0 ISIUlMUUUIIIIII il UMW 411111111111111•111MIMMIRIMMUI11111.11111111NERNIIn ........ um se 0 wismIneutseumeninmesuninini nimummumaingwasamsnassessIsulltumesse --- IIIIMIIIMINIS Ilimul MU HUM mil ' iliiIisi 1111•11011M11 Um, MINIII n i IMI1111•11111111111 e ... IIIIIIIIIIIIIIIIIIIIIIIIIMIIMIIIIIIIIIII11111111111•11111•1111111111 ••.' 111111111111111111111111111u1i11M1 IVIIIIIIIII111111110111111111111111811118888M M1112111118111111181811111111111111111111,11111111111111111 151111111111111111511151111U11131111'1111111511111151 11111111111111M111111111111M1NU 1' 111111111111111111111111111111111111111111111111111111111111 111111111111111111MIMIIIIIW11111111111111111111111111111211111111111M IIIIIMUMIIIIIM101111W111111111111111111111111111111111111111111111111M11 ,....„===...,.....____ ...: :. -,...-. =___:_____________ ... _ ..,-..-=_-:;......,-_-_-..-.......-___.:-.. =:::..-- .. 9 =-.:-_•_-=-..-_=::===_______ ..,. ...... - - - ======--. -_-.- - . - -------- --=EE 8 ........m.a gm ...ma a ----- r • • ••:: ---- : ..........m. .... ga..■■ ..1........... --- ...:, , ...o ft • A ---- :?,. , .1. •■•••■== - ...... 7 ... - NIMININ sm bee a.mesion•-•.• . .. on son ........manole•••■•=twoma•mo■t. . ... •■••••••. .g mi.. fllYMOrMimilMA•M•00.00111.010.1.0 WM. IYMM.••••• .. .111 i IMMO own mommor.1100.......... •■ 8 mal WM •••••=.011 1.0........0100.010.001.00•10100.01.1....1. ... .3 4 .5 .8 :7 .8 .9 1.0 2 3 4 5 • D= DEPTH OF FLOW (FT.) ABOVE NORMAL GUTTER GRADE Los Angeles County Flood Control District CATCH BASIN CAPACITIES FOR SUMP CONDITION TO BE USED FOR C.B. NOS. I, 2 & 3 • ' D-26 Q I (C.F.S.) INTO CATCH BASIN i p uii , p' ii N N %lun i I l i n, lll u li ii i l u 1 I W nn1 N li ne IRlil°UI iI IIIIuf 101 I$IIi 1 m n rnnni,iuiu u.iis.uiu.n � ........= n1, 111111111111111IIn 41I I II IIIGIWI. 1II.1..I 1 ■ � HIIIIII I 1 fr � r n .ntnlll .......s .r 11 IIIIIIIIII 111' mill/lit UIJ mini QIra! a amps' ' Iflll I 1 R • I•.0 FFF1 iflllplllf .nn..f IIn11111 I .... 7 IIIi11U111, i 114 g I { 11 11 H 081010111 • � _ =C.•, p 1 1 l I itI I I l::s=;I 1 IW I I 1:111:1: % : :: ::::-- 'lb.:, 111111111111 II : h.N °;�ii ��.i.■ �.f�f'N�.i; 1 �� :q l r :. ■: •ii 1�I.�N�i�I .:::: ... I INy 1 .iliii1 11 Ili':::• : =: . al. {I -sup N all 1 .. • .11 1 .. {III 141i ■e �::i 1. �... E s ......rig { :1ee��e e; i{ , rY sE••=•• :: IN41•.. •s s•:. pin .. N : E : 5� N :: . 1 . a.1a { l -. .11.11..•• • 1r1a {e . a. IE r•• ::s• �• ..a: L ii : :s3�;• I :i; •.I•{::::::::r.•. N x_ - . ... .. : : : : :: :, : : :: .... E: e•C . l.. ...i.".;..:119111,11..1/.4 : .S :;; •I:ti ?:: i tl:.'l.::l 1 .. = - . . ..... z: i E• I...:iJ...:,.:::s 4 11 1.11 ;i ..:i- i' i.Iii °M ze •-1 t: i : ii3e E :................................ -' -- - -_ , .. ..3.t .................... .IiiE- s • ~ _ }}�� 1'�I......I 1'- -.0 -: ». = . ::s e ..... .__ ....... .. a E i n ii: . _ :::: - : -? t .... • _ _ _u. - „ ]a==' ° I ' ! - ' . - S _ S c _ x °x c • c •Fs . ..... , s i I . c _: •• ?a"-_ Ayr.-- : cys:_2:: lan 2 .1 5'!ecce i.>: :::::eE o_ 1 - c_ duce::::c.........:IEi1zc3'e?5? :F... s r • i t N �_. I - u t�_:i: ■ ::un :• •• iiii ° i i{ 1 i i i� N i NL{a NaN nn 7 ::: ? •! : • :': • • •1::u:1NS. S ::1. NmNE 7 is C:d`•` { N.::...NN :N .. NNIN.INI :C ■• :..111.4.1••.. :N.. _ - ..".:::::::11: o . ..... :.tr : i..:. s. :...... 1. % :: ii is ? j ;.. - ,, a ...... s ::es. I.. i2 ! 's ! :: ::i.. :s... ;iei�'j9�: °:....., oe • . ... I s r, . :1:is. r r :: : « Esss s r: _c. -s:a z - • 1i s . .sell rn _ _ __• - . .. .. ii' : erg.- ......:. :et ax:::r e 11EEES!? t a � 1x:::::: - -: ::...z : - .... m CO Vi a :: -.12 . „•,. ,-.- r: s : :::`::: ..1. -:? _ _ z :. ...._ ]_ :N• »... Ill I �� ■ . .... i P :. ,• ri. - ' Ii1N •M N ; Y••. N : { ': I t L l..,•• ... . 1 i.• ... .. wo. sae. tt::1{R: •fl: : Ki. r'N • • 1C . { {'.. ••1I.: „.o . 1 1 1 4' L 7..a4 at Is - - - I .. .........,... -..... ........ � �.0 -.. ::: 1 ........... Ca . .:' : f:: ....... r1 - ii - : :, -.,.0 1- F 1 I .. 1•2'2121i.112.2 _ ...5-E e:E::: . : .. »... ..- ° .. Fe:.. . :.: #_ - :: :e zC .. •° i.1111 :1l.tnt1l 11111 I11 1 1111111111 i iiiiiriiiiiiiiiiii sill 0 Viii 111111111111 n 1 NI ' ,muumuu ' ... ,_ rui i N w a to rz - N) w i W 01 -1 a rp o 0 0 0 0 0 Z o Q (C.F.S.) CATCH BASIN � p� �S .. MUM ......... j nlnl lll ll l lllflllll's ...lI ut11UIIII nli n IWII ' IU U I I II I ' " pl'. IHIIIUIUI I� I II I M . Ig r IIII. I I , 1 11 f 111h U f� l. .. Is ,lI 1 1np .In I 1 . !! p p ■ Oss . .. I fln IIIpi l 11 . • . . u m II l I ... U 1 f u l li uu ing.m.I ..1 n 11 / IIN II . ■ . nrU :�' I� n I n I llnun r s Inun -� p C7 :::: g f Il s1 IE I 1�.��hlif 1 n 1 i l = l i o ns u E n l ..5. 11 ::: 1. I`i tu l� d a i l Ilr`iiglsI1.In'I I I G .'.�1 I u n i ' E 3 : :u ■■ 1 1 :1. 11 IIt1U /II IIII�Y / NIIII +// NIIU fa� '� i • ii 1 � 1 1a 11 ... :::::: � . 11 1 1' 1 tl : :; i1 ;; 11 ; 1111 n 1 ; 1 111 I 1 ' f 0 ID ID 0 C 1 ... Will 1 a.�11j 11 1 tt111 ilr■. 1 NIIN 1 ..� ...�,�illiEtN :E!...-..r. fit s a.a . in41 iiir. . i .. /Oils :Ili ;u of . Q .... ■•� :n 111N1 11 r 1 1..1111. much. sill - immix:. . ..: � I ea 11. i 111i 3 :Mill a, C ..,.. . : illll: • .� :11N1111: '. : :11.11 :rrl : ••. 1 .N :n11 :1{ m : a. LNN. lnibanll tD V-In :•:'C ..r la.{: r 4:• .............1. s•1 :sr1a.N °: . r ..{ a .{ 1::{::1d::.:: .N.. I:il. N -+ unw N nlr u . w 1. .oil eua : :..... { °Nn. 4 u::. . n.•n : : : : i .1::4:• { ::• NY C'ti ::�■. ..... { : . :wi ::. a ...un n rn -, N -1 - _ . t: 1 1.1 :.. ' y {I.. . ...I { .1.N�II { 1 s o_ ° -4 - - -_ : :•.: s ii:: :: : : : :1:: : : : i�?:::: :a im of i .:law T =--1311:•::: E : :3 :1 .... i;i: ii95e9•: :i... °: :I<iiiar »ti;1 :;.. 4 ;s".E: :? N a ::::1:. � t......1.. :••s�••tut N � � co N _ _ : � = -- ......, " u : : : :;L.ia'I= ei :sax 3 : : : : { :I :..e :. _aSs: etCEE :Mu:: .....i.. E a:::s::: I1. : :�a• .. ..nn: "i:. .............. 11.-F.F. 4 . _ 1 .:11:1.- :::I1_... -+• 3 .- _ : .. _ ... e!i? a _ ,.. .., °_ °�I =_ e .1 9as. » : :.i .t..a:: 11- i: -1 _ _ i :i5� :i ` - ._:e _ :s..r::::t::= - s_ t: :es • s a S O - _ °_ :Via: 3 is i:r -: .. _¢- :ea -. ..» ..E :h_F:'_ : :3::::::::::: :: Q _ _ w• t::1' • TZ : :: ^:.. =C.C: -_ _ :::" ... ::z::: z _� : l Y : � : CD t E.:33= _ _ -- .: : [..E l i r_ : '..s :. ' . • • , s. : c c ] 1z °: F_s •7 :..��fiItI-. :ctS..- . : :.i.. P O 0 C �D = ! La `- R __i.�I_ : : :c : : :Ecci E : ce_ - :� � �.r.: : exa5.. _a .&a-_--le. a � - tl :::::rn...rrcm_ RE!..--= .._cn i•• ::8....t •1: i ■ _ iii:, : • •..tHil :I � no . ': . � .•: t: ! { :{se :. °• :Cay aa{ "�•' = :rui un4n. =• = ' . ... u: 111"! - {;, °•:::: :. E L.2: :e: .. N.1. . : 1 ' �i.'e e mann ing it _ 1.... .. 1 1 i . ..1 :: ' •W _ s : :x :1 g' . O - � i . e x -•- ::1::. ::::•e �e e': s' aE" e�s� :�5..... .. .... ��F: { : : ::s.� E = eSS :ees .... r. : iii; ::s::::: I ;; 3 p - ..u• 1 s..... S:: a: : l: : s ... .. :: = : : ::� a. 0 z -i J 1 x - := c t . .-- :..... ". ° .',E : : Ee :i........... - :.:E _'== °'E: :s si° s I :.a. :E55:- .. : :i :.� e ,:::: . •. p 0 17, : •:.... ... L::.': : :: :': :I:: : : :-. • -•- : :, . - =EGA -- ` _ -C C - __..--...ti..... - - -: f. 11::::__ :: z•_ o �• = Q a r' . : { -,1411 i A ' { {{ :1 mail? a•.aN '• 1 { ,. : maw- . i L :ii-r -::o i { :I{:• I• s is ::*1 41'1: znnnnln. r _ - i . IJl 1 1 - . .. : : -:.8. : .Iuni06S .i . o • .... , sae :sz :F ri ....................... . . � : ' ..... � .t:4'I: :•s- _ ,_ : :.. :•••::: ` gas `.... � : a . :l sii4 E. III••• • - - _ :�'CEi :i 1.:'- e':....- ::iii ;,: �;. ..i:::i:::. _- ;i :.:i:: .. :..=- sC :s.Ees .:IC:" " ` _ ::::Y : s-- 1 3••••:• - : '::L' • ••i : : :e:l::i "i : - -- : ....: : ^ : :::1 : :. : -- sell... .. -:: - E:::....:: t. 0 0- p r o =sr. a :....::... -- ....- �....a.....s : =-_- --:50_ °eye :. ... : :r .. .- ..::..c.�.....1,-... z .. + .... : . j: :: av -" CD 1 Avian � -- 1 s C=-_--=:_-,-4 ° - c -. pp � .p p _e! _�_ _...F33 C: : I I N II I. % JI IIIIIIIIII III IiII ' II I 1 ;III ilUNlgn lnllltlllu�......0u0 11n1 /IIIMIt IIIit'IIDIII'�' IllilI 111111 11 011 N tl TS w a ue w TA Ye Ai. V a V a .. 0 0 0 0 0 0 0 Q (C.F.S.) INTO CATCH BASIN C - -1....::::. I ii mil n ulii' minim i I.nMll "ii " �� " = u�1 �{u i1! °1�ri1�. ° s n i a i i t'�Ipp'��0 "n"i'i1Ni 1n�' : : N 'I a I �i xi i III n lIpIII$r i1s1 . 11 1 11 1 1 !1 ..1111 / ltilllln,Ills:I. uf .111In .1YIIIIIII11 u 1 1.1 to .. ■ t1 1 IIIIi1llllllllll i:t 1111 ....�.. n,Y 1. �� i1111i1Wi.Iih E ��� NiINU 11110111"' w= r : : :Z ` :i iii :i i 11IIIIIL 1111 ..E .{•. Nn{i : : � r.. :: :: : =1111.1, ' u � n na... :u si: .i ••• 118.11 . : : r n : 0 C ` ■ : r 1 11 / m • •• maulnmm�uw '• - w ' ' : :"' . N' _ .... :: ~ nm1 :• : �•.N .N.wn. {. -� 1.,--- : : _ . " ���� :1•• ::i :mi ss:e.. .e:::::s I e : I�zst : :: s:• :s:s:::.. .�a :Ii :» e•r••I: • :: s••• :• :1r. :il �1i e ••r• i ii.. ..8 . •.l: . ••i :..4 : -• l.:.... "♦ _a? ° - ' : 1:r� ? :. :.i.' t ... ,...... :.. �:... _... a e •= ...-:.:a f s ° i•es "• Z m 23 - - ... i i :: '.� :r.• .' . _I.. i • - -- s::::: i i : : :::e:::.::. Yi o - _.. a -I ' -:: r ,,,,- :- -. E _ i::= ., nu:....... W 6) r - _ - - -- E - - -- • - - . .. :_ -:.. ... ... E-__ _- _:G:::.:'..:... a s ;- 3 _ - -- - --- - z.'rs =_a_ z5e & _ :er >c . . ._F, • Ezt_e = 'z, -• ! . . F T _ a _ r c :ez:._ :r .......�r_:� :: °_c-e - •:ua :,x:: Bl fff999 kI � ac. y :a!- i ?i : : ?t _ :! `i_ .:3 :c�s • _ __ .-. . .. ..............n:; zzi=r • _ Q :anti '4 :: N : ::: : : {„1..: •. - ■ : "1.4.44 " 11111.. x.1 :1 N -4 m .n. ..:. • • ! : : : .: . I S :' :3::.•! : : 44.4..1 : : :.le;ti•'F�a. :m :I MN t g iC) '-- - .. WARD= A ' ::N r• I:A; .ti ... ....7.....: :ire ' :._ _ ° .r- ........ u ::: : : : :.:..1. ••• S- 1 - .................... ....... _............ .............. -. si :. :c::.... _ YE : •......,.: ::iL:.. »l .... M fit s :.•.:; .. :° :: c :z2 :: r.....• g___ = .. --- - c' ... y:: : : :: 5 . ............... ••r F E e s e . :.rice: 0 .. I I •N. ■ 1 . •• •• N O u • ::N • - 44 p;.- .:::..n. :j. :: n O z y - - - -- - i ... 0 7 ....d000RG 3G _ ua . . ...._...` i :.. -_ - - ----- -- - 00 9.' ...... ::I::., ..1 L ^� : :: 1i::c:: :..: 1 1 :: . ............'--- .......... ::s»: -_= _�__... , _ ' s : iii __ -- .. J _- - -• . ...... ... 17 _ .. .. .......... __.. ...._._.. 1:..".11_ -_ •___- .- ..... "...- . "..____ __f__ ___._._ -. D ° /.1 ii 1111111 I�tt 1 II IIIIIIm.n11 l Ilu In111111 IIIIIR ' I' 1 11 i C) ..II/IC ni1:.11 IIIINIIIt1111110BI. 1 Nltiil 111 IIIIIIt11 it II. m .11111111u1ss III Imnmw � ,. � - fsf W A f. 0 .41 0 0 0 O 0 o 4 O w rb n rn co 1