Loading...
HomeMy WebLinkAboutTract 15949 Village of Heritage _. ..� • •.11'' Hall & Foreman, Inc. i Civil Engineering • Planning • Surveying • Public Works PRELIMINARY DRAINAGE REPORT For ' VILLAGE OF HERITAGE , TRACT 15949 FONTANA, CALIFORNIA September 28, 1998 • Prepared By Hall & Foreman, Inc. 4-16()t 545 North Mountain Avenue Upland, CA 91786 1 g (j Y�� , 5 ' -� (909) 982 -7777 .ei (� r N a At 101 M , Prepared Under The Supervision of r, 4P�A' „,,,,,,. Na,,,,L8,,„,„Qc.„ ,, i _,,,,,, ,. ,,,ofir , r 00FESS /0 47 o pi. S ctS OW? 4e 1 1‘'v ( ca. , No. 31681 c m ., of b r✓ , , ,� ` t > CIVIL 0v! , 0” C 3 �� kh ( �t Kb i C . \ (N ' O Harold Garcelon, P.E. w : �t l_i -r� 2 RCE #31681, Exp. 12/31 - It v I S 545 North Mountain Avenue, Suite 106 t1 �� / , ( �, � '( Y1 a ( y ' 1 Upland, California 91786 -9997 f Q�JP�CC4 , f 4 '�D 0, t�/��S� G � � L , Tel 909/98 -7777 d 4 �; Y(� Fax 909/982 -6767 ( " n' , , � 6,0 ' � ter v) G 6r 1 1 TABLE OF CONTENTS I. NARRATIVE 1 Site Overview Present Drainage Methods 1 Proposed Drainage Methodology 1 II. Q25 Hydrology Calculations On -Site Runoff Quantities Area A -1, A -2 Runoff Quantities Perimeter Runoff Quantities III. Q 100 Hydrology Calculations Off -Site Runoff Quantities On -Site Runoff Quantities Area A -1, A -2 Runoff Quantities Perimeter Runoff Quantities IV. Hydraulic Calculations Proposed Storm Drain Calculation Existing Line "A" Calculation V. Street Capacity Calculations VI. References Caltrans 1 -15 As -Built Drainage Plans 1 Caltrans Drainage Report (state highway 30 & 31) VII. APPENDIX 1 Soil Index Map (SBCHM) Exhibit A - Criteria for Design of Flood Control Facilities Off-Site Hydrology Map (rear pocket) On -Site Hydrology Map (rear pocket) NARRATIVE 1 Narrative 1 Introduction This report will present hydrologic and hydraulic calculations whic -stablishes storm water runoff rates, as well as sizing of a proposed Storm Drain :ystem for Tract 15949, in the City of Fontana. The project site is bounded by the D: ore Freeway (15) to the west, Baseline Avenue to the south, Tract 13225 to the aP - nd by SANBAG property to the north. The site is part of the Village of Heritage Master Planned Community. The project area is approximately 20 acres in size. All calculations follow recommendations set forth by the "Fontana Master Storm Drain Study ", as prepared by this firm. Project parameters are for the proposed Storm Drain System to convey Q 100 offsite runoff plus q 100 on -site flows. Present Drainage Methods The site was rough graded in 1988 per the "Rough Grading Plan" as prepared by this firm. A drainage V -ditch was graded and ends at the upstream end of a 42" Storm Drain (line A) in Baseline Avenue. A considerable amount of runoff drains onto this site from across the freeway. Approximately 36 acres drains onto this site. This area is delineated in the drainage map, Area 124 per Caltrans "Drainage Report for the Design Project on State Highway Routes 31 and 30, in the "References" section of the report, 1 as well as on "Hydrology Map" #3810 -00, located in the rear pocket. The runoff is conveyed by a 36" R.C.P. as depicted by sheet 16 of 140 of the As -Built drawings for that section of highway. Hydrologic and hydraulic calculations are also included in the "Reference" Section of this report. 6-11 1 ! The Caltrans developed Q 100 as calculated was 83.25 cfs, using JAntececl Moisture 1 Condition III as recommended by Caltrans Hydraulics Division, District 8. An exhibit titled "Offsite Hydrology Map" is included in the rear pocket of this report. This runoff 1 amount was used in sizing the proposed Storm Drain per Caltrans recommendations. -1 l 1 it ��L P 4141 , 1 y � � /7'r j Proposed Drainage Methods l i .-9 f Lf !f � u l4 T 1 The proposed drainage method is by connecting a 42 \, pipe to the xi ting Caltrans 36" R.C.P. and will collect flows via catch basins located througho the tract and connect I into an existing 42" Storm Drain (line A) located in Bas Tine venue. Hydraulic calculations were performed on line "A" based on the a I runoff amounts. Line "A" was originally designed to convey Q25 runoff. Line "A" was originally sized for a Q,00 of 125 cfs, the new amount being 133 cfs, so the rates are very similar. Therefore a water surface control elevation of 1276.30 was used. For the section of Baseline Avenue easterly of the proposed 42" line, the difference between the Q, and Q25 will be conveyed in the street. Refer to exhibit A, "Criteria for Design of Flood Control Facilities" included herein for flood protection criteria. The flow calculated is for the proposed line is Q,00 offsite plus Q 100 on Site, as shown on the enclosed "On -site Hydrology Map ". E Areas A -1, A -2, 0-2 through 0-6 will drain onto Baseline Avenue, where flows will be collected by existing catch basins. The combined Q25 street Runoff for the aforementioned areas is 16.8 cfs. The half street capacity for Baseline Avenue is 39.6 cfs, so Baseline has sufficient hydraulic capacity to convey surface flows. Line A extends easterly along Baseline where it drains into the San Sevaine Channel. E 0 z.._ �V /its 62 h a f 1a A r f . , r g,�P X 06.5 t, i A ciii: i iti litits Pi rip/4 /- ,...;;P ) 6: ' ltj 1 Methodology A" 131 P 1 Calculations follow criteria established in the San Bernardino County Hydrology Manual 1 (SBCHM) and the City of Fontana Master Plan of Drainage. The site has soil type "A" per the Hydrologic Soils Group Map. Hydrologic calculations were performed with AES software "Rational Method Hydrology Program" Ver. 7.1. Street Capacity calculations I were executed with AES "Hydraulic Elements 1" Ver. 6.1. Pipe sizing was performed with Los Angeles County "Water Surface Profile Gradient (WSPG) software. 1 1 lavimminimumnimmumilimummumeammirrir } Conclusion 1 1 Calculations presented herein indicate the proposed storm drain system has sufficient hydraulic capacity to maintain emergency vehicle travel during a 100 year storm. 1 • 1 E f 1 1 Q25 HYDROLOGY CALCULATIONS On -Site Runoff Quantities P I RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) I (c) Copyright 1983 -97 Advanced Engineering Software (aes) Ver. 7.1 Release Date: 01/01/97 License ID 1237 Analysis prepared by: li HALL & FOREMAN INC. 545 N. MOUNTAIN AVENUE, SUITE 106 UPLAND, CALIFORNIA 91786 909/982 -7777 I * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * HERITAGE VILLAGE * ONSITE HYDROLOGY -TRACT 15959 * * Q 25 FILE 5195SITE.DAT /RES * FILE NAME: 5195SITE.DAT TIME /DATE OF STUDY: 13:25 9/25/1998 II USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL*- - I USER SPECIFIED STORM EVENT(YEAR) = 25.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .95 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.040 II 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.520 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 25.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.2069 SLOPE OF INTENSITY DURATION CURVE = .6000 li *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* *USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET - CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING ; li WIDTH CROSSFALL IN- / OUT - /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 .018/ .018/ .020 .67 2.00 .03125 .1670 .01500 :, li GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = .00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) • *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 900.00 TO NODE 901.00 IS CODE = 21 11 »»> RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 350.00 II ELEVATION DATA: UPSTREAM(FEET) = 95.10 DOWNSTREAM(FEET) = 91.10 Tc = K *((LENGTH ** 3.00) /(ELEVATION CHANGE)J ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.119 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.151 I SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc ti LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL I "8 -10 DWELLINGS /ACRE" A .50 .98 .40 32 12.12 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .40 j SUBAREA RUNOFF(CFS) = 1.24 TOTAL AREA(ACRES) = .50 PEAK FLOW RATE(CFS) = 1.24 II 1 e 1 r ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** • FLOW PROCESS FROM NODE 901.00 TO NODE 902.00 IS CODE = 41 »» >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< r » »>USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 85.10 DOWNSTREAM(FEET) = 83.80 FLOW LENGTH(FEET) = 110.00 MANNING'S N = .013 DEPTH OF FLOW IN 42.0 INCH PIPE IS 3.2 INCHES I PIPE -FLOW VELOCITY(FEET /SEC.) = 3.72 GIVEN PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 1.24 PIPE TRAVEL TIME(MIN.) = .49 Tc(MIN.) = 12.61 II FLOW PROCESS FROM NODE 902.00 TO NODE 902.00 IS CODE = 81 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< II MAINLINE Tc(MIN) = 12.61 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.077 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS II LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "8 -10 DWELLINGS /ACRE" A 2.70 .98 .40 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 li SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .40 SUBAREA AREA(ACRES) = 2.70 SUBAREA RUNOFF(CFS) = 6.53 EFFECTIVE AREA(ACRES) = 3.20 AREA- AVERAGED Fm(INCH /HR) = .39 AREA- AVERAGED Fp(INCH /HR) _ .98 AREA- AVERAGED Ap = .40 TOTAL AREA(ACRES) = 3.20 PEAK FLOW RATE(CFS) = 7.74 ********************************************* ** * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 902.00 TO NODE 903.00 IS CODE = 41 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< ii » »>USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 83.80 DOWNSTREAM(FEET) = 79.90 FLOW LENGTH(FEET) = 350.00 MANNING'S N = .013 DEPTH OF FLOW IN 42.0 INCH PIPE IS 7.8 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 6.32 GIVEN PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 7.74 PIPE TRAVEL TIME(MIN.) = .92 Tc(MIN.) = 13.54 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 903.00 TO NODE 903.00 IS CODE = 81 i »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< li MAINLINE Tc(MIN) = 13.54 = * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.949 SUBAREA LOSS RATE DATA(AMC II): 11 DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "8 -10 DWELLINGS /ACRE" A 3.70 .98 .40 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 I SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .40 SUBAREA AREA(ACRES) = 3.70 SUBAREA RUNOFF(CFS) = 8.52 EFFECTIVE AREA(ACRES) = 6.90 AREA- AVERAGED Fm(INCH/HR) = .39 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .40 TOTAL AREA(ACRES) = 6.90 PEAK FLOW RATE(CFS) = 15.89 II ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 903.00 TO NODE 904.00 IS CODE = 41 I » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » » >USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 79.90 DOWNSTREAM(FEET) = 74.20 FLOW LENGTH(FEET) = 480.00 MANNING'S N = .013 DEPTH OF FLOW IN 42.0 INCH PIPE IS 10.9 INCHES II PIPE -FLOW VELOCITY(FEET /SEC.) = 7.97 GIVEN PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 15.89 PIPE TRAVEL TIME(MIN.) = 1.00 Tc(MIN.) = 14.54 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 904.00 TO NODE 904.00 IS CODE = 81 II » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 14.54 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.825 SUBAREA LOSS RATE DATA(AMC II): I DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE ESIDENTIAL GROUP (ACRES) (INCH /HR) (DECIMAL) CN "8 -10 DWELLINGS /ACRE" A 4.10 .98 .40 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 li SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .40 SUBAREA AREA(ACRES) = 4.10 SUBAREA RUNOFF(CFS) = 8.99 EFFECTIVE AREA(ACRES) = 11.00 AREA- AVERAGED Fm(INCH/HR) = .39 AREA- AVERAGED Fp(INCH /HR) _ .98 AREA- AVERAGED Ap = .40 ii TOTAL AREA(ACRES) = 11.00 PEAK FLOW RATE(CFS) = 24.11 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ■ FLOW PROCESS FROM NODE 904.00 TO NODE 904.10 IS CODE = 81 li » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 14.54 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.825 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "8 -10 DWELLINGS /ACRE" A 2.80 .98 .40 32 ii SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .40 SUBAREA AREA(ACRES) = 2.80 SUBAREA RUNOFF(CFS) = 6.14 EFFECTIVE AREA(ACRES) = 13.80 AREA- AVERAGED Fm(INCH /HR) = .39 AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .40 1 TOTAL AREA(ACRES) = 13.80 PEAK FLOW RATE(CFS) = 30.25 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 904.40 TO NODE 905.00 IS CODE = 41 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< -- »» >USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 74.20 DOWNSTREAM(FEET) = 73.30 ii FLOW LENGTH(FEET) = 75.00 MANNING'S N = .013 DEPTH OF FLOW IN 42.0 INCH PIPE IS 15.2 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 9.59 GIVEN PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 30.25 I PIPE TRAVEL TIME(MIN.) = Tc(MIN.) = 14.67 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 13.80 TC(MIN.) = 14.67 EFFECTIVE AREA(ACRES) = 13.80 AREA- AVERAGED Fm(INCH /HR)= .39 I AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .40 PEAK FLOW RATE(CFS) = 30.25 END OF RATIONAL METHOD ANALYSIS II II II Area A -1, A -2 Runoff Quantities 1 1 i A i r x I ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE ' (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) r (c) Copyright 1983 -97 Advanced Engineering Software (aes) Ver. 7.1 Release Date: 01/01/97 License ID 1237 Analysis prepared by: I HALL & FOREMAN INC. MOUNTAIN AVENUE, SUITE 106 UPLAND, CALIFORNIA 91786 909/982 -7777 I * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * ** * * * * * * * * * * * * * * * * * ** * HERITAGE VILLAGE * * TRACT 15949 AREA A, A -1 * * Q 25 FILE :5195SIT3.RES * r ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 5195SIT2.DAT TIME /DATE OF STUDY: 13:42 9/25/1998 II USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: • -- *TIME -OF- CONCENTRATION MODEL * -- ' USER SPECIFIED STORM EVENT(YEAR) = 25.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .95 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.040 II 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.520 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 25.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.2069 SLOPE OF INTENSITY DURATION CURVE = .6000 : li *ANTECEDENT MOISTURE CONDITION (AMC III) ASSUMED FOR RATIONAL METHOD* *USER - DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET - CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT - /PARK- HEIGHT WIDTH LIP HIKE FACTOR , li NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 .018/ .018/ .020 .67 2.00 .03125 .1670 .01500 • ii GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = .00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) . 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 500.00 TO NODE 501.00 IS CODE = 21 II » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« ( INITIAL SUBAREA FLOW - LENGTH(FEET) = 500.00 I ELEVATION DATA: UPSTREAM(FEET) = 93.60 DOWNSTREAM(FEET) = 88.80 Tc = K *((LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 15.275 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.743 II SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL II "8 -10 DWELLINGS /ACRE" A 1.30 .80 .40 52 15.27 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .40 SUBAREA RUNOFF(CFS) = 2.84 TOTAL AREA(ACRES) = 1.30 PEAK FLOW RATE(CFS) = 2.84 r li Y < 1 ( ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 501.00 TO NODE 502.00 IS CODE = 61 »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 88.80 DOWNSTREAM ELEVATION(FEET) = 87.20 STREET LENGTH(FEET) = 310.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 22.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 17.00 INSIDE STREET CROSSFALL(DECIMAL) = .018 OUTSIDE STREET CROSSFALL(DECIMAL) = .018 11 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 1 I * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 7.52 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .39 HALFSTREET FLOOD WIDTH(FEET) = 14.46 AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.88 li PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = .73 STREET FLOW TRAVEL TIME(MIN.) = 2.75 Tc(MIN.) = 18.03 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.483 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "8 -10 DWELLINGS /ACRE" A 4.80 .80 .40 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .40 = SUBAREA AREA(ACRES) = 4.80 SUBAREA RUNOFF(CFS) = 9.35 EFFECTIVE AREA(ACRES) = 6.10 AREA- AVERAGED Fm(INCH /HR) = .32 AREA- AVERAGED Fp(INCH /HR) = .80 AREA AVERAGED Ap .40 TOTAL AREA(ACRES) = 6.10 PEAK FLOW RATE(CFS) = 11.88 li END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .44 HALFSTREET FLOOD WIDTH(FEET) = 17.38 FLOW VELOCITY(FEET /SEC.) = 2.09 DEPTH *VELOCITY(FT *FT /SEC.) = .93 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 6.10 TC(MIN.) = 18.03 EFFECTIVE AREA(ACRES) = 6.10 AREA- AVERAGED Fm(INCH/HR)= .32 AREA- AVERAGED Fp(INCH /HR) = .80 AREA- AVERAGED Ap = .40 ' li PEAK FLOW RATE(CFS) = 11.88 END OF RATIONAL METHOD ANALYSIS li 11 II E II 1 II II li 1 1 1 1 1 I Perimeter Runoff Quantities 1 1 1 i 1 II * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE II (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -97 Advanced Engineering Software (aes) Ver. 7.1 Release Date: 01/01/97 License ID 1237 Analysis prepared by: li HALL & FOREMAN INC. 545 N. MOUNTAIN AVENUE, SUITE 106 UPLAND, CALIFORNIA 91786 II 909/982 -7777 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * HERITAGE VILLAGE * * PERIMETER HYDROLOGY II * Q 25 FILE: 5195ST.DAT /RES ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 5195ST.DAT TIME /DATE OF STUDY: 13:33 9/28/1998 li USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL*- - USER SPECIFIED STORM EVENT(YEAR) = 25.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .95 *USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* li 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.040 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.520 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 25.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.2069 SLOPE OF INTENSITY DURATION CURVE = .6000 li *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* *USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET - CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT - /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 .018/ .018/ .020 .67 2.00 .03125 .1670 .01500 I: GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = .50 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 5.0 (FT *FT /S) I: *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 21 »»> RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 960.00 ELEVATION DATA: UPSTREAM(FEET) = 1335.00 DOWNSTREAM(FEET) = 1305.00 i II Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 25.290 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.027 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) NATURAL FAIR COVER II "OPEN BRUSH" A 2.10 .86 46 25.29 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .86 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 2.21 • II TOTAL AREA(ACRES) = 2.10 PEAK FLOW RATE(CFS) = 2.21 11 II ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 61 II »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< » »>(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 1293.00 DOWNSTREAM ELEVATION(FEET) = 1284.00 STREET LENGTH(FEET) = 800.00 CURB HEIGHT(INCHES) = 8.0 II STREET HALFWIDTH(FEET) = 50.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 45.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 II SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.51 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .38 HALFSTREET FLOOD WIDTH(FEET) = 10.86 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.56 PRODUCT OF DEPTH & VELOCITY(FT*FT /SEC.) _ .96 li STREET FLOW TRAVEL TIME(MIN.) = 5.21 Tc(MIN.) = 30.50 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 1.811 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN I NATURAL GOOD COVER "WOODLAND,GRASS" A 1.60 .97 1.00 33 COMMERCIAL A .90 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 li SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .68 SUBAREA AREA(ACRES) = 2.50 SUBAREA RUNOFF(CFS) = 2.60 EFFECTIVE AREA(ACRES) = 4.60 AREA- AVERAGED Fm(INCH/HR) = .75 AREA- AVERAGED Fp(INCH /HR) = .91 AREA - AVERAGED Ap = .82 TOTAL AREA(ACRES) = 4.60 PEAK FLOW RATE(CFS) = 4.40 li END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .40 HALFSTREET FLOOD WIDTH(FEET) = 11.98 FLOW VELOCITY(FEET /SEC.) = 2.71 DEPTH *VELOCITY(FT *FT /SEC.) = 1.08 I: ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 61 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< » » >(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 1284.00 DOWNSTREAM ELEVATION(FEET) = 1282.00 STREET LENGTH(FEET) = 400.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 50.00 I: DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 45.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 Ei I SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.92 STREET FLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .46 I HALFSTREET FLOOD WIDTH(FEET) = 14.89 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.04 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = .93 STREET FLOW TRAVEL TIME(MIN.) = 3.26 Tc(MIN.) = 33.76 II * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 1.704 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A .40 .98 .10 32 I NATURAL GOOD COVER "WOODLAND,GRASS" A .70 .97 33 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .67 I SUBAREA AREA(ACRES) = 1.10 SUBAREA RUNOFF(CFS) = 1.04 EFFECTIVE AREA(ACRES) = 5.70 AREA- AVERAGED Fm(INCH /HR) = .73 li „rrrrr• 1 II AREA- AVERAGED Fp(INCH /HR) = .92 AREA- AVERAGED Ap = .79 = TOTAL AREA(ACRES) = 5.70 PEAK FLOW RATE(CFS) 5.00 I END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .46 HALFSTREET FLOOD WIDTH(FEET) = 14.98 FLOW VELOCITY(FEET /SEC.) = 2.05 DEPTH *VELOCITY(FT *FT /SEC.) = .94 END OF STUDY SUMMARY: 1 TOTAL AREA(ACRES) = 5.70 TC(MIN.) = 33.76 EFFECTIVE AREA(ACRES) = 5.70 AREA- AVERAGED Fm(INCH /HR)= .73 AREA- AVERAGED Fp(INCH /HR) = .92 AREA - AVERAGED Ap = .79 PEAK FLOW RATE(CFS) = 5.00 1 END OF RATIONAL METHOD ANALYSIS 1 1 li : 1 1] E : I: 1 I: . 1 0 1 z 1 1 . I 1 11 . 1 T 1 Q100 HYDROLOGY CALCULATIONS 1 Off -Site Runoff Quantities I k d i li **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) II (c) Copyright 1983 -97 Advanced Engineering Software (aes) Ver. 7.1 Release Date: 01/01/97 License ID 1237 Analysis prepared by: HALL & FOREMAN INC. 545 N. MOUNTAIN AVENUE, SUITE 106 UPLAND, CALIFORNIA 91786 909/982 -7777 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * HERITAGE VILLAGE * * OFFSITE HYDROLOGY * * Q 100 FILE: 51950FF.DAT /RES * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 51950FF.DAT TIME /DATE OF STUDY: 9:49 9/28/1998 : I USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL*- - USER SPECIFIED STORM EVENT(YEAR) = 100.00 : E SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .95 *USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.040 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.520 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.5200 SLOPE OF INTENSITY DURATION CURVE = .6000 *ANTECEDENT MOISTURE CONDITION (AMC III) ASSUMED FOR RATIONAL METHOD* *USER - DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW FLOW MODEL * HALF- CROWN TO STREET - CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT - /PARK- HEIGHT WIDTH LIP HIKE FACTOR li ___ NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 .018/ .018/ .020 .67 2.00 .03125 .1670 .01500 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: ii 1. Relative Flow -Depth = .00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* FLOW PROCESS FROM NODE 799.00 TO NODE 800.00 IS CODE = 21 I » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 650.00 II ELEVATION DATA: UPSTREAM(FEET) = 1340.00 DOWNSTREAM(FEET) = 1330.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)) ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 15.215 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.462 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 4.30 .80 .50 52 15.22 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .80 I II SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 11.86 ( TOTAL AREA(ACRES) = 4.30 PEAK FLOW RATE(CFS) = 11.86 1 1 II 1 ) ( I ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 800.00 TO NODE 800.10 IS CODE = 41 i »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< I' » » >USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT)««< ELEVATION DATA: UPSTREAM(FEET) = 1330.00 DOWNSTREAM(FEET) = 1318.00 FLOW LENGTH(FEET) = 750.00 MANNING'S N = .013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 10.9 INCHES I PIPE -FLOW VELOCITY(FEET /SEC.) = 8.52 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 11.86 ' PIPE TRAVEL TIME(MIN.) = 1.47 Tc(MIN.) = 16.68 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 800.10 TO NODE 800.10 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< I MAINLINE Tc(MIN) = 16.68 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.276 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS E LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN R ESIDENTIAL "5 -7 DWELLINGS /ACRE" A 6.20 .80 .50 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .80 li SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 6.20 SUBAREA RUNOFF(CFS) = 16.06 EFFECTIVE AREA(ACRES) = 10.50 AREA - AVERAGED Fm(INCH /HR) = .40 AREA- AVERAGED Fp(INCH /HR) = .80 AREA - AVERAGED Ap = .50 TOTAL AREA(ACRES) = 10.50 PEAK FLOW RATE(CFS) = 27.20 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 800.10 TO NODE 801.10 IS CODE = 41 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< »» >USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 1318.00 DOWNSTREAM(FEET) = 1313.00 FLOW LENGTH(FEET) = 200.00 MANNING'S N = .013 E DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.9 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 12.27 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 27.20 PIPE TRAVEL TIME(MIN.) = .27 Tc(MIN.) = 16.95 .e ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** Id FLOW PROCESS FROM NODE 801.10 TO NODE 801.10 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ' MAINLINE Tc(MIN) = 16.95 i * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.245 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS II LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 8.00 .80 .50 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .80 I SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 8.00 SUBAREA RUNOFF(CFS) = 20.50 EFFECTIVE AREA(ACRES) = 18.50 AREA- AVERAGED Fm(INCH /HR) = .40 AREA- AVERAGED Fp(INCH /HR) _ .80 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 18.50 PEAK FLOW RATE(CFS) = 47.40 II ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 801.10 TO NODE 801.10 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< I/ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 16.95 RAINFALL INTENSITY(INCH /HR) = 3.24 II 1 11 II AREA- AVERAGED Fm(INCH /HR) = .40 AREA- AVERAGED Fp(INCH /HR) = .80 AREA - AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 18.50 II TOTAL STREAM AREA(ACRES) = 18.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 47.40 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 802.00 TO NODE 803.00 IS CODE = 21 I »» >RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« 11 INITIAL SUBAREA FLOW - LENGTH(FEET) = 1000.00 ELEVATION DATA: UPSTREAM(FEET) = 1318.00 DOWNSTREAM(FEET) = 1317.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 24.544 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.599 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 10.00 .80 .50 52 24.54 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 19.81 ' TOTAL AREA(ACRES) = 10.00 PEAK FLOW RATE(CFS) = 19.81 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 803.00 TO NODE 803.10 IS CODE = 41 »»> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< »» >USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 1317.00 DOWNSTREAM(FEET) = 1313.00 FLOW LENGTH(FEET) = 850.00 MANNING'S N = .013 ASSUME FULL- FLOWING PIPELINE PIPE -FLOW VELOCITY(FEET /SEC.) = 6.30 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 19.81 PIPE TRAVEL TIME(MIN.) = 2.25 Tc(MIN.) = 26.79 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 803.10 TO NODE 803.10 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 26.79 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.466 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 8.00 .80 .50 52 RESIDENTIAL "8 -10 DWELLINGS /ACRE" A 4.00 .80 .40 52 // SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .47 • SUBAREA AREA(ACRES) = 12.00 SUBAREA RUNOFF(CFS) = 22.62 I EFFECTIVE AREA(ACRES) = 22.00 AREA- AVERAGED Fm(INCH /HR) = .38 AREA- AVERAGED Fp(INCH /HR) _ .80 AREA- AVERAGED Ap = .48 TOTAL AREA(ACRES) = 22.00 PEAK FLOW RATE(CFS) = 41.23 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** II FLOW PROCESS FROM NODE 803.10 TO NODE 603.10 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< I/ = TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 26.79 RAINFALL INTENSITY(INCH /HR) = 2.47 AREA- AVERAGED Fm(INCH /HR) = .38 II y r. 1 II AREA- AVERAGED Fp(INCH /HR) _ .80 AREA - AVERAGED Ap = .48 EFFECTIVE STREAM AREA(ACRES) = 22.00 TOTAL STREAM AREA(ACRES) = 22.00 11 PEAK FLOW RATE(CFS) AT CONFLUENCE = 41.23 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER II NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 47.40 16.95 3.245 .80( .40) .50 18.5 799.00 2 41.23 26.79 2.966 .60( 38) 48 22.0 802.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 83.25 16.95 3.245 .80( .39) .49 32.4 799.00 2 75.65 26.79 2.466 .80( .39) .49 40.5 802.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 83.25 Tc(MIN.) = 16.95 EFFECTIVE AREA(ACRES) = 32.42 AREA- AVERAGED Fm(INCH /HR) = .39 AREA - AVERAGED Fp(INCH /HR) = .80 AREA- AVERAGED Ap = .49 TOTAL AREA(ACRES) = 40.50 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 803.10 TO NODE 804.00 IS CODE = 41 »» >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » »>USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< II ELEVATION DATA: UPSTREAM(FEET) = 1306.80 DOWNSTREAM(FEET) = 1302.70 FLOW LENGTH(FEET) = 383.00 MANNING'S N = .013 ASSUME FULL- FLOWING PIPELINE li PIPE -FLOW VELOCITY(FEET /SEC.) = 11.78 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 83.25 PIPE TRAVEL TIME(MIN.) = .54 Tc(MIN.) = 17.50 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 804.00 TO NODE 804.00 IS CODE = 81 ( »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 17.50 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.184 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN N ATURAL FAIR COVER "OPEN BRUSH" A 2.10 .61 1.00 66 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .61 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 2.10 SUBAREA RUNOFF(CFS) = 4.86 EFFECTIVE AREA(ACRES) = 34.52 AREA- AVERAGED Fm(INCH /HR) = .41 AREA- AVERAGED Fp(INCH /HR) = .77 AREA- AVERAGED Ap = .52 TOTAL AREA(ACRES) = 42.60 PEAK FLOW RATE(CFS) = 86.33 I END OF STUDY SUMMARY: TOTAL AREA(ACRES) - 92.60 TC(MIN.) = 17.50 EFFECTIVE AREA(ACRES) = 34.52 AREA- AVERAGED Fm(INCH /HR)= .41 AREA- AVERAGED Fp(INCH /HR) = .77 AREA- AVERAGED Ap = .52 PEAK FLOW RATE(CFS) 86.33 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 86.33 17.50 3.184 .77( .41) .52 34.5 799.00 2 77.91 27.39 2.433 .78( .40) .52 42.6 802.00 ____ END OF RATIONAL METHOD ANALYSIS II �i On -Site Runoff Quantities 1 : r ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 1 RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -97 Advanced Engineering Software (aes) Ver. 7.1 Release Date: 01/01/97 License ID 1237 Analysis prepared by: HALL & FOREMAN INC. 545 N. MOUNTAIN AVENUE, SUITE 106 UPLAND, CALIFORNIA 91786 909/982 -7777 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * HERITAGE VILLAGE * * ONSITE HYDROLOGY -TRACT 15959 * * Q 144 FILE 5195SITE.DAT /RES * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 5195SITE.DAT TIME /DATE OF STUDY: 13:21 9/25/1998 li = USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL*- - USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .95 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.040 li 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.520 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.5200 SLOPE OF INTENSITY DURATION CURVE = .6000 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* *USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET - CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT - /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO � (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 .018/ .018/ .020 .67 2.00 .03125 .1670 .01500 1 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = .00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) E *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 900.00 TO NODE 901.00 IS CODE = 21 1 » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 350.00 ELEVATION DATA: UPSTREAM(FEET) = 95.10 DOWNSTREAM(FEET) = 91.10 Tc = K*[(LENGTH** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.119 II * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.969 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL I "8 -10 DWELLINGS /ACRE" A .50 .98 .40 32 12.12 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .40 SUBAREA RUNOFF(CFS) = 1.61 TOTAL AREA(ACRES) = .50 PEAK FLOW RATE(CFS) = 1.61 r 1 5 I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 901.00 TO NODE 902.00 IS CODE = 41 i » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««< I » »=USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 85.10 DOWNSTREAM(FEET) = 83.80 FLOW LENGTH(FEET) = 110.00 MANNING'S N = .013 II DEPTH OF FLOW IN 42.0 INCH PIPE IS 3.6 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 4.02 GIVEN PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 1.61 PIPE TRAVEL TIME(MIN.) = .46 Tc(MIN.) = 12.57 FLOW PROCESS FROM NODE 902.00 TO NODE 902.00 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 12.57 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.882 SUBAREA LOSS RATE DATA(AMC II): . DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "8 -10 DWELLINGS /ACRE" A 2.70 .98 .40 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .40 SUBAREA AREA(ACRES) = 2.70 SUBAREA RUNOFF(CFS) = 8.48 EFFECTIVE AREA(ACRES) = 3.20 AREA- AVERAGED Fm(INCH /HR) = .39 AREA - AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .40 TOTAL AREA(ACRES) = 3.20 PEAK FLOW RATE(CFS) = 10.06 li **************************************************************************** FLOW PROCESS FROM NODE 902.00 TO NODE 903.00 IS CODE = 41 » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< »»> USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 83.80 DOWNSTREAM(FEET) = 79.90 FLOW LENGTH(FEET) = 350.00 MANNING'S N = .013 ' DEPTH OF FLOW IN 42.0 INCH PIPE IS 8.8 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 6.82 GIVEN PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1 . PIPE- FLOW(CFS) = 10.06 PIPE TRAVEL TIME(MIN.) = .85 Tc(MIN.) = 13.43 FLOW PROCESS FROM NODE 903.00 TO NODE 903.00 IS CODE = 81 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 13.43 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.732 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "8 -10 DWELLINGS /ACRE" A 3.70 .98 .40 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 II SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .40 SUBAREA AREA(ACRES) = 3.70 SUBAREA RUNOFF(CFS) = 11.13 EFFECTIVE AREA(ACRES) = 6.90 AREA- AVERAGED Fm(INCH /HR) = .39 AREA- AVERAGED Fp(INCH /HR) = .98 AREA - AVERAGED Ap = .40 TOTAL AREA(ACRES) = 6.90 PEAK FLOW RATE(CFS) = 20.75 . li ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 903.00 TO NODE 904.00 IS CODE = 41 - -= > =»COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA<«« »» >USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 79.90 DOWNSTREAM(FEET) = 74.20 FLOW LENGTH(FEET) = 480.00 MANNING'S N = .013 8 . DEPTH OF FLOW IN 42.0 INCH PIPE IS 12.5 INCHES li PIPE -FLOW VELOCITY(FEET /SEC.) = 8.60 GIVEN PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 20.75 PIPE TRAVEL TIME(MIN.) _ .93 Tc(MIN.) = 14.36 FLOW PROCESS FROM NODE 904.00 TO NODE 904.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 14.36 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.585 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "8 -10 DWELLINGS /ACRE" A 4.10 .98 .40 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .40 SUBAREA AREA(ACRES) = 4.10 SUBAREA RUNOFF(CFS) = 11.79 EFFECTIVE AREA(ACRES) = 11.00 AREA- AVERAGED Fm(INCH /HR) _ .39 AREA- AVERAGED Fp(INCH /HR) _ .98 AREA - AVERAGED Ap = .40 TOTAL AREA(ACRES) = 11.00 PEAK FLOW RATE(CFS) = 31.63 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 904.00 TO NODE 904.10 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 14.36 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.585 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "8 -10 DWELLINGS /ACRE" A 2.80 .98 .40 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .40 SUBAREA AREA(ACRES) = 2.80 SUBAREA RUNOFF(CFS) = 8.05 EFFECTIVE AREA(ACRES) = 13.80 AREA- AVERAGED Fm(INCH /HR) _ .39 AREA- AVERAGED Fp(INCH /HR) = .98 AREA - AVERAGED Ap = .40 TOTAL AREA(ACRES) = 13.80 PEAK FLOW RATE(CFS) = 39.68 FLOW PROCESS FROM NODE 904.40 TO NODE 905.00 IS CODE = 41 »» >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » » >USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 74.20 DOWNSTREAM(FEET) = 73.30 FLOW LENGTH(FEET) = 75.00 MANNING'S N = .013 DEPTH OF FLOW IN 42.0 INCH PIPE IS 17.7 INCHES PIPE - FLOW VELOCITY(FEET /SEC.) = 10.32 GIVEN PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 39.68 - - PIPE TRAVEL TIME(MIN.) = Tc(MIN.) = 14.48 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 13.80 TC(MIN.) = 14.48 EFFECTIVE AREA(ACRES) = 13.80 AREA- AVERAGED Fm(INCH /HR)= .39 AREA- AVERAGED Fp(INCH /HR) = .98 AREA - AVERAGED Ap = .40 PEAK FLOW RATE(CFS) = 39.68 END OF RATIONAL METHOD ANALYSIS I I I Area A -1 A -2 Runoff Quantities I r 1 I 1 4 '* 11 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE li (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -97 Advanced Engineering Software (aes) Ver. 7.1 Release Date: 01/01/97 License ID 1237 Analysis prepared by: I HALL & FOREMAN INC. 545 N. MOUNTAIN AVENUE, SUITE 106 UPLAND, CALIFORNIA 91786 909/982 -7777 li * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * HERITAGE VILLAGE * ' * TRACT 15949 AREA A, A -1 * I * Q 100 FILE:5195SIT2.DAT /RES ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 5195SIT2.DAT TIME /DATE OF STUDY: 13:41 9/25/1998 II USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL * -- ' USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .95 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.040 I 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.520 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.5200 SLOPE OF INTENSITY DURATION CURVE = .6000 li *ANTECEDENT MOISTURE CONDITION (AMC III) ASSUMED FOR RATIONAL METHOD* *USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET - CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT- /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO_ (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 .018/ .018/ .020 .67 2.00 .03125 .1670 .01500 li GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = .00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN I OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 500.00 TO NODE 501.00 IS CODE = 21 »»> RATIONAL METHOD INITIAL SUBAREA ANALYSIS «« < »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 500.00 ELEVATION DATA: UPSTREAM(FEET) = 93.60 DOWNSTREAM(FEET) = 88.80 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)) ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 15.275 I * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.454 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "8 -10 DWELLINGS /ACRE" A 1.30 .80 .40 52 15.27 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .40 SUBAREA RUNOFF(CFS) = 3.67 TOTAL AREA(ACRES) = 1.30 PEAK FLOW RATE(CFS) = 3.67 ' li A ii li ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 501.00 TO NODE 502.00 IS CODE = 61 II »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< » » >(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 88.80 DOWNSTREAM ELEVATION(FEET) = 87.20 STREET LENGTH(FEET) = 310.00 CURB HEIGHT(INCHES) = 6.0 II STREET HALFWIDTH(FEET) = 22.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 17.00 INSIDE STREET CROSSFALL(DECIMAL) = .018 OUTSIDE STREET CROSSFALL(DECIMAL) = .018 I SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 II * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 9.78 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .42 HALFSTREET FLOOD WIDTH(FEET) = 16.12 AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.99 li PRODUCT OF DEPTH & VELOCITY(FT*FT /SEC.) = .83 STREET FLOW TRAVEL TIME(MIN.) = 2.60 Tc(MIN.) = 17.87 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.143 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "8 -10 DWELLINGS /ACRE" A 4.80 .80 .40 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .40 SUBAREA AREA(ACRES) = 4.80 SUBAREA RUNOFF(CFS) = 12.20 EFFECTIVE AREA(ACRES) = 6.10 AREA- AVERAGED Fm(INCH /HR) = .32 AREA- AVERAGED Fp(INCH /HR) = .80 AREA - AVERAGED Ap = .40 TOTAL AREA(ACRES) = 6.10 PEAK FLOW RATE(CFS) = 15.51 ii END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .48 HALFSTREET FLOOD WIDTH(FEET) = 19.31 FLOW VELOCITY(FEET /SEC.) = 2.23 DEPTH *VELOCITY(FT *FT /SEC.) = 1.06 I: END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 6.10 TC(MIN.) = 17.87 EFFECTIVE AREA(ACRES) = 6.10 AREA- AVERAGED Fm(INCH /HR)= .32 AREA- AVERAGED Fp(INCH /HR) = .80 AREA- AVERAGED Ap = .40 - - PEAK FLOW RATE(CFS) = 15.51 li = END OF RATIONAL METHOD ANALYSIS ii 1 II II li 1 Perimeter Runoff Quantities li ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE I (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -97 Advanced Engineering Software (aes) Ver. 7.1 Release Date: 01/01/97 License ID 1237 Analysis prepared by: I HALL & FOREMAN INC. 545 N. MOUNTAIN AVENUE, SUITE 106 UPLAND, CALIFORNIA 91786 909/982 -7777 li * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * HERITAGE VILLAGE * * PERIMETER HYDROLOGY * li * Q 100 FILE: 5195ST2.RES * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 5195ST.DAT TIME /DATE OF STUDY: 13:34 9/28/1998 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: = -- *TIME -OF- CONCENTRATION MODEL * -- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .95 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.040 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.520 , li COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.5200 SLOPE OF INTENSITY DURATION CURVE _ .6000 ii *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* *USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET - CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT - /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 .018/ .018/ .020 .67 2.00 .03125 .1670 .01500 ii GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = .50 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 5.0 (FT *FT /S) ii *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 21 I » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« II INITIAL SUBAREA FLOW - LENGTH(FEET) = 960.00 ELEVATION DATA: UPSTREAM(FEET) = 1335.00 DOWNSTREAM(FEET) = 1305.00 Tc = K*[(LENGTH** 3.00) /(ELEVATION CHANGE)) ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 25.290 1 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.552 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) NATURAL FAIR COVER II "OPEN BRUSH" A 2.10 .86 1.00 46 25.29 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .86 s SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 3.20 TOTAL AREA(ACRES) = 2.10 PEAK FLOW RATE(CFS) = 3.20 II ' li li * * * * * * * * * * * * * * * * * * * * * * * * * ** tit*************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 61 • I » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< » » >(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 1293.00 DOWNSTREAM ELEVATION(FEET) = 1284.00 STREET LENGTH(FEET) = 800.00 CURB HEIGHT(INCHES) = 8.0 . li STREET HALFWIDTH(FEET) = 50.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 45.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 t SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.05 II STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .41 HALFSTREET FLOOD WIDTH(FEET) = 12.73 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.79 PRODUCT OF DEPTH & VELOCITY(FT*FT /SEC.) = 1.15 II STREET FLOW TRAVEL TIME(MIN.) = 4.78 Tc(MIN.) = 30.07 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.301 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN II NATURAL GOOD COVER "WOODLAND,GRASS" A 1.60 .97 1.00 33 COMMERCIAL A .90 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 • SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .68 SUBAREA AREA(ACRES) = 2.50 SUBAREA RUNOFF(CFS) = 3.70 EFFECTIVE AREA(ACRES) = 4.60 AREA- AVERAGED Fm(INCH /HR) = .75 AREA- AVERAGED Fp(INCH /HR) _ .91 AREA- AVERAGED Ap = .82 TOTAL AREA(ACRES) = 4.60 PEAK FLOW RATE(CFS) = 6.42 li END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .44 HALFSTREET FLOOD WIDTH(FEET) = 14.05 FLOW VELOCITY(FEET /SEC.) = 2.97 DEPTH *VELOCITY(FT *FT /SEC.) = 1.30 li ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 61 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< li » »>(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 1284.00 DOWNSTREAM ELEVATION(FEET) = 1282.00 STREET LENGTH(FEET) = 400.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 50.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 45.00 . ii INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 I * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 7.18 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .51 ' il HALFSTREET FLOOD WIDTH(FEET) = 17.42 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.23 PRODUCT OF DEPTH & VELOCITY(FT*FT /SEC.) = 1.13 STREET FLOW TRAVEL TIME(MIN.) = 3.00 Tc(MIN.) = 33.07 li * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.173 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A .40 .98 .10 32 I NATURAL GOOD COVER "WOODLAND,GRASS" A .70 .97 1.00 33 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .67 SUBAREA AREA(ACRES) = 1.10 SUBAREA RUNOFF(CFS) = 1.51 EFFECTIVE AREA(ACRES) = 5.70 AREA- AVERAGED Fm(INCH /HR) = .73 II AREA- AVERAGED Fp(INCH /HR) = .92 AREA - AVERAGED Ap = .79 TOTAL AREA(ACRES) = 5.70 PEAK FLOW RATE(CFS) = 7.40 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .51 HALFSTREET FLOOD WIDTH(FEET) = 17.61 FLOW VELOCITY(FEET /SEC.) = 2.25 DEPTH *VELOCITY(FT *FT /SEC.) = 1.15 END OF STUDY SUMMARY: li TOTAL AREA(ACRES) = 5.70 TC(MIN.) = 33.07 EFFECTIVE AREA(ACRES) = 5.70 AREA- AVERAGED Fm(INCH /HR)= .73 AREA- AVERAGED Fp(INCH /HR) = .92 AREA- AVERAGED Ap = .79 PEAK FLOW RATE(CFS) = 7.40 > 1 END OF RATIONAL METHOD ANALYSIS 1 II li li li li li 1 I II 1 II HYDRAULIC CALCULATIONS Proposed Storm Drain Calculation t 1 F 0 5 1 5 P PAGE NO 3 WATER SURFACE PROFILE - TITLE CARD LISTING 1 HEADING LINE NO 1 IS - HERITAGE VILLAGE I HEADING LINE NO 2 IS - PROPOSED LINE "B" TRACT 15949 HEADING LINE NO 3 IS - 1 FILE: 5195B.INP /OUT i ■ i i i 3 A g a 4 ", 1 1 d 1 ,:,, i 1 ..rri► h 1 : I 1 DATE: 9/29/1998 TIME: 18:27 F0515P WATER SURFACE PROFILE - CHANNEL DEFINITION LISTING PAGE 1 CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) CODE NO TYPE PIERS WIDTH DIAMETER WIDTH DROP CD 42 4 3.50 CD 18 4 1.50 1 1 t II i 1 1 i 1 1 i i 1 s i r 1 1 1 F 0 5 1 5 P PAGE NO 2 WATER SURFACE PROFILE ELEMENT CARD LISTING ELEMENT NO 1 IS A SYSTEM : SURFACE * U/S DATA STATION INVERT SECT W S ELEV _ e v' L ,� C ^ ( C L 10.00 1273.28 42 1276.50 (� I ELEMENT NO 2 IS A REACH * * * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 49.25 1273.36 42 0.013 0.00 0.00 0.00 0 ELEMENT NO 3 IS A REACH * * * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 74.35 1273.42 42 0.013 0.00 30.00 0.00 0 ELEMENT NO 4 IS A JUNCTION * * * * * * * U/S DATA STATION INVERT SECT LAT -1 LAT -2 N 4 Q4 INVERT -3 INVERT -4 PHI 3 PHI 4 79.01 1273.45 42 18 18 0.013 10.9 8.1 1274.00 1274.00 60.00 60.00 * ELEMENT NO 5 IS A REACH * * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 431.65 1277.50 42 0.013 0.00 0.00 0.00 0 ELEMENT NO 6 IS A REACH * * * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 499.26 1278.27 42 0.013 0.00 0.00 0.00 0 ELEMENT NO 7 IS A REACH * * * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 503.93 1278.33 42 0.013 0.00 0.00 0.00 1 ELEMENT NO 8 IS A REACH * * * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 530.13 1278.63 42 0.013 0.00 0.00 0.00 0 ELEMENT NO 9 IS A JUNCTION * * * * * * * U/S DATA STATION INVERT SECT LAT -1 LAT -2 N 43 Q4 INVERT -3 INVERT -4 PHI 3 PHI 4 534.13 1278.67 42 18 0 0.013 10.7 0.0 1279.00 0.00 60.00 0.00 E ELEMENT NO 10 IS A REACH * * * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 573.02 1279.12 42 0.013 0.00 40.00 0.00 0 , E ELEMENT NO 11 IS A REACH * * * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 931.36 1281.77 42 0.013 0.00 0.00 0.00 0 ELEMENT NO 12 IS A JUNCTION * * * * * * * U/S DATA STATION INVERT SECT LAT -1 LAT -2 N 43 Q4 INVERT -3 INVERT -4 PHI 3 PHI 4 936.02 1281.80 42 18 0 0.013 8.4 0.0 1282.00 0.00 90.00 0.00 I i I i 1 1 i 9 F i F 0 5 1 5 P PAGE NO 3 i WATER SURFACE PROFILE - ELEMENT CARD LISTING I ELEMENT NO 13 IS A REACH * * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 1006.71 1282.37 42 0.013 0.00 40.00 0.00 0 I ELEMENT NO 14 IS A JUNCTION * * * * * * * U/S DATA STATION INVERT SECT LAT -1 LAT -2 N Q3 Q4 INVERT -3 INVERT -9 PHI 3 PHI 4 1010.70 1282.39 42 18 0 0.013 1.6 0.0 1283.00 0.00 90.00 0.00 ELEMENT NO 15 IS A REACH * * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H I 1121.80 1283.17 42 0.013 0.00 0.00 0.00 0 * * ELEMENT NO 16 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 1218.50 1283.89 42 0.013 0.00 0.00 0.00 0 I ELEMENT NO 17 IS A REACH * * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 1293.53 1288.00 42 0.013 0.00 20.00 0.00 0 ELEMENT NO 18 IS A JUNCTION * * * * * * * U/S DATA STATION INVERT SECT LAT -1 LAT -2 N Q3 Q4 INVERT -3 INVERT -4 PHI 3 PHI 4 1297.53 1288.50 42 18 0 0.013 3.1 0.0 1289.00 0.00 90.00 0.00 ELEMENT NO 19 IS A REACH * * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 1320.00 1302.70 42 0.013 0.00 0.00 0.00 0 ELEMENT NO 20 IS A REACH * * * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 1700.00 1306.80 42 0.013 0.00 0.00 0.00 0 ELEMENT NO 21 IS A SYSTEM HEADWORKS * * U/S DATA STATION INVERT SECT W S ELEV 1700.00 1306.80 42 0.00 NO EDIT ERRORS ENCOUNTERED- COMPUTATION IS NOW BEGINNING ** WARNING NO. 2 ** - WATER SURFACE ELEVATION GIVEN IS LESS THAN OR EQUALS INVERT ELEVATION IN HDWKDS, W.S.ELEV = INV + DC E E , • , E , I I I • I I d W 1 LICENSEE: HALL & FOREMAN F0515P PAGE 1 WATER SURFACE PROFILE LISTING HERITAGE VILLAGE I PROPOSED LINE "B" TRACT 15949 FILE: 5195B.INP /OUT STATION INVERT DEPTH W.S. Q VEL VEL ENERGY SUPER CRITICAL HGT/ BASE/ ZL NO AVBPR ELEV OF FLOW ELEV HEAD GRD.EL. ELEV DEPTH DIA ID NO. PIER I L /ELEM SO SF AVE HF NORM DEPTH ZR 10.00 1273.28 3.286 1276.566 125.8 13.41 2.794 1279.360 0.00 3.286 3.50 0.00 0.00 0 0.00 I 6.04 0.00204 .014461 0.09 3.500 0.00 16.04 1273.29 3.500 1276.792 125.8 13.08 2.655 1279.447 0.00 3.286 3.50 0.00 0.00 0 0.00 33.21 0.00204 .015522 0.52 3.500 0.00 I 49.25 1273.36 3.952 1277.312 125.8 13.08 2.655 1279.967 0.00 3.286 3.50 0.00 0.00 0 0.00 25.10 0.00239 .015634 0.39 3.500 0.00 I 74.35 1273.42 4.591 1278.011 125.8 13.08 2.655 1280.666 0.00 3.286 3.50 0.00 0.00 0 0.00 JUNCT STR 0.00644 .013451 0.06 0.00 79.01 1273.45 5.937 1279.387 106.8 11.10 1.913 1281.300 0.00 3.140 3.50 0.00 0.00 0 0.00 352.64 0.01149 .011268 3.97 2.840 0.00 431.65 1277.50 5.861 1283.361 106.8 11.10 1.913 1285.274 0.00 3.140 3.50 0.00 0.00 0 0.00 I 67.61 0.01139 .011268 0.76 2.851 0.00 499.26 1278.27 5.853 1284.123 106.8 11.10 1.913 1286.036 0.00 3.140 3.50 0.00 0.00 0 0.00 4.67 0.01285 .011268 0.05 2.687 0.00 503.93 1278.33 5.941 1284.271 106.8 11.10 1.913 1286.184 0.00 3.140 3.50 0.00 0.00 0 0.00 26.20 0.01145 .011268 0.30 2.842 0.00 530.13 1278.63 5.937 1284.567 106.8 11.10 1.913 1286.480 0.00 3.140 3.50 0.00 0.00 0 0.00 JUNCT STR 0.01000 .010196 0.04 0.00 534.13 1278.67 6.561 1285.231 96.1 9.99 1.549 1286.780 0.00 3.023 3.50 0.00 0.00 0 0.00 38.89 0.01157 .009124 0.35 2.566 0.00 573.02 1279.12 6.673 1285.793 96.1 9.99 1.549 1287.342 0.00 3.023 3.50 0.00 0.00 0 0.00 358.34 0.00739 .009124 3.27 3.500 0.00 E I 1 I 1 I II { ErE 4 I LICENSEE: HALL & FOREMAN F0515P PAGE 2 WATER SURFACE PROFILE LISTING HERITAGE VILLAGE I PROPOSED LINE "B" TRACT 15949 FILE: 5195B.INP /OUT STATION INVERT DEPTH W.S. Q VEL VEL ENERGY SUPER CRITICAL HGT/ BASE/ ZL NO AVBPR ELEV OF FLOW ELEV HEAD GRD.EL. ELEV DEPTH DIA ID NO. PIER I L /ELEM SO SF AVE HF NORM DEPTH ZR 931.36 1281.77 7.292 1289.062 96.1 9.99 1.549 1290.611 0.00 3.023 3.50 0.00 0.00 0 0.00 I JUNCT STR 0.00644 .008361 0.04 0.00 936.02 1281.80 7.819 1289.619 87.7 9.12 1.290 1290.909 0.00 2.912 3.50 0.00 0.00 0 0.00 70.69 0.00806 .007598 0.54 2.780 0.00 I 1006.71 1282.37 7.958 1290.328 87.7 9.12 1.290 1291.618 0.00 2.912 3.50 0.00 0.00 0 0.00 JUNCT STR 0.00501 .007461 0.03 0.00 1010.70 1282.39 8.061 1290.451 86.1 8.95 1.244 1291.695 0.00 2.888 3.50 0.00 0.00 0 0.00 111.10 0.00702 .007324 0.81 2.940 0.00 1121.80 1283.17 8.095 1291.265 86.1 8.95 1.244 1292.509 0.00 2.888 3.50 0.00 0.00 0 0.00 96.70 0.00745 .007324 0.71 2.842 0.00 1218.50 1283.89 8.083 1291.973 86.1 8.95 1.244 1293.217 0.00 2.888 3.50 0.00 0.00 0 0.00 21.90 0.05478 .007324 0.16 1.464 0.00 1240.40 1285.09 7.081 1292.171 86.1 8.95 1.244 1293.415 0.00 2.888 3.50 0.00 0.00 0 0.00 HYDRAULIC JUMP 0.00 E 1240.40 1285.09 1.261 1286.351 86.1 27.59 11.818 1298.169 0.00 2.888 3.50 0.00 0.00 0 0.00 10.53 0.05478 .096973 1.02 1.464 0.00 1250.93 1285.67 1.247 1286.914 86.1 27.99 12.166 1299.080 0.00 2.888 3.50 0.00 0.00 0 0.00 , 22.96 0.05478 .105896 2.43 1.464 0.00 . 1273.89 1286.92 1.204 1288.128 86.1 29.36 13.381 1301.509 0.00 2.888 3.50 0.00 0.00 0 0.00 19.64 0.05478 .120848 2.37 1.464 0.00 1293.53 1288.00 1.163 1289.163 86.1 30.79 14.725 1303.888 0.00 2.888 3.50 0.00 0.00 0 0.00 JUNCT STR 0.12500 .138590 0.55 0.00 C I 11 , I ill I I i a p i LICENSEE: HALL & FOREMAN F0515P PAGE 3 WATER SURFACE PROFILE LISTING HERITAGE VILLAGE I PROPOSED LINE "B" TRACT 15949 FILE: 5195B.INP /OUT STATION INVERT DEPTH W.S. Q VEL VEL ENERGY SUPER CRITICAL HGT/ BASE/ ZL NO AVBPR ELEV OF FLOW ELEV HEAD GRD.EL. ELEV DEPTH DIA ID NO. PIER I L /ELEM SO SF AVE HF NORM DEPTH ZR **************************************************************************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 1297.53 1288.50 1.100 1289.600 83.0 32.06 15.959 1305.559 0.00 2.842 3.50 0.00 0.00 0 0.00 I 1.58 0.63195 .143257 0.23 0.760 0.00 1299.11 1289.50 1.120 1290.620 83.0 31.25 15.164 1305.784 0.00 2.842 3.50 0.00 0.00 0 0.00 2.67 0.63195 .129583 0.35 0.760 0.00 I 1301.78 1291.18 1.159 1292.344 83.0 29.80 13.792 1306.136 0.00 2.842 3.50 0.00 0.00 0 0.00 2.34 0.63195 .113539 0.27 0.760 0.00 I 1304.12 1292.66 1.201 1293.864 83.0 28.41 12.537 1306.401 0.00 2.842 3.50 0.00 0.00 0 0.00 2.06 0.63195 .099510 0.20 0.760 0.00 1306.18 1293.96 1.243 1295.208 83.0 27.09 11.394 1306.602 0.00 2.842 3.50 0.00 0.00 0 0.00 1.82 0.63195 .087224 0.16 0.760 0.00 1308.00 1295.12 1.288 1296.403 83.0 25.83 10.362 1306.765 0.00 2.842 3.50 0.00 0.00 0 0.00 1.61 0.63195 .076493 0.12 0.760 0.00 1309.61 1296.13 1.334 1297.468 83.0 24.63 9.419 1306.887 0.00 2.842 3.50 0.00 0.00 0 0.00 1.43 0.63195 .067089 0.10 0.760 0.00 E 1311.04 1297.04 1.382 1298.421 83.0 23.48 8.560 1306.981 0.00 2.842 3.50 0.00 0.00 0 0.00 1.27 0.63195 .058866 0.07 0.760 0.00 1312.31 1297.84 1.432 1299.274 83.0 22.39 7.784 1307.058 0.00 2.842 3.50 0.00 0.00 0 0.00 1 1.13 0.63195 .051682 0.06 0.760 0.00 1313.44 1298.56 1.485 1300.040 83.0 21.35 7.076 1307.116 0.00 2.842 3.50 0.00 0.00 0 0.00 Ili 1.00 0.63195 .045403 0.05 0.760 0.00 1314.44 1299.19 1.540 1300.729 83.0 20.35 6.432 1307.161 0.00 2.842 3.50 0.00 0.00 0 0.00 0.90 0.63195 .039899 0.04 0.760 0.00 I I I I I t I i i LICENSEE: HALL & FOREMAN F0515P PAGE 4 WATER SURFACE PROFILE LISTING HERITAGE VILLAGE PROPOSED LINE "B" TRACT 15949 FILE: 51958.INP /OUT STATION INVERT DEPTH W.S. Q VEL VEL ENERGY SUPER CRITICAL HGT/ BASE/ ZL NO AVBPR ELEV OF FLOW ELEV HEAD GRD.EL. ELEV DEPTH DIA ID NO. PIER L /ELEM SO SF AVE HF NORM DEPTH ZR 1315.34 1299.75 1.597 1301.349 83.0 19.41 5.848 1307.197 0.00 2.842 3.50 0.00 0.00 0 0.00 I 0.79 0.63195 .035080 0.03 0.760 0.00 1316.13 1300.25 1.657 1301.909 83.0 18.51 5.318 1307.227 0.00 2.842 3.50 0.00 0.00 0 0.00 0.70 0.63195 .030859 0.02 0.760 0.00 II 1316.83 1300.69 1.719 1302.414 83.0 17.64 4.834 1307.248 0.00 2.842 3.50 0.00 0.00 0 0.00 0.61 0.63195 .027165 0.02 0.760 0.00 I 1317.44 1301.09 1.785 1302.870 83.0 16.82 4.394 1307.264 0.00 2.842 .023936 0.01 0.760 3.50 0.00 0.00 0 0.00 0.55 0.63195 0.00 1317.99 1301.43 1.854 1303.282 83.0 16.04 3.994 1307.276 0.00 2.842 3.50 0.00 0.00 0 0.00 0.47 0.63195 .021105 0.01 0.760 0.00 1318.46 1301.73 1.926 1303.655 83.0 15.29 3.632 1307.287 0.00 2.842 3.50 0.00 0.00 0 0.00 0.42 0.63195 .018626 0.01 0.760 0.00 1318.88 1301.99 2.002 1303.993 83.0 14.58 3.302 1307.295 0.00 2.842 3.50 0.00 0.00 0 0.00 0.35 0.63195 .016459 0.01 0.760 0.00 III 1319.23 1302.22 2.083 1304.299 83.0 13.90 3.001 1307.300 0.00 2.842 3.50 0.00 0.00 0 0.00 0.31 0.63195 .014564 0.00 0.760 0.00 1319.54 1302.41 2.168 1304.577 83.0 13.25 2.728 1307.305 0.00 2.842 3.50 0.00 0.00 0 0.00 Iii 0.25 0.63195 .012907 0.00 0.760 0.00 1319.79 1302.57 2.259 1304.828 83.0 12.64 2.480 1307.308 0.00 2.842 3.50 0.00 0.00 0 0.00 0.21 0.63195 .011461 0.00 0.760 0.00 1320.00 1302.70 2.356 1305.056 83.0 12.05 2.255 1307.311 0.00 2.842 3.50 0.00 0.00 0 0.00 172.43 0.01079 .010737 1.85 2.355 0.00 I I I I $ I ,. k LICENSEE: HALL & FOREMAN F0515P PAGE 5 WATER SURFACE PROFILE LISTING I HERITAGE VILLAGE PROPOSED LINE "B" TRACT 15949 FILE: 5195B.INP /OUT STATION INVERT DEPTH W.S. Q VEL VEL ENERGY SUPER CRITICAL HGT/ BASE/ ZL NO AVBPR ELEV OF FLOW ELEV HEAD GRD.EL. ELEV DEPTH DIA ID NO. PIER I L /ELEM SO SF AVE H£ NORM DEPTH ZR 1492.43 1304.56 2.363 1306.924 83.0 12.01 2.238 1309.162 0.00 2.842 3.50 0.00 0.00 0 0.00 145.81 0.01079 .010107 1.47 2.355 0.00 1638.24 1306.13 2.467 1308.601 83.0 11.45 2.035 1310.636 0.00 2.842 3.50 0.00 0.00 0 0.00 I 40.75 0.01079 .009022 0.37 2.355 0.00 1678.99 1306.57 2.580 1309.153 83.0 10.92 1.850 1311.003 0.00 2.842 3.50 0.00 0.00 0 0.00 16.73 0.01079 .008088 0.14 2.355 0.00 . I 1695.72 1306.75 2.703 1309.457 83.0 10.41 1.682 1311.139 0.00 2.842 3.50 0.00 0.00 0 0.00 4.28 0.01079 .007289 0.03 2.355 0.00 1700.00 1306.80 2.842 1309.642 83.0 9.92 1.528 1311.170 0.00 2.842 3.50 0.00 0.00 0 0.00 II I ill . (I , ' E . 1 I . I Existing Line "A" Calculations y " I I F0515 WATER SURFACE PROFILE - TITLE CARD LISTING 1 HERITAGE VILLAGE . I EXISTING LINE "A" BASELINE AVE. Q u 5 FILE: 5195A.INP /OUT I 1 '1E, 1 1 1 i I I . I I DATE: 9/28/1998 TIME: 14: 5 F0515P WATER SURFACE PROFILE - CHANNEL DEFINITION LISTING PAGE 1 CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) CODE NO TYPE PIERS WIDTH DIAMETER WIDTH DROP CD 45 4 3.75 CD 48 4 4.00 CD 18 4 1.50 CD 42 4 3.50 CD 36 4 3.00 CD 30 4 2.50 4 I I , j l I I I I F 0 5 1 5 P PAGE NO 2 I ELEMENT NO 1 IS A SYSTEM O ATER T SURFACE PROFILE - ELEMENT CARD LISTING WATER * * * U/S DATA STATION INVERT SECT W S ELEV 10.91 1269.76 48 1273.30 I ELEMENT NO 2 IS A REACH * * * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 16.77 1269.81 48 0.013 0.00 0.00 0.00 0 ELEMENT NO 3 IS A REACH * * * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 36.02 1269.99 48 0.013 0.00 24.00 0.00 0 ELEMENT NO 4 IS A REACH * * * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 87.57 1270.49 48 0.013 0.00 0.00 0.00 0 I ELEMENT NO 5 IS A JUNCTION * * * * * * * U/S DATA STATION INVERT SECT LAT -1 LAT -2 N 43 Q4 INVERT -3 INVERT -4 PHI 3 PHI 4 92.24 1270.54 48 18 0 0.013 9.8 0.0 1271.40 0.00 90.00 0.00 ELEMENT NO 6 IS A TRANSITION * * U/S DATA STATION INVERT SECT N 95.24 1270.59 45 0.013 ELEMENT NO 7 IS A REACH * * * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 413.03 1272.46 45 0.013 0.00 0.00 0.00 0 ELEMENT NO 8 IS A JUNCTION * * * * * * * U/S DATA STATION INVERT SECT LAT -1 LAT -2 N 43 Q4 INVERT -3 INVERT -4 PHI 3 PHI 4 417.70 1272.71 45 30 0 0.013 25.0 0.0 1273.12 0.00 90.00 0.00 ELEMENT NO 9 IS A TRANSITION * * * U/S DATA STATION INVERT SECT N 420.70 1272.75 42 0.013 ELEMENT NO 10 IS A REACH * * * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 561.54 1273.28 42 0.013 0.00 0.00 0.00 0 ELEMENT NO 11 IS A JUNCTION * * * * * * * U/S DATA STATION INVERT SECT LAT -1 LAT -2 N 43 Q4 INVERT -3 INVERT -4 PHI 3 PHI 4 566.21 1273.53 42 36 0 0.013 86.3 0.0 1273.73 0.00 30.00 0.00 I 111 1 1 1 I err v 1 I F 0 5 1 5 P PAGE NO 3 WATER SURFACE PROFILE - ELEMENT CARD LISTING I ELEMENT NO 12 IS A REACH * * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 1020.67 1275.12 42 0.013 0.00 0.00 0.00 0 I ELEMENT NO 13 IS A SYSTEM HEADWORKS * * U/S DATA STATION INVERT SECT W S ELEV 1020.67 1275.12 42 0.00 NO EDIT ERRORS ENCOUNTERED- COMPUTATION IS NOW BEGINNING ** WARNING NO. 2 ** - WATER SURFACE ELEVATION GIVEN IS LESS THAN OR EQUALS INVERT ELEVATION IN HDWKDS, W.S.ELEV = INV + DC I I I, , I I I I 1 III I 1 I I LICENSEE: HALL & FOREMAN F0515P PAGE 1 WATER SURFACE PROFILE LISTING HERITAGE VILLAGE I EXISTING LINE "A" BASELINE AVE. FILE: 5195A.INP /OUT STATION INVERT DEPTH W.S. Q VEL VEL ENERGY SUPER CRITICAL HGT/ BASE/ ZL NO AVBPR ELEV OF FLOW ELEV HEAD GRD.EL. ELEV DEPTH DIA ID NO. PIER I L /ELEM SO SF AVE HF NORM DEPTH ZR 10.91 1269.76 3.278 1273.038 138.0 12.52 2.434 1275.472 0.00 3.492 4.00 0.00 0.00 0 0.00 I 5.86 0.00853 .009261 0.05 3.443 0.00 16.77 1269.81 3.267 1273.077 138.0 12.56 2.450 1275.527 0.00 3.492 4.00 0.00 0.00 0 0.00 19.25 0.00935 .009282 0.18 3.254 0.00 36.02 1269.99 3.270 1273.260 138.0 12.55 2.445 1275.705 0.00 3.492 4.00 0.00 0.00 0 0.00 21.51 0.00970 .009194 0.20 3.193 0.00 57.53 1270.20 3.301 1273.500 138.0 12.44 2.403 1275.903 0.00 3.492 4.00 0.00 0.00 0 0.00 30.04 0.00970 .008748 0.26 3.193 0.00 ' 87.57 1270.49 3.492 1273.982 138.0 11.86 2.183 1276.165 0.00 3.492 4.00 0.00 0.00 0 0.00 JUNCT STR 0.01071 .008174 0.04 0.00 92.24 1270.54 4.323 1274.863 128.2 10.20 1.616 1276.479 0.00 3.392 4.00 0.00 0.00 0 0.00 TRANS STR 0.01667 .009601 0.03 0.00 95.24 1270.59 3.921 1274.511 128.2 11.61 2.092 1276.603 0.00 3.376 3.75 0.00 0.00 0 0.00 317.79 0.00588 .011238 3.57 3.750 0.00 I 413.03 1272.46 5.622 1278.082 128.2 11.61 2.092 1280.174 0.00 3.376 3.75 0.00 0.00 0 0.00 JUNCT STR 0.05353 .009260 0.04 0.00 417.70 1272.71 6.888 1279.598 103.2 9.34 1.356 1280.954 0.00 3.106 3.75 0.00 0.00 0 0.00 TRANS STR 0.01333 .008902 0.03 0.00 , I 420.70 1272.75 6.530 1279.280 103.2 10.73 1.787 1281.067 0.00 3.104 3.50 0.00 0.00 0 0.00 140.84 0.00376 .010522 1.48 3.500 0.00 561.54 1273.28 7.482 1280.762 103.2 10.73 1.787 1282.549 0.00 3.104 3.50 0.00 0.00 0 0.00 JUNCT STR 0.05353 .005402 0.03 0.00 1 1 i 1 1 1 1 LICENSEE: HALL & FOREMAN F0515P PAGE 2 WATER SURFACE PROFILE LISTING I HERITAGE VILLAGE EXISTING LINE "A" BASELINE AVE. FILE: 5195A.INP /OUT STATION INVERT DEPTH W.S. Q VEL VEL ENERGY SUPER CRITICAL HGT/ BASE/ ZL NO AVBPR ELEV OF FLOW ELEV HEAD GRD.EL. ELEV DEPTH DIA ID NO. PIER L /ELEM SO SF AVE HF NORM DEPTH ZR 566.21 1273.53 7.996 1281.526 16.9 1.76 0.048 1282.574 0.00 1.255 3.50 0.00 0.00 0 0.00 i 454.46 0.00350 .000282 0.13 1.275 0.00 1020.67 1275.12 6.534 1281.654 16.9 1.76 0.048 1282.702 0.00 1.255 3.50 0.00 0.00 0 0.00 I I I I Ili 1 111 1 I I STREET CAPACITY CALCULATIONS ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 11 HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -96 Advanced Engineering Software (aes) Ver. 6.1 Release Date: 01/01/96 License ID 1237 Analysis prepared by: HALL & FOREMAN, INC. 545 N. MOUNTAIN AVENUE, SUITE 106 UPLAND, CALIFORNIA 91768 (909) 982 -7777 I TIME /DATE OF STUDY: 16:21 9/25/1998 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** BASE LINE AVENUE STREET CAPACITY APPROACHING CHANNEL * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » > STREETFLOW MODEL INPUT INFORMATION« « CONSTANT STREET GRADE(FEET /FEET) = .006000 CONSTANT STREET FLOW DEPTH(FEET) = .70 I! AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = .015000 CONSTANT SYMMETRICAL STREET HALF - WIDTH(FEET) = 59.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 47.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020000 id OUTSIDE STREET CROSSFALL(DECIMAL) = .004000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = .67 CONSTANT SYMMETRICAL GUTTER - WIDTH(FEET) = 2.00 CONSTANT SYMMETRICAL GUTTER - LIP(FEET) = .03125 CONSTANT SYMMETRICAL GUTTER - HIKE(FEET) = .16700 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES it STREET FLOW MODEL RESULTS: 1 NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. II STREET FLOW DEPTH(FEET) = .70 HALFSTREET FLOOD WIDTH(FEET) = 34.89 HALFSTREET FLOW(CFS) = 39.63 I AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.53 PRODUCT OF DEPTH &VELOCITY = 2.45 I 1 I I******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -96 Advanced Engineering Software (aes) II Ver. 6.1 Release Date: 01/01/96 License ID 1237 Analysis prepared by: I HALL & FOREMAN, INC. 545 N. MOUNTAIN AVENUE, SUITE 106 UPLAND, CALIFORNIA 91768 + II (909) 982 -7777 "TIME/DATE OF STUDY: 11:13 9/26/1998 1 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** F STREET * STREET CAPACITY Q 25 TO TOP OF CURB * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** _******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** »> STREETFLOW MODEL INPUT INFORMATION« « CONSTANT STREET GRADE(FEET /FEET) = .036500 CONSTANT STREET FLOW DEPTH(FEET) = .50 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = .015000 CONSTANT SYMMETRICAL STREET HALF - WIDTH(FEET) = 22.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020000 OUTSIDE STREET CROSSFALL(DECIMAL) = .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = .50 CONSTANT SYMMETRICAL GUTTER - WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER - LIP(FEET) = .03125 CONSTANT SYMMETRICAL GUTTER - HIKE(FEET) = .12500 II FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES STREET FLOW MODEL RESULTS: 11 STREET FLOW DEPTH(FEET) = .50 HALFSTREET FLOOD WIDTH(FEET) = 18.69 HALFSTREET FLOW(CFS) = 22.15 AVERAGE FLOW VELOCITY(FEET /SEC.) = 6.13 PRODUCT OF DEPTH &VELOCITY = 3.07 1 1 1 11 i N II '******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -96 Advanced Engineering Software (aes) II Ver. 6.1 Release Date: 01/01/96 License ID 1237 Analysis prepared by: II HALL & FOREMAN, INC. 545 N. MOUNTAIN AVENUE, SUITE 106 UPLAND, CALIFORNIA 91768 1 (909) 982 -7777 II TIME /DATE OF STUDY: 11:36 9/26/1998 I ************************** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** F STREET * * STREET CAPACITY Q 100 TO R/W * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » > STREETFLOW MODEL INPUT INFORMATION«« CONSTANT STREET GRADE(FEET /FEET) = .036500 CONSTANT STREET FLOW DEPTH(FEET) = .51 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = .015000 CONSTANT SYMMETRICAL STREET HALF - WIDTH(FEET) = 22.00 ii DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020000 OUTSIDE STREET CROSSFALL(DECIMAL) = .020000 ii CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = .50 CONSTANT SYMMETRICAL GUTTER - WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER - LIP(FEET) = .03125 CONSTANT SYMMETRICAL GUTTER - HIKE(FEET) = .12500 ii FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES STREET FLOW MODEL RESULTS: I NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. 1 THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) = .51 HALFSTREET FLOOD WIDTH(FEET) = 19.19 II HALFSTREET FLOW(CFS) = 23.71 AVERAGE FLOW VELOCITY(FEET /SEC.) = 6.24 PRODUCT OF DEPTH &VELOCITY = 3.18 1r I II II I******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -96 Advanced Engineering Software (aes) Ver. 6.1 Release Date: 01/01/96 License ID 1237 II Analysis prepared by: II HALL & FOREMAN, INC. 545 N. MOUNTAIN AVENUE, SUITE 106 UPLAND, CALIFORNIA 91768 1 (909) 982 -7777 it TIME /DATE OF STUDY: 11:39 9/26/1998 IF 11 ************************** DESCRIPTION OF STUDY *************************** B STREET * STREET CAPACITY Q 25 TO TOP OF CURB * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** I »STREETFLOW MODEL INPUT INFORMATION« « CONSTANT STREET GRADE(FEET /FEET) = .005000 II CONSTANT STREET FLOW DEPTH(FEET) _ .50 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = .015000 CONSTANT SYMMETRICAL STREET HALF - WIDTH(FEET) = 22.00 li DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020000 OUTSIDE STREET CROSSFALL(DECIMAL) = .020000 i CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = .50 ii CONSTANT SYMMETRICAL GUTTER - WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER - LIP(FEET) = .03125 CONSTANT SYMMETRICAL GUTTER - HIKE(FEET) = .12500 it FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES STREET FLOW MODEL RESULTS: e 1 STREET FLOW DEPTH(FEET) = .50 HALFSTREET FLOOD WIDTH(FEET) = 18.69 HALFSTREET FLOW(CFS) = 8.20 1 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.27 PRODUCT OF DEPTH &VELOCITY = 1.14 I I s 1 b t ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -96 Advanced Engineering Software (aes) Ver. 6.1 Release Date: 01/01/96 License ID 1237 Analysis prepared by: HALL & FOREMAN, INC. 545 N. MOUNTAIN AVENUE, SUITE 106 UPLAND, CALIFORNIA 91768 (909) 982 -7777 TIME /DATE OF STUDY: 11:24 9/26/1998 ir * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** B STREET STREET CAPACITY Q 100 TO R/W * S = 0.005 ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** »> STREETFLOW MODEL INPUT INFORMATION« « CONSTANT STREET GRADE FEET FEET = .005000 CONSTANT STREET FLOW DEPTH(FEET) = .51 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = .015000 CONSTANT SYMMETRICAL STREET HALF - WIDTH(FEET) = 22.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020000 OUTSIDE STREET CROSSFALL(DECIMAL) = .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = .50 II CONSTANT SYMMETRICAL GUTTER - WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER - LIP(FEET) = .03125 CONSTANT SYMMETRICAL GUTTER - HIKE(FEET) = .12500 FLOW ASSUMED TO FILL STREET ON ONE SIDE. II STREET FLOW MODEL RESULTS: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. ' STREET FLOW DEPTH(FEET) = .51 HALFSTREET FLOOD WIDTH(FEET) = 19.19 HALFSTREET FLOW(CFS) = 8.77 11 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.31 PRODUCT OF DEPTH &VELOCITY = 1.18 1 1 ® a ■ REFERENCES 1 Caltrans 1 -15 As -Built Drainage Plans _ I- 015 - 5(40)113 L R rorK ►�rEer n :. INDEX Of SHEETS o8 Sad 16 5.,./7.2 I 140 - --J • meet No 1 Title Shuet • • 2 -3 Typical Cross Sections STATE OF CALIFORNIA . :14"�#� Q1 • • • 5- 17 Standard Plans Profile BUSI NESS AND TRANSPORTATION AGENCY i -, ,t , � MAP ▪ 18 -19 Traffic Staging ""� y q DEPARTMENT OF TRANSPORTATION �� ''� LOCATION ,�. .' 1 _ ._ • • 20 -24 Summary of Drainage Str,cturss � ��,/" t 4 - ?. � � T � � `r� • 25 -27 Drainage Details + ���. / � .. • 28 Slope Paving Details - - -- — — , �� � �n ;% • • • 29 Miscellaneous Construction Details �� 1/1., , 4 y ► ' ,,� e • • 30 Miscellaneous Quantities PROJECT PLANS FOR CONSTRUCTION ON .; ..,vir � j.• 1 4t,,,,, �`` • • 31 -37 Signs and Electrical • • 38 -39 Summary-Signs and Marken t �'`i.•r +I1. /� r�� a IT' • • 40 -44 Signs-Bridge Mid. and O. H. STATE HIGHWAY �' , : ' �� i Z ll • • 45 -47 Structure Lighting a • • 48-49 Special Electrical Detail I N SAN B E R N A R D I N O COUNTY — `` r'r��lAe. -. 9 ..• • • 50 -51 Pavement Markers and Reflector Assembly / Markers ai IIEMF ,. • 52-7' Special Details IN AND NEAR FONTANA FROM 0.2 MILE NORTH OF ROUTE 66 ''tn•r BRIDGE PLANS var<•. N lr. j� TO 0.4 MILE NORTH OF BASE LINE r ; HMO~ rr v.! IP • • 72 -86 Etiwanda Ave. U. C. Br. No. 54 -973 R/L ! It' • 'VP. 87 -95 East Ave. ti.C. BE . o.54 -975 i w =3�� AW+ ���, ,/� .. _ iM . : , ` - • 96-102 East Ave U Br. f.a.54 -97s To k Sllppkaldltld by StaIM Pleas January 1973 • .., ,41,11 .,, -= r an ►.• • • 103 -126 Base Line U.C. Br. No 54 -974 R/L e•' w i i% • • 127 -140 Etiwanda 0. H. Br. No. 54-963 R/L �ti►�;� ;I •; \1� _ • • I - 4 Superelevotlon Diograms • � �� 7 • 1-10 Cross Sections G/ � fi ..ow 0 . ' , 1 c . / s 6cs. • ,:',..% o\ . • .- 4' P 4\ . Etiwanda L� c� /'' F O O / /;$i Beginning of Major Construction 1P Sta 312 +00 PM 5.5 q End of ::;z;'0 Ea ve (NW 01 Ramp) P �\O ` a r Br 54.97 / A Etiwanda OH /j� � e� . ; p � \\ p // l Br No 54 -963 R/L / �,/ 7.- e ;. • r TO CORONA �® »a ROUTE �ao 15 TO DEVORE –; e.o r soo 0 ___ c �o 00o � r i 3o0t� �� c�ol�ol =000 •tom oco 000 ct0 -oo ■ 1 =0000001 ,. , ,r �� C:` e. Beginning of Work , ,,� II �f Eas Ave UC (SE Off Ramp) � o E n d of 'Nark PI, Sta 233 +45 P Br No 54975 Sta 405 +00 t P Base Line •East Ave UC 9 0 / �j P r ' Br No 54974 R/L <> % / 4‘‘' > ttlwanda Ave •Miller Ave UC C.%* ' 09 5 y e t 9� / Br No 54 9 R /L , see co • � b o �, q G ••,.`" FONTANA / F an ,,, j ; ' /\ , • SCALE N FEET A•o . r .., /1/e,vombe - /.9 /971 500 0 500 100 0 15I 0 - - - SO. Highway Eta Ar A B L i L T ,..r�., f a. x .6 AS BUILT PLANS L of Work - 3.3 miles s .. , d.wibd plan, ors o Commission or d.. ,aar. la ,1 Soon, Highway adav»d by - As California Highway Commission or, lun. 26, 1962 and darts...I a FREEWAY by r.wLnan of the Cold ornia Highway Con•niwb. Contract No. r7f- /7 /sb Length of Major Construction = 1.7 miles �►m-• , -- '��" ro This s...,, — ,, I -2,1313 -7 �� 08- 171904 .......• 2e, 1702 C�/r /� _1 I »u „1 Date Completed C 0,3201 171901 --�-•.°• Document No. P000.�a . _ NOTE: FOR RIGHT OF NAY DATA, TOPOGRAPHY AND Oil SBd :5 yam 5.5 /7.2 1 140 ACCURATE ACCESS Dt£TERMINATION, SEE / / • R IGHT OF WAY RECORD MAPS AT DISTRICT.OFFICC \ % /•' / / ' •' / 'f '/ /, /.� / i / . / / /,' // /,'; j 1I y . � � /r \ : i / • /..' ' / � ' / / ' / .' `./ / / / '• ; !_ //,,''',,,,,•/: / % , /,, / /_/ / / _. / u,_n a cx■rw�nm \Nc/vut. �,x my • � .� \ ' / / . / l;' 1, //,�/ / `/ / '/ / ) /, -,/// / '/ . y, 1 x.ra r - �.��� /.2 2,____ -�`` / ''r / .,�. / . % � /�,' / / �/ / / // / ' - + + + ; oa• /oon..../ NDVPMb ►f �S r l9l4 TABLE K4E ^QATA /{ / .' • rY, i ' / ( / /, r ,' ' ■ { 22•50'20*" 2 01 .99 ' .398,,61',/,3- / / / / i ■ \/,'.. 2 3000 30 i" , / / / -, ` ` r f j 5� / •' t lIS 2f' �.�j6.34' �/ //i �j ;, ^ / / / /,' iJ O L ` \ / / /j ' / j /;' // / / / /' r, w 'r � i i ,C' \, B 5 / / / /. / / ✓ / / l . '' / / ' / i / . i � • / � / . ' - 1 - 3 A N } \, j / /'/ /' . ' / /, f' . ' :' , / ' &TI WA/IDA -0 ERHEi ' y + + / / / . D' ' v Y n a " s : ; i ? / j /, y i BIDG E PO. 54 -963 941 5 • ri c ;. EO 4, `? R/W . , / 2351. 15/1 SPRR p p \ '/ .I, '/ / f, 20 22 T4 _. • - -- - R/w �` .0 - � ? ``-. Slope Limit \ \ /_ . ��� ���.: - N = \ p F \ �1� Di tc. - - �\ Slops Lim tom- , •^a . ,_ . . . , Rl /320 4 . \ ` /320 �. • • O 390 - OFF _ /330 \,:4(1,' ` ` �® /33 , , N49 °39' 1N �' i // •' •� \ —/340 • o ";-\--------------' 2 E 29 8.35' k ■ : / AA. _�. r !9 ?, �_ -_ 202 2! ■ • '3 WEST R OADBED • 13 A \ l\ 2y N % `, , • • % \` �\ \ :V aO $ o\ END OF YORK 1 - / \ Y ' _079} \ /a9. > S TA 405.00 m E IMPROVEMENT ROUTE 31 _ - -.i . i , / / A '''/ O /// _ 47.9 ■ \ I 1 `` /,, ,, 75'yii .� , j%. / 1144 E r ■ 390 I 3 m 4 4 1 6 / +,• ,T ~ '/ .1 j �/ - ./ �� / /r,.'�.' � , 4\■ • - I \ - , 1 ° ' ... A, 's // /, , 5c. . v . // f i -,, s . . k . 1 I 2 • + 3 4 \ i 405 EAST ROADBED `\ /CP / � . • • _� • l2> a \ + - -- ' • . + /330 54 ce4 RAW 5 3/0 +R • ii 300 — / '■ ' . r�l Toper __ . N 2 — 7330 —/340 ■ ° 07 ' 5 • 2 07? \ I I13B.79' m ■2 � ' l ` • ,, , \ \ \ // V + + + + � J Mesh Felice • 390 N 39 O � � ` I � - • k . \ \ \ • � • \ 1310 • \ ' \ \\ /330 + A- I /320 S + 4, O % 3 /P \ ' . '.P 4 \ \ . , � a /320 • \ t 1 3/O :z _ _ V Q - -_- —! IC_.,J •/ \ \ Slope Limit - - -� j> l: e \` \ \ 1•� o Slope L V _ 8 . . o 4 2- \ R/W BA R/11 r 4 • \ N \ \}-, I `\ \\ \ ..• . CO m \ \ . \\. � .' l \ � \ \. \• HATCH LINE - See B / n a • \ \ \ s0 0 ��`' \ P revious Sheet ° •(.0 �` • / \ RIGHT OF 1 ' / t � a E ' y s CHECKED' BY K • 14.4a \ !b • OATS ; '\ so ;.. .' � .. AS BUILT ,. 9 �\ • \` . n 3 \ \ \ No COMECYEONS THIS 311!!f • ■ \ gyp, - . • 90 ' \ _ - • ' -' \ • I NCR DATE DES DATE - , - - , oo, ...... T •, .. `�\ \� \ \ll r \\ \\ ' 37_ tM Off ikroo _ , ,� 1 1 P `\ ! t OB SBd I� 2 Q 40 n an ` i 5.57. I \ ` \ \ 375 2x3 t B ase L } n p O \ 1 ;. i - - - • II S - At- -- - - -_ - _ ,. %/7� 079 .``. � l:' ,3 ✓ \ cunicT T4W:•MMUTIUM O.°I \QTI, [M310N \\\ \ I \rll $ o ` - 7 - - �� a- . / -` �`.�- - t (f, '. 'iS"t •.,r.,n °r °rr4 N f1Ytm�tr IA 914- \ \ 1 1 ° ( r0 • . ® 3.4.--,%:" i__, _,�. -- _ �., ` � ; \ �- ` c,te Gr ' i •\ . • �� 1 \ l i - ' ' i ��-10 1 ' • 0 ` o ,, J J 1 / �? _ _' _ _ _ - \\ � \I 9 �F cif_ _ 9 Y om\ t,2.._ .6( G O �,�g/ - � C . / ' J ; 5 ' - ' _ a/r . � q � -�` • t•.. # /. _ � , m E AS "\IE UC %INW. " DFF RAMPI p\ o • ' ' \ \A • \ f J ` �\ , p`\ j4: ' , / IOGE NO 5 4 -976 . I \ ( • ` ''� gr /� i 385 • .46 ..ea'' Ave • I • . • ■14 , , ,, :, ,vt,l Q , d ' • ' ; ��� v ' . / r,' ' iv f ---�� T _ NOTE: SYEPWRAPH b 6 �•" - _ • t �k' /� (' . '3 83 • 04. !ll Ott Raep - / ` 4 _ �9� ' w \ � �� 0� 3 . ' RIGHT OF NAY RECORD NAPS AT DISTRICT OFFICE • ti a: •, \ • , \ . / `\- ' //...:-.• *, \�\� '� • . „...,, 6 . , a5 \`\ • ilbLk' 4) � ` a � '� ; . � \ T ABLE OF CURVE DA T A AP f °1.5.32 9 , . , i y ,4� I Ft' 1 � I �1r �� \ N0. a e T L KY � I ` , f S7 °44'28” 220.54' 403 . • > o0 2 600' 25 °54'1� . -` o \ 376 • 44.72 4 Bose Line 4 O , 4 3 100 0' 22 °50'20" 201.99' 398.61' kitt\% \ " _ _ .: / v1 a ti` k 1 1 s ° \—:':, , ,, � j ` t{ , § Ant ( ' ., / • .11/2r /'''' • A ` - it - . 4 ✓, �? `4 • "° C • Ab , Y i 6 �� � \ / //, • Q 380 • 19.72 4 ••os L ine • °�� • A \ C A G J. g / ' , a ` � 4er 381 • •33.96 East Ave 4 - F \ ` ,..*7 / i 1 9 3 y 4 e rr /!0 —6"' ..roc /3 /0 4/ . 'p' 4 \ lttati :+ • .?i' /� a N. �\t`�\ \� - ---- ��}/ /, . \ .. - --t. � , . �, e / % / / '� / �� 1' / / / : \ y� , I / ST ROADBEIS! , i. — , . N. E PROVEMENT t , •1 '' \1\\ \ \� ' 1 11� \��`�iI ', /� . ROUTE '91 .''1t1 - 4 / / /u'/// 1, 4'47'32" E • ,.376 �1 . 80 t UtV��. t //��� {il��� /� /�� 8 9 7 390 4. X116711 � ..>> � - d ' tnsimiromr tom m . $ ' i / / r��• . ; BRICG r. 54 -974 R VC__ . • ` ' ` \ ( 1 E T ROADBED 2 - -- _ Al • ter ACA' ■� - �/� 1a r 12" AP Type A_ (�/ -' d �� — 1 �l ��\ 2r � /� / 3 129 4 R t e 31 • ' \--_,,,\, � / L I 82 ° 5. 1 /� / // \ �e. , \ /330 � 7 0 382 • 15.29 4 Base Line \ .'� \'\N - - rea 01 j T ^ Q > • .0•7 379 •38.01 4 Rte 3t • • . �\ d � �\` = /J /O _ -- ` n s 01 - • • al / sr 5 • •t • 379 • 38.01 4 East Ave • , + o —� , _ ,' • A 0/ .,, m y • t \ » �f _ NE O N RAW '� •� Q @ 4 • 63.62 SE Of l Rant/ • ® \ \ ` ♦ � l'l� — 4,4,, • ��`� - < / '' 3 85 • 35.0 4 B ose Line ` d O N 39 °07 E 1011 — / ��i r � •� '�'7 $ 3859 a � ' ` - - - - -- - Slope L- t _ t .�,',, SS °3 ------ _________ ___ _- - - - - -- , ����` i ll - _ '� 1� / i4<i 9'40 °E / � • t ' ` `I • ��' RAY Per/ /2'1. _ - - s �+r • \ 384 • 24.80 he DI Ram, . i / / R` _ � f _° 385 • 20.00 4 Base Line 8 T • � � � E AST AVE UC l SE OFF HATCH LINE - �� - -� ju 16 / � • a BRIDGE NO. Ft -975 _ � ` �` � �f 'I 114 37E • 43.23 4 Eost Ave• ` �"" -- - - - - B ` — �• `\ \\'‘,..1 p t \ \�\ e See Sheet Ahead B / }�p� �ro� f 377 • 38.44 LL SE Of f Romp R/71 , r T r, r r \ ' `♦ \\ „,:s Hose T ATt oE/ D u I a t I I \ o i ita. COO. ..r.1 toot ofla-.IWAL ram. / 08 SBd 15 5.5/7.2 14 140 ri' • � , `. 3 7 5_:95.65 NN Of f -',;�,- \\ 1(\ s . \\ \ \ 11 \; _ 375• Th.O0 4 Base L'np p ' ' /��, r �_ + - -_ _yt- �: ti \ d79 - . `„ t,l� •. � , /� c un¢T TI L UC Anmun°n awnaI, Orsru" \ ♦ � 1, ,f` i _ -1-,1- O �• 1 +.p 1 s..�.i...a Call Anat...., n °. vsvv \ \ ` \ 1 T \ 4' / \ '' __ L �f` \;ti. \ • : e . \ ` � 0�'SjX w„ u Nnvr mbar IA f 1914 \\, \ \ \ ` \ i 400 9 � `` o ti - i� � may • \ / , / ® fie` r � \m ` - -- e �• .1 • i ' � / ° 070 / i s ' \ �_ a :y p i; y b' - T EAS AV UC = NW OFF M ti . Y r Y 3E3� s !MI Off Ra NOTE: FOR RIGHT OF NAY DATA TOPOGRAPHY AND E' • ` j 9 \ � � 110 . `': r w 0 �' / ACCURATE ACCESS DETERMINATION. SEC . ,. • 1 Ng � ? \ / / , ' RIGHT OF NAY RECORD MAPS AT DISTRICT OFFICE o n ,, - * /1r G • r �I` p ry 't ' ` 'r• / /�� � °J ; � ; \ ) 5 . r f \ ,,,. \ \ s li + , ....._ _ -- . ,. . , . ,.. ._..-. _,....., -.." -.. ,, . , , ,\'''' . . " , 4 ' 9:y - /.\./.\'', . . • - \ L •:- ', \ / � ° \ � � {� .1/4 "� /- / • TABLE OF CURVE DATA m nb‘-51: � , 4kkka 1 ',Jr G + : ' 1i r�i . ' ♦ ■ No. R a T L / a f . � � . ♦ e r � i ♦ ` . o ` I 400' 57 °44'28" 220.54' 403.It' 2 600' 25 °54'08" 237.98' 271.25' -- �. , 378• 26.85 SN On Romp • I 'e. \ � j � I �O�/ �, 4010.04 ` ` ,.... 376 • 44.72 t Bata Line \ k �. ' _.r/ � � J / � � _, °t[4M► o° 3 1000' 22 °50'20" 201.99' 398.61' /� \ /74;_.-}, Q 380 • 19.72 4 •ase Lin • • A pA ' ,-.- ././ // 4 7, % It' '.4.. .\.,/ ' ' A ,, ''`-' - ••,e .. . 4 ' , ... t 4- . qk / „ ' Mir c A A i_ b___) '‘, . . 4 '4 •,,k lok , . _,---L, , 41,„ . * . „,„„ �, Q G � � � . . \ ` 4e 381 • •33.% East Ave _ - • t , \ 903 - a./ (f / ' N. i 'Il � l!/ ,,e,.; \ 1 ' /3/0 \ ) ' 9 „. '� © - _ . ,. ----------.= _ A 1,4 F. :� �.z ,•,w.G wKi ��: n a �_ -e as t s -te �� 4831111.1111111111111.111V , 1,� \0 • °� ?3. 11141r4/. / w /r m \ \ 9 � \\ / // t � // ST R0AD8E67 - i/ - , a . y • wat:i ' t/lt! ,� _ _ r AEI M � E P ROVEMENT ; 1 �� ,1,1 ' ROU 91 Ill /l /� 111111 �� � 1 Ar ,I . 4.i s '� � �� �1 / °Il� ��lll �' 44.47 E ` ,.316 1` , i 1 it 1 1 �I 'I , d ` I,, " - � Q • . 8 0 " 1 i� rl /� / � / �lI 'llj l�� /��%� /I .l , , e � B 9 .) - 390 ., Id �, l 1 11 �i4Yr 2/� A'�B LIMILL 44�III�I��i(i. /1 � A NM - -. . . '11. ..11■4=5/92mr.,....inomm. 11111.10=1. • • 1 1111111EM. '111M1111111111111111111■11M =MI ., $ EA ST AVE 1.1c,_,_ ` \ \ E T ROADBED o • , / / t p 8R I OG r . 54.974 R/L '( ' AIL 9 !In „ _ to _ NIL „ '` � rA _ 12" AP Type A, 7 ' oo';, . - �/ - . �, / / ' / • \ / 382 • 15.29 4 Rte 31 • \ ` \ \• ' ' / :330 �� �" 382 • 15.29 4 Bose Line �. ♦ \• ren of 379 • • 38.01 4 Rte 31 • 90. • , `"+zi •, : . Debris Di - • • of ,r' • ^ � 379 • 38.01 4 East Ave - \ " ' G \ \� S .- - = /___ s---- ' / r� •n ° ¢ l • + /100 = ' 3r ( _ • B w � • ' _ NE OH ROI' ! N 9 1 _ � � i v M 38384 • • 63 00 SE 4 B 01 f e RaLine . fi. m • ® ° \ O � t • �_ ~ _ � , t `, , , / .,, - -G --- S/0 pe ~' 5 os O S�, � N39 °07'57" E _ _ VIM • %. 1 ` 1;1`'' ► 1111111111111155439,40.E. • EC _ NIS). ,r -----....1---/ i ,� "-� 8_3-* 34.59 r Rat L,mrt � � • /Or i l ' . 7.""""1-. ' -----..... .1 � �'__ ro ----------_- - -- 3 � ���' ` a''"', . - -- - --_ - -- love = - \ AM' "V/ amor �;( _ � _,.r • ` 384 • 24.80 NE Ch Ramp • Ri�T71 LJ / / - _ v- „ ° 385 ° 20.00 4 Bose Line 4T 3 .`c't ^ ''' \ OAtfs? �? 146 � EAST A YE UC l SE OFF :�Iu ' \ MATCN LINE - ' ' e ` BRIDGE NO. f4 -975 -=.:,- ��_ - - <-/ ` g / ,� 31E • 43.23 4 East Ave •- - B `' `. \' J ' 1 \„ 's, \ See Sheet Ahead r s. Tier / I 377. 38.44 LL SE Ott Romp R/R/11 \� �` T. Oat (w " . 1 I 1 I I I 081 sad L 15 5.5,-r, Z 5 140 4'- 3 ' 4' ------2'----1 / /(. .w- wA� I'I TI*IrT n4�BYMT.T Im r•o,,rr. 1).111. i v.w — rv . - 1`'C it � �fl ,. ' .r.I.,..A'I'II Ene in..., ..,. .•. C Normal FL " f 0.25' 3 S o i l Cement--,. - ���i r 4, �'.1r iv v iv t.t�t�_► . 7 :4709217:41X. / 8 : 1 20 : I I i".% n.1. .� r rte• . A N o v e to b e r I , 1174- _ -� •td)7� ♦ tea �• ��4���� �'� 1't v v4: / -. n Var Slope <� -Pipe Inlet - � mj ' Pipe Inlet ` RECOVERY AREA TYPICAL SECTION B \ ■ B __ Scale: I "•2' rmn Fl / ��A et t� _ 4' 4' SECTION 8 -8 NM =Mr in e. E e / ���_ e I w Se i- Gmmenl. N / � '� 8:1 3 I 5 I 1' � 20:1 I it Var Slope J ��Type 36R Grate s► _' - - - _ S 0.25 - - - - - .. I lion: _ / ����� �������•• ., j �i � ���d :0,,C,,..4›: m - Vo r S i op <\ 4 1 0 r D - �. 3.1 ..�. - 1 ____4 Normal L \ FL 4 4' / 1 ` 6:1 Pipe Inlet FLT ;- % Pipe nlet - PLAN 2.5' 2.5' I I - DEPRESSION AND APRON PAVING DETAILS N ° 1 SECTION C - C \ Earth Dlke FOR GRATE OPENING PIPE INLETS ,Var Slope AT RECOVERY AREA + j Scale: I " =2' 3/16" - ' iow ► 1-'-1.5. , � II, � : i3 /4" * Bars i 5 I /h" esrs 4' -+- E thru drilled hole A 7/1111111111k A / .. [ IIIIIII —Pipe Drop Inlet PLAN 4 4 8 B N t Special Grote 4" • 5/8" Bars 11 N � • i0 flC�3otCt�en 4' I.5 . ►� / O. TS' IT•• .f arch Dike I MP l reaL _ _ ^ 6 ' 1 Normo l FL ," , 017. �� l 1 � F �� �� oroiipiv� 3 0.25' �������� �° • 44x � rot 4' /.tem Direction of Traffic PLAN L3 " x2 1/2 "x3/8" Pipe Inlet 5 1/2 ") d 3/;4.."/K 1)5 I/2" SECTION 0-0 1 "x21 /2 "Slot I I�I —r' I I I' I 4' I pipe to I :celve lug - -- .... , a•tt�,t�, =i.. C F- I 1/4" I / PLAN -- NOTE: 2 -II 1/2 8" - --II-- --II-- Discontinue normal Median 3 1/8" 1 /4 " ---I ` -Top of Median Gutter Paving FL odtocent to oll bridges - 8 :1 0.75' Tap of Dike-,\ 20:1 3. -0x — ‘, _ i SECTION A -A Floe �i`� �.4 i ��� W i t h RCP •• A ! maw .- - tf' %J%- %%fL /'LcL%'fI% •.• r � ∎ .. � .. T 'ii �1" Hole In pipe and bond 0.25' - • • I A I/ to receive lug - 4' 4' - a a a a a n -- -- Std End Finish + --2.5' Pipe Inlet 2.5' -- SECTION 8 -B S u j T 2' -11 1/2" SECTION E -E 1 1/2" 1/4' w eV - SECTION A DEPRESSION AND APRON PAVING DETAILS ! - S - �7f. With CSP -20:1 -'3.5' { Var —' � I 'I FOR SIDE OPENING PIPE INLETS AT T � T •5: - NOTE: Grate shall be ploced so that / t � � � I RECOVERY AREA DRAINAGE DETAILS the f lot boys porol Iel direction of �' \ `-Blend Slopes to Scale: I". 2' pr,nclpal surface flow 1 I Pipe Inlet Top SPECIAL 36 INCH ROUND GRATE i i , RECOVERY AREA TYPICAL SECTION No Scale SECT ION C -C SPECIAL' IL[) 36 INCH ROUND GRATE APRON PAVING DETAILS SIDE OPENING PIPE INLET PAVING DETAILS S FOR MEDIAN INLETS GRATE OPENING PIPE INLET PAVING DETAILS AS BU ILT PLAN Scale: I " •2 ' . Cont No - .._ , - -Z ALTERNAiIYE PIPE TYPES FOR CULVERTS AND PIPE INLETS +..•" ma 1 r•..• • LEGEND I PIPE iftt ALLOWABLE ALTERNATIVES 08 SBd 15 5 .5/'1.2 1 140 0 See Det•• l RCP Re:norc.. Concrete Po• Culvert SUMMARY OF DRAINAGE STRUCTURES D, , •• , n•ge inlet RCP leinf o•ced Concrete h pe A Class N RCP. KSP (O.0 /� /J L B Cleat M RCP. Class d !tt uiatq nt n twi.nr 1413.10. esP loch $10.. P. otect∎on KSP I,tum•iwvs- coaled Corrugated Steel Pipe 14 M. Neaa -all Str Straight ROTES: The Precise determination of Station. 5kt . Length. Flood inn Elevation. M t The Pay Length for 12" CS P Risers ore the actual Length of Riser Pipe and Depth of Structure rill be Bade by the Engineer in the field. ACP Atpe.tOt Crmenl P.pe R lood"ay Eecavat•on including the Slip Joint 1YDy� -b��a t - -- - -_ (F) The Quantity Morn in these columns for each individual portion of work o.•. •PV ro.•• • S•de Oe•n•ng - is • Final Pay Quantity. 1 CONCRETE 111ERhc i E!1 FRAMES ROC& SLOPE ••.• PIPE LENGTHS (LF) CULVERT DATA SHEET 15 SHEETS FLARED [Np f URCL END 0.100 WATES PROTECTION - o ) RCP CLASS 111 SECTION SFtt ION c NETMOD I • - - ALTERNATIVE PIPE RCP CLASS II `- (EA) (EA) - ,'". (CT) `g ^ j - 'Special 1700 D A S U I L T - v - - 'u - 6 6 Z - TYPE A TYPE B •, ELEVATION or o _ S u s t.". 0 •'3 .; e. o- ~ - J . o ^ 7-- 1.10 GOReECIIOMS stilt sow 3 + •.. W . ~ ' , $ .. DESCRIPTION STATION u. re c ° _ r '^ z s '•' - .- 1 .°_. E t IMPROVEMENT UR hL _ a •". i . i o • � 'C F ' _ - s 'At. $ •� °•. 18 .. i W OTHERWISE NOTED _ _ ® -- •. GO 51 Gutter DeD Depression PI 4' D I / p I ' Std DI T d r I 4" 20' Lt 3n8 • 30 LL NA Off Ram -- - - - -- - - - - - ._` - -r -` 1 - --- -I ■■ 1 11111111111.111 62 12" Alt Pipe from DI to Ditch opening 0 - . - - -- I - - }- _- 177 0.3 M 3.5 ■■■■ ® Alt Pipe Inlet With Cement - treated Apron 23' Rt 0 • 313• 44 LL FE On Ramp 132 I 132 18` Alt Pipe to connect Pipe Inlets =MIMI 26 34 M_U_C =..��..� III.. =s��� -- - - -- __ 0.3 EM 8.5 -� MEM� -- . - Alt Pipe Inlet /Apron 0 313 • 50 47 __ IMIIIIrnillIllIll.IIMIIIIIMIIIMMIMIIIIMIIIIIIIIIIMMMMMIIIIII 129 18" All Pipe from Pipe Inlet to DI Lt 111111111.1111.=1 MOM 1111.11.111M11.111.1 - - -- - 0 .. .... 7.5 326 2.3 � �- - 1�=� -- Std DI T pe GO Std utter De•ression W= 4' D= 1 I/4" 20' Lt 313.46 LL NW Off Pomp -- 2 60 1 60 18" Alt Pipe from DI to iOitrh nnenina n 50i 1946 T •: 8 Ditch With transition It n 1 313 • 60 to 333.03 111111111.111111.= . MI= 111111.1111=1111111=1.11.11.1111111 NM. I MEM ■ ■ 6 7 i � 4 ■■■ .�� -- Std DI T pe GO. Std Gutter Depression N= 4' D= 1 I/4` 317.40 LL NM Cff Damp I 42 12" Alt Pipe Lt to Type 8 Ditch epr -- 111 I . . 177 0.3 111 1 9 25 9 8 3.5 . All Pipe Inlet - Cement- treated Apron 1 0 1 ' Rt 0 • 321 • 25 98 18" Alt Pi•- to connect Pi.- Inlets _- __■■-_ a __rinilM11.1.-- _____ ®- Alt Pi•- Inlet/ •ron 0 17 23 90 I 90 RP" Alt Pipe to connect Pipe Inlets I 212 0.3 5.5 5.5 Alt Pipe Inlet /Cement - treated Apron 93' Lt 0 9 II 2 44 I _ 44 18" Alt Pipe to Type B Ditch I 177 0.3 4.0 - 4.0 Alt P Inlet /Cement - treated Apron 95' Rt 0 • 327 • 50 18 24 94 I 94 18" A Pi• to connect Pipe Inlets 212 0.3 4.5 4.5 Alt Pipe Inlet /Apron 0 - 18 24 94 I 94 IB• Alt Pipe to connect Piae Inlets 212 0.3 6.0 6.0 Alt Pipe Inlet /Cement - treotsd Apron 95' Lt D 10 14 2 56 I 56 18" Alt Pipe to T pe B Ditch 177 0.3 212 0.3 4.0 4.0 Alt Pipe Inlet/Cement-treated Apron 99' RI 0 • 333.00 19 25 98 I nl 97 18` AIt Pipe to Connect Pipe Inlets 4.5 4.5 Alt Pipe Inlet /Apron O 19 25 98 1 97 18" Alt Pipe to connect Pipe Inlets . 212 0.3 6.0 6.0 Alt Pi- Inlet /Cement- treotsd Apron 99' Lt 0 Inallag II 15 - r 2 60 _- I 59 18" Alt Pipe to Type B Ditch MEM .11111 MI - -- - - ■■ 111111 ■ 0.63 12 Rt 412 - 36" RCP 343 • 60 U�M■ ■t NM 11111 , -- 0 .. 0.2 Light lRSPdR End O MI Section Rt ■ -___ i 3.0 3.0 Alt P• Inlet/Cement-treated Apron 99' Rt 0 • 313• 39 I � -_ 12" P - - R see 0 _ -_ M __ 0.2 -EM _ 3.0 _ - _ _ 3.0 Alt F••e Inlet /Apron 0 -_ - - 12" BCSP Riser 0 i■■ 212 .M _ . 36" BCSP Riser /Cement - treated Apron 99' It 343t81 0.6 Pi... ry MUM MN INE MUM . __ __ _ - - _ � ■ C :.0 mli .� �C IS Tlor.:d Transit ion 173' Lt (. 344. 85 to 345 • 00 .11.11111.1110.1 MIMI NM =11 - _ -___ __ ____ - - MI -___ : = = -C_= 125 .7 1250.7 0.7 7 260 T • B Di ^h 17_ 3' L� t 0 345 • 00 to 317• CO - PL ANS RUM a: - M.o. nC BOI LT Y, /7Z-02 L t u t a u ALTERNATIVE PIPE TYPES FOR CULVERTS AND PI ?E INLETS p� c..�, a... , tows" "" ' " S" "`° Reinforced Concrete Culvert SUMMARY OF DRAINAGE STRUCTURES PIPE TYPE ALLOWABLE SC ALTERNATIVES - SBd 15 S 23 140 DI Drainage Inlet RCP Reinlorcen Concr Pipe A Class M RCP. RCSP (0.0641 A RSP Rocs Slope Protection BCSP Ritueunous- coated Corrugated Steel Pipe s Class N RCP. Class L' ACP !2[ � J _ - 4 111/MPlwlt•1 l u\ 1\41.,11. . IIIAI, Kw Head wall Str Straight MOTES: The precise determination of Station. Skew. Length. Flowline Elevation. w. ...... °n ^Iil snu...•, w . et"i t The Pay Length for 12' CSP Risers Is the actual Length of Riser Pipe ACP Asoetle Covent Pipe R Roadway Excavation including the Slip Joint and Depth of Structure will Oe Made by the Engineer in the field. tI,� '�1IAA� ' Side Opening (F) The Quantity shown in these columns for CICh individual portion of "ark ..1 arvr •va_�y- Q.�A'L51 Y' I t � 91_'L -___ - is a Fine! Pay Quent tr. CONCRETE ALTERNATIvt "' FRAMES I ROCK SLOPE u 4- PIPE LEMGTNS (LF) CULVERT DATA _ FLARED END BARED [ND ` AND GRATES PROTECTION - -- _ T S HEET 4 OF 5 SHEETS ,1C1IOe SECTION METHOD s J RCP CLASS III ([A) (EA) (CY) Z ^' - _ ALTE0.NATIYE PIPE RCP CUSS 11 f Special 1700 0 FLOrLINE _ 7 . . " - - _ - .. T Y P E A ry R ELEVATION A S B U I G 1 a H K 3 = W n _ coKa[cnoHS 1.r - i-� -+ WA c a4 ti ~ W Mo owl ■ ■ ~ = : IL. DATE -_. "' - « C7 - 7 u N 4. - W « 1,6 J 4 '. ■ 8 u' o ■ S . .- DESCRIPTION STATION u N S ° a t .- i x .` u 4 INPROYENEMT UNLESS u n i i ii .-i .+ ti ti = u o u z : V o .n C. m m t- m ti ° 'A. °° x°. 7R o - o i H i 3 OTHERWISE NOTED I 212 0.2 3.5 3.5 Alt Pipe Inlet /Cement- treated Apron 99' Lt 0 375 •42 17.0 _ 12" BCSP Riser 0 _ M Mg 382 _ 1/4 /4 Ton RSP R = 8' L = 100' T = 3.3' 0 __ R 1278.4 0.5 200 Type A ditch see Plans 0 J - - - - i . _- p 2.0 Plug A Mandan existing 2 - 36" RCPs Lt 0 379.00 __ 1. ' -�- I existing 4'x4'RCB Rt 0 _- �.. ore> Jn 326 11.4 3.5 Std DI Type C0 /Std 7 8 I 50 1283.0 50 12" Alt Pipe to connect c ithp48 "sPipe W = 4' D = I 1/4" 93' Rt 377.36 111111111111111111.11111. MIME • I I 326 1.4 3.5 Std DI Type GO /Sid Gut ter Depression W = 4' D = 1 I /4" 20' Rt 379+00 LL SE 011 Romp 7 9 I 36 I 36 18" Alt Pipe to Flared End Section Rt _ - Std Flared End Section Rt _ 3 3 _ Light RSP R I 212 0.3 3.5 _ 3.5 Alt Pipe Inlet /Cement - treoted Apron 99' Lt 0 383 • 50 _ 36 62 186 186 18" Alt Pipe from Pipe Inlet to 36" Pipe 44' Rt 382.254 East Ave __ I II 1 212 0.3 3.5 3.5 Alt Pipe Inlet /Apron 0 3E14. 60 19 26 100 I 10 Lt 99 18" Alt Pipe to connect Pipe Inlets • 1 I 177 0.3 • 6.3 6.3 Alt Pipe Inlet /Cement - treated Apron 99' Rt 0 • 384.98 19 28 2 96 _ I IOU 96 18" Alt Pipe to connect Pipe Inlets - I 177 0.3 3.5) _ 3.5 Alt Pipe Inlet 17' LI • • 385.08 LL NE (Al Romp ' ME 1.111.11.11111 , II 1 J 34 65 134 0.5 134 24" Alt Pipe to Flared End Section Rt 385.60 Bose Line J Std Flared End Section Rt __- 7 1-- Liaht ASP Q 60 79 158 1301.0 1298.6 1.5 ,30 R t 158 30" RCP 8640.98 LL Mtl Off Romp 2 Std Flared End Section Rt & Lt 14 14 a Light RSP Rt W. 10' L. 15' T.2.5' 0 I I _ I 1 3 2 6 1 . 4 4 I Std DI Trim Q0 /51d Gutter Depression N . 4 ' 0 - 1 1/4" 20' Lt 385.50 LL NW Oft Romp { Ill- 8 II _ 44 1 43 19" Alt Pipe toadleABP 2 3 - 18 1 18 12" All Pipl_to connect DIs Lt _ - I x 326 I.5 3.5 Std DI Type GO/Std Gutter Depression A. 4' 0= I I/4" 20' Lt 385 • 70 LL WI Off Romp I 212 0 3 3 5 3.5 All Pipe Inlet /Apron 0 391.00 MI 26 34 132 I 132, 18" Alt Pier to DI Lt p I 4.3 Std DI Type TG /Stu Gutter Depression ri = 4' D. I 1/4" 136' Lt I 9 12_ T 48 - I 48 Std Flared to Flared Section L� Section Lt 3 3 . _ Light RSP 0 • 1 326 1.4 �- _3.5 Std DI Type GO /Std Gutter Depression R =4' D. I 1/4" 20' Rt 393.00 LL NE On Romp 12 16 60 I 60 IB" Alt Pike to Flared End Section Rt I _ - - Sld Flared End Section RI 3 3 - Light RSP 0 _ J - -- I A C D I I I I T I A nMq i - LEGEND 0,-al-7197405. -_T- ALTERNATIVE PIPE TYPES FOR CULVERTS AND PIPE INLETS an c•. •.-+ ' ^"' n See Detail R`A RC orced Concrtte b` ` SUMMARY OF DRAINAGE STRUCTURES ►lPE TYPE ALLOw1 /LE AITERNATIYES 08 SBd 15 5,51 2 22 140 • R R , t ud oncrete ipe C ► A Clan R RCP. ACSP (0.0 { DI Drainage Inlet C► e ) l ,��'`,� R5P Roc. Slope Protection RCS► Aitue.noua- coated Corrugated Steel Pipe R Cluf N RCP Glatt II ACP - 01. 1 Tt� �� 1 I,I a i.n MW Xead "all Str Straight NOTES: The precise .•.•�•. r.n e, „I i " " ° " "' e determination o/ Station, Skew Length, it online Elevation, ACP Asbestos Cement ° R Ro•dr•r Excavation The Pay Length for 12' CSP Risers are the actuol Length of Riser Pipe and Depth of Structure rill be made by the Engineer in the field. L including the Slip Joint (F) The Quantity thorn in these columns for each individual portion of .ark mi. " MbQ�8 ,191k - _- - -- - - -- - -- - - - - -- -��- Side Opening is a Final Pay •uantity. CONCRETE ALTERNATIVEI> FAMES ROCK SLOPE PIPE LENGTHS (LT) CULVERT DATA ' 3 Of 5 SHEETS FLARED END ° END - AND GRATES PROTECTION _ u. SECTION SECTION c HETI100 A - W RCP CLASS III ' ALTERNATIVE PIPE ACP CLASS II alai 17000 FLOwLINE - g CSP 20' Lt 365 +43 to 365.71 Q Bo.eLi g EIE YAT ION i i i II - a. '' a. - '< 8 , 5 DESCRIPTION so so so e u ' : '' = .---------- -- - - - - -__------ _ - __- - - -- _ - - -- -------------- _---- - - --- - -- 44, _ Remove a dispose existing 18•' ne - - - -- -- � _ -- --- _- -- _ - _ -- --------------- - - - - -- - - - - - -. ___ - ------- M--- M�- _- __-- E�------ M- .12 -- ' .4 129! . 18" Alt Pipe 30' Lt 365 +43 to 365.71C - - -- - - -- - -- - - -__ -- __ - -- - - -- --- ----- - - - - -- - - - - -■ -- --- _ -- ■ --- 11■■■■ ■ ■11 ■1101■■ ■ ■ ■■0101 ■ ■ 0 3 MN 68 ■■ iype C Oitcn 365.71 fo366 +39t8aseLine MN MNIIIMOIUIMMIMIIMMMIMIIIIIIIIMIIMMII 11�111111111111• I Remove a dispose existing 19" Pipe 10' Lt 366+39 to 366.68tGoseLine iiuiiiiiiiiiiuiiuuiauiuiui•uu 1291.1 1291.0 0.3 ■� 18" Alt Pipe 25' Lt 366 +39 to 366.68 4 Baseline , ■ _ -_ - -- -- - -_ -- - - - -_ - - - --- - - - -- -- _ - - -- - -M - - -- 10 M- -- - - ■- __ ■ -- -_ -- -__11 -® T • C Di t:h 366.68 to 368 +40 t BasaL_i_n_e, - ■ ■■■■■■■■ ■■ ■1101■■■ ■■■■■�■ ■■ ■■■■ - - ■ - - -- ------------ __-- __- _- _-- -__ - ®- @0 T pe C Ditch 368 +40 10 369 +20 t Bo*eLl on 11 R. a • i s _•se , xistin 4" C$P 70' Rt 359 +20 to 36 ai 4 tase Un e 10 1292.0 1291.7 1 26 11 24" Alt Pita 35' Lt 369.20 to 369.48 t BaseLine '.• x ' • A C . • c- x 368 + 4C): t Bose Line Std Tr oe B Coaxial' ft L• 7' . 111111111 12 Std Type B Rirgmal l Rt L. 7' Light RSPRt R•3' L =40• T•2.5 n Remove a dispose existing Pica 150' Rt 370+80 L Base Line . Plcg a oboneon existing 30" RCP 200' Rt 0 378 .45 4 Bose Line R 1289.9 1288.8 0.2 560 Typa - A Oitth 62'! Rt O 368+ 60 t Base Line - - _ 101 1292.5 12@9.5 I.6 •t 185 42" RCP 373 • 85 t ease Line 43 Type B HR Lt L= 10' R /2'- 9 "Poropet i - - - - - -� - -- -- __--- - - - - -- - -- _ -- _�_ - - - 0. _ 8 _ -- _ - ___ -- _ _ _ _ _ - - _ __ _-- _ __- _ - Conc rete Culler 63' Lt 0 377.45 LL SA Cn Ramp __ - E1111EE ■ 101 1111 ■■■ ■. ■��M NE■■■ 1289.5 1286.5 MEIN 42" RCP from Collor to 60" Pipe 15' Rt 376 • 30 LL SO On Ramp -- - - -- - - ■ -- --- - -- _ -_■ -- -_ -- -- . - M ®------- 11MM- E__ ■__- ■___- �11 ___ -M Alt Pi• Riser 62' Lt • 377 +38 LL SR On Roi•ip - - - -- - -- -- _ _ -_- - I- - -- - - -- -- �� - - -_ -- -_- - - -_® . t" 4 • 375 • 75 LL SW On Romp - II i iiI ii2075 ui __ 111 Sfd Pi •e HI a BarPud gingival with Conc. Apron 42' Lt. __ 375 + 95 LL SN On Racip _ -� __ -_- --__- - M__- __- _____- _ -_ - -- (Ric, m I Bk L. 18 ' A 9 • H. 7' ElevCo • 1292.3 4= 20° - - -_ - - - -- -- -__�_----- __ - - -- Rin• rio!1 Ah L =20' Cl =2 H =7' E1ev( 129 2.3 4 = 0 ° ) - -- - ----- � - -- ------- -- _--- _-------- _ -- - -- - -- ------M------__--M---- - -_ - -® - - -- - __- _____- -- ®_ - _ -�- Al Pi Ri s e r 87' R1 • " • " 375 • 33 LL Si! On Romp _ - _ -- r11111111111=NIENNIIMMINIENN r .... 11. ■.. ■"C ......M.MC�.. ■■ - - -_ 11 ■ ■ ■■11M■� 315 789 ■11 ■■ ■ ■ � ■ ■ ■ ■■ 400 ■11■■ 1282.8 1278.4 ®® 400 Spe RCP 375 • 50 - - - - - -- ------ _----- _-_____. _- _--- _ - - special Dbl HR far 60" a 18" RCP Rt n 1 I ■EM � AC DI MI MI of An lc 1 1 y 11■■ I -- - - PIPE TYPE ALLOWABLE ALIEAMAL VES "0 I ' I I , '.,• I �-, �, -• D n ' ' far on b. "r SUMMARY OF DRAINAGE STRUCTURES Di Dr•,n•ee Inlet RCP Re.ntorcN Ce..c mete Ilse A Class R ROW, LE A TERNAT') A / RSP Rock Slott P.otec t. on KSP I.l•velnous- cosies Corr.4•ted Steel hat I Class N RCP. Class II ACP "- ,16111171 iON Vcrf[Ft Inntcc tin NOTES: The Length. u., Irma n, II t".,11...... ..4. MO Ne•o.• Str Straight precise determination of Station, ...Item. Len th. Flowline Elevation, - t TM Poy Length for 12 CSP Risers ore the octopi Length of Riser Pipe ACP Asoestus Cement h t< R Roaewy E.cavat.on Including the SHP Joint and Depth of Structure rill be made by the Engineer in the field. _ - e � -7 ll 9 1A- Side Oaennnt (F) The Quantity thorn In these columns for each Indivldunl portion of work o.,. . v.�� ��yE - - 1` - - - - - - -- • _ _ is • Final Par Quantity. CONCRETE L1(RNAT IYEI> FRAMES BOCK SLOPE 4- PIPE LENGTHS (LF) CULVERT DATA SLEET 2 5 SHEETS FLARED END FLARED END F. AND GRATES PROTECTION : -- _ SECTION SECTION - C ' METNOD 1 o _ ■ ■ A $ BUILT -- RCP CLASS III _ ALTERN,ITIYf PI /E I RCP CLASS II 1 d 1700 D FLOMLIN (u) (EA) (CY) i _ i _`u i u n - u S g o _ ►_ ELEVATION ' W _ - ..... - = °. V TYPE A TYPE 6 W .--- �•� -.�. W " W • o y E x = ■ _ • _ N 1l4hisalePT ■ u T.' "a', c .4 - 3 m j g ` ° r. " ' Z ; t - .1 IA Q DESCRIPTION STATION U '- a - " u ° s ri o 4 INPAOYEN EMT UNLESS u a .- .n . - u ° u : i 2 n . r. - en A . n .- r. r - - 2 s s 01 ° u . R Ili c ' o = A " � ; OTHERWISE NOTED o ° ■ - -- ?TXI 755f 436 1255.6 1252.0 0.83 436 36" RCP 3 5 1 • D 3 21 21 . Light RSP Rt 0 _ I 2.0 Std Str HR Rt j - - - - I 177 0.2 3.0 3.0 Alt Pipe Inlet /Cement- treated Apron 99' Rt 0 • 350. IT c 1 - - 19.7 12" BCSP Riser 0 i _ - 1 I 212 0.2 1 3.0 3.0 Alt Pipe Inlet /Apron D 17.4 12" BCSP Riser 0 d I 212 _ 23 7 1 �_ T 36 "BCSP Riser /Cement- treated Apron 99' Lt D 351 83 - _ 0 -6 Pipe M4 I - ---- -- { - + 3 1 4 1 15 Mlorped Transition 158' Lt 0 352 r 62 to 352 + 77 r4 _ -- 33 123' ( 1258.8 1256.6 t 223 Type B Ditch TSB' Lt 0 352 + ^ .7 to 355.00 I 212 0.3 3,5 3 5 Alt Pipe Inlet /Cemant - treoted Apron 99' Lt 0 356 • 50 19 25 96 I 96 18" Alt Pipe to connect Pipe Inlets _ - I 212 0.3 4.0 4.0 Alt Pipe Inlet /Apron 0 _ - 19 25 96 I 96 18" Alt Pi a to connect Pipe Inlets ) 177 0.3 5,5 5.5 Alt Pipe Inlet/Cement-treated Apron 99' Rt T1 • ( 10 14 2 54 _ I 54 18" Alt NIA to Flared End Section Rt - } - - -- I Std Flared End Section -- 3 3 Light RSP Rt 0 t i t 168 218 366 1261.7 1261.8 0.79 18Rt 366 36" RCP 362.00 21 21 Light RSP Rt TT 1 Std Flared End Section Rt i 1 212 21.1 36" BCSP Rifer /Apron R 1 177 0 ? 3 0 3.0 Alt Pipe Inlet /Cement- Ireoted Apron 99' Rt 0 • 1 361 • 67 1 1 [ 12" BCSP Riser 0 j ' _ 1 326 1.2 3.0 Std DI Type GO 102' Lt 362 + 32 16.6 12" BCSP Riser 102' Lt 0.6 Pipe HMI - 1 . 4 - 15 Oorpt.d Transition 156' Lt 0 363.20 to 363.35 I - _ 35 119' 1268.3 1265.7 I 265 Type B Ditch 156' Lt 11 '463 • 35 to 366 • 00 3.5 Alt Pipe inlet /Apron D 366 .00 j. _ -_ ____ __ 19 25 _ 96 I 96 18" Alt Pipe to connect Pipe Inlets _ I 177 0.3 5.t, _ _ 5.5 Alt Pipe inlet /Cement- treated Apron 99' Rt 0 • - 7 7 2 52 I 52 12" Alt Pipe to Facing RCP d I Facing RSP Rt 1/3 CY • I 212 0.3 + 3.5 3.5 Alt Pipe Inlet/Cement-treated Apron 99' Lt 0 372 ••b ' 1. , I ( 24 36 96 , - I 96 24" Alt Pia e Inlets I 212 0 3, 4.0 4.0 Alt Pipe Inlet /Apron D _ 26 37 . IQ� I 101 24" Alt Pipe to connect Pipe Inlets I r -_ __ ___ _ 177 0.3 5 .5 5.5 Alt Pipe Inlet /Cement - treated Apron 103' Rt 0 • ___ _ 19 27 2 74 , I 74 _ 24" Alt Pioo to Florea End - Section Rt _ I Std Flared End Section Fit - 7 _ 7 Light RSP RI D r 't A S BUILT PLANS '7Ii Contract No. _GA'7/ ,/ . Date Completed �'�7G 1 r Caltrans Drainage Report (state highway 30 & 31) • :_. 08- SBd- 31- 5.3/7.2 Rte 66 to 0.4 Mi N of Base Line Ave 08201 - 069081 »i' / 08 SB d -31- 7.2/9.5 08- SBd -30 -10.5 /13.1 Routes 30,31 I.C. 08201 - 0392.51/ April 16, 1971 I DRAINAGE REPORT FOR THE DESIGN PROJECT ON STATE HIGHWAY ROUTES 31 &$30 IN SAN BERNARDINO COUNTY NEAR FONTANA ON ROUTE 31 FROM ROUTE 66 TO 0.4 MI. NORTH OF BASE LINE AVE. AND 0.4 MI. NORTH OF BASE LINE AVE. TO SAN SEVAINE ROAD AND ON ROUTE 30 FROM 0.3 MI. EAST OF EAST AVENUE TO 0.1 MI. EAST OF HEMLOCK AVENUE 1 . INTRODUCTION This report updates and supersedes a portion of the Drainage Report dated February 2, 1962, for the project on State Highway Route 30 from Haven Avenue to Oleander Avenue. 30,31 InterchangesandothatrportionaofaRouteb31anorthwesterly Routes 3, from Route 66. A Drainage Map has been prepared and filed in Map Files as No. 156403. Drainage Notes and a copy of the Drainage Map are included in this report. TOPOGRAPHY The drainage areas contributing runoff to these portions of Routes 31 and 30 lie on the southerly slopes of the Eastern San Gabriel Mountains and the alluvial deposits at the base of the mountains. Route 30 crosses these deposits 24 to 34 miles below the foot of the mountains. Soils range from thin to non- existent on the steep mountain slopes to deep alluvial deposits on the lower reaches. The alluvial deposits have very good percolation characteristics. Major flow lines crossing Routes 31 and 30 in this area are East Etiwanda Creek and San Sevaine Creeks. Future handling of these streams is outlined in the Moffat and Nichol Report "San Bernardino County Comprehensive Storm Drain Plan, Project No. 2" dated March, 1969, and prepared for the San Bernardino County Flood Control District. gl Runoff generally flows from north to south. After collecting in east -west streets it flows to, and is concentrated, in the north -south streets. For a more detailed description of individual drainage areas, refer to the drainage notes. HYDROLOGY 1. Rainfall The average annual rainfall for this area ranges from approximately 20 inches at Route 30 to 40 inches at San Sevaine Flats. 11 I N 1 . q ., • r - • -i- ! Rainfall data used in the preparation of this report is based on U. S. Weather Bureau Technical Papers 24 and 28. 3 Hourly intensities(P60) for use in the "Rational Method" are 75" for the 10 -, 25 -, 50 -, and 100- . . 1.10", 1.33", 1.53 �� ,and 1. year storms, respectively for the valley areas. For East �� Etiwanda and San Sevaine Creeks these intensities are 1.23 , ,`'- 1.49 ", 1.70" and 1.92 ". Intensity- Frequency - Duration charts <i',.s " Y: _,..: have been included in the report for convenience. 1 Storms that cause flood conditions are most likely to "' occur during period the riod from December through March. They are r cyclonic precipitation from omhorographicOinfluences over . heaviest pr p . the mountain ranges. 2. Runoff Runoff was computed by the "Rational t Method" C.E.S. . and the rrt.'. "Railroad Method ". The Railroad Method", 5970, was developed by Mr. R. A. Staneatruction Engineer Coast Lines, of the Atchison, Topeka , nd Santa - 3.171 The Rational Method was used in computing runoff for valley areas. Both methods were used in determining runoff ,., -,: ; • from East Etiwanda and San Sevaine Creeks. •'- ` - y development Based on an anticipated suburban t pe a runoff coefficient of 50% was selected for the valley areas la except where no development is anticipated. Runoff coefficients for use in the Rational Method for on -site runoff estimates are recommended as follows: - ; Paved Areas 100% Unpaved Areas 607. A minimum time of concentration of 10 minutes should `: .: " be used in the Rational Method. FLOC CONTROL PROJECTS ,• <- As a result of the recent fire which denuded the I mountainous portion of the tributary areas, the Corps of Engineers received money to be used for repair, c , cleanup and enlargement of existing debris basins, and new basins and channels to offset the increased flood hazards. I The existing basins in the aew basin andhanne E�nC were on- n c grounds were enlarged and in the San Sevaine Creek area. II i 4 4 t ' } Flood Control planning is to combine Day, Long-range appears that the East Etiwanda, and San Sevaine Creeks. It -! 1 1: . : r i - combination of East Etiwanda and San Sevaine Creeks may be ,� ,__ enhanced by the manner in which San Sevaine Creek is carried under Routes 31 and 30. �' PROPOSED DRAINAGE PLAN will be handled in a conventional manner I Drainage h except for San Sevaine Creek. Because of the excessively •_�t long structure which would be required to carry San Sevaine Creek through the interchange area, it appears that re- routing it westerly and placing it in a structure adjacent to East Etiwanda Creek will not only reduce the length of structure . for San Sevaine Creek but facilitate combination of the two . _ creeks in the future. By routing San Sevaine Creek through spreading basins upstream from will a the interchange, reduce peak flows will only help .' el desilt the flow that may have to be handled. t ,: PRELIMINARY DESIGN OF WATERWAY BRIDGES In a conventional type drainage design, bridges would ,^ : be provided for East Etiwanda Creek and San Sevaine Creek. w . However, because of the proposal to combine the flows from these two creeks, the design will have to be compatible to existing i.e., adaptable to the future project -F The proposed design calls for a 60' bottom width, v ertical wall, concrete lined channel, 11.5 feet in depth. Separation of the flows can be achieved by a curtain wall in , I the channel. After the future flood control project is complete and outlet removed. the curtain wall inlet ll may be removed or and ou may left in place as desired. I COMMENT ON UNUSUAL AND SPECIAL CONDITIONS 1 There is no need anticipated for flowage easements. There are no known springs, marshes or unstable areas except as may be noted in the Materials Report. .' 1 4 .S' PROPOSED .DIZAJNAC -7E PLAN (CoN 'D) - follow;o y pa ye 4 :1 a r • @ 3 C -4- , Because of the high velocities which may be anticipated • 1 " - in the structure for East Etiwanda -San Sevaine Creeks special ,;, ' uIwt ?= attention should be given to restore the flows to their "natural" 1 ir g--; stream velocities. • COOPERAT ION AND COORDINATION WITH LOCAL AGENCIES ir • Close coordination with San Bernardino County Flood Control should be maintained to assure a design that will be •'c =y' ° satisfactory to both the Division of Highways and the Flood ' Control District. :,-:�;• Ir:. :.., _ I V. ' S 1 1 } , ° .. -lit I 11: . . i .1r ! I I I I May 28, 1971 .OPOSED DRAINAGE PLAN (cont) The Moffat and Nichol Comprehensive Storm Drain Plan I. 2 for the San Bernardino County Flood Control District 9p# ►dicates a trapezoidal channel for the Foothill Freeway Drain the north side of Route 30 between. the existing San Sevaine cannel and Juniper Avenue. The channel would divert all runoff ,preaching Route 30 from the north to the. San Sevaine Channel. ' 1�" ;; :: !Highways participates in the construction of the channel out- ` .de of the limits of proposed construction of the 30/31 I.C., :will be necessary to enter into a cooperative agreement with 10..T. in Bernardino County Flood Control District. o n eri leso~. M. 11 Griffin District Drainage Engineer 1 1 1 1 1 1 1 1 1 1 1 INTENSITY FREQUENCY — DUR 1ON CHART I .. 0 - F�- ,t_,_ ''=r 1 �;-- r7=CT' -4 -I4 .:4- F4 ,•'_fit- -`'i- 7 ,.. 7 1 L .“ i : 4 4 . 5 �r :7 4-IT; _ v- n ---r;� Tgrr• f ^--r v ' 9 l3 =��: -.:� s f :-'�' -�Y- "1.?�'`4 -r I � ' ��.,y,� - = _ _ ?z_'_ }-rT?� ='� _' ,'� "� c::�� t �: i >��-. ;-? �— -- '_! --- - - - tri�_c,._.t ,j .f su.'wji- ;�t+i..: �r�T''i-!.::7 _•c'-'r_�- - � =i_Y_��. � �Lf ' - __- � - - -_. : i , _ . ' ...... '- - - _ =`u = - - _ - -= - - I -" -� t:. �7fi" - '� - - , } s l ft. _ _ _ � - {_ ! + r 7:'� ' :-' {ci,c _ - ,- . +��� .. - 9 .� S t �. � r Tt 1 • I A i _ 4 'f y f . ' ' 8 - � - :� T _ t =t r� r ' 4� tt _r. +t r �� i - l i . ■�.... .. . _ t �. b -4 t 1 ''�_ ( i . t# .if{ L+ � i i, -+. L Fyt t I i' 1`f j ,r'1 , f T Ifl __ - �wt� - Y T Y l � T I T , Y � i" I-' _ 1 - 1 ^ ■ L.._ { 1 Ii: L��-f �l M: '_ r -d t - ��T? .r.ix r ,Y' tiT' i■ �i i i -� 1.:�._� ,.} -+ 4 - E - 4- . r1 . i r i p l: . 0 C l i:S 4 ' _:. y� _t• ■ H; t4lit -: f _ r l a :A.v _ : 7 , - ' -- - - 7 -L * � -�` - " - -t-� _: 11;1 ;i ".:iT't_C tl-L j ., � _ � - �� 1 �1 1 fi., 1' F ;.�. i _�.,., - t -I -' t ` 1- -i j " - F' 7 FH' i t -r-1 '".�[ � '3 '- ■- _ �- r - l 1 - ,rri Pi-1.H' i lT'• �-, ur ,- ,-.- 6 ... _ _: . l am_ 1 I -: �. l:a fit_ iE, ■ _ I _ ,r. _ r s- -. _ i - ,'-- -- =',.-::4''.7. :'+7 �`? i..:1 t1 a-: t$ -^µ- -F - . -�_- '-"_•_-. T. t,T . 4 _" -_ ..i: __,r — _ ___ :- - . �' =i:l +S- ,. -:; �:j_ �_{ -�_, �..t.l': .sue-- �Ci:1��11.'�I : _Y `..) :: j = +_='-= L r � ' ! - . -`_ , - - I ' R Y. ' : 'r _- -' r'- � ;r'_'.:_. - i'- 1_` _ - , - --� r -T -+;. .._ LL � �.,_,_. - 'i, i i. = r � =._c.- - z� �'-- `+'-:. _ c,y 't'a= r.._kc:_,.. —. _ - ` _ �'F.- �f; +.r�,r r '' �� = l --I- = k' :i - H . i ce ,._ . ,' '- - -1=t 3� - � _�`Tti_ '- 7.4, ,, . ] ---'="-'4'4=4:---' C:- 1 _ . - --- `�` � _ •_, - -r - t -v- r , c; _. =,, , ` ��'� .. � �T ■ t ' .� - 1.{ � . - ., - .-t.C' + u2� ,.-..-.,±c;'' =- � - _Ttj:� : _'�..�. '�'iZ � x " ' *- 4`ri 7: '=•'- - � + 4 ,r . r^ :,- r. . ` - L��.'}.;�:;�_ _ ry - Tr : , , - ► _'' �- � -- _ 2....--i-1-'-, 1 f -- f .ti- rl-' . 4Ti-, t ` t ' = : ' . ` rt `�- �_: : r ---=- - - ` T '47- `_ .,., m'CM i '' :. - < .�.i ...-1-1-12,-- r• -+- r. _ ` + ' ' ' - ' y ?.-r 1 : ' y !t _ n -'. { f r'— -4 - T+•' h_+.�. • I- r ,_ , ' Ca.4_, +: - - IL=. r't' - ' n t-Lr t ,�+"F �_:'_,,... ;.......F, •� -- r" ` i . __ . 2 iw _ -'L r T`- -i r �� ' - -�" ,., e , rF �:, -':-r .,,, _. � � ww■■■[a _��FF-�� " � �� r . o tt L + r -,',�'i ' - `��r {_ '.' -t-� ti .?,.1.-411_ r i_ ■ ■ ■ ■w■ , f- l- , - - 7__ a'. . .n � wwrw i f I • t;_L ,. „ _ � II t ■ ■ ■■ ■■ N 11I �{ '. 1 r ■ 4� � `- ■ `+f - ` . ■u■� -��, - -rrr -; r-" = u z ' -i -! ` -1- 4 , ,- r:;:, - r.; UN e i . - ;t ,�- }I' = , + i - i 1'- 't; -1 - rr '-, , f{ Y . l .t g ar ; {:1 : B. ' 4 t1 t � E EE■ ■ • ■ • nu fr ies - ' „ '1 '■ - '�'_l ■■ 11.1 f r ■ y ; ` I ts _ a � mi ju;1,4-P"-+ ■h �+ „L /� w' � � y T i 1 AL �T U �; - _ } _■ R.pgV�, ■ ta■ ■ � ■■ t� - ,is 1 1 1 ' : R■■R yf l�� ''`:.1{i __ lr ;j r-:.;+: } ''� :,Ti'r� } II' n11 /� / /]� II' 1 1 r' �''�. + i n : / i , t ■ Or 1 t • � ■ hill �[W■ i _. �: ! - fr , � � I , .-_..7 ..-' - ■■ f t ` _ ,, I f lt l i ,, 1 , ! 1 4y , . a [�� 11 _ -t { . rr � '' �� ■ �tI{ t r i,�■w■/■ ■ t UI 1 I 1 �, i 1 L1 `T a I opi . Am . ' 1 -!l1 i ar il-, L F�' g 1 , 17Th i ' d n . �1-177, i `tl 1 ` 1 j ai, ■ 7.1,. ;' i i- -.� - Y '.0 - li 1 1! 11_ • ■ W f, ii 1 1..:4_14 ' i N 1� f: �. :. ■ � u • � � /i -i_p 1 1 !_.IE� j F. I Ill r C■ u i 1 1 1: ii1 I p 1_ ;41,-: ” l - 1 l a,,rri i r' 1 : it m ' 1 : I I, , � r n � 11!11 � 1 1 11 �j In I t 1.t � un 1 h �Ulnulft i 1 � 1 ,�: IA �i „. i : r `� '� m 1, � � �Ilnuliu p 1 n;1,��3 7 I - ����il�.� � 11111111111 . I E I I b ii u ll L ■ , p II 11►1� 1! 1 u iii I 1_ Iiul ii 11111r el i 11..,' l 1 _ ' 1 LIL IIi4ltill1 111 11.IIIJiliI s. �i r ��' 4 F' t r : T tc4 r �'.. f r.., J w - •-1.1. 113 ' T_ i `fT. _.-r - ` 1 71- ._ .4, • , �, � -t-1- �„ . °■ • `t: t .L , � r T i >, �■°� C 7 . ' � r�w■i.■ �t a { - C� - r.Txfr .i- :� . a 9 .r r - � ', • . i . . 1T'•+ -'- «�.�.-_ a..C' ,_F... -,..i �... 4. .....i r>r a "-an -_C _rr''-' --r r - !- �.a<, , - . y - .- ,...,..._.,. . wtt 'S — _ i-r ■wi' ' u i i - . n: n■■■I - Igo li, r: -" . .w r 4 " r . + , .- -+rho ` t- - - 4` '� _mar ■ , 'ui ■ • r ' r <i� ■ ° } a s a•■e■■ ■■ " AI i , iu , } t 1 �;i.: _'i�. r 7 �ww'■o.'"■■ ■=■r ■. ■. '+ .aisr�'�u {- . _ } t; ti 1 : 137 �1 v " 'wf : 1111 • �tanw �■ wa ■ y �. ni N'ti2` ti ■ i !t_ � a ii■ w ■ L '' `Y' ..4�i ., -N-- ,t '' r" -a .at���G�wwra ■ u■ . r t. u ! as ■1 : i .fi ■a - . .p,:T. r i , ■ Y ■ , _ x '014.... - aa i ■ -- - _�■ 1 , :1 4- `}!;r -..i -r}=; =r= i*i T ,�.. ; b 1, : J• b. P. ,., a . .. � : T, r L ._ ` f _ - � - - = s= =,./7:.'-- �� �� �.- �� �� , $ 2: - : - r te ;�.s � ��_%� �_ - -�-� ` -�_; - _ , . _ - :1,_''''.1-4_-:-..-S• .,•tri-C -1,. ,, z: _ -_ . -� 1 . %: •-: r `: tt-r1• -∎ •• Cr r''t. -rr . =:. E :_ _;.`sue. J ' " - - . - _ ■ + i ' -} ft` y 'x '+ _ L u .:_:� : r rt.' ,�i - '3 . + s:, : ',__ 'Y • . ir - '._[- v . r. , rte i... +.... ,__� .... �F `- e.';' _ ; . ` ...-. -. 1, a .� w�■w =� am ?4p -i r !.4 ■ f ` r'i.' I Tr ;4 ■ ' f. � = =/ 1i r( ' {` + T` ■°�.a. � • '�ll ' e..._ ; -■ µ ■ ■ ■ a a u■ww ■ m ■ii . ■ Iw { i �:.' ■I ■�■r.dil' : :'iii .:: ' 91 ' nu + t ■■■I! taaaa■7gm,... .. ulul a■r . , ■riil■ .. 4. w w■r. w w t=■i =t= d■ a'1' i • { 1 � J 7r. m■ I ar anaaa■■■alw !i; ■w - tlMth■ ■ n ., ,�, i i ' • � d ■'a = =� =iana iii , ii ■ � ':tt' ■■dun 11 F r a �iaa a ■ ■ a■. .n ldi iu ° mu u u . .3 as d= .rU UlEM�■■aa■ ■■ v , !� - i RR u p au ■�■ as a■�■ ■ ■.r■■■■� ■ nt I, , S}" I _ 1 � rf ar ■■1 �T_: Y •ti -.i � ■!11! 1 � / ■■■i •R• ■■1■■�Un11 :1 - ■ 11:: ■ n.�' 7i aa•nar�a■�n'■�ii' as aE■■ ■ L _: � + 1 111 R f U ■ ■ � Unt 1 r a1 ■E Epq■ \ ■lUwnU ■ , 1 , ••••••••••� aE•■ ■ • ' _. ' ' " ri ,, I m [1■ U■` 111111 11ta1m■ ■■>1a.■■[■•■■n■1■■1 ■1 IIIR i ' `U■ '' , — — m -mm u. . uin • : t u pn anuv�ii■■■s■u ■nnn■U■u Ip11 • f Nauru C • NM ■ � ■ j II MI I u . • I ■.111♦El■■ mmu 11 ii,II ` T * - 11111111 I ���i emmul m/1■1■■ a/ u/■1R7u/ ` ■ uI$I ( Ii 1 m � / 6 ' 1 ' �q N' � ■■ ■ ■■11111 ■ / ■p■■/a ■ ee ummo■u■nI/I11 , n + 1110� * .i, w : , ■Aiiii/ UIa$■ / iu l fI 00 ' {1111111 I R ul MI M Ia iii■ii[ uII • u 111 11 ° n u I 1 • �� 1• ■t■■ ■ II■ a ■�I It I11N1f W i irRII aa0 It NmMIUMM !: ■■■n "te�rya lam Wnflll�a m„ r'' �' 2 �� NuaUl■RuaM■■ SUN UI1 RII 1 ■■ Ra■■ ■/ LM11111 1 �O I '' : « 1 11 1um1 1 tom! i i n y luIuuni muullln 1 n l u 111 I n N � p ' m a nn um u i m ° p %m u nf111''' '' { 1 a i ma '. • >•NIIIMIN� IMIU II IIIIIHM IW IIllh1111111 u u °' t , : , 1 1 11 �', '' : �hI111111 fIsm . uunhIIIflfl I II� nm s IR L • 1 —�m ■■■■nomm /11 1 MMUMMI M n 1 I IMMII y�nnmlu IM ii, n 1 f ci : • iIR■nn ul1 111 n + mum 111118 EnnnInIII 11111 u■■■■■ Inninnn1I d HIM! UI IL' ,� !III Ignu 1 � In �j011111 Wi81 ∎11 l tglin u i m Mn I n flil 1 11 1 I; (; I 1 T' i•U�NE��nnIMInIW t 1 111111101111111111011 o u un 1 11 1 , 1 l i �� � n MN 1,111 � " r. I�l;1 UnIuuuuuunlll i U110111llu a 1111llfllllll m 111111 ul� IIU1ulIfluum 11 1u1U i nI i 1011 11I10 •RIIRIU /IIIIIIIIIIIHIUUWI IIIpl 111 I illlE i ll111111111111hullmuui(illy Iu 1 1 1 1 11000 l m RUUIuIIIIIIIIIIu1111Wfl1 111111111011111111111 111 r, I flIUII UUIII11111u111111MMI l( hIII 1 i I! /0 20 30 40 50 60 70 80 30 I0 420 kw°-------- 2 3 4 5 6 7 5 9 /o MINUTES- ± HOURS H D U R A 1 - ION C o — Rte -PM S 30.31 -30 / • Desa. RTE 30 , 31 1C__$__, FOOTHILL BLVD. TO 0.4 MI. N. OF BASELINE AVE. For Use With Drainage Map No. File No. 156 — Base On U. S. W B. Technical Papers 24 0 28 B y ` - C , 3 —' Ckd i g 1 d 4-7/ 4:,}.1':..,',,:`;',: INTENSITY FREQUENCY — DURATION CHART 0 ` - - - r __ fir`"' -T »`F , t x`> ^ --- r ^'t.'C... » -tTr n ,,}•''LT —:-- t, 1,,_, •, _ :_tt- .�2� }fl�_ -t • � . - �; - }i T; - ' . {t-�i 'ri •i ':I "1- { {.� F ;,. ��.L; :'t , ..- f-i + U •` ^ _ .' + -r H , .. T -1 1- - . . 1 , : ` l „ -,-__ ' „......r.., i - t .: f �j 174-i:, L, 1 � ` ' s., ` } ^ : __ ^Yrri t. -_;. `•■ a _�� � y 1 - ri -. fir ,,1 �'T __` Vi i, _ d r ; t, r �_a.,, I ,_ r, _.rr.-U - L- 1 -'---- -' - 1 }j.+� ._ :- �`-t i- ' Gr : L� }� Fr; - ,, :i -1 -, - i i rr ,__ • t` .: r • [ i L _. ■ . F 4 :c� t`F r }r!-{ r i1 [-t. 1 } � _i 41} ' • ''' ! ^' :t t �`?� _l '; -- _;- USN= ' a . � , 4 !-4-T1_44 ;1 ,_. . r 1 1 rp _ 4_ -, t--11 - i i 1 7 I E� 1 � - _ p.1 I I 1 �'- - - '�' l i f. li : ' - _ _■ _ . . tf� L t 1 " ll l- - :- • �t.■■ _ "7.101 _!7'r y�..4 ; f- �.i r f, {'L :1.4 r 'd - - o 1 .t - '41 . _ _ _LL Tt L t-F ' - t} _ - ' � �Is:! 1. ,-Lti l"ti_ -. _� . ri■._� L at_J ;; . . .1'- I u_� .�f_i " - � _ : _..- . :.` -L =� - ` - l- C- -� - - _ :' � = i . 1 . l - -. _ _ � � � —_ . , _, + �. �. -. __C� _ _ t :' ..3�! 'L �_ }_I 11 : .t "T�' ___ -Y - _- i.l- ~ r i 'F=i, - C' }[! ” _ I -” - _ J - _ - ]_ -^ !:�- " `;7.1- _ - _ - r _t 1 . , , 3 Y Y- + �i-._- - ,- i w , :r. -'__ - _ • _' L - '� E..... _ � -+ - - - I _ ' _ , �' - .-- r U _..-•r--c'" = y } �^_ - -1 :' -y..- .,T'�- 1=.;`= • = -�� - --� f - - - '44 " = - . ; u rs`- : '� 4 , - F: �{-- r'� jr :,t- iy -- .�'... . ' :": .,- t - .-. 4 2..,: y'i! I I - ;. ; !e � _ ?_'_ �i_'2`�s -L" . L'•'. ''r;� ._ . 1. .- u r- '_ t t7S�`. -YI- - .- ..i :,i � r ' _ - ` - : � ' - +ri - `rte • -' - -._ . �+= . l� _ � � f- _' -+-^.- - 1 - � f . rr . ,r r: F �. f� - •012 � �F..�1', i`i }` U'J =''i ;:--r. -_ a '4 -} , x= 11 �.J 1_[ �•l _. Ll'11 F �T'J: . �iA.1... I 1 y: _ _ '''.1 -r te '-'-1 • - IT' _ � �. �: r i_:. I Ur . � S �: ` � u , I �T 1 77- .J ±. �■■ � iii. n�i- - � ; ; f f - ;� - 4-L I ti � .. ; � ' � , - ri � �i �_ ! itlt!it a ■ �i n �� : t � ■ � � _ - .. la^ � -} - , . i t['_S! 7777 - J 7 l I +! - '_, . : , ill ,L :�Jv. w p � - i- . ..,- I . quip', I. ■ .�Za-- � k'' • ■t.n■Lt4 _ - rL' • l 1+± -1 f T- „ k � ' , „ :io ■■C 1_ 1 _ 19� -. 1 i tr ' = '- ■ mn■.■■ l.Cp ■ 1 { '' ,. r R L 0 114 __ ; : . . ■ ■ u ■ ■ i ! �` n I,: n - • ` ` f "`_ f I b, ' ".'t i ■■■a■ ■ 141 a 1 �i,tl. ft,� m __ ___u� ■ • ! • :---P--: I ! .' , , - il I t 1 - t I rr I ' fT , I , , i I I I 1 ri I' � I r l�.'Ti' t ■■I_ `ELI. � t - ; w��� i � ■■ � _ t - 0 1 4 S " , d -Iii 1 - � z? ; r l r t ! u ; ■ IN■ ■ ul I Il_4L r , r i J ■� )♦ P� �-1_ 1- ' i ; _ (hi 7 LL I II. , I' • • ! I ' !!' • i i 1 t I! !' I t ■ ■ ■ ■ (r' II ! L'.li''I'l 1 -.1 - ! - t 1 1 il�i :. i■LG t_E -,_ ?, ,' 4 ' , rik : '2,�i1 'h ' , r• q -- , , I t I I r{!,' rI I C' ■111 I r (��i ; -1 2 3 ....... ■ ► ! i t L 'iill 1 ,. i ! !. _ ir 1 " i r . �l �i?` I �■■ 1.1 * ;;; I .i . ,.? m� 1 IIJ; , I ! ii p I ft i I i 1 1 If .. : " i;1(�i'lliii I_ III ‘',111-, , 1 .11.0.111 . ,r I i_ ;1 i. I 1t1T ' i 11�1 �1111 1 i l t MOM SIM II II p n ,� p t I I I! � , ,111 I � ;" I nii1Ii 11I 1U 11 } 111( i :11 00 $1,., ; :I I I If I 11_4 '1 111.911u1 ` 1 I i ll. II.I� I 11 _ i J , I UuI 111111� II - 111 , Ji i 014111 11, 11 w hill II 11 II 11,1,1J1_111 1,141,111141141 1 � 111-111E,==== 0 I I ILtJit6" I�I!!1 ill! dun '!_1 111 �i il�I1 I iS L 1141 . '� F ' s „ ., . :;w :i ....w ti . , ' u- . '1, - .�- a..,,,_,. � � , p .... � � ..�_: '� ; • a - Mill:: • f' "„ - }y - '1 * "F '- .L' i- ■. if i" sr - ;'• . ... , + i.f -;: �_> SEE= .�_' = . -tT L .: 1 L ■ ■ ■- ' J -. --- . - ■p ■ .■■ • :,I ,-� 7 ■tea- -s- . ■■..D •-i 1 • r1. hs+ n - rt . ■■ o��Cu ,-4 ... ■'i i , . r - 4_ L.t ���-r - ' � --- - - =ri■�■ tr■�t"� ' ° � �� �liin �+�■■- ■r a ■� ..r ; Immu � = _, " !t•'°' = _ , u 1-1 } t L Fr i`h +H{ ` ■ a OF F ! , - _ I ....■ ri� + t t •'.} - l .•- `;'r nU I I1 onsim■ --- _ -. t -t. r F f t � a V. .J r- ' t -' , .... -..• 't,Ft r� %j �{ �` :: I- . _ .. 1 , ,- ;. p J y t - .tr_ ; :. I Y , _ �T -__.%. C r. , +T t._ .-. L�L _' . � .:. .�... .� -3.. _ '.'��1� a ��.� - ; `= F -1 t1 t -r : {� -.-I -..,-,..:,_444- _ � r +-i .. 1tF #� . I_ �_•-.-_ Y titLT =,....-1,—..._=====.- , - t , ; • _ ,. -s ue. • „ = 1 t ' 15 - t i i: "t ` -. `- L- ,•.t., , .._ 1 t� . » -1- � -�� - i °r ± i 1 , t - - . .. yap i 4 - 1. - wx , : t .I.i ; et l . 4 , +-.-:7C7----; ��� ... 0 r h - w F _j_, *r -{ _ �}.x : }`[ r2 "T: -i:� = .��. Al .. T "T : ■ -- - m r olii a■ ■ �■� • ■ 'r{ 1111th -1-q--‘771-,-t- -• =,_____.„---............,.... a tr■- p I: ■ n } �tun .■■. d■i.'7Ld v u ■ ■ �_ . ■N■ �( ■ ■,■■ t iTri' U ■C■' '� �� = -...V. ■■O ■ ■■ O ■O ■ !`(i: �' Ol ■ l t i. Ma� = .�' ul■.to. eu ■ li :. ,hr .1 10••0 - ■x.to■.-�.■..i.■■■u■■ ■1110 II ■M■■■ !'1-. " ,_ I - ■� �� . . 1111 ..■1 • 11'; ■' ■■ O ■ Tilt; . ■. .■ ■■ i ■■■' 5 - .w.Et. ■ ■ i m 1 = I n $ I ! -o gt �i■■ ■_ ■ n 1 i • ' - =i = .t�n � t{.' ■ ■ u I -. .:1� ■ ■ ■ ,. ,4' 3 t!. `t L '■ r n , ! ■ Ji ■■■ 111 I n 111 } S I I VI ..ao...�i 1 .. , I::. •J f' i _ - 11..! .5 �■ i r,_1 , .. , I1I 11 11 11 1 1 II I 0 E INN■■ ■■■■uo■ .u. ■ill :rt , 11� 1fi 11"1"11 "'"' �■�i■ ■■ ! J_ ' l ! t i 11 1 t u 111 ■■■■■ ■ ■■onul u 1m■ to • u u L ,1 ..11•(11..( ■to■ ■ �u � ` ft i1 t t -. ■■ ■ . n� ■■■■■_■ n■ ■■ ■r n. w�iut) m t ii,„ t■r L� �� Ci s ■ ■■■Z ■ 0 1 _ 0,(111' ! ' t I 1 1 n n ■ ■■■ ■■■ ■iup nr tmn I I m n �i? i ■■N EMI a ' r rum 1 I 1 1 WU i { I IN .111.11M11•51111111111111111 I1N�I U r � tt�u ■ n 1 _. a1�1111■I�u mi .i ■ ■■II dmU sump ■1 ■■■u■■■ summit I ■u I ' IWI , 1i_ f �l�a�� �a ■ • II ■ n1e1 J 1 ' I �1■1 1 ■ m■ ■■■■■■■un■inuun111.1I I nuuN H■■ I ' t; . �����MI�t ■� � ■N � im nn1gq111.1u In - ■. !, i , onnu ■ ■ ■N ■u n■ ■u na I u N . ■ ! i n l • 2 : / : :r :1•/ ■ ■. lai 111111i11 I ': 1 1 1 ! ' 1 1 11x■■ \�11 ■■mn1•1111 11111 11 L 1 111 1 I ' -1-4,-;..r- 11111•1111111111•11111111111111 ■•ai. 11r nun 1 11 111. i 111u■un•f■1I11u�1fn11M1 1111p11 11 J In 1 ,, • 00mmiussum 11110nnu1111111111mI InuuIn 1nu 11 n sIunlhI11nIuIm111nU I ! 111011 ' '' • s nu un 1111 1 111110 1 IiIn1111q Iia11•IUIifm1111n10ne11111m MUM ! I , �:1* n *untm 1 u i n 1 g I i t�1= n1u1 u�n ui � uiiuuiuuu uI u InuI II I i � m 1lm l L l �! � 1 L' ■II ■I[UII1111 1 1 L I I I n - 1_' _ I i 11II1111I1111 ' !I1 ! I n111!1 I - 111111•11111101111111111111 ITIll 1 1 1 ! II u11111111Wm I1UI 0111111 11111111111111111111111111111111111111111111M 11111111111111111111111111111111111111111111M III Ih11Ul 11111111111111111111111111111111111111111 I M1101111111111 I 1 11 ��1111■11■1111111111111HIUMII 1111111 Ail�11111111111111 111111111111111111111111111111INIIW1 hIlIll11111111 1 �uuuiui1. 11/11111 MI MI IMII 1111111 II I11111111111111111111111111m1Ifl11111II1111un WI ,. 9 / 0 20 3 611111111 1 4 0 � 0 11111 60 70 80 90 /co .4<0 2 3 # 5 6 7 g 9 /O MINUTES - - HOURS -- i DURATION Co —Rte—P I SBD_- 30,31- O 303I I FOOTHILL BLVD. TO 0 4 MI. N. • _ ;ASELINE iVE . For Use W Dra Map No. File No. t56403 Based On U S. W. B. Technical Papers 24 0 28 B y 3'2/ Ckd jd, , i » 4 -7/ - J 1. DRAINAGE NOTES Area No. /24 proximate Location Location .574y. 393 57 Ao ant of Concentration (Station) ad Use -. // //� Existing O� ,f a7J . 3 / ,a/4 / f /arty/ homes. Future ewrd ah ,eeSide.2 //c 1 Anticipated Residential Density /c ) pile: Sanq ar-7 L40 re/ a is l � er n : op,)," a / /i/ v/ / /dor ms low Line Characteristics: Upstream: .5c� Downstream: - /�. ;xistinR Structures: f7pe temarks : 78, t vy: I ��( - 2 . HYDRO LQGY Area No // Coefficient of Runoff F`x Surface Ve §etated Slopes - Steep 60% 'Au tercia l Area 85% " - Mild 50% Anse Residential 75% I 1 I I - Flat 45% trmal Residential 607 Farm Land 35% burban Property 5570 .50`/ Parks, Golf Courses 30% rren Slopes - Steep 8070 :.. i} - Mild 70% , - Flat 657 �z C (Consider Probable Development) % of Area Coeff. t %at %_ %at %_ % at %p = %at % Use C = -Co } Area 3C, Acres C X A = /c P -60: 10 -Yr. /.; '5 -Yr. /. 50 -Yr. /, 100 -Yr. /.73 Max. Elev. / 3 4 . Channel Length /5 no Ft . -er- -Mile s Min. Elev. /3/0 Time of Conc . Z/ e /0 Min. .o.r Hrs. Elev. Diff. .97 } USE 10 -Yr. i = 2.80 " /hr cfs 5o cfs 25 -yr. i = „ ci " /hr x /c"' = cfs x 0 70 = n cfs CA bed load S0 -Yr. i = 3.8 " /hr cfs 7o cfs 100 -Yr.i = 4.4 " /hr cfs 80 cfs Prepared by - - Date //727-- Checked by Date ... riy.• '•••••:, •••:.• . I ..... ', :, ':: ;:' • . el . . ...., ,:.,:..,. pi • •-: 1 • E...-;: . CULVERT DESICN . • .1- t' ', t / 2'4- Area NO I . •' 1...: ::?c j.. Go . Design = , . 1 ..- 1"..:,..- . .. -:. ,.'•::-:Zeert size 0: i urn Slope % Planned Culvert Slope •00 headwater available lab le 4 -, la.. i ,f,r..:aium it -4 0 ':::: 31 T .:'''. ", f t '. t `- f....--, 1 i L ! 1 = '014 Q eylerly 6 esci . f t • Skew 20 e lk/Rt , .7: 4.r,- _ 1 '. ' t flow line .,* , )3n8 '. Outlet flow line 1:1;5 ,i-. I -.- Nel /3 /OS - iaet Water Surface Elevation 31 ft. . - - • tt mated V e 1 at Outlet (Q..) 1 fps i / Vert Inlet and Outlet Appurtenances inlet i t - - t`i e •.:, A ,,r/ 6 11 0 !;. 2 . c:- r 1 • . 1 ' . _ . ,• .,,,, ., . • - . . • - • :, fi,'• I: '• •-?, . .,„ .•: :4, . 1 , .. •,,i• • , . , • ,... , . , . • .. ,,.. . ,., .• • • -..' ..=::„..• . • . ,. •.,,,-•':.,,,-: - . . • • , ,.• -•,---. . . . , , •.. .. ... ._. ,. I , . • '-.. 1-:,:-,--- . • ,..,. .....,„ , . i .... • -, - , 3 . - ..,-...„,... S . . • CULVERT DESIGN Area No / 2 4 .. ..4 ion 3 7& .k. ? 0 Design Q(p 50 asoz:80 I t" t R ' i vert size & •type 3 d ,' C P S 1 1 . , f ,,,,, .• , ,:, ,...mum Slope 7. Planned Culvert Slope , rai,o 7 AUM headwater available 6 , 7 .t ft. 1 - ,.., d Required #e 4,79 1,;ft. Skew 20 ° /Rt tt flow line elev. /30 6 , g Outlet flow line elev. / 3 0 z , 7 - --,.. let Water Surface Elevation /3 ag, 3 rfill 3/ ft. • `-, , ---4.:, '. imated Vel. at Outlet (Q-100) /1 fi fps , .1^ vert Inlet and Outlet Appurtenances /1, / e7 - cif ich 1 //ea// ,..... , . 69,//e/ — e A S P • 1 71 . fr . ,', • 1 1 .- ._ • trks: • 1 '''-- • 1 _ A '.\■ : • 1'77, , • , • .,---.' . ' .....y ..._-. i . V._ --.... . \■,.( -,.. , --- ,_., SS S . . . . „., . .. . . -- • 7 ' -- l _ I ,- •� /-- - -' '":....2:;t:_:_r_._._.__„...,,,s" .1......:;:_,,,,, 9 0° 1� `� , ::::.. - - - _ 4_ _ • art.+rt ii , •` x t., q 6. ' • • r — --= -^''` • > .. s t'•. itttttnisitIttat smells .. - Irrow P II� . — i 4 : 0 4111, II , I II t► • . . • - I. ..i./60 ii . I { , • mi Ave I , • H w ; . t 1� I i f r , r i • 'r • :or I I \•, •t • J¢� II • - �„r:ol�u.� i ;29 - ,,4 — g t � us H ! I i �i r - *r• II fe t v • . • 1 ii �^ II - .. . :nom II . I: I • � ' • '',.,-• - ' ' .L c ` it II -'At �'` ,. • •1• -, II ` II i ,'_ r �J� g d j , rI II • V `, • r- ( q ) li Y ,l ' 3 il An/ ... ,e , ; • � � . �r I� r ,l ? . x , � = ' � L _ , - +I _ 1b 20 • a0 4 S� 1 I . _ t -- •� " - O - �5 3 c •• W l GH L • • D • • 1 :f•^' - ♦ , _ `. _„lam � � b I • Ni / fjly ;' /�i ..g... 4111 11111r ( 7., ill 1 \ .. d • 4:.. ...ir Fire C• ntro{ Station •� ' r Q H } ... 11 Li .i, • , . ! ; a I . / N % w ••r el\ e 1 L J 3 ' • • r • • • r •• .¢ v+croiuA AV Elk �— --.----- 6 .. 1 e XI ...-, 4$ ,7 r , 0 14 et 3? ) ‘ t ' 7 4 / --j \..• 2 • — — — ,-,...,......,. ,..,•:14 , , --- .. .. x V V ' ra N� � � ,?,.- , qtr :x.: ;' o .6 ~ v rgl2?v , /Pic T k YSF'10C?71JTloN Ca p �' ° 'j -- K • j.� •� _ _ _ : • w� + ""` vAo- k s .mot.;. • . / '.. -'• IN S4vcr '!l x'' - .... ..--*...,".......r_. te :: ._ y ` _, =� k+ t 1 1 .� , ... r f - ).! f / ma y t _ :i ' ' 7 +a..P'.itR p , • _ - . . . a $ I 4 ) •I l r S A S t `•: , ' . /. �� _ - ` - , .tea v _ `+ _ .. p - - _ - iet - .. f r. * ! _ -! - T = - �s: -- mo _ -• - a---1: , _ _.. �` r. _..._ - _ _ .._ as p /- , ,.:, • • W , /. . " 1' ' ' - - b: t' 13. _ !F �oN � ,, � . . s� • A ._ �. i I ' `i 0' �A �•.P 9 , J .. -- r r ` *Q 1 - - �.`. - •. , _ �,, , ' -- �._ -- \', : / 1 ' \ Aiie- , / 7". \--- a_ - ,';— ‘-.- \ •---_ ___-- •,.,.\\‘ , .....\ ,,, ) r _/,-.\,--..;= - 1/4.' \, -‘ '..-:_ \-_„, i - , / pi, 1 , ,-------: )f ,,...„--:-/_;,./ - <,-,---) ,_. , , ____. ._, .,.....„____...,..„ \ \ .0 ‘. -, , \\ -.-/ ,..:s \ \ t ....., _____, . ..0 ' I, .. I' i AO% L 6 I L .,.... \ \, \ ate' '-r; %' �'1��J �- _ • -/_ / -� < <....fJ - " ` //` or �r ' ,,,::-/-;...,_:. - � -� / t % , �� �\ \ =— ! i /` J `� 1 \-0/ \ % t - CC) 4 ,� /I { l ! % %� � . \\ ,, ! Q,.':.. � ' � t Q - , -1, il I , . �I� �� \ Cam/ ! I r t 1 ,, / „ . . 7 r\ z _ _ .� --- ' ' j 1/4\ \ � �� ; ■ , ' ii � . CIS 1; `: -)8.°U ^ � --.f �` \.::.._____---,_.-.,./7-v) �� \' - i 974 y Q m< CC -7._ \''''.:, 11 ii6 ' u) ,fib 1 n:� '., .-Jr! I k . '.. - '•,.-_ _•-•.: i.; : 11° ..- �_ , '�'��? / \ l, II / \ \ Na ,' � J 240 • „ 0 \ lor‘k / ' .- \- \-\ 1 ,-, O ,--...,,. , '7 / ' 1 . .,.... !i wit �• t �0 • . . ____ . , • \\ 11 • ,,,....: I-- . I il 1 , ... / % 4 ‘/ s/ 1 k: : 4 t \ r ,,_ / l- \ 4.104 1 1 \/\./ l'i ) ) .\::,.? V 0 400- �I \ \\ `I ' • ---____ ___ s \ ilk . ,Z Aillitibk.°4- o i \ // • - --------------- - - • - -'- -' / ` �\ \\ i� n lt • - - - -• �. - - --• - --• - -- T 0 } i III 1111111111111111111111111111, • ey e `t. . - 2 000 , � +. • ' # ' a $ ;,, /_`• ^�.� 7 \• j \+ i /1111% ' i ' �_ i 1 ",11'. '11 11 t ",' + \`. '' / , 80 . ,„,,,,,,, \ _ ' 1 1 1 .,.. % - -. ti t _. I ■ 1 ji _ - __- ...-- •.- __._..,,_ \ ro” I - ____ _ - - t t _ . .... - ' _ - _ -. .t1 ii .iil!ir' 10,,,, . . - �. i • . . tftff gl/t/t f/11 IM41W - 1................,......../...........:‘‘*° I Y.t4 :.11% II. w s / orrow P it - �• it , • - 1. ; %600 .: . i ltr a it ! ', A ! • Ave +Y� • �' _ 1 m fr '` !' ' - - till _ , r - • ....... �..�f a .. `_ P . // 1 Y . APPENDIX T — 100-YEAR FLOOD CONTAINED WITHIPL STREET R/W 25 -YEAR FLOOD CONTAINED WITHIN THE TOP OF CURBS INITIATE A STORM DRAIN OR CHANNEL WHEN EITHER CONDITION IS EXCEEDED w z J -� F- f w w N1 w — t 1 o w - m a 0 m w us 4 .,i, .* At NOMINAL HYDRAULIC GRADE LINE � I v 7 -a -1 40 . . OPEN CHANNEL UNDERGROUND STORM DRAIN EXHIBIT A CITY OF FONTANA MASTER STORM DRAINAGE FACILITIES go, w2erg uftew G Ate. CRITERIA FOR DESIGN 7170 REO»Kl AVENUE COSTA MEGA CA 02• 211-34211 MIMI■ cnnL via mat PIM • ww.lA » » • LIAMS,RVE1'1MO OF FLOOD CONTROL FACILITIES