Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Hydrology and Hydraulic Calculations for Jasmine Dist. Center
Q Thienes Engineering, Inc. Q CIVIL ENGINEERING • LAND SURVEYING HYDROLOGY AND HYDRAULIC CALCULATIONS FOR JASMINE DISTRIBUTION CENTER SOUTHWEST CORNER OF SLOVER AVENUE AND JASMINE STREET FONTANA, CALIFORNIA PREPARED FOR INVESTMENT DEVELOPMENT SERVICES 888 WEST ST 6' H STREET 9 FLOOR LOS ANGELES, CA 90017 (213) 362-7676 NOVEMER. 1.2, 1998 REVISED JANUARY 6, 1999 JOB NO. 1788 PREPARED BY THIENES ENGINEERING 16800 VALLEY VIEW AVENUE LA_ MIRADA, CALIFORNI 9:)639 (714) 521 - 4811 16800 Valley View Avenue • La Mirada, CA 90638 • (714) 521 -4811 • Fax (714) 521 -4173 NMI a a a HYDROLOGY AND HYDRAULIC WIN CALCULATIONS 40 FOR 40 yam JASMINE DISTRIBUTION CENTER AIM PREPARED BY BRIAN WEIL mit Q�q�ESSlO/ UNDER THE SUPERVISION OF do Q•.LINp 4, f U Ng. 20953 2 n� gyp, 9 -30' m t 44-OF CN ti/3t'58 DON R. LINDGRE DATE: R.C.E. 20953 EXP. 09/30/01 IRO 0 0 MIMI a THIENES ENGINEERING CIVIL ENGINEERING * LAND SURVEYING 16800 VALLEY VIEW AVENUE LA MIRADA, CA. 90639 TEL: (714) 521 -4811 * FAX (714) 521 -4173 TRANSMITTAL Frn IN Date: 3/9/99 Sent By: Overnight r To: City of Fontana TEL: 909 - 350 -7600 8353 Sierra Avenue FAX 909 - 350 -6618 Fontana, CA 92335 n: Felipe a Molinos p Re: Jasmine Distribution Center Job Number: 1788 We Transmit: Revised hydrology and hydraulic report Plan check comments Message: Ir Here's a revised hydrology report addressing the following 4 items marked on report: 1. 100 -year calculations are included in revised report. 2. Plan of existing facility has been added to report. Hydrology map shows hydraulic node reaches and calculations have stationing that corresponds to storm drain plan. 3. The difference between the 25 -year and 100 -year event can be detained onsite. 4. Runoff from Slover near the west side of the site will continue its current drainage pattern and drain to the railroad tracks. There has not been any revisions to the report addressing runoff in Slover per our earlier phone conversation. Also, a reduced scale copy hydrology of h drolo map has been bound into the report per your request. If you feel a meeting is still necessary to discuss 100 -year conditions or if you have any other .,: questions, please call me. F , By: Brian Weil ii INTRODUCTION A: PROJECT LOCATION The project site is located at the southwest corner of Slover Avenue and Jasmine Street in the city of Fontana. Please see figure 1 for vicinity map. AMIN .r. B: STUDY PURPOSE The purpose of this study is to determine the 25 -year peak flow rate from the site that will ultimately drain to the San Sevaine Channel east of the site. C: PROJECT STAFF: Thienes Engineering staff involved in this study include: "" Brian L. Thienes Don R. Lindgren Brian P. Weil me w di I WM 11111 MI ..0 iii 1 ' "�' . AV •a E.b •- Water -Tres me a .. .t o . I. L :. - _:-...z....::::: - ': ' : : ,.�" - o O`.* 1 rant • -- - ; a - , : � : ` - r 1 'fi ' d t. 'i : - r a 20 +. h ,, : • : F U .. i err..:.:.:' ti` I SLAG �. ! \s\"':•\‘' y .. ` DUMP €'= -� Or ::;;;'-'2 � I it a ... _ ._.._ � - , , 21 ( t: — BLVD - .a - _ . . ,- :_ \ : :T 1 VP4' --Kaiser , c. 01 ;',111.•,; Ft2EEtNAY: ., y1 � �� QED Gw . elm ?._ '.._ .,� � : max — .. - - 5 +U- ---1....77-7-- c; . - ga i !: ' , +•Kaiser - nut 3 , /1 ill • 1 T • " jL • cs •. ttt 4 • a ' f I _raid_ ,412/E ". • € .. . Ili ;}; - - ._ ` J ' a' �: _. ' :' - ! • _ ; -'.� ..' , 891 • • ' — PROJECT SITE ' • % , ' •"::. • �g � : I 2 t • ...::r - L- ,... 9 Sa. ._ , ' j f 959 — • • : .. nom. 3• - -' �./ _ — SAN SEVAINE CHANNEL , ; Q1:� _ : .I: <_ 2.420 _ . ( c: t ' '''.'-' ' NM : - .t. t`i i/• -. _ .. 4. . . i r ; te / J 5 ' It - ., ,-'- -7 7 ; \ `. - _ - - • % ' 04}itF's( - . 4 --13DY . 4 ...:. trRUaq.- di -- .��." ` 'i % ;', F.� p j 'Vdelr W k �` I = , ° I'1:.. ..:_.:.-- 7 " T. I !1'ATT A AT A 1 0.1C) - arn .I.NJ /J 0 ▪ 1/2 1 MILE / 14e I 0 1000 2000 3000 4000 FEET • f Printed from TOPO! 01997 Wildflower Productions (wnou•.topo.com) F IGuRL— 1 r NM IN NM DISCUSSION The project site encompasses approximately 31.0 acres. Proposed improvements consist of the construction of three large warehouse buildings with the remaining area to be used for truck loading/unloading and vehicle parking. An on -site storm drain system will convey runoff east toward Jasmine Street to an existing 48" storm drain. is Runoff from the western half of the westernmost building will drain from north to south in a v -gutter to a grate inlet south of this building. A pipe will convey these flows to the east. Runoff from the eastern half of the westernmost building, the western half of the ,.. center building, and the truck loading/unloading areas between these buildings will drain from north to south to grate inlets. A pipe will take flows south and confluence with previously mentioned flows. Confluenced flows continue east in a pipe. Runoff from a portion of the parking area north of the center building and runoff from the 0. parking area north of the easternmost building will be collected in curb opening basins. ••• A pipe system will convey flows south where they will daylight in the truck loading/unloading area. Flows will continue south to grate inlets. Runoff from the eastern half of the center building and the western half of the easternmost building will also drain to these grate inlets. A pipe will convey these flows south to the previously r• mentioned pipe system. The on -site storm drain continues east to Jasmine Street. Flow from the eastern half of ,.. the easternmost building will be collected in a storm drain that take flows south to the mainline. The mainline will connect with an existing 48" pipe in Jasmine Street and will ultimately be conveyed to the San Sevaine Channel. The 25 -year peak flow rate for the entire site is approximately 72 cfs. The elevation of the grate inlet located at node 125 is less than the elevation of the .. hydraulic grade line in the existing pipe (H.G.L from storm drain plan for Parcel Map 11668). A flapgate will be installed at the manhole located at node 126 to prevent water from backing up at this grate inlet. The flapgate will allow water to pond in the truck dock area between the westernmost and center buildings without "burping out" the lower grate inlet. Hydraulic calculations show that the system will allow only 9 cfs at node 114 '" with the remaining 20.2 cfs allowed to pond. Ponding elevation needed to detain 20.2 cfs is approximately 965.50. When the flapgate is closed, no water tributary to the grate inlet at node 125 will be allowed to enter the pipe. The ponding elevation to detain the 9.7 cfs is approximately 964.60. The city of Fontana has requested that 100 -year peak flow rates also be calculated for the MIN site. It is recommended that 100 -year flows should be able to be contained on -site with w. Atemagoomosela little or no spill over to adjacent properties. The maximum water surface elevation on- site is 966.04. This elevation can be achieved at both truck dock areas as well as the catch basin located south of the center building (basin at node 141). Volume of water that can be detained on -site is approximately 50,000 cubic feet. The difference between re the 100 -year runoff and the 9 cfs allowed in during 25 -year event for the western half of the site can be entirely detained within the truck dock area. The 100 -year runoff tributary to the grate inlet south of the westernmost building can also be held on -site. The difference of the peak flow rate between the 100 -year event and the 25 -year event at me the easternmost truck dock can be detained near the basin with a water surface elevation of approximately 966.00. 100 -year runoff will be allowed to enter the catch basin south of the center building undetained. Therefore, overall Q added to the system during a 100- .,,, year event is not much greater than what is discharged during a 25 -year event. Hydrology calculations were computed using San Bernardino County Rational Method program. The soil type is "A" per the San Bernardino County Hydrology Manual (see figure 2). own mon .,, I 1 , Till it 11 E , b • T . . i . 1 ,, t. ... ii i ; :v.. ,,, . j.....:t.... : I . , ‘ •• 1.0■ , . e. I\ ' LIF" . 1 !. f , t.4 • ,....-; ..... • • - : I Al ._ ;, „4::• ...A: • . ,.. 1 , i . '. C. 4 ',,-,',.:, .. ,. t•it • i pr '" I I I ' . i' ■ 4 " " ..jr: ". I. r . -;.. ,kt --.V •$c ., , .1, ..r...,. .. .a.--1 • a 4.i ,• , • a• • ,t 1, , , .. .- t ..;.4,,,,":1 . .......: ' ,•• 1 , .• ithd• • - !iv . 'El „I_ i,-49L 1 ..' j• 1 : ......- , ...i ', ...' t: , '1 ' 1:*".;'!".-,,4qtrj f • 4 '...... 4 - ',: fril - i I 4 .. I ir 1 1 i • 9', N MI o'' 1 ,! ; , i • - . k, • -, ', ., j ftP)17. :.1.0%.,'; .• A '•', ,.. . . 'i .. -,..,. '.„1 :•,/,..„ .4 ..., -, ,..t.,..,... •.• ... . , • y ,-.. i 7 ' !,..1 • -, ',-. ..( • %.' ./ ' 1 . I i: ), .i,s ;.- .._.:, ...,,.. • , J ' ';■ \. , .N. t, ;1 1 : 4 . 7 .1..;. ,, .....,t ....7, .4, ,!, . 01.2.•_•.::,..,1.• ! •••■ . ' j".:1"2:7;• - 4 : ■,,, . if : IL ,', •- •••\ 71 P -14 . I .• • ' !..<"• %,. 1'; , ••:‘ • • ' ft r-.1?-...., .,'-.-, .•? '. .1 , - ' .• .:-.... Li. I! ,k,,,,, .: , ..,,i ,.... : ,... , -, 4! ....„.,..40.,,, • . • ... ..., • 4"..4:';-' ., .. ' a , • . .r-- -1,9' .'• f .'..4- • - t- i?tti54 . ...•-q. 'Z... "t'''' 1 . . .. - i . I • 1c '• '• Alvtifg Jul - 1 1 — . - —, .— 1 , I l l ,,.. . , qi 0 .1 ••:\ I .., 1,k, : ,..:.,..,:• t. 4-: ,..- „••••• y 14 I ... .11:. : „ ,:.. 1.vr ,. 2 1 :-.1. %1' . s .,• -•••• ''- ''''•"' •'' '... . • • •' • 1 j '1 1,• 1 . 41 ' ,- ' / ■ .■; ---, .' -.... i., ;.- • .... '7.• ., ,,...‘4 : ,. ‘; , .... .. . AI) ' ',I....111:40 ., -••• i . : ( • ‘•..., _ .•,. , c; • / , .,,. ,-, fi ..(1 — • f r ! `,c, ' iLs,1 ri i 7- P Ir. ...1. ...,-1 T i .. tY ' , • i; 1 . • .., . -4. e ., Y.,:. It - -- --.-, — .' - . .•.- I ,,, ,,,, ,,k • ).,,,.. , , ,,,, im.. , .. Pr* ..: ' • ,. f . .- t ) ( . 41 "f \: ' e! _III ok... • . f l • - i, • f 1 ..-, -., ;'y Ix: :. . : ,... lc. • : ■ 1,,, 1 . ■ tf .. • i" '`. : • '. ' 4 `. -- =' • . •J') :. • 1 - ' c • . I ' i41:4;' nii: , ••••1 ; ,.; '" ;.- )11' lo . 1, ': ' 1 ' , I ,'. e ' , ' ■ - • "r ut.. 5- . ...- , - : ,?.. ,„ , ,•, .,•.-... ,,,,4 t 1 '.1 'W - 16 : , • • ... . f ' ( ' ' • \- fi ..ti ' . '' . i tie3 r, • ' ... "..A H . • ' j / '... , ! ..... 'L - -Pe 4- - .i'- -V.I.. .1. , _....i ,1 t...:,,, :. 4_ ; .. r. ... ":. .. ? • ...t t .. • • . 11••• : ?" , 1,,, 1. 7 . 1 4. • •„•• , ....- ' 1 • •', , • \ - , " 1 f .' -. . ' • . 4 J-t 1 ,. .., 1 . I • ' t . ' ice . 4 .1: -, c. • : ..,,, : ... • f o . :,-,:.,:.. .• .....1,.,..,..t,_:,-..r:i,........, ••;;A:42.4 ... • .% •••.,.' -' .'; , •• i . • I r., :' 2 . .1 • 14; IV . - . ' - ...,.. , . , .1 -, •1 :••., . ':!., . , i • • . • ' !• '% ••4'. . t P l 'I.„ 1 - ' f - .- .t• ."' .'''. .: ..:-t- l. f . . ; , :;,.t. , e4 NI 1 • ,-.. , I? - t - i i ii • : : I • '....4 C 1 1 , . :" ! : 1 •• • .1 ..., - - - ' ' --17.: t '-t f - ' : .:::..-- •-• .: • :. .• . s. ... ,..,.. .. If.F , 11. fp! k , , • ••, . „. . , ? .. , . .L..,•. . 7 - 4 'k 1 r . .47,-...., ,. .. I . . , . y - F .. .,.., .i;, . le i • 1. ' t ' 1 - s ._ ... . f.;... .....- •--, : it,: . •.; lir = '1 . - \- A . 4'1'" . • II?* 611 1 .,..... 7 . ....Ar . A.4.4.-',4 CI ..-- , 4 ..% . 1 I . • . • • - ..1 :, .: 'I _if ,. 4 • i J • . • • 4 i i i_ , ,!, , r o ).•:s— i' til ) . „t. ,/ c '• L.. ' r. •0 .--,- -.q-- i . • - *.' - ‘Pi . I ,',,,•F.E .. 1-,..4i '-.....3 r,n1 U- . ; 1 ; • - ,' ' '''.. ■,• I ? . 1 ' 1 I • i) .. 41 ,, • *-- ;,,' ,-.4 , 41 •;:,. I • ) I 1'4 ii 1 1 , :- 1 .t...,,: :. ‘,.'' ' .• ** \ . ' . : • r t.! 1 i • •'' 1 .. ,_ Is 4. , " .." : : 7\.. •''' . , : . . - 1 ‘ , , r c j,, 1 J.,, ,,,,,,,, , .:,„, , . • : , ,: , !., • • •.::•,.......,:, . .1 - ' ., i . ; ' • A, ..II: [ ' ` ' . . 1.. .." ' '‘ i.4' .,:- . -- '• ' ''' -.ea a. , . _ . _ , . - .. , ....■,. ___ ...t 1 : ■ . 14 :1 :. ---4 /'-•-• ,, ..! • 1 . •V) . , , . • .), i . , . , 1 ..... 1 1 ,- - ' t • 1 . - '") ! ,1 ' • , 1 : i ( ••• - ., O '-,••-• r'' \ 1 ' :, • I i , i , 6 , , < • . ; i • A ..... ; , ....;,..,_ ,. ' :, - -L -,--- .-•-• , - 1 • ) lr•, ', . Ii 1 f 1 '. . , . I ) ' 1 * 1 * . • I • 1 C ' . , , ■ . f , , I ,/ , ■,, ; , , . i I , I r , , T 7 ' • 1 - ! i '. • .... ; • . ; 4 . ' ,1 ,,! i , • . .- si • ' • i r , ; ; r I k;.".3'. , — .. ., :-,. i: " I °,', ) ! ' : .i'-'0 i 1 1 I \ , i:,....4. . --,:t , 1. ' '' i 4 ; i < ., - 4 1 • ' • ' s ' • • 'C'' • 4 ',,- , 1 •:4 . • . - - ,:- ilt .: • - - - i i4.• • 1,4 • ", - r 1 ' 1 • -; 1 "„ Ci 1 ()! r_ .___ _ ..____.:.:.-..,i..ri,._,........ i L , :i.' . Li.'1:' i ,.. , . :t : , , , ..-,, . .. , czs ...... ... -.. ....(.... ... . ..„... ,.. _.,.. . ,-- ,.., 1 ......... . , ,,.. • .-,,.... •,... . ,.....,. ,.„,„,,,„ [ . • .., .,,,,„, , ... . . - , ; , • . .4 i• .. "•-• IIP - - i tli.1,1 iy 1 ,:..'' .. Ail U A . . a i r e l ,.• 1 : . I ',, t • t , • ‘ '..-..'' 711 'acri ' I ' '- th k . ' 4 ' t 0 •• ••...4 7 . OEM6 i -- .1) - 7" ,- . .st 44 l(41 • -- 4, • :7 i .. i ' ' ::--■ :.5 .. ' . ) ,..11 1 t " 0 .1 .i. , I 4 • 1 ., W7 . 1 , I I .. • - ,,„ . %........ ____ -!IJ...- - :. 4 , ..• I • ...... IIIIIIIiiiiIIIIIIIIIIIIIIIIIIIIIIV1II11,11111111 a a APPENDIX TITLE A HYDROLOGY CALCULATIONS rn WEI HYDRAULIC CALCULATIONS M CATCH BASIN CALCULATIONS S re D HYDROLOGY MAP .. *O NMI a a I , • APPENDIX A • r HYDROLOGY CALCU LATIONS • at 3.5 3.5 r 3 3 2.5 2.5 irr cn w s. U - Z �.. = 2 2 I— +� a w air -J u _ 1.5 . 1.5 Cc rr r OM 0.5 l 0.5 _ 0 ' 2 5 10 25 50 100 RETURN PERIOD IN YEARS NOTE' I. FOR INTERMEDIATE RETURN PERIODS PLOT 10 -YEAR ANO 100 -YEAR ONE HOUR VALUES FROM MAPS, THEN CONNECT POINTS AND READ VALUE FOR DESIRED RETURN PERIOD. FOR EXAMPLE GIVEN 10-YEAR ONE HOUR • 0.95" AND 100-YEAR CNE HOUR ■ 1.60" , 25-YEAR ONE HOUR z1.15". REFERENCE'NOAA ATLAS 2, VOLUME - CAL.,I973 RAINFALL DEPTH VERSUS SAN BERNARDINO COUNTY RETURN PERIOD FOR HYDROLOGY MANUAL PARTIAL DURATION SERIES �, D -7 FIGURE D -2 mm MO (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -96 Advanced Engineering Software (aes) Ver. 6.1 Release Date: 01/01/96 License ID 1435 Analysis prepared by: mm THIENES ENGINEERING 16800 VALLEY VIEW AVENUE LA MIRADA, CA 90639 °" (714) 521 -4811 FAX (714) 521 -4173 III * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * SLOVER AVENUE AND JASMINE STREET "* 25 -YEAR HYDROLOGY * * ▪ ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** " FILE NAME: 1788A.DAT TIME /DATE OF STUDY: 15:53 11/12/1998 Om USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME-OF-CONCENTRATION MODEL*- - km USER SPECIFIED STORM EVENT(YEAR) = 25.00 " SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .95 !ri *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* "" SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) _ .6000 USER SPECIFIED 1-HOUR INTENSITY(INCH /HOUR) = 1.0400 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* *USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* Yr HALF- CROWN TO STREET - CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT- /PARK- HEIGHT WIDTH LIP HIKE FACTOR °N0. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) • ✓ 1 30.0 20.0 .018/ .018/ .020 .67 2.00 .03125 .1670 .01500 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = .00 FEET mm as (Maximum Allowable Street Flow Depth) - (Top - of-Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** Yo FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 2.1 mm » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW-LENGTH(FEET) = 229.00 mg ELEVATION DATA: UPSTREAM(FEET) = 978.85 DOWNSTREAM(FEET) = 971.22 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.276 mg * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 4.473 ▪ SUBAREA Tc AND LOSS RATE DATA(AMC II): O M DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) R! COMMERCIAL A .70 .98 .10 32 5.28 Ili SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) = 2.76 RIR TOTAL AREA(ACRES) = .70 PEAK FLOW RATE(CFS) = 2.76 r****** ********************************* ***** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 3.1 m.r r » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< MN »»>USING COMPUTER- ESTIMATED PIPESIZE (NON-PRESSURE FLOW) « «< "' ELEVATION DATA: UPSTREAM(FEET) = 968.29 DOWNSTREAM(FEET) = 967.23 FLOW LENGTH(FEET) = 254.00 MANNING'S N = .013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.0 INCHES PIPE-FLOW .VELOCITY(FEET /SEC.) = 3.57 "." ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 2.76 UM PIPE TRAVEL TIME(MIN.) = 1.19 Tc(MIN.) = 6.46 * wm********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 102.00 TO NODE 111.00 IS CODE = 5.1 N M » »> COMPUTE TRAPEZOIDAL CHANNEL FLOW « «< """ » »>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « «< • ELEVATION DATA: UPSTREAM(FEET) = 967.23 DOWNSTREAM(FEET) = 966.01 CHANNEL LENGTH THRU SUBAREA(FEEJ) = 110.00 CHANNEL SLOPE = .0111 ®" CHANNEL BASE(FEET) = .00 "Z" FACTOR = 50.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = .50 1110 CHANNEL FLOW THRU SUBAREA(CFS) = 2.76 FLOW VELOCITY(FEET /SEC) = 2.03 FLOW DEPTH(FEET) = .16 "` TRAVEL TIME(MIN.) = .91 Tc(MIN.) = 7.37 FLOW PROCESS FROM NODE 111.00 TO NODE 111.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< an TOTAL NUMBER OF STREAMS = 2 ▪ CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.37 ▪ RAINFALL INTENSITY(INCH/HR) = 3.66 AREA-AVERAGED Fm(INCH /HR) = .10 "" AREA - AVERAGED Fp(INCH /HR) = .98 AREA-AVERAGED Ap = .10 ✓ r EFFECTIVE STREAM AREA(ACRES) = .70 TOTAL STREAM AREA(ACRES) = .70 • PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.76 MO FLOW PROCESS FROM NODE 110.00 TO NODE 111.00 IS CODE = 2.1 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< mg »USE TIME-OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« _ .... INITIAL SUBAREA FLOW- LENGTH(FEET) = 320.00 ELEVATION DATA: UPSTREAM(FEET) = 978.04 DOWNSTREAM(FEET) = 966.01 Br Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 mm SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.887 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 4.188 OM SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 1.20 .98 .10 32 5.89 MP SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 w t SUBAREA RUNOFF(CFS) = 4.42 TOTAL AREA(ACRES) = 1.20 PEAK FLOW RATE(CFS) = 4.42 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** um FLOW PROCESS FROM NODE 111.00 TO NODE 111.00 IS CODE = 1 a »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< > » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< +A1� TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.89 ..� RAINFALL INTENSITY(INCH /HR) = 4.19 1110 wm AREA - AVERAGED Fm(INCH /HR) = .10 MO AREA - AVERAGED Fp(INCH /HR) = .98 AREA-AVERAGED Ap = .10 "" EFFECTIVE STREAM AREA(ACRES) = 1.20 TOTAL STREAM AREA(ACRES) = 1.20 UN PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.42 "" ** CONFLUENCE DATA ** STREAM 0 Tc Intensity Fp(Fm) Ap Ae HEADWATER Mi NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 2.76 7.37 3.660 .98( .10) .10 .7 100.00 mm 4.42 5.89 4.188 .98( .10) .10 1.2 110.00 MM RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** MO STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE """' 1 6.60 7.37 3.660 .98( .10) .10 1.9 100.00 2 6.95 5.89 4.188 .98( .10) .10 1.8 110.00 MM COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: "" PEAK FLOW RATE(CFS) = 6.95 Tc(MIN.) = 5.89 EFFECTIVE AREA(ACRES) = 1.76 AREA- AVERAGED Fm(INCH /HR) = .10 MI AREA- AVERAGED Fp(INCH /HR) = .98 AREA-AVERAGED Ap = .10 TOTAL AREA(ACRES) = 1.90 ********************************************* * * * * * * * * * * * * * * * * ** * * * * ** * * * * * ** • FLOW PROCESS FROM NODE 111.00 TO NODE 112.00 IS CODE = 9 "" » »>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA««< 1111 UPSTREAM NODE ELEVATION(FEET) = 966.01 DOWNSTREAM NODE ELEVATION(FEET) = 965.46 "" CHANNEL LENGTH THRU SUBAREA(FEET) = 110.00 "V" GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET) = .170 ▪ PAVEMENT LIP(FEET) = .030 MANNING'S N = .0150 PAVEMENT CROSSFALL(DECIMAL NOTATION) = .01000 "^ MAXIMUM DEPTH(FEET) = .50 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.820 111. SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 2.10 .98 .10 32 rr SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 ... TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 10.46 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 1.88 MI AVERAGE FLOW DEPTH(FEET) = .41 FLOOD WIDTH(FEET) = 45.77 "V" GUTTER FLOW TRAVEL TIME(MIN.) = .98 Tc(MIN.) = 6.86 mil SUBAREA AREA(ACRES) = 2.10 SUBAREA RUNOFF(CFS) = 7.04 EFFECTIVE AREA(ACRES) = 3.86 AREA - AVERAGED Fm(INCH /HR) = .10 ▪ AREA- AVERAGED Fp(INCH /HR) = .98 AREA-AVERAGED Ap = .10 TOTAL AREA(ACRES) = 4.00 PEAK FLOW RATE(CFS) = 12.93 mo END OF SUBAREA "V" GUTTER HYDRAULICS: ▪ DEPTH(FEET) = .43 FLOOD WIDTH(FEET) = 49.99 FLOW VELOCITY(FEET /SEC.) = 1.97 DEPTH *VELOCITY(FT *FT /SEC) = .86 44 • ********* di FLOW PROCESS FROM NODE 112.00 TO NODE 113.00 IS CODE = 9 ▪ » » >COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA « «< iir UPSTREAM NODE ELEVATION(FEET) = 965.46 DOWNSTREAM NODE ELEVATION(FEET) = 964.96 11R CHANNEL LENGTH THRU SUBAREA(FEET) = 100.00 • "V" GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET) = .170 II PAVEMENT LIP(FEET) = .030 MANNING'S N = .0150 PAVEMENT CROSSFALL(DECIMAL NOTATION) = .01000 w MAXIMUM DEPTH(FEET) = .80 MO am * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.569 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN IIW COMMERCIAL A 1.35 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 15.04 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 2.03 MN AVERAGE FLOW DEPTH(FEET) = .45 FLOOD WIDTH(FEET) = 53.27 "V" GUTTER FLOW TRAVEL TIME(MIN.) = .82 Tc(MIN.) = 7.68 SUBAREA AREA(ACRES) = 1.35 SUBAREA RUNOFF(CFS) = 4.22 EFFECTIVE AREA(ACRES) = 5.21 AREA - AVERAGED Fm(INCH /HR) = .10 AREA-AVERAGED Fp(INCH /HR) = .98 AREA - AVERAGED Ap = .10 TOTAL AREA(ACRES) = 5.35 PEAK FLOW RATE(CFS) = 16.28 VI END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = .46 FLOOD WIDTH(FEET) = 55.15 FLOW VELOCITY(FEET /SEC.) = 2.05 DEPTH *VELOCITY(FT *FT /SEC) = .95 OMR * ** * ** ** * * ****** ** ** * * ** *** *** * * *** ** * **** ** *** * * * ** * * ** * * *** ** * ** **** ** * *** Om FLOW PROCESS FROM NODE 113.00 TO NODE 114.00 IS CODE = 9 » » >COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA« «< MO UPSTREAM NODE ELEVATION(FEET) = 964.96 DOWNSTREAM NODE ELEVATION(FEET) = 964.38 114 CHANNEL LENGTH THRU SUBAREA(FEET) = 83.00 "V" GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET) = .170 or PAVEMENT LIP(FEET) = .030 MANNING'S N = .0150 PAVEMENT CROSSFALL(DECIMAL NOTATION) = .01000 """ MAXIMUM DEPTH(FEET) = .80 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.425 mu SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 4.55 .98 .10 32 Wm SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 """ TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 23.07 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 2.53 lor AVERAGE FLOW DEPTH(FEET) = .48 FLOOD WIDTH(FEET) = 59.37 "V" GUTTER FLOW TRAVEL TIME(MIN.) = .55 Tc(MIN.) = 8.23 "" SUBAREA AREA(ACRES) = 4.55 SUBAREA RUNOFF(CFS) = 13.62 EFFECTIVE AREA(ACRES) = 9.76 AREA - AVERAGED Fm(INCH /HR) = .10 ▪ AREA - AVERAGED Fp(INCH /HR) = .98 AREA-AVERAGED Ap = .10 TOTAL AREA(ACRES) = 9.90 PEAK FLOW RATE(CFS) = 29.22 END OF SUBAREA "V" GUTTER HYDRAULICS: • DEPTH(FEET) = .51 FLOOD WIDTH(FEET) = 65.46 FLOW VELOCITY(FEET /SEC.) = 2.65 DEPTH *VELOCITY(FT *FT /SEC) = 1.36 mo ******************************************** * ******* * *** * ** * ** * * * *** ******* FLOW PROCESS FROM NODE 114.00 TO NODE 126.00 IS CODE = 3.1 "!I1 » »»COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< » » »USING COMPUTER-ESTIMATED PIPESIZE (NON- PRESSURE FLOW)« « < ELEVATION DATA: UPSTREAM(FEET) = 961.16 DOWNSTREAM(FEET) = 960.90 MR FLOW LENGTH(FEET) = 254.00 MANNING'S N = .013 DEPTH OF FLOW IN 42.0 INCH PIPE IS 32.1 INCHES mm PIPE-FLOW VELOCITY(FEET /SEC.) = 3.70 ESTIMATED PIPE DIAMETER (INCH) = 42.00 NUMBER OF PIPES = 1 R PIPE - FLOW(CFS) = 29.22 PIPE TRAVEL TIME(MIN.) = 1.14 Tc(MIN.) = 9.37 ********************************************* ** ** * * ** * * * * * * ** * * * * * * ** ******* 0, FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 1 dif » INDEPENDENT STREAM FOR CONFLUENCE« «< m TOTAL NUMBER OF STREAMS = 2 O N mm IN CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 9.37 RAINFALL INTENSITY(INCH /HR) = 3.17 AREA - AVERAGED Fm(INCH /HR) = .10 AREA - AVERAGED Fp(INCH /HR) = .98 AREA-AVERAGED Ap = .10 EFFECTIVE STREAM AREA(ACRES) = 9.76 TOTAL STREAM AREA(ACRES) = 9.90 m g PEAK FLOW RATE(CFS) AT CONFLUENCE = 29.22 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** "" FLOW PROCESS FROM NODE 120.00 TO NODE 121.00 IS CODE = 2.1 OW » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME-OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« w INITIAL SUBAREA FLOW - LENGTH(FEET) = 328.00 NO ELEVATION DATA: UPSTREAM(FEET) = 975.01 DOWNSTREAM(FEET) = 970.04 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.131 MO * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.733 SUBAREA Tc AND LOSS RATE DATA(AMC II): "" DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) WM COMMERCIAL A .70 .98 .10 32 7.13 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 "" SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) = 2.29 me TOTAL AREA(ACRES) = .70 PEAK FLOW RATE(CFS) = 2.29 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 121.00 TO NODE 122.00 IS CODE = 6.1 Mr » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< - » » >(STANDARD CURB SECTION USED) « «< Mr UPSTREAM ELEVATION(FEET) = 970.04 DOWNSTREAM ELEVATION(FEET) = 968.15 STREET LENGTH(FEET) = 185.00 CURB HEIGHT(INCHES) = 8.0 • STREET HALFWIDTH(FEET) = 36.00 am DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 31.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 - " OUTSIDE STREET CROSSFALL(DECIMAL) = .020 rr SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 *"" * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.40 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: II I STREET FLOW DEPTH(FEET) = .38 HALFSTREET FLOOD WIDTH(FEET) = 10.93 a+w AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.46 PRODUCT OF DEPTH & VELOCITY(FT*FT /SEC.) = .93 STREET FLOW TRAVEL TIME(MIN.) = 1.25 Tc(MIN.) = 8.39 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.387 N M SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Ni LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A .75 .98 .10 32 w SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 • SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 O M SUBAREA AREA(ACRES) = .75 SUBAREA RUNOFF(CFS) = 2.22 EFFECTIVE AREA(ACRES) = 1.45 AREA - AVERAGED Fm(INCH /HR) = .10 'u AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .10 1 TOTAL AREA(ACRES) = 1.45 PEAK FLOW RATE(CFS) = 4.29 END OF SUBAREA STREET FLOW HYDRAULICS: sop DEPTH(FEET) = .40 HALFSTREET FLOOD WIDTH(FEET) = 12.13 FLOW VELOCITY(FEET /SEC.) = 2.59 DEPTH *VELOCITY(FT *FT /SEC.) = 1.04 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** "." FLOW PROCESS FROM NODE 122.00 TO NODE 123.00 IS CODE = 6.1 MO w. w OM » »> COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA ««< » » >(STANDARD CURB SECTION USED) « «< A.w UPSTREAM ELEVATION(FEET) = 968.15 DOWNSTREAM ELEVATION(FEET) = 965.51 STREET LENGTH(FEET) = 196.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 36.00 morn i i DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 31.00 INSIDE STREET CROSSFALL(DECIMAL) = .015 OUTSIDE STREET CROSSFALL(DECIMAL) = .015 w - SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 ME * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.39 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .39 ▪ HALFSTREET FLOOD WIDTH(FEET) = 15.08 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.83 0 " 4 PRODUCT OF DEPTH & VELOCITY(FT*FT /SEC.) = 1.12 STREET FLOW TRAVEL TIME(MIN.) = 1.16 Tc(MIN.) = 9.54 - * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.134 SUBAREA LOSS RATE DATA(AMC II): """ DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A .80 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 - SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) = .80 SUBAREA RUNOFF(CFS) = 2.19 - EFFECTIVE AREA(ACRES) = 2.25 AREA - AVERAGED Fm(INCH /HR) = .10 AREA-AVERAGED Fp(INCH /HR) = .97 AREA-AVERAGED Ap = .10 "°" TOTAL AREA(ACRES) = 2.25 PEAK FLOW RATE(CFS) = 6.15 M. END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .41 HALFSTREET FLOOD WIDTH(FEET) = 15.88 """ FLOW VELOCITY(FEET /SEC.) = 2.94 DEPTH *VELOCITY(FT *FT /SEC.) = 1.20 FLOW PROCESS FROM NODE 123.00 TO NODE 124.00 IS CODE = 6.1 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< - » »>(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 965.51 DOWNSTREAM ELEVATION(FEET) = 963.98 STREET LENGTH(FEET) = 305.00 CURB HEIGHT(INCHES) = 8.0 am STREET HALFWIDTH(FEET) = 36.00 • DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 31.00 INSIDE STREET CROSSFALL(DECIMAL) = .015 Ms OUTSIDE STREET CROSSFALL(DECIMAL) = .015 morn SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Ii * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 7.22 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: +l STREET FLOW DEPTH(FEET) = .48 } HALFSTREET FLOOD WIDTH(FEET) = 20.79 - N AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.10 PRODUCT OF DEPTH & VELOCITY(FT*FT /SEC.) = 1.01 mi STREET FLOW TRAVEL TIME(MIN.) = 2.42 Tc(MIN.) = 11.97 j i * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.736 OM SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS gm LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A .90 .98 .10 32 MO SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 ,o SUBAREA AREA(ACRES) = .90 SUBAREA RUNOFF(CFS) = 2.14 EFFECTIVE AREA(ACRES) = 3.15 AREA - AVERAGED Fm(INCH /HR) = .10 I AREA-AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .10 TOTAL AREA(ACRES) = 3.15 PEAK FLOW RATE(CFS) = 7.48 (1 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .49 HALFSTREET FLOOD WIDTH(FEET) = 21.19 FLOW VELOCITY(FEET /SEC.) = 2.10 DEPTH *VELOCITY(FT *FT /SEC.) = 1.02 FLOW PROCESS FROM NODE 124.00 TO NODE 125.00 IS CODE = 6.1 "" » »> COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA ««< » » >(STANDARD CURB SECTION USED) « «< UPSTREAM ELEVATION(FEET) = 963.98 DOWNSTREAM ELEVATION(FEET) = 963.40 " STREET LENGTH(FEET) = 116.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 36.00 MO DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 31.00 "" INSIDE STREET CROSSFALL(DECIMAL) = .015 OUTSIDE STREET CROSSFALL(DECIMAL) = .015 MO SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 wr * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 8.73 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .51 """ HALFSTREET FLOOD WIDTH(FEET) = 22.52 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.18 i g PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.10 STREET FLOW TRAVEL TIME(MIN.) = .89 Tc(MIN.) = 12.85 "" * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.621 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN - COMMERCIAL A 1.10 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 1111 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) = 1.10 SUBAREA RUNOFF(CFS) = 2.50 *", EFFECTIVE AREA(ACRES) = 4.25 AREA - AVERAGED Fm(INCH /HR) = .10 AREA-AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .10 ▪ TOTAL AREA(ACRES) = 4.25 PEAK FLOW RATE(CFS) = 9.65 "-" END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .52 HALFSTREET FLOOD WIDTH(FEET) = 23.45 10 FLOW VELOCITY(FEET /SEC.) = 2.23 DEPTH *VELOCITY(FT *FT /SEC.) = 1.16 .,. **** * * * ** r * ** t******************************* ** * ***** * **** *** * ******* * * ** *** FLOW PROCESS FROM NODE 125.00 TO NODE 126.00 IS CODE = 3.1 am » »> COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA « «< .. » » > USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 961.05 DOWNSTREAM(FEET) = 960.90 FLOW LENGTH(FEET) = 148.00 MANNING'S N = .013 • DEPTH OF FLOW IN 30.0 INCH PIPE IS 19.5 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 2.85 In ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 9.65 • PIPE TRAVEL TIME(MIN.) = .87 Tc(MIN.) = 13.72 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 1 ▪ » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< MO » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< im TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: II TIME OF CONCENTRATION(MIN.) = 13.72 RAINFALL INTENSITY(INCH /HR) = 2.52 N o AREA-AVERAGED Fm(INCH /HR) = .10 AREA-AVERAGED Fp(INCH /HR) = .97 AREA-AVERAGED Ap = .10 EFFECTIVE STREAM AREA(ACRES) = 4.25 ,w„ TOTAL STREAM AREA(ACRES) = 4.25 • PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.65 ** CONFLUENCE DATA ** "m STREAM a Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE O M 1 26.69 10.91 2.892 .98( .10) .10 9.9 100.00 1 29.23 9.37 3.168 .98( .10) .10 9.8 110.00 *s* 2 9.65 13.72 2.521 .97( .10) .10 4.3 120.00 ▪ RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** M. STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE wn 1 37.59 9.37 3.168 .98( .10) .10 12.7 110.00 2 35.55 10.91 2.892 .98( .10) .10 13.3 100.00 MO 3 32.80 13.72 2.521 .98( .10) .10 14.1 120.00 •*• COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 37.59 Tc(MIN.) = 9.37 111 EFFECTIVE AREA(ACRES) = 12.66 AREA-AVERAGED Fm(INCH /HR) = .10 AREA - AVERAGED Fp(INCH /HR) = .98 AREA-AVERAGED Ap = .10 �+ TOTAL AREA(ACRES) = 14.15 - ********************************************* * * * * * * * * * * * ** * * * * * * * * * * * * * * ** ** FLOW PROCESS FROM NODE 126.00 TO NODE 142.00 IS CODE = 3.1 » » >COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA « «< • » »>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) « «< *•• ELEVATION DATA: UPSTREAM(FEET) = 960.80 DOWNSTREAM(FEET) = 960.24 FLOW LENGTH(FEET) = 505.00 MANNING'S N = .013 Mm DEPTH OF FLOW IN 45.0 INCH PIPE IS 35.3 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 4.05 .+■ ESTIMATED PIPE DIAMETER(INCH) = 45.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 37.59 Mm PIPE TRAVEL TIME(MIN.) = 2.08 Tc(MIN.) = 11.45 FLOW PROCESS FROM NODE 142.00 TO NODE 142.00 IS CODE = 10 • AM » »>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 « «< FLOW PROCESS FROM NODE 130.00 TO NODE 131.00 IS CODE = 2.1 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< im »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« „ INITIAL SUBAREA FLOW - LENGTH(FEET) = 399.00 ELEVATION DATA: UPSTREAM(FEET) = 970.43 DOWNSTREAM(FEET) = 966.62 d i Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 mm SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.458 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.369 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 1.05 .98 .10 32 8.46 II SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) = 3.09 MM TOTAL AREA(ACRES) = 1.05 PEAK FLOW RATE(CFS) = 3.09 IN * * ** * * * * * * * * * * * * ** * ********* * **** **** ** * * * * * * * ** * * ** * * * * * ** * *** * * ** * * * *** * ** mi FLOW PROCESS FROM NODE 131.00 TO NODE 141.00 IS CODE = 6.1 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< » »>(STANDARD CURB SECTION USED)« «< hi UPSTREAM ELEVATION(FEET) = 966.62 DOWNSTREAM ELEVATION(FEET) = 965.37 STREET LENGTH(FEET) = 220.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 36.00 on DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 31.00 MI INSIDE STREET CROSSFALL(DECIMAL) = , .030 OUTSIDE STREET CROSSFALL(DECIMAL) = .030 upg SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 MN * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.28 ""' STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .46 MO HALFSTREET FLOOD WIDTH(FEET) = 10.67 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.28 wm PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.05 STREET FLOW TRAVEL TIME(MIN.) = 1.61 Tc(MIN.) = 10.06 MO * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.036 SUBAREA LOSS RATE DATA(AMC II): '"' DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN MO COMMERCIAL A .90 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 - SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) = .90 SUBAREA RUNOFF(CFS) = 2.38 EFFECTIVE AREA(ACRES) = 1.95 AREA - AVERAGED Fm(INCH /HR) = .10 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .10 "` TOTAL AREA(ACRES) = 1.95 PEAK FLOW RATE(CFS) = 5.16 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .48 HALFSTREET FLOOD WIDTH(FEET) = 11.53 o. FLOW VELOCITY(FEET /SEC.) = 2.38 DEPTH *VELOCITY(FT *FT /SEC.) = 1.15 I•!********************************************* * ** * * ** * * ** ** * * * * *** *** ** * * ** * FLOW PROCESS FROM NODE 141.00 TO NODE 141.00 IS CODE = 1 »»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< km TOTAL NUMBER OF STREAMS = 2 ■•■ CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.06 v RAINFALL INTENSITY(INCH /HR) = 3.04 AREA - AVERAGED Fm(INCH /HR) = .10 --- AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .10 im EFFECTIVE STREAM AREA(ACRES) = 1.95 TOTAL STREAM AREA(ACRES) = 1.95 -■ PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.16 mi* ******, *** * * * * *** * ** ***yr * **** * ** * ** *w *** * * **** ***** t * *,►,v***** ** *** * * **** ** FLOW PROCESS FROM NODE 140.00 TO NODE 141.00 IS CODE = 2.1 »»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< UM »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« mu INITIAL SUBAREA FLOW - LENGTH(FEET) = 440.00 ELEVATION DATA: UPSTREAM(FEET) = 967.74 DOWNSTREAM(FEET) = 965.37 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 RR SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.863 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.073 NI SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 1.20 .98 .10 32 9.86 11 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 mq SUBAREA RUNOFF(CFS) = 3.21 TOTAL AREA(ACRES) = 1.20 PEAK FLOW RATE(CFS) = 3.21 I ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 00 FLOW PROCESS FROM NODE 141.00 TO NODE 141.00 IS CODE = 1 N » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 9.86 - RAINFALL INTENSITY(INCH /HR) = 3.07 AREA-AVERAGED Fm(INCH /HR) = .10 MO AREA-AVERAGED Fp(INCH /HR) = .98 AREA-AVERAGED Ap = .10 """ EFFECTIVE STREAM AREA(ACRES) = 1.20 TOTAL STREAM AREA(ACRES) = 1.20 NM PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.21 • ** CONFLUENCE DATA ** NM STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 5.16 10.06 3.036 .97( .10) .10 1.9 130.00 ▪ 2 3.21 9.86 3.073 .98( .10) .10 1.2 140.00 O 0 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. worm ** PEAK FLOW RATE TABLE ** u m STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE '"" 1 8.33 10.06 3.036 .98( .10) .10 3.2 130.00 2 8.33 9.86 3.073 .97( .10) .10 3.1 140.00 MI COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: '** PEAK FLOW RATE(CFS) = 8.33 Tc(MIN.) = 9.86 EFFECTIVE AREA(ACRES) = 3.11 AREA - AVERAGED Fm(INCH /HR) = .10 66 AREA - AVERAGED Fp(INCH /HR) = .97 AREA-AVERAGED Ap = .10 TOTAL AREA(ACRES) = 3.15 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 11111 FLOW PROCESS FROM NODE 141.00 TO NODE 142.00 IS CODE = 3.1 ▪ » » > COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA « «< » » >USING COMPUTER- ESTIMATED PIPESIZE (NON-PRESSURE FLOW)« «< ler ELEVATION DATA: UPSTREAM(FEET) = 961.37 DOWNSTREAM(FEET) = 961.00 ',••• FLOW LENGTH(FEET) = 8.00 MANNING'S N = .013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.5 INCHES 110 PIPE -FLOW VELOCITY(FEET /SEC.) = 11.60 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 �+ PIPE - FLOW(CFS) = 8.33 PIPE TRAVEL TIME(MIN.) = .01 Tc(MIN.) = 9.87 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ww FLOW PROCESS FROM NODE 142.00 TO NODE 142.00 IS CODE = 11 Mg » CONFLUENCE MEMORY BANK # 1 WITH THE MAIN - STREAM MEMORY««< wom ** MAIN STREAM CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE um 1 8.33 9.87 3.071 .97( .10) .10 3.1 140.00 2 8.33 10.08 3.034 .98( .10) .10 3.2 130.00 ** MEMORY BANK # 1 CONFLUENCE DATA ** ail STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER • NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 37.59 11.45 2.809 .98( .10) .10 12.7 110.00 2 35.55 13.00 2.603 .98( .10) .10 13.3 100.00 411, 3 32.80 15.83 2.313 .98( .10) .10 14.1 120.00 ** PEAK FLOW RATE TABLE ** STREAM 0 Tc Intensity Fp(Fm) Ap Ae HEADWATER we NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 100 1 43.86 9.87 3.071 .98( .10) .10 14.0 140.00 MO 2 44.13 10.08 3.034 .98( .10) .10 14.3 130.00 3 45.28 11.45 2.809 .98( .10) .10 15.8 110.00 '" 4 42.65 13.00 2.603 .97( .10) .10 16.4 100.00 5 39.09 15.83 2.313 .98( .10) .10 17.3 120.00 • TOTAL AREA(ACRES) = 17.30 • COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 45.28 Tc(MIN.) = 11.453 W ir EFFECTIVE AREA(ACRES) = 15.81 AREA-AVERAGED Fm(INCH /HR) = .10 AREA - AVERAGED Fp(INCH /HR) = .98 AREA - AVERAGED Ap = .10 ▪ TOTAL AREA(ACRES) = 17.30 FLOW PROCESS FROM NODE 142.00 TO NODE 142.00 IS CODE = 12 »» >CLEAR MEMORY BANK # 1 « «< FLOW PROCESS FROM NODE 142.00 TO NODE 175.00 IS CODE = 3.1 rri » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< "'" » »>USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< mm ELEVATION DATA: UPSTREAM(FEET) = 960.19 DOWNSTREAM(FEET) = 959.99 FLOW LENGTH(FEET) = 199.00 MANNING'S N = .013 """ DEPTH OF FLOW IN 51.0 INCH PIPE IS 36.7 INCHES PIPE-FLOW VELOCITY(FEET /SEC.) = 4.14 ▪ ESTIMATED PIPE DIAMETER(INCH) = 51.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 45.28 "^ PIPE TRAVEL TIME(MIN.) = .80 Tc(MIN.) = 12.25 FLOW PROCESS FROM NODE 175.00 TO NODE 175.00 IS CODE = 10 » » >MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 « «< ML FLOW PROCESS FROM NODE 150.00 TO NODE 151.00 IS CODE = 2.1 mo » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< ▪ »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« _ - INITIAL SUBAREA FLOW-LENGTH(FEET) = 221.00 ELEVATION DATA: UPSTREAM(FEET) = 975.83 DOWNSTREAM(FEET) = 973.14 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 I 011 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.361 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.998 +n SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A .90 .98 .10 32 6.36 • SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 O M SUBAREA RUNOFF(CFS) = 3.16 TOTAL AREA(ACRES) = .90 PEAK FLOW RATE(CFS) = 3.16 mq FLOW PROCESS FROM NODE 151.00 TO NODE 162.00 IS CODE = 3.1 mop » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » >USING COMPUTER- ESTIMATED PIPESIZE (NON-PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 969.66 DOWNSTREAM(FEET) = 696.09 "M1 FLOW LENGTH(FEET) = 190.00 MANNING'S N = .013 • ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 12.000 • DEPTH OF FLOW IN 12.0 INCH PIPE IS 2.2 INCHES PIPE-FLOW VELOCITY(FEET /SEC.) = 31.31 .1m ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 di PIPE - FLOW(CFS) = 3.16 MO PIPE TRAVEL TIME(MIN.) = .10 Tc(MIN.) = 6.46 FLOW PROCESS FROM NODE 162.00 TO NODE 162.00 IS CODE = 1 1111 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< TOTAL NUMBER OF STREAMS = 2 MO CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 6.46 ""' RAINFALL INTENSITY(INCH /HR) = 3.96 AREA-AVERAGED Fm(INCH /HR) = .10 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .10 °A' EFFECTIVE STREAM AREA(ACRES) = .90 TOTAL STREAM AREA(ACRES) = .90 MO PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.16 FLOW PROCESS FROM NODE 160.00 TO NODE 161.00 IS CODE = 2.1 mu » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< ^ »USE TIME-OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« 1~ INITIAL SUBAREA FLOW-LENGTH(FEET) = 229.00 ELEVATION DATA: UPSTREAM(FEET) = 978.94 DOWNSTREAM(FEET) = 971.58 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 am SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.314 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 4.453 " SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc rrr LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A .65 .98 .10 32 5.31 ^ SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 ms SUBAREA RUNOFF(CFS) = 2.55 TOTAL AREA(ACRES) = .65 PEAK FLOW RATE(CFS) = 2.55 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ▪ FLOW PROCESS FROM NODE 161.00 TO NODE 162.00 IS CODE = 3.1 » »> COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA « «< » »>USING COMPUTER-ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< MO- ELEVATION DATA: UPSTREAM(FEET) = 969.66 DOWNSTREAM(FEET) = 969.09 ^ FLOW LENGTH(FEET) = 190.00 MANNING'S N = .013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.6 INCHES ▪ PIPE-FLOW VELOCITY(FEET /SEC.) = 3.08 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 was PIPE-FLOW(CFS) = 2.55 PIPE TRAVEL TIME(MIN.) = 1.03 Tc(MIN.) = 6.34 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** w 1 FLOW PROCESS FROM NODE 162.00 TO NODE 162.00 IS CODE = 1 »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< AMIF TOTAL NUMBER OF STREAMS = 2 O I CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6.34 • RAINFALL INTENSITY(INCH /HR) = 4.00 AREA-AVERAGED Fm(INCH /HR) = .10 • AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .10 • EFFECTIVE STREAM AREA(ACRES) = .65 TOTAL STREAM AREA(ACRES) = .65 di PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.55 .. ** CONFLUENCE DATA ** MO STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER 10 NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 3.16 6.46 3.960 .97( .10) .10 .9 150.00 +*" 2 2.55 6.34 4.004 .97( .10) .10 .6 160.00 O M RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** IIr STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE �^ 1 5.68 6.46 3.960 .97( .10) .10 1.5 150.00 2 5.68 6.34 4.004 .97( .10) .10 1.5 160.00 N N • COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 5.68 Tc(MIN.) = 6.34 EFFECTIVE AREA(ACRES) = 1.53 AREA-AVERAGED Fm(INCH /HR) = .10 MM AREA-AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .10 TOTAL AREA(ACRES) = 1.55 ********************************************* * * * * * * * * * * * **** * * * * ** * * * * * ** * ** IN FLOW PROCESS FROM NODE 162.00 TO NODE 163.00 IS CODE = 3.1 .� » » >COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA ««< » »>USING COMPUTER- ESTIMATED PIPESIZE (NON-PRESSURE FLOW) « «< I _ ELEVATION DATA: UPSTREAM(FEET) = 969.04 DOWNSTREAM(FEET) = 968.83 .. FLOW LENGTH(FEET) = 93.00 MANNING'S N = .013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.9 INCHES rri PIPE -FLOW VELOCITY(FEET /SEC.) = 3.37 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 ... PIPE-FLOW(CFS) = 5.68 PIPE TRAVEL TIME(MIN.) = .46 Tc(MIN.) = 6.80 Irl ********************************************* ********* * * *** ** * *** *********** FLOW PROCESS FROM NODE 163.00 TO NODE 171.00 IS CODE = 5.1 Yt1 »» >COMPUTE TRAPEZOIDAL CHANNEL FLOW « «< » »>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 968.83 DOWNSTREAM(FEET) = 967.56 N o CHANNEL LENGTH THRU SUBAREA(FEET) = 110.00 CHANNEL SLOPE = .0115 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 50.000 ... MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = .50 CHANNEL FLOW THRU SUBAREA(CFS) = 5.68 err FLOW VELOCITY(FEET /SEC) = 2.43 FLOW DEPTH(FEET) = .22 TRAVEL TIME(MIN.) = .76 Tc(MIN.) = 7.56 ********************************************* * ** ********** * *** * * * * *** *** * *** - FLOW PROCESS FROM NODE 171.00 TO NODE 171.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.56 wi RAINFALL INTENSITY(INCH /HR) = 3.60 Ii AREA - AVERAGED Fm(INCH /HR) = .10 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .10 mg t EFFECTIVE STREAM AREA(ACRES) = 1.53 TOTAL STREAM AREA(ACRES) = 1.55 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.68 w di FLOW PROCESS FROM NODE 170.00 TO NODE 171.00 IS CODE = 2.1 „ » METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME-OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW-LENGTH(FEET) = 343.00 ELEVATION DATA: UPSTREAM(FEET) = 979.82 DOWNSTREAM(FEET) = 967.56 MP ON Tc = K *E(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.559 "" * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.949 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) ▪ NATURAL POOR COVER "BARREN" A 1.60 .42 1.00 78 10.56 kW SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .42 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 "' SUBAREA RUNOFF(CFS) = 3.65 TOTAL AREA(ACRES) = 1.60 PEAK FLOW RATE(CFS) = 3.65 OM ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** "" FLOW PROCESS FROM NODE 171.00 TO NODE 171.00 IS CODE = 1 O M » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< TOTAL NUMBER OF STREAMS = 2 mto CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 10.56 "e RAINFALL INTENSITY(INCH /HR) = 2.95 AREA-AVERAGED Fm(INCH /HR) = .42 ▪ AREA - AVERAGED Fp(INCH /HR) = .42 AREA - AVERAGED Ap = 1.00 • EFFECTIVE STREAM AREA(ACRES) = 1.60 TOTAL STREAM AREA(ACRES) = 1.60 m• PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.65 "" ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER mm NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 5.68 7.68 3.571 .97( .10) .10 1.5 150.00 ▪ 1 5.68 7.56 3.604 .97( .10) .10 1.5 160.00 2 3.65 10.56 2.949 .42( .42) 1.00 1.6 170.00 om RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO "" CONFLUENCE FORMULA USED FOR 2 STREAMS. ✓ ** PEAK FLOW RATE TABLE ** STREAM G Tc Intensity Fp(Fm) Ap Ae HEADWATER "" NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 8.97 7.56 3.604 .48( .23) .48 2.7 160.00 MO 2 8.98 7.68 3.571 .48( .23) .49 2.7 150.00 3 8.31 10.56 2.949 .47( .26) .56 3.2 170.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: Mir PEAK FLOW RATE(CFS) = 8.98 Tc(MIN.) = 7.68 EFFECTIVE AREA(ACRES) = 2.71 AREA - AVERAGED Fm(INCH /HR) = .23 mm AREA- AVERAGED Fp(INCH /HR) = .48 AREA-AVERAGED Ap = .49 TOTAL AREA(ACRES) = 3.15 MI ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** mil FLOW PROCESS FROM NODE 171.00 TO NODE 172.00 IS CODE = 9 40 » »> COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA ««< mg UPSTREAM NODE ELEVATION(FEET) = 967.56 DOWNSTREAM NODE ELEVATION(FEET) = 967.01 1M CHANNEL LENGTH THRU SUBAREA(FEET) = 110.00 "V" GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET) = .170 mm PAVEMENT LIP(FEET) = .030 MANNING'S N = .0150 I_a PAVEMENT CROSSFALL(DECIMAL NOTATION) = .01000 MAXIMUM DEPTH(FEET) = .50 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.328 qm SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS MO LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 2.05 .98 .10 32 "o SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 OW SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 11.96 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 1.92 "" AVERAGE FLOW DEPTH(FEET) = .43 FLOOD WIDTH(FEET) = 48.59 "V" GUTTER FLOW TRAVEL TIME(MIN.) = .95 Tc(MIN.) = 8.63 Mi SUBAREA AREA(ACRES) = 2.05 SUBAREA RUNOFF(CFS) = 5.96 EFFECTIVE AREA(ACRES) = 4.76 AREA-AVERAGED Fm(INCH /HR) = .18 " AREA- AVERAGED Fp(INCH /HR) = .55 AREA - AVERAGED Ap = .32 TOTAL AREA(ACRES) = 5.20 PEAK FLOW RATE(CFS) = 13.52 MO END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = .44 FLOOD WIDTH(FEET) = 50.93 FLOW VELOCITY(FEET /SEC.) = 1.99 DEPTH *VELOCITY(FT *FT /SEC) = .87 ** PEAK FLOW RATE TABLE ** "" STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE O 0 1 13.54 8.51 3.357 .55( .17) .32 4.7 160.00 2 13.52 8.63 3.328 .55( .18) .32 4.8 150.00 'm, 3 12.18 11.53 2.798 .52( .20) .38 5.2 170.00 NEW PEAK FLOW DATA ARE: Yr PEAK FLOW RATE(CFS) = 13.54 Tc(MIN.) = 8.51 AREA - AVERAGED Fm(INCH/HR) _ .17 AREA-AVERAGED Fp(INCH /HR) = .55 "^ AREA-AVERAGED Ap = .32 EFFECTIVE AREA(ACRES) = 4.73 FLOW PROCESS FROM NODE 172.00 TO NODE 173.00 IS CODE = 9 » » >COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA« «< r UPSTREAM NODE ELEVATION(FEET) = 967.01 "" DOWNSTREAM NODE ELEVATION(FEET) = 966.01 CHANNEL LENGTH THRU SUBAREA(FEET) = 200.00 ill "V" GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET) = .170 PAVEMENT LIP(FEET) = .030 MANNING'S N = .0150 """ PAVEMENT CROSSFALL(DECIMAL NOTATION) = .01000 MAXIMUM DEPTH(FEET) = .60 awl * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.025 SUBAREA LOSS RATE DATA(AMC II): ""` DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN um COMMERCIAL A 2.80 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 `• SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 17.23 ▪ TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 2.07 AVERAGE FLOW DEPTH(FEET) = .47 FLOOD WIDTH(FEET) = 56.59 ▪ "V" GUTTER FLOW TRAVEL TIME(MIN.) = 1.61 Tc(MIN.) = 10.12 SUBAREA AREA(ACRES) = 2.80 SUBAREA RUNOFF(CFS) = 7.38 ▪ EFFECTIVE AREA(ACRES) = 7.53 AREA-AVERAGED Fm(INCH /HR) = .15 AREA-AVERAGED Fp(INCH /HR) = .62 AREA-AVERAGED Ap = .24 "w TOTAL AREA(ACRES) = 8.00 PEAK FLOW RATE(CFS) = 19.51 Mg END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = .48 FLOOD WIDTH(FEET) = 59.41 mis FLOW VELOCITY(FEET /SEC.) = 2.13 DEPTH *VELOCITY(FT *FT /SEC) = 1.03 FLOW PROCESS FROM NODE 173.00 TO NODE 174.00 IS CODE = 9 OR » » >COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA« «< UPSTREAM NODE ELEVATION(FEET) = 966.01 m DOWNSTREAM NODE ELEVATION(FEET) = 965.22 CHANNEL LENGTH THRU SUBAREA(FEET) = 129.00 Mg "V" GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET) = .170 PAVEMENT LIP(FEET) = .030 MANNING'S N = .0150 ,* PAVEMENT CROSSFALL(DECIMAL NOTATION) = .01000 MAXIMUM DEPTH(FEET) = .60 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.876 SUBAREA LOSS RATE DATA(AMC II): "" DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN MN COMMERCIAL A 3.40 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 .011 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 IIr TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 23.76 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 2.42 AVERAGE FLOW DEPTH(FEET) = .49 FLOOD WIDTH(FEET) = 61.59 "V" GUTTER FLOW TRAVEL TIME(MIN.) = .89 Tc(MIN.) = 11.01 SUBAREA AREA(ACRES) = 3.40 SUBAREA RUNOFF(CFS) = 8.50 mm EFFECTIVE AREA(ACRES) = 10.93 AREA-AVERAGED Fm(INCH /HR) = .13 AREA-AVERAGED Fp(INCH /HR) = .67 AREA - AVERAGED Ap = .19 TOTAL AREA(ACRES) = 11.40 PEAK FLOW RATE(CFS) = 27.00 Mr END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = .51 FLOOD WIDTH(FEET) = 65.03 FLOW VELOCITY(FEET /SEC.) = 2.48 DEPTH *VELOCITY(FT *FT /SEC) = 1.26 FLOW PROCESS FROM NODE 174.00 TO NODE 175.00 IS CODE = 3.1 » »'COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««< 811 » »'USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) « «< "' ELEVATION DATA: UPSTREAM(FEET) = 960.31 DOWNSTREAM(FEET) = 960.09 FLOW LENGTH(FEET) = 207.00 MANNING'S N = .013 MM DEPTH OF FLOW IN 42.0 INCH PIPE IS 29.6 INCHES PIPE-FLOW VELOCITY(FEET /SEC.) = 3.73 " ESTIMATED PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 27.00 PIPE TRAVEL TIME(MIN.) = .93 Tc(MIN.) = 11.94 FLOW PROCESS FROM NODE 175.00 TO NODE 175.00 IS CODE = 11 Mm » »'CONFLUENCE MEMORY BANK # 1 WITH THE MAIN - STREAM MEMORY « «< mw ** MAIN STREAM CONFLUENCE DATA ** STREAM a Tc Intensity Fp(Fm) Ap Ae HEADWATER "" NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 27.00 11.94 2.740 .67( .13) .19 10.9 160.00 mme 2 26.91 12.05 2.725 .67( .13) .20 11.0 150.00 3 23.99 15.05 2.384 .63( .14) .23 11.4 170.00 ** MEMORY BANK # 1 CONFLUENCE DATA ** mm STREAM a Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 43.86 10.70 2.926 .98( .10) .10 14.0 140.00 2 44.13 10.90 2.894 .98( .10) .10 14.3 130.00 - 3 45.28 12.25 2.697 .98( .10) .10 15.8 110.00 4 42.65 13.83 2.509 .97( .10) .10 16.4 100.00 AA 5 39.09 16.66 2.243 .98( .10) .10 17.3 120.00 Ii ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER °*!! NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 72.01 11.94 2.740 .80( .11) .14 26.4 160.00 2 72.02 12.05 2.725 .80( .11) .14 26.5 150.00 3 65.11 15.05 2.384 .77( .12) .15 28.2 170.00 mm 4 69.79 10.70 2.926 .80( .11) .14 23.8 140.00 5 70.24 10.90 2.894 .80( .11) .14 24.3 130.00 Al 6 71.99 12.25 2.697 .80( .11) .14 26.8 110.00 7 67.84 13.83 2.509 .78( .11) .15 27.7 100.00 mm 8 61.57 16.66 2.243 .77( .12) .15 28.7 120.00 TOTAL AREA(ACRES) = 28.70 Mi COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: .m PEAK FLOW RATE(CFS) = 72.02 Tc(MIN.) = 12.049 EFFECTIVE AREA(ACRES) = 26.55 AREA - AVERAGED Fm(INCH /HR) = .11 MO AREA-AVERAGED Fp(INCH /HR) = .80 AREA - AVERAGED Ap = .14 TOTAL AREA(ACRES) = 28.70 ..II f�l ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** • FLOW PROCESS FROM NODE 175.00 TO NODE 175.00 IS CODE = 12 "" » » >CLEAR MEMORY BANK # 1 « «< N M ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** -'" FLOW PROCESS FROM NODE 175.00 TO NODE 176.00 IS CODE = 3.1 • >»» »COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA« «< »»»USING COMPUTER- ESTIMATED PIPESIZE (NON-PRESSURE FLOW)« «< ELEVATION DATA: UPSTREAM(FEET) = 960.09 DOWNSTREAM(FEET) = 959.51 ▪ FLOW LENGTH(FEET) = 400.00 MANNING'S N = .013 DEPTH OF FLOW IN 54.0 INCH PIPE IS 43.6 INCHES "' PIPE -FLOW VELOCITY(FEET /SEC.) = 5.23 ESTIMATED PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1 IN PIPE-FLOW(CFS) = 72.02 PIPE TRAVEL TIME(MIN.) = 1.27 Tc(MIN.) = 13.32 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** bn FLOW PROCESS FROM NODE 175.00 TO NODE 176.00 IS = 8.1 "" »> »»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< • MAINLINE Tc(MIN) = 13.32 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.565 "" SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS or LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 2.20 .98 .10 32 "" SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 Yrr SUBAREA AREA(ACRES) = 2.20 SUBAREA RUNOFF(CFS) = 4.89 EFFECTIVE AREA(ACRES) = 28.75 AREA - AVERAGED Fm(INCH /HR) = .11 "- AREA-AVERAGED Fp(INCH /HR) = .81 AREA-AVERAGED Ap = .14 TOTAL AREA(ACRES) = 30.90 PEAK FLOW RATE(CFS) = 72.02 ✓ NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE "" END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 30.90 TC(MIN.) = 13.32 Irr EFFECTIVE AREA(ACRES) = 28.75 AREA-AVERAGED Fm(INCH /HR)= .11 AREA - AVERAGED Fp(INCH /HR) = .81 AREA - AVERAGED Ap = .14 -" PEAK FLOW RATE(CFS) = 72.02 ▪ ** PEAK FLOW RATE TABLE ** STREAM 0 Tc Intensity Fp(Fm) Ap Ae HEADWATER mm NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 69.79 11.97 2.735 .81( .11) .14 26.0 140.00 �+ 2 70.24 12.17 2.708 .81( .11) .14 26.5 130.00 3 72.01 13.21 2.579 .81( .11) .14 28.6 160.00 w 4 72.02 13.32 2.565 .81( .11) .14 28.7 150.00 5 71.99 13.53 2.542 .81( .11) .14 29.0 110.00 6 67.84 15.11 2.379 .79( .11) .14 29.9 100.00 7 65.11 16.34 2.270 .78( .11) .15 30.4 170.00 me 8 61.57 17.99 2.143 .78( me di w MN w di Illlf ma (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) +10 (c) Copyright 1983 -96 Advanced Engineering Software (aes) Ver. 6.1 Release Date: 01/01/96 License ID 1435 Mi Analysis prepared by: 0. THIENES ENGINEERING N M 16800 VALLEY VIEW AVENUE LA MIRADA, CA 90639 011.1 (714) 521 -4811 FAX (714) 521 -4173 OM * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * SLOVER AVENUE AND JASMINE STREET a** 100 -YEAR HYDROLOGY * * MM ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** - FILE NAME: 1788A100.DAT TIME /DATE OF STUDY: 9:28 1/ 4/1999 Mr USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: .+0 -- *TIME -OF- CONCENTRATION MODEL*- - mo USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .95 Mr *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* - ∎ SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.3000 m *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* �.. *USER-DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* rt HALF- CROWN TO STREET - CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT- /PARK- HEIGHT WIDTH LIP HIKE FACTOR •--MO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) orr 1 30.0 20.0 .018/ .018/ .020 .67 2.00 .03125 .1670 .01500 - GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow-Depth = .00 FEET NW as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) .s ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** Mg FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 2.1 • » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< »USE TIME-OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« I INITIAL SUBAREA FLOW - LENGTH(FEET) = 229.00 u m ELEVATION DATA: UPSTREAM(FEET) = 978.85 DOWNSTREAM(FEET) = 971.22 i� Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.276 00 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.591 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) ▪ COMMERCIAL A .70 .98 .10 32 5.28 . SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = . 10 SUBAREA RUNOFF(CFS) = 3.46 TOTAL AREA(ACRES) _ .70 PEAK FLOW RATE(CFS) = 3.46 r******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 3.1 0101. O M RR a' » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< » »>USING COMPUTER- ESTIMATED PIPESIZE (NON-PRESSURE FLOW)« «< '"'w ELEVATION DATA: UPSTREAM(FEET) = 968.29 DOWNSTREAM(FEET) = 967.23 FLOW LENGTH(FEET) = 254.00 MANNING'S N = .013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 10.6 INCHES PIPE-FLOW VELOCITY(FEET /SEC.) = 3.72 ""'I ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 w g PIPE-FLOW(CFS) = 3.46 ▪ PIPE TRAVEL TIME(MIN.) = 1.14 Tc(MIN.) = 6.41 w m********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 102.00 TO NODE 111.00 IS CODE = 5.1 OM »»> COMPUTE TRAPEZOIDAL CHANNEL FLOW « «< • » » >TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< MO ELEVATION DATA: UPSTREAM(FEET) = 967.23 DOWNSTREAM(FEET) = 966.01 CHANNEL LENGTH THRU SUBAREA(FEET) = 110.00 CHANNEL SLOPE = .0111 "" CHANNEL BASE(FEET) = .00 "2" FACTOR = 50.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = .50 - CHANNEL FLOW THRU SUBAREA(CFS) = 3.46 FLOW VELOCITY(FEET /SEC) = 2.13 FLOW DEPTH(FEET) = .18 "" TRAVEL TIME(MIN.) = .86 Tc(MIN.) = 7.27 i11********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 111.00 TO NODE 111.00 IS CODE = 1 » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< NM TOTAL NUMBER OF STREAMS = 2 "" CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.27 1W RAINFALL INTENSITY(INCH /HR) = 4.61 AREA-AVERAGED Fm(INCH /HR) = .10 "" AREA - AVERAGED Fp(INCH /HR) = .98 AREA - AVERAGED Ap = .10 " EFFECTIVE STREAM AREA(ACRES) = .70 TOTAL STREAM AREA(ACRES) = .70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 111***** FLOW PROCESS FROM NODE 110.00 TO NODE 111.00 IS CODE = 2.1 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< • »USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« um INITIAL SUBAREA FLOW - LENGTH(FEET) = 320.00 ELEVATION DATA: UPSTREAM(FEET) = 978.04 DOWNSTREAM(FEET) = 966.01 Mg Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 q w SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.887 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.235 a SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc 4 111 LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 1.20 .98 .10 32 5.89 O M SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 ▪ SUBAREA RUNOFF(CFS) = 5.55 TOTAL AREA(ACRES) = 1.20 PEAK FLOW RATE(CFS) = 5.55 MI ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** imp FLOW PROCESS FROM NODE 111.00 TO NODE 111.00 IS CODE = 1 Ir » »> DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< »» >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES ««< our TOTAL NUMBER OF STREAMS = 2 II CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.89 ". RAINFALL INTENSITY(INCH /HR) = 5.23 MO AREA-AVERAGED Fm(INCH /HR) = .10 • AREA - AVERAGED Fp(INCH /HR) = .98 AREA-AVERAGED Ap = .10 - EFFECTIVE STREAM AREA(ACRES) = 1.20 TOTAL STREAM AREA(ACRES) = 1.20 ill PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.55 "" ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER Ill NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 3.46 7.27 4.611 .98( .10) .10 .7 100.00 "n 2 5.55 5.89 5.235 .98( .10) .10 1.2 110.00 • RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** O M STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 8.34 7.27 4.611 .98( .10) .10 1.9 100.00 2 8.74 5.89 5.235 .98( .10) .10 1.8 110.00 kW COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 8.74 Tc(MIN.) = 5.89 EFFECTIVE AREA(ACRES) = 1.77 AREA-AVERAGED Fm(INCH /HR) = .10 NO AREA- AVERAGED Fp(INCH /HR) = .98 AREA-AVERAGED Ap = .10 TOTAL AREA(ACRES) = 1.90 ********************************************* * * * * * * * * * * * * * * ******* * * * * * * * *** 10 FLOW PROCESS FROM NODE 111.00 TO NODE 112.00 IS CODE = 9 » » >COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA « «< ✓ UPSTREAM NODE ELEVATION(FEET) = 966.01 DOWNSTREAM NODE ELEVATION(FEET) = 965.46 �+ CHANNEL LENGTH THRU SUBAREA(FEET) = 110.00 "V" GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET) = .170 - PAVEMENT LIP(FEET) = .030 MANNING'S N = .0150 PAVEMENT CROSSFALL(DECIMAL NOTATION) = .01000 MAXIMUM DEPTH(FEET) = .50 * 100 YEAR RAINFALL INTENSITY(INCIt /HR) = 4.793 NW SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS +.. LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 2.10 .98 .10 32 tit SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 .. TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 13.16 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 1.97 W AVERAGE FLOW DEPTH(FEET) = .44 FLOOD WIDTH(FEET) = 50.46 "V" GUTTER FLOW TRAVEL TIME(MIN.) = .93 Tc(MIN.) = 6.82 gel SUBAREA AREA(ACRES) = 2.10 SUBAREA RUNOFF(CFS) = 8.87 EFFECTIVE AREA(ACRES) = 3.87 AREA - AVERAGED Fm(INCH /HR) = .10 Al AREA- AVERAGED Fp(INCH /HR) = .98 AREA - AVERAGED Ap = .10 TOTAL AREA(ACRES) = 4.00 PEAK FLOW RATE(CFS) = 16.34 me END OF SUBAREA "V" GUTTER HYDRAULICS: II DEPTH(FEET) = .46 FLOOD WIDTH(FEET) = 55.15 FLOW VELOCITY(FEET /SEC.) = 2.06 DEPTH *VELOCITY(FT *FT /SEC) = .95 di FLOW PROCESS FROM NODE 112.00 TO NODE 113.00 IS CODE = 9 ow » "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA « «< I UPSTREAM NODE ELEVATION(FEET) = 965.46 DOWNSTREAM NODE ELEVATION(FEET) = 964.96 CHANNEL LENGTH THRU SUBAREA(FEET) = 100.00 "V" GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET) = .170 fi PAVEMENT LIP(FEET) = .030 MANNING'S N = .0150 PAVEMENT CROSSFALL(DECIMAL NOTATION) = .01000 MAXIMUM DEPTH(FEET) = .80 1111 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.491 Nis SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS +EI LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 1.35 .98 .10 32 mm SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 - TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 19.01 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 2.13 ▪ AVERAGE FLOW DEPTH(FEET) = .48 FLOOD WIDTH(FEET) = 58.66 "V" GUTTER FLOW TRAVEL TIME(MIN.) = .78 Tc(MIN.) = 7.60 e.. SUBAREA AREA(ACRES) = 1.35 SUBAREA RUNOFF(CFS) = 5.34 EFFECTIVE AREA(ACRES) = 5.22 AREA - AVERAGED Fm(INCH /HR) = .10 Om AREA- AVERAGED Fp(INCH /HR) = .98 AREA - AVERAGED Ap = .10 TOTAL AREA(ACRES) = 5.35 PEAK FLOW RATE(CFS) = 20.63 END OF SUBAREA "V" GUTTER HYDRAULICS: ▪ DEPTH(FEET) = .49 FLOOD WIDTH(FEET) = 60.77 FLOW VELOCITY(FEET /SEC.) = 2.16 DEPTH *VELOCITY(FT *FT /SEC) = 1.06 ********************************************* * * * * * * * ** * * * * * * * * * * * * * * * * * * * * ** Mm FLOW PROCESS FROM NODE 113.00 TO NODE 114.00 IS CODE = 9 + »» >COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA« «< -r UPSTREAM NODE ELEVATION(FEET) = 964.96 DOWNSTREAM NODE ELEVATION(FEET) = 964.38 ... CHANNEL LENGTH THRU SUBAREA(FEET) = 83.00 "V" GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET) = .170 Om PAVEMENT LIP(FEET) = .030 MANNING'S N = .0150 PAVEMENT CROSSFALL(DECIMAL NOTATION) = .01000 ... MAXIMUM DEPTH(FEET) = .80 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.315 mm SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS . - LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 4.55 .98 .10 32 mm SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 • TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 29.24 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 2.65 MO AVERAGE FLOW DEPTH(FEET) = .51 FLOOD WIDTH(FEET) = 65.46 "V" GUTTER FLOW TRAVEL TIME(MIN.) = .52 Tc(MIN.) = 8.12 ... SUBAREA AREA(ACRES) = 4.55 SUBAREA RUNOFF(CFS) = 17.27 EFFECTIVE AREA(ACRES) = 9.77 AREA-AVERAGED Fm(INCH /HR) = .10 o r AREA - AVERAGED Fp(INCH /HR) = .98 AREA - AVERAGED Ap = .10 TOTAL AREA(ACRES) = 9.90 PEAK FLOW RATE(CFS) = 37.07 • END OF SUBAREA "V" GUTTER HYDRAULICS: Mrs DEPTH(FEET) = .54 FLOOD WIDTH(FEET) = 71.79 FLOW VELOCITY(FEET /SEC.) = 2.81 DEPTH *VELOCITY(FT *FT /SEC) = 1.53 mm ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** di FLOW PROCESS FROM NODE 114.00 TO NODE 126.00 IS CODE = 3.1 w1 » » »COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««< » » »USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 961.16 DOWNSTREAM(FEET) = 960.90 FLOW LENGTH(FEET) = 254.00 MANNING'S N = .013 MI DEPTH OF FLOW IN 45.0 INCH PIPE IS 36.2 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 3.89 ESTIMATED PIPE DIAMETER(INCH) = 45.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 37.07 MP PIPE TRAVEL TIME(MIN.) = 1.09 Tc(MIN.) = 9.21 Mg ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 1 Mi >» » »DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< _ 1111111 TOTAL NUMBER OF STREAMS = 2 ■r NI CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 9.21 RAINFALL INTENSITY(INCH /HR) = 4.00 AREA- AVERAGED Fm(INCH /HR) = .10 AREA - AVERAGED Fp(INCH /HR) = .98 NO AREA - AVERAGED Ap = .10 EFFECTIVE STREAM AREA(ACRES) = 9.77 " TOTAL STREAM AREA(ACRES) = 9.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 37.07 Id """ FLOW PROCESS FROM NODE 120.00 TO NODE 121.00 IS CODE = 2.1 - »»RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< »USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW-LENGTH(FEET) = 328.00 ma ELEVATION DATA: UPSTREAM(FEET) = 975.01 DOWNSTREAM(FEET) = 970.04 """ Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.131 im * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.666 SUBAREA Tc AND LOSS RATE DATA(AMC II): O " DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) 1116 COMMERCIAL A .70 .98 .10 32 7.13 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 ▪ SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) = 2.88 - TOTAL AREA(ACRES) = .70 PEAK FLOW RATE(CFS) = 2.88 FLOW PROCESS FROM NODE 121.00 TO NODE 122.00 IS CODE = 6.1 Im » »COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< ▪ » »(STANDARD CURB SECTION USED) « «< _ m° UPSTREAM ELEVATION(FEET) = 970.04 DOWNSTREAM ELEVATION(FEET) = 968.15 STREET LENGTH(FEET) = 185.00 CURB HEIGHT(INCHES) = 8.0 ^•- STREET HALFWIDTH(FEET) = 36.00 ▪ DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 31.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 -^ OUTSIDE STREET CROSSFALL(DECIMAL) = .020 o m SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.28 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: MO STREET FLOW DEPTH(FEET) = .40 HALFSTREET FLOOD WIDTH(FEET) = 12.06 • AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.60 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.04 STREET FLOW TRAVEL TIME(MIN.) = 1.18 Tc(MIN.) = 8.31 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.255 40 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS ig LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A .75 .98 .10 32 em SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 IW SUBAREA AREA(ACRES) = .75 SUBAREA RUNOFF(CFS) = 2.81 EFFECTIVE AREA(ACRES) = 1.45 AREA - AVERAGED Fm(INCH /HR) = .10 • AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .10 TOTAL AREA(ACRES) = 1.45 PEAK FLOW RATE(CFS) = 5.43 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .43 HALFSTREET FLOOD WIDTH(FEET) = 13.39 FLOW VELOCITY(FEET /SEC.) = 2.74 DEPTH *VELOCITY(FT *FT /SEC.) = 1.17 ti ********************************************* * * * * * * * * * * * * * * * * * ** * * * * * * * * * * ** . FLOW PROCESS FROM NODE 122.00 TO NODE 123.00 IS CODE = 6.1 IN • »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »>(STANDARD CURB SECTION USED) « « < UPSTREAM ELEVATION(FEET) = 968.15 DOWNSTREAM ELEVATION(FEET) = 965.51 ▪ STREET LENGTH(FEET) = 196.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 36.00 w.m DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 31.00 MO INSIDE STREET CROSSFALL(DECIMAL) = .015 OUTSIDE STREET CROSSFALL(DECIMAL) = .015 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 MM * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.81 .., STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .42 ur HALFSTREET FLOOD WIDTH(FEET) = 16.68 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.98 ... PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.25 STREET FLOW TRAVEL TIME(MIN.) = 1.10 Tc(MIN.) = 9.41 ✓ r * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.951 SUBAREA LOSS RATE DATA(AMC II): • DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN Or COMMERCIAL A .80 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 ..A SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) = .80 SUBAREA RUNOFF(CFS) = 2.77 rrr EFFECTIVE AREA(ACRES) = 2.25 AREA-AVERAGED Fm(INCH /HR) = .10 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .10 ,.� TOTAL AREA(ACRES) = 2.25 PEAK FLOW RATE(CFS) = 7.80 or END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .43 HALFSTREET FLOOD WIDTH(FEET) = 17.61 .., FLOW VELOCITY(FEET /SEC.) = 3.09 DEPTH *VELOCITY(FT *FT /SEC.) = 1.34 FLOW PROCESS FROM NODE 123.00 TO NODE 124.00 IS CODE = 6.1 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< rr » » >(STANDARD CURB SECTION USED) ««< ,., UPSTREAM ELEVATION(FEET) = 965.51 DOWNSTREAM ELEVATION(FEET) = 963.98 STREET LENGTH(FEET) = 305.00 CURB HEIGHT(INCHES) = 8.0 mm STREET HALFWIDTH(FEET) = 36.00 ▪ DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 31.00 INSIDE STREET CROSSFALL(DECIMAL) = .015 • OUTSIDE STREET CROSSFALL(DECIMAL) = .015 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 id * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 9.17 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .51 HALFSTREET FLOOD WIDTH(FEET) = 22.92 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.21 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.13 STREET FLOW TRAVEL TIME(MIN.) = 2.30 Tc(MIN.) = 11.70 mp * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.466 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN ▪ COMMERCIAL A .90 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) = .90 SUBAREA RUNOFF(CFS) = 2.73 mm EFFECTIVE AREA(ACRES) = 3.15 AREA-AVERAGED Fm(INCH /HR) = .10 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .10 TOTAL AREA(ACRES) = 3.15 PEAK FLOW RATE(CFS) = 9.55 Mm • END OF SUBAREA STREET FLOW HYDRAULICS: di DEPTH(FEET) = .52 HALFSTREET FLOOD WIDTH(FEET) = 23.32 FLOW VELOCITY(FEET /SEC.) = 2.23 DEPTH *VELOCITY(FT *FT /SEC.) = 1.16 opm ********************************************* * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** ▪ FLOW PROCESS FROM NODE 124.00 TO NODE 125.00 IS CODE = 6.1 » »COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< » »(STANDARD CURB SECTION USED) « «< WW= UPSTREAM ELEVATION(FEET) = 963.98 DOWNSTREAM ELEVATION(FEET) = 963.40 • STREET LENGTH(FEET) = 116.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 36.00 kW DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 31.00 • INSIDE STREET CROSSFALL(DECIMAL) = .015 OUTSIDE STREET CROSSFALL(DECIMAL) = .015 Mm SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 11.15 u STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .54 HALFSTREET FLOOD WIDTH(FEET) = 24.78 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.32 ▪ PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.25 STREET FLOW TRAVEL TIME(MIN.) = .83 Tc(MIN.) = 12.54 e „ w * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.326 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 1.10 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 • SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) = 1.10 SUBAREA RUNOFF(CFS) = 3.20 EFFECTIVE AREA(ACRES) = 4.25 AREA - AVERAGED Fm(INCH /HR) = .10 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .10 r TOTAL AREA(ACRES) = 4.25 PEAK FLOW RATE(CFS) = 12.35 END OF SUBAREA STREET FLOW HYDRAULICS: ... DEPTH(FEET) = .56 HALFSTREET FLOOD WIDTH(FEET) = 25.84 mm FLOW VELOCITY(FEET /SEC.) = 2.37 DEPTH *VELOCITY(FT *FT /SEC.) = 1.32 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 125.00 TO NODE 126.00 IS CODE = 3.1 ter » »COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA « «< » »USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 961.05 DOWNSTREAM(FEET) = 960.90 VW FLOW LENGTH(FEET) = 148.00 MANNING'S N = .013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 23.8 INCHES "I PIPE -FLOW VELOCITY(FEET /SEC.) = 2.95 A ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 12.35 PIPE TRAVEL TIME(MIN.) = .84 Tc(MIN.) = 13.37 air ****** FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 1 414 » »DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< Ii »>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< TOTAL NUMBER OF STREAMS = 2 °"" CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.37 RAINFALL INTENSITY(INCH /HR) = 3.20 AREA-AVERAGED Fm(INCH /HR) = .10 " AREA-AVERAGED Fp(INCH /HR) = .97 d i AREA - AVERAGED Ap = .10 EFFECTIVE STREAM AREA(ACRES) = 4.25 TOTAL STREAM AREA(ACRES) = 4.25 mm PEAK FLOW RATE(CFS) AT CONFLUENCE = 12.35 ** CONFLUENCE DATA ** STREAM a Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE los 1 34.03 10.64 3.669 .98( .10) .10 9.9 100.00 1 37.08 9.21 4.002 .98( .10) .10 9.8 110.00 ▪ 2 12.35 13.37 3.200 .97( .10) .10 4.3 120.00 • RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** • STREAM O Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE s 1 47.78 9.21 4.002 .98( .10) .10 12.7 110.00 2 45.34 10.64 3.669 .98( .10) .10 13.3 100.00 or 3 41.90 13.37 3.200 .98( .10) .10 14.1 120.00 • COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 47.78 Tc(MIN.) = 9.21 _ EFFECTIVE AREA(ACRES) = 12.69 AREA - AVERAGED Fm(INCH/HR) = .10 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .10 ▪ TOTAL AREA(ACRES) = 14.15 wwwwwwwwwwwwww wwwwwwwwwwwwwwwwwwwwwwwwwwwwwww wwwwwwwwwwwwwwwwwwwwwwwwwwwwwww w FLOW PROCESS FROM NODE 126.00 TO NODE 142.00 IS CODE = 3.1 » PIPE-FLOW TRAVEL TIME THRU SUBAREA « «< ✓ » » »USING COMPUTER-ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< • ELEVATION DATA: UPSTREAM(FEET) = 960.80 DOWNSTREAM(FEET) = 960.24 FLOW LENGTH(FEET) = 505.00 MANNING'S N = .013 mm DEPTH OF FLOW IN 51.0 INCH PIPE IS 36.9 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 4.35 ▪ ESTIMATED PIPE DIAMETER(INCH) = 51.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 47.78 - PIPE TRAVEL TIME(MIN.) = 1.93 Tc(MIN.) = 11.14 ************** wwwwwwwwwwwwwwwwwwwwwwwwwwwwwww wwwwwwwwwwwwwwwwwwwwwwwwwwwwwww .�. FLOW PROCESS FROM NODE 142.00 TO NODE 142.00 IS CODE = 10 » »MAIN- STREAM MEMORY COPIED ONTO MEMORY BANK # 1 « «< ************** wwwwwwwwwwwwwwwwwwwwwwwwwwwwwww wwwwwwwwwwwwwwwwwwwwwwwwwwwwwww mm FLOW PROCESS FROM NODE 130.00 TO NODE 131.00 IS CODE = 2.1 » » »RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME - OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« RI INITIAL SUBAREA FLOW - LENGTH(FEET) = 399.00 mm ELEVATION DATA: UPSTREAM(FEET) = 970.43 DOWNSTREAM(FEET) = 966.62 • Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.458 • * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.212 d i SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) 'R COMMERCIAL A 1.05 .98 .10 32 8.46 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) = 3.89 mu TOTAL AREA(ACRES) = 1.05 PEAK FLOW RATE(CFS) = 3.89 • w wwwwwww www wwwwwwwwwww wwwwwwwwwww wwwwww ww wwwwwww wwwwwwwwwwwwwwwwwwwwwwwwwww FLOW PROCESS FROM NODE 131.00 TO NODE 141.00 IS CODE = 6.1 mu » »COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< »» »(STANDARD CURB SECTION USED)« «< OR w UPSTREAM ELEVATION(fEET) = 966.62 DOWNSTREAM ELEVATION(FEET) = 965.37 d i STREET LENGTH(FEET) = 220.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 36.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 31.00 MI INSIDE STREET CROSSFALL(DECIMAL) = .030 OUTSIDE STREET CROSSFALL(DECIMAL) = .030 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 OM * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.39 ,., STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .49 d i HALFSTREET FLOOD WIDTH(FEET) = 11.73 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.42 ... PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.18 STREET FLOW TRAVEL TIME(MIN.) = 1.52 Tc(MIN.) = 9.98 Or * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.815 SUBAREA LOSS RATE DATA(AMC II): ... DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN - COMMERCIAL A .90 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 - SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) = .90 SUBAREA RUNOFF(CFS) = 3.01 rlr EFFECTIVE AREA(ACRES) = 1.95 AREA-AVERAGED Fm(INCH /HR) = .10 AREA - AVERAGED Fp(INCH /HR) = .97 AREA-AVERAGED Ap = .10 - TOTAL AREA(ACRES) = 1.95 PEAK FLOW RATE(CFS) = 6.52 am END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .52 HALFSTREET FLOOD WIDTH(FEET) = 12.72 .,.. FLOW VELOCITY(FEET /SEC.) = 2.51 DEPTH *VELOCITY(FT *FT /SEC.) = 1.31 mi * * * ** ** ** * * * ** ***** * * * * ** * **** ** * *** ** ** *** ** * ** ************ * ** ** *** * * * * * ** * FLOW PROCESS FROM NODE 141.00 TO NODE 141.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< - TOTAL NUMBER OF STREAMS = 2 ,., CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 9.98 yg RAINFALL INTENSITY(INCH /HR) = 3.81 AREA - AVERAGED Fm(INCH /HR) = .10 AREA-AVERAGED Fp(INCH /HR) = .97 AREA-AVERAGED Ap = .10 ow EFFECTIVE STREAM AREA(ACRES) = 1.95 TOTAL STREAM AREA(ACRES) = 1.95 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.52 ************************************** * * * ** * * ** * * ** * * ** * * * * * ** * * * * * ** am FLOW PROCESS FROM NODE 140.00 TO NODE 141.00 IS CODE = 2.1 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< Ii »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« • INITIAL SUBAREA FLOW - LENGTH(FEET) = 440.00 ELEVATION DATA: UPSTREAM(FEET) = 967.74 DOWNSTREAM(FEET) = 965.37 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.863 aa * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.841 Ii SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) am COMMERCIAL A 1.20 .98 .10 32 9.86 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) = 4.04 • TOTAL AREA(ACRES) = 1.20 PEAK FLOW RATE(CFS) = 4.04 ********************************************* * * * * * * * * * * * * * * * * * ** * * * * * * * * * * ** FLOW PROCESS FROM NODE 141.00 TO NODE 141.00 IS CODE = 1 OM mm » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< mmr TOTAL NUMBER OF STREAMS = 2 • CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 9.86 .mil1 RAINFALL INTENSITY(INCH /HR) = 3.84 AREA - AVERAGED Fm(INCH /HR) = .10 AREA-AVERAGED Fp(INCH /HR) = .98 AREA-AVERAGED Ap = .10 „ EFFECTIVE STREAM AREA(ACRES) = 1.20 TOTAL STREAM AREA(ACRES) = 1.20 id PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.04 __ ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER Ai NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 6.52 9.98 3.815 .97( .10) .10 1.9 130.00 2 4.04 9.86 3.841 .98( .10) .10 1.2 140.00 Wm RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** t/ STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 10.54 9.98 3.815 .98( .10) .10 3.2 130.00 2 10.54 9.86 3.841 .98( .10) .10 3.1 140.00 mm COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: ..,, PEAK FLOW RATE(CFS) = 10.54 Tc(MIN.) = 9.98 EFFECTIVE AREA(ACRES) = 3.15 AREA - AVERAGED Fm(INCH /HR) = .10 err AREA-AVERAGED Fp(INCH /HR) = .98 AREA - AVERAGED Ap = .10 TOTAL AREA(ACRES) = 3.15 am FLOW PROCESS FROM NODE 141.00 TO NODE 142.00 IS CODE = 3.1 » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< » »>USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< rr- ELEVATION DATA: UPSTREAM(FEET) = 961.37 DOWNSTREAM(FEET) = 961.00 • FLOW LENGTH(FEET) = 8.00 MANNING'S N = .013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.9 INCHES um PIPE -FLOW VELOCITY(FEET /SEC.) = 12.20 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 10.54 PIPE TRAVEL TIME(MIN.) _ .01 Tc(MIN.) = 9.99 NM mm FLOW PROCESS FROM NODE 142.00 TO NODE 142.00 IS CODE = 11 » » > CONFLUENCE MEMORY BANK # 1 WITH THE MAIN - STREAM MEMORY « «< • ** MAIN STREAM CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 10.54 9.87 3.838 .98( .10) .10 3.1 140.00 mm 2 10.54 9.99 3.812 .98( .10) .10 3.2 130.00 (i ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE id 1 47.78 11.14 3.570 .98( .10) .10 12.7 110.00 2 45.34 12.63 3.311 .98( .10) .10 13.3 100.00 *w 3 41.90 15.38 2.942 .98( .10) .10 14.1 120.00 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE O M mu 1 56.15 9.87 3.838 .98( .10) .10 14.4 140.00 AO 2 56.35 9.99 3.812 .98( .10) .10 14.5 130.00 3 57.63 11.14 3.570 .98( .10) .10 15.8 110.00 mm 4 54.46 12.63 3.311 .98( .10) .10 16.4 100.00 5 49.97 15.38 2.942 .98( .10) .10 17.3 120.00 d O TOTAL AREA(ACRES) = 17.30 am COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 57.63 Tc(MIN.) = 11.143 • EFFECTIVE AREA(ACRES) = 15.84 AREA - AVERAGED Fm(INCH/HR) = .10 AREA-AVERAGED Fp(INCH /HR) = .98 AREA-AVERAGED Ap = .10 mw TOTAL AREA(ACRES) = 17.30 Mi ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 142.00 TO NODE 142.00 IS CODE = 12 om »»>CLEAR MEMORY BANK # 1 « «< N M ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 142.00 TO NODE 175.00 IS CODE = 3.1 in » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « « < ,.. »»>USING COMPUTER-ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< • ELEVATION DATA: UPSTREAM(FEET) = 960.19 DOWNSTREAM(FEET) = 959.99 FLOW LENGTH(FEET) = 199.00 MANNING'S N = .013 ... DEPTH OF FLOW IN 54.0 INCH PIPE IS 42.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 4.35 im ESTIMATED PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 57.63 .. PIPE TRAVEL TIME(MIN.) = .76 Tc(MIN.) = 11.91 FLOW PROCESS FROM NODE 175.00 TO NODE 175.00 IS CODE = 10 »»>MAIN- STREAM MEMORY COPIED ONTO MEMORY BANK # 1 « «< o w ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** �.. FLOW PROCESS FROM NODE 150.00 TO NODE 151.00 IS CODE = 2.1 u m » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< »USE TIME-OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« • INITIAL SUBAREA FLOW-LENGTH(FEET) = 221.00 ELEVATION DATA: UPSTREAM(FEET) = 975.83 DOWNSTREAM(FEET) = 973.14 Tc = K *((LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 gm SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.361 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.997 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc di LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A .90 .98 .10 32 6.36 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) = 3.97 TOTAL AREA(ACRES) = .90 PEAK FLOW RATE(CFS) = 3.97 FLOW PROCESS FROM NODE 151.00 TO NODE 162.00 IS CODE = 3.1 » »>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA ««< am »» >USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 969.66 DOWNSTREAM(FEET) = 696.09 FLOW LENGTH(FEET) = 190.00 MANNING'S N = .013 • ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 12.000 di DEPTH OF FLOW IN 12.0 INCH PIPE IS 2.5 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 33.47 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 am mg PIPE - FLOW(CFS) = 3.97 ▪ PIPE TRAVEL TIME(MIN.) = .09 Tc(MIN.) = 6.46 it FLOW PROCESS FROM NODE 162.00 TO NODE 162.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 MO CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 6.46 mm RAINFALL INTENSITY(INCH /HR) = 4.95 AREA-AVERAGED Fm(INCH /HR) = .10 MM AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .10 mm EFFECTIVE STREAM AREA(ACRES) = .90 TOTAL STREAM AREA(ACRES) = .90 OM PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.97 • ********************************************* ***** * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 160.00 TO NODE 161.00 IS CODE = 2.1 gm » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< .. »USE TIME - OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« • INITIAL SUBAREA FLOW - LENGTH(FEET) = 229.00 ELEVATION DATA: UPSTREAM(FEET) = 978.94 DOWNSTREAM(FEET) = 971.58 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 MO SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.314 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.567 mpg SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc IS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A .65 .98 .10 32 5.31 em SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 - SUBAREA RUNOFF(CFS) = 3.20 TOTAL AREA(ACRES) = .65 PEAK FLOW RATE(CFS) = 3.20 a ********************************************* ** **** ** * * * * * * * * * * * * * * * * * * * * * ** 60 FLOW PROCESS FROM NODE 161.00 TO NODE 162.00 IS CODE = 3.1 mu » »> COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA « «< » » >USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 969.66 DOWNSTREAM(FEET) = 969.09 mg FLOW LENGTH(FEET) = 190.00 MANNING'S N = .013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 11.4 INCHES Ii PIPE -FLOW VELOCITY(FEET /SEC.) = 3.19 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.20 mg PIPE TRAVEL TIME(MIN.) = .99 Tc(MIN.) = 6.31 gl ********************************************* * * * * * * ** * * * ** ** ******* * * * * * * * ** FLOW PROCESS FROM NODE 162.00 TO NODE 162.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES ««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6.31 mg RAINFALL INTENSITY(INCH /HR) = 5.02 AREA- AVERAGED Fm(INCH /HR) = .10 AREA - AVERAGED Fp(INCH /HR) = .97 AREA-AVERAGED Ap = .10 EFFECTIVE STREAM AREA(ACRES) = .65 TOTAL STREAM AREA(ACRES) = .65 ill PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.20 ** CONFLUENCE DATA ** VW mw STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 3.97 6.46 4.953 .97( .10) .10 .9 150.00 +■. 2 3.20 6.31 5.023 .97( .10) .10 .6 160.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. mm ** PEAK FLOW RATE TABLE ** OM STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 7.12 6.46 4.953 .97( .10) .10 1.5 150.00 2 7.13 6.31 5.023 .98( .10) .10 1.5 160.00 irr COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: ++ PEAK FLOW RATE(CFS) = 7.13 Tc(MIN.) = 6.31 EFFECTIVE AREA(ACRES) = 1.53 AREA-AVERAGED Fm(INCH /HR) = .10 OM AREA-AVERAGED Fp(INCH /HR) = .98 AREA-AVERAGED Ap = .10 TOTAL AREA(ACRES) = 1.55 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * *** ow FLOW PROCESS FROM NODE 162.00 TO NODE 163.00 IS CODE = 3.1 mm » »COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA « «< » »USING COMPUTER- ESTIMATED PIPESIZE (NON-PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 969.04 DOWNSTREAM(FEET) = 968.83 mm FLOW LENGTH(FEET) = 93.00 MANNING'S N = .013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 16.7 INCHES ■+ PIPE-FLOW VELOCITY(FEET /SEC.) = 3.48 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 -- PIPE-FLOW(CFS) = 7.13 PIPE TRAVEL TIME(MIN.) = .45 Tc(MIN.) = 6.75 mm ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** -- FLOW PROCESS FROM NODE 163.00 TO NODE 171.00 IS CODE = 5.1 err » »COMPUTE TRAPEZOIDAL CHANNEL FLOW« «< » »>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)« «< ELEVATION DATA: UPSTREAM(FEET) = 968.83 DOWNSTREAM(FEET) = 967.56 err CHANNEL LENGTH THRU SUBAREA(FEET) = 110.00 CHANNEL SLOPE = .0115 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 50.000 -- MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) _ .50 CHANNEL FLOW THRU SUBAREA(CFS) = 7.13 - FLOW VELOCITY(FEET /SEC) = 2.61 FLOW DEPTH(FEET) = .23 TRAVEL TIME(MIN.) = .70 Tc(MIN.) = 7.45 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** W FLOW PROCESS FROM NODE 171.00 TO NODE 171.00 IS CODE = 1 »»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< Ii TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.45 mm RAINFALL INTENSITY(INCH /HR) = 4.54 ill AREA - AVERAGED Fm(INCH /HR) = .10 AREA-AVERAGED Fp(INCH /HR) _ .98 mug AREA-AVERAGED Ap = .10 EFFECTIVE STREAM AREA(ACRES) = 1.53 TOTAL STREAM AREA(ACRES) = 1.55 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.13 mm ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** di FLOW PROCESS FROM NODE 170.00 TO NODE 171.00 IS CODE = 2.1 > »RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< mm »USE TIME-OF - CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 343.00 ,os ELEVATION DATA: UPSTREAM (FEET) = 979.82 DOWNSTREAM(FEET) = 967.56 Tc = K *[ (LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.559 .'n * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.687 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) .." NATURAL POOR COVER "BARREN" A 1.60 .42 1.00 78 10.56 OW SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .42 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 aim SUBAREA RUNOFF(CFS) = 4.71 TOTAL AREA(ACRES) = 1.60 PEAK FLOW RATE(CFS) = 4.71 S ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ▪ FLOW PROCESS FROM NODE 171.00 TO NODE 171.00 IS CODE = 1 - »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< » »>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES« «< TOTAL NUMBER OF STREAMS = 2 hr CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 10.56 +- RAINFALL INTENSITY(INCH /HR) = 3.69 AREA-AVERAGED Fm(INCH /HR) = .42 as AREA - AVERAGED Fp(INCH /HR) = .42 AREA-AVERAGED Ap = 1.00 • EFFECTIVE STREAM AREA(ACRES) = 1.60 TOTAL STREAM AREA(ACRES) = 1.60 NO PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.71 ..- ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER •r NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 7.12 7.60 4.489 .97( .10) .10 1.5 150.00 .. 1 7.13 7.45 4.543 .98( .10) .10 1.5 160.00 2 4.71 10.56 3.687 .42( .42) 1.00 1.6 170.00 err RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. Mr ** PEAK FLOW RATE TABLE ** STREAM 0 Tc Intensity Fp(Fm) Ap Ae HEADWATER • NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 11.33 7.45 4.543 .48( .23) .48 2.7 160.00 is 2 11.35 7.60 4.489 .48( .23) .48 2.7 150.00 3 10.53 10.56 3.687 .47( .26) .56 3.2 170.00 �.. COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: S PEAK FLOW RATE(CFS) = 11.35 Tc(MIN.) = 7.60 EFFECTIVE AREA(ACRES) = 2.70 AREA-AVERAGED Fm(INCH/HR) _ .23 AREA - AVERAGED Fp(INCH /HR) = .48 AREA - AVERAGED Ap = .48 MO TOTAL AREA(ACRES) = 3.15 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 171.00 TO NODE 172.00 IS CODE = 9 » »> COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA « «< • UPSTREAM NODE ELEVATION(FEET) = 967.56 DOWNSTREAM NODE ELEVATION(FEET) = 967.01 gg CHANNEL LENGTH THRU SUBAREA(FEET) = 110.00 "V" GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET) = .170 PAVEMENT LIP(FEET) = .030 MANNING'S N = .0150 PAVEMENT CROSSFALL(DECIMAL NOTATION) = .01000 di MAXIMUM DEPTH(FEET) = .50 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.196 • SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 2.05 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 NO ono SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 Mi TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 15.13 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 2.02 vim AVERAGE FLOW DEPTH(FEET) = .45 FLOOD WIDTH(FEET) = 53.51 "V" GUTTER FLOW TRAVEL TIME(MIN.) = .91 Tc(MIN.) = 8.51 MO SUBAREA AREA(ACRES) = 2.05 SUBAREA RUNOFF(CFS) = 7.56 EFFECTIVE AREA(ACRES) = 4.75 AREA-AVERAGED Fm(INCH /HR) = .17 .-m AREA - AVERAGED Fp(INCH /HR) = .55 AREA - AVERAGED Ap = .32 TOTAL AREA(ACRES) = 5.20 PEAK FLOW RATE(CFS) = 17.20 SW END OF SUBAREA "V" GUTTER HYDRAULICS: .., DEPTH(FEET) = .47 FLOOD WIDTH(FEET) = 56.32 FLOW VELOCITY(FEET /SEC.) = 2.08 DEPTH *VELOCITY(FT *FT /SEC) = .97 ** PEAK FLOW RATE TABLE ** STREAM a Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE ■1 1 17.24 8.36 4.242 .55( .17) .32 4.7 160.00 2 17.20 8.51 4.196 .55( .17) .32 4.8 150.00 ... 3 15.49 11.49 3.505 .52( .20) .38 5.2 170.00 NEW PEAK FLOW DATA ARE: iN PEAK FLOW RATE(CFS) = 17.24 Tc(MIN.) = 8.36 AREA - AVERAGED Fm(INCH /HR) = .17 AREA - AVERAGED Fp(INCH /HR) = .55 m. AREA-AVERAGED Ap = .32 EFFECTIVE AREA(ACRES) = 4.71 me******************************************** * * * * * * * * * * * * * * * * * * * * ** * * * * ** * ** FLOW PROCESS FROM NODE 172.00 TO NODE 173.00 IS CODE = 9 » » >COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA « «< woe UPSTREAM NODE ELEVATION(FEET) = 967.01 ,.. DOWNSTREAM NODE ELEVATION(FEET) = 966.01 CHANNEL LENGTH THRU SUBAREA(FEET) = 200.00 it "V" GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET) = .170 PAVEMENT LIP(FEET) = .030 MANNING'S N = .0150 - PAVEMENT CROSSFALL(DECIMAL NOTATION) = .01000 MAXIMUM DEPTH(FEET) = .60 n n * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.837 SUBAREA LOSS RATE DATA(AMC II): .. DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN irr COMMERCIAL A 2.80 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 ,,. SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 21.94 e s TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 2.19 AVERAGE FLOW DEPTH(FEET) = .50 FLOOD WIDTH(FEET) = 62.22 „vve "V" GUTTER FLOW TRAVEL TIME(MIN.) = 1.52 Tc(MIN.) = 9.88 SUBAREA AREA(ACRES) = 2.80 SUBAREA RUNOFF(CFS) = 9.42 mig EFFECTIVE AREA(ACRES) = 7.51 AREA - AVERAGED Fm(INCH /HR) = .15 AREA-AVERAGED Fp(INCH /HR) = .62 AREA - AVERAGED Ap = .24 TOTAL AREA(ACRES) = 8.00 PEAK FLOW RATE(CFS) = 24.95 END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = .51 FLOOD WIDTH(FEET) = 65.66 FLOW VELOCITY(FEET /SEC.) = 2.25 DEPTH *VELOCITY(FT *FT /SEC) = 1.15 Now FLOW PROCESS FROM NODE 173.00 TO NODE 174.00 IS CODE = 9 » »>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA« «< UPSTREAM NODE ELEVATION(FEET) = 966.01 • DOWNSTREAM NODE ELEVATION(FEET) = 965.22 CHANNEL LENGTH THRU SUBAREA(FEET) = 129.00 " V" GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET) = .170 PAVEMENT LIP(FEET) = .030 MANNING'S N = .0150 PAVEMENT CROSSFALL(DECIMAL NOTATION) _ .01000 4114 MAXIMUM DEPTH(FEET) = .60 di * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.653 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS _ . LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN IO COMMERCIAL A 3.40 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98 mw SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 30.39 • TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 2.55 AVERAGE FLOW DEPTH(FEET) = .53 FLOOD WIDTH(FEET) = 68.16 - "V" GUTTER FLOW TRAVEL TIME(MIN.) = .84 Tc(MIN.) = 10.72 SUBAREA AREA(ACRES) = 3.40 SUBAREA RUNOFF(CFS) = 10.88 - EFFECTIVE AREA(ACRES) = 10.91 AREA-AVERAGED Fm(INCH /HR) = .13 AREA - AVERAGED Fp(INCH /HR) = .68 AREA - AVERAGED Ap = .19 ... TOTAL AREA(ACRES) = 11.40 PEAK FLOW RATE(CFS) = 34.58 Ow END OF SUBAREA "V" GUTTER HYDRAULICS: • DEPTH(FEET) = .54 FLOOD WIDTH(FEET) = 71.91 .., FLOW VELOCITY(FEET /SEC.) = 2.61 DEPTH *VELOCITY(FT *FT /SEC) = 1.42 FLOW PROCESS FROM NODE 174.00 TO NODE 175.00 IS CODE = 3.1 > > »COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< irl »» »USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) « «< - ELEVATION DATA: UPSTREAM(FEET) = 960.31 DOWNSTREAM(FEET) = 960.09 FLOW LENGTH(FEET) = 207.00 MANNING'S N = .013 o r DEPTH OF FLOW IN 45.0 INCH PIPE IS 33.4 INCHES PIPE-FLOW VELOCITY(FEET /SEC.) = 3.94 ... ESTIMATED PIPE DIAMETER(INCH) = 45.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 34.58 rr PIPE TRAVEL TIME(MIN.) = .88 Tc(MIN.) = 11.60 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 175.00 TO NODE 175.00 IS CODE = 11 ma » »»CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY « «< me ** MAIN STREAM CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 34.58 11.60 3.485 .68( .13) .19 10.9 160.00 ■ ,� 2 34.40 11.76 3.456 .67( .13) .19 11.0 150.00 3 30.59 14.83 3.007 .63( .14) .23 11.4 170.00 ** MEMORY BANK # 1 CONFLUENCE DATA ** rrt STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 56.15 10.64 3.670 .98( .10) .10 14.4 140.00 2 56.35 10.75 3.647 .98( .10) .10 14.5 130.00 d i 3 57.63 11.91 3.431 .98( .10) .10 15.8 110.00 4 54.46 13.40 3.196 .98( .10) .10 16.4 100.00 5 49.97 16.17 2.855 .98( .10) .10 17.3 120.00 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER • NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 91.87 11.60 3.485 .80( .11) .14 26.4 160.00 di 2 91.87 11.76 3.456 .80( .11) .14 26.6 150.00 3 82.73 14.83 3.007 .77( .12) .15 28.3 170.00 4 89.63 10.64 3.670 .80( .11) .14 24.4 140.00 �w 5 89.96 10.75 3.647 .80( .11) .14 24.6 130.00 MI 6 91.85 11.91 3.431 .80( .11) .14 26.8 110.00 7 86.82 13.40 3.196 .78( .11) .15 27.6 100.00 8 78.94 16.17 2.855 .77( .12) .15 28.7 120.00 mow TOTAL AREA(ACRES) = 28.70 MO COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 91.87 Tc(MIN.) = 11.599 mi EFFECTIVE AREA(ACRES) = 26.40 AREA-AVERAGED Fm(INCH /HR) = .11 mi AREA - AVERAGED Fp(INCH /HR) = .80 AREA-AVERAGED Ap = .14 TOTAL AREA(ACRES) = 28.70 MW a ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ii FLOW PROCESS FROM NODE 175.00 TO NODE 175.00 IS CODE = 12 „^ » »>CLEAR MEMORY BANK # 1 ««< kW ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** - FLOW PROCESS FROM NODE 175.00 TO NODE 176.00 IS CODE = 3.1 Ili » »>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA « «< » » >USING COMPUTER-ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< 0. ELEVATION DATA: UPSTREAM(FEET) = 960.09 DOWNSTREAM(FEET) = 959.51 •' FLOW LENGTH(FEET) = 400.00 MANNING'S N = .013 DEPTH OF FLOW IN 60.0 INCH PIPE IS 46.7 INCHES ,, PIPE -FLOW VELOCITY(FEET /SEC.) = 5.60 ESTIMATED PIPE DIAMETER(INCH) = 60.00 NUMBER OF PIPES = 1 • PIPE- FLOW(CFS) = 91.87 PIPE TRAVEL TIME(MIN.) = 1.19 Tc(MIN.) = 12.79 0. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** yr FLOW PROCESS FROM NODE 175.00 TO NODE 176.00 IS CODE = 8.1 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< mil MAINLINE Tc(MIN) = 12.79 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.287 ,.., SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS N W LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 2.20 .98 .10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 y SUBAREA AREA(ACRES) = 2.20 SUBAREA RUNOFF(CFS) = 6.31 EFFECTIVE AREA(ACRES) = 28.60 AREA-AVERAGED Fm(INCH /HR) = .11 ,. AREA-AVERAGED Fp(INCH /HR) = .81 AREA - AVERAGED Ap = .14 TOTAL AREA(ACRES) = 30.90 PEAK FLOW RATE(CFS) = 91.87 mo NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF STUDY SUMMARY: .. TOTAL AREA(ACRES) = 30.90 TC(MIN.) = 12.79 • EFFECTIVE AREA(ACRES) = 28.60 AREA - AVERAGED Fm(INCH /HR)= .11 AREA-AVERAGED Fp(INCH /HR) = .81 AREA - AVERAGED Ap = .14 PEAK FLOW RATE(CFS) = 91.87 m i ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE +.r 1 89.63 11.83 3.444 .81( .11) .14 26.6 140.00 W 2 89.96 11.94 3.424 .81( .11) .14 26.8 130.00 3 91.87 12.79 3.287 .81( .11) .14 28.6 160.00 4 91.87 12.95 3.262 .81( .11) .14 28.8 150.00 -- 5 91.85 13.10 3.240 .81( .11) .14 29.0 110.00 6 86.82 14.60 3.036 .79( .11) .14 29.8 100.00 7 82.73 16.06 2.867 .78( .11) .15 30.5 170.00 8 78.94 17.40 2.732 .78( Ai am MI MII mom .11) .15 30.9 120.00 MO on END OF RATIONAL METHOD ANALYSIS 11111 MO Yrr 1r Yrr NOM MO MO ■r rr w di goo di Ii me MI 1O TRACT No. ox ie4 , teis e CIVIL ENGINEERING • LAND SURVEYING No subject by date job no. sheet of Vo N Ei (25 Lie.g.) @ t t4 29•Z s — 3q J i be:7 .l — 2c 4s F 2v ,Z, c_CS RIMS 10 ( Si IMO f . - � V3. 13.3 GSM ;a . o 5 bl „a 5 t,,,J to MAN t 5 �a t. = 1 9.°1V) XP �� `'b . Z .C43 /SEE. bJ Sr.�. Cnrs:.\ ) 3 cjO O t� ' e 'z 3 4, 5.50 .A1 ,• I I „�, 16800 Valley View Ave. • La Mirada, CA 90638 • (714) 521 -4811 • Fax (714) 521 -4173 di TRACT No. 6 . 41 ezirters 6 ,.. CIVIL ENGINEERING • LAND SURVEYING subject by date job no. sheet of ■r vo l∎31∎1∎ ,, v � @ 1.1 cc, MIR • lt4 ( 1W Lc4a. u 1:6.1 LC-, NMI S rn A� a 25- ,. �A5 e . u 25 -Lc6AR '.. = 13.3 - C-1z 133 LS j 1MM :c VOt ),A Lt - Z / ZO . O�CZ8 , 1� ((00 - k k 1 . rw R)r 1 To `c,65 SO tit WIN • I - 16800 Valley View Ave. • La Mirada, CA 90638 • (714) 521 -4811 • Fax (714) 521 -4173 TRACT No. ghee leflyi CIVIL ENGINEERING • LAND SURVEYING subject by date job no. sheet of NE606 NocA 17-5 IS NMI 12-c\ M;,� 12 9 M.1 nn mei Pool>-JG, N??2,6°/.. (-.) to • c�, .1( 25 bY A �� m (.0 ctCzoc 6c5, ' P �JJ� , 1Cn csL&" v , (\f i x \cod; . bJ I i.r 16800 Valley View Ave. • La Mirada, CA 90638 • (714) 521 -4811 • Fax (714) 521 -4173 TRACT No. iii .4 6 7Piene./S ti e d i CIVIL ENGINEERING • LAND SURVEYING a m subject I by date job no. sheet of di OM 1 -I (3► VoL)1.nt tt t sTc_g.�l M p-5T i ZJc.K 0cx.k5 . m (1- U4') ,.. GLLU- I (C4 Vo v (S4') 2V61vME `l (o4.3b O —, tt5 115 g64. (0o 1, o SO G45 m 530 9 (.4.8( 47-4 "' 1 44c) "Lob5 `t 65 .o0 t 11.0 r. o Lb 53 4g 3b 565 -Z1, lt3'0O — q65• 2�30sz 60�F ck65. (0v 3<k400 010 1G 3 c t�5 .CZIo 50 X.) 9 030 2 5 4 g (06 .o� 6 2bcx 11 31 O 3 ( 0 1, i ow — ? - Vowl\A L:. Q m„.1 s.: 125 m cico'B .40 • T o3 . bo 2 50-o 'no 33a di 9 C. -.vc3 100 1 W t o50 c l 6 4.2-D zap ■3v 24ao ei ctc .40 t2Z cap Zt 50 4.550 "' ct CA- _e0 t(o 2 -$SS iA iii 3 11 o tO q 6 5 477 23o coo 4. n t 5 2 is iti iii 16800 Valley View Ave. • La Mirada, CA 90638 • (714) 521 -4811 • Fax (714) 521 -4173 WWI TRACT No. its a qh ine e a • • CIVIL ENGINEERING • LAND SURVEYING re subject by date job no. sheet of X4 •6 CS5. MIR Q ZS . CSs ,,J - J r \ MOM W.. Y= ( �o M��J 1\ .L > L OMB rrr E L EV \ 6 A C A Voko ` 2_ VotvMC YoS.ZZ di 5 Co 5.44 l - 1 0 't6 ; .CO b-10 t tZl di 3g S � 3 3050 01 cl - 0 o ot,oc� g5 l 50Z5 Pori I.).1G (itrCSV e 9.G6.00 I ,.� 16800 Valley View Ave. • La Mirada, CA 90638 • (714) 521 -4811 • Fax (714) 521 -4173 APPENDIX B HYDRAULIC CALCULATIONS ... ekalb4MM!•iw .,.. , .. ., .. ... Yep a• ,,, t .w1'nt.- •LA COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS REPT: PC/RD4412.1 (INPUT) DATE: 01/05/99 PAGE 1 w •PROJECT: JASMINE AND SLOVER DESIGNER: B.P.W. 1788A.DAT " L2 MAX O ADJ Q LENGTH FL 1 FL 2 CTL /TW D W S KJ KE KM LC L1 L3 L4 Al A3 A4 J N ON 8 1 964.45 \otot. .co - STA. 14+44. 9 '° 2 2 43.4 43.4 444.00 959.45 959.89 0.00 48. 0. 3 0.00 0.00 0.00 1 3 10 0 0. 45. 0. 5.00 0.012 STA. t4+5..o5 - Ico+4 2 3 16.7 16.7 199.00 959.99 960.19 0.00 48. 0. 3 0.00 0.00 0.00 0 4 20 0 0. 45. 0. 5.00 0.012 SSA, Lc 5 3 . 8 1 - STa Zl t % Q)$ nw 2 4 9.0 9.0 505.00 960.24 960.80 0.00 42. 0. 3 0.00 0.00 0.17 0 5 30 0 0. 60. 0. 5.00 0.012 STA 21 e(o3.54 - Yto.. 2.4 }is2.3 2 5 4.5 4.5 255.00 960.90 961.16 0.00 18. 0. 1 0.00 0.20 0.17 0 0 0 0 0. 0. 0. 3.00 0.012 " 2 10 26.7 26.7 200.00 959.89 960.31 965.22 36. 0. 1 0.00 0.20 0.35 3 0 0 0 0. 0. 0. 3.00 0.012 2 20 7.7 7.7 7.00 961.22 962.05 965.48 24. 0. 1 0.00 0.20 0.00 4 0 0 0 0. 0. 0. 3.00 0.012 2 30 1.0 1.0 147.00 960.90 961.05 963.40 12. 0. 1 0.00 0.20 0.00 5 0 0 0 0. 0. 0. 3.00 0.012 MITI NO a so MO Me mum Mi di .w a i a ■ a a ma 1LA COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS REPT: PC/RD4412.2 DATE: 01/05/99 PAGE 1 mpg PROJECT: JASMINE AND SLOVER DESIGNER: B.P.U. 1788A.DAT " Q D W DN DC FLOW SF -FULL V 1 V 2 FL 1 FL 2 HG 1 HG 2 D 1 D 2 TW TW NO (CFS) (IN)(IN) (FT) (FT) TYPE (FT /FT) (FPS) (FPS) (FT) (FT) CALC CALC (FT) (FT) CALC CK REMARKS 1 HYDRAULIC GRADE LINE CONTROL = 964.45 L `A 2 43.4 48 0 2.93 1.97 FULL 0.00078 3.5 3.5 959.45 959.89 964.45 964.80 5.00 4.91 0.00 0.00 1111 3 16.7 48 0 1.60 1.20 FULL 0.00012 1.3 1.3 959.99 960.19 964.94 964.96 4.95 4.77 0.00 0.00 4 9.0 42 0 1.19 0.90 FULL 0.00007 0.9 0.9 960.24 960.80 964.96 965.00 4.72 4.20 0.00 0.00 N o 5 4.5 18 0 1.50 0.81 FULL 0.00156 2.5 2.5 960.90 961.16 964.98 965.40 4.08 4.24 965.52 0.00 V .., Part PIKE "Ms ►s Tie PfI'R '. CLCv. or (�oNpua4. NeLst e- 0 sTo Zt """ 3 HYDRAULIC GRADE LINE CONTROL = 964.87 LI N E : 6" to (. . ▪ 10 26.7 36 0 2.04 1.66 FULL 0.00137 3.8 3.8 959.89 960.31 964.87 965.22 4.98 4.91 965.48 965.22 rr 4 HYDRAULIC GRADE LINE CONTROL = 964.96 20 7.7 24 0 0.41 0.99 FULL 0.00099 2.5 2.5 961.22 962.05 964.96 964.97 3.74 2.92 965.08 965.48 rw 1r 4 HYDRAULIC GRADE LINE CONTROL = 964.99 Lime " ( � - 30 1.0 12 0 0.68 0.42 FULL 0.00067 1.3 1.3 960.90 961.05 964.99 965.09 4.09 4.04 965.12 963.40 111111 ow i1 mm d i ewe 1i w 1I mm id 1111 Iii V 1, FL 1, D 1 AND HG 1 REFER TO DOWNSTREAM END V 2, FL 2, D 2 AND HG 2 REFER TO UPSTREAM END X - DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HG INTERSECTS SOFFIT IN SEAL CONDITION mq X(N) - DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE WATER SURFACE REACHES NORMAL DEPTH BY EITHER DRAWDOWN OR BACKWATER X(J) - DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HYDRAULIC JUMP OCCURS IN LINE F(J) - THE COMPUTED FORCE AT THE HYDRAULIC JUMP D(BJ) - DEPTH OF WATER BEFORE THE HYDRAULIC JUMP (UPSTREAM SIDE) D(AJ) - DEPTH OF WATER AFTER THE HYDRAULIC JUMP (DOWNSTREAM SIDE) SEAL INDICATES FLOW CHANGES FROM PART TO FULL OR FROM FULL TO PART HYD JUMP INDICATES THAT FLOW CHANGES FROM SUPERCRITICAL TO SUBCRITICAL THROUGH A HYDRAULIC JUMP HJ a UJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE UPSTREAM END OF THE LINE ■w HJ a DJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE DOWNSTREAM END OF THE LINE mem EOJ 1/ 5/1999 14:45 W M .s MN N W OW MN muk mg rrt I goo Ai mm I Iii ow MI we W O «pm, irn o r 9 � ' .,•„ �� -- gj o WI., r . -- r - � c � - w 3 � � - - - - - - - - -- - - - - - - - - --- -- .. ._ - — - - - - -- -- -- — -- -- - 9 w :3 � 970 FiA/ /SF/ -SURFACE p I J �7 __- . . __ , _ - TT— 9 , J � , a OVER P /PE [ -t- - -_-r__ i} T - ' i 1 1 I i I- _._- _ -_ __ -j _ - _ - _ - . _ _ ii : -. - - -- I -t- • I F l .,.,.. ._ . _ _ _ _ _ _ _. __ - _ _ _ giolo' i• Il _ 1 • ■Iii 9 ■ - NEW „. -- - � - ..��,, • — ' r ■ ■�■ ■ i� ■!i� ■1 L. ■1■ ■ ■� ■1i ■i 11';4. , LjT ii - - -{ - , - - - - - - ■ ■ -■ ■ - ■ ■1111 ■■ ■ ■■■ ■!■ ■■ ■■ E■EEE■ - :� , 1 o _ _ - . ' ; %. j AI ill. - :1 n.:.1; WINE MI __ - -- - ■ i ._.._11 ■■ ■ WWII ■ ■ 1■■■11■ u■■■ ■■■■■■■• . ;* ■ i . - �� . ��� �� �� �� � �� � ■ � ■ ■ a ■ WRll ■EEE • N ■N • ■N ■ ■ E NE ■i ■ ! ■ � ■ E!i ■ ■Ei ■i■ • W �� ilei ■ ■ ■E ■I ��� ifl'� aim W ■ EL:�i 9 � ”- ■ I■ ■■ E■■1'I1 ''•!■ E E 11E it t I E� ■ ■■ !!!1 W ail ■ ■ $ ■ ■ ■ ■E ■E ■EEE� ■ ■lii,ii ■E �: ■ii��'i=_" < o- ` / 7 = I�\ i1.il�I:l ■, 1 r■ • riffir ``,, I :.1■■■■ ■ ■� ■ ■ ■ • ■ rm•E•ImmiltilitillsolliNklon••••••••••- i . -.. ; ' S li ■ ■ ■■� .. c�!9 i ,I N 1 • A -R• , �H . _ ■ ■■ ■ �E �� ■ � ■ ■ � i i EEEE lEi■ ■Ei11i111!lIEEEE 78 .4L F 18 -,p : ,: - -., t ■ m 1 1H■ ■ 1 ii ■ E ■ ■■` ■ i ■■ ■ 11! I.„„„ !I ■ !■■ ■ii■1111 !illiii ° I me i T ,,�� ■ E ■ ■ ■ •iEli ■■ ■ ■Ni iii ■iii E ■s 'L • a 4 r m • ■ Ri■■ ■ �[�EL� . 6 ' _ � t '� ' ■I ■ � li ■ ■ � ■Ilia � • ilal�iiiE1 t E : HOR /Z.- /''IdOi O O 4 E 101 1 M a. Q , � s . - MO _ i L _– .,1_..1 ■ �� !lag , z iiC=� ra■■1111111■ ■ ■ ■■E / 11111,111 ■E!llliii _. -- -� -a 1 z s _ iiilr _ .._ s __iiii iiii itl■ E =!! li■i ■11 ■•E •1•••••E ■ ■i! ■■•••• I ° =1 1111 1 I I iiim��Wr1 _ Y �9,Zd - ■ z -: - uR ,. z� I • i _ iii ■ 1 i EWE■ ■ ■ ■iEl1i■Ei■ ! /i ■11_9E_E_iEEl� 1 ■E!I■EI�EEE ■ • 11 . ■ ■...o ,i'd_iU.N I G ►�� 1 e�' t �E�E ■NE ��E iE Il1EEEE � ■ii ■ EN ..;�la ' 1! ■ll� ■EE■"i i ID , • •• __ ��, ffJ1Ti — �� ' � , ■ � � E Y L r �� i r �:a.�r li � �.�. I 1 i I .. - 1 f ' IN 4 I } di '' I I , I . f - 4 ""_�_.' llii I ■I:EII11I ■11N■ I �. I I IFiU 4�'" lii�ra__: �_ r• I Is - _ I . , - - 1 1 ■ , 0! . 1 ''i , • � i __ _ r t ,� � ■NE ®I ■TEE ■ il } - � lc. . r , r I I .��'# _ y ;? . . ! ■■ � ._l ��. ___- � / •E ■EEEEEEE ■W'�■■E■ • ■ ■ I� ■ ■ ot ai . • t 5 - - • R �l u5. , -- - - l j ( - - � • , II ■I ■■■■■1 • _ ■■■ • r I islE ■ ■ �'4i■ ■E■ ■R�3''!FI ■ i�' Eq! ■!■! - A A lamf_�tz1�! f. ■ • _ .�I■ D ■ L! • 11 I _ ■ ■ ■■ ■ _ ,..� 9 3 Ica /x • S �I - � o o :a • 132 77.59.. _ EEEEE E •' B J. , d OF .P. S. i` lrtli�ll:�! °r �. /acn4 EEEi 100= l7. sec . e i. , I # • � N V • 6 ./7 R •, - ' . i ■ ■ g i - ° _9 . – ; . R �� � � i! ■ ■Mal - 7.I/ ,: 4 � � E N� 1 _- /400 - a• ! 151 R-c P _ _ _ _ a - i ■ �_ i • ■ 111 1 u! X8 3 ' = 'q °° - ___ -- • ■■■ _- - • ■■NI ■ ■■ ■ ■ ■ ■1kk i•■■■NI ■; ■E•■ Ni■■■■ NWI■•■E■■■■•i■ 8.00 7.00 (0.00 5.00 4.00 3.00 2.00 1.00 I art SLOVER AVE. CONSTRUCTION NOTES _ N 3 W ? SGE Ogg 0 PARCEL 2 P.M. NO. 11668 48' R.C.P. (1400-0) WIBEDDING PER DETAIL e \ 1 _ Z 3 = I e / 0�. 57 22 E 3L0IER AVE O I-..• -, `! BUILDING z 18 R.C.P. (2000 - 0) WIBEDDING PER DETAIL e 9 ✓ F] 2 ^'-� o ' ' • 3 • w•7.0 BRICK S. MORTAR PLUG �� �� d v•3�3 \ / I 5 reio) It�' Ore. LINE '40- PRIy A7E STORM DRAIN A = h 4 1.V �^ O SN Iz.•44 '40�E CATCH BASIN IW =10•) MODIFIED WIB THK. WALLS PER CITY OF i N w- u` o . sO - � w PRIVATE 5EE DETAIL. 4 I W VA STD. DETAIL121 S. PER DETAIL E » E� u «a b' o , STORM - m, CATCH BASIN (W -14') PER DETAIL SHT. 9 8 LOCAL DEPH SCION CASE 't a 7t 11 W © A _ ry -, e, v n DRAIN 06 8 PER DETAIL SCION = m--r• :, i a i ,� 4 v� ) 9 ' ^ ,• O MANHOLE N0. Z PER SHT. N0. 8 O (13 ' j 0 `, �y \ - u1 O o ® ce D � 0 SEE DETAIL a Z b 1 -- -•7� -r {�� L n i y g �. , � 0 FOR' LOCAr,DETA /L 4 JUNCTION STRUCTURE N0. 4 CASE I PER — o� P RO POS ED !s wrD s7 anM n o n O w, 15 9 ET O D of T 1 -� O ® " - elf? 31• W - �� D RA /N EA -� _ � -- N / LINE "O -4" C \' , � V �j FUTURE 7RA e4 ]AL D. 9 ,� � N 2 2 97' 7 � O :t CHANNEL PIPE OUTLET WITH HEADWALL THRU RAIL AND L © LINE- a -3' ----- - ` 4 _ —A�E - ■ J� �, Q I J 4 INO COUNTY FLO D D 1' N o'al w. -�, PROPOSED Iaw10EPAwrE © � —„ . � VETMENT PER SAN BERNARD NO DISTRICT STD. S.P. I83 -B AND PER DETAIL O "'' STORM DRAW EASEMENT CATCH BASIN NO. 5 IW- 6.40') PER SHT. NO. 9 , 3 / T ' m�r�17\ .p!H LINE'B •1 • �IVATE' STORM DRS �� PI } • / CATCH BASIN (W =71 PER DETAIL SHT. 9 8 LOCAL o sEE aNr •+ vl , ©� '^`� 13 5A' r g �' �IW I 56.•05 G2 SSION ER CITY OF FONTANA STD. DETAIL 121 8 N ' r . -- _ _ //! ev, so' • _ y ' \ _ __ i 0 1 ` ti\ \' CHANNEL . 5-1-A .TAIL —� 4.3.47* a' R.O / 19 z. oO ' 6UILD 3 lez oo• wax.. 7z.w• n eP I ,. 4MN • �� R .D. STORM DRAW W E ASEMENT. BUILDING 9 PUBLIC STORM DRAIN � - 0 / �Q' F . - 8" ROOF DRAINS TO BE CONSTRUCTED PER GRADING D 0 ��` 1 STORM DING PLAN PRIVATE r, I I c P ARCEL 3 P.M. N0. 11668 DRAIN n. 5 -If . 1 100 loo l: 3 ' W v � _ _ 3 1 D R PIPE CURVE DATA 1 - I • N� � b�L N w3 24 Q ) O R 9 ;4' 2e b rill \ /�!^ /Q`" . •. w$ 3 L • 72.43' Z / \v� -/ ,.' b Oq of — 1 - 8 l T 39.42' D a 9v r �; �� a. a zo G Q, ` •A &: BUILT' 2 83 w =7.00' Z r - - V -5.83' * H.D. PE.- I P.E. - HIGH DENSITY POLYETHYLENE _ T X90 ce Q ` - `�` u� VAR �.) J 2 : • • .6I • REVISIONS: t - Q . t 88-6 cc rssio ELEVATIONS SHOWN HE ARE BASED N O. DESCRIPTION ENO•R.m APPROVAL DATE JOHNSON —FRANK .Sc ASSOCIATES INC. CIN � '�� -• • ' ' ° • N j O � Y y H1 nRM "/"K 5150 E HUNTER AVENUE \ ON SAN BERNARDINO DA TUM. BENC MARK COUNT -18: SURVEYOR / RE57 ANAHEIM, CALIF. 92807 PUBLIC WAR 1 � ENT (4 GLQA /N / /NE 6 B' m U m P.K. NAIL SET IN CONCRETE BASE OF v A 5 BUILT LN. ��; 714) 777_ DESIGN BY STORM, a } SCALE APPENDIX C CATCH BASIN CALCULATIONS TRACT No. PTh ,ne4 . � ai CIVIL ENGINEERING • LAND SURVEYING subject by date job no. sheet of 4 d - yhr °-‘ t = .54 rrr 1.1 L dam . ,) - c.-‘ 70 u „■ (, , _ , r ‘ , - 1 I •ti • . s I. .15 us L,., - � A'oLe, � � .i DVS 14-. F, Q - Z.� 5 + .G5 use. i�,N..,J,d �i 3.s 2S L l.1 rr e N 0 L 114 VSO: 1` ?.wsk_ >, 2, 2.R 2.95 • mig Q 3 o ( h 2 di h 4 QMAx O( z(.L \ ( .03 ) 59.(D � s5 Q) 5 O7, c . 1 D`W N > 2ct , ti , c Q2s - 2`1. Z < Z c , `6 ` N c_n . 65 V k ti 4 di 16800 Valley View Ave. • La Mirada, CA 90638 • (714) 521 -4811 • Fax (714) 521 -4173 TRACT No. e.! & u2e4? CIVIL ENGINEERING • LAND SURVEYING subject by date job no. sheet of G KPTt r 3L.t, Z e N ool E t ZS u jwp •I�.W _A STD - 305 - Z C�� = 3.0 V /2- Z 9 5 2.q - i P= P��►Mc,c2 = 2.0.3& Z� QN� : 3.a (20 •3��� •S� z i 1SS ayv .s 1 0 .b c_c5 t�v c, }5 L t .b use, Tv--o G , Rr.TGS `• c. a�� �aS� . Node. (41 = .5¢ la: . (01 di q t.25 v5u r vw L ' 11 cce, /... ► 1 4 st v 5 L ( ti, 6AS,N, i 5 1 + 1 I rli 1- _ J 1 q x.25 USG TA6(t.. L D2,5 = 3.z t 2(� ��� u5E. 35 w,,;` et..1 rie 16800 Valley View Ave. • La Mirada, CA 90638 • (714) 521 -4811 • Fax (714) 521 -4173 ,r TRACT No. gh ee/me/4, eo li/4"(;„teei , t6rti, CIVIL ENGINEERING • LAND SURVEYING is subject by date job no. sheet of m ti4 h -54 1-\ Po N >> 1 DtEp, r(' 1 _ 1 .?' j `J VSO, 'fiA�U �..� '=7 Z. 1 ct£ 5 = Z VS O, ( vp �t�l w �+ .e r gig rn ei rrr 16800 Valley View Ave. • La Mirada, CA 90638 • (714) 521 -4811 • Fax (714) 521 -4173 I L I I I I I I I L A &. i .. i I I t 1 11 I I 11 11 I l 11 L I I I l 1 I }I 1 1 1 1 C • n . : c ; Weigh/ of O,oering (h) th Tee/ • sc.' • 1) ■ ( kJ U Us, i1 11 v W i.", O. h t I 1 . l . t r +-- . t I I � ' 4 , , �1�1,�� f r ' . , t . . f. A 1 < 1 . IV . in \ V, '` U • • _.... :_ : • /18/ o/' OPcni� .\\(/)) in /i7che.�5 ; 1 �\ o \.: . • ...., \b •l: \I 14 • \ o \ ' • \ ' el h \ t"... Co,00ci// per fool of /ep /h of o,ocihing 0/Z.) //7 c. f• s per fool O \ `ci N w el N t o .'� 01 0 O N Cu •A 01 co O o M . i 1 1 1 I, 11•liIihl�l 1 1 I I 1 I I 1 1011,1) ..• 1....•I _) IL) 11 IJ11 I I % ti 4 .. `' SJ 1 .. .......... . i_ • H -. W ". o . 1--- . , ■ M Ro/io of c, /h o/ wo %r• a/ o ocnin J /o he, h/ of eoerino ( / / /h) iii \ //ft 171 r • 1 I I I 1 T I ■ I I I r. .' I 1 I 1 T T I • 1 . • • .. - -__ ' :.{•s"d`7H %k bR..•t r • • • • • • ■ • APPENDIX D -. . • • 1 • HYDROLOGY MAP • • • • • SLOVER AVENt ' 0 c. , et ,? „ „.-- __ 9 , . _ ... .,. .., ,414,.... .,.______ _ . , L; ,___ ," / HP f --- PS - ...• --------- .. ‘,.......__ ----"" • . g_ ' I/ .,, 0 C , ' 978.85 4 I 4-' ,,,-- - , e miii6. 1 .0. 5 975:01 v 8 :-; ilri , ----• 1711 - I` ' 41111,11111.-- fir A•L-w_ :t. .. ,. ---1 . --- .. ' L • ' 6 ' '' z ,,r. 976 ---.-,,, . Mir 0 , Q V .04 llaVjkW 9) •.,,, - 2/ ..--,--- : . . .. •-g --- .,. •••,.:..,.-____=•__ _ _•_----0 ---iii61,--,-,...-__- . • --- .- ., ---.11 • ____ - ii - L -- II .- • iii --• •- .. _ ____ _____________ --..,••••••••.:_ ...-.........T *,.; ,-,-=-•;'.'",__.--•__•__:.-_-_..- . . --.- ----- - /L-- •____,,_•_ _• • - • • Ail 44 6 ' •-• - ' II 1 .....:-...:"111111111 jr-: •••••=:-. '•_____---------- • . ...• : --.1 a iti 111107---__:_ • 7: , • ,,, , .. ,:.,4„, , ,,,/ _ ...f_ --. ..,11.• . . - 1 A 'ff_ I ...L... • _ •••• 111.••••• • ■••••- .- .. '''''. Mini '`• A ., / IIMIIII ''...."."1.17 . - 111 4.11011_ II PP , I I ■:.',. '.'"; 441 'fr;00/9111111 11.11111.11 •VAIII , I I I I , _ - . , . /A ' ,. 41 ; V • • • • 7 4:1, Ilk A i. . Y I 41111611111111 k a • ' o.74-ti ,. - I ....._........ K ■1111ii....--__ 1 ,E.V! . , t , -.- 11 . ---- ---Th ---.. ----- gAgu H illl `_ -- --- ifimun -- - - -------mim __ - ..• • rigrar;_ . Jr ,,e:', ._.1----.. ._ tT ...,I. i-,•---....... As ow 1., N 6 Sal 1 0,.. ..../7./ ...,..s. 1. -- - L-. • - - 1 F-- -- -' - • - I - ----------,_, ' II II . : I- . ---, ■.,`;' I , L - 1 k . I Are* 0.70 --------7-1--- iii m° I Lo Elev.:18i tg.04 1 4111Mr 11 P-Wrill I II High Elevati : 975.01 I 1 boo 1 _ - - --1 INImamr., ii I I ____ t..11.0.1.11 I _ ____ - 6 - 1t: 7.1 IAIN - r -- - - -;„ -4 1' - ' - 11W / v2.--- --- _ Low-p• evation: 971.22 i ir ,.. w - 1 - ___ ------ . 1.20 AC gh deiro I . 0 I Hi Ide: 9713.85 I, I , ' 1 1 . • O. 5 X -----____ . A ..-Ml. liWil . I I I TC: 5. MIN. I i i , 4 4. I - 1111. .w■aorwrini • / .: , . - - -1-- r I 11.111111 V4 --"' rip I -- ir , , . I All r vs • a • is I 1 I I . i‘,-,,,. / -4 . - ; • ... _______-----..„,„ i , ' V i 1 ,■ 4 lip 2.10 AC I MI6 1.1 , ■ . -,,r- mmumiz.. / • I I I 1 -....._.----------m---4- .., *II iiiiiw Fs . .r.h.ls.a!t... I I I . .• ... 4101 I - . L 948.15 v. • Elora •••• m•■• 1.1 Ire .." I ' r ...- • EIOVOtiOn: • .. 0- 1 1 - ;-----..,,,,, ■ \ i .2' • . 970:0 -----.... - 4 - - - I I '''-''•I .1..............L 1 I ( 8 '. .T UN. h i - 1 - I --- ---., I 1.35 AC I cm . , . :;e w ,,„. , II I 4 - . • _ _ I - --t. - i ; i W .. --11111111111•11 410111111111 --MINIMIN -NIMMI4 --INIMr-71111114 ' ' I's C" I II / ' VA - 1-- " -----------* --'------'-- .... I T 11._. _, • 1 ! • e i ' ' -1--- -, I I i - -1- I 5 ' , * )1 , - i \ /* : • ' 1 I 1 , • '''4--- 7 I • i ----- --------.._ 11111MA U I 1 ' r: -.... •-••• - - • .1 f • e ----. 1 I t . - 1 4' --- - •--- -:.3 --- -- T - - w , .... High paivationovationli 9 66.01 4 1 I M Ili 1 • : . III 111111°. . 1 --."- --4.,1 I I . 1---- -------- , ' , • .. S: 0.0050 , 1 _ , i:. ... i -., TC: .9 MIN I $ I I / 1 1 I !I a h ......-..••• A ,,„, ..: : 16.3•" ID -I '41 I III-4: \ • 6 ' : ' .1:1 1. i• r \'; 1 A r "- L....,=a0.... 1 I ' 'I 1 on: 965.46 I 1•1 Elev 9 _ 1 __ II' ,. .r \ -- -- • -.9:-.0 -- - -4-- - - Er IN _ _ _L_ _ _I _ 1 _L ___>4 ,i. : 9.5 MIN. it 4 ! .\ I -- 1 6 ' --------- r i I . 7 00 f =1:1 f-------- App:o. , A APONCiNG at-VATION I 1 I'' ''•,1 I I 4/Pr L - A ,‘AIMIS _ _____ __ _..... I1 j e0 . A .41W.AVANIO %I ■ .. .., gillh e ‘ 1 ' - -- --I s, , ,Ara ivrApr lirol *w 133 -TA - 7 IIIV . . . .. 1 1 I I \ 1 „- { I 1 I i a I Intl - ., 4 _ , 4;; 41,13„ ." - • 964.96 . „ 4., . r *.. -- ' • :1 A0 0 0.0069 1 . .." _.__ 1,- -- H - _ _ 4 ,4 440 0111/ 4 / 8.2 MII4N • 4` - - I - 1 - i I I 1 i ,,,•, s‘..,: s , . A1120- A \ 4),, II I ' I \ .v.0 ,' • a cs XII I I _ I SLOVER AVENUE .. : . . /. Area: O.; 41) il, : a. le . 0 • - - , / -._ ,.. - 3 ___ ,.• -' .-____ Ire 979.82 - - - 49 4 .' 97885 , _____________ Low Elevation: 971.58 L: 221 C,-, i --7---' . --;.,, `,100 .*'.4s 4 e HP if0: k *• , Pli gh- Ehriati 978 on: .94 . Low 'Zlevation: 973.13 - hr.. ..0, ' • .-_____.' - • .• • " : 11111.11riliMikipii..-,•_! 975.8 -4',i25 97 93 -' 44 t- 'L...e._ _ 4., _- P J 0 a . , • --,,,,,, - ---;Allpralilw----wwivierwr-----------. - .._"-- _ ___,„,„..,........„ .: 4: I ....____- \ 0 ;---"--- 0 11111Mpro * 2' 0 4 * - 111111111r k • . , • ' „a___- . - - . _...... „ .,___... 41. .- : '• --- .-.---; .-- •=7.-. -.--;... _ . I ,_ • . _ cia...-,,,,__ • --- ____ , -- - . . • ' I . : , ." • -',! -I : --=--_ . - • • . . . = e il lii 41117•=-' -='. ..- • - • • :- --- - -::--1 :;•... - - 1 -. . _._ _ )11.2r,-awiwririOmmo■-•---- ' • _......1 . . _ . Ailr-..r---"---gilr-- - . '' e ' r ---""64S1111.100.111irililli 1 I 171li MI 41111Ir l - .• o.*Aq 11111h 165 Ac 0.90 AC : ----"1.111111- : ANI111611011■--_ '''- _.........ftwiiii:iliklummorri ring '----. ■,. A_ lint" I •.. 1 . ilinipir - --- - --- 11M - 11011 - I INN L I 4 ISKINI:Cr - - - - - -.._ , 4 1 i i 1 „„--- ; m mmui „, 1 Al 4.. • nin111■11114M mom111111Pmmmill■r4.4111 mi■Er... iliwg.veza.:.... min • \ , • .. -_ - --------an MU I mw...7 .....6 r ,,i, Am S, 4 1 0 ......0 Oh; ` ' 7.'„ -- - : \ " .4_ __ I_ - --.1 - '1 _ -- . ' • - - - , - ,„--.-L ,__ 1 -------- - - „A Kiii r t ...,..a.„..4....0 _ i .,t, .. , 1_____ 1 1 li .. 1 ----- „..,..,,, A4_, 1 1- ,..! ,...p.r. , II -ill A i .. _ ______I__ : t_. -,,,.. 1 ,.. M_ ----. H \ 1? l 11) ----... - .__., L: • W • - W. ECONF :•6.7 b dIall 1 4 ,1 , ., 1 - \ - : l 31P 1 I Lovr-p' emotion: 971.22 , 1 1 ill 1 774 ="IIIIIII . •1111. "•.-.29 ....._________ M. NW _ „. 1 1 ( 1 • N 1 ' \ 1 t 1 ! ' i . iliV I High lEleVatian: 978.8.5 i • 1.60 AC AI k illi"IIIMNIII. It'd .. . ,s, N - MIMOSA. 116.1.41M 1' 1 , 7- I N - 1 1111' 1 7 W , "IL I I ig a 41( 4111ali E 7.4* llii"116. int , ; , , • I 0', c M --',..------' 1 /: -011■-• - AIIMII -- LEM- MIL- IIIMM-- =Mil- / I , -.1! - .IMMO -- IMM -- • - - - ..-- "---- . . I ---------_..4, -------•--"'•----. ------ 9 72 -----• - / ! '$ .• 4, maw: 7 . a- 00 0 1 I I 1 1 t2. "41 • 1 , • 1 ....,- . . \ L: 34.3 • • i -- \,. i' I -- -I 1- - - - .vi \Low • a evation:-.967.56 Nigh 'levaticto:_929.82 <• . . r . 1 - - - - r 7 e - - , - _SC...QOM:, ,,, . ------ J „, . TC:\-10.8 I _ _ _ 1, !lill 0 i t \ , 1 i 1.35 PC I • ' , F I I 1 -- --- 1 . I .." \ '---.. 1 --___ I • , , -.„..„..._ -M 4.... -1111.1 -IIIIMMIlli -IMIllr-:4MillMi-illiMilIllilIl"- 7 ., \ i ,-...„.„ i , r --- ---- 15 . . / k .._ 4•00 - \ ----__ 1 -'-----r--- \ 1 _ • _ 0 I 1 . w, . . - i--- •- - mar .: 2111 0 valo 966.01 , ow - L Elevcrion: 985.4 6 , \ 05 ,yr . , 2. AC 11 High Elen: I --,.. 1 ---'--`• I \ s, I \ \ , 1 t imina S: 0.0050 , '----..., • efaliba:-96 MIN 967.56 ITC: S.9 I 1 .11 ' 1 I ,.- --,,_ --,, ■ If• EleVabbn: ' . • • - . . • - 1 -------- _..... I . i S: 1.310 10 I .. N . tc: a.a MIN 1. • --„,, 1 . I. 100 . , . s .....„.. • 1\ . On: 964.96 I 1 I 1 I ... :4 1 • , i P „.. . ! -----..,,, ' \\,, U r -1. - L _ _1_ _ L _ --.--__. -,--------:----- -.. __,, .„,, .,, _ LS\ 11 s.._ L , , _ \ „.,, ,., 1,. Z .,, h2.80 . , AC '-',fr.,, • • , 4 ,, - or ------,,, s- . EVATION i I I I I ---,., ... 1 I for -4- - 1-- - -1- 4.4------;--._...1... _.t 41) e _. 14.. , --..„ •-. --..,, .,.• Ili: 1 0) I 1 i I \ 4%14 s' ______. .,,, . 1\ r, , \....._ 2.20 AC ,G7 ---------_____,,..,...... 1 / r - . - - .-.- --- ----i, -..- -1- ____, ..__. --.. -.-.1 --. -.- T -. - - - . --... \ •III \ -. "•-. • ... 4 • / % I s' '... •• : • 6 101 a - t-- - - , i .__,. 1.4" I - -, i12 ' ' . 4 I S. ! A� p • � _ • _ � H , ' _�. -fie . ___i F NIV • ¢ 'Pier H' h Oeva 965.46 I I i� I I { ig 966. I I Low � }-- : 0.0050 01 �r— � L. •,,, I TC: 6.9 MINI / li ¥a : : a ® I -�_ _ 1 , .� � .. Area: 1.35 113 ��, ,iP I f #iBOYabon96546 �Low Elevation: 964.96 I I I I '- ‘` ,H , APPROX. 25 - YEA R • '• I. PONCpNG FI�/ATI I I I� ,� ( - ' 5 ! '. 1 --t , +�' • . .., ye a: --__ I I I I I . a r: . , „,„ ... , f.1 ____ L..._ _ _ _ + - - , 4111° ci , � . ms 9 6 ~.38 — ' - T� .. I I I I I I . / , ' , {, , f it ' an: 9 64.96 v — — � � �� �� mar S : 0.0069 "'� — - - ---.- - __y - -- y - - - - — ;, I — — — — ' t►. 8.2 MIN f 1 ..- --- vd.4 ice•. ♦ I K �� � � I � - - -- - - --- -- -- or"; -- s +\ A ONDING ELEVATION , Ell � � �. , \ I I I I I II! - del 0 4 I I " - "ZA P t : W 2, 1 " 1 I I Ill Mili, s-.,,k''\‘.. \ ‘, ,'.'.;, 440;0'00Pr- .4°1111 ,,,,,,,,, .---t \I ' \ I ...------\ y if si ' \ . - ' ' • ...„doirr 4 , 0 14 .1;1 - lir ,,,. 1 I I I I I ' - '-1- "''' \-14 zoriorAPPAPAA ,. 1 " -- .-.1 --- ,, 1 \ ...J.__ , _1_,..... 1 _I_,....,L___f...__1.,.,__,..,L.,__.„-__(-- 4-- \ s.x -, c No 1 . .... ..... . , \ .,„,, „. ... , , , , ..,, 1 J.....„..... 1: 1 ..... „ , =� �� �� f �Ip �� \ `� r 170 1 �' ' "f 1 ago AC l I ` -- J \' r, s �- 3Q 1 10 k11r i7v9.4 T `i�� � :` i__ I I I _ Area 090 ?a ,> a � - I j I • L•306 "' 1 ! ' ' i ! I ` 1 ' ! , Low Elevation: 963.98 High Elevation: 965.51 _ _ �W I - • S: 0.0050 "�.. -� . ``--;: I - it 1 \ i 2.0 MIN. Fes? t \. \ __ - J yq J y ty � a : Area: 1.10JAC. ,� ' = .��o.� - _ — _�, _; Low Elevation: 963. � - IIRI■Ill PROJECT BOUNDARY High Elevation: 963.98 . c" -- --- - -.... 1 ,_____ , `_• ?ate f 4 MN i• SUBAREA BOUNDARY S: 0.0050 __ \ _ .__ L _` "' "91> \� ✓ . TC: 12.9 MIN. --.� `r--`•— f . � � +•'"�,�i Toa CF r-C 142 1.00 AC. SUBAREA AREA �` \ -- i Ow '67Y2 CFS +� `�-_ \- ` ; � Mw: 1.20 -,- 9v< - � 7 � \�..' , -- L.: 440 Low Elevation: 967.74 High Elevation: 0 100 NODE NUMBER ` `_ . `�_ � ' ` < / S: 0.0054 37 10 HYDRAULIC NODE REACH Q "y TC 9.9 MIN 25 -YEAR PONDiNG AREA '" �\�\ ,�/ y !� -------- 3iIg1 Und1P Po und ENGINEER: MAR F. ,�,' BENCH MARK: UN THE �e vrico to ELEVATIONS SHOWN HEREON ARE BASED ION O g I O N SAN BERNARDINO COUNTY S U R V EYOR i ~ CoI4 7 tiLL FREE D A TUM , BEN MARK i -18 r /t ,, T HIENES ENGINEERING 1 ~ 1-800 NAIL SET IN CONCRETE BASE OF P cm. ° �"�" N6 • LAND SURVEYING i � moo wan' wEw Amax SO UTHERN CALIF. E0150N TOWER NO. 211 Mi4)s2l +tos3e OON UNDGREN C Y 422 -4133 N0.2 VISTA ETiWANDA, 100 FT. WEST OF D P 71ran IRN714i5¢1-4 73 -- ' ETIWANDA AVE.. AND 300 FT. SOUTH OF REV. DESCRIPTION ONE APPRb RCE. 20553 I I No sumo am wow WE DP OF AIRPORT ELEV. = 969.848 1 , . - _ ....._______...------- . .. Ill , . ___ _ ______ , . 2 i le \ \ • Area: .05 AC 1 0\ , , • \... CC .10.atiii.L.,..,_0., ., H. Elevation: 967.56 • N • ' • '‘ \ f` • S: 0.0050 CO ' TC: 8.6 MIN ,--sewmi \ I \‘‘, \ iii i ‘it., \ . --. 1\ ; I \ -- • . , -._.. „ 0 I . . , --,, 1 \ \ . L \ • i ________ ,,,__________, ...,„, . . -..i. _ _ .L. ,.._ _ _ _ ...... L -S. \ -,...... - - --- , 1\ • ! I 5 .„ . I . • N Z ',-., , f '2.60 AC 1 i• • .., N , . ■ A I . i 1 --0111.111 -IONMO. 41 N - - - - . • • - ... __ s \ , : ' . I '‘, 1 ;a , . 'inn . : _ _ ____ Ili!, ■., .,,,, -.-- --' \1 4-'--- ,, . ' 0.. : 1• 111 I . Area: AC 1 0, i, ... , . 1 _ %. 1L: . . \ , • Devotion: 966.01 ' • 1 • ' ,f____---.. \ .:111i ‘, oi - Hig Elevation: 967.141 \ 1 . S: 0.0050, 11 • j, l's.. '- ...? TC: 10.1 MIN., ;. - - '17 - - - T - • ,,,, N .... . __...,„ _ 7 _ 1 I . , . ...4116 "IA044- C ." -, [ I , . , ...- ...,..,, \ MIIIIIIIIIIIIIIIII -- 1, , : *7 • a. 11:0 .„--... 1.1111 -...esILk---.1111111111illitillit r.... 3.40 AC ' • 1 1 i \. _ ___ m I . --.------\ : s ZIOpir a: High ElevcrtiOn: 966.01 ------. \ S: 0.0061 „‘ s IlAk\ WI 1111 111111E , '--,, F I ' ' ii ii 1 g 1 1 - -4•-, • ' MO 17. „wan. . \ , lc: 11.0 MIN. '''-,, , - I 4 1411PIPP‘i ,, . , - -- :,4■L 7 . ..../.- ermin- - 2 '4-- 1 lite v or- , ..„ -____ .-ms-r,:.,. • ; 7111 , ,,,,... 1,. - I coo fic 1 I 441 4offe 1. o5 lic I 0 97 P .43 ! ! I , ___I_____ __ -___ _.4_ - . ra i JIII • 1 _ - I - ------ + - --- 7 -7.7 .- =•.- -- - --.1 1 41 I 1 ‘,.. ,......, • . 0 sil ,i:i • 1 . .. . i ... ... Ell , .„---------..- lil 1 . • - . • - __________ 1 (-- i i i i • BANIONMIIIIP4■:-.-__ IMI II , sam,...__ , . i c : ., , I r : , s •-...! 1 i , Ow, ,....., - ---- - , := --- -..._ - 5=1■111111111Namm-a - T ' - -- ao.mowoiwwwiwoodrewom'i.mai - .... .......; • - 1■51•111111■60710•Millikini'- i ' . -' - - , .,.c.-----.--. ■' ' r --- . . ,. ....' . '' 1 " •■•%. 43 ,..- X. :rPrieV„_ 4 , ' ..-1* : . , '`‘. / Ali ,...... .." , t.: 7 ., . .1.•.,..„ , i , ..., ..,..,_4141k fr:e V .fa : ' 1 1 ' .. A -• :i \‘Ulli - • Tc= 11.5 MIN. %V ' ' . "-gap ..-, -e--. a CON - 72.0 CFS •., • / o(Wa.3 CFS 74 .- ,, 3.3 MIN. Low Devotion: 9KBT7t--7''fr--- _•.. ..•.... . : i 1,-'` Area: 1.20 .e - ..- L 440 --- S: 0.0095 i -' --I \ Low Devotion: 967.74 0(CONF)= 72.0 CFS 41) TC: 8.5 MIN. o 51? -..- . igh Devotion: 965.37 #, Tc 12.0 MIN. i • • S: 0.0054 :i • TC: 9.9 MIN. . . - ---'''' I --- ._.----- 0 25 50 100 150 I =I .111111=111111111J . SCALE:1*=50 R. abuce SAL. ::::. • I : LIDO t Lat Upilitsc 1/41/10 1711144&11 PREPARO) UNDO THE z SUPERVIsION or: OWNER: STREET. 9Th SHEET 888 W. 6 MS HYDROLOGY MAP or 1 - 4 6Th ET. 9TH FLOOR LOS ANGLES, CA. 90017 (213) 362-9300 I DON UNOGREN DATE R.C.E. 20953 (213) 627-9937 JASMINE Durnsur ION CEtirrER , I TJE. JOB NO. OS I - Ailift„ ,