HomeMy WebLinkAboutRancho Fontana - Tract 16992ALLARD ENGINEERING
C L` =1e.a v lma.w.mo tea a i m
HYDROLOGY &HYDRAULICS
REPORT
for
Beech Avenue Improvements
City Drawings No. 3719 and 3721
a
August 15, 2004
Revised October 14, 2004
Prepared For:
Young Homes
10370 Trademark Street
Rancho Cucamonga, CA 91730
(909) 477 -6722 Fax (909) 477 -6725
Job Number 159.26.02
ARM
btellA NO
Prepared under the supervision of:
., yT c `.
V
David S Hammer HCE a3sfls Exp 08 -30-05
c ^.
r
:U
8253 Sierra Avenue Fontana, CA 92335 (909) 358 -1815 * (909) 356-1795
Table of Contents
C7
Introduction......................................... ..............................1
Purpose.............................................. ..............................1
Methodology........................................ ..............................1
Findings............................................. ..............................1
Appendix
♦ Hydrology Exhibits
♦ In -Tract Hydrology and Hydraulic Calculations
A) 100 year Rational Method AMC H
B) 25 year Rational Method AMC H
C) Street Capacity Calculations for Cul- de-sac
D) Catch basin calculations
♦ Storm Drain W.S.P. G. W. for proposed pipes connecting to existing drainage system
at Beech Avenue
♦ Storm Drain W.S.P. G. W. for existing pipe connecting to existing catch basin at
Beech Avenue
♦ Hydrology Maps
Developed condition
PURPOSE
The purpose of this report is to support the storm drain design associated with
improvements for Beech Avenue between Miller Avenue and Village Parkway. The
improvements are not associated with any one particular tract. The improvements are
being provided to improve access to the area commonly known as Village Walk which
lies south of Baseline Avenue and north of Miller Avenue on either side of Beech
Avenue.
WATERSHED
The watershed consists of two sub areas; one area will drain a portion of the future tract
16992 between Sultana Avenue and Beech Avenue on the north side of Miller Avenue.
The second area is the east side of Beech Avenue from Village Parkway down to Miller
Avenue. The first area shall have a storm drain stub for future extension into the tract.
The second area will drain to a sump catch basin in Beech Avenue immediately north of
Miller Avenue. An existing catch basin at the intersection shall be removed because it
conflicts with the proposed curb return.
METHODOLOGY
Ar.✓
The design flow rates for storm water runoff were determined using a rational method in
conformance with the San Bernardino County Hydrology Manual. The pipe sizes for the
storm drain were determined using the WSPG program commonly used for hydraulics
calculations in this area. Catch basin sizing is provided as well for the purposes of sizing
the catch basin at the corner of Beech Avenue and Miller Avenue. The design flow rate
for the replacement catch basin and its storm drain pipe lateral comes from the approved
city drawing 3448.
SUMMARY
This report supports the design as proposed on the improvement plans for city drawing
3448 which includes a 21' size catch basin with a 30" diameter pipe for the inlet at the
northeast corner of Miller Avenue and Beech Avenue and a 24" diameter pipe stubbed
out for future service by tract 16992.
E�q
Hydrology Exhibits
�mq
3.5 3.5
3 3
2.5 2.5
w
U
Z
Z _
= 2 2
1- -
n.
w
0
-J
U- 15 - � / 1.5
Z j � 1.4
Ix
1 0.9e =zs= %-rz 5.,„,. 1
/..-----
l
/�
0.5 - 0.5
0 _ 0
2 5 10 25 50 100
RETURN PERIOD IN YEARS
NOTE.
I. FOR 1HTERMEDUTE RETURN PERIOOS PLOT 10-YEAR ANO 100 -YEAR ONE HOUR VALUES FROM MAPS.
THEM CONNECT POINTS AND READ VALUE FOR DESIRED RETURN PERIOD. FOR EXAMPLE GIVEN 10-YEAR
ONE HOUR • 0.95" AND 100 -YEAR CNE HOUR • 160 , tS -YE AR ONE HOUR • Ile.
REFERENCE •NOAA ATLAS t. VOLUME Xt- CAL..19T3 RAINFALL DEPTH VERSUS
SAN BERNARDINO COUNTY RETURN PERIOD FOR
HYDROLOGY MANUAL PARTIAL DURATION SERIES
_ l
D- 7 FIGURE 0- 2
VAS WIck7—
[{ L6
1.7 R8 I R7W R6W , R5 I 4W '` : R2W r RIW `� RIE °+ R2E ,I�}
30 1.3 I
1 T � • •�• r � I 1 1. 1 1 I ( r run •• [�� I ,
j L• \ T - _-- - -- i — �__ ^i — .� —"1 — at• 1 � � '1.. ��— � I t 5 }. ~ S�
I � I J R(�1 ;s * , 1. rr• nr. ' _ y - -• _.:L_ '• - � ..1. - -- � 1- �� , - .- ' s�
' � • � . • - - -- 1 tit ,ITV[• -y _ _ t r � ' !' i �
�:.
it h TAN
I c I c• r`
If 1
•�I s I I 1
BE •.a Or.r. I 4.
If
` " I ! I a • ,. '7` • [`f. _' ._. r _ — — _ t,t_ rw -- — — — _ _— _ � — .. ._ — — L{ I, a - 1. [RrW a
• r � _ ~ �` I L7 >p �► � - - a.. z , .< ,. , _ - '- .._ - ,valaK [ i L � � /r( � 1�
NJ"
k - 7
IA
l7 . I 1 �„� •-; .jV'r».. rr f• t - 1 r - -- - �� [•,� T I N
l --��
- �I•�
rt 1-• —j - - : - -- - - Ir - -` •-:lr' - - >i - -'Y;.•: - S ltc. �� .. �:- _ T _ � ,�.. _ -
i•,
1 I N ' [ 1,_ i � `3 :�e I. _ '� � i °•� saw 4.• Iro,T� � - � �, 1 �- I I -
PL ♦ r •[ =
N 1 0
cu+IrnafT - R I A LT 0_ - . '':- ' - _ ` �" - - - - - - - - r- '-� - -'� •
ONTAWX
TIS
ol
ONTA lOe '4 • 2 e COLTON� �.�S
t r 1 - _ L{ - - - - - `
- - •y. _ - -- - - , _
'' ' tpi� .. - .r -.4
• • a.o.. ••� .. [trait � `- Gt [■ - Y-
M• - ..x S wrw I 12 -'.• TtIC.IH
ir _ 1 \•v -. I .' N I y ..:' r ,r M/1»t i[I111tCt I nlvgnrog
.t - t' -• - - - �- - �' I f - - , - .!, awl w < • I <,• r/` R 1 , I RZ !
nl tro[ [ t woo j�
T2S
i
1 ERSIDE
• 1
1
R2w R I
��oo = 1.4 fir„
SAN KRNARDINO COLKTY
FLOOO CONTROL DISTRICT*
R5
REDUCED DRAWING
VALLEY AREA
T3$
- ' _
-
I _
ca. : `,-
•..,�•.-
- _
.
SCALE I = 4 MILES
NOWETALS
to -100 YEAR 1--HOUR
='_•
['
<" _ts
,
SAN BERNAR �J INO
COUNTY
"�°°""'°`'"°""
- T T4N I - I 1 I_ R R6W - R5 - {
-I `! I _ �t4W R2Yr! RIW �•' - -
,.�i 7 1- .t� _ r ---- - - -�y� - -L " RI I RZE
, I
L4 1 _ — — ✓ t T -- -- — _ —I_ — �i —_ I I I 4 T4N %
• . �•. I � I - ` t I•r\a•,Ya. h..r•. y Y i I f f' / ( � \;, — — 1 �_ -- -- - . .w� 1 I �'-- t -- — I _- 1- J
T — I —` — ' �• �REp�eJ ` • s .c .. LO _ i� ` /`f _ - ` g LJ ( r� • 1 - r t �• \ 4 ( I
T 3N Ir P _ - !IC11pN_3 •,; • ,. • • e r - a%nirr — I • . tl — — J _ _ — — — - - "• `� S _ ,! �� —� '_ -� - -; — -� >
- - - • • __2
—I I � 1 1.6 •.� `s• `�' \ � r•°' •�_ � _ � I ' - � - ' I � � � ._ _ -� ^— • i i 6 — .— � . i r I � � I \ I I � i sf . �" �
— '. _ _ — at • s - 1• tea _ y i ce' . YaT._` — - \ ` ` . _ T V 1 3 N N
• I I � i / ��• , �'' -'-.\ 't' - 1 ' va.r if : � d�' � _ - ,1 _ S .
• . . 4 - • _ _ _ I_ I` t )
L3 1.4
I , i nn ^^ •a Ca - — ••� - � � / ' 1 I ' L �rro.ri.o 4•. / T `°`� "! ,,. :.r :. � — - --
T2N BI E' p `prR • ••'. '
J-
_;7
-.% .-._ _ •r rs- ✓:ITS' — — — — '— �' -
d iV crlt - - N4 KA [•
__ - - -' � - - f._ _•. t, �. .! "'(�..•- '� '•` - — �r \aa.f, raw • __ - - ,\ `� ... ,{ VSF �� d L7 1y ;.. , �>ti — r `• — 1/ �� I.4
AL
1 .4 io�?i4 *F-
h
_
L3
r u..
MICK
7 - T \ - • , ItarY•r 4 [�r -v a _ y - I _ - .' i on
' dart 1 X --- '9 ! •a •. -` '_-
P LAND
`- — — — -- —
- -- - -- LTO_ _ >:.. - � f m` I I • I
TIS
ONT lOS.• , C ,TON• __ L - rb J/ ' - — - -+:t
- i .►•• j �• - ,_ ; _ a �. REDLANDS a .c. ..a •� 1 a ,- I__ _ _ \ j.IS
IT-
pop
• s S %oit� %roA -1 _
T 2 S '- - - ' • .1- , - - A, SAN Bgpj$AODM our • - - - a° 'mo — - - - I — }' �• —
_: • •• •/ •,r[•>,oc court - - �! R I E , �'
�1 i - - - - •� - I ".,, R E I
a
- - - 5 , . I R S I D E - I , - ry., = - - j '' T,..�
`• _�fw• ._ � 1/ -
�OyM 1 " q'•
1
(, R4W I R3 - R2W ." RI
F LOOD
�T3S a VP AN BERNARDDINO OLINTY
RS
}" REDUCED DRAWING VALLEY AREA
•. - 1 SCALE 1 4 MILES 0HYETALS
SAN BERNARDINO COUNTY Yp to YEAR I HOUR
••'• J L, • _ _ , r►s1EO'•9N -ane KoAAxn Ai 2.1973
— - 10 A �fc
\
.. HYDROLOGY MANUAL LEGEND%�� 6 wk
'•••'' •'••'• "••• " "• "•••••'•••• / ,t ISpI_IN g PRECIPITATION(INCHES) GATE F 7Cit>t itit - W10 N4
� 1902 f.2Ml W*04 1 y of 12
B - I I FIGURE R --A
In -Tract Hydrology and Hydraulic
Calculations
NO
Mmi
A) 100 -Year Rational Method
AMCH
A
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
(Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983 -2003 Advanced Engineering Software (aes)
Ver. 8.0 Release Date: 01/01/2003 License ID 1400
Analysis prepared by:
Allard Engineering
8253 Serria Avenue Fontana Ca. 92335
* * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * **
* TRACT 16992, FONTANA
* 100 YEAR STORM EVENT. 100 YEAR INTENSITY, AMC II
* BY: E.I.
******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FILE NAME: 16992DOO.DAT
TIME /DATE OF STUDY: 09:01 08/03/2004
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
-- *TIME -OF- CONCENTRATION MODEL * --
USER SPECIFIED STORM EVENT(YEAR) = 100.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
*USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = 0.6000
USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.4000
*ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
*USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET- CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT - /PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
1 18.0 8.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1. Relative Flow -Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) - (Top -of -Curb)
2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
*USER- SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 10.00 TO NODE 20.00 IS CODE = 21
----------------------------------------------------------------------------
>>>>> RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<<<<
>>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW- LENGTH(FEET) = 450.00
ELEVATION DATA: UPSTREAM(FEET) = 1326.20 DOWNSTREAM(FEET) = 1322.30
Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.049
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.356
SUBAREA Tc AND LOSS RATE
DATA(AMC II):
DEVELOPMENT TYPE/
SCS SOIL AREA Fp
LAND USE
GROUP (ACRES) (INCH /HR)
RESIDENTIAL
11 5 -7 DWELLINGS /ACRE"
A 1.80 0.98
COMMERCIAL
A 0.30 0.98
SUBAREA AVERAGE PERVIOUS
LOSS RATE, Fp(INCH /HR) =
SUBAREA AVERAGE PERVIOUS
AREA FRACTION, Ap = 0.44
SUBAREA RUNOFF(CFS) =
7.42
TOTAL AREA(ACRES) =
2.10 PEAK FLOW RATE(CFS)
Ap SCS Tc
(DECIMAL) CN (MIN.)
0.50 32 11.58
0.10 32 9.05
0.98
7.42
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 20.00 TO NODE 30.00 IS CODE = 62
----------------------------------------------------------------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<< <<<
>>>( STREET TABLE SECTION # 1 USED)<<<<<
UPSTREAM ELEVATION(FEET) = 1322.30 DOWNSTREAM ELEVATION(FEET) = 1321.00
STREET LENGTH(FEET) = 265.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 18.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 8.00
INSIDE STREET CROSSFALL(DECIMAL) = 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150
Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200
* *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 10.78
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.44
HALFSTREET FLOOD WIDTH(FEET) = 15.84
AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.05
PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 0.91
STREET FLOW TRAVEL TIME(MIN.) = 2.15 Tc(MIN.) = 11.20
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.832
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap
SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL)
CN
RESIDENTIAL
11 5 -7 DWELLINGS /ACRE" A 1.90 0.98 0.50
32
COMMERCIAL A 0.30 0.98 0.10
32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.45
SUBAREA AREA(ACRES) = 2.20 SUBAREA RUNOFF(CFS) = 6.73
EFFECTIVE AREA(ACRES) = 4.30 AREA- AVERAGED Fm(INCH /HR)
= 0.43
AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.44
TOTAL AREA(ACRES) = 4.30 PEAK FLOW RATE(CFS) =
13.15
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = 0.47 HALFSTREET FLOOD WIDTH(FEET) = 17.16
FLOW VELOCITY(FEET /SEC.) = 2.15 DEPTH *VELOCITY(FT *FT /SEC.) = 1.01
LONGEST FLOWPATH FROM NODE 10.00 TO NODE 30.00 = 715.00 FEET.
IN
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 40.00 TO NODE 50.00 IS CODE = 21
---------------------------------------------------------------------- - - - - --
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<<<<
>>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW- LENGTH(FEET) = 360.00
ELEVATION DATA: UPSTREAM(FEET) = 1323.00 DOWNSTREAM(FEET) = 1317.60
Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
7.416
* 100 YEAR RAINFALL INTENSITY(INCH /HR) =
4.908
SUBAREA Tc AND LOSS RATE
DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
Fp
LAND USE
GROUP (ACRES)
(INCH /HR)
RESIDENTIAL
11 5 -7 DWELLINGS /ACRE"
A 1.40
0.98
COMMERCIAL
A 0.30
0.98
SUBAREA AVERAGE PERVIOUS
LOSS RATE, Fp(INCH /HR) _
SUBAREA AVERAGE PERVIOUS
AREA FRACTION, Ap = 0.43
SUBAREA RUNOFF(CFS) =
6.87
TOTAL AREA(ACRES) =
1.70 PEAK FLOW
RATE(CFS)
Ap SCS Tc
(DECIMAL) CN (MIN.)
0.50 32 9.49
0.10 32 7.42
0.98
= 6.87
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 50.00 TO NODE 60.00 IS CODE = 62
----------------------------------------------------------------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<<
>>>>>( STREET TABLE SECTION # 1 USED)<< <<<
--------------------------------
UPSTREAM ELEVATION(FEET) = 1317.60 DOWNSTREAM ELEVATION(FEET) = 1314.50
STREET LENGTH(FEET) = 255.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 18.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 8.00
INSIDE STREET CROSSFALL(DECIMAL) = 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150
Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200
* *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) _
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.39
HALFSTREET FLOOD WIDTH(FEET) = 13.16
AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.87
PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.12
STREET FLOW TRAVEL TIME(MIN.) = 1.48 Tc(MIN.) _
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.401
SUBAREA LOSS RATE DATA(AMC II):
t�
8.90
10.63
AN DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
RESIDENTIAL
11 5 -7 DWELLINGS /ACRE" A 1.80 0.98 0.50 32
COMMERCIAL A 0.30 0.98 0.10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.44
SUBAREA AREA(ACRES) = 2.10 SUBAREA RUNOFF(CFS) = 7.50
EFFECTIVE AREA(ACRES) = 3.80 AREA- AVERAGED F /HR) = 0.43
AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.44
TOTAL AREA(ACRES) = 3.80 PEAK FLOW RATE(CFS) = 13.59
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = 0.42 HALFSTREET FLOOD WIDTH(FEET) = 14.47
FLOW VELOCITY(FEET /SEC.) = 3.07 DEPTH *VELOCITY(FT *FT /SEC.) = 1.28
LONGEST FLOWPATH FROM NODE 40.00 TO NODE 60.00 = 615.00 FEET.
�q
B) 25 -Year Rational Method
AMCH
C
C
Adook
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
(Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983 -2003 Advanced Engineering Software (aes)
Ver. 8.0 Release Date: 01/01/2003 License ID 1400
Analysis prepared by:
Allard Engineering
8253 Serria Avenue Fontana Ca. 92335
* * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * **
* TRACT 16992, FONTANA
* 25 YEAR STORM EVENT, 25 YEAR INTENSITY, AMC II
* BY: E.I.
******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FILE NAME: 16992D25.DAT
TIME /DATE OF STUDY: 13:41 08/03/2004
----------------------------------------------------------------------------
----------------------------------------------------------------------------
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
----------------------------------------------------------------------------
----------------------------------------------------------------------------
-- *TIME -OF- CONCENTRATION MODEL * --
USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
*USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = 0.6000
USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.1200
*ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
*USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET- CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT - /PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
^ 1 18.0 8.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1. Relative Flow -Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) - (Top -of -Curb)
2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
*USER- SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
- - FLOW - PROCESS - FROM - NODE - - -- - 1000 TO NODE -- 2000 - IS CODE = 21
----- - - - - -- -----------------------
>>>>> RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
>>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW- LENGTH(FEET) = 450.00
ELEVATION DATA: UPSTREAM(FEET) = 1326.20 DOWNSTREAM(FEET) = 1322.30
Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
9.049
* 25 YEAR RAINFALL INTENSITY(INCH /HR) =
3.485
SUBAREA Tc AND LOSS RATE
DATA(AMC II):
DEVELOPMENT TYPE/
SCS SOIL AREA
Fp
LAND USE
GROUP (ACRES)
(INCH /HR)
RESIDENTIAL
"5 -7 DWELLINGS /ACRE"
A 1.80
0.98
COMMERCIAL
A 0.30
0.98
SUBAREA AVERAGE PERVIOUS
LOSS RATE, Fp(INCH /HR) =
SUBAREA AVERAGE PERVIOUS
AREA FRACTION, Ap
= 0.44
SUBAREA RUNOFF(CFS) =
5.77
TOTAL AREA(ACRES) =
2.10 PEAK FLOW
RATE(CFS)
Ap SCS Tc
(DECIMAL) CN (MIN.)
0.50 32 11.58
0.10 32 9.05
0.98
5.77
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 20.00 TO NODE 30.00 IS CODE = 62
----------------------------------------------------------------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>( STREET TABLE SECTION # 1 USED)<<<<<
UPSTREAM ELEVATION(FEET) = 1322.30 DOWNSTREAM ELEVATION(FEET) = 1321.00
STREET LENGTH(FEET) = 265.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 18.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 8.00
INSIDE STREET CROSSFALL(DECIMAL) = 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150
Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200
RESIDENTIAL
* *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 8.36
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.41
HALFSTREET FLOOD WIDTH(FEET) = 14.28
AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.94
PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 0.80
STREET FLOW TRAVEL TIME(MIN.) = 2.28 Tc(MIN.) = 11.33
* 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.045
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND UGR. GROUP (ACRES) (INCH /HR) (DECIMAL) CN
11 5 -7 DWELLINGS /ACRE" A 1.90 0.98 0.50
COMMERCIAL A 0.30 0.98 0.10
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.45
SUBAREA AREA(ACRES) = 2.20 SUBAREA RUNOFF(CFS) = 5.17
EFFECTIVE AREA(ACRES) = 4.30 AREA- AVERAGED Fm(INCH /HR) _
AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.44
TOTAL AREA(ACRES) = 1 4.30 PEAK FLOW RATE(CFS) =
32
32
0.43
10.11
A
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = 0.43 HALFSTREET FLOOD WIDTH(FEET) = 15.41
FLOW VELOCITY(FEET /SEC.) = 2.03 DEPTH *VELOCITY(FT *FT /SEC.) = 0.88
LONGEST FLOWPATH FROM NODE 10.00 TO NODE 30.00 = 715.00 FEET.
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 40.00 TO NODE 50.00 IS CODE = 21
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<<<<
>>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW- LENGTH(FEET) = 360.00
ELEVATION DATA: UPSTREAM(FEET) = 1323.00 DOWNSTREAM(FEET) = 1317.60
Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
7.416
* 25 YEAR RAINFALL INTENSITY(INCH /HR) =
3.926
SUBAREA Tc AND LOSS RATE
DATA(AMC II):
DEVELOPMENT TYPE/
SCS SOIL AREA
Fp
LAND USE
GROUP (ACRES)
(INCH /HR)
RESIDENTIAL
11 5 -7 DWELLINGS /ACRE"
A 1.40
0.98
COMMERCIAL
A 0.30
0.98
SUBAREA AVERAGE PERVIOUS
LOSS RATE, Fp(INCH /HR) =
SUBAREA AVERAGE PERVIOUS
AREA FRACTION, Ap
= 0.43
SUBAREA RUNOFF(CFS) =
5.37
TOTAL AREA(ACRES) =
1.70 PEAK FLOW
RATE(CFS)
Ap SCS Tc
(DECIMAL) CN (MIN.)
0.50 32 9.49
0.10 32 7.42
0.98
5.37
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 50.00 TO NODE 60.00 IS CODE = 62
----------------------------------------------------------------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<< <<<
>>>>>( STREET TABLE SECTION # 1 USED) <<<<<
UPSTREAM ELEVATION(FEET) = 1317.60 DOWNSTREAM ELEVATION(FEET) = 1314.50
STREET LENGTH(FEET) = 255.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 18.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 8.00
INSIDE STREET CROSSFALL(DECIMAL) = 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150
Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200
* *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) _
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.36
HALFSTREET FLOOD WIDTH(FEET) = 11.84
AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.72
PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 0.99
STREET FLOW TRAVEL TIME(MIN.) = 1.56 Tc(MIN.) = 8.98
* 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.501
SUBAREA LOSS RATE DATA,(AMC II):
8.27
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
RESIDENTIAL
"5 -7 DWELLINGS /ACRE" A 1.80 0.98 0.50 32
COMMERCIAL A 0.30 0.98 0.10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.44
SUBAREA AREA(ACRES) = 2.10 SUBAREA RUNOFF(CFS) = 5.80
EFFECTIVE AREA(ACRES) = 3.80 AREA- AVERAGED Fm(INCH /HR) = 0.43
AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.44
TOTAL AREA(ACRES) = 3.80 PEAK FLOW RATE(CFS) = 10.52
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = 0.39 HALFSTREET FLOOD WIDTH(FEET) = 13.09
FLOW VELOCITY(FEET /SEC.) = 2.87 DEPTH *VELOCITY(FT *FT /SEC.) = 1.11
LONGEST FLOWPATH FROM NODE 40.00 TO NODE 60.00 = 615.00 FEET.
A
`s
C) Street Capacity Calculations
Iq
HYDRAULIC ELEMENTS - I PROGRAM PACKAGE
(C) Copyright 1982 -2003 Advanced Engineering Software (aes)
Ver. 9.0 Release Date: 01/01/2003 License ID 1400
Analysis prepared by:
Allard Engineering
8253 Sierra Avenue Fontana Ca. 92335
----------------------------------------------------------------------------
TIME /DATE OF STUDY: 11:13 08/02/2004
Problem Descriptions:
TRACT 16992, FONTANA
Street capacity calculation, 25 year storm
Reed Street
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
>>>>STREETFLOW MODEL INPUT INFORMATION<<<<
-----------------------------------------------------------------------------
CONSTANT STREET GRADE(FEET /FEET) = 0.005000
CONSTANT STREET FLOW(CFS) = 10.11
AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000
CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 18.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00
INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000
CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.50
CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50
CONSTANT SYMMETRICAL GUTTER- LIP(FEET) = 0.03125
CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) = 0.12500
FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES
STREET FLOW MODEL RESULTS:
---------------------------------------------------------------------- - - - - --
STREET FLOW DEPTH(FEET) = 0.43 < 0.5' OK
HALFSTREET FLOOD WIDTH(FEET) = 15.16
AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.09
PRODUCT OF DEPTH &VELOCITY = 0.90
u
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
HYDRAULIC ELEMENTS - I PROGRAM PACKAGE
(C) Copyright 1982 -2003 Advanced Engineering Software (aes)
Ver. 9.0 Release Date: 01/01/2003 License ID 1400
Analysis prepared by:
Allard Engineering
8253 Sierra Avenue Fontana Ca. 92335
----------------------------------------------------------------------------
TIME /DATE OF STUDY: 13:03 08/02/2004
Problem Descriptions:
TRACT 16992, FONTANA
Street capacity calculation, 25 year storm
"A" Street
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
>>>>STREETFLOW MODEL INPUT INFORMATION <<<<
----------------------------------------------------------------------------
CONSTANT STREET GRADE(FEET /FEET) = 0.012000
CONSTANT STREET FLOW(CFS) = 10.52
AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000
CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 18.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00
INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000
CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.50
CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50
CONSTANT SYMMETRICAL GUTTER- LIP(FEET) = 0.03125
CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) = 0.12500
FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES
STREET FLOW MODEL RESULTS:
----------------------------------------------------------------------------
STREET FLOW DEPTH(FEET) = 0.39 < 0.5' OK
HALFSTREET FLOOD WIDTH(FEET) = 13.10
AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.87
PRODUCT OF DEPTH &VELOCITY
D) Catch basin calculations
C7
:I
HYDRAULIC ELEMENTS - I PROGRAM PACKAGE
(C) Copyright 1982 -2003 Advanced Engineering Software (aes)
Ver. 9.0 Release Date: 01/01/2003 License ID 1400
Analysis prepared by:
Allard Engineering
8253 Sierra Avenue Fontana Ca. 92335
----------------------------------------------------------------------------
TIME /DATE OF STUDY: 10:50 08/02/2004
Problem Descriptions:
TRACT 16992, FONTANA
Catch basin calculation, sump condition, 100 year storm
Catch basin No. 1 connecting to Sultana Avenue
>>>>SUMP TYPE BASIN INPUT INFORMATION<<<<
---------------------------------------------------------------------- - - - - --
Curb Inlet Capacities are approximated based on the Bureau of
Public Roads nomograph plots for flowby basins and sump basins.
BASIN INFLOW(CFS) = 13.15
BASIN OPENING(FEET) = 0.71
DEPTH OF WATER(FEET) = 0.83
>>>>CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 6.05
Need W = 7'
Use W = 10'
�401
0
HYDRAULIC ELEMENTS - I PROGRAM PACKAGE
(C) Copyright 1982 -2003 Advanced Engineering Software (aes)
Ver. 9.0 Release Date: 01/01/2003 License ID 1400
Analysis prepared by:
Allard Engineering
8253 Sierra Avenue Fontana Ca. 92335
----------------------------------------------------------------------------
TIME /DATE OF STUDY: 10:50 08/02/2004
Problem Descriptions:
TRACT 16992, FONTANA
Catch basin calculation, sump condition, 100 year storm
Catch basin No. 2 connecting to Beech Avenue
>>>>SUMP TYPE BASIN INPUT INFORMATION<< <<
---------------------------------------------------------------------- - - - - --
Curb Inlet Capacities are approximated based on the Bureau of
Public Roads nomograph plots for flowby basins and sump basins.
BASIN INFLOW(CFS) = 13.59
BASIN OPENING(FEET) = 0.71
DEPTH OF WATER(FEET) = 0.83
>>>>CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 6.25
Need W = 7'
Use W = 10'
0
i
1 4 -
L! 4
Storm Drain W.S.P.G.W
C
Ll
Storm Drain W.S.P. G. W.
for proposed pipes connecting to
existing drainage system at
Beech Avenue
M
,1
On
0
T1
TRACT 16992, FONTANA
0
T2
LATERAL 1, FROM "A"
STREET
TO BEECH AVENUE
T3
BY: E.I.
SO
0103.0001308.550
1
1310.300
R
0107.1001308.570
1
.013
.000 .000 0
R
0154.7501308.810
1
.013
30.002 .000 0
R
0213.8201309.108
1
.013
.000 .000 0
WE
0213.8201309.108
2
.500
SH
0213.8201309.108
2
1309.108
CD
1 4 1 .000
2.000
.000 .000
.000 .00
CD
2 2 0 .000
5.000
10.000 .000
.000 .00
Q
13.600
.0
On
0
C !
H w
# •ri
U #
4,
t 3--
4) x
w
W
W
W
w
M
# m
m a
a
a
a
a
M
# O S4
4
,
H
r-1
H
H
H
w
# z a
F 4
a
Cl.
I
m
a
I
(l
ri
4 - -
- - --
—
— —
—
—
—
—
—
—
—
— —
—
W ••
#
4
O
O
O
O
O
O
o
O
O
O
O
O
0
0
0
0
0
0
0
0
0
0
0
# N
N #
E+
#
#
# JJ I A #
O 1
O
o I
O
o I
O
O I
o
O I
o
o 1
0 1
d
# g q
ri #
0
0
0
0
0
0
0
0
0
0
0
0
o
*
ro*
o
0
0
0
0
0
0
O
# W H
w 4
•
N
4 N
I #
O
M
# m O
1 k
I
I
I
I
I
I
I
ri
- -
- - --
—
— —
—
—
—
—
—
—
—
— —
—
I
p
k\
# y Gil
I k
k
I
O
I
O
I
O
I
O
i
O
I
O
I
o
O'-1
O
ri
O
O
O
O
O
O
LJ
4 y -rl
#
N
N
N
N
N
N
u1
ro
# x Q
1 #
I
I
1
I
I
I
I
N
M
V
ri
M
ri
r
ri
m
ri
!
o
# 4J
4
M
•d'
M
VI
1I1
V'
I!1
V'
U)
V�
r
O
EE
ri
ri
ri
H
H
ri
r+
ri
o
# ri3
O4
z #
I
I
I
1
I
i
1
* - -
- - --
—
— —
—
—
—
—
—
—
—
—
— —
#
Ln
M
U1
M
U1
M
# •ri J-1
Id k
M
M
(n
M
M
M
M
# L) GL
:j k
# -r1 d)
O 4
ri
ri
ri
r-1
ri
H
# si Q
}i 4
k U
I w k
I
I
I
I
I
1
I
Ul
1
l!1
1 Ul
I
N
I"
I
I
4 }I >
4.) #
O
r
H
r
ri
W
O
%D
O
Ill
O
O
M U
# y v
a#
O
O
O
O
O
O
O
O
4t r-4
Q#
ri
ri
H
H
it W
V F
k cn
W #
pl
#
I W#
I
I
I
1
I
I
I
a
#
1 #
I
I
I
1
I
1
I
U1
M
co
N
M
Ul
ri
ID
•,� W
* t71 W
#
�D
W
o
0
to
H
r
0
o
co
r-4
Ch
�
0
o
M
m a
# sa
w k
.
}i 04
# GI
x #
O
O
ri
O
O
r-1
ri
d) w
'J N O
W
# ('. 7•I
4
k W C9
#
*
ri
M
ri
M
ri
M
.�
M
ri
M
r-1
M
ri
M
m a
#
#
�,
ri
�,
ri
,
I
I
# —
M
V I
sp
r I �D
D� I
Ol
N I
N
U1 I
r-1 I
U) U
* b
'.! #
M
M
M
M
M
M
M
M
VI
V
d
O
0
0
0
0
0
0
0
0
W *;
W
w
#
w #
W k
17
U D:
O
#
1 #
r I
ON I
ri I
00 I
M I
O 1
O
z W
P
1 0
'D
D1
M
N
#
v
a
v
c
U1
Ul
3 ro 3
W
# 0)
x
rl
W
#
#
p W
W
#
#
07
O
O
O
O
O I
0 1
# UI
#
M
M
M
M
M
M
M
# d W
#
r
ri
ri
ri
ri
ri
ri
* U
U
£
k
*
pl
o a
#
i #
I
I
I
t
I
1
I
w w
# - -
#
- - --
1 #
—
o
— —
— —
r I
— —
N I
— —
U) I
— —
M 1
— —
Ol 1
ro
k
#
o
ri
o
M
N
o
In
}i
N ri
H # Si
#
M
M
VI
V'
Ul
b
M
�O1
Sd
Ch
0\
%D
k G) '
W k y U)
# ro ri
k
k
4
O
r-1
O
rl
O
H
O
H
O
r1
O
r-1
14
11
W
ri
k W
#
M
M
M
M
M
M
M
H
ri
ri
1-i
Ul
�•
* - --
#
-x—
I #
O I
—
1-i I
—
lD 1
—
N I
N
—
C
V
—
01
—
vl
a
El
# f+
# JJ
#
In
d
a
U)
N
4 y w
#
ri
r-I
ri
r-1
ri
H
N
4
k
#
I #
1
I
I
I
1
I
1
#
1 k
O 1
0 1
r - 1 I
O 1
ri 1
m I
00 I
#
y#
Ul
r
O
lD
O
ri
O
O
O
O
O
4-)
UI
v
Ln
�
p
- !
H
# Si >
O k
O
O
O
O
4 N d)
1•-1 k
00
O
co
O
co
O
00
O
00
O
ON W
41
# (." W
4
O
M
O
M
O
M
O
M
O
M
H
O U
M
O
M
H
1d
r -1
N
#
# - -
I U#
- - --
I
—
H
1
— —
r
r-I
I
— —
r I M
H
1
—
O 1 r♦
I
H I 01
ri
I
O 1
I
O 1
p)
4
I #
O I
O
O
O
0 1
O
r
r
r
m
%D
ri
O
N
N
O
r-4
H
O
0%
r
r
D\
r
ri
aD
a0
u
ro
1 r
w#
14
O
O
r
M
v
v
rn
Ul
M
ao
m
ui
N
m a
H
ri
H
aJ
«
H
ri
ri
H
ri
N
N
,
►
a
H
#
#
D4
x x x
O
14
z
a
a
a
o
z
C,
a
o
z o
E
W
z o
z
a
FC
Q
RC
El
E
W
N
, o
n N
. 0
,-.
Oo
co
C70
M V
O
O
O
H
O
M
ri
b
y�J
.7 O
,7 01
.7 O
H
H m
H
A
O
O
O
rn
. o
w o
w H
(A (n
V] m
H
O
3
S M
C7 �+
z
H
E--
(A M
M H
o a �
�z
�+o
H N
r. F
#
O H N
-H z
m H
H W
4) W ri
•J
a
o
z
z o
z o
z o
a u
W
O
C9
H
W
H F-I
�
a
H
3 a
U
3 a
a a
PO
Ha
a
0 4
E
z
W W
(A
[A
O
W
W
a s
3 a
F
3#
#
#
#
#
#
a N
E
W
W
H
E
E
E
F
E
H
W
a
U ri
U H
U
E
W
U
m
U
m
U
U
E
co
W
W U)
#
m
o
W
-
W
Eo
a
Fo
Ho
Em
Em
Fm
Q' H
V) m
o
a
a
44
ul
w u�
w u,
m
w r+
w H
a s
o
O O
£
O
m
m
m
a%
m
rn
W r 4 a
r
a W
O
a
H O
H O
H o
H o
H o
H O
F W
a
a
a
M
M
M
M
M
M
W
r 1
ri
H
14
r•1
3 x W
N
W N
W
m m
U#
O#
O#
O#
O
o
H
Q'
'�.� o
'Z o
z Ln
z N
z N
z
z N
W H
o o
w w
W
O o
O H
O r
O m
0 m
O m
x (]
N
5 rl
H
a
H •
H •
H
H
M
H
to E
a W
ui
�o
4 O
Q �
�r
W
a , U �
F
a
W to H
u) H
UI H
Vl N
i2 VI N �
rn N
a Q
o
F
��+
z WWGG
H
o
3
3 0 RC
4
a
a
r 44
x RC
FCCa
wa
wA
xA
xA
xA
as
wa
mrn
acn
�W
W
a aW
V)im
O--
a
rio
m�
o zH
x m
a
a
a
a
Q
a
m
H
H H
W
W
W
W
N
W
3: DI
ri
N M
H
H
H
H
H
H
a N
H
N
M
v
U1
w
U E
z
Z x
ro
N E
z
z z
O
O
O
O
O
O
° z
H N
H1
z
z
z
z
z
z
W
.
.
in v1
E
F
F
z
w
u
U
W
U U
�
W
W
W
W
W
W
A
Storm Drain W.S.P. G. W.
for existing pipe connecting to existing
catch basin at Beech Avenue
s
T1
Beech Avenue
0
T2
Existing lateral b
T3
By E.I.
SO
102.4201307.110
1
1308.600
R
140.0001307.410
1
.013
.000 .000 0
R
148.3201307.480
1
.013
- 21.187 .000 0
R
164.8601307.610
1
.013
.000 .000 0
WE
164.8601307.610
2
.500
SH
164.8601307.610
2
1307.610
CD
1 4 1 .000
2.500
.000 .000
.000 .00
CD
2 2 0 .000
5.600
21.000 .000
.000 .00
Q
24.500
.0
Mm,
\rd
x
x
x
H
H
v
a)
N
V' '
O
N
z
El
a
a
O
a
O
O
O
a
E >4
•
a
o
H
w
N
D o
0 a0
D O
M v
� O
•� e-i
� O
H
O
N
H
�
Aj
O
Q O
7 O
Q
H O
H O
H O
O
�qC O
171
O
V
W w
a
[x
N
N
WO
a H
Was
w %D
o
W M
H
u) r
0
C7 >+
z
H
H--
VI M
M H
O a >�
vz
H O
H r
a F4
k
U H N
+z
fA H
Q
M
M
M
O
z
a�'
o
zo
zo
zo
a°
W
O
C7
H
W
El
H Q
a
V) U
FF-I
H
'S
3 Q
ww
m
w z
° aa
a N
3a
a'►
H
a
U .i
U r-1
U rl
U H
U N
U N
3 W
E
W
W
W
W
W
W
W
U
U]
U]
y
uI
u)
Cn
°a x
u) H
ap
o
W
W
Eo
Eo
Eo
Eo
Eo
E.
p
O
a
A
a
w H
P.
Ck CD
a H
a' H
o; r
u) UI CA 3
c
W
H
a
H
O
rt
O
z r
r
z r
z r
r
Z r
W H
O
H O
H O
H O
E W
a
Gl
a
M
M
M
M
M
M
'
14
H
H
H
H
3 x W
(9
0 0
W 7
U G
m
H
W
U
4. O
t O
O#
O
o
O
H
O O
FC Gl
z N
z O
z N
z %D
to
z %D
W H
u1 %D
W >
0)
w
O a
O o
O M
O o
O w
O m
x (�
N Uf
Q
fi
.4.j
H 5
H
H
H
H •
V) H
En
0 O
A' r
0 r
Q %D
U 4 %D
GG RC w
p;
U
m
W
HEH
F�+
E+H
EHOHH
W
W m
m
cn
m
W
u)
Q m
H
W N
k
?
r1
a Q
a
E+4 fA
w
00
F
z
00
E
E
H
w E
x H
3
E
�a
wo
m
x0
xA
aA
wA
w a
m m
a W
W
w
W
m
0--
H O
a ° z H
m
cn
u)
a
a
a
a
a
a
rj) a
H
H
H
w
H
N
M
H
H
H
H
H
H
A
N
z
z
z
r 1
N
M
w
in
lD
U F
N E
z
z
z
O
O
O
O
O
O
°
H N
z
z
z
z
z
z
(h W z
b W
a
.
.H7
E
z
z
z
z
z
w A
H
H q
rp H j
w
w
w
w
w
w
W
: 3--
d) e
W
W
W
W
m
# m
*
a
a
a
a
d1
# O f4
> #
H
H
H
H
r•1
H
H
H
H
O
z (J,
E.
1
01
I
p
1
p
1
CL
t
I
(h N
k
— —
—
—
—
—
—
W k
#
O
o
O
0
O
0
O
0
O
0
O
0
O
0
O
0
O
0
O
0
E
# N
N x
•rl
*
#
E•
x
1 #
I
I
I
I
I
I
* — —
# J-J
— - --
1 H #
—
O 1
O
— —
0 1
—
O
—
0 1
—
0
—
O 1
—
0
—
O I
—
0 I
S Q
o
o
o
0
0
o
#
A+
o
o
# dJ H
w x
N
# (d
#
rJ
1
k (d H
6C x
N
M
# W O
1 #
1
1
1
I
1
1
ri
x —
—
— —
— —
—
—
—
—
—
—
—
—
1
#\ F
1 x
I
I
1
I
I
I
o
x tJ w
#
0
0
0
0
0
0
# QJ
1 7.a x
y
rl
1f1
H
N
Ill
H
M
w
dJ
# •.I Id
= #
O
O
0
O
O
yl
# y -rl
#
N
N
N
N
N
1l1
fd
# x Q
I #
1
I
I
I
I
I
+ F A
p s
1n
0
c
r
N
o
a
o
d 1
0
x N
#
V
M
s1
V
V
1f1
M
an
M
O
-
# O
x
N
H
N
H
N
H
N
H
N
H
x 'A
O x
N
x w
I z x
I
I
1
I
I
I
# H
z#
1
I
I
I
1
I
# rd
k
IA
0
r
O�
# U A
N#
(A
N
0)
N
m
H
0%
O
01
M
it .•A 1-1
'd k
w
w
w
w
w
M
# aJ a
a#
ri
H
H
H
k .,l dJ
k U q
71 x
# U
I w k
I
I
1
I
O
I
71
I
w
1
C'4
I
I
k l4 >
JJ x
O
y
0
r
O
to
0
w
O
O
M C7
x N N
ax
O
N
o
O
O
0
p H
a
Q*
r .;
f .;
H
w
V E
# cn
W x
11 y
#
I y#
I
I
I
I
I
I
H x
- -
- - --
—
— —
— —
—
—
— —
— —
q
I
ON
O1
CD
w
d1
01
M
N
1n
r
4.
Ln
N
co
O
ON
O
O
O
O
V
m a
k s+
w #
•
Ja H
# v b
x k
O1
O\
ON
O
O
O
>ma
wc�
H
*
H
-4-4
z M a
#
#
1
1
I
I
I
H *
- -
- - --
—
— —
— —
— —
— —
— —
H W
#
1 CJ #
CD
%D
-0 1
N
0 I
r
M I
p
In I
O
y U
k b
> x
rn
r
m
r
m
w
O
w
r
o
W Q•
# r-1 ro
RC *
O
O
O
p
H N ,7
#
Cl) *
> q y
k
#
—
H
U C4
k
I k
•a1 I
w 1
M 1
0 1
w I
H I
z W
#
k
'A
r
w
M
m
w
I F
k r-I y
#
m a
k
r
r
r
r
w
(' �4
x
I k
I
I
1
1
I
dJ
* —
P, y
#
#
O 1
O I
O 1
O
O 1
O 1
#
41
Ill
In
M
In
to
N
y
4
4
bl
A
x M
s
4
4
4
# Ot w
k
N
N
N
N
N
N
(],
4.)
ro
N 1--4
w
01
O
N
N
V'
N>
0
4) li
k LJ GJ
k
OD
CD
O\
ON
01
O
J.,
> -4 W # (d H
#
O
O
O
O
O
14
W
Q 4-1
k $ FA
k
M
M
M
M
M
M
m
>r k
*
H
H
H
H
H
ri
• C.I 'rl
(Q k
1 k
I
1
I
1
I
I
U k
* - -
- - --
—
— —
— —
— —
— —
— —
N W
k
I k
(n I
M I
w 1
{n I
w I
In I
O
M
(n
H
CD
Ln
@
k iJ ...,
k
y
to
Ln
w
w
CD
k W w
#
H
rl
H
H
H
N
#
k
#
1 #
I
I
1
I
1
I
#
1 #
O 1
O 1
O 1
CO 1
O 1
O 1
y
x
dJ #
ri
O
ri
d
co
m
co
01
ei
H
41 41
H
u1
* 14 >
O x
O
o
O
O
'•{
# v N
r-I k
r
O
r
0
r
O
r
0
r
W
r
H
y x
o
O
0
-
a
O
U
O
W
#
M
M
M
m
M
M
(d
k H
C k
H
rl
ri
H
H
I
U#
1
I
1
1
—
I
—
I
N #
- -
- - --
—
0
— —
o 1 O
— —
O 1
G1
—
01 I
1--1
O I
O I
01
N
CO
O
N
N
w
CD
r
w
W
w
w
# O#
d1
y
O
M
M
r
O
r
CD
CD
H
# 4-1
H x
N
r
O
OD
CO
M
N
N
v
t7
V
k (d
W #
O
M
s(
V
14
w
w
F7
w
4J
r4
H
H
#
#
w
x
x
M
'
N
�L
E
O
a�
z
o
0
0
Gl
C7
C7
C9
E
0
O
W
N
V' O
co
O
O
Q,
rl
O
N
'a O
`J O
.:3 O
(d
H O
H O
H O
Q
0
O
�] ul
'nyi
Cry•
to
a
N
a rl
W m
W 10
>+
o
u1 M
in r
3
3 M
t9 �+
z
H
E
W M
o
a� z
HN
H N
H E �
#
OH>+
-H z
W H
W W H
> Q
M
M
M
o
a
o
z
zo
zo
zo
a°
w
o
w
z °
�Z a
H
E
m
H
H
H Q
M
a
N u
H
a
3
a
a
O
O
H.
w
CL
ww
w
u) z
° o;a
as
zz#
#
#
#
#
#
4L N
H
a
U H
U H
U H
U rA
U N
U N
3 W
E
W
W
W
W
w
W
w
U
uJ
ca
V)
W
u1
ul
#
a w Q: W fJ� p
o
w
W
E+o
Ho
Fo
FO
Ho
Eo
o;H
af-i
am
C4
w +
aH
W u! m 3
O
H
H
rl
ZP
W q.
%n
H
O
m
O
> W p
z r
> W
z r
z r
> w >
z r
r
r
S rx
W rl Lx
N
RS
34
R:
H O
H O
H O
H O
H O
H O
[ti W
W
4)
LL
M
M
M
M
M
M
3 x W
m
H
H
H
H
H
H
W :j
W
C7
H
0o
o o
u 9
rj 4)
r+
u#
µ'
of
z N
of
z O
of
z N
o
z 10
o
"�.. 10
0
z 1D
W H
'xi A
into
W >
Q
Ql
R
W
Oa
H
00
H
OM
H
Oao
)..)
Om
H
Oco
N H
Nul
•H
H
EN
El
E-4 OD
EvwEvA4Hv
m d
J
u
m
�o
�v
r1v
Q1oURC1uo4rClc
P'
U
W
FFH
EH
FH
FH
E.-)OFH
W
- K
W.W
v)
Q
3y
H x
4)
>.
°' F
0
E. m
W
w Q
E+W
z
H
W
o
3
S
O
13,
aQ
o�
FQ
��
�Q
-
uQ
-
uQ
�
�
EQ
��
a
c�
a°
°
mx
3 z N
cn
(n
En
Q
14
Q
a
Q
w a
H
H
H
g
m
m
v1
m
m
ul
W
H
N
M
H
N
H
H
H
H
14 zz a
v N
z
z
z
H
N
M
v
UI
10
A u E
N H
z
z
z
O
O
O
O
O
O
ch
H ` q
z
z
z
z
z
z
m w °z
a
a
a
H
w
w
w
w q
qqq
H
H~
w
w
w
w
w
w
0
on
0
W
W
W
W
W
Hydrology Map
L A
e
HYDROLOGY MAP
FOR
WESTERLY HALF OF TTM N0. 16992
Dow—
HAM"
sm am
o
u -- AM:..
II
on= smw DRAM
(�4
Nop and Br.
ALLARD ENGINEERING
Lb8 E - - - Lod &..y" - Lod PY®mg
8251 SW- A—
(9093356-1815 F. MW) 158 -1795
I-" Lmmm)
I
®
8
7
fife
;�
��q
w
*
{�
on= smw DRAM
(�4
Nop and Br.
ALLARD ENGINEERING
Lb8 E - - - Lod &..y" - Lod PY®mg
8251 SW- A—
(9093356-1815 F. MW) 158 -1795
I-" Lmmm)
I