Loading...
HomeMy WebLinkAboutRancho Fontana - Tract 16992ALLARD ENGINEERING C L` =1e.a v lma.w.mo tea a i m HYDROLOGY &HYDRAULICS REPORT for Beech Avenue Improvements City Drawings No. 3719 and 3721 a August 15, 2004 Revised October 14, 2004 Prepared For: Young Homes 10370 Trademark Street Rancho Cucamonga, CA 91730 (909) 477 -6722 Fax (909) 477 -6725 Job Number 159.26.02 ARM btellA NO Prepared under the supervision of: ., yT c `. V David S Hammer HCE a3sfls Exp 08 -30-05 c ^. r :U 8253 Sierra Avenue Fontana, CA 92335 (909) 358 -1815 * (909) 356-1795 Table of Contents C7 Introduction......................................... ..............................1 Purpose.............................................. ..............................1 Methodology........................................ ..............................1 Findings............................................. ..............................1 Appendix ♦ Hydrology Exhibits ♦ In -Tract Hydrology and Hydraulic Calculations A) 100 year Rational Method AMC H B) 25 year Rational Method AMC H C) Street Capacity Calculations for Cul- de-sac D) Catch basin calculations ♦ Storm Drain W.S.P. G. W. for proposed pipes connecting to existing drainage system at Beech Avenue ♦ Storm Drain W.S.P. G. W. for existing pipe connecting to existing catch basin at Beech Avenue ♦ Hydrology Maps Developed condition PURPOSE The purpose of this report is to support the storm drain design associated with improvements for Beech Avenue between Miller Avenue and Village Parkway. The improvements are not associated with any one particular tract. The improvements are being provided to improve access to the area commonly known as Village Walk which lies south of Baseline Avenue and north of Miller Avenue on either side of Beech Avenue. WATERSHED The watershed consists of two sub areas; one area will drain a portion of the future tract 16992 between Sultana Avenue and Beech Avenue on the north side of Miller Avenue. The second area is the east side of Beech Avenue from Village Parkway down to Miller Avenue. The first area shall have a storm drain stub for future extension into the tract. The second area will drain to a sump catch basin in Beech Avenue immediately north of Miller Avenue. An existing catch basin at the intersection shall be removed because it conflicts with the proposed curb return. METHODOLOGY Ar.✓ The design flow rates for storm water runoff were determined using a rational method in conformance with the San Bernardino County Hydrology Manual. The pipe sizes for the storm drain were determined using the WSPG program commonly used for hydraulics calculations in this area. Catch basin sizing is provided as well for the purposes of sizing the catch basin at the corner of Beech Avenue and Miller Avenue. The design flow rate for the replacement catch basin and its storm drain pipe lateral comes from the approved city drawing 3448. SUMMARY This report supports the design as proposed on the improvement plans for city drawing 3448 which includes a 21' size catch basin with a 30" diameter pipe for the inlet at the northeast corner of Miller Avenue and Beech Avenue and a 24" diameter pipe stubbed out for future service by tract 16992. E�q Hydrology Exhibits �mq 3.5 3.5 3 3 2.5 2.5 w U Z Z _ = 2 2 1- - n. w 0 -J U- 15 - � / 1.5 Z j � 1.4 Ix 1 0.9e =zs= %-rz 5.,„,. 1 /..----- l /� 0.5 - 0.5 0 _ 0 2 5 10 25 50 100 RETURN PERIOD IN YEARS NOTE. I. FOR 1HTERMEDUTE RETURN PERIOOS PLOT 10-YEAR ANO 100 -YEAR ONE HOUR VALUES FROM MAPS. THEM CONNECT POINTS AND READ VALUE FOR DESIRED RETURN PERIOD. FOR EXAMPLE GIVEN 10-YEAR ONE HOUR • 0.95" AND 100 -YEAR CNE HOUR • 160 , tS -YE AR ONE HOUR • Ile. REFERENCE •NOAA ATLAS t. VOLUME Xt- CAL..19T3 RAINFALL DEPTH VERSUS SAN BERNARDINO COUNTY RETURN PERIOD FOR HYDROLOGY MANUAL PARTIAL DURATION SERIES _ l D- 7 FIGURE 0- 2 VAS WIck7— [{ L6 1.7 R8 I R7W R6W , R5 I 4W '` : R2W r RIW `� RIE °+ R2E ,I�} 30 1.3 I 1 T � • •�• r � I 1 1. 1 1 I ( r run •• [�� I , j L• \ T - _-- - -- i — �__ ^i — .� —"1 — at• 1 � � '1.. ��— � I t 5 }. ~ S� I � I J R(�1 ;s * , 1. rr• nr. ' _ y - -• _.:L_ '• - � ..1. - -- � 1- �� , - .- ' s� ' � • � . • - - -- 1 tit ,ITV[• -y _ _ t r � ' !' i � �:. it h TAN I c I c• r` If 1 •�I s I I 1 BE •.a Or.r. I 4. If ` " I ! I a • ,. '7` • [`f. _' ._. r _ — — _ t,t_ rw -- — — — _ _— _ � — .. ._ — — L{ I, a - 1. [RrW a • r � _ ~ �` I L7 >p �► � - - a.. z , .< ,. , _ - '- .._ - ,valaK [ i L � � /r( � 1� NJ" k - 7 IA l7 . I 1 �„� •-; .jV'r».. rr f• t - 1 r - -- - �� [•,� T I N l --�� - �I•� rt 1-• —j - - : - -- - - Ir - -` •-:lr' - - >i - -'Y;.•: - S ltc. �� .. �:- _ T _ � ,�.. _ - i•, 1 I N ' [ 1,_ i � `3 :�e I. _ '� � i °•� saw 4.• Iro,T� � - � �, 1 �- I I - PL ♦ r •[ = N 1 0 cu+IrnafT - R I A LT 0_ - . '':- ' - _ ` �" - - - - - - - - r- '-� - -'� • ONTAWX TIS ol ONTA lOe '4 • 2 e COLTON� �.�S t r 1 - _ L{ - - - - - ` - - •y. _ - -- - - , _ '' ' tpi� .. - .r -.4 • • a.o.. ••� .. [trait � `- Gt [■ - Y- M• - ..x S wrw I 12 -'.• TtIC.IH ir _ 1 \•v -. I .' N I y ..:' r ,r M/1»t i[I111tCt I nlvgnrog .t - t' -• - - - �- - �' I f - - , - .!, awl w < • I <,• r/` R 1 , I RZ ! nl tro[ [ t woo j� T2S i 1 ERSIDE • 1 1 R2w R I ��oo = 1.4 fir„ SAN KRNARDINO COLKTY FLOOO CONTROL DISTRICT* R5 REDUCED DRAWING VALLEY AREA T3$ - ' _ - I _ ca. : `,- •..,�•.- - _ . SCALE I = 4 MILES NOWETALS to -100 YEAR 1--HOUR ='_• [' <" _ts , SAN BERNAR �J INO COUNTY "�°°""'°`'"°"" - T T4N I - I 1 I_ R R6W - R5 - { -I `! I _ �t4W R2Yr! RIW �•' - - ,.�i 7 1- .t� _ r ---- - - -�y� - -L " RI I RZE , I L4 1 _ — — ✓ t T -- -- — _ —I_ — �i —_ I I I 4 T4N % • . �•. I � I - ` t I•r\a•,Ya. h..r•. y Y i I f f' / ( � \;, — — 1 �_ -- -- - . .w� 1 I �'-- t -- — I _- 1- J T — I —` — ' �• �REp�eJ ` • s .c .. LO _ i� ` /`f _ - ` g LJ ( r� • 1 - r t �• \ 4 ( I T 3N Ir P _ - !IC11pN_3 •,; • ,. • • e r - a%nirr — I • . tl — — J _ _ — — — - - "• `� S _ ,! �� —� '_ -� - -; — -� > - - - • • __2 —I I � 1 1.6 •.� `s• `�' \ � r•°' •�_ � _ � I ' - � - ' I � � � ._ _ -� ^— • i i 6 — .— � . i r I � � I \ I I � i sf . �" � — '. _ _ — at • s - 1• tea _ y i ce' . YaT._` — - \ ` ` . _ T V 1 3 N N • I I � i / ��• , �'' -'-.\ 't' - 1 ' va.r if : � d�' � _ - ,1 _ S . • . . 4 - • _ _ _ I_ I` t ) L3 1.4 I , i nn ^^ •a Ca - — ••� - � � / ' 1 I ' L �rro.ri.o 4•. / T `°`� "! ,,. :.r :. � — - -- T2N BI E' p `prR • ••'. ' J- _;7 -.% .-._ _ •r rs- ✓:ITS' — — — — '— �' - d iV crlt - - N4 KA [• __ - - -' � - - f._ _•. t, �. .! "'(�..•- '� '•` - — �r \aa.f, raw • __ - - ,\ `� ... ,{ VSF �� d L7 1y ;.. , �>ti — r `• — 1/ �� I.4 AL 1 .4 io�?i4 *F- h _ L3 r u.. MICK 7 - T \ - • , ItarY•r 4 [�r -v a _ y - I _ - .' i on ' dart 1 X --- '9 ! •a •. -` '_- P LAND `- — — — -- — - -- - -- LTO_ _ >:.. - � f m` I I • I TIS ONT lOS.• , C ,TON• __ L - rb J/ ' - — - -+:t - i .►•• j �• - ,_ ; _ a �. REDLANDS a .c. ..a •� 1 a ,- I__ _ _ \ j.IS IT- pop • s S %oit� %roA -1 _ T 2 S '- - - ' • .1- , - - A, SAN Bgpj$AODM our • - - - a° 'mo — - - - I — }' �• — _: • •• •/ •,r[•>,oc court - - �! R I E , �' �1 i - - - - •� - I ".,, R E I a - - - 5 , . I R S I D E - I , - ry., = - - j '' T,..� `• _�fw• ._ � 1/ - �OyM 1 " q'• 1 (, R4W I R3 - R2W ." RI F LOOD �T3S a VP AN BERNARDDINO OLINTY RS }" REDUCED DRAWING VALLEY AREA •. - 1 SCALE 1 4 MILES 0HYETALS SAN BERNARDINO COUNTY Yp to YEAR I HOUR ••'• J L, • _ _ , r►s1EO'•9N -ane KoAAxn Ai 2.1973 — - 10 A �fc \ .. HYDROLOGY MANUAL LEGEND%�� 6 wk '•••'' •'••'• "••• " "• "•••••'•••• / ,t ISpI_IN g PRECIPITATION(INCHES) GATE F 7Cit>t itit - W10 N4 � 1902 f.2Ml W*04 1 y of 12 B - I I FIGURE R --A In -Tract Hydrology and Hydraulic Calculations NO Mmi A) 100 -Year Rational Method AMCH A RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -2003 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2003 License ID 1400 Analysis prepared by: Allard Engineering 8253 Serria Avenue Fontana Ca. 92335 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * TRACT 16992, FONTANA * 100 YEAR STORM EVENT. 100 YEAR INTENSITY, AMC II * BY: E.I. ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 16992DOO.DAT TIME /DATE OF STUDY: 09:01 08/03/2004 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL * -- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = 0.6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.4000 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* *USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET- CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT - /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 18.0 8.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER- SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 10.00 TO NODE 20.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>> RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<<<< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 450.00 ELEVATION DATA: UPSTREAM(FEET) = 1326.20 DOWNSTREAM(FEET) = 1322.30 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.049 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.356 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH /HR) RESIDENTIAL 11 5 -7 DWELLINGS /ACRE" A 1.80 0.98 COMMERCIAL A 0.30 0.98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.44 SUBAREA RUNOFF(CFS) = 7.42 TOTAL AREA(ACRES) = 2.10 PEAK FLOW RATE(CFS) Ap SCS Tc (DECIMAL) CN (MIN.) 0.50 32 11.58 0.10 32 9.05 0.98 7.42 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 20.00 TO NODE 30.00 IS CODE = 62 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<< <<< >>>( STREET TABLE SECTION # 1 USED)<<<<< UPSTREAM ELEVATION(FEET) = 1322.30 DOWNSTREAM ELEVATION(FEET) = 1321.00 STREET LENGTH(FEET) = 265.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 8.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 10.78 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.44 HALFSTREET FLOOD WIDTH(FEET) = 15.84 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.05 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 0.91 STREET FLOW TRAVEL TIME(MIN.) = 2.15 Tc(MIN.) = 11.20 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.832 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL 11 5 -7 DWELLINGS /ACRE" A 1.90 0.98 0.50 32 COMMERCIAL A 0.30 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.45 SUBAREA AREA(ACRES) = 2.20 SUBAREA RUNOFF(CFS) = 6.73 EFFECTIVE AREA(ACRES) = 4.30 AREA- AVERAGED Fm(INCH /HR) = 0.43 AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.44 TOTAL AREA(ACRES) = 4.30 PEAK FLOW RATE(CFS) = 13.15 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.47 HALFSTREET FLOOD WIDTH(FEET) = 17.16 FLOW VELOCITY(FEET /SEC.) = 2.15 DEPTH *VELOCITY(FT *FT /SEC.) = 1.01 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 30.00 = 715.00 FEET. IN ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 40.00 TO NODE 50.00 IS CODE = 21 ---------------------------------------------------------------------- - - - - -- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<<<< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 360.00 ELEVATION DATA: UPSTREAM(FEET) = 1323.00 DOWNSTREAM(FEET) = 1317.60 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.416 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.908 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH /HR) RESIDENTIAL 11 5 -7 DWELLINGS /ACRE" A 1.40 0.98 COMMERCIAL A 0.30 0.98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.43 SUBAREA RUNOFF(CFS) = 6.87 TOTAL AREA(ACRES) = 1.70 PEAK FLOW RATE(CFS) Ap SCS Tc (DECIMAL) CN (MIN.) 0.50 32 9.49 0.10 32 7.42 0.98 = 6.87 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 50.00 TO NODE 60.00 IS CODE = 62 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <<<<< >>>>>( STREET TABLE SECTION # 1 USED)<< <<< -------------------------------- UPSTREAM ELEVATION(FEET) = 1317.60 DOWNSTREAM ELEVATION(FEET) = 1314.50 STREET LENGTH(FEET) = 255.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 8.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) _ STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.39 HALFSTREET FLOOD WIDTH(FEET) = 13.16 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.87 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.12 STREET FLOW TRAVEL TIME(MIN.) = 1.48 Tc(MIN.) _ * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.401 SUBAREA LOSS RATE DATA(AMC II): t� 8.90 10.63 AN DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL 11 5 -7 DWELLINGS /ACRE" A 1.80 0.98 0.50 32 COMMERCIAL A 0.30 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.44 SUBAREA AREA(ACRES) = 2.10 SUBAREA RUNOFF(CFS) = 7.50 EFFECTIVE AREA(ACRES) = 3.80 AREA- AVERAGED F /HR) = 0.43 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.44 TOTAL AREA(ACRES) = 3.80 PEAK FLOW RATE(CFS) = 13.59 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.42 HALFSTREET FLOOD WIDTH(FEET) = 14.47 FLOW VELOCITY(FEET /SEC.) = 3.07 DEPTH *VELOCITY(FT *FT /SEC.) = 1.28 LONGEST FLOWPATH FROM NODE 40.00 TO NODE 60.00 = 615.00 FEET. �q B) 25 -Year Rational Method AMCH C C Adook ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -2003 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2003 License ID 1400 Analysis prepared by: Allard Engineering 8253 Serria Avenue Fontana Ca. 92335 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * TRACT 16992, FONTANA * 25 YEAR STORM EVENT, 25 YEAR INTENSITY, AMC II * BY: E.I. ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 16992D25.DAT TIME /DATE OF STUDY: 13:41 08/03/2004 ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- -- *TIME -OF- CONCENTRATION MODEL * -- USER SPECIFIED STORM EVENT(YEAR) = 25.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = 0.6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.1200 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* *USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET- CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT - /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) ^ 1 18.0 8.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER- SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** - - FLOW - PROCESS - FROM - NODE - - -- - 1000 TO NODE -- 2000 - IS CODE = 21 ----- - - - - -- ----------------------- >>>>> RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 450.00 ELEVATION DATA: UPSTREAM(FEET) = 1326.20 DOWNSTREAM(FEET) = 1322.30 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.049 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.485 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH /HR) RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 1.80 0.98 COMMERCIAL A 0.30 0.98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.44 SUBAREA RUNOFF(CFS) = 5.77 TOTAL AREA(ACRES) = 2.10 PEAK FLOW RATE(CFS) Ap SCS Tc (DECIMAL) CN (MIN.) 0.50 32 11.58 0.10 32 9.05 0.98 5.77 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 20.00 TO NODE 30.00 IS CODE = 62 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>( STREET TABLE SECTION # 1 USED)<<<<< UPSTREAM ELEVATION(FEET) = 1322.30 DOWNSTREAM ELEVATION(FEET) = 1321.00 STREET LENGTH(FEET) = 265.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 8.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 RESIDENTIAL * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 8.36 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.41 HALFSTREET FLOOD WIDTH(FEET) = 14.28 AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.94 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 0.80 STREET FLOW TRAVEL TIME(MIN.) = 2.28 Tc(MIN.) = 11.33 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.045 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND UGR. GROUP (ACRES) (INCH /HR) (DECIMAL) CN 11 5 -7 DWELLINGS /ACRE" A 1.90 0.98 0.50 COMMERCIAL A 0.30 0.98 0.10 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.45 SUBAREA AREA(ACRES) = 2.20 SUBAREA RUNOFF(CFS) = 5.17 EFFECTIVE AREA(ACRES) = 4.30 AREA- AVERAGED Fm(INCH /HR) _ AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.44 TOTAL AREA(ACRES) = 1 4.30 PEAK FLOW RATE(CFS) = 32 32 0.43 10.11 A END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.43 HALFSTREET FLOOD WIDTH(FEET) = 15.41 FLOW VELOCITY(FEET /SEC.) = 2.03 DEPTH *VELOCITY(FT *FT /SEC.) = 0.88 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 30.00 = 715.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 40.00 TO NODE 50.00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<<<< >>USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW- LENGTH(FEET) = 360.00 ELEVATION DATA: UPSTREAM(FEET) = 1323.00 DOWNSTREAM(FEET) = 1317.60 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.416 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.926 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH /HR) RESIDENTIAL 11 5 -7 DWELLINGS /ACRE" A 1.40 0.98 COMMERCIAL A 0.30 0.98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.43 SUBAREA RUNOFF(CFS) = 5.37 TOTAL AREA(ACRES) = 1.70 PEAK FLOW RATE(CFS) Ap SCS Tc (DECIMAL) CN (MIN.) 0.50 32 9.49 0.10 32 7.42 0.98 5.37 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 50.00 TO NODE 60.00 IS CODE = 62 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<< <<< >>>>>( STREET TABLE SECTION # 1 USED) <<<<< UPSTREAM ELEVATION(FEET) = 1317.60 DOWNSTREAM ELEVATION(FEET) = 1314.50 STREET LENGTH(FEET) = 255.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 8.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) _ STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.36 HALFSTREET FLOOD WIDTH(FEET) = 11.84 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.72 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 0.99 STREET FLOW TRAVEL TIME(MIN.) = 1.56 Tc(MIN.) = 8.98 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.501 SUBAREA LOSS RATE DATA,(AMC II): 8.27 DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 1.80 0.98 0.50 32 COMMERCIAL A 0.30 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.44 SUBAREA AREA(ACRES) = 2.10 SUBAREA RUNOFF(CFS) = 5.80 EFFECTIVE AREA(ACRES) = 3.80 AREA- AVERAGED Fm(INCH /HR) = 0.43 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.44 TOTAL AREA(ACRES) = 3.80 PEAK FLOW RATE(CFS) = 10.52 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.39 HALFSTREET FLOOD WIDTH(FEET) = 13.09 FLOW VELOCITY(FEET /SEC.) = 2.87 DEPTH *VELOCITY(FT *FT /SEC.) = 1.11 LONGEST FLOWPATH FROM NODE 40.00 TO NODE 60.00 = 615.00 FEET. A `s C) Street Capacity Calculations Iq HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License ID 1400 Analysis prepared by: Allard Engineering 8253 Sierra Avenue Fontana Ca. 92335 ---------------------------------------------------------------------------- TIME /DATE OF STUDY: 11:13 08/02/2004 Problem Descriptions: TRACT 16992, FONTANA Street capacity calculation, 25 year storm Reed Street ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** >>>>STREETFLOW MODEL INPUT INFORMATION<<<< ----------------------------------------------------------------------------- CONSTANT STREET GRADE(FEET /FEET) = 0.005000 CONSTANT STREET FLOW(CFS) = 10.11 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.50 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) = 0.03125 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) = 0.12500 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES STREET FLOW MODEL RESULTS: ---------------------------------------------------------------------- - - - - -- STREET FLOW DEPTH(FEET) = 0.43 < 0.5' OK HALFSTREET FLOOD WIDTH(FEET) = 15.16 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.09 PRODUCT OF DEPTH &VELOCITY = 0.90 u ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License ID 1400 Analysis prepared by: Allard Engineering 8253 Sierra Avenue Fontana Ca. 92335 ---------------------------------------------------------------------------- TIME /DATE OF STUDY: 13:03 08/02/2004 Problem Descriptions: TRACT 16992, FONTANA Street capacity calculation, 25 year storm "A" Street ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** >>>>STREETFLOW MODEL INPUT INFORMATION <<<< ---------------------------------------------------------------------------- CONSTANT STREET GRADE(FEET /FEET) = 0.012000 CONSTANT STREET FLOW(CFS) = 10.52 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.50 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER- LIP(FEET) = 0.03125 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) = 0.12500 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES STREET FLOW MODEL RESULTS: ---------------------------------------------------------------------------- STREET FLOW DEPTH(FEET) = 0.39 < 0.5' OK HALFSTREET FLOOD WIDTH(FEET) = 13.10 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.87 PRODUCT OF DEPTH &VELOCITY D) Catch basin calculations C7 :I HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License ID 1400 Analysis prepared by: Allard Engineering 8253 Sierra Avenue Fontana Ca. 92335 ---------------------------------------------------------------------------- TIME /DATE OF STUDY: 10:50 08/02/2004 Problem Descriptions: TRACT 16992, FONTANA Catch basin calculation, sump condition, 100 year storm Catch basin No. 1 connecting to Sultana Avenue >>>>SUMP TYPE BASIN INPUT INFORMATION<<<< ---------------------------------------------------------------------- - - - - -- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 13.15 BASIN OPENING(FEET) = 0.71 DEPTH OF WATER(FEET) = 0.83 >>>>CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 6.05 Need W = 7' Use W = 10' �401 0 HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License ID 1400 Analysis prepared by: Allard Engineering 8253 Sierra Avenue Fontana Ca. 92335 ---------------------------------------------------------------------------- TIME /DATE OF STUDY: 10:50 08/02/2004 Problem Descriptions: TRACT 16992, FONTANA Catch basin calculation, sump condition, 100 year storm Catch basin No. 2 connecting to Beech Avenue >>>>SUMP TYPE BASIN INPUT INFORMATION<< << ---------------------------------------------------------------------- - - - - -- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 13.59 BASIN OPENING(FEET) = 0.71 DEPTH OF WATER(FEET) = 0.83 >>>>CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 6.25 Need W = 7' Use W = 10' 0 i 1 4 - L! 4 Storm Drain W.S.P.G.W C Ll Storm Drain W.S.P. G. W. for proposed pipes connecting to existing drainage system at Beech Avenue M ,1 On 0 T1 TRACT 16992, FONTANA 0 T2 LATERAL 1, FROM "A" STREET TO BEECH AVENUE T3 BY: E.I. SO 0103.0001308.550 1 1310.300 R 0107.1001308.570 1 .013 .000 .000 0 R 0154.7501308.810 1 .013 30.002 .000 0 R 0213.8201309.108 1 .013 .000 .000 0 WE 0213.8201309.108 2 .500 SH 0213.8201309.108 2 1309.108 CD 1 4 1 .000 2.000 .000 .000 .000 .00 CD 2 2 0 .000 5.000 10.000 .000 .000 .00 Q 13.600 .0 On 0 C ! H w # •ri U # 4, t 3-- 4) x w W W W w M # m m a a a a a M # O S4 4 , H r-1 H H H w # z a F 4 a Cl. I m a I (l ri 4 - - - - -- — — — — — — — — — — — — — W •• # 4 O O O O O O o O O O O O 0 0 0 0 0 0 0 0 0 0 0 # N N # E+ # # # JJ I A # O 1 O o I O o I O O I o O I o o 1 0 1 d # g q ri # 0 0 0 0 0 0 0 0 0 0 0 0 o * ro* o 0 0 0 0 0 0 O # W H w 4 • N 4 N I # O M # m O 1 k I I I I I I I ri - - - - -- — — — — — — — — — — — — — I p k\ # y Gil I k k I O I O I O I O i O I O I o O'-1 O ri O O O O O O LJ 4 y -rl # N N N N N N u1 ro # x Q 1 # I I 1 I I I I N M V ri M ri r ri m ri ! o # 4J 4 M •d' M VI 1I1 V' I!1 V' U) V� r O EE ri ri ri H H ri r+ ri o # ri3 O4 z # I I I 1 I i 1 * - - - - -- — — — — — — — — — — — — — # Ln M U1 M U1 M # •ri J-1 Id k M M (n M M M M # L) GL :j k # -r1 d) O 4 ri ri ri r-1 ri H # si Q }i 4 k U I w k I I I I I 1 I Ul 1 l!1 1 Ul I N I" I I 4 }I > 4.) # O r H r ri W O %D O Ill O O M U # y v a# O O O O O O O O 4t r-4 Q# ri ri H H it W V F k cn W # pl # I W# I I I 1 I I I a # 1 # I I I 1 I 1 I U1 M co N M Ul ri ID •,� W * t71 W # �D W o 0 to H r 0 o co r-4 Ch � 0 o M m a # sa w k . }i 04 # GI x # O O ri O O r-1 ri d) w 'J N O W # ('. 7•I 4 k W C9 # * ri M ri M ri M .� M ri M r-1 M ri M m a # # �, ri �, ri , I I # — M V I sp r I �D D� I Ol N I N U1 I r-1 I U) U * b '.! # M M M M M M M M VI V d O 0 0 0 0 0 0 0 0 W *; W w # w # W k 17 U D: O # 1 # r I ON I ri I 00 I M I O 1 O z W P 1 0 'D D1 M N # v a v c U1 Ul 3 ro 3 W # 0) x rl W # # p W W # # 07 O O O O O I 0 1 # UI # M M M M M M M # d W # r ri ri ri ri ri ri * U U £ k * pl o a # i # I I I t I 1 I w w # - - # - - -- 1 # — o — — — — r I — — N I — — U) I — — M 1 — — Ol 1 ro k # o ri o M N o In }i N ri H # Si # M M VI V' Ul b M �O1 Sd Ch 0\ %D k G) ' W k y U) # ro ri k k 4 O r-1 O rl O H O H O r1 O r-1 14 11 W ri k W # M M M M M M M H ri ri 1-i Ul �• * - -- # -x— I # O I — 1-i I — lD 1 — N I N — C V — 01 — vl a El # f+ # JJ # In d a U) N 4 y w # ri r-I ri r-1 ri H N 4 k # I # 1 I I I 1 I 1 # 1 k O 1 0 1 r - 1 I O 1 ri 1 m I 00 I # y# Ul r O lD O ri O O O O O 4-) UI v Ln � p - ! H # Si > O k O O O O 4 N d) 1•-1 k 00 O co O co O 00 O 00 O ON W 41 # (." W 4 O M O M O M O M O M H O U M O M H 1d r -1 N # # - - I U# - - -- I — H 1 — — r r-I I — — r I M H 1 — O 1 r♦ I H I 01 ri I O 1 I O 1 p) 4 I # O I O O O 0 1 O r r r m %D ri O N N O r-4 H O 0% r r D\ r ri aD a0 u ro 1 r w# 14 O O r M v v rn Ul M ao m ui N m a H ri H aJ « H ri ri H ri N N , ► a H # # D4 x x x O 14 z a a a o z C, a o z o E W z o z a FC Q RC El E W N , o n N . 0 ,-. Oo co C70 M V O O O H O M ri b y�J .7 O ,7 01 .7 O H H m H A O O O rn . o w o w H (A (n V] m H O 3 S M C7 �+ z H E-- (A M M H o a � �z �+o H N r. F # O H N -H z m H H W 4) W ri •J a o z z o z o z o a u W O C9 H W H F-I � a H 3 a U 3 a a a PO Ha a 0 4 E z W W (A [A O W W a s 3 a F 3# # # # # # a N E W W H E E E F E H W a U ri U H U E W U m U m U U E co W W U) # m o W - W Eo a Fo Ho Em Em Fm Q' H V) m o a a 44 ul w u� w u, m w r+ w H a s o O O £ O m m m a% m rn W r 4 a r a W O a H O H O H o H o H o H O F W a a a M M M M M M W r 1 ri H 14 r•1 3 x W N W N W m m U# O# O# O# O o H Q' '�.� o 'Z o z Ln z N z N z z N W H o o w w W O o O H O r O m 0 m O m x (] N 5 rl H a H • H • H H M H to E a W ui �o 4 O Q � �r W a , U � F a W to H u) H UI H Vl N i2 VI N � rn N a Q o F ��+ z WWGG H o 3 3 0 RC 4 a a r 44 x RC FCCa wa wA xA xA xA as wa mrn acn �W W a aW V)im O-- a rio m� o zH x m a a a a Q a m H H H W W W W N W 3: DI ri N M H H H H H H a N H N M v U1 w U E z Z x ro N E z z z O O O O O O ° z H N H1 z z z z z z W . . in v1 E F F z w u U W U U � W W W W W W A Storm Drain W.S.P. G. W. for existing pipe connecting to existing catch basin at Beech Avenue s T1 Beech Avenue 0 T2 Existing lateral b T3 By E.I. SO 102.4201307.110 1 1308.600 R 140.0001307.410 1 .013 .000 .000 0 R 148.3201307.480 1 .013 - 21.187 .000 0 R 164.8601307.610 1 .013 .000 .000 0 WE 164.8601307.610 2 .500 SH 164.8601307.610 2 1307.610 CD 1 4 1 .000 2.500 .000 .000 .000 .00 CD 2 2 0 .000 5.600 21.000 .000 .000 .00 Q 24.500 .0 Mm, \rd x x x H H v a) N V' ' O N z El a a O a O O O a E >4 • a o H w N D o 0 a0 D O M v � O •� e-i � O H O N H � Aj O Q O 7 O Q H O H O H O O �qC O 171 O V W w a [x N N WO a H Was w %D o W M H u) r 0 C7 >+ z H H-- VI M M H O a >� vz H O H r a F4 k U H N +z fA H Q M M M O z a�' o zo zo zo a° W O C7 H W El H Q a V) U FF-I H 'S 3 Q ww m w z ° aa a N 3a a'► H a U .i U r-1 U rl U H U N U N 3 W E W W W W W W W U U] U] y uI u) Cn °a x u) H ap o W W Eo Eo Eo Eo Eo E. p O a A a w H P. Ck CD a H a' H o; r u) UI CA 3 c W H a H O rt O z r r z r z r r Z r W H O H O H O H O E W a Gl a M M M M M M ' 14 H H H H 3 x W (9 0 0 W 7 U G m H W U 4. O t O O# O o O H O O FC Gl z N z O z N z %D to z %D W H u1 %D W > 0) w O a O o O M O o O w O m x (� N Uf Q fi .4.j H 5 H H H H • V) H En 0 O A' r 0 r Q %D U 4 %D GG RC w p; U m W HEH F�+ E+H EHOHH W W m m cn m W u) Q m H W N k ? r1 a Q a E+4 fA w 00 F z 00 E E H w E x H 3 E �a wo m x0 xA aA wA w a m m a W W w W m 0-- H O a ° z H m cn u) a a a a a a rj) a H H H w H N M H H H H H H A N z z z r 1 N M w in lD U F N E z z z O O O O O O ° H N z z z z z z (h W z b W a . .H7 E z z z z z w A H H q rp H j w w w w w w W : 3-- d) e W W W W m # m * a a a a d1 # O f4 > # H H H H r•1 H H H H O z (J, E. 1 01 I p 1 p 1 CL t I (h N k — — — — — — — W k # O o O 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0 E # N N x •rl * # E• x 1 # I I I I I I * — — # J-J — - -- 1 H # — O 1 O — — 0 1 — O — 0 1 — 0 — O 1 — 0 — O I — 0 I S Q o o o 0 0 o # A+ o o # dJ H w x N # (d # rJ 1 k (d H 6C x N M # W O 1 # 1 1 1 I 1 1 ri x — — — — — — — — — — — — — — 1 #\ F 1 x I I 1 I I I o x tJ w # 0 0 0 0 0 0 # QJ 1 7.a x y rl 1f1 H N Ill H M w dJ # •.I Id = # O O 0 O O yl # y -rl # N N N N N 1l1 fd # x Q I # 1 I I I I I + F A p s 1n 0 c r N o a o d 1 0 x N # V M s1 V V 1f1 M an M O - # O x N H N H N H N H N H x 'A O x N x w I z x I I 1 I I I # H z# 1 I I I 1 I # rd k IA 0 r O� # U A N# (A N 0) N m H 0% O 01 M it .•A 1-1 'd k w w w w w M # aJ a a# ri H H H k .,l dJ k U q 71 x # U I w k I I 1 I O I 71 I w 1 C'4 I I k l4 > JJ x O y 0 r O to 0 w O O M C7 x N N ax O N o O O 0 p H a Q* r .; f .; H w V E # cn W x 11 y # I y# I I I I I I H x - - - - -- — — — — — — — — — — — q I ON O1 CD w d1 01 M N 1n r 4. Ln N co O ON O O O O V m a k s+ w # • Ja H # v b x k O1 O\ ON O O O >ma wc� H * H -4-4 z M a # # 1 1 I I I H * - - - - -- — — — — — — — — — — — H W # 1 CJ # CD %D -0 1 N 0 I r M I p In I O y U k b > x rn r m r m w O w r o W Q• # r-1 ro RC * O O O p H N ,7 # Cl) * > q y k # — H U C4 k I k •a1 I w 1 M 1 0 1 w I H I z W # k 'A r w M m w I F k r-I y # m a k r r r r w (' �4 x I k I I 1 1 I dJ * — P, y # # O 1 O I O 1 O O 1 O 1 # 41 Ill In M In to N y 4 4 bl A x M s 4 4 4 # Ot w k N N N N N N (], 4.) ro N 1--4 w 01 O N N V' N> 0 4) li k LJ GJ k OD CD O\ ON 01 O J., > -4 W # (d H # O O O O O 14 W Q 4-1 k $ FA k M M M M M M m >r k * H H H H H ri • C.I 'rl (Q k 1 k I 1 I 1 I I U k * - - - - -- — — — — — — — — — — — N W k I k (n I M I w 1 {n I w I In I O M (n H CD Ln @ k iJ ..., k y to Ln w w CD k W w # H rl H H H N # k # 1 # I I 1 I 1 I # 1 # O 1 O 1 O 1 CO 1 O 1 O 1 y x dJ # ri O ri d co m co 01 ei H 41 41 H u1 * 14 > O x O o O O '•{ # v N r-I k r O r 0 r O r 0 r W r H y x o O 0 - a O U O W # M M M m M M (d k H C k H rl ri H H I U# 1 I 1 1 — I — I N # - - - - -- — 0 — — o 1 O — — O 1 G1 — 01 I 1--1 O I O I 01 N CO O N N w CD r w W w w # O# d1 y O M M r O r CD CD H # 4-1 H x N r O OD CO M N N v t7 V k (d W # O M s( V 14 w w F7 w 4J r4 H H # # w x x M ' N �L E O a� z o 0 0 Gl C7 C7 C9 E 0 O W N V' O co O O Q, rl O N 'a O `J O .:3 O (d H O H O H O Q 0 O �] ul 'nyi Cry• to a N a rl W m W 10 >+ o u1 M in r 3 3 M t9 �+ z H E W M o a� z HN H N H E � # OH>+ -H z W H W W H > Q M M M o a o z zo zo zo a° w o w z ° �Z a H E m H H H Q M a N u H a 3 a a O O H. w CL ww w u) z ° o;a as zz# # # # # # 4L N H a U H U H U H U rA U N U N 3 W E W W W W w W w U uJ ca V) W u1 ul # a w Q: W fJ� p o w W E+o Ho Fo FO Ho Eo o;H af-i am C4 w + aH W u! m 3 O H H rl ZP W q. %n H O m O > W p z r > W z r z r > w > z r r r S rx W rl Lx N RS 34 R: H O H O H O H O H O H O [ti W W 4) LL M M M M M M 3 x W m H H H H H H W :j W C7 H 0o o o u 9 rj 4) r+ u# µ' of z N of z O of z N o z 10 o "�.. 10 0 z 1D W H 'xi A into W > Q Ql R W Oa H 00 H OM H Oao )..) Om H Oco N H Nul •H H EN El E-4 OD EvwEvA4Hv m d J u m �o �v r1v Q1oURC1uo4rClc P' U W FFH EH FH FH E.-)OFH W - K W.W v) Q 3y H x 4) >. °' F 0 E. m W w Q E+W z H W o 3 S O 13, aQ o� FQ �� �Q - uQ - uQ � � EQ �� a c� a° ° mx 3 z N cn (n En Q 14 Q a Q w a H H H g m m v1 m m ul W H N M H N H H H H 14 zz a v N z z z H N M v UI 10 A u E N H z z z O O O O O O ch H ` q z z z z z z m w °z a a a H w w w w q qqq H H~ w w w w w w 0 on 0 W W W W W Hydrology Map L A e HYDROLOGY MAP FOR WESTERLY HALF OF TTM N0. 16992 Dow— HAM" sm am o u -- AM:.. II on= smw DRAM (�4 Nop and Br. ALLARD ENGINEERING Lb8 E - - - Lod &..y" - Lod PY®mg 8251 SW- A— (9093356-1815 F. MW) 158 -1795 I-" Lmmm) I ® 8 7 fife ;� ��q w * {� on= smw DRAM (�4 Nop and Br. ALLARD ENGINEERING Lb8 E - - - Lod &..y" - Lod PY®mg 8251 SW- A— (9093356-1815 F. MW) 158 -1795 I-" Lmmm) I