Loading...
HomeMy WebLinkAboutFoothill Blvd Citrus to Oleander Storm Drain - Preliminary Engineering Rep 1I PRELIMINARY ENGINEERING REPORT FOR THE FOOTHILL BOULEVARD STORM DRAIN (CITRUS AVENUE TO OLEANDER AVENUE) (Fontana Master Plan Line T -4) Prepared For: CITY OF FONTANA 8353 Sierra Avenue Fontana, California 92335 Q ti q •• . R F�� �y Prepared By: 4 F w No.69984 m * Exp. 9/30/ ` * TKE Engineering, Inc. os�SP 4446 Central Avenue OF C A1-\F Riverside, CA 92506 Telephone: (951) 680 -0440 Fax: (951) 680 -0490 Terry M. Re er, P.E. R.C.E. 69984 ra , l`J February, 2007 , ; c ,t RING NO Table of Contents CITY OF FONTANA Foothill Boulevard Citrus Avenue to Oleander Avenue "" Preliminary Engineering Report iir February, 2007 ow DESCRIPTION PAGE ii I. EXECUTIVE SUMMARY 1 in II. INTRODUCTION 2 ' A. Study Area 3 B. Existing Runoff Patterns 4 ow C. Existing/Ultimate Land Usage 5 Ai D. Existing Storm Drainage Facilities 5 E. Other Proposed Improvements 6 ow F. Design Criteria 6 iii III. STUDY 7 A. Hydrology 7 di 1. Rainfall 7 2. Infiltration 8 ,,,, 3. Runoff 8 di B. Hydraulics 9 1. Storm Drain 9 2. Streets 10 gm 3. Connector Piping 11 iii 4. Inlets 11 '"" IV. TABLE I Table Ia - Storm Drain Summary 12 Table lb - Inlets and Connector Piping Summary 13 •• Table II - Rainfall Data 14 ii Table IIIa - Hydrologic Analysis Input Data 15 Table IIIb - Hydrologic Analysis Results 16 Table IV - Hydraulic Analysis Data 17 Table V - Street Hydrologic Capacity Calculations 18 Table VI - Connector Piping Calculations 19 Table VII - Inlet Hydraulic Calculations 20 V. FIGURES Figure 1 - Location Map 21 Figure 2 - Land Use Map 22 Figure 3 - Foothill Boulevard Typical Cross Section 23 Figure 4 - Hydrology Map 24 3 3 3 Table of Contents (continued) VI. APPENDICES APPENDIX `A' Figure B -3 (Valley Area Isohyetals 10 -Year 1 -Hour) - Figure B -4 (Valley Area Isohyetals 100 -Year 1 -Hour) Figure D -2 (Rainfall Depth Versus Return Period for Partial Duration Series) eit +++ APPENDIX `B' Figure C -15 (Hydrologic Soils Group Map for Southwest — C Area) APPENDIX `C' 100 -Year Storm Event Rational Method Hydrology Data APPENDIX `D' Water Surface Profile Data OR APPENDIX `E' Figure F -01 (Los Angeles County Flood Control District Factors for Closed Conduits Flowing Full) APPENDIX `F' Figure D -26 (Los Angeles County Flood Control District Catch Basin for Sump Condition) Figure D -10A, 10 -B, and 10 -C (Los Angeles County Flood Control District Curb Opening Catch Basin Capacities) Street Hydraulic Capacity Calculation Tables APPENDIX `G' „, Storm Drain Construction Drawings (Reduced to 11 " x 17") P 1 rrt CITY OF FONTANA February, 2007 FOOTHILL BOULEVARD STORM DRAIN (CITRUS AVENUE TO OLEANDER AVENUE) PRELIMINARY ENGINEERING REPORT I. EXECUTIVE SUMMARY The City of Fontana (City) proposes to construct a storm drain system along Foothill Boulevard +!- from Citrus Avenue to Oleander Avenue. At the downstream end of the system, the proposed storm drain will connect to an existing 57" diameter storm drain located within Citrus Avenue. The proposed storm drain will be designed to convey runoff from a 100 -year storm event (together with hydraulic capacity of ultimate street improvements for Citrus Avenue) for ultimate development conditions. The City desires to extend the proposed storm drain system to Oleander Avenue to lessen the flooding downstream on Oleander Avenue until the future T -3 master storm drainage plan system is constructed along Oleander Avenue. The proposed storm drain in Foothill Boulevard extends beyond the intended limits set forth in the City's Master Storm Drainage Plan prepared by Hall & Foreman, Inc., dated June 23, 1992. The storm drain a "" system extension will collect runoff from the tributary area located North of Foothill Boulevard and East of Oleander Avenue. The purpose of the study was to determine appropriate storm drain diameters, connector pipe diameters, and inlet opening sizes to convey runoff from areas tributary to Foothill Boulevard to 3 downstream existing drainage facilities. The results of the study are presented in Table Ia and 11). 1 3 CITY OF FONTANA February, 2007 FOOTHILL BOULEVARD STORM DRAIN (CITRUS AVENUE TO OLEANDER AVENUE) PRELIMINARY ENGINEERING REPORT 3 II. INTRODUCTION The City proposes to construct a storm drain system along Foothill Boulevard, from Citrus Avenue to Oleander Avenue, to provide drainage service to the existing developments along the 1 North side of Foothill Boulevard and flooding relief to the downstream residents and elementary irk school South of Foothill Boulevard on Oleander Avenue. The proposed storm drain system will complete the Foothill Boulevard portion of the T -4 master storm drainage plan system. The 1 Citrus Avenue portion of the system was constructed from the West Fontana Channel to the a i� North side of Foothill Boulevard in 1992 as a City of Fontana Storm Drain Improvement project. Miller Avenue, Foothill Boulevard, Oleander Avenue, and Citrus Avenue generally bound the drainage area. 1 In order to determine the required facilities to adequately provide the drainage service to areas tributary to Foothill Boulevard Storm Drain, areas tributary to the proposed storm drain were me identified. 3 In the following paragraphs, a description and limits of the study area, existing runoff patterns, 3 existin g land usage, existing storm drainage facilities, other proposed improvements, and design 3 criteria are presented. 2 3 CITY OF FONTANA February, 2007 FOOTHILL BOULEVARD STORM DRAIN (CITRUS AVENUE TO OLEANDER AVENUE) PRELIMINARY ENGINEERING REPORT A. STUDY AREA To establish the limits of the study area, records were assembled including the City's Master Storm Drainage Plan and USGS topographic maps. In addition, field reviews of the study area were performed to ensure the study area limits are correctly identified. ied Data from the City's Master Storm Drainage Plan is presented on the Location Map Enclosed as Figure 1. The study area is located in the incorporated area of City. The area is generally bounded by wo Miller Avenue to the north, Foothill Boulevard to the south, Oleander Avenue to the east, and di *� Citrus Avenue to the west. The study area is shown on the attached Location Map. The study area consists of approximately 78 acres. The City's Master Storm Drainage Plan shows a future storm drain (T -3) along Oleander Avenue between the West Fontana Channel and Miller Avenue. The proposed storm drain system was extended beyond the City's Master Storm Drainage Plan limits to Oleander Avenue to convey runoff from the tributary area North of Foothill Boulevard and East of Oleander Avenue to relieve downstream flooding along Oleander until the future T -3 master storm drainage plan system is constructed along Oleander Avenue. No studies were performed for the Oleander Avenue tributary area. 3 3 CITY OF FONTANA February, 2007 FOOTHILL BOULEVARD STORM DRAIN (CITRUS AVENUE TO OLEANDER AVENUE) 3 PRELIMINARY ENGINEERING REPORT The Southwestely boundary of the study site is the intersection of Foothill Boulevard and Citrus Avenue. Storm drain inlets exist on both streets at the Northeast corner of the intersection. B. EXISTING RUNOFF PATTERNS • ail All existing runoff from the study area currently is routed through streets which have curbs, and by surface flow in a southeasterly direction towards the intersection of Citrus Avenue and Foothill Boulevard. esti Runoff from properties within the study area flows in a Southwesterly direction. Runoff from properties East of Celeste Avenue and North of Barbee Street is generally conveyed westerly along Fairview Avenue, Malaga Avenue and Reed Street towards Celeste Avenue. This runoff is conveyed southerly to Barbee Street where it is then conveyed along Barbee Street to Citrus j Avenue. Runoff from properties West of Celeste Avenue and North of Barbee Street is generally conveyed westerly along Fairview Avenue, Harvey Drive and Reed Street towards Citrus 3 Avenue. This runoff then flows in a southerly direction along the East side of Citrus Avenue to be combined with runoff flowing from Barbee Street. The combined runoff (110.7 cfs) 3 continues southerly to the intersection of Citrus Avenue and Foothill Boulevard where an 1 existing 22 -foot catch basin collects the runoff. 1 4 1 3 CITY OF FONTANA February, 2007 FOOTHILL BOULEVARD STORM DRAIN (CITRUS AVENUE TO OLEANDER AVENUE) PRELIMINARY ENGINEERING REPORT 3 For the properties along the North side of Foothill Boulevard the runoff appears to flow in a southwesterly direction to Foothill Boulevard. This runoff is then conveyed westerly along Foothill Boulevard to the intersection of Citrus Avenue and Foothill Boulevard where an existing 14 -foot catch basin collects the runoff. Runoff from properties North of Miller Avenue will ultimately be collected in the master plan storm drain system in Miller Avenue and were not estimated in our study area. C. EXISTING/ULTIMATE LAND USAGE The study area currently consists of low, medium, and medium -high density residential, commercial and open space usages. Most areas have been constructed to their existing land usage and no major changes are foreseen for the ultimate land usages. Current land usages are shown on Figure 2. Ultimate land usage assumed for this study is based on the City's Land Use Policy Map, dated June 1998. D. EXISTING STORM DRAINAGE FACILITIES 3 3 The proposed Foothill Boulevard Storm Drain will connect to an existing 57" RCP storm drain located in Citrus Avenue from the West Fontana Channel to the North side of Foothill Boulevard. Three existing catch basin inlets are located at the intersection of Citrus Avenue and 3 Foothill Boulevard. On the Northwest corner, one 15 -foot catch basin is located on Citrus Avenue. On the Northeast corner, one 22 -foot catch basin is located on Citrus Avenue and one 3 5 mil CITY OF FONTANA February, 2007 FOOTHILL BOULEVARD STORM DRAIN (CITRUS AVENUE TO OLEANDER AVENUE) PRELIMINARY ENGINEERING REPORT 14 -foot catch basin is located on Foothill Boulevard. The existing 22 -foot catch basin on Citrus Avenue does not have enough capacity to collect the 100 -year runoff flowrate and has been constructed with a bulk- headed 24 -inch RCP storm drain at the North end of the catch basin to allow for future catch basin construction. Inlets connect to the existing 57" storm drain, which lig conveys drainage southerly to the West Fontana Channel. E. OTHER PROPOSED IMPROVEMENTS rr In addition to the storm drain improvements, the City will construct median improvements along eir Foothill Boulevard from Citrus Avenue to Oleander Avenue. A typical cross - section of the ultimate street is included as Figure 3. F. DESIGN CRITERIA The storm drain, connector pipes, and inlets will be designed to convey runoff from a 100 -year *�+ storm event utilizing the hydraulic capacity of the Foothill Boulevard for ultimate land usages. 6 CITY OF FONTANA February, 2007 FOOTHILL BOULEVARD STORM DRAIN (CITRUS AVENUE TO OLEANDER AVENUE) PRELIMINARY ENGINEERING REPORT 3 III. STUDY Ii To determine the appropriate diameters for storm drains and connector pipes and appropriate inlet opening dimensions for the Foothill Boulevard Storm Drain, study area hydrology and system hydraulic calculations were prepared. Each are described in the following paragraphs: A. HYDROLOGY Hydrology calculations are performed to estimate runoff quantities and are prepared in accordance with Standards and Practices outlined in the San Bernardino County Hydrology tdi Manual (1986) (Hydrology Manual). To estimate runoff quantities, rainfall and infiltration estimates must be prepared by mapping the tributary area. The hydrology map is attached as Figure 4. Each together with runoff are discussed in the following paragraphs: vim tri 1. Rainfall Rainfall data for the study area was based on the Hydrology Manual's Isohyetal Maps (Figure B- 3 and Figure B -4). The isohyetal maps are attached in Appendix `A'. Since the study area is relatively small, a one -hour storm event will provide the largest considered y peak runoff quantity. p g p Therefore, a 100 -year 1 -hour event is used. Using the 10 -year and 100 -year rainfall intensities, together with the Hydrology Manual's Rainfall Depth Versus Return Period for Partial Duration Series Chart (Figure D -2), the 25 -year 1 -hour storm eve nt rainfall intensity was estimated. Figure D -2 is also attached in Appendix `A'. The rainfall intensities are presented in Table II. 7 CITY OF FONTANA February, 2007 FOOTHILL BOULEVARD STORM DRAIN (CITRUS AVENUE TO OLEANDER AVENUE) PRELIMINARY ENGINEERING REPORT 2. Infiltration The Hydrology Manual bases infiltration rate on land usage, Antecedent Moisture Content (AMC), and soil type. As specified by the Manual, AMC Type II was used. The Manual " categorizes soils into one of four different hydrologic soils groups based on the soil's infiltration characteristics. The hydrologic soil ou s are shown on the Hydrology Manuals, "Hydrologic �' p Y gY � Soils Group Map for Southwest Area" (Figure C -15). As shown, the entire study area consists of Type "A" soil. Figure C -15 is attached in Appendix `B'. 3. Runoff - Runoff quantities are estimated using the Rational Method Hydrologic Analysis Software prepared by CivilDesign Corporation. 100 -Year storm events were estimated. Input data for the hydrologic analysis is presented on the attached Table IIIa. In addition, results (runoff "I quantities) from the analysis are presented on Table IIIb. j The following assumptions were used for the computerized analysis: 1. 24" Minimum Storm Drain Diameter for all storm drains per San Bernardino County 3 Standards. 3 2. 0.6 Intensity Duration Log -Log Slope per Hydrology Manual. Output data from the 100 -Year Hydrologic Analysis is attached in Appendix `C'. 8 CITY OF FONTANA February, 2007 FOOTHILL BOULEVARD STORM DRAIN (CITRUS AVENUE TO OLEANDER AVENUE) PRELIMINARY ENGINEERING REPORT B. HYDRAULICS Hydraulic calculations are performed to estimate storm drain diameters, street hydraulic capacities, connector pipe diameters, and inlet sizes. Each are discussed in the following paragraphs: opi 1. Storm Drain Hydraulic calculations were performed using the Water Surface Pressure Gradient (WSPG) computerized software prepared by CIVILDESIGN Corporation to establish water surface elevations. Storm drain diameters were adjusted as required to determine the most efficient system. Diameters were adjusted to establish pressurized flow and to maintain a water surface elevations below ground surface elevations to ensure runoff will enter the system. The downstream water surface elevation was obtained from Citrus Avenue Storm Drain construction drawings (City of Fontana Drawing No. 1368). owl Streams A and B convey runoff to the East side of Citrus Avenue to an existing 22 -foot catch 14 basin that connects to the existing 57 -inch Citrus Avenue storm drain. In the existing condition eii the 22 -foot catch basin does not have the capacity to collect a 100 -Year storm event, however a 3 24 -inch RCP stub out from the catch basin has been constructed for future catch basins when the 3 Citrus Avenue storm drain is constructed North of Foothill Boulevard. Therefore, flows from streams A and B will not be collected in the proposed Foothill Boulevard storm drain. The proposed storm drain diameter was designed to convey a portion of the runoff (20 cfs) from areas tributary to stream C only. Area C2 and 8.3 cfs from Area C 1 from Figure 4 will be 9 CITY OF FONTANA February, 2007 FOOTHILL BOULEVARD STORM DRAIN (CITRUS AVENUE TO OLEANDER AVENUE) PRELIMINARY ENGINEERING REPORT collected by the existing 14' catch basin on the North side of Foothill Boulevard at the Northeast corner of Foothill Boulevard and Citrus Avenue, as shown in Table VII. The proposed storm drain was then extended to Oleander Avenue at the designed diameter and analyzed to determine the additional capacity of the storm drain to be approximately 25 cfs. The proposed inlets at Oleander Avenue were then designed to collect the determined additional 25 cfs capacity of the proposed storm drain system. Flows that exceed the inlet capacities at Oleander Avenue will be .�, collected in the existing street culvert system and conveyed southerly along Oleander Avenue as they have historically done. r Input data for the WSPG analysis is presented in Table IV. The construction drawings show the proposed storm drain diameters and water surface elevation. Output data is attached in Appendix `D'. 1 The downstream drainage system was designed to convey the entire 100 -year storm event runoff to the West Fontana Channel. The proposed system (storm drain and street) will also convey the 100 -year storm event runoff. , 2. Streets Ultimate street section for Foothill Boulevard is presented on Figure 3. Street hydraulic capacity calculations for the ultimate street section are presented on Table V. Table V demonstrates that the drainage system (storm drain and ultimate street) will have adequate capacity to convey 100 - year runoff. 10 CITY OF FONTANA February, 2007 FOOTHILL BOULEVARD STORM DRAIN (CITRUS AVENUE TO OLEANDER AVENUE) PRELIMINARY ENGINEERING REPORT 3. Connector Piping Connector piping hydraulic calculations are presented on Table VI. Losses for friction, entrance and exit were computed. To estimate friction losses, Los Angeles County Flood Control District Figure B -11 was used. The Figure is attached in Appendix `E'. Total losses were added to the storm drain water surface elevation to determine water surface elevations within the inlet structures. 4. Inlets Inlet hydraulic calculations are presented on Table VII. As demonstrated in the street hydraulic Ins capacity calculations the runoff flows far surpass the capacity of the street and therefore water depths in Foothill Boulevard were estimated at full curb height. To determine inlet widths for sump condition inlets, Los Angeles County Flood Control District's Plat D -26 was used and is attached in Appendix `F'. To determine inlet widths for non -sump conditions, Los Angeles County Flood Control District's Figure D -10A, 10B, 10C was used. Each are attached in Appendix `F'. imi Reduced storm drain construction drawings are attached in Appendix `G'. 11 N e- N CA CE n. lia iiii U um o c c NI cC O CD CD M O O 10 10 c d: CA CO CD CO O O C71 N H CO 01 e- t[) O N N N N N Cr) co N N O cD Cfl CO N o V . N ) to to to to 11) e - N Nr CO CD N to ID v. NM dig c o r im) R t c p o o O c re a m 0 U O M 'L to E E E a to to RI E Q co to w ' Co to r` y °) ti ir, L � '� CD (O CA q CO O to CA N 1 to Ch (7) co OD CU el ow C 0 CD L. d E 2 N c6 o T O N N N y Ed 4. N C E i t a 7 L c CO cu ci 'd W N o = c 1.1 2i IL y > 'a 0 H O ca D N D a ; e- N M d' to Co e- N C) d' el 0 CO LL Ili MIR ilii E al 3 ` < m 0 N 3 w 0 :,,,, 0 H r 3 0 0. m w L a, v c 3 0 0 o mo `g o 0 O I- N 1 V M N a) 3 a) a co c "E ''' .... d v E • N N N fll y CO 0 0 irn c 'a 'a M L d c J fill O O U di C t+ 0 C cm E c II CU L . N a) m = O d CO 4.0 c c CO +r C C d ic) iiii CO f+ (/) •a E cv) XI C . C d u) m W L I- IN .1... EC F- O �_ d o �, MM c o W 2 III •' • E O L C) O O 0 v V— = V C U p p c ilia • ea of — N N ° L , U a+ .o O a d p a o did LL _ c — a) iii Z w 3 H a I- o ° -c E o E z z z o 3 2 3 0 .0 w a) 4- in CU E nz 0 U 0 a1) 3 N C7 76 y N a) o 'C Z o d eL 'a a) O N CO M M Z r r r ` r r r N Q c al I N O I, 1O y a) O _ Lo U H N 1 a) rn ca L a1 c � � m — L O N 7) L. O C _ •i+ 0 ce 2 LL > W co 0 •o W O 1.0 E N 0 a O LL. mil dill N m f0 F- 0 Q 3 a) N t9 4) 0 = O a) 3 2 U l� c., .] to m o a :] I IR 0 m 3 = _ _ m m m d m m` 0 2 2 2 • 0 la 'a U U U U o U D CO m W Li U U U U LL LL LL N 0 0 0 0 0 OZ O O O O O O O O O O O 0 N m 0 W N H 9 L-. L N TA Y/1 N L L L W W 0 0 L0 0 C C 0) L W W W W r r C co W W 3 3 W ? W h Z w Z w w W W Z Z Z 0 i ll Q Illi a ^ w W a b 0 I LD 10 01 V M v. co 0 n O O 0 ( m C 0 N < CO 1 •- O 0L) CO 0V f Y V `- O N. 10 00 Ili F di a MI 0 a a a a a a a a a a a a a a a a a c "0 F- N Ili • O a t` N N 0- N n 0- N 1` N. n n + Ng c m b m Tab m b Tab m b m b m b m m b m b m b m m m b d • ..m m10 0 .0m .t.5-1 .2 m .� -10 . . . . —10 24.9 E cm E a10 a � 10 ?v � 10 ' 10 70 10 7 : -a 70 10 9 10 �10 0 �10 0 E N N N N N N N N N N N 0 N 0 m U m 0 0 0 0 0 0 0 0 0 0 0 0 7 III C O C co O F LL O O O O O O O LL O O O O O L.T. O O C E U E. c LL LL LL IL LL LL LL C LL {L Li IL lL C lL lL on 4f 7 = m m m m m m m z d ' m m m d 1 r) m c p w C c a q m m m m m m m 0 0 m m m m d m m m w .+ C O: a 0 m 65 co 0 N 0 n 0 m m in 55 V) p d) CO iiii fa CU U. A W �, ZI p d R Q a al c m C Cl 1 i �` LO O O O O co co 0 O N O O O N M O O ad E • � al 'O 0 M M M M 01 n M N N O to O N co 01 0) 01 U ■ G G r O.. 1 ID O O fo O v CO CO CO 01 0- Q 0u CO . _ O YO = --- N 4' c O • gig C d I J c C c W o LL Z 0 00 1` 0. 0. )O CO •- O N LO n r 10 N to .1. -..- M N N N M M N 0) O O W O N a> 010 M ^ M M M M (0 (0 1 (0 M N M � ' LL 00 _ ▪ 3 Ili .o m d a E c `W ;e a D 01 O l0 m (0 N N M r O h N el M y ° N 0 10 M M M N N V CO CO N 0 0 0 N a r r r r M M r . CO . . . ,- " ,_ . M - LL 0 Cri I w 0 W m c c c W v c c c 0 ^ c c 2 cg c 0 ^ c c C 0 . E , 5. cs, Q 2Q 32 5Q 3 ; 3 3Q 5 Q g� dm 3 3m I* m o .co o `c 2U 3o 310 c € 3 . IL W o W W o W o W C W o W W C C Q W o W o W W a C C LL G W o W o c m .� d m m m m m m m c _ m d m m c m m m W c O N W LL W LL W LL W U. W LL W LL W LL W U Q W W LL W LL W LL W m 0 a 0 0 m A W L.L. W LL W f oo m O U a «d ma ma ma m ma ma ma -' m a m a m a --a ma mn rn p . c,3 m e) S y m f) m y m e) ro o y (A N ` o . 0 to g o m o y o m C O N W 0 . 0 o E o m o C- m N N co N 0)) to N 0) c co y 0 c 0 N LL • N • E N 3 0 O N V tT O M N O O CO r 0 0 N 0 0 0 10 0 0 = 0 0 0 0 0 0 O 0 O T 0 0 0 0 O 0 0 ,- 0 0 0 c 1 o LL U `o Lo o i• L •13 U v 'j 8 N N LO V 8 M N O 8 00 h M E O V V O E O o 0 0 0 0 0 0 0 0 0 0 0 0 0 o o ED P LL M LL a H v O a m CL d v m m O W 0 g- r 3 O y 0 O 2 Fa N UF -N . :3 a 3 r a) cr) as n. ] illi nal nil U 0 11111 C re 1iltlf = N • !0 U O ti O N 1` O to co e t() CO CO 0) • Q e CO r N. r O O ' N N N N e- N r M 40 • CO OM CD fl O N T •" re Ai •m1 o • C ea G , Q �► V O (O r N d d CO O CO O 1` O CO • d W 2 c0 to N 00 co N N .4 to Ca 000 moI - 4.. > t Q F - ii 1..7 O d CO c) co .E • -6 1C W E 0 an ' Ti ns V O N CO to C� f� r- N CO V N 0 Cl) H � a 2 qoul o LL iii E ` Q m 0 r rn oug did 2 u) a) Fa m H t 0 Q N ce N v c 1 a) O_0 o - o a) 3 oF N 1 O LL y C m Ot 0 a 3 m A 't .... (., 2 o 0 ] . = m 3 ' m m W r. C 3 C c) N O f0 d A • . i O a C m N N W II IL O N C iill C m m 1, C C N 00 o a o IR 0 e m ro E� N MN N G v C all CC R o co {3 W.8 1 1 1 1 1 N s V) ■ 8 N , _ 'p C a O a at O CC W .T u° d u) u) aLL > �o eGrn , . Y , Y F -- O = o m D C u U V m E 3 • E m ig t ^ T c m C 1 N iiii O I. .i. Z O „" fV fV U- M! m v tg ■ v ...... a " ill K L. aim m E . E. n n N N N N N N iiii 0 N N N N N N N N N N m a ao F. C,)) r. Y N 0 O e a W U). t , z m O) > C a C N N N N N N N N N . 0 m 0 C O O D. "V 0 r n b I L' O pp V S O O O� a Off) O 400 O O N O + + + co C) + + co N C F 0 N N N a C C O °3 N r n (0 <O m E 4 C 01 r- O f f O CO r O a f 0 0 ) € N V. y O O O O co 0) N N cl N N 1 - C 0 CD 0. . 115 . .2 O > N 0 O O O 0 W m o E a 4 ) 4) ami c 4) d m a H a: C ! K d : ' ' W E 0 ° > o 0 n . O co m O >, LL 2 N 0 1- N m v O Z 3 IIIIIINIMMIIIIINIMIIIIIIIIIIIIIINOW- 3 m c z , 00 »a q - o o rn L a o c6 m .5 ca a N M p c U 12 3 O O r 1 N N O N N E >' 7 U II ii N os T A 2 () 13 N M Lo am w (0 O y {0 V CA r U Iii 2 M U 4..r r ( n ,-- amo a) Ili O N v Z C C cn rn rn E .� p ` 3 W' N N O Ng G C "S i = a: E iiii 1: U 0 c o o d V O MR O C • C ▪ U Rf d ^ 1s Co � 11.' � W Q- co E a v r C H d L- V m C cu U a v 4j m C •= N E as m a, as ill a - a s M M 4- O d O . LL C2 cn - _ ari C y (f) (A N um C o C r r O O ti (0 m O O p c O , O NE 2 U o o m •U O U 3 e. r O O p U CU M L o U o a. N O O C O 0 3 .0 U U N 7 O N N E Q: o y H 3 L C ` E C. E -4 0 0 C +- 6 -c 3 .R as 0 6 . 2 N O X 0 C 0) '0 -0 O 0 c 3 y ( ` p c U 0. m p >, N 0 a aQ m ~ Z C r r O 7 N °> O m U CO (/) y O a� N ^ .O a N E .a t M N . O r N CO 07 1L Z O N- Z U H N 0 LL ] a) C E he Y he 00 0 O E O N U 0) al a , a :]7. • R 3 C- • - �a 0 0 wm0) Tr M .. > C M c c ) d d II- W C _ mg d •G)ae (DOh ++ ONO • d N M M p C r r C/) son w ' U) L = 0 0 0 I H O 1- ,- C J N = - rri e W d e .0 N. 0 C O O L 0 0 0 W N J MI �''• a u> a oM� E. O 6 co RN C > c O C N O iii c C + og as E 1: V d — •` O 0 0 0 lig �•d CO pi V o > O II C C y co N O fn CD p O OD d' w y Z. � > co L a U o N o ° ° .§ o Ili I- O o U p , LL N o00 0 O m o �+ O c 0 + > v RR t' CO v • 13 , o W `m U= .- 4) C E N N N N c p = O () �[ co (O (O 111 ' �j iiii 4. a O N NNN O N N V •1 p o1 U LL V N Ii ^ N > N aj y •D p t c O 0 d ..+ r N + C Of [6 O p, C a E C - ` C NNN I� L > x O w O. e L 3 1 ._ _ .. i - m a 2 C J V' T r E co 3 J rn Li- O 0) O N a t as N V F co d o r 3 N ZZZ a • v v a ��� 0 0 W E Y J I- V C (D O(D 2 a. -- C 201'2i rn ° o °o (n c7 d aa) as 7 > ('') N 11 11 11 11 0 N N r' 0 o .6 > > W " M v ° >o CA N N . N 0 MI 117 m O 0I-N • N ' MM Z O V.. Z T- O N _ a1 2,, al N N CO ca 0 • V c c d M 2 C y y B `° 3 a w Ili E 3 o v E "v 0 • V c 0 C t iiil X cp.. W m m ;0 J v O 3 - , a id is A 3•C iii a) O re • 3 _ N C C LL ,V.. M Ts mi 1 Cn N = O d ea N N Ili iv r+ = 7 d O 'E V j 0 °' .e -- 6 , - a i` ��; v ma3 � CO� m H 0 d al a O 3 � 4 . O C O Ili -0 V m E _ t Y- ▪ L _ D O 3 e N O M p O ✓ a 9 O m a v pp N G • LL 0 V o. U O E In 7 W O w " C t c «. _ O illi N Oi ' N '0 - v M Z C N a 92 E m id w • 0 y 0 • Ti. y v ao M M U •� N N N o 3 p o 0 o c a co • 0 m a 3 . �; o p o,m� v V 7 a 0 o N Mo o co T co cc) M M U N o CO v ai 3 C at t ..... m M co r .- U 0 .a p a) O N 1 o .- N Q v 0 0 0 p < • CO ▪ N Z N N O • O O N • 7 0 d V N C a1 N C1 . O E �; y CO as m O C O N CO E 2. N N O • O U I- • Z o 0 U U 0 c 0 r3 v d LE TS CO Z Z 0 C u N • e- i-- '- 0 0 0 0 I-N 3 lZ 3OVd XVJ '06 $-0 - 089 (IS6 NNIYf i„i , r. .S N l 32�f10IJ 331330 '0iV0 -099 (i 6 , 90SZ6 VO '3OIS283AW 311N3AV 1V81N33 9171717 N VN VINad AO 11.10 'ONI '0NIN33NION3 3>11 A 'ems 7 NNVHO VNV1NOA IS]M )\VM 3ONV?J0 D 0 O o o m � n --I D O r m 73 > C > r m Z U) * > U) 0 CO 2) (f) m > m OA18 MOIeIV %' CIA pii11-1100d I A A 3AV AA e1311I1A1 D D - -z---_- - _-__ D D D D m m _ =- m m m m --====== _= ____=_= __ -_ =_= NOIld3O7 == = =_= V31:I1l 30VNIVHId dYW NOIlVOO1 NIVHIG INHO1S 11IH1OO VNV1NOE AO kLIO _,.mim. - ZZ 30`dd Xb'3 '064'0-099 (lS6) ONIH3NioN Z 3eJnoIJ 301330 '017170 -099 (LS6) , 90SZ6 V0 '301S213Ald 311N3AV 1V2l1N30 9171717 VNV1NOI 40 A119 • 0NI 'ON12133NION3 3>11 A e e . \ )1INfWW0O a3NNV1d 1VI1N3aIS3eJ 0d — el I I 1V11N3OIS3LI J.1ISN30 1d102=3WW03 HOIH 01111031A1 HW — d 1Ve13N3O O - 0 1VILN3GIS3=1 1VN011n1IISNl I — d id1Od3Ww0O J Wn143W W — ?=I 1001-10S S —d kIINfWWOO 0 - 0 IIIIIIIL AN 1VI1N3OIS32J 1VNOI1d32:1O32J 21 — d ,k1I1A1d3 31ONIS _JS I I JILI1IOVd O1l9fld 1V1O2:1WINOO ivIlN34IS3J ,009 =„l :TWOS CIN3D31 3Sfl aNv1 NV1d 1b?:IAN2O N ' -_ 1S 3NIn — // ''' ri// -- ,/ „ / ,„,, ,, / d.A.AAAAA A /4 , A- / A A A A A A. '' ' A v ' ' r //,',, / 4 1 V r ;., F/7 y V . , ..),„ „,,,, , , ; ., v A /,-/r/ A r F4: 4,,, j4 l'r,' A 7, iX /- A. A ' A , , , . '',/./4 L 4 , , .„„.. ,,,,,,,, .., , , , A 4 / i. ' J / i "' 1 ' ' ' 4 ," ' .'. '''' IIHnn11111 ' 1 HOE '---- t A 1s 33aaye A. II. m Z ME i \ J III N _ m 1S 0338 - : ! I I — °I I 1 IIIIII SG A3n8VH— Z ��■ J 111 ��. 80 A3A8V o 1111 — Z A3na0 m ; S rn avFr'> I , / // /,dii N 1 —AV V0V1V11 0 In , \ ;%/ j ,4 ./../ 1 13: 1 I ' / a Q s ;,. %j ny vw,vw � iiiiia A M3 1A81Y4 / ____ AY M3►naldd2 MEW � 1S Xv4nvJ 4, WWI z I. - A II CL1iO M3LA< 1 i . — — / / -AV XV38IV3 -0 - 1 > - 1 - 1 . 11111161 � ll � 1 i ill ,, c. rn . i Mill '' - I ML-1 - - c. - IIIII . 1 , I 1 dVIN JSfl aNY1 NIvlIa W*IOlS 111HIOOd VNVINOd AO )JJO M N w 0 Q a w Ct w 0 1.1 il 1 g 1 1 L • iI W La X — 1 c� D,o E x 1i z a a ,00 1 rtQa1- .4- W c , 0 0 0 1 W 1 O0 (j 3 0 Z () N t0 t0 to N Y d' � O a co Z I - Z a 111 N M MM z CC 00 U . O W <5 \�4 iLu /0 J CD Q CU D co W 0 _ J 0 W .1 I' M 00 J 0 w 1 1 1 - 1 0 —J U ! } o �, =J CO 0 � O b J a O 1 U U L 1 I CD N N I' 0 tO N o N 0 W pp Z � H 1 - N X - w L.L. 'II w�� II I Z i W fY ? � 1 — — — — D IX LL VZ 30Vd XV.1 '06 1g6) OMNI ir rr,1 ,002=1. :3 t 32:11101J 301330 'Otir0-099 196) „ 90gZ6 VO '301Sel3A18 311N3AV 1Vell.N30 917i7i7 VNVINOA AO MX) 'ONI 'ON12:133NION3 3)11 A KM N EN saiov (z•t 6v DalV ql1S l• - 0 A.3>i 1 _ , --- I , Ls NIA --- - F I I 0 .0 1 1 , c: 2 1 I 1 l \ I & > , -- 7 1 . 1 T 1 ! c.,\ , -2) A, , i 1 1 1 1 1 r - -- 1_ _ L _ CIA18-11H1100J __,...._ — • ___g>___ r 61 _ _ __ __ --- I 1 — L [ " 6'2 r I 11 L9'L 1 1131, w 0) 1 0 __ I 1 (ill ..13 I cr'• Cv , 1 0 0 . 4 0 (; \';', C1 \ \ 0 / er, , 1 cz d 0 0 1 - 1 [ \ 1 i ' i_ , _ - , , i 4 _ / 1.1%6 (1) V li '4 -,-- - 1S-3308V0 r 1,282,-,, - ,QC , 1-- c) 1 1 , J — T 1 1.Z 1 ----L iv i , 1 0 LV ' __________X ' - Z 2) i 1 - - - 17V S -0338 I II 1 .10 ----- 1 I _ II —1- i3 -, 21 i or ‹ - °o, 178 - --- , / C) SO A3AdVH T ------ -t, _ 2 I - r -c o z > 1 i _ ) < - 0 I i I I I --- Allik ___I ‘ . r- ---- XV i 1 r [i 28 ■.1 -1 I II 1 I - ZV I cy) .:P`I) ) - • L I '1 ,1 y j o <„ ,.9 0 1 1 . . 1 1 -- - ''C' ( t , c 0 Of / i t _ 1 ' - 1 I - -- - - I ' - v. 1 1 1 1 , . ) i , ___ _. „ AV M31A1_11VJ ; 3 . 1 -- - 1.c -1111 . ___ , I i E g92= - , 1, 1 - ___ __ z1 r- ___ k 1 10 M-3V■211VJ 1 1 Oge -- I - 1 1.2.17 1 , _ L 1 s , ! i T - AY 8311111 _ T z 0 c) 1 1 1:, 1 I < . - I , dVIN ).00101:1ClilH NIVHG Y11:1018 1111-LLOOd VNVINOA AO All0 rz `' ,•>a :^�'' - - -z I 4'1 r I z 1 z 1I ! A 4 • C I -- —Q _ Z - - N� , — t— — 1—--I-- - I - � , - d oe 1 - _ f , -1 - _ I "' 1- _ y= ` "1 " _.. ... __ / 1 ; 4 i - Z a � 0 I— �— — I .. „, W 1 1 I ♦/ I I I II H _r . Z •w xw 4 cI I 1 0•• //I o / 1 I. zo f g I I I I y m ` �� 'I I I — ��I•I �i - aO la -. ! - - I ; � �i I �- _ - I - , 1 w•.; • _ r' \ • ' . i \ W :. _ W 1 H i � . f __ r I � � T d , I a o _- '''' ' , T. — kl - g ' .1 N ' I - 1 \ . lir i 1 - l � V 4_ ,.. _. _ ilk lk_ i _ ___ ,,. ._ ;_:, 1 j ... ; i'.•• . •• � , �, _ � ^ b w \ I V , .,..,.• _ .= ....... 1,_ 4 • _f_i__ __1•__!. lyr,-, _ 1 J, *,_, .., . .....- 'N .t.;.1..: ._i:::..,' 1 T ! !f j • ,. J to L r + : i: �I i I 1 , ; aj j r I ' t j. ,' j __ o N A ' , I � � _ 1 illif \ / t I I ° \ \ , . i l �. 1 t1 .4 \_1', p'''• ;m' -, 1 111 I/ t/ ,,, ! 1 ' - I J ' I \ W - ' t -\ Q t i / I 1 I I +. 1 r. ro 1 ¢ i i , r 1 1. A • —Lim _ ' e _ M 1 •]Duna 4 r/) r • t - , I !•1 ... -1 , 1 5, c I ; U r ✓ } I 7i - .�'-I `�ti l 0'' I I I z s I MOMbd� / I_ 1 •3I J 'NiI)�' af. .. - •t -• .— _ 1 44 I. 1 1 ,•ii, Wr, it .„ 1 , Vite. ■‘' .. 1 iiiiiiltlagnivi yob !! 4 I - �1 .. Liffl-e4-11N111 •to/ V I. ' _li i _�_ _ I -1 I ":tio I 1 P ■ �'• P� ' I al 2 + _ I , I .l _. 7` ” ._ 1 • � 1911i�� w Z ... �.. .'1 0 \ --'1 - y f' �^] f ' •� o. �� s ..�� 1� Iw��� ." I : Q .\ ; >, '� � x!- .`fi n:)" ' I A: , : r I _ r . A Cr 0 `1 1 1 I i f -, • 1 • � ' ' �IIII m i 1 1111 Ill _exw - z - ,--„cr I - 4.- ....1....i, I fillirdaillO . _ 1 - --f-\_ . __I ____, ;_t_ . . , 0..„ :.„,... / 1 I • 6 ` I f � �`s. a •.•, •• I n ` •••' ••`.•....•• _ .i._ _,_,,!..,. __,..i.,_:,t_.!_,..,,,,.......,, ..,....../. • ,____, ,.. 4 — v k i li-1-`— j \ ,... 1 ° .�I ...Y , 1 lir I ` I . u- MINN •\-- a 1 1 - e l ,, irgikli .p, ___ _„:,__ - t 0 _ _;.Ari•P,r_ .,,, --- 0) , . 1.1 ral t ..... 1....ve....:rei Lir , i _ 1___ 1 � Z ° I - { 1, / _ ; , r -I I • } -- - — t _ SJ. I ° r V �i' L • i r ! I ! I: : M ».. � '3.. I A cr . • iip. I , --I re - ;..‘ I P � v' N` ' r- o n I • Mr r ." - � ��/ � � :� , %•'. -74 4T• C _i - , ]/ • /r --1 -1--.-t----1- .I ' 1 . ..,.., -- I - — L_ __1_ ___. i , I r_ ' .• l i ' - -3- "y \ t t, J ..„..., �.� lJl� So; I ` u �u � _ . m ��■ h • ' " — .�ioil� • . .-�'� -. I I i 17� � , 1 1 ..... ..Nrillaill 1' I I I I 1 I I I } I ; 1 1i ! 1 , T I _ — --- _ ; I �. t 1 r i 1 1 A _ 1, _ °' 1 1 _ � s'- - 1- - -- � - - I - • IT - L w_. Z L 1 z I z I I 1 1 u) 1 I N I I I I M • I N w• F- I I . ► 1 - 1 F ' 1 — I t- I — t_ 1 I { I !• • F F /-/ : -1- ' • • .,Z 7 sII- '`;`",k".:•_Z ^ I d':T 1 1 Z ' I I all z __ I. I I I •. !1 I I . hi__ N _• W a ' v� i "M _ . v 7_!� ±•_ ^ �, - F t. '- I F ' r e -. t Q + Vii- + �- i... TI i Ix ��:..I; t �7 .1 1 l t z i oc v I - I I I — - \� "<� L -1.-511e . -1 -I - t h - Iy � - i I d'!- . .J -; o • \ u. 1 - ___, . -- ,- - ► • I• a 0 ,,:. ' , I W I - I r = t .'. , j/ s t ' o 1-% / .1 ...4 ag i ill L 1 ) ' . 't �� rs --- -- - I - --./ \film , . _ ...* ..., • .: — Imo•' 1 I /1 1 ! i 1 ) $ ' t .__-t 'Si- cc `l 1 Ij' I _ �� '; FF Z- i S .. W _ \:11,it. S' < m ,, "I C 1- I " :a �1 , I ' '; z w ` 4. V J Lii J vi . t : ot . ,•, - -J ti. cr ' , E . I , -A .•.....-..- ... . . • • ...,.. P P" • '... 1— iti —. . . I F 7 -I I , . .4 ' - r• • 4; • I 1 i 1 ' J,,. I:,. _ _ 1111 s ' , � � � / D Q m Il 0 1 1 J t , - V i ,,,�' @B �r /` t tia.i' , _ J` 1 1 - _ 1 �? „ ti � � �: N . . "4 , 7 ' N lir : Ct . N w , . . . “ ilLilli 1 . 4' R Ail • I .1 -) - i) . •., n ' Z ii- 4 111; "F I I -- i I I I I I. di , I //'4::(1.illtito, , , rn Mirk 0 . , . _.... N .. _ 1 i I ,4,1 '• ' / .4 - J , u 1.... 1� a I t I ` t 1. ▪ I , I I t�l `'i N , r f' Ir� Z a i - l ' ' ' '' ' ' -11rile10 : 1 -,-L ... k.„ 1 ItyzaktoW r 1 NW, I fi 1 . - , , zo...,,. , . IIIIII0, ge g -i . Ci z � Z T� 1� � I - Y 'L� � - - I -- , • r i I _ i��`ilF7���j -- I � r 444 • I w, 2. i I Y, �b{� i ! IEi1 i w ' .T .L `� s I /Y\ { . r I �� 1/ ,I I., O as \'t �. Li/ O iii 1 i 1 11 / fil r o.,�� I T � i • 1 , i A l � ---' 0 j I GiQ - NI - - S I `I « . I, ^ . il •..J i __ 1 •E! ' , � 1 — r t ` -o � • , ■ • '`, w ilitii I =. i I , 1 : q �i� \nh �if�i i - - -- - 1: }t F 'Pi+ 1 , i , 1 - , ._ ...:, .11 1 - ., . . Ali 'dig V ('. . • r ' l• 1 - . - • \ .1111, 40 /4 :wit ' • 2 ' cc.; .. ! . 1 .2.1 n .i/ • 14 T , • i• • 0 4 1 i . II i $ f; : I` .t . I 5 / � ' N' :..4 . 44n �� . j - I ..__ . ••gyp ,i a 4 r r v . � -- I + , ,, Api c ., 14 �I I E I L D 1 11111111110111,7 E. 1 I I •.. it ��•�I�, I ' : � I � ���tl #� ., ,�' 1, O � � ' • } __ „ � . - • ii a �� i _ I 1 ) � 1 1 2 • , I ' 1 � ,9 1 r 1 L o /f I I ; 1 v e I •= I O F.i. � . � I -N • _ � . I _.I- I _ -T — Y. ._ ,4; �',I� ' .- �' � � A J I _,1 _ . - I. O: - 1 . i . . 1 - N 1 1 I 1 1 1 I i i I i I. 1• � � ► ÷.-- •, .110..—.111 1 1 1 ' Z 1 ' to I N I ', I M .1 I • I I -1 I- F 1 •1 1 :, - - r • - Z v t • 1- - 1 -I- _ 1- . _ - I . I l ' -1 , . — . _ t ,. { ] 1 , ' 4 — 1111 3.5 ' 3.5 NI imill lel 3 3 mu! II 2.5 2.5 qm•I 0) w dil I U Z ow Z too x 2 2 1— gm CL W CI di J gm <X IA. 1.5 do ,/ 1.5 • ali Z alli cr . mi _• I. tee .- gam I .e° I mg / 411 • ; . . ] 0 0 2 5 10 25 50 100 ] NOTE' RETURN PERIOD IN YEARS 1. FOR INTERMEDIATE RETURN PERIODS PLOT 10-YEAR AND 100-YEAR ONE HOUR VALUES FROM MAPS, THEN CONNECT POINTS AND READ VALUE FOR DESIRED RETURN PERIOD. FOR EXAMPLE GIVEN 10-YEAR ] ONE HOUR • 0.95' AND 100-YEAR CNE HOUR '1.60", 25-YEAR ONE HOUR 21.16 REFERENCE INOA A ATLAS 2, VOLUME IX -CAL.,19T3 RAINFALL DEPTH VERSUS ; — SAN BERNARDINO COUNTY H RETURN PERIOD FOR HYDROLOGY MANUAL PARTIAL DURATION SERIES D-7 FIGURE D-2 San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD /CIVILDESIGN Engineering Software, (c) 1989 -2004 Version 7.0 Rational Hydrology Study Date: 09/27/06 Program License Serial Number 4040 NPR Mi * * * * * * * ** Hydrology Study Control Information * * * * * * * * ** dd Rational hydrology study storm event year is 100.0 Computed rainfall intensity: Ont Storm year = 100.00 1 hour rainfall = 1.510 (In.) Slope used for rainfall intensity curve b = 0.6000 W Soil antecedent moisture condition (AMC) = 2 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + ++ ++ + + + + + + +++ + + + + + + ++ Process from Point /Station 106.000 to Point /Station 105.000 * * ** INITIAL AREA EVALUATION * * ** MO RESIDENTIAL(5 - 7 dwl /acre) Decimal fraction soil group A = 1.000 0li Decimal fraction soil group B = 0.000 dd Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 4114 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.489(In /Hr) 4111 Initial subarea data: Initial area flow distance = 735.000(Ft.) 00( Top (of initial area) elevation = 1350.000(Ft.) di Bottom (of initial area) elevation = 1338.000(Ft.) Difference in elevation = 12.000(Ft.) Slope = 0.01633 s(%)= 1.63 TC = k(0.389) *[(length ^ 3) /(elevation change)] "0.2 Initial area time of concentration = 12.413 min. Rainfall intensity = 3.886(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q =KCIA) is C = 0.787 Subarea runoff = 20.976(CFS) Total initial stream area = 6.860(Ac.) Pervious area fraction = 0.500 Initial area Fm value = 0.489(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 105.000 to Point /Station 104.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 1338.000(Ft.) End of street segment elevation = 1327.000(Ft.) Length of street segment = 630.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 1.500(Ft.) Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Nei Gutter width = 1.500(Ft.) di Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 di Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 27.831(CFS) Depth of flow = 0.592(Ft.), Average velocity = 5.497(Ft/s) ww Note: depth of flow exceeds top of street crown. di Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 18.000(Ft.) Flow velocity = 5.50(Ft /s) Travel time = 1.91 min. TC = 14.32 min. di Adding area flow to street RESIDENTIAL(5 - 7 dwl /acre) Decimal fraction soil group A = 1.000 di Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 4111111 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.489(In /Hr) Rainfall intensity = 3.566(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified di rational method)(Q =KCIA) is C = 0.777 Subarea runoff = 13.647(CFS) for 5.640(Ac.) Total runoff = 34.623(CFS) Effective area this stream = 12.50(Ac.) di Total Study Area (Main Stream No. 1) = 12.50(Ac.) Area averaged Fm value = 0.489(In /Hr) Street flow at end of street = 34.623(CFS) di Half street flow at end of street = 34.623(CFS) Depth of flow = 0.632(Ft.), Average velocity = 5.994(Ft/s) Note: depth of flow exceeds top of street crown. Flow width (from curb towards crown)= 18.000(Ft.) +++++++++++++++++++++++++++++++++++++++ ++ + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ :1 Process from Point /Station 105.000 to Point /Station 104.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 1338.000(Ft.) End of street segment elevation = 1327.000(Ft.) Length of street segment = 630.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 1.500(Ft.) Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 35.127(CFS) Depth of flow = 0.635(Ft.), Average velocity = 6.028(Ft /s) qi Y Note: depth of flow exceeds top of street crown. di Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 18.000(Ft.) Flow velocity = 6.03(Ft /s) Travel time = 1.74 min. TC = 16.07 min. Adding area flow to street PARK subarea Decimal fraction soil group A = 1.000 Me Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Ad Pervious ratio(Ap) = 0.8500 Max loss rate(Fm)= 0.831(In /Hr) Rainfall intensity = 3.329(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified Ad rational method)(Q =KCIA) is C = 0.757 Subarea runoff = 0.950(CFS) for 1.610(Ac.) Total runoff = 35.573(CFS) IRO Effective area this stream = 14.11(Ac.) 1i Total Study Area (Main Stream No. 1) = 14.11(Ac.) Area averaged Fm value = 0.528(In /Hr) IR Street flow at end of street = 35.573(CFS) di Half street flow at end of street = 35.573(CFS) Depth of flow = 0.637(Ft.), Average velocity = 6.058(Ft /s) Note: depth of flow exceeds top of street crown. Flow width (from curb towards crown)= 18.000(Ft.) Dili , +++++++++++++++++++++++++++++++++++++++ + + + + + + +++ + + + + + ++ + + + + + + + + + + + + + ++ Process from Point /Station 105.000 to Point /Station 104.000 MW * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** log Top of street segment elevation = 1338.000(Ft.) Ai End of street segment elevation = 1327.000(Ft.) Length of street segment = 630.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 1.500(Ft.) Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 35.613(CFS) Depth of flow = 0.637(Ft.), Average velocity = 6.061(Ft /s) Note: depth of flow exceeds top of street crown. Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 18.000(Ft.) Flow velocity = 6.06(Ft /s) Travel time = 1.73 min. TC = 17.80 min. Adding area flow to street RESIDENTIAL(5 - 7 dwl /acre) Decimal fraction soil group A = 1.000 ost Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 wn Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.489(In /Hr) The area added to the existing stream causes a a lower flow rate of Q = 34.266(CFS) therefore the upstream flow rate of Q = 35.573(CFS) is being used Rainfall intensity = 3.131(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.749 Subarea runoff = 0.000(CFS) for 0.510(Ac.) Total runoff = 35.573(CFS) 411 11 Effective area this stream = 14.62(Ac.) di Total Study Area (Main Stream No. 1) = 14.62(Ac.) Area averaged Fm value = 0.527(In /Hr) Street flow at end of street = 35.573(CFS) Half street flow at end of street = 35.573(CFS) mi Depth of flow = 0.637(Ft.), Average velocity = 6.058(Ft /s) Note: depth of flow exceeds top of street crown. Flow width (from curb towards crown)= 18.000(Ft.) di +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 104.000 to Point /Station 103.000 di * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 1327.000(Ft.) End of street segment elevation = 1315.000(Ft.) ma Length of street segment = 690.000(Ft.) Height of curb above gutter flowline = 8.0(In.) wPP Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 1.500(Ft.) Slope from gutter to grade break (v /hz) = 0.020 4! Slope from grade break to crown (v /hz) = 0.020 Al { Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 1.500(Ft.) Ai Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 42.955(CFS) Depth of flow = 0.683(Ft.), Average velocity = 6.412(Ft /s) Warning: depth of flow exceeds top of curb AI Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 0.81(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 18.000(Ft.) Flow velocity = 6.41(Ft /s) Travel time = 1.79 min. TC = 19.59 min. :1 Adding area flow to street RESIDENTIAL(5 - 7 dwl /acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 vie Decimal fraction soil group C = 0.000 MI Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 w- Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.489(In /Hr) Rainfall intensity = 2.956(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.744 ma Subarea runoff = 14.679(CFS) for 8.240(Ac.) Total runoff = 50.252(CFS) Effective area this stream = 22.86(Ac.) Total Study Area (Main Stream No. 1) = 22.86(Ac.) Area averaged Fm value = 0.513(In /Hr) MI Street flow at end of street = 50.252(CFS) Half street flow at end of street = 50.252(CFS) Depth of flow = 0.734(Ft.), Average velocity = 6.496(Ft/s) id Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 3.39(Ft.) Ing Flow width (from curb towards crown)= 18.000(Ft.) di +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ de Process from Point /Station 104.000 to Point /Station 102.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 1327.000(Ft.) End of street segment elevation = 1313.000(Ft.) Length of street segment = 1073.000(Ft.) Height of curb above gutter flowline = 8.0(In.) • Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 1.500(Ft.) Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 51.144(CFS) Depth of flow = 0.786(Ft.), Average velocity = 5.741(Ft /s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 5.97(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 18.000(Ft.) Flow velocity = 5.74(Ft /s) Travel time = 3.11 min. TC = 22.71 min. Adding area flow to street RESIDENTIAL(5 - 7 dwl /acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 owl SCS curve number for soil(AMC 2) = 32.00 Nit Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.489(In /Hr) Rainfall intensity = 2.705(In /Hr) for a 100.0 year storm om Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.730 dm Subarea runoff = 1.689(CFS) for 3.430(Ac.) Total runoff = 51.941(CFS) Effective area this stream = 26.29(Ac.) 1d Total Study Area (Main Stream No. 1) = 26.29(Ac.) Area averaged Fm value = 0.510(In /Hr) Street flow at end of street = 51.941(CFS) Half street flow at end of street = 51.941(CFS) id Depth of flow = 0.791(Ft.), Average velocity = 5.754(Ft/s) Warning: depth of flow exceeds top of curb am Note: depth of flow exceeds top of street crown. ad Distance that curb overflow reaches into property = 6.22(Ft.) Flow width (from curb towards crown)= 18.000(Ft.) '1 +++++++++++++++++++++++++++++++++++++++ ++++ + + + + + + + + + + + + + + + + + + + + + + + ++++ Process from Point /Station 103.000 to Point /Station 101.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** di Top of street segment elevation = 1315.000(Ft.) End of street segment elevation = 1311.000(Ft.) wis Length of street segment = 833.000(Ft.) di Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 18.000(Ft.) 01 Distance from crown to crossfall grade break = 1.500(Ft.) Slope from gutter to grade break (v /hz) = 0.020 ' Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) 10 Slope from curb to property line (v /hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 51.978(CFS) Depth of flow = 0.934(Ft.), Average velocity = 4.030(Ft /s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 13.39(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 18.000(Ft.) Flow velocity = 4.03(Ft /s) Travel time = 3.45 min. TC = 26.15 min. Adding area flow to street RESIDENTIAL(5 - 7 dwl /acre) Al Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 MI SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.489(In /Hr) The area added to the existing stream causes a a lower flow rate of Q = 50.980(CFS) therefore the upstream flow rate of Q = 51.941(CFS) is being used Rainfall intensity = 2.485(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.716 d i Subarea runoff = 0.000(CFS) for 2.360(Ac.) Total runoff = 51.941(CFS) Effective area this stream = 28.65(Ac.) Total Study Area (Main Stream No. 1) = 28.65(Ac.) Area averaged Fm value = 0.508(In /Hr) �w Street flow at end of street = 51.941(CFS) Half street flow at end of street = 51.941(CFS) Depth of flow = 0.934(Ft.), Average velocity = 4.029(Ft /s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Id Distance that curb overflow reaches into property = 13.38(Ft.) Flow width (from curb towards crown)= 18.000(Ft.) 1i +++++++++++++++++++++++++++++++++++++++ ++ + + ++++ + + + + + + + + +++ + + + + + + + + + + ++ Process from Point /Station 102.000 to Point /Station 101.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** di Top of street segment elevation = 1313.000(Ft.) End of street segment elevation = 1311.000(Ft.) mi Length of street segment = 450.000(Ft.) id Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 18.000(Ft.) 1111 Distance from crown to crossfall grade break = 1.500(Ft.) Slope from gutter to grade break (v /hz) = 0.020 ' Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) d i Slope from curb to property line (v /hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) :1 Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 52.225(CFS) Depth of flow = 0.947(Ft.), Average velocity = 3.945(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 13.99(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 18.000(Ft.) Flow velocity = 3.94(Ft /s) Travel time = 1.90 min. TC = 28.05 min. Adding area flow to street RESIDENTIAL(5 - 7 dwl /acre) :I :I Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 :I Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.489(In /Hr) Rainfall intensity = 2.383(In /Hr) for a 100.0 year storm I# Effective runoff coefficient used for area,(total area with modified di rational method)(Q =KCIA) is C = 0.709 Subarea runoff = 0.504(CFS) for 2.410(Ac.) PO Total runoff = 52.445(CFS) Effective area this stream = 31.06(Ac.) mi Total Study Area (Main Stream No. 1) = 31.06(Ac.) Area averaged Fm value = 0.507(In /Hr) d! Street flow at end of street = 52.445(CFS) di Half street flow at end of street = 52.445(CFS) Depth of flow = 0.948(Ft.), Average velocity = 3.951(Ft /s) Warning: depth of flow exceeds top of curb mg Note: depth of flow exceeds top of street crown. i Distance that curb overflow reaches into property = 14.05(Ft.) Flow width (from curb towards crown)= 18.000(Ft.) 0 1 1i +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 101.000 to Point /Station 101.000 :: * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 31.060(Ac.) ii Runoff from this stream = 52.445(CFS) Time of concentration = 28.05 min. mil Rainfall intensity = 2.383(In /Hr) ii Area averaged loss rate (Fm) = 0.5066(In /Hr) Area averaged Pervious ratio (Ap) = 0.5181 idi Program is now starting with Main Stream No. 2 mii +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ "' Process from Point /Station 111.000 to Point /Station 110.000 * * ** INITIAL AREA EVALUATION * * ** Id RESIDENTIAL(5 - 7 dwl /acre) :I Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 lil Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.489(In /Hr) Initial subarea data: :I Initial area flow distance = 850.000(Ft.) Top (of initial area) elevation = 1347.000(Ft.) Bottom (of initial area) elevation = 1336.000(Ft.) :I Difference in elevation = 11.000(Ft.) Slope = 0.01294 s(%)= 1.29 TC = k(0.389) *[(length /(elevation change)1 0.2 Initial area time of concentration = 13.782 min. l il Iiil :1 Rainfall intensity = 3.650(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q =KCIA) is C = 0.779 Subarea runoff = 12.261(CFS) Total initial stream area = 4.310(Ac.) Pervious area fraction = 0.500 Initial area Fm value = 0.489(In /Hr) Process from Point /Station 110.000 to Point /Station 109.000 w.i * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** di Top of street segment elevation = 1336.000(Ft.) End of street segment elevation = 1335.000(Ft.) Length of street segment = 385.000(Ft.) 01 Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 18.000(Ft.) min Distance from crown to crossfall grade break = 1.500(Ft.) Slope from gutter to grade break (v /hz) = 0.020 mi Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) i Slope from curb to property line (v /hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 di Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 A Estimated mean flow rate at midpoint of street = 17.864(CFS) di Depth of flow = 0.707(Ft.), Average velocity = 2.490(Ft /s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 2.03(Ft.) dl Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 18.000(Ft.) iw Flow velocity = 2.49(Ft /s) Travel time = 2.58 min. TC = 16.36 min. ai Adding area flow to street RESIDENTIAL(5 - 7 dwl /acre) gw Decimal fraction soil group A = 1.000 di Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.489(In /Hr) Rainfall intensity = 3.293(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.766 Subarea runoff = 11.110(CFS) for 4.950(Ac.) Total runoff = 23.371(CFS) Effective area this stream = 9.26(Ac.) Total Study Area (Main Stream No. 2) = 40.32(Ac.) Area averaged Fm value = 0.489(In /Hr) Street flow at end of street = 23.371(CFS) Half street flow at end of street = 23.371(CFS) Depth of flow = 0.794(Ft.), Average velocity = 2.570(Ft /s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 6.35(Ft.) Flow width (from curb towards crown)= 18.000(Ft.) di +++++++++++++++++++++++++++++++++++++++ + + ++ + + + + ++ + + + + + + + + + ++++++ + + + + ++ Process from Point /Station 109.000 to Point /Station 108.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** WA Top of street segment elevation = 1335.000(Ft.) ■. End of street segment elevation = 1321.000(Ft.) Length of street segment = 760.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 18.000(Ft.) ON Distance from crown to crossfall grade break = 1.500(Ft.) Ai Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 ,. Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) di Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 36.158(CFS) di Depth of flow = 0.635(Ft.), Average velocity = 6.197(Ft /s) Note: depth of flow exceeds top of street crown. 0114 Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 18.000(Ft.) di Flow velocity = 6.20(Ft /s) Travel time = 2.04 min. TC = 18.40 min. di Adding area flow to street di RESIDENTIAL(5 - 7 dwl /acre) Decimal fraction soil group A = 1.000 w Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 ' Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.489(In /Hr) di Rainfall intensity = 3.069(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.757 Subarea runoff = 25.501(CFS) for 11.790(Ac.) Total runoff = 48.872(CFS) Effective area this stream = 21.05(Ac.) Total Study Area (Main Stream No. 2) = 52.11(Ac.) Area averaged Fm value = 0.489(In /Hr) Street flow at end of street = 48.872(CFS) Half street flow at end of street = 48.872(CFS) Depth of flow = 0.716(Ft.), Average velocity = 6.648(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 2.47(Ft.) Flow width (from curb towards crown)= 18.000(Ft.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 108.000 to Point /Station 107.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 1321.000(Ft.) End of street segment elevation = 1315.000(Ft.) Length of street segment = 360.000(Ft.) di Height of curb above gutter flowline = 8.0(In.) rir Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 1.500(Ft.) ww Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v /hz) = 0.020 j Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 di Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 55.793(CFS) Depth of flow = 0.775(Ft.), Average velocity = 6.457(Ft/s) di Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 5.41(Ft.) Streetflow hydraulics at midpoint of street travel: di Halfstreet flow width = 18.000(Ft.) Flow velocity = 6.46(Ft /s) 14 Travel time = 0.93 min. TC = 19.33 min. di Adding area flow to street RESIDENTIAL(5 - 7 dwl /acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 di Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.489(In /Hr) di Rainfall intensity = 2.979(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.752 MI Subarea runoff = 13.772(CFS) for 6.900(Ac.) Total runoff = 62.644(CFS) Effective area this stream = 27.95(Ac.) Total Study Area (Main Stream No. 2) = 59.01(Ac.) Area averaged Fm value = 0.489(In /Hr) Street flow at end of street = 62.644(CFS) Half street flow at end of street = 62.644(CFS) Depth of flow = 0.812(Ft.), Average velocity = 6.566(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = .7.25(Ft.) Flow width (from curb towards crown)= 18.000(Ft.) Process from Point /Station 107.000 to Point /Station 101.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** :1 Top of street segment elevation = 1315.000(Ft.) End of street segment elevation = 1311.000(Ft.) Length of street segment = 250.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 1.500(Ft.) Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1] side(s) of the street ww Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v /hz) = 0.020 ag Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Mei Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 62.645(CFS) Depth of flow = 0.818(Ft.), Average velocity = 6.454(Ft/s) NO Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 7.58(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 18.000(Ft.) Flow velocity = 6.45(Ft /s) Travel time = 0.65 min. TC = 19.98 min. • Adding area flow to street RESIDENTIAL(5 - 7 dwl /acre) Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Ad Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.489(In /Hr) The area added to the existing stream causes a a lower flow rate of Q = 61.183(CFS) therefore the upstream flow rate of Q = 62.644(CFS) is being used • Rainfall intensity = 2.921(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified " rational method)(Q =KCIA) is C = 0.749 MI Subarea runoff = 0.000(CFS) for 0.001(Ac.) Total runoff = 62.644(CFS) Effective area this stream = 27.95(Ac.) Total Study Area (Main Stream No. 2) = 59.01(Ac.) Area averaged Fm value = 0.489(In /Hr) Street flow at end of street = 62.644(CFS) Half street flow at end of street = 62.644(CFS) Depth of flow = 0.818(Ft.), Average velocity = 6.454(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 7.58(Ft.) Flow width (from curb towards crown)= 18.000(Ft.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 101.000 to Point /Station 101.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** :I The following data inside Main Stream is listed: In Main Stream number: 2 9ii Stream flow area = 1 (Ac.) Runoff from this stream 2 62.644(CFS) Time of concentration = 19.98 min. Rainfall intensity = 2.921(In /Hr) IR Area averaged loss rate (Fm) = 0.4889(In /Hr) iiii Area averaged Pervious ratio (Ap) = 0.5000 Summary of stream data: aaa Stream Flow rate Area TC Fm Rainfall Intensity am No. (CFS) (Ac.) (min) (In /Hr) (In /Hr) ma iii 1 52.45 31.060 28.05 0.507 2.383 2 62.64 27.951 19.98 0.489 2.921 ma Qmax(1) = 1.000 * 1.000 * 52.445) + MO 0.779 * 1.000 * 62.644) + = 101.225 Qmax(2) = 1.287 * 0.712 * 52.445) + 1.000 * 1.000 * 62.644) + = 110.708 Tim Total of 2 main streams to confluence: Flow rates before confluence point: Id 53.445 63.644 Maximum flow rates at confluence using above data: 011 101.225 110.708 ii Area of streams before confluence: 31.060 27.951 Effective area values after confluence: 59.011 50.070 IS e Results of confluence: Total flow rate = 110.708(CFS) Mil Time of concentration = 19.978 min. Effective stream area after confluence = 50.070(Ac.) an Study area average Pervious fraction(Ap) = 0.510 Ai Study area average soil loss rate(Fm) = 0.498(In /Hr) Study area total = 59.01(Ac.) 3 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + ++ + + + + ++ + ++ + + ++ + ++ Process from Point /Station 101.000 to Point /Station 100.000 :I * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 1311.000(Ft.) End of street segment elevation = 1297.000(Ft.) :1 Length of street segment = 765.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 1.500(Ft.) :I Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1] side(s) of the street ;I :I Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 1.500(Ft.) 'sly Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 omi Estimated mean flow rate at midpoint of street = 110.709(CFS) Depth of flow = 0.959(Ft.), Average velocity = 8.146(Ft /s) Warning: depth of flow exceeds top of curb INN Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 14.62(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 18.000(Ft.) Flow velocity = 8.15(Ft /s) i Travel time = 1.57 min. TC = 21.54 min. Adding area flow to street RESIDENTIAL(5 - 7 dwl /acre) Decimal fraction soil group A = 1.000 AM Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Nol Decimal fraction soil group D = 0.000 AO SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.5000 Max loss rate(Fm)= 0.489(In /Hr) The area added to the existing stream causes a a lower flow rate of Q = 103.358(CFS) Ad therefore the upstream flow rate of Q = 110.708(CFS) is being used Rainfall intensity = 2.792(In/Hr) for a 100.0 year storm e1 Effective runoff coefficient used for area,(total area with modified id rational method)(Q =KCIA) is C = 0.739 Subarea runoff = 0.000(CFS) for 0.001(Ac.) Total runoff = 110.708(CFS) Effective area this stream = 50.07(Ac.) MO Total Study Area (Main Stream No. 1) = 59.01(Ac.) Area averaged Fm value = 0.498(In /Hr) Street flow at end of street = 110.708(CFS) Half street flow at end of street = 110.708(CFS) AA Depth of flow = 0.959(Ft.), Average velocity = 8.146(Ft /s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. MO Distance that curb overflow reaches into property = 14.62(Ft.) Flow width (from curb towards crown)= 18.000(Ft.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + ++ + + ++ Process from Point /Station 100.000 to Point /Station 100.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 1 :1 Stream flow area = 50.071(Ac.) Runoff from this stream = 110.708(CFS) Time of concentration = 21.54 min. Rainfall intensity = 2.792(In /Hr) Area averaged loss rate (Fm) = 0.4982(In /Hr) Area averaged Pervious ratio (Ap) = 0.5095 Program is now starting with Main Stream No. 2 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 0101 Process from Point /Station 113.000 to Point /Station 112.000 * * ** INITIAL AREA EVALUATION * * ** COMMERCIAL subarea type Decimal fraction soil group A = 1.000 war Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 rrI SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In /Hr) Initial subarea data: Initial area flow distance = 493.000(Ft.) Top (of initial area) elevation = 1303.000(Ft.) Bottom (of initial area) elevation = 1301.000(Ft.) Difference in elevation = 2.000(Ft.) Slope = 0.00406 s(%)= 0.41 TC = k(0.304) *[(length"3) /(elevation change)] ^ 0.2 Initial area time of concentration = 10.924 min. Rainfall intensity = 4.196(In /Hr) for a 100.0 year storm • Effective runoff coefficient used for area (Q =KCIA) is C = 0.879 Subarea runoff = 28.290(CFS) Total initial stream area = 7.670(Ac.) Pervious area fraction = 0.100 A Initial area Fm value = 0.098(In /Hr) Process from Point /Station 112.000 to Point /Station 100.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Ai Top of street segment elevation = 1301.000(Ft.) End of street segment elevation = 1297.000(Ft.) !*e Length of street segment = 890.000(Ft.) Height of curb above gutter flowline = 8.0(In.) mi Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 1.500(Ft.) en Slope from gutter to grade break (v /hz) = 0.020 di Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) :1 Slope from curb to property line (v /hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) 3 Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 37.177(CFS) Depth of flow = 0.855(Ft.), Average velocity = 3.484(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 9.40(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 18.000(Ft.) Flow velocity = 3.48(Ft /s) Travel time = 4.26 min. TC = 15.18 min. Adding area flow to street RESIDENTIAL(11+ dwl /acre) Mg Decimal fraction soil group A = 1.000 gi Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 AA SCS curve number for soil(AMC 2) = 32.00 ii i Pervious ratio(Ap) = 0.2000 Max loss rate(Fm)= 0.196(In /Hr) Rainfall intensity = 3.444(In /Hr) for a 100.0 year storm w Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.862 DWI Subarea runoff = 17.673(CFS) for 7.820(Ac.) Total runoff = 45.964(CFS) Effective area this stream = 15.49(Ac.) • Total Study Area (Main Stream No. 2) = 74.50(Ac.) Area averaged Fm value = 0.147(In /Hr) Street flow at end of street = 45.964(CFS) Half street flow at end of street = 45.964(CFS) AA Depth of flow = 0.910(Ft.), Average velocity = 3.761(Ft /s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 12.18(Ft.) Mg Flow width (from curb towards crown)= 18.000(Ft.) Ii +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 112.000 to Point /Station 100.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** di Top of street segment elevation = 1301.000(Ft.) End of street segment elevation = 1297.000(Ft.) Length of street segment = 890.000(Ft.) Ai Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 1.500(Ft.) Slope from gutter to grade break (v /hz) = 0.020 Ad Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) AO Slope from curb to property line (v /hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 51.005(CFS) Depth of flow = 0.938(Ft.), Average velocity = 3.921(Ft /s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 13.58(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 18.000(Ft.) Flow velocity = 3.92(Ft /s) Travel time = 3.78 min. TC = 18.96 min. Adding area flow to street COMMERCIAL subarea type :I Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In /Hr) Rainfall intensity = 3.014(In /Hr) for a 100.0 year storm II Effective runoff coefficient used for area,(total area with modified Ai rational method)(Q =KCIA) is C = 0.860 Subarea runoff = 10.008(CFS) for 6.100(Ac.) •w Total runoff = 55.971(CFS) Effective area this stream = 21.59(Ac.) iii Total Study Area (Main Stream No. 2) = 80.60(Ac.) Area averaged Fm value = 0.133(In /Hr) APR Street flow at end of street = 55.971(CFS) 11 Half street flow at end of street = 55.971(CFS) Depth of flow = 0.965(Ft.), Average velocity = 4.069(Ft /s) „1111 Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. di Distance that curb overflow reaches into property = 14.92(Ft.) Flow width (from curb towards crown)= 18.000(Ft.) I. di +++++++++++++++++++++++++++++++++++++++ + +++ + + + + + +++ ++ + + + + ++++ + + + + + + +++ Process from Point /Station 100.000 to Point /Station 100.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** di The following data inside Main Stream is listed: oil In Main Stream number: 2 Stream flow area = 21.590(Ac.) dm Runoff from this stream = 55.971(CFS) Time of concentration = 18.96 min. go Rainfall intensity = 3.014(In /Hr) di Area averaged loss rate (Fm) = 0.1332(In /Hr) Area averaged Pervious ratio (Ap) = 0.1362 nil Summary of stream data: iiii Stream Flow rate Area TC Fm Rainfall Intensity No. (CFS) (Ac.) (min) (In /Hr) (In /Hr) al 1 110.71 50.071 21.54 0.498 2.792 2 55.97 21.590 18.96 0.133 3.014 :1 Qmax(1) = 1.000 * 1.000 * 110.708) + 0.923 * 1.000 * 55.971) + = 162.368 :I Qmax(2) = 1.097 * 0.880 * 110.708) + 1.000 * 1.000 * 55.971) + = 162.859 Total of 2 main streams to confluence: Flow rates before confluence point: 111.708 56.971 Maximum flow rates at confluence using above data: :I 162.368 162.859 Area of streams before confluence: 50.071 21.590 :I :I Effective area values after confluence: 71.661 65.668 Results of confluence: Total flow rate = 162.859(CFS) Time of concentration = 18.965 min. Effective stream area after confluence = 65.668(Ac.) di Study area average Pervious fraction(Ap) = 0.397 Study area average soil loss rate(Fm) = 0.388(In /Hr) AA Study area total = 71.66(Ac.) End of computations, Total Study Area = 80.60 (Ac.) di The following figures may be used for a unit hydrograph study of the same area. u m Note: These figures do not consider reduced effective area id effects caused by confluences in the rational equation. Area averaged pervious area fraction(Ap) = 0.410 Area averaged SCS curve number = 32.0 W AM wil di OR AM OW 1111 H * .0 fl 0* O O 0 0 0 0 0 0 0 iii * g a a) * w w w w w w w w v * 1n a* a a a a a a a a W 17) * 0 1-1 >i * H H HI H HI H .--I H •--I H r-1 H HI H Hi H .--I * Z 04 E* 1 a 1 0 1 11 1 a 1 11 1 ■ 1 11 1 a I glik W 0 * I * * 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 ill ou E 1 N N* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hi * * E * 1 * 1 1 1 1 1 1 1 I I * MR * J-) • I .--1 * 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 01 10 * 3 0 .--I * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * • ro* o • 0 • 0 • 0 • 0 • 0 • o • 0 • 0 0 * a) H E. * N * 0) 1 * 1 * ro H X * 0■ * Lq 0 I * 1 1 1 1 1 1 1 1 1 * 1 *\ E I * 1 I 1 1 1 1 I 1 1 Hi * 4-1 Cu * 0 0 0 0 0 0 0 0 0 HI * .0 I * N M N 01 3 01 U) M 4)) CO 17) 01 IP) M 3 01 N * 0 • Z* r HI r HI r H r H r .-1 r HI r H4 r H r II U) * Hi ro c* O 0 O O O O 0 O 1 - 1 * a) -Hi * N N • N N N N N • N • N It * 3 0 ) * 1 1 1 1 1 1 1 1 1 O * * Cl, 1 * 1 1 1 1 1 1 1 I 1 1w * 0 a* * E .0 0* 0 r 0 Ir) 0 01 0 0) 0 0 0 0 CO 0 * • 3 * 0 0) 0 .-I 0 r 4 0 HI 0 0 V' 0 0 0 0 I * 0 -HI 44 * N N N H * H 3 0 * * Cv 1 Z* 1 1 1 1 1 1 1 1 1 * * .-i 1 Z* 1 1 1 1 1 1 1 1 I all * ro * 0 O o 0 0 0 * U .C; (1) * N 0 N 0 N 0 N 0 N 0 10 0 10 0 M 0 C) * -HI 4 '0 * N • N • N • N • N 0 10 • 10 0 0 • 0 IN * 4 a Z * -Hi m 0* N (V N N N .-1 H * LI 0 14 * * 0 1 41 * 1 1 1 1 1 1 I 1 1 * * 1 4* 1 N I r 1 0 I CO 1 1 CO 1 1 H 1 10 * 4-1 4- * 0 r 0 CO 0 0 0 0) O 10 0 10 0 CO 0 N 0 o CD * a) a) a* 0 • 0 • 0 • 0 • 0 40 0 • 0 01 0 • 0 ' H * 0 W * r l7) H E * U) W * CO * 1 U) * 1 1 1 1 1 1 1 1 1 C H * UK 0 a * • 1 * 1 1 1 1 1 1 1 1 1 -4-1 * >1 HI * 61 r 10 Cl al 4.0 r If) 01 40 01 V• H4 17) 0 47) In W * 0• W * 10 O r O r N .•-1 H-1 M Or- O OO O MO CO 11 a * u • w * II a) H * a) '0 x* N N N Cr) 10 0) 01 . 0 0 0 > Cm * 0 1 * 0) 0) 0) 0) 0) al 0 O O O * W C9 * N N N N N N 01 M M Z a * * H H H HI H H HI H Hi ON H c a * 1 * I I 1 1 1 1 1 I I U ) r W * 1 111 * 0) 1 N 01 1 N 0) 1 N 0) I N 0) 1 r 0D 1 N CO I H I 0 1 0 0 1 441 H 0 * 'O >* CO r CO r OD r OD r C7 C N N N •--■ O O O IIM 0 < * .-i 111 4) * • o • o • o • o • o • o • 0 • o a •• [v * (1) a) * 0 0 0 0 0 0 0 0 H Iaa: * >x 4.1 44 . > 1110 * V) * H 4Q U) 4( 1 4 1 1 1 1 1 1 1 1 1 0 0 0: * 1 * OD 1 CO 1 CO 1 CO 1 CO 1 .-I 1 .-I 1 0 1 0 1 1 Z W * * 171 N u7 U) 17) N N 0 0 E * H U) * ro 3 * w . r r r r- r V• V CD -� * -- * 3-I * I * 1 1 1 1 1 1 1 1 1 411, a a) * V) * 1 * r-1 I .4 1 .-1 I .-4 1 .--I 1 H1 I . 1 .1 I Hi 1 v) * * 0 0 0 0 0 0 0 0 0 v 4, * aliii 3 04 * C/) * v) ul ul u - , u) ul ul ro * 0 [s1 * a d' " V N N x * C) * C) * — * 10 * * a * 4 * 1 1 1 1 1 1 1 1 1 It * 1 * 0 1 CO 1 40 1 CO 1 1 01 1 CO 1 I I .-1 1 E M H * * O 10 0) r 10 r 10 t7) N 34 * 1-1 * CO CO CO N •• V• N OD CO to * (1) > * 0 * 4- a) * H H-1 H-1 (V CO 0) O O O 1-1 * ro H1 * 0) 0) 0) 0) 0• 0) 0 0 0 a * 3 W * N N N N N N M C) 1•') * * H H 4-1 H r-1 HI H HI HI * 1 * 1 1 1 1 1 1 1 I I * * 1 * 0 1 CO 1 17) 1 OD 1 M I 01 1 CO 1 0 1 01 1 3 * 4 * 171 VD 10 r 10 N r Hi 1'-- (/) * 41 * r co 00 al 10 10 01 N r1 3 * a) 4 W * CO r r r r O LI) 10 10 N * 0 `-' * * * U) * 1 * 1 1 1 1 1 1 1 1 I 0 a * 1 * 0 1 0 1 0 1 0 1 0 1 0 1 0 1 H1 I N 1 E . a) * Ul 0 0 0 0') 10 0 r 0 Il) r 01 a' OD r H * 41 04 * 0 H 0 CO 0 r M r CO 01 CO r I7) U) 10 r 10 C) * 111 > 0* • 0 • 0 • 0 • 0 • r • 0 • r • 0 i 1 m a) H* M H V• 0 a O ' 0 0 0 O O V• O a O .4. 1 - ] * > H U7 * CO co • CO OD 0) 0 0) • 01 0 01 0) 1 - 7 * C W * N N N N N • N N • N N H * H ,C; * H1 Hi H� Hi H H� H H� H 3 * 10* I 1 I 1 1 I 1 1 1 E * O * 1 * 0 1 0 0 1 0 0 1 0 0 4 0 0 1 E. 0 1 0 0I0. . 0 1 0 01 ° w * 0 * 1 H O V o 0 co m 0 (1) o (4) '.0 o 41) 3 * HI* r 01 r m 0 v) 40 r C) E o r r E e• ' co r'1,4 41 4(1 W* 0) 0 H M v' V' 0) 0 0 0) D) 0 0) 0) * 4) * 0) 0 0 0 0 CO Z 0) e cn z m r) H * V) .)* HI HI H1 H 0 H N 0 N N 1=r * * n h 3 4 04 - * 0 0 0 0 3 IA a• it 4-1 0* N * 3\ 0)* W W W 1n * U) A, * a a a W N * O (-I Oti * .--1 H ,--1 H r•1 H r-1 U' •• * Z a F* I Of l a I a 1 W . * * * 0 0 0 0 0 0 0 11) * a Ar * 0 0 0 0 0 0 0 5 * N N * -r1 * * F * 1 * I I 1 * • 1) • I r-1 4 O I 0 0 1 0 O I 0 0 1 l0 * ,'; ❑ .--1 * O O O O O O O 0 * • ro* 0 • o • o • o iiiii O 4 0) w* N * U) I * I * 1tl N X * 01 * (Cl 0 1 * I I 1 * — O 1 * E. 1 * 1 1 4 , 4 u w * 0 0 0 0 •-1 * .0 I * 0 M U) (') Ls) (0 In * 0' • Z * r . r r r- .-1 r - a) * -r1 al * • o • o • O 4) * 0) .r1 * N • N • N • N 10 * Z I * I I I ❑ * * 0, I * I I I 111111 4 0 O , *E-14 * 0 M 0 M 0 (n 0 * 4-) * 0 00 0 N 0 CO 0 ill * 3 'O F, * * O •r1 44 * * .-1 3 O * * w 1 Z* 1 1 1 1 * * 4-1 1 Z* 1 1 1 I * ro * 0 0 0 * 0 .0 0) * r- O r o r O r MI * 44 41 0 * ' • •• v • * •r1 0) 0 * r-1 ■-1 4-1 1-1 * 0 1 w* 1 1 1 1 Pi * — — — * 1 ,C * I M 1 0 1 r - 4 lfl * $4 ,'> 4-1* 0 LO 0 O 0 01 0 0 0 * Q .. - 11 0* 0 r- °. • o • lig v ' H * 0 W 4 ' . E * (o W * U) * 1 CO * 1 I 1 1 O H * 0 a 1 * > .--1 * CO 1 0 CO I C) 00 1 1 (M r-4 's u) W * 0' W * r 0 r- o r o co MI 4-1 ,.a * 1-4 • w 0) H 4 0) ' Z * CO OD OD CO O * W 0 * N N N N Z a * * r4 14 t-1 IR 0 0 a * 1 * 1 1 1 1 / H V• * Cr) illi r W * 4 0) * 00 4 '' OD I ' OD 1 ' 07 4 Q ri * 4-1 N 4 * r• 00 r-• 0 .--• 00 ri • • a •• w * (1./ w * 0 0 0 t> a) D * 0) * - H 1 (0 * I * 1 1 I 1 — — — U >.: µ', * 1 * r 1 r 1 r l r 1 I Z W * * M M M M Id E * r4 U) * 3 b 'd * * M m M m (.7 -r1 * N * 1 * 1 1 1 1 R. a 0) * — — CO * 1 * 0 1 0 1 0 1 0 1 CO * * 0 0 0 0 a) * _, * . g b, * v) * 0 0 0 0 10 * 01 w * N N N N ,- * U * 0 * * 4, * C,4 * 1 * 1 1 1 1 4 , 5 * 1 * 0 1 (0 1 ('1 1 r I ■0 * * )n I0 o r) 14 * LI * In N l0 l0 0' * O) > * 0 * J.) 0) * N OD OD CO 1-I * (0 ri * 01 0) 0) O) 0. * 3 W * N N N N 3 * * ri ,-4 r-1 4-1 U) * 1 * 1 1 I 1 S * — — — * I * 0 1 M 1 M 1 r 1 4 * .o * (0 N r N 1 * 4-) * ■0 In 0) ri E. * N ( * N r l0 l0 3 � j 4 ❑ * 1 4, * V1 * * 1 I 1 1 D * X * 1 * O I 0 i 0 1 0 l E, * 0) * N (s1 0 r (0 0 r H * 1) a * 0) (-- 0 1f) l0 r 1n O * f.1 .'> 0 * • 0 • (0 • ('') 3 1 * 0) 0) 4-1 * 0 0 4--1 0 ri 0 N 1-7 * ' r CO * 01 • 0) • 0) • 0) ■-] * 0 (0 * N N N N H * H .0 * 1 , . ri * I U* I I I I N * O * 1 * 0 4 0 0 1 0 0 4 0 O 4 0 * ( * r LO N r 01 01 03 w * 0 5 * 10 ri CO to v r N * .r1 0) * * J- 4-1 * N N a• r N CO l0 (0 * 10 (0 * •-1 N N d. a * .1-) •--..* H * U) ,-] * w * * • 3 • .. 3 Hi * a .0 * o 0 0 0 0 0 ✓ * .0 -H1 0 * * S a 0* w w w 40 40 • 0 * w a* a a a a a W N * 0 4-I •>, * HI H .--I H '-I H .--1 H HI H Hi 0 •• * z a EI 4 I a I a l a I a l a 1 NI Ft a Hi * * 0 0 0 0 0 0 0 0 0 0 0 ill a) O 0 O 0 O O 0 O O O O 4 N N* •HI * * F * 1 • 1 1 1 1 1 * ang *.I-) • I .-I * 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 l0 * ,$ 0 '-i * 0 0 0 0 0 0 0 0 0 0 0 • 0 * • ID * 0 • O • O • O • O • O obi 0 * 0) H 11 * N * W 1 * 1 * ID LI X * 00 * CO 0 1 * I I 1 1 I N * — — — I *\ E I 4 1 1 1 1 1 Ol 4 .1. G.. 4 0 0 0 0 0 0 * .0 1 : * N M In M 0 M If) M If) M In eli • • 1 • Z * I t` 0 •-1 - 'Hi r .-I r - H-1 I W 4 0 0- H * •H1 0 : * • 0 • 0 • 0 • 0 • 0 1) * (1) -.i * N • N • N • N • N • N ID * ]C A I 4 1 1 1 1 1 o * 0, 1 * 1 1 1 1 1 11 * 0 0. * * E..0 A* 0 .-1 o Hi O Ir) 0 0 HI 0 * L) * 0 In 0 0 0 If) 0 0 0 0 iii * 3 Ei' * 0 -'1 )-1 * .-1 Hi ■■ * .-t 0 * * w I •Z * 1 1 1 1 1 I * w * H 1 z* 1 1 1 I 1 1 * co * 0 0 0 0 * 0 .0 (1) * 0 ID 0 1/4.0 0 '.0 0 .- I 0 .-I * •H1 1) '0 * V0 • '0 • 1.0 • 0 0 • 0 IN * .0 a 0 * * -'1 N 0 * HI HI 'i HI * $i A )i * * U 1 C., * 1 1 4 1 I 1 WM * * 1 4* 1 1 0 I Hi 1 1 In 1 4 O 0) * 0) 0) 0. * 0 • O • O • O N 0 • O ill z * a •-i A * • N • In • In d H * O G] * 'n ri E. * (n W * V) * 1 U) * 1 1 1 1 1 I O H * — 0 a * • 1 * 1 I I I 1 I ...-1 .1 >1 HI .1 d• d' CO d' 10 01 If) H I N 0 N < V N W * en 41 * d' 0 d• 0 11) 0 '0 0 00 0 OD N H * 0) '0 0) * O O O O O O •J C'. * 0 1i * O O O O O O 0 * W CD * M M M M M M Z C4 * * HI HI HI Hi ri HI 0) 0 a * 1 * 1 1 1 1 1 1 H d• * CO r W * 1 0) * 03 I N CO 1 N CO 1 N OD I HI 0 I 0 0 1 1. 40 .-i U * '0 •- 4 N N N N N N N HI 0 0 0 4 A * . - I I0 4' * • 0 • 0 • 0 • O • O H P ai *> x. W * O O O O O • 0) GD * () * OM 0 CO * 1 1 1 1 1 I I 1 Z y, * 1 * H I I H I ri I r-1 1 0 1 0 1 Z I C0 * * N N N N 0 0 illi F * 'i V) * • • 1 d 4 * > k a . 4 v d' d' 0 •■••1 * — * 11 * 1 * 1 1 1 1 1 1 fig a (I) * — — — (q * 4 * 0 4 0 4 0 4 0 4 0 1 0 4 (1) * * o 0 O o 0 0 0) * H. * CO * U) 11) 10 If) I I * 01 k. * N N N N - * U * O * * .. * a * 1 * 1 1 I 1 1 1 3 * * 1 * 0 1 d• 1 M 1 N 1 d' I d' 1 ID * * 19 O 00 I-- 14 N y. * 11 * .-I N N M CO CO • 01 * (1) D O * y.) 0) * 0 0 0 0 0 0 1i * ID '-1 * 0 0 0 0 0 O 3 0.. *$ 40 * M M M M M M ^$ * * '--I HI HI HI Hi HI CO * 1 * 1 1 1 1 1 I $ * — — — * 1 * O I d' 1 N 1 h 1 d• 1 d• I 0) * 4 * M d' O d' in (N 1 * 1) .-. * If) d' d' N 1/40 1/40 4 * W G 4 1n 14) tf) Ill 1n If) 3 1 .4 * A-- * I * ( 1 * 1 4 1 1 1 1 1 I O * D ; * 1 * O I O 1 1/49 1 O 1 0 1 0 1 4-1 * 0) * M 1/40 'D lD t'`. 0 M r If) 0 H * 1) 0, * '9 t` '.0 CO 'D .-1 M H h (V O * II ' ,- 0 * • 0 • 0 • 0 • 0 1 * 0) 0) r1 * d' 0 d' 0 d' 0 If) 0 11l 0 If) a * •J '-1 to * 0l . 0) • 01 • 0) O al • O) a * 0 W * N N N N • N (‘J H * H 4 4 H HI HI H Hi HI x * 1 U* 1 1 1 1 1 1 E. * • 0 4 , I * 0 1 0 0 1 0 0 1 0 0I a o 1 0 0 1 p 4 0 4 0- M ` N 0 t d' HI E- d• 0 d' 3 14.. 4, 0 E 4 ID CO u (0 • • m In O OD O co .1 • •HI O) 4, * 4) .-4 * N ON N N 0 N N E-' CO d' N 40 * ID W * H N H-I d' d' CO U O 01 a * N ,-..* Z H * (1) a w * * h 3 3 ,-1 * LL 4 * O o * I, 3w w * W o * CO a* a • * I E a z G * I 1 4 al a * a a * 0 0 0 E * N N * E. * I * I 1 * 4-■ • 1 r-1 * 0 4 0 0 1 l0 * '$ 0 HI * 0 0 O 0 * ro* o • o all o * a) H w* N * 11) 1 * 1 * 10 N >C * M * GO O 1 * 1 I UR 1 * E. I * I I •l * 1J 41 * 0 0 ,-I * .0 I 4 0 M 0 ill v * d b z * 0 0 0 4- * W HI * N • N 10 * X O I * 1 1 o - * Q 1 * 1 I * 0 a* * EI .0 0* 0 N 0 * .1.J * 0 0) 0 iii * 3 zs 5 * * O•.1 N * * r1 z O * * w 1 z* 4 1 * .• 1 z * 1 1 * RI * 0 * + p, 0 * w * -r1 0) O * r I * H0 1-I* * U I 1.■ * I I 1- * I .0 * 1 r 1 iiii ° z * a . 0 .1 , O • 4 0 • . 1-1 * W * ,-1 E * V) W * CO * 1 to * 1 1 ` ( F4 * Of 0 a * • 1 * 1 ' . * >, .• * M r o b W * N N N u a * * u w * 0) H * a) ' Z * H '"' 0 1 W C7 * 0 M 0 Z a * * ,--1 ,-I gigl. C7 0 W * I * I 1 iiiii H V• 4, W , U * •O I D* CO 1 W � I r - , ..w * 0) 4* 0 0 H N Z * • J x Ga * • a) 0 * CO * MO H U) * 4 * 4 I 0 ':... 0: * I 41 M 1 M I yuy 1 Z W '! E * .-I CO * * a) a * ■o '.0 • H 3 * > W * * C7 •.i !R a v * 1 * 1 I fa rn * • 1 * 0 I 0 1 v * * ° 0 * In * 0 0 rt * a k, * N N ,k * U U al * a * 1 * 4 1 * E * 1 * O I N 1 1d * * o r u * v > 1 CO b , O * 1J a) * 0 0 3 4-1 * 3 w 0 O 4,, CO rn 3 * * .-1 r1 U) * 1 * 1 1 * I * 0 1 , N I 0 * .0 * r -I I * 41 * 01 co E. - II 0) E * • 3 * a) W * v M a * o -•• 1 k * CO * I * 1 I O 0; * I * 0 1 0 4 H * a) * M . - 1 l0 H * 1-■ Q, * \0 ,-I 0 U * 3-1 > o* • 0 I * a) a) .-I * 1n O r- a * C W N * N N a •-1 x * H 1 U* H 1 I F O * 1 * 0 1 0 o I O * C * r l0 M G., * 0 5 * to r - c * -.4 a) * * .4-1 r-I * N V. r 47 * 10 W * m M a * 4J �* F..1 * CO 14 * I, * * 1 H * Q. 4 it 0 O r) * .0 -4 0 * 9.9 * 4-I at * * '3� N * w In * 11) 11 it a 90 N * O N >, it r+ H 1-1 0 • * 2 a F* I a 1 4111 ccC a . - 1 iii •• 9, * 0 0 0 N * a a4 * o o O * N N * •.i it * F * I * I it it 1.1 • I H* 0 I 0 0 I 10 * "$ 0 '•1 * 0 0 O O * • c6 * 0 • 0 ii 0 it a) 1.4 Cu it N * W I it co * 0) O I X * I (N. * I * F 1 * I ON * 4-1 kW * o 0 * • G 1 c * 0 r) 0 • • * z * O .-1 O di m * -.-1 113 5 it • 0 1-I * a) -'i it N • N 13 * x A l * 1 A * it 04 1 it I * F .0 0* 0 N o * 3 0 E * 0 N 0 Se * O - .1 11 * * 1-1 3 O * * C.. I Z it 4 I * O. * H I Z* 1 1 it ( it 0 * 0 .0 (1) * Cr) 0 m * -.1 • O it • r YWI * +- a a * it •.4 a) 0 * * s1 sa* * U 1 W* 1 I * 1111 * I .0 * I V' I 10 * (1 'j 4-I * 0 CO 0 0 0 * a! a) 0.* 0 • 0 ifilli • Z it a.1 A* • V '0' H it 0 W * . F * cn W * (n * 1 U) it 1 1 O H * Int 0 .-7 * • 1 it I • * ?i 90 * 10 ‘III 0 10 V. U) W * b 43 * 10 0 t0 N ..7 4, N 1..., * a) H * a) '0 = * 0 0 • Cu * 0 N * 0 0 0 it W 0 * M M Z C4 * * . ri 0 0 a * I it 1 1 H V' it 2 V) r W * 1 a) * a' I u V' I W . - 1 U it 'o D* 0 0 0 A a,' * r-1 ttl 4 * • 0 1 s1 1: * > x Cu * • a)� * v� H (n 44 4, 4 * I I U — — — C4 * I * 0) 4 0) 1 1 Z W * * N u'I F * .-1 U) * g N 3 * > CCuu * + 1 O -.1 * --- * 91 * I * 1 I a n * U) -99 1 * O 1 O I 4 In * -. * 0 0 • O + * cn * v) In 1tl * a W * .k * 0 it O * �- * It * * a * I * 1 I it * I * O 1 1 m N * * 0 0 )1 * s1 it 10 10 o * o 1- * o * 1.1 a) * • 0 s4 * as r1 * O O a * 3 W * cn (4) Z * * H .-1 0) * 1 * 1 I S * 4 * O 1 N 1 O * .4 * e' N I * 4) * r) 0) F * 04 E. * * a) Cu * V N 3 4 -4 * A 9.- 1 * * cn * 9 * 1 1 10 * t4 * 1 * 0 1 0 1 E. * a) it 10 r r) I-1 * +I CL it N 0 tO U * 14 9- O * • 1 3 I * a) 0 '--1 * 10 M r it 01 * W U * N N H * H .0 it H r-1 x * I U* I 1 F * ' 0 * I 4. 0 1 0 0 1 O * C * r - . - 1 m 3 C.. * 0 5 * 10 d' O it -.-1 a) * * 1) .-i it N d' r w * ro W * ,-a * 1. * H * U) 1-4 it w * * III Page G -3 Los Angeles County Flood Control Distr P • FACTORS FOR CLOSED CONDUITS FLOWING FULL z 1 Where: Q = discharge in ofs Manning's Formula ; Q: 1' n86 A R s = friction slope z 8 A = area of condui Q 1.486 AR 's R = hydraulic radius of cor_duit K : -, : , for pipe K: 35.6259 d g sz 0.013 for box K :114.3077 AI n = 0.013 !II i z Q - K sz 1 d = diameter of pipe " = height, of equivalent box s -(i-<- Q 2 w = 'width of equivalent box III _ = wetted peri...eter PIPE & BOX PIPE EQtJIVA= 33X d A X w A X ft ft.-in. ft. sq. ft. 1.25 15 1.227 64.6 .50 13 1.767 105.0 .75 21 2.405 158.4 2.00 24 3.142 • 226.2 .25 27 3.976 309.7 .50 30 4.909 410.1 .75 33 5.939 528. 3 .00 36 7.063 666 .25 39 3.295 325.3 _ II % iii .50 42 9.621 1,006 .75 45 11.044 '_,209 4 .00 48 12.566 1,436 . 25 51 14.136 1,688 .50 54 15.904. 1.967 .75 57 17.721 2 4 - 5.00 60 u.635 2,604 .25 63 2 2,966 No .50 66 23.758 3,358 .75 69 25.967 3,780 6.00 72 23.274 4,236 dl =5 75 30.6E0 _ 4,720 _ .50 78 33.133 5,244 - . 75 31 35.785 5,796 .00 84 38.4 6,388 5' -10" 5.33 40.3 6,35- .2.5 90 41.283 7,015 7 50 44.179 67 I6' -4" 6.33 47.0 7,7 , 75 93 4..7.73 8,379 3.00 96 50.266 9,120 6 1 - 6.75 53.5 9,256 . 50 102 56.745 10,720 ' - " 7.08 59.7 10,635 9.30 108 63.617 12,487 "' -6'' 7.50 ,=,-.o 12.452 114 7C .382 _4,1 1 S 1 ^" 42 - _;, 5° .�0 _ 120 7� 54.0 _26,538 3' -5` 5.42 _u,�2 .50 126 36.590 e 335 -1C _.33 _9, 11.30 132 95.333 21 9' -2" 100.3 2 ,333 . 50 138 '03.379 2L,305 9 9.53 _ 23,95 B -11 j IY Pa G -33 SUMP FORMULA } " i T Q= 4.3AD ° '6 (COMPLETE SUBMERGENCE) ¢r ai a A= AREA OF OPENING (W x 0.656). ' ® ®� . , I iii pAH�l1®B16plV 400 - ,� • W LENGTH (FEET) OF CATCH BASIN _ _= e ° - ,; OPENING . • .aN 300 I D= DEPTH (FEET) OF FLOW ABOVE Q•�M ..-=a =- • • •...�J.tt...�Jtit... I • di NORMAL GUTTER GRADE .AI �� .7 " . �� � .tom i ®t►tlN •'L�...tln /.. 1 8 NORMAL C.F. 9 AT C.B. OtA�.1lP'.- .1.1N1...o1• : II ' MIMI1es11mvan1Z- Y_ !Atli .BV7. 1111111/siMIK.1.n11v .1xm111W:/n ii i o:aav .onc.' AMU= K A Mn _. ' w.0.aIfl di 7 V Min . ' IL:IIIHKZf1MPrInaIBi1U111 i LIMPitlnWilllfNNl ®Urtel ' OM , TAI I111P_irWIH111!@:11u1: 'r s I :illiMI1pi11u1111M :111I1u11 ' 1 i IIIIIIV,RIV5i®u 741®flnn11 1 _ ' I/'.H111111P_ailI MIIIIIIII 1 oo , ,1 - -- 1111 11 11----- - - - ___ -- 1111 -- --_ gm _ 1 11 _ — __ _ _ = so = _._ mom= .— :_ _� _ --__ , h 1 E Z - ��� - : e � -:e r Q Y�W.....e.. . YM MIt�Y.Ntt . t. ..d ` • ... t. .t0.�.�t tOt. lYt\N /M.Mt ...174..NYWtl /.ti tt m • t. tt. ... .tt..mte.�Ittatt Nr �� amu.a . o.t ■ 50 • .I . 10N .tttO .n.. 11.01 .nn uW 1YMIIIIM a n /.t.mnw.fY•■ t ' 1 ��tYt1MIMIm. ®.11.t t.tm...oumrun ttna��ri��..tve�..a.wo.uu.u.t 1 9 • .10 o�®.OQ.00.N IN 1 .NI t'A �I. ..N %...t. n.1W l • M. BfOYQ. N�.. 0. 1.. WN N ...C..N... ntlO N1.....■ 1.1. O' ��RY1N SOiAIt 'nil NMIUOUm�• /�W, AN11W.1 RIM Mil NNYB 1 mons a. �to�llmanmwwmxlue� _��w_�iiumnnu..nnum_ss1>AU 40 C • ��� .: 1 ° .o��N � . w IHNM 30 - t.O v...v...1..... mamma. .Hail t...1.' . N'I.omml■■..Yp......Y... N.... MM t t.i Wtt= N... 11 fl fl 2......Y..IM....n..n...•.t. MINIM WIN n. HMI t. t.ttNnMt.ME n... Y.�In.t..t1.tOt Ytt...01 N...... NM I�AY� ..tt tm...Y1® O.t..1111N tuft m u N�Mt.�� n.. t. \.. n111...t. . ■ • �[ - ^ ®N mppN.fl....>®mmNana 1111 1numalimm�t.NaO w.....tt (1) a. 1.�11NN11.N..A1.11at11rac �N 11111 1 ...Bft•11 .. lIWW.,unI �N Y 4, • ®1 ®NOl..Im m11 umn WI Itlllli Mmumil.NnI....H11111 minmse 20 - ? I E • xmosw.mMUIWO tuna aunmM�O�ONN ....Bm.a.n111B1..Hi.. F . • • = /�661��tBillWU fOI',III1H11��oY�OIMIIME �W1NN1 11111 111111 0!■ I 1 , Rol V • p 1 ®BB1111B111 1M11181111HFID1IIHIUN .wn1111111IMILIIIIIHI•H•nll 11111111BIHINflu111111BIII11111111111HI1111 s11MINUMIIIIIIMMIlllgIIll11IIIIII Ull • ;I I iii • Cr ' ®11199 11111111M11n1ann11m1•11EME1AIII1111BNIIIIIIIIIW 11111fl1181616■H1Mu I. u113AIMnuu .••/■n1h■■■wnxnm11111u111111 IH1111Y11ll11111 1111HH118 ,11111111I1I! ■UUWI1IIHh111111H11111n1111111 " �r MI ' Il�W111�I1Iflu11111111emllluuiI RlIIOW111111111111111111111111111i . EMMU lIIIII11111111WNnII1 UhIIDIE MENIIII®111111111111nnln : 11 ' ®u I H i l l0B11111MEIM11111IIIUI■ t■■yi111111111111111lU1lI111111 10 41 , _ -- — =_- 111 —_ ��_ 9 4 1, - - =° 111 ---- .. - --.- 7 [ : . 1 �: � .. -' : �: � � — MANN kr • �_.M...:•oC..�:C..:.::w®'.2...:NC��� ∎� M,.. �....................... 6 • .3 � .4 .5 Y . 6 J .9 N LO 2 w 3 AN 4 5 I a D= DEPTH OF FLOW (FT.) ABOVE NORMAL GUTTER GRADE 1 : • t • Los Angeles County Flood Control District ' CATCH BASIN CAPACITIES 'Z FOR SUMP CONDITION P TO BE USED FOR C.B. NOS. I, 2 81 3 4, : - - , r l3' • D-26 6 . 1 1 1 i -, W d (.I O U _ i 0 o. 0 o o • 0 !n 0 1• 0 an + IA N - -• 1 'u t as las pp III 11 - CI . ��� 0 . - -F 1 111 t . t° . l 111 II 11 -' t - - A lull .' ' �-I- -I` 1 1 1 111 1 111 1 _ 1 1 t Ili!!I 16111 11212111 NU 0 a ! i II ! " °! ° !'s!!uy y a I�aca• ca ! l I 1 I s : a r, : s::: s a• s y: o -seoa - a 1 1111 {11� lliillllllilllli{liI iiili�i'fi13o:. hill dills 119{13i9o�9iii 85i'ia 9116 ibi IIIIIIliI I Iill9ilt Rliiiiilliii E :sllli Mi!Iiiiil i l€ p i l srai • 4 +° I II ! 'li1 {li ae, ° a EI s fi � '�� t s I t :1" _ ! Iiilliihilli Iilliilliliilii iili I I.. iliii!l1111iii1..1.1 plEBs iiiiiiiiiii iiiiiiiiiii el ie_ .MIIi11i!liiillllliiil�:el>ulim limiliiiil» �>> il lItatil v 1..1111 a Ei i �' t i'i'''' ! •3 i ! i ' 9 ' {� ' i " i `iii {I 31 ii a I == Iliii Ei i !fi� =' a 131= _ 111111..!. IIIIil1111111111 . Milli 91.1 11111 10 111111P1lllii -11.11 1 e 666 11 iIIIi IIIH � IIIIIi. lilii'.•° i1..ii.i iki z o pp i! !!E � ' ' • a:ml:11 tiilii::1:s111epli a n! 1.__ �' „ 1l If�uf eeeeeeet:;! I! t! i! t!!:., �eli!seeen.•ne ° !lees! 9 11 t.tt!Lta:..SISSfIi� � O z lli a cat t , 1;3 i P °m 'i i 9S filllllk9iiiilifci 'iiEiE!ii�l "IIIIIIIilliiiPi i 9e�'!�_l ►E� = z iiiiliiii'11111111 :11111 II „ •I lM11 11111; 4111ili.i.. g 5r,.. o511,i=►l.111111 • . I : a , 1 , yl = 1 11 _ tP) • milli �i I I H 6111#� l ty.••1.'y.!'!:i ""aiiaitiv '' I'g'+ss3 .yi!l i if''i! l i l i i llii i t S a '�1l13!I iiii�i i3°a=i - mi !1131133 6 f IIII!! 61 1 �..� .. _,..� e g s I 1i..i I i, li ... : a': 1 1 y gg ■ tl' 'h ii�°�si i. illliiN I till I i e : 5ti Ii. ji1 l :s yi1•. 1 i - a s ::ai ° iiiiiliiiiiii 1! P1IIIIEi11i1i1�i °ag iI3H Ill!. ii .ilisatl�iitiit i ! i l- I ! h ....i I1 i.liisl•iF:. : ..__511 :.1=l i llifi i• i . : i : : _ 0 ii I •- -- i � �� ''111 i1 i i •iii !a' It i ,'lli l;'�,I l ai � •s : � -- = en 1 a) W �ii 1111 i i Iill iii . ' Ri gli 1 i111 liiiiilli I9� `ii �9li iiita.l{phiiiN !iitii'illli Iiiiii:fi� h lii.il:iif•t :.1 ::.i' :11 1511 = 4 r Illii iliiii l l 1!11111111 iI II iii .i'lliiliilii ill 1 Iii I r i tiiiiiii ill''; �gi�ljiil; ilii =s =lisil :alliiIIiiiiiiiili l li g:9 1�i@ i liiiii ' =_. � T. III . r1 . :..,� ... a cr c0 � ! '1' 18ait • � ' . ,� lq �1iil i=�i !'�I� 6 Ii : ;Eii�i I...I! !! 1 : =i'�lil6 �0 9 U .1 pin 111111 i►lllli llllill�� �� i ;111 il!- .11$Il 11ii'lj :•1» :t, .Ilillll1 :i :�. ;. :� �. �' N I IIII liil1111 1 i1 I i . � 11 •. .iiI 111111 !: i ! ! M 1 qp �a � l,iil.ii : 4 I l ! : . . � :a a � � � .4 �- - 1 . _ I _ II� i �� :�a� 16�� �� ll � ll :i6 : � ��I iif11 1 ! IA ,iiiii ..�, I l illi i rii r i il'ili i s =.il : . . _ ,, , c, W � . �0 . o ! . Il se a o, i ti 1 A Ai -- - � 'Ail' i ' °349 °3 't lj!! � 4 ytl�i 3 ��� • g ° °•A �c � W } !•1 1 iI iii i.1 l� Eli- ii318ae 1 3 -$ iii i ! !i3` e� 2 9 i i i 11 I I g 1011114/11i1h011re4111111111-1.1111Piltil411111110h15'9 . I i 1 P 1i l 41 11=° a 11 t 4': 1l. li s t i i 1 !!9= :5'. g 1 g �y it li:oa jj! fie i` y @ ii�. a �`- U p > Iii 1 1 ! ° a i ► llll 1 11 . 9 . . B I� . i', 4 81 liiiiiipilliomortiPloor,ilimilliiiiii 111.6i Nt;;.i �11li. _ . m a _ • li' t1 s c e :' til !ii _ .s mo -. �- 1 111 i � i li i i � @ i 'il` i li Q I �� li 1i' i �i g ii: ,; i11�; :� : » € �= r� co 5 1111 hi lli i E i+ ! I i ' 111 i �jI l ll ii11 l u :r ii 6 $ 'i tl !l!i a ! ;11jg�'�_ a5��ei ! a m :i . ,: . � . f i1 iih . 2 III iiill I ii 52 E - 11 1..11 lI 11 11 ::i tiil11 1 11111 : 32 "'Ii:i 11,161 i 11114 t N oI: ��f � f! !!i � ti t i !!: i! li1� � iii fi • ! 11•t ! :_.: u . e , � ; ,�_ ;g i ._.e38 � W 1' ►' � I � ��•��; � � �i{{ � �l I h I II II IIII ... . .- _ 1 e . ° • 1 1 l : .■ o lu 1 I_1I I.:_ :- :':: -= li I ll uh1llill 1 L a �� ��g g 1 .I1,II l 11 - � 1 I !I ' ... . 1 e i I1 ! I 11 1 t 11 I� �1���C�� CO Cr IiI I �t �I I 1 t� 1 NISVS HOMO O.NI ('S•il• )) b 0 • C I 0 0 0 0 00 s. - 0 0 ce Wi N _ eD 3 ;9 1 I,. i e i gg . , 1 1. 1;1 ; i, ' I .11 11 - 11111 F l 1 i :1 i... - g- _'_I_ . • ' I . I . '11 1 1 li 1 .�. 1 1 ..,. it 117. (IA o li R !6 !fill Iitl i tiII • Ilii1 iliia•i!I1I .Till iii.a.. 3 cac a scc c (- °x 1• i soya . °s e- a la:• , ii I : • • i s s q o _ L a IayiEi I t I °f!i i i :i i9i9iiaE,1. '1��ilili991i iBfili 1�iliiitiliitiEliiiiiafl�al :ill iuii °itti liii ill ° iii € = @6 =ii6 :i Eai�2 - o 0 0 11 11 I! 1 � °9 'ti E 1 '0I " � a i ' fl 1 i ° != lit r1+ t• :;a ! s � . e m! _ _ c Iiiii III liili iiiiiiiiiiliill hill i! g i :iiiiiiillii'lllllil .il!fllllilllilli ' hill! • iillllllliiiiiiiiiii�dl�li �i1iila :Eili • i 1. � - i ° '';'ii ' i ii! i E E' i! 1 " : 1 I e as a a o .•. O :i.- -- o LIMIOlii Hi hi I 'iiiii it lli I�1 1I'r�iiiii ii lliiiiMiMiii5 il i pti l !' i l i1i11i ! Milli III 'Ii i i y i 11 11i1a »I III i'llflll ll111ii111111ilifinti liiig , EI- 9 3 . ! le!!I !l9 111 n! !I e! ----. 1t:■!!:! 501 eelade--!�!!!!e°A!es , .! It ..n --t-11 e eulY.t!!!111.13.M!!!1 330100 /00 SE»_ • z ' i ai tI !�liilil lililNl i!l1681 i3iiim$i �iii�ii;i,. dill! il II iiiiiii9egi�?ililiiilliiiiiiii iiiialiE? alLI'ilLIi�E 0 W .o -a � I1i 1111111 11111111 11111111 1111 16111111 i 1111 Illa� ;,�t`i , - b Se4 �r2.11 !l ' y + , q i �i!'31111,11..11 1!111 i Iis;, Q : IIIIIiiiiiiiiiiiiiiiAall o 0 0 -° 1• �� � I���,i.s_•i I i a � ;,,.� I.I .. _ a u y. c a ,�, �S •i1 a • 111' iii'! . F Ei ag m m 0 to 1 111611 Fi ! I�IIIIi iilii iii limmill ! �i�l�i�i aill fi g. i ii !li illl R inhiiILIilim ii9i liiiylyio ltlii:laiiil i fig €iiiig.®i_ --_ ., ® _ 0 0 ._ Oif '. s 'S z e ' l' 1 ' lR 3 Ip ii t: z +- 0 W Illili - . i! i IIII I !li • l1i•liillliiiliiiiiiniiiiil lliki.ill l iiielll t ' III Ilil1111111 1 11�i ' ii'i i i ! i' 1' , ibl iii' i N o l la€ !I!1 ! 11 I'.i°:.l p 1 i mid �!! i 1 1 i! °i�llIIII 1 1 �•� ii�lll9l����s� II I . _ = I111I1 ti ll III ilim I Ili! 111111111[1:101 1 1111 Ele �illlliiw..1i11111bil... ! MI1111111111�oi 3 0 x 1 � Mil 1°�i ' ° � 1 1 1 1111 •° ° ail 1 '"!Ill '6 i �ti'eii3!' mg " E.. O ./- � lP:. _I • • 111 1 1 11 I 1 I1 lllillllll 1 11 l�l 1111 TillEra .ili6iliilillliiiiiiii: :1111= a• u N a) - 11 1 - :1. ° mo l l al `liill lli ' R � o °' 5 o 1 llti . I ► it 11 1111 l 1111 1111_ 11111111 ,il 111111 11i ,1 iiii °1 , 1 I 1 ! i e I 1 liili 11 1 6 1,1 .. ' : 1I I'' I ! ; ll Illh1 k I ; 1 1111 1 h li 1 ! III 1 1 . 1 : 1: - . I I IIIIl II !1111(IiI ::lii :.. liiItillI1 I ll �_ 111 ® a) i 1 I '� i llllIll ffl IIIIL 1 _ � 0i�1 i �i illl' . ,..' a + l � ° aes• s.�� g J L ( I I i I i , !!1!lpii 1 , p I 1 1 q 1 1 � mil= is. ��1111 1 1 ' l - �` I11 1 � . 1111111 ! lirnilil 1111 �� ill fill� it 11111. =1ii 31 ;•1i l ig = °i l�ll ilbl: N �, 1 1 ... . is - W E { i i ! . l i1` I 'ia 3i;�i3I6 : -giti=i i; � i1 'iI i rl1 � I i I 1 1 I : _ • I I t . �I i g i '°'-zagig . 11 ll ll ll fl t � - _ 1 I I .I �I 1 1 1 ll ll I i l' iii 119 g I 1 I! ; i , Ii ;i ,,! 1! -► I 1. 1 IIi 1.. ilI � ! is 1 hi ll h ' 1 I ■ -, w NISVS HOIVO OINI ('S i'O) O. F- 0 z 0 0 0 0 0 0 w (0 ti 10 In I Kt N - 0 0 4' !t N - 'ill' tl j1 1 I1:1-111r111. ' 1 Iy : ..... . I I i I .1' I ,11111111 I • 1 .--1 i . ... 1 I , . . . I i 1 I I.. - 1_ 1 ilk 1 4 1 1 1% i, - YI■ �r ■■ iliiilil •�1$i 11 '11{11{ iiil r lliiillllil111111�iiiii� 3 inkillig Iiiiiiliiliiiiii�Iilliipiiiiiilllllllilli11 milliiil' ,111 ;i iii ei iiii o ll 111111111111 Illgl i i IMI iiiliii �:i!IIIIiiii igni`d ieilikil!IiI iiliiiikliiii!!h !a liiiiiiiiiiilliiiiiII lilil1iillli°1i!°�I1:=tzE :� Ei' =i =_ ill i ,,, f1ililllli le.. ", s.. ,, (iiii,,, • ! sa s - 11110111111T1111111111011140 � 11 {i ►1 I ii �{ 1111 iii 1 iiil111iial�Ii Iilliii11311i1161iii9 : =e1gEa -�E6g 1 _ 11111 l illllu. ii it:. III.I��Eil::li��il.illiliiili.. IIIIIIIIIII,Iliiilliilii.... :�. , I ._y, 1......... lini If! I LI! !!t!! 1! 1! 1! R= ale! !e `�pe l eee 94�e!!!!D!!!S7•!!!le! else :•anlllnlln!!t!t_!!l H 1. 1 lt1 !!1!!!e!!! !!!!!!!!!!!!�!!!!��! P1 , 4 Lti • � ,-i - - -- i I ; - � - i -- �r + ,i >' - - � !� ?i (!, -- 3 5,11 11 •i - - ii 0 il ;� IilEii 1 411; ;; 3 :��in : : :ii�t /iillil: I z 11111 � IliI I~ ,:�al Fl►.Hiii .tliiii i.i iilil.' .ei 82i ,ii ilill9 ,l:n .iill l 9 . I ii l.i i i I iiIllliel :: il.ii : :v ia ', IIIi1 11i11iiii•{liu.11r - ._ilia.._ „ 2 i ii 1! li u l . Ok . i i� , tiih j 111;16 .:7t.'I�a�1i 1'1iil :!'Eli 11 -l l'" i tni : - c _I yy 1!l� . NM .. illfl ill iii! 111!1 U 11. Hii ikh ii Y .._•.ma - ,.: 1 a = :y. :.11iy. :F =lea i esa: __ • ii ii liiiiiii111lIIII 1111 ilia 1{HII. 1111i11I 1 '' i 1 , 19 11 , 3• ii•• - : e a - - � i � i � iEi Iig����Iillili�yllll .i 11111 =1i .liFe6i@ 11111 iieulil11 :E €Iliiliiaiia :�.E1 >o.a n � 7 t'° i +a ttt 11' .il 1 °9ifi• s ° a -e i W 1� 1�:�1�1 1 Milli i IMI u IIiIIII� hill IIII! �ill 111111 III !iii ii 111111 a .I11111iiEt1�!1{ii!!1l ii;,:•ind lllllliliiiitiiiyiim to a €5:i5?ii_3tm i n +fl a il l 11 ! fi '� :9 -11 -a zoz oc {HIM 111 IM 11 Ii111 i i lll IIII!�illlli Ili �� l� iilaliiEil!! IiNIII :11�1i11111i�oe lliilli ! ill 1 11i11ii11li =its a$:= $�_ __� A. n 1 1 •I g i �•,a a i �11 1 •wi •• . . � ... _ �. =''a.aaE355'2ss � i!! 1l 11661�I I�l 111111 1 1111111111 III l illliiil1111u lililieAlli1I81u111f iI Ill.. el.l!Igl 11I16661IiI Hi:am BE_ 111NIj! I: t!1 !L 11 I1Il 1 �I�11��� ll�ii�il IIIiIIIP llliii�ilai�r���i'1 °a ;1111x11 i ; !>11iii S I1 : :s�� 11! 1111 U•hII 111111111!11 4.v3 :. =...a. 1111 111Millig � i l I 1 � ! •a l I�i�= 11,1111 I ; . .1,111 •, °a- _ '� y e!i 511 °li' I , li i 93. . E_ 911= �5 - I 1 g 11 111 '. •Eq i 1 . Ii =i :a =- -i 1 1 11 1' 11 g g ` ! 1 i ` g 11 IM iI ! t 1I;i =111 it li fl iil :° e J : I • I� 1 11! !� 9 �I � 8 3� � � 9 �� � B 11 I I1iii 191.3 =119061 :tlill:s.I, :: ..34014:? 6,:h E:a..:::ai6' It.:: :t !..!..s..., i e �i ,! 3 ss -.a ::i 1.11E �. - -� =- =- ii • Eii11 • i = i n ! II 11( . i y .. • i : tt ! t I ll°= '43I : �: l t :1s - .11: :• r •egg a-i= Ei'-• :: !i� i @ 1 111 !I IiIIi II e; l!`Ih ! 1111:1 31=: g.,1 =m33 °_ =t°_ IL '9 I 11 i's I e° II E I I 1 f l ii:i 1 Il; t ii nll; te lii �s� =v :.�iiefii Ij9 li M l ° Mi g i Ili f1i 1 IIti� 111 • � i 9� �� • 1 - 9 Ail 8!91 l'1li1Eil I II�i�Ililiillit li ill lilii :i� filllllin :liiilcf :� ! :� ? +1:s e.,- as' - -e ■ `'1 i 'I I ! 111 - fi - - " 1 �! ii i i i 1111 • 1 3� 6';' e:a =-2= ® 1 1 1 1 ! 1 1 1E 1 E i ! I { I " !i Iil : 9 1�1 G� � I ! 1 1 1. - � ! ii 1 i 1�1 � I D lI1I • ii : i i i i :E : : : :ei : : :3 il l ! 1 Ei:. i l ii �1 1 i l l i 11; . ■■ I 11 1 . { - . . . 1 1 . . I 11 III. ■ I 1 E I I I 1''. ; . :.: 1 iIi. it III 1 lI l'i I 'ii !.=1 -11 ii ! i -i; t i I !I! ! �i I i : =l a >> i � Ii 1 I I � t► � a ! �! � III = �. hill I I!I 1 1 i u1I1 11 ■ 1 1 !. - '- - 1 111 IIf ! II 1 111111 ! 1 1111 ��..�a. II it I ie'I 111 111 NISV3 HO111O OINI (•S'.•0) 0 ,,,yam ,' • , r r .. 4. YTt . ;,a ,1s ..: !J �t .yam 4 et:' } � ;o ,..' ...'0,- . T - _ i . �+ �r :.; ; '..� _ 1 :�w zx - .a: ? ! t * ; ' s e . 4 a q ,e .a. � �. �� � � .;! - }. � ; �� �� � x� , yr mit .., -,R 1' 1 (1) w co ,, , . 2 2 2 .0 0 0 0 P- • 0 * IA " • • I 0 0 . 1 III '; 1 ' I i : ' ' " I 1 9 '! ' I i S. 0 4 1. . a. MI Mill - — 1 IN 'hill 11 ii„,„, m r ,,,,, , ,,,,.,„ 1 „n„„„,,,„....,, it .., M 111 I ■ NI I IIIIIIh1! 1 11 hilt* 011'111E11111 , IIII I--III II II 1•.1 ii 111111111 111111111111M Iiil MIMI 111111i 1 11111111/1111 t.: z 1 i till y• 4 .1111 V n111 I lini I iiiiilliiiii 4‘ 21- 6 5 . < so -'?; iflilli " I I 11 ":11: ° qi iii il l i tl 1 1 4 1 111111 g 111 1 . I 1 . 1 1 -__.- li. ii iiiltINNIIIIIIIIIIINI1111111111 11111111111111111111111 : i- . 111111111111 I IIIII • § M i 0 1.- .0111 ,.., ii , . 1 .. . 114 i 1 1 - lIli '-'-- il 1 . I 1 . - I 1 14 MI 1 II ii IIII 11 1 11 14 Iiii 1 ir Illi ' it ' ?-1 6 rai w 0 f.c. I _ 1 44 4 4 1 1 ■11111 1 141111 1 . t 2 Z en I 1 4.! ""*".1 0.- 3 0 1 . 1 m 1 !, 1:1111 t_t__Li I I l i 1 t :I ., 1 II i 111 . 111 ec NISV8 11311/3 01N1 ('S'A*3) 0 0 O 0 0 0 0 o • • r- • in * rt 0 a O 0 pl N •1 I I II 1 I ! i I; I I II ; ' 1 , II li '11 - III I 0 a) I li 11 I "411 I ' 1 .1111 a g lip 1 " .17_1_ 1. . 1 111 l 1 111111111 11 iII 1 I r I I II I III illiiiiii1611111111 Ili II iiiiiiii,IIII : _a -- 0 - c - -I- --:- e 1 n- itabbilii,4 iiiiiLm I Jimlilmill 11111,1 lEil, 11 11 11 IIIIIIIIIIIIII ,.: - ft -19 7 i . '4 : 6 a; g _ . -.._ -___!_. ...., 5 .. i. _ _ "!riipp,v44,1151,4111113.11 iimiqmiligio ir. poi II II 1 IA •e, 54 pin , ,, -2 2 - 7 s 111: Iir liii illt i l Illi ill II, II 1111 I I I III ,,, 0 •. • 7, c la _ - - - Cr i7)) -- 1 - -- ' 11 III r ilillillilli 11 1 II! I 11 R14 1 II I I I l I PI 11 II I I 1 1 -(-) r2.. ' " ' ' 1 1 I - -- - -' I II 111 1111r 1 111 . a. 1 al (I) i oil 1 1 t III H gr 1- d II -- § , I 11/11 Olt 1 4 11111 I II , ■1 iii; I I . i . 1 1 1 ' iii, I II X L _.cf2 15 — ---- 1 ' ' "II' - - - - -.1.- 3% ' 1 ■4 1 1 11 1' I hilt II ill III "l i' 4 ' 0 c - -... ° 1- i; I! i , l 1 1 ,1 ,11,1 lo 1 11111111ill111111 411101 II illill 2 ii Milk, illiallill II Illiii 1 11 - W I ...-: E u, c u) 3 111:1 49 -- --- 1 II iiiii 1 i 11- T II '. N • I 1 1 I ii;;1 1 ,1 1 I I I II 11 %01 11 1 4h el -CD il i lifillillimmill ..: i . 0 . V) --- I I I R 111111 1 I I 1 I 1 I Ili 1 1 1 1 " II 11#:1111;Y I I 1 11 Ilii 1!I 1 INII cic._ I !ill., , HIli!!:,1,11 , hi 1 „ 1 iliiiiiiiiiii[iakitili; 1 I ill_ ' i 1 ' 1 111 1 ' _A_ , ii , 1 NISV8 1 :11 III ,. , LIJ 1101V3 01N1 ('S'A*3) b 111111 1- 0 Z o o o o N o OOP ■ 0 IA t IA N _ 0 0 ■• I ; 1 ;I I I 1 ;: ;: .11.. i 1 j I I " ' I " I I I 1 I I II 1 1 t ' II - 41 0 1111111111111111 11 11111.1111111111111111111111111911111 ill 1 I 1111 111111111111111111111Y1911111!!! !IIII • I 11 1 1 " 1 gill,. hi iii....ilhhh ... 1 11111111illimild-b. 1 IN 11111 iiiiiiiimq ilqi g 1 111 1 111111111i l i i 1 11 11 'II 51 i ti 4 i tillTilliiilliVilifilliell1111111111111111111111!111111111111111PillillfRid 11 17: ii _ . i i 1: 1 Iiii I 1011111 4 111111■1 , . II. II h. , 0 . 1 E 1 1111111111 I 1 1 1 1 11 1 i l l I1 MI 14 1 1 011 11 1 1 1 1 1 11 111111 1 0 1 111111111 1 11 1 11 1 111111111 1 1 1 1 111. 1.111 11 1111111 11 1 11 1 ‘ i iiiiiiiii 11 ' 1 t 01111 iii 1 111 1 hili1 1"" , 1 . HIII!!!!1 Jilii iiiiiilliiiii, F 111 111 11 : 1 11.11 ,.._ 111111 ' I l i lii i11011,1111,111,11,1,11:111111111111111111111111 1 1 " i • ' i "Illiii , 1 I I Illiiii 1 11 , 1 1 I I I 1 : i !ill 1 1 il ! NISV8 H31V3 01N1 (SA*3) 0 :',:t ,',- ' '' ':''' \ ' ''.. k ' _ - 4 ' ' 4 ' ': l ' ' . ' - ''' ■ . ' C ' ' ' : 1.1864,40161,L1 _1__11_ _ I . 1 1 1n N : (f) a, W o 00 0 al a S n, a o «. • n r of — 0 o 11 1;!. II y p I I 11 I I 1 1 0 I !I 11. IIl 11 I 1 1111111111111111111111 i l1l1 I ll ��1 0. 111 1 i''I II III I I I I t III fl! � ► 1� II 1 11111 11� 1 11! II IIIIII 1111111 Iiiuuiuii II. 1:1� 1 v f �; i � � II I II il� II I I III IIIII i� � 1 II !!!!!!! I I I I I� II II III 1111 11 r, . I I I 1 u � � Is �s.! � 1 �,II��IIt111.1111 11111 ■,l�I11111111111 a 11 111 „II �e■ III ,!!,!!, ,,,1..11 II III , Il l�l� I I III II nl,� tl I .� ., r � : �r, `fI I �� L” I '� :'�, ' °you I �''� « �. I!!'i?�!!II I I t III IP''r.1!!III Iliilfl I i 1111111 III Illf N!?I�: �1 ElC71 � ` Z " o 111111111. C� I.. O k Illll Ir. ® - I,'. �.' �; ;�,,�,�It,,11111. ��������.IIIq41111110 .�1,� , x;1,,,,,111 � .1 - � , H1111111111 II I 1 I �lir�� �i i 1 I 11111 �11111iI 11 ,.1,1111111 I ,„ r�� t I'I ��� ICI Il 1 1 1111; I I II f1�11 �0�� 11111111 X CO le i I ' lI111111 e ��ll III ►IIII r�1 IIII 111 Il 1 III 1111 IIII i,. „ . 1 tl I I : h ; r lp ll ''liii i ' ' 1 1 111 1 11 I I I T. al I I I! II pll1li 111 11111111 IIIIII I!I I �� �� 1� ' II . I I _ _ �_ II ,I. I I url��, �,Illlillpl 11111111 I I � . i IIII .. � � W '11'llllpi1i1100, 1111111 i111i111111 ' l I o a 1111111111p1g1 • . 11111 11 1 . �1 1 � � � I~ i 11 1 ,�I�IIiilIg 1 I r� z 0 " .. IIIII 'flu,. IIIII t III 1111 1� _ ac t� 1..._.. { I 1,011 111w1111hillitts" N \\I 1 1,1�! 1 III 1, III I II I I g 0 M i Il,;11, ' I 1111 1 'it; IIIIIMi WI IIII 11 11111 1 � I_ . i N I 'I Ili 1 I ! \ ' I W 111 1 1 : I 11 _ ' ' ' LL - NISVO H31VO OINI ('S 4`O) 0 0 0 o 0 0 0 o • • r- • r► r PI N _ . h * in N — 1 1 1 1' I I 111 111 : ::IIII I I I 11 II I 1 1•I I 1 O 1I II I! I! I i !IIII III i 1 •1' i ! ! ! IIII I j f 1 1 11 ! 1 �j 11'11 11 �� 1111 1111 1 1 11111111 II '''!III "U!I 1 111'''!11 II' '''� I!1 1 'l'! rlilil I 1 1111 I rill 111.1111111 II II IIIII'I ff I 1 Q I I I 1 11 I !II II 11 !11 I I'' 1 1 I I I IIII II II III 1I IIII 1111111 lil!II IIII 1111 I� I ° �� I 1 - 11 � I� 11 � � 'I 1 o ... o . _ a I "IO 11 !�� X 1 I I i I II II P II I I I i iris 1 - 1111 II 111 r HI 11 II liah L. b1111i1111111111•1! 1111111 lie11n.. I Ir111111111i11111,„1 I1 11111,ll�rl1111111111111 11111ill 1 . IIII = I I 11 I 1 I I I . 1 ` 11 1 ' ! 1 ^ I I ; X11 1''' !!! I I I1 I!'IIf! ► III IIII IIIII III I 1 1 11 ,1( 1 711 „ =' Q l i r CI � C ��, 'lll lpl lli �' 'l�II r� ► I � -. � o v o h I I I !III yll Ilr II I 11 1111 11u 11 1 II II II 1 III 1111.. 111 1 111 11 1 X11 !IIi o_ o I (�, � � �1 X1 ,1 1 �1 III ,) ' „ �� � , ... .� � o L1' • ;., II � y �i 1 11 .!q � I I i 0 W I I ,, „ 1 1,1 ! ANN ��11 Iii! II11i11 Il 111 I • II 11111 11 I II 1 I11r.. I1 II 1111111111fI11. 1 11111111 1111 3 I I I I � . i ...r1� .1 II . 1 .� .. � a 1 .1 ' 1 i11 1 1 1 1111 X11 Ilq III 11111 I •11 0 I I � I j � i � ��,1::,.i : , ; ; Nll 1111 llg i11� I II IIII u l a ,I 1!c 1 I 111! II.I,I 11,'11 ! l.. q �1 11 Dol q l 11111 ���� 1 111 11 11 o * 1 I - .�It ,.Ilp, t1t r�� II111 _ II ij 1 1 II 1 . �- �- W I III 1 I 1 1 _ .l 11 1 p110 I I II o G I ! ! I II II I I J s � I i I ! I I � ! ' �II ' � ' � . i ` iI 11 1 1 ,1 1 lllllll lll 1i 111111 �. E ,-- .- m , I : ll l j ' � I } 1 1 _ I 1 _ 1 11111111 II r 9!!!!� �IM �11M�r � �. N i ti I ; II, 1 1 — I i I l114 ••111 - .�, I I 1 1 r r O -0 — N 1 ' 1 'I :1 , 1 �:ii , 1 ' ! :L , (A L 4� 1 ., I � v- N 1 - • ` > I1 � 0 U C I �Ii! q.lj' 11' 1 .. a ILLI IL _ _ _ _ - � W NISVA HDIVO OINI ('S'.i 3) b o z O O O O O O OI • r~ m h W ail N — r h MI N - 1: ;III , . 1 111 •`11 I ,, , •III�I 1 1 : 1 I 1 1!, Ili: 1 I 1 1 I II' L' I II O . � 1 ,h q y � n11 !I� II I I ;I I ,;"IIIIl111 ! „111 11 • IIP II I it I 1 111111 1111111 1! it w __ _ . •. � �� � I III 1 i II ill ►1 � 11,. I _.. "__ -._. 1 '�I "I I .i i. � . III i I I I {1 �II �' � ! 1 rr ii i _III till, . 111111 1 I iii rll I 11111 ii l ...le II inmii 1 i 1111 ._ : :!II, � 1 • , , � c , ' 1 . 1 :, 11 1. 1 !,I!! ���1���'`h�� ! 'f I11 " ! 'l1111��1 � i 11 tl :. ICI ,a1 ,� ” ; l lj 1 hk1 11 1111111 11111 1� o ' •• I� li 1 1 ,.II 1.110 Il 11 III II 11 IIII - 11 - 111 ��� 1111 �� , n 1 tilt' - - - _ � � 1.1,' ii �rrr IIII 1111111 � IIi . 1 .1 1 I I III 11111 11 1111 111 I0 I 1 1 1 1 1 � I E 1 a. - -- _ ._.__ .. I - �- 11; . I 1 ., II 11 � d IIII. _ 1 - I� , 1� , I 'I � 1 1114._ .. 1 .. �r � I III -- -�� � �--- -� ;. 1 � I ' !'}'',1111 1 Ii1'I 1 i . I .I rIl MIi �� 1 I 11 1.,.. 11, I I I 11 lI I I _ II • , I I I I II I r I i 1 1:111 ... ,I .. _ _ I1� r. 1 11� 1 �,1 I � w �,� I III, � 11 III , 1111 II , I lilt MI ill! �. _ .. 11111101 1 1111) IIIII illi i, 1 h11 I IIIII I m ..1.11.1r I _ . III I�I,I X11111111 hll,.�� I P 1 r I 1 , I � 1 11111111 r� I I i 1 ! fflllllll ,.1� ��� I r 11' 1 1 _� r I i I M �, 11 NISVB HO1V3 OINI ('S'A'O) 0 s < st t a , '' .. .sr. i I � ttFg'_�''� , �.,s ` € ,..�,� 43.4� ♦ r:i I , _. u` > STREET CAPACITY CALCULATIONS Date: 9/27/2006 Location: City of Fontana - Foothill Boulevard (Citrus Avenue to Oleander Avenue) (Top of Crown Flow) f- Batter - in. �'_- MI Depth- ft. IPi J 0 0 0 4 4 0 co v v v Slope: 0.35% Depth: 0.67' Curb Face: 8.0" Curb Batter: 1.0" Curb N: 0.015 I Q: 9.46 CFSI Encroachment: 11.88' from curb Cross slope: 2.0% 2.0% 8.3% 0.0% 5.1% 2.6% 2.0% Width (W): 4.00 8.00 2.00 - 16.00 22.00 - N: 0.018 0.018 0.015 0.015 0.015 0.015 0.015 Depth: - 0.00 0.67 0.50 0.50 - - Width: - 0.17 2.00 - 9.88 - - Wetted Perimeter: - 0.17 2.01 - 9.90 - - 12.74 Area: - 0.00 1.17 - 2.49 - - 3.69 Weighted N: - 0.00 0.03 _ - 0.15 - - - 0.015 1 I ' (20.00) (10.00) - 10.00 20.00 30.00 40.00 50.00 STREET CAPACITY CALCULATIONS Date: 9/27/2006 Location: City of Fontana - Foothill Boulevard (Citrus Avenue to Oleander Avenue) (Top of Crown Flow) - Batter - in. �_______.- Depth- ft. p., i 1 1 ., ^ , op m m � c0 m0 0 m .0 m 0 4 4 0 o, v v v Slope: 0.50% Depth: 0.67' Curb Face: 8.0" Curb Batter: 1.0" Curb N: 0.015 I Q: 11.30 CFSI Encroachment: 11.88' from curb Cross slope: 2.0% 2.0% 8.3% 0.0% 5.1% 2.6% 2.0% Width (W): 4.00 8.00 2.00 - 16.00 22.00 - N: 0.018 0.018 0.015 0.015 0.015 0.015 0.015 Depth: - 0.00 0.67 0.50 0.50 - - Width: - 0.17 2.00 - 9.88 - - Wetted Perimeter: - 0.17 2.01 - 9.90 - - 12.74 Area: - 0.00 1.17 - 2.49 - - 3.69 Weighted N: - 0.00 0.03 - 0.15 - - 0.015 ......................i/e...oe.o.o..................... I ,- (20.00) (10.00) - 10.00 20.00 30.00 40.00 50.00 .. ............... .. .... . . . .. .. -\ m q pi a 4 1 1 ZX Z W F n = 0 a 1 a 3flN3AV SS3MdA0 — (in d Z Ws m. v A dz pp& n 3 W < s O fY u. F 5w - Z O& i W < a 0 �.d 8 N 3 rc _ < Z a m yo 1 i - i ° ± F n 3fIN3AV L3ONV310 W _ E"1 W $ g gy � p <aNi°o u P i m s - N p ' - <n I N Q �+� - � °9 g -8 "0 .8 MI L2 o "< � �� !J !! w § )- 6! j 1 i ^ •6� 88 E 8 =N I I I g _ I t 5 J O 1 N a j Z4 R� i. i " ^ % c<.i h =< V 8i H �I Sf diI3 — K [ 1 b 3 0 ; Q & N� W i g i ° { O; w N gb � C i ad W ...r G i tlZ t ^ 9i� 9i „. �W.. �� .r -RE. 3n��. o.. [r E 8 z U ! m bi .. i 6 i g E __ 3fIN3AV AY)gl V 1� W_ F_ p ZZ W j o�U~�< 0 [ ~ F Z WWW_ • W- 180 -0610 1l- NO F pi Osw • W �� � ?=��ZRZUZ g j _ 1 j ig < P- J W M < W I m 6 6 _- W I V 88 n � �a�� La CO H. O N 0: W V II I N ° 4'(7 Z Ill : i I :7),(2,3 4 _1 fi'd p > o A 8 < F. _ i I _ W N o: mm 0 c AI Bl -ILO -1610 ill g Q Q H ■ ■ . o L1- 110 -1610 Fdll O Q W ius > \ - ..4ri.ile, i I Hw 1 ▪ w g Q z> >_ gi , -- O OoC -- � ; 8 : �Om i W Z z Q O N p o IL 4a 1 J 1 �N o N _ L x oaOi o z rc a a a p I W U O O ___ _ __ U W N U O D T W mm m Z r I 0 Z W V p U i!: — $ ZI -110 -1610 y + = 6 F 1 _ Z ___ p � _ � 11- 1 10 -1610 a g U _ 4 4 3 Q p W $ i I 01 -110 -1610 - % YW a. ' M � Q ■ O J < CC CO ) 5 4 a 1 y ° N 6 2 V 2 z W 3 Z C ° N i I O F 8 ,- y W O � W 0 W mG W :!' � � -.. y i =Ur°Z 7C�FJ N O � � i'° u 1 °y F Z V ii ! ! Y JJ V11 x .1 � u20V=F g W 1 i f y a 1 igN N R 1yy1 33 J oN W, < ¢ 2 [ ' F � = < §,--1= Z �41 o '' O yd Wi1 y�1� 1v } ~ .. � Zb U z i5O 0 a U<4 JZ Fv$ CO " WW o � }F W? — � > F LOV L - tT1 a 004 VNKN Waw0W4Jv ~ O °O�w. ° W� y F < ,- 1�J O WNN F O 88 < Y O < W o UWW O Wg ppV „ 0 . i wy1zz F W WJJ-3 F '6 2� fUN �I.� W4 rig y N O �O 2 y17Z 4 Z j O z 1 � �� M - rWOmO N W W W W < U W < 4 11..11 ll�� W N 0: O �- W V1 1111....���� < Z 0: 1.! _ m Vl 3 _Z AZT < J0: R 84 • Y ) - fA = ] W y� OFOZ = = W K m ° F J° = � � F WA °uJ �� >x � 2 - x Q5 W o & Zi..� F rc 'b gd,N� � V O W a z 5 . . 1A tluzmu O W V . U W �, {'1 < o < $' 6 6 : 'W h, y o: (/82 we zUm Z n p � ° I < J mW W V U U C 40,E4 “ E $ mz z , R E O R V1 �` 3 V Z W O . V 0.' 1, OZR1 Og W ,< W RZ 1O � > F � y 0� � ~ F� _< �� �Sp � a 0 Z U 1� 1� Z { � W y p w 1n� H kl y� _ O <N v 4 V i8 O K 4 � } Xg 0: � 43. � X z t c t $ 1*.0 O V O (., V 8. j LL Z E h � O V 3 O K T -i.-7h !h < l < S U i 0 x 6 V1 _ j 0 ° $ gO V 88 Z � ; ._ W< w “i” N N t, N , Z 2 k Wp F $ i~ YY u N Z m 1� W 0 W U� E Z V m m 7 5,-0— V o.0 Z < W 2 (0<NOo ++ < 1y < ~ O NV 2 I 1�Z_ W V 1 C y 0��� 0� � h YY W 7 .c a ur a O i < - �� J m t R R R R R R a 2 0 0: Z a 8 < $ < F y1� p 1 1 0 ? 0 W `� W O -' F � Wrt ° � O� W V� W O W f U� `< W W W W W W P. 0. m 17, 3 O O m N z W 7 W O 0: y� JJ � �71 1y 1� � f oQp � < � �' IZi G G 5 � � yy � �Z 2; p} _ y 5 W a << < U F V y 1c � 7 F gF J • p o Z y ae F ui z W 2K u Z Z � m Q ~ F p s< 1y • 8 8 W 1 Y V o w O V U O jjjU g AA{� )- 7 F X R� _ i s E V 1y t g./ WZ W g 8 F i '.' W I I LL kil I I I I I I I I I I I I I I (90: U O _ W W 6' t JO W S H 0. §N y�� W 4 y m Z � N a y� �t 1. + V p n y z � ♦ m a J y1 m f,1 j{/.I10 O pG . i W Sw • d 4 71345 W i2g48 2u< F O X e V VO=W 8 Ri8�O"08422 • = < LL W i 0 W W F +& 4 J- ,.. � Y ' �k o<<< m V W f� [7 LL N N f O O3�Q h M�\ 1 DIN J t s I a X y5 ILL� J = J W W W O 0 _N 7g* .- n N m P 4 a • z N = c2., a Z a a �" W i 0 0 = .a~ < W d z a 0 W W o 0 W F-� ix W z �5 i E q 7 ` 0 ° 8 1.1 Li < b w 0 a. g B S S a F O 0 & 1 x 0 r 0 0 o u iz + § S W 0 is 3 6 g m F W W= u §o 2 yI 4 N 4; V 2 V 8)- 66m6.- O O O U O v 00000 ® u1- zmzu z <W $ V -< VV6 v Q �1�1<.w 3 a. 6 i n 6 6 a Do y 0 F I = y _7 W� NVVWWF3 Jja 36WWC J a ii F � , r1 , W 5 „5 Li ° m to 0 m 4 F>IN col' Z< m O p w r <� {� ` u v. zow W V O O O • Az MEP- Z I.i N VZLL OU ` 4 W W U N T IJ 5 e.„, p0 O< 8 arc0 g.Qi z. 0 04 0 m4 2'<',9M60 awl y Z • z. r U I < 2 z2 WOV ▪ O 4 6'16 Vj = Ve,61 m6 At i W W W1y =w >_Of < 4 <a N < w X�NAUF ac a �rr�55 m J r FIJI<i 4 *1. m $sRw V o < 3 UW 1 ` _ < = 5� d' ▪ , b e Si 76W04 u° Y & 2 @ V O • 2Wm4 ��_z � . c Lam Ly\j ' W< e '4 "s 031 o' . EEw346 don r n * i D g 8 1 p k' p 7 I y � g I.� I� �1 p 0 0NW g X ni O O �4N �� Q O �°., �mY 6 g J F m 5 o f V W m �� �° W gW = y < rc 3w o . < Wi z o 1y j � l _,R ” 0 2$ 1 o w N Wm e41 ' ° U i z > n: 7 < 0 2 &�' V 0: V 2 Y JJ W <W Y 2 W S Z s^ O0 ..,1_, ..,1_, 8 2451 d W< N °W <N E Nj 8. Z3 O W. g< W a 0 s8 N "'11 .:i's a � i **El ZZ ce < �ya1 3 0 3J y� w 6i WtS T/ < @N EL a 2 7 > N E < E W $ a� F 4 E2 O 0630 ';E0 f W o F �2 it, § y � ° 21 !LK A * _4 W m 2 8 O 0 O w Do mm W 2 �/I U 0 2 y1 '8'N5 m z N 2 w z 2 _ , 0 a z V1V l G O< .t l 1 2 1 < <` gi E ia% 22W W YJ A O 2W Z! ~ > 25- < p ; - W OUW z 1 ).�(., ( 0 wW N 3 a 0: Z ' QQ N O - < E a V1 .3 1 I 1 F P F m am 2 7 V Ks 2 <LL 1 W CF. CA W W z o W <U = >J<tW 2z g w 1 7' a, 0 6 W ��� = Z a p z PI 11�� W ` 2� O WE 7 Ks0 >y� 171 p 1� 3 0 F� �nW W C a Ir W a 4 == O U1 z K a W W O NW 1 > 1O a ; y1 2ZP � agFm 2 d1 4v 2 U 0 0 y� A W 1� � W F 6Y a < ' 4 W � O a� ��V U N 2�� 0: a UF 00 N UI~ 1� 4 W a aa W < W I Z y 0 m 4 OWY g = - ( m i �� `I > VX r a ,< w z V O EzV 0 N O & v a � 1 li t� N aO� < J 4F W ,tv V U ON ] a 2 bi 11.. <p W 4 1 . w W � pw � F w o F �W� d * V W < p_ a$ a < { op, g-w y > c .. W « g � o: Es W - om 3 k' a d es W W 7 i iw j g. <o t u- E F F 0 P 02 aF o � m $ a 2s >- o � vi3 j s'JIt3 < u s =a ✓ ri W 1W rc a v > N L s t dog gOO p a F2 w J0m =F U = W w V 0 0 hoW g X ',Au j 5 - C m a = O� g &2 g< O W 1� o � ` Q y < F � USA y = v 81% qo � j W4 p E k <J ` < . wo U r V2 t 8 6O<; ; - < >f > 2W W .1y W 4 % t U 0 V, y 3 1 m0 0 <t�J J �& V<W < w �` U1.7� O N ISa §1g 1- . 2 W U VO W *W Z 6 a F O N Z � .I � O g Z y d y b 2 1 y = Sr� C 4 y z O 0 y°1W i K U 1- ((U 1 OJ < pJ a 0 f71J O 1. < la Z ` W~ O) y 11.y� V12 p O: OR V a W <1Ny w� W = gK _ g � [ p 4AA U a . 0, a4 BEN J = � i m a g ° § W < ` > ag O F Q X N NCf W O z ff � lm KN 0- 5 g J O 1� J C < .5 > 1 y � F 2 < 5 a V N W O OV W a 6 .5W Wo W Q 4 W sN•3 K`� y g1y °° 0 52` wOwwQ E. EAR. cK - 6 2 -m W Ey s� Z V 411� ,,,� W a0 WK � y I <1. Ogi CO VY• 0 O I Uy � O w > Y�S NU a Y� WO N RJM < ME 2w W I yW _ X W Fw j o N U �o > WO O�.1 U y� C WS 1y�W V g rJ F i 6< Z 64 J O X 6 a >W < 6NZ ] 2 N 0 K e mp 2Fr p 1 `O� WO � F� Z � N � O � �W Ow O W� ` yO1p yN1 -{ _� >O y1 1. 0: W 2 J O Z3tS Z Zp � *0 2 g g u� 2W.F O 4% a > O T g 4 ‹ i t ,0 U.R.1 >z 4 i F 6 F W §Ct UZ 55 V F SFW 7 < V W F y 2 0 g Ud ° 7U.- U S L4 * 3 ,0' 1y a a &y� 2wa 1� a W 85 a w8. <� k1 N w v > < a v <F< W _ p o 52 z r V(fl Q'm w 3' L Wm & < N O w < ° .(1 ' J W1 0 < PE W JJ W R. WN> 7 <W= ' X 4 t W W 8 0 = N W O 81W1 wW F m e c W s2 F K 10: 0 W2 & N� Z O O F z ,� M �o '! �W 1s1 N 2ZJ W� z0 y�0 V O¢ 2 O yyyy11 W m :4 % of ma u ge ,t0 z we `I. F it z w 8 L °0 r.1 ` z Kw a z fs. O 8: < WWY k y 3 L Ob 0 1 7 S' ma c+ p WW2� J �. p Z 2 i 2 C < J 1 � > i F � a C 3 N U> p> > W W V F �< N (� �< 3$ j 1 i W p¢V v 0 RI 3 -- 0 1t1 Z m m JJ Nw� N y1 { < y N F `1 Z r a V 8 s F .� �W 2J 2 Q a 4 W W 'am < a > W1� VS N < N 50 2 w ] W " C ' G ; :=1 W Y S � a � = m W . p U U � U K VI �` a W F - Z VO N VW < W ° < w V V1 = aFW & O � Opa C 8 >F 4� U V N �1�5 E U3 1� 2Eg A0 X s � .° o N : m ° � rc 'ab'om i to < -mI 2 ME F w OCR L W F < VV10 .� O K S W 8 < z. 2- o m �z a< W O O W m I m {.11.1 w $ z�l� ] °o < z Zp1 4 3 bi zr> w k1 Z �2 F = N JJ 4 Q • 3 1"W7 WC = z , 7 Waf Z Oa W N 2 F ,..c0 o.= F V O I Ur W 2 W O O 3 j Z(.) ox `U 4 • ffiMo 8 a M i Wm 0 t F P= Ae0 v4 S> E <6= w% o ,g R�5 I o * 42 " gx kY gfil 6N 7 6 -JJ 8 < 06 < o & ws $p E ^ a 0 w I < W 1� j�S^ WFF V 2 W �� W � � m� an.r Z ¢ 'C W � � N � F C� fTA O: V w � � O J U °< i g'- L s 1yy V 1 2 so. W y o y1 w p wa v4 < 8 � 1 K V V 5 y�Za , 7y21 5 < a 5 , § 11 y z 1 1 g ,' 4 O 0 '� 5 w R a0 < PA N NO O O WW O =m W N <Or F � 2 F <; W . NO �5� C = � a J ' 00 � 0 � V 00 m I W l a � y W� JN F ] W � 2 N Va °W 1 S p � < N V N i V W 0 W a U W 0 = _ 6> 07 a( ei y 0g.0 P V W y 4 F w= 0 - 0a�I7 1 < wZ U 22 NO] F yV1 1 /��y Fg < m 1y < > a 5 m 3 Q 6}wWF at . ` V ~ kW VZ <N j ' m.v, 200 NO8= �< F - G J m J vi-vg 3 < < _ < U W O N <N a «a' 0 0 < SW m WW 92 02 g 2 §ia o f 4 p 2 0 W 2 n j r a m X K W -{ „ ".g C g V z 1� 0 K6S W K N` 1 la ,m x< ei. # ¢2g W Z K Z R J j NY6 K 2O 5 6* gm' 0c, W L. V= u3 2 N. OF NVVZ a I , 2 y 8 l w O a • N < 2 m ' 2 7)&2-' O 68.! N � 2 � �8 -.- V � F �O p � b �(� O� `WO" 1J W <,, 5. W . wy W w _ L. 'a2 F O W ( yyy���1 oW 0 F 2 i x11 3, 6 3 y1 y i 7 ~ 1 J .— -J p w 2 W Z = i y ] 1 wi W 1.1 O l Om w W y W w. �O W F 1 La.‘ 1 p � q N y. w < < U S W 1y N _ F N a W 1 >0 W ' F a � 0 = N v Z `e(9x i28w ` qW O V05N✓1 aRn !'O a1-`3 4mri -` 20 xl ad x2,UZ Xli N Owg 4m ; JFOJ XF< X VV] 2 hi, Z <L`x W i G W a 13W 4 2� 20 2 4U SIE < 3 V A I N 5w r 0 M1 •- .0 1� m 6 O IV 0) 1 Yf b 1n m Ol IV VI IV MI r 1f1 b I� m M N N H 01 N N M N N M R n n n X i SS i`