Loading...
HomeMy WebLinkAboutNorth Baseline East of Etiwanda Channel I i h/aer g 2fte00,4, ate. i CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING { SUBJECT I BY I DATE I JOB NO. I SHEET OF 1 1 1 { HYDROLOGY & 1 HYDRAULICS REPORT 1 FOR i ) N. BASE LINE . i EAST OF ETIWANDA CHANNEL 1 l t 1 JN 3810 =00 11/5/87 i 3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92626 -3428 • (714) 641 -8777 1 ) 1 1 ' 1 DISCUSSION: This report contains hydrology and hydraulic calculations I for the area located between Base Line Avenue on the south and Victoria Avenue on the north, and bounded by Etiwanda Channel on the west and Sierra Avenue on the east. This li area is presently bisected by the San Sevaine Channel and the SPRR tracks. The San Sevaine Channel will be removed and relocated to an alignment which will adjoin the Etiwanda Channel. The R/R tracks will apparently remain in place for II the forseeable future. Also included in this report are calculations for the proposed Base Line Ave. storm drain which will extend from the Etiwanda Channel to Sierra Avenue. The purpose of this study is to determine runoff quantities li under present and future conditions. The present condition takes into account the existence of the railroad track and existing San Sevaine Channel. The future condition is modeled without the railroad track and without the channel. The hydrology study has been conducted to find out maximum runoff covering all conditions. The following is a description of the contents of this report. The sub -areas and nodes are shown on the Master Plan of developed hydrology prepared by Hall & Foreman, Inc. II In the Volume 1 study, the sub -areas affected by the present and future condition are 1005.2 and the northern portion of 1006. For future condition (after removal of the railroad track and tract improvements along San Simeon St.) the run -off from part of sub -areas 1005.2 and 1006 shall drain Ni northward to San Simeon St. Under existing conditions (with the presence of track), the run -off from the above sub -areas drains along the south edge of the railroad R/W to West Crescent Street. The downstream storm drain condition has been designed for the existing condition since this condition yields greater run -off than the future condition. The upstream storm drain shall be designed for the future condition (C.B. #114, See Vol. 2), since future condition yields greater run -off than existing condition. The I proposed Del Norte Street has been designed so that the sub -areas 1000 and 1013 shall drain within the street. Since these sub- areas, which are intended for future park development, yield greater run -off than the existing run -off S (south of the existing channel), the proposed storm drain system has to be designed for the future runoff. ' In Volume 2, the drainage direction is separated from Node No. 1026.1 with assumption of a highpoint at this node. Accordingly, the run -off area west of the Node 1026.1 shall I drain towards the channel. In addition, it is proposed to use the existing natural berm located just above the railroad track and the proposed Crescent street as run -off barrier for the subarea 1031. A separate storm drain system I { 1 1 . DISCUSSION (continued) II has been proposed to drain sub -areas 1027, 1028, 1029, 1030 and 1031, which ultimately drains into the Etiwanda Channel. The runoff originating from the area located east of high point 1026.1 shall drain in a proposed storm drain to be located along the easterly portion of Crescent Street which ultimately drains into the proposed Base Line Ave. R.C. II double box storm drain. It is proposed to construct an inlet structure just north of railroad track at the East Crescent Street crossing by accommodating a lateral storm II drain which drains sub -areas 1041 and 1041.6 through grate inlet No. 103. Since the drainage from sub -areas 1041 and 1041.6 is greater than the existing area (south of the existing San Sevaine Channel), the future condition shall be used for design run -off. Volume 3 includes the area extending eastward from the east I end of the Volume 2 study area to Cherry Ave. and located between Victoria Ave. and Base Line Ave. The lowest point for this area will be located at 1056.1 (see hydrology map). According to the City of Fontana Master Plan Drainage Improvement, it is proposed to construct a storm drain II within Base Line Ave., from the Etiwanda Channel to Sierra Ave. A hydrology study has been conducted for this drainage area which is bounded by Cherry Ave. on the west, Sierra Ave. on the east and between Base Line Ave. and Highland li Ave. This study is contained in Parts VII and VIII of this report. II The Master Plan Hydrologyand the in -tract Hydrology Study (Volume 1 through 3) have been combined together for 25 -year and 100 -year frequencies (See IX and X) to determine the design run -off for the proposed R.C. double box storm drain. The Base Line Ave. storm drain will be designed for 25 -year 11 frequency east of Cherry Avenue and for West of Cherry Avenue to the Etiwanda Channel, the storm drain is designed to accommodate the 100 -year runoff from the areas under II Volume 1 through 3. This is based on the requirement that the future storm drain along Victoria Avenue which drains from Cherry Avenue to the channel will be designed for 00 -year frequency. ) II r 1 I 1 II DISCUSSION: (continued) I: The Master Plan Drainage Hydrology Study for the Base Line R.C.B. storm drain has been conducted for the 25 -year I: frequency east of Cherry Avenue using the County's new hydrology manual (1986). The new hydrology manual has been used for the areas outside of the Village of Heritage (for future developments) the old hydrology manual has been used II for Volume 1 through 3, since these areas are part of the proposed development within the Village of Heritage. The combination of these frequencies and design Q for storm li drain box can be seen in Table 1. I; 1: li E 1 Job #3810 -00 II 41,21 REPORT 11/5/87 1 1 1 1 I: W.. 1 1 I C ON TENTS 1 z) VOL - 1 2 5 yR 1- 1-YD2oLoGy II) Vol_- 1, loo Yre HYDROLOGY 1]T) VOL. 2, 2 SyQ y _bRO 1_o6y voL - 2, IOOY2 FtYDQoLO 1 �) VoL - 3, 25YRe 14YD20 G`/ L) VOL - 3, 100YR HYDROLOGY Vjj.) MASTER PL Aril 1-4-` /DRoLO Gy, 25 Y2 j, MA STr =R PLAN 14yDQo /Oo S.D. z ) Sox 14 YDQO ZC) S D B F+yL oLo Gy, loo yR ZS1� BASE L /NE Dr3L Box NY.DeAUL1tS xII C 5 G_-j 14- YD► _ XI►I C, 3 G, T S IZ/N 6 C A LCS IXX) INTERIM CONDITI CALCULATIONS 1 Lx - A HYDROLOGY J_ B HYDRAULICS xxx) M ISC. 1 T \i0L - E 2 5'Y R 1 1 F• 1 Especially preaared 4 �r: HALL & FOREMAN, INC. 1 <<((<<<<((<<<<<(<<(<(<<<<(<(<(<(<(((<<>)>>>>> >) > >) >)))))) >) >> > > > > > > > > > > > > >)> * * * * * * * ** *DESCRIPTION OF RESULTS*************** * * * * * * * * * * * * * * * *ii - * * * * * ** * ** ** * N. BASEL I NE - EASTOF ET I WANDA CHANNEL HYDROLOGY STUDY. VOL 1 * 0 25 YR RAINFALL RETURN FREQUENCY * * VENKI. N, JN 3811 -00, DISK "4 ", FILE "C ", 8/28/87 * ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: USER SPECIFIED STORM EVENT(YEAR) = 25.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .95 10 -YEAR STORM 60-- MINUTE INTENSITY(INCH /HOUR) = .980 I; 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.470 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 25.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.1520 SLOPE OF INTENSITY DURATION CURVE = .6001ZI SBC HYDROLOGY MANUAL "C "- VALUES USED <<<(<<(<<<<(<<<((<(<((<((<((<(<(<<(<(<))))))) ))))))))))))) >))))))) > >)))))))) Advanced Engineering Software CAES7 I ) SERIAL No. A0580A REV. 3.1 RELEASE DATE: 5/01/85 (<(<<(<<<<<(((<<<<(<((<<<(<<(((<<(<((<))>>>)> ) > > > > >) > > >)) >) > > > > >) > > > >) > > >) >) ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1000.00 TO NODE 1000.20 I S CODE = 2 1: ))>) )RATIONAL METHOD INITIAL SUBAREA ANALYSIS < <((( ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS UNDEVELOPED WITH FAIR COVER TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)7 * *.2 INITIAL SUBAREA FLOW- LENGTH = 940.00 UPSTREAM ELEVATION = 1313.10 ' DOWNSTREAM ELEVATION = 1297.50 ELEVATION DIFFERENCE = 15.60 TC = .709*[( 940. 00 * *Sl / ( 15.60)) * *. 2 = 24.897 -• 25.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.953 SOIL CLASSIFICATION IS "A" UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .5279 SUBAREA RUNOFF(CFS) = 2.26 TOTAL AREA(ACRES) = 2.19 TOTAL RUNOFF(CFS) = 2.26 IN I ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1000.20 TO NODE 1000.30 IS CODE = 6 1 )))))COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA(((({ UPSTREAM ELEVATION = 1297.50 DOWNSTREAM ELEVATION = 1295.07 cf-rrnccT i cmmTu rCCCT) 17a f;1i7i rn TI -1 (TKIrWA I = A ^ _ . o , nMC-/ n��r��u / � `rcc � � = . ma/w SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 N� **TRAVELTIME COMPUTED USING MEAN FLOA(CFS) = 2.44 STREET FLOWDEPTH(FEET) = .34 HALFSTREET FLOODWIDTH(FEET) = 7.25 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.76 N� PRODUCT OF DEPTH&VELOCITY = .94 STREETFLOW TRAVELTIME(MIN) = 1.03 TC(MIN) = 25.92 N� 25.00 YEAR RAINFALL INTENSITY ( INCH/HOUR) = 1.906 SOIL CLASSIFICATION IS "A" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8170 N� SUBAREA AREA (ACRES) = . 24 SUBAREA RUNOFF (CFS) = . 37 ` ~~ SUMMED AREA(ACRES) = 2.43 TOTAL RUNOFF(CFS> = 2.63 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .34 HALFSTREET FLOODWIDTH(FEET) = 7.25 FLOW VELOCITY(FEET/SEC.) = 2.97 DEPTH*VELOCITY = 1.01 **************************************************************************** �� FLOW PROCESS FROM NODE 1000.30 TO NODE 1000.30 IS CODE = 1 >>>)>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 25.92 RAINFALL INTENSITY (INCH./HOUR) = 1.91 m� TOTAL STREAM AREA (ACRES) = 2.43 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 2.63 **************************************************************************** . \ FLOW PROCESS FROM NODE 10(02 . 0� TO NODE 1�N0 30 IS CODE = 2 / >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<(< _ ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY ( 1/4 ACRE) TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH = 590.00 UPSTREAM ELEVATION = 1307.00 DOWNSTREAM ELEVATION = 1295.07 ELEVATION DIFFERENCE = Tl.93 TC = .393*[( 590.00**3)/( 11.93)]**.2 = 10.993 25.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.189 SOIL CLASSIFICATION IS "A" SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7514 SUBAREA RUNOFF(CFS) = 1.99 TOTAL AREA(ACRES) = .83 TOTAL RUNOFF(CFS) = 1.99 ** ***************************************************************** 11 FLOW PROCESS FROM NODE 1000.30 TO NODE 1000.,A IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE“((( _ N� CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 10.99 RAINFALL INTENSITY (INCH./HOUR) = 3.19 TOTAL STREAM AREA (ACRES) = .83 I TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 1.99 N� **************************************************************************** FLOW PROCESS FROM NODE 1001.00 TO NODE 1000.30 IS CODE = 2 ////,^r,.^=^�� L- 1 . ��o�xc� 1,1M. _ _ I ASSUMED INITIAL SUBARFA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**. INITIAL SUBAREA FLOW-LENGTH = 630.00 I UPSTREAM ELEVATION = 1307.00 1 \ DOWNSTREAM ELEVATION = 1295.07 / ELEVATION DIFFERENCE = 11.93 I TC = .393*[( 630.00**3)/( 11.93)]**.2 = 11. 435 25.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.115 SOIL CLASSIFICATION IS "A" II SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7490 SUBAREA RUNOFF(CFS) = 5.30 TOTAL AREA(ACRES) = 2.27 TOTAL RUNOFF(CFS) = 5.30 -- **************************************************************************** 11 FLOW PROCESS FROM NODE 1000.30 TO NODE 1000.,!,0 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES((((( � . N1 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MINUTES) = 11.43 RAINFALL INTENSITY (INCH./HOUR) = 3.11 E TOTAL STREAM AREA (ACRES) = 2.27 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 5.30 E CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 �� ) 1 2.63 25.92 1.906 ( 2 1.99 10.99 3.189 �� 3 5.30 11.43 3.115 �� RAINFALL- INTENSITY AND TIME OF CONCENTRATION RATIO { FORMULA(SBC) USED FOR 3 STREAMS. �� N� VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: �� 7.06 8.20 8.40 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(CFS) = 8.40 ME(MINUTES) = 11.435 E TOTAL AREA(ACRES) = 5.53 I **************************************************************************** FLOW PROCESS FROM NODE 1000.30 TO NODE 1003. IS CODE = 6 II >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<( UPSTREAM ELEVATION = 1295.07 DOWNSTREAM ELEVATION = '1293.50 STREET LENGTH(FEET) = 180.00 CURB HEIGTH(INCHES) = 8. } I STREET HALFWIDTH(FEET) = 18.00 STREET CROSSFALL(DECIMAL) = .0270 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 8.40 N� STREET FLOWDEPTH(FEET) = .52 �� °� HALFSTREET FLOODWIDTH(FEET) = 13.75 ^ ` ^ AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.08 PRODUCT OF DEPTH&VELOCITY = 1.59 I STREETFLOW TRAVELTIME(MIN) = .97 TC(MIN) = 12.41 ) II 25.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.966 SOIL CLASSIFICATION IS "A" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8288 ,.."""=" "on - m mm currin=o n`nun=/ra = m mm � - nmvurr■L,/a/ END OF SUBAREA STREETFLOW HYDRAULICS: N� DEPTH(FEET) = .52 HALFSTREET FLOODWIDTH(FEET) = 13.75 FLOW VELOCITY(FEET/SEC.) = 3.08 DEPTH*VELOCITY = 1.59 NI **************************************************************************** | j FLOW PROCESS FROM NODE 1003.10 TO NODE 1003.10 IS CODE = 1 | ' N� )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE< < < < ( / - CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: �� N� TIME OF CONCENTRATION(MINUTES) = 12.41 RAINFALL INTENSITY (INCH./HOUR) = 2.97 TOTAL STREAM AREA (ACRES) = 5.53 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 8.40 **************************************************************************** FLOW PROCESS FROM NODE 1003.00 TO NODE 1003.10 IS CODE = 2 )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 N� INITIAL- SUBAREA FLOW-LENGTH = 46�� . 00 �� UPSTREAM ELEVATION = 1304.50 DOWNSTREAM ELEVATION = 1292.93 N� ELEVATION DIFFERENCE = 11.57 TC = 393*[( 465 00**3)/( 11 57)]** 2 = 9 .393*E( 9.589 . . . . 25.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.462 / SOIL CLASSIFICATION IS "A" � SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = . 7592 SUBAREA RUNOFF(CFS) = 7.20 TOTAL AREA(ACRES) = 2.74 TOTAL RUNOFF(CFS) = 7.20 **************************************************************************** 11 FLOW PROCESS FROM NODE 1003. 10 TO NODE 1003. 10 IS CODE = 1 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLOENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 9.59 I RAINFALL INTENSITY (INCH./HOUR) = 3.46 TOTAL STREAM AREA (ACRES) = 2.74 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 7.20 NI CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) � 1 8.40 12.41 2.966 2 7.20 9.59 3.462 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO � ) FORMULA(SBC) USED FOR 2 STREAMS. ) ' VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 14.57 13.69 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(CFS) = 14.57 TIME(MINUTES) = 12.409 TOTAL AREA(ACRES) = 8.27 �� FLOW PROCESS FROM NODE 1003.10 TO NODE 1004.10 IS CODE = 6 w� > >> >>COMPUTE STREETFLOW TRAVELTIME TmRU SUBAREA< ( < < < UPSTREAM ELEVATION = 1292.93 DOWNSTREAM ELEVATION = 1291.00 STREET LENGTH(FEET) = 250.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 18.00 STREET CROSSFALL(DECIMAL) = 0270 ) ' . . SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 14.57 STREET FLOWDEPTH(FEET) = .62 HALFSTREET FLOODWIDTH(FEET) = 17.75 N� AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.29 PRODUCT OF DEPTH&VELOCITY = 2.05 STREETFLOW TRAVELTIME(MIN) = 1.27 TC(MIN) = 13.68 �� N� 25.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.796 SOIL CLASSIFICATION IS "A" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8275 SUBAREA AREA (ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 60. 0N SUMMED AREA(ACRES) = 8.27 TOTAL RUNOFF(CFS) = 14.57 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .62 HALFSTREET FLOODWIDTH(FEET) = 17.75 FLOW VELOCITY(FEET/SEC.) = 3.29 DEPTH*VELOCITY = 2.05 **************************************************************************** ~~ FLOW PROCESS FROM NODE 1004. 10 TO NODE 1004.10 IS CODE = 1 }> >> >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE< < < < < �� CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: \ TIME OF CONCENTRATION(MINUTES) = 13.68 N� / RAINFALL INTENSITY (INCH./HOUR) = 2.80 TOTAL STREAM AREA (ACRES) = 8.27 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 14.57 **************************************************************************** FLOW PROCESS FROM NODE 1004.00 TO NODE 1004.10 IS CODE = 2 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< N: ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 N� INITIAL- SUBAREA FLOW-LENGTH = 500.00 V� UPSTREAM ELEVATION = 1303 00 . DOWNSTREAM ELEVATION = 1291.00 ELEVATION DIFFERENCE = 12.00 TC = .393*[( 500.00**3)/( 12.00)]**. 2 = 9.943 25.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.387 ] SOIL CLASSIFICATION IS "A" SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7572 / - SUBAREA RUNOFF(CFS) = 4.21 TOTAL AREA(ACRES) = 1.64 TOTAL RUNOFF(CFS) = 4.21 . **************************************************************************** FLOW PROCESS FROM NODE 1004.10 TO NUDE 1004.10 IS CODE = 1 ) >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<(< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< � - CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: Trw= n= rn^'rcwTonrrnw 'mTw/ /Tco` ~ o QA TOTAL STREAM AREA (ACRES) = 1.64 N� TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 4.21 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY N� NUMBER (CFS) TIME (INCH/HOUR) � > 1 14.57 13.68 2.798 2 4.21 9.94 3.387 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA(SBC) USED FOR 2 STREAMS. m� VARIOUS CONFLUENCED RUNOFF VALUES AHE AS FOLLOWS: 14.80 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: � N� RUNOFF(CFS) = 18.04 TIME(MINUTES) = 13.676 �� �� � �- ��� �� TOTAL AREA(ACRES) = 9.91 ~� "�� ~� **************************************************************************** FLOW PROCESS FROM NODE 1004.10 TO NODE 1010.10 IS CODE = 3 )))))COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA((((( >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<(<<< N� DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.4 INCHES . PIPEFLOW VB_OCITY(FEET/SEC ) = 6 7 ^ ^ UPSTREAM NODE ELEVATION = 1279.00 DOWNSTREAM NODE ELEVATION = 1276.00 FLOWLENGTH(FEET) = 470.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 �� PIPEFLOW THRU SUBAREA(CFS) = 18.04 ` N� / TRAVEL TIME(MIN.) = 1.18 TC(MIN.) = 14.85 N� **************************************************************************** FLOW PROCESS FROM NODE 1010.20 TO NODE 1010.c0 IS CODE = 1 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ~~ - -- CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 14.85 N� RAINFALL INTENSITY (INCH./HOUR) = 2.66 TOTAL STREAM AREA (ACRES) = 9 91 ^ TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 18.04 **************************************************************************** FLOW PROCESS FROM NODE 1010.00 - O NODE 1010.c0 IS CODE = 2 >>>}>RATIONAL METHOD INITIAL SUBAREA ANALYSIS((((( �� N� ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 N� INITIAL SUBAREA FLOW-LENGTH = 770.00 UPSTREAM ELEVATION = 1292.50 DOWNSTREAM ELEVATION = 1288.20 ELEVATION DIFFERENCE = 4.30 818 TC = 393*[( 770 0N**3>/( 4 30)]** 2 = 15 � ~~ . . . . 15.818 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.564 SOIL CLASSIFICATION IS "A" 0� SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7273 1 10" �� �� { SUBAREA RUNOFF(CFS) = 4.62 G �� ^^ ^ ^ rn�m un�u/�rn���� = � � � nrm n//mn���/rr���` = z` ��, - ' **************************************************************************** FLOW PROCESS FROM NODE l010.20 'O NODE 10I0.20 IS CODE = >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE(:((( N� > > > > >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES( < < < CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 AHE: N� TIME OF CONCENTRATION(MINUTES) = 15.82 RAINFALL INTENSITY (INCH./HOUR) = 2.56 ~ ^ TOTAL STREAM AREA (ACRES) = 2.48 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 4.62 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY N� NUMBER (CFS) TIME ) (INCH/HOUR) 1 18.04 14.85 2.662 U� 2 4.62 15.82 2.564 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA(SBC) USED FOR 2 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 22.38 2d.00 COMPUTED CONFLUENCE ESTIMATES PRE AS FOLLOWS: RUNOFF(CFS) = 22.38 TIME(MINUTES) = 14.853 TOTAL AREA(ACRES) = 12.39 **************************************************************************** FLOW PROCESS FROM NODE 1010.20 TO NODE 1010.10 IS CODE = 3 NI / > > > > >COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA< < < ( ( }>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< N� DEPTH OF FLOW IN 27.0 INCH PIPE IS 20.8 INCHES ` - PIPEFLOW VELOCITY(FEET/SEC.) = 6.8 UPSTREAM NODE ELEVATION = 1278.50 N� DOWNSTREAM NODE ELEVATION = 1276.00 ]� ~~ FLOWLENGTH(FEET) = 400.00 mANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER ,2F PIPES = PIPEFLOW THRU SUBAREA(CFS) s` 22.38 TRAVEL TIME(MIN. ) = .98 TC(MIN. ) = 15.83 **************************************************************************** i ~~ FLOW PROCESS FROM NODE 1010.10 TO NODE )010.10 IS CODE = 1 N� > > > > >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE< < < < ( CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 15.83 RAINFALL INTENSITY (INCH. /HOUR) = 2.56 TOTAL STREAM AREA (ACRES) = 12.39 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 22.38 **************************************************************************** FLOW PROCESS FROM NODE 1009.00 1 0 NODE 1010.10 IS CODE = 2 >>}))RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<(<< N� ASSUMED INITIAL- SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) 'm^^m- ouOI r_"N-�-'+o.n - 'Y-1u.ee UPSTREAM ELEVATION = 1292.50 I DOWNSTREAM ELEVATION = 128. 7 90 ELEVATION DIFFERENCE = 4 ^ 60 ) TC = .393*[( 450.00**3)/( 4.60)]**.2 = 11.306 25.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.136 I SOIL CLASSIFICATION IS "A" ! � SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7497 SUBAREA RUNOFF(CFS) = 6 ^ 23 � I TOTAL AREA(ACRES) = 2. 65 TOTAL RUNOFF(CFS) = 6 C. 13. » I **************************************************************************** FLOW PROCESS FROM NODE 1010. 10 TO NODE 1010. 10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< E > > > > >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES< < < < < I CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 11.31 RAINFALL INTENSITY (INCH./HOUR) = 3.14 TOTAL STREAM AREA (ACRES) = 2.65 II TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 6.23 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY I NUMBER (CFS) (MIN.) (INCH/HOUR) I 1 22.38 15.83 2.562 2 G.23 11.31 3.136 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA(SBC) USED FOR 2 STREAMS I � ^ ~� ��l� VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: �� 1� 4 t��� ' � ���r�� ^~'/ 27.47 22.22 ��'w' too, COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: I RUNOFF(CFS) = 27.47 TIME(MINUTES) = 15.831 TOTAL AREA(ACRES) = 15.04 II **************************************************************************** FLOW PROCESS FROM NODE 1008.00 TO NODE 101Z8.,0 IS CODE = 2 _' I: > > > > > RATIONAL METHOD INITIAL SUBAREA ANALYSIS< < < < ( { = ASSUMED INITIAL SUBAREA UNIFORM I DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K*[(LENGTH**3)/(ELEVATION CHANGE)3**.2 ] INITIAL SUBAREA FLOW-LENGTH = 655.00 UPSTREAM ELEVATION = 1291.36 �� DOWNSTREAM ELEVATION = 1284.41 ELEVATION DIFFERENCE = 6.95 - TC = .393*[( 655.00**3)/( 6.95)3**.2 = 13.041 N� 25. 00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.879 m� SOIL CLASSIFICATION IS "A" SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7407 . I SUBAREA RUNOFF(CFS) = 5.89 c' e ,*. ����� v~~ c� TOTAL AREA(ACRES) = 2.76 TOTAL RUNOFF(CFS) = 5.89 I **************************************************************************** FLOW PROCESS FROM NODE 1011.00 TO NODE 1011.I0 IS CODE = 2 II > > > ) >RATIONAL METHOD INITIAL SUBAREA ANALYSIS( < < < < uL:vcILuw, ^J; umur-v TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH = 610.00 w� UPSTREAM ELEVATION = �29�/ 50 ^ DOWNSTREAM ELEVATION = 1288.50 ELEVATION DIFFERENCE = 9.00 111 TC = .709*[( 610.00**3)/( 9.00)]**.2 = 21.441 1 ) 25.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.136 SOIL CLASSIFICATION IS "A" UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .5555 SUBAREA RUNOFF(CFS) = 5.43 ^ TOTAL AREA(ACRES) = 4.58 TOTAL RUNOFF(CFS) = 5.43 G.T. "== •• � **************************************************************************** FLOW PROCESS FROM NODE 1012.00 TO NODE 1012.a0 18 CODE = 2 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<(<<< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH = 990.00 ~~ UPSTREAM ELEVATION = 1293.63 DOWNSTREAM ELEVATION = 1288.35 ELEVATION DIFFERENCE = 5.28 | N� TC = .303*[( 990.00**3)/( 5.28)3**.2 = 13.628 m� 25.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.803 SOIL CLASSIFICATION IS "A" N� COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8276 SUBAREA RUNOFF(CFS) = 2.64 ] TOTAL AREA(ACRES) = 1.14 TOTAL RUNOFF(CFS) = 2.64 II \ **************************************************************************** FLOW PROCESS FROM NODE 1012.20 TO NODE 1006.70 IS CODE = 6 ~~ > > } > >COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA< ( < < < UPSTREAM ELEVATION = 1288.35 DOWNSTREAM ELEVATION = 1280.79 STREET LENGTH(FEET) = 690.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 38.00 STREET CROSSFALL(DECIMAL) = .0270 SPECIFIED NUMBER OF HALFSTRLLTS CARRYING RUNOFF = 1 e*TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 4.27 STREET FLOWDEPTH(FEET) = .42 HALFSTREET FLOODWIDTH(FEET) = 10.16 N� AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.72 PRODUCT OF DEPTH&VELOCITY = 1.14 STREETFLOW TRAVELTIME(MIN) = 4.22 TC(MIN) = 17.85 111 25.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.384 SOIL CLASSIFICATION IS "A" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8236 N� SUBAREA AREA(ACRES) = 1.64 SUBAREA RUNOFF(CFS) = 3.22 «� SUMMED AREA(ACRES) = 2.78 TOTAL RUNOFF(CFS) = 5.87 � END OF SUBAREA STREETFLOW HYDRAULICS: N� DEPTH(FEET) = .45 HALFSTREET FLOODWIDTH(FEET) = 11.28 FLOW VELOCITY(FEET/SEC.) = 3.10 DEPTH*VELOCITY = 1.39 **** ** *********** ******************** FLOW PROCESS FROM NODE 1006.70 TO NODE 1006.70 IS CODE = 1 N� > > MDES%GNATE INDEPENDENT STREAM FOR CQNFLUENCE< ( < ( < ~ ^ ur �u.v�ov. nM/ Lw.vknIwu`Co/ - 11.0u RAINFALL INTENSITY (INCH./HOUR) = 2.38 U� TOTAL STREAM AREA (ACRES) = 2.78 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 5 ^ 87 ******e******************************** ] w� ************************************* � > FLOW PROCESS FROM NODE 1006.40 TO NODE 1006.70 IS CODE = 2 N� > > > > > RATIONAL METHOD INITIAL SUBAREA ANALYSIS < < < < < ASSUMED INITIAL SUBAREA UNIFORM @� DEVELOPMENT IS: COMMERCIAL ~~ TC = K*[ (LENGTH**3) / (ELEVATION CHANGE) ]**. 2 INITIAL SUBAREA FLOW-LENGTH = 520.00 UPSTREAM ELEVATION = 1290.32 DOWNSTREAM ELEVATION = 1280.79 ELEVATION DIFFERENCE = 9.53 TC = .303*[( 520.00**3)/( 9.53)]**.2 = 8.229 25.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.794 SOIL CLASSIFICATION IS "A" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8334 SUBAREA RUNOFF(CFS) = 2.69 N� TOTAL AREA(ACRES) = .85 TOTAL RUNOFF(CFS) = 2.69 N� **************************************************************************** w� FLOW PROCESS FROM NODE 1006.70 TO NUDE 1006.70 IS CODE = 1 > > > > } DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ( < ( < < ) } >) >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES< < M CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 8.23 RAINFALL INTENSITY (INCH./HOUR) = 3.79 TOTAL STREAM AREA (ACRES) = .85 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 2.69 CONFLUENCE INFORMATION: N� STREAM RUNOFF TIME INTENSITY N� NUMBER (CFS) TIME ) ( INCH/HOUR) 1 5.87 . 17.85 - 2.384 2 2 69 8.23 3.794 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA(SBC) USED FOR 2 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 5.39 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: , 13,�� /»� N� RUNOFF(CFS) = 7.55 TIME(MINUTES) = 17.852 TOTAL AREA(ACRES) = 3.63 { **************************************************************************** FLOW PROCESS FROM NODE 1013.00 TO NODE 1013.10 IS CODE = 2 w� > > > > > RATIONAL METHOD INITIAL SUBAREA ANALYSIS < < < < < ASSUMED INITIAL SUBAREA UNIFORM m� DEVELOPMENT 13: UNDEVELOPED WITH FAIR COVER TC = K*[(LENGTH**3)/(ELEVATION CHANGE)3**.2 INITIAL SUBAREA FLOW-LENGTH = 1020.00 UPSTREAM ELEVATION = 1313. 10 DOWNSTREAM ELEVATION = 1294.72 -.-~---_- 25.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.934 SOIL CLASSIFICATION IS "A" ( UNDEVELOPED WATERSHED RUNOFF COEFFICIE\T = .5248 SUBAREA RUNOFF(CFS) = 6.31 TOTAL AREA(ACRES) = 6.22 TOTAL RUNOFF(CFS) = 6.31 | -- **************************************************************************** N� FLOW PROCESS FROM NODE 1013.10 TO NODE z013. 10 IS CODE = )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< m� CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 25.30 RAINFALL INTENSITY (INCH./HOUR) = 1.93 N� TOTAL STREAM AREA (ACRES) = 6.22 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 6.31 **************************************************************************** FLOW PROCESS FROM NODE 16014.00 TO NODE 1013.10 IS CODE = 2 )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS((((( | - ASSUMED INITIAL SUBAREA UNIFORM N� DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) =� TC = K*[(LENGTH**3)/(ELEVATIUN CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH = 810.00 N� UPSTREAM ELEVATION = 1301.70 DOWNSTREAM ELEVATION = 1294.72 ELEVATION DIFFERENCE = 6.98 E � TC = .393*[( 810.00**3)/( 6.98)]**.2 = 14.800 ! 25.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.668 SOIL CLASSIFICATION IS "A" SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7321 SUBAREA RUNOFF(CFS) = 7.01 TOTAL AREA(ACRES) = 3.59 TOTAL RUNOFF(CFS) = 7.01 1 1 0 *************************************************************************** FLOW PROCESS FROM NODE 1013.10 TO NODE l0J3.I0 IS CODE = _- } > > > >DESIGNATE INDEPENDENT STREAM FOR CONFLiENCE< < < < ( CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: N� TIME OF CONCENTRATION(MINUTES) = 14.80 RAINFALL INTENSITY (INCH./HOUR) = 2.67 ] TOTAL STREAM AREA (ACRES) = 3.59 N� TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 7.01 l ' **************************************************************************** N� FLOW PROCESS FROM NODE 1015. 00 TO NODE 1013. al IS CODE = 2 / ~~ ))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< m� ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 N� INITIAL SUBAREA FLOW-LENGTH = 790.00 UPSTREAM ELEVATION = 1301.10 DOWNSTREAM ELEVATION = 1294.20 N� ELEVATION DIFFERENCE = 6.90 TC = .393*[( 790.00**3)/( 6.90)]**.2 = 14.614 vcoo rmrmmmrTv/rmrw/lLn/, = gnn ~ u"-l- .._" ^o w SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7330 N� SUBAREA RUNOFF(CFS) = 5.18 m� TOTAL AREA(ACRES) = 2.63 T8TAL RUNOFF(CFS) = 5.18 * *************** I ************* ** ********************************************* \ FLOW PROCESS FROM NODE 1013.10 TO NODE 1013.10 IS CODE = 1 / >>>)>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< �� >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< N� CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: m� TIME OF CONCENTRATION(MINUTES) = 14.61 RAINFALL INTENSITY (INCH./HOUR) = 2.69 TOTAL STREAM AREA (ACRES) = 2.63 I TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 5.18 CONFLUENCE INFORMATION: I STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 6.31 25.30 1.934 I 2 7.01 14.80 2.668 3 5.18 14.61 2.688 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO �� FORMULA(SBC) USED FOR 3 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 15.12 15.85 15.75 I COMPUTED CONFLUENCE ESTIMATES PRE AS FOLLOWS: �� a.* �� �� �� RUNOFF(CFS) = TIME(MINUTES) = 14.800 ^ , " �� TOTAL AREA(ACRES) �==~�~ 12.44 �� \ / **************************************************************************** FLOW PROCESS FROM NODE 1017.W0 TO NODE l6915. 10 IS CODE = 2 �� { >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< E ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: COMMERCIAL TC = K*[(LENGTH**3)/ (ELEVATIl]N CHANGE)]**. 2 I INITIAL SUBAREA FLOW-LENGTH = 1070.00 UPSTREAM ELEVATION = 1304.00 I DOWNSTREAM ELEVATION = 1292.61 ELEVATION DIFFERENCE = 11.39 TC = .303*[( 1070.00**3)/( 11.39)]**.2 = 12.244 ( 25.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.990 I . 8290 SOIL CLSSIFICTION IS "" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = �� &n�� �� �- ,~~= SUBAREA RUNOFF(CFS) = 5.33 - ^ ^ ( I TOTL ARE(CRES) = 2.15 TOTL RUNOFF(CFS) = 5.33 **************************************************************************** 1 FLOW PROCESS FROM NODE 1018.00 TO NODE 16918. l0 IS CODE = 2 �� °� >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< 1 m� ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: COMMERCIAL TC = �[(LENG�*�)/(��ATI� ��GE)]**.2 N� INITIAL SUBAREA FLOW-LENGTH = 1000.00 - UPSTREAM ELEVATION = 1318.00 mm/^'orocnm c' coo'rrnm = 17.11 mm � � TC = .303*[( 1000.00**3)/( 7.00)]**.2 = 12.959 25.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.889 SOIL CLASSIFICATION IS "A" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8282 SUBAREA RUNOFF(CFS) = 2.20 TOTAL AREA(ACRES) = .92 TOTAL RUNOFF(CFS) = 2.20 ) | U� **************************************************************************** FLOW PROCESS FROM NODE 3018.10 TO NODE 1019.10 lS CODE = 6 >>)>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< ~~ UPSTREAM ELEVATION = 1311.00 DOWNSTREAM ELEVATIUN = 1304.00 STREET LENGTH(FEET) = 630.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 20.00 STREET CROSSFALL(DECIMAL) = .0270 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 2.78 STREET FLOWDEPTH(FEET) = .36 HALFSTREET FLOODWIDTH(FEET) = 7.91 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.72 PRODUCT OF DEPTH&VELOCITY = .97 N� STREETFLOW TRAVELTIME(MIN) = 3.86 TC(MIN) = 16.81 25.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.471 N� SOIL CLASSIFICATION IS "A" w� COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8245 SUBAREA AREA(ACRES) = .57 SUBAREA RUNOFF(CFS) = 1.16 SUMMED AREA(ACRES) = 1.49 TOTAL RUNOFF(CFS) = 3.36 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .39 HALFSTREET FLOODWIDTH(FEET) = 9.03 FLOW VELOCITY(FEET/SEC .> = 2 63 DEPTH*VELOCITY = 1 02 I . . . **************************************************************************** N� FLOW PROCESS FROM NODE 1019.10 TO NODE 1019. 10 IS CODE = 1 )>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<(< N� CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 A�E: TIME OF CONCENTRATION(MINUTES) = 16.81 RAINFALL INTENSITY (INCH./HOUR) = 2.47 TOTAL STREAM AREA (ACRES) = 1.49 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 3.36 **************************************************************************** FLOW PROCESS FROM NODE 1020.00 TO NUDE 1019.10 IS CODE = 2 > > > >> RATIONAL METHOD INITIAL SUBAREA ANALYSIS< < < ( < � _ = ASSUMED INITIAL SUBAREA UNIFORM N� DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH = 640.00 UPSTREAM ELEVATION = 1311.00 DOWNSTREAM ELEVATION = 1304.00 � ! ELEVATION DIFFERENCE = 7.00 TC = .393*[( 640.690**3)/( 7.00)]**.2 = 12.842 1 25.0 0 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.905 SOIL CLASSIFICATION IS "A" SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7417 N� SUBAREA RUNOFF(CFS) = 7.50 TOTAL AREA(ACRES) = 3.48 TOTAL RUNOFF(CFS) = 7.50 **************************************************************************** I 10 FLOW PROCESS FROM NODE 1019.10 TO NUDE 19.1,) IS CUDE = 1 )>/))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE,,;{{ )))))AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<(<< II CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 12.84 N� RAINFALL INTENSITY (INCH./HOUR) = 2.91 �� TOTAL STREAM AREA (ACRES) = 3.48 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 7.50 II CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) I: 1 3.36 16.81 2.471 2 7.50 12.84 2.905 1 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA(SBC) USED FOR 2 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: I 9.74 10.07 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(CFS) = 1 0.07 TIME(MINUTES) = 12.842 II TOTAL AREA(ACRES) = 4. 97 I **************************************************************************** FLOW PROCESS FROM NODE 1005. 20 10 NODE 1005.u0 IS CODE = 2 1 >>)>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS((((( ' - ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER TC = K*[(LENGTH**3)/ (ELEVATION CHANGE)]**.2 �� INITIAL SUBAREA FLOW-LENGTH = 1000.00 UPSTREAM ELEVATION = 1306.00 DOWNSTREAM ELEVATION = 1301.10 li ELEVATION DIFFERENCE = 4.rJ0 -- = .533*[( 1000.00**3)/( 4.90)]**.2 = 24.455 25.00 YEAR RAINFALL INTENS3TY(INCH/HOUR) = 1.974 li SOIL CLASSIFICATION IS "A" � - UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = . 5313 -- SUBAREA RUNOFF(CFS) = .87 TOTAL AREA(ACRES) = .83 TOTAL RUNOFF(CFS) = .87 **************************************************************************** I FLOW PROCESS FROM NODE 1005.a,0 T0 NODE 4014.5-0 IS CODE = 6 ~I > > > > > COMPUTE STREETFLOA TRAVELTIME THRU SUBAREA ( < < < < UPSTREAM ELEVATION = 1301.45 DOWNSTREAM ELEVATION = 1287 03 ^ ^ STREET LENGTH(FEET) = 770.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 20.00 STREET CROSSFALL(DECIMAL) = .0270 �� SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 � �� �� **TRAVELTIME COMPUTED USING MEAN FLOW (CFS) = 1.53 ARE IN v STREET FLOWDEPTH(FEET) = .28 I HALFSTREET FLOODWIDTH (FEET) = 5 09 � ���� �� . «������ AVERAGE FL_OW VELOCITY(FEET/SEC.) = 2.92 PRODUCT OF DEPTH&VELOCITY = .82 STREETFLOW TRAVELTIME(MIN) = 4.40 TC(MIN) = 26.85 �� .= mm vcno onrmcm , rmTF / rmrW/Wm Hn) = 1 7n7 ~ , COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8148 W� SUBAREA AREA(ACRES) = .91 SUBAREA RUNOFF(CFS) = 1.33 SUMMED AREA(ACRES) = 1.74 TOTAL RUNOFF(CFS) = 2.�Q SUBAREA STREETF OW HYDRAULICS: END CF SUBA L H : DEPTH(FEET) = .31 HALFSTREET FLOODWIDTH(FEET) = 6.22 FLOW ~ VELOCITY(FEET/SEC.) = 3.15 DEPTH*VELOCITY = .38 �� \ ^ N� *************************************************************************** FLOW PROCESS FROM NODE 1005.10 TO NUDE 1005.10 IS CODE = 1 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE((((( CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 28.85 RAINFALL INTENSITY (INCH. /HOUR) = 1.79 m� TOTAL STREAM AREA (ACRES) = 1.74 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 2.20 11 **************************************************************************** FLOW PROCESS FROM NODE 1005.00 TO NODE 1005.10 IS CODE = 2 )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS<(<<< 1 ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH = 1020.00 m� UPSTREAM ELEVATION = 1302.80 DOWNSTREAM ELEVATION = 1287.03 ELEVATION DIFFERENCE = 15 77 TC = .393*[( 1020.00**3)/( . 15.77)]**.2 = 14.439 25.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.708 SOIL CLASSIFICATION IS "A" SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = . 7339 SUBAREA RUNOFF(CFS) = 11.45 TOTAL AREA(ACRES) = 5.76 TOTAL RUNUFF(CFS) = 11.45 **************************************************************************** } FLOW PROCESS FROM NODE 1005.10 TO NODE 1005.10 IS CODE = 1 i - )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 14.44 RAINFALL INTENSITY (INCH /HOUR) = 2 71 . . N� TOTAL STREAM AREA (ACRES) = 5.76 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 11.45 CONFLUENCE INFORMATION: j� STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) I 1 2.20 28.85 1.787 l 2 11.45 14.44 2.708 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA(SBC) USED FEJR 2 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 9.75 12.55 »_ �� �r � � COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: �-^ �~, x ~~ �� ",.^.r.r='r='C% - == Trmc/mrm//Tcc1 = ,A � ************************************************************************** FLOW PROCESS FROM NODE 1005.10 TO NODE 1007..0 IS CODE = 3 > > > >> COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA< < < < < ) >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)(<<<{ DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.4 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 7.1 UPSTREAM NODE ELEVATION = 1282.00 DOWNSTREAM NODE ELEVATIUN = 1272.40 FLOWLENGTH(FEET) = 970.00 MANNINGG N = .013 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER UF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 12.55 TRAVEL TIME(MIN.) = 2.27 TC(MIN. ) = 16.71 **************************************************************************** FLOW PROCESS FROM NODE 1007. 10 TO NODE 1007.10 IS CODE = 1 ) 11 >>}>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<(<< CONFLUENCE VALUES USED FOR INDEPENDENT STHEAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 16.71 RAINFALL INTENSITY (INCH. /HOUR) = 2.48 TOTAL STREAM AREA (ACRES) = 7.50 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 12.55 **************************************************************************** ) . FLOW PROCESS FROM NODE 1007.00 TO NODE 1007.10 IS CODE = 2 >>}>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<(<<< U� ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH = 650.00 | N� UPSTREAM ELEVATI3N = 1290.32 DOWNSTREAM ELEVATION = 1282.45 ELEVATION DIFFERENCE = 7.87 �� TC 393*[( 650 00**3>/( 7 87)]** 2 = 12 �� = .393*C( . . . 662 . 25.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.930 SOIL CLASSIFICATION IS "A" ��`�^� �� SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7427 '��. '= m� SUBAREA RUNOFF(CFS) = 6.14 TOTAL AREA(ACRES) = 2.82 TOTAL RUNOFF(CFS) = 6.14 **************************************************************************** ) FLOW PROCESS FROM NODE 1007.10 10 NODE 1007.I0 IS CODE = 1 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<(<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 12.66 RAINFALL INTENSITY (INCH./HOUR) = 2.93 N� TOTAL STREAM AREA (ACRES) = 2.82 ~~ TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 6.14 0� CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY 1 1 1 e e 11 VOL - I 1 ioo vR 1 1 1 1 i a e , . m� -------- ---- ------= - -==- ---====-----= RATIONAL METHOD HYDROLOGY CO�PUTER PROGRAM BASED ON SAN B‘ERNARDIHO COUNTY (SBC) 0� 1983 HYDROLOGY MANUAL ' / --- - - -------- - �� �� <<(<<<<<<<<<<<(<<<<<<<<<(<<<<<<<<<<<<<>>>>>>}>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> (C) Copyright 1982 Advanced Engineering Software [AESZ Especially prepared for: HALL & FOREMAN, INC. <<<<<<<<<<<<<<<<<<<<<(<<<(<<<<<<<<<<<<>>>>>}>>>>>>>>>>>>>>>>>}>>>>>>>>>>>>>> ** RIPTION OF RESULTS******************************************** * N.BASELINE -EAST OF ETIWANDA CHANNEL HYDROLOGY STUDY, VOL 1 * * Q 100 YR RAUNFALL FREQUENCY * * VENKI N JN 3811-00, DISK " " 8/28/87 FILE "C * . , , , , **************************************************************************** u: USER SPECIFIED HYDROLOGY AND HYDRAULIC MUDEL INFORMATION: �� USER SPECIFIED STORM EVENT(YEAR) = 100.00 �� SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .95 ` 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = .980 N� > 1W90-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.470 �� ' COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.4700 0� SLOPE OF INTENSITY DURATION CURVE = .6000 SBC HYDROLOGY MANUAL "C"-VALUES USED <<<<<<<<<<<<<<(<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>}> Advanced Engineering Software [AES] 0� SERIAL No. A0580A REV. 3.1 RELEASE DATE: 5/691/85 <<<<<<(<<<<<<<<<<<<<<<<<<<<<<<<<(<<<<0>>>>>>>>>>>>>>>>>>>>>>>>>}>>>}>>>>>>> ***********************e**************************************************** FLOW PROCESS FROM NODE 1000.00 'O NODE I000.c.0 18 CODE = 2 �� N� >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ] ASSCMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH FAIR COVER TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH = 940.00 UPSTREAM ELEVATION = 1313.10 DOWNSTREAM ELEVATION = 1297.50 — ELEVATION DIFFERENCE = 15.60 TC = .709*[( 940.00**3)/( 15.60)2**.2 = 24.897 N� 100.00 YEAR RAINFALL INTENSITY(INCH/HOLR) = 2.492 SOIL CLASSIFICATION IS ''A" � ' UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .5976 TOTAL AREA(ACRES) = 2.19 TOTAL RUNOFF(CFS) = 3.26 **************************************************************************** 11 FLOW PROCESS FROM NODE 1000.E0 TO NODE 1000.-0 IS CODE = 6 __ __ )))))COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< ) _ U� UPSTREAM ELEVATION = 1297. 50 DOWNSTREAM ELEVATION = 1295. 07 ~~ STREET LENGTH (FEET) = 170.00 CURB HEIGTH ( INCHES) = 8. STREET HALFWIDTH(FEET) = 18.00 STREET CROSSFALL(DECIMAL) = .0270 U� SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 3.50 STREET FLOWDEPTH(FEET) = .38 HALFSTREET FLOODWIDTH(FEET) = 8 75 U� AVERAGE FLOW VELOCITY (FEET/SG�C. ) = ^ 2.90 PRODUCT OF DEPTH&VELOCITY = 1.10 STREETFLOW TRAVELTIME(MIN) = .98 TC(MIN) = 26.87 100.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.435 SOIL CLASSIFICATION IS "A" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8242 SUBAREA AREA(ACRES) = .24 SUBAREA RUNOFF(CFS) = .48 SUMMED AREA(ACRES) = 2.43 TOTAL RUNOFF(CFS) = 3.74 END OF SUBAREA STREETFLOW HYDRAULICS: N� DEPTH(FEET) = . 38 HALFSTREET FLOODWIDTH(FEET) = 8.75 ~- FLOW VELOCITY(FEET/SEC.) = 3.10 DEPTH*VELOCITY = **************************************************************************** FLOW PROCESS FROM NODE 1000.30 TO NUDE 1000.30 IS CODE = 1 ( N� ) >>> > >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE< < < < ( CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: | N� TIME OF CONCENTRATION(MINUTES) = 25 . 87 �� RAINFALL INTENSITY (INCH./HOUR) = 2.43 TOTAL STREAM AREA (ACRES) = 2.43 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 3.74 *********************************************4****************************** FLOW PROCESS FROM NODE 1002.00 TO NODE 1000.30 IS CUDE = 2 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 �� INITIAL SUBAREA FLOW-LENGTH = 590.00 UPSTREAM ELEVATION = 1307.00 DOWNSTREAM ELEVATION = 1295.07 93 ELEVATION DIFFERENCE = 11 � ~~ . TC = .393*[( 590.00**3)/( 11.93)]**.2 = 10.993 100.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.069 SOIL CLASSIFICATION IS "A" SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7727 SUBAREA RUNOFF(CFS) = 2.61 TOTAL AREA(ACRES) = .83 TOTAL RUNOFF(CFS) = 2.61 l� **************************************************************************** FLOW PROCESS FROM NODE 1000.30 TO NODE 1000.30 IS CODE = r"" ,"^.n . 'c~x`c / / , / / CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 AreE: TIME OF CONCENTRATION(MINUTES) = 10.99 RAINFALL INTENSITY (INCH./ = 4.07 TOTAL STREAM AREA (ACRES) = .83 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 2.61 **************************************************************************** FLOW PROCESS FROM NODE 1001.00 TO NUDE 1000.30 IS CUDE = 2 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< . ' ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH = 630.00 UPSTREAM ELEVATION = 1307.00 DOWNSTREAM ELEVATION = 1295.07 ELEVATION DIFFERENCE = 11.93 TC = .393*[( 630~00**3)/( 11.93)3**.2 = 11.435 100.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.974 SOIL CLASSIFICATION IS "A" SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7709 SUBAREA RUNOFF(CFS) = 6.95 TOTAL AREA(ACRES) = 2.27 TOTAL RUNOFF(CFS) = 6.95 **************************************************************************** FLOW PROCESS FROM NODE 1000.30 TO NODE 1000.30 IS CODE = 1 >>>>}DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE{<<<< )))))AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ' ) - CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MINUTES) = 11.43 RAINFALL INTENSITY (INCH./HOUR) = 3.97 TOTAL STREAM AREA (ACRES) = 2.27 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 6.95 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) fINCH/HOUR) 1 3.74 25.87 2.435 ' 2 2.61 10.99 4.069 3 6.95 11.43 3.974 RAINFALL INTENSITY AND TIME JF CONCENTRATIUN RATIO FORMULA(SBC) USED FOR 3 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 9.57 10.89 11.16 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(CFS) = 11.16 TIME(MINUTES) = 11.435 TOTAL AREA(ACRES) = 5~53 **************************************************************************** FLOW PROCESS FROM NODE 1000.�0 10 NODE 1003.I0 IS CODE = 6 )))))COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< UPSTREAM ELEVATION = 1295.07 DOWNSTREAM ELEVATIUN = 1293.50 STREET LENGTH(FEET) = 180.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 18.00 STREET CROSSFALL(DECIMAL) = .0270 ' SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 ° . - - '_ -- _ _ _ '-''- STREET FLOWDE�TH(FEET} = } .56 HALFGTREET FLOODWIDTH(FEET) = 15.25 I VERGE FLOW VELOCITY(FEET/SEC.) = 3.37 PRODUCT OF DEPTH&VELOCITY = 1.87 STREETFLOW TRAVELTIME(MIN) = .89 TC(MIN) = 12.33 ~~ 100.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.799 / SOIL CLASSIFICATION IS "A" I COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8334 SUBAREA AREA(ACRES) = 0.0 SUBAREA RUNOF=(CFS) = 0.00 SUMMED AREA(ACRES) = 5.53 TOTAL RUNOFF(CFS) = 11.16 I END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .56 HALFSTREET FLOODWIDTH(FEET) = 15.25 FLOW VELOCITY(FEET/SEC.) = 3.37 DEPTH*VELOCITY = 1.87 II **************************************************************************** FLOW PROCESS FROM NODE 1003.10 TO NODE 1003.10 IS CODE = 1 01 )) }} )DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE < ( < < < CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: I TIME OF CONCENTRATION(MINUTES) = 12.33 RAINFALL INTENSITY (INCH./HOUR) = 3.80 TOTAL STREAM AREA (ACRES) = 5.53 II TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 11.16 **************************************************************************** I FLOW PROCESS FROM NODE 1003.00 TO NODE 1003.10 IS CODE = 2 I ` }>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ) ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 I INITIAL SUBAREA FLOW-LENGTH = 465.00 UPSTREAM ELEVATION = 1304.50 I II DOWNSTREAM ELEVATION = 1292.93 ELEVATION DIFFERENCE = 11.57 TC = .393*[( 465.00**3)/( 11.57)]**.2 = 9.589 100.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.417 SOIL CLASSIFICATION IS "A" �� SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7788 SUBAREA RUNOFF(CFS) = 9.43 TOTAL AREA(ACRES) = 2.74 TOTAL RUNOFF(CFS) = 9.43 ~- **************************************************************************** I FLOW PROCESS FROM NODE 1003. 10 TO NODE 1003. 10 IS CODE = 1 � - >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< NI > > } > >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES< < < < < CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 9.59 II RAINFALL INTENSITY (INCH./HOUR) = 4.42 TOTAL STREAM AREA (ACRES) = 2.74 } I TOTL STREM RUNOFF(CFS) AT COFLUENCE = 9.43 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY II NUMBER (CFS) (MIN. ) (INCH/HOUR) , 11 ic i=, - 27: -2 ' 7qo RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO N� FORMULA(SBC) USED FOR 2 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES AHE AS FOLLOWS: 19.27 18.11 1 N� COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: ) RUNOFF(CFS) = 19.27 TIME(MINUTES) = 12.326 TOTAL AREA(ACRES) = 8.27 **************************************************************************** FLOW PROCESS FROM NODE 1003.10 TO NODE 1004..0 16 CODE = 6 11 }>>})COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<(<< N� UPSTREAM ELEVATION = 1292.93 DOWNSTREAM ELEVATION = 1291.00 U� LENGTH(FEET) STREET LENGTH( = 250 0� CURB HEIGTH(INCHES) = 8 . . STREET HALFWIDTH(FEET) = 18.00 STREET CROSSFALL(DECIMAL) = .0270 �� �� SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 =° **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 19.27 ***STREETFLOW SPLITS OVER STREET-CROWN*** FULL DEPTH(FEET) = .63 FLOODWIDTH(FEET) = 18.00 I FULL HALF-STREET VELOCITY(FEET/SEC.) = 3.64 SPLIT DEPTH(FEET) = .38 SPLIT FLOODWIDTH(FEET) = 8.75 �� SPLIT VELOCITY(FEET/SEC.) = 2.25 .63 STREET FLOWDEPTH(FEET) = w� HALFSTREET FLOODWIDTH(FEET) = 18.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.64 PRODUCT []F DEPTH&VELOCITY = 2.29 N� STREETFLOW TRAVELTIME(MIN) = 1.15 TC(MIN) = 13.47 ` 100.00 YEAR RAINFALL INTENSITY ( INCH/HOUR) = 3.602 SOIL CLASSIFICATION IS "A" ' COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8325 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 N� SUMMED AREA(ACRES) = 8.27 TOTAL RUNOFF(CFS) = 19.27 �� °� END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .63 HALFSTREET FLOODWIDTH(FEET) = 18.00 FLOW VELOCITY(FEET/SEC.) = 3.64 DEPTH*VELOCITY = 2.29 **************************************************************************** FLOW PROCESS FROM NODE 1004.10 TO NODE 1O>04. l0 IS CODE = 1 �� >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< I CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 13.47 RAINFALL INTENSITY (INCH./HOUR) = 3.60 ^ N� TOTAL STREAM AREA (ACRES) = 8.27 "= TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 19.27 i -- **************************************************************************** FLOW PROCESS FROM NODE 1004.N0 TO NODE 1004..0 lS COLE = 2 N� )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<( ASSUMED INITIAL SUBAREA UNIFORM 0� DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH = 500.00 N� UPSTREAM ELEVATION = 1303.00 m� DOWNSTREAM ELEVATION = 1291.00 ELEVATION DIFFERENCE = 12.00 100.00 YEAR RAINFALL INTBuSITY(INCH/HOUH) = 4.322 SOIL CLASSIFICATION IS "A" 0� SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIE\!T = .7772 SUBAREA RUNOFF(CFS) = 5.51 TOTAL AREA(ACRES) = 1.64 TOTAL RUNOFF(CFS) = 5.51 / **************************************************************************** N� FLOW PROCESS FROM NODE 1004.10 TO NODE 1004.�0 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<(<<< >)>>>AND COMPUTE VARIOUS CONFLUENCED SFRE:AM VALUES((((( CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 9.94 RAINFALL INTENSITY (INCH./HOUR) = 4.32 TOTAL STREAM AREA (ACRES) = 1.64 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 5.51 I CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY �� NUMBER (CFS) (MIN.) (INCH/HOUR) �� 1 19.27 13.47 3.602 2 5.51 9.94 4.322 RAINFALL INTENSITY AND TIME OF CONCENTRATIUN RATIO FORMULA(SBC) USED FOR 2 S[REAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: N� 19.73 ����� COMPUTED ESTIMATES ARE AS FOLLOWS: x�� B ,� ICI �� E . RUNOFF(CFS) = 23.86 TIME(MINUTES) = 13.472 � ) TOTAL AREA(ACRES) = 9 . 91 ' | N� **************************************************************************** N� FLOW PROCESS FROM NODE 1004.10 10 NODE 1010. 10 IS CODE = 3 }>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<(<< DEPTH OF FLOW IN 27.0 INCH-PIPE IS 21.9 I�CHES @� PIPEFLOW VELOCITY(FEET/SEC.) = 6.9 �w UPSTREAM NODE ELEVATION = 1279.00 DOWNSTREAM NODE ELEVATION = 1276.00 FLOWLENGTH(FEET) = 470.00 MANNINGS N = .013 | N� ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER UF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 23.86 TRAVEL TIME(MIN.) = 1.13 TC(MIN.) = 14.60 �� **************************************************************************** N� FLOW PROCESS FROM NODE 1010.20 TO NODE l010.E0 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< I -- CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 14.60 RAINFALL INTENSITY (INCH./HOUR) = 3.43 TOTAL STREAM AREA (ACRES) = 9.91 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 23.86 **************************************************************************** P/ nW PR0CFAg PROM NODE 1010.00 TO NODE 10I0' E0 IS CODE = 2 � >>>>>RATIONAL METHUD INITIAL SUBAREA ANALYSIS N� ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 N� INITIAL SUBAREA FLOW-LENGTH = 770.00 � ) UPSTREAM ELEVATION = 1292.50 / DOWNSTREAM ELEVATION = 1288.20 N� ELEVATION DIFFERENCE = 4.3@ �� TC = .393*[( 770.00**3)/( 4.30)]**.2 = 15.818 100.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.271 SOIL CLASSIFICATION IS "A" SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7539 e),* ���� SUBAREA RUNOFF(CFS) = 6.12 TOTAL AREA(ACRES) = 2.48 TOTAL RUNOFF(CFS) = 6.12 **************************************************************************** N� FLOW PROCESS FROM NODE 1010.20 TO NODE 1010.a0 IS CODE = 1 �� �� >>>>}DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<((< >>)>}AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES((((( CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 15.82 RAINFALL INTENSITY (INCH./HOUR) = 3.27 TOTAL STREAM AREA (ACRES) = 2.48 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 6.12 II CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY \ NUMBER (CFS) (MIN.) (INCH/HOUR) ' 23.86 14.60 3.432 2 6.12 15.82 3.271 m: RAINFALL INTENSITY AND TIME OF CONCENTRATIUN RATIO FORMULA(S8C) USED FOR 2 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: C 29.50 28.86 COMPUTED CONFLUENCE ESTIMATES AWE AS FOLLOWS: RUNOFF(CFS) = 29.50 TIME(MINUTES) = 14.604 N� TOTAL AREA(ACRES) = 12.39 �� N� **************************************************************************** FLOW PROCESS FROM NODE 1010.20 TO NODE 1010.I0 IS CODE = 3 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<(<< ! N� >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< � - DEPTH OF FLOW IN 30.0 INCH PIPE IS 23.0 I%,CHES N� PIPEFLOW VELOCITY(FEET/SEC.) = 7.3 UPSTREAM NODE ELEVATION = 1278.50 ] DOWNSTREAM NODE ELEVATIUN = 1276.00 FLOWLENGTH(FEET) = 400.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 29.50 TRAVEL TIME(MIN.) = .91 TC(MIN.) = 15.52 **************************************************************************** N� FLOW PROCESS FROM NODE 1010.10 TO NODE l010.10 IS CODE = )�>> >DFqTANATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ~ CONFLUENCE VALUES USED FUR INDEPENDENT 6T1-4EA1 1 ARE: TIME OF CONCENTRATION(MINUTES) = 15.52 N� RAINFALL INTENSITY (INCH./HOUR) = 3.31 TOTAL STREAM AREA (ACRES) = 12.39 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 29.50 • \ ) **************************************************************************** N� FLOW PROCESS FROM NODE 1009.N0 TO NODE ,010. 10 IS CODE = 2 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< N� ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 C INITIAL SUBAREA FLOW-LENGTH = 450.00 UPSTREAM ELEVATION = 1292.50 DOWNSTREAM ELEVATION = 1287.30 ELEVATION DIFFERENCE = 4.60 N� TC = .393*[( 450.00**3)/( 4.60)]**.2 = 11.306 100.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.001 �� SOIL CLASSIFICATION IS "A" ���� N� SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7714 �= ,E5 ` '=' SUBAREA RUNOFF(CFS) = 8.18 TOTAL AREA(ACRES) = 2.65 - OTAL RUNOFF(CFS) = 3.18 **************************************************************************** FLOW PROCESS FROM NODE 1010.10 lO NODE l010. ,0 IS CODE = 1 >>>>}DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<(<< ` >>}>>AND COMPUTE VARIOUS CONFLUENCED SFREAM VALUES<<<<< C \ / CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 AHE: TIME OF CONCENTRATION(MINUTES) = 11 ^ 31 RAINFALL INTENSITY (INCH. /HOUR) = 4.00 � ~~ TOTAL STREAM AREA (ACRES) = 2.65 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 8.18 N: CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY � . NUMBER (CFS) (MIN.) fINCH/HOUR) 29.50 15.52 3.309 � 2 8.18 11.31 4.001 //��»� / N� RAINFALL INTENSITY AND TIME UF CONCENTRATIUN RATIO �°_ /� �/[��' /� . FORMULA (SBC) USED FOR 2 STREAMS. - VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: N� 36.27 29.68 COMPUTED CONFLUENCE ESTIMATEG AHE AS FOLLOWS: I LACFF(CFS> = TIME(MINUTES) = 15.516 TOTAL AREA(ACRES) � - 15.04 **************************************************************************** FLOW PROCESS FROM NODE 1006.4.'0 lO NODE 0'66.0 13 CODE = 2 N� >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<( A --- -- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) 0� TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH = 655.00 /`ncTocom m = = 1sqi �� .�.••••••=m ELEVATION DIFFERENCE = 6.'v5 TC = .393*[( 655.00**3)/( 6.95)]**.2 = 13.041 II 100.00 YEAR RAINFALL INTENSITY(I = 3.673 .� SOIL CLASSIFICATION IS " �� • ��,`w ����� SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7644 � � I SUBREA RUNOFF(CFS> = 77 • v ■ TOTAL AREA(ACRES) = 2.76 TOTAL RUNOFF(CFS) = 7.75 ~ ! / _ ) I **************************************************************************** FLOW PROCESS FROM NODE 1011.k81 - O NODE ,011.l0 lS COuE = 2 II )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _ ASSUMED INITIAL SUBAREA UNIFORM E DEVELOPMENT IS: UNDEVELOPED WITH FAIR COVER TC = K*[(LENGTH**3)/(ELEVATIDN CHANGE)3**.2 INITIAL SUBAREA FLOW-LENGTH = 610.00 I UPSTREAM ELEVATION = 1��97. 50 DOWNSTREAM ELEVATION = 1288.50 ELEVATION DIFFERENCE = 9.00 TC = .709*[( 610.00**3)/( 9.00)]**.2 = 21.441 �� ��� � 100.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.726 �~�`-�^ - SOIL CLASSIFICATION IS "A" UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .6192 II SUBAREA RUNOFF(CFS) = 7.73 . TOTAL AREA (ACRES) = 4.58 58 TOTAL RUNOFF(CFS) (CFS) = 7.73 73 - � ��' � �t�c 11 -====i& **************************************************************************** ************** FLOW PROCESS FROM NODE 1012.00 10 NODE 1012.c0 IS CODE = 2 1 \ >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<(<<< ~~ ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: COMMERCIAL m� TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH = 990.00 UPSTREAM ELEVATION = 1293.63 0� DOWNSTREAM ELEVATION = 1288.35 ELEVATION DIFFERENCE = 5.28 TC = .303*[( 990.00**3)/(- 5.28)]**.2 = 13.628 N� 100.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.577 �� SOIL CLASSIFICATION IS "A" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8324 I SUBREA RUNOFF(CFS) = 3.39 TOTAL AREA(ACRES) = 1.14 TOTAL RUNOFF(CFS) = 3.39 I **************************************************************************** FLOW PROCESS FROM NODE l@12. :0 TO NODE 10W6. i0 13 CODE =- 6 0� >>>>>COMPUTE STREETFLOW TRAVELTI�E THRU SUBAREA((((( �� UPSTREAM ELEVATION = 1288.35 DOWNSTREAM ELEVATION = 1280.79 STREET LENGTH(FEET) = 690.00 CURB HEIGTH(INCHES) = 8. II STREET HALFWIDTH(FEET) = 38.00 STREET CROSSFALL(DECIMAL) = .0270 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 5 I STREET FLOWDEPTH(FEET) = .45 HALFSTREET FLOODWIDTH(FEET) = 11.28 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.90 �� N� PRODUCT OF DEPTH&VELOCITY = 1.30 STREETFLOW TRAVELTIME(MIN) = 3.96 TC(MIN) = 17.59 ~°omtriam���� ~ SOIL CLASSIFICATION IS "A" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8295 I SUBAREA AREA(ACRES) = 1.64 SUBAREA RUNOFF(CFS) = 4.18 SUMMED AREA(ACRES) = 2.78 - OTAL RUNOFF(CFS) = 7.57 END OF SUBAREA STREETFLO� HYDRAULICS: I DEPTH(FEET) = .48 HALFSTREET FLOODWIDTH(FEET) = �2.41 FLOW VELOCITY(FEET/SEC.) = 3.3b DEPTH*VELOCITY = 1.61 I *************************************************************************** FLOW PROCESS FROM NODE 1006.70 TO NODE 1006.70 IS CODE = 1 NI >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: I TIME OF CONCENTRATION(MINUTES) = 17.59 RAINFALL INTENSITY (INCH./HOUR) = 3.07 TOTAL STREAM AREA (ACRES) = 2.78 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 7.57 1 **************************************************************************** ^ ^ I FLOW PROCESS FROM NODE 1006 40 TO NODE 1006 70 IS CODE = 2 _ >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< N� } �� ASSUMED INITIAL SUBAREA UNIFORM - - DEVELOPMENT IS: COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 C INITIAL SUBAREA FLOW-LENGTH = 520.00 UPSTREAM ELEVATION = 1290.32 I DOWNSTREM ELEVTION = 12869. 79 . \ ELEVATION DIFFERENCE = 9 53 . TC = .303*[( 520.00**3)/( 9.53)3**.2 = 8.229 100.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.842 Ni SOIL CLASSIFICATION IS "A" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = . 8370 SUBAREA RUNOFF(CFS) = 3.44 TOTAL AREA(ACRES) = .85 TOTAL RUNOFF(CFS) = 3.44 I: ) **************************************************************************** FLOW PROCESS FROM NODE 1006.70 TO NUDE 1006.70 IS CODE = 1 �� >>>>}DESIGNATE INDEPE■DENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< N� CONFLUENCE VALUES USED FOR INDEPENDENT STREHM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 8.23 N� RAINFALL INTENSITY (INCH./HOUR) = 4.84 m� TOTAL- STREAM AREA (ACRES) = .85 _ TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 3.44 I CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY II NUMBER (CFS) (MIN.) (INCH/HOUR) 1 7.57 17.59 3.070 �� 2 3.44 8.23 4.842 m� RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA(SBC) USED FOR 2 STREAMS. I VRIOUS CONFLUENCED RUNOFF VLUES ARE AS FOLLOWS: ~�, 6 99 �� k �� ^ �- ��^ '/ K �� »' rnmo||TFr�T�?0FLUENCE ESTIMATES ARE AS FOLLOWS: ��^ ��^ TOTAL AREA(ACRES) = 3.63 **************************************************************************** FLOW PROCESS FROM NODE 1013.00 TO NODE 3013.10 lS CODE = 2 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS{<<<< ) N� ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH FAIR COVER TC = K*[(LENGTH**3)/(ELEVATIUN CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH = 1020.00 UPSTREAM ELEVATION = 1313.10 DOWNSTREAM ELEVATION = 1294.72 ELEVATION DIFFERENCE = l8.38 TC = .709*[ ( 1020.00**3)/( 18.38)]**.2 = 25.304 100.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.468 SOIL CLASSIFICATION IS "A" N� UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .5951 SUBAREA RUNOFF(CFS) = 9.13 TOTAL AREA(ACRES) = 6.22 TOTAL- RUNOFF(CFS) = 9.13 **************************************************************************** =LOW PROCESS FROM NODE 1013.10 TO NODE 1013.10 IS CODE = 1 > > >> >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE((((( CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: �� TIME OF CONCENTRATION(MINUTES) = 25.30 RAINFALL INTENSITY (INCH./HOUR) = 2.47 TOTAL STREAM AREA (ACRES) = 6.22 I . TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 9 13 / N� **************************************************************************** FLOW PROCESS FROM NODE 1014.00 TO NODE 1013.10 IS CODE = 2 )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<( 0� - - - -- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 AORE) N� TC = K*[ (LENGTH**3) / (ELEVATION CHANGE) ]**. 2 INITIAL SUBAREA FLOW-LENGTH = 810.00 UPSTREAM ELEVATION = 1301.70 N� DOWNSTREAM ELEVATION = 1294.72 ELEVATION DIFFERENCE = 6.98 ) TC = .393*[( 810.00**3)/( 6.98)]**.2 = 14.800 100.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.404 SOIL CLASSIFICATION IS "A" SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7576 SUBAREA RUNOFF(CFS) = 9.26 TOTAL AREA(ACRES) = 3.59 TOTAL RUNOFF(CFS) = 9 26 . . **************************************************************************** FLOW PROCESS FROM NODE 1013.10 T NODE I013. l0 IS CODE = 1 ] _ >>>}>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ; - CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 14.80 RAINFALL INTENSITY (INCH./HOUR) = 3.40 ' ~~ TOTAL STREAM AREA (ACRES) = 3.59 TnTm qTRcOm R|}NnFF (rFg) AT CONFLUENCE = 9.26 °oMMIIIMMWM I **************************************************************************** FLOW PROCESS FROM NODE 1015.00 TO NODE l013. 0 IS CODE = 2 I >>>>>RTIONAL METHOD INITIAL GUBAREA ANLYSIS<<(( � > ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) I TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH = 790.00 UPSTREAM ELEVATICN = 1301.10 DOWNSTREAM ELEVATION = 1294.20 m ELEVATION DIFFERENCE = 6.90 TC = 393*[( 790 00**3)/( 6 9N)]** 2 = 14 614 . . . . . 100.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.430 N� SOIL CLASSIFICATION IS "A" �� SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7583 SUBAREA RUNOFF(CFS) = 6.84 li TOTAL AREA(ACRES) = 2.63 TOTAL RUNOFF(CFS) = 6.84 � ** ***************************************************************** E FLOW PROCESS FROM NODE 1013.10 TO NODE 1013.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE(<<<< E >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< _ CONFLUENCE VALUES USED FOR INDEPENDENT SFREAM 3 ARE: E TIME OF CONCENTRATION(MINUTES) = 14.61 RAINFALL INTENSITY (INCH /HOUR) = 3 43 ^ ^ TOTAL STREAM AREA (ACRES) = 2.63 TOTAL STREAM RU��(�S) AT �NF0EN� = 6.84 E ' CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY �� N� NUMBER (CFS) (MIN.) (INCH/HOUR) �� 1 9.13 25.30 2.468 2 9.26 14.80 3.404 II 3 6.84 14.61 3.430 RAINFALL INTENSITY AND TIME-8F CONCENTRATION RATIO E FORMULA(SBC) USED FOR 3 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 20.77 21.39 21.26 COMPUTED CONFLUENCE ESTIMATES ARE AS OLLOWS: II RUNOFF(CFS) = 21.39 TIME(MINUTES) = 14.800 TOTAL AREA(ACRES) 2.44 �_ ��=�` ���� C. ,a, �VK� **************************************************************************** FLOW PROCESS FROM NODE 1017.00 lO NODE l015.I0 IS CODE = 2 I >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<(< ^ ASSUMED INITIAL SUBAREA UNIFORM { . DEVELOPMENT IS: COMMERCIAL ` TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 " INITIAL SUBAREA FLOW-LENGTH = 1070.00 � � UPSTREAM ELEVATION = 1304.00 � DOWNSTREAM ELEVATION = 1292.61 ELEVATION DIFFERENCE = 11.39 I TC = .303*[( 1070.00**3)/( 11.39)]**.2 = 12.244 100.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.815 csr`r/ r/nco`cTroT-nm `,z "o" SUBAREA RUNOFF(CFS) = 6.84 TOTAL AREA(ACRES) = 2.15 TOTAL RUNOFF(CFS) = 6.84 �=���. �a~ �� ' ---. ~~~. **************************************************************************** N� FLOW PROCESS FROM NODE 1018.00 �O NODE 10i8 10 IS CODE = 2 . . >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS((((( ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.: INITIAL SUBAREA FLOW-LENGTH = 1000.00 UPSTREAM ELEVATION = 1318.00 DOWNSTREAM ELEVATION = 1311.00 ELEVATION DIFFERENCE = 7.00 TC = .303*[( 1000.00**3)/( 7.00)]**.2 = 12.959 100.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.687 0� SOIL CLASSIFICATION IS "A" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8329 SUBAREA RUNOFF(CFS) = 2.83 TOTAL AREA(ACRES) = .92 TOTAL RUNOFF(CFS) = 2.83 **************************************************************************** N� FLOW PROCESS FROM .ODE 16918.l0 TO NODE 019.10 lS CODE = 6 >>>>>COMPUTE STREETPLOW TRAVELTIME THHU SUBAREA<<<<< N� UPSTREAM ELEVATION = 1311.00 DOWNSTREAM ELEVATION = 1304.00 STREET LENGTH(FEET) = 630.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 20.00 STREET CROSSFALL(DECIMAL) = .0270 0M > SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLuW(CFS) = 3.58 STREET FLOWDEPTH(FEET) = .39 HALFSTREET FLOODWIDTH(FEET) = 9.03 i ~~ AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.80 PRODUCT OF DEPTH&VELOCITY = 1.09 STREETFLOW TRAVELTIME(MIN) = 3.75 TC(MIN) = 16.71 100.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.166 SOIL CLASSIFICATION IS " -- 0� COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8301 | N� SUBAREA AREA(ACRES) = .57 SUBAREA RUNOFF(CFS) = 1.50 SUMMED AREA(ACRES) = 1.49 TOTAL RUNOFF(CFS) = 4.32 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .42 HALFSTREET FLOODWIDTH(FEET) = 10.16 FLOW VELOCITY(FEET/SEC.) = 2.76 DEPTH*VELOCITY = 1.15 **************************************************************************** FLOW PROCESS FROM NODE 1019.10 TO NUDE 1019.10 IS CODE = l >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 A�E: 0� TIME OF CONCENTRATION(MINUTES) = 16.71 ) RAINFALL INTENSITY (INCH./HOUR) = 3.17 TOTAL STREAM AREA (ACRES) = 1.49 TOTAL STREAM RUNUFF(CFS) AT CONFLUENCE = 4.32 **************************************************************************** N� FLOW PROCESS FROM NODE 1020.00 TO NODE 1019.10 IS CODE = 2 { - - - ASSUMED INITIAL SUBAREA UNIFBRM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = 1-*[(LENGTH**3)/(ELEVATION CHPWGE)]**.2 INITIAL SUBAREA FLOW-LENGTH = 640.00 I UPSTREAM ELEVTION = 1311.00 DOWNSTREAM ELEVATION = 1304 ^ 00 i ) \ ' ELEVATION DIFFERENCE = 7.00 N� TC = .393*[( 640.00**3)/( 7.00)]**.2 = 12.842 100.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.707 SOIL CLASSIFICATION IS "A" SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7652 SUBAREA RUNOFF(CFS) = 9.87 ` ~~ TOTAL AREA(ACRES) = 3.48 TOTAL RUNOFF(CFS) = 9.87 ~~ **************************************************************************** FLOW PROCESS FROM NODE 1019.10 TO NODE 1019.10 IS CODE = 1 N� >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES((<<< _ _== N� CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 12.84 RAINFALL INTENSITY (INCH./HOUR) = 3.71 E TOTAL STREAM AREA (ACRES) = 3.48 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 9.87 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 4.32 16.71 3.166 2 9.87 12.84 3.707 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO m� FORMULA(SBC) USED FOR 2 STREAMS ^ VARIOUS CONFLUENCED RUNOFF VALUES AHE AS FOLLOWS: 12.75 13.19 N� COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: ) RUNOFF(CFS) = 13.19 TIME(r,INUTES) = 12.842 TOTAL AREA(ACRES) = 4.97 **************************************************************************** II FLOW PROCESS FROM NODE 1005.20 TO NODE 10�5.�0 IS CODE = 2 >>>>}RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH = 1000.00 m� UPSTREAM ELEVATION = 1306.00 DOWNSTREAM ELEVATION = 1301.10 ELEVATION DIFFERENCE = 4.90 TC = .533*[( 1000.00**3)/( 4.90)]**.2 = 24.455 100.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.519 SOIL CLASSIFICATION IS "A" N� UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .6003 SUBAREA RUNOFF(CFS) = 1.25 TOTAL AREA(ACRES) = .83 TOTAL RUNOFF(CFS) = 1.25 **************************************************************************** 1 _ N� ==== >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< UPSTREAM ELEVATIUN = 1301.45 DOWNSTREAM ELEVATIUN = 1287.1/4:3 STREET LENGTH(FEET) = 770.0� CURB 1-=:07H(INCHES) = 8. �� STREET HALFWIDTH(FEET) = 20.00 STREET CROSSFALL(DECIMAL) = .0270 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 X \ **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 2.12 N� STREET FLOWDEPTFf (FEET) = .31 HALFSTREET FLOODWIDTH(FEET) = 6.22 �� AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.03 » v"'-- �� PRODUCT OF DEPTH&VELOCITY = .95 N� STREETFLOW TRAVELTIME(MIN) = 4.23 TC(MIN) = 28.69 1 100.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.289 - ) 0� SOIL CLASSIFICATION IS "A" 1 o� COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8225 SUBAREA AREA(ACRES) = .91 SUBAREA RUNOFF(CFS) = 1.7� SUMMED AREA (ACRES) = 1. 74 TOTAL RUNOFF (CFS) = 2.97 97 � ~~ END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .34 HALFSTREET FLOODWIDTH(FEET) = 7.34 FLOW VELOCITY(FEET/SEC.) = 3.28 DEPTH*VELOCITY = 1.13 -- " **************************************************************************** FLOW PROCESS FROM NODE 1005.10 TO NUDE 1005.10 IS CODE = >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<(<<< ! N� CONFLUENCE VALUES USED FOR INDEPENDENT STR 1 A8E: TIME OF CONCENTRATION(MINUTES) = 28.69 RAINFALL INTENSITY (INCH./HOUR) = 2.29 N� \ TOTAL STREAM AREA (ACRES) = 1.74 TOTAL STREAM RUNOFF(CFS) A . CONFLUENCE = 2.97 **************************************************************************** | ' FLOW PROCESS FROM NODE 1005.00 TO NUDE 1005.10 IS CODE = >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< i - ] ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY ( 1/4 ACRE) TC = K*[(LENGTH**3)/(ELEVATION CHANBE)3**.2 INITIAL SUBAREA FLOW-LENGTH = 1020.00 N� UPSTREAM ELEVATION = 1302.80 D� DOWNSTREAM ELEVATION = 1287.03 ELEVATION DIFFERENCE = 15.77 TC = .393*[( 1020.00**3)/( 15.77)]**.2 = 14.439 100.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.455 SOIL CLASSIFICATION IS "A" SINGLE-FAMILY(1/4 ACRE LOT) RUNUFF COEFFICIENT = .7590 U� SUBAREA RUNOFF(CFS) = 15.11 TOTAL AREA(ACRES) = 5.76 TOTAL RUNOFF(CFS) = 15.11 **************************************************************************** FLOW PROCESS FROM NODE 1005.10 TO NODE 1005.10 IS CODE = >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< � ~~ >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< 8� CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: 14.44 TIME OF CONCENTRATION(MINUTES) = 14 ^ ~ TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 15.l1 1 m� CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (:NCH/HOUR) II 1 2.97 28.69 2.289 1 / . . 2 15.11 14.44 3.455 II RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA(SBC) USED FOR 2 STREAMS. � VARIOUS ED RUNOFF VALUES ARE A F OLLOWS: -�- ���� I -_ _-_-- 12. 97 16. 60 ��^ ~~' ` COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(CFS) = TIME(MINUTES) = 14.439 C TOTAL AREA(ACRES) =�- 7.50 I **************************************************************************** FLOW PROCESS FROM NODE 1005. 10 TO NODE 1007.10 IS CODE = 3 >)>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA( <<<( I >�>> ��SING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) < < < < DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.6 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 7.7 �� UPSTREAM NODE ELEVATION = 1282.00 DOWNSTREAM NODE ELEVATION = 1272.40 FLOWLENGTH(FEET) = 970.00 MANNINGS N = .013 I ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER UF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 16.60 TRAVEL TIME(MIN.) = 2.11 TC(MIN.) = 16.55 I • **************************************************************************** NI � FLOW PROCESS FROM NODE 1007. 10 TO NODE 1007. 10 IS CODE = 1 � >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< �� �� CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) 16 = 16.55 . I RINFLL INTENSITY (INCH./H8UR) = 3.18 TOTAL STREM AREA (CRES) = 7.50 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 16.60 I **************************************************************************** FLOW PROCESS FROM NODE 1007.069 TO NODE 1007.10 lS CODE = 2 1 >> >> >RATIONAL METHOD INITIAL SUBAREA ANALYSIS< < < < < } - --- ASSUMED INITIAL SUBAREA UNIFORM I DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH = 650.00 UPSTREAM ELEVATION = 1290.32 I DOWNSTREAM ELEVATION = 1282.45 ELEVATION DIFFERENCE = 7.87 TO = .393*[( 650.00**3)/( 7.87)]**.2 = 12.662 100. 00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.739 �� 44 � �� �� �� ^ ~��. ' ���� SOIL CLASSIFICATION IS "A" SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7659 I SUBREA RUNOFF(CFS) = 8.07 TOTAL AREA(ACRES) = 2.82 TOTAL RUNOFF(CFS) = 8.07 ~ , **************************************************************************** 1 FLOW PROCESS FROM NODE 1007.10 TO NODE 1007.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<( I >>>>>ND COMPUTE VARIOUS CONFLUENCED S[REM VLUES<<<<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: ! / TIME OF CONCENTRATION(MINUTES) = 12.66 N� RAINFALL INTENSITY (INCH./HOUR) = 3.74 �� �� TOTAL STREAM AREA (ACRES) = 2.82 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 8 07 . II CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) ~~ 1 16.60 16.55 3.184 2 8.07 12.66 3.739 E RAINFALL INTENSITY AND TIME UF CONCENTRATION RATIO FORMULA(SBC) USED FOR 2 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: U� 23.48 20.78 �� COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(C��S) = 23.48 TIME(MINUTES) = 16.545 li TOTAL AREA(ACRES) = 10. 32 j� i 0 '� / /7 �� o� ., �� /02 / - I . FLOW PROCESS FROM NODE 1�06 . �0 TO NODE I0�6 c0 IS CODE = 2 ` >>)>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< I / ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: COMMERCIAL �� N� TC = K*[ (LENGTH**3) / (ELEVATILN CHANGE) ]**. 2 ~~ INITIAL SUBAREA FLOW-LENGTH = 680.00 UPSTREAM ELEVATION = 1301.00 DOWNSTREAM ELEVATION = 1290.02 �� ELEVATION DIFFERENCE = 10.J8 ~~ TC = .303*[( 680.00**3)/( 10.98)]**.2 = 9.397 100 00 YEAR RAINFALL INTENSITY(INCH/HOUR) � 4.471 . �� ����� N� SOIL CLASSIFICATION IS "A" x�.,��. �= ~° m� COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8353 SUBAREA RUNOFF(CFS) = 3.29 } { 11 TOTAL AREA(ACRES) = .88 TOTAL RUNOFF(CFS) = 3.29 �� -�� ****it*********************************************************************** N� FLOW PROCESS FROM NODE 1006.a0 - O NODE 0k6.60 LS CODE = 6 II >>>>>COMPUE STREETFLOW TRAVELTIE THRU S�BAREA<(<<< ..,;STREAM ELEVATION = 1290.02 DOWNSTREAM ELEVATION = 1280.75 STREET LENGTH(FEET) = 545.00 CUR8 HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 38.00 STREET CROSSFALL(DECIMAL) = .0270 I SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 5.12 ) STREET FLOWDEPTH(FEET) = .40 HALFSTREET FLOODWIDTH(FEET) = 3.59 �� AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.61 PRODUCT OF DEPTH&VELOCITY = 1.46 II STREETFLOW TRAVELTIME(MZN) = 2.51 TC(MIN) = 11.91 mm mm v=uP POrmPa! TNTPNR7TY(INCH/HOUR) = 3.878 . ~ , COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8338 SUBAREA AREA(ACRES) = 1.14 SUBAREA RUNOFF(CFS) = 3.69 II SUMMED AREA(ACRES) = 2.N2 TOTAL RUNOFF(CFS) = ^ �LOW HYDRAULICS: END OF SUBAREA STREE . �� DEPTH(FEET) = .45 HALFSTREET FLOODWIDTH(FEET) = 11.28 . . . �-^ �� �� ���^� @� FLOW VELOCITY(FEET/SEC ) = 3 68 DEPTH*VELOCITY = 1 65 �- �� ` '~ ' \ END OF RATIONAL METHOD ANALYSIS II II , I li ~~ ' li il 0� ` / �� II �� �� _ I: II • �� �� ' II ' �� �= � ' 11 II } 1 0 c 1 IT VOL z v ) z 5 yR 1 1 1 0 1 RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON SAN BERNARDINO COUNTY (SBC) 1983 HYDROLOGY MANUAL c <(<<<<<<<<<(((<((<<<(<<(<<<<<<<<<<((<()>>>)>> > > > > > > > > > > > > >) > > > > > > > > > > > > > > >)> (C) Copyright 1982 Advanced Engineering Software [PIES] Especially prepared for: HALL & FOREMAN, INC. 11 (((<(((((((((((((<(((((((<(((((((((((()>)>>>>>>>>>>>>>>))))))))))))))))>>>)) * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * N.BASELINE - EAST OF ETIWANDA CHANNEL UP TO C.L OF VICTORIA- HYDROLOGY * * Q 25 YR, VOL 2 * * VENKI.N, JN3810 -20, 8/25/87, DISK "4 ", FILE "D" * ▪ ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1 USER SPECIFIED STORM EVENT(YEAR) = 25.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 ▪ SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .95 II }10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = .980 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.470 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 25.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.1520 SLOPE OF INTENSITY DURATION CURVE = .6000 SBC HYDROLOGY MANUAL "C "- VALUES USED <<(<<<<((<(<((<<(<(<<((((<<(<((<<<<<(()>>>>>> > > > > >) > > > > >> > > > > > >l > > > > > > > > > >)> 1: - Advanced Engineering Software CAES] SERIAL No. A0580A REV. 3.1 RELEASE DATE: 5/01/85 1 <<(<<(<(<(<<<<(<<<(((<<((<((<<(<(<<((())>)>l> > > >) > > > > > > > > >l > > > > > > > >) > > > > > > >> 1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1027.00 TO NODE 1027.10 IS CODE = 2 >l)> )RATIONAL METHOD INITIAL SUBAREA ANALYSIS(( <(( ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 ' INITIAL SUBAREA FLOW- LENGTH = 1000.00 UPSTREAM ELEVATION = 1335.84 DOWNSTREAM ELEVATION = 1318.96 ELEVATION DIFFERENCE = 16.88 f TC = .393* C ( 1000. 00 * *3) / ( 16.88) ] * *. 2 = 14.076 25.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.750 fill T i ri AqR T F T rAT T fIN TR "A" SUBAREA RUNOFF(CFS) = 17.48 II TOTAL AREA(ACRES) = 8.64 TOTAL RUNOFF(CFS) = 17.48 it*************************************************************************** FLOW PROCESS FROM NODE 1027.10 TO NODE 1028.10 IS CODE = 5 4 ))))))COMPUTE TRAPEZOIDAL- CHANNEL FLOW((((( >>>> >TRAVELTIME THRU SUBAREA <<( << UPSTREAM NODE ELEVATION = 1318.96 II DOWNSTREAM NODE ELEVATION = 1311.17 CHANNEL LENGTH THRU SUBAREA(FEET) = 395.00 CHANNEL BASE(FEET) = 50.00 "Z" FACTOR = 3.000 I MANNINGS FACTOR = .040 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 17.48 FLOW VELOCITY(FEET /SEC) = 1.70 FLOW DEPTH(FEET) = .20 TRAVEL TIME(MIN.) = 3.87 TC(MIN.) = 17.95 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** II FLOW PROCESS FROM NODE 1028.10 TO NODE 1028.10 IS CODE = 1 Eh > > > > >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE < <((< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 17.95 RAINFALL INTENSITY (INCH./HOUR) = 2.38 II TOTAL STREAM AREA (ACRES) = 8.64 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 17.48 I )******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1028.00 TO NODE 1028.10 I5 CODE = 2 II > > > > >RATIONAL METHOD INITIAL SUBAREA ANALYSIS((((( ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K *C(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 990.00 UPSTREAM ELEVATION = 1330.96 II DOWNSTREAM ELEVATION = 1311.17 ELEVATION DIFFERENCE = 19.79 TC = .393* C ( 990. 00 * *3) / ( 19.79) ] * *. 2 = 13.553 II 25.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.813 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7382 I SUBAREA RUNOFF(CFS) = 9.59 TOTAL AREA(ACRES) = 4.62 TOTAL RUNOFF(CFS) = 9.59 '********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1028.10 TO NODE 1028.10 IS CODE = 1 II > > >> >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<((< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: II TIME OF CONCENTRATION(MINUTES) = 13.55 III RAINFALL INTENSITY (INCH./HOUR) = 2.81 TOTAL STREAM AREA (ACRES) = 4.62 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 9.59 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ="mim■ _______ )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS((((( ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) I TC = K*[(LENGTH**3)/(ELEWTION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH = 920.00 � ��PSTREAM ELEVATION = 1325.44 I DOWNSTREM ELEVTION = 1311.17 ELEVATION DIFFERENCE = 14.27 TC = .393*C( 920.00**3)/( 14.27)]**.2 = 13.846 I 111 25.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.777 SOIL CLASSIFICATION IS "A" SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7367 ~ SUBAREA RUNOFF(CFS) = 8.06 Q TOTAL AREA(ACRES) = 3.94 TOTAL RUNOFF(CFS) = 8.06 ~ 0�**************************************************************************** �� ~~ FLOW PROCESS FROM NODE 1028.10 TO NODE 1028.10 IS CODE = 1 ) >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE(((<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES((((( CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: N� TIME OF CONCENTRATION(MINUTES) = 13.85 �� RAINFALL INTENSITY (INCH./HOUR) = 2.78 TOTAL STREAM AREA (ACRES) = 3.94 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 8.06 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY l� N� )NUMBER (CFS) (MIN.) (INCH/HOUR) � 1 17.48 17.95 2..376 E 2 9.59 13.55 2.813 3 8.06 13.85 2.777 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO N� FORMULA(SBC) USED FOR 3 STREAMS. ~~ VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 32.48 30.68 31.01 - @� COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: �� RUNOFF(CFS) = 32.48 TIME(MINUTES) = 17.949 TOTAL AREA(ACRES) = 17.20 **************************************************************************** : II FLOW PROCESS FROM NODE 1028.169 TO NODE 1031.169 IS CODE = 5 >>>>>COMPUTE TRAPEZOIDAL-CHANNEL FLOW((((( >>>>>TRAWELTIME THRU SUBAREA(((<< ] �� UPSTREAM NODE ELEVATION = 1311.17 DOWNSTREAM NODE ELEVATION = 1301.20 NI CHANNEL LENGTH THRU SUBAREA(FEET) = 665.00 CHANNEL BASE(FEET) = 50.00 "Z" FACTOR = 3.0069 MANNINGS FACTOR = .040 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 32.48 N FLOW VELOCITY(FEET/SEC) = 2.15 FLOW DEPTH(FEET) = .30 TRAVEL TIME(MIN.) = 5.16 TC(MIN.) = 23.10 m ) FLOW PROCESS FROM NODE 1030.00 TO NODE 1031.10 IS CODE = 8 > > >> )ADDITION OF SUBAREA TO MAINLINE PEAK FLOW(<(<< 25.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.042 SOIL CLASSIFICATION IS "A" I SINGLE-FMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .6960 SUBAREA AREA(ACRES) = 13.10 SUBAREA RUNOFF(CFS) = 18.6E TOTAL AREA(ACRES) = 30.30 TOTAL RUNOFF(CFS) = 51.10 }TC (MIN) = 23.10 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1031.00 TO NODE 1031.10 I5 CODE = 8 >>>> )ADDITION OF SUBAREA TO MAINLINE PEAK FLOW << < << 25.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.042 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .6960 SUBAREA AREA(ACRES) = 7.10 SUBAREA RUNOFF(CFS) = 10.09 TOTAL AREA(ACRES) = 37.40 TOTAL RUNOFF(CFS) = 61.19 TC(MIN) = 23.10 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 111] FLOW PROCESS FROM NODE 1031.10 TO NODE 1031.10 IS CODE = 1 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <« (< )))))AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES((<<< II CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 23.10 II RAINFALL INTENSITY (INCH. /HOUR) = 2.04 )TOTAL STREAM AREA (ACRES) = 37.40 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 61.19 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) 1 61.19 23.10 2.042 I RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA(SBC) USED FOR 1 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 61.19 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(CFS) = 61.19 TIME(MINUTES) = 23.104 TOTAL AREA(ACRES) = 37.40 FLOW PROCESS FROM NODE 1031.00 TO NODE 1031.10 IS CODE = 2 )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS((((( ' ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K *C(LENGTH * *3) /(ELEVATION CHANGE)] * *. 111 I INITIAL SUBAREA FLOW- LENGTH = 1300.00 UPSTREAM ELEVATION = 1319.37 DOWNSTREAM ELEVATION = 1301.20 ELEVATION DIFFERENCE = 18.17 ' TC = . 393*[( 1300. 00 * *3) / ( 18.17) ] * *. 2 = 16.235 25.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.524 SOIL CLASSIFICATION IS "A" SUBAREA RUNOFF(CFS) = 13.00 TOTAL AREA(ACRES) = 7.10 TOTAL RUNOFF(CFS) = 13.00 I ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1031.10 TO NODE 1031.10 IS CODE = 1 > >> )DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< IL > > >))AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES((((( CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: 1 TIME OF CONCENTRATION(MINUTES) = 16.23 RAINFALL INTENSITY (INCH. /HOUR) = 2.52 TOTAL STREAM AREA (ACRES) = 7.10 rl TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 13.00 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY IL NUMBER (CFS) (MIN.) (INCH /HOUR) 1 61.19 23.10 2.042 I: 2 0.00 0.00 0.000 3 13.00 16.23 2.524 [FATAL ERROR: INVALID CONFLUENCE VALUES: SEE USERS MANUAL? T ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1022.00 TO NODE 1022.10 IS CODE = 2 > ))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS(( < << ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 790.00 II UPSTREAM ELEVATION = 1315.50 DOWNSTREAM ELEVATION = 1308.50 ELEVATION DIFFERENCE = 7.00 TC = .393* C ( 790. 00 * *3) / ( 7.00) ] * *. 2 = 14.572 25.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.693 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7332 SUBAREA RUNOFF(CFS) = 7.70 TOTAL AREA(ACRES) = 3.90 TOTAL RUNOFF(CFS) = 7.70 1 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1022.10 TO NODE 1022.10 IS CODE = 1 II > > >> )DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE(<((< ' CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 14.57 RAINFALL INTENSITY (INCH. /HOUR) = 2.69 TOTAL STREAM AREA (ACRES) = 3.90 1 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 7.70 I ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1023.00 TO NODE 1022.10 IS CODE = 2 IL )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS <(((( ASSUMED INITIAL SUBAREA UNIFORM flU I nDMFNT TRe TNRi F FQMTI V ( 1 /4 Qr INITIAL SUBAREA FLOW- LENGTH = 810.00 I UPSTREAM ELEVATION = 1314.50 DOWNSTREAM ELEVATION = 1308.50 ELEVATION DIFFERENCE = 6.00 ' TC = .393* E ( 810.00 * *3) / ( 6.00) ] * *. 2 = 15.255 25.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.620 SOIL CLASSIFICATION IS "A" )SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7300 II SUBAREA RUNOFF(CFS) = 5.51 TOTAL AREA(ACRES) = 2.88 TOTAL RUNOFF(CFS) = 5.51 1 ****************************************** * * * * ** * * * * * * * * ** * * *** * * ** * * * *** * ** FLOW PROCESS FROM NODE 1022.10 TO NODE 1022.10 IS CODE = 1 II > > >> )DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE < < <(< > > >))AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES((((( CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 15.25 RAINFALL INTENSITY (INCH. /HOUR) = 2.62 1 TOTAL STREAM AREA (ACRES) = 2.88 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 5.51 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) I 1 7.70 14.57 2.693 2 5.51 15.25 2.620 I RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO rORMULA(SBC) USED FOR 2 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 12.96 13.00 II COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(CFS) = 13.00 TIME (MINUTES) = 15.255 TOTAL AREA(ACRES) = 6.78 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1022.10 TO NODE 1024.10 IS CODE = 6 )))))COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA < < < << II UPSTREAM ELEVATION = 1308.50 DOWNSTREAM ELEVATION = 1304.00 STREET LENGTH(FEET) = 460.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 18.00 STREET CROSSFALL(DECIMAL) = .0270 I SPECIFIED NUMBER OF HALFSTREETS'CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 16.73 STREET FLOWDEPTH(FEET) = .62 HALFSTREET FLOODWIDTH(FEET) = 17.75 ' AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.78 PRODUCT OF DEPTH &VELOCITY = 2.36 STREETFLOW TRAVELTIME(MIN) = 2.03 TC(MIN) = 17.28 II 25.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.431 SOIL CLASSIFICATION IS "A" 11 'SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7206 SUBAREA AREA(ACRES) = 4.25 SUBAREA RUNOFF(CFS) = 7.44 t4- SUMMED AREA (ACRES) = 11.03 TOTAL RUNOFF (CFS) = 20.44 C.a. END OF SUBAREA STREETFLOW HYDRAULICS: "---"" 1 II DEPTH(FEET) = .63 HALFSTREET FLOODWIDTH(FEET) = 18.00 FLOW VELOCITY(FEET /SEC.) = 4.09 DEPTH *VELOCITY = 2.58 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** IL FLOW PROCESS FROM NODE 1024.10 TO NODE 1024.20 IS CODE = 3 )))))COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA(( < <( >> )))USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) < < <(< IP DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.6 INCHES -'IPEFLOW VELOCITY (FEET /SEC.) = 9.5 I UPSTREAM NODE ELEVATION = 1299.00 DOWNSTREAM NODE ELEVATION = 1296.00 FLOWLENGTH(FEET) = 200.00 MANNINGS N = .013 II ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 20.44 TRAVEL TIME (MIN.) = .35 TC (MIN.) = 17.64 s, ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1024.20 TO NODE 1024.20 IS CODE = 1 1 ) ))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <« (< II CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: II TIME OF CONCENTRATION(MINUTES) = 17.64 RAINFALL INTENSITY (INCH. /HOUR) = 2.40 II TOTAL STREAM AREA (ACRES) = 11.03 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 20.44 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1025.00 TO NODE 1024.20 IS CODE = 2 )> )RATIONAL METHOD INITIAL SUBAREA ANALYSIS < <( << ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: COMMERCIAL II TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 810.00 UPSTREAM ELEVATION = 1318.00 DOWNSTREAM ELEVATION = 1301.40 II ELEVATION DIFFERENCE = 16.60 TC = .303* E ( 810. 00 * *3) / ( 16.60) 7 * *. 2 = 9.609 25.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.457 SOIL CLASSIFICATION IS "A" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8318 SUBAREA RUNOFF(CFS) = 2.01 11 TOTAL AREA(ACRES) = .70 TOTAL RUNOFF(CFS) = 2.01 C • t3 X * * * * * * * * * * * ** I *************************************************************************** FLOW PROCESS FROM NODE 1024.20 TO NODE 1024.20 IS CODE = 1 111 > > >> )DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE((((( ) >)))AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES < << << CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 9.61 RAINFALL INTENSITY (INCH. /HOUR) = 3.46 TOTAL STREAM AREA (ACRES) = .70 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 2.01 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY I NUMBER (CFS) (MIN.) (INCH /HOUR) 3 4 +IA1 1.1. 4 G/ AMC. I AINFALL INTENSITY AND TIME OF CONCENTRATION RATIO ORMULA(SBC) USED FOR 2 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: II 21.84 13.15 OMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: UNOFF(CFS) = 21.84 TIME(MINUTES) = 17.637 11 0TAL AREA(ACRES) = 11.73 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** LOW PROCESS FROM NODE 1024.20 TO. NODE 1024.30 IS CODE = 3 > > >)> COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA < < <<< II > >> )USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW)<CC <C EPTH OF FLOW IN 24.0 INCH PIPE IS 19.5 INCHES , IPEFLOW VELOCITY(FEET /SEC.) = 8.0 il PSTREAM NODE ELEVATION = 1296.00 OWNSTREAM NODE ELEVATION = 1295.00 FLOWLENGTH(FEET) = 100.00 MANNINGS N = .013 STIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 IPEFLOW THRU SUBAREA(CFS) = 21.84 TRAVEL TIME(MIN.) = .21 TC(MIN.) = 17.85 * ****************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1024.30 TO NODE 1024.30 IS CODE = 1 11 >)) )DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « ( << VALUES USED FOR INDEPENDENT STREAM 1 ARE: I 0NFLuENcE IE OF CONCENTRATION(MINUTES) = 17.85 RAINFALL INTENSITY (INCH. /HOUR) = 2.38 1 OTAL STREAM AREA (ACRES) = 11.73 If . OTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 21.84 * ****************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** LOW PROCESS FROM NODE 1026.00 TO NODE 1024.30 IS CODE = 2 j 1 - > >> )RATIONAL METHOD INITIAL SUBAREA ANALYSIS((« ( ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: COMMERCIAL I C = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 NITIAL SUBAREA FLOW- LENGTH = 825.00 UPSTREAM ELEVATION = 1318.00 ELEVATION = 1301.00 I OWNSTREPM LVATION DIFFERENCE = 17.00 TC = .303*(( 825. 00 * *3) / ( 17.00) ] * *. 2 = 9.669 . It 25.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.445 OIL CLASSIFICATION IS "A" OMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8317 SUBAREA RUNOFF(CFS) = 2.06 "OTAL AREA(ACRES) = .72 TOTAL RUNOFF(CFS) = 2.06 C . P5. ,, 3 A ****************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** IrLOW PROCESS FROM NODE 1024.30 TO NODE 1024.30 IS CODE = 1 11 ))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE((((( >W AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES((((( u \ l rnmriMPAIrP U01 I IF:R I IRFT) Ff R T NIIFGFNT)FNT GTRFOM P 0RF ! RAINFALL INTENSITY (INCH. /HOUR) = 3.44 I TOTAL STREAM AREA (ACRES) = .72 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 2.06 ▪ CONFLUENCE INFORMATION: ▪ STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) I 1 21.84 17.85 2.385 2 2.06 9.67 3.445 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO • FORMULA(SBC) USED FOR 2 STREAMS. • VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: • I 23.27 13.90 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(CFS) = 23.27 TIME(MINUTES) = 17.846 in TOTAL AREA(ACRES) = 12.45 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** E ._ FLOW PROCESS FROM NODE 1036.00 TO NODE 1036.10 IS CODE = 2 > > >> )RATIONAL METHOD INITIAL SUBAREA ANALYSIS <(( << Er ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 II INITIAL SUBAREA FLOW- LENGTH = 1000.00 UPSTREAM ELEVATION = 1343.50 DOWNSTREAM ELEVATION = 1330.55 ' ELEVATION DIFFERENCE = 12.95 ITC = .393* E ( 1000. 00 * *3) / ( 12.95) ] * *. 2 = 14.842 25.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.663 SOIL CLASSIFICATION IS "A" II SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7319 SUBAREA RUNOFF(CFS) = 18.64 TOTAL AREA(ACRES) = 9.56 TOTAL RUNOFF(CFS) = 18.64 ******************** * * * * * * ** * * * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * ** E FLOW PROCESS FROM NODE 1036.10 TO NODE 1037 .10 IS CODE = 5 >) ))COMPUTE TRAPEZOIDAL- CHANNEL FLOW < < < << > > > >)TRAVELTIME THRU SUBAREA((((( I I UPSTREAM NODE ELEVATION = 1330.55 DOWNSTREAM NODE ELEVATION = 1320.20 II CHANNEL LENGTH THRU SUBAREA(FEET) = 590.00 CHANNEL BASE(FEET) = 50.00 "Z" FACTOR = 3.000 MANNINGS FACTOR = .040 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 18.64 ' FLOW VELOCITY(FEET /SEC) = 1.81 FLOW DEPTH(FEET) = .20 TRAVEL TIME (MIN.) = 5.42 TC (MIN.) = 20.27 ,********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** GLOW PROCESS FROM NODE 1037.00 TO NODE 1037.10 IS CODE = 2 ' > >> ))RATIONAL METHOD INITIAL SUBAREA ANALYSIS < <( << e ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K *E(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 T N T T T OI RI IRO RFO FI f W- LENGTH = 1260-00 DOWNSTREAM ELEVATION = 1320.20 I ELEVATION DIFFERENCE = 20.72 TC = .393* C ( 12 60.00 * *3) / ( 20.72) ] * *. 2 = 15.520 25.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.593 SOIL CLASSIFICATION IS "A" ▪ SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7287 SUBAREA RUNOFF(CFS) = 11.34 • }TOTAL AREA(ACRES) = 6.00 TOTAL RUNOFF(CFS) = 11.34 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ' FLOW PROCESS FROM NODE 1037.10 TO NODE 1037.10 IS CODE = 1 >)>) )DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<( • CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 15.52 RAINFALL INTENSITY (INCH. /HOUR) = 2.59 I TOTAL STREAM AREA (ACRES) = 6.00 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 11.34 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1038.00 TO NODE 1037.10 IS CODE = 2 )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS < <( << ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) ▪ TC = K *C(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 880.00 • UPSTREAM ELEVATION = 1332.77 pOWNSTREAM ELEVATION = 1320.20 ELEVATION DIFFERENCE = 12.57 TC = •393*(( 880.00 * *3) / ( 12.57) ] * *. 2 = 13.828 II 25.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.779 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7368 II SUBAREA RUNOFF(CFS) = 6.70 III TOTAL AREA(ACRES) = 3.27 TOTAL RUNOFF(CFS) = 6.70 1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1037.10 TO NODE 1037.10 IS CODE = 1 II )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE < < ((< )))))AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES((((( ▪ CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: II TIME OF CONCENTRATION(MINUTES) = 13.83 RAINFALL INTENSITY (INCH. /HOUR) = 2.78 TOTAL STREAM AREA (ACRES) = 3.27 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 6.70 CONFLUENCE INFORMATION: '' I STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) # 1 21.84 17.85 2.385 ' 2 11.34 15.52 2.593 3 6.70 13.83 2.779 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA(SBC) USED FOR 3 STREAMS. UO Tnh IQ rnmPl i mKIrrn aI WIPP UOI I EGG OPP Oc Pm 1 fUG. COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: I RUNOFF(CFS) = 38.02 TIME(MINUTES) = 17.846 TOTAL AREA(ACRES) = 21.00 1 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** .FLOW PROCESS FROM NODE 1037.10 TO NODE 1040.10 IS CODE = 5 ' > > >> >COMPUTE TRAPEZOIDAL- CHANNEL FLOW( <( << > > > > >TRAVELTIME THRU SUBAREA( <<<( II UPSTREAM NODE ELEVATION = 1320.20 DOWNSTREAM NODE ELEVATION = 1302.80 CHANNEL LENGTH THRU SUBAREA(FEET) = 460.00 CHANNEL BASE (FEET) = 50.00 "Z" FACTOR = 3.000 MANNINGS FACTOR = .040 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 38.02 FLOW VELOCITY(FEET /SEC) = 2.82 FLOW DEPTH(FEET) = .27 TRAVEL TIME(MIN.) = 2.72 TC(MIN.) = 20.57 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1040.10 TO NODE 1040.10 IS CODE = 1 > > >> >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE < <( << > > > > >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES((((( CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: 1 TIME OF CONCENTRATION(MINUTES) = 20.57 RAINFALL INTENSITY (INCH. /HOUR) = 2.19 TOTAL STREAM AREA (ACRES) = 21.00 ' . OTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 38.02 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) 1 38.02 20.57 2.190 • RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO { FORMULA(SBC) USED FOR 1 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES -ARE AS FOLLOWS: 38.02 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(CFS) = 38.02 TIME(MINUTES) = 20.567 I TOTAL AREA(ACRES) = 21.00 1 ' ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1031.00 TO NODE 1031.10 IS CODE = 2 > > > > >RATIONAL METHOD INITIAL SUBAREA ANALYSIS(<tt< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) 1 TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 1000.00 UPSTREAM ELEVATION = 1340.25 ' DOWNSTREAM ELEVATION = 1322.81 ELEVATION DIFFERENCE = 17.44 TC = . 3934q( 1000. 00 * * 3) / ( 17.44) ] * *. 2 = 13.984 25.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.760 II SOIL CLASSIFICATION IS "A" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7361 Q iRORFo Qi wnFF 1 rFR 1 = 1 7.21 --___-- " _ _ _ _ - - --_- L *********************************.***************************************** FLOW PROCESS FROM NODE 1031.10 TO NODE 1033.10 IS CODE = 5 >>>>>COMPUTE TRAPEZOIDAL-CHANNEL FLOW<<(<< >>>>TRAVELTIME THRU SUBAREA<<((< I UPSTREAM NODE ELEVATION = 1322.81 DOWNSTREAM NODE ELEVATION = 1316.77 CHANNEL LENGTH THRU SUBAREA(FEET) = 290.00 I CHANNEL BASE(FEET) = 50.00 "Z" FACTOR = 3.000 MANNINGS FACTOR = .6040 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 17.21 FLOW VELOCITY(FEET/SEC) = 1.67 FLOW DE = .20 I FLOW TRAVEL TIME(MIN.) = 2.89 TC(MIN.) = 16.87 *********e*********************************************************** m� FLOW PROCESS FROM NODE 1033.10 TO NODE 1033. 10 IS CODE = 1 1 >>>> >DESIBNATE INDEPENDENT STREAM FOR CONFLUENCE< M { CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: • TIME OF CONCENTRATION(MINUTES) = 16.87 U� RAINFALL INTENSITY (INCH./HOUR) = 2.47 TOTAL STREAM AREA (ACRES) = 8.47 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 17.21 ' 1 **********************************************************************+p***** FLOW PROCESS FROM NODE 1032.00 TO NODE 1033.10 IS CODE = 2 '>> >> >RATIONAL METHOD INITIAL SUBAREA ANALYSIS< { ( ( < �� U� ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K*C(LENGTH**3)/(ELE\/ATION CHANGE)3**.2 INITIAL SUBAREA FLOW-LENGTH = 1100.00 U11 UPSTREAM ELEVATION = 1337.99 DOWNSTREAM ELEVATION = 1316.77 ▪ ELEVATION DIFFERENCE = U� TC = .393*[( 1100.00**3)/( 21.22)]**.2 = 14.238 m� 25.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.731 SOIL CLASSIFICATION IS "A" I [� S%�LE-FAMILY(1/4 ACRE LOT) RUWOFF COEFFICIENT = . 7348 SUBAREA RUNOFF(CFS) = 11.20 TOTAL AREA(ACRES) = 5.58 TOTAL RUNOFF(CFS) = 11.20 1 *****************************************************************A********** FLOW PROCESS FROM NODE 16933.169 TO NODE 1033.10 IS CODE = 1 >>>}}DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<(({ I CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 14.24 RAINFALL INTENSITY (INCH./HOUR) = 2.73 ▪ TOTAL STREAM AREA (ACRES) = 5.58 N� TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 11.269 E *********************** FLOW PROCESS FROM NODE 1033.00 TO NODE 1033.10 IS CODE = 2 ' ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = N. *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 I INITIAL SUBAREA FLOW- LENGTH = 690.00 UPSTREAM ELEVATION = 1328.07 DOWNSTREAM ELEVATION = 1316.77 ELEVATION DIFFERENCE = 11.30 111 TC = .393*(( 690. 00 * *3) / ( 11.30) 3 * *. 2 = 12.208 25.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.995 SOIL CLASSIFICATION IS "A" I SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7450 SUBAREA RUNOFF(CFS) = 5.29 TOTAL AREA(ACRES) = 2.37 TOTAL RUNOFF(CFS) = 5.29 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1033.10 TO NODE 1033.10 IS CODE = 1 >>) »DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE < < <(< )>>> >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES < <((< II CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MINUTES) = 12.21 RAINFALL INTENSITY (INCH. /HOUR) = 2.99 TOTAL STREAM AREA (ACRES) = 2.37 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 5.29 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) 1 17.21 16.87 2.466 2 11.20 14.24 2.731 3 5.29 12.21 2.995 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA(SBC) USED FOR 3 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 31.68 30.54 27.34 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(CFS) = 31.68 TIME (MINUTES) = 16.872 TOTAL AREA(ACRES) = 16.42 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1033.10 TO NODE 1035.10 IS CODE = 5 ' > > > >> COMPUTE TRAPEZOIDAL- CHANNEL FLOW <( <(< > > > > >TRAVELTIME THRU SUBAREA < < <(< UPSTREAM NODE ELEVATION = 1316.77 DOWNSTREAM NODE ELEVATION = 1315.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 220.00 CHANNEL BASE(FEET) = 50.00 "Z" FACTOR = 3.000 MANNINGS FACTOR = .040 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 31.68 FLOW VELOCITY(FEET /SEC) = 1.73 FLOW DEPTH(FEET) = .36 II `TRAVEL TIME(MIN.) = 2.12 TC(MIN.) = 19.00 11 **************************************************************************** FLOW PROCESS FROM NODE 1035.10 TO NODE 1035.10 IS CODE = 1 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE( << << CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: I TIME OF CONCENTRATION(MINUTES) = 19.00 RAINFALL INTENSITY (INCH. /HOUR) = 2.30 TOTAL STREAM AREA (ACRES) = 16.42 II TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 31.68 ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1034.00 TO NODE 1035.10 IS CODE = 2 )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS((( <( ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 ` INITIAL SUBAREA FLOW- LENGTH = 1230.00 UPSTREAM ELEVATION = 1334.45 DOWNSTREAM ELEVATION = 1315.00 1: ELEVATION DIFFERENCE = 19.45 TC = .393* E ( 1230.00 ** 3) / ( 19.45) ] * *. 2 = 15.492 25.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.596 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7288 SUBAREA RUNOFF(CFS) = 15.48 TOTAL AREA(ACRES) = 8.18 TOTAL RUNOFF(CFS) = 15.48 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1035.10 TO NODE 1035.10 IS CODE = 1 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE((((( II )))))AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES < <( << C ONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 15.49 RAINFALL INTENSITY (INCH. /HOUR) = 2.60 TOTAL STREAM AREA (ACRES) = 8.18 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 15.48 1: CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCi- IWHOUR) 1 31.68 19.00 2.297 2 15.48 15.49 2.596 ' RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA(SBC) USED FOR 2 STREAMS. 11 VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 45.37 41.31 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(CFS) = 45.37 TIME(MINUTES) = 18.996 ' TOTAL AREA(ACRES) = 24.60 II ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1035.10 TO NODE 1035.x0 IS CODE = 3 )))))COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA( <( (< > > >)> USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW)((((( DEPTH OF FLOW IN 30.0 INCH PIPE IS 24.4 INCHES ' PIPEFLOW VELOCITY(FEET /SEC.) = 10.6 UPSTREAM NODE ELEVATION = 1309.00 flflLIKIQTM Nnn= G'I GUnT T nM = ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 I PIPEFLOW THRU SUBAREA(CFS) = 45.37 TRAVEL TIME (MIN.) = .44 TC (MIN.) = 19.44 I ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1035.20 TO NODE 1035.20 IS CODE = 1 • > > >>)DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE((((( CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 19.44 ▪ RAINFALL INTENSITY (INCH. /HOUR) = 2.27 TOTAL STREAM AREA (ACRES) = 24.60 10 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 45.37 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** II FLOW PROCESS FROM NODE 1035.x0 TO NODE 1035.20 IS CODE = 2 > > > > >RATIONAL METHOD INITIAL SUBAREA ANALYSIS < <((< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K *C( LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 615.00 UPSTREAM ELEVATION = 1325.07 DOWNSTREAM ELEVATION = 1311.34 I: ELEVATION DIFFERENCE = 13.73 TC = .393*(( 615.00 * *3) / ( 13.73) ] * *. 2 = 10.958 25.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.195 li SOIL CLASSIFICATION IS "A" 'SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7516 SUBAREA RUNOFF(CFS) = 10.40 in TOTAL AREA(ACRES) = 4.33 TOTAL RUNOFF(CFS) = 10.40 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1035 .20 TO NODE 1035 .20 IS CODE = 1 > > > > >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE((( << > > > > >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES((((( CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 10.96 I RAINFALL INTENSITY (INCH. /HOUR) = 3.20 TOTAL STREAM AREA (ACRES) = 4.33 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 10.40 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY I NUMBER (CFS) (MIN.) (INCH /HOUR) 1 45.37 19.44 2.266 2 10.40 10.96 3.195 I/ RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA(SBC) USED FOR 2 STREAMS. II VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 52.74 35.98 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(CFS) = 52.74 TIME(MINUTES) = 19.436 II TOTAL AREA(ACRES) = 28.93 FLOW PROCESS FROM NODE 1035.20 TO NODE 1040.10 IS CODE = 3 > > >> )COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA ((( (( > > >> >USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW)((((( 1r DEPTH OF FLOW IN 33.0 INCH PIPE IS 24.8 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 11.0 UPSTREAM NODE ELEVATION = 1305.34 I DOWNSTREAM NODE ELEVATION = 1300.50 FLOWLENGTH(FEET) = 385.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 52.74 TRAVEL TIME(MIN.) = .58 TC(MIN.) = 80.0E ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1040.10 TO NODE 1040.10 IS CODE = 1 E L_ > > >> )DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <( < << CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 20.02 RAINFALL INTENSITY (INCH. /HOUR) = 2.23 TOTAL STREAM AREA (ACRES) = 28.93 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 52.74 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1040.00 TO NODE 1040.10 1:S CODE = 2 > > >> )RATIONAL METHOD INITIAL SUBAREA ANALYSIS <(((< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) I; TC = K *C(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 455.00 UPSTREAM ELEVATION = 1320.20 DOWNSTREAM ELEVATION = 1306.50 ELEVATION DIFFERENCE = 13.70 TC = .393*[( 455. 00 * *3) / ( 13.70) ] * *. 2 = 9.150 25.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.560 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7617 SUBAREA RUNOFF(CFS) = 4.61 • TOTAL AREA(ACRES) = 1.70 TOTAL RUNOFF(CFS) = 4.61 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** II FLOW PROCESS FROM NODE 1040.10 TO NODE 1040.10 IS CODE = 1 > >>> )DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE((((( II CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 9.15 RAINFALL INTENSITY (INCH. /HOUR) = 3.56 1 TOTAL STREAM AREA (ACRES) = 1.70 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 4.61 i ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1039.00 TO NODE 1040.10 IS CODE = 2 1 ) > >> )RATIONAL METHOD INITIAL SUBAREA ANALYSIS((((( ARSIIMFn TNTTTAI .r;lIRARFA UNIFORM TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)J * *.2 II INITIAL SUBAREA FLOW- LENGTH = 1030.00 UPSTREAM ELEVATION = 1328.51 DOWNSTREAM ELEVATION = 1306.50 t ELEVATION DIFFERENCE = 22.01 TC = .393* E ( 1030. 00 * *3) / ( 22.01) 7 * *. 2 = 13.587 25.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.808 SOIL CLASSIFICATION IS "A" I SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7380 SUBAREA RUNOFF(CFS) = 9.39 TOTAL AREA(ACRES) = 4.53 TOTAL RUNOFF(CFS) = 9.39 **********************************•********** * * * * * * * * * * * * * * * * *- * * * *• * * * * *- ** FLOW PROCESS FROM NODE 1040.10 TO NODE 1040.10 IS CODE = 1 > > >> )DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE(( <<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MINUTES) = 13.59 RAINFALL INTENSITY (INCH. /HOUR) = 2.81 TOTAL STREAM AREA (ACRES) = 4.53 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 9.39 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1040.10 TO NODE 1040.10 IS CODE = 7 > > >> )USER SPECIFIED HYDROLOGY INFORMATION AT NODE((((( USER - SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 22.57 RAIN INTENSITY(INCH /HOUR) = 22 II TOTAL AREA(ACRES) = 21.00 TOTAL RUNOFF(CFS) = 38.02 ' ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1040.10 TO NODE 1040.10 IS CODE = 1 II > >)))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE((((( > > > > >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES((((( in CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 4 ARE: II TIME OF CONCENTRATION(MINUTES) = 22.57 RAINFALL INTENSITY (INCH. /HOUR) = 2.07 TOTAL STREAM AREA (ACRES) = 21.00 II TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 38.02 CONFLUENCE INFORMATION: I STREAM RUNOFF TIME INTENSITY III NUMBER (CFS) (MIN.) (INCH /HOUR) 1 52.74 20.02 2.226 I 2 4.61 9.15 3.560 3 9.39 13.59 2.808 4 38.02 22.57 2.071 II RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO I LL FORMULA(SBC) USED FOR 4 STREAMS. I VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 96.79 50.46 71.71 96.71 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(CFS) = 96.79 TIME (MINUTES) = 20.018 TOTAL AREA(ACRES) = 56.16 FLOW PROCESS FROM NODE 1040.10 TO NODE 1040.20 1S CODE = 3 )))))COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA < < (<< >) >) )USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) < << << 1 DEPTH OF FLOW IN 42.0 INCH PIPE IS 29.0 INCHES , PIPEFLOW VELOCITY(FEET /SEC.) = 13.7 UPSTREAM NODE ELEVATION = 1300.50 DOWNSTREAM NODE ELEVATION = 1293.21 FLOWLENGTH(FEET) = 506.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1 ry ' PIPEFLOW THRU SUBAREA(CFS) = 96.79 TRAVEL TIME(MIN.) = .62 TC(MIN.) = 20.64 ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1040.20 TO NODE 1040 .20 IS CODE = 1 EL )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE( < < << CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 20.64 RAINFALL INTENSITY (INCH. /HOUR) = 2.19 TOTAL STREAM AREA (ACRES) = 56.16 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 96.79 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** IL FLOW PROCESS FROM NODE 1019.00 TO NODE 1040.20 IS CODE = 7 )))))USER SPECIFIED HYDROLOGY INFORMATION AT NODE< <<(< 1r .ISER- SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 12.84 RAIN INTENSITY(INCH /HOUR) = 2.91 • TOTAL AREA(ACRES) = 4.97 TOTAL RUNOFF(CFS) = 10.07 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1040.20 TO NODE 1040.20 IS CODE = 1 it- )))) )DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE (( < << )))))AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 12.84 II RAINFALL INTENSITY (INCH. /HOUR) = 2.91 TOTAL STREAM AREA (ACRES) = 4.97 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 10.07 1 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) 1 96.79 20.64 2.186 2 10.07 12.84 2.905 II RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO V ORMULA(SBC) USED FOR 2 STREAMS. ' ARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 104.36 70.30 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(CFS) = 104.36 TIME (MINUTES) = 20.635 TOTAL AREA(ACRES) = 61.13 FLOW PROCESS FROM NODE 1040.20 TO NODE 1041.10 IS CODE = 3 N� >>>>>COMPUTE PIPEFLOW TRAVB-TIME THRU SUBAREA<<<<< >>>>}USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< f DEPTH OF FLOW IN 42.0 INCH PIPE IS 33.3 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 12 1 - 8 ^ ^ � "PSTREAM NODE ELEVATION = 1293.21 I DOWNSTREAM NODE ELEVTION = 1292.0Q> FLOWLENGTH(FEET) = 100.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1 I 11 PIPEFLOW THRU SUBAREA(CFS) = 104.36 TRA\/EL TIME(MIN. ) = . 1�� TC(MIN. ) = 20. 77 **************************************************************** w� FLOW PROCESS FROM NODE 1041.10 TO NODE 1041.10 IS CODE = 1 L > > > >>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE( < { < ( � CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: II TIME OF CONCENTRATION(MINUTES) = 20.77 RAINFALL INTENSITY (INCH /HOUR) = �� 18 . . TOTAL STREAM AREA (ACRES) = 61.13 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 104.36 **************************************************************************** FLOW PROCESS FROM NODE 1041.00 TO NODE 1041.760 IS CODE = 2 [1 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS((((( �� M� ) ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K*[(LENGTH**3)/(ELEVATIQN CHANGE)]**.2 I INITIAL SUBAREA FLO�-LENGTH = 1000.00 UPSTREAM ELEVATION = 1323.36 DOWNSTREAM ELEVATION = 1304.70 11 ELEVATION DIFFERENCE = 18.66 @I TC = .393*[( 1000.00**3)/( 18.66)]**.2 = 13.796 25.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.783 SOIL CLASSIFICATION IS " - . �� SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = 73769 �� ~~ SUBAREA RUNOFF(CFS) = 17.62 TOTAL AREA(ACRES) = 8.59 TOTAL RUNOFF(CFS) = 17.62 ******************:********************************************************** II FLOW PROCESS FROM NODE 1041.70 TO NODE 1041.10 IS CODE = 5 >})>>COMPUTE TRAPEZOIDAL-CHANNEL FLOW(<<<< }>>>>TRAVELTIME THRU SUBAREA(<<<< � UPSTREAM NODE ELEVATION = 1304.70 DOWNSTREAM NODE ELEVATION = 1298.50 I CHANNEL LENGTH THRU SUBAREA(FEET) = 190.00 • CHANNEL BASE(FEET) = 50.00 "Z" FACTOR = 3.000 MANNINGS FACTOR = .030 MAXIMUM DEPTH(FEET) = 1.00 I 'CHANNEL FLOW THRU SUBAREA(CFS) = 17.62 FLOW VELOCITY(FEET/SEC) = 2.48 FLOW DEPTH(FEET) = .14 TRAVEL TIME(MIN.) = 1.27 TC(MIN.) = 15.07 �� �******e***************w**m*********************e***********e**************** FLOW PROCESS FROM NODE 1041.10 TO NODE 1041. 10 IS CODE = 8 � ~ >>}>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<(< Ir 25 00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2 2.639 . . SOIL CLASSIFICATION IS "A" SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7308 SUBAREA AREA(ACRES) = 4.83 SUBAREA RUNOFF(CFS) = 9.32 °~ TOTAL AREA(ACRES) = 13.42 TOTAL RUNOFF(CFS) = � 26.93 ~~__~~�__ ^�� �� ��� ����� TC�MIN) = 15.07 ~�_�__�' �� .~�_ � «���� • **************************************************************************** 11_ FLOW PROCESS FROM NODE 1041.10 TO NODE 1041.10 1041.10 IS COQE = 1 }>>)>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<( > � � } �AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES((((( < < < � I VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 15.07 N: RAINFALL RAINFALL INTENSITY (INCH./HOUR) = 2.64 TOTAL STREAM AREA (ACRES) = 13.42 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 26.93 N� CONFLUENCE INFORMATION: m� STREAM RUNOFF TIME INTENSITY { NUMBER (CFS) (MIN.) (INCH/HOUR) �@- 1 104.36 20.77 2.177 ] � 2 26.93 15.07 2.639 II RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA(SBC) USED FOR 2 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: I 126.59 102.68 { COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(CFS) = 126.59 TIME(MINUTES) = 20.766 II TOTAL AREA(ACRES) = 74.55 lip*************************************************************************** N� FLOW PROCESS FROM NODE 16041 10 TO NODE 10941 4�9 IS CODE = 3 �� . . E >>>)>COMPUTE PIPEFLOW TRVELTIMETHRU SUBARE((( >)>))USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<{< DEPTH OF FLOW IN 48.0 INCH PIPE IS 35.7 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 12.6 I ^ ^ UPSTREAM NODE ELEVATION = 1292.00 DOWNSTREAM NODE ELEVATION = 1289.60 FLOWLENGTH(FEET) = 240.00 MANNINGS N = .013 I ESTIMATED PIPE DIAMETER(INCH) = 48.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 126.59 TRAVEL TIME(MIN.) = .32 TC(MIN.) = 21.08 ************* ******** **** ************************* ** * ***************** ****** FLOW PROCESS FROM NODE 1041.40 10 NODE 1041.40 IS CODE = 1 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUEMCE<M( II CONFLUENCE VALUES USED FOR I NDE �� DE STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 21.08 RAINFALL INTENSITY (INCH./HOUR) = 2.16 1 II TOTAL STREAM AREA (ACRES) = 74.55 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 1d6.59 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** II FLOW PROCESS FROM NODE 1041..0 TO NODE 1041.0 IS CODE = 2 >> >> )RATIONAL METHOD INITIAL SUBAREA ANALYSIS < < < << 1r ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: COMMERCIAL tC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 I INITIAL SUBAREA FLOW- LENGTH = 150.00 UPSTREAM ELEVATION = 1302.30 DOWNSTREAM ELEVATION = 1296.50 II ELEVATION DIFFERENCE = 5.80 ▪ TC = •3�3*[( 150. 00 * *3) / ( 5.80) ] * *. 2 = 4.311 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. 25.00 YEAR RAINFALL INTENSITY (INCH /HOUR) = 5.116 102 SOIL CLASSIFICATION IS "A" G•z• COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8377 SUBAREA RUNOFF(CFS) = 2.96 TOTAL AREA(ACRES) = .69 TOTAL RUNOFF(CFS) = 2.96 * * * * * * * * * * * * * ** r *************************************************************************** FLOW PROCESS FROM NODE 1041.30 TO NODE 1041.40 IS CODE = 3 > > >> >COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA < < <<< > > >> >USING COMPUTER- ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « <<< ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 II DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.4 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 6.7 UPSTREAM NODE ELEVATION = 1291.50 DOWNSTREAM NODE ELEVATION = 1289.60 I ,F'LOWLENGTH (FEET) = 85.00 MANN I NGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 2.96 I TRAVEL TIME(MIN.) = .21 TC(MIN.) = 5.21 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ▪ FLOW PROCESS FROM NODE 1041.40 TO NODE 1041.40 IS CODE = 1 • > > >> )DESIGNATE INDEPENDENT STREAK FOR CONFLUENCE < < < << > > > > >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES <(<(< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: II TIME OF CONCENTRATION(MINUTES) = 5.21 RAINFALL INTENSITY (INCH. /HOUR) = 4.99 TOTAL STREAM AREA (ACRES) = .69 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 2.96 CONFLUENCE INFORMATION: I STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) 1 126.59 21.08 2.158 I 2 2.96 5.21 4.991 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO ▪ FORMULA(SBC) USED FOR 2 STREAMS. • VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 127.86 34.25 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: I RUNOFF(CFS) = 127.86 TIME(MINUTES) = 21.083 TOTAL AREA(ACRES) = 75.24 1 1 RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON SAN BERNARDINO COUNTY (SBC) 1983 HYDROLOGY MANUAL <<(<(<<<<<(<<((<<<<((((<<<(<<<<<(<(<(<>))>>>) > > > >) >)) > >) > > > >) > > > > > > > > > > > >>)) (C) Copyright 198E Advanced Engineering Software [PIES] Especially prepared for: 1: HALL & FOREMAN, INC. <<((<<<<(<<<(<(<<<<<<<<<<(<<<((<<<<((<>)>))>) > > > > > > >) > > > >) > >) > >) > > >) > > > >) >)> * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * N.BASELINE HYDROLOGY - EAST OF ETIWANDA CHANNEL * Q 25 YR, VOL 2 SUPPLIMENTARY * VENKI.N, DISK "4 ", FILE "G ", 8/25/87 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: USER SPECIFIED STORM EVENT(YEAR) = 25.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .95 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = .980 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.470 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 25.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.1520 SLOPE OF INTENSITY DURATION CURVE = .6000 SBC HYDROLOGY MANUAL "C "- VALUES USED 1: <<((<<<(<<<<<<<<(<<<<<<<<<<<<<<<<(<<<()>>>>>> > > >> > > > > > > > > > > > > > > > > > > > > > > > > > >> Advanced Engineering Software CAES7 SERIAL No.`A0580A REV. 3.1 RELEASE DATE: 5/01/85 1 <<((<((<<<<((<(<<<<(<(<<<<(<(<<<(<<((())))>)> >))) >) >)))))) > >) > >)) > > > > >)) > >)> ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1026.10 TO NODE 1018.10 iS CODE = 2 1 >))> >RATIONAL METHOD INITIAL SUBAREA ANALYSIS <(( <( ASSUMED INITIAL SUBAREA UNIFORM 1 DEVELOPMENT IS: COMMERCIAL TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.` INITIAL SUBAREA FLOW- LENGTH = 1000.00 UPSTREAM ELEVATION = 1318.00 DOWNSTREAM ELEVATION = 1311.00 ELEVATION DIFFERENCE = 7.00 25.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.689 SOIL CLASSIFICATION IS "A" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8282 SUBAREA RUNOFF(CFS) = 2.20 TOTAL AREA(ACRES) = .92 TOTAL RUNOFF(CFS) = 2.20 \ **************************************************************************** 1 . / FLOW PROCESS FROM NODE 1018.10 TO NODE 1045.10 lS CODE = 6 )))))COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< 1 UPSTREAM ELEVATION = 1311.00 DOWNSTREAM ELEVATION = 1297 70 �� . . STREET LENGTH(FEET) = 1080.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 20.00 STREET CROSSFALL(DECIMAL) = .0270 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 3.19 STREET FLOWDEPTH(FEET) = .37 HALFSTREET FLOODWIDTH(FEET) = 8.47 N� AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.79 PRODUCT OF DEPTH&VELOCITY = 1.04 �� STREETFLOW TRAVELTIME(MIN) = 6.44 TC(MIN) = 19.40 �� -- 25.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.268 SOIL CLASSIFICATION IS "A" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = SUBAREA AREA(ACRES) = 1.07 SUBAREA RUNOFF(CFS) = 2.00 SUMMED AREA(ACRES) = 1.99 TOTAL RUNOFF(CFS) = 4.20 END OF SUBAREA STREETFLOW HYDRAULICS: N� DEPTH(FEET) = .40 HALFSTREET FLOODWIDTH(FEET) = 9.59 FLOW VELOCITY(FEET/SEC.) = 2.96 DEPTH*VELOCITY = 1.19 \ ' *m************************************************************************** FLOW PROCESS FROM NODE 1045.10 TO NODE 1045.10 IS CODE = 1 N� >> > > }DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE < < < < < CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: N� TIME OF CONCENTRATION(MINUTES) = 19.40 RAINFALL INTENSITY (INCH./HOUR) = 2.27 TOTAL STREAM AREA (ACRES) = 1.99 ' TOTAL STREAM RUNOFF(CFS) AT = 4.20 **************************************************************************** N� FLOW PROCESS FROM NODE 1044.00 TO NODE 1044.10 IS CODE = 2 >}MRATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: COMMERCIAL TC = K*[(LENGTH**3)/(B_EVATION CHANGE)]**.2 N� INITIAL SUBAREA FLOW-LENGTH = 1000.00 UPSTREAM ELEVATION = 1309.68 DOWNSTREAM ELEVATION = 1303.68 N� ELEVATION DIFFERENCE = 6.00 TC = .303*(( 1000.00**3)/( 6.00) ]**.2 = 13.365 ' 25.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.836 l SOIL CLSSIFICATION IS "" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8278 SUBAREA RUNOFF(CFS) = 3.24 TOTAL AREA(ACRES) = 1.38 TOTAL RUNOFF(CFS) = 3.24 FLOW PROCESS FROM NODE 1044.10 TO NODE 1045.10 IS CODE = 6 N� )>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< UPSTREAM ELEVATION = 1303.68 DOWNSTREAM ELEVATION = 1297.70 ] STREET LENGTH(FEET) = 1400.00 CURB HEIGTH(INCHES) = 8. n� STREET HALFWIDTH(FEET) = 38.00 STREET CROSSFALL(DECIMAL) = .0270 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 4.77 N� STREET FLOWDEPTH(FEET) = .48 HALFSTREET FLOODWIDTH(FEET) = 12.41 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.12 8� PRODUCT OF DEPTHWELOCITY = 1.01 STREETFLOW TRAVELTIME(MIN) = 11.03 TC(MIN) = 24.39 25.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.977 SOIL CLASSIFICATION IS "A" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8182 ' SUBAREA AREA(ACRES) = 1.90 SUBAREA RUNOFF(CFS) = 3.07 | N� SUMMED AREA(ACRES) = 3.28 TOTAL RUNOFF(CFS) = 6.31 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .52 HALFSTREET FLOODWIDTH(FEET) = 14.09 N� FLOW VELOCITY(FEET/SEC. ) = 2.21 DEPTH*VELOCITY = 1.16 **************************************************************************** FLOW PROCESS FROM NODE 1045. 10 TO NODE 1045.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR COWFLUBQCE(M( )))))AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES(<((( CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: 1 N� \ TIME OF CONCENTRATION(MINUTES) = ��4. 3�� � RAINFALL INTENSITY (INCH./HOUR) = 1.98 TOTAL STREAM AREA (ACRES) = 3.28 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 6.31 1 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY N� NUMBER (CFS) TIME ) (INCH/HOUR) 1 4.20 19.40 2.268 ' 2 6"31 24.39 1.977 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO B]RMULA(SBC) USED FOR 2 STREAMS. N� VARIOUS CONFLUENCED RUNOFF VALUES ARE' AS FOLLOWS: 9.22 9.97 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(CFS) = 9.97 TIME(MINUTES) = 24.395 �� 44 vx�~ ���� . TOTAL AREA(ACRES) =---- 5.27 � - **************************************************************************** FLOW PROCESS FROM NODE 1046.00 TO NODE 1044.10 IS CODE = 2 N� ) > > > > RATIOMAL METHOD INITIAL SUBAREA ANALYSIS((((( } ' ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: COMMERCIAL o� TC = K*[(LENGTH**3)/(ELEVATION CHANGE) 3**.2 INITIAL SUBAREA FLOW-LENGTH = 1000.00 UPSTREAM ELEVATION = 1309.68 DOWNSTREAM ELEVATION = 1303.68 ELEVATION DIFFERENCE = 6.00 25.00 YEAR RAINFALL INTENSITY (INCH /HOUN) = 2.836 I SOIL CLASSIFICATION IS "A" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8278 SUBAREA RUNOFF(CFS) = 3.24 TOTAL AREA(ACRES) = 1.38 TOTAL RUNOFF(CFS) = 3.24 *** * * ** * * * * * * * * * * * * * * * * * * *** * * **** ********** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1044.10 TO NODE 1047.10 IS CODE = 6 )))))COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA << < << UPSTREAM ELEVATION = 1303.68 DOWNSTREAM ELEVATION = 1297.70 STREET LENGTH(FEET) = 1400.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 38.00 STREET CROSSFALL(DECIMAL) = .0270 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 4.77 STREET FLOWDEPTH(FEET) = .48 HALFSTREET FLOODWIDTH(FEET) = 12.41 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.12 PRODUCT OF DEPTH &VELOCITY = 1.01 • STREETFLOW TRAVELTIME(MIN) = 11.03 TC(MIN) = 24.39 25.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.977 SOIL CLASSIFICATION IS "A" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8182 SUBAREA AREA(ACRES) = 1.90 SUBAREA RUNOFF(CFS) = 3.07 SUMMED AREA(ACRES) = 3.28 TOTAL RUNOFF(CFS) = 6.31 - # END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .52 HALFSTREET FLOODWIDTH(FEET) = 14.09 FLOW VELOCITY(FEET /SEC.) = 2.21 DEPTH *VELOCITY = 1.16 END OF RATIONAL METHOD ANALYSIS E E II 1 E 1 • 1 1 - TT VOL - 2_ 1 ioo YR 1 1 1 1 1 1 1 RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON SAN BERNARDINO COUNTY (SBC) 1983 HYDROLOGY MANUAL 11 <(<<(<<<<<<(<(<<<((<(<<(<<<<<<(<<(<<<>>>>>>> > > > > > > > > > > > > >) > > > > > > > > > > > > > > > >> (C) Copyright 1982 Advanced Engineering Software CAES] Especially prepared for: HALL & FOREMAN, INC. 1: (((((((((<(((((((((((((((((((((((<(((0))))))))))))))))))))))))))))))))))))) EL *********DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * N.BASELINE - EAST OF ETIWANDA CHANNEL UP TO C.L OF VICTORIA- HYDROLOGY * 111* Q 100 YR, VOL 2 * VENKI.N, JN 3810 -20, DISK "4 ", FILE "D ", 8/25/87 * ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** IF USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .95 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = .980 100-YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.470 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.4700 SLOPE OF INTENSITY DURATION CURVE = .6000 SBC HYDROLOGY MANUAL "C "- VALUES USED 1:(((((<((((((((((((((((<((((((((((((<(())))))))))))))))>>>>>>>>>>>>>>>>>>>))) Advanced Engineering Software EAES] SERIAL No. A0580A REV. 3.1 RELEASE DATE: 5/01/85 11 ((((((((((((((((((((««((((((((((((«»»»)»»»»»»»»»»))»»)»» > >> > > >>>>> ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1027.00 TO NODE 1027.10 IS CODE = 2 1 >)>>> RATIONAL METHOD INITIAL SUBAREA ANALYSIS <(( << ASSUMED INITIAL SUBAREA UNIFORM II DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) [(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 1000.00 I UPSTREAM ELEVATION = 1335.84 DOWNSTREAM ELEVATION = 1318.96 ELEVATION DIFFERENCE = 16.88 TC = .393* E ( 1000. 00 * *3) / ( 16.88) ] * *. 2 = 14.076 I 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.509 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7604 TOTAL AREA(ACRES) = 8.64 TOTAL RUNOFF(CFS) = 23.05 1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1027.10 TO NODE 1028.10 IS CODE = 5 ) >> >COMPUTE TRAPEZOIDAL- CHANNEL FLOW <(<(< )>)))TRAVELTIME THRU SUBAREA « ( << IF UPSTREAM NODE ELEVATION = 1318.96 DOWNSTREAM NODE ELEVATION = 1311.17 ▪ CHANNEL LENGTH THRU SUBAREA(FEET) = 395.00 II CHANNEL BASE(FEET) = 50.00 "Z" FACTOR = 3.000 MANNINGS FACTOR = .040 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 23.05 FLOW VELOCITY(FEET /SEC) = 1.94 FLOW DEPTH(FEET) = .23 TRAVEL TIME (MIN.) = 3.39 TC (MIN.) = 17.47 IL ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1028.10 TO NODE 1028.10 IS CODE = 1 1r >)> )DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE(( < << CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: II TIME OF CONCENTRATION(MINUTES) = 17.47 RAINFALL INTENSITY (INCH. /HOUR) = 3.08 TOTAL STREAM AREA (ACRES) = 8.64 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 23.05 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** TLOW PROCESS FROM NODE 1028.00 TO NODE 1028.10 IS CODE = 2 ) ))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS <( <(< IF ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K *C(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 990.00 UPSTREAM ELEVATION = 1330.96 DOWNSTREAM ELEVATION = 1311.17- - ELEVATION DIFFERENCE = 19.79 TC = .393* E ( 990. 00 * *3) / ( 19.79) ] * *. 2 = 13.553 100.00 YEAR RAINFALL INTENSITY (INCH /HOUR) = 3.589 II SOIL CLASSIFICATION IS "A" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7624 SUBAREA RUNOFF(CFS) = 12.64 TOTAL AREA(ACRES) = 4.62 TOTAL RUNOFF(CFS) = 12.64 ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1028.10 TO NODE 1028.10 IS CODE = 1 > > >> )DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE((((( 1r CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 13.55 RAINFALL INTENSITY (INCH. /HOUR) = 3.59 • ▪ TOTAL STREAM AREA (ACRES) = 4.62 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 12.64 L ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1029.00 TO NODE 1028.10 IS CODE = 2 )) >) >RATIONAL METHOD INITIAL SUBAREA ANALYSIS((( << ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K *C(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 11 INITIAL SUBAREA FLOW- LENGTH = 920.00 UPSTREAM ELEVATION = 1325.44 DOWNSTREAM ELEVATION = 1311.17 II ELEVATION DIFFERENCE = 14.27 TC = •393*[( 920. 00 * *3) / ( 14.27) ] * *. 2 = 13.846 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.543 I SOIL CLASSIFICATION IS "A" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7612 SUBAREA RUNOFF(CFS) = 10.63 TOTAL AREA(ACRES) = 3.94 TOTAL RUNOFF(CFS) = 10.63 ********************************************* * ** * * * * * * * * * * * * * * * * * * * * * * * * * * ** L FLOW PROCESS FROM NODE 1028.10 TO NODE 1028.10 IS CODE = 1 » >> )DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE(<(<( )> »)AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES((((( ___ CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MINUTES) = 13.85 RAINFALL INTENSITY (INCH. /HOUR) = 3.54 TOTAL STREAM AREA (ACRES) = 3.94 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 10.63 I CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) 1 23.05 17.47 3.082 2 12.64 13.55 3.589 3 10.63 13.85 3.543 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA(SBC) USED FOR 3 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 43.15 40.92 41.38 COMPUTED CONFLUENCE ESTIMATES ARE -AS FOLLOWS: - RUNOFF(CFS) = 43.15 TIME(MINUTES) = 17.470 TOTAL AREA(ACRES) = 17.20 1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1028.10 TO NODE 1031.10 IS CODE = 5 ";. )))))COMPUTE TRAPEZOIDAL- CHANNEL FLOW< <( <( )>>> >TRAVELTIME THRU SUBAREA « ((< 1 UPSTREAM NODE ELEVATION = 1311.17 = DOWNSTREAM NODE ELEVATION 1301.20 CHANNEL LENGTH THRU SUBAREA(FEET) = 665.00 CHANNEL BASE(FEET) = 50.00 "Z" FACTOR = 3.000 MANNINGS FACTOR = .040 MAXIMUM DEPTH(FEET) = 1.00 pHANNEL FLOW THRU SUBAREA(CFS) = 43.15 I , FLOW VELOCITY(FEET /SEC) = 2.35 FLOW DEPTH(FEET) = .36 TRAVEL TIME (MIN.) = 4.72 TC (MIN.) = 22.19 I ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1030.00 TO NODE 1031.10 IS CODE = 8 I 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.670 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7322 SUBAREA AREA(ACRES) = 13.10 SUBAREA RUNOFF(CFS) = 25.61 TOTAL AREA(ACRES) = 30.30 TOTAL RUNOFF(CFS) = 68.76 TC(MIN) = 22.19 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1031.00 TO NODE 1031.10 IS CODE = 8 ,1r )) )))ADDITION OF SUBAREA TO MAINLINE PEAK FLOW((((( 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.670 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7322 SUBAREA AREA(ACRES) = 7.10 SUBAREA RUNOFF(CFS) = 13.88 TOTAL AREA(ACRES) = 37.40 TOTAL RUNOFF(CFS) = 82.65 TC (MIN) = 22.19 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1031.10 TO NODE 1031.10 IS CODE = 1 I: ))) ))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE((((( )))))AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES((((( CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: gi TIME OF CONCENTRATION(MINUTES) = 22.19 RAINFALL INTENSITY (INCH. /HOUR) = 2.67 TOTAL STREAM AREA (ACRES) = 37.40 )TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 82.65 / / CONFLUENCE INFORMATION: I STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) 1 82.65 22.19 2.670 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA(SBC) USED FOR 1 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 82.65 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: II RUNOFF(CFS) = 82.65 TIME(MINUTES) = 22.185 TOTAL AREA(ACRES) = 37.40 `********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1031.00 TO NODE 1031.10 IS CODE = 2 II )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS((((( ASSUMED INITIAL SUBAREA UNIFORM II DEVELOPMENT IS: SINGLE FAMILY .(1/4 ACRE) TC = K *E(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 I NITIAL SUBAREA FLOW- LENGTH = 1300.00 I PSTREAM ELEVATION = 1319.37 DOWNSTREAM ELEVATION = 1301.20 ELEVATION DIFFERENCE = 18.17 TC = .393* E ( 1300.00 * *3) / ( 18.17) ] * *. 2 = 16.235 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.221 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7523 TOTAL AREA(ACRES) = 7.10 TOTAL RUNOFF(CFS) = 17.20 1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** it FLOW PROCESS FROM NODE 1031.10 TO NODE 1031.10 IS CODE = 1 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « (< , ) >)>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES < << << IF CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MINUTES) = 16.23 RAINFALL INTENSITY (INCH. /HOUR) = 3.22 TOTAL STREAM AREA (ACRES) = 7.10 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 17.20 I: CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) 1 82.65 22.19 2.670 2 0.00 0. 0.000 I: 3 17.20 16.23 3.221 (FATAL ERROR: INVALID CONFLUENCE VALUES: SEE USERS MANUAL] D *************************************************************************** FLOW PROCESS FROM NODE 1022.00 T`0 NODE 1022.10 IS CODE = 2 )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS((((( ASSUMED INITIAL SUBAREA UNIFORM li DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) 1C = K *((LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 790.00 UPSTREAM ELEVATION = 1315.50 DOWNSTREAM ELEVATION = 1308.50 ELEVATION DIFFERENCE = 7.00 TC = . 393* C ( 790.00 * *3) / ( 7.00) ] * *. 2 = 14.572 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.436 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7585 SUBAREA RUNOFF(CFS) = 10.17 - 1: TOTAL AREA(ACRES) = 3.90 TOTAL RUNOFF(CFS) = 10.17 I ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1022.10 TO NODE 1022.10 IS CODE = 1 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE((( <( CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 14.57 1 RAINFALL INTENSITY (INCH. /HOUR) = 3.44 TOTAL STREAM AREA (ACRES) = 3.90 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 10.17 1 ie.****************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** I FLOW PROCESS FROM NODE 1023.00 TO NODE 1022.10 IS CODE = 2 ) >>> )RATIONAL METHOD INITIAL SUBAREA ANALYSIS(( <(< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1 /4 ACRE) TC = K *((LENGTH * *3) /(ELEVATION CHANGE)] * *.2 UPSTREAM ELEVATION = 1314.50 111 I DOWNSTREAM ELEVATION = 1308.50 ELEVATION DIFFERENCE = 6.00 TC = •393*[( 810.00 * *3) / ( 6.00) ] * *. 2 = 15.255 • 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.343 II SOIL CLASSIFICATION IS "A" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7559 SUBAREA RUNOFF(CFS) = 7.28 TOTAL AREA(ACRES) = 2.88 TOTAL RUNOFF(CFS) = 7.28 ******************************************** * * * * * * * * * * * ** * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1022.10 TO NODE 1022.10 IS CODE = 1 > > > > >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE < <((< E > > > > >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES((((( CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: 1: TIME OF CONCENTRATION(MINUTES) = 15.25 RAINFALL INTENSITY (INCH. /HOUR) = 3.34 TOTAL STREAM AREA (ACRES) = 2.88 r TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 7.28 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) 1 10.17 14.57 3.436 2 7.28 15.25 3.343 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA(SBC) USED FOR 2 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 17.12 17.17 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: II RUNOFF(CFS) = 17.17 TIME(MINUTES) = 15.255 TOTAL AREA(ACRES) = 6.78 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1022.10 TO NODE 1024.10 IS CODE = 6 > > > >> COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA((((( UPSTREAM ELEVATION = 1308.50 DOWNSTREAM ELEVATION = 1304.00 II STREET LENGTH(FEET) = 460.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 18.00 STREET CROSSFALL(DECIMAL) = .0270 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 22.13 * * *STREETFLOW SPLITS OVER STREET - CROWN * ** FULL DEPTH(FEET) = .63 FLOODWIDTH(FEET) = 18.00 FULL HALF - STREET VELOCITY(FEET /SEC.) = 4.09 SPLIT DEPTH(FEET) = .39 SPLIT FLDODWIDTH(FEET) = 9.25 SPLIT VELOCITY(FEET /SEC.) = 2.63 STREET FLOWDEPTH(FEET) = .63 HALFSTREET FLOODWIDTH(FEET) = 18.00 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.09 PRODUCT OF DEPTH &VELOCITY = 2.58 STREETFLOW TRAVELTIME(MIN) = 1.87 TC(MIN) = 17.13 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.119 SOIL CLASSIFICATION IS "A" II SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7492 SUBAREA AREA(ACRES) = 4.25 SUBAREA RUNOFF(CFS) = 9.93 C, g ' // SUMMED AREA(ACRES) = 11.03 TOTAL RUNOFF(CFS) = 27.10 DEPTH(FEET) = .63 HALFSTREET FLOODWIDTH(FEET) = 18.00 11 FLOW VELOCITY(FEET /SEC.) = 4.09 DEPTH *VELOCITY = r ********.****************************************************************** FLOW PROCESS FROM NODE 1024.10 TO NODE 1024.20 IS CODE = 3 p>>>> COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA < <( << I > > > > >USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW)(( <(< DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.2 INCHES II PIPEFLOW VELOCITY(FEET /SEC.) = 10.2 II UPSTREAM NODE ELEVATION = 1299.00 DOWNSTREAM NODE ELEVATION = 1296.00 FLOWLENGTH(FEET) = 200.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 27.10 TRAVEL TIME (MIN.) = .33 TC (MIN.) = 17.46 1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1024.20 TO NODE 1024.20 IS CODE = 1 >>> > >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE(( < << I: CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 17.46 RAINFALL INTENSITY (INCH. /HOUR) = 3.08 TOTAL STREAM AREA (ACRES) = 11.03 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 27.10 II )************************************************************************** FLOW PROCESS FROM NODE 1025.00 TO NODE 1024.20 IS CODE = 2 > > > > >RATIONAL METHOD INITIAL SUBAREA ANALYSIS((((( ASSUMED INITIAL SUBAREA UNIFORM I: DEVELOPMENT IS: COMMERCIAL TC = K *[(LENGTH * *3)/(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 810.00 UPSTREAM ELEVATION = 1318.00 - DOWNSTREAM ELEVATION = 1301.40 ELEVATION DIFFERENCE = 16.60 TC = .303* C ( 810.00 * *3) / ( 16.60) ] * *. 2 = 9.609 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.412 SOIL CLASSIFICATION IS "A" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8357 SUBAREA RUNOFF(CFS) = 2.58 TOTAL AREA (ACRES) = .70 TOTAL RUNOFF(CFS) = 2.58 C r ' 12 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1024.20 TO NODE 1024.20 IS CODE = 1 > > >> >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE((((( > > > > >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES((((( CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 9.61 RAINFALL INTENSITY (INCH. /HOUR) = 4.41 TOTAL STREAM AREA (ACRES) = .70 II TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 2.58 f:f1NFI I IFNCF T NFORMAT T ON s NUMBER (CFS) (MIN.) (INCH /HOUR) 1 1 27.10 17.46 3.084 2 2.58 9.61 4.412 II RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA(SBC) USED FOR 2 STREAMS. PARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: II 28.90 17.50 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(CFS) = 28.90 TIME(MINUTES) = 17.456 TOTAL AREA(ACRES) = 11.73 ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1024.20 TO NODE 1024.30 IS CODE = 3 > > > > >COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA ((((( IL > > >> >USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) <(( << DEPTH OF FLOW IN 27.0 INCH PIPE IS 21.2 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 8.6 II UPSTREAM NODE ELEVATION = 1296.00 DOWNSTREAM NODE ELEVATION = 1295.00 FLOWLENGTH(FEET) = 100.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 28.90 TRAVEL TIME (MIN.) = .19 TC (MIN.) = 17.65 *******************************************-* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1024.30 TO NODE 1024.30 IS CODE = 1 J > >> ))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE < < <(< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 17.65 RAINFALL INTENSITY (INCH. /HOUR) = 3.06 r TOTAL STREAM AREA (ACRES) = 11.73 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 28.90 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1026.00 TO NODE 1024.30 IS CODE = 2 ) >) »RATIONAL METHOD INITIAL SUBAREA ANALYSIS((((( ASSUMED INITIAL SUBAREA UNIFORM I DEVELOPMENT IS: COMMERCIAL C(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 825.00 I UPSTREAM ELEVATION = 1318.00 DOWNSTREAM ELEVATION = 1301.00 ELEVATION DIFFERENCE = 17.00 TC = . 303* C ( 825.00 * *3) / ( 17.00) ] * *. 2 = 9.669 ' 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.395 SOIL CLASSIFICATION IS "A" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8357 3 II CUBA REA RUNOFF(CFS) = 2.64 G . S TOTAL AREA(ACRES) = . 72 TOTAL RUNOFF(CFS) = 2.64 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1024.30 TO NODE 1024.30 IS CODE = 1 ) > > > >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES <<<<< 1 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 9.67 RAINFALL INTENSITY (INCH. /HOUR) = 4.40 II TOTAL STREAM AREA (ACRES) = .72 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 2.64 I CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) IF 1 28.90 17.65 3.063 2 2.64 9.67 4.395 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA(SBC) USED FOR 2 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: I] 30.75 18.48 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(CFS) = 30.75 TIME (MINUTES) = 17.648 TOTAL AREA (ACRES) = 12.45 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** IL FLOW PROCESS FROM NODE 1036.00 TO NODE 1036.10 IS CODE = 2 > > >> )RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<((< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K *C(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 ,INITIAL SUBAREA FLOW- LENGTH = 1000.00 UPSTREAM ELEVATION = 1343.50 DOWNSTREAM ELEVATION = 1330.55 ELEVATION DIFFERENCE = 12.95 TC = .393* C ( 1000. 00 * *3) / ( 12.95) ] * *. 2 = 14.842 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.399 II SOIL CLASSIFICATION IS "A" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7575 SUBAREA RUNOFF(CFS) = 24.61 TOTAL AREA(ACRES) = 9.56 TOTAL RUNOFF(CFS) = 24.61 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1036.10 TO NUDE 1037.10 IS CODE = 5 > > >> )COMPUTE TRAPEZOIDAL- CHANNEL FLOW « <(< ) > > > >TRAVELTIME THRU SUBAREA « <(< UPSTREAM NODE ELEVATION = 1330.55 DOWNSTREAM NODE ELEVATION = 1320.20 I CHANNEL LENGTH THRU SUBAREA(FEET) = 590.00 CHANNEL BASE(FEET) = 50.00 "Z" FACTOR = 3.000 MANNINGS FACTOR = .040 MAXIMUM DEPTH(FEET) = 1.00 I CHANNEL FLOW THRU SUBAREA(CFS) = 24.61 FLOW VELOCITY(FEET /SEC) = 1.82 FLOW DEPTH(FEET) = .27 TRAVEL TIME (MIN.) = 5.39 TC (MIN.) = 20.23 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1037.00 TO NODE 1037.10 IS CODE = 2 ' "; I > > >> )RATIONAL METHOD INITIAL SUBAREA ANALYSIS « ( << DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) I TC = K *C(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 1260.00 UPSTREAM ELEVATION = 1340.92 DOWNSTREAM ELEVATION = 1320.20 I ELEVATION DIFFERENCE = 20.72 TC = .393*(( 1260. 00 * *3) / ( 20.72) ] * *. 2 = 15.520 7 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.309 I SOIL CLASSIFICATION IS "A" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7550 SUBAREA RUNOFF(CFS) = 14.99 TOTAL AREA(ACRES) = 6.00 TOTAL RUNOFF(CFS) = 14.99 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1037.10 TO NODE 1037.10 IS CODE = 1 > > >> )DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE((((( CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 15.52 I RAINFALL INTENSITY (INCH. /HOUR) = 3.31 TOTAL STREAM AREA (ACRES) = 6.00 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 14.99 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1038.00 TO NODE 1037.10 IS CODE = 2 > >>> )RATIONAL METHOD INITIAL SUBAREA ANALYSIS <(<(( ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K *C(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 880.00 UPSTREAM ELEVATION = 1332.77 DOWNSTREAM ELEVATION = 1320.20 ELEVATION DIFFERENCE = 12.57 TC = . 393* C ( 880.00 * *3) / ( 12.57) ] * *. 2 = 13.828 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.546 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = II SUBAREA RUNOFF(CFS) = 8.83 TOTAL AREA(ACRES) = 3.27 TOTAL RUNOFF(CFS) = 8.83 '********************************************* ** * * * * * * * * * * * * * * * * * * * * * * ** * * * ** FLOW PROCESS FROM NODE 1037.10 TO NODE 1037.10 IS CODE = 1 II > > >> >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE((((( > > > >)AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES((((( I CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MINUTES) = 13.83 RAINFALL INTENSITY (INCH. /HOUR) = 3.55 ' TOTAL STREAM AREA (ACRES) = 3.27 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 8.83 CONFLUENCE INFORMATION: 1 STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) II 1 28.90 17.65 3.063 2 14.99 15.52 3.309 3 8.83 13.83 3.546 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO ▪ FORMULA(SBC) USED FOR 3 STREAMS. ▪ VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 50.40 48.64 44.83 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(CFS) = 50.40 TIME(MINUTES) = 17.648 TOTAL AREA(ACRES) = 21.00 r ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1037.10 TO NODE 1040.10 IS COKE = 5 r > > >> )COMPUTE TRAPEZOIDAL- CHANNEL FLOW <(< << > > > > >TRAVELTIME THRU SUBAREA(( <(< 1r UPSTREAM NODE ELEVATION = 1320.20 DOWNSTREAM NODE ELEVATION = 1302.80 CHANNEL LENGTH THRU SUBAREA(FEET) = 460.00 I CHANNEL BASE(FEET) = 50.00 "Z" FACTOR = 3.000 ▪ MANNINGS FACTOR = .040 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 50.40 ▪ FLOW VELOCITY(FEET /SEC) = 3.34 FLOW DEPTH(FEET) = .30 ,, TRAVEL TIME (MIN.) = 2.30 TC (MIN.) = 19.95 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1040.10 TO NODE 1040.10 IS CODE = 1 >) »DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <( <(< ▪ > > > >)AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES(<<<< al CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: II TIME OF CONCENTRATION(MINUTES) = 19.95 ' RAINFALL INTENSITY (INCH. /HOUR) = 2.85 TOTAL STREAM AREA (ACRES) = 21.00 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 50.40 CONFLUENCE INFORMATION: ✓ STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) 1 50.40 19.95 2.846 1: RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA(SBC) USED FOR 1 STREAMS. I VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 50.40 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: ' RUNOFF(CFS) = 50.40 TIME(MINUTES) = 19.946 TOTAL AREA(ACRES) = 21.00 11 *************************************************************************** FLOW PROCESS FROM NODE 1031.00 TO NODE 1031.10 IS CODE = 2 > > >> )RATIONAL METHOD INITIAL SUBAREA ANALYSIS(<(<( ASSUMED INITIAL SUBAREA UNIFORM II DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K *C(LENGTH * * 3) /(ELEVATION CHANGE)] * *. INITIAL SUBAREA FLOW- LENGTH = 1000.00 UPSTREAM ELEVATION = 1340.25 I DOWNSTREAM ELEVATION = 1322.81 ELEVATION DIFFERENCE = 17.44 TC = . 393* C ( 1000.00 * * 3) / ( 17.44) ] * *. 2 = 13.984 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7607 II SUBAREA RUNOFF(CFS) = 22.69 TOTAL AREA(ACRES) = 8.47 TOTAL RUNOFF(CFS) = d2.69 FLOW PROCESS FROM NODE 1031.10 TO NODE 1033.10 IS CODE = 5 II > > >> >COMPUTE TRAPEZOIDAL- CHANNEL FLOW((((( )>) > >TRAVELTIME THRU SUBAREA<(<<< UPSTREAM NODE ELEVATION = 1322.81 DOWNSTREAM NODE ELEVATION = 1316.77 CHANNEL LENGTH THRU SUBAREA(FEET) = 290.00 CHANNEL BASE(FEET) = 50.00 "Z" FACTOR = 3.000 MANNINGS FACTOR = .040 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 22.69 FLOW VELOCITY(FEET /SEC) = 1.91 FLOW DEPTH(FEET) = .23 ii TRAVEL TIME(MIN.) = 2.53 TC(MIN.) = 16.52 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1033.10 TO NODE 1033.10 IS CODE = 1 > > >> )DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE((((( CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: II TIME OF CONCENTRATION(MINUTES) = 16.52 II RAINFALL INTENSITY (INCH. /HOUR) = 3.19 TOTAL STREAM AREA (ACRES) = 8.47 • TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 22.69 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** II FLOW PROCESS FROM NODE 1032.00 TO NODE 1033.10 IS CODE = 2 > > >> )RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<((< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) I: TC = K *C(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 1100.00 UPSTREAM ELEVATION = 1337.99 DOWNSTREAM ELEVATION = 1316.77 • ELEVATION DIFFERENCE = 21.22 TC = . 393* C ( 1100. 00 * *3) / ( 21.22) ] * *. 2 = 14.238 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.485 ' SOIL CLASSIFICATION IS "A" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7597 SUBAREA RUNOFF(CFS) = 14.77 • TOTAL AREA(ACRES) = 5.58 TOTAL RUNOFF(CFS) = 14.77 * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * * ** * * * * * * * * * * ** * * * * ** * * * * * ** * ** * * ** * I FLOW PROCESS FROM NODE 1033.10 TO NODE 1033.10 IS CODE = 1 ) >>> )DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE((((( 'CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 14.24 RAINFALL INTENSITY (INCH. /HOUR) = 3.48 TOTAL STREAM AREA (ACRES) = 5.58 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 14.77 Wa Yy� Y Y YY y Y Y Y Y Y Y Y Y yY Y ** * * * * ** * * * * * * * * * * * * * * * * * * * * * * * ** { *'!i"! ** * * * * * ** ** * *'l 'll'!i"'!i"'Ji" *'!["'!C **** ** * IC J " * * * * * * ** II FLOW PROCESS FROM NODE 1033.00 TO NODE 1033.10 IS CODE = >>>> >RATIONAL METHOD INITIAL SUBAREA ANALYSIS(( <<( ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) )TC = K *C(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 I INITIAL SUBAREA FLOW- LENGTH = 690.00 UPSTREAM ELEVATION = 1328.07 DOWNSTREAM ELEVATION = 1316.77 IN ELEVATION DIFFERENCE = 11.30 TC = .393* C ( 690. 00 * *3) / ( 11.30) ] * *. 2 = 12.208 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.821 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7677 SUBAREA RUNOFF(CFS) = 6.95 TOTAL AREA(ACRES) = 2.37 TOTAL RUNOFF(CFS) = 6.95 E ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1033.10 TO NODE 1033.10 IS CODE = 1 >>>> >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE( <(<< >>)>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES(( < << li CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MINUTES) = 12.21 RAINFALL INTENSITY (INCH. /HOUR) = 3.82 II TOTAL STREAM AREA (ACRES) = 2.37 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 6.95 1 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) 1 22.69 16.52 3.188 2 14.77 14.24 3.485 I: 3 6.95 12.21 3.821 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA(SBC) USED FOR 3 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 42.01 40.68 36.40 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: I RUNOFF(CFS) = 42.01 TIME(MINUTES) = 16.515 TOTAL AREA(ACRES) = 16.42 '********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1033.10 TO NODE 1035.10 IS CODE = 5 II > > > >> COMPUTE TRAPEZOIDAL- CHANNEL FLOW ((((( > > > > >TRAVELTIME THRU SUBAREA((((( I UPSTREAM NODE ELEVATION = 1316.77 DOWNSTREAM NODE ELEVATION = 1315.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 220.00 CHANNEL BASE(FEET) = 50.00 "Z" FACTOR = 3.000 • MANNINGS FACTOR = .040 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 42.01 FLOW VELOCITY(FEET /SEC) = 1.94 FLOW DEPTH(FEET) = .42 I TRAVEL TIME (MIN.) = 1.89 TC (MIN.) = 18.40 FLOW PROCESS FROM NODE 1035.10 TO NODE 1035.10 IS CODE = 1 1 > > > > >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<< I CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 18.40 RAINFALL INTENSITY (INCH. /HOUR) = 2.99 TOTAL STREAM AREA (ACRES) = 16.42 I TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 42.01 I ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1034.00 TO NODE 1035.10 IS CODE = 2 IF > > > > >RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 1230.00 UPSTREAM ELEVATION = 1334.45 DOWNSTREAM ELEVATION = 1315.00 ELEVATION DIFFERENCE = 19.45 TC = .393* C ( 1230. 00 * *3) / ( 19.45) ] * *. 2 = 15.492 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.312 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7551 SUBAREA RUNOFF(CFS) = 20.46 TOTAL AREA(ACRES) = 8.18 TOTAL RUNOFF(CFS) = 20.46 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1035.10 TO NODE 1035.10 IS CODE = 1 > > >> >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE((«< IL >>> > >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES <<<<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: ✓ TIME OF CONCENTRATION(MINUTES) = 15.49 II RAINFALL INTENSITY (INCH. /HOUR) = 3.31 TOTAL STREAM AREA (ACRES) = 8.18 ✓ TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 20.46 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) 1 42.01 18.40 2.987 2 20.46 15.49 3.312 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA(SBC) USED FOR 2 STREAMS. I VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 60.46 55.82 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: I RUNOFF(CFS) = 60.46 TIME(MINUTES) = 18.403 TOTAL AREA(ACRES) = 24.60 '********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1035.10 TO NODE 1035.20 IS CODE = 3 4 ' > > > >> COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<(<<< > > > > >USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) <<(<< 3 PIPEFLOW VELOCITY(FEET /SEC.) = 11.7 111 DOWNSTREAM NODE ELEVATION = 1309.00 DOWNSTREAM NODE ELEVATION = 1305.34 FLOWLENGTH(FEET) = 280.00 MANNINGS N = .013 I ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 60.46 ,TRAVEL TIME (MIN.) = .40 TC (MIN.) = 18.80 1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1035.20 TO NODE 1035.20 IS CODE = 1 > > >> )DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE((((( CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 18.80 RAINFALL INTENSITY (INCH. /HOUR) = 2.95 TOTAL STREAM AREA (ACRES) = 24.60 II TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 60.46 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1035.00 TO NODE 1035.20 IS CODE = 2 > > >> )RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<< << IF ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K *C(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 615.00 UPSTREAM ELEVATION = 1325.07 I DOWNSTREAM ELEVATION = 1311.34 )ELEVATION DIFFERENCE = 13.73 'TC = .393*[( 615.00 * *3) / ( 13.73) ] * *. 2 = 10.958 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.077 I SOIL CLASSIFICATION IS "A" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7729 SUBAREA RUNOFF(CFS) = 13.64 II TOTAL AREA(ACRES) = 4.33 TOTAL RUNOFF(CFS) = 13.64 FLOW PROCESS FROM NODE 1035 .20 TO NODE 1035 .20 IS CODE = 1 > > > > >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< > > > >)AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES((((( CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 10.96 RAINFALL INTENSITY (INCH. /HOUR) = 4.08 TOTAL STREAM AREA (ACRES) = 4.33 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 13.64 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY I NUMBER (CFS) (MIN.) (INCH /HOUR) 1 60.46 18.80 2.949 2 13.64 10.96 4.077 I RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA(SBC) USED FOR 2 STREAMS. II VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 70.33 48.88 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: TOTAL AREA(ACRES) = 28.93 1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1035.20 TO NODE 1040.10 IS CODE = 3 1[ PIPEFLOW TRAVELTIME THRU SUBAREA <<( << 1 > >)> )USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) < < < << lh DEPTH OF FLOW IN 36.0 INCH PIPE IS 28.4 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 11.7 I UPSTREAM NODE ELEVATION = 1305.34 DOWNSTREAM NODE ELEVATION = 1300.50 FLOWLENGTH(FEET) = 385.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 70.33 TRAVEL TIME (MIN.) = .55 TC (MIN.) = 19.35 FLOW PROCESS FROM NODE 1040.10 TO NODE 1040.10 IS CODE = 1 > > >> )DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE < < < << CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: II TIME OF CONCENTRATION(MINUTES) = 19.35 RAINFALL INTENSITY (INCH. /HOUR) = 2.90 TOTAL STREAM AREA (ACRES) = 28.93 g TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 70.33 A ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** i F LOW PROCESS FROM NODE 1040.00 TO NODE 1040.10 IS CODE = 2 > > > > >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « < ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) ▪ TC = K *C(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 ▪ INITIAL SUBAREA FLOW- LENGTH = 455.00 UPSTREAM ELEVATION = 1320.20 DOWNSTREAM ELEVATION = 1306.50- I ELEVATION DIFFERENCE = 13.70 TC = .393*(( 455. 00 * *3) / ( 13.70) ] * *. 2 = 9.150 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.543 l SOIL CLASSIFICATION IS "A" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7808 SUBAREA RUNOFF(CFS) = 6.03 TOTAL AREA(ACRES) = 1.70 TOTAL RUNOFF(CFS) = 6.03 II FLOW PROCESS FROM NODE 1040.10 TO NODE 1040.10 IS CODE = 1 > > >> )DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE < < <<< 1 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 9.15 I RAINFALL INTENSITY (INCH. /HOUR) = 4.54 TOTAL STREAM AREA (ACRES) = 1.70 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 6.03 r ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1039.00 TO NODE 1040.10 IS CODE = 2 )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS( <tt< It ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) ,t TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW - LENGTH = 1030.00 UPSTREAM ELEVATION = 1328.51 DOWNSTREAM ELEVATION = 1306.50 I ELEVATION DIFFERENCE = 22.01 TC = .393*(( 1030. 00 * *3) / ( 22.01) ] * *. 2 = 13.587 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.584 I SOIL CLASSIFICATION IS "A" II SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7622 SUBAREA RUNOFF(CFS) = 12.37 TOTAL AREA(ACRES) = 4.53 TOTAL RUNOFF(CFS) = 12.37 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** IL FLOW PROCESS FROM NODE 1040.10 TO NODE 1040.10 IS CODE = 1 )))> )DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE M <t- f CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MINUTES) = 13.59 RAINFALL INTENSITY (INCH. /HOUR) = 3.58 TOTAL STREAM AREA (ACRES) = 4.53 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 12.37 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1040.10 TO NODE 1040.10 IS CODE = 7 IF , ))))USER SPECIFIED HYDROLOGY INFORMATION AT NODE((((( USER - SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 19.95 RAIN INTENSITY(INCH /HOUR) = 2.85 TOTAL AREA(ACRES) = 21.00 TOTAL RUNOFF(CFS) = 50.40 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1040.10 TO NODE 1040.10 IS CODE = 1 II >>)) )DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE((((( > > > >>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES( <<tt I CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 4 ARE: TIME OF CONCENTRATION(MINUTES) = 19.95 RAINFALL INTENSITY (INCH. /HOUR) = 2.85 TOTAL STREAM AREA (ACRES) = 21.00 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 50.40 CONFLUENCE INFORMATION: II STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) 1 70.33 19.35 2.899 2 6.03 9.15 4.543 3 12.37 13.59 3.584 4 50.40 19.95 2.846 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA(SBC) USED FOR 4 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 133.07 70.74 100.85 133.06 rnMbl ITCT1 rnnlcl I IGhlrc cQT T MOTCQ OD= OQ cn: I n UQ e TOTAL AREA(ACRES) = 56.16 1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ▪ FLOW PROCESS FROM NODE 1040.10 TO NODE 1040.20 IS CODE = 3 mr > > >> )COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA <(( <( ) > >> >USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) <( <(< IF DEPTH OF FLOW IN 45.0 INCH PIPE IS 34.7 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 14.6 1 UPSTREAM NODE ELEVATION = 1300.50 ID DOWNSTREAM NODE ELEVATION = 1293.21 FLOWLENGTH(FEET) = 506.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 45.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 133.07 TRAVEL TIME (MIN.) = .58 TC(MIN.) = 19.93 1 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1040.20 TO NODE 1040.20 IS CODE = 1 1r > > >> )DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE((((( I: CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 19.93 RAINFALL INTENSITY (INCH. /HOUR) = 2.85 TOTAL STREAM AREA (ACRES) = 56.16 II TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 133.07 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** II FLOW PROCESS FROM NODE 1019.00 TO NODE 1040.20 IS CODE = 7 I »WUSER SPECIFIED HYDROLOGY INFORMATION AT NODE<< <(< USER- SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 12.84 RAIN INTENSITY(INCH /HOUR) = 3.71 TOTAL AREA(ACRES) = 4.97 TOTAL RUNOFF(CFS) = 13.19 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1040 .20 TO NODE 1040.20 IS CODE = 1 > > > >> DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE < < <(< > >)))AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES((((( CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: ▪ TIME OF CONCENTRATION(MINUTES) = 12.84 ▪ RAINFALL INTENSITY (INCH. /HOUR) = 3.71 TOTAL STREAM AREA (ACRES) = 4.97 I TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 13.19 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY ' NUMBER (CFS) (MIN.) (INCH /HOUR) 1 133.07 19.93 2.848 I 2 13.19 12.84 3.707 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA(SBC) USED FOR 2 STREAMS. 11 VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 143.21 98.95 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: TOTAL AREA(ACRES) = 61.13 i ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** I FLOW PROCESS FROM NODE 1040.20 TO NODE 1041.10 IS CODE = 3 > >> ))COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA « ((< )> >> )USING COMPUTER- ESTIMATED PIPESIZE (NON - PRESSURE FLOW) < <<<< r DEPTH OF FLOW IN 48.0 INCH PIPE IS 36.6 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 13.9 UPSTREAM NODE ELEVATION = 1293.21 DOWNSTREAM NODE ELEVATION = 1292.00 - FLOWLENGTH(FEET) = 100.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 48.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 143.21 TRAVEL TIME(MIN.) = .12 TC(MIN.) = 20.05 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1041.10 TO NODE 1041.10 IS CODE = 1 II > > >> )DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE((((( _ CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 20.05 RAINFALL INTENSITY (INCH. /HOUR) = 2.84 TOTAL STREAM AREA (ACRES) = 61.13 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 143.21 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** TLOW PROCESS FROM NODE 1041.00 TO NODE 1041.70 IS CODE = 2 >) >> )RATIONAL METHOD INITIAL SUBAREA ANALYSIS( <( <( ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) i; TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 1000.00 UPSTREAM ELEVATION = 1323.36 i] DOWNSTREAM ELEVATION = 1304.70 ELEVATION DIFFERENCE = 18.66 TC = .393* C ( 1000.00 * *3) / ( 18.66) ] * *. 2 = 13.796 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.551 11 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7614 SUBAREA RUNOFF(CFS) = 23.23 TOTAL AREA(ACRES) = 8.59 TOTAL RUNOFF(CFS) = 23.23 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1041.70 TO NODE 1041.10 IS CODE = 5 > >> ))COMPUTE TRAPEZOIDAL- CHANNEL FLOW((((( II > > > > >TRAVELTIME THRU SUBAREA < < <(< UPSTREAM NODE ELEVATION = 1304.70 II OWNSTREAM NODE ELEVATION = 1298.50 CHANNEL LENGTH THRU SUBAREA(FEET) = 190.00 CHANNEL BASE(FEET) = 50.00 "Z" FACTOR = 3.000 MANNINGS FACTOR = .030 MAXIMUM DEPTH(FEET) = 1.00 II CHANNEL FLOW THRU SUBAREA(CFS) = 23.23 FLOW VELOCITY(FEET /SEC) = 2.68 FLOW DEPTH(FEET) = .17 TRAVEL TIME (MIN.) = 1.1A TC(MIN.) = 14.98 l - Y Y Y Y YY Y Y Y t. I * * * * * * * * * * * * * * * * * * * * * * * * * * ** J �************* * * * * *** ** * * * * ** * * * * * * * * * * * * * * ** lC** FLOW PROCESS FROM NODE 1041.10 TO NODE 1041.10 IS CODE = 8 )))))ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « <(( 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.380 aOIL CLASSIFICATION IS "A" II SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7569 SUBAREA AREA(ACRES) = 4.83 SUBAREA RUNOFF(CFS) = 12.36 TOTAL AREA(ACRES) = 13.42 TOTAL RUNOFF(CFS) = 35.58 D TC(MIN) = 14.98 / 3 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1041.10 TO NODE 1041.10 IS CODE = 1 ))) ))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE < < < <( II )))))AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES < < <<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: II TIME OF CONCENTRATION(MINUTES) = 14.98 RAINFALL INTENSITY (INCH. /HOUR) = 3.38 TOTAL STREAM AREA (ACRES) = 13.42 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 35.58 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY II NUMBER (CFS) (MIN.) (INCH /HOUR) 1 143.21 20.05 2.838 2 35.58 14.98 3.380 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA(SBC) USED FOR 2 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 173.08 142.60 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(CFS) = 173.08 TIME(MINUTES) = 20.046 TOTAL AREA(ACRES) = 74.55 FLOW PROCESS FROM NODE 1041.10 TO NODE 1041.40 IS CODE = 3 II )))))COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA « (< )))))USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) < < < << II DEPTH OF FLOW IN 54.0 INCH PIPE IS 40.2 INCHES II PIPEFLOW VELOCITY(FEET /SEC.) = 13.6 UPSTREAM NODE ELEVATION = 1292.00 DOWNSTREAM NODE ELEVATION = 1289.60 FLOWLENGTH(FEET) = 240.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 173.08 TRAVEL TIME (MIN.) = .29 TC(MIN.) = 20.34 ****************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** • FLOW PROCESS FROM NODE 1041.40 TO NODE 1041.40 IS CODE = 1 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<< II CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: T T MC f1C f^f1Alf`CAIT DOT T f1A1 f M T Ali ITCC % = COI :4 TOTAL STREAM AREA (ACRES) = 74.55 II TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 173.08 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1041.0 TO NODE 1041..0 IS CODE = 2 J>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS < << << ' / ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: COMMERCIAL I 11 TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 150.00 UPSTREAM ELEVATION = 1302.30 DOWNSTREAM ELEVATION = 1296.50 ELEVATION DIFFERENCE = 5.80 TC = .303*[( 150.00 * *3) / ( 5.80) ] * *. 2 = 4.311 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 6.529 SOIL CLASSIFICATION IS "A" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8404 II SUBAREA RUNOFF(CFS) = 3.79 TOTAL AREA (ACRES) = .69 TOTAL RUNOFF(CFS) = 3 . 79 G,l .# 102 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1041.30 TO NODE 1041.40 IS CODE = 3 , II )))))COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA « <<< II > > >> >USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW)< < <(< ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.1 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 7.2 UPSTREAM NODE ELEVATION = 1291.50 11 DOWNSTREAM NODE ELEVATION = 1289.60 FLOWLENGTH(FEET) = 85.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 3.79 TRAVEL TIME(MIN.) = .20 TC(MIN.) = 5.20 • FLOW PROCESS FROM NODE 1041.40 TO NODE 1041.40 IS CODE = 1 II > > >> )DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< > > >))AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « ((< I CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 5.20 RAINFALL INTENSITY (INCH. /HOUR) = 6.38 TOTAL STREAM AREA (ACRES) = .69 II TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 3.79 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) 1 173.08 20.34 2.813 II 2 3.79 5.20 6.379 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO II FORMULA(SBC) USED FOR 2 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 174_7n 4A_ 011 1 RUNOFF <CFS) = 174.75 TIME (MINUTES) = 20. 339 TOTAL AREA(ACRES) = 75.24 1 1 1 1 • 3 RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON SAN BERNARDINO COUNTY (SBC) 1983 HYDROLOGY MANUAL <<<<<<<<<<(<<<(<<<<<<<(<<<(<<<<<((<<<<>>>))>> > > >) >) > > > >) >) > > >))) >)) >)))))))) (C) Copyright 1582 Advanced Engineering Software CAES3 Especially prepared for: HALL & FOREMAN, INC. <<<((<<<<<<<<<<<<<<<<<<<<(<(<((<<<<<(<>>)>>>) > > > >) > > > >) > > > > > > > > > > >)) > > > > > > >> * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * N.BASELINE HYDROLOGY -EAST uF ETIWANDA CHANNEL * Q 100 YR, VOL 2 SUPPLIMENTARY VOL 2 -1 * VENKI. N, . DISK "4 ", FILE "G" , 8/25/87 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .95 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = .980 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.470 COMPUTED RAINFALL INTENSITY DATA: 1: STORM EVENT = 100.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.4700 SLOPE OF INTENSITY DURATION CURVE = .6000 SBC HYDROLOGY MANUAL "C "- VALUES USED <<<((<<<<<<<((<<<<<<(<<<<<<<<(((<<<<<<>>>>>>> > > > > > > > > > >) > > > > > > >) > > > >> > > > > > >> Advanced Engineering Software CAES3 SERIAL No. A0580A REV. 3.1 RELEASE DATE: 5/01/85 <<(<<((<<<<<<<<<<<<<(<(((<(<<<<<<<<<(<>)>>>>> > >)) > > > > > >)) > > > >> > > > > >) > >) >)))) ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * ** * * ** FLOW PROCESS FROM NODE 1026.10 TO NODE 1018.10 IS CODE = 2 > >> ))RATIONAL METHOD INITIAL SUBAREA ANALYSIS((((( ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: COMMERCIAL TC = K *C(LENGTH * *3) /(ELEVATION CHANGE)3 * *.2 INITIAL SUBAREA FLOW - LENGTH = 1000.00 UPSTREAM ELEVATION = 1318.00 DOWNSTREAM ELEVATION = 1311.00 ELEVATION DIFFERENCE = 7.00 100.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.687 SOIL CLASSIFICATION IS "A" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8329 w� SUBAREA RUNOFF(CFS) = 2.83 TOTAL AREA(ACRES) = .92 TOTAL RUNOFF(CFS) = 2.83 / \ **************************************************************************** FLOW PROCESS FROM NODE 1018.10 TO NODE 1045.10 IS CODE = 6 >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< UPSTREAM ELEVATION = 1311.00 DOWNSTREAM ELEVATION = 1297.70 � - STREET LENGTH(FEET) = 1080.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 20.00 STREET CROSSFALL(DECIMAL) = .0270 Y� �� SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 ~� **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 4.14 STREET FLOWDEPTH(FEET) = .40 HALFSTREET FLOODWIDTH(FEET) = 9.59 11 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.92 PRODUCT OF DEPTH&VELOCITY = 1.18 STREETFLOW TRAVELTIME(MIN) = 6.17 TC(MIN) = 19.13 | �m 100.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.919 SOIL CLASSIFICATION IS "A" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8285 SUBAREA AREA(ACRES) = 1.07 SUBAREA RUNOFF(CFS) = 2.59 SUMMED AREA(ACRES) = 1.99 TOTAL RUNOFF(CFS) = 5.41 END OF SUBAREA STREETFLOW HYDRAULICS: N� DEPTH(FEET) = .43 HALFSTREET FLOODWIDTH(FEET) = 10.72 m� FLOW VELOCITY(FEET/SEC.) = 3.14 DEPTH*VELOCITY = 1.36 ° **************************************************************************** FLOW PROCESS FROM NODE 1045.10 TO NODE 1045.10 IS CODE = 1 })}}}DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 19.13 �� RAINFALL INTENSITY (INCH./HOUR) = 2.92 TOTAL STREAM AREA (ACRES) = 1.99 _ TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 5.41 **** *************************************************+v************ N� FLOW PROCESS FROM NODE 1044.00 1044.10 IS CODE = 00 TO NODE 1��4 2 � ~~ . . >}}>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< �� ~~ ASSUMED INITIAL SUBAREA UNIFORM � - DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(E�LEVATION CHANGE)]**.2 N� INITIAL SUBAREA FLOW-LENGTH = 1000.00 UPSTREAM ELEVATION = 1309.68 DOWNSTREAM ELEVATION = 1303.68 ELEVATION DIFFERENCE = 6.00 w� TC = .303*[( 1000.00**3)/( 6.00)]**.2 = 13.365 \ 100.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.619 �� N� SOIL CLASSIFICATION IS "A" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8326 SUBAREA RUNOFF(CFS) = 4.16 TOTAL AREA(ACRES) = 1.38 TOTAL RUNOFF(CFS) = 4.16 ~ ~ FLOW PROCESS FROM NODE 104+.10 Tu NdDE 1045.10 IS CUDE = 6 )))))COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< UPSTREAM ELEVATION = 1303.68 DOWNSTREAM ELEVATION = 1297.70 STREET LENGTH(FEET) = 1400.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 38.00 STREET CROSSFALL(DECIMAL) = .0270 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 6.18 STREET FLOWDEPTH(FEET) = .52 HALFSTREET FLOODWIDTH(FEET) = 14.09 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.16 PRODUCT OF DEPTH&VELOCITY = 1.13 STREETFLOW TRAVELTIME(MIN) = 10.79 TC(MIN) = 24.16 0Q 100.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.537 |� w� SOIL CLASSIFICATION IS "A" COMMERCIAL- DEVELOPMENT RUNOFF COEFFICIENT = .8252 re SUBAREA AREA(ACRES) = 1.90 SUBAREA RUNOFF(CFS) = 3.98 SUMMED AREA(ACRES) = 3.28 TOTAL RUNOFF(CFS) = 8.14 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .57 HALFSTREET FLOODWIDTH(FEET) = 15.78 FLOW VELOCITY(FEET/SEC.) = 2.30 DEPTH*VELOCITY = 1.31 **************************************************************************** FLOW PROCESS FROM NODE 1045.10 TO NODE 1045.10 IS CODE = 1 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE(<<<‹ N� )))))AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES((((( CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 24.16 RAINFALL INTENSITY (INCH./HOUR) = 2.54 ) TOTAL STREAM AREA (ACRES) = 3.28 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 8.14 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 5.41 19.13 2.919 ' 2 8.14 24.16 2.537 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA(SBC) USED FOR 2 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 11.86 12.84 �� �� �� COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: ^ �~` ,' ~' RUNOFF(CFS) = TIME(MINUTES) = 24.156 �m� -- TOTAL AREA(ACRES) =���� 5.27 **************************************************************************** FLOW PROCESS FROM NODE 1046.00 TO NODE 1044.10 IS CODE = 2 )))))RATIONAL METHOD INITIAL SUBAREA HNALYSIS<< < < < ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH = 1000.00 UPSTREAM ELEVATION = 1309.68 N� DOWNSTREAM ELEVATION = 1303.68 ELEVATION DIFFERENCE = 6.00 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.619 SOIL CLASSIFICATION IS "A" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8326 SUBAREA RUNOFF(CFS) = 4.16 TOTAL AREA(ACRES) = 1.38 TOTAL RUNOFF(CFS) = 4.16 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1044.10 TO NODE 1047.10 IS CODE = 6 >>1)> COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA <( < << UPSTREAM ELEVATION = 1303.68 DOWNSTREAM ELEVATION = 1297.70 STREET LENGTH(FEET) = 1400.00 CURB HEIGTH(INCHES) = 8. 1: STREET HALFWIDTH(FEET) = 38.00 STREET CROSSFALL(DECIMAL) = .0270 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 6.18 STREET FLOWDEPTH(FEET) = .52 1: HALFSTREET FLOODWIDTH(FEET) = 14.09 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.16 PRODUCT OF DEPTH &VELOCITY = 1.13 - STREETFLOW TRAVELTIME(MIN) = 10.79 TC(MIN) = 24.16 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.537 SOIL CLASSIFICATION IS "A" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8252 SUBAREA AREA(ACRES) = 1.90 SUBAREA RUNOFF(CFS) = 3.98 SUMMED AREA (ACRES) = 3.28 TOTAL RUNOFF(CFS) = 8.14 C, (:3, 4k /0 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .57 HALFSTREET FLOODWIDTH(FEET) = 15.78 FLOW VELOCITY(FEET /SEC.) = 2.30 DEPTH *VELOCITY = 1.31 END OF RATIONAL METHOD ANALYSIS 1 I; 1 1 1 E 1 \/0 - 3 1 1 2 5 YR 1 1 1 1 BASED ON SAN BERNARDINO COUNTY (SBC) 1983 HYDROLOGY MANUAL <<<<<<<((<<<<(<<(<<<<<<<<<(<((<<<<<<(<>))>>>) >) > >)) > > > > > > > >> > > >))) >)) > >)>>)) I; (C) Copyright 198E Advanced Engineering Software CAES] Especially prepared for: HALL & FOREMAN, INC. << < < < <(( < <( < < < < < < <(( < < <(( <( <( <(<<<<((>>>>>>> > > > > > >> > > > > > > > > > > > )) > >> > > > > > > >> * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * N.BASE LINE HYDROLOGY- EAST OF ETIWANDA, EAST OF R/R TRACK * * Q 25 YR, VOL 3 * * VENKI.N, JN 3810 -00, DISK "4 ", FILE "E" * ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: USER SPECIFIED STORM EVENT(YEAR) = 25.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .95 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = .980 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.470 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 25.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.1520 SLOPE OF INTENSITY DURATION CURVE = .6000 SBC HYDROLOGY MANUAL "C "- VALUES USED <<<<<<<<<<(<((<<<<<<(<<<<<<<<<<<<<<<<()>>>>>> >>>>>>>>>>>>>>>>>)>>>)>>>>>>>>> Advanced Engineering Software MES] SERIAL No. A0580A REV. 3.1 RELEASE DATE: 5/01/85 <<<<<<<<<<<<<(<<<(((<<<(<<<<<<<<<<<<<<>>>>)>> > > > > > > > >) > > >) > > > > > >)) > > >) > > >) >> ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1048.00 TO NODE 1048.20 IS CODE = 2 > >> )RATIONAL METHOD INITIAL SUBAREA ANALYSIS((((( ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT I5: COMMERCIAL TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 1000.00 UPSTREAM ELEVATION = 1298.45 DOWNSTREAM ELEVATION = 1291.60 ELEVATION DIFFERENCE = 6.85 TC = .303*(( 1000. 00 * *3) / ( 6.85) ] * *. 2 = 13.015 25.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.882 SOIL CLASSIFICATION IS "A" I! COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8282 SUBAREA RUNOFF(CFS) = 3.01 TOTAL AREA(ACRES) = 1.26 TOTAL RUNOFF(CFS) = 3.01 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1048.20 TO NODE 1048.10 IS CODE = 6 > > >> >COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA(<<(( UPSTREAM ELEVATION = 1291.60 DOWNSTREAM ELEVATION = 1281.00 STREET LENGTH(FEET) = 1360.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 38.00 STREET CROSSFALL(DECIMAL) = .0270 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 4.60 STREET FLOWDEPTH(FEET) = .43 HALFSTREET FLOODWIDTH(FEET) = 10.72 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.67 PRODUCT OF DEPTH &VELOCITY = 1.16 STREETFLOW TRAVELTIME(MIN) = 8.50 TC(MIN) = 21.52 25.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.131 1] SOIL CLASSIFICATION IS "A" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8205 SUBAREA AREA(ACRES) = 1.85 SUBAREA RUNOFF(CFS) = 3.24 SUMMED AREA(ACRES) = 3.11 TOTAL RUNOFF(CFS) = 6.24 I; END OF SUBAREA STREETFLOW HYDRAULICS: 4:'13:41/5 DEPTH(FEET) = .48 HALFSTREET FLOODWIDTH(FEET) = 12.41 FLOW VELOCITY(FEET /SEC.) = 2.77 DEPTH *VELOCITY = 1.33 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1049.00 TO NODE 1049.10 IS CODE = 2 > >>> )RATIONAL METHOD INITIAL SUBAREA ANALYSIS <(<<< 1 ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K *((LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 1000.00 UPSTREAM ELEVATION = 1355.46 DOWNSTREAM ELEVATION = 1336.93 ELEVATION DIFFERENCE = 18.53 TC = .393*[( 1000. 00 * *3) / ( 18.53) ] * *. 2 = 13.816 25.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.781 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY(1 /4 ACRE LOT) - RUNOFF COEFFICIENT = .7369 SUBAREA RUNOFF(CFS) = 19.90 TOTAL AREA(ACRES) = 9.71 TOTAL RUNOFF(CFS) = 19.90 * * * * * * * * ** *********************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1049.10 TO NODE 1051.10 IS CODE = 5 > > >> )COMPUTE TRAPEZOIDAL- CHANNEL FLOW < < < <( > > >> )TRAVELTIME THRU SUBAREA < < <(< - UPSTREAM NODE ELEVATION = 1336.93 DOWNSTREAM NODE ELEVATION = 1327.44 CHANNEL LENGTH THRU SUBAREA(FEET) = 520.00 CHANNEL BASE(FEET) = 50.00 "Z" FACTOR = 3.000 MANNINGS FACTOR = .040 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 19.90 FLOW VELOCITY(FEET /SEC) = 1.94 FLOW DEPTH(FEET) = .20 TRAVEL TIME (MIN.) = 4.48 TC(MIN.) = 18.29 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1050.00 TO NODE 1051.10 IS CODE = 8 ~ N� 25. 00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.349 w� SOIL CLASSIFICATION IS "A" SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7161 SUBAREA AREA(ACRES) = 6.28 SUBAREA RUNOFF(CFS) = 10.57 TOTAL AREA(ACRES) = 15.99 TOTAL RUNOFF(CFS) = 30.46 � ~~ TC(MIN) = 18 . 29 \ _ **** *********************************************************** FLOW ''''-''''''''''M NODE 1051.00 TO NODE 1051.10 IS CODE = 8 ) > > > }ADDITION OF SUBAREA TO MAINLINE PEAK FLOW< M < 25.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.349 SOIL CLASSIFICATION IS "A" S%NGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7161 SUBAREA AREA(ACRES) = 3.15 SUBAREA RUNOFF(CFS) = 5.30 TOTAL AREA(ACRES) = 19.14 TOTAL RUNOFF(CFS) = 35.76 TC(MIN) = 18"29 **************************************************************************** FLOW PROCESS FROM NODE 16951.10 TO NODE 1053.10 IS CODE = 5 > } > > >COMPUTE TRAPEZOIDAL-CHANNEL FLOW( < ( < < �� >>>>}TRAVELTIME THRU SUBAREA<<<<< UPSTREAM NODE ELEVATION = 1327.44 w� DOWNSTREAM NODE ELEVATION = 1319.50 CHANNEL LENGTH THRU SUBAREA(FEET) = 480.00 CHANNEL BASE(FEET) = 50.690 "Z" FACTOR = 3.000 E \ MANNINGS FACTOR = .040 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 35 . 76 FLOW VELOCITY(FEET/SEC) = 2.14 FLOW DEPTH(FEET) = .33 8� TRAVEL TIME(MIN.) = 3.74 TC(MIN.) = 22.04 �� ****** ************************************************************* �� �� FLOW PROCESS FROM NODE 1052.00 TO NODE 1053.10 IS CODE = 8 } > > } }AQDITION OF SUBAREA TO PEAK FLOW((((( 25.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.101 SOIL CLASSIFICATION IS "A" N� SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7003 SUBAREA AREA(ACRES) = 10.83 SUBAREA RUNOFF(CFS) = 15.94 TOTAL AREA(ACRES) = 29.97 TOTAL RUNOFF(CFS) = 51.70 TC(MIN) = 22.04 -- - I FLOW PROCESS FROM NODE 1053. 00 TO NODE 1053. 16� IS CODE = 8 � - >>>}>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW(<(<< m� 25.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.101 � \ SOIL CLASSIFICATION IS "A" SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7003 SUBAREA AREA(ACRES) = 7.51 SUBAREA RUNOFF(CFS) = 11.05 TOTAL AREA(ACRES) = 37.48 TOTAL RUNOFF(CFS) = 62.75 TC(MIN) = 22.04 . ° . *"= .~""`- /.utaa N� > } > > >COMPUTE TRAPEZOIDAL-CHANNEL FLOW< < < < < > > }> }TRAVELTIME THRU SUBAREA< ( < < ( UPSTREAM NODE ELEVATION = 1319.50 0� DOWNSTREAM NODE ELEVATION = 1315.70 CHANNEL LENGTH THRU SUBAREA(FEET) = 440.00 ) CHANNEL BASE(FEET) = 50.00 "Z" FACTOR = 3.000 MANNINGS FACTOR = .040 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 62.75 ) FLOW VELOCITY(FEET/SEC) = 2.22 FLOW DEPTH(FEET) = .55 TRAVEL TIME(MIN.) = 3.30 TC(MIN.) = 25.34 **************************************************************************** FLOW PROCESS FROM NODE 1054.00 TO NODE 1055.10 IS CODE = 8 >>>>>A0DITION OF SUBAREA TO MAINLINE PEAK FLOW((({( m� 25.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.932 SOIL CLASSIFICATION IS "A" SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .6872 SUBAREA AREA(ACRES) = 21.61 SUBAREA RUNOFF(CFS) = 28.70 TOTAL AREA(ACRES) = 59 0)9 TOTAL RUNOFF(CFS) = 91 45 . . TC(MIN) = 25.34 **************************************************************************** N� FLOW PROCESS FROM NODE 1055.00 TO NODE 1055.10 IS CODE = 8 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<(<< �� �� / 25.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.932 SOIL CLASSIFICATION IS "A" SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .6872 SUBAREA AREA(ACRES) = 14.14 SUBAREA RUNOFF(CFS) = 18.78 TOTAL AREA(ACRES) = 73.23 TOTAL RUNOFF(CFS) = 110.23 TC(MIN) = 25.34 . �� i �� **************************************************************** FLOW PROCESS FROM NODE 1055.10 TO NODE 1056.10 IS CODE = 5 >>}>}COMPUTE TRAPEZOIDAL-CHANNEL FLOW<<<<< >>>}>TRAVELTIME THRU SUBAREA<<<<( UPSTREAM NODE ELEVATION = 1315.70 DOWNSTREAM NODE ELEVATION = 1299.40 CHANNEL LENGTH THRU SUBAREA(FEET) = 835.00 CHANNEL BASE(FEET) = 50.00 "Z" FACTOR = 3.000 MANNINGS FACTOR = .040 MAXIMUM DEPTH(FEET) = 1.00 - CHANNEL FLOW THRU SUBAREA(CFS) = 110.23 FLOW VELOCITY(FEET/SEC) = 3.49 FLOW DEPTH(FEET) = .61 � TRAVEL TIME(MIN.) = 3.99 TC(MIN.) = 29.32 **************************************************************************** FLOW PROCESS FROM NODE 1056.00 TO NODE 1056.10 IS CODE = 8 }> >} >AQDITION OF SUBAREA TO MAINLINE PEAK FLOW< < < < < 25.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.770 SOIL CLASSIFICATION IS "A`^ SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .6723 ] ....,.._. .._. . . _ -� ", ....we, ......�_.._.. .~ . - •v ..r .. \..•.... \L�LJ - .1.'1•1�'L' 1v 1lll IiJ1M.J1 1 i1..1 J1 - .JMJ•OLJ TC(MIN) = 29.32 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1056.10 TO NODE 1056.10 IS CODE = 1 } > > >> )DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE < << << 1 > > > >)AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES < < <(< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 29.32 RAINFALL INTENSITY (INCH. /HOUR) = 1.77 TOTAL STREAM AREA (ACRES) = 107.20 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 150.66 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) 1 150.66 29.32 1.770 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO 1: FORMULA(SBC) USED FOR 1 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: I] 150.66 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(CFS) = 150.66 TIME(MINUTES) = 29.324 TOTAL AREA(ACRES) = 107.20 END OF RATIONAL METHOD ANALYSIS I ) 1 1 1 1 1 1 0 1 e 6 � VI VOL - 3 O; � OO- YR 1 C 6 1 1 1 1 RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM IL BASED ON SAN BERNARDINO COUNTY (SBC) 1983 HYDROLOGY MANUAL c< > > > > > > > > > > > > > > > > > > > > > > > > > > > > > >> (C) Copyright 1982 Advanced Engineering Software CAES] Especially prepared for: HALL & FOREMAN, INC. < < < < << < < < < < < < < <( <((( <<<<<<<<<<<<(((())>>>>> > > > > > > > > > > > > > > > >)))) > > > >>>>> >>> ii **********DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * N.BASELINE HYDROLOGY- EAST OF ETIWANDA, EAST OF R/R TRACK * Q 100 YR FREQUENCY, VOL 3 * VENKI.N, JN 3810 -00, DISK "4 ", FILE "E" * ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** IF USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ▪ USER SPECIFIED STORM EVENT(YEAR) = 100.00 ▪ SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .95 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = .980 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.470 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.4700 SLOPE OF INTENSITY DURATION CURVE = .6000 SBC HYDROLOGY MANUAL "C "- VALUES USED <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > >> Advanced Engineering Software CAES] SERIAL No. A0580A REV. 3. 1 RELEASE DATE: 5/01/85 1 >> > > > > >>>>>>> ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1048.00 TO NODE 1048.20 IS CODE = 2 )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<< << ASSUMED INITIAL SUBAREA UNIFORM I DEVELOPMENT IS: COMMERCIAL [(LENGTH *3) /(ELEVATION CHANGE)] * *.2 L NITIAL SUBAREA LOW- LENGTH = 1000.00 PSTREAM ELEVATION = 1298.45 DOWNSTREAM ELEVATION = 1291.60 ELEVATION DIFFERENCE = 6.85 TC = • 3�3*(( 1000. 00 * *3) / ( 6.85) ] * *. 2 = 13.015 ii 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.677 SOIL CLASSIFICATION IS "A" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8329 TOTAL AREA(ACRES) = 1.26 TOTAL RUNOFF(CFS) = 3.86 i ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1048.20 TO NODE 1048.0 IS CODE = 6 I )))))COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA <<< << I U PSTREAM ELEVATION = 1291.60 DOWNSTREAM ELEVATION = 1281.00 STREET LENGTH(FEET) = 1360.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 38.00 STREET CROSSFALL(DECIMAL) = .0270 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 5.95 STREET FLOWDEPTH(FEET) = .48 HALFSTREET FLOODWIDTH(FEET) = 12.41 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.64 PRODUCT OF DEPTH &VELOCITY = 1.27 STREETFLOW TRAVELTIME(MIN) = 8.58 TC(MIN) = 21.60 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.714 SOIL CLASSIFICATION IS "A" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8268 SUBAREA AREA(ACRES) = 1.85 SUBAREA RUNOFF(CFS) = 4.15 SUMMED AREA(ACRES) = 3.11 TOTAL RUNOFF(CFS) = 8.01 ,. 40(1s , END OF SUBAREA STREETFLOW HYDRAULICS: II DEPTH(FEET) = .52 HALFSTREET FLOODWIDTH(FEET) = 14.09 FLOW VELOCITY(FEET /SEC.) = 2.80 DEPTH *VELOCITY = 1.47 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1049.00 TO NODE 1049.10 IS CODE = 2 11 )))))>RATIONAL METHOD INITIAL SUBAREA ANALYSIS < <( << ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *3)/(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 1000.00 UPSTREAM ELEVATION = 1355.46 ki DOWNSTREAM ELEVATION = 1336.93 ELEVATION DIFFERENCE = 18.53 TC = .393* C ( 1000. 00 * *3) / ( 18, 53) ] * *. 2 = 13.816 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.548 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7614 II SUBAREA RUNOFF(CFS) = 26.23 TOTAL AREA(ACRES) = 9.71 TOTAL RUNOFF(CFS) = 26.23 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1049.10 TO NODE 1051.10 IS CODE = 5 ' )))))COMPUTE TRAPEZOIDAL- CHANNEL FLOW <(((< )))) >TRAVELTIME THRU SUBAREA((((( I UPSTREAM NODE ELEVATION = 1336.93 DOWNSTREAM NODE ELEVATION = 1327.44 pHANNEL LENGTH THRU SUBAREA(FEET) = 520.00 CHANNEL BASE(FEET) = 50.00 "Z" FACTOR = 3.000 I MANNINGS FACTOR = .040 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 26.23 FLOW VELOCITY(FEET /SEC) = 1.94 FLOW DEPTH(FEET) = .27 TRAVEL TIME(MIN.) = 4.46 TC(MIN.) = 18.27 FLOW PROCESS FROM NODE 1050.00 TO NODE 1051.10 IS CODE = 8 I )))))ADDITION OF SUBAREA TO MAINLINE PEAK FLOW( < <(( 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.000 II SOIL CLASSIFICATION IS "A" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7452 'UBAREA AREA(ACRES) = 6.28 SUBAREA RUNOFF(CFS) = 14.04 TOTAL AREA(ACRES) = 15.99 TOTAL RUNOFF(CFS) = 40.27 TC(MIN) = 18.27 I ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1051.00 TO NODE 1051.10 IS CODE = 8 1 > > >)> ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <( < << 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.000 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7452 SUBAREA AREA(ACRES) = 3.15 SUBAREA RUNOFF(CFS) = 7.04 TOTAL AREA(ACRES) = 19.14 TOTAL RUNOFF(CFS) = 47.31 TC(MIN) = 18.27 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1051.10 TO NODE 1053.10 IS CODE = 5 ▪ > > > >)COMPUTE TRAPEZOIDAL- CHANNEL FLOW < <((< ▪ > > > > >TRAVELTIME THRU SUBAREA( < <(< = UPSTREAM NODE ELEVATION = 1327.44 ▪ pOWNSTREAM NODE ELEVATION = 1319.50 CHANNEL LENGTH THRU SUBAREA(FEET) = 480.00 ' CHANNEL BASE(FEET) = 50.00 "Z" FACTOR = 3.000 ® MANNINGS FACTOR = .040 MAXIMUM DEPTH(FEET) = 1.00 ® CHANNEL FLOW THRU SUBAREA(CFS) = 47.31 FLOW VELOCITY(FEET /SEC) = 2.37 FLOW DEPTH(FEET) = .39 TRAVEL TIME (MIN.) = 3.38 TC(MIN.) = 21.65 ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1052.00 TO NODE 1053.10 IS CODE = 8 > > >> )ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <(<<< 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.709 SOIL CLASSIFICATION IS "A" is SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7339 II SUBAREA AREA(ACRES) = 10.83 SUBAREA RUNOFF(CFS) = 21.54 TOTAL AREA(ACRES) = 29.97 TOTAL RUNOFF(CFS) = 68.85 • TC(MIN) = 21.65 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** { II FLOW PROCESS FROM NODE 1053.00 TO NODE 1053.10 IS CODE = 8 ?))))ADDITION OF SUBAREA TO MAINLINE PEAK FLOW((<<< 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.709 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7339 SUBAREA AREA(ACRES) = 7.51 SUBAREA RUNOFF(CFS) = 14.93 TOTAL AREA(ACRES) = 37.48 TOTAL RUNOFF(CFS) = 83.78 TC(MIN) = 21.65 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1053.10 TO NODE 1055.10 IS CODE = 5 } > >> )COMPUTE TRAPEZOIDAL- CHANNEL FLOW( <<(( 1 > > >> }TRAVELTIME THRU SUBAREA« < <( ).JPSTREAM NODE ELEVATION = 1319.50 II DOWNSTREAM NODE ELEVATION = 1315.70 CHANNEL LENGTH THRU SUBAREA(FEET) = 440.00 CHANNEL BASE(FEET) = 50.00 "Z" FACTOR = 3.000 MANNINGS FACTOR = .040 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 83.78 FLOW VELOCITY(FEET /SEC) = 2.52 FLOW DEPTH(FEET) = . 64 TRAVEL TIME(MIN.) = 2.91 TC(MIN.) = 24.57 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** I: FLOW PROCESS FROM NODE 1054.00 TO NODE 1055.10 IS CODE = 8 » >> )ADDITION OF SUBAREA TO MAINLINE PEAK FLOW( <<<< 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.512 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7248 SUBAREA AREA(ACRES) = 21.61 SUBAREA RUNOFF(CFS) = 39.34 TOTAL AREA(ACRES) = 59.09 TOTAL RUNOFF(CFS) = 123.12 TC(MIN) = 24.57 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** } FLOW PROCESS FROM NODE 1055.00 TO NODE 1055.10 IS CODE = 8 > > >> }ADDITION OF SUBAREA TO MAINLINE PEAK FLOW((((( 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.512 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7248 SUBAREA AREA(ACRES) = 14.14 SUBAREA RUNOFF(CFS) = 25.74 TOTAL AREA(ACRES) = 73.23 TOTAL RUNOFF(CFS) = 148.87 TC(MIN) = 24.57 } * *** * ** ************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1055.10 TO NODE 1056.10 IS CODE = 5 II > > >> > COMPUTE TRAPEZOIDAL- CHANNEL FLOW(((((' > > >> }TRAVELTIME THRU SUBAREA « (<< II UPSTREAM NODE ELEVATIDN = 1315.70 DOWNSTREAM NODE ELEVATION = 1299.40 CHANNEL LENGTH THRU SUBAREA(FEET) = 835.00 I CHANNEL BASE(FEET) = 50.00 "Z" FACTOR = 3.000 MANNINGS FACTOR = .040 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 148.87 I FLOW VELOCITY(FEET /SEC) = 4.06 FLOW DEPTH(FEET) = .70 TRAVEL TIME(MIN.) = 3.43 TC(MIN.) = 27.99 1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1056.00 TO NODE 1056.10 IS CODE = 8 II >> }))ADDITION OF SUBAREA TO MAINLINE PEAK FLOW((< << 1 AO►_ 0►A VFW/ ROTNFOL_L INTENSITY (INCH /HOUR) = 2.323 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7146 II SUBAREA AREA(ACRES) = 33.97 SUBAREA RUNOFF(CFS) = 56.38 TOTAL AREA(ACRES) = 107.20 TOTAL RUNOFF(CFS) = 205.25 TC(MIN) = 27.99 rLO m PROCESS FROM NODE 1056.10 TO NODE 1056.10 IS CODE = 1 II >>>)>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE(M( >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES((((( • II CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 27.99 RAINFALL INTENSITY (INCH./HOUR) = 2.32 TOTAL STREAM AREA (ACRES) = 107.20 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 205.25 CONFLUENCE INFORMATION: • STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) mi 1 205.25 27.99 2.323 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO I: FORMUL M A(SBC) USED FOR 1 STREAMS. . VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 205.25 11 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(CFS) = 205.25 TIME(MINUTES) = 27.991 TOTAL AREA(ACRES) = 107.20 ' OF RATIONAL METHOD ANALYSIS 11 1 1 1 1 II 1 1 MASTER NYDRnLOG% I) 25vR 1 I 1 1 1 ■ ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) Copyright 1983,86,87 Advanced Engineering Software (aes) Ver. 4.1C Release Date: 5 /11/87 Serial # I00908 Especially prepared for: 11 HALL & FOREMAN * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * N.BASELINE DBL BOX HYDROLOGY FROM MASTER PLAN * Q 25YR, FROM E.CHANNEL TO CHERRY AVE , N.BASELINE TO HIGHLAND AVE * VENKI.N, JN 3810 -20, 8/25/87 ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 3810 -1.DAT TIME /DATE OF STUDY: 13:54 8 /25/1987 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL*-- USER SPECIFIED STORM EVENT(YEAR) = 25.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .95 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.040 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.520 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 25.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.2069 SLOPE OF INTENSITY DURATION CURVE = .6000 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 200.00 TO NODE 200.10 IS CODE = 2 >>>> )RATIONAL METHOD INITIAL SUBAREA ANALYSIS < < < <( 1 DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -) 5 -7 DWELLINGS /ACRE I/ TC = K *E(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW- LENGTH = 1000.00 UPSTREAM ELEVATION = 1530.10 DOWNSTREAM ELEVATION = 1508.10 ELEVATION DIFFERENCE = 22.00 TC = .389*[( 1000.00 ** 3.00)/( 22.00)3** .20 = 13.227 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.990 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA RUNOFF(CFS) = 22.46 TOTAL AREA(ACRES) = 9.96 PEAK FLOW RATE(CFS) = 22.46 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 200.10 TO NODE 202.10 IS CODE = 3 )))))COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA <(( << DEPTH OF FLOW IN 21.0 INCH PIPE IS 17.2 INCHES N� PIPEFLOW VELOCITY(FEET/SEC.) = 10.7 UPSTREAM NODE ELEVATION = 1508.10 DOWNSTREAM NODE ELEVATION = 1503.00 N� FLOWLENGTH(FEET) = 240.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 22.46 ) TRAVEL TIME(MIN.) = .37 TC(MIN.) = 13.60 ] ���������� *** **********************w**************************************** N� FLOW PROCESS FROM NODE 202.10 TO NODE 202.10 IS CODE = 1 >>>>}DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE((((( m� CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 13.60 RAINFALL INTENSITY (INCH./HOUR) = 2.94 m� EFFECTIVE STREAM AREA(ACRES) = 9.96 TOTAL STREAM AREA(ACRES) = 9.96 PEAK FLOW RATE(CFS) AT CONFLUENCE = 22.46 ******************************* ******************************** FLOW PROCESS FROM NODE 201.00 TO NODE 202.10 IS CODE = 2 >>>}>RATIONAL METHOD INITIAL SUBAREA ANALYSIS((<<< N� DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5-7 DWELLINGS/ACRE �� TC = K*[ (LENGTH** 3.00)/(ELEVATION CHANGE) 3** .20 INITIAL SUBAREA FLOW-LENGTH = 1100.00 UPSTREAM ELEVATION = 1529.90 DOWNSTREAM ELEVATION = 1503.00 ELEVATION DIFFERENCE = 26.90 N� TC = . 389*[ ( 1100.00** 3.00)/( 26.90)3** .20 = 13.453 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.960 SOIL CLASSIFICATION IS "A" N� RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA RUNOFF(CFS) = 14.79 TOTAL AREA(ACRES) = 6.64 PEAR FLOW RATE(CFS) = 14.79 **************************************************************************** FLOW PROCESS FROM NODE 202.10 TO NODE 202.10 IS CODE = 1 }>>> >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE((((( CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: U� TIME OF CONCENTRATION(MINUTES) = 13.45 RAINFALL INTENSITY (INCH./HOUR) = 2.96 EFFECTIVE STREAM AREA(ACRES) = 6.64 N� TOTAL STREAM AREA(ACRES) = 6.64 PEAK FLOW RATE(CFS) AT CONFLUENCE = 14.79 **************************************************************************** FLOW PROCESS FROM NODE 202.00 TO NODE 202.10 IS CODE = 2 � > > > > > RATIONAL METHOD INITIAL SUBAREA ANALYSIS ( < ( <( DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5-7 DWELLINGS/ACRE 1 Tr = w*r /| FWPTA** " CHANGE) 1** .20 UPSTREAM ELEVATION = 1512.90 I DOWNSTREAM ELEVATION = 1503.00 ELEVATION DIFFERENCE = 9.90 TC = .389* C ( 750.00** 3.00)/( 9.90)7** .20 = 13.057 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.013 II SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RNTE, Frn(INCH /HR) = .4850 SUBAREA RUNOFF(CFS) = 6.76 II TOTAL AREA(ACRES) = 2.97 PEAK FLOW RATE(CFS) = 6.76 11 ** * ** * * * * * * ** * * * * ** * * * ** ** * * * * * * * ** * * * * ** * ** ** * ** ** * * ** ** * * ** * * * * * * * * * * ** ** * FLOW PROCESS FROM NODE 202.10 TO NODE 202.10 IS CODE = 1 > ))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<( )))))AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES( < < << CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: II TIME OF CONCENTRATION(MINUTES) = 13.06 RAINFALL INTENSITY (INCH. /HOUR) = 3.01 EFFECTIVE STREAM AREA(ACRES) = 2.97 1: TOTAL STREAM AREA(ACRES) = 2.97 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.76 CONFLUENCE INFORMATION: I; STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN.) (INCH /HOUR) (IN /HR) AREA(ACRES) II 1 22.46 13.60 2.940 .49 9.96 2 14.79 13.45 2.960 .49 6.64 3 6.76 13.06 3.013 .49 2.97 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. SUMMARY RESULTS: III I STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) I 1 43.69 19.57 2 43.79 19.46 3 43.62 18.98 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 43.79 TIME(MINUTES) = 13.453 EFFECTIVE AREA(ACRES) = 19.46 TOTAL AREA(ACRES) = 19.57 1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 202.10 TO NODE 204.10 IS CODE = 3 11 > > >> )COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA(( < << > > >> >USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW)((((( DEPTH OF FLOW IN 27.0 INCH PIPE IS 21.1 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 13.1 I UPSTREAM NODE ELEVATION = 1503.00 DOWNSTREAM NODE ELEVATION = 1490.50 FLOWLENGTH(FEET) = 540.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 I PIPEFLOW THRU SUBAREA(CFS) = 43.79 TRAVEL TIME(MIN.) = .68 TC(MIN.) = 14.14 FLOW PROCESS FROM NODE 203.00 TO NODE 204.10 IS CODE = 8 }))}>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< N� 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.873 - SOIL CLASSIFICATION IS "A" RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 I SUBREA ARE(CRES) = 13.57 SUBREA RUNOFF(CFS) = 29.17 EFFECTIVE AREA(ACRES) = 33.03 AVERAGED Fm(INCH/HR) = .485 II / TOTAL AREA(ACRES) = 33.14 PEAK FLO� RATE(CFS) = 7�.99 TC(MIN) = 14.14 **************************************************************************** FLOW PROCESS FROM NODE 204.00 TO NODE 204.10 IS CODE = 8 ] I: )))))ADDITION OF SUBAREA TO MAINLINE PEAK FLOW((((( 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.873 SOIL CLASSIFICATION IS "A" RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA AREA(ACRES) = 5.75 SUBAREA RUNOFF(CFS) = 12.36 ! 0� EFFECTIVE AREA(ACRES) = 38.78 �� AVERAGED Fm(INCH/HR) = .485 TOTAL AREA(ACRES) = 38.89 PEAK FLOW RATE(CFS) = 83.35 0� TC(MIN) = 14.14 N� e*************************************************************************** °� FLOW PROCESS FROM NODE 204.10 TO NODE 206.10 IS CODE = 3 Q� )))))COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<(<( �� \ ))))}USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<(< I �EPTH OF FLOW IN 36.0 INCH PIPE IS 24.8 %NCHES ' PIPEFLOW VELOCITY(FEET/SEC.) = 16.1 UPSTREAM NODE ELEVATION = 1490.50 DOWNSTREAM NODE = 1474.60 FLOWLENGTH(FEET) = 650.00 MANNINGS N = .013 �� ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 ] PIPEFLOW THRU SUBAREA(CFS) 83.35 TRAVEL TIME(MIN.) = .67 TC(MIN.) = 14.81 �� **************************************************************************** N� FLOW PROCESS FROM NODE 205.00 TO NODE 208.10 IS CODE = 8 ))))>ADDITIQN OF SUBAREA TO MAINLINE PEAK FLOW<(<<( � 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.794 SOIL CLASSIFICATION IS "A" RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 N� SUBAREA AREA(ACRES) = 11.62 SUBAREA RUNOFF(CFS) = 24.15 EFFECTIVE AREA(ACRES) = 560.40 AVERAGED Fm(%NCH/HR) = .465 N� TOTAL AREA(ACRES) = 50.51 m� PEAK FLOW RATE(CFS) = 104.73 TC(MIN) = 14"81 II **************************************************************************** FLOW PROCESS FROM NODE 206.00 TO NODE 206"10 IS CODE = 8 ] )))))ADDITION OF SUBAREA TO MAINLINE PEAK FLOW((((( 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.794 SOIL CLASSIFICATION IS "A" RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA AREA(ACRES) = 11.36 SUBAREA RUNOFF(CFS) = 23.61 EFFECTIVE AREA(ACRES) = 61.76 I AVERGED Fm(INCH/HR) = .485 TOTAL AREA(ACRES) = 61.87 PEAK FLOW RATE(CFS) = 128 . 33 . \ ' TC(MIN) = 14.81 ********************************************************* FLOW PROCESS FROM NODE 206.10 TO NODE 208.10 IS CODE = 3 . ))))}COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA(M( )))))USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)((((( DEPTH OF FLOW IN 39.0 INCH PIPE IS 27.8 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 20.3 N� UPSTREAM NODE ELEVATION = 1478.90 DOWNSTREAM NODE ELEVATION = 1468.00 FLOWLENGTH(FEET) = 315.00 MANNINSS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 128.33 TRAVEL TIME(MIN.) = .26 TC(MIN.) = 15.07 1: **************************************************************************** FLOW PROCESS FROM NODE 208.10 TO NODE 208.10 IS CODE = 1 � - )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<(<(( CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) �� 1 ' = 07 ^ RAINFALL INTENSITY (INCH./HOUR) = 2.76 EFFECTIVE STREAM AREA(ACRES) = 61.76 N� TOTAL STREAM AREA(ACRES) = 61.87 PEAK FLOW RATE(CFS) AT CONFLUENCE = 128.33 ******************************************* . ******************************* '' FLOW PROCESS FROM NODE 20 TO NODE 208.10 IS CODE = 2 )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS((((( DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -) 5-7 DWELLINGS/ACRE TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH = 820.00 I UPSTREAM ELEVATION = 1478.90 9� DOWNSTREAM ELEVATION = 1468.00 . B-EVATION DIFFERENCE = 10.90 TC = .389*[( 820.00** 3.00)/( 189.90)]** .20 = 13.513 | 0� 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.952 SOIL CLASSIFICATION IS "A" RESIDENTIAL-} 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA RUNOFF(CFS) = 13.63 TOTAL AREA(ACRES) = 6.14 PEAK FLOW RATE(CFS) = 13.63 �� �� °� **************************************************************************** FLOW PROCESS FROM NODE 208.10 TO NODE 208.10 IS CODE = 1 )))))DESIGNATE INDEPENDENT STREAM FOR <(((< 11)1)AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES{((<( CONFLUENCE VALUES USED FOR INDEPENDENT STKEHM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 13.51 RAINFALL INTENSITY (INCH. /HOUR) = 2.95 EFFECTIVE STREAM AREA(ACRES) = 6.14 TOTAL STREAM AREA(ACRES) = 6.14 PEAK FLOW RATE(CFS) AT CONFLUENCE = 13.63 CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN.) (INCH /HOUR) (IN /HR) AREA(ACRES) 1 128.33 15.07 2.765 .48 61.76 2 13.63 13.51 2.952 .49 6.14 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) 1 140.93 67.90 2 138.14 61.51 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 140.93 TIME(MINUTES) = 15.072 EFFECTIVE AREA(ACRES) = 67.90 TOTAL AREA(ACRES) = 68.01 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 208.10 TO NODE 208.c0 IS CODE = 3 > > > > >COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA <( <(< ) ))> )USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW)((((( DEPTH OF FLOW IN 54.0 INCH PIPE IS 40.6 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 11.0 UPSTREAM NODE ELEVATION = 1462.00 DOWNSTREAM NODE ELEVATION = 1458.00 FLOWLENGTH(FEET) = 620.00 MANNINGS N = .013 -'`: ESTIMATED PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 140.93 TRAVEL TIME(MIN.) = .94_ TC(MIN.) = 16.01 *********************************-*********** - * * * * * *- * * * * * * * * * * *- * *- * * * * * * ** FLOW PROCESS FROM NODE 208.20 TO NODE 208.`0 IS CODE = 1 > > >> )DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<< << CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 16.01 RAINFALL INTENSITY (INCH. /HOUR) = 2.67 EFFECTIVE STREAM AREA(ACRES) = 67.90 TOTAL STREAM AREA(ACRES) = 68.01 PEAK FLOW RATE(CFS) AT CONFLUENCE = 140.93 1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 207.00 TO NODE 208.20 IS CODE = 2 ))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS((( « DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -) 5 -7 DWELLINGS /ACRE TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 UPSTREAM ELEVATION = 1488.00 DOWNSTREAM ELEVATION = 1467.00 ELEVATION DIFFERENCE = 21.00 TC = .389* C ( 900.00 ** 3.00)/k 21.00)7** .20 = 12.533 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.089 SOIL CLASSIFICATION IS "A" RESIDENTIAL -) 5 -7 DWELLINGS /ACRE SUBAREA LOSS RHTE, Frn(INCH /HR) = .4850 SUBAREA RUNOFF(CFS) = 20.43 1 TOTAL AREA(ACRES) = 8.72 PEAK FLOW RATE(CFS) = 20.43 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 208.20 TO NUDE 208.20 IS CODE = 1 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE < <(<< )))))AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES((((( CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: 1: TIME OF CONCENTRATION(MINUTES) = 12.53 RAINFALL INTENSITY (INCH. /HOUR) = 3.09 EFFECTIVE STREAM AREA(ACRES) = 8.7E 1: TOTAL STREAM AREA(ACRES) = 8.72 PEAK FLOW RATE(CFS) AT CONFLUENCE = 20.43 CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN.) (INCH /HOUR) (IN /HR) AREA(ACRES) 1 140.93 16.01 2.666 .48 67.90 2 20.43 12.53 3.089 .49 8.72 I: RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE 1: NUMBER Q(CFS) AREA(ACRES) 1 158.05 76.62 2 152.09 61.86 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 158.05 TIME(MINUTES) = 16.013 EFFECTIVE AREA(ACRES) = 76.62 TOTAL AREA(ACRES) = 76.73 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 208.20 TO NODE 209.10 IS CODE = 3 )))))COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA < < <(< 11 )>)> )USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW)( <(<< DEPTH OF FLOW IN 45.0 INCH PIPE IS 32.6 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 18.4 UPSTREAM NODE ELEVATION = 1460.00 DOWNSTREAM NODE ELEVATION = 1433.00 FLOWLENGTH(FEET) = 1150.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 45.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 158.05 TRAVEL TIME (MIN.) = 1.04 TC (MIN.) = 17.05 1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 209.00 TO NODE 209.10 IS CODE = 8 )AffTTTON OF SUBAREA TO MAINLINE PEAK FLOW< <( << ~ ~ 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.567 � SOIL CLASSIFICATION IS "A" I RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA AREA(ACRES) = 22.04 SUBAREA RUNOFF(CFS) = 41.31 EFFECTIVE AREA(ACRES) = 98.66 1 AVERAGED Fm(INCH/HR) = .485 TOTAL AREA(ACRES) = 98.77 � . PEAK FLOW RATE(CFS) = 184.91 / TC(MIN) = 17.05 �� �= **************************************************************************** II FLOW PROCESS FROM NODE 209. 00 TO NODE 2169. l69 IG CODE = 3 )))}}COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA(<<<( 1 �� )))))USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) < < ( < < DEPTH OF FLOW IN 48.0 INCH PIPE IS 36.2 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 18.2 I UPSTREAM NODE ELEVATION = 1433.00 DOWNSTREAM NODE ELEVATION = 1413.00 FLOWLENGTH(FEET) = 965.00 MANNINGS N = .013 I ESTIMATED PIPPIPE DIAMETER(INCH) = 48 . 00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 184.91 TRAVEL TIME(MIN.) = .88 TC(MIN.) = 17.94 1 **************************************************************************** 1 FLOW PROCESS FROM NODE 210.00 TO NODE 210.10 IS CODE = 8 )))))ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<(( 1 ) 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.491 - SOIL CLASSIFICATION IS "A" RESIDENTIAL-} 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 I SUBAREA AREA(ACRES) = 25.47 SUBAREA RUNOFF(CFS) = 45.98 EFFECTIVE AREA(ACRES) = 124.13 AVERAGED Fm(INCH/HR) = .485 TOTAL AREA(ACRES) = 124.24 I PEAK FLOW RATE(CFS) = 224.08 TC(MIN) = 17.94 N� - � «� **************************************************************************** FLOW PROCESS FROM NODE 210.10 TO NODE 211.10 IS CODE = 3 � � ~~ > ) ) > )COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA( M t )))))USING COMPUTER-ESTIMATED PIP�SIZE (NOM-PQ�SSURE FLOW><<<<< 1 NN DEPTH OF FLOW IN 51.0 INCH PIPE IS 40.2 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 18.7 UPSTREAM NODE ELEVATION = 1413.00 1 NN DOWNSTREAM NODE ELEVATION = 1404.00 FLOWLENGTH(FEET) = 450.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 51 . 00 NUMBER OF PIPES = 1 Y� PIPEFLOW THRU SUBAREA(CFS) = 224.08 I �� 1 TRAVEL TIME(MIN.) = .40 TC(MIN.) = 18.34 0 mN **************************************************************************** FLOW PROCESS FROM NODE 211.00 TO NODE 211.10 IS CODE = 8 1 )))))ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS KATE, Frn (INCH /HR) = .4850 SUBAREA AREA (ACRES) = 27.71 SUBAREA RUNOFF(CFS) = 49.20 EFFECTIVE AREA(ACRES) = 151.84 AVERAGED Frn(INCH /HR) = .485 TOTAL AREA(ACRES) = 151.95 PEAK FLOW RATE(CFS) = 269.61 TC(MIN) = 18.34 *****************.**************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 211.10 TO NODE 212.10 IS CODE = 3 ))) ))COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<(t< >>)> )USING COMPUTER- ESTIMATED PIPESIZE (NON - PRESSURE FLOW)<( <<< DEPTH OF FLOW IN 72.0 INCH PIPE IS 57.0 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 11.2 UPSTREAM NODE ELEVATION = 1404.00 DOWNSTREAM NODE ELEVATION = 1398.00 FLOWLENGTH(FEET) = 1315.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER (INCH) = 72.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 269.61 TRAVEL TIME(MIN.) = 1.95 TC(MIN.) = 20.29 FLOW PROCESS FROM NODE 212.00 TO NODE 212.10 IS CODE = 8 )))))ADDITION OF SUBAREA TO MAINLINE PEAK FLOW(( < << 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.313 SOIL CLASSIFICATION IS "A" RESIDENTIAL -) 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Frn (INCH /HR) = .4850 SUBAREA AREA(ACRES) = 78.90 SUBAREA RUNOFF(CFS) = 129.82 EFFECTIVE AREA(ACRES) = 230.74 AVERAGED Fm(INCH /HR) = .485 TOTAL AREA(ACRES) = 230.85 PEAK FLOW RATE (CFS) = 379.67 TC(MIN) = 20.29 ********************************************* * * * * * * * * * * * * * * *** * * ** * * * * * * * * * FLOW PROCESS FROM NODE 212.10 TO NODE 213.10 IS CODE = 3 )))))COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<( )) >) >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) < << << DEPTH OF FLOW IN 81.0 INCH PIPE IS 66.1 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 12.1 UPSTREAM NODE ELEVATION = 1398.00 DOWNSTREAM NODE ELEVATION = 1392.00 FLOWLENGTH(FEET) = 1320.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 81.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 379.67 TRAVEL TIME(MIN.) = 1.81 TC(MIN.) = 22.10 *******************-************************* * * * ** * ** * * * * * * * ** * * * * ** * * ** ** ** FLOW PROCESS FROM NODE 213.00 TO NODE 213.10 IS CODE = 8 > > >> )ADDITION OF SUBAREA TO MAINLINE PEAK FLOW < <( <( 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.197 SOIL CLASSIFICATION IS "A" RESIDENTIAL -) 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Frn(INCH /HR) = .4850 EFFECTIVE[ AREA(ACRES) = 309.49 AVERAGED Fm(INCH/HR) = .483 TOTAL AREA(ACRES) = 309.60 PEAK FLOW RATE(CFS) = 477.00 ] TC(MIN) = 22.10 **************************************************************************** FLOW PROCESS FROM NODE 213.10 TO NODE 214.10 IS CODE = 3 )))))COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<(<<< DEPTH OF FLOW IN 87.0 INCH PIPE IS 65.9 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 14.2 UPSTREAM NODE ELEVATION = 1392.00 DOWNSTREAM NODE ELEVATION = 1384.00 FLOWLENGTH(FEET) = 1400.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 87.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 477.00 TRAVEL TIME(MIN.) = 1.64 TC(MIN.) = 23.74' **************************************************************************** FLOW PROCESS FROM NODE 214.00 TO NODE 214.10 1S CODE = 8 )))))ADDITION OF SUBAREA TO MAINLINE PEAK FLOW(<<<( = 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.105 SOIL CLASSIFICATION IS "A" RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA AREA(ACRES) = 82.69 SUBAREA RUNOFF(CFS) = 120.56 EFFECTIVE AREA(ACRES) = 392.18 AVERAGED Fm(INCH/HR) = .485 TOTAL AREA(ACRES) = 392.29 PEAK FLOW RATE(CFS) = 571.80 TC(MIN) = 23.74 **************************************************************************** FLOW PROCESS FROM NODE 215.00 TO NODE 214.10 IS CODE = 8 )))))ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< = 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.105 SOIL CLASSIFICATION IS "A" RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA AREA(ACRES) = 246.80 SUBAREA RUNOFF(CFS) = 359.83 EFFECTIVE AREA(ACRES) = 638.98 AVERAGED Fm(INCH/HR) = .485 TOTAL AREA(ACRES) = 639.09 PEAK FLOW RATE(CFS) = 931.63 TC(MIN) = 23.74 ***************************************************************************4 FLOW PROCESS FROM NODE 214.10 TO NODE 216.10 IS CODE = 5 )))))COMPUTE TRAPEZOIDAL-CHANNEL FLOW<<<(( )>>>>TRAVELTIME THRU SUBAREA<<<{< UPSTREAM NODE ELEVATION = 1384.00 DOWNSTREAM NODE ELEVATION = 1368.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 2600.00 CHANNEL BASE(FEET) = 20.00 "Z" FACTOR = .000 wnm^.rmco c,`rrno - °.= ^^"",=.= . .. ° CHANNEL FLOW THRU SUBAREA(CFS) = 931.63 FLOW VELOCITY(FEET/SEC) = 14.25 FLOW DEPTH(FEET) = 3.27 N� TRAVEL TIME(MIN.) = 3.04 TC(MIN.) = 26.79 **************************************************************************** FLOW PROCESS FROM NODE 216.00 TO NUDE 216.10 IS CODE = 8 >>>}>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.958 SOIL CLASSIFICATION IS "A" RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 ' - SUBAREA AREA(ACRES) = 156.35 SUBAREA RUNOFF(CFS) = 207.29 EFFECTIVE AREA(ACRES) = 795.33 AVERAGED Fm(INCH/HR) = .485 � TOTAL AREA(ACRES) = 795.44 PEAK FLOW RATE(CFS) = 1054.46 TC(MIN) = 26.79 **************************************************************************** N� FLOW PROCESS FROM NODE 217.00 TO NODE 216.10 IS CODE = 8 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW(<<<( 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.958 SOIL CLASSIFICATION IS "A" RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 N� SUBAREA AREA(ACRES) = 154.20 SUBAREA RUNOFF(CFS) = 204.44 EFFECTIVE AREA(ACRES) = 949.53 AVERAGED Fm(INCH/HR) = .485 II OTAL AREA(ACRES) = 94g ^ 64 \ '/ PEAK FLOW RATE(CFS) = 1258.90 TC(MIN) = 26.79 *********************************************************** FLOW PROCESS FROM NODE 216.10 TO NODE 217.10 IS CODE = 5 }>>>>COMPUTE TRAPEZOIDAL-CHANNEL FLOW((((( >��>�TRAVELTIME THRU SUBAREA<<<<< ' _- | N� UPSTREAM NODE ELEVATION = 1368.00 ( DOWNSTREAM NODE ELEVATION = 1350.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 2700.00 N� CHANNEL BASE(FEET) = 20.00 "Z" FACTOR = .000 MANNINGS FACTOR = .015 MAXIMUM DEPTH(FEET) = 6.00 CHANNEL FLOW THRU SUBAREA(CFS) = 1258.90 FLOW VELOCITY(FEET/SEC) = 16.13 FLOW DEPTH(FEET) = 3.90 TRAVEL TIME(MIN.) = 2 79 TC(MIN.) = 29 58 . . . ~ **************************************************************************** FLOW PROCESS FROM NODE 218.00 TO NODE 217.10 IS CODE = 8 >>>}>ADDITION OF SUBAREA TO MAINLINE PEAK F0W<<<<< ' . . 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.845 N� SOIL CLASSIFICATION IS "A" RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA AREA(ACRES) = 160.45 SUBAREA RUNOFF(CFS) = 196.41 EFFECTIVE AREA(ACRES) = 1109.98 AVERAGED Fm(INCH/HR) = .485 TvIroI OPPO/OrmPo) = 1110 'mq ~ ~ TC(MIN) = 29.58 **************************************************************************** FLOW PROCESS FROM NODE` 219.00 TO NODE 217.,0 IS CODE = 8 1 ~� } } } > )ADDITION OF SUBAREA TO MAINLINE PEAK FLOW< < ( ( < • 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.845 N� SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA AREA(ACRES) = 166.75 SUBAREA RUNOFF(CFS) = 262.35 EFFECTIVE AREA(ACRES) = 1276.73 AVERAGED Fm(INCH/HR) = .434 TOTAL AREA(ACRES) = 1276.84 PEAK FLOW RATE(CFS) = 1621.08 TC(MIN) = 29.58 e*************************************************************************** FLOW PROCESS FROM NODE 217.10 TO NODE 219.10 IS CODE = 5 )))))COMPUTE TRAPEZOIDAL-CHANNEL FLOW < ( ( < ))))}TRAVELTIME THRU SUBAREA<<<<( UPSTREAM NODE ELEVATION = 1350.00 N� DOWNSTREAM NODE ELEVATION = 1324.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 2700.00 CHANNEL BASE(FEET) = 20.00 "Z" FACTOR = .000 MANNINGS FACTOR = .015 MAXIMUM DEPTH(FEET) = 6.00 CHANNEL FLOW THRU SUBAREA(CFS) = 1621.08 FLOW VELOCITY(FEET/SEC) = 19.82 FLOW DEPTH(FEET) = 4.09 TRAVEL TIME(MIN.) = 2.27 TC(MIN.) = 31.85 ******************************************************************* FLOW PROCESS FROM NODE 220.00 TO NODE 219.10 IS CODE = 8 )))))ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<(<< - 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.765 SOIL CLASSIFICATION IS "A" RESIDENTIAL-) 5-7 DWELLING ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA AREA(ACRES) = 160.10 SUBAREA RUNOFF(CFS) = 184.44 EFFECTIVE AREA(ACRES) = 1436.83 AVERAGED Fm(INCH/HR) = .440 | N� TOTAL AREA(ACRES) = 1436.94 PEAK FLOW RATE(CFS) = 1713.48 TC(MIN) = 31.85 1 **************************************************************************** FLOW PROCESS FROM NODE 221.00 TO NODE 219.10 IS CODE = 8 { )))))ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<(( N� 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.765 ' ~~ SOIL CLASSIFICATION IS "A" . / RESIDENTIAL-} 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 N� SUBAREA AREA(ACRES) = 160.10 SUBAREA RUNOFF(CFS) = 184.44 EFFECTIVE AREA(ACRES) = 1596.93 AVERAGED Fm(INCH/HR) = .444 TOTAL AREA(ACRES) = 1597.04 C PEAK FLOW RATE(CFS) = 1897.91 TC(MIN) = 31.85 ******** ********************************************************** N� FLOW PROCESS FROM NODE 219.00 TO NODE 221.10 IS CODE = 5 >>>>>COMPUTE TRAPEZOIDAL-CHANNEL FLOW<<<(( )}>>}TRAVELTIME THRU SUBAREA<<<<< 1 ` UPSTREAM NODE ELEVATION = 1324.00 DOWNSTREAM NODE ELEVATION = 1298.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 26569.00 CHANNEL BASE(FEET) = 20.00 "Z" FACTOR = .000 MANNINGS FACTOR = .015 MAXIMUM DEPTH(FEET) = 6.00 | N� CHANNEL FLOW THRU SUBAREA(CFS) = 1897.91 FLOW VELOCITY(FEET/SEC) = 20.92 FLOW DEPTH(FEET) = 4.54 } TRAVEL TIME(MIN.) = 2.11 TC(MIN.) = 33.96 +o*************************************************e************************* FLOW PROCESS FROM NODE 222.00 TO NODE 221.10 IS CODE = 8 )))))ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<(((( 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.698 SOIL CLASSIFICATION IS "A" RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA AREA(ACRES) = 160.05 SUBAREA RUNOFF(CFS) = 174.78 EFFECTIVE AREA(ACRES) = 1756.98 AVERAGED Fm(INCHyHR) = .448 TOTAL AREA(ACRES) = 1757.09 PEAK FLOW RATE(CFS) = 1976.87 �� TC(MIN) = 33.96 ********************************************e******************************* FLOW PROCESS FROM NODE 223.00 TO NODE 221.10 IS CODE = 8 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW((((( 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.698 ( 0� SOIL CLASSIFICATION IS "A" RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA AREA(ACRES) = 160,20 SUBAREA RUNOFF(CFS) = 174.94 EFFECTIVE AREA(ACRES) = 1917.18 AVERAGED Fm(INCH/HR) = .451 TOTAL AREA(ACRES) = 1917.29 PEAK FLOW RATE(CFS) = 2151.81 TC(MIN) = 33.96 1 N� ******************************** ****************************** FLOW PROCESS FROM NODE 221.10 TO NODE 221.10 IS CODE = 1 � - )))))DESIGNATE INDEPENDENT STREAM FOR CQNFLUENCE(M( )))))AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES(M( N� ARE: �ONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 �E: TIME OF CONCENTRATION(MINUTES) = 33.96 RAINFALL RAINFALL INl[ENSITY (INCH./HOUR) = 1.70 EFFECTIVE STREAM AREA(ACRES) = 1917.18 TOTAL STREAM AREA(ACRES) = 1917.29 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2151.81 CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN.) (INCH/HOUR) (IN/HR) AREA(ACRES) 1 2151.81 33.96 1.698 .45 1917.18 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 1 STREAMS ^ SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) 1 2151.81 1917.18 | U� COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 2151.81 TIME(MINUTES) = 33.956 EFFECTIVE AREA(ACRES) = 1917.18 TOTAL AREA(ACRES) = 1917.29 | — END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 1917.29 n� EFFECTIVE AREA(ACRES) = 1917.18 PEAK FLOW RATE(CFS) = 2151.81 | N� END OF RATIONAL METHOD ANALYSIS � . ` ' -- ' . � — N� I 1 � /IASTE2 H 100 yR I7 1 1 Q l 1 1, RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 198E SAN BERNARDINO CO. HYDROLOGY CRITERION) Copyright 1983,86,87 Advanced Engineering Software (aes) Ver. 4.1C Release Date: 5/11/87 Serial # I00908 Especially p y prepared for: HALL & FOREMAN * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * N.BASELINE DBL BOX HYDROLOGY FROM MASTER PLAN * 1: * 0 100YR FROM E.CHANNEL TO CHERRY AVE , N.BASELINE TO HIGHLAND AVE * * VENKI.N, JN 3810 -20, FILE 3810 -1. , 8/25/87 * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 3810 -1.DAT TIME /DATE OF STUDY: 14: 5 8/25/1987 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL * -- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .95 -° ) *USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.040 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.520 _ COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.5200 SLOPE OF INTENSITY DURATION CURVE = .6000 **********************-********************** * * * * * * * * * * * * * * * * * * * * * * * *- * * * * ** FLOW PROCESS FROM NODE 20 10 NODE 200.10 I S CODE = 2 > > >> )RATIONAL METHOD INITIAL SUBAREA ANALYSIS( < < << DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE TC = K *E(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW- LENGTH = 1000.00 UPSTREAM ELEVATION = 1530.10 DOWNSTREAM ELEVATION = 1508.10 ELEVATION DIFFERENCE = 22.00 TC = .389* E ( 1000.00 ** 3.0e)/( 22.00)]** .20 = 13.227 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.766 SOIL CLASSIFICATION IS "A " RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Frn(INCH /HR) = .4850 SUBAREA RUNOFF(CFS) = 29.41 TOTAL AREA(ACRES) = 9.96 PEAK FLOW RATE(CFS) = 29.41 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 200.10 TO NODE 202.10 IS CODE = 3 > > >> >COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA((((( DEPTH OF FLOW IN 24.0 INCH PIPE IS 18.1 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 11.6 UPSTREAM NODE ELEVATION = 1508.10 DOWNSTREAM NODE ELEVATION = 1503.00 FLOWLENGTH(FEET) = 240.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 29.41 TRAVEL TIME (MIN.) = .34 TC (MIN.) = 13.57 I; ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 202.10 TO NODE 202.10 IS CODE = 1 )>> ))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE((((( CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 13.57 RAINFALL INTENSITY (INCH. /HOUR) = 3.71 EFFECTIVE STREAM AREA(ACRES) = 9.96 TOTAL STREAM AREA(ACRES) = 9.96 PEAK FLOW RATE(CFS) AT CONFLUENCE = 29.41 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 201.00 TO NODE 202.10 IS CODE = 2 )) )))RATIONAL METHOD INITIAL SUBAREA ANALYSIS((((< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE TC = K*E(LENGTH** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW- LENGTH = 1100.00 } UPSTREAM ELEVATION = 1529.90 DOWNSTREAM ELEVATION = 1503.00 ELEVATION DIFFERENCE = 26.90 TC = .389* C ( 1100.00 ** 3.00)/( 26.90)]** .20 = 13.453 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.728 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA RUNOFF(CFS) = 19.38 TOTAL AREA(ACRES) = 6.6.4 PEAK FLOW RATE(CFS) = 19.38 1: ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** I/ FLOW PROCESS FROM NODE 202.10 TO NODE 202.10 IS CODE = 1 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE < <<(< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 13.45 RAINFALL INTENSITY (INCH. /HOUR) = 3.73 EFFECTIVE STREAM AREA(ACRES) = 6.64 TOTAL STREAM AREA(ACRES) = 6.64 PEAK FLOW RATE(CFS) AT CONFLUENCE = 19.38 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 202.00 TO NODE 202.10 IS CODE = 2 ) ))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS((( (< t: DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE Tr = K* 1 U ENGTH ** 3.00)/(ELEVATION CHANGE) 1 ** .20 UPSTREAM ELEVATION = 1512.90 DOWNSTREAM ELEVATION = 1503.00 N1 ELEVATION DIFFERENCE = 9.90 TC = .389*[( 750.00** 3.00)/( 9.90)]** .20 = 13.057 100 YEAR RAINFALL INTENSITY ( INCH/HOUR) = 3.795 I SOIL CLASSIFICATION IS "A" RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 li ) = . SUBAREA RUNOFF(CFS) 8 85 II ' TOTAL AREA(ACRES) = 2.97 PEAK FLOW RATE(CFS) = 8.85 **************************************************************************** 8� FLOW PROCESS FROM NODE 202.10 TO NODE 202.10 IS CODE = 1 �� ))))}DESIGNATE INDEPENDENT STREAM FOR CONFLUENCEM(< �� �� )))))AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES< ( << < CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MINUTES) = 13.06 �� RAINFALL INTENSITY (INCH. /HOUR) = 3.80 EFFECTIVE STREAM AREA(ACRES) = 2.97 TOTAL STREAM AREA(ACRES) = 2.97 144 PEAK FLOW RATE<CFG> AT CONFLUENCE = ��. 85 CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE N� NUMBER RATE(CFS) (MIN.) (INCH/HOUR) (IN/HR) AREA(ACRES) 1 29.41 13.57 3.708 .49 9.96 2 1�" 38 13. 45 �. �28 . 49 6.64 { m� a 8.85 13.06 3.795 .49 2.97 II \ ` RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. SUMMARY RESULTS: STREAM EFFECTIVE �� NUMBER Q(CFS) AREA (ACRES) 1 57.29 19.57 li 2 57.37 19.48 3 57.10 19.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: I PEK FLOW RTE(CFS) = 57. 37 TIME(MINUTES) = 13.453 EFFECTIVE AREA(ACRES) = 19.48 TOTAL AREA(ACRES) = 19.57 II **************************************************************************** FLOW PROCESS FROM NODE 202.10 TO NODE 204.10 IS CODE = 3 ~~ )))))COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA((((( )))))USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)'< < < < < II DEPTH OF FLOW IN 30.0 INCH PIPE IS 23 2 INCHES . . PIPEFLOW VELOCITY(FEET/SEC.) = 14 1 ] . . UPSTREAM NODE ELEVATION = 1503.00 I DOWNSTREAM NODE ELEVATION = 14969. 50 FLOWLENGTH(FEET) = 540.00 MANNINGS N = .013 I ESTIMTED PIPE DIMETER ( INCH) = 369. 00 NQMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 57.37 TRAVEL TIME(MIN.) = .64 TC(MIN.) = 14 09 . . . 0: **************************************************************************** FLOW PROCESS FROM NODE 203.00 TO NODE 204.10 IS CODE = 8 � } )))))ADDITION OF SUBAREA 10 MAINLINE PEHK FLDWt<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.625 • SOIL CLASSIFICATION IS "A" RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA AREA(ACRES) = 13.57 SUBAREA RUNOFF(CFS) = 38.35 EFFECTIVE AREA(ACRES) = 33.05 \ AVERAGED Fm(INCH/HR) = .485 TOTAL AREA(ACRES) = 33.14 | N� PEAK FLOW RATE(CFS) = 93.42 TC(MIN) = 14.09 ee**** ******************************************************** FLOW PROCESS FROM NODE 204.00 TO NODE 204.10 IS CODE = 8 )))))ADDITION OF SUBAREA TO MAINLINE PEAK FLOW(((({ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.625 SOIL CLASSIFICATION IS "A" RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE Fm(INCH/HR) = .4850 , . SUBAREA AREA(ACRES) = 5.75 SUBAREA RUNOFF(CFS) = 16.25 EFFECTIVE AREA(ACRES) = 38.80 AVERAGED Fm(INCH/HR) = .485 . 38.89 TOTAL AREA(ACRES) = 38 . PEAK FLOW RATE(CFS) = 103.67 TC(MIN) = 14.09 ******************* ********************************************************* FLOW PROCESS FROM NODE 204.10 TO NODE 206.10 IS CODE = 3 )))))COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA( < ( ( ( | - / ))))}USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)(<(<< DEPTH OF FLOW IN 39.0 INCH PIPE IS 28.2 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 17.1 UPSTREAM NODE ELEVATION = 1490.50 DOWNSTREAM NODE ELEVATION = 1474.60 FLOWLENGTH(FEET) = 650.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 109.67 ' TRAVEL TIME(MIN.) = .63 TC(MIN.) = 14.73 **************************************************************************** FLOW PROCESS FROM NODE 205.00 TO NODE 206.10 IS CODE = 8 ~~ }))))ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< � 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.531 SOIL CLASSIFICATION IS "A" RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA AREA(ACRES) = 11.62 SUBAREA RUNOFF(CFS) = 31.85 EFFECTIVE AREA(ACRES) = 50.42 AVERAGED Fm(INCH/HR) = .485 N� TOTAL AREA(ACRES) = 50.51 � m= PEAK FLOW RATE(CFS) = 138.23 TC(MIN) = 14.73 **************************************************************************** FLOW PROCESS FROM NODE 206.00 TO NODE 206.10 IS CODE = 8 1: m))ADDITION OF SUBAREA TO MAINLINE PEAK FLOW((<(( 100 YEAR RAINFALL INTENSITY(INCH/HOW) = 3.531 SOIL CLASSIFICATION IS "A" g RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA AREA(ACRES) = 11.36 SUBAREA RUNOFF(CFS) = 31.14 ( EFFECTIVE AREA(ACRES) = 61.78 AVERAGED Fm(INCH/HR) = .485 TOTAL AREA(ACRES) = 61 87 . l � PEAK FLOW RATE(CFS) = 169.37 / TC(MIN) = 14.73 **************************************************************************** FLOW PROCESS FROM NODE 206.10 TO NODE 208.10 IS CODE = 3 1 -- )))))COMPUTE PIPEFLOW TRAVELTIME THRU GUBAREA(<<<( �� N� )))))USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<(< �~ DEPTH OF FLOW IN 42.0 INCH PIPE IS 32.0 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 21.5 N� UPSTREAM NODE ELEVATION = 1478.90 DOWNSTREAM NODE ELEVATION = 1468.00 FLOWLENGTH(FEET) = 315.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 169.37 TRAVEL TIME(MIN.) = .24 TC(MIN.) = 14.97 **************************************************************************** FLOW PROCESS FROM NODE 208.10 TO NODE 208.10 IS CODE = 1 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCEM(( �� N� ) CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: `� TIME OF CONCENTRATION(MINUTES) = 14.97 RAINFALL INTENSITY (INCH./HOUR) = 3.50 EFFECTIVE STREAM AREA(ACRES) = 61.78 TOTAL STREAM AREA(ACRES) = 61.87 PEAK FLOW RATE(CFS) AT CONFLUENCE = 169.37 11 **************************************************************************** FLOW PROCESS FROM NODE 208.00 TO NODE 208.10 IS CODE = 2 �� m� >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL - > 5 DWELLINGS/ACRE 1/ TC = K*E(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH = 820.00 N� UPSTREAM ELEVATION = 1478.90 DOWNSTREAM ELEVATION = 1468.00 ELEVATION DIFFERENCE = 10.90 TC = .389*[( 820.00** 3.00)/( 10.90)3** .20 = 13.513 �� 100 YEAR RAINFALL- INTENSITY(INCH/HOUR) = 3.718 SOIL CLASSIFICATION IS "A" RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA RUNOFF(CFS) = 17.86 \ p� TOTAL AREA(ACRES) = 6.14 PEAK FLOW RATE(CFS} = 17 86 | � ^~' ^ **************************************************************************** FLOW PROCESS FROM NODE 208.10 TO NODE 208.10 IS CODE = 1 )))>>DESIGNATE INDEPENDENT STREAM FOR <M( )))))AND COMPUTE VARIOUS COWFLUENCED STREAM VALUES((((( CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 13.51 RAINFALL INTENSITY (INCH. /HOUR) = 3.72 EFFECTIVE STREAM AREA(ACRES) = 6.14 TOTAL STREAM AREA(ACRES) = 6.14 PEAK FLOW RATE(CFS) AT CONFLUENCE = 17.86 CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN.) (INCH /HOUR) (IN /HR) AREA(ACRES) I; 1 169.37 14.97 3.496 .49 61.78 2 17.86 13.51 3.718 .49 49 6.14 1: RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE 1: NUMBER Q(CFS) AREA(ACRES) 1 186.01 67.92 2 182.00 61.91 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 186.01 TIME(MINUTES) = 14.970 EFFECTIVE AREA(ACRES) = 67.92 TOTAL AREA(ACRES) = 68.01 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 208.10 TO NODE 208.`0 IS CODE = 3 1; > > > > >COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA < < < << > >>> >USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW)< < < << DEPTH OF FLOW IN 60.0 INCH PIPE IS 45.0 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 11.8 UPSTREAM NODE ELEVATION = 1462.00 DOWNSTREAM NODE ELEVATIUN = 1458.00 I; FLOWLENGTH(FEET) = 620.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 60.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 186.01 TRAVEL TIME (MIN.) = .88_ TC (MIN.) = 15.65 .*************************************************************************** FLOW PROCESS FROM NODE 208.20 TO NODE 208. 20 IS CODE = 1 > > > > >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 15.85 RAINFALL INTENSITY (INCH. /HOUR) = 3.38 I/ EFFECTIVE STREAM AREA(ACRES) = 67.92 TOTAL STREAM AREA(ACRES) = 68.01 PEAK FLOW RATE(CFS) AT CONFLUENCE = 186.01 1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 207.00 TO NUDE 208.20 IS CODE = 2 )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS < << <C I/ DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE TC = K*C(LENGTH** 3.00) /(ELEVATIUN CHANGE)? ** .20 UPSTREAM ELEVATION = 1488.W0 DOWNSTREAM ELEVATION = 1467.00 C ELEVATION DIFFERENCE = 21.00 TC = .389*[( 9690.00** 3.00)/( 21.00)]** .20 = 12.533 100 YEAR RAINFALL INTENSITY(INCH/HOUH) = 3.890 N� SOIL CLASSIFICATION IS "A" �� RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 1 ` ) SUBAREA RUNOFF(CFS) = 26.72 -- TOTAL AREA(ACRES) = 8.72 PEAK FLOW RATE(CFS) = 26.72 ` **************************************************************************** FLOW PROCESS FROM NODE 208.20 TO NODE 208.20 IS CODE = 1 �� })))}DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<(< �� �� )))))AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES((((( CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 12.53 �� RAINFALL INTENSITY (INCH./HOUR) = 3.89 EFFECTIVE STREAM AREA(ACRES) = 8.72 TOTAL STREAM AREA(ACRES) = 8.72 PEAK FLOW RATE(CFS) AT CONFLUENCE = 26.72 �� CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE 1 NUMBER RATE(CFS) (MIN.) (INCH/HOUR) (IN/HR) AREA(ACRES) 1 186.01 15.85 3.379 .49 67.92 8.72 �� 2 �6.72 12.53 3.890 .890 .49 �� RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO -\ C ONFLUENCE FORMULA USED FOR 2 STREAMS. 0� �) SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) li 1 208.72 76.64 2 199.79 62.44 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 208.72 TIME(MINUTES) = 15.848 EFFECTIVE AREA(ACRES) = 76.64 t ' TOTAL AREA(ACRES) = 76.73 ************ ******************************************************* I FLOW PROCESS FROM NODE 208.20 10 NODE 209.10 IS CODE = 3 ) I �>>>>COMPUTE PIPEFLOW TRVELTIME THRU SUBARE(<<<< >))}>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<(<<< � - DEPTH OF FLOW IN 48.0 INCH PIPE IS 38.2 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 19.5 I UPSTREAM NODE ELEVATION = 1460.00 DOWNSTREAM NODE ELEVATION = 1433.00 FLOWLENGTH(FEET) = 1150.00 MANNINGS N = .013 I ESTIMATED PIPE DIAMETER(INCH) = 48.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 208.72 � } TRAVEL TIME(MIN.) = .99 TC(MIN.) = 16.83 II *********************** ************************************ I: PROCESS PR��E� FROM NODE 209.00 TO NODE 209.10 IS CODE = 8 )))))ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL- INTENSITY(INCH/HUUh) = 3.259 SOIL CLASSIFICATION IS "A" RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 } SUBAREA AREA(ACRES) = 22.04 SUBAREA RUNOFF(CFS) = 55.02 EFFECTIVE AREA(ACRES) = 98.68 AVERAGED Fm(INCH/HR) = .485 I TOTAL AREA(ACRES) = 98.77 � > PEAK FLOW RATE(CFS) = 246.34 MI / TC(MIN) = 16.83 ******* ******************************************************* 0� FLOW PROCESS FROM NODE 209.w0 TO NODE 210.10 lS CODE = 3 �� })>>}COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA((((( )))))USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<< << DEPTH OF FLOW IN 54.0 INCH PIPE IS 39.8 INCHES PIPEFLOW VELOCITY(FEET/GEC.) = 19.6 UPSTREAM NODE ELEVATION = 1433.00 DOWNSTREAM NODE ELEVATION = 1413.00 FLOWLENGTH(FEET) = ����5. 00 MANNINGS N = .013 ESTIMATED PIPE = 5�. �� NUMBER OF PIPES = 1 l� PIPEFLOW THRU SUBAREA(CFS) = 246.34 TRAVEL TIME(MIN.) = .82 TC(MIN.) = 17.65 ~~ **************************************************************************** FLOW PROCESS FROM NODE 210.160 TO NODE 210.i0 IS CODE = 8 >>>>)ADDITION OF SUBAREA TO MAINLINE PEAK FLOW(<<<< I I /HOUR) = " 100 YEAR RAINFALL NTENSITY(NCH 3 167 �� / SOIL CLASSIFICATION IS --'A" - --'' 3.167 RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA AREA(ACRES) = 25.47 SUBAREA RUNOFF(CFS) = 61.48 11; EFFECTIVE AREA(ACRES) = 124.15 AVERAGED Fm(INCH/HR) = .485 TOTAL AREA(ACRES) = 124.24 PEAK FLOW RATE(CFS) = 299.68 TC(MIN) = 17.65 , ~~ **************************************************************************** FLOW PROCESS FROM NODE 210.10 TO NODE 211.10 IS CODE = 3 )))))COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA((((( ' ~~ }>>}>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< 0� DEPTH OF FLOW IN 57.0 INCH PIPE IS 44.7 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 20.1 UPSTREAM NODE ELEVATION = 1413.00 DOWNSTREAM NODE ELEVATION = 1404.00 FLOWLENGTH(FEET) = 450.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 57.N0 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 299.68 0� TRAVEL TIME(MIN.) = .37 TC(MIN.) = 18.03 ^ / I FLOW PROCESS FROM NODE 211.00 TO NODE 211.10 IS CODE = 8 (110 }>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW(M< tom YEAR RAINFALL TNTENSITY(TNCH/HOUQ) = ]' 128 RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA AREA(ACRES) = 27.71 SUBAREA RUNOFF(CFS) = 65.90 EFFECTIVE AREA(ACRES) = 151.86 �� AVERAGED Fm(INCH/HR) = .485 TOTAL AREA(ACRES) = 151.95 N� PEAK FLOW RATE(CFS) = 361.17 TC(MIN) = 18.03 **************************************************************************** � ~~ FLOW PROCESS FROM NODE 211.10 10 NODE 212.10 IS CODE = 3 | N� ))}))COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<( ' - }>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<((< DEPTH OF FLOW IN 81.0 INCH PIPE IS 62.8 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 12.1 UPSTREAM NODE ELEVATION = 1404.00 DOWNSTREAM NODE ELEVATION = 1398.00 FL-OWLENGTH(FEET) = 1315.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 81.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 361.17 TRAVEL TIME(MIN.) = 1.81 TC(MIN.) = 19.83 l� �� **************************************************************************** =� FLOW PROCESS FROM NODE 212.00 TO NODE 212.10 IS CODE = 8 >>)>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW(<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.953 SOIL CLASSIFICATION IS "A" 1: 4850 RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE Fm(INCH/HR) = ' ^ ��� ��� � � ���� �� �� ��� ��� �� _ - -_�� �� SUBAREA AREA(ACRES) = 78.90 SUBAREA RUNOFF(CFS) = 175.28 EFFECTIVE AREA(ACRES) = 230.76 AVERAGED Fm(INCH/HR) = .485 �� TOTAL AREA(ACRES) = 230.85 PEAK FLOW RATE(CFS) = 512.65 U� TC(MIN) = 19.83 �� **************************************************************************** FLOW PROCESS FROM NODE 212.10 TO NODE 213.10 IS CODE = 3 >}>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<(< )))))USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< 11 DEPTH OF FLOW IN 93.0 INCH PIPE IS 71.0 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 13.3 UPSTREAM NODE ELEVATION = 1398.00 U� DOWNSTREAM NODE ELEVATION = 1392.00 FLOWLENBTH(FEET) = 1320.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 93.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 512.65 { TRAVEL TIME(MIN.) = 1.66 TC(MIN.) = 21.49 -- ************************e*************************************************** FLOW PROCESS FROM NODE 213.00 TO NODE 213.10 IS CODE = 8 = >>>>>ADDITION OF SUBAREA TO MAINLINE PEAKFLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.814 SOIL CLASSIFICATION IS "A" RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 { EFFECTIVE AREA(ACRES) = 3149.51 AVERAGED Fm(INCH/HR) = .485 C TOTAL AREA(ACRES) = 309.60 PEAK FLOW RATE(CFS) = 648.88 TC(MIN) = 21.49 � \ **************************************************************************** FLOW PROCESS FROM NODE 213.10 TO NODE 214.10 IS CODE = 3 ] >>>)>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<( 11 )))))USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<(< DEPTH OF FLOW IN 96.0 INCH PIPE IS 75.9 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 15.2 E NODE N�� ELEVATION = 1392.00 DOWNSTREAM NODE ELEVATION = 1384.00 FLOWLENGTH(FEET) = 1400.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 96.00 NUMBER OF PIPES =' 1 PIPEFLOW THRU SUBAREA(CFS) = 648.88 TRAVEL TIME(MIN.) = 1.53 TC(MIN.) = 23.02' ) **************************************************************************** FLOW PROCESS FROM NODE 214.00 TO NODE 214.10 IS CODE = 8 )))))ADDITION OF SUBAREA TO MAINLINE PEAK FLOW((((( 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.700 SOIL CLASSIFICATION IS "A" RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA AREA(ACRES) = 82.69 SUBAREA RUNOFF(CFS) = 164.88 �� R EFFECTIVE AREA(ACRES) = 392.20 \ �� _ _- - _ '_ .�_ _- AVERAGED Fm(INCH/HR) = .485 TOTAL AREA(ACRES) = 392.29 PEAK FLOW RATE(CFS) = 782.02 ( N� TC(MIN) = 23.02 **************************************************************************** FLOW PROCESS FROM NODE 215.00 TO NODE 214.10 IS CODE = 8 >>>>>ADDITIOW OF SUBAREA TO MAINLINE PEAK FLOW((((( 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.700 SOIL CLASSIFICATION IS "A" RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE Fm(INCH/HR� ' = . 4850 SUBAREA AREA(ACRES) = 246.80 SUBAREA RUNOFF(CFS) = 492.10 EFFECTIVE AREA(ACRES) = 639.00 N� AVERAGED Fm(INCH/HR) = .485 «� TOTAL AREA(ACRES) = 639.09 PEAK FLOW RATE(CFS) = 1274.13 TC(MIN) = 23.02 ******* ************************************************************ FLOW PROCESS FROM NODE 214.10 TO NODE 216.10 IS CODE = 5 >>>>>COMPUTE TRAPEZOIDAL-CHANNEL FLOW<<<<< >>}>>TRAVELTIME THRU SUBAREA<<<<< UPSTREAM NODE ELEVATION = 1384.00 DOWNSTREAM NODE ELEVATION = 1368.00 �� CHANNEL LENGTH THRU SUBAREA(FEET) = 2600.00 pun^m,C/ omoc'ccc - DM mm 117" cnr _ mmm ' ~ CHANNEL FLOW THRU SUBAREA(CFS) = 1274.13 FLOW VELOCITY(FEET/SEC) = 15.76 FLOW DEPTH(FEET) = 4.04 TRAVEL TIME(MIN.) = 2.75 TC(MIN.) = 25.77 N� **************************************************************************** FLOW PROCESS FROM NODE 216.00 TO NODE 216.10 IS CODE = 8 I; \ ) ' )))))ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.524 SOIL CLASSIFICATION IS "A" RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA AREA(ACRES) = 156.35 SUBAREA RUNOFF(CFS) = 286.88 EFFECTIVE AREA(ACRES) = 795.35 AVERAGED Fm(INCH/HR) = .485 0� TOTAL AREA(ACRES) = 795.44 PEAK FLOW RATE(CFS) = 1459.34 1: TC(MIN) = 25.77 ***************************************************************************4 [id FLOW PROCESS � FROM NODE 2%7. 069 TO NODE £1��. l0 IS CODE = 8 ))))}ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<( = 1: 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.524 SOIL CLASSIFICATION IS "A" RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA AREA(ACRES) = 154.20 SUBAREA RUNOFF(CFS) = 282.93 EFFECTIVE AREA(ACRES) = 949.55 AVERAGED Fm(INCH/HR) �= .485 C \ . TOTAL AREA(ACRES) = 949 64 � / PEAK FLOW RATE(CFS) = 1742.27 TC(MIN) = 25.77 1: *************************************************************************** FLOW PROCESS FROM NODE 216. 10 TO NODE 217. 10 IS CODE = 5 >>)>>COMPUTE TRAPEZOIDAL-CHANNEL FLOW<<(<< >))}>TRAVELTIME THRU SUBARE.g<<<<< ' = UPSTREAM NODE ELEVATION = 1368.00 DOWNSTREAM NODE ELEVATION = 1350.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 2700.00 CHANNEL BASE(FEET) = 20.00 "Z" FACTOR = .000 -- MANNINGS FACTOR = .015 MAXIMUM DEPTH(FEET) = 6.00 CHANNEL FLOW THRU SUBAREA(CFS) = 1742.27 0� FLOW VELOCITY(FEET/SEC) = 17.83 FLOW DEPTH(FEET) = 4.89 TRAVEL TIME(MIN.) = 2.52 TC(MIN.) = 28.30 - ********************************************************************* ******� FLOW PROCESS FROM NODE 218.00 TO NODE 217.10 IS CODE = 8 W>DDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<(< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.386 ' SOIL CLASSIFICATION IS "A" ~~ RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA AREA(ACRES) = 160.45 SUBAREA RUNOFF(CFS) = 274.53 EFFECTIVE AREA(ACRES) = 1110.00 �� AVERAGED Fm(INCH/HR) = .485 TOTAL AREA(ACRES) = 1110.09 ~ � TC(MlN) = 28.30 **************************************************************************** FLOW PROCESS FROM NODE 219.W0 TO NODE 217.10 IS CODE = 8 11 )))))ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< \ / 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.386 0� SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE. Fm(INCH/HR) = .0970 SUBAREA AREA(ACRES) = 166.75 SUBAREA RUNOFF(CFS) = 343.54 N3 EFFECTIVE AREA(ACRES) = 1276.75 �� AVERAGED Fm(INCH/HR) = .434 TOTAL AREA(ACRES) = 1276.84 PEAK FLOW RATE(CFS) = 2242.74 ( TC(MIN) = 28.30 **************************************************************************** FLOW PROCESS FROM NODE 217.10 TO NODE 219.10 IS CODE = 5 �� 0� ))))>COMPUTE TRAPEZOIDAL-CHANNEL Fi-OW(<<(< )))})TRAVELTIME THRU GUBAREA<<<(< UPSTREAM NODE ELEVATION = 1350.00 DOWNSTREAM NODE ELEVATION = 1324.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 2700.00 CHANNEL BASE(FEET) = 20.00 "Z" FACTOR = .000 MANNINGS FACTOR = .015 MAXIMUM DEPTH(FEET) = 6.00 CHANNEL FLOW THRU SUBAREA(CFS) = 2242.74 FLOW VE[-OCITY(FEET/SEC) = 21.90 FLOW DEPTH(FEET) = 5.12 C TRAVEL TIME(MIN.) = 2 6>� TC(MIN.) = 30 35 � . . . . / **************************************************************************** FLOW PROCESS FROM NODE 220.00 TO NODE 219.10 IS CODE = 8 )))))ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<( E 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.288 SOIL CLASSIFICATION IS "A"__ RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 N� SUBAREA AREA(ACRES) = 160.10 SUBAREA RUNOFF(CFS) = 259.77 EFFECTIVE AREA(ACRES) = 1436.85 AVERAGED Fm(INCH/HR) = .440 TOTAL AREA(ACRES) = 1436.94 PEAK FLOW RATE(CFS) = 2389.57 TC(MIN) = 30.35 **************************************************************************** FLOW PROCESS FROM NODE 221.00 TO NODE 219.10 IS CODE = 8 )))))ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<((< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.288 SOIL CLASSIFICATION IS "A" RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 111 SUBAREA AREA(ACRES) = 160.10 SUBAREA RUNOFF(CFS) = 259.77 EFFECTIVE AREA(ACRES) = 1596.95 AVERAGED Fm(INCH/HR) = .444 TOTAL AREA(ACRES) = 1597.04 PEAK FLOW RATE(CFS) = 2649.34 TC(MIN) = 30.35 **************************************************************************** FLOW PROCESS FROM NODE 219.00 10 NODE 221.10 IS CODE = 5 v� >>>}>COMPUTE TRAPEZOIDAL-CHANNEL FLOW<<<<< >>>>}TRAVELTIME THRU SUBAREA<<<<< UPSTREAM NODE ELEVATION = 1324.00 DOWNSTREAM NODE ELEVATION = 1298.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 2650.00 CHANNEL BASE(FEET) = 20.00 "Z" FACTOR = .000 � 0 MANNINGS FACTOR = .015 MAXIMUM DEPTH(FEET) = 6.00 6.00 �N CHANNEL FLOW THRU SUBAREA(CFS) = 2649.34 FLOW VELOCITY(FEET/SEC) = 23.21 FLOW DEPTH(FEET) = 5.71 TRAVEL TIME(MIN.) = 1.90 TC(MIN.) = 32.25 **************************************************************************** E: FLOW PROCESS FROM NODE 222.00 TO NODE 221.10 IS CODE = 8 >>>}>AI}QITION OF SUBAREA TO MAINLINE PEAK FLOW(((<( (q0 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.206 �6 SOIL CLASSIFICATION IS "A" RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA AREA(ACRES) = 160.05 SUBAREA RUNOFF(CFS) = 247.88 ( EFFECTIVE AREA(ACRES) = 1757.00 AVERAGED Fm(INCH/HR) = .448 TOTAL AREA(ACRES) = 1757.09 10 PEAK FLOW RATE(CFS) = 2779.42 42 TC(MIN) = 32.25 �� � w� **************************************************************************** FLOW PROCESS FROM NODE 223.00 TO NODE 221.10 IS CODE = 8 11; )))))ADDITION OF SUBAREA TO MAINLINE PEAK FLOW(<(<< C 100 YER RINFALL INTENSITY(INCH/HOUR) = 2.206 SOIL CLASSIFICATION IS "A" RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA AREA(ACRES) = 160 SUBAREA RUNOFF(CFS) = 248.11 EFFECTIVE AREA(ACRES) = 1917.20 AVERAGED Fm(INCH/HR) = .451 TOTAL AREA(ACRES) = 1917.29 PEAK FLOW RATE(CFS) = 3027.53 TC(MIN) = 32.25 0� **************************************************************************** FLOW PROCESS FROM NODE 221.10 TO NODE 221.l0 lS CODE = 1 � - )>}>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<(<( )>>}>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 32.25 RAINFALL INTENSITY (INCH./HOUR) = 2.21 EFFECTIVE STREAM AREA(ACRES) = 1917.20 TOTAL STREAM AREA(ACRES) = 1917.29 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3027.53 CONFLUENCE INFORMATION: �� STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN.) (INCH/HOUR) (IN/HR) AREA(ACRES) 1 3027.53 32.e5 2.2416 .45 1917.20 � / RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO — CONFLUENCE FORMULA USED FOR 1 STREAMS. SUMMARY RESULTS: I STREM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) 1 3027.53 1917.20 N� COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 3027.53 TIME(MINUTES) = 32.255 EFFECTIVE AREA(ACRES) = 1917.20 TOTAL AREA(ACRES) = 1917.29 �� END OF STUDY SUMMARY: U� �� TOTAL AREA(ACRES) = 1917.29 °� EFFECTIVE AREA(ACRES) = 1917.20 PEAK FLOW RATE(CFS) = 3027.53 END OF RATIONAL- METHOD ANALYSIS 1: ) I; ~- � - 11 �� �� 1 c C IX 5.D. ox Hy.DRoLo ey 2 5 YR ~ _________________________ ________ ======_ RATIOMAL E �YDROLOSY 321'r 7ROCRA� BASED E's: SAN BER\ARDINO COUNTY ( SBC, II 1983 HYDROLOGY MANUAL _____ ____=__ ____=____ _____ ^ / E <<<<<<< < <<<<<<<<<<<<<<<<<<<<<<(<< <<<<0>>}>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> (C) Co 19 �dvanced Engzneering Software [AES� ~~ Especially prepared for: I: HALL & FOREMAN, INC. <<<<<<<<(<(<<<<<<<<<<<<<<<<<<<<<<<<<<0>>>>>>}>>>>>>>>>>>>>>>>>>>>>>>>>}>>}> 1: **********DESCRIPTION OF RESULTS******************************************** * N.BASELINE AVE DBL BOX HYDROLOGY E. OF ETIWANDA TO CHERRY AVE * * Q 25 YR INCLUDING BOX HYDROLOGY FROM MASTER PLAN . , * m� * VENKI N JN 3810-00 , DISK"4" , FILE"F" ' 8/26/87 * *************************************************************************** I: USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATIC,N: USER SPECIFIED STORM EVENT (YEAR) = 25.0 �� SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .95 E \ 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = .980 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.470 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 25.00 1-HOUR INTENSITY(INCH/HOUR) = 1.1520 E SLOPE OF INTENSITY DURATION CURVE = .6000 SBC -YDROLOGY MANUAL " USE �� <<<<<<<<<<<<(<<<<<(<<(<,<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>/ >>>>>>>>>>>>>>>>>>> Advanced E Software [AES: N: SERIAL No. A056tZA REV. 3.1 RELEASE DATE: 5/01/85 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<0>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> �� 11 **************************************************************************** FL:Al PROCESS FROM NODE 221_0 TO NODE 221.10 IS CODE =- 7 11 >>>}>jSER SPECIFIED HYDROLOGY INFORMATIGN AT - ZDE<<(<( = _ _ _ ______ _ USER-SPECIFIED VALUES ARE AS FCLLOWS: PLAN I - C(MIN) = 33.96 RAIN INTENSITY(INCH/HOUR) = 1.62 TOTAL AREA(ACRES) = 1917.29 TOTAL RUNOFF(CFS) = 2151.82 II **************************************************************************** =L:A PROCESS FROM NODE 221.10 TO NODE 1056..10 IS CODE = 5 I: >>>>>COMPUTE TRAPEZOIDAL-CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA(<<(< ~ �� -==i- • . .u�� c..cipl(i�q = �-l..wa DOWWSTREAM NODE ELEVATION = 1299.40 I CHANNB_ _ENGTH T�RU SUBAREA(FEEr) = 1960.�0 CHAN-EL 3ASE(FEET) = 20.00 "Z" FACTCR = 2.0�2 MAN\INGS FACTLR = .015 MAXIM,,'' DEPTH(FEET) = 8.00 0I CHANNEL FLOW THRU SUBAREA(CFS) = 2151.82 FLOW VELOCITY(FEET/SEC) = 18.26 FLOW DEPTI-(FEET) = 5.89 \ � . TRAVEL TIME = 1.79 TO(-IN., = 35.75 **************************************************************************** FLOW PROCESS FROM NODE 1056.13 TO NODE 1056.10 IS CODE = 1 r e )))))DESIGNATE INDEPENDENT STREAN FOR CONFLUENCE<<<<< _ CONFLUENCE VALUES USED FOR INDEPE\DENT STREAM 1 ARE: 1: TIME OF CONCENTRATION(MINUTES) = 35.75 RAINFALL INTENSITY (INCH./HOUR) = 1.57 TOTAL STREAM AREA (ACRES) = 1917.29 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 2151.82 �� **************************************************************************** �� FLOW PROCESS FROM NODE 1056.10 TO NODE 1056.10 IS CODE = 7 >>>>>uSER S;ECIFIED HYDRO_3GY : �F]RMATION AT �UDE(<<<< r _ ________ _ ,JSER-SPECIFIED VALUES ARE AS FOLLOWS: � TC(MIN) = 29.32 � RAIN INTENSITY(INCH/HOU VOL ) = 1.77 ��= ='. E TOTAL AREA(ACRES) = 107.20 TOTAL RUNOFF(CFS) = 150.66 / 8� **************************************************************************** �� w� FLOW PROCESS FROM NODE 1056.10 TO NODE 1056.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE{<((< N� >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< �� CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: |� �� C �IME OF ONCENTRATION( = 29.32 RAI'`iFALL :NTENSITY (:NCH./nOUR) = :.77 TOTAL STREAM AREA (AC;TES> = :07.20 TOTAL STREAM RUNOFF(CFS) AT = 150.66 -- CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY II NUMBER (CFS) (MIN.) (INCH/HOUR 1 2151.82 35 1.572 0I 2 .50.66 29.32 1.770 RAINFALL INTENSITY AND TIME CF CONCENTRATION RATZO - FORMULA(SBC) USED FOR 2 STREAMS. II VARIOUS CDNFLJENCED RUNOFF VALUES ARE AS FOLL3WS: 2285.60 1915.77 II C3MPUTED CONFLUENCE ESTIMATES ARE AS FOL-OWS: RU . NOFF(CFS) = 2285 60 TIVE(MZN~ TES) = 35.749 TOTAL AREA(ACRES) = 2024.43 11 **************************************************************************** FLOW PROE:ESS FROM NODE L056..0 -O ' 1045.l0 18 CO�E = 3 II >>>>>COMPUTE TRAPEZOIDAL-CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA<<<<< ■��.� \uu.Z cL-Zxr, .-�w = ^��. DOWNSTREAM NODE ELEVATION = 1297.70 CHANNEL LENGTH THRU SUBAREA(FEET) = 420..: �� CHANNEL BASE(FEET> = 20.�90 "Z" FAC7CR = 2.��.0 fANNINGS FACTOR = .Z.I5 MAX7MuM DEPTH(FEET) = 6.,0 I CHANEL FOW THRU BUBA(CF) = 2285. 60 FLOW VELOCITY(FEET/SEC) = 16.22 FLuW DEPMFEET) = 7.05 7RAVEL TIME(MZN.) = .43 TC(HIN.) = 36.18 II **************************************************************************** F-OW PROCESS FROM NODE 1045.10 TO NODE 1045.10 13 CODE = �� �� ~~ >> >>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE< < ( < < CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: C TIME OF CONCENTRATION(MINUTES) = 36.18 RAINFALL INTENSITY (INCH./HOUR) = 1.56 TOTAL STREAM AREA (ACRES) = 2024.49 �0 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 2285.30 �� **************************************************************************** N� FLOW PROCESS FROM NODE 1045. 10 TO NODE 1045. 10 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION A" , UDE<((({ C ___ LSER-SPECIFIED VALCES ARE AS FOLLOWS: c_e_#. uo TO(MIN) = 24.40 RAIN INTEy�SITY<INCH/HOuR> = 1.98 E TOTAL . . ARE(CR�S) = 5 27 TOTAL RUNOFF(CS> = 9 97 VOL 2.^ �� 0� **************************************************************************** ~~ FLOW PROCESS FROM NODE 1045.10 TO NUDE 1045. 10 IS CODE = 1 E >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<(<<< _ CONFLUENCE VALUES USED FOR INDEPENDENT S7REAM 2 ARE: C ~ - TIME OF CONCENTRATON(MI%UTES) = 24.40 =AI�FALL INTE�S7TY ( /JOLR) = '.3A �37�L S��EAM AREA (AC�ES) = 5.27 TOTAL ST RUNOF� 2 AT CONFL-ENCE = 9.97 _ - E **************************************************************** II S FLOW PROCESS FRON NODE _045.10 TO NUDE 1045.10 I C:DE = 7 }>>>>USER SPECIFIED -YDROLOGY INFORMATION A NUDE(<<<( _ _ _ _ -SER-SPECIFIED VAL-ES ARE AS FOLLOWS: C.. B.* /II m� TO(MIN) = 24.39 RAIN INTENSITY(INCH/HOL = 1.93 TOTAL AREA(ACRES) = 3.28 TOTAL RONOFF(CFS) = 6.3: UN- 2.. II **************************************************************************** r.._:, PR8CESS FROM MODE 1045.10 TO NODE 1045.IZ 19 CODE = 1 ~~ > > > >DESIGNATE INDEP:_-_NDENT STREAM FOR CONFLUENCE: < ( < < >>>>>AND COMPUTE VARIO,S CONFLUENCED STREA;4 VAL-ES(<< I CONFLOENCE VALUES USED FOR INDEPENDENT STREA'M 3 ARE: TIME OF CONCENTRA = 24.39 RAINFALL INTENSITY (INCH./HOUR) = 1.98 II TOTAL STREAM AREA (ACRES) = 3.28 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 6.3� e.as ....c ^4 - 1$-C": STREAM RUNOFF TIME INTE�SITY NUMBER (CFS) Cr, ("NC-/HOUR> m� __ 1 a285.30 36. 3 .561 - 2 9.97 24.40 .977 II 3 6.31 24.39 1.977 \ / RAINFALL INTENSITY A;-E) TImE QF CONCENTRATIDN �ATIO FORMULA(SBC) -SED FOR 3 STREAMS. =p VARIOUS CONFLUENCED RUNOFF VALUES AHE AS FOLLOWS: 2298.45 1557.69 1557.26 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: m� RUNOFF(CFS) = 2298.45 TIME(MINUTES) = 36.180 TOTAL AREA(ACRES) = 2033.04 I: *************************************************************************** E FLOW PROCESS FROM NODE 1045.10 TO NODE 1041.41 IS CODE = 5 >>>>>COMPUTE TRAPEZOIDAL-CHANNEL FLOW<<<<< }>>>>TRAVELTIME THRU SUBAREA(<<(< C UPSTREAM NODE ELEVATION = 1297.70 DOWNSTREAM NODE ELEVATION = 1297.40 CHANNEL LEWGT1 T�RU S�BAREA(FEET) = 50.Q0 �� CHANNEL BASE(FEET) = 20.00 "Z" FACTCR = 0.000 MANNINGS FACTOR = .015 MAXIMUM DEPTH(FEET) = 8.00 �� CHANNEL FLOW THRU SUBAREA(CFS) = 2298.45 �� FLOW VELOCITY(FEET/SEC) = 18.72 FLOW DEPTn(FEET> = 6.14 TRAVEL TIME(MIN.) = .04 TC(MIN.) = 36.22 C \ / **************************************************************************** Fl-OW PROCESS FROM NODE 1041.41 TO NODE 1041.41 IS CODE = 1 E >>>>>DESIGNATE INDEPENDENT S�REAM FOR CONFLUENCE((;( _ _ =_____ __ CONFLUENCE VALUES USED FOR INDEP�NDE�T S�REAM 1 ARE: N� - I�E CF CCNCENTRATIMINuTES) = 36.22 �� 3 INTE,NSI (I;.CH./*Ou3) = �.5� - 3TAL STREAM AREA (ACRES) =_E033.04 ' 1: - OTAL STREAM RUNOFF(CFS) AT -ONFLUENCE = 2298.45 I FL - . �W PROCESS FROM NODE ^041 41 TO NODE 1041 . 41 13 C�DE = 7 { }}>>>USER SPECIFIED HYDROLOGY INFORMATION AT NUDE(<<(< I = �SER-SPECIFIED VALUES ARE AS �3LLOWS: N°1-3. 7C(MIN) = 21.08 RAIN INTENSITY(INCH/�OiJR) = 2.16 �� TOTAL AREA(CRES) = 75.24 TOTAL RUNOFF(CFS) = 127.86 ����� ��,��~~��x�� 4103 ~ ������ -- **************************************************************************** I � LOW PROCESS FROM NODE 1041.41 TO NODE 1041.41 13 CODE = 1 _____ }>> DESI8NATE INDEPENDENT STR-EAM FOR CONFL,,ENCE<<<(< 1 //WAND COMPUTE VARZO�S CONFLuENCED STREAM ;ALUES<<<<< N� _ _ ___ -- -- OONFL,JENCE VALUES USED FUR INDEPENDEWT STREA;M 2 ARE: - 7ME CF CONCENTRATION(MINUTES) = 21.08 1 RAINFALL. INTENSITY (INCH./HOUR) = 2.16 T3TAL STREAM AREA (ACRES) = 75.24 ° . CONFLUENCE INFORMATION: I STREAM RUNOFF TIME INTENSITY NUMBER <CFS> (mIJ.) (INCH/-2_,R, 1 2298.45 36.22 .559 I 2 127.36 21.08 2.158 { ` RAINFALL INTENSITY AND TIME OF CONCE\TRATIOM RATIO I FORMUL(SBC) �SED FGR 2 STREMS . VARISUS CONFLUENCED RUNOFF VALUES ARE AS FOLLO/Z: 2390.85 1465.57 �� N� COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(CFS) = 2390.85 TIME(MINUTES) = 36.225 TOTAL AREA(ACRES) = 2108.28 I: **************************************************************************** I FLOW PROCESS FROM NODE 10 '1' NODE 1015.l0 IS CODE = 5 : >>}>>COMPUTE TRAPEZOIDAL-CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA<<(<< w: UPSTREAM NODE ELEVATION = 1297.40 DOWNSTREAM NODE ELEVATION = 1292.22 I: A CHANNEL LENGTH THRU SUBAREA(FEET> = 810.00 CHANNEL BASE(=EET) = 221.00 "Z" FACTOR = J.0,10 MANNINGS FACTOR = .015 MAXIMUm DEPTH(FEE = 8.00 E CHANNEL FLOW THRU SUBREA(CFS) = 2390.35 FLOW VELOCITY(FEET/SEC) = 18.80 FLOW DEPTH(FEET) = 6.36 TRAVEL TIME(MIN.) = .72 TC(MIN.) = 36.94 C **************************************************************************** FLOW PROCESS FROM NODE 1015.10 TO NUDE 1015.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCE�TRATION(MINUTES) = 36.94 �� RAINFALL INTENSITY (I\ICH./HOUR) - 1.54 TOTAL STREAM AREA (ACRES) = 21 _ TOTAL STREAM RJWOFF(CFS> AT - � ZONFLJENCE = 2390.85 **************************************************************************** II FLOW PROCESS FROM NODE 1015.10 TO NUQE 1015.10 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION A[ �ODE{{<<( I uSER-SPECIFIED VALUES ARE AS F3LLOWS: ��,�� TC(MIN) = 12.24 RAIN ZNTENSI = 2.99 - - . � TOTAL AREA(ACRES) = 2.15 TOTAL RUNOF=(CFS) = 5.3 ° �� �� "-�� II . I **************************************************************************** FLOA PROCESS FROM NODE 1015.10 TO NODE 1015.10 IS CODE = l >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE((((( >>>>)AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< II - -=- - CONFLUENCE VALUES USED FOR INDEPENDENT STRE1-M 2 ARE: TIME OF CONCENTRATION(MINUTES) = 12.24 I RAINFALL INTENSITY (INCH./HOUR) = 2.39 TOTAL STREAM AREA (ACRES) = 2.15 ~ � CONFLUENCE INFORMATIGN: L STREAM RUNOFF TIME INTENSITY NUMBER (CFS) ("I ( 1 2390.85 36.94 1. 541 II 2 5 33 12.24 2.98g . . | RAINFALL INTENSITY AND TIME OF CJNCEHTRATIZ, RAT:O E FORMULA(SBC) USED FLR 2 STREAMS. VARIOUS CONFLUENCED �UNOFF VALLES ARE AS FOLL.7wS: ' 2393.60 797.73 I COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(CFS) = 2393.60 TIME(MINUTES) = 36.943 TOTAL AREA(ACRES) = 2110.43 11 **************************************************************************** FLOW PROCESS FROM NODE 1015.10 TO NODE 1013.L0 IS CODE = 5 E >}>>>COMPUTE TRAPEZOIDAL-CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA<<<<< Ng m� UPSTREAM NODE ELEVATION = 1292.61 DOWNSTREAM NODE ELEVATI:', = 1292.44 CHANNB- LENGTn TH�U BL8A�EA(FEET, = :0.1.0 N� CHANNEL BASE(FEET) = 10.00 "Z" =AC = �. 0J@ � MANNINGS FACTOR = .015 MAXIMUM DEPTH(FEET) = 8.00 CHANNEL FLO� THRU SUBAREA(CFS) = 2393.6� �� ==> >ERROR: FLOW IN CHANNEL EXCEEDS CHANNEL CAPACITY‘ NORMAL DEPTH EQUAL TO SPECIFIED MAXIMUM ALLOWABLE DEPTH) �� � . N� AS AN APPROXIMATION, FLOWDEPTH IS SET AT MAXIMUM ALLOWABLE DEPTH AND IS USED FOR TRAVELTIME CALCULATIONS. FLOW VELOCITY(FEET/SEC) = 29.92 FLOW DEPT-(FEET) = 8.00 m� TRAVEL TIME(MIN > = 02 TC(MIN ) = 36 56 . . . . E i ==>FLOWDEPTH EXCEEDS MAXI-UM ALL:WABLE DEPT- __ **************************************************************************** FLOW PROCESS FROM NODE 1013.20 TO NODE 1013.20 18 CODE = 1 N� >>>> >DESIGNATE INDEPENDENT STREAM FOR CONFLUEWCE< < < < < m� CONFLUENCE VALUES USED FOR INDEPENDENT STREAr 1 ARE: II TIME OF CONCENTRATIOW(MINUTES) = 36.96 RAINFALL IWTENSITY (INCH. /HOU�) = 1.54 TOTAL STREAM AREA (ACRES) = 2110 . 43 - TOTAL STREAM RUNOFF(CFS) :4 CONFL_ENCE = 2393.6o II . I FLOW PROCESS FROM NODE _013.20 TO NUDE 1013.20 IS CODE = 7 >>>>>USER SPECIFIED -YDROLOGY INFORMATION A , ODE<<<< . - -=-- I �SER-SPEC�FIED VAL�ES ��E AS FOL�-OWS: ��,�� , �� '�� ��^� �� �C(MI�> = �4"80 RAI% �NTENSITY(INCH/HOU�) = 2.67 II TOTAL AREA(ACRES) = -2.44 TOTAL RUNOFF(IFS) = 15.85 YOL � --^ r—L...e. _��a�s r��.« �uAJr_ .0lf,.�� .� �u U= ,0 l� �JL = _ �� N� >>�>>�ES�GNATE I�DEPENDE��T STREAM FOR CC,4FLUEHCE<({<( ;));/AND COMPUTE VARIOUS CONFL-E STREAYI VALUES<<<<< _ _ ____ _ ______ __=_ __===_____== II CONFLENCE VALUES USED FOR IDE�E\DENT ST�E�M 2 ARE: - IME OF CONCENTRATION(MINUTES) = 14.80 ■ RAINFALL INTENSITY (INCH./HOLR) = 2.67 TOTALS AREA (ACRES) = 12.44 I 75TAL STREAM RUNOFF(CFS) AT CONFLuENCE� = .5.65 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSI �� NUMBER :C7=8) (MIN. ) (INCH/-OUR) 1 2393.60 36.96 1.541 r 2 15.85 14.80 2.668 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA(SBC) USED FOR 2 STREAMS. �� VARIOUS CQNFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 2402.75 974.34 �� 0J COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: COMPUTED R�NOFF(CFS) = 2402.75 TIME(�INUTES) = 36.960 TOTAL AREA(ACRES) = 2122. E ****************************.***********************...*******. �� FLOW PROCESS FROM NODE 1013.30 T] NODE 1011.10 IS CODE = f °� > > > >COMPUTE TRAPEZOIDAL-CHAMNEL =LOW((!(; >>>>>TRAVELTIME THRU SUBAREA(<<<< JPSTREAM NODE ELEVATION = 12:1-2.44 DOWNSTREAM NODE ELEVATION = 1288.30 CHANNEL -B(GTH THRU SUBAREA(FEET) = 735.00 CHANNEL BASE(FEET) = 10.00 "Z" FACTC� = 0.000 m� MANNINGS FACTOR = .015 MAXIMUM DEPTH(FEET) = 8.00 CmANNEL FLOW THRU SUBAREA(CFS) = 2402.75 E ==> > ERROR: FLLv4 l\, CHA��EL EXCEEDS C1-ANNEL CAPACITY( ,ORMAL DETT� EQUAL -: ��ECIFIED 'AXI _� ALLOWABLE DEPTH). E AS AN APPROXINATION, F�C„ADEPTH IS SET AT AXT ALLOWABLE DEPTH A�D IS JSED FGR TRAVELTIME CALCJLATIONS. N� FLOW VELOCITY(FEET/SEC) = 30.03 FLOW DE�T�(FEET) = �. �� �� } TRAVEL TI�E■AIN.) = .41 TC(MIN.) = 37.37 N� ==)FLOWDE=_- EXCEEDS �AXIMUM A�LJWABLE DEPT- �� - NI **************************************************************************** =LZW 7ROCESS FROM , .ODE 011.10 T3 NODE 01.10 IS CODE = I _ >> > >DESIS�ATE INDEPENDENT STREA' FOR CONFL_ENCE< < < < < - -- ----------- ---- � \ ::%=L-ENCE VALUES USED =OR I iDEPE\DE.T S 1 ARE: TIME - F 2:%CE\TRATION(MINUTES) = 37.37 I �AI�FALL :WTE ( vCH. /HOUR> = 1 . 53 - ]TAL STREA AREA (ACRES) = 2122.87 I: - 57 - Al STREAM RUNOFF(OFS) AT CONFL_ENCE = 2402.75 ~ r�u0. ~ nu.c� ,�L.\ ���Z. ^"ji4.-- . /�4J,1 ^mi.i, ^� �.1=Z = >>>>>USER SPECIFIED -YDOL0GY ImF7RMATI:� �O �- DE(<( << N� _ _=_________ _ _-__ uSER-SPECIF77D VALL,ES ARE AS F I 77,4:;1:\ 21.44 �AIN INTENSIY(INCH/-3-R) = 2 TOTAL , .2, = 4.53 TOTAL �JNOFF(CFS) = '2.4_ G.2.# ��� ,~,= VOL. 1 01 **************************************************************************** FL O04 PROCESS F:RDM NODE 1011.1.0 - 6 oUDE 1011.10 IS C.:DE = E >> > >>DESIGNATE INDEPENDENT STREW FOR LO NFLUENCE< < < < ( >)>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< CONFLUENCE VALUES USED FOR INDEPENDENT ST�EAM 2 ARE: E TIME OF CONCENTRATION(MINUTES) = 21.44 RAINFALL INTENSITY (INCH./HOUR) = 2.14 TOTAL STREAM AREA (ACRES) = 4.58 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 5. 43 �� CONFLUENCE INFORMATION: E STREAM RUNOFF TIME INTENSITY �UMBE� (CFS) (MIN.) (INCH/HOLR) _ � 24�2.75 37.37 .531 E 2 5. 21. 44 2. 136 RAINFALL INTENSITY AND TIME OF CJNCE�TRATIQ� RAT:: FO�MULA(SBC> �SED FOR 2 STREAS. �� VARIOUS CONFL_,ENCED RUNOFF VAL�ES ARE AS FOLLOWS: 2406.64 1384.04 I � � COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLCWS: > ' RUNOFF(CFS) = 2406.64 TIlvE(MINUTES) = 37.367 ] TOTAL AREA(ACRES) = 2127.45 1 �� **************************************************************************** �LOW PRO�ESS FROM NODE 1011. �0 ��O NODE ��0��. l0 IS CO�E = 5 � - >>>>>:OMP� ��A�EZ:IDAL-:HA FL1 1>1> - -IR_J S-BAREA(<■ <( ' �� _ == N� UPSTREAM %DDE ELEVATION = .,268.a0 DOwNSTREAM 0,ODE ELEVATION = 1286.32 CHANNEL -E\3711 T�RU SuBAREA(FEET) = 25.00 I CHANNEL BASE(FEET) = 20.00 "Z" FACTOR = Z. �00 >1ANNINGS FACTOR = .015 MAXIMLM DEPT-(FEET) = 8.00 CHANNEL =LCW - -RU SUBAREA(CFS> = 2406.64 I -7,...:0# -7,...:0# VEL�CZ-Y(FEE-/SEC) = 21. 33 LUW r(FEET) = 5. --- ,;-NE TIM=(eIW. ) = .13 TC(MIN. ) = 37. 55 - **************************************************************************** �� - LC� P�CCEBS F�OM �ODE 101� l0 -� �UDE ��10 1� I� C�DE � r . ' . N� >> > > >DESIG�ATE IdDEPEHDENT STRIAM FOR C3NFL2HCE( < < < < H� =__ _ _ ___________ __ = CO\FL,2EWCE ;ALUES USED FOR I .DEPE,\IDENT :3 1 A-<E: TIME OF :ONCENTRATION(MINUTES) = 37.55 I 3AINFAL_ ',TE,SI (INC-. /,-.3.,) = �. 53 TOTAL 3TRE.:-M �REA (ACRES) = 2127.45 - TOTAL STR - UNOF=(CFS) AT CZNFLUENCE = 24696.64 r�,,w ~nuLac -- tun wL,ut■ -,4 . .Mu 41...�.i* �� ..u� = i :SPECIFIED �EC�FIED -YEROLOGY I. ��F�RMATIO� � �UDE<<((< _______ _SER-SPECIFIED VALL,ES , AS F3LL3�2.: - C(mIN) = 15.83 = RAIN ��TENSITY(INCH/HBU�) = 2.56 II T3��� AREA(ACRES) = 15.04 TOTAL RUNOF=(CFS) = 27.47 / ) ��,�� �� �m«� °� ��� ��0 c-5.4' "7 _ .~~ �� v r ' �x�8~' � 1 ******************************************************************** FLCW PROCESS FROM 04ODE 1010.10 T3 NuDE 1012.1Z IS CUDE = � E > > > > >DESIGNATE INDEPD4DEAT STREAM FOR CONFL,,ENCE< < ( ( < >>>>>AND COMPUTE VARIOUS CONFL-ENCED STREAM VALUES: _ ________ _ _________ _ CONFLUENCE VALUES USED F6R INDEPENDENT STHE�M 2 ARE: E TIME OF CONCENTRATION(MINUTES) = 15.53 RAINFALL INTENSITY (INCH./HOUR) = 2.56 TOTAL STREAM AREA (ACRES) = 15.04 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 27.47 �� CONFLUENCE INFORMATION: C STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) � 2406.64 37.55 1.526 2 27.47 15.23 2.52 RAI�FALL INTENSITY AND - IXE D= C,LNCENTRATION RATIO C FORMULA(SBC) USED FOR 2 STREAMS. VARIOUS CONFLUENCED RUNOF= VALUES ARE AS FOLLOWS: 2423.00 1042. E ) COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(CFS) = 2423.00 TIME(MINUTES) = 37.551 TOTAL AREA(ACRES) = 2142.43 **************************************************************************** �LO�� PROCESS FROM NODE �010.10 TJ NODE 10&8.:0 IS :ODE = 5 C ) > > > > COMPUTE T =,..,:i4( < < <c >>>>>�RAVEL�IME ��RU S����EA<<<<( ___= _______-__ N� �PS-�REAM \ODE ELEVA��I�N = 1286. 32 D0,o4STRSAM NODE ELEVATIOW = 1284.Z8 C�AWNEL LENGTH THRU S�BAREA(FEET> = 265.00 I O�ANNEL BASE(FEET) = 2Z.00 "Z" FACTOR = 2.000 'PANNINGS =ACTOR = .015 MAXIM�M DEPTH (FEE = 5.00 :-ANNE._ =LOW T�FeU SUBA�HA(CFS) = 2423.00 N� =,_:w VB-OCI7Y(FEET/SEO} = 21.48 FLLW DEPTH(FEE = �. 1 �7AVEL TIME(MIN. ) = .2- TC( > = 37. 73 - I *** * ****************************** * ***************************************** FLCW PWOCESS =RCM NODE _008.1.2i - O \CDE 1008.10 IS :-DE = 1 _ U� > > > > DESIGNATE INDEPENDENT STREAM FOR CONFL�E\CE ( < ( < < U� ____ ___ _ _= CONFLUENCE VALUES USED =3R INDEPENDENT S 1 ARE: - TME DF CONCENTRATION(MINUTES) = 37.75 :�INFALL :NTENSITY (:NC�./-OUR) = �.52 - :TA- STREAM AREA (ACRES) = 2142.43 I: _2TAL STREAM RUNOFF(CFS) AT CONFL-ENCE = 2423.00 ' ---- - - --------- SPECTFIED I���3�ATI�� | - - - E C�8� �� ���� = 13.04 RA��� I��E�S��Y(INC�/�O��} = 2.88 ~~^ '-- �REA(AC3ES> = NCF (:7S> = VOL � \ ^~'--~^ ***,************************************************************************ :3OCESS FRI �ODE Z06.1: NuDE - ;:0B.1Z >>>>>DESIBNA�E ��DEPENDE�T S�REAM FOR CONFLUENCE<<<<( �� >>>>>AND COMPUTE VARIOUS CONFLLE�CED STREAM VALUES<<<<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCEHTRATZON(MINUTES> = 13.04 ) RAINFALL INTENSITY (INCH./HOLR) = 2.88 TOTAL STREAM AREA (ACRES) = 2.76 8� TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 5.89 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NU�BE� (CFS) TIME (I:4CH/HOUR) | - - � 2423.00 37.76 1. 521 N; 2 5.89 13.04 2.879 RA:NFALL INTENSITY AND TIME OF CUNCENTRATION RATIO �� FORMULA(SBC) USED FOR 2 STREAMS. �� VARIOUS CONFLUENCED RuNOFF VALUES ARE AS FOLLOWS: 2426.12 842.72 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: ^ ~~ RUNOFF(CFS) = 2426.12 TIME(MINUTES) = 37.757 TOTAL AREA(ACRES) = 2145.25 **************************************************************************** FLOW PROCESS FROM NODE 1008.10 TO NODE 1007.10 IS CODE = 5 "� >>>>>COMPUTE TRAPEZOIDAL-CHANNEL FLOW<<<<< >>>>> THRU SUBAREA((((( ' N� UPSTREAM NODE ELEVATIUN = 1284.08 DOWNSTREAM NODE ELEVATION = 1281.88 CHANNEL LENGTH THRU SUBAREA(FEET) = ��60. NG CHANNEL BASE (FEET) = ��0. 00 "Z" FACTOR = 0.000 �� MANNINGS FACTOR = .015 MAXIMUM DEPTH(FEET) = 8.00 CHANNEL FLOW THRU SUBAREA (CFS) = 2426. 12 I FLOW VELOCITY(FEET/SEC) = 21.51 FLOW DEPTH(FEET) = 5.64 TRAVEL TIME (MIN. ) = .20 TC (MIN. ) = 37.96 **************************************************************************** FLOW PROCESS FROM NODE 1007.10 TO NUDE 1007.10 IS CODE = 1 ] _ 111 > > > > > DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE < < < < < C[}NFLLENCE VALUES USED FOR INDEPENDENT STREAM 1 AWE: U� 0� TIME OF CONCENTRATION (MINUTES) = 37.96 �= RAI�FALL INTENSITY (INCH./mOUR) = 1.52 TOT,PL STREAM AREA (ACRES) = 2145.25 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 2426.12 ~ . r,..L - x uL,c r�uM Nuu� z�,/.i, i .4u1}c. I�14/...,; IS CUD� = 7 N� >>>> >LSER SPECIFIED �1YDROLO3Y INFORMATION A� ,�ODE< < < < N� _____=====_________________==_ uSE- VALUES ARE �S FOLLOWS: c ����� ��mu� ^ ' ��,�_. TC(�IW) = 13.7 RAIN INTE�SITY(INCH/HOU�) = 2.48 I TOTAL AREA(ACRES) = 10.32 TOTAL RUNOFF(CFS) = 7. 74 yo» l I ************************************************ *** ******* *** ************ 17 L�� 7 ROCESS FROM NODE 1007..-0 TC NUDE 1007.12: IS COOL = 1 >)>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUE��CE<<<<< E > > >> >AND COMPUE VARIOLS CONFLUENCED STREAM VALUES< < < < < CONFLUENCE VALUES USED FUR INDEPENDENT STREAM 2 ARE: �� TIME CF CONCENTRATION(MINUTES) = 16.71 RAINFALL INTENSITY (INCH./HOUR) = 2.48 TOTAL STREAM AREA (ACRES) = 10.32 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 17.74 �� CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY i NUMBER (CFS) TIME ) (INCH/HOUR) 1 2426.12 37.96 1.516 �� 2 17.74 16.71 2.481 �� RAIWFALL INTENSITY AND TIME CF CONCENTRATION RATIO E FORMULA(SBC) USED FOR 2 STREAXS. VARIOLS CONFLUENCED RUNOFF VALLES ARE AS FOLLOWS: 2436.96 1085.77 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: N� � RUNOFF(CPS) = 2436.96 TIME(MINUTES) = 37.958 TOTAL AREA(ACRES) = 2155.57 � **************************************************************************** FLCW PROCESS FROM NODE 1007.10 - O NODE 1048.„0 IS CODE = 5 I: - - -- - >} � > > ) ��PUTE TRAPEZOIDAL-O-'A,\EL FLOW< < ( < < >>>>>._ RAVELTIME TrIRU SUBAREA( ((<< - _ _ -_= �� UPSTREAM NODE ELEVATION = 1281.B8 DOWNSTREAM NODE ELEVATION = 1281.50 CHANNEL LENGTH THRU SUBAREA(FEET) = 38.00 N� CHANNEL BASE(FEET) = 20.00 "2" FACTOR = 0.000 �� MANNINGS FACTOR = .015 MAXIMUM DEPTH(FEET) = 8.00 CHANNEL FLOW THRU SUBAREA(OFS, = 2436.36 I FLOW VELOCIT�Y(FEET/SEC) = 22.74 B-OW DEPT-1FEET) T) TRAVEL TIME(MIN. > = . 03 �C(�I�. ) = 37. 99 l - I **************************************************************************** FLOW :ROCESS FROM NODE 1048.30 TO NODE 12148.30 IS CODE = 1 ____ I >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE{<<(< . � OCWFLLENCE VALUES USED FOR ZZEPENDENT STREAM 1 ArRE: TIME OF CONCENTRATION(MINUTES) = 37.99 I RAIMFALL INTENSITY (INCH. /-1CUR) = 1.52 TOTAL STREAM AREA (ACRES) = 2155.57 '. ' TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 2436.96 II ^ ' � .-.r4 ,x -0...u.-:+o r^�,. ���c -u�-.-~ .0 .`��� 4 -1.7.,.� t. �uuc - ( N� >>>>>_SE9 SPECI � �IED �YD�LCGY IHFCRMAT7 Ar ,L: ,\, �� ~~ =====__ _ _ -===______ ___============__ ____======== �SE3-SPE:I=IED VAL�ES AHiE -S F:LLC^S: �_ 4����' TC(�:�} = 21.52 RAIN I%TE\SITY(I-17/-OLR> = 2.1: �~'~�` ^"~� II TOTAL AREA , ACRES = 3 . 4 7J7 RUNCFF (CS) = 6. � � VOL. � ~u~� �� ..***************„„*********4***,..**-**************,********„ �� FLOw =R:CESS FROM NODE _048.33 _: NdDE 1048.2: IS COD= = � ) - - - >>>>>:ESZGNATE 'INDEPENDENT STREAv =CR CJNFLuENCE<<<<< li > > > > >A�D COMP�TE VARIOUS CO�FL�ENCE� STREAM VAL�ES< ( < < < ____ _ _ _____ CONFLUENCE VALUES USED FUR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 21.52 _ RAINFALL INTENSITY (INCH./HOUR) = 2.13 TOTAL STREAM AREA (ACRES) = 3 .1� - E TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 6.24 CONFLUENCE INFORMATION: ' �Q STREAM RUNOFF TIME INTE\SITY l� "� �UMBE� (CFS) TIME > (INCH/HOUR) 1 2436.26 37.99 .5�6 C 2 6.24 21.52 2. L31 �� RAINFALL INTENSITY AND 7.7. . E . A CONCENTRATION �TIO 0� 7.7.,,E FORMULA(SBC) USED FOR 2 STREAMS. VARICUS CONFLUENCED RUNOFF VALLES ARE AS FOLL3WS: 2441.40 1386.84 �� COMPuTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: ` m� RUNOFF(CFS) = 244..4-0 TIME('fINUTES) = 37.956 TOTAL AREA(ACRES) = 2158.68 II **************************************************************************** =1__[W =ROCESS FROM NODE :048.-Z -: NODE 10k6. 7 21 IS CODE = 5 N� > > >>>C:'(=_ TRAPEZC:DAL-7_HPYNEL �LOo,( { < ( < >>>>,--liAVELT:YE T-IRU SUBA7-REA<<<<( ' � _ -_____ I: UPSTREA� NODE ELEVATION = _281.50 _____ DOWNSTREAM NODE ELEVATION = 1280.79 CHANNEL LENGT-1 THRU SUBAREA{PEET) = 77.00 CHANNEL SASE(FEET) = 20.00 "Z" FACTOR = �.0�0 �� MANNINSS FACTOR = .015 mAXIMUM DEPTH(FEET) = 8.00 ( CHANNEL =LOW THRU SUBAREA(CFS) = 2441.40 II FLOW VELCCITY(FEET/SEC) = 22. �3 FLOW DEPTH(FEET> = 5. 52 TRAVE' T��E(MIN ) = 06 �C(�IN ) = 38 @4 - . . . . - 11 *************************************************************************** FLO,N =ROCESS FROM NODE 1006.70 T. NUDE 1006.7@ 16 CODE = 1 N� N� > > > > >JESIGNATE INDEPENDENT STREAM FOR CONFLUEWCE< < < < < ) CONFL_EWCE VALUES USED FOR INDE:ENDENT STREAM : ARE: TIME :F CONCENTRATION(MINUTES) = 38.04 N� RAINFALL 1NTENSITY (INCH.,-CUR) = 1.51 TCTAL STREAM AREA (ACRES) = i:58.68 TOTAL STREAM RUNOFF(CFS) AT CJNFLuENCE = 2441.40 i: _",,, -- rt.. ^��c -�... , ~ . u .JJ -mm�. . ° �z .Ju. = / }>>>>�SER SPECIFIED -YDROLOGY �FORMATION A ��D1<<<<< N� = =__ JSER—SPECIFIED VALuES �RE S — ILLOWS: .— — / II TC(MI�> = 17. 85 RAIN :�TENSITY ( I��CH/OLR> = 2. 38 TOTAL AREA(ACRES) = 3.62 TOTAL RUNOFF (CFS) = 7.5O ".t ^ , VOL ���~~ c �� # �x� �� II ~ - '~ - ~ *************************************************-4-*********** FLOW PROCESS FROM NODE :006.70 TO i%ODE 1006.T. I= CUDE = 1 L > > > > >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE < { < ( < >>>>>AND COMPUTE VARIOUS LONFLUENCED STREAM \;AL—ES<<<<< C CONFLUENCE VLUES UED FOR INDEPEWDENT STREM TIME OF CONCENTRATION(MINUTES) = 17.35 RAINFALL INTENSITY (INCH./HOUR) = 2.38 TOTAL STREAM AREA (ACRES) = 3.63 0� 55 TOTAL STREAM RUNOFF(CFS) AT CONFLUEMCE = 7 �� .. . CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 2441 40 38.�4 �.5'4 E . - 2 7.55 17.6� 2. 364 RAINFALL INTENSITY A, TIME OF CONCENTRATION RATIO FORMULA(SBC) USED FOR 2 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 2446.19 1153.04 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: �� | m� ' RUNOFF(CFS) = 2446.19 TIME(MINUTES) = 38. @44 TOTAL AREA(ACRES) = 2162.31 t **************************************************************************** FLOW PROCESS FROM NODE 1006.70 TO NODE 10146.c_Z .S CODE = 5 m: > > > > >COMPUTE TRAPEZJIDAL—O—AN;,EL FLOw < < < < < >>>>> - -IRU SUBAREA<(<<< - 1: UPSTREAM MODE ELEVATIIN = .280.79 DOWNSTREAM NODE ELE.:ATICN, = 1280.00/ CHANNEL LENGTH THAU SuBAREA(FEET) = 160.00 I CHANNEL BASE(FEET) = 20.00 "Z" FACTOR = �. 000 MANNINGS FACTOR = .015 MAXIMUM DEPTH(FEE7) = 8.�0 CHANNEL FLOW THRU SCBAREA(CFS) = 2446.19 II FLOW VELOCITY(FEET/SEC) = 17. 75 FLOW DEPT(FEE = 6. 89 TRAVEL TIME(MIN. ) = .-5 TC(MlN. ) = - 3 . 3._ - I FLOW PROCESS FROM NODE 006.60 7O NUDE 1006., _S CODE = 1 1 > > > > >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE{ < { < < �� _ = _ ___ CONFLUENCE VALUES uSED FOR INDEPENDEWT SiREAM 1 Ar<E: TIME CF CONCENTRATION(MINUTES) = 38.19 II RAINFALL INTENSITY (IN,CH. /HOUR) = 1.51 TOTAL STREAM AREA (ACRES) = 2162.31 (: TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 2446..9 r��, ~s—,,zoo riTun . .mo.am _ -uu_ �mmo.ow �., L"u= = / �� N� >>>>>USER SPECIFIED HYDROLOGY ��FCRMATI:N 1 4._1",-:\,/ << USER-S=ECIFIED VAL�ES A.NE ::S F3L-Z,yS: _..,,: . TC(MI��> = 12.�� RAIN I�TENS3�Y(INCH/mOUR) = C.03 I TOTAL �REA(ACRES) = 2.02 TOTAL RUNOFF(CFS} = 5.43 VOL/ \ c 8 �� I **************************************************************************** FLOW PROCESS FROM NODE 1006.60 TO NODE 1006.60 IS CODE = 1 il >}>}>DESZGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<(( )))))AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES(<<<< = CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: N� TIME OF CONCENTRATION (MINUTES) = 12.00 RAINFALL INTENSITY (INCH./HOUR) = 3.03 TOTAL STREAM AREA (ACRES) = 2.02 0� TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 5.43 �� CONFLUENCE INFORMATION: I STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 2446.19 38.19 4 .o 1 1 i: 2 5.43 12.00 3.026 U� RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO 0� FORMULA(SBC) USED FOR 2 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 2448.90 773.98 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: II / RUNOFF(CFS) = 2448.90 TIME(MINUTES) = 38.194 TOTAL AREA (ACRES) = 2164.33 11 END OF RATIONAL METHOD ANALYSIS II -- ' �� �� II II - II . I l ' ii ' �� ` ~~ e E X S. D. ?3 H YD 2 o LO 1 R L 1 1 1 1 1 G ^ _ ° � i - --------- ---- =-----=- RATIONAL ETHuD -YDROLOGY COMP-TE 7 .iO3RAY BASED CN SAN BERNARDINO COU0,Ty (SBC) 1983 HYDROLOGY MANUAL <<<<<<<<(<<<<<<<<<<<<<<<<<<<<<(<<<(<<0>>>>>>>>>>>>}>>>>>>>>>>>)>>>>>>>>>;>> (C) Codyright 1982 Advanced Engineering Software [AES] || �� Especially prepared for: HALL & FOREMAN, INC. <<<(<{<<<<<<<(<<<<<<<<<<<<<<<<<<<<<<<0>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> **********DESCRIPTION OF RESULTS******************************************** * N.BASELINE AVE DBL BOX HYDROLOGY E. OF ETIWANDA TO CHERRY AVE * * Q 100 YR INCLUDING BOX HYDROLOGY FROM MASTER PLAN * ~- * VENKI.N, JN 3810-00, DISK"4", FILE "F" , 8/28/87 * **************************************************************************** USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: USER SPECIFIED STORM EVENT (YEAR) = 100.00 U� SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = .95 I \ 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = .980 / 1069-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.470 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.4700 SLOPE OF INTENSITY DURATION CURVE = .6000 SBC HYDROLOGY MANUAL "C"-VALUES USED <<<<<(<<<<<<<<<<<(<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>)>>>>>>>>>>>>>>>>> Advanced Engineering Software [AES] SERIAL No, A0580A REV. 3.1 RELEASE DATE: 5/01/85 < < < ( < < < < < < < < < < < < ( < < < < < < < < < < ( < < < < < < < < < <> >> > > > > > > > > > > > > > > > } > > > > > > > > > > > > > > > > > > > ^� 11 *************************************************************************** FLOW PROCESS FROM NODE 221.10 TO NODE 221.10 IS CODE =- 7 >>>>>USER SPECIFIED HYDROLOGy INFORMATZCN AT �ODE<<<<< ] USER-SPECIFIED VALUES ARE AS FOLLOWS: MASTER PLAN N� TC(MIN) = 32.26 RAIN INTENSITY(INCH/HOUR) = 2.13 TOTAL AREA (ACRES) = 1917.29 TOTAL RUNOFF(CFS) = 3027.53 ! \ 11 **************************************************************************** FLOW PROCESS FROM NODE 221.10 TO NODE 1056.^0 IS CODE = 5 > > > > > COMPUTE TRAPEZOIDAL-CHANNEL FLOW < ( < < < >)>>>TRAVELTIME THRU SUBAREA<<<<< . Jr-b|xmHM muu,= �Lc_vHiiN = lLli.L.o DOWNSTREAM NODE ELEVATION = 1299.40 I CHANNEL LENGTn - 1RU SUBAREA(FEET> = 1360.o0 CHANNEL BASE(FEET} = 20.00 ''Z" FACTOR = _..;',0 MANNI%GS FACTOR = .015 MAXI DEPTH(FEE } = 8.�0 I CHANNEL FLOW T-1RU SUBAREA(CFS) = 3027.53 FLOW VELOCITY(FEE�T/SEC) = 20.14 FLOW DEPTH(FEE = 7.52 { \ TRAVEL TIME(MIN > = 1 62 TC(MIN ) = 33 88 ^ ^ ~ ^ II *************************************************************************** FLOW PROCESS FROM NODE 1056.10 TO NODE 1056.10 IS CODE = 1 I >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<( ) CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: 0� TIME OF CONCENTRATION(MINUTES) = 33.s8 RAINFALL INTENSITY (INCH./HOUR) = 2.07 TOTAL STREAM AREA (ACRES) = 1917.29 TOTAL STREAM RUNOFF AT CONFLUENCE = 3027.53 �� ii **************************************************************************** . . FLOW PROCESS FROM NODE 1056 10 TO NODE 1056 10 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFOEOnATION AT WJDE<<<<( �� "� USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 27.99 RAIN INTENS3TY(INCH/HOUR) = 2.32 VOL- �� C TOTAL AREA(CRES) = 107.20 TOTAL RUNOFF(CFS) = 205.25 ~ ~~ �4 \ ***************************************************************************+� FLOW PROCESS FROM NODE 1056.10 TO NODE 1056.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<(<< N� )))))AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES(<(<< i - CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: ^ N� TIME OF CONCENTRATION(MINUTES> = 27.99 U� RAINFALL INTENSITY (ZNCH./HOLR) = 2.32 TOTAL STREAM AREA (ACRES) = 107.20 L � TOTAL STRM RUNOFFF) AT �ONFLUENCE = CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY (MIN.) (CFS) (MIN.) (INCH/HOUR) 1 3027.53 33.88 2.071 I 2 205.25 27. 2. RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO - FORMULA(SBC> USED FOR 2 STREAMS. �� VARIOUS CONFLUENCED RUNOFF VALUES AkE AS FOLLCWS: 3210.55 2706.31 COMPL|TED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(CFS) = 3210.55 TIME(MINUTES) = 33.662 - TOTAL AREA(ACRES) = 2024.49 NI **************************************************************************** FLOW PROCESS FROM NODE 1056.10 TO NODE 1045.-0 IS CODE = 5 II >>>>>COMPUTE TRAPEZOIDAL-CHANNEL FLOW(<<<< >>>>>TRAVELTIME THRU SUBAREA((((( m . .4p - c1-1n wuuc c-.-...vH.IuN = ��.7.+ DOWNSTREAM NODE ELEVATION = 1297.70 N� CHANNEL LENBT- THRi� SUBAREA(FEET) = 420.00 -- CHANNEL BASE( = 20.�,2 "Z" ":ACTCR = �.0-00 MANNINSS FACTCR = .015 YAXI�UM DE7:7H<FEE = 8.�„7,1 CHANNEL FLOW - �RU SUBAREA(C = 3210.55 �� \ | / ==)>ERROR: FLOW IN CHANNEL EXCEELS 2i- CAPACITY( NORMAL DEPT� EQUAL TO SPECI=IED MAXI�-M 0� ALLOWABLE DEPTH). } AS AN APPROXIMATION, =LOwDEPTH IS SET AT MAXIr.,M ALLOWABLE DEPTH AND IS U - SED FOR TRAVELTIME CALCULATIONS. � . I FLOW VELOCITY(FEET/SEC) = 20.07 FLOW DEPTH(FEET) = 8.00 TRAVEL TIME(MIN.) = .35 TC(MIN.) = 34.23 II ==>FLOWDEPTH EXCEEDS MAXIMUM ALLOWABLE DEPTH ~~ **************************************************************************** FLOW PROCESS FROM NODE 1045.10 TO NODE 1045.10 IS CODE = 1 I >>>}>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<(<<< CONFLUENCE VALUES USED FOR I�DEPENDEWT STREAM 1 ARE: �� TIME OF CONCENTRATION(MINUTES) = 34.23 RAINFALL INTENSITY (INCH./HOUR) = 2.06 �� TOTAL STREAM AREA (ACRES) = 2024.49 �� TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 3210.55 **************************************************************************** m: FLOW PROCESS FROM NODE 1045.10 TO NODE 1045.10 IS CODE = 7 �� >}>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<(<<< m� USER-SPECIFIED VALUES ARE AS FOLLOWS: _ ��� ���� 0� �� � TC(MIN) = 24.16 RAIN INTENSITY(INCH/HO�R) = 2.54 ^��` ' ~ �� TOTAL A�EA(ACRES) = 5 27 TOTAL RUNOFF(CFS) = 12 ^ 84 VOL 2. *****************************��********************************************* N; FLOW ��O�E8S ��ON �ODE 10�5.10 TO NODE 1045.10 IS CODE = 1 II >>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< - CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 24.16 I RAINFALL INTENSITY (INCH./HOUR) = 2.54 TOTAL STREAM AREA (ACRES) = 5.27 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 12.84 - II **************************************************************************** FLOW PROCESS FROM NODE 1045.10 TO NODE 1045.10 IS CODE = 7 0� ----- m� )))))USER SPECIFIED HYDROLOGY INFORMATION AT NUDE<<<<< \ _ USER-SPECIFIED VALUES ARE AS FOLLOWS: �� ��w° /1/ m� - C(MIN) = 24.�6 RAIN INTENSITY(INCH/HOUR) = 2.54 ~-^~~` ''" TOTAL AREA(ACRES) = 3.28 TOTAL RUNOFF(CFS) = 8.14 VOL. ��~ u� II ~ ` ))))/DESIGNATE INDEPENDENT STREAM FOR :JNFLLEACE<<<<< I >}>>>AND COMPUTE� VARI8US CONFLUENCED ST�EAM ;ALLES<<<<< | - - ---- CO�FL�E�CE VALE� USED -�� - �DEPE�DE� - STREAM 3 ARE: = ^ / I 7IME :F CONCENTRATION(MlNUTES) = 24. RAI%FALL INTENSITY (IND-./HOUR) = 2.54 7OTAL STREAM AREA (ACRES) = 3.28 II ^ TOTAL STREAM R�NOFF(CFS) PT CONFLUENCE = 6.14 ) CONFLUENCE INFORNATION: STREAM RUNOFF TIME INTENSITY �� NUMBER (CFS) (MIN.) (INCH/HOUR) 1 3210.55 34.23 2.059 2 12.84 . 24.16 . 2.537 . �� 3 8 14 24 16 2 537 ~� RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA(SBC) USED FOR 3 STREAMS. w� VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 3227.57 2286.99 2286.99 li COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(CFS) = 3227.57 TIME(MINUTES) = 34.231 TOTAL AREA(ACRES) = 2033.04 11 **************************************************************************** 1 FLOW PROCESS FROM NODE 1045.10 TO NODE 1041.41 IS CODE = 5 � - >>>>>COMPUTE TRAPEZOIDAL-CHANNEL FLOW<(<<< >}}>>TRAVELTIME THRU SUBAREA(<<<< l _ C ) UPSTREAM NODE ELEVATION = 1297.70 DOWNSTREAM NODE ELEVATION = 1297.40 CHANNEL LENGTH THRU SUBAREA(FEET) = 50.00 E CHANNEL BASE(FEET) = 20.00 "Z" FACTOR = 0.000 MANNINGS FACTOR = .015 MAXIMUM DEPTH(FEET) = 8.00 CHANNEL FLOW THRU SUBAREA(CFS) = 3227.57 C FLOW VELOCITY(FEET/SEC) = 20 62 FLOW DEPTFEET) = 7 83 . . TRAVEL TIME(MI,.> = .04 TC(MIN.) = 34.27 ' __ ri **************************************************************************** FLOW PROCESS FROM NODE 1041.41 TO NODE 1041.41 IS CODE = 1 01 >)>>>DESIGNATE INDEPENDENT STREAM FOR'CONFLUENCE<<<<< CONFLUENCE VALLES -SED FOR INDEPENDENT STREAM 1 ARE: I TIME OF CONCENTRATION(MINUTES) = 34.27 RAINFALL INTENSITY (INCH./HOUR) = 2.06 TOTAL STREAM AREA (ACRES) = 2033.04 - TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 3227.57 II . **************************************************************************** ] I FLOW PROCESS FROM NODE 1041 41 TO NODE 1�41 41 IS CODE = 7 . . >>>}>USER SPECIFIED HYDROLOGY INFORMATION AT NUDE<<<<( II .,SER-SPECIFIED VALUES ARE AS FOLLOWS: VOL � ; TC(MIN) = 20.34 RAIN INTEWSITY(INCH/�O�R> = 2.81 ' -` . INCL. E . � TOAL AREA(ACRES) = 75.24 TOTL RUNOFF(CF) = 174.75 mv103 . ^ rLUor ��U,:_ FRO NI_/1Ja l�� T� '4uDC. 1041.4^ _a ��L,E = . >>>>>DESIGNATE IADEPENDENT S FOR CONFLUENCE 1 >>>>>A\D COMPUTE VARIOLS CONFL-ENCED STREAM VALJES<<<<< _ _ __________ _ -- ------ _ _____====_ CONFLLENCE VALUES USED FDR IWDE�EDE,T STREI-M 2 A�E: TIME OF CONCENTRATION(MI = 20.34 . RAINFALL INTENSITY (INCH./-OU':) = 2.81 TOTAL STREAM AREA (ACRES) = 75.24 I TOTAL STREAM RUNOFF(CFS) AT CONFL_ENCE = 174.75 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY -- NUMBER (CFS) (MIN.) (INCH/HOUR) I 1 3227.57 34.27 2.05 2 174.75 20.34 2.813 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO N� FORMULA (GBC) USED FOR 2 �= VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 3355.36 2090.32 N� COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(CFS) = 3355.36 TIME(MINUTES) = 34.271 TOTAL AREA(ACRES) = 2108.23 **************************************************************************** li FLOW PROCESS FROM NODE 1041. 41 TO NODE 16915. 10 IS CODE = 5 - >>>>>COMPUTE TRAPEZOIDAL-CHANNEL FLOW<(<<( >>>>)TRAVELTIME THRU SUBAREA<<(<< C / UPSTREAM , ELEVATION = 1297.40 DOWNSTREAM NODE ELEVATION = 1292.62 CHANNEL LENGTH THRU SUBAREA (FEET) = 8169. 00 @� CHANNEL BASE(FEET) = 20.00 "Z" FACTOR = 0.0.00 �= MANNINGS FACTOR = .015 MAXIMUM DEPTH(FEET) = 8.00 CHANNEL FLOW THRU SUBAREA(CFS) = 3355.36 C ==?>ERROR: FLCW :N O-AN��L EXCEE,S CHANNEL CAPACITY( NORMAL DEPT-1 E;UAL - O SPECIFIED �1-1X1 ALLOWABLE DEPTH): AS AN A::.PROXIMATIGN, FLOWDEPTH IS BET AT NAXI�UM ALLOWABLE DEPTH AND IS USED FOR TRAVELTIME CALCULATIONS. FLOW VELOCITY(FEET/SEC) = 20.97 FLOW DEPTH(FEET) = 8.00 TRAVEL TIME(MIN.) = .64 TC(MIN.) = 34.91 N� ==>F-ZWDEPTH EXCEEDS MAXIMUM ALLOWABLE DEPTH **************************************************************************** FLOW PROCESS FROM ',ODE 1015.10 TO NODE 1015.10 IS CODE = _____ 0� > > > > > DESIGNATE INDEPENDENT STREAM FOR CONFLLENCE < < < < ( m� _ _ CONFL-ENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME 3F CONCENTRATION(MINUTES) = 34.31 RAINFALL INTENSITY (INCH./HOLR) = 2.03 TOTAL STREAM AREA (ACRES) = 2108.28 TCTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 3355.36 . " ^ r,_uw ~n_-4:c3 r11u� w u.im .-e.l-.^, .- ~�u� �-.., �, L,D.-.. = N� >>>>>-SER SPECIFIED HYDROL�GY �\FORMATION A[ �UDE<<<( �� ___ ___ USER-SPECIFIED VAL-ES ARE :S FCLL:WS: _ _ _______ = TC(M.1N) = 12.24 RAIN INTENSITY(INCH/HOUR) = 3.8L �� ^���� ���' I TOTAL AREA(ACRES) = 2.15 TOTAL RUWOFF(CFS) = 6.84 V OL') 1 I ******************************* * * ** ** * * ****************************** FLOW PROCESS FROM NODE 1015.10 TO NUDE 1015.1Z IS COD: = 1 E >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE((((( >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES(<<<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: C TIME OF C�NCENTRATION(MINUTES> = 12.24 RAINFALL INTENSITY (INCH./HOUR) = 3.81 TOTAL STREAM AREA (ACRES) = 2.15 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 6.84 CONFLUENCE INFORMATION: ril STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 3355.36 34.91 2.034 0� 2 6.84 12.24 3.815 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO N� FORMULA(S8C) USED FOR 2 STREAMS. �� VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 3359.00 1183.50 � � COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: �� ) �� / RUNOFF(CFS) = 3359.00 TIME(MINUTES) = 34.915 TOTAL AREA(ACRES) = 2110.43 E { **************************************************************************** FLOW PROCESS FROM NODE .015..0 - O NODE 16913.20 IS CODE = 5 C >>>>>:: - r=, - E TRAPEZCIJAL-C-A,,EL 7 "LOW<<<<< >>>>> THRU SUBAREA<(<( ' r Id JpSTREAY %ODE ELEVATION = 1292.61 DOWNSTREAM NODE ELEVATION = 1292.44 I CHNNEL LENGTH THRU SUBREA(FEET) = 30.00 CHNNEL BSE(FEET) = 10.00 "Z" FOTOR = MANNINGS FACTOR = .015 MAXIMUM DEPTH(FEET) = 8.00 CHANNEL =_OW THRU SUBAREA(CFS) = 3359.00 I ==>>ERROR: FLOW 1,4 CHANNEL EXCEEDS CHANNEL CAPACITY( NORMAL DEPTH EQUAL TO SPECIFIED MAXIv":,'M ALLOWABLE DEPTH). I AS AN APPROXIMATION, =LOWDEPTH IS SET ATMAXIYUM ALLOWABLE DEPTH AND IS USED FOR TRAVELTIME CALCUL,:TIONS. II FLOW VELOCITY(FEET/SEC) = 41.99 FLOW DEPTH(FEET> = 8.20 TRAVEL - I; , la(MIN.) = .01 TC(MIM.) = 34.93 � . II ==FLOwDEPTH EXCEEDS MAXZMUM ALLOWABLE DEPTH * * ** * * * II ************************************************* ** * **** ***** ****** * * FLOW PROCESS FROM NODE 1013.20 TO NODE 1013.20 IS CJDE = 1 ~ ~ ///� �� ��/� ^^uc�cwuc* � n��u rux �uaN�c`.`‘` / o�o ' ' __ I CONFLUENCE VALLES JSE3 =7.R I�DEPENDENT ST�EAM 1 ARE: - TV= CF CONCETRATIJN(M _TE = 34.S3 RAI,FALL INTENSITY (INCH./-O_JR> = 2..23 I TOTAL STREAM AREA (ACRES) = 2110.43 TOTAL STREAM R.NOFF(CFS> A CONFLUENCE = 3359.;%3 e e *************************************************************************** FLOW 7 ROCESS FROM NODE 1013.20 TO NODE 1013.20 IS :ODE = 7 �� >>>>>USER SPECIFIED HYDROLOGY INFORMATION Al NODE<<<<( �� USER-SPECIFIED VALUES ARE AS FOLLOWS: C, ���� ��� ~~^ v'u" TC(MIN) = 14.80 RAIN INTENSITY(INCH/HOUR) = 3.40 C TOTAL AREA(ACRES) = 12.44 TOTAL RUNOFF(CFS) = 21.39 ���� ��°-^ II **************************************************************************** FLOW PROCESS FROM NODE 1013.20 TO NODE 1013.20.IS CODE = 1 il >>>>>DESIGNATE INDEPENDE�T STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOLS CONFLUENCED STREAM VALUES<({<< | - - - :0' VALUES .SE: =IR I DEPENDE),T STREA�< 2 ARE: E - TIME �F CONCENTRAT^ON(MI\LTES) = 14.80 1 RAI%FALL INTENSITY (INCH./HOUR) = 3.40 TOTAL STREAM AREA (ACRES) = 12.44 C TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 21.39 CONFLUENCE INFORMATION: E ' STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.; (INCH/HOUR) li 1 3359.00 34.93 2.034 2 21.39 14.80 3.404 RAINFALL INTENSITY AND TIME OF CONCENTRATION RAT= { FORMULA(SBC) USED FUR 2 STREAMS. V� VARIOUS CONFLUENCED :1UNC,F= vAL,JES ARE AS F3LL:4S: 3371.78 1444.75 ' COMPUTED CONFLUENCE ESTINAT�' ARE AS FOLLOWS: N� RUNOFF(CFS) = 337�'78 TI�E(MINUTES) = L4.927 TOTAL AREA(ACRES) = 2122.87 i **************************************************************************** =LOW PROCESS FROM NODE 1013.a0 - O NODE 1011..0 IS CODE = 5 ] I >>>>>COMPUTE TRAPEZOIDAL-CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SuBAREA<<<<( - IPSTREAM NODE B-EVATION = :292.44 DOWNSTREAM NODE ELEVATI3N = 1288.30 CHANNEL LENGTH THRU S�BAREA(FEET) = 735.00 I CHANNEL BASE(FEET) = 10.00 "Z'' FACTOR = 0.000 MANNI:‘GS FACTOR = .015 MAXIMUM DEPTH(FEET) = 8.00 CHANNEL FLOW THRU SUBAREA(CFS) = 3371.78 ==>>ERROR: FLOW - NJ Cr-ANNE- EXCEEDS CHANNEL CAPACITY( NORMAL DEPTH EQUAL TO SizECZFIED MAXIMUM ALLOWABLE DEPT-). 0: AG AN APPROXI�ATION, FLOWDEPTH IS SET AT MAXIMUM ALLOWABLE DEPTH AWD IS USED FOR TRAVELTIME CALCULATIONS. ~ =I■ ��� v�_u�.|x`rc-.> - -c..�- r_L-i u�-'-{rc= .> = �., , TRAVEL TIME(MIN.) = .29 TC(MM,.) = 35.22 -- ==>FL_WDE�TH EX,�=-in AX:fU A�LOWABLE D�PT- 1 1 ************************���*********************************************** 1 MO �LO� P RO CES S F�OM %O 1�11 T O N OD � 10 1 1 .1 � I S CODE II >>>>>DESIGNATE INDEPEWDE�T S FOR CONFLUENCE<<<<< _ _ _ CONFL�ENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: U� TIME OF CONCENTRATION(MINjTES) = 35.22 RAINFALL INTENSITY (INCH./HOUR) = 2.02 TOTAL STREAM AREA (ACRES) = 2122.87 I TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 3371.78 Ni **************************************************************************** FLOW PROCESS FROM NODE 1011.10 TO NODE 1011.10_IS CODE = 7 li >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: �� �� ���� TC(�:�) = 21.44 RAN I,TENSITY(INCH/H ��'~� OUR) = 2.73 ��"^ '^�~° �� TOTAL A�EA(ACRES) = 4 �8 TOTAL RUNOFF(C�S) = 7.73 . VOL ��°~ E FLOW PROCESS FROM NODE 1011.10 TO NODE 1011.10 IS CODE = 1 I >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<( >)>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: N� TIME OF CONCENTRATION(MINUTES) = 21.44 RAINFALL INTENSITY (INCH./HOUR) = 2.73 TOTAL STREAM AREA (ACRES) = 4.58 I � U� TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 7.73 CONFLUENCE INFORMATION: ' STREAM RUNOFF TIME - �NTE�SITY E NUMBER (CP�B) TIME (INCH/HOUR) ' 1 3371.78 35.22 2.024 II 2 7.73 21.44 2.726 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO II FORMULA(SBC) USED FOR 2 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 3377.52 2060.44 - COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: �� RUNOFF(CFS) = 3377.52 TIME(MINUTES) = 35.217 TOTAL AREA(ACRES) = 2127.45 **************************************************************************** FLOW PROCESS FROM NODE 1011.10 TO NODE 1010.10 IS CODE = 5 �� w� >>>>>COMPUTE TRAPEZOIDAL-CHANNEL FLOW<<(<< >>>>>TRAVELTIME THRU SUBAREA<<<<< II UPSTREAM NODE ELEVATION = 1288.30 I DOWNSTREAM NODE ELEVATION = 1286.32 LMHNNL,_ L'Hba(rm=(/ = a0.00 '^.4^ -H�iure = .6.14t�141 I MNNINGS FCTOR = .015 MXIMUM DEPTH(FEE7) = 8.N0 . C HNNEL FLOW THRU SUBREA(CFS) = 3377 2 FLOW VELOCITY(FEET/SEC) = 23.55 FLOW DEPTH(FEET) = 7.17 TRAVEL TIME(MIN.) = .17 TC(MIN.) = 35.38 II \ *************************************************************************** FLOW PROCESS FROM NODE 1010.10 TO NUDE 1010.10 IS CODE = 1 II >>}>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<( B CQNFLUENCE VLUES USED FOR INDEPENDENT STREM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 35.36 { RAINFALL INTENSITY (INCH. /HOUR) = 2.02 TOTAL STREAM AREA (ACRES) = 2127.45 N� TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 3377.52 **************************************************************************** ~- FLOW PROCESS FROM NODE 1010.10 TO NUDE 1010. 10 IS CODE = 7 >>M USER SPECIFIED HYDROLOGY INFORMATION AT NODE< < < < < m� �� ^� USER-SPECIFIED VALOES ARE AS F3LLOWS: C.13:41100 C.13:41100 to/ TC(MIN) = 15.52 RAIN INTENSITY(INCr/�O�R} = 3.3� ' il TOTAL AREA(ACRES) = 15.04 TOTAL RUNOFF(CFS) = 36. 27 VOL, I **************************************************************************** �� FLOW PROCESS FROM %ODE 1010.10 TO NUDE 1010.10 IS CUDE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< N� / > > > > >AND COMPUTE VARIOUS CONFLJENCED STREAM VALUES< < < ( < CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 15.52 l ~- RAINFALL INTENSITY (INCH /HOUR> = 3 31 ^ ^ TOTAL STR�AM AREA (ACRES) = 15.04 E TOTAL STREAM RUNOFF(S73) AT CONFLUENCE = 36.27 Z3NFL.:\ICE I\FCRTiATION: ' f STREAM RUNOFF TIME INTENSITY �IN N� �UMBE� (CFS> ( ) (IW��/HOU�) } ~ 1 3377.52 35.38 . 2.0:8 ^ I 2 3�.27 15 52 3.309 RAINFALL INTENSITY AND TIME OF CONCEVTRATION RATIO I FORMULA(SBC) ...ZED FOR 2 STREAMS. VARIOUS CONFLLENCED RUNOFF VALUES Ap AS FOL,_OWS: 3399.64 :517.33 - I COMPUTED CONFL�ENCE ESTINATES ARE AS RUNOFF(CFS) = 3399.64 TIME(M:NU:ES> = 35.034 TOTAL AREA(ACRES) = 2142.49 11 *****,-********************4(*****************************************-,-******* ` FLOW PROCESS FROM NODE 1010,0 TO NODE �0�8 10 IS CODE = 5 • . . N� - - m� ) > > > >COMPUTE TRAI:EZOIDAL-CHANNEL FLO� ( < < < )>>>> - -IRA., SUBAREA<(<<< _ _=== m� UPSTREAM NODE ELEVATION = 1286.32 DOWNSTREAM NODE ELEVATION = 1284.08 ~ ����w�� ����` r���� = �� �m l �����a = � ��@ ~ ^ ~ MANNINGS FACTOR = .015 MAXIMUM DEPTH(FEET) = 8.069 I CHANNEL FLOW 7-1 5-BAREI = 3399.64 FLOW VELOCITY(FEET/SEO) = 23.60 FLOW DEPT-(FEET = 7.22'. , TRAVEL T^ME(�I�.) = ..9 - C; IN., = 35.:7 II ) **************************************************************************** FLOW PROCESS FROY, NODE 008.10 TO NUDE 1008.10 IS CCDE = 1 NI - >>>DESIGNATE ' STREAM FOR CONFLUEWOE<<<<< l - -- - ----- II CQNFLJENCE VALUES USED =7,a INDEPENDENT SREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 35.57 RAINFALL INTENSITY (INCH./HOUR) = 2.0: TOTAL STREAM AREA (ACRES) = 3142.49 li TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 3399.64 **************************************************************************** �� FLOW PROCESS FROM NODE 1008.10 TO NODE 1008.10 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION A7 NUDE<<(<< @� ____ USER-SPECIFIED VAL-ES ARE AS FOLLOWS: C^8, /0�� 7c(MIN) = :3.04 RAIN .N7ENSI�Y(I�CH/�OuR) = 3.67 - li TOTAL AREA(ACRES} = 2.75 TOTAL RUNOFF(CFS) = 7.75 V���� - E FLOW PROCESS FROM NODE 1008.10 TO NODE 1008.10 IS CODE = 1 >�}>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< \ c �� �� � _-� �_ >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< _ _____ CONFLUENCE VALUES _SED FOR INDEPENDENT STREAM 2 ARE: I TIME OF CONCENTRATION(MINUTES) = 13.04 RAINFALL INTENSITY (INCH./HOUR) = 3.67 U� TOTAL STREAM AREA (ACRES) = 2.76 N� TOTAL STREAM RUNOF AT CONFLUENCE = 7.75 ZONFLJENCE INFORmATIO�: ' STREAM RUNOFF TIME - INTENSITY Ni NUMBER (CFS) (MIN.) (INCH/HOUR) 1 3399.64 35 . 57 2.012 3.673 I 2 7.75 13.04 RAINFALL INTENSITY AWD TIME CF CONCE4TRATION RAT:3 N� FORMULA(SGC) USED FLR 2 STREAMS. VARIOUS CONFLUENCE,' UNOFF VALUES ARE AS FOLLOWS: 3403.88 1254.03 - COMPuTED CONFLLENCE ESTIMATES ARE A6 F2LLOWS: RUNOFF(CFS) = 3403.88 TIME(MINUTES) = 35.571 TOTAL AREA(ACRES) = 2145.25 **************************************************************************** FLOW PROCESS FROM ',ODE 1008.10 T3 NODE 1007..0 lS CODE = 3 II >>>>>0OMPUTE 7RAPEZOIDAL-CHANNEL FLOw<<<<< { >>>>>TRAVELTZME T-RU SUBAREA:((; l _ ___ li UPSTREAM NODE ELEVATION = 1284.08 _ __ 1 DOWNSTREAM NODE ELEVATION = 1281.38 ' ~ �n�*.`�„_ _"c -=',1 ./ = cu.�� - :�._x = u.um� MANNINGS FACTL� = .015 MAXIM� DEP�;(FEET) = 8.00 N� CHA��EL =LON -- __ SUBAREA(CFS} = 34Z �� FLCw VELOCZ = 23.63 FLLw DE1 = 7.22 - RAVE_ - I - rE0I-.) = .18 - C( M:\..) = 35.77, ) **************************************************************************** FLOW =ROCEES FROM %ODE 1007.10 TO �UDE 1007.�0 IS CLDE = N� - }>>}>DEBI3NATE I4DE;ENDE\iT STREA,1 =JR CONFLUEHCE<<<<< _ _ _ _ = ____ I CONFLUENCE VALLES USED FOR INDEPE STREAM 1 ARE: TIME OF CONCEN = 35.75 RAINFALL INTENSITY (INCH./HOUR) = 2.01 TOTAL STREAM AREA (ACRES) = 2145.25 II TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 3403.88 Ni **************************************************************************** FLOW PROCESS FROM NODE 1007.10 TO NODE 1007.1O_IS CODE = 7 E >>>>>USER SPECIFIED HYDROLOGY IWFORTION USER-SPECIFIE3 VALjES ARE �5 F3LLOwS: ��~��,�� �C(���) = �6.55 RAIN �WTEkSI�Y(��C�/�OUR> = 3.18 - - I - 3 - AL AREA(ACRES) = 10.32 - C - AL FJNOFF(CFS) = 23.46 VOL 1 **************************************************************************** �� FLOW PROCESS F9O1 NODE 1007.10 - O NODE 1007..0 IS CODE = 1 li ) >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< / >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: E TIME OF CONCENTRATION(MINUTES) = 16.55 RAINFALL INTENSITY (INCH./HOUR) = 3.18 TOTAL STREAM AREA (ACRES) = 10.32 E TOTAL STREAM RiNOFFCFS) AT CO�FL�ENCE = 23.48 CONFL-2.\ IQFC::f'AT7ON: . STREAM RJNOFF TIME - INTE%BITY NUMBER (CF8) (MIN.) (INCH/HOUR) 1 340.3.82 35.75 2.005 II 2 23.48 l6.55 3.184 RAINFALL INTENSITY AND TI"IE OF CJNCENTRATIO% RATIO II FORMLLA(SBC) USED FOR 2 STREAMS. VARIOUS CONFLUE'4CED RUNOFF LUES ;RE AS FOLLO�S: 3418.67 1599.07 COM�:,TED CONFLJENCE ESTIMATES AiE - FOLLOWS: NI - 412%OFF(CFS) = 3418.67 TImE(MINUTES) = 35.754 TOTAL AREA(ACRES) = 2155.57 ********************A-******************************************************* FLOW PROCESS FRCM NODE 1007.10 lC �ODE _048..L0 .S CODE = E >>>>>COPU_E TRAPEZOIDAL-CriANNEL FLO. ; >>>>TRAVELTIME THRU SUBAREA(“(( N� JPSTREAM NODE ELEVATION = 1281.88 DOWNSTREAM NODE ELEVATION = 1281.53 ~ ' �.����^�_ ��b��r��� ) = ��. �� � -��'=n = �. ��� I MANWINGS FACT6R = .015 �XUM DP-(F) ) CHA�NEL FL3W 7 S�BAREA (CFS) = 3413.67 FLOy VELCOITY(FEET/8EC) = 25.15 FL_,\, :EPTH(FEET) = 6.6% T;';'Ak/EL TIAE(1:' = .Z3 TC(�IW.) = 35.7:- ) II ) **************************************************************************** ' FLOW PROCESS FROM NODE 1048.3D TO NUDE 1048.30 IS CODE = �� > > > > > DESIGNATE - NDEPENDENT STREAM FOR CONFL�ENCE < ( ( < _ li CNFLUENCE VALUEB USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 35 . 78 - '` ] RAINFALL INTENSITY (INCH./HOUR) = 2.00 TOTAL STREAM AREA (ACRES) = 2155.57 li � ` TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 3418. 67 - **************************************************************************** - FLOW PROCESS FROM NODE 1048.30 70 NODE 1048.30 . IS CODE = 7 II >> >> >USER SPECIFIED HYDROLOGY INFORMATION AT NODE< < < < < _ USER-SPECIFIED VALUES ARE IS T3LL3WS: ,��,�� ���- - TC(�:N) = 21. G3 RAIN :NTEN5I77 (INCH/�O�R) = 2.71 ~- '' E TOTAL AREA(ACRES) . OTAL OFF(OS) = 8. Q VOL. � "� ~� **************************************************************************** li FLOW PROCESS FROM NODE 1048. 30 TO NODE 1048.3o IS CODE = >>>>>DESIGNATE - NDEPENDENT STREAM FOR CONFLUENCE<<<<< �� ) ^ N� / > > > > >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES< < < ( < _ CONFLUENCE VALLES USED FUR INDEPENDENT STREPM 2 ARE: I TIME OF CONCENTRATION(MINUTES) = 21.60 RAINFALL INTENSITY (INCH./HOUR) = 2.71 TOTAL STREAM AREA (ACRES) = 3.11 C TOTAL STREAM RUNOFF (CFS) AT CDNFLUENLE = 8.01 CCWFL,_FNCE :NFTRMATION: ' STREAM RUNOFF TIME - INTENSITY E NUMBER (CFS> (MIN.) ( INCH/HOUR) 1 3418.67 35.78 2.005 I 2 8. 01 21. 60 2. 714 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO I FORMUL(SBC) JSED FOR 2 STREAS. VARIO.S CONFLUENCED RtAOF� VAL,ES ARE AS FOLLOWS: 3424.59 2@71.66 - COM�uTED CONFL�ENCE ESTIMATES ( AS FOLLCWS: I 9UMOFFFS) = 3424. 59 TIME(MINS) = 35. 780 TOTAL AREA(ACR=S) = 21E3.63 ~~ **************************************************************************** ] ' FLOW PROCESS FROM %ODE 1048.30 70 ;.ODE 1006.70 :s CODE = 5 1 :,>)%>:7 T -=LOW < ( ( < < )>>>>7 - HRU SUBAREA<<< I UPSTREAM NODE ELEVATION = 1E61.30 DOWNSTREAM NODE 3LEVATZON = 1280.79 ° ‘,nHm64C-- ��.rcc// - c_m.um ,. ' rw�.,Jx = m.��m MANN E-5' FACTOR = .015 MAXIMUy4 DEPTH(FEET) = 8.00 I CHANNEL FL3W THR� SUBAREA(OFS) = 3424.59 FLOW VELOCITY(FEET/SEC) = 24.4- FLOW DEPTH(FEET) = 7.,2 TRAVEL TIME(MIN.) = .35 TC(MIN.) = 35.23 **************************************************************************** / FLOW ;ROCESS FROM NODE I006.7@ TO NUDE 1006.70 IS CUDE = 1 I INDEPENDENT SrREAM FOR CONFLUENCE<<<<( CONFLUENCE VALUES USED FOR I,DEPENDENT STREAM 1 ARE: II TIME OF CONCENTRATION(MINUTES) = 35.83 RAINFALL INTENSITY (INCH./-OuR) = 2.00 TOTAL STREAM AREA (ACRES) = 2158.68 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 3424.59 -- E FLOW PROCESS FROM NODE 1006.70 TO NODE 1006.70 IS CODE = 7 Ni >>)>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< - _ USER-SPECIFIED VALUES ARE AS FOLLOWS: C. B.44 107 = TC � (MIK) = 17.59 RAIN �TE�SITY(INC��/HOUR) = 3.07 0� T OTAL AREA(ACRES) = 3. 63 TOTAL SUNOFF(CFS> = 9. 75 ��� ^� / ~= N� **************************************************************************** FLOW =ROCESS FROM NODE 1006.70 TO NODE 1006.70 IS CODE = 1 - >}}>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<(<<< � / >> >> >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES< < < < < CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: 4' * TIME OF CONCENTRATION(MINUTES) = 17.59 RAINFALL INTENSITY (INCH./HOUR) = 3.07 TOTAL STREAM AREA (ACRES) = 3.63 TOTAL STREAM RUNOFF(CFS) ;T CONFLUENCE = 9.75 CONFLuENCE INFORMATION: _ ' STREAM RUNOFF TIME - IWTENSI�Y 11; NUMBER (CFS) (MI�. } (INCH/HOUR) 1 3424.59 35.83 2.003 N� 2 9.75 17.59 3. 069 RAINFALL INTENSITY AND TIME CF CONCENTRATION RATIO FORMULA(SBC) USED FOR 2 STREAMS. N� VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 3430.95 1690.88 - COMPUTED CONFLUENCE ESTIMATES ARE FOLLOWS: N� RUNOFF(CFS) = 3430.35 TI:Y-E(MINUTES) = 35.83i 1 1 TOTAL AREA(ACRES) = 2162.31 II **************************************************************************** FLEW ;ROCESS FROM NODE _006.70 nO NODE 1006.60 IS CODE = 5 I > > > > >CCMPUTE TRAPEZOIDAL-:HAWNEL FLOW< < < < < >>>>>TRAVELTIME THRU SUBA;EA<(<<< NI UPSTREAM NODE ELEVATION = 1280.79 �n,�4'.�- �ri� , - �,,.,,: ^~ r"�^u - L., @ MANNINGS FACTOR = .015 MAXIMUM DEPTH(FEET) = 8.Z0 CHANNEL =LOW T�iRU SUBAREA(CFS) = 3430.95 �� ==>>ERROR: Fi-�W IN O.-NEL EXCEEDS CHANNEL I CAPACITY( �ORMAL D��T� EQUAL TJ S�ECI �AX:�_ � ALLO��ABLE DEPTH). IN \ AS AN AoPROXIMATIO� FL��DE�TH IS S�� AT MAX ] / ' ^ �� ALLOWABLE DEPTH AND IS USED FOR TRAVELTIME CALCLLATIONS. ) �� FLO'04 VELOCITY(FEET/SEC) = 21.44 FLOW DEPTH(FEET) = 6.:2j m TRVEL - IME(MIN.) = .1 TC(MN.) = ==>FLOWDEPTH EXCEEDS MAXIMUM ALLOWABLE DEPTH ) �� �� **************************************************************************** I FLOW PROCESS FROM NODE 1006.60 TO NODE 1006.60 IS CODE = 1 )>>>>DEBIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< N� CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: �� ~~ TIME CF CONCENTRATION(MINUTES) = 35.96 RAINFALL INTENSITY (INCH./HOUR) = 2.00 TOTAL STREAM AREA (ACRES) = 2162.31 I TOTAL STREAM RUNOFF(CFS) AT C�NFLUENCE = 3430.95 ! **************************************************************************** FLOW PROCESS FROM NODE 1006.60 T3 NUDE 1006.60 IS CODE = 7 � - >))>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: C^�u�4 ���L TC(MIN) = 11.91 RAIN INTENSITY(INCH/HOUR) = 3.88 ) -~` ^~~-« L TOTAL AREAACRES = OTAL RUNOFF(CFS> = 6 98 ^ ^ VOL U N� **************************************************************************** �� FLO4 1 :;OC238 FROM ',ODE 1006.2: TO NUDE 1006.60 13 COD: = ' )})))DESIGNATE INDEPENDENT STR�AM FOR CONFL' NCE<<((< E >>>}>AND COMPUTE VARIOUS CONFLJENCED STREAM VALUES<{<(< | _ - ( I CONFLUENCE VLUES USED FOR INDEPENDENT STEM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 11.91 RAINFALL INTENSITY (INCH./HOUR) = 3.88 TOTAL STREAM AREA (ACRES) = 2.02 I TOTAL STREAM RUNOFF(CFS) PT CONFLUENCE = 6.38 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH/-OUR) � ~~ 1 3430.95 35.96 I.999 I 2 6.98 11.91 3.878 RAINFALL INTENSITY AND TIME OF CONCENTRATION BA= I FORMULA(SBC) USED FOR 2 STREAMS. VARIOUS CONFLJENCED RUNOFF VALUES ARE AS FOLLOwS: 3434.55 1143.43 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: I RUNOFF(CFS) = 3434.55 TIME(MINUTES) = 35.956 TOTAL AREA(ACRES) = 2164.33 1 1 >< 1 )--ASE LINE DaL 1 HO X 1 HYD2FlUL I c,g I 77 1 1 T • • m _ - - - - ., . - • a¢ _ 71 8 R R2LR R 4 n 73 4 i R RF R 4 4 : 4 7 7 4 8:. 4 4 :, 4 4 4 4 8 73 8 8 4; 4.3 1 4 8 7 8 2 .l y 1 , : N m V V a •4 V V •t - V v 4 4 ! V 4 d V -• 4 V .• n n ! r J Q7 Zi 0 0 a 0 0 0 0 a 0 0 C 0 0 0 0 0 O 0 0 0 0 10 -0 o w • 4 • • • • • • , , • • • • • • • • • KU. 0 0 0 0 0 0 0 a O a 0 0 0 0 0 0 0 0 0 o o - o • % 1 m N . 0 0 c 0 0 0 P * - 0 0 10 O 0 0 0 O O o 0 O o o - 0 • • a • 0 0 0 •n a 0 0 • Q ° 0 0 0 Co 0 0 0 0 0 0 - o G. r 1 0 0 0 o a 'o { •�0 . -.0 a 0 0 0 0 0 0 0 0 O 0 o - o 0 4 - N 'O u1 0 • 4 ./'• .• ' • 1 • • • • .1 • • • ' • • yi. i • • Al • • • • • ■ • • 01 C 0 00 0 0'000.400000000000..0 k • 1 • • . • • . • • '. • . I • • n . • • • • • : 0 a o o c o 0 i' a o o. 4 f, o 0 0 0 0' 0 0 0 a 0 0 - o ct.'•i P P • 0- . a § • 1 A N n O a 0 o • 0 0 O , f • O O O O O O O O 0 O 0 - O 1 0 c o o c oli.a 0O o 0 0 0 0 0 0 0 0 0 0 - 0 1 itg s t o C O O C O C C O O • 4 CO A V 0 an .• 0 0 n 0 0 - 0 . . t ! ' a`.:i3.A N N N N N ; 0 1 n V In V A o A, a C N M, V N '0 n 43 P O r N 0 0 - 0 •,f • .- c o o c 0 ' 0 C o O a o o 0 0 0, 0 0 o 0 o N m 5. 1 ca sr ' ; ,7 A c o O C o. C 0 ; 0 QKT 0 0 0 0 0 0 o 0 o 0 0 0 0 0 0 3 - " 9 0 0.,,,,,t 0 0 0 0_ O 0 0 0 0 0 - o Q . • • • �^ C • o • Q, • • .a _ Iq • o • o • 0 •+ 0 C 0 0 . 0 la 0 0 0 0 or, ' 6 0 0 0 0 0 O O o: 0 •O a - O Os' a 0 0'0 o 0 . 0 0. 0 0 0: O o 0 a N • 4 • • • • 1 • • • € g', '1 •- r ' ✓ o c o o a o • ip -. q o ip � i� • • • • o S>• f7 0 o a o o `. 0 a o • - o J z -' N M •n N 0 0 0- 10 O 0/ N u'1:, ': 0 0' M 0 0 111 0 0 - 0 n 4- 0 0 0 0 0 0 0 ; 0 0 o q 0 0 -0 0 a- 0 o o a o O - O 7 • 4 • • • • •4 - • • • • • •,. 1 • •' • • • • • • zo. O 0 0 0 0 0 01:-44 0 0," 0 o 0 ?0 0 0 0 0 0 0 0 0 - 0 V M . v •I� n n n n n n 8n 1/ n n "M n 47 On n In' n n n M1 e' r 0 • _ • • • • • • • 1, • • - • • • ^ • • • • • • • • • • Cr 1 71 O 0 O 0 0 0 0 Q 0 0 b_ 0 0 a 0 0 0 0 0 0 0 0 ■ 0 O •_,! N N N N N N N p N N N 1�8�i� N N N N N N N N N N N .l� • • • • 1 • • ` . • • ' • • • • • • ■ • • • • • • J N al l a •O .O N Na O N N V O .p .p •Op .0 .p .p 'Q •p r A • - P 0 P O• N I- O P P P 0 o. P P P P P o P P 0 N N 0 0 0 0 0 0 0� 71 n 0 0 0 0 0 0 0 0 0 0 0 o a o o• 0 0 0 0 a o o a o o q o o a o o a o o a a c-3 0 0° 0 • 0 0 0 0 0 0 0 0 0 O, 0 0 0 0 0 0 0 0 0 0 0 0 0 Li V. > " ': i . A ° 0 a . o .� m • o o m �% N N a N r. o N • • • • * M 0 P A r P P 'O 0 tl • 1 :141 • • • - 4 • • • • • • • v . K h •C •U N A O r N N ni J V 'Y •O A P n •O O P O C N V' •n •n N V V .t,, V V V V •81 •O V V A A A m A 47 m N N N N N N N ' A N N 0-; co N N N N N N N N co N N r r .- •- ••• •- r r . - r r r r . - r • - r r . J 4 • 01 M • •O •O .G O •d „' •• co co 0 .O tl 0 .0 N 'r N N- P N A e- a .d N v m r N N' M .. •', .. W1 0 0. A P P •O O •• r • • • • • • • • • 4 • • • • • . • • • • • • • Z .J N ' '0 h 1- •.• N N N •n n •• V W '0 N P .• M .7 P 0 .L 1 W IV1 v1 1n V• V1 VI .4 .O •O •/ .O .0 V •O V •O .O A A A N T ,-4 .... 01 N MI N f4 N N , N ru N N NI N N ru N - N ma N ru a no '0 - 0 0 0 0 0 C 0 0 d N 00 '0 N 8. V .t 0 4.1 A 0 0 o- n 1-� ,0 n 0 0 0 0'; 0 0 0" O m .- O n a 0 0 •n o 0 0 a. a a • • •'.- • • • • • . • • • • • • • u •• 2 0 - 0 C O N Y` 0 ••• •• • 1•i .- N A N '0 v 0 01 a .• .- 0 Z J J • 0 10 .- 0' _ • 10 m ♦ 4 n n n m on co- J .- % N •- ••• N 4 •• 'O Q u re .1 q 0 •• O 0 0 0 O,.' C 0 0 j,1 0 0 0 0 0 0 0 O 0 0 0 0 •- • • 4 • • r • • • : • • .. V • • • • • • • • • ' m • m m •C m OD K V N - - 4 N A 4 P P v m '0 .0 n P •al •n r n n n / n nr ' 4 n n N O P P A •o 4 4 n r N Z Q n n n '- n n M n n r 0 n n n N 4 N N N N - o] 4. ..... ••. IP ••• V` , u 0 0 ■ J 0 0 0 0' 0 0 0 -'%za 0 0 O 0 0 O O 0 0 :,7 O a • > ■ 1 •• • • ••. • • • • •• • X 10 ]0 0 4 70 0 4 ♦ -4 N .- V 0• 0- V 90 tl O n •. O 40 e1 on n n r•• n n M n n 01 N N o P P A '0 V 'O •n N • n J V n n n N n n 1.1 on n V n 01 n N N N N N N N w O i . - Z 0 Z J .- ' N o 10 .G A tl 0 O 1- N n .f M .o A '0 o. O n N 41 .n - H A N N N N Y v .n d N I V nL W d •p i N N N N N N n N N N N N N N N N N N N N N N N J Oj 0 U — — - - - ' R - .4 R - 31 R 7 R 4 .; R .4 a x R R .4 . 7 7 . 8 4 ., -. R .,; - — � ^ ,•-3 r1 n .- 1 - ‘• --,,:. , - • • , 4. 4 .' - '' t ' d 4 ).'4 . 7. ' ai • 7 .1. 'V, .' ).- L .- k • "7 i ' . . 7. .t '• 7 a. -• =-. .°7 ' <<41•414111417,41/7.1.73%4".)141. 23133 1,7<•..:1<11 •-• . I I OD a7. I 0 01 0 ' . 00 00 0 401 0 en co 0 7 C 0 Oa al to a] Oa • • 10 al 0 0 al 01 " 0 0 VI ors al 0 . 0 I 0 0 0 40 al aa 0 • I • 61 CIO on a) all r '' on r so se a) en al 0 . VI L. 0 01I1 0 <0 0 CV • 40 110 • t.4 v • •-• ..- 7. = * , t- 1-. ••• ..- q.- , •- 1, '''''' .. , 0 • , .11, •• 1 1, V C VI 1, 1, .••• 'O 0 1.- .1- ••• v .1 v 7 .1, , • 1, 1, , 0 •• 1 , 11. •• • , '1, ••• , , 4, ," ••• 1, .1,.... , 1, '1, ■• .a .- . - .. ,- .- I ea 1, ••-' •.• ▪ 1, '-4 • a r or- r r r r In ro 0 on P1.4 on vo a oo x r. r or PM on WI on II P1 VI 0 - < V v •-, ••• -4- 0 44 44 44 44 44 r V 4 v .1-. ••• 1 44 0 0 0 C C 4- 4- 44. lel 1 • 3 4.- I- 4.• 4- e• 4- 141 ,, I 3 • 1, '1, ••• 44 • .. Cr 0 ••• 4- - 1, •4 P•41141 11.- 0 . I- v. • • 4- ••• 7 1, V 01 in ,, on on ' g • • .- .- v 01 w - on on r or • A .• 0 ii. 4 - 4 - .., r .- • •-• ✓ - A_ 'A • • 4- 444 v. r ., 0 V 4- 4- 4-1 17 it 4- 444 . 4- C 4- .0 IL a ,- C 44.4 • ' .4: •• ... .4 . 4 . 4Z .Z " .% 4- 0 I■ ne 40 r. • 0 w- ••• •-• •1 •• •• •• •• •• •• •• 0 7 •• •• MI L. • .- Iv .- • 4- '7 " •• " •• •ft ••• •• •• •• , • , PM rot r 1•• ✓ L 1 ••• 1, 4 .., i • i. fro v 1.. •- „ . - . • v IM 1 • PM IM ■ IV ,.•* - .„ ,, .- - .4.• IA 4- a e- r 4 - a 4 - on on on '. ';' , r rn . • 4 vo 4 - v. VI r rn ''''1 • '' ,''' -- -5. .4 • tom ,,, „.. e .„. v V •- 4 0 * '''' '11• 0 1 •■ ..- .. 0 110 10 cu 40 4444 WO in an re 01141 t • L 44. a ••• 4- 4.4 Ir. 104001 10 41 10 10 111 ' 5 VI on in 44 41 t.. 0 11.1 ... ... 4- c4.- a 40 44 44 10 sp ' _,. on on on 64 ■••• at 0 ✓ el v - ..J to 44 44 Kele ° , '. to In 44 44 ii„. 41 In e• a ... .4 I, .•' > 4 ..II oo 44 44 ,_ oolor .0 vo vo on on .„, , vo on in • ,- ....... 10 10 41 4444 t en 44 404 on 44 44 . - .c • r .... ,- . •- op 4444 'Mow ', in vo • 10I 4,4 an 404 0 0 v I . - , I, Wli° •0 el 40 41 r vi 44 (44 41 on on co ,„1 ,- r. 44 40 CO 40 0440 10 10 lei Pe vi 41 IA . - * PI 441 40 .4 4- 4- 0 I- .4.i 110104040 J en 10 in VI 'a pl in VI O. • 4- 4- • ,4 .4 p• OM A0 10 4 * .- Z .- v ▪ v .- .4 -47.-f , on IL 1. 4- 4, e- 4.4. .- *Al,. .11 •I 141 Pe in 01) PI 4 In , 4- 1. •-• -1 .-1 -1 -I J -1 .41 44 144 r• PI 1111 In 141 ^ t . tu • 4- I- le• tr- 04- MI OM wort volln 04 VI • VI v II. C • 4- 0 .44 4- a 4- 1 .• 1 • 010 0101 . 0 V. 0 14 I 01 3 I- 0 e - 1. , 1 • • 01414 ea 44 4.4444 P I 111 . 444 al ••• L. •- . - 0 •••• ni On en , 3• o ol or v. L. 0 * I I Z I I: 11 rg . 4.110 3 0 0 * •-• t J 0 e- I° II I 4 * .0 .4 V I 0 14*') t 0 0 C I- 7 OM WI " 1 - O 41 .. I .v. v VI ••• ••-• c .--I 1 en - A. WA WA ' . on r r CI .. , ,, ,- , •- a •- Ii3LX CZ d 44 • '1 01 ... .. 4- a .1- .Z2 ZZZZZZZZZZ • V e•• 4- ul e- -X Z zZ=.7e 7C2Z ZZZ -4 -1 • ... 4.4 u .- 4-44- 1 5 2 - .., , • , .. - ., .,.- - .- ... ... _. _, ., .- 40 -. . a. ..4 -4 L Z IP , r- 00.- 4 1- 10 •-• ....1 0 - V .- 22 -4 J V V 4 v •-• .... a 0 Z Z . -1-8 4- : 111 r. 1.1 ] . v■ 4- 4-4 4- . - 4 e-I -2Z ZZ ZZNEXZXZ-.4.4 4 -I 8 4-- -.4.- .ZZ ZZZZUZZICZZ4 - z Ill 4- a 4- ` . --4 • i .- ol•-• •-.... 4- Po 4- -I 4- ■ • er ... r. 1 • 4- ' . 7 .- 8 - 7"1 "M •' - 1 9( 'M • ../ 0 Ca C 4- tr• t-- v % ° I ••• • • • • .- •- • , 4, , . -, • • • 0 0. 4.. I, , 4, •-• ..I ..• • • • 4.. 4,.. 44. 0, 1, . 'n ••• • • • • .0 Z tr - 01r- ,... 4- v at . 0 11 1- •,••• • .- v - 11 ..) V. ft v •-.•••• .- 1 "I - 1 . 1 . N - .0 en II Ile 4- 4-- p- . 4 •• 1 .. 1 .1 1 ••• 10 4- .4- • 4- . 1 1 IP1 e- qv .- •.- 1-4 . f 4- P. ■ 4- I.- 4- 4- 4-1 •• in 4- 4-1, 4- e- 4-, • vl 4- 444 144 0 e- V .... •-• •-i J V 1.- .-1 11.• Ir. , r.. • v Pe 1 v • v .r. v. v v '1 le 2 4- v v v. v PI • ••• 4.4. - 4 z 3* .- v ... 4-4- L r -) et r or .-, _ - - --4- .,,,.. -_, d A :,,,- .., , . ........._.- , ., , .. 4 an L. 1/... ..• En 03 al3i ., 10 <0 j III 1 et) 0) 0 e • L 0 0 : 0 cO al. 0 0 10 a) JO 0444 0 7 4 0 a) Oa al al al< L. al <0 0 0 M al 01 • 0 01 WO -4 a] tO i a 1 cl) , 44 • A el, 01 40 40 0 0 en tO IL . 1 0 401 10 _ ( . . - . - - ^ • •R Nall*<".PF l 47§^ 1E : 1 - 1 - . t , • o - ,_ __. t r _ fi , " k ,4 { n ul -- - — _— - • _ - - _ _ �, n t. R R : : R A n A A 2 a A F A - 2 7 : . : 7 7 Y : 9 :, 2.11 .. ., . . - . . S g • i • I i .ra ► O1 M el en 4 • I 4 o io . o o • _ a co 1 ' u I 0 0 - 0 O N N 1 ‘1; w j •.• 0 0 • 0 0 0 • 0 • 0 O or al 1 won z 0 ▪ 0 •• 0 O 3 r 4. • • • 0 • 0 • • • .- o • • e 0 a $• , o O - 0 0 t t ✓ I r 1A IA r 0 1 r• o 0 • 0 O 'r • O O - O O t VP 0 0 1.1 O O - O O VV 4 S • h O O - O O ;.y O O O O O O • O O - a a N O 1 • • • • O I 1 q 0 . I. 8 I /1 d 1. • 0 0 0 a O C O ,3 �� elL6e4a "4 0 0 0 o Z } + (A— 1 4 . -1 m O N • •3 I 0 , : I- O M • 1 O d a b w r 4 w Iy •111 •O • •o .O N 4- 4- L 0 ' r , Q 0 Q a o o - o O l N O O •o O $ O • x p Al a m U o l0 - o O < ,�-1 • r c •- V .1 A =11 x 3,/ j r • 0 ti W , d N w •••• `i 14 M n N V M W [ � N N N N I ./(. . . _ .g. 2 A • •A R f R A ^ A M A ^ . 7 . 4 H • . I ./(. . A :) . . • ., , . • ''; • , .... f .'. . ,- , .. ., , .. .. .,-: . . , . ., 1 1 7 .::: 1 .: It. 0:0,1 0 ,..-. 4.0 N.." 1 '..5 "•"-■ ■ . I I I ■ 1 1 I 1 • 1 . • V CO 0 11.1 ft. a. ,. ., " . = z I 1 .410 0 ...• ..• IlY Il_ X C11 10 0 0 CO IV 7 I CC 0 0 X 2 - 1J XI to u 0 ul .01.Jc/0000o u C.J 0.1 0 0 p 0 1-1 CI 0 o 1- I 0 0 0 • 0 0 O. 0 0 0 0 0 0 0 0 0 0 0 0 , 0 C.10 0 04' 7 7 • • • • • - • • • e • • • • • • • • • 1. • • to 0 • V 0 0 01 - 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 N.. 0 o 00'000000 0 • 0 0 0 0 0 0 O. 00 V 0 V 0 0 ,17 0 0 0 0 0 0 0 0 0 0 0 0 0 110 0 J • 1 • • _ • • . • 0 • • • • • • • • • • • a iz. - 0001 00000 000000 0 0 04 0 cl II. ' 0 ea , • .... •-• 0 0 • '0 , 0 irt oft irs IN 0 in 4 N * N 0 .4 0 1, ! .- 1- 0 0 0 • co al 0. '0 V% 0 0 4 00 0 .0 0 .- OP Pn 0 mo IL • • • • e 0 • • • 0 • • • • • • 4 • • • c0 0 ••• in 'I,, In ..o .46 Al to 0 00 40 40 80 o• sn 0 10. .• 's. .4 . s a ,. o 0 10 101(0 G/ 0 V% al 1ft 00 0 10 10 MO • 10 c0 A • .4 01 0 , P. 0 CP a) , Pa '0 00 0 CO 0 0 4 . 0 '0 0 0 0 0 0 0- • • • • • 4 • • 4 . • • • • • • • • • • u P. 0 • '4 4 v. 4 41 V P- 0 ON CO 00 c0 0- O. '0 0 . .• ,., 11 * • II - 5... •. .. 10 0 .. 0 • 4'. 0 0 4) •ci en * IN .0 rt . 1 4 Pt 0 va .- v% . a - 1 10 0 IT a 0 0 L 0 0 0 * 1 '0'0 0 • , 0 -a N ..... . Kt In 0 • • • 0 • It 4 s • . 1, . • 4 • • 0 • • • • • • • • 4..0 01 4 4010 0 0 0. 0 0 0 -0 40 4 0 0 • 0 • 0 4 .4 .0 42 01 • •o 41 . 4 4 4 • rs N co 10 • .0 no no Iv fa 4, 01 IV 01 •. 01 0 IV no 40 4') pa 40 04 pu 0- •• ?ins •- g”.. 2 . . , fr 4 91 4-4 ••• sh •- .- Ir. 4- 1.4 4- 44. •- 4-4 . .0 on c• 0. • 4, '0 rm ... t. , 14 '0 '4 • '0 • 0' - 4'-. 0. .0 .- .• 4 .../ 0' 43 sr* (P- a a , al .- 0 .,,11 c. qo ... in os '0 4, n4 .- in 0 _I , Al • ..., • • A., 4 • • 4 • • • • • • • • s• N , N . ..It ' ••••• as . ' N. * 0- * o .- fa fa * 0 • 10 0. 0 4 • 0 '0 os• .0 • • ''O op 14%,10 , c• .0 se r- P. P. P- P- 4.- 1.. r- so go ox p 110 P4 V VW tJ IV V ni IV 10 • 40 011 0 fa OA 0 fa 041 , la 0 • .- 4- 4 0 0 0 •■ r• 11, •• •• v. •• e• 0 •• •• .• ••• Os so ■••• • 0 si)7:0 Pa 011 sf) in " 0 • in ••■r IV Os Vs. VS -.I •-■ ••• vs -, rm '4 t VI Vs 01 .4 0 ti•• 0 10 In 0' P- •• 0. 40 V • al a • • • 0- • • 0 ..., , 4 • • • 1 • • 0 • • • • • • Z Y. In , o 0 t.„. 0 4 . N 4,6 , '0 wa • .41. • 46 r- 0. .. 10 '0 - 0' a 0 0 0 0 0 00 r '; I g 0 0 '0 4 4 v a 42 • * ..o 0 P... - N N r- ed n1 0 f• " 04 ••• 40 40 rel 01 0 VW ".I Oli Pa re ••■ 2 ••• •- ••• •• 1.1 0 0 0 .. • 0 0 0 0 110 •• 0 .- 0 , •• 0 ' I' .!;' , ' • '0,, 4 • a I '0 0 0 1 "0 0 '' 10 0 01 00 ‚0445 Os • Of in ne ni Gs r... . ••• ro ••• • •••• 10 s N in 0 1, V • ••• 0 as 0 0 CP 0 • 00 0 I- • • in • • *.. I • a 4. • • 410 • • • di • • U. tIl LA 0 • 0- 0 0 6 , 44 0 01 40 pn nt ..), .4 '4' .0 0 i)- in ii- in • 0 a. •-• in in ini 0 111 VI J. 0 0 0 41 , c) '00 •o Ax. ob •J 'AP V - r- ts r p- eu ns ca., iv na ' 01 OA Os ni es. ro •• ni 440 10 V n1 /0 n1 >4 40 1 IV 0 4 I • • 1 1 f• ,. . - 4 1 le ••• I.* 4 r V` 4 0. 1> 1. ••• , 0 •• - V* 4,- 1.• 01 V` 1 - 1 41 1 1 ' Ln 1 e f- 0. > 11- •• •-■ .......0 1 1 ' 11. 1 I 1.11 O. 01, • • .1 -, ICI 0 0 ....• •■ 0- nu. 40 0 on no .4 s. 1 I IC ••• 0 101 04 0 CP. 0 .. • • • • °I • „ J • • • • 0 10• a" • • • 4 • ... 0 0 0 ni 4, 0 .4 0 , NI .0 0 -0 na 0 04 Ca 0.1 0 1- 0 S. 1- • 4- • - • •-- pa :.. - P 0-10 • 0 0 10 0 4 sn s• os .0 u, ril 0 0 0 0. • • •1•0 • la • 0. C.0 01 V P. WI 0 0 • 0 0 0.1 ••• 0 • • • • • • • • 4 • • • • 0 4' " - A • ••• .0 •' 0 0 V la 0.1 01 fel a I- 0 110 0 4 4- .- ... 1. o 0. • • • 0. 0 0 0 0 1 ✓ 4 VI • • • O 1 XI IV ••• ••• 1 I •D 10 P- I .70 / 0' A ... C• so '0 0 • 0 0 0 fa 0 ••• 0 0 0 01 0 0 4., 0 0 11> V *I ' 0 I.• • WI In 10 In 0 0 •••• '0 10 0 1n .4 0 , 0 a P - . .0 1 , o 4 •1 • i sn sl ts_ n• so co ao a V 0 g 0 co. ..ir 0' o. * co GO 11 10 0 1 /0 to 0 0 Ill P- 1 Pa ..• I p.. wi ■ 4..o v- ■•• •••■ 40 47 0 •-• 0 0 ■-■ 0 0 C.) 1.) 0 0 0 0 4 - 1414 1 1 40 0 0 ••• 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 10 0 fa 0 01 u..1 ta. 0 • • .4 • • • • • • 0 • • 0 • MI 10 0 0 0 O . 0 0 0 0 00000..0 0000 000 0 I • 04 s X I I • -1 1 4' en 4143 J. 1- 0- -4 i--. -4 -4 -4 -1 -I 1 1- 0- -4 ...1 J 0 C 0 0 CC X 41; 0 CO IX OC IX CC Of IX IX '00 - .J ...I J '00 c IX J 0 J 0 1 J 0 cc a I a 404 0 7 7 0 0 7 al a a 7 ex 0 .e al 14.0-4-14 .0 . • o. 0.0.0.0.0. 10.7 1 • 11 - 0 - 1 11 11 0 - .., 4 9 0. I a. $ - 4. 111 21 0 0 1 -- 2 ' 0 01 1- •-■ V1 0 0 4.. 0 a 0 n- 0 0 00 C) 0 4...1 0 4..1 c• 0 In 0 110 0 0 7 al 0 . 1 1 0 U . 0 C .3 O • 4: '0 0 '0 U O a pa ay.* c..p.ia• • 1 0 a 0 4 0 m • • • • . 1 • • 0 isa • 0. o; ••••• Z1 af 0 COI • CO 0 '0 0 P - P - P - co se II Os col CO 110 0 p. IN 1'.. r - 4 2 9 Ill L3 1 1-• -i .... ••• I FO ...I MI I 0 0 DI Z 0 0 0 0 0 10 4) in 0 Z .0 '0 in 0 0 0 CP 1.- .0 0 0 1 2 r- to 0 1 r.- 0 ).0 co a 0' 4 N1 0 0 P- 0 ••• 0 4 0 .0 0 141 •- 1, 0 01 Ps • 04 II- 0 • l• 0 • • • • • • • • •PC • • • • • • • • • 0 • ✓ 0 0 In n co 0 1.1 0 0 V - 4 P. co 4 0 P•I ■ 7 cc •• ., 1 Of 1 3; 0 01 0100 0 0 0 0 4.- 0. ,,, co o4 0.0 • 0 fa 01 MI 0 014 IV 4414 • 0 fa IV V V MI n4 4.• z a 1 Z 0 0 a , v 0 000000 v: .4 3_ 1 •-• - .v. I- .- .- .- .- .,-, •-• v- .... 0 •,-. v- le .." 11, .- ,11- I •- 1 'V* 10 I D 1 4 1 -. O in c i 2 0 0 .0 0) NO n1 •4 0 fa P14 l * 0 0 al •0 .0 0 0 .0 '0 7 i 0 E O 1 ec 0. fl• >1 0 [ 0 10 0 0 0 0 1 s CP. GP. 0' Cr. IT 7 0 0. AI 1 "d Or LA '0 a tu i - ,- a Ca -- 0 alaao a - 0 o o • 0 C.1 0 0 0 0 0 CI 0 0 411 2 • • • X et • • • • • • • • 0 • 14 • I • • • • • 2 • to I cc al u_ 03 .0 on noi co 1 co lo to .0 4 .4 i p- ,..., 1-1 141 ...1 0 4 1 4 11 all al 1.0 0 al 0 0 al I 40 0 41 * 1 0 1 in , . K. I co ri 40 = 0 0 0 0 I 0 0 V Z t-41 2 .... 0 0 40 01 ..% . ' all on r■ on on .1 01 .4 ea N 444 N N ro 4441 1 a u1 L5 0 0 •-1. al 0 1, . •• 0 0 •- 0 0 01 le 1 0 0 0 0 4/1 0 VI 0 • V 0 44 iN.00..1000401 $5 4 0 • N lloi * a ... 0 fel 0 0 0 to 01 2 I ■•• 0 0 . 0 01 0 1 . 01 1- 0 N sol ro ns - J 11.. 1 r ---- - :- •••• - . - -'-' • '''' . `' R . %Ill': F 7; 1 ? ,- -, 4 A , -, A A . --- , - , ,- --, ,- - - -Th , -' - i fi . t . 4 +a Yi Y , ` x( _ W _ -__-• .• •, e. ,. .. R R p R R R :. F S A A A• 7 .,. 7 1 7 Y : PT;..;-1`5%,11* .1 c% a/: 1 ___ N•p Vf r 1 Y J m K .1 ill Q K LL = • O N N OC W W V •..1 0 co V co 0 O. f V' 0 • 0 0 0 0 0 0 e a •c • • W O O. u 0 .• O 0 0 0 0 I ' r •0 n N r •0 u P A n 1.1 on in J - • i. • ' • • • a P .,f. .0 N N N w u A A 4 n n A N ,• N N N N ✓ ■ • w r r r • r N N P 0 ♦ A •- P v . J N A .LL. • • i • • • r '0 1 • '0 N •• •n ,r, •0 • n J a' r • aD r - , , O v M• •' H • !, r • • u O O r no J n ' W �.„ P co 10 or Q • • t N N r A A " A :, n n A •O N ry ry •N- M N r. L1 N •O o O •P r r*. • Q - O ;: - .. � � J ▪ N N r M• • u A ... sk n ,t' A n A yr vs N N p ;, N ne N N N s • O rJ r O A N J a. n J P N 10 1 • Z v N 4 gin.: •0 •0 • N 4 A '0 i. •O '0 •0 N '` N " N q . N N z r r 1 r r r a n • 0 .: N '0 •O 0 m r.. n v 4 n w v 0 • 0 J LL N - ; •p '0 '0 • •0 N ¢ LL v . N ?. N N1 i t 4 U 21 r • r r N •M N N N N •O - NI A O • • P • '1 v 0 O. ry n dl v •0 ZI •-• VI N r v % 0 int A O • ✓ O q' . N � jl ! 0 ! • • • 1 - - 01 oz 1 a 0 z •n u. I. IL • - W ••• o LL r LL r U. 1 r LL W LA Z1 Z Z Z Z Z H O 0 I U O O O •- J u1 0' V rl V r 4 •u V V V N V no ¢ 0 r Z 0 Z P 0 J a Q LL W • W i/ Z W • W • W • w M M 1 r •i r Z r I-4 Z r p I v J O J 1 .4 4 -+ J J v J + CO 0 H W 0 W n v J YI P W d W N W •n I a LL o • 0 • 0 • Q • 0 • 0 • 0 • '4 r K GI N if 0 1 V K V '0 v o[ 0 is u 1 t! * u u u >. • wj JZ o d O o 0 o o 1.11 0 US 0 01 84 .. J i i J J J V 0.4 9 z N 7 n • 7 J "i o 7 co 7 I0 7 o V I11 -. r 4 i no '0 r Q - a r a r d .. 1 1 K 1 01 0 et 4 et >, al t7 0 I 44 0 0 0 0 1 u I OC Q LL '0 0 Z CO J '0 . 0 1 A O N W U 1 N , i t Z 4-1 Z v '�- a 0u f 91 H 10 a J ao i *. 0 M r. 4 u -1 a a 0 V W Z r' N r 1N, r N Is N r N 1 r N r8 0 of O . - - - _ _ _ R n r R .. r F A . '47 r , a „ -- . . . V . z • ' - . • .'. . • • , . , , r '., ., . i t r , 111 (Th --') ') -- • —„CEE. :I=DM 1 7 1 I 1 ' . i oz Imi l•-• I la I - o 1 •• al tz o ac -T-• , - o . , a s iu X 1 14 Jai ea X 11g 4 i 4 .• ■•• taw I. 4 .... IN , I .0. lZ 4 0 • • ce• -iu 0.• • • o ,.....; •.■ 61 • 6 . 10.4 JZ IJW 41 111 A 4 v .4E. 1=X X-1 141- m a • 0 Z OIL -Zo4 3.0 Z , .ntel 0 wet a Z 20 • im au 03X .1m0 aos a Ow aa mm it- UM 1-vI an a a. JO ••=... .. , '4) • 1.,..r 6.4z 1/1 . 1 429 • WM nWOCCO-0.1 ? a :4 igil 4. .4 t i 4 6..0 wria.Va . in .00 • 4 fli , ww 4 z ..4 FI c•4 ,..om a..., op-s.... .... ... ..a .... zxz ... zz ms m■-1.1._,== •-. nn ,--1.- ..,, Z1u .. , I - 11 1 MM c4 N - - OW i .. DO $-ZO. 00 ,, C-111-7.. a. a ..• I p, 1 0 wa. mivo- z 00Za.oloxat wori1- 1- 3 Z LLA z - 10 av, r0 w 00 n Ma ■ a 2:1114.11a.4 an wx.Www.i.nwal (4 (4 cr a: 4- o-ta1XOD_10000 v,a awa401-.m zruiwwmma aaa x 4" a442 au cams- ma 0 a I-11-r*. a 0 a. n , N 41 d MI z 1, z,..gw-, . 91 2 .... int . A ... 5..,..., 1 ,. , 4 '9 -: ...., ,, 0 t 3 ml f--1-000XXwx4■4 a • 1 T 4 4.1 .. 0 a a 0100p- . 1 o-wW= A 4 m 0 wwzi xi.i.iw a. a MI iLwaonamet sec • tql . . q ci ti "I w w w 42 42 1 0 . 00 ." 1 ........4.,—.4. ",......xxl ...,—,,,,,, z —...,....0 ..,..,..s.4 . ... L.,,,,,,.... ,.......,55 xx = 0.,— ,—,... zizzw m uul-011 .z.4 1 _1 -Omm a. 4a 4444444440. aaW1-14 UUX00 o w ...-tAZZ ('4(444 aa q c Lxwis-1.4 0 04-4-4- 1-1-0-100 ' Owswou4maaZZ ....Hmorx.wul.41,4 , rrviluorluu.4 C 061- _.-JIIIIIIIZIEn 04 ....., .400. •••••• ,ti P 0 4 0' au- I v.II= ..J •• fa .--,,, Znnw4a0 In I 0.4>n 0 »444a00■AXX 141 I ' 1 1 1 ..(____ ., , ---•,,,r•-4,—,.-4., ,,,-, , --5. , .....:: - Y - -:, _ __ ,- ,- ,._ - - •-•, _ _ ,..., -: 0 U' 0 00 09 0 U t 1 U 17 .3 l70 170L0 0 V V 0 • C 0 0 0 000 M 000 000 • V 17100 45 0 U 17 U t7 V 1.7 M V 0U V' 7 0 0 N L 000 u A 4- U N N N N N N N NNN 1 N N N Cu N N 7. N N N NNN .0 J. NNN N N N V N N N NNN V 0.1 N N N N N 0 L N N N NNN - C O MINN (44(4104 3 M N N N N N N O L N N N NNN O. N N N NNN 0 N N N MINN .- 1 V MINN MIN N • A A N N N NNN • - N N N N N N J N N N NNN .1 J MINN NNN 1 MO a MINN NNN - I AO X NNN N N N V V N N N N NN rr r r C J. V NNN N N N 00 C NNN NNN 7 3 NNN NNN rr1 rr I ON 0 NNN N N r r' r r r r r r 0 M 0 N N N N N r 0 N N N N N I A N N N N • N I -.1.1..4" N • N NJN L N ♦f N N > N 0 !V > IV N N . ,•` 1 V V N N N C N • • D L C N C N NON - • r r l•• • 0 3 NON N -.I N vvvv, • r U N -.4 N N N N •♦ ♦ • •♦ •♦ ♦ ♦ ♦ ♦ .6 ♦ N N N NLN r r 1 L n N L N N• N M M M M .1- .. A M n401 N>nl M M M V • N> IV N N M M I N N N N N N N N M M 1 •A 0 M N N N N E N M M - U N N Z N N >N 101000 01000 , VIN VINV1N ♦ C U N >N NNN 101010 0000 INN N 0-0 N \N NXN J 11010 •0 0 1010 O W N N (. 1 ( 41 -1,4 U N X N N< N J WW WW WW ',PI 411 N N (/1 N H N 4 N N> N J. E 0•O •00 1010 'VI.A N N NO N• 7 NNN N N J 00 00 00 'VIN 'NN ON rL N N N 1 N ../../...1.1-1.4.4 0 0 WW WW NN N N N N 1- • N 1 N N N 00 00 00 NN NN NO ti M N N N C N 0 0000 00000 N N N N N N 0'I J (51 6 (51 NON J 0 0 0 0 00 N N♦A N, NN P• J NON N ti N . =0 ,. r. a N .A N N V N J 10 2 N V N NON J MMI M)M MM - V L N A N N LN JJJJJJJ MM (('4 M MIM UV L NLN NON M M VIM M M .. i ' , H O C 0 NON NON M•M MM MM : MH I FIN 10 N NON NLN M M . MM 0 7 NLN NON Q Q MM MM ',MMMN/- 1MMHNNMN1M NON NUN Q Q van MM 1N N 1 0-4.4 • 7• NUN N N 4 a tarn M M 'H H M 4 C 04 D N N • V N M IM M M 0 10 N V N • V C N MM M M •.4 N N CN N• N V L 1 N• N N E N 1111111 1 L i 0 •• N N E N aN 2 ZZZZZZZZZZZZZZ N .•1 N S Z,Z Z Z Z Z Z Z Z Z Z Z Z Z JJ NA N N0(4 -1 1 +� V r N A N N 7 N 2 ZZ -1-1 > • N 7 N NON SSS222S ZZ -I 1 •.♦ 1-0 NUN N W N ZZ -1 1 L Z 004 N W N N N ZZ WW F- P0. N N N.1, IZZ i 1 -1-1 V U_ ,....1 N.-111 N• N '11 " ...J 4 N v 1 N A N NVN ZZZZZZZZZZZZZZ 'J JJJJJJ JJJJ JJ J A V 0 N vn1 (.4-4(44 Z Z Z Z Z Z Z Z Z Z Z Z Z Z lJ J J J J JJ .-1 Z V 7 N A N N I N a O 0 N U N N . A n4 • a 1 3 N A A N N O N n n n n ') '9')�) nnn •• F P U NO N N -) n '7 . 5 0 n _, ) 9 '9 '9 '' I 0 0: N N .N NI - I --! 0 C E V V NNN - - P LL 0 0 N N N N N N 3 ••, • • • • L N N N N N N - ) - I ' . • • • • • • _ .0.0 V - NNN NNN •77 1 _ O V 1 N N 01 NNN - , - h+1 ( NNN v . N "" NB OC 1 NNN NNN -I-In . ...., O. •• N N N L N un N N 1 NNN ,V N, (4 1 01 11 4 NNN v01 N NNN NNN N C 00- NNN NNN . N• 00 N N N NNN WV 0170 NNN 'INN V u- NNN NNN r• 1 N N N i NNN - ,r4 V F NNN N N N M D • U MINN NNN . MO DO NNN Z' A • 1 NNN MINN - IL 7 a N N N NNN n A U MINN NNN M> C NNN NNN J v0 NNN MINN J• N NNN AL C3” 110 40 . u .a N 1 000 j I r. 9 r J 1.7 17 (7 - - 1717 0 4 L r 1 171,43 17 19 l7 - K 0 CO 0 U 13 O V V I 1 0 1• t 7 17 17 1! 'J 0 I L - I ... V l7 'J '9 0 15 V • i • c 000 000 .r • a.1 9:90 t7 ally 1 Y+ I M L O L 17171.7 i .. \..' .. V' 5 . , - N co J J •• J M M M •- 1 �+ 4 F Z 0 0 0 0 0 0 0 dlJ 0 . ac o o 0 O O O O O p 0 0 0 0 0 0 0 h 0 0 0 0 0 0 0 O W W - 7 o ►- 0 0 0 0 0 0 0 O a a w O a V J O ▪ 0 0 0 0 0 0 p V h M o ▪ 0 0 0 0 0 0 e P P P O • 0 • 0 0 0 0 0 0 O "1 M �� CO N .1 0 0 CO 0 0 0 0 Cr J V i M O *O 1' 0 O O O J M 4 N 0 0 0 0 J 1 j r 0 0 0 4 N N N 0 Q a O O K M en N m O O 0 0 0 0 i O O O O O O O -; \.0 'q' O O O O O O O V1 0 0 0 0 0 0 0 w O 0 O 0 0 0 0 H N 0 0 0 0 0 0 0 J a I Z .. 0 N N 0 0 0 0 • I.- .. ) O 0 0 0 0 0 0 0C 0 • . I Z n 0 o o O O o a -.. w z t M K .. N M M M •-• r r r 0 ■ Z m f 0 0 0 0 0 0 0 ■ 0 N N NJ 1J - ( 1 (� Q 1- r r r y ,n r` iy 1 "' N ^ O m 0 .o .0 • .0 09 • co ( r /0 v W O p. P P O P J N O. _ 4 N X` Q � `! • S •0 0 0 0 0 0 0 0 se �y w • 1- ? O O O O O O O 0 Z U N w r I 3. . N A -O 0 O m 4 Ps . N M 0 J M O 4 : 4 ti ) J N N 4 O N C) LL CO O O CO O' 00 O ip N N N N N N N, r r . r r r J � co f` N Z 0 0; N N O r- ? •rl O O 0 4 A r • • • • •. • • Z N J O r N N d' CO N i W U a a0 co 00 ao r. CO CO N 2r .y N N N N N N N J a N n a Ci a x .s 0 0 CO o 0 0 M ; Q N O. K •- 0 0 0 A N 0 N } M • • 0 S w N P .O N N r 00 �� y .�/y . -6 `. ' 1 Mt w 1�� O .1 at a o 0 0 0 0 0' o 0 ► W 7 n A CO 0 D' N. I- Z 0 N N CO N. 0 r Z 1 1 < M r 3 J r • r 0 W L) n 0 0 3 3 0 0 3 O • W S N N CO F P. J IC • r co LL H L r r r 1 ' i C4 Z C./ Z N r N h J N 0' A 0 J •11 y . J k/1 7 N / H 0 N l '.; 0 K W O O N N N N Ni N N, c r J D. O U 1 Z l < _ _ I 1 4 1 - 10 N a I 1Z I H DC 0 0 4 i u O I W O 0 0. r cc f- t x W W 0 0 0 0 0 0 O r I.7 O O O 0 0 0 O 4 4 2 ac 0 a •-u 0 0 0 0 0 0 O 0 0 0 0 M M P .) 0 O O 0' 4 r O 2 J I- 4 0 0 O CO N 1 d u P P 0. O. N N N N V` r r • M O 1. CO N 0' 0 N I- CO 0 0 N O 0 LL 0 v CO P 0 0 A •0 v- •- r P I 0 • 0. M '0 1 J . 0 0 r r F 'O 00 0 M N 'N 0' O LL 00 CO 0 0 N, ;0 '0 v r r 11 N U SO n M O - N - '0 J 0' 0 N .4 'O 0 4 CD 4 • • • • • I. • v Z I.1 0 0 Al N N I M 0 0' O 0 0' 0. ,Q• P N N N N N N N r r r r r r r. CO 0 ' 0 CO 0 0 .4 ,1 n r u a •O 0 '0 a 0 J • 1.,' 4 0' 0 N 01 ! /V fV Z 0 CO a P 0' 0' '.P 0• N Al Al N N N N r r r r r 'r r 11 Y VI 1. '0 0 0 100 P ... J N •. 0 0' 1 M ' 0 . 4 4 4 •- _ • . 1 • • m Z _o a. N N 0 j'0 N v 1 U. v O O O O O CO 0 0 N Al N N N N Al r r I .r� r K 0' 0' M 0 '1 't 1 ti • O r f • • • • •I • • N J LL 0 r N N .4' .I '0 N I LL v O O 00 •O OD IO O N N N N N I N N 1 r r r r r r 11 a N O N 0- 'O '0 P '0 0' IJ 00 • a - 1 0' > LL '0 .0 4 J H 1 VI VI v S. v r r r r r 1 LL P. 2 • r 0 0 0' 0 0. 1.1 v1 O. • '" 0 0 4 I M' „ 1 • z r r' I CO O 10 'O .4 t•• 1 r- > J-, '0 N N N M N .I '4 ' 4' '0 0 J •- • .. J f` h • O • P • O ♦ 0 LL 0' CO CO 0 '0 r 4 N 0 N. IA 11 LL O 0 0 O 0 0. r 0' '.0 O. 0 x • 4- N 0 0 0 0 N 0 N 0 N 0 .• O LL LL r r • r • r • ") m VI .• 0 0 0 0 0 0 0 v n r O 1 D x J 1 m 2 W J J J .J J .J .J J 'J J J 0 0 a 0 J J J J 0 J 0 jJ - 0 4 O J> e[ 0 0 0 7 K 0 K 1 0 K W 0 V) LL )- f LL LL U. IL F IL H- � LL ). V1 • 1 tJ 2 2 2 2. 0 0 0 0 0 H J V 0 0 IT V h 1.) .0 V 0 ac 0 UH 0 0 '0 N P. 1.1 4 4 0 y u1 • • • • W • W 1• 444 • O. Ce 2 O O N. ). 2 M 2 r 2 r 11 O M M N •'I Z -. 0 0 O 10 O '. r M 2 1 2 ■• W 1 1 ■ O ,Yt 0 IY 1 N Ol V\ •'� l W c) to. O 0 0 l • 0 • x 0 > 4 N A O 0 4 '4 0 - . r 4 0 C 0 0 of j Ot • V 0 0_ 0 1. u1 2 z O O O O 0, O r • 2 H U Al V Y N V (5 U N M M N 00 J .. J J , J J '0 W 0 2 0 'O '0 '0 '0 0 `.. 03 0 r 0 co J VI H 4 ? T D. > 4 ♦. 4 ,•.) •. r 4 v O: j K- K 1 K .0 m 0 O II W '..A 0. 0 0 0 0 10 I. 0. 0.. lo • O • 1 0 = • • z ` •1 - .5., Z' • x 1 O[ O a. P. t. •D 0 N' ' +, M GO ..4) 1 1 v 'V 1 V 0 0. .i:. 4 r 1.1 2 M 'Nf 4- p r1 I 1) .2 r Ir 1 n 0 0 i.O r N .0 0 '0 1 4 f, b1 I V►' A N 70 O O: 10 H Z i II f .4 0. 0 J 4Y "' • • l , alli hieter g 20geemete.., Rote. __ CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING 'TA BL E ,Z Si =CT ,_ ..., BY DATE JOB NO SHEET OF f, EuNE y 8 L Box, µrD�xoby Yrnk; . r i• I 74/8 7 2e/o -2o . 6o t m om " 7 1 I V ry . y N in 44 4 pp �R t r _ _- r V► ... ... .40------4, 4 Ize -it-, . in 0 - _ - - CT-9L4 I.0 4., w * M 3 _. ;- o N . cl al o Q. til to - N 64 o r 7 * 1./n"--- u ,j 1st L � ,- ..�...... cv .. , _ • ;. _ . X Lit a V., 0 t } • N U M 5 . A. Yl ca - 14 04 - f , k....-71 • t1S 1 . , • M �e� r . • • * I` et I S iii 4 N LA 41:‘ k talliir- tas Iti gZ �' 1/4..7 = t , L ,a,, .,,_ ,:,,. ^^^111 N W Q fl tt 6 G I ca l 1 4 li< 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626 -3428 • (714) 641 -8777 E 0 c c C xi] C. a . g, G. T_ r+vDaAw_ics 0 0 **************************************************************************** PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) II \ **************************************************************************** <<<<<(<<<<<<<<<<<<<<(<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> (C) Copyright 1982 Advanced Engineering Software [AES] Especially prepared for: HALL & FOREMAN, INC. <<<(<<(<<<<<<<{<<<<<<<<<<<<<<<<<<<(<<<>>>>>>)>>>>>>>>>>}>>>>>>>>>>>}>>>>>>>> **********DESCRIPTION OF RESULTS******************************************** * N. BASELINE HYDRAULICS, S.D STA 25+75.86 ALONG BODEGA * Q 100 YR, C.B. 10�9 C B #101 4;. 117 , . . � C. -- * VENKI.N, JN 3810-00, 10/13/87 * **************************************************************************** (14, **************************************************************************** NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD AND OCEMA N� DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 0.00 FLOWLINE ELEVATION = 1270.51 PIPE DIAMETER(INCH) = 24.00 PIPE FLOW(CFS) = 36.27 ASSUMED DOWNSTREAM CONTROL HGL = 1276.770 < < { < < < < < < < ( < < < < < < < < < < < < < < < < < < < < < < < < < < <> > > > > > > > > > > > > > > > } > > > > > > > > > > } > > > > > > > > > > Advanced Engineering Soft��are [AES] SERIAL No. A0483A m� REV. 2.2 RELEASE DATE:12/17/82 �� �� <<< < < < < <<< < << <((<<< < < < << <<<<< << << < < < < 0>>>>> >>> >>> >>>>>>>> >}>>>> >>> >> >>>)>> > = PRESSURE FLOW PROCESS FROM NODE 0.W0 TO NODE 75.09-IS CODE = l UPSTREAM NODE 75.09 ELEVATION = 1279.00 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD>: PIPE FLOW = 36.27 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 75.09 FEET MANNINGS N = .01300 N� SF=(Q/K)**2 = ( ( 36.27) / ( 226.224) )**2 = . 0257051 HF=L*SF = ( 75.09)*( .0257051) = 1.930 '> NODE 75.09 : HGL= < 1278.700>;EGL= < 1280.770>:FLOWLINE= < 1279.000> 1:` PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 2.30 �� �J NODE 75.09 : HGL= < 1281. 000> ;EGL= < 1283. 070> ;FLOWLINE= < 1279.000> PRESSURE FLOW PROCESS FROM NODE 75.09 TO NODE 78.42 IS CODE = 5 I: UPSTREAM NODE 78.4E ELEVATION = 1281.24 CALCULATE PRESSURE FLOW JUNCTION LOSSES: li NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV i 29.5 27.00 3.976 7.419 0.000 .855 2 36.3 24.00 3.142 X 11.545 0.000 `� -- 0.000 2.070 ... 6 0.0 0.00 0.000 0.000 0.000 - I: 4 0.0 0.00 0.000 0.000 0.000 - 5 6.8===05 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED ,:.. p DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) (410 UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00907 1: DOWNSTREAM FRICTION SLOPE = .02571 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .01739 JUNCTION LENGTH(FEET) = 3.33 FRICTION LOSS = .058 (: ENTRANCE LOSSES = .414 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = 1.744+ .855- 2.070+< .058)+< .414) = 1.001 NODE 78.42 : HGL= < 1283. 216> ;EGL= < 1284. 071) ; FLOWL I NE= < 1281.240) E: PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .27 r i NODE 78.42 : HGL= < 1283. 490> ;EGL= < 1284. 345> ; FLOWL I NE= < 1281. 240> 1: PRESSURE FLOW PROCESS FROM NODE 78.42 TO NODE 467.75 IS CODE = 1 UPSTREAM NODE 467.75 ELEVATION = 1283.10 ilid CALCULATE PRESSURE FLOW FRICTION LOSSES<LACFCD): PIPE FLOW = 29.50 CFS PIPE DIAMETER = 27.00 INCHES PIPE LENGTH = 389.33 FEET MANNINGS N = .01300 1: SF= (Q /K) * *2 = (t 29.50)/< 309.703)) * *2 = .0090731 HF =L *SF = ( 389.33)*( .0090731) = 3.532 NODE 467.75 : HGL= < 1287. 023> ;EGL= < 1287. 877) ; FLOWL I NE= < 1283. 100) I: - PRESSURE FLOW PROCESS FROM NODE 467.75 TO NUDE 472.42 IS CODE = 5 i: UPSTREAM NODE 472.42 ELEVATION = 1283.38 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 23.9 24.00 3.142 7.595 0.000 .896 L. 29.5 27.00 3.976 7.419 -- .855 3 5.6 18.00 1.767 3.192 60.000 - I: 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0===05 EQUALS BASIN INPUT = == I: LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /( {A1 +A2) *16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .01112 1: DOWNSTREAM FRICTION SLOPE = .00907 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .01010 TI IIUr_T T nM 1 FIVMT1-1 f FPPT 1 = 4 A7 C A T f T T nM I nee - MA - JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) III JUNCTION LOSSES = .250+ .896- .855+t .047)+( 0.000) = .338 NODE 472.42 : HGL= < 1287. 320> ;EGL= < 1288. 215> ; FLQWL I INE= < 1283. 380> II PRESSURE FLOW PROCESS FROM NODE 472.42 TO NODE 472.95 IS CODE = 1 UPSTREAM NODE 472.95 ELEVATION = 1283.39 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 23.86 CFS PIPE DIAMETER = 24.00 INCHES 11 PIPE LENGTH = .53 FEET MANNINGS N = .01300 SF= ( l / K) * *2 = t ( 23.86)/( 226. 224)) * *2 = .0111241 HF =L *SF = ( .53)*( .0111241) = .006 NODE 472.95 : HGL= < 1287. 326> ;EGL= < 1288. 221 > ; FLOWL I NE= < 1283.390) 11 PRESSURE FLOW PROCESS FROM NODE 472.95 TO NODE 508.29 IS CODE = 3 UPSTREAM NODE 508.29 ELEVATION = 1283.67 I/ CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 23.86 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 35.34 FEET MANNINGS N = .01300 II CENTRAL ANGLE = 45.000 DEGREES PRESSURE FLOW AREA = 3.142 SQUARE FEET FLOW VELOCITY = 7.59 FEET PER SECOND VELOCITY HEAD = .896 BEND COEFFICIENT(KB) = .1768 II HB =KB* (VELOCITY HEAD) = ( .177)*( .896) = . 158 PIPE CONVEYANCE FACTOR = 226.224 FRICTION SLOPE(SF) = .0111241 FRICTION LOSSES = L *SF = ( 35.34) *( .0111241) = .393 I I NODE 508.29 : HGL= < 1287. 877> ;EGL= < 1288. 773> ; FLOWL I NE= < 1283. 670> PRESSURE FLOW PROCESS FROM NODE 508.29 TO NODE 547.63 IS CODE = 1 UPSTREAM NODE 547.63 ELEVATION = 1283.99 II CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 23.86 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 39.34 FEET MANNINGS N = .01300 I SF= (Q /K) * *2 = (( HF =L *SF = ( 39.34)*( 23.86 > /( 226.224)) ** = .0111241 .0111241) = .438 NODE 547.63 : HGL= < 1288. 315> ;EGL= < 1289. 210> ; FLOWL I NE= < 1283.990) I PRESSURE FLOW PROCESS FROM NODE 547.63 TO NODE 547.63 IS CODE = 8 I UPSTREAM NODE 547.63 ELEVATION = 1283.99 CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): II PIPE FLOW(CFS) = 23.86 PIPE DIAMETER(INCH) = 24.00 PRESSURE FLOW VELOCITY HEAD = .896 CATCH BASIN ENERGY LOSS = .2 *(VELOCITY HEAD) = .2 *( .896) = .179 NODE 547.63 : HGL= < 1289. 390> ;EGL= < 1289. 390> ; FLOWL I NE= < 1283. 990> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM I f I *************************************************************************** PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) ***************************************************************************i •-- <(<<{({(<<<<<{<<<<<<<<<<(<<<<(<<<<<<<<>>>>>>>>>>>}>}>>>>>>>>>>}>>>>>>>>>>>>: (C) Copyright 1982 Advanced Engineering Software [AES] Especially prepared for: HALL &FOREMAN, INC. <<<<<<<<(<<(<(((<<(<<((<<<<<<{(<<<<<<<>>>>>>>>>>>>>>>}>>>>>>>>}}>>>>>>>>>>>. **********DESCRIPTION OF RESULTS******************************************* * N.BASELINE HYDRAULICS FOR LATERAL, RCB STA 18+20.00 ALONG ARCATA ST * Q 100 YR FOR C.B # 102 & C.B # 105 * VENKI.N, JN 3810-00, 10/15/87 ***************************************************************************. ***************************************************************************. NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 0.00 FLOWLINE ELEVATION = 1266.32 PIPE DIAMETER(INCH) = 18.00 PIPE FLOW(CFS) = 23.48 ASSUMED DOWNSTREAM CONTROL HGL = 1272.960 <<<<<(<<<<<<<<<<<<<<<<<<<<<<<<<<<(<<<<>>>>>>>>>>>>>>>>>}>>>>>>>>>>>>>>>}>>> Advanced Engineering SoftWare [AES] SERIAL No. A0483A REV. 2.2 RELEASE DATE:12/17/82 <<<<<<<(<<<(<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>}>>>>>>>>>>)>>>>>>>>>>>>>>>>>>>> . = PRESSURE FLOW PROCESS FROM NODE 0.00 TO NODE 14.67_I8 CODE = 1 UPSTREAM NODE 14.67 ELEVATION = 1267.85 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 23.+8 CFS PIPE DIAMETER = 18.00 INCHES ( PIPE LENGTH = 14.67 FEET MANNINGS N = .01300 SF=(Q/K)**2 = (( 23.48)/( 105.044))**2 = .0499639 HF=L*SF = ( 14.67)*( .0499639) = .733 NODE 14.67 : HGL= < 1273.693>;EGL= < 1276.434>;FLOWLINE= < 1267.850) � ^ PRESSURE FLOW PROCESS FROM NODE 14.67 TO NODE 19.34 IS CODE = 5 { UPSTREAM NODE 19.34 ELEVATION = 1268.28 NO. DISCHARGE DIAMETER AREH VELOCITY DE,L " A HV 1 23.5 33.00 5.940 3.953 0.000 .243 a 23.5 18.00 1.767 a. v:,. a87 -- 2.741 3 0. 0 0.00 0. 000 0.000 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0===05 EQUALS BASIN I NPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED DY=(Q2*V2-01*V1*COS(DELTA1)-Q3*V3*COS(DELTA3) Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = .01300 > DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00197 DOWNSTREAM FRICTION SLOPE = .04996 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .02597 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .121 ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = -.732 MANHOLE LOSSES = .137 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = 1.766+ 6+ .243- 2.741+( .121)+( 0. 000) = .258 NODE 19.34 : HGL= < 1276. 450> :EGL= < 1276. 693> ; FLOWL I NE= < 1268.280) PRESSURE FLOW PROCESS FROM NODE 19.,4 TO NODE 74.84 IS CODE = 1 UPSTREAM NODE 74.84 ELEVATION = 1272.55 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 23.48 CFS PIPE DIAMETER = 33.00 INCHES PIPE LENGTH = 55.50 FEET MANNINGS N = .01300 SF= (Q /K) * *2 = (( 23.48)/( 528. 866)) * *2 = .0019711 HF =L *SF = ( 55.50)*( .0019711) = . 109 NODE 74.84 : HGL= < 12 76. 559> :EGL= < 1276. 802) ; FLOWL I NE= < 1272.550) PRESSURE FLOW PROCESS FROM NODE 74.84 TO NODE 78.18 IS CODE = 5 UPSTREAM NODE 78.18 ELEVATION = 1277.75 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 16.6 24.00 3.142 5.284 0.000 .434 2 23.5 33.00 5.940 3.953 -- ;. .24� 3 0.0 0.00 0.000 0.000 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 6.9 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY= (Q2 *V2- Q1 *V1* COS (DELTA1)- Q3 *V3 *C0S(DELTA3) Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00538 DOWNSTREAM FRICTION SLOPE = .00197 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00368 JUNCTION LENGTH(FEET) = 3.34 FRICTION LOSS = .012 ENTRANCE LOSSES = .049 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = .035+ .434- .243+( .012)+( .049) = .287 NODE 78.18 : HGL= < 1276. 655> ;EGL= ( 1277. 089) ; F LOWL I NE= ( 1277. 750) PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL NODE 78.18 : HGL= ( 1279.750);EGL= < 1280.184>;FLOWLINE= < 1277.750> II PRESSURE FLOW PROCESS FROM NODE 78.18 TO NUDE 78.69 IS CODE = 1 UPSTREAM NODE 78.69 ELEVATION = 1277.76 �� \ CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): / PIPE FLOW = 16.60 CFS PIPE DIAMETER = 24.00 INCHES to PIPE LENGTH = .51 FEET MANNINGS N = .01300 SF=(Q/K)**2 = (( 16.60)/( 226.224))**2 = .0053844 HF=L*SF = ( .51)*( .0053844) = .003 �� NODE 78.69 : HGL= < 1279.753>;EGL= < 1280.186>;FLOWLINE= ( 1277.760> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL �� �� LOST PRESSURE HEAD USING SOFFIT CONTROL = .01 NODE 78.69 : HGL= ( 1279.760>;EGL= < 1280.194>;FLOWLINE= < 1277.760> i PRESSURE FLOW PROCESS FROM NODE 78.69 TO NODE 92.15 IS CODE = 3 UPSTREAM NODE 92.15 ELEVATION = 1277.83 - CALCULATE PRESSURE FLOW PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 16.60 CFS PIPE DIAMETER = 24.00 INCHES �� GW PIPE LENGTH = 13.46 FEET MANNINGS N = .01300 ~� CENTRAL ANGLE = 34.290 DEGREES PRESSURE FLOW AREA = 3.142 SQUARE FEET FLOW VELOCITY = 5.28 FEET PER SECOND �� VELOCITY HEAD = .434 BEND COEFFICIENT(KB) = .1543 HB=KB*(VELOCITY HEAD) = ( .154)*( .434) = .067 PIPE CONVEYANCE FACTOR = 226.224 FRICTION SLOPE(SF) = .0053844 FRICTION LOSSES = L*SF = ( 13.46)*( .0053844) = .072 N� \ NODE 92.15 : HGL= < 1279.900);EGL= < 1280.333>;FLOWLINE= ( 1277.830> 11 PRESSURE FLOW PROCESS FROM NODE 92.15 TO NODE 105.61 IS CODE = 3 UPSTREAM NODE 105.61 ELEVATION = 1277.91 1: CALCULATE PRESSURE FLOW PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 16.60 CFS- PIPE DIAMETER = 24.00 INCHES E PIPE LENGTH = 13.46 FEET MANNINGS N = .01300 CENTRAL ANGLE = 34.290 DEGREES PRESSURE FLOW AREA = 3.142 SQUARE FEET FLOW VELOCITY = 5.28 FEET PER SECOND I VELOCITY HEAD = .434 BEND COEFFICIENT(KB) = .1543 HB=KB*(VELOCITY HEAD) = ( .154)*( .434) = .067 PIPE CONVEYANCE FACTOR = 226.224 FRICTION SLOPE(SF) = .0053844 0� FRICTION LOSSES = L*SF = ( 13.46)*( .0053844) = .072 �� NODE 105.61 : HGL= < 1280.039>;EGL= < 1280.473>;FLOWLINE= < 1277.910> II = PRESSURE FLOW PROCESS FROM NODE 105.61 TO NODE 283.27 IS CODE = 1 II UPSTREAM NODE 283.27 ELEVATION = 1278.98 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 16.60 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 177.66 FEET MANNINGS N = .01300 �� SF=(0/K)**2 = (( 16.60)/( 226.224>>**2 = .0053844 HF=L*SF = ( 177.66)*( .0053844) = .957 NODE 283.27 : HGL= < 1280.995>;EGL= < 1281.429>;FLOWLINE= < 1278.9869> PRESSURE FLOW PROCESS FROM NUDE 283.27 TO NODE 287.94 IS CODE = 5 II UPSTREAM NODE 287.94 ELEVATION = 1279.01 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV I 1 16.6 24.00 3.142 5.284 0.000 .434 2 16.6 24.0@ 3.142 5.284 -- .434 \ 3 0.0 0.00 0.000 0.000 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - N� 5 09.0===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- m� Q4*V4*COS(DELTA4) ) / ( (A1+A2)*16. 1) UPSTREAM MANNINGS N = .01300 o� DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00538 DOWNSTREAM FRICTION SLOPE = .00538 1 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00538 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .025 ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES �� MOMENTUM LOSSES = -.000 MANHOLE LOSSES = .022 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) �� JUNCTION LOSSES = -.000+ .434- .434+t .025)+( 0. 000) = .047 �� °� NODE 287.94 : HGL= < 1281. 042> ;EGL= < 1281. 476> ;FLOWLINE= < 1279. 010> N: PRESSURE FLOW PROCESS FROM NODE 287.94 TO NODE 452.16 IS CODE = 1 UPSTREAM NODE 452.16 ELEVATION = 1280.00 �� v� / CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 16.60 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 164.22 FEET MANNINGS N = .01300 �� SF=(Q/K>**2 = ( ( 16.60)/( 226. 224) >**2 = .0053844 HF=L*SF = ( 164.22)*( .0053844) = .884 NODE 452.16 : HGL= < 1281. 927> ;EGL= < 1282. 360> ;FLOWLINE= < 1280. 000> 1: PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND ESL LOST PRESSURE HEAD USING SOFFIT CONTROL = ' .07 E NODE 452.16 : HGL= < 1282. 006)> ;EGL= < 1282. 434> ;FLOWLINE= < 1280. 0N0> II PRESSURE FLOW PROCESS FROM NODE 452.16 TO NUDE 539. 72 IS CODE = 3 UPSTREAM NODE 539.72 ELEVATION = 1280.53 II CALCULATE PRESSURE FLOW PIPE-BEND LOSSES(OCEMA) : PIPE FLOW = 16.60 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 87.56 FEET MANNINGS N = .01300 I CENTRL ANGLE = 55. 750 DEGREES PRESSURE FLOW AREA = 3.142 SQUARE FEET FLOW VELOCITY = 5.28 FEET PER SECOND VELOCITY HEAD = .434 BEND COEFFICIENT(KB) = .1968 HB=KB*(VELOCITY HEAD) = ( .197)*( .434) = .085 m= PIPE CONVEYANCE FACTOR = 226.224 FRICTION SLOPE(SF) = .0053844 II FRICTION LOSSES = L*SF = ( 87.56)*( .. . 69053844) = .471 NODE 539.72 : HGL= < 1282 557> :EGL= < 1282. 990> :FLOWLINE= < 1280. 530> I: PRESSURE FLOW PROCESS FROM NODE 539.72 TO NODE 555.10 IS CODE = 1 UPSTREAM NODE 555.10 ELEVATION = 1280.63 -- . CALCULATE PRESSURE FLOW FRICTION LOSGES(LACFCD): PIPE FLOW = 16.60 CFS PIPE DIAMETER = 24.00 INCHES N� PIPE LENGTH = 15.38 FEET MANNINGS N = .01300 SF=(0/K>**2 = (( 16.60)/( 226.224))**2 = .0053844 �� HF=L*SF = ( 15.38)*( .0053844) = .083 �� NODE 555.10 : HGL= < 1282.640>;EGL= < 1283.073>;FLOWLINE= < 1280.630> N: PRESSURE FLOW PROCESS FROM NODE 555.10 TO NODE 555.�0 IS CODE = 8 UPSTREAM NODE 555.10 ELEVATION = 1280.63 CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW(CFS) = 16.60 PIPE DIAMETER(INCH) = 24.00 PRESSURE FLOW VELOCITY HEAD = .434 �� CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( .434) = .087 �� -~ NODE 555.10 : HGL= < 1283.160>;EGL= < 1283.160>;FLOWLINE= < 1280.630> _ = END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM (: 1 1: -- �� �� 11 I; �� **************************************************************************** PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE 0� (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) |� ***************************************************************************+ <<<(<<<<<<(<<<<<<<<<<<<<<<<<<{<<<<<<<<>>>>>>>>)>>>>>>>>>>>>>>>>>>>>>>>>>>>>> (C) Copyright 1982 Advanced Engineering Software [AES] �� Especially prepared for: HALL & FOREMAN, INC. <<<(<<<<<<<<<<<(<<<<<<<<(<<<(<<<<<<<<<>>>>}>>>>>>>>>>>}}>>}>>>>>>>>>>>>)>>>) **********DESCRIPTION OF RESULTG*******************************************i * N.�]ASELINE HYDRAULICS RCB STA 15+68.00 , AT CRESCENT AND BASELINE N * Q 100 YR, C.B. # 104 �� * VENKI.N, JN 3810-00,10/13/87 ***************************************************************************` m� ***************************************************************************. NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD AND OCEMA h� DESIGN MANUALS. �� DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 0.00 FLOWLINE ELEVATION = 1265.00 PIPE DIAMETER(INCH) = 18.00 PIPE FLOW(CFS) = 6.98 ASSUMED DOWNSTREAM CONTROL HGL = 1269.1569 1: <<<<(<<<<<<<<<<<<((<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>}>>>>>>>>>>>, Advanced Engineering Software [AES] SERIAL No. A0483A REV. 2.2 RELEASE DATE:12/17/82 <(<<<<<<<<<<<<<<<(<<<<<<<<<<<<<<<<<<<(>>>>>}>>>>>}>>>>>}>>>}>>>>>>>>)>>>>>>� . ~~ PRESSURE FLOW PROCESS FROM NODE 0.140 TO NODE 39.96 IS CODE = 1 UPSTREAM NODE 39.96 ELEVATION = 1277.63 I CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 6.98 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 39.97 FEET MANNINGS N = .01300 N� SF=(Q/K)**2 = (( 6.98)/( 105.044))**2 = .0044154 HF=L*SF = ( 39.97)*( .0044154) = .176 NODE 39.96 : HGL= < 1269.327>;EGL= < 1269.569>:FLOWLINE= ( 1277.630) m� PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 9.80 NODE 39.96 : HGL= < 1279.130>;EGL= < 1279.372>:FLOWLINE= < 1277.630> " ~ PRESSURE FLOW PROCESS FRUM NODE 39.97 TO NODE 39.J7 IS CODE = 8 UPSTREAM NODE 39.97 ELEVATION = 1277.63 CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD>: PIPE FLOW(CFS) = 6.98 PIPE DIAMETER(INCH) = l8.00 PRESSURE FLOW VELOCITY HEAD = .242 . =m CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( .242) = .048 NODE 39.97 : HGL= < 1279.421>;EGL= < 1279.421>;FLOWLINE= < 1277.630> 0� ---= �� END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM 1: 1: ! / � - �� �� ' N@ �� I; II PRESSURE PIPE-PLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) <; t(< t(((<(<<({(<<<<(<<((({(<<<(<<{<<>>>}>>) } > >) >)) > > > > > > > > > >)) > > > >> > > > > > >> (C) Copyright 1982 Advanced Engineering Software CAES] Especially prepared for: E HALL & FOREMAN, INC. I: (<(<(<<(( t((<<(<((((<<<((<(<(<(<(<<>>)))>> >) > > > > > > > >) > > > >) > > > > > >)) > > >> > >> * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** E . DASELINE HYDRAULICS RCS ST A 2065 FOR C, B 010E 100 YR, C. B 3.06 ALONG PT. TRINIDAD ST * VENKI. N, ,7N 3810 -00, 4/30/88, DISK "VENKI #4" * **•*•*•*•*************•***********************-****•**** * * * ***** * * * *•* * * * * *•* *•* ** * * *•* NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. II DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 0.00 FLOWL I NE ELEVATION = 1268.00 PIPE DIAMETER(INCH) = 24.00 PIPE FLOW(CFS) = 7.75 1: ASSUMED DOWNSTREAM CONTROL HGL = 1274.690 - _ <<<<<<<<<<<<<<<<<<<<<;(<<(<<<<<<<<<<<<))).>)>> ) > > > > > > > > > > > > > > > > >) >> > >> > > > > > >> II Advanced Enwineeririg Software %AES] SERIAL No. A0483A REV. 2.2 RELEASE DATE:12/17/82 II <<<<<<(<<<<<<<<<<<; t<< t<<<(<<(<<<<<<<<)}>> )) > > > > > > > > > >)))))) >)))))) })))) -_ - -- _ --- PRESSURE FLOW PROCESS FROM NODE 0.00 TO NODE 7.17 IS CODE = UPSTREAM NODE 7.17 ELEVATION = 1268.64 CALCULATE PRESSURE PLOW FRICTION LO SSES (LACFCD) : PIPE FLOW = 7.75 CFS PIPE DIAMETER = 24.00 INCHES DI PE LENGTH = 7.17 FEET MANN I SiGS = .01300 SF = t tix / !) * *2 = t t 7.75)/( 226. 224)) * *2 = .0011736 i F =L *SF = t 7.17)*( .0011736) = .008 NODE 7.17 : HGL= t 1274 . 698> g EGL= 4 274. 793> : FLOWL I NE= < 1268.640) ~ ~ PRESSURE FLOW PROCESS FROM NODE 7.17 TO NODE 24.84 IS CODE = 3 UPSTREAM NODE 24.84 ELEVATION = 7N.22 II _ �ALCULATE :RESSURE FLOW PIPE BEND LOSSES(OCENA): PIPE-BEND PIPE FLOW = 7.75 CFS PIPE DIAMETER = 24.00 INCHES I PIPE LENGTH = 17.67 FEET MANNINGS � = .01300 CENTRAL ANGLE = 45.000 DEGREES )PRESSURE FLOW AREA = 3.142 SQUARE FEET FLOW VELOCITY = 2.47 FEET PER SECOND li VELOCITY HEAD = .094 BEND COEFFICIENT(B) = .1768 HB=KB*(VELOCITY HEAD) = ( .177)*( .094) = .017 PIPE CONVEYANCE FACTOR = 226.224 FRICTION SLOPE(SF) = .0011736 r FRICTION LOSSES = _*SF = ( 17.67)*( .001l736) = .021 NODE 24.84 : HGL= < 1274.736>;EGL= < 1274.830>;FLOWLINE= < 70.220> PRESSURE FLOW PROCESS FROM NODE 24.84 TO NODE 79.10 IS CODE = UPSTREAM NODE 79.10 ELEVATION = 1275.06 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 7.75 CFS PIPE DIAMETER = 24.00 INCHES N� PIPE LENGTH = 54.26 FEET MANNINGS N = .01300 �� SF=(0/K>**2 = (( 7.75)/( 226.224)>**2 = .0011736 HF=L*SF = ( 54.26)*( .001z736) = .064 ODE 79.10 : �GL= < 1274.800>;EGL= ( 1274.8943WLINE= 275.060> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 2.26 NODE 79.10 : HGL= ( 1277.060};EGL= < 1277.155>;FLOWLINE= < 1275.060> E � PRESSURE FLOW PROCESS FROM NODE 79.10 TO NODE 79.10 IS CODE = 3 UPSTREAM NODE 79.10 ELEVATION = 1275.06 CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW(CFS) = 7.75 PIPE DIAMETER(INCH) = 24.00 PRESSURE FLOW VELOCITY HEAD = .094 C �TCH BSIN ENERGY LOSS = .2*(;ELOCITY HED) = .2*( .094> = .@19 NODE 1277.173>:EGL= ( 1277.173>;PLOWLINE= E END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM � m� 1FiF lF#* lE 3 **** fE* It i *** *** ** Firm 3E irytyr*ir ie # if * ii if #ir**** * **ir is # iFyr fi **** *—k* #****ii- ****ir ie f ** II PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) III , ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *$ II <(<((( ((t(((<((((((((((((<(((((t(((M) >)>)>> )) >))) > >))l))))) >))) > > >))))) I: (C) Copyright 1982 Advanced Engineering Software [AESJ Especially prepared for: HALL & FOREMAN, INC. <((<<<<<(<<(<<<(<<<<<<(<<((<t((((((<<()>>>>>> > >) > > >>) > >>>) > > >) > > >) > > > > > > >) >> * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *. * N.BASELINE HYDRAULICS RCB STA 16 +97.00 * 0 100 YR, C. B # 107 41 * VENKI. N, JN 3810 -10, 10/13/87 44 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * r iti ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *41 NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST 1: CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. E , DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 0.00 FLOWLINE ELEVATION = 1262.4E PIPE DI METER(INCH) = 18.00 PIPE FLOW(CFS) = 9.75 ASSUMED DOWNSTREAM CONTROL HGL = 1271.840 I! ... <(<<(<((((((<((((((<(((<((((((((((((<(>>)> >) >)>>) > > >) > > > > > >) > >> > > )> > >> > >> >)) in L Advanced Encineerino Soft4are CHESJ SERIAL No. A0483A REV. RELEASE DATE:12 /17/82 II ((<<(((((((((((((((<( t< t(<((<(((((((<(>>>>>>> > >)))) >)) > >))))))) > > >))))))) > >) PRESSURE PROCESS NODE S F RESSURE FLOW F ROCESS FROM NODS 0. ic�0 TO NODE 4. 89 I o CODE = i UPSTREAM NODE 4.89 ELEVATION = 1275.46 II CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD)): PIPE FLOW = 9.75 CFS PIPE DIAMETER = 18.00 INCHES I PIPE LENGTH = 4.89 FEET MANN I NGS N = .01300 SF= G!I K J * *2 = ( 9.75)/( 1 05.044) ) * *2 = .0086153 HF =L *SF = ( 4.89)*( .0086153) = .042 NODE 4.89 : HGL= ( 1271. 882> ;EGL= < 1272. 355) ; FLOWL I NE= t 1275.460) PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 5.0d II NODE 4.89 : HGL= ( 1276. 960) ;EGL= ( 1277. 433) : w LOWL I NE= < 1275.460> PRESSURE FLOW PROCESS FROM NODE 4.89 TO NODE 4.89 IS CODE = 6 UPSTREAM NODE 4.89 ELEVATION = 1275.46 ~~ ' CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): 0� PIPE FLOW(CFS) = 9.75 PIPE DIAMETER = l8.00 PRESSURE FLOW VELOCITY HEAD = .473 CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( .473) = .095 ) NODE 4.89 : HGL= < 1277.527>;EGL= < 1277.527>;FLOWLINE= ( 1275.460) END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM 1: / - ` -- � - �� PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM i= (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) ****************#**********#***************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** <<(<<(<(<((<<<<(((<(<<<<(<((<(<(<<(((<>)>)>>> >) > > > >)) >)) > > > > > >) > >> > >) > > > > >)) (C) Copyright 198E Advanced Engineering Software CAES7 Especially prepared for: HALL & FOREMAN, INC. (<(((<((<(<(<((((<((<<<((<<((<(<(((((<>>>>))> >)>>)>>)>>)))>>))>>)))>>)))))>) * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * N. BASELINE LATERAL HYDRAULICS, RCB STA 41 +76.27 FOR C.B # 111 * Q 100 YR, C.B # 111 * VENKI. N, JN 3810 -00, 10/14/87 1: ******#***#*********##****#*************#**#* * * * * ** * * * * * * * * * * * * #* * * # * * * * * * ** ****#****-*****************************#*****# * * * * * * * * * * * * * * * * * * * * # * * * * * *** ** NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: 1 NODE NUMBER = 0.00 FLOWLINE ELEVATION = 1885.7E / PIPE DIAMETER(INCH) = 18.00 PIPE FLOW(CFS) = 6.31 ASSUMED DOWNSTREAM CONTROL HGL = 1292.800 (<(((((((((((<(((((<( <(((( <<<(“ ((<(<()))))))) ))))) >)))))))) >))) >))))))) >))) Advanced Engineering Software CAESJ SERIAL No. A0483A REV. 2.2 RELEASE DATE:12 /17182 ((<((<((<(<<<<<<<<(<<<<<(<((<<<(<<<(( O)>>>>) )))>))) >) > > > > > > > > > > >)> > > > > > > >)) PRESSURE FLOW PROCESS FROM NODE 0.00 TO NODE 83.17 IS CODE = 1 A UPSTREAM NODE 83.17 ELEVATION = 1291.00 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 6.31 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 83.17 FEET MANNINGS N = .01300 SF= (Q/K) * *2 = (( 6.31)/( 105.044)) * *2 = .0036084 HF =L *SF = ( 83.17)*( .0036084) = .300 NODE 83.17 : HGL= ( 1293. 100) ; EGL= ( 1293. 298) ; FLOWL I NE= ( 1291. 000) PRESSURE FLOW PROCESS FROM NODE 83.17 TO NODE 83.17 IS CODE = 8 UPSTREAM NODE 83.17 ELEVATION = 1291.00 PIPE Fd]W(CFS) = 6.31 PI�E DIAMETER(INCH) = z8.u0 PRESSURE FLOW VELOCITY HEAD = .198 ' ~~ CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( .198) = .040 NODE 83.17 : HGL= < 1293.338>;EGL= < 1293.338>;FLOWLINE= < 1291.000> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM -- E ` - -- / -- 1 t ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) < )) >> >) > > > > >) } }) > > > > >> > > >) > >) > >) (C) Copyright 1982 Advanced Engineering Software LAESI Especially prepared for: 1: HALL & FOREMAN, INC. 1: <<<<<<<(((<<<<<<<<<<<C<((<<<<<<<(<<<<<>>>>>>> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > >> * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * N. BASELINE HYDRAULICS LATERAL S.D STA 17+78.82 * Q 25 YR, C. B # 115 * VENKI.N, JN 3810 -20, 10/14/87 1; ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 0.00 FLOWLINE ELEVATION = 1266.86 PIPE DIAMETER(INCH) = 18.00 PIPE FLOW(CFS) = 6.24 ASSUMED DOWNSTREAM CONTROL HGL = 1272.360 1: Advanced Engineering Software CAES7 SERIAL No. A0483A REV. 2.2 RELEASE DATE :12/17/82 <<<<<<<<<<<<<<<<<<<<<<<<<<(<<<<<(<<<<<>>>>>>> > > > > > > > > > > > > >) > > >) > >) > > > > > > > > }> 1 PRESSURE FLOW PROCESS FROM NODE 0.00 TO NODE 37.08 .IS CODE = 1 UPSTREAM NODE 37.08 ELEVATION = 1277.00 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 6.24 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 37.08 FEET MANNINGS N = .01300 SF= (�? /i�.) * *�: = ( t 6.24)/( 105. 044)) * *2 = .005288 HF =L *SF = ( 37.08) *( .0035288) = .131 NODE 37.08 : HGL= < 1 `72.491 > :EGL= < 1272. 684> ; FLOWL I �JE= < 1277.000> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 6.01 NODE 37.08 : HGL= < 1278. 500} :EGL= < 1278. 694> : FLOWL I NE= < 1277.000> PRESSURE FLOW PROCESS FROM NODE 37.08 TO NODE 82.1,6 IS CODE = 1 0� UPSTREAM NODE 82. 08 ELEVATION = 1277.53 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): N� PIPE FLOW = 6.24 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 45.00 FEET MANNINGS N = .013N0 SF=(Q/K)**2 = (( 6.24)/( 105.044))**2 = .0035288 HF=L*SF = ( 45.00)*( .0035288) = .159 NODE 82.08 : HGL= < 1278.659>;EGL= ( 1278.853>:FLOWLINE= ( 1277.590> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .43 NODE 82.08 : HGL= < 1279.090>;EGL= < 1279.284>:FLOWLINE= < 1277.590> PRESSURE FLOW PROCESS FROM NODE 82.08 TO NODE 82.08 IS CODE = 8 UPSTREAM NODE 82.08 ELEVATION = 1277.59 ' ~~ CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD) : PIPE FLOW(CFS) = 6.24 PIPE DIAMETER(INCH) = 18.00 PRESSURE FLOW VELOCITY HEAD = . 194 N� CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( .194) = .039 NODE 82.08 : HGL= < 1279.322>;EGL= < 1279.322>;FLOWLINE= < 1277.590> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM �� 11 ' -- �� PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD, LACRD, & OCEMA HYDRAULICS CRITERIOiN) II ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ( <( < <<<< <<<<<< (((((<((<(<((<<<(<(<<(<>))))>) >) >)) >))))) >) > > >)) >))) > > >))>))) 1: (C) Copyright 1982 Advanced Engineering Software CAES7 Especially prepared for: HALL & FOREMAN, INC. <(((((<((<(((<(((((<(<(((<(<(<(<((<<(()))>>>> > >) >) > > > > >)) > >) >)))>))) >) > >) > >> * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * N. BASEL I NE LATERAL, HYRAUL I CS C.B # 116, RCB STA 33 +03.53 * * Q 100 YR, C.B # 116 AT DEL NORTE AND BASELINE * * VENKI . N, JN 3810 -00, 10/15/87 * ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. 1: , DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 0.00 FLOWLINE ELEVATION = 1279.87 PIPE DIAMETER(INCH) = 18.00 PIPE FLOW(CFS) = 21.39 ASSUMED DOWNSTREAM CONTROL HGL = 1284.810 1: (((((((((((((((((((((((((((<((<(((<<(())))))) )))))) >) > >) ))))))))))))))))) ) )) Advanced Engineering Software CAES7 SERIAL No. A0483A REV. 2.2 RELEASE DATE : 12/ 17/ 82 (<((<(< < <(<(((((< <(((<((((((((<((((((O ))))))) ) > >>) >) >) >> >)) > > > >)) >)) >))) >)> I/ PRESSURE FLOW PROCESS FROM NODE 0.00 TO NODE 14.96 iS CODE = 1 UPSTREAM NODE 14.96 ELEVATION = 1285.50 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 21.39 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 14.96 FEET MANNINGS N = .01300 SF=(Q/K)**2 _ (( 21.39)/( 105.044)) * *2 = .0414650 HF =L *SF = ( 14.96) *( .0414650) = .620 NODE 14.96 : HGL = ( 1285. 430) ;EGL = < 1287. 705) ; FLOWL I NE= < i285.500> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 1.57 NODE 14.9E : HGL= < 1287. 000> ;EGL= < 1289. 275) : FLOWL I NE= < 12a5.500> PRESSURE FLOW PROCESS FROM NODE 14.96 TO NODE 30.96 lS CODE = 5 Ammimilimilimmin UPSTREAM NODE 30.96 ELEVATION = 1287.80 �� CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV �� 1 10.7 18.00 1.767 6.055 0.0N0 .569 2 21.4 18.00 1.767 12.104 -- 2.275 3 0.0 0.00 0.000 0.000 0.000 - L 4 0.0 0.00 @.000 0.000 0.0�0 - 5 10.7===Q5 EQUALS BASIN INPUT=== �� LACFCD AND []CEMA PRESSURE FLOW JUNCTION FORMULAE USED: �� ~~ DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) 1: UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 �� UPSTREAM FRICTION SLOPE = .01038 �U DOWNSTREAM FRICTION SLOPE = .04147 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .02592 JUNCTION LENGTH(FEET) = 16.00 FRICTION LOSS = .415 ENTRANCE LOSSES = .455 ri JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = 3.411+ .569- 2.275+( .415)+( .455) = 2.575 1: NODE 30.96 : HGL= < 1291.281>;EGL= < 1291.851>;FLOWLINE= < 1287.800> �� PRESSURE FLOW PROCESS FROM NODE 30.96 TO NODE 35.96 IS CODE = 1 �� ~� UPSTREAM NODE 35.96 ELEVATION = 1287.90 11; ) CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 10.70 CFS PIPE DIAMETER = 18.00 INCHES / PIPE LENGTH = 5.00 FEET MANNINGS N = .01300 SF=(Q/K)**2 = (( 10.70)/( 105.044))**2 = .0103759 �� �� HF=L*SF = ( 5.00)*( .0103759) = .052 NODE 35.96 : HGL= < 1291.333>;EGL= ( 1291.902);FLOWLINE= < 1287.900> 1: PRESSURE FLOW PROCESS FROM NODE 35.96 TO NODE 35.96 IS CODE = 8 UPSTREAM NODE 35.96 -ELEVATION = 1287.90 I: CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW(CFS) = 10.70 PIPE DIAMETER(INCH) = 18.00 II PRESSURE FLOW VELOCITY HEAD = .569 CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( .569) = .114 NODE 35.96 : HGL= ( 1292.016);EGL= < 1292.016>;FLOWLINE= < 1287.900> _____ N/ END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM � - II II 111 1: 1: ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& DCEMA HYDRAULICS CRITERION) 1; ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** (<(<<<<(<(<<<<<<(<<<<<<<(((<<<<<<((<<<>>>>>>> > > >) > > > > > > > > > > > > > > > > > > > > > > > > > >> 1: (C) Copyright 1982 Advanced Engineering Software CAES1 Especially prepared for: HALL & FOREMAN, INC. <<<<<((<<<(((<<<<(<<(<<(<<<(<<(<<<<(<(>>>>>>> > > > > > > >>) > > > > > >) >> >> > > > > > > > > > >> * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * N. BASELINE C.B HYDRAULICS, LATERAL ALONG BODEGA STA 472.42, C.B # 117 * * Q 100 YR, C.B # 117 AT BODEGA & DEL NORTE INTERSECTION * * VENKI.N, JN 3810 -00, 10/14/87, DISK 4 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND DCEMA DESIGN MANUALS. 1: 1 DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 2.70 FLOWLINE ELEVATION = 1283.63 PIPE DIAMETER(INCH) = 18.00 PIPE FLOW(CFS) = 6.12 ASSUMED DOWNSTREAM CONTROL HGL = 1287.320 1: <(<<<<<<<<<<<<<<<<<<<<<<<(<<<(<<<<(<<<>>>>>>>> > > > > > > > > >>) > > > > > > > >) >) > >) > > >> Advanced Engineering Software CAES7 SERIAL No. A0483A REV. 2.2 RELEASE DATE:12 /17/82 <(<<<<<<<(<<<<(<<<<(<(((<<(<<<<(<(<<<<>>>>>)> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > >> I/ PRESSURE FLOW PROCESS FROM NODE 2.70 TO NODE 44.46 .IS CODE = 1 UPSTREAM NODE 44.46 ELEVATION = 1285.60 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 6.12 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 41.76 FEET MANNINGS N = .01300 SF= (Q /K) * *2 = (( 6.12)/( 105.044)) * *2 = .0033944 HF =L *SF = ( 41.76)4( .0033944) = .142 NODE 44.46 : HGL= ( 1887. 46:x) ; EGL= < 1287. 648> ; FLOWL I NE= < 1285.'600> 1: PRESSURE FLOW PROCESS FROM NODE 44.46 TO NODE 44.46 IS CODE = 8 UPSTREAM NODE 44.46 ELEVATION = 1284.05 --- . -_ PIPE FLOW(CFS) = 6.12 PIPE DIAMETER(INCH) = 18.00 PRESSURE FLOW VELOCITY HEAD = .186 CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( .186) = .037 NODE 44.46 : HGL= < 1287.685>;EGL= ( 1287.685>;FLOWLINE= ( 1284.050) END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM 1: 1: 1: 1: ' _~ **************************************************************************** PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE N� (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) ************************************************** \ ************************** -- <((({<<(<<(<<<<<((<<<(<<<<(<<<<<<<<<<(>>>>>}>}>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> �� (C) Copyright 1982 Advanced Engineering Software DIEM ~~ Especially prepared for: li HALL & FOREMAN, INC. <((((((<((({({(<{<<({(<(((({{<<((<<((<>)}}>>>>>}>>>>>>>)>>)>}>>>}>}>>>>>})>> I: **********DESCRIPTION OF RESULTS******************************************** * N.BASELINE HYDRAULICS, RCB STA 25+75.86 * �� * Q 100 YR, G.I # 100 * * VENKI.N, JN 3810-00, 10/13/87 * **************************************************************************** illi **************************************************************************** NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST |� �� CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA °� DESIGN MANUALS. ���WSTREAM PR�SSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 0.00 FLOWLINE ELEVATION = 1272.37 - \ / . PIPE DIAMETER(INCH) = 18.00 PIPE FL{]�J�CFS) = � 73 ' - ASSUMED DOWNSTREAM CONTROL HGL = 1278.290 __ ) I; <„<<<(<<<„<<<<<<<{<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>}>>>>}>>>>>>>>> Advanced Engineering Software [AES] SERIAL No. A0483A �� REV. 2.2 RELEASE DATE:12/17/82 II (<<<<<<<(<<<<<<<<<<{<<<<<<<<<<<<<<<<<<)>}>))>>>>>>>>>>>>>})>>>}>>>>>>>>>)>)> II PRESSURE FLOW PROCESS FROM NODE 0.00 TO NODE 28.00 JS CODE = 1 ^ UPSTREAM NODE 28.00 ELEVATION = 1282.00 II CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 7 �3 CFS PIPE DIAMETER 18 0�� INCHES ^ = ^ PIPE LENGTH = 28.00 FEET MANNINGS N = .01300 SF=(Q/K)**2 = (( 7.73)/( 105.044>)**2 = .0054153 HF=L*SF = ( 28.00)*( .0054153) = .152 �� NODE 28.00 : HGL= < 1278.442>;EGL= < 1278.739>;FLOWLINE= < 1282.000> ~~ PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 5.06 1: NODE 28.00 : HGL= < 1283.500);EGL= < 1283.797i;FLOWLINE= ( 1282.000) PRESSURE FLOW PROCESS FROM NODE 28.1410 TO NODE 28.o0 lS CODE = 8 UPSTREAM NODE 28.00 ELEVATION = 1282.00 CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW(CFS) = 7.73 PIPE DIAMETER(INCH) = 18.00 PRESSURE FLOW VELOCITY HEAD = .297 CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( .297) = .059 N: \ NODE 28.00 : HGL= < 1283.857>;EGL= < 1283.857>;FLOWLINE= < 1282.000> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM N� N� �m � ^ / �� �� �� �� �� �� = . a ******** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * ** * * * * * * * * *** * * * * * * * * * * * ** PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** << <<((((((<((( <(( < < <((( < < <<((<( <<<(()>>>))> > > > > > >) > > > > > > >)) >) > >)))))) >)))) (C) Copyright 198E Advanced Engineering Software EAES1 Esaeciall_y prepared for: HALL & FOREMAN, INC. (<< < < <( << < < < < << <( < < << <<(<< < < << < <<( (<>)>>>)> >)) > > > > > >)) >)) >> > > > > > > > > > >)))>> * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * ** * * * ** * N.BASELINE HYDRAULICS, S.D STA 41 +03.22 ALONG N.CRESCENT * 0 100 YR, G.I. 102 & G.I. 103 * VENKI.N, JN 3810 -00, 10/13/87, DISK 4 ,FILE "I" ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 0.00 FLOWLINE ELEVATION = 1283.94 PIPE DIAMETER(INCH) = 48.00 PIPE FLOW(CFS) = 174.75 ASSUMED DOWNSTREAM CONTROL HGL = 1292.100 <<(<<<<<<<<<<<<<<(<((((((<(<<<<<<<<<(())))))) ) >))) >))))) > > > > > > > > > > > > > > > > > >)) Advanced Engineering Software CAES7 SERIAL No. A0483A REV. 2.2 RELEASE DATE:12/17/82 <(((<((<<<<(((((<(<<<(<(<(<<(<<(<<<<(()))>))) ) > >))))) > >))))) >)) > > > > > > >) > > >); PRESSURE FLOW PROCESS FROM NODE 0.00 TO NODE 13.55 JS CODE = 1 UPSTREAM NODE 13.55 ELEVATION = 1288.30 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 174.75 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 13.55 FEET MANNINGS N = .01300 SF= (Q! /K) * *2 = ( ( 174.75)/( 1436. 431)) * *2 = .0148001 HF =L *SF = ( 13.55)*( .0148001) = .201 NODE 13.55 : HGL = ( 1292.301) ; EGL= ( 1295.303) ; FLOWLINE= < 12 66.300) PRESSURE FLOW PROCESS FROM NODE 13.55 TO NODE 18.22 IS CODE = UPSTREAM NODE 18.22 ELEVATION = 1288.37 li NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 173.1 51.00 14.186 12.201 0.000 2.311 2 174.7 48.00 12.566 13.906 -- 3.003 3 1.7 18.00 1.767 .945 60.000 - II 4 0.0 0.00 0.000 0.000 0.000 - 5 0. 0= = =05 EQUALS BASIN INPUT= == 1: LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED DY=(02*V2 Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) I: UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .01051 1: DOWNSTREAM FRICTION SLOPE = .01480 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .01265 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .059 I: ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = .046 MANHOLE LOSSES = .150 JUNCTION LOSSES = DY +HVi -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) E: JUNCTION LOSSES = .737+ 2.311- 3.003+( .059)+( 0.000) = .209 NODE 18.22 : HGL= < 1 `9,3.201 > ;EGL= ( 1295. 513) ; FLOWL I NE= ( 1288.370) C PRESSURE FLOW PROCESS FROM NODE 18.22 TO NODE 228.c5 IS CODE = 1 I: UPSTREAM NODE 228.25 ELEVATION = 1291.14 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 173.08 CFS PIPE DIAMETER = 51.00 INCHES II PIPE LENGTH = 210.03 FEET MANNINGS N = .01300 SF= ( Q /K) * *2 = (( 173. 08) / t 1688. 477)) * *2 = .0105076 HF =L *SF = ( 210.03)*( .0105076) = 2.207 1: NODE 228.25 : HGL= < 1295. 408> ;EGL= ( 1297. 719) ; FLOWL I NE= < 1291. 140> rd PRESSURE FLOW PROCESS FROM NODE 228.25 TO NODE 232.2 IS CODE = 5 UPSTREAM NODE 232.92 ELEVATION = 1291.70 t: CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 143.2 45.00 11.045 12.966 0.000 2.611 11 4 2 173.1 51.00 14.186 12.201 -- 2.311 29.9 27.00 976 7.51 60.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =05 EQUALS BASIN INPUT = == II LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(02*V2-01*V1*COS(DELTAi)-03*V3*COS(DELTA3)- 04 *V4 *COS (DELTA4)) / ((A1 +A2) *16. 1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .01402 DOWNSTREAM FRICTION SLOPE = .01051 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .01E27 1: JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .057 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -i-iV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = .351+ 2.611- 2.311+( .057)+( 0.000) = .707 l: NODE 232.92 : HGL= < 1295. 816> ;EGL= ( 1298. 427) ; FLOWL I NE= ( 1291. 700> V� PRESSURE FLOW PROCESS FROM NUDE 232.92 TO NUDE 245.75 16 CODE - z N� UPSTREAM NODE 245.75 ELEVATION = 1291.83 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 143.21 CFS P IPE DIAMETER = 45.00 INCHES PIPE LENGTH = 12.83 FEET MANNINGS N = .01300 SF=(Q/K)**2 = (( 143.21)/( 1209.335))**2 = .0140234 HF=L*SF = ( 12.83)*( .0140234) = .180 NODE 245.75 : HGL= < 1295 996>;EGL= < 1298 607>;FLOWLINE= ( 1291 830> . . . c - ' - - -- - �� �� c 1: 1: 0n �� �� �� 1: I: *** * * *- * * * * * * * * * * * * * * * * * * * * * * * * *-* * * * * * * * * * * ** ** * * * * * * * * * ** - * * * * * *A-# #* II PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD, L(CRD, & OCEMA HYDRAULICS CRITERION) I: N ***************************-***************** * * * * * *- * * * * * * * * * * * * * * * * * * * * * * ** (( < < << < < <(( <<<(< <<<<<<<((((<<(<(<(<<>)>) > > > >)) > > > >) > > > > >) >)) > > > >> > >) > > 1: (C) Copyright 1982 Advanced Engineering Software NAES7 Especially prepared for: I: HALL & FOREMAN, INC. (<<<<<<<<<<<<<<<<((<<<<(<<<(<((<<<<<<<>>>>>>> > > > >> > > )> > > > > > > > > > > >> > > > > > > > > >> ri * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 1: * N. BASEL I NE G.I. HYDRAULICS, LATERAL STA 13.55 ALONG N. CRESCENT * * Q 100 YR, G.I # 102 * * VENKI.N, JN 3810 -00, 10/16/87 * ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** r ot ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST I: CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. l: DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 2.70 FLOWLINE ELEVATION = 1289.55 ) PIPE DIAMETER(INCH) = 18.00 PIPE FLOW(CFS) = 3.79 ASSUMED DOWNSTREAM CONTROL HGL = 1293.200 r 1: (<<<<<<<<((<<<(<<<<<<<<<<<<<(((((<<<<<>>>>>>> > >) > >) > > >>)) > > > >)> >) >) >) >> > >) >> Advanced Engineering Software CAES] I: SERIAL No. AO483A REV. RELEASE DATE:12 /17/62 II ( < << <<< <<<<(<<<<(<<<<(<<<<<<<<<<<<<<>>>>>>> > > > > > > > > >> > > > > > > > >> > > > > > > > > > > >> II PRESSURE FLOW PROCESS FROM NODE 2.70 TO NODE 85.70 IS CODE = 1 UPSTREAM NODE 85.00 ELEVATION = 1293.00 -- II CALCULATE PRESSURE =LOW FRICTION LOSSES(LACFCD): PIPE FLOW = 3.79 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 82.30 FEET MANN I NGS N = .01300 SF= (Q /F�.) * *2 = ( ( 3.79)/( 105. 044)) * *2 = .0013018 HF =L *SF = ( 82.30) *( .0013018) = .107 NODE 85.00 : HGL= < 1293. 307) ;EGL= ( 1293. 379) ; F LOWL I NE= ( 1293.000> I: PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 1. i I: NODE 85.00 : HGL= ( 1294. 500> ;EGL= < 1294. 572) ; FLOWL I NE= < 1293. 000> 1 rLuw rxun wuut uo.mm .0 wuuCL 6o.4:10 i6 = UPSTREAM NODE 85.00 ELEVATION = 1293.00 CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW(CFS) = 3.79 PIPE DIAMETER(INCH) = 18.00 0� PRESSURE FLOW VELOCITY HEAD = .071 CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( .071) = .014 NODE 85.00 : HGL= < 1294.586>;EGL= < 1294.586>;FLOWLINE= ( 1293.000> 11 END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM \ - ' - �� 1: ***************************-ft************************************************ PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD"LACRD,& OCEMA HYDRAULICS CRITERION) **************************************************************************** <<<<<<<<<<<<<<<(<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> (C) Copyright 1982 Advanced Engineering Software [AES] Especially prepared for: 1: HALL & FOREMAN, INC. 1: < ( ( < < < < ( < ( < < < < < < < < < < < < < ( < < < < < < < < < < < < < <> > > > > > > > > > > > > > > > > > > > } >\ > > > > > > > > > } > } > > > **********DESCRIPTION OF RESULTS******************************************** GE * N.BASELINE G. I. HYDRAULICS, LATERAL STA 232.92 ALONG N.CRESCENT * * Q 100 YR, G. I. # 103 * * VENKI.N, JN 3810-00, 10/13/87 * **************************************************************************** **************************************************************************** NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST , C CONSERVTIV�� FORMULE FROM THE CURRENT LCRD LCFCD AND DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: 0� NODE NUMBER = 2.70 FLOWLINE ELEVATION = 1292.53 -- PIPE DIAMETER(INCH) = 27.00 PIPE FLOW(CFS) = 35.58 ASSUMED DOWNSTREAM CONTROL HGi- = 1295.816 1: < << << (< ( <<<<< ( < < < << < < < < < < < < <( <<< < < < < <0>> >>> >> > > >> > >>>> }> >> >> > > > >>>>>>> >>>>> Advanced Engineering Software [AES] Q� SERIAL No. A0483A REV. 2.2 RELEASE DATE:12/17/82 < < < < < < < < < <( < < < < < < < < < < < < < < ( < < << < < < < < < < <> >> > > >>> > >> >> >>> > > > >> > > >>> > >> > > > >>>> > PRESSURE FLOW PROCESS FROM NODE 2.70 TO NODE 82.00 IS CODE = 1 UPSTREAM NODE 82.00 ELEVATION = 1294.00 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD) : PIPE FLOW = 35.58 CFS PIPE DIAMETER = 27.00 INCHES PIPE LENGTH = 79.30 FEET MANNINGS N = .01300 NI SF=(Q/K)**2 = ( ( 35.58)/( 309. 703) )**2 = .0131984 HF=L*SF =( 79.30)*( .0131984) = 1.047 NODE 82.00 : HGL= < 1296.863>;EGL= < 1298.106>;FLOWLINE= ( 1294.000> PRESSURE FLOW PROCESS FROM NODE 82.069 TO NODE 82.00 IS CODE = 8 ~� UPSTREAM NODE 82.00 ELEVATION = 1294.00 ` - -' PIPE FLOW(CFS) = 35.58 PI�E DIAMETER(INCH) = 27.m0 PRESSURE FLOW VELOCITY HEAD = 1.243 CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 1.243) = .249 NODE 82.00 : HGL= < 1298.355>;EGL= < 1298.355>;FLOWLINE= < 1294.000> N� END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM \ I / �� �� ' } E .` �] -- ' / 1 i • .-1 . CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING C a ua,ECT 1 I sr DAN roa NO. eHEET a 04TH t645/4 A1/411 Kris . E . -t 10 / A /16A) 1°6‘e-ar- .. ii ;�_, 1 ._.. __ . • 4� I • ... ._ ..._._.. _ nN H "MUST fie >Z2 1 4 1 3 Z C 0 12 1... , 1 1 ! :: 0.!' .� '-� .` /aan7 0/ 0/.1 .• -__._ '.. E. ., ... • -______. ........., ........._ ,,,,.60 ___. , 1, E -‘., . \ . - ---, t 7 ri. E Of % .24 ) 1 0 ) • . 1. cy4 as r -sz Fe! _ _ E CB 0 w, . Y 2 /.1 .19- Tc.. o 8A -73 1 , NFL.. Spt -. (94�) -/ , _ °_1 4VQ /I A &LE x4' 1t " (CF 4 F�5) ; REo7 O. H cle N4 1 0 = i 36.3 } CPS a= Gi :24 A; 3 =742. �, 1/2/...1t,'.1 RCP — L F OP - 24 4t ,I F / 2 O/= _ .. -. Fr. T/ / 863-7 - 3 1 GCSE . ' V // DEPTV , O •.2 V : ©- 4/4 cal--I, E3 �.n Rritty ' - C rA 78- 4y = / -84 -3 .g (.5�. S.. D. 1. „ �°) 6 1- � 1 21347• l �. /1138 73 - o • ( o• s 3186.1 AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92628-4875 • (714) 841.8777 I ... ' w gilt. i 1 IE i ' I ,„,,..,,,„„, CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING 4 SUSIECT I sr I DATE I loe NO. I SHUT OF C4TCi 84 S/N QNQL Yf /S . - a # 10 5 A>2.a, Arc- • I l � .... .._ -.- ,, u h ' MUST fE >/,2 j :4 +i ,51 L 1 „ ..,.., ,, ,, .._ 2, ..... _.:1_ 1:r ::`� • 1 ----_` - . /O /! b Co 7 ... • I , / 7 /. , 1 -," ! C -) , .. . • .-... i i . i C: I. ei E a . 23.Alcrs . . 1 1 . . . , _ V. Q/A 7. 47 FPS C8 �r 2 P4 0 .4,1 is v� T.G. 1283-2-8 1 Nat. ___ Slc = (91)1 4. (/ ...___fi 4YQ /L A 4 o . LE �• (cf ., F.3) = s. 4Ei7 .D. f/ Q(� N4 1 Q . 23 -1,8' cps K. k�� �f of ,. " ce ,i FB4 i.2 1/2 / ; .j d.= M 1 A--z z. 1 USE V •, DEPTV . n ', � a c /v o- g F!S / aJ ,QY1Q� y ' f . = 0 .12- — Q - At II I E GL 0 s- I 8' Eru - 12- g`0% "-. 1283• .2: -- o -e2— 0 -r 3186.1 AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92626.4675 • (714) 641 -8777 1 1 _.. , , IF A.. hice,e g 20ieeiiteut, ate. . . 1 ,,,,„,.., CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING E NSU1HECT "V/ 84S/4 AHALYSiS I or IONE I JOS /40. !SHUT [ • 1 , 4 );' 2' k CB TP1-• 'Slc- • . . . I.! . " lc r E • -- ,. # • ---,,---.., ,, .Vair Z >12 E 1.."•••:‘, 'I E 11 / 1. , :• _ 1 i.= , 1 1 .._ _ ...• .9 ..... _..*/ _ --. ' : `...:! . .n ..( 2._. / .. ,/( . 1 .!" .._ ......._ .-... ---, .:`/0/•/7 0/ 0/.1 -...:- „: .... . ... ( --. -- .......... ............... „ -........... l'i _ ,, — '-' Cle ( 100 — ' - • E it in 7: 12-81-7-5K ., . , . 1 \,.•$,I ti I • F.13: 6 '. it..* ou r= 12a-7q (Fpi E 7 L 3-6.1 i / a Q/ d . 3. 2:L7 Fp.1” los E C8 ,• - - r4. D'.23 " v Arg rc. 0-13.23 ( ,.--s-ksy y 01 A 7 i.o'l (9)L, 2 ( —7- .,...- 3- -- . . mt. _. 4Y.4/L4SLE li." as 12 93. 23 '. (CA - i` = all- 72 t RELVO. H avow 1 a - 6-2# cf'S K- 105 - , : ir c,t II r B 4 / 1 v2 ,/ :lit:4 d . _. 1 -:-. . ic T. Rcp ..,) 1 1F oF / , a . A = 1 u .. 1 USE 543 . i 1- 0 ___ 0 ..c :-. 12 1-73 > 12 ! 4 " -5.' . • /2::)3-23 — 1 I . 0 3186• AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92626-4675 • (714) 6411777 1 . • w. 9 e• i _ CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SusiECT SY OATS /OS NO. SHUT Of r &WA/ ANAL YJis (9' gCB sue. 4/ +16 -2 E * HO 0) ' • C , ).2.493- g3 E . • _ _ ' o ,< .. "# y ,MUST fE >/. % .51 1_1 E �; T.' .1 f: p 3 ., ._ _______. _., '1(7 •`C1 . /lc.i) /%(gib. __. _ _,�: 2 80 6 ° 'O2 100 - 1 2 84 `� . A ---- ---'!:-... f i E rt IN /2941 our , LY�� , C `/. q/4 — 7 27 CB C . _ 1/1 4= D - /.1 ID 0/ - Q • 9r T.G. . __.. :3(4-= (r.�) ( -7 / S 1 Nc,",L, )292 80 jam)' "-� QLA LE �4• a CF F�5 - ,. AV / B � � -. RELv o. H 1- 03 GK' N4 1 Q - iz c/S K= /(S n 3- 5 3 L F o f / S/ d c- F8 / 2 v2;, y j o / = +_ .__ /CT 1 . A- " / -767 1 LASE 6 7 V �� DEPTN. �• 63 : / --0 -s = 1 12 � 27- l3 12A3 g3 1 3188 -1 AIRWAY AVENUE • COSTA MESA, CALIFORNIA 82828.4875 • (714) 841-8777 1 1 X I II C.. T3 G. T_ S) z ' c 1 1 1 E . I . C. I3. 11 100 it ) CUfI>• OPENING (SUMP) 76 _ /291 - J 7 Q1 � 1 „,......,,, 6 7,t'<- NaRAC ,c 19.2 C f� /Zq�' g A , 0 , 46 , pet Noa Given: : i4.s T t of DE = Z 3.86 CFS Wl n+ovf p 7 Amp SoDEOA (a) Discharge Q Inc F•s /2'P /•Z EA4 (b) Curb type rv� -►��� ., /z // -2 -- /29o57 . 8' e / LFa DEP E.S'ON tml N NovR Sr E : g.117 - 6 • r i /s •orb Solution: II (depth at opening) = -16 0 inches ,A�n 6,,,• 6th ��� _ /75- 3� • = Ib" inches r or , 6t : 17- 54- E ) • • h (height of opening) �4 s - � _ I( tO " a 61'-8`2 1-4eru O -K. AT R/w tats' "O- 17 • E • ' Fav4= .pi , a' From Chart: • Q /ft. of opening = t g° CFS - . L required = iS- $G / /-90 = 13.2 ft. 1 U S F L= 1 / 1 ft. 1 • it ou r 'TD 21." : 83 ' 1 .r . • • , . —31— 1. _ - r i C. I3. 11 101 CUP. r ;• OPENING (SUMP) CA./ ate. - Eva*' • Gr3• # //7 E . • Given: e • 8 I+-1 7/ CFS / Q $ -7 = - 4) 2 ass (a) Discharge Q /do = Efr,04 SIP e (b) Curb type .. ÷ (- 7/ a■ b C.F / 4 ' "epee . Epsr sr�e _ _ i . - A ...00 so A -/e 3 gi - - 65 ort0 r Solution: , A t. ..1 11 (depth at opening) = 10 inches Q �O�i -� .4.4 -I fl•7/ RFonG� 0 - • h (height of opening) = a inches E ) -( /1 25 ( � • 11/h __ ► 0 __ / 8 _ - _.i At cv 0/ ,, 02- i3 E . . . � PCN, s : -6bS 8= f4 .2s-c From Chart: a, -10.; /4-Z4 cFs • Q/ft. of opening = 2 CFS i.K „4 aK. • . L required = /6= - l 2 -2s = 4, 6 7 ft. • 1 USE L-- I 50 Ift. Te /2 - 73 . pLe 6,,tt,,, = 1227.90 it op Oti I F[ or' S•D' /2 74 -0 • V, 9.73 . • E . . . -31- 0,, Na61� (v* CQflr U = 2 -2o C-14 C. I3 . 11 102 DA i No„t� ,Zr 0,,,,i = It- Esc -i/S CIJJ.I OPENING (SUMP) 4p g Cvesc2....t- =2.37 I . • . 0reo A = ts. n c _,A. • r - ►6 -.60 Given: 0 to , 1. °'•Q i2: CFS . (a) Discharge Q 2s-� _ • • (b) Curb type + - E . C��c.. / % i s (.1.../t, , C vowm . 5 1 . 4 i, _ j • 7s • 3a! A -m l2 -40 >0 Solution: O 4 V F1c"- C. B. to S 16.60 12 4a p (depth at opening) = I Z inches = 2 -20 elt° in -- t • i nches h (height of opening) . iI /h � L _ / Icy -I E ' r • From Chart; • Q /ft. of opening = 2- 75 CFS . . E L required - /2.40 / 2 - 7r = 4. s ft. o • ft USIA L-- f S I • 2,2p c4/ F�o w � � A 6.g. 9 � � ; -- 1 . C ; /207' 63 x; 7.0 E . . . • . -31- . . . C. B. N 10 3 CURB OPENING ( Interception ) E Given: (a) discharge Q too = 3- 4- CFS (b) street slope S = O. cc, 4-7 , i I C . (c) curb type 4 " tuta5 DER (d) hall street width = 3S ft. CP- To : 20 / E Solution: E v ,, Q/sh 340 = . R 0. 0047 ) = 49 Therefore y=1 0-4 -S 1 Q /L = 0- C IaNNII■ 1 LE. .1) 1.. tioRTE ST. e t Z IT `f L = _______/_______ - (L for total interception) C ) TRY: L,= ft. • • ) C yL = /_ - 1 1 a/y = .33/ = I 1 E E C2 = P 11••■•■•■•■■ X = CFS (Intercepted) 1 Qc CFS(Carryover) -- ---- 1 1 1 _35- C. S. II 104 Oar = 5 -43 C -14 C ' . CURB OPENING ( Interception ) 1 Given: (a) discharge Q Q = 6-98- C FS ' (b) street slope S = 0 - 018 ' /' (c) curb type 1 Ea'' C.F .4.n .DEPetscioN (d) hall street width = 38 ' ft. i . - Solution: E q, , _ R � �� Therefore D- S /( 0.0/8 ) = 52.03 y =1 Q I 6� Q /L = 0.46 • • L = 6 -981 D -4b is tom- (L for total interception) t TRY: L 6 ' ft. • C 1. L = / , =1 1 a/y = .33/ _____— = 1 l . E sm 2 •■■•■••••• _■ - • 0 . CV x _ CFS (Intercepted) I Qc • _ e CFS(Carryover) • 1• • C . . . • -35- t . do. R t c.g. 105 1 QIED 2'2_0 e4 C. B. 0 10 5 aw • C • 3 , /02, CITnIt• OPEI\T NG (SUMP) 0100 = 8.07 I a = 6- '4 AWON6 A PCAT A ST A T ?/ , 0 / = FsS• 6r Given: Fr. A, • 0 t (a) Discharge Q 100 = ©' 2-7 CFS Q t 8-s7> Q As C • • (b) Curb type ... • 6 " CF 4" 3 2.02-' P Raw 61 / r/ Solution; a = 20- 2 .1 c-4 A > 8.o7 +2. E 11 (depth at opening) = 10 inches E . h (height of opening) = $ inches - ••■■••■••••~■ •••••••■•■•••••••• = r / -25 I . C . • From Chart: • • Q /ft. of opening = 2.2 S CFS • L required = ID- 27 I 2 -25 = 4. 56 ft. 1 . USE L= [ 5 1 ft. _ , 1283 - 22 • . �� • _ lz 72- • / V , /°-1' C • . , • • .' —31— , t . 1 C. 13. ii /06 E Q ioo = 7 =7 5 CU O PENING (SUMP) Qss- = 5:89 t . . Given: /�[oN4 E • too = 7 7 5 C FS POUT T21 Nu (a) Discharge Q 4-r T /e %, E . s (b) Curb type Fev A : • 0084 6' C F 4-/i IePk6 &1bN •6t :7- es >0 c Quo Solution: j1 (depth at opening) _ ID inches • • h (height of opening) _ ' ,g inches . . . E Hi), /h = /o / 8 ...) . /• 2S" 7 . . . • From Chart: • E . t of opening = 2.2s' CFS C Q/ft. p g - L required = 7 7s / 2-2s = 3 ft. USE L- C 4 I ft. vil- T/ �27 (3-8(f • U • . C ' • • -31- t - * ~ C. A ( 07 A ofl creacenfQ 2 -69 C i. CURB OPENING ( Illtllrccption ) Q00 = 3.44. ,--., 1 Alem, 8 AA ,Lns Q41. -5 87 (liven: (a) discharge t? too " 9. 7S CFO O.. = 7• 7 . To tat a __P ' (b) street slope S = 1 /' C . Qeoo 9 -75 (c) curb t ype 8 ' 1 Gt:, 4" DEp2ess,bf. (d) halt street width N 38 ft. C • . . • Solution: ' ' ti ' - 6 Q /S12= 9 -7s /( 0- 0036..._i, /6 so Therefore y 0 4- c e1L = D_ 669 • L = 9. 7s - / 0.661 = , /4-57 (L for total interception) E TRY: bre 15 ' ft. ii/is x / - = t-- a/y = .33/ = I— c p Q ti �v+ Q= }t M CFS (Intel cepted) p 1 Qc , • CFS(Carrynver) 1 • • -35- • • C. B 1 0 e CURB OPENING ( Interception ) Given: (a) discharge Qm_ = 6- g CFS 3 (b) street slope S = 0 • oo 9R ' /' (c) curb type , . 4 c . F . . . , (d) hall street width = 3�S '" ft. E • a= h . Solution: Q / 6- R 0 -0098 ) /2 G_ Therefore 340 1 Q /L ' ,_ c L = 6 / o = /3. 6& (L for total interception) i TRY: L /4 • ft. • `o' L = /______. = t ! C a/y = .33/ _-____— _ 1 1 Icvc) - __ . . . Q. x = CFS (Intercepted) Qc= = CFS(Carryover) 1 . • /293- 30 • 1 ,t_ q y,o, S•, : /i87 -go 1 V - s•5--; -35- c • • C - • C. B. rev 1 \ ' CURB OPENING ( Interception ) 1 it Given: (a) discharge My) = /2- 84 c 13 1 (b) street slope S = 9- 0/56 'I' • (c) curb type Bffr (d) half street width = 38 ft. C . GZ = 4` Solution: C Q/S ��l a / / ( 0 0 /S6 p. 102.80 Therefore y=L7. 5 3 I Q / L = 0 -56 c0 - 5340. 33)3 , 2_'` 0.7 ' ' L = /2-e4/ 0 -56 = 22.93 (L for total interception) TRY: Lei 2 3' ft. • . L° / =f 1 a/y = .33/ ° 1 SI 2 - QP = X = CFS (Intercepted) Q CFS(Carryover) 1 T_ C . ; /29 <q-6; 1a ,,r = 12 - w V 4.6 3 ' I . -35- C. B. # /1/ E • . CURB OPENING ( Interception ) G. Given: (a) discharge C2A2_ _ , 2-. ; ;/ - CFS (b) street slope S = 0.007C I 11 (c) curb type (d) half street width = 3K ft. E.. . c Q /S'1 3 I /( 0 - 73 ) = 6 1.5 1 96 Therefore y=LO - 52 I E Q /L = 0. EC . . • L = 6.31 / D ,S C _ IS . /I (L for total interception) TRY: Le /3 ft. • i - 3 / ,s,s-.„ 40_861 - a/ = .33/ 0 . 5 2 = I 1 0 .2.c _ 6. 37 c,i. 4 . CyQ = 0 -9/ . QP = g. X 0_9) = 7. S6 CFS (Intercepted) I - 7• S"6 = 0.7r CFS(Carryover) &>- foodi c - c-.1 . 2 OU,111 11 q.trs - 1 C . 8 -35- • 1 C. B. A ICI 4 - 631 E " . CURB OPENING ( Interception ) Om = g• a CFS 1 discharge Q 2 �j .31 CFS C Given. (a) � .�- _ ( b) street slope S = 0. 0o75 (c) curb type (d) half street width = 38 ft. C . . . Solution: C ��x= -3 0 •oo7S' ) �= 72.86 Therefore y=1 48 1 Q/s G � I ( _ Q /L = 0. . . • c L = 6 , 3 L / - 5) _ 12.37 (L for total interception) _ .3 ' ft. • • TRY: I 1 c L ' ---_ • / ` 1 `P' a/y = .33/ = El. E s/Q = I Qp= X CFS (Intercepted) I Qc= - CFS(Carryover) TO Sou-rff CZEScEt r II . 1 .. 1 . . . . 1 c . • -35- c • _ . C . C. B. 1 115 _.. .., CUItJ3 OPENING 1 $Illllrccption 1 i given: (a) discharge t2j '+ a -ot CFd . , (b) street slope 8 = Q„0036 'v C . curb type • ( c tYP (d) half street width A 3R tt• C . Solution: E y, Q /Syl. s_ 01 I( 0.0036 ), -, /33 -50 Therefore y4 -; 59 Q /L , . 0 - 618 • L , ce-o I - * 12 - (L for total Interception) C TRY: ' / ,_. l .._. : ft. , IL = ll II2 - g6 'IO: � gL ,, -.2 4 0 a/y ' .33/p. 59 [22.6A . E s /Q g 0 . . . E __ . Q = 8 -0I X 0 -93 , 7 -4.5 CFS (lute: espied) 1. Q 8-01. 7.4-5 N 0- CFS(Carryiwer) FLow By Ago N 6 S. c fzeS CENT, . f v . • -35- E . . - C. 13. 1 /15 , Q.Qr - 6 -2 1 .• . CUItI3 OPENING Illllirccptlon 6;?0 = 8•0 , (livens (a) discharge 025 d 6.24 CFI k (b) street slope 8 . 0• 0036 '1' (c) curb type , , 2ES5 /oN zr II 122a•S - o ® " CF 4F DEP I (d) halt street width ■ 38 ft. r [ . Solution: ' ' "" /SVA 6 -24 1( 0 - . /�_ 104 Therefore y =LO -S4,) • Q Q /I, a 0.568 • E . . , I., s 6-24/ 0.568 ■ 0.99: (L for total interception) c .) I'llYs L I ( ' ft. ' liji M 1 : E a/y 5 .33/ .. . L _ 111 .. c 9/Q ' - ' [ - Q P ' x ' " CFS (Intel cepted) 1 ec, • CFS(Carryilvet•) • . . -35- . . . C.B. 1 . . .. 1 /� 116 6 ti� a CURB OPENING ( Interception ) Given: (a) discharge Q1y) = 21.39 CFS (b) street slope S = 0 • 6 /8" //1 (c) curb type — -- " C. F = 8 . (d) half street width = 20 ft. • Q =4" Solution: E Q /g 2/.3'3 /( • of ) 1 = /59-43 Therefore y =L4. 6 4 1 Q /L . 67 CD• 64- fo .0.7 L = 21•39 / 0•67 = 31.93 (L for total interception) 'a' TRY: L = 3 • ft. P p,o nr v_t Zx►6 L.F, c--'1. i/L = / . = f I a/y = .33/_, = 1 1 C E CiN 2 __ , Q X - CFS (Intercepted) Q • - = CFS(Carryover) 1 C . -35- E • 1 . . . .. C B. 1 1/7 C ' . CURB OPENING ( Interception ) CFS (a) discharge Om = 5. /2 CFS /s - - 0 - MeV 1)21 (b) street slope S = 0- 0/ ' /' • (c) curb type ' - . a - • - _ (d) half street width = 20 ft. 11 c. - a= 4 Solution: C Q /S 1 6-12- 6 -� /( 0 -0I P. 6I.2 T y =1 0-47 1 3/ herefore C Q L = -SO Co-47�0. 0 / 0 _, 4.72 CPS L = 6 - 12 - / o - ' 12 - (L for total interception), 2 C , TRY: i it. E i ti L . 7 . //2.), .10•571 a/y = .33/ D 7 = 10.70 c sic, = O72 - 6 -12 X 0.72 = 4. CF (Intercepted) > 0 - es" QJs QP_ .4•01c-r3 Qc= 6-/2 • - Q• _ / - CFS(Carryover) T/c 1 29/. 7 L it - S.P - /2g4-os 1 V 7-67 • -35- BASE LINE HYDROLOGY & HYDRAULICS INTERIM CONDITION 1 c 1 1 ?evf63 1 1110 000IMl AVIN C MTA MSM G1 �t►Mf0 CIVIL SNOINVINNO • MIMNANNNN • LANOIUOVIVINO 1 E ) ,.• , ...„. y - --_ - ___ , .) J ------ , - „ - _ - ; - - -f-- z ------- -' -! - - .. --=1 - / • - ..... - _, 4 ......_ ----'' -----77-1111111k110 .. -.111 MIPA 111111111111111 .211 1 . 11111.1111111.- 111.11.11.1111 OAP l . • . .. _........ -.....r- _-.,......-...............,,,,,,...- .... — --: - -- C " _ — __," - - -----.- 1 . ' ..711D 1.11 40 i f ---.-D \... 4000 i a .. ..... i l r ...' ... ( ,46 . „... . 1 .....- I 1/ I ,, . , --- - — : . t 1 Iki .d. - ,,- , , 1; : ) } ( 7-11 "------4- 7' — - - 1 • : I ) \ \ 1 _, .,..... • ) 1 ' f 11 V Ir 1 Mill ) i i I ....... _ 1 . /) ' cy r r, : { - I , , ( , • % . . ill I , ■ . . 1 I '• - • -‘ c '-' '" . ‘••••• - ' 'A — •I 1 • 6... / 7 \ , ( ' i\ f l . \ 1 k . i — ') • ,• ' i 1 - . ' 1 p-, .. , / , 1 I i i 1 ....... V; , \ , ,•' ' . 4 11 11 111 f , ) . , • ) '' / / i ,, • • , \ . i . , r- ,....:„.. . , \ , , . ' f /;...................... / f• 1•' •... ---')'' ••--''''''' l 7 / i , 1 I ' • ' , • 1 i . LiI / l / i ' -''' ' 1 . • / ir : I 1 A / 1 I i I ; / ' 1 1 . ) i ) \ 1: ) , 4 / , / / • ...._ ,, 11.4 Is i 1 3.74. .... Alli > , -, :'..; , ,_. '•,- --f ' fi ), 1 3--:,.. ______ ...„.. .. ..._ , ,_. _ <1 - _ ,...... _ ■ ) t_ _- -. , .: l e , lit..-.4-,. -2 N_MY * / 2 t•• . ,..., . • - • , \ -- - . . , ..• A • ' ' \ \ ' • I n ‘ , , \ • i / ' 0 ' / i....4 1 , 1 t _ _. • . . , - f 1, _ , , ,i,. 7 , 1 __ .\.•:,\\ ■4 ,..- -, / I . ' ' •- . 1 .. ' , i i ' i i , i , ) 2 / ,// .* - • i -.•"'\ '-‘);\._/' /,,,/ /// '',',' /'-'' 1 . / . ) i / , ■.' I' ) ■ r I r . • , . ,, r ._ , , , ,„. - • i . ,, • • ) . ', i : __, . ,, • 1 , •, , i ) (' 4- j fy ‘‘s. / a .. „ 1 „ / , Vil ( Ni i, 1 . , , , iee ' 4111 / . , 1 , I ' i • • I i 1, ) (t) ) I CII f . . . , / • ' 1 1 • 1 , ' i . -• 1 .- c • ir ' 1/I 1 , I .. i /.' / / • r \ .- ,5" ) ( 1 ; I t 1 / /// / ,..‘ . , J ; 1 -- >-' ,•..."1/ • J c' i . , J f • • . , t ) I 1 i • • 1 t • / / i • , I 1 1 -( -' 7 ,i / / j ' ''•-) /// 1 , 1 , i (--' .,) 4'4/ / 1 / ' i—./- ■ i / r - , 1 ...._ - . • 1 ; . t . ).!•----.,-_,...-..__.--• • /7 ,i, -4- _.__._,,;, , . _ , ,, , .. is 4 ...__ , if 1 i i , . ,/ 5 ,/ / ,r c:( ( • ' I I • - ' ' . ) ' - -- ' I // // , --., ‘,, I 4/ , ....;• 1 - i /:- , -- — / ■ 1/ ,' /I / .'•• - '1. •_. '.: ' .\ •••„,, A /,/ • / i r --""-- '' I : ..• „.. > , _ .1. / ' /. -;_._ --- • \ '1 \ + (k ” ,,,; . . r- ' to. - I - -5 , - 2 SI ,' l ' iip .; c , . . i'lk`i, -., :\ ■it s ' ' \ .1 , i\ ,4` ..1. . NI r I -''' t a! . . . , 14 (. ----- '"c; e , -, ' i i , 7 ''', i 'I '■e ' r , L , i !,- / / L.., ____ / t. - I . -. . .1 ‘ ; , ti , ' % i • , - \-) I- _ , „,-- 4 ,,._ , ' • ,.______ , ,, cr .)`:- -' ,I, ;/ , I , ,`) ...or 4.. \ 1 .......__ , J ' rkr i'' ,-`- '',' , - A\— ■,,,\ • , , _ . \ \ I , i, , . • ; 0- ,., \ '-- 1 ' . i ■ ..: 1 j •-• ', ) • 7 ' ' ' r ---- _, 7 . i j . r i ( 't ') . ,/ , \, V, - 1 - • , • . - .; 1 .,-- . _ • k17 % 1 - ;. r • - • ,....), /.-,' : /' , . . ._ .. I, H j „ 1 ,_ _ , / • . S ------/ • , _ I - ■ ■ ..--. ' ,1 ' .. s. ( w ,5, , • • ‘ ' < , 1 – , I - ‘1.- - . 1- ••'i , . s •.„... •- .,,, , , , • • ....._ , 1 ...• -- , . r RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON SAN BERNARDINO COUNTY (SBC) 1983 HYDROLOGY MANUAL (<((<l<((((<((<(<(<<((<<<(<(<<<<<<((l<>>>)>>> > > >) > > > > > > > > > > >))) > > > > > > > > >)) >) (C) Copyright 1982 Advanced Engineering Software CAES] Especially prepared for: HALL & FOREMAN, INC. ((<((l((((<<<<(ll(((<(((<(<<<((<<<(((U)))>)> ))) >)) >)))) > > >)) > >))))) > >> > > > >> * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * SAN SEVAINE WATERSHED , PHASE 1, Tc CALCS FOR AREA 109.4 * * G 100 YR, INTRIM CONDITION BUBBLE OUT AFTER X -ING BASELINE * * VENKI.N, JN 3814 -00, DISK "3 ", FILE "J ", 9/22/87 ****-********************************************• * * * *•* *** * * * **• * * * * * * * * * * * * **•* USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH)'= 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .95 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = .980 100 -YEAR STORM 60- MINUTE I■TENSITY(INCH /HOUR) = 1.470 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.4700 SLOPE OF INTENSITY DURATION CURVE = .6000 SBC HYDROLOGY MANUAL "C "- VALUES USED <<(((((((<(((l(((((<(<(<(<<<<<<(<(<<(())>)>>> )))>)>)>)>>))>)) >>)>>> > >>)) >>>> Advanced Engineering Software CAES] SERIAL No. A0580A REV. 3.1 - RELEASE DATE: 5/01/85 (((((<<(<<<((<<((<(<<(<<((((((<(<((((<))))))) > >))) > > > > > >) >) >) >))) >) >) >> > > > >> * * * * * * * * * * * * * * * ** **************•************* * * * * * *• * * * * * * * *• * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 1500.00 TO NODE 1500.10 IS CODE = 2 ))> ))RATIONAL METHOD INITIAL SUBAREA ANALYSIS(<<<( ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS UNDEVELOPED WITH POOR COVER TC = K *C(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW - LENGTH = 1000.00 UPSTREAM ELEVATION = 1311.90 DOWNSTREAM ELEVATION = 1304.50 ELEVATION DIFFERENCE = 40 TC = . 533* C ( 1000. 00 * *3) / ( 7.40)J** . 2 = 22.519 .. 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.647 SOIL CLASSIFICATION IS "A" UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .6123 t�i 1 !PO Ar AII=f p'FC1 = 4 s 3.1 ?e a e{ y'� c } 4;1., • TAI T n_ AREA(ACRES) 9. 8` T OTHL RUNOFF (CF2) - 15.i1 ***************4i ******** * * * * * * * * * * * * * * * * * * ** * ** ** * ** ** **Mil if it -f********* * FLOW PROCESS FROM NODE 1500.10 TO NODE 1501.10 IS CODE •= 5 )))))COMPUTE TRAPEZOIDAL- CHANNEL FLOW(<(<( >)> )TRAVELTIME THRU SUBAREA < < <(( - UPSTREAM NODE ELEVATION = 1304.50 DOWNSTREAM NODE ELEVATION = 1303.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 490.00 CHANNEL BASE(FEET) = 50.00 "Z" FACTOR = 10.000 MANNINGS FACTOR = .030 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 15.91 FLOW VELOCITY(FEET /SEC) = 1.14 FLOW DEPTH(FEET) _ .27 TRAVEL TIME(MIN.) = 7.18 TC(MIN.) = 29.70 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * ** * * * ** FLOW PROCESS FROM NODE 1501.00 TO NODE 1501.10 IS CODE = 8 > > > >> ADDITION OF SUBAREA TO MAINLINE PEAK FLOW(<( <( 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.242 SOIL CLASSIFICATION IS "A" UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .5694 SUBAREA AREA(ACRES) = 4.72 SUBAREA RUNOFF(CFS) = 6.02 TCTAL AREA(ACRES) = 14.54 TOTAL RUNOFF(CFS) = 21.94 TC(MIN) = 29.70 * * * * * * * * * * ** * * * * * * * * * * * * * * * * * *• ** • * * * * * * * * * * * * * * * * ** • * * * * * ** * * ** • * * *- * *• * ** j • FLOW PROCESS FROM NODE 1501.10 TO NODE 1502.10 IS CODE = 5 )))))COMPUTE TRAPEZOIDAL- CHANNEL FLOW((((( )))) )TRAVELTIME THRU SUBAREA <( < << UPSTREAM NODE ELEVATION = 1303.00 DOWNSTREAM NODE ELEVATION = 1299.50 CHANNEL LENGTH THRU SUBAREA(FEET) = 550.00 CHANNEL BASE(FEET) = 50.00 "Z" FACTOR = 10.000 MANNINGS FACTOR = .030 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFSr = 21.94 FLOW VELOCITY(FEET /SEC) = 1.57 FLOW DEPTH(FEET) = .27 TRAVEL TIME(MIN.) = 5.84 TC(MIN.) = 35.54 **** ***************************•*********** I•****** * * * * * * * * * * **•x• * * * * * * *** * *•** FLOW PROCESS FROM NODE 1502.00 TO NODE 1502.10 IS CODE = 8 >>> ))ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <( <<( 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.013 SOIL CLASSIFICATION IS "A" UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .5375 SUBAREA AREA(ACRES) = 11.25 SUBAREA RUNOFF(CFS) = 12.17 TOTAL AREA(ACRES) = 25.79 TOTAL RUNOFF(CFS) = 34.11 " TC(MIN) = 35.54 * * * * * * * * * * * * * * * * * *• * * * * * * * * * * ** • * * * * * * *• ** * * * ** • * * *- ** *'• * * ** * * * * * *- * *• * • ** FLOW PROCESS FROM NODE 1503.00 TO NODE 1502.10 IS CODE = 8 )))))ADDITION OF SUBAREA TO''IAINLINE PEAK FLOW((((( yT .00.Q2 YEAR RAINFALL INTENSITY(I%CH/HOUH> = 2.013 SOIL CLASSIFICATION IS "A" UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .5375 SUBAREA AREA(ACRES) = 6.45 SUBAREA RUNOFF(CFS) = 6.98 TOTAL AREA(ACRES) = 32.24 TOTAL RUNOFF(CFS) = 41.09 TC(MIN) = 35.54 \ ' **************************************************************************** FLOW PROCESS FROM NODE 1502.10 TO NODE 1502.20 IS CODE = 5 >>>>>COMPUTE TRAPEZOIDAL-CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA((<<( =----- UPSTREAM NODE ELEVATION = .1299.50 DOWNSTREAM NODE ELEVATION = 1298.70 CHANNEL LENGTH THRU SUBAREA(FEET) = 100.00 CHANNEL BASE(FEET) = 10.00 "Z" FACTOR = 5.000 MANNINGS FACTOR = .030 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 41.09 FLOW VELOCITY(FEET/SEC) = ' FLOW DEPTH(FEET) = .86 3.34 TRAVEL TIME(MIN.) = .50 TC(MIN.) = 36.04 *************************************************************************** FLOW PROCESS FROM NODE 1502.20 TO NODE 1504.10 IS CODE = 5 >>>>>COMPUTE TRAPEZOIDAL-CHANNEL FLOW((((( >>)>>TRAVELTIME THRU BUBAREA({<<< UPSTREAM NODE ELEVATION = 1298.70 DOWNSTREAM NODE ELEVATION = 1291.20 CHANNEL LENGTH THRU SUBAREA(FEET) = 1250.00 / CHANNEL BASE(FEET) = 4.00 "Z" FACTOR = 3.000 MANNINGS FACTOR = .025 MAXIMUM DEPTH(FEET) = 3.00 CHANNEL FLOW THRU SUBAREA(CFS) = 41.09 FLOW VELOCITY(FEET/SEC) = 4.11 FLOW DEPTH(FEET) = 1.28 TRAVEL TIME(MIN.) = 5.07 TC(MIN.) = 41.11 **************************************************************************** FLOW PROCESS FROM NODE 1504.00 TO NODE 1504.10 IS CODE = 8 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW((((( 100.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.844 SOIL CLASSIFICATION IS "A" UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .5089 SUBAREA AREA(ACRES) = 12.99 SUBAREA RUNOFF(CFS) = 12.'9 TOTAL AREA(ACRES) = 45.23 TOTAL RUNOFF(CFS) = 53.28 TC(MIN) = 41.11 **************************************************************************** FLOW PROCESS FROM NODE 1504.10 TO NODE 1505.10 IS CODE = 5 >> > > > COMPUTE TRAPEZOIDAL-CHANNEL FLOW((((( >>)>>TRAVELTIME THRU SUBAREA((((( UPSTREAM NODE ELEVATION = -= = ~_. . 20 _ DOWNSTREAM NODE ELEVATION ���r ) CHANNEL LENGTH THRU SUBAREA(FEET) �= 640.00 CHANNEL BASE(FEET) = 4.00 "Z" FACTOR = 3.000 MANNINGS FACTOR = .025 MAXIMUM DEPTH(FEET) = 3.00 CHANNEL FLOW THRU S0BAREA(C = 53.28 PI ru oct nr7Tv QPr1 = / t '�"� � � � ` **************************************************************************** FLOW PROCESS FROM NODE 1505.00 TO NODE 1505.10 IB CODE = 8 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<( 100.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.782 SOIL CLASSIFICATION IS "A" . UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4971 SUBAREA AREA(ACRES) = 6.99 SUBAREA RUNOFF(CFS) = 6.19 TOTAL AREA(ACRES) = 52.22 TOTAL RUNOFF(CFS) = 59.47 TC(MIN) = 43.51 /"l �</0o �3� * ' I/V� C/ (�'''r� *************************************************************************** FLOW PROCESS FROM NODE 1505.10 TO NODE 1010.10 19 CODE = 5 >>>>>COMPUTE TRAPEZOIDAL-CHANNEL FLOW(<<<< } > > > > TRAVGlTIME THRU SUBAREA�� < < < = UPSTREAM NODE ELEVATION= J287.21 DOWNSTREAM NODE ELEVATION = 1286.32 CHANNEL LENGTH THRU SUBAREA(FEET) = 105.00 CHANNEL BASE(FEET) = 10.00 "Z" FACTOR = 0.000 MA%NINBS FACTOR = .015 MAXIMUM DEPTH(FEET) = 8.00 CHANNEL FLOW THRU SUBAREA(CFS) = 59.47 FLOW VELOCITY(FEET/SEC) = 7.18 FLOW DEPTH(FEET) = .83 TRAVEL TIME(MIN.) = .24 TC(M1N.) = 43.76 **************************************************************************** � FLOW PROCESS FROM NODE 1010.10 TO NODE 1010.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<( CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 43.76 RAINFALL INTENSITY (INCH./HOUR) = 1.78 TOTAL STREAM AREA (ACRES) = 52.22 TO STREAM RUNOFF(CFS) AT CONFLUENCE = 59.47 _- **************************************************************************** FLOW PROCESS FROM NODE 1010.10 TO NODE 1010.10 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<(< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 15.52 RAIN INTENSITY(INCH/HOUR) = 3.31 TOTAL AREA(ACRES) = 15.04 TOTAL RUNOFF(CFS) = 36.27 ��� /(7 ^ - � 10/ *************************************************************************** FLOW PROCESS FROM NODE 1010.10 TO NODE 1010.10 IS CODE = 1 ,-' >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<(((< )))))AND COMPUTE VARIOUS CONFLUENCED �NC�D 8TREAM VALUES<<<�� -_/ �� CONFLUENCE VALUES USED FOR I ` PENDFNT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) RAINFALL INTENSITY (INCH./HOUR) TOTAL STREAM AREA (ACRES) = 15.04 TOTAL STREAM RUNOFF(CFS> AT CONFLUENCE = 36.27 .. � � �.�` .�.���� ��6�� ' z�� �: I .FORMATTON: STREAM RUNOFF TIME INTENSITY \UMBER (CFS) (MIN.) (INCH/HOUR) 1 59.47 43.76 1.777 2 36.27 15.52 3.309 ` RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA(8BC) USED FOR 2 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 78.94 57.36 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(CFS) = 78.94 TIME(MINUTES) = 43.758 TOTAL AREA(ACRES) = 67.26 *************************** ******************************************** FLOW PROCESS FROM NODE 1010.10 TO NODE 1008.10 IS CODE = 5 >>>>>COMPUTE TRAPEZOIDAL-CHANNEL FLOW((((( >>>}>TRAVELTIME THRU SUBAREA((((( UPSTREAM NODE ELEVATION = 1286.32 DOWNSTREAM NODE ELEVATION = 1284.08 CHANNEL LENGTH THRU SUBAREA(FEET) = 265.00 CHANNEL BASE(FEET) =" 10.00 "%" FACTOR = 0.000 MANNINGS FACTOR = .015 MAXIMUM DEPTH(FEET) = 8.00 CHANNEL FLOW THRU SUBAREA(CFS) = 78.94 FLOW VELOCITY(FEET/SEC) = 8.02 FLOW DEPTH(FEET) = .98 TRAVEL TIME(MIN.) = .55 TC(M IN.) = 44.31 • **************************************************************************** FLOW PROCESS FROM NODE 1008.10 TO NODE 1008.10 IS CODE = 1 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE(<<<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 44.31 RAINFALL INTENSITY (INCH./HOUR) = 1.76 TOTAL STREAM AREA (ACRES) = 67.26 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 78.94 -- ******************************************* FLOW PROCESS FROM NODE 1008.10 TO NODE 1008.10 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE((((( USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 13.04 RAIN INTENSITY(INCH/HOUR) = 3.67 TOTAL AREA(ACRES) = 2.76 TOTAL RUNOFF(CFS) = 7.75 ^� • � ��^ `� /7�� **************************************************************************** FLOW PROCESS FROM NODE 1008.10 TO NODE 1008.10 IS CODE = 1 >>}>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<((< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<((< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 13.04 ' ^ RAINFALL INTENSITY (INCH./HOUR) = 3.67 TOTAL STREAM AREA (ACRES) = 2.76 ' TOTAL STREAM RUNOFF(CFS) AT EONFLUENCE 7.75 � ` Iw=ORmATIOw: STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 78.54 44.31 1.763 2 7.75 13.04 3.673 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA<SBC> USED FOR 2 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 82.66 30.98 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(CFS) = 82.66 TIME(MINUTES) = 44.309 TOTAL AREA(ACRES) = 70.02 .a **************************************************************************** FLOW PROCESS FROM NODE 1008.10 TO NODE 1007.10 IS CODE = 5 >)>>>COMPUTE TRAPEZOIDAL-CHANNEL FLOW((((( >}>>}TRAVELTIME THRU SUBAREA((<<< UPSTREAM NODE ELEVATION = 1284.08 DOWNSTREAM NODE ELEVATION = ^ 1281.88 CHANNEL LENGTH THRU SUBAREA(FEET) = 260.00 CHANNEL BASE(FEET) = 10.00 "Z" FACTOR = 0.000 MANNINGS FACTOR = .015 MAXIMUM DEPTH(FEET) = 8.00 CHANNEL FLOW THRU SUBAREA(CFS) = 82.66 FLOW VELOCITY(FEET/SEC) = 8.14 ~ FLOW DEPTH(FEET) = 1.Q2 TRAVEL TIME(MIN.) = .53 TC(MIN.) = 44.84 **************************************************************************** FLOW PROCESS FROM NODE 1007.10 TO NODE 1007.10 IS CODE = 1 >}>}>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE(<(<< _ CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 44.84 RAINFALL INTENSITY (INCH./HOUR) = 1.75 TOTAL STREAM AREA (ACRES) = 70.02 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 82.66 **************************************************************************** FLOW PROCESS FROM NODE 1007.10 TO NODE 1007.10 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE(((({ USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 16.55 RAIN INTENSITY(INCH/HOUR) = 3.18 TOTAL AREA(ACRES) = 10.32 TOTAL RUNOFF(CFS) = 23.48 C �� 4, ��� �� ���t- �~. /02 **************************************************************************** FLOW PROCESS FROM NODE 1007.10 TO NODE 1007.10 IS CODE = >>>>>DESIGNATE INDEPENDENT STREAM FOR <(<<( >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES((((( CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 16.55 '° ^ RAINFALL INTENSITY (INCH./HOUR) = 3.18 TOTAL STREAM AREA (ACRES) = TOTAL STREAM RUNOFF(CFS) AT = 23.48 e�w�� :; Wf � ' ^ ���` - ��'`'� lv ����AI���: STREA'y RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 82.66 44.84 1.751 2 23.48 16.55 3.184 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA(BBC) USED FOR 2 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 95.57 53.99 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(CFS) = 95.57 TIME(MINUTES) = 44.842 TOTAL AREA(ACRES) = 80.34 **************************************************************************** FLOW PROCESS FROM NODE 1007.10 TO NODE 1006.70 IS CODE = 5 >>>>>COMPUTE TRAPEZOIDAL FLOW<<(<< >>>>>TRAVELTIME THRU SUBAREAM(< =_ UPSTREAM NODE ELEVATION = ~` 1. 88 DOWNSTREAM NODE ELEVATION = '1280.79 ` CHANNEL LENGTH THRU SUBAREA(FEET) = 115.00 CHANNEL BASE(FEET) = 10.00 "2" FACTOR = 0.000 MANNINGS FACTOR = .015 MAXIMUM DEPTH(FEET) = 8.00 CHANNEL FLOW THRU SUBAREA(CPS) = 95.57 FLOW VELOCITY(FEET/SEC) = 8.86 FLOW DEPTH(FEET) = 1.08 TRAVEL TIME(MIN.) = .22 TC(MIN.) = 45.06 ** * * ** * *************************** ******************************** * ** ******* ' FLOW PROCESS FROM NODE 1006.70 TO NODE 1006.70 IS CODE = . 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<(<<' CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 45.06 RAINFALL INTENSITY (INCH./HOUR) = 1.75 TOTAL STREAM AREA (ACRES) = 80.34 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 95.57 _ - **************************************************************************** FLOW PROCESS FROM NODE 1006.70 TO NODE 1006.70 IS CODE = 7 }>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE((((( ======= USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 17.59 RAIN INTENSITY(INCH/HOUR) = 3.07 �- B. ~� �^M-� TOTAL AREA(ACRES) = 3.63 TOTAL RUNOFF(CFS) = 9.73 �° �» 'w ' ^ - **************************************************************************** FLOW PROCESS FROM NODE 1006.70 TO NODE 1006.70 IS CODE = 1 >>>>>DEG%GNATE INDEPENDENT STREAM FOR CONFLUENCE((((< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 17.59 '^ ^ RAINFALL INTENSITY (INCH./HOUR) = 3.07 TOTAL STREAM AREA (ACRES) = , 3.63 ' TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 9.75 CONFLUENCE �� � ` � . + ' ,�� , I i=ORMA ST�EAM RUNOFF TIME INTE NUMPER (CFS) (VIN.) (INCH/HOUR) 1 95.57 45.06 1.746 2 9.75 17.59 3.069 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA(8BC) USED FOR 2 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 101.12 47.06 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(CFS) = 101.12 TIME(MINUTES) = 45.058 TOTAL AREA(ACRES) = 83.97 ************************************************************************* FLOW PROCESS FROM NODE 1006.70 TO NODE 1006.60 IS CODE = 5 ''- }>>>>COMPUTE TRAPEZOIDAL-CH FLOW<(<<< >>>>>TRAVELTIME THRU SUBAREACM( UPSTREAM NODE ELEVATION = 1280.79 DOWNSTREAM NODE ELEVATION = 128Q.@0 CHANNEL LENGTH THRU SUBAREA( - T) = 160.00 CHANNEL BASE(FEET) = 10.00 "Z" FACTOR = 0.000 MANNINGS FACTOR = .015 MAXIMUM DEPTH(FEET) = 8.00 CHANNEL FLOW THRU SUBAREA(CFS) = 101.12 FLOW VELOCITY(FEET/SEC) = 7.27 FLOW DEPTH(FEET) = 1.39 TRAVEL TIME(MIN.) = .37 T����N.� = 45.42 ��************************************************************************** FLOW PROCESS FROM NODE 1006.60 TO NODE 1006.60 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<M< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 45.42 RAINFALL INTENSITY (INCH./HOUR) = 1.74 TOTAL STREAM AREA (ACRES) = 83.97 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 101.12 *�**********************************************************�*************** FLOW PROCESS FROM NODE 1006.60 TO NODE 1006.60 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE((((( __ USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 11.91 RAIN INTENSITY(INCH/HOUR) = 3.88 TOTAL AREA(ACRES) = 2.02 TOTAL RUNOFF(CFS) = 6.9L: (04 **************************************************************************** FLOW PROCESS FROM NODE 1006.60 TO NODE 1006.60 IS CODE = 1 >>>)>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<(<(< >>>>>AMD COMPUTE VARIOUS CONFLUENCED STREAM VALUES((((( CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION<MINUTES) = 11.91 ^~ RAINFALL INTENSITY (INCH./HOUR) = 3.88 TOTAL STREAM AREA (ACRES) = 2.02 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 6.98 �'. ST RUNE IN E (CF3) WIN.) (1NC-i-a,9) 101.12 4 1.737 2 6.98 11.91 3.878 , RAI\FALL INTENSITY AND TIME OF CONCENTRATION RATIO � FORYULA(SBC) USED FOR 2 STREAMS. VAR7OUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 104.25 33.49 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(CFS) = 104.E5 TIME(MINUTES) = 45.424 TOTAL AREA(ACRES) = 85.99 -------- ~ __ END OF RATIONAL METHOC ANALYSIS � ~ ° ` x 4f - _ - =_ _ ^' RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON SAK BERNARDINO CoUNTY (SBC) �- _ 1983 HYDROLOGY MANUAL . ------- _______ <<(<<<<<<<(<<<<<<<<(<<<<<<(<<<(<<<{<<<>>>>}>>>>}>>>>>>>>>>>>>>>>>>>>>>>>>>>> . (C) Copyright 1982 Advanced Engineering Software [AES] Especially oreoared for: ::_ HALL & FOREMAN, INC. 4 ( < < < < < < ( < < < < < < < < ( < ( < < < < < < < < < ( < < < ( < < < < <> > } > > > >> > } > > > > > > > > > > > } > > > > > > > > > > > > > > > > **********DESCRIPTION OF RESULTS******************************************** * N.BASELINE TEMP. INLET # 205 HYDROLOGY RCB S.D STA 42+94.22 * --m- c - * 0 100 YR FREOUENCY WITH OUT FILLING IN SAN SEVAINE CHANNEL,EXIST. COND. * v iso USER SPECIFIED STORM EVENT(YEAR) = 100.00 COMPUTED RAINFALL INTENSITY DATA: ` _ < << < < < ( < ( < < < < < ( < < < < < < ( < < < < <ir< < < < < < ( < < 0 > > > > > > > > > > > > > >> > > > > >>> } > > > > > > > > > > > > > . I: , - � '_ ` **************************************************************************** FLOW PROCESS FROM NODE 1500.00 TO NODE 1500'10 IS CODE = 2 )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< === _ - - ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER ' TC = K*[(LENGTH**3)/■ELEVATION CHANGE)]**'2 i INITIAL SUBAREA FLOW-LENGTH = 1008.00 l UPSTREAM ELEVATION = 1311.0 DOWNSTREAM ELEVATION = 1304.50' . ELEVATION DIFFERENCE = 7.40 TC = .533*[< 1000.00**3>/( 7.40)]**.2 = 22.519 100.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.647 SDIL CL -3 ''A" - _ - _'- ^._'' -- - -� __ TOTAL ARF_A(ALRES) Y.82 101AL kUNCJ F WFb) = 15.J "a • *** * **** * * ** * *a ******* gar ** ** * ** ***** *** * ` *` *• *• ` **** ** * * * * *** *` **** *** FLOW PROCESS FROM NODE 1500.10 TO NODE 1501. „10 IS CODE = 5 _ )))))COMPUTE TRAPEZOIDAL- CHANNEL FL.OW( <((( )> > >>TRAVELTIME THRU SUBAREA(((( UPSTREAM NODE ELEVATION = 1304.50 DOWNSTREAM NODE ELEVATION = 1303.00 ' CHANNEL LENGTH THRU SUBAREA(FEET) = 490.00 CHANNEL BASE(FEET) = 50.00 "Z" FACTOR - 10.000 MANNINGS FACTOR = .030 MAXIMUM DEPTH(FEET) = 1.00 "r CHANNEL FLOW THRU SUBAREA(CFS) = 15.91 FLOW VELOCITY(FEET /SEC) = 1.14 FLOW DEPTH(FEET) = .27 TRAVEL TIME(MIN.) = 7.18 TC(MIN.) _, 29.70 4- * * * ** ` ***** *** * ** `• ** * * * * * *- * * * *; * * * * * * * * * * * *` * *- * * * * * * * * ** - * * * ** • * * * ** • * *- ,i FLOW PROCESS FROM NODE 1501.10 TO NODE 1501.00 IS CODE = 8 > > >> )ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<(((< c.) = = == ____= = = = =- = = = = =__ = t; - c V1 YEAR RAINFALL I NTENBI T Y (INCH /t4OUR) 2.242 z „ F - . t UNDEVELOPED WATERSHED RUNOFF COEFFICIENT _ SUBAREA AREA (ACRES) = �` 41.72 SUBAREA RUNOFF (CFS) = ° 6.02 } w TOTAL AREA(ACRES) = 14.54 TOTAL RUNOFF(CFS) = 21.94 . TC(MIN) == 29.70 A v - n . . . 1 ,.� ,... K. a . . : • . , a . , . . . - . . 4 - . , . . , , - . a -- • a ,:..., -:. -•• ..' .: , `;'..a, , ° " ;1,-,,q,..,,, wt�`ii$1 : - i - • Y € -. ` ? i , - ... . A.,'"1 - : 'Ajlf' r ' w '* FIE *i�'1E�tiE.*'1E *`1F'I ****** *U * * * *** * ** *`li * * *IEiF1F�•)F # ** * *9F`1iiF�lFi * **�1F** *iF *1FIE�IF.�F�M�** ***** r*414F ' FLOW PROCESS FROM NODE 1501.10 TO NODE 1502.10 IS CODE = 5 '';,:J I ro'' '` } >> )COMPUTE TRAPEZOIDAL CHANNEL FLOW( <<<( s I "'3 } >TRAVELTIMETHRU SUBAREA ( <<<< t ' 4 , 13 4 1 0 2 :41 4 4 14 " 16 0...,m7 ' : ` ' == ===mss == = = = ====== =_ === = = = = =====m == = = =a = ==== ====== .« UPSTREAM NODE ELEVATION = 1303. T #{ f , :mss n DOWNSTREAM NODE ELEVATION = 1299.50 - � `- CHANNEL LENGTH THRU SUBAREA (FEET) = , 550.00 '' CHANNEL BASE(FEET) = 50.00 "Z" FACTOR = 10.000 z 1 . MANNINGS FACTOR = .030 MAXIMUM DEPTH(FEET) = 1.00 ;,;A . CHANNEL FLOW THRU SUBAREA (CFS) = 21.94 '° FLOW VELOCITY(FEET /SEC) = 1.57 FLOW DEPTH(FEET) = .27 ' "` TRAVEL TIME(MIN.) = 5.84 TC(MIN.) = 35.54 r ` ,-- : . J -******•******•***************************`** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1502.00 TO NODE 1502.10 IS CODE = 8 >> >> )ADDITION OF SUBAREA TO MAINLINE PEAK FLOW((((( f "'� 100.00 YEAR RAINFALL INTENSITY(INCH/HOUR) _ 2.013 !r 4t SOIL CLASSIFICATION :ES "A" UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .5375 i SUBAREA AREA(ACRES) = 11.25 SUBAREA RUNOFF(CFS) = i2.17 TOTAL AREA(ACRES) = 25.79 TOTAL RUNOFF(CFS) = 34.11 TC(MIN) = 35.54 **** * *-* *** * * **• * *** * * * * * * * *** * * * *• • • •* *** **•* *` * * * * * * * **•• * ** * * * * * * * * * * *•* * * * *•* **** FLOW PROCESS PROM NCiDE 1503.00 TO NODE" 1102'.:1.0 IS CODE = 8 100.Q0 YEAR HAIMFALL 114TENSITY(INCH/HUUR) = —Q T SOIL CLASSIFICATION IS "A" UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .5375 SUBAREA AREA(ACRES) = 6.45 SUBAREA RUNOFF(CFS) = 6.98 TOTAL AREA(ACRES) = 32.24 TOTAL RUNOFF/CFS) = 41.09 '—� TC(MIN) = 35.54 � ^ **************************************************************************** FLOW PROCESS FROM NODE 1502.10 TO NODE 1502.20 IS CODE = 5 ))>>>COMPUTE TRAPEZOIDAL-CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA<<<<< UPSTREAM NODE ELEVATION = 1299.50 DOWNSTREAM NODE ELEVATION = 1298.70 CHANNEL LENGTH THRU SUBAREA(FEET) = 100.00 -' CHANNEL BASE(FEET) = 10.00 "Z" FACTOR = 5.000 MANNINGS FACTOR = .030 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 41.09 '- FLOW VELOCITY(FEET/SEC) = 3.34 FLOW DEPTH(FEET) = .86 TRAVEL TIME(MIN.) = .50 TC(MIN.) = 36.04 FLOW PROCESS FROM NODE 1041.20 TO NODE 1502.20 IS CODE = 15 i- ilikai 9 inWt ' 100.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.996 . SOIL CLASSIFICATION IS "A" * UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = , .5349 ))))>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES((<(( ' CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: ,-,., ,.: ,... TIME OF CONCENTRATION(MINUTES) = 36.04 - RAINFALL INTENSITY (INCH./HOUR) = 2.00 TOTAL STREAM AREA (ACRES) = 32.93 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 41.82 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY . ; s NUMBER (CFS) (MIN.) (INCH/HOUR) 1 41'82 36.04 1.996 ' ^ ' RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA(SBC) USED FOR 1 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 41.82 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: �� 4 &M �� ` _� �^ - RUNOFF(CFS) = TIME(MINUTES) = 36.040 �`�� ���~� TOTAL AREA(ACRES) 7---- 32.93 nom====================================== __= ===================== ��. ^ ^, FNn nF RATTONAL METHOD ANALYSIS �' - ' '=__-_=_--__==___ = - RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON SAN BERNARDINO COUNTY (SBC) - = 1983 HYDROLOGY MANUAL `-^== <(</- '<<<<<<(((<<<<<<<((<<(((<<<<<<<<0>>>>>>>>>>>>>)>>}>>>>>>>>>>>>>>>>>>>> , �' (C) Cooyright 1982 Advanced Engineering Software [AES] -� * - ' .. Especially prepared for •-' -:- HALL & FOREMAN, INC. ` <(<<<(<<<<<<<<<<<<<<(((<<<<<<<<<<<<<(<>>>}>>>>>>>>>}>>>>}>>>>>>>>>>>>>>>>}>> ^ ' - **********DESCRIPTION OF RESULTS******************************************** `'' '`� ' * BASELINE T.1 #206 HYDROLOGY EAST OF R/R X-ING * Q 100 YR * Ark, . Or i WiYITS5TiMTMMTV417 )' > > --f- -. ; Advanced Engineering So OtSl - t• FLOW PROCESS FROM NODE 1503.00 TO NODE 1503.01 IS CODE = 2 � >}>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<(< _ ` ASSUMED INIT-AL SUBAREA UNIFORM DEVELOPMENT 2S: UNDEVELOPED WITH FAIR COVER TC = K*[(LENGTH**3)/(ELEVATION CHANGE>]**.2 ' INITIAL SUBAREA �LJW-LENGTH = 850.00 :PSTREAM EL_EVATIL.'1 = 1310.50 DOWNSTREAM ELEVATI,DN = 1299.30 � `` .` ELEVATION DIFFERENCE = 11.00 rC = ' 7�9°[ ( �5�. 0@�* / ( 11. 00) �**. 2 = �5. '34 - � �� 100.00 YEAR RAINFALL �NTENSITY(INCH/HOUR) = 2. 478 �r�� `�`���� SOIL CLASSIFICATION IS "A" UNDEVEL WATERSHED RUNOFF COEFFICIENT = .5961 , ` 5UBARE1 :-]NOF `E.75) = 9' 53 41'-.4- RATIONAL METHOD HYDROLOGY COM'UTER PROGRHt+I BASED ON SAN BERNARDINO COUNTY (SBC) 1983 HYDROLOGY MANUAL - -- - - _-- - -- =s=== ------ ff<<(<<<<<(<<<(<(<(< l( ff f(<<<< C<fl f( f)>)>))) )) >))) >))) 7113) � ) ) )1 )) 1)))))))) (C) Coovriaht 1982 Advanced Engirieerir,a Software CAES] Especially oreoared for: HALL & FOREMAN, INC. <(<((<<(<((<(((((((((((((((((((((((<(<)>)>>>) )))) > >)) >))))))>))) >)) > > > ) i ))) * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * ** * * * * * * * * * * * * * * * * * * * * * * ** * TEMP. INLET HYDROLOGY CALCS FOR SAN SEVAINE CHANNEL * * Q 100 YR, T_ I 2C4, C. B.'103 * * VENKI.N. JN 3814 -00. 12/10/87.DISK "VENKI # 2, FILE E " * * * * * * * * * **** * * *** * * * * * * * *** ** ► ** ** * * * * *** * * * ***r ** **rte * * **** * *** * *** **** USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: Y USER SPECIFIED STORM EVENT(YEAR)__ 100.00 SPECIFIED MINIMUM PIPE SIZE.UNCHI = 1$.00 ,... SPECIFIED PERCENT OF SRRDr I ENT9 f DEC I Mme:.) TO USE FOR FRICTION euips = .95 ° ^ 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = .980 100- -YEAR STORM 60r- MINUTE TE ITY t It CN /HOUR? as 11.. 470 COMPUTED RAINFALL INTENSITY DATA, STORM EVENT = 1!0.00 1 INTENSITY ( INCH /HOUR) = 1.4700 SLOPE OF INTENSITY DURATION CURVE _ .6000 4 . SBC HYDROLOGY MANUAL "C "- VALUES USED <(((<<(((<<<((((<(<(<<<<<(<<(<(<<<<((())>>>>> > > > > > > > >) > > > > > > > > > >) >) > > > > >) >>) Advanced Endirieerino Software CAES] SERIAL No. A0579A REV. 3.1 RELEASE DATE: 5/01/85 <(<<<<<<<<(<<<<<<<((<<<<<(<<<<<<<<<(<(>)>>>>> > > > >) > > >) > > >) > > > >) > > >) >) > >) >))) ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1700.00 TO NODE 1700.10 IS CODE = 2 > >> )RATIONAL METHOD INITIAL SUBAREA ANALYSIS( <((( ============= =======_============__========== = =_ = = = = =x = = = == = = = = = = = = = = = = = == == ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER TC = K *C(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW - LENGTH = 930.00 UPSTREAM ELEVATION = 1311.50 DOWNSTREAM ELEVATION = 1296.00 ELEVATION DIFFERENCE = 15.50 TC = .533* C ( 938. 00 * *3) / ( 15.50) ] * *. 2 = 18.596 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.969 SOIL CLASSIFICATION IS "A" UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .6381 • SI IRAREA RI INOFF (CFS) = 7-.54 *********************************************************N *it ************ FLOW PROCESS FROM NODE 1700.10 TO NODE 100S.0 IS CODE 5 > > > >>COMPUTE TRAPEZOIDAL- CHANNEL FLOW((((( >> > > > TRAVELT IME THRU SLEIARE ( (( ( ==s = ==s======= earmansamsatisstasassamasarscs===== ssstscspratrgSiMV:stss acv s==== UPSTREAM NODE ELEVATION = 1236.00 DOWNSTREAM NODE ELEVATION = 1289.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 600.00 CHANNEL BASE(FEET) = 3.00 "Z" FACTOR = 3.000 MANNINGS FACTOR = .040 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 7.54 FLOW VELOCITY(FEET /SEC) = 2.39 FLOW DEPTH(FEET) = .64 TRAVEL TIME (MIN.) = 4.18 TC(MIN.) = 22.78 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1701.00 TO NODE 1006.20 IS CODE = 8 >> >) )ADDITION OF SUBAREA TO MAINLINE PEAK FLOW((((( 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.628 SOIL CLASSIFICATION IS "A" UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .6107 SUBAREA AREA (ACRES) = 1.28 SUBAREA RUNOFF(CFS) = 2.05 TOTAL AREF = 5.26 TOTAL RUNOFF(CFS) = 9.59 TC(MIN) = 22.78 ******************************+************** * * * * * * * * * * ** * * * ** * * * * * * * * * * * * ** • FLOW PROCESS FROM NODE 1006.20 TO NODE 1006.20 IS CODE = 1 ) >) ))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <( < << ___________________ ________________= = = ==c = = == = =sss =ass = = = = = = = == = = = =s= _ = =_ = =x= CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 22.78 INTENSITY (INCH. /HOUR) = 2.63 TOTAL STREAM AREA (ACRES) _ 5.26 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 9.59 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1006.10 TO NODE 1006.20 IS CODE = 2 ) > >> )RATIONAL METHOD INITIAL SUBAREA ANALYSIS < <((< _- - - -__= =-= ========___= == s: = = =_= ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: COMMERCIAL TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 600.00 UPSTREAM ELEVATION = 1300.00 DOWNSTREAM ELEVATION = 1290.20 ELEVATION DIFFERENCE = 9.80 TC = .303*[( 600. 00 * *3) / ( 9.80) ] * *. 2 = 8.917 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.614 SOIL CLASSIFICATION IS "A" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = . 8364 SUBAREA RUNOFF(CFS) = 3.40 C,8 103 TOTAL AREA(ACRES) = .88 TOTAL RUNOFF(CFS) = 3.40 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1006.20 TO NODE 1006.20 IS CODE = 1 )) /I)LEo1lJNH11 LNUEFi.= iVUENI ;. i i FUht > >> > >AND COMPUTE VARIOUS CONFLUENCED SCREAM VALUESiA (‘ CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 AkE: TIME OF CONCENTRATION(MINUTES) = 8.92 RAINFALL INTENSITY (INCH. /HOUR) = 4.61 TOTAL STREAM AA=A (ACRES) = .8$ TOTAL STREAM RUNOFF (CF9I AT CONFLUENCE = 3.46 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) 1 9.59 22.78 2.628 2 3.40 8.92 4.614 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA(SBC) USED FOR 2 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: T Z �J 11.53 7.15 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(CFS) = 11.53 TIME(MINUTES) = 22.778 TOTAL AREA(ACRES) sr____ 6.14 ========================================================= == = == END OF RATIONAL METHOD ANALYSIS f 0 Ca Ca i'' I O C• A 0 Ca C• , I C/ 0 0 n o 0 I ,• Of C)b C7 n Ca 1 Cl O O CI C 0 1� C OOo 4a i - . c, , ..S' 0 a 0 o La o 0 r, Cr a a C ( r C. n v o0 o t3 r• f • e O 0 l7 n L =y) N I{ 1 U „ n n n ; V n n n ■ In in In • n n n n in n d nln n In _ nnn „ n T T n n In IA n n ." , .0 ✓ n nn nn In I +I nnn . , V l n n n in UN n I e 0 In n n nnn 1 C 41 nn n In 3 6 111 nn n n n I 0 d I/1 in In In In In i ,n n n n n • 7 n41 n In n W nn in in in n n n J J in In In •-I e • n n n W ✓ T. n in In r .I T ln In in Y 11 M C C n n I n n - e n 1 7 n n n 7 r r• r r 7 n 0 n • C1 •- u In In VI e LI .v In n• N N W In .N naten n > I n 1 Y L n v, U 71 • n n CIn III. •• • •• • •• •• •• O L V n Cn n 0 , r•r- •• . • •• 0 C n on n .N (r: 8"....•• •• •• .• •• •• •• .0 U 7 'n .4 n I/1 ♦ • • • • •w • •• * n • n n N • I.. In ,. • r- L • n L n M n n N) n n r- r r' r• N I - 1 n e n n > U - h n - :1 N n n> r• n HI • n W N • n n n n e n n In n n M n N rn 1 N O M n r n .n > In Z Z Z Z Z Z Z Z Z Z Z Z Z Z 0- t - 41 C N n> n ZZZZZ ZZ ZZZZ ZZ.2 Oro O u n\n n X VI J Z 2 IF 4- • .y n x n In 4 In J Z Z 'W ►- N V n4 VI n> 74 J + F Z Z 1 N- 1- 4- l- H 41- H •- I- 4- F' H o• N n> Ln in n J 22 h h - 41 - F - ....... ••L In 1 10 J J J J J J J Z Z 1•• / - - 1- 7 I n In In 7 Z 1• I r n in C v • Z Z Z Z Z Z Z Z Z Z Z Z Z Z F 1- in 'n C n in O In J Z Z Z Z Z Z Z Z Z Z Z Z Z Z I I I 1. • J n O, , .1 , n J I n .4 J n .+ n n •• in J OY O 4 n M n - 0 VI J I I IU W UJ 4 4 4 4 4 4 4 4 4 4 4 4 . - l Z n W n n C. VI J .1 J J J .J J UI W 4 4 4 4 4 4 4 4 4 4 4 4 1 ✓ n L n 51 0 III IU W Ill 4 4 4 .f 1 C L n n n 1) In ILI 111 ILI 1U W Ul 4 4 4 4 J 0 e n C3 n In L i 1 1 .4 n 1 Q W W W 4 4 4 4 U • n 1- n q w 11 w 1 11 11.1 111 w a 4 4 4 , 7 n 0 IA in n In t4.1 I) n 1 IL II I W LLI W 4 4 4 4 Y. N n V '[ , '1 Ul W L..1 111 UI 4 4 4 4 01 C• T .1 n , 41 4 1 4 U Ill I I I I I L I L 4 4 4 4 4 4 4 4 4 4 4 4 D 4... l n I1. 111 IL U, Ii u1 U1-u. Ill I IIll W UI LLI III W IU .1.0.1.1.1.0 4 74 4 4 C •.I n C In n L 'V e n rI ITT S S L S L 0 " F In • Ov T >> >» » »> 0000000000 . o 4' nnn t > > > > > > > > > > i 0 0 0 0 0 0 ('4 (7 0 0 e 0 . T • n 7 n S >> 0 0 0 0 N .- 0 I n n - I 7 I ,C A , ,Irn tTTTt ST >> 00 C)0 ..1 7- 4 nO n II, >> 0 0 0 0 > Z I.. o it s In > > Q (1 O n • f- CO J In in » 0 0 0 o L a a Ili VI » 4 0 0 •.-- a n ry VI In n V n > > >>> > >>> > 000000000000 0(4 ✓ 1 7 n . r 1 n > > > > > > > > >> 0 0 0 o 0 o o n o o n o o C1 II - u s n I m R n 7 1^ .+ a • v ■ . 1- 1 n n V, - . 0 V O 0 n O U L VI in n . o • . . r • ✓ n n n n H 0 3 , -s t v N n VI In U1 a .- r n T 7. a-? F .-1 n r- 1 7 V - n .• 4 1,1 3 I 1.", m U I n n n 0 •.I • N n n > 4. 7 V n n • • > 7 C 11 n n J Cr A n n n J N n n n 4 L S 1• 1 .. 7 O 4 . r 0. 5 7 4 L 1 7 7 7 • K 0 3 7 0 3 ' 3 ' _7 U Z L _ • 7 7 1 CO LL1 O 7 J'7 7 7 7 - I L >✓ 7 7 7 7 7'a • C 0 (I O .1 - I 7 0 •, a � C o L 'I 7 7 7 0 1- - la 7 1 7 r { , o 0 0 1 1 1 1 1 1 .t 1 1 41 K 1 1 M M In M� In r l 1 7 Z 0 0 0 O 0 0 0 0 0 0 0 0 0 0. 0 0 0 0 41 so nn '0 0 O c) O O O o 0 0 0 0 0 O o 0 0 0 O •* 4 r r 0 o ra O O 0 .- 0 0 O 0 0 O 0 O 0 0 O o 0 O O 0 0 , n rn o 0 0 O O 0 O O 0 O O 0 O O • • n 1 0 0 0 , 0 m 0 0, O 0 o 0, O O 0 0 0 O O C' a 0 , O 0' '- •' C7 fl. . '1 - �t 0 O 0 0 O o 0 0 0 0 0 ' 0 0 0 o 0 0 0 $ ti 0 M 0 0 0 0 0 • 0 rn 0 0 0 . 3 0 0 0 O 0 O o • Q 0 1 , P C '' 1 0• - . I o O O O O O O O O O O O O O O O O O E" q 4. I 4 1 O 0 0 0 O 0 0 O 0 O 0 0 0 0 O 0 0 0 J 1 F O n O 0 rn o o CO n , O O In o O o O O O J r r or r 0I i V N 1 In O r DO CT O r N M' 1 O O O O O O J r r r F_ 4 V 0 r O n O U O O O o o O O o 1 O N- -) r r r r I,• m N.C. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F O O o O O n O O O O O O O O O O O O Y. 0 0 0 O O 00 0 O O O O O O O O 00 In O 0 O O 0 0 O 0 O 0 0 0 0 O O 0 O 0 0 CD 0 0 O O O 0 O O 0 0 0 N 0 0 0 0 0 ... y 0 Y • • • • • • • • • • • • • • • • V ,- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0„ O 0 O O 0 J I el A o v 0 0 In o 0 In VD 0 0 0 0 0 0 0 0 0 • O n 0 0 O 0 O o 0 0 O O; o o O o 0 0 O 0 Y • • • • • • • • • • • • • o 0 n n n n n O 0 0 0 0 O O 0 0 O O 0 cr 10 , -0 M M M M M M M M M 10 M r, V 0 o o o O -, 0 0 0 • • 0 • • • • • • • • • • v1 t 0 O O I) n1 N ,..I N N N N N N N '0 O r -0 • � _ _ • • • Z 1 _ r,) n r♦ 1 '0 •, , 0 .0 -0 r 4- -t rh ) V•1 4 4 4. ,n M _7 .4 - 4 I7 0 a 0' 0 a N , r r .j n 0 n n r', O 0 C) 0 0 O O O O CJ 0 n - - 0 0 0 0 0 0 0 0 0 0 0 0 n 0 _ - J 0 O 0 0 0 o 0 0 0 0 O 0 O 0 0 0 N- U v O Q` 0 , r 0 O ND O , 0 v v , ,- o , 0 0 0 1/1 ., 0 r 4- r 0 u' 0 0 In 0 0 ap r • r ., M s .0 , o I• b o r o o -• N { O } , F vt ) � '0 , 0 r0 0 •0 , 0 , 0 o n -0 '0 , 0 M + v v v v v v v v v w `1 V Z 4 M * in 11 `) CO ` 0 NO In ` r C7 N .43 0 C ... , n r n 0 a : _) : 4 0 f- y • n r V r • • • 0 V V •n •n J O .0 ^ 0 b . . 0 n ,, J it u '0 'n , 0 4.) , O .O •0 , O , O , 0 A 1) V) , O , 0 _. 1 0 V nr v ',I V v y N V 'V co N V N 'V 1 V N 1 't 0 r) n 0 0 0 0 0 0 In r n 0 0 0 0 0 I- n n _ n 0 0 0) 0 0 0 M 4 0 0 c) '0 0 -, L `z 7 , ■ ' -) V r r r I H n • n • X _ ,) CT N 1 1 M 0 J r v a$ 0 0 0 0 ro o 0 0 0 0 0 0 0 0 0 0 O o `D .0 M o \ -) • N K ) 4 -1 , r 1 41 1 r r r In v a) CO • • 1n + r : j ,• d • Y • • • • • • • • • • • • • ,A a x r 1 r -1 ,1 ,- r r n V '0 7 n V 0 0 1 .) 0 '• n ' 1) a 0 n n n O 0 0 0 0 >0 N. i r)• '0 r r J r r r r r r r T -t n v N �, ,p 7_ '. J "7_ r V +) d '� -0 a O N M 1 n A ti 70 a J r . ) 0 n U, _I r r r I r r r r r r r 1 A i n O !Y .0 0 V V V V V V V 'V N N V N ' V V N V V Ni V • • I l - 1 I ^ n 1/1 't. ' r 1 a , 4 7 a ■ n ' ' 2 1 u Ill A r H o N VI O O 0 O 0 O 0 O 0 0 0 0 0 0 o 0 0 O O 0 0 0 0 0 0 0 O 0 0 0 0 0 u a 4 3 Y • • • • • . • • • • • , n o. I- u 0 0 0 O O O O 0 0 0 0 0 0 0 0 0 . .I ■ O 0 I 0 O o 0 0 0 0 0 C 0 N '0 't '0 u O O O 0 0 0 0 O 0 O 0 0 0' N 0' A 3 J • • • • • • • • • • • • I-- 4 O O 0 0 0 C) 0 0 0 0 Q 0 7 02 A I4 u i r- r r A ry N N N N ti 1 .- r r N In In N r u) 0' M O '0 (T .3 0 70 r N r A A : M M 0 Q' V\ N LL r 1 a, r CI v an r>V A -0 In In V\ J M r Q 0 0• A 0' r 1 m 0 A , 0 1 r '0 A 0 N (■ 0' N A M M 0- 1 I>) 0^ N 4 (t � • r F In 1n r O U ? m T '0 M In V) 1 J M r O O N 0 r N u 41 A 00 0 0' 0' C0 N N M J .f N N J 0 U _ at al K' DO •n 0 0 0 0 0 0 0 7 l" a • • • • . • T u f) A A A A A N A A A N A A 0- A A A A A A A A A A A A 1'4 A n• A A n N N N N N N N N N N N N N N N N C) 1 A 2 0) (' 0' 0 N N '4 M N r R . • • • • • • • • • • • • • CI Y) -0 A A A A A A A A K A n• n - A N- I u A A A A A A A_ n• A n- P A 7 N 7 A N N N N N N N N N (V N N N N N N r r r r r r r r r r '0 r r r r r N 0 4' O r ru M O '0 0 .0 10 J O In .4 r J n n1 1 M N R) A 0 0 A .t .0 1 I . • • • • J IL C) N N Al M J 40 'O A 00 0 00 41 0 U. v In In '0 .0 'ft 'c) 'p •0 •0 v) '0 `0 '0 A '0 ' NI N N ,. N N ... r r W r , ('1 0 '() (1) r INI CO CO '0 O NO In .t r 0 0 n h r N N r 10 A A In 0 0 : J ll- V) • r r r • r • A -n • N .1 J '0 , 0 A 0 Y) d) • 7. IL v VI 4) N 'O K) '0 .0 N r 'O '0 '0 A '0 '0 • N (4 N N N N N N NJ C > r r r r r •- r r I� .f M M N 0 0 0 (0 tr, en r • • r 0 J r N. •• n M A 1 0 Q 0 m 1 (. n 7' • • • • • • • • • • • A 0 > I r- n o 1 M N r J • .f C) 7 N 1 - (, , in J M In M N ? 00 0' r 7. 47 J F • 1 1 O O O O O O 0 0 0 0 • M • M • "I O II '() 1 1 O O 0 0 0 0 0 0 O 0 0 •. M N 0 A n N- O O O 0 0 0 O 0 0 0 0 A 0 A 0 A r I F - v 0 0 :7 0 0 0 0 0 0 0 Q 0 O '4 0 N 0 N 7 U LL r • • • • • • • • • • • • r • r • r n 0 ,0 0 0 7 0 7 7 7 O O 7 0 7 0 _ II I II 11 11 T) J J J J _J J J J J J J J J J J J J J J J > - I l _ .4 J J J _l .1 J J J J J J J 0 J 0 J 0 J J L re =) 7 7 -) 7 7 0 7 m on 7 K 0 0' 0 rc =, 1 r I- .L 1 IL 1 ' 1 '1 '1 LL 1 LL IL LL IL LL 1- LL •- '1 J _ r Z 7 - - ) i) C) 0 0 u .t 1 U O O A A A co M1 M .t u CO u 0 u U r 0 0 In .n in 1 1 .t 4 V N N 0 1 --- 11 lv • • • • • • • • ,. 7 • • Ul W • v) m • r r 7 r 2 O 17-I r I. H .I J J J 0 r ■ r .t 4 J 0 '0 N Vl 0 0 O n_ '1 ... 7 17 11 T 0 0 Y) V 0 Q 7 Al ' I1 O UI 'n U) 0 O A' I ] II C 1 • • • • • • • • ■ • • 0 • 0 • Cl • . I v 0 7 r r 0 r r r i (Y CC h r 0 4 0 4 7 4 _ (, u I� . 7 7 l .5 0 0 .- 3< 0 O 0 0 0 0 O 0 0 0 O 0 0 O O .) 1 0' 1 ..4 ' V v v V N 11 N 7 N 'lI 'N -U u u H H - n 7 r J J J J 7 • Cl 7 7 0 N r, .f '0 '0 '0 'O '0 '0 0 n. 0 4 7 J • n n ■ n 7 T T T T T 7 7 7 '( N 4 V 4 r • Y — K OC K 0 ,- > r 0 O O O U 0 O 0 O 0 O 0 0 Z. • _ O I r. r. Z. ;: it J N )0 0 CO 1 _ J 0 0 7 7 7 7 7 7 7 0 7 0 T 70 7 '� '- 0 r ✓ 7_ r r r r r r r r 0 ... uI I n I .4 2 r r r r r r r r r r- _.1 1 7 J • I` Y .111 J 7 a h • a 7 1 w . CI N R. O O O , a ti C7 Cl a a 3 Y La n n I- -u o 0 0 M Z u C7 0, Cd 3 J 1- a M I N _ h N I- N In CI IT w- m g I N "� co GO o 0 o v` oo N . r S N V O m J CT W T V , r' I- t• N N T M J 1, a n 1 `' T . , > . V1 k 0 4 0 0 $ M 4' J N ••5 M 0 0 (� 0 111 h , 4 c 1 V n I.- ....J II n in • LL • N r 7 n In O p �` * s t d CV _ N J .-. a. •p co N c _1 r a1 _7 p n Cl ,.. ti ■ N. C7 I..- O 7 7 It II 1 ... 7 7 J II II n , .I ■ J .J J J 1 J 0 J •1_ 1- 1- o l 1- 7 7 u. c O p tit 0 0 O Q O 0 O In m �, u O 0 6 ((y 0 1 P 63 8 • r J . `,D 1- .p W N M x .f1 , 2 # N ` \ N N ' -I . (0 CI , 1_ ID • [(1 7 c7 7 , u I n rr j D th o J • , a , 0 u Z 0 L v N co 4` 0 N en • I J Z v • 1 'J 7 H Ill 7 .11 Z 7 7 0 \ T J 1 7 J 1 , , * • 1 A N • I \ N \ • 7 • i / ( , , t , , , ,... ., --- 1 , - ,,,..\‘‘, e \ -, 0 ,/ ', ' ' -.. \ e---, ,, ./. ,,, ,,-- t 1 , , , , ., 1 , , __ 1 1 , 1 \ i / , 5 — f 1 , `1 I I ( f I i \ / / / C 1 ( I J. \\ 1 / 1 0 I ( ( - ) / $ 1 ) II illi t i ) I \\ / / ' 1 I I I I / ' ''' I (, i ` g • ; li ) ( II • I I i ; $ r I 1 i / ; 1 il . i / I rt'l .1. vi i• ,, „ ) / if It.I. a 1 1 y / t ii - ' _..- 1 / i 1 2 -• 1 • ■ ,, . . \ /7 '''-) K r ) / i r i , / I I . , ll I III/ / ' /-- 1 / / '; , I 0 A ■, . i 11 /11 • 1cl ( / • ; , / ; . a ,' 1111 . ii , / 6/ / • 1 f' :11 ? 11 ) , I 1 _ ' i , ?),P //' / 111/ 1 //1(- i r 1 ) , , a a c \ f : 7 1 ' I I • 1, I / I g I r iff , .11 1, il 1 11 I , i • \ I ; I ' - 4...,.1 ■ e k ) y u i ' 5 i , • i • - --- -- I / It I 1122 - " ''.4 ' , 1 / ( C -.. • i IN.: , ) i -' t i - - ' ,CD .- ,,,_. a I — 7 ; ) I N1 li la, .. NI. / II -,, )1, 4C . - r I 1 ,,_-- ... •I -,'"'/ /1 \,) , I . 11 I , 2 ) • ) ' , r ) 7 1 ( g 1 / A )* , "I .)‘ I '• i i( ! \ .\ 1 ' - i ) ' S -4-- f I ) ) \ / „...,. S , I;J ,, J / 4 c , 1 1 ilk It . z ..,, '\ : "•• l' /, l i , - ,_)- ' \ \ i LI —7 / - --"i I \ f i 11 1 1 , f' , 1 6 I \ , (.,1 . , ( ' — \\,› 0 — j r .., , ..., - 1 , , ' gi i ----- rjt 1 1 i j c 1 ' ' -9 1 I E ■1 I e c-- i i Ni \ , 1 1 I: ' I >•• ...N ----, \ I 1 1 7: ' 1 ` ' i ( ir I 1 I - : ..g ..,... r i " It T - \ 11 - ,----" K 1,, _---r,,,,) -- tc , f \L i 1 , ....,, .7‘- ,-..... /-:, )4 j „ 1 , . ,,, A■ ' ?-- ... ' i , • ' _A‘k. / ---'j ) ) 1 II *r•ii Inn* ( ..- i r , , -, -, 4'., , ? ( C i 1 k C '' ' . ' t i -- C - . 4 P `,.,/1, c 4 ,1• 4 '''' ---, `- ' L I ii \ C ( 1 . ■ A Cy 1 11 ) i ' '',..,- V 1 ; v ,' \ 4 (---r- I , . . „ ( f ''') VI \ )0 t ' I (' I 1 ( I I j ■ • , , 1 i • I) ) I') I I % l I . s \kIII e 11 0 • -`i tr - ' C -2,..----:7.44r:.4.:---7___ 111141t.:-.44. '').'i,,,,...,,______.\._., II 1 I /_/Pii‘,,1,1‘1.1 °... 2 : ‘.... '--, •I r, 1 : . i \ ( ---.....e-1, , - s I 1 ,, - .Arrt.,, • a Z,.. , ‘, 1 \ t i Hti ---\, H II ------ — • -.-. - - 1 \ \ \ --....4%,;., ,.. 4' I L.■ •L' '•••••-,, ,t,. - ''-, ..TIr - — ON i I --k .,_ , ', '■ - -1.41 , Illtirii , a-fr /- i ., ,,- ,,, , , - -- --, , • , ii $ N : , ), )V .- I''.. t. -41%' ." - ''''' ' N ,A... ( ., g 1 1 li i \ 'I i II ' 1 . ) ' : — -, $1 ' pia. . 1 i '7I-)- ...1 -- II I- ) , ' • I. z , ii • • i , ..,i • , ,., --\-- .. ... k i .11‘ - , g 2 , . i i '' (" ' i i'. 1 \r 1 ,- * ., _ . • -..„, , - -,......, 4 . 1 i 11 d • .• 1,-(4.. i ) ' - ....---_!,N11.1‘,- - ic . Sid) C ' ....-‘..1% ' ' N , N \‘-;- \, I ■ ; , ' i ' l ii ' I k-.._ - ' / / ' -_ ji.\. _ I 1 1 ■ \i. .. 1 I fl -r :"IM I I i I H 1 L_ H I I i 2 a_ -..... , ._._5 ..-.. 1 ' ......, . , .5 -- ) i ; ) I 1 I 1 i I I 1/ I t A N i I I I I ( p 1 , ( ... f- _ CI if t 1 ,i IH 3 , , , \ \._--, ..„ i • 4 . +c .‘„,-e'..--.-• . 11 , y - \'''''''''Z' •-.' ' # 1 \ I. ) '.., \ '4L 11 , 1 i \ ) \ I 1 §.), '' g I i ' ) ) /Lnlk ) ' ) '''''. ' ■■% 4 ' „...\ \ , * ,,,, / 1*.• ( , ; i 4---' „ ,-- ) - ; 1 , IL\ 1 -•(`, t ? 3 ( ,116.41,11 I ) 1 I I 1 U .., . t ...._ 2 ... _ i/ _k, — ,....), c „. 1 ..l - • , 1 , , , N.. (' i )- i ■ 1 1 ,/ - ' f \ NI ••.., 170 + J I' • ' ) fli , • I t , ( ,p ),, 1 1 r . , , 1 , . a ,- , It • 1 1 I _ ,, ‘.\... 1.1 -... %. -.._ .` , • , alLig... ., . . . . 1 **************************************************************************** PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) U� \ **************************************************************************** <<<<(<<<<<<<<<<<<<<<<<<<<<<(<<<<<<(<<0>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> (C) Copyright 1982 Advanced Engineering Software [AES] Especially prepared for J� �� HALL & FOREMAN, INC. <<<<<<<<<{<<<<<<<<(<<<<<<<<<<<<<<<<<<<>}>>>>>>}>>>>>>}>>>>>>L>>>}>>}>>}}>>>> **********DESCRIPTION OF RESULTS******************************************** * N. BASELINE HYDRAULICS, S.D STA 25+75.86 ALONG BODEGA INTRIM CONDITION * 0� * Q 100 YR, C.B # 100, # 101 & # 117, INTRIM CONDITION, TRACT 12996 * �� * VENKI.N, JN 3810-00, 10/14/87, DISK 4 , FILE "J" ,HGL FROM BUBBLE OUT * **************************************************************************** m: **************************************************************************** NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. �� DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = �.00 FLOWLINE ELEVATION = 127� 51 . PIPE DIAMETER(INCH) = 24.00 PIPE FLOW(CFS) = 36.27 - - - ASSUMED DOWNSTREAM CONTROL HGL = 1277.940 11 <<(<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<(<>>>>>>>>>}>>>>>>>>>>>>>>}}>>>>>>>>>>>> Advanced Enmineering Software [AES] �� �� SERIAL No. A0483A REV. 2.2 RELEASE DATE:12/17/82 <<<<<<<<<<<<<<<<<<(<<<<<<<<<<<(<<<<<<<>>}>>>>}>>>>>>>>>>>>>>>>>}>>>>>>}}>>>> � — PRESSURE FLOW PROCESS FROM NODE 0.00 TO NODE 75.09 IS CODE = 1 UPSTREAM NODE 75.09 ELEVATION = 1279.00 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 36.27 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 75.09 FEET MANNINGS N = .01300 N� SF=(Q/K)**2 = (( 36.27)/( 226.224))**2 = .0257051 HF=L*SF = ( 75.09)*( .0257051) = 1.930 NODE 75.09 : HGL= < 1279.870>;EGL= < 1281.946j>:FLOWLINE= < 1279.000> IF NODE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 1.13 NODE 75.09 : HGL= < 1281.000>;EGL= < 1283.070>;FLOWLINE= < 1279.000> ~ PRESSURE FLOW PROCESS FROM NODE 75.09 TO NODE 78.42 IS CODE = 5 II UPSTREAM NODE 78.42 ELEVATION = 1281.24 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 29.5 27.00 3.976 7.419 0.000 .855 �� 2 36.3 24.00 3.142 11.545 -- 2.070 \ 3 0.0 0.00 0.000 0.000 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - m� 5 6.8===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: N� DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) �� �� UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00907 DOWNSTREAM FRICTION SLOPE = .02571 �� AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .01739 JUNCTION LENGTH(FEET) = 3.33 FRICTION LOSS = .058 ENTRANCE LOSSES = .414 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) �� JUNCTION LOSSES = 1.744+ .855- 2.070+( .058)+( .414) = 1.001 NODE 78.42 : HGL= < 1283.216>;EGL= < 1284.071>;FLOWLINE= < 1281.240> m: PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .27 NODE 78.42 : HGL= < 1283.490};EGL= < 1284.345>;FLOWLINE= < 1281.240> ' - II PR���FL�P�CBSFR��DE �.���� 4�.�IS��= 1 � / UPSTREAM NODE 467.75 ELEVATION = 1283.10 II CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) : PIPE FLOW = 29.50 CFS PIPE DIAMETER = 27 00 INCHES . . PIPE LENGTH = 389.33 FEET MANNINGS N = .01300 SF=(Q/K)**2 = (( 29.50)/( 309.703))**2 = .0090731 HF=L*SF = ( 389.33)*( .0090731> = 3. �� NODE 467.75 : HGL= < 1287.023>;EGL= < 1287.877>;FLOWLINE= < 1283.100> -- �� �� PRESSURE FLOW PROCESS FROM NODE 467.75 TO NODE 472.42 IS CODE = 5 II UPSTREAM NODE 472.42 ELEVATION = 1283.38 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV I 1 23.9 24.00 3.142 7.595 0.000 .896 2 29.5 27.00 3.976 7.419 -- .855 3 5.6 18.00 1.767 3.192 60.000 - II 4 0.0 69. 00 0.000 0.000 0.000 - 5 0.0===Q5 EQUALS BASIN INPUT=== ��� AND O�� PRESSURE FLOW JUNCTION FORMULAE USED: I DY=(02*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4)>/((A1+A2)*16.1) ` � 1 / UPSTREAM MANNINGS N = .01300 - DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .01112 0� DOWNSTREAM FRICTION SLOPE = .00907 �� °� AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .01010 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .047 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(EiTRHNCE LOSSES) I JUNCTION LOSSES = .250+ .8 .855+k .047)+k 0.000) = .338 NODE 472.42 HGL= < 1: 8 7. 320) ; EGL= < 1288.E 15) ; r LOWL I NE= ( 1E83.380) I/ PRESSURE FLOW PROCESS FROM NODE 472.42 TO NUDE 472.95 IS CODE = 1 UPSTREAM NODE 472.95 ELEVATION = 1283.39 li CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 23.86 CFS PIPE DIAMETER = 24.00 INCHES II PIPE LENGTH = .53 FEET MANNINGS N = .01300 SF= (Q /K) * *2 = (( 23.86)/( 226.224)) * *2 = .0111241 HF =L *SF = ( .53)*( .0111241) = .006 I: NODE 472.95 : HGL= < 1287. 326> ;EGL= < 1288. 221 > ; FLOWL I NE= ( 1283. 390> PRESSURE FLOW PROCESS FROM NODE 472.95 TO NODE 508.29 IS CODE = 3 UPSTREAM NODE 508.29 ELEVATION = 1283.67 I: CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 23.86 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 35.34 FEET MANNINGS N = .01300 CENTRAL ANGLE = 45.000 DEGREES I: PRESSURE FLOW AREA = 3.142 SQUARE FEET FLOW VELOCITY = 7.59 FEET PER SECOND VELOCITY HEAD = .896 BEND COEFFICIENT(KB) = .1768 1: HB =KB *(VELOCITY HEAD) = ( .177) *( .896) = .158 PIPE CONVEYANCE FACTOR = 226.224 FRICTION SLOPE(SF) = .0111241 FRICTION LOSSES = L *SF = ( 35.34) *( .0111241) = .393 I: NODE 508.29 : HGL= < 1287. 877> ;EGL= < 1288. 773> ; FLOWL I NE= < 1283. 670> I: PRESSURE FLOW PROCESS FROM NODE 508.29 TO NODE 547.63 IS CODE = 1 UPSTREAM NODE 547.63 ELEVATION = 1283.99 ii CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 23.86 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 39.34 FEET MANNINGS N = .01300 SF= (Q / K) * *2 = (( 23.86)i( 226. 224)) * *2 = .0111E41 ii HF =L *SF = ( 39.34)*( .0111241) .438 NODE 547.63 : HGL= < 1288.31 5> ;EGL= < 1289. `10> : FLOWL I NE= < 1283. 990> I/ PRESSURE FLOW PROCESS FROM NODE 547.63 TO NODE 547.63 IS CODE = 8 II UPSTREAM NODE 547.63 ELEVATION = 1283.99 CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW (CFS) = 23.86 PIPE DIAMETER (INCH) = 24.00 11 PRESSURE FLOW VELOCITY HEAD = .896 CATCH BASIN ENERGY LOSS = .2 *(VELOCITY HEAD) = *( .896) _ .179 NODE 547.63 : HGL= < 1289. 390> ;EGL= ( 1289. 390> ; FLOWL I NE= < 1283. 990> 11 END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM I: I Iii � N� **************************************************************************** PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) �� \ **************************************************************************** / <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<(<>>>>>>>>>>>>>>>>>>>>>}>>>>>>>>>>>>>>>> (C) Copyright 1982 Advanced Engineering Software [AES] Especially prepared for: HALL & FOREMAN, INC. <((<<<<<<<(<<<<<<<<<<<<(<<<<(<<<<<<({(}>>}>>>}>>}>}>>>>>>>>>)>>}>>>}>>>>>>>} 11; **********DESCRIPTION OF RESULTS******************************************** * N.BASELINE HYDRAULICS FOR LATERAL, S.D STA 18+20.00 ALONG ARCATA ST * Q 100 YR FOR C.B # 102 & C.B # 105 FOR INTRIM CONDITION * yENKI.N, JN 3810-00, 10/15/87, DISK 4, FILE "J" **************************************************************************** 11 **************************************************************************** NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. �� DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 0.00 FLOWLINE ELEVATION = 1266.32 , PIPE DIAMETER(INCH) = 18.00 PIPE FLOW(CFS) = 23.48 ASSUMED DOWNSTREAM CONTROL HGL = 1277.910 �� ~- �� �� < < < < < < < < < << < < < < < < ( < < < < < < < < < < < < < < < < < < < <>> > > > > > > > > > > > > > > } > > > > > > > > > > > > > > } > > > > > > Advanced Engineering Software [AES] 0� SERIAL No. A0483A 8� REV. 2.2 RELEASE DATE:12/17/82 / <<<<<<<(<<<<<<<<<<<<<<<<<<<<<<<<<<<<<0>}>>>>>>>>>>>>>>>>>>>>>>}}>>>>>>>>>>> � = I = PRESSURE FLOW PROCESS FROM NODE 0.00 TO NODE 14.67 IS CODE = 1 � - UPSTREAM NODE 14.67 ELEVATION = 1267.85 11 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 23.48 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 14.67 FEET MANNINGS N = .01300 I SF=(Q/K)**2 = ( ( 23.48)/( 105.044) )**2 = .0499639 HF=L*SF = ( 14.67)*( .0499639) = .733 NODE 14.67 : HGL= < 1278.643>:EGL= ( 1281.384>;FLOWLINE= ( 1267 850> . . . PRESSURE FLOW PROCESS FROM NODE 14.67 TO NODE 19.34 IS CODE = 5 0� UPSTREAM NODE 19.34 ELEVATION = 1268.28 NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 23.5 33.00 5.940 3.953 0.000 .243 I 2 23.5 18.00 1.767 13.287 -- 2.741 3 0.0 0.00 0.000 0.000 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - I 5 0.0===05 EQUALS BASIN INPUT=== \ LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED DY=(Q2*V2 N� Q4*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N = .01300 L DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00197 DOWNSTREAM FRICTION SLOPE = .04996 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .02597 �� JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .121 ENTRANCE LOSSES = 0.000 ' MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES C MOMENTUM LOSSES = -.732 MANHOLE LOSSES = .137 JUNCTION LOSSES = DY+HV1-HV2+ (FRICTION LOSS) + (ENTRANCE LOSSES) �� JUNCTION LOSSES = 1.766+ .243- 2.741+( .121)+( 0. 69N0) = .258 N� NODE 19.34 : HGL= < 1281.400>;EGL= ( 1281.643>;FLOWLINE= < 1268.280> I: PRESSURE FLOW PROCESS FROM NODE 19.34 TO NODE 74.84 IS CODE = 1 UPSTREAM NODE 74.84 ELEVATION = 1272.55 N: CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 23.48 CFS PIPE DIAMETER = 33.00 INCHES PIPE LENGTH = 55.50 FEET MANNINGS N = .01300 N� SF=(Q/K)**2 = (( 23.48)/( 528.866))**2 = .0019711 0� N / HF=L*SF = ( 55.50)*( .0019711) = .109 NODE 74.84 : HGL= < 1281.509>;EGL= < 1281.752>;FLOWLINE= < 1272.550} E E PRESSURE FLOW PROCESS FROM NODE UPSTREAM NODE 78.18 7��. 84 TO NODE ELEVATION = 1277.75 7��. 8 IS CODE = 5 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV �� 1 16. 6 24. 00 3. 142 ��. 284 0. 0N0 .434 2 23.5 33.00 5.940 3.953 -- .243 3 0.0 0.00 0.000 0.000 0.000 - I/ 4 0.0 0.00 0.000 0.000 0.000 - 5 6.9===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: �� DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) 11 UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00538 I DOWNSTREAM FRICTION SLOPE = .00197 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00368 11 JUNCTION LENGTH(FEET) = 3.34 FRICTION LOSS = .012 .049 LOSSES = 049 m� JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = .035+ .434- .243+( .012)+( .049) = .287 /: NODE 78.18 : HGL= ( 1281.605>;EGL= < 1282.039>;FLOWLINE= < 1277.750> ` PRESSURE FLOW PROCESS FROM NuD= 78.18 TO NUDE 78.69 IS CODE = l II UPSTREAM NODE 78.69 ELEVATION = 1277.76 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 16.60 CFS PIPE DIAMETER = 24.00 INCHES �� �� PIPE LENGTH = .51 FEET MANNINGS N = .01300 SF=(Q/K)**2 = (( 16.60)/( 226.224))**2 = .0053844 HF=L*SF = ( . 51)*( .0053844) = .003 1 / NODE 78.69 : HGL= < 1281.608>;EGL= < 1282.041>;FLOWLINE= ( 1277.760> NI PRESSURE FLOW PROCESS FROM NODE 78.69 TO NODE 92.15 IS CODE = 3 UPSTREAM NODE 92.15 ELEVATION = 1277.83 �� �� CALCULATE PRESSURE FLOW PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 16.60 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 13.46 FEET MANNINGS N = .01300 CENTRAL ANGLE = 34.290 DEGREES �� PRESSURE FLOW AREA = 3.142 SQUARE FEET FLOW VELOCITY = 5.28 FEET PER SECOND VELOCITY HEAD = .434 BEND COEFFICIENT(KB) = .1543 HB=KB*(VELOCITY HEAD) = ( .154)*( .434) = .067 �� PIPE CONVEYANCE FACTOR = 226.224 FRICTION SLOPE(SF) = .0053844 FRICTION LOSSES = L*SF = ( 13.46)*( .0053844) = .072 I: NODE 92.15 : HGL= < 1281.747>;EGL= < 1282.181>:FLOWLINE= < 1277.830) 1: PRESSURE FLOW PROCESS FROM NODE 92.15 TO NODE 105.b1 IS CODE = 3 UPSTREAM NODE 105.61 ELEVATION = 1277.91 re \ CALCULATE PRESSURE FLOW PIPE-BEND LOSSES(OCEMA): 0� INCHES PIPE FLOW = 16 6� CFS PIPE DIAMETER = 24 . 24.00 PIPE LENGTH = 13.46 FEET MANNINGS N = .01300 CENTRAL ANGLE = 34.290 DEGREES N� PRESSURE FLOW AREA = 3.142 SQUARE FEET FLOW VELOCITY = 5.28 FEET PER SECOND VELOCITY HEAD = .434 BEND COEFFICIENT(KB) = .1543 HB=KB*(VELOCITY HEAD) = ( .154)*( .434) = .067 n� PIPE CONVEYANCE FACTOR = 226.224 FRICTION SLOPE(SF) = .0053844 FRICTION LOSSES = L*SF = ( _ 13.46)*( .0053844) = .072 NODE 105.61 . 61 : HGL= < 1281 886> ;EGL= < 1282 . 320> ;FL-OWLINE= ( 1277 . 910> �� I/ PRESSURE FLOW PROCESS FROM NODE 105.61 TO NODE 283.27 IS CODE = 1 UPSTREAM NODE 283.27 ELEVATION = 1278.98 I CLCULATE PRESSURE FLOW FRICTION LOSSES(LCFCD) PIPE FLOW = 16.60 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 177.66 FEET MANNINGS N = .01300 SF=(Q/K)**2 = (( 16.60)/( 226.224))**2 = .0053844 . . . I HF=L*SF = ( 177 66>*( 0�53844) = 957 NODE 283.27 : HGL= < 1282.843>;EGL= < 1283.277>;FLOWLINE= ( 1278.980> ' PRESSURE FLOW PROCESS FROM NODE 283.27 TO NODE 287.94 IS CODE = 5 II UPSTREAM NODE 287.94 ELEVATION = 1279.01 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV I 1 16.6 24.00 3.142 5.284 0.000 .434 4 0.0 0.00 0.000 0.000 0.000 - I/ 5 0.0===05 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- U� �� Q4*V4*COS(DELTA4)>/((A1+A2)*16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 ii UPSTREAM FRICTION SLOPE = .00538 DOWNSTREAM FRICTION SLOPE = .00538 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00538 0� JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .025 |� ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES U� �� MOMENTUM LOSSES = -.000 MANHOLE LOSSES = .022 �� JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = -.000+ .434- .434+( .025)+( 0.000) = .047 1: NODE 287.94 : HGL= < 1282.890>;EGL= < 1283.323>;FLOWLINE= < 1279.010> C PRESSURE FLOW PROCESS FROM NODE 287.94 TO NODE 452.16 IS CODE = 1 UPSTREAM NODE 452.16 ELEVATION = 1280.00 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): t PIPE FLOW = 16.60 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 164.22 FEET MANNINGS N = .01300 SF=(Q/K)**2 = (( 16.60)/( 226.224))**2 = .0053844 � HF=L*SF = ( 164.22)*( .0053844) = .884 v� NODE 452.16 : HGL= < 1283.774};EGL= < 1284.208>;FLOWLINE= < 1280.000> �� �� \ PRESSURE FLOW PROCESS FROM NODE 452.16 TO NODE 539.72 IS CODE = 3 UPSTREAM NODE 539.72 ELEVATION = 1280.53 1: CALCULATE PRESSURE FLOW PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 16.60 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 87.56 FEET MANNINGS N = .01300 �� CENTRAL ANGLE = 55.750 DEGREES PRESSURE FLOW AREA = 3.14E SQUARE FEET ' C FLOW VELOCITY = 5.28 FEET PER SECOND VELOCITY HEAD = .434 BEND COEFFICIENT(KB) = .1968 HB=KB*(VELOCITY HEAD) = ( .197)*( .434) = .085 PIPE CONVEYANCE FACTOR = 226.224 FRICTION SLOPE(SF) = .0053844 il FRICTION LOSSES = L*SF = ( 87.56)*( .0053844) = .471 NODE 539.72 : HGL= < 1284.331>:EGL= < 1284.765>:FLOWLINE= < 1280.530> I/ _ - PRESSURE FLOW PROCESS FROM NODE 539.72 TO NODE 555.10 IS CODE = 1 I/ UPSTREAM NODE 555.10 ELEVATION = 1280.63 � - CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 16.60 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 15.38 FEET MANNINGS N = .01300 �� SF=(Q/K)**2 = (( 16.60)/( 226.224))**2 = .0053844 HF=L*SF = ( 15.38)*( .0053844) = .083 U� �� ' NODE 555.10 : HGL= < 1284.414>;EGL= < 1284.847>:FLOWLINE= ( 1280.630> ) I PRESSURE FLOW PROCESS FROM NODE 555.10 TO NODE 555.10 IS CODE = 8 UPSTREAM NODE 555.10 ELEVATION = 1280.63 CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW(CFS> = 16.60 PIPE DIAMETER(INCH) = 24.00 I PRESSURE FLOW VELOCITY HEAD = .434 CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( .434> = .087 NODE 555.10 : HGL= < 1284. 934> ;EGL= < 1284.934> ;FLOWLINE= < 1280.630> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM I: (: c � -- �� �� =: • _- C � �� v� ) - �� �� �� 8� �� Air I/ ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** I/ PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD.LACRD,& OCEMA HYDRAULICS CRITERION) II (<<<<<(((<<<<<(((<<<<((<<(<<((<<<<((<<))>>>)> )) >)) >))))))))))))))))) >))))))) (C) Copyright 198E Advanced Engineering Software CAES7 Especially prepared for: HALL & FOREMAN, INC. (<<(((<(<<<<<(<<<<<<<<((<<<<<<<<(<(((<)>)>>>>> > > > > > > > > > >) > > > >- > > > >) > >) > > >)) >> 1: * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * N.BASELINE HYDRAULICS RCB STA 15 +68.00, AT CRESCENT AND BASELINE * Q 100 YR, C.B # 104 FOR INTRIM CONDITION WITH BUBBLE OUT AT D/S OF BOX * * VENKI.N, JN 3810 -00, 10/14/87 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: C NODE NUMBER = 0.00 FLOWLINE ELEVATION = 1265.00 PIPE DIAMETER(INCH) = 18.00 PIPE FLOW(CFS) = 6.98 ASSUMED DOWNSTREAM CONTROL HGL = 1277.880 (<<<((< f<<<(<<<<<<<<(((<((<<((((<<<(<<))>>>)> )) >)> > > > >))>> >) > >)))) >) > > >)) >)) 1: Advanced Extgineerinq Software CAESl - SERIAL No. A0483 A REV.. - RELEASE DATE : 1 2/ 17/82 <<<(((<(<<<(<<<(<(<<(((<(<<<<<<<(<<(<(>>>>>)> >) >)))))))) >))))))))) > > >)) >) > >> I/ PRESSURE FLOW PROCESS FROM NODE 0.00 TO NODE 39.'J6 _IS CODE = 1 UPSTREAM NODE 39.96 ELEVATION = 1277.63 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 6.98 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 39.97 FEET MANNINGS N = .01300 SF= (Q /ii) * *2 = ( t 6.98)/( 105. 044)) * *2 = .0044154 HF =L *SF = ( 39.97)*( .0044154) = .176 NODE 39.96 : HGL= < 1278. 057) :EGL= ( 1278. `99') : FLOWL I NE= < 1277.630> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 1.07 NODE 39.96 : HGL= < 1279. 130) ;EGL= < 1279. 372> ; FLOWL INE= ( 1277.630) PRESSURE FLOW PROCESS FROM NODE 39.97 TO NODE 39.97 IS COi,E = 6 UPSTREAM NODE 39.97 ELEVATION = 1277.63 CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW(CFS) = 6.98 PIPE DIAMETER(INCH) = 18.N0 PRESSURE FLOW VELOCITY HEAD = .242 CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( .242) = .048 NODE 39.97 : HGL= < 1279.421>;EGL= < 1279.421>;FLOWLINE= < 1277.630> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM to �� �� rio 1: 1: 1: **************************************************************************** PRESSURE PIPE-FLOW HYDRAULICS COMPUTER ;BOGRAM :ACKAGE 0� (Reference: LACFD°LACRD OCEMA HYDRAULICS CRITERION} **************************************************************************** <<(( (C) Copyright 1982 Advanced Engineering Software [AES] Esoecially prepared for: 1 11 0 HALL & FOREMAN, INC. (<<<<<(<<<(<<<<<(<<<<<<<<<(<<<<<<(<<<<>>>>>>>>}>>>>>}>>}>>>>>>>>>>>>>>>>>>>> , ~~ **********DESCRIPTION OF RESULTS******************************************** �� * N.BASE LINE HYDRAULICS RCB STA 2065 FOR C.B # 106 INTRIM CONDITION * U� �� * Q 100 YR, C.B 106 FOR BUBBLE OUT AT D/S OF BOX * * VENKI.N JN 3810-00, 4/30/88 * **************************************************************************** 1: **************************************************************************** NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA U� DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: 1; NODE NUMBER = 0.00 FLOWLINE ELEVATION = 1268.00 PIPE DIAMETER(INCH) = 24.00 PIPE FLOW(CFS) = 7.75 ASSUMED DOWNSTREAM CONTROL HGL = 1277.910 1 : <<<<<(<<<<<<<<<<<(<<<<<<((<<(<<(<<<<<<>>>>>>>>>}>}}>>>>>>>>>>>>>>>>>}>>>>>>> } Advanced En[ineering Software [AES] C SERIAL No. A0483A REV. 2.2 RELEASE DATE:12/17/82 (<<<<<<<<<(<<<<(<<((<<<<<<<((<(<<<(<(0>>}>>>>>>>>>>>>> o� ~~ PRESSURE FLOW PROCESS FROM NODE 0.00 TO NODE 7.17 IS CODE = UPSTREAM NODE 7.17 ELEVATION = 1268.64 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 7.75 CFS PIPE DIAMETER = 24.00 INCHES N� PIPE LENGTH = SF=(Q/K)**2 = 7.17 FEET MANNINGS N = .01300 U� <( 7.75)/< 226 224))**2 = .0011736 . . ~ HF=L*SF = ( 7.17)*( .0011736) = .008 NODE 7.17 : HGL= < 1277.918>:EGL= < 1278.013>:FLOwLINE= < 1268.640> 11 PRESSURE FLOW PROCESS FROM NODE 7.17 TO NODE 24.84 IS CODE = 3 UPSTREAM NODE 24.84 ELEVATION = 70.22 -uM,7,Zr.SuLtln+0: PIPE FLOW = 7.75 CFS PIPE DIA�ETER = 24.690 INCHES N� PIPE LENGTH = 17.67 FEET MANNINGS N = .01300 CENTRAL ANGLE = 45.000 DEGREES PRESSuRE FLOW = 3.142 SQUARE FF.ET FLOW VELOCITY = 2.47 FEET PER SECOND I VELOCITY HEAD = .094 BEND COEFFICIENT(KB) = .1768 HB=KB*(VELOCITY HEAD) = ( .177)*( .094) = .017 PIPE CONVEYANCE FACTOR = 226.224 FRICTION SLOPE(SF) = .0011736 �� FRICTION LOSSES = L*SF = ( 17.67)*( .001:736) = .021 �� NODE 24.64 : HGL= < 1277.956>:EGL= < 1278.050>1FLOWLINE= ( 70.220> PRESSURE FLOW PROCESS FROM NODE 24.84 TO NODE 79.10 IS CODE = 1 1: UPSTREAM NODE 79.10 ELEVATION = 1275.06 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 7.75 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 54.26 FEET MANN3NGS N = .013�0 SF=(]/K)**2 = (( 7.75)/( 226.224))**2 = .0011736 HF=L*SF = ( 54.26)*( .0011736) = .064 ' 1: NODE 79.10 : HGL= < 1278.020>;EGL= < 1278.114>;FLOWLINE= ( 1275.060> 1 PRESSURE FLOW PROCESS FROM NODE UPSTREAM NODE 79.10 79.10 TO NODE B-EVATION = 1275.06 79.10 IS CODE = 8 CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): �� PIPE FLOW(CFS) = 7.75 PIPE DIAMETER(INCH) = 24.00 PRESSURE FLOW VELOCITY HEAD = .094 CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( .094) = .019 NODE 79.10 : HGL= ( 1278 1�3>;EGL= < 1278 133};FL-OWLINE= < 1275 060} . . . . END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM 1: 1: c I/ ' - -- II ********************************************* * * * * * * * * * * ** * * ** * * * * * * * * * * * * * ** 1: PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) lim , ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** i' <(((<((<((((<<<(<<<<<<((((<<<<<(((<<<(>>>>>>> > >> > > > )> > > > > > > > > > > > > > > > > > >> > > >> (C) Copyright 1982 Advanced Engineering Software CAES] Especially prepared for: I: HALL & FOREMAN, INC. ((<<((<(((<<<(<<<<<<<<<<<<<((<<<<<<(<<>>>>>>>> > > > > > > > > > > > > > > >- > > > > > > > > > > > > > >> c * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * N.BASELINE HYDRAULICS RCB STA 16 +97.00 INTRIM CONDITION * Q 100 YR, C.B # 107, FOR BUBBLE OUT AT D/S OF BOX * * VENK I . N, JN 3810 -00, 10/14/87 * ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST (40 CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 0.00 FLOWLINE ELEVATION = 4.89 PIPE DIAMETER(INCH) = 18.00 PIPE FLOW(CFS) = 9.75 ASSUMED DOWNSTREAM CONTROL HGL = 1277.900 [ ((<<(<((((((<<<(<((<<(((((<<<((<(((<(<>>>>>>> > > > > > > > > > > > > > > > > > > > > )) > >> > > > > >> Advanced Engineering Software CAES] SERIAL No. A0483A REV. 2.2 RELEASE DATE:12 /17/82 I/ <<(<<(<<<<<<((<<<<<<<<<<<<<<<(((<<(<<<>>>>>>> > > > > > > > > > > > > > > > > > > > > > > > > > >> > > >> PRESSURE = RESSURE FLOW PROCESS FROM NODE 0.00 TO NODE 4. 89,IS CODE 1 UPSTREAM NODE 4.89 ELEVATION = 1275.46 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 9.75 CFS PIPE DIAMETER = 18.00 INCHES II PIPE LENGTH = 4.89 FEET MANNINGS N = .01300 SF=(Q/K)**2 = (( 9.75)/( 105.044)) * *2 = .0086153 HF =L *SF = ( 4.89)*( .00861 53) = .042 NODE 4.89 : HGL= ( 1277. 942> ; EGL= < 1278. 415> ; FLOWL I NE= ( 1275.460> I: PRESSURE FLOW PROCESS FROM NODE 4.89 TO NODE 4.89 IS CODE = 8 UPSTREAM NODE 4.89 ELEVATION = 1275.46 PIPE FLOW(CFS) = 9.75 PIPE DIAMETER(INCH) = 18.00 PRESSURE FLOW VELOCITY HEAD = .473 CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( .473) = .095 NODE 4.89 : HGL= < 1278.509>;EGL= < 1278.509>;FLOWLINE= < 1275.4669> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM �� E �� ^ � C: E: I : IA" ‘,.- hie e 2oftemeut, 946 . . . C ...mi. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING I SUBJECT • I ev I DATE 1100 NO. I SHEET OF c47r/i 845/N .441.4zYS a . I - T - i ONDTTION /0 1 ALONG BODE G 1 . 10'.1`3' - • - c " c r c ll 'POT ZE >/ 2 v 1.• . ..." , 1* E . Z ' . . -- :..r 't:(.7 frr pt. Ijoir I %.; ---........ ri. .. 1.).‘ .? --..... . .5/0/7 0/ 0/17 . . t ............, 7, -........... 0' . -"*.... , ! • C ,) • \r . ----.. fi, q I. • 0-i 1 • ..• , ... • , 1 QAt - 11-s FP! CB - fp - kY _ C T.C. 12 ee_71 . - - vt4 2 , 0 7 AI /.29 I N.6... ---•••- AY.4/L.46LE /1' A jlh (- y ■ ......_fi - (CI I .,..5 = SP. ( 454/ t 'E41 2). 11 WA/4 Q - 36 cPS I ci - - , 211-", A- 3./4l k . RCP ----- z F 0 F .2.4 i Cte 7 r 4 /1 1/2 ..'4 GA= .. - fir. 1 , USE c-1- 73 I 8.-ii‘. Len :: 0-2 ,c ji4 ..,__ 0• 2 1 1 ' EG L s714 78- 42. (2 8 4 76 12 eg ' 71 — -727 3188-1 AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92828-4875 • (714) 841-8777 1 ..,... 1 _..... FA- . hsfe,e g 20)iceilewt, Rite. .. ., i ..... c . CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUSIECT re ONE /011 No. SHEET W con/ 4545 QNQc Ysis . C . Tom_ # /D5 AQDn$ A I- ca f 77\I TRIM CoALDI77aN • • C ,‘ " 1.: f. r • . __. - N ,MUST ft >/2 4:4 S1L _D E 9 = 4 " ` � ...._.. - .'r' (7 ..ccr peg7A i /(Il . _..... % t.1.!.. .5 '�_ _ .`i'orm Oi c,.- - `mss.,., ; i t::. ,...., q . E .,,) . . E a _. 23 .48 CFS _.___ .____. ________� _I,�_ 1 • .. .. .• , • . E . 7 y. Q/ .. 747 FA'S C11 0 ,._ C Y14 s 0.87 /1 xi" T.C. 12$ 3.2 1 Mai.. _____ :,CL= (9.1) ( / ) "..mil 4Y4 /LA &LE k's' _ (C1 f.,5)= '' 4 EO D. H c' N4 1 Q i s 23 -48 cps a= fi k'CP if of .24 " Cc II r.. # 2 d_ fT 1 USE Y •, PEPTV , C ATCH BftQtN G-74ERGY 4 - 0 1•= 0.2 V2 = 0 . /7 2; £G L 0 s7--A . 715 1249 ©� 122 21 ry 1283 - 28 - ' z -0 -5' • (714) 041.8177 3186-1 AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92820.4875 ( 1 • • tai �e I , . r } • I ,I IZEMENEF CIVIL ENGINEEI1IN0 • LAND PLANNING • - LAND BINIVEYINO , ill SUIIILCV ay OW /011 P40. Mittt Of • 1 nf1A;P/P/ /NG -r p. cAtC— . . );; , ,.).„ //i • ), Le v- v4 12 i I 4;., 2as:a ‘7,4-;-*R3F-401c. N , -- / — ter- — — lii a i • (.3 % -: . V - g 1277 ; 0.43' 17 HGL'-' • J • � • 7 -- A ,--- • _ c D L 1O ' )( 8 ' R FSc . i el II 1 _t__ •1), :_ '!' L 1 , � N1. o 't \ ti � ' ., .1e NI 1x� g/3 ., • v ` ' j �. k_ = 25. 72 98'0 4 b Q > 59. cFS `/. Q/A M 4. 73 FPS i !II ;' j / � - d -34,� / , ' , - O -4Z 1 ' ; =c. 'I'I' 55)11, ( °-- -r7, )65.___Q; --f 1 <fM /LAffLE 1/ x -L': kn.").2. Ii' c1E'N4 I 0 59-47 cTS k -.. LO 37 36 1 O.424-d- °21 I I /xi,. 5 /./... cr . 48 '' "� tv; i z.s66�j.�'1 D -- 59- 4 7 _ =2.98' 1 O•75 x( x x (2) 8 " ta/� �� 4 � ��� `F1 Ix 8-r-0 I � I r .2.. 48 t ,I L 1 : to -s ' • ! I 1' L2 S•o i i• r •600.■11•11.- _ ...,(. urCA r AI trnntiIA n7R78.4075 • (71 134141777 1 4 / \ . l$ I I,,' ) 'ffil ?19 g .1! 26V(le‘ita4/6. f PIM i II I • CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING , 1 or on►r. a• HO. 14111/1. 0 sueitcr fcm�� / NL€1 / C 1 ► E 129 5 0 c /�� %J`'' ' ` � I I • • � 4:..-- T I # 2 0 5 • , � !• E - i-:-. , . fir. /. i Q • = 41 -82 CFS I • C : E61 1294 -23 I • 90 v 129 So -! o / _ it II — 4E . f: . A-.. ..• .. . .. 1: el E\I . . ; ' _ 1 � _ � Z l; ` f , ,. 165.76 I. 1 C i • 0------______ /283- 2 6 am 4 -- 129S at 1 • ,' - 1/, % .. 5 - FPS ► - T Z_ # 205 n � 0/ _ ji1 • • • ' �-r. 0 - 54- 4 / - 0-65 ; r6. / 2 9 8 ^' . 2 `_ 92 s . 21 ' � I O � h/ v.L• . I2S3 1 4f;4/Lo4BLE N - - • '` 4EJ .D. 1 °'7 drNG . =.- 6'66.9v I Q - 4.i -e2. ciz • 6 - I I 1 RCP* 21 if c� r 1 2 1253 S ( ' �7. 0 6 � �- .; . 1 _ _ E lls . u . — 1 -0 (r.J) 1294 i t ' 1 5 1. c - 41-.8 = 2.d I 1 ill ( , 3:) 1 r- 36 r . d l = 36 1 L1 " 2 -o , L, = ..,-0 I I 1 .1� 11' ' ' I' 1 I•. ' . ;,' ' ‘! 1.4 ? g .I. O gite I 1! . . i IIIEMMEr - -_ CIVIL ENGINEERING • LANO PLANNING • LANG 8UIIVEYINU , I " SU /I[C /y Dili 110. /11[[!, or T J J rt 1p/ m?bt4g INLET µYS►- CALL& . • ; . v ,. q . I. s; . 1 I r • c , vp - - rf ________Z— SIoLo .1 AYE • ril __ II � � Sb 'I E -,, . . F- .1 i ` 2 ' ` \I A.0, I j . I T. .0-s-44 � � ; • ' T x' 206 ____ _.L . ,_> ; . E ' ... I: E 6 - . • ,. 5 3 FP.f • •1I C - - • 11 i V'% 0,4c- .42 , -V= o .c- y ; TG. 130 ► 4.r3 1 • ' 1 0.kg 1/4.i... 12 gt. rr S (1,1e)20h.- L 'A'') Xr—r I 2 1 s 10/L ABLE N '' 4EQ 1). ,4' __ c3(' NG 0 _ 1 LtS K r (l! -1. 1.767 _x: -•I / <CP• 14' 1r cF t o - I2 1 III: 1 .is 1 t, : l o• o j i > 3 0 .47 9 3 ,1 1Q La � , . . 1 i • II 11'1' ; ..., . I' • ' ?i g e. 4/6Vee0taig1 Mit* i j 1 I 1,* I t - 2- CIVIL E • LAND PLANNING • LAND BUNVEYIIIG , sue►cct eY Del, 101 NO. enar, OF • rt m P O t A R /NWT /)b• CAL . 4.,, • 12 .a-7 Y 4 , .: A 7 r ' . ! I I . /jll'� STA_NO. 25+7586• .: , 4i, ST• STA . NO. 36+73. ►. 1 /— 1 1 1 1 1 'REF. sir. 30R' •, • v 4 Q • _ 7.73 ti ��3 ' 1' '• � (/ v y 1 I -7 /2.82.0 / \ ` ►i SIOLO , e t 1 -,f,:.,..A ..: ......,, ..;., :,....;_t , .... ----- -a .. • E . - - .. C , 14 7 F. 6 - el-w A -4. _to y- % - 4 • C _ _ . '. it i TG. X289 773 2 •'' 1 ► 1 ' {,l c; l., 1278 9 .., / 1 1 . 1 1 1 410/L.481E N x '' 4EJ:D. r CI(' -73 Ks O I Q ° 7 -�- -- 6 � S A - �j6 i 0.51 " 1 I I . • /'CP ! it Cr .j g y µ6� Z•2 : a ' 8 ri 1461_ X11 4-2.4- I •s f I 1i 83• S � I: at > 1283 -�; °'•36 1 1 ... ...s - + 118 3 -86 ( ► 25 • - 7. = x, . 1 0.75 . 3�Ti xLl)�' . I I i II 3 / _ 24 : GI�,Z: 1 g / cam p 7;' t-- 12 co • i � - . _ __�_-- __� _• ---' ' -_'___--- -- - ---__ 1-- ___ --_, __-_-_-_--� - - -- ---�- ---------r----------r-'--- -- ---- --- +--- � _-- _-__. - _-___-_' _-__ ��� __--- - _'__-�__-_' - ' _- ---+ _�'-� - - - �-- _ �-_�_ - -_ - . • _ - ______ - _- _ _ ____ ___ __� ____�____ ' ____ _ _ �_ �__^_� ��__ �� �_ _� _ _ __ _ _ . _ _ - ��-_---_. '-_ - _-- ' --- � _� __ ���--- M4$ iotc. �� - CIVIL ~^- LAND PLANNING •- LAND SURVEYING --- ` - _---_ - __- _ ___--- . __ 4_ _ - - - . __ - ~- - _-- - _ _ _�_____�_-__--_____�__-__�_ ~'_.�___- SUBJECT- - I. .4 ' - .62 ;:i 1 f-, 1 - 61. _ cu - z____ - n t r - V, - - 4-1 * - - -O 1 - — — -----, --- .-i i , . . - - - - . . , t II , ...., ._ 4 ,...., ____ 4._ . . _. i ,.• _ t, CY 4 c FS ._ i k & CiVek 1 ' Ctikk 1 4. N _~_ .~~ - ' __�_� - ^- �0 ! ' -=~=�= -,~�~ ~~~~�� ~ � _��� ~- -- — 1 _ _ _ i Ay' 14-6 L POP- UP . , ---- �� _- _._ . _ - - - - _ . '_ _ - ' _' - _ _ . -- -_____ _ �^__---_-__--___� � - ' - _ � � _- ' �� - �_�-_-` - . __� ^_ _ -_ __—_- _ - ' ' _ _- - - ---_�_ ' - '_ _~__ — --'� - - ` , ' �-` - --- �� -- -� • ' �- ` 1,-.1.- 4 ^_c • __ _����-- ^^ ^^^ � ��--^�^-~'^--- - ^ - --- --- - ' - ^ . ���� i- N|- ---- - - -----^--- - --+------�---�---------� t --- ----- - ------ - - _- _ - ' - ���-___--�___ ___- -_- ___ ... I � _-- '�_---_------ ^ ■ —�----� ^ — -� - '- 8170 REDHILL AVENUE *+ COSTA MESA. CALIFORNIA 92828-3428 - -**--*- -- 1714) 841-8777 4 HYDRAULIC ELEMENTS - I PROGRAM PACKAGE _- <<<<<(<<<<<<<<(<<<<<<<<<(<<<(<(<<<<(<<>>>>>>> > > > )> > > > > > > > > > > > > > > > > > > >) > > > > >) <C) Copyright 1982 Advanced Engineering Software CAEM ! i ((<<<<<<(<<( < <<(<<<(<((<<(< < <<< <(< << > >) >> >>> > >) > >>' > >) > >> > > >) > > >) > > > > > >) >> ((<<<<<<<<<<<<<<<<<<<<<<<(<(<<<< l(((<(>>)>>>> >)) > > > > >) > > > > > > >) >) > > > > > > > > > > >> Advanced Engineering Software CAES] [no REV. 2.0 RELEASE DATE:12/30/82 <(((<(<(((((<<<<<<<<(<<<<<<(<<< l<((((())>>>>> > > >) > > > > > > > > >) > > >)) > > > > > > > >)) >> * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * N.BASELINE INTERIM CHANNEL FOR TRACT 12996 FROM BUBBLE OUT STRUCTURE * * 0 100 YR. INTERIM CHANNEL STA 10 +00.00 * VEN:I, N JN 3811 -02, 2/3/88 * ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ))))CHANNEL INPUT INFORMATION << << CHANNEL Z(HORIZONTAL /VERTICAL) = 2.00 BASEWIDTH(FEET) = 8.00 CONSTANT CHANNEL SLOPE(FEET /FEET) = .011800 y UNIFORM FLOW(CFS) = 104.00 1 MANNINGS FRICTION FACTOR = .0300 NORMAL -DEPTH FLOW INFORMATION: >)))) NORMAL DEPTH(FEET) = 1.57 1: FLOW TOP- WIDTH(FEET) = 14.28 FLOW AREA (SQUARE FEET) = 17.49 HYDRAULIC DEPTH(FEET) = 1.22 FLOW AVERAGE VELOCITY(FEET /SEC.) = 5.95 1: UNIFORM FROUDE NUMBER = .947 PRESSURE + MOMENTUM(POUNDS) = 1974.62 AVERAGED VELOCITY HEAD(FEET) = .549 SPECIFIC ENERGY(FEET) = 2.119 _ CRITICAL -DEPTH FLOW INFORMATION: CRITICAL FLOW TOP - WIDTH(FEET) = 14.08 CRITICAL FLOW AREA(SQUARE FEET) = 16.78 CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 1.19 CRITICAL FLOW AVERAGE VELOCITY(FEET /SEC.) = 6.20 CRITICAL DEPTH(FEET) = 1.52 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 1971.83 AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = .597 CRITICAL FLOW SPECIFIC ENERGY(FEET) = 2.116 II H YDRPL..J-IO Ei EEN - S .- ,-- OBF(1-ir! =ACKAuE II ((<(((<< . (<(((<<<<<(<<<(<((<(( ((((( ( <(()))) > > > ?))3) > >)))i )i %))) %) ))> >> > I: (C) Copyright 138E Advanced Engineerinq S ftware :;ES] (((((<((<( ( <<((((<(( <(((((((((((())))))> ))))3)3)))3333))33) > > : > >> > >) >3 1 (<<<<<((<(((<<<<<<(<<<<<<<<<< f<(<(((<<)))>))> >> >>))> > >))> > >) > >))) > > >)) >) > > >> II Advanced Engineering Software CAES] REV. 2.0 RELEASE DATE:12 / I; <<((<(((<(<<<<(<<(<<<<<<<<<(<<<<<<<<<<>>>>>>> > > >)) > > >) >) > > > >) > > > > > > > > > > >)))> li * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * N. BASEL I NE I NTR I M BUBBLE OUT CHANNEL FOR TRACT 12996 * * Q 100 YR. INTRIM CHANNEL STA 11 +83•54 * 1: * VENRI. iii, JN 3811-02, 1.0/20/87 * *# * * * * * * * * * * * * * * * * * * * * * * * * ** 1F 3E * * * * * * * ** iE * * * * * * * * * * * * * ** * * ** it * * * * ** if# ** * * * ** iF i4 *********** * * * * * * * * * * * * * * * * * * ** * * * * ** * * * ** iF * * * ** * * ** * ** iE * ** iF * * * * * * * * * * * * * * ** > >> )CHANNEL INPUT INFORMATION(((( 1: CHANNEL Z(HORIZONTAL /VERTICAL) = 2.00 BASEW I DTH (FEET) = 8. 00� CONSTANT CHANNEL SLOPE(FEET /FEET) = .010630 UNIFORM FLOW(CFS) = 104.00 1: MANNINGS FRICTION FACTOR = .0300 NORMAL -DEPTH FLOW INFORMATION: f: ) >3 NORMAL DEPTH(FEET) = 1.62 FLOJ TOP- WIDTH(FEET) = 14.46 FLOW AREA(SQUARE FEET) = 18.14 - HYDRAULIC DEPTH(FEET) = 1.25 FLOW AVERAGE VELOCITY(FEET /SEC.) = 5.73 UNIFORM FROUDE NUMBER = .302 II PRESSURE + MOMENTUM(POUNDS) = 1982.05 . AVERAGED VELOCITY HEAD(FEET) = .510 SPECIFIC ENERGY(FEET) = 2.126 1 CRITICAL- DEPTH FLOW INFORMATION: CRITICAL FLOW TOP-WIDTH(FEET) = 14.08 II CRITICAL FLOW AREA(SQUARE FEET) = 16.78 CRITICAL FLOW HYDRAULIC Dc► ='Tr' (FEET) = 1.13 CRITICAL FLOW AVERAGE 'VELOCITY (FEET /SEC.) = 6.20 II CRITICAL DEPTH (FEET) = 1.52 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 1971.83 AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = .597 CRITICAL FLOW SPECIFIC ENERGY (F EE t) = 2.116 1 II 4._ . __ - - - -__ __ . _ . _ -__ . __ _ __... - . _ _.__ .- • . .8 CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING BUBJECF " - - - ---- -. - - - -r : - - r 4 .N - . '-. - - II me NO. E -.. Sl - rr -_ .. .1 a_. twat can tact - -- -- r-- yIC._ , , .__.. T ._�__. r---- .i:- -- -_ -.--� n__� y , . __•__ - - : - 4 - --- - L , _ . . _ .yam - .. . - - f k • � - - -- - .- � -,-._ .4-- .:__ ..� �. — _-- -. i -.._ '- -+--+- *- - - s j /� - -_ mar - ■ - _ -. _ �.._.t. .. . L t . , w /iffi ..;,.r._ a , t �- ax r_�i' m_ t „t f- twat" a _ : �Z7'5. C Qf CJPJ.�, _._ i. w P 1 ..," _ 4 ______ E_ ____,_:_____, valo ____ 4 ,,, _ .- _ rAcps , . , -T-___ _ 4 - - 7 4l «_-. � f .� ,4 . 6e,, _ .4- ,� i• t _.. { w - 1 .-,- -- = 6- 6G . _mil 2 11 _ Co P n 9 1 C M .z- Sn'- if ^ 1�► -00 r0 } f 1 > S2 c Fs, L _. LF . 2 '; Fo7 K•ad CQnot,� r a• ar - gr am rt (a a r-..yr ` _ __. »/�/ +( Sc t FLT th..KoQ rnb Jr 4 3170 REDHILL-AVENUE • -- - COSTA MESA. CALIFORNIA 92828.3428 -•- - 1714) 841. 8777 r h _ $ Adire04,4004-1--- • g . N •-.. ge. CIVIL ENGINEERING • s LAND `PUNNING • LAND SURVEYING - _ _ -_- - . - -y _ . . _. --a_ .... .. -.- ._ .._- _. , _. _ - -SUBJECT ______4 I VQi�tR.0 N -•- - .--- -___--1 , ._ .. _ ,_ --.. ou rLeT .00../.0._._ ____..+_____ $ TEP -•r. :_ �_ _ _ _— _ ___ _- — •sA T T om_ . _ ,,! , - -r - . Z - ` * t- r - Tom.;- - • .� v __ .... - - - 1- -..0 .... -3.- .4-- -..-- ,_ ___ [ ............;.-- __4_ _ -..- --- - . r__ _ __ _ _ + _..__. _ _ _ z .__.__ - .- t om w i._ - .�_, . _ ._ _ ___ __._� — _ ____ , - __ _ .__ E-,,_t - r `,` r; t- t - t . •, , .. w 1 !1 & 1> t -14 Ti 1 c 4 1, 1 J � ._� J k( - x. 66' - - 4 . 6b - �� �'„►1 �i�� ►ryi�ior► • — -_ _ ` _. ��4� [ 47 � .Ill 1STi •' --, j4i 7.' t E - _._ i _____ a n LC w-s- . �- �L a CA's Y - xx _ t i , t • - - - - -- Z7*- . t a f93. _ .. - - 3 _ t• �cT'�: io: ': =t . Je t g c,,.:aF 7.,o- ?ao T.1 ��_._ _____ __ ___ __ . 3470 REDHILL AVENUE -- • COSTAMESA, CALIFORNIA 92626-3428 -•-- - -- (714) 641.8777 Y.. ____ -- 1 1 _ , Xie g 47610,,ouzgp, Rite. . t , 1VIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT I BY \ DATE _ .._ -__ ._..... JOB NO. __ ____.. . I SHEET � OF t ` Fes^ L , _ EG L 0 S r I id -83.5 6�, 1274.07 r , : &= 62 f V - 5_73 f f, _ L _ F L . t2 o7f /.62 t., _t2762o C�L f 06L o_- TO i 2 + `J J = 1216- 40 E . _ _ ____. .. _ ... . . , _ - . „ . ., _ ,, . , _ _ .... 1 . _ . 1 1 i . 1 1 1 _ , '- 3170 REDHILL AVENUE • : : COSTAMESA, CALIFORNIA 92826 -3428 • _. (714) 641 -8777 1 10000 TV-31 • , 180 168 8,000 EXAMPLE �I) •, 156 6,000 0.36 Inches (3.0 feel) - 6. (2) ' r ) 5,000 0.64 etc - (3) - 144 4,000 Iow NW - 5• - 6. 132 3,000 0 (feel) - - 5. - 6. U1 1.6 6.1 - 4. 120 2,000 (2) 2.1 6.3 _ - - 5. (31 2.2 s.s - 4 ' 108 -3. - -4. a 0 le foot 86 1,000 - - 3. 800. -3. 1 84 600 - 2. - 500 - 400 / �- VS 300 - o _ - - ii. Z 60 0 200 t i► %/ ca cc _ -1.5 -I.5 W c 54 S � / - - - F- W 100 / a - > 48 a 80 - - - Z - C _., 0 �� 60 x - -1.0 - 0 / 40 W - - -1.0 cc 0 30 ENTRANCE ix ' W 36 DD W SCALE TYPE a . - :- .9 a 33 ' • 20 p) Headwall SF - .8 - .8 - o 30 (2p Mitered to conform a W - - .8 to slope 2 _ • - 27 10 (3) Pro)octisg -. -.T - 8 - _ E . . 24 6 _ - .r 5 To see scale (2) or (3) project I 21 4 herisoetally to cede (1), then - .6 .__use straight lulled 11ee through - .6 3 D as - ,6 16 Hastrat•d. - 2 - 15 .5 - .5 1.0 r - .5 • h 12 HEADWATER DEPTH •FOR • -flP.R. C. M. PIPE CULVERTS WITH INLET CONTROL . Figure 18 W . 35 _ E , 2000 ._ / _ _ N -.4 E . 1000 2 s - - N* _0 t s . • .� -.5 00 g 3 sln. s.- -.i IURNERGEO OUTLET CULVERT FLOWING FULL 400 - -120 NW•N•A. -L$. - 500 -106 -'e 400 -Si - W 300 -e4 0 t — - ii 00 4P p A W - 2 - 60 O � J IL o - 54 y =. = 100 rn '^ Z - 3 W 411 �p� t^ . a. 50 OP � c W 60 = -42 I M. -- _ 4 50 4 0 _ .....- 2 -_4-0_ x. -33- -- - i o. is`W _ _ - - _ _ -� N • 7s �' -' o t, 1 20 -10 - 4 �O0 Soo -21 00 . 1 5 10 -1e 5 - 20 • i -15 5 4 _12 3 HEAD FOR STANDARD -• I C. M. PIPE CULVERTS e.P.n. FLOWING FULL n • 0.024 1 Figure 20 i 1 - 5000 5000 • - W -19 - 4000 PRESSURE LINE - 3000 -T.--. / H• - ._ IF - 2000 _9...../ D p _0- v - UNSUBMERGED OUTLET SUBMERGED OUTLET - 12X12- -4 "-- 1000 - -.5 - 800 10X10 _100 -.6 - E -600 ... 9X9 _80 ii,, -.8 -500 8Xa - - 60 a (F _ I.0 - - 400 z TX? --- 50 0 ; • c � et y W H Q�ti 0 6 � - - 300 x 6X6 -�. e — -40 X i j O � �► Z Z - 20o a .,,, sx5 �- 30 m o c '! a�' A::.:O �� = - 2 .-. - � � h 6 j �4�4 4 e e 4 4 .h " c - W _ N 20 ? � � o • • • .•e4 + O W _ - u- 4X4 - Z . qr / V 4 .0 : . _ 3 _ -100 0 35X35 - v . 1 � � � � � -4 c p a: o =8 W 3X3- / -6 s -.a 1 ` e • 60 E . 25X2.5 - EXAMPL[ _ — r _ .7.3 ...----... - • 7 . 3 8 p.40�, __ ....4< -10 - 40- -- -5 s - /o e 2X2 - -30 30 �.. < ` - EQUATION FOR SQUARE BOX: " _ .. N . 1.558 t• 287.84 n L 70.11 '- 20 1 _ 0 L . z - z H • Heed in feet I - F Cr is Entrance loss coefficient 0 • Height, also span, of ha in feet —10 • • Manila`s roughness coefficient _. L • Lesgth of Culvert is feet - 8 - . 0 • Design discharge rote in Os -6 B.P _ HEAD FOR 1 CONCRETE BOX CULVERTS FLOWING FULL n = 0.012 Figure 12 N -33 7 2000 PRESSURE LINE .4 t - Z N w It .� -1000 a 3 Nw p " — ---. T - 900 -120 UNSYBMERtiEO OUTLET SUBMERGED OUTLET .6 600 -108 .8 - 500 - 96 N. j 1.0 -400 -84 300 / . -72 �� 66E�41) C6. t j 2 - 600 E 60 •� W E t I . in 0.46 / _1'i gy3 . q iy _ 3 z _ . • ist -100 ' 2 b W 4 E , {. I . ,..1., 1•4 . hi •• ick „,,,•• _ _ . „, 0 . -3 7O ter - 60 - 33 d _ , W w ) . a: -50 t 1.- „,--.#64...., . x, 4� :. - i .” -4 -40. ■ O P S - 27 •� O i4.. � . Qa .0 10 -30 . - 24 ,;!a: ,1._ I. . 21 , ` : 20 .: - . _ _ -18 20 EQUATIONt N • rgbtt tI•Co1 • 4 - 1 Ma i 0 0 1 -10 —1 N + Need Mfeet — 8 C • Entrance Toss coefficient 0 • Oiometer of Pipe in feet - = r R • Monning's roughness coefficient 6 12 L • Length of culvert in feet - 5 0 • 0es1g11 discharge rote in Os -4 B�PR HEAD FOR CONCRETE PIPE CULVERTS FLOWING FULL n =0.012 Figure 19 - 1 - IV • 47 -2000 , - _ . . z . .1 \ ------ f - - -- n: - NW • 71000 - 0.4 7 — varavirciNFro Slope so --. - - 600 SUIMERGED OUTLET CULVERT FLOWING TUL. - 0.5 _ -151197 NW • N• Re-LGe - - 600 -0.6 -136 x87 -500 -0.7 • - 121 a 77 -0.8 - 400 -113x72 . - 0.9 -106 x68 - - 1.0 -300 - 98 x63 • • . • ^91158 Re 0 ( 4 o o • 200 I n - 83x 53 • ,,_ ■ 0), - • la -... . . *ii: ia: to • 5 - 76 x 48 0 " E • ..., . WI. ,,,. ,..• . ' 0 : z •P i,, . -2 -sex 43 . Co 0 .4■ iii . — o te. it. . . ...---- t° e` • •-4 - ," - ?4, •.T A Z , . 1 40 6 - 60a38 ........... tte .0. • , ,t••,•itr.• -...;„--,44,e,-.. .;,..., q. 14 ,...eu ....,....,..sst ;• . - va........,- ,•,..„„,..... -• le a 1,S , ,, , 4 , W,.. 1 ' .. . .04 " • : -90 , Alls-14.--43:x34 . , ., „, ir _ -k..-----. _..., ..._ bo o .,.. ,. ._... _ _.,„, . 9,32 .....„ 4 - 4 . -- 60 r ,. - 45u 29 ......... 444,044... , ...-2. ,, " ,- ..9/.... , . I..; -......, ........ ._ ,-, -50 i..' 16 • 42a P .., - • 5 ''+ * 7' ''1 44. .1z . . 0 , ,, A - , *: e-i,4 ' ,' ,- ' • , , :"7.7 ••• ' . ' , 144), , t'.' .: A :. ' ''; r': .4 4 ):''' I '' ' ':: :e! .i ''''''' ': •" 40 Atr,'", - --• 3ti2 - 4' - ' . ' 1,: - ' . • ' Oharoasleas ea sire scale ere • ' ''' '\''....ttle.. - ordered fer lap Ws horizontal , ,.: ..** ' i :,,, .1,'; imstelis fiat. They should be - "' 30 - .1 - ii , • ,r --' - reversed for Mae esis vertical. -9 . „ - - 30 x19 . -10 ilt-iii: =, • , -...., .. - 20 . • . ,.. ,.. . . , - - - 23 a 14 . • . . • . -10 - 20 . :,....4, • • . - 8 • .. ..,*" . •- r , A, Ter -6 -5 • HEAD FOR ELLIPTICAL CONCRETE PIPE CULVERTS LONG AXIS HORIZONTAL OR VERTICAL FLOWING FULL n = 0.012 B.P.R. • Figure 26 W - 57 300 _ _ \---71 HIV - Mr - 200 SIGN sew AM- - SUBMERGED OUTLET CULVERT FLOWING FULL HIV • Hs As-Ls. = W .- _ _. - ! 3 - 74 0 :-100 fe d 4 p — .5 - 90 Q e - F — .s 00 - 72"x44' 0 col. 1.. - 70 j . 9 4:1° y W 7 '- 60 - 85'X40' . b° C- _ -.8 -50 v 58'x38' d p . = -1.0 IA -40 -_ ` 41'11\ 0 . - V - 0.40 — W - = d - 50•X31• �-- _. — [x _ 4A s - -30 N•LT ` W •"• - 43'X27' ` � 1.0° - 2 s,f m *, '•........ 300 _'r° 4 — 20 - - .w: 0 - _ - 3rx22 f• 0 �. 3 - ~ . • — 400 - ^Y j , N , , 30 +4 ... 4.0 1,, -10 - 2V'XI8' S p0 - 6 , - l .. s - s -. 'Al' _ - - 25'x16' - -T -T R: -s -e . °�=- _, - 8 _ 10 ,A„- ; , - 4 - • — 3 -2 HEAD FOR STANDARD C. M. PIPE-ARCH CULVERTS FLOWING FULL B.P.R. n =0.024 • Figure I . 1 . CHAPTER IV CULVERTS 4 -100. General 4 -200. Terminology and Definitions 4 -201. Terminology 4-202. Definitions 4 -300. Culvert Flow Controls 4-301. General . 4 -302. Entrance Control 4-303. Outlet Control 4-303.1 Outlet Control - Mild Slope 4 -303.2 Outlet Control - Steep Slope 4-304. Culvert Flow Conditions with Applicable HIV and V out Equations 4-304.1 General 4 -304.2 Type I Conditions 4 -304.3 Type II Conditions 4 -304.4 Type 111A Conditions 7 4-304.5 Type IIIB Conditions 4 -304.6 Type IVA Conditions 4 -304.7 Type IVB Conditions 4400. Outlet Velocity t 4-500. Culverts in Tandem 4600. Culvert Design Procedure it ..... _ 4.601. Culvert Design Data 4-602. Design Procedure 4-603. Improved Inlet Design • Pipe I 4.604. Improved Inlet Design - Box 4-700. Outlet Velocity Control 4 -701. General - 4-702. Velocity Control Devices 4 -702.1 Broken Back Culvert Design 4 -702.2 Riprap 4 -702.3 Sills 4 -702.4 Impact Basin 4 -702.5 Stilling Basin 4 -702.6 Radial Energy Dissipators 1V -1 1 CULVERTS C = Entrance coefficient (Table 1) 4-100. GENERAL .. D = Diameter of pipe culvert in feet or height of ■ box culvert in feet t After a complete field survey of the general arca and culvert location vicinity, and after design discharge and d = Depth of flow in feet design tailwater have been determined, the next step in a complete hydraulic design is the selection of a structure d = Critical depth of flow in feet that will carry the design discharge beneath the highway satisfactorily. d Ratio of depth of flow to diameter of pipe It should be borne in mind that the selection of any structure should be based on hydraulic principles, on the W = Ratio of depth of flow to width of culvert most economical size and shape, and with a resulting headwater depth which will not cause damage to g = Acceleration of gravity = 32.2 feet per second adjacent property. The resultant outlet velocity should per second _ be taken into consideration for any possible damaging effects. The allowable headwater elevation is that ele- H = Head losses vation above which damage may be caused to adjacent property and /or the highway. It is this allowable HW = Headwater depth in feet headwater depth that is primarily the basis for sizing a culvert. HW = Headwater depth in feet for critical flows at culvert inlet The cost of maintaining highways in good condition is 2 directly related to the adequacy of the means provided h = Entrance head losses in feet = C 2g for drainage. Storm water for which adequate provisions . are not made may cause severe erosion of embankment h = Fraction head losses in feet = S slopes and may undermine culvert outlets. Good drain- age design depends on determining the proper frequency and amount of run-off and on the provisions of adequate V facilities to remove the runoff at such a rate as to avoid b = Velocity head in feet = 2g undue interference with traffic and also keep mainte- nance costs at a minimum. In addition, these facilities L = Length of barrel in feet should be provided at a minimum cost of initial investment. Structures may consist of various installa- n = Coefficient of roughness. (Table II, Chapter tions, such as: III) d +D E a. Box Culverts P = Pressure line height = —C— (See Figure 7) 1. Single barrel 2. Multiple barrel Q = Discharge in cubic feet per second, based on a - predetermined design frequency b. Concrete and Metal Pipes 1. Circular q = Discharge per foot of width for ;angular 2. Oval channels in cubic feet per second = I 3. Pipe -arch R = Hydraulic radius in feet = WP c. Structural Plate Pipes 1. Circular S = Slope of Culvert in feet per foot i 2. Pipe -arch - 3. Arch S = Critical slope in feet per foot 4 -200. TERMINOLOGY AND DEFINITIONS S = Friction slope = Slope that will produce uniform flow (see Figures 10 and 14) at depth 4-201. TERMINOLOGY under consideration. For Type 1 operation the friction slope is based upon 1.1d Type 11 I The hydraulic performance of a culvert is determined by operation requires that the friction slope be the following factors. These factors must be known or based upon the TW depth. estimated prior to designing a structure. II A = Area occupied by water flow in square feet TW = Tailwatcr depth in feet N - 2 I V = Velocity in feet per second (Figures 16,24&29) , critical depth and critical velocity. Increasing the slope above critical slope does not V = Critical velocity in feet per second occuring at increase the discharge because culvert caper- 1 critical depth 1 ity is determined by the inlet geometry. It merely makes the water flow at a depth less W = Width of rectangular culvert or bottom width than critical depth and at a greater velocity. of channel in feet Decreasing the slope to less than critical E slope will have a retarding effect upon the WP = Wetted perimeter in feet discharge, causing the depth of flow to be higher than critical depth and the velocity to 4-202. DEFINITIONS be less than critical. (a) Critical Depth can best be illustrated as the (g) Flared, Improved, or Tapered Inlet indicates depth at which water flows over a weir, this a special entrance condition as illustrated in depth being attained automatically because Sections 4-603 and 4-604. it is the depth at which the energy content of flow is a minimum. For a given discharge (h) Soffit refers to the inside top of pipe or box. and channel shape there is only one critical depth. The formula applicable for calculating (i) Invert refers to the flowline of pipe or box critical depth in rectangular channels = (inside bottom). (j) Tandem Culverts refers to culverts aligned 3 2 across a roadway in such a manner that it d = 32 may be possible for the headwater of the downstream culvert to influence the tail- . water of the culvert immediately upstream. For rectangular culverts the critical depth (Figure 1) may either be computed from the above formula or read from Figure 9. 4-300. CULVERT FLOW CONTROLS C , , The formulas applicable for calculating crit- 4 GENERAL 1 ical depth in circular, arch, and oval sections are rather tedious and for this reason are not . Generally, the hydraulic control in a culvert will be at included herein. For circular sections the the culvert outlet if the culvert slope is less than the critical depth may be obtained from Figure critical slope. Entrance control usually governs if the 15, Pipe -Arch, Figure 27, Oval, Figure 22. culvert slope is greater than the critical slope. (b) Uniform flow is possible only in a channel of For outlet control, the head losses due to TW and barrel constant cross section having the same dis- friction are predominate in controlling the headwater of charge, velocity and depth of flow through - the culvert. The entrance will allow the water to enter out the reach. This type of flow will exist -in the culvert faster than the TW and barrel friction will i a Type 111 A culvert operation provided the allow it to flow through the culvert. culvert is sufficiently long to reach a uni- form depth of flow. For entrance control, the entrance characteristics of the • (c) Free outlets are those outlets whose TW is culvert are such that the entrance head losses are predominate in .determining the headwater of the cul- equal to or lower than critical depth. For vert. The barrel will carry water through the culvert culverts having free outlets, lowering of the faster than the water can enter the culvert. Each culvert tailwater has no effect the discharge. (See flow, however classified, is dependent upon one or both Type I operation) of these controls; therefore, because of the importance of these controls, further discussion follows. (d) Partially submerged outlets are those outlets whose TW is higher than critical depth and 4 -302. ENTRANCE CONTROL lower than D, the height of culvert. (See Type II operation) a. if the dope of the culvert is greater than critical dope (referred to as 'steep dope) and (e) Submerged outlets are those outlets having a the tailwater depth ' Is lese -tthan :- S 'or` ...... - , 1401+► . ma y so* , 1" TW elevation higher than the soffit of the ta11water elevation is lower th an the upstream culvert. (See Type IV A operation) flowline of the culvert, (Figure 4) headwater & HW is based on entrance control for all ranges (f) Critical slope is that slope at which a given of discharge. discharge will pass through a structure at 1 N -3 L — r . /1 I \ r Figure 1 b. If the slope of the culvert is steep and Type IVA (Figure 6). Calculated HW may or may not be tailwater depth TW is greater than • S but greater than 1.2D in this case. not greater than (S (see Figure 5) that For more information concerning the various types of is, the upstream flowline elevation is sub- operation, see the schematics of each in Figures 2 merged by TW elevation but the upstream through 7. A general solution for hydraulic design of soffit is unsubmerged, the control may be - culverts appears elsewhere solution this chapter. entrance or outlet. In this case, it is recom- mended that both controls be checked and 4304. CULVERT FLOW CONDITIONS WITH APPLI- the one causing the higher HW be used. CABLE HW AND Vout EQUATIONS See Types 1Il A and B (Figures 4 and 5) and 4304.1 GENERAL N A and B (Figures 6 and 7). 4-303. OUTLET CONTROL The hydraulic operation of culverts may be broken down into several types depending on operating condi- 4-303.1 OUTLET CONTROL - MILD SLOPE tions. The attempt has been made in this manual to illustrate and discuss each . of the major types of I If the slope of the culvert is less than critical slope operation. Some variations to the types listed herein (referred to as 'mild slope'), the outlet characteristics may be found but these variations should not appre- control the flow. ciably alter the end results. a. If the culvert is on a 'mild' slope and TW It should be Further noted that actual culvert flow depth is less than critical depth then the conforms to the laws of open-channel flow and closed - outlet will control and the operation is conduit flow. Since the proper calculations involved in probably Type I (Figure 2). If HW is calcu- open-channel flow are rather tedious, certain estimates and compromises are made in the calculation procedures lated by Type I procedure to be greater than for Types I, II and IVB indicated in this manual. These 1.2D (an empirical value determined by re- estimates and compromises cause very little, if any, search), the type is probably 1VB and HW differences from detailed backwater calculations and the should be calculated according to the pro- result is a simple pencil and slide rule solution. cedure for Type IVB (Figure 7). b. If the culvert is on a 'mild' slope and TW The most common types of culvert operations are depth is greater than critical depth but less classified as follows and apply to culverts of any type than D (barrel depth), the operation is prob- barrel cross section. ably Type Il (Figure 3). If HW is calculated - by Type II procedure to be greater than 1.2D, the type is probably IVB and HW should be calculated according to the procedure for TYPE -I Type IVB (Figure 7). c. If the culvert is on a 'mild' slope and TW is IIWSI greater than D, the operation is Type IVA (Figure 6). Calculated HW may or may not be greater than 1.2D in this case. _ - -_ -__ - _ w 4 -303.2 OUTLET CONTROL - STEEP SLOPE 1 ' LJ T 4 - '�"' s<S Nod f If the culvert is on a steep slope and TW is greater than S (or tailwater elevation is higher than the up- stream soffit elevation on the culvert) the operation is Figure 2 rv•4 4 304.2 TYPE I CONDITIONS (FIGURE 2) The above condition is a common occurencc where the channel is deep, narrow, and well defined. The control is The entrance is unsubmerged (HW < I.2D), the slope tailwatcr at the culvert outlet. s less than critical slope at design discharge (S < Sc), 2 -Ind the tailwater is less than or equal to critical depth HW = TW + V /2g + h h –S (TW < dc). where: The above condition is a common occurrence where the TW = tailwater depth at outlet natural channels are on flat grades and have wide, flat flood plains. The control is critical depth at the outlet. V, = velocity based on TW depth C HW = d + V /2g + h + h – SoL g = acceleration of gravity 32.2 ft /sec 2 where: h = entrance head = C V TW 2g d = critical depth where: C = entrance coefficient found V = critical velocity (based on d in Table 1. g = 32.2 ft /sect h = friction head = S V where: Sf = slope at which TW depth h = entrance head = C 2g would be uniform depth where: C = entrance coefficient found in L = length of culvert Table I S drop in culvert from upstream flowline to h = friction head = SfL downstream flowline • where: L = length of culvert Outlet velocity = V. which is the discharge divided by the area of flow in the culvert at. tailwatcr depth. S = that slope at which 1.1 d TYPE�A would be uniform depth E S o L = vertical drop in culvert from upstream MMf*I.20 flowline to downstream flowline The outlet velocity is equal to V TYPE —II _ TwcsL • -.l E s L I .. Figure 4 4 - 304.4 TYPE Ill A CONDITIONS (FIGURE 4) NW _L.. V Id. - riv_ge The entrance may be submerged or unsubmerged 1 s <s. (control L1 _ (IIW C 1.2D), the slope of the culvert is greater than or equal to critical slope at design discharge (S S TW depth is less than S (TW elevation is lower than I the upstream flowline). TW depth with respect to D is Figure 3 inconsequential as long as the above conditions are met. 4 -304.3 TYPE 11 CONDITIONS (FIGURE 3) This condition is a common occurrence for culverts in rolling or mountainous country. Thc control is critical The entrance is unsubmerged (IIW < t .2D), the slope depth at the entrance for HW values up to about 1.2D. is less than critical slope at design discharge (S Sc), Control is the entrance geometry for HW values over ] about 1.2D. the TW depth is greater than critical depth (TV.' > d and TW is less than D (TW < D). IIW is determined from empirical curves in the form of c 1 IV • 4 4304.2 TYPE 1 CONDITIONS (FIGURE 2) The above condition is a common occurence where the channel is deep, narrow, and well defined. The control is The entrance is unsubmerged (HW < 1.2D), the slope tailwater at the culvert outlet. is less than critical slope at design discharge (S < S l the tailwater is Icss than or equal to critical depth HW = TW + V /2g + ir h f — S (TW < d where: The above condition is a common occurrence where the TW = tailwater depth at outlet natural channels are on flat grades and have wide, flat flood plains. The control is critical depth at the outlet. V. = velocity based on TW depth HW = d + V /2g + h + h —S g = acceleration of gravity - 32.2 ft /sec 7 where: h = entrance head = C V g 2 g d = critical depth where: C = entrance coefficient found V = critical velocity (based on d in Table I. . g = 32.2 ft/sect h = friction head = S V` where: S f = slope at which TW depth h = entrance head = C 2g would be uniform depth where: C = entrance coefficient found in L = length of culvert Table I S drop in culvert from upstream flowline to h f = friction head = SfL downstream flowline where: L = length of culvert Outlet velocity = V which is the discharge divided by the area of flow in the culvert at tailwater depth. Sf = that slope at which 1.1 d would be uniform depth TYPEmA S vertical drop in culvert from upstream rte =i.2D flowline to downstream flowline The outlet velocity is equal to V Nry TY PE -it t - i S T WCSL ftsc ii MY S L 12 D L I -- Figure 4 I _— 4 -304.4 TYPE III A CONDITIONS (FIGURE 4) �._ a ...../ The entrance may be submerged or unsubmerged s <s --e;;; oi (IIW < 1.2D), the slope of the culvert is greater than or equal to critical slope at design discharge (S S TW depth is less than S (TW elevation is lower than Figure 3 the upstream flowline). TW depth with respect to D is inconsequential as long as the above conditions are meta 4304.3 TYPE 11 CONDITIONS (FIGURE 3) ,_ This condition is a common occurrence for culverts in rolling or mountainous country. The control is critical The entrance is unsubmerged (HW < 1.2D), the slope depth at the entrance for HW values up to about 1.2D. is less than critical slope at design discharge (S Sc), Control is the entrance geometry for HW values over about 1.2D. the TW depth is greater than critical depth (TW > d and TW is less than D (TW < D). FIW is determined from empirical curves in the form of C 1 IV.5 I nomographs (see Figures 11,17,18, 25 and 30). TYPE- 8 A If TW is greater than D, outlet velocity is based on full 'mar 1.20 ir flow at the outlet. if, r is less than D, Outlet velocity is base4 oq. itiartirm,slypiEtir the culvert. uniform depth is stmpl that depth of . water for given discltale, I - - - - - cuivert dope, and geometry at steady flow. s <S TYPE 1 e HWIEI2 0 — 1 In / 11Wag20 - ---- -- -- ---- -- r 4111111111 iv i _r TW)61-.0 E ._ SaSe >Sl Figure 6 iii Figure s where: HW =H +TW -S i 4-304.5 TYPE III B CONDITIONS (FIGURE 5) H = total head loss of discharge through culvert The entrance may be submerged or unsubmerged. H'= + h + h (HW j 1.2D), the slope of the culvert is greater than e or equal to the critical slope at design discharge where: = velocity head V /2g (where V is (S S TW depth is greater than S (TW elevation based on full flow in culvert) is above the upstream flowline), and TW depth is less h = entrance head C b than S (TW elevation is below the upstream soffit). TW depth with respect to D is inconsequential as long as h f = friction head = S (where S is the above conditions are met. This condition is a based on full flow in culvert) common occurrence for culverts in rolling or mountain- ous country. The control for this type of operation may H may be determined directly from nomographs be at the entrance or the outlet or control may transfer on Figure 12,19, 26 and 31 itself back and forth between the two. (Commonly called "slug" flow.) For this reason, it is recommended TW = tailwater depth that HW be determined for both entrance control and outlet control (full flow as in Type IV A and IV B) and S = drop in culvert elevation from upstream to the higher of the two determinations be used trance _downstream control HW is det ermined fro e irical curves in the o nomora�h see figures 11 , 1 an 0 . Outlet velocity is based on full flow at the outlet. ? 1TTTcolltro 11s determined by procedures indi- TYPE S B sated for Type IV A or IV B (depending on TW depth I with respect to D). If TW depth is less than D, outlet velocity should be H 0 based on TW depth. If TW depth is greater than D, 1 outlet velocity should be based on full flow at the t -_ -- outlet. _L._ 4304.6 TYPE IV A CONDITIONS (FIGURE 6) s �- Two I la T4 , IorTW)di This condition will exist if the culvert slope is less than P• ° i - 0 P. TW critical slope at design discharge (S < S }-and TW 7 depth is greater than D (TW > D), or; the culvert slope 4304.7 TYPE IV B CONDITIONS (FIGURE 7) 1 is greater than or equal to critical slope at design discharge (S > S and TW is greater than S +D The entrance is submerged (HW a 1.2D) and the tailwater (TW > (S +D) . The HW may or may not be depth is less than D (TW < D). Normally, the designer should arrive at this type of operation only after previous greater than 1.2D, though it usually is greater. consideration of Types 1, 11, or IIIB. c w - o On occasion, it may be found that (HW > 1.2D) for culvert immediately downstream, consideration must be I Type I, 11, or IIIB but (HW < 1.2D) for Type IVB. If given to the backwater effects of the downstream culvert so, the higher HW should be used. upon the upstream culvert. Briefly, the headwater elevation determined for a downstream structure serves, HW = H + P —S in turn, as the tailwater elevation for the upstream structure. This is approximately true only if that where elevation submerges a theoretical unrestricted channel tailwater depth. The actual water-surface profile is more I H = same definition as for Type IVA complex than the above description but the difference in P =empirical approximation of equivalent by final tailwater elevations is negligible. draulic grade line . It can be seen that the entrance losses involved in such a P = (d + D) /2 if TW depth is less than critical c culvert arrangement can be eliminated if the culverts are - depth at design discharge. If TW is greater joined. Economy is often better when the culverts are than critical depth, then P = TW joined because of more efficient operation and the elimination of two inside headwalls. However, an eco- S = drop in culvert flow line from upstream to nomic comparison in each instance is necessary before downstream joining tandem culverts. Outlet velocity is based on critical depth if TW depth is 4600. CULVERT DESIGN less than critical depth. If TW depth is greater than critical depth, outlet velocity is based on TW depth. 4601. CULVERT DESIGN DATA 4-400. OUTLET VELOCITY The proper design of a culvert requires the definite knowledge of some items and the assumption of other Outlet velocity in any properly designed culvert is items. The items which should be known either by normally greater than the velocity in the natural channel observation or calculation include: and for this reason it has been the usual practice to 1. design discharge - Q provide riprap and /or velocity control devices of various 2. design tailwater - TW kinds in erosive outlet channels. The engineer must bear . 3. culvert slope - So . in mind, while attempting to control flow at a structure 4• allowable headwater - HWA outlet, that the main objective is to return the flow to ) ( the normal flow in the natural stream, in an economical and efficient manner. items which must be assumed or estimated include: E Across Texas, velocities at which various soils become S. allowable outlet velocity - VA erosive may vary widely. The engineer should attempt to 6. culvert length - L make an estimate of just what the threshold of erosive 7. entrance conditions velocity is for each culvert location. This can be done by 8. culvert material and shape (box, pipe, metal, observing storm flows on various soil types and esti- concrete, etc.) mating those velocities at which erosion is occurring. A 9. maximum allowable depth of barrel - DMAX widely used threshold of erosive velocity in Texas is 8 _ (should usually not be greater than HWA) fil feet per second. However, much higher velocities may be Only after all the basic culvert design data is assimilated tolerated in the cases of channels with rock or shale should the culvert sizing be attempted. bottoms, and lower velocities may have erosive effects in the cases of channels with silt or sand bottoms. In any 4-602. DESIGN PROCEDURE case, if the outlet velocity of a culvert exceeds the maximum deemed allowable by the engineer, riprap The following is a step by step culvert design procedure. protection and /or velocity control devices at the outlet Preceding the design discussion is a schematic flow chart should be provided. S S ection 4 -700. (Figure 8). This chart should be helpful in routing the designer through the design procedure. It should be It should be noted at this point that if the culvert has noted that the procedure incorporates the items as been properly sized according to allowable headwater shown on the culvert calculation sheet (Chapter 10) elevation, it is almost always more economical to protect from left to right. Variations from normal culvert design against excessive outlet velocity with riprap and /or are covered elsewhere in this chapter. velocity control devices than to try to adjust the culVeif size to reduce the excessive outlet velocity. Initial Trial Size: 4-500. CULVERT IN TANDEM 1. Divide the allowable headwater HWA by the. maximum allowable depth DMAX. When culverts are arranged as depicted in Figure 1 such that water leaving one culvert must pass through another 2. (a) Box Culvert , c 1 IV -9 1 Enter Figure 11 with D = DMAX and HW /D = HWA/DMAX, determine q. (q = Q where W next step in the culvert design procedure is to determine the probable type of culvert operation �� = total width in feet of box required. Round W and calculate HW and outlet velocity. This is up to the nearest value which yields a whole accomplished by making a series of comparisons multiple of standard box widths. Divide W by between known quantities to determine the the largest standard span S for which W is a conditions of culvert flow. multiple. This determines the number of barrels - N. At this point, the determination has been Confirmation of Trial Size: made that the initial trial box size will be: 5. If culvert slope is less than critical slope N - S x DMAX x L (S < S skip to step 11, otherwise; (b) Pipe Culvert 6. If tailwater depth TW is greater than or equal to Enter Figure 17 (for circular), Figure 25 (for culvert flow line drop S (TW S skip to E elliptical), Figure 30 (for pipe -arch) with D = step 8, otherwise; DMAX and HW /D = HWA /DMAX. Determine 7. Determine HW according to the procedure for Q /BBL. Divide Q by Q /BBL and round up to Type IIIA. Use Figure 11 for box culverts, the nearest whole number. This number repre- Figures 17 or 18 for circular pipes, Figure 25 for sents the number (N) of barrels of diameter D elliptical pipes, and Figure 30 for pipe -arch. pipe (or of rise D for oval or arch). At this point Calculate outlet velocity according to instruc- the determination has been made that the initial tions under Type IIIA and skip to step 17. trial size culvert will be N D x L pipes (or N -RISE x SPAN x L pipes for oval or pipe- arch). 8. If TW is greater than or equal to (S skip to Critical Depth: step 10, otherwise; t 9. Calculate HW for both entrance control and 3. (a) Box Culvert outlet control. HW (entrance control) should be determined from nomograph. Use Figure 11 for ' Enter Figure 9 with span width S and discharge box culverts, Figures 17 or 18 for circular pipe, per barrel, find d - or calculate d from formula Figure 25 for elliptical pipes, and Figure 30 for in Section 4 -202. pipe -arch. HW (outlet control) is calculated by procedures outlined for Types IVA or IVB. (b) Pipe Culvert If the TW is greater than D, Enter Figure 15 (Figure 22 for elliptical, Figure Hy = H + TW — S 27 for pipe -arch) with diameter (or rise and span) and discharge per barrel. Find d (dc If the TW is less than D, /RISE for oval and pipe - arch). - HW =H +P -S Critical Slope: where 4. (a) Box Culvert P = (dc + D) /2 if TW is less than d P = TW I Enter Figure 10 with d (critical depth divided if TW is greater than d by span width), span S, and discharge per barrel I and find critical slope S (b) Pipe Culvert H is obtained from Figure 12 for box culverts, Figures 19 or 20 for circular pipes, Figure 26 for elliptical pipes, and Figure 31 for pipe -arch. HW (entrance control) is then compared to HW Enter Figure 14 (Figure 23 for elliptical, Figure (outlet control) and the higher of the two is 28 for pipe -arch) with discharge per pipe, pipe used. If HW (entrance control) is higher, opera- size, and d (d /RISE for oval or arch) and tion is Type IIIB. If HW (outlet control) is find critical slope Sc. higher, operation is Type IVA or IVB. Calculate II outlet velocity by dividing design discharge by the area of flow at the outlet and skip to step 17. At this point, critical depth and critical slope have been determined for the design discharge 10. HW is based on outlet control, the culvert is on a I and the trial size. Tailwater depth TW, barrel depth D, and culvert slope S are known. The mild slope and the outlet is submerged by TW or, the culvert is on a steep slope and the entire 1 IV -I0 I culvert is submerged by TW. of a Type IIIA or IIIB operation, skip to step 19. If the operation is not Type IIIA or IIIB, the HW = H + TW — S culvert geometry design is complete, go to step 18. If, however, the calculated HW is greater H is determined from nomographs at Figure 12 than HWA, the trial culvert size should be for box culvert, Figures 19 or 20 for circular increased (by adding barrels, widening spans, pipe, Figure 26 for elliptical pipe, and Figure 31 increasing diameter, etc.). Also, the culvert slope for pipe -arch. Outlet velocity is based on design might be adjusted slightly to cause a reduction in discharge and full flow at the outlet. Skip to step HW. Regardless of the changes made, the calcu- 17. lations must be redone; go back to step 3. If the calculated HW is considerably lower than HWA . c 11. If TW is greater than critical depth d skip to or lower than the culvert depth D, in order to step 13, otherwise; find a more economical structure, the trial culvert size should be reduced, by reducing the 12. Calculate HW by Type I operation procedure number of barrels, reducing span widths, re- E HW = d + V /2g + h + h -S ducing diameter, etc. The calculations must then be redone after any changes; go back to step 3. Outlet velocity equals critical velocity V .Skip *A good measure of this is to compare the HW c with the culvert depth D. If HW is below D, the to step 15. efficiency of that culvert size is obviously not . very high. 13. If TW is greater than D, the outlet is submerged and the culvert is on a mild slope, go to step 10, 18. The culvert for which the calculated HW is otherwise; satisfactory may have an excessive outlet veloc- ity. Just what outlet velocity is 'excessive' is 14. Calculate HW by Type II operation procedure. normally an engineering judgement based on local conditions. It is usually always most eco- HW = TW + V. /2g + h + h —S nomical to provide riprap, or sills, or a stilling basin or the like at the outlet end to control any Outlet velocity equals the design discharge di- excessive velocity. (See Velocity Control De- ( vided by the area of flow at tailwater depth. vices. Section 4-702) Generally, a properly sized culvert will have an outlet velocity greater than 15. If HW is less than 1.2D, skip to step 17, the natural stream velocity. Any outlet velocity otherwise, control device is considered part of the hydraulic design of the culvert. 16. The check should -be made here for operation Type IV B. At this point, it has been determined 19. If the culvert is operating on entrance control as that S < S TW < D, and HW 1.2D by found in Type IIIA or IIIB, the possibility exists calculation from Type I or Type II. Calculate a of improving the entrance conditions so as to new HW based on HW = H + P - S L. H require a less costly structure. This is done by o investigating the design of a flared (or tapered) determined from a nomograph on Figure 12 for inlet and associated structure. The design proce- box culverts, Figures 19 or 20 for circular pipes, dures are discussed in Section 4-603 for pipe Figure 26 for elliptical pipes, and Figure 31 for culverts and at Section 4.604 for box culverts. I pipe -arch. P is equal to (d + D) /2 if TW is less Due to the cost of the improved entrance, an than d and P is equal to TW if TW is greater economic comparison should be made between than d P i an approximation of the hydraulic the design with a normal entrance and the design with an improved entrance. Go to step 18 after grade line. Calculate outlet velocity based on d the improved entrance design is complete. if TW is less than d an d based on TW if TW is I greater than d 4-603. IMPROVED INLET DESIGN - PIPE 17. At this point, an HW and outlet velocity have been calculated for the design discharge_passage For pipe culverts on slopes GREATER THAN CRIT- through a trial size culvert. If the calculated HW ICAL SLOPE. I is less than or equal to the allowable headwater HWA and, in addition, the calculated HW is not Requirements: appreciably lower than HWA (an indication of culvert efficiency)•, the design is complete. If 1. Actual culvert slope MUST BE GREATER l 1 the above conditions are met and the culvert is THAN CRITICAL SLOPE. C i 1 - IV 11 1 2. Culvert operates with inlet control Note: (a) The rule that established HW = 1.2D as the (HWoc < HW dividing point between submerged and unsub- � merged entrances is no criteria in this sug- Definitions: gested design procedure for flared inlets. a te = HW (throat control) as calculated using (b) The entrance unit should never be cut to a flared inlet procedures skew as is done on an ordinary entrance. (See Chapter 10) HW� = HW (outlet control) as calculated using Type IV 4-604. IMPROVED INLET DESIGN - BOX I•I r • = HW (inlet control) as calculated using If the box culvert is established as having entrance Type III procedures control operation under Type IIIA it follows that the barrel of the culvert is less efficient hydraulically than H = Height of HW above the invert at the the entrance geometry. Steps are available to improve throat the efficiency of the barrel and they are as follows. S = Actual slope of culvert a. The barrel depth may be reduced in transition E from the original depth to a minimum of one L =Length of flared inlet (always = 1.5D) foot greater than the uniform depth flow. The (See figure 39 for dimensions of improved inlet) transition may be made in a minimum of 20 feet. See Figure 40a. This method is arbitrary and Procedure: should be used carefully only when the culvert is Note: For any culvert on slope greater than critical definitely operating as Type IIIA. where the entrance controls the headwater, The above method is economical and simple to (HW inlet control) there is a possible use for perform, both in design and construction. A a flared inlet to reduce the size of the barrel. more complex method of box culvert inlet improvement based on controlled research is the I! ) 1. To get the trial size culvert using the flared inlet following. enter nomograph, Figure 21, with design dis- charge and select a pipe size that will yield a HW b. Straight - Tapered Inlet: Box Culvert (throat control) equal to or slightly less than the design allowable HW. If, in the process of ordinary box culvert design, it is found that a single barrel box-culvert on 2. Determine critical slope for the trial pipe size steep grade (S > S under Type IIIA opera - and material determined in step 1. tion satisfies the design criteria, then a straight - 3. When either TW D or TW (d + S L) tapered inlet for the box should be considered. c o , (It is likely that if more than one barrel is then determine HW (outlet control) (Type IVA). involved, a tapered inlet will not be an eco- See Section 4-602, step 10. Jf TW is less than nomical alternative. This is because, each barrel these requirements outlet control will not be must have its own taper and, therefore, the considered. barrels must be separated.) If the culvert has 111 4. Trial size is verified when: been originally designed as a Type IIIA opera- tion, then the culvert entrance is the point of e tc < HW allow (step 1) hydraulic control. This means that the barrel is more efficient than the entrance. In such a case, I S o > S c (step 2) a better balance of entrance efficiency and barrel efficiency can be attained by use of the tapered HWoc W tc < H (step 3) inlet. Figure 40b is an illustration of the straight - tapered inlet for a box culvert III 5. If trial size is verified, compare with culvert The procedure for such a design is as follows: without flared inlet for economy...Calculate outlet velocity in accordance with procedure Given: 1 - Span (W) X Depth (D) I outlined under Type IIIA conditions, Section 4- 304.4. S < S 6. If trial size is not verified then simply design I . culvert without flared inlet in accordance with HW - HWA usual procedure given in this chapter. i s 1 IV - l2 Type ILIA operation the new culvert barrel width (B). Q 7. If S > S the tapered inlet design will I . work and should be used. See Figure 13 or 40b for proper dimensions of the taper. Go to I. Try B = W /1.6 (round to nearest whole step 9. number) = new barrel width. If B < D, use il B = D as the first trial width. If S < S the tapered inlet is ineffective and HW should be calculated on the basis of 2. If B = W, go to step 8. Otherwise, q = Q/B = Types I, 1I, or IVB operations. It will prob- discharge /ft. of barrel width. ably be found, in this case, that HW > HWA. Go to step 8. 3. Enter Figure 13 and find H /D. 8. If this step is reached, the original ordinary 1 4. HW = H • (S (Where L = 1.2B.) culvert design likely cannot be improved upon. ., 5. If HW < HWA, go to step 6. Otherwise 9. End improved inlet design - Box. Compare increase B by one foot and go to step 2. with culvert without flared inlet for eco- nomics. Calculate outlet velocity in accor- 6. Find d and S from Figure 9 and Figure 10 dance with procedure outlined under Type respectively. d and S are to be based upon IIIA conditions, Section 4- 304.4. c \ TABLE 1 Entrance Loss Coefficients Type of Structure and Design of Entrance Coefficient C Pipe, Concrete Projecting from fill, socket end • 0 25 Projecting from fill, sq. cut end 0.55 Headwall or headwall and wingwalls Socket end of pipe 0.2 Square -edge 0.5 End- Section conforming to fill slope 0.5 1 Pipe, or Pipe -Arch, Corrugated Metal Projecting from fill (no headwall) 0.9 I Headwall or headwall and wingwalls Square -edge 0.5 End - Section conforming to fill slope - 0.7' 1 Box, Reinforced Concrete Flared Wingwalls 0.4 I Parallel Wingwalls 0.5 Straight Wingwalls 0.70 E i { C ,. Xter g e74910009,00, ate. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT , _. __ � BY v � N l DATE I JOB NO. I SHEET i . OF,(,. T 7 - 2/7)b 0 ra V P 42 pa- zfou bt2 td , c 6 eoL c,aJC e r . - fiiAtt� rnt /1atu �. ,,ata,A.Q . 2 62.4 pc-4- rJ '` / /_b x62.4 = 68 1' i LI F,.. V . 4- ) ) 1 , _ F � -- 0142 x 62x- _ r •88 1A = 8 -2s # F v 0 I'n Tah4t 2 6, " FO v nuALws - sf vw1 awe f s h• a; n a- 8 P.0,2, r k_41.-.) yowl , r t 41/. . CI 2.- d57 1113 e 2- FOY (I n; •- n Le , 4 _ a 01/6 ,_ LOA :- /• 2 s t , 9 n 2. O. 3839 tEl 0 - ,38 A . 4 .7 7 xC$'c►2 (9) - 2 41) RIY CCht45v • 4 t h Cv-e-C./b P i f ' "2, ' ' �b = / - 2 S C• � 2 A _.... 0.11 tO - 2 r (6.2r-4 4 7 *C6/�I2) &3 - is. / � r 121` � g a.} .2e ?2 ham' 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626 -3428 • (714) 641 -8777 , , .,.. I „. . .. ., ,1 hia,er g 2a/e60‘4,40t, atC. ,.. ..,,,,, CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT IBY I DATE iJ08 NO. 1 SHEET L OF A f Vge ', :_. 6..s ,, .... - EA I �' 4r,,/E4 n- - o , pc i F6y 6 d wA cam- , I"ia, . - A >c I - f - C IC )114 4t c l� 1 8-150 g -ga Cam` t; I( - d o � 3 � 1 24 0 0L3_) ' gx lao0 Go 6'1 4- 24 �0 A-C1 3/i- 3, 5 -. • ; 0.3 `75 tea - - 1 4 . a . ;71-4_ o il) ,c 12 ' 2, VI ax ,; ?)-( err � � c / 4 27 / 1 4,, .. 42: 7, L- _. ) op I �Q w a}>.(-._ 4-Lit , ‘0 , 0\ / / 4 v /Jr� � � 1 2 cc ,� `� L c / ,, C fc Tc. tk ou I 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626 -3428 • (714) 641 -8777 n r 7/a, g Poiee0t44t, ate. .... _. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT l BY I DATE 1 JOB NO. I SHEET OF 4 3. w t 6 V T r14; o 1 4 Lj9,� � A- ►g9t, �'� 133 I L,61 . Ra 62.444 4.95 f Ihh c .26, ±±e , /3: 0 -2J 2 0 - 2i A (4 -9 9) ,< 03-9( IL) /19 1 MaacA 1 ►'1. ig C /Z /74 0 /74 0 1 ' 0 . d725 A vw....,7_ 7 c. ,64_, k /iv ,1 A . W 3 @ 1 re G ° 9 P p _f 9 I I PB 3 ►So .: 133 1I� v �D}. _ y ,� 6 ft ° 6i y 6 2 j I 9 1 : i ° > i 33 r Z.1f4, 6, I '-' 6" i, 3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92626-3428 • (714) 641 -8777 \ ee. 1 J CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING I j SUBJECT I BY I DATE I JOB NO. I SHEET Al- OF 4. L d ad Tva r✓.l m∎ 1 kO( (. tt .-Fa tz r, Aaki an L Dekol frA k +o f 4rorn W e jf = /331 Lam. E - JJ /r`_ n � � Cmo x + ►so 6� = rso j o td_ .,04 _ 133 /4-is-0 _ /4 8-1 Lbw . c� ,Q �� �, d b Po ��'' D _ , 1 _ /48-1 _ 9,r �1 ,L� fi'° ,o rn lfi� C7 /� - � ' U 8G, RI0- / _ TAB Z9 -8 C ! >k C ■ C [ _ - 1 1 1 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626 -3428 • (714) 641-8777' 386 Formulas for Stress and Strain Immo. 10 n C p ii ART. 10.101 V A C` O 0 o,E 0 ,II' II . O - ' z c a 1 • ti v A . Y -, 3 . Y C .> .7.". N - ■ a .O 33 _ - 7 . O y N r m y -0 C < '"� . II R m >. . ` • T - O e . e C G Y R O Y E g s x N ° e Y Y n h 4 c . O > n - r. - • O Le A O . G e.0 Y o_ o o _ -cl y Y Y O ��C 1 '" r E c r i �. n c y Y OP. 10 0 GI GO 0 O. O' O + d1 n :2 N g O 2 u a- e eo g e + rt • u 1:: u I II a m eo n r a r I N G « m , E� W • e Z e eo ^^ e •e. A O, O r E p n 0 .0 • .1 I C 'em = 1° O' } - A n i G . e b • a v 00o P. 0 II -- to 1 _ _ �' tl�• Y O >• Nb = C n . . O W O T - l' I 7 . V Y O. e4i Z w O O �� 3 G . ���jjjj - • . O A °1 o O � I .� e - ■ I E II II � . 3.e 1 0 n n • •'f 00 C 0 r:'O N F • 4 • • x • r c A 3 a w °! n ro n w 0 x el e o' 2 o -+ a •v• ; i • e oee Oe . n 2 • s I , N ea i 3 =. >. = 5 i ee e q � = a Z 3 ;, u • II '—, y n Ti. C e - e " I v a e • nt t C E `Y a 9 0 8 e A . �°-1 o R a y 'S Y u S'oS ` .o e 6�° Ir'r Fv�' ` .8e8 i 0 � 1 E N ,....3. 2 = �0 1 Si, C r 4 � t 7 y I t ' r Y` NI C g i 1 .0. (A go N�fi N Z Y • x + – 03 ▪ P O � .y. 4 .1 oe 1. y 7 Y r' ' s ° u 0 ' 1 _. 1 1 Eill • 1 [CRAP. 10 ART. 10.101 Flat Plates 387 e I N _ �n -rx P/ i , . .. O O O O G G • - n C O M T T • a -' 6666 • a P1 w a n 'e 41 ei 060666 1I 1 I • 0 O a n {0 M 1 O G O O C . e1 G ow n G O C O ^ £1 T n I 0 r` e1 G 0 n - •-• - C O T. r. 0 r- o — . n 6r. -r-r ci C O e O C O ° 0 0 0 0 0 • c S C4 M O aC n n . ..� = C = , 6 d a r. T G o d d o II t r ti O 0 0 0 = o ° 6 n • n G $ '• G T 01 n 0 • Ol y e W O C C G S. te G aC. A es al e o in 0 0 T T O , e1 O _ 01 ^ ea II 0 0 ' T O h O r. 0 ie O 8 GO OO n�on�e1» N C •"' O C C C O O 0 of n O n 1 O O • Z C •a n i'O M T n ��� '' 0 0 eft O O C G G C C O - ( G vi 1 T et a es 01 - 04 ,p M O N O p C 11 ~ T O 0 11 N of G 0 • n0 �I.. • - O - 0 II x• oo 11 %, a Cv II ti II > w '> w > II a �, aac-r • 04 aw E o w 1°e ao E o r o0 n I ' - C = O aC n 10 N e j e1 O 0 e1 O ` -' °. = u COO C a - C O C C V Oo 0 e. amnouel _ r w w et v 1 O 01 n 6 w c b G ' ^• ' p o C n i ee : - v 5 ewe __ _ , . e 1 b W T N M: o L ei 0 o - - •— • 6 a E ZI `i =e E t =o E o e .! i QiC a _ II O° K 11 Y 01 .4. 10 4 O -Y C 0 0060 - w m w g .e w �e 7 L C � C 7 CC 7 - C p & I = i I I I r 'g= tc • • ' r - 7 - LOS ANGELES COUN7Y FLOOD CONTROL DISTRICT PROS P050t1, DESIGN DIVISIGN DESIGN OF DOUBLE BARR REINFORCED CONCRETE SOX BARREL 0 1 BASELINE S.D RCB AT R/R CROSSING 44+60.00 , 10.00 WIDE BY 8.00 HIGH DESIGN COVER 9.5 FT TYPE INSTALLATION TRENCH PROJECTION RATIO .00 ' SOIL DENSITY .120 KCF LIVE LOAD RAILROAD AXLE LOAD 60.0 KIPS TOTAL DESIGN VERTICAL LOAD TOP 24.70 KIPS INVERT 22.92 KIPS PRESSURE HEAD .0 FT DESIGN STRESSES FC . 1800. PSI FS = 40000. PSI - ' THICKNESSES (INi TOP 16.50INV(C.L./ 15.50 EW 9.00 CW 9.00 ( - - =.idEEL LAYOUT BAR OAR HORIZONTAL VERTICAL ' DESIGNATION 51ZE .,,i„: BAACING LENGTH LENGTH (FT)(IN) (FT)(IN) 13 4. 20.0 22. . 2.1 ' .. .•,...-• - ' , Z.-Z....Z - 2i, :.••;-, a 22. .0 0. .0 ._,...... „ --.. - - '-' .... , ,,,,,Alik=4„-.....4. x4,444es; AWOL • -40- .44.9ka.* - tate - 11. 5 . ,,- ••• . Fl 6. , • 17.2 22. .0 0. .0 ... ...-i....„. .-.....,; ...t,...1 O. .0 - 4. • . 0 v It " ' ' '', ." t , ' ' , : - 41r; ikelti.J# ' Asti 1g, e , 15. ' 9.• s. .s Hi 6. .,1--a 14.0 5. 4.5 0. .0 . CW 4. 119.0 0. .0 10. 5.0 ..,,; LONGITUDINAL BARS 90. NO.,...4F BARS TN TOP SLAB 31. - - - 711 INVERT SLAB 31. - IN WALLS 30. QUANTITIES CONCRETE 2.91 CU. YDS./FT. REINFORCING STEEL 231.9 LBS./FT. , INPUT DATA 4, 10.50000 416.50000 aa.aaaaa .aaaaa i0. 00000 ( 8.00000 10.00000 0.00000 10.00000 10.00000 9.00000 2.50000 2.50000 2.50000 2.50000 2.50000 2.50000 3.00000 .70000 -.50000 l .15000 4000. 00000 1600.00000 60000.00000 40000.00000 8.00000 500.00000 70.00000 .12000 350.00000 . .03700 i _ . VG LOS ANGELES COUNTY FLOOD CONTROL DISTRICT PROG F0501A DESIGN DIVISION DESIGN OF DOUBLE BARREL REINFORCED CONCRETE BOX BARREL * 1 BASELINE R.C.B DBL 10 *8 FOR HS20 LOADING 10.00 WIDE BY 8.00 HIGH DESIGN COVER 10.0 FT TYPE INSTALLATION TRENCH PROJECTION RATIO .00 SOIL DENSITY .120 KCF LIVE LOAD TRUCK AXLE LOAD 32.0 KIPS TOTAL DESIGN VERTICAL LOAD TOP 16.44 KIPS INVERT 17.04 KIPS PRESSURE HEAD .0 FT ' DESIGN STRESSES FC = 1800. PSI FS .. 24000. PSI - THICKNESSES (IN) TOP 11.50 INV(C.L.) 12.50 EW 8.00 CW 8.00 STEEL LAYOUT BAR BAR BAR HORIZONTAL VERTICAL DESIGNATION SIZE SPACING LENGTH LENGTH (IN) (FT)(IN) (FT)(IN) B 4. 17.0 21. 9.0 0. .0 B1 B. 17.0 21. 9.0 0. .0 C 4. 14.0 4. 2.5 8. 4.5 C1 4. 14.0 1. 7.5 1. 10.0 C2 5. 14.0 4." 6.0 2. 5.5 D 4. 18.0 0. .0 9., 9.0 F 4. 17.0 21. 9.0 0. .0 Fl 8. 17.0 21. 9.0 0. .0 ' 14.0 15. 8.5 " 0. . 0 ; iii.", At. ,.:,...P.;13ri;; is 'alt r ra c:: ,,r1 5;:. t;f7i _. a .. H 6. 14.0 15. 8.5 0. . 0 Hl 8, 14.0 5. .0 0. .0 CH 4. 18.0 0. .0 9. 9.0 _014GITUDI, .:1_ eARS 92. NO. 4 BARS IN TOP SLAB 31. IN INVERT SLAB 31. IN WALLS 30. QUANTITIES CONCRETE 2.27 CU. YDS. /FT. REINFORCING STEEL 275.2 LBS. /FT. INPUT DATA & DESIGN CRITERIAt 10.00000 10.00000 32.00000 .00000 10.00000 8.00000 1q4.00000 8.00000 6.50000 7.00000 8.00000 a.00000 2.50000 2.00000 2.00000 L.50000 2.00000 3.00000 .70000 - .50000 ■ .15000 4000.00000 1800.00000 60000.00000 24000.00000 8.00000 500.00000 70.00000 .12000 350.00000 .03700 AMMERNIMMOMI Zf ' 7 ' y . o / , • a / . _ ' cN / ' O / / 4 Z C I / sue e* O �i • J ,t • d • C • / , / I I ' \ ' ' 0 Q CO NM / !� V. 1 ! •} • • ' :fN 4. NI a .= 9 ' , 1 ; 1. // E , ' \ . , ,.., 4, l O7m / MO s � tt r� Q .??,/#74\ /".' a" cv di v /O),/JP a .� � Irs 4 , \ x / / \ / g v N ' ' a sic /t\ < 8 �:� - 0< a� ._ 7 i ° Q ' a °P'. \ .. . \ / , /, V mi - - a ■ 1 / / .., \ . . 1 / c < ` , \ a A �\ • _ . _ / / . \ n • •� � o i • 0 . 1 AC O.p •\ �� i �•. ; ° 6. N? \ ! I .% .%, O 4. a ti �• �• - v 3 -. 4 'i • • • N. ap I _ 4 ff �y d Off 0 � +t i • a te . < 2 �. a� y ti c- ; 2 \ 4 4) .S. I ,• `•�•�1,, r O \ '' �6,' . ° `' O. I I . \ \ 9 " \, . I (%. coo o le .4'.1 U. of • < �• N q c tU , aft 1 1 i m.,41..a. 1 l i KEY TO LOG OF BORINGS It Samples: II Indicates Undisturbed Sample. Undisturbed samples are obtained with a C.N.J. Sampler (3 -1/4" 0.D. and 2 -1/2" I.D.) driven with a 140 pound weight falling 30 inches. The blows per foot are II converted to equivalent SPT N- values. 0 Indicates Standard Penetration Test (SPT). The SPT is the number of blows required to drive an SPT sampler 12 inches using a 140 pound weight falling 30 inches. The SPT sampler is 2" 0.D. and 1 -3/3" I.O. II ® Indicates disturbed or bulk sample. Soil Consistency: Compactness of Granular Soils 11 1 No. of SPT Approximate Description Blows (N) Densitv Very Loose 0 -4 0 -15 Loose 4 -10 15 -40 • it Medium Dense 10 -30 40 -70 Dense 30 -50 _ 70-85 ~ Very Dense over 50 35 -100 1 Consistency of Plastic Soils .No. of SPT Shear II Approximate Description Blows (N) Strength (PSF) ,I Very Soft 0 -2 Less than 250 Soft 2 -4 250 -500 Medium Stiff 4 -8 500 -1000 Stiff 8 -15 1000 -2000 Very Stiff 15 -30 2030 -4000 Hard over 30 More than 4000 ENCLOSURE: "D" 1 JOB NO.: 86148 -3 ■ : ) I/14C. J 4 DESCRIPTION • 0 Q y `� �0� P� f � q � � � _ 0,4 v 4aP y ` d' h�4 10.7 ,[: . (SM) Silty Sand, fine, with traces medium, coarse and F. gravel to 1/2 ", loose, brown 5 108.7 10.3 E E , ,::., ...:. ,1 ,..., : p l �° . 31 114.5 4.5 15 :: (SM) Silty Sand, fine, with traces medium, coarse and . : gravel to 3 �� , medium dense, brown { 1.8 •••?, (GW) Sandy Gravel, fine to coarse, gravel to 3 ", with p;.•+ traces silt, dense, light brown 1 . • O ' 32/6" "o .,.. .. r ;' a t 29/6" . . i ..o.' • r . to 0 Q I: 42 130.1 2.0 ; :� ' Q : II 30/5i" , .. I NO BEDROCK NO REFUSAL NO FILL - CAVED TO 14.0' NO FREE GROUNDWATER 1 60RING 3 F OR =B.D. Fontana, W. PROP. 25 -YEAR REINFORCED CONC. BOS STORM DRAINS End Venture BASELINE ROAD & FOOTHILL BOULEVARD THIS LOG REPRESENTS CON t VILLAGE OF HERITAGE TITIONSENCOUNTEREDATTHE TIME AND LOCATION OF THIS DATE EXPLORED: 2 -20 -86 RIVERSIDE, CALIFORNIA EXPLORATION. 1 1 C • 11141. J • INCORPORATED 1 ENCLOSURE: "C" JOB NO.: 86148 - Ct 1 l ■ 4 Niv ect , .,‘„v , „ e 4 0 :% ‘ , . et$‘ t 47 4# q. 54 DESCRIPTION 0 41 4 dM° 5 ,+ 4 c) ■ I 10.7 �1 : '' (SM) Silty Sand, fine, with traces medium, coarse and — 2 , Qi gravel to 1 ", loose, brown 10. :-.1 6 103.5 14.1 .1 - _ 4 -, i l.. il 5.3 A . 1 . . SM) S ilty Sand, fine, with traces medium and coarse, I 6 • . F . medium dense, light brown 1.4 41 t1: (SP) Sand, fine to medium, with traces coarse and 111:•!':.;.••• gravel to 1 ", dense, light brown 36 123.0 1.5 8 °'' A... 10 ..: a: 12 31/6" 2.7 p = (GW) Sandy Gravel, fine to coarse, with traces silt, ?o dense, light brown II • 14 ' 16 1 .,;;,'; 28/6" ;.6.„.. 18 ': I i ro. 20 NO- BEDROCK REFUSAL GRAVEL AND /OR COBBLES @ 19.0' NO FILL CAVED TO 12.0' • II 24 NO FREE GROUNDWATER r—• 1 2s 1 1 r 30— 1 ' BORING 2 FOR:B.D. Fontana, . PROP. 25 -YEAR REINFORCED CONC. BOX STORM DRAINS 1 End Venture enture, THIS LOG REPRESENTS CON - BASELINE ROAD & FOOTHILL BOULEVARD DITIONS ENCOUNTERED AT THE VILLAGE OF HERITAGE TIME AND LOCATION OF THIS DATE EXPLORED: - - - FONTANA, CALIFORNIA EXPLORATION G - - -- INCOR PORATED • ENCLOSURE: "= JOB NO.: 8614 e y . Q � �, 0 4 � A 4 DESCRIPTION .5 .I ! ii.: 9.4 22 ;i�: (SM) Silty Sand, fine, with traces medium, loose. brown I: �:� r: 7 106.5 12.5 .'' It r. 1: 4 ;. 1:: .:. I: 7 116.1 11.9 , �' 1.6 (SW) Sand, fine to coarse, with gravel to 3 ", dense, ' ,., ; . light brown 41 E ,,,•..;,. 2.3 — 0 (GW) Sandy Gravel, fine to coarse, gravel to 3 ", dense, I: 2) 28/6" '. • v : light brown :o _ 16 • c- Q .S• , • E.,..... 30/42 125.3 3.4 i d •. c ' L 22 ...-0. II 15/2" 6. °G' 26 1 1 1 NO BEDROCK NO REFUSAL _ _ NO FILL I 30 CAVED TO 17.0' NO FREE GROUNDWATER BORING 1 FoR' B.D. Fontana, W. PROP. 25 -YEAR REINFORCED CONC. BOX STORM DRAINS End Venture BASELINE ROAD & FOOTHILL BOULEVARD THIS LOG REPRESENTS CON- VILLAGE OF HERITAGE DITIONSENCO = _DATTHE TIME AND LOCHCA ' :N OF THIS DATE EXPLORED: 2_20_86 FONTANA, CALIFORNIA EXPLORATION 1 I1M • I1 • oaf • INCORPORATED 1 , I , I ■ i 1 164 FOUNDATION ANALYSIS AND DESIGN Table 4-8 Presumptive bearing capacities from indicated building codes, psf Complexity of soil Lack of control ow Natl. Board • Incomplete knowle of Fire New York Uniform Inability to develoF Chicago, Underwriters, Atlanta,' City, Bldg. Code, Soil description 1981 1967 1973 1968 1976t Inability to determ These uncertaintie site and a suitab Clay, very soft 500 Clay, soft 1500 3000 1000 2000 1000 Clay, ordinary 2500 overly conservativ t : Clay, medium stiff 3500 5000 2000 1000 Clay, stiff 4500 3000 4000 Clay, hard 6000 10 000 1500 1. Magnitude of d Sand, compact and clean 5000 6000 6000 -16 000 ,, results Sand, compact and silty 3000 2. Relative cost of Inorganic silt, compact 2500 '- 3. Relative change ' Sand, loose and fine 4000 < 4000 1500 l I Sand, loose and coarse, or 4. Reliability of s.) i sand- gravel mixture, or 5. Changes in soil I compact and fine .6000 8000 1500 II other causes Gravel, loose, and compact a� 6. Accuracy of cur coarse sand 8000 12 000 2000 ' + Sand - gravel, compact 12 000 8000 16000 -20 000 2000 Hardpan, cemented sand, It is customs' cemented gravel 12 000 20 000 24 000 Table 4-9. Shear • Soft rock 16 000 2000 F values in Table Sedimentary layered rock tainties in develo, j (hard shale, sandstone, lar real safety 1 siltstone) 30 000 16 000 I Bedrock 200 000 200 000 40 000 -120 000 4000 using q, = q. the i _ ples, so that the • Use of presumptive pressures limited to structures not over four stories. in the true F bein t Values are so low an exploratory program is mandated for all but smallest structures. bearing capacity 1 safety factor. Sotr iiii 1 ation of partial sa "lower- bound" value —in the case of steel on the order of 10 to 20 percent less to 1.3 on 4) and than the general range of measure yield strengths. Thus a "safety factor" of sorts somewhat more I is already applied. The design 1 Code values used to develop live and other loads are a compromise between upper Using the load t■ er and near upper bound. Building self- weight, or dead load, is reasonably R1 the following r 1 identified (at least after the structure is designed). Either the service loads are Desigr, multiplied by a suitable set of load factors and compared with the "ultimate strength" or the structural material or the yield strength is divided by a suitable Design F and compared with the loads. We note in passing that in concrete strength Desigr I j� • design the load factors for dead and live loads represent in a limited way the ® different degree of uncertainty associated with each type of loading. A number of oth% There are more uncertainties in determining the allowable strength of the soil etc., are comma 1 i than in the superstructure elements. A number of these uncertainties can be transitory loads deduced from discussions in Chaps. 2 and 3. These may be summarized as: We should e I ■ t y i 1 • 1 3 .1 i 2909, 29•A, 29-B UNIFORM BUILDING CODE - 1982 EDITION # 1 7t 1 . EXCEPTION: When u stified in accordance with Section 2908 ), the allow- j 4 i able stresses may be increased to 0.50F, . inches and a minimum depth of 12 inches in below, increase of 20 percent allowed for eaci t Combined stresses shall not exceed those in Chapter 27. maximum value of the times the designated i ± 3. Minimum dimensions. Driven piles of uniform section shall have a nomi- i ° �Y increased the amount of the designated ` maximum of 15 rimes the designated value. Is j ' nal outside diameter of not less than 8 inches. signs and poles used to support buildings whi motion at ground surface due to short -term 1a { ' bearing values equal to two times the tabulate • ; sCoefficient to be multiplied by the dead load. 6 Lateral sliding resistance value to be multiplie. TABLE NO.29 - FOUNDATIONS FOR STUD BEARING WALLS — MINIMUM lateral sliding resistance exceed one half the d. i REOUIREMENTS1 s No increase for width is allowed. ' ; ; NUMBER OF THICKNESS OF DEPTH BELOW • , . FOUNDATION WALL WIDTH OF THICKNESS UNDISTURBED I { g (Inches) FOOTING OF FOOTING GROUND BY THE SURFACE UNtr (Inchp) (Inaba) 1 3 CONCRETE MASONRY (ate) 1*:: TABLE NO.29- C— CLASSIFICA 1 6 6 12 6 12 EXPANSION INDEX ' 2 8 8 15 7 18 ite Z 0-20 1 : ;' 3 10 10 18 8 24 1 21 -50 P • I 51 -90 • . 'Where unusual conditions or frost conditions are found, footings and foundations shall be 51 -100 a as required in Section 2907 (a). 1 2 The ground under the floor may be excavated to the elevation of the top of the footing. Above 130 6i II 3 Foundations may support a roof in addition to the stipulated number of floors. Foundations supporting roofs only shall be as required for supporting one floor s ;! 1 . ' 1 TABLE NO. 29 -B— ALLOWABLE FOUNDATION AND LATERAL PRESSURE 1 BEARING LATERAL SLIDING' 1 I � �� FrJ TABLE NO.29 -D— WEIGHTE A LLOWABLE FT. OF DEPTH D EPTH INTERVAL r FOUNDATION BELOW { PRESSURE LBS: NATURAL COEF- RESISTANCE I !'i •. CLASS OF MATERIALS SO. FP GRADE FICIENTS LBSJSO: F1 0-1 "'E 1 -2 11 1. Massive Crystalline Bedrock 4000 1200 .79 ' I '' 2. Sedimentary and Foliated 2000 400 .35 2 -3 ;; Rock I 3 -4 1 3. Sandy Gravel and/or Gravel 2000 200 .35 • Below 4 (GW and GP) � 4. Sand. Silty Sand, Clayey 1500 150 .25 'The weighted expansion index for nonuniforr. 1 Sand. Silty Gravel and Clayey I expansion index for each depth interval by the Gravel ISW. SP. SM. SC, GM the products. and GC) 2 Depth in feet below the ground surface. ' 5. Clay, Sandy Clay, Silty Clay 1000 100 130 and Clayey Silt (CL, ML, MH and CH) -- 'Lateral bearing and lateral sliding resistance may be combincd. - =For soil classifications OL, OH and PT (i.e.. organic clays and peat). a foundation investigation shall be required. 3 A11 values of allowable foundation pressure are for footings having a minimum width of 12 . .1I 522 II • 11 . 318-96 ACI STANDARD APPENDIX B — ALTERNATE DESIGN METHOD 1 • 1 B.0 - Notation B.1 - Scope Some notation definitions are modified from that in the 8.1.1— Nonprestressed reinforced concrete members I main body of the code for specific use in the appli- may be designed using service Toads (without load cation of Appendix B. factors) and permissible service Toad stresses in ac- cordance with provisions of Appendix B. A = gross area of section, sq in. I A, = loaded area 8.1.2— For design of members not covered by Ap- AZ = maximum area of the portion of the support- pendix B, appropriate provisions of this code shall ap- ing surface that is geometrically similar to and ply. • conce with the loa A, = area of shear ntric reinforcem reinforcement with in a distance B.1.3 — All applicable provisions of this code for non- s, sq in. prestressed concrete, except Section 8.4, shall apply b = width of compression face of member, in. to members designed by the Alternate Design Method. b = perimeter of critical section for slabs and footings, in. 13.1.4— Flexural members shall meet requirements for b„ = web width, or diameter of circular section, in. deflection control in Section 9.5, and requirements of . .,__ d = distance from extreme compression fiber to Sections 10.4 through 10.7 of this code. centroid of tension reinforcement, in. E, = modulus of elasticity of concrete, psi. See B.2 - General Section 8.5.1 E, = modulus of elasticity of reinforcement, psi. See B.2.1— Load factors and strength reduction factors 4 Section 8.5.2 shall be taken as unity for members designed by the f; = specified compressive strength of concrete, Alternate Design Method. psi. See Chapter 4 • fQ = square root of specified compressive strength 8.2.2— Members may be proportioned for 75 percent 1 of concrete, psi of capacities required by other parts of Appendbc B r f = average splitting tensile strength of light- when considering wind or earthquake forces com- weight aggregate concrete, psi. See Section bined with other loads, provided the resulting section ale 4.1.4 is not Tess than that required for the combination of f, = permissible tensile stress in reinforcement, dead and live Toad. psi f = specified yield strength of reinforcement, psi. 8.2.3—When dead load reduces effects of other bads, See Section 3.5.3 members shall be designed for 85 percent of dead - - E M = design moment load in combination with the other loads. n = modular ratio of elasticity B.3 - Permissible service Toad stresses =EJE, 1 N = design axial load normal to cross section oc- 8.3.1 — Stresses in concrete shall not exceed the 101- curring simultaneously with V; to be taken as lowing: positive for compression, negative for ten- sion, and to include effects of tension due to (a) Flexure 1 creep and shrinkage Extreme fiber stress s = spacing of shear reinforcement in direction in compression 0 45 f; parallel to longitudinal reinforcement, in. -- v = design shear stress (b) Shear* v = permissible shear stress carried by concrete, Beams and one -way slabs psi and footings: v,, = permissible horizontal shear stress, psi Shear carried by II V = design shear force at section concrete v 1.1 f, a = angle between inclined stirrups and Iongitu- Maximum shear ' dinal axis of member III i = r atio of long side to short side of concen- carried by concrete plus iii R� g shear reinforcement v, + 4.4 VT, trated load or reaction area p = ratio of tension reinforcement = A, /bd 1 'Fa more dstaded calculation d shear stress caned by v, and shear values 0 = strength reduction factor. See Section B.2.1 k« Aghlweght aggregate concrete, saes 8.7.4 11 '1 BUILDING CODE REQUIREMENTS 318 -97 1 Joists* cept in calculations for deflections, value of n for light- Shear carried by concrete, vc 1.2 V f weight concrete shall be assumed -to be the same as i 0 Two -way slabs and footings: f, for normal weight concrete of the same strength. Shear carried by concrete, v (1 + 2 / B.5.5 - In doubly reinforced flexural members, an ef- Pc I fective modular ratio of 2E, /E shall be used to trans- but not greater than 2 VP, form compression reinforcement for stress computa- tions. Compressive stress in such reinforcement shall ■ Bearing on loaded areat 0.3fc not exceed permissible tensile stress. li • B.3.2 - Tensile stress in reinforcement f shall not ex- • B.6 - Compression members with or ceea the following: without flexure (a) Grade 40 or Grade 50 B.6.1- Combined flexure and axial load capacity of ;: rrforcement 20,000 psi compression members shall. be taken as 40 percent of that computed in accordance with provisions in • (b) Grade 60 reinforcement or Chapter 10 of this code. greater and welded wire . fabric (smooth or deformed) 24,000 psi B.6.2 - Slenderness effects shall be included accord- • Y ii ing to requirements of Section 10.10 and 10.11. In (c ) For flexural reinforcement, Eq. (10-7) and (10 -8) the term P„ shall be replaced 3'8 in. or less in diameter, in by 2.5 times the design axial load, and 4i shall be crre -way slabs of not more than taken equal to 1.0. 12-ft span, 0.504, T but not greater than 30,000 psi B.6.3 - Walls shall be designed in accordance with ' Chapter 14 of this code with flexure and axial load B.4 - Development and splices of capacities taken as 40 percent of that computed us- reinforcement ing Chapter 14. In Eq. (14 -1), 4) shall be taken equal ) . B.4.1- Development and splices of reinforcement shall to 1.0. be as required in Chapter 12 of this code. B.7 - Shear and torsion f B.4.2- In satisfying requirements of Section 12.11.3, B.7.1- Design shear stress v shall be computed by. M„ shall be taken as computed moment capacity as- suming all positive moment tension reinforcement at V the section to be stressed to the permissible tensile v = (B -1) b stress f,, and V„ shall be taken as unfactored shear _ force at the section. where V is design shear force at section considered. B.5- Flexure B.7.2- When the reaction, in direction of applied shear, For nvestigation of stresses at service loads, straight- introduces compression into the end regions of a . line theory (for flexure) shall be used with the follow- member, sections located less than a distance d from ing assumptions. face of support may be designed for the same shear v as that computed at a distance d. B.5.1- Strains vary linearly as the distance from the • neural axis, except, for deep flexural members with B.7.3 - Whenever applicable, effects of torsion, in ac- overail depth -span ratios greater than 2/5 for contin- cordance with provisions of Chapter 11 of this code, uous spans and 4/5 for simple spans, a nonlinear shall be added. Shear and torsional moment strengths dist-cution of strain shall be considered. See Section provided by concrete and limiting maximum strengths 10.7 �f this code. for torsion shall be taken as 55 percent of the values given in Chapter 11. B.5.2 - Stress - strain relationship of concrete is a straight line under service Toads • within permissible servce load stresses. .bbd in accordance with Section 8.11 of this code. B.5.3 - In reinforced concrete member _ f" "hear re is provided see Sections 8.7.7.4 and 8.7.7.5. s, concrete re sists no tension. thaan the supporting surface is wider on all sides than the loaded area. permissible baring stress on the loaded area may be multiplied by VA: /A, /A, but not more than 2. B.5.4 - Modular ratio, n = E,/ E, may be taken as When supporting 1 pyramid k area of the altar loses of the largest frustum of a right swirl and having horizontal. its upper base the loaded area and having "de slopes °" the nearest whole number (but not less than 6). Ex- Wal 261e$0114/4 UMW CIVIL ENGINEERING • LAND PLANNING • SUBJECT I BY I DATE I JOB N STREET CAPAC CAL LS 1 1 1 3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92626 -3428 1 ,. _,. /te1 . ) ..- . 1 . - CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT _ .._.._ _ .. __. ._ ._- 108 3 7% MEET OF 1 Vf NK1. N.- . ` DATE 77 _ 3&10 -pv _. . cgCSC Er r1" ROAD. Z . _ 'ptAcrry Alin,: 6 " c- , E sr 3 `3` . . . _ : ©•!7 : _ .. ._ _ Q•rro ' 7,2C: "17 :.!1•o7$ _. g .., _ ._._, . _ 0 - 2d _ . 7S . - ._ ' - 0' 7y I - 2; q 4 -CIn2 '..4i -J., .0-277 . .. -._. ... oa.... - .._. . ..-'_•. .. } ..1 1 0-30 525 -- 6 -641 3 0 -'Is' is. 62 . 0-35 _ 6 5o 4 -135 _f - $6 0 -'36 24-41 1 0-44 .771 1-291 . 16 .- 8 � _ma 37• 37 t: B,00 . [ • 3 6 9 - ii. -42 , 0 -163 i4o .47 . - • 43 • q -oo 1535 _ __ = 44 • 0.163 . . _ B As- 41 _ _: _ -- - 4 - ' 10-oO f -7z1 1/0-47 o- rls Sty 53__ ; I . 0 -1411_ frso _. 2 051 -. 71 -0 0 0 - t7t = 63 ---- — r et - co 12 - 50 2 = 292 : 13•o2 0 .174 77.31 . ._ . O.52 13 -So 2 - 5s2 X4. 04 0.182 81 -19 E- Q.S4 14 ._ 2 - 832 . J5 06 a -18g '72.07 ._ . - 56 I5 -So - 3 -132 j6 -01- 0 -I ?5 F .. 34. ©-5g 16 . S 0 _ 3- I 2 17.10 0 202 !X7.73. - 60 1 750 . 3 - 752 1t• 12 a• 209 132 -3c ' D•62 1g -S0 4 - /l2 rt. Is- x• 217 /48.53 0 .6 . r CROwN 20 -oo 5. 30 7 20.4 0.257 2►2 -5, I 0.6 7 arA 20• o� 5 - 70 7 2o. 70 6 - 276 23 -6. _ x. 9 7 R� 2c o o 3 . A 57 . 3 35.7/ 0. Mot . 73 9 . !3 .. _. . ,,, _. : Ili _ . 1 _ 3 170 REDHILL AVENUE •, COSTA MESA, CAUFORNIA 92828 -3428 • (714) 841 -8777 Il 1 g oieeittait, /fie. - CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING _ _.. W . JO NO. SHEET OF Thiro, „Am 1 /ME., 4Af7 aF E7iw � 9$1 wnk; : N. [ DATE 6,i 14/87 . I 3 B �° - cm E _ APL r(o ST. cAPAC �T will* S" R.. 20 114-ALF cr,(3iKA► I .4tiip1X . . . : . wt eon') - - -- iN . AREA. - - P - - C fir -: ' _ _ � t rt - . :. .z -. _ 32- 1"1.>? . _ 2 7 .ffr.O'78 � - I -4 .; - .. . b, _ . - _ ` �; .,7 0.-.2411 . ; 2.:95_' ._. &an? .- -:4 -.SL .45 4;00 0 -410 ' 4.2.5 (.Q 7 8 -s8 a 5.25 0.641 4 - l l 5 .15 . 6 - et 0.134 231.44 . . - - _ _ 72; 7..0 - _ _ _ . _ I -. _ 'a = 16 54518 37 37 ' _ - 41 4-9. _sue tt3 6.40 -4 1.00 _ l'= 9` tli•4... ' ►6s . �._. 4_ s _ $1 . 53 'r S_ 12.0 _ 2 21Z I4-0 0 ►176 71.31 E - 0.52 13So ?. S2 4-09 0-182 $1.19 A 4.50 2. 833 1 S -o6 0 -F8$ 42 - E ;k.54 t5 30 _ 3:- 132 1 6.og 0-(9.7 ►Op - 34 '.. MQ_ 1 O -50 3- 452 17 - 10 .202 117.23 II =BQ t ! 3- 7 IS-12 0-201 132 -30 0.61 rf•oc - . 3- 9. 7Q it-63 0 -213 14047 0-63 19 - . - 4-- 4- 340 l 0-221 157:16 ' a- 6 S 20 -CPO C 1.o wN 4- 730 20.67 0-221 / 75- 39 :. 67 20 -00 "rk _ 5 -13 t7 217 0 200 - 61 1 1.03 20=00 1 :9 1 5- "Se-74,.. 0 4D2 _ • 17`x' r_ -0/5 1 • 3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92628 -3428 • (714) 641 -8777 1 1 IS wooer g 2ateesta4t, gte. 1 CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT I BY I DATE 1108 NO. I SHEET OF NW d C b a. 8' OR !2' .2% 4 O .�— 5 - 0.0020 7 5 =0.0440 0,/3 — . : —0.22' . (Taal o. �2 FOR /2 tN ._ __ NJ // sTaEEr CAPAC /TY CRQa r 1 i. 1 3186 -L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92626-4675 • (714) 641 -8777 1 BASE LINE AVE II } , STREET CAPACITY TABLE a =26 b =10.5 c =1.5 d =13' I EPTH AREA P R W'ROAD W'PKY. Q/S 1/2 FT) (SF) (FT) (FT) (FT) (FT) IF .12 0.079 1.302 0.06 1.320 - -- 1.207 . 15 0.130 2.084 0.062 2.080 - -- 2.02 0.20 0.266 3.388 0.078 3.347 - -- 4.83 .25 0.465 4.691 0.099 4.613 - -- 9.86 li .30 0.727 5.995 0.121 5.880 - -- 17.63 .35 1.053 7.299 0.144 7.147 - -- 28.695 0.40 1.442 8.602 0.168 8.413 - -- 43.425 >.42 1.615 9.124 0.177 8.920 - -- 50.438 10.44 1.799 9.645 0.187 9.427 - -- 58.181 0.46 1.992 10.167 0.196 9.933 - -- 66.53 .48 2.193 10.688 0.205 10.440 - -- 75.54 .50 2.410 11.210 0.215 10.947 - -- 85.64 .52 2.634 11.731 0.225 11.453 - -- 96.35 0.53 2.750 11.992 0.229 11.707 - -- 102.01 <.54 2.869 12.495 0.230 12.210 - -- 106.695 0.56 3.124 13.502 0.231 13.217 - -- 116.58 0.58 3.398 14.509 0.234 14.223 - -- 127.84 .60 3.692 15.515 0.238 15.230 - -- 140.38 .61 3.847 16.019 0.24 15.733 - 147.18 J.62 4.007 16.522 0.242 16.237 - -- 154.3 .63 4.172 17.025 0.245 16.740 - -- 161.77 . 64 4.342 17.529 0.248 17.243 - -- 169.58 .65 4.517 18.032 0.250 17.747 - -- 177.74 0.66 4.697 18.535 0.253 18.250 - -- 186.337 .Ci.67 4.882 19.039 0.256 18.753 - -- 195.207 1.68 5.075 19.539 0.26 19.253 0.5 204.58 0.69 5.277 20.039 0.263 19.753 1.0 214.68 •.70 5.489 20.539 0,267 20.253 1.5 225.01 1.75 6.702 23.390 0.287 22.753 4.0 288.88 d.80 8.165 25.539 0.320 25.253 6.5 378.428 0.85 9.877 28.039 0.352 27.753 9.0 487.88 10.632 29.039 0.366 28.753 10.0 538.87 I . 87 .88 11.025 29.539 0.373 29.253 10.5 566.0 0.89 11.428 30.039 0.38 29.753 11.0 594.22 * .90 11.840 30.539 0.388 - 30.253 11.5 623.46 . 91 12.263 31.039 0.395 30.753 12.0 654. .92 12.695 31.539 0.403 31.253 12.5 685.620 /W 0.93 13.138 32.037 0.410 31.753 13.0 718.414 11 CNIL ENGINEERING • LAND PLANNING • LAND SURVEYING oaTE - - ioe r�o. c r ST: . fry , Vinci - N 71- 7.3187 -34+i- ao _ * fi0g �R CR'►74, ST, P�3 TjLJ w(]s��� Vt .. V RE ET O.D� : �6A- ST __ .. ^ 14trm :G ^ c.F., 16' 1 Sr, gs '- A , 4h 2,EPrtf . _, W r t R4 A-D) ' Ktt44,1 A _. ___ In r p� __fix_ - to fi«183' g5p PJ•IlSr 2'1 0.1s- _ ._ _ 'S ass ` - Lo t , - 71 f6 I64 0 1 4 && Q 20 3; 64 • r _E 14 _ 0.763 6.44 0: i0 q - 41 28.7 0 -35 : 2-3_9 - : _ t -tor . 744 0142: 29-.6k9 _ 4 _ :n _. tEi . • 8 :34 y .a - : 26 - g;ty er { 13-71 — .4. 417 $7 ?4 .2 -692 .!4B2 Ti 412 S 64S a• Si 16 -32 C; 94 915: Wit_ Q:574 C WN 18-0 • 3.70 4-.04- 21.73 0.16S (29r 4 3 - x - 5765 - 25 . 03 .0=2 2212 l.3 '- OD ` 700 . C._ 660_ �1_� - _ . _ _ __ _ • 317 ©- REDHILL AVENUE COSTA MESA, CALIFORNIA 92828.3428 • 714) 841.8777 1 ! . _ .......Aer g 294/e606240t • R ite. 1 .41_,_ CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING � _ _ SII __.. . DATE - - - _ - ISNEET OF__ - - _ 'S T - C�INc t ,, • - .7,,h g � , - : _ `.v . ., • c , c , r AVE £ : - . , c Ititcr 9 T ss ' LEF/T4'.. -: eRp� - IN w) AREA : P. 1�. - O rc ' 1 4 =763 _ ii. 44 (fr it/ [$. 2 87 .. ' Z 61T . :II e, 7! -4.0 t - 4$6 8 _ F "4: - 603 a .. -- -. _- ..._ -_. _ __ . .. - . • + "- t- xs at) ' t- . _ 41 4 -- T - - O " ---- ._ - �' 6. �r '�€�$� - i ; ?� a J gi - - Z ai 4. Qr. Igb 7 . :110_44 o; $4 . e }30 3.64a -- . 0.- 204 L24.46 . ?a. 5%.____ ._______:_.t 2 i : _ _______//40.3.. . _ .__ • b t 4-372: �1 12 22- �8rZat4 2J • 14 22:6 76.2f d- •I 4 t pia _ -�_ _ _ . _ ____ 5..-4/".4-1 2t- - • 96 . - �� �� fib_ _ a : . - - -- . .:_?3 c; _ :: V- •62-C _ : :-:_ 22.le " 2 r• • e!t4 1 T 4 a=1 -- -- - -,- :;Z,3 ; 00 _... _ 7 . , . ' . , , S _ 246 : -2Sb-c ci", _ _ ,17-0 .. - - 8: 007 _ - 3i -7 - -2S2 3t6:• 4 0=1 _ - _ _ _ : '► _ :ir.5 :. : 4 5t2. 6 =812" 4"f 3 _ all .73 'et -8S. : :_ _ ..: 1z; _: _ ,o 4 a 3 7 If- 44 - ::44g. 67 6 p._�� .8c _ JO - g kkr . - -,_ -_*5) __ _ - 14 - _ - _ ___ ,3}70 RfiDHILL AVEIIUUE _ - . - a+ - _ - - GOSTAMESA, GALwoRNI.t,92828.3428 • s (714) 841 -8777 ....a....r.�.,..,.. • 1 II II IV. CAPACITY OF CURB OPENING INLETS IN A LOW POINT OR SUMP , The capacity of a curb opening inlet in a sump or low point varies with the length of the inlet and the depth of water at the entrance. The inlet will operate as a weir until the water submerges the entrance. When the depth of water is about twice the height of the entrance or more, it will operate as an orifice. Between these two depths it will operate somewhere between the I: two. • The nomograph (Table L) is based on the following conditions: rii A. The curb opening inlet (no grate) is located at a low point in the grade. I: B. All flow coming to the inlet must eventually enter the inlet and will pond until sufficient head is built up so the outflow through the inlet will equal the peak inflow from the gutters. I: The hydraulic basis of the nomograph is as follows: A. For heads (depths of water) up to the height of the opening. (H /h < 1), the inlet is assumed to act as a weir with the flow passing through critical depth at the entrance and following the formula. II Q • 3.087 LH / B. For heads equal to or greater than twice the height of opening H/h > 2, the inlet is assumed to act as an orifice following the formula I: . Q/L • 5.62 h3/2 (H' /h)1/2 I: This is a rearrangement of the standard orifice formula Q • CA(2gH) /2 with C • 0.7•and H' equal to the head on the Middle of the inlet opening (H' • H - h /2). I: C. For heads with H/h between 1 and 2, a transition was used as the oper- ation of the inlet is indefinite. II Procedure: Enter the nomograph with any two of the three values H, Q /L, H/h and read the II third. Where h • total height of opening in feet L ■ total length of opening in feet II H .... depth of water at the entrance in feet Q ■ total peak rate of flow to the inlet in CFS • Normally Q, H, and h will be known, and the nomograph can be used to determine I I_ the length of opening L. The spread of the water on the street will depend upon the cross slope of the pavement. -) • I -29- PI k . 4. 1 . . , 1' 1 • ,, I . • . 1 .• 1 , d - /2 . — /O .— I .9 8 -..1 /O • 6 . .a — 1 9 4 . .7 3 1 8 • 7.5 '2 k , r ` .6 7 • • .t 6.3 . µ 1.0 cf g , ((1• .9 O 5.3 , t. k .6 - - i [1 —.7 E 5 '� . 4 ti e • t li 4 5 i • 3 - E)- gl. S Ja .2 • A _ E ... ...,, i. 3 3.5 i / n 7.4 C .0 ch .25 3 4 4 . g . . • k 4 __ v : . C , 'a .04 1 .25 . 2.S b .Z .03 "c ' �—.2 .02 � 1 . .. 9C • ./S .O/ - ./f r____ ' L �.+..- - : + r s..�.�. f Nt I . _L —.4 H Curb 1( _ O./ 4 Laca/ Depressioo fat .1 '.2 • TABLE L -30- • Sureom ct P /at c F.• .-OeS II Cyz:dl , • CdG17C.Ij c1 taib A..vav Iwo /:vsh DC. goci'::9 0. /els al /ow ,cc••:'s lii 1 ,. 1 V . CAPACITY OF CURB OPENING INLETS ON A CONTINUOUS GRADE The capcity of a curb opening inlet on a continuous grade varies directly with: A. Depth of water at the inlet entrance I B. Length of clear opening II The depth of the water at the inlet for a given discharge varies directly with: A. Cross slope of the pavement at the curb 1 B. Amount of warping or depression of the gutter flow line at the inlet C. Roughness of the flow line D. Longitudinal elope of the gutter li The capacity of a curb opening inlet when intercepting 100 percent of the flow in the gutter is given by the formula: li Q ■ 0.7 L (a + y) where y ■ depth of flow in approach gutter a ■ depth of depression of F.L. at inlet I: L - length of clear opening To size an opening the following information must be known: ' I: A. Height of the curb opening. B. Depth (a) a flow line depression, if any, at the inlet. I: -- C. Design discharge (Q) in the gutter (information as to drainage area, rainfall intensity and runoff coefficients from which a design dis- charge can be estimated). Any carryover from a previous inlet must be included. D. Depth of flow in normal gutter for the particular longitudinal and 1 cross slopes at the inlet in question. This may be determined from the street capacity charts. The capacity of a curb opening inlet is decreased by allowing part of flow to.pass the opening. A maximum of fifteen percent of the flow is recommended passing. II Procedure . A. Enter Table M (a) with depth of flow, y, and gutter depression at the ',el. inlet, a, and determine Q/L the interception per foot of inlet opening II if the inlet were intercepting 100% of the gutter flow. -32- . I 1 B. Determine length of inlet L required to intercept 100% of the gutter li II flow. L ■ total gutter flow Q divided by the factor Q /L. C. Compute ratio Lp /L where Lp ■ actual length of inlet for partial 11 interception. D. Enter Table M (b) with Lp /L and a/y and determine ration Qp /Q, the proportion of the total gutter flow intercepted by the inlet in question. • E. Flow intercepted, Qp is the ration Qp /Q times the total gutter f lvw Q. • F . Flow carried over to next inlet is Q - Qp. li 1 1 1: • • 1 • • • • -33- 1 . . . I . DEPTH OF FLOW-y- FEET .01 • . C:. .03 .04 .05 .06 .06 .10 .2 .3 4 .5 .6 •.e 10 . Ir. .- . .....-__ .-- - ... • ,__ DISCHARGE PER FOOT OF ___I.-_,- W_ /i • 6 • • L.t LENGTH OF CURB OPENING `��- J — -J ///. -- - I - INLETS WHEN INTERCEPTING 1"_ /// 1 /a 1 //• A • — 7100 % OF GUTTER FLOW -1-...----r--- -, / /1f • - , • - - • - -• •' . _ -1... ?.1 i .3 ' .-- I-- -II —I -1 - C- -1 " • .._..I -' . I //i/ i . 4— - --1 ; - 1 • O f ( I .2 _ • -7---i --I I _ 4. _ I�, _4 � / - . t Q, I •.. 1 i I i i • Ti /°./ �ft��N � t1 Jo . _ ■■ v °�� ° ■■ ■� ■■ o e � � J ° 1 fl ■■■ u ti T • • ■ Ui L .a6 . _ ......1— v �!, — — g .. _! •_- .a • — r —- - - ,� .r • ■ ■ ■ ---r y i ' I r - 1 111 . E i• , , . ./ I i 1 i 1 .. 1 ... 1 - / 7"1- ---;- I • " 1 — . 7 - a 1 ./ I -II,. L I � � 1 1 ,. .. . .. .• .•. .., ... ..:: - I ,_ • . - _ . . ( b) !F -- -- -. r L. I . -1- t-- _ -- -- .ice f ' AM C 1 � PARTIAL INTER.- �,� I i•A • • CEPTION RATIO. IF 1`- `• FOR INLETS OF� -: ' •3 - - �� LENGTH. LESS THAN L . • j r , i4 1 1 1 1 . .. ,. • I. . . 1 ,,o '— / , I • I. . ) I I • .05 .06 .oe .10 .2 .3 4 .5 .6 .e ' LO • • Le . TABLE'M :. -, . BUREAU OF PUBLIC ROADS • CAPACITY OF CURB OPENING INLETS DIVISION TWO WASH., D. C. -34- ' ON CONTINUOUS_ GRADE M � Federal Emergency Management Agency VIII' - • Washington, D.C. 20472 • 0 CERTIFIED MAIL IA -RA -RS (102A) RETURN RECEIPT REQUESTED Community: City of Fontana, San Bernardino County, CA Map Panel Number: 060274 01,02 FEB 2 5 1987 Effective e Date: - RECEIVED The Honorable Nathan A. Simon }TALL b FOREMAN INC.. Mayor, City of Fontana P. 0. Box 518 Fontana, California 92334 MAR 021987 MO WN Dear Mayor Simon: DOOLITTLE � d M AS This is in response to a letter dated August 1., 1 from Mr. Bill C. Mann of Bill Mann and Associates and subsequent letter dated January 20 and January • 21, 1987 from Mr. Hugh H. Foreman of Hall a d Foreman, Inc. to the Federal _ Emergency Management Agency (FEMA). In their letters, Mr. Mann and Mr. Foreman requested that FEMA revise the effective Flood Hazard Boundary Map (FHBM) for the City of Fontana, California. Based on our review of the data used for the preparation of the effective FHBM for the City of Fontana, the FHBM for your community has been revised to modify the boundary of the Special Flood Hazard Area (SFHA) as shown on Panels 01 and 02 of the effective FHBM. The revised flood boundaries remove from the SFHA the tracts of land known as ITo 164d 19 is difijied on the enclosed Tentative Tract Map 13000 -1 dated Aprif 22, i986; Lots I, 2, and 3 as defined on the enclosed Tentative Tract Map 13000 - 2 dated January 19, 1567; and Parcels 2 and 3 as defined on the enclosed •tentative Parcel trap 10520 dated January 21, 1987. This Letter of Map Revision hereby amends the currently effective FHBM ,Panels 01 and 02 dated June 21, 1974. This determination is based on data used to prepare the effective FHBM. A detailed Flood Insurance Study (FIS) for the City of Fontana has been prepared by PRC -TOUPS and is scheduled to become effective June 4, 1987. When the new FIS becomes effective, it will supersede this letter; however, it will reflect the changes made by this letter. This modification has been made pursuant to Section 206 of the Flood Disaster Protection Act of 1973 (P.L. 93 -234) and is in accordance with the National Flood Insurance Act of 1968, as amended (Title XIII of the Housing and Urban Development Act of 1968, P.L. 90 -448), 42 U.S.C. 4001 -4128, and 44 CFR Part 65. 1 •' II 2 1 ' The community number listed above will be used for all flood insurance policies and renewals issued for your community on and after the effective date listed above. 1 The revised flood boundaries are effective as of the date of this letter. However, a review of the revised flood boundaries and any requests for changes should be made within 30 days. Any request for reconsideration must be based on scientific or technical data. If there are any further questions regarding the new flood boundaries, please li contact the Chief, Natural and Technological Hazards Division, Federal Emergency Management Agency, in San Francisco, California at (415) 556 -9840, or Mr. Philip Myers of my staff in Washington, D.C. at (202) 646 -2755. C Sincerely, 4 . /` r w J L. Matticks M , Risk Studies Division Federal Insurance Administration Enclosures . cc: Mr. Bill C. Mann Bill Mann and Associates -Mr. Hugh H. Foreman li Hall and Foreman, Inc. 1: . 1 1 1 II 4 II I: • 1 ,, 1 Li: go I§ 4 o Z J ; ! . r `_f_ � N h ti4the W ,_ . \ - \\ 1-41! kJ ikJ W 4hn 4t hp I f \ 4� 1 W�v�` t2�Qe ,„ , t it t, \ \ \ \\ ,�li o ,`' E:1 � \ lk� K C I h / '% \\ . •S \ . \/ � ~J'i: 10 , ..( . t k 1146: \ , , 1 \ [-; 0 \ / i . ;Ai ti .,. ....-7. \ r • „... q 1 „ it . : t Ai I . -s. N.A. r 2 a / _:. it i 1 `is �'' c in ,it. a iu '01';,,k _ i in 41■13rt: ill o � � .- 1� 0 �' � ,.,. CC 2 v _, { _ o Q W IL 3 ‘t..1i- S t � { r• 7 -*- - - t ‘ k I' is, a. z 1/4,-ta si o `„ Zc 3 Q 0 k. v , M ° 8 Zi 141' E MM. rd QN �kt Qua h �.` . i � � � Z oe % h am- .. , ��► � � ik„„,„, • II 1- c l ?? � ` ► �V�Oe �V 0 ;;'G Z i s I. • I 111 1— o;k I I if o ,..‘,.A .'5, ,,,frli 11). : .. lo. .. '' -,--..r, , . � , w� Y 4, 2 p vo w h ., k2 , H 4 Qtj a` ` _` - �. ov_ ►. Q Qv H Qha� soh � .`�:i -. p h c, h v,e H . ,. i�� i g � kt., Q ti Z W V h �QN k Q , . , 4 t k i \ c - \ w, - w i4 a v a. "" tc • 2 06 x 4 . • b 2 \ \ — 4-- 1 _ ° ., ,, . , ,, h J J a c a n ,, v m zt iW i � 2 , 1. \ �. .� W t z: Sa �1 Z *t 2 *. vA ` Q�XhtA � vwss oc` ? tits . . 1 ? o � '- 1 ' .. R., 4 O i. Z. y 4, h ' b �1r ? fi t` i% Zi a aCWO W h. k M� h. I., Q7Z../ :37YaC 4 kEi ti 3t? 2 - N R1 '^ �� i� �x Q 1 1 a ?keg 26 I 1111.111.1. a• CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING li December 2, 1987 Job # li 42,50 ZELLNER Zeliner Communites 2910 Redhill Ave. Costa Mesa, CA 92626 - li Attention: Mr. Chuck Mehlberger Regarding: Parcel 3 of P.M. 10520, Fontana (Tracts 12996 -1 thru 12996 -4) II The parcels in Tracts 12996 -1 through 12996 -4, within the Fontana Heritage West End project, are currently in a Federal Emergency Management Agency's FIRM Zone X. These areas have II been identified in the Community Flood Insurance Study as areas of moderate or minimal hazard from the principal source of flooding in the area. These rate zones indicate flood areas where insurance is not required and shown on FIRM Community - Panel Number 060274 -0003A - dated June 4, 1987. In addition, when the infrastructure improvements are completed for these tracts, the moderate and minimal hazards A will be eliminated. I: HALL & FOREMAN, INC. /1#641 f(4-1.-, II Robert H. Doss, P.E. Project Manager II RHD:dt cc: Hugh Foreman, George Shambeck, Susan Roshan - H &F II II . 11 , ' ncnun I 4%rFVttc .. NIgTA (AI IF(1PNIA Q2R9P -749P • 17141 641 -8777 1 1 ir hieter g 20 i ee ma it, ate: 1 mow. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING II March 4, 1988 Job #3814 41,60 L16 1 Federal Emergency Management Agency 500 "C" Street Southwest Room 518 Washington, D.C. 20472 li Attention: Mr. William Judkins II Regarding: Revision or Amendment to FIRM City of Fontana, California Panel 3 of 10 II Community - Panel Number - 060274 -0003A Effective Date June 4, 1987 II We are the engineers for the landowner of the property shown in yellow on the attached FIRM map. We propose to relocate the storm flow in the existing San Sevaine Channel (shown in dashed li Orange) to a new channel to the west (shown in Green). The new channel will be concrete lined and adjacent to, but separate from the Etiwanda Channel. the Etiwanda Channel will also be concrete lined. The reason for the separation is the downstream '` channels follow different courses and the San Bernardino county Flood Control District wants them separated. We will also construct a drainage facility along Base Line Ave. to intercept } the flow in the old Sevaine Channel. The proposed relocation is in conformance with the Flood II Control District's Master Plan, the Drainage Concept Plan for the West End Specific Plan which covers this area, and the Environmental Impact Report for that specific plan. (Copies of pertinent pages of Specific Plan and EIR attached) 1 We have done a hydrology study on the tributary area to the San Y gY Y rY Sevaine and the Etiwanda Channels. (Copy attached with maps) 1 This study includes both the existing and the developed on the San Sevaine and the developed on the Etiwanda. 1 We have also prepared a drainage master plan for the City of Fontana for the area tributary to the proposed San Sevaine Channel (copy attached). The City has reviewed the hydrology 1 and we are in the process of finalizing the plan and profiles of the plan. 1 3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92626 -3428 • (714) 641 -8777 II ' II FEMA -2- March 4, 1988 II The new San Sevaine Channel, as designed, will handle the existing 100 -year flow with no detention. The Flood Control District's plan for the San Sevaine Channel with development of • the tributary land is to require the development and expansion a II of the Lower San Sevaine Basin. This basin will provide detention of the flows and cause a reduction in the developed peak flows. II Attached are the following: II 1. Copy of marked -up FIRM. 2. Copies of Specific Plan & E.I.R. 3. Hydrology Study - San Sevaine and Etiwanda Channels. 4. City of Fontana Master Plan of Drainage (Not yet adopted) _., I 5. Day, Etiwanda And San Sevaine Creeks System Drainage Plan dated March, 1983. 6. San Sevaine Etiwanda Channel Improvement Plans. II 7. Hydraulic Calculations for above Plans. 8. Structural Calculations for above Plans. 9. Foothill - San Sevaine Culvert Improvement Plans. II 10. San Sevaine Improvement Plans Foothill to AT &SFRR. The new San Sevaine Channel from Foothill Blvd. southerly has been completed to the existing channel south of the Atcheson, 1 Topeka and Santa Fe Railroad tracks. The Foothill Culvert is out to bid with bids to be received by February 29, 1988 and construction to be completed by July 15, 1988. li The new San Sevaine - Etiwanda Channels from Foothill Blvd. to the existing improved channels just south of Victoria is expected to be under construction about April 15, 1988 and to II be completed about October 15, 1988. These plans are being plan checked by the San Bernardino County Flood Control district and the City of Fontana at the present time. The drainage facility along Base Line is being designed and we will forward to you upon completion of the plan. This facility II will be constructed by October 15, 1988. If Y ou have any questions or need any additional information, please call me or John Hogan, Senior Project Manager. HALL & FOREMAN, INC. - II a / i Asia i.. _!! Ab ' . . oreman, Jo Pre -dent . HHF:dt Attachments cc: Roger Hatch, Doug Ford - Fontana Heritage John Hogan - H &F ii