Loading...
HomeMy WebLinkAboutBaseline Ave Citrus to Palmetto Storm Drain 1 1 CITY OF FONTANA 1 1 HYDROLOGY STUDY FINAL REPORT 1 1 BASELINE AVENUE STORM DRAIN CITRUS AVENUE TO PALMETTO AVENUE 1 1 Prepared bv: BUREAU VERITAS NORTH AMERICA, INC. 2001 East First Street Santa Ana, CA 92705 1 Phone: 714/ 568 -7300 QR pFESS/ = ' 1 Prepared Under the Supervision of: w 6� �� 0 or c ,y e-t. 1. 0 ; Mohammed Rowther, P.E. Date TABLE OF CONTENTS HYDROLOGY SUMMARY III r , SITE MAP VI 100 -YEAR IDF CURVES VII RAINFALL DEPTH CURVE SERIES VIII ISOHYETAL MAPS IX r 100 - YEAR 1 -HOUR ISOHYETAL MAP 100 - YEAR 6 -HOUR ISOHYETAL MAP 100- YEAR 24 -HOUR ISOHYETAL MAP HYDROLOGIC SOIL GROUP MAP X RAINFALL YIELD CALCULATION XI 100 -YEAR RATIONAL METHOD HYDROLOGY ANALYSIS XII 100 -YEAR UNIT HYDROGRAPH ANALYSIS XIII BOYLE ENGINEERING HYDROLOGY REPORT FOR CITRUS AVENUE STORM DRAIN XIV MAP POCKETS XV EXHIBITS EXHIBIT -1 OVERALL HYDROLOGY MAP - CITRUS AVE STORM DRAIN EXHIBIT -2 CATCH BASIN HYDROLOGY MAP - CITRUS AVE STORM DRAIN EXHIBIT -3 BASELINE AVENUE STORM DRAIN ULTIMATE CONDITION HYDROLOGY MAP BASELINE & SIERRA AVENUES STORM DRAIN HYDROLOGY STUDY II BERRYMAN & HENIGAR, INC. JN: 15946.00; JN 15945.00 HYDROLOGY SUMMARY Introduction 0 Berryman & Henigar has prepared a design hydrology report for the reach of the 1 proposed Baseline Avenue Storm Drain east of Citrus Avenue in the City of Fontana. The storm drain will be constructed as a part of the Baseline Avenue Widening Project. The watershed boundaries for this portion of the project are approximately SR210 on the north, the centerline or crown of Palmetto Avenue on the east, and the southerly Baseline Avenue right -of way limit on the south, and Citrus Avenue on the west. Previous Studies This report was prepared utilizing previous studies prepared by Allard Engineering and Boyle Engineering. The hydrology presented in these previous studies was used to corroborate this study to produce a consistent and all encompassing hydrologic evaluation of the Baseline Avenue Storm Drain. The Boyle Engineering hydrology study evaluated the watershed for the Citrus Avenue storm drain; which will be a tributary lateral to the proposed Baseline Avenue Storm Drain. Boyle Engineering is also designing the Citrus Avenue Storm Drain. Please see the report titled "Citrus Avenue Widening — Hydrology Study" dated April 10, 2002 by Boyle Engineering included in the "Appendix" for reference. The hydrology study prepared by Allard Engineering evaluated the watershed for the entire Baseline Storm Drain extending from Palmetto Avenue to Etiwanda Creek. Allard Engineering designed the portion of the Baseline Avenue Storm Drain extending from Citrus Avenue to Etiwanda Creek. See also, the report titled "Project Report - Baseline Avenue Storm Drain— Volume P" dated January 1998 by Allard Engineering included in the "Appendix" for reference. The Mango Avenue storm drain watershed north of `' Baseline and south of SR210 was modeled differently in this study than as it was in the Allard hydrology report. This was necessary because we have proposed to construct a curb opening catch basin at the intersection of Baseline and Palmetto that was not included in the Allard study. Therefore, this necessitated differences in watershed subareas between this study and the preceding Allard study for the Mango Avenue storm drain watershed. There were also some differences in measured land area in some of the subareas for this watershed. However, the conveyance parameters remain common between the two reports. Watershed Modeling Data The storm frequency evaluated in this study is the 100 -year storm interval utilizing an antecedent moisture condition (AMC) designation of AMC -II. AMC -II indicates that the soil moisture within the project watershed have been modeled for a condition with moderate runoff potential, or an average study condition. This means that the soils are I neither dry nor saturated; they are in between dry and saturated. All ultimate facilities will be designed for the ultimate condition 100 -year rainfall runoff. A rational method BASELINE & SIERRA AVENUES STORM DRAIN HYDROLOGY STUDY III BERRYMAN & HENIGAR, INC. JN: 15946.00; JN 15945.00 1 study has been prepared as well as a unit hydrograph study. The unit hydrograph study was prepared for the 100 -yr analysis also utilizing AMC -II. The Curve Number (CN) values used to calculate the watershed loss rates used in this study correspond to AMC -II. There are no proposed storm water detention facilities for the ultimate condition within this project watershed. The ultimate land use condition was based upon the City of Fontana Land Use Policy tY Y Map, revised October 19, 1999. The watershed land use consists mostly of Residential Planned Community at a density of 3 to 4 dwelling units per . acre. The average percentage of actual impervious cover corresponding to this land use is 40 %. While, for land use such as commercial and/or roadways the average percentage of actual impervious cover is 90 %. There are also some proposed public school facilities, and public park land uses as well. The average percentage of actual impervious cover corresponding to these land uses are 40% and 18 %, respectively. The project watershed is approximately 990 acres or 1.55 square miles. The entire watershed consists of Soil Conservation Services (SCS) hydrologic soil group `A'. SCS soil group `A' is characterized by soils with low runoff potential and high infiltration rates even when thoroughly wetted. Soil group `A' consists chiefly of deep, well- drained sands and gravels. These soils have a high rate of water transmission. The watershed adient is generally from northeast to southwest at an average relief gr g y g of approximately 1.7 %. Ultimate Conditions In the ultimate condition there will be a storm drain facility constructed in Baseline Avenue extending from Palmetto Avenue on the upstream (east) end to Citrus Avenue (west) on the downstream end. In the ultimate condition, each of the north south streets (Mango, Sierra, Juniper, Cypress, Oleander, and Citrus would also have storm drain facilities that will convey storm runoff from these streets and the respective tributary areas to the Baseline Avenue Storm Drain. This hydrology evaluation was prepared to model the ultimate watershed conditions and therefore uses storm drain as the method of conveyance for all tributary areas north of Baseline Avenue. Interim Conditions In the interim condition, only Citrus and Sierra will be improved with curb and gutter facilities and will have storm drains extending north of Baseline Avenue. The other north -south streets will keep the existing roadway features and would utilize the existing roadside ditches for conveyance of storm runoff. The runoff in these ditches would be intercepted at Baseline Avenue by interim catch basins. BASELINE & SIERRA AVENUES STORM DRAIN HYDROLOGY STUDY I`7 BERRYMAN & HENIGAR, INC. JN: 15946.00; JN 15945.00 Ultimate Condition Hydrology Analysis Results The 100 -year rational method peak flowrate for Baseline storm drain at the upstream extent is approximately 9 cubic feet per second (cfs) with a time of concentration of 27.5 minutes. While the 100 -year unit hydrograph peak flowrate at the most downstream node of the project watershed is 2,203 (cfs) at a time of concentration of 20.7 minutes. The 100 -year frequency hydrology study results for the major concentration points along the Baseline Avenue storm drain are summarized below. Baseline Avenue Storm Drain 100 -Year Hydrology Results Node Point Tributary Time of Concentration Peak Flowrate Area (acres) (min.) (cfs) Street Name 16 4.40 27.50 9 Palmetto Ave 13 273.40 17.05 595 Mango Ave 21 398.00 19.08- 839 Sierra Ave 38 564.05 18.44 1,188 1 Juniper Ave 47 710.05 20.22 1,619 Cypress Ave 56 822.85 18.39 1,941 Oleander Ave 65 990.26 20.65 2,203 Citrus Ave 1 1 1 BASELINE & SIERRA AVENUES STORM DRAIN HYDROLOGY STUDY V BERRYMAN & HENIGAR, INC. JN: 15946.00; JN 15945.00 1 1 SITE MAP 1 i ro om 1 1 BASELINE & SIERRA AVENUES STORM DRAIN HYDROLOGY STUDY & HENIGAR, INC. JN: 15946.00; JN 15945.00 1 1 11 - __ 1 o 1_ - r 1 4„ ,_ - i 1 o 1� 1 :0,4 4, - a w l __n r 11 op i 1 0 IL 1 i■ ia . , 04 0 .ii �, II II 0 1% ? =7.%:7" r 110 "'" 1 SW OONVM I —A ____ IT qi ..... _____ 0 i s►v vows N1 \1 III SW VIM 1 l'-"..' 11 — 11 , ) I - 3►v o i IC 0 � � _ 11 _ 11 0 II 3W MIMIC ,` 11 — ,-•-d 11 - _ r I --, 1 d 3v WSW 1 TH ' 1 L i L4 1 100 -YEAR IDF CURVES 1 1 1 1 1 BASELINE & SIERRA AVENUES STORM DRAIN HYDROLOGY STUDY VII BERRYMAN & HENIGAR, INC. JN:15946.00; JN 15945.00 • ig ag_6 ERWaMEN W �� EME1R E®A 8.0 gam VE3• o �M: i al 6 0 Eg gigAginessoN_ . ozgLa M � =Re ®ogg® 1 an _ _- MEI I 5.0 g _g� g ' .110 - .f.. -- r... Yrr MTh 1� . .. M = =: " .11= S====== 1rMNM — MMM�N.M . == t a 3.0 ...-..P.7 --===M 1 CC M . -_ "_ a= = s _.•: __ .. e s �_= _ ter ° �.. =-- •---- -� , _ _ �� : - r.—c == .. •— mama... mama Z 2.0 a -- -•. - a ..� = . . =nM� =a: w..o = - N/ .Y .�.. W � Y. �:� t \.�•. w= d �/ Y � r...M /M..I.......0MM... MIMI MINIMUM wY NY. �Y.. MY. .I...Y� { �..MY / ..w. a: /.lJ.. M�IwU Y N M.....SNMNpIM.�...M.M.MS.I MM .N�.. .w...////_�A OM M.. /wl. r r� w .�rN..�... M.. Y.... �.-_ Y_ M • NN MY.i /..M UM Ah.�... t YJ. L K .A .Y. NYi.r.r. H.O..../ .....1-1N:•N M ..a TM MM MN w�:� fr"....f. /..wi�M I I HH..Mw../.. MO.. .1Aw. / M.�HY NMI 2 M... N. .1MM.11 sum .1....MM/ /MM/..IMafMt.Yn. MIN wen .....B•.N•1111Mfw..w. OMIIMI M.N..M. 11 Nomi .M.01 \.M.r•MMIIM l U MM ./11M1 HNt saw unarm maims soma mai M 001012011111011110101011011 ot/ 11.MI ..NN 11N • 010 0011 TB /M11 10111011 110811831101/11 01111P1001110010001101•11111110801015111101110410111111101/10/11111101008011110011111000 HHI►.`fM MUMS' Z 111011 i/M1t111111tttNl auomn 11911. 11m1ptY1tM1 UM ipN81MIM1MMNIB1111Np1t1AM1Y1i1 .IflflW 1611111111.11 It1M W1 111I1111111p11M110IBHt1 /111111pMM1YYOIN pM emu DIM MUM! 1111ppM111t1/ P:'KV :x..01110 tb:111 NMI IIMIUMINE9 /w1MUNZl11MM 11nuuAI11M 1MIINNMMMIass 11TH 'armor .. :-,... M'�-- R MI 11i r. v nne- + ®L/•!' -mus :.RV9Dstmm I ...N mu 111N 1 Mi11u UPMAIMMIIINOMIIN1 IU11A11AIM1:. 1Alut:1.,, ,,, :: ;Y. 1 a Hi11R.r.) .:e-in[ :.—nr •. o r:mo .' /:7rW INNNN IMNNNNNNNssuen MMMINN11 NI11asmoIIAMIIINNMIIunum .:►.i11mirmail. >- NimmtI•:INNUul1II111 ew.:asPiN IN IWA anaity0 NNNLNNNNi1 i1 n ulm tIIMIIIINIO NNM 1111111m /INNIINNINHNI�onnuAI Mil MU I f- NIN '•- ' b...' "Z' a_:n16'L' � 1,:a4-y ', IP. A/ M1 NNI NNNNNN mum II MI Um IlIII It NINNWRINNft1 IiUIlU1N INNINN i Z 0 - 9 .......=‘ - ..... ==- = 7 ::. --_ .: - = -=: :-- E .a : :=1 ....... .1. :r: " . 1. :: 1 = = .... ------------------------------------------------------------- 0 6 �..- � .!_.�•: ■"Y""...+°.r -'-E- ."r i .• . w . ..S '_� - ` � . �..: �. ..- •MM............ w.. �.. Tom. Maas - Z Ir....•M••iri===1::==4%1= iii •"" - �.�i:i.:::i. :�. i.. = n �a r•r .. - w •.11 was :: :.=. w • • � •• � • . • .::::. Y1 Ma AM .m Z 0.r ... MI.. wv. .. w0IMM:e°.:i'M..w�r.�r.r1.N.. M.w wmoM.........o.N.o... M. �.� M.Y1.....MNH.M.n..�•11:11 ...YU.�.:::Y.N111= MR<t - r- " :M�o :•11.=r1116.1.1 r• _• :.iu. nin.AlR MM. . I= = .M�/ ,, .Mel. ... . /Y : 111101111111•111,01 *.. .MI.M A' a 111110•11•11111111121• M. IWO WI Nf ::..n:. ...1 N1�11•MtII N;:.YY - .. mows •'N . a W J o. 6 1. M.n....B.Mr a .uuM 1./.11YM1f...fM.M.w MMMM....ON... M.Y ...M.MMYMI SO 11 — • nn.M.ir.HW1..N.nw. MIMINM I -. - -�_ - ?s �:r..s °sue �-s } Q Er -..:.. = EE- - ::::: �. �: :: - = =E".. —E-1 =mss': -: :o i Q: 0 . 4 =:=E:========.-- Z � : -_ --__.. -: :-sue= .1: .::... - -s:: : ^::::. ._..� w » ter : WM/ SOWER /WISE : :: Y : .. ► - i w. MM w. . • i .M.o... � i - � • � y � w: �M -••• w n..y� + Z: :r ui.• . •aa. a.: "" ..MP rrww�� IM..NN..w1..Y.Mn... MV•.^ M: M.M......NNW MY1n..M.N.M ...M ...•M1M.•. I..M=M..o..M.M.Yw....W1 `W1 f.: MN n.I, .Y- M M.•MM.M....NS M•WM..... Mw MY..1.A fl h I U a . a.: i.w. nw. /UM M.M n tl....M EWER NMI II MIN •\f.f..••.�\•.1R•M f\• .. IMO nn..n. M.1.. .....IN • 1m ..n.. M.M a./.rM N∎sal= Y.11.MI.1/�.� \fM . .. Mfl•...N....H i..MM.1.MA...f..NMn. r.nn.A :rum. •”:: M w .n... ... 0.3 1 "" 91 W .. M� Mf. MMMIYM.. _ `4N.fa••.:i. ..0 1 �•MMV'0`..fNNM f.M /WY...Hn M...nle uiM - m =— s�T_� a - �� -_. -.7 �y� _ J- T .S . ===.-___,- _ � - - -. rte....-....:7=.......:= ? =__ _ 1 = =s- -._..��._�z r a -cads 7.1.- - _ = 7 ="" . == =_3 :=:- �.- -a- . �. :: 5.: 5Y' i N. w - M. �: :L"'r�Y�a' �:V'C: " � .'::�:wi:. o._:::wM.MM aI� =�.a MN��� r NMM....IM1f 1 e .rmigIll�w1� 1 _ � \► ML..M.11 � ...... nM. / .M M 1 M .. 1 er , r , 1 11W MIA p1M1/M1musamen....• M/1/�1�111 �1w M i M 1 . 1 t rM Y 1 t 11r k M r / ... -° nru - imilat e' � 1 wM N= N0,101 1 M = mUWE �I ONNNHM r sum ...... II�1M 111 t. % II 1 M 1 A IM ~gm U1114Uss 1N Immo MIp I M� emnissiusr IIII N / U /I N lI A 1 NNIINN NU OM SIM MOS 00100010111111110011105110110110510 =08100111 �N IIIMII U NUU M INiII NIUI i111111t11U 11 1' u IAA I 0.1 NMININNMMM I YYIAINNlU lMNINMMI MU IIIIUIuIISNWN NNNNMM1M111N /1AMRMININMWMOI M UI NM, "000 amnia WU 2 3 4 0 6 1 8 9 10 20 I 40 50 t 70 80 90 1 STORM DURATION (MINUTES) DESIGN STORM FREQUENCY = / ©D YEARS ` ONE HOUR POINT RAINFALL ...INCHES LOG -LOG SLOPE = 4aib PROJECT LOCATION =�i ,,144 i "0 , . 9- ( 1 /771 0 5 • dam• I SAN BERNARDINO COUNTY INTENSITY - DURATION CURVES HYDROLOGY MANUAL CALCULATION SHEET • D - 8 FIGURE D -3 RAINFALL DEPTH CURVE SERIES BASELINE & SIERRA AVENUES STORM DRAIN HYDROLOGY STUDY VIII BERRYMAN & HENIGAR, INC. TN: 15946.00; JN 15945.00 7 1-- , I ■ 14 9 / I / to 8 _ w = 0 Z ? dr 7.2 = 7 7 1- D_ w 0 J ^ J z ,. Er / /.11.. , - L .- f . ' 5 1 3I I I I I I 3 2 5 10 25 50 100 RETURN PERIOD IN YEARS NOTE 1. FOR INTERMEDIATE RETURN PERIODS PLOT 10 -YEAR AND I00 -YEAR ONE HOUR VALUES FROM MAPS, THEN CONNECT POINTS AND READ VALUE FOR DESIRED RETURN PERIOD. FOR EXAMPLE GIVEN 10-YEAR ONE HOUR • 0.95" AND I00-YEAR CNE HOUR • I.60" , 25 -YEAR ONE HOUR • 1.16 ". REFERENCE'NOAA ATLAS 2, VOLUME - CAL.,1973 RAINFALL DEPTH VERSUS SAN BERNARDINO COUNTY RETURN PERIOD FOR HYDROLOGY MANUAL PARTIAL DURATION SERIES D -7 :FIGURE D -2 3 87 1 1 I. . 3.5 3.5 3. 05 3 3• 2.5 2.5 / / /' w E. z • . L9 , , i tfr/14° i z 2 2 it 1 MX W o� /53 J ' 1 J u. 1.5 15 Z E . ...- _,..----...,-- _ E , /. .41.- ....) ,/ E .0 0°4. A i }: 0.5 QS 1 0' 0 I 2 5 10 25 50 100 RETURN PERIOD IN YEARS I NOTE' FOR INTERMEDIATE RETURN PERIODS PLOT 10 -YEAR AND 100 YEAR ONE HOUR VALUES • FROM MOS. THEN CONNECT POINTS AND READ VALUE FOR DESIRED RETURN PERIOD. FOR EXAMPLE GIVEN lO YEAR ONE HOUR a 0.95` AND I00 -YEAR CNE HOUR ■ 1.60 , EE -YEAR ONE HOUR s t.tE ". `' , _ •, ) REFERENCE 'NOAA ATLAS 2, VOLUME It - CAL.,1973 RAINFALL DEPTH VER US I SAN BERNARDINO COUNTY RETURN PERIOD FOD I HYDROLOGY MANUAL PARTIAL DURAtI1 $CRIES D - , 'RE 0-2 1 ISOHYETAL MAPS 1 1 1 BASELINE & SIERRA AVENUES STORM DRAIN HYDROLOGY STUDY IX . BERRYMAN & HENIGAR, INC. JN: 15946.00; JN 15945.00 - ` . _ C • » • I .z I r• .. ,�� s._z i I 1i ti I I I I _ I I I _ _ Q � , `'a L �• . -- _— I — ;- -- -J-- -1- —I \ — \ ' a ° !I + T g • re I _ — . I — I I -I 09 • j _.f _I ___ L .,/ L I . _- • .... aw- >- V y u- • „r _ 1� g I -___I } I t r v i r PSI a . rt 1 � _ L _ - ( u g t iI,I,r . I I - . r z, 1- - - f 1 _ ) . _ -� r _ J . . _ 1 -I r , I _ i9 } r g T . ._:', _ _ ; i _.. -.7 ,1. k - • ,.,... t-,_ _ _j..„ ' kfr . . 1 4A' i 1._:_ 1,4 .• .;1.,.: i .1 \ \ ,, „,.) . 4 _ I t� I. 1 1� . i f I y � . 1 I ti > i Q • - T I � • �� ���■��1 �1 I r J i J`J 1< .T W : r .-i or. 7-, ,--, .• In 1 .•, € ' I) ‘ 1 • a V �I I w Z 4 I / I Nftsw, ” ..!, t .. _ ___. .. ' ' .. ,..... i. t '', (1 ir or "T14 *) , , _ , t_i ,,,, • ..., . ,, ,• .•., • ...... i- _ __' 1 I I 1 I '� l L k' ac 1 - . � • W • ll.' , ® iro, Q U �' + w to ...,,,,.. i• r ' i _ CC IL I ' 1; p I 11 o,, • u'as ...) r 3 4. r. . . v , 0.1 1 \ `; : ±E J I ' f 1J i Wi '1 I 1 1 Ik _ - _.. 1 I .. .4i • . 4 .tl IyA x � .4 1 • i q r.i ,••° ' c O • 1 X ‘1 . • . ' - - -.- "'' - F - '-i- -1 , --,,-e A •: 7 --`" /46‘ - , ; .. .,,, ;1'2 , . i ...... . . 1111 \ "t-,.. , lig— t- 1 . ''''' 0 .—I 1 • I I I I I 4„,,,. , • ._, 2 41 ', f '' IMP f • - N i N I - NilmoD 14; 1. - „44...,. .- \ 11111110 !lati 1111111 i' 1 -1 ;IN 0 z • ' 3 , I s 4 ; s Ti 3 Z a 1 = ■ - 1. ��� at jam I �1 l 1 I I jZ _._ W I _ _ 1 C9 ,„,psr 47, Ir • i I I I f, • 1 I 1 I -" . , =;T,A'�r7 1 • I0 CC -, HI _ - I } \ 1 - I _ I y `� I M n � l €' 1 ' .� at �f�\ ( ) r• . €0,1_. 1.. __ iih . 1 4, _ _ ■ CC A -, I I, : q -- T - - 1 4, q - f'. - . 4\ . t.e 1 • ritiltigiel 1 _., A i . c`. FAI MI - 1 ' I , _, t• , i i • F- rte I' h t '°`�` 4-:,. '.lii p i ii 1 � iiir H . .. : , . i 0 a i - . 117 p ; I , r , . kr■I '1:' MI' , - t ....., wr,4 42 -210 0 ' , , w i p 1 ''... lia ik, i ll lip , .._.. I__ t 41 , _...4 9 ,4 0.e,.., 1 _ _f. ._ [.., .... - lip ," V . , ` + r • ,, ,„ ...... I I AP.' , , , ... fr-'-'-' I I r_ L _ _ . .-,,r.i ., / , ,, ., ...._ _ 4,, / 't 4 v. • c• . ' I 2 I P . 2 A f) . 4P : . N . . fir I ..i.,. 'd •., : 4 _,. _ :1....V\_./ __ 1 - 4 t 4 t 4411111 INKIIIIINIE . — .t gill -, , - , .). 'I ,,, . - ir gr / ' I '" '''''' Ifirill I '.10, 1 - 0 • , - . - .. . .1 . _ , mmara9=Lisimil • moan N ' '-'''' ' .-. 1 - 3 I I " " A" 1 1 : J.� ! 1 �1i1'W ` i� 'I� r>»aa:��, ®. r 3 I '� al 1 1 1 a 3 rt ''''.' . .44 , I ____Mye �,• 1 r +. i� CLIP 1111111111W1 P ' I ' 2. • I — 1 I \ 4 i , iti, i , I I' 1. '' , fi 1 1- I � -- 1.L. �� 1 I-- fi — �1. : 4; . � Oa I I.. I ., IT g! T I ; p h ,I - I x, UK, 16 I : 1 1_ __I-1:1- - ,-- A — I'- - ;' f d. . • I I I I I I I I I . I. ���� I I I M 1 F T t 4 1 F- 1 t 4 i �. -- t . rn ._z. 1 �.c .:., ��Q,+- .' �Y '• 1 1 Z ' I ,I I -2 I I 1 N J l • " — ' E M CO 41%1: �- --I- ., '1' - — 1- —I— I , , - 1 • ` ;�...° .-w . -- -- - - ► "r . ' , ., _ p 2)-- .W • I I I _ 3.a. ■ ∎ 1 s-+ _,. 4 I _ 1 _1,\_ — � 1 — . • — i a • o " T CC 11 I l I 6 \ �U 1 � t i _J H (3 J� W g e k- 1-- — — ter - 1 k W9" 1 I — }�'. - 1 / 1 1 1 I' I 2 ,- LJ • W •$ � / ' - r 1 — I i -- ii-„--- - 1 - 4. i - -cr,.; 1 %-)._.„4K -). I 7 . p jigrtI1di) I 1. -- I- -I I. y -I-- _J t I lit 4.7 14 /P ilfr 1 ' I'll r �' pr 1i . �� . T , ;�� M • :11N 0 - r - : i a Yn - I 1 - 1 ` ,, ,, 1 , 1 1 .. 1 - _.- i _ 0. i1 „,..._.1 . ‘9. .. - 4 m ri I I. 1 �) '4' 1 ' 1 511 \.I. I - V � � ,y s aQ �' - a 4 . J I i , \/ - Th- t �� - 1 j / - t an -1 - / _ — -- !3 ' • T- II W _ _: ag f , • \ 4%.; Y f O A I I 4W 1 .. Q o z.) t fi 1 ____.\,,),--1_ HIS1-1.___- \ ! 1 ua, o I - a , aus« __ + _ . � - .__ -4 -� . . a< — __ Pr '� 1 / a ____ \ - _ ° Z 1 �r 1 ...F ' �t/ rjN \ . }`Y�J I .. 1 ! l � • _ i - \ . - , I -I\ ! ... 3 f l - 11' : _ f i \ 1 — 1 --,-1- :. a - 1 ( ”. -1,----- -. T • _ .. I ,,;.. I 1 • I i:1 I 1 I r .,k 1 _1 - to I ,. )- 1 I I �'�+ 1 I - x_1 1 I � Z 1 I ' I ... . I 9 t 1 ! I�o-1 • I� f 1a % ::: � I ' O`) E I it t . I� + _4. �: is ti \ 1 I • • , ; _ _ ' k, 1 ( I t �•i, ft iI ' M pH � V _ 43 h I �, � Z Q ? i yam ' a� 1 1 1 , . �, 1- 1 3 d ' Y ° "` t.,<, i� Y �i l�!Yiili --40 � ip+ 1 1 If_ � Z M _ -.._ ,_ ' .� a � ! ® Iii: Iv 1 • y I . •P\ "1- ` I - —( — . 5 1 .a • I . ,1•,:). ii'�iat► ,`' .- ; W 1 i .o I O • CC 1 °L ..- y° :,.....1.: h o I l 1. Z 0 1 r , ,,.:,\ , , , , , .. - I — — t % 1 f ;f _Y. -; y -t... . ' G i) .` . t _ I • I it in y 1 � -. I 4: . _. 1 Cri _ I _ _, _ 1 _ _ _ _ __ _ 1 1 ' - i t '� �_ (` I ° A � �� � • �►� minim !`-.,a 1 . 1 1 1 I � �`��s.`�liii � • a .,- — V of 1 1 H E j ° Y - r . `: 1 1 i i At -I- RE - ■ Pi.m.1.7: I 6, _ __.1,_ -_l_ ,___ _41,,,s_ _1 __ _ 4.7.i. ,;-;.,. E. , ____.. ,, ,. _ do o v, .„4 _ _... 4_ __I _ , . 4.__, _ ! I ii . J .I.s ' i aa a..• _- 1 i ! r y 1 1 i < 1 Amp . -- r. A � I .1,1iLIE-f ._ -1 . i ,Ailiiiii„,- 1 - ,-,-- � .. .12.1,11. 1 �Y :Yon 3 , r l � I 3 ippiki 1, / g I 1 I a ' I _ ® ro �♦ Y 1 S IF •� : 50 �. . .. . • — ``` , ga+ r ' i 1 -� 1 z I. ` !! go z ' � �� F- ' �_��..rtO/I/' a ,� *«, .o; `'` 1 . I `�iiifri(iill z . �mga1.� � Ari/�� 1 I , A I ' 1 _. .. 1 .. I s, •4 : , r�r1 1 0 liAl - —_ f - • s -1 —I— L Jo .I I _ 1 — J I _ I.. I m i. 1 — 1 i t -1 - 1- , --- , i • _,, , __,_ 1 I I I I Iti, 11 I � I Y� 1`,. ,_ ,_4 1 r F Z I l ,� 1 � _ • I I I I 2 ! N I t t . I 1 H I 1 . ►-' -4- - - - I - - c. .r r z �.. - a+ ,r — z I I z I z r °' _ • � N . M ' - - ,g,-41:Q:. ,° I I E. I — I I • I I / , 1. 14 r � 1 � —I- `„- 1 � � � NO% - ^' \ , , y 1 1 r _ i / r �I Q . O N ` �( 1 N_ I I I _ ' \ _t 1 -•/ -I _ I _ :r —� -I•: . _. I - � —I . , ! _ t hr... " • w. o L Z ° {E 1 • cr I I I I 1 • •, _I �� I h \ ,� , I / I :. p Q'.a N 1. 1; 5 • = W A { ' 1 1 1 . " W =W ii E . f I I 1 LL I �' I i i \ :1 1 .__I 1_ I zg X I° 1 i 1 t 1 . 1 k z . — a t J i S m - — : 1 1 1 • — _ . - :. I � i -f- J t t t1 r I R ' a . N - 6, • I . (li I � 1 •A . _ 1 1 i - ,• �/ 1 j dl ° 1_ ... �. ° ¢ ..,� �' { �' - J . 1 rtE-1 _A I k - 1 b,0 ,. i . ,o -- . fi W F - .{_ W 1 5 irt,, . ipir . . 1,';',1 — , p " T - 11 --i i rit--. . ,i I , , . , ! ! __, . + r 'yl \ c: _ l 'rrn I Al NA ',, , i lt i : :___ , \ V . I _ ) .. , K) . ! 1 1 . . I t �. I . y, Apr- � Y, ' Z W j I I \r , l I _.� t', � I. 1 0: st !i 1 I 1 4 ` i 1 I . ,�' , I I �.� I. I I : I I / ..:.4i,_-___':",r; 1 1. } { { - i )4' r r.., -{ • r,�� - L. o I w to ;� i1 y ,�Z 1 zt sl r ' 12 t °`/ �� "' , j. , _ ' _ 1 • 1 li 1 i :1 . - : Y' i cc , u - t i . 1. ... 4 tilim 1 LO \ __ ! I . • 1\ I 1» .' 1 , •1 1 1 Iprl 1 1 'wolf lilt -1 -- ,�,b -1- tea . _ , i� !! ' .n i-- • Z . , ' I I , • ° . �— • - '"1 X i� I * 1 -0. . ' • -[7 ' i y I I II .!?_.!,,, 11F Ili 4 [' L l ..Y 1 i 1 i . . ..• . - \ Al tai , : % , J i p I 3 e Irk _ , . i'' ' ..• GI !";:•'.. - i — --- t- . II - „In*. 1rI ; 1 1 1 - ° r 1 iI IN L'!1J —1= , / l !� 7 3- 1 —I j 1 a 7 / .. _ —_ ' ''I _ I 1 ,y I ,, 1 , J ° gi � r � 1 1 3 z I I f\ I-• I — v WI 0 — 1-- ....4 '1' , -,k ,- 3 t I 4 4:' A '951- . '.— " - . -11411 ...,,, • ''.C -.1 i - T -- 1 — r _J -'f — i- • _I --',.r:tii. 1 'T`= ai 1 ,LP -• A . is x! ID,: g ilk - . - I Ai ti Z CC n ` d 1 , j b: n.�o >.m7 - " . h �- 111111k,Itil °�b i I 3, it 1 cr 1 I -i 1 - _. _ l.,! ill I N. Ill ;,, in . h 1 ■ 1147 . .i.\- i I___ i___, . i 1 : k 11,1 !,. 4 _ iii --- A : .,- . A vi,......'-. ...1„, .....1-.......v-- -,:, . hi .........,-i,,,-,1',,,nPleUNINIIIIIIIiiiiin ,--= AI • 1 1 7 1. rEmippr----..._ wa . 4. 1 . In a v , . . ____, ..,___,__ f _ a . 14, \,7"..-7_ e ..... ,. _7,7, 15111 piv _ ,,_i____ _, L _ .4!ain c 49g._. 1 ,. A . , ., ' Al , wi..*--- %/ - 7 ' - - I 4 .iir o . .1.. .-1 -. -1 4 : n-1;-- ,,--i. „, . .....,. _. _ - o fft i w: 1 l0 „,:.., r- 1 ' ) 0 0 0 Q o M3 .nl t i- � � I P L•1 ® k .f > 333+ ' 0 I. • Alrillik . - . . - . u. : I I I I 7 . . ....,., A : t ._- ct = 1 cc. r _ _ Ira 112 ; :, Ile ?w..__._; ir ' i lr 4 . - . 1*- . c' 44-1 ' ' t !s. . -- �: z o� 1 / � , �`= \ h. -- �- o''' � "••. C16—.11 E� ) ..,..., i I • te a \ , 2 - M 3 ` i .. _ r -t _. 1 Iiii 1_ 1 1;$ 1111110.' ..._ i _ _ - 'kw-. - ,-,= : ,:i.t.i4 1111 III It ,...,,,,,, ,.. II . „ _.„, ,—. 1 1 Pa rr o/. i 1 I 1 1 1 1 T. 1 1 -1— T i 11111E7‘111111_ - I I Still II 1.: , . �`. b - 1k 1 ,.. ----- I I I I I I I I o.• - I I 1 N WO 1 I / I I rn 1 I I I - - I -1- . ~ N t - t • . + _ I 1 - 1 - �.. - -I- t- - I — - -_ _ F „ .I .- I. . - -- 1- f- - - + — +- -- y ■ 1 1 HYDROLOGIC SOIL GROUP MAP 1 BASELINE & SIERRA AVENUES STORM DRAIN HYDROLOGY STUDY X BERRYMAN & HENIGAR, INC. JN: 15946.00; JN 15945.00 4+ t , ` / - ' � . X 1., 1 , .� f} y '_ _1r • -- • -: -- - --•- - ;/ 1!I � ' � 1' . 1 1 tl f � 'y� jr �ti � i v 4- ' ,, , . ' ' / :' IWRCk, GLOC.bON MAI. I ♦ ", ' \i • ) ` t R t _ � j r J','U 1 .� y A L ' s I I ,.`� � • '' nZ - `~ i''� '�ij i C /a : 1 , �1 ' - f l'"I 4. , \ �I) ,' •. - k' l�� \;,, � . . :' \ ' / \ o , ` I F '� - ' • 1 ' :w � „ : . [ . � • � a , , ,: - . ) E:: . 4 ; . -1`,'. ' ' t ■ l : ;_Iytr ��7 ”. '''' i' '1;1 • L �• r,,,,- -, -;I ?.�° , \� — , �' 7.?S' r �. f: ',r?; '� + -'•••••'-','„4:;-''. , , '���,7[5 ,'' ' `" �, ^ �_ ., = q -1; ',,. t .: • _ ' ^ " \ ,..i ^.t I� !' -� t T , ' CT4 1. ', � "Ct •• 1•` `d, _ij /:J = -• -I. , , f 9- 'R;µ .1 N,. I :J K t,' it, ' '~ • • a .v� l �• •C.: - fit t N+ '1'411 �` ,'': � -V '� ,F, � � Y P _r �}" ^ .f' -- : fl 1 ± r c r i �t -, 1 ,-t r . / , lc I'7ti` �_l' j -:i.'; r'-! °' ,i'r ' 1 , . ' a4`�'• •; : , 't, =I , . r � r ,r 1 k d�ri 7'•.. d l:,, jy!r x .56 >. � I (� \ ' - i ? M ' • ' 'w= ' � 1-., - __ c' - \ i. ,, c ' 11 i !r , � , _c , , �,�� � . f t ,Z'F? -,ll Ii i.:1 }r .1 ; _ • -� 1 • • ' T N ; ; , y . ., 'i -. • � 1 � • . • _ l � i . 1., ✓ � ,1 , , '0 .., _, t . . : . t ' 'ill t G•V' 'J-�- t- ,,,., , • f, T V 1',. _\. : / -' i f �" �> ,, "c•' •,•, - ;; „.. _ .. , I • (, _ � ., ' " I `„ i r . v��'1 . •1 j + .. -,- ,, -1, . l i�ic• .:'°i7- = 1 '4' 1N •fi 't I. F . n, = --- '_ --- --�'- - c'• - ; - ' ,, . '-F� Fb :fi 4 ,' -7 A•Q:j • ' ,o-,.. . ' t ' 1-'''',- , � 0 . c -F t ^ y • - ° ,.a •i,1 �� � , I c, ‘••1 , } ■�- Ti { }��I ``�, rC i •':-,i� „`r • Y. ,..4. : � { � • ' Il� L .�,'.l '' }�., 1'� I� � ' i( ; ' � k�. I - . ‘ � • p rk 1t .,TF: ∎� . } 6- r.'- `l ` ' ''''''`.•&<' r 't t.. ?_ , `., %_ - 1 : \ � • .. , i7. ; � - : a : fkt . :a • .,( .. �� - 's. %.9'*'yf'. ^: -�,` .'K�,� i . / f . I- '_.}.. , i 1 - , \- A' . _ _ ,• , 41: � ' 'r,. *r:. '- F � , - , rLf-.•4'r.t.4 „ J •�_ e , ei2”. F'' •;1, ,. d; : .::J . ' .. /;�a 6r }, - i-....1.,......:- � `- _ . _,.1. `,` _ 8 .: � yy e �: ti 'r:a, !'�- � l< n z'.l,:i'��.F �,F C >�� - 1 -C;..' .•y - 4:: , ,_f -;` , •1_ . �x,j.�') , t1,Y•-y' i ty '� :c ' 1 V:;7� -•:>, E ,. �i 1._g 1: ::> .C • t - ' f'.�J ` ..e. .1t2-�.. /,/ a ,` - /Y -, frv - . J7 . , �Y .. ,ry 1 ' •,; `,.f. • l ':'r - •i ..L , r � . • • ` - �' )r'.\e_.f' + " :�+P .c `'t-f . 1 _ r �; 1�:� < r � , t , ; I::.. - • / � .,� . . -i -`f 1 < .A. ' x { ' •,•. ' •,• . t ; ■ '• `�:! -i i,'e L . .� �' }' 'f�.Y . , _�11`' ., - ;l” <,.`X � , � :i�� : 1 ' � -. ' G C+ �r 11 i.YI �� � ^. � �•� /� � . _ _ ,-'Iy ^., 1a ,I1` - c.' ' S. C` L "•`' .1 -r - 11. ' ''. : 4 ` - - .( ;1. .' . ^�'": _, ... w`c' ' , '. 1 - :._�' A f - • r � . 3i . �f„Y?.,: %�s _ Vi _ . - . • `: °rKyc ._c 6 '� ?,C7 - ^ a _•=' f'. q . r v . .yv ? A . ;.Vrir "7' - , - : . !'r.. . , [}` i••p :,• -- :: y e ll _'�.'i ✓w' i . } {; -„ � -,, .:z . , i_, I F,:.M -'/ e a 1 l' •• rr ' '� Y J .l - ].� - "�: ? -' . 1 :PX( ,y - JT'n 'Al. . . ,t4 7. 'A, $ r ..?rout . ?,;,. •, . - . �' . .,. . ;F - �,,rJ. . z ; ,.-- . t y r,.J:.f" , .v; •- f ... ' • v \. ; ' .t.a:. L. l.f: ,e - } � . ,I ,. 4. F, , � . r. _ v ; _ O; 'r."` _ 1 ,.. Y � r .1 . l t-+ L '' ; `,. _ :a . - . ,1!.,�.i'f� r .-: -- ", p ^ {• jy`- ,.w , T , + r ' , :i;- Wit ':, , ` :: ` ., .. ?, b E ___,; ___ F. :� ' <� ? �'i � : �, t,..' til ' . / � p _h� ,�"�. ± 'i: _SWRG a i 97f' r C • : SU+ .. /. 3' Cccs`...,. .. \\ _ , {: `. 'L i. ' i � - s� ';:r‘ _ ::-.-::-P-',!"7 ' _ •, _:.. .: _ _, 7 - t ' ,Y: mot' -_ .. i • I' _ -i 1 '� _ • i . �" I / i a - _ i _ a7— • ti j Y - i l l• '3- •.` -_ - • - -- __ i . r a - -- -• _ — # . _ -. �• -_, t ova _ 1'1 i- _ • : l ik . E .i. l i l r ; w � sx . _ - .. - -I 111. . ' p i _ , ,- - -.- - - - - . .1/i : - 1�' - <` " '� '. : :_ • i ,•, •'t- . + .l . L ... --t =c-1. - ..0 :' — ..' ';;I i , - _ �, 1c' , r , ' /si } 8. ,..F°•' - ."?ti•r = - 'r f .1 - �_... . - - '• -' ;: .� I , ., .. ,a 7 . = ;L ' ` .- _i A ....-- Cam `T _ . G.23_ -- - ra--- -= f>•._ —_ _ . . _ T'�n . : ' :a . . _ - _ - ` 'sue .r• -- .. - - - - _ - ' — - _ - _a _ - _ -- . . _ ,-' L I- -c- `t om _ _ - , , �i - . !19a7u°Jh - , - ` :;,w [' [1.- I : _ _ .I 111 ; X _ II = d - 1 - ;,f . —. r � 1 • � j A J.w -. _ ' �q Lr_ -- - • /....-74f1-( �� �• 1 • , f : - - 1 � F 4 ,I ,r 11 - -:_�_ _ _• 7 , ,.,.OUP BOUNDARY ._, .._,,.. ' _ ,., - GROUP DESIGNATION - SCALE I.48,000 n OF INDICATED SOURCE SCALE REDUCED BY 1/2 HYDROLOGIC SOILS GROU MAP FOR SOUTHWEST —A AREA 1 1 RAINFALL YIELD CALCULATION 1 ■ 1 1 I BASELINE & SIERRA AVENUES STORM DRAIN HYDROLOGY STUDY XI BERRYMAN & HENIGAR, INC. JN: 15946.00; JN 15945.00 • • • • E pp pp 2 M1+� �p p AOO p ep p p cp O p p p � p . O:: ; ! P:=2 G .4 � t? N' n8282 2 4 4 42iowr8Po'82g'32 42E •`.r : 24;;P.F,8:��- : . 84 ' co N� 828coo N. 8 G E M 7 M N g' M N 7 O o 6_ N 7 M 0 6 0 0 0 0 0 0 0 6 e 0 A o 0 0 4 0 e 0 0 6 A o 6 ci 0 0 6 0 6 7 7 7 t o N .... _ o 0 .0 7 co t o A o 4:. N N h E 0 2covoOAO88o28mo8 8�m 0000000000 8 0 90o 0 A mo800080000000000888800008 8 � 888 N , X 000000000000000000000000000000000000000000000000000000000000000 • . W • . 2 • f , Y O ... co Y yy a e. To LL, c 0 0 0 0 m rn rn rn rn m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m mm m m m m m m m m m m m f N a o LL o A � y fV c o O o.0 0 0 0 0 0 o a o 0 0 0 0 0 0 0 0 0 0'0 0 0 0 0 0 0 6 0 0 0 0 6 0 0 0 0 0 0 6 0 0 0 0 a 0 0 o O o 0 0 0 o ci 6 o 0 0 6 0 o 6 'g e $ A O E0 O J J C to E a a - 4 c o ' 1888888880 88898888000000000 089800 898 000 8 0000000 000 8288 9-0° 888888 LL o 6 o 0 0 0 6 0'6 6 o 0 0 6 0 0 0 6 0 0 0 6 0 0 6 6 6 0 6 6 6 0 0 6 6 0 6 0 0 0 0 0 0 0 0 6 0 0 6 6 0 0 0 0 0 0 6 0.0 6'0 0 0 A 0 O . a E ee�� �O 1 �p pp p� p � pppp p� a �p �� p p a q E rZ00dAOAryao6 .^`4824N�: p o QON �tOO .-O C ° o0 d Y0 0O VS° 8822288N�28g V 14i E 0 0 0 0 0 0 0 0 0 o of O i 6 e c V ci e o 0 6 C o 0 6 •-, O G o O o O 6 o 0 0 0 0 ci 0 0 6 0 0 0 0 .- .- t o t o cocoa o O V } Y v 12 a c a o c N 0 c 0 o o 0 0 o 0 0 0 0 0 0 0 c 0 o o 0 0 0 o o 0 0 0 0 0 o 6 6 6 0 0 6 0 0 0 0 0 0 0 0 0 6 0 6 6 o 6 6 6 6 6 0 6 o 0 0 0 0 6 0 0$ E .. O co N o X a C 0.448444 8 84 ' 8 8 888 8 °88288828 ' 5 of of of 6of of 6of of of 6of of cg 6 of of 6666 of of of of of of of 6 of of cg of 66 Ali of of 666of 66of 6of of 6 of of of of of of of of of of of 66 of a t O N . c O tO � o ttOO ��OO 1� y� 1O in • N N N N N N N N N N N N N N N N N N N N N N N N 4O N N N N N N N N N N tO N N N N N N N N N N N N N N N N N N N N CO N N N N N N N N N a eeeeeecee a To c ric a NN pi NN NNNNNNNN NN N N NN N N N N N N N N N N N NN N N N N N N N N N N N N N N N N N N N ul N N N N N N N N N N US NN u N N N N N N N N N N N N N N Cl N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N Cl N N 0 N S 2 9 99 8.0 8888888. 8888888888888888888888 888888888888888888888888888888 .8 a N N N N N N N N N N N N of N cV cV NNN cV N N N N N N cV N N N cV N N c4 N cv N N or N c4 N C! N of cV cN IN cV N cH N cV P! N 6.6 N N 6 N N M M M M CO M M CO M M CO M M M M co co M co co co co co co co co CO M CO CO M M M M CO M CO CO M CO M Al M M M M M M M M M M M M M M M M M M co M M M 2 U a 0 Q U c ^ oaaaaaaaaaaaaaaaaaaaa asaaaaaaa asaaaa aaaaaaaaaaa ¢ aaaaaaaaaaaaaaaa• 0 o U L co CU O A ..........›..›.3.131,..a 40 .111 N A • Y U b .� a A A A .� W 10 ' C ,.. C T .ry T { C p T T T T . L � T T L� �L� e �p 1�p ( gy •� T T • � A C C C O. C C E C o i C o c C a E V, A A A A s'z c 2 • .'t_7 - c 8 s E EE 0 21 2 ocYo Y$ $ O Y Y O Y Y Y Y O O Y O Y _ > i0 E 7, fi $$$$$$$$ $Y$ $A A AA A 4ASAAS S 4 BE 0 S 4. g o ca cccccccrc���rc I a ' �z c rc rc $$$$ o cc o � t K YY$ cg c`�t`�c`�cgc� re' rcrc o u. • E • t S N 0 z _" A o° � N ` 28F 0. 888.8at e 0 �88.8_,VRg8888S1$ °n °n0R °8,888, 284,99° 81124 $88R8888A8 m v ' Q Q AO .- co M . 0 e M .- .- R 8 Y N cV N .: M N 6 cV .- a Oi vi .- Ao a Fi r 6 co o e0. e a C 0 .- 0 0 0 8 of m ci c�' m N co ,...1 •- a ui t V 6 i „ V H o 1T uu U V co M A m Y Y C y E A ,_ N .7 . - • .-N M N NN 7 N N N.- N..- N. . N. -N N .- .- 4 p�p�o A.�A� p� Op AO (p p� NN ( . � -�N Ac � p � . p - p N �N�� `c E Z E C h N 10 V 10 n Ol W 0 C r .- cV OI to 6 t� e0 or R N N N N cV N N N N cV fV l� M M M A+1 01 OI 1+f 19 cn 4 4 O Y Y R V R AO AO 10 �O ANO A(j d E l; c o 13 O r LL d Z 0 0 W E Y o m o O .- To ,0. ',00.00 $ - . • E o p tp w� mmw1 tppyY qp1 w� OO6.p . 2882 q pp OO11w1 GIIB� , Q Gmm 1p .. LL O O N F ORn'N m V RpN °MHOn YQINvI. 0 .2O W 02 Y 00 ** V . eta P. T. .^-A ~6. N.r -001 S 01":� 88 g! to: A 1^ E ei ri N M X eiN d o `-a fg N . , 1144dCo odadacioYci Yf aOO GYCCohooG o 0 00 d N a do.-dd ddg, N oado C w:d :O d O E , u 0 88888888.ovgu`2'F'222 00000 000008080080800080000 00000O8888o00088888000008888 3dadtadtaacidddodotaaocaddadadaaaotaod •0000c0000000 i c a E ^ e ce • s o A1 S 6.q m O' j T CM - in' E QOooOOOooOO d 6.6.od6.0o1 000 6. 6 .6 6 16 . 6.6.6.6.6.66. 6. 6. 6.6. 6.' 61 6. 6. 6. A ''6. 6. 6.6.'6.'6. .6.6. 6. 6.'6. 6.6. 6.6.6.6 6.6.6. o 'S o tN ao ood00000 ' 00000a000cc00000000cococ00000$ } N 0 N J C O L p o S 8 8 8 88 N 8 O N 8 8 O 8 0 0 0 0 0 0 0 0 0 0 0 0 0 O O. O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 8 8 O O O O O O O O O N odadOaadadadada CoCociatao ooCOOOO I O O f a t oca oaact b o t o O t o O b oo 00000 l o O �p (p p../ 6. p 1� pp�1 pp�1 (p p p Q� p q A (y ap p 1 227!!" ;=b9178N�88,7 �a 088814.0088E 8Y.X 8XRNVr- -88 8� 8Nm 888w1'1282 %NX80 ?4 Ed a o o a a ci a d d ri of o Na d oci oa a s a.oa oci .- d o a a a a a o o a d d d a c- o.,. =�.=wi w wid • T ootaodrr wi • 2 } T • g d' o data a dodo dadada a d d a a a a a a a a a a a cocoa a a d d ado o ad o dada d a ta o_o oaooa dodo o o acid dad e a N aSSSSS SSS SSS SSSS SS SSSSS S SSSSSSS S SSS SS SSSS SS gt W 6Oi 01 Oi:6 Oi 0601 6666 Oi 6 Ol' q 6 0:66 Oi Oi A N6 666 q 6601:666: A W 66 6666:666:6 6 6 66 k N A . c N N N N N N N N N N N N N N N N N N N N N N N N n N N N N N f V N N N N N N 'Al N 4 4 N N N N N N N N N N g N N N N N N N N R N N N N N N R N 'Al R N Q N • y1 O1 �(1 1� 1� y1 �(1 1� NNNNNNNNNNN NRNN N N N NRNRRNRNNNNNNRN R N R N R N N NNN R NRNRNRNRNRNRNNNNNNN U N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N I co re 88888888888888888888888 8888888888888888888888 . 8888 00 08 = nnnnnnnnnnnnnnnnni mm �n r Nmm co nm a ry i vim mmn mmm m m en omm enclmo nn m ommmn U a - 3 e oaasaaaaaagaaaaaaaaaaaa aaaaaaa aaaaaaaa aaaa. aaaaaaaaaaaa <aaaaaaa < aaaa Q in o c • v • Z W C p W m m i 7:57,7g _ i I a a a m a a a a s a. T T T T T a m a T a a to j$$ai g$$$ $$ ¢¢j Y { ��ee m ,..).11 ,..).11 Ta �a$j i a - .a - jai i i m T. i • X seta a'm '�{ ti 5 4 ii i,i i i i P U iii iii ii iii i s i i a 1 111 1 . 1 11 $ O 6FaF 07a. S FaF T T a a Y LL3E - I mssm¢ m z m rcrc a snm �aasaam a � a aaaa rcrca rc $•$$ S o �� ocy m U rcnnncrc U rc ,r rc,¢rc m m rc� ¢ c III 76 a • p U o zzzK z zziz UU ii arc y I m m'0'$252R88 °8o8a8`R88Y01, dry` IS v 6aiv6i ??8 °8�85.8i88R88R891,0? 186.81 $S °888$88Rg$ °FIS911°�.60•$2 • m 5/-5 A m YI O) wl N Of Y Mi .- e� a <D G a� .f C O b (G C GI e� aG N N f tV IG tV r• •- • r H r• g l + l C m tG Yf N f�`! !+1 Is g a mm E Y : ; r r.- N N r -.r N 6 N rriN rN N r � N 1 �N- rrri r 1� O1 p O N Nr.7N-. r . g e �(1 fp N.-Nrrrri rr w N l r r N r Nr r rr O D 7.7r Nr p 1 7 r � Z O OI O N N v l n r A� p • j O • i O • i O r � f V w i w i O Y l f G h 7 ._ , 7 CO O I G N N N N R R N N N N w l O N n X O! O l w l Cl C O N N N . 0 Y f N N N M 10 O f M O t m f m l m f 0 V. Z m VI : N � SSS"' Q O `N Q O li a le -, o a u u • t$ oyAWn79mlim1nm m _, i ge.V449�n BNI;E Rgli4� = ^n� R4MIIRR= n4g4 �A_mNR �A =p dCiG - fie pR _ • - o� E ! wu$.�i umi vmi uR uS.°iioX�m X o N a���oeeeeoeeeo X e. oo oo XX � $ 0000 SX � XXX ooeoo� XXX 0000 o•��o m �o x O O O C o O O O O O O O O O O O O O O O O O O O G O C O O O O O O O O O O C O G C O C C C C G O C C C O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 0 0 0 0 0 0 0 O E X • 1. E E rnrrrnnnnnnnnnnr nrrnnrnnnn nrnnnnnnnn i d S 60 % Oe 00 0 0 0 00 000 0 0000e aama „ aammmammmmmaaamaaammammmaaaaaaaaaaaaaaa aaa aaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaa aaaaaaa a M � ooe0000000000000000e000000000000 ooe0000000000000000000000000000000000000 p J J • SSoomoS SS 00000 ya .�Sea oeeooSSeSSoSXSS�e�o eee00000cooe000ee00000000c000e0000ee000000ee000c00000000000000000000000000e000e00000000000 - ' - S "'". - 00000i " Rwgx �: aV-51V � eoz o o o g4Sg:s . - S'S' XgXgM"*4q.R'gq° 488 . - 234W44V- g2$sxg • Eo 0 ovN O; 00000 o oo�0002000c000 00000. .— iAA000 -�vv o eoo .4o. -.=e € 00000000 c000000c000000000000000000000c0000000e0000 o000000000000000000000eeooe000000000000c ffi t` w X 0 0 000 00 00 0000 00 0000 0000 0 oog 43 � ggg ggg g gq ..g <. « g. ..K <ggg ��5.... Kggg gggg gg gg g ggggs . gggg3.�.K.gg�ggggg.. �mmmmmmmmmmmmmmmmmmmmmmmmmm J • GIMVAINgmi,rmi,xlMqqAMMM xlAtMttI MNIANN144 1N1WAINIAtq Aq'/xfxAA∎gj1M1g1x1A x1 tt tANAAWqMgl7qM7P't MMIel e rmi, rmi, r X'i, {' i, K'i, rmi, cmi, M 4IVA K'i, k'i, rmi, x AI A Ni IVA VI N . WAI x1 � x1 Yti N Wti n1 t 1'f qA g lq q A IVA 1 N A IMA xl xl x} 4+. 4 N N AM W �m'1 �Y �mM N AMI H N t`71`f'j'1'f'1'f''1 r'i N WA t)J N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N NN N N NN N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N G N N H m C pp p G p p C G p p C p p G p G p p p p G p p C p p C C p p p p p p p p ppp p G p p p p p p p p p p p p G G G p p p p SO$ ggS0 8S8S000O ORSRSRRSRRRR$$ RRR$ SS OOOOORRRRRR $gRgg$gM8XaRO$g$REMR8 C AAA IV IV NtV IV tV IV fV� AAtV IV IV IVNNNNIV IVNM IV NIV IV fV IV IV IV IV IV IV CIN CI ��yy^MIVNNMNMyy��M IV = n n n n n n n n n n n n n A n n n n n n n n A n n n MJ n A A A A A A A A Pl A A A A A A A A A A A A n n I n A A A A A A A A A A A A A A n n n A Ml n VI A A A A A A A PIA A b 0 E tw ca- 1111111111111111111111111111/111111111111 3 l 151,111 8 9E888 3 11 > 1;A .+a:¢rcrcrcsrca aaa ava a uou liji P :RRS:$ .20gom$omgo`om$q $ eSRR53PyR S11 o R8RYR�$m �Y , mm.ivm i<4X1'v C m U g(,); i Y 4 NnI mm. --rmAg IVAmmm N-.. < ' Y p a i���ryN..�..NAry �,ry n ry.;N ^N��ry�ry.;��ry 1�.- �ry���. -ry�ry�� ry E g z mNmam�no" �H ' �G . l" i ' iiSiS�R: liiigRgeeS'mmBgS m b o .t • ..t i LL 100 -YEAR - RATIONAL METHOD HYDROLOGY 1 BASELINE & SIERRA AVENUES STORM DRAIN HYDROLOGY STUDY BERRYMAN & HENIGAR, INC. JN: 15946.00; JN 15945.00 I ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) II + . (c) Copyright 1983 -90 Advanced Engineering Software (aes) a Ver. 5.8B Release Date: 1/16/91 Serial # 9396 Analysis prepared by: BSI CONSULTANTS, SANTA ANA ❑❑❑❑❑❑❑❑❑ ❑ ❑❑❑ ❑ ❑ ❑ ❑❑❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑❑❑ ❑❑ ❑ ❑ ❑ ❑ ❑ ❑❑ ❑❑❑❑❑00000000000❑❑❑ ❑000000 ❑000000000 0000❑❑ ❑❑❑❑❑❑❑❑0❑❑ ❑0000 ❑❑❑0❑❑ 000000 0000 ❑0000000000 ❑000❑ ❑00❑ ❑00 ❑0 ❑0 ❑0 ❑0 ❑000000 1: ❑❑❑❑❑❑❑00000000❑❑ ❑❑ 000❑ ❑000❑ 000000 0 000000❑0000000❑000000❑❑00000❑❑❑ ❑000 ❑00000 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Base Line Avenue Storm Drain Design Hydrology; 100 -yr, AMC =2 * * Watershed from Citrus Ave to Palmetto Ave ':: * B &H IN: 15946.00, By Jonis C. Smith, PE FN: blnsdlh.dat, .out ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: BLNSD1H.DAT I: TIME/DATE OF STUDY: 16:28 11/14/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL * -- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .90 I: *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* • 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.050 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.520 COMPUTED RAINFALL INTENSITY DATA: i: STORM EVENT = 100.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.5200 SLOPE OF INTENSITY DURATION CURVE _ .6000 E ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 2 » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS«<« 1: DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3 -4 DWELLINGS /ACRE TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 1000.00 UPSTREAM ELEVATION(FEET) = 1530 ,:_ 1 DOWNSTREAM ELEVATION(FEET) = 1506.00 ELEVATION DIFFERENCE(FEET) = 24.00 TC(MIN.) = .412 *[( 1000.00 ** 3.00)/( 24.00)] ** .20 = 13.767 ' 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.676 II SOIL CL S$ FRCATION IS "A" 5. RESIDENTIAL ='5 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 SUBAREA RUNOFF(CFS) = 14.76 TOTAL AREA(ACRES) = 5.30 PEAK FLOW RATE(CFS) = 14.76 FLOW PROCESS FROM NODE 2.00 TO NODE 5.00 IS CODE = 6 II - » » >COMPUTE STREET'FLOW TRAVEL TIME THRU SUBAREA«<« UPSTREAM ELEVATION(FEET) = 1506.00 DOWNSTREAM ELEVATION(FEET) = 1498.00 STREET LENGTH(FEET) = 300.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 lalk . INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 II I. C hid' I! ' P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 1 II • I SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 II * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 17.26 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .43 HALFSTREET FLOOD WIDTH(FEET) = 13.53 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.27 II PRODUCT OF DEPTH &VELOCITY = 1.83 STREET FLOW TRAVEL TIME(MIN.) = 1.17 TC(MIN.) = 14.94 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.501 II SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .5820 SUBAREA AREA(ACRES) = 1.90 SUBAREA RUNOFF(CFS) = 4.99 EFFECTIVE AREA(ACRES) = 7.20 AVERAGED Fm(INCH/HR) = .58 TOTAL AREA(ACRES) = 7.20 PEAK FLOW RATE(CFS) = 18.91 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .44 HALFSTREET FLOOD WIDTH(FEET) = 14.09 FLOW VELOCITY(FEET /SEC.) = 4.35 DEPTH *VELOCITY = 1.91 li ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.94 li RAINFALL INTENSITY(INCH /HR) = 3.50 AVERAGED Fm(INCH /HR) = .58 EFFECTIVE STREAM AREA(ACRES) = 7.20 TOTAL STREAM AREA(ACRES) = 7.20 I: PEAK FLOW RATE(CFS) AT CONFLUENCE = 18.91 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 2 1: »> »RATIONAL METHOD INITIAL SUBAREA ANALYSIS«<« DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3 -4 DWELLINGS /ACRE I: TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 1000.00 UPSTREAM ELEVATION(FEET) = 1530.00 DOWNSTREAM ELEVATION(FEET) = 1506.00 ELEVATION DIFFERENCE(FEET) = 24.00 TC(MIN.) = .412 *[( 1000.00 ** 3.00)/( 24.00)] ** .20 = 13.767 7: 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.676 SOIL CLASSIFICATION IS "A" 5. RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .5820 • II SUBAREA RUNOFF(CFS) = 14.76 TOTAL AREA(ACRES) = 5.30 PEAK FLOW RATE(CFS) = 14.76 **_**********************************.********* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** II FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 6 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< UPSTREAM ELEVATION(FEET) = 1506.00 DOWNSTREAM ELEVATION(FEET) = 1498.00 STREET LENGTH(FEET) = 480.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 5. II Z INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 � SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 P: \15946- BASELINE \hydrology\rational\baseline Ave 100 -yr hydrology.doc . 2 II * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 19.53 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .46 li HALFSTREET FLOOD WIDTH(FEET) = 15.22 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.90 PRODUCT OF DEPTH &VELOCITY = 1.80 STREET FLOW TRAVEL TIME(MIN.) = 2.05 TC(MIN.) = 15.82 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.382 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 SUBAREA AREA(ACRES) = 3.80 SUBAREA RUNOFF(CFS) = 9.58 li EFFECTIVE AREA(ACRES) = 9.10 AVERAGED Fm(INCH/HR) = 56 TOTAL AREA(ACRES) = 9.10 PEAK FLOW RATE(CFS) = 22.93 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .49 HALFSTREET FLOOD WIDTH(FEET) = 16.34 FLOW VELOCITY(FEET /SEC.) = 4.01 DEPTH *VELOCITY = 1.94 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1 I: »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< » »>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 15.82 RAINFALL INTENSITY(INCH /HR) = 3.38 AVERAGED Fm(INCH /HR) = .58 I; EFFECTIVE STREAM AREA(ACRES) = 9.10 TOTAL STREAM AREA(ACRES) = 9.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 22.93 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** Q(CFS) Tc(MIN.) Fm(INCH/HR) Ae(ACRES) 1 41.48 14.94 .582 15.79 2 41.08 15.82 .582 16.30 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: I: PEAK FLOW RATE(CFS) = 41.48 Tc(MIN.) = 14.938 EFFECTIVE AREA(ACRES) = 15.79 AVERAGED Fm(INCH /HR) = .58 TOTAL AREA(ACRES) = 16.30 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 5.00 TO NODE 12.00 IS CODE = 3 » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< I » »> USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< DEPTH OF FLOW IN 30.0 INCH PIPE IS 23.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 10.3 UPSTREAM NODE ELEVATION(FEET) = 1492.00 I/ DOWNSTREAM NODE ELEVATION(FEET) = 1431.00 FLOW LENGTH(FEET) = 4700.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 41.48 • TRAVEL TIME(MIN.) = 7.63 TC(MIN.) = 22.57 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 12.10 TO NODE 12.00 IS CODE = 8 II »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.733 SOIL CLASSIFICATION IS "A" P:\15946-BASELINE\hydrology\rational\baseline Ave 100 -yr hydrology.doc 3 1 I' RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .5820 SUBAREA AREA(ACRES) = 52.80 SUBAREA RUNOFF(CFS) = 102.21 EFFECTIVE AREA(ACRES) = 68.59 atA AVERAGED Fm(INCH /HR) = .582 TOTAL AREA(ACRES) = 69.10 PEAK FLOW RATE(CFS) = 132.78 Ill Zr TC(MIN) = 22.57 II ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.00 TO NODE 7.00 IS CODE = 2 li » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3 -4 DWELLINGS /ACRE TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 800.00 UPSTREAM ELEVATION(FEET) = 1530.00 DOWNSTREAM ELEVATION(FEET) = 1506.00 dal ELEVATION DIFFERENCE(FEET) = 24.00 TC(MIN.) = .412 *[( 800.00 ** 3.00)/( 24.00)] ** .20 = 12.042 ' 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.984 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 SUBAREA RUNOFF(CFS) = 16.23 TOTAL AREA(ACRES) = 5.30 PEAK FLOW RATE(CFS) = 16.23 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 7.00 TO NODE 10.00 IS CODE = 6 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< UPSTREAM ELEVATION(FEET) = 1506.00 DOWNSTREAM ELEVATION(FEET) = 1500.00 STREET LENGTH(FEET) = 850.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 II OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 /O, / * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 21.02 D S TREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .54 LI HALFSTREET FLOOD WIDTH(FEET) = 19.16 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.72 PRODUCT OF DEPTH &VELOCITY = 1.47 . STREET FLOW TRAVEL TIME(MIN.) = 5.20 TC(MIN.) = 17.24 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.212 I' SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 SUBAREA AREA(ACRES) = 4.00 SUBAREA RUNOFF(CFS) = 9.47 EFFECTIVE AREA(ACRES) = 9.30 AVERAGED•Fm(INCH /HR) = .58 TOTAL AREA(ACRES) = 9.30 PEAK FLOW RATE(CFS) = 22.01 I/ END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .54 HALFSTREET FLOOD WIDTH(FEET) = 19.16 FLOW VELOCITY(FEET /SEC.) = 2.85 DEPTH *VELOCITY = 1.54 . I/ **************************************************************************** FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE< «< I/ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 17.24 RAINFALL INTENSITY(INCH /HR) = 3.21 li P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 4 I AVERAGED Fm(INCH /HR) = .58 EFFECTIVE STREAM AREA(ACRES) = 9.30 TOTAL STREAM AREA(ACRES) = 9.30 li PEAK FLOW RATE(CFS) AT CONFLUENCE = 22.01 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 2 1; »» >RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3 -4 DWELLINGS /ACRE li TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 750.00 UPSTREAM ELEVATION(FEET) = 1530.00 DOWNSTREAM ELEVATION(FEET) = 1506.00 q `x ELEVATION DIFFERENCE(FEET) = 24.00 TC(MIN.) = .412 *[( 750.00 ** 3.00)/( 24.00)] ** .20 = 11.585 2 M 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.078 3..6X, SOIL CLASSIFICATION IS "A" . RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 .1: - SUBAREA RUNOFF(CFS) = 9.44 TOTAL AREA(ACRES) = 3.00 PEAK FLOW RATE(CFS) = 9.44 1: ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 9.20 TO NODE 9.00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< I: 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.078 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA AREA(ACRES) = 1.10 SUBAREA RUNOFF(CFS) = 3.94 EFFECTIVE AREA(ACRES) = 4.10 9, 7- AVERAGED Fm(INCH/HR) = .452 � TOTAL AREA(ACRES) = 4.10 PEAK FLOW RATE(CFS) = 13.38 TC(MIN) = 11.58 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** II FLOW PROCESS FROM NODE 9.30 TO NODE 9.00 IS CODE = 8 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) 4.078 I; SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 3.15 EFFECTIVE AREA(ACRES) 5.10 I/ . AVERAGED Fm(INCH /HR) _ .477 (9. .� TOTAL AREA(ACRES) = 5.10 PEAK FLOW RATE(CFS) = 16.52' TC(MIN) = 11.58 1/ ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 9.00 TO NODE 10.00 IS CODE = 6 I/ » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< UPSTREAM ELEVATION(FEET) = 1520.00 DOWNSTREAM ELEVATION(FEET) = 1500.00 STREET LENGTH(FEET) = 690.00 CURB HEIGTH(INCHES) = 8. II STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL,GRADEBREAK(FEET) = 12.00 C INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 • II P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 5 ___ I/ SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 45.00 II STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .54 HALFSTREET FLOOD WIDTH(FEET) = 19.16 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.83 PRODUCT OF DEPTH &VELOCITY = 3.16 STREET FLOW TRAVEL TIME(MIN.) = 1.97 TC(MIN.) = 13.56 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.710 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 SUBAREA AREA(ACRES) = 20.30 SUBAREA RUNOFF(CFS) 57.16 EFFECTIVE AREA(ACRES) = 25.40 AVERAGED Fm(INCH /HR) _ .56 I: TOTAL AREA(ACRES) = 25.40 PEAK FLOW RATE(CFS) = 72.00 END OF SUBAREA STREET FLOW HYDRAULICS: n , DEPTH(FEET) = .61 HALFSTREET FLOOD WIDTH(FEET) = 20.00 FLOW VELOCITY(FEET /SEC.) = 6.97 DEPTH *VELOCITY = 4.23 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES ««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: I: TINE OF CONCENTRATION(MIN.) = 13.56 RAINFALL INTENSITY(INCH /HR) = 3.71 AVERAGED Fm(INCH /HR) = .56 EFFECTIVE STREAM AREA(ACRES) = 25.40 I: TOTAL STREAM AREA(ACRES) = 25.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 72.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. I: ** PEAK FLOW RATE TABLE ** Q(CFS) Tc(MIN.) Fm(INCH /HR) Ae(ACRES) 1 82.61 17.24 .567 34.70 I; 2 92.59 13.56 .566 32.71 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 92.59 Tc(MIN.) = 13.557 EFFECTIVE AREA(ACRES) = 32.71 AVERAGED Fm(INCH/HR) = .57 II TOTAL AREA(ACRES) = 34.70 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** I/ FLOW PROCESS FROM NODE 10.00 TO NODE » » 11.0 « IS CODE = 3 t > COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA< » »> USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< II DEPTH OF FLOW IN 36.0 INCH PIPE IS 28.9 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 15.2 UPSTREAM NODE ELEVATION(FEET) = 1494.00 DOWNSTREAM NODE ELEVATION(FEET) = 1458.00 FLOW LENGTH(FEET) = 1620.00 MANNING'S N = .013 ESTIMATED, PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 92.59 TRAVEL TIME(MIN.) = 1.78 TC(MIN.) = 15.33 FLOW PROCESS FROM NODE 11.10 TO NODE 11.00 IS CODE = 8 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< li . P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 6 II 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.446 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 SUBAREA AREA(ACRES) = 88.50 SUBAREA RUNOFF(CFS) = 228.15 EFFECTIVE AREA(ACRES) = 121.21 AVERAGED Fm(INCH /HR) = .578 Ark I: TOTAL AREA(ACRES) = 123.20 PEAK FLOW RATE(CFS) = 312.96 TC(MIN) = 15.33 FLOW PROCESS FROM NODE 11.20 TO NODE 11.00 IS CODE = 8 »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< I: 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.446 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) _ .0970 SUBAREA AREA(ACRES) = 1.90 SUBAREA RUNOFF(CFS) = 5.73 1; EFFECTIVE AREA(ACRES) = 123.11 ��.� AVERAGED Fm(INCH /HR) = .570 TOTAL AREA(ACRES) = 125.10 PEAK FLOW RATE(CFS) = 318.69 lq, iim TC(MIN) = 15.33 iii ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 3 I: » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA< «< »»>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< DEPTH OF FLOW IN 57.0 INCH PIPE IS 41.4 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 23.1 UPSTREAM NODE ELEVATION(FEET) = 1458.00 DOWNSTREAM NODE ELEVATION(FEET) = 1431.00 FLOW LENGTH(FEET) = 950.00 MANNING'S N = .013 II ESTIMATED PIPE DIAMETER(INCH) = 57.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 318.69 TRAVEL TIME(MIN.) = .68 TC(MIN.) = 16.02 II **************************************************************************** FLOW PROCESS FROM NODE 12.20 TO NODE 12.00 IS CODE = 8 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< : .. 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.357 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 I/ SUBAREA AREA(ACRES) = 46.00 SUBAREA RUNOFF(CFS) = 114.90 ss�� EFFECTIVE AREA(ACRES) = 169.11 /L, 2.) AVERAGED Fm(INCH/HR) = .573 TOTAL AREA(ACRES) = 171.10 PEAK FLOW RATE(CFS) = 423.71 TC(MIN) = 16.02 I FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 I/ CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 16.02 RAINFALL INTENSITY(INCH /HR) = 3.36 AVERAGED Fm(INCH /HR) = .57 EFFECTIVE STREAM AREA(ACRES) = 169.11 II P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 7 I/ TOTAL STREAM AREA(ACRES) = 171.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 423.71 FLOW PROCESS FROM NODE 5.00 TO NODE 12.00 IS CODE = 7 » »>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< • USER - SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN.) = 22.57 RAINFALL INTENSITY(INCH /HR) = 2.73 EFFECTIVE AREA(ACRES) = 68.59 TOTAL AREA(ACRES) = 69.10 PEAK FLOW RATE(CFS) = 132.78 AVERAGED LOSS RATE, Fm(INCH /HR) = .582 NOTE: EFFECTIVE AREA IS USED AS THE TOTAL CONTRIBUTING AREA FOR ALL CONFLUENCE ANALYSES. FLOW. PROCESS FROM NODE 5.00 TO NODE 12.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE «<« »» >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES«<=< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 22.57 RAINFALL INTENSITY(INCH /HR) = 2.73 AVERAGED Fm(INCH /HR) = .58 EFFECTIVE STREAM AREA(ACRES) = 68.59 I/ TOTAL STREAM AREA(ACRES) = 69.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 132.78 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** Q(CFS) Tc(MIN.) Fm(INCH /HR) Ae(ACRES) 1 545.29 16.02 .575 217.79 2 496.14 19.75 .576 231.11 3 465.30 22.57 .576 239.69 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 545.29 Tc(MIN.) = 16.017 EFFECTIVE AREA(ACRES) = 217.79 AVERAGED Fm(INCH /HR) = .58 TOTAL AREA(ACRES) = 240.20 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** '.3 FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 3 » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA«<« » »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< DEPTH OF FLOW IN 72.0 INCH PIPE IS 55.2 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 23.4 UPSTREAM NODE ELEVATION(FEET) = 1431.00 DOWNSTREAM NODE ELEVATION(FEET) = 1400.50 FLOW LENGTH(FEET) = 1450.00 MANNING'S N = . 013 ESTIMATED PIPE DIAMETER(INCH) = 72.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 545.29 TRAVEL TIME(MIN.) = 1.03 TC(MIN.) = 17.05 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 13.10 TO NODE 13.00 IS CODE = 8 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.234 SOIL CLASSIFICATION IS "A" 00 P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 8 I/ I RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 SUBAREA AREA(ACRES) = 22.90 SUBAREA RUNOFF(CFS) = 54.65 I EFFECTIVE AREA(ACRES) = 240.69 / r AVERAGED Fm(INCH /HR) = .576 TOTAL AREA(ACRES) = 263.10 n' PEAK FLOW RATE(CFS) = 575.75 !•f� �( TC(MIN) = 17.05 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 13.20 TO NODE 13.00 IS CODE = 8 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.234 I SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA AREA(ACRES) = 2.20 SUBAREA RUNOFF(CFS) = 6.21 Agt, EFFECTIVE AREA(ACRES) = 242.89 AVERAGED Fm(INCH /HR) _ .572 II TOTAL AREA(ACRES) = 265.30 PEAK FLOW RATE(CFS) = 581.96 IIIV TC(MIN) = 17.05 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 17.05 I: RAINFALL INTENSITY(INCH /HR) = 3.23 AVERAGED Fm(INCH /HR) = .57 EFFECTIVE STREAM AREA(ACRES) = 242.89 TOTAL STREAM AREA(ACRES) = 265.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 581.96 I; , ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 14.00 TO NODE 15.00 IS CODE = 2 »» >RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< DEVELOPMENT IS COMMERCIAL TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 I INITIAL SUBAREA FLOW-LENGTH(FEET) = 1000.00 UPSTREAM ELEVATION(FEET) = 1530.00 DOWNSTREAM ELEVATION(FEET) = 1500.00 ELEVATION DIFFERENCE(FEET) = 30.00 Alik II TC(MIN.) = .304 *(( 1000.00 ** 3.00)/( 30.00)] ** .20 = 9.715 100 YEAR RAINFALL I IS "A" TY(INCH /HOUR) = 4.532 /a SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA RUNOFF(CFS) = 3.99 II TOTAL AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) = 3.99 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 15.00 TO NODE 16.00 IS CODE = 6 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< UPSTREAM ELEVATION(FEET) = 1500.00 DOWNSTREAM ELEVATION(FEET) = 1416.00 II STREET LENGTH(FEET) = 4050.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 22.00 /b,1 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 NW 1 INTERIOR STREET CROSSFALL(DECIMAL) = .020 li P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 9 k II OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 111 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 7.70 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .43 I HALFSTREET FLOOD WIDTH(FEET) = 13.56 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.79 PRODUCT OF DEPTH &VELOCITY = 1.63 STREET FLOW TRAVEL TIME(MIN.) = 17.79 TC(MIN.) = 27.50 II 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.427 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA AREA(ACRES) = 3.40 SUBAREA RUNOFF(CFS) = 7.13 I: EFFECTIVE AREA(ACRES) = 4.40 AVERAGED Fm(INCH /HR) = .10 TOTAL AREA(ACRES) = 4.40 PEAK FLOW RATE(CFS) = 9.23 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .44 HALFSTREET FLOOD WIDTH(FEET) = 14.19 FLOW VELOCITY(FEET /SEC.) = 4.19 DEPTH *VELOCITY = 1.85 E **************************************************************************** FLOW PROCESS FROM NODE 16.00 TO NODE 17.00 IS CODE = 3 »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA«<« » »> USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.1 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 5.9 UPSTREAM NODE ELEVATION(FEET) = 1409.00 DOWNSTREAM NODE ELEVATION(FEET) = 1408.40 FLOW LENGTH(FEET) = 80.00 MANNING'S N = .013 II ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 9.23 TRAVEL TIME(MIN.) _ .23 TC(MIN.) = 27.73 FLOW PROCESS FROM 'NODE 17.10 TO NODE 17.00 IS CODE = 8 » OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.415 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA AREA(ACRES) = 2.90 SUBAREA RUNOFF(CFS) = 6.05 EFFECTIVE AREA(ACRES) = 7.30 / 7 / AVERAGED Fm(INCH/HR) = .097 TOTAL AREA(ACRES) = 7.30 PEAK FLOW RATE(CFS) = 15.23 II TC(MIN) = 27.73 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ii FLOW PROCESS FROM NODE 17.00 TO NODE 18.00 IS CODE = 3 »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< » »> USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW)< «< I DEPTH OF FLOW IN 24.0 INCH PIPE IS 17.9 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 6.1 UPSTREAM NODE ELEVATION(FEET) = 1408.40 DOWNSTREAM NODE ELEVATION(FEET) = 1401.00 II FLOW LENGTH(FEET) = 1200.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 15.23 TRAVEL TIME(MIN.) = 3.29 TC(MIN.) = 31.02 . P: \15946- BASELINE \hydrology\rational\baseline Ave 100 -yr hydrology.doc 10 I/ 1: ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 18.10 TO NODE 18.00 IS CODE = 8 I: »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL.INTENSITY(INCH /HOUR) = 2.258 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 1: SUBAREA AREA(ACRES) = .80 SUBAREA RUNOFF(CFS) = 1.56 EFFECTIVE AREA(ACRES) = 8.10 AVERAGED Fm(INCH /HR) = .097 TOTAL AREA(ACRES) = 8.10 Dille- :: PEAK FLOW RATE(CFS) = 15.75 TC(MIN) = 31.02 t: FLOW PROCESS FROM NODE 18.00 TO NODE 13.00 IS CODE = 3 » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< "' DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.6 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 5.7 UPSTREAM NODE ELEVATION(FEET) = 1401.00 DOWNSTREAM NODE ELEVATION(FEET) = 1400.50 FLOW LENGTH(FEET) =- 100.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 15.75 TRAVEL TIME(MIN.) = .29 TC(MIN.) = 31.31 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 1 iiii » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 31.31 RAINFALL INTENSITY(INCH /HR) = 2.25 AVERAGED Fm(INCH/HR) = .10 EFFECTIVE STREAM AREA(ACRES) = 8.10 TOTAL STREAM AREA(ACRES) = 8.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 15.75 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** Q(CFS) Tc(MIN.) Fm(INCH /HR) Ae(ACRES) II 1 594.48 17.05 .563 247.30 2 543.26 20.81 .562 261.59 3 511.22 23.64 .562 270.90 4 414.44 31.31 .558 272.89 II COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 594.48 Tc(MIN.) = 17.049 EFFECTIVE AREA(ACRES) = 247.30 AVERAGED Fm(INCH /HR) = .56 TOTAL AREA(ACRES) = 273.40 i **************************************************************************** FLOW PROCESS FROM NODE 13.00 TO NODE 19.00 IS CODE = 3 II »»> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW)< «< DEPTH OF FLOW IN 108.0 INCH PIPE IS 78.1 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 12.1 I: P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 11 VS UPSTREAM NODE ELEVATION(FEET) = 1400.50 DOWNSTREAM NODE ELEVATION(FEET) = 1398.70 FLOW LENGTH(FEET) = 545.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 108.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 594.48 TRAVEL TIME(MIN.) = .75 TC(MIN.) = 17.80 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 19.10 TO NODE 19.00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 1: 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.151 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA AREA(ACRES) = 2.40 SUBAREA RUNOFF(CFS) = 6.60 EFFECTIVE AREA(ACRES) = 249.70 /Q / AVERAGED Fm(INCH/HR) = .559 / /' / TOTAL AREA(ACRES) = 275.80 PEAK FLOW RATE(CFS) = 594.48 .4f4 ww TC(MIN) = 17.80 -- ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 19.00 TO NODE 20.00 IS CODE = 3 »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< DEPTH OF FLOW IN 108.0 INCH PIPE IS 88.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 10.7 UPSTREAM NODE ELEVATION(FEET) = 1398.70 DOWNSTREAM NODE ELEVATION(FEET) = 1397.30 FLOW LENGTH(FEET) = 550.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 108.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 594.48 TRAVEL TIME(MIN.) = .86 TC(MIN.) = 18.66 FLOW PROCESS FROM NODE 20.10 TO NODE 20.00 IS CODE = 8 1: »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.063 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA AREA(ACRES) = 1 SUBAREA RUNOFF(CFS) = 4.27 EFFECTIVE AREA(ACRES) = 2 51.30 AVERAGED Fm(INCH /HR) = .556 �J0 TOTAL AREA(ACRES) = 277.40 G PEAK FLOW RATE(CFS) = 594.48 1 / TC(MIN) = 18.66 ! A ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 1/ FLOW PROCESS FROM NODE 20.00 TO NODE 99.00 IS CODE = 3 »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » »>USING COMPUTER- ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< DEPTH OF FLOW IN 114.0 INCH PIPE IS 88.4 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 10.1 • UPSTREAM NODE ELEVATION(FEET) = 1397.30 DOWNSTREAM NODE ELEVATION(FEET) = 1396.90 FLOW LENGTH(FEET) = 190.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 114.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 594.48 TRAVEL TIME(MIN.) = - .31 TC(MIN.) = 18.97 P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 12 FLOW PROCESS FROM NODE 99.10 TO NODE 99.00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«<« 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.033 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA AREA(ACRES) = .90 SUBAREA RUNOFF(CFS) = 2.38 EFFECTIVE AREA(ACRES) = 252.20 7 /i AVERAGED Fm(INCH /HR) = .554 O�l� TOTAL AREA(ACRES) = 278.30 - PEAK FLOW RATE(CFS) = 594.48 TC(MIN) = 18.97 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 99.20 TO NODE 99.00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.033 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 SUBAREA AREA(ACRES) = 39.00 SUBAREA RUNOFF(CFS) = 86.03 ;40 EFFECTIVE AREA(ACRES) = 291.20 AVERAGED Fm(INCH /HR) = .558 �, �7 TOTAL AREA(ACRES) = 317.30 i 4• • PEAK FLOW RATE(CFS) 648.67 TC(MIN) = 18.97 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 99.00 TO NODE 21.00 IS CODE = 3 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< 1: DEPTH OF FLOW IN 126.0 INCH PIPE IS 92.5 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 9.5 UPSTREAM NODE ELEVATION(FEET) = 1396.90 DOWNSTREAM NODE ELEVATION(FEET) = 1396.80 FLOW LENGTH(FEET) = 60.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 126.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 648.67 TRAVEL TIME(MIN.) = .11 TC(MIN.) = 19.08 I; FLOW PROCESS FROM NODE 21.00 TO NODE 21.00 IS CODE = 1 I/ » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 19.08 1/ RAINFALL INTENSITY(INCH /HR) = 3.02 AVERAGED Fm(INCH /HR) = .56 EFFECTIVE STREAM AREA(ACRES) = 291.20 TOTAL STREAM AREA(ACRES) = 317.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 648.67 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 22.00 TO NODE 23.00 IS CODE = 2 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« DEVELOPMENT IS COMMERCIAL P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 13 II I; TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW- LENGTH(FEET) = 900.00 UPSTREAM ELEVATION(FEET) = 1528.00 DOWNSTREAM ELEVATION(FEET) = 1521.00 �3 ELEVATION DIFFERENCE(FEET) = 7.00 s � TC(MIN.) = .304 *[( 900.00 ** 3.00)/( 7.00)] ** .20 = 12.201 if 7 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.953 T �Tli SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA RUNOFF(CFS) = 16.31 TOTAL AREA(ACRES) = 4.70 PEAK FLOW RATE(CFS) = 16.31 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 23.00 TO NODE 24.00 IS CODE = 6 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< 1: = UPSTREAM ELEVATION(FEET) = 1521.00 DOWNSTREAM ELEVATION(FEET) = 1510.00 STREET LENGTH(FEET) = 650.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 55.00 •' DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 . OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 31.33 STREET FLOW MODEL RESULTS: I: STREET FLOW DEPTH(FEET) = .54 HALFSTREET FLOOD WIDTH(FEET) = 18.98 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.13 2i. PRODUCT OF DEPTH &VELOCITY = 2.22 STREET FLOW TRAVEL TIME(MIN.) = 2.62 TC(MIN.) = 14.82 9. %qL ii 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.517 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 II SUBAREA AREA(ACRES) = 9.70 SUBAREA RUNOFF(CFS) = 29.86 EFFECTIVE AREA(ACRES) = 14.40 AVERAGED Fm(INCH/HR) = .10 TOTAL AREA(ACRES) = 14.40 PEAK FLOW RATE(CFS) = 44.32 END OF SUBAREA STREET FLOW HYDRAULICS: II DEPTH(FEET) = .59 HALFSTREET FLOOD WIDTH(FEET) = 21.46 FLOW VELOCITY(FEET /SEC.) = 4.62 DEPTH *VELOCITY = 2.72 li FLOW PROCESS FROM NODE 24.00 TO NODE 25.00 IS CODE = 3 »» >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< • »»> USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< DEPTH OF FLOW IN 27.0 INCH PIPE IS 18.8 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 15.0 UPSTREAM NODE ELEVATION(FEET) = 1504.00 DOWNSTREAM NODE ELEVATION(FEET) = 1490.00 II FLOW LENGTH(FEET) = 425.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 44.32 TRAVEL TIME(MIN.) = .47 TC(MIN.) = 15.29 FLOW PROCESS FROM NODE 25.10 TO NODE 25.00 IS CODE = 8 »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.451 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 � 6.7se P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 14 II 1 SUBAREA AREA(ACRES) = 5.70 SUBAREA RUNOFF(CFS) = 17.21 EFFECTIVE AREA(ACRES) = 20.10 AVERAGED Fm(INCH /HR) = .097 I/ TOTAL AREA(ACRES) = 20.10 PEAK FLOW RATE(CFS) = 60.68 TC(MIN) = 15.29 I/ **************************************************************************** FLOW PROCESS FROM NODE 25.20 TO NODE 25.00 IS CODE = 8 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«<« f I, 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.451 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 . SUBAREA AREA(ACRES) = 1.20 SUBAREA RUNOFF(CFS) = 3.62 EFFECTIVE AREA(ACRES) = 21.30 if. Fm(INCH /HR) _ .097 TOTAL AREA(ACRES) = 21.30 / PEAK FLOW RATE(CFS) = 64.31 TC(MIN) = 15.29 . ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 25.00 TO NODE 26.00 IS CODE = 3 • »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< DEPTH OF FLOW IN 30.0 INCH PIPE IS 23.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 15.9 UPSTREAM NODE ELEVATION(FEET) = 1490.00 DOWNSTREAM NODE ELEVATION(FEET) .= 1471.60 I FLOW LENGTH(FEET) = 590.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 64.31 TRAVEL TIME(MIN.) = .62 TC(MIN.) = 15.91 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 26.10 TO NODE 26.00 IS = 8 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.370 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 li SUBAREA AREA(ACRES) = 8.10 SUBAREA RUNOFF(CFS) = 20.33 EFFECTIVE AREA(ACRES) = 29.40 AVERAGED Fm(INCH /HR) = .231 a , TOTAL AREA(ACRES) = 79.40 I/ PEAK FLOW RATE(CFS) = 83.08 460/ TC(MIN) = 15.91 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** I/ FLOW PROCESS FROM NODE 26.20 TO NODE 26.00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< I 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.370 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA AREA(ACRES) = .90 SUBAREA RUNOFF(CFS) = 2.65 EFFECTIVE AREA(ACRES) = 30.30 I/ AVERAGED Fm(INCH /HR) = .227 TOTAL AREA(ACRES) = 30.30 PEAK FLOW RATE(CFS) = 85.73 26s Z TC(MIN) = 15.91 0 9t II P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 15 1 FLOW PROCESS FROM NODE 26.00 TO NODE 27.00 IS CODE = 3 »»>COMPUTE PIPE - FLOW TIME THRU SUBAREA««< »»>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< DEPTH OF FLOW IN 36.0 INCH PIPE IS 28.1 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 14.5 UPSTREAM NODE ELEVATION(FEET) = 1471.60 DOWNSTREAM NODE ELEVATION(FEET) = 1457.70 FLOW LENGTH(FEET) = 690.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 85.73 TRAVEL TIME(MIN.) = .80 TC(MIN.) = 16.71 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 27.10 TO NODE 27.00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 1: 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.273 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 SUBAREA AREA(ACRES) = 10.00 SUBAREA RUNOFF(CFS) = 24.22 EFFECTIVE AREA(ACRES) = 40.30 ��i AVERAGED Fm(INCH /HR) _ .315 TOTAL AREA(ACRES) = 40.30 PEAK FLOW RATE(CFS) = 107.30 TC(MIN) = 16.71 /0.0& ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 27.20 TO NODE 27.00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.273 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 2.86 EFFECTIVE AREA(ACRES) = 41.30 �f AVERAGED Fm(INCH /HR) = .310 7/$ TOTAL AREA(ACRES) = 41.30 PEAK FLOW RATE(CFS) = 110.16 /DI4 TC(MIN) = 16.71 FLOW PROCESS FROM NODE 27.00 TO NODE 28.00 IS CODE = 3 » > > >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA«<« » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< DEPTH OF FLOW IN 39.0 INCH PIPE IS 31.9 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) 15.1 I/ UPSTREAM NODE ELEVATION(FEET) = 1457.70 DOWNSTREAM NODE ELEVATION(FEET) = 1448.10 FLOW LENGTH(FEET) = 485.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 110.16 TRAVEL TIME(MIN.) = .53 TC(MIN.) = 17.24 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 1/ FLOW PROCESS FROM NODE 28.10 TO NODE 28.00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.212 P:\ 15946- BASELLNE\hydrology\rational\baseline Ave 100 -yr hydrology.doc 16 1 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA AREA(ACRES) = .20 SUBAREA RUNOFF(CFS) = .56 EFFECTIVE AREA(ACRES) = 41.50 'J AVERAGED Fm(INCH /HR) = .309 ZF7.j TOTAL AREA(ACRES) = 41.50 O .24 PEAK FLOW RATE(CFS) = 110.1.6 1: TC(MIN) = 17.24 FLOW PROCESS FROM NODE 28.00 TO NODE 29.00 IS CODE = 3 »» >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » »>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< DEPTH OF FLOW IN 39.0 INCH PIPE IS 30.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 16.1 UPSTREAM NODE ELEVATION(FEET) = 1448.10 DOWNSTREAM NODE ELEVATION(FEET) = 1443.50 FLOW LENGTH(FEET) = 205.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 110.16 TRAVEL TIME(MIN.) = .21 TC(MIN.) = 17.45 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 29.10 TO NODE 29.00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.189 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .5820 SUBAREA AREA(ACRES) = 8.30 SUBAREA RUNOFF(CFS) = 19.47 EFFECTIVE AREA(ACRES) = 49.80 AVERAGED Fm(INCH /HR) = .354 ] TOTAL AREA(ACRES) = 49.80 7, PEAK FLOW RATE(CFS) = 127.04 �•� TC(MIN) = 17.45 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 29.20 TO NODE 29.00 IS CODE = 8 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.189 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA AREA(ACRES) = .80 SUBAREA RUNOFF(CFS) = 2.23 EFFECTIVE AREA(ACRES) = 50.60 AVERAGED Fm(INCH /HR) _ .350 • 29. Z. TOTAL AREA(ACRES) = 50.60 PEAK FLOW RATE(CFS) = 129.27 TC(MIN) = 17.45 FLOW PROCESS FROM NODE 29.00 TO NODE 30.00 IS CODE = 3 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< DEPTH OF FLOW IN 42.0 INCH PIPE IS 33.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 15.9 UPSTREAM NODE ELEVATION(FEET) = 1443.50 DOWNSTREAM NODE ELEVATION(FEET) = 1430.30 FLOW LENGTH(FEET) = 665.00 MANNING'S N = .013 P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 17 f ESTIMATED PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 129.27 TRAVEL TIME(MIN.) = .70 TC(MIN.) = 18.15 ******************: r************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 30.10 TO NODE 30.00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.115 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 SUBAREA AREA(ACRES) = 8.40 SUBAREA RUNOFF(CFS) = 19.15 EFFECTIVE AREA(ACRES) = 59.00 AVERAGED Fm(INCH/HR) = .383 1: TOTAL AREA(ACRES) = 59.00 50.1 PEAK FLOW RATE(CFS) = 145.04 TC(MIN) = 18.15 6.��G ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 30.20 TO NODE 30.00 IS CODE = 8 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 1: 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.115 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) _ .0970 SUBAREA AREA(ACRES) = 4.40 SUBAREA RUNOFF(CFS) = 11.95 EFFECTIVE AREA(ACRES) = 63.40 AVERAGED Fm(INCH /HR) _ .363 TOTAL AREA(ACRES) = 63.40 30.f.. PEAK FLOW RATE(CFS) = 156.99 TC(MIN) = 18.15 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 30.00 TO NODE 31.00 IS CODE = 3 »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< »» >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< DEPTH OF FLOW IN 48.0 INCH PIPE IS 36.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 15.5 UPSTREAM NODE ELEVATION(FEET) = 1430.30 DOWNSTREAM NODE ELEVATION(FEET) = 1427.90 FLOW LENGTH(FEET) = 150.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 48.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 156.99 TRAVEL TIME(MIN.) = .16 TC(MIN.) = 18.31 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 31.10 TO NODE 31.00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< -= 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.098 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA AREA(ACRES) = SUBAREA RUNOFF(CFS) = .81 EFFECTIVE AREA(ACRES) = 63.70 AVERAGED Fm(INCH/HR) = .362 7 7 /s 1 TOTAL AREA(ACRES) = 63.70 PEAK FLOW RATE(CFS) = 156.99 0.54e TC(MIN) = 18.31 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 18 • , II II FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS CODE = 3 li » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< DEPTH OF FLOW IN 45.0 INCH PIPE IS 32.7 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 18.3 li UPSTREAM NODE ELEVATION(FEET) = 1427.90 DOWNSTREAM NODE ELEVATION(FEET) = 1424.50 FLOW LENGTH(FEET) = 140.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 45.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 156.99 TRAVEL TIME(MIN.) = .13 TC(MIN.) = 18.44 FLOW PROCESS FROM NODE 32.10 TO NODE 32.00 IS CODE = 8 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW< «< P 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.085 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA AREA(ACRES) = .10 SUBAREA RUNOFF(CFS) = .27 a& . 1: EFFECTIVE AREA(ACRES) = 63.80 AVERAGED Fm(INCH /HR) = .362 TOTAL AREA(ACRES) = 63.80 Oa/4G • PEAK FLOW RATE(CFS) = 156.99 TC(MIN) = 18.44 FLOW PROCESS FROM NODE 32.00 TO NODE 33.00 IS CODE = 3 ii » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< • DEPTH OF FLOW IN 45.0 INCH PIPE IS 35.9 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 16.6 UPSTREAM NODE ELEVATION(FEET) = 1424.50 DOWNSTREAM NODE ELEVATION(FEET) = 1416.90 FLOW LENGTH(FEET) = 385.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 45.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 156.99 TRAVEL TIME(MIN.) = .39 TC(MIN.) = 18 FLOW PROCESS FROM NODE 33.10 TO NODE 33.00 IS CODE = 8 » »>ADDITION OF SUBAREA TO. MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.047 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .5820 SUBAREA AREA(ACRES) = 8.90 •SUBAREA RUNOFF(CFS) = 19.75 II EFFECTIVE AREA(ACRES) = 72.70 AVERAGED Fm(INCH /HR) = .389 33s TOTAL AREA(ACRES) = 72.70 PEAK FLOW RATE(CFS) = 173.95 TC(MIN) = 18.83 7 ********************************************* * * * * * * * * * * * * * * * * * * ** * * * * * * * * * ** FLOW PROCESS FROM NODE 33.20 TO NODE 33.00 IS CODE = 8 II » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.047 II SOIL CLASSIFICATION IS "A" • II P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 19 II II COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA AREA(ACRES) = 1.60 SUBAREA RUNOFF(CFS) = 4.25 EFFECTIVE AREA(ACRES) = 74.30 33, II AVERAGED Fm(INCH /HR) = .382 TOTAL AREA(ACRES) = 74.30 � Q /� PEAK FLOW RATE(CFS) = 178.20 `, TC(MIN) = 18.83 FLOW PROCESS FROM NODE 33.00 TO NODE 34.00 IS CODE = 3 » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< -> »»>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< DEPTH OF FLOW IN 48.0 INCH PIPE IS 37.7 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 16.8 1: UPSTREAM NODE ELEVATION(FEET) = 1416.90 DOWNSTREAM NODE ELEVATION(FEET) = 1406.30 FLOW LENGTH(FEET) = 570.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 48.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 178.20 TRAVEL TIME(MIN.) = .56 TC(MIN.) = 19.39 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** I; FLOW PROCESS FROM NODE 34.10 TO NODE 34.00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«<« 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.994 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA AREA(ACRES) = 6.40 SUBAREA RUNOFF(CFS) = 16.68 li EFFECTIVE AREA(ACRES) = 80.70 AVERAGED Fm(INCH/HR) _ .360 t1; TOTAL AREA(ACRES) = 80.70 PEAK FLOW RATE(CFS) = 191.31 TC(MIN) = 19.39 li ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 34.00 TO NODE 21.00 IS CODE = 3 » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA«<« » »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< DEPTH OF FLOW IN 36.0 INCH PIPE IS 28.9 INCHES I; PIPE -FLOW VELOCITY(FEET /SEC.) = 31.5 UPSTREAM NODE ELEVATION(FEET) = 1406.30 DOWNSTREAM NODE ELEVATION(FEET) = 1396.80 FLOW LENGTH(FEET) = 100.00 MANNING'S N = .013 II ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 191.31 TRAVEL TIME(MIN.) _ .05 TC(MIN.) = 19.44 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 21.00 TO NODE 21.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< 1 » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 19.44 II RAINFALL INTENSITY(INCH /HR) = 2.99 AVERAGED Fm(INCH /HR) = .36 EFFECTIVE STREAM AREA(ACRES) = 80.70 TOTAL STREAM AREA(ACRES) = 80.70 II PEAK FLOW RATE(CFS) AT CONFLUENCE = 191.31 II P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 20 II II RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. II ** PEAK FLOW RATE TABLE ** Q(CFS) Tc(MIN.) Fm(INCH /HR) Ae(ACRES) 1 838.83 19.08 .515 370.38 2 765.24 22.88 .516 386.19 3 717.12 25.74 .517 395:50 4 588.29 33.54 .515 397.49 5 834.75 19.44 .515 373.27 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 838.83 Tc(MIN.) = 19.077 EFFECTIVE AREA(ACRES) = 370.38 AVERAGED Fm(INCH/HR) = .52 TOTAL AREA(ACRES) = 398.00 li ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 21.00 TO NODE 98.00 IS CODE = 3 li »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA«<« »»>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< DEPTH OF FLOW IN 114.0 INCH PIPE IS 90.4 INCHES li PIPE -FLOW VELOCITY(FEET /SEC.) = 13.9 UPSTREAM NODE ELEVATION(FEET) = 1396.80 DOWNSTREAM NODE ELEVATION(FEET) = 1396.60 FLOW LENGTH(FEET) = 50.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 114.00 NUMBER OF PIPES = 1 li PIPE- FLOW(CFS) = 838.83 TRAVEL TIME(MIN.) = .06 TC(MIN.) = 19.14 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** li FLOW PROCESS FROM NODE 98.10 TO NODE 98.00 IS CODE = 8 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.017 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA AREA(ACRES) = .85 SUBAREA RUNOFF(CFS) = 2.23 II EFFECTIVE AREA(ACRES) = 371.23 AVERAGED Fm(INCH /HR) = .515 TOTAL AREA(ACRES) = 398.85 ger PEAK FLOW RATE(CFS) = 838.83 TC(MIN) = 19.14 II ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 98.00 TO NODE 35.00 IS CODE = 3 II »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA«<« »»>tJSING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< DEPTH OF FLOW IN 126.0 INCH PIPE IS 100.2 INCHES II PIPE -FLOW VELOCITY(FEET /SEC.) = 11.4 UPSTREAM NODE ELEVATION(FEET) = 1396.60 DOWNSTREAM NODE ELEVATION(FEET) = 1395.20 FLOW LENGTH(FEET) = 600.00 MANNING'S N = .013 1 ESTIMATED PIPE DIAMETER(INCH) = 126.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 838.83 TRAVEL TIME(MIN.) = .88 TC(MIN.) = 20.02 I ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 35.10 TO NODE 35.00 IS CODE = 8 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< II I: P:\ 15946- BASELINE%ydrology \rational \baseline Ave 100 -yr hydrology.doc 21 S II II 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.937 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 II SUBAREA AREA(ACRES) = 4.60 SUBAREA RUNOFF(CFS) = 11.76 EFFECTIVE AREA(ACRES) = 375.83 "e Q AVERAGED Fm(INCH /HR) = .509 1 TOTAL AREA(ACRES) = 403.45 �� PEAK FLOW RATE(CFS) = 838.83 II TC(MIN) = 20.02 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** II FLOW PROCESS FROM NODE 35.00 TO NODE 36.00 IS CODE = 3 »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< li DEPTH OF FLOW IN 126.0 INCH PIPE IS 102.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 11.2 UPSTREAM NODE ELEVATION(FEET) = 1395.20 DOWNSTREAM NODE ELEVATION(FEET) = 1394.40 I: FLOW LENGTH(FEET) = 355.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 126.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 838.83 TRAVEL TIME(MIN.) = .53 TC(MIN.) = 20.55 FLOW PROCESS FROM NODE 36.10 TO NODE 36.00 IS CODE = 8 li »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.891 SOIL CLASSIFICATION IS "A" II COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA AREA(ACRES) = 3.20 SUBAREA RUNOFF(CFS) = 8.05 ✓� EFFECTIVE AREA(ACRES) = 379.03 5 AVERAGED Fm(INCH /HR) = .506 TOTAL AREA(ACRES) = 406.65 li PEAK FLOW RATE(CFS) = 838.83 TC(MIN) = 20.55 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 36.00 TO NODE 37.00 IS CODE = 3 »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< DEPTH OF FLOW IN 126.0 INCH PIPE IS 102.8 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 11.1 UPSTREAM NODE ELEVATION(FEET) = 1394.40 II DOWNSTREAM NODE ELEVATION(FEET) = 1393.90 FLOW LENGTH(FEET) = 225.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 126.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 838.83 II TRAVEL TIME(MIN.) = .34 TC(MIN.) = 20.89 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** I FLOW PROCESS FROM NODE 37.00 TO NODE 37.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 II CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 20.89 RAINFALL INTENSITY(INCH/HR) = 2.86 AVERAGED Fm(INCH /HR) = .51 II EFFECTIVE STREAM AREA(ACRES) = 379.03 1: . P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 22 TOTAL STREAM AREA(ACRES) = 406.65 PEAK FLOW RATE(CFS) AT CONFLUENCE = 838.83 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 38.00 TO NODE 39.00 IS CODE = 2 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS« 1: DEVELOPMENT IS COMMERCIAL TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 1000.00 UPSTREAM ELEVATION(FEET) = 1526.00 DOWNSTREAM ELEVATION(FEET) = 1516.00 T ELEVATION DIFFERENCE(FEET) = 10.00 • TC(MIN.) _ .304 *[( 1000.00 ** 3.00)/( 10.00)] ** .20 = 12.102 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.972 5. 046 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA RUNOFF(CFS) = 27.90 TOTAL AREA(ACRES) = 8.00 PEAK FLOW RATE(CFS) = 27.90 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 39.00 TO NODE 40.00 IS CODE = 6 1: » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< UPSTREAM ELEVATION(FEET) = 1516.00 DOWNSTREAM ELEVATION(FEET) = 1507.00 STREET LENGTH(FEET) = 750.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 40.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 47.29 1: STREET FLOW MODEL RESULTS: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) = .77 HALFSTREET FLOOD WIDTH(FEET) = 30.80 110. AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.89 PRODUCT OF DEPTH &VELOCITY = 3.78 1 61P IF STREET FLOW TRAVEL TIME(MIN.) = 2.56 TC(MIN.) = 14.66 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.541 SOIL CLASSIFICATION IS "A" • COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) _ .0970 SUBAREA AREA(ACRES) = 12.50 SUBAREA RUNOFF(CFS) = 38.74 EFFECTIVE AREA(ACRES) = 20.50 AVERAGED Fm(INCH /HR) = .10 TOTAL AREA(ACRES) = 20.50 PEAK FLOW RATE(CFS) = 63.53 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .85 HALFSTREET FLOOD WIDTH(FEET) = 34.36 FLOW VELOCITY(FEET /SEC.) = 5.30 DEPTH *VELOCITY = 4.48 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 40.20 TO NODE 40.00 IS CODE = 8 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.541 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA AREA(ACRES) = 11.20 SUBAREA RUNOFF(CFS) = 34.71 L W. Z. I /Z: P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 23 II EFFECTIVE AREA(ACRES) = 31.70 AVERAGED Fm(INCH/HR) = .097 TOTAL AREA(ACRES) = 31.70 li PEAK FLOW RATE(CFS) = 98.24 TC(MIN) = 14.66 ********************************************** * * * * * * * * * * *:r * ** * * * * * ** * * * * * * ** I: FLOW PROCESS FROM NODE 40.00 TO NODE 41.00 IS CODE = 3 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA< « < »» >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< DEPTH OF FLOW IN 39.0 INCH PIPE IS 27.3 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 15.8 UPSTREAM NODE ELEVATION(FEET) = 1501.00 DOWNSTREAM NODE ELEVATION(FEET) = 1484.00 1: FLOW LENGTH(FEET) = 760.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 98.24 TRAVEL TIME(MIN.) = .80 TC(MIN.) = 15.46 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 41.10 TO NODE 41.00 IS CODE = 8 E »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.429 SOIL CLASSIFICATION IS "A" I: COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA AREA(ACRES) = 12.00 SUBAREA RUNOFF(CFS) = 35.99 i ll. EFFECTIVE AREA(ACRES) = 43.70 r AVERAGED Fm(INCH /HR) = .097 TOTAL AREA(ACRES) = 43.70 Z ` PEAK FLOW RATE(CFS) = 131.06 TC(MIN) = 15.46 I; ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 41.20 TO NODE 41.00 IS CODE = 8 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.429 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 SUBAREA AREA(ACRES) = 10.50 SUBAREA RUNOFF(CFS) = 26.91 1: EFFECTIVE AREA(ACRES) = 54.20 AVERAGED F/HR) = .191 Alk TOTAL AREA(ACRES) = 54.20 II PEAK FLOW RATE(CFS) = 157.97 M TC(MIN) = 15.46 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 41.00 TO NODE 42.00 IS CODE = 3 II »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< »» >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< II DEPTH OF FLOW IN 45.0 INCH PIPE IS 33.8 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 17.8 UPSTREAM NODE ELEVATION(FEET) = 1484.00 DOWNSTREAM NODE ELEVATION(FEET) = 1462.00 FLOW LENGTH(FEET) = 965.00 MANNING'S N = .013 II ESTIMATED PIPE DIAMETER(INCH) = 45.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 157.97 TRAVEL TIME(MIN.) = .90 TC(MIN.) = 16.36 II II P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 24 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 42.10 TO NODE 42.00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.314 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 SUBAREA AREA(ACRES) = 29.40 SUBAREA RUNOFF(CFS) = 72.30 EFFECTIVE AREA(ACRES) = 83.60 AVERAGED Fm(INCH/HR) _ .328 TOTAL AREA(ACRES) = 83.60 etkl PEAK FLOW RATE(CFS) = 224.65 TC(MIN) = 16.36 15 W ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 1: FLOW PROCESS FROM NODE 42.00 TO NODE 43.00 IS CODE = 3 »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA«<« » »>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< DEPTH OF FLOW IN 51.0 INCH PIPE IS 38.6 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 19.5 UPSTREAM NODE ELEVATION(FEET) = 1462.00 DOWNSTREAM NODE ELEVATION(FEET) = 1433.00 FLOW LENGTH(FEET) = 1250.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 51.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 224.65 TRAVEL TIME(MIN.) = 1.07 TC(MIN.) = 17.43 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 43.10 TO NODE 43.00 IS CODE = 8 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.191 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 SUBAREA AREA(ACRES) = 37.00 SUBAREA RUNOFF(CFS) = 86.88 EFFECTIVE AREA(ACRES) = 120.60 AVERAGED Fm(INCH /HR) = .406 TOTAL AREA(ACRES) = 120.60 43,1 PEAK FLOW RATE(CFS) = 302.25 � TC(MIN) = 17.43 7140 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 43.00 TO NODE 44.00 IS CODE = 3 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« <« -= » »>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE •FLOW)< «< DEPTH OF FLOW IN 54.0 INCH PIPE IS 42.1 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 22.7 UPSTREAM NODE ELEVATION(FEET) = 1433.00 DOWNSTREAM NODE ELEVATION(FEET) = 1395.30 FLOW LENGTH(FEET) = 1300.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 302.25 TRAVEL TIME(MIN.) = .95 TC(MIN.) = 18.39 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 44.10 TO NODE 44.00 IS CODE = 8 »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.091 P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 25 II li SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 SUBAREA AREA(ACRES) = 29.90 SUBAREA RUNOFF(CFS) = 67.51 ii EFFECTIVE AREA(ACRES) = 150.50 AVERAGED Fm(INCH /HR) = .441 `l (. 1 . 1 ) TOTAL AREA(ACRES) = 150.507 PEAK FLOW RATE(CFS) = 358.87 TC(MIN) = 18.39 MX II ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 44.20 TO NODE 44.00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.091 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA AREA(ACRES) = 6.90 SUBAREA RUNOFF(CFS) = 18.59 - EFFECTIVE AREA(ACRES) = 157.40 ,f :1' • AVERAGED Fm(INCH/HR) = .426 "J • TOTAL AREA(ACRES) = 157.40 ‘•4114C PEAK FLOW RATE(CFS) = 377.46 TC(MIN) = 18.39 FLOW PROCESS FROM NODE 44.00 TO NODE 37.00 IS CODE = 3 » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA«<« »»>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< DEPTH OF FLOW IN 63.0 INCH PIPE IS 48.9 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 20.9 UPSTREAM NODE ELEVATION(FEET) = 1395.30 li DOWNSTREAM NODE ELEVATION(FEET) = 1393.90 FLOW LENGTH(FEET) = 70.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 63.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 377.46 II TRAVEL TIME(MIN.) = .06 TC(MIN.) = 18.44 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 37.00 TO NODE 37.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< = TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 18.44 RAINFALL INTENSITY(INCH /HR) = 3.09 • . II AVERAGED Fm(INCH /HR) = .43 EFFECTIVE STREAM AREA(ACRES) = 157.40 TOTAL STREAM AREA(ACRES) = 157.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 377.46 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** I/ Q(CFS) Tc(MIN.) Fm(INCH /HR) Ae(ACRES) 1 1184.78 20.89 .482 536.43 2 1176.49 21.25 .482 539.32 3 1072.27 24.70 .484 552.24 4 1000.37 27.61 .485 561.55 5 823.52 35.48 .484 563.54 6 1187.88 18.44 .480 492.07 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: II PEAK FLOW RATE(CFS) = 1187.88 Tc(MIN.) = 18.441 II P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 26 1 1 EFFECTIVE AREA(ACRES) = 492.07 AVERAGED Fm(INCH /HR) = .48 TOTAL AREA(ACRES) = 564.05 FLOW PROCESS FROM NODE 37.00 TO NODE 45.00 IS CODE = 3 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< DEPTH OF FLOW IN 144.0 INCH PIPE IS 112.5 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 12.5 UPSTREAM NODE ELEVATION(FEET) = 1393.90 DOWNSTREAM NODE ELEVATION(FEET) = 1392.40 FLOW LENGTH(FEET) = 630.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 144.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 1187.88 TRAVEL TIME(MIN.) = .84 TC(MIN.) = 19.28 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 45.10 TO NODE 45.00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.004 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA AREA(ACRES) = 2.80 SUBAREA RUNOFF(CFS) = 7.33 EFFECTIVE AREA(ACRES) = 494.87 11C AVERAGED Fm(INCH /HR) = .478 7 J• TOTAL AREA(ACRES) = 566.85 •�� PEAK FLOW RATE(CFS) = 1187.88 TC(MIN) = 19.28 FLOW PROCESS FROM NODE 45.00 TO NODE 46.00 IS CODE = 3 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< »» >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< DEPTH OF FLOW IN 144.0 INCH PIPE IS 117.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 12.1 UPSTREAM NODE ELEVATION(FEET) = 1392.40 DOWNSTREAM NODE ELEVATION(FEET) = 1391.10 FLOW LENGTH(FEET) = 590.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 144.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 1187.88 TRAVEL TIME(MIN.) = .81 TC(MIN.) = 20.09 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 46.10 TO NODE 46.00 IS CODE = 8 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.930 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA AREA(ACRES) = 1.10 SUBAREA RUNOFF(CFS) = 2.80 EFFECTIVE AREA(ACRES) = 495.97 AVERAGED Fm(INCH/HR) = .477 TOTAL AREA(ACRES) = 567.95 PEAK FLOW RATE(CFS) = 1187.88 /14 v TC(MIN) = 20.09 R ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 46.00 TO NODE 47.00 IS CODE = 3 P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 27 II » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » »> USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< II DEPTH OF FLOW IN 138.0 INCH PIPE IS 107.6 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 13.7 UPSTREAM NODE ELEVATION(FEET) = 1391.10 DOWNSTREAM NODE ELEVATION(FEET) = 1390.80 FLOW LENGTH(FEET) = 100.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 138.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 1187.88 TRAVEL TIME(MIN.) = .12 TC(MIN.) = 20.22 I ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 47.00 TO NODE 47.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 20.22 RAINFALL INTENSITY(INCH /HR) = 2.92 AVERAGED Fm(INCH /HR) _ .48 EFFECTIVE STREAM AREA(ACRES) = 495.97 TOTAL STREAM AREA(ACRES) = 567.95 II PEAK FLOW RATE(CFS) AT CONFLUENCE = 1187.88 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 48.00 TO NODE 49.00 IS CODE = 2 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< DEVELOPMENT IS COMMERCIAL II TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 800.00 UPSTREAM ELEVATION(FEET) = 1510.00 DOWNSTREAM ELEVATION(FEET) = 1504.00 ELEVATION DIFFERENCE(FEET) = 6.00 II TC(MIN.) = .304 *[( 800.00 ** 3.00)/( 6.00)] ** .20 = 11.725 • 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.048 SOIL CLASSIFICATION IS "A" j/g COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) _ .0970 II SUBAREA RUNOFF(CFS) = 39.83 TOTAL AREA(ACRES) = 11.20 PEAK FLOW RATE(CFS) = 39.83 niir . ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 49.00 TO NODE 50.00 IS CODE = 6 »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< II UPSTREAM ELEVATION(FEET) = 1504.00 DOWNSTREAM ELEVATION(FEET) = 1487.00 STREET LENGTH(FEET) = 765.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 25.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 I INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL)• = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1j * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 56.29 //.9 ** *STREET FLOW SPLITS OVER STREET - CROWN * ** ` FULL DEPTH(FEET) = .66 FLOOD WIDTH(FEET) = 25.00 I/ FULL HALF- STREET VELOCITY(FEET /SEC.) = 5.87 SPLIT DEPTH(FEET) = 54 SPL FLOOD WIDTH(FEET) = 18.89 SPLIT VELOCITY(FEET /SEC.) = 4.92 IT STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .66 II HALFSTREET FLOOD WIDTH(FEET) = 25.00 li P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 28 , II 1 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.87 PRODUCT OF DEPTH &VELOCITY = 3.86 STREET FLOW TRAVEL TIME(MIN.) = 2.17 TC(MIN.) = 13.90 11 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.656 SOIL CLASSIFICATION IS "A" SCHOOL SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 I SUBAREA AREA(ACRES) = 11.90 SUBAREA RUNOFF(CFS) = 32.92 EFFECTIVE AREA(ACRES) = 23.10 AVERAGED Fm'(INCH /HR) = .35 TOTAL AREA(ACRES) = 23.10 PEAK FLOW RATE(CFS) = 68.79 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .66 HALFSTREET FLOOD WIDTH(FEET) = 25.00 li FLOW VELOCITY(FEET /SEC.) = 5.87 DEPTH *VELOCITY = 3.86 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 1: FLOW PROCESS FROM NODE 50.20 TO NODE 50.00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW< « < 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.656 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 SUBAREA AREA(ACRES) = 11.00 SUBAREA RUNOFF(CFS) = 30.43 EFFECTIVE AREA(ACRES) = 34.10 AVERAGED Fm(INCH /HR) _ .423 © TOTAL AREA(ACRES) = 34.10 PEAK FLOW RATE(CFS) = 99.22 TC(MIN) = 13.90 //talc 1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 50.00 TO NODE 51.00 IS CODE = 3 II »» >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA«<« »» >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< DEPTH OF FLOW IN 39.0 INCH PIPE IS 26.8 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 16.3 II UPSTREAM NODE ELEVATION(FEET) = 1481.00 DOWNSTREAM NODE ELEVATION(FEET) = 1458.00 FLOW LENGTH(FEET) = 960.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1. II PIPE- FLOW(CFS) = 99.22 TRAVEL TIME(MIN.) = .98 TC(MIN.) = 14.88 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** I FLOW PROCESS FROM NODE 51.10 TO NODE 51.00 IS CODE = 8 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 1 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.509 SOIL CLASSIFICATION IS "A" SCHOOL SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 SUBAREA AREA(ACRES) = 14.90 SUBAREA RUNOFF(CFS) = 39.25 I EFFECTIVE AREA(ACRES) = 49.00 AVERAGED CH /HR) _ .471 TOTAL AREA(ACRES) = 49.00 ilb PEAK FLOW RATE(CFS) = 133.98 lik7 TC(MIN) = 14.88 1 1+ II ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 51.20 TO NODE 51.00 IS CODE = 8 1 » » >ADDITION.OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.509 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 11 P: \15 946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 29 II SUBAREA AREA(ACRES) = 15.00 SUBAREA RUNOFF(CFS) = 39.52 EFFECTIVE AREA(ACRES) = 64.00 AVERAGED Fm(INCH /HR) = .497 ii TOTAL AREA(ACRES) = 64.00 54 PEAK FLOW RATE(CFS) = 173.49 TC(MIN) = 14.88 /gam li **************************************************************************** FLOW PROCESS FROM NODE 51.00 TO NODE 52.00 IS CODE = 3 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA«<« li »»>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< DEPTH OF FLOW IN 48.0 INCH PIPE IS 34.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 18.2 I; UPSTREAM NODE ELEVATION(FEET) = 1458.00 DOWNSTREAM NODE ELEVATION(FEET) = 1430.00 FLOW LENGTH(FEET) = 1250.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 48.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 173.49 TRAVEL TIME(MIN.) = 1.14 TC(MIN.) = 16.02 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** I; FLOW PROCESS FROM NODE 52.10 TO NODE 52.00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< = 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.357 SOIL CLASSIFICATION IS "A" II RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .5820 SUBAREA AREA(ACRES) = 37.80 SUBAREA RUNOFF(CFS) = 94.39 EFFECTIVE AREA(ACRES) = 101.80 AVERAGED Fm(INCH/HR) = .529 TOTAL AREA(ACRES) = 101.80 PEAK FLOW RATE(CFS) = 259.10 TC(MIN) = 16.02 5• � II *********************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 52.00 TO NODE 53.00 IS CODE = 3 II » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » »>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW)< «< DEPTH OF FLOW IN 51.0 INCH PIPE IS 39.4 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 22.0 II UPSTREAM NODE ELEVATION(FEET) = 1430.00 DOWNSTREAM NODE ELEVATION(FEET) = 1391.80 FLOW LENGTH(FEET) = 1300.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 51.00 NUMBER OF PIPES = 1 II PIPE- FLOW(CFS) = 259.10 TRAVEL TIME(MIN.) _ .98 TC(MIN.) = 17.01 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** II FLOW PROCESS FROM NODE 53.10 TO NODE 53.00 IS CODE = 8 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.239 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .5820 SUBAREA AREA(ACRES) = 40.30 SUBAREA RUNOFF(CFS) = 96.36 I/ EFFECTIVE AREA(ACRES) = 142.10 AVERAGED Fm(INCH /HR) = .544 TOTAL AREA(ACRES) = 142.10 03 . PEAK FLOW RATE(CFS) = 344.66 1: TC(MIN) = 17.01 1 0.7 li P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 30 II ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 53.00 TO NODE 47.00 IS CODE = 3 »»> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« » » >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< II DEPTH OF FLOW IN 72.0 INCH PIPE IS 55.5 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 14.7 UPSTREAM NODE ELEVATION(FEET) = 1391.80 DOWNSTREAM NODE ELEVATION(FEET) = 1390.80 FLOW LENGTH(FEET) = 120.00 MANNING'S N = .013 li ESTIMATED PIPE DIAMETER(INCH) = 72.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 344.66 TRAVEL TIME(MIN.) _ .14 TC(MIN.) = 17.14 FLOW PROCESS FROM NODE 47.00 TO NODE 47.00 IS CODE = 1 »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 17.14 RAINFALL INTENSITY(INCH /HR) = 3.22 AVERAGED Fm(INCH/HR) = .54 EFFECTIVE STREAM AREA(ACRES) = 142.10 TOTAL STREAM AREA(ACRES) = 142.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 344.66 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** Q(CFS) Tc(MIN.) Fm(INCH /HR) Ae(ACRES) 1 1493.47 20.22 .492 638.07 2 1465.50 22.66 .493 682.43 II 3 1453.86 23.03 .493 685.32 4 1321.51 26.51 .494 698.24 5 1230.09 29.45 .495 707.55 6 1013.09 37.43 .493 709.54 1: 7 1477.17 17.14 .494 562.65 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 1493.47 Tc(MIN.) = 20.216 EFFECTIVE AREA(ACRES) = 638.07 AVERAGED Fm(INCH /HR) _ .49 TOTAL AREA(ACRES) = 710.05 ******.*************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 47.00 TO NODE 54.00 IS CODE = 3 »»> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< II DEPTH OF FLOW IN 138.0 INCH PIPE IS 107.5 INCHES PIPE-FLOW VELOCITY(FEET /SEC.) = 17.2 UPSTREAM NODE ELEVATION(FEET) = 1390.80 DOWNSTREAM NODE ELEVATION(FEET) = 1387.00 FLOW LENGTH(FEET) = 800.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 138.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 1493.47 TRAVEL TIME(MIN.) = .78 TC(MIN.) = 20.99 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 54.10 TO NODE 54.00 IS CODE = 8 »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«<« P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 31 1 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.854 SOIL CLASSIFICATION IS "A" II COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA AREA(ACRES) = 3.10 SUBAREA RUNOFF(CFS) = 7.69 EFFECTIVE AREA(ACRES) = 641.17 AVERAGED Fm(INCH /HR) _ .490 01710 TOTAL AREA(ACRES) = 713.15 I PEAK FLOW RATE(CFS) = 1493.47 �� TC(MIN) = 20.99 li ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 54.00 TO NODE 55.00 IS CODE = 3 »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< 1; DEPTH OF FLOW IN 138.0 INCH PIPE IS 105.6 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 17.5 UPSTREAM NODE ELEVATION(FEET) = 1387.00 I: DOWNSTREAM NODE ELEVATION(FEET) = 1384.90 FLOW LENGTH(FEET) = 425.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 138.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 1493.47 TRAVEL TIME(MIN.) = .40 TC(MIN.) = 21.40 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 55.10 TO NODE 55.00 IS CODE = 8 I; » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.822 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) _ .0970 SUBAREA AREA(ACRES) = .80 SUBAREA RUNOFF(CFS) = 1.96 EFFECTIVE AREA(ACRES) = 641.97 AVERAGED Fm(INCH /HR) = .490 (:1!;;) I: TOTAL AREA(ACRES) = 713.95 PEAK FLOW RATE(CFS) = 1493.47 O TC(MIN) = 21.40 FLOW PROCESS FROM NODE 55.00 TO NODE 56.00 IS CODE = 3 »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< II » »>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< = DEPTH OF FLOW IN 114.0 INCH PIPE IS 86.4 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 25.9 UPSTREAM NODE ELEVATION(FEET) = 1384.90 DOWNSTREAM NODE ELEVATION(FEET) = 1383.50 FLOW LENGTH(FEET) = 100.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 114.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 1493.47 TRAVEL TIME(MIN.) = .06 TC(MIN.) = 21.46 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** II FLOW PROCESS FROM NODE 56.00 TO NODE 56.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< TOTAL NUMBER OF STREAMS = '2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 21.46 RAINFALL INTENSITY(INCH /HR) = 2.82 AVERAGED Fm(INCH /HR) = .49 EFFECTIVE STREAM AREA(ACRES) = 641.97 P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 32 I/ I TOTAL STREAM AREA(ACRES) = 713.95 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1493.47 I ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 57.00 TO NODE 58.00 IS CODE = 2 I/ » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< DEVELOPMENT IS COMMERCIAL TC = K *((LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 1000.00 I/ UPSTREAM ELEVATION(FEET) = 1526.00 DOWNSTREAM ELEVATION(FEET) = 1512.00 ELEVATION DIFFERENCE(FEET) = 14.00 TC(MIN.) = .304 *(( 1000.00 ** 3.00)/( 14.00)] ** .20 = 11.315 5.6• �1 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.136 1 11 SOIL CLASSIFICATION IS "A" Q )�� COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 • SUBAREA RUNOFF(CFS) = 29.44 TOTAL AREA(ACRES) = 8.10 PEAK FLOW RATE(CFS) = 29.44 I: ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 58.00 TO NODE 59.00 IS CODE = 6 I/ »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< UPSTREAM ELEVATION(FEET) = 1512.00 DOWNSTREAM ELEVATION(FEET) = 1508.00 STREET LENGTH(FEET) = 400.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 40.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 I OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 39.90 pp II STREET FLOW MODEL RESULTS: *l/ yy STREET FLOW DEPTH(FEET) = .61 HALFSTREET FLOOD WIDTH(FEET) = 22.48 6 • AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.80 I PRODUCT OF DEPTH &VELOCITY = 2.31 STREET FLOW TRAVEL TIME(MIN.) = 1.75 TC(MIN.) = 13.07 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.793 SOIL CLASSIFICATION IS "A" II COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA AREA(ACRES) = 6.30 SUBAREA RUNOFF(CFS) = 20.96 EFFECTIVE AREA(ACRES) = 14.40 AVERAGED Fm(INCH /HR) = .10 TOTAL AREA(ACRES) = 14.40 PEAK FLOW RATE(CFS) = 47.90 11 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .64 HALFSTREET FLOOD WIDTH(FEET) = 24.27 FLOW VELOCITY(FEET /SEC.) = 3.94 DEPTH *VELOCITY = 2.54 FLOW PROCESS FROM NODE 59.00 TO NODE 60.00 IS CODE = 3 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< II » »> USING COMPUTER - ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< DEPTH OF FLOW IN 30.0 INCH PIPE IS 20.8 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 13.2 I/ UPSTREAM NODE ELEVATION(FEET) = 1502.00 DOWNSTREAM NODE ELEVATION(FEET) = 1476.00 FLOW LENGTH(FEET) = 1180.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 47.90 TRAVEL TIME(MIN.) = 1.49 TC(MIN.) = 14.56 P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100-yr hydrology.doc 33 1 1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** . FLOW PROCESS FROM NODE 60.10 TO NODE 60.00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.555 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA AREA(ACRES) = 5.80 SUBAREA RUNOFF(CFS) = 18.05 . EFFECTIVE AREA(ACRES) = 20.20 CA li AVERAGED Fm(INCH /HR) = .097 TOTAL AREA(ACRES) = 20.20 8 PEAK FLOW RATE(CFS) = 62.86 ' O el TC(MIN) = 14.56 1: ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 60.20 TO NODE 60.00. IS CODE = 8 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.555 SOIL CLASSIFICATION IS "A ", SCHOOL SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 .SUBAREA AREA(ACRES) = 12.50 SUBAREA RUNOFF(CFS) = 33.44 EFFECTIVE AREA(ACRES) = 32.70 AVERAGED Fm(INCH /HR) = .282 , 2 TOTAL AREA(ACRES) = 32.70 II PEAK FLOW RATE(CFS) = 96.30 TC(MIN) = 14.56 !• FLOW PROCESS FROM NODE 60.00 TO NODE 61.00 IS CODE = 3 »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA< «< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< II DEPTH OF FLOW IN 36.0 INCH PIPE IS 29.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 15.8 UPSTREAM NODE ELEVATION(FEET) = 1476.00 DOWNSTREAM NODE ELEVATION(FEET) = 1453.00 FLOW LENGTH(FEET) = 960.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 96.30 TRAVEL TIME(MIN.) = 1.01 TC(MIN.) = 15.58 II ********************************************* * * * * * * * * * * * * * ** * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 61.10 TO NODE 61.00 IS CODE = 8 II » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< _ 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.414 SOIL CLASSIFICATION IS "A" I SCHOOL SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 SUBAREA AREA(ACRES) = 15.70 SUBAREA RUNOFF(CFS) = 40.02 EFFECTIVE AREA(ACRES) = 48.40 1 AVERAGED Fm(INCH /HR) = .380 Mg 1 TOTAL AREA(ACRES) = 48.40 5�`f� PEAK FLOW RATE(CFS) = 132.18 TC(MIN) = 15.58 I * ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 61.00 TO NODE 62.00 IS CODE = 3 »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA«<« ii P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 34 1/ »»>USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< DEPTH OF FLOW IN 42.0 INCH PIPE IS 31.9 INCHES II PIPE -FLOW VELOCITY(FEET /SEC.) = 16.9 UPSTREAM NODE ELEVATION(FEET) = 1453.00 DOWNSTREAM NODE ELEVATION(FEET) = 1425.00 FLOW LENGTH(FEET),= 1250.00 MANNING'S N = .013 I/ ESTIMATED PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 132.18 TRAVEL TIME(MIN.) = 1.24 TC(MIN.) = 16.81 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 62.10 TO NODE 62.00 IS CODE = 8 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.261 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 SUBAREA AREA(ACRES) = 28.70 SUBAREA RUNOFF(CFS) = 69.20 I: EFFECTIVE AREA(ACRES) = 77.10 AVERAGED Fm(INCH/HR) = .455 - 6Z, % TOTAL AREA(ACRES) = 77.10 PEAK FLOW RATE(CFS) = 194.72 I; TC(MIN) = 16.81 4.7 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 62.00 TO NODE 63.00 IS CODE = 3 1/ »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< »» >USING COMPUTER - ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< DEPTH OF FLOW IN 45.0 INCH PIPE IS 35.6 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 20.8 UPSTREAM NODE ELEVATION(FEET) = 1425.00 DOWNSTREAM NODE ELEVATION(FEET) = 1385.00 FLOW LENGTH(FEET) = 1300.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 45.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 194.72 TRAVEL TIME(MIN.) = 1.04 TC(MIN.) = 17.86 1; ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 63.10 TO NODE 63.00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.145 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 1/ SUBAREA AREA(ACRES) = 31.80 SUBAREA RUNOFF(CFS) = 73.36 EFFECTIVE AREA(ACRES) = 108.90 AVERAGED Fm(INCH /HR) _ .492 TOTAL AREA(ACRES) = 108.90 123.1 PEAK FLOW RATE(CFS) = 260.06 TC(MIN) = 17.86 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 63.00 TO NODE 56.00 IS CODE = 3 »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««< » »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< DEPTH OF FLOW IN 54.0 INCH PIPE IS 42.1 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 19.5 UPSTREAM NODE ELEVATION(FEET) = 1385.00 DOWNSTREAM NODE ELEVATION(FEET) = 1383.50 FLOW LENGTH(FEET) = 70.00 MANNING'S N = .013 li P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 35 li ESTIMATED PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 260.06 TRAVEL TIME(MIN.) _ .06 TC(MIN,.) = 17.91 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 56.00 TO NODE 56.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< » »>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 i: CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 17.91 RAINFALL INTENSITY(INCH /HR) = 3.14 AVERAGED Fm(INCH /HR) = .49 EFFECTIVE STREAM AREA(ACRES) = 108.90 1; TOTAL STREAM AREA(ACRES) = 108.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 260.06 01 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO i i CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** Q(CFS) Tc(MIN.) Fm(INCH /HR) Ae(ACRES) 1 1732.45 18.39 .492 675.45 2 1721.86 21.46 .490 750.87 3 1676.54 23.91 .491 795.23 4 1662.54 24.27 .491 798.12 II 5 1510.14 27.79 .492 811.04 6 1404.69 30.77 .492 820.35 7 1158.73 38.79 .491 822.34 8 1726.22 17.91 .492 660.91 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 1732.45 Tc(MIN.) = 18.387 EFFECTIVE AREA(ACRES) = 675.45 AVERAGED Fm(INCH /HR) = .49 TOTAL AREA(ACRES) = 822.85 I: FLOW PROCESS FROM NODE 56.00 TO NODE 64.00 IS CODE = 3 »»> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< DEPTH OF FLOW IN 144.0 INCH PIPE IS 115.8 INCHES I/ PIPE -FLOW VELOCITY(FEET /SEC.) = 8.9 UPSTREAM NODE ELEVATION(FEET) = 1383.50 DOWNSTREAM NODE ELEVATION(FEET) = 1382.70 FLOW LENGTH(FEET) = 670.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 144.00 NUMBER OF PIPES = 2 PIPE- FLOW(CFS) = 1732.45 TRAVEL TIME(MIN.) = 1.26 TC(MIN.) = 19.64 : **************************************************************************** FLOW PROCESS FROM NODE 64.10 TO NODE 64.00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.970 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA AREA(ACRES) = 5.50 SUBAREA RUNOFF(CFS) = 14.22 bCJ l EFFECTIVE AREA(ACRES) = 680.95 ° AVERAGED Fm(INCH /HR) = .488 1' TOTAL AREA(ACRES) = 828.35 7 PEAK FLOW RATE(CFS) = 1732.45 TC(MIN) = 19.64 P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 36 li ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 64.00 TO NODE 65.00 IS CODE = 3 » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » »>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< I; DEPTH OF FLOW IN 126.0 INCH PIPE IS 101.5 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 11.6 UPSTREAM NODE ELEVATION(FEET) = 1382.70 DOWNSTREAM NODE ELEVATION(FEET) = 1381.00 FLOW LENGTH(FEET) = 700.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 126.00 NUMBER OF PIPES = 2 PIPE- FLOW(CFS) = 1732.45 TRAVEL TIME(MIN.) = 1.01 TC(MIN.) = 20.65 FLOW PROCESS FROM NODE 65.10 TO NODE 65.00 IS CODE = 8 le »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< II 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.883 SOIL CLASSIFICATION IS "A" • 111.1 COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA AREA(ACRES) = 6.40 SUBAREA RUNOFF(CFS) = 16.04 ii EFFECTIVE AREA(ACRES) = 687.35 66; ] AVERAGED Fm(INCH /HR) _ .485 1 TOTAL AREA(ACRES) = 834.75 I: PEAK FLOW RATE(CFS) = 1732.45 6. TC(MIN) = 20.65 I ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 65.00 TO NODE 65.00 IS CODE = 1 »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) =. 20.65 RAINFALL INTENSITY(INCH /HR) = 2.88 AVERAGED Fm(INCH /HR) = .48 EFFECTIVE STREAM AREA(ACRES) = 687.35 TOTAL STREAM AREA(ACRES) = 834.75 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1732.45 FLOW PROCESS FROM NODE 65.00 TO NODE 65.00 IS CODE = 7 I/ »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER - SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN.) = 16.38 RAINFALL INTENSITY(INCH/HR) = 3.31 EFFECTIVE AREA(ACRES) = 145.62 TOTAL AREA(ACRES) = 155.51 PEAK FLOW RATE(CFS) = 393.67 /4 ;;; 41; E:2) AVERAGED LOSS RATE, Fm(INCH/HR) = .370 NOTE: EFFECTIVE AREA IS USED AS THE TOTAL CONTRIBUTING AREA FOR ALL CONFLUENCE ANALYSES. \` ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 65.00 TO NODE 65.00 IS CODE = 1 »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE «<« »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 : . CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 37 II II TIME OF CONCENTRATION(MIN.) = 16.38 RAINFALL INTENSITY(INCH /HR) = 3.31 AVERAGED Fm(INCH /HR) = .37 1/ EFFECTIVE STREAM AREA(ACRES) = 145.62 TOTAL STREAM AREA(ACRES) = 155.51 PEAK FLOW RATE(CFS) AT CONFLUENCE = 393.67 1: RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** Q(CFS) Tc(MIN.) Fm(INCH /HR) Ae(ACRES) It 1 2067.76 20.18 .464 818.43 IN 2 2068.61 20.65 .465 832.97 3 2027.22 23.72 .466 908.39 4 1961.58 26.17 .468 952.75 I; 5 1944.78 26.54 .468 955.64 6 1768.11 30.12 .469 968.56 7 1645.69 33.12 .469 977.87 8 1364.43 41.10 .469 979.86 9 2018.85 16.38 .460 691.78 I; COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 2068.61 Tc(MIN.) = 20.650 EFFECTIVE AREA(ACRES) = 832.97 AVERAGED Fm(INCH /HR) = .46 TOTAL AREA(ACRES) = 990.26 y END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 990.26 TC(MIN.) = 20.65 EFFECTIVE AREA(ACRES) = 832.97 AVERAGED Fm(INCH/HR)= .46 1/ PEAK FLOW RATE(CFS) = 2068.61 * ** PEAK FLOW RATE TABLE * ** Q(CFS) Tc(MIN.) Fm(INCH /HR) Ae(ACRES) 1 2067.76 20.18 .464 818.43 2 2068.61 20.65 .465 832.97 3 2027.22 23.72 .466 908.39 4 1961.58 26.17 .468 952.75 5 1944.78 26.54 .468 955.64 6 1768.11 30.12 .469 968.56 7 1645.69 33.12 .469 977.87 8 1364.43 41.10 .469 979.86 9 2018.85 16.38 .460 691.78 END OF RATIONAL METHOD ANALYSIS = 1 2 IR 1 2 P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100-yr hydrology.doc 38 100-YEAR UNIT HYDROGRAPH c 1 BASELINE & SIERRA AVENUES STORM DRAIN HYDROLOGY STUDY XIII BERRYMAN & HENIGAR, INC. JN: 15946.00; JN 15945.00 I ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** F L O O D R O U T I N G A N A L Y S I S USING ORANGE /SAN BERNARDINO COUNTY UNIT - HYDROGRAPH (1986 MANUAL) UNIT - HYDROGRAPH GENERATOR VERSION Copyright 1983,1986 Advanced Engineering Software (aes) 1: Ver. 2.7C Release Date: 6/07/87 Serial # I00948 Especially prepared for: li BSI CONSULTANTS, INC. FILE NAME: BASELINE.DAT TIME /DATE OF STUDY: 17:25 11/14/2002 li FLOW PROCESS FROM NODE 47.00 TO NODE 47.00 IS CODE = 1 6/J /4 ' off lt'o i ii »»> UNIT - HYDROGRAPH ANALYSIS««< nop eip (UNIT- HYDROGRAPH ADDED TO STREAM #3) I: *USER ENTERED "LAG" TIME = .270 HOURS UNIT HYDROGRAPH TIME UNIT = 5.000 MINUTES 1:l UNIT INTERVAL PERCENTAGE OF LAG -TIME = 30.910 WATERSHED AREA = 710.050 ACRES BASEFLOW = .000 CFS /SQUARE -MILE VALLEY(DEVELOPED) S -GRAPH SELECTED MAXIMUM WATERSHED LOSS RATE(INCH /HOUR) = .496 LOW LOSS FRACTION = .893 *HYDROGRAPH MODEL #1 SPECIFIED* li SPECIFIED PEAK 5- MINUTES RAINFALL(INCH)= .56 SPECIFIED PEAK 30- MINUTES RAINFALL(INCH) = 1.17 SPECIFIED PEAK 1 -HOUR RAINFALL(INCH) = 1.55 SPECIFIED PEAK 3 -HOUR RAINFALL(INCH) = 2.48 SPECIFIED PEAK 6 -HOUR RAINFALL(INCH) = 3.88 1: SPECIFIED PEAK 24 -HOUR RAINFALL(INCH)= 9.40 PRECIPITATION DEPTH -AREA REDUCTION FACTORS: 5- MINUTE FACTOR = .968 30- MINUTE FACTOR = .968 1 -HOUR FACTOR = .968 3 -HOUR FACTOR = .995 6 -HOUR FACTOR = .998 24 -HOUR FACTOR = .999 II RUNOFF HYDROGRAPH LISTING LIMITS: MODEL TIME(HOURS) FOR BEGINNING OF RESULTS = .00 MODEL TIME(HOURS) FOR END OF RESULTS = 36.00 UNIT HYDROGRAPH DETERMINATION INTERVAL "S" GRAPH UNIT HYDROGRAPH NUMBER MEAN VALUES ORDINATES(CFS) 1 1.948 167.309 2 11.644 832.614 3 30.727 1638.664 4 56.343 2199.673 5 77.223 1793.010 6 88.907 1003.351 P: \15946- BASELINE \hydrology \unithyd\BASELINE -UNIT HYDRO.txt 1 1 7 94.802 506.201 tit 97.605 240.715 9 98.520 78.546 10 99.100 49.768 11 99.640 46.391 12 99.910 23.196 13 100.000 7.731 r c 0 iiis c ,,,,, ., 1 1 1 P:\ 15946- BASELINE \hydrology \unithyd\BASELINE -UNIT HYDRO.txt 2 1 ; **************************************************************************** UNIT UNIT UNIT EFFECTIVE PERIOD RAINFALL SOIL -LOSS RAINFALL (NUMBER) (INCHES) (INCHES) (INCHES) 1 .0209 .0186 .0022 2 .0209 .0187 .0022 3 .0210 .0187 .0022 4 .0210 .0187 .0022 5 .0210 .0188 .0022 6 .0211 .0188 .0023 7 .0211 .0189 .0023 8 .0211 .0189 .0023 9 .0212 .0189 .0023 10 .0212 .0189 .0023 11 .0213 .0190 .0023 12 .0213 .0190 .0023 13 .0214 .0191 .0023 14 .0214 .0191 .0023 15 .0214 .0192 .0023 P 16 .0215 .0192 .0023 17 .0215 .0192 .0023 18 .0216 .0193 .0023 19 .0216 .0193 .0023 20 .0217 .0193 .0023 f 21 .0217 .0194 .0023 22 .0217 .0194 .0023 23 .0218 .0195 .0023 24 .0218 .0195 .0023 25 .0219 .0196 .0023 lir 26 .0219 .0196 .0023 27 .0220 .0196 .0024 28 .0220 .0197 .0024 29 .0221 .0197 .0024 30 .0221 .0198 .0024 31 .0222 .0198 .0024 32 .0222 .0198 .0024 33 .0223 .0199 .0024 2 34 .0223 .0199 .0024 35 .0224 .0200 .0024 36 .0224 .0200 .0024 37 .0225 .0201 .0024 38 .0225 .0201 .0024 39 .0226 .0202 .0024 40 .0226 .0202 .0024 41 .0227 .0203 .0024 42 .0227 .0203 .0024 O 43 .0228 .0204 .0024 44 .0229 .0204 .0024 45 .0229 .0205 .0025 46 .0230 .0205 .0025 47 .0230 .0206 .0025 48 .0231 .0206 .0025 49 .0232 .0207 .0025 50 .0232 .0207 .0025 51 .0233 .0208 .0025 52 .0233 .0208 .0025 53 .0234 0209 .0025 54 .0234 .0209 .0025 55 .0235 .0210 .0025 m 56 .0236 .0210 .0025 Is 57 .0236 .0211 .0025 58 .0237 .0211 .0025 59 .0238 .0212 .0025 60 .0238 _.0213 .0025 61 .0239 .0213 .0026 62 .0239 .0214 .0026 63 .0240 .0215 .0026 64 . .0241 .0215 .0026 65 .0242 .0216 .0026 Illk P:\ 15946- BASELINE \hydrology \unithyd\BASELINE -UNIT HYDRO.txt 3 I II II 66 .0242 .0216 .0026 67 .0243 .0217 .0026 68 .0243 .0217 .0026 69 .0244 .0218 .0026 till 70 .0245 .0219 .0026 71 .0246 .0220 .0026 72 .0246 .0220 .0026 73 .0247 .0221 .0026 74 .0248 .0221 .0027 75 .0249 .0222 .0027 76 .0249 .0223 .0027 77 .0250 .0224 .0027 I: 78 .0251 .0224 .0027 79 .0252 .0225 .0027 80 .0252 .0225 .0027 81 .0254 .0226 .0027 82 .0254 .0227 .0027 1: 83 .0255 .0228 .0027 84 .0256 .0228 .0027 85 .0257 .0229 .0027 86 .0257 .0230 .0028 } IIA 87 .0259 .0231 .0028 88 .0259 .0231 .0028 89 .0260 .0233 .0028 90 .0261 .0233 .0028 91 .0262 .0234 .0028 92 .0263 .0235 .0028 93 .0264 .0236 .0028 94 .0265 .0236 .0028 95 .0266 .0238 .0028 Pi 96 .0267 .0238 .0029 1 97 .0268 .0239 .0029 98 .0269 .0240 .0029 99 .0270 .0241 .0029 100 .0271 .0242 .0029 101 .0272 .0243 .0029 102 .0273 .0244 .0029 103 .0274 .0245 .0029 104 .0275 .0246 .0029 i: 105 .0277 .0247 .0030 106 .0277 .0248 .0030 107 .0279 .0249 .0030 108 .0280 .0250 .0030 109 .0281 .0251 .0030 ll 110 .0282 .0252 .0030 111 .0284 0253 .0030 112 .0285 .0254 .0030 113 .0286 .0256 .0031 ! 114 .0287 .0256 .0031 6 115 .0289 .0258 .0031 116 .0290 .0259 .0031 117 .0292 .0260 .0031 118 .0293 .0261 .0031 119 .0294 .0263 .0032 120 .0295 0264 .0032 121 .0297 .0266 .0032 122 .0298 .0266 .0032 ii 123` .0300 .0268 .0032 124 .0301 .0269 .0032 125 .0304 .0271 .0032 126 .0305 .0272 .0033 127 .0307 .0274 .0033 128 .0308 .0275 .0033 129 .0310 .0277 .0033 130 .0312 .0278 .0033 131 .0314 .0280 .0034 il 132 .0315 .0281 .0034 133 .0318 .0284 .0034 134 .0319 .0285 .0034 135 .0322 .0287 .0034 136 .0323 .0288 .0035 P: \15946- BASELINE\ hydrology \unithyd\BASELINE -UNIT HYDRO.txt 4 1 137 .0326 .0291 .0035 138 .0327 .0292 .0035 139 .0330 .0295 .0035 140 .0332 .0296 .0035 141 .0335 .0299 .0036 142 .0336 .0300 .0036 143 .0339 .0303 .0036 144 .0341 .0305 .0036 145 .0348 .0311 .0037 s '' 146 .0350 .0313 .0037 147 .0354 .0316 .0038 148 .0356 .0318 .0038 149 .0359 .0321 .0038 150 .0361 .0323 .0039 151 .0365 .0326 .0039 152 .0367 .0328 .0039 153 .0372 .0332 .0040 154 .0374 .0334 .0040 155 .0379 .0338 .0041 156 .0381 .0340 .0041 157 .0386 .0345 .0041 158 .0389 .0347 .0042 159 .0394 .0352 .0042 160 .0397 .0354 .0042 161 .0402 .0359 .0043 162 .0405 .0362 .0043 163 .0412 .0368 .0044 164 .0415 .0371 .0044 165 .0422 .0377 .0045 166 .0426 .0380 .0046 167 .0433 .0387 .0046 168 .0437 .0391 .0047 169' .0313 .0279 .0033 170 .0318 .0284 .0034 171 .0328 .0293 .0035 172 .0334 .0298 .0036 173 .0346 .0309 .0037 174 .0353 .0315 .0038 175 .0367 .0328 .0039 176 .0375 .0335 .0040 177 .0392 .0350 .0042 178 .0402 .0359 .0043 179 .0423 .0377 .0045 180 .0434 .0388 .0046 181 .0461 .0411 .0049 182 .0476 .0413 .0062 183 .0511 .0413 .0097 184 .0531 .0413 .0118 185 .0513 .0413 .0099 186 .0542 .0413 .0129 187 .0615 .0413 .0202 188 .0664 .0413 .0250 189 .0826 .0413 .0413 190 .0930 .0413 .0517 191 .1318 .0413 .0905 192 .1802 .0413 .1388 193 .5422 .0413 .5009 194 .1079 .0413 .0665 195 .0723 .0413 .0309 196 .0575 .0413 .0162 197 .0554 .0413 .0141 198 .0492 .0413 .0079 199 .0447 .0399 .0048 200 .0412 .0368 .0044 201 .0383 .0342 .0041 202 .0360 .0321 .0038 203 .0340 .0304 .0036 204 .0323 .0288 .0035 205 .0442 .0394 .0047 206 .0430 .0384 .0046 207 .0419 .0374 .0045 P:\ 15946- BASELINE\hydrology \unithyd \BASELINE -UNIT I-IYDRO.txt 5 1 208 .0409 .0365 .0044 209 .0400 .0357 .0043 210 .0391 .0349 .0042 E 211 .0383 .0342 .0041 212 .0376 .0336 .0040 213 .0370 .0330 .0040 214 .0363 .0324 .0039 215 .0357 .0319 .0038. 216 .0352 .0314 .0038 217 .0343 .0306 .0037 218 .0338 .0302 .0036 219 .0333 .0297 .0036 E 220 .0329 .0293 .0035 221 .0324 .0290 .0035 222 .0320 .0286 .0034 223 .0316 .0283 .0034 224 .0313 .0279 .0033 C 225 .0309 .0276 .0033 226 .0306 .0273 .0033 227 .0303 .0270 .0032 228 .0299 .0267 .0032 229 .0296 .0265 .0032 230 .0294 .0262 .0031 231 .0291 .0260 .0031 232 .0288 .0257 .0031 233 .0285 .0255 .0031 234 .0283 .0253 .0030 235 .0280 .0250 .0030 236 - .0278 .0248 .0030 237 .0276 .0246 .0030 238 .0274 .0244 .0029 239 .0271 .0242 .0029 240 .0269 .0241 .0029 241 .0267 .0239 .0029 242 .0265 .0237 .0028 C :, 243 .0263 .0235 .0028 244 .0262 .0234 .0028 245 .0260 .0232 .0028 246 .0258 .0230 .0028 247 .0256 .0229 .0027 248 .0255 .0227 .0027 249 .0253 .0226 .0027 250 .0251 .0224 .0027 251 .0250 .0223 .0027 252 .0248 .0222 .0027 253 .0247 .0220 .0026 254 .0245 .0219 .0026 255 .0244 .0218 .0026 256 .0242 .0217 .0026 257 .0241 .0215 .0026 258 .0240 .0214 .0026 259 .0238 .0213 .0026 260 .0237 .0212 .0025 261 .0236 .0211 .0025 262 .0235 .0210 .0025 263 .0233 .0208 .0025 264 .0232 .0207 .0025 265 .0231 .0206 .0025 266 .0230 .0205 .0025 267 .0229 .0204 .0024 268 .0228 .0203 .0024 269 .0227 .0202 .0024 270 .0226 .0201 .0024 271 .0225 .0201 .0024 272 .0224 .0200 .0024 273 .0223 .0199 .0024 274 .0222 .0198 .0024 275 .0221 .0197 .0024 276 .0220 .0196 .0023 277 .0219 .0195 .0023 278 .0218 .0194 .0023 P:\ 15946- BASELINE\ hydrology \unithyd\BASELINE -UNIT HYDRO.txt 1 1 279 .0217 .0194 .0023 280 .0216 .0193 .0023 281 .0215 .0192 .0023 282 .0214 .0191 .0023 283 .0213 .0190 .0023 284 .0212 .0190 .0023 285 .0212 .0189 .0023 286 .0211 .0188 .0023 I 287 .0210 .0188 .0022 288 .0209 .0187 .0022 TOTAL SOIL -LOSS VOLUME(ACRE -FEET) = 444.7076 1 TOTAL STORM RUNOFF VOLUME (ACRE-FEET) = 110.6474 kiii 1 1 1 1 1 1 1 P: \15946- BASELINE \hydrology \unithyd\BASELINE -UNIT HYDRO.txt 7 7 il I: 2 4 - H O U R S T O R M R U N O F F H Y D R O G R A P H HYDROGRAPH IN FIVE - MINUTE INTERVALS(CFS) li TIME(HRS) VOLUME(AF) Q(CFS) 0. 425.0 850.0 1275.0 1700.0 1! . 083 .0026 .37 Q . . .167 0180 2.23 Q .250 .0586 5.90 Q . .333 .1331 10.82 Q . . .417 .2353 14.84 Q . . II .500 .3531 17.11 Q . . . 583 .4789 18.27 Q . . .667 .6087 18.84 Q . . . .750 .7399 19.05 Q . . 833 .8722 19.20 Q 11 .917 1.0054 19.34 Q . 1.000 1.1392 19.43 Q . • 1.083 1.2734 19.49 Q . • _ 1.167 1.4079 19.53 Q . 1.250 1.5426 19.56 Q . . . 1.333 1.6776 19.60 Q . . 1.417 1.8129 19.64 Q 1.500 1.9485 19.68 Q . . 1.583 2.0843 19.72 Q . . 1: 1.667 2.2204 19.76 Q . 1.750 2.3568 19.80 Q . . 1.833 2.4935 19.84 Q . 1.917 2.6304 19.89 Q . 2.000 2.7677 19.93 QV . . li 2.083 2.9052 19.97 QV . 2.167 3.0430 20.01 QV . 2.250 3.1811 20.05 QV . . 2.333 3.3195 20.10 QV . . . 2.417 3.4583 20.14 QV 2.500 3.5973 20.18 QV . 2.583 3.7366 20.23 QV 2.667 3.8762 20.27 QV . . 2.750 4.0161 20.32 QV . . 2.833 4.1563 20.36 QV . . . 2.917 4.2969 20.41 QV . . 3.000 4.4377 20.45 QV . !! 3.083 4.5789 20.50 QV . 3.167 4.7204 20.54 QV . 3.250 4.8622 20.59 QV . 3.333 5.0043 20.64 QV . . 3.417 5.1468 20.69 QV . il 3.500 5.2896 20.74 QV . . 3.583 5.4328 20.78 QV . . . 3.667 5.5762 20.83 Q V . . 3.750 5.7201 20.88 Q V . . II 3.833 5.8642 20.93 Q V 3.917 6.0087 20.98 Q V 4.000 6.1536 21.03 Q V . 4.083 6.2988 21.08 Q V . . 4.167 6.4444 21.14 Q V . 4.250 6.5903 21.19 Q V 4.333 6.7366 21.24 Q V • 4.417 6.8833 21.30 Q V 4.500 7.0303 21.35 Q V . . II 4.583 7.1777 21.40 Q V . . 4.667 7.3255 21.46 Q V . 4.750 7.4736 21.51 Q V • 4.833 7.6222 21.57 Q V . II 4.917 7.7711 21.63 Q V . I: P:\ 15946 - BASELINE \hydrology \unithyd\BASELINE -UNIT HYDRO.txt 8 II 5.000 7.9205 21.68 Q V . . . 5.083 8.0702 21.74 Q V . . . 5.167 8.2203 21.80 Q V . . . li 5.250 8.3708 21.86 Q V . 5.333 8.5218 21.92 Q V . 5.417 8.6731 21.98 Q V . 5.500 8.8249 22.04 Q V . . 5.583 8.9771 22.10 Q V . . . 5.667 9.1297 22.16 Q V . 5.750 9.2828 22.22 Q V . 5.833 9.4363 22.29 Q V . . . 5.917 9.5902 22.35 Q V . . . I: 6.000 9.7446 22.41 Q V . 6.083 9.8994 22.48 Q V . 6.167 10.0546 22.55 Q V . 6.250 10.2104 22.61 Q V . . . 6.333 10.3666 22.68 Q V . . . 6.417 10.5233 22.75 Q V . . . 6.500 10.6804 22.82 Q V . . . 6.583 10.8380 22.89 Q V . . . 6.667 10.9961 22.96 Q V . . . 6.750 11.1548 23.03 Q V . . . : 6.833 11.3139 23.10 Q V . . . 6.917 11.4735 23.18 Q V . . . 7.000 11.6336 23.25 Q V . . . 7.083 11.7942 23.32 Q V . 1: 7.167 11.9554 23.40 Q V . • 7.250 12.1171 23.48 Q V . 7.333 12.2793 23.56 Q V . . . 7.417 12.4421 23.63 Q V . . . I: 7.500 12.6054 23.71 Q V . . . 7.583 12.7693 23.79 Q V . 7.667 12.9337 23.88 Q V . . . 7.750 13.0987 23.96 Q V . . . 7.833 13.2643 24.04 Q V . . . 1: 7.917 13.4305 24.13 Q v . . . 8.000 13.5973 24.22 Q V . . . 8.083 13.7646 24.30 Q V . . . 8.167 13.9326 24.39 Q V . . . 1: 8.250 14.1012 24.48 Q V . . . 8.333 14.2705 24.57 Q V . . . 8.417 14.4404 24.67 Q V . . . 8.500 14.6109 24.76 Q V . . 8.583 14.7821 24.86 Q V . . . i: 8.667 14.9539 24.95 Q V . 8.750. 15.1264 25.05 Q V . 8.833 15.2996 25.15 Q V . . . 8.917 15.4735 25.25 Q V . . . 1: 9.000 15.6482 25.35 Q V . . . 9.083 15.8235 25.46 Q V . . 9.167 15.9995 25.56 Q V . . 9.250 16.1763 25.67 Q V . . . II 9.333 16.3539 25.78 Q V 9.417 16.5322 25.89 Q V . . 9.500 16.7113 26.00 Q V . 9.583 16.8912 26.12 Q V . . . 9.667 17.0719 26.24 Q V . . . II 9.750 17.2534 26.35 Q V . 9.833 17.4357 26.48 Q V 9.917 17.6189 26.60 Q V . . . 10.000 17.8030 26.72 Q V . . . II 10.083 17.9879 26.85 Q V 10.167 18.1737 26.98 Q V . 10.250 18.3605 27.11 Q V . 10.333 18.5481 27.25 Q V . . . 10.417 18.7367 27.39 Q V . . . 10.500 18.9263 27.53 Q V 10.583 19.1168 27.67 Q V . 10.667 19.3084 27.81 Q V . . . 10.750 19.5010 27.96 Q V . . . 1: 10.833 19.6946 28.11 Q V . . . P:\ 15946- BASELINE \hydrology \unithyd\BASELINE -UNIT HYDRO.txt 9 1: II 10.917 19.8893 28.27 Q V . . 11.000 20.0850 28.43 Q V . . . 11.083 20.2819 28.59 Q V . . . I: 11.167 20.4799 28.75 Q V . 11.250 20.6791 28.92 Q V . 11.333 20.8794 29.09 Q V . 11.417 21.0810 29.27 Q V . . . 11.500 21.2838 29.45 Q V . . . 1: 11.583 21.4879 29.63 Q v 11.667 21.6933 29.82 Q V 11.750 21.9000 30.01 Q V . . . 11.833 22.1080 30.21 Q V . . . 11.917 22.3175 30.41 Q V . . 12.000 22.5284 30.62 Q V . . 12.083 22.7408 30.84 Q V . 12.167 22.9550 31.10 Q V . . 12.250 23.1712 31.39 Q V . . . 1: 12.333 23.3897 31.72 Q V . . . 12.417 23.6103 32.03 Q V . . . 12.500 23.8329 32.32 Q V . . . 12.583 24.0574 32.59 Q V . . 1: 12.667 24.2837 32.86 Q V . 12.750 24.5119 33.13 Q V . 12.833 24.7420 33.41 Q V . . 12.917 24.9740 33.69 Q V. . 13.000 25.2081 33.99 Q V. . I: 13.083 25.4443 34.29 Q V. 13.167 25.6826 34.61 Q V. 13.250 25.9232 34.93 Q V. . . 13.333 26.1661 35.27 Q V. . . I: 13.417 26.4114 35.62 Q V. . 13.500 26.6593 35.99 Q V. . 13.583 26.9097 36.36 Q V. . 13.667 27.1629 36.76 Q V. . . 13.750 27.4189 37.17 Q V. . . 13.833 27.6779 37.60 Q V . . 13.917 27.9399 38.05 Q V . . 14.000 28.2053 38.53 Q V . . 14.083 28.4724 38.78 Q v . . II 14.167 28.7349 38.12 Q V . 14.250 28.9851 36.33 Q V . 14.333 29.2179 33.80 Q V . 14.417 29.4375 31.89 Q V . . 14.500 29.6521 31.16 Q V . . 1: 14.583 29.8670 31.20 Q V . . 14.667 30.0852 31.68 Q V . . 14.750 30.3088 32.46 Q V . . 14.833 30.5385 33.36 Q .V . . I: 14.917 30.7750 34.34 Q .V . 15.000 31.0194 35.47 Q .V . 15.083 31.2723 36.73 Q .V . 15.167 31.5365 38.35 Q .V . li 15.250 31.8217 41.41 Q .V . 15.333 32.1524 48.01 .0 .V . 15.417 32.5574 58.82 Q .V . 15.500 33.0504 71.58 .0 .V . . 15.583 33.6324 84.50 .Q . V . . 15.667 34.3217 100.08 . Q . V . 15.750 35.1903 126.14 Q ▪ V 15.833 36.3670 170.85 Q • V . 15.917 38.0151 239.30 . Q . V . . II 16.000 40.4255 349.99 Q . V . 16.083 44.3915 575.86 . ▪ Q V 16.167 51.3385 1008.70 • V Q 16.250 61.1928 1430.85 . . V . Q • 16.333 72.3432 1619.04 . . . V . Q OF " 1 b t g C s 16.417 81.3952 1314.35 . . . X752 16.500 87.1071 829.36 . . Q. •V 16.583 90.4647 487.53 . .Q . . V 16.667 92.4059 281.85 Q . . . V . li 16.750 93.4710 154.66 . Q . . V . P: \15946- BASELINE \hydrology \unithyd\BASELINE -UNIT HYDRO.txt 10 II 16.833 94.1928 104.80 Q . . V 16.917 94.7482 80.64 .Q . • V 17.000 95.1449 57.61 .Q . . . v 17.083 95.4407 42.95 .Q . . . V . Iii 17.167 95.6891 36.07 Q . . . V . 17.250 95.9334 35.48. Q . . . V . 17.333 96.1853 36.57 Q . . . V 17.417 96.4440 37.57 Q . . . V E 17.500 96.7041 37.76 Q . . . V 1 7.583 96.9621 37.47 Q . . . V . 17.667 97.2163 36.91 Q . . . V . 17.750 97.4656 36.20 Q . . . V 17.833 97.7103 35.52 Q . . V I: 17.917 97.9506 34.89 Q . . V . 18.000 98.1866 34.28 Q . . . V 18.083 98.4186 33.68 Q . . . V . 18.167 98.6465 33.09 Q . . . V . 18.250 98.8703 32.49 Q V 18.333 99.0900 31.90 Q V 18.417 99.3059 31.35 Q . . . V . 18.500 99.5185 30.87 Q . . . V . I: 18.583 99.7280 30.42 Q . . . V . 18.667 99.9347 30.01 Q . . V . 18.750 100.1387 29.62 Q . . . v . 18.833 100.3402 29.26 Q . . . V . 18.917 100.5393 28.91 Q . . . V 19.000 100.7360 28.57 Q . . . V . 19.083 100.9306 28.25 Q . . . V . 19.167 101.1231 27.95 Q . . . V . 19.250 101.3136 27.65 Q . . . V . 1: 19.333 101.5021 27.37 Q . . V . 19.417 101.6887 27.10 Q . • V 19.500 101.8736 26.84 Q . V . 19.583 102.0567 26.59 0 . . . V . 19.667 102.2381 26.34 Q . . . V . 1: 19.750 102.4179 26.11 Q V . 19.833 102.5962 25.88 Q . . . V . 19.917 102.7729 25.66 Q . . . V . 20.000 102.9481 25.45 Q . . . V . 1: 20.083 103.1219 25.24 0 . . . V . 20.167 103.2944 25.04 Q . . . V . 20.250 103.4655 24.84 Q . . . v . 20.333 103.6353 24.66 Q . . . V 20.417 103.8038 24.47 Q . . . V . 1: 20.500 103.9711 24.29 Q . V • 20.583 104.1372 24.12 Q . V 20.667 104.3022 23.95 Q . . . V . 20.750 104.4660 23.78 Q . . V . I: 20.833 104.6287 23.62 Q . V . 20.917 104.7903 23.47 Q ▪ v 21.000 104.9509 23.31 Q . ▪ V 21.083 105.1104 23.17 Q . . V . 21.167 105.2690 23.02 Q . . . V . 21.250 105.4265 22.88 Q . V . 21.333 105.5831 22.74 Q . v 21.417 105.7388 22.60 Q . . . V . 21.500 105.8935 22.47 Q . . . V . 21.583 106.0474 22.34 Q . V . 21.667 106.2004 22.21 Q • V 21.750 106.3525 22.09 Q ▪ V . 21.833 106.5038 21.97 Q . . . V . I: 21.917 106.6543 21.85 Q . V . 22.000 106.8040 21.73 Q ▪ v 22.083 106.9528 21.62 Q ▪ V . 22.167 107.1009 21.50 Q . . . V 22.250 107.2483 21.39 Q -. v I: 22.333 107.3949 21.29 Q . V . 22.417 107.5407 21.18 Q . v . 22.500 107.6859 21.08 Q . . . V . 22.583 107.8304 20.97 Q . . . V 22.667 107.9741 20.87 Q . . . V. :: rm P: \15946- BASELINE\ hydro logy \unithyd\BASELINE -UNIT HYDRO.txt 11 ii fr II 22.750 108.1172 20.78 Q . . . V. 22.833 108.2596 20.68 Q . . . V. 22.917 108.4014 20.58 Q . . . V. 1: 23.000 108.5425 20.49 Q . . . V. 23.083 108.6830 20.40 Q . . . V. 23.166 108.8229 20.31 Q . . . V. 23.250 108.9621 20.22 Q . . . V. 23.333 109.1008 20.13 Q . . . V. I: 23.416 109.2388 20.05 Q . . . V. 23.500 109.3763 19.96 Q . . . V. 23.583 109.5132 19.88 Q . . . V. 23.666 109.6496 19.80 Q . . . V. 23.750 109.7853 19.72 Q . V. 23.833 109.9206 19.64 Q V. 23.916 110.0553 19.56 Q V. 24.000 110.1895 19.48 Q . . . V. li 24.083 110.3205 19.03 Q . V. 24.166 110.4383 17.10 Q . V. 24.250 110.5305 13.38 Q V. 24.333 110.5885 8.43 Q . . V. 24.416 110.6188 4.39 Q . . . V. I: 24.500. 110.6335 2.14 Q . V. 24.583 110.6404 1.00 Q . v. 24.666 110.6436 .46 Q . . . V. 24.750 110.6456 .29 Q . . . V. 1: 24.833 110.6468 .17 Q . V. 24.916 110.6473 .07 Q . . V. 25.000 110.6474 .02 Q V. I: FLOW. PROCESS FROM NODE 56.00 TO NODE 56.00 IS CODE = 1 CO/IL if ,47- el'Ice;'/4 »» >UNIT- HYDROGRAPH ANALYSIS««< 4417 OLEAMI R, li (UNIT- HYDROGRAPH ADDED TO STREAM #4) *USER ENTERED "LAG" TIME = .245 HOURS UNIT HYDROGRAPH TIME UNIT = 5.000 MINUTES UNIT INTERVAL PERCENTAGE OF LAG -TIME = 33.986 WATERSHED AREA = 822.850 ACRES BASEFLOW = .000 CFS /SQUARE -MILE VALLEY(DEVELOPED) S -GRAPH SELECTED MAXIMUM WATERSHED LOSS RATE(INCH /HOUR) = .493 LOW LOSS FRACTION = .893 * HYDROGRAPH MODEL #1 SPECIFIED* SPECIFIED PEAK 5- MINUTES RAINFALL(INCH)= .56 SPECIFIED PEAK 30- MINUTES RAINFALL(INCH) = 1.17 II SPECIFIED PEAK 1 -HOUR RAINFALL(INCH) = 1.55 SPECIFIED PEAK 3 -HOUR RAINFALL(INCH) = 2.48 SPECIFIED PEAK 6 -HOUR RAINFALL(INCH) = 3.88 SPECIFIED PEAK 24 -HOUR RAINFALL(INCH)= 9.40 PRECIPITATION DEPTH -AREA REDUCTION FACTORS: 5- MINUTE FACTOR = .963 30- MINUTE FACTOR = .963 1 -HOUR FACTOR = .963 II 3 -HOUR FACTOR = .994 6 -HOUR FACTOR = .997 24 -HOUR FACTOR = .998 RUNOFF HYDROGRAPH LISTING LIMITS: MODEL TIME(HOURS) FOR BEGINNING OF RESULTS = .00 MODEL TIME(HOURS) FOR END OF RESULTS = 36.00 P: \15946- BASELINE \hydrology \unithyd\BASELINE -UNIT HYDRO.txt 12 C 1 1 UNIT HYDROGRAPH DETERMINATION INTERVAL "S" GRAPH UNIT HYDROGRAPH NUMBER MEAN VALUES ORDINATES(CFS) 1 2.234 222.303 2 14.147 1185.518 3 36.771 2251.382 4 64.586 2767.964 5 83.409 1873.147 6 92.545 909.188 ii 7 96.865 429.873 8 98.373 150.064 9 99.010 63.411 10 99.604 59.095 11 99.901 29.548 12 100.000 9.849 I; 1 1 1 1 1 1 1 1 P:\ 15946- BASELINE \hydrology \unithyd\BASELINE -UNIT HYDRO.txt 13 1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** UNIT UNIT UNIT EFFECTIVE E '- PERIOD RAINFALL SOIL -LOSS RAINFALL (NUMBER) (INCHES) (INCHES) (INCHES) 1 .0209 .0186 .0022 2 .0209 .0187 .0022 3 .0209 .0187 .0022 4 .0210 .0187 .0022 5 .0210 .0188 .0022 6 .0211 .0188 .0023 7 .0211 .0189 0023 8 .0211 .0189 .0023 9 .0212 .0189 .0023 10 .0212 .0189 .0023 11 .0213 .0190 .0023 12 .0213 .0190 .0023 13 .0214 .0191 .0023 14 .0214 .0191 .0023 15 .0214 .0192 .0023 16 .0215 .0192 .0023 17 .0215 .0192 .0023 18 .0216 .0193 .0023 19 .0216 .0193 .0023 20 .0217 .0193 .0023 21 .0217 .0194 .0023 22 .0217 .0194 .0023 23 .0218 .0195 .0023 24 .0218 .0195 .0023 25 .0219 .0196 .0023 26 .0219 .0196 .0023 27 .0220 .0196 .0024 28 .0220 .0197 .0024 29 .0221 .0197 .0024 30 .0221 .0198 .0024 31 .0222 .0198 .0024 32 .0222 .0198 .0024 33 .0223 .0199 .0024 34 .0223 .0199 .0024 35 .0224 .0200 .0024 36 .0224 .0200 .0024 37 .0225 .0201 .0024 38 .0225 .0201 .0024 39 .0226 .0202 .0024 40 .0226 .0202 .0024 41 .0227 .0203 .0024 42 .0227 .0203 .0024 43 .0228 .0204 .0024 44 .0229 .0204 .0024 45 .0229 .0205 .0025 46 .0230 .0205 .0025 47 .0230 .0206 .0025 48 .0231 .0206 .0025 49 .0231 .0207 .0025 50 .0232 .0207 .0025 51 .0233 .0208 .0025 52 .0233 .0208 .0025 53 .0234 .0209 .0025 54 .0234 .0209 .0025 55 .0235 .0210 .0025 56 .0236 .0210 .0025 57 .0236 .0211 .0025 58 .0237 .0211 .0025 59 .0238 .0212 .0025 60 .0238 .0213 .0025 61 .0239 .0213 .0026 62 .0239 .0214 .0026 63 .0240 .0215 .0026 64 .0241 .0215 .0026 65 .0242 .0216 .0026 P: \15946- BASELINE \hydrology \unithyd\BASELINE -UNIT HYDRO.txt 14 li II 66 .0242 .0216 .0026 67 .0243 .0217 .0026 68 .0243 .0217 .0026 li 69 .0244 .0218 .0026 70 .0245 .0219 .0026 71 .0246 .0219 .0026 72 .0246 .0220 .0026 73 .0247 .0221 .0026 74 .0248 .0221 .0027 75 .0249 .0222 .0027 76 .0249 .0223 .0027 77 . .0250 .0224 .0027 78 .0251 .0224 .0027 79 .0252 .0225 .0027 80 .0252 .0225 .0027 81 .0253 .0226 .0027 82 .0254 .0227 .0027 I: 83 .0255 .0228 .0027 84 .0256 .0228. .0027 85 .0257 .0229 .0027 86 .0257 .0230 .0028 04 87 .0259 .0231 .0028 88 .0259 .0231 .0028 89 .0260 .0232 .0028 90 .0261 .0233 .0028 91 .0262 .0234 .0028 1: 92 .0263 .0235 .0028 93 .0264 .0236 .0028 94 .0265 .0236 .0028 95 .0266 .0238 .0028 I: 96 .0267 .0238 .0029 97 .0268 .0239 .0029 98 .0269 .0240 .0029 99 .0270 .0241 .0029 1: 100 .0271 .0242 .0029 101 .0272 .0243 .0029 102 .0273 .0244 .0029 103 .0274 _.0245 .0029 104 .0275 .0246 .0029 I; 105 .0277 .0247 .0030 106 .0277 .0248 .0030 107 .0279 .0249 .0030 108 .0280 .0250 .0030 109 .0281 .0251 .0030 110 .0282 .0252 .0030 111 .0284 .0253 .0030 112 .0285 .0254 .0030 113 .0286 .0256 .0031 114 .0287 .0256 .0031 115 .0289 .0258 .0031 116 .0290 .0259 .0031 117 .0292 .0260 .0031 118 .0293 .0261 .0031 119 .0294 .0263 .0032 120 .0295 .0264 .0032 121 .0297 .0266 .0032 122 .0298 .0266 .0032 123 .0300 .0268 .0032 124 .0301 .0269 .0032 125 .0304 .0271 .0032 126 .0305 .0272 .0033 1/ 127 .0307 .0274 .0033 128 .0308 .0275 .0033 129 .0310 .0277 .0033 130 .0311 .0278 .0033 131 .0314 .0280 .0034 I/ 132 .0315 .0281 .0034 133 .0318 .0284 .0034 134 .0319 .0285 .0034 135 .0322 .0287 .0034 El 136 .0323 .0288 .0035 II I: P: \15946- BASELINE \hydrology \unithyd\BASELINE -UNIT HYDRO.txt 15 II 137 .0326 .0291 .0035 138 .0327 .0292 .0035 139 .0330 .0295 .0035 I; 140 .0331 .0296 .0035 141 .0335 .0299 .0036 142 .0336 .0300 .0036 143 .0339 .0303 .0036 144 .0341 .0304 .0036 I! 145 .0349 .0311 .0037 146 .0350 .0313 .0037 147 .0354 .0316 .0038 148 .0356 .0318 .0038 1: 149 .0359 .0321 .0038 150 .0361 .0323 .0039 151 .0365 .0326 .0039 152 .0368 .0328 .0039 153 .0372 .0332 .0040 1; 154 .0374 .0334 .0040 155 .0379 .0338 .0041 156 .0381 .0340 .0041 157 .0386 .0345 .0041 158 .0389 .0347 .0042 159 .0394 .0352 .0042 160 .0397 .0354 .0042 161 .0403 .0359 .0043 162 .0406 .0362 .0043 i 163 .0412 .0368 .0044 164 .0415 .0371 .0044 165 .0422 .0377 .0045 166 .0426 .0380 .0046 I: 167 .0433 .0387 .0046 168 .0438 .0391 .0047 169 .0315 .0282 .0034 170 .0320 .0286 .0034 171 .0331 .0295 .0035 1: 172 .0337 .0301 .0036 173 .0349 .0311 .0037 174 .0355 .0317 .0038 175 .0370 .0330 .0040 176 .0377 .0337 .0040 177 .0395 .0352 .0042 178 .0404 .0361 .0043 179 .0425 .0380 .0045 II 180 .0437 .0390 .0047 181 .0463 .0411 .0052 182 .0478 .0411 .0067 183 .0513 .0411 .0102 184 .0533 .0411 .0122 1: 185 .0510 .0411 .0099 186 .0539 .0411 .0128 187 .0612 .0411 .0201 188 .0660 .0411 .0249 II 189 .0822 .0411 .0411 190 .0926 .0411 .0515 191 .1311 .0411 .0900 192 .1792 .0411 .1381 193. .5394 .0411 .4983 il 194 .1073 .0411 .0662 195 .0719 .0411 .0308 196 .0572 .0411 .0161 197 .0556 .0411 .0145 II 198 .0495 .0411 .0084 199 .0449 .0401 .0048 200 .0414 .0370 .0044 201 .0386 .0344 .0041 202 .0362 .0324 .0039 II 203 .0342 .0306 .0037 204 0325 .0291 .0035 205 .0442 .0394 .0047 206 .0430 .0384 .0046 II 207 .0419 .0374 .0045 P: \15946- BASELINE\ hydrology \unithyd\BASELINE -UNIT HYDRO.txt 16 208 .0409 .0365 .0044 209 .0400 .0357 .0043 210 .0391 .0349 .0042 1; 211 .0384 .0342 .0041 212 .0376 .0336 .0040 213 .0370 .0330 .0040 214 .0363 .0325 .0039 215 ,.0358 .0319 .0038 216 .0352 .0314 .0038 217 .0343 .0306 .0037 218 .0338 .0302 .0036 219 .0333 .0297 .0036 220 .0329 .0293 .0035 221 .0324 .0290 .0035 222 .0320 .0286 .0034 223 .0316 .0283 .0034 224 .0313 .0279 .0033 225 .0309 .0276 .0033 226 .0306 .0273 .0033 227 .0303 .0270 .0032 228 .0299 .0267 .0032 229 .0296 .0265 .0032 230 .0293 .0262 .0031 231 .0291 .0260 .0031 232 .0288 .0257 .0031 233 .0285 .0255 .0031 234 .0283 .0253 .0030 235 .0280 .0250 .0030 236 .0278 .0248 .0030 237 .0276 .0246 .0030 • 238 .0274 .0244 .0029 iii 239 .0271 .0242 .0029 240 .0269 .0241 .0029 241 .0267 .0239 .0029 242 .0265 .0237 .0028 243 .0263 .0235 .0028 244 .0262 .0234 .0028 245 .0260 .0232 .0028 246 .0258 .0230 .0028 247 .0256 .0229 .0027 248 .0255 .0227 .0027 249 .0253 .0226 .0027 250 .0251 .0224 .0027 251 .0250 .0223 .0027 252 .0248 .0222 .0027 253 .0247 .0220 .0026 254 .0245 .0219 .0026 255 .0244 .0218 .0026 256 .0242 .0217 .0026 257 .0241 .0215 .0026 258 .0240 .0214 .0026 259 .0238 .0213 .0026 260 .0237 .0212 .0025 261 .0236 .0211 .0025 262 .0235 .0210 .0025 263 .0233 .0208 .0025 264 .0232 .0207 .0025 265 .0231 .0206 .0025 266 .0230 .0205 .0025 267 .0229 .0204 .0024 268 .0228 .0203 .0024 269 .0227 .0202 .0024 270 .0226 .0201 .0024 271 .0225 .0201 .0024 272 .0224 .0200 .0024 273 .0223 .0199 .0024 274 .0222 .0198 .0024 275 .0221 .0197 .0024 276 .0220 .0196 .0023 277 .0219 .0195 .0023 278 .0218 .0194 .0023 P:\ 15946 - BASELINE\ hydrology \unithyd\BASELINE -UNIT HYDRO.txt 17 ■ i 279 .0217 .0194 .0023 280 .0216 .0193 .0023 281 .0215 .0192 .0023 282 .0214 .0191 .0023 283 .0213 .0190 .0023 284 .0212 .0190 .0023 285 .0212 .0189 .0023 286 .0211 .0188 .0023 I 287 .0210 .0188 .0022 288 .0209 .0187 .0022 TOTAL SOIL -LOSS VOLUME (ACRE-FEET) = 515.3225 1 TOTAL STORM RUNOFF VOLUME (ACRE-FEET) = 128.1115 1 1 1 1 1 1 1 1 1 1 1 P: \15946- BASELINE \hydrology \unithyd\BASELINE -UNIT HYDRO.txt 18 II I/ 2 4 - H O U R S T O R M R U N O F F H Y D R O G R A P H HYDROGRAPH IN FIVE - MINUTE INTERVALS(CFS) TIME(HRS) VOLUME(AF) Q(CFS) 0. 500.0 1000.0 1500.0 2000.0 II .083 .0034 .50 Q . .167 .0251 3.14 Q . .250 .0814 8.18 Q . .333 .1803 14.37 Q . . . li .417 .3083 18.58 Q . .500 .4505 20.64 Q . .583 .5995 21.64 Q . .667 .7511 22.02 Q . . . .750 .9040 22.20 Q . . . I: .833 1.0581 22.38 Q . . . .917 1.2130 22.49 Q 1.000 1.3683 22.55 Q . . . 1.083 1.5239 22.60 Q . . . 1.167 1.6799 22.64 Q . . . I: 1.250 1.8361 22.69 Q . . . 1.333 1.9926 22.73 Q . . . 1.417 2.1495 22.78 Q . . . 1.500 2.3067 22.82 Q . . . 1.583 2.4642 22.87 Q . . 1.667 2.6220 22.92 Q . . 1.750 2.7802 22.96 Q . . 1.833 2.9386 23.01 Q . II 1.917 3.0974 23.06 Q . 2.000 3.2566 23.11 QV • 2.083 3.4160 23.16 QV • 2.167 3.5759 23.20 QV . 2.250 3.7360 23.25 QV . . II 2.333 3.8965 23.30 QV . 2.417 4.0573 23.35 QV • 2.500 4.2185 23.40 QV . . 2.583 4.3801 23.46 QV . 2.667 4.5420 23.51 QV . 2.750 4.7042 23.56 QV . . 2.833 4.8668 23.61 QV 2.917 5.0298 23.66 QV . . 3.000 5.1931 23.72 QV . . • . 1; 3.083 5.3568 23.77 QV 3.167 5.5209 23.82 QV • 3.250 5.6853 23.88 QV . . 3.333 5.8502 23.93 QV . . I' 3.417 6.0154 23.99 QV . 3.500 6.1810 24.04 QV • • 3.583 6.3469 24.10 QV • 3.667 6.5133 24.16 Q V . . • . 3.750 6.6801 24.22 Q V . . . • 3.833 6.8473 24.27 Q V . . 3.917 7.0148 24.33 Q V . 4.000 7.1828 24.39 Q V . . 4.083 7.3512 24.45 Q V . I/ 4.167 7.520 0 24.51 Q V 4.250 7.6893 24.57 Q V • 4.333 7.8589 24.63 Q V • • 4.417 8.0290 24.70 Q V 4.500 8.1995 24.76 Q V . : 4 • .583 8.3704 24.82 Q V . . • 4.667 8.5418 24.88 Q V . 4.750 8.7136 24.95 Q V . . . 4.833 8.8859 25.01 Q . . II 4.917 9.0586 25.08 Q V . P :\ 15946- BASELINE \hydrology \unithyd\BASELINE -UNIT HYDRO.txt 19 II 5.000 9.2318 25.15 Q v . . . 5.083 9.4054 25.21 Q V . . . 5.167 9.5796 25.28 Q V . . . 5.250 9.7541 25.35 Q V . . . id 5.333 9.9292 25.42 Q V 5.417 10.1047 25.49 Q V 5.500 10.2807 25.56 Q V . . 5.583 10.4572 25.63 Q V . . . r ill 5.667 10.6342 25.70 Q V 5.750 10.8117 25.77 Q V 5.833 10.9897 25.85 Q V . . 5.917 11.1683 25.92 Q V . . . :: 6.000 11.3473 26.00 Q V . . . 6.083 11.5268 26.07 Q V . . . 6.167 11.7069 26.15 Q V . . . 6.250 11.8876 26.23 Q V . . . I: 6.333 12.0687 26.31 Q V . 6.417 12.2504 26.38 Q V . . 6.500 12.4327 26.46 Q V . 6.583 12.6155 26.55 Q V . . . 6.667 12.7989 26.63 Q V . . . 6.750 12.9829 26.71 Q V . . . 6.833 13.1674 26.80 Q V . . . 6.917 13.3525 26.88 Q V . . . 7.000 13.5383 26.97 Q V . . . 7.083 13.7246 27.05 Q V r 7.167 13.9115 27.14 Q V 7.250 14.0990 27.23 Q V 7.333 14.2872 27.32 Q V . . . 7.417 14.4760 27.41 Q V . . lir 7.500 14.6655 27.51 Q V . . . 7.583 14.8555 27.60 Q V . . . 7.667 15.0463 27.70 Q V . . . 7.750 15.2377 27.79 Q V . . . fli 7.833 15.4298 27.89 Q V 7.917 15.6225 27.99 Q V . 10 8.000 15.8160 28.09 Q V . . 8.083 16.0102 28.19 Q V . . . 8.167 16.2050 28.30 Q V . . 8.250 16.4006 28.40 Q V . . . 8.333 16.5969 28.51 Q V . . . 8.417 16.7940 28.61 Q V . . . 8.500 16.9918 28.72 Q V . . . 1: 8.583 17.1904 28.83 Q V . . . 8.667 17.3898 28.95 Q v . . . 8.750 17.5899 29.06 Q V . . . 8.833 17.7909 29.18 Q V . . . 8.917 17.9926 29.29 Q V . . . I; 9.000 18.1952 29.41 Q V . . . 9.083 18.3986 29.53 Q V . . 9.167 18.6029 29.66 Q V . . . 9.250 18.8080 29.78 Q V . . . 9.333 19.0140 29.91 Q V 9.417 19.2209 30.04 Q V . . 9.500 19.4287 30.17 Q V . 9.583 19.6374 30.31 Q V . . 9.667 19.8470 30.44 Q V . . . 9.750 20.0576 30.58 Q V . . . 9.833 20.2692 30.72 Q V . . . 9.917 20.4818 30.86 Q V . . . 10.000 20.6953 31.01 Q V . . . 1/ 10.083 20.9099 31.16 Q V 10.167 21.1256 31.31 Q V . 10.250 21.3422 31.46 Q V . 10.333 21.5600 31.62 Q V . . 10.417 21.7789 31.78 Q V . . . II 10.500 21.9989 31.94 Q V . 10.583 22.2200 32.11 Q V . 10.667 22.4423 32.28 Q V . . . 10.750 22.6658 32.45 Q V . . . 1/ 10.833 22.8905 32.63 Q V . . . P:\ 15946- BASELINE \hydrology \unithyd\BASELINE -UNIT HYDRO.txt 20 s. II 10.917 23.1165 32.81 Q V . . . 11.000 23.3437 32.99 Q v . . 11.083 23.5722 33.18 Q V . . 11.167 23.8020 33.37 Q V . 11.250 24.0332 33.57 Q V . 11.333 24.2658 33.77 Q V . 11.417 24.4997 33.97 Q V . . . 11.500 24.7352 34.18 Q V . . 11.583 24.9721 34.40 Q V . 11.667 25.2105 34.62 Q V . 11.750 25.4505 34.84 Q V . . . 11.833 25.6920 35.08 Q V . . . 11.917 25.9352 35.31 Q V . . 12.000 26.1801 35.56 Q V . . 12.083 26.4268 35.82 Q V . 12.167 26.6756 36.13 Q v . . . 12.250 26.9269 36.49 Q V . . . 1; 12.333 27.1809 36.89 Q V . . . 12.417 27.4374 37.25 Q V . . 12.500 27.6962 37.57 Q V . . 12.583 27.9571 37.88 Q v . . 12.667 28.2202 38.19 Q V . . IIN iii 12.750 28.4854 38.51 Q V . 12.833 28.7528 38.83 Q V . 12.917 29.0225 39.16 Q V. . I: 13.000 29.2946 39.51 Q V. 13.083 29.5692 39.86 Q V. . 13.167 29.8463 40.23 Q V. . 13.250 30.1259 40.61 Q V. . . 13.333 30.4084 41.01 Q V. . . 1; 13.417 30.6936 41.42 Q V. 13.500 30.9818 41.85 Q V. . 13.583 31.2730 42.29 Q V. . 13.667 31.5675 42.75 Q V. . . 13.750 31.8652 43.23 Q V. . 13.833 32.1665 43.74 Q V . 13.917 32.4713 44.27 Q V . 14.000 32.7801 44.82 Q V . 14.083 33.0906 45.09 Q V . . 14.167 33.3940 44.05 Q V . . 14.250 33.6801 41.55 Q V . . 14.333 33.9445 38.39 Q V . . 14.417 34.1961 36.53 Q V . . 14.500 34.4448 36.10 Q V . . 14.583 34.6954 36.40 Q V 14.667 34.9514 37.17 Q V 14.750 35.2140 38.13 Q V . . 14.833 35.4840 39.20 Q .V . . PO 14.917 35.7623 40.41 Q .V NO 15.000 36.0500 41.78 Q .v 15.083 36.3486 43.35 Q .V . . 15.167 36.6631 45.68 Q .V . . 15.250 37.0107 50.46 .Q .V . . 15.333 37.4273 60.50 .Q .V . . 15.417 37.9486 75.68 .Q .v . . 15.500 38.5767 91.21 .Q . V . . 15.583 39.2988 104.84 . Q . v . . 15.667 40.1416 122.38 . Q . V . . 15.750 41.2118 155.39 . Q . V . . 15.833 42.6769 212.73 . Q . V . . 15.917 44.7381 299.29 . Q . V . . 16.000 47.7737 440.76 . Q V . . 16.083 52.8130 731.71 . . Q V . . 16.167 61.8705 1315.15 . . V. Q . 16.250 74.4671 1829.02 . . . V . Q . 16.333 87.8333 1940.77 . . . V . Q . a 1 I c s 16.417 97.3740 1385.31 . Q V i 16.500 102.8651 797.32 . . Q . . V 16.583 105.9741 451.43 . Q. . . V . 16.667 107.6494 243.25 . Q . . . V . 16.750 108.6701 148.20 . Q . . . V . 4 P:\ 15946 - BASELINE \hydrology \unithyd\BASELINE -UNIT HYDRO.txt 21 II Il 16.833 109.4148 108.13 . Q . . . V . 16.917 109.9259 74.22 .Q . . . V . 17.000 110.2940 53.44 .Q . . . V . 17.083 110.5879 42.68 Q . . V 17.167 110.8663 40.42 Q . • V 17.250 111.1483 40.94 Q ▪ V . 17.333 111.4431 42.81 Q . . . V . 17.417 111.7452 43.87 Q . . . V . 17.500 112.0473 43.87 Q V 17.583 112.3459 43.36 Q ▪ V 17.667 112.6391 42.56 Q . . . V . 17.750 112.9265 41.73 Q . . . V . 1: 17.833 113.2087 40.97 Q . . . v . 17.917 113.4857 40.23 Q . . . V . 18.000 113.7579 39.52 Q . . V . 18.083 114.0253 38.83 Q . . V . 18.167 114.2880 38.14 Q . . . V . 18.250 114.5459 37.44 Q . . V 18.333 114.7990 36.75 Q . • V 18.417 115.0478 36.13 Q . . . V . 18.500 115.2929 35.59 Q . . . V . 18.583 115.5346 35.09 Q . . . V . ii 18.667 115.7730 34.62 Q . V . 18.750 116.0084 34.18 Q V . 18.833 116.2410 33.76 Q . V . 18.917 116.4707 33.37 Q . . V . 19.000 116.6979 32.99 Q . . . V . 19.083 116.9226 32.62 Q . . . V . 19.167 117.1448 32.27 Q . . . V . 19.250 117.3648 31.94 Q . . . V . 19.333 117.5825 31.61 Q . V . 19.417 117.7981 31.30 Q . ▪ V 19.500 118.0116 31.00 Q ▪ V . 19.583 118.2231 30.71 Q . . V . 19.667 118.4327 30.44 Q . . . V . 1; 19.750 118.6405 30.17 Q . . . V . 19.833 118.8465 29.90 Q . . . V . 19.917 119.0507 29.65 Q . . . V . 20.000 119.2532 29.41 Q . . . V . 20.083 119.4541 29.17 Q . . . V . 20.167 119.6534 28.94 Q . . . V . 20.250 119.8512 28.72 Q . . V . 20.333 120.0475 28.50 Q . . . v . II 20.417 120.2423 28.29 Q . V . 20.500 120.4357 28.08 Q . ▪ V 20.583 120.6277 27.88 Q • V . 20.667 120.8184 27.69 Q . . . V . 20.750 121.0078 27.50 Q . . . V . 20.833 121.1960 27.32 Q . . . V . 20.917 121.3829 27.14 Q . . . v . 21.000 121.5685 26.96 Q . . . V . 21.083 121.7530 26.79 Q . . . v . 21.167 121.9364 26.62 Q . V . 21.250 122.1186 26.46 Q . • V . 21.333 122.2997 26.30 Q ▪ V . 21.417 122.4797 26.14 Q . . . V . 21.500 122.6587 25.99 Q . . . V . 21.583 122.8367 25.84 Q . . . V . 21.667 123.0136 25.69 Q . . . V . 21.750 123.1896 25.55 Q . . . V . 21.833 123.3646 25.41 Q . . . V . 21.917 123.5387 25.27 Q . V . 22.000 123.7118 25.14 Q . ▪ V . 22.083 123.8840 25.01 Q • V . 22.167 124.0554 24.88 Q . . . V . 22.250 124.2258 24.75 Q . . . V . 22.333 124.3955 24.63 Q . V . 22.417 124.5642 24.51 Q V . 22.500 124.7322 24.39 Q . . . V . 22.583 124.8993 24.27 Q . . . V . 22.667 125.0656 24.15 Q . . . V. . P:\ 15946- BASELINE \hydrology \unithyd\BASELINE -UNIT HYDRO.txt 22 1/ 22.750 125.2312 24.04 Q . . . V. 22.833 125.3960 23.93 Q . . . V. 22.917 125.5600 23.82 Q . . V. ii 23.000 125.7233 23.71 Q . . . V. 23.083 125.8859 23.60 Q . . . V. 23.166 126.0477 23.50 Q . . . V. 23.250 126.2089 23.40 Q . . . V. 23.333 126.3693 23.30 Q . V. 23.416 126.5291 23.20 Q V. 23.500 126.6882 23.10 Q V. 23.583 126.8466 23.00 Q . . . V. 23.666 127.0044 22.91 Q . . . V. 23.750 127.1615 22.82 Q . V. 23.833 127.3180 22.73 Q V. 23.916 127.4739 22.64 Q V. 24.000 127.6292 22.55 Q . . . V. 24.083 127.7805 21.96 Q . V. 24.166 127.9130 19.24 Q V. 24.250 128.0104 14.14 Q V. 24.333 128.0649 7.92 Q . . . V. 24.416 128.0904 3.71 Q . . . V. ir 24.500 128.1019 1.67 Q . . V. 24.583 128.1067 .70 Q . . V. 24.666 128.1092 .36 Q . . . V. 24.750 128.1108 .22 Q . . . V. 24.833 128.1114 .09 Q . . . V. 24.916 128.1115 .02 Q . . . V ii FLOW PROCESS FROM NODE 65.00 TO NODE 65.00 IS CODE = 1 c©Nf'/yeAre OF Shan 'I D �/�y�,a. »»>UNIT- HYDROGRAPH ANALYSIS<«< a C��ro/-* A. S/ ni I: (UNIT- HYDROGRAPH ADDED TO STREAM #5) i *USER ENTERED "LAG" TIME = .275 HOURS his UNIT HYDROGRAPH TIME UNIT = 5.000 MINUTES il UNIT INTERVAL PERCENTAGE OF LAG -TIME = 30.267 WATERSHED AREA = 990.260 ACRES I: BASEFLOW = .000 CFS /SQUARE -MILE VALLEY(DEVELOPED) S -GRAPH SELECTED MAXIMUM WATERSHED LOSS RATE(INCH /HOUR) = .483 LOW LOSS FRACTION = .893 *HYDROGRAPH MODEL #1 SPECIFIED* ii SPECIFIED PEAK 5- MINUTES RAINFALL(INCH)= .56 SPECIFIED PEAK 30- MINUTES RAINFALL(INCH) = 1.17 SPECIFIED PEAK 1 -HOUR RAINFALL(INCH) = 1.55 SPECIFIED PEAK 3 -HOUR RAINFALL(INCH) = 2.48 SPECIFIED PEAK 6 -HOUR RAINFALL(INCH) = 3.88 SPECIFIED PEAK 24 -HOUR RAINFALL(INCH)= 9.40 PRECIPITATION DEPTH -AREA REDUCTION FACTORS: II 5- MINUTE FACTOR = .956 30- MINUTE FACTOR = .956 1 -HOUR FACTOR = .956 3 -HOUR FACTOR = .993 6 -HOUR FACTOR = .997 24 -HOUR FACTOR = .998 RUNOFF HYDROGRAPH LISTING LIMITS: MODEL TIME(HOURS) FOR BEGINNING OF RESULTS = .00 MODEL TIME(HOURS) FOR END OF RESULTS = 36.00 UNIT HYDROGRAPH DETERMINATION 1: P:\ 15946- BASELINE \hydrology \unithyd\BASELINE -UNIT HYDRO.txt 23 1 1 INTERVAL "S" GRAPH UNIT HYDROGRAPH NUMBER MEAN VALUES ORDINATES(CFS) 1 1.894 226.818 2 11.151 1108.563 3 29.554 2204.032 4 54.464 2983.191 5 75.701 2543.319 6 87.961 1468.300 7 94.219 749.361 8 97.322 371.700 9 98.417 131.151 10 98.985 67.970 11 99.457 56.493 12 99.783 39.036 13 99.946 19.518 14 100.000 6.505 1 1 1 1 1 1 1 1 1 P: \15946- BASELINE \hydrology \unithyd\BASELINE -UNIT HYDRO.txt 24 1 1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** UNIT UNIT UNIT EFFECTIVE 1 PERIOD RAINFALL SOIL -LOSS RAINFALL (NUMBER) (INCHES) (INCHES) (INCHES) 1 .0209 .0186 .0022 2 .0209 .0187 .0022 3 .0209 .0187 .0022 4 .0210 .0187 .0022 5 .0210 .0188 .0022 6 .0211 .0188 .0023 7 .0211 .0188 .0023 8 .0211 .0189 .0023 9 .0212 .0189 .0023 10 .0212 .0189 .0023 11 .0213 .0190 .0023 12 .0213 .0190 .0023 13 .0214 .0191 .0023 14 .0214 .0191 .0023 15 .0214 .0191 .0023 16 .0215 .0192 .0023 17 .0215 .0192 .0023 18 .0216 .0193 .0023 19 .0216 .0193 .0023 20 .0217 .0193 .0023 21 .0217 .0194 .0023 22 .0217 .0194 .0023 23 .0218 .0195 .0023 24 .0218 .0195 .0023 25 .0219 .0196 .0023 26 .0219 .0196 .0023 27 .0220 .0196 .0024 28 .0220 .0197 .0024 29 .0221 .0197 .0024 30 .0221 .0198 .0024 31 .0222 .0198 .0024 32 .0222 .0198 .0024 33 .0223 .0199 .0024 34 .0223 .0199 .0024 35 .0224 .0200 .0024 36 .0224 .0200 .0024 37 .0225 .0201 .0024 1 38 .0225 .0201 .0024 39 .0226 .0202 .0024 40 .0226 .0202 .0024 41 .0227 .0203 .0024 I 42 .0227 .0203 .0024 43 .0228 .0204 .0024 44 .0228 .0204 .0024 45 .0229 .0205 .0025 46 .0230 .0205 .0025 47 .0230 .0206 .0025 48 .0231 .0206 .0025 49 .0231 .0207 .0025 50 .0232 .0207 .0025 51 .0233 .0208 .0025 52 .0233 .0208 .0025 53 .0234 .0209 .0025 54 .0234 .0209 .0025 55 .0235 .0210 .0025 56 .0235 .0210 .0025 57 .0236 .0211 .0025 58 .0237 .0211 .0025 59 .0238 .0212 .0025 60 .0238 .0213 .0025 61 0239 .0213 .0026 62 .0239 .0214 .0026 63 .0240 .0214 .0026 64 .0241 .0215 .0026 1 65 .0242 .0216 .0026 1 P:\ 15946- BASELINE \hydrology \unithyd\BASELINE -UNIT HYDRO.txt 25 i 66 .0242 .0216 .0026 67 .0243 .0217 .0026 68 .0243 .0217 .0026 69 .0244 .0218 .0026 70 .0245 .0219 .0026 71 .0246 .0219 .0026 72 .0246 .0220 .0026 73 .0247 .0221 .0026 74 .0248 .0221 .0027 75 .0249 .0222 .0027 76 .0249 .0223 .0027 77 .0250 .0223 .0027 78 .0251 .0224 .0027 79 .0252 .0225 .0027 80 .0252 .0225 .0027 81 .0253 .0226 .0027 82 .0254 .0227 .0027 83 .0255 .0228 .0027 84 .0256 .0228 .0027 85 .0257 .0229 .0027 86 .0257 .0230 .0028 87 .0259 .0231 .0028 88 .0259 .0231 .0028 89 .0260 .0232 .0028 90 .0261 .0233 .0028 91 .0262 .0234 .0028 92 .0263 .0235 .0028 93 .0264 .0236 .0028 94 .0265 .0236 .0028 95 .0266 .0237 .0028 96 .0267 .0238 .0029 97 .0268 .0239 .0029 98 .0269 .0240 .0029 99 .0270 .0241 .0029 100 .0271 .0242 .0029 101 .0272 .0243 .0029 102 .0273 .0244 .0029 103 .0274 .0245 .0029 104 .0275 .0246 .0029 105 .0276 .0247 .0030 106 .0277 .0248 .0030 107 .0279 .0249 .0030 108 .0280 .0250 .0030 109 .0281 .0251 .0030 110 .0282 .0252 .0030 111 .0284 .0253 .0030 112 .0284 .0254 .0030 113 .0286 .0256 .0031 114 .0287 .0256 .0031 115 .0289 .0258 .0031 116 .0290 .0259 .0031 117 .0292 .0260 .0031 118 .0292 .0261 .0031 { 119 .0294 .0263 .0031 120 .0295 .0264 .0032 121 .0297 .0265 .0032 122 .0298 .0266 .0032 123 .0300 .0268 .0032 124 .0301 .0269 .0032 125 .0303 .0271 .0032 126 .0305 .0272 .0033 I 127 .0307 .0274 .0033 I 128 .0308 .0275 .0033 129 .0310 .0277 .0033 130 .0311 .0278 .0033 131 .0314 .0280 .0034 132 .0315 .0281 .0034 133 .0318 .0284 .0034 134 .0319 .0285 .0034 _ 135 .0321 .0287 .0034 136 .0323 .0288 .0035 P:\ 15946- BASELINE\ hydrology \unithyd\BASELINE -UNIT HYDRO.txt 26 137 .0326 .0291 .0035 138 .0327 .0292 .0035 139 .0330 .0295 .0035 140 .0331 .0296 .0035 141 0339 .0299 .0036 142 .0336 .0300 .0036 143 .0339 .0303 .0036 144 .0341 .0304 .0036 145 .0349 .0311 .0037 146 .0351 .0313 .0038 147 .0354 .0316 .0038 148 .0356 .0318 .0038 149 .0321 .0038 150 .0362 .0323 .0039 151 .0366 .0327 .0039 152 .0368 .0328 .0039 153 .0372 .0332 .0040 154 .0374 .0334 .0040 155 .0379 .0338 .0041 156 .0381 .0340 .0041 157 .0386 .0345 .0041 r 158 .0389 .0347 .0042 mil 159 .0394 .0352 .0042 160 .0397 .0354 .0042 161 .0403 .0360 .0043 162 .0406 .0362 .0043 163 .0412 .0368 .0044 164 .0415 .0371 .0044 165 .0422 .0377 .0045 166 .0426 .0380 .0046 P 167 .0434 .0387 .0046 168 .0438 .0391 .0047 169 .0319 .0285 .0034 170 .0324 .0289 .0035 171 .0335 .0299 .0036 172 .0340 .0304 .0036 173 .0353 .0315 .0038 174 .0359 .0321 .0038 175 .0373 .0334 .0040 176 .0381 .0340 .0041 177 .0398 .0356 .0043 178 .0408 .0364 .0044 179 .0429 .0383 .0046 0 180 .0440 .0393 .0047 181 .0467 .0402 .0064 182 .0482 .0402 .0079 183 .0516 .0402 .0114 184 .0537 .0402 .0134 185 .0506 .0402 .0104 186 .0535 .0402 .0133 187 .0607 .0402 • .0204 188 .0655 .0402 .0253 189 .0816 .0402 .0413 190 .0918 .0402 .0516 191 .1301 .0402 .0898 192 .1778 .0402 .1376 NI 193 .5352 .0402 .4950 194 1065 .0402 .0662 ii 195 .0713 .0402 .0311 196 .0568 .0402 .0165 197 .0559 .0402 .0157 1g8 .0498 .0402 .0096 199 .0453 .0402 .0050 200 .0418 .0373 .0045 201 .0390 .0348 .0042 202 .0366 .0327 .0039 203 .0346 .0309 .0037 204 .0329 .0294 .0035 205 .0442 .0394 .0047 206 .0430 .0384 .0046 207 .0419 .0374 .0045 P: \15946- BASELINE \hydrology \unithyd\BASELINE -UNIT HYDRO.txt 27 208 .0409 .0365 .0044 209 .0400 .0357 .0043 210 .0391 .0350 .0042 211 .0384 .0343 .0041 et 212 .0377 .0336 .0040 213 .0370 .0330 .0040 214 .0364 .0325 .0039 OM 215 .0358 .0320 .0038 216 .0352 .0315 .0038 tit 217 .0343 .0306 .0037 218 .0338 .0301 .0036 219 .0333 .0297 .0036 220 .0328 .0293 .0035 221 .0324 .0289 .0035 222 .0320 .0286 .0034 223 .0316 .0282 .0034 224 .0313 .0279 .0033 225 .0309 .0276 .0033 226 .0306 .0273 .0033 227 .0302 .0270 .0032 228 .0299 .0267 .0032 411 i 229 .0296 .0265 .0032 IN 230 .0293 .0262 .0031 231 .0291 .0260 .0031 232 .0288 .0257 .0031 233 .0285 .0255 .0031 iiii 234 .0253 .0030 235 .0280 .0250 .0030 236 .0278 .0248 .0030 237 .0276 .0246 .0030 238 .0274 .0244 .0029 In 239 .0271 .0242 .0029 240 .0269 .0240 .0029 241 .0267 .0239 .0029 242 .0265 .0237 .0028 243 .0263 .0235 .0028 244 .0262 .0234 .0028 245 .0260 .0232 .0028 246 .0258 .0230 .0028 0 247 .0256 .0229 .0027 248 .0255 .0227 .0027 249 .0253 .0226 .0027 250 .0251 .0224 .0027 fi 251 .0250 .0223 .0027 6 252 .0248 .0222 .0027 253 .0247 .0220 .0026 254 .0245 .0219 .0026 255 .0244 .0218 .0026 256 .0242 .0216 .0026 257 .0241 .0215 .0026 258 .0240 .0214 .0026 259 .0238 .0213 .0026 260 .0237 .0212 .0025 261 .0236 .0231 .0025 262 .0235 .0210 .0025 263 .0233 .0208 .0025 264 .0232 .0207 .0025 265 .0231 .0206 .0025 266 .0230 .0205 .0025 267 .0229 .0204 .0024 268 .0228 .0203 .0024 269 .0227 .0202 .0024 270 .0226 .0201 .0024 271 .0225 .0201 .0024 272 .0224 .0200 .0024 273 .0223 .0199 .0024 274 .0222 .0198 .0024 275 .0221 .0197 .0024 276 .0220 .0196 .0023 277 .0219 .0195 .0023 0 278 .0218 .0194 .0023 O P: \15946- BASELINE \hydrology \unithyd\BASELINE -UNIT HYDRO.txt 28 279 .0217 .0194 .0023 280 .0216 .0193 .0023 281 .0215 .0192 .0023 282 .0214 .0191 .0023 In 283 .0213 .0190 .0023 284 .0212 .0190 .0023 285 .0212 .0189 .0023 Ph 286 .0211 .0188 .0023 287 .0210 .0188 .0022 Iv 288 .0209 .0187 .0022 TOTAL SOIL -LOSS VOLUME (ACRE-FEET) = 619.3818 1 TOTAL STORM RUNOFF VOLUME(ACRE -FEET) = 154.6984 IMP f No i i d MI 1 P: \15946- BASELINE\ hydrology \unithyd\BASELINE -UNIT HYDRO.txt 29 II r 16 I II II 2 4 - H O U R S T O R M R U N O F F H Y D R O G R A P H HYDROGRAPH IN FIVE- MINUTE INTERVALS(CFS) TIME(HRS) VOLUME(AF) Q(CFS) 0. 575.0 1150.0 1725.0 2300.0 II .083 .0035 .51 Q . .167 .0240 2.98 Q .250 .0785 7.91 Q . . . .333 .1789 14.58 Q . . . I .417 .3186 20.29 Q .500 .4812 23.60 Q .583 .6555 25.32 Q r .667 .8359 26.20 Q . . . .750 1.0187 26.54 Q . . . .833 1.2029 26.74 Q . . .917 1.3883 26.92 Q . . . 1.000 1.5746 27.06 Q . . . 1.083 1.7616 27.16 Q . . . 1.167 1.9491 27.22 Q . 1.250 2.1370 27.28 Q . . 1.333 2.3252 27.33 Q • 1.417 2.5138 27.39 Q . . . 1.500 2.7028 27.44 Q . . . I/ 1.583 2.8922 27.50 Q 1.667 3.0820 27.55 Q 1.750 3.2721 27.61 Q . . . 1.833 3.4627 27.67 Q . . . I 1.917 3.6536 27.72 Q 2.000 3.8449 27.78 Q 2.083 4.0367 27.84 Qv . . • 2.167 4.2288 27.90 QV . . 2.250 4.4214 27.96 QV . . • 2.333 4.6143 28.02 QV 2.417 4.8077 28.08 QV 2.500 5.0015 28.14 QV . . 2.583 5.1957 28.20 Qv . . . 2.667 5.3903 28.26 Qv . 2.750 5.5854 28.32 QV 2.833 5.7809 28.39 QV . . • 2.917 5.9768 28.45 QV . . • I 3.000 6.1732 28.51 Qv 3.083 6.3700 28.58 QV 3.167 6.5672 28.64 QV 3.250 6.7650 28.71 QV . . . 3.333 6.9631 28.77 Qv . . . II 3.417 7.1617 28.84 QV 3.500 7.3608 28.91 QV 3.583 7.5604 28.97 QV . . . 3.667 7.7604 29.04 Q V . . . I' 3.750 7.9609 29.11 Q V 3.833 8.1619 29.18 Q V 3.917 8.3633 29.25 Q V . 4.000 8.5652 29.32 Q v . . 4.083 8.7677 29.39 Q V . . . li 4.167 8.9706 29.47 Q V 4.250 9.1740 29.54 Q V 4.333 9.3780 29.61 Q V . . • 4.417 9.5824 29.69 Q V . . ® 4.500 4.583 9.7874 29.76 Q V 9.9929 29.84 Q V 4.667 10.1989 29.91 Q V . . 4.750 10.4055 29.99 Q V . . 4.833 10.6126 30.07 0 V . . . I/ 4.917 10.8202 30.15 Q V . . . I P:\ 15946- BASELINE \hydrology \unithyd\BASELINE -UNIT HYDRO.txt 30 5.000 11.0284 30.23 Q V . . . 5.083 11.2371 30.31 Q V . . . 5.167 11.4464 30.39 Q V . . 5.250 11.6562 30.47 Q V . 5.333 11.8666 30.55 Q V . . 5.417 12.0776 30.64 Q V . . 5.500 12.2892 30.72 Q V . 5.583 12.5013 30.81 Q V . 5.667 12.7141 30.89 Q V . . 5.750 12.9274 30.98 Q V . . . 5.833 13.1414 31.07 Q V . . . 5.917 13.3560 31.16 Q V . . . 6.000 13.5711 31.25 Q V . . . 6.083 13.7870 31.34 Q V . . . 6.167 14.0034 31.43 Q V . . 6.250 14.2205 31.52 Q V . . 6.333 14.4382 31.62 Q V . . . 6.417 14.6566 31.71 Q V . . . 6.500 14.8757 31.81 Q V . . 6.583 15.0954 31.90 Q V . 6.667 15.3158 32.00 Q V . . . 6.750 15.5369 32.10 Q V . . 6.833 15.7587 32.20 Q V . . . 6.917 15.9812 32.30 Q V . . . 7.000 16.2044 32.41 Q V . . . 7.083 16.4283 32.51 Q V . . 7.167 16.6529 32.62 Q V . . . 7.250 16.8783 32.72 Q V . . . 7.333 17.1044 32.83 Q V . . 7.417 17.3313 32.94 Q V . . . 7.500 17.5589 33.05 Q V . . . 7.583 17.7874 33.17 Q V . . 7.667 18.0166 33.28 Q V . . . 7.750 18.2466 33.40 Q V . . . 7.833 18.4774 33.51 Q V . . . 7.917 18.7090 33.63 Q V . . . 8.000 18.9415 33.75 Q V . . . 8.083 19.1748 33.87 Q V . . . 8.167 19.4089 34.00 Q V . . . 8.250 19.6439 34.12 Q V . 8.333 19.8798 34.25 Q V . . . 8.417 20.1166 34.38 Q V . . 8.500 20.3542 34.51 Q V . . . 8.583 20.5928 34.64 Q V . . 8.667 20.8323 34.78 Q V . . . 8.750 21.0728 34.91 Q V . . 8.833 21.3142 35.05 Q V . . . 8.917 21.5566 35.19 Q V . . . 9.000 21.7999 35.34 Q V . . . 9.083 22.0443 35.48 Q V . . . 9.167 22.2897 35.63 Q V . . . 9.250 22.5361 35.78 Q V . . . 9.333 22.7835 35.93 Q V . . . 9.417 23.0320 36.08 Q V . . . 9.500 23.2816 36.24 Q V . . . 9.583 23.5323 36.40 Q V . . 9.667 23.7842 36.56 Q V . . . 9.750 24.0371 36.73 Q V . . . 9.833 24.2912 36.90 Q V . . . 9.917 24.5465 37.07 Q V . . . 10.000 24.8030 37.24 Q V . . . 10.083 25.0607 37.42 Q V . . . 10.167 25.3197 37.60 Q V . . . 10.250 25.5799 37.78 Q V . . . 10.333 25.8414 37.97 Q V . . . 10.417 26.1043 38.16 Q V . . . 10.500 26.3684 38.36 Q V . . . 10.583 26.6340 38.56 Q V . . . 10.667 26.9009 38.76 Q V . . . 10.750 27.1693 38.96 Q V . . . 10.833 27.4391 39.18 Q V . . , I P: \15946- BASELINE\ hydrology \unithyd\BASELINE -UNIT HYDRO.txt 31 10.917 27.7103 39.39 Q V . . . 11.000 27.9831 39.61 Q V . . . 11.083 28.2575 39.83 Q V . . . 11.167 28.5334 40.06 Q V . 11.250 28.8109 40.30 Q V . 11.333 29.0900 40.54 Q V . 11.417 29.3709 40.78 Q V . . . 11.500 29.6535 41.03 Q V . . . ii 11.583 29.9378 41.29 Q v . 11.667 30.2240 41.55 Q V . 11.750 30.5120 41.82 Q V . . . 11.833 30.8019 42.09 Q V . . . 11.917 31.0937 42.38 Q V . . . 12.000 31.3876 42.67 Q V . . 12.083 31.6836 42.97 Q V . . . 12.167 31.9820 43.34 Q V . . . 12.250 32.2834 43.75 Q V . IN 0 12.333 32.5879 44.22 Q V 12.417 32.8956 44.68 Q V . 12.500 33.2061 45.09 Q V . . . 12.583 33.5193 45.47 Q V . . . 12.667 33.8350 45.85 Q V . . . lif 12.750 34.1534 46.22 Q V . • 12.833 34.4744 46.61 Q V . 12.917 34.7981 47.01 Q V . . 13.000 35.1247 47.42 Q V. . . 13.083 35.4541 47.84 Q V. 13.167 35.7866 48.27 Q V. . 13.250 36.1222 48.72 Q V. . . 13.333 36.4610 49.19 Q V. . • 13.417 36.8031 49.68 Q V. ii 13.500 37.1487 50.19 Q V. 13.583 37.4980 50.71 Q V. . . 13.667 37.8510 51.26 Q V. . • 13.750 38.2079 51.83 Q V. . 13.833 38.5690 52.43 Q V. 13.917 38.9344 53.05 Q V . 14.000 39.3042 53.70 Q V . 14.083 39.6767 54.08 Q V . • OR 14.167 40.0438 53.30 Q V . • it 14.250 40.3955 51.07 Q V . 14.333 40.7250 47.85 Q V . . 14.417 41.0369 45.29 Q V . . 14.500 41.3418 44.27 Q V . 14.583 41.6470 44.31 Q. V . 14.667 41.9565 44.95 Q V . 14.750 42.2733 46.00 Q V . 14.833 42.5987 47.25 Q .V . . 14.917 42.9336 48.63 Q .V . • 15.000 43.2792 50.18 Q .V . 15.083 43.6390 52.24 Q .V . . 15.167 44.0252 56.08 Q .V . 15.250 44.4632 63.59 .Q .V . 15.333 44.9943 77.12 .Q .V 15.417 45.6524 95.56 .Q .V 15.500 46.4386 114.16 .Q . V . . 15.583 47.3389 130.71 . Q . V . . 15.667 48.3658 149.11 . Q . V 15.750 49.6137 181.20 . Q . V . 15.833 51.2626 239.41 . Q . V . . 15.917 53.5414 330.89 . Q . V . 16.000 56.8414 479.16 Q • V 16.083 62.2307 782.52 . • Q V . 16.167 71.5783 1357.28 • V Q 16.250 84.8805 1931.48 .V 0 L• G i 2 Z .5 Cry 16.333 100.0519 2202.89 . . V 16.417 112.7549 1844.48 . . V. Q 0 II 16.500 120.9679 1192.52 . Q .V • 16.583 125.8784 713.01 . . Q . • V 16.667 128.8055 425.01 . Q • . V 16.750 130.4579 239.92 . Q . . V • P: \15946- BASELINE\ hydrology\ unithyd\BASELINE -UNIT HYDRO.txt 32 II 16.833 131.5363 156.59 . Q . . . v . 16.917 132.3385 116.48 . Q . . . V . 17.000 132.9471 88.37 .Q . . . V . 17.083 133.4113 67.41 .Q . . V 17.167 133.7928 55.39 Q . ▪ V 17.250 134.1433 50.88 Q . . . V . 17.333 134.4992 51.69 Q . . . V . 17.417 134.8626 52.76 Q . . . V . C 17.500 135.2268 52.89. Q V 17.583 135.5875 52.37 Q V 17.667 135.9427 51.58 Q . . . V . 17.750 136.2913 50.61 Q . . . V . I: 17.833 136.6332 49.65 Q . . V . 17.917 136.9690 48.75 Q . • V 18.000 137.2989 47.90 Q . V . 18.083 137.6231 47.08 Q . . . V 18.167 137.9416 46.25 Q . . . V . 18.250 138.2543 45.40 Q . . . V . 18.333 138.5612 44.56 Q . . . V . 18.417 138.8627 43.78 Q . . . V . 18.500 139.1595 43.09 Q . . . V . 18.583 139.4519 42.46 Q . V . 18.667 139.7403 41.88 Q . . V 18.750 140.0250 41.34 Q • V . 18.833 140.3062 40.83 Q . . . V . lik 18.917 140.5840 40.34 Q . . . V . 19.000 140.8585 39.87 Q . V . 19.083 141.1300 39.42 Q . V 19.167 141.3986 38.99 Q . . . V . 19.250 141.6643 38.58 Q . . . V . 19.333 141.9273 38.19 Q . . . V . 19.417 142.1877 37.81 Q . . . V • 19.500 142.4456 37.44 Q . . . V . 19.583 142.7010 37.09 Q . . . V . 19.667 142.9541 36.75 Q . . . V • 19.750 143.2050 36.42 Q . . . V . 19.833 143.4536 36.10 Q . . . V . 19.917 143.7002 35.80 Q . . V . 20.000 143.9446 35.50 Q . . . V . 20.083 144.1871 35.21 Q . . . V . iiiid IN 20.167 144.4277 34.93 Q . . . V . 20.250 144.6664 34.66 Q . . . V . 20.333 144.9033 34.39 Q . . . V . 20.417 145.1384 34.14 Q . V . 20.500 145.3717 33.89 Q • V • 20.583 145.6035 33.64 Q ▪ V • 20.667 145.8336 33.41 Q . . . V 20.750 146.0621 33.18 Q . . V . 20.833 146.2890 32.95 Q . V . 20.917 146.5145 32.74 Q . V 21.000 146.7384 32.52 Q . . . V • 21.083 146.9610 32.31 Q . . . V . 21.167 147.1821 32.11 Q . V . 21.250 147.4019 31.91 Q . . ▪ V 21.333 147.6204 31.72 Q . V . 21.417 147.8375 31.53 Q . . . V . 21.500 148.0534 31.34 Q . . . V . 21.583 148.2680 31.16 Q . . . V . 21.667 148.4814 30.99 0 . . V . 21.750 148.6936 30.81 Q . . . V • 21.833 148.9046 30.64 Q . . . V . 21.917 149.1145 30.48 Q . V • 22.000 149.3233 30.31 Q . . V . 22.083 149.5309 30.15 Q . • V 22.167 149.7375 30.00 Q . . . V 22.250 149.9431 29.84 Q . . V 22.333 150.1476 29.69 Q . . . V li 22.417 150.3510 29.54 Q . . . V . 22.500 150.5535 29.40 Q V • 22.583 150.7550 29.26 Q . . V . 22.667 150.9555 29.12 Q . . . V. P: \15946- BASELINE\ hydrology \unithyd\BASELINE -UNIT HYDRO.txt 33 1 22.750 151.1551 28.98 Q . . . V. 22.833 151.3538 28.85 Q . . . V. 22.917 151.5515 28.71 Q . . . V. 23.000 151.7484 28.58 Q . V. 23.083 151.9444 28.45 Q V. 23.166 152.1395 28.33 Q V. 23.250 152.3337 28.20 Q . . . V. 23.333 152.5271 28.08 Q . . . V. • 23.416 152.7197 27.96 Q . . . V. 23.500 152.9115 27.84 Q . . . V. , 23.583 153.1024 27.73 Q . . . V. 23.666 153.2926 27.61 Q . . . V. II 23.750 153.4820 27.50 Q . . . V. 23.833 153.6707 27.39 Q . . . V. 23.916 153.8586 27.28 Q . . . V. 24.000 154.0457 27.17 Q . . . V. 24.083 154.2286 26.56 Q . . . V. 24.166 154.3938 23.99 Q . . . V. 24.250 154.5246 18.98 Q . . . V. 24.333 154.6090 12.26 Q . . . V. 24.416 154.6540 6.54 Q . . . V. 24.500 154.6763 3.24 Q . . . V. 24.583 154.6870 1.56 Q . . . V. 24.666 154.6920 .72 Q . . . V. 24.750 154.6949 .43 Q . . V. 24.833 154.6968 .27 Q . V. 24.916 154.6978 .15 Q V• 25.000 154.6982 .06 Q V. 25.083 154.6983 .01 Q . . . V. ;:5 END OF FLOOD ROUTING ANALYSIS l } TN OM to WM 1 P: \15946- BASELINE\ hydrology \unithyd\BASELINE -UNIT HYDRO.txt 34 1 BOYLE ENGINEERING HYDROLOGY REPORT FOR CITRUS AVENUE STORM DRAIN 1 " ; i c 1 1 1 1 1 I BASELINE & SIERRA AVENUES STORM DRAIN HYDROLOGY STUDY XIV BERRYMAN & HENIGAR, INC. JN: 15946.00; JN 15945.00 1 CITRUS AVENUE WIDENING JN OC -F60- 400 -00 TASK 204 • HYDROLOGY STUDY FOR CITY OF FONTANA • BY BOYLE ENGINEERING CORPORATION 1131 West Sixth Street Ontario, CA 91762 (909) 933 -5225 April 10, 2002 The 155.3 -acres project is located in the City of Fontana along Citrus Avenue. The site is bounded by 210 freeway on the north, Baseline Avenue on the south, 180 feet west of Citrus Avenue, and Oleander Avenue on the east. For the area south of Walnut Street, the east boundary is approximately 350 feet ' I west of Oleander Avenue. The topography of the project is such that it slopes in a southwesterly direction. The area to the north is tributary to South Highland Avenue and drains westerly to a sump located at the intersection of Citrus Avenue and South Highland Avenue. For this reason said area was computed for a 100 year storm from which the future sump catch basins will be designed from. The remainder of the project was modeled for a 25 and 100 -year storm along the pipe southerly along Citrus Avenue to Baseline Avenue. This is reflected in the Main Hydrology Map (see back insert). E. The other map in the back insert is the Catch Basin Hydrology Map. This map is calculated for the 25 p Y gY p P year storm and will provide criteria for sizing the flow -by catch basins. The total 25 and 100-year storm discharge at Citrus Avenue and Baseline Avenue is 393 cfs and 289 cfs, Y g respectively. C Os P c Li a t iii La ri se ii 1 1 • 3.5 3.5 C 3 3 • u) W 2.5 ■ 2.5 X c.) 1 . Z Z i 2 ' 2 i 1- a. w a E 4 C J u. 1.5 - ..,.• .-!- '.- 1.5 I a- cr I ,I..."7 ..„..........°* r. ,------ -- - . 1 .._ ,--- .....,„.. /...°- ••• 0.5 ,_ I . 0 0 • 2 5 10 25 50 100 RETURN PERIOD IN YEARS NOTE! I. FOR INTERMEDIATE RETURN PERIODS PLOT 10—YEAR A140 100—YEAR ONE HOUR VALUES FROM MAPS, THEN CONNECT POINTS AND READ VALUE FOR DESIRED RETURN PERIOD. FOR EXAMPLE GIVEN 10-YEAR ONE HOUR a 0.95" AND 100-YEAR CNE HOUR s 1.60" • 25-YEAR ONE HOUR • I.16". / - REFERENCE INOA A ATLAS 2, VOLUME 7CC — C A L.,I973 RAINFALL DEPTH VERSUS SAN BERNARDINO COUNTY RETURN PERIOD FOR 1 HYDROLOGY MANUAL PARTIAL DURATION SERIES • D— 7 FIGURE 0-2 1 . • = -- _ _ 4 - = _� : ._ ?: .:_ -- • _ :_ 4 _ . -_ _ _ im 9.0 b� =mac MEMEM __C I AN fiN 8.0 nata� == Maigig _' � . ffi M IMO MENEM gr -- - 1 E- MEll :--F' i 1 : -: RN L::_ • • 1,.. .,.-.... El '; .:47:-.- • ,-. - MI _M MEEMENNEIVEN 3.0 � Y. N - rw = Era mow - w �wa NM�N� amoms Cr E ••••■ =••••■■••■■••■■•••....■....-......■ tom = =,. Y� = ::===- == == ==ems. = _- � c 2 2.0 Z = -r... Mix =::�= :s.- =- = =�:: ..... _ =.r•= c �/ v wtl. M""/= low mums ww\. wswNw ..1.N./wtl.wi..awlwtl ••p- -M = =w� so. wwmem.v..rw..a...l.w.�.:=M.Mww. Vt a_____ .Ni�1a 1n�\M� Y1,M..iw..1.wM.� iww.Niw �. + ���N a iN ° i nin�N llmllu.� :ww•MI MM11.M.MMMM..wwI M1M N .Mw1MMM.I.MI�111ONMMMM.MI...MM. wtlwwww //wAN.w.NN.IM Iw0.1..W NN..Yalloamwm.S w•MOMS .111••• a.\. Pau W y.w •111/wwwN w....M...MI MIUMIIIIIIIIIISIMINIMINIIIIMMIMMEISIIIIIM MIIIMBIN I 1w.1MIwmlN MOM, Iw.In M. MM.wM111 = NM N.NwM.tlwNr ONIIMI..IIIMUM..NI M11.11111111 MNt. IM1N1wff ..fN.Y..NWUIt1NINN....wtlrw.Y MIMOSA p MOM M... 1/11111110M NMN EMIR MU I.IM1..11MMwN w//MM.......w /Iw1/..w1 Mil N1 N/.. N.w\NI MSS ORI .. ..■I NO NI ONO ' ` �M..M.M. OVIrlIwe/.M...M IMO NMI MtlwwwNN•mMMMM.NwwIN1t11. N.ttlNNiN IMO1.Mw.Mn.tlW1 MB V . MMfM1nN1Nw/ Iw1��. M. MN wNO1 MN ww ww H M /MMAOtIM R �II MOH N .M.MM NH INt.I Z III IIIMUMInm.IIII/ /uuIIIMU MUIUMlllM MMususim in11n1 .NMMO/uwlMnnMCAlwnnMMw.NNNU1 E _ ,6811 N1/ n01 'MMwIw/NIwMMulMnu1.un1N_w/wu_ MITI u,UIUUNRnKU1 I1UU.MMO.1.m_M mos. /MO NOM Mug MU mnl ==li MMMWM/HUS umnre ntnamnnlan1s assumaNmMNUnnnOYw1® MnIMIIMMN IIIP1.71Bm IIw'Nt v MMIMMIINIINNNIMNIPMIHIMIIUIwMNMIM11U11Y MIIIIIIMNIMMIIMUHIUlaONIMI OOOOOM USHI M MNItUM amsaamtl 1/MIMEIMIRtIMUM INM1U11MW111t1tM11MMIMMILI MMMMt11tttt ■IN1 1MIIMUI IMI I /1111IIIHUIMMIIIMOMMIitOIMMMUI 1111 )'- IMUMMIItlttltMnnn1n11n1u1pIp11MMNIMM1n11 (11nmMMMmass umusuM11aMaumnunmintu 11MIHIOInlnllwawmma H 1. MMI mmuni 1 W11y MMM� M MMramuu tt ®IIn1111uMaalumnolominum aEmo lnitlmosmu r N M - _ = - ■ 0.8 = -- -.. �"" = = - -- - -° = _...... = -_ � ' :' 1- z 0 7 ' ...M ..N. M ....,.. MM. M..M- ..N............ - .M .::: .............. •�••� ==MMM /�w.MM.:. s NW7aW..MMIm .. N•n .M.1NI...O. NIt11. t .Mi1 tIM IMMI. MMM. MM .1....w..1tlM.M1M.N/M.NM111.YMN1 •Y•.qw r 1.M1.w1wMMM...N.wM..M /11••1IMM. . M.M. M....MMMMNM.N.111.w. 1. Y.MIM.MUM .. N1. ft.MM.I..11w =we J *MEW= 1f.M NN ww1.• N.....w MAMMAS' MM NNI..... N UMINMIW11 MYN....w N1MMwNN..N N/ 0.6 tM.M.MMM1NIwMN.O. =! �MMME IMM...M.M.MNY w� /MMMNNNr.MM.MIY.MMYMIML _ - -_- MP OMwMI MM. In •MO � Q 0 = '-_ �>� =. � - ::: =r= =�L -1. :1 = -: _ __. . ._._- mss - ___ . _ -z _ ••∎ : w --- - - -=-* i= - -=::•.:•: _:_:..._ /Magi Cr ... .... INN M.M.M=� .. ..... \.....w... ow ma " 3� mM �w� " r ..r. �.. MM " M1 m.. M S °' .....w .M� ..... M �1 1.�.w�� OMM.MIMMM.�.1Y.M�.�= : =.• MMMMM.... 11.. .MN.....11.i 1....1MMIMQw.N/.w.M MM. M trlea l.lw; M 1" tl ..A • 11M.∎MMMWN 1 n ,1:wM1MMUww Mwmn..MYO.1 1ww..Y..1\..11M.wU1 .M11.MMM1www M N O= INV W . OI IM ZA„.1 \.M►•n0\•MM..w /MNN. MW M n1M.un.N...wuum Mln MM/Yw.w OMMMM.YN.MnMM�� \.N .�. wr•IIM1� MM.. /M /N. /..O nIMM111IUMM.MMMNtt.tl. 11M MM1 1.tl WM� •ItM• /.�' \. ..► ..O �.M` M /MN MNI.MMMA.Yn...1.MMMM.N.fw uu{MI..w.b.YM.. __ •_ � : �_ �.tMw - w.NM1� � [ ..c11 .y -.I r. ' =A g""...... S . Y ••.�11.ww 1...Y• = alammM . N.w wMM M..ww = V w 1 f�M/. S �1t' T1A `Y.. = .4 Iow � .o.. v- _ NNE qr - MwwwMwwwwwMMl.��1.���Mw/. NN. =um. w= M�MwMNNMtMN 1 tin -no. \N . ■N �w � NM.N�OMNMMw... WWII � •1101 N 11 �� 11 �� .NYI..Mw �� I . . 1���.� I1I/II .,..t i n 11 M...O1....1M1INO . MIN. MM I IN II =NO I I wIM sl.w �IMI1IM tl I F ttp =, h wmaiii=M • / • all :: IIMO NIwM ./.MO I�M1MM /I IMIINI + MM.= 11111111M11 t INWI MtM IMII WA mix 111�1. �spl iiiinse nMww�wMMY 1 aramm Y nM terniu .wtl umessameari �w mmeil � M o ww` \ 11 1 wU 1 M 1 It 10 OtMMInMI/IIY tMlr> ntMw Mwttd1MW11IIrtOwfJnnmlNlnMww .ftNMMU 1NO w �p Nll7.- '.MM1 U.MUfI /I I / I 1l � MI B Uf11 Y N $U I II M all � mansuu 1 w um nno U u1M H M uuua % 1M11MM1 lIaII1iH �/ 11 WfUA ii 613 EMI mu mu 0.1 IIIIMUISIIIIMIWIllIMISSISIIIIIIIIIIININISIIME11111111111111MUMMIIIIIMMUMNIMOUIMIUMMI UUMaw. - ? tMIMMHU1 MU 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 STORM DURATION (MINUTES) I L D ESIGN STORM FREQUENCY= -) YEARS •='n`'11 ONE HOUR POINT RAINFALL= 1 -a INCHES : Gx ' '/ O - O ,46 1 LOG -LOG SLOPE= ° G `r"i PROJECT LOCATION= e L) Ave a I ._ SAN BERNARDINO COUNTY INTENSITY - DURATION _. CURVES HYDROLOGY MANUAL CALCULATION SHEET E D - FIGURE 0-3 8.0 I MENE -0'__ 41 "EMINIM a=i = 5:2 7.0 giummemitmonimomiso==malli w{ow = / i.�i sty C.`�= �1111•4 wa•. = ==. 1..w..lwwwwwww�w -•wiw .MIMI Ml w t � rr•/ww� �= IMIII INIM • mom 1 =MI: . ._L - :_ii: Lo-_-_,:f.MEMINEM:r :I: 7.4,! --:1_ ir.:: 5.0 U,...- 4.0 MEr-4.-----..___MMMINffignilireatiEMENNEMEMEMENIE EWES 'a 3.0 =- _ f : ..� f __•-_" . -�, - =g � . c ' ,It i � :. .i.".."........=:".........== � .= . == �_ 2 2.0 = = _, e „ =s= : -s.��.== - . �. �.r •� . d wOMwtl =f 0.1 1.. M www.w- w.w.....wl...• � ww �Iw .w.EIMOOM .w•l : = N i. N . /N �.w.w_w.•... •w• w ww.wlw.Ow••.••ww- ww. Mee wwwwwY.• WN..w•w•�wA••wl•■..H•...A w......w N w.NNINIwINIOmaw NNMNIMI IM∎I MINIMI SIB • .•. w.ewNeeYe...t...N/ww..wt1.. N.NNN1 w•w..•11w.7 11•...N. •..ww.w w.wr W.1.../.ww..vIIIIMO •. w.N.••ww..•w..•www- ww.....MO.O.w M•w.wO.. 1 .IMtN.N..ww•Yw.w•eCT1.N.e •11.•••••••••••• LLJ ,.,,...o mo iumm os. utNw• .MwlwwwawewuNOUY.•..•.•ww•wlwwa •..ws•.wuwww•.^ w..uum w•w ....................................m........ w MOM ..Nwww1..M•w.IMINIu VIII• INUMINI•151 s. - . a.um w.w w-ww.paf wM• w• f.... wt f. wt.. A••. Iw.. r. l/ t. Y... nlw. w.. wwMIN Yll....tn..ltw..w.w.w..1wHMt N.Inw.wA.wOw../..tI...Mww•..w• . ♦ MM .OI. M. / /M /// MISNIM IOO A BM ..ttt tlttiw NN ■■/N■.tt ss tltwwwlM N .IY w ll , NAlw.. ...•1.m S, mU V ROI t1./111M //H Ytt/tA1t1..tM. / ///tBtttwUYtO MwN \ IN ma /./MRllw tN..MYt.1.. 1 01 / W ftt/itt t .tN.ntl.1.O.n..1 Nf.. /..N .W.wgl Z MU MN /f/IItI0M0UUIIMIIIMMII IU / wMYtYYtMNfORI p/ NMtt /wYtY1M.l00.Mlf//tt. /twwt.lNY1 MIS MN onni moon 1ormo t1/ ///munesnn NM ■// N/ / /mIIrnMY11MI01AdI....IMt/tttm. tN111.Mi//w t /twwtYWY v ItteltArltttl/ N�/ OtuMI YAI Y�IIIN/ NMINUtAYMYNY���nl� / /A/ttw /RUtttttfltYNNlUwtt/rfttAwutYMY amesu 1imusinaus mu nintII ismiM11 A /NIIU11MINAMM\IIIIIIIIIMII IMMUSU /MOH11H11 MMMM / umammo imam mammas W pm )- NnIMMIMM4I11MIUU OMINUMM1� u IIUMM nNlYYtlIp �M IIII I MHNIIIIW MI HMIMIMMOHOHIIIIIIIIMMUMMMOHNOIInnuuuntint1 IRMMMIMIMO onennmumuseinumsannim al RIOMMMLMMHnII IOMMUMMIlitlilniaSMIM1 MINMIIIIII 1- 1.0 p n�u�ummouI m oins � ir um MMItMMMMMnlumuumutmin pno MIMMnIMIMMIMMIIU1 Z 0 . 9 - - � =_ === ... = -1 = - = ==.---...............=.----a - - -s"s� - rte. �•- -- - - - -- r - .• =-. _�� == = --::��. -- -cam-. i-' 0.8 ==-====================.' -.�• - = - -- :a =� Z ....... � � ° C:: � =Yew • ::111•.: �wi •- - .w,... e. wMeMl. awl•.•tw•1••.w•w.w b•.ww•wlY tn.. .. w..www - � w.Nw•we1 w.••1...ltw ••w t 1. Y. a •.•w..••...w1.wl..w. w w..• .wN..M 1111011/1111111 11 N.M.•..w• .Y.w.w.w..MNI .• w.. .1.w• M•101YN...11.• ..0 J . w..Y1ow MM wMM..rwr MY.Y1.. om•.N. w... e... .w..•INOM wfYw•.M.WtI w wtlw Wwww1...W.N•• Mw 0 . 6 LM. wa./w..•.ww...o. wa ...N11..Yw�..wwww�O...uwM.u•wn. amawuu.ulN•w w•wwaeo•....1•••••••w•w.••w•w -=== �7 = ==-- - - - -_ _____=======,-==-. � - . sM � -- 1•i .---- - - __- - -___ _ --z-- - - --_s 4 Is- 0.5.= _ _ =a �c== .. =--=--- � _.- . - -�s =_ Q Erg. _ -" = - - :_ - -- -- -_-- _=:: M Sr.••E- rr...: CC 0.4 MMM = = ==: === � '�'...' ..:r..r� =° =w= = 00 = - - -:--r. •::.. = w�.w.w••..•.�ww•wo.•.w•�•-.1 w.- wwww. ee•w•waww w.•.•w...ww-.N...N..w = . BTLIII a r.••1•w•.••ee N.•.rs •1•n.ww• ww..wweww.... .: pwwwl.•••... NNw •we eeglw•.••.••.•w..•ww.w•e .wwwrww wt. wwl. Yl w•. ww.fww�•`•w•...'o.w•_•..11\•w�•Y i... Mw.. wl wwlMON..1.N•w.wm••w.mu•IQI.Nw•w f .u1•ww wMMw.wa..etw.ow11•1 ••N v � N••.1•wl Iww lw wl.• wlYw1•.• N1 1w••ww•••e.lwe.n•w1.1•Nww..••1. I 0 .3 .. -- o wwr sr iA •ns� •ew. - w••u . w.• rwwn. wo• wwww.wnll.o..+w.a...w•w = =S- T- P -Tt��- =S -T1 . 71 � S - Z .- = ['���__ �� =EsC ± 3� - may ∎T -__= ^ - - - - �� � = Z= ". == =.. .-.ice == -� _ ■. �-» = : :a te : = =1 =_::=s - ate ...,,..,,..,....:=............=....;.... . ' = i n s _ =� . ... -. ..•:: = r� w.www.i•i.==ww - wL• �wl ! � � =ew-- us•�.- � ei . . � � • i.v w �� _ ==== = .�•. 1�= 1w.w. -w1rw= ••j�jypli.� �iw. ;■.�iN i�r.. g W. mv.= � •= �1•t wl. •w. .wwwwl. w MI lilwl�.wwpww.M S=111 7Yrr.'y.voN.= MAI wwM•w1.�_M - . w�.�. .w ...t.w•ww. w ��. w��11 .w • wwwl.�wwtwwwwwwwwtw.ts.tlw n '7 A 1M. �Mq. ••.N11111 l IMMO O .1 w � :�=� w. wOt /= ; =,w=i 1�.1� ww.•w./ MR mum M U O � Rt tIM1O1/ OINII � t11 .111117C ww■ ■o•. Mt.C.t ® #11� � z∎Nre I.w.11/ It/tt I A 1 1 M t1 v � p . /u•m wltw .lm MIMMM��wtrmOtY1�� /II�mIIMUItMMIIIMOOHm/fW W w � 1 1 Y M 1 W � � Y S� H1tAr wwl. �Il 11• H1t111/ . NQ/111•11111u / •llng Trion t 1 � � nmuon m. 1 1 11 A M n \� i M% IMIIIMtMHQIII(IIfl u ..:-- .mom: m I MINI N ill 0.1 MWMMIM annumnan MIMarIMMtlIMAYI II.u1t1I1M10 MMIIMN/ZMNMMnuanin t101 In I non.... -.///t non soul 2 3 4 5 6 T 8 9 10 20 30 40 50 60 70 80 90 I STORM DURATION (MINUTES) DESIGN STORM FREQUENCY= JO° ,YEARS ` 5Mvfl. ONE HOUR POINT RAINFALL= 1l4 INCHES 7• x VGp - ,,,,( LOG -LOG SLOPE _ r''k A PROJECT LOCATION = LAI • p o?,�a X ( = I. t �j SAN BERNARDINO COUNTY INTENSITY - DURATION _ CURVES HYDROLOGY MANUAL CALCULATION SHEET D - FIGURE D- 3 I r , . ,J a �/ rl 1 /.. Ar�. �'I i� r �'t \� �. :�9� r r � ;r r i 7(� / "• yk�l' i'b,, /.I I'j!� II ) ` I ! "i ,� ... '�, , I .•! I .l II "yll wr, ! ' I h -- . —_LA.. __._._...__ .� .,�. r I „> f. t r, r '. i . I� , '� .It ' 1 :}I ` I I I � I I IN" •II' j r I I r � ,1 ir.i J a � ;(� J' � � , �' I� ' LI ,. I, ,,, I. -1 ��:� I .f !' Y,I' • Ifi 1 II i� - !I, '! I l l' ' I I '�14 r �, � 1 ; :�;' S� i k r ...1r i,t�' \.�' � � � r � ' I„ ``'. I „r . ` t� ' � �I .. �t r . #� IA ' � .t •�I�f1111k� 61f I:� V�jb't- `i j � .. ryk p 1� '' �• t i�J I _ r . �� � : % /' ' `'' ▪ } � ! r' 'I l�' ��'.�"��', '� � I I „<7 ! I }..,r y��1 1. I . ,i, ' j�� � ; �'•: ' . s I : •r Q `” J �� /, �� i C ? �I ` �� t� t 1 f , ' 1 � a r tl / `1 �� • � .. '1 I I. I � 1 !V I ( i•� II II III ` f I': I J� IIL.�� III „I -I�,I l . ', II' � ���^ r . ` > J� ' �1' . t Ot 'S •Ifl, �\ I l � °! 1 r '�11P �,� II I r I � ,I t 11 �I {.� 11 Ij 1 ��nl ��� �� '� t`' a rt a� � 1. I ��1� +�'i'`�.1t��..m r� ,,�� \ 1 1 �T� - In , ' I g 'y � �,li I 1� II I �, It1 I,.C��I I I� I a ! i i ��'� I U 1�' /'� � c � 1. 1 � ,. b. r � ' '�, .. I i.. .. - n. 0 1� ..II J :'� ' ✓� � I .II 1 ilr I � �� y��llll.�, ` {. �/ ,t I I t,� � �, t ' 4, � • ` I`, �'.S *L ,� 1 t " r �`- I ` I � �S " r � r� .:I I i 4 � - i ,'{ Y 1 J�( r �nl, r " •;�1 .ti ! 2 , ! � ,�! ;� n � ^^ i , � I I it ... I .. i ',1111 11 .1,9111! h I j �il l I 1 'hl�,j 11 I � r I� ' II•'' 'I � � � � _ I: r /' �fl n' 1 ,r o �t� r � , � ' �/ � ,. ~) � I , ,. :: ') III � i r� I �iy.,�ry n1�1� �•��UI'I.'hfn I I (� ra (/� � w r S 11 h 't �'�I' :{•:• - 1 / ', � � � � 1 y r�l �1 'N.i,.'% ;hll:,ai," ,r." � I t I (� (,1:_ �.1.� � , 1 � i 1, t ,� l , .� � r . 11 , �r : I „ t � � Ir I" 7 , I � I } I I � i �i�.,,,; -�,W �.4 �� 1I�� �,,,t, `�. I '`. rr { - J . 1 � � .a I v ..ry r • �7 � ' v' , ..._ r� t � , r r F ' I �I ;i �` II' I'� 2 1" �' ; ^�,, , f I I II f / .l <� � d ,i .' � t, � �' `y a �!'tA 7 -.1.` � r t �a .. i r I I . � I!J r �± - I I V ^` •f `'�` II � Ir � ¢ f `� /,i 1 fr` ���N I. �� t :F'� { �' T t i ~t J�S, r ?1' i ' { t I t =..�lY I..�' ,�r I� � I. F r �.: � r�' )r�` f— i.. _ { J , � / ..r'Y � r' t T �a!`+ �it ; � ' � I ''n e . • / I L � � ji`a'' } ;. t _ � � 'o ."7, Ir, k ,�;J .r sr . }. { �LI ,1 fi .x l al - 1 �'. r I• ++ p . :� _ A ! . ..JL`. F'i r. �'h .{ I O • i a •I 5 ) S J t k f � Z a �� / -r � J 1. �' �S 1 \ f .. 1-�1 f � ` /'� ' .� : 1 r . e ) I :l,....._ Q 1 f , l �� - � � 1 � }', k Y, f t ` t- � � �. �. _. 1 'I. i y , Y 1 , pa ^ �. S ! /�,a I ,r i ( 1. ,� 1 � x .. \t ... +t t ,.I j � � I � I ' II �•^ ^ �.J �. lam. N i. •.pit , Ls.-,ti. -•. }�. r L'+ i3'P t �` 1 � u { ` r _ t y i . I t A • I •� r � Tf .: � ai . "�' � , ,, :5 � ��1 1 r r x, I�: r m . : � � m r.'_I. �.. I : J r � ; III �I;� ' ' '"' .6 ' U) I i� /►� IG , s {�I �rl /. i r ! �rM SFr r, � � r+ ')I c �( �7� m � �� )• , \' ' Y I r �.. ` � - tl l I ` I II 1 T,; '� , ,�t LA.. . /r P? � ° � '• IJ t c ) �l - ltii � �"o`�: � . VF K r � � i NH '• �.t � ;t l a't .' � , 1 " � I (�, Ir •.. .a::� " : j� ` �'{ Ill �II I '�` : r •� '� Q r'J) I `i. ` ' l � \i .� } Ir�rl i, ki t�:, 1T l n a { } J• t � (� cl� I r r ( S j ) )�.y 1'.. W 'r . t ,1.. !� +r�' / �; '� r� i' ; t1 ; ! J ° It 1 � I' *t r I,r 1 i i J; . �� � '(�e"''y; ,:=� .t. � I ' �� _- ;i,�J I � p. a i 'I I ' •� 1 '111 {�I 444 7 ./` I � 11!: I f �,,, •J a {11,, \ i d41 �I t � II� � 1' , � r I ' Y 111��� � �. - , y� . ( ( ���r. ' I. I ri. ,y �.. ��, �', M4 d4 �• .fi • ,�l, �I _i �x 7 ,� ,� ®, 1 .... �. 1lilr �� I'. � ' I I .��I � ' ��J` f I ., � , ,; J" 71 `i, I .( . t� ,1,` ..y y.. ! � ,.., L?IJ..1 9' ' �' � �" ' 7 •\ \ \A i I ,, � I r ITI�.�S `'.: r _ 1• / � , • � t ' r. •:L «.. - - ^.._. - - - ° -- y . I 4 i l " '1� 7 J 11 � Y Y � 'j ' .�. T �� � tr ! J ' 4 ! � `� t ` r m �. I,� I, r r rl. �p I i^ ' 1' � • .a i_ 4 r� A II ><'' 7 I f Y I- j .l + � > r J� ..si' - �t,r k+ ([i e � i� 1 l ' I . �..) I I .`� r � J � I�Y.. i G. rr II ` 3::� } V ,r''} �} J `'. \,�„�. i A'a`!'';�� rl Zl i�� � t I � � —S .. `� c � , j_ ,.. t.i t ,�� r 1- I:M:I ' I � I `I� " ,� u', r ✓1 S SI to `.�X y•d� '�; iR,.s'Ztp�'L�,� �,� Y �'.�,_� <.... rr .+ -. v f' L Ii I r ;'�I1��' ,}Jfu t e t �. ...; �1 ' }YF�a � �-h��'y��R,' - [f t �' L ��� �� t � �"r 2 .'i�t •G��t` !�.: I ,. KSJ. ... � ,,. i �( l � r 1 p ��1. , .ra , �. ' / "rv. ` J� y »•�: "'fELC Jr ^`/n+�.itr I_�La.' {. } }'��`'�s °I -i /-/'S � x ~� ! .1. ,i :7. r_r .. .L ,L �G��r n {r -I. f /� • . >t aJ�iS� '1 � ;� F tl �., ,�: 1 `\ '\ `.� \ �_, -.(.ty r � rt>�j. i•�f ,I' ..;#Y. """` n}5 •�,- :( : \ . • < Y ' � � ' +. F 7 �tf� � :� �. �',� �>��' 7 i _ � �„ �+ i t �t9� a r�'i; �`'rt � � s F - -Y 1 '� � r �• •t � j 1 �l j I� .... � �;t: ,�. in , • .j. �' �: ��.: T, �1 :t � � � �� 1 ��' �t�. � � V • i: �r. � � J , � � � i `� �� Ir�;:,, •:� ,J. �;, JJ.:. .?'S,` � q. r' �' �• t k�''^ x' .� .,c. v, 1. �,; L r�:. r � �f�'(I...ti` ii. ;�. � A >�,�;� s �` a � � •��,,, ��•�,� ��� �' . .�•: `' � �, .;; ., • 4 1 I , � _, « c i ; � a ,st k�� ,I � � I ",��i* �y ��•.. �e .. V.. � c' J ; p tS r• „-. �C. t i h rr .. � , , . � i � { ''•:� ,: rY . 1 .�i '. S� �i � I:1,. • fr ,', - t �' t' r It.„ `` ,P� � z ., zir � 1, j < ,FI .\ ..:; J T: r11._ }• :.t•��. >,.. I �:.jll t:�x.. :;'I J .t `� I �i�,;�. �3,�� j o ( `• a, � t �i 7 i'�� j�tl � u��`•k'l:�l ` t '��h) `! i� Q • \ I 1 �°''' I .r ����,,� -, 4 ,I ;;;T,� I�"''h '•_�.,� 'd _ � ��( t I t :,',� � . 18 `.?)� w' �',����� IY� , yy`.� r .�.J �_' ,''� I n�U)1�1. � r � .� � "''.1 II I II` r' � � ,, (•' 1 !� ��' } •� t � J j�_ � 't1. •a''� '.Y. '� ' � ' ' y �������''t r ''k � "� q'�� w � Y 1 ��'�i ��I�r r �1 ��. '�' " } L :1 Ni ,x..,.�r ..ij �..�._1 R�j �''k'�_�..t.,. \_Y� t'' .. -Iyr'r t �...1. ti.f.,1 ' r rl � � ��. t j � a3� '. t �s;�. � ( � . � �i�'�jl5ict r r �I �r t, �. ' �: 1 �' 1 1 ; . � , � � '�— .,•: =..r- , I ' - ,:r;.-.: fvF {1 \ 4 t { I ,( , t ,: x I i } ( i IlJ6Allhr , > f 1, �kF. l ,. S• J�� UA A � �� , a; �'ljr� �l���Flil r'T \� � �' I .�' �t / 1)t� • ( I � j��4�1 - �� ' i � ��� : r 4+ � �l. T /r't f+. t �Iw i' 4� 1� ., r t � (r.�i' :J 5 � � �: .' \ � I � .:.. •1 i 1 I . !f � I II!F�, . �I :I, I ': 1 , _ 1 rr 1l17 � �� , ��ye,� .l � �,1 !� �'�-� �./�''�`�' S�,FI� ) `.J"I Srf !� ' •Ti• 1 �,,,�a`v' ��` ,. , R � ! A7 u • .� _ rl ,�� ,1 ;'�7 , t ., � �t.1�;/� ,I .'x; �'1 � Y x4•r'"a.'\,..;;,,''r ��ti ;:�i: l I :i I � r , I�, � ,1 : ; -� . } i � � � • I!= "�. �c �� � .� . r ��� . :. y r � � }�,���� t ,�� � if j .. . '.I.J_..�•.........Y„r.�:11 , :) � y _ • I • ' I� � 6m� t t�r \.\ �. , t� +r') ��1� . � - .� 4�.J . , �} t �� t� v� �1 ' ...i... +y� /•,. .. j:�.-.• ; t. �} j ..t• I + u ,.I r � ,;} ),�, l '� t i . t x �' / f� tvt���,; '1 11 „�, "Y r - �rh lbl �'Ft �� ✓�' 4"`r>.7 r r .11 t7 tl� I i , } - _ /_3 H � l.�A,lf �, 1�,�,�:�i,', I a I .. - �l) �� t. n }, { � � �'�Pfi• r('}Jr i � � > . ,r �l ��'r _.s 4 �i�q 1L.i � n� ;Y >s �1 •.,. ! S I � � ,. � ' e , ., :cT� •, ;[ T , f `s s "��' �•k f ��� rY��`� r'r�} t r �,l r ` ` . `.. - _ ly � I �•�� � ! ..._ r 1... } - ',, • , y� � ��1ilk,,, �!k�y, ,�1. ,?:Y�y'.; y d }� ,,•�} yY�� f�. �t^,��.`; �.. r ,. )�.,, w � I I / r' r4`) �I' r d� l f _. j ... :) i I 4� � iI - - I " •~/ t A r �� ! �` - t� 8��''�"� };� �� ' P 1 ` vt" „ ��7 } , 1..:��li f . l l + y .'�... � � f' :r ;� , I . r ' 1 1•,`•• �'''�' , � . �� /i .� t 1 , n � rj . "I..`I_ 1 __�.:� -_—._I � i .,,.... I .. ,1 I r+t._ I i _ r.l _ _ ^__ Jl r�M1 i � �"" ,,,� . �+! ? �.b� h.:.'y� L:N �> °��. 4 ,y ' � , I 1 I I i ) t ' 1 `�.r I �� - � I' �, l I •s • 1 1 Ji a / "'A`"��.if��L . .v . �� ^,} � � � + �r�� I.y1"i.{u. 1 �..��i s rl$ .s� 3�, �` ,� � . I , , t '� i I I j t I J...,� � .. i .. �) ^ " 1 { ° ! ��f� t ,,, , �..._. I I _��,�' < .,� r y.f� � Q �i;"t,�� , � �: �} �' .:Z f' I' n! 'I: I �' " � I•r, z ( I .. , . I � � r t �:, /aN.r'.V ;�: .�,- i, .�l.. ',�(11� �' ,/f' .: i�!',�, ,.� "" r,. „ )� t 1 'a.l r I� r � M , I I ) � �• � �' I� I �Yt�)` � ,1�. � Y /Yh � l� � ;I"' I� 1� - r / I 1 � I 1 : I � 1 i m; ' t •` } <i: w . � a I ; t r i *K � s + I k �� � i " li� s ` �� • J L I_ � .' ' 1 1 ) ' I�I. i1 .r I � I 1), .: ( , �. I I t7 # 'f'' � .f'JI . '" '. � r >{, �y,.... , t � . x� , l 2 . ▪ 1 ... :: 1 5 � +. ' / ! . _A T I I • r 1' �� }� � "= :'- .,_. 1�, • '•ci' 'i •, , ••t� t� 1 .F. ` �I i � �1 �1 wS� " 1r l ;ri , •, 1 :"L�_ i � � y ) �' ,k�Y�� 1j..$�, ,;�•..'} y "`.'�§ �'�i'.'�s� t,.!A� �lt. � I� ..:' , �.` � ._�I)..� 1 ,. ,- � • �I ,. i..... �.�,�._,.`. -, w `•t :•�•+. r `... "� Ui� Po,� .. s i : t p' r' rl• j . {� � r I I '•1:� e 1' � I t t, , -s y ✓S l ri'+ r r 1�aY�F � �� r � � •/' { r . 1 7 t t � , � }�/ y�, � `.tl k � �t��_ 'y. t ;kS.J! ;ci�^,� ' a ` t � = �' >< ,� yi„�' v +;,� � �, : �, l� ..F . I i t. a «., ■ � �� �jl 1 �.;.4• ,I �.: � ( �' / Y'I �6.:Y :l� ¢� f k ' .a , .� C� �,I'���i� C" � �� :j � '.T - °:5 :l �rl fI '1 - r I•�. i�� .-1 �' � � _ y N i '1^� � �a � � �: �' 1 1 �: ![1"'._ w �• '..), V. � r 1, 1 i 17 J • .� �' 4 4 1 11" � I' � ' r '.. +�. , WWW���'1' . �� k a '�' 1�� ,• ,k ,x, ��, e5"�`r'��n�, 7i.�•�• .,�{� ° '�'i Il {\ y A'. (} ` � • 1 - �! \ I :� `� 1' t ,} � , f 1 I! I a. ! � ¢ r � ° ' "` J:• '. ,��t� ��S. N� r �r� �"':e ''`'r 4. .`�,:. I�..J;II I �� F � II ..t 1:;;� k Pt r { I J .Y 1 ����III �•. :I�III •E7�� 1 �� , , n , � ! q" ! i a Z V .i \` r �,. }�' �)"�<�' :•f tl;¢ r � � , , '� � � �S +t •}'�1� ,�� �'. ,} ' 'r I I ` � � i � �l�;-•n ,, t ,t t. Ir_. e9,.1�1_m _fP3 *(._,---, -- ��,� _ ° � �,>,I! �'p:Y,,:i1�,y�d�( -� `' {�' �}' «7 : � Q+/ ���1 �,+`� �t I :� � � f "a r a ,'r' i I . •' � }I �. �� •+�, • � ! .� I �i ` t ` r� S II I� �1 « L. • I r ',� 1 ,, � � rn = + b j iw�.'1'}`� yJ 'W I;j y�l:t ', �4 ;� ' Q + )� ) {(: ° 6.. !'� �k - atif!�,.,�� p'I .. rl r ml ,. ` .M '��} � ? il ' .l l !� � J m w ,.S it! , . '�� If �� 1 d� , r _. 1 R , 1� ., • �' , 1 'i i �`.. � , �: I, - I� f� ,r I. !'.' u� �)' .d l ! 6 •• I � \` ) r. ' �'I a a n S �� � 4 1<,�i� � ,�•fr � t' t'� ?S� t , •�r Sn ��� .t:�.�� t: ���...' r.�I . �vk�(,'J � 1�. 4 :,li •:I I r ' �� �l:J;r' qJ tl i�r�'t* ' 7�� �,�� 1 � ' ":.t'i'' .,�1�t� ���a::JY�YR�I��t ryx��� I '�d'�;J� •' -�. �� ` Y II� b� +h -�tZt t ; � 'E�jl !� �° ),' ::.: I : ':I� � � ,, 1 K � & - tl �` �.���. a � � " � �`'[ i *�. :�Y� � ,,;, f ,i r.. 7r� s .I' t -, wc- .... -:v,. - � {r j I I.� �t � u .i r` r .�, ; t �? jj r, q j{r ' "� ".k: �I + - r 11'W. @ . r +..^"5... r. � - e a ..I+. -- `..`L.. .} 1 / !y `! e �' 1 � �t r, �' � ' ��r w t >1') I `� I . ' i e.. ��p 11 '' .y� I i ... ���'J .I.1'ht :'1rt4 �� 1 '1V!: d ;' �'7 ' . f t t '7 ` rn ��J \r'r nt 'l r- t'4:1� ,.,.m. -�J', 1 1 1 ,.!'. 1� ��^ Its r ' f '� �. W' .d� 1 tI ! li 1 . 1' p J $ .. �' t !�..,�..lrfr� � p.'.�n C ''' �� I�'�i ,rJ,i�t� )��tYl: �l.• , � +'•• 9 "' ' k:t : I � ;!�' R ri t' 7�,;� ( .�G t„�, .�r .I! � " fir ��.� ,�I t {� , � 1r .,. � , r 11, r +'�I• ..1.... I �!, I'C I. l ' "''' � ,: ti � rn I t;� �'.tr'�`i ��� t •X , r% t y,T r , t ^e :�, � ��' I .J .f �j . �'�! �� (i : I. I .A '.�.. ;,I� � ��+ I� I�'' 17t r�. J a 1,F�i .ti° , 1p ,. '' •� I K r }' '� Y� �;� �i, i �' ��) � ♦ J , ,� r� ie r:. - f 1 4 ';li y:�: �,,� �I "� � i S` 3. lt•, ' ' : i. ,. q ' r 1 i t, :.5. I 'I.�I r , 1 >! - ; }' -I -� I I N �- � I :t .•+:' ! ` O 111 ' 4 1 r y ��l+�ti ��1" :�.S:�C' ,,�i. "� r j \.l, is ;; t � ; �; ;, ' xf ��.. .�,� {' F� t1 � �_�` `. � . r;' � � ,, j � 1 i I. J • i y I � j f Il r�•: 1 ,, ♦ j +7 . � � :� � +" �h' S' ',1 �1.• �� ' '#'�i `«-c � ' � i �� . � r Y �S ,% � �� � -I � 7 /t�il�'�d' .1 - . , ,t_ � - 1 � I- � � .. � • _µ : !al I�'.x' ` l . �- :\ �. � 41,� 1 � '� I A I. �::: �> s,, rly- �' I� •�"�•'✓r�, +'r�tt�''�i.';.x}ty.F ` � j? ��;."T` v' � S �i� `S�/,'7r'l� �'�s;� ��* m,'±+�t�»`���'t �M�.� ,� T 1 1 ,� jl " il, �I� �.�,;�i , i. 1 `rh -�'' � v : =�' _It' 3 1 � �; `fit, r �',I � _y � �, •� p /a � r�.,.. �' ",;., alr•: � � ��r= r: •;I �t� �:� .. _ , r 1 .� :- r a .:-' 1 .. L� -, r � � .j" , �,�.. 7 • I I6 1L .1 ej •.1 r - . IS ., i i ,i���. !.. IH •il•I r l� r••• }. {I- .1'.1, t'. ':1 � ,A)���r� �. }I .:_.3' 4 f� t r 't / r V Is i t t r!� Y Y i a�y 1 i �I , t � 1 Iv.. : .aa'�� 1 I i � .} ��}e� _i' �'' I 1 t l a >:t rt 1 r !3 " 8 � Y 1 i 1 • �� t b .I+ , � .:r � 1.; r� 'I .1. � r; * ,� � I � i � t� r ,�'� ■ I { ',( p i + i �r .9ri� . }I y . a 1 .5 � )/1' ,, �, � ., .� h ,.1.F • +x .. n r f", Y � 1 i•!sr - fin �, (r1�r i q y r " i t•1 df •.tJC I !.r �' � a ! . Y: 't I � l.. t I `i ` .��.0 ,y � " 1 7 ;:` r! �� f ) r� /J � 1 !(i :� t � e .) } I iG {�. r.° i::l I i� •I ` r 1 . 1 + 1 1 N � l a. _ { � I E �>.o' � I�� ' '' tr �', f 'y �:.. ll!� �� a.. .}_�)t� s ¢'� ' r Y I # "F''. /_� 'I.a 'il � ,� is � I Il l •;� Y• 1 : ' I��..: � o • � 1,�'�.' }• I 4 t]: � ° .><�� I� t. � g1J�J � t:.. {5>�xT,(:Ni• "°'•as t }• ,i '�" I((( ` {'l i i `G3E� ! r 3 g } _ .,_ �Y i � •J 1 � L L ;.:a � TF (� 1} Cn, t r r �f 1 3 I : ' , +.. � I „ !n, F I ..■ � i I , :'. I.•t `. t .: h s , - �j ir) ,r i i - ��� 7 4 /7 r t;,' .. .I � i .... , :} 'd J',. 1 �, f 'i 4. � i I r 1 1 I s ''lit L , � .." =, .,` ! ' .w4.. 4 '! r? �� "� :�f �i� J. t I : t;Y y'.)57 I;l�i ;i •�'.. �I � 4 � 1 I� I ] I � � �i�.� I `. ,I:' � ,� � '.1';r ) lh, l - �;� r �'� ty � ,h`r,.J J v.:... " 9 � �. ' 1 II , '/ 4 ! I r.17 ° :.k;r ; 't. � -, �,!\ � �I� rslt. .t 1 �f, \':'•`F ff •'2. r "t.� � :I t,. � ��;r,� t r7. iT. �- { r 1 } ..t, I p� g l ' .R , , I t t., ,,! l•: � 7,� • P 1. .•. ! tti r•tl; rj ., .: *111Y ,"�.�.a�,� � :� � !� °' "' S '�4` ��t � ( -L� � I � � 1 G ' 1 I 1 1� .I,,FM Ldq'JI,�}Jr aL ) r„� t 1'�,.f�.r 1 �- .,•t L n� r ,�p ;` i C rl : � to } 'I; ryy , {{ I t . "4 , st �, / .� _ 5 j t@ .'t., r,�l •, � y � �� �'�,. ' , � 1��' Y I rr` u ��.�J , t � - + �r r ` 1 ! I f ...1:� I � tr. t� 1 . r tl. ��i`+:� � � I t '1 "L:'' � 6 �. i •.����Ik, F i t � �� J j' �� • �.■ I.I 1 1 i��l ■ � d •� n L I • �il';� ,1 •.� 1 / t r 1 !l .E S [ 1 • . r q � .7I s' r � , !�: t�f � ��:. -'h 1`�•, = , y t !, z � �l; :. ;,,.. y � r.l', r t : tll ,,_� Ie!.,I. 1 �y.. � : I � �' � i, �' F u � \ u �; rri•��� t! ``. � � �JI - , t t .,k�; �,....):: r ! � � _.. — �'1 '. .L i �. �r i{I!i � - .j w. �' � la -1: � i h' Y I , 4• �� � 1 ,,' � t r .� }` l;I t J.� • r.� r [ yr t. r t ��1 6 , �,� f >T�'�. • , i!Irt f r,�' p t :.� '. , _ ! ��,I�1 �!� `. � 1 �. I�:�A, �� I 1 .:1 / Z t . ,.. t t .r ti: C r .: ,[1 I Z r : �j� ri I � l y i; t . r �� . � _ �i '.. , �' 1.# : _f t ,: � +< � ..i� :I� ) 1 a.'� i r ��� � �� i � +: / 7 I , ' I ! 1 1 :. 3 r. r' , . c r� },�.. , ., \' � 4r . '.?` Y_ - ( "i:i.. l ;. I 1 1>f' r � 1 h . 0 1 ( I r , ▪ s. �,,' �. ^r . 7l� _ ; � Il 1' I ��� !• ,I�al_ { ay r: f / u -i � f I ,/ t t � '^.>�,� E i � •rf. ` �.i �•� 11 �'`. � I j S ': I { "'� .� a I 1 � ..r I. � 7' I .I. i � � I '� I ,� , r M + Ir, 1�.a :S � - i# f j a ' b /.+.. t r - J - f`• �. a ..t / . !t rr ti r'' -.` J �'� .. r ! ti J .i .. I._ .1--� !r ' } .i �1��� 'I�� { ' '�� r�` ') I�,rl '°i' �} rr o I � _ _ ' -�. ��.� l�k ; , '• ,.r -/! " .i� - ,.j t• -_1� t! i ' 1 ���: „ 1 , is � 1 .�.1 x �� Il' �.a �,t, 1,: �. :(t\ 1� 7.1 _I, t s7r • I'_ I ,,.! I -.�' �.J N . lI + J. � �� �CI •',��� �Y I I u rc i' g \ �x ,�-J r: �.. 1 1� r7 I�� Rr ,�t J fl ..�. • t . �� 3 ^ .!+ ,«..:Js `� ,i. fl li.. iflrt J 1 r,� W _ I;_. a lu 11 ) v ,t �lt t .tl D lrl °r ! I ti;�� \ bn :I••t ��. ` ' t I! ! .{ tl ile / p Wi t. �.. r t� rc - L ' w'.1 1:1 �0 J y - S'� ( I t( I i. ", ! t: 1 I 7 _ _ ; , 'y q, ,j . I ,t 1 * I , '�� jJ - 4 � S r t • v : "4 tl 7 �k ' ,� , 11 1 ! I . rl 11�� r � ;/ +� � x� � r T t III IP. 11 �I (� ' J' 1' � m `1 l r , ±�', �.1 " 1.�. 7 ;� tr ;I j I ,� I,, ' ,/) 5•; �}',�1� v 1 3 J�' I ��� ` 1. J q.W L ..:. I1 ��ti'�eL�,t��: �` '���1 a�.�. ),� Z •.f .. � t� � �`r 1 17 �,'' 1rl Jr :�.� f hl•" �, .`� .v.� I M�J���J�'�1 • t,. Jt . ti, ��7 .�� r?£ � I u .� �t 7. ! � 1 - r �- j i, 7. l�.l r t - rn•µ �' � Id� � b t {,� II ;Itt I � u / .. t � � _C i _'i' , � \ .•_ -_� + I''. d I 1,9': ^t' Y I � � r 1 � } •� ��� 3 _ �ti t'1 I � ' c, fl t � f , � �r J ! �TA "�N .. �: � ,.�i � �'� I •' 1 � � � •) x:t�. I .. -._.. �� 1 � � t t r i , : t, J� `, t I � 1.>r ,rt #..+f �� � f �'� �. '�A�" { s I u t. f:' � t ,� � 1 � - t } '� 1 I ' I I �,� Lrl .X �f P 2,a, r r � �N -,.� r r I .i' f Y ,� I : t . I b I. 1 � j t 4 1 PJ • I 4 �, t��� � '� � - I r� '� f t ..s � J ar J rE \ I �.�', I ..... � �,a; �� ,ryl,Y a - - - � �,,� S ,:.1� i , 1 ' •." J �t f * .�;' I r✓ � X � r. :J � � ,F' _ ' ' " J 7 ,�L ,�"{ r �'�y� 'j� �� ` I� � r �� _ �• '1 �� I�: ., I t '. �; I �•>fS t � - 4�e Y } ▪ s r.� a . _ J`. � �-r ':r G x: � •1 �{.1)�vt'� 'tl� �,i � :- �, � t •t •� t'� ` I � .t - r ! `t 1 -'` d 1�� 1 ;�Ve�; �I I7; � f: iJ�i' 1 ..� ,, r . I" }�I.�IS�.l.�I. # '!r!'' ��.�a.� � ' ,y PR� r ��:t>Fi�� a ,l F t i j �: J ' *r i' t ` i,� -�",_ �" � -• zl rte' 4 .+... rr I � 7 6:I�f3, l • +•Ir 1 C'� IIA �... ` I I� '� .Y i , `'! r , I. j <' 1 ` .r J. � x Irl 7 I f^ t �j � ' � a _ It' � °�� t:: • �) I, �� I I 1 SI. I. ;�, ,, j . ,�a !, .i� r � ` •' :., J r� (��y�l, 11 I`�+ n ' - i f �. I fix 1 n� .'� ,h�.�, r y J � r �. � _ � �)} •' 1 i i S ; It,. r e , 1: ` T} ri J .'t� r � r � tl �r � r. }� ° rn ��� i .II�'C.�` y 11�T�` i�j, rr� �L�' # / p. _ ' G '�. 1, ` /� y I r .C. • S�.1 Y � 1 � . Ik r. ��� � .�: �� ��� r + ,(, �� �'�'.G �� �� r �)'• I I I 1 J r 1 ' t',t t. I � 1 c � I: {J) >..I T , ,� � �,�i�'.6��YQS,�,� f / ,� J" _ �71 t�'. i. 't I '� ' ) J `I r. ' %'/ T tP� #1 r. � , u � � i �`� �1 .1._ - _ � - I • ' �j �a I' ( �: • I ��' I � �Y� t ' rt ,l:., s i. r{ '< '� s � , ltzl .L. �, �¢ ( ; .j , J. F�i r� '� � � " 1.w t f, , I r I r , ; t `! I tl' , i I i J! ' t I t ` �^ t 4 � ! I ,- f I t ' I ' t '� L t '!'t r t �,\ , •'• + S �' � I r 0��1 1 fl t .q I x I t -I� y ( I I �; `., I , •'(II �1 r t I I,.1 1. �r,t I' I .,..� y�•,. , / �� Y? !V {'�i� i ., ' 1S! ` � I I II ' '7 I�I' r J � 1'�,; r q •' la •v �I � +I I"� J yti '^ •Y t . n ii ' � ? r / ' I! tY , I r1 I ,Fy J ,,} � �' � I .I API r I J• V .. .'.. �,. � tI��I .:,' .; . / -. ft t i i7 ,1, ( yJ�' 1 J �,t , i I '��i t o ?S,��,11 � f� ` '�J�.'i�'r �1� t{ M1 - :..:��• i ` ' t r _ ....:.._.. ....�...Vs> ! t �t • .., _ � I t� t ' � H d 1t r�1 ��'t ri � :,; _ �7.. ..__ « I :., r - _' r � t r �--': I '. -: 1._r _ _..+;� � . ' .. r �!Ip . , ••c . :. , � r t L}�� t '. ! U) y o i ' Il > .. ll�l I tiy,lT�,*,. f � � u ~. V � a 4e/ l i I r �(/ �j � � r �I�[1 1 � J i� 1 / . J �� r' ` .1 ! \ P ,. , 'I 1 f � "I,• � 1, ' II I ' , �r�' I !.: �, r ,• tl,' 1 t ••� ` fl[ it � t � I � �i: '+ 1 �° y b J�` > ,,_ � Sl�l !r'Y 114 ,��IS�i' Sfl, � (.1� j�. I I ;r j ! his 6S� 11�1� � 1 ("�!�' S:. 1 �1, - �� t _:� 1 � } F 4 �� �.. l �� t � -, I'� I �'r ` . tr n� i ire.+ v . I P t. ' :� , ♦I'tf 1 t l, ; �. ,n l. \' � ' +; h (rr ..1 t 1 �. ' �� }�.:f , r �.�� � n i t ,! t �' Q �I �•!11 •.,k 1 r Ef" 4�f � �! ��, St, .;, t^I `, � i �r��' i � I �YeSI n�'�i � a %I .� . i "(.t � � 1 .r y�'S ' �., - -- L1"'f ..�'- ,....; • •j is • � •E I �' 7'. 3` v� l Y - _ I s T I 1 Z 1 I I F I �• b• 1 - -- g F- � 00 e Y , -- t -!:I-- - - -t t � \\ 2 - ' . I - J'� n ; - �_ -- x0 s , •0 - - t ~ I 1. - _� .- - - - - I - : ' , i I r I : ._ � � a 0 . a ,. w w � �. s 1 � � , f I .r� .�. n I N - f �,, . . I ` I \__. J 1:i c.. l +\ `� �" 0C-r! UJ z IT ce I _ T — - I Id I r I I a ›-Ww. C°' - ir/ I I T I) - I , -- 1 - } 1 t - 1 ; 1 1 0I =t- - - -- - -.z _.__ _ 1 Jk 5 Ng a • _ Art." Wall"4.2 i.. - it )• 1 1 1 ..... I .... . ft. . - - I I I I P I I t I _ I L VinP J �� I ) g ,„....1."--- F I - ...e-N1 `. 1 `. .,, 1 :al I gnu - 11 J- Y I � I � • 1 _ / • / U� • - — _ • t - 1 . � ` w 1 L A ; '� I - - '4, t , �; 1 ' . • 4 I z. I ti • • e ■ ` '. W U f . 0 0 r4 1 '''' n .. 1 \\TATO, 1. - 1 • ,...,,, AY r d of 'I z Z 1 ) ) ,, F. i.t. -- __ .._ 1' '7 1 1 OF I . i ''' ) � I - - -1- / - — -t - -I — . -- L I - _: 1 f \ 1- 1 ._ l . c� �, • —'� - 1- I I i I I', 1 I 1 i o �� _ J Li ...4, :. ,•,.......,..,.. ; , , ,,.,: • / ; W • to / I �. W 21 (r u) `J i ---• _ ,i t? . .--- t ,,,,,, - I - 1 - ai 'I 1141 ; 1 . r I L • 1 1. 1 . 1 I ' II It t ' ' - , - • 1 , I °� - 1,_ 1 F .� ; . lillA • I ._ ' • n 1 ro "....lo .. . .. > ;-,,, t Z. L. o • .ii F ; .,.. ; ....... I, ..1... „ .,..„...„ I I y ., I �, 1:1:3:,: M a I ; II 4, . .._, 1 i J - I IT' '1 ., I , c •,, - 1 lik . . I APP NW* 1- I g 11 ,7.. .,•\.,„„,,,,,,,,,„ - Fr -- I — • ir ..`t( ' , - 7 ,,,,... -- 21 1 .„- i 1... 1 . 0 .w. ill v i � I 1 / i 4 iI i W 1 __ d \ 1_ 3 1. . , °' f.• I 1 - ; p w ' cc 0: ca { )'z f � 1 /J 11. • 1 _ a w . \ I -' I 1 . 1 x `I • 11 q a � . I :f: 7� :Q I t '�,r' I , l `i /c? I I 4 1 .. .••e. 1. __ • • 30 1, .- i I . � I '; If, ' J1- �,1 .. . 1 r. ? I • Z 'fA 1 r, \ 1 s�\ y Cr I I I �` I • T1 � � �1Z I I I r,.„,,,,,v,...-_-„,,,,, 'Ill• 4.1 II I i Fr r law. ; 1 _ ___ _ i ___ . _.. _ 4 .• 11 4 0 4 , 1/4 40 ,,Amil,rifrifk.. ,......._ .. __.......... '..,.. %--; r II ,. •• .• • . .--.= lk Irr r-- - --1 _ —_ — - . I- 1. _ 1_ — 1...__ _.. ,i n I ri cr ' 1 , 1 m 1 I -fly 1 r n r . ' 6` ... 1 ,;> ',. 1 • : t I I I I r; L. .. , ! 1 I ^ I 1. ii ' :," - .4 . .. , • 41 . i _ _. , • . 1 r �` , — i - Nit Pi- a • - � 1,. • • .., I:- 4 / I _"1. - ` _.1 .- ' •" ". ,..t :. / ; 1 II • I /I _._. . .. __, , _. , - " ti. V ' ' ' ' ' . : ,fit' '. 1- . . 1 1. ‘1 , F: -:. . " : r ' / 1 O-- .. • ! IF: ._____411 ,...,-, , ,-,.. • ,. 4, 1 __ t .,,,, , ' . - Y.- 1-- -1- --i- ,iri..,1- 2 -.--.„ it ; •• I ' ' • ; r,_- .. . - ..1 _,. . 1 , 1 I i l k► k . 1 ��\ 1 F ►' am I i � �'� 11 21al1lp Z Or- ' , 1 •. • 4 41 .. -.61.4111 N *4 . :- I : 1 i I--.- i 1 \ '. ) - 1 Ilhiku, kvaL. il ,:. • co ' k cc I • I . I I o I I I I i • b a l :. _.I . I • .- I - -- - - --- .,- i.._.. I . - I - I --. . . I., I I }- - -_. J . , ° .. II: •a .. ; '1: •jx • °' I 1 -- N 2 I 1 z cn I I • I I iL! _ i1 - 1- - + . -- 1 1--. .7 1 • / • 1 Saved: 4/11/2002 11:59 AM Page 1 of 11 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -2000 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2000 License ID 1395 Analysis prepared by: BOYLE ENGINEERING CORPORATION CORPORATE HEADQUARTERS 1501 QUAIL STREET NEWPORT BEACH, CALIFORNIA, PH 949 - 476 -3300 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * CITRUS AVENUE WIDENING JN OC -F60- 400 -00 TASK 204 II * CLIENT: CITY OF FONTANA * 25 YEAR HYDROLOGY MODELED ALONG PROPOSED PIPE ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 25YR.DAT TIME /DATE OF STUDY: 11:59 04/11/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL*-- USER SPECIFIED STORM EVENT(YEAR) = 25.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = 0.6000 IL USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.2500 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* + + BEGIN AT 210 FREEWAY & OLEANDER AVENUE II I I I ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 21 » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS « « < »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 750.00 ELEVATION DATA: UPSTREAM(FEET) = 1519.00 DOWNSTREAM(FEET) = 1504.00 II Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.391 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.804 Y: \F60\ 400 \Calcs \Hydrology \Pipeline \25YR.RMA 1 Saved: 4 /11/2002 11:59 AM Page 2 of 11 I SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc 1 LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 6.34 0.98 0.10 32 9.39 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 II SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 21.15 TOTAL AREA(ACRES) = 6.34 PEAK FLOW RATE(CFS) = 21.15 II + + WESTERLY ALONG SOUTH HIGHLAND AVENUE II + + ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 1 FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 31 » »»COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< 1 » »»USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW)« < ELEVATION DATA: UPSTREAM(FEET) = 1504.00 DOWNSTREAM(FEET) = 1502.00 li FLOW LENGTH(FEET) = 750.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 22.2 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 4.97 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 I: PIPE- FLOW(CFS) = 21.15 PIPE TRAVEL TIME(MIN.) = 2.5.1 Tc(MIN.) = - 11.90 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 103.00 = 1500.00 FEET. imi + + 1 103.00 IS AT CITRUS AVENUE & S. HIGHLAND AVENUE E 1 1 f + _ _ i **************************************************************************** FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 81 I .»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 11.90 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.299 II SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN II COMMERCIAL A 8.77 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 II SUBAREA AREA(ACRES) = 8.77 SUBAREA RUNOFF(CFS) = 25.27 EFFECTIVE AREA(ACRES) = 15.11 AREA - AVERAGED Fm(INCH /HR) = 0.10 AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 15.11 PEAK FLOW RATE(CFS) = 43.54 II ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 31 Y F60 4 00 Cal H drolo Pi eline 1 : 1 1 1 Y gyl 25YR.RMA � 1 Saved: 4/11/2002 11:59 AM Page 3 of 11 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< 1 » »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1502.00 DOWNSTREAM(FEET) = 1479.00 FLOW LENGTH(FEET) = 930.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 20.3 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 13.54 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 43.54 PIPE TRAVEL TIME(MIN.) = 1.14 Tc(MIN.) = 13.05 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 104.00 = 2430.00 FEET. 1: ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 81 I: » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 13.05 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.122 IN SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS I: LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 5.93 0.98 0.10 32 RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 3.74 0.98 0.60 32 I: SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.29 SUBAREA AREA(ACRES) = 9.67 SUBAREA RUNOFF(CFS) = 24.68 EFFECTIVE AREA(ACRES) = 24.78 AREA - AVERAGED Fm(INCH/HR) = 0.17 AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.18 TOTAL AREA(ACRES) = 24.78 PEAK FLOW RATE(CFS) = 65.82 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 104.00 TO NODE - 105.00 IS CODE = 31 II » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< 1 ELEVATION DATA: UPSTREAM(FEET) = 1479.00 DOWNSTREAM(FEET) = 1451.00 FLOW LENGTH(FEET) = 1250.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 23.4 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 14.59 II ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 65.82 PIPE TRAVEL TIME(MIN.) = 1.43 Tc(MIN.) = 14.48 1 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 105.00 = 3680.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** I FLOW PROCESS FROM NODE 105.00 TO NODE. 105.00 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< 11 MAINLINE Tc(MIN) = 14.48 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.934 SUBAREA LOSS RATE DATA(AMC II): Y: F60 4 00 Calcs H drolo \Pi eline \25YR. I \ \ \ Y gY RMA P 1 Saved: 4/11/2002 11:59 AM Page 4 of 11 II DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN li RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 13.44 0.98 0.60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA AREA(ACRES) = 13.44 SUBAREA RUNOFF(CFS) = 28.41 EFFECTIVE AREA(ACRES) = 38.22 AREA- AVERAGED Fm(INCH /HR) = 0.32 AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.32 TOTAL AREA(ACRES) = 38.22 PEAK FLOW RATE(CFS) = 90.02 + + 1 105.00 IS AT CITRUS AVENUE & WALNUT STREET I ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 105.20 TO NODE 105.20 IS CODE = 1 I: » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< li TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.48 RAINFALL INTENSITY(INCH /HR) = 2.93 I: AREA - AVERAGED Fm(INCH/HR) = 0.32 AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.32 li EFFECTIVE STREAM AREA(ACRES) = 38.22 TOTAL STREAM AREA(ACRES) = 38.22 PEAK FLOW RATE(CFS) AT CONFLUENCE = 90.02 ii + + 71 BEGIN AT OLEANDER AVENUE & SOUTH HIGHLAND I I ( I II ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 21 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< II »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 500.00 1 ELEVATION DATA: UPSTREAM(FEET) = 1507.00 DOWNSTREAM(FEET) = 1495.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 I SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.699 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 4.285 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc II LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 6.34 0.98 0.10 32 7.70 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 1 Y: 400 Ca1cs H dr ne 25YR \F60\ � � y ology�Pipeli � .RMA Saved: 4/11/2002 11:59 AM Page 5 of 11 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 23.89 TOTAL AREA(ACRES) = 6.34 PEAK FLOW RATE(CFS) = 23.89 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 202.00 TO NODE 203.00 IS CODE = 51 » »>COMPUTE TRAPEZOIDAL CHANNEL FLOW« «< » »>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « «< • ELEVATION DATA: UPSTREAM(FEET) = 1495.00 DOWNSTREAM(FEET) = 1479.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 800.00 CHANNEL SLOPE = 0.0200 El CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 0.000 MANNING'S FACTOR = 0.025 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 23.89 FLOW VELOCITY(FEET /SEC) = 3.52 FLOW DEPTH(FEET) = 0.27 I: TRAVEL TIME(MIN.) = 3.79 Tc(MIN.) = 11.49 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 203.00 = 1300.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 203.00 TO NODE 203.00 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 11.49 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.370 I SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 12.21 0.98 0.60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 li SUBAREA AREA(ACRES) = 12.21 SUBAREA RUNOFF(CFS) = 30.60 EFFECTIVE AREA(ACRES) = 18.55 AREA- AVERAGED Fm(INCH /HR) = 0.42 AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.43 I: TOTAL AREA(ACRES) = 18.55 PEAK FLOW RATE(CFS) = 49.27 FLOW PROCESS FROM NODE 203.00 TO NODE 204.00 IS CODE = 51 » »>COMPUTE TRAPEZOIDAL CHANNEL FLOW« «< » »>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « «< I ELEVATION DATA: UPSTREAM(FEET) = 1479.00 DOWNSTREAM(FEET) = 1457.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 930.00 CHANNEL SLOPE = 0.0237 1 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 0.000 MANNING'S FACTOR = 0.025 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 49.27 FLOW VELOCITY(FEET /SEC) = 4.91 FLOW DEPTH(FEET) = 0.40 TRAVEL TIME(MIN.) = 3.16 Tc(MIN.) = 14.65 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 204.00 = 2230.00 FEET. II ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 204.00 TO NODE 204.00 IS CODE = 81 Y: \F60\ 400 \Calcs \Hydrology \Pipeline \25YR.RMA 1 Saved: 4/11/2002 11:59 AM Page 6 of 11 II » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< 1 MAINLINE Tc(MIN) = 14.65 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.913 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS 1: LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 14.62 0.98 0.60 32 i: SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA AREA(ACRES) = 14.62 SUBAREA RUNOFF(CFS) = 30.63 EFFECTIVE AREA(ACRES) = 33.17 AREA - AVERAGED Fm(INCH /HR) = 0.49 AREA- AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 33.17 PEAK FLOW RATE(CFS) = 72.28 + + 1 WESTERLY ALONG WALNUT STREET TOWARDS CITRUS AVENUE 1 + + II ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 204.00 TO NODE 205.00 IS CODE = 62 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« « < li » »> (STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1457.00 DOWNSTREAM ELEVATION(FEET) = 1453.00 II STREET LENGTH(FEET) = 730.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 li SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 II Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 92.79 ** *STREET FLOWING FULL * ** 1 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.82 HALFSTREET FLOOD WIDTH(FEET) = 37,53 1 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.75 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 3.07 STREET FLOW TRAVEL TIME(MIN.) = 3.24 Tc(MIN.) = 17.89 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.584 I SUBAREA LOSS RATE DATA(AMC .II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES)' (INCH /HR) (DECIMAL) CN 1 COMMERCIAL A 8.52 0.98 0.10 32 RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 12.19 0.98 0.60 32 II Y: \F60 \400 \Calcs \Hydrolo JY \Pi P eline \25YR.RMA 1 Saved: 4/11/2002 11:59 AM Page 7 of 11 I SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.39 1 SUBAREA AREA(ACRES) = 20.71 SUBAREA RUNOFF(CFS) = 40.99 EFFECTIVE AREA(ACRES) = 53.88 AREA - AVERAGED Fm(INCH /HR) = 0.45 AREA- AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.46 TOTAL AREA(ACRES) = 53.88 PEAK FLOW RATE(CFS) = 103.43 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.84 HALFSTREET FLOOD WIDTH(FEET) = 38.82 I FLOW VELOCITY(FEET /SEC.) = 3.87 DEPTH *VELOCITY(FT *FT /SEC.) = 3.27 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS, AND L = 730.0 FT WITH ELEVATION -DROP = 4.0 FT, IS 53.9 CFS, II WHICH EXCEEDS THE TOP -OF -CURB STREET CAPACITY AT NODE 205.00 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 205.00 = 2960.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 205.00 TO NODE 105.00 IS CODE = 31 » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1453.00 DOWNSTREAM(FEET) = 1451.00 FLOW LENGTH(FEET) = 290.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 48.0 INCH PIPE IS 35.3 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 10.46 ESTIMATED PIPE DIAMETER(INCH) = 48.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 103.43 PIPE TRAVEL TIME(MIN.) = 0.46 Tc(MIN.) = 18.35 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 105.00 = 3250.00 FEET. 105.20 IS AT CITRUS AVENUE & WALNUT STREET -I FLOW PROCESS FROM NODE 105.20 TO NODE 105.20 IS CODE = 1 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< » »>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< TOTAL NUMBER OF STREAMS = 2 ' CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 18.35 RAINFALL INTENSITY(INCH /HR) = 2.54 1 AREA- AVERAGED Fm(INCH /HR) = 0.45 AREA- AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.46 EFFECTIVE STREAM AREA(ACRES) = 53.88 I TOTAL STREAM AREA(ACRES) = 53.88 PEAK FLOW RATE(CFS) AT CONFLUENCE = 103.43 11 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 25YR.RMA Y. \F60 \400 \Calcs \Hydrology \Pipeli ne \ II Saved: 4/11/2002 11:59 AM Page 8 of 11 1 1 90.02 14.48 2.934 0.98( 0.32) 0.32 38.2 101.00 2 103.43 18.35 2.544 0.97( 0.45) 0.46 53.9 201.00 II RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. - II ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE li 1 186.77 14.48 2.934 0.97( 0.39) 0.40 80.7 101.00 2 180.06 18.35 2.544 0.97( 0.39) 0.41 92.1 201.00 II COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 186.77 Tc(MIN.) = 14.48 EFFECTIVE AREA(ACRES) = 80.72 AREA - AVERAGED Fm(INCH /HR) = 0.39 AREA- AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.40 li TOTAL AREA(ACRES) = 92.10 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 105.20 = 3680.00 FEET. + + SOUTHERLY ALONG CITRUS AVENUE SOUTH OF WALNUT STREET I I I li 1 1 II FLOW PROCESS FROM NODE 105.20 TO NODE 106.00 IS CODE = 31 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< li » »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1451.00 DOWNSTREAM(FEET) = 1439.00 FLOW LENGTH(FEET) = 630.00 MANNING'S N = 0.013 - DEPTH OF FLOW IN 48.0 INCH PIPE IS 38.0 INCHES 7 - PIPE -FLOW VELOCITY(FEET /SEC.) = 17.52 -- ESTIMATED PIPE DIAMETER(INCH) = 48.00 NUMBER OF PIPES = 1 II PIPE - FLOW(CFS) = 186.77 PIPE TRAVEL TIME(MIN.) = 0.60 Tc(MIN.) = 15.08 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 106.00 = 4310.00 FEET. I ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 81 II » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 15.08 II * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.863 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA FP Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN I RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 16.88 0.98 0.60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 1 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA AREA(ACRES) = 16.88 SUBAREA RUNOFF(CFS) = 34.61 EFFECTIVE AREA(ACRES) = 97.60 AREA - AVERAGED Fm(INCH /HR) = 0.42 Y: 1 F60\ 400\ Calcs \Hydrology\Pipeline\25YR.RMA - II Saved: 4/11/2002 11:59 AM Page 9 of 11 li AREA- AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.43 TOTAL AREA(ACRES) = 108.98 PEAK FLOW RATE(CFS) = 214.47 i: **************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 107.00 IS CODE = 31 I: » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » »>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< I: ELEVATION DATA: UPSTREAM(FEET) = 1439.00 DOWNSTREAM(FEET) = 1425.00 FLOW LENGTH(FEET) = 690.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 51.0 INCH PIPE IS 38.4 INCHES c PIPE -FLOW VELOCITY(FEET /SEC.) = 18.74 ESTIMATED PIPE DIAMETER(INCH) = 51.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 214.47 PIPE TRAVEL TIME(MIN.) = 0.61 Tc(MIN.) = 15.69 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 107.00 = 5000.00 FEET. FLOW PROCESS FROM NODE 107.00 TO NODE 107.00 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< I: MAINLINE Tc(MIN) = 15.69 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.795 SUBAREA LOSS RATE DATA(AMC II): li DEVELOPMENT TYPE/ SCS SOIL AREA FP Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 17.98 0.98 0.60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA AREA(ACRES) = 17.98 SUBAREA RUNOFF(CFS) = 35.77 I EFFECTIVE AREA(ACRES) = 115.58 AREA - AVERAGED Fm(INCH /HR) = 0.45 7` AREA- AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.46 TOTAL AREA(ACRES) = 126.96 PEAK FLOW RATE(CFS) = 244.29 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 107.00 TO NODE 108.00 IS CODE = 31 II » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< II ELEVATION DATA: UPSTREAM(FEET) = 1425.00 DOWNSTREAM(FEET) = 1413.00 FLOW LENGTH(FEET) = 650.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 54.0 INCH PIPE IS 41.5 INCHES 11 PIPE -FLOW VELOCITY(FEET /SEC.) = 18.61 ESTIMATED PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 244.29 I PIPE TRAVEL TIME(MIN.) = 0.58 Tc(MIN.) = 16.27 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 108.00 = 5650.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** II FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< Y : \ F60\ 400 \Ca1cs \Hydrology \Pipeline \25YR.RMA II Saved: 4/11/2002 11:59 AM Page 10 of 11 1 MAINLINE Tc(MIN) = 16.27 li * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.735 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN li RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 17.44 0.98 0.60 32 PUBLIC PARK A 2.69 0.98 0.85 32 li SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.63 SUBAREA AREA(ACRES) = 20.13 SUBAREA RUNOFF(CFS) = 38.36 ii EFFECTIVE AREA(ACRES) = 135.71 AREA - AVERAGED Fm(INCH /HR) = 0.47 AREA- AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.48 TOTAL AREA(ACRES) = 147.09 PEAK FLOW RATE(CFS) = 276.36 li ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 108.00 TO NODE 109.00 IS CODE = 31 II » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1413.00 DOWNSTREAM(FEET) = 1395.00 II FLOW LENGTH(FEET) = 660.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 54.0 INCH PIPE IS 39.1 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 22.43 II ESTIMATED PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 276.36 PIPE TRAVEL TIME(MIN.) = 0.49 Tc(MIN.) = 16.76 ii LONGEST FLOWPATH FROM NODE 101.00 TO NODE 109.00 = 6310.00 FEET. + + AT CITRUS AVENUE & BASELINE AVENUE I I 1 + + 1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 109.00 TO NODE 109.00 IS CODE = 81 II » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 16.76 II * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.687 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS II LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 2.41 0.98 0.60 32 COMMERCIAL A 6.01 0.98 0.10 32 II SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.24 SUBAREA AREA(ACRES) = 8.42 SUBAREA RUNOFF(CFS) = 18.56 II EFFECTIVE AREA(ACRES) = 144.13 AREA - AVERAGED Fm(INCH /HR) = 0.46 AREA- AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.47 TOTAL AREA(ACRES) = 155.51 PEAK FLOW RATE(CFS) = 289.03 Y: \F60\ 400 \Ca1cs \Hydrology \Pipeline \25YR.RMA 4 1 Saved: 4/11/2002 11:59 AM Page 11 of 11 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 155.51 TC(MIN.) = 16.76 EFFECTIVE AREA(ACRES) = 144.13 AREA- AVERAGED Fm(INCH /HR)= 0.46 ,AREA- AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.47 PEAK FLOW RATE(CFS) = 289.03 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER 1: NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 289.03 16.76 2.687 0.97( 0.46) 0.47 144.1 101.00 2 267.56 20.66 2.370. 0.97( 0.46) 0.47 155.5 201.00 1: END OF RATIONAL METHOD ANALYSIS 1 1 1 1 1 1 Y: \F60\ 400 \Ca1cs \Hydrology \Pipeline \25YR.RMA Saved: 4/11/2002 12:02 PM Page 1 of 11 1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 1 RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -2000 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2000 License ID 1395 Analysis prepared by: BOYLE ENGINEERING CORPORATION CORPORATE HEADQUARTERS 1501 QUAIL STREET NEWPORT BEACH, CALIFORNIA, PH 949 - 476 -3300 i * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * CITRUS AVENUE WIDENING JN OC -F60- 400 -00 TASK 204 * CLIENT: CITY OF FONTANA * 100 YEAR HYDROLOGY MODELED ALONG PROPOSED PIPE ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 100YR.DAT TIME /DATE OF STUDY: 12:02 04/11/2002 II USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL*- - II USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = 0.6000 1: - USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.5500 *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD* + + BEGIN AT 210 FREEWAY & OLEANDER AVENUE + + 1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 21 II » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 750.00 ELEVATION DATA: UPSTREAM(FEET) = 1519.00 DOWNSTREAM(FEET) = 1504.00 1 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.391 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.716 1 Y: \F60 \400 \Calcs \H drolo \Pi eline \100YR.RMA Y gY P II Saved: 4/11/2002 12:02 PM Page 2 of 11 II SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc li LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 6.34 0.80 0.10 52 9.39 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 26.46 TOTAL AREA(ACRES) = 6.34 PEAK FLOW RATE(CFS) = 26.46 i: + + I WESTERLY ALONG SOUTH HIGHLAND AVENUE I C ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 1: FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 31 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< ii » »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1504.00 DOWNSTREAM(FEET) = 1502.00 li FLOW LENGTH(FEET) = 750.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 26.9 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 5.11 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 r PIPE - FLOW(CFS) = 26.46 PIPE TRAVEL TIME(MIN.) = 2.45 Tc(MIN.) = 11.84 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 103.00 = 1500.00 FEET. + + 1 IS AT CITRUS AVENUE & S. HIGHLAND AVENUE i -I - i I li ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 81 I » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 11.84 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.105 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN II COMMERCIAL A 8.77 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 II SUBAREA AREA(ACRES) = 8.77' SUBAREA RUNOFF(CFS) = 31.77 EFFECTIVE AREA(ACRES) = 15.11 AREA - AVERAGED Fm(INCH/HR) = 0.08 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 15.11 PEAK FLOW RATE(CFS) = 54.74 I ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 31 il Y: \F60\ 400 \Calcs \Hydrology \Pipeline \100YR.RMA II Saved: 4/11/2002 12:02 PM Page 3 of 11 II » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< ii » »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW)« < ELEVATION DATA: UPSTREAM(FEET) = 1502.00 DOWNSTREAM(FEET) = 1479.00 FLOW LENGTH(FEET) = 930.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 21.7 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 14.43 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 ii PIPE - FLOW(CFS) = 54.74 PIPE TRAVEL TIME(MIN.) = 1.07 Tc(MIN.) = 12.91 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 104.00 = 2430.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 81 I: » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 12.91 ii * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.896 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA FP Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 5.93 0.80 0.10 52 RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 3.74 0.80 0.60 52 II SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.29 SUBAREA AREA(ACRES) = 9.67 SUBAREA RUNOFF(CFS) = 31.88 I EFFECTIVE AREA(ACRES) = 24.78 AREA - AVERAGED Fm(INCH /HR) = 0.14 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.18 TOTAL AREA(ACRES) = 24.78 PEAK FLOW RATE(CFS) = 83.78 1: ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** -` FLOW PROCESS FROM NODE 104.00 TO NODE - 105.00 IS CODE = 31 I: » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< I ELEVATION DATA: UPSTREAM(FEET) = 1479.00 DOWNSTREAM(FEET) = 1451.00 FLOW LENGTH(FEET) = 1250.00 MANNING'S N = .0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 25.8 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 15.48 II ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 83.78 PIPE TRAVEL TIME(MIN.) = 1.35 Tc(MIN.) = 14.26 1 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 105.00 = 3680.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< II MAINLINE Tc(MIN) = 14.26 *. 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.671 SUBAREA LOSS RATE DATA(AMC III) : Y: \F60\ 400 \Calcs \Hydrology \Pipeline \100YR.RMA II Saved: 4/11/2002 12:02 PM Page 4 of 11 II DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN II RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 13.44 0.80 0.60 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 I! SUBAREA AREA(ACRES) = 13.44 SUBAREA RUNOFF(CFS) = 38.63 EFFECTIVE AREA(ACRES) = 38.22 AREA - AVERAGED Fm(INCH /HR) = 0.26 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA - AVERAGED Ap = 0.32 I: TOTAL AREA(ACRES) = 38.22 PEAK FLOW RATE(CFS) = 117.39 + + 1: 1 105.00 IS AT CITRUS AVENUE & WALNUT STREET + + 1 E * ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 105.20 TO NODE 105.20 IS CODE = 1 II » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< II TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.26 RAINFALL INTENSITY(INCH /HR) = 3.67 li AREA- AVERAGED Fm(INCH /HR) = 0.26 -- AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.32 r EFFECTIVE STREAM AREA(ACRES) =. 38.22 .-i TOTAL STREAM AREA(ACRES) = 38.22 PEAK FLOW RATE(CFS) AT CONFLUENCE = 117.39 I: + + 71 BEGIN AT OLEANDER AVENUE & S. HIGHLAND AVENUE + I ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW. PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 21 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< 1 »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 500.00 1 ELEVATION DATA: UPSTREAM(FEET) = 1507.00 DOWNSTREAM( FEET) = 1495.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.699 II * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.313 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc III LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) II COMMERCIAL A 6.34 0.80 0.10 52 7.70 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 II Pi eline 100YR.RMA Y:\F60\400\Ca1cs\Hydrology\ p � 1 Saved: 4/11/2002 12:02 PM Page 5 of 11 1 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 29.86 1 TOTAL AREA(ACRES) = 6.34 PEAK FLOW RATE(CFS) = 29.86 FLOW PROCESS FROM NODE 202.00 TO NODE 203.00 IS CODE = 51 I » »>COMPUTE TRAPEZOIDAL CHANNEL FLOW« «< » »>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « «< 1 ELEVATION DATA: UPSTREAM(FEET) = 1495.00 DOWNSTREAM(FEET) = 1479.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 800.00 CHANNEL SLOPE = 0.0200 1 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 0.000 MANNING'S FACTOR = 0.025 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 29.86 FLOW VELOCITY(FEET /SEC) = 3.78 FLOW DEPTH(FEET) = 0.32 II TRAVEL TIME(MIN.) = 3.52 Tc(MIN.) = 11.22 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 203.00 = 1300.00 FEET. II ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 203.00 TO NODE 203.00 IS CODE = 81 II » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 11.22 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.238 1 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA FP Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN II RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 12.21 0.80 0.60 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 1 - SUBAREA AREA(ACRES) = 12.21 SUBAREA RUNOFF(CFS) = 41.32 EFFECTIVE AREA(ACRES) = 18.55 AREA - AVERAGED Fm(INCH /HR) = 0.34 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.43 II TOTAL AREA(ACRES) = 18.55 PEAK FLOW RATE(CFS) = 65.05 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** II FLOW PROCESS FROM NODE 203.00 TO NODE 204.00 IS CODE = 51 » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW« «< » »>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « «< 1 ELEVATION DATA: UPSTREAM(FEET) = 1479.00 DOWNSTREAM(FEET) = 1457.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 930.00 CHANNEL SLOPE = 0.0237 1 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 0.000 MANNING'S FACTOR = 0.025 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 65.05 II FLOW VELOCITY(FEET /SEC) = 5.45 FLOW DEPTH(FEET) = 0.48 TRAVEL TIME(MIN.) = 2.85 Tc(MIN.) = 14.07 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 204.00 = 2230.00 FEET. FLOW PROCESS FROM NODE 204.00 TO NODE 204.00 IS CODE = 81 II 4 0 Calcs H drolo Pi eline Y: \F60\ 0 \ \ y gy\ 100YR.RMA p \ 1 Saved: 4/11/2002 12:02 PM Page 6 of 11 1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< 1 MAINLINE Tc(MIN) = 14.07 . * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.701 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS 1 LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 14.62 • 0.80 0.60 52 1 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA AREA(ACRES) = 14.62 SUBAREA RUNOFF(CFS) = 42.41 II EFFECTIVE AREA(ACRES) = 33.17 AREA- AVERAGED Fm(INCH /HR) = 0.40 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 33.17 PEAK FLOW RATE(CFS) = 98.49 + + WESTERLY ALONG WALNUT STREET TOWARDS CITRUS AVENUE 1+ + FLOW PROCESS FROM NODE 204.00 TO NODE 205.00 IS CODE = 62 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« « < 1 » »>( STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1457.00 DOWNSTREAM ELEVATION(FEET) = 1453.00 II STREET LENGTH(FEET) = 730.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.01 1 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 1 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 126.33 ** *STREET FLOWING FULL * ** I STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.89 HALFSTREET FLOOD WIDTH(FEET) = 41.38 1 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.10 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 3.67 STREET FLOW TRAVEL TIME(MIN.) = 2.97 Tc(MIN.) = 17.04 II * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.299 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN 1 COMMERCIAL A 8.52 0.80 0.10 52 RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 12.19 0.80 0.60 52 Y:\F60\400\Calcs\Hydro1ogy\Pipeline\100YR.RMA 1 Saved: 4/11/2002 12:02 PM Page 7 of 11 II SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.39 li SUBAREA AREA(ACRES) = 20.71 SUBAREA RUNOFF(CFS) = 55.64 EFFECTIVE AREA(ACRES) = 53.88 AREA - AVERAGED Fp(INCH/HR) = 0.37 .. AREA-AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.46 TOTAL AREA(ACRES) = 53.88 PEAK FLOW RATE(CFS) = 142.15 I: END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.93 HALFSTREET FLOOD WIDTH(FEET) = 42.97 II FLOW VELOCITY(FEET /SEC.) = 4.25 DEPTH *VELOCITY(FT *FT /SEC.) = 3.93 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS, AND L = 730.0 FT WITH ELEVATION -DROP = 4.0 FT, IS 69.9 CFS, li WHICH EXCEEDS THE TOP -OF -CURB STREET CAPACITY AT NODE 205.00 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 205.00 = 2960.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** I: FLOW PROCESS FROM NODE 205.00 TO NODE 105.00 IS CODE = 31 » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1453.00 DOWNSTREAM(FEET) = 1451.00 II FLOW LENGTH(FEET) = 290.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 54.0 INCH PIPE IS 39.8 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 11.31 ESTIMATED PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1 1 PIPE - FLOW(CFS) = 142.15 PIPE TRAVEL TIME(MIN.) = 0.43 Tc(MIN.) = 17.46 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 105.00 = 3250.00 FEET. II "I" + 1 105.2 IS THE CONFLUENCE AT CITRUS AVENUE & WALNUT STREET I II I _.t + I ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 105.20 TO NODE 105.20 IS CODE = 1 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « « < TOTAL NUMBER OF STREAMS = 2 1 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 17.46 RAINFALL INTENSITY(INCH /HR) = 3.25 II AREA - AVERAGED Fm(INCH/HR) = 0.37 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.46 EFFECTIVE STREAM AREA(ACRES) = 53.88 TOTAL STREAM AREA(ACRES) = 53.88 II PEAK FLOW RATE(CFS) AT CONFLUENCE = 142.15 1 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 0 Calcs H drolo Pi eline 100YR.RMA Y: \F60 \40 \ \ y gy\ p \ Saved: 4/11/2002 12:02 PM Page 8 of 11 II 1 117.39 14.26 3.671 0.80( 0.26) 0.32 38.2 101.00 2 142.15 17.46 3.251 0.80( 0.37) 0.46 53.9 201.00 li RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. 1: ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE I: 1 250.38 14.26 3.671 0.80( 0.32) 0.40 82.2 101.00 2 245.07 17.46 3.251 0.80( 0.32) 0.41 92.1 201.00 i: COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 250.38 Tc(MIN.) = 14.26 EFFECTIVE AREA(ACRES) = 82.21 AREA - AVERAGED Fm(INCH/HR) = 0.32 I: AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.40 TOTAL AREA(ACRES) = 92.10 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 105.20 = 3680.00 FEET. ii I + + SOUTHERLY ALONG CITRUS AVENUE SOUTH OF WALNUT STREET + ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** II FLOW PROCESS FROM NODE 105.20 TO NODE 106.00 IS CODE = 31 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< II » »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1451.00 DOWNSTREAM(FEET) = 1439.00 FLOW LENGTH(FEET) = 630.00 MANNING'S N = 0.013 ii - DEPTH OF FLOW IN 54.0 INCH PIPE IS 41.9 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 18.92 ESTIMATED PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 250.38 PIPE TRAVEL TIME(MIN.) = 0.55 Tc(MIN.) = 14.81 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 106.00 = 4310.00 FEET. I ****** *** *** * ** * * * ** * ****** *** ******** * ******* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 81 II » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 14.81 II * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.588 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS II LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 16.88 0.80 0.60 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.80 II SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA AREA(ACRES) = 16.88 SUBAREA RUNOFF(CFS) = 47.25 EFFECTIVE AREA(ACRES) = 99.09 AREA - AVERAGED Fm(INCH/HR) = 0.34 Y: \F60\ 400 \Calcs \Hydrology \Pipeline \100YR.RMA II Saved: 4/11/2002 12:02 PM Page 9 of 11 li AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.43 TOTAL AREA(ACRES) = 108.98 PEAK FLOW RATE(CFS) = 289.27 I ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 106.00 TO NODE 107.00 IS CODE = 31 II » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< li ELEVATION DATA: UPSTREAM(FEET) = 1439.00 DOWNSTREAM(FEET) = 1425.00 FLOW LENGTH(FEET) = 690.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 57.0 INCH PIPE IS 43.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 20.18 ESTIMATED PIPE DIAMETER(INCH) = 57.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 289.27 PIPE TRAVEL TIME(MIN.) = 0.57 Tc(MIN.) = 15.38 1: LONGEST FLOWPATH FROM NODE 101.00 TO NODE 107.00 = 5000.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** I: FLOW PROCESS FROM NODE 107.00 TO NODE 107.00 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< E MAINLINE Tc(MIN) = 15.38 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.508 SUBAREA LOSS RATE DATA(AMC III): li DEVELOPMENT TYPE/ SCS SOIL AREA FP Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 17.98 0.80 0.60 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA AREA(ACRES) = 17.98 SUBAREA RUNOFF(CFS) = 49.03 li EFFECTIVE AREA(ACRES) = 117.07 AREA - AVERAGED Fm(INCH/HR) = 0.36 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.46 TOTAL AREA(ACRES) = 126.96 PEAK FLOW RATE(CFS) = 331.14 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 107.00 TO NODE 108.00 IS CODE = 31 II » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< I ELEVATION DATA: UPSTREAM(FEET) = 1425.00 DOWNSTREAM(FEET) = 1413.00 FLOW LENGTH(FEET) = 650.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 60.0 INCH PIPE IS 47.2 INCHES 1 PIPE -FLOW VELOCITY(FEET /SEC.) = 20.00 ESTIMATED PIPE DIAMETER(INCH) = 60.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 331.14 PIPE TRAVEL TIME(MIN.) = 0.54 Tc(MIN.) = 15.92 II LONGEST FLOWPATH FROM NODE 101.00 TO NODE 108.00 = 5650.00 FEET. ********************************************** * * * * * * * * * * * * * * * * * * * * * * *. * * * * * ** II FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< Y: F60 400 Calcs H drolo \Pi eline \100YR.RMA \ \ \ \ Y gY P 1 Saved: 4/11/2002 12:02 PM Page 10 of 11 1 MAINLINE Tc(MIN) = 15.92 I * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.436 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN II RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 17.44 0.80 0.60 52 PUBLIC PARK A 2.69 0.80 0.85 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.63 SUBAREA AREA(ACRES) = 20.13 SUBAREA RUNOFF(CFS) = 53.11 li EFFECTIVE AREA(ACRES) = 137.20 AREA - AVERAGED Fm(INCH/HR) = 0.39 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.48 TOTAL AREA(ACRES) = 147.09 PEAK FLOW RATE(CFS) = 376.66 I: **************************************************************************** FLOW PROCESS FROM NODE 108.00 TO NODE 109.00 IS CODE = 31 ii » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1413.00 DOWNSTREAM(FEET) = 1395.00 II FLOW LENGTH(FEET) = 660.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 60.0 INCH PIPE IS 44.4 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 24.16 1 ESTIMATED PIPE DIAMETER(INCH) = 60.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 376.66 PIPE TRAVEL TIME(MIN.) = 0.46 Tc(MIN.) = 16.38 II LONGEST FLOWPATH FROM NODE 101.00 TO NODE 109.00 = 6310.00 FEET. + + AT CITRUS AVENUE & BASELINE AVENUE 4 - + + II ***** * *** * ***** * **** *** ** * * * * *** ** * * ** ** *** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 109.00 TO NODE 109.00 IS CODE = 81 II » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW< « « MAINLINE Tc(MIN) = 16.38 1 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.378 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN I RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 2.41 0.80 0.60 52 COMMERCIAL A 6.01 0.80 0.10 52 II SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.24 SUBAREA AREA(ACRES) = 8.42 SUBAREA RUNOFF(CFS) = 24.13 1 EFFECTIVE AREA(ACRES) = 145.62 AREA - AVERAGED Fm(INCH /HR) = 0.37 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.47 TOTAL AREA(ACRES) = 155.51 PEAK FLOW RATE(CFS) = 393.67 Y: \F60 \400 \Calcs \H drolo \Pi eline \100YR.RMA Y gY P I li I Saved: 4/11/2002 12:02 PM Page 11 of 11 END OF STUDY SUMMARY: II TOTAL AREA(ACRES) = 155.51 TC(MIN.) = 16.38 EFFECTIVE AREA(ACRES) = 145.62 AREA - AVERAGED Fm(INCH /HR)= 0.37 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.47 II PEAK FLOW RATE(CFS) = 393.67 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER li NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 393.67 16.38 3.378 0.80( 0.37) 0.47 145.6 101.00 2 372.15 19.60 3.033 0.80( 0.37) 0.47 155.5 201.00 END OF RATIONAL METHOD ANALYSIS 1 II 1 II li . II II II II II 1 li Y: \F60\ 400 \Calcs \Hydrology \Pipeline \100YR.RMA 1 Saved: 4 /11/2002 12:02 PM Page 1 of 11 ********************************************* * * * * * * * * * * ** * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -2000 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2000 License ID 1395 Analysis prepared by: BOYLE ENGINEERING CORPORATION CORPORATE HEADQUARTERS 1501 QUAIL STREET NEWPORT BEACH, CALIFORNIA, PH 949 - 476 -3300 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * CITRUS AVENUE WIDENING JN OC -F60- 400 -00 TASK 204 I: * CLIENT: CITY OF FONTANA * 100 YEAR HYDROLOGY MODELED ALONG PROPOSED PIPE ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 100YR.DAT TIME /DATE OF STUDY: 12:02 04/11/2002 I/ USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL*- - USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = 0.6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.5500 *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD* + + BEGIN AT 210 FREEWAY & OLEANDER AVENUE II + + ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 21 » » > RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 750.00 = ELEVATION DATA: UPSTREAM(FEET) = 1519.00 DOWNSTREAM(FEET) = 1504.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.391 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.716 Y: \F60 \400 \Calcs \H drolo \Pi eline \100YR.RMA Y 3Y P II Saved: 4/11/2002 12:02 PM Page 2 of 11 II SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc li LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 6.34 0.80 0.10 52 9.39 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 26.46 TOTAL AREA(ACRES) = 6.34 PEAK FLOW RATE(CFS) = 26.46 I; + + WESTERLY ALONG SOUTH HIGHLAND AVENUE I : 1' + + FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 31 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< II » »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1504.00 DOWNSTREAM(FEET) = 1502.00 I FLOW LENGTH(FEET) = 750.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 26.9 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 5.11 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 I PIPE - FLOW(CFS) = 26.46 PIPE TRAVEL TIME(MIN.) = 2.45 Tc(MIN.) = 11.84 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 103.00 = 1500.00 FEET. II + + 1 103.00 IS AT CITRUS AVENUE & S. HIGHLAND AVENUE I II 1 1 + _ + FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 81 I » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 11.84 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.105 1 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN II COMMERCIAL A 8.77 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 I SUBAREA AREA(ACRES) = 8.77 SUBAREA RUNOFF(CFS) = 31.77 EFFECTIVE AREA(ACRES) = 15.11 AREA - AVERAGED Fp(INCH/HR) = 0.08 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap =' 0.10 TOTAL AREA(ACRES) = 15.11 PEAK FLOW RATE(CFS) = 54.74 FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 31 Y: F60 400 Ca1cs H drolo Pi eline \100YR.RMA I \ \ \ Y 9Y\ P 1 Saved: 4/11/2002 12:02 PM Page 3 of 11 II » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< II » »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1502.00 DOWNSTREAM(FEET) = 1479.00 FLOW LENGTH(FEET) = 930.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 21.7 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 14.43 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 ii PIPE- FLOW(CFS) = 54.74 PIPE TRAVEL TIME(MIN.) = 1.07 Tc(MIN.) = 12.91 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 104.00 = 2430.00 FEET. 2 ..***........************.**.......****..***........******************* FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 81 I: » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 12.91 . i: * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.896 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN I/ COMMERCIAL A 5.93 0.80 0.10 52 RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 3.74 0.80 0.60 52 II SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.29 SUBAREA AREA(ACRES) = 9.67 SUBAREA RUNOFF(CFS) = 31.88 EFFECTIVE AREA(ACRES) = 24.78 AREA- AVERAGED Fm(INCH /HR) = 0.14 il AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.18 TOTAL AREA(ACRES) = 24.78 PEAK FLOW RATE(CFS) = 83.78 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 104.00 TO NODE - 105.00 IS CODE = 31 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » »>USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1479.00 DOWNSTREAM(FEET) = 1451.00 II FLOW LENGTH(FEET) = 1250.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 25.8 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 15.48 11 ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 83.78 PIPE TRAVEL TIME(MIN.) = 1.35 Tc(MIN.) = 14.26 I LONGEST FLOWPATH FROM NODE 101.00 TO NODE 105.00 = 3680.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 81 II » »> ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< 11 MAINLINE Tc(MIN) = 14.26 II *. 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.671 SUBAREA LOSS RATE DATA(AMC III): Y: \F60 \400 \Calcs \H drolo \Pi eline \100YR.RMA Y 9'Y P II Saved: 4 /11/2002 12:02 PM Page 4 of 11 il DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN li RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 13.44 0.80 0.60 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 I: SUBAREA AREA(ACRES) = 13.44 SUBAREA RUNOFF(CFS) = 38.63 EFFECTIVE AREA(ACRES) = 38.22 AREA - AVERAGED Fm(INCH /HR) = 0.26 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.32 I: TOTAL AREA(ACRES) = 38.22 PEAK FLOW RATE(CFS) = 117.39 + + 0 1 105.00 IS AT CITRUS AVENUE & WALNUT STREET 1 1 i: + + ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 105.20 TO NODE 105.20 IS CODE = 1 I: » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< TOTAL NUMBER OF STREAMS = 2 -: CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.26 RAINFALL INTENSITY(INCH /HR) = 3.67 II AREA- AVERAGED Fm(INCH /HR) = 0.26 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.32 II EFFECTIVE STREAM AREA(ACRES) = 38.22 TOTAL STREAM AREA(ACRES) = 38.22 PEAK FLOW RATE(CFS) AT CONFLUENCE = 117.39 + + I BEGIN AT OLEANDER AVENUE & S. HIGHLAND AVENUE + + ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** II FLOW_ PROCESS FROM NODE 201.00 TO NODE 20.2.00 IS CODE = 21 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 500.00 II ELEVATION DATA: UPSTREAM(FEET) = 1507.00 DOWNSTREAM(FEET) = 1495.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.699 II * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.313 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 6.34 0.80 0.10 52 7.70 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 Y : \F60\ 400\ Calcs \Hydrology\Pipeline \100YR.RMA II Saved: 4/11/2002 12:02 PM Page 5 of 11 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 29.86 li TOTAL AREA(ACRES) = 6.34 PEAK FLOW RATE(CFS) = 29.86 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 202.00 TO NODE 203.00 IS CODE = 51 1 : » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW« «< » » >TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « «< PI li ELEVATION DATA: UPSTREAM(FEET) = 1495.00 DOWNSTREAM(FEET) = 1479.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 800.00 CHANNEL SLOPE = 0.0200 I: CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 0.000 MANNING'S FACTOR = 0.025 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 29.86 FLOW VELOCITY(FEET /SEC) = 3.78 FLOW DEPTH(FEET) = 0.32 1: TRAVEL TIME(MIN.) = 3.52 Tc(MIN.) = 11.22 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 203.00 = 1300.00 FEET. Illi ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 203.00 TO NODE 203.00 IS CODE = 81 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « < I: MAINLINE Tc(MIN) = 11.22 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.238 li SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap - SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 12.21 0.80 0.60 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 ii - SUBAREA AREA(ACRES) = 12.21 SUBAREA RUNOFF(CFS) = 41.32 EFFECTIVE AREA(ACRES) = 18.55 AREA - AVERAGED Fm(INCH /HR) = 0.34 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.43 I: TOTAL AREA(ACRES) = 18.55 PEAK FLOW RATE(CFS) = 65.05 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** II FLOW PROCESS FROM NODE 203.00 TO NODE 204.00 IS CODE = 51 » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW« «< » » >TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « « < 11 ELEVATION DATA: UPSTREAM(FEET) = 1479.00 DOWNSTREAM(FEET) = 1457.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 930.00 CHANNEL SLOPE = 0.0237 II CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 0.000 MANNING'S FACTOR = 0.025 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 65.05 FLOW VELOCITY(FEET /SEC) = 5.45 FLOW DEPTH(FEET) = 0.48 II TRAVEL TIME(MIN.) = 2.85 Tc(MIN.) = 14.07 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 204.00 = 2230.00 FEET. II ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 204.00 TO NODE 204.00 IS CODE = 81 E Y: \F60\400\Calcs\Hydrology\Pipeline\100YR.RMA II Saved: 4/11/2002 12:02 PM Page 6 of 11 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< li MAINLINE Tc(MIN) = 14.07 . * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.701 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS I: LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 14.62 0.80 0.60 52 i: SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA AREA(ACRES) = 14.62 SUBAREA RUNOFF(CFS) = 42.41 E: EFFECTIVE AREA(ACRES) = 33.17 AREA- AVERAGED Fm(INCH /HR) = 0.40 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 33.17 PEAK FLOW RATE(CFS) = 98.49 + + WESTERLY ALONG WALNUT STREET TOWARDS CITRUS AVENUE 1 e,, I 1 + + ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** : FLOW PROCESS FROM NODE 204.00 TO NODE 205.00 IS CODE = 62 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< I: » »> (STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1457.00 DOWNSTREAM ELEVATION(FEET) = 1453.00 I: STREET LENGTH(FEET) = 730.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 . DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 li -. INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.0I13 I: SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 II Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 126.33 ** *STREET FLOWING FULL * ** II STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.89 HALFSTREET FLOOD WIDTH(FEET) = 41.38 II AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.10 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 3.67 STREET FLOW TRAVEL TIME(MIN.) = 2.97 Tc(MIN.) = 17.04 II * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.299 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN II COMMERCIAL A 8.52 0.80 0.10 52 RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 12.19 0.80 0.60 52 II Y: \F60\ 400 \Calcs \Hydrology \Pipeline \100YR.RMA Saved: 4/11/2002 12:02 PM Page 7 of 11 ri li SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.39 SUBAREA AREA(ACRES) = 20.71 SUBAREA RUNOFF(CFS) = 55.64 EFFECTIVE AREA(ACRES) = 53.88 AREA- AVERAGED Fm(INCH /HR) = 0.37 . AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.46 TOTAL AREA(ACRES) = 53.88 PEAK FLOW RATE(CFS) = 142.15 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.93 HALFSTREET FLOOD WIDTH(FEET) = 42.97 II FLOW VELOCITY(FEET /SEC.) = 4.25 DEPTH *VELOCITY(FT *FT /SEC.) = 3.93 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS, AND L = 730.0 FT WITH ELEVATION -DROP = 4.0 FT, IS 69.9 CFS., 1: WHICH EXCEEDS THE TOP -OF -CURB STREET CAPACITY AT NODE 205.00 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 205.00 = 2960.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 205.00 TO NODE 105.00 IS CODE = 31 » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) «<« ELEVATION DATA: UPSTREAM(FEET) = 1453.00 DOWNSTREAM(FEET) = 1451.00 FLOW LENGTH(FEET) = 290.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 54.0 INCH PIPE IS 39.8 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 11.31 ESTIMATED PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 142.15 PIPE TRAVEL TIME(MIN.) = 0.43 Tc(MIN.) = 17.46 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 105.00 = 3250.00 FEET. 1: + + 1 105.2 IS THE CONFLUENCE AT CITRUS AVENUE & WALNUT STREET E 1 1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 105.20 TO NODE 105.20 IS CODE = 1 II » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< » »>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< TOTAL NUMBER OF STREAMS = 2 11 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 17.46 RAINFALL INTENSITY(INCH /HR) = 3.25 II AREA- AVERAGED Fm(INCH /HR) = 0.37 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.46 I EFFECTIVE STREAM AREA(ACRES) = 53.88 TOTAL STREAM AREA(ACRES) = 53.88 PEAK FLOW RATE(CFS) AT CONFLUENCE = 142.15 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE Y: \F60\ 400 \Ca1cs \Hydrology \Pipeline \100YR.RMA II Saved: 4/11/2002 12:02 PM Page 8 of 11 II 1 117.39 14.26 3.671 0.80( 0.26) 0.32 38.2 101.00 2 142.15 17.46 3.251 0.80( 0.37) 0.46 53.9 201.00 ii RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE i: 1 250.38 14.26 3.671 0.80( 0.32) 0.40 82.2 101.00 2 245.07 17.46 3.251 0.80( 0.32) 0.41 92.1 201.00 1: COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 250.38 Tc(MIN.) = 14.26 EFFECTIVE AREA(ACRES) = 82.21 AREA - AVERAGED Fm(INCH /HR) = 0.32 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.40 I: TOTAL AREA(ACRES) = 92.10 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 105.20 = 3680.00 FEET. SOUTHERLY ALONG CITRUS AVENUE SOUTH OF WALNUT STREET I E I I + + ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 105.20 TO NODE 106.00 IS CODE = 31 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< I: . » »>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1451.00 DOWNSTREAM(FEET) = 1439.00 FLOW LENGTH(FEET) = 630.00 MANNING'S N = 0.013 li - DEPTH OF FLOW IN 54.0 INCH PIPE IS 41.9 INCHES Tt PIPE -FLOW VELOCITY(FEET /SEC.) = 18.92 ESTIMATED PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 250.38 PIPE TRAVEL TIME(MIN.) = 0.55 Tc(MIN.) = 14.81 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 106.00 = 4310.00 FEET. I ********************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 81 II » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 14.81 il * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.588 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS I LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN ENTIAL "3 -4 DWELLINGS /ACRE" A 16.88 0.80 0.60 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA AREA(ACRES) = 16.88 SUBAREA RUNOFF(CFS) = 47.25 EFFECTIVE AREA(ACRES) = 99.09 AREA - AVERAGED Fm(INCH /HR) = 0.34 Y: \F60\ 400 \Ca \Hydrology \Pipeline \100YR.RMA II Saved: 4/11/2002 12 :02 PM Page 9 of 11 II AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.43 TOTAL AREA(ACRES) = 108.98 PEAK FLOW RATE(CFS) = 289.27 I ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 106.00 TO NODE 107.00 IS CODE = 31 I » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« « < » »>USING COMPUTER- ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1439.00 DOWNSTREAM(FEET) = 1425.00 FLOW LENGTH(FEET) = 690.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 57.0 INCH PIPE IS 43.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 20.18 ESTIMATED PIPE DIAMETER(INCH) = 57.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 289.27 PIPE TRAVEL TIME(MIN.) = 0.57 Tc(MIN.) = 15.38 I: LONGEST FLOWPATH FROM NODE 101.00 TO NODE 107.00 = 5000.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** I: FLOW PROCESS FROM NODE 107.00 TO NODE 107.00 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«< « II MAINLINE Tc(MIN) = 15.38 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.508 SUBAREA LOSS RATE DATA(AMC III): II DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL li "3 -4 DWELLINGS /ACRE" A 17.98 0.80 0.60 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA AREA(ACRES) = 17.98 SUBAREA RUNOFF(CFS) = 49.03 I: - EFFECTIVE AREA(ACRES) = 117.07 AREA - AVERAGED Fm(INCH/HR) = 0.36 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.46 TOTAL AREA(ACRES) = 126.96 PEAK FLOW RATE(CFS) = 331.14 I: ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 107.00 TO NODE 108.00 IS CODE = 31 II » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » »>USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< 1 ELEVATION DATA: UPSTREAM(FEET) = 1425.00 DOWNSTREAM(FEET) = 1413.00 FLOW LENGTH(FEET) = 650.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 60.0 INCH PIPE IS 47.2 INCHES II PIPE -FLOW VELOCITY(FEET /SEC.) = 20.00 ESTIMATED PIPE DIAMETER(INCH) = 60.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 331.14 PIPE TRAVEL TIME(MIN.) = 0.54 Tc(MIN.) = 15.92 11 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 108.00 = 5650.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « < Y: \F60\ 400 \Calcs \Hydrology \Pipeline \100YR.RMA Saved: 4/11/2002 12:02 PM Page 10 of 11 II MAINLINE Tc(MIN) = 15.92 I; * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.436 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 17.44 0.80 0.60 52 PUBLIC PARK A 2.69 0.80 0.85 52 1: SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.63 SUBAREA AREA(ACRES) = 20.13 SUBAREA RUNOFF(CFS) = 53.11 1: EFFECTIVE AREA(ACRES) = 137.20 AREA- AVERAGED Fm(INCH /HR) = 0.39 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.48 TOTAL AREA(ACRES) = 147.09 PEAK FLOW RATE(CFS) = 376.66 r **************************************************************************** FLOW PROCESS FROM NODE 108.00 TO NODE 109.00 IS CODE = 31 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « « < ELEVATION DATA: UPSTREAM(FEET) = 1413.00 DOWNSTREAM(FEET) = 1395.00 FLOW LENGTH(FEET) = 660.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 60.0 INCH PIPE IS 44.4 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 24.16 ESTIMATED PIPE DIAMETER(INCH) = 60.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 376.66 PIPE TRAVEL TIME(MIN.) = 0.46 Tc(MIN.) = 16.38 li LONGEST FLOWPATH FROM NODE 101.00 TO NODE 109.00 = 6310.00 FEET. + + AT CITRUS AVENUE & BASELINE AVENUE 1 + + I **** ****** ************** ********************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 109.00 TO NODE 109.00 IS CODE = 81 II »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 16.38 II * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.378 _ SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS II LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 2.41 0.80 0.60 52 COMMERCIAL A 6.01 0.80 0.10 52 II SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.24 SUBAREA AREA(ACRES) = 8.42 SUBAREA RUNOFF(CFS) = 24.13 II EFFECTIVE AREA(ACRES) = 145.62 AREA - AVERAGED Fm(INCH /HR) = 0.37 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.47 TOTAL AREA(ACRES) = 155.51 PEAK FLOW RATE(CFS) = 393.67 Y: \F60\ 400 \Ca1cs \Hydrology \Pipeline \100YR.RMA 1 Saved: 4/11/2002 12:02 PM Page 11 of 11 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 155.51 TC(MIN.) = 16.38 EFFECTIVE AREA(ACRES) = 145.62 AREA - AVERAGED Fm(INCH /HR)= 0.37 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.47 PEAK FLOW RATE(CFS) = 393.67 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 393.67 16.38 3.378 0.80( 0.37) 0.47 145.6 101.00 2 372.15 19.60 3.033 0.80( 0.37) 0.47 155.5 201.00 END OF RATIONAL METHOD ANALYSIS 1 1 1 1 1 1 Y: \F60 \400 \Calcs \Hydrology \Pipeline \100YR.RMA Saved: 4/11/2002 1:28 PM Page 1 of 15 1: ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 1: RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -2000 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2000 License ID 1395 Analysis prepared by: BOYLE ENGINEERING CORPORATION CORPORATE HEADQUARTERS 1501 QUAIL STREET NEWPORT BEACH, CALIFORNIA, PH 949- 476 -3300 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** • * CITRUS AVENUE WIDENING JN OC -F60- 400 -00 TASK 204 * CLIENT: CITY OF FONTANA * 25 YEAR HYDROLOGY MODELED FOR PROPOSED CATCH BASINS ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 25YRCB.DAT TIME /DATE OF STUDY: 13:28 04/11/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL*- - : USER SPECIFIED STORM EVENT(YEAR) = 25.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = 0.6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.2500 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* I; + + BEGIN AT 210 FREEWAY AND CITRUS AVENUE + + ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 21 » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 1000.00 ELEVATION DATA: UPSTREAM(FEET) = 1520.00 DOWNSTREAM(FEET) = 1494.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.997 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.663 ` Y: \F60\ 400 \Calcs\ Hydrology \CatchBasin \25YRCB.RMA . _ __ li Saved: 4/11/2002 1:28 PM Page 2 of 15 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 4.60 0.98 0.10 32 10.00 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 14.76 TOTAL AREA(ACRES) = 4.60 PEAK FLOW RATE(CFS) = 14.76 1: **************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 62 1: » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »> (STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1494.00 DOWNSTREAM ELEVATION(FEET) = 1479.00 1: STREET LENGTH(FEET) = 660.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 I: DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 29.64 li STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.60 , HALFSTREET FLOOD WIDTH(FEET) = 24.26 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.44 '' - PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 3.24 STREET FLOW TRAVEL TIME(MIN.) = 2.02 Tc(MIN.) = 12.02 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.280 ,,.; SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN II COMMERCIAL A 10.38 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 10.38 SUBAREA RUNOFF(CFS) = 29.73 II EFFECTIVE AREA(ACRES) = 14.98 AREA - AVERAGED Fm(INCH /HR) = 0.10 AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 14.98 PEAK FLOW RATE(CFS) = 42.91 II END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.66 HALFSTREET FLOOD WIDTH(FEET) = 28.09 FLOW VELOCITY(FEET /SEC.) = 5.93 DEPTH *VELOCITY(FT *FT /SEC.) = 3.94 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 103.00 = 1660.00 FEET. + + il 1 104.00 IS PROPOSED CATCH BASIN AT NORTHEAST CORNER (ECR) 1 OF CITRUS AVENUE & WALNUT STREET Y : \F60\ 400 \Calcs\ Hydrology \CatchBasin \25YRCB.RMA II Saved: 4/11/2002 1:28 PM Page 3 of 15 + + ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 62 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »> (STREET TABLE SECTION # 1 USED) «<« UPSTREAM ELEVATION(FEET) = 1479.00 DOWNSTREAM ELEVATION(FEET) = 1452.50 : STREET LENGTH(FEET) = 1220.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 1: DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 ii SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 li Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 58.34 ** *STREET FLOW SPLITS OVER STREET- CROWN * ** FULL DEPTH(FEET) = 0.70 FLOOD WIDTH(FEET) = 31.58 FULL HALF - STREET VELOCITY(FEET /SEC.) = 6.05 SPLIT DEPTH(FEET) = 0.43 SPLIT FLOOD WIDTH(FEET) = 14.73 illi SPLIT FLOW(CFS) = 8.37 SPLIT VELOCITY(FEET /SEC.) = 3.93 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.70 II HALFSTREET FLOOD WIDTH(FEET) = 31.58 AVERAGE FLOW VELOCITY(FEET /SEC.) = 6.05 PRODUCT OF DEPTH & VELOCITY(FT*FT /SEC.) = 4.23 STREET FLOW TRAVEL TIME(MIN.) = 3.36 Tc(MIN.) = 15.38 I: - * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.829 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 15.28 0.98 0.60 32 II SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = -0.60 SUBAREA AREA(ACRES) = 15.28 SUBAREA RUNOFF(CFS) = 30.86 EFFECTIVE AREA(ACRES) = 30.26 AREA - AVERAGED Fm(INCH /HR) = 0.34 1 AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.35 TOTAL AREA(ACRES) = 30.26 PEAK FLOW RATE(CFS) = 67.69 II END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.70 HALFSTREET FLOOD WIDTH(FEET) = 31.58 FLOW VELOCITY(FEET /SEC.) = 6.05 DEPTH *VELOCITY(FT *FT /SEC.) = 4.23 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 104.00 = 2880.00 FEET. II + + BEGIN AT HIGHLAND AVENUE & OLEANDER AVENUE + + I: Y: \F60\ 400 \Calcs\ Hydrology \ \25YRCB.RMA II Saved: 4/11/2002 1:28 PM Page 4 of 15 II ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** II FLOW PROCESS FROM NODE 115.00 TO NODE 121.00 IS CODE = 21 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « « < »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 550.00 ELEVATION DATA: UPSTREAM(FEET) = 1507.00 DOWNSTREAM(FEET) = 1495.00 li Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.152 I: * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 4.140 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) ii COMMERCIAL A 6.34 0.98 0.10 32 8.15 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 li SUBAREA RUNOFF(CFS) = 23.07 TOTAL AREA(ACRES) = 6.34 PEAK FLOW RATE(CFS) = 23.07 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 121.00 TO NODE 122.00 IS CODE = 51 » »>COMPUTE TRAPEZOIDAL CHANNEL FLOW« «< » »>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)« «< ELEVATION DATA: UPSTREAM(FEET) = 1495.00 DOWNSTREAM(FEET) = 1478.00 II CHANNEL LENGTH THRU SUBAREA(FEET) = 800.00 CHANNEL SLOPE = 0.0213 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR =. 0.000 , MANNING'S FACTOR = 0.025 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 23.07 1: - FLOW VELOCITY(FEET /SEC) = 3.52 FLOW DEPTH(FEET) = 0.26 TRAVEL TIME(MIN.) = 3.79 Tc(MIN.) = 11.94 LONGEST FLOWPATH FROM NODE 115.00 TO NODE 122.00 = 1350.00 FEET. I: ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 122.00 TO NODE 122.00 IS CODE = 81 II » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « « MAINLINE Tc(MIN) = 11.94 II * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.293 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS II LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 12.21 0.98 0.60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 II SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA AREA(ACRES) = 12.21 SUBAREA RUNOFF(CFS) = 29.76 EFFECTIVE AREA(ACRES) = 18.55 AREA- AVERAGED Fm(INCH/HR) = 0.42 II AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.43 TOTAL AREA(ACRES) = 18.55 PEAK FLOW RATE(CFS) = 47.99 Y: \F60\ 400 \Calcs\ Hydrology \CatchBasin \25YRCB.RMA Saved: 4/11/2002 1:28 PM Page 5 of 15 FLOW PROCESS FROM NODE 122.00 TO NODE 123.00 IS CODE = 51 » »>COMPUTE TRAPEZOIDAL CHANNEL FLOW« «< » »>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « «< ELEVATION DATA: UPSTREAM(FEET) = 1479.00 DOWNSTREAM(FEET) = 1451.50 CHANNEL LENGTH THRU SUBAREA(FEET) = 1950.00 CHANNEL SLOPE = 0.0141 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 0.000 MANNING'S FACTOR = 0.025 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 47.99 FLOW VELOCITY(FEET /SEC) = 4.15 FLOW DEPTH(FEET) = 0.46 TRAVEL TIME(MIN.) = 7.83 Tc(MIN.) = 19.77 LONGEST FLOWPATH FROM NODE 115.00 TO NODE 123.00 = 3300.00 FEET. + + II 1 123.00 IS PROPOSED CATCH BASIN AT NORTHEAST CORNER (BCR) OF WALNUT STREET & CITRUS AVENUE ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 123.00 TO NODE 123.00 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « < II MAINLINE Tc(MIN) = 19.77 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.433 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA FP Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 18.93 0.98 0.60 32 II - SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 "1 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA AREA(ACRES) = 18.93 SUBAREA RUNOFF(CFS) = 31.49 EFFECTIVE AREA(ACRES) = 37.48 AREA - AVERAGED Fm(INCH/HR) = 0.50 AREA - AVERAGED Fp(INCH/HR) = 0.97 AREA - AVERAGED Ap = 0.52 TOTAL AREA(ACRES) = 37.48 PEAK FLOW RATE(CFS) = 65.12 1 BEGIN SOUTH SIDE OF WALNUT STREET AT OLEANDER AVENUE. FLOW WESTERLY TOWARDS CITRUS AVENUE. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 130.00 TO NODE 131.00 IS CODE = 21 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< II »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 670.00 II ELEVATION DATA: UPSTREAM(FEET) = 1459.00 DOWNSTREAM(FEET) = 1455.00 Tc = K*[(LENGTH** 3.00) /(ELEVATION CHANGE)]* *0.20 ,.° Y: \F60\ 400 \Ca1cs\ Hydrology \CatchBasin \25YRCB.RMA Saved: 4/11/2002 1:28 PM Page 6 of 15 II SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 15.493 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.817 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap _ SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL II "3 -4 DWELLINGS /ACRE" A 0.46 0.98 0.60 32 15.49 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap 0.60 SUBAREA RUNOFF(CFS) = 0.92 TOTAL AREA(ACRES) = 0.46 PEAK FLOW RATE(CFS) = 0.92 + + 132.00 IS PROPOSED CATCH BASIN AT SOUTHEAST CORNER (ECR) OF WALNUT STREET AND CITRUS AVENUE + + ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** li FLOW PROCESS FROM NODE 131.00 TO NODE 132.00 IS CODE = 62 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« « < » »>( STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1455.00 DOWNSTREAM ELEVATION(FEET) = 1451.50 STREET LENGTH(FEET) = 670.00 CURB HEIGHT(INCHES) = 8.0 II STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 II INSIDE STREET CROSSFALL(DECIMAL) = 0.018 , OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.26 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 8.53 AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.50 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 0.47 II STREET FLOW TRAVEL TIME(MIN.)_= 7.45 Tc(MIN.) = 22.94 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.225 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 0.46 0.98 0.60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA AREA(ACRES) = 0.46 SUBAREA RUNOFF(CFS) = 0.68 II EFFECTIVE AREA(ACRES) = 0.92 AREA- AVERAGED Fm(INCH /HR) = 0.59 AREA- AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.60 TOTAL AREA(ACRES) = 0.92 PEAK FLOW RATE(CFS) = 1.36 11Y:\F60\400\Calcs\Rydrology\CatchBasin\25YRCB.RMA , II Saved: 4 /11/2002 1:28 PM Page 7 of 15 II END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) = 8.91 FLOW VELOCITY(FEET /SEC.) = 1.51 DEPTH *VELOCITY(FT *FT /SEC.) = 0.48 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 132.00 = 1340.00 FEET. + + BEGIN AT 210 FREEWAY, WEST SIDE OF CITRUS AVENUE E ' + I: ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 141.00 TO NODE 142.00 IS CODE = 21 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « « < e- »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 1000.00 i: ELEVATION DATA: UPSTREAM(FEET) = 1516.00 DOWNSTREAM(FEET) = 1488.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 I: SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.850 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.696 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA FP Ap SCS Tc II LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 0.40 0.98 0.10 32 9.85 RESIDENTIAL I "3 -4 DWELLINGS /ACRE" A 2.31 0.98 0.60 32 13.35 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = ,0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.53, SUBAREA RUNOFF(CFS) = 7.76 TOTAL AREA(ACRES) = 2.71 PEAK FLOW RATE(CFS) = 7.76 + + 1 143.00 IS PROPOSED CATCH BASIN AT NORTHWEST CORNER OF I I WALNUT STREET AND CITRUS AVENUE I I II + ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 142.00 TO NODE 143.00 IS CODE = 62 II » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »> (STREET TABLE SECTION # 1 USED) « «< II UPSTREAM ELEVATION(FEET) = 1488.00 DOWNSTREAM ELEVATION(FEET) = 1453.00 STREET LENGTH(FEET) = 1560.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 II DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 II OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Y: \F60\ 400 \Calcs\ Hydrology \CatchBasin \25YRCB.RMA II Saved: 4/11/2002 1:28 PM Page 8 of 15 II STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 II Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 14.27 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.49 HALFSTREET FLOOD WIDTH(FEET) = 18.24 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.51 li . PRODUCT OF DEPTH & VELOCITY(FT*FT /SEC.) = 2.20 STREET FLOW TRAVEL TIME(MIN.) = 5.77 Tc(MIN.) = 15.62 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.803 li SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS .LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL li "3 -4 DWELLINGS /ACRE" A 6.43 0.98 0.60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 II SUBAREA AREA(ACRES) = 6.43 SUBAREA RUNOFF(CFS) -= 12.84 EFFECTIVE AREA(ACRES) = 9.14 AREA - AVERAGED Fm(INCH /HR) = 0.56 AREA- AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.58 II TOTAL AREA(ACRES) = 9.14 PEAK FLOW RATE(CFS) = 18.42 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.52 HALFSTREET FLOOD WIDTH(FEET) = 20.20 II FLOW VELOCITY(FEET /SEC.) = 4.80 DEPTH *VELOCITY(FT *FT /SEC.) = 2.51 LONGEST FLOWPATH FROM NODE 141.00 TO NODE 143.00 = 2560.00 FEET. + + 146.00 IS PROPOSED CATCH BASIN ON WEST SIDE OF CITRUS AVENUE 650 FEET SOUTH OF WALNUT STREET II I Ii # - + ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** I FLOW PROCESS FROM NODE 145.00 TO NODE 146.00 IS CODE = 21 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< II »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 850.00 ELEVATION DATA: UPSTREAM(FEET) = 1451.50 DOWNSTREAM(FEET) = 1438.50 I Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 14.118 11 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.978 il SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) II RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 2.49 0.98 0.60 32 14.12 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 II SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA RUNOFF(CFS) = 5.36 TOTAL AREA(ACRES) = 2.49 PEAK FLOW RATE(CFS) = 5.36 1 / Y:\F60\ 400 \Calcs\ Hydrology \CatchBasin \25YRCB.RMA II Saved: 4/11/2002 1:28 PM Page 9 of 15 I ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** II FLOW PROCESS FROM. NODE 150.00 TO NODE 151.00 IS CODE = 21 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 940.00 ELEVATION DATA: UPSTREAM(FEET) = 1457.00 DOWNSTREAM(FEET) = 1443.00 ii Tc = K *[(LENGTH * * - 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 14.776 II * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.898 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) I: RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 4.78 0.98 0.60 32 14.78 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 I; SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA RUNOFF(CFS) = 9.95 TOTAL AREA(ACRES) = 4.78 PEAK FLOW RATE(CFS) = 9.95 li + + 152.00 IS PROPOSED CATCH BASIN ON EAST SIDE OF CITRUS AVENUE 650 FEET SOUTH OF WALNUT STREET + + I ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 151.00 TO NODE 152.00 IS CODE = 62 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< II - » »> (STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1443.00 DOWNSTREAM ELEVATION(FEET) = 1439.00 II STREET LENGTH(FEET) = 680.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 I DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 II SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 II Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 18.34 il STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.63 HALFSTREET FLOOD WIDTH(FEET) = 26.21 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.90 II PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.83 STREET FLOW TRAVEL TIME(MIN.) = 3.91 Tc(MIN.) = 18.69 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.517 Calcs \H drolo Y: F60 400 \CatchBasin \25YRCB.RMA \ \ I Y gY 4 II Saved: 4/11/2002 1:28 PM Page 10 of 15 II SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS I/ LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 9.62 0.98 0.60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA AREA(ACRES) = 9.62 SUBAREA RUNOFF(CFS) = 16.73 EFFECTIVE AREA(ACRES) = 14.40 AREA - AVERAGED Fm(INCH/HR) = 0.59 ii AREA- AVERAGED Fp(IN.CH /HR) = 0.98 AREA- AVERAGED Ap = 0.60 TOTAL AREA(ACRES) = 14.40 PEAK FLOW RATE(CFS) = 25.04 I: END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.69 HALFSTREET FLOOD WIDTH(FEET) = 30.77 FLOW VELOCITY(FEET /SEC.) = 3.12 DEPTH *VELOCITY(FT *FT /SEC.) = 2.16 LONGEST FLOWPATH FROM NODE 150.00 TO NODE 152.00 = 1620.00 FEET. I: + + 1 156.00 IS PROPOSED CATCH BASIN ON NORTHWEST CORNER (BCR) OF I I CITRUS AVENUE AND CHASE ROAD il I I + I ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 155.00 TO NODE 156.00 IS CODE = 21 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « « < »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« II INITIAL SUBAREA FLOW - LENGTH(FEET) = 880.00 ELEVATION DATA: UPSTREAM(FEET) = 1439.00, DOWNSTREAM(FEET) = 1424.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 14.008 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.992 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 2.92 0.98 0.60 32 14.01 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA RUNOFF(CFS) = 6.33 II TOTAL AREA(ACRES) = 2.92 PEAK FLOW RATE(CFS) = 6.33 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** II FLOW PROCESS FROM NODE 157.00 TO NODE 158.00 IS CODE = 21 VI » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « « < II »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 970.00 • ELEVATION DATA: UPSTREAM(FEET) = 1443.00 DOWNSTREAM(FEET) = 1430.00 il Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 15.282 Y:\F60\ 400 Calcs H drolo CatchBasin � � I � Y 9Y� 25YRCB.RMA � II - Saved: 4/11/2002 1:28 PM Page 11 of 15 1 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.840 SUBAREA Tc AND LOSS RATE DATA(AMC II): II DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL I! "3 -4 DWELLINGS /ACRE" A 5.02 0.98 0.60 32 15.28 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA RUNOFF(CFS) = 10.19 II TOTAL AREA(ACRES) = 5.02 PEAK FLOW RATE(CFS) = 10.19 + + 11 I 159.00 IS PROPOSED CATCH BASIN AT NORTHEAST CORNER (ECR) OF CITRUS AVENUE AND CHASE ROAD + li + ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 158.00 TO NODE 159.00 IS CODE = 62 I » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »> (STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1430.00 DOWNSTREAM ELEVATION(FEET) = 1425.00 STREET LENGTH(FEET) = 740.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 I: DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 I OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 II STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 - Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 _ .__ Manning's FRICTION FACTOR for Back-of-Walk Section = 0.0200 li * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 18.78 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.62 II HALFSTREET FLOOD WIDTH(FEET) = 25.74 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.07 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.91 STREET FLOW TRAVEL TIME(MIN.) = 4.01 Tc(MIN.) = 19.30 II * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.469 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS II LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 10.10 0.98 0.60 32 II SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA AREA(ACRES) = 10.10 SUBAREA RUNOFF(CFS) = 17.13 EFFECTIVE AREA(ACRES) = 15.12 AREA- AVERAGED Fm(INCH /HR) = 0.58 II AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.60 TOTAL AREA(ACRES) = 15.12 PEAK FLOW RATE(CFS) = 25.64 ii Y:\F60\400\Calcs\Hydrology\CatchBasin\25YRCB.RMA 1 Saved: 4/11/2002 1:28 PM Page 12 of 15 II END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.68 HALFSTREET FLOOD WIDTH(FEET) = 29.73 II FLOW VELOCITY(FEET /SEC.) = 3.32 DEPTH *VELOCITY(FT *FT /SEC,) = 2.26 LONGEST FLOWPATH FROM NODE 157.00 TO NODE 159.00 = 1710.00 FEET. II FLOW PROCESS FROM NODE 161.00 TO NODE 162.00 IS CODE = 21 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< li »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 1080.00 ii ELEVATION DATA: UPSTREAM(FEET) = 1430.00 DOWNSTREAM(FEET) = 1414.50 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 15.736 ii * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.790 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA FP Ap SCS Tc I LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "3 -4 DWELLINGS /ACRE" .. A 5.83 0.98 0.60 32 15.74 II SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA RUNOFF(CFS) = 11.57 TOTAL AREA(ACRES) = 5.83 PEAK FLOW RATE(CFS) = 11.57 + + 163.00 IS CATCH BASIN ON EAST SIDE OF CITRUS AVENUE I 1 650 FEET NORTH OF BASELINE AVENUE II I + I ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 162.00 TO NODE 163.00 IS CODE = 62 II » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » » > (STREET TABLE SECTION ## 1 USED) « «< I UPSTREAM ELEVATION(FEET) = 1414.50 DOWNSTREAM ELEVATION(FEET) = 1410.00 il STREET LENGTH(FEET) = 690.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 11 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 1 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 II Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 21.40 II STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.65 HALFSTREET FLOOD WIDTH(FEET) = 27.30 li C al H rol CatchBasin 25YRCB.RMA Y: \ F60 \400\ cs\ yd ogy\ \ • Saved: 4/11/2002 1:28 PM Page 13 of 15 1 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.12 PRODUCT OF DEPTH & VELOCITY(FT*FT /SEC.) = 2.03 STREET FLOW TRAVEL TIME(MIN.) = 3.68 Tc(MIN.) = 19.42 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.460 SUBAREA LOSS RATE DATA(AMC_ II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 11.61 0.98 0.60 32 li SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA AREA(ACRES) = 11.61 SUBAREA RUNOFF(CFS) = 19.59 Il EFFECTIVE AREA(ACRES) = 17.44 AREA - AVERAGED Fm(INCH /HR) = 0.59 AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.60 TOTAL AREA(ACRES) = 17.44 PEAK FLOW RATE(CFS) = 29.42 ii END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.70 HALFSTREET FLOOD WIDTH(FEET) = 31.58 FLOW VELOCITY(FEET /SEC.) = 3.32 DEPTH *VELOCITY(FT *FT /SEC.) = 2.32 i: *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS, AND L = 690.0 FT WITH ELEVATION -DROP = 4.5 FT, IS 23.4 CFS, WHICH EXCEEDS THE TOP -OF -CURB STREET CAPACITY AT NODE 163.00 LONGEST FLOWPATH FROM NODE 161.00 TO NODE 163.00 = 1770.00 FEET. + + 1 165.00 IS PROPOSED CATCH BASIN ON WEST SIDE OF CITRUS AVENUE II 1 650 FEET NORTH OF BASELINE AVENUE I I I + +. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 165.00 TO NODE 166.00 IS CODE = 21 I: » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< , »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« ii INITIAL SUBAREA FLOW - LENGTH(FEET) = 840.00 ELEVATION DATA: UPSTREAM(FEET) = 1423.00 DOWNSTREAM(FEET) = 1410.50 I Tc = K *((LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 Mi SUBAREA ANALYSIS U$ED MINIMUM Tc(MIN.) = 16.563 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.706 SUBAREA Tc AND LOSS RATE DATA(AMC II): II DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) PUBLIC PARK A 2.69 0.98 0.85 32 16.56 II SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.85 SUBAREA RUNOFF(CFS) = 4.54 TOTAL AREA(ACRES) = 2.69 PEAK FLOW RATE(CFS) = 4.54 III + + 1 172.00 IS PROPOSED CATCH BASIN AT NORTHWEST CORNER (BCR) OF I II I CITRUS AVENUE AND BASELINE AVENUE I I I + i . Y : \F60 \400 \Calcs \H drolo \CatchBasin \25YRCB.RMA Y gY II Saved: 4/11/2002 1:28 PM Page 14 of 15 II ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** II FLOW PROCESS FROM NODE 171.00 TO NODE 172.00 IS CODE = 21 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« ii INITIAL SUBAREA FLOW - LENGTH(FEET) = 780.00 ELEVATION DATA: UPSTREAM(FEET) = 1410.00 DOWNSTREAM(FEET) = 1395.00 I! Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.614 il * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.750 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) li COMMERCIAL A 2.60 0.98 0.10 32 9.61 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 8.55 il TOTAL AREA(ACRES) = 2.60 PEAK FLOW RATE(CFS) = 8.55 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** II FLOW PROCESS FROM NODE 175.00 TO NODE 176.00 IS CODE = 21 ›››RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< 11 • »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 620.00 1: ELEVATION DATA: UPSTREAM(FEET) = 1415.50 DOWNSTREAM(FEET) = 1411.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 14.444 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = _2.938 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 1.13 0.98 0.60 32 14.44 II SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA RUNOFF(CFS) = 2.39 TOTAL AREA(ACRES) = 1.13 PEAK FLOW RATE(CFS) = 2.39 II ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 176.00 TO NODE 177.00 IS CODE = 51 II » »>COMPUTE TRAPEZOIDAL CHANNEL FLOW« «< » »>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « «< II ELEVATION DATA: UPSTREAM(FEET) = 1411.00 DOWNSTREAM(FEET) = 1396.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 720.00 CHANNEL SLOPE = 0.0208 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 0.000 II MANNING'S FACTOR = 0.025 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 2.39 FLOW VELOCITY(FEET /SEC) = 1.45 FLOW DEPTH(FEET) = 0.07 1 Y: F60 400 Ca1cs H drolo CatchBasin � � � � Y gY� 25YRCB.RMA I II Saved: 4/11/2002 1:28 PM Page 15 of 15 1 TRAVEL TIME(MIN.) = 8.25 Tc(MIN.) = 22.70 LONGEST FLOWPATH FROM NODE 175.00 TO NODE 177.00 = 1340.00 FEET. ,177.00 IS PROPOSED CATCH BASIN AT NORTHEAST CORNER (ECR) OF CITRUS AVENUE AND BASELINE AVENUE I I FLOW PROCESS FROM NODE 177.00 TO NODE 177.00 IS CODE = 81 > »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 22.70 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.240 I/ SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 1.28 0.98 0.60 32 COMMERCIAL A 3.41 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 II SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.24 SUBAREA AREA(ACRES) = 4.69 SUBAREA RUNOFF(CFS) = 8.48 EFFECTIVE AREA(ACRES) = 5.82 AREA - AVERAGED Fm(INCH /HR) = 0.30 AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.31 TOTAL AREA(ACRES) = 5.82 PEAK FLOW RATE(CFS) = 10.16 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 5.82 TC(MIN.) = 22.70 EFFECTIVE AREA(ACRES) = 5.82 AREA - AVERAGED Fm(INCH /HR)= 0.30 AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.31 PEAK FLOW RATE(CFS) = 10.16 II END OF RATIONAL METHOD ANALYSIS 1 Y:\F60\ 400\ Calcs\ Hydrology\CatchBasin \25YRCB.RMA 1 Saved: 4/10/2002 11:31 AM Page 1 of 4 1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** • RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -2000 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2000 License ID 1395 I! Analysis prepared by: 1: BOYLE ENGINEERING CORPORATION CORPORATE HEADQUARTERS 1501 QUAIL STREET NEWPORT BEACH, CALIFORNIA, PH 949- 476 -3300 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * CITRUS AVENUE WIDENING JN OC -F60- 400 -00 TASK 204 1: * CLIENT: CITY OF FONTANA * 100 YEAR HYDROLOGY FOR SUMP ON S. HIGHLAND AVE. JUST EAST OF CITRUS AVE. * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 100YRCB.DAT TIME /DATE OF STUDY: 11:31 04/10/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL*- - USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = 0.6000 II USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.5500 *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD* + + BEGIN AT 210 FREEWAY & OLEANDER AVENUE. II I FOR NORTHSIDE OF S. HIGHLAND AVENUE, WESTERLY FROM OLEANDER AVENUE I TO SUMP AT CITRUS AVENUE II + + ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 110.00 TO NODE 111.00 IS CODE = 21 » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS « « < »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« II INITIAL SUBAREA FLOW - LENGTH(FEET) = 700.00 ELEVATION DATA: UPSTREAM(FEET) = 1519.00 DOWNSTREAM(FEET) 1507.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.421 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.707 II C:\aes2000\hydrosft\ratscx\100YRCB.RMA II Saved: 4/10/2002 11:31 AM Page 2 of 4 1 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc II LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 5.64 0.80 0.10 52 9.42 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 I: SUBAREA RUNOFF(CFS) = 23.49 TOTAL AREA(ACRES) = 5.64 PEAK FLOW RATE(CFS) = 23.49 + + 112.00 IS SUMP AT NORTHEAST CORNER (BCR) OF CITRUS AVENU 1 AND S. HIGHLAND AVENUE I ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** I: FLOW PROCESS FROM NODE 111.00 TO NODE 112.00 IS CODE = 62 » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< i » »>( STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1507.00 DOWNSTREAM ELEVATION(FEET) = 1504.00 il STREET LENGTH(FEET) = 700.00 CURB HEIGHT(INCHES) = 8.0 il STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 II INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Of STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 34.89 ** *STREET FLOW SPLITS OVER STREET - CROWN * ** I; FULL DEPTH(FEET) = 0.70 FLOOD WIDTH(FEET) = 31.58 FULL HALF - STREET VELOCITY(FEET /SEC.) = 2.69 SPLIT DEPTH(FEET) = 0.59 SPLIT FLOOD WIDTH(FEET) = 24.18 I/ SPLIT FLOW(CFS) = 12.69 SPLIT VELOCITY(FEET /SEC.) = 2.34 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.70 HALFSTREET FLOOD WIDTH(FEET) = 31.58 II AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.69 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.88 STREET FLOW TRAVEL TIME(MIN.) = 4.34 Tc(MIN.) = 13.76 II * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.750 SUBAREA LOSS. RATE DATA(AMC III) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 6.90 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 II SUBAREA AREA(ACRES) = 6.90 SUBAREA RUNOFF(CFS) = 22.79 EFFECTIVE AREA(ACRES) = 12.54 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 1: C aes2000 \hydrosft \ratscx \100YRCB.RMA Saved: 4/10/2002 11:31 AM Page 3 of 4 TOTAL AREA(ACRES) = 12.54 PEAK FLOW RATE(CFS) = 41.43 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.70 HALFSTREET FLOOD WIDTH(FEET) = 31.58 FLOW VELOCITY(FEET /SEC.) = 2.69 DEPTH *VELOCITY(FT *FT /SEC.) = 1.88 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS, AND L = 700.0 FT WITH ELEVATION -DROP = 3.0 FT, IS 24.3 CFS, WHICH EXCEEDS THE TOP -OF -CURB STREET CAPACITY AT NODE 112.00 LONGEST FLOWPATH FROM NODE 110.00 TO NODE 112.00 = 1400.00 FEET. + I BEGIN AT OLEANDER AVENUE AND S. HIGHLAND AVENUE. I FOR SOUTHSIDE OF S. HIGHLAND AVENUE, WESTERLY FROM OLEANDER AVENUE TO CITRUS AVENUE + + FLOW PROCESS FROM NODE 115.00 TO NODE 116.00 IS CODE = 21 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 570.00 `' ELEVATION DATA: UPSTREAM(FEET) = 1507.00 DOWNSTREAM(FEET) = 1504.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.989 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.292 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 0.71 0.80 0.10 52 10.99 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 I: - SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 .�� SUBAREA RUNOFF(CFS) = 2.69 TOTAL AREA(ACRES) = 0.71 PEAK FLOW RATE(CFS) = 2.69 + + 1 117.00 IS SUMP AT SOUTHEAST CORNER (ECR) OF CITRUS AVENUE AND 1 S. HIGHLAND AVENUE ► + + ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 116.00 TO NODE 117.00 IS CODE = 62 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »>( STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1504.00 DOWNSTREAM ELEVATION(FEET) = 1502.00 STREET LENGTH(FEET) = 700.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 II DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = .0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 II 100YRCB.RMA C: aes2000\h drosft ratscx � Y � \ Saved: 4/10/2002 11:31 AM Page 4 of 4 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.90 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.45 HALFSTREET FLOOD WIDTH(FEET) = 16.37 AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.51 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 0.69 STREET FLOW TRAVEL TIME(MIN.) = 7.73 Tc(MIN.) = 18.72 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.118 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CM COMMERCIAL A 0.88 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 0.88 SUBAREA RUNOFF(CFS) = 2.41 EFFECTIVE AREA(ACRES) = 1.59 AREA - AVERAGED Fm(INCH/HR) = 0.08 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 1.59 PEAK FLOW RATE(CFS) = 4.35 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.47 HALFSTREET FLOOD WIDTH(FEET) = 17.07 FLOW VELOCITY(FEET /SEC.) = 1.56 DEPTH *VELOCITY(FT *FT /SEC.) = 0.73 LONGEST FLOWPATH FROM NODE 115.00 TO NODE 117.00 = 1270.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 1.59 TC(MIN.) = 18.72 EFFECTIVE AREA(ACRES) = 1.59 AREA- AVERAGED Fm(INCH/HR)= 0.08 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 PEAK FLOW RATE(CFS) = 4.35 END OF RATIONAL METHOD ANALYSIS 1 1 1 C: \ aes2000 \hydrosft\ratscx\100YRCB.RMA