Loading...
HomeMy WebLinkAboutTract 15709 Offsite Drainage Area { TRACT NOS. 15709 OFFSITE DRAINAGE AREA NORTH OF WALNUT EAST OF CHERRY AVE HYDROLOGY & HYDRAULICS REPORT 3 -12 -98 .1NT 126 -1050 TRACT NUMBER 15709 irr Hydrology & Hydraulics Report North of Walnut Ave. East of Cherry Ave. Description Page 1. Introduction I 2. Vicinity Map 1 3. Hydrology Calculation 2 - 21 4. Hydraulic Calculation 22 - 33 a. Walnut Avenue Typical Section 23 5. Reference Map a. Soil Type Map 34 b. 100 Years 1 -HR Storm Rainfall Map - 35 c. 10 Years 1 -HR Storm Rainfall Map 36 6. Pocket Insert a, Plate 7 ( Hydrology Map ) o FES8/ I\LTO#,:lee PREPARED IN THE OFFICE OF Z)-1414 MADOLE AND ASSOCIATES, INC. W No. 14814 �^ OF THE INLAND EMPIRE Exp. o � CONSULTING CIVIL ENGINEERING AND LAND PLANNING J,2 cl V 1\- a ka 10601 Church Street, Suite 107 I f OF CAUF04 RANCHO CUCAMONGA, CA 91730 PHONE (909) 948 -1311 FAX (909) 948 -8464 p_1 YN 3 - /Z - 9g Data MORNING SIDE JOB NOS. 126-1050 'C INTRODUCTION The Momingside Community upon full development will cut off existing flow patterns of approximately 176 acres of land north of walnut avenue. This study area is illustrated within Plate 7 at the rear of this report. Prior to construction within the 15709 -3 and 15709 tracts, protective measures against flooding of dwellings within these two tracts from runoff coming off the study area must be proven. Two facilities are investigated within this report. The first is an earthen channel which will be graded along with the balance of the project during rough grading operations. The second is a smaller earthen channel which will be constructed concurrent with the Walnut Avenue improvements. The first earthen channel will be 4 feet deep typically and will reduce in depth to 3 feet within 200 feet of Cherry Avenue. The entire channel and daylight slopes will be within the right of way dedicated by the 15709 -3 and 15709 final tract maps. This channel will carry the 100 year flow of 193 cfs and maintain a minimum freeboard of 12 inches. The velocities can be controlled by the implementation of sandbag check dams placed along the stretch of channel. At the westerly and downstream end, the channel will not have a daylight outlet. It is proposed to install a sandbag checkdam along the rim of the downstream end. Low flows will pond and infiltrate easily as proven in recent infiltration tests done for the Sierra Lakes Project. Heavier flows will raise to an elevation and discharge through P.V.C. pipe outlets or weirs created by omitting bags within the vertical rows. Details of this checkdam can be seen on the rough grading plans for Tract No. 15709 -3 and 15709. The latter facility will be an earthen channel 15 inches deep, with a base width of 5 feet. This channel will be constructed adjacent to a 15 feet wide graded shoulder north of the paved improvements of Walnut Avenue. This channel will carry the 10 year flow of 89.80 cfs. The 10 year flow will collect into (2) 22 "x36" arch C.M.P. pipes and cross Cherry Avenue and discharge into a proposed swale along the w shoulder. The 100 year runoff will flow within both the swale and proposed street improvements. c SAN GABRIEL MOUNTAINS It -1#46). Lu , SUMMIT AVENUE . cc W STllDY I W z 4.k cn 41 � •1.' N HIGHLAND -I AVENUE > w L., . Qj/ 1 J W C V- l'i W S ui W v % 1 I = m 1 ,., BASELINE ROAD PROJECT SITE VICINITY MAP N. T.S. c 0 100 YEARS DESIGN STORM FREQUENCY OFF -SITE HYDROLOGY 0 C RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -94 Advanced Engineering Software (aes) Ver. 3.1B Release Date: 6/01/94 License ID 1251 Meddle and Associates of the Inland Empire 10601 Church Street, Suite 107 Rancho Cucamonga, CA 91730 Analysis prepared by: Phone (909) 948 -1311 Fax (909) 948 -8464 DESCRIPTION OF STUDY * MORNING SIDE TRACT NOS. 15709 [FILENAME:MORN- 100.DAT * * 100 YEARS DESIGN STORM FREQUENCY HYDROLOGY * PHASE 2 DEVELOPMENT PROTECTION FRO OFFSITE DRAINAGE AREA * FILE NAME: MORN- 100.DAT Tfld /DATE OF STUDY: 12: 4 2/19/1998 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME-OF- CONCENTRATION MODEL*-- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .85 *USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE _ .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.5000 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* (::: *USER- DEFINED STREET- SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET - CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT - /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 = .018/ .018/ .020 .67 2.00 .03125 .1670 .01500 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = .00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 6.0 *PIPE MAY BE SIZED TO HAVE A FLOW CAPACITY LESS THAN UPSTREAM TRIBUTARY PIPE.* ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 10.00 IS CODE = 2.1 »»> RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME-OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« == = INITIAL SUBAREA FLOW - LENGTH(FEET) = 650.00 ELEVATION DATA: UPSTREAM(FEET) = 1428.00 DOWNSTREAM(FEET) = 1415.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 20.595 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.849 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) NATURAL FAIR COVER "WOODLAND,GRASS" A .90 .88 1.00 44 20.60 NATURAL FAIR COVER "WOODLAND,GRASS" B 6.30 .63 1.00 65 20.60 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .66 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 14.18 0 TOTAL AREA(ACRES) = 7.20 PEAK FLOW RATE(CFS) = 14.18 FLOW PROCESS FROM NODE 10.00 TO NODE 15.00 IS CODE = 5.2 »»>COMPUTE NATURAL VALLEY CHANNEL FLOW««< » »>TRAVELTIME THRU SUBAREA««< UPSTREAM NODE ELEVATION = 1415.00 DOWNSTREAM NODE ELEVATION = 1405.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 450.00 CHANNEL SLOPE = .0222 CHANNEL FLOW THRU SUBAREA(CFS) = 14.18 FLOW VELOCITY(FEET /SEC) = 4.08 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.84 Tc(MIN.) = 22.43 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 15.00 TO NODE 15.00 IS CODE = 8.1 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 22.43 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.707 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "WOODLAND,GRASS" A 3.30 .88 1.00 44 NATURAL FAIR COVER "WOODLAND,GRASS" B 7.90 .63 1.00 65 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .70 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 11.20 SUBAREA RUNOFF(CFS) = 20.19 EFFECTIVE AREA(ACRES) = 18.40 AREA - AVERAGED Fm(INCH /HR) = .69 AREA - AVERAGED Fp(INCH /HR) = .69 AREA - AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 18.40 PEAK FLOW RATE(CFS) = 33.44 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 15.00 TO NODE 20.00 IS CODE = 5.2 » »>COMPUTE NATURAL VALLEY CHANNEL FLOW««< »» >TRAVELTIME THRU SUBAREA««< UPSTREAM NODE ELEVATION = 1405.00 DOWNSTREAM NODE ELEVATION = 1395.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 480.00 CHANNEL SLOPE = .0208 CHANNEL FLOW THRU SUBAREA(CFS) = 33.44 FLOW VELOCITY(FEET /SEC) = 4.98 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.61 Tc(MIN.) = 24.04 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 8.1 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 24.04 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.597 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "WOODLAND,GRASS" A 7.70 .88 1.00 44 NATURAL FAIR COVER " WOODLAND,GRASS" B 6.00 .63 1.00 65 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .77 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 13.70 SUBAREA RUNOFF(CFS) = 22.52 EFFECTIVE AREA(ACRES) = 32.10 AREA - AVERAGED Fm(INCH /HR) = .72 AREA- AVERAGED Fp(INCH /HR) = .72 AREA - AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 32.10 PEAK FLOW RATE(CFS) = 54.14 O ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 4:: FLOW PROCESS FROM NODE 20.00 TO NODE 25.00 IS CODE = 5.2 » »»COMPUTE NATURAL VALLEY CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA« «< UPSTREAM NODE ELEVATION = 1395.00 DOWNSTREAM NODE ELEVATION = 1385.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 520.00 CHANNEL SLOPE = .0192 CHANNEL FLOW THRU SUBAREA(CFS) = 54.14 FLOW VELOCITY(FEET /SEC) = 5.49 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.58 Tc(MIN.) = 25.62 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 25.00 TO NODE 25.00 IS CODE = 8.1 » OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 25.62 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.499 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER " WOODLAND,GRASS" A 12.20 .88 1.00 44 NATURAL FAIR COVER "WOODLAND,GRASS" B 4.70 .63 1.00 65 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .81 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 16.90 SUBAREA RUNOFF(CFS) = 25.69 EFFECTIVE AREA(ACRES) = 49.00 AREA - AVERAGED Fm(INCH /HR) = .75 AREA - AVERAGED Fp(INCH /HR) = .75 AREA - AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 49.00 PEAK FLOW RATE(CFS) = 77.02 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** (::: FLOW PROCESS FROM NODE 25.00 TO NODE 30.00 IS CODE = 5.2 »» »COMPUTE NATURAL VALLEY CHANNEL FLOW««< »» >TRAVELTIME THRU SUBAREA««< UPSTREAM NODE ELEVATION = 1385.00 DOWNSTREAM NODE ELEVATION = 1375.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 550.00 CHANNEL SLOPE = .0182 CHANNEL FLOW THRU SUBAREA(CFS) = 77.02 FLOW VELOCITY(FEET /SEC) = 5.92 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.55 Tc(MIN.) = 27.17 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 30.00 TO NODE 30.00 IS CODE = 8.1 »»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) 27.17 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.413 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER " WOODLAND,GRASS" A 15.80 .88 1.00 44 NATURAL FAIR COVER " WOODLAND,GRASS" B 5.00 .63 1.00 65 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .82 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 20.80 SUBAREA RUNOFF(CFS) = 29.82 EFFECTIVE AREA(ACRES) = 69.80 AREA - AVERAGED Fm(INCH /HR) = .77 AREA - AVERAGED Fp(INCH /HR) = .77 AREA- AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 69.80 PEAK FLOW RATE(CFS) = 103.03 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 1:: FLOW PROCESS FROM NODE 30.00 TO NODE 35.00 IS CODE = 5.2 0 »»>COMPUTE NATURAL VALLEY CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA««< UPSTREAM NODE ELEVATION = 1375.00 DOWNSTREAM NODE ELEVATION = 1365.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 490.00 CHANNEL SLOPE = .0204 CHANNEL FLOW THRU SUBAREA(CFS) = 103.03 FLOW VELOCITY(FEET /SEC) = 6.84 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.19 Tc(MIN.) = 28.36 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 35.00 TO NODE 35.00 IS CODE = 8.1 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< rs MAINLINE Tc(MIN) = 28.36 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.352 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER ' WOODLAND,GRASS A 18.50 .88 1.00 44 NATURAL FAIR COVER " WOODLAND,GRASS" B 4.60 .63 1.00 65 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .83 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 23.10 SUBAREA RUNOFF(CFS) = 31.63 EFFECTIVE AREA(ACRES) = 92.90 AREA - AVERAGED E!a(INCH /HR) = .79 AREA - AVERAGED Fp(INCH /HR) = .79 AREA - AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 92.90 PEAK FLOW RATE(CFS) = 130.80 FLOW PROCESS FROM NODE 35.00 TO NODE 42.00 IS CODE = 5.2 »» >COMPUTE NATURAL VALLEY CHANNEL FLOW««< == »» =TRAVELTIME THRU SUBAREA««< UPSTREAM NODE ELEVATION = 1365.00 DOWNSTREAM NODE ELEVATION = 1353.50 CHANNEL LENGTH THRU SUBAREA(FEET) = 520.00 CHANNEL SLOPE = .0221 CHANNEL FLOW THRU SUBAREA(CFS) = 130.80 FLOW VELOCITY(FEET /SEC) = 7.66 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME (MIN.) = 1.13 Tc(MIN.) = 29.49 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 42.00 TO NODE 42.00 IS CODE = 8.1 »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 29.49 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.297 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "WOODLAND,GRASS" A 5.80 .88 1.00 44 NATURAL FAIR COVER " WOODLAND,GRASS" B 4.50 .63 1.00 65 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .77 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 10.30 SUBAREA RUNOFF(CFS) = 14.15 EFFECTIVE AREA(ACRES) = 103.20 AREA - AVERAGED Fm(INCH /HR) = .79 AREA - AVERAGED Fp(INCH /HR) = .79 AREA - AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 103.20 PEAK FLOW RATE(CFS) = 140.38 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 42.00 TO NODE 82.00 IS CODE = 5.2 » » >COMPUTE NATURAL VALLEY CHANNEL FLOW<«« _- ^--- ___ - -_- » »>TRAVELTIME THRU SUBAREA« «< O UPSTREAM NODE ELEVATION = 1353.50 DOWNSTREAM NODE ELEVATION = 1349.50 CHANNEL LENGTH THRU SUBAREA(FEET) = 900.00 CHANNEL SLOPE = .0044 CHANNEL FLOW THRU SUBAREA(CFS) = 140.38 FLOW VELOCITY(FEET /SEC) = 3.51 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 4.28 Tc(MIN.) = 33.77 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 82.00 TO NODE 82.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 33.77 RAINFALL INTENSITY(INCH /HR) = 2.12 AREA - AVERAGED Fm(INCH /HR) = .79 AREA - AVERAGED Fp(INCH /HR) = .79 AREA- AVERAGED Ap = 1.00 EFFECTIVE STREAM AREA(ACRES) = 103.20 TOTAL STREAM AREA(ACRES) = 103.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 140.38 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 50.00 IS CODE = 2.1 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME-OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 340.00 ELEVATION DATA: UPSTREAM(FEET) = 1416.50 DOWNSTREAM(FEET) = 1410.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 16.036 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.311 mo SUBAREA Tc AND LOSS RATE DATA(AMC II): (� w, DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) NATURAL FAIR COVER "WOODLAND,GRASS" A .80 .88 1.00 44 16.04 NATURAL FAIR COVER "WOODLAND,GRASS" B .50 .63 1.00 65 16.04 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .78 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 2.96 TOTAL AREA(ACRES) = 1.30 PEAK FLOW RATE(CFS) = 2.96 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 50.00 TO NODE 55.00 IS CODE = 5.2 »»>COMPUTE NATURAL VALLEY CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA««< UPSTREAM NODE ELEVATION = 1410.00 DOWNSTREAM NODE ELEVATION = 1405.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 290.00 CHANNEL SLOPE = .0172 CHANNEL FLOW THRU SUBAREA(CFS) = 2.96 FLOW VELOCITY(FEET /SEC) = 2.46 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.97 Tc(MIN.) = 18.00 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 55.00 TO NODE 55.00 IS CODE = 8.1 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 18.00 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.089 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER O " WOODLAND,GRASS" A .90 .88 1.00 44 NATURAL FAIR COVER "WOODLAND,GRASS" B 1.70 .63 1.00 65 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .72 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 2.60 SUBAREA RUNOFF(CFS) = 5.55 EFFECTIVE AREA(ACRES) = 3.90 AREA - AVERAGED Fm(INCH /HR) = .74 AREA- AVERAGED Fp(INCH /HR) = .74 AREA- AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 3.90 PEAK FLOW RATE(CFS) = 8.25 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 55.00 TO NODE 60.00 IS CODE = 5.2 »»>COMPUTE NATURAL VALLEY CHANNEL FLOW««< » »>TRAVELTIME THRU SUBAREA««< UPSTREAM NODE ELEVATION = 1405.00 DOWNSTREAM NODE ELEVATION = 1400.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 280.00 CHANNEL SLOPE = .0179 CHANNEL FLOW THRU SUBAREA(CFS) = 8.25 FLOW VELOCITY(FEET /SEC) = 3.18 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.47 Tc(MIN.) = 19.47 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 60.00 TO NODE 60.00 IS CODE = 8.1 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< I = MAINLINE Tc(MIN) = 19.47 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.947 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER " WOODLAND,GRASS" A 1.00 .88 1.00 44 NATURAL FAIR COVER " WOODLAND,GRASS" B 1.90 .63 1.00 65 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .72 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 2.90 SUBAREA RUNOFF(CFS) = 5.82 EFFECTIVE AREA(ACRES) = 6.80 AREA - AVERAGED Fm(INCH/HR) = .73 AREA- AVERAGED Fp(INCH /HR) = .73 AREA- AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 6.80 PEAK FLOW RATE(CFS) = 13.57 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 60.00 TO NODE 65.00 IS CODE = 5.2 » »>COMPUTE NATURAL VALLEY CHANNEL FLOW« «< » » >TRAVELTIME THRU SUBAREA««< UPSTREAM NODE ELEVATION = 1400.00 DOWNSTREAM NODE ELEVATION = 1390.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 420.00 CHANNEL SLOPE = .0238 CHANNEL FLOW THRU SUBAREA(CFS) = 13.57 FLOW VELOCITY(FEET /SEC) = 4.17 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.68 Tc(MIN.) = 21.15 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 65.00 TO NODE 65.00 IS CODE = 8.1 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 21.15 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.804 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "WOODLAND,GRASS" A 2.40 .88 1.00 44 NATURAL FAIR COVER " WOODLAND,GRASS" B 2.30 .63 1.00 65 O SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .76 4M IN AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 4.70 SUBAREA RUNOFF(CFS) = 8.66 EFFECTIVE AREA(ACRES) = 11.50 AREA - AVERAGED Fm(INCH/HR) = .74 AREA - AVERAGED Fp(INCH /HR) = .74 AREA- AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 11.50 PEAK FLOW RATE(CFS) = 21.36 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 65.00 TO NODE 70.00 IS CODE = 5.2 » »>COMPUTE NATURAL VALLEY CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA««< UPSTREAM NODE ELEVATION = 1390.00 DOWNSTREAM NODE ELEVATION = 1380.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 540.00 CHANNEL SLOPE = .0185 CHANNEL FLOW THRU SUBAREA(CFS) = 21.36 FLOW VELOCITY(FEET /SEC) = 4.15 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 2.17 Tc(MIN.) = 23.32 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 70.00 TO NODE 70.00 IS CODE = 8.1 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 23.32 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.645 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "WOODLAND,GRASS" A 5.60 .88 1.00 44 NATURAL FAIR COVER "WOODLAND,GRASS" B .50 .63 1.00 65 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .86 °w '` SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 6.10 SUBAREA RUNOFF(CFS) = 9.80 EFFECTIVE AREA(ACRES) = 17.60 AREA - AVERAGED Fm(INCH /HR) = .78 AREA - AVERAGED Fp(INCH /HR) = .78 AREA - AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 17.60 PEAK FLOW RATE(CFS) = 29.51 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 70.00 TO NODE 75.00 IS CODE = 5.2 »»>COMPUTE NATURAL VALLEY CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA««< UPSTREAM NODE ELEVATION = 1380.00 DOWNSTREAM NODE ELEVATION = 1370.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 510.00 CHANNEL SLOPE _ .0196 CHANNEL FLOW THRU SUBAREA(CFS) = 29.51 FLOW VELOCITY(FEET /SEC) = 4.67 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.82 Tc(MIN.) = 25.14 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 75.00 TO NODE 75.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 25.14 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.528 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA FP Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "WOODLAND,GRASS" A 6.60 .88 1.00 44 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .88 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 - SUBAREA AREA(ACRES) = 6.60 SUBAREA RUNOFF(CFS) = 9.79 EFFECTIVE AREA(ACRES) = 24.20 AREA - AVERAGED Fm(INCH/HR) = .81 • AREA - AVERAGED Fp(INCH /HR) = .81 AREA- AVERAGED Ap = 1.00 0 TOTAL AREA(ACRES) = 24.20 PEAK FLOW RATE(CFS) = 37.45 *Imew ********************************************* * * * * * * * * * * * * * * * * * * ** ** * * * * * * * ** FLOW PROCESS FROM NODE 75.00 TO NODE 80.00 IS CODE = 5.2 »»>COMPUTE NATURAL VALLEY CHANNEL FLOW« «< » »>TRAVELTIME THRU SUBAREA««< UPSTREAM NODE ELEVATION = 1370.00 DOWNSTREAM NODE ELEVATION = 1355.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 760.00 CHANNEL SLOPE _ .0197 CHANNEL FLOW THRU SUBAREA(CFS) = 37.45 FLOW VELOCITY(FEET /SEC) = 5.01 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 2.53 Tc(MIN.) = 27.67 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 80.00 TO NODE 80.00 IS CODE = 8.1 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 27.67 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.387 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "WOODLAND,GRASS" A 11.70 .88 1.00 44 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .88 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 11.70 SUBAREA RUNOFF(CFS) = 15.87 EFFECTIVE AREA(ACRES) = 35.90 AREA - AVERAGED Fm(INCH /HR) = .83 AREA - AVERAGED Fp(INCH /HR) = .83 AREA - AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 35.90 PEAK FLOW RATE(CFS) = 50.23 r�+ ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** i FLOW PROCESS FROM NODE 80.00 TO NODE 82.00 IS CODE = 5.2 »»>COMPUTE NATURAL VALLEY CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA««< UPSTREAM NODE ELEVATION = 1355.00 DOWNSTREAM NODE ELEVATION = 1349.50 CHANNEL LENGTH THRU SUBAREA(FEET) = 340.00 CHANNEL SLOPE = .0162 CHANNEL FLOW THRU SUBAREA(CFS) = 50.23 FLOW VELOCITY(FEET /SEC) = 4.93 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.15 Tc(MIN.) = 28.82 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 82.00 TO NODE 82.00 IS CODE = 8.1 »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< = MAINLINE Tc(MIN) = 28.82 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.329 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "WOODLAND,GRASS" A 4.50 .88 1.00 44 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .88 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 4.50 SUBAREA RUNOFF(CFS) = 5.87 EFFECTIVE AREA(ACRES) = 40.40 AREA - AVERAGED Fm(INCH /HR) = .84 AREA - AVERAGED Fp(INCH /HR) = .84 AREA - AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 40.40 PEAK FLOW RATE(CFS) = 54.24 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** „ma FLOW PROCESS FROM NODE 82.00 TO NODE 82.00 IS CODE = 1 4I »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< 0 » »>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< VI IOWr TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 28.82 RAINFALL INTENSITY(INCH /HR) = 2.33 AREA - AVERAGED Fm(INCH/HR) = .84 AREA - AVERAGED Fp(INCH /HR) = .84 AREA- AVERAGED Ap = 1.00 EFFECTIVE STREAM AREA(ACRES) = 40.40 TOTAL STREAM AREA(ACRES) = 40.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 54.24 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 140.38 33.77 2.118 .79( .79) 1.00 103.20 1.00 2 54.24 28.82 2.329 .84( .84) 1.00 40.40 2.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 186.9 33.77 2.118 .800( .800) 1.00 143.6 1.00 2 193.0 28.82 2.329 .802( .802) 1.00 128.5 2.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 193.05 Tc(MIN.) = 28.817 EFFECTIVE AREA(ACRES) = 128.46 AREA - AVERAGED Fm(INCH /HR) = .80 AREA - AVERAGED Fp(INCH /HR) = .80 AREA- AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 143.60 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 82.00 = 4560.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 143.60 TC(MIN.) = 28.82 Aloo. EFFECTIVE AREA(ACRES) = 128.46 AREA - AVERAGED Fm(INCH/HR)= .80 AREA- AVERAGED Fp(INCH /HR) = .80 AREA - AVERAGED Ap = 1.00 PEAK FLOW RATE(CFS) = 193.05 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 193.0 28.82 2.329 .802( .802) 1.00 128.5 2.00 2 186.9 33.77 2.118 .800( .800) 1.00 143.6 1.00 END OF RATIONAL METHOD ANALYSIS 0 4 ✓ 10 YEARS DESIGN STORM FREQUENCY OFF -SITE HYDROLOGY 12 *NW? RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -94 Advanced Engineering Software (aes) Ver. 3.1B Release Date: 6/01/94 License ID 1251 Analysis prepared by: Madole and Associates of the Inland Empire 10601 Church Street, Suite 107 Rancho Cucamonga, CA 91730 Phone (909) 948 -1311 Fax (909) 948 -8464 DESCRIPTION OF STUDY * MORNING SIDE TRACT NOS. 15709 (FILENAME:MORN- 10.DAT] * * 10 YEARS DESIGN STORM FREQUENCY HYDROLOGY * * PHASE 2 DEVELOPMENT PROTECTION FROM OFFSITE DRAINAGE AREA FILE NAME: MORN- 10.DAT TIME /DATE OF STUDY: 12:40 2/19/1998 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME-OF- CONCENTRATION MODEL*-- USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .85 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE = .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.0100 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* 4 41110 1 *USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET - CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT - /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 .018/ .018/ .020 .67 2.00 .03125 .1670 .01500 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = .00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 6.0 *PIPE MAY BE SIZED TO HAVE A FLOW CAPACITY LESS THAN UPSTREAM TRIBUTARY PIPE.* ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 10.00 IS CODE = 2.1 »»> RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME-OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW-LENGTH(FEET) = 650.00 ELEVATION DATA: UPSTREAM(FEET) = 1428.00 DOWNSTREAM(FEET) = 1415.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 20.595 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 1.918 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) NATURAL FAIR COVER "WOODLAND,GRASS" A .90 .88 1.00 44 20.60 NATURAL FAIR COVER "WOODLAND,GRASS" B 6.30 .63 1.00 65 20.60 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .66 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 1100' SUBAREA RUNOFF(CFS) = 8.15 0 TOTAL AREA(ACRES) = 7.20 PEAK FLOW RATE(CFS) = 8.15 *W' ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 10.00 TO NODE 15.00 IS CODE = 5.2 »» >COMPUTE NATURAL VALLEY CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA««< UPSTREAM NODE ELEVATION = 1415.00 DOWNSTREAM NODE ELEVATION = 1405.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 450.00 CHANNEL SLOPE = .0222 CHANNEL FLOW THRU SUBAREA(CFS) = 8.15 FLOW VELOCITY(FEET /SEC) = 3.54 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 2.12 Tc(MIN.) = 22.71 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 15.00 TO NODE 15.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 22.71 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 1.809 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER " WOODLAND,GRASS" A 3.30 .88 1.00 44 NATURAL FAIR COVER " WOODLAND,GRASS" B 7.90 .63 1.00 65 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .70 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 11.20 SUBAREA RUNOFF(CFS) = 11.14 EFFECTIVE AREA(ACRES) = 18.40 AREA - AVERAGED Fm(INCH /HR) = .69 AREA - AVERAGED Fp(INCH /HR) = .69 AREA - AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 18.40 PEAK FLOW RATE(CFS) = 18.58 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 15.00 TO NODE 20.00 IS CODE = 5.2 »» >COMPUTE NATURAL VALLEY CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA««< UPSTREAM NODE ELEVATION = 1405.00 DOWNSTREAM NODE ELEVATION = 1395.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 480.00 CHANNEL SLOPE = .0208 CHANNEL FLOW THRU SUBAREA(CFS) = 18.58 FLOW VELOCITY(FEET /SEC) = 4.24 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.89 Tc(MIN.) = 24.60 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW< «< MAINLINE Tc(MIN) = 24.60 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 1.724 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "WOODLAND,GRASS" A 7.70 .88 1.00 44 NATURAL FAIR COVER " WOODLAND,GRASS" B 6.00 .63 1.00 65 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .77 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 13.70 SUBAREA RUNOFF(CFS) = 11.76 EFFECTIVE AREA(ACRES) = 32.10 AREA - AVERAGED Fm(INCH /HR) = .72 AREA - AVERAGED Fp(INCH /HR) = .72 AREA- AVERAGED Ap = 1.00 Ink TOTAL AREA(ACRES) = 32.10 PEAK FLOW RATE(CFS) = 28.94 l4, ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 41 FLOW PROCESS FROM NODE 20.00 TO NODE 25.00 IS CODE = 5.2 ire » »>COMPUTE NATURAL VALLEY CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA««< X UPSTREAM NODE ELEVATION = 1395.00 DOWNSTREAM NODE ELEVATION = 1385.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 520.00 CHANNEL SLOPE = .0192 CHANNEL FLOW THRU SUBAREA(CFS) = 28.94 FLOW VELOCITY(FEET /SEC) = 4.60 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.89 Tc(MIN.) = 26.49 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 25.00 TO NODE 25.00 IS CODE = 8.1 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ` MAINLINE TC(MIN) = 26.49 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 1.650 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "WOODLAND,GRASS" A 12.20 .88 1.00 44 NATURAL FAIR COVER "WOODLAND,GRASS" B 4.70 .63 1.00 65 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .81 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 16.90 SUBAREA RUNOFF(CFS) = 12.76 EFFECTIVE AREA(ACRES) = 49.00 AREA - AVERAGED Fm(INCH /HR) = .75 AREA - AVERAGED Fp(INCH/HR) = .75 AREA- AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 49.00 PEAK FLOW RATE(CFS) = 39.55 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 40,14,„ FLOW PROCESS FROM NODE 25.00 TO NODE 30.00 IS CODE = 5.2 » » >COMPUTE NATURAL VALLEY CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA««< UPSTREAM NODE ELEVATION = 1385.00 DOWNSTREAM NODE ELEVATION = 1375.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 550.00 CHANNEL SLOPE = .0182 CHANNEL FLOW THRU SUBAREA(CFS) = 39.55 FLOW VELOCITY(FEET /SEC) = 4.88 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.88 Tc(MIN.) = 28.36 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 30.00 TO NODE 30.00 IS CODE = 8.1 »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 28.36 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 1.583 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER " WOODLAND,GRASS" A 15.80 .88 1.00 44 NATURAL FAIR COVER " WOODLAND,GRASS" B 5.00 .63 1.00 65 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .82 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 20.80 SUBAREA RUNOFF(CFS) = 14.29 EFFECTIVE AREA(ACRES) = 69.80 AREA - AVERAGED Fm(INCH /HR) _ .77 AREA - AVERAGED Fp(INCH /HR) = .77 AREA - AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 69.80 PEAK FLOW RATE(CFS) = 50.91 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ANN FLOW PROCESS FROM NODE 30.00 TO NODE 35.00 IS CODE = 5.2 all✓ 0 »»>COMPUTE NATURAL VALLEY CHANNEL FLOW««< »» >TRAVELTIME THRU SUBAREA««< UPSTREAM NODE ELEVATION = 1375.00 DOWNSTREAM NODE ELEVATION = 1365.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 490.00 CHANNEL SLOPE = .0204 CHANNEL FLOW THRU SUBAREA(CFS) = 50.91 FLOW VELOCITY(FEET /SEC) = 5.56 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.47 Tc(MIN.) = 29.83 ********************************************* * * * * * * * * * * * ** * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 35.00 TO NODE 35.00 IS CODE = 8.1 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 29.83 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 1.536 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER " WOODLAND,GRASS" A 18.50 .88 1.00 44 NATURAL FAIR COVER " WOODLAND,GRASS" B 4.60 .63 1.00 65 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .83 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 23.10 SUBAREA RUNOFF(CFS) = 14.67 EFFECTIVE AREA(ACRES) = 92.90 AREA - AVERAGED Fm(INCH/HR) _ .79 AREA - AVERAGED Fp(INCH /HR) = .79 AREA- AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 92.90 PEAK FLOW RATE(CFS) = 62.61 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 35.00 TO NODE 42.00 IS CODE = 5.2 »»>COMPUTE NATURAL VALLEY CHANNEL FLOW««< (::: »»>TRAVELTIME THRU SUBAREA«<=< __ UPSTREAM NODE ELEVATION = 1365.00 DOWNSTREAM NODE ELEVATION = 1353.50 CHANNEL LENGTH THRU SUBAREA(FEET) = 520.00 CHANNEL SLOPE = .0221 CHANNEL FLOW THRU SUBAREA(CFS) = 62.61 FLOW VELOCITY(FEET /SEC) = 6.14 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.41 Tc(MIN.) = 31.24 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 42.00 TO NODE 42.00 IS CODE = 8.1 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 31.24 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 1.494 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "WOODLAND,GRASS" A 5.80 .88 1.00 44 NATURAL FAIR COVER "WOODLAND,GRASS" B 4.50 .63 1.00 65 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .77 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 10.30 SUBAREA RUNOFF(CFS) = 6.70 EFFECTIVE AREA(ACRES) = 103.20 AREA - AVERAGED Fm(INCH /HR) = .79 AREA - AVERAGED Fp(INCH/HR) = .79 AREA - AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 103.20 PEAK FLOW RATE(CFS) = 65.80 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 42.00 TO NODE 82.00 IS CODE = 5.2 (112 »»>COMPUTE NATURAL VALLEY CHANNEL FLOW««< »» >TRAVELTIME THRU SUBAREA««< 16 UPSTREAM NODE ELEVATION = 1353.50 4::: DOWNSTREAM NODE ELEVATION = 1349.50 CHANNEL LENGTH THRU SUBAREA(FEET) = 900.00 CHANNEL SLOPE = .0044 CHANNEL FLOW THRU SUBAREA(CFS) = 65.80 FLOW VELOCITY(FEET /SEC) = 2.79 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 5.37 Tc(MIN.) = 36.61 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 82.00 TO NODE 82.00 IS CODE = 1 »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 36.61 RAINFALL INTENSITY(INCH /HR) = 1.36 AREA - AVERAGED Fp(INCH/HR) = .79 AREA - AVERAGED Fp(INCH /HR) = .79 AREA- AVERAGED Ap = 1.00 EFFECTIVE STREAM AREA(ACRES) = 103.20 TOTAL STREAM AREA(ACRES) = 103.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 65.80 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 50.00 IS CODE = 2.1 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME-OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW- LENGTH(FEET) = 340.00 ELEVATION DATA: UPSTREAM(FEET) = 1416.50 DOWNSTREAM(FEET) = 1410.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)) ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 16.036 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.229 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) NATURAL FAIR COVER "WOODLAND,GRASS" A .80 .88 1.00 44 16.04 NATURAL FAIR COVER "WOODLAND,GRASS" B .50 .63 1.00 65 16.04 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .78 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 1.69 TOTAL AREA(ACRES) = 1.30 PEAK FLOW RATE(CFS) = 1.69 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 50.00 TO NODE 55.00 IS CODE = 5.2 » » >COMPUTE NATURAL VALLEY CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA««< UPSTREAM NODE ELEVATION = 1410.00 DOWNSTREAM NODE ELEVATION = 1405.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 290.00 CHANNEL SLOPE = .0172 CHANNEL FLOW THRU SUBAREA(CFS) = 1.69 FLOW VELOCITY(FEET /SEC) = 2.18 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 2.21 Tc(MIN.) = 18.25 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 55.00 TO NODE 55.00 IS CODE = 8.1 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE = Tc(MIN) = 18.25 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.063 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER 17 " WOODLAND,GRASS" A .90 .88 1.00 44 NATURAL FAIR COVER WOODLAND,GRASS" B 1.70 .63 1.00 65 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .72 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 2.60 SUBAREA RUNOFF(CFS) = 3.15 EFFECTIVE AREA(ACRES) = 3.90 AREA - AVERAGED Fm(INCH/HR) = .74 AREA- AVERAGED Fp(INCH /HR) = .74 AREA - AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 3.90 PEAK FLOW RATE(CFS) = 4.65 ********************************************* * * * * * * * * ** ** * * ** * * * ** * * * * * ** * ** FLOW PROCESS FROM NODE 55.00 TO NODE 60.00 IS CODE = 5.2 »» >COMPUTE NATURAL VALLEY CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA««< UPSTREAM NODE ELEVATION = 1405.00 DOWNSTREAM NODE ELEVATION = 1400.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 280.00 CHANNEL SLOPE = .0179 CHANNEL FLOW THRU SUBAREA(CFS) = 4.65 FLOW VELOCITY(FEET /SEC) = 2.77 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.68 Tc(MIN.) = 19.93 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 60.00 TO NODE 60.00 IS CODE = 8.1 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 19.93 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 1.956 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "WOODLAND,GRASS" A 1.00 .88 1.00 44 (::: NATURAL FAIR COVER "WOODLAND,GRASS" B 1.90 .63 1.00 65 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .72 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 2.90 SUBAREA RUNOFF(CFS) = 3.24 EFFECTIVE AREA(ACRES) = 6.80 AREA - AVERAGED Fm(INCH /HR) = .73 AREA - AVERAGED Fp(INCH /HR) = .73 AREA - AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 6.80 PEAK FLOW RATE(CFS) = 7.51 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 60.00 TO NODE 65.00 IS CODE = 5.2 »»>COMPUTE NATURAL VALLEY CHANNEL FLOW««< »» >TRAVELTIME THRU SUBAREA««< UPSTREAM NODE ELEVATION = 1400.00 DOWNSTREAM NODE ELEVATION = 1390.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 420.00 CHANNEL SLOPE = .0238 CHANNEL FLOW THRU SUBAREA(CFS) = 7.51 FLOW VELOCITY(FEET /SEC) = 3.59 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.95 Tc(MIN.) = 21.88 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 65.00 TO NODE 65.00 IS CODE = 8.1 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 21.88 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 1.850 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "WOODLAND,GRASS" A 2.40 .88 1.00 44 NATURAL FAIR COVER "WOODLAND,GRASS" B 2.30 .63 1.00 65 0 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .76 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 4.70 SUBAREA RUNOFF(CFS) = 4.62 EFFECTIVE AREA(ACRES) = 11.50 AREA - AVERAGED Fm(INCH /HR) = .74 AREA - AVERAGED Fp(INCH /HR) = .74 AREA- AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 11.50 PEAK FLOW RATE(CFS) = 11.48 FLOW PROCESS FROM NODE 65.00 TO NODE 70.00 IS CODE = 5.2 »»>COMPUTE NATURAL VALLEY CHANNEL FLOW««< » » >TRAVELTIME THRU SUBAREA««< UPSTREAM NODE ELEVATION = 1390.00 DOWNSTREAM NODE ELEVATION = 1380.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 540.00 CHANNEL SLOPE = .0185 CHANNEL FLOW THRU SUBAREA(CFS) = 11.48 FLOW VELOCITY(FEET /SEC) = 3.52 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 2.55 Tc(MIN.) = 24.44 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 70.00 TO NODE 70.00 IS CODE = 8.1 »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« MAINLINE Tc(MIN) = 24.44 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 1.731 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER " WOODLAND,GRASS" A 5.60 .88 1.00 44 NATURAL FAIR COVER " WOODLAND,GRASS" B .50 .63 1.00 65 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .86 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 6.10 SUBAREA RUNOFF(CFS) = 4.79 a EFFECTIVE AREA(ACRES) = 17.60 AREA - AVERAGED Fm(INCH /HR) = .78 AREA - AVERAGED Fp(INCH /HR) = .78 AREA- AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 17.60 PEAK FLOW RATE(CFS) = 15.04 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 70.00 TO NODE 75.00 IS CODE = 5.2 »» >COMPUTE NATURAL VALLEY CHANNEL FLOW««< »» >TRAVELTIME THRU SUBAREA««< UPSTREAM NODE ELEVATION = 1380.00 DOWNSTREAM NODE ELEVATION = 1370.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 510.00 CHANNEL SLOPE = .0196 CHANNEL FLOW THRU SUBAREA(CFS) = 15.04 FLOW VELOCITY(FEET /SEC) = 3.89 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 2.19 Tc(MIN.) = 26.63 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 75.00 TO NODE 75.00 IS CODE = 8.1 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = s26 63 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 1.645 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "WOODLAND,GRASS" A 6.60 .88 1.00 44 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .88 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 6.60 SUBAREA RUNOFF(CFS) = 4.54 EFFECTIVE AREA(ACRES) = 24.20 AREA - AVERAGED Fm(INCH /HR) = .81 AREA - AVERAGED Fp(INCH /HR) = .81 AREA - AVERAGED Ap = 1.00 19 TOTAL AREA(ACRES) = 24.20 PEAK FLOW RATE(CFS) = 18.20 (a ********************* * ** * * * * *** * * * * * * * * * * * * * * * * * **** * * * * * * * * * * * * * ** ** * ** * * ** FLOW PROCESS FROM NODE 75.00 TO NODE 80.00 IS CODE = 5.2 »»>COMPUTE NATURAL VALLEY CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA««< UPSTREAM NODE ELEVATION = 1370.00 DOWNSTREAM NODE ELEVATION = 1355.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 760.00 CHANNEL SLOPE = .0197 CHANNEL FLOW THRU SUBAREA(CFS) = 18.20 FLOW VELOCITY(FEET /SEC) = 4.10 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 3.09 Tc(MIN.) = 29.71 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 80.00 TO NODE 80.00 IS CODE = 8.1 »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 29.71 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 1.540 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "WOODLAND,GRASS" A 11.70 .88 1.00 44 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .88 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 11.70 SUBAREA RUNOFF(CFS) = 6.95 EFFECTIVE AREA(ACRES) = 35.90 AREA - AVERAGED Fp(INCH/HR) = .83 AREA - AVERAGED Fp(INCH /HR) = .83 AREA- AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 35.90 PEAK FLOW RATE(CFS) = 22.87 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 80.00 TO NODE 82.00 IS CODE = 5.2 »» >COMPUTE NATURAL VALLEY CHANNEL FLOW««< » »>TRAVELTIME THRU SUBAREA««< UPSTREAM NODE ELEVATION = 1355.00 DOWNSTREAM NODE ELEVATION = 1349.50 CHANNEL LENGTH THRU SUBAREA(FEET) = 340.00 CHANNEL SLOPE = .0162 CHANNEL FLOW THRU SUBAREA(CFS) = 22.87 FLOW VELOCITY(FEET /SEC) = 3.95 (PER LACFCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.43 Tc(MIN.) = 31.14 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 82.00 TO NODE 82.00 IS CODE = 8.1 »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< i MAINLINE Tc(MIN) = 31.14 * 10 YEAR RAINFALL INTENSITY(INCH /HR) = 1.497 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER " WOODLAND,GRASS" A 4.50 .88 1.00 44 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .88 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 4.50 SUBAREA RUNOFF(CFS) = 2.50 EFFECTIVE AREA(ACRES) = 40.40 AREA - AVERAGED Fp(INCH/HR) = .84 AREA - AVERAGED Fp(INCH /HR) = .84 AREA - AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 40.40 PEAK FLOW RATE(CFS) = 23.98 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 82.00 TO NODE 82.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< 0 »» >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 31.14 RAINFALL INTENSITY(INCH /HR) = 1.50 AREA - AVERAGED Fm(INCH /HR) = .84 AREA - AVERAGED Fp(INCH /HR) = .84 AREA- AVERAGED Ap = 1.00 EFFECTIVE STREAM AREA(ACRES) = 40.40 TOTAL STREAM AREA(ACRES) = 40.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 23.98 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 65.80 36.61 1.358 .79( .79) 1.00 103.20 1.00 2 23.98 31.14 1.497 .84( .84) 1.00 40.40 2.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 84.8 36.61 1.358 .800( .800) 1.00 143.6 1.00 2 89.8 31.14 1.497 .802( .802) 1.00 128.2 2.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 89.78 TC(MIN.) = 31.145 EFFECTIVE AREA(ACRES) = 128.19 AREA - AVERAGED Fm(INCH /HR) = .80 AREA - AVERAGED Fp(INCH/HR) = .80 AREA - AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 143.60 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 82.00 = 4560.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 143.60 TC(MIN.) = 31.14 EFFECTIVE AREA(ACRES) = 128.19 AREA - AVERAGED Fm(INCH /HR)= .80 AREA - AVERAGED Fp(INCH /HR) = .80 AREA - AVERAGED Ap = 1.00 PEAK FLOW RATE(CFS) = 89.78 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 89.8 31.14 1.497 .802( .802) 1.00 128.2 2.00 2 84.8 36.61 1.358 .800( .800) 1.00 143.6 1.00 END OF RATIONAL METHOD ANALYSIS 0 HYDRAULICS CALCULATIONS C 0 c SOUTH - FUTURE R N NORTH 8G' G/L 43' 43' 1 L 18' J 25' I 2G' ., 11' _i_ 15' ' EXIST. a 1 , GROUND w 8' G.F. 0.0G' I CTYPJ . t� LEVEL LNE .- I ,� • Ill= • - - �— -rr 1 u, .. J 1 3 =1 X. molar IIE ! DEwL; © © FUTURE G 4- G VAR. SEE TYPICAL SECTION I SCE PA.Ge WALNUT AVENUE 2G TO 2°J STA. 17 +75 TO 35 +85.84 N.T.S. c O 1 c t 2lw 8 2b' 3 6' 1 ►� 04----,1 . 2G' • 5 , � 5 (IP r W. 0 1) ` O . e 1 e to. 12 _- -- � 0 I' ll?) d i r45 $ ' °d °� Alt- C wa, .NUT Ayr-a- TYP1C.&>_. S'ECTt01 1 c • 4::: ** RESULTS OF IRREGULAR CHANNEL ANALYSIS ** CALCULATIONS BASED OM MANNINGS EQUATION WITH ALL DIMENSIONS IN FEET OR FEET AND SECONDS (c) Copyright 1983 -94 Advanced Engineering Software (ass) Ver. 4.9A Release Date: 6/01/94 License ID 1251 Analysis prepared by: Madole and Associates, Inc. of the Inland Empire 10601 Church Street, Suite'107 Rancho Cucamonga, Ca 91730 Phone (909) 948 -1311 Fax (909) 948 -8464 DESCRIPTION OF STUDY * MORNING SIDE TRACT NOS. 15709 JOB NOS. 126 -1050 * TRAPEZOIDAL EARTH CHANNEL RUNNING ALONG NORTH SIDE OF WALNUT AVENUE * DESIGN Q = 193.00 CFS (100 YEARS STORM) TIME /DATE OF STUDY: 8:58 3/12/1998 * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 .00 10.36 2 18.00 10.00 3 18.01 9.33 4 20.00 9.48 5 43.00 9.94 SUBCHANNEL SLOPE(FEET /FEET) _ .005000 SUBCHANNEL MANNINGS FRICTION FACTOR = .020000 SUBCHANNEL FLOW(CFS) = 35.1 SUBCHANNEL FLOW AREA(SQUARE FEET) = 12.83 SUBCHANNEL FLOW VELOCITY(FEET /SEC.) = 2.734 SUBCHANNEL FROUDE NUMBER = .779 SUBCHANNEL FLOW TOP - WIDTH(FEET) = 33.50 SUBCHANNEL HYDRAULIC DEPTH(FEET) = .38 * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 2 : NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 43.00 9.94 2 54.00 9.72 3 69.00 8.48 4 74.00 8.48 5 79.00 10.15 SUBCHANNEL SLOPE(FEET /FEET) = .005000 SUBCHANNEL MANNINGS FRICTION FACTOR = .020000 SUBCHANNEL FLOW(CFS) = 158.7 SUBCHANNEL FLOW AREA(SQUARE FEET) = 32.52 SUBCHANNEL FLOW VELOCITY(FEET /SEC.) = 4.880 SUBCHANNEL FROUDE NUMBER = .905 SUBCHANNEL FLOW TOP- WIDTH(FEET) = 36.00 SUBCHANNEL HYDRAULIC DEPTH(FEET) = .90 TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 193.00 COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 193.76 4::: ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE ELEVATION 10.17 W.S. 15 sEILOv,/ R /k/ NOTE: WATER SURFACE IS ABOVE LEFT OR RIGHT •a BANK ELEVATIONS. Base = f l.lD Freeboard 15110 — Z=2:1 Waiter Surface deptl IL ir = 11111 = 11111 11111 11111 11!11 TRAPEZOIDAL EARTH CHANNEL SECTION N'TS Q = 193.00 CFS (100 YEARS DESIGN STORM FREQUENCY) n = 0.030 B = 15.00 FT. Z = 2:1 (SIDE SLOPE) S = 0.005 ft. /ft. dn = 2.07 FT. An = 39.17 SF (Channel cross - sectional area at dn) Vn = 4.86 F.P.S. ( Normal Velocity) dc = 1.60 FT. Ac = 29.14 SF. (Channel cross - sectional area at dc) Vc = 6.62 F.P.S. (Critical Velocity) FROUDE NUMBER: 0.656 TA PE OF FLOW : SUB - CRITICAL FLOW dn > dc a ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS NTS - I PROGRAM PACKAGE (C) Copyright 1982 -94 Advanced Engineering Software (aes) Ver. 4.2A Release Date: 6/01/94 License ID 1251 Analysis prepared by: Madole and Associates, Inc. of the Inland Empire 10601 Church Street, Suite 107 Rancho Cucamonga, Ca 91730 Phone (909) 948 -1311 Fax (909) 948 -8464 TIME /DATE OF STUDY: 9:20 3/12/1998 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * MORNING SIDE TRACT NOS. 15709 JOB NOS. 126 -1050 * TRAPEZOIDAL EARTH CHANNEL RUNNING ALONG , NORTH SIDE OF WALNUT AVENUE * * DESIGN Q = 193.00 CFS (100 YEARS STORM) ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** »»CHANNEL INPUT INFORMATION«« CHANNEL Z1(HORIZONTAL /VERTICAL) = 2.00 C Z2(HORIZONTAL /VERTICAL) = 2.00 BASEWIDTH(FEET) = 15.00 CONSTANT CHANNEL SLOPE(FEET /FEET) = .005000 UNIFORM FLOW(CFS) = 193.00 MANNINGS FRICTION FACTOR = .0300 NORMAL -DEPTH FLOW INFORMATION: »»> NORMAL DEPTH(FEET) = 2.07 FLOW TOP - WIDTH(FEET) = 23.29 FLOW AREA(SQUARE FEET) = 39.70 HYDRAULIC DEPTH(FEET) = 1.70 FLOW AVERAGE VELOCITY(FEET /SEC.) = 4.86 UNIFORM FROUDE NUMBER = .656 PRESSURE + MOMENTUM(POUNDS) = 4200.86 AVERAGED VELOCITY HEAD(FEET) = .367 SPECIFIC ENERGY(FEET) = 2.440 CRITICAL -DEPTH FLOW INFORMATION: CRITICAL FLOW TOP - WIDTH(FEET) = 21.40 CRITICAL FLOW AREA(SQUARE FEET) = 29.14 CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 1.36 CRITICAL FLOW AVERAGE VELOCITY(FEET /SEC.) = 6.62 CRITICAL DEPTH(FEET) = 1.60 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 3847.33 AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = .681 CRITICAL FLOW SPECIFIC ENERGY(FEET) = 2.282 Base = ft. 1.00 Freeboard ��, 5.00 �:` \_ �, Water Sur ce ` ;` ,,�rr� depil 1111II =11111 =11111 TRAPEZOIDAL EARTH CHANNEL SECTION N Q = 89.80 CFS (10YEARS DESIGN STORM FREQUENCY) n = 0.030 B = 5.00 FT. Z = 3:1 (SIDE SLOPE) S = 0.010 ft. /ft. dn = 2.00 FT. An = 22.08 SF (Channel cross - sectional area at dn) Vn = 4.07 F.P.S. ( Normal Velocity) dc = 1.58 FT. Ac = 15.35 SF. (Channel cross - sectional area at dc) Vc = 5.85 F.P.S. (Critical Velocity) FROUDE NUMBER: 0.629 TYPE OF FLOW : SUB - CRITICAL FLOW dn > dc O 4 0; ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -94 Advanced Engineering Software (aes) Ver. 4.2A Release Date: 6/01/94 License ID 1251 Analysis prepared by: Madole and Associates, Inc. of the Inland Empire 10601 Church Street, Suite 107 Rancho Cucamonga, Ca 91730 Phone (909) 948 -1311 Fax (909) 948 -8464 TIME /DATE OF STUDY: 10: 1 3/12/1998 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * MORNING SIDE TRACT NOS. 15709 JOB NOS. 126 -1050 * * TRAPEZOIDAL EARTH CHANNEL RUNNING ALONG, NORTH SIDE OF WALNUT AVENUE * DESIGN Q = 89.80 CFS (10 YEARS STORM) * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** »»CHANNEL INPUT INFORMATION«« (:: CHANNEL Z1(HORIZONTAL /VERTICAL) = 3.00 Z2(HORIZONTAL /VERTICAL) = 3.00 BASEWIDTH(FEET) = 5.00 CONSTANT CHANNEL SLOPE(FEET /FEET) = .005000 UNIFORM FLOW(CFS) = 89.80 MANNINGS FRICTION FACTOR = .0300 NORMAL -DEPTH FLOW INFORMATION: » »> NORMAL DEPTH(FEET) = 2.00 FLOW TOP - WIDTH(FEET) = 17.03 FLOW AREA(SQUARE FEET) = 22.08 • HYDRAULIC DEPTH(FEET) = 1.30 FLOW AVERAGE VELOCITY(FEET /SEC.) = 4.07 UNIFORM FROUDE NUMBER = .629 PRESSURE + MOMENTUM(POUNDS) = 1837.36 AVERAGED VELOCITY HEAD(FEET) = .257 SPECIFIC ENERGY(FEET) = 2.261 CRITICAL -DEPTH FLOW INFORMATION: CRITICAL FLOW TOP - WIDTH(FEET) = 14.46 CRITICAL FLOW AREA(SQUARE FEET) = 15.35 CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 1.06 CRITICAL FLOW AVERAGE VELOCITY(FEET /SEC.) = 5.85 CRITICAL DEPTH(FEET) = 1.58 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 1651.03 AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = .532 CRITICAL FLOW SPECIFIC ENERGY(FEET) = 2.109 .. . - , .. MADOLE AND ASSOCIATES, INC. OF THE INLAND EMPIRE jos moetsur4a Skr:E. Te 151 CONSULTING CIVIL ENGINEERING SHEET NO. • - OF AND LAND PLANNING cALculATED8y . 4341-U 1 l 17CFS DATE 10601 Church Street, Suite 107 C _ . RANCHO CUCAMONGA, CA 91730 PHONE (909) 948-1311 CHECICED BY DDALE 1 4 • T • s • DATE ,.:,,i ..,• ! I illiiii MI _ 1 'mill ii HH Add.111■111.401101111■1 i I .1 I muF-!iimil I ill i ti litill I !I iiii ::,: i i 2- 2Z x d " 1 AtzcH csp _ II I Se P4c2 1 432 Fat rL.6./4 ! /4i4t: r21c;*%tlAs _ ! 1 . : 7 ........ .... Vie 7- C . RA 4 1 4 J 4 : p//pe eAftrr. , • ! . • : • ........ ____Glya : _ mm••••• ....; ....m. . .. Fly C .----•—•••••••■••--- —,-- _ ..... . ........ _7 4/4 _ .. 33 px:),0 ic -33 i .. ...... . : ........ _ _ . /4, ......................._ . . 0 - A M , Val: ..._. .... g. ao - .... _ 2 .._......_. ....... 1 i 1 1 i ............_ 1 , i b 1 , i AIL4 .... e .4 . .... 1•■••• i ..., ' q # 4 f' / 7-7 1 r 4 i I i ' I. — --- I 1 i 1 i i „ ---. I I 1 1 I 1 I • • I I : ---. C ! 1 . , t I 1 I I -- —...—.—. . i 1 1 : : —... I 1 . • PRODUCT 2044 ISE0 likail arri mown =Do rs_fites. Mr. Ct471. To Oar MOE TOURS 140342541311:1 C l k 6 H iL 275 l.. F. 334 TAPER v VI 1.4 0 k Z Z e; Q4 N � � Q N 4. Q`! h Q N: • * katil CS' )4 0% 41 2 0 Z .Z in n a$ ^ Va ^ li � V o $ , � + N o'Nt W . N -1� • . VII rim . '0 . ■ ... , , , ,_,.,. , .. , AX ,... VI — ------4---- - ,.„, Lin , . -z7TPION 4 A • N ‘..‘ ,m v�1'/ A / / / Atte/0 s / / //� C \ AhL zi ,.�� �i.I ` i ` n is i ;% �ii:r - i - • 74 ten, 77CNER - . � .L \ $ 0 vi .' i T _ _ -iotoo ter�9u/ur z . � _ - — — I _ -'. 1— \P. C ! ,� r 51..61 Ede _ - i �� ,4%77 . g a • Z 44' E7: Q G2AG1E EAPT, 0 —4 . 4 . - t - - 39:75 --4i. 4d 'T. -- - - Ar ___ .. . . .--, � 0 0 ; ,fir. , - -. EA/ G. 9 P. �-+R/. 74 /.4./i! `rte - :-.. /04.52.33 s.a.e. 74 0.37. ela -- 52.04 N.v• 0• ' 1 _ } ENO C. SR —4 74 ht/le Ak p,9. 9 1 ( laf 70.39 ; w 89 A '3 ( / �� �� lot s 'I j��O� j 101.89.11 �9.c.R. �.c.R. r 1 i fUTURB caul #G-iiPtGR SZ 41 1 1 i. ci cQ , h , `a' i.. e ms. • 114 9 1 8' _ 2 5 ' 2 5' V r Ya r li 45. 1 48'11 , . ' I I SECT /O,4./ A -A II a v N. T. S', WA I NI IT A vr- 1`1I 1r . C U1 • a 0. - a $ y : cq .. t`}O 3614 0- . ' g. AIM : i . /G GAGE ., - - L -1 = 11t.46 0 ^`• a * . 9 -.. ..- . . . . 1 `` . ..•— 1340 . 1 _ c _ . . . . � .:.... - N JJ } 4 _ • t � _ ' - 4 - ti 1.:—I { .•. PROTEC'r1O1J Foe EXlsE b ID " A4 MAig PER'APWA . BTD. PLAIJ 225 —Q. _ . - • . - C S. _ R FI LE - . 0 SEE $ f I G E T / O f � S = : _ . .. _ .. .... TH PLAN... - '' =.`- 8'LY PIPE 0 1 C CORRUGATED PIPE CONCRETE PIPE UNLINED OR SIZE AREA AM O.OISSMS CIRCULAR & ARCH FULL ASPHALT -SPUN UNED ASPHALT - COATED 12 " 0.79 39 37 I S" 1.23 70 50 SIZE AREA A M 0.01550 A M 0.0155M11 18" 177 1 14 64 I6"X II" 101 48 36 26 10 24 24" 2. 3.841 172 7 9 9 7 172 21" 2.41 15" 1.23 65 43 35 13 22X 13" 156 86 46 46 14 " 8 336 11 I 1.77 105 55 57 16 30" 25"X 16" 2.17 134 _ S 72 _ 17 4 9 1 127 30" 4.94 4 336 44 144 . 21" 241 159 _ 67 86 - 20 36" 7.07 723' 162 -• I 29X18" 286 192 70 104 21 39" 830 894 180 24" 3J4 226 80 122 24 42" 94 180 36"X 22" 962 18 433 333 92 180 27 45" 962 1 219 30" 491 410 108 222 32 • 43'X27" 639 560 119 303 35 48" 12.57 1556 (556 . 238 258 36" 7.07 667 138 361 40 1419 12..4 17 9 8 2130 25 50"X 31" 848 816 144 442 42 4" 15.90 2 (30 42" 982 1006 170 545 50 5 5 r 17.74 2 61 4 299 8 320 3214 58"X36" 11.44 1216 175 659 51 63" 21.65 2 48" 12.57 1437 203 778 59 66" 23.76 3638 363 4 320 65"X 40' 14.22 1624 202 880 59 54" 15.90 1965 237 1064 69 69" 25.97 4096 386 72"X44" 17.31 2109 230 1 143 68 72" 28.27 4588 408 60" 19.63 2603 273 1410 80 75" 30.68 5116 431 66" 2376 3357 309 1818 91 78" 33.18 5680 454 72" 28.27 4233 348 - 2293 102 81" 35.78 6281 478 - 78" 33J8 5242 387 2839 113 84" 38.48 6921 501 84" 38.48 6387 427 3459 125 87" 4128 7600 525 90" 44.18 7681 469 4161 137 se 44.18 8319 550 96" 50.27 9119 510 4940 150 93" 47.17 9079 574 • 96" 50.27 9881 599 SQUARE ROOTS OF DECIMAL NUMBERS NUMBER . -0 . -1 . -2 . -3 . -4 , . -5 . - 6 . -7 . -8 -9 .001 .03162 .03317 .03464 .03606 .03742 .03873 .04000 .04123 .04243 .04359 .002 .04472 .04583 .04690 .04796 .04899 05000 .05099 .05196 .05292 .05385 .003 .05477 .05568 .05657 .05745 .05831 .05916 .06000 .06083 .06164 .06245 .004 .06325 .06403 .06481 .06557 .06633 .06708 .06782 .06856 .06928 .07000 . . c .005 .07071 .07141 .07211 .07280 .07348 .07416 07483 .07550 .07616 .07681 .006 .07746 .07810 .07874 .07937 .08000 .08062 .08124 .08185 .08246 .08307 .007 .08367 .08426 .08485 .08544 .08602 .08660 .08718 .08775 .08832 .0888 8 008 .08944 .09000 .09055 .091 10 .09165 09220 .09274 .09327 09381 .09434 .009 .09487 .09539 .09592 .09644 .09695 .09747 .09798 .09849 .09899 09950 .010 .10000 .10050 .10100 .10149 .1019 8 .10247 .10296 .10344 .10392 .10440 .01 .1000 .1049 .1095 .1140 .1183 .1225 .1265 .1304 .1342 .1378 .02 .1414 .1449 .1483 .1517 .1549 .1581 .1612 .1643 .1673 .1703 .03 .1732 .1761 .1789 .1817 .1844 .1871 .1897 .1924 .1949 .1975 .04 .2000 .2025 .2049 .2074 2098 .2121 , .2145 .2168 .2191 .2214 .05 .2236 .2258 .2280 .2302 .2324 .2345 .2366 .2387 2408 .2429 .06 .2449 .2470 .2490 .2510 .2530 .2550 .2569 .2588 .2608 .2627 07 .2646 .2665 .2683 .2702 .2720 .2739 .2757 .2775 .2793 .2811 .08 .2828 .2846 .2864 .2881 .2898 .2915 .2933 .2950 .2966 .2983 .09 .3000 .3017 .3033 .3050 .3066 .3082 .3098 .3114 .3130 .3146 .10 .3162 .3178 .3194 .3209 .3225 .3240 .3256 I .3271 2286 .3302 DERIVATION : 0= AV, V• 1.4u86 R eis S 0•quantity of water carried by pipe in cu. ft per sec. M "1'486 Rzis A" area of pips m sq. ft. V. mean velocity of water in ft. pa. sec. V•MSI /z R. mean hydraulic radius in ft. M. constant dependent on "n" and size of pipe. 0•AMS S•slope of hydraulic gradient In ft. pet ft. l IV s If: velocity head in toot. •0.0155M=S Fir friction head in feet. )• ES 1." length of conduit in feat. n•0.012 for concrete pipe, 0.013 for " full asphalt - spun "lined corrugated metal pipe and 0.024 for regular corrugated metal pipe (unlined or asphalt- coated). CONSTANTS FOR MANNING'S FORMULA, PIPE FLOWING FULL c . Plate 2.6 -0603 J to • e -- 1 , . • ...,,. ri" , ;it k• “ ' :: . 11 r`h 2,4 " ...i ' if ' 4, 1 1.‘::4 .. ,I 44_ „ . 7 ,,JI 1,i . .., ...• 'e l ' 119 W' 1 ''.-. \ ' . .1 ' 1 1 -.., . .‘ ' . ,.. 4 ,.' 7 • ' 1 zs , % , , t i i -.-„ . 4 , .; ■ , :, . , 1... 4 i 2 W ,• s s , ,, . ,,,' X .• ',LI le 1 ' . .. ' ' ' s • • 5 ----. - .■ ' - -. .L-1 • i ' i ., ' I • . : • . .. - '1.— ilk r" •■-' 7 .1 ,f . . Er -'• ' ' ' ' ' - ' ' ' NI 4111111ti ' '''' 1 - L \ '''''' 4 ' '' • ' ' .41 r.e ./ - I ",,,, • •• / • os • 1 .... ' It:, ,:,' '', 5 ' t • '1 - ,,: • Cr.. ' . I - p 'I" : .1 . • .... .. ,„:. , $ ' ; / s ..,. 4..; --, ,e0.-, II •.• t, T t. .... . •,.. , , 4 „, .,( ,,, '' ' • ; 0. ,.--ivr-, • . ' 1 • • , v ' : 'CV' . , , ,..... A , ir I: .1 , ./ . - II!, ,I ,/,,,• } . /7 ./7. ... ..,:.■ III : ,i1S. 1 0 I. ,r. . , / - ' ,',' ...,,./...."...is;;;',x,V i : ,0 .. 4.. ., 4 _71 . (i.... ,s-■,= 11 ,, 14. , - CI rt ss,. , , -, •-•,,, ,. ',' . . , 1 ,' J\I i .,, .' 1 . , • " ' . I l' .3. ) .. II t ,.. 4 i '1 '-' • . I •-. 1 7. • ' • - - , ; Ir . c •V. • 27“ '' ' 4 ' /I ' . • : I • k f : •. • • • ' , - 1 \ ' f-- - ..464- , ' 1 0 ' 2 ,f'<( .' '•;;;: I V .. ..v. i ,-., .1 , ( . ,/ si . 1 )i i • ' I 1.11 V fi . - . , .ti.1- - . ..1- clE ‘;' ' ,/ !1 ..,',, k;)-,• - ' .%-', .'ve;" / (J) ; s ',i, 1 ,,' . A '.,,liy- • ”,),..• , , ' , . . . .. 4 ,,i -,,(:,!'i i A , . ...."- '...:. "7 \ I , 1 t __. .. . • 1 _,i, .hr, i . ..• - 1 , 4 ■ i . • , 1. I 1 . ...J IL• F.. ' " i 6 .. „si -- i'' Y . ' ;re • 7 ;" . r • 1 _i l',1k.',-2_1-.- -J.L. ,-._ .....: ri!..... . 5iii-= --•'_, 2,4 ';',„' ' '.- , -:, _ .1,.. .,. ,I,I....1,.• „ • .,... '•_,.. ,.. „-,--; , t i...,........ ,,.• 1 .. ......... ,, , ,,.. '1, ,(-7.,•rt ,''i*,', 'r 1 .."-, 1 , 1' ' .. . .k.• '/__I'l 1. 11 i'ilr --- ''''.. ''''''.i:"...--',',' ...... 1. 5.6. l' ' if \ ,. '1 I ' i 1 :4P ., . 1 , 14 , r ! „' • , ' • . a .. LO 1.1.1 . f' ,. ,f.= C'''.1.. Ee, 1 iii'- - ,1•-.",;' . ...‘' - ... : - 1 - '. .. '''• - '',/'-''''•-='` )-.,"•'` ' , '.. i ?(' till ,' i ', ..i ),; tr t -: kr. f - 424 4 ,-''', .. • •,. , ' ' . • A ,. . ! 1 "--- .,.- IL-,, :' 4. 1 'I 7- ' ''!•'' rtil;•7' :,: !.".- ..- • 0 • _.',i J 1,_ 1 11 ,' . -1._: . c:il -...,:,:, :' 1.,' 1/4,04, ....., , •.. . . ... I , .„4., „ .... . ..... . ,. , , .. _ = 0... . - . . , -•,: ,,"•,..„1 t'. „ ;., r i ^1'1,, ,-.. ' i , 1 ...,. - : , ., -: - . , i :,- i -, - t , ' • , Ar,ge _,, .7 1 I • F.- #: . , 1 4' . 't,'"' : '‘i!'- • _ {•.--,-: !'•-• "; -,, , ,.(, 1,t-•. ; ,,' : . 1 i..,(' i' ■ , /'.',P ..,' L.; 9 , . - - ' --,.\---- - pr---T /:, -:, 1 :--, O m ,,,., ,, .,- \ \ 1 . ' . \ - r - - - 4 • • ' ; "' . NI' 4 I _ :11:._. .„. ...,_:. -., < , • _.,..2. ..J 0 't, : ' ''; : ' .c. ; i '-' ..r-.4. , ..: ; ' :' . • lk '.i., , \ 0 1 „0- - IV .„. ; --A . f , • , ' . - 4 ti . ,i;_A—Aii 't * , \ ,‘ , ...• .49 1: 4 : , I . '', .- (i) i :' 1' '''' i ''' 1 :' 1 . '''' .4-- 7, -iii! = --'16-.7 1 -% ":" C' '' ll ' ' r'• . ' ' ' ' 1 I „ . ' _, / Il ',.. 4. - - 7 ...1, ' . ,. . , . , • i V. HON " / IX - f • 3 1;17 ‘ . . - .. ,4 .. ., . l'' , 4 ,.„ i , :,,,,,:, .. . .,..,,,.. , -, 4.., 4 , ; . ...,,,- ,: r ., .../ . ■ ' tt ' 1: ' ' ' `P -• '' ' ' f le r tc'.."rt; ' '•`'.,..'.''..''' 4 * AO 1 - . 1 : „ ', ' " ' ., . , ) '• F _ . 'PIL i il illh r, .1, ,_, 0 , , 1. . 4..„.• .,,, Ir A -4 -fr_- 2 1 . 4. . >-' , INIL. ,/ I .:*i . ', (.1 i -. 13...,r' pi.: f - ; •41.— i .•::,...- '••-•57- - vi.: , ,,,,, ' .7* I „•.,,,' t ,,,".•-, '. ,„... , .,,,,,r„ ..L. -, ..... .. •. . , ,4•-• , ..i . - ) 'io. i .0 ', 1 7=='. 11 , y , ., i,-.-. . 'i;:' tlF„ ' ''''\ . . ' . ). , 1 I. i ^7 1 r 1. ...,];,, -- ;• 5 • ILI , I ' • ' r .. - t, _., — - I i .., ..,, L L•iy i t... , , , „ ,,,. ..: . .;,• • ,,,., .., ,. ,,,. ...,....,• ..i.. , :., ----„,,, „ 1/41/4......: „ ... _ y „,....... ,./. . ,,, i , , . , .., ., i . •,, ,..,,,. ,,,,,,,,. .„, • i i _,,,,,, „..-5„ , .,. .„.„._ ... , 1 . s.,, , ,,.,. . , . -, . ,4, ,, c.'''14 • i',.:. - • • ''•• ' : • , .,.. ." if , • ,-. • .., , . .-. ,•• (.13 — •:. ' ' zk'.v F.. - 1 '' - : Ett44. ' • ', ,.' ' --?, ,.. iir... •••• • I V ■ I ,. 1 ,4 7 A.,i .1'). 113 1.___' _II -.- -,, -iv -.:., • ,1 CSA ! 7 - . ''. . , ,,j . le ' 1 1-4 . 1; '. t • Wri,1 . - ..!," ' 5 " ' - ' ‘' '''' e gi: - . ..: - I I .` . • v . ' 714 /..' ' /,.i;.,,...;, 1 •• _. ',...tli. ' ,, •; '.• I !. - ' .., . •I' , ' 1.414 -J ,,-,',, .,,, 0;1 ,. ,,,,,,;'• .. ',„.•-, :- n,,,,, .-i% x . ,, , - :- -: ,; , I_ .1,,.. c ...... , , , il' .0 ,- , .k°1 ii '''l Vt li:•••:' • :-....... i %I AWN .4.. ; -4r4', ' 1:4." :,..t. ,...,.■ , y , w . z: , j i 'C) [ ' vet i 't V- , `*,- \'...14' . .,.. . : : -.30 • ,ck i' t••• )."..- - ...'4-•-•-• ...- .,- -,..---7 ,,' 4 . - I :. , ,,. „ , s -- - .•,•'.. -, i -i e . - . .. l,...' ,.,. .. 1 - 1, .ii . , • ,ii _ ,.. '. 1 "N. ''''' -- 'r , ; - -e-. ,, e„r.....! . . .1.:\ ',..,, . :.-, : .,, .., _ •,, .k‘. 1 ,.,..,._ - ,- - 4 ,, ........, ,,,, • ., :ltz3..x.,;-' --.... ,,,,,, ..,,E, : .4 ,__.ik. 2.' , :.; dt ... \.,,,,,''' ',.' •. ° . ---'4'1)t..i'Ll.__\7-1 -• .. C°U * Itt : ' 1 ...• . ,,... __Lal •_•,. . , i ! :,..i 0 :4 ',;$ .• r• , fr it,,,31■„;\ 1, y3.,t4t,„-",p4w : .,, - 4. qr., i . ,,,.,' ....tt . ••,4. • - ' • , • , .. , 't Y - - i. ' i efr,9' rItt7r 4 47014 7 ,I. ,,, *-11,....•i'-' • ' • SI ' ', •• l ' ' ' . .1'...' • ; '; ; ' ''. , N - ''' 4- . ,' ' •. . --:::-... . ! ..F 1 / 1 • • .''''-- V r , • • 1,1i i . • v trerp.. ir ',' 4:1•I ; - ,r. ,'„ V., • .,, f i . _ i . - r , ,---] ..,‘ ,,i ; i'.' .' ni„, ;fult: td. , :l'', : vr.( , .. , " 4 ,1).t... ,;:' oh,: cturor., c• LW. :'.. • •:','' \ \ • . 'il.'07i-Ti '' 's1;‘,., .., L I t .. - ...:.-, , :";., I .4.1■,‘...,:;. - .k. Ca #: '44f '1;itcif '.i.?'•; .'''• '44 .:-.,.i•\'• . -%-• ‘• \ \ -,:• li f. I ' ) :"' i *& ==v--zt, =••••tf-- ...t4 1 .'' ; ',i, 1 .1 p 1{ ,•'kek , ...-',,F,VI:" thZ!;Ji „I': . '• •••;..,,,, VulitleAIrifi*..'•', '3'k .).'-'1,' •':A's • • ,I • \‘• • , \ ' i. • ri. \ -i. ' .... - 1,..,,i. :- 6 - 7.1.), .. ,1, -4 -04pri 'Per.2 r . , ...,`,,,,,.. r ,_ ..':, 1 177: t• --- , • --• ( 4 ,e,,,,, , ,.. e / 4 ,.. 4 ., , , ,144 .: t....,. ..../1,. ,I 1 , , : . . p ..' .,,, e ,„. 1 .6. .f.g , ,,,, ..\, l'. ' i ........... 1 , .,______ , 1 r • 1 CI III , , , .f.‘, , ,, ,,. • ----, • • I • 1 ' ; ' ' 144; ';iteft..t. , - sr iri;ei',A4i it4 ... . `,',. , ,` ,. t . .' ' . . , . 'i. . \ ! - , I 3 4' :•'',' - 04,f.;.•‘L'0-4, 4 '.;tA%',i, ..Z. • - ,`.‘ ' '•1, t ) '1 I ' 1 i =k I, \ ti 1 ' ' , •' 0, ' • ''' r• • . ''' , ' .1 il Z '''•••i•*#!...1. f iri*otivt ,,,.., z. , '.'! . ,P, . ) i \ 1 , ..,.. k ; , . i 1 , , . ' 41 ,Aif* ''' ' ,' " Li ' 'PV5‘ 11. t7: 4 0 VP': •• ' ''. ‘. 1 .1 • ' 1 ' '' \ '. " 1 ' • ' ■ r • 1 Z • • ' I in In i,, A 1, ,.. , 0' h. 1 ; %,,Z .. ', i .?'10 ''..' ; 4.• i < . ' .• r• H ,,' 1 • : l l 1 II • ) --,.,:: , : .• •, ',. ---- . . joimised ) • I ' I .41.11 ...: Ikt■..--.- ' CC ' .. f I A! ` .7:4 1 , ' i i, • i. , --g„,.. '',t.,, on. to.',. 'tr °' -, , r • , . fi . ) . , . • , , . . - 4 ,, -. ' : , Lit:A Is4; , ,. ,•,- . gay. .4. ,,,,, , -,;.,.., • ,e ,' . ,,,, H LI , ., . ,, ., i , . • , • . perx, 1,,,,,v0v.. - ,:s,' ,N 14- i• I' .e 1 .' '.'. " , '. •, ••• ' H /1 I ' • • i ; 1 ) . . . ' ;, • ,4 a '. - ' . •• ' •' . ') ,,, ,.. ....„ .. v r. /„ r -.... p 4 ....I r. 4 , i ,• ..., 0 . \‘ , , a 1 111 ,,,. ...."'i,,,, ,,, ,-• ' 0. 06 * ,4 "' .0"'EV. •. ( •. 'W 7.'''S{ ii . ' j , '-'• • ■ ', . 1 H ) - .1 • . . a . T,'; 1 7;•,;;;;;;„".IN .1 •.. .A , 'I .. 1k - /•,',. - 7,..:,,i.r.r;, , , ' • ,„„.•,,u4 : t., • • ' PT •,•.• I. '.2....i...-.;--- • • • • , , , 1 . , • '$° _ 1 ."7 5. ; '`, 1. . ' 4 :0 k A ,,,,,,- .4 4,'Sfis • !'(• ,C- -• - '• ' ' ' .• ' ; - I " • -• •,- .1 . it,„ 4 , _ ..„___._ ii at ) 1 . , ;,- IA 74 4,1 . 7 ., •i; - • '14:4!: 4 4 4.- , Atg,. " ,tr •"''''' - . 1 ,.. .; . -- t--,— - . , , \ i :,_,_ . , . I t . \ ...1 i . x:, , i '.. le J 1 . t c • . , 1 4 ' . ' kg*. 61 . k 14 . V i ' ' 'Vk' 1 kitA *.■ ' . ' \ I ; ■ ' ' ' i ' - - : j . - , 1 1 1 itifiA ''1, i 1 I'L,'„rol . i, t ilt ,' 41 •t(S ,`1 1 , . ' r '.. / 1 .';"., ' ..sekpl'' Z.. , .. ' .1 'Itf, .= , .1. 1. ...,1,.. . 1 ,, ( .4. .1 1 • ik . • i • • : •••,' .t 6 i - . ' •- ' ' it • " ' • ■, tit ; 0 ' 11 u) . , ...,_.,' ,- ..:1'. , .. , rx... 044' - ,:lni ,...4 .,,:: .1`}Ati., ,t. cr,t. 44 5,- C • ' ' r . ' '• , (P , 1 i ., ' . • ''• . Op ' ) • , i . .., I, .41 : i' ' i er 1 irre.ei : -.774 .17 •T Oft'. : ., i L il L 1 I -... ' • :. :•: - ; : , ' ? • $1, :,, i • s i' • ; ) Li 1 i tAf tk iiiO4 . fy • !t e tk< Jrct - Vti,,I,* Ir ; r ,. I ' 11 1 ..) p ■ -1,"..,_ • • P •••-.1 • • • .....,. . ... ._. ....- 7 _._ ' ..:,..,•..A.,2.4,-,..:.4 1‘,.):,:- ,i;tik 1-" Eit ,. ,,.t, , . , .n • r • , • rl , '':II ta 14 Zi 1 e '4 N t■ 4 .t 4- /-; dr ' ' ' ..' I', , , i 0 d ' - ' 5.L. • .„. ''i 1- !;'i■ '1 I • ' t. ' ' .;i• k • '''';;.• 2. 7,...:(1 el 5. ` a' - • k , , ;;;.' •••:..4 1 ,, b-fite '.. & 0.'1 tvw,„„dminato - I.2 - .1 ... , , ..._ / 1 , i , pl, '.1,,, , g, ,,., ` • l' 1:' : '' . ■ .,.. , .. ,,, . ,...L.,... i-, 1 I., - , A p ,. • ... . up ...t.,• PA„,^1-at-fmtie 4 k.41;11-4,. • % '. - ,,,' • , I g ' • • , li.. •, -1- ‘' ' p*-,. - • " l' !. ay.J. ' 1 . ,1:, • 1;0 E l p • • , , '1 b.: . • '10! _.0 ,r'i i • ! . -"„ t .',-, - • , L 4 , !: .. ■ , .7r..• li ' _± I ••• .. r. . - '-' -.... trfr ,.. le. •. ..': V . • ,..... I, n : ; 'l , t. i • _OM , ', i- • JA!).' LFIL i''' .. 1 - I ' g a ■ X 1 0 IJ 1 . i t.bi■ , • . • • I I. t I • '7,-; 1' I il k:'' -7 l 1 .. ! 1 ' .‘ , ir,r T' 4 7 . 1 .. '0 . 1 • ik) 1 0 W - P ' 14; t I f . ..14 '6,4 4 . i; 1 0),, ; , 1,1' 11 ' ' ) I L i rr 4. 1 ' • 4 I tY 11: 1 • L , i , .,' i■ ° ° IL • , '74 .' U V , .,4 , I 1 i 4:4 . . 1 / 0 . 4, 4 rH ,,,,,,,, 4 . ,.. . . ,., „... . •,,., „..... • .., 4 : . . , _ \ " % t ° ..,, , , . . , e , . w , • 1 ,. .. ,.. -. . ;I , • a ,„:4 • ,• . . )1 .r: .. • . 1 . ., 1 -.`, . 44„ ;:k , ,,-. 1,, . -'; .. --,--- I F, i :,-.. .- . , - , .. ,,tik, :I I „.,,,..• 4. ,..„. , „ , .,, : . ,.. ; 1 4 , . t .. • - - - . • ,, ,.,, ,,• , ,, • ''. • •- N -, ..,": i. .21.,.•:,;10,11. 11‘,.. , my, ;II lit ''•-.- . ' ,. 'J ; ik :.: 1 0 • 1. .,:r . •r- ■‘,, 1 il i. gt 1 . ; . 4,.-,It:4 .0 )-r) „ ' - _ . ' I 1 T, -,, :,.--. . -,••• . -Thr •-.‘ - - • ' " 7: , - ,v . /lire .1P44• •-'.....-&-VA ZR ' ' - ': ' 6,:0 1); i f ,..., . , • , 4 1 l' f••■7/ • ' i mi. t - .. 4 'IL,. mi l I /VI ' Mr 1. V 1 , .4 ' '' ' 1 ' ''' • ' ' !Va. - 1 ' .•,r , I r , 4 - • '; .,-, `'.;: ;. •_sil.'..; •SeAst, 4:41,1 ' . ,, ,', ,.(.. •!,. )) N .I - - .. ligt .; 71h ' I ' T4 '' I l i A I" q \ '" 1 1 I . : r . . 1 ., •' ■ •- a i l kl ' lir'• 1 Ell, -"--- 7: - 1 . j . :• 14 . 1. t!'+' • '.. ' ' r`'`tijriTrtl: V 1 ..''''.• . 11, ...'"AillVriP. 1 ' ' ` Rt - ' u . r ' r II 1,_ ••1,z.' - .01- :7 ,•',' t•'4." " /....,4 .- '1', .11\11 jol 1: .... _ 1 aa,,....- ,-- 4 I .• l," ." 1. • h ilt .1 , At ' ,,,,,''!,6 1 4,';'• • 1, k'' '..,-47,V .. I- " %;-1,'''4/".:, •• , r -1. , • . s.....- ...:2.-J ...-. __. U • '':. - • r ' a -e--1-.'•-r-=' -'.'r:i'r ]'-'- Al.t.. -', ° ''. ' II ' . k • l ji , • tg, ami,•,J.- ',-,,r4,,i\---c • Z c t .. 1'.,• '''' 'ilt:,. ■ i . ' . ' ..1 ' ) ii...■•4:6Ints t, :, I 'LI ',. 4 ' ' ,, ill •• Iiiittlitliiii 1 I ,._..,_, I N. i k 3', ts,,:l• ,:,t •4,-,t ,,,t ,,., 3 ..ti 4 44 1 1 ) '' 1 • ' ' ' ) 1. :11 lict.: - - Li: . - • 1 ! - V, .•, 4 • ,,,.. , ... 1; i' ''' , , l':`',.n■•• •-f, 'P • „,} f'''' L' 1.,•:' ■ ... ,,....i , 114 ' - - •,'"r"' ' • ' i / , ,.,,..„,„ i.•'. ..!. w • 3 ' eC '• , 41.v..9.1 ....,,; ..! • .,,,t,i4 :..,..0. , ./p.,,„ k , ; .t,, , A ... I P.,„, ; ,;,,,..„. -,,,,„• ,,,,,,,.,; ., •,,:,, ;,... , " liliffiwkL .. ,•'. . ,' c • ,. ,1 ; I I ; ' .• "t • rala 4 s . 1 pi trIlL . . , .1/4. A-1, ,c,t,,•,,-, 1 ,, ,, , , _ ,,„ k - ,,,,,,,,, - r.: .,1i14.,..,, . r •••, -;:;..1. -,,..- A 1 `r'' ,' - - ‘. .1 ,, 1 , ' • !1 / .., . 4.._''. ...r.; N.' ,s• vt i t iql . , It31 ar..i ,Hn illi "'ks,V,! ,V:i (.1,q.,,-"_•;. r • 'r 1 ii , • : 1 ; 2 ..° i • • ,t • • r - 1, • 1, rr 4 , I., :111 ,liinits,,• '' Ili , t11111 Nil 1 , pi ,. ' - ' ___rp.i,-,;•••,?;, • , - : - - •,,..' •••, , . ,, ' r ... • . ., ,,, ..1,.i' ' -........ -- --4•13-piiiirr!ra ,• ; kJ' 1 11*-• • ', ••••• O 1 .... . •■• „:1 , ,.4 .... .1.. dr.S.T EIZ.......ing.t..• 41:0 !i IiilpIr 11 ion t ... ,,; ,, , : i 1 ■... , ''y ... , ' . 1 . ,■:' ...1.1 ''•:, ' :?, ,•1•.,%1, , ..l'e:•`: .,. ' i ,li,:', Y, ..■'• . ,':. i0 ( t: '''.7I ‘ t-,!-It .. , . , i 1 p4.4;■ • •■••‘t... •,+•.•■• w•,;:r,r,',;;:i V.. • III 9 !I : „ 1 1. .- ....... .- 1 1 ,. _-_••_.••_ -4 rim... . -.. ill 1 soli " Ile ' t$.. - :1 (i , ..v.: i ■VP ' ;•. 1' ' ■ ; '•';'''; --. 7. - ' , ,'. . ..-" ,,l‘ ler Vii ' . t - - 111011111 4 1 Ar P 1110 Mr .141 . $ , .111 .3.;;;;;' i.I I , , . j• • V - - r 1 • • I ‘' • .' . t.:50", ' •' ',‘ -, i i j -;', ••'. N 1 ‘1 ' '-• 1 ` / ' ' '''• ' el 1 W - J....416,... • n.1...ii g ; • .; •• , 1 -,:, i - ,( 1 1 ,•, • , 1 1 r-.. A , ' I •,• .,..\ .-, •,.5',,, ..- . ,—,. • ' 1 • - • : . . • - i <''', • 4. -, . "',-(' , 10 1 i , ' ■ .':- P':' '; ', " ;• t ., f' • '..,'' : ic ., ' /1 V . • '• ., . .. 041 4 AL till ipk 11 1 i: 0 . ..' Siri E. .= ..1, . . .. . t . 12t 1 ; :litttillil 11 1 : '' - ' '' ' iet ■ , - ., ,:: ,' , , ' . 1 ,' ' Iii; ;I - ,. ' 4 ,. .. LA_ ---.., • ,- . - , `,.. ,_ :.. -,.. - '', '" ',.-. l' --' 'E a ' par .tril 1: 0 '.. I .3 . r. Illh MIAMI/ LP ,..i ' / i : - .7.4,,„‘ 1.:. i. 0, ' N''•• -.7-- - • ' ;'''' -•: '• ... 1 , ' ..4 :- ''#i - .• ' • :••: r 7 -, L - r: ', i , al,, ii • ,.11 3 ,,, I,. • • 11,111 11 It, 11 1 ., - ,, p,'-irA.. •-, - .\_.• ••-• :,..• ,„ , • ,‘ ..• t• ,,•;• ,•.. - : -,,,,,,..,,,,-, , ,,•„- .. , . . ..... 1 ,,,.•,..,.•.>,.. •:,•: • ,,,,,, 1 - t.rici!!,. , i / J i ,, . . ' - • '-.., •! 1% .;'. '...,.": '-' ;: , • , '4'4 / • If 11 a; o . , _ , . r X , , . , I ,. 5;,' • i , • ,,,,, ,,,,,,,,,• p.,) ,, a , : ,,.....,,,,,,,,,., • , -....-.-, , • -•,. r • ' • 1 •II: • 1 1 x 1 t s i til i ' IT tr'• 1 1 .911-1 . =I '.'cri ill --,, i",- -,." • ' , , e.1_ , , I , 1,11. ,, ,. ,-• , , , ‘. y , •-.... 0. ...,.,_•...,,,„ - , p i ••• CI . •■•••, ' " ......7 I "I ‘. 1, : i Fiil ' ..“... ' „ 0 " I II wi .rii 1 T cc u 0. i7-' 1 r" 1 •• .4,h ... ,. .‘1:.. r,.. , -- - .- - -- 4 .. •, 1 .... ,!_1 1 --, t l . ,. ........,......._„,w ,.., . ',. ). .,• . .., =41 •-_ 1 • , 1.. , 1 • • Ifi .. • :7-34 • • . : ' 1• 1 - j " \ ' ' f.N' V . it . t ''A' ilininl jrmitaa all a ...4,, ce w i 1 j 4' (.! • ,, i .0 ',., ‘ f` \i'. , • ^ ' ,:• ', ., ', ' 1.. l"; 1 ---. . ' ,,,,,; , i IP , ;:. - .,,, . .... camm ), • , a , ., ; : *., !;,/. I(' IfftWil TliiiiIIMM `-..■ • ' I to . ,. 1 .1 • "•• ':•'' ' .•-- e ..; , • r • t.! , ;•• „•.,, ,. . • -,...• 1 • -• ,2 )1 i . ' co•' 4 :1-,..,,y - • • • 41 •.• •• 3 _ , ,..., ,. ,,,..., . i,,,. ,• ., „ , .. , v. „..„..,„ i....,._ ., ,,,,,•,....,, 1 - . r ,r; . tir...a., .....! i ,,,,;.i -,„'•,,.,'...-‘,..,,,,;,‘::.., .,,,,:',.?.., .., . : .. ‘, .,,, ., , : ,, ,, i , , . .,.... , i •...- ‘, ,' ' ' ',. .. . , ., ,.,...,. , -1 inwili t i i ,.. ),!:,,---,,... 4. .. ei . .:. i .,...)1. ,-. 1.„........_._ ____ , -, - --- , - , - -.:1-;•=1,---;-__,,f„.„ :, I .,„,1„4 .- ,- ,;;:,;:;;,.,.;;;„/ ,:,,- , .„‘ I ,. , -ir-„ :( i , u • r ,,..- - .. , i I C' 47 . 1, ,:. •• 2; • ,, ,•• ,, .., ' 4 .4,..' ,- ,,,. • -••••,:,••,'- ---,;;• •••- i•-•••• - -7-' , .,i' , ' ' - "r"" - ''' '' ---. . , , r , . .4 v., 7 1 . i fi... , ,„ .. ,..,7 , ..'a ? P • ,-% •'' . • . ' i ' , 'i" ' I . 7 • A ... 1 rte. • , .,„,..,,t, .,,, ,,, , ; , i 1 ,i,' 1 . , , „ ' : • ri I . 4.",....... 4 n ,.... - ; :-..-1 :II f `ii - , ' '• , , 7 . .-..... s'''... - • L ' I 't ' '41. 1 , -- • '" . • ., ,7 -•, ''' W• b 1! .. ' , •- (1 - I ' -. 1 - 9 ! ‘" • 4 '" , ' • ' .I. ' 11, J 1 it 'I "f: ' . L ' l' AlEtt, .--. - .,''-..- . , .,. ,,,;,,,,,,,. - e '.. ' , ' - - ''.. ‘ 1 ' e ; ' i tA , 4 • ''',... 1 ' • 4- is' .,..... • ' , .7.., . ..i.1- -, -!•'; r -t Ad- ',..1'••• • d ., . li ..- - II •••••1401 , --L ' ... t ' 'i = ; ",!-..''..' - ; c' • '' . , ' I.., 1, • '. .'■ ' • •: 'Jo ' -. 41 k,": ',/ • -1- • • , '.., ' -•.' ,, ' ,. At , . : P 1, ..1. . .:, . - , - ._: . - ,..,, •,.,,,,, . ,) .,,' ,r ,,,,',., . ,,.. :. , .,•_ ,j ,;.,- Ili, ,,,,,: ,,,, I r, ''..,,....‘ • - !. • ..,'," , L •- r ••• • •-•••• Pni,j ' 1, : I .. i: I . ,- "•:'1 , It . 0 alit 7...... , ..,1 ..:•-• 7; e: , i‘,N,I ',1. ''. ', - t - , ‘' ' , . -,‘ N r" I 'It' . ''',:. I ' l .. ';-•:' 4 ' ''' !: • A: ' , ilel ; „ ; I., , •••,, L. ' , ... ,„r r - . ,. 1_ : 4..„_-; Ptio ms -.; ,,. •,.r j j i•gel ...tili 0 .14`40 . r. 0 ,, i, . • ,i.., ; ' s • ' ' '• 1 ' ' i ' 1 • ` ' 0 ' ',. ' */ •‘: - ' I ,,1, -,' 1 • •-; 1 •- . • , ,' ',:-.s.'",7'• N , 1 . 1 IlaNitra■ki, Al . 1 . ...: , ,• % I I -,, ' . - 7 •( • i' r, ." , ..., f •,' ' ma an :ifijir• r . ' ,,. . i - ,. 1 ,,,,, . , , ' • i , - • ... ' r , .- ' , X r \ • ' t ' '71. . ,r . kr • Ar 1 ^ r ^ , ' • • a ; , • ea • •-'• 'T "%Ili .4 ..... 6n ,, 1 F... %, ' ■ ,1, , ,,,, . , ,1 , ( , I , , .. , \ ,r. „ , - f,.1 .-- ,. , n, 1 ::-..... i, . i %., : . ; .i, k ! ..• • Of PilkiLl i i r 1 FI: i jiiiill 2 •• cl ' '_; • ,;, •• ', b I) . 1,' ' S. - „ ''s, l' •:•, ■ ''• 1 'v 1 ', '. ' ' ' 1 r ri :. . , , ' f, , ...n , .......0...r....,,,, ..1".. .wpri ,.4 1 z •,.. e ■ ; e, 1 ' .;; , ';' 41,;11 .--. - - : .'. i, , .. .....) ‘‘. 4 1 ..... ;.....„. ) 11. i .; '. ,, ;•4•4: .,: , t ., ;ii ‘..i ,. . •_ ,? 1 , ,, , ... . ' ' ' " , 4 ,'-‘ • '' r . , .1 . hi • ••'‘ 7 .1 . '.11 . ' .0.4 '• -.: "ivit ,-,, .*;,..?4, fr %,‘ . ,:. ' '1,, ;. ,i , ,,.• •'' c 0,- • '0 ,,,' ., '1 '- i'... S'' ': :' '''. - •;11 , •',;1_'____ , d•f.. • ',,•' L.:A, I ,„; '1,,, ‘,:,:i.'., •i , •.,, i. ■. t; a tellIS,;,-f a lp g,•,...,,, al ''''' ' :•=1 ••=tile ' 111 F. 1 i “" ' - C ' '.i• '•e,"'" '''.. '..1 ' ' . - , • ff • ''.'77:: -1 ■.7 7 . : ■., '..' :- r ,'' .•1'...'''' - .. .., .',--, 1, , " ' V,') s • -, ' I, ,,•- , , ,, _,, „,. , , . .., , „, r . • • ! . L,.. ''. ,, k , • 'i L. . , g 5, \ .5 ;.,,,, ', . • r• . , f•,' , .5. ,•,,,,- , , lr,...m.1 AI ,r--,1• ,.... , , - . I n nt- nil 1 Z ,;,--.., , • -,, , , c ,„ ,, , , 1., ,,,, .,. . ,, •••„ , 5 ' . ' i ir , I ' ....:'.# ,•,,, ..‘7,15.. - , , It • P 41 .., , w• ,• ••,.....1 .‘;•' I rrAt' r., ••••:. ,,„ ..., re , i • , . ' • ,. . '. ' ' . ' - . -.' • . , . ' ' I ' ' . . ' . , e ,'. t I . • , ' r '.... I -,' . r. - , 1 - '',.; 4 1 '• V44 ' et. ' , . , • t I 4.4. \ Ala lir t111 i i., D t • •• ,,,...., - • ,, , -- .- ,.,,.. •,,, ..., .,, , , 1, ,,.$.; ..,,, „., _,, is ' ,••, ---• -i i.----"" •(,,,,, ; FAT. I,,, I I. , I ; i, t ,,,•_, • ,...4 / i gnilial I, ,, r. ,,.,,, 1 , - , . I 1 , ',,. • ,,,,, k i .,,,,r : ...,-.,., .r .. , ,,,,..• .: )•, ..,rg.i..- A /.... , ' . / i i ttc & i :r it wiltailli IL 0 ' ...c.,:_ 1 , • ., ... , - ". t (, • ., , , j , , , , , ,, .. •, 0,..,, ,. ',.1 ; I, -., q . ...• - N I , , ; r- .. a • 1 . 1. t ,.. /•! 4. ,idli .. . 01 . 1 . __„• ''. ..... d'0494,,,,iiiiijill.%iinla . 1 .„. „.,..., , , ';,,,,.. .....,, Ai . , ',,,,,...' s , - I... , ,le 1 ' ' . ..' • , ; ''1 I - - , - ), . •••4i • '', f.• ,ff:•.• ' 5 . ••• t v Mt, l...........1 - . - ,...,.: t._,-,‘...,.. -,- .01:1-7 -. -,..- - :. .:_...___„, IP■ fiiii. A.ssea.,,EF,1,01.11r a Cu) F . T 77.... ...V.. ..._, i '-'-‘ ' t ' . 7 ' .■ i 7 — i - -1,1 4 - - ' —m i f - i 1 ' ' li - - , , ., ■ I ' , ..- ,, i .•',.: 4 ',' I ,,,I 4 _ : r . 0 ,. .: • i -, ._ . .. : 40141 .---?!,-- . ‘■,14/• 01111iri..1 r',„. 0 ! I 1; , e : ,* i• . , 11 11 0 :- • .' P ' Z c ir —I "I' , 1 Veir 1, ...."1. 4 .;,.• ' A.. .. -,:jii , % I Imo -. im . - ..• ' ,1 • IA tiitis' ;', ,i-j'i it / ZE iri . or • .: '. t . -- s' , • su 'T ;,...,,....'••• 4 Avii.'"'• "i 0 o..1 .....„ ,, , .. •,4 — ,. ,.- ... - 5: ,I1 0 t : .yi.: cr ic.- I, fi, , g , ' , 7 - i 'i-vholv•it"1 " '.,-.. - , -1 \ 'b ---', I- , 0 (IP/ 1 .. ..,; ■ - _ . 44 7 '..• " • c '' . ' •-,t' ,!.' , . II •! • 15 A 1 frm P Ett . i 1 . '...' ' .` li . '0% • ! ' 1 Z .Z.el 'LP .i 4 ""- ,/•,, ;:::',,:' 1 I 'Y. ,s fi .1:::4L'''''.. ‘. .` wile . . f ? <I IX cn liti. : i Ic kicirtraa l a 7 47 . i . . , ,,:: -. ,,i3-1.,..( 4 -1,frl• ir';-. -....1-7,, W 0 . p; :,r• e , , f 1 c! ......c. , ,.,.. X .' ,, 1 1\ 10 i‘ 03 —1 g 8, i•,,, -•t 4' . .. - 'i 4.< 4 ` . . "' ll . \ V . 0 Aii . .1[8; . ..• 1- ..,., - •• .11 , .\..t . . ,, ...,. ;/4111k6 z ,....fr 1.,,t1 • 1 1 ,1 il- ;. Th ILJ - .. ' 4 >' II \\ '" ' ‘ •-•••• 717C "iir 1 •.Zi"'._"•. 1 : X' • • •' 1 U) I . • • ' ; 2 i lk7C�/ a ..-= 1 .";1 1 1 t - fi t I I I _ \ T T 1 t : \ � - o Twi T I- — '1 . �- � � ' 'J - _ �I �� i 1 •.I _ a �I - a �i - +- I kNi ,,, , it?.. , . , ._ i I— 4 - 1 - - "11 - . 1 ' ii - V - 1 CV - / -1 - - i '' . ' t 1 1 . '. ..; — I i t ;'.3 I ' . �' ` !I _ - \ , L! 0: , :'*± I 1 �r.� Jr b I ./ I• ; (k • " 1 - :- ka 1 r . 1 1 � 4T,7 - ./1 . I , : _ , \ 1 . I ',Pe, II pi iller ; .. OR • I. . . _ o , - .- -/ --- . 1 - • .} \ t ' l a .. ,. ■. v -.___.... ,4, 1 t ... 3 / I, 1 , ,I\ : \1 . . - . \ . : Z h' in , -1 11 I i ti r — ' = 1 b tn 1 • � I ��V , ! 1 I 1 J • ca ce Pre N - I s 1 I � ! ■ I i, ■ I ''i • . i I Cr f of I : fI. 1• ii �, - / ii , . 1111111::1 1 ' Ati.•maillr ,e , i . i Ni qrl i , 1 � , I o • �I1 . r • , , II Illpr / I a i 1 '' CC . �!f.a 1 Y-►. •1 •,/ ) ;, � _ 1 .. - , , c-- i j7 r, ; 4 LI . i � , . I cR i pp ' 1 _ ci Z ilillf�' 1 w Z •1 ,> ' 1 1 I 'k 4' u�' 1 ; -� : H .ri "L1 "- 1 p' 0 1_ t - -1 . ,. ' _h__ I-- _1 t ` J cn - n�.�;, ' L e -,( !� ~." •= , 1 , a o 1 . . , a W J 1 : \ I ! ( r k.- ,, 1 - `'; �� Illia I NI�I \ z O ' - Ion_ !_I- �` �� ; �`' 1� 11 Z o 3N • r I 1 1 1 1 1 1 _ _ ' ; . „ '1%. � > filignliN:4- . V� _ . in t I _ , _ _ l T y - , 1 �� I \, . it *. _, ,,,r I__ *-.. . : , sI s,, 1 t,,i, 1 , I:. 1 , miiiim6ts.-- -'' ' s\, A Lir - ' :J r 3 I 1 j 3. I I ' ' ill 1111: I �• I w I .: ( , 1� ^ • . � �, �,�,i l \ l 1 J , ',^ cc 1 '1 ' ltl / /i/ r- 1•w 1 w 2 1 •bd cr►' 2 7 • • II, • ( �I , 1 l�L+ 1 •r;rw.� 1 :i.:„...„.... I ' i • ,,: iiiill•_ ' 4 • ‘ . • e 411111111111 44111611! ._m ,-'1 rxt !op . .. , ...-- _.__,_, _, i, k ..,/ ; ' : I.■ : ' ' - , e cr., P _I � ' 'w� �i/ • �� , • V s Wry 1.� s�.� ? i I ! I A ,, I l . ... ,. In, • 1 1 I ► ' M, quo,- __ _ . . ' -' 1 1111 jillilii iirillarin r • 1 Pah '1 _ i______, __ . - __:__._ - - _4- _I0 _ `v 1 1 - I I I I I I I I I ,' 13 1 1 --- s - el a iilc'MIIImik. -I- z - • 1 _ - __ _J_ rflo T I - -t- 1 3 - 1 I - I - 1-- - r - — i r1 ,> I - T 1 i I �• • - I — . I - - --- _ H _ I _ 1 _ l .. I I 1 _ 1 �- • � t ' { I 1- 1 ' 1 - I. - t- - I — - - - -r- I - I - - - I-- a - , I • •• et _‘ r - W 1 I I %. _ .r 1 x 4 1 \ I \ f• • ' s i I _ I I .r T= la Q pp + _ I I) 1 •F • ' Jp,..", Lz. , 1_ . _ ..1.1, ..__ . . 1 _ - _ _ 1 _, c F I N I IILIA6' h i _ .. 4■.. _ - -1 ' ) ‘ __ _1 ; . _ 1 _, .;, ,- -I I_ _ 1 - - IA' ? , ;-9 d__ ,'.; ; _+,- ,,_,_ k ,... fr ._ I . rf • 1, ,. 1_ 1 , . : i _ i \ i' *--.) ...,.1 _, __ --ti _ I: b _ it _ 1 . ' . /k • • ' I f_ f �' - I `` - N i , i . ,;.. 0 011 , " ofr .. 1 1 ! 1 !. 60 I i = Q • i: ! JH ' • 1 1 i . w . . _ . 1 .1 cz L / �� I a i T rri/A. w N En tviv - - •' 4, • I 1 i . ■ - 1.4 . . '.; , \ 4: 7 ' I X . I I "I" q .7 1 li ) li '''';' - — , , i, 7 . , . ♦ t N I « 11a �I ,, I : Is N 11111A . j ..1 1 11166N, i I ;Ti — 4 I e ..... ,v, J V 0 y Pr _ I bI J3` • I �1 N >; 1 . - �� •r, - ,„..,,,,,...,,, illtir ,..,,, V4,,°,4 ► r -- ai -- I A , i Y r , I 1 � . iim 1- .- • Is— r t � j ! L ii � J I i Af N J y r .• 3 ! r O + - - - I , -- 1 • 0 , :. �1 I 1r• • .: ` , ,7i r , • m iiiitrilliniffpli pir 1:--. — 0 ' .- - i 7— • CO eN • I I 1 : I s .. f j ,T A C, I � ---�. Z Cr _ \_ i.__ i.,5 .4 - ifr w . y U) i r 7 - 1 - I Alp x 1 ' 4 k, , 1 I . ' \, • 1 NI •oI ,, ! 1 � 1 =_i_ __.,bk.:,4,raiilllir iii 1 3. 2 , .I ;,,, Air , _, , . ' .7. . 1 .> i ll am ni7..4 itti e; , ::-.' , 3 • I . 1 -: I R , „IV I Ard i' i'''.. 4$ 114 . 1111141111011/4 ef If..-....' 1 , ' 1 - -P-4/ ' 1-: 4- - " I' M° Al A 11 . - i i i1111 4 11-** va 1 . k .i , . ' 1 . i , CI g t zit a - ' ; i I e . ' ‘ ' ), ; ; , ../ !. or t # ,. 1 l - MP r T� ^l a _ "� _t�! / r7/ w « N ��" 1 1 - �•rt� . ri, — f n ',� t • -- 1 - -- - ,..,,,, , 3 /I - / . • > 0 0 or rv , , 14?._ , ., 4 ,,,. , _, •. . upir.r . qt„ .f. • - i , fi r �, ■�� f - co 4. 1 yr_ _ • w 1. T I t 1 �. j 1 _ 1 "r � � 1 I 1 — INclilliNIPI c - , . 1 1 I mi r :. ++ �1 l - --+: —( +r .—± - —f 1 - -- , __ a g ,, 1