Loading...
HomeMy WebLinkAboutBaseline and Sierra Avenues Storm Drain CITY OF FONTANA BASELINE AND SIERRA AVENUE WIDENING PROJECTS BASELINE AND SIERRA AVENUES STORM DRAIN - HYDROLOGY STUDY PREPARED FOR: CITY OF FONTANA BY: BERRYMAN & HENIGAR 2001 FIRST STREET SANTA ANA, CA 92705 (714) 568 -7300 B &H JN: 15946.00; 15945.00 DATE: OCTOBER 10, 2002 REVISED: NOVEMBER 25, 2002 HYDROLOGY SUMMARY Introduction Berryman & Henigar has prepared a design hydrology report for the reach of the proposed Baseline Avenue Storm Drain east of Citrus Avenue in the City of Fontana. The storm drain will be constructed as a part of the Baseline Avenue Widening Project. The watershed boundaries for this portion of the project are approximately SR210 on the north, the centerline or crown of Palmetto Avenue on the east, and the southerly Baseline 111* Avenue right -of way limit on the south, and Citrus Avenue on the west. Previous Studies This report was prepared utilizing previous studies prepared by Allard Engineering and Boyle Engineering. The hydrology presented in these previous studies was used to corroborate this study to produce a consistent and all encompassing hydrologic evaluation of the Baseline Avenue Storm Drain. The Boyle Engineering hydrology study evaluated the watershed for the Citrus Avenue storm drain; which will be a tributary lateral to the proposed Baseline Avenue Storm Drain. Boyle Engineering is also designing the Citrus Avenue Storm Drain. Please see the report titled "Citrus Avenue Widening — Hydrology Study" dated April 10, 2002 by Boyle Engineering included in the "Appendix" for reference. The hydrology study prepared by Allard Engineering evaluated the watershed for the entire Baseline Storm Drain extending from Palmetto Avenue to Etiwanda Creek. Allard Engineering designed the portion of the Baseline Avenue Storm Drain extending from Citrus Avenue to Etiwanda Creek. See also, the report titled "Project Report - Baseline Avenue Storm Drain— Volume I" dated January 1998 by Allard Engineering included in the "Appendix" for reference. The Mango Avenue storm drain watershed north of Baseline and south of SR210 was modeled differently in this study than as it was in the Allard hydrology report. This was necessary because we have proposed to construct a curb opening catch basin at the intersection of Baseline and Palmetto that was not 1611 included in the Allard study. Therefore, this necessitated differences in watershed subareas between this study and the preceding Allard study for the Mango Avenue storm drain watershed. There were also some differences in measured land area in some of the subareas for this watershed. However, the conveyance parameters remain common between the two reports. Watershed Modeling Data The storm frequency evaluated in this study is the 100 -year storm interval utilizing an antecedent moisture condition (AMC) designation of AMC -II. AMC -II indicates that the soil moisture within the project watershed have been modeled for a condition with moderate runoff potential, or an average study condition. This means that the soils are neither dry nor saturated; they are in between dry and saturated. All ultimate facilities will be designed for the ultimate condition 100 -year rainfall runoff. A rational method BASELINE & SIERRA AVENUES STORM DRAIN HYDROLOGY STUDY III BERRYMAN & HENIGAR, INC. JN: 15946.00; JN 15945.00 1 study has been prepared as well as a unit hydrograph study. The unit hydrograph study was prepared for the 100 -yr analysis also utilizing AMC -II. The Curve Number (CN) values used to calculate the watershed loss rates used in this study correspond to AMC -II. There are no proposed storm water detention facilities for the ultimate condition within this project watershed. The ultimate land use condition was based upon the City of Fontana Land Use Policy Map, revised October 19, 1999. The watershed land use consists mostly of Residential '" Planned Community at a density of 3 to 4 dwelling units per acre. The average w+ percentage of actual impervious cover corresponding to this land use is 40 %. While, for land use such as commercial and/or roadways the average percentage of actual impervious cover is 90 %. There are also some proposed public school facilities, and tit public park land uses as well. The average percentage of actual impervious cover corresponding to these land uses are 40% and 18 %, respectively. The project watershed "". is approximately 990 acres or 1.55 square miles. The entire watershed consists of Soil Conservation Services (SCS) hydrologic soil group `A'. SCS soil group `A' is characterized by soils with low runoff potential and high infiltration rates even when thoroughly wetted. Soil group `A' consists chiefly of deep, well - drained sands and gravels. These soils have a high rate of water transmission. OM The watershed gradient is generally from northeast to southwest at an average relief of ei approximately 1.7 %. Ultimate Conditions In the ultimate condition there will be a storm drain facility constructed in Baseline Avenue extending from Palmetto Avenue on the upstream (east) end to Citrus Avenue (west) on the downstream end. In the ultimate condition, each of the north south streets (Mango, Sierra, Juniper, Cypress, Oleander, and Citrus would also have storm drain facilities that will convey storm runoff from these streets and the respective tributary areas to the Baseline Avenue Storm Drain. This hydrology evaluation was prepared to model the ultimate watershed conditions and therefore uses storm drain as the method of Fin conveyance for all tributary areas north of Baseline Avenue. Interim Conditions In the interim condition, only Citrus and Sierra will be improved with curb and gutter facilities and will have storm drains extending north of Baseline Avenue. The other 3 north -south streets will keep the existing roadway features and would utilize the existing roadside ditches for conveyance of storm runoff. The runoff in these ditches would be intercepted at Baseline Avenue by interim catch basins. 3 1 BASELINE & SIERRA AVENUES STORM DRAIN HYDROLOGY STUDY �I BERRYMAN & HENIGAR, INC. JN: 15946.00; JN 15945.00 Ultimate Condition Hydrology Analysis Results The 100 -year rational method peak flowrate for Baseline storm drain at the upstream extent is approximately 9 cubic feet per second (cfs) with a time of concentration of 27.5 minutes. While the 100 -year unit hydrograph peak flowrate at the most downstream node of the project watershed is 2,203 (cfs) at a time of concentration of 20.7 minutes. The 100 -year frequency hydrology study results for the major concentration points along the Baseline Avenue storm drain are summarized below. Baseline Avenue Storm Drain 100 -Year Hydrology Results Rd Node Point Tributary Time of Concentration Peak Flowrate gm Area (acres) (min.) (cfs) Street Name 16 4.40 27.50 9 Palmetto Ave 13 273.40 17.05 595 Mango Ave ark 21 398.00 19.08 839 *• Sierra Ave 38 564.05 18.44 1,188 Juniper Ave 47 710.05 20.22 1,619 ap" Cypress Ave 56 822.85 18.39 1,941 Oleander Ave 65 990.26 20.65 2,203 Citrus Ave BASELINE & SIERRA AVENUES STORM DRAIN HYDROLOGY STUDY V BERRYMAN & HENIGAR, INC. JN: 15946.00; JN 15945.00 NO 4 1 3 , 1 , r TWO 1 PA 11 11 — — I 0 0 • kva - - 1.11 1- —.- —IT .., 7 0 1 ' .--Ir ... 11 W 31 r — E 4 I tat 1 1 0 IIII I l _ i i r —1 1 11, § 11 ■ r . - 1_1 . — — on 1 1 1 1. I I li ::11 17 a i go. NI 1 No , 3W ouarrta J ___I____ i_ m ft . 1 1 1 111 0 1 =--..-: 1 Fr 1% 00 1--- ..4 0 „ 3W MINN 1 ..., ' ■■•■••■ NM I T 11 11 •■■•■■•■ — 1 1 - — r 11 11 — fai 1% I ■ aw vaimai N1 am• --- I to 0 ] •■ V31 Wirt ' 11 11 :9 , = . ,, __ 1 ) _ , , ; 1 w,k ir 1 __ _ _ __ 0 ___ ] SW WOW= j j -1-: 0 - 0 - r 1 =, ; d 3W 3111310 100 YEAR IDF CURVES siii om Mr BASELINE & SIERRA AVENUES STORM DRAIN HYDROLOGY STUDY VII BERRYMAN & HENIGAR, INC. JN: 15946.00; JN 15945.00 a il 9 9 .0 •--s -- -- -y g3is� E �Mx =��gg�a sMMa0 =�= = _�. ' 7A ga=_o®gragga� irEgIgfi °iliQg®gL'99n® A 6.0 kgazinglimmimilmaisonal RE IIME ig Is S-0 g mI�gi� E��� M®EErnEE ENNESIMMEE gi di 4.0 ... ..f.wfwn w..MwwwAt Mww-. . ��.� ..\ -.11 wlwl N.M I.w.f�.. f-tw= �a w-. w rep. wJ ....... i s s∎pn C w�tw= ai:? - i ii a 11wn. OM MI. IMI NMI NM. t1� \. _ IIY Iw. I _I •/w lww� �¢i sc _=-24 _ __�� - s t..:::: c mss -"_ .�. r'� csa� . � =-- - - _:- - = - - e- ' '.....:= 1 ........ -- .-- . =` r - � :_ '' ? = Cr 1 • 2.0 ,= cxs....' = . = =:- :s= . _.: r - .� _... dna in. lige , ;:: : •:�= °' :. =-._ MR. 11 \ ww.w�= www...wN- w....- w.wwnww.A w- --w a...w. wMw.u71.w.= m...,1,-. m +� : ;7 I . :. r a ,_ N wlw1. - -... W. .t . . Y. ww M .N w..1 -151 --... f....Ylw ww. ,MI nW ...Y Yw nw1 N W 1 ui M1 I �� w \wt w1w-1 aw.f. w M. Ow n ..wlww wwf.. f.wlau Y. �1.n IS ea. now IN ln .. mmum MO -INw - --f.. .... w11wM..n lnw. YNnYlfMfn.'"�M11.f U A w SIU MIN .1. 1w- .•w11M-M.uu.a I.eI •ra •• Mai x11\11 .... \ Winn um. Min •••I u Y.\. n MUG W ww- =-a in MU Mil n11.11ww ppMM��..I ll :mu U.1111f wM - wwwwY n.. 11/71 •••••••••••••••• 1Mw1 1w Min nwnN/.I.. w• 1.51■ w1.1 n1.1 }w1-Iw.1 w Nf n1 ■M1/1 w -1 I Z MI/.rplwn NUNI.M tAR11N11..n.Nw1NNA1/ww N■ .1MNW1i1.1AwI Yf/1fM1 U1U' N111fAAw1Mn..,`tH.U.l IIUI 11111 2 I. IYwwwff lUQQt1111n1w...N.na1 \1w1M11•.n. 31111115•161 1!5 • • /MH nIn...N11 MI1i51 A.Inn115w Mill NU' I1rAK( I p.M1l�.w..N11�1ip /AUIi Mw1lMM MOO MI MI 111111p11NU1Nnln11/..n n17111A/r'I I"_F:-7'.I• r 111q.`.A UUI 111U1W1 IBM one osaummens llwtlAw1.1 nN/ non run N111/11i11UYH1Qi MINIM I,11'; - ;... AH' R MI, Al• ... .r IMF .- _.p /rP'71n1A'./ ill • 1111"HMQ7..N III/IUM MN •INM 11111111111111111111 HH111H1 1111N:.Irn".1G 1 /' .7:1rN' "a. '. ,,y NM P.7d.1 'd ' liBtAiroAI' :. Y4W IU'- .r.- ! MU•.1NII IINM Ill YlnM nalmm111M1 1 111n111H111111.1M111Ni 0 ell:u. me MM 111 i. III ) 1111111111 011111111111111111,111110.1v: •~11•1111,101,4111111.11111110111111. 1111111111111ntHIM11MI111111111111nS11111MIN ma fl111191f�1111/111HH1H111 �L; •73.-. -A•; t 1, Mtl"..''.: 2,,,) Y % 1r.% �1. 11'MIHAHN_ Utl111111ti1n11111YH11MLHNM11111 11111MIMI - 1.0 - . -:_ .- _.4:4..._:� _ - =_ s . __ �'-'_-= . :: -::: w.� -E_.- W Q8 - - -1. :r . - -..:. - --=--=::=.- . - . - - __ 111 -r - - :. «° 1w =. ... : ' �- = =. -. :7 = .... .: � � . : ." nu •14. _ . 07 :wrw ui Yi.i +w�.n w -"• � :ew wiN .�a••w� w•• :w : w.. ii � wN nn.m .n.. _.n.wvw .r. . ..i...iaw.�. Ma d. iiiii 1 w11NMM1110... ■Y.uInw1 -n • w.M ■.Y.1..M11w.W/ ......... nlnlnwNlW1. • ••• , W Yw,. • u •• 2 -w. J 0 Iw11A.11.t11-.wla...wlMin BYn w•••0Y w. f.. •71•• WMWN wwww. .w... .. Y.Y. as no w „ worm. 11.. \w awl V c= __ � _. - - --- _ - == = =- =rte _== : :i_ YI nl11 :_ = = = =_ - - 'Z S = - J -x == _ =_" = - s - =5 1 i -=:::":„. -- _ � ..===. = =a Q � _ _- 53: x_ _ - - .�� .-- »- -_ - --- -� :::: -: � . .. C_: C.-� -: - `.:::. �s:� ::.- .:. .- -- s ue ' - � Q ..:- _ .-:====.7s=.--:=--==- ' - = =_ .. e :: r- -- n : :::..- ... ... -•- ...----:::::-.1.::= " 0: 0.4 z l - -- - . -- : - -' : -- i . -� :w .:_- -: : :� 111111 w. == .3:::.:. = • w.'' «r == ::::::n = = Y :. w m: °;z ::. - = - . ww�wwt .x...5..71.1 N.1w1 Y.11 Y.` -- •. . •�. n .••• ' -�, .1.1..: -.n e. AM tom 1..11w- .1 •• NwwW t 1N. M.O. ••• •11 .Y Mw n" .N.... wY w lh1N•M w 0IW� n M nitt IM - 1NwM1N.� Nlw R.. .I1; N.Nw:� t w�- -tom` .�..tY 3.::::""' LIZ:" w1- t.-nM • 1. Y1 not •1• 111 W"."*..w M11n.NM11� :al 0 . 3 w. NM w11.w1..ww71 WN Yin.. .�'..1�•n w'0_'.� u..... \ wMtl e.14Lftl... •1u11 -..... :". --- _.i_. 1 r - 33 1 ==X = ". TZ :r .._- .- .�.' "- il� -- - -:-- = `.; _ -s=ue -S__ - W es ;] IS - D.. .A - Si t.� =•' .". r. = =: � ,� _ = o'er: :=1:::'1.7: .- C F - :- = -3�r"' :'-0 .FES 7ra - = :mss. --.� =: �� -' �a_. _ - 0.2 � = ==..=:: r� � !� _ = ' -� fi r-^ =: - .ii . dadld °�: a. =. 7...�-:=,.r•�w.i V. ..:. w 7..�. . � ::� - ..•• NPR iw w •• a .w.-... x did.. . .. __ - -- - M. .. .... � 1�ti 1 ••• � � .1 .. �i�•..� ,�7� � � � � �:..,e. . �i -m n..t '. waw E- N - w =W ww•• 111.= !• == w- www�..Y ■y r.. •I wl 111 5111 :f1Nn� 1.w1.. -/ �w. A....tr l f '1� \� ` \.....11\A R-1 .wwlw.a. /.71.1 w �1 -.w 011.11:d M and we wM.. Mw u s 1.w.w�ww-•A N M./ M iif 11511 �= 1. 1non w 11.. , . i rani R\M M- 5 5 5 �1111 1 I1N1 1.wY ��M..1I.11 1.w1..1�11 Y/11 t � w M 1/ M. 11 � 1 �1 � ....N1 5 5111{11115 M /5115 x •1.1/ I.fw 1.x.1 15 rl wt /wl, mu 1111151 511N/w Y/NYIMYNI ■N5. M IM � �N ,l .w 565 Yt IwI Q111 WM rrwNlnulwlrao /Y 1ww MINION MIadMI Mil MUM MdINIr- 51511 _ 1�1i a w `�► \� i1rr .111-w ls wsu 111n nw 1 .m 2 11111111113110111• O1u1m nuw11w1-l5 Il 1wn 11m1m1u515 •555 anw1111 lwl1'7,I1 ,..-1 ',...,. 'MO “IIw WM. 11151 Ylsl 11511 �1.�m1 PUInulIII111�MMIU�ulnn1/1 1lUIIl 1ru11n1N Sul ntnill� :- " t1111ln ism es; n 1D 511111IIU111nnnnRlw iu111111n1111,11111Y 0.1 IwInMMNINMI01fI 1111.111111111 1M11w nue MU W /IIINYIVIIWMYWMIII 141111.11N- - mews Om Um Ulu 2 3 4 Q 6 7 • 9 10 20 t '' 40 50 O' 70 e0 90 3 STORM DURATION (MINUTES) DESIGN STORM FREQUENCY = /OD YEARS 3 ONE HOUR POINT R INFALL : / s✓TINCHES LOG LOG SLOPE = #b 3 PROJECT LOCATION 14;0l'444 ,dl Eli ', 9- �iT10f A 3 SAN BERNARDINO COUNTY INTENSITY - DURATION CURVES HYDROLOGY MANUAL CALCULATION SHEET 4 D -8 FIGURE D-3 sus lig 0■■■•■■■■•■••■" . 1 .. . ......__ , 1 ) , di e ____ . /0 ] _AIM ash . e i t / / mill WI ili !Pi • 8 , (1) I Ili W X 0 ill Z /112 / x 7 / - 7 MI a. C3 * ft -J 11. 6 .•00 6 , z / .. on • a ce .e . so / ...4 / . . _., , / ' • ..., . . , • V _ 3 3 ] 2 5 10 . 25 50. RETURN PERIOD IN YEARS KX) NOTE' . ] 1. FOR INTERMEDIATE RETURN PERIODS PLOT 10-YEAR AND 100 -YEAR ONE HOUR VALUES FROM MAPS, THEN CONNECT POINTS AND READ VALUE FOR DESIRED RETURN PERIOD. FOR EXAMPLE GIVEN 10-YEAR ONE HOUR 0 0.95 AND 100-YEAR CNE HOUR s I.60", 25-YEAR ONE HOUR • Ile. REFERENCE INOAA ATLAS E. VOLUME ir -CAL.,1973 RAINFALL DEPTH VERSUS SAN BERNARDINO COUNTY RETURN PERIOD FOR ] HYDROLOGY MANUAL _., PARTIAL DURATION SERIES D-7 .FIGURE D- 2 sill • ..7/ 3.87 I li di 3.5 J — 3.5 : / +� 3 / 3.05 3 AN .. la .. 2.3 , 2.5 _ c W am _ "L"/ - U 2 r 2 2 "" a o l �� / 53 • Rai J J �� 1.5 2 i 4 15 • r or ......0. 4.,__... 4- ' 0.5 f • 0.5 ; , 0 0 2 5 10 25 50 100 RETURN PERIOD IN YEARS NOTEt 1. FOR INTERMEDIATE RETURN PERIODS PLOT I0 -YEAR AND 100 -YEAR ONE HOUR VALUES FROM MAPS, THEN CONNECT POINTS AND READ VALUE FOR DESIRED RETURN PERIOD. FOR EXAMPLE RIVEN 10 -YEM ONE HOUR • 0.95" AND 100 -YEAR CNE HOUR • 1.60" , IS-YEAR ONE HOUR • I.IS ". REFERENCE*ROAA ATLAS 2,VOLUME it - CAL.,1973 RAINFALL DEPTH VERSUS 3 ..___ SAN BERNARDINO COUNTY RETURN PERIOD FOR HYDROLOGY MANUAL PARTIAL DURATION SERIES D -7 ._ FIGURE 0 -2 --/- ■ • .— • • "c --, • • •.- - . ;',.-• . ''.. ,--" ' -7.x.t.s*„., -- -/,-f.,7 •„^4 ,' rq ,. ,, . -v , , 4,) 7 , :r• ,-,...„ (:„ .. - rrr'' ' ,..-..,, r , ‘.• , ., rt‘ , ,- .4- -d - . . , • ,, ,,,-,Y • , . • • . i.„ \ ,,, •••• -•--- - •)" - 7 d ••••"••• • t., . . i....P '--., j •■," it•V.;---- .44. 1,/,,..v • . • . • ., ,,, gouRck ',PAM. , .. ,i, , ; .-"., .' -.3 , ,...,. ' ,-,... \:. -o ‘. ,... .., .. . • ''' .' er: s l JYV 'j f r ‘ , ' kt_ ',,. , .‘ 3,, -,...ikta•-,,• •-. • „ - ; "•),_ . „ '.' 4. , c ' . -''' .. ?,■,)\ ).,.' : ',"f,. ::::. , I ', ) I. .•.. ''''''... • 4' • . m 4 ..... 7,,_,..„,, ....,,,,,Q. .........7_,;,„vi.,,,,,...,.t.,•• A , ...,:... i , , ',.' \ '. .. -. . ‘i,. .-' I ' 4 0 , ( ".. ( : -...' ,_;.:,.. '....., ... \ . .,,,-• e '''„1",( ).',.' ,, , ......4 • '-?•=,.,,,.,,, , • ,7- ..,..m. . r . ,.. : ;;:-•i..,,, ,",-,,, ).,..', D ., ',L • ,''.`. .i., ..... ,:,* 7 . - .. A'■ \ A , ',..,- ..--..X.Q..4,•?,,, . . ' 2.'6 , (•:.‘ 'A. .,,, '. ;1;1,4 } .--)4 . 4 - - 7...;,`T.O.„, ...:_ft • • ,... . • t , .. •",,1 .h 7 -,. I s'. V' V- \ 5' ' I R' ',/'' ''''''' 1‘ i ' s Z I'Ljt ; '' - I ""i M4; - 1-7-4- - --- 114-' • : - `':•$,5 , . ' • ' , - 71'. ' •,* -:,•tr c,:i' 7, ";, i, • ,., . • * '.", ''' • -'..-; .,', - ,''' -• '.----'-'- fl,.) i' ., ...„4: • : . - -'-',;) - ' .'-.-- , p .,, „ .,.„ .. . L. .. ,.,....... • ,...... , ...,.. ,. .,i, •,, .-.. . • ''''4 '' , r i • e y(---,. ', --'' r• --,-) ..,..14/ri; r .■;._,/ y;,'. -.•-• ,4 - .., :...,„ r i ..,,, i ..-4; • •-• ,•••• •, - .-.'-'. i V 6 ki....4 . -1 (_...\:,`, ' ,. ' Ce .., ., ..".; , ' - 4 . ` ''' L ' " i' ''' ' 4. ... ,.:..,‘,,,,,,....--,. ._ : --,,,,..„. • .,.,-,,,.,,,,...,,..,,,, _.: „... ,,, ..,..,,,,,•,, ..„. .......,...., , . ..• \:,-..2..„ ....,.. .... •, .•,,,,,,-;.:,,,,._,:;,,,,,--•,,,,,,,,,, ,_,,,:,,_. ,„ ,,..4,,;.-....- ..„. ,,• ,:, , •• ,,,,,„,,,_,,,.:i.., .,,,,..„__. , , , -,, • • • ...,. F. - • : ' ',. --...\ : • ',' e f ., ..„ .,,,,.„, , ,,,,,,.".„.„.„•,„‘...„ .,,,:..„4.., ......,,,..„. ,,. ,...,,,..„. ..,,,,,.,,..., , .... ,,,..„., .,,..,,,..:„.,,,,,:_. ,,, , . , ,t ... ..7, , ...L 1 ' ..-/;.'' .,I -;C: . :- .. 44,.i:' .,,,,-:. • ''.. - •.■':; , , ._;: 1 i;'. I.. • L..5":. 3.. i L....1.- ' ' '•, r! i- ' ,;,..,,... • ril'', , - 1, 1 i T t- ,,,,, - .tit 5 . ,,. ‘ ... - , : ,1 4,:l f„1. ..` ', '; -.- ,s., ,..- . !.,...., -1 .';---,.:::;,.,...........„,..::.,-..:.....,,: .: . • -: ... ---. ' .. ",..s: .;•:,4 7. c J - 7 /.-:":" 1 f.2• - -...- - a• ' - ' • i f 1 -2.-r,-.."... ••'' a!' 7, !, '.....: ''' N.,„ 7.... • - V.. '..,..S..3 ...' '.. r o t . • •, k ,74'- '; ‘, -‘I'I'', ^ • -'y'gfi , r,v Ir'„_,P.'r - '''';:) , 1 1 .4. N ' 0 .",.4V-;:''q '•-• I- ' ..\.. ., .: r.:1. . :I?' ..',L.- ., ..'.• , -', .,.-,, 4 ...4., h I •-. - -. . ., N... ; I .. -- -- '.• :..--•••• .', • --",- • . .... ' . ‘ Y.:-'','7 t ,, .Y41. FoiTAtY;ff /,••',.,1A-771„ 2 )4,, t „f s■r - 77k. r V ,'...... ) 36 V -,',‘ t .' 1 't 4:,, , 1, .... , . I. '''' 6 ".I,:,?; ',:', - '7,4 N..7■;• i, ......; . • •-,• t, ,-", 't• -,.' • '`- • _/•;: `,l'yN..'-,.., \ '''•'<,..:_/...,,-,•i',.=i& :.--.. .. it o s t!..::.'!•1,;•,. •,1‘ ••;,... 't''• ,•,`'•' _ - ••• - ••--, :S 'i • . fl ,'. 7 „.z.;:. L ,, ,. (4:_.,...,)... . .--:',.,_ .1;1 / r: I. .,.-•._' - , „ .,..1\ . i . . -1. - '..i', + :.,',.... ', , '-. ,',.:,,.., • : . -. '' t ' - '..„.' , . , f s ., ' " ..'''. • .. ('-' .'.. -,f 7 ... r, .. ; „J. ••, 4 k!_ 4 _: i ' ,'...-'' 'it - ‘k•-"'"l' • v-A ci - • 7 -': , - II ' I T. • - • - •;' , ...{.... - . 7 - ..:', 1- 4:,‘! - 0 - :..t ': - '', 'I •':' % ' , C ' 1, - ( ' ; . ' -.• i '''' ^. • .:••'....' • . - . . - ' ' i' " 1 - '' r ''' - ' 4 l' i'\''' .1 ! . 1 ,, ' r \A'' , - ' ' '''''. " • r c ' ' :' I ' , ' • • ' -. .k' "'-• '11" . '-•• • ' t t-7. 1 .. ', . • . ,.. "f r: r . , - 7 .... ., .!,,'• -•••.----,-.;:-/-..----;; , .....5, '''''...,'''•f t -"-.. - -11 .'''-;.)''111 ' ' ' .'. '''''..;',.,,''' t wj-='' -V) \.34s is . -,. ,, ,...-- - '',7- . '?-{i . ..1.: , ;, - `:1...; ' •'\-...',-,:--: " '''..;•••,'/-',, ,,,:jf,i, .,,,, , , , 1/4 ,,,,t, , , , , 7 J. . i ,_.,...,. -,:-;j,-_-_:.,•;:r‘l .- i .„ ,„.. - A• z. V 2 ",..i.„1:,-; .1,.;-:,,,•''..,4:11:17......,-?i,F,.-:v-t:`,..;'--;•,--...„....f.t..c,'-s,;,•-•,t,,..it'l...,,,,,I,.1.:,_ it: 11 , .: ,....''... . . 1.. ri- ..... ',". 1 , :• *: , ... : ' - s . ., ..4 ; ' . -- '''S‘ ` • ' • 6 t . -' 11 1'-•,› , : - ...,*'1 L "•' ' ' 4t.'0';',..)•• • .. , ' ' Y ••••1, ) '• ..:'1.4.--atz c4f•a, ,; . '::-. . " ..; i'•_- 11 - '. '. \ 1 J - .1- ...'.,.. 1 • .0-. • - ' !...• .P: • ' , .•:...' '''''- ,,CLVS, ' ; , , : :,-: ,..6.7,..1` ' . ' . 1 , - , ."( - ! . ..jf`t:..) , .:;,t.:!!,',, 7 2 ' , - .4 V 7, ft::', - s,_ -41 , 1 ' , 1 ; - . ::itt' ' P, .:,,:,! -.Fr.7",•:-7 , , ., k. ,,,, . , :...:; 1. ,,,,,,..:;,. . , „..2 L : ; t. . .: .,., _ (AL-. ':, '''. r- "...._ ' j - ` Z,4 t'S:7 -, . ,. 4 ; 0 ft t , ..., t ;'.: '2• / - ,..c i ,',/. --, et■v,,, - - -1 '-..' , a_-, _ - '4!..... 0 . 1--21'-' - -- ,, :ap-e - r- , ,,-- , :(-, . • - --=‘g-J-■` , N , -- Ar ,--, •■.,.: - - " `" • • --, - • .. , ' • 7 -•''.. 4 _-' ''F' ,''•( '''.-", •c' ' ; ,t;:i',' .%-: ikit: , ,:'. - ■ 7 'f.:' ;+;;-6, ''';•+ P" ,-:' _1' - N:.'-;.:Ii . •• . ":. ',`"' . 1.%: i , • ‘''',-;‘-&. ' - \ ' ...- ' -''' " '''' r •, .■ r '' 4 • A %Ill 4',. \ -.' , .5,cr 4 r i . -, • ,-- luer,-.,...H v . ,.•-•-•,-,,- ••te," --\f.yVv; - 1,,1 ,,-..: - -,•,• It;; e r.....' -•• --•••••-•;- -•, .•'4•:":". - -;:. 4 ''1! ' 4 ' - -- . - : ,--‘,:, ■ • . - `7.4..r. ), , i'‘,..4" ■?...t , ..4.,. - f -,,; 'SI/ ,,, . 7, 'cg....■,,, -.„. ,...... ::::,,...-:.: ,..?-<;,,.....,,, i..-. %,.--..„, -., .,,,<,...... . ; ,, . ....• ,.,;_, • . . ,..,_. .i.2,, - ,.. .0-.7 qtrgr. ;.... % ,, , ,,,,'',. / .1::::-;%.•••,•;:i■-.4-• , ,;:•:: 't 1 ) --"-- • t , • '''''''' ' '''' ' ' ' q' Y ' 4 "'"5‘ i ' i :' - '' ' : Ac - • - '-' , .-•-- 4 ,:„...,w1,-- , .-71 , 4.,,,,,,,o,; , .r.,,- ',e I ,,:t•'` ,.. A:?..':.' . 1 , ,./ A , . . .. ,, • . k .i.ok -.7 '7', '.I \---.-.. - `t?, :r.' i t'' t' • - •••••7 • - IT • : ;.• :'-‘,.•...; ' x• ,- ''... ,... • '- ..:-' ' •-•;.• • • -..,-.- 4' i "" ' '''. ' ' ' . , / . ' - • f ik:q..-S1/4t1; . .-_.) A , .,' ,:. '' ' ,-)■'''' -1 - •••c,_, • • t • •;1:;-• t:t .--• •t,' -'-' . E 0 --• a • • MAP -•-• - • • -'.• '" .../ •• -,/ . -- rafk.. A ----. T.•:. '' . . ", • , _.,... ,7.1t--, .ik - ;,.. N., . , . ..:4'..:27, '.s;. L!' er'. ic .,-..-!.., R,::. ". , • -. , I SOURC E u,13Y.' ."" r + "i • - .‘ .■......■.. . ' . .::',■,f,:.!...._;".1.:;', a Y ',..-.. ,..; ...1•1 .._ 1 .. .j:;.., .SMTCE i. 497i. scs: suErvgy B , ...:r.. r ••• . ,, ',';',. sf-..' - r- ', , '‘...ri..1" - i' F. ,- '- -, .: ,.', • ',..- 0 -..,, t 1'. ,- - ,..• ',,,' • ., • '.';±.4., ... : . ' :.:, :'• • r • - .i 4 - ,_:,).1. i .:,..,1•4_ • ' :,.--.: '.,..'" . , LL' .;',',. -: .. .''' ' '-' is ',,,;' ' -• ',' J ... - i .•_--' '''',. ' ... ..,.<42.\):,•' -- V . ( - . , •. ' - . , . ,.,•r • - • ,„..., ,,,_,‘ .., .. . ... . .. '" • ,(', . . • ' - "-, ,.. - - 1: , ...:-.--_..' ; ''.,,,-•„-„, ,.,,,...- -_,,,,,,. , ,--- --_,± - , '--L■4••••• :' ' . , ',.■ '''''-' - ..._:: ,... - • - - ,• • • .. . . 'N -- ,.. ' ,,,.". „,.. ,c -:_ , :). • . ' 'JAI:, .,:,;1..4 • c -,..:- -. - ,., •••. ... --.... _ ' • . .2.-„, • , ... ' s ':it I f -L !.. - , ‘ =- 1,7 1 1 3. . , .."„'.; f. - \ t. ' 1.. r,-I "-:'-= ••:-/. t •■ ..:' - -7.2... - ,: -1 , ." • .. '-• . ' -- : • T. ,,.. .. 41 , 1 10', i '' ,,- -,.J,V;,...' ...' '•' -7. ,,,, • . - 7 r: - T'•'= 4-,;_ - ----- ' ---.:--'-----..-...,' 1 r'...i ." -.; • • .-- P'-',. ---- -. -,.. • '. I . /: . ' -/.-- - • - ; ---,0 L:2....• _ ._,. ..-----';'..-....-,,,.-.-, - -:__ -.- -\..,-. "- ----:1,:-:.,-/-• I -./..• -,e__. - --- --• -i..._2„. ?_:-. -.-.-, .•( . - __-:_'L - ,;=•'. .._ '.. : .. - .,' ' _ :::--, ___, _., -- ...... --, c ,- • -- 1.— _ L.,, • • .-.:-. . . - - • . - ...._ . __ , .• • •.• • _. 2 ' - . • '-'-, zo 1 . - 0,-- -,----?,• .,.,..---..._ • - .::_. -- -. - . ,.;- 4 , . . . ,.... - . .-: •-_,. • , • . - 1 ?. ,. .,.. • . . 1 r ..L. ..,, • 1 • - _. 1, - 7 7 „ , 1 . -- ..''' --- ' - r .. • - A - '-- . , I - 2 _...-_.----------. 3, . , A..• ( B . ', I I 4 4 .•„. - • .- • . . .Y i ; ,• . . i.- ...1 , - • • (K -: ----- - - - - - - ' • - . , . ,..-•.- - , -- --- -- 'r " - ----- - / i. .._= `-' --g--„--- ------------- , _...,... _-- ::-.•:,,. . : .. ::--1 ,,,.. --, - L .._ .•__... ' • , ,' :-■ . I ' •-• it' -- i' _- _' : : - -7:.- - - 1 . -- ---7 -- ' ' '-- -.- , ." tiliF“114, I, A '.• . , ---' - ,---1 i . -- F T - .' - ---,__. L_:_: _ - - ri ,,- ,.....-., : •--- - - 5 , , . -,,,, ' . . - :,.. / ,. ,i . AT f . . -1:-Lt 1 mit ' - - --,, ... '• ---\'---:---- ',.. c. 1 ... r 4 ,,„.1 .., ., ., '. - - t - - 1" - - • , • w , ! , . . _ ;t_.-c_Z:!_rt • - -----; ' . • •- • .. -• , 1 ..",:„-• i ;J. , i- - ;•tt _ 1 ,-,-,1- - ' 9-__ ___.: ____.. ,--,- _ __----- - - -...- -- - - - - - -- 7 - 4 ., ;....- -----_...._, . - ., . .: ; 7 7 . --.. - - 4 -,,;• _■!..,,_... ... - i. 7--- :c,,__ . ; , - ',1' .'... ,-;... • _ ,... f . .• --- _L. - • ._ ,„. • ' " • ' • . - • : C. ---:'' j .q:'„,- ' fr- .-- I, ' ;- - .:• _..r. ' - ' 7,•. . . ;1412 .;4-;_ii9, .1 : . ._'" ■ -- 7, , -: 0 ' - - - ; _ • ',G f:i i • : - • - - - - ' '. ------. F : -.-T=.1, - , - All - --,...,--"-- - ..... - rt• •22_ . 4 :./ ' .-' . 4. i ...../ !I• 7 ...' s.'•9 t_',-; .- i -, -_it 7:_,' i ,_-. -_:..1 ...- -- -t- '•==- '••••■,=-__,:.= -,,-...,,, .--_. , a . , ' ,! ,' .. ' i .1. l' _Lot'. - i - l ''' . I .-- . - .Z . ". ' '',... - r .R . ,. .1 , • .. ,.' ' - ' r..7.7 - :.: ' 74. ' 1 . . ' ., 1 .. , ;!;-- .•:- ■ '" 1 ,. ,.- .. -- el _ , M - 74- - , - .' ...1 _ ' .-- :, - = , - -0- - I ' 1..- • ...-....- - •I-,.., --- _ . ..- - „_ .. . . --',.- ._,, : ' ._._,___.,..... •.,_ .*, LL..,. -,..- • ( + A '11 -- '4' li i I ' - 1 . . '' ' "'T. ' 1 A .. 1 - . 4 --(2) -t _ - ', '' -1 ' 7 rt; • ''' --- -,,r - -- `,-- . ''I.ATI ;7.. ., ----• ^.;,..i .,r... - • ' I -_-_, ....."''' ; . ',......, -:' ... - -.1144=4____ - . . - _:_s: _ ___ ,- ,,,.. . - '... , L. - - ;L__t....--• ..,___.,,,,,,, • . .. i• , •••:• :-- Ef .--'''... -- . 1 t• - 7 , 1:7 : •-•.: _ ,-----1.•■-,.-""..._;.:. ‘,---..71;;;-v-Tr..7-1:•,-..'7:;,-0 :,---,-;•.' -= '- -1 ' . , - - 1-,---•'-- ._," I -- -- , -,... , _-_,..„ . .„ „, ,. ...-_- . , , - ...:_: •-_-„..---,-„_:„.....,•i%•,;_,,-.•_ -..::- -:, • ..2 - .• ii -, ,, .. --;,.,•-..... • ,p ,..:- .., •,!,. I . • ..D: ",-.-:-. ---. - ' --- r-m - : 1 - . '',.. ; :.- ' 1 ";:, : '-- — -.-- - i qa ' r- ' ..: .)Cil.;• ,.. ::-', 11 : I -1 '. .... :- '-'-' 1 - -2, - 11,7,70. 7- - • A•A -'..... - • ••• , ,_-_-, - _- - Zrj,_LTI7'n, .., _, - - - , - N -- . a- - -, • - x.._ • , - ‘•:•-•••.:7,1 .•-•- - : • 1 .., ._ ,..., • ,, ' • I t. .4,11' ,... J.L -- ..:-'-'4 -- -:`` i. • ....- .- •--,•:•• --. r . - .; - '1:" ;-= 7,, ; ,_- , 1,- - • , ,.- ; ;Ar,1 1 ," -. _ '1' ' .: I - - II ' - '. '. - j- .4:- - -. , . .•,- . , . ) . _ .. ..-_-. • . , _ • ... 3 , - a / IL 7 i ',.2",'- I •---..- •;,-- :... -,:. ;•/' ,..,-,:_ • ,,,...r.i ,,.,,,:; ' :-. ••: _,, ,i .[ -1 t i_r_-,- ' • ' 0 Y.- , '= - :: - - - :• - -T - -• , 7- - - *----- -----.--,'• - . -,-.: . -1 "":': .7--;-• .7- t , -- • --. '•,- ii:_ ' , __ \ • . f' 1 .• ., . ,___. 1 • .- . l' ' - 1;,---- - - - \ •• • ,1 . i. - i•-•[ 1 1 • 1- - ..- , .1-7 _, - _:! • , ,..........,._.;.,.. . •._•,1 •-•••...-_-_ _.. • • , i - _ •D .,--_-_. „ _ ,, „.;_. -,.... ,._...•.. „. • ...,-.... ., ,. .-„-•,•• „ •- . . . . A ' • ' • ,--- ''''' --'''' -- . t - ..________ . . - - -L _C. ..,..... - , - - - --,. . r , . . .. - • - • ,,,. ... - ..../ ,.' . VIII 4...i -'•-• - \ - 1.. --, ---' • .. • (,. - _.--=------' - ' . ' ' ••• • !!'i. ' -= . " 7: ... . -.-... ;. , h .•• O - I TI '"- -- • - - -Th I - ,- / ..1 . ! : . 1: 1-----:._'. ,,, i ..1 , :,_ f ', • ' • 1 i i ) '.: ' a . i -," . ' -. . ' - ,.= . _... _..J. _ • _ _ .... JUP BOUNOARY ,e. u '-,-• --°=...,-.:.:: .7:: .- SCALE 1. 4e000 , - .;ROUP DESIGNATION Y OF INDICATED SOURCE SCALE REDUCED BY 1/2 HYDROLOGIC SOILS GROUP MAP FOR SOUTHWEST-A AREA . _ _ • • . : t}• -4 i a 1 iv ..►k; ..kev. i 4 A i I z I I t I a I- I A__ . •'• v) II I I e ' S2 E I i-- -I- k - 1- -TI --• - .»,iit 4 'z --- - �i t --�' . d v- •+ V 1. 4 W IN_I I I — _ a . .r �F,.... ' ••, 4. -1— ;— • • -- 1 1 'j`_ 1 3 � .� — ( — 1 { I .j T N • "a * „ T I I I I .1 1„ I 'l 11 1.. , 1 1 ss- t I / I j - -• - -I- :.r, .W — "'�, 1 v . - 1 i I o- 1 oc J �• 8 y —I t — -- - . . ��.. .. I ,, .i. 1 1 r l j- _ I _ , - c I " c. - , ! • T i _ _ .1 :1:7.-..F 1 _'� . �- — _ I , + I 7 1 • \ ■ I '� / r 1 — /� 41. r+� •/ .. � _ a :': �-... -* e I � j \ � w • , 1 1 O , a ' W • Nr4T . 1 1, el i iii'ir jpir • rik , , . ,R •-. - - w . 4 .,. lip . , . , 1 ( (,) . ,- .- 4_ , — - - -I , --: 4 k1 1 -- ,. ,. .-f f- - L-- -- ,_„,..t. ‘,...:: ., . . , -..- , ,... z LLI 4 . cc . 1 ! ,, ., 3 --. I - -.'..- ' • ; , • ''/,' :- :I 4 e i• .... ,. -- i . , .. -1--- _ • ; 10 • ,, 3 . ..EL. . Cr a r � I • ♦ / ' - ij an - - .fir 11 W O. b _ • o r .:"m- ■ " *IIP Ay cc i 1 ` 1,4.. - • ur . 7► 1 - I nsu 1 ' I y . r —. 6 tr i r . , • S . •• 4 til __: :-_-_,-: .,_,, j J � w _:.....,,_. ,.. � - _ 4 -' I irr . , • in • ;', 1 1 . I • .i:s .. A . 1:44 .. --..- !1.9).„ ii. vi llilinir ,, .. , X 1 j t V ,fr • _ ., T l _.. _. , W 1 - 1 ' ., ' I ,' \'3 I dl f0 Q • -.. ` Cr 1 — --- t . ....istcli -:•/# i r — — +` e i • IV r � — I ir 'I 1 Imo• -.... .,...:' 3 Z Cr CD • — .} �- , i tl o it ,, , — N - IPA: ' ___ _L .....„ 1 . i I , I , - _ .. t i r _ ic ,-.- La , .. ILI 1‘ - 1 1 i I illkir3/4 ' ._,4f ," -31rAell 1 .7 n . 1 " 1 -' I - ' . : • -- •-1._ i-..1 I t, ., "3 1,4 I 1 ;CM. irAniomintik ,... < >- � . 4 r „,,,qt . = • - - i j - \- - ; - ‘.,. v. • r ..... -....,....r. 1•1 7 1.4 I � y A hY7 hatitt..Aiti, 1 <,, IE I.- ,..... ve .,. 7 101. whim -. Nktis A 1 1 _. „, .... t._±,_ _ _ � ,_ _ 1 . ., , �� Ag, �J-. (I): - I o 1 ' ^' _ 1 �� r a• , _ T e I!r! 4n ~' t • prz �� j i =I I 1< , , - . ,,,, ...: ., 4 j - - — 4-- 4. --; i re '. de ... . I _ . i 4 ) a "I I• _ . 1 _, IIMINNEfl • MIlliallIIIIIKOMINICI s v, .. .!.::;-/ ss .7. ; . riti • J is • �. - �� , 1.4101. 44•4,../ .:4) ,.,;,4, . i.. . 1 , -1- -, , ,,,,/ ,,,t_ - P - .”, \g t. r it •. ' ,101 - , ,,,,-.. , ,..,, , W. 1 I z . d ma..,io 1 ,, iya a g: f r 11111102WAMEMBEitair : 1 1610' 4 10 .- -r. , . . . 11 . iIIP mom I ,' iN A I A 4 _ - :-_„, - ;;;0■ '.. 1 , • . T ! F P .% 7 ' z.I -- I .1 di - 11,... sorri,..,w,,mi,...m: • • • . ,. • , I I I I 1 1. 1 1 .- - 'it . • — // . 1 r 1 - _ ._ _ .._ 1 - I — o�,,� 10 , - - - I , T I, 1 1- T �i, I ,.:. -- 1 . •- if— — _I— -- _r. _ -s1� �� n ' � R`i� . r I r I � � - �' � I - - -'� - :n. .. -w - J I_ �° �� _ a_. .— �•... � _ }T . I 1 1 1 I 1 1 1 I � 1 ; I 1 ��°•� 1 I I 1 z i 1 N 1 `' i I N I; I 1 2 1 1 1 •, • oi - • - - -- � Z �-"�. • ` U tz' - __ _ ,�; -: I 'iI — * r I I I U) 1 iI \ tj % I /Im W s ~ t ~' t- I — __ .i_ - _.;;:-...7.1. t 7 t + 4 0.. 3 w j 'J , H ! � � li I g I I 1 � / / J I T g I a = I � li /t 7-1- - 71 "� -I- — J � . y 1 4 Ii ‚— _ _ � .! _ _ 1 J _ L � - -� — / . h 1 h am, ^ t I — . /1— fi -- — —A -, 'I t 1 .. t- 4i, ill 3 1 .. 1 _1 ---; ',_ . ; 1 I 1 ,, L 1 ' • • 1 iit 0 liv4,' c r. �� M — f , i I - 4 co 1 I I I IV ' I \LC I 1 A .v. ;la _ - .. • F. ...._ ri _ �� II \ 1— -'F- \ -- - -ice -- V . i. I '� .. �I ; Y I \ ' T r -. on I I W . 1 1 1 ur 1 ,41 1,4k... {_1 .6I, i .i. I w • 1 W 1 . L ir - _- ,,,- ', \ t,_ .4, --i , rr. k' -I . -I. ! 1 _ 2 w 1 1 - izi - a \,- 1 i_ 4., .--.11.7.,L t.,,, 1.. 1 Y• 1 • : C 1 -4f 4 I • . 1 - 1 i. 1 : I * . ! j : I T 1 t' T� -1 — _ ' � . I i `I 1-- :::"1 I I I .., , • LP/ , 1- --t - _ , I I ,I . i F I 1 1 �° -.I „ 1 -- 1 '�.} -. • •1 __ .1 1 8 f I •' °t t I f - .._ .. ; - ik, a,h� -,-1-- i I ' �� � i ' ys l ` •ms L , i ' ; It s. ! ' 1 U I - I 'fr - I ' 44 o.., -!-..` ."-(- 1 int ,.a� • .: i.; i '1111F414011117,77' ti 4 4 I i 1 , .4,)11 ' 9.- ' . tto IN I 111111111111'1131111WE CI Z .., '1 -- 1 --- \-- f -- I” It ''',.', 1— • 1 -1 --A 1 2 --.?" I --- ' ' e ' F - "lit W — • P I OC < ----t-4: _7 „ !....- .;., limy . ,, ., , , _ _ , . • I . •I\ t - `` I -Ti:— _ 1 < . �E -_. j� , _1 I i Z :. --f- \ _ _ - I Itiiii�� ' i- i w � Cr 0 • 1 J e` I i (t L Z W p • 41 ' I �•, ,. � i al Ass - _ -- _ 4_ _J. — 1- - -t►— 1-- 4 _ T. 1 y i � �� -1,:l i (41 p i “t.) - . -, ../ I P a, ' - I y 1 ± S' T , bi ` — 1 r— . � ∎`mow )��ii I I i 7. - _ - '� 1 `I or • _ `, ! - — ; 1- L rt - 1 i _I • _ _ Z. 4.4 __ E �_- , 1 •_ t t _ _ -. _ - • _ p 4 _ , I �._ I 1 ..... I �,.d✓ � I� I / ` / � � I \ � r I - ▪ ' .I . 1 I�`N f• -- - -- - � ;4- 1 it T , Nrna - - I.i� l�yy . ▪ 4"4 l 1 I r ! .1 .- f -1- -r- - -- - -4 . i I — �,l 'o d of >^, - �. -.: _ 1- - 1 _.._ i - Agi ofr 1 ' I I �I I I �< I I I dfiri -1.. P � WUm 11141:.4.,..,_,,_ �1■ ;ICS - ='-I' ' 1 .. . � � E :.. , ," • � i1, i�i i , . I i _ I r " . . 1 : I ' • --- ..,,....��il 3 w . _ I . . I ' ,M J+ _ ■ C!t 11 1 /' J • 7 • , � _I_ L � L NII M∎1911 - J I 1 , i _. I I. :; ! I .1 I ig t - 1 — 1 — I ° 1 I I I pit, 1 1 1 1 Icc iti i _ .. V . __L" I I_Jk • _1 -- ..- L • � � ,Ili _ _ I I I I I ' I. 111 I r' I ., ` I = . 1 z I 1 ! o, v >' 1 N I / I I �, . �:.. i•• N • . Z O g 4 I 1 1 � I f I -1 Q. a m • • e�— — ✓ — .— I — y"— 4:— "\ — - / _ 1 1 _ _ 'OE? W. g — ,, • I • : H 1A— � , !! , 1 , , _ ', , /•- ', "! { rt a . i i l - - __' lii�i , I -- 6U . J Q . - L I I ... I I I I r _! I / i ' I , , / I — i J • X` N ,�Fi L —1 I- 1 Q • ..4 , I I - • 1 . I I - 4 / \ ..,,,l i I , _ " ,7Oi ' I `a a .` 1 cn tL O 0�1 • ! Y l .•. I „, . fi, 1 �, 1 \ 't - I' -- • • el cl Ml f . � 44.- ,p e �O_.- I � 01A. g>� _ I • a I I �� - -L I :' O I Q - Q _ �� -_ ta ' ' I I ' atrl‘ • N ■ , 1 f �, i I .I H i, p T 4 . .4: — NT: - f .1 0 i co r. 4 E . 1 I 11: '.. ' \ 7-- `1 I r -7 1 Ti t' e t r t-� -- " y 1. r -1 ,r. —I .a.. t' �,- W N lir .•' � \ _ `� y– �' it-- SI � 1. i` _, � t i t i a" � • - • ! c t CC I l . N., • 1,,_All IIFY___ , !..,:- A. _ N. i . i l . r .1. %_• r i ,..I __ l . i li ' lilt ,: ' i i '... I L „/..... , : t (.1 \ 4411k : _ 1 ; .. . , ! 1 - i . : ;3 7. 6 i lz ;V .: . Iv/ . ,i..., 4 1 _ i...t. id I li, , .. . .. ___ _.__ . s:� -As --s •�= 1 _ - iii 3 ' , ."- • 1 . S. n 1 I I T _1 _ • w .. ,:'� i II • - ! ' 4'. r I ii iri+l� Aor � , -+- I I I = Z D cl .,,_.i__ )- 1,-4...71- ..,‘„,, / -__ t v 1 ' i- ! - 4 2 • I I r\ I- — - - - v z A i :-- 4' ' flak l '"Ir I I I I, 1 1 i r fil ....,----- •--1- A y . /1 '''" :4111L '' .1-. Plig ' Ja: • :'' APAik , 1. °I libmga aff.. 03 o 1 vs , n y . „.. 1...„ 1.„. i 1 - - . 1 1 ---i-lv- -7 P'; \ -I --i- , - -- � �* : O O _ v. �I r ' /de r+ 1 113 i . Nil,. t �..— -+- i 1 ' A ;� r, iii .� :, �' 4 _ �r!� r � ` a. I ! 1ii - --- ik_i I . �w. ?4iiiij s I, ..k, _:, . wt. , , . 1 0...., , ....._,__., „,,,,,,,,,, foe 4_ r,i ) 7. ?' i -?...4.,. . ; ' 1.: . : . ,;.,,.: : ; : i . .._.. Lridirr I . • ■■•■• 40:1,0000p: - . friii/ , , i° i ....1 ' • ,,, 1 ti tr. i i- 1 . :,V. -.: _/ 4 , _ c 1 -- , ,..: gil. 1._ Q k _ 1 :' �.. / ' Jam. ` ' 3 - - l • 1 1,27. tr ill., ,:iiiip,.... i t dr ,.. 11 . li Ilk III lia , • RI!) am En sr Ina 61. g . :I, _____. WI Mina vil .1M■ _,,,, 4- ERFIPP,Iin N riggekpulift,■Trais '. ; li I I I % _ T Z ,Pk w ‘ 415 9 - 1H 1 %....A.1111111 I/ li 7 .-- T mu-giiii INN 11111116111111 iiiriltr —t I .— - — . ,• 1 _ , ,_. , co — lit 1 —; 1.— ihio cc 1 1. I il plit 1 .. 1 !. 1.,,.„- _l i -1--. -1- T T. - - -� I t j _ 1_ -J. NO _l_ : ..__ _.4 4 41111111 •\ 1 1 1 1 1 1 1 1 lialballik, 1111 I 1 N N I 1 / 1 1 M I I , - v I i - - I-- 4 ' 2 f •• -I` - 1 ' 1 • I. - i•-• -I_ F- t-- - I - - -• - -f- o- -I - I. . - -- k.-' • t- +- — +- • • E � ��p p� pppp nn c c vl ��pp c � � lOO qq N(� � �p p� � p� �p O O � �v p pp�� p n p a l S:=8 l F, 5212. 71 �derl OI� 2c+INON V V A10 V f: gg9gg8$g80 m8& 8 V fOnNB�: : N; ggg6P8/ w E g .- fl. OoddGddOCO V d 1cidd 4d 4oddlOCOd Oddd W d dci fC fG aU tCB n E I! a m 8 8 2 8 8 8 8 8 0 8 as $ 0$ 8 8 8 0 0 0 0 0 0 0 0 0 0 8 0 s o 0 8 0 8 0 0 o s o 0 0 0 0 0 0 0 0 o s 8 8 8 0 0 0 0 8 8 a2 8 8 a2 Jxx d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d R a w lc s s` tle O 011 et TO . a .. ♦ c w w w w w w w of w w w w w w N w w w w w w w w w w w w w w w w w Owl Owl Owl w Owl Owl Owl Owl Owl w Owl Owl w Owl Owl Owl Owl Owl Owl Owl Owl Owl Owl w O Owl Owl Owl Owl Owl Owl =' .c d ad zN :d ododddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddl • J 3 a 3 .E w E a . 4 a 0 sss ssssgosssosg$s0000000000gosooso $00080000000000$$$$00008$$$$$ a a d ci d d a d d d d d d ci d d d d d a d d a d d d d ci d d d d d ci d a d d d d d d a d d a d d ci ci d d d d d d d a d d a d d d O 0 O Z O a E <T,Rlo'eVwl'1' `IV7- t4RSIVA ARogSgt:gvi o° o�o1 8$ w e8o' bi 8°& 4X1'S1xgRvr.sagslvR�^lr°3!$801a E ddddZ odciddN>o 4cq d 4 d d d d dd d dd d d.=dd dddddd dd d d d d d d . - ��� p i Oi Pid d d '' 44g _ r - o v F 5 o 2 c w a dddddddddddddadddddddddddddddddddddddddddddddddddddddddddddddddi E `o a N r A c A a ggggggggggg ggg gggg ggg gggg ggggggg gggggggggggggggg????gggggggg Z oici Ol Ol OI W oioi0101 OIOIOi W 0!0!0!0101 W 0101 w w Ol Ol oI OI OI OI OI O/O/01 o/O/Oi Oioi oioi Oi Oi01010101 Oi0/ 01 01 01 01 01 01 01 O1 O1OI Ol OIOI Oi a r A 0 c j o h N N N N R N N N N N N N N to N N N N N N R N N N N N N N N N N N N N N N N n N N N N N N N N N R R N N N N R R R R R N N R R R C a R C , N k alARRR RRiRiNRRRRi,Ri,R,R,RRNRi,AR,g RrRi,R'ill,RRI RiRRiRRgRi, Ri, R,NRRi,R,gRl4Ri,Ri,8'ill,rgRi,R l',MARRRi,Ri,A V N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N O w V888888888888888888888888888888888 y( 8 8 { 8 y 8888888 � 8 y( 8 � 8 � 888888888888 = MMMMIgi MMMM MgP lg.t 9t% M.. tht N +1 1+1 88M 11 fN1 1l..g44PIfN1117/71+11+1fN1181NM ti71N+1 88MMM tg PI PPIMN11 M M ggM M/N+1/N�l T, z u u a 0 P 0 4 4444.44444.4.4444.(444 . 4 44444.44444 444<<4444444444444a<4 .44 < <444 << C w w D y `J 8 C 0 r R R T T T T T T B T T T T T 44 T T QQ T T @ T ® T e e @ T @ T g M .. T 2/344/12 ' l ^C ^C O O O O O y i . f §/ O f 0 f 0 f O . S 3 O O O O O S 3 a g sgsE sE SBY� EE s s E.. EEEE4s s E °$ Om > E ad E / 11 ffi g g g g g g g g g g E g g g$ rc rc rc rc rc rc €rc g rc 3 rc a ¢ l i rc w/ g E rc a p E E g E@ E E E C a g g g/ E g g E810:18 a r mcmcmcmcdcwrc8az aa 660 m re re ix 8 ()(gc'S886marcz$ re mace C m a N i d 0 �1 a 3 , 8881$88188 °8 43$ �y1Rg 8g$$ 881° 2l°.° R°$g 8R` S824gl°$ 8g$' g $Rg8R18184p18p$pll$.$°S88$8$19l'8 1 V m 7 4 Q 0.- 1pf11g.04, . Rs 4giNg .ioicici .scud wwcw4cciw c4,.iwcq Nciup c ^:101 M g V O _ __ _ E ii 0 • ...-N .-.... m (4,-N N'- NN N N.-N•r N' N c� �O �p �p p plpp ♦ p cp lO �p pl N.- N--. --N � 1 p . p - p N 7N { ra �'p E Z 1 i t z E p N N1046 1� Oi Oi O lo. =' 1+i 1•'l OIYi 10 f`aY OI RlV NRggN g NNgggM88*S Olgg%gg f OOR4 V V V 88LLIG 1Nl0 = V V 7 7 W Ol o - 4 Z N — o x 121 2 p C • O O N O2n 1 OYf O aD 1fAOR2 YX2 V AOO OOOg28Om V 1OO O f 1 YIf b 1V O22 ff O N.IgG y a E YI 6 tV g 1+1 lV .- d a ; r., G d g .- R a a O a d o d C d a Y a h d d r d r a a a YI G G G a a o o o C a tG M O p R R d G G a G h O m C. O E .J 000dddad d 000 d 00 00000d00dddd dd0 dd 0 0 0 000 0 ad0ddddda0 00oo 0 0 ad 000000 dddda 0000 : • , 1 al. yp M O e E I q . A A A. A A. A ....... A A A A A A A A A A A A A A A I 1a u. : N ;aa y € 000000000600000000000000000000000000000000000000000000000000000000000000 J L i - e8SS82SSS° SSS° SS2S °°° ° °s ° °S°S° ° °oeoee °8888 ° ° °°8SSSS8 a dddddddddddaddddddddddddddaoddddadoddddddddddddddddddddddddddddddddooddd 0 E6Rn.0)ddd66010RR''Vd ddo6Ndd3m6m °Sd W6d U288dd eRN!' o d6 <^o R86g'�7�,53S?4 Eddddgddddde�id64NdYddoWddd.-dddd .%ddddddoadddddddivifbdaa 'd000drrMi Mini Y 1 1 w ddddddddddddadd dddddddddddddddddddddddaodddddddadaddddddadddddadddddaddd1 a i N C I Z a N a s2 $gggg33 g W W W W W W W W W W a W W W W W W W W W W W W W 0 W 0 W 0 W 0 W 0 W 0 W WWWWW W W W W W W W W W W W W WWWW W W W W W W W 0 W W W W W W W W W W W W W W W a P a N e • c NNN% 3XiXiXiX3% 3R% iNXiX3XiXiXiNNNNX3XiX3XiNNNNNX3Y3XiXiXiNNNNX3 %fNNX3NY3NNN%INNN%3NNNNN 2 a N O NNNRNRARNNNN%1AARRANNYONN%3%i % i N NNNN% i% 3% iWRIKIN NNNNPPINNNNAANNARARRARAAR ® u N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N O W • 888888 8 N� 8 � 8 eyye 8 eyy 888 � 8 eyy 8 � 8 eyy 8 $ 8 � 8 eyy 8 eyyee 8 yy� 8 eyy 8 a 8 a 88888 e 8 ryy e 8 eyy 888 e 8 eyy 8 � g eye 8 y 88888 e 8 ey . 88888 ry 8 ey 88888 88 888888888888888 = 4N1.1g IN�1v4M4m MI RMeN�IMI OIN+IMIN�IMI MIMI MI M1�R Rn g MI MI M MNIMNIMI eN/MI MI M IN�1 MOI IN+1 M/M IN�1 MAMgn4glN1eN+l M M MMMeN�IM MNI M eN� gIRMeN�1M MNIlN1A o e W G N o G,a . aa aa s a a aaa7M27'0211 a s a: aaa aaa € '� aaa a a as a a E $ $$$aa — ...mmmmll nc$er e7CC$ imcfmlm mel m m $ $$KC $ � C e E eL OC eCC KCeC e7C C 1 K e]C eL' C C D: K K a'eC eC K e] mm 1C C a W U • " g RBRS$R88 °8p5 888 8R eo eo. R° S8 8RRS?$ R° 88$ 8SSR88R8g $8aSSSgR88S8SR °S°RSBEg$g — 00 i u W•- Yi Mi q H". Mi .- N 2 r Y eV IV M1 IV G IV r♦ W YI W G �. r G W C eG f G G eel W G G f eri W•. i.- N M N W eV •- r f N A O G q W IN .-.- N n V i e e O Nr: r z: r N17N�N ANN ly q . q N G G Nr � r j�. r."1-. W� m om . . .G - e r - r N y � G Q N '7 N. -.7 � ipq p 7: t .7 e W = N w f W A W Ai W Grr NMI MI YI W IA W W RRNN N RNN MNRRNMl MIA W W 2222 f Y f f f 22 Y24gN MA 32IA2 S8m q e E OI ea a ; 3 a -$n " -a;ui°� i R$ R.Ia4Clc$s4 °g$$ia$'R'= Q$$$rtRn$� - a$aR -4RaW $ $Roan= ^•�as:$a'14o'- '4$$Ra$ =gaa nom nN. 70.mc- S � 00. 14R ed000ino�:monw -o� 8 $$ aaasaaa$ W;Ma000000000 oa oaoo $Oa000a aas8 sa�aa O G G O G O C O 0 0 0 0 O O C O O O O O O G C O C C O 0 0 0 0 0 0 0 0 0 0 0 0 ;e j h R nnn nnnnn n wnn n nnn nnnnnnnnnnnnnn. g � � w 3 � 1 1588$$ 888° 88 °88$8rr..:,'.rr..... .1 2., o � 00 00000000 RRRR9oe$$$$8$ 888$ °88 °588888° 0000oo 000u000OO OOOCOOOOOOOOOOOOee ! <aa ;ag Ee�$°$- aRB .$i$4$- $°$g.4$�4RR=- $Rn 50M.IMR 4�R44 AIWA$aa$g ;Pni!&m$MI 6 000o wno e�0000000��0��000g 9 O O O O O O O O O O O O O O O O O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 6 # mqq$ gggggggg /ggqqgg /qqq I RA$$$> sWM$$$$AA RRRAR 44A$$$IMAA MA$ A$$$A AAIM$$M$NAAAAAAAAMIMRMAAA$$M$ C$AAnAAAMnArMAR$q a a I RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRT V N N N N N N N N N N N N N N N FI N N N N N N Fi N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N R N m Q 88$$888$$$$$$$$$$$$$$88$$$$888 $$$888$$$$8888888 8,$$$$8$88$$ $8888888$8$$888$888888$88888$88 1 n 8888888888888888 x 8181888888888 8888888888Ae88881888888888888888888888888888188888888881888 0 Iuiiiiiiiiiiijiniiii :.. I HI I. .. 1111.11.11111111.1111 . . II 111 !$$e$!!e$$ °msiv „a$8 RR R °$$$R$$gg „g$$R R$$g ge a ! o' g : r4R „a + m ..--Rg- gg.m-IINON��jOm'b O' �OOOOf00m�000 ♦QO - r -In NhRO N���' 4 SO A .wyco V wo saso �rynojwry ryrryrryrrry,ryrrrry�� ryrryr�rry r�.;�ryrry. ry si si � nil � m Nm- s ' �� aaaass :..sYSSSS$seeaaa�ss$as A 4, AO ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) 4 . (c) Copyright 1983 -90 Advanced Engineering . Software (aes) Ver. 5.8B Release Date: 1/16/91 Serial # 9396 Analysis prepared by: BSI CONSULTANTS, SANTA ANA 0000000000000000000000000000000ommoommoolommoommollassammossomm 000(30000000000000000013000000000000000000030000=0000 000000000000000AAAIAAAAAAAAAAAammAAAAAAAAIAAAAA gm * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * Base Line Avenue Storm Drain Design Hydrology; 100 -yr, AMC =2 * Watershed from Citrus Ave to Palmetto Ave * MR * B &H JN: 15946.00, By Jonis C. Smith, PE FN: blnsdlh.dat, .out ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** !, FILE NAME: BLNSD1H.DAT OR TIME/DATE OF STUDY: 16:28 11/14/2002 OW USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORNATION: = -- *TIME-OF- CONCENTRATION MODEL*-- RR di USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .90 OR *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.050 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.520 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.5200 - SLOPE OF INTENSITY DURATION CURVE _ .6000 AO ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 2 MO » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< = ' OW DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3 - = 4 DWELLINGS/ACRE TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 AO INITIAL SUBAREA FLOW - LENGTH(FEET) = 1000.00 UPSTREAM ELEVATION(FEET) = 1530'.00 um DOWNSTREAM ELEVATION(FEET) = 1506.00 ELEVATION DIFFERENCE(FEET) = 24.00 (: ! 5 .1: ;) TC(MIN.) _ .412 *[( 1000.00 ** 3.00)/( 24.00)] ** .20 = 13.767 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.676 SOIL CLLSSJFICATION IS "A" RESIDEfTIAL - 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 SUBAREA RUNOFF(CFS) = 14.76 TOTAL AREA(ACRES) = 5.30 PEAK FLOW RATE(CFS) = 14.76 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 5.00 IS CODE = 6 » » >COMPUTE STREET'FLOW TRAVEL TIME THRU SUBAREA««< x UPSTREAM ELEVATION(FEET) = 1506 .00 DOWNSTREAM ELEVATION(FEET) = 1498.00 STREET LENGTH(FEET) = 300.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 �' INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 1 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 17.26 MK STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .43 HALFSTREET FLOOD WIDTH(FEET) = 13.53 • AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.27 mu PRODUCT OF DEPTH &VELOCITY = 1.83 STREET FLOW TRAVEL TIME(MIN.) = 1.17 TC(MIN.) = 14.94 10 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.501 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 SUBAREA AREA(ACRES) = 1.90 SUBAREA RUNOFF(CFS) = 4.99 EFFECTIVE AREA(ACRES) = 7.20 AVERAGED Fm(INCH /HR) _ .58 TOTAL AREA(ACRES) - 7.20 PEAK FLOW RATE(CFS) = 18.91 40 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .44 HALFSTREET FLOOD WIDTH(FEET) = 14.09 Se FLOW VELOCITY(FEET /SEC.) = 4.35 DEPTH *VELOCITY = 1.91 ON ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ** 00 FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.94 RAINFALL INTENSITY(INCH /HR) = 3.50 AVERAGED Fm(INCH /HR) _ .58 1 EFFECTIVE STREAM AREA(ACRES) = 7.20 TOTAL STREAM AREA(ACRES) = 7.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 18.91 id * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 2 OM » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< DEVELOPMENT IS = SINGLE = _ ____ FAMILY RESIDENTIAL -> 3 -4 DWELLINGS /ACRE TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 MO INITIAL SUBAREA FLOW- LENGTH(FEET) = 1000.00 UPSTREAM ELEVATION(FEET) = 1530.00 MO DOWNSTREAM ELEVATION(FEET) = 1506.00 ELEVATION DIFFERENCE(FEET) = 24.00 TC(MIN.) = .412 *[( 1000.00 ** 3.00)/( 24.00)] ** .20 = 13.767 • r mg 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.676 MO SOIL CLASSIFICATION IS "A" • .� RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 SUBAREA RUNOFF(CFS) = 14.76 TOTAL AREA(ACRES) = 5.30 PEAK FLOW RATE(CFS) = 14.76 :1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 6 »= => COMPUTE STREET = FLOW = TRAVEL = TIME =THRU= = SUBAREA z < « = =___________________ UPSTREAM ELEVATION(FEET) = 1506.00 DOWNSTREAM ELEVATION(FEET) = 1498.00 STREET LENGTH(FEET) = 480.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 f � OUTSIDE STREET CROSSFALL(DECIMAL) = .020 35• SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 D qd 41 P:\ 15946- BASELINE \hydrology\rational\baseline Ave 100 -yr hydrology.doc 2 di 4 PR !1 MI * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 19.53 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) - .46 HALFSTREET FLOOD WIDTH(FEET) = 15.22 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.90 PRODUCT OF DEPTH&VELOCITY = 1.80 STREET FLOW TRAVEL TIME(MIN.) = 2.05 TC(MIN.) = 15.82 - 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.382 SOIL CLASSIFICATION IS "A" `O RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .5820 SUBAREA AREA(ACRES) = 3.80 SUBAREA RUNOFF(CFS) = 9.58 EFFECTIVE AREA(ACRES) = 9.10 AVERAGED Fm(INCH/HR) _ .58 TOTAL AREA(ACRES) = 9.10 PEAK FLOW RATE(CFS) = 22.93 id END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .49 HALFSTREET FLOOD WIDTH(FEET) = 16.34 FLOW VELOCITY(FEET /SEC.) = 4.01 DEPTH *VELOCITY = 1.94 FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< 41 »» >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES = = == ___==______________ TOTAL NUMBER OF STREAMS = 2 4R CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: • sy TIME OF CONCENTRATION(MIN.) = 15.82 00 RAINFALL INTENSITY(INCH/HR) = 3.38 AVERAGED Fm(INCH /HR) _ .58 EFFECTIVE STREAM AREA(ACRES) = 9.10 TOTAL STREAM AREA(ACRES) = 9.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 22.93 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO - CONFLUENCE FORMULA USED FOR 2 STREAMS. Id ** PEAK FLOW RATE TABLE ** Q(CFS) Tc(MIN.) Fm(INCH/HR) Ae(ACRES) 1 41.48 14.94 .582 15.79 2 41.08 15.82 .582 16.30 00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 41.48 Tc(MIN.) = 14.938 441 EFFECTIVE AREA(ACRES) = 15.79 AVERAGED Fm(INCH /HR) _ .58 TOTAL AREA(ACRES) = 16.30 WM ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 5.00 TO NODE 12.00 IS CODE = 3 » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » »> USING COMPUTER- ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< = DEPTH OF = FLOW = IN = = 30 0 INCH PIPE IS 23.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 10.3 UPSTREAM NODE ELEVATION(FEET) = 1492.00 DOWNSTREAM NODE ELEVATION(FEET) = 1431.00 FLOW LENGTH(FEET) = 4700.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 41.48 TRAVEL TIME(MIN.) = 7.63 TC(MIN.) = 22.57 :1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 12.10 TO NODE 12.00 IS CODE = 8 »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< i ======================= _ ___ 100 YEAR RAINFALL = INTENSITY(INCH /HOUR) = 2.733 _ SOIL CLASSIFICATION IS "A" P:\ 15946- BASELINE\hydroloerational \baseline Ave 100 -yr hydrology.doc 3 oR 40 RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 SUBAREA AREA(ACRES) = 52.80 SUBAREA RUNOFF(CFS) = 102.21 EFFECTIVE AREA(ACRES) = 68.59 AVERAGED Fm(INCH /HR) = .582 OR TOTAL AREA(ACRES) = 69.10 PEAK FLOW RATE(CFS) = 132.78 TC(MIN) = 22.57 WO ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** SO FLOW PROCESS FROM NODE 6.00 TO NODE 7.00 IS CODE = 2 »» >RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< imp 11 ▪ DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3 -4 DWELLINGS /ACRE TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 800.00 AR UPSTREAM ELEVATION(FEET) = 1530.00 7� / DOWNSTREAM ELEVATION(FEET) = 1506.00 4 ELEVATION DIFFERENCE(FEET) = 24.00 CC TC(MIN.) _ .412 *[( 800.00 ** 3.00)/( 24.00)] ** .20 = 12.042 J•5 • 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.984 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 SUBAREA RUNOFF(CFS) = 16.23 TOTAL AREA(ACRES) = 5.30 PEAK FLOW RATE(CFS) = 16.23 10 FLOW PROCESS FROM NODE 7.00 TO NODE 10.00 IS CODE = 6 01 »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< = ======.=======,=====.====== = 4, • UPSTREAM ELEVATION(FEET) =1506.00 DOWNSTREAM ELEVATION(FEET) = 1500.0 STREET LENGTH(FEET) = 850.00 CURB HEIGTH(INCHES) = 8. OM STREET HALFWIDTH(FEET) = 20.00 (SW DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 Wo • SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 I /0. / * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 21.02 ` 004 woo STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .54 SW HALFSTREET FLOOD WIDTH(FEET) = 19.16 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.72 PRODUCT OF DEPTH &VELOCITY = 1.47 OUR STREET FLOW TRAVEL TIME(MIN.) = 5.20 TC(MIN.) = 17.24 OW 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.212 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 SUBAREA AREA(ACRES) = 4.00 SUBAREA RUNOFF(CFS) = 9.47 EFFECTIVE AREA(ACRES) = 9.30 AVERAGEDFm(INCH /HR) = .58 TOTAL AREA(ACRES) = 9.30 PEAK FLOW RATE(CFS) = 22.01 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .54 HALFSTREET FLOOD WIDTH(FEET) = 19.16 FLOW VELOCITY(FEET /SEC.) = 2.85 DEPTH *VELOCITY = 1.54 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE = 1 »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER = OF = STREAMS = 2 _______________ CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 17.24 RAINFALL INTENSITY(INCH /HR) = 3.21 P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 4 41 01 illi AVERAGED Fm(INCH /HR) = .58 EFFECTIVE STREAM AREA(ACRES) = 9.30 TOTAL STREAM AREA(ACRES) = 9.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 22.01 di ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 2 mq dd _ = ................ = = > >> > >RATIONAL METHODINITIAL SUBAREA ANALYSIS< << << _____ :___ :___________ DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3 -4 DWELLINGS /ACRE ® TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 750.00 dd UPSTREAM ELEVATION(FEET) = 1530.00 DOWNSTREAM ELEVATION(FEET) = 1506.00 %• ", ELEVATION DIFFERENCE(FEET) = 24.00 TC(MIN.) _ .412 *[( 750.00 ** 3.00)/( 24.00)] ** .20 = 11.585 M 1 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.078 O SOIL CLASSIFICATION IS "A" • 1 RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 } SUBAREA RUNOFF(CFS) = 9.44 00 TOTAL AREA(ACRES) = 3.00 PEAK FLOW RATE(CFS) = 9.44 40 ************************.********************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 4 d FLOW PROCESS FROM NODE 9.20 TO NODE 9.00 IS CODE = 8 »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.078 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) _ .0970 • SUBAREA AREA(ACRES) = 1.10 SUBAREA RUNOFF(CFS) = 3.94 9, L 2'1 ' imi EFFECTIVE AREA(ACRES) = 4.10 AVERAGED Fm(INCH /HR) _ .452 1. i�C di TOTAL AREA(ACRES) = 4.10 PEAK FLOW RATE(CFS) = 13.38 01 TC(MIN) = 11.58 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** • FLOW PROCESS FROM NODE 9.30 TO NODE 9.00 IS CODE = 8 • » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.078 01 SOIL CLASSIFICATION IS "A" _ RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 10 SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 3.15 / EFFECTIVE AREA(ACRES) = 5.10 AVERAGED Fm(INCH /HR) = .477 1 VW TOTAL AREA(ACRES) = 5.10 PEAK FLOW RATE(CFS) = 16.52 TC(MIN) = 11.58 IN ******************************** ************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** lii FLOW PROCESS FROM NODE 9.00 TO NODE 10.00 IS CODE = 6 :: »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< = = UPSTREAM ELEVATION(FEET) s = 1520.00 DOWNSTREAM ELEVATION(FEET) == 1500.00 STREET LENGTH(FEET) = 690.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 !0. 00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 /J/1 44 • (i P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100-yr hydrology.doc 5 qm! alit SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 45.00 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .54 Ai HALFSTREET FLOOD WIDTH(FEET) = 19.16 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.83 PRODUCT OF DEPTH&VELOCITY = 3.16 w�M STREET FLOW TRAVEL TIME(MIN.) = 1.97 TC(MIN.) = 13.56 44 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.710 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 4O SUBAREA AREA(ACRES) = 20.30 SUBAREA RUNOFF(CFS) = 57.16 EFFECTIVE AREA(ACRES) = 25.40 AVERAGED Fm(INCH /HR) _ .56 TOTAL AREA(ACRES) = 25.40 PEAK FLOW RATE(CFS) = 72.00 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .61 HALFSTREET FLOOD WIDTH(FEET) = 20.00 MO FLOW VELOCITY(FEET /SEC.) = 6.97 DEPTH *VELOCITY = 4.23 OR ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< »» >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< MO TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.56 RAINFALL INTENSITY(INCH /HR) = 3.71 AVERAGED Fm(INCH /HR) _ .56 EFFECTIVE STREAM AREA(ACRES) = 25.40 TOTAL STREAM AREA(ACRES) = 25.40 w PEAK FLOW RATE(CFS) AT CONFLUENCE = 72.00 MO RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO • CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** OW Q(CFS) Tc(MIN.) Fm(INCH /HR) Ae(ACRES) 1 82.61 17.24 .567 34.70 2 92.59 13.56 .566 32.71 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: MO PEAK FLOW RATE(CFS) = 92.59 Tc(MIN.) = 13.557 EFFECTIVE AREA(ACRES) = 32.71 AVERAGED Fm(INCH /HR) _ .57 TOTAL AREA(ACRES) = 34.70 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** - FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 3 » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< »»> USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< M =========================================== DEPTH OF FLOW IN36.0 INCH PIPE IS 28.9 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 15.2 UPSTREAM NODE ELEVATION(FEET) = 1494.00 DOWNSTREAM NODE ELEVATION(FEET) = 1458.00 FLOW LENGTH(FEET) = 1620.00 MANNING'S N = .013 ESTIMATED, PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 92.59 TRAVEL TIME(MIN.) = 1.78 TC(MIN.) = 15.33 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 11.10 TO NODE 11.00 IS CODE = 8 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< AO P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 6 w AO AO 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.446 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 +g SUBAREA AREA(ACRES) = 88.50 SUBAREA RUNOFF(CFS) = 228.15 EFFECTIVE AREA(ACRES) = 121.21 AVERAGED Fm(INCH /HR) = .578 igrk. TOTAL AREA(ACRES) = 123.20 PEAK FLOW RATE(CFS) = 312.96 TC(MIN) = 15.33 FLOW PROCESS FROM NODE 11.20 TO NODE 11.00 IS CODE = 8 40 »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< and 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.446 SOIL CLASSIFICATION IS "A" 00 COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) _ .0970 SUBAREA AREA(ACRES) = 1.90 SUBAREA RUNOFF(CFS) = 5.73 EFFECTIVE AREA(ACRES) = 123.11 /' AVERAGED Fm(INCH /HR) _ .570 1/ 2 TOTAL AREA(ACRES) = 125.10 PEAK FLOW RATE(CFS) = 318.69 TC(MIN) = 15.33 40 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 3 »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< 00 » »> USING COMPUTER-ESTIMATED = PIPESIZE (NON- PRESSURE FLOW)= = = =____________ DEPTH OF FLOW IN 57.0 INCH PIPE IS 41.4 INCHES v# PIPE -FLOW VELOCITY(FEET /SEC.) = 23.1 UPSTREAM NODE ELEVATION(FEET) = 1458.00 00 DOWNSTREAM NODE ELEVATION(FEET) = 1431.00 FLOW LENGTH(FEET) = 950.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 57.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 318.69 id TRAVEL TIME(MIN.) _ .68 TC(MIN.) = 16.02 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 12.20 TO NODE 12.00 IS CODE = 8 00 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< 4111 100 == YEAR RAINFALL INTENSITY(INCH /HOUR) = _ ________________________ 3.357 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 SUBAREA AREA(ACRES) = 46.00 SUBAREA RUNOFF(CFS) = 114.90 Ara EFFECTIVE AREA(ACRES) = 169.11 AVERAGED Fm(INCH /HR) = .573 �� TOTAL AREA(ACRES) = 171.10 PEAK FLOW RATE(CFS) = 423.71 TC(MIN) = 16.02 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ��� FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 1 b - - »$= =DESIGNATE= INDEPENDENT =STREAM -FOR= CONFLUENCE« =< = ________________ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 16.02 RAINFALL INTENSITY(INCH /HR) = 3.36 AVERAGED Fm(INCH /HR) = .57 EFFECTIVE STREAM AREA(ACRES) = 169.11 00 00 P:\ 15946- BASELINE \hydrology\rationaI baseline Ave 100 -yr hydrology.doc 7 di AA Ai om Mi TOTAL STREAM AREA(ACRES) = 171.10 PEAR FLOW RATE(CFS) AT CONFLUENCE = 423.71 AM ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** Ai FLOW PROCESS FROM NODE 5.00 TO NODE 12.00 IS CODE = 7 »» >USER SPECIFIED HYDROLOGY INFORMATION AT NODE « «< +� ______________===== s=====____________________ _______________ USER - SPECIFIED VALUES ARE AS FOLLOWS: 40 TC(MIN.) = 22.57 RAINFALL INTENSITY(INCH /HR) = 2.73 EFFECTIVE AREA(ACRES) = 68.59 TOTAL AREA(ACRES) = 69.10 PEAK FLOW RATE(CFS) = 132.78 AVERAGED LOSS RATE, Fm(INCH /HR) _ .582 • NOTE: EFFECTIVE AREA IS USED AS THE TOTAL CONTRIBUTING AREA FOR ALL CONFLUENCE ANALYSES. 4✓ FLOW PROCESS FROM NODE 5.00 TO NODE 12.00 IS CODE = 1 - »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< »» >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: 40 TIME OF CONCENTRATION(MIN.) = 22.57 RAINFALL INTENSITY(INCH /HR) = 2.73 40 AVERAGED Fm(INCH /HR) = .58 EFFECTIVE STREAM AREA(ACRES) = 68.59 mm TOTAL STREAM AREA(ACRES) = 69.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 132.78 MO RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. OM ** PEAK FLOW RATE TABLE ** MO Q(CFS) Tc(MIN.) Fm(INCH /HR) Ae(ACRES) 1 545.29 16.02 .575 217.79 04 2 496.14 19.75 .576 231.11 • 3 465.30 22.57 .576 239.69 di COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 545.29 Tc(MIN.) = 16.017 f EFFECTIVE AREA(ACRES) = 217.79 AVERAGED Fm(INCH /HR) = .58 TOTAL AREA(ACRES) = 240.20 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 3 Ai »»> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««< »»>USING COMPUTER- ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « DEPTH OF FLOW IN 72.0 INCH PIPE IS 55.2 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 23.4 UPSTREAM NODE ELEVATION(FEET) = 1431.00 DOWNSTREAM NODE ELEVATION(FEET) = 1400.50 di FLOW LENGTH(FEET) = 1450.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 72.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 545.29 TRAVEL TIME(MIN.) = 1.03 TC(MIN.) = 17.05 44; ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 13.10 TO NODE 13.00 IS CODE = 8 = »a� = ADDITION - OFSUBAREA = TO - = MAINLINE - PEAK FLOW« =« - = = ______________ 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.234 SOIL CLASSIFICATION IS "A" P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 8 4Ii Ad j RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 Ad SUBAREA AREA(ACRES) = 22.90 SUBAREA RUNOFF(CFS) = 54.65 EFFECTIVE AREA(ACRES) = 240.69 Algt AVERAGED Fm(INCH /HR) _ .576 TOTAL AREA(ACRES) = 263.10 PEAK FLOW RATE(CFS) = 575.75 TC(MIN) = 17.05 44 FLOW PROCESS FROM NODE 13.20 TO NODE 13.00 IS CODE = 8 10114 »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< 1 00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.234 SOIL CLASSIFICATION IS "A" OR COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) _ .0970 SUBAREA AREA(ACRES) = 2.20 SUBAREA RUNOFF(CFS) = 6.21 EFFECTIVE AREA(ACRES) = 242.89 AVERAGED R) _ .572 44 TOTAL AREA(ACRES) A(ACRES) = 265.30 • • PEAK FLOW RATE(CFS) = 581.96 WO TC(MIN) = 17.05 FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 1 (r » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 MA CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 17.05 RAINFALL INTENSITY(INCH /HR) = 3.23 AVERAGED Fm(INCH /HR) _ .57 EFFECTIVE STREAM AREA(ACRES) = 242.89 AO TOTAL STREAM AREA(ACRES) = 265.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 581.96 MM FLOW PROCESS FROM NODE 14.00 TO NODE 15.00 IS CODE = 2 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< AO DEVELOPMENT aIS COMMERCIAL TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 vim INITIAL SUBAREA.FLOW- LENGTH(FEET) = 1000.00 UPSTREAM ELEVATION(FEET) = 1530.00 44 DOWNSTREAM ELEVATION(FEET) = 1500.00 ELEVATION DIFFERENCE(FEET) = 30.00 I TC(MIN.) _ .304 *[( 1000.00 ** 3.00)/( 30.00)] ** .20 = 9.715 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.532 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA RUNOFF(CFS) = 3.99 TOTAL AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) = 3.99 di ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 15.00 TO NODE 16.00 IS CODE = 6 _ = » =� >COMPUTE STREET = FLOW - TRAVEL TIME THRU = SUBAREA« «< ______ _____________ UPSTREAM ELEVATION(FEET) = 1500.00 DOWNSTREAM ELEVATION(FEET) = 1416.00 qd STREET LENGTH(FEET) = 4050.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 22.00 I ( :4) i di DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 �! INTERIOR STREET CROSSFALL(DECIMAL) = .020 di P:\ 15946- BASEL1NE\hydrology \rational \baseline Ave 100 -yr hydrology.doc 9 ml id OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 7.70 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .43 HALFSTREET FLOOD WIDTH(FEET) = 13.56 - AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.79 PRODUCT OF DEPTH &VELOCITY = 1.63 40 STREET FLOW TRAVEL TIME(MIN.) = 17.79 TC(MIN.) = 27.50 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.427 no SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) _ .0970 dO SUBAREA AREA(ACRES) = 3.40 SUBAREA RUNOFF(CFS) = 7.13 EFFECTIVE AREA(ACRES) = 4.40 AVERAGED Fm(INCH/HR) = .10 ao TOTAL AREA(ACRES) = 4.40 PEAK FLOW RATE(CFS) = 9.23 END OF SUBAREA STREET FLOW HYDRAULICS: +40 DEPTH(FEET) _ .44 HALFSTREET FLOOD WIDTH(FEET) = 14.19 FLOW VELOCITY(FEET /SEC.) = 4.19 DEPTH *VELOCITY = 1.85 nal ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 16.00 TO NODE 17.00 IS CODE - 3 oo »» >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««< » USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.1 INCHES on PIPE-FLOW VELOCITY(FEET /SEC.) = 5.9 UPSTREAM NODE ELEVATION(FEET) = 1409.00 DOWNSTREAM NODE ELEVATION(FEET) = 1408.40 10 FLOW LENGTH(FEET) = 80.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 - PIPE - FLOW(CFS) = 9.23 TRAVEL TIME(MIN.) _ .23 TC(MIN.) = 27.73 00 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 17.10 TO NODE 17.00 IS CODE = 8 VO » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< no 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.415 SOIL CLASSIFICATION IS "A" me COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA AREA(ACRES) = 2.90 SUBAREA RUNOFF(CFS) = 6.05 00 EFFECTIVE AREA(ACRES) = 7.30 / z / AVERAGED Fm(INCH /HR) _ .097 and TOTAL AREA(ACRES) = 7.30 711410e. PEAK FLOW RATE(CFS) = 15.23 TC(MIN) = 27.73 40 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 17.00 TO NODE 18.00 IS CODE = 3 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< 4 _ - > > >>> USING= COMPUTER - ESTIMATED =PIPESIIZE = (NON - PRESSURE= FLOW) «__ <___________ DEPTH OF FLOW IN 24.0 INCH PIPE IS 17.9 INCHES mq PIPE -FLOW VELOCITY(FEET /SEC.) = 6.1 UPSTREAM NODE ELEVATION(FEET) = 1408.40 di DOWNSTREAM NODE ELEVATION(FEET) = 1401.00 FLOW LENGTH(FEET) = 1200.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 15.23 4 TRAVEL TIME(MIN.) = 3.29 TC(MIN.) = 31.02 4, dO P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 10 i and di FLOW PROCESS FROM NODE 18.10 TO NODE 18.00 IS CODE = 8 ow __> == > = ADDITION OF SUBAREA =TO- - MAINLINEPEAK - FLOW« = === _ = ==== 5 ==== =__________ 40 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.258 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 40 SUBAREA AREA(ACRES) _ .80 SUBAREA RUNOFF(CFS) = 1.56 EFFECTIVE AREA(ACRES) = 8.10 /8 i 10 AVERAGED Fm(INCH/HR) = .097 TOTAL AREA(ACRES) = 8.10 t1 �� OW PEAK FLOW RATE(CFS) = 15.75 V' G' TC(MIN) = 31.02 44 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 'w FLOW PROCESS FROM NODE 18.00 TO NODE 13.00 IS CODE = 3 40 » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««< » »>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « « < DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.6 INCHES w/ PIPE -FLOW VELOCITY(FEET /SEC.) = 5.7 UPSTREAM NODE ELEVATION(FEET) = 1401.00 DOWNSTREAM NODE ELEVATION(FEET) = 1400.50 OW FLOW LENGTH(FEET) = 100.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) - 15.75 TRAVEL TIME(MIN.) _ .29 TC(MIN.) _' 31.31 44 di ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 1 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< 4 0 _ = > == =S AND- COMPUTE = VARIOUS CONFLUENCED STREAM V VALUES<= = == __ _ : _______________ TOTAL NUMBER OF STREAMS = 2 04 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 31.31 • • alp RAINFALL INTENSITY(INCH/HR) = 2.25 AVERAGED Fm(INCH/HR) _ .10 EFFECTIVE STREAM AREA(ACRES) = 8.10 TOTAL STREAM AREA(ACRES) = 8.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 15.75 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO of CONFLUENCE FORMULA USED FOR 2 STREAMS. 44 ** PEAK FLOW RATE TABLE ** Q(CFS) Tc(MIN.) Fm(INCH /HR) Ae(ACRES) :: 1 594.48 17.05 .563 247.30 2 543.26 20.81 .562 261.59 3 511.22 23.64 .562 270.90 4 414.44 31.31 .558 272.89 OW COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 594.48 Tc(MIN.) = 17.049 EFFECTIVE AREA(ACRES) = 247.30 AVERAGED Fm(INCH /HR) = .56 TOTAL AREA(ACRES) = 273.40 :: ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 13.00 TO NODE 19.00 IS CODE = 3 OW » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< »» >USING COMPUTER- ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< DEPTH OF FLOW IN 108.0 INCH PIPE IS 78.1 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 12.1 Ili 40 - P:\ 15946- BASELINE\hydrology\national \baseline Ave 100-yr hydrology.doc 11 irig *w UPSTREAM NODE ELEVATION(FEET) = 1400.50 OA DOWNSTREAM NODE ELEVATION(FEET) = 1398.70 FLOW LENGTH(FEET) = 545.00 MANNING'S N - .013 ESTIMATED PIPE DIAMETER(INCH) = 108.00 NUMBER OF PIPES = 1 ww PIPE - FLOW(CFS) = 594.48 TRAVEL TIME(MIN.) _ .75 TC(MIN.) = 17.80 a0 FLOW PROCESS FROM NODE 19.10 TO NODE 19.00 IS CODE = 8 OA » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ==================== 100 YEAR RAINFALL INTENSITY (INCH /HOUR) 3.151 = = = =____ :_ SOIL CLASSIFICATION IS "A" MA COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA AREA(ACRES) = 2.40 SUBAREA RUNOFF(CFS) = 6.60 mA EFFECTIVE AREA(ACRES) = 249.70 � r AVERAGED Fm(INCH /HR) _ .559 , / MO TOTAL AREA(ACRES) = 275.80 _/� PEAK FLOW RATE(CFS) = 594.48 !� TC(MIN) - 17.80 PPR ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 19.00 TO NODE 20.00 IS CODE = 3 out » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««< NO » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< = = = DEPTH OF FLOW IN 108.0 INCH PIPE IS 88.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 10.7 UPSTREAM NODE ELEVATION(FEET) = 1398.70 DOWNSTREAM NODE ELEVATION(FEET) = 1397.30 FLOW LENGTH(FEET) = 550.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 108.00 NUMBER OF PIPES = 1 Ai PIPE- FLOW(CFS) = 594.48 TRAVEL TIME(MIN.) _ .86 TC(MIN.) = 18.66 FLOW PROCESS FROM NODE 20.10 TO NODE 20.00 IS CODE = 8 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.063 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) _ .0970 SUBAREA AREA(ACRES) = 1.60 SUBAREA RUNOFF(CFS) = 4.27 EFFECTIVE AREA(ACRES) = 251.30 AVERAGED Em(INCH /HR) = .556 2 TOTAL AREA(ACRES) = 277.40 PEAK FLOW RATE(CFS) = 594.48 TC(MIN) - 18.66 ICV ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 20.00 TO NODE 99.00 IS CODE = 3 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««< » »>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< DEPTH OF FLOW = IN = 114.0 INCH PIPE IS 88.4 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 10.1 UPSTREAM NODE ELEVATION(FEET) = 1397.30 DOWNSTREAM NODE ELEVATION(FEET) = 1396.90 41 FLOW LENGTH(FEET) = 190.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 114.00 NUMBER OF PIPES = 1 AO PIPE - FLOW(CFS) = 594.48 TRAVEL TIME(MIN.) = .31 TC(MIN.) = 18.97 Ai AO P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 12 40 40 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 99.10 TO NODE 99.00 IS CODE = 8 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< = s 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.033 SOIL CLASSIFICATION IS "A" - COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA AREA(ACRES) _ .90 SUBAREA RUNOFF(CFS) = 2.38 �f, j 04 EFFECTIVE AREA(ACRES) = 252.20 cif, r AVERAGED Fm(INCH/HR) = .554 00° 901C TOTAL AREA(ACRES) = 278.30 PEAK FLOW RATE(CFS) = 594.48 TC(MIN) - 18.97 00 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 99.20 TO NODE 99.00 IS CODE = 8 WO » OF SUBAREA TO MAINLINE PEAK FLOW««< OR 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.033 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 SUBAREA AREA(ACRES) = .39.00 SUBAREA RUNOFF(CFS) = 86.03 EFFECTIVE AREA(ACRES) = 291.20 AVERAGED Fm(INCH/HR) _ .558 yf *' TOTAL AREA(ACRES) = 317.30 PEAK FLOW RATE(CFS) = 648.67 Oar *MR TC(MIN) = 18.97 MO ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 99.00 TO NODE 21.00 IS CODE = 3 som »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< NO » »>USING COMPUTER- ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< ======= DEPTH = OF = FLOW = IN 126.0 = INCH PIPE IS 92.5 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 9.5 UPSTREAM NODE ELEVATION(FEET) = 1396.90 DOWNSTREAM NODE ELEVATION(FEET) = 1396.80 FLOW LENGTH(FEET) = 60.00 MANNING'S N = .013 e ESTIMATED PIPE DIAMETER(INCH) = 126.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 648.67 11r1 TRAVEL TIME(MIN.) _ .11 TC(MIN.) = 19.08 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 21.00 TO NODE 21.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « od TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 19.08 RAINFALL INTENSITY(INCH /HR) = 3.02 AVERAGED Fm(INCH/HR) = .56 44 EFFECTIVE STREAM AREA(ACRES) = 291.20 • TOTAL STREAM AREA(ACRES) = 317.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 648.67 40 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 22.00 TO NODE 23.00 IS CODE = 2 _ = » === RATIONAL - METHOD= INITIAL SUBAREA ANALYSIS< =«< _______ __ ____________ DEVELOPMENT IS COMMERCIAL di P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 13 40 AA TC = K *[(LENGTH * 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 900.00 UPSTREAM ELEVATION(FEET) = 1528.00 DOWNSTREAM ELEVATION(FEET) = 1521.00 25./ ELEVATION DIFFERENCE(FEET) = 7.00 r TC(MIN.) _ .304 *(( 900.00 ** 3.00)/( 7.00)] ** .20 = 12.201 7 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.953 v SOIL CLASSIFICATION IS "A" 4 ' A COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA RUNOFF(CFS) = 16.31 TOTAL AREA(ACRES) = 4.70 PEAK FLOW RATE(CFS) = 16.31 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * MO FLOW PROCESS FROM NODE 23.00 TO NODE 24.00 IS CODE = 6 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< UPSTREAM ELEVATION(FEET) = 1521.00 DOWNSTREAM ELEVATION(FEET) = 1510.00 1111 STREET LENGTH(FEET) = 650.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 55.00 OA DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 NO INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 41 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 40 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 31.33 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .54 HALFSTREET FLOOD WIDTH(FEET) = 18.98 �� ,a 4 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.13 7. / PRODUCT OF DEPTH&VELOCITY = 2.22 STREET FLOW TRAVEL TIME(MIN.) = 2.62 TC(MIN.) = 14.82 9. 74e 1 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.517 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 40 SUBAREA AREA(ACRES) = 9.70 SUBAREA RUNOFF(CFS) = 29.86 EFFECTIVE AREA(ACRES) = 14.40 AVERAGED Fm(INCH /HR) _ .10 di TOTAL AREA(ACRES) = 14.40 PEAK FLOW RATE(CFS) = 44.32 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .59 HALFSTREET FLOOD WIDTH(FEET) = 21.46 Aft FLOW VELOCITY(FEET /SEC.) = 4.62 DEPTH *VELOCITY = 2.72 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 24.00 TO NODE 25.00 IS CODE = 3 • 04 »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » »> USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< = == == =.= = DEPTH OF FLOW IN 27.0 INCH PIPE IS 18.8 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 15.0 UPSTREAM NODE ELEVATION(FEET) = 1504.00 DOWNSTREAM NODE ELEVATION(FEET) = 1490.00 FLOW LENGTH(FEET) = 425.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 di PIPE - FLOW(CFS) = 44.32 TRAVEL TIME(MIN.) _ .47 TC(MIN.) = 15.29 FLOW PROCESS FROM NODE 25.10 TO NODE 25.00 IS CODE = 8 Id » » >ADDITION OF SUBAREA TO MAINLINE - == di 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.451 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 di S• 7sr P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 14 fiat did dd "'i SUBAREA AREA(ACRES) = 5.70 SUBAREA RUNOFF(CFS) = 17.21 EFFECTIVE AREA(ACRES) = 20.10 AVERAGED Fm(INCH/HR) = .097 TOTAL AREA(ACRES) = 20.10 osw PEAK FLOW RATE(CFS) = 60.68 TC(MIN) = 15.29 di FLOW PROCESS FROM NODE 25.20 TO NODE 25.00 IS CODE = 8 »»> ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< 0101 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.451 SOIL CLASSIFICATION IS "A" 00 COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) _ .0970 SUBAREA AREA(ACRES) = 1.20 SUBAREA RUNOFF(CFS) = 3.62 mom EFFECTIVE AREA(ACRES) - 21.30 £ j 2 AVERAGED Fm(INCH/HR) = .097 yy TOTAL AREA(ACRES) = 21.30 / �� PEAK FLOW RATE(CFS) = 64.31 TC(MIN) = 15.29 FLOW PROCESS FROM NODE 25.00 TO NODE 26.00 IS CODE = 3 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< 00 »»>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< DEPTH OF FLOW IN 30.0 INCH PIPE IS 23.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 15.9 UPSTREAM NODE ELEVATION(FEET) = 1490.00 001 DOWNSTREAM NODE ELEVATION(FEET) = 1471.60 FLOW LENGTH(FEET) = 590.00 MANNING'S N = .013 M ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 64.31 4 0 TRAVEL TIME(MIN.) _ .62 TC(MIN.) = 15.91 FLOW PROCESS FROM NODE 26.10 TO NODE 26.00 IS CODE = 8 di » »> ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< 00 __ :__ ==_____________= _____= =_____ = = =______= _____ =___ 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.370 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 SUBAREA AREA(ACRES) = 8.10 SUBAREA RUNOFF(CFS) = 20.33 EFFECTIVE AREA(ACRES) = 29.40 AVERAGED Fm(INCH/HR) = .231 26's l TOTAL AREA(ACRES) = 29.40 PEAK FLOW RATE(CFS) = 83.08 8./.4c TC(MIN) = 15.91 Ai ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 26.20 TO NODE 26.00 IS CODE = 8 di > ADDITION OF = ============== SUBAREA MAINLINE PEAK FLOW«= __ = = == = = =______ __________ 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.370 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 di SUBAREA AREA(ACRES) = .90 SUBAREA RUNOFF(CFS) = 2.65 EFFECTIVE AREA(ACRES) = 30.30 AVERAGED Fm(INCH/HR) = .227 TOTAL AREA(ACRES) = 30.30 Ai PEAK FLOW RATE(CFS) = 85.73 26. Z TC(MIN) = 15.91 MR 09e' P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100-yr hydrology.doc 15 �•r +rll AR FLOW PROCESS FROM NODE 26.00 TO NODE 27.00 IS CODE = 3 4 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««< 41d »»> USINGCOMPUTE ========== E R - ESTIMATED = PPIPESIZE (NON-PRESSURE N=FL OW) = P = = = =____________ DEPTH OF FLOW IN 36.0 INCH PIPE IS 28.1 INCHES AR PIPE -FLOW VELOCITY(FEET /SEC.) = 14.5 UPSTREAM NODE ELEVATION(FEET) = 1471.60 Ad DOWNSTREAM NODE ELEVATION(FEET) = 1457.70 FLOW LENGTH(FEET) = 690.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 85.73 TRAVEL TIME(MIN.) = .80 TC(MIN.) = 16.71 .ww ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 27.10 TO NODE 27.00 IS CODE = 8 » » >ADDITION OF SUBAREA TO MAINLINE PEAR FLOW««< 00 100 YEAR RAINFALL INTENSITY( INCH / HOUR) ===== ======== 23== =__ _____________________ i% SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 SUBAREA AREA(ACRES) = 10.00 SUBAREA RUNOFF(CFS) = 24.22 w EFFECTIVE AREA(ACRES) = 40.30 AVERAGED Fm(INCH/HR) = .315 I 27 / 40 TOTAL AREA(ACRES) = 40.30 PEAK FLOW RATE(CFS) = 107.30 'vo� 04 TC(MIN) = 16.71 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 27.20 TO NODE 27.00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.273 04 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) _ .0970 rill SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 2.86 EFFECTIVE AREA(ACRES) = 41.30 AVERAGED Fm(INCH/HR) _ .310 „ Z 00 TOTAL AREA(ACRES) = 41.30 PEAK FLOW RATE(CFS) = 110.16 /DC ow' TC(MIN) = 16.71 id FLOW PROCESS FROM NODE 27.00 TO NODE 28.00 IS CODE = 3 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< 4 » »> USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< di DEPTH OF = FLOW = IN S = 39.0 = INCH PIPE IS 31.9 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 15.1 4R UPSTREAM NODE ELEVATION(FEET) S 1457.70 DOWNSTREAM NODE ELEVATION(FEET) = 1448.10 FLOW LENGTH(FEET) = 485.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 110.16 ', TRAVEL TIME(MIN.) = .53 TC(MIN.) = 17.24 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 41 FLOW PROCESS FROM NODE 28.10 TO NODE 28.00 IS CODE = 8 di » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< = 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.212 P:\ 15946- BASELLNE\hydrology \rational \baseline Ave 100 -yr hydrology.doc 16 ms 44 SOIL CLASSIFICATION IS "A" 40 COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA AREA(ACRES) - .20 SUBAREA RUNOFF(CFS) _ .56 EFFECTIVE AREA(ACRES) = 41.50 �Q AVERAGED Fm(INCH/HR) _ .309 r TOTAL AREA(ACRES) = 41.50 O•Z� / PEAK FLOW RATE(CFS) = 110.16 44 TC(MIN) = 17.24 ********************************************* * * ** * * * * *** * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 28.00 TO NODE 29.00 IS CODE = 3 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< ........ = 414 DEPTH OF FLOW IN 39.0 = 0 INCH PIPE IS 30.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 16.1 44 UPSTREAM NODE ELEVATION(FEET) = 1448.10 DOWNSTREAM NODE ELEVATION(FEET) = 1443.50 FLOW LENGTH(FEET) = 205.00 MANNING'S N = .013 w ESTIMATED PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1 44 PIPE - FLOW(CFS) = 110.16 TRAVEL TIME(MIN.) _ .21 TC(MIN.) = 17.45 mg ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 41 FLOW PROCESS FROM NODE 29.10 TO NODE 29.00 IS CODE = 8 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< 4 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.189 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .5820 44 SUBAREA AREA(ACRES) = 8.30 SUBAREA RUNOFF(CFS) = 19.47 EFFECTIVE AREA(ACRES) = 49.80 MO AVERAGED Fm(INCH /HR) = .354 l? ) TOTAL AREA(ACRES) = 49.80 g7 / PEAK FLOW RATE(CFS) = 127.04 Q �r TC(MIN) = 17.45 8J 7 or me ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** •+! FLOW PROCESS FROM NODE 29.20 TO NODE 29.00 IS CODE = 8 rrI » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< = 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.189 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA AREA(ACRES) _ .80 SUBAREA RUNOFF(CFS) = 2.23 EFFECTIVE AREA(ACRES) = 50.60 40 AVERAGED Fm(INCH/HR) = .350 29, Z.N TOTAL AREA(ACRES) - 50.60 Q� w PEAK FLOW RATE(CFS) = 129.27 TC(MIN) = 17.45 Mi ************** ******************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 29.00 TO NODE 30.00 IS CODE = 3 di »» >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< »» >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< DEPTH OF = FLOW IN 42.0 = INCH PIPE IS 33.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 15.9 dd UPSTREAM NODE ELEVATION(FEET) = 1443.50 DOWNSTREAM NODE ELEVATION(FEET) = 1430.30 FLOW LENGTH(FEET) = 665.00 MANNING'S N = .013 AO a.a P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 17 wit AA Ai AA ESTIMATED PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 129.27 TRAVEL TIME(MIN.) = .70 TC(MIN.) = 18.15 FLOW PROCESS FROM NODE 30.10 TO NODE 30.00 IS CODE = 8 AM »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« 11r/ ===_ ======== ==== ==== = === = ======== = 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.115 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 tor SUBAREA AREA(ACRES) = 8.40 SUBAREA RUNOFF(CFS) = 19.15 EFFECTIVE AREA(ACRES) = 59.00 voi AVERAGED Fm(INCH /HR) = .383 TOTAL AREA(ACRES) = 59.00 w1 PEAK FLOW RATE(CFS) = 145.04 � TC(MIN) = 18.15 X74 AO ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** AA FLOW PROCESS FROM NODE 30.20 TO NODE 30.00 IS CODE = 8 est » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< Am 100 YEAR a RAINFALL INTENSITY(INCH /HOUR) = 3.115 SOIL CLASSIFICATION IS "A" 40 COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA AREA(ACRES) = 4.40 SUBAREA RUNOFF(CFS) = 11.95 EFFECTIVE AREA(ACRES) = 63.40 AA AVERAGED Fm(INCH/HR) _ .363 , TOTAL AREA(ACRES) = 63.40 PEAK FLOW RATE(CFS) = 156.99 / mg TC(MIN) = 18.15 1111 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 30.00 TO NODE 31.00 IS CODE = 3 AA »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< mg » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « = : DEPTH OF = FLOW = IN 48.0 INCH PIPE IS 36.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 15.5 UPSTREAM NODE ELEVATION(FEET) - 1430.30 DOWNSTREAM NODE ELEVATION(FEET) = 1427.90 FLOW LENGTH(FEET) = 150.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 48.00 NUMBER OF PIPES = 1 MW PIPE - FLOW(CFS) = 156.99 TRAVEL TIME(MIN.) = .16 TC(MIN.) = 18.31 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 4i FLOW PROCESS FROM NODE 31.10 TO NODE 31.00 IS CODE = 8 ___ = = > = = DDITTIONN OF SUBAREA = TO = = MAINLINE PEAK = = = FLOW« < =_______________ 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.098 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 41 SUBAREA AREA(ACRES) _ .30 SUBAREA RUNOFF(CFS) _ .81 4, EFFECTIVE AREA(ACRES) = 63.70 AVERAGED Fm(INCH /HR) = .362 TOTAL AREA(ACRES) = 63.70 PEAK FLOW RATE(CFS) = 156.99 18.31 11.5119 TC(MIN) = 18.31 di ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** m4 P:\ 15946- BASELINEUrydrology \rational \baseline Ave 100 -yr hydrology.doc 18 mit eng 40 FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS CODE = 3 »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< ow » »>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< == : = == ' ____ ===== a= _-= == == a = = = == DEPTH OF FLOW IN 45.0 INCH PIPE IS 32.7 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 18.3 OM UPSTREAM NODE ELEVATION(FEET) = 1427.90 DOWNSTREAM NODE ELEVATION(FEET) = 1424.50 • MW FLOW LENGTH(FEET) = 140.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 45.00 NUMBER OF PIPES = 1 0M PIPE - FLOW(CFS) = 156.99 TRAVEL TIME(MIN.) _ .13 TC(MIN.) = 18.44 411 ********************************************* ** * * * * * * * * * * * * * ** * * * * * * * * * * * * ** wm FLOW PROCESS FROM NODE 32.10 TO NODE 32.00 IS CODE = 8 00 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< 4, =: = 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.085 SOIL CLASSIFICATION IS "A" eel COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) _ .0970 SUBAREA AREA(ACRES) _ .10 SUBAREA RUNOFF(CFS) = .27 EFFECTIVE AREA(ACRES) = 63.80 om AVERAGED Fm(INCH/HR) _ .362 TOTAL AREA(ACRES) = 63.80 O•,QG MO PEAK FLOW RATE(CFS) = 156.99 TC(MIN) = 18.44 41011 00 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 32.00 TO NODE 33.00 IS CODE = 3 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< DEPTH OF FLOW IN 45.0 INCH PIPE IS 35.9 INCHES OM PIPE -FLOW VELOCITY(FEET /SEC.) = 16.6 UPSTREAM NODE ELEVATION(FEET) = 1424.50 OW DOWNSTREAM NODE ELEVATION(FEET) = 1416.90 FLOW LENGTH(FEET) = 385.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = •45.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 156.99 TRAVEL TIME(MIN.) = .39 TC(MIN.) = 18'.83 ei FLOW PROCESS FROM NODE 33.10 TO NODE 33.00 IS CODE = 8 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< ======== 100 YEAR = RAINFALL INTENSITY(INCH /HOUR) = 3.047 4i SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 SUBAREA AREA(ACRES) = 8.90 SUBAREA RUNOFF(CFS) = 19.75 EFFECTIVE AREA(ACRES) = 72.70 di di AVERAGED Fm(INCH /HR) = .389 353 1 TOTAL AREA(ACRES) = 72.70 1 PEAK FLOW RATE(CFS) = 173.95 (6 90I TC(MIN) = 18.83 I � l � + 10 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 33.20 TO NODE 33.00 IS CODE = 8 AM » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« __________°________=___==______________°_____ ____________ °__________________ 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.047 SOIL CLASSIFICATION IS "A" um P:\ 15946- BASELINE \hydrology\rational\baseline Ave 100 -yr hydrology.doc 19 +rr 40 4. COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) _ .0970 40 SUBAREA AREA(ACRES) = 1.60 SUBAREA RUNOFF(CFS) = 4.25 ��, EFFECTIVE AREA(ACRES) = 74.30 AVERAGED Fm(INCH /HR) = .382 OR TOTAL AREA(ACRES) = 74.30 644. PEAK FLOW RATE(CFS) = 178.20 TC(MIN) = 18.83 OW FLOW PROCESS FROM NODE 33.00 TO NODE 34.00 IS CODE = 3 » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< ow » »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< 00 DEPTH OF FLOW IN 48.0 INCH PIPE IS 37.7 = = __ 7 INCHES __ PIPE -FLOW VELOCITY(FEET /SEC.) = 16.8 MAO UPSTREAM NODE ELEVATION(FEET) = 1416.90 DOWNSTREAM NODE ELEVATION(FEET) = 1406.30 • FLOW LENGTH(FEET) = 570.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 48.00 NUMBER OF PIPES = 1 w PIPE- FLOW(CFS) = 178.20 TRAVEL TIME(MIN.) _ .56 TC(MIN.) = 19.39 uoto ********************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ow FLOW PROCESS FROM NODE 34.10 TO NODE 34.00 IS CODE = 8 WO » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.994 Oft SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) _ .0970 SUBAREA AREA(ACRES) = 6.40 SUBAREA RUNOFF(CFS) = 16.68 % EFFECTIVE AREA(ACRES) = 80.70 MIS AVERAGED Fm(INCH /HR) = .360 TOTAL AREA(ACRES) = 80.70 • PEAK FLOW RATE(CFS) = 191.31 TC(MIN) _ 19.39 • ow ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** SW FLOW PROCESS FROM NODE 34.00 TO NODE 21.00 IS CODE = 3 s1 » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » » >USING COMPUTER- ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< _____________________________________________ _______________________________ DEPTH OF FLOW IN 36.0 INCH PIPE IS 28.9 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 31.5 OW UPSTREAM NODE ELEVATION(FEET) = 1406.30 DOWNSTREAM NODE ELEVATION(FEET) = 1396.80 al FLOW LENGTH(FEET) = 100.00 MANNING'S N _ .013 ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 191.31 TRAVEL TIME(MIN.) = .05 TC(MIN.) = 19.44 di ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 21.00 TO NODE 21.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< == = - - _ = = = = =_____________ __ _ _ _______ __ TOTAL NUMBER OF STREAMS CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 19.44 RAINFALL INTENSITY(INCH/HR) = 2.99 AVERAGED Fm(INCH/HR) = .36 4i EFFECTIVE STREAM AREA(ACRES) = 80.70 TOTAL STREAM AREA(ACRES) = 80.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 191.31 40 P: \15946- BASELINE \hydrology\rational\baseline Ave 100 -yr hydrology.doc 20 40 w 40 dd di RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. em ** PEAK FLOW RATE TABLE ** Q(CFS) Tc(MIN.) Fm(INCH /HR) Ae(ACRES) OW 1 838.83 19.08 .515 370.38 2 765.24 22.88 .516 386.19 w 3 717.12 25.74 .517 395.50 4 588.29 33.54 .515 397.49 • 5 834.75 19.44 .515 373.27 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 838.83 Tc(MIN.) = 19.077 00 EFFECTIVE AREA(ACRES) = 370.38 AVERAGED Fm(INCH /HR) = .52 TOTAL AREA(ACRES) = 398.00 .ad ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** • FLOW PROCESS FROM NODE 21.00 TO NODE 98.00 IS CODE = 3 00 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » »> USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< DEPTH OF FLOW IN 114.0 INCH PIPE IS 90.4 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 13.9 "m UPSTREAM NODE ELEVATION(FEET) = 1396.80 DOWNSTREAM NODE ELEVATION(FEET) = 1396.60 d' FLOW LENGTH(FEET) = 50.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 114.00 NUMBER OF PIPES = 1 Aft PIPE - FLOW(CFS) = 838.83 TRAVEL TIME(MIN.) _ .06 TC(MIN.) = 19.14 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** Me FLOW PROCESS FROM NODE 98.10 TO NODE 98.00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< 00 = = 100 = YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.017 SOIL CLASSIFICATION IS "A" Id COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA AREA(ACRES) _ .85 SUBAREA RUNOFF(CFS) = 2.23 EFFECTIVE AREA(ACRES) = 371.23 440 AVERAGED Fm(INCH /HR) = .515 TOTAL AREA(ACRES) = 398.85 . $‘C• OW PEAK FLOW RATE(CFS) = 838.83 TC(MIN) = 19.14 4' ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 98.00 TO NODE 35.00 IS CODE = 3 »» >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< _ _= = >» USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSU FLOW) == <____________ DEPTH OF FLOW IN 126.0 INCH PIPE IS 100.2 INCHES 04 PIPE -FLOW VELOCITY(FEET /SEC.) = 11.4 UPSTREAM NODE ELEVATION(FEET) = 1396.60 DOWNSTREAM NODE ELEVATION(FEET) = 1395.20 FLOW LENGTH(FEET) = 600.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 126.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 838.83 TRAVEL TIME(MIN.) = .88 TC(MIN.) = 20.02 41 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** di FLOW PROCESS FROM NODE 35.10 TO NODE 35.00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< 40 P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 21 mit 1 +0 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.937 411. SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA AREA(ACRES) = 4.60 SUBAREA RUNOFF(CFS) = 11.76 44 EFFECTIVE AREA(ACRES) = 375.83 7�i^� AVERAGED Fm(INCH/HR) - .509 7 1MW TOTAL AREA(ACRES) = 403.45 PEAK FLOW RATE(CFS) = 838.83 46 TC(MIN) = 20.02 FLOW PROCESS FROM NODE 35.00 TO NODE 36.00 IS CODE = 3 40 »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< 00 »» >USING COMPUTER - ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< wA DEPTH OF FLOW IN 126.0 INCH PIPE IS 102.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 11.2 1YId UPSTREAM NODE ELEVATION(FEET) = 1395.20 DOWNSTREAM NODE ELEVATION(FEET) = 1394.40 FLOW LENGTH(FEET) = 355.00 MANNING'S N = .013 in ESTIMATED PIPE DIAMETER(INCH) = 126.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 838.83 TRAVEL TIME(MIN.) _ .53 TC(MIN.) = 20.55 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 40 FLOW PROCESS FROM NODE 36.10 TO NODE 36.00 IS CODE = 8 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.891 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) _ .0970 44 SUBAREA AREA(ACRES) = 3.20 SUBAREA RUNOFF(CFS) = 8.05 EFFECTIVE AREA(ACRES) = 379.03 76# 40 AVERAGED Fm(INCH /HR) _ .506 TOTAL AREA(ACRES) = 406.65 PEAK FLOW RATE(CFS) = 838.83 TC(MIN) = 20.55 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 04 FLOW PROCESS FROM NODE 36.00 TO NODE 37.00 IS CODE = 3 04 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< »» >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< DEPTH OF FLOW IN 126.0 INCH PIPE IS 102.8 INCHES • PIPE -FLOW VELOCITY(FEET /SEC.) = 11.1 me UPSTREAM NODE ELEVATION(FEET) = 1394.40 DOWNSTREAM NODE ELEVATION(FEET) = 1393.90 • FLOW LENGTH(FEET) = 225.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 126.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 838.83 TRAVEL TIME(MIN.) = .34 TC(MIN.) = 20.89 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 37.00 TO NODE 37.00 IS CODE = 1 -- >>>»DESIGNATE INDEPENDENT - STREAM = FOR CONFLUENCE«<=< _--- __-= - = -a -- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 20.89 RAINFALL INTENSITY(INCH /HR) = 2.86 AVERAGED Fm(INCH/HR) = .51 EFFECTIVE STREAM AREA(ACRES) = 379.03 41 40 P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 22 04 10 TOTAL STREAM AREA(ACRES) = 406.65 PEAK FLOW RATE(CFS) AT CONFLUENCE = 838.83 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 38.00 TO NODE 39.00 IS CODE = 2 OW » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< DEVELOPMENT IS COMMERCIAL 110 TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 1000.00 UPSTREAM ELEVATION(FEET) = 1526.00 OR DOWNSTREAM ELEVATION(FEET) = 1516.00 �Q r di ELEVATION DIFFERENCE(FEET) = 10.00 I / TC(MIN.) _ .304 *[( 1000.00 ** 3.00)/( 10.00)] ** .20 = 12.102 a�tc 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.972 g• 0 0 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 40 SUBAREA RUNOFF(CFS) = 27.90 TOTAL AREA(ACRES) = 8.00 PEAK FLOW RATE(CFS) = 27.90 om ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 39.00 TO NODE 40.00 IS CODE = 6 w! » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA ««< 40 UPSTREAM ELEVATION(FEET) = 1516.00 DOWNSTREAM ELEVATION(FEET) = 1507.00 STREET LENGTH(FEET) = 750.00 CURB HEIGTH(INCHES) = 8. A STREET HALFWIDTH(FEET) = 40.00 MO DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 10 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 47.29 04 STREET FLOW MODEL RESULTS: NOTE: STREET FLOW EXCEEDS TOP OF CURB. OW THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. 04 STREET FLOW DEPTH(FEET) _ .77 HALFSTREET FLOOD WIDTH(FEET) = 30.80 L O i AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.89 PRODUCT OF DEPTH &VELOCITY = 3.78 /Z 44 STREET FLOW TRAVEL TIME(MIN.) = 2.56 TC(MIN.) = 14.66 *A 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.541 SOIL CLASSIFICATION IS "A" • COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) _ .0970 • 41 SUBAREA AREA(ACRES) = 12.50 SUBAREA RUNOFF(CFS) = 38.74 di EFFECTIVE AREA(ACRES) = 20.50 AVERAGED Fm(INCH /HR) _ .10 i TOTAL AREA(ACRES) = 20.50 PEAK FLOW RATE(CFS) = 63.53 END OF SUBAREA STREET FLOW HYDRAULICS: 10 DEPTH(FEET) _ .85 HALFSTREET FLOOD WIDTH(FEET) = 34.36 Ai FLOW VELOCITY(FEET /SEC.) = 5.30 DEPTH *VELOCITY = 4.48 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS.FROM NODE 40.20 TO NODE 40.00 IS CODE = 8 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 4, 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.541 di SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) _ .0970 SUBAREA AREA(ACRES) = 11.20 SUBAREA RUNOFF(CFS) = 34.71 Llv 10 fOe P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 23 ••u 11 EFFECTIVE AREA(ACRES) = 31.70 4i AVERAGED Fm(INCH/HR) = .097 TOTAL AREA(ACRES) = 31.70 PEAK FLOW RATE(CFS) = 98.24 mole TC(MIN) = 14.66 OW N. FLOW PROCESS FROM NODE 40.00 TO NODE 41.00 IS CODE = 3 00 »» >COMPUTE PIPE -FLOW TRAVEL TIME.THRU SUBAREA««< »»>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< ==.=====.,.= ..... == PR DEPTH OF FLOW IN 39 INCH PIPE IS 27.3 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 15.8 00 UPSTREAM NODE ELEVATION(FEET) = 1501.00 DOWNSTREAM NODE ELEVATION(FEET) = 1484.00 FLOW LENGTH(FEET) = 760.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 98.24 TRAVEL TIME(MIN.) = .80 TC(MIN.) = 15.46 44 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 40 FLOW PROCESS FROM NODE 41.10 TO NODE 41.00 IS CODE = 8 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< =: = 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.429 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) _ .0970 OR SUBAREA AREA(ACRES) = 12.00 SUBAREA RUNOFF(CFS) = 35.99 EFFECTIVE AREA(ACRES) = 43.70 1 AVERAGED Fm(INCH /HR) = .097 �. TOTAL AREA(ACRES) = 43.70 OR PEAK FLOW RATE(CFS) = 131.06 TC(MIN) = 15.46 40 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 41.20 TO NODE 41.00 IS CODE = 8 00 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< _ 100 YEAR RAINFALL == ==== INTENSITY (INCH /HOUR) = 3.429 SOIL CLASSIFICATION IS "A" yr/ RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .5820 SUBAREA AREA(ACRES) = 10.50 SUBAREA RUNOFF(CFS) = 26.91 EFFECTIVE AREA(ACRES) = 54.20 ANA AVERAGED Fm(INCH/HR) = .191 am TOTAL AREA(ACRES) = 54.20 Ata PEAK FLOW RATE(CFS) = 157.97 /n TC(MIN) = 15.46 f� ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 41.00 TO NODE 42.00 IS CODE = 3 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< di » »USING COMPUTER-ESTIMATED = PIPESIZE = (NON - PRESSURE- FLOW)= = =_ ____________ DEPTH OF FLOW IN 45.0 INCH PIPE IS 33.8 INCHES 44 PIPE -FLOW VELOCITY(FEET /SEC.) = 17.8 A UPSTREAM NODE ELEVATION(FEET) = 1484.00 DOWNSTREAM NODE ELEVATION(FEET) = 1462.00 FLOW LENGTH(FEET) = 965.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 45.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 157.97 1111 TRAVEL TIME(MIN.) = .90 TC(MIN.) = 16.36 P: \15946- BASELINE \hydrology\rational\baseline Ave 100 -yr hydrology.doc 24 mm 44 40 FLOW PROCESS FROM NODE 42.10 TO NODE 42.00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 4* _=_______________ _________ =_____ = =_____ = =_______ 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.314 so SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 wt SUBAREA AREA(ACRES) = 29.40 SUBAREA RUNOFF(CFS) = 72.30 EFFECTIVE AREA(ACRES) = 83.60 *0 AVERAGED Fm(INCH/HR) = .328 TOTAL AREA(ACRES) = 83.60 wA PEAK FLOW RATE(CFS) = 224.65 1�'� ►� y TC(MIN) = 16.36 40 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** aM FLOW PROCESS FROM NODE 42.00 TO NODE 43.00 IS CODE = 3 40 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » »>USING COMPUTER- ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< OR DEPTH OF FLOW IN 51.0 INCH PIPE IS 38.6 INCHES 100 PIPE -FLOW VELOCITY(FEET /SEC.) = 19.5 UPSTREAM NODE ELEVATION(FEET) = 1462.00 DOWNSTREAM NODE ELEVATION(FEET) = 1433.00 FLOW LENGTH(FEET) = 1250.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 51.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 224.65 TRAVEL TIME(MIN.) = 1.07 TC(MIN.) = 17.43 OR ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 43.10 TO NODE 43.00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.191 ewe SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 IN SUBAREA AREA(ACRES) = 37.00 SUBAREA RUNOFF(CFS) = 86.88 EFFECTIVE AREA(ACRES) = 120.60 AVERAGED Fm(INCH /HR) = .406 44 TOTAL AREA(ACRES) = 120.60 PEAK FLOW RATE(CFS) = 302.25 *0 TC(MIN) = 17.43 7(• ��...)) Q" ai FLOW PROCESS FROM NODE 43.00 TO NODE 44.00 IS CODE = 3 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< :1 » »>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE 'FLOW)««= -= ___ ============================ DEPTH OF FLOW IN 54.0 INCH PIPE IS 42.1 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 22.7 UPSTREAM NODE ELEVATION(FEET) = 1433.00 DOWNSTREAM NODE ELEVATION(FEET) = 1395.30 di FLOW LENGTH(FEET) = 1300.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 302.25 TRAVEL TIME(MIN.) _ .95 TC(MIN.) = 18.39 di ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 44.10 TO NODE 44.00 IS CODE = 8 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< = 100 YEAR RAINFALL = INTENSITY(INCH /HOUR) = 3.091 P:\ 15946- BASELLNE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 25 w di SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 SUBAREA AREA(ACRES) = 29.90 SUBAREA RUNOFF(CFS) = 67.51 EFFECTIVE AREA(ACRES) = 150.50 AVERAGED Fm(INCH/HR) _ .441 �J` % TOTAL AREA(ACRES) = 150.50 7 7 PEAK FLOW RATE(CFS) = 358.87 TC(MIN) = 18.39 JOM ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** MO FLOW PROCESS FROM NODE 44.20 TO NODE 44.00 IS CODE = 8 - » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< lilt 100 YEAR = RAINFALL = INTENSITY (INCH /HOUR) 3.091 SOIL CLASSIFICATION IS "A" 04 COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA AREA(ACRES) = 6.90 SUBAREA RUNOFF(CFS) = 18.59 MO EFFECTIVE AREA(ACRES) = 157.40 r 1,1 AVERAGED Fm(INCH/HR) _ .426 `� TOTAL AREA(ACRES) = 157.40 • • w� PR PEAK FLOW RATE(CFS) = 377.46 TC(MIN) = 18.39 FLOW PROCESS FROM NODE 44.00 TO NODE 37.00 IS CODE = 3 di » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««< » »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< di DEPTH OF FLOW IN 63.0 INCH PIPE IS 48.9 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 20.9 • UPSTREAM NODE ELEVATION(FEET) = 1395.30 DOWNSTREAM NODE ELEVATION(FEET) = 1393.90 FLOW LENGTH(FEET) = 70.00 MANNING'S N = .013 40 ESTIMATED PIPE DIAMETER(INCH) = 63.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 377.46 TRAVEL TIME(MIN.) _ .06 TC(MIN.) = 18.44 00y ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 37.00 TO NODE 37.00 IS CODE = 1 44 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< 04 > »» AND COMPUTE VARIOUS = CONFLUENCED STREAM VALUES << <<< = = = = _______ TOTAL NUMBER OF STREAMS = 2 • ' CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 18.44 ie RAINFALL INTENSITY(INCH /HR) = 3.09 • AVERAGED Fm(INCH/HR) _ .43 EFFECTIVE STREAM AREA(ACRES) = 157.40 TOTAL STREAM AREA(ACRES) = 157.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 377.46 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** Q(CFS) Tc(MIN.) Fm(INCH /HR) Ae(ACRES) 1 1184.78 20.89 .482 536.43 2 1176.49 21.25 .482 539.32 3 1072.27 24.70 .484 552.24 4 1000.37 27.61 .485 561.55 5 823.52 35.48 .484 563.54 6 1187.88 18.44 .480 492.07 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 1187.88 TC(MIN.) = 18.441 P: 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 26 di EFFECTIVE AREA(ACRES) = 492.07 AVERAGED Fm(INCH /HR) _ .48 VO TOTAL AREA(ACRES) = 564.05 ou 001 FLOW PROCESS FROM NODE 37.00 TO NODE 45.00 IS CODE = 3 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««< "^ » »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< A DEPTH . OF .. = FLOW = IN = 144 144.0 INCH PIPE IS 112.5 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 12.5 UPSTREAM NODE ELEVATION(FEET) = 1393.90 DOWNSTREAM NODE ELEVATION(FEET) = 1392.40 Ai FLOW LENGTH(FEET) = 630.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 144.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 1187.88 TRAVEL TIME(MIN.) = .84 TC(MIN.) = 19.28 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** m1 FLOW PROCESS FROM NODE 45.10 TO NODE 45.00 IS CODE = 8 » » >ADDITION OF SUBAREA TO MAINLINEPEAK FLOW = < = ==================.=====.--== 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.004 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 Ai SUBAREA AREA(ACRES) = 2.80 SUBAREA RUNOFF(CFS) = 7.33 EFFECTIVE AREA(ACRES) = 494.87 1 ) AVERAGED Fm(INCH /HR) _ .478 r TOTAL AREA(ACRES) = 566.85 PEAK FLOW RATE(CFS) = 1187.88 •fOle TC(MIN) = 19.28 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 45.00 TO NODE 46.00 IS CODE = 3 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««< » »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< DEPTH OF FLOW IN 144.0 INCH PIPE IS 117.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 12.1 UPSTREAM NODE ELEVATION(FEET) = 1392.40 • DOWNSTREAM NODE ELEVATION(FEET) = 1391.10 FLOW LENGTH(FEET) = 590.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 144.00 NUMBER OF PIPES = 1 OR PIPE - FLOW(CFS) = 1187.88 TRAVEL TIME(MIN.) = .81 TC(MIN.) = 20.09 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 411i FLOW PROCESS FROM NODE 46.10 TO NODE 46.00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< = 100 = YEAR = RAINFALL = INTENSITY (INCH /HOUR) = 2.930 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) _ .0970 SUBAREA AREA(ACRES) = 1.10 SUBAREA RUNOFF(CFS) = 2.80 EFFECTIVE AREA(ACRES) = 495.97 �G AVERAGED Fm(INCH/HR) = .477 , ! TOTAL AREA(ACRES) = 567.95 PEAK FLOW RATE(CFS) = 1187.88 /IAG TC(MIN) = 20.09 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 46.00 TO NODE 47.00 IS CODE = 3 P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 27 »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< »»> USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< DEPTH OF = FLOW IN = 138 0 INCH = PIPE IS 107.6 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 13.7 UPSTREAM NODE ELEVATION(FEET) = 1391.10 DOWNSTREAM NODE ELEVATION(FEET) = 1390.80 FLOW LENGTH(FEET) = 100.00 MANNING'S N = .013 ON ESTIMATED PIPE DIAMETER(INCH) = 138.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 1187.88 ON TRAVEL TIME(MIN.) _ .12 TC(MIN.) = 20.22 (W FLOW PROCESS FROM NODE 47.00 TO NODE 47.00 IS CODE = 1 »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 dl/ CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 20.22 OR RAINFALL INTENSITY(INCH /HR) = 2.92 AVERAGED Fm(INCH/HR) = .48 110 EFFECTIVE STREAM AREA(ACRES) = 495.97 TOTAL STREAM AREA(ACRES) = 567.95 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1187.88 URI IMP ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 48.00 TO NODE 49.00 IS CODE = 2 O »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< DEVELOPMENT IS COMMERCIAL TC - K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 411 INITIAL SUBAREA FLOW - LENGTH(FEET) = 800.00 UPSTREAM ELEVATION(FEET) = 1510.00 id DOWNSTREAM ELEVATION(FEET) = 1504.00 ELEVATION DIFFERENCE(FEET) = 6.00 um TC(MIN.) _ .304 *[( 800.00 ** 3.00)/( 6.00)] ** .20 - 11.725 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.048 iSfik OW SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA 39.83 n o TOTAL AREA(ACRES) = 11.20 PEAK FLOW RATE(CFS) = 39.83 Ow ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ON FLOW PROCESS FROM NODE 49.00 TO NODE 50.00 IS CODE = 6 O m » STREET FLOW TRAVEL TIME THRU SUBAREA««< UPSTREAM ELEVATION(FEET) = 1504.00 DOWNSTREAM ELEVATION(FEET) = 1487.00 :1 STREET LENGTH(FEET) = 765.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 25.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 ��^^/�� SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 7f/i :1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 56.29 /� ! w ** *STREET FLOW SPLITS OVER STREET - CROWN * ** FULL DEPTH(FEET) = .66 FLOOD WIDTH(FEET) = 25.00 FULL HALF- STREET VELOCITY(FEET /SEC.) = 5.87 SPLIT DEPTH(FEET) = .54 SPLIT FLOOD WIDTH(FEET) = 18.89 SPLIT VELOCITY(FEET /SEC.) = 4.92 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .66 HALFSTREET FLOOD WIDTH(FEET) = 25.00 P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 28 44 11; AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.87 PRODUCT OF DEPTH&VELOCITY = 3.86 STREET FLOW TRAVEL TIME(MIN.) = 2.17 TC(MIN.) = 13.90 O u 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.656 SOIL CLASSIFICATION IS "A" SCHOOL SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 SUBAREA AREA(ACRES) = 11.90 SUBAREA RUNOFF(CFS) = 32.92 EFFECTIVE AREA(ACRES) = 23.10 AVERAGED Fm(INCH /HR) _ .35 TOTAL AREA(ACRES) = 23.10 PEAK FLOW RATE(CFS) = 68.79 MO END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .66 RALFSTREET FLOOD WIDTH(FEET) = 25.00 FLOW VELOCITY(FEET /SEC.) = 5.87 DEPTH *VELOCITY = 3.86 AR AA ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 50.20 TO NODE 50.00 IS CODE = 8 o1 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.656 SOIL CLASSIFICATION IS "A" OM RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 SUBAREA AREA(ACRES) = 11.00 SUBAREA RUNOFF(CFS) = 30.43 EFFECTIVE AREA(ACRES) = 34.10 AVERAGED Fm(INCH /HR) = .423� 4119 TOTAL AREA(ACRES) - 34.10 PEAK FLOW RATE(CFS) = 99.22 //aid = 13.90 FLOW PROCESS FROM NODE 50.00 TO NODE 51.00 IS CODE = 3 MO » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< AR » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< MO DEPTH OF FLOW IN 39.0 INCH PIPE IS 26.8 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 16.3 UPSTREAM NODE ELEVATION(FEET) = 1481.00 PR DOWNSTREAM NODE ELEVATION(FEET) = 1458.00 FLOW LENGTH(FEET) = 960.00 MANNING'S N = .013 Ad ESTIMATED PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 99.22 AM TRAVEL TIME(MIN.) = .98 TC(MIN.) = 14.88 MO ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 51.10 TO NODE 51.00 IS CODE = 8 Om »» >ADDITION OF SUBAREA TO MAINLINE = PEAK =FLOW<< ==< = =a = = = 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.509 SOIL CLASSIFICATION IS "A" SCHOOL SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 SUBAREA AREA(ACRES) = 14.90 SUBAREA RUNOFF(CFS) = 39.25 EFFECTIVE AREA(ACRES) = 49.00 AVERAGED Fm(INCH /HR) = .471 61, TOTAL AREA(ACRES) = 49.00 PEAK FLOW RATE(CFS) = 133.98 ✓�� TC(MIN) = 14.88 /7 :1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 51.20 TO NODE 51.00 IS CODE = 8 :1 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«< < = a :=== =a = = == ====.======.============.========================= 100 YEAR == RAINFALL INTENSITY(INCH /HOUR) = 3.509 SOIL CLASSIFICATION IS "A" RESIDENTIAL - > 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 29 um SUBAREA AREA(ACRES) = 15.00 SUBAREA RUNOFF(CFS) = 39.52 EFFECTIVE AREA(ACRES) = 64.00 AVERAGED = _ .497 71 TOTAL TOTAL AR AREA(ACRES) A(ACRES) = 64.00 id P EAK FLOW RATE(CFS) = 173.49 id TC(MIN) 14.88 FLOW PROCESS FROM NODE 51.00 TO NODE 52.00 IS CODE = 3 OM » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « « < UM »» >USING COMPUTER-ESTIMATED - PIPESIZE - (NON- PRESSURE - FLOW) = =__ ____________ Mi DEPTH OF FLOW IN 48.0 INCH PIPE IS 34.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 18.2 UPSTREAM NODE ELEVATION(FEET) = 1458.00 OM DOWNSTREAM NODE ELEVATION(FEET) = 1430.00 FLOW LENGTH(FEET) = 1250.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 48.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 173.49 - TRAVEL TIME(MIN.) = 1.14 TC(MIN.) = 16.02 MN ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 52.10 TO NODE 52.00 IS CODE = 8 1 : _ = = == = ADDITION OF = SUBAREA - TO MAINLINE == PEAK = FLOW = = < = <_______________________ 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.357 um SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 • SUBAREA AREA(ACRES) = 37.80 SUBAREA RUNOFF(CFS) = 94.39 EFFECTIVE AREA(ACRES) = 101.80 AVERAGED Fm(INCH /HR) = .529 4M TOTAL AREA(ACRES) = 101.80 PEAK FLOW RATE(CFS) = 259.10 4I TC(MIN) = 16.02 1611 om ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** Mi FLOW PROCESS FROM NODE 52.00 TO NODE 53.00 IS CODE = 3 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< pm »» >USING COMPUTER - ESTIMATED - PIPESIZE (NON - PRESSURE FLOW) « DEPTH OF FLOW IN 51.0 INCH PIPE IS 39.4 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 22.0 PM UPSTREAM NODE ELEVATION(FEET) = 1430.00 DOWNSTREAM NODE ELEVATION(FEET) = 1391.80 FLOW LENGTH(FEET) = 1300.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 51.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 259.10 :1 TRAVEL TIME(MIN.) = .98 TC(MIN.) = 17.01 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 53.10 TO NODE 53.00 IS CODE = 8 :1 » »> ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================= 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.239 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 SUBAREA AREA(ACRES) = 40.30 SUBAREA RUNOFF(CFS) = 96.36 EFFECTIVE AREA(ACRES) = 142.10 AVERAGED Fm(INCH /HR) = .544 TOTAL AREA(ACRES) = 142.10 453;, PEAK FLOW RATE(CFS) = 344.66 TC(MIN) = 17.01 �y03 P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 30 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 53.00 TO NODE 47.00 IS CODE = 3 Oo » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< DEPTH OF FLOW IN 72.0 INCH PIPE IS 55.5 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 14.7 UPSTREAM NODE ELEVATION(FEET) = 1391.80 DOWNSTREAM NODE ELEVATION(FEET) = 1390.80 FLOW LENGTH(FEET) = 120.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 72.00 NUMBER OF PIPES = 1 1 PIPE - FLOW(CFS) = 344.66 TRAVEL TIME(MIN.) S .14 TC(MIN.) = 17.14 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** di FLOW PROCESS FROM NODE 47.00 TO NODE 47.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< PR TOTAL NUMBER OF STREAMS = 2 OW CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 17.14 OR RAINFALL INTENSITY(INCH /HR) = 3.22 AVERAGED Fm(INCH /HR) _ .54 W EFFECTIVE STREAM AREA(ACRES) = 142.10 TOTAL STREAM AREA(ACRES) = 142.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 344.66 PR RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. OR ** PEAK FLOW RATE TABLE ** Q(CFS) Tc(MIN.) Fm(INCH /HR) Ae(ACRES) 1 1493.47 20.22 .492 638.07 2 1465.50 22.66 .493 682.43 3 1453.86 23.03 .493 685.32 4 1321.51 26.51 .494 • 698.24 5 1230.09 29.45 .495 707.55 MO 6 1013.09 37.43 .493 709.54 7 1477.17 17.14 .494 562.65 om COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 1493.47 Tc(MIN.) = 20.216 EFFECTIVE AREA(ACRES) = 638.07 AVERAGED Fm(INCH /HR) = .49 wA TOTAL AREA(ACRES) = 710.05 ******.*************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 47.00 TO NODE 54.00 IS CODE = 3 441 »»> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< »» >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< DEPTH OF FLOW IN 138.0 INCH PIPE IS 107.5 INCHES :1 PIPE -FLOW VELOCITY(FEET /SEC.) = 17.2 UPSTREAM NODE ELEVATION(FEET) = 1390.80 DOWNSTREAM NODE ELEVATION(FEET) = 1387.00 FLOW LENGTH(FEET) = 800.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 138.00 NUMBER OF PIPES = 1 :1 PIPE - FLOW(CFS) = 1493.47 TRAVEL TIME(MIN.) = .78 TC(MIN.) = 20.99 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 54.10 TO NODE 54.00 IS CODE = 8 »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< :1 P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100-yr hydrology.doc 31 ir�i oin di 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.854 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) _ .0970 � SUBAREA AREA(ACRES) = 3.10 SUBAREA RUNOFF(CFS) = 7.69 EFFECTIVE AREA(ACRES) = 641.17 W AVERAGED Fm(INCH/HR) _ .490 j TOTAL AREA(ACRES) = 713.15 OR PEAK FLOW RATE(CFS) = 1493.47 = �� TC(MIN) = 20.99 7• WO eem FLOW PROCESS FROM NODE 54.00 TO NODE 55.00 IS CODE = 3 »» >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< um _______________ DEPTH OF FLOW IN 138.0 INCH PIPE IS 105.6 INCHES W PIPE -FLOW VELOCITY(FEET /SEC.) = 17.5 UPSTREAM NODE ELEVATION(FEET) = 1387.00 DOWNSTREAM NODE ELEVATION(FEET) = 1384.90 p FLOW LENGTH(FEET) = 425.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 138.00 NUMBER OF PIPES = 1 Mr PIPE- FLOW(CFS) = 1493.47 TRAVEL TIME(MIN.) = .40 TC(MIN.) = 21.40 up FLOW PROCESS FROM NODE 55.10 TO NODE 55.00 IS CODE = 8 on » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< = == RAINFALL INTENSITY(INCH/HOUR) 100 YEAR 2.822 SOIL CLASSIFICATION IS "A" um COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) _ .0970 SUBAREA AREA(ACRES) _ .80 SUBAREA RUNOFF(CFS) = 1.96 M11 EFFECTIVE AREA(ACRES) = 641.97 AVERAGED Fm(INCH/HR) = .490 �J� TOTAL AREA(ACRES) = 713.95 gm PEAK FLOW RATE(CFS) = 1493.47 O TC(MIN) = 21.40 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 55.00 TO NODE 56.00 IS CODE = 3 »» >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««< » »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< om DEPTH OF FLOW IN 114.0 INCH PIPE IS 86.4 INCHES or PIPE -FLOW VELOCITY(FEET /SEC.) = 25.9 UPSTREAM NODE ELEVATION(FEET) = 1384.90 MR DOWNSTREAM NODE ELEVATION(FEET) = 1383.50 FLOW LENGTH(FEET) = 100.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 114.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 1493.47 TRAVEL TIME(MIN.) = .06 TC(MIN.) = 21.46 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 56.00 TO NODE 56.00 IS CODE = 1 » > >> DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«« s - TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 21.46 RAINFALL INTENSITY(INCH /HR) = 2.82 AVERAGED Fm(INCH /HR) _ .49 EFFECTIVE STREAM AREA(ACRES) = 641.97 P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100-yr hydrology.doc 32 MR TOTAL STREAM AREA(ACRES) = 713.95 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1493.47 - ********************************************* * * * * * ** * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 57.00 TO NODE 58.00 IS CODE = 2 »» >RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< DEVELOPMENT IS COMMERCIAL MO TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 1000.00 UPSTREAM ELEVATION(FEET) = 1526.00 DOWNSTREAM ELEVATION(FEET) = 1512.00 ELEVATION DIFFERENCE(FEET) = 14.00 Mi TC(MIN.) _ .304 *[( 1000.00 ** 3.00)/( 14.00)] ** .20 = 11.315 d �� 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.136 77 SOIL CLASSIFICATION IS "A" Pitt COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 �J • SUBAREA RUNOFF(CFS) = 29.44 TOTAL AREA(ACRES) = 8.10 PEAK FLOW RATE(CFS) = 29.44 mom ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** MW FLOW PROCESS FROM NODE 58.00 TO NODE 59.00 IS CODE = 6 IR »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« = d = UPSTREAM ELEVATION(FEET) = 1512.00 DOWNSTREAM ELEVATION(FEET) = 1508.00 STREET LENGTH(FEET) = 400.00 CURB HEIGTH(INCHES) = 8. em STREET HALFWIDTH(FEET) = 40.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 OW INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 MM SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 MO * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 39.90 . STREET FLOW MODEL RESULTS: 47 mm STREET FLOW DEPTH(FEET) = .61 HALFSTREET FLOOD WIDTH(FEET) = 22.48 6• AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.80 PRODUCT OF DEPTH &VELOCITY = 2.31 mm STREET FLOW TRAVEL TIME(MIN.) = 1.75 TC(MIN.) = 13.07 • 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.793 SOIL CLASSIFICATION IS "A" wA COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA AREA(ACRES) = 6.30 SUBAREA RUNOFF(CFS) = 20.96 EFFECTIVE AREA(ACRES) = 14.40 AVERAGED Fm(INCH /HR) = .10 TOTAL AREA(ACRES) = 14.40 PEAK FLOW RATE(CFS) = 47.90 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .64 HALFSTREET FLOOD WIDTH(FEET) = 24.27 di FLOW VELOCITY(FEET /SEC.) = 3.94 DEPTH *VELOCITY = 2.54 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 59.00 TO NODE 60.00 IS CODE = 3 »» >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««< » »> USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< 44112 = DEPTH = OF FLOW IN 30.0 INCH PIPE IS 20.8 INCHES =======-===== _ - -- PIPE -FLOW VELOCITY(FEET /SEC.) = 13.2 UPSTREAM NODE ELEVATION(FEET) = 1502.00 DOWNSTREAM NODE ELEVATION(FEET) = 1476.00 FLOW LENGTH(FEET) = 1180.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 47.90 TRAVEL TIME(MIN.) = 1.49 TC(MIN.) = 14.56 :1 P:\ 15946- BASELWE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 33 4 4 FLOW PROCESS FROM NODE 60.10 TO NODE 60.00 IS CODE _ 8 OP __> >>» ADDITION = OF = N SUBAREA TO MAINLINE FLOW«« = =________ ®____ 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.555 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA AREA(ACRES) = 5.80 SUBAREA RUNOFF(CFS) = 18.05 EFFECTIVE AREA(ACRES) = 20.20 (00. AVERAGED Fm(INCH/HR) _ .097 PP TOTAL AREA(ACRES) = 20.20 45!$ ill PEAK FLOW RATE(CFS) = 62.86 TC(MIN) = 14.56 yew FLOW PROCESS FROM NODE 60.20 TO NODE 60.00 IS CODE = 8 IR - = >>> =ADDI OF SUBAREA = TO = MAINLINE . PEAK = FLOW = ==a_________________ _ =a = == 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.555 SOIL CLASSIFICATION IS "A" SCHOOL SUBAREA LOSS RATE, Fm(INCH/HR) = .5820 OR SUBAREA AREA(ACRES) = 12.50 SUBAREA RUNOFF(CFS) = 33.44 EFFECTIVE AREA(ACRES) = 32.70 AVERAGED Fm(INCH /HR) _ .282 09. TOTAL AREA(ACRES) = 32.70 PEAK FLOW RATE(CFS) = 96.30 2•C' TC(MIN) = 14.56 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 60.00 TO NODE 61.00 IS CODE = 3 Pi »» >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< DEPTH OF = FLOW = IN s = 36.0 INCH PIPE IS 29.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 15.8 UPSTREAM NODE ELEVATION(FEET) = 1476.00 DOWNSTREAM NODE ELEVATION(FEET) = 1453.00 om FLOW LENGTH(FEET) = 960.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 96.30 TRAVEL TIME(MIN.) = 1.01 TC(MIN.) = 15.58 wm ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 61.10 TO NODE 61.00 IS CODE = 8 » »> ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.414 SOIL CLASSIFICATION IS "A" SCHOOL SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 SUBAREA AREA(ACRES) = 15.70 SUBAREA RUNOFF(CFS) = 40.02 EFFECTIVE AREA(ACRES) = 48.40 AVERAGED Fm(INCH/HR) _ .380 bi • :1 TOTAL AREA(ACRES) = 48.40 ■74e PEAK FLOW RATE(CFS) = 132.18 TC(MIN) = 15.58 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 61.00 TO NODE 62.00 IS CODE = 3 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 34 » »> USING COMPUTER - ESTIMATED -PI PESIZE (NON- PRESSURE - FLOW)= = = = :___________ ============= DEPTH OF FLOW S IN 42.0 INCH PIPE IS 31.9 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 16.9 UPSTREAM NODE ELEVATION(FEET) = 1453.00 DOWNSTREAM NODE ELEVATION(FEET) = 1425.00 FLOW LENGTH(FEET),= 1250.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1 011 PIPE - FLOW(CFS) = 132.18 TRAVEL TIME(MIN.) = 1.24 TC(MIN.) = 16.81 PC FLOW PROCESS FROM NODE 62.10 TO NODE 62.00 IS CODE = 8 00 »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< Pm ========= === 100 YEAR RAINFALL INTENSITY(INCH /HOUR) - 3.261 SOIL CLASSIFICATION IS "A" WO RESIDENTIAL - > 3 - DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 SUBAREA AREA(ACRES) = 28.70 • SUBAREA RUNOFF(CFS) = 69.20 EFFECTIVE AREA(ACRES) = 77.10 Po AVERAGED Fm(INCH /HR) _ .455 TOTAL AREA(ACRES) = 77.10 w' PEAK FLOW RATE(CFS) = 194.72 ��QQ TC(MIN) = 16.81 �'r7.7 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 62.00 TO NODE 63.00 IS CODE = 3 MO » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« « < __ = = == =USING= COMPUTER - ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««= =______ DEPTH OF FLOW IN 45.0 INCH PIPE IS 35.6 INCHES :1 PIPE -FLOW VELOCITY(FEET /SEC.) = 20.8 UPSTREAM NODE ELEVATION(FEET) = 1425.00 DOWNSTREAM NODE ELEVATION(FEET) = 1385.00 FLOW LENGTH(FEET) = 1300.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 45.00 NUMBER OF PIPES = 1 SONI PIPE - FLOW(CFS) = 194.72 TRAVEL TIME(MIN.) = 1.04 TC(MIN.) = 17.86 OP PO ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 63.10 TO NODE 63.00 IS CODE = 8 WO »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«««« == YEAR RAINFALL INTENSITY(INCH/HOUR) = PM 3.145 100 SOIL CLASSIFICATION IS "A" OP RESIDENTIAL - > 3 - DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH/HR) _ .5820 SUBAREA AREA(ACRES) = 31.80 SUBAREA RUNOFF(CFS) = 73.36 EFFECTIVE AREA(ACRES) = 108.90 AVERAGED Fm(INCH/HR) = .492 TOTAL AREA(ACRES) = 108.90 6 ' PEAK FLOW RATE(CFS) = 260.06 TC(MIN) = 17.86 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 63.00 TO NODE 56.00 IS CODE = 3 :1 »» >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««« » »> USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW)<«<«« DEPTH OF FLOW IN 54.0 INCH PIPE IS 42.1 INCHES 714 PIPE -FLOW VELOCITY(FEET /SEC.) = 19.5 UPSTREAM NODE ELEVATION(FEET) = 1385.00 DOWNSTREAM NODE ELEVATION(FEET) = 1383.50 FLOW LENGTH(FEET) = 70.00 MANNING'S N = .013 P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 35 MI ESTIMATED PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 260.06 TRAVEL TIME(MIN.) _ .06 TC(MIN..) = 17.91 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 56.00 TO NODE 56.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< um »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES ««< MO ===== 2 ======= a======= _______________________________ TOTAL NUMBER OF STREAMS CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: Ow TIME OF CONCENTRATION(MIN.) = 17.91 RAINFALL INTENSITY(INCH /HR) = 3.14 M AVERAGED Fm(INCH /HR) _ .49 EFFECTIVE STREAM AREA(ACRES) = 108.90 PR TOTAL STREAM AREA(ACRES) = 108.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 260.06 Mi RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO PR CONFLUENCE FORMULA USED FOR 2 STREAMS. 4. ** PEAK FLOW RATE TABLE ** Q(CFS) Tc(MIN.) Fm(INCH /HR) Ae(ACRES) 1 1732.45 18.39 .492 675.45 2 1721.86 21.46 .490 750.87 MO 3 1676.54 23.91 .491 795.23 4 1662.54 24.27 .491 798.12 5 1510.14 27.79 .492 811.04 OM 6 1404.69 30.77 .492 820.35 7 1158.73 38.79 .491 822.34 W 8 1726.22 17.91 .492 660.91 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 1732.45 Tc(MIN.) = 18.387 641 EFFECTIVE AREA(ACRES) = 675.45 AVERAGED Fm(INCH /HR) _ .49 TOTAL AREA(ACRES) = 822.85 PO ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** hi FLOW PROCESS FROM NODE 56.00 TO NODE 64.00 IS CODE = 3 »»> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< MI DEPTH OF FLOW IN 144.0 INCH PIPE IS 115.8 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 8.9 UPSTREAM NODE ELEVATION(FEET) = 1383.50 DOWNSTREAM NODE ELEVATION(FEET) = 1382.70 MO FLOW LENGTH(FEET) = 670.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 144.00 NUMBER OF PIPES = 2 PIPE - FLOW(CFS) = 1732.45 TRAVEL TIME(MIN.) = 1.26 TC(MIN.) = 19.64 ***********************************.********** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 64.10 TO NODE 64.00 IS CODE = 8 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.970 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) _ .0970 SUBAREA AREA(ACRES) = 5.50 SUBAREA RUNOFF(CFS) = 14.22 6414 EFFECTIVE AREA(ACRES) = 680.95 • AVERAGED Fm(INCH/HR) = .488 1' TOTAL AREA(ACRES) = 828.35 7 PEAK FLOW RATE(CFS) = 1732.45 TC(MIN) = 19.64 P:\ 15946- BASELINE\hydrology\rational \baseline Ave 100 -yr hydrology.doc 36 • 111 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 64.00 TO NODE 65.00 IS CODE = 3 » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< WI » »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< NR = DEPTH OF FLOW IN 126.0 INCH PIPE IS 101.5 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 11.6 UPSTREAM NODE ELEVATION(FEET) = 1382.70 DOWNSTREAM NODE ELEVATION(FEET) = 1381.00 FLOW LENGTH(FEET) = 700.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 126.00 NUMBER OF PIPES = 2 WO PIPE - FLOW(CFS) - 1732.45 TRAVEL TIME(MIN.) = 1.01 TC(MIN.) = 20.65 mm ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** MI FLOW PROCESS FROM NODE 65.10 TO NODE 65.00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « <« 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.883 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 ON SUBAREA AREA(ACRES) = 6.40 SUBAREA RUNOFF(CFS) = 16.04 EFFECTIVE AREA(ACRES) = 687.35 66; MI AVERAGED Fm(INCH/HR) = .485 1 TOTAL AREA(ACRES) = 834.75 .�� PEAK FLOW RATE(CFS) = 1732.45 6 TC(MIN) = 20.65 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** PM FLOW PROCESS FROM NODE 65.00 TO NODE 65.00 IS CODE = 1 ( » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< = TOTAL NUMBER = OF STREAMS = 2 UN CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) =. 20.65 RAINFALL INTENSITY(INCH/HR) = 2.88 AVERAGED Fm(INCH /HR) = .48 oh EFFECTIVE STREAM AREA(ACRES) = 687.35 TOTAL STREAM AREA(ACRES) = 834.75 1O PEAK FLOW RATE(CFS) AT CONFLUENCE = 1732.45 MM *********** ********************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 65.00 TO NODE 65.00 IS CODE = 7 » » >USER SPECIFIED HYDROLOGY INFORMATION AT NODE ««< = USER - SPECIFIED = VALUES ARE AS FOLLOWS: TC(MIN.) = 16.38 RAINFALL INTENSITY(INCH /HR) = 3.31 EFFECTIVE AREA(ACRES) = 145.62 TOTAL AREA(ACRES) = 155.51 PEAK FLOW RATE(CFS) = 393.67 AVERAGED LOSS RATE, Fm(INCH /HR) = .370 NOTE: EFFECTIVE AREA IS USED AS THE TOTAL CONTRIBUTING AREA FOR ALL CONFLUENCE ANALYSES. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 65.00 TO NODE 65.00 IS CODE = 1 IR »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »» >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< = = =_____ _____________________ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: Mi P: 115946 - BASELINE \hydrology\rational\baseline Ave 100 -yr hydrology.doc 37 44 si mg :i TIME OF CONCENTRATION(MIN.) = 16.38 RAINFALL INTENSITY(INCH /HR) = 3.31 AVERAGED Fm(INCH /HR) _ .37 EFFECTIVE STREAM AREA(ACRES) = 145.62 TOTAL STREAM AREA(ACRES) = 155.51 44 PEAK FLOW RATE(CFS) AT CONFLUENCE = 393.67 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO 44 CONFLUENCE FORMULA USED FOR 2 STREAMS. ii ** PEAK FLOW RATE TABLE ** Q(CFS) Tc(MIN.) Fm(INCH /HR) Ae(ACRES) 1 2067.76 20.18 .464 818.43 me 2 2068.61 20.65 .465 832.97 10 3 2027.22 23.72 .466 908.39 4 1961.58 26.17 .468 952.75 5 1944.78 26.54 .468 955.64 me 6 1768.11 30.12 .469 968.56 7 1645.69 33.12 .469 977.87 Urr 8 1364.43 41.10 .469 979.86 9 2018.85 16.38 .460 691.78 imm COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: 0 PEAK FLOW RATE(CFS) = 2068.61 Tc(MIN.) = 20.650 EFFECTIVE AREA(ACRES) = 832.97 AVERAGED Fm(INCH /HR) _ .46 TOTAL AREA(ACRES) = 990.26 END OF STUDY SUMMARY: TOTAL AREA(ACRES) 990.26 TC(MIN.) = 20.65 EFFECTIVE AREA(ACRES) = 832.97 AVERAGED Fm(INCH /HR)= .46 PEAK FLOW RATE(CFS) = 2068.61 * ** PEAK FLOW RATE TABLE * ** Q(CFS) Tc(MIN.) Fm(INCH /HR) Ae(ACRES) 1 2067.76 20.18 .464 818.43 2 2068.61 20.65 .465 832.97 mi 3 2027.22 23.72 .466 908.39 ii 4 1961.58 26.17 .468 952.75 5 1944.78 26.54 .468 955.64 6 1768.11 30.12 .469 968.56 7 1645.69 33.12 .469 977.87 8 1364.43 41.10 .469 979.86 ='9 = == ==2018 =85= == = =- = =38 === = =a = == 460 = = = = == 691_78 =:________:_____:____ 40! = END = OF RATIONAL METHOD ANALYSIS ii RR Od i di dd 44 dd f di air id P: \15946- BASELINE \hydrology\rational\baselineAve 100-yr hydrology.doc 38 .sm to di ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** F L O O D ROUTING A N A L Y S I S !O USING ORANGE /SAN BERNARDINO COUNTY UNIT - HYDROGRAPH (1986 MANUAL) UNIT - HYDROGRAPH GENERATOR VERSION Copyright 1983,1986 Advanced Engineering Software (aes) Ver. 2.7C Release Date: 6/07/87 Serial 1 100948 MO Especially prepared for: BSI CONSULTANTS, INC. O0 FILE NAME: BASELINE.DAT TIME/DATE OF STUDY: 17:25 11/14/2002 low FLOW PROCESS FROM NODE 47.00 TO NODE 47.00 IS CODE = 1 p/f //i j L1f94.- 0 ____________________________ _________________ � i/P » »»UNIT- HYDROGRAPH ANALYSIS« «< (UNIT - HYDROGRAPH ADDED TO STREAM 13) *USER ENTERED "LAG" TIME _ .270 HOURS mo UNIT HYDROGRAPH TIME UNIT = 5.000 MINUTES 4, UNIT INTERVAL PERCENTAGE OF LAG -TIME = 30.910 00 WATERSHED AREA - 710.050 ACRES BASEFLOW = .000 CFS /SQUARE -MILE VALLEY(DEVELOPED) S -GRAPH SELECTED MO MAXIMUM WATERSHED LOSS RATE(INCH /HOUR) _ .496 LOW LOSS FRACTION = .893 * HYDROGRAPH MODEL 11 SPECIFIED* SPECIFIED PEAK 5- MINUTES RAINFALL(INCH)= .56 SPECIFIED PEAK 30- MINUTES RAINFALL(INCH) = 1.17 f SPECIFIED PEAK 1 -HOUR RAINFALL(INCH) = 1.55 SPECIFIED PEAK 3 -HOUR RAINFALL(INCH) = 2.48 SPECIFIED PEAK 6 -HOUR RAINFALL(INCH) = 3.88 SPECIFIED PEAK 24 -HOUR RAINFALL(INCH)= 9.40 00 PRECIPITATION DEPTH -AREA REDUCTION FACTORS: 5- MINUTE FACTOR = .968 mo 30- MINUTE FACTOR = .968 1 -HOUR FACTOR = .968 40 3 -HOUR FACTOR = .995 6 -HOUR FACTOR = .998 24 -HOUR FACTOR = .999 RUNOFF HYDROGRAPH LISTING LIMITS: MODEL TIME(HOURS) FOR BEGINNING OF RESULTS = .00 MODEL TIME(HOURS) FOR END OF RESULTS = 36.00 40 ____________ = == = = = = = =- ___ == = = == = = == = = = = =_ UNIT HYDROGRAPH DETERMINATION INTERVAL "S" GRAPH UNIT HYDROGRAPH NUMBER MEAN VALUES ORDINATES(CFS) 1 1.948 167.309 2 11.644 832.614 3 30.727 1638.664 4 56.343 2199.673 77.223 1793.010 5 88.907 1003.351 A PM5946- BASELINE \hydrology \unithyd\BASELINEd)DIIT HYDRO.bct 1 10 04 7 94.802 506.201 0 8 97.605 240.715 9 98.520 78.546 10 99.100 49.768 ow 11 99.640 46.391 12 99.910 23.196 13 100.000 7.731 10 AO Ai 1, 40 RA AA war 4 3 10 04 10 00 10 4V 41 40 P:\ 15946 - BASELINE \hydrology \unithyd\BASELINE -UNIT HYDRO.bxt 2 fir 0 sel Ail ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** UNIT UNIT UNIT EFFECTIVE !MO PERIOD RAINFALL SOIL -LOSS RAINFALL AO (NUMBER) (INCHES) (INCHES) (INCHES) 1 .0209 .0186 .0022 1 2 .0209 .0187 .0022 3 .0210 .0187 .0022 101 4 .0210 .0187 .0022 5 .0210 .0188 .0022 6 .0211 .0188 .0023 Oillli 7 .0211 .0189 .0023 8 .0211 .0189 .0023 illit 9 .0212 .0189 .0023 10 .0212 .0189 .0023 me 11 .0213 .0190 .0023 12 .0213 .0190 .0023 13 .0214 .0191 .0023 14 .0214 .0191 .0023 15 .0214 .0192 .0023 16 .0215 .0192 .0023 17 .0215 .0192 .0023 lig 18 .0216 .0193 .0023 19 .0216 .0193 .0023 A 20 .0217 .0193 .0023 21 .0217 .0194 .0023 al 22 .0217 .0194 .0023 23 .0218 .0195 .0023 24 .0218 .0195 .0023 who 25 .0219 .0196 .0023 26 .0219 .0196 .0023 MI 27 .0220 .0196 .0024 28 .0220 .0197 .0024 Pi 29 .0221 .0197 .0024 30 .0221 .0198 .0024 lei 31 .0222 .0198 .0024 32 .0222 .0198 .0024 33 .0223 .0199 .0024 ON 34 .0223 .0199 .0024 35 .0224 .0200 .0024 iii 36 .0224 .0200 .0024 37 .0225 .0201 .0024 38 .0225 .0201 .0024 39 .0226 .0202 .0024 40 .0226 .0202 .0024 41 .0227 .0203 .0024 42 .0227 .0203 .0024 ter' 43 .0228 .0204 .0024 4 44 .0229 .0204 .0024 45 .0229 .0205 .0025 46 .0230 .0205 .0025 47 .0230 .0206 .0025 48 .0231 .0206 .0025 49 .0232 .0207 .0025 50 .0232 .0207 .0025 51 .0233 .0208 .0025 41 4 52 .0233 .0208 .0025 04 53 .0234 .0209 .0025 54 .0234 .0209 .0025 55 .0235 .0210 .0025 56 .0236 .0210 .0025 57 .0236 .0211 .0025 58 .0237 .0211 .0025 59 .0238 .0212 .0025 60 .0238 .0213 .0025 61 .0239 .0213 .0026 4 62 .0239 .0214 .0026 63 .0240 .0215 .0026 64 .0241 .0215 .0026 65 .0242 .0216 .0026 ill Mk P:\ 15946- BASELINE \hydrology \unithyd\BASELINE -UNIT HYDRO.txt 3 all Ili 4 66 .0242 .0216 .0026 67 .0243 .0217 .0026 68 .0243 .0217 .0026 MI 69 .0244 .0218 .0026 70 0295 .0219 .0026 71 .0246 .0220 .0026 72 .0246 .0220 .0026 73 .0247 .0221 .0026 74 .0248 .0221 .0027 0 75 .0249 .0222 .0027 76 .0249 .0223 .0027 +1d 77 .0250 .0224 .0027 78 .0251 .0224 .0027 * 79 .0252 .0225 .0027 80 .0252 .0225 .0027 81 .0254 .0226 .0027 wnt 82 .0254 .0227 .0027 83 .0255 .0228 .0027 84 .0256 .0228 .0027 85 .0257 .0229 .0027 86 .0257 .0230 .0028 87 .0259 .0231 .0028 88 .0259 .0231 .0028 89 .0260 .0233 .0028 90 .0261 .0233 .0028 91 .0262 .0234 .0028 i 92 .0263 .0235 .0028 • 93 .0264 .0236 .0028 94 .0265 .0236 .0028 -4141 95 .0266 .0238 .0028 96 .0267 .0238 .0029 10 97 .0268 .0239 .0029 98 .0269 .0240 .0029 99 .0270 .0241 .0029 we 100 .0271 .0242 .0029 101 .0272 .0243 .0029 iii 102 .0273 .0244 .0029 103 .0274 .0245 .0029 dia 104 .0275 .0246 .0029 105 .0277 .0247 .0030 iiii 106 .0277 .0248 .0030 107 .0279 .0249 .0030 108 .0280 .0250 .0030 oilk 109 .0281 .0251 .0030 110 .0282 .0252 .0030 111 .0284 .0253 .0030 112 .0285 .0254 .0030 113 .0286 .0256 .0031 114 .0287 .0256 .0031 4 115 .0289 .0258 .0031 116 .0290 .0259 .0031 117 .0292 .0260 .0031 lit 118 .0293 .0261 .0031 119 .0294 .0263 .0032 120 .0295 .0264 .0032 121 .0297 .0266 .0032 122 .0298 .0266 .0032 123 .0300 .0268 .0032 a 124 .0301 .0269 .0032 125 .0304 .0271 .0032 126 .0305 .0272 .0033 127 .0307 .0274 .0033 128 .0308 .0275 .0033 129 .0310 .0277 .0033 130 .0312 .0278 .0033 1! 131 .0314 .0280 .0034 132 .0315 .0281 .0034 tit 133 .0318 .0284 .0034 134 .0319 .0285 .0034 135 .0322 .0287 .0034 MI 136 .0323 .0288 .0035 WI PM5946- BASEL1Na hydrology \unithyd\BASELINE -UNIT HYDRO.txt 4 id 401 mi 137 .0326 .0291 .0035 138 .0327 .0292 .0035 139 .0330 .0295 .0035 wit 140 .0332 .0296 .0035 141 .0335 .0299 .0036 Si 142 .0336 .0300 .0036 143 .0339 .0303 .0036 144 .0341 .0305 .0036 145 .0348 .0311 .0037 SO 146 .0350 .0313 .0037 147 .0354 .0316 .0038 148 .0356 .0318 .0038 oi 149 .0359 .0321 .0038 150 .0361 .0323 .0039 r ` 151 .0365 .0326 .0039 152 .0367 .0328 .0039 - 153 .0372 .0332 .0040 154 .0374 .0334 .0040 i Il i 155 .0379 .0338 .0041 156 .0381 .0340 .0041 157 .0386 .0345 .0041 woo 158 .0389 .0347 .0042 159 .0394 .0352 .0042 al 160 .0397 .0354 .0042 161 .0402 .0359 .0043 162 .0405 .0362 .0043 163 .0412 .0368 .0044 • 164 .0415 .0371 .0044 165 .0422 .0377 .0045 166 .0426 .0380 .0046 wr 167 .0433 .0387 .0046 168 .0437 .0391 .0047 40 169 .0313 .0279 .0033 170 .0318 .0284 .0034 INN 171 .0328 .0293 .0035 172 .0334 .0298 .0036 Ili 173 .0346 .0309 .0037 174 .0353 .0315 .0038 175 .0367 .0328 .0039 OM 176 .0375 .0335 .0040 177 .0392 .0350 .0042 elli 178 .0402 .0359 .0043 179 .0423 .0377 .0045 „gik 180 .0434 .0388 .0046 181 .0461 .0411 .0049 * 182 .0476 .0413 .0062 183 .0511 .0413 .0097 184 .0531 .0413 .0118 ems 185 .0513 .0413 .0099 i 186 .0542 .0413 .0129 Iii 187 .0615 .0413 .0202 188 .0664 .0413 .0250 1 189 .0826 .0413 .0413 190 .0930 .0413 .0517 191 .1318 .0413 .0905 192 .1802 .0413 .1388 193 .5422 .0413 .5009 194 .1079 .0413 .0665 ii 195 .0723 .0413 .0309 196 .0575 .0413 .0162 197 .0554 .0413 .0141 198 .0492 .0413 .0079 199 .0447 .0399 .0048 200 .0412 .0368 .0044 201 .0383 .0342 .0041 202 .0360 .0321 .0038 I li 203 .0340 .0304 .0036 204 .0323 .0288 .0035 205 .0442 .0394 .0047 206 .0430 .0384 .0046 0 207 .0419 .0374 .0045 Ili goi PM5946- BASELINE\ hydrology \unithyd\BASELINE -UNIT HYDRO.txt 5 j AS +1 ill 208 .0409 .0365 .0044 209 .0400 .0357 .0043 210 .0391 .0349 .0042 I 211 .0383 .0342 .0041 212 .0376 .0336 .0040 el 213 .0370 .0330 .0040 214 .0363 .0324 .0039 a 215 .0357 .0319 .0038 216 .0352 .0314 .0038 sM 217 .0343 .0306 .0037 218 .0338 .0302 .0036 219 .0333 .0297 .0036 *1111 220 .0329 .0293 .0035 221 .0324 .0290 .0035 SW 222 .0320 .0286 .0034 223 .0316 .0283 .0034 w 224 .0313 .0279 .0033 225 .0309 .0276 .0033 lei 226 .0306 .0273 .0033 227 .0303 .0270 .0032 228 .0299 .0267 .0032 log 229 .0296 .0265 .0032 230 .0294 .0262 .0031 231 .0291 .0260 .0031 232 .0288 .0257 .0031 oil 233 .0285 .0255 .0031 234 .0283 .0253 .0030 wiii 235 .0280 .0250 .0030 236 .0278 .0248 .0030 237 .0276 .0246 .0030 238 .0274 .0244 .0029 239 .0271 .0242 .0029 4 240 .0269 .0241 .0029 241 .0267 .0239 .0029 ova 242 .0265 .0237 .0028 243 .0263 .0235 .0028 ilii 244 .0262 .0234 .0028 245 .0260 .0232 .0028 246 .0258 .0230 .0028 +0. 247 .0256 .0229 .0027 4 248 .0255 .0227 .0027 249 .0253 .0226 .0027 250 .0251 .0224 .0027 A 251 .0250 .0223 .0027 252 .0248 .0222 .0027 r 253 .0247 .0220 .0026 . 254 .0245 .0219 .0026 255 .0244 .0218 .0026 w 256 .0242 .0217 .0026 257 .0241 .0215 .0026 0 258 .0240 .0219 .0026 259 .0238 .0213 .0026 260 .0237 .0212 .0025 261 .0236 .0211 .0025 262 .0235 .0210 .0025 263 .0233 .0208 .0025 264 .0232 .0207 .0025 ■A 265 .0231 .0206 .0025 266 .0230 .0205 .0025 267 .0229 .0204 .0024 268 .0228 .0203 .0024 269 .0227 .0202 .0024 270 .0226 .0201 .0024 271 .0225 .0201 .0024 272 .0224 .0200 .0024 273 .0223 .0199 .0024 AN 274 .0222 .0198 .0024 tilli 275 .0221 .0197 .0024 276 .0220 .0196 .0023 277 .0219 .0195 .0023 41 278 .0218 .0194 .0023 4 0 4 P:\ 15946 - BASELINE \hydrology \unithyd\BASELINE - UNIT HYDRO.txt 6 ii 279 .0217 .0194 .0023 280 .0216 .0193 .0023 281 .0215 .0192 .0023 282 .0214 .0191 .0023 114 283 .0213 .0190 .0023 284 .0212 .0190 .0023 285 .0212 .0189 .0023 286 .0211 .0188 .0023 287 .0210 .0188 .0022 288 .0209 .0187 .0022 IM TOTAL SOIL -LOSS VOLUME(ACRE -FEET) = 444.7076 TOTAL STORM RUNOFF VOLUME(ACRE -FEET) = 110.6474 on fed 4 VW A am +MI (OW 4t 114 E IR P: \15946- BASELINE \hydrology \unithyd\BASELINE -UNIT HYDRO.txt 7 2 4 - HOUR STORM 04 R U N O F F H Y D R O G R A P H Ni HYDROGRAPH IN FIVE - MINUTE INTERVALS(CFS) 44 MA TIME(HRS) VOLUME(AF) Q(CFS) 0. 425.0 850.0 1275.0 1700.0 air .083 .0026 .37 Q . . .167 .0180 2.23 Q . IV .250 .0586 5.90 Q . .333 .1331 10.82 Q .417 .2353 14.84 Q . . 00, - .500 .3531 17.11 Q . . .583 .4789 18.27 Q . . rat .667 .6087 18.84 Q . .750 .7399 19.05 Q . *fir .833 .8722 19.20 Q . . .917 1.0054 19.34 Q . . viwi 1.000 1.1392 19.43 Q . . 1.083 1.2734 19.49 Q . 1.167 1.4079 19.53 Q . 1.250 1.5426 19.56 Q . . . 1.333 1.6776 19.60 Q . . 40 1.417 1.8129 19.64 Q . . 1.500 1.9485 19.68 Q . . mrr 1.583 2.0843 19.72 Q . . . • 1.667 2.2204 19.76 Q 1.750 2.3568 19.80 Q 1.833 2.4935 19.84 Q . . 1.917 2.6304 19.89 Q Aw 2.000 2.7677 19.93 Qv . . - ` 2.083 2.9052 19.97 QV . 40 2.167 3.0430 20.01 Qv . 2.250 3.1811 20.05 Qv . . 2.333 3.3195 20.10 QV . . amik 2.417 3.4583 20.14 Qv . . 4A 2.500 3.5973 20.18 QV . . • 2.583 3.7366 20.23 QV . . 2.667 3.8762 20.27 QV . . • • 'M 2.750 4.0161 20.32 QV . . • • 2.833 4.1563 20.36 Qv . 44 2.917 4.2969 20.41 Qv . . 3.000 4.4377 20.45 QV . . 44 3.083 4.5789 20.50 Qv . . 3.167 4.7204 20.54 Qv . ad 3.250 4.8622 20.59 Qv . . 3.333 5.0043 20.64 QV . . 1 3.417 5.1468 20.69 QV . . • 3.500 5.2896 20.74 Qv . . 3.583 5.4328 20.78 QV Ai 3.667 5.5762 20.83 Q V 3.750 5.7201 20.88 Q V . . 3.833 5.8642 20.93 Q V 3.917 6.0087 20.98 Q v . . 4.000 6.1536 21.03 Q v . . 4.083 6.2988 21.08 Q v . . • 4.167 6.4444 21.14 Q V 4.250 6.5903 21.19 Q V Ai 4.333 6.7366 21.24 Q v 4.417 6.8833 21.30 Q V 4.500 7.0303 21.35 Q V . . 401 4.583 7.1777 21.40 Q V . 4.667 7.3255 21.46 Q V . Wei 4.750 7.4736 21.51 Q V . . 4.833 7.6222 21.57 Q V 4.917 7.7711 21.63 Q V . . • Ad P:\ 15946- BASELINE \hydrology \unithyd\BASELINE -UNIT HYDRO.txt 8 00 01 5.000 7.9205 21.68 Q V . . 5.083 8.0702 21.74 Q V . . 5.167 8.2203 21.80 Q V . 44 5.250 8.3708 21.86 Q V . . 5.333 8.5218 21.92 Q V 44 5.417 8.6731 21.98 Q V . . • 5.500 8.8249 22.04 Q V . 5.583 8.9771 22.10 Q V 5.667 9.1297 22.16 Q V . 10 5.750 9.2828 22.22 Q V . 5.833 9.4363 22.29 Q V 5.917 9.5902 22.35 Q V • . '"t' 6.000 9.7446 22.41 Q V . . 6.083 9.8994 22.48 Q V . 6.167 10.0546 22.55 Q V • . 6.250 10.2104 22.61 Q V . . AM 6.333 10.3666 22.68 Q V . . • 6.417 10.5233 22.75 Q V • 414 6.500 10.6804 22.82 Q V . 6.583 10.8380 22.89 Q V . • 6.667 10.9961 22.96 Q V • 40 6.750 11.1548 23.03 Q V . • 6.833 11.3139 23.10 Q V . 40 6.917 11.4735 23.18 Q V . . 7.000 11.6336 23.25 Q V . • O 7.083 11.7942 23.32 Q V . . 7.167 11.9554 23.40 Q V . . 44 7.250 12.1171 23.48 Q V • . 7.333 12.2793 23.56 Q V 7.417 12.4421 23.63 Q V . . 4 7.500 12.6054 23.71 Q V • . ? 7.583 12.7693 23.79 Q V . . 40 7.667 12.9337 23.88 Q V . . . 7.750 13.0987 23.96 Q V em 7.833 13.2643 24.04 Q V . . • 7.917 13.4305 24.13 Q V . . . jam► 8.000 13.5973 24.22 Q V . 8.083 13.7646 24.30 Q V . 8.167 13.9326 24.39 Q V . . • " 8.250 14.1012 24.48 Q v . mg 8.333 14.2705 24.57 Q V 8.417 14.4404 24.67 Q V 8.500 14.6109 24.76 Q V . 40 8.583 14.7821 24.86 Q V . 8.667 14.9539 24.95 Q V . 40 8.750 15.1264 25.05 Q V . 8.833 15.2996 25.15 Q V . 8.917 15.4735 25.25 Q V . • " 9.000 15.6482 25.35 Q V . 9.083 15.8235 25.46 Q V 9.167 15.9995 25.56 Q V 9.250 16.1763 25.67 Q V . . 40 9.333 16.3539 25.78 Q V . . A 9.417 16.5322 25.89 Q V . 40 9.500 16.7113 26.00 Q V . . 9.583 16.8912 26.12 Q V . . 9.667 17.0719 26.24 Q V "k 9.750 17.2534 26.35 Q V . . 40 9.833 17.4357 26.48 Q V 9.917 17.6189 26.60 Q V 10.000 17.8030 26.72 Q V . . 10.083 17.9879 26.85 Q V Ai Ai 10.167 18.1737 26.98 Q V . . 10.250 18.3605 27.11 Q V . . 10.333 18.5481 27.25 Q V • 10.417 18.7367 27.39 Q V 10.500 18.9263 27.53 Q V + 10.583 19.1168 27.67 Q V . 10.667 19.3084 27.81 Q V 10.750 19.5010 27.96 Q V a* 10.833 19.6946 28.11 Q V . • Ai A P:\ 15946 - BASELINE\ hydrology \unithyd\BASELINE -UNIT HYDRO.txt 9 m1 ii 44 10.917 19.8893 28.27 Q V . • I� 11.000 20.0850 28.43 Q V . . • • 11.083 20.2819 28.59 Q V . . • • 11.167 20.4799 28.75 Q V . . • • se 11.250 20.6791 28.92 Q V . . • • 00 11.333 20.8794 29.09 Q V . . • 11.417 21.0810 29.27 Q V . • 11.500 21.2838 29.45 Q V . • A 11.583 21.4879 29.63 Q V . . • • 11.667 21.6933 29.82 Q V . . • • 00 11.750 21.9000 30.01 Q V . . • • 11.833 22.1080 30.21 Q V . . • mw 11.917 22.3175 30.41 Q V . . • • 12.000 22.5284 30.62 Q V . • 12.083 22.7408 30.84 Q V . . 12.167 22.9550 31.10 Q V . . 12.250 23.1712 31.39 Q V . • oft 12.333 23.3897 31.72 Q v . . • • 12.417 23.6103 32.03 Q V . . • • 40 12.500 23.8329 32.32 Q V . . • 12.583 24.0574 32.59 Q V . . • 1 12.667 24.2837 32.86 Q V . • 12.750 24.5119 33.13 Q V • OW 12.833 24.7420 33.41 Q V . . • • 12.917 24.9740 33.69 Q V. . • 11 13.000 25.2081 33.99 Q V. • �! 13.083 25.4443 34.29 Q V. • 13.167 25.6826 34.61 Q V. • • 13.250 25.9232 34.93 Q V. • 13.333 26.1661 35.27 Q V. . • 13.417 26.4114 35.62 Q V. . • 13.500 26.6593 35.99 Q V. . - 13.583 26.9097 36.36 Q V. . • ir 13.667 27.1629 36.76 Q V. 13.750 27.4189 37.17 Q V. . • 'f" 13.833 27.6779 37.60 Q V . • 13.917 27.9399 38.05 Q V . • • 40 14.000 28.2053 38.53 Q V . 14.083 28.4724 38.78 Q V . • ON 14.167 28.7349 38.12 Q V . • • 14.250 28.9851 36.33 Q V • • 04 14.333 29.2179 33.80 Q V . 14.417 29.4375 31.89 Q v . • • 14.500 29.6521 31.16 Q V . • 0 4 14.583 29.8670 31.20 Q V . 14.667 30.0852 31.68 Q V . . Oil 14.750 30.3088 32.46 Q V . . 14.833 30.5385 33.36 Q .V . - 411/1 14.917 30.7750 34.34 Q .v • 15.000 31.0194 35.47 Q .V . • • j 15.083 31.2723 36.73 Q .V . • 15.167 31.5365 38.35 Q .V . • 15.250 31.8217 41.41 Q .v . • 11 4 15.333 32.1524 48.01 .Q .v . • di 15.417 32.5574 58.82 .Q .V . • s� 15.500 33.0504 71.58 .Q .V 15.583 33.6324 84.50 .Q . V . • 44 15.667 34.3217 100.08 . Q . V . 15.750 35.1903 126.14 . Q . V . • 40 15.833 36.3670 170.85 . Q . V • 15.917 38.0151 239.30 . Q . V . • 16.000 40.4255 349.99 . Q . V 16.083 44.3915 575.86 . • Q V Ai 16.167 51.3385 1008.70 . V • Q ; 16.250 61.1928 1430.85 . . • V • Q 16.333 72.3432 1619.04 . . V . Q • (, " i(vi 16.500 87.1071 829.36 Q. .V 16.583 90.4647 487.53 .Q • v 16.667 92.4059 281.85 . Q . . • V 16.750 93.4710 154.66 . Q . . . V 4i P: \15946 - BASELINE\ hydrology\ unithyd\BASELINE -UNIT HYDRO.txt 1 Q 0 40 16.833 94.1928 104.80 . Q . V ,lid 16.917 94.7482 80.64 .Q V 17.000 95.1449 57.61 .Q . V 17.083 95.4407 42.95 .Q V +A 17.167 95.6891 36.07 Q V 17.250 95.9334 35.48 Q v d - 17.333 96.1853 36.57 Q . . V 17.417 96.4440 37.57 Q . V a* 17.500 96.7041 37.76 Q . . V 17.583 96.9621 37.47 Q . V 1111 17.667 97.2163 36.91 Q . V • 17.750 97.4656 36.20 Q . V 17.833 97.7103 35.52 Q . V 40 17.917 97.9506 34.89 Q . v . 18.000 98.1866 34.28 Q . V 18.083 98.4186 33.68 Q . V 18.167 98.6465 33.09 Q . V 18.250 98.8703 32.49 Q . V 18.333 99.0900 31.90 Q . V A* 18.417 99.3059 31.35 Q . V 18.500 99.5185 30.87 Q . V • 18.583 99.7280 30.42 Q . ▪ V • Ng 18.667 99.9347 30.01 Q V • 1 01* 18.750 100.1387 29.62 Q V 18.833 100.3402 29.26 Q V 18.917 100.5393 28.91 Q V 19.000 100.7360 28.57 Q V 19.083 100.9306 28.25 Q V • 4 19.167 101.1231 27.95 Q V 19.250 101.3136 27.65 Q V 19.333 101.5021 27.37 Q V • " 19.417 101.6887 27.10 Q V • 19.500 101.8736 26.84 Q V 010 19.583 102.0567 26.59 Q v 19.667 102.2381 26.34 Q V 19.750 102.4179 26.11 Q V i 19.833 102.5962 25.88 Q V • ilit 19.917 102.7729 25.66 Q V 20.000 102.9481 25.45 Q V 20.083 103.1219 25.24 Q V AA 20.167 103.2944 25.04 Q V 20.250 103.4655 24.84 Q V 20.333 103.6353 24.66 Q V 20.417 103.8038 24.47 Q V 4 20.500 103.9711 24.29 Q V • 20.583 104.1372 24.12 Q . ▪ V iii 20.667 104.3022 23.95 Q . • V 20.750 104.4660 23.78 Q . ▪ V 20.833 104.6287 23.62 Q V • 4 20.917 104.7903 23.47 Q V 21.000 104.9509 23.31 Q ▪ V Ali 21.083 105.1104 23.17 Q ▪ v 21.167 105.2690 23.02 Q V . AIR 21.250 105.4265 22.88 Q V . 21.333 105.5831 22.74 Q . • V Ai 21.417 105.7388 22.60 Q V • 21.500 105.8935 22.47 Q V 21.583 106.0474 22.34 Q V 44 21.667 106.2004 22.21 Q V A 21.750 106.3525 22.09 Q V � 1 21.833 106.5038 21.97 Q V 21.917 106.6543 21.85 Q V 22.000 106.8040 21.73 Q V 22.083 106.9528 21.62 Q V di 22.167 107.1009 21.50 Q V 22.250 107.2483 21.39 Q . ▪ V • 22.333 107.3949 21.29 Q V 22.417 107.540 21.18 Q ▪ V dili 22.500 107.6859 21.08 Q V 22.583 107.8304 20.97 Q V 22.667 107.9741 20.87 Q V. 0. 40 P:\ 15946 - BASELINE\ hydrology \unithyd\BASELINE -UNIT HYDRO.txt 11 44 MO s MO 22.750 108.1172 20.78 Q . V. 22.833 108.2596 20.68 Q . . . V. 22.917 108.4014 20.58 Q . V. am 23.000 108.5425 20.49 Q . . V. 23.083 108.6830 20.40 Q . . . V. 40 23.166 108.8229 20.31 Q . . . V. 23.250 108.9621 20.22 Q . . V. 23.333 109.1008 20.13 Q . . . V. Aft 23.416 109.2388 20.05 Q . . V. 23.500 109.3763 19.96 Q V. 04 23.583 109.5132 19.88 Q . . . V. 23.666 109.6496 19.80 Q . . V. 00 23.750 109.7853 19.72 Q . . V. 23.833 109.9206 19.64 Q . . V. Yb' 23.916 110.0553 19.56 Q . . V. 24.000 110.1895 19.48 Q . . . V. 24.083 110.3205 19.03 Q V. om 24.166 110.4383 17.10 Q . . . V. 40 24.250 110.5305 13.38 Q . . V. 24.333 110.5885 8.43 Q . . . V. 24.416 110.6188 4.39 Q . . . V. .in 24.500 110.6335 2.14 Q . .. V. 24.583 110.6404 1.00 Q . . . V. +v 24.666 110.6436 .46 Q . . . V. 24.750 110.6456 .29 Q . V. 24.833 110.6468 .17 Q . . V. 24.916 110.6473 .07 Q . . V. 010F 25.000 110.6474 .02 Q . . . V. FLOW PROCESS FROM NODE 56.00 TO NODE 56.00 IS CODE = 1 C0tigli^/'e¢' ,47- e3.974 WO » »> UNIT - HYDROGRAPH ANALYSIS««< 4 ,4p oie.,4 /ze R., A__ = = =a===== _______________ ®_________ :_____ 40 s (UNIT - HYDROGRAPH ADDED TO STREAM 114) *USER ENTERED "LAG" TIME = .245 HOURS 40 UNIT HYDROGRAPH TIME UNIT = 5.000 MINUTES UNIT INTERVAL PERCENTAGE OF LAG -TIME = 33.986 Am WATERSHED AREA = 822.850 ACRES BASEFLOW = .000 CFS /SQUARE -MILE 40 VALLEY(DEVELOPED) S -GRAPH SELECTED MAXIMUM WATERSHED LOSS RATE(INCH /HOUR) _ .493 LOW LOSS FRACTION = .893 "m * HYDROGRAPH MODEL (11 SPECIFIED* " - SPECIFIED PEAK 5 MINUTES RAINFALL(INCH)= .56 SPECIFIED PEAK 30- MINUTES RAINFALL(INCH) = 1.17 AM SPECIFIED PEAK 1 -HOUR RAINFALL(INCH) = 1.55 SPECIFIED PEAK 3 -HOUR RAINFALL(INCH) = 2.48 AO SPECIFIED PEAK 6 -HOUR RAINFALL(INCH) = 3.88 SPECIFIED PEAK 24 -HOUR RAINFALL(INCH)= 9.40 AR PRECIPITATION DEPTH -AREA REDUCTION FACTORS: 40 5- MINUTE FACTOR = .963 30- MINUTE FACTOR = .963 1 -HOUR FACTOR = .963 3 -HOUR FACTOR = .994 Al 6 -HOUR FACTOR = .997 di 24 -HOUR FACTOR = .998 RUNOFF HYDROGRAPH LISTING LIMITS: mq MODEL TIME(HOURS) FOR BEGINNING OF RESULTS = .00 MODEL TIME(HOURS) FOR END OF RESULTS = 36.00 AO 40 4, P: \15946- BASELINE \hydrology \unithyd\BASELINE -UNIT HYDRO.txt 12 di ed di yid di UNIT HYDROGRAPH DETERMINATION 'i INTERVAL "S" GRAPH UNIT HYDROGRAPH 4i NUMBER MEAN VALUES ORDINATES(CFS) 1 2.234 222.303 2 14.147 1185.518 3 36.771 2251.382 • 4 64.586 2767.964 5 83.409 1873.147 6 92.545 909.188 Au 7 96.865 429.873 8 98.373 150.064 !IM 9 99.010 63.411 10 99.604 59.095 00 11 99.901 29.548 12 100.000 9.849 ew irlP 10 RIO OW 40 MR fig ni +% P: \15946- BASELINE \hydrology \unithyd\BASELINE - UNIT HYDRO.txt 13 tiw +Irk AR iiiii UNIT UNIT UNIT EFFECTIVE 'A PERIOD RAINFALL SOIL -LOSS RAINFALL (NUMBER) (INCHES) (INCHES) (INCHES) ill 1 .0209 .0186 .0022 mop 2 .0209 .0187 .0022 3 .0209 .0187 .0022 • 4 .0210 .0187 .0022 5 .0210 .0188 .0022 6 .0211 .0188 .0023 401 7 .0211 .0189 .0023 8 .0211 .0189 .0023 OW 9 .0212 .0189 .0023 10 .0212 .0189 .0023 uw 11 .0213 .0190 .0023 12 .0213 .0190 .0023 it 13 .0214 .0191 .0023 14 .0214 .0191 .0023 15 .0214 .0192 .0023 NN 16 .0215 .0192 .0023 17 .0215 .0192 .0023 ailli 18 .0216 .0193 .0023 19 .0216 .0193 .0023 ON 20 .0217 .0193 .0023 21 .0217 .0194 .0023 IMO 22 .0217 .0194 .0023 23 .0218 .0195 .0023 24 .0218 .0195 .0023 25 .0219 .0196 .0023 26 .0219 .0196 .0023 et, 27 .0220 .0196 .0024 28 .0220 .0197 .0024 Om 29 .0221 .0197 .0024 30 .0221 .0198 .0024 + 31 .0222 .0198 .0024 32 .0222 .0198 .0024 33 .0223 .0199 .0024 !°° 34 .0223 .0199 .0024 35 .0224 .0200 .0024 36 .0224 .0200 .0024 37 .0225 .0201 .0024 • 38 .0225 .0201 .0024 39 .0226 .0202 .0024 iri 40 .0226 .0202 .0024 41 .0227 .0203 .0024 42 .0227 .0203 .0024 43 .0228 .0204 .0024 44 .0229 .0204 .0024 45 .0229 .0205 .0025 46 .0230 .0205 .0025 ,, 47 .0230 .0206 .0025 48 .0231 .0206 .0025 illi 49 .0231 .0207 .0025 50 .0232 .0207 .0025 51 .0233 .0208 .0025 52 .0233 .0208 .0025 iiii 53 .0234 .0209 .0025 54 .0234 .0209 .0025 55 .0235 .0210 .0025 411 56 .0236 .0210 .0025 57 .0236 .0211 .0025 Ai 58 .0237 .0211 .0025 59 .0238 .0212 .0025 60 .0238 .0213 .0025 61 .0239 .0213 .0026 • 62 .0239 .0214 .0026 63 .0240 .0215 .0026 64 .0241 .0215 .0026 "M 65 .0242 .0216 .0026 all """"+ P: \15946- BASELINE \hydrology \unithyd\BASELINE - UNIT HYDRO.txt 14 • All Ili Ali iiii 66 .0242 .0216 .0026 67 .0243 .0217 .0026 68 .0243 .0217 .0026 400 69 .0244 .0218 .0026 70 .0245 .0219 .0026 71 .0246 .0219 .0026 72 .0246 .0220 .0026 no 73 .0247 .0221 .0026 74 .0248 .0221 .0027 NO 75 .0249 .0222 .0027 76 .0249 .0223 .0027 77 .0250 .0224 .0027 moo 78 .0251 .0224 .0027 79 .0252 .0225 .0027 11111 80 .0252 .0225 .0027 81 .0253 .0226 .0027 WO 82 .0254 .0227 .0027 83 .0255 .0228 .0027 a 84 .0256 .0228 .0027 85 .0257 .0229 .0027 86 .0257 .0230 .0028 'i 87 .0259 .0231 .0028 88 .0259 .0231 .0028 '+I 89 .0260 .0232 .0028 90 .0261 .0233 .0028 OR 91 .0262 .0234 .0028 92 .0263 .0235 .0028 AO 93 .0264 .0236 .0028 94 .0265 .0236 .0028 95 .0266 .0238 .0028 ono 96 .0267 .0238 .0029 97 .0268 .0239 .0029 a 98 .0269 .0240 .0029 • 99 .0270 .0241 .0029 o. 100 .0271 .0242 .0029 101 .0272 .0243 .0029 till 102 .0273 .0244 .0029 103 .0274 .0245 .0029 104 .0275 .0246 .0029 MX 105 .0277 .0247 .0030 106 .0277 .0248 .0030 a 107 .0279 .0249 .0030 108 .0280 .0250 .0030 Mt 109 .0281 .0251 .0030 110 .0282 .0252 .0030 aid 111 .0284 .0253 .0030 112 .0285 .0254 .0030 113 .0286 .0256 .0031 -. 114 .0287 .0256 .0031 115 .0289 .0258 .0031 "iii 116 .0290 .0259 .0031 117 .0292 .0260 .0031 „ig 118 .0293 .0261 .0031 119 .0294 .0263 .0032 villi 120 .0295 .0264 .0032 121 .0297 .0266 .0032 122 .0298 .0266 .0032 123 .0300 .0268 .0032 124 .0301 .0269 .0032 125 .0304 .0271 .0032 126 .0305 .0272 .0033 127 .0307 .0274 .0033 128 .0308 .0275 .0033 a 129 .0310 .0277 .0033 130 .0311 .0278 .0033 131 .0314 .0280 .0034 `" 132 .0315 .0281 .0034 133 .0318 .0284 .0034 Qui 134 .0319 .0285 .0034 135 .0322 .0287 .0034 w 136 .0323 .0288 .0035 oil ex% P:\15946- BASELINE \hydrology \unithyd\BASELINE - UNIT HYDRO.txt 15 al . .. eel mg lit 137 .0326 .0291 .0035 138 .0327 .0292 .0035 139 .0330 .0295 .0035 a®i 140 .0331 .0296 .0035 • 141 .0335 .0299 .0036 II 142 .0336 .0300 .0036 143 .0339 .0303 .0036 we 144 .0341 .0304 .0036 145 .0349 .0311 .0037 OP 146 .0350 .0313 .0037 147 .0354 .0316 .0038 148 .0356 .0318 .0038 me 149 .0359 .0321 .0038 150 .0361 .0323 .0039 rM 151 .0365 .0326 .0039 152 .0368 .0328 .0039 mil 153 .0372 .0332 .0040 154 .0374 .0334 .0040 art 155 .0379 .0338 .0041 156 .0381 .0340 .0041 157 .0386 .0345 .0041 4 . 4 158 .0389 .0347 .0042 159 .0394 .0352 .0042 ri 160 .0397 .0354 .0042 161 .0403 .0359 .0043 we 162 .0406 .0362 .0043 163 .0412 .0368 .0044 0W 164 .0415 .0371 .0044 165 .0422 .0377 .0045 166 .0426 .0380 .0046 40" 167 .0433 .0387 .0046 168 .0438 .0391 .0047 ris' 169 .0315 .0282 .0034 170 .0320 .0286 .0034 w 171 .0331 .0295 .0035 172 .0337 .0301 .0036 jilt 173 .0349 .0311 .0037 174 .0355 .0317 .0038 175 .0370 .0330 .0040 "'t 176 .0377 .0337 .0040 177 .0395 .0352 .0042 1111 178 .0404 .0361 .0043 179 .0425 .0380 .0045 „a 180 .0437 .0390 .0047 181 .0463 .0411 .0052 aid 182 .0478 .0411 .0067 183 .0513 .0411 .0102 184 .0533 .0411 .0122 'M 185 .0510 .0411 .0099 186 .0539 .0411 .0128 10 187 .0612 .0411 .0201 188 .0660 .0411 .0249 oili 189 .0822 .0411 .0411 190 .0926 .0411 .0515 Ill la 191 .1311 .0411 .0900 192 .1792 .0411 .1381 193 .5394 .0411 .4983 194 .1073 .0411 .0662 tilli 195 .0719 .0411 .0308 196 .0572 .0411 .0161 197 .0556 .0411 .0145 MR 198 .0495 .0411 .0084 199 .0449 .0401 .0048 liii 200 .0414 .0370 .0044 201 .0386 .0344 .0041 202 .0362 .0324 .0039 iii 203 .0342 .0306 .0037 di 204 .0325 .0291 .0035 205 .0442 .0394 .0047 206 .0430 .0384 .0046 +t. 207 .0419 .0374 .0045 1lill "lm P:\ 15946- BASELINE\ hydrology \unithyd\BASELINE - UNIT HYDRO.txt 16 rW .•w Ili gm 208 .0409 .0365 .0044 209 .0400 .0357 .0043 210 .0391 .0349 .0042 'llil 211 .0384 .0342 .0041 212 .0376 .0336 .0040 EH 213 .0370 .0330 .0040 214 .0363 .0325 .0039 215 .0358 .0319 .0038 'g 216 .0352 .0314 .0038 217 .0343 .0306 .0037 Ib► 218 .0338 .0302 .0036 219 .0333 .0297 .0036 ,i,ii 220 .0329 .0293 .0035 221 .0324 .0290 .0035 el 222 .0320 .0286 .0034 223 .0316 .0283 .0034 224 .0313 .0279 .0033 10111 225 .0309 .0276 .0033 226 .0306 .0273 .0033 401 227 .0303 .0270 .0032 228 .0299 .0267 .0032 •1 229 .0296 .0265 .0032 230 .0293 .0262 .0031 mi{ 231 .0291 .0260 .0031 232 .0288 .0257 .0031 233 .0285 .0255 .0031 "M 234 .0283 .0253 .0030 235 .0280 .0250 .0030 AO 236 .0278 .0248 .0030 237 .0276 .0246 .0030 238 .0274 .0244 .0029 239 .0271 .0242 .0029 m$ 240 .0269 .0241 .0029 241 .0267 .0239 .0029 242 .0265 .0237 .0028 243 .0263 .0235 .0028 244 .0262 .0234 .0028 isi 245 .0260 .0232 .0028 246 .0258 .0230 .0028 ow 247 .0256 .0229 .0027 248 .0255 .0227 .0027 all 249 .0253 .0226 .0027 250 .0251 .0224 .0027 251 .0250 .0223 .0027 'm• 252 .0248 .0222 .0027 253 .0247 .0220 .0026 Oil 254 .0245 .0219 .0026 255 .0244 .0218 .0026 w 256 .0242 .0217 .0026 257 .0241 .0215 .0026 all 258 .0240 .0214 .0026 259 .0238 .0213 .0026 260 .0237 .0212 .0025 ow 261 .0236 .0211 .0025 +11111 262 .0235 .0210 .0025 263 .0233 .0208 .0025 264 .0232 .0207 .0025 liO4 265 .0231 .0206 .0025 266 .0230 .0205 .0025 Ili 267 .0229 .0204 .0024 268 .0228 .0203 .0024 269 .0227 .0202 .0024 270 .0226 .0201 .0024 illi 271 .0225 .0201 .0024 272 .0224 .0200 .0024 273 .0223 .0199 .0024 el 274 .0222 .0198 .0024 275 .0221 .0197 .0024 MI 276 .0220 .0196 .0023 277 .0219 .0195 .0023 is 278 .0218 .0194 .0023 III ,.,., P:\15946- BASELINE \hydrology \unithyd\BASELINE -UNIT HYDRO.txt 17 wo be di mu 279 .0217 .0194 .0023 280 .0216 .0193 .0023 281 .0215 .0192 .0023 4R 282 .0214 .0191 .0023 283 .0213 .0190 .0023 dO 284 .0212 .0190 .0023 285 .0212 .0189 .0023 286 .0211 .0188 .0023 md 287 .0210 .0188 .0022 288 .0209 .0187 .0022 TOTAL SOIL -LOSS VOLUME(ACRE -FEET) = 515.3225 awil TOTAL STORM RUNOFF VOLUME(ACRE -FEET) = 128.1115 rid aw 40 out wit fto 4R tui mm qui oft tlr aW opt 44 44 d aiy P: \15946- BASELINE \hydrology \unithyd\BASELINE - UNIT HYDRO.txt 18 AR Ad AN di 2 4 - H O U R S T O R M 004 RUNOFF H Y D R O G R A P H AO HYDROGRAPH IN FIVE - MINUTE INTERVALS(CFS) mi Mr TIME(HRS) VOLUME(AF) Q(CFS) 0. 500.0 1000.0 1500.0 2000.0 .083 .0034 .50 Q . . wo .167 .0251 3.14 Q . .250 .0814 8.18 Q . .333 .1803 14.37 Q . .417 .3083 18.58 Q . . om .500 .4505 20.64 Q . .583 .5995 21.64 Q . AA .667 .7511 22.02 Q . .750 .9040 22.20 Q .833 1.0581 22.38 Q . aye .917 1.2130 22.49 Q . 1.000 1.3683 22.55 Q . rrll 1.083 1.5239 22.60 0 . 1.167 1.6799 22.64 Q • 1.250 1.8361 22.69 Q . 1.333 1.9926 22.73 Q . . AO 1.417 2.1495 22.78 Q 1.500 2.3067 22.82 0 • Am 1.667 2.4642 22.87 Q . 1.667 2.6220 22.92 Q . Aa0 1.750 2.7802 22.96 Q 1.833 2.9386 23.01 Q . 1.917 3.0974 23.06 Q . All 2.000 3.2566 23.11 QV . 2.083 3.4160 23.16 Qv . . IA 2.167 3.5759 23.20 Qv . . 2.250 3.7360 23.25 QV . 2.333 3.8965 23.30 QV . e0 2.417 4.0573 23.35 QV lig 2.500 4.2185 23.40 QV . 2.583 4.3801 23.46 QV . 2.667 4.5420 23.51 QV . +R 2.750 4.7042 23.56 QV . . 2.833 4.8668 23.61 QV . . AA 2.917 5.0298 23.66 QV . . 3.000 5.1931 23.72 QV . 3 5.3568 23.77 QV • OR 3.167 5.5209 23.82 QV . 40 3.250 5.6853 23.88 QV 3.333 5.8502 23.93 QV . 3.417 6.0154 23.99 QV . . OR 3.500 6.1810 24.04 QV . ? 3.583 6.3469 24.10 QV . . AA 3.667 6.5133 24.16 Q V . 3.750 6.6801 24.22 0 V 3.833 6.8473 24.27 0 V 3.917 7.0148 24.33 Q V Al 4.000 7.1828 24.39 Q V 4.083 7.3512 24.45 Q V 4.167 7.5200 24.51 Q V lig 4.250 7.6893 24.57 Q V . AO 4.333 7.8589 24.63 Q V 4.417 8.0290 24.70 Q V 4.500 8.1995 24.76 Q V 4.583 8.3704 24.82 Q V . 4.667 8.5418 24.88 Q V . . AO 4.750 8.7136 24.95 Q V 4.833 8.8859 25.01 Q V 4.917 9.0586 25.08 Q V . 4O P: \15946- BASELINE \hydrology \unithyd\BASELINE -UNIT HYDRO.txt 19 idd di ad ii 44 5.000 9.2318 25.15 Q v . . 0 5.083 9.4054 25.21 Q v 5.167 9.5796 25.28 Q V . . . 5.250 9.7541 25.35 Q v . . . o p 5.333 9.9292 25.42 Q V . . . 5.417 10.1047 25.49 Q V . . . Oa 5.500 10.2807 25.56 Q V . . . 5.583 10.4572 25.63 Q V . . . oa 5.667 10.6342 25.70 Q V . . . 5.750 10.8117 25.77 Q V . . . *0 5.833 10.9897 25.85 Q V . . 5.917 11.1683 25.92 Q v . . . 6.000 11.3473 26.00 Q V . . . ww 6.083 11.5268 26.07 Q V . . . 6.167 11.7069 26.15 Q V . . . ad 6.250 11.8876 26.23 Q V . . . 6.333 12.0687 26.31 Q V . • oa 6.417 12.2504 26.38 Q v . . . • 6.500 12.4327 26.46 Q v . . . mf 6.583 12.6155 26.55 Q V . . . 6.667 12.7989 26.63 Q V . . . 6.750 12.9829 26.71 Q v . . oli 6.833 13.1674 26.80 Q v . . . 6.917 13.3525 26.88 Q V . . . ad 7.000 13.5383 26.97 Q v . . . 7.083 13.7246 27.05 Q V . . . Mu 7.167 13.9115 27.14 Q V . . . 7.250 14.0990 27.23 Q V . . . 10 7.333 14.2872 27.32 Q V . . . 7.417 14.4760 27.41 Q V . . . 7.500 14.6655 27.51 Q V . . . ad 7.583 14.8555 27.60 Q v . . . 7.667 15.0463 27.70 Q v . . . 7.750 15.2377 27.79 Q V . . . 7.833 15.4298 27.89 Q V . . . ee 7.917 15.6225 27.99 Q V . . . 8.000 15.8160 28.09 Q V . . . iii 8.083 16.0102 28.19 Q V . . . 8.167 16.2050 28.30 Q V . . . 8.250 16.4006 28.40 Q V . . . 8.333 16.5969 28.51 Q V . . . dig 8.417 16.7940 28.61 Q V . . . 8.500 16.9918 28.72 Q V . . . 8.583 17.1904 28.83 Q V . . . +w 8.667 17.3898 28.95 Q V . . . 8.750 17.5899 29.06 Q v . . . ei 8.833 17.7909 29.18 Q V . . . 8.917 17.9926 29.29 Q V . . . 9.000 18.1952 29.41 Q V . . . ma 9.083 18.3986 29.53 Q V . . . opo 9.167 18.6029 29.66 Q V . . . 9.250 18.8080 29.78 Q V . . 9.333 19.0140 29.91 Q V . . . +m 9.417 19.2209 30.04 Q V . . . 9.500 19.4287 30.17 Q V . . . la 9.583 19.6374 30.31 Q v . . . 9.667 19.8470 30.44 Q v . . . 9.750 20.0576 30.58 Q V . . glik 9.833 20.2692 30.72 Q V . . 9.917 20.4818 30.86 Q V . . . ad 10.000 20.6953 31.01 Q V . . . 10.083 20.9099 31.16 Q V . . . 'd 10.167 21.1256 31.31 Q V . . . 10.250 21.3422 31.46 Q V . . . AO 10.333 21.5600 31.62 Q V . . . 10.417 21.7789 31.78 Q V . . . i 10.500 21.9989 31.94 Q V . . . 10.583 22.2200 32.11 Q V . . . di 10.667 22.4423 32.28 Q V . . . 10.750 22.6658 32.45 Q V . . . 10.833 22.8905 32.63 Q V . . . IOW P: \15946- BASELINE\ hydrology \unithyd\BASELINE -UNIT HYDRO.txt 20 ...h 40 r». la tai 10.917 23.1165 32.81 Q V . Ai 11.000 23.3437 32.99 Q V . 11.083 23.5722 33.18 Q V . . 11.167 23.8020 33.37 Q V . . * 11.250 24.0332 33.57 Q V . 11.333 24.2658 33.77 Q V 11.417 24.4997 33.97 Q V 11.500 24.7352 34.18 Q V . . 40 11.583 24.9721 34.40 Q V . . 11.667 25.2105 34.62 Q V . • 144 11.750 25.4505 34.84 Q V . • 11.833 25.6920 35.08 Q V . . 11.917 25.9352 35.31 Q V . • 44 12.000 26.1801 35.56 Q V . . 12.083 26.4268 35.82 Q V . . 40 12.167 26.6756 36.13 Q V . 12.250 26.9269 36.49 Q V . . •14 12.333 27.1809 36.89 Q V . . 12.417 27.4374 37.25 Q V . Ire 12.500 27.6962 37.57 Q V . . 12.583 27.9571 37.88 Q V . . . 12.667 28.2202 38.19 Q V . 12.750 28.4854 38.51 Q V . . 12.833 28.7528 38.83 Q V . . vur 12.917 29.0225 39.16 Q V. . . 13.000 29.2946 39.51 Q V. . 0 111 13.083 29.5692 39.86 Q V. . . 13.167 29.8463 40.23 Q V. . . Ail 13.250 30.1259 40.61 Q V. . . 13.333 30.4084 41.01 Q V. 13.417 30.6936 41.42 Q V. . 4114 13.500 30.981 41.85 Q V. . 13.583 31.2730 42.29 Q V. 13.667 3 1.5675 42.75 Q V. . . 13.750 31.8652 43.23 0 V. . . 44 13.833 32.1665 43.74 Q V . . 13.917 32.4713 44.27 Q V . . r✓ 14.000 32.7801 44.82 Q V . • . 14.083 33.0906 45.09 Q V 14.167 33.3940 44.05 Q V . 14.250 33.6801 41.55 Q V . 14.333 33.9445 38.39 Q V 14.417 34.19 36.53 Q V • • 14.500 34.4448 36.10 Q V 44 14.583 34.6954 36.40 Q V . 14.667 34.9514 37.17 Q V . 44 14.750 35.2140 38.13 Q V . • 14.833 35.4840 39.20 Q .V . 14.917 35.7623 40.41 Q .V . . • 15.000 36.0500 41.78 Q .V . . 15.083 36.3486 43.35 Q .V . . Mg 15.167 36.6631 45.68 Q .v . . 15.250 37.0107 50.46 .Q .V . . 44 15.333 37.4273 60.50 .Q .V . . , 15.417 37.9486 75.68 .Q .V . . 14 15.500 38.5767 91.21 .Q . V . 15.583 39.2988 104.84 . Q . V . . 15.667 40.1416 122.38 . Q . V 15.750 41.2118 155.39 . Q . V . . 40 15.833 42.6769 212.73 . Q . V . 15.917 44.7381 299.29 . Q . V . . 16.000 47.7737 440.76 . Q . V . . 'R 16.083 52.8130 731.71 . . Q V . . 16.167 61.8705 1315.15 . V. Q 40 16.250 74.4671 1829.02 . V Q I /1 � C C s 16.333 87.8333 1940.77 V 0 • i . "'11 1 41 1 • • 1 16.500 102.8651 797.32 . . 0 • V 04 16.583 105.9741 451.43 . Q. V 16.667 107.6494 243.25 . Q . V 16.750 108.6701 148.20 . Q . V 40 P: \15946- BASELINE\ hydrology \unithyd\BASELINE -UNIT HYDRO.txt 21 .rr► qi it Alla 16.833 109.4148 108.13 . Q . V AO 16.917 109.9259 74.22 .Q . v 17.000 110.2940 53.44 .Q V 17.083 110.5879 42.68 Q . v mm 17.167 110.8663 40.42 Q V AO 17.250 111.1483 40.94 Q . v 17.333 111.4431 42.81 Q V 17.417 111.7452 43.87 Q V 17.500 112.0473 43.87 Q . V 17.583 112.3459 43.36 Q . V • Ai 17.667 112.6391 42.56 Q . V • 17.750 112.9265 41.73 Q . V mm 17.833 113.2087 40.97 Q . V • 17.917 113.4857 40.23 Q . V 18.000 113.7579 39.52 Q . v • • ue 18.083 114.0253 38.83 Q . V 18.167 114.2880 38.14 Q . v • - 18.250 114.5459 37.44 Q . v • 18.333 114.7990 36.75 Q . V - m 18.417 115.0478 36.13 Q . v 18.500 115.2929 35.59 Q . v 18.583 115.5346 35.09 Q V 18.667 115.7730 34.62 Q V ud 18.750 116.0084 34.18 Q V - 18.833 116.2410 33.76 Q V 18.917 116.4707 33.37 Q V • 'A 19.000 116.6979 32.99 Q V - 19.083 116.9226 32.62 Q V AA 19.167 117.1448 32.27 Q V • 19.250 117.3648 31.94 Q . • V mo 19.333 117.5825 31.61 Q V 19.417 117.7981 31.30 Q V 411111 19.500 118.0116 31.00 Q v • 19.583 118.2231 30.71 Q V 19.667 118.4327 30.44 Q V mom 19.750 118.6405 30.17 Q V 19.833 118.8465 29.90 Q . ▪ V 10 19.917 119.0507 29.65 Q V 20.000 119.2532 29.41 Q V mm 20.083 119.4541 29.17 Q V 20.167 119.6534 28.94 Q V - MO 20.250 119.8512 28.72 Q V 20.333 120.0475 28.50 Q . V • 20.417 120.2423 28.29 Q V • 40" 20.500 120.4357 28.08 Q . ▪ v 20.583 120.6277 27.88 Q V is 20.667 120.8184 27.69 Q V - • 20.750 121.0078 27.50 Q V so 20.833 121.1960 27.32 Q V 20.917 121.3829 27.14 Q V • ,mo 21.000 121.5685 26.96 Q V • 21.083 121.7530 26.79 Q . v • 21.167 121.9364 26.62 Q V • om 21.250 122.1186 26.46 Q . v - 21.333 122.2997 26.30 Q V 'O 21.417 122.4797 26.14 Q V 21.500 122.6587 25.99 Q V • +n 21.583 122.8367 25.84 Q V 21.667 123.0136 25.69 Q V Ed 21.750 123.1896 25.55 Q V 21.833 123.3646 25.41 Q - V 21.917 123.5387 25.27 Q - V "m 22.000 123.7118 25.14 Q V AO 22.083 123.8840 25.01 Q V 22.167 124.0554 24.88 Q V 22.250 124.2258 24.75 Q V ai 22.333 124.3955 24.63 Q V 22.417 124.5642 24.51 Q V • MO 22.500 124.7322 24.39 Q V 22.583 124.8993 24.27 Q V . 22.667 125.0656 24.15 Q V. mm 40 ,w P:\ 15946- BASELINE \hydrology \unithyd\BASEL1NE -UNIT HYDRO.txt 22 40 RR rwi AR 22.750 125.2312 24.04 Q V. 22.833 125.3960 23.93 Q . V. 22.917 125.5600 23.82 Q . V. +4 23.000 125.7233 23.71 Q . V. ii 23.083 125.8859 23.60 Q . V. 23.166 126.0477 23.50 Q V. 23.250 126.2089 23.40 Q V. 23.333 126.3693 23.30 Q V. 23.416 126.5291 23.20 Q . V. 4 23.500 126.6882 23.10 Q . V. 23.583 126.8466 23.00 Q V. 23.666 127.0044 22.91 Q . V. !m 23.750 127.1615 22.82 Q . V. 23.833 127.3180 22.73 Q . V. 44 23.916 127.4739 22.64 Q V. 24.000 127.6292 22.55 Q V. 44 24.083 127.7805 21.96 Q V. 24.166 127.9130 19.24 Q . V. yy 24.250 128.0104 14.14 Q . V. 24.333 128.0649 7.92 Q V. 24.416 128.0904 3.71 Q V. 04 24.500 128.1019 1.67 Q V. 24.583 128.1067 .70 Q V. AA 24.666 128.1092 .36 Q V. 24.750 128.1108 .22 Q V. AM 24.833 128.1114 .09 Q . V. 24.916 128.1115 .02 Q V ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** mil FLOW PROCESS FROM NODE 65.00 TO NODE 65.00 IS CODE = 1 c©giLf./vee pF. g e .2/4,a- » »>UNIT- HYDROGRAPH ANALYSIS« «< a eir-Ageo 4,4e, Shawl Amens MIN (UNIT- HYDROGRAPH ADDED TO STREAM *5) 44 *USER ENTERED "LAG" TIME = .275 HOURS 44 UNIT HYDROGRAPH TIME UNIT = 5.000 MINUTES UNIT INTERVAL PERCENTAGE OF LAG -TIME = 30.267 • AA WATERSHED AREA = 990.260 ACRES O BASEFLOW = .000 CFS /SQUARE -MILE VALLEY(DEVELOPED) S -GRAPH SELECTED A. MAXIMUM WATERSHED LOSS RATE(INCH /HOUR) = .483 LOW LOSS FRACTION = .893 * HYDROGRAPH MODEL M1 SPECIFIED* 4. SPECIFIED PEAK 5- MINUTES RAINFALL(INCH)= .56 m SPECIFIED PEAK 30- MINUTES RAINFALL(INCH) = 1.17 SPECIFIED PEAK 1 -HOUR RAINFALL(INCH) = 1.55 ,m SPECIFIED PEAK 3 -HOUR RAINFALL(INCH) = 2.48 SPECIFIED PEAK 6 -HOUR RAINFALL(INCH) = 3.88 44 SPECIFIED PEAK 24 -HOUR RAINFALL(INCH)= 9.40 PRECIPITATION DEPTH -AREA REDUCTION FACTORS: INI4 5- MINUTE FACTOR = .956 30- MINUTE FACTOR = .956 1 -HOUR FACTOR = .956 3 -HOUR FACTOR = .993 44 6 -HOUR FACTOR = .997 24 -HOUR FACTOR = .998 A RUNOFF HYDROGRAPH LISTING LIMITS: MODEL TIME(HOURS) FOR BEGINNING OF RESULTS = .00 14 MODEL TIME(HOURS) FOR END OF RESULTS = 36.00 Ai AA UNIT HYDROGRAPH DETERMINATION Ad *■+ P:\ 15946- BASELINE\ hydrology \unithyd\BASELLNE -UNIT HYDRO.txt 23 mil dm INTERVAL "S" GRAPH UNIT HYDROGRAPH mm NUMBER MEAN VALUES ORDINATES(CFS) di 1 1.894 226.818 2 11.151 1108.563 a,,,, 3 29.554 2204.032 4 54.464 2983.191 di 5 75.701 2543.319 6 87.961 1468.300 7 94.219 749.361 8 97.322 371.700 9 98.417 131.151 moo 10 98.985 67.970 11 99.457 56.493 12 99.783 39.036 13 99.946 19.518 rr� 14 100.000 6.505 im MA 4, at sag An di AA Ai AA AA Ai AA AR di 'ed P:\ 15946 - BASELINE \hydrology \unithyd\BASELINE -UNIT HYDRO.txt 24 AO - 111111104. NO ii i MI UNIT UNIT UNIT EFFECTIVE PERIOD RAINFALL SOIL -LOSS RAINFALL 61. (NUMBER) (INCHES) (INCHES) (INCHES) iii 1 .0209 .0186 .0022 2 .0209 .0187 .0022 , we 3 .0209 .0187 .0022 4 .0210 .0187 .0022 ill 5 .0210 .0188 .0022 6 .0211 .0188 .0023 7 .0211 .0188 .0023 NO 8 .0211 .0189 .0023 46 9 .0212 .0189 .0023 10 .0212 .0189 .0023 11 .0213 .0190 .0023 46 12 .0213 .0190 .0023 13 .0214 .0191 .0023 It 14 .0214 .0191 .0023 15 .0214 .0191 .0023 16 .0215 .0192 .0023 17 .0215 .0192 .0023 at 18 .0216 .0193 .0023 19 .0216 .0193 .0023 20 .0217 .0193 .0023 - 21 .0217 .0194 .0023 22 .0217 .0194 .0023 ie' 23 .0218 .0195 .0023 24 .0218 .0195 .0023 25 .0219 .0196 .0023 26 .0219 .0196 .0023 tail 27 .0220 .0196 .0024 28 .0220 .0197 .0024 29 .0221 .0197 .0024 +mo4 30 .0221 .0198 .0024 31 .0222 .0198 .0024 9111 32 .0222 .0198 .0024 33 .0223 .0199 .0024 NM 34 .0223 .0199 .0024 35 .0224 .0200 .0024 36 .0224 .0200 .0024 37 .0225 .0201 .0024 38 .0225 .0201 .0024 a 39 .0226 .0202 .0024 40 .0226 .0202 .0024 Si 41 .0227 .0203 .0024 42 .0227 .0203 .0024 +4 43 .0228 .0204 .0024 44 .0228 .0204 .0024 64 45 .0229 .0205 .0025 46 .0230 .0205 .0025 47 .0230 .0206 .0025 wt 48 .0231 .0206 .0025 iiii 49 .0231 .0207 .0025 50 .0232 .0207 .0025 . 51 .0233 .0208 .0025 6 52 .0233 .0208 .0025 53 .0234 .0209 .0025 di 54 .0234 .0209 .0025 55 .0235 .0210 .0025 56 .0235 .0210 .0025 111 11 57 .0236 .0211 .0025 di 58 .0237 .0211 .0025 59 .0238 .0212 .0025 60 .0238 .0213 .0025 » 61 .0239 .0213 .0026 62 .0239 .0214 .0026 ali 63 .0240 .0214 .0026 64 .0241 .0215 .0026 65 .0242 .0216 .0026 46 di P:\ 15946- BASELINE \hydrology \Unithyd\BASELINE - UNIT HYDRO.txt 25 mi low 111 ..w 66 .0242 .0216 .0026 Ili 67 .0243 .0217 .0026 68 .0243 .0217 .0026 69 .0244 .0218 .0026 mg 70 .0245 .0219 .0026 gilli 71 .0296 .0219 .0026 72 .0246 .0220 .0026 73 .0247 .0221 .0026 ,mo 74 .0248 .0221 .0027 75 .0249 .0222 .0027 AM 76 .0249 .0223 .0027 77 .0250 .0223 .0027 78 .0251 .0224 .0027 int 79 .0252 .0225 .0027 80 .0252 .0225 .0027 III 81 .0253 .0226 .0027 82 .0254 .0227 .0027 an 83 .0255 .0228 .0027 84 .0256 .0228 .0027 ,rr 85 .0257 .0229 .0027 86 .0257 .0230 .0028 87 .0259 .0231 .0028 am 88 .0259 .0231 .0028 oat 89 .0260 .0232 .0028 90 .0261 .0233 .0028 91 .0262 .0234 .0028 - 92 .0263 .0235 .0028 93 .0264 .0236 .0028 94 .0265 .0236 .0028 95 .0266 .0237 .0028 moo 96 .0267 .0238 .0029 97 .0268 .0239 .0029 98 .0269 .0240 .0029 III 99 .0270 .0241 .0029 100 .0271 .0242 .0029 .1/10 101 .0272 .0243 .0029 102 .0273 .0244 .0029 ili 103 .0274 .0245 .0029 104 .0275 .0246 .0029 w 105 .0276 .0247 .0030 106 .0277 .0248 .0030 mil 107 .0279 .0249 .0030 108 .0280 .0250 .0030 109 .0281 .0251 .0030 NIIIR 110 .0282 .0252 .0030 111 .0284 .0253 .0030 mu 112 .0284 .0254 .0030 113 .0286 .0256 .0031 mom 114 .0287 .0256 .0031 115 .0289 .0258 .0031 al 116 .0290 .0259 .0031 117 .0292 .0260 .0031 118 .0292 .0261 .0031 MR 119 .0294 .0263 .0031 di 120 .0295 .0264 .0032 121 .0297 .0265 .0032 122 .0298 .0266 .0032 414 123 .0300 .0268 .0032 124 .0301 .0269 .0032 di 125 .0303 .0271 .0032 126 .0305 .0272 .0033 127 .0307 .0274 .0033 4 .1 128 .0308 .0275 .0033 129 .0310 .0277 .0033 till 130 .0311 .0278 .0033 131 .0314 .0280 .0034 MIN 132 .0315 .0281 .0034 133 .0318 .0284 .0034 iiii 134 .0319 .0285 .0034 135 .0321 .0287 .0034 136 .0323 .0288 .0035 Mg MI P:\15946- BASELINE\ hydrology \unithyd \BASELINE -UNIT HYDRO.bxt 26 iii lip ail 137 .0326 .0291 .0035 ii i 138 .0327 .0292 .0035 139 .0330 .0295 .0035 ill 140 .0331 .0296 .0035 A 141 .0334 .0299 .0036 III 142 .0336 .0300 .0036 143 .0339 .0303 .0036 144 .0341 .0304 .0036 145 .0349 .0311 .0037 IRO 146 .0351 .0313 .0038 147 .0354 .0316 .0038 148 .0356 .0318 .0038 "s 149 .0360 .0321 .0038 Ili 150 .0362 .0323 .0039 151 .0366 .0327 .0039 152 .0368 .0328 .0039 ,^ 153 .0372 .0332 .0040 154 .0374 .0334 .0040 la 155 .0379 .0338 .0041 156 .0381 .0340 .0041 157 .0386 .0345 .0041 sal 158 .0389 .0347 .0042 159 .0394 .0352 .0042 Alf 160 .0397 .0354 .0042 161 .0403 .0360 .0043 w 162 .0406 .0362 .0043 163 .0412 .0368 .0044 did 164 .0415 .0371 .0044 165 .0422 .0377 .0045 166 .0426 .0380 .0046 oil 167 .0434 .0387 .0046 ad 168 .0938 .0391 .0047 169 .0319 .0285 .0034 170 .0324 .0289 .0035 iw 171 .0335 .0299 .0036 172 .0340 .0304 .0036 Ai 173 .0353 .0315 .0038 174 .0359 .0321 .0038 175 .0373 .0334 .0040 'uif 176 .0381 .0340 .0041 177 .0398 .0356 .0043 lii 178 .0408 .0364 .0044 179 .0429 .0383 .0046 ma 180 .0440 .0393 .0047 181 :0467 .0402 .0064 fay 182 .0482 .0402 .0079 183 .0516 .0402 .0114 184 .0537 .0402 .0134 185 .0506 .0402 .0104 r 186 .0535 .0402 .0133 187 .0607 .0402 .0204 188 .0655 .0402 .0253 41 189 .0816 .0402 .0413 190 .0918 .0402 .0516 di 191 .1301 .0402 .0898 192 .1778 .0402 .1376 193 .5352 .0402 .4950 194 .1065 .0402 .0662 195 .0713 .0402 .0311 196 .0568 .0402 .0165 197 .0559 .0402 .0157 198 .0498 .0402 .0096 IN 199 .0453 .0402 .0050 200 .0418 .0373 .0045 201 .0390 .0348 .0042 ,, 202 .0366 .0327 .0039 203 .0346 .0309 .0037 Al 204 .0329 .0294 .0035 205 .0442 .0394 .0047 206 .0430 .0384 .0046 207 .0419 .0374 .0045 di ink P:\ 15946 - BASELINE \hydrology \unithyd\BASELINE -UNIT HYDRO.txt 27 Ai oll ail II iii 208 .0409 .0365 .0044 209 .0400 .0357 .0043 210 .0391 .0350 .0042 tat 211 .0384 .0343 .0041 212 .0377 .0336 .0040 dot 213 .0370 .0330 .0040 214 .0364 .0325 .0039 215 .0358 .0320 .0038 WM 216 .0352 .0315 .0038 217 .0343 .0306 .0037 illi 218 .0338 .0301 .0036 219 .0333 .0297 .0036 MI 220 .0328 .0293 .0035 221 .0324 .0289 .0035 td 222 .0320 .0286 .0034 223 .0316 .0282 .0034 224 .0313 .0279 .0033 225 .0309 .0276 .0033 io 226 .0306 .0273 .0033 227 .0302 .0270 .0032 228 .0299 .0267 .0032 w 229 .0296 .0265 .0032 230 .0293 .0262 .0031 tit 231 .0291 .0260 .0031 232 .0288 .0257 .0031 so 233 .0285 .0255 .0031 234 .0283 .0253 .0030 Ilit 235 .0280 .0250 .0030 236 .0278 .0248 .0030 237 .0276 .0246 .0030 M 238 .0274 .0244 .0029 239 .0271 .0242 .0029 ow 240 .0269 .0240 .0029 241 .0267 .0239 .0029 ,^ 242 .0265 .0237 .0028 243 .0263 .0235 .0028 amii 244 .0262 .0234 .0028 245 .0260 .0232 .0028 246 .0258 .0230 .0028 "!i 247 .0256 .0229 .0027 248 .0255 .0227 .0027 MI 249 .0253 .0226 .0027 250 .0251 .0224 .0027 to 251 .0250 .0223 .0027 252 .0248 .0222 .0027 Ow 253 .0247 .0220 .0026 254 .0245 .0219 .0026 255 .0244 .0218 .0026 "a 256 .0242 .0216 .0026 257 .0241 .0215 .0026 to 258 .0240 .0214 .0026 259 .0238 .0213 .0026 260 .0237 .0212 .0025 • 3 261 .0236 .0211 .0025 di 262 .0235 .0210 .0025 263 .0233 .0208 .0025 264 .0232 .0207 .0025 I li 265 .0231 .0206 .0025 266 .0230 .0205 .0025 tie 267 .0229 .0204 .0024 268 .0228 .0203 .0024 269 .0227 .0202 .0024 270 0226 .0201 .0024 iiii 271 .0225 .0201 .0024 272 .0224 .0200 .0024 273 .0223 .0199 .0024 I 274 .0222 .0198 .0024 di 275 .0221 .0197 .0024 276 .0220 .0196 .0023 277 .0219 .0195 .0023 AR 278 • .0218 .0194 .0023 4 +ter P:\ 15946- BASELINE \hydrology \unithyd\BASELINE -UNIT HYDRO.txt 28 di 279 .0217 .0194 .0023 Ma 280 .0216 .0193 .0023 281 .0215 .0192 .0023 282 .0214 .0191 .0023 ME 283 .0213 .0190 .0023 284 .0212 .0190 .0023 Ai 285 .0212 .0189 .0023 286 .0211 .0188 .0023 mom 287 .0210 .0188 .0022 288 .0209 .0187 .0022 �If TOTAL SOIL -LOSS VOLUME(ACRE -FEET) = 619.3818 TOTAL STORM RUNOFF VOLUME(ACRE -FEET) = 154.6984 NMI al rr mq WE mm mug MO mm au wit +lYi w rr "411 P:\ 15946- BASELINE\ hydrology \unithyd\BASELINE - UNIT HYDRO.txt 29 mi di '411 ,om 2 4 - H O U R S T O R M R U N O F F H Y D R O G R A P H ■/ HYDROGRAPH IN FIVE- MINUTE INTERVALS(CFS) w gi TIME(HRS) VOLUME(AF) Q(CFS) 0. 575.0 1150.0 1725.0 2300.0 mi .083 .0035 .51 Q . .167 .0240 2.98 Q di .250 . .0785 7.91 Q • .333 .1789 14.58 Q w .417 .3186 20.29 Q .500 .4812 23.60 Q • di .583 .6555 25.32 Q . .667 .8359 26.20 Q .750 1.0187 26.54 Q . *A .833 1.2029 26.74 Q . .917 1.3883 26.92 Q . ad 1.000 1.5746 27.06 Q . 1.083 1.7616 27.16 Q gm 1.167 1.9491 27.22 Q . 1.250 2.1370 27.28 Q . Mr 1.333 2.3252 27.33 Q . 1.417 2.5138 27.39 Q . 1.500 2.7028 27.44 Q • mm 1.583 2.8922 27.50 Q • 1.667 3.0820 27.55 Q MI 1.750 3.2721 27.61 Q . 1.833 3.4627 27.67 Q , 1.917 3.6536 27.72 Q . 2.000 3.8449 27.78 Q g 2.083 4.0367 27.84 QV . 2.167 4.2288 27.90 QV . 2.250 4.4214 27.96 QV . gm 2.333 4.6143 28.02 QV . . 2.417 4.8077 28.08 QV . II 2.500 5.0015 28.14 QV . 2.583 5.1957 28.20 QV . . w 2.667 5.3903 28.26 QV . . 2.750 5.5854 28.32 ,QV . ell 2.833 5.7809 28.39 QV 2.917 5.9768 28.45 QV . 3.000 6.1732 28.51 QV . . and 3.083 6.3700 28.58 QV . di 3.167 6.5672 28.64 QV • 3.250 6.7650 28.71 QV 3.333 6.9631 28.77 QV . lil 3.417 7.1617 28.84 QV 3.500 7.3608 28.91 QV ,i 3.583 7.5604 28.97 QV . . 3.667 7.7604 29.04 Q V 3.750 7.9609 29.11 Q V 3.833 8.1619 29.18 Q V . all 3.917 8.3633 29.25 Q V 4.000 8.5652 29.32 Q V 4.083 8.7677 29.39 Q V . MI 4.167 8.9706 29.47 Q V 4.250 9.1740 29.54 Q V illi 4.333 9.3780 29.61 Q V . 4.417 9.5824 29.69 Q V . 4.500 9.7874 29.76 Q V • MI 4.583 9.9929 29.84 Q V . di 4.667 10.1989 29.91 Q V 4.750 10.4055 29.99 Q V 4.833 10.6126 30.07 Q V . wi 4.917 10.8202 30.15 Q v . 40 ad P:\ 15946 BASELINE\ hydrology \unithyd\BASELINE - UNIT HYDRO.txt 30 al mm Ai AR i 5.000 11.0284 30.23 Q V +� 5.083 11.2371 30.31 Q V 5.167 11.4464 30.39 Q V . . • 5.250 11.6562 30.47 Q V . 5.333 11.8666 30.55 Q V 5.417 12.0776 30.64 Q V . 5.500 12.2892 30.72 Q V . . 5.583 12.5013 30.81 Q V . . tat 5.667 12.7141 30.89 Q V . . 4O 5.750 12.9274 30.98 Q V . . 5.833 13.1414 31.07 Q V . . 5.917 13.3560 31.16 Q V . . +m 6.000 13.5711 31.25 Q V . . 6.083 13.7870 31.34 Q V . . 10 6.167 14.0034 31.43 Q V . . 6.250 14.2205 31.52 Q V . . 6.333 14.4382 31.62 Q V . 6.417 14.6566 31.71 Q V . . 6.500 14.8757 31.81 Q V . . md 6.583 15.0954 31.90 Q V . . 6.667 15.3158 32.00 Q V . . +m 6.750 15.5369 32.10 Q V . . • 6.833 15.7587 32.20 Q V . . OA 6.917 15.9812 32.30 Q V . . 7.000 16.2044 32.41 Q V . am 7.083 16.4283 32.51 Q V . . 7.167 16.6529 32.62 Q V . . Id 7.250 16.8783 32.72 Q V . . • 7.333 17.1044 32.83 Q V . . 7.417 17.3313 32.94 Q V . • V! 7.500 17.5589 33.05 Q V . . 7.583 17.7874 33.17 Q V . . di 7.667 18.0166 33.28 Q V . . 7.750 18.2466 33.40 Q V . . mm 7.833 18.4774 33.51 Q V . . 7.917 18.7090 33.63 Q V . . • 8.000 18.9415 33.75 Q V . . 8.083 19.1748 33.87 Q V . 8.167 19.4089 34.00 Q V . . mg 8.250 19.6439 34.12 Q V . . • di 8.333 19.8798 34.25 Q V . . • 8.417 20.1166 34.38 Q V . . 8.500 20.3542 34.51 Q V . . , 8.583 20.5928 34.64 Q V . . 8.667 20.8323 34.78 Q V . . Sri 8.750 21.0728 34.91 Q V . . 8.833 21.3142 35.05 Q V . • 8.917 21.5566 35.19 Q V . . mm 9.000 21.7999 35.34 Q V . . • 9.083 22.0443 35.48 Q V . • 9.167 22.2897 35.63 Q V . . 9.250 22.5361 35.78 Q V . . mm 9.333 22.7835 35.93 Q V 9.417 23.0320 36.08 Q V . . Ad 9.500 23.2816 36.24 Q V . • 9.583 23.5323 36.40 Q V . . 9.667 23.7842 36.56 Q V . . "d 9.750 24.0371 36.73 Q V . . dd 9.833 24.2912 36.90 Q V . 9.917 24.5465 37.07 Q V 10.000 24.8030 37.24 Q V . . 10.083 25.0607 37.42 Q V :: 10.167 25.3197 37.60 Q V 10.250 25.5799 37.78 Q V 10.333 25.8414 37.97 Q V . . 10.417 26.1043 38.16 Q V . . 'd 10.500 26.3684 38.36 Q V ...:1 10.583 26.6340 38.56 Q V . . 10.667 26.9009 38.76 Q V . 10.750 27.1693 38.96 Q V AR 10.833 27.4391 39.18 Q V . . a milq P:\ 15946- BASELINE \hydrology \unithyd\BASELINE -UNIT HYDRO.lxt 31 ✓ tl 4M di mm 10.917 27.7103 39.39 Q V . 4i 11.000 27.9831 39.61 Q V . 11.083 28.2575 39.83 Q V . . • mm 11.167 28.5334 40.06 Q V . • • di 11.250 28.8109 40.30 Q V 11.333 29.0900 40.54 Q V • 11.417 29.3709 40.78 Q V . • • 11.500 29.6535 41.03 Q V . • "id 11.583 29.9378 41.29 Q V . • . • OW 11.667 30.2240 41.55 Q V . 11.750 30.5120 41.82 Q V . • 11.833 30.8019 42.09 Q V . • +w 11.917 31.0937 42.38 Q V . 12.000 31.3876 42.67 Q V . OW 12.083 31.6836 42.97 Q V . . 12.167 31.9820 43.34 Q V . . 12.250 32.2834 43.75 Q V . • 12.333 32.5879 44.22 Q V . • . 12.417 32.8956 44.68 Q V . . 12.500 33.2061 45.09 Q V . . 12.583 33.5193 45.47 Q V . . • w 12.667 33.8350 45.85 Q V . • 12.750 34.1534 46.22 Q V . . III 12.833 34.4744 46.61 Q V . . 12.917 34.7981 47.01 Q V . . • • 13.000 35.1247 47.42 Q V. . • • um 13.083 35.4541 47.84 Q V. . di 13.167 35.7866 48.27 Q V. . • • 13.250 36.1222 48.72 Q V. . 13.333 36.4610 49.19 Q V. . • mm 13.417 36.8031 49.68 Q V. . 13.500 37.1487 50.19 Q V. . OW 13.583 37.4980 50.71 Q V. . . 13.667 37.8510 51.26 Q V. . • 13.750 38.2079 51.83 Q V. . MR 13.833 38.5690 52.43 Q V. . di 13.917 38.9344 53.05 Q V • 14.000 39.3042 53.70 Q V - • 14.083 39.6767 54.08 Q V • m1 14.167 40.0438 53.30 Q V 14.250 40.3955 51.07 Q V • 1r 14.333 40.7250 47.85 Q V 14.417 41.0369 45.29 Q V • • MOP 14.500 41.3418 44.27 Q V • 14.583 41.6470 44.31 Q V . • 14.667 41.9565 44.95 Q V • • 14.750 42.2733 46.00 Q V • • 14.833 42.5987 47.25 Q .V • "g 14.917 42.9336 48.63 Q .V . 15.000 43.2792 50.18 Q .V . am 15.083 43.6390 52.24 Q .V . • 15.167 44.0252 56.08 0 .V . 15.250 44.4632 63.59 .Q .V 15.333 44.9943 77.12 .Q .V di 15.417 45.6524 95.56 .Q .V . 15.500 46.4386 114.16 .Q . V . 15.583 47.3389 130.71 . Q . v . °m 15.667 48.3658 149.11 . Q . v . • 15.750 49.6137 181.20 . Q . V . d 15.833 51.2626 239.41 . Q . V . • 15.917 53.5414 330.89 . Q . V . • ill 16.000 56.8414 479.16 . Q . V di 16.083 62.2307 782.52 . Q V 16.167 71.5783 1357.28 V • Q 16.250 84.8805 1931.48 . .V Q G O rl Zo C �•' � • 16.333 100.0519 2202.89 . . V . Q . G. 4111 16.417 112.7549 1844.48 . v.j • 16.500 120.9679 1192.52 . Q .v di 16.583 125.8784 713.01 . . Q • v 16.667 128.8055 425.01 . Q . • v mm 16.750 130.4579 239.92 . Q . v MW mu P:\ 15946 - BASELINE \hydrology \unithyd\BASELINE - UNIT HYDRO.txt 32 44 id di um 16.833 131.5363 156.59 . 0 . V di 16.917 132.3385 116.48 . Q . V • 17.000 132.9471 88.37 .Q V • • 17.083 133.4113 67.41 .Q V AR 17.167 133.7928 55.39 Q ▪ V di 17.250 134.1433 50.88 Q . V • 17.333 134.4992 51.69 Q . V - 17.417 134.8626 52.76 Q . V • "'"A 17.500 135.2268 52.89 Q . V 17.583 135.5875 52.37 Q . V - d i 17.667 135.9427 51.58 0 . V . 17.750 136.2913 50.61 Q . V dm 17.833 136.6332 49.65 Q . V • 17.917 136.9690 48.75 Q . V id 18.000 137.2989 47.90 Q . V 18.083 137.6231 47.08 Q . V - • 18.167 137.9416 46.25 Q . V di 18.250 138.2543 45.40 Q . V 18.333 138.5612 44.56 Q . V • 18.417 138.8627 43.78 Q V 18.500 139.1595 43.09 Q . V • .A 18.583 139.4519 42.46 Q . V 18.667 139.7403 41.88 Q V • dd 18.750 140.0250 41.34 Q V 18.833 140.3062 40.83 Q . • V - 18.917 140.5840 40.34 Q V - AA 19.000 140.8585 39.87 Q V • • 19.083 141.1300 39.42 Q V • +I 19.167 141.3986 38.99 Q V • 19.250 141.6643 38.58 Q V • IIIN 19.333 141.9273 38.19 Q V • 19.417 142.1877 37.81 Q V • ,d 19.500 142.4456 37.44 Q . V 19.583 142.7010 37.09 Q V • 19.667 142.9541 36.75 Q V ', 19.750 143.2050 36.42 Q V • 19.833 143.4536 36.10 Q V . ' 19.917 143.7002 35.80 Q V 20.000 143.9446 35.50 Q V am 20.083 144.1871 35.21 Q . • V 20.167 144.4277 34.93 Q . V r/ 20.250 144.6664 34.66 Q V 20.333 144.9033 34.39 Q V 20.417 145.1384 34.14 Q V d 20.500 145.3717 33.89 Q . V 20.583 145.6035 33.64 Q V ' 20.667 145.8336 33.41 Q V 20.750 146.0621 33.18 Q V Am 20.833 146.2890 32.95 Q V 20.917 146.5145 32.74 Q . V Am 21.000 146.7384 32.52 Q V 21.083 146.9610 32.31 Q V • 21.167 147.1821 32.11 Q • V A. 21.250 147.4019 31.91 Q V J 21.333 147.6204 31.72 Q V AO 21.417 147.8375 31.53 Q V 21.500 148.0534 31.34 Q V AR 21.583 148.2680 31.16 0 . V 21.667 148.4814 30.99 Q V AO 21.750 148.6936 30.81 Q V 21.833 148.9046 30.64 Q V • 21.917 149.1145 30.48 Q . V 22.000 149.3233 30.31 Q V 4 22.083 149.5309 30.15 Q V 22.167 149.7375 30.00 Q V 22.250 149.9431 29.84 Q V gm 22.333 150.1476 29.69 Q V 22.417 150.3510 29.54 Q V +i 22.500 150.5535 29.40 Q . V 22.583 150.7550 29.26 Q V 22.667 150.9555 29.12 Q V. dim ad Ad PM5946-BASELINE\hydrology\unithyd\BASELINE HYDRO.txt 33 !I ark ilid 22.750 151.1551 28.98 Q V. 22.833 151.3538 28.85 Q V. 22.917 151.5515 28.71 Q . V. ow 23.000 151.7484 28.58 Q V. 23.083 151.9444 28.45 Q V. W 23.166 152.1395 28.33 Q V. 23.250 152.3337 28.20 Q V. 00 23.333 152.5271 28.08 4 V. 23.416 152.7197 27.96 Q . V. di 23.500 152.9115 27.84 Q V. 23.583 153.1024 27.73 Q V. 23.666 153.2926 27.61 Q V. wit 23.750 153.4820 27.50 Q . V. i 23.833 153.6707 27.39 Q V. d i 23.916 153.8586 27.28 Q . V. 24.000 154.0457 27.17 Q . V. ,, 24.083 154.2286 26.56 Q V. • 24.166 154.3938 23.99 Q V. 24.250 154.5246 18.98 Q V. 24.333 154.6090 12.26 Q V. 24.416 154.6540 6.54 Q . V. em 24.500 154.6763 3.24 Q V. 24.583 154.6870 1.56 Q V. di 24.666 154.6920 .72 Q V. 24.750 154.6949 .43 Q V. 011, 24.833 154.6968 .27 Q V. 24.916 154.6978 .15 Q V. am 25.000 154.6982 .06 Q V. 25.083 154.6983 .01 Q V. gm END OF FLOOD ROUTING ANALYSIS OW sie di es lilt e0w am \ WM diii 01111 . 41 OW al Ad 1 :1 "". P: \15946- BASELINE\ hydrology \unithyd\BASELINE - UNIT HYDRO.txt 34 Ami low n u • err rill rlrl w gig 10 IMO qui r � r wl P:\ 15946- BASELINE \hydrology \unithyd\BASELINE - UNIT HYDRO.bct 35 i qui wr CITRUS AVENUE WIDENING JN OC -F60- 400 -00 TASK 204 wr rri rrw HYDROLOGY STUDY "•11 FOR CITY OF FONTANA Wr _ BY BOYLE ENGINEERING CORPORATION 1131 West Sixth Street Ontario, CA 91762 (909) 933 -5225 ,,,� April 10, 2002 The 155.3 -acres project is located in the City of Fontana along Citrus Avenue. The site is bounded by 210 freeway on the north, Baseline Avenue on the south, 180 feet west of Citrus Avenue, and Oleander Avenue on the east. For the area south of Walnut Street, the east boundary is approximately 350 feet west of Oleander Avenue. The topography of the project is such that it slopes in a southwesterly do direction. The area to the north is tributary to South Highland Avenue and drains westerly to a sump located at the intersection of Citrus Avenue and South Highland Avenue. For this reason said area was computed for a 100 year storm from which the future sump catch basins will be designed from. The remainder of the project was modeled for a 25 and 100 -year storm along the pipe southerly along Citrus �• Avenue to Baseline Avenue. This is reflected in the Main Hydrology Map (see back insert). The other map in the back insert is the Catch Basin Hydrology Map. This map is calculated for the 25 **s year storm and will provide criteria for sizing the flow -by catch basins. The total 25 and 100 -year storm discharge at Citrus Avenue and Baseline Avenue is 393 cfs and 289 cfs, respectively. rr� till .r 4 Poi ,6i 11 3.5 +� 3.5 in Ii MI . 3 iii 3 iw ow 2.5 2.5 — - — Ili en W 2 Pi . Z _ -- ai ? 2 on = 2 , F- Mi O. W C L 1.5 a . �� - 1,Ly1 ';' ■ 1 ill - .�- -.--' NM a5 0.5 0 • 0 2 5 10 25 50 100 RETURN PERIOD IN YEARS NOTE' I. FOR INTERMEDIATE RETURN PERIODS PLOT 10 -YEAR AND 100 -YEAR ONE HOUR VAWES FROM MAPS, THEN CONNECT POINTS AND READ VALUE FOR DESIRED RETURN PERIOD. FOR EXAMPLE GIVEN 10 -YEAR ONE HOUR ' 0.95' AND 100 -YEAR CNE HOUR s 1.60 , 25 -YEAR ONE HOUR s I.IA ". REFERENCEINOAA ATLAS 2, VOLUME ICC - CAL.,19T3 RAINFALL DEPTH VERSUS SAN BERNARDINO COUNTY RETURN PERIOD FOR HYDROLOGY MANUAL PARTIAL DURATION SERIES • D - F IGURE D -2 ... ` r ••• • ?. a • • ' ' .: Z ' •R ';M k � 4 i - -Z • 14 1 I I " Z 1 . 1 I I I . U) r •' � - -- - - : C " ¢ 1 , I - [F•' - --I' - 0 .` 1 1 - -'/ aa'J4 F^ • �•a,�r•1 -- — - r ~I - -- - - • / m . ._ _ {__ • 8 0 N a -1. VXVXVX I N 1 I I , \�, � _aa . .I' I,__..�1•- I I c. I ' . � I I I I .r _ ��' _ i T CC I r 1 I I I I.- I h I ,I 1 /�-� r -1- - 7 , 5 1 ' � - M -I - -� 1 - - - 1- - - I 1 4 I - - ' ; - I -= ��� i - i l I I ) ••_._..._._ a w W '� -. 14 li 4 T . ; k • , '., - r 16tol_-...41,•', , .., ._ 4 t I 1 , I, , , -. I_ m }� f . + ° _ t I . �1 I,,., w, : � 1 Nom, a ••••;-..- _ - • W •` '.•- :A-- . _: I ' _ I . I '- I I w it i 1- , '" •I ••t - . \ • I ,y I . f I r m I 1 �� I 1 0111 • _ I � � 1 Yr(1 1 I - i. 1 -I 1 i •cc-, 3 1 I I 1 1•, 1 ,; 1 I 1: -. a_ 3 J 11 • • 1 I I °� _ ::.J r - : H % w rT al • �1.�►� , / ` I �/� v a II ft) ,. I / 1 1 � � Th VI wu, 1 / l� N I - N , � -4 .- • Ji ..... I_ i',/ i{ I-� 1 \ 1 , , ,_ l ?IN a � I 1 f I x z - • • .,r. 1 1 � F M -1:.,100., - I , ` _ . I _. 1 I I . 'I '. , a d' I& z Q • . y i �1 � 1 � • v 7 a .r �� M4 J 1 iJj, I 1 - I "" ^ � 9 7. 1 i I j I r -- Q It . • - i , 1 I M a i T * i.:' tl 1 1 :I ' ` I ' : Sr , ° ' a I ..: I- _ _ _ I , � : f 1 6 111: - i.- -_- I o • 1 N I _ _"r 1 .1 '\ I- I- t •'l I y `I._ i- II. A m '��i •• : I . • < }- • 1. �\��- I - 1 t.T I I _ v.. - b. j _ _ I --i I - - - I � t • I- �/ •,: I -- ;�rrr •� I 1` \; • I - -.- A� Fb 'S. 1 I — I '� " � ' .. ! �- �.I 1 .. 1 • . � •! 1 I Q I 1 J,\ I I ! '. • ,„ .: ..... 4 . 1 .. )„ , o l t , -I 1 - 1 ` I ' ."' --„,, .. ■ffradellii..whinst. 1---huim ,J ,, i. _- - 1 , I T I Ear . • . . mtalvo .„. 0 „,,,,, . i_ .„.....,....% ,...... , 1 1 lir • _ _ _ . . _ .F... i _ i t r Writalffeyv.T.FiT_ + ,'i _ ,.. . '4 - F -- pit 4 •• � - -- - - ' ,F I. � M P • .a - - 1 ;. I j I 3 7 1 I , I _ I •• I ,. I r r n T .'' ' -, \ 4 r . • ° ( r • :Pa • / I I li _ I I _ I F; I ,IWr� / - 1 ., •. 1 • . ,., /'--� fi I 1 1 , ! S 1 ry, I I • 1- } 1 .•• \ W _ � • 1 N' N IV r�Iq F 's.-/; . • • : u- • i ! 11 I _ - • I , ;I - ,. - I -, •• 1 •',' 1 L:.____ .. iii I . ;., 1 t_;-.r i , I II_ • • 1 _ • \ .., " . , • J. 11 ili f i rd7 I ,• , ,/, a I I i o I ' — I' I i, %it, . . , I •ao ... 1 . . I - - . ( b I • 1 i _ '1' I - _. . _ . In.w i "� I. • 1 1f.'e I 1 I I, y � 1 1. I I I I I • . ; I - - -... ,` _ _1_ � I � :, , i �• _ 1 � s ,. _ 1 141'.° 14, ,.........._ . .. , ..• •_. ...._ _ ANsepie,.7--- . - I •.,, B 1 L _,- it • / iritim _ L.. • . 1 1 VS (....______. ' ; ., .77iir ... . 1 I . ,/,.... _______ 7 . ..zio We - 7 ,,,...;......„. 4 .- , I l jor end • z I .--� I • • I / ( z _ — c _ n I 1 I N I I I M d• - 1 y - - 1-- -1- • F , -. ...4. • _ 1 _ _ .i , , ..- • _ 1- t- - � -- - • _ - i _ 1- I I : - I- - ,- >♦ - • { .t - - -I- --F • : i - r - F J t • -- — ----------------- _____________ ___ . . .1., Z , .„ 1 . ' ' a. i l .. . I .. 1 . „, 11. .: 1, 14 , ., 11. .. 'I ,I1 .( ,..,-=". 7 ! .. .',!!'•'••• '•,:‘,"..!( 1 ., i'.• '.;. • '' 1. • .. 2 .:.: ..: , ,.., ., ,:.,.-_,...-....,..,......„ .;,......?,... . , .• ..../ , . ' ..-:,. , .....'.i.. ..... 11 -i 1.11:I. : . 3..-41: i ' I ' i 421 '11.-1:i.' ' 1 ' .. i .' I . . 7.'1 ' , . I.. [ - • . . . 1 * 1 - a - --,- 1 1 4 *%. • ' ., •• . • 1 ..i '.- :', ;' o .: „:." . ..; --- • , ..„ i i , , ,. .. 1,-.11,...,1,;•!.. „ .., 111)1A 01 '11 - 1 - ' a_ I ,;: .. . i ... . ,. 4 1.‘ 411, ..„ .....,,. ___ ,__L •-,-,. . 1 .,.... .... <E :11' ,- ..,1 ,. ,c .,,... • - ,f ... ' ..• % ' Ii;:, 1 W.:. . . :;.........,•?„,!??..,;, . j ••.-., , - : •,:;.-• ...f:-: - .. . 1 .14,4" I .. , ..,,, „. , . •4 , l• . J r... ..; _ ■ I ..A7 ....2 1 ' .. ...-, fl: if • ,/' ''''''• if> .7 ./ . •;-;..f%. : f . I, ... . '.„; I ..(A - 1 . , .., - ..,‘,., ,, IL.•. ; I•Ii...; "4 F 1,„1,./ t 1 1,te. : , ' 1 . Iv .• , .. ...; • 0 " ...2"..----..te ../ .,:%'• , .., ', ,, •••..• 44 ' • ',I c-,;."., ' • ' \ s , 4 t ' . . A .' 1 1 . 1 ' ' "I illIllIl f i 1 ili I l it • ( t. iir i 1 cl..: ,,- ot / . 'N' i . ..• ...„ ,e , ,. • II . . • c;1* N . . .; t • . 16 n. 1 1.,...ii i J111.i. Po ..: ) 1. Cr) Pli• ' ,' • ,,.., ....• "I, •il / ' .' .• . 4: r - .• ' ,, , • , , • I .. \ : d• 1 9 .• . ■ I k - .. .c I; ,,%>•• , :t! , ii ,.!.`',:••••:',!• , ‘ , .•,',.7 ,,', ' ,,....- r. .ic.,.., • 1 • .. 4 ,101,'`. -.,- . - I': .. ,•.; •••••a • • ' . ‘; -' • I I I- - ' ' i • I ' 'I i I ' -' : . I.- :I • 1 • (. 1! "11.' 11 . .' ' ft- ':.• ' / \ 0 10 •• . ' I /•,..i .0 o I,. ../ ;1( , . t. ■ ,Y.1 ..r ...)44,.1,.. . ' • ...2 i `...,. •. ■'.' • •.;•. ' '' i .'•'.. I • ,• 1 ' ' 1 •--- - ' 1— 1 • ij -- •... 4 \ .: , ..• 11.1,4 ; 1 / 1. : 1 i . ., .. . , , • . 11 4 ' . J ac ii-; :,.,„-.. .,-*.,• . '. .• ......„ 3 !':%•: "7 , el .:; ••• !••• . 0 • • ' i 1 \ \ : 1 - . .... . .,,• i . • 1, d II 1 I. i 1, or i. i... , I • t... "--. 0 ,, ..,. • : ..... L I.,. e••"...% 1,.... ..... , .1. 1 •,!.., . I I .1 • I, 11,; .■ ,or 1 .."\...,. . Li. ' 0 • ci) i! / " ', i ,..;. 1 • ' .••, ‘, , r " ' • .:." 0 1 • , 1 r . 1 1 )03/4 " . ' '" ,.. • 1 . • ' '' . ' . '11' !• ' )) 1 i' :Okla If 1,•"111g•'' 101 • 1 ','•*.: ''' 1 i 0 ! ..Itt- „•,•„S• '. 1? ,1, ,'''.•%...... f ••■• t•••.h it •-:-.• • ". ‘s s.., • zwisokiLl I?)( I • ,-• • I. .1 . (!k• .1i 7 • , .1. !, • , •• ' u) 1.1... 61 1 Q •,,,. : , \. . ,-•,I,.,•, .., 4 , ,7 , • . s.„ •.,...., :?, , f.' .,: .... 1 •• f y.;•..!! • ,. :Ig',!..,...... .... • ..:. • ‘.., . : ::,.. . . ,' , .... . IL.A.116.‘01k I . ' .! 'J .:;.' *. , I .i t . ‘ . 1 _,. 14,1 4, ' •:E-Ti i f, !I ...„ .. ..,..- •,, ,•_,r. ,Ti ... ,,,, 4, la 1. ••• w • , • 1 •,,,.., .4 ,;•... 7. '-! t' ;; .(•', •:, ,. ' • ' - • i ,i .' ,., ; - *`•!..7.1 , ..1 , , - • , 1,,• , i - • , • i • It. , .1 • N,.;., Mimi, Ill e, i 'i ' (2 I-- •i .k.r.c•ri':• - .'"•, Irk. •••:':•.fil.," •ii2 .i , '-K• I •• ---."•,•• - • C ' '1., .. ,, • .!: •, -: t 1 a7" .4,....../.. ...., .... .. ' ,.... . ' ''! . '11::. i :4 1 . !it.. . . 1., I I. ! r lir., '47.0 .0 • VO , . . 0 t ip .,,,..,. . i..4,, . ,s.1.1 ,,c.......i.it;'...7...i...,. :61.t.t..11,.ii;.,,orq,,,;...Lc ,1....:.::. , l i: i. ::. + . 7 . : ...'. °I . :.. , 'I 1 i'• , 7f-_,. ;;..,. 1 :, . ..,::2 : ,:1: \ 11/ ., :, , , , n o 101'" ..•'• - vo, • ,..., „., , ., .„. ,-, . :.- • .. - ;, k °''' ' ' t •,'''' '''....' t, "81 tf 3 , --' -..-.4 ...... •--,- - : - ' -1 ,::'.' ,i• I ) ' , • i ,- : ) I 1 r. ;I: .. , 1 •• . 0 •',/, • ': . :::. ' - . :: ...,;t:,;,.;....•Uilf:' • •-•"*. : :-`)."1: 4 " ,iii !!!,%',...'. ' .::.4;.... • :i, g 14_, s i. , . •: ... 1 .‘,..•".1`. . . r . .. 2 . ../ • ; . r .. .., 1 ." ! - 4• •• .. , ., I ... • ...4::• r..' 4' 1 . 1 c Z .: • f .• cr ••• ••;'•,,,,, , ,.• • r • ". ••'. '.'1":■.5..,t•V.r„,! •1, 4 ,/!; - .: , 1• • ::.:7 etti .., 0, ,. . '' \‘' 1 ' .'• t i -!... .7: <1 , , i . ,. ,•,' 111 ; • .4 ,,,,* .' ....4,:: .",. , fi • 0 ( ,:: .7.•:; -,..,....■ 4 .)::::::,,,,..i..... 5 ,4.. • , • - : .-• \ i C3 i, • .‘ ' • : ' 1 )1 if Iii „.,.,,..., ,• ., :,,, 1.,- ..-,:‘,.....;.,..::,.... , ( ,- 4 ... .y. .../../ 5.1-ztel4m , :;.•,...,.• it,.:::: .,.,..., i...:: ''.. . - , ; 'anis% % Ir. ."''''. - • ' L ' ' - .•', ,' • ii 4 " ' ---. 4 I• ' ''", • • ' " II. l'I' • ' >-• • I '• - ;‘;•:•!•"0 ' :! - •, 1< • : ), , I.:1; 7 f,rfOrr ., ;,'..I.;''o - ..T .r- 1,7 • • . . ' . 4.. . ' '... . 1 . / . . :....". ,:.' f, l' A. t 'll, _ Ill ..,.. ! . .,_:: , I „..?:..., : i'; i X - .. . ; ,, k, •• •,i *,, ii,,•,.,k,,N;,,,,--.,....r..i•,....f., 1 ,,...‘, .t • • •:.....t - I ; 1 1.,..... , '•.: ' 1 .-, 1. . I.. , . 'il, ' '• : i 'a ;',:,.. 1 .1 t' f .. ..'),. ..-, ilt.•k 1,'?",4 t ' ' 11 1:.1)1';',.'..:;'''''''4i':"•Ii•41`. .' \ . i . 1 • t • . , ', • • • „, ,, ,•• I■ , " ' • 1 • I •' • '.. I 'I' •• 116 • 'r / ■• ''.. t 1! ' ,.t I. ,.,/,,.'.';:' r.i • "4 vif."• ' 4-'!•-•;'.;',•1,-6' . • ,. ...... • ,11 , • - i '1-.., it..s, • , - ! • „. !.. _ _ _ , 71. '. L. _ i‘_ i It t; ;; .t tet ,, , . , .; 1 .'t %.,t,ViV .: . ," 1 .... • 1,;,'i i., •: • :•! , J ',,;4': , ..,..' ' ' '..• '.% ,'" 1 ' 4 ' 1 .../..'. I 7,-.- .1 :. j..../ 4 .:•,,, • , , ,- 1: .7 • I , tip' r ,...,..i.,„..:„..,, :•.,,,..:, . ,,,•• . .__. . . •,,,,•••:)",,,,...:,,,.„ ,...,,,,,,,„„:".......,•;,;..y7' 4 .•':?.. /,./ • ; d 4 I •;:t.'.,"0,‘,I;:‘,.,*:..,!• ..e.r ,,••;•,... • t•,. , /. •• -,.(......._ . 1 • , c-... ..0 1 ,.• ` :• r 4 . 7:..7 . ,. *. . INWI' - -?-,. ', zt. '.....` .-, z. ' L ;.,•,.. • €.• • • L'4' ! II . i t. 1 ''c :. ' xi I` 0 • -..... I ''.4-' 04 I • y,...i .---- ---; - uP - — .: . . l',.1 . - . •,1i - ' u .. ,:-, IL .7 , 1 - ..., ,, • ; - ', . , ..r • , ... • ._,,,.. _..._ ,. 4.;*i..... • . 47. 44.„,,, , .,, -. ; 't....-4-..,- ,-.." . . -,, 1; ; , „ ' ,_.__:' . .•'- .• .• ; 4 '.' N r + 0. 1.- • •■ - •• • 4at •,-,." • 1 • ,ir' -i ,., , :,..,.., ,ii., „, • -I- „,7,11.,„:„ t ...,.(7,. • ,.... ... • ,.... ... . ‘ ;i"i;;:• 4 •7 \ 2.." : 1 ...:2 , L.,ft . ' '..toveq ' • •• .''- i ; .. , ,.. P1 `• 4. ets, . - I ! , f .., i', 1 Til F.Fi': ... 4v..-:..,? ,,,'• . , • , 5-.1„,...%-r - ...• I: ..:,, • t ....i ..,,,,:,..,,... .. - ' • kY,. - 1f - ! . . 1 3% , -t ...kr'. \ -; - %-- .. N .v. - .= -24 .-i7 . '' -- 1.-1 • . i :"-':!. • i - -' . - '''''''''V - 71: 'I I '.1.0 . h •P ... 7, . .1.; 3,, ; r. , a.. .?4,, ;141 - .'-', '''%:.' ',1;., ? ,. ,'. • ik:''.';' 'f,t;IU :'. :4\.‘ ' . -.... i ' P,'. ' i . .: . .- .s.- ,..{ ''''; .....i...-• . ■ . ' ',......„'..,LA, j..:41 1 ' ill .::;.,-, •,....r.it /, ,- .,.,.t. • ..,, ._,,„. ..,, -, ...4, . , 1,, ,', . - :4 .• :1.7.0. ;•;..., .. 1, . .. )4 ,,,.„ . . ) ,.. 4. , . ,. \ i\. .-.• .,, --1.,..,.....,.;,1 .1,,•,,,!• .• ,/,. ,,,,,, >ffli ■ ? /..' ; it";;': - -.4. , ',.5 , .- .-..ie ., - 0.1 *.‘.. pyt , ,,:i. , , -. ‘... 4 ., . ,',„' , s , •„15. • . , 4 , 4 4 • I ,. j* , , . tl. . ,.,,. , A,,,,t+ .:e.1 ,i,.....wg - ...1,-.r, IA' '',‘, . i.t •. -, a : ., -. t• :. , r.u. ,--;,...--. ' ..; , \', -... - :.,-..,..,„,, .',:',;# ,wr ;,.).4 I, 'I i'' ::!: ' I I' - 01- ' 'i, ta : Li • I t• ''' . 7 - 45 .1'4' . .4 1 r;." . l'i" 445; •: '`• t•-t' ',. . \ I . ' ' ' ' 1 - ri- 4, (• , ... • L . ;1.1 1„.,,,,.t. ,...4. , 1 0 .1 3 , • Q. , .i''''1W'''''!..r , ri. , .13..gz 0+ 1 ,,'• - ,.• - - -1. 4 •. • .., , 1 10 • 0 4 :I .. .! , ,' - th.:i3 :. f 1 ' ' r , 1. ., 1 4..4 - ) 9 ',.. 1 : . " . :-' •• .1;:rAr it.0:;iV,k,•;: ,,...,„.. . . ....,.,,. ., 1 •.. 1 .,,,..". . ......4J 1..1 • ....4. .<■11 .,.. - i„,.. 1_:,, ., . ,.,,.,; . : - 1... • 1 . @ - .' • i fi. .01'i, ' ', ,, ,;40,- , ,. ,.61.... . • ! • , , . , I. I ' .• t 1..1 ',- ,I ' -----',.-:-..t..:-- :..,1 „, I .i ) P 7 . - ' I R 10 •,:r,„ •_,,,,,, i.,,, „.•,..,., ,,,. t. , , : • • . , „ , . •,. , i•os,„ ci,,O. ... , # AIIL4,.1:t I ,.,,,,,..„%,, ,,,,.,,.,. ,,,,,„.,..., • .,• ,. , f . . 1 ) _ .11, .. " , r • ti,i9, cf ' 14...r7UrkAdtr4 1 'f:, kt •/...4.7,4, .-pr , ' ' • 1 , ' ,,• il , • ! 1 • : •• !,-. ', '11 t • " t • 1 . • . , (f - nol; ' " ' •• 'w•- • ••••t. 4, •••••,31:" .) 4.. t -.... .. ,3. -,.._ , 1,,:i ,.fr. . . ... i • ,, • . 4 i ''''.. • I ' • j • A Cr! • itc ,... , 't.•. .4 . ', • • - : • i • ,'. ' 1 ' • . , •,) ‘,, t :..,.• ...r... :„ i„,' slt.% •:} 1-. . ' ''''' 4 • " ' : • , • '' ' ... 1 ' , ir , . 1 ' ', --IL ..e II. , •.• , .1•...:,.....,. • :.••• .:•....ac .nAll IN. !o .••• ; ,... .i.y, t --,,.-:,-- • A'. ;.' •1" ........ ''' ^J"--i, .... I • • !••••', • ••_ ! '• 1.. .,.. , 1,, 1 ., • M "? ". •,:tvt..-1 - iT,',.• , ,•P ••• I , , • •.: • ., ' • A. It", ■ili 4 ..I., op,riN i 4 , , - " ''.. , • . . • 0 , i /....14 '' i• l'4.4 a:'• ../...t :**.k .•(-.. :Irf:h. ';'' " •• .. t • , ' : • • ...• %. - ' ..` - - 1 , • " I. • • Wt. • - :z...74,, — „.::..,:=71 7— CC : ',/ :14 1.*: 1.;•"-4: ./.4:gO -i• iti11:-.? .!:•.,-; tA,•'j . i • ' • I : . .. y i, . • ) • ' 1 1 ', ' • ' .. ) , . ; • 1 ir , ,. . , . • .11 ; , ILI it.,:,. ,„,...,(445.4,:v:it,,,t.c.4%./.47.-4_1•,:',z4,,,,A5-70 .....i- . ..4 - A; .. T.. t , ' 1 1 . r , • j i . 1 ' : , f, 1 • .- ) • / ,..-r, .. - 4 1 ; • 4 , ,:.,,.,,,,,4. v .,... e,...4,,,....4.,).y. 4.,,,,.,,i„.; :t. ...: 1 .;;)._ 1 /....;...:..,.:-.....3:- / .., I I .. ......1 . g t; ' 1 , , I t ' • in ' I i .,11 ...4i4 ,• _•:• 41 • 7 ' '' • • .1" !,)•; 1.1 ce: -711 ''. ,,, ' TA' ,it;1 ..'• I. ' Tr A ' • .: - .! • I 1 '. . ! , f ' . .. ' J • 4 '''' r - h aeit4 67 L!-...:,; '' ..' .' f-,-...! 1 ----• ' ' ' i-‘,• ' . .. ' ,,P.t ) it - 1 1 0 . 1 ''.qffiir ,,, qt , • ;:g ,, : ,, ,,,,5 , : -":,...',. 7t(t j . ;I . 4 4 .iS',:t,.. , ,' • :•-•..0 Vig.4=' . ' . ' ... 1 l '....;. ! . • 1 . ; . , i i ! • , • , .- 111 i4,1,4 1 ..-....•, e I ',.;:z., :'...r .t ',, ,.. . t : ;,,,i14 ,. Tki.,..l '1,?$4. „;0 . < ,:i ,,,1 . f ./ ' • ! -. i 1 I • t . - / / , . • t .., r . / • . 1 .• 6 I • ': 1 . 7 41 . I :1 1 1 (/) ,, t . .., ji f' • II ',1■74.•1.1 fj I ' . NA I ,,, , ,. •.e.i, • • , .:‘ : , • , t . i l i„ ..,,, 1. 1 c .; , , i • ,'..'' -4 1 si.M,' - 1 • . .. 04 4 , , ,„ , -,.4, , ,,21.1• k li,. ,i ..3,,i,rf. •?.1 - ' ti • ;'' f .%),I.i.'' ' ',. ' " Y , I, fik ,itf, '''''''' . ;...iit ...' :)....• : ) •,',Iiil; .: 1 1 1 t:J.,. 1 • ; . .,, / A i • , .:,,, .c..' . ..:.r....0,. , i..., i . • e. •., t 1 0 , j . ,! , .. tt• • .. --.. 1. ,,,, I tr, ' 4 it :I; I J. ,. • . • ', ' ` ''.!••• 't..! 1 1.1.# f * , • g • :1 .1., 1 ........ , lil t?' . '' . 1, ' .i Ns",;iii 11.7 I,' ,•/.....■ 3 V ' ',„, "ei:14..'„ 1-. - 4 . ),II.Lt . ' .') ; ... • ._. • 1...r, ''.._.:111.&: .1.1... .411.- -. • . L '..- -....%_ . ... ; . . . _ ' .. ( _,_ , i3,1:1744; '..,. ,., ,, ri. - sc .., p•? • , • , A 'i , :. 4 . ,,,f r‘ok , ;•,,:o..:71.-, ;• l y,:-_ , ..,,,,,, , i , ,, ., ,I ii. pip.' , , .., '-ir l' ., , •,•:t.1 ..i.. .1 .- .. 1 - ... - c„ 7 I . Asi,y, -,;,. k 1 I 4,44;" iti, ;;,.)- „V .•,.. ••••' - .14,... ., :9•- j• ..,... , I,I, .. ; ,) } 1 . .., 4. , 'Ali : I 10 • , , I . . . tf i l, u ., y ,L.., ;.:.,p4- . . ..t. •.... - . , , ?,,,-...: :, •-,. vp x, -.',•,=.,57-ff 1 :• ..4 . Etir I . - , ' • 1 o z in ...."' ',/ k: ^ . . 1' , , - i s • , il .' I • • ;4! .. ' f. •:',. ,:g - , .>yi: . 4.. ir`j i„....4': '::. . . , • '.. f i i i I/ . .. ... . 1 le, .r t; ,r ),..0.4,1, - ,- '. •, .•' ,, 1 ••'C'• J •i t ,/, ••:I•1 4 . 1 .i. -: ....;,,f4., ,1 `.: ,. .,,,,Tt.t.ki . • '. 4.. at : :•,..r.i ;,1.." j :•,. :1 • ' 1 I ',1 4 - • 0 t'-- •. 1 •,' i -• . , .: i: , : 7 ,4 1 ,6-Qiii,, 2 1, - - - '. ,' o ti 4 I. . ' 1 t . 1 '9 P ' r. I 4■;' • '' , . 7"„• t ''' ' .,.‘ , . TilIelfol. • ;Os' ..4i ••+ ... • •v•• II ,.. ' - 1; :"-• • ; : :‘ • • k ',) . \ k I R.. ''••• r ,..), ' nr, ' fl 4:4 • ' ' ' ' . ' '1 -•' . : : ,'' .. " '.. 03 4" ;:. 4' I .. . $.. . •-• t 'th,......';:: ' '' ;- j .. r ,,,..i.....L...- .', 1 k I 9 - "' . .. 1 %, 11 .% 0 i • 't j• ? , : .1 1% I tif-pk,i," . t. Y,`:.. d k - 7=" 1 . f .' -- 4 - ' 0 1 5 't . ;4,14 • ..4 lititi " r . ,„ , ,. fr , .t., -4.4... . t - p i .r ; ,:..;,, .. ,.: % . _ ,,,i1;..,.., • , 1 ,,,,,, ,t,-.. , , : „ : IP r... if 1 • '• 1 1 vridr, , ... . , 1, . it, ,.. 1 1 il „ ' .1 I . , ) i . , ' 8 5 I j I ' ° u. . Y . .• ,../.1 .-; ,.,' V40' .40 . , A ... -1..) . ''4 1 . e' f, 40 t--;_....>1) — . r .1 • .1.. 1 1 it: .. , • -: 0.. : i „I , ; i - , ;,, r : . 5 4 o ( . ‘,..- 4..„V**. 1,'" ' " •• .• ' W'''' ,t.7,:". ii; ‘•••• • "" 'it ■ .''',.'" •' 4/ • :i , " 1 • • '..1... '• :. • • 't ' . r t •T . ' ' ot (kJ ' 4 1;' ; il! '.7 • . ' . . t .- .• , . ii r ; 0 8 & ' 11.. .; ••.•!,'" ;6 • !., • IN • +.4 .1,:,,it (' 1.; • ' ! • • ' •• '-' . !; it - ' - 1 i.. li . •• 4111 1 • • 1 l'i V° le` '... 1. --;:, '.' , . " . t, ..t• re tr i.• , . f...-,' r",.,,.; , .-" " .1—,--...in,..--." , ,.1 i i i • • ' ! i , :.J. _4 S ;!. 11,•" ,,td.. • :• !:- " ;'.. k. 1 4:1i l t. 4 ,. 3. ,' •!•.. • -:•"k.•AC.'••••itiV.,i4.:Nr4i."4 •;*.11 Arj+ 7 :4.D..k .1 411 '3.: 311 1 -00 . Sill \ AO t)t '''' .11',-; ; •• - ' , 1•';'" .. (9‘ . .:.'.. . .. .,... ..''' '. i' l• .,. .' .';,"‘. ' f Li IR g A, • .., .4.• :1(3 til,.. 111 , ,■.4.1.11;. V t if ' 1 +' ;);''' .." t ilt. A ,s,l'2,1 ty,• 1 1 1 , ' F ' . 41. „,,..,. ,, ' ... ::11 ', Ii- ,...4..; 4.1i 1 .,,,A.... .1 0,,..<! ,,-... %, i' : 2- ti .. i.' '',,... ,66.1) ..) .1 ''',‘• ' ..• ,..4 ' ) 't... 4 '1: ', I .' ' 4•11• • '!% - . i ,.. ,"";-' -: t ti!...4 j i 1 / 1 7 -' .,'. 3 - i i ii r'' ' . lU 1 .... ' '''F,41 ,° . ' ./.,- . . ..;''.. : f 41 . 1. : 11' . \ 1: 1 ' i • (i _..:0 • : a. :• , • . t. .1. ... ii.m.,,, .i.., ., 1 ty,..i4...),i(o-t. .4; 81., -: ,01 n o ..". It . ii I , .., : ,,, ii -. •.. , -. 1. , , , • _ . :„... I , . ,,, _t „ ,, „,„ I i : :••,:..' . .- • • . $ , , . ,.„1„p . ,--, ., - 44 : 4 1 . .. „I ,t,,,, . ,i• • , • , • • , . , : : ........ v ,__ • ,r, . .., -, -,,- - , -,, .- -,...; q 1 ig . ..,. ,.‘ . . . , . 4 JI.. •:., ,, ,( • r, . ,.: • .4 . . ,, , ......, •, ..., • • • fq..p,A, ro A/if..., ..., A, . . All II, „ 4.E , . , . 1 .,.; „ .. • ,• , 1 . • • - - • ,. ,, ii ,:.- I: .„4. . ... .- •Ai• iz. %'f ...,.;- -1:- 1 . : • , .11. •..,1 ,,..,, , • If.. 4 • .1 X , f.; ... ...1. ••• i - , . ',, ' • ' ',. /.! n; r i ... i.ti 4. : - .I . . • ••• • •;q' - 1 . •• • •• • •• 1. : i .N...r -*??•'•• *. ik'- 1 ; ! ',- ' '''A l ''' .-7 ' . 's'f r -r' s, 'i,Y ' P 1 '.. .±[. „.:...--,, i 3 . ,.. .:..... •., ti . o 171: , .. 1 .131 ip 1 ,, :: ,.., ..,#t,..,041 A i ) ., , ,. . ...dr, , .. , ,,, 1 , amollo■ . ■ ,„ = I. . i t . ,10, , A.:•inuil kV. .. ' ''' VI" ' I ''..‘• * .f .. , \ ' ! , ii . .' : ...r,,i . "; ' ,1)q t ' ' _ 11, % ..1 ■ ' ) .1 1 .? !.. 4. ../1 •4 ;1. 4 ' . ....... 3 60‘ . :::' • {. J ., ' Ve: .... j j' 4 . - ... . 1.. • t I ,' ; . fiu, , • .„1.; ' , if.... I. .., At I 1 .., t 1 1 ,li .• , =..,....: ill. •7...:.4,..)),. %; .-..:. ,.3 ;1;2 ' 66 . ' i Y01 ::"■• 6 ,... , 4:4 ; 1 1 ,,i i „ 1 1,,, - ,.,•.. . . ,,,.' 1 1 . ' 1 ::. I ' - ' , ;; , )::-1•.. - 4.".' Itz.••.; -4/..1:•.;,;:17- ...l.1 qi 17, .. •• . .:...,.....,..., .. .,. ...,, , .....„,....,.. ,...„.„.., ..............„......,,..„,...,.. 10-.7.•;;• .1 Illi : i t . ' , , 1 A ....,,,,/, ,,, . . •.:. . -• , "-• • • ••,. / . ...- t : I . 11 .11,11 , 1 ii" ,• Mild 1r 1 1 ‘i ‘, i 16 I iir :1 :* *:: . ..•.i . ..k . ,:•., : i , 'Ixt".- ' ":;:::',,•;.:. -, .'c ,•, , i, ' ;','. i • --- .1 i :•'•'• '‘' •.' ". " i . ' " .P, ,r, „ I ., • ili A ' I ' : ,114 : •,. ---- C . 3• 144114 , 414 415. .. .............. I''''.i;_,...7.,', •:',...:.;.: ... : . f•,......"-L.• . .4 ' . • " '. '. ‘.1 I • ''' ' 1. 11 . .....,. , ( ' 1 . ....,--••• , : q • • / • , 4 1 - 4 '1 ' • 11 ' ''''l '.• s s s ' : • .- :‘"•;'" '.'' .1'. , ',1 ) . ,. .f l irft.'-...q . ,.•.!.1:,.. , :..N's •-• ,. 1. , - ..', I .1 .1;1 p ,ii., 0 d! - i ' ," ' • '' .....4 .*.',,•• ik- .,',:.' • .i, .';.' • , ,-1- ......-.d ....il , 71,, ... r• • : - 0. 1 .•.':'••••( . 0. "''.1.• Ili , I. i 1 :.: l' 1 ' RIB,. .. ti AM; ..0 . k .;: . 4 ' . 1 ' . (°. . 1.. . . ' • 4'1 --! ; 2 A •'‘• .' ' II , I : .:. i c,'. , , tr,„0,i' .. J 1 ' ..1. .. g.,:.'..; .z . .1.,..:: ;1.• % iti, ' );,%.,:il si.:1 kr., ,'"A :ill 1 ,...,.' .. ... , .... - ........., ••. •,.. 1, ,.', )ct i': ..'',;' . ',‘ .',...... 1 • , • J'': •- ./ .. . t .' • ;: ......T. .31').1.7 ..'.. . t ' . •-•i p ,..'• 1 • i ;Iv „ 1:0 ,..1: , t.,. ,,,, , , .....-. , ,„, .....• ,.. • 4,.. • , i ..• , • -,/, _,.) A sj., •-. A -,, •.. • , . . • .• c rt • . t. pt. •ptil 1, I ti• ' 1,111 .. i - 1 I I# . . ,;. !/ .--/ \ _.F. • • • • ' ' \ 11 i ep I i - :L tf,t: . : - ...N.;,":" 7 - ..„. .. - 7 - ';''.471.• t' .;r1." ' 1-7 "...7."77 . '''' ' '''.....' ''' '''' ' '' 4/ ' 1 • ' ' 1: — -.‘ . --• -. - ' -5 1; I l't 111; 1 " 4 -4 . ' '.": 3 Is • i. I ii : ' ":' : ■ , i : :: ;': ': (ct:'....:1::--;, • ' , .- 4i'.:• . , ,-;,: ''' .•• : :: . .c.. - ::A.k•-: - ''Vo''': '•ii , <!.•:". '-: -..I' is . . • b. ''', ...I' .r• a , , I' LH :;`: • - 1 r ,..:,...;‘,...,:- • -,r1 I . • r. :Pins, tr!!..?...' ';i"... .,. • • ....••••• .- • . -......:‘,.:,,,-,:,-.. :.:?. p:.••:ztri.pc.. 1... rf,17, ,.,, ur lr ir ,, • r , . -; iti. IL. . . , 3 )'•• = - ' ' i• 111 I I ..• 1. 5 \ I 5 : • ••••• • •:. .4 ,--I ' ..'. •,'..i • : ' :. 1.- i ..) i t ,.• -.... .. ' • • t: ,-,? :'..::•,:', 1 Ii .Itti.• • "..• ... •'• i t '• ' ..• - ' ' --1 1 •'' . 14 • .:. 1. ,•,.; IA . 11.14 , r 4-•-•••• ,l, i•,, , 4 i.• • •:: ',;.,:-. ,. I - . 1 ••.; '.• •' ■.::. ' ' i . -•:....., "- 1 'Y•••..., „ ••--. 1. • - '.:' ..,!•.!!. . -'- ' ..-',.. - . . .1 ' 1 i 1 : 4 • ) ' • • ,- ' 1 .1,: fl.i, 1.2 . s a. 1 • ti 1 ': 'r .4 'Wi i -Y '. r e.,.•...,-. • A ■ ,i , i 1,1;•.4.: 4 ' 1 .- .: . „ -',.. „I i } • k ,.,j 1••,,, i . ' -,„ .1 , ••• 4. . 4 t 1.•'...: „; • i •...,:l.:.):;),..,.::.,...., , ,• 1:- ‘ ,.z• •-„...7 • ,.,.•,,t,t,..-,,.. -, ....„,:t4, , ±, - . - 11 . 1,.:.? 6 .• ,, ,.. z. ,: i. ,_1 , .?. ;. - , -;•-• .. ;• • ••;.„,.. i .tk . - '„J.,.... ',_.. , •'. 1 11 ,..., •,‘..17; -- "-•-• :.', i .1:1 jpItil Pt il 4 1 i 1 .•• .,. '' P• . !I :1 I t i l fii 4 i , :T i l il ' '1 1 .".1 ' X 6 . w 1 t ' ,..- .: le \ c'... ."' : '. . ..k-,::'..1 " o' . .', •: , .', 1- ;''.1: -. "11 -:. s. . ,.. ..„., ....J.. 4 a.4.,,„ • ,.• .,.., ' \ ! 1 ., 1/2 „j1 P.: • , lc! „•., , 0.. r., 61, 1, i i ., 4 , ,, . 1, i ;4 - '••• • • • .. ,..••• •:„%:...',. ..1..';/‘ i, t". it :..,;`•:%. , '...,, '..;.,, \ . ,I '1 ''....; ' '' i. i , ,.: . .: , ' i ''...•; '1 ',. ‘',(t :` t ;.,' -•:-... , .■ ,, '& 4 .,, 1 1 . ' ! .' I .*. \ „ ..i Y irt i.41: •:,'; !,..!•,,tijk., i ill ,, ''" ' - '-; ',1. % i : w 4 II • .•.• •,.. .., • . •..' .• : .,,/ ....1/4,.!' t'pv.....• - ', .. ' ' ••• '' -..'• ..,'-. ''• • ,' • • ts Y.;•••• ' t% l'i .., f).i .. ...-. . . . I • ,' 4 • I .1 (1?...;, Li..k e ' I • . ' 1 • 4 I li ' li • , .3 1:, ':. ' .i ,','• 'i . 1; ■ ,4 ' 'I„ • ‘., .. , .,. t"!'' ''' V ., .. ' . , ':',, ./ tr ' • • , ' .1 ., ':•.'.A■`..." f , •, l''11/ I: ',' • : • I ,1 ' if u ii I" • ." ' !.' If • :'"""-.; ` fe. Jr :'%,•t. 1 •, 11.4 -, ,,' : - I '', -._......_.-M1 ■rz ......:, .., I,;•.. • -, „:., .,.....,* , . .:„, • ,. - : . .A Y.' • '.. v + . 1 ',: • .'":' r„ •'..,,, -" I 'L '1 '",;',..••• ..,,- , ;4.-• , ..P....!.,„.- - ... , -..„„.. 4 . , ... L. es .. .i.,_ 1,:..,.,,, sait it .t., . r ..,/ •:: •,i' g • , •• , •• • • • - '• • • • 1.', .. '• ' .. :t ..-3 . -,-. ,. ,. .,,, ,r „ii ,..,..: .1,1 ; -,,.. ,..,..„-, • , .. ..„.• . , • t.i ,• • .•: ...).;,. ,, „ 1 .,. ; • ...,.. ,, .... h •, 1,-4 • ,- , , 'r, 1., ....,.. • I , ' , „or - ' , ..,11::'11.,„ IMIL,„„ 7 ' '4 -- ' • i ti • ' I i '' 1: 1 .• :, :. , . t,,,,,y. r Ic -t.. ••• .. ..• '.. Y.' i‘' 1 "'i .1 1 ' • ;,, , • •••• t "- ,• o - P' i t ! ' '''.'.. 7.... .1 • . • - .. ' .- ial .• ,' . -'... ..i '.7.7. .. - '' . : I - l'IrCaft••''' ''' ' '• ''' 1- : .' . :•.-... • ". .,:•‘;• 'fl 1 , '.. : ' ' • ":" .t. '-• '').....:,.... I '... ... ' 0 i Pr'.' t '1 ''!,-.; . r'' s • ‘,.13 ,,' - 4 , ,il?, .ic:_.: ... vb.,,,,+.4.....,,,, L•-• ;.-. 1 - 1' '1; - . ?*;•'" ..:,....'.',.:•';•.''',..;: ' `••••‘•,:;*--:*"!!... - ..,*••••• •'' ' ' . '1 ''i '; - ';'''•:' "I': ''' : •••;,•2 '1, - *- ?' ' '_ ', ,..•- 7 '*•:.': '- '1 7 . - • ... j *.. " .*v2 , fF . T."' 4 . 7 - '.."') Nti .- ' 7 ik )••• '` * ' \ ‘;s l ''','..:k . :; ';`% 1 A .2•••••.'.....;•"( . i' : ';:' 4 " •;ii"•:'• •••;.,!• •-• : : -; : :•"'S : rf-• ; •:'," . :4'....; , :;,- 4 : 1 , •,':Y•'-', vl ': '',''' ' - '1"""" • *3 ' :. '4'••• • :1 1 ••11.10 1 ;I 4 1* • • ii 1 .4, '1) - ' - ' •.' ..: ,.;.'...,.., . ' .•••, 1 .....4: • ‘ ; i •::, 4 ,. . : ' ..,.. , • '. • '!'... • ::•;'-'•:, 7 :;.:::::Z • "i , 1_!_'!, ". 1 . :1 , 1 1 1! I 7 I L .,• . . 1 ti ,„„ -•,..: „ , -:.1 ,....,,,•.- .. ..,..1 iL' ....... ..,: :%.,.. .!. •• .4 -...., ,........... -....;••••,..•,•.•::::::v.i..:1.4...:....•"...f.-.:.,-..,,,iyi,,i.,••• 7..;:•:' -,,,,,,,„:$,,.. i -,_ ., .1,1 ,.„-••111 2, 1 ( .7- lip ,.., ,41„, 1 ,- tA.. ;;• , • • 1 : • :". is . • • , ::•• • •• - •: 1 '.‘ '':-.....• ' - - - , 11:- ! .''•,..-'?)....,...,.,..., -•\ ....1.;.... , .„'s ,...,1I0...•• 'A.,,•- 41** '1..' 11 ' ,41. 0' • •••1;i•• ',. I, -4 a . •-• • -. or / 1 1.• ,r .-- ' -.., -4 .. -•'!? - 11 - , ., , j ) j .., ••:........--,, s,V,.. ' .......2 . . . ); - ,fs -471;4•;.. l'-' 7, .., • . '-, i(P'":'.. ..' if';;;;.:'; ). .' • .' '-::.'-'.;',....::.• i,,' ..:t .:' V .t Lik .'"0,1 It. 11. ' 7 '. 11 , 41 . - • ■.1. • . - ; , C I • .•'.0 .; '" '.7 •.••'(... .• -■ .:: ••••• ...c'". .....-• ....."-•••'• - ., '... ' ::fit i '. • '.. 1 •.'■, " ■ .: • t ' ' " ..•.•;•'.'•., ;,.......,, 7 1 ;:i• ' •' "41 ' ..- • . • ,44 i 1 4 • '4, r !I t 41 ti; 1 ,,, f • .4'. / , .p p ... •' 4.. , . ,i, ;: • ,., r : . +,: ,..,,„: -,,. r, .), .... . >-. .. . , •., -,....;..„:„.. i. ..... ,. d.: .: 0. ..,,,....:: ,...,... •,. 1 .. •:..; ..... , , .,, ,., , • ........:. ., , f...., • ../..p4 4, Pi. r •_. „),.‘•,,.... •• _ k 11 - - ...4.i I . , . •: , . . • . . .. ; ., , .• ..,. , • 1-, ,, f ....,..• • ,,, i .... ,....:„..„ • 1. ,,„.,.. ... ' Op :;1r, f.... • ' •,.,', ' 1 ' . 4 i ;I' .•"' ' ••• ..• :• ••','" •••••• ••• '.. ta ,'• • if IL . i ./j4:■ .... I. •. i 1 , ' •-• (,...,i; • .,,,...., 1 11 .: , : :.. 2 .:1?:,. •: 1;::.,-;..:..:,.r. . 2.,;.,41!....•• ',.. , * ..,,,, ,t..; 1.....•/. .,. ,• • .. ,.) . ! , ..1. stii,, - • , ' ..,e2. r :, .., • R.4, 1r:. ( t !. r ' > I '• , . ',.' .. s t ,' .; .. ' .. ;'..! > ' ■'''. 1. ..l . . " . , ''''. c I l" '','.: '., 2 ., cf"t ,'.' ; ,., . !,1 t'. .',• , 1, ... . ji'Ll I j Dr :lit , ..t. i ' .1' 1 i ,, ; .,,: - . ,,..::.:, ..,;. ,, . :. ,. ..,,,,........i.,..,..... :.. :.•.... : ,,,..,., J .,,,...,, ......, „.......,.; .1 •..,...,.. „:,., ... - i.,.,,„ , 4 .1-. r- . i t . .. , . ,.". • . • . • .. r. , ... r :„,...,.. . ,,, , • 4 . •:, ;.. :. ,.„, II .: ; • Irl , r -11, , 1:. 1 . It t 4, ,,, z . ; ..f... ,, .-,,,, ., 0./,i : - • , ,,,.• •i.- .... • - , i .-_ , ....4 ,, I. u . , • — 4. i --1 pm. r..,,,i i ... _. , A. A , .,., ...,,,.. ... •..... ...f . ..,'... 1 ., . • .., ',.•',''.'.•,•"‘ tr .'. ' 1 ,1 ,-' . ..:..- . 7.1 , '' ! ... 4 „* . s .. 4 .;',":144.41,....".".•:ttl'il-• ' ; •, ' of: , ,.. ", 11 . ... . .. I • .. . • .,:. :. ,„."!...•1,.! , .. ..-• ... ,•;.,'.• : • - ,' .,.. ,, n-4:- ,. •;: t . ( v-11. : :.'''' ' ' I " 3. ''' ' • - . 1. y f t" v " . '''' ' ' 4 0 11 itile It .444, 4 i . 4 . 1 . .... . . _ . _... ...--F--..--- ------ ' ---- -hi..--:-.4-• i---,.... _-:....._,, ,...,....' : L. ; 't‘"": -s-2 L . t .. '. "-- `_1' ...1 • - .. S" '• ." ,. . .!' 4 .. '‘‘. e I Ai - 1 I C) r e - ...- - 4. 1 • 1 -- ---- =' ,- r - "" --- =',••• •-•=------ --- i -- tr-'-: • :* .: '''`': : • 2 % '',"'-. ...' : •`• ' ''' 14 :0,4,11e , „ I A' ' • • 1 - It 1 1 -. 6.:. ! ili • ,,tc • ••• '4. i / • I ' , . • 1; • ! 0 r. ,. ‘, .:( • •t k7 it ■.1 . f 4 4 , .. i a t , iI lyt... .: ` •• loft -,,, 1. 4: . ..t „.".,•r7 ,Ir t il ;.-. . • y4. ,,i '[...... , • 4 i •) or.-47-1 P. .i 7 i 1-:." .. 9 1 . .,;(" ' • ' • I 1: Z ,,,,„..r--J ; cm. '.-..,if -, '.• 4 i t .., -,... '.i ... , . ...,-. : I • ......„. -...., . • io 1 .13.... 1. ,.0. .. ,,, ..;,?,,of,./ „: - ,-, It ., - c lj i',. — • -.I. ..., I ''''.".1 • '' •". \*-': r- 1" ft.: 0 t.i ri ; . .,... ,. ..! .. ..-; 4141 1..,! .... , .. . it.), •:,;,... :ig , -.- vo i?, ,./. ,.. ..., jr , i. - •••••;,:ii,,,, it z , , ., ,.,..,:•.,..,,,, - ., ,. \;,„..,..,...., ,„.....•...- - - ......•,, - ‹ ,..., ,,-,••• ...,,,, • it - )4.- ... ,.... i . •••• / ) 4 ,' •• 1 1 ..--.• ••• :• <C - • / - 4`• ''" !Z, 1 . • i 1 . .. - tt' Vt' • ar ..'. t "I ..- • - i ' • ' • r'' .. • t-' 4 1. Z:0-, 1 .. , r . • .t l'ilk: - •A Z t.- - -, rt , :. ., '• !I - ..! t.- : \ , .• i; ,. V. • . 1' ' • ' t...■ . ., ' I % LO .. i ; f t '',.. ./.. 4,1•,../ i . t, .: ti. lt,IA • t' . y.;. , I. ' - - t Ir > Tr • 4/ • .:. 'r - A- : . ,or . ,,:•.... V :',. V' ;1 1,A 4; pi , (..) *4■• ..": ; • .. 7 , ...,,, : :••••,•,.)•••,.-,.1-.. 1 r ..,_ ,,,.: • ,.„....,,•:,,,, `.1' ,.:" i F '1‘ 4, ,.• 'pvi,t t, :rt ,, vi 1 ' t t.._....• /; - .11 4 ‘ .. .,\-voti-l.i \(,. 4s o 1, ••- v.,. 'r , : .:..e • ,,.-4.4. ,, , 1, • ,: ; , :4 i i • ..• /4! , ).., li'k : ) '1'1i ` ''■..; ' -.I 1' it •• ..*...: -14 V . Z cr • .1. ,,, 1 7 ,, -.,1, , 'Iv s ,".,y, 7 ..*.,;i1:1, , ..t '...•: - --, .v ( r 4•4( >-- ______ --------------- --.—...„ - ..... — u ®s.r.�.n _ < Z 4Q , ._x I •I Z I Z 1 I • it ; py ( a >-1-- h ', \ 04 a - ° • I- � gr - — • -1 \y , ., , j � F^_ -' aM --II I- . t. i -- N` to I - _ I ' I — - - I -- I • � � I IH l : - _ m 1 I ' \ I 1 � I it 1 I 1= • g1 I 1 1 I I '�.• o J ! 1 1 1. 1 "" 1 1 .I 2.,5' S- a QC 1 f 1 t I '' I k . oft - r�I �!..i `+ ,+ ! J 1_ I:>• �, 1 !' I l— I 1 _ I' 1 , I a u , o — , -- i I I I I : " T ' 1 } - 1— Cn o a I 1 \ . t I I a >-• 1„ Q) _1____ 1— _i_ -_I �. I . •• r1 *NI. 1 . -`1 C - , 1 �' I \ , , , I _...• l ;, " 1- I 4 ,I t I l , I - � -- I - 1 - . , — - ' . I ;1a, , '! I ,• , ,, i !. � ' , I i �_6, i ' I 1 ! ! I I I �1 I 1 t I i I V^ nn76d 0. yi,y —� 1 I .1 1 N I "I a • •S.. » Yna I �/' ! J \ T ' S`r 1• L I y '1 U '. -- n.- -- r - T-1 - i- f I 1 0 • t , I 1. r.o I — I I - - . - - I — I '-- .. - - - ' . I ...!.'4:_:"-. 1 I < 1 `n I- •( °� I I I .. \ +r., \ Jt( I xl I I : [ \ . , , / / / / : Th I I 1I 1 , {,, " / l b ! 1-! ��.4 I ' ' I ' 1 \ 1 1 \ I D J f II 1 L / 1 - `,_ - 1, - - ,i _ - �I.� -! 1 1, H H j t I I N I 1. 1 i , _,____,.,.., • ,‘,_, , I 1 - k - + 1- ` ,jL I -- I ; 1 _ s I $ ' ' i 1 » • I I ... , r . I s i I y ■ 1 1 1 e, ,7,1.;; -1 ' ' ' • ' f % � f 1 : -. i • � i' ' n 6 r - -- 1 - - + l s I is , 4 1 I rv, I` I y . , 1 1 r n5 � ' 1 _ % I W „ n I : y. I I I x I �` � !. JAI., I,, `,,., I r ^ ' I a I \ (1 MO !�R . 1 __I':_---.4 '� I y I 1 .i (7N S S �i �Ti - >i: ' f 1 0 . . . l '''''. I \ 1 — • °• 1 I 147 \I ' VJ. • Y a� ' . I I I r <I: , -, - - - ∎_„ .- \_ \ Iv _1 • V., - . — - 1 / 1 ,, ' „�' C --- N .... • c -.. . - - � -_ . ^�` I - t _- : -I:_�= •' :Z ict V - 1 I 6' 1 I • _ _ • I / N N � ilii� i I '1 + I J I ! l �l 1 1 °- ”' I i �i���';f 1 - a - _ 1 - . I - - 4 . t iii■ 1 . - I 1 �, ` ti t, I 4� '- - ''1 �! i ?;.i, � � 1 � 1. s r . _ C __ ( U I ' ( P I 1 ! ,3, �Z �,f I P I I 1 1 1 ,I ^ I t ,,,. ° �� �::,, J CC - �� a . ' -- . - 1 -s I - - 1-t- 7. 1 \ -- 1 ----' 4 '' ' IF, =",•,..;:;-`1": iiiiplik Du ,,,„; el )"- 41-4 • - - 0 - 1- _r _ , , 1 • 1,,./.,t.-- '•-•cf .- J • '.! .'. pi 8 1 ,1 0 , .40 ..'h , , ., I . (1) I 1 1 1 1 , .... .__•, _ 4:4, _ _ 1 1 -I I '' i Hr5. 4 11 l - . 1 A A_ 1 I I o I I _ - ER MIN u- hill . . \ IL- • •• -. 1 - pi \i_!..,:,,,,,., i „lir:, , , i_.,,,,,, i I— . --f - - — j- _j at __,...,4„1 Ix I r I r- > �' 4 l i r ti I - cc / V 1 i 1 4 g`' ® i a . _.,__ . _ . i v.. A____ 41. ,,.., / y , I 1 1 • . ,0 _ .,,,,•If‘,.7. .. 1 p I. .,_ ,V. ., ,.„ 1 . / ..*s • 6: ‘, ' '--- . '11 '-' f ite , - I At -, X I 1 --1— -.-. ,____ _ ___ ,_ _ a-___ :: ' 4 , i, - , -., .. all . ,.,....... . - .., k - — .....- - Els . al s. ,..,, sl . .•. , • .,-..., . . .,.. ....Irian" IN , . i, . , ::‘, : : ; ! — # 1 rp 1 * 1 1 - - — i I I-! d -1 , 11 1 ►;+ _ . . ., . •• 1- 1 1- • - - - - - -1 _ I / m - 1 -- 1.. -1 -_ , _ 1 I � I I I 1 1 �, i i ! 1 �I I I - -1 I ! 1 1 -1 I • _ l I -- Ii I I .r; i . Iw • , r 1 I I 1 ... 1 I. - I I I`� I I I 1 1 I ; . I -1 ` �� 4 •� •� I I .:� I I ; I i• �. _'I 1 1 I - fi I I 1 -1 1 I I! 1 i 1 i5 �1 P'1 "�i °� -.I I I ___ Is- l r". I-- I .1 , - 1 1 1 1 1 I 1 1-- I -- - -- - i- F•- I I - a I 1 : I Saved: 4 /11/2002 11:59 AM Page 1 of 11 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPuT'ER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -2000 Advanced Engineering Software (aes) w! Ver. 8.0 Release Date: 01/01/2000 License ID 1395 Analysis prepared by: BOYLE ENGINEERING CORPORATION CORPORATE HEADQUARTERS 1501 QUAIL STREET im NEWPORT BEACH, CALIFORNIA, PH 949 - 476 -3300 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** u , a * CITRUS AVENUE WIDENING JN OC -F60- 400 -00 TASK 204 * CLIENT: CITY OF FONTANA * I. * 25 YEAR HYDROLOGY MODELED ALONG PROPOSED PIPE * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ilrl FILE NAME: 25YR.DAT TIME /DATE OF STUDY: 11:59 04/11/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL*- - USER SPECIFIED STORM EVENT(YEAR) = 25.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = 0.6000 • USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.2500 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* 11 I 0. + + BEGIN AT 210 FREEWAY & OLEANDER AVENUE 41 I + ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 21 » » > RATIONAL METHOD INITIAL SUBAREA ANALYSIS« « < »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 750.00 ELEVATION DATA: UPSTREAM(FEET) = 1519.00 DOWNSTREAM(FEET) = 1504.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.391 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.804 Y: \F60\ 400 \Ca1cs \Hydrology \Pipeline \25YR.RMA tai Saved: 4/11/2002 11:59 AM Page 2 of 11 a SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 6.34 0.98 0.10 32 9.39 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 m SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 a SUBAREA RUNOFF(CFS) = 21.15 TOTAL AREA(ACRES) = 6.34 PEAK FLOW RATE(CFS) = 21.15 I + + irii I WESTERLY ALONG SOUTH HIGHLAND AVENUE I im I I + + IN ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** p.r FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 31 we » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« « < "" » » >USING COMPUTER- ESTIMATED PIPESIZE (NON - PRESSURE FLOW)« « < ill ELEVATION DATA: UPSTREAM(FEET) = 1504.00 DOWNSTREAM(FEET) = 1502.00 in FLOW LENGTH(FEET) = 750.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 22.2 INCHES 40 PIPE -FLOW VELOCITY(FEET /SEC.) = 4.97 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 P i PIPE - FLOW(CFS) = 21.15 irri PIPE TRAVEL TIME (MIN.) = 2.51 Tc(MIN.) = -11:90 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 103.00 = 1500.00 FEET. am - + + 1 103.00 IS AT CITRUS AVENUE & S. HIGHLAND AVENUE 1 mi . I - I di +- ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** di FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 81 IX » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 11.90 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.299 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 8.77 0.98 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 8.77 SUBAREA RUNOFF(CFS) = 25.27 EFFECTIVE AREA(ACRES) = 15.11 AREA - AVERAGED Fm(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 15.11 PEAK FLOW RATE(CFS) = 43.54 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 31 W Y: \F60\ 400\ Calcs \Hydrology\Pipeline\25YR.RMA Saved: 4/11/2002 11:59 AM Page 3 of 11 ml » »>COMPuTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< » » >USING COMPUTER- ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1502.00 DOWNSTREAM(FEET) = 1479.00 FLOW LENGTH(FEET) = 930.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 20.3 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 13.54 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 ow PIPE - FLOW(CFS) = 43.54 PIPE TRAVEL TIME(MIN.) = 1.14 Tc(MIN.) = 13.05 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 104.00 = 2430.00 FEET. um ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 81 ow » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 13.05 w * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.122 SUBAREA LOSS RATE DATA(AMC II): - -- DEVELOPMENT TYPE/ SCS SOIL AREA FP Ap SCS a „M, LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 5.93 0.98 0.10 32 RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 3.74 0.98 0.60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 10 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.29 SUBAREA AREA(ACRES) = 9.67 SUBAREA RUNOFF(CFS) = 24.68 +h EFFECTIVE AREA(ACRES) = 24.78 AREA - AVERAGED FIn(INCH /HR) = 0.17 AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.18 TOTAL AREA(ACRES) = 24.78 PEAK FLOW RATE(CFS) = 65.82 mi ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ill 7, FLOW PROCESS FROM NODE 104.00 TO NODE - 105.00 IS CODE = 31 g o » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< • » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « « < ELEVATION DATA: UPSTREAM(FEET) = 1479.00 DOWNSTREAM(FEET) = 1451.00 FLOW LENGTH(FEET) = 1250.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 23.4 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 14.59 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 65.82 PIPE TRAVEL TIME(MIN.) = 1.43 Tc(MIN.) = 14.48 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 105.00 = 3680.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 105.00 TO NODE. 105.00 IS CODE = 81 di » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 14.48 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.934 SUBAREA LOSS RATE DATA(AMC II): RI Y: \F60\ 400\ Calcs \Hydrology\Pipeline\25YR.RMA aill 1 tili Saved: 4/11/2002 11:59 AM Page 4 of 11 di DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN 1 0! RESIDENTIAL Ili "3 -4 DWELLINGS /ACRE" A 13.44 0.98 0.60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 PP. SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA AREA(ACRES) = 13.44 SUBAREA RUNOFF(CFS) = 28.41 til EFFECTIVE AREA(ACRES) = 38.22 AREA - AVERAGED Fp(INCH/HR) = 0.32 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.32 PO TOTAL AREA(ACRES) = 38.22 PEAK FLOW RATE(CFS) = 90.02 me + + "" 1 105.00 IS AT CITRUS AVENUE & WALNUT STREET - I I + -I- 4110 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 105.20 TO NODE 105.20 IS CODE = 1 ow WI » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« « < 0h TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: si TIME OF CONCENTRATION(MIN.) = 14.48 RAINFALL INTENSITY(INCH /HR) = 2.93 1 AREA - AVERAGED Fp(INCH/HR) = 0.32 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.32 ' EFFECTIVE STREAM AREA(ACRES) = 38.22 u m TOTAL STREAM AREA(ACRES) = 38.22 . PEAK FLOW RATE(CFS) AT CONFLUENCE = 90.02 ow + + la -I BEGIN AT OLEANDER AVENUE & SOUTH HIGHLAND AVENUE Ai ? + Iiii ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 21 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 500.00 ELEVATION DATA: UPSTREAM(FEET) = 1507.00 DOWNSTREAM(FEET) = 1495.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 glil SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.699 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 4.285 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 6.34 0.98 0.10 32 7.70 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98 •R id Y: \F60\ 400 \Ca1cs \Hydrology \Pipeline \25YR.RMA PP Saved: 4/11/2002 11:59 AM Page 5 of 11 di SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 23.89 *P TOTAL AREA(ACRES) = 6.34 PEAK FLOW RATE(CFS) = 23.89 FLOW PROCESS FROM NODE 202.00 TO NODE 203.00 IS CODE = 51 » »>COMPUTE TRAPEZOIDAL CHANNEL FLOW« « < » » >TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « « < • ELEVATION DATA: UPSTREAM(FEET) = 1495.00 DOWNSTREAM(FEET) = 1479.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 800.00 CHANNEL SLOPE = 0.0200 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 0.000 MANNING'S FACTOR = 0.025 MAXIMUM DEPTH(FEET) = 1.00 is CHANNEL FLOW THRU SUBAREA(CFS) = 23.89 FLOW VELOCITY(FEET /SEC) = 3.52 FLOW DEPTH(FEET) = 0.27 TRAVEL TIME(MIN.) = 3.79 Tc(MIN.) = 11.49 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 203.00 = 1300.00 FEET. wN ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** • Aid FLOW PROCESS FROM NODE 203.00 TO NODE 203.00 IS CODE = 81 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< AM MAINLINE Tc(MIN) = 11.49 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.370 SUBAREA LOSS RATE DATA(AMC II): f1� DEVELOPMENT TYPE/ SCS SOIL AREA FP Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN ON RESIDENTIAL matt "3 -4 DWELLINGS /ACRE" A 12.21 0.98 0.60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 OR SUBAREA AREA(ACRES) = 12.21 SUBAREA RUNOFF(CFS) = 30.60 - EFFECTIVE AREA(ACRES) = 18.55 AREA - AVERAGED Fm(INCH /HR) = 0.42 AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.43 TOTAL AREA(ACRES) = 18.55 PEAK FLOW RATE(CFS) = 49.27 dt ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 11 FLOW PROCESS FROM NODE 203.00 TO NODE 204.00 IS CODE = 51 dB » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW« «< » » >TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « « < ELEVATION DATA: UPSTREAM(FEET) = 1479.00 DOWNSTREAM(FEET) = 1457.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 930.00 CHANNEL SLOPE = 0.0237 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 0.000 MANNING'S FACTOR = 0.025 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 49.27 FLOW VELOCITY(FEET /SEC) = 4.91 FLOW DEPTH(FEET) = 0.40 TRAVEL TIME(MIN.) = 3.16 Tc(MIN.) = 14.65 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 204.00 = 2230.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 204.00 TO NODE 204.00 IS CODE = 81 • Y: \F60\ 400 \Calcs \Hydrology \Pipeline \25YR.RMA ..w • rit Saved: 4/11/2002 11:59 AM Page 6 of 11 MR ii » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « < ""s MAINLINE Tc(MIN) = 14.65 St * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.913 SUBAREA LOSS RATE DATA(AMC II): , DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN to RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 14.62 0.98 0.60 32 to SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 O. SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA AREA(ACRES) = 14.62 SUBAREA RUNOFF(CFS) = 30.63 w EFFECTIVE AREA(ACRES) = 33.17 AREA - AVERAGED Fp(INCH/HR) = 0.49 di AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 33.17 PEAK FLOW RATE(CFS) = 72.28 ,w al I WESTERLY ALONG WALNUT STREET TOWARDS CITRUS AVENUE w I of ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 204.00 TO NODE 205.00 IS CODE = 62 rr » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« « < ot » » >( STREET TABLE SECTION # 1 USED) « «< ii UPSTREAM ELEVATION(FEET) = 1457.00 DOWNSTREAM ELEVATION(FEET) = 1453.00 at STREET LENGTH(FEET) = 730.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 mo - INSIDE STREET CROSSFALL(DECIMAL) = 0.018 • - OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 " SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 or STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 92.79 ** *STREET FLOWING FULL * ** 41 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: +i STREET FLOW DEPTH(FEET) = 0.82 HALFSTREET FLOOD WIDTH(FEET) = 37,53 "AI AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.75 Ai PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 3.07 STREET FLOW TRAVEL TIME(MIN.) = 3.24 Tc(MIN.) = 17.89 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.584 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES)' (INCH /HR) (DECIMAL) CN 1, - COMMERCIAL A 8.52 0.98 0.10 32 di RESIDENTIAL "3-4 DWELLINGS /ACRE" A 12.19 0.98 0.60 32 "i Y: \F60\ 400 \Ca1cs \Hydrology \Pipeline \25YR.RMA mu Saved: 4/11/2002 11:59 AM Page 7 of 11 di SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.39 4 0111 SUBAREA AREA(ACRES) = 20.71 SUBAREA RUNOFF(CFS) = 40.99 EFFECTIVE AREA(ACRES) = 53.88 AREA - AVERAGED Fp(INCH/HR) = 0.45 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.46 TOTAL AREA(ACRES) = 53.88 PEAK FLOW RATE(CFS) = 103.43 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.84 HALFSTREET FLOOD WIDTH(FEET) = 38.82 FLOW VELOCITY(FEET /SEC.) = 3.87 DEPTH *VELOCITY(FT *FT /SEC.) = 3.27 Of *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS, AND L = 730.0 FT WITH ELEVATION -DROP = 4.0 FT, IS 53.9 CFS, •�. WHICH EXCEEDS THE TOP -OF -CURB STREET CAPACITY AT NODE 205.00 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 205.00 = 2960.00 FEET. sit ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ,f.► FLOW PROCESS FROM NODE 205.00 TO NODE 105.00 IS CODE = 31 ■d » » > COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< "w » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « « < ELEVATION DATA: UPSTREAM(FEET) = 1453.00 DOWNSTREAM(FEET) = 1451.00 FLOW LENGTH(FEET) = 290.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 48.0 INCH PIPE IS 35.3 INCHES 40 PIPE -FLOW VELOCITY(FEET /SEC.) = 10.46 ESTIMATED PIPE DIAMETER(INCH) = 48.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 103.43 MO PIPE TRAVEL TIME(MIN.) = 0.46 Tc(MIN.) = 18.35 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 105.00 = 3250.00 FEET. OR + + 105.20 IS AT CITRUS AVENUE & WALNUT STREET - -+ - + a"r ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** „d FLOW PROCESS FROM NODE 105.20 TO NODE 105.20 IS CODE = 1 » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< di » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 18.35 RAINFALL INTENSITY(INCH /HR) = 2.54 AREA- AVERAGED Fin(INCH /HR) = 0.45 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.46 EFFECTIVE STREAM AREA(ACRES) = 53.88 TOTAL STREAM AREA(ACRES) = 53.88 Of PEAK FLOW RATE(CFS) AT CONFLUENCE = 103.43 44 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE Nei • Y: \F60\400\Calcs \Hydrology \Pipeline\25YR.RMA am Saved: 4/11/2002 11:59 AM Page 8 of 11 *A► di 1 90.02 14.48 2.934 0.98( 0.32) 0.32 38.2 101.00 2 103.43 18.35 2.544 0.97( 0.45) 0.46 53.9 201.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO • CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** 00 STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE - 1 186.77 14.48 2.934 0.97( 0.39) 0.40 80.7 101.00 2 180.06 18.35 2.544 0.97( 0.39) 0.41 92.1 201.00 mg COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 186.77 Tc(MIN.) = 14.48 EFFECTIVE AREA(ACRES) = 80.72 AREA - AVERAGED Fm(INCH /HR) = 0.39 AREA- AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.40 wit TOTAL AREA(ACRES) = 92.10 err LONGEST FLOWPATH FROM NODE 101.00 TO NODE 105.20 = 3680.00 FEET. + + SOUTHERLY ALONG CITRUS AVENUE SOUTH OF WALNUT STREET + + ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 1.0 FLOW PROCESS FROM NODE 105.20 TO NODE 106.00 IS CODE = 31 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< ,m » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< ai ELEVATION DATA: UPSTREAM(FEET) = 1451.00 DOWNSTREAM(FEET) = 1439.00 4.. FLOW LENGTH(FEET) = 630.00 MANNING'S IC= 0.013 DEPTH OF FLOW IN 48.0 INCH PIPE IS 38.0 INCHES 00 -__ PIPE -FLOW VELOCITY(FEET /SEC.) = 17.52 ESTIMATED PIPE DIAMETER(INCH) = 48.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 186.77 or PIPE TRAVEL TIME(MIN.) = 0.60 Tc(MIN.) = 15.08 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 106.00 = 4310.00 FEET. 4 ********************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 81 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « < MAINLINE Tc(MIN) = 15.08 3 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.863 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA FP Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 16.88 0.98 0.60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 4101 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 ai SUBAREA AREA(ACRES) = 16.88 SUBAREA RUNOFF(CFS) = 34.61 EFFECTIVE AREA(ACRES) = 97.60 AREA - AVERAGED Fm(INCH /HR) = 0.42 usa • Y: \F60\ 400 \Calcs \Hydrology \Pipeline \25YR.RMA mq i MO Saved: 4/11/2002 11:59 AM Page 9 of 11 iii AREA- AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.43 TOTAL AREA(ACRES) = 108.98 PEAK FLOW RATE(CFS) = 214.47 w, di ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 106.00 TO NODE 107.00 IS CODE = 31 am » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1439.00 DOWNSTREAM(FEET) = 1425.00 tit FLOW LENGTH(FEET) = 690.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 51.0 INCH PIPE IS 38.4 INCHES '"'s PIPE -FLOW VELOCITY(FEET /SEC.) = 18.74 di ESTIMATED PIPE DIAMETER(INCH) = 51.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 214.47 - PIPE TRAVEL TIME(MIN.) = 0.61 Tc(MIN.) = 15.69 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 107.00 = 5000.00 FEET. ION ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** OR FLOW PROCESS FROM NODE 107.00 TO NODE 107.00 IS CODE = 81 a » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « < mill MAINLINE Tc(MIN) = 15.69 al * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.795 , SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA FP Ap- SCS ati LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL i° n "3 -4 DWELLINGS /ACRE" A 17.98 0.98 0.60 32 la SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 ow SUBAREA AREA(ACRES) = 17.98 SUBAREA RUNOFF(CFS) = 35.77 EFFECTIVE AREA(ACRES) = 115.58 AREA - AVERAGED Fm(INCH /HR) = 0.45 Ill `_ AREA- AVERAGED Fp(INCH/HR) = 0.97 AREA - AVERAGED Ap = 0.46 TOTAL AREA(ACRES) = 126.96 PEAK FLOW RATE(CFS) = 244.29 ow or ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 107.00 TO NODE 108.00 IS CODE = 31 qd » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1425.00 DOWNSTREAM(FEET) = 1413.00 FLOW LENGTH(FEET) = 650.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 54.0 INCH PIPE IS 41.5 INCHES 3 PIPE -FLOW VELOCITY(FEET /SEC.) = 18.61 ESTIMATED PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 244.29 PIPE TRAVEL TIME(MIN.) = 0.58 Tc(MIN.) = 16.27 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 108.00 = 5650.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 81 di » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « < Ng or Y:\F60\ 400 Ca1cs \Hydrology\Pipeline\25YR.RMA ali mid Saved: 4/11/2002 11:59 AM Page 10 of 11 MI di MAINLINE Tc(MIN) = 16.27 O 4 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.735 di SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS O LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL ' "3 -4 DWELLINGS /ACRE" A 17.44 0.98 0.60 32 PUBLIC PARR A 2.69 0.98 0.85 32 OR SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 NO SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.63 SUBAREA AREA(ACRES) = 20.13 SUBAREA RUNOFF(CFS) = 38.36 *4 EFFECTIVE AREA(ACRES) = 135.71 AREA - AVERAGED Fm(INCH /HR) = 0.47 mi AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.48 TOTAL AREA(ACRES) = 147.09 PEAK FLOW RATE(CFS) = 276.36 0 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ""'r FLOW PROCESS FROM NODE 108.00 TO NODE 109.00 IS CODE = 31 - » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< iri » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « « < 44 ELEVATION DATA: UPSTREAM(FEET) = 1413.00 DOWNSTREAM(FEET) = 1395.00 FLOW LENGTH(FEET) = 660.00 MANNING'S N = 0.013 mi DEPTH OF FLOW IN 54.0 INCH PIPE IS 39.1 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 22.43 ESTIMATED PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1 sii PIPE - FLOW(CFS) = 276.36 PIPE TRAVEL TIME(MIN.) = 0.49 Tc(MIN.) = 16.76 'o LONGEST FLOWPATH FROM NODE 101.00 TO NODE 109.00 = 6310.00 FEET. rri + + „„ I AT CITRUS AVENUE & BASELINE AVENUE + + ww FLOW PROCESS FROM NODE 109.00 TO NODE 109.00 IS CODE = 81 4417 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « < MAINLINE Tc(MIN) = 16.76 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.687 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS 3 LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 2.41 0.98 0.60 32 4; COMMERCIAL A 6.01 0.98 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.24 SUBAREA AREA(ACRES) = 8.42 SUBAREA RUNOFF(CFS) = 18.56 gip EFFECTIVE AREA(ACRES) = 144.13 AREA - AVERAGED Fm(INCH /HR) = 0.46 di AREA - AVERAGED Fp(INCH/HR) = 0.97 AREA- AVERAGED Ap = 0.47 TOTAL AREA(ACRES) = 155.51 PEAK FLOW RATE(CFS) = 289.03 a Y: \F60\ 400 \Calcs \Hydrology \Pipeline \25YR.RMA elm w0 ,, Saved: 4/11/2002 11:59 AM Page 11 of 11 10 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 155.51 TC(MIN.) = 16.76 di EFFECTIVE AREA(ACRES) = 144.13 AREA - AVERAGED Fm(INCH /HR)= 0.46 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.47 .- PEAK FLOW RATE(CFS) = 289.03 as ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE WO 1 289.03 16.76 2.687 0.97( 0.46) 0.47 144.1 101.00 2 267.56 20.66 2.370. 0.97( 0.46) 0.47 155.5 201.00 ow END OF RATIONAL METHOD ANALYSIS ow ow 1 wo WO w ow • tut mg mit - wr di Ai i d "uA Y: \F60\ 400 \Calcs \Hydrology \Pipeline \25YR.RMA um rwf Saved: 4/11/2002 12:02 PM Page 1 of 11 di ****************** ** * * ** * * * * * * * * * * * * * * * * * * *'A.'A* * ** * * * * * * * ** * * * * * * * * * *'A * * ** ** — RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -2000 Advanced Engineering Software (aes) , Ver. 8.0 Release Date: 01/01/2000 License ID 1395 "" Analysis prepared by: '" BOYLE ENGINEERING CORPORATION 60 CORPORATE HEADQUARTERS 1501 QUAIL STREET +** NEWPORT BEACH, CALIFORNIA, PH 949 - 476 -3300 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STIIDY * * * * * * * * * * * * * * * * * * * * * * * * ** me * CITRUS AVENUE WIDENING JN OC -F60- 400 -00 TASK 204 * CLIENT: CITY OF FONTANA rrf * 100 YEAR HYDROLOGY MODELED ALONG PROPOSED PIPE ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** mm FILE NAME: 100YR.DAT TIME /DATE OF STUDY: 12:02 04/11/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: AO e�w -- *TIME -OF- CONCENTRATION MODEL*- - 00 USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED, MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 y d *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = 0.6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.5500 mot *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD* + + I BEGIN AT 210 FREEWAY & OLEANDER AVENUE ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 21 di » » > RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« Jig; INITIAL SUBAREA FLOW - LENGTH(FEET) = 750.00 ELEVATION DATA: UPSTREAM(FEET) = 1519.00 DOWNSTREAM(FEET) = 1504.00 "I! Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 di SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.391 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.716 Y: \F60 4 00 \Calcs \Hydrology \Pipeline \100YR.RMA ol Saved: 4/11/2002 12:02 PM Page 2 of 11 di SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc 'IN LAND USE , GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) di COMMERCIAL A 6.34 0.80 0.10 52 9.39 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 on SUBAREA RUNOFF(CFS) = 26.46 10 TOTAL AREA(ACRES) = 6.34 PEAK FLOW RATE(CFS) = 26.46 • mg + + iiii I WESTERLY ALONG SOUTH HIGHLAND AVENUE eye I I + + ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 00 FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 31 el » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« « < 0 0 » » >USING COMPUTER- ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< iii ELEVATION DATA: UPSTREAM(FEET) = 1504.00 DOWNSTREAM(FEET) = 1502.00 00 FLOW LENGTH(FEET) = 750.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 26.9 INCHES Mii PIPE -FLOW VELOCITY(FEET /SEC.) = 5.11 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 00 PIPE - FLOW(CFS) = 26.46 00 PIPE TRAVEL TIME(MIN.) = 2.45 Tc(MIN.) = 11.84 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 103.00 = 1500.00 FEET. aw + + 103.00 IS AT CITRUS AVENUE & S. HIGHLAND AVENUE e� I I • : - m, ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 010 FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 81 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « < 9141; MAINLINE Tc(MIN) = 11.84 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.105 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 8.77 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 8.77 SUBAREA RUNOFF(CFS) = 31.77 EFFECTIVE AREA(ACRES) = 15.11 AREA - AVERAGED Fp(INCH/HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap 0.10 TOTAL AREA(ACRES) = 15.11 PEAK FLOW RATE(CFS) = 54.74 di g ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 31 +u me Y: \F60\ 400 \Calcs \Hydrology \Pipeline \100YR.RMA ad Saved: 4/11/2002 12:02 PM Page 3 of 11 d » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« « < we » » >USING COMPulER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « « < di ELEVATION DATA: UPSTREAM(FEET) = 1502.00 DOWNSTREAM(FEET) = 1479.00 FLOW LENGTH(FEET) = 930.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 21.7 INCHES di PIPE -FLOW VELOCITY(FEET /SEC.) = 14.43 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 '"r PIPE - FLOW(CFS) = 54.74 rr PIPE TRAVEL TIME(MIN.) = 1.07 Tc(MIN.) = 12.91 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 104.00 = 2430.00 FEET. um ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** kir FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 81 OR » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « < or MAINLINE Tc(MIN) = 12.91 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.896 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA FP Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN sr COMMERCIAL A 5.93 0.80 0.10 52 RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 3.74 0.80 0.60 52 "'" SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.80 WOO SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.29 SUBAREA AREA(ACRES) = 9.67 SUBAREA RUNOFF(CFS) = 31.88 • EFFECTIVE AREA(ACRES) = 24.78 AREA - AVERAGED Fm(INCH /HR) = 0.14 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.18 " TOTAL AREA(ACRES) = 24.78 PEAK FLOW RATE(CFS) = 83.78 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** • -- FLOW PROCESS FROM NODE 104.00 TO NODE - 105.00 IS CODE = 31 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« « < » » >USING COMPUTER- ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « « < for ELEVATION DATA: UPSTREAM(FEET) = 1479.00 DOWNSTREAM(FEET) = 1451.00 4 41 1 ; FLOW LENGTH(FEET) = 1250.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 25.8 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 15.48 1 1 ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 Al PIPE - FLOW(CFS) = 83.78 PIPE TRAVEL TIME(MIN.) = 1.35 Tc(MIN.) = 14.26 r LONGEST FLOWPATH FROM NODE 101.00 TO NODE 105.00 = 3680.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 81 di » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< • MAINLINE Tc (MIN) = 14.26 di * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.671 SUBAREA LOSS RATE DATA(AMC III): �1 Y:\F60\ 400\ Calcs \Hydrology\Pipeline\100YR.RMA sm +�rl Saved: 4/11/2002 12:02 PM Page 4 of 11 dO DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 13.44 0.80 0.60 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA AREA(ACRES) = 13.44 SUBAREA RUNOFF(CFS) = 38.63 EFFECTIVE AREA(ACRES) = 38.22 AREA - AVERAGED Fm(INCH /HR) = 0.26 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.32 - TOTAL AREA(ACRES) = 38.22 PEAK FLOW RATE(CFS) = 117.39 + + +w I 105.00 IS AT CITRUS AVENUE & WALNUT STREET f • .. am, ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 105.20 TO NODE 105.20 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< TOTAL NUMBER OF STREAMS = 2 um CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.26 RAINFALL INTENSITY(INCH /HR) = 3.67 AREA - AVERAGED Fm(INCH /HR) = 0.26 -- WO AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.32 m■, EFFECTIVE STREAM AREA(ACRES) =. 38.22 TOTAL STREAM AREA(ACRES) = 38.22 ow PEAK FLOW RATE(CFS) AT CONFLUENCE = 117.39 wo + + *0 "t BEGIN AT OLEANDER AVENUE & S. HIGHLAND AVENUE we + + ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 21 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS« « < 41 »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 500.00 di ELEVATION DATA: UPSTREAM(FEET) = 1507.00 DOWNSTREAM(FEET) = 1495.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.699 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.313 di SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc "d LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) 4i COMMERCIAL A 6.34 0.80 0.10 52 7.70 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.80 wo +v Y: \F60\ 400\ Calcs \Hydrology\Pipeline\100YR.RMA Saved: 4/11/2002 12:02 PM Page 5 of 11 mid di SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 29.86 110 TOTAL AREA(ACRES) = 6.34 PEAK FLOW RATE(CFS) = 29.86 iiii - FLOW PROCESS FROM NODE 202.00 TO NODE 203.00 IS CODE = 51 liko » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW« « < » >TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « «< o W ELEVATION DATA: UPSTREAM(FEET) = 1495.00 DOWNSTREAM(FEET) = 1479.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 800.00 CHANNEL SLOPE = 0.0200 - CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 0.000 lid MANNING'S FACTOR = 0.025 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 29.86 „ FLOW VELOCITY(FEET /SEC) = 3.78 FLOW DEPTH(FEET) = 0.32 TRAVEL TIME(MIN.) = 3.52 Tc(MIN.) = 11.22 ""' LONGEST FLOWPATH FROM NODE 201.00 TO NODE 203.00 = 1300.00 FEET. MO FLOW PROCESS FROM NODE 203.00 TO NODE 203.00 IS CODE = 81 ww » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « < WO MAINLINE Tc(MIN) = 11.22 RN * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.238 SUBAREA LOSS RATE DATA(AMC III): iw DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN Rom RESIDENTIAL • "3 -4 DWELLINGS /ACRE" A 12.21 0.80 0.60 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 „ SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA AREA(ACRES) = 12.21 SUBAREA RUNOFF(CFS) = 41.32 am " EFFECTIVE AREA(ACRES) = 18.55 AREA - AVERAGED Fp(INCH/HR) = 0.34 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.43 on TOTAL AREA(ACRES) = 18.55 PEAK FLOW RATE(CFS) = 65.05 NW ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 'i! FLOW PROCESS FROM NODE 203.00 TO NODE 204.00 IS CODE = 51 di » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW« « < » » >TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « « < ELEVATION DATA: UPSTREAM(FEET) = 1479.00 DOWNSTREAM(FEET) = 1457.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 930.00 CHANNEL SLOPE = 0.0237 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 0.000 MANNING'S FACTOR = 0.025 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 65.05 FLOW VELOCITY(FEET /SEC) = 5.45 FLOW DEPTH(FEET) = 0.48 di TRAVEL TIME(MIN.) = 2.85 Tc(MIN.) = 14.07 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 204.00 = 2230.00 FEET. sl[ ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** di FLOW PROCESS FROM NODE 204.00 TO NODE 204.00 IS CODE = 81 me ' Y: \F60\400\Ca1cs \Hydrology \Pipeline\100YR.RMA 41 di Saved: 4/11/2002 12:02 PM Page 6 of 11 di » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « < MAINLINE Tc(MIN) = 14.07 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.701 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) .(DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 14.62 . 0.80 0.60 52 s SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 9i SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA AREA(ACRES) = 14.62 SUBAREA RUNOFF(CFS) = 42.41 dm EFFECTIVE AREA(ACRES) = 33.17 AREA - AVERAGED Fp(INCH/HR) = 0.40 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 33.17 PEAK FLOW RATE(CFS) = 98.49 + + rr I WESTERLY ALONG WALNUT STREET TOWARDS CITRUS AVENUE • + ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 204.00 TO NODE 205.00 IS CODE = 62 NO » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« « < • » »STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1457.00 DOWNSTREAM ELEVATION(FEET) = 1453.00 STREET LENGTH(FEET) = 730.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 od - INSIDE STREET CROSSFALL(DECIMAL) = 0.018 IP OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 di STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 • Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 126.33 ** *STREET FLOWING FULL * ** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: di STREET FLOW DEPTH(FEET) = 0.89 HALFSTREET FLOOD WIDTH(FEET) = 41.38 44 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.10 • di PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 3.67 STREET FLOW TRAVEL TIME(MIN.) = 2.97 Tc(MIN.) = 17.04 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.299 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN 4 1 COMMERCIAL A 8.52 0.80 0.10 52 i RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 12.19 0.80 0.60 52 am + Y: \F60\ 400\ Ca1cs \Hydrology\Pipeline\100YR.RMA Saved: 4/11/2002 12:02 PM Page 7 of 11 di SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.39 SUBAREA AREA(ACRES) = 20.71 SUBAREA RUNOFF(CFS) = 55.64 EFFECTIVE AREA(ACRES) = 53.88 AREA - AVERAGED Fp(INCH/HR) = 0.37 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.46 dd TOTAL AREA(ACRES) = 53.88 PEAK FLOW RATE(CFS) = 142.15 ti END OF SUBAREA STREET FLOW HYDRAULICS: ,�. DEPTH(FEET) =-0.93 HALFSTREET FLOOD WIDTH(FEET) = 42.97 • FLOW VELOCITY(FEET /SEC.) = 4.25 DEPTH *VELOCITY(FT *FT /SEC.) = 3.93 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS, AND L = 730.0 FT WITH ELEVATION -DROP = 4.0 FT, IS 69.9 CFS., "" WHICH EXCEEDS THE TOP -OF -CURB STREET CAPACITY AT NODE 205.00 , LONGEST FLOWPATH FROM NODE 201.00 TO NODE 205.00 = 2960.00 FEET. FLOW PROCESS FROM NODE 205.00 TO NODE 105.00 IS CODE = 31 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« « < » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1453.00 DOWNSTREAM(FEET) = 1451.00 +� FLOW LENGTH(FEET) = 290.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 54.0 INCH PIPE IS 39.8 INCHES do PIPE -FLOW VELOCITY(FEET /SEC.) = 11.31 ESTIMATED PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 142.15 mei PIPE TRAVEL TIME(MIN.) = 0.43 Tc(MIN.) = 17.46 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 105.00 = 3250.00 FEET. ..w 105.2 IS THE CONFLUENCE AT CITRUS AVENUE & WALNUT .STREET "" +d 'w+ ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 105.20 TO NODE 105.20 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< A » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< di TOTAL NUMBER OF STREAMS = 2 Ai CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 17.46 RAINFALL INTENSITY(INCH /HR) = 3.25 di AREA - AVERAGED Fin(INCH /HR) = 0.37 di AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.46 EFFECTIVE STREAM AREA(ACRES) = 53.88 di TOTAL STREAM AREA(ACRES) = 53.88 PEAK FLOW RATE(CFS) AT CONFLUENCE = 142.15 ** CONFLUENCE DATA ** di STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE di Y: \F60\ 400 \Calcs \Hydrology \Pipeline \ 100 YR.RMA mm mi Saved: 4/11/2002 12:02 PM Page 8 of 11 di 1 117.39 14.26 3.671 0.80( 0.26) 0.32 38.2 101.00 2 142.15 17.46 3.251 0.80( 0.37) 0.46 53.9 201.00 4 di RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. dot ** PEAK FLOW RATE TABLE ** dii STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE - 1 250.38 14.26 3.671 0.80( 0.32) 0.40 82.2 101.00 MO 2 245.07 17.46 3.251 0.80( 0.32) 0.41 92.1 201.00 dd COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAR FLOW RATE(CFS) = 250.38 Tc(MIN.) = 14.26 d i EFFECTIVE AREA(ACRES) = 82.21 AREA - AVERAGED Fm(INCH /HR) = 0.32 w. AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.40 TOTAL AREA(ACRES) = 92.10 ar LONGEST FLOWPATH FROM NODE 101.00 TO NODE 105.20 = 3680.00 FEET. " + + m i I SOUTHERLY ALONG CITRUS AVENUE SOUTH OF WALNUT STREET + + di ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** - FLOW PROCESS FROM NODE 105.20 TO NODE 106.00 IS CODE = 31 emi » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« « < do » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< do ELEVATION DATA: UPSTREAM(FEET) = 1451.00 DOWNSTREAM(FEET) = 1439.00 met FLOW LENGTH(FEET) = 630.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 54.0 INCH PIPE IS 41.9 INCHES 0 _ PIPE -FLOW VELOCITY(FEET /SEC.) = 18.92 ESTIMATED PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1 souk PIPE - FLOW(CFS) = 250.38 or PIPE TRAVEL TIME(MIN.) = 0.55 Tc(MIN.) = 14.81 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 106.00 = 4310.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 81 di » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< ri MAINLINE Tc(MIN) = 14.81 do * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.588 di SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN md RESIDENTIAL ad "3 -4 DWELLINGS /ACRE" A 16.88 0.80 0.60 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 " SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 dip SUBAREA AREA(ACRES) = 16.88 SUBAREA RUNOFF(CFS) = 47.25 EFFECTIVE AREA(ACRES) = 99.09 AREA - AVERAGED Fm(INCH /HR) = 0.34 do am Y: \F60\ 400 \Calcs \Hydrology \Pipeline \100YR.RMA rom No Saved: 4/11/2002 12:02 PM Page 9 of 11 Mi AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.43 TOTAL AREA(ACRES) = 108.98 PEAR FLOW RATE(CFS) = 289.27 FLOW PROCESS FROM NODE 106.00 TO NODE 107.00 IS CODE = 31 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« « < so » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1439.00 DOWNSTREAM(FEET) = 1425.00 FLOW LENGTH(FEET) = 690.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 57.0 INCH PIPE IS 43.0 INCHES """ PIPE -FLOW VELOCITY(FEET /SEC.) = 20.18 ESTIMATED PIPE DIAMETER(INCH) = 57.00 NUMBER OF PIPES = 1 iwi PIPE - FLOW(CFS) = 289.27 ,.,. PIPE TRAVEL TIME(MIN.) = 0.57 Tc(MIN.) = 15.38 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 107.00 = 5000.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** um FLOW PROCESS FROM NODE 107.00 TO NODE 107.00 IS CODE = 81 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « < MAINLINE Tc(MIN) = 15.38 mei * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.508 SUBAREA LOSS RATE DATA (AMC III) : DEVELOPMENT TYPE/ SCS SOIL AREA FP Ap SCS mei LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL ""' "3 -4 DWELLINGS /ACRE" A 17.98 0.80 0.60 52 Od SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 ,u SUBAREA AREA(ACRES) = 17.98 SUBAREA RUNOFF(CFS) = 49.03 EFFECTIVE AREA(ACRES) = 117.07 AREA - AVERAGED Fm(INCH /HR) = 0.36 .4 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.46 TOTAL AREA(ACRES) = 126.96 PEAK FLOW RATE(CFS) = 331.14 om mg ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 107.00 TO NODE 108.00 IS CODE = 31 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« « < » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< MN ELEVATION DATA: UPSTREAM(FEET) = 1425.00 DOWNSTREAM(FEET) = 1413.00 FLOW LENGTH(FEET) = 650.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 60.0 INCH PIPE IS 47.2 INCHES 4, PIPE -FLOW VELOCITY(FEET /SEC.) = 20.00 A ESTIMATED PIPE DIAMETER(INCH) = 60.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 331.14 PIPE TRAVEL TIME(MIN.) = 0.54 Tc(MIN.) = 15.92 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 108.00 = 5650.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 81 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< '" Y: \F60\ 400 \Calcs \Hydrology \Pipeline \100YR.RMA • Saved: 4/11/2002 12:02 PM Page 10 of 11 um di MAINLINE Tc(MIN) = 15.92 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.436 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS w. LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL or "3 -4 DWELLINGS /ACRE" A 17.44 0.80 0.60 52 PUBLIC PARK A 2.69 0.80 0.85 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.63 SUBAREA AREA(ACRES) = 20.13 SUBAREA RUNOFF(CFS) = 53.11 EFFECTIVE AREA(ACRES) = 137.20 AREA - AVERAGED Fm(INCH /HR) = 0.39 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.48 mi TOTAL AREA(ACRES) = 147.09 PEAK FLOW RATE(CFS) = 376.66 " ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** sr FLOW PROCESS FROM NODE 108.00 TO NODE 109.00 IS CODE = 31 ** » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » » >USING COMPUTER - ESTIMATE PIPESIZE (NON- PRESSURE FLOW) « « < ELEVATION DATA: UPSTREAM(FEET) = 1413.00 DOWNSTREAM(FEET) = 1395.00 FLOW LENGTH(FEET) = 660.00 MANNING'S N = 0.013 to DEPTH OF FLOW IN 60.0 INCH PIPE IS 44.4 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 24.16 ESTIMATED PIPE DIAMETER(INCH) = 60.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 376.66 PIPE TRAVEL TIME(MIN.) = 0.46 Tc(MIN.) = 16.38 sws LONGEST FLOWPATH FROM NODE 101.00 TO NODE 109.00 = 6310.00 FEET. + + I AT CITRUS AVENUE & BASELINE AVENUE om + + ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 109.00 TO NODE 109.00 IS CODE = 81 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOWS « « MAINLINE Tc(MIN) = 16.38 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.378 - SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS sly LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN d i RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 2.41 0.80 0.60 52 COMMERCIAL A 6.01 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.24 SUBAREA AREA(ACRES) = 8.42 SUBAREA RUNOFF(CFS) = 24.13 I EFFECTIVE AREA(ACRES) = 145.62 AREA - AVERAGED Fm(INCH /HR) = 0.37 di AREA - AVERAGED Fp(INCH/HR) = 0.80 AREA- AVERAGED Ap = 0.47 TOTAL AREA(ACRES) = 155.51 PEAK FLOW RATE(CFS) = 393.67 'II dii Y: \F60\ 400\ Ca1cs1Hydrology \Pipeline1100YR.RMA 44 44 Saved: 4/11/2002 12:02 PM Page 11 of 11 di END OF STUDY SUMMARY: 411 TOTAL AREA(ACRES) = 155.51 TC(MIN.) = 16.38 di EFFECTIVE AREA(ACRES) = 145.62 AREA-AVERAGED Fm(INOH/HR). 0.37 AREA-AVERAGED Fp(INCH/HR) = 0.80 AREA-AVERAGED Ap = 0.47 PEAK FLOW RATE(CFS) = 393.67 lor ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER gyp NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE um 1 393.67 16.38 3.378 0.80( 0.37) 0.47 145.6 101.00 2 372.15 19.60 3.033 0.80( 0.37) 0.47 155.5 201.00 END OF RATIONAL METHOD ANALYSIS om 1 OW OM 00 WO WO OW 04 OW MO -- OW 41 di 41 41 " di di Y:\F60\400\Calcs\Rydrology\Pipeline\100YR.RMA .ws el Saved: 4/11/2002 12:02 PM Page 1 of 11 1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** *o1 RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE di (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -2000 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2000 License ID 1395 ✓ Analysis prepared by: 014 BOYLE ENGINEERING CORPORATION CORPORATE HEADQUARTERS 1501 QUAIL STREET ww NEWPORT BEACH, CALIFORNIA, PH 949 - 476 -3300 am * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * CITRUS AVENUE WIDENING JN OC -F60- 400 -00 TASK 204 * CLIENT: CITY OF FONTANA * 000 * 100 YEAR HYDROLOGY MODELED ALONG PROPOSED PIPE * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 100YR.DAT TIME /DATE OF STUDY: 12:02 04/11/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL*-- en *0 USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* a ,,,, SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.5500 *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD* mg am BEGIN AT 210 FREEWAY & OLEANDER AVENUE di I di ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 21 414; » » > RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 750.00 ELEVATION DATA: UPSTREAM(FEET) = 1519.00 DOWNSTREAM(FEET) = 1504.00 MI Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 di SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.391 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.716 *�I a rd Y: \F60\ 400 \Calcs \Hydrology \Pipeline \100YR.RMA will di Saved: 4/11/2002 12:02 PM Page 2 of 11 WI a SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc 11 LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) id COMMERCIAL A 6.34 0.80 0.10 52 9.39 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 a SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 26.46 TOTAL AREA(ACRES) = 6.34 PEAK FLOW RATE(CFS) = 26.46 w + + iii I WESTERLY ALONG SOUTH HIGHLAND AVENUE .. I I IV + + ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** gm FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 31 WI » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« « < a » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1504.00 DOWNSTREAM(FEET) = 1502.00 ow FLOW LENGTH(FEET) = 750.00 MANNING'S N = 0.013 di DEPTH OF FLOW IN 33.0 INCH PIPE IS 26.9 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 5.11 mm ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 26.46 NW PIPE TRAVEL TIME(MIN.) = 2.45 Tc(MIN.) = 11.84 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 103.00 = 1500.00 FEET. a + + 1 103.00 IS AT CITRUS AVENUE & S. HIGHLAND AVENUE - I mi ... ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** +•r FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 81 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 11.84 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.105 liil SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 8.77 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 8.77' SUBAREA RUNOFF(CFS) = 31.77 EFFECTIVE AREA(ACRES) = 15.11 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 • AREA- AVERAGED Ap 0.10 TOTAL AREA(ACRES) = 15.11 PEAK FLOW RATE(CFS) = 54.74 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 31 a 41 Y: \F60\ 400 \Calcs \Hydrology \Pipeline \100YR.RMA Saved: 4/11/2002 12:02 PM Page 3 of 11 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« « < am » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< di ELEVATION DATA: UPSTREAM(FEET) = 1502.00 DOWNSTREAM(FEET) = 1479.00 FLOW LENGTH(FEET) = 930.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 21.7 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 14.43 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 54.74 PIPE TRAVEL TIME(MIN.) = 1.07 Tc(MIN.) = 12.91 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 104.00 = 2430.00 FEET. mg FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 81 w » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « < irr MAINLINE Tc(MIN) = 12.91 on * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.896 di SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA FP Ap SCS "In LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 5.93 0.80 0.10 52 RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 3.74 0.80 0.60 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.29 SUBAREA AREA(ACRES) = 9.67 SUBAREA RUNOFF(CFS) = 31.88 EFFECTIVE AREA(ACRES) = 24.78 AREA - AVERAGED Fm(INCH /HR) = 0.14 di AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.18 , TOTAL AREA(ACRES) = 24.78 PEAK FLOW RATE(CFS) = 83.78 • in ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** • - FLOW PROCESS FROM NODE 104.00 TO NODE - 105.00 IS CODE = 31 imm » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< 10 » »>USING COMPUTER- ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « « < ELEVATION DATA: UPSTREAM(FEET) = 1479.00 DOWNSTREAM(FEET) = 1451.00 FLOW LENGTH(FEET) = 1250.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 25.8 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 15.48 Mil ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 83.78 PIPE TRAVEL TIME(MIN.) = 1.35 Tc(MIN.) = 14.26 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 105.00 = 3680.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< 11 MAINLINE Tc(MIN) = 14.26 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.671 SUBAREA LOSS RATE DATA(AMC III): �I1i Y: \F60\ 400 \Ca1cs \Hydrology \Pipeline \100YR.RMA mo Ai Saved: 4 /11/2002 12:02 PM Page 4 of 11 gg DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL ti "3 -4 DWELLINGS /ACRE" A 13.44 0.80 0.60 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA AREA(ACRES) = 13.44 SUBAREA RUNOFF(CFS) = 38.63 Ai EFFECTIVE AREA(ACRES) = 38.22 AREA - AVERAGED Fm(INCH/HR) = 0.26 AREA - AVERAGED Fp(INCH/HR) = 0.80 AREA- AVERAGED Ap = 0.32 ..� TOTAL AREA(ACRES) = 38.22 PEAK FLOW RATE(CFS) = 117.39 + + "" I 105.00 IS AT CITRUS AVENUE & WALNUT STREET W .w + - ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 105.20 TO NODE 105.20 IS CODE = 1 - » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< ,■. TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTR.ATION(MIN.) = 14.26 RAINFALL INTENSITY(INCH /HR) = 3.67 AREA- AVERAGED Fm(INCH /HR) = 0.26 mid AREA- AVERAGED Fp(INCH/HR) = 0.80 AREA- AVERAGED Ap = 0.32 Q EFFECTIVE STREAM AREA(ACRES) = 38.22 aw TOTAL STREAM AREA(ACRES) = 38.22 PEAK FLOW RATE(CFS) AT CONFLUENCE = 117.39 + + III 71 BEGIN AT OLEANDER AVENUE & S. HIGHLAND AVENUE : + ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 21 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 500.00 ELEVATION DATA: UPSTREAM(FEET) = 1507.00 DOWNSTREAM(FEET) = 1495.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.699 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.313 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc 411 LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) di C OMMERCIAL A 6.34 0.80 0.10 52 7.70 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 1111 Y: \F60\ 400\ Ca1cs \Hydrology\Pipeline1100YR.RMA sid Saved: 4/11/2002 12:02 PM Page 5 of 11 di SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 29.86 *11 TOTAL AREA(ACRES) = 6.34 PEAK FLOW RATE(CFS) = 29.86 'k' ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 202.00 TO NODE 203.00 IS CODE = 51 • • » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW« «< • » >TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « «< ELEVATION DATA: UPSTREAM(FEET) = 1495.00 DOWNSTREAM(FEET) = 1479.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 800.00 CHANNEL SLOPE = 0.0200 .wr, CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 0.000 MANNING'S FACTOR = 0.025 MAXIMUM DEPTH(FEET) = 1.00 di CHANNEL FLOW THRU SUBAREA(CFS) = 29.86 FLOW VELOCITY(FEET /SEC) = 3.78 FLOW DEPTH(FEET) = 0.32 mit TRAVEL TIME(MIN.) = 3.52 Tc(MIN.) = 11.22 • LONGEST FLOWPATH FROM NODE 201.00 TO NODE 203.00 = 1300.00 FEET. ********************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 203.00 TO NODE 203.00 IS CODE = 81 14,14 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « < "' MAINLINE Tc(MIN) = 11.22 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.238 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap • SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN - RESIDENTIAL "3- 4,DWELLINGS /ACRE" A 12.21 0.80 0.60 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA AREA(ACRES) = 12.21 SUBAREA RUNOFF(CFS) = 41.32 7 EFFECTIVE AREA(ACRES) = 18.55 AREA - AVERAGED Fm(INCH /HR) = 0.34 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.43 ""! TOTAL AREA(ACRES) = 18.55 PEAK FLOW RATE(CFS) = 65.05 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 203.00 TO NODE 204.00 IS CODE = 51 » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW« «< » » >TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « « < ELEVATION DATA: UPSTREAM(FEET) = 1479.00 DOWNSTREAM(FEET) = 1457.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 930.00 CHANNEL SLOPE = 0.0237 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 0.000 MANNING'S FACTOR = 0.025 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 65.05 FLOW VELOCITY(FEET /SEC) = 5.45 FLOW DEPTH(FEET) = 0.48 TRAVEL TIME(MIN.) = 2.85 Tc(MIN.) = 14.07 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 204.00 = 2230.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 204.00 TO NODE 204.00 IS CODE = 81 44 r Y: \F60\ 400 \Calcs \Hydrology \Pipeline \100YR.RMA WI ilii] Saved: 4/11/2002 12:02 PM Page 6 of 11 » » >ADDITION OF SUBAREA TO MAINLINE PEAR FLOW« «< oil MAINLINE Tc(MIN) = 14.07 iiiiii * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.701 SUBAREA LOSS RATE DATA(AMC III): nu DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS ii LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 14.62 0.80 0.60 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 iiii SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA AREA(ACRES) = 14.62 SUBAREA RUNOFF(CFS) = 42.41 ml EFFECTIVE AREA(ACRES) = 33.17 AREA - AVERAGED Fm(INCH /HR) = 0.40 iiii AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 33.17 PEAK FLOW RATE(CFS) = 98.49 um + + WESTERLY ALONG WALNUT STREET TOWARDS CITRUS AVENUE : I + J' ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** dil FLOW PROCESS FROM NODE 204.00 TO NODE 205.00 IS CODE = 62 III » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » » > (STREET TABLE SECTION # 1 USED) « «< iii UPSTREAM ELEVATION(FEET) = 1457.00 DOWNSTREAM ELEVATION(FEET) = 1453.00 mim STREET LENGTH(FEET) = 730.00 CURB HEIGHT(INCHES) = 8.0 Viii STREET HALFWIDTH(FEET) = 30.00 . 4 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 - INSIDE STREET CROSSFALL(DECIMAL) = 0.018 is _ _ OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 nor SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Yd STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 2 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 126.33 ** *STREET FLOWING FULL * ** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.89 HALFSTREET FLOOD WIDTH(FEET) = 41.38 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.10 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 3.67 STREET FLOW TRAVEL TIME(MIN.) = 2.97 Tc(MIN.) = 17.04 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.299 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 8.52 0.80 0.10 52 RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 12.19 0.80 0.60 52 ullt di Y: \F60\ 400 \Ca1cs \Hydrology \Pipeline \100YR.RMA orig Saved: 4/11/2002 12:02 PM Page 7 of 11 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.39 w ' SUBAREA AREA(ACRES) = 20.71 SUBAREA RUNOFF(CFS) = 55.64 EFFECTIVE AREA(ACRES) = 53.88 AREA - AVERAGED Fm(INCH /HR) = 0.37 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.46 mit TOTAL AREA(ACRES) = 53.88 PEAK FLOW RATE(CFS) = 142.15 Mi END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) =.0.93 HALFSTREET FLOOD WIDTH(FEET) = 42.97 MR • FLOW VELOCITY(FEET /SEC.) = 4.25 DEPTH *VELOCITY(FT *FT /SEC.) = 3.93 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS, AND L = 730.0 FT WITH ELEVATION -DROP = 4.0 FT, IS 69.9 CFS•, 1101 WHICH EXCEEDS THE TOP -OF -CURB STREET CAPACITY AT NODE 205.00 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 205.00 = 2960.00 FEET. FLOW PROCESS FROM NODE 205.00 TO NODE 105.00 IS CODE = 31 0 » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1453.00 DOWNSTREAM(FEET) = 1451.00 FLOW LENGTH(FEET) = 290.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 54.0 INCH PIPE IS 39.8 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 11.31 ESTIMATED PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 142.15 Ali PIPE TRAVEL TIME(MIN.) = 0.43 Tc(MIN.) = 17.46 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 105.00 = 3250.00 FEET. 105.2 IS THE CONFLUENCE AT CITRUS AVENUE & WALNUT STREET rrr - 1. . - + FLOW PROCESS FROM NODE 105.20 TO NODE 105.20 IS CODE = 1 1! » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< di » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 17.46 RAINFALL INTENSITY(INCH /HR) = 3.25 AREA - AVERAGED Fm(INCH/HR) = 0.37 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.46 EFFECTIVE STREAM AREA(ACRES) = 53.88 TOTAL STREAM AREA(ACRES) = 53.88 PEAK FLOW RATE(CFS) AT CONFLUENCE = 142.15 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE Y: \F60\ 400 \Calcs \Hydrology \Pipeline \100YR.RMA imp MR Saved: 4/11/2002 12:02 PM Page 8 of 11 di 1 117.39 14.26 3.671 0.80( 0.26) 0.32 38.2 101.00 2 142.15 17.46 3.251 0.80( 0.37) 0.46 53.9 201.00 Ai RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. mg ** PEAR FLOW RATE TABLE ** Ai STEAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) • (ACRES) NODE 1 250.38 14.26 3.671 0.80( 0.32) 0.40 82.2 101.00 aii 2 245.07 17.46 3.251 0.80( 0.32) 0.41 92.1 201.00 "" COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: ail PEAR FLOW RATE(CFS) = 250.38 Tc(MIN.) = 14.26 EFFECTIVE AREA(ACRES) = 82.21 AREA - AVERAGED Fm(INCH/HR) = 0.32 wR AREA- AVERAGED Fp(INCH/HR) = 0.80 AREA- AVERAGED Ap = 0.40 TOTAL AREA(ACRES) = 92.10 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 105.20 = 3680.00 FEET. g + Ali I SOUTHERLY ALONG CITRUS AVENUE SOUTH OF WALNUT STREET 1•4 I ow FLOW PROCESS FROM NODE 105.20 TO NODE 106.00 IS CODE = 31 ii » »>COMPtTTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< NA » »>USING COMPUTER- ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1451.00 DOWNSTREAM(FEET) = 1439.00 l4 FLOW LENGTH(FEET) = 630.00 MANNING'S N = 0.013 mill - DEPTH OF FLOW IN 54.0 INCH PIPE IS 41.9 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 18.92 ESTIMATED PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1 W. PIPE - FLOW(CFS) = iii'i PIPE TRAVEL TIME(MIN.) = 0.55 Tc(MIN.) = 14.81 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 106.00 = 4310.00 FEET. 4 1 1 ; FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 81 li iii » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 14.81 2 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.588 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA FP Ap SCS s LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN Ai RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 16.88 0.80 0.60 52 • SUBAREA AVERAGE PERVIOUS LOSS RATE, Fm(INCH/HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA AREA(ACRES) = 16.88 SUBAREA RUNOFF(CFS) = 47.25 EFFECTIVE AREA(ACRES) = 99.09 AREA - AVERAGED Fm(INCH /HR) = 0.34 Y: \F60 \400\Ca1cs \Hydrology \Pipeline \100YR.RMA aa ao Saved: 4/11/2002 12:02 PM Page 9 of 11 di AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.43 TOTAL AREA(ACRES) = 108.98 PEAK FLOW RATE(CFS) = 289.27 mq FLOW PROCESS FROM NODE 106.00 TO NODE 107.00 IS CODE = 31 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« « < » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< OR ELEVATION DATA: UPSTREAM(FEET) = 1439.00 DOWNSTREAM(FEET) = 1425.00 Irr FLOW LENGTH(FEET) = 690.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 57.0 INCH PIPE IS 43.0 INCHES �+ PIPE -FLOW VELOCITY(FEET /SEC.) = 20.18 ESTIMATED PIPE DIAMETER(INCH) = 57.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 289.27 PIPE TRAVEL TIME(MIN.) = 0.57 Tc(MIN.) = 15.38 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 107.00 = 5000.00 FEET. mi ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 107.00 TO NODE 107.00 IS CODE = 81 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « < wsr MAINLINE Tc(MIN) = 15.38 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.508 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA FP Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 17.98 0.80 0.60 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 Imo SUBAREA AREA(ACRES) = 17.98 SUBAREA RUNOFF(CFS) = 49.03 EFFECTIVE AREA(ACRES) = 117.07 AREA- AVERAGED Fm(INCH /HR) = 0.36 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.46 TOTAL AREA(ACRES) = 126.96 PEAK FLOW RATE(CFS) = 331.14 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 107.00 TO NODE 108.00 IS CODE = 31 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« « < » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< 1 1 ELEVATION DATA: UPSTREAM(FEET) = 1425.00 DOWNSTREAM(FEET) = 1413.00 di FLOW LENGTH(FEET) = 650.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 60.0 INCH PIPE IS 47.2 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 20.00 ESTIMATED PIPE DIAMETER(INCH) = 60.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 331.14 PIPE TRAVEL TIME(MIN.) = 0.54 Tc(MIN.) = 15.92 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 108.00 = 5650.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 81 di » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< m, " Y: \F60\ 400 \Ca1cs \Hydrology \Pipeline\100YR.RMA 0. tiiii Saved: 4/11/2002 12:02 PM Page 10 of 11 NI di MAINLINE Tc(MIN) = 15.92 1 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.436 Si SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS 014 LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL ell " -4 DWELLINGS /ACRE" A 17.44 0.80 0.60 52 PUBLIC PARK A 2.69 0.80 0.85 52 +mot SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 II SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.63 SUBAREA AREA(ACRES) = 20.13 SUBAREA RUNOFF(CFS) = 53.11 '"! EFFECTIVE AREA(ACRES) = 137.20 AREA - AVERAGED Fm(INCH /HR) = 0.39 mj AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.48 TOTAL AREA(ACRES) = 147.09 PEAK FLOW RATE(CFS) = 376.66 .r ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ed FLOW PROCESS FROM NODE 108.00 TO NODE 109.00 IS CODE = 31 "' » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< fii » » >USING COMPUTER- ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « « < !*b ELEVATION DATA: UPSTREAM(FEET) = 1413.00 DOWNSTREAM(FEET) = 1395.00 At FLOW LENGTH(FEET) = 660.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 60.0 INCH PIPE IS 44.4 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 24.16 Ro ESTIMATED PIPE DIAMETER(INCH) = 60.00 NUMBER OF PIPES = 1 NW PIPE - FLOW(CFS) = 376.66 PIPE TRAVEL TIME(MIN.) = 0.46 Tc(MIN.) = 16.38 vim LONGEST FLOWPATH FROM NODE 101.00 TO NODE 109.00 = 6310.00 FEET. wU + - + MI 1 AT CITRUS AVENUE & BASELINE AVENUE iii _ + N ,i ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 109.00 TO NODE 109.00 IS CODE = 81 gill » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 16.38 2 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.378 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS qii; LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 2.41 0.80 0.60 52 7111 COMMERCIAL A 6.01 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.24 SUBAREA AREA(ACRES) = 8.42 SUBAREA RUNOFF(CFS) = 24.13 EFFECTIVE AREA(ACRES) = 145.62 AREA - AVERAGED Fm(INCH /HR) = 0.37 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.47 TOTAL AREA(ACRES) = 155.51 PEAK FLOW RATE(CFS) = 393.67 um WW Y: \F60\ 400 \Ca1cs \Hydrology \Pipeline \100YR.RMA Saved: 4/11/2002 12:02 PM Page 11 of 11 END OF STUDY SUMMARY: TOTAL AREA(ACRES = 155.51 TC(MIN.) = 16.38 EFFECTIVE AREA(ACRES) = 145.62 AREA - AVERAGED Fm(INCH /HR)= 0.37 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.47 PEAK FLOW RATE(CFS) = 393.67 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER im NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE Ad 1 393.67 16.38 3.378 0.80( 0.37) 0.47 145.6 101.00 2 372.15 19.60 3.033 0.80( 0.37) 0.47 155.5 201.00 ai ww END OF RATIONAL METHOD ANALYSIS 1 trri ai i11 no di di di di Y: \F60\ 400 \Calcs \Hydrology \Pipeline \100YR.RMA • Saved: 4/11/2002 1:28 PM Page 1 of 15 s di ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ,044 RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) rist (c) Copyright 1983 -2000 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2000 License ID 1395 or or Analysis prepared by: on BOYLE ENGINEERING CORPORATION CORPORATE HEADQUARTERS 1501 QUAIL STREET PR NEWPORT BEACH, CALIFORNIA, PH 949- 476 -3300 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * CITRUS AVENUE WIDENING JN OC -F60- 400 -00 TASK 204 * CLIENT: CITY OF FONTANA • * 25 YEAR HYDROLOGY MODELED FOR PROPOSED CATCH BASINS ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ad FILE NAME: 25YRCB.DAT TIME /DATE OF STUDY: 13:28 04/11/2002 or USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL*- - USER SPECIFIED STORM EVENT(YEAR) = 25.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 !+� SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* or SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = 0.6000 - USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.2500 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* 4 rri BEGIN AT 210 FREEWAY AND CITRUS AVENUE • + + • ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 21 » » > RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 1000.00 ELEVATION DATA: UPSTREAM(FEET) = 15,20.00 DOWNSTREAM(FEET) = 1494.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.997 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.663 Y: \F60\ 400 \Ca1cs\ Hydrology \CatchBasin \25YRCB.RMA tre Saved: 4/11/2002 1:28 PM Page 2 of 15 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) rid COMMERCIAL A 4.60 0.98 0.10 32 10.00 - SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 oi SUBAREA RUNOFF(CFS) = 14.76 40 TOTAL AREA(ACRES) = 4.60 PEAK FLOW RATE(CFS) = 14.76 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 62 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« « < » » >( STREET TABLE SECTION # 1 USED) « « < UPSTREAM ELEVATION(FEET) = 1494.00 DOWNSTREAM ELEVATION(FEET) = 1479.00 STREET LENGTH(FEET) = 660.00 CURB HEIGHT(INCHES) = 8.0 me STREET HALFWIDTH(FEET) = 30.00 0, 4 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 owl SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 04 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 o' Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 srw * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 29.64 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.60 HALFSTREET FLOOD WIDTH(FEET) = 24.26 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.44 - PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 3.24 AO T1 STREET FLOW TRAVEL TIME(MIN.) = 2.02 Tc(MIN.) = 12.02 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.280 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 10.38 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR). = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 10.38 SUBAREA RUNOFF(CFS) = 29.73 40 EFFECTIVE AREA•(ACRES) = 14.98 AREA - AVERAGED Fp(INCH/HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 14.98 PEAK FLOW RATE(CFS) = 42.91 Oi Oi END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.66 HALFSTREET FLOOD WIDTH(FEET) = 28.09 FLOW VELOCITY(FEET /SEC.) = 5.93 DEPTH *VELOCITY(FT *FT /SEC.) = 3.94 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 103.00 = 1660.00 FEET. + + mil I 104.00 IS PROPOSED CATCH BASIN AT NORTHEAST CORNER (ECR) 411 I OF CITRUS AVENUE & WALNUT STREET Y:\F60\400\Calcs\Hydrology\CatchBasin\25YRCB.RMA Saved: 4/11/2002 1:28 PM Page 3 of 15 + + .r ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 62 41041 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< » » >( STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1479.00 DOWNSTREAM ELEVATION(FEET) = 1452.50 '. STREET LENGTH(FEET) = 1220.00 CURB HEIGHT(INCHES) = 8.0 rr STREET HALFWIDTH(FEET) = 30.00 0. DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 441 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 1q m Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 58.34 0. ** *STREET FLOW SPLITS OVER STREET - CROWN * ** FULL DEPTH(FEET) = 0.70 FLOOD WIDTH(FEET) = 31.58 FULL HALF - STREET VELOCITY(FEET /SEC.) = 6.05 SPLIT DEPTH(FEET) = 0.43 SPLIT FLOOD WIDTH(FEET) = 14.73 SPLIT FLOW(CFS) = 8.37 SPLIT VELOCITY(FEET /SEC.) = 3.93 Wi STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.70 HALFSTREET FLOOD WIDTH(FEET) = 31.58 AVERAGE FLOW VELOCITY(FEET /SEC.) = 6.05 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 4.23 STREET FLOW TRAVEL TIME(MIN.) = 3.36 Tc(MIN.) = 15.38 - * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.829 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS 0. LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN di RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 15.28 0.98 0.60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 di SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA AREA(ACRES) = 15.28 SUBAREA RUNOFF(CFS) = 30.86 EFFECTIVE AREA(ACRES) = 30.26 AREA - AVERAGED Fm(INCH /HR) = 0.34 74: AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.35 TOTAL AREA(ACRES) = 30.26 PEAK FLOW RATE(CFS) = 67.69 END OF SUBAREA STREET FLOW HYDRAULICS: 16 DEPTH(FEET) = 0.70 HALFSTREET FLOOD WIDTH(FEET) = 31.58 FLOW VELOCITY(FEET /SEC.) = 6.05 DEPTH *VELOCITY(FT *FT /SEC.) = 4.23 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 104.00 = 2880.00 FEET. + + BEGIN AT HIGHLAND AVENUE & OLEANDER AVENUE 4 + + 4 di Y:\F60\400\Calcs\Hydrology\CatchBasin\25YRCB.RMA r Saved: 4/11/2002 1:28 PM Page 4 of 15 ii ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 4 ! FLOW PROCESS FROM NODE 115.00 TO NODE 121.00 IS CODE = 21 di » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS« « < o »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« NO INITIAL SUBAREA FLOW - LENGTH(FEET) = 550.00 ELEVATION DATA: UPSTREAM(FEET) = 1507.00 DOWNSTREAM(FEET) = 1495.00 it Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.152 404R * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 4.140 iiii SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc , LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 6.34 0.98 0.10 32 8.15 at SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 oll SUBAREA RUNOFF(CFS) = 23.07 iii TOTAL AREA(ACRES) = 6.34 PEAK FLOW RATE(CFS) = 23.07 +w ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** wW FLOW PROCESS FROM NODE 121.00 TO NODE 122.00 IS CODE = 51 » »>COMPUTE TRAPEZOIDAL CHANNEL FLOW« « < me » »>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « «< ELEVATION DATA: UPSTREAM(FEET) = 1495.00 DOWNSTREAM(FEET) = 1478.00 ""' CHANNEL LENGTH THRU SUBAREA(FEET) = 800.00 CHANNEL SLOPE = 0.0213 *Si j CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 0.000 MANNING'S FACTOR = 0.025 MAXIMUM DEPTH(FEET) = 1.00 ++i CHANNEL FLOW THRU SUBAREA(CFS) = 23.07 ai FLOW VELOCITY(FEET /SEC) = 3.52 FLOW DEPTH(FEET) = 0.26 TRAVEL TIME(MIN.) = 3.79 Tc(MIN.) = 11.94 mo LONGEST FLOWPATH FROM NODE 115.00 TO NODE 122.00 = 1350.00 FEET. FLOW PROCESS FROM NODE 122.00 TO NODE 122.00 IS CODE = 81 di » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW_« « < MAINLINE Tc(MIN) = 11.94 44 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.293 de SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS 1 LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN di RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 12.21 0.98 0.60 32 'ui SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98 di SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA AREA(ACRES) = 12.21 SUBAREA RUNOFF(CFS) = 29.76 EFFECTIVE AREA(ACRES) = 18.55 AREA - AVERAGED Fm /HR) = 0.42 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.43 O 111 TOTAL AREA(ACRES) = 18.55 PEAK FLOW RATE(CFS) = 47.99 00 Y: \F60\ 400 \Ca1cs\ Hydrology \CatchBasin \25YRCB.RMA am • rrl Saved: 4/11/2002 1:28 PM Page 5 of 15 FLOW PROCESS FROM NODE 122.00 TO NODE 123.00 IS CODE = 51 » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW« « < » »>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « «< 44 ELEVATION DATA: UPSTREAM(FEET) = 1479.00 DOWNSTREAM(FEET) = 1451.50 CHANNEL LENGTH THRU SUBAREA(FEET) = 1950.00 CHANNEL SLOPE = 0.0141 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = • 0.000 MANNING'S FACTOR = 0.025 MAXIMUM DEPTH(FEET) = 1.00 di CHANNEL FLOW THRU SUBAREA(CFS) = 47.99 FLOW VELOCITY(FEET /SEC) = 4.15 FLOW DEPTH(FEET) = 0.46 TRAVEL TIME(MIN.) = 7.83 Tc(MIN.) = 19.77 LONGEST FLOWPATH FROM NODE 115.00 TO NODE 123.00 = 3300.00 FEET. 44 + + 1 123.00 IS PROPOSED CATCH BASIN AT NORTHEAST CORNER (BCR) OF 1 WALNUT STREET & CITRUS AVENUE es 44 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** us FLOW PROCESS FROM NODE 123.00 TO NODE 123.00 IS CODE = 81 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< 41 MAINLINE Tc(MIN) = 19.77 Me * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.433 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA FP Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN ima RESIDENTIAL am "3 -4 DWELLINGS /ACRE" A 18.93 0.98 0.60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 - SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA AREA(ACRES) = 18.93 SUBAREA RUNOFF(CFS) = 31.49 ewe EFFECTIVE AREA(ACRES) = 37.48 AREA - AVERAGED Fp(INCH/HR) = 0.50 rir AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.52 TOTAL AREA(ACRES) = 37.48 PEAK FLOW RATE(CFS) = 65.12 + + BEGIN SOUTH SIDE OF WALNUT STREET AT OLEANDER AVENUE. FLOW WESTERLY TOWARDS CITRUS AVENUE. 11 1 I mil + ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 130.00 TO NODE 131.00 IS CODE = 21 4, » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS« « < »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 670.00 ELEVATION DATA: UPSTREAM(FEET) = 1459.00 DOWNSTREAM(FEET) = 1455.00 Ai Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 Y: \F60\ 400\ Calcs\ Hydrology\CatchBasin\25YRCB.RMA A.. aii Saved: 4/11/2002 1:28 PM Page 6 of 15 di SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 15.493 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.817 '"I SUBAREA Tc AND LOSS RATE DATA(AMC II) : mi DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap _ SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) o. RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 0.46 0.98 0.60 32 15.49 iiii SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap 0.60 op SUBAREA RUNOFF(CFS) = 0.92 AO TOTAL AREA(ACRES) = 0.46 PEAK FLOW RATE(CFS) = 0.92 • + + Mai I 132.00 IS PROPOSED CATCH BASIN AT SOUTHEAST CORNER (ECR) OF WALNUT STREET AND CITRUS AVENUE 04 + + ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** mg FLOW PROCESS FROM NODE 131.00 TO NODE 132.00 IS CODE = 62 tiro » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« « < • » » >( STREET TABLE SECTION 4 1 USED) « «< ogi UPSTREAM ELEVATION(FEET) = 1455.00 DOWNSTREAM ELEVATION(FEET) = 1451.50 a . STREET LENGTH(FEET) = 670.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 "'R INSIDE STREET CROSSFALL(DECIMAL) = 0.018 am , OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 . eos SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 • -- Manning's FRICTION FACTOR for Streetflow Section(curb - - curb) = 0.0150 Manning's FRICTION FACTOR for Back - - Walk Flow Section = 0.0200 so * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.26 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: 1:1; STREET FLOW DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 8.53 AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.50 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 0.47 STREET FLOW TRAVEL TIME(MIN.) = 7.45 Tc(MIN.) = 22.94 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.225 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3-4 DWELLINGS /ACRE" A 0.46 0.98 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA AREA(ACRES) = 0.46 SUBAREA RUNOFF(CFS) = 0.68 di EFFECTIVE AREA(ACRES) = 0.92 AREA - AVERAGED Fp(INCH/HR) = 0.59 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.60 TOTAL AREA(ACRES) = 0.92 PEAK FLOW RATE(CFS) = 1.36 *N ' Y: \ F60\ 400 \Ca1cs\ Hydrology \CatchBasin \25YRCB.RMA Saved: 4/11/2002 1:28 PM Page 7 of 15 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) = 8.91 FLOW VELOCITY(FEET /SEC.) = 1.51 DEPTH *VELOCITY(FT *FT /SEC.) = 0.48 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 132.00 = 1340.00 FEET. 44 + + 410 I BEGIN AT 210 FREEWAY, WEST SIDE OF CITRUS AVENUE 11 7 I 4 + + ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 141.00 TO NODE 142.00 IS CODE = 21 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS« « < ' »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« id INITIAL SUBAREA FLOW - LENGTH(FEET) = 1000.00 44 ELEVATION DATA: UPSTREAM(FEET) = 1516.00 DOWNSTREAM(FEET) = 1488.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.850 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.696 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc u" LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 0.40 0.98 0.10 32 9.85 RESIDENTIAL win "3 -4 DWELLINGS /ACRE" A 2.31 0.98 0.60 32 13.35 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = ; 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.53 SUBAREA RUNOFF(CFS) = 7.76 TOTAL AREA(ACRES) = 2.71 PEAK FLOW RATE(CFS) = 7.76 + + ' I 143.00 IS PROPOSED CATCH BASIN AT NORTHWEST CORNER OF ✓ I WALNUT STREET AND CITRUS AVENUE • + ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 142.00 TO NODE 143.00 IS CODE = 62 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » » >( STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1488.00 DOWNSTREAM ELEVATION(FEET) = 1453.00 STREET LENGTH(FEET) = 1560.00 CURB HEIGHT(INCHES) = 8.0 44 STREET HALFWIDTH(FEET) = 30.00 A' DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 +rM Y:\F60\400\Calcs\Hydrology\CatchBasin\25YRCB.RMA .w ad Saved: 4/11/2002 1:28 PM Page 8 of 15 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 'ad Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 di * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 14.27 ow STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.49 HALFSTREET FLOOD WIDTH(FEET) = 18.24 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.51 ow PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.20 STREET FLOW TRAVEL TIME(MIN.) = 5.77 Tc(MIN.) = 15.62 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.803 1° ' SUBAREA LOSS RATE DATA(AMC II) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN *ft RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 6.43 0.98 0.60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 'ft SUBAREA AREA(ACRES) = 6.43 SUBAREA RUNOFF(CFS)-= 12.84 oft EFFECTIVE AREA(ACRES) = 9.14 AREA - AVERAGED Fm(INCH /HR) = 0.56 AREA- AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.58 0* TOTAL AREA(ACRES) = 9.14 PEAK FLOW RATE(CFS) = 18.42 di END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.52 HALFSTREET FLOOD WIDTH(FEET) = 20.20 om FLOW VELOCITY(FEET /SEC.) = 4.80 DEPTH *VELOCITY(FT *FT /SEC.) = 2.51 LONGEST FLOWPATH FROM NODE 141.00 TO NODE 143.00 = 2560.00 FEET. +w + + ;l 1 146.00 IS PROPOSED CATCH BASIN ON WEST SIDE OF CITRUS AVENUE 650 FEET SOUTH OF WALNUT STREET + + wi - **************************************************************************** +rw FLOW PROCESS FROM NODE 145.00 TO NODE 146.00 IS CODE = 21 go » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< »USE TIME-OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 850.00 ELEVATION DATA: UPSTREAM(FEET) = 1451.50 DOWNSTREAM(FEET) = 1438.50 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 14.118 MR * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.978 41 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 2.49 0.98 0.60 32 14.12 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 di SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA RUNOFF(CFS) = 5.36 TOTAL AREA(ACRES) = 2.49 PEAK FLOW RATE(CFS) = 5.36 +w di Y: \F60\ 400 \Calcs\ Hydrology \CatchBasin \25YRCB.RMA Ito Saved: 4/11/2002 1:28 PM Page 9 of 15 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ** FLOW PROCESS FROM NODE 150.00 TO NODE 151.00 IS CODE = 21 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< „ »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« • *w INITIAL SUBAREA FLOW-LENGTH(FEET) .= 940.00 ELEVATION DATA: UPSTREAM(FEET) = 1457.00 DOWNSTREAM(FEET) = 1443.00 ow Tc = K *((LENGTH * * - 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 14.776 0* * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.898 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA FP Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 4.78 0.98 0.60 32 14.78 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 - SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA RUNOFF(CFS) = 9.95 so TOTAL AREA(ACRES) = 4.78 PEAK FLOW RATE(CFS) = 9.95 + l 152.00 IS PROPOSED CATCH BASIN ON EAST SIDE OF CITRUS AVENUE 1 650 FEET SOUTH OF WALNUT STREET wq WO + + * „ y ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 151.00 TO NODE 152.00 IS CODE = 62 mw on » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » » >( STREET TABLE SECTION # 1 USED) « «< 0 UPSTREAM ELEVATION(FEET) = 1443.00 DOWNSTREAM ELEVATION(FEET) = 1439.00 OR STREET LENGTH(FEET) = 680.00 CURB HEIGHT(INCHES) = 8.0 o w STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = = = OUTSIDE STREET CROSSFALL(DECIMAL) 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 IR Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 18.34 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: Ad STREET FLOW DEPTH(FEET) = 0.63 HALFSTREET FLOOD WIDTH(FEET) = 26.21 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.90 i ! PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.83 STREET FLOW TRAVEL TIME(MIN.) = 3.91 Tc(MIN.) = 18.69 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.517 Y: \F60\400\ Calcs\ Hydrology \CatchBasin\25YRCB.RMA Xi oil Saved: 4/11/2002 1:28 PM Page 10 of 15 4 iii SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS 'd LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN iiii RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 9.62 0.98 0.60 32 +m SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 tri SUBAREA AREA(ACRES) = 9.62 SUBAREA RUNOFF(CFS) = 16.73 EFFECTIVE AREA(ACRES) = 14.40 AREA - AVERAGED Fm(INCH /HR) = 0.59 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.60 di TOTAL AREA(ACRES) = 14.40 PEAK FLOW RATE(CFS) = 25.04 OR END OF SUBAREA STREET FLOW HYDRAULICS: di DEPTH(FEET) = 0.69 HALFSTREET FLOOD WIDTH(FEET) = 30.77 FLOW VELOCITY(FEET /SEC.) = 3.12 DEPTH *VELOCITY(FT *FT /SEC.) = 2.16 omm LONGEST FLOWPATH FROM NODE 150.00 TO NODE 152.00 = 1620.00 FEET. id + + 156.00 IS PROPOSED CATCH BASIN ON NORTHWEST CORNER (BCR) OF CITRUS AVENUE AND CHASE ROAD + + ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 155.00 TO NODE 156.00 IS CODE = 21 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « « < iirf »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« +4 INITIAL SUBAREA FLOW - LENGTH(FEET) = 880.00 irr ELEVATION DATA: UPSTREAM(FEET) = 1439.00, DOWNSTREAM(FEET) = 1424.00 dm Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 iii ' - SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 14.008 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.992 SUBAREA Tc AND LOSS RATE DATA(AMC II): ed DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc +r LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL Id; "3 -4 DWELLINGS /ACRE" A 2.92 0.98 32 14.01 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA RUNOFF(CFS) = 6.33 TOTAL AREA(ACRES) = 2.92 PEAK FLOW RATE(CFS) = 6.33 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 157.00 TO NODE 158.00 IS CODE = 21 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS« « < 4114 »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« di INITIAL SUBAREA FLOW - LENGTH(FEET) = 970.00 ELEVATION DATA: UPSTREAM(FEET) = 1443.00 DOWNSTREAM(FEET) = 1430.00 lok s El Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 15.282 mi Ai Y:\F60\ 400 \Ca1cs\ Hydrology \CatchBasin \25YRCB.RMA ▪ Saved: 4/11/2002 1:28 PM Page 11 of 15 di * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.840 SUBAREA Tc AND LOSS RATE DATA(AMC II): ' DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc Sri LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL OR "3 -4 DWELLINGS /ACRE" A 5.02 0.98 0.60 32 15.28 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 ow SUBAREA RUNOFF(CFS) = 10.19 TOTAL AREA(ACRES) = 5.02 PEAK FLOW RATE(CFS) = 10.19 + + 11° I 159.00 IS PROPOSED CATCH BASIN AT NORTHEAST CORNER (ECR) OF CITRUS AVENUE AND CHASE ROAD 04 + ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 158.00 TO NODE 159.00 IS CODE = 62 m +d » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » » >( STREET TABLE SECTION # 1 USED) «< old UPSTREAM ELEVATION(FEET) = 1430.00 DOWNSTREAM ELEVATION(FEET) = 1425.00 STREET LENGTH(FEET) = 740.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 ' OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 do SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 011 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 emi Manning's FRICTION FACTOR for Back-of-Walk Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 18.78 id STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.62 HALFSTREET FLOOD WIDTH(FEET) = 25.74 di AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.07 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.91 STREET FLOW TRAVEL TIME(MIN.) = 4.01 Tc(MIN.) = 19.30 di * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.469 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 10.10 0.98 0.60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA AREA(ACRES) = 10.10 SUBAREA RUNOFF(CFS) = 17.13 EFFECTIVE AREA(ACRES) = 15.12 AREA - AVERAGED Fm(INCH /HR) = 0.58 110: AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.60 TOTAL AREA(ACRES) = 15.12 PEAK FLOW RATE(CFS) = 25.64 wom • Y: \F60 \400 \Calcs\ Hydrology \CatchBasin \25YRCB.RMA am Ai 09 Saved: 4/11/2002 1:28 PM Page 12 of 15 di END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.68 HALFSTREET FLOOD WIDTH(FEET) = 29.73 FLOW VELOCITY(FEET /SEC.) = 3.32 DEPTH *VELOCITY(FT *FT /SEC.) = 2.26 LONGEST FLOWPATH FROM NODE 157. TO NODE 159.00 = 1710.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** awi FLOW PROCESS FROM NODE 161.00 TO NODE 162.00 IS CODE = 21 w.. » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS« « < »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« am INITIAL SUBAREA FLOW - LENGTH(FEET) = 1080.00 ELEVATION DATA: UPSTREAM(FEET) = 1430.00 DOWNSTREAM(FEET) = 1414.50 Ad Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 15.736 is * 25 YEAR RAINFALL INTENSITY(INCH HR) = 2.790 SUBAREA Tc AND LOSS RATE DATA(AMC II): ,,,,, DEVELOPMENT TYPE/ SCS SOIL AREA FP Ap SCS Tc ' LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "3 - 4 DWELLINGS /ACRE" . A 5.83 0.98 0.60 32 15.74 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 • SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA RUNOFF(CFS) = 11.57 TOTAL AREA(ACRES) = 5.83 PEAK FLOW RATE(CFS) = 11.57 AO 163.00 IS CATCH BASIN ON EAST SIDE OF CITRUS AVENUE 650 FEET NORTH OF BASELINE AVENUE Ad ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 162.00 TO NODE 163.00 IS CODE = 62 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » » >( STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1414.50 DOWNSTREAM ELEVATION(FEET) = 1410.00 STREET LENGTH(FEET) = 690.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 7 1; DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 21.40 46 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.65 HALFSTREET FLOOD WIDTH(FEET) = 27.30 Ali Y: \F60\ 400 \Calcs\ Hydrology \CatchBas \25YRCB.RMA o Mil Saved: 4/11/2002 1:28 PM Page 13 of 15 Ai AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.12 PRODUCT OF DEPTH & VELOCITY(FT*FT /SEC.) = 2.03 0 1 STREET FLOW TRAVEL TIME(MIN.) = 3.68 Tc(MIN.) = 19.42 Mi * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.460 SUBAREA LOSS RATE DATA(AMC- II) : 01 DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN iiii RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 11.61 0.98 0.60 32 am SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 iiri SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA AREA(ACRES) = 11.61 SUBAREA RUNOFF(CFS) = 19.59 wm EFFECTIVE AREA(ACRES) = 17.44 AREA - AVERAGED Fm(INCH /HR) = 0.59 MI AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.60 TOTAL AREA(ACRES) = 17.44 PEAK FLOW RATE(CFS) = 29.42 END OF SUBAREA STREET FLOW HYDRAULICS: id DEPTH(FEET) = 0.70 HALFSTREET FLOOD WIDTH(FEET) = 31.58 FLOW VELOCITY(FEET /SEC.) = 3.32 DEPTH *VELOCITY(FT *FT /SEC.) = 2.32 "m *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS, Ai AND L = 690.0 FT WITH ELEVATION -DROP = 4.5 FT, IS 23.4 CFS, WHICH EXCEEDS THE TOP -OF -CURB STREET CAPACITY AT NODE 163.00 'MI LONGEST FLOWPATH FROM NODE 161.00 TO NODE 163.00 = 1770.00 FEET. Mid + + on I 165.00 IS PROPOSED CATCH BASIN ON WEST SIDE OF CITRUS AVENUE 650 FEET NORTH OF BASELINE AVENUE jai 1 + + in ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** me FLOW PROCESS FROM NODE 165.00 TO NODE 166.00 IS CODE = 21 mil » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« iiii INITIAL SUBAREA FLOW - LENGTH(FEET) = 840.00 iiri ELEVATION DATA: UPSTREAM(FEET) = 1423.00 DOWNSTREAM(FEET) = 1410.50 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 16.563 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.706 SUBAREA Tc AND LOSS RATE DATA(AMC II): 2 DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) PUBLIC PARK A 2.69 0.98 0.85 32 16.56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.85 SUBAREA RUNOFF(CFS) = 4.54 TOTAL AREA(ACRES) = 2.69 PEAK FLOW RATE(CFS) = 4.54 + + 172.00 IS PROPOSED CATCH BASIN AT NORTHWEST CORNER (BCR) OF I 1 CITRUS AVENUE AND BASELINE AVENUE + + Y: \F60\ 400 \Ca Hydrology \CatchBasin \25YRCB.RMA r Saved: 4/11/2002 1:28 PM Page 14 of 15 • 'd FLOW PROCESS FROM NODE 171.00 TO NODE 172.00 IS CODE = 21 i » » »RATIONAL METHOD INITIAL SUBAREA ANALYSIS « « < ;+n »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 780.00 on ELEVATION DATA: UPSTREAM(FEET) = 1410.00 DOWNSTREAM(FEET) = 1395.00 did Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.614 gm * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.750 id SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc on LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 2.60 0.98 0.10 32 9.61 44 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 8.55 M( TOTAL AREA(ACRES) = 2.60 PEAK FLOW RATE(CFS) = 8.55 • ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** dd FLOW PROCESS FROM NODE 175.00 TO NODE 176.00 IS CODE = 21 no » » »RATIONAL METHOD INITIAL SUBAREA ANALYSIS« « < »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« Mo INITIAL SUBAREA FLOW - LENGTH(FEET) = 620.00 on ELEVATION DATA: UPSTREAM(FEET) = 1415.50 DOWNSTREAM(FEET) = 1411.00 Tc = K *((LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 on SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 14.444 * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.938 MO SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc ol LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) Ai RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 1.13 0.98 0.60 32 14.44 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 SUBAREA RUNOFF(CFS) = 2.39 TOTAL AREA(ACRES) = 1.13 PEAK FLOW RATE(CFS) = 2.39 711 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 176.00 TO NODE 177.00 IS CODE = 51 » » »COMPUTE TRAPEZOIDAL CHANNEL FLOW« «< » » >TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « «< ELEVATN DATA: UPSTREAM(FEET) = 141 = 6.00 CHANNE IO L ENGTH THR SUB = 7 20 00 . 00 DOWNSTREA CHANNE SLOPE = 0 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 0.000 MANNING'S FACTOR = 0.025 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 2.39 FLOW VELOCITY(FEET /SEC) = 1.45 FLOW DEPTH(FEET) = 0.07 Y: \F60\ 400 \Calcs\ Hydrology \CatchBasin \25YRCB.RMA ., Saved: 4/11/2002 1:28 PM Page 15 of 15 di TRAVEL TIME(MIN.) = 8.25 Tc(MIN.) = 22.70 LONGEST FLOWPATH FROM NODE 175.00 TO NODE 177.00 = 1340.00 FEET. di 1 177.00 IS PROPOSED CATCH BASIN AT NORTHEAST CORNER (ECR) OF " I CITRUS AVENUE AND BASELINE AVENUE +r1 I + + ww FLOW PROCESS FROM NODE 177.00 TO NODE 177.00 IS CODE = 81 014 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « < MAINLINE Tc(MIN) = 22.70 0% * 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.240 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL di "3 -4 DWELLINGS /ACRE" A 1.28 0.98 0.60 32 COMMERCIAL A 3.41 0.98 0.10 32 '" SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.24 SUBAREA AREA(ACRES) = 4.69 SUBAREA RUNOFF(CFS) = 8.48 m. EFFECTIVE AREA(•ACRES) = 5.82 AREA - AVERAGED Fp(INCH/HR) = 0.30 AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.31 TOTAL AREA(ACRES) = 5.82 PEAK FLOW RATE(CFS) = 10.16 s. END OF STUDY SUMMARY: vrr TOTAL AREA(ACRES) = 5.82 TC(MIN.) = 22.70 EFFECTIVE AREA(ACRES) = 5.82 AREA - AVERAGED Fp(INCH/HR)= 0.30 - AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.31 PEAK FLOW RATE(CFS) = 10.16 nim END OF RATIONAL METHOD ANALYSIS r 1 di AR di Ag qd di Ai 0 11 Ai Y: \F60\ 400 \Ca1cs\ Hydrology \CatchBasin \25YRCB.RMA mm Ai 4,114 Saved: 4/10/2002 11:31 AM Page 1 of 4 di ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 0111* RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE ,i (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -2000 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2000 License ID 1395 "' Analysis prepared by: +m BOYLE ENGINEERING CORPORATION or CORPORATE HEADQUARTERS 1501 QUAIL STREET pm NEWPORT BEACH, CALIFORNIA, PH 949- 476 -3300 Ni * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** mom * CITRUS AVENUE WIDENING JN OC -F60- 400 -00 TASK 204 * CLIENT: CITY OF FONTANA * • * 100 YEAR HYDROLOGY FOR SUMP ON S. HIGHLAND AVE. JUST EAST OF CITRUS AVE. * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** aw or FILE NAME: 100YRCB.DAT TIME /DATE OF STUDY: 11:31 04/10/2002 om USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: id mm -- *TIME -OF- CONCENTRATION MODEL*- - or USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 ""'" SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 ,w *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* om SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = 0.6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.5500 on -- o *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD* tat + + 1 1 I BEGIN AT 210 FREEWAY & OLEANDER AVENUE. di FOR NORTHSIDE OF S. HIGHLAND AVENUE, WESTERLY FROM OLEANDER AVENUE TO SUMP AT CITRUS AVENUE • + + dl ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 110.00 TO NODE 111.00 IS CODE = 21 » » > RATIONAL METHOD INITIAL SUBAREA ANALYSIS « « < • »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« d i INITIAL SUBAREA FLOW - LENGTH(FEET) = 700.00 ELEVATION DATA: UPSTREAM(FEET) = 1519.00 DOWNSTREAM(FEET) = 1507.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.421 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.707 no • C: \ aes2000 \hydrosft\ratscx \100YRCB.RMA mm Sri 4111 Saved: 4/10/2002 11:31 AM Page 2 of 4 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc `! LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) di COMMERCIAL A 5.64 0.80 0.10 52 9.42 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 41 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 23.49 TOTAL AREA(ACRES) = 5.64 PEAR FLOW RATE(CFS) = 23.49 Am + + or I 112.00 IS SUMP AT NORTHEAST CORNER (BCR) OF CITRUS AVENUE AND S. HIGHLAND AVENUE ..- - + + ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** um FLOW PROCESS FROM NODE 111.00 TO NODE 112.00 IS CODE = 62 mY » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » » > (STREET TABLE SECTION # 1 USED) « «< di UPSTREAM ELEVATION(FEET) = 1507.00 DOWNSTREAM ELEVATION(FEET) = 1504.00 STREET LENGTH(FEET) = 700.00 CURB HEIGHT(INCHES) = 8.0 rw STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 mom INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 Am SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 mom Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 34.89 ** *STREET FLOW SPLITS OVER STREET - CROWN * ** um FULL DEPTH(FEET) = 0.70 FLOOD WIDTH(FEET) = 31.58 rri FULL HALF - STREET VELOCITY(FEET /SEC.) = 2.69 SPLIT DEPTH(FEET) = 0.59 SPLIT FLOOD WIDTH(FEET) = 24.18 SPLIT FLOW(CFS) = 12.69 SPLIT VELOCITY(FEET /SEC.) = 2.34 di STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.70 HALFSTREET FLOOD WIDTH(FEET) = 31.58 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.69 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.88 STREET FLOW TRAVEL TIME(MIN.) = 4.34 Tc(MIN.) = 13.76 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.750 SUBAREA LOSS-RATE DATA(AMC III) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 6.90 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 6.90 SUBAREA RUNOFF(CFS) = 22.79 EFFECTIVE AREA(ACRES) = 12.54 AREA - AVERAGED Fm(INCH/HR) = 0.08 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 ' C:\aes2000\hydrosft\ratscx\100YRCB.RMA ilm Ili lei Saved: 4/10/2002 11:31 AM Page 3 of 4 da TOTAL AREA(ACRES) = 12.54 PEAK FLOW RATE(CFS) = 41.43 li di END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.70 HALFSTREET FLOOD WIDTH(FEET) = 31.58 FLOW VELOCITY(FEET /SEC.) = 2.69 DEPTH *VELOCITY(FT *FT /SEC.) = 1.88 di *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS, d i AND L = 700.0 FT WITH ELEVATION -DROP = 3.0 FT, IS 24.3 CFS, WHICH EXCEEDS THE TOP -OF -CURB STREET CAPACITY AT NODE 112.00 ., LONGEST FLOWPATH FROM NODE 110.00 TO NODE 112.00 = 1400.00 FEET. r11 + BEGIN AT OLEANDER AVENUE AND S. HIGHLAND AVENUE. on I FOR SOUTHSIDE OF S. HIGHLAND AVENUE, WESTERLY FROM OLEANDER AVENUE di i TO CITRUS AVENUE ,w rrr ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 115.00 TO NODE 116'.00 IS CODE = 21 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS« « < ill »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« 'd INITIAL SUBAREA FLOW - LENGTH(FEET) = 570.00 di ELEVATION DATA: UPSTREAM(FEET) = 1507.00 DOWNSTREAM(FEET) = 1504.00 +a Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.989 ei * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.292 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA FP Ap SCS Tc +i LAND USE. GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 0.71 0.80 0.10 52 10.99 mu SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 Wri SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 2.69 d i TOTAL AREA(ACRES) = 0.71 PEAK FLOW RATE(CFS) = 2.69 d i + + 117.00 IS SUMP AT SOUTHEAST CORNER (ECR) OF CITRUS AVENUE AND 1 1 S. HIGHLAND AVENUE ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** di FLOW PROCESS FROM NODE 116.00 TO NODE 117.00 IS CODE = 62 Mill » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » » >( STREET TABLE SECTION # 1 USED) « « < UPSTREAM ELEVATION(FEET) = 1504.00 DOWNSTREAM ELEVATION(FEET) = 1502.00 STREET LENGTH(FEET) = 700.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 qm illi C : \ aes2000 \hydrosft \ratscx \100YRCB.RMA Saved: 4/10/2002 11:31 AM Page 4 of 4 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 1�1 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.90 MO STREETFLOW.MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.45 HALFSTREET FLOOD WIDTH(FEET) = 16.37 AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.51 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 0.69 STREET FLOW TRAVEL TIME(MIN.) = 7.73 Tc(MIN.) = 18.72 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.118 MO SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.88 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 ' SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 Ai SUBAREA AREA(ACRES) = 0.88 SUBAREA RUNOFF(CFS) = 2.41 EFFECTIVE AREA(ACRES) = 1.59 AREA - AVERAGED Fm(INCH /HR) = 0.08 mo AREA - AVERAGED Fp(INCH/HR) = 0.80 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 1.59 PEAK FLOW RATE(CFS) = 4.35 di END OF SUBAREA STREET FLOW HYDRAULICS: A•e DEPTH(FEET) = 0.47 HALFSTREET FLOOD WIDTH(FEET) = 17.07 FLOW VELOCITY(FEET /SEC.) = 1.56 DEPTH *VELOCITY(FT *FT /SEC.) = 0.73 LONGEST FLOWPATH FROM NODE 115.00 TO NODE 117.00 = 1270.00 FEET. Ng di END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 1.59 TC(MIN.) = 18.72 EFFECTIVE AREA(ACRES) = 1.59 AREA - AVERAGED Fm(INCH /HR)= 0.08 a - AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 PEAK FLOW RATE(CFS) = 4.35 m di END OF RATIONAL METHOD ANALYSIS 'i 1 d :1 di di ", C: \ aes2000 \hydrosft\ratscx\100YRCB.RMA