Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Storm Drain Hydraulics/Cherry Ave Ind. Area Vol. 1 Line L
r STORM DRAIN HYDRAULICS' FOR THE CHERRY AVENUE INDUSTRIAL 'AREA; VOLUME 1 LINE L (INCLUDING LATERALS B C & D ) PREPARED BY: HALL & FOREMAN, INC. 3170 REDHILL AVE. COSTA MESA, CA. 92626 - 3428 714 ) 641 -8777 ``t LINE L Q25 — * * * atiFiEiF********* CIF** ************• 1F*• iFiFll 9tiF*iF*diF*iE*dF9F**i4iF**dF*iFik***iFlFiFik*9F **** IF ** PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD, LACRD, & .DCEMA HYDRAULICS .CRITERION) r la' *v **** ** ***** ********** ** * *** *** * ** <<<<((((<((<<<<<<(<<(<<<(<(<<((<<l<<(())>)>>> > > > > > > > > > > > >) > > > > > > > > > >> (C) Copyright 198E Advanced Engineering Software EAES3 rt> Especially prepared for: .,. HALL & FOREMAN, INC. ( <<<<<(<<(<(<<<<<<<<<<<<<<(<<<<(<<<<<(())>>>>) > > > > > > >) > >) > > > > > > > > > >) >)) > > >) >) ' 4 * *** ******OESCRiP t ION OF RESULTS * * * * * * * ** • * * * * ** * * * * * * * * * * *iwr * * ** • * INDUSTRIAL AREA LINE L HYDRAULICS * * 0 25 YR, STA 412.75 TO STA 5050.16 * * VENKI.N, JN 3810 -04, 11/20/87, DISK # JRM 4 * ********************************************** * * * * * * * * * * * * * *** * * * * * * * * * * * * **• i7 * **• * * * * * * * * * * * *• **• **• * * * ** • * * * * * *• * * * * * * * * * * * * * * * * * * * * ** • * * *• * * * *** ** •* •• * * *• NGTE • STEADY FLOW HYDRAULIC `HEAD --LOSS COMPUTATIONS BASED ON THE MOST �. CONSERVATIVEE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA y DESIGN MANUALS. . < DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: ~ NODE NUMBER = 412.75 FLOWL I NE ELEVATION = 1210.50 PIPE DIAMETER < Ii CHI = 108.00 PIPE FLOW (CFS) = 1134.19 u ASSUMED DOWNSTREAM CONTROL HGL = 1219.500 _____ _ =__ == =____ _ 1 E �' <<<<<<<<<<<<<(<<<<<<((<(< < <<(< <<t(<< << }) }>}>) >> >> })}) })) rn>; 't } } }i) }}}>}) }) Advanced Encineerind Software ZAES:i ,-- SERIAL Nc,. A0483A REV. 2.2 RELEASE. DATE: 12/ 17/8 : r- <<<<<(<<(<(<<<<<<<<<<(<(<( : < <<< < << < <<< >) >) > > } > > > > > > } >) > >>> >>> >: ?)))/)):i PRESSURE FLOW PROCESS FROM NODE 412.75 70 NODE 420. 25 IS CCi:)E - 5 ...PSTREAPri NODE 420.25 EL.EVA ION = 12:11.00 CALCULATE PRESSURE FLOW J :NCTION LOSSES: NO. D I SC HA';RG . D I AME 'ER AREA VELOCITY DELTA H'V 1 966.6 102.00 56.71.'5 -7.064 (L.S34 . 470 .4.5,E '` 2 1134.2 106.00 63..617 J 7. 626 -- 4. SCE. CE. 167.6 5..r.00 15.90-4 .t. w1. -3 7 60.00k.?. - 4 0.0 0.00 0. 000 ► . 00C 0.04(10 - 5 0. 0 == =V.5 E ",u.:t-S• T S: N NPL 1 = -ACF CD A \C OCi r' >e-{ P SESB,: --iE r• � , y +U, I Ci 1''tJ!' MuL R,I L1S. ELF 4lir - (L! ..*v2.0,.*v � :.. *c: .DE TA— -c (D .- A3, ` (DE4..S ) / . lf". tA2)* ..) UP-TREAM FRICTION SLOPE = .00813 • I/ DO NSTREAM FRICTION SLOPE = .00625 AV RAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00819 JU TION LENGTH(FEET) = 7.50 FRICTION LOSS = .06i EN RANCE LOSSES = 0.000 1r , , TIM LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) eTroN LOSSES = 1.482+ 4.506- 4.936+( .061)+( 0.000) = 1.114 NOTE 420.25 : HGL= ( 1221.044);EGL.= ( 1225.549);FLOWLINE= ( 1211.000) 1 = ==-=====--= = II P SSURE FLOW PROCESS FROM NODE 420.25 TO NODE 549.82 IS CODE = 3 Um TREAM NODE 549.82 ELEVATION = 1212.44 --- CaLCULATE PRESSURE FLOW PIPE-BEND LOSSES(OCEMA): II PIPE FLOW = = 966.61 CFS 129.57 FEET PIPE DIAMETER = 102.00 INCHES P PE LENGTH MANNINGS N = .01300 C:NTRAL ANGLE = 3.090 DEGREES II P SSURE FLOW AREA = 56.745 SQUARE FEET IF : VELOCITY = 17.03 FEET PER SECOND V:LOCZTY HEAD = 4.506 BEND COEFFICIENT(KB) = .0463 II H:=KB*(VELOCITY HEAD) = ( .046)*( 4.506) = .209 P PE CONVEYANCE FACTOR = 10721.156 FRICTION SLOPE(SF) = .0081267 FICTION LOSSES = L*SF = ( 123.57)*( .0081287) = 1.053 NIIDE 549.82 : HGL= < 1222.306):EGL= < 1226.811);FLOWLINE= ( 1212.440) II ======= 11 P SSURE FLOW PROCESS FROM NODE 549.62 TO NODE 956.05 IS CODE = 3 'STREAM NODE 956.05 ELEVATION = 1216.95 c* C*LCULATE PRESSURE FLOW PIPE LOSSES(OCEMA): PIPE FLOW = 966.61 CFS PIPE DIAMETER = 102.w0 INCHES P'PE ;LENGTH = 402.23 FEET MANNINGS N = .01300 C NTRAL ANGLE = 30. 190 DEGREES II P - ESSURE FLOW AREA = 56.745 SQUARE FEET F OW VELOCITY = 17.03 FEET PER SECOND ✓ LOCITY HEAD = 4.506 SEND COEFFICIENT(KB) II H.=KB*(VELOCITY HEAD) = ( .145)*( 4.506) = .652 PIPE CONVEYANCE FACTOR = 10721.156 FRICTION SLOPE(SF) = .0081267 FRICTION ...6SES = L*SF = ( 402.23)*( .0081287) = 3.270 II "IDE 356.e5 : mGL= < 1E26.228):EGL= < 1230.733):=LOWLINE= ( 1216.950) == II "RESSjRE =L0,4, 1.IRCCE85 FROr NODE 956.e5 TO NODE 1035.0t: IS CODE = 3 PBTREAt NDDE .,035.e. E,S.41 II •ACULATE. PRESSURE FLOW PIPE-2END LOSSES (OCEm): IPE F . 966.61 CS PIE DIAMETER = 102.00 INCHES IPE LENGTH = 78.35 FEE 1 1ANNINGS N = .01300 II ENTRAL ANG,..E = 2.350 DEGREES RESSURE FLOW AREA = 56.745 SQuA:‹E FEET ...OW VE_OCITV = :7.03 , FEET PER SECOND ELOCITY HEAD = 4.506 BEND CA:JEFF:CIENTO:8) = .0404 I S=KB*(VELOCITY HEAD) = ( .040)*( 4.536) = .162 .._>' vIPE CONVEYANCE FACTOR = 10721.L56 FRICTI:JN SLOPE(SF) = .0061267 RICTICN LOSSES = L*6F = 1 73.95)*( .0061E87) = .642 II 'ODE 1035.17, : m3-= : i227.. 4 1231.357Ow_INE= 1 ia17.aze) II =. ====- RESSURE :=-0(.N ;RC O: .. CE FR NO1E le63.410 TO NCLE 104,.0.1/.0 15 CODE = 5 TSTREAm NODE :N7i.IN L, E...E = ,217.87 11111■1=111‘ NO. DISCHARGE DIAMETER AREA VELOCITY DELTA kV 966.6 102.00 II 1 e 9 102.00 56.745 16.793 56.745 17.034 -- .139 4.379 4.506 3 13.7 24.00 3.142 4.358 60.000 - 4 0.0 0.00 0.000 0.000 0.000-1P 0.0=05 EaOALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLuW JUNCTION FORMULAE USED: II DY=M2*V2-01*V1*COS(DELTA1)-03*V3*COS(DELTA3)- 04*V4*COS(DELTA4))/((Al+A2)*16.1) II U STREAM MANNINGS N = .01300 D NSTREAM MANWINGS N = .01300 - U STREAM FRICTION SLOPE = .00790 I D A OI 1 \I7::2 tijRAT:g FFRICTION I t' = JO= 13 ASSUMED AS .00801 J UNCTION LENGTH(FEET) = 5.00 FRICTION LOSS = .040 E TRANCE LOSSES = 0.000 I M NHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MtMENTiJ11 LOSSES-= .110 MANHOLE LOSSES = .225 JUNCTION LOSSES = DY+HV1-HV2+<FRICTION LOSS)+(ENTRANCE LOSSES) II JLJNC1IQN LOSSES = .237+ 4.379- 4.506+( .040)+( 0.000) = .265 N DE 1040.00 : HSL= < 1227.444);EGL= < 1231.823):FLOwLINE= c 1E...7.870> II === ========== = ========-- ==== ============= P'TSSURE FLOW PROCESS FROM NODE 1040.00 TO NODE 1232.37 IS CODE = 3 UpSTREAM NODE 1232.37 ELEVATION = 1219.32 II C CULATE PRESSURE FLOW PIPE-BEND LOSSES(OCEMA): P PE. FLOW = Ill P PE LENGTH = 952.92 CFS 192.37 FEET A = PIPE DIAMETER = 102.00 INCHES MANNINGS N = .01300 C NTRAL NGLE 5.740 DEGREES 11 P'ESSURE F-044 AREA = 56.745 SQUARE FEET F OW VELOCITY = 16.79 FEET PER SECOND ✓ LOCITY HEAD = 4.379 BEND CUEFFICIENT(r:B) II H:=KB*(VELLCITY HEAD) = ( .063)*( 4.379) = .276 PIPE CONVEYANCE FACTOR = .L07 156 FRICTION SLOPE(SF) = 0 II F 7CTION LOSSES = L*SF = ( 192.37)4E( .0079000) = 1.5E0 NIIDE 1232.37 : HG -= < 1223.E40,;EGL= < 1233.6-9t;FLOWL_INE= ( 1.320 , P F-Ok4 PROCESS PROM NUDE 1232.G7 TO NODE 1397.67 IS CODE = 2 U STREW NODE 1297.67 ELEVATIJN = Z.....:82.43 1 c .DRES2JRE FLCA. PIPE-BET,D LOSSEScOCENA): PIPE FLOW = c:'5E.9 CS ;IPE DIETER = 102.0o INCHES I PIPE LENGTH = i65.30 FEET TNTRAL ANGLE = 12.264 DEGREES MANNING'S N = .01300 RESSURE FLOW AREA = 56.745 SOJAkE FEET I LOW VELOLITY = 15.7; FEET PER SECCND ELOCITY HEAD -2 4.37 BEND C5EFFTCIEN = . B=KB*(VELOCITY - = ( .0D: -,-, 4.273, = .404 It PI:E CONVEYANZE FL C- = _07EI.)Z,E rRICTION LCSSES = =*S-: = , t FF S-OPE(SF) = .0079000 165.20) .17;07300n) = 1.C6 ODE :13E7.67 t -= , _aaz...3.s,2):s3,.- ( :PLOwL.TNE= c I222.43e) •RESSL'AS F,...7,,,, PRO::'E FS :.:A %Or _297.E7 '2 r.CIiE 14 IS Ca.,E = 5 "LTREA Nt7J"'= .-10E ":.., ...... ,--;-% - _ . „ I E_EvA = _EEE.D' • AL-CLLgTE nRESS_IRE FL, ..7_%=:, -:EE:7:. ____-- --... ..,...,...,, - 952.9 102.00 56. 745 16.73 -- 4. 379 I , 0.0 0.00 0.00 0.000 0.000 - 0.0 0.00 0.000 0.000 0.000 -- . 0.0=05 EQUALS 6AS:N INPUT=== Ir L 4, FCD.AND OCEMA PRESSURE PLOW JUMCTION FORMULAE USED (0/241.V2-01*V1*C0S (DELTAl ) -Q3*V3*COS WELTA3) - Q4*V4*COS(DELTA4))/((A1+A2)*16.1) II UP-TREAM MANNINGS N = .01300 DO NSTREAM MANNINGS N = .01300 I UP:TREAM FRICTION SLOPE = .01092 DO NSTREAM FRICTION SLOPE = .00790 AV RAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00941 JU CTLON LENGTH(FEET) = 4.67 FRICTION LOSS = .044 II EN RANCE LOSSES = 0.000 M HOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MII NTUM LOSSES = .004 MANHOLE LOSSES = .219 I J T/ON LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) J ION LOSSES = -1.197+ 5.581- 4.379+( .044)+< 0.000) = .263 NOIsE 1402.34 : HGL= < 1230.011);EGL= ( 1235.592);FLOWLINE= < 1228.930> II ; - ESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL L'ST PRESSURE HEAD USING SOFFIT CONTROL = .92 WIDE 1402.34 : HGL= < 1230.930);EGL= < 1236.511>;FLOWLINE= ( 1222.930 II == , da============================================ ====w=4Wo=========. I P"ESSURE FLOW PROCESS FROM NODE 1402.34 TO NODE 1750.89 IS CODE 13 STREAM NODE 1750.89 ELEVATION = 1227.87 . 4, C4.LCULATE PRESSURE FLOW PIPE-BEND LOSSES(OCEMA): P PE FLOW = 952.92 CFS PIPE DIAMETER = 96.00 INCHES P PE LENGTH = 348.55 FEET MANNINGS N = .01300 C ANGLE = 25.902 DEGREES II P F...0'0 AREA = 50.266 SOLARE FEET P' OW VE,OCITY = :6.96 FEET PER SECOND ✓ LOCITY HEAD = 5.581 BEND COEFFICIEN7(KB) = II H =KB*(VE-CCITY HEAD) = ( .134)*( 5.581) = .746 P PE CONVEYAN:E FACTOR = 9120.764 FRICTION S,OPE(Sr) = .01ii:94'.:7 F LOSSES = L*SF = ( 348.55)*( .0109157) = 3.805 II NINDE 1750.69 : HGL= < 1235.463);EGL= < 1241.064/FLOm...INE= t 1227.670) --- , P FLOw ASSUMPTION USED TO AJJJST HGL AND EGL LIST PRESSLRE HEAD USING SOFFIT CONTRO, = .as N DE :750.EB : H3L= ( 1235.670);EGL= < 1241.43.../ ;FE= < 17.6 I == = = = = =============== i F-OtN PROCESS FROM NODE 1750.69 T3 NJDE 1602.34 IS CODE = 3 1-STREPY NODE 1602.34 ELEVATION = 1226.59 11 sALC.,LATE PRESSur4,E F,DW PIPE-BEND L3SSEScOCEMA): PIPE F.5',.. = 932.92 C=S PIPE DIETER = 96.00 IxCrES II . I-IPE L=NG - . ..' C. 4 5 FEET .., ... FNTRA,_ ANS,2 = 32.754 DEGREES RESSU;E =,:t. ARIA = 50.266 SO0AA:= N = 3,4 VE...:2. = ;6.96 =EET PER SEC0'41) II E-OCITy' rEtz.D = 5.561 BEND Lut.t-.1-1L1c...,.. kv,B1 = .uv,.. 7.4=ri , -1:14)) = , .15)*k 5.3.i> .1,; CONVEr;I\CE r:AC = 91LEC.764 P7k1, S_OPE(3F) = .01213A57 I .R:C. -- 2k -:,SSEE = 4.4t6R = ( 5.1-5)/4k .0:0:57) = .562 . ZDE 1az2.:4 : --3-= < 1237.673>:E3_= _c14-1-2.65>:v < 2c..E.1513.2) I IIIIIIIIIIIIIMW PRESSURE FLOW PROCESS FROM NODE 1802.34 TO NODE 1812.34 IS CODE = 5 II UPSTREAM NODE 1812.34 ELEVATION = 1228.75 CA_CULATE PRESSURE FLOW JUNCTION LOSSES: U N. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 869.2 96.00 50.266 17.292 6.366 4.643 l 2 952.9 96.00 50.266 18.-958 -- 5.581 3 83.7 42.00 9.621 8.705 50.836 - I 0.0 0.0 0.00 0.000 0.000 0.000 - 0.0=05 EQUALS BASIN INPUT=== II LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(02*V2-01*V1*COS(DELTA1)-03*V3*COS(DELTA3)- 04*V4*COS(DELTA4))/((A1+A2)*16.1) II UPSTREAM MANNINGS N = .01300 DIIWNSTREAM MANNINGS N = .01300 UmSTREAM FRICTION SLOPE = .00908 I DNWNSTREAM FRICTION SLOPE = .01092 A =RAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .01000 J NCTION LENGTH(FEET) = 10.00 FRICTION LOSS = .100 II E TRANCE LOSSES = 0.000 J' NCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) J NCTION LOSSES = 1.648+ 4.643- 5.581+ ( .100)+( 0.000) = .811 N IDE 1812.34 : HGL= ( 1239.022);EGL= < 1243.6657:FLOWLINE= < 1228.750> I II PRESSURE FLOW PROCESS FROM NODE 1812.34 TO NODE 1847.61 IS CODE = 3 U"STREAM NODE 1647.61 ELEVATION = 1229.03 i = -,% , CmLCULATE PRESSURE FLOW PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 669.17 CFS PIPE DIAMETER = 96.00 INCHES PIPE LENGTH = 35.37 FEET MANNINGS N = .01300 C NTRAL ANGLE = 22.000 DEGREES I P - ESSURE FLOW AREA = 50.266 SQUARE FEET F OW VELOCITY = 17.29 FEET PER SECOND ✓ LOCITY HEAD = 4.643 BEND COEFFICIENT(KB) = .1236 I/ H *(VEL.00ITY HEAD) = ( .124)*c 4.643 = .574 P PE CONVEYANCE FACTOR = 95E0.764 FRICTION SLOPE(SF) = .0090813 FICTION LOSSES = L*S = ( 35.37)*'. .00906.3) = .3E1 II N DE 1647.61 : HG= i ,E39.91.7);EGL.= ( 1244.560);FLOwLINE= < 1229.030> II ......+ - PRESS.;RE Fi_5 r:RO:ESS P 0.0DE PSEA, Y NODE 16,,7.c_ - ,847.&1 - 0 ,DDE 18-t7.6: :5 C04. --= 5 E...E.,,T-i .,-. ..229.12..3 • ALZU_ATE PRESLRE F.,..,2_,. JUNCTION LnSS=S: NO. OISCNARO: D1PAE ;;RE.:1 VE-CLIT DEL NV 1 857. 96. 4 "s 5Z. 266 17.057 . ":455 2 669.2 5 • 3 : I. E., 7J6.120 2'.., .Z. 266 17. 232 -- E . i-i- v,5 Li. 633 9 .... ■2.' : V 14. 643 - 4 Z. O O. icb 0.0011 Z. 040 O. 0. - I I, I.-- -, 1 0.0===";5 E5,..n:,_S EIAS1‘, T 1_, , ,k1;-......:. I lACFCD ANL OZZL,:i Pr :- ' *V:ItCOS .1.' 1 - 11 eSTREAv , . 2 ,I,GE , - -L- .C..:2 • OWNS7-1EPT, 1 1. 7 ,Nr , : 4 ,!3E- ;-STRA =R:C FC.,:: OWNSTREA .TRICT:, •LO;1- LLF.JII _' 7 --- £. (.J rtA4.i,t1uN Lubb = .016 EN RANCE LOSSES = 0.000 I MA HOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MO ENTUM LOSSES = .126 MANHOLE LOSSES = .232 JUI4CTION LOSSES = DY LOSS)+(ENTRANCE LOSSES) JU4CTION LOSSES = .2514- 4.518- 4.643+( .016)÷( 0.000) = .248 NCI 1847.61 : HGL= < 1240.290)ESL= ( 1244.6 < 1229.030) 1 • ==== == - =-_================= PR SSURE FLOW PROCESS FROM NODE 1847.61 TO NODE 1893.65 IS CODE = 3 UP-TREAM NODE 1893.85 E-EVATION = 1229.40 II CA CULATE PRESSURE FLOW PIPE-BEND LOSSES(OCEMA): PIS FLOW = 857.40 CFS PIPE DIAMETER = 96.00 INCHES II PIS LENGTH = 46.24'FEET MANNINGS N = .01300 C TRAL ANG-E = 29.050 DEGREES P ESSURE FLOW AREA = 50.266 SQUARE FEET F OW VELOCITY = 17.06 FEET PER SECOND II V LOCITY HEAD = 4.518 BEND COEFFICIENT(KB) = .1420 .-KB*(VELOCITY HEAD) = ( .142)*( 4.5r8) = .642 P IPE CONVEYANCE FACTOR = 9_20.784 FRICTION SLOPE(SF) = .0088370 II FICTION LOSSES = L*SF = ( 46.24)*( .0088370) = .409 NiDE 1893.85 : Ha.= ( 1241.340i;EGL= ( 1245.858/:FLOWLINE= < 1229.400/ 1 II === == ========== == P FLOW PROCESS FROM NODE 1893.85 TO NODE 1980.38 IS CODE = : U STREAM NODE 1960.38 E.EVA(ION = 1229.93 1 CALCU.A PRESSURE FLOW FRICTION LOSSES(LACFCD): PPE F-OW = 857.40 CFS PIPE DIAMETER = 98.00 INCHES P PE LENGTH = 66.53 FEET MANNINGS N = .01300 = k 857.40)/( 9:20.784))**2 = .0088370 H =L*SF = ( £6.53)*( .0088370) = .586 II NONDE 1360.3S L mb:L= C 3241.92S);EGL„= : 1246.446 --- ----- --- --- - II RESSL'RE --ru, 'I: ,... c=c - .., , '" w FR ODE v5 ' -: NODE 21 74= 6 19 C iln= = Z uPSTREA NODE a E-EVA = ,23i.:6 u- II 'Al-CU 71" P" F PIPE LOL3E9kOCEMA,: PIPE F...0.4 = - . &,57.4 CFS PIPE D:PME = =,:)6..7,::, I - :PE ...ENSTr ‘; .,54.z.6 FEET ;Y N II NTRAL„ A:.tE-,-E = .2.173 1,=G1 RESSjPE 7 6..:4.; 1 = 521.Llt,C za,s,T-E FEET -0.4 VE_LC,I71 = - .,:-,T, 1 .ii. - II 1:1_0:I -,azi . 4..E. SE.D LLEr-TFTZIENT4, R = .216 - B=re,S*()F_Z:,'" -- = , ,Z8E)*, ,.51a) .., .A2io IPE Z,I 71-' = ELE.764 ITR1C7I3o, L-0;E ,..;-.1 = c :.,?6)-7-1 .21i1;.,L172'f = 1.3f,3 II ;DE 21 : ra..2. : 1a43. E9= < 124E.EIZ < 1231.16,: 1 --------4-=--------=====-,=========--------------=======.,,,_ PRESS-1;E 7 ,-L46. EZ-F Fq:h ZLZ ,11„4.D4 ::, ; 2i:.L,3 :5 -- ------------------ - -- - -------------___ 1 - 27 , 2 -:ACi = t,. .% ■:-:- - 1. 1. so.,:%:::: ,- = ..,:,__ I = = ' L: _,TE.-, .6:i.T)=, ======== _ _ _===== PRESSURE FLOW PROCESS FROM NODE 2165.83 70 NODE 2187.63 IS COUE = 5 I UPSTREAM NODE 2187.83 ELEVATION = 1232.27 - CALCULATE PRESSU:tE F-OW JLNCTICN LOSSES: � NO. DIGCmARGE LIA���TER AREA VELOCITY DELTA HV � 1 741.5 9Z.0Z 44.179 16.784 14.006 4.374 2 857.4 96.00 569.266 17.057 -- 4.516 3 115.9 5 14.18G @.170 18.775 - 111 4 �.0 @.Q0 0.000 0.004.0 0.0C10 - 5 0.0===Q5 EO,)ALS BASIN INPUT=== NI L.ACFC�D AND O[E� �A PRESSURE FLOW JUNCTION FORMULAE USED: l� DY=(Q2*V2-014V1*COS(DELTA1)-[]3*V3*COS(QELTA3)- Q4*V4*COG(DELTA4) ) / ( (A1+A2) *l6. 1) II UPSTREAM MANWINGS N = .01300 DOWNSTREAM MANNINSS N = .01300 UPSTREAM FRICTION SLOPE. = .690932 I DOWNSTREAM FRICTICN SLOPE = .1 AVERAGED FRICTION 6-0 IN JUNCTION ASSUMED AS .00906 J�JN��T%ON L-EW�3Tr�(FEET) = 22.00 = FRICTION LO�S = .E&@ I EW�RA�C� LOSSES �.0�� jLjNCTIOA LOSSES = DY+-IV1-�V2+(FRICTION LOSG)+(ENTRANCE LOSSES) JUNCTION LOSSES = 1.067+ 4.374- 4.5.1.84-( .200)+( 69.000) = i.143 NODE 2.87.83 : 3G-= < 1245.430> ;EGL= ( 1249.8�4) ;FLOWLI' < 1232.27Q> I �� ==== ________ __== ,R��SUaE FLO� Pr,JOC F-OM NOD..._ 4.. 67.6u To . J.-:. 2�5zl.,.7 IS C��E = ut uPSTREAM ,Cl}E 2256.70 ELEVATION = 1233.87 _____ ___ ____-- CALCuLATE PRESSURE F-O� PIPE-BEND LOGSES(OCEMA) : PIPE FLJ,. = 741.50 C PIPE DIAMETER = 5�.0.41 I*[-.E.S PIPE LETZTH = 70.67 FEET MANWIWGS N = .313.44 I CT, ,- = 45. 12� DEGREES PREESij �LOW ARE = 44.179 SQujARE FEET F,.-3N Va_:CITY = 6.7B FEET aER SECE,^3 VELOCI7Y -E��� = 4. 374 BED COEFFICZENT(K��) = . 177Q I mB=KB* (�E-'C3IT/ ��A:�> = ( . �77>* ( 4.374) = .774 PIPE C0'..VEYAXCEFAZ-OR = 7678.797 FRICTION SLOPE(SF} = .0O53247 FRICTI2 LOSSES = L.-5= = ( 7Q.87>*( .0�93247) = .66. I NODE 2258.70 : mGL= < .246.665> ;E6L= < :.251. 240> ;FLOWLINE= ( IE33.670) I � �ESSURE FLOW r7=S 7 R- 17 , %;.1: 2, - 0 NODE 22:1,E. 7� .S CC:JE = 5 uPSTREAY, NCDE 2258.70 ELEVAT:ON = 1233.67 I - - - - C��LCULATE P�ESSL}�E� F.-C� ji]NCTION LOSSES: NO. DISCHARGE DIAMZTF; AREA VELOCITY DELTA HV 1 735.5 S�. 44..79 16.647 0.000 4.303 2 741.5 50.00 44.179 .6.784 -- 4.374 3 6.1 21 .04:1 2. 405 2.515 74.600 - II 4 0. 0 0.00 0. 000 0. 0.Imo - 5 00===05 EQUALS BASIN INPUT=== LACFCD AND OCEmA PRESSURE FLOW JUNCTION FORMULAE USED: DY= I CA*\/4*:DS ) /( (A1+A2)*16. 1) JPSTREAM MA\NIMGS N = .01300 I DO44NSTREAM MANNIKGG N := .01300 JUNCTION LENGTH(FEET) = 1.50 FRICTION LOSS = .014 II ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = .068 MANHOLE LOSSES = .219 JUNCTION LOSSES = DYI-HV1-HV2-1-(FRICTION LOSS)+(ENTRANOE LOSSES) IF JUNCTION LOSSES = .139+ 4.303- 4.3744-( .014)+( 0.000) = .233 NODE 2258.70 : HG,..= < 1247.169);ESL= ( 1251.47E);FLOWL1NE= ( 1233.870) 11 === =========== PRESSURE F,..OW PROCESS FROM NODE 2258. TO NODE 2892.0 IS CODE = 3 II UPSTREAM NODE 2292.00 ELEVATION = 1234.63 CALCULATE PRESSURE FLOW PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 735.45 DES PIPE DIAMETER = 521.00 INCHES II PI LENGTH = 33.30 FEET MANNINGS N = CENTRA- ANGLE = 21.2L0 DEGREES .013210 PRESSURE FLOW AREA = 44...79 SOJARE FEET 11 FLOW VELOCITY = 16.65 FEET PER SECOND VELOCITY HEAD = 4.303 BEND COEFFICIENT((B) = .1213 HB=KB*(VELOCITY HEAD) = ( .121)*( 4.303) = .522 FRICTION LOSSES = L*SF = ( II PIPE CONVEYANCE FACTOR = 7678.797 FRICTION .9.,...OPE(SF) = .0091732 33.30)*( .009171E) = .305 NODE 2292.00 : HGL= ( 1247.996);EGL= ( 1252.301W;F,..OwL_INE= < 1a34.E,32i) 1 ==.=====. - PRESSURE FLOW PROCESS FRO Y: NODE 2292.00 TO NODE 229a. OZ IS CODE = 5 I 1 UP3TREA1Y, NODE 2232.00 ELEVATION = 1234.63 CALC,L.A7E PRESSURE FLOW jUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DE-TA i -, c.- f A oo . 4: 50.0C 44.179 16.E67 0.0Q z i--IV 4.14E) a '"17r = (-,.., BZ.Z2 -r4.179 16.647 -- IlM10 -5.: 33..ZZ s. sire 2.680 76.51,4 - II • L. .1 e.,2 , '1 J •il■ I . 02.3.2.* Ze44 Z.17 l .1 '- ..i 17.,, : SP,EI, 1%,=,.:",=== II 'AOPOD ;', C PRESSURE 7 s... - W. :JN,OTION FOR'1,4,.AH - t,C.;21- , ,:-:., , -‘ 1-,::2(::-TP.,) -,734v:*COSkDE.",A: 3 II jPETF,E1 7 - , ",N:,.; , == .3434:3 D0o,.N.6TROA" '7.1 I % = .Z,3,247. U;S77:2P , - Ia, ,,,..:1: - 4 .• .*53L7E, I D0,4Z F7 :TI:' S....: 2 = .,7::,: • AV=RA3E: 7 - - P.=1,:), 3-:-E : ,%.;', ,..:„E,L,Aar) ,:.7, .3E1.E- JUNCTIO LE - ,....,: 7 F,CT_O,, OSS = .12 II EN7RACE LOSSES .. , Z. , 4), ,7 , MANHO-E LOSSES E-Fv:.-717E -- -,;,m - -O - 4:521. P'3r.a 4.Z1SZE • '‘IOMENTL,'T ZESEE = .,;F , 11=4, - :,: - - :F.E1 - II ', SNi."7.7:GN -CESEL ..r- 2.7- - :, .. 11--.'a- ,:-;" --T ,Jc: .,2,7)n-:..=, jjs.OTIO -OSEES .' .1E 4 -.,:- .4 ,, Z-7,4., =- .:,-,-,.. ,N.ODE 22 . 1-tZ.-= . 1-43.-r.:L . 4 , .:-.1 t;, II - - ------ -- - -- - ---------------- . . . A2'. ; - it,E t" :_-_-_-.:_. VELOCITY HEAD = 4.1:,3 BEND COEFFICIENT(KB) = .0616 11 HB=KB*(VELOOITY HEAD) = < .082)*< 4.119) = .336 PIPE CONVEYANCE FACTOR = 7676.797 FRICTICA: SLOPE(SF) = .00676ZC FRICTION LOSSES = k...*SF = l 15.08)*( .00 ....,..., NOD': 2307.08 : HEL= < 1248.689)EGL= < 1253.0108>;FLOWLINE= < 1234.970) V I II PRESSURE FLOW PROCESS FR34r. NODE 222.4:)2 TO NOL 24b7.bei :S CO-E = * UPSTREAM NODE 2467.80 E-EVATICN: = 1240.74 II CALCULATE PRESSURE FLOW FRICTION LOSSES<LACFCD): PIPE FLOW = 7:9.53 CFS PIPE DIAtv',ETER = 9 INCHES PIPE LENGTH = 254.98 FEET MANNINGS N = .e.1302: II SF=C0/1-0** = (< HF=L*SF = ( 719.53)/( 7678.797))**2 = .0067603 254.98)*( .0087803) = 2.239 NODE 2467.60 : hGL: < 1251.126>EGL= < 1255.247):FLOWLINE= <4.74 - = PRESSURE FLOW PROCESS FROM NOLE E467.62. TO NOLJE 24S2.47 IS CODE = 2 II UPSTREAM NODE 2492.47 ELEVATION = 124Z.8,. CALCULATE PRESSURE 7 _04 MANHOLE LOSSES(LCFCD): • PIPE FLO,4 = PRESSURE F-044 AREA = -7.r r- --c r .6 ,..r 5..er 41 44. 75 SURE FEET = 'fib. Z0 INCHES FLOW VELOCITY = L6.23 FEET PER SECOND VELOCIn. HEAD = 4.j13, I HMN = .05*(VELOCI7Y r,..7P,D) = .05*( 4.1;9) NODE 2492.47 : HGL= ( 1251.334>;EG-= < 1255.453>;FL3wi-INE= < 12Z.. 8.0> .:- --- - ------ - ______=, PRESSURE FLO'w PROCESS FRC:4 NODE 2432.47 T: N1LDE E877.9,? IS CD E = I JP:: r;=1-"ti N-Dc., at../.r.., - ------ E... = ;246.17;1 CALCUL;77.. PrtilLE 7 FRCTILi'. L.OSSFSk-ACFCD t-....- ri......tA - 7_5,5C CFS ;7PE DIAnETER = W.Z0 : II .-_,-.= Lt:L.-,....: , - Ln.4.', FEET MA;‘,\,:N„.7,43 k = .2.:3!,..Z SF=;:vro**2 = :, 7'S.Ea,l/ ( 7678.77))1,4 = .21876z3 C6' ..E7:)= C.C64 II .256 . ..6.38i:F-CLINE= 11 REE:73uRE 77 1C.ev , F.ia, i _.;,:E 2..77,..., ..PETRER , LE:IC.i: II -- ---- Ov:i-C--P P F., :Lr","7" ' s, - - SZ7B NO. C:SCHARD: DIAVFr, ,:. .:: E. A ,-- -,- vELC,I,LT, LiLL-1 ---- _ .:.., ...,..: - --.47..L , : , -,4,.."." -., . ...: , c. .......„0. I : -1 -, 7. S. :5 44. --. ■ 7...', 4,1.: _ .. - .., 1 , 2.t.'===:7) l.:...;._ , :CE 7, =.:J., '' : . T.- 1 :-.1-iiV.40:E.E_---1- I DOw\ST'z.E1:, 't- 1, = .Z..T:=Z L;72.- 7".■": r- ... , - - ,-. :,----: u.ww r7IL/1um �u = .Wbb ENTRANCE LOSSES = 0.00C JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRAN[�E LOSSES) I JUNCTION LOSSES = .785+ 3.624- 4.119+( .066)+( e.eee) = .357 NODE 2885.93 : HGL= < 1255.570>;EGL= < 1259.194>;.=LOWLINE= < 1246.620> ��.� , _- m====ssm======= ======____= - = ___ PRESSURE FLOW PROCESS FROM NODE 2885.93 TO NODE 3174.40 IS CODE = 1 1 UPSTREAM NODE 3174.40 ELEVATION = 1250.06 08 - CALCULATE PRESSURE FLOW FRICTION LQSSES(LACFCD): PIPE FLOW = 674.95 CFS PIPE DIAMETER = 90.0.4 INCHES II PIPE LENGTH = 288. 47 FEET MANNZNG�� N � .01J00 SF=(Q/K)**2 = (( 674.95)/( 7678.797))**2 = .06977260 I HF=L*SF == ( 288.47)*( .0077260) = 2.229 NODE 3174.40 : HGL= < 1257.799> ;EGL= ( 1261.423> ;FLOWLINE= < 1250.080/ =========== ===== ======== = ======== _ �� PRESSURE FLOW PROCESS FROM NODE 3174.40 TO NODE 3179.07 IS CODE = 2 UPSTREAM NODE 3179.07 ELEVATION = 1250.14 ____ Q� CALCULATE PRESSURE FLOW MANHOLE LOGS��S(LACFCD) : 1 PIPE FLOW = 674.95 CFS PIPE DIAMETER = 90.0Z INCHES �� PRESSURE FLOW AREA = 44.179 GQJARE FEET �� FLOW VELOCITY = 15.26 FEET PER SECOND VELOCITY HEAD = 3.624 HMN = .05*(VELOCITY HEAD) = .05*( 3.624) = .181 1 NODE 3179.07 : HGL= < 1257.960>;EGL= < 1261.604>;FLOWLINE= < 1250"140> c- === __ = ___=== PRESSURE . FLOW PROCESS FROM NODE 3l79 Q7 - O NOUE 3427 . 24 IS CODE = 1 . UPSTREAM NODE 3427.24 ELEVATION = 1253.12 _ ____ II CACULATE PRESSURE FLOw FRICTION L[}SSEG(LACFCD) : PIPE F = 674.93 CFS PIPE DIAMETER = 90.00 INOHES PIPE LENS = 248.17 FEET MANNINGS N = .013Z0 ��F�=(�l/K)**2 = ( ( 6�74. 95> / ( 76�7B"7��7) )**2 = .0077a4 I HF=�SF � ( 248. 17)*( .0077E60> = 1.917 NCDE 3427.24 : 1-1GL= < 1259.897>;EGL= < 1263.522>;FLOWLINE= ( 1253.120> 0I ___~ PRESSUR= FLLv4 cSGi�fl�-�I�� JSLD - O ADJUST HGL AND EG- LnBT �:'RESSi�RE HEAD USING SJF� CON = .72 NOD:-.. 34E7. 24 : -SL= < -2 620 �= ( -264.244> :FLoWLI�E- < 425 3. � ____ ______ = _- PRESSURE F PROCESS FRLM 3.4,17.c4 �O,E 3.4,17.c4 TO .,O�E 3467.53 IS COLE = 3 N� ,JPGTREA NODE 3467. 53 ELEVA = 1E53.60 _ _ CALCJLATE PRESSURE FLO� FIPE-BS'D LOSSES(OCE�A): I 1-...!--= FL..J� = 674. �5 CFS :: DIETER = S6�. &0 INF-E�� PIPE LE,tG7- = 4Z. � F7E7 �ANN:NGS >v = .013 N0 CE! A%EL1 = �7.,WC DEE;EES PRESS-RE =LOA ���EA = 44.1 S;�ARE FEE_ �- - _Ow VELOC7_Y � .E.2S FEE PER =,1 VE :,:`,IT -1aAJ = 3.6E4 BE, CJE=F7C = .Z9.: 1-B=RB*(VELOLI --.:R:1) = ( .���)*( 3. 624) = .395 II PIP�� CO;�VEYRCE F. r 7S7.717 7.17-7-T .393 SL[}- = . Q;772tX FRICTIO, �:sSSES � _* = ( 4�.25)+( .C.Z.7726G) = .3_� ■ MIIIII"MIMPPRggglrPktJvy miNLA. rmuri mak,r.. ', it.J NUUM 0N-01... 10 LUOM = D UPSTREAM NODE 3481.53 ELEVATION = 1253.75 1 CALCU-ATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV ,I, 1. - : 1 536.5 50.00 90.00 44. 17S 12.144 5.542 -- E. 290 675.0 44.179 15.278 3.624 3 126. 46.00 12.566 11.017 38.067 - 4 0.0 0.00 0.000 0.000 0.000-1 .J 0.0===G5 EQ.SALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED • DY=(02*V2-01*Vi*COS(DELTA1)-0.3*V3*COS(DELTA3)- 04*V4*COS(DELTA4))/((A1+A2)*16.1) I UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00488 DOWNSTREAM FRICTION SLOPE = .00773 II AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00630 JUNCTION LENGTH(FEET) = 14.00 FRICTION LOSS = .088 ENTRANCE LOSSES = 0.000 • JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = 1.649+ 2.290- 3.624+( .088)+( 0.000) = .603 NODE 3481.53 : HGL= ( 1263.264>;EGL= ( 1265.554>;FLOWLINE= ( 1253.750) 11 ===== - ...... PRESSURE FLOW PROCESS FROM NODE 3481.53 TO NODE 3600.05 IS CaDE = 3 1 UPSTREAN NODE 3600.05 ELEVATION = 1254.89 _ ' ' Z / CALCuLATE PRESSURE P-OW PIPE-BEND LOSSES(OCEMA): it PIPE FLOW = PIPE LENG = =',0 51 '"-- uJi..1 ,,r"rj :.-6.52 FEET PIPE DIAIETER = 90.00 INCriES MANNINGS N = .01300 CENTRAL ANGLE = 5 .000 DEGREES 11 PRESSURE F_Ow AREP. --- 44-75 SDJAr(E FEET FLOW VELOCITY = 1 FEET PER SECOND VELOCITY HEAD = 2.E=71i BEi.,D COEFFICIENT(R) HB=KB*(VE-0::Th' rEI:D, = ( .188)*( II PPE CO,JVERNLE PAC -... 7678.757 FRICTION LOSSES .. - ,..*SF = % FcIOTIDN 6,...OPE(S: = .00438:7 a.16.5,-_)*: .0048817) = .575 NODE 360e.05 : kz_. c 1264.273:E3L= ( 1266.563>:FLOWLINE= ( :254.650) II =========------ - -- --------------- ....=_ II PR ESS,AE F-D.A. ; FRr_xr, %:1 a1600..2 .0 NODE 351:0.05 ,3. CO.; = r'. '..JPSTRERM NODE 2;0k.. E....EVA 1254. 5; --- - ..... CA6.CuLATE PRESRE P-DA. SJN:TION LOSSES: II N. D:SCP-IARCJE D1AME . ,,=. -.7 --"" Alimri VE-CCI -V - 11 DELTA .L „I-J., 0 .02 44.L75 .1.673 .679 2.116 2 ,.--- ..1.:tt..-) = 50.0;1 44.175 12.1 4.4 -- 2.250 3.9 II 3 20.5 27 - 3.2 .+Tql 0. 00 0,140 5.231 0.000 '' 4.--e - 6:).4tDsJ 0.0 - r- r, 0.47.===:: ED.A -A::::: A' ::E.. '.:1 P;:3:_ E f 3_ Ft70:01 LSE:. =(;,77:*.4.-7..*. II Q4 4-51- -f-17:5:1 % E1), EA -,PS , J,,1 ,-S ;', = ..1... II J:LS 7 - 7 :: - 1: , E_:-..- - ..:::.-i: DZ:WNS F- -',...:.: --- - ..- JUNCTION LOSSES = DY+HV1-HV2*(FRICTION LOSS)+(ENTRANCE LOSSES) • • JUNCTION LOSSES = .321+ 2.116- 2.290+( .011)+( 0.000) = .158 NODE 3600.05 : HGL= ( 1264.605);EGL= ( 1266.721);FLOWLINE= < 1254.890) 1 , sas samomamatszsgaimas=souram======================lassaszszzasulaa===================== f. ... PRESSORE FLOW PROCESS FROM NODE 3600.05 TO NODE 3638.83 IS CODE = 3 UPSTREAM NODE 3638.89 ELEVATION = 1255.26 I CALCULATE PRESSURE FLOW PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 515.71 CFS PIPE DIAMETER = 90.00 INCHES II PIPE LENGTH = 38.84 FEET CENTRAL ANGLE = 16.100 DEGREES MANNINGS N = .01300 PRESSURE FLOW AREA = 44.179 SQUARE FEET I FLOW VELOCITY = 11.67 FEET PER SECOND VELOCITY HEAD = 2.116 BEND COEFFICIENT(KB) = .1057 HB=KB*(VELOCITY HEAD) = ( .106)*( 2.116) = .224 PIPE CONVEYANCE FACTOR = 7676.797 FRICTION SLOPE(SF) = .0045105 I FRICTION LOSSES = L*SF = ( 38.84)*( .0045105) = .175 NODE 3638.89 : HOL= < 1265.004);EGL= < 1267.120);FLOWLINE= < 1255.260) I ========= = = =...=...===== •============== PRESSURE FLOW PROCESS FROM NODE 3638.89. TO NODE 4021.17 IS CODE = I UPSTREAM NODE 4021.17 ELEVATION = 1258.93 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 515.71 CFS PIPE DIAMETER = 0.00 INCHES I PIPE LENGTH = = (( 382.28 FEET MANNINGS N = .01300 515.71)/( 7678.797))**2 = .0045105 HF=L*SF = ( 382.28)*( .0045105) = 1.724 NODE 4021.17 : HGL= ( 1266.728);EGL= < 1268.844);FLOWLINE= < 1258.930) I PRESSURE FLOW PROCESS PROM NODE 4021.17 TO NODE 40E5.d4 IS CODE = 5 UPSTREAM NODE 4025.64 ELEVATION = 1258.9d • • CALCULATE PRESSURE FLOW JUNCTION LOSSES: N. DISCHARGE DIETER AREA VELOCITY DELTA HV 1 =:= -, ,J1.J.i 96.00 50.266 10.260 0.000 1.634 II s a C 7 ..J...u.)* . 0. 0 0. 00 0. 00 44. 179 1 E. 1. 673 0.000 el. 000 -- ei. 000 116 - A 0.0 0.00 0.000 0.000 0.000 - II ../ =. 0.0===05 EQUALS BASIN INPUT= LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMJAE USED DY=(02*V2-01*Vi*COS(DELTA1)-03*V3*COS(DELTA3)- II / UPSTREAM MANNINGS N = .01300 I DOWNSTREAM MANNINbS N .= .0134f.0 UPSTREAM FRICTION S-OPE = .00320 DOWNSTREAM FRICTICA S-OPE = .00 1 AVERAGED FRICTION SLaDE IN JUNCTION ASSUMED AS .00385 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS ENTRANCE LOSSES = MANHOLE LOSSES GRE r1 ATER TW% TriCmPS:2N ri3OENTL" LOSSES I MOMENTUM LOSSES = -.0:62 NHOE LOSSES = 106 JUNCTION LOSSES = L LOSS)+(ENTRANLE LOSSES) JUNCTION 3SSES = .479 1.834- 2.18-1-( .0:8)-1-k 1&000) = .124 I NODE 4025.64 : -.;3-= ( la67.333itEZ= ( 1268.968>;FLOw-i%E= < 256.362i) , , Utz Live:). b0 i (J NUU. 4.1 / . 3I 1 b UU1). = I UPSTREAM NODE 4317.35 ELEVATION = 1261.77 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 515.71 CFS PIPE DIAMETER = 96.00 INCHES PIPE LENGTH = ' J "A W0m(0/10**E = (( hl :;.4 t HF=L*SF = ( 291.70 FEET MANNINGS N = .01300 515.7)/( 9120.764)Y**2 = .0031970 291.70)*( .0031970) = .933 NODE 4317.35 : HGL= < 1268.266>;EGL= < 1269.901>:FLOWLINE= i 1261.770> I PRESSURE FLOW ASSUMPTION USED TO ADJUST Ha_ AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 1.50 II NODE 4317.35 : HGL= < 1269.770>;EGL= < 1271.405>;FLOWLINE= < 1261.770> II mossommummommam=mwsmitomm=========u===mmasmisommemm=========m===========wzmum======== PRESSURE FLOW PROCESS FROM NODE 4317.35 TO NODE 4317.35 IS CODE = 5 UPSTREAM NODE 4317.35 ELEVATION = 1261.77 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 504.1 96.00 50.266 10.029 0.000 1.562 I 2 515.7 -7 .J 11.6 96.00 21.00 50.266 10.260 -- 1.634 2.405 4.814 90.000 - 4 0.0 0.00 0.000 &000 0.000 - II 5 0.0===G5 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULHE USED: II Dy=ma*V2-01*V1*COS(DELTA1)-03*V3*COS(DELTA3)- 04*V4*COS(DELTA4))/((A1+A2)*16. 1 UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00306 DOWNSTREAM FRICTION S-CPE = .00320 II AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00313 jUNC LENGTH(FEET) = ..75 FRICTION LObS = .005 ENTRANCE LOSSES = 0.000 II MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTLA LOSSES = ..Z.73 MANHOLE LOSSES = .082 JUNCT10 LOSSES = DY+ LOSS)+(ENTRANLE LOSES) JUNC'TION LOSSES = .145+ 1.562- 1.634“ .005)+( 0.000) = .087 II NODE 4317.15 : n3L= < '2E/5.930);EGL= ( 1271.492):PLOWLINE= < 126..770> == PRESFE - LOW =ROC m3.,7.,-,5 0 NOIJE 4444.1:0 I COI)P = , 1.;PS7REAY, NODE 44.50 E-EvA = 1263.0.2 1 CA‘ZULATE PRESEUFE F-Ow PRIC LOSSES(-AOF0Dr: PIPE PLOW = 5C4.:3 CFS PIPE DIAMETER = .:6.00 INCHES PPE -ENG7-1 = ,E7.15 F 04 EET NANIN56 N = „7,1300 II SF=4,Dir:)**2 = (( riF=L*SF t 57, .6 1k 3JE.764/J*ki = .003055 = . 1E .003055J; = .386 NODE 4444.N r1.1.,= : ,.Et0.3.,:;;;E:5-= < 1E71.661L,;F,..0WLII ( 1263.00 - - II PRESSURE PLC:4k ASEJ -S,ID O -LUST 1-1G,_ AND E, ,..- -0S7 PRESS-RE HEAD ,2L,,: E3PF1' II •ODE 4 t r6....=- N IET....tEO_= ,.E;2.5S,i)LP_OW_Irr== 1E63.002 ---- - - 11 - - - - PRESS-PE - -OW PRDOESS 7 - - RLY 'il 4 1- 4 -1.1:121 - 3 ZI-E , r4Z,0.03 "E O3HP = 5 UPSTREAM NODE 4450,0,'. ELEIIA = ,2&3.C.C. 1 476.1 96.00 50.266 9.471 0.000 1.393 2 504.1 96.00 50.266 10.029 -- 1.56° • -1 ., 28.0 30.00 4.909 5.712 45.000 _ u. 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0===05 EQUALS BASIN INPUT=== Ir -' LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=M2*V2-01*V1*COS(DELTA1)-03*V3*COS(DELTA3)- 1111 04*V4*CO3(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N = .01300 I DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00272 DOWNSTREAM FRICTION SLOPE = .00306 I AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00289 JUNCTION LENGTH(FEET) = 5.50 FRICTION LOSS = .016 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) I JUNCTION LOSSES = .268+ 1.393- 1.562+( .016)+( &um . .115 NODE 4450.00 : HGL = < 1271.284);EGL= < 1272.677);FLOWLINE= < 1263.050) 1 ====== = =......== = -= PRESSURE FLOW PROCESS FROM NODE 4450.00 TO NODE 4877.67 IS CODE = 1 UPSTREAM NODE 4877.67 ELEVATION = 1264.94 I CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 476.09 CPS PIPE DIAMETER = 96.00 INCHES I PIPE LENGTH = 4E7.67 FEET SF=(0/10**2 = (t MANNINGS N = .01300 476.09)/( 9120.764))**2 = .0027247 lir 14F=L*SF = ( 427.67)*( .00E7247) = 1.165 NODE 4877.67 : HGL = < 1272.449);EGL= < 1273.842);FLOWLINE= < 1264.940> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND ESL LOST PRESSURE HEAD USING SOFFIT CONTROL = .49 NODE 4677.67 : HGL = < 1272.940>;EGL= < 1274.333);FLOWLINE= t 1264.940, I == ===- • ....= = = = = -= PRESSURE FLOW PROCESS FROM NODE 4877.67 TO NODE 4882.34 IS CODE = OPSTREAm NODE 4682.34 ELEVATION = 1264.96 II CALCULATE PRESSURE PLOW A1ANHOLE LOSSES(LACFCD): . PIPE FLOW = 476.09 CFS PIPE DIAMETER = 90.00 INCHES I PRESSURE F,..OW ARE = 50.266 SQUARE FEET PLOW VELOCITY = 9.47 FEET PER SECOND VELOCITY HEAD = 1.393 HMN = .05*(VELOOITY HEAD) = .05*( 1.393) = .070 NODE 4oSE.34 : Ha.= < 1273.010);EGL= < 1274.403);FLOWLINE= < 1264.960) 11 ===-=-===------ PRESSU7‘E FD w PF3OEc.3 PRulr "NOJE 462. .4 "i0 NOLE 4909.74 IS CODE = ,. UPSTREAM NODE 4909.74 F.,..Ev'ATION = 1265.0.7 II- OALOL-TE PRE3 F-O.A. 7 . - R:C - 72 -3SEEE(LACFCD)t , ...... ... L1.7. ZFS ■-.I..E L.AmETEri = : INC-IES rt-O 2 w = ,_.• PIPE LENGTH = 27.4 FEET NN N =. .c13oe I i_ 5==(:/A)**2 ,:, %, mF=L*SF ( 476.C':', i t :&,-t))1L = .170E7E4 27.40)*( .2D27247) ..- .375 NLLE 4S.Z.S.7=, : -3-- , la7C-11.k.E-+) r1=_= ( 274. 2= 1 MOMMINIMIIIIIIMMINEMINI■ UPSTREAM NODE 5045.16 ELEVATION = 1265.66 1 CALCULATE PRESSURE FLOW PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 476.03 CFS PIPE DIAMETER = 96.00 INCHES PIPE LENGTH = 135.42 FEET MANNINGS N = .01300 CENTRAL ANGLE = 59.430 DEGREES 1 1 4408SURE FLOW AREA = 543.266 souARE FEET FLOW VELOCITY = 9.47 FEET PER SECOND II VELOCITY HEAD = 1.393 BEND COEFFICIENT(KB) = .2032 HB=KB*(VELOCITY HEAD) = ( .203)*( 1.393) = .283 PIPE CONVEYANCE FACTOR = 9120.764 FRICTION SLOPE(SF) = .0027247 FRICTION LOSSES = L*SF = ( 135.42)*( .0027247) = .369 NODE 5045.16 : HGL= < 1273.736>;EGL= < 1275.129>;FLOWLINE= < 1265.660) I === =============e================================== == = ================= PRESSURE FLOW PROCESS FROM NODE 5045.16 TO NODE 5050.16 IS CODE = 5 UPSTREAM NODE 5050.16 ELEVATION = 1267.43 I -.....--- CALCULATE PRESSURE FLUW JUNCTION LO NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV • 1 446.0 75.00 476.1 96.00 30.680 14.537 0.000 -- 3.2.82 2 6_ 50.266 9.472 1.393 3 29.9 36.00 7.069 4.230 90.000 - 4 0.0 0.00 0.000 0.000 0.00 - II 5 .2===Q5 EQUALS BASIN INPUT=== LACFCD AND OOEMA PRESSURE FLOW JUNCTION FORMULAE USED: • DY=(02*V2-01*VI*COS(DELTA1)-03*V3*COS(DELTA3)- 04*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N = .01300 r. DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00892 DOWNSTREAM FRICTION Z-OPE = .00272 II AVERAGED PR:cTioN SLOE :=E I JLINCTILIN ASSLMED AS .00582 JUNCTION LENGTH(FEET) = 5.00 FRICTION LOSS = .029 ENTRANCE LOSSES = .279 II JUNCTION LOSSES = DI-1-mV1-1-4V24-(=RICTION LOSS)+(ENTRANCE LOSSES) /UNOT1ON LOSSES = -1.515+ 3.262- 1.3B3 .02s) .279) = .621 NODE 5050.16 : HGL= < 1272.529);EGL= < 1275.810;FLOwLINE= ( 1:1:67.430) - II - RESSJRE FO w ASSuMPTION USED 70 ADJUST intiL AND ESL LOST PRESSURE FEgD USING SOFFIT CONTRDL = 1.15 I NODE 5050. 1-, i6 : 6-= < 1273.680);EGL= < 1276.962);PLOWLINE= < 1267.430> -"-- - ---- =========== END OF PRESSURE FLOw nYDRr PIPE SYSTEM II 1 11 !.... . , 1 1 ********************************************************** II L PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) I/ ******************************************************************e********* 11 ({(K(((((<(<(<(<<<<<<<<(<<(<<<<{<<<(((})>>>}}>)>>}}>)>>>)}}>>}>>>>>}}>})})>) ' (C) Copyright 1962 Advanced Engineering Software [AES] 0I Especially prepared for: HALL & FOREMAN, INC. II ( <{( {( ((( << << <<(< <({< << (<<<<<(< (< (( {< {}>>}>>>}>> }}))}) >>} )>>})>) >> }}} > >> >> > } II **********DESCRIPTION OF RESULTS******************************************** * INDUSTRIAL AREA LINE L HYDRAULICS * * Q 25-100 YR FROM 412.75 TO 420.25 THEN Q 25 FROM 420"25 TO 5050.16 * * VENKI.N, JN 3810-04, 11/20/87, DISK # JRM 4 * _ r ' ****�*********************************************************************** I NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD AND OCEMA DESIGN MANUALS. ir ' DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: li NODE NUMBER = 412.75 F�OW�INE ��EVATI[)K =� 1210.50 0� PIPE DIAMETER(INCH) = 108.00 PIPE F�OW�C�S) = 11�8.50 �� ASSUMED DOWNSTREAM CONTROL HGL = 121�.�1� == ____-_____==_ ==== I/ II (< << < << < < < < < < ( < < < ( < < ( < < < < < << < < < < < < < < < <> > >>> >>>>> > >> >> }> > >>>>>}> }> >} > > >>> >>} > Advanced Engineering Software [AES] SERIAL No. A0483A I R�V. 2.2 REAE D1/17/8 < < << < < < << < < < ( { i ( < < < ( < < < < < < < < < < < ( < ( << < <} >> >> }> > }> } > > > > >> >>>> >> >>>>> >> >>>>> >> > II ' I === _ = PRESSURE FLOW PROCESS FROK NODE 412.75 TO NODE 4�0"L5 IS CODE = 5 UPSTREAM NODE 42Q.25 ELEVATION = 1211.00 , , CALCULATE PRESSURE FLOW JUNCTION LOSSES: II �� NO. DISCHARGE DIAKETER AREA VELOCITY DELTA HV 1 �66.6 1Q2.�Q 56.745 17.034 .�7� 4.506 , I 2 3 1166. 5 lQ8. �� 2219 54�Q 63. 617 l. 682 ^- 6�.0�� 5. 469 1�.9�4 13.932 - 4 0.0 0.iZZ 0.000 0.000 0,6900 - 5 0.0===05 EQL�ALS BAS:N INPUT= I/ LACFCD AND {JCEmA PRESSU�/E FLC JUNCTION FORMULAE USED: w■. ...■■..r. yew .e.. “Vom.r II UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00813 DOWNSTREAM FRICTION SLOPE = .00906 114 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00859 JUNCTION LENGTH(FEET) = 7.50 FRICTION LOSS = .2164 ENTRANCE LOSSES = 0.000 II JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = 2.162+ 4.506- 5.420+( .064)+( 0.000) = 1.313 NODE 420.25 : HGL= < 1221.937);EGL= < 1226.443);FLOWL1NE= < 121i.000/ II ======= = ======== ======================================= II ,- ....= 3 PRESSURE FLOW PROCESS rROM NODE 420.a.., TO NODE 549.82 IS CODE = .. UPSTREAM NODE 549.82 ELEVATION = 1212.44 CALCULATE PRESSURE FLOW PIPE-BEND LOSSES(OCEM): II PIPE FLOW = PIPE LENGTH = 129.57 FEET 966.61 CFS PIPE DIAMETER = 102.00 INCHES MANNINGS N = .01300 CENTRAL ANGLE = 3.090 DEGREES 11 PRESSURE FLOW AREA = 56.745 SQUARE FEET FLOW VELOCITY = 17.03 FEET PER SECOND VELOCITY HEAD = 4.506 r BEND COEFFICIENT(KB) = .0463 II HB=KB*(VELOCITY HEAD) = ( .046)*( 4.506) = PIPE CONVEYANCE FACTOR = 10721.156 FRICTION SLOPE(SF) .0081267 FRICTION LOSSES = L*SF = ( .209 = 129.57)*( .0081287) = 1.053 NODE 549.82 :HL < 1223.199):EGL= ( 1227.7044:FLO4LINE= < 1212.4421) I/ -- --- == =--==== ============= I PRESSURE FLOW PROCESS FROM NODE 549.62 TO NODE 956.1t5 IS CODE = 3 UPSTREAM NODE 956.05 ELEVATION = 1216.95 11 -,.. in 1-•,.. •••1 ,. 1.- PIPE - - = . CALCuIE 1 r...OW 1-ir)m-ri-ND LOSSES(OCEMA): PIPE FOp.4 = PIPE ..ENGTH = 966.61 CFS 402.23 FEET PIPE DIAMETER = 102.W0 INCHES MANNINSS N = .01300 CENTRAL ANGLE = 30.190 DEGREES II PRESSURE F4.3W AREA = 56.745 SQUARE FEET FLOW VELOOIT\ = _7.03 FEET PER SECOND VELOCITY HEAD = 4.506 BEND COEFFICIENT(KB) = .1446 • II HEI=K6*(NELOCIT'i nEAD) = : .145)*( 4.506) = .652 PIPE CONVEvANCE zAC r 10721.156 FRICTION SLOPE(SF) - .0081267 FR LOSES = -*V= = 402.23)*■ .0081287) = 3.270 II P.4 C. r=• ,- --- - -- NLJD..: -1&.= t laC /. ( 1 4C.;=.0,.. 231.6E6); < 1216.S ========== I/ PRESSORE FL..OW PROCESS FRaf NODE 956.05 TO NODE 1035.00 IS CODE = 3 JPSTRE;'., NODE .0,7.5.k:0 ELEv'1 = 12.7.63 . - I/ CA...C.J7E PRESSL.ftE .- ...:.),4 ;:PE-TEND ,.OSSES(OCEif.A): PIPE F-044 = 366.61 CFS PIPE DiAETER = 102.00 INCHES PIPE ..ENF7h = 76."7,5 FFET NAN,vIr,L.IS - .013,L.0 . A A\13*E = 2.350 5.13REES II PRESSURE P,.. AREA = 56.7 StTUAmF FEE F,..Oo. VE,..00IT = .7.33 =fEET P S-CLZ VE..CCITY riLEAD = 4.5L6 ED COEFFIE1E:Cr04) II mB=rcEi.ft-tv'E-DOIT'( clEt:-.D = l .0'1.01*( 4.506/ = .182 PIPE t 7 - - ;:T's = :072. 156 FRICTIUK S..3PEkE'- = .0081267 FRICTION LOSSES = .*SF = % 7S.E... .0:161267) = .642 NODE 1035.CZ . 1 6_- , ,E2. k .2I,L 1.w ( 1E17.630> 4“ftwWWWINimm /UmWV, i'Inm/tIO0 rnum nuu. 1W4D.WW 1U NUUM 1W40.00 IS CODE = 5 UPSTREAM NODE 1040.00 ELEVATION = 1217.87 1 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 1 952.9 102.00 56.745 16.793 .139 4.379 2 966.6 102.00 56.745 17.034 -- 4.506, Ilt. 3 13.7 24.00 3.142 4.358 60.000 - 4 0.0 0.00 0.000 0.000 0.000 - 11 5 0.0===Q5 EQUALS BASIN INPUT=== LACFCD AND QCEMA PRESSURE FLOW JUNCTION FORMULAE USED: II DY=M2*V2-01*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- 04 *V4*COS(DELTA4))/((A1+A2)*16.1) I UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00790 DOWNSTREAM FRICTION SLOPE = .00813 II AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00601 JUNCTION LENGTH(FEET) = 5.00 FRICTION LOSS = .040 ' ENTRANCE LOSSES = 0.000 11 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = .110 MANHOLE LOSSES = .225 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) 11 JUNCTION LOSSES = .237+ 4.379- 4.506+( .040)+( 0.00) = .265 NODE 1040.00 : ha.= < 1226.337);EGL= < 1232.716>;FLOWLINE= < 1247.870> II =====- = = PRESSURE FLOW PROCESS FROM NODE 1040.00 TO NODE 1232.37 IS CODE = 3 •:71 UPSTREAM NODE 1232.37 ELEVATION = 1219.32 t CALCULATE PRESSURE FLOW PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 952.92 CT'S PIPE DIAMETER = 102.00 INCHES 11 PIPE LENGTH = 192.37 FEET CENTRAL_ ANGLE = 5.740 DEGREES MANNINGS N = .01300 PRESSURE FLOW AREA = 56.745 SQUARE FEET FLOW VELOCITY = 16.79 FEET PER SECOND II veLociTy HEAD = 4.379 BEND COEFFICIENT(KB) = .0631 H=KB*(VELOCITY HEAD) = ( .063)*( 4.379) = .276 PIPE CONVEYANCE FACTOR = 10721.156 FRICTION SLOPE(SF) = .0079000 il FRICTION LOSSES = L*SF = ( NODE 1232.37 : HL= < 1230.131LE= 1 < 1219.320) II =========== = = PRESSURE FLOW PROCESS FROM NODE 1232.37 TO NODE 1397.67 IS CODE = 3 UPSTREAM NODE 1397.67 ELEVATION = 1222.43 I CALCULATE PRESSURE FLOW PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 952.92 CFS PIPE DIAMETER = 102.00 INCHES II PIPE LENGTH = 165.30 FEET CENTRAL ANGLE = 12.284 DEGREES MANNINGS N = .01300 • 'PRESSURE FLOW AREA = 56.745 SOUP-RE FEET FLOW VELOCITY = 16.79 FEET PER SECOND II- VELOCITY HEAD = 4.379 BEND COEFFICIENT(KB) = .0924 HS=KB*(VELOCITY HEAD) = ( .1z92)- ( 4.379) = .404 PIPE CONVEYANCE FACTOR = 0721.156 FRICTION S-01:.-E(SF) = .007S011: II FRICTION LOSSES = Li(SF = ( 165.30)*k .0079000) = 1.36 NODE 1397.67 : HGL= < 1i31.643):E3L= < ;6.222>;FLOW_INE= < 1222.430) I/ = = PRESSURE FLOW PROCESS PROM NI= .:C7 .F,7 - 7 tirinc ife.n ,- --, • - - CALCULATE PRESSURE FLOW JUNCTION LOSSES: li NO. DISCHARGE DIAMETER V TY 1 952.9 96.00 AREA 50.266 1 :LICI DELTA HV 8 0.000 5.581 L. 7.-. 952.9 102.00 56.745 16.793 -- 4.379 3 0.0 0.00 0. t 4 = .J 0.0 0.00 000 0.000 0.000 e.etee 0.0===a5 EQUALS BASIN INPUT=== 0.000 0.000 - - I LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=M2*V2-01*V1*COS(DELTA1) 04*V4*COS(DELTA4))/((A1+A2)*16.1) II UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 II UPSTREAM -FRICTION SLOPE = .01092 DOWNSTREAM FRICTION SLOPE = •00790 AVERAGED FRICTION S-OPE IN JUNCTION ASSUMED AS .00941 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .044 II ENTRANCE LOSSES = 0.000 . MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = .004 MANHOLE LOSSES = .219 II JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = -1.197+ 5.581- 4.379+( .044)+( 0.000) = .263 NODE 1402.34 : HGL= ( 1230.904);EGL= ( 1236.485);FLOWLINE= < 1222.930) 11 PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .03 NODE 1402.34 : HGL= ( ,230.930);EGL= < 1236.511>;FLOWLINE= ( 1222.930) I/ i 17, =========== ===========-===-== -======------ L - Ts; PRESSURE FOW PROCESS FROM NODE 1402.34 TO NODE 1750.69 IS CODS = 3 UPSTREAM NODE 1757).89 ELEVATION = 1227.87 11 CALCULATE PRESSURE F...00# PIPE-BEND LOSSES (OCE) PIPE S52.S2 •FS PIPE DIAMETER 6.00 INCHES PIPE LENG = 348.53 FEE MANNINGS N = .01301Z CENTRAL ANG-E = 25.9.02 DEGREES I/ PRESSURE FLZW PREA = 50.266 S6JARE FEET FLOw VEL.ZO1TY = ,8.Y6 FEET PER SECOND vaLociTy raAD = 5.581 SEND COEFFICIENT(KE) = .1341 I/ HB=KS*NELOCITY ..E/ = ( .134)*( 5.581) = .748 PIPE CZNVEYANCE 7, = 3120.764 FRICTION SLOPE SF) = .01091E7 FRICTILIN LOSSES = -*SF = ‘ 346.55)*( .0109157) = 3.605 II --: JAME 1750.3) : -6-= , 35.463 ;EGL ( 1241.064 0;Ft_roiLINE= < 1227.87Z? ---- nRESSuRE BUP' USED T AD,P_IST H3L. AND ESL LOST PRESSURE -.7AD ,ISIG SOFFIT CONTROL = .39 li NODE 1750.89 : nt < 1235.870);c-GL= < 1241.451>;FLOWLINE= < 1227.87e) -. - ======== PRESSURE FLOW PROCESS FO; 1750.6:4 TO NODE "302.34 IS CODE = 3 UPSTREP'Y NODE .8Z2.3 ELEVATION = 1226..79 - - . CALCULATE PRELSuE FLLA. Pi"--E-wEND LOSSESkOCE:4A): PIP: PL.3y4 = 9 3 T LLA,PiETE: = 96.00 MIC-1 PIPE LcNG7-, = NAN,‘,INL7B N = .21302 I CENTRAL AVG-E = 3.754 D.-EE; PRESSURE F-3. PREI = 50. 2t6 St7JA,E FEET 1...OW VELOC,TN' = ,8,5t_ 1 :- . ET P: S-00.JD I/ VELOCITI' nai-ID = 5.53. BED COEF-FICIENT(t-,L) riBroWS*(%/E-C,C.TN riETAD, = ( .-t.,)lk 5.1 = .azia PIPS CONVEYACE rACTLR = SE..Z.76 i:::,.. I :*"'"1 -- 0‘ c n- - • ,r--, - - ......-.,........ s ........aywr,R* S-WVVI..11%4 N xs 1 ==== - ._ PRESSURE FLOW PROCESS FROM NODE 1802.34 TO NODE 1812.34 IS CODE = 5 UPSTREAM NODE 1612.34 ELEVATION = 1226.75 a. CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV li 1 869.2 952.9 96.00 00 50.266 17.292 6.366 -- 4.643 2 96. 50.266 18.958 5.581 3 83.7 42.00 9.621 8.705 50.836 - II 4 5 . 0.0 0.00 ib.000 0.000 0.0===G5 EQUALS BASIN INPUT=== etono - LACFCD AND OCEMA PRESSURE FLOW JUNCTION USED: II DY=(02*V2-01*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- 04*V4*CO9(DELTA4))/((Al+A2)*16.1) I/ UPSTREAM MANNINGS N = .01300 DCWNSTREAm MANNINGS N = .01300 OPSTREAM FRICTION SLOPE = .00908 II DOWNSTREAM FRICTION SLOPE = .01092 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .010w0 JUNCTION LENGTH(FEET) = 10.00 FRICTION LOSS = .100 ENTRANCE LOSSES = 0.000 11 JUNCTION LOSSES = DY+HV1-HV24-(FRICTION LOSS)÷(ENTRANCE LOSSES) JUNCTION LOSSES = 1.648+ 4.643- 5.581+( .100)+( 0.000) = .811 NODE 1812.34 : HGL= ( 1239.022);EGL= < 1243.665);FLOWLINE= < 1228.750 11 II PRESSURE FLOW PROCESS FROM NODE 1812.34 TO NODE 1847.61 IS CODE = 3 UPSTREAM NODE 1847.61 ELEVATION = 1229.03 CALCULA PRESSURE FLOw PIPE-BE;,D LOSSES(OCEMA): 11 PIPE FLLvy = 9.17 EFS PIPE " = SE 35.7 FEET PIPE DIETER = 90.210 ItZHES MANNINC7S N = .01300 CENTRAL 4 = 22.00C D'EGREE3 I/ PREESjRE FLOW A = 50.236 SQUANE FEET FLOW VE-OZ:IT'y = J.7.25 FEET PER Sm:COND VELOOITY HErlD = 4.643 BEND COEFFICIENT(KB) I/ Ht=K8*(VE-0=1 , 4EAD) = .124)*( 4.643) = .574 PIPE CONVnA..4OE FACTOR = 9120.764 FRICTION SLOPE(F) = .0090613 FRIO LOSSES = -*E' = i SZ.37)*( .0090613) = .3al NODE 18 : mG._= . 12 < ',.244.560):FL.OWLINE= ( 12E9.030> I I/ PRESSURE FL)W PrtOCESS FRE.,; NODE 1847.61 - 0 NODE 1847.61 IS CODE = 5 UPSTREAM NODE 1347.6 ELEW4 = 122'3.03 - - - I/ CALCU,-ATE PRZSSjRE "-=LO .7,NOTIO LOSSES: NO. DISOhAREE D2.::ETE: ARE3 VELOCITY DEL.7A 1- V 5C.E66 '7.057 .953 4.53 2.1 6: 'DE,. 2 ,! Et 6 ; 17 . 252 _ hi. . , t3 :: 2-1/4A. 2. 45 .4.833 90.000 - I -- 4 .7... 'iL` Z. ;,;.' Z. C102 3. 0. 00.2 - ;I :i..2===::5 E.:',..;,-S EHE T.P.J ii _Arrim AND CO=Y;A : ;i...., :i.J,O7:,N PLAII-JLHE uSED: LN=za2,.12-31.1-77:-*.:5 i-C,34-V_SDE.... 1 D4*V .% uptsTRgcA ifAN.!1'. . = DOWNSTREAM FRICTION SLOPE = .00908 I AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00896 JUNCTION LENGTH(FEET) = 1.75 FRICTION LOSS = .016 ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES ir ' MOMENTUM LOSSES = .126 MANKOLE,LBSSES = .232 ' JUNCTION LOSSES -= DY+HV1-HV2+(FRICTICN LOGS)+(ENTRANCE LOSSES) JUNCTION LOSSES = .251+ 4.518- 4.643+( .016)+( 0.000) = .248 II NODE 1847.61 : HGL= < 1240.290);EGL= < 1244.807>;FLOWLINE= ( 1229.030> I PRESSURE FLOW PROCESS FROM NODE 1847.61 TO NODE 1893.65 IS CODE = 3 UPSTREAM NODE 1893.85 ELEVATION = 1229.40 CALCULATE PRESSURE FLOW PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 857.40 CFS PIPE DIAMETER = 96.00 INCHES PIPE LENGTH = 46.24 FEET MANNINGS N = .01300 II CENTRAL ANGLE = 29.050 DEGREES •PRESSURE FLOW AREA = 50.266 SQUARE FEET FLOW VELOCITY = 17.06 FEET PER SECOND II VELOCITY HEAD = 4.518 BEND COEFFICIENT(KB) = .1420 HB=KB*(VELOCITY HEAD) = ( .142)*( 4.518) = .642 PIPE CONVEYANCE FACTOR = 9120.764 FRICTION SLOPE(SF) = .0088370 II FRICTION LOSSES = L*SF = ( 46.24)*( .0088370) = .409 NODE 1893.85 : HGL= ( 1241.340);EGL= < 1245.858);FLOWLINE= ( 1229.400> II ======== =--=-_=====_-===========-======-=====-=-====-==== PRESSURE FLOW PROCESS FROM NODE 1893.85 TO NODE 1960.38 IS CODE = 1 UPSTREAM NODE 1960.38 ELEVATIUN = 1229.93 CALCULATE PRESSUriE FLOW FRICTION LOSSES(LAOFCD): PIPE FLOw = 857.40 CFS PIPE DIAMETER = 96.00 Io4CHES S===(=.7/K)** = I/ PIPE LENGTH = 2 (( - Cr 6 . .. m- ),J 7 FE ' E T MANNINGS N = .01300 857.40);( 3120.784))**E = .0088370 HF=L*SF = t 86.53)*t .0068370) = .586 NODE 196e.a : ha.-=- 1241.926>;ES_= < 1246.48>;F-OW,.:NE= < 1229.530 II -= = == • PRFSS-IRE F-G4 PROCESS FI NODE 1960.36 70 NUDE 2.t.14.84 IS CODE = 3 LPSTREAri, NODE E_.4.64 ELEVATIO% = 1231.18 II A CA-Ou-r= ,-.JHt-_o,4u-tt. r-,, , P-t." - et.N1J L.O MM(uJrotM): A P.:1 F-OtA = E,57.-10 L-=E PI; DIANIETER = 9m..2.0 INCHES PIPE LENT .. .,54.28 FEET NANNINuS N = .01300 CENTRAL AE,-E = 1iE73 D=GREES I/ PRESSURE FLOW AREA = 50. 266 SQUARE FEET =-Ow VELOCITY = 17.06 FEET PER SrICOND Va_OCI hEkD = 4.518 BEND COEFFICIENT(KE) = .0685 I/ ra=KB*(VE-OCITY r-;ED) = : .088i*( 4.518, = .400 PIPE CONVE'yANCE - = 3i20.764 FRICTIoN S-CJPE<SF./ = .008832 FRI271DN LOSSES = 445:: = ( .54.26)* .0088370/ = 1.33 NCDE E1,4.E,4 : 1-G-= c ,.E40.694);E3L= c 1E48.E03):FLOW-INE= < 1271.160> .:. II ____= ------------ - PRES3J7iE FL.0..4 7-c32EFS FROrT1 NOLIE 21.4.64 --.: NOD 2165.o3 IS CO;- = jPSTFEP''' ::)E c1165.8 E_EvATIO.x. = _E3-57 II LHN.A.,s./...1-1 'a r"‘=::',C,.. - --Jki -o1.,L,s.uN 1.-bbmbk-A...,rCu): 1-1;E F.0, = 677..-0 CFS PI; DIETER '4- S6.‘2 IACH=Z PP E: LT - = , • " ,.. . , ,-1 4.4a1 . . - .ff,Ja NODE 2165.83 : HGL= ( 1244.143);EGL= < 1248.661):FLOWLINE= ( 1231.570) II ========== = = = PRESSURE FLOW PROCESS FROM NODE 2165.83 TO NObE 2187.63 IS CODE = 5 IV UPSTREAM NODE 2187.83 ELEVATION = 1232.27 $.1 CALCULATE PRESSURE FLOW JUNCTION LOSSES: li NO. DISCHARGE DIAMETER AREA 1 741.5 90.00 44.179 VELOCITY HV 16.784 14.00 DELTA 14.008 4.374 2 857.4 96.00 50.266 17.057 -- 4.518 4 4 115.9 0.0 51.00 0.00 14.186 0.000 8.170 0.000 18.775 - 0.000 - 5 0.0===05 EQUALS BASIN INPUT=== II LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULF-IE USED: DY=(02*V2-01*V1*COS(DELTA1)-03*V3*COS(DELTA3)- 04*V4*COS(DELTA4))/((A1+A2)*16.1) 11 UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 II UPSTREAM FRICTION SLOPE = .00932 DOWNSTREAM FRICTION SLOPE = .00884 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00908 11 JUNCTION LENGTH(FEET) = 22.00 ENTRANCE LOSSES = 0.000 FRICTION LOSS = .200 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = 1.087+ 4.374- 4.518+( .200)+( 0.000) = 1.143 I/ NODE 2187.83 : HGL= < 1245.430)4EGL= < 1249.804>:FLOWLINE= < 1232.270) i = r ========-= =_== =-___== ============= PRESSURE FLOW PROCESS FROM NODE 2187.83 TO NODE 2258.70 IS CODE = 3 UPSTREAM NODE 2258.70 ELEVATION = 1233.87 II -- ;11CIATE PRESSURE FLOW PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 741.50 CFS ;IPE DIAMETER = 90.00 INChES PIPE LENGTH = 70.67 FEET MANNINGS N = .01300 I/ CENTRAL ANGLE = 45. 1E0 DEGREES PRESSURE FLOW AREP = 44.179 SQUARE FEET FLOW VELOCITY = 16.78 FEET PER SECOND • VELOCITY -;ED = 4.374 BEND COEFFICIENT(KB) = .1770 r0=KB*(VELOCITV HEAD) = ( .177)*( 4.374) = .774 PIPE CONVEYANOE =ACTOR = 7678.797 FRICTION SLOPE(SF) = .0093247 II FRICTION LOSSES = L*SF = ( 70.67)*( .0093247) = .661 NODE 2256.70 : HG-= < _246.665>tEGo= ( 1251.240):FLOWLINE= < 1233.870> I =====-=------ -------- - PRESSURE FLOW : FRLA NOLE E26. i0 TO NODE 228. i0 IS CODE = 5 oPSTREAM NODE 225.5.7Z ELE = 1233.87 I CALCOLATF . PRFSS"RF FLOw :JN3TI3N L3SSES: N. DI3ChPRGE DIAMETER AREA VELOOIT't DELTA HV 1 735.5 c30.% 44.-7B ,6.647 0.000 2 741.5 912.0 44.79 16.764 -- 4.374 O 6.., 21.0E E.A.e5 E.515 74.6:: - 4 1 2.0 0.0 0.003 0.004 iz.ak; - II - o 2 E,ILAL8 E,SI INi- LACFCD AND 0: TRES8 "- ,..,-A I FORol...PE USEDL I/ DY=k02*V2-CTI*V*OOL,ZE_,-CS*,'3*:116tDELTA3)- D4*V44-COS(DELT;;.,)/k,A_.6.,1 OUWNSTRERM MANNING'S N = .01300 I UPSTREAM FRICTION SLOPE = .00917 li DOWNSTREAM FRICTION SLOPE = .00932 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED CA S .00925 JUNCTION LENGTH(FEET) = 4.50 FRICTION LOSS = .014 117 ENTRANCE LOSSES = 0.000 --' MANHOLE „LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES 't . , MOMENTUM LOSSES = .068 MANHOLE LOSSES = .219 II JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = .139+ 4.303- 4.374+( .014)+( 0.000) NODE 2258.70 : HGL= < 1247.169);EGL= < 1251.472);FLOWLINE= < 1E33.870> II ======== ==== = PRESSURE FLOW PROCESS FRCA NODE 2258./0 TO NODE 2292.00 IS CODE = 3 II UPSTREAM NODE 2292.00 ELEVATION = 1234.63 CALCULATE PRESSURE FLOW PIPE-BEND LOSSES(OCEMA): PIPE LENGTH = I/ PIPE FLOW = 735.45 CFS 33.30 FEET PIPE DIAMETER = 90.00 INCHES MANNINGS N = .01300 CENTRAL ANGLE = 21.200 DEGREES PRESSURE FLOW AREA = 44.479 SUUARE FEET II FLOW VELOCITY = 16.65 FEET PER SECOND VELOCITY HEAD = 4.3k,3 BEND COEFFICIENT(KB) = .1213 HB=KB*(VELOCITY HEAD) = ( .121)*( 4.303) = .522 11 PIPE CONVEYANCE FACTOR = 7678.797 FRICTION SLOPE(SF) = .0031732 FRICTION LOSSES = L*SF = ( 33.30)*( .0094732) = .305 NODE 2292.00 : HGL= ( 1247.996);EGL= < 1252.300);FLOWLINE= < 1234.630> II ===.=. = = =___ _ ,,,, P FL .Ow FOw PROD:SS FROM NODE 2292.00 TO NUDE 2292.00 IS CODE = 5 =: UPSTREAM NODE 2ESE.00 ELEVATION = 1234.63 ii C4L_OULATE PRESSU- FLOW JUNCTION LOSSES 71S.T 44.179 II NO. L DIAME J SZ.trxe, AREA 125 0.000 TY DELTA mV 4.119 2 735.5 90.00 44.179 16.647 -- 4.1 II 3 :5.9 33. , , m 0.0 017 5.940 2.660 78.500 - ,;%.0., 0.000 0.000 0.00 - -, 0.21===G5 EGJALS BASIN INPUT=== II LACFCD AND OCEMA PRESSURE FLO'.... JUNCTION FORW,J OSED: DY=(021(.2-01.KV,*C-06(DELTAI)-Q3*V3*COS(DELTA3)- 04 1-2H16. 1) I LiPSTREAT l'iANN:7, N = .Z.L3OZ DO4NSTriEArf v.ANNIGS N = .01.300 11 UPSTREAM FRICTION S-3"-E = .00876 DOWNSTREA 1 FRICTICA S_C-E = .00347 AVERAGED FRICTION SLO:JE IN J,,VCT:LiN ASSUMED I-6 .LEk;'1E-.-7'6 JUNCTION L." = I/ ENTRANCE LOSSES = , Z.0e0 viANHOLE LOSSES G-,EATE-; - -11:1, '.-.,1:z„ ;10 pss.rs MOMENTx L083E5 - .:Y1, rTir-iNmOLE LOSSES EE j,./NCT:O\ L395:.. E. = If- , r , -1-' G35)-t- k W7RA;•.7., 1 :J4:":0N -ZESES = .,,E,n. ei-,3- 4.303-ik .10::-( 11.0e) = .240 ■..„ NODE E23E.21.2 -a....-. .,L4::7,-/;=0.._= II ;RESEI.,E I 1-7-Do, :.' ::=::- ,1,7,i LED.: -:-. , 23.27.U-. IS L.....D. -... 3 UPSTREAIN NODE 27,27. Ei_EvATT, - ...,.1.7 - ..,... - „.. .... 4- !ftA eft 1 rt - = rnr_+=nr, .:....-_- - - -- - - - ---,-- -- - r-A LGIVOIM "- ID.Wd t mi4NN1NuS N = .01300 CENTRAL ANGLE = 9.600 DEGREES II PRESSURE FLOW AREA = 44.179 SQUARE FEET FLOW VELOCITY = 16.29 FEET PER SECOND VELOCITY HEAD = 4.119 BEND COEFFICIENT(KB) = .0816 HEI=KB*(VELOCITY HEAD) = ( .082)*( 4.119) = .336 - PIPE CONVEYANCE FACTOR = 7678.797 FRICTION SLOPE(SF) = .0087803 FRICTION LOSSES = L*SF = ( 15.08)*( .0087803) = .132 1/ NODE 2307.08 : HGL= < 1248.689);EGL= ( 1253.006);FLOWLINE= < 1234.970> ===========- = = = = I/ PRESSURE FLOW PROCESS FROM NODE 2232.62 10 NODE 2487.60 IS CODE = 1 UPSTREAM NODE 2487.80 ELEVATION = 1240.74 • CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 719.53 CFS PIPE DIAMETER = 90.00 INCHES PIPE LENGTH = 254.98 FEET MANNINGS N = .01300 HF=L*SF ( I/ SF=(Q = (( = 719.53)/( 7678.797))**2 = .0087803 254.98)*( .0067803) = 2.239 NODE 2487.80 : HG-= < 1251.128>;EGL= < 1255.247>;FLOWLINE= < 1240.740> 11 ========= = PRESSURE FLOW PROCESS FROM NODE 2487.60 TO NODE 24'92.47 IS CODE = 2 11 __UPSTREAM NODE 2492.47 ELEVATION = 1240.81 CALCULATE PRESSURE F-OW MANHOLE LOSSES(LACFCD): PIPE FLOW = 719.53 CFS PIPE DIAMETER = 90.00 INCHES I/ PRESSURE FLOW AREA = 44.179 SUUARE FEET FLOW VELOCITY = 16.29 FEET PER SECOND VELOCITY HEAD = 4.119 .05*(VELOCITY hEAD) = .05*( 4.119) = .206 NODE 2492.47 : HGL= < 1251.334):EGL= ( 1255.453):FLOWLINE= ( 1240.810 = = = = P4ESSURE FLOw PROCESS FROM NODE 249e.47 TO NUDE 2877.93 IS CODE = 1 1 ---------- NODE 2877.33 ELEVATION = 1246.51 CALCJLATE PRESSURE FLOw FRICTION LOSSES(LACFCD): PIPE FLOW = 719.53 CFS PIPE DIAMETER = 90.00 INCHES I I P/PE LENG7t- = 385.46 FEET MANNINGS N = .01300 Si=(0/1-0**E = (( 719.53)/( 7678.797))**2 = .0087603 H0*SF = ( 365.46)*( .0087803) = 3.364 I/ NODE 2877.93 : -13L= ( 1254.719);EGL= < 1258.836>;F_Ovv-INIE < 246.5> 11 ======= PRESSURE F,.CW PROCESS FRTf, NODE 2877.93 70 NODE 2885.93 IS CODE = 5 UPSTREAM NODE 2865.93 ELEVATIa‘, - -L- 1246,6E II CALCULATE PRESSURE F-Do, SJNCTICN LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DE-7A 675.0 w.oe 4-i.179 15.2 0.01,0 3.624 ., 11 2 79,5 90. 3 .. 44.6 0.2 33.00 44.179 8.2.67 -- 4.119 5.940 7.506 30.00 - 4 Z.0 0.06 0.0...)16 0.0.60 0.0.:0 - II ,J 2.0===G5 ED-A-S ,..ACFCD ANZ CCEMA P-RESS_,RE 1 . 7 .-O?. .71 ICT112. 7-3RAt. L..z. DY= ( D2*VE : * 22F ( EZ-TA_ ) - C3-x ‘)3*7-06 (DE_TA3i - II 04*V4*COS(DE-TA4))*16.1) HORTZTAM kaL':IN:-A N = .171Jacc.' d WI.IINGHM rINIL,Ilwim oi-U1-'m ar- •WW/t.:, DOWNSTREAM FRICTION SLOPE = .00878 li AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00825 JUNCTION LENGTH(FEET) = 8.00 FRICTION LOSS = .066 ENTRANCE LOSSES = 0.000 It JUNCTION LOSSES = DY+HVi-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = .785+ 3.624- 4.119+( •066)+( 0.000) = .357 NODE 2885.93 : HGL= < 1e55.570)4EGL= < 1259.194);FLOWLINE= ( 1246.620) I/ ========= = =--= PRESSURE FLOW PROCESS FROM NODE 2885.93 TO NODE 3174.40 IS CODE = 1 11 UPSTREAM NODE 3174.40 ELEVATION = 1250.08 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFM): II PIPE FLOW = 674.95 CFS 288.47 FEET PIPE DIAMETER = 90.00 INCHES PIPE LENGTH = MANNINGS N = .01300 674.95)/( 7678.797))**2 = .0077260 HF=L*SF = ( 288.47)*( .0077260) = 2.229 I/ NODE 3174.40 : HGL= < 1257.799);EGL= < 1261.423);FLOWLINE= < law.etew II ======== ====== = = PRESSURE FLOW PROCESS FROM NODE 3174.40 TO NODE 3179.07 IS CODE = E. UPSTREAM NODE 3179.07 ELEVATION_= 1250.14 I/ CALCULATE PRESSURE FLOW MANHOLE LOSSES<LACFCD): ___ PIPE F-OW = 674.95 CFS PIPE DIAMETER = 90.00 INCHES PRESSURE FLOW AREA = 44.i79 SURE FEET II FLOW VELOCITY = 15.28 FEET PER SECOND VELOCITY HEAD = 3.624 , - i HMN = .05*(VE-OCI'Y HEAD) = .05*( 3.624) = .161 NODE 3179.07 : HSL= < :257.980>;EGL= ( 1261.604);FLCALINE= < 1250.,40) I/ === ======= a-- "'" '''' .--''''' '''.."' ..*-...-'. PRESSURE FLOA PROCEYL FRDT: NUij 3179.07 TO NOL 34E7.E4 AS CO0E = I UPSTREAM NODE 3427.E4 E c m 125O.12 II CALCUJ47E PRESSURE =._OW FRICTIa'u LOSSES(LACPCD): PIPE FLO0s = 674.95 0. PIPE DIAMETER = 90.140 INCHES PIPE LENG7m = 248.17 - z.m, MANNINGS N = .01300 S7 7678.797))** = ( 2, = .0077260 ,7)*; .00772601 = 1.917 • NODE 34E7.24 • : 1,36.= < :253.8S7,:EG-= < 1 < -i53...E/ II - - P. RES3URE PL_D., 1:S3_PTILI, _;SE: . ;0 A:j,JE7 -1:;- AND E6,- LOST PRESSURE f,SPIAD ZSI S.) CJNTR-',_ =. .72 1/ Naum 3427.24 : ri : 1EL'0.6E,;E5,--= < 1264.E44);Fe_OWLINE= < h253.120) 11 PRESS F,_;.J.v PROCE=L" FR:t NME 34E7 .c4 "0 NOL)E 34E7. L3 IS C3.. = 3 UPSTREAll N.3DE 67 EC E-Ev'A = _E.51.6: ---------- CALCLLATE PIPE FLO, = E74.::: _7,-E, ,7 - D:Ri '1 PIPE LENGT-' = , 43.iT, S-E .--. - 7,..„i7 - - 7 r7 -7 " li PREOSLRE F_C P,RE's: = -1. , 7 7 S- - E .'- 11 VE-C:TT% -1EPI7 = L.C4-...- F:' 7.:E.=. = .1.Z&C. HB=r%E*CN -::1,.., - , ,. ,k ,,'.E:E. PIPE 0E)A\Z : . ;E7,...7 7 GN 2_D-E,5: -. ,_-. - - Amm.m..........., II ======== = = PRESSURE FLOW PROCESS FROM NODE 3467.53 TO NODE 3481.53 IS CODE = 5 UPSTREAM NODE 3481.53 ELEVATION = 1253.75 lik ----- - CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV I/ 1 2 536.5 675.0 90.00 90.00 44.175 12.144 44.1.79 15.278 5.942 -- 2.290 3.624 3 138.4 48.00 12.566 11.017 38.067 - 4 0.0 0.00 0.000 0.000 0.000 - II .) 0.0===a5 EQUALS BASIN INPUT=== LACPCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: • DY=(02*V2-01*V1*COS(DELTA1)-03*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) I UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00488 DOWNSTREAM FRICTION SLOPE = .00773 I AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00630 JUNCTION LENGTH(FEET) = 14.00 FRICTION LOSS = .068 ENTRANCE LOSSES = 0.000 I/ JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = 1.649+ 2.290- 3.624+( .0b6)+( 0.000) = .603 NODE 3481.53 : H_= ( 1263.264);EGL= ( 1265.554>iFLOWLINE= ( 1253.750> I ===*===== il =--- • ========= = = ... t 21 PRESSURE FLOW PROCESS FROM NODE 5481.53 TO NODE 3600.05 IS CODE = 3 UPSTREAM NODE 3600.05 ELEVATION = 1254.89 CALCULATE PRESSUE FLil$W PIPE-BEND LOSSES(OCEM): PIPE FLOW = ,...,, ,, ,- ,J,f,c,..Js. L.--...) PIPE DIAMETER = 90.00 INCHES II PIPE LENG7 -1 = 116.52 FEET MANNINGS N = .01300 CENTRAL.. ANGLE = 5:.000 DEGREES II PRESSURE FO W AREP = 44.179 SOJAKE FEET FLOW VELCCITv = i2.14 FEET PER SECOAD VELOCITY HEAD = 2.21.,0 BEND COEFFICIENT(KB) = .1862 HB=KB*(VE.00:TY HEAD) = ( .188)*( 2.230) = .433 II PIPE CONVEYANCE FACTOR = 7676.77 FRICTION LOSEES = ,..*SF = ( FRICTILN SLOPE(SF) = .0046817 ii6.5c:)*( .0048817) = .579 NODE 360 : HE= ( .,E64.273?:23 ( 1266.56:);FLOWLI\Z= t 1254.89Z) II ==== ----------------------------------------------------- ======== I/ PRESSURE F - 1, _Ow PROLEE PRJ'Y NOE 36u0. , Z - D NOLJE 36140.‘S IS CO)E = 5 tanSTREAM NODE 3600. 05 E-E\IAT1ON = 1254.69 -- - -1 LA'DI-ATE P ,J RESBRE Fi..01, SLI,‘ LOSSES: I/ NO. DISO-A DE 1 515.7 Ty., 4,179 11.672 EIE-- .67; 2 L.-- _ -,,. - 0. : 44.173 16.:44 -- 2.2W ! t.1 0.0 L7...7.3 - ' ":,, a.sta 0.7=1.0 o.lz‘z. t - - JV.a ,d6 ,z..oec. - = .., -7.05 EE, 2.,-S'm INP„2 II LAC5 A7) .12E' A P;',E6EL-E - =-,_i :.2%: - ulEDL Di=t0Ex-va'-;1*v..0-3OS(1,i----7„37",D, - 044t-j4*COE(ThETA- ),(0:,-H)).i,...' II UPSTREAm MANN:NGE I" Au , ion-I-c5=r, , , )v f , r i c .• -, ti - - :i , i uwwmolmmHm rmIL,IluN 1...u1--=. - •WW450 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00470 I JUNCTION LENGTH(FEET) = 2.25 ENTRANCE LOSSES = 0.000 FRICTION LOSS = .ell JUNCTION LOSSES = DY+HVi-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = .321+ E.116- 2.290+( .0:1)+( 4Z100,21) = .1b8 *.0 - NOME 36��.5: HGL= < 1264.605>;EGL= < 1266.721>;FLOWLINE= ( 1254.&9> = 11 ====== = = = ===== PRESSURE FLOW PROCESS FROM NODE 3600.05 TO NODE 3638.83 IS CODE = 3 UPSTREAM NODE 3638.89 ELEVATION = 1255.26 II CALCULATE PRESSURE FLOW PIPE-BEND LOSSES(OCEMA): _ PIPE FLOW = 515.71 CFS PIPE DIAMETER = 90.00 INCHES 11 PIPE LENGTH = 38.84 FEET CENTRAL ANGLE = 16.100 DEGREES MANN/NGS N = .01300 PRESSURE FLOW AREA = 44.179 SOUAKE FEET FLOW VELOCITY = 11.67 FEET PER SECOND I/ VELOCITY HEAD = 2.116 BEND COEFFICIENT (KB) = .1057 HB=KB*(VELOCITY HEAD) = ( .106)*( 2.116) = .224 PIPE CONVEYANCE FACTOR = 7678.797 FRICTION SLOPE(SF) = .0045105 II FRICTION LOSSES = L*SF = ( 38.84)*( .0045105) = .175 NODE 3636.69 t HGL= < 1265.004);EGL= < 1267.120);FLOWLINE= ( 1255.260) ================------ • II = =================== PRESSURE FLOW PROCESS FRUM NODE 3638.9 TO NODE 4021.17 IS CODE = 1 UPSTREAM NODE 4021.17 ELEVATION = 1258.93 I/ CALCULATE PRESSURE FLOW FRICTION LOSSES(LACF0D): -*A PIPE FLOW = 515.71 CFS PIPE DIAMETER = '30.00 INCHES iw PIPE LENGTH = 382.28 FEET MANNINGS N = .01300 SF=MbK)**ii = (( 515.71)/( 7678.797))**2 = .0214505 HF=L*SF = ( l82.28)*( .00115105) = 1.724 II NaDE -+172,7 : l< < 1266.726):EGL= < 1266.844);FLOWLINE= < 1258.930> ======= 11 ___===== -====== PqESSLRE ' PRDZEaS FR:2r1 ki. 4021.17 0 :\,01./E 4.0e5.b4 :8 COoE = 5 UPSTREAM NCIE 402.6 FLEv'AT:ZN = 1258.90 ---L,, - II CALCULATE PRESSRE F-OW j_J• LOSSES: 64. DIECI-ARE DETER .:tia,71 VELO::TY DELI tnv 1 515.7 - 56.1Z.0 50. 256 10.260 C. 000 1.634 I 5-5.7 90. 0 4 . Z. - .4 O. ;'. C. :, ,- 7 i 1. 67a -- C. C j0 7.0.412 O. 010 4 O. ,2 0. ttO 0.000 0.000 c' 1/ E5UALS E-SN IN7 :- === ,AOCD t 0,7-:14A : P-t-IvN „7LACTION FORI.JLHE ,JS DV=(D2*V2 I/ 3-144(A,4*CCL4DE.LTAii,, uPSTREAY MAN DOWNSTREA'Y iYIAN‘1,5 \ = .,:,-, UPSTREPY =RI: E.,.:-= = .,7:":- DZorxETREr- 7 . 4 ,.,Z. -- _. E -- z- .4■?“1, I/ ERWEEZ :-"'.:IC E,..C-1 . :.,7 , sli,S.,\.1.7 (::,:- ji! *..: 7 .: :"'ID, L.1 - .ILA ENT'SAN:E ,...3ZSE.E3 - rel:-..7: ,...3:172 i 7-, 7 - 1 ,2"%,_, ,r II “LrE,...,' n,77,=' - ...:6 .:.-1 -LE5EL = : -- .--,E-,1.": / I === = ... ... . PRESSURE PLOW PROCESS FROM NODE 4025.65 10 NODE 4317., IS CODE = i UPSTREAM NODE 4317.35 E-EVATION = 1261.77 �0 i o CALCULATE-PRESSURE FLOW FRICTION LOSSES(LACFCD): - PIPE FLOW = 515.71 CFS PIPE DIAMETER = 96.00 INCHES = II PIPE LENGTH = (( 291.70 FEET MANNINGS N = .01300 515.71)/( 9120.764))**2 = .0031970 HF=L*SF = ( 291.70)*( .0031970) = .933 MI NODE 4317.35 : HGL = < 1268.266);EGL= ( 1269.901);FLOwLINE= < 1261.770) • PRESSURE FLOW ASSUMPTION SED 70 ADJUST HGL AND E6L LOST PRESSURE HEAD USING SOFFIT CONTROL = 1.50 II NODE 4317.35 : HGL= ( 1269.770);EGL= < 1271.405):FLOWLINE= ( 1261.770> I/ PRESSURE FLOW PROCESS FROM NODE 4317.a-5 '10 NODE 4317.Z5 IS CODE = 5 UPSTREAM NODE 4317.35 ELEVATION = 1261.77 ----.. 11 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA KV 1 504.1 96.00 50.266 10.09 0.000 1.562 II 2 3 =.-= , 96.00 50.266 10.260 -- 1.634 ..Ji,J./ 11.6 21.00 2.405 4.814 90.000 - 4 0.0 0.00 0.01B0 0.000 0.000 - .... II ,..; 0.0===05 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULHE USED i ' , " 4-s : ” , DY=(02*\12-GlAV1*COSDELTA1)-03*V3*COS(DELTA3)- 04*41COS(DELTA4»/((A1-1-A2)*..6. UPSTREAM MANNINGS r. = .0130Q I DOwNSTREAN '14-INNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00306 DOwNSTREAm FRICTION ELOPE = .011320 11 AVERAGED FRICT:ON S-0 Ixi JuNCTION ASSUMED AS .00313 JUNCTION ,..ENOTt = 1.73 FRICTION LOSS = .005 ENTRANCE LOSSES = e.000 MANHOLE LOSSES GREATER THAN THOmPSUN VOMENTJM LOSSES I MOMEATUM LOSSES = . 073 NHO-E LOSSES = .082 „7NC:ON ,...:FasE5 = DY-r.HVi-HVE4-(FRIOTION LOSS)+(ENTRAWLE LOSSES) JUNCTION LOSSES = ..,A5t. 1.562- 1.634+( .005)+( 0.0.60) = .087 I/ NOD- 43:7.15 : -3_= ( 1263.SOz2:):EG_= ( i271.4SE);FLOwLINE= < 1261.770, II - - - - -- - - - PRESSURE F-OW PRZIEZ,S FRr OIE 43 - 0 icC 4444.50 IS CODE = 1 _ UPSTREAm NODE 4444.547 ELEVEN = ,263.00 - _ I/ CALCULATE PRESSuRE F_Ow FRICTION LOSSES(LAOFCD) : PIPE F...OW = 504.13 CFS 7 -I;'-E DIAhETER = %.:.6.00 Z.Cr,ES PIPE LENGTH = 1.27.,5 FEET MANN:NOS N = .0t3Z0 !! SF- = HF=L*SF = k ,27.: 504..,Pi( 3120.764))*x2 = .00,--0551 S,*, .0.1.30551, = .366 -- NODE 44L4 50 : -3_= ( .ETO.C:S;:E31_= < 1271.66(');FLOW-1AE= ( 1263.0) II -,- PRES:L..1SE -T_Uts- ASS_ •• - 7. ADJ.JET t-u- A \D E- LOST PRE35-RE r:AD _3: E*1_:T=:" CONTR3,_ = .66 NJ - T 4,--,.5(7 -2,_= , :7-1;'Z ‘ *.272.562). , II ---- - --- - UWbit(tHin NUUt. 44no.wo L.tVitift1 mt le6z.o5 II CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA NV 1 476.1 96.00 50.266 9.471 0.000 1.393 2 504.1 56.00 50.266 10.029 -- 1.562 1 7 .., asozi 30.00 4.909 5.712 45.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0===05 EOUALS BASIN INPUT=== II LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULME USED: DY=<Q2*V2-01*V1*COS(DEL.TA1)-Q3 II Q4*V4*COS(DELTA4))/<(A1+A2)*16.1) U STREAM MANNINGS N = .01300 I D WNSTREAM MANNINGS N = .01300 U STREAM FRICTION SLOPE = .00272 D WNSTREAM FRICTION SLOPE = .00306 II A ESLOPE GED FRICTION SLOPE IN JUNCTION ASSUMED AS .00289 J NOTION LENGTH(FEET) = 5.50 FRICTION LOSS = .016 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY+HV1-HV2+<FRICTION LOSS)+(ENTRANCE LOSSES) II JUNOTION LOSSES = .266+ 1.393- 1.562+( .016)+( 0.000) = .115 NODE 4450.00 : HGL= < 1271.264)1EGL= < 1272.677):FLOWLINE= < 1263.050> II ==== = =--= = = PRESSURE FLOW PROCESS FROM NODE 4450.00 TO NODE 4677.67 IS CODE = 1 I/ UPSTREAM NODE 4877.67 ELEVATION = 1264.94 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD) . ::::::: = :76.09 CFS = 427.67 FEET PIPE LENGTH PIPE DIAMETER = 96.00 INCHES MANNINSS N = .01300 i 476.03)/( 9120.764))**2 = .0027247 HF=L*SF = ( 427.67)*( .0027247) = 1.165 II NODE 4677.67 : HS ...= < 127E.449):EGL= < 1273.842);FLOWL.INE= < 1264.940) PRESSURE FLOW ASSUM;T:ON USED TO ADJUST ma_ AND EGL II LOST PRESSURE HEAD USING SO=FIT CCJNTRUL NODE 4877.67 : H33 < 1E741.340);EGL= < 1274.333);FLOWLINE= < 1264.940) II ---= - - - ====== =========== PRESSURE FL..04 r.R02ESS F- NUDE 4877.67 70 NODE 4882.34 IS CODE = ,JPTRER F LE zE6L.L4 ELEVATIu;' = 1264.96 I/ - - - CA-CUL E55UkE. =_,,,, ri--.:...= PIPE FL O,N = 476.9 := ;-:PE DIAMETER = 36.00 INCHES II PRESSURE F.OW PRE. = [ SOJAE FEE' FLOW VELOCITY = D.47 FEET ;ER SiC3■ID VELOCITY HEAD = 1.393 HMN = .17'5*;VELOC:7's HEAD) = .054.: 1.3.7)3) = .Z7 I/ NODE 4862.34 : r.,;-- \ .,E73.0.C):EGL= < ..E74.40)C- < 1E64.964) !I ===========-_. . --------------- - - . , PRESSuRE P_Dv, ;:ROLEE1E E".:J 'HE 48b2.,D4 0 r\i1E 11S143. S Oa': --- 1 ,- UPSTREA NOY: 4 S , Z 7 .7-, E_Eo.ii. = 1E65.0 11 ------ - - CALC,-A": ;:::ESEL_iE F_C,, = LCEG(LAOFCD): ;I;E F-Ovs. = 47E.k.: :Fs7 PIPE ,,:ArE = 16.411 InES TE E N Tr r. E q, - to-;NNING,:i N = .re.1347. II HF=L*EF = . 7):.,.., =.1. --, .46227E47 E7,m;' 1., .:42;i7F-,7, -, 77= *4..f,.J II ======= - PRESSURE FLOW PROCESS FROM NODE 4903.r4 - 0 NODE 5045.:6 IS CO,JE = 3 UPSTREAM NODE 5045.16 ELEQATION = 1265.66 CALCULATE PRESSURE FLOW PIPE-BEND LOSSESEOCEM) PIPE -FLOW = li-- ' PIPE LENGTH = 135.42 FEET 476.09 0P9 PIPE DIAMETER = rzi6.00 INCHES • MANNINGS N = .elz00 I/ CENTRAL ANGLE = 59.430 DEGREES PRESSURE FLOW AREA = 50.266 SQUARE FEET FLOW VELOCITY = 9.47 FEET PER SECOND I/ VELOCITY HEAD = 1.393 BEND COEFFICIENT(KB) = .2032 HB=KB4E(VELOCITY HEAD) = ( .203)*( 1.393) = .283 PIPE CONVEYANCE FACTOR = 9120.764 FRICTION SLOPE(SF) = .0027247 FRICTION LOSSES = L*SF = ( 135.42)4E( .0027247) = .369 II NODE 5045.16 : HGL= ( 1273.736);EGL= ( 1275.129); < 1265.6E0> I ============== PRESSURE FLOW PROCESS FROM NODE 5045.16 TO NUDE 5050.16 IS CODE = 5 UPSTREAM NODE 5050.16 ELEVATION = 1267.43 II CALCULATE PRESSUhE FLL.44 JUNCTION LOSSES: N. C:SCHARSE DIAMETER AREA VELOCITY DELTA HV 1 II 446.0 75.00 ai.680 14.537 0.000 s.2ba 2 7, ,J 476.1 ES.S 96.00 36.E0 50.266 9.47 7.O69 -, a 4.230 -- 90. 000 1. 333 - 4 e. 0 0.00 et. ehile 0.0140 0.0.)0 - II 5 .2===05 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: IF DY=k&E*V2-G,*%11*COS(DELTAI)-G3*V3*COS(DELTA3)- G4*V4*CO5(DELTA) )/((A1+A2)*16.1) ,JSTREAM MA,‘NINbS N = .01300 11 LOy.LZTREA't F,A\NINGS N = .1300 uPS7REA%, P.:c10"IL\I SLOPE = .00852 DO0iNSTREP 7- ",I,7, - '::\ SLOPE = .E7.0272 II AVERAZED PRIOT1L, SLO-E IN JJNOTIUN ASSUMED AS .0058,1 jUNCTION L.E.045T--k: = rs.:,.V0 ... .RICTION LOSS = .0cf) ENTRANCE LISSES = .279 II JUNCTION LOSSES = DT r - -iV1-VE-r(RICTION -OSS) k_oasEs) JpNCTION LOSSES = - . - .5.1 - 1 - 3.222- ..3934-( .029)+, .E79) = .651 NODE 5052.16 : HilL= ( 1272.529i;EGL= ( 1275.611);F-Ov4LIZ= < 1267.43Z: _ __ L - - II 7DRESSURS: FL:0 liSE_,YPTTON USED TO A)JJST n A.41 ES- LOST PREES.,\E EZ -S.,3 SOP CLA‘TR,),_ = 1.t5 WODE 5O ; HL = ‘ 1E73.6a0):EG-= 1276.5621;FLOw-INE= ( 1267.4:2, I/ ---- EN 0-': PRESELRE ...: rYD:\AJLICS P.,: SYSTEM = I/ It ,... II 1 II 1 ib�FlHhh1 EaFiF�FiE1F1MFdFdFiFl liEiE9F1El F1FIFiE�t�EiF1E1FiE1EIt1E�k�EdHE�EiE9F1E�EiEiE1E1EiFiEiHEiFiFiI1F1k1F9t9FaF9F1E9FiF�EiEiF�F9FiFlIIt�E1E *iFII PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) II **e *** e**e****eee*******e*e * ******** *ee *e * * *e *e **e * * * * *e *eee *eat **e * * *eeee <«<<<<<<<<<<<<<<<<<<<<«<<«(<«<< < (())))))) >) >>) > >>> > > > > > > > » » » » > > >> >> 1 (C) Copyright 1982 Advanced Engineering Software CAES] Especially prepared for: 1 HALL & FOREMAN, INC. 1 <(<<<<<<<<<<<<<(«<<<<<<<<<<<<<<<<<« () > > > > > » > > > >>> » » > > > > >>> > > » » » > > > >> ***** * * ** *DESCRIPTION OF RESULTS********** * * ***** * *** * * * *** * * * * * * * * * * *** * * ** 1 * LATERAL B HYDRAULICS (INDUSTRIAL AREA) * * Q25 * * AHMED SHEIKH, J. N. 3551, 3/27/87 * II ********************************************* * * *** * * ****** * * * * * * * ***** * * * * ** I NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. r DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 10.35 FLOWL I NE ELEVATION = 1236.15 PIPE DIAMETER(INCH) = 51.00 PIPE FLOW(CFS) = 122.72 I ASMED DOWNSTREAM CONTROL HGL = 1245.467 := .Iaesme= T 414 = =me =2 :as :se == =me= a: : =as = = == =e:z :m: = = = = = =e= = = = =___ : = = == =memo : = = = =_ = ==== == II <(« « « <« <<<<<<<<<<(<<<<<<(<(<<<<(<(>>>>>>> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > >> II Advanced Engineering Software CAES) SERIAL No. A0483A REV. 2.2 RELEASE DATE :12 /17/82 1 <<<<<<<<<<<<<<<<<(<<<<<<<<<<<<<<<<<<<<>>>>>> > > > > > > > > > > > > > > >>> > > > > > > > > > > > > > >> 1 aammss#essay:os�a mummium ===== ================================================== PRESSURE FLOW PROCESS FROM NODE 10.35 TO NODE 77.10 IS CODE = 1 II UPSTREAM NODE 77.10 ELEVATION = 1236.88 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): I PIPE FLOW = PIPE LENGTH = 122.72 CFS PIPE DIAMETER = 51.00 INCHES 66.75 FEET MANNINGS N = .01300 SF= (Q /K) * *2 = ( ( 122.72)/( 1688.477)) * *2 = .0052825 IF HF =L *SF = ( 66.75)*( . 0052825) = . 353 NODE 77.10 : HGL= ( 1245.820) ; EGL= ( 1246.982) ; FLOWL I NE= ( 1236.880> I $151101111=1111211111111111111111=============================================================== PRESSURE FLOW PROCESS FROM NODE 77.10 TO NODE 121.34 IS CODE = 3 110 lTDCOM mnn= 1P1_14 FI MUaT = 1 1sw-, v., 1 CALCULATE PRESSURE PLOW PIPE -SEND LUSSES (UCEP7AJ : PIPE FLOW = 122.72 CFS PIPE DIAMETER = 51.00 INCHES II PIPE LENGTH = 44.24 FEET MANNINGS N - .01300 CENTRAL ANGLE = 18.770 DEGREES PRESSURE FLOW AREA = 14.186 SQUARE FEET FLOW VELOCITY = 8.65 FEET PER SECOND VELOCITY HEAD = 1. 162 BEND COEFFICIENT (KB) _ .1142 `' � ' HB =KB* (VELOCITY HEAD) = ( .114)*( 1.162) = .133 PIPE CONVEYANCE FACTOR = 1688.477 FRICTION SLOPE(SF) = .0052825 FRICTION LOSSES = L *SF = ( 44.24) *( .0052825) = .234 NODE 121.34 s HGL= ( 1246. 186) ;EGL= ( 1247.348) ; FLOWL I NE= ( 1237.370) II ssssssssals= sssassmrs====== ssssssssssaeamsssssssssss =ft=== ======== a =m========== == PRESSURE FLOW PROCESS FROM NODE 121.34 TO NODE 193.91 IS CODE = 1 II . UPSTREAM NODE 193.91 ELEVATION = 1238.17 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): II PIPE FLOW = 122.72 CFS PIPE DIAMETER = 51.00 INCHES PIPE LENGTH = 72.57 FEET MANNINGS N = .01300 SF =(0/K) * *2 = (( 122.72)/( 1688.477)) * *2 = .0052825 HF =L *SF = ( 72.57)*( .0052825) = . 383 II NODE 193.91 : HGL= ( 1246.569) ;EGL= ( 1247.731> ; FLOWL I NE= < 1238. 170> I :sssssau sal sa sssssss ssass ssssssasssassssssss ssassss alas=======ssssasssas =aessssssaxe PRESSURE FLOW PROCESS FROM NODE 193.99 TO NODE 198.58 IS CODE = 5 UPSTREAM NODE 198.58 ELEVATION = 1238.22 II CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 113.7 51.00 14.186 8.018 0.000 .998 lb 2 122.7 51.00 14.186 8.651 -- 1.162 3 9.0 27.00 3.976 2.256 90.000 - 4 0.0 0.00 0.000 0.000 0.000 - II 5 0.0 = = =Q5 EQUALS BASIN INPUT= == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: II DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = .01300 REAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00454 DOWNSTREAM FRICTION SLOPE = .00528 II AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00491 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .023 ENTRANCE LOSSES = 0.000 II JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = .327+ .998- 1.162+( .023)+( 0.000) = .187 NODE 198.58 : HGL= ( 1246.920) ;EGL= < 1247.918> ; FLOWL I NE= ( 1238.220> II =s= sssssssss= ======== ales=======ss= as========== = = ==== =s =s==s = ========== ====s == PRESSURE FLOW PROCESS FROM NODE 198.58 TO NODE 459.47 IS CODE = 1 -- UPSTREAM NODE 459.47 ELEVATION = 1241.35 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): IF PIPE FLOW = 113.75 CFS PIPE DIAMETER = 51.00 INCHES PIPE LENGTH = 260.89 FEET MANNINGS N = .01300 SF= (Q /K) * *2 = (( 113.75)/( 1688.477)) * *2 = .0045385 11 HF =L *SF = ( 260.89)*( .0045385) = 1.184 NODE 459.47 : HGL= < 1248. 104> ; EGL= < 1249. 102> ; FLOWLINE= ( 1241.350) PRESSURE FLOW PROCESS FROM NODE 459.47 TO NODE 464.14 IS CODE = 2 II - UPSTREAM NODE 464.14 ELEVATION = 1241.40 CALCULATE PRESSURE FLOW MANHOLE LOSSES(LACFCD): PIPE FLOW = 113.75 CFS PIPE DIAMETER = 51.00 INCHES I PRESSURE FLOW AREA = 14.186 SQUARE FEET FLOW VELOCITY = 8.02 FEET PER SECOND f; ..;�;�� VELOCITY HEAD .998 HMN = . 05* (VELOCITY HEAD) = .05*( . 998) = .050 NODE 464. 14 : HGL= ( 1248. 154) ;EGL= < 1249. 152> ; FLOWL I NE= < 1241.400) I =- =ss=====a=- = = == == ==s == = ====- == =- = === saes:===== = = = = = ==- == =ma = ==== =_ = = = = === -= = == PRESSURE FLOW PROCESS FROM NODE 464.14 TO NODE 773.73 IS CODE = 1 UPSTREAM NODE 773.73 ELEVATION = 1242.95 II --------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 113.75 CFS PIPE DIAMETER = 51.00 INCHES I PIPE LENGTH = 309.59 FEET MANNINGS N = .01300 SF =(Q /K) * *2 = (( 113.75)/( 1688.477)) * *2 = .0045385 HF =L *SF = ( 309.59)*( .0045385) = 1.405 II NODE 773.73 a HGL= < 1249.559> ;EGL= < 1250.557); FLOWL I NE= < 1242.950) ' PRESSURE FLOW PROCESS FROM NODE 773.73 TO NODE 778.46 IS CODE = 5 UPSTREAM NODE 778.46 ELEVATION = 1243.00 II CALCULATE PRESSURE FLOW JUNCTION LOSSESa NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 86.1 51.00 14. 186 6.066 0.000 .571 11 .' 2 113.7 51.00 14.186 8.018 -- .998 _, 3 27.7 24.00 - 3.142 8.820 90.000 - 'Y 4 0.0 0.00 0.000 0.000 0.000 5 0.0 = = =Q5 EQUALS BASIN INPUT = == I LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- ' Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = .01300 II DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00260 DOWNSTREAM FRICTION SLOPE = .00454 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00357 II JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS .017 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) 11 JUNCTION LOSSES = .854+ .571- .998+( .017)+( 0.000) = .444 NODE 778.46 : HGL= < 1250.429> ;EGL= < 1251 .001 > ; FLOWL I NE= ( 1243.000) I = =--- -=s ===s= = === == s====== =.= === = = = = = == == = = = = = ==== = = = =a== = ==== === == =- = = = -== = == == PRESSURE FLOW PROCESS FROM NODE 778.46 TO NODE 1000.00 IS CODE = 1 UPSTREAM NODE 1000.00 ELEVATION = 1244.11 I CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 86.06 CFS PIPE DIAMETER = 51.00 INCHES IF PIPE LENGTH = 221.60 FEET MANNINGS N = .01300 SF =(Q /K) * *2 = (( 86.06)/( 1688.477)) * *2 = .0025978 HF =L *SF = ( 221.60)*( .0025978) _ .576 I NODE 1000.00 : HGL= < 1251.005> ;EGL= < 1251.576) ; FLOWL I NE= ( 1244. 110) UPSTREAM NODE 1144.83 ELEVATION = 1244.83 II CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 86.06 CFS PIPE DIAMETER = 51.00 INCHES PIPE LENGTH = 144.83 FEET MANNINGS N = .01300 8F =(12!K) * *2 m (( 86.06)/( 1688.477)) * *2 = .0025978 HF -L *8F = ( 144.83)*( . 0025978) _ . 376 NODE 1144.83 s HGL= < 1251.381 > ;EGL= ( 1251.953> ; FLOWL I NE= < 1244.830) Amili a = == see= = =a= = = = :sssa=====aa =asaassasasa= =sass = = =m= = == PRESSURE FLOW PROCESS FROM NODE 1144.83 TQ NODE 1149.50 IS CODE = 2 1 - UPSTREAM NODE 1149.50 ELEVATION = 1244.90 CALCULATE PRESSURE FLOW MANHOLE LOSSES(LACFCD): I PIPE FLOW = 86.06 CFS PRESSURE FLOW AREA = 14.186 8Q PIPE DIAMETER = 51.00 INCHES UARE FEET FLOW VELOCITY = 6.07 FEET PER SECOND II VELOCITY HEAD = .571 HMN = . 05* (VELOCITY HEAD) = .05*( . 571) = . 029 NODE 1149.50 : HGL= ( 1251.410) ;EGL= ( 1251.981) ; FLOWLINE= ( 1244.900) II =ssaesmass:: summa: = = =a =a=ms= =asansasss =a= =ss assn assn = =aoas =ssa =assasssa = =sa =as= :a= PRESSURE FLOW PROCESS FROM NODE 1149.50 TO NODE 1381.31 IS CODE = 1 ' UPSTREAM NODE 1381.31 ELEVATION a 1246.42 N - - - � CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): II PIPE FLOW = PIPE LENGTH = 86.06 CFS PIPE DIAMETER 51.00 INCHES 231.81 FEET MANNINGS N = .01300 SF= (Q/ K) * *2 = (( 86.06)/( 1688.477)) * *2 = .0025978 HF =L *SF = ( 231.81)*( .0025978) _ .602 NODE 1381.31 : HGL= ( 1252.012) ;EGL= ( 1252.583> ; FLOWL I NE= ( 1246.420> I asses mas==s =a === =ton = ====== sat =s =oeasssa =max= as = = =a= =ma=ma = =ssasaa =aa:s =s =saao =asst= =assns: PRESSURE FLOW PROCESS FROM NODE 1381.31 TO NODE 1471.25 IS CODE = 3 UPSTREAM NODE 1471.25 ELEVATION = 1247.29 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 86.06 CFS PIPE DIAMETER = 51.00 INCHES PIPE LENGTH = 89.09 FEET MANNINGS N = .01300 II CENTRAL ANGLE = 38.160 DEGREES PRESSURE FLOW AREA = 14.186 SQUARE FEET FLOW VELOCITY = 6.07 FEET PER SECOND II VELOCITY HEAD = .571 BEND COEFFICIENT(KB) = .1628 HB -KB *(VELOCITY HEAD) = ( .163) *( .571) = .093 PIPE CONVEYANCE FACTOR = 1688.477 FRICTION SLOPE(SF) = .0025978 l FRICTION LOSSES = L *SF = ( 89.09) *( .0025978) _ .231 NODE 1471.25 : HGL= ( 1252.336>; EGL= ( 1252.908); FLOWL I NE= < 1247.290) I =a= ass== ms= stn======= s= s=====__ ___ == = === ==== ==s= = =ssa= =sa = ===x =a=ss ==ssssnssas =s= PRESSURE FLOW PROCESS FROM NODE 1471.25 TO NODE 1475.92 IS CODE = 5 UPSTREAM NODE 1475.92 ELEVATION = 1248.54 II CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 86.1 36.00 7.069 12.175 0.000 2.302 2 86.1 51.00 14.186 6.066 -- .571 3 0.0 0. 00 0.000 0.000 0.000 - I 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =05 EQUALS BASIN INPUT = = = = nr+rrn nw=n nrrMP nocrr4 for ci MU ri IkIrT r n.= rr+r,... *. ............ 04 *V4*COS(DELTA4)) /((A1+A2) *16.1) II UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .01665 DOWNSTREAM FRICTION SLOPE = .00260 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00962 ' JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .045 '' ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY+HV1 —HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = —1.536+ 2.302— .571+( .045)+( 0.000) = .239 NODE 1475.92 s HGL= ( 1250.845) ;EGL= ( 1253. 147) ;FLDWLINE= ( 1248.540) I __________ PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .70 1 NODE 1475.92 : HGL= ( 1251.540) ;EGL= ( 1253.842); FLOWL I NE= ( 1248.540) ararsu ::ssasaaassa:sasarssssesea.san= amima aas= spa =at::aaaasssr ===== a == = = = = = == == = = = = == END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM 1 1 1 II 1 1 1 1 1 1 1 FF� 1 1 . I ikiF9F*1E* iEiE**iF**iF*iFit***** i*iFiF*ifiF**IF**iE*lE4l t******9taF***iF9Edt****iF****ifel *** *9F******* .': PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) e******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ((<<<<(<<<<<<<<<<<<<((( )) > >)))) >))) > >) > > >) >))) >) > > > > >> I (C) Copyright 1982 Advanced Engineering Software CAES) Especially prepared for: 1 HALL & FOREMAN, INC. • < « < < < < < < < < < < < < < <( < << „((( (((( <( > > > >) > > > > > > > > > >) > > > > > >) > > > > > > >> 1 * *** * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * INDUSTRIAL AREA S. .1:). LATERAL ' C.' FROM 1.H4E ` L ' , LA'1'BiLAL sTA 6 -6 To2232.a4. I * (0 2S YR * * vt s • N, 7 N 3 gm -04, 2 >16/88 , . ss vENk1 4 , —1 SR-TS 1 THRU 7 * ******************************************* * * * * * * * *4 * * * * * * * * * * * * * * * * * * * * ** I ********************************************* * * * * * * ***** *** * * * * * * * * * * * * * * * ** NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST k CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA !, 4 DESIGN MANUALS. II DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 6.60 FLOWLINE ELEVATION = 1255.47 PIPE DIAMETER(INCH) = 48.00 PIPE FLOW(CFS) = 153.13 ASSUMED DOWNSTREAM CONTROL HGL = 1263.260 I mensamirmerwearas=============================sevaassanams=========================== 1 <(<((<<<<<<(<<(<(<(<<<<<(<<<<((<<<<<<<>)))>>> >>>>>>>>>>>>>>>>>>>>>>>)>> >>> >) I Advanced Engineering Software EAES) SERIAL No. A0483A REV. 2.2 RELEASE DATE:12 /17/82 1 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>> >>>>>>>>>> >>> >> >>> > > >>>>>>>>>>> I =s=amta seta==== = = = = = === = == = = = = = =m= = = = == = = = = = == sac = = = = = = === == = = = == a == === = =s= = == PRESSURE FLOW PROCESS FROM NODE 6.60 TO NODE 180.63 IS CODE = 1 II . UPSTREAM NODE 180.63 ELEVATION = 1260.69 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): IF PIPE FLOW = 153.13 CFS PIPE, DIAMETER = 48.00 INCHES PIPE LENGTH = 174.03 FEET MANNINGS N = .01300 SF= (Q /K) * *2 = ( ( 153.13)/( 1436.431)) * *2 = .0113645 HF =L *SF = ( 174.03)*( .0113645) = 1.978 I NODE 180.63 : HGL= ( 1265.238> ; EGL= ( 1267.544> ; FLOWL I NE= < 1260.690> UPSTREAM NODE 185.30 ELEVATION 1261.04 1 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV I 1 149.6 45.00 11.045 13.547 12.566 12.186 0.000 2.850 2 153. 1 48.00 2.306 h 3 3.5 18.00 1.767 1.986 90.000 'CI 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 =- =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: I DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) I UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .01531 DOWNSTREAM FRICTION SLOPE = .01136 II AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .01334 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .062 ENTRANCE LOSSES = 0.000 I JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = -. 423+ 2.850- 2.306+ ( .062)+( 0.000) _ .183 NODE 185.30 : HGL= < 1264.877) ;EGL= < 1267.727) ; FLQWL I NE= < 1261.040) II millim e= =aims= =as =assesses= seas =m ===== sea== irises= ass== mesa= = = == = = = == === === === == = == ==t = = = == =ism = = = PRESSURE FLOW PROCESS FROM NODE 185.30 TO NODE 591.70 IS CODE = .i II UPSTREAM NODE 591.70 ELEVATION = 1267.49 7 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): IN PIPE FLOW = 149.62 CFS PIPE DIAMETER = 45.00 INCHES PIPE LENGTH = 406.40 FEET MANNINGS N = .01300 '*-=:'' SF= (Q/ K) * *2 = (( 149.62) / t 1209.335)) * *2 = .0153069 II HF =L *SF = ( 406.40)*( .0153069) = 6.221 NODE 591.70 : HGL= ( 1271.098) ;EGL= < 1273.947) ; FLOWL I NE= ( 1267.490) PRESSURE FLAW ASSUMPTION USED TO ADJUST HGL AND EGL ' LOST PRESSURE HEAD USING SOFFIT CONTROL = .14 NODE 591.70 : HGL= ( 1271.240); EGL= < 1274.090); FLDWL I NE= ( 1267.490) I =aaaMessuasa me = = === = = = == = = = = = = = = == sere============== == =a= = == = = = = =as= = == =meat =::aaam:m�s= PRESSURE FLOW PROCESS FROM NODE 591.70 TO NODE 596.37 IS CODE = 2 II UPSTREAM NODE 596.37 ELEVATION = 1267.56 CALCULATE PRESSURE FLOW MANHOLE LOSSES(LACFCD): PIPE FLOW = 149.62 CFS PIPE DIAMETER = 45.00 INCHES I PRESSURE FLOW AREA = 11.045 SQUARE FEET FLOW VELOCITY = 13.55 FEET PER SECOND VELOCITY HEAD = 2.850 II HMN = . 05* (VELOCITY HEAD) = .05*( 2.850) = .142 NODE 596.37 : HGL= < 1271. 382) ;EGL= < 1274.232) ; FLOWL I NE= ( 1267.560) 1 I rime =as=== == seas==== =ss= = =a== = = =_ = = = = =m =s = = =.= _ = = = = == = == = = = == = = =as = = = =aa= = =as== === = = = == PRESSURE FLOW PROCESS FROM NODE 596.37 TO NODE 998.10 IS CODE = 1 UPSTREAM NODE 998.10 ELEVATION = 1273.94 IC: CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 149.62 CFS PIPE DIAMETER = 45.00 INCHES I PIPE LENGTH = SF= (Q /K) * *2 = ( ( 401.75 FEET MANNINGS N = .01300 149.62)/( 1209.3353 ) * *2 = .0153069 HF =L *SF = ( 401.75)*( .0153069) = 6. 150 PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL 0 II LOST PRESSURE HEAD USING SOFFIT CONTROL = .16 NODE 998.10 : HGL ( 1277.690) ;EGL= < 1280. 540> ; FLOWL I NE= ( 1273.940) ., PRESSURE FLOW PROCESS FROM NODE 998.10 TO NODE 1002.77 IS CODE = 5 ;� UPSTREAM NODE 1 002.77 ELEVATION = 1 274.01 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 1 149.6 54.00 15.904 9.407 0.000 1.374 2 149.6 45.00 11.045 13.547 2.850 3 0.0 0.00 0.000 0.000 0.000 - II 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: II DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- (4*V4 *COS(DELTA4)) /((A1 +A2) *16.1) II UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00579 II DOWNSTREAM FRICTION SLOPE _ .01531 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .01055 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .049 II ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = -.048 MANHOLE LOSSES = .142 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = 1.427+ 1.374- 2.850+( .049)+( 0.000) _ .192 1:' NODE 1002.77 : HGL= ( 1279.357> ;EGL= ( 1280.731 > ; FLOWL I NE= ( 1274.010) II ===w Mme================================= s=== a==== = == = = = == == === ==a = = ===== == == = = == PRESSURE FLOW PROCESS FROM NODE 1002.77 TO NODE 1010.77 IS CODE = 1 UPSTREAM NODE 1010.77 ELEVATION = 1274.09 II CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 149.62 CFS - PIPE DIAMETER = 54.00 INCHES II PIPE LENGTH = 8.00 FEET MANNINGS N = .01300 SP= t Q /K) * *2 = ( t 149.62)/( 1966.489)) * *2 = .0057889 HF =L *SF = ( 8.00)4E( .0057889) = .046 II NODE 1010.77 : HGL= < 1279. 403> ;EGL= ( 1280. 778> ; FLOWL I NE= < 1274.090> II =s== sae=====_=========== a== = == == === == = = = ==o = = = = =____ = == =ter == = = = = = == = = = = === = ===_____ PRESSURE FLOW PROCESS FROM NODE 1010.77 TO NODE 1029.77 IS CODE = 5 UPSTREAM NODE 1029.77 ELEVATION = 1274.29 I CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 133.4 93.00 47.173 2.827 0.000 .124 I 2 149.6 54.00 15.904 9.407 -- 1.374 3 16.2 42.00 9.621 1.689 90.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(02*V2-Q1*V1*COS(DELTA1)-03*V3*COS(DELTA3)- 1 04 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM FRICTION __ SLOPE _ .00579 C II AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00302 JUNCTION LENGTH(FEET) = 19.00 FRICTION LOSS = .057 ENTRANCE LOSSES = 0.000 II MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = -.235 MANHOLE LOSSES = .069 ro JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = 1.015+ . 124- 1.374+ ( .057)+( 0.000) _ . 126 NODE 1029.77 : HGL= < 1280.780> ;EGL= < 1280.904); FLOWL I NE= < 1274.290> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL I LOST PRESSURE HEAD USING SOFFIT CONTROL = 1.26 NODE 1029.77 : HGL= ( 1282.040) ;EGL= ( 1282. 164) ; FLOWL I NE= < 1274.290) I ssssasasasasss sssssaassaasssss :sassassass:s:a si assets =masas ::s:sassaeas: mime== PRESSURE FLOW PROCESS FROM NODE 1029.77 TO NODE 1037.77 IS CODE = 1 UPSTREAM NODE 1037.77 ELEVATION a 1274.34 I CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 133.37 CFS PIPE DIAMETER = 93.00 INCHES It PIPE LENGTH = 8.00 FEET MANNINGS N .01300 £F= <Q /K) * *2 t ( 133.37)/( 8380.416)) * *2 = .0002533 HF =L *SF s ( 8.00)*( .0002533) = .002 II NODE 1037.77 : HGL= < 1282.042>; EGL= ( 1282. 166) ; FLOWL I NE= ( 1274.340) PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL II LOST PRESSURE HEAD USING SOFFIT CONTROL = .05 NODE 1037.77 : HGL= ( 1282.090) ;EGL= < 1282.214>; FLOWL I NE= < 1274.340> 1 ssssasassssassss sssssassasasssssasssasssaa ss s= ===========sa =asssassssasassas= 4 PRESSURE FLOW PROCESS FROM NODE 1037.77 TO NODE 1042.44 IS CODE = 5 .;: UPSTREAM NODE 1042.44 ELEVATION = 1274.37 II CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 133.4 96.00 50.266 2.653 0.000 .109 II 2 133.4 93.00 47.173 2.827 -- .124 3 0.0 0.00 0.000 0.000 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - II 5 0.0 == =Q5 EQUALS BASIN INPUT === LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: I/ DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS (DELTA4)) / ((A 1 +A 2) * 16.1) UPSTREAM MANNINGS N = .01300 I DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00021 DOWNSTREAM FRICTION SLOPE = .00025 11 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00023 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .001 ENTRANCE LOSSES = 0.000 II MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = -.000 MANHOLE LOSSES = .006 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS)+(ENTRANCE LOSSES) ir "' JUNCTION LOSSES = .015+ .109- .124+( .001) + ( 0.000) = .007 NODE 1042.44 : HGL= < 1282. 112> ;EGL= < 1282.221> ; FLOWL I NE= < 1274.370) PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL I LOST PRESSURE HEAD USING SOFFIT CONTROL = .26 NODE 1042.44 : HGL= < 1282.370) ;EGL= ( 1282.479) ; FLOWL I NE= < 1274.370) PRESSURE FLOW PROCESS FROM NODE 1042.44 TO NODE 1297.75 IS CODE = 1 Cs,, li UPSTREAM NODE 1297.75 ELEVATION = 1276.12 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): ii PIPE FLOW = 133.37 CFS PIPE DIAMETER = 96.00 INCHES PIPE LENGTH = 255.33 FEET MANNINGS N = .01300 r: , SF= (Q /K) * *2 = ( ( 133.37)/( 9120.764))**2 = .0002138 HF =L *SF = ( 255.33)*( .0002138) = .055 li NODE 1297.75 : HGL= < 1282. 425> ;EGL= < 1282. 534> ; FLOWL I NE= < 1276.120> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL II LOST PRESSURE HEAD USING SOFFIT CONTROL = 1.70 NODE 1297.75 : HGL= < 1284. 120> ; EGL= < 1284. 229> ; FLOWL I NE= < 1276. 120) ________ == =.gym === = = = === _ ==== = = = = = = =- ---= =_ =__ PRESSURE FLOW PROCESS FROM NODE 1297.75 TO NODE 1305.25 IS CODE = 5 UPSTREAM NODE 1305.25 ELEVATION = 1276.16 il CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV i; 1 108.4 96.00 133.4 96.00 50.266 2.156 0.000 .072 2 50.266 2.653 -- .109 3 1.5 18.00 1.767 .849 90.000 - 4 23.5 30.00 4.909 4.787 45.000 5 0.0 = = =05 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-03*V3*COS(DELTA Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = .01300 ID DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00014 1: DOWNSTREAM FRICTION SLOPE = .00021 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00018 JUNCTION LENGTH(FEET> = 7.50 FRICTION LOSS = .001 ENTRANCE LOSSES = 0.000 r MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = -..012 MANHOLE LOSSES = .005 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) w JUNCTION LOSSES = .025+ .072- .109+( .001)+( 0.000) = .007 L NODE 1305.25 : HGL= < 1284. 164> ; EGL= < 1284. 236> ; FLOWL I NE= < 1276.160> I; ______: ___. -__ = = = PRESSURE FLOW PROCESS FROM NODE 1305.25 TO NODE 1709.73 IS CODE = 1 UPSTREAM NODE 1709.73 ELEVATION = 1281.33 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 108.39 CFS PIPE DIAMETER = 96.00 INCHES PIPE LENGTH = 404.48 FEET MANNINGS N = .01300 SF= t Q!K) * *2 = ( ( 108.39)/( 9120.764))**2 = .0001412 HF =L *SF = ( 404.48) *( .0001412) = .057 li NODE 1709.73 : HGL= < 1284. 221 > ;EGL= < 1284. 293> ; FLOWL I NE= ( 1281.330> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 5.11 li NODE 1709.73 : HGL= < 1289. 330> ;EGL= < 1289. 402> ; FLOWL I NE= < 1281.330> 1 = =_= PRESSURE FLOW PROCESS FROM NODE 1709.73 TO NODE 1727.73 IS CODE = 5 UPSTREAM NODE 1727.73 ELEVATION = 1285.81 NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 74.0 45.00 11.045 6.702 0.000 .697 �1 2 108.4 96.00 50.266 E66 2.156 .072 3 27.9 72.00 28.274 .987 60.000 - 4 6.5 72.00 28.274 .230 60.000 - 5 0.0 = = =Q5 EQUALS BASIN INPUT = == it LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) II UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00375 I; DOWNSTREAM FRICTION SLOPE = .00014 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00194 JUNCTION LENGTH(FEET) = 18.00 FRICTION LOSS = .035 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = -.280+ .697- .072+( .035)+( 0.000) = .380 NODE 1727.73 : HGL= ( 1289. 084) ;EGL= < 1289. 782) ; FLOWL I NE= < 1285. 810> il PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .48 II NODE 1727.73 : HGL= < 1289. 560) ;EGL= < 1290.258) ; FLOWL I NE= < 1285. 810> = = == =ss== ====== = = =ssxxs = =osss I/ PRESSURE FLOW PROCESS FROM NODE 1727.73 TO NODE 2088.29 IS CODE = 1 UPSTREAM NODE 2088.29 ELEVATION = 1288.65 IV CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 74.02 CFS PIPE DIAMETER = 45.00 INCHES ` c PIPE LENGTH = 360.56 FEET MANNINGS N = .01300 I: SF =(Q /K) * *2 = (t 74.02)/( 1209.335))**2 = .0037463 HF =L *SF ( 360.56)*( .0037463) = 1.351 NODE 2088.29 : HGL= < 1290. 911 > ;EGL= ( 1291. 608) ; FLOWL I NE= ( 1288. 650) PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 1.49 NODE 2088.29 : HGL= ( 1292.400) ;EGL= < 1293. 098) ; FLOWL I NE= < 1288.650) i; _ =_ == = li PRESSURE FLOW PROCESS FROM NODE 2088.29 TO NODE 2227.33 IS CODE = 3 UPSTREAM NODE 2227.33 ELEVATION = 1289.75 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 74.02 CFS PIKE DIAMETER = 45.00 INCHES PIPE LENGTH = 139.04 FEET MANNINGS N = .01300 CENTRAL ANGLE = 90.000 DEGREES PRESSURE FLOW AREA = 11.045 SQUARE FEET FLOW VELOCITY = 6.70 FEET PER SECOND VELOCITY HEAD = .697 BEND COEFFICIENT(KB) = .2500 li HB =KB *(VELOCITY HEAD) = ( .250) *( .697) = .174 PIPE CONVEYANCE FACTOR = 1209.335 FRICTION SLOPE(SF) = .0037463 FRICTION LOSSES = L *SF = ( 139.04) *( .0037463) = .521 II NODE 2227.33 : HGL= < 1293. 095) ;EGL= ( 1293. 793) ; FLOWL INE= < 1289.750> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .40 II NODE 2227.33 : HGL= < 1293. 500> ;EGL= ( 1294. 197) ; FLOWL I NE= ( 1289.750> UPSTREAM NODE 2232.00 ELEVATION = 1290.54 l.! CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 74.0 54.00 15.904 4.654 0.000 .336 2 74.0 @ 45.00 11.045 6.702 -- .697 3 0.0 0.00 0.000 0.000 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0. 0= = =Q5 EQUALS BASIN INPUT== = LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA0 04 *V4 *C0S(DELTA4))!((A1 +A2) *16.1) I! UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00142 DOWNSTREAM FRICTION SLOPE = .00375 I/ AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00258 JUNCTION LENGTH(FEET> = 4.67 FRICTION LOSS = .012 ENTRANCE LOSSES = 0.000 II MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = -.012 MANHOLE LOSSES = .035 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS> +(ENTRANCE LOSSES) il JUNCTION LOSSES = .349+ .336- .697+< .012>+< 0. 000) = .047 NODE 2232.00 : HGL= < 1293.908> ;EGL= < 1294.244> ; FLOWL I NE= < 1290.540> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 1.13 NODE_ 2232.00 : HGL= < 1295. @40> ;EGL= < 1295. 376> ; FLOWL I NE= ( 1290.540> 0727 PrNftLySIS W rrli 36" UPAS PRESSURE FLOW PROCESS FROM NODE 2227.33 TO NODE 2232.00 IS CODE = 5 UPSTREAM NODE 2232.00 ELEVATION = 1290.54 I: CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV r 1 74.0 36.00 7.069 10.472 0.000 1.703 ii 2 74.0 45.00 11.045 6.702 .697 3 0.0 0.00 0.000 0.000 0.000 - .• 4 0.0 0.00 0.000 0.000 0.000 - lid 5 0.0===05 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: I; DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) II UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .01232 DOWNSTREAM FRICTION SLOPE = .00375 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00803 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .038 ENTRANCE LOSSES = 0.000 il JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = -.957+ 1.703- .697+( .038) + ( 0.000) = .08E NODE 2232.00 : HGL= ( 1292. 5th 1) ;EGL= ( 1294, 283) ; FLOWL I NE= < 1290.540> li PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .96 I/ i -. J L ✓' n C ;. 1 r ti� N i NODE 2`32.00 : HGL ( 1 `93. 540> ;EGL= ■ 129 s. 24 ; FLOW)L I NE= ( 4290.540) END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** (<(<<<<<<<<<<<<<(<(((<<<(<(<((<<<<<<<<>>>)>>> > > > > >)) > > > > > > > > > > > > > > > > > > > > > > >> (C) Copyright 1982 Advanced Engineering Software CAES] Especially prepared for: HALL & FOREMAN. INC. <<<<<(<<((<((<<<<<<<((<<<<<<<<<<<((<<<)>>>>>> >>>>>>>>>>>>>>>)> >>>>>>>>> >>> >> * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * INDUSTRIAL AREA HYDRAULICS LATERAL D FROM LINE L * * 0 25 YR ,LATERAL STA 5.65 (LINE L STA 1803.85) * * VENKI.N, J.N 3551, 3/17/87 * ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 5.65 FLOWLINE ELEVATION = 1230.92 PIPE DIAMETER(INCH) = 42.00 PIPE FLOW(CFS) = 105.59 ASSUMED DOWNSTREAM CONTROL HGL = 1239.060 <(t<((<<(<((<(<(<<<(<<<<<<<<(<<{<<(<<<)>>>>>> >>>>>> >> >>>>)>>>> > >>> > >>>>>>> >> Advanced Engineering Software CAES] SERIAL No. A0483A REV. 2.2 RELEASE DATE : 1 `/ 17/82 PRESSURE FLOW PROCESS FROM NODE 5.65 TO NODE 183.71 IS CODE = 1 UPSTREAM NODE 183.71 ELEVATION = 1235.09 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 105.59 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 178.06 FEET MANNINGS N = .01300 SF= (Q /K) * *c = (( 105.59)/( 1006.105)) * *2 = .0110144 HF =L *SF = ( 178.06)*( .0110144) = 1.961 NODE 183.71 : HGL= < 1 241. 021 > ; EGL= < 1242. 8'31 > ; FLOWL I NE= ( 1235.090> PRESSURE FLOW PROCESS FROM NODE 183.71 TO NODE 347.67 IS CODE = 3 t inoTocnm mnnc PUaT T rim = i :=+ 21a or. UHLL:ULH 1 t PKt55UKt h LLJW F= i Ph NU LUb b i U r.MH) : 4. PIPE FLOW = 105.59 CFS PIPE DIAMETER = 42.00 INCHES II PIPE LENGTH = 163.96 FEET MANNINGS N = .01300 CENTRAL ANGLE = 3.336 DEGREES PRESSURE FLOW AREA = 9.621 SQUARE FEET FLOW VELOCITY = 10.97 FEET PER SECOND VELOCITY HEAD = 1.870 BEND COEFFICIENT(KB) = .0481 _ HB =KB *(VELOCITY HEAD) = ( .048) *( 1.870) = .090 il PIPE CONVEYANCE FACTOR = 1006.105 FRICTION SLOPE(SF) = .0110144 FRICTION LOSSES = L *SF = ( 163.96) *( .0110144) = 1.806 NODE 347.67 : HGL= < 1242. 917) ;EGL= < 1844. 787> ; FLOWLINE= < 1 238. 940) I/ PRESSURE FLOW PROCESS FROM NODE 347.67 TO NODE 352.34 IS CODE = 2 II UPSTREAM NODE 352.34 ELEVATION = 1239.03 CALCULATE PRESSURE FLOW MANHOLE LOSSES(LACFCD): II PIPE FLOW = 105.59 CFS PIPE DIAMETER = 42.00 INCHES PRESSURE FLOW AREA = 9.621 SQUARE FEET FLOW VELOCITY = 10.97 FEET PER SECOND VELOCITY HEAD = 1.870 II HMN = . 05* (VELOCITY HEAD) = .05*( 1.870) = .094 NODE 352.34 : HGL= ( 1243. 011 ) ;EGL= ( 1244. 881 ) : FLOWL I NE= < 1239. 030> II PRESSURE FLOW PROCESS FROM NODE 352.34 TO NODE 716.13 IS CODE = 3 UPSTREAM NODE 716.13 ELEVATION = 1243.76 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 105.59 CFS PIPE DIAMETER = 42.00 INCHES RIPE LENGTH = 363.79 FEET MANNINGS N = .01300 CENTRAL ANGLE = 7.402 DEGREES PRESSURE FLOW AREA = 9.621 SQUARE FEET I; FLOW VELOCITY = 10.97 FEET PER SECOND VELOCITY HEAD = 1.870 BEND COEFFICIENT(KB) = .0717 HB =KB *(VELOCITY HEAD) = ( .072) *( 1.870) = .134 I: RIPE CONVEYANCE FACTOR = 1006.105 FRICTION SLOPE(SF) = .0110144 FRICTION LOSSES = L *SF = ( 363.79)*( .0110144) = 4.007 NODE 716.13 : HGL= ( 1247. 152> ;EGL= ( 1249. 022) ; FLOWL I NE= < 1243.760) t ri PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL i LOST PRESSURE HEAD USING SOFFIT CONTROL = .11 NODE 716.13 : HGL= < 1247. 260> ;EGL= < 1249. 130> ; FLOWL I NE= < 1243. 760> I, li PRESSURE FLOW PROCESS FROM NODE 716.13 TO NODE 723.13 IS CODE = 5 UPSTREAM NODE 723.13 ELEVATION = 1245.11 CALCULATE PRESSURE FLOW JUNCTION LOSSES: li NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 36.6 27.00 3.976 9.210 .142 1.317 2 105.6 42.00 9.621 10.975 -- 1.870 3 50.0 33.00 5.940 8.416 45.000 - 4 19.0 24.00 3.142 6.042 45.000 - 5 0.0 = = =05 EQUALS BASIN INPUT = == li LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3) 04 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) I: UPSTREAM MANNINGS N = . 01 300 nni.mmToPtam momm T mnq N = _0)1'1:00 A DOWNSTREAM F R I L I I U N SLUE E= .W1101 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .01250 JUNCTION LENGTH(FEET) = 7.00 FRICTION LOSS = .087 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = 2.023+ 1.317- 1.870+( .087)+( 0.000) = 1.558 NODE 723.13 : HGL= < 1845. 371) ;EGL= < 1850. 6881 ; FLOWL I NE= < 1245. 110) PRESSURE FLOW PROCESS FROM NODE 723.13 TO NODE 805.57 IS CODE = 3 UPSTREAM NODE 805.57 ELEVATION = 1246.26 ii CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 36.62 CFS PIPE DIAMETER = 27.00 INCHES II PIPE LENGTH = 82.44 FEET MANNINGS N = .01300 CENTRAL ANGLE = 1.677 DEGREES PRESSURE FLOW AREA = 3.976 SQUARE FEET II FLOW VELOCITY = 9.21 FEET PER SECOND VELOCITY HEAD = 1.317 BEND COEFFICIENT(KB) = .0341 HB =KB *(VELOCITY HEAD) = ( .034) *( 1.317) = .045 PIPE CONVEYANCE FACTOR = 309.703 FRICTION SLOPE(SF) = .0139813 FRICTION LOSSES = L *SF = ( 82.44) *( .0139813) = 1.153 NODE 805.57 : HGL= < 1250. 5691 ;EGL= < 1251. 8861 ; FLOWL I NE= < 1246. 260> ir PRESSURE FLOW PROCESS FROM NODE 805.57 TO NODE 1197.67 IS CODE = 3 li UPSTREAM NODE 1197.67 ELEVATION = 1251.75 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 36.62 CFS PIPE DIAMETER = 27.00 INCHES ii PIPE LENGTH = 392.10 FEET MANNINGS N = .01300 CENTRAL ANGLE = 12.593 DEGREES PRESSURE FLOW AREA = 3.976 SQUARE FEET ow FLOW VELOCITY = 9.21 FEET PER SECOND r VELOCITY HEAD = 1.317 BEND COEFFICIENT(KB) = .0935 HB =KB *(VELOCITY HEAD) = ( .094) *( 1.317) = .123 ** PIPE CONVEYANCE FACTOR = 309.703 FRICTION SLOPE(SF) = .0139813 iii FRICTION LOSSES = L *SF = ( 392.10) *( .0139813) = 5.482 NODE 1197.67 : HGL= < 1256. 1741 ;EGL= < 1257. 491 > ; FLOWL I NE= < 1251. 750) r iii PRESSURE FLOW PROCESS FROM NODE 1197.67 TO NODE 1202.34 IS CODE = 2 UPSTREAM NODE 1202.34 ELEVATION = 1251.82 it CALCULATE PRESSURE FLOW MANHOLE LOSSES(LACFCD): I: PIPE FLOW = 36.62 CFS P I PE DIAMETER = ►.7.00 INCHES PRESSURE FLOW AREA = 3.976 SQUARE FEET FLOW VELOCITY = 9.21 FEET PER SECOND il VELOCITY HEAD = 1.317 HMN = . 05* (VELOCITY HEAD) _ .05*( 1.317) = .066 NODE 1202.34 : HGL= < 1256. 2401 ;EGL= < 1257. 5571 ; FLOWL I NE= < 1251. 820> PRESSURE FLOW PROCESS FROM NODE 1202.34 TO NODE 1697.67 IS CODE = 3 I; UPSTREAM NODE 1697.67 ELEVATION = 1260.24 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): 1w PIPE FLOW = 36.62 CFS PIPE DIAMETER = 27.00 INCHES tild PIPE LENGTH = 495.33 FEET MANNINGS N = .01300 CENTRAL ANGLE = 15.908 DEGREES r.nr -nnt ior• r'i nii r,ocr, - ' -7c Gill (r DC Cr'I -T 1. 31T NLND UDEFF ICIEN f (KH) = .1051 HB =KB *(VELOCITY HEAD) = ( .105) *( 1.317) = .138 PIPE CONVEYANCE FACTOR = 309.703 FRICTION SLOPE(SF) = .0139813 FRICTION LOSSES = L *SF = ( 495.33) *( .0139813) = 6.925 NODE 1697.67 : HGL= < 1263. 304> ;EGL= < 1264. 621 > ; FLOWL I NE= < 1260. 240> PRESSURE FLOW PROCESS FROM NODE 1697.67 TO NODE 1702.34 IS CODE = UPSTREAM NODE 1702.34 ELEVATION = 1 260.32 CALCULATE PRESSURE FLOW MANHOLE LOSSES(LACFCD): li PIPE FLOW = 36.62 CFS PIPE DIAMETER = 27. INCHES PRESSURE FLOW AREA = 3.976 SQUARE FEET FLOW VELOCITY = 9.21 FEET PER SECOND ii VELOCITY HEAD = 1.317 HMN = . 05* (VELOCITY HEAD) = .05*( 1.317) = .066 NODE 1702.34 : HGL= < 1263. 370> ;EGL= ( 1264. 687> ; FLOWL I NE= ( 1260. 320) PRESSURE FLOW PROCESS FROM NODE 1702.34 TO NODE 1962.21 IS CODE = 3 ii UPSTREAM NODE 1962 .21 ELEVATION = 1264.74 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): li PIPE FLOW = 36.62 CFS PIPE DIAMETER = 27.00 INCHES PIPE LENGTH = 259.87 FEET MANNINGS N = .01300 CENTRAL ANGLE = 8.346 DEGREES PRESSURE FLOW AREA = 3.976 SQUARE FEET FLOW VELOCITY = 9.21 FEET PER SECOND VELOCITY HEAD = 1.317 BEND COEFFICIENT(KB) = .0761 HB =KB *(VELOCITY HEAD) = ( .076) *( 1.317) = .100 il PIPE CONVEYANCE FACTOR = 309.703 FRICTION SLOPE(SF) = .0139813 FRICTION LOSSES = L *SF = ( 259.87) *( .0139813) = 3.633 NODE 1962.21 : HGL= < 1267. 103> ;EGL= < 1268. 4 0> ; FLOWL I NE= ( 1264. 740> r 6 PRESSURE FLOW PROCESS FROM NODE 1962.21 TO NODE 2085.96 IS CODE = 1 UPSTREAM NODE 2085.96 ELEVATION = 1266.84 i: CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 36.62 CFS PIPE DIAMETER = 4 7.00 INCHES PIPE LENGTH = 123.75 FEET MANNINGS N = .01300 SF= (0/ K) * *2 = ( ( 36.62)/( 309. 703)) * *2 = .0139813 Cli HF =L *SF = ( 123.75)*( .0139813) = 1.730 NODE 2085.96 : HGL= < 1 `68. 833> ;EGL= < 1 x'70. 151 > ; FLOWL I NE= < 1266. 840> I: PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .26 NODE 2085.96 : HGL= ( 1269. 090) ;EGL= < 1270. 407> ; FLOWL I NE= < 1266. 840> ii PRESSURE FLOW PROCESS FROM NODE 2085.96 TO NODE 2142.26 IS CODE = 3 i hi UPSTREAM NODE 2142.26 ELEVATION = 1267.80 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 36.62 CFS PIPE DIAMETER = 27.00 INCHES PIPE LENGTH = 56.30 FEET MANNINGS N = .01300 CENTRAL ANGLE = 1.880 DEGREES i: PRESSURE FLOW AREA = 3.976 SQUARE FEET = FLOW VELOCITY = 9.21 FEET PER SECOND VELOCITY HEAD = 1.317 BEND COEFFICIENT(KB) = .0361 um-vt 'tttcs nr1Tv ucam - 1 01:g i .17% __ Olhin FRICTION LOSSES = L *SF = ( 56.30) *( .0139813) = .787 II NODE 2142.26 : HGL= < 1269. 925) ;EGL= < 1 271. 242) ; FLOWL I NE= < 1267.800> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .13 li NODE 2142.26 : HGL= < 1270. 050) ;EGL= < 1271. 367> ; FLOWL I NE= < 1267.800) il ' PRESSURE FLOW PROCESS FROM NODE 2142.26 TO NODE 2147.26 IS CODE = 5 UPSTREAM NODE 2147.26 ELEVATION = 1268.13 li CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 22.2 24.00 3.142 7.073 .167 .777 2 36.6 27.00 3.976 9.210 -- 1.317 3 14.4 21.00 2.405 5.987 60.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =05 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: II DY=(Q2*V2-Q1*V1*COS(DELTA1)-03*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = .01300 I/ DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00965 DOWNSTREAM FRICTION SLOPE = .01398 II AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .01181 JUNCTION LENGTH(FEET) = 5.00 FRICTION LOSS = .059 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = 1. 196+ .777- 1.317+< .059)+C 0.000) = .714 NODE 2147.26 : HGL= < 1271. 305) ;EGL= < 1272. 082) ; FLOWL I NE= < 1268. 130) PRESSURE FLOW PROCESS FROM NODE 2147.26 TO NODE .2377.28 IS CODE = 3 i: UPSTREAM NODE 2377.28 ELEVATION = 1271.12 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): El PIPE FLOW = 22 '� `' CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 230.02 FEET MANNINGS N = .01300 CENTRAL ANGLE = 7.780 DEGREES PRESSURE FLOW AREA = 3.142 SQUARE FEET i; FLOW VELOCITY = 7.07 FEET PER SECOND VELOCITY HEAD = .777 BEND COEFFICIENT(KB) = .0735 HB =KB* (VELOCITY HEAD) = ( .074)*( .777) = .057 II PIPE CONVEYANCE FACTOR = 226.224 FRICTION SLOPE(SF) = .0096474 FRICTION LOSSES = L *SF = ( 230.02) *( .0096474) = 2.219 NODE 2377.28 : HGL= < 1273.581 > ;EGL= < 1274. 358) ; FLOWL I NE= < 1271.120) I/ PRESSURE FLOW PROCESS FROM NODE 2377.28 TO NODE 2564.50 IS CODE = 1 ii UPSTREAM NODE 2564.50 ELEVATION = 1273.56 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): il PIPE FLOW = 22.22 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 187.22 FEET MANNINGS N = .01300 SF= (Q /K) * *2 = (( 22.22)/( 226. 224)) * *2 = .0096474 E; HF =L *SF = ( 187.22) *( .0096474) = 1.806 NODE 2564.50 : HGL= < 127 5.387) ;EGL= < 1276. 164) ; FLOWL I NE= < 1273.560> n.r+ r- , 1 Innr.r, nk1 1 IQC Tn nn T1 IcT url nkln rnI NUDE cb64. 5i@ : HGL= ( 1 E I D. bbd) ; huL= ( I e l6..3,:; I3 ; F LIIWL INE= ( 12 f S. W bVJ) II PRESSURE FLOW PROCESS FROM NODE 2564.50 TO NODE 2569.17 IS CODE = 2 UPSTREAM NODE 2569.17 ELEVATION = 1273.62 ": CALCULATE PRESSURE FLOW MANHOLE LOSSES(LACFCD): PIPE FLOW = 22.22 CFS PIPE DIAMETER = 24.00 INCHES PRESSURE FLOW AREA = 3.142 SQUARE FEET FLOW VELOCITY = 7.07 FEET PER SECOND VELOCITY HEAD = .777 qii li HMN = . 05* (VELOCITY HEAD) = .05*( .777) = .039 NODE 2569.17 : HGL= < 1275. 599> ;EGL= < 1276. 376> ; FLOWL I NE= < 1273. 620> ii PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .02 NODE 2569.17 : HGL= ( 1275. 620) ;EGL= < 1276. 397> ; FLOWL I NE= < 1273. 620> li li PRESSURE FLOW PROCESS FROM NODE 2569.17 TO NODE 2669.86 IS CODE = 3 UPSTREAM NODE 2669.86 ELEVATION = 1274.93 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 22.22 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 103.03 FEET MANNINGS N = .01300 CENTRAL ANGLE = 65.590 DEGREES li PRESSURE FLOW AREA = 3.142 SQUARE FEET FLOW VELOCITY = 7.07 FEET PER SECOND VELOCITY HEAD = .777 BEND COEFFICIENT(KB) = .2134 HB =KB *(VELOCITY HEAD) = ( .213) *( .777) = .166 PIPE CONVEYANCE FACTOR = 226.224 FRICTION SLOPE(SF) = .0096474 FRICTION LOSSES = L *SF = ( 103.03) *( .0096474) = .994 NODE 2669.86 : HGL= ( 1276. 780) ;EGL= < 1277. 557> ; FLOWL I NE= ( 1274. 930) i m i l PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .15 r i NODE 2669.86 : HGL= ( 1276. 930) ;EGL= ( 1277. 707) ; FLOWL I NE= ( 1274. 930) i; PRESSURE FLOW PROCESS FROM NODE 2673.86 TO NODE 2673.86 IS CODE = 8 UPSTREAM NODE 2673.86 ELEVATION = 1275.03 I; CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW(CFS) = 22.22 PIPE DIAMETER(INCH) = 24.00 PRESSURE FLOW VELOCITY HEAD = .777 lo CATCH BASIN ENERGY LOSS = .2 *(VELOCITY HEAD) = .2 *( .777) = .155 NODE 2673.86 : HGL= < 1277. 862> ;EGL= < 1277. 862> ; FLOWL I NE= < 1275. 030> ii END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM ri ' r liti A . . . .1.- . . .4 --: • ... ;.:;. - ... !. . . . -, • . ',„:•,. . • . . . • '-!:...., . . . ; . . . . . ..; . . • • . . - • .- - . . ,,. , .. . .. .; • ; . • i . , .....:4., , ,:•. _ __ :-.:'•:,...!: . , . .- - .--. e... .,-- -. .- •-•••. ..-. __„, . -.. .:,. CV ••• •t ...t •••• ...t ,t .4 11/1 1 1•1 PI . . ' . st 1-1 7 0 0 0 o o o o ;0 o o ' .1 1.11 A, • • • • • • • • • • et C. • r , 0 0 0 0 o O 0 0 0 0 ao o •-• , o' 0 o. n . 0 a o 0 0 0 o :� 0 0 o 0 0 0 0 0 o 0 , 0 0 C i too to • • • • • • • . • • • o- 0 0 4- 0 0 co 0 0 0 0 0 , . co 1 1 01 0 o. 1 , • • • • • • • • a • . •ror 1 . i 1 I , • • • • • A • ' • • . rn 0 o o o o 0 oiolo a 0 0 I i . i •- •• 1 • • • • • • • I • • • 0 0 0 on 0 0 0 !O 01 0 J • 1 1 ; -2 0 0 LC 0 0 CD i to - 1 i •-• 0 co 0 ; 0 0 0 1 0 01 0 . . 1 1 . - ..., I , 0 , n 0 0 0 i -1 I I , • ID IA 1 •e• PM I . . . ; • . . 0 0 0 0 0 0 00 0 CD 0 Z 0 0 0 0 0 0 0 1 0 0 0 Ne! • • • • • • • • • • . , 0 0 o 0 o 0 0 :0 0 os ,....• .•.-• • 1 , . o o to o ! o sni tet ; .o. *A IA , ./.. F. 0 I 0 0 0 0 0 3 0 . . . c..., , V • • • • • • 1 • • • Z: 1' 000 1- ts. ,.._ 0 01700 01000 (••• ! -J 0 a r`i o t •• , • •-• , 4c1 0 10 In 0 0 0 0 0 0 eN P , le . • ; • • • ; • 4 -..- - I -• - o - t : - WI .130i 44; ..... -„,.,1 re a.: , o I a o .o I o 0 0 ■ o o 4 '4' •0; • . 7' I orl 11., j i , ,_, an rn tn PO Kt , PO f, 4,. I •-• •■• , •,. I C X a I • • • • 111 • ! • •I • I I 0 0 0 Cr M 0 1 0 ••• st 1 •••• 0 0 ! 0 Oi 0 I 0 ' st i CV CV •.t ,t I ...t P i 0 ei OI 0- • 10. : ,.. ,. 10. i .0. I I 1 i I •41.) r fY C1' Z.'s 0 •C1 I • 1 • lo • . • •1 • i • .I, • el/' l'; N . n 43 : son ns ns I no .0 to ro oo 0 J 8 0 6 a ge ! oe o o n. n. n- 0.! I- loon •-■ on C z . I 1 , . us , 1 > :e .0 o i c o o , a al o 1 o 0 o , . ' . t- Ln o ' 0 o 0 r 0 0 0 ■ 0 01 0 • •• • • • • • • 40 • 1 • • • ••• -J 01 0 0 0 0 0 0 0 1 o 1 o 0 I- a a i ill al ...., ni •-j , , ; , I i , , .0; 0 2 0 N 4 11 f:..; . • -J ' J I l• I (4.3 (3 ...., 1•1 qr. CO O. CO CT CO I 0 0 0. 5 1-0 tO NI 01 0 ••• ..1, 0 1 01 Ifs 1-. ••0 ‘t t, ' ' S • • • • a , • • • 6, v . 0- -J cn 0 C.1 o a ..t ...t i .4 J. ••••• 0 0 .... 0 0 0 0 0 0 0 0 0 , 1... 0 — ,0 O1 IV OJ 1 111 !(V IV CV Z PS , * I (i ) I Li) I U- v, t... I- 1-1 I- . I O. . CV 4' 00 CN ...t 0 0 0 0 (V 0n (0 , .0 so 40 . 0- a- e. • • , • * • •', .F., J -..; co ' co • ,o 0 0 0 10 en , 1- co, 0 0 . 0 0 C• , 0 00 :5 a •-- , ,- fs./ NI CV (V M.I !IV TV 151 I- CC r . ...... , 4- 1...' ,. , Or n ; ..r , - - r 0 ! -4 0 0 0 4 0 ' co 0 o I ' . ; n 7 1 - on ! ns 0 0 o 1..- o i on 0 0 ILA 0 • • • • • . • • • I . . 0 .S Z r. ! no v. 1 1.1 0 1 Lu 11 .7 It- .I.- PO 0 1•1 I 10 10 CV V/ : . 0 C.1) 0 CV -J '0 •.• CO : S: (1' N 0' C3 0 0 < < o . , 1 0 1- O J . • 0 0 0 0 t:: 0 - 0 0 0 . ..0 ; •I . • • • • • • • • • • 14..! CO , •13 ,... . 0 _, „.. ..., ...,. .,.. ... ('o !on 0 ..t ., o') ( * o - cc o .o - on 01 PO P. CP. . no r - , , * ' 7 1- •I CO CO CO CO 1 1.- + • 1 ' (I) LI n .... ••• ■13 .r ,.,M . . . • . .. . 0'.. (( o 0 0 0 0 0 0 ; 0 0 0 1-- z cs, • • • • • • • • • • • n 1-1 11 X 0 0 0 4 P. P. `V , " 0 st . . . .. I LI .... •.1 -0 PO co to 0- Cc . co I- co -I 2 7) co 7) co c.- 1, N cN1 eo ,c, N. z 1../ 2 fINJ 1 - no on ...t on 0 I.- coo o. o .-• I. E 0 CC 1.11 0 n. no no co CV tV NO TV ni no no • , - 'xf s. . g , '1::::;7::: - - , s . . %5^ • ft ,.. • t C. , - .. 4 Y•: I , 1 N T N ' f ✓ l V a V Cr a Wi ' a an. y s ua .., -, 10 W 0 0 0 0 0 10 0 0 0 0 O /-0 0 0 o O 0 10 • 0 1 o 0 o Cl a a 3 Y co, 00_ 1- U • • • • 0 i o 0 • 0 0 i , 0 0 0 0 o i a '0 0 O O 0 0 0 I M n n In 0 7 J - a O ▪ 0 O 0 0 ∎ on n P i P 0 U ' 1 0 I O '0 0 . N N + N' N N r r t• r •- co i . N N •0 1 tl 1 .f P •D M N 1- n N H H tl IA .0 M, a a 11_ • • • � • • • 0 v .0 A n A go Itl h 1 a J .T A r N J 0 J r 1 r r N ■ • ✓ N n . M M OD N P 00 H A a t- • O v A ▪ A n A CO Itl M .p •0 ▪ ' N U N n O r P In N P a N J N en 1•- 0 r\ I N A to r t, a • 1 • I 0 v, ▪ A A CO P M 0- 00 0' N 0 O 0 0 0 i� 0 1 0 Co 0 N N N N N 'f' N N N N .0 on .0 N P m A A a t• U N 40 40 A a 10 n n A In J ' a0 a N H n A P ,P n tl co n S o O O O O O 'O 0 I O O 0 /, • N N N N N I I V I N ' � IN IN 4, _ H N > N 4- ' W P O IP W 0 a 0. C a J N n N H H 1 0 I 0 N • r • T J ,I no • 0 0 0 0 a a a a Cr u .+ •P"' 0 0 0 0 0 O 0 0 0 Z or I N N N I N N I 4- •- I-1 • a ( r r r 1 1 r P N , a CO P a O a a n K . - . N N 1 M M 40 ; 03 P a A [, f. • • 1 i • • • • • 1 0 0 • • Ci J U. M 1 I 0 0 0 I 0 M N 0 I LL P P IO 0 0 IO O I 1 0 0 0 p N 1N•-, � I' N .- '' 4 - I- 0 ' a � n z ' • ry V I I al 1 .0 : I v, , e - . A o �I a j • , #g W Y > u N 1 N ••• In N a i/ Z ..... r r •- •-• r i > 1 r co T : '' : IN I r 'A R • 0 0 • > to • I N 1 1 4 Vt ,n a 0 y. . I.- j rV I J J .. 1 on a a , N M a 10' 1 NI 40 I A . A 40 1n. N ' -I 1- • in M 01 A A M ..4 • M • A • 10 • a LL ion n on a a a 1r3 A 0 co M 1D 'P In n r u. I O O 0 i0 0 o io O' O 0 0 0 0 0 0 I- I r N 0 0 I0 0 0 10 I IN 0 ' N 0 N t0 N O o , ^ u 1 • • • 1 •• • r • 4■ ' • 4 • 0 Cl Cr 10 0 0 I0 1 I 0 0 I0 0 . LL 11 1 11 p • 0 11 , ; I 1 to zu, 1 J 1- r , J J J 1J J' J J J J I J J J V 0 n , 0 N K J J J J 0' J 1 0 J 0 , J 0 J L N J >- ' 0' 4 a 0 0 7 1 7 WI 0 , OC 7. Cr : 0 CC 0 ▪ .J LL 1- ' 1- n a LL LL LL ILL 1-4 LL , 1- LL I 1- ILL H LL to 0 12 1 Z, Z Z , a 5 O i O '0 0 0 i'''' I- K .. I U N 0 CO ••' .0 '0 1 0 M 1 U O' 0 N U •0 [Y 0 V r r 0 M M r : N 1 4 [l it: • • W IU A MI N • W .O 0 4 J J; :J • 1 04 W .. 1 A ,n '0 (* Co 1P a P IC • V. J v J 0- n K '• 1 - ' uo M N 0 R .0 ' M WI a .Ill A W •0 LL, 4 at Cl . LL i Cl 0 • I 10 • 0 • 0 • 04 • 0 a A r- •0 N N A Q 0 . a 0 a V a r- rY J 0 ' Dr i 'DC cc P a .. I L. 4- - t-1 3 0 0 a a a 1.0 U O • ' .0 0 43 0 0 0 r Z K v 1 V . NI r N a a 4 ID. U I U V V r N N' 1 N H H • 0 co N . J J J J J C1 0 co n Z 1 0 '0 .0 1 N N N 40 0 ,p : 0 0 0 'm 7 0 ZN v :0' K , K DC n ••• v ' 0 0' .0 0 0 E Y S to .. 7 0 0 O 0 0 0 > 0 • 0. 0 Y 0 4- 0 . J N ' S S • r 2 • r • u' 0' C. LL O 40 40 a 0. 0 N In 0 a '.7 4.- IL u .0 'n h n a T N .- ti 7 U Z ••. 00 O 30 CO A A a W ::7 7 H ' 'n 0 :/I - 0 .- N 'n 4 IN O N 'n ao '0 3. 0 0 h C.. 0 IX W I Z J R 0 J ,. i�:7: • • ' i • K . W 1- en 1 a O z 3 0 X a . x a W z I ex- .m 1- a W 0.4x Z Z 01- MW. 26 n z J ow H U0 U J U W H i JJZ Jul 1- a a H DM W S J 4 H LL WICK K U. oz nu. Y00 H 2 Z I N N 0 W ' 1-WW a2 H S 7 W E W U U S a LL a V o S W O U 1 0 n a a Na ow.- . a acc,4 , •., .... - V/ w S 2 H 2 F-U 7 t- 0 0 Ua ao W LL J 7 U N a U 4 CC n H U ul W U/NJ Hi 2 1-. n Y r t- t- 'HW W ',Waft.. I i t- n 11/ 0 6 V a a O a Y 0 H m I X37- H N O O Z 2 N 0 O 2 W U/ /1/ 1 H H a a a 7: 4 J 0 H 1- W U/ .[ U/ J1-VU 2 21 u /aZ ZZ 3 3 3 a H LL J » 1- N a 7, -, ' ... l Z 2 V I Z 2 Z 6 3 O H Ul W ... v 0 W Y 2 S 0 0 0 n W H t- 1- a a n a 0 nn n".311-1... . 7 0 0 0 7 F A 0 a a a $. /11 -1-1- 70 L W t" Uf00 rl '7 7 ; a 2 2 2 H U O N* L 1/1 S LLI W W H U 11 V V N n _4_44-. S V U 1- W 2 2 F :l 3 J 0 0 0 0 0 444 44 f ..0 • 2 1 - Ul W 111 0. a s LL 6 0. :l Nawa Drs ar S1 c' n t- 1- .. Y Y O a N f n , U n N N N 1 S Y 4 W -1 - . z z z mac) 00333*w z1U i 1 L 1-1- 00n T Z uI 7' a H ' n0/] 1- 1- 2, ...1 -O 00 ♦- a U 7 W Uli2E r U 1L as 0 U 00040 a 3 a0' v l a 0 0' O I u V 1 0 0 C. a 0' LL LL U_ ul u H Ill J Y Y U UI LL 0 LL 2 1 1- 1- F 4 m a s N IU C'1 Q t-/-1- wwwU_a aiaas , • 0'7 LLLL IL ID D UT TT. T T 00 1 1 1- z Z 7 u: a a 2 0 2 H H H 1- 2 3 O N N N 71 _.I ul W W a a W LLl LLI L 1L LL U. ♦- 1- u V U 7 0 0 <a< 1- M z Z Z O N U U U Q Q 4U221L HMH O • n/ - Y- / - 1-1-1- n00 O N N W 6 a a Z Z Z ' H H H X W W U H H H . . V 0001- 110. . 0 6 H . J J 1 1 1 1 1 1 2 2 7'7 W LL. N D M O 7 •- V Z n n 9 a 4 0 U >'1") 0 » X x X J_ n O n I i= W C 'C ri .: r4.., • . _.,,-,:: . ? ?3. 1 • s" i . . . 4 . • 1 kJ 1 n r M M M n 1 1 V 2 O O O O O O O 1 w • • • • • • • ce CI +tl O o O O O O O • • 1 w • V p ' O 0 0 O 0 0 0 ill 1.11 O N 0 N 0 0 0 n 1 - l9 - 0 r- 0 M 0 0 0 1 °t. U 4 a . U1 U O ' „N , O ; 1 O • O O O O O' O Ll a 0, rn 0 0 O 0 0 0 0 4 .0 O O ▪ O O O O 0 O a 1 0 0 0 0 0 0 0 i ; -1 M in r 0 0I+ 0 CO 0 I � 'eh . • r1 1 0 •O 0 0, 0 1: i of V u e- n o r• o .4 o J i O •o O .- N O. O Y O 1 O O O O O y • • • • • • • 0 to 0 0 0 o 0 in n o 0 0 0 0 0 Q NO ! k NO w ei N y o n o 0 0 0 0 n I" Q.. 1 `. . T o 0 0 0 0 0 0 J C ..7 A. e— O O O O O ; I a F - Y O O 0 O O 2 0 1. 0 0 0 0 I 0 Of �' AO'' i . H H p .. v1 PO . r0 1.- h r r 1 1 c . • I • i • ' 4. r N 0 0 0 io 0 0 p 0 o I �`� Q ± ■ F • 0 0 O , H CI .0 CO N r r .4 N i 'z u W , Nt3 Ili w o > z r o t o 0 0 .0 O o. O � ! 1 ti N 0 0 0 01 0! • 1 • I x J n 0 ∎O 0 0 'O 0 0 I 0 f . I • m U 01 j J J O. O h N O Al H N 1 N 01 .41 on OD • H J 1 O r V\ r N' .O j 1 _ _ _ 0 0 11. N N N N N NC N � LL Yl i• • 1 _; n y 61 O Cl 1 N r .. F H H Z J J 1 N r 1 N N' •O C: '4, M M .� , ti 0 ' C7 .- 0 0 r. 0 Op 1- 4 .- /V MI — • 01 N N ^ r• `.) h G y + J LLI _9 �.{. W x ✓1 C1 a Z N 00 4 on ••- 1.0 r x (0' V V 4 . W \ I� 1 r M t -� N `v a a . C4 U a n J Cl 0 O O 0 O O1 0 ■ 1 1 )••- H '7 P 1 .0 N . co! In 1- I- 17 00 10 ., .0 N .; H , 1.- a In 0 1 1 o N A A A I t, o co . U O.. v O 3 3 3 7 3 'J = N • '/1 Al N x 'T 1 0 1/1 r X) 1 - t 111 \ •1 O. b M In r r1 • J T .4 1 .. pC O• W N N N- In Z U 2 'J r- N M 1 In •O N •D a , L 1.\ J 7 H n O N !1 K tit U CO N N N N N N N J 0. 0 J e • Olie i .-1.-c.,,A , : . \ . In n ' i 1 aC z 1 ` II J Y/y 4 7 * r. z 1 W O co O e. K 0 Z ul W C H l7 O O O O 0 I 0 0 0 4 4 3 Y • • • , • • • W O Cl. 1- U 0 0 0 0 0 ? O { o O O P CO 1! 3 -1 I- a O O O e- .J V M p. N e- r . IV. • O P O •O •O O •O N 1- M A In P. M' j O LL O v J CO A O P 1 ' Ai A il O m J M u! rn I 1 NI i A "" M C) CO AI •O M i OD • Ov J CO 'P OI P A' A M I 1 ■ i . N V P P M O O O J A N J 4 r .� J • 4 S V CO P IA O .t A N O e- CO '- r e- N N N N N N I N e• e - M f j r e- CO an W J• A Al A !O • I- V . J m •O N O I O J J • 7 2 U 0 N r N • • �. w e - N N N 11 e- N I > - Ov U M n A N • O N J N e• J an m 7 4. m m • J v J O '^ v N A • CO • ooto • I LL O O O O n ▪ 1 r ! • � i on a J J O • on N ' r A m J v O O J In e- In J N CU 0 i = LL e- A Q O I 10 N N N MI i 01 I • r I � • I '� n •Y > v M 1- CO •.• .... . e- M In: iiii 2 N LL •- • ul • e- an Cu T O M 0; 0 0 ' ' ua • a O • X > u_ ; M c i A • pY N O� M ! m . iA J '1... 'A m ■ J J.. 'N •• In IN IN O 1n ! 1 0 O : d J J I- ! • A N O, O • M 7 1. 0 U. j M 0 on CO 11 1 M A o 1 0 Ai 4 7 LL O 0 0 1 e- 0 0 'DJ O, e- I 0 I- 1 I- 'N 0 0 O.. 'N 0 0 IN O N 0 ' 0 U. v .. • • • - , , • • • , e• • e - • 0 on O 0 0 �• 0 0 j 0 0 • N x 1 ■ M 11 N t ul J 1- 1- J ' J J J J J J J ! U 0 a 0 or K a 0 I Co J J • 0 J 0 J f M J> 0 a a ' W 0 1 Of 0 0 ' K 7 K 0 "' J U- -. 1 1- u 0. N• 11- LL LL - LL 1- LL III 0 1 0 Z 1 4 ' 0 10 1 0 1 7 1 ■ s- la .• l u o «, m i0 A o 1 o A' . 0 I 7 I U. W W W • co • . 7 2 .O n• IA 11 7 u• In 17 h 2 111 I 1 1-1 ' 0 4 1- Z N H J • •-• IJ ,J J ' ill .• 0 0 1 VI 7 In In In, 0 Cr I- � W 0.. 0 A O •• ! W A r W I N u I J •1 4 7 U 0 • • • • I• x I O 1 0 • 0 (l a In rr . 14 o o ! ' a n 1 a e CC 1 CC Or. j 4 • O M I0 l , I I• > •• 3 2 N 0 0 0 0 0 I O, O I- . K v • , V 0 7 p- H r •Q M .- M 0 ' H 1• •• .l • •'.. 0 ' 0m 0 2 0 .0 co NJ 0 '0 J 0 N • U 0 ••• D4 OF 'r 0 0 4 m CO 4 n 4 4 2 N •v K e- r p' 0. pr ] ' N lo N O 11 0 0 0 1 - > O O 0 1• 0 0 - 0 a• O J N 2 x Z Z • i to IX 7 LL Cl. .4 .O N e- CO J 13 I- uI :., T •n O m V• O •• Z 0 2 v In I J 4 . - 4 z ,- ,.- 7 H W 10 O N 2 0 e- V h 3 r 0 0 4 \ 0 30 0 K al 0.4 Z J 6 O J a. t . - <,xt: . i " , , , - - _ -- - IX W ■ i 1 1 v a m I 0 2 I I I , 3 0 ' 0 s o[ I I • I 0 I I re w i 111 I 0 Y H m I- n w H Z I f Z I O W 7 J I V O I V J 41 W ' H = I J J 2 J W 1- a 4 H ' O = W E J I a/-LL VI CO C 0 O 2 0 0. 22H 1r 00 H I 1 2 N N 0 W 1 W K 4 Z N S 0 I W 7 . LL U V I 7 a LL a V I l9 Z u1 O w 0 0 4 C N C O W 1- ■ I O C C VI N W f = H $ HU J 1-N3 V 4 "1 a 0 W U. U N K O 0 a M V W 111 u 1 N J H 7 1 /- 1- I- I.- I 2 Cr a C H ■ 1-0 W On 4.1 a' .3 ' LO 4 Y 0 H m ' 7 3 I H N 0 0 2: I • N 1■ NOO w w u1 2 H H I 1 I a s [Y £ a J O1-1- I W u1 11r 4 W .J 1- V L./ , , 771 10 C4 0 ZZ 3 3 3 Cr 1-- u J O 0 . - h 4 > > i : 1-1- N N2.,Z V f i ■ N Z Z 0 M01 H H no 0. 1-71- 0 0 0 j q u. H 1- 1- a n u 1 2 1 d O1 �I H F- I I -- 00077.0.100C.44 u1 041-• t- r E 01 1 5 LLI 0 0[. 7 J 0 C a n 2 _ 2 V 11 1 04400 111 r 0.1 MI 10 H H l) 11 0U O 4 J J 11 Z V V I^wf S s'»JO OOO N d a a 4 a 0 (- K Z. I- W ur Ill K 0 a LL n n . O N 0. CY CY Cl O a' H 'F' S : U n F 1 F a.O 01 4477 N N N S Z>- R W» ' 7_ 0Z 70.17 f] O S 3 3 u 1 111 2 V U H r 0 0 0 L S ul S R H H 0001- 1-202.-1 -J n' a r C V O u w 7 7 7 1- u1 LL a 4 11U-00 0 4 O1 K 3 K [e 11 0l K 0 CY 1Y O W N C7 0 0 • ff K LL LL LL 111 LL I- III J» U 01 LL l9 LL 7 I F- f- H Ol 4 T_ 4 N. 11J 4.44 4. 0 Cl .•{ 1 1 H Ill 111 111 1L OC CC 0 4 4 R C'1 1, LL U. LL 111 W U 7 7 7 1 7 f - 1 I- 1- F 1- 1- . • 2 2 Z 1u 4 a 3 0 2 H N f. H 3 3 0 VIN N 0 J w u l w V 4 W 4/1 01 f1 I1 LL LL I- 1- 1.. I ' V V U 7. 0 0 a s 4 ' '-NZ ZZO NV V V a a Q i17 = YI HH H . 001 1 - 1 - 1 - 1 - 1-000 ! N N N 111 0. 0. 4 2 2 Z s♦ H H H= W W U H F • I 1-1 i , N1 0 0 0 1- O O H ' 0 n 1- 1- J J £ 7 LL L H 0 0 0 7 .- v Z�'1:04 al O W Y n - 1 0 >> 41 x ac 1 0 0 N 17 r r 4/1 . . .. • •. . - - ' - ,..• - II ., . . „7:: . .. „ . . . . ' •,',. . .. ... . ; . . . • , ,,...I•t.:,' , 7- - • . . • - • , ..k., - ; - k. ; • . . . ...-A, , . ;-.1.- '.- -, -,..• - ..,1,..• .. . ,,,,.‘ ..- . . 1-.- • .. ',.= .. • • ••. , , S" • .•. •- • ..47 . .•1'..rr,... , • . , e „e•, , • t • . . .. • "se '.. :. . - t c.' . . I , I -• ''''II''''' ' 1,-;',.0-: , • 'P.- • , . . - . .... .._ _ . . , i . . . ni co c.s '41 let VI . W1 10 Pel ' . ■ . ..- i .4 UN • • • • • • • ce 0 t,- 000.0000 , ' • I : 1,. en cs, •-• C i ; c 0 0 0 0 0 0 0 0 -, 0 WI 0 V ! 0 0 0 . ! . • , lel Ur Ul •••,■•• O I-. ( 0 • ••• 0 CO 0 0 0 s q I 0 0 NI , 0 • a .1 • • • • • • • • • .1 a 0 0 0 0 0 0 0 • ' ••••••• j I I . . tn 0000000.i-pi I , Ce I I i I , ! • • • • • • • , . . . I .1. 0 0 0 0 0 0 0 I i cI I . ' , • l'• ; , ' ...: oo o oo 4:10 i".• 4 1 I N • : -... . 1 . . , ! ' ■ o : N , • si i 1 1 t ..,, in n 0 a) 0 a o Q% I4 c0 1 . ! . ..- en 4 o .o 0 o 0 , 1 1 -o , , • . ' . I . . I • t..., ..- o o .- a -3 ,, ,o ■ , , . ; . I , . .... . ; . • VI c • 0 .0 0; • Ng 0 0 - , 0.., 1 - . ;%0 - st r o Pc 0 0 0 0 0 N at • • • • • • • I tr . gn ' • 0 0 - c i i , -- ... • . 0 0 0 .. .. -- ' • . •._ i . v, 0 0 0 0 0 0 0 ... it. 0 o 0 0 0 0 o ," ac • • • • • • • . i ,•- _, ... z. --•• c I- -) 0 0 0 0 0 0 0 0 C) 0 0 o 0 0 l i . •-• •-• 0 .- 0 0 0 1 ' 1 , ' , . I ' m u-, .- 0 • 0 0 0 0 . • • . .., • I , . ;',•C101 I-. Z 1 ..... r el •-■ 01 i 1 0 r a: ••■ tn t.', .- v.) .- •-. ••• , V . , I N ... ,..,. , . r,, 0 000 0 0 ' i'''' I r ... I , ! ..0 !..4 .. ..3 0 [ -,t , a- 1 r 1 .- ,. . ,- •:. I ,-- - 2 -1 1 I o , 0 1 --- 1 --01 , .... . . ., • z ; I 4- ° I ! IN . I • • 0 j g: g; .,-=', „--, i -. ...,-. ... . . ac I . , 1-• rul o 0 o 0 ' o ol, 0 , (11 1 • ..„ • It • • • • r • X J Pr1! 0 0 0 0 .0 0 0 ! I 1 0 I- •-.1 I • en V -• -J • . I 0 0 PO I , - IV 0 , . • , I. e.. .4 v. CO e- 0 On '0 • . r •••■•*• 1- _., ....? o I , - •0 •- 1St e••■ t...-, o u o •,- •- o 0 .- 0 • 10 0 o i u_ • LI .- CO G 0 MI ru IN, Iv eV 0.1 0.1 .4 In. 4 .4 0 ON 4/- n- 4, ' ... . VC ; 0) • ' ,.._ ..... • • • • • • • k. -..1 • J1 J ' .4 II, ••-• .4 tr, , r . 1 0 MI: 1 mM U ! 0 0 •.- 0 a .- 0 0 • c ri el eU r' .1 CV MI MI IV a , . ' ? ,c ,... ..... . (L . It- '6` ..... I • r. C ' . 4 •• • - r • 1 sc. r---- n o 0 . ■ Cs '%..) ' 6 ' " 4 4 n x • r n •r. I 0 --4- nt 0 ...1. 0 • • • • • . .,,. 0 cc. , ' • .1 tc. t6 e•r\ n .1 2' 0J DI 1 on t-- o, I-• ' ..- Q 0 0 0 0 0 , w W /..- ..- ••• 1. ; -4- ! .,- N , -- ^.1 , .... ..„,,,, -J , .11 43 r- -.1 4 .4r 1 L 1- z ... - ,.. 1 .-. . .1 (- . . q ' V) 4 ' : -J I- . - 4 . 1 ; -, 1-- G. C. : C./ 0 0 I ..1,.. --.4 .4 ; • • • • • • • 0 4 .0 I/1 e INJ •0 , , N ......) •C. N•CI 0 .1 A, .0 In NI PO C 4 Ssj , ▪ I- • u••■ e- 0 4 4 Cu . 4.0 r 1 .,. e.- . I .......1 • , 0 0 On CI ••• 3 0 7.7'.. 0 0000 Z Cv r . • Let I. - 4 x 'I. >1 .0 .A . n1 4 . • ..... 4 0 CO , 0 CO 40 IN PO - Z 1/1,17•/4 CL 1 Z U Z NI e- INJ 1•0 4' .0 .0 1 . NI rsc) •.r ..0 0 .J • ---, ••• .1 0 lo 0 Cc UJ 0 Or. 0.1 NI NI NI NI NI Ni C . • - ' r'1 • r - — - N u1 tr+ 1 if .r u 0. O• k+ E 1' w m P ..- C C? III w O O' O . O I O O O CI 1- t9 O O O O O O O C3 a a s x p 1.1on 1-u o 0 • o • •o ■ • O O n 0 ! P J A u o O n 0 m 1- a 0 O • 0 I on a U M r N r , f , ^ I y. s r 0 • o N o , 01 1- ' 0 0 � o 0 0 • • • . o o m ,o I 1 O s P i N a. {M M {n 0 m . �•- 0 m r le 10 p v .6 m 0 • `P CO .0 , N U M 1� M M II0 N R+ J in b . m •• I V m J 4.5 el r u m o •o a il� o .0 O N 1 •• N .r , N N N N ' N N N H P M H N m U uN n m N ' •0 A „_ • J J 4. . i u O N r r • N r V't et N r r ' N -J P O M P 'N I U J N 1- J • O• • •t1 m C , • Q H J v J O I� r n 0- 0 er IL O i .- O 'n j O N n1 N N N N N .1 CO O n N 'P 1n O O 1 J U J n J N T_ u v O O O O O O ' . I Y N N P In O `O `P L7 n i w 0 1 • Y > lv J 0, N. M I • N M .Z N r r i� • �a r n o o I I o " • X > u J c 0 e- ' N M p N r L 1- N m J J .. N n In fu N O M ; J +! J J J1- • In C., O O A H 7 U. M M P . M A , O O N : J = U. O U O O O N •- •- O Y 1 1- N O O O N O 'O N O N O O u lt. •- • . . r • • ., • I•• • p In O O O OO O O U. 11 11 M 11 • n 3 u1 J H J J J J J J J J J U 0 p p 0' Q O J O J J O J 'O J I - 11 _1 Y K a u 1 n O n > > K O ' CC O J LL 1- 1- 0. , /1 • 0 H' w LL 1-, U. 1- LL. S n 2 ; 2 .; , a O O • 2, O o fl 1 i- a .. u •o ` n1 v n o aaI u o 4 n u 1•- !� n •0 1 i m Y n u y� w ux • �w H 14 M ■ N n a J J J 'J w O n7 401 to O O n OC Z 1- U. P n O w A ' 0- ' W V1 111 J Q a O v O . • X • cl • • O • ! n • ; 0 , O a vi 0 O a a O a. J a K 0 n , J • K 0 > M 3 Z ` N 000 O O O O ' O O 1- n H 1..1 P V U 1 - 1 H v H P N M H J J 7 m n Z 7 O CO In N > > J 0 1.1 E :' ' z V O v a :5 a Ob m a n a 1 N a ac K Y O O O f O O Y O '> O • J V1 S • X • Z. S • = 0' 0 1L P 1fl "O N • N `. 1- w V T 51 O 10 n N v1 Z. V Z v n 0. J J N .l e • n O 'n H O r v , J .- n O J w o '0 O 1r w Z J U. '3 J " , . . . . .. _ .. 5 . . • .. .. . .. . . . . .._....:...::_... i .., , . ,. • .. C ‘-', - , ... -, ... 1-1‘ CV w .`a e It a to a 1 0 ■ 1 T i , 3 0 a V a a 1r w r 1 w f 1 w or. ,� M S- - !i! i i 1 O M Z O . 11 0 J J 2 J W r a a M 7 Z I , W T J a F LL N a K 0 02 I 011 2 2 1 1 - O n ►. 1 2 2 VIN 0 U1 > w a 1 a 2 IL S 7 I w 2 U..uu 3 a ' u.au I ur 0 Il0 1 7 0. Ina owr n. I a a N . N W Z j s r 2 ' 1-V 7 1 r V) 3 ' 4....1 a R O I I ' w LL 1 J 7 0 1 N a 0 a i a 7 I N w w 111 N J S T 4 r 7 lrrl -r 2 K t . a 1.1 M W cc 11 a Cr r I- I -, 1 { 1 1-0 w auaa 13 .1> OH In I ' 222 ... LA r 6.1 o c W UI UI T 1 1-1 I ao)a i a4 JOr1- I w 611 11 a 111 J r S Zl II S S I 11Q 0 7- 2 3 3 3 Cr LL J 7 7 r t.) 2 2 2 n 31 O 1.4 1// 1 1. 0 H1-a - 0 LL ar .Z Li n00 1.11 - X 0 - 1- ' 0 n Or n oo {aur-r CI1-r 1-77 W z »aJ4 V/ 101 . a w n n n - 1 J 7 a n e l Z Z 2 u u 7 1 n> 0 E 1' 2 w 111 us H M U W w w K Q J J N 2 V 4-- .115 f E 77JOOU0 ^ K a a s a a 7 r a 1- 41 U1111 a a a LL au t VI CC a or O Omr 5 5 1- 11 1- r 1-» 0 et vs 7 7 Ll 71n In L., S x > 111 - 17 Z 2 2 31 0 4. 002 t Z 111 u1 2 t) L) 1- 1- 0 0 0 0 is 1' 111 3 a M 1 0 00 1-1- Z 02 J -.4 1c 1Y. rau 7 7 1/1111 t a F- -1/J .LL as LL LL 0 0 n a a M 3 fY 1v 111 %1 cV a rc 0 11 1 113 0 0 0 ' tc CC U -LL II IIILL 1-111 J>1- . U UI 11. 1_'I LL S 5 1-r 1-041) 7 /J 11, /U Ul 0 , a 1- 1- 1- W 1/l 1U U. K 0. S a Q a O LLLL LL UI 400S S 7 7 7 0-- h r l- 222'uaa3 . O 01.4)-1 -+1-3 301/1 V1 ✓l I 2 2 7 J w W 1/( a a W Ls ll1 11 LL U_ LL r r 1A V 1) 1.3 5. 0 0 a a a .-()42220 ' V1 u 1) 0 as a 1)2 X W H M 1-1 001-1- r 1- 1 --1-00 n • to V) Ln 1115 0222 • • 14H H 2 W 1/l 4,..1 4-1 M N 0001 -0014 -- 0 4 r r • J J 5 "1 . 1 . IL IL H 0 0 n 7 • 'N z 7 - 1 a s 4 0 7 U I a -) 0 » X X X 1_701//r 2 L W E ... _ _. . _ i L. 1 CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING I SUBJECT BY DATE JOB NO. I SHEET 1 OF /N.DUS772VAL AREA HYDRAULIC I VENkf.N I it124A37 I 3B/o -o4 1 ; • • . lr. , bon Afvuccirt af rpotite P! olra;n FM 6.4 4 0/-74. 1 I '� A j 1 f._- _. W t ----..........H i ■ 1 I.� �? I Nfi ko _ (V,c to v 1 I) S t o nd of vof coat( r7; ck n {tad jesvn (.4.4-c,d ,tsf ice it ,bc.. kid tI cry, 20 .0.4. 1 2) Tke wei.i f w eig {,,C et Aril /,o4 , ►-. C am.., ad /4o pe4 Titv urY1 "ce-C 1 and / 4 - 0 knit ( {tor; Za n t c . . J C S t e CA LTC.A N S D-3 3) 3) ma f �44 . n m e llo do foi4 Iia1 ,es". (.44441 .lev Cavi F vet Nut; qsr► A) -' = A O o c f,6 ; , i z Ex,, oao fr. 4 ] 1 5) Ilan; o, ra+ "4"1 roc "ais 1 1 . '' . 3170 REDHILL AVENUE • COSTA MESA_ CAI IFC1RNut 00a0a_ae00 _ ,l, Al Q A1_0'777 9 � _ u.. ii{ �:. 1w° is :..........:..:..�— ?r. s.....,.. .�..........,..�...�.. ..�......... ...... ,... -... ....., .- u.a�.................:.>... r......1 . .: .. ....... . i�........- �.-i,. �-.. .v�.0 . ...�:... �:.a_v..r �� 1 I J ate. , „..,,.,.. MEM CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT I BY Nignk -i , N. I DAT4 i/ / I JOB NO. I SHEET Z of T ran4 r Len Sc iv-e. J na ,di.4 ' REF, C At. TtAN S 3).80 Ivadr 3 Or- 3% I) L i Me Lo Ad HS D...-....4.4 4 =0 TO CP ? a° n r ir / 1. 75-.4 fr l' ic 1 ( :� �� Latev.J1 1141 tom 8_4 , �! " \� i LA-FERAL CDNl/T70N 2 k /-7-/7 1 d e S7 64 +11.74 = 2-0 ' (12-17-8 — 121 - 8.) 1.7sx2 -V = $' -Sb LAre eAI co", DI n ou I AT c rA 64 -+ N • 74 Fov Load Lone w; d t u ..1; tt; mat Icvu T ' WC, rkt 4i Fan c.4 bit ,.. tl,,, 4 ,4 1F-6�1 a g = 4 Q�PV Ma- W MaLO - O . L 1 (i t,r 7otaL d,vsL 1 .,a( ;Aft ,10,...4 0 £TA 6 8 4- 04 -02 • 5 z -I- 32 ! It >f t - Sb a< 3.. .co E= 4 t o -o6S 3 - 4'-t- - 0-67417 -17 = /- 22 kCF 1 = S - -03 It 11 1 1 ,4 4 17 E * caN i s = 7. S vx S• O 3 8 d 01., t ! C3 J' L / -22 KS F k5 , (co)•64 v > 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626 -3428 • (714) 641 -8777 i ,,,z.::::,,:::. at ?keg poveeotag, gee. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING • SUBJECT EBY ver . N I DATE 4i1 JOB NO. SHEET 3 OF IYcLA e.OI Kt h&j Lo otL _ - 32.- : /• lc c p C SG7u i ) . /4 .4 Lo .h,d,• Jam[_ Lo Ad = 1. -, IBS F T va nA A ev4.e Lo = 1 - 2.2 kS F 1.,1'.,11 2.-o0,0( _ / -306 kV F 20 cat Pac F v4 1. s D + 1.1-- r 1...V CL +I) T : j:3 /yr,e_. . c ue 1,4 Lori l'ic---3 .-. Thick, I SW - 1 e 1 01-_. l -S 11 g 1 so 4._ ►. S,c . . 280 2 - S /.31A J•3 /2- toot:, 5' 0 k S F 3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92626 -3428 • (714) 641 -8777 iv in ?la" g 201000,40t, Rift. „,,,..,„ 1 lowl„, CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING 1 SUBJECT I BY I DATE 4 I JOB NO. I SHEET OF Y AT sTA 64+01-74 3% 3%, s o t '�° ,0' v zzz 1 of I 1 , , A yt 345- >~< 3-rr I1 1 H l Q` : 1217%S-l2 /3.40 • M !b -s ' 3 O ► •7sd : 6. 30 �. � . -d = 3 _ is . 1 �. a to AS = i Tot d 4 t..� &J 3 4 x (3./sx2 +4) x 4.39 F = O. 443 k S E Ecv ►4 load 140 ,e 3-60 , 0. 5c> 4. 0 -443 -< 0-S 04- , cv - k' O- So o Vif. LI j Lb Qe I,-, d.0 a 1 I.,( ke.a.0 Joad i 7 C ' - ) _ 32 • a. 6.3o x " 1 - D- 403 k.sP 1 L ,t 'Ad' nod -to c.X.' •_ 0.904 L_s-'� (' E to�� v TvGnA to /4 Loo. oo O = 0-413 kS' t , /2/S g n G-tD ad I'►t = 0. S o 4 S F ii C \ 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626 -3428 • (714) 641 -8777 i • UMW CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING I SUBJECT I BY I DATE4 /a/17 I JOB NO. I SHEET 5 OF 1 L Dart Cio•/3 : I•S - - D + ►- 5 E 4_ 2_s Ct+ z) 2.o . 4,,ee tgjjer rribra Phan 3 • _ �•s ii. x Aso + / -sx 0 -504 + ii l0oo = 2 -32:4 ksF. AT Sna 64-Of ' G ArevrIA / or► t `lO, = 5 ks F C1 V a w : / 4" 1 to ca ( ov) r3o Rory, slat i r s mr 64 9-1I • 7 4 A o..of = 7.3 1 r rb m g C I L c v l pow P•28 ks F 2rnrevi 3 Loan( Skk Cry Awl Leo (1 6) I t l _ - k. 7 + 2,7x Ir° J000 x ) 8 2q 3) Load d (nJC.I<f 2 4 6 k- /kr E x ►°. >K - 3. ► vno S 1 1 So if) tread er = ) -s x28' +2s 1 L@. 2 9 "} 3 -4 7 I 1 : 44* F 3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92626 -3428 • (714) 641 -8777 1 , _ _ , , 1 ilk hiake g 26/eeof,44t, Ac. .,,,,:„, 1 _— CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT (BY 1 DATES J/�I„ 1 JOB NO. 1 SHEET >S OF N I r* 64 +//- 74- • v I 1 744 04 V A .5- kSP i hi 1 •4D +�1? 111, s °F Top SLAB 1Zbs1 - 1 ,, 17 n4= 430T- SLAB 1204g+l'"k 1 (2°3 - i 4. 6o r_SC } 17-17+ 4 r 1-s 04-02: igc 1F3-34' ',.... •., /7-67 , = 3. 94. /C-IF of wRU. for wa-4.., - Nu . ck ' f l u *.Cc wa� = / 4 if / 1 k - 4 . 3 } I I " (d t _ - 17 �i [ = 17 -3 = 14," (d) c 4� nos � � 9, a.v►ml l3 d /jam - '�- 14-11 POP. BdT. SLAB t i r- I 34 -1 3 k . d BOT. SL-AS E 4:. > 9,0/ i',.,^ S h R v P0vcr ` L, r /Yob = k- i - ro.d2.,:;i:t ig-34 s c' 1 A 40 xVII:, 2. I4- 1 �� � b nd �CALTI2AN.S.D83) S . F. maxi m.t.4, , d : 3 -s .,/ -F 3 -s J40 ,c 11_k 14- Ve 37 • Z 4. y. , 1 _ b $ -0 2...to 441-6e S_= n � c., r t /J+ti)T^'a .37. 2c t..f 1 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626-3428 • (714) 641 -8777 1 .,,,7:!1., all At g e7oureogeage, ate. ,,,,, 1 __, CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING I SUBJECT I BY 1 DATE � / � 8 I JOB NO. I SHEET 7 OF 1 • 12J,S it O's 1 1 21 1 :_ 1203-7t. v - 9. 1- - C 1E' 17..: g ' _ 0-57 x 1F33 +. 3 C ff2 2- ► .. Q -5 . //•3 2 R, _ )2 -)r s k9.t; v C.s_ a G' w.b = 0 . tr.e. 3 -S- Qo ° y_,‘ 2_ y 11 24.94k-, t000 A NALYS IS 3 It rz 3 r F .15 = )7 ; M.T : C -��� x T ? - 9 z IZ 1 1 ) � r -ov D = t4 rn.Z ►y ,,T = t• 5'8 e li 1i _ LCI 1 El 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626 -3428 • (714) 641 -8777 1 1 ate. ,,,-,:-,, I ...I, CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING I SUBJECT I BY V-Prk-; . lei. I D 1V/6/77 I JOB NO. 1 SHEET g OF Mome7'1t ,•ltrj D,1.t ny 7✓I�a 11:-.4.- _ -02' (cc T . 1 0.57 1cS t D-S7. - t - SF >3 1: 1 -74 C f 1 S -21 c 1 /.1 1 I. 741 D 2- 94-x'' k 294As F ,)8 -33 I 1111111111111M11/111111111111111111 q so 'z-cr i 4 r, 6t..r rAe-tiw _ YEA: ►r; 18.3 . 12 ►►•.3 6.64 6 = - 36 1 YA F- 0.» 1 V : b . 6 4 0 gc — 1,0 .e 2 Y 5' 0 - 2 '— * (R•34) -.r- ..- 4¢O 71 ft . V 134 : -4- W / k! L _ + p .;, II -33� 4- ii (244 - 8 `57) J+- 3-3 41.33- 1 ►z is 12- 1r 2 tA A e _ — w . Q _ W L = _ a•52 DUI -�a�� + `� - 94— c•s7), 11. " �►•32 1i �� 1i 10 _ 21- at I t MRD _ + w1Z = 4. 6 r. ,t p8 -as _ + 13 -3r k. theri a 1 Z 1 t . R17n aFnMll 1 AVFNIIE • COSTA MESA. CALIFORNIA 92626 -3a2A • (714.1 Ad1.R777 fili ?Aker g ?aiteof,44, ate. I ' .,„..., CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT f BV DA / 0 2 1 JOB NO. I SHEET 9 OF Tot NT A 'T MPrnbev CAF) AD A(3 214 I P a C C BE) Factor ! ©- 36 0- 64 O- 64 O. 34 1 Fi'xe.al .¢rd 1 /3 7. - 21-3) + ..---14- 16.2¢ . , ..-- D • 7/ ti P►o rvufr/s 4/- 77 — 74.27 + 9• G4 +- 4 4•V -1- 39 -83 - 37 •)4 C.O. i s C. 0. — 14.34 — 2S -49 i j 4 23.77 ! .- 13 -37 c. o. Al ..- t 1 -kr `12. 3 a rC� , r 4. 2- — 7. ;o i f Q - +r + 4 -s9 c .o. +. 4.C% _ 3.P ■ i F3o. Qr" 1 • 47 { — 2. 6I •+ -I.43 + I. G .c) - '+ 1- 22 1= 31 [ii ar%L 0.44 ;— 0.78' +0.84 - +0.47 fi7s - 13 - 7S•o.C +'94 - +o -76 -to 1 Member 13C 22# • 06 / K 5 i»''�% A tt " _ z 1 B _ 7. 0.C19'34) 76.0 a I h '*- ■ _7.-- 11"--- ZIl. Pay_ .i "AAA T1\ -fr,V M o rn ,,✓v+ - i l., $e CIn;d J,) . Zll - D - 7t. 134 Sb `fr-. Max.: m.c,<rr - •ue WlomeAk 4,,,,R 8)c = .-- 76 - / 0 � .t.- ii E . 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626-3428 ' • (714) 641 -8777 it :: 'I ...., gVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT I BY Vey, DATE / /b /�� 1 JOB NO. 1 SHEET 1 6 OF Eft. di P. AIPL I -:_t--rs" r'. -r ' • ' Q _ 5_02 34 4 6 -03 - _ - NO £2v 4 L 4i,, eLwc k '> .a* d m € T FbxQd "...A nw.w..L > O ` " - J/ Mp1m6.ev /4 306 -02- z iii S i n 4 At t 4 h � . o n A . r _ A ' 2 0 6 . 8- MotxrmuYY1 Po At, of Me" ' .. Zo6 -02 ■ 7r Mc. x-f htu m Attrtue Mo»ie,J = 7s 1 ir.ta -3 '/ 42. /8' ; 4 �� --� s. F . 34- ./3 k- , 1- 7r fit.- 3 4fL . t 4 /7 1 ill i . 3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92626 -3428 • (714) 641 -8777 1,,, ,:..o,,, ila hia,e g 20 ate. ..:,.: ,: CIVIL ENGINEERING ' • LAND PLANNING • LAND SURVEYING ii ...... BUBIECT [BY B NO. SHEET OF Y. DATE 4//6/e I 4 /i6/t 7 30 Mew ley A _ I 7.70 Illr. R Ci.- ff •3 +(V)4"-• 0.6 7) 'L 1l� A 4 . ,t h. c-'°.4 v a k0 6 v 4L _ �__ _ 1f•r4 +(3- s3-!•3'Lt> X .:.. _ / -sot 2 � Z 3 f1. A ;„ l', S i 1 i . "4ov -rte r'l 1ornad 6 =93 • t 4 ,dx•t 7G - /n 71 F ized a nd M't omo w4 a l- - 6.14 Pei ► ..f = 7S- 4 r N s- m _ $lf -J1 - 7r-65 i 8-44 C ffia - 1re►n•a) A. 11oxi r„at : NI • (N f4 4:76 - l o'er is--or s.r - . cue, It, d,r44•yrrcc ;n Pb' l Mp ; ..eC-- J 7 7. 7f7 + � o -09 = 'L -to - . ' = o b9 k, ti• 33 1 7 9 ,4 A 12, /4. —o- a9 12- •OS" 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626 -3428 • (7141 641 -8777 -..� ..:,._tom, <,.,....:_:..... ...._ ..,.. -- .- -- ,.... __.._.. - - __. - . _ -.. .. . 1 „.„::::.„, al Xelit g 20feei4eag., Rite. ,.;::::„,,, - Er _ CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT I BY yCN I . T' I DATE 1.04 09 IJOB NO. I SHEET OF k¢cv =- - I ' _ -- d _ 1t A C2) - 139 t \lc -. 3 -1 j ..r I) Ad i . 3.S ADOC. A 1 1 A( i Vc .- Z`3•2 - - y : O- 8 s 4, 2 24 -P ` k s .. c , y „t<, l Ik (4.1t CkecL Fw ,J Load t �, 2" R1, ,c g /¢-Cl: _ 3i - - 1, /4.5 2 2 _ _ /68 ill et a t.+0 = 0- rs 0 x -P', � R D l ) c :::::: - R l :i.,:::- /3 .6s- fro 12 : 1 6- 43z r- f 'i Ei ,4_ p.„c, 0 k. E ..D:::,_eA,_ . 4 Memh 6c /Y/ x i v.u7✓1 + A /vlo rr...w► e Be)-. 4 f ) : /34 . 1 r G l xi mu n» .r Iv /Pro m/44 (70 /1 /�,l) - 76- r ' 1 ,of M �,. > /! ft M /34.54 ) i A J--G- _ 6 . ///3 i t , � c C2E P. PcA Norri : P, rJ /47. if ,NI A 3 tg' -e3) (� � ° = 0.74- (b _ 0.016 \ rrth _ D - 00 33 • �x !I � 0 A r f 2- 4 7 i 9 . iM . tri CL s -' c C 30 l • "i tom'` 3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92626 -3428 • (714) 641 -8777 ?-/a," g?0,10004catc. _. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE P40. SHEET ! OF '- P 1 4/l7/t JOB 7 J ,,c k2.- Ida da M = 76. 10 >C 0-9)J _re bell 0.19( 4 ell 2- ; /D = 0 trt - - = - 0 - 0 t c A * C r t r t . Aft./ /0.01. e f"CD -�- he /001%144 ^ 't d y 4" 3 is -$S' - gS'S , W = 0-2f2 P = en - o l tf►3 D• 9 + ' ►a>i r.2 -37 /S . Jr U/S -t' , /, S ' C /'c ((; br 60,) • p _ M Mloyn4'J _ 7S 13_ , to 65 w , D - 114 = -0 074 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626 -3428 • (7141 S41-R777 .,:,-.4„.. in Ae g 2oiteotax, ate. c _ CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING 1 I S wB 1 ECT I BY 1 DATE I JOB NO. I SHEET 14 OF 1 `1)..G/S'0 _ 01 tL / 4:044. kvaltt PO4. Mo meht _ 8.44'1‘. Me;. Moment = 76- /o'er. II x`-44 ,. o- 0194 p 9 x 4 a4.40-rc 02"x 001 1.,J.:•... D2, P: 4- own O _ 200 _ 0 002)3 I Mr . 0- 44 4 - i -5---- ^. ", fry # S o Iv " C/ c4• k tk. ih .... r ,k.ce .0 P66 • w►on+.rt-) ,P. 76 . l b A' 14 erCr p - 178 0 • x,r‘ 4 00 1- L4).:, 0. 19g3, P: D -013 Adt- : /- 7s At- in uk # 90 bit " // 4 ' 6 • I,- g' C 3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92626-3428 • (714) 641 -8777 , . _ .. , . _ .. . : T . ... .- a..._.- ____ ate. C ' ..... CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT 1BV 1 / JJOB NO. I SHEET OF AT sr 6 -_ _ �; ci' M kit w s to 64 +n • 74 . (Le l A s 17.1r') co-g-7 1 -- - J ; ; 1 (-------- \ \,,,....,______ j 1 • $ -73 -,... __,..) 1 ...; 1 C:'" . C -- Cam4 ►'d.e Y b o (1 mr 1 p . , ., Li c. pa & M, ,fi► -i'p = I e•3 ti` - ii .0,,4,,.4 _ 2.-21t2.24: = 2- 84 C 2.. 2 �� I pY 1►'ttoml�ty V2 �- , ' �i„ar r W - �3. Z ig Pd ►�^�'z►^Q = iy9 -41'4- e A/.ek Po,z1• i+IOmoYVF _ Ng. • 53 -o 7 .: 66 .34 /� No t� : 7 a bo.lrf, Grr:di,kar `vl rki waves c-Afil- 4 % r\tp m00 s / a ti Vi' P toe //the tiv 8 I a T /.» . 7E a61/34 b- l 4% attil _ Ei ik) ,_ 1vpJ /i LW* t, C✓l tt bo Rte. 1 T. 4 E . 3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92626 -3428 • (714) 641 -8777 h ‘: • g ge• . „.:,,„,„ _. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT I BY l/f1? I JOB NO. I SHEET 14. OF T,I all CAdkr wIS M1511 ire. da4a; gad - It &0144 n j % _ 456-34 / A- 4044 MI. % A-3•074.c✓s's'^ lm4i ; tgd- t k , v t Ta Ito Oie e ) ; 1 1 ?I 0 3) /4 . .>II1/ g 6 6. - 3 4 42.2e. rum 0 -, x _re' X b A 0 . g,4- 4;� r r`-+ - r c.„) ri • - 0- i SZ3' ,r GO _ a 7b - Pz - 0 -o/ t3 uxc P o- orb P = k = I-4' ;... c.i44 q c g C/C cf.44. F° i n/si'd . eic, k c4 !� c i . Ci ' 53 - 07 'CPI* Af ; 0-121R, ( - 0 0- 432-0- , P. 0 -00- eg L i 0 • a , 4ccer-,` 41- )e (.I i AV- = 1- ! 6 A. V. C (14e 1G 1(2 /t- dele & Ael A‘44 UM ft. G, b (Art vein V ~ J, ,-,..m ,e ceSu. )04-' I .) . � i / � . - 4 c / ii c / e Vt v t. ck v.¢-i h ,�,i c" ,r•e.,j . ., 1)6 I- UV'" i ,44,414. 0 fru ru m.4 ze it+• La 6 a .t,, The ve;p.Pferca tre.At old a• it Lar 1 Arrvz VQ [ H ayt-e �'Y�P.v�� ,s f v LXeJk r iCa 1 h 1'� 0 v 4,. Q a 0- v l kc, s . u- r t�c.0 e1 >J S TA 64+ I l• 74 Le 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626 -3428 • (714) 641 -8777 ...:/:.:\ illi Ale g 20testait, Ate. .F .._.,_ 16 lisump CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING I SUBJECT 1 BY 1 DATE 4, 1 1 2 / 0 1108 NO. I SHEET OF I 44 Ak 1.7 el -.,:....--- If )10 1 n t51••A Ceal. CA•hltf 1k- Alier 4- .-& Aatte /h,,Au tvevA4 I tow AAfr,.. utt.ve lei fr /kat (e...01,...-5) Lie E I Piv` 1 A r 1 - 1 IN Lt - WM& /wet ■te‘.. I /),.....‘,14. C -------- j). F 12(24 li- 4e'' # ) --= 43-R h 4 * 7- 0- '• abt el- C c 1 1 7 , 0 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626-3428 • (714) 641-8777 al ",.. Xie It g 20feeme 0 ot,,, ate. MEW CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING 1 SUBJECT I BY 'DATE JOB NO. I OF 1 Wilk I, N 4/0 ..t- /r) I SHEET 33-1 1 . . . Y % . w .. 1 gu 1 A "' A • . z 1 1 a V r k V 2 1 ak 1 ts. I ,, -, • . Z 0 I-- It . i tli.j4-4 : \ –1 'W . ct / „ I I , 7 0 i A.1 V) Ilk \ . 1 k0 i e ' 0 Z . 1 _ " . . _ - \ .?•.. 1 3170 REDHILL AVENUE • COSTAMESA. CALIFORNIA 92826-A49R A 171A ALM -0777 c:.:.1: • hie g PO li eet 4 takiP gge. IIIIIIIIMIF CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY 1 DATE JOB NO. I SHEET .19 OF 1 ■te nit; . N 4 I 1 0 ) I 35: , 18- 33 I i 1 - I Goa:1-- Mew:. ' l q 1.7 b - i ' 14F / .5- ‚'c }- . • / ' I . Ni r1 -... i v 147 Es 1 ■ 4 / 04 .... . 0.2 • . . . i . o o . •14 t ":1 r 10 7 if'cA .C. .9.1 4 .0" di ..,_________rii ;- 1 -01? • Il l C - f''v vybes n # 4 18 qc -c- bay # , ,•6ii), cfe qr 9 9 " cic r. Non' • 0 FlpiA-, ..e.Ara ,eit uet Dv-% , &4L1 it c cia Arcot ft, yerut phi. c ..., , 1 110 / 1 istes.lin Cry, e v e..6 on _ tiks it /s f„ 4,..41 4.4 . 2 ) y Co roe-teW AAA ...1:6 -es-it (' rs...)4 DA; VW vr 4. Qv It be, v Af V A 1,(x) taal a/AA th4)i v viAlatc,are ,& / ( Pea vel t4 Issu)- or.l., pri ill; nturr, a...A *um.: ' 3) UAC C A LIAP f`tr 4 Undav GLA 40v V411 /s pp c. ' 4, ' cgtIsmA gilij ,: 17, 11111 3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92626-3428 • (714) 641-8777 1 i T. N. 17-n ...< 20 6F- . ! 2 -R s-s I - *19 , /0-0 LoN6 -, 2- , c A'."7---------- >, 2 - it 5 - 3 --C ' im.. 1 \•..1 . " 4._ .-' 1 Ill 2 - *1- 5"-r 40/.16 AL- ! , AO ....,,---------------, — I 1 MI illl-.'"IRMIiiii/NIII4iirdinAlilt -. . 14 .■ Aratili 7\ —- 1 --- t- --7 . ,,,,, /./ ., s .R- .9-1 , qt ?1:- %ik - .1 I 7 eN 6 1 - 111-8•S I \ 1 1 108 yb c_. N b , i 's N ■ \ ' I kds N ' el T ) \ \ 0\1 , , 1 II 1 . uc h / / , I I „44 10 . 4 1 4 !i ' C' W., 1--‘‘ I &: s • , :r0r- - Y .41111.111111111V . POP. E..K4 D L - V I In 1 14R U.. o ts■LY ' OP L ' a , 1 '`. • I_ _ 1 2- * q -.4-01-0-6, /-4t1 - 13.0 to,,,6 2 e i -515-40,46 - 2 - -4* - Ai)Dr PE I N FOCC M ENT DE7 'L p - rns- erg) (nos-L L RI g Ti; 64.+1 -74. Pa_ NKE-p FACE C POS. l'clorl•E INJ 7- ) . AINP oU PACE 0.4E-6. Mort-c:-,N.17) SCALE- , vE ET I 3- 0 Poe.. I • , . i i 11.111111.. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING 1 SUBJECT I BY I DATE I JOB NO. I SHEET OF 1 41/0 1) Ex. T12P 2- 0 s ! 0 to N6 i 41111V0A 1 t p,,,,,,,,, , I illgilimile ••••■■• Al •S r Efch.c- 2-,1 1 FOR Lonie. 4Q1111 N r" PL AN 0 F TO P Y Le OF aheS F0 k opeNiN 6 ExTRA 2 - * -- R. 6 LoN6 Mlle !PI ALoN 6 s i>. I/ ') Xi/tea/ • ,I0,1 L-001-1: 2.-- 5=c, LoN6 c . S \ I I lak E,o-fok 2 - #Z.- c:o Lo916 411111rIllow Z a#4,4 OF aorro Al 4-AyEg, Of e,Atzs 'Q� Z Ae 1 H OPE-NIA/6 1 21C2 - --- r : 40 A a MN op.evlino). ba ws 40.r.t .0,11%,- .6,01.,..4 in ad4010v, 4 M.., eGui,',.,„ i _7:7,, bov4 kaudecre da.41‘ fr huAvA Agx.trt A 1:,.. C.& v ita.i4zar I" . t 1 4evi it 1 , 1 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626-3428 • (714) 641-8777 i PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** <<(<<<<<(<(<(<<(<<<<<(((<<(((<<<<((((<>)))))) )))))>>)>)>)>>))>>))))>))>))))) (C) Copyright 1982 Advanced Engineering Software LAES] Especially prepared for: HALL & FOREMAN, INC. I; (<(<(<(<<(<(<(<((<<(<<<(<<<(<<(<(<<((<>)>>)>) > > > >) >) > >) > > > > > > > > > > > > > > > >)) > >> * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * INDUSTRIAL AREA HYDRAULICS FOOTHILL S.D FROM UP /S OF JCT LINE L * * 0 25 YR BEGIN STA 6965.38 FOOTHILL DRAIN * * VENKI.N, JN 3810 -04, 2/26/87, DISK # JRM 4 * ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA f'! DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: , NODE NUMBER = 6965.38 FLOWLINE ELEVATION = 1207.62 PIPE DIAMETER(INCH) = 81.00 PIPE FLOW(CFS) = 450.66 •' ASSUMED DOWNSTREAM CONTROL HGL = 1217.480 r r <(((<<<<<<<<<(<<<<<<((<<<<<<<<<<<(<<(<)>>>)>) > > >) >) > > > > > > > > > > > > > > > > > > >))) >>) Le Advanced Engineering Software LAES] ,,,.,, SERIAL Nor. A0483A REV. 2.2 RELEASE DATE:12 /17/82 <<((<<<<<(<<<<<<<<<<<<<<<(<<<<<<<<<<<<>>))>)>> > > >)) > > > > >))) > > > >) > > > > > > > > > > >> 0 id PRESSURE FLOW PROCESS FROM NODE 6965.38 TO NODE 6970.05 IS CODE = 5 UPSTREAM NODE 6970.05 ELEVATION = 1207.66 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 443.5 81.00 35.765 1 2. 395 0.000 2.386 2 450.7 81.00 35.785 12.594 -- 2.463 3 7.1 18.00 1.767 4.029 90.000 - 4 0.0 0.00 0.000 0.000 0.000 - S 0.0===05 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(02*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3) 04 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM FRICTION SLOPE = .00585 1; DOWNSTREAM FRICTION SLOPE = .00604 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00595 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .028 ENTRANCE LOSSES = 0.000 k MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = .077 MANHOLE LOSSES = .123 C''.. JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) ri JUNCTION LOSSES = .154+ 2.386- 2.463+( .028)+( 0.000) = .151 NODE 6970.05 : HGL= < 1217. 708> ;EGL= < 1220. 094> : FLOWL I NE= < 1207. 660> II = PRESSURE FLOW PROCESS FROM NODE 6970.05 TO NODE 7449.74 IS CODE = 1 UPSTREAM NODE 7449.74 ELEVATION = 1211.97 II CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 443.54 CFS PIPE DIAMETER = 81.00 INCHES ii PIPE LENGTH = 479.61 FEET MANNINGS N = .01300 SF=(Q/K)**2 = ( ( 443.54)/( 5797. 875)) * *2 = .0058523 HF =L *SF = ( 479.61)*( .0058523) = 2.807 NODE 7449.74 : HGL= < 1220. 515> ;EGL= ( 1222. 901 > : FLOWL I NE= < 1211. 970) Ili I; PRESSURE FLOW PROCESS FROM NODE 7449.74 TO NODE 7454.41 IS CODE = 5 UPSTREAM NODE 7454.41 ELEVATION = 1211.99 " CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 443.5 84.00 38.485 11.525 0.000 2.063 2 443.5 81.00 35.785 12.395 -- 2.386 C' 3 0.0 0.00 0.000 0.000 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =05 EQUALS BASIN INPUT = == r Lit LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-03*V3*COS(DELTA3) Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE _ .00482 DOWNSTREAM FRICTION SLOPE _ .00585 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00534 I; JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .025 ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES +r! MOMENTUM LOSSES = -.000 MANHOLE LOSSES = .119 ii JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = .323+ 2.063- 2.386+( .025)+( 0.000) = .144 r i NODE 7454.41 : HGL= < 1220. 982> :EGL= ( 1223. 045> : FLOWL I NE= < 1211.990> I; PRESSURE FLOW PROCESS FROM NODE 7454.41 TO NODE 8009.74 IS CODE = 1 UPSTREAM NODE 8009.74 ELEVATION = 1214.85 r� ,; CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): ' PIPE FLOW = 443.54 CFS PIPE DIAMETER = 84.00 INCHES PIPE LENGTH = 555.33 FEET MANNINGS N = .01300 II SF=(Q/K)**2 = ( 443. 54) / ( 6388. 366)) * *2 = .0048204 HF =L *SF = ( 555.33) * ( .0048204) = 2.677 NODE 8009.74 : HGL= < 1223. 659) ;EGL= < 1225. 722> ; FLOWL I NE= ( 1214. 850) .rte = = = = 1; PRESSURE FLOW PROCESS FROM NODE 8009.74 TO NODE 8014.41 IS CODE = 2 UPSTREAM NODE 8014.41 ELEVATION = 1214.87 CALCULATE PRESSURE FLOW MANHOLE LOSSES(LACFCD): ii PIPE FLOW = 443.54 CFS PIPE DIAMETER = 84.00 INCHES PRESSURE FLOW AREA = 38.485 SQUARE FEET `: : FLOW VELOCITY = 11.53 FEET PER SECOND i; VELOCITY HEAD = 2.063 HMN = . 05* (VELOCITY HEAD) = .05*( 2.063) = .103 NODE 8014.41 : HGL= ( 1223. 762) ;EGL= ( 1225. 825) ; FLOWL I NE= ( 1214. 870) :: == = = PRESSURE FLOW PROCESS FROM NODE 8014.47 TO NODE 8053.95 IS CODE = 1 i; UPSTREAM NODE 8053.95 ELEVATION = 1215.42 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): ii RIPE FLOW = 443.54 CFS PIPE .DIAMETER = 84.00 INCHES PIPE LENGTH = 39.54 FEET MANNINGS N = .01300 SF= (Q /K) * *2 = ( ( 443.54)/( 6388. 366)) * *2 = .0048204 r HF =L *SF = ( 39.54)*( .0048204) = .191 III NODE 8053.95 : HGL= < 1223. 953> ;EGL= ( 1226. 015> ; FLOWLINE= < 1215. 420) _______ = PRESSURE FLOW PROCESS FROM NODE 8053.95 TO NODE 8055.45 IS CODE = 5 UPSTREAM NODE 8055.45 ELEVATION = 1215.44 I II CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 440.1 84.00 38.485 11.437 0.000 2.031 2 443.5 84.00 38.485 11.525 -- 2.063 3 3.4 18.00 1.767 1.918 90.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =Q5 EQUALS BASIN INPUT = = = ist LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: r DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) i: UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00475 DOWNSTREAM FRICTION SLOPE = .00482 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00478 iiii JUNCTION LENGTH(FEET) = 1.50 FRICTION LOSS = .007 ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES li MOMENTUM LOSSES = .031 MANHOLE LOSSES = .103 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) ri JUNCTION LOSSES = .063+ 2.031- 2.063+( .007)+( 0.000) = .110 ii NODE 8055.45 : HGL= < 1224. 094> ;EGL= < 1226. 126> ; FLOWL I NE= < 1215. 440> i; PRESSURE FLOW PROCESS FROM NODE 8055.45 TO NODE 8155.73 IS CODE = 1 UPSTREAM NODE 8155.73 ELEVATION = 1216.84 r CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 440.15 CFS PIPE DIAMETER = 84.00 INCHES I: PIPE LENGTH = 100.28 FEET MANNINGS N = .01300 SF= (Q /t<) * *2 = ( ( 440.15)/( 6388. 366)) * *2 = .0047470 HF =L *SF = ( 100.28)*( .0047470) = .476 ii = = PRESSURE FLOW PROCESS FROM NODE 8155.73 TO NODE 8155.73 IS CODE = 5 ____ UPSTREAM NODE 8155.73 ELEVATION = 1216.84 i- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 374.3 84.00 38.485 9.726 0.000 1.469 2 440.1 84.00 38.485 11.437 2.031 3 65.8 48.00 12.566 5.239 45.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0. O = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(02*V2-Q1*V1*COS(DELTA1)-03*V3*COS(DELTA3) Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = .01300 ii DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00343 DOWNSTREAM FRICTION SLOPE = .00475 1m AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00409 ii JUNCTION LENGTH(FEET) = 2.00 FRICTION LOSS = .008 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) Img JUNCTION LOSSES = .927+ 1.469- 2.031+( .008)+( 0.000) = .374 NODE 8155.73 : HGL= < 1225. 506> ;EGL= < 1226. 975> ; FLOWL I NE= < 1216. 840> r PRESSURE FLOW PROCESS FROM NODE 8155.73 TO NODE 8207.93 IS CODE = 1 UPSTREAM NODE 8207.93 ELEVATION = 1217.56 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 374.32 CFS PIPE DIAMETER = 84.00 INCHES Er PIPE LENGTH = 52.20 FEET MANNINGS N = .01300 SF= < Q /N.) * *2 = ( ( 374.32)/( 6388. 366)) * *2 = .0034333 HF =L *SF = ( 52.20) *( .0034333) = .179 r NODE 8207.93 : HGL= < 1225. 685> ;EGL= < 1227. 154 > ; FLOWL I NE= < 1217. 560> irr r PRESSURE FLOW PROCESS FROM NODE 8207.93 TO NODE 8207.93 IS CODE = 5 UPSTREAM NODE 8207.93 ELEVATION = 1217.56 CI CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 366.4 84.00 38.485 9.519 0.000 1.407 I; 2 374.3 84.00 38.485 9.726 -- 1.469 3 8.0 18.00 1.767 4.510 90.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0. 0 = = =Q5 EQUALS BASIN INPUT = = = LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=( Q2* V2- Q1 *V1 *COS(DELTA1 )- 03 *V3 *COS(DELTA )- Q4 *V4 *COS(DELTA4) >1((A1+A2) *16.1) UPSTREAM MANNINGS N = .01300 f!'' DOWNSTREAM MANNINGS N = .01300 iii UPSTREAM FRICTION SLOPE = .00329 DOWNSTREAM FRICTION SLOPE = .00343 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .0033E JUNCTION LENGTH(FEET) = 1.50 FRICTION LOSS = .005 ENTRANCE LOSSES = 0.000 b JUNCTION LOSSES = DY +HV1 —HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = .124+ 1.407— 1.469+( .005)+( 0.000) = .078 1; NODE 8207.93 : HGL= < 1225.826> ;EGL= < 1257. 233> ; FLOWL I NE= < 1217. 560> i l l—, PRESSURE FLOW PROCESS FROM NODE 8207.93 TO NODE 8217.31 IS CODE = 1 UPSTREAM NODE 8217.31 ELEVATION = 1217.69 i; CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 366.35 CFS PIPE DIAMETER = 84.00 INCHES PIPE LENGTH = 9.38 FEET MANNINGS N = .01300 SF= (0 /N.) * *2 = (( 366.35)/( 6388. 3663) * *2 = .0032886 HF =L *SF = ( 9.38) *( .0032886) = .031 NODE 8217.31 : HGL= < 1225. 857> :EGL= ( 1227. 264> ; FLOWL I NE= < 1217. 690) END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM r I; rk err 6 4 . ?4#41.1 CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT I BY I DATE I JOB NO. I SHEET OF 1 i4C444.'ors 1 F- 0 pro%o davdlopn-ionf 1 IZ a v fAx N s R s -1.'►ti.r I t3t'rthd bye i ie- n / /Are 0 c k- Q.•d C ke v V, Ave." u 1 irL4 aim' effr y inc- III Ob Q/oo 62. AAA ,L ■ a_c c om oda: cd l in lx, n i,( c-ke vv y u t n w u e i r d,l y f „ 1 ' a , X l d r t 3 Y rn d - a in 4 tow, C6? t c — E - 4-2..r- = 4 t o - 46 C a-4S, . run d fi tk( a_ be arc »rr .Q n 1i' an.e_v1 cr v,e. i itk .P,x .vs F,• f car► a(. ke.... 1 AM /eor Cowturt44,1 AA 530 0 9 c - ...A. Fov TL ,ex_ ti rat Con 41 t fn /F Vc.a k `a7” a c U S 7 s m tik 1 < 2.'rt ita4 6,¢24,1 m o d., tzact ull ul-.,r tau 1 71i A F F - 1 C v v y r 4/0• '. 6 C .. 4. 4 /So eA 4k tZ pva #(14-01 " tlavrn O�IrGt GLtn^ CtJ� /lis �x1%lt� r 1-lcno f/1 AVD ea( cor.st - ruc ` . C(uann4.1 ?r/ /- Y/fl i r, ir.A vv 0 / i,e i4 ("5 Li Ccrd:Lar (530- o5 — 4/0-46= 119. 63 cfi4) 4 -� Povt s .6a.-4,e ;e. p e". ` A 8esx. cav , � / pp An a(4A+'9 L4 a c(vd'Y1 ITS L d 0 C ke ry y A n us cien� Ncry r1 1 tad, 1-,',- 1-,',- t,r.6; ►; MA v+ ►, ; i 1 /J l ,r,,..,1� ik. kwr, f % .tPnty b 1 k 14. i n is c v1Kai _, %n 64,.evrvt am �C R ,t e ,- / t'Led f b orcu 1,y ii C.s..) i cA Ito I yv e i r, r , Ma it- "1 1 rtteku t u ;fi ktot )-e oh vi, t&t. at . 1 n l P,0p. C1tin raf _ 0 -025 Yl 16y Sty GZ nd 6orrn Cvo.Y _ - 0 -Ole i 1 3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92626 -3428 • (714) 641 -8777 N I ------- =============-------------- ------====-----================== ** RESULTS OF IRREGULAR CHANNEL ANALYSlS ** CALCU_ATlONS BASED O ����INGS EQU�TIOrq WITH ALL DIMENSIONS IN FEET OR FEET AND SECONDS I <<< (<< < << <<< << < << < < < < < < << << (< << ( < ( < < (<} >>>>>> >>> >>> >> >>>> > >>>> >> >>>>>>> >> > > > : r] crl. 1983 Advanced Enozneerinq Software [AES] (<<<<<(<<<<<<<<<<<<(<(<<<<<(<<<<(<<<(<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> li **********UE �- I3*, O- R- * N.BASE LINE TEMP CI-IAN HYDRAULICS * * Q 10GYR EXlST DIFFER�%10E (REST ALONG CHERRY AVE ) * Ni * C. LINE ST. STA 7420.52 (BASE LINE ) , VENKI.N v JN3810, 4/29/87 * **************************************************************************** li * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 1 0.00 1307.40 2 9.00 1304.20 3 27.00 1304.20 E 4 33.00 1305.90 SUBCHANNEL SLOPE(FEET/FEET) = .003100 SUBCHANNEL MANNINGS FRICTION FACTOR = .025000 SUBCHANNEL FLOW(CFS) = 120.2 �� �� SUBCHANNEL FLOW AREA(SQUARE FEET) = 32.53 SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 3.694 SUBCHANNEL FROUDE NUMBER = .595 SUBCHANNEL FLOW TOP-WIDTH(FEET) = 27.14 0� SUBCHANNEL HYDRAULIC DEPTH(FEET) = 1.20 c TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 119.50 COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 120.17 ii ESTIMATED IRREGL CHANNEL NORMAL DEPTH WATER SURFACE ELEVATION 1305.64 I; NOTE: WATER SURFACE IS BELOW EXTREME LEFT AND R{GHT BANK ELEVATIONS. li ii; -- ' r,,o- r _. 1 i F -- ( r * * * * * * * * * *DESCR1PTION OP RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *. * N. SASE LINE TEMP CHANNEL HYDRAULICS CALCS ' * 0 100 DIFFERENCE =1 1 "3. 5CF S, STA 7624.57 4 -, * VENKI. Nei. 3N3810, 4/28/87 **************•****************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * *• *4, I * ENTERED INFf_1R 1P T 1ON FOR SJBCHANNEL NUMBER 1 NODE NUMBER "X" COCRDINAl ''Y" COORDINATE 1 0.00 1307.85 2 7.50 1305.60 3 25,50 1305.60 4 33.00 1307.90 SUBC:H 4NNE S_OPE (F EET/FE ET) = . 0081 00 SURCHA wNF,_ Nh I NCIS FRICTION FACTOR = .025000 ;S+_H hi.4h! , F...OiJ (CFS) = 1 SUBCHPr• 4EL - AREA (SOUI-tRE F :F T) = 23.5f; SUBCHA''JNEL F•LO4„ VELOCITY (FEET/SEC.) - 5.073 SUBCHANNE_ - ROUDE NUMBER = .924 JRt NEL GLOW TC P -W D r (F" EE f ) = 25.19 S.. 2 1 iii i E ..:�.�i -:, G�AJ�.:v:._ +_ �-�YIa�tA�1LI.0 I)E�' "�H (FE.� , = .94 O 1 J"iw.. . T KRPl?'_!:.f-R C fK T; DW (CP_ WANT = 1 . . 3. 5 f 4 ._ . u"r!D+_• .f F Mr il! t L_ - R ct`ft:.att; t.". (fP Vii) = 1)q.' ET t r i t r D 1 R R 7-, F _ "+ f i N ^+ M 'r' r Pte`- 1:11-7:R : `'+C� +`_ '�—� .S'C L: r^` ^^�f'a^ . ... _,. � �. :,,,. 1���'r f"I !%r ti;_ +�[ A 7E E t. ". E . YP' ] . . . . . e . . . .. ,, . . . . . . _ r. . . . . . . . . . 130S.69 Nn - P: ' -i ;1. - ' h•' - 1 . . >s r F,- .4N. -. _E JC -tV.:. 0� - - -----=--- - - -----=------ HYDRAUL}C ELEMENTS - I PROGRAM PACKAGE -/' <<<<<<<<<<<<<<(<<(<<(<<<<<<<<<<<(<((<<>)>>>>>>>>>>>>>>>>>>>>>>}>>>>>}>>>>>>> (C) Copyrzgnt 1982 Advanced Engineering Software [AES] <<<<<(<<<<<<<<<<<<<<<(<<<<<<<(<<<<(<<>>>>>>}>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<(<<<(<<<<(<<<(<<<<<<<(<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>}>>>>>>>>>> ~~ Advanced EngineerinD Software [AES] REV. 2.0 RELEASE DATE:12/30/82 1; < << < << << << <<<< << < < <<< << << << <( (< <<< (< <<>> >> >>> > > > > >> >>>> >>>>>>>> >>>> > > > >> > > > **********DESCRIPTTON Ur= RESULTS******************************************** * N. BASE LINE BOX CULVERT CROSSING CHERRY AVE * Q 100YR DIFFERENCE DBL 1.25):8 BOX Q=60CFS FUR ONE BARREL SrA 79+0/.51 * * VENKI.N, JN 3810, 4/29/87 * ~~ **************************************************************************** **************************************************************************** E >> >>CHAK:,!EL INPUT INFORMATIOK< < < < CHANNEL Z(HORIZONTAL/VERTICAL) = 0.00 8ASEWIDTH(FEET) = 8.00 CONSTANT CHANNEL SLOPE(rEET/FEEl ) = .013600 UMIFORM FLOW(CFS) = 60.00 �A�NIMGS FRTCTIO R . CTU = 0140 __= _____ NORMAL-DEPTH FLOw INFORMATION � _ _ - :>> NOpM,L DEP�H(FFE�) = . 8 .„..w TOP- WIDTH(FEET) = 8.01/1 FLOW ARE(SQUAHE FEET) = 6.36 HYDRAULIC DEPTH(FEET) = . 80 w� FLOW AVERAGE VELOCITY(FEET/SEC. ) = 9 43 UNIFORM FROUDE NUMBER = 1.863 PRESSURF: + MOMENTJ�(POUNDS = l254 ^ 31 N� AVERAGED VELOC]7Y HEAD(FEET) = 1.361 SPECIFIC ENERGY(FEE = 2.176 CRITICAL-DEPTH FLOW INFORMATION: CRITICAL FLOW TOP-WIDTH(FEE = 8.00 CRITICAL FLOW AREA(SQUARE FEET) = 9.64 CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 1.21 CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 6.22 CRITICAL DEPTH(FEET) = ).21 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 1086. 12 ^-� AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = .60: CRITICAL FLOW SPECIFIC ENERGY(FEET) = 1.807 ~ ~ **********DESCRIPTION OF RESULTS******************************************** * S.BASE LINE BOX CULVERT CROSSING CHERRY AVE * * 0 1069YR DIFFERENCE 119.5CFS STA. - 7 , 34-o/A07 * * VENKI.N, JN 3810, 4/29/87 * **************************************************************************** N� **************************************************************************** >>>>CHANNEL INPUT INFORMATION<<<< CHANNEL Z(HORIZONTAL/VERTICAL) = 0.00 BASEWIDTH(FEET) = 16.00 CONSTANT CHANNEL SLOPE(FEET/FEET) = .013600 �� Q� UNIFORM FLOW(CFS) = 120.00 MANNINGS FRICTION FACTOR = .0140 NORMAL-DEPTH FLOW INFORMATION: >>>>> NORMAL DEPTH(FEET) = .77 FLOW TOP- WIDTH(FEET) = 16.00 FLOW AREA(SQUAHE FEET) = 12. 30 HYDRAULIC DEPTH(FEET) = .77 FLOW AVERAGE VELOCITY(FEET/SEC.) = 9.76 UNIFORM FROUDE NUMBER = 1.961 PRESSURE + MOMENTUM(POUNDS) = 2563.96 AVERAGED VELOCITY HEAD(FEET) = 1.478 SPECIFIC ENERGY(FEET) = 2.247 CRITICAL-DEPTH FLOW INFORMATION: CRITICAL FLOW TOP-WIDTH(FEET) = 16.00 CR�TICAL . AREA(SQUARE FEET) = 19.28 CRITICAL FLOW HYDRAULlC DEPTH(FEET) = 1.21 „TT-2,_ =LOW AVERAGE VELOCITY(FEET/SEC.) = R. a.: CR:TIC�L DE = 1.21 . CR�T�CAL FLOW PRESSURE + rTUMENTUM(POUNDS) = 2172.24 AVERAGED CRI HEAD(FEET) = .60. 0� CR�-��CA� �LOW SoECIFIC ENERGY(FEET) = 1.807 PRI A , 1 **********DESCRIp O.: RESUL ti * N.BASELINE - EmP CHArJNEL HYDRAULICS * - * Q =119.5CFS,FOR CLOMP DIFFERENCE "STA 7921.57 � * VENKI.N,JN3810, 4/28/87 * **************************************************************************** * ENTERED ■ INFO�IATION FOR SUBCHANNEL NUMBER 1 : �� U� NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 0.00 1311.80 2 7 50 1308.68 II . 3 25. 50 1308. 68 4 30.50 1310.20 SUBC�ANNEL SLO�E(FEET/FEET) = .013600 N� SUBCHANNEL ^ MAN�INGS FRICTION FACTOR = 025000 ; 0� ^^^^^^~^^^~^^^^^'^^~~~^^^^^^^^^^^ ^^^^^~^^^^~^^^^^^^^^^^^^~^^^^^^^^~^^^~^`'`` �� SUBCHANNEL FLOW(CFS) = 120.5 �0 ~� SUBCHNEL FLOW AREA(SQUARE FEET) = 19.69 SUBC-(ANNEL FLOW VELOCITY(FEET/SEC.) = 6.118 SUBCHANN�L cROUDE NUMBER = 1.176 I SUBCHANNEL FLOW T[iP-WIDTH(FEET) = 23. 41 SUBC�AmNEL HYDRAULIC DEPTH(PEET) = .84 E _ __ TOTAL IRREGULAR CHANNEL FLOW(CFS> WANTED = 119.50 , COMPUTED IRREGULAR CHANNEL FLOw(CFS) = 120. 48 ES IRREGUL1-,9 CHA�NEL NORMAL DEP H WATRR SURFACE i: R ...EA - ION............~................ 1309.63 r WL'I SURFACE S BELOW EXTRENE NU LE�T -- RIG�T T- E E«ATI ii II 1 �� 1 � . 1 E **•3E *-}F-)Fir9F-Y= *DPP 'n T D ,r ric R= `, ILTS* * * ** ***** ****-3 * *** *** * ************* ******# N. Bt 1SSE LINE TE;smP - DRAHL T S CALCS * Gi =11'3. C S. i��11�'�I1YR DIFFERE:�uFE. STA 7`E4E7.57 * * VENRI. N, TN 3810.4/E8/87 ************* * **** *** **i ********************* ****************** *** ********#: `;\iTER I k!F1ORMA T I O u FOR Si_1BCHANNEL NUMBER 1: NODE NUMBER "X" COORDINATE Y COORDINATE 0.00 1311.70 2 10.50 1309 . c' IC'1 3 h.'4' 1=30. 20 awr SL ?BCi -r�.: NNE:L SLOPE (FEET/ -E.?= ('.) = .010400 ill S. UECH•- NEL MANN' S FRtIC'TICjN FACTOR = .025000 opir ......... a4 � �t _ • Hr-- i3ik�EL. FLOW i j . `..... ............... > .................. . iii 1e0.6 SLiri. HAN NFL F LO i AREA (Si.lARE FEET) = 22 SUEZ! ,ANNE.L FL.O4 VELOCITY (FEET/ SEC.) = 5.431 II S.1BCHANNEL FRO IDE. NUMBER = 1.034 3L 1B CHANNE L 'f" LOW ; OP--W I D T H t t " EET) = 25. 92 SiUE CHANNEL =HYDE. )1 UL. l C DEPTH (FEET) = .86 TOTAL ': RREGULAR CHANNEL FLOW (CFS) WANTED = 1 19.50 CrOYP4P_ ED : R'REF. iJL.AR CHANNEL F 1L ((C =S,) _ 2 ,� O , a .. icy. EF.TIMPTED IRREG.—AR CHPNNE hi RrY PI • € n .. � �.. � � r1 t HL O E r � , -{ �.�.�' -1 � F_ �; � f..l r`� �= A L.::... iii r ':;i 7 -- T 7 . S_ C . t s BEE iv` EXTREME T1 LL LL ili l h3 II Ihi 1 * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * *** *** * * * * ** * ** * * * * * * * * * * ** • * N.BASE LINE TEMP CHANNEL HYDRAULICS +: * 0 100YR D i Fc ERENCE =11 S. 5CFS.. STA 8298-01 * VENKI. N. 3N 3810, 4/28/87 ÷ ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** II * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 II NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 0.00 1314.95 II 2 6.00 1312.75 3 �4. .. 1312. 75 4 29.00 1314. 35 II SUBCHANNEL SLOE (FEET /FEET) = .010400 SUBCHANNEL MANN I NGS FRICTION FACTOR = .025000 `_Y' SUBCHANNEL FLOW(CFS) = 121.4 SJBCHANNE L FLOW AREA (SQ.UARE FEET) = 21.67 SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 5.604 I SUBCHANNEL !- ROUDE NUMBER _ 1. 040 SUBCHANNEL FLOW TOP-WIDTH(FEET) = 24.03 S NCH ;R NE:L HVDR _:L I C D= PTH (FEET) -. . 90 11 `_OTr=?L 1 RREG ,?L A r CHANNEL FLOW (CFS) WANTED = 119. 50 I I C�°Jrr T ED IRREGULAR CHPNNE(_ FLOW (CFS) - _21.43 C 8' r IPT'ED I RREG c7,1-A N!'EL NORMAL DEPTH WATER SURFACE 11 _ - -` '': ....... .................. L. I NOTEg NOT WATER SIJRFPLE_ L 8 BELOW EXTREME L PND R G °(T bi4N K c_E'VAT I ONS. 1 !! !! !! • **********DESCRIPTION OF RESULTS************+'"***************************** * N.BASE LINE TEMP CHANNEL HYDRAULICS * Q 100YR DIFFERENCE=119.5 CFS, STA 8839.21 * VENKI.N, JN 3810, 4/28/87 t ************************+********************************** ***************** * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 0.00 1320.80 ' 2 ' 7.569 1318.35 • 3 25.50 1318.35 4 30.00 1319.80 SUBCHANNEL SLOPE(FEET/FEET) = .010400 SUBCHANNEL MANNIN6S FRICTION FACTOR = .025000 SUBCHANNEL FLOW(CFS) = 119.9 SUBCHANNEL FLOW AREA(SQUARE FEET) = 21.59 SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 5.554 SUBCHANNEL FROUDE NUMBER = 1.038 SUBCHANNEL FLOW TOP-WIDTH(FEET) = 24.29 -- SUBCHANNEL HYDRAULIC DEPTH(FEET) = .89 -- _ TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 119.50 COMPUTED IRREGULAR OHANNEL FLOW(CFS) = 119.92 .(xT ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE ELEVATION 1319.37 vOTE: WATER SURFACE IS BELOW EXTREME LE= AND RIGHT BANK ELEVATIONS. ^�' II . IV ** RESULTS OF IRREGULAR CHANNEL ANALYSIS ** • I CALCULATIONS BASED ON MANNINGS EQUATION WITH ALL DIMENSION'S IN FEET OR FEET AND SECONDS II <<<(<<(( <t <ttt <<<<<<t < <t <<(<<( <<(<( ((0) ))>>> ) > >)) > > > >) > >>> > > > > > > > > >) > > > > > >> II (C) Copyright 1983 Advanced Engineering Software EAESJ <(< t<(<<( tt( t(<(<( t<<<((< t<<<<<<<<<<(()>)>>> > > > > >> > > >) > > > >) > >) > > > > > > > > > > > >> II * * * * * * * * * *DESCR I PT .T. ON OF RESULTS******************************************** II * N. BASE LINE TEMP .CHANNEL HYDRAULICS * * 0 100YR (EXIT) - (0 00 -025 PROP. CHERRYAVE) ,CENTERLINE BASELINE S T A 9J48.21 * * VENKI. N. ,IN 3810, 4/28/87 * ********************************************** * * * * ** * * * * * * * * * * * * * * * * * * * * * * *•: 11 * ENTERED I NFORmA T 11N FOR SUBCHANNEL NUMBER 1 : II NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 :. 00 1323.45 ' i cy 2 5.00 1321.70 3 23.00 1321.70 4 27.00 1322.80 I/ S UBC:1ANN . L SLO'E (FE._ r /FEET) = .0)00m0 S tT:{I_r % 1y N N ,c FRICTION i �� �, :�, ��._ r; _�.,,.:._ rR1.' CN FACT,.]n� = ��..Jt"LZ+0 II ....... t . SUR C- ANNE_ . FLOW (CFb) = 120.1 t `. ;B :H+=i�vN . c OW c Rr:A « 2� (SQUARE FEET) 01 S f CHANNEL i LCM VELOCITY (FEE t /SEC.) - 5. 459 II ;...J CHres _ = ROLJDE r ;f;=1E "t = 1.019 P,' r I,,, I (� � Y �•• ; • r,TH ( EET) 24.69 l !L'; � "' � �•' H +�t' L_. "- ! . 1 TI I� I" n r 1^ - .iii.„- _i. „. _ , t ii, i_.__.L,_.. 11 t-' . -! lr'C. C. J = . ii =i I _ t _ - r CHANNEL 1 = T�!Trl_. ; RlEC-�':_.. HFt ”' Luw t Cr S } WANTED = 119.50 I C;O M T U r ED 1 •RC F-1ANNrEL F IW (CES) = 120. 14 .... ?M . , ED I RRE:GcUL_f- R CHANNEL NORMAL Alm' I i i WATER SURFACE II .._ ._ _ I ' 1 .. . . . . . . . . . . . .. . . r. . . . . . . . . . . e . 1322.73 !..., .r,D J.:" SL2R7f1CP "S FIFL'Jw PXTREt.IP - f7 w'' G4ry. 1E N-.. E S. il I II 1 J II I/ II * * * * * * * * * *DESCR1PT1ON 0;= RES LTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * N. BASE LINE TEMP. CHANNEL HYDRAULICS * II * 0 100Y R DIFFERENCE =1 13.5, STA 3:47.47 * * VENKI. N, JN 3810, 4/28/87 * ********************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * *.. II * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : NODE NUMBER "X" COORDINATE "Y" COORDINATE II 1 0.00 1324.15 2 _ 4.50 1322.70 II 3 22.50 1322. 70 4 27.00 13:3. 75 SUBCHANNEL SLOPE(FEET/FEET) = .010000 i f SUBCHANNEL MANNINGS FRICTION FACTOR = .025000 SUBCHANNEL FLOW (CFS) / [= t� 119.6 I/ S FLOW AREA (SL!UARE FEET) = 22.23 SUBCHANNEL FLOW VELOCITY (FEET /SEC. ) = 5. 373 B FROUDE NUMBER = 1.016 II SUBCHANNEL FLO} J TOP -WIDTH (FEET) = 25.54 S iBC±- ?Atut' E.L - D RNA M I C DEPTH (FEET) = . 87 II TOTAL r RRE.G._1LPR CHANNEL FLOW(CFS) WANTED = 119.50 CDMP }U T ED 1 RREOULP t Cr- ;ANNEL FLOW (C "S) = 11q.57 11 EST1AT'ED =RRE !L_- R CHANNEL !'.;ORM L DEPTH WATER S I r �.RrA_E __i vc.,T l iN 1323.7e II N : E: W TER SU;RFAi-:E .3 BE _OW EXTRE"IE II L`... AND V'.: BHT B -i r∎! i ` TIONS, It f 1 I/ II .. * *'RESULTS OF IRREGULAR CHANNEL ANALYSIS ** CALCULATIONS BASED ON MANNINGS EQUATION ;,, WITH ALL DIMENSIONS IN FEET OR FEET AND SECONDS I (<<<<<<<<<<((<<<<<(<<<(<<(<(<<<<<<<((<>>>>>>> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > >> I/ (C) Copyright 1983 Advanced Engineering Software CAESJ <<<(<<<<(<(<<<<<<<<<<<<<<<<<<<<<<<<<(<>>>>>>> > > > > > > > > > > > > > > > > >)))) > > > > > > > > >> II * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * N.BASE LINE TEMP CHANNEL HYDRAULICS * I * Q 100YR DIFFERENCE 119.5 CFS , STA 9560.00 * * VENKI . N. JN3810, 5/13/87 * ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** II * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 II NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 0.00 1327.35 2 4.50 1325.80 II 3 22.50 1325.80 4 27.50 1326. 80 SUBCHANNEL SLOPE(FEET /FEET) = .011300 it '` SUBCHANNEL MANNTNGS FRICTION FACTOR = .025000 SUBCHANNEL FLOW(CFS) = 121.4 I/ SUBCHANNEL FLOW AREA(SQUARE FEET) = 21.72 SUBCHANNEL FLOW VELOCITY(FEET /SEC.) = 5.590 SUBCHANNEL FROUDE NUMBER = 1.074 11 SUBCHANNEL FLOW TOP - WIDTH(FEET) = 25.83 SUBCHANNEL HYDRAULIC DEPTH(FEET) = .84 II TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 119.50 COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 121.41 11 ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE ELEVATION 1326.79 II NOTE; WATER SURFACE 3:S BELOW EXTREME • II LEFT AND RIGHT BANS( ELEVATIONS. ill II I A * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * ****** lb * N.BASE LINE TEMP CHANNEL HYDRAULICS * * Q 100YR DIFFERENCE 60 %, BOCFS, STA 10173.00 * * VENKI.N, JN3810, 5/13/87 * ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** I * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : I/ NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 0.00 1333.40 E 18.00 1333.00 II ;, 39.00 1332.80 4 45.50 1332.79 5 46.00 1332.70 II 6 64.00 1332.70 7 75.00 1333.60 SUBCHANNEL SLOPE(FEET /FEET) = .0132 II SUBCHANNEL MANNINGS FRICTION FACTOR = .025000 SUBCHANNEL FLOW(CFS) = 119.6 SUBCHANNEL FLOW AREA(SQUARE FEET) = 30.44 SUBCHANNEL FLOW VELOCITY(FEET /SEC.) = 3.928 SUBCHANNEL FROUDE NUMBER = 1.048 11 SUBCHANNEL FLOW TOP- WIDTH(FEET) = 69.73 SUBCHANNEL HYDRAULIC DEPTH (FEES ") = .44 TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 119.50 I/ COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 119.58 ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE ELEVATION 1 333 ' S i �7 ti1J• V II NOTE: WATER SURFACE IS BLOW EXTREME /I LEFT AND RIGHT BANK ELEVATIONS. 11 I I/ ! It 1 II * * * * * * * ** *DESCRIPTION OF RESULTS************* ********* ** ******** ************ * N.BASE LINE TEMP CHANNEL HYDRAULICS * * 0 10OYR DIFFERENCE 50% . STA 10407.4' * k ** ** * VENKI. N, JN 3810, 4/28/87 * s * * * * * ** lE* *�F�1F�1F�E•x•*** )E** * *** *•x * ** *** *** * ** * ** * *iF�iF•x••lFif•* *•! ••l * * *•� * ** ** *�lFit �l * *dt.•� * 11 * ENTERED INFORMATION FOR SJBCHANNEL NUMBER 1 : NODE NUMBER "X" COORDINATE "Y" COORDINATE I/ 1 0.00 1337.50 c 5. 50 1335. 60 3 23.50 1335.80 II 4 27.50 6. SC SUBCHANNEL SLOPE(FEET /� =EET) = .016100 SUBCHANNEL MANNINGS FRICTION FACTOR = .025000 11 SUBCHANNEL FLDW(CFS) = 60.2 SUBCHANNEL FLOW AREA (SQUARE FEET) = 12.02 II SUBCHANNEL FLOW VELOCITY (FEET /SEC. ) = 5. 00` SUBCHANNEL FROUDE NUMBER = 1.3 SUBCHANNEL FLOW TOP—WIDTH(FEET) = 22.03 It SUBCHANNEL HYDRAULIC DEPTH (FEET) _ . 55 II TOTAL IRREGULAR CHANNEL_ FLOW (CFS) WANTED = 60. 01 COMPUTED IRREGULAR CHANNEL FL (CFS) = 60. 2�E' w:a '' EST IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE A ++ ELEVATION 1336. 40 I/ NOTE: WATER SU1RFAE:E S BELDW EXTREME LEA"' AND R. G-4T BI-; t", ELEVATIONS. II _. II II II $ I/ � II ** RESULTS OF IRREGULAR CHANNEL ANALYSIS ** CALCULATIONS BASED ON MANNINGS EQUATION WITH ALL DIMENSIONS IN FEET OR FEET AND SECONDS <<(<<<(<<<<<<<<<<(<<(<<<<<<(<<(((<(<(<>))>>>> )) > >) >)))) > > >) >) > >) > > > > > >) > > > >> (C) Copyright 1983 Advanced Engi.neerino Software CAES7 <(<<<<(<<(<((<<<<<(<<<(<((((<<(<<<<<<<>>>>>>> > > > > > > > > > > > > > > > > > > > >) > > > > > >) > >> * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * S.BASE LINE STREET CAPACITY WITH BERM FOR Q EXISTING 100 YR * G? 100VR D I FERENCE =410.5 CT=S ( ALONG CHERRY AVE ) STA 7967.57 * * VENKI. N, JN 3810 5/6/87. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : NODE NUMBER "X" COORDINATE "V" COORDINATE 1 0.00 1311.85 E 5.00 1310.85 3 12.00 1310.85 4 12.01 1310.35 .-r:.. 5 50.00 1309.30 50.01 1309.97 7 63.00 1310.20 { L 77. 00 1 3 ? . 31 9 87.00 1312.20 SIJBCHANNEL SLOPE (FEET /FEE T) = .006600 SUBCHANNEL MANNINGS FRICTION FACTOR = .018000 SUBCHANNEL. F LcW (CFS) = 410.8 SUECHANNEL FLOW AREA(SOJA E FEET) = 61.67 SJBCHANNEL FLOW VELOCITY (FEET /:SEC. ) = 6. 639 SUBCHANNEL_ FROUDE NUMBER = 1.291 SUBCHANNEL FLOW TOP- WIDTH(FEET) = 75.39 SUBCHPNNEL HYDRAJL 1 C DEPTH (FEET) = .82 TOTAL_ IRREGULAR CHANNEL. FLOW (CFS) WANTED = 410.5o COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 4101.76 =ST MA T E.D I RR GULAR Ct-AM\EL NORMAL DEPTH WATER SURr-ACE E PT _ EVE+ IC) �i.........�,,..........,. 13:0.c-4 N-1 -};, , =I i E R C lR_ti'C 'S B=ELOW EXTREME __EFT Pr:D ELEVPT'Q S. II * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * S.BASE LINE STREET CAPACITY WITH BERM FOR 0 100YR EXISTING * ,.+ * 0 100YR DIFERENCE, 410. SCFS, STA 8498.01 <`° * VENKI.N, JN381I, 5/14/87 * ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** I/ * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : I/ NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 0.00 1314.75 li 2 5.00 1313.75 ik7 131 75 4 12.01 1313.85 5 37.00 1312.68 II 6 49.00 1312.13 7 49.01 1312.80 8 62.00 1313.05 II 9 72.00 1314.80 SUBCHANNEL SLOPE(FEET /FEET) = .009200 SUBCHANNEL MANNINGS FRICTION FACTOR = .018000 II N SUE�CHA NEL FLOW (CFS) = 414.4 SUBCHANNEL FLOW AREA(SQUARE FEET) = 56.64 II SUBCHANNEL FLOW VELOCITY(FEET /SEC.) = 7.316 SUBCHANNEL FROUDE NUMBER = 1.355 1 b- SUBCHANNEL FLOW TOP-WIDTH(FEET) = 62.52 SUBCHANNEL HYDRAULIC DEPTH(FEET) = .91 I/ TOTAL. IRREGULAR CHANNEL FLOW(CFS) WANTED = 410.50 COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 414.39 I ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SUR =ACE ELEVATION 1313.89 II NOTE: WATER SURFACE IS BELOW EXTREME LEFT AND RIG► -fT BANK ELEVATIONS. II 11 II II I/ II II * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * S.BASE LINE STREET CAPACITY WITH BERM * 11: * 0 = 410.5CFS , STA 8839.29 * v * VENKI.N, JN3810, 5/6/87 * ** * ** ** ** ** ** ** * ******* '******************** * *** * * * * * ** * * * * * * ** * * * * * * * * * * ** * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : NODE NUMBER "X" COORDINATE "Y" COORDINATE I/ 1 0.00 1319.85 2 23.00 1318.80 3 23.01 1318.30 4 49.00 1317.65 5 61.00 1317.10 6 61.01 1317.77 7 74.00 1318.05 8 84.00 1320.05 SUBCHANNEL SLOPE(FEET /FEET) = .010400 SUBCHANNEL MANNINGS FRICTION FACTOR = .018000 SUBCHANNEL FLOW(CFS) = 411.3 SUBCHANNEL FLOW AREA(SQUARE FEET) = 51.61 SUBCHANNEL FLOW VELOCITY(FEET /SEC.) = 7.970 SUBCHANNEL FROUDE NUMBER = 1.447 SUBCHANNEL FLOW TOP - WIDTH(FEET) = 54.79 SUBCHANNEL HYDRAULIC DEPTH (FEET) = .94 TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 410.50 COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 411.33 ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE ELEVATION 1318.80 NOTE: WATER SURFACE IS BELOW EXTREME ' LEFT AND RIGHT BANK ELEVATIONS. 1 r 1 I/ 11 II * *** * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * S.BASE LINE STREET CAPACITY WITH BERM * V ? V * Q 100YR DIFFERENCE 410.5 CFS, STA 9148.21 * * VENKI.N, JN3810, 5/6/87 * ? ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** II * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : NODE NUMBER "X" COORDINATE "Y" COORDINATE I/ 1 0.00 1322.90 2 13.00' 1322.50, II 3 63.00 1320:30 4 63.01 1320.97 5 73.00 1321.20 6 83.00 1323.20 I • SUBCHANNEL SLOPE(FEET /FEET) = .009600 SUBCHANNEL MANNINGS FRICTION FACTOR = .018000 II SUBCHANNEL FLOW(CFS) = 415.5 SUBCHANNEL FLOW AREA(SQUARE FEET) = 54.21 II SUBCHANNEL FLOW VELOCITY(FEET /SEC.) = 7.665 SUBCHANNEL FROUDE NUMBER = 1.397 SUBCHANNEL FLOW TOP - WIDTH(FEET) = 57.96 SUBCHANNEL HYDRAULIC DEPTH(FEET) = .94 II TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 410.50 i.. COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 415.50 I/ ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE ELEVATION 1322.19 II NOTE: WATER SURFACE IS BELOW EXTREME LEFT AND RIGHT BANK ELEVATIONS. II II 1 II 1/ , II II I . a :� , r P • as a ,- c� a ; a Z W� + • e N g . � y • 1 a .ke t 11 ', ~ "s W ..ff ! f. e�J!a�t ;E lilt a a�� = m Z a ealrt fae I .,,,to i 1 : 14111 5 L. W 1 Z r1 - 1 1 1' 1 ii r .Iifi :� iii44, `11 i -�� s o•k •i •acrd`s: • kit W I (....7 � ''� J= • , k bs i e ; �w r FA t- - Y . $ : .� I m a$_ :hi! a i ilk . s i 1 1 1741 °3 p11 ° Q ti It f.31"111 ail: Ia i 8 I z`' =€ ai ma ;11 a 1 . kiplii,,, ,, co, 1 . . % % . ,L. 0 o t o ..i y 'e S ge e l ilt .6 • o ~t Ills t>t + -- lit O� r kEW 11 `� N Z , gal u 0 t 1... I 0 R • 4 r s sob q„ 1 a' It -.4\ 2 4 H.1 A',1. ,,igt ,,E1 8 - Z 1 me e. P (;" a T Z a g 1 Z ea A ?Iszt it cl 1. i j ' fl z a 9't Y ag • ,•2 1. i 41 1 W3 1); li b O O • • • V1. • Wt t u£ In aI N WE = k $ W • ,= It 101 Re illi et Hit e 8 g i� 11 =fi : 1 _ s r % 0 „ a A a Z 6 a 2 g A S ` N . j — m N Q 3 E ` � ”' t' i F ii p \ � E oOe tou.,t 'a . 5 s . 0 v ea * : j ` . E a e o y r i-, , . • a • • ; a N i e I+ e l a i t Ott' _ a t W I V "C - V . t t' W I o� i 4:t V' 4E i Z O V N y y' a 6 _ ` t 0 4 i ' p a I ... 0 p p r • e 1 , N tit.,:-. 1 i • W 3 i< I W• .� v W E 4 is <i€ �W : r 4 • 0 is ; 0 }} p pp p• V u Ea ! 5 4 $ a b a ♦ IA „ e. o E 7.,,,e 80 Wa Q A 1 \ ;- N s •• O L v s N g C = e < F— K W 2 `J L e s 2 o- 3 ° Z p 0 1 114 S A16 • : SeA �v ee . . O m z �� • e • W is I c 3 a W W .0 g . e • ° g -! J • „ - 0 0 Q LL d' _ p o ym Z OJ �.YI. E:N N� Z < p p Z ■ 1 F M F •5N evu f J Z p '4 C. N - a o °u-- � .4.2u- - -:° 20 o N • p t. f 4 p � o 402 Q to 0 W 00• u 0 i` u.- e = 2 J • W 0 •, o Z :r „ • n ° •° s e Ee s INi1 t N E N J N O e S/ O ° z- 1.21...64: W Q L_ t _ - 0 - x t % i % N O ft !Oita. V C Ya L u gm 0 R 9 • 0 ,;� �g C < ° f . te a e a s s s._• a _ Wr-1 - LL W 2 W« W 2 W t W• J Q ° ' G F �= OW O W W Q ow t O H O a, J S S S S g a m c ° c a,, W •1 J C 1 1 1 W p 4 p W 0.p W O J N N N N Y ' g t O a O R i- _ _ _ _ u u U U x 1 000000 I ' W _ N f N f N f 0 a ! ONnt O NMIf 0 NRf 0 Nnf 0000 Z - g W - O R O g O R C . . d z f -NMIf N 4, me�0 -w Pa MIIDA mT0 -Nnf ng A W N N N N N N N N W h O • i O � O • O • e !'r o u W o • • O4. '• e2 6 •S 1. - J v A OW 0 - .v 1 d 00 c O y C 0 0 E o w 2 ° `e e� . : 4 V ! • • .1 Iii • W 2 i O e" ...II = i W A O4 LL = 0 M A t f o o! d • i• ▪ C �, •1 •C 2:7 0 SN 00 p O e v . >r e R O ACS 00 ° e NN111N•a o u . _ A A A A LL 4 y . o2 Nn 0 7 OWWWW -0 O • du 4 t- SO • • J • O r1 ti • . zz4m z •o bb `s o00o C g d O Ju W iloau •• O �0 • A• z 44 22 0 ev m • va e� 00000 u• =• z Wazu Y u 0- oo0z m e$tv u3 ` , u v ....� z lee N WW LL - O C N • o 0 Y -E • Oz 44 4 e 000 ;L `<<_�� • J- uu = ••ua 0000 f „ = e0 e -• I JJm O 0: 1 °W Dom ° g -- j c1$yCV m Ira °s. ••••o1 •eCCi= N<Q`000 J We00 :!2o, s=07 � JV 2 00' Ji` WJCHdtiu:WJ mCC`1 i• Z 4'`• WWC 40 Cpr••• g'' l l g •.sis s vj OCp.O..Nd6 LA 0 I d ). Y000_0 E- �av UI o 0., y meuc ° ° R l z .°,u¢E<ds q -c j J C _e W o a - OZ 4 4 2 . -• e - $ Q LL 00 2W 0 W • 0 LL ►- O � `4 O J ; (10 Z W�ze . ..- ! 2u ••ww r Q ! H <WZ c- •1•Wee Y me 0 9 a 0 0 1<Wm Omy .J = J .M 1 40�4I 4 o° H < e egg z 0 NJJWO 0 K u■u Q LL 1 p W J W W f 4 4w _ . N 2 W L L ° W L= L I d d = O J 1g t i O > u u r "v. ,,,. I ? Y Y '-- - - '-.. - -. - --. :TT- r- . ..�_T - r T u t [ . f N W w I1,,� it - a' -' 'sit' - 'J ,y'TI J• .a n I i ;:7ch ar:'r m .-,v , O n�pl" •1 c ,'�_ tn r lf •J'O�•f IY�'v� •DiIO�ICfn w i rmlmrTlC�O�. O — o V N ti, • �� . W# � t 1 I W�1�f�� U O W d ! 1S • 0 f i ,� , 1 g ,, , :,, , l mW Z Ill ! o� t � l l �? <V ° O z °° a O o l_` jHTT � In11111 ! o° o a e, r... R p pl I J W i # U c • 18� , ,ri , W , ..� � 1111 I i N 1 81N I 1 S ' - 3 :113! EIit ;',, i i '31191 j!° , • o -11 p, : 1aU1]111II18I1111 � ! e N (� N N N ' P - W M : R $; g - :11iIaa111111919ll111i1Y a r p W in" all ' ' il F , 911g119HH110a1H1 a W Ti z R d N - I r H z - g R $i I g� • , W R .... . 5 Z o _ 9109119111]11g'I! I 3111'' — z ° 1811191► = HJII i 9 919 o a oQ . 1111 Ri_ !3� I ril Z OHM g 2. • 1 9 HIM tli lal cc W a 1111191 a cc . ^; ' o f . I ■ I , 0 4.3 r R 4 i fs' ! i 4 s a iI i Y • w ',,till I ' lii W _��� 9�1 NJ. E; 1 0031 I liril .2 _ 1- pi J .I :' 8 _ _ I g Z Y � : I ,_ _ • a 1 9391 I .- -__ � I _ _ � V W r a ", NIr.� - Iti�� Ii∎.O INIO�1 ,r, _ ��� .iN ,l1 7. _ 0 ■ N n h• Q f 'rt. {' •D'tDlw ,P• 4 U v, • -- a E t V 1 11 td i i I I e.. 111 • IV. CAPACITY OF CURB OPENING INLETS IN A LOW POINT OR SUMP Mo The capacity of a curb opening inlet in a sump or low point varies with the length of the inlet and the depth of water at the entrance. The inlet will N operate as a weir until the water submerges the entrance. When the depth of 41 water is about twice the height of the entrance or more, it will operate as an orifice. Between these two depths it will operate somewhere between the - two. • MO The nomograph (Table L) is based on the following conditions: """ A. The curb opening inlet (no grate) is located at a low point in the grade. B. All flow coming to the inlet must eventually enter the inlet and will pond until sufficient head is built up so the outflow through the inlet will equal the peak inflow from the gutters. • '""' The hydraulic basis of the nomograph is as follows: Ms A. For heads (depths of water) up to the height Of the opening. (H /h < 1), the inlet is assumed to act as a weir with the flow passing through critical depth at the entrance and following the formula. Q ■ 3.087 LH / B. For heads equal to or greater than twice the height of opening H/h > 2, .�• the inlet is assumed to act as an orifice following the formula 011 Q/L • 5.62 h 3/2 (H' /h)1 /2 • This is a rearrangement of the standard orifice formula Q ■ CA(2gH) /2 irr with C • 0.7 and H' equal to the head on the middle of the inlet opening (H' ■ H - h /2). 10 C. For heads with H/h between 1 and 2, a transition was used as the oper- ation of the inlet is indefinite. Procedure: MO Enter the nomograph with any two of the three values H, Q /L, H/h and read the "EI third. MO Where h • total height of opening in feet •,, L ■ total length of opening in feet H.• depth of water at the entrance in feet MO Q ■ total peak rate of flow to the inlet in CFS Normally Q, H, and h will be known, and the nomograph can be used to determine M - the length of opening L. The spread of the water on the street will depend upon the cross slope of the pavement. ..._ MO -29- • • 11i i 11111 • • • 0 1 /0 ..- 4 UPI .9 // 8 II /0 6 . .8 on 9 4 . - • .. - /' um T i1ll 6.5 yl f L /.0 h tf,' Z — .9 .J 6 . aft.,' $ l,� 0 — .8 ICI 5. � 0111 —.7 5 N , � ' �� V 11M lii 6 i4 - .6 6S , • . • `. b r - .5 fir ' s ` • P ie �' Q , 2 T PM Ss t$°i0' % b 1 —.4 ilel C .3 9.S ` C , h p C ■ % .as 3 .06 ` —.3 .. o. ` o � 3 ' . NW f c o .04 0 - .25 r 2.5 •0 . . MI .a .2 a k . 0 3 i —. .02 Pis o r 2 a : 0 v t< • PR . . ./5 . , iii s,,,.s.e. L 5 J— 1 f 1 --0/ • Loco/ Depression (a) /.z TABLE L ii. . - 30 - 5areou :f P/ itvc `rocs . . /:i►-C7rz?oh for cgaoc./;• cf curb r-. ... e,,,., 7.....o , h DC ooei',:tq ii: /e!s of /ow ,cards ♦�.. a � ' . .. M •e! ._ a -�. , e . _ d A '. 6 N' .- "!' ,•.,. NY.. .. +! .Aa . .. MI otd ' V. CAPACITY OF CURB OPENING INLETS ON A CONTINUOUS GRADE Ai The capcity of a curb opening inlet on a continuous grade varies directly oft with: A. Depth of water at the inlet entrance '"' B. Length of clear opening W1 The depth of the water at the inlet for a given discharge varies Nn. directly with: 00 A. Cross slope of the pavement at the curb — B. Amount of warping or depression of the gutter flow line at the inlet C. Roughness of the flow line D. Longitudinal slope of the gutter as The capacity of a curb opening inlet when intercepting 100 percent of the flow in the gutter is given by the formula: Is Q .. 0.7 L (a + y) where y depth of flow in approach gutter a - depth of depression of F.L. at inlet L - length of clear opening km To size an opening the following information must be known: A. Height of the curb opening. B. Depth (a) of flow line depression, if any, at the inlet. w C. Design discharge (Q) in the gutter (information as to drainage area, IN rainfall intensity and runoff coefficients from which a design dis- charge can be estimated). Any carryover from a previous inlet must be included. MN D. Depth of flow in normal gutter for the particular longitudinal and cross slopes at the inlet in question. This may be determined from the street capacity charts. Iii The capacity of a curb opening inlet is decreased by allowing part of flow to.pass the opening. A maximum of fifteen percent of the flow is recommended Al passing. • Procedure OM A. Enter Table M (a) with depth of flow, y, and gutter depression at the inlet, a, and determine Q/L the interception per foot of inlet opening if the inlet were intercepting 100% of the gutter flow. Al -32- Al rA _ B. Determine length of inlet L required to intercept 100% of the gutter r flow. L ■ total gutter flow Q divided by the factor Q /L. iii ' C. Compute ratio Lp /L where Lp ■ actual length of inlet for partial interception. D. Enter Table M (b) with Lp /L and a/y and determine ration Qp /Q, the proportion of the total gutter flow intercepted by the inlet in question. E. Flow intercepted, Qp is the ration Qp /Q times the total gutter .m flow Q. F. Flow carried over to next inlet is Q - Qp. iirr • am ua 41 N mo id id • • as it -33- ,e MI ' . `:; 1 I. — .J. 7'1iX! 1.. I ®• ... V Ili . 1h... ..11 . ...vr. .. 1 J 'tit. _."1 ". ....d... - ..-.- P a . . . DEPTH OF FLOW -y - FEET .0, .CL .03 .04 .05 .e6 .06 .10 .2 .3 4.5.6 0 10 10 • NI ` ^ (I ••-•-• i._..- ..I• -- ! • . // o O — �. t ..I l /. . • 111 — � a � 1 I f DISCHARGE PER FOOT CF - LENGTH OF CURB OPENING --- - i j J �� - 6 _ ....... � �- .4._1 =tom / r / j . OM •—. INLETS WHEN INTERCEPTING -4- ._ t ` -//; +,4_ ._ A • - � I OF GUTTER FLOW - J- - - - I, -- - / /'• �. ;• . • j / , ... I 0/;::),v I 1 I 1 1_� -I ?5 - �fn_____ � 10 li 1 I _ 1 1 1-I °��- _ ovr/ N!■ �A 00 AEI 0 ... 1 i ' � __ . , _/ -1 { I .05 • • is . gf ' MU itir I , I t / "/I • . g pr.:. —..-1— 1 // 1 ..I _ =mu .... . • --r y r 4 I / Y . ! 1 r : .- . / . ; 1. I I : :: . _ j • /• /; / I� I I r I - ( I . it . .4_:.___ 1 1-h-1-1-H- ,- --,1- • . ili . ( b) .• 1. _ ._... ..- —. .... ..? . pm. • • PARTIAL IN TER ' I • CEPTION RATIO. - t" i� � I `' - QP - }- . FOR INLETS OF 1J Pr P __i_ - I j i J s Q oh LENGTH. LESS ; , % y,/ • I ( _ I + � . 2 ,. • le THAN L V I •' // � I I I .. 4 „-,T- i /% - - -_ ( I I-- — . ' I )�. �A .1 1 I i m'- . 05 .06 .08 .10 .2 .3 4 S .6 .6 ' �. • TABLEM . . BUREAU OF PUBLIC ROADS • CA.PAGITY OF CURB OPENING INLETS A `' I nlvicinPJ Twn west-I._ n C - 34— ' ON CONTINUOUS GRADE lilil Page D -2 le D-2 Required Data and Calculations *w D-2.1 Street Flow Carrying_ Capacity Submitted data shall include complete cross sections between property lines of streets at the proposed catch basins and of any streets which control the flow of water to the pertinent locations. Street ar cross sections shall indicate the following: 1. Dimensions from the street center line to the top of curb i# and property line. O , 2. Gutter slope at each catch basin. NO 3. Elevations for the top of curb, flow line, property line and street crown at each catch basin center line. 41 4. Curb batter. Please refer to Charts Nos. D -01 to 0 -08, inclusive, for nomographs JP giving street capacities for some typical street sections. D -2.2 Catch Basin Size and Type Size and type of catch basin shall be determined by physical requirements and by inlet flow capacities given in Charts Nos. D -10 to D -26, inclusive. Criteria used, if other than those recommended in this section, shall be cited and accompanied ma by appropriate calculations. D-2.3 Connector Pipe and "V" Depth Calculation it D -2.3.1 Single Catch Basins ',0 c.F c. / r-- ,.. 0.5' Freeboard •a 0 ° V Ai 0. /. 2 a J H for peak { /ow . V '"" Storm Drain O ..• o55 3 tj w 1 At Hyd. Man. i.r =„ Page D -3 - .� D -2.3.1 Single Catch Basins continued. Given the available head (H), the required connector pipe size can be determined from culvert equations, such as those given ,,,, in King & Brater, "Handbook of Hydraulics ", Section Four, fifth edition. Chart No. D -30 can be used for a nomographic solution of a culvert equation for culverts flowing full. """' The minimum catch .basin "V" depth shall be determined as follows: 2 V= CF »o.5 »i2 `' ./ 2. Coss where V = Depth of the catch basin, or "V" depth, measured in feet from the invert of the y connector pipe to the top of the curb. C.F. = Vertical dimension of the curb face at the catch basin opening,in feet. = Average velocity of flow in the connector pipe, in feet per second, assuming a full pipe section. d = Diameter of connector pipe, in feet. S = Slope of connector pipe. .�. The term 1.2 v /2g includes an entrance loss of .2 of the rr velocity head. Assuming a curb face at the catch basin opening of 10 inches, which is the value normally used by most agencies, and Cos S = 1, the above equation may be simplified to the following: 2 V i 33' /2 29 d 1* Please refer to Chart No. D -31 for a graphical solution to the above equation for curb faces of 10 inches. at mo 1MM Hyd. Man. rr lit • ,,.. Page D-4 Wli D -2.3.2 Catch Basins In Series • om /7.•.4 :.,a ::: G N c . F . i .e 1--- 6 : : ° i : ° . • A • CS 'Min. Frecbooro' 1 . °. G.F.? al ■ 0..5'Freebooro' ° Vi a ° v -4 — i ce _✓ • �° /2 hh °: _ v 4 - - -- T a � J ° V2 H d ? o: ? i V on , Gos Si f d � 2 2g H.G. for ,oeok Pow v 4' :•' .•:..a: : :o ; :'3 v .s, a Jform Oroin =. o , iis i os 2 - a::c: 1 ilt.i t . hp L2 'm iv ice. .J Select a connector pipe size for each catch basin, and deter - mine the related head loss (HI, H by means of a culvert Ay equation, or by Chart No. D-30. The sum of head losses In the series shall not exceed the available head, i.e., , Hi +H2+ . . . . +Hn < H. me I The minimum catch basin "V" depths shall be determined in .WO the following manner: 1. The first catch basin "V" depth shall be calculated as OM for a single catch basin: MO On Vi = /.33 .,`/.2 Zg ,` di at Iii . Hyd. Man. id an Page 0 -5 m. D-2.3.2 Catch Basins in Series continued. IN 2. The second catch basin "V" depth shall be determined as follows: as G.F / 00.S4f1,4/.ZZ9 c --52 -6 *0 Assuming again that C.F. = 0.83 and C S = 1, 9 om kr 3. The freeboard provided for the second catch basin generally shall not be less than 0.5 feet and shall Mr.. be checked as follows: • d2 V2 F87 = v -GosS - / . Z Z - C.F.? If C.F. 0.83 and Cos 5 = 1, 2 V '' FB = v -d - /.Z 2 0.8.3 y Where especially "tight" conditions prevail, the 0.5 feet freeboard requirement referred to above may .s.• be omitted. In such cases the difference between OW the gutter elevation and the hydraulic grade line elevation of the main line will be accepted as the available head. as 4. Connector pipes between catch basins in series shall be checked for adverse slope by the following relationship: 1/ S> I/ / -G The figure of 0.5 shown above is the standard 6 -inch cross slope of the catch basin floors. of Hyd. Man. al ,nr 00 Iv . ___1111._ _ ___ . .. _ .. ._.....T_ .. 11 11 F ON mo 45 .■■■■ l■■■■.■■■■ OM■ 1■■■■■.M 1.■■ ■■■■■.■ ■■....■■OO■ ■M.■■ ■il ■ ■ ■ ■■ r OmEMEMMEMEOMMOMINIMMEMMEMMEMMOMMIIMMOMMMOMMOMMOMLET111111WIMMEME MMOOMMOMMIIMOMMINIMMIMOMMEMMEMMMMINEWOMMEMOMMEMOMMmillIMIRM OMMINIMOOMOMMIOMMOMMMEMMEMOMMOOMMONOMMOMMOMMOMMMEMEMMER .IMMEME.■OMMEMIIMMOM M......0...■.■.■... ■.. ■.EMIU ■ . . ■■ MEI M .■■..■........■...■..■.■..■.. ■M■■.■M ■■. ■ ■..■.■..■■■... ■■IMEMMI■..■.. ■..■.■..MIIMMO...... ■■■.■.l...l ■. ye ■ EMMI NEMMEO MM.■..■.M.■. 1■■■.■ ■.■.l■■■MM.■■Mlu..■■.■ ■.■■■ ■■.■.■..■■■■■.■■.■.■.■■ ! 4. ■■ ■■■■■■..■■■ ■■■■■■ ■.■ ■.■.■.i ■1►■. mumm■■■ ■■■ ■■M..rmm■■..■ ■OM ■ ■..l■■ ■O. ■l. ■.■1■ ■■ ■M■■NNI 11 /.■■■.VA■..■.■.■■.. ■■.�i... ■ ■■ film ■■■ ■■1111 ■1■■.■■.■■■■. ■■■M■■■ / l ■■■■M. ■l V.l.l■■■■...►...M.■■■ iii i 11...I.l.■■■M■■.■. ■.I■■■ ■.■� 1/ MMOMMA..... ■ ■ ■■OMMO . ■ ■. ■..■ . ■...... ■■ ■.. ■. ■ ■... ■...■■ I,..■..EMEMOM.a.M.O■lil ■. ■1■..■ ■u. ■ ■ ■ ■.■M...■ ■.l■■ ■.1..■.■' ! 1111 ■■.A ■ ■ ■■l■■...■■AMOMM.....■ ■■.l. ■ ■ ■.1M■ ■ill■ ■IO■■IM.I■ ■■■,■■■.■■l..■O■'il.M■. ■ ■O■1■ • ■.l ■ ■ ■ ■ ■ ■ ■ ■.M■.l■.■....■■■■) �.■..O....■M...ViI■.■ ■ ■...... alp ■.■■....•M. ■1111 ■ ■ ■EMEMME.■ ■1 11 ,/ . ■M ■1O■ ■O■■MIVAMI■ ■M..■■ ■ ■l■ ■OMMEMM ■ ■■■ ■■O ■M..■■■MMIIMM'A1 IiMIA.■1 ■ ■M.■..�i1 ■ ■.■u■■.■.■■■ ■l■■u..l■■■. l M■ ■Mll.M. ■ ■■■ I II f ■,Ill■■ ■. ■ ■ ■MPAIM.1 ■.1 ■ ■ ■M ■■ ■■ 35 .. ■...... ■■u.... ■.MMOMMEOI rill I ■.1■■ ■.1.■■■..■■ Noomoo.■ ■ ■ ■..■ ■..■...M. ■ ■■ ■ ■i... ■■ ■ ■u AMIONM ■.. =MU■ ■■.■ ■■ me ■l■ ■u..■■ ■■■ ■■ 1 ■.M■■.■■■.■ UI ■ ■.■M..I.I ■■M■■ ■■ ■■.■■■■■■ ... ■ ■O..■ ■1111 ■ ■■■ ■O■ ■■ ■M■ ■1� l/1■ �/■ ■.lIMMOMI■■I.MOMMOMM■ ■■.■ ■■ ■■■ ■.U. ■MMUMEM■■■...M ■■■I AM ■.■1■■..rI.■..■..I■.u.l■l■■■■ ■■ l■■■■■.■....■.■■■■....■ I1■ li■ ' /M■ ■ ■■■ ■rI ■■I■■M■■. ■. ■Ml ■.M. ■■ ■ ■■ ■■M ■ ■M ■MM. ■. ■ ■ ■ ■. ■ ■l■■ ► ■1/ ■.U.■ /A.■.■ ■ ■■ ■.■ ■.■.l■■ ■M.■ 11111•111111111•111•1111•1111111111111111•111111M11111•111111111•111•1111•1111111111111111•111111M11111•111111111•111•1111•1111111111111111•11111•111111111•111•1111•111111111111111•111111111•111•1111•111111111•111111111•111•1111•1111111111111111•111111M1 1111.■1111■■! ■.' ■■ .■■/All.■■■■ ■■MM■ ■■.■■l.■■ ..■.. ■..■ ■..■ ■....■ ■. ■.■1 f .Cs .■■M.I■ ■.M ■.1■.■■OMEMME ■ ■ ■ ■O■ 30•■ ■1111 ■. ■..1.■. ■■■.■■.■.■1 ■.■■a■.■■....■■■■.■..yw■■■■■. 10 ■■..■■ l■ l■■...■■■■.I AMMI l■■ I..■ ■■ ■ /i1■ ■.I.■O■■..M.■.$ ✓.I.1■■.■ ■ . ■... ■ ■ ■ ■. ■. ■.. ■ ■..■llNIl■�.■ ■■ ■1,111■ ■■■■■■■■■■..■r ■l■■■ ■......■...■■■■ ■.I■.■.M.I ■■ ■iA■.■■■.■.Il■l'lom000m■ ■■ .. 1 ■■.■■..■..■.■■■.■.■.■r1 . ■ ■.■�I ■.l ■ ■ ■ ■.Ml1. ■ ■1L....■..■ ■1■ - ■.■■.1.. ■ ■..UM■■ ■■l..1M11w ,•1111/. ■O■■. ■ ■■ ■■■ ■ ■. /,A■ ■1■ ■lull■.■ ■ ■.l■■.... ■. ■1■ ■■l■..■ ■117'/U II■ II /,A■■.■■..■.■ ■.... ■.l.■ ■■M■■.■ 6 ■■■.....l ■M■■■ ■M.■■.■■■ /// 1111■ ii % ■1. ■1■■■..N.. %1111■... ■u.■ ■. ■..■..■■.■..■■■ ■■■..■..1I1I■11 ■►1■■■■ ■■■ ■.■./ AMMO. ■..OM. ■M■.. 25 ■■■■. ■■ ■■■1■.■■... ■ ■■/ ■1/ /II ■1i /.111■■. ■ ■ ■. 1..6U. ■l■ ■11. ■1111■■.■ ■. ■.. ■ ■.. ■ ■■■ ■■ ■1111 ■ ■■.Ii1■li111/AI ■l■■ ■ ■l■■.i ■ ■■ ■■ll. ■ ■.l.■■■.■■ ow ■...■..IM■■.I■.■ ■... ■■l/I.Ii ■'I■ 111 ■.Ml■■ ■I %.M■.■■■. ■ ■. ■ ■ ■.■.■.■■ ■■■MEMOMInNEN .■■ OMMEMOIrA. ■ ■aMM ■ ■■ ■.■■l■ ■■ ■l■■ • 0 vj ■■ 1■■■.■ l..■■■■■.■■.■ VIII■//.■ II ■■■IMMI. ■ ■O■ ■M■ ■M ■ ■IM■ ■.. ■I lg ■.■■■..■■..■■.■■■■..■ 1/.! i ■AIMINI!..M ■OWIMMO.. ■.l ■.■M■. ■M ■■■1111 prw.`r. U ■.. ■.■■■■■■ ■ ■l.. ■l ■■11'.11•■■ ■ I■■ ■MI ■M■■■ ■MOM ■.M ■M■■ ■OM■■ ■MO■ ■■■l■■■...■■ M.■■■.■■ I/ 1■ 1/■■■■ I ■■ / %■ ■ ■M.■. ■.OM..I.Q. ■ ■■l■ ■ll.l.l. ■■■ ■l■.. ■ ■.■Id1.I/111111 R4 ■■ ■.1...M■ ■ ■ ■. ■ ■.1 ■LD71. ■ ■■ ■■..■l.■.■.l■. ■.■.IUi1111111■ g d..l.lM■.... ■l.■■..■P El ■ ■.u■ lrlr` ` a .I ■■■■ ■ ■ll.Ill ■■■llll.■Iii.i1.IUU I■■..■■■ ■.MM■.■■■■■ /i1I■/■ ■ ■.■ 20 .0■■■■■■ ■ ■ ■I■I■■II•V i11,i1■11 ■il ■P i. ■ ■■ ■l■ ■.■l■ ■l■ ■l /Ll.■l.■l■ ■ ■■ ■...■ll■O ■.l..N■. ■ ■I/ ■' A11■ II■i 1/.■ ■ ■1...■■■ ■O■■O■■RL■ ■■ ■O■■ ■■ ■ ■■■ ,..w ■..1.■ ■ ■■■■.■...■■■/II ■VIII■/ ill ■1O■■.■■■■ ■MI■PhM.■ ■.1■ ■■M■O■M■ ■■.■.■■■ M■. 1..1 ■ ■.IJ/ill11■IWAI ■ ■ ■ ■ ■■■. ■.. ■ ■MW IM ■.M■■■■■■.■ ■1■■ ■■M■ ■.■■■ ■1.1■■■. ■/I'/ IUIIII; III■■■ ■ ■.II■. ■IRw1.. ■.l. ■■■■ ■.. ■l.■■ IOW ■■■■ ■O ■M■...■■ ■OMMI AII.!i 1,i1■II■■ ■.■!.■■111/I ■ ■■.M..■..■■.■.■. ■.■ ■■ ■ ■■..■■.l.■lW/M7 ■LA!1 ■11■.■■■ ■..: /O ■1■.■ ■■■.1 ■I.11 ■ ■.. ■■ ■.■■■■.■■■■■■...■ M■.. I■ 1. 11■1 UllNIKAA.■■NMEMME.■■■■ ■■■.■ UM■ O.. l.■.■■ l/ IMIAM M1MIIM■ ■M.pII..■■■ ■.M■■. ■.■..Ml■ ■.■ ■■M■ ■■.■■■■■■ O■..■■■■ li■ G■ M■.■ II■ 1lE ! I■1■ ■M.■■■■■■■M.M■■. it 15 ■. ■...■.■.■.■ ■■■■ / /►.1 ■.■1111ummo ■■■M.I.. ■■■M.■■.. ■.l. ■..M.■ MOMMOM■ ■I■■■.M■■i,.W■■ ■..■ 11/; i ■■■■ ■■.MM...■■■■..■.■■■■■■ ■1O.■ ■■.■■■■■ 1..■..■ 1► l.'/ 11■ 1U■ IWAII ■ ■MM■■.■IO ■. ■u.I.M ■ ■ ■ ■uM ■ ■I..I■ ■ ■1.■. ■ ■ ■■■ ■11■. /,i■11■I1111 `■11■■■.■■ ■.u■■ ■.1■■■■■■ ■■1■■ 111■ ■ ■ ■■.■■■■ 1■■.■ Mi/ MI I. IJMil■PA...il■■■■■■I■■■IO'111. ■ ■■■. ■■l..■..■■■'I 411W1 ■11./U ■■ ■11■■■■ ay 11 iI ■■ u■■■ ■.■M■ 411, ■■..■■■■■■■■.■I/�■11.IIP 1111■ ■ ■11.■■.■.....I■ 1111■ ■ ■■■1111■■■ ■■ M .■■■ M■■■■■■ it;1 ■111►d1111111.111 ■M■■.1I111M E h]■■M ■■E■ ■.1■..■■ w,,. • %I$I •ll .O.M..MI.■l■ 10 ■1111 ■ ■Ol ■■1■TAIIIM O■ ■11111..1111.■ ■O■.■■■ ■M •UR. ■ ■I ■l■ ■1111.. ■. ■■ ■■■■■l ■ ■ ■..■/NL�i111111111111 ■■III■■■■ ■l■ ■l ■M..■■■..■ ■■■■ ■■■.■■ ill ■ ■■■MMEMMO ■■ ?41 i■1111..III11 ■■■ 111..■ ■ ■ ■:1.1117N.■.■1■OMEEMS.Ml ■M.■■ ■■ ■M.■■.■■.■/ /.11111.1 ■ ■I / ■111■■ ■II ■■l■■ ■M■■ ■l ■■lllU ■ ■ ■ ■■ ■1.■ 11 . ■.■■..■■,D, ■•1111 ■II ■.1111111.•1 ■ ■ ■ ■ ■.7T■. CG1rIa1rrr : vT11711 ■■ do ■. ■u Mil ..■ ■MI ■ ■ ■1111..111111 ■.II■■ ■■..I.■uUMYINIII■ _= ■11111■■ ■■■.■ ■M■■■ /A711■li ■11 ■M1■ 1111'■ ■11 ■1.■■■.TTlfit ICTI1D1IP IL A■■■.■■.■ iii IIIIUUMRIV 1 11111 111 UlllIUlUIIii ■i� C1�1l■lUl•lI ll lllI ■11111 ■■ ■■u■;IE1MIS■:.■1'A I1C3 1. ■■.■ mm ■ ■u 5 l■ ■MVAAM 1lI 1 111■ 1 1 1111 ++ . 11 1. 1■ ■ ■ ■■■■I.. ■ ■ ■I■ I ■ ■11■ ■III■■■■ lllI.0 % I CI ■l ! I lI I■ uI! .11I ■■■.■ ■ ■■■■■■■■. =■ ■■ ■l■■..■ km ■■I ■■■ ■MM■ ■M■■ ■M■■■ ■M■ ■■ ■ ■l■ ■1■■ ■EMOMM i ■II...I11.■ ■III■1u■'1 111■■ 11 ■■■ ■I■ ■■■.■■ ■I■■■ ■1■■ ■1.■■■■ ■M■ . ■.■■■■/ 1.1 1■.. ■11..1■11■1111111111I ■ ■ ■ ■ ■ ■ ■.M■ ■1■■■■.■■■■■■■.■ ■.1■ , ■■ 1■■■A■ 11■ 1M■ II■.■■ 11■ 11■ 1■ I!!■ II■ ■..■..II. ■....■■■.■■■ =.■■ ■MM■■■ 111111111111.iI%r.IIIIAU 11IAI ■ 1 11 ..000UUUUlUUUUIIUIUUIlUUlUUllU D -31 ii ■ ■ ■MP!II?'!1VaIUNI11 IL'114UI.:. A I■,. ■■■■■■■■■■■■■■■ ■1■■ ■■■. ■l■■■ ■1■ 0 ■■ ■■ill ■G■biI■lilI ■AII1illiUAI■Yfl NN�I. ■.III ■■.M..MM. ■ ■.M■ ■u.■ ■M.■■■■ .. 2 3 4 5 6 T e V - DEPTH (Feet) Los Angeles County Flood Control D istrict 0. fts CATCH BASIN V -DEPTH Oa ii ""' LENGTH ( FEET) tr-- Los Angeles County Flood Control District 0 25 50 75 100 125 150 175 200 , DESIGN OF SPUN CONCRETE Page G - 35 * , ---, iiii CONNECTOR PIPES FLOWING FULL .- •".......' OM / 0.5 / 0.6 Q 3 ow / * 0.7 7 0.8 Q A 4 / or / • 0.9 11.2+ D 1L 1.0 5 me 6 / 7 /7 ).- °. fie \ 8 1.5 \ 9 ■ 10 m . . Ili 2.0 \ 0 _. 2.5 \ EXAMPLE 20 Mom 3.0 H =I.0, Q =20, L =125 ` Z 0 3.5 USE D=27" lar I. 4.0 30 \ ' w" 35 \ , 5.0 40 \ TA WM ay 6.0 50 — 7.0 60 8.0 70 *• 9.0 80 gm 10.0 90 3 0 100 NM MO ANS Free water surface � �� _ I. Catch Area A 9 BasinHyd. grade line 3 6' • Storm Drain sal / L Le ow MI 0 25 50 75 100 125 150 175 200 „op! . 11 (1 •i' ilia A . , . for ;:i '' 77 gip6veeiiteut ,, ,!. P g i I I i !. Itemiler CIVIL ENGINEERING • LAND PLANNINO • LAND SURVEYING . sueuct er DAIF toe Nro. •„ttt Of • 8 /mr-r 1ND. C/1ltS . • t . A.- , 123” _ c 30.7 '-';!?';-7,1'.' 14. ! 1232- li. • • i A ____ : •c n N "litisra >1.2 Y :9•• 1 J/Z 1 ': l - . 1 227 - • rlo .o . a i. ? /7•v.. i' /.`� °t)/G • V lC 1 22 •76 � - ' / .S/O,Y» Orrin '1 4. 4...4!•:•12.:.;:l 1` •� t Y e 1 AI 1 _ e j 2 L 1 223 ••1 ' L -76 -!b """ r .• -_ . 1 I . y c yd .. 6. 7S FPJ St S'Tt\ 1e1 +32.92 S.D. S/;T 4/2-) ,� W.. _ II' r7 0.707 '• /1 0.8 8 1c. 12 if 171 • 6 -L. /227-24 . 2 2 7• d4 . 1 /4' �' (/22C2) ,� "' � • I, ,d{QIL N X '_' kEV t0. A I •S cW Na ap 2 /•26 cxs go 226 -2 • ill I/CO.• 76• lb i o P 24- H E . I l .3 (7Q).) Ct) - 21 -2_ i (2 cLo66iN Q = °- 7.S b P N J I , = 3,U - 36 '' 1 I I Lt : 13 - L. s' i i _. fr ,•,- t26-1' F.G. !).SA.' / it•r e 3I86•L AIRWAY AVENUE • COSTA PM SA, cnuronNiA 92628.4 075 • (714) 941.8777 , . . . , . . '1 I 1 : g : i0 (9kteo j I I j. ! : r lit 11: ) ' INEEN SE CIVIL ENGINEEPING • LAND PLANNING 4 LAND 8U NCI PVEYI , IS _ SI/eitCt OY DAir. --,......._ ji011 NO. 1 RIM 1 Of • -1 infbei9 9 1 ,'ii PM. eAlcs: . verki .p.i - 4/ d-7 - 35 1 .... • - t tp c A 7 l'.. - - . ,.,.59.50? - :1- . 0 . --7.i," • 1 I OW 111111111 • . 1. 1. Ili • Yil - . r , 7 A.—, ; • ...k . I err 11 0 19 , II 'Aiosr 4f >/.2 . , 5/Z 0.4 . 41114 Clor 40 ail • - ..... /07. for pcoA /*Atli I V i 1112 5'. . a _ 1 ,.. 50 . 2.c . --. .5/or/r1 Oro/e = 126-26 6 .., .. .. ••••: . c . ;„, .., .., ti ... ------_______ ...... ... - -I- . -., it • i I foll v • eY ( .. I mei - 1)1: ' i .- La 1 '------ z. -....„........ ---,..., Pl.. --- _ . 1- . ' - ' ___....1 t - --,, oh , . r- . " , • f . ill ) • 1) - ID 4,.........4 3 1 "La111........... 12 C:/ / I , ' ‘`._ ... .1 - i • 1 j 0 ..„. 41. 76 — 27-634 cf/ . l= I 1 ( t_ri-. 6 1 ) . 1 . • • '. ; 1 I , , O. B4 A '''r -t ' ' 1 -' 0.. htl. / r - C. 1261. se /1. 611_ . 12 se, .. 8 4 1 .S/4 -0 (t 1 Z.-• . ., ,. 1 4 212 • ' - • '1a 1 1 ifi:el/Z46ZE N _ 4 5.-' • 67 . 27-Kt- cts k = S 2A • 7 • I I 1 . 1, i c; - lo ir e P 3; I -c- 3 _ , .7.1 .3 ''' ‘ • I 27 I $ Q . ; i • EQ, Q , 0- 71- 3 I ti - : r '1 • ; 'At ( 1 1 ; 7> , 7. 2. • 9 1 1 ff 1 :: 3 6 , • lit • 1 : L.. 3;, ,.. ,. 33 ( . ' 10 • . i I C , 2_, = - ° A 0; , 11-5'.e • I I 1 . , to , . r rt . . . . • . . lia i . • . . 1 1 • 1 I i ,' ' . ••• 740 1 f6Vee/il I i i!: alg, ( ii I i !. 1 " ell11111111 CIVIL ENGINEERING • LAND PLANNING • LAND 8U1!1VEYINO 11 re . fill StAttCt „, BY a DAN ..4 2-1 -0- memo. fliftIf Of • 7. //I(7 /'YO cnti II .:Pr:,ik I ' 1- - s '('- .-.. • i • tr '.../C ;12 ' 121-66 2' .s.. , - i • . ... i 1 . . 7 : I . • /fic -, h. .• 1 ..” . . . . ; 4....24,.... r_ 7 t)7-fl r . 46„ . ,..1_01;r, # was,. a >/.2' I fy - 1 Si I . • . l i,ty v.. . , 1 . / 0.6z, 4,. sio -II. ay/ /07 Ifer pcoA l'ion V il - - -... - - .57orm Drew, . — ... 6 1 ,/... • Z.: . 41i r ------___ er -----.......... • il . v ,, . • ,), .., z • _____ ____., ____ . • Lz / '------ ul, i, . --42. --. - ---- I s. -........ F . . r . . _ 1 t .• - L'--11 _____________.._ \\..... 3 f l f _ . ... I • .. • OM ......... . I • t . I I .. * I 4.e)44-t - Y ‘Yed a. FP5 ! I C C 3) . -- - ri7', . /34-2 'rP • ' C — D cKP-d 1 f Y1 4 m 4 11 5 / A V - , 7 12 .3- ..-; 6, ii.,;.1...)-E9-/ 0.„___,„„ .., i., , . 6a-) • 'I., AM/LABLE N - 1 '° t RE0 .D. AI 0 86 de A/4 . ,.cc 3 - C C 6 "s AS 666-9o (6/4)14' (367 I /4 . 7 III IXP.' 1 IF OF 36 )/ -1-- II ..• 1 t tl i l i-- L- 1 . - 2 -_: 3 6. . I I 1 i I i . . 1 . 2 I ' • I I 1 • 1 - i . , . • , / t , r ninct.1 AMWAY AVrtilIF • COSTA MESA cnuronuin 92626-4075 • (714) 641-8777 ; / .'.' . . r . • : , . . 1 I I 1 A .' i il , .- 40 70/ 1 e614 . iet I 1 , . ! . .. .._ •...._,...... . weennew CIVIL ENGIHEET111 • LAND PLANNIt40 .• LAUD SUI1VEYIHO . , . . . . . . . .. I suencr OY DATF ' . 10a 1'10. .. 8/Itti DI • • wint /f/(7 //Y,D.. ClIti , Ye/4i. H. • - ' . • ..'0 lee 1 4 ,.. 0.? , y i.-.. t(= c . ... . ,,, : I I . . : 1 .. i -.--. - .-----.. ,,, . .. NE g( - 11 ki . '1 • . . I 11 1/ 4a/sr EZ >/-2 /,; • pl ,5 Z (-- 12436 0 .•7 I .1 , 4 6 Y 0 ,.... /7! C7". 'rev pc:: • (iA / l . 1. ' 7 - . EL 12.V.611 1! : II . . e , _,I N .. • • ; . , • . y, -, i _z / ; - -'• ----/ Z . - - ------___ I; I. ,.. . ) i' . .,. .; t..._ I, ., 1,.... _ 74 - 0 2-• C PS - L'i.! I _N \ ,,,1‘ 1 , I ! \-, I / 0 rA 22_ --fr- s 7-6S- . * • r .1 '' 1 0 LA-T C, / q. s147 /2/2J j/.. Cy . - A.61- - i TC . 1 - / o / 1 11 , , __ 0 . 34 _ i..^ 1 ,?_,-v / 2 0-40 ------- - ----- ---- , Ail ( 1 2 0 5. /... , 9 5 .417( 0 .2s - too A PA//.. 4 t.iLZ.: li ,‘' -75 '‘141 i 0 /7/ 0.4 I . (.14/ r ,, 74.02 (:-C.:, ic)7._ I I I I t I ! I . . • A _ .3 ... . / l_ i 2/ A 5- 9 • LL k i.c- • 1 t 1 • i ; I / I 1 t. I g 0 . 3P 14 --) 74 .. 2. 7 . ; 0 ..7..c 3 ,‹ ,, n I) , /.7 II I I I ' 1 3-7 4. ' • 60 it ,Ili g . D 2 , 7 .-.. 54 4 , • 1 ' 1 i , : . t, . . . •• 1 /...y 3- tr / 4 1 - ° - ! O f - gt= 4tri lz . G. :_ /2 6- / t .........11.....crozAvrftwri.ar:.,..mrtrr.:;•.as ..... 6 ..21 . 1 .,4. - ftwolativosIonraerreossalsows i- - •mmasmalettner.Zsgenucoor. rxempsot....sien.c.....sessawmouvw•mausawn,“=•••••••t • 1 i • , 3 1 064. A1F1V/AY /0/Et.,ii •, (r),'.1,\ („1 cn1_Irorminq7;i20-407!3 ; (7 .1) 114 141177 : • ,-- . . . 1 ! ' • . . ; . • 1 .. • ,„ ,. ,, - .-, 7 • C (..-. 4 ! ellEINEW CIVIL ENGINEEPING • LAND PLANNING .• LAND SUrIVEYINO , I . . • I • . SUBTECT„. BY DATE MB EiD. THIEET Of . . 7.. //114.. ,u/D. c/il.C1 . . PV • i • .t(- ' )2°7.95 1-20‘ a - 7 • *.--,/ '• \ 1PF1 • s 6,. . i 1 />.", ' ■ ■ " - • '1 I ; 1.. . \ k„ • 1 . it // /V !. " . ) • 1 - - - - - -Jor 4 t uYO,AA.-.-__ ft 120/-6D i /76. 1 • , 1 il .. ,:. ... .: " ..... '.... ' : .,: ......... "i7.. t 1. 1 -- __ ,........: Drain 1 "-----__ -- • • • ___,... _ ---" --- n' ------ \. I. • • Z ----„, ---( ___., Lz ,I ' --__ ,,..---, I' ,.. ii I; --- filr,.-:, ' I I • - _ ii‘• \ ; .• • ", .(— , '1 1 !..) I U 23.02- c .C,e ...,,,Ayept soc.o)--- --, \ ' / 1 .tv tee F•Liel -ICA .1.LINE-'1. 220.91., s.,..........„.. • . I Actiu- f e_e-I 4 :. 23 „,g , .2,s2J ,... 20 .8- ci4 • ' i . 1 ' 2.23 I op A IN TERewroe sc. o..., i R z• 1.2. 2 . It; I li- "/4 - 7- 6 FPS 'I • . . 1 : .. - , . . • I . 1 • .1 7 0-10 1 " 4 ''',7 / - 0 Ti. 120'5 •7o • //X )1 1 723...a8,- '\-) , 0 - 03 S) Al, c;14. , / zo s 83 314 - i /42 4,- 1 o , 1,‘ :_ 1 / , • f I I I ; 410/L46ZZ . sq _3-60 _ • 17/ in cl(f Aia . 1 Q - 23' C-,e'S k- 14 /0-16) 11 • • I l' 111 kCP: 1 IF OF 30 . . = • ' 11 . - A,.. C2 s:). / (f40 _ .....-1 = 3° 1 1 • - 1 h : / 1 LI J , 2._ ' - - 3 . • I IT! L2 7. 2. 0 • ,1 I . ,,, . . I . i . .• : • . . . . • . , . . . ; 1 111i 1 . I.. . ,':1' '• .7..k gi '0,4e.ile442 1 i 1 : • gee.; I li . • 4 ! emmair CIVIL ENGINEEPINO • LAND • PLANNINO • LAND SUI1VEYINO 1. SUMO! BY DATE 1011 NO. [DIM Of • 7 /i7(41 liyo. exta . A . CP&, i / /- c:), r- re.:7) r.2 _ . i le i...',02.15 . • - C.. /21 Y . .. " 11 .■ 1 I ' 1 1 : f/ifil • . . . 1 . ''''... • Ask; I' -- ---: • 4 i • • • 1 II 1/ • # 110J7 BE >42 - I .1 • 1 S7 / Z ,121 0 • :**7 1 : ■ 1 slop 4-tido ' .._ _ //fa for pcoA civil /Zo it - --- .Siorni Dr0//7 1, I! ,f ,; --.... • ii - wz • _ -------- . . .. • ij -., r 1 .. 1. . f • • • . • ...r .. :::'..'i . • ff. 12a3 , I. , .: .z,-;..!,- z ., ■ c:i . ..._ 1 .. .1 • , ........ . • f . 1 ! S ...D. 4t,f, 17121 • i 1 p cy4 m 8 .37 FPS I a • I 7A • .5 + ../' 5 ;'% 2 . /1 ki.:4 0 2 .4.. T4. I 2. f K / . , / v • 1 / 91 L49 /.6.4. 1207 72 A , A . SEZ. -. (5V Z-. —7 /./0 ,g___.::d......fi . ., I. 1 • '1.1 • ifEL1g,4,51E N .. 9- 5-3 : k£0.0. 4/.2.99 cg o va 0 w 020 1 cts k - loC . • II • ; 1 .' . • : 1 1 : • ID if , -, •' Z-0 . / / C =- ( 1 S ) • •- . ___. 7 . , e r7st 7 (2_) / • r) — 1 1 ! • / / ( 2, L 2, a , / e flIRA.1 AMWAY AVFNIIF * rngtil MIA r.A; fronniA r12117A.Af175 • 17141 A41-11777 1 i 4 . . • 1 I I 1 i i 1 ' I . • . • " ' . • ; . . ; • I , . . , . , . .1 hi , . . h /e?, ,,,trg.i.,6veeii.te?,,t, Rite. ii ii„ . CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING , • SUINECT , , OM /OS NO. @NM Of • 7- triThe' f f i ',/ ////11 PYO, entE . A .:../Jr-tki 1- c:).r- . • i 16 t/ .. Al24t( , / • .. •///*// . z,AW-73,..-ri'fc. , . • 40- . s... II. 1 ,/ir ..,!. %.:',•• .. i• , A, . ; • ..; • . . . H i/ ' wax- a >12 11 4 . 1 S/Z ,- I210. w . • .!,' - 012 4 ).41 CIOIA?.. 49 i, / / /76 f'cr pcc,A /*lois.. V V il ILO 61.:5- / --.., JiOrm Droth ..: .. Z •• ..14 II --, • II .'"---• er ..----•— 1:1,.. I . i '•••' T45 5-02. Alf tJf 6 , ., ; - 7 .i.s ., * - ' ' Z E v 'l t••:', ..... . If ■ I .. . ' • f • . 1 • I *. 17/ / 1, a 0/4 a 'I - - - -3 . C5 — FPS , , 1 1 . . . I . Sm . • !II 1 D. 5 . I 1 r. O. Lf v - 42 V 1, 4 57 / 0 0 t 5 -?. - - I I 121 ° 2 R 2 -7 ' id..10 M6.4; / ..S ( . ., p , ,, ,.1.' • , 141 410/Z461.6 ii ' 5 - - gi I 0 w R= . 7. cts il (D • t kEO.D. °. Na . • ' ' il kCP: 2,( IF OF ,' I ik._-. Li .q o . , i • 1 1 I c -1- E• es /)--Cz-1 - ; 1 l i Th, :.' 2-7." ,i .-= - I, 3 : ) . . i I i . r • lo.c L,... S - le t i, A :- 1 . 11 , • , . Pi 1 ne t 1 • it-tut/At/ Atirtll 11 . . •■•••■Nrvii iit-nA nit' •reNtigtiA nnenei •filre • i14 Al hAl_Ell/T, I . 1iI III r • l i f ff • . 7 1 ( ; ? A f I i l g eelitf Ri e • 1.. • k ` F ! e�� CIVIL ENGINEERING • LAND PLANNING • LAND 8UDVEYINO , I r DATE BY DA ?OD NO. _ WRIT OE • i i , IL - r / , D • CAta . A . c:i -6,1:f /- a. s - . . i'ieLi. °AILI.3. • i I 111 � A A I ►' // # 'MUST a >/? ... y� '9 il SiL 1.2.1o.4 , 1 �lope4-o ay, • - /l.G. fey- pcv/ /%o,r v: 120,9' ` _ ,S /orm Drain y • UI ^ s Lz ` J� ,. �1 . . F ` if t' , \1 . ' L. ',Icy . I: • '1 . Q .{. l 71 _ v' Q/4 " 5 78 FPS , I ' j 4. . 0 -� 0•62' ' ; IZ►L /, ,n � . ' d. C9r N6.4. /< 0`3-45 614-. (/�1� /01 = - ,4VQ /L.48LE N a 4. 51 !' RE0.0, / 0.72- CW Nl 1 Qa (O.ZI cps K= l0 • iIII. /1CP-' 0 IF OF (Y if i A - 1 1 . Ijj ? , C. C^ ' -i i II. i ' • _L, � I I , 1 ..... : •. .. ! 1 L ; 2 , f,._ 41 = )1.'3.0 r i ___ ..._ ...... ... -... ... �� - -• •.r •• •wow - •�� I, wI1 w17• I 1 y� 1i II 741 g 1 ‘1 61/ Ce il e e444 t P 49146 t ' . ' I II! • g- ! L CIVIL EN GINEERING • • LAND PLANNING • • LAND 8UnVErINO , ., ., • ' sue,ccr NY DM ,De HO. sheer Of . �rnTi �'I &t -r / • CA/a . A • . :i'FIk j / /- d, s- c • � ; t, / t r A - l� �S ' 6 iy� . / t ' � : I '' . . . mot., i ' V. ..:, • n „ , i i 1 , .— N •MUST BE _ >/.2 V 9 4,5/z � �i7 IS'�08 L il • l h v. ,rrr pc,,A+ %ni,. _ v. /2.14; f►g2 c t p r 3 . -_ .s /or n Dro:.� - I. • F —.al r ?: 2`3 -(( ' )7 -3 p6 `- t 6,ti I. Q ; 3 3 - 7/ cfi 4 ,/o� ?o Ar It, - - -- — ! 2' _ �� ± t 1 s • D. SIT, (g f z , y- Q/4 - 3 -c U FP.!' I • I 1 ; . f . ! 1 j" / r c - 1 r . 9'. O -2 , (' ; j37 1 I J'cI E 1 1 ,1 414 /L48LE f/ : r ,'Ea 1D. h 0 'NG t Q „ 33.7/ G/'S K= /o 6 Qf /'C7 24.• J[ IF of '-'2 H / Q p.621, (1 -?.._ E :.7 t / i. ,-(,• --T ( .) 5 z ` 1 = I o. - 7 r 2 :� , (t= .) 1 II • • ill . tj.,:e 77, : - - ; s 0 •I • r ;t •. !)'f . • 2)Z - -II ' _ • • . A II II IC • rnetA !roman ArsA mu !rnHA P282A•4875 • 17141 841.8777 l i � -.. .. ,. .. .. 1 • . , • • . . . . , . . . . • 1 I 1 1 ., sH . h 1 e 0 r - br.'‘?0itestait, gite.1111',.. - - ea: • ,,„....„ ! ....., CIVIL ENGINEERING • LAND PLANNING • LAND SUGVEYINO , • . 1 SUBJECT , , OAF, /0 Se HO. ......j Ifni Ff . 7f. itloc-r PyD.c4tes . A ... 1. /- c):C- ..-,. _ • . ...., / 2:2- , . .. . L le ti. A -> • //0, (7AP ,A•• 4°, , ' , ! I I ' ill. II ;.- 1,2 ta- . t/ .. , • . . , , i / . • a , ; . . . fl 4( .....-- ---- "‘"" --- # *pair a >/..i 2 .1 y • I i... , 0,0 li, AY/ . , - / , /r pc.,,A {ion. ---- ... ...., . s ; ; ; ; ; ; , Dr - 07; i - - - 4 , • .1 _ .. 4 _ • B bi EIEBBIONNW.4 - 1 -. ' • / i: ,.., er -..... . 2• • 1)1'< . L2 ' •-________ I; _ i, ---...... t.,,ti • ,. ,, v , • 1. , i • L ,, . vls I . SI , ST - 6g 4-6-C-7 q , . I 5,3. ST 69+ 67- . . 1 • 1 JA. 0/ .., 2.0 F p f , ! I HT. /k/z i ., • . ' 1 .. r/ 0 - o 6 • a - H? • .. 767. /22-3 •-r" 1 f .1! I 1.1' S w t fb/ - p , _ 1 0 _,00 -7 A- ( -7- 10. ,( - ,i.5 . , _ . • ' 34 41'4 'L I/ iii . , --t kfa:D. #70 , cl „ 7.og-3.-S 7- c p s g- (O . II 1 . ,f • (1.' IF OF 1 ff ' : , il• I r-- " ....,•": (_ ` It J L •C-- 7" / .......) C / .." . ''' '''' ' •- , - I 7 1 I 1 1 .6 2-:- c)•i 3 . . I • 2, .: f .5 • . ili D L -, I • ."-- . I = 6.27 .:.- c = -- t : " • i! 1 ., /21_ • , . / e I II••• . rsnetA littA rAt Irrumin 132R2A-0175 • (7141 041-8177 i i . . , . I . . • . • • •, .. ' I . / s • • . 4 4 . 1 ' I • • i rl° ! 111111111111, CIVIL ENGINEERING • LAND PLANNING • LAND BUDVEYINO • . • III • SUBJECT BY , DAN 108 WI 1111M Of • 7 f-700/ 9 ‘/ " PY p , e / 1 ta . A . :1 /-,;):5"-- t;). . ? ,..,:' •. i - le 122•43i /2-1 / • , • /fii (AW,A" .. • • : 1 , -,. 1 . 1. ,,,." .. I i • h- - . • I . . ; a i 122-6- . . II N h lior a >/.2 • 2 J • , Si Zi . 1 • 0 ' S-C). / • i /if a "iv pec,A ?Voir V .„ 12.:15.$3 slope -i-o di i , ___ __. .S;0 -/- :* 177 - 0r - 0/ - ;; .*-- .:-.1.-- ' it --- ".....----- ...... 1100 " : . _____ ....,:iry 2 /;...,;„s„....... ,I... ,; Y • . II .. . . 1i • • -_____,..! .......... t ri r. .\\\ ■ .. eL 1271 . • ( ---- ti, • ,. ., ..,. z. NI I • . • it . . • 1 . I .. SpeET i 47 / z_ ■ (r. .7). ) 1/- I 6 • I , • • . I : • I . I I S,P. C7A . c/ .1.• - 5 - :7 -. i ' r LI . .• II; . .IT 0 • r-g. / 2-3 1 ).2 111 /./.6 )22_5.63 S ( ( A .17 . ., ,., , , s- . , . ,, 410/LABLE /1- 5. 2-° t REO.D. #::-66 Cie Na - 7. 6 72,- cts • I I • 1 . ' RCP: 22- ir OF . 1 I I t 7••••t /i .i 1? I' 4 Lt. : 1 I • l , C ` ..„ -•-(• t‘. 7) ' ( , a :: 0.7S 2 ., r 7 ), ( I ) 1 1 b, :_ 1.5 _ . 1 i e - _ .......... • •.,-., • ^At emnillA nne•In..A117K • 171 AI Adl -RI 77 1 / . f 4 i . i 'S `: - 3 ! ®� CIVIL ENGINEERING • . LAND PLANNING •• LAND SURVEYING • Suel(CT . ev DATE /011 N0. euui Of • • 1 m/P1 + P / itil T/ /D•c ,4Cu'. . 123 n-s 123 • . 77 I I I i l 122 -g3 . ; • . N ' ,MUST BE >/, y :9 ' 1 Sii - . I - .�i4 : I • lox_ 4•s dry _ iev. rrcr r�_oA_ /ron.' V • 122 * -,, Storm Droin 'I • IA! ' 2 • . �■ It . :ar. I. 1 '; c j T. STS . e 14 64.96+ \ 1 .I SN 'y.2./ IA. Q�4 _ q .37 FPS , , ': . 11; Y / r /. 36 •/ v :. / • 6 : , C. I2 33 ' T- • N 6.4 , /22 7. /9 SIiL = (t L ( > ) J7 I 4/'4 /LA8[E /1/ __ '_' kE.9.D. /f' I -fit IW NG q a 55.6= GcS /<' 52 & -7 IH ix CP __— z P 0 r- 3 3 rr Len^8 r cC- 1 -mot ,' „- fr. , s rze of re - MP- INt-c 1,..re 11 25 '' • _r"e7 / 6? 0 - 7s n3�7e C2 ` Dt • I I D 1.75. / L. i_6 67 �� I L2 7- -37 EL • 1�3°) , i a i nn.t AIf1WAV AVPNi IP F rne7A L4T A cm Irfffit1IA n9n9A•AA7f • 17141 AA t•A 777 1 � � 1 1 �" - ` ' '`' CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT 0V DATE re NO. I SMUT Of CCM 464541 AUL Kra 1 . _ r; 12'2_ I 1 1 '1 - -_- - -.. . _- -_ _.... » - -- 1 ----- _........... „ lc' . ...------- _ I - r' • . r�,4 1. i lei ya 0/ .. 4' '9 0 9, FPS, 7.03 c8 ® gal Y x / o.7 is Ay- e) . 92 T.C. 1 27.E . 1 /3 Sp. - ( %PL.a ( 4/ x 12d ____fl ,4121/L ABLE /r" : 4, 1 ( - CA' 4 F. _ 2 '' G r '' .QEa D. >y I • a 3 Qtx Na q a ;" -6 Z CPS K= 4/D ./ RCP 4z•..5' iF OF 3 v " , cc , I84 /.2 " / ? d , .:, I.93 fir, • A = y qaq r use 7 . ?a Y / i)EPT�, 3186 -L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92626-4875 • (714) 841.8777 1 „k ?keg Pt9iee#K444t, Ea ate. , ...., c.v.L ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BV DA TE JOB N0. SHEET OF 1 ra/ Ca e S/'V 4,/.4LY.Y,s I ew. 8 _�.e4 I .��60 1 C . -r- �� " 1I � ,NUST fE >/.2 Z1 .S-rL 1270 1. { - - ��∎.. '> ; 17.1cvfi- >' '011_- - ---i - r 69.93 \:s ( \ Le A '4a. -r- - r dill 1 No7F: - 0. S / 1:8 /S P, ftrg4¢E0. #1/0K/� /4' 7''?WT S /7Ud7TONS /T ' I/. Q/4 mi C. 054 FPS 1 Mgt Y � ,eEOV�o oQ oMM /rT�E'D. i r.C. 127N- 1 4 = 0.c,q -29 d . 6s S L ( v ) r /iA X •��'.� 1 .4V4 /LAELE ,4" Az Li- 7/ _ (CF 4 F _ • 2 E • b y Ja e' ova Q = /L/. c,S K t S 1 a ✓s % .. . • RRP 1' ' C L F O P 2 Z Gf' <B -f / 2 :2 G1 Q� =�� Fr, A. 2. 1 - I°S� �. (3 �v .i 1 uSE 1 EPT�, I., III • CALIFORNIA 92626 -4675 • (714) 641 -8777 3186 L AIRWAY AVENUE • COSTA MESA, CALIFORN t 1 4,,, • g i?Oleeelif.44t, ge. .. . .. . ._ IIIIMIIIr CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING I . .. SUBJECT cod7r# 134.S/4/ AWALKI/S I A -CU:014k I:2 - - g 4 - r T i I eNe" OF --- . - • .. :: I ) IC F. , kV (..' ..■ ' .; f ..*. Z. -et - - L ... I. _ .... _ t _ _ . il _ a _ >2 . /; . " , . Z 12 6,6 5s I I; 7 . 1- 1____. .q(7 .ce p c. e7 A / vir. 1 V si . / 2.64. _.V —_, i---:-'— . -7+7 . ....., ....... .5/0/7.1 Orei/.'7 ■ „ --- I "T --- --....._ --- --.—.5 . ,(1 ( •J.„ • ,-...- ' \ ,...... 1 1 ..• , Y • 4 4 ma CB 0 y4 ., 1..2_1(7 Tc.1271 i d < ,33.o/ 1 /46.4-• 12 64.60 SA.= (9if I LA ( 7 ) 5g.S10••_§.1,7 ( ' REQ.b. ,1,/ airNa a - 31.0 crs k= 361.7 A' k'cx" s ip OF 27 40-,1 rs# // v at= 5.7!os fir. • '1 # USE ( V DEP77/ , ; . 3186-L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92628-4675 • (714) 641-8777 1 ...-i:,::. • ......„. 3l g 4 ?oveemeot, Rota . . 7 1 .7* MUM CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING / SUINECT I SY A . skc IDATE 2_ s_ 8 _ 11011 NO I MUT Of ' ?.S . S .- i CCM 4645/4/ ,44/.4LKra 1 • . . . . ._ . . . - ... :: ...) 7 .... j....._ .,.,,..,.., ; • i! I": . • (, 1 :1 ..... I _:i" ..... _.. • L.1.,r ..*1 — , 1.' • qt7 ..rt ----------- '• - : 4'7 . 0/ oil • --- , -....._ ----...z.- ...... ---........p 1 •011.• .Z.. ..... ....... 0.. ! ...... 1 ' --- ) • • 1 rj I 6 1. II I . ■ ................ \ ........ ..1 • ....... I . s ' • . . . 1 .. 14 Q/4 IR , - 2.6 3 itco.r 1 . o 6 % x - rc. I61 ,410 1 y.64, / 2,- .t 1 s (9i) ( -- / 4‘1.-7 . ) ifYil/LASLE '4' A (o, go .(,-./ M) = "57 if 2:: RE0,:o. 1/.-...ii,25 ae ,v4 cts . e.? R 52.Li 7 _ z F 0 A 3 3 i c, -, rs4 /.2 -2 / 24;4 d= . . USE I I 11 ., 1/ i . • 1 :., . _.•..... ,ne--.. en n n r tor-nrik.“ A nleetet.AnTlt 4 171 AI Ril1-01777 - • ----r- --. - ..... _ . _ . hr g i ?aireotelg, Rote. -t Eli 1 1111111111111M, CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYNIO . II SUBJECT I " A . shitik-ko 1 ,__.t.- r "1 . 3 j S.S" / r tgl COM 45454V ..11/.4LKCAr I • . 1.2.17 • a r ,, ) if C r la .eci (..-..;• ...."el r l' '.1 7 — -: a , I i • # 411/ST a >/.2 /.;•4 , S.(Z . l' _1•......_...._.......................... ...w._ ....... ... 1 n II .v.? • 11,, 1.4 4/ V' ..... _._ set" fer Nt . .% ,. -1. . ity i ......:—._ ■,....... .... . r, ra- • , 05 zt i 0 /17 L. MI , . - •••••■■ ■ ;:: . : ... Z ........... - - - . . 4 :::::--....„.. fr ..."--- ''''''"*•-• ..1. • I - l ) • . 1. k • ......t,1 pe0 F it 6 6 - _1 .• , Y- Q/4 - , 2 ' 0 9" PP! cs 0 pi _ .,..- Y a gf- 0,(1- T.G. 12 '5 .(2 1 6,) ( i.9.( \2 1 12 L it)± S 6 c4. air ( /0 • ) , --.... • 411/.4/4.4,SLE / 111 ... ( 6 .11 t 4 EO:D. 11-0 •18 de #V4 Q- rZ- 2 CAS g ___ Cf. I P.5) - L4(0 . o___ # v2.' d _ 4 - 3 C kCP , ?. 3 ? iF OF 3D 4 vi AZ 4 /..2 - - • A -; 4.(2 15e ,t1 u 1 • :i. , , ,.-... ...,. .....-...11 14.11.."... A r ) . I. • F. 4 11 ot Al, .0177 k. 1 1„... ' ?k g Poieeifewt, ate. ./ i td: . g' ,.... CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING i l SUBJECT 1 SY I DATE ',OS NO. I SHEET or corC# 45 4S /H AWAdL YJ /S • j j ;.. �u F • # IV , ?err pc t)/, /1/4.'ir 1 v . - / • • ---,..„3. „.._(' Is l: L « r.i e. j/. Q/4 an /o . 4-7 FP.!' CB Yx / = / if /2 �= 0.5.7-q T. c. / Z L( ct -2 4 '� 1 NG-L. i2• Sp.= (4V14. (27 )X766 ,4YQ /L4 LE h/ = 2.. $r2— = Cf -/ FL's = ( l 3 2- > kEg�. . d CIA' i_ Q= 2 `f *S" cps = 3 ° q•7 /1cP 7 IF of 2:1 " ct ,i re -f i.2 1'2 i2y4 d Fr, (5E T V/ Y / / PEP 7V , 3186 -1 AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92628-4875 • (714) 641.8777 1 l" - in hite g 26 ate. l i _. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING susser Q N { ( I BY A 5 " ' 1 DA - sz / A MS N0. , 1 SHEET / OF l- 4 J 0 . C. P O r 44411 y1 , per:, ; 15 0tRt H•ye- 1 At0.1 ' 4 a c i `" 4061 TOP' s Wes) 4104o L . I -4 Its .?i( -- c-, ,-t— 44 - -- 4. s S` 7.a9 of `� _ ((AURAL C) as u "�°"' c # � 1z- it L- $ l 7.x - 9 . b 4 - _ nil' 3 , 3 P v�-° _ i 12 ,, ` -,/ 1.20.:7r : tts": . ,y g .g a o' /C. 7.y 3y .4.831 /._3 4 .L -3 1 Dive. L L1 3�f. 4 `t Q •� Iz � �� I�y�L - -�2 , 0,,,,Fib..) 4 1 _ , Or L -a '' 1 .k.6fl skG B 1i ' I �.o i d93 z? . - ,/ tY s' g' 4 4 4' .� L -3 T 1 1 e' � lis" „/ SAC / 7v �Fr„ --- -f 9s ill, G r• L - S t I I 1 1 =S 1 7 -rf 1 3.9 d -t . ' b 3�.r ' /c/ [ /3 . q 2 �.G �u� 4 L `G � T I if L-6 1 �10 /7 / 3 6z ca 2 1 1-11 1+Qt - 60.6 L li: foofk. j c Leo 1 - e 1-- I° Z2.22- `'.6Z a �.OX- 8 { a3. ;" , 81 , lu 1 ►t L -n L -� ; ,J•aL 14° t -fZ ° /2.b 1 5.3 y� T F .2-6= c ._ - fi n I I t� � iF � . .2• S: _ 3 a 37• ye 10 L -13 rrYict w �_ ----- 1 , ; L-45 . .4. z --- ' , IY� 2 1 I i bis � - .y r �19 �� , 8 z3.( 1 , i 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626 -3428 • (714) 641 -8777 I il h g 26 ate. al f ---; 1111.11. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING p huei vv. 61.44L I a . s:3‘9...:te I ° 3 rS -- 1 KM 7. I z o.2_ Ll A/v go. CA. Q /) I _ -� • t 1 4‘. 1 7 . 4, 1 ,,,,t A ,ie 1 N,.1 4_ -/Lf 4. o- — sill — /2 5../q /.5-- I .by c ' Ir e L -I - I•sr — /. e l — 6 /qV a. y /1 1 _ .o 0. IS' If q c._ � , ,2:1.5)1 6- 4 22, /7.37 7.7..... 1 °i„,,,,,,16 L —$ t4-12:-14-t2 230.V a 17 .. _ L.—ly L -cyl _ ilpq.6v "q ftp litaiV4 (-S0- 6el — . , 1 kt:e1411/13 1-1Al2, 2 •1 .s ;ro,- .L- ..3 spat - Iy 4 i� 1 6.944v -4 4, - / w 1 - ----I _7) ?3.3 ; 4' 1 , L -20 3.54 -& 1 v 3- Sy 1 it 1 1 1 3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92626 -3428 • (714) 641 -8777 I ,1111.,_ 3(Zer g 26 ate. . .,.,;,„:,.,..„. it ,,,. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING sus1ECT S NO. eNEE/ Of C47� 46 4.74V 46 4.74V QNQL YJ /S ( BY DATE ��zl�' !O L /NE ` L ' s 1 /7 -4 73 /-,LG L rof2 (O0)T , . . 7 n,& c- 8 AT /we- g3 : ' 1292_ . 35 - ��� .._....._._ A- /72 • 7.73 1243.2-4 �r I • _ fyg3 - _._ - n r (.'.. • , • ; . e.`':! , ,- - - . . - I/ � 4 1U3T fie >/.2 %;q tl „VI 1293- rfft 1• _...._... -- -.... _..._ ..... _ _.._._ __{___ µii L , 0.3q /� 2 30.3 7 . �'_ 1:7 t7( � � I,' :� /?c / /t .+i6• _ . 1 �ti' /292 /6. 67 - . 6.6, sib „,;.,:,...7 '�_ r or.> D� c� . :l ... .. . -- - _ - • - EacG, l��v�� ' \s I'i Q r 1183 9 `` - ` ��� U 81.9( 1 . w• L_/ // e/ //a 0/4 _ 4. 3 7 FP! r C8 ___0_ , Ta{' I pc. / pc/ l295 -6 CE6`If�L, v/4 _ 0.294, /.1 o .0 -36 /23- 1 0.03 //G -L. 0292.3c -= 1292 -$° . SQL= ( � n 1 / 311 ._ - 1123 4r' /LABLE >4' _ ' ' _ (CF,i f£' = REQ:0. H 6-39 cK'Na Q= 123.52 cps R' 42.6 RCP 31. '.7 IF of 72 # rs4 /2 V2' ? d- fi,; _28 - 274 , 1V - t� '� ” L WI z EGL o c . B. L g/, :1293 -19 USE Y DEPlf,/, B 4,--em !:- 8'. L Q = l23 -5 2 CFS St -, �23 •S 2 /2604) 0023 5 6o" RcP T c_ 8 • " 2 / � T' np i r .0043 - 0.0023x' = 0-02 1 G B. R Tivancc , M - O-2 V =0• !2 EGL Co 1 0f c- 8. * L e/2 - 93 -33 , it Gp c =g. _ 1293 - 78 C P. A 3186 -1 AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92626 -4875 • (714) 641-8777 i . • Y '3 • hize g poieeifewt, aloe la .. • 4L�` -t ..... CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING IsUMECT ,-, I BY I DATE I JOB NO. I MET Of c4Tc' 4 645 1 /4 1 Q i iL YS /S .12875 1284 4 a64/E4. 14.1- c. /3. PG (MP1��: / 12 84.86 '' . CF / 1 � -7. 12 8 3.69 . _._ �- 11 H � AST LIE >/.2 s +� 41 L 0 1 ./. 7 1.L 4. 1 \. . .'fir/ .. /'L. t7A /��iv - • v ,, ,� • - ---- - S/OPf+7 « Di O,/ Q - 4/0- 46+ (2,•54 4 6.67. I- (20.2.7- ls7 'Cr* 7 1. • C a z / L / / I:I• cy rk� 8l.�bbfe o �"- -• - ` -- --- - - _� \ •,,i Q o Las e,,...( : 103.25 - _ Fs 1 A 1 ,(' A z ', A ? Y- %a •• 0-73 FPS C8 Q(oc Y1 /.s 1.79 a51° 2 -IS T.C. 1284 -8C t A/ GI. 128 7. 59 S,CL' 1 l 4" rio3• kcs fr- '' .- 7 4V4 /LABLE Al - _ (Cf l 1. .q) = REv7 D. 11 J - b 5 GK' Na Q p to3 -25- CAS K= 1006 RCP 47-7C 1F OP 42 " c,e 'f r f / 2 V2 �1 ; 1 d = — ... _ Fr, . A -g -621 c7 -3& 11 .. USE Y DEPrAv, Q day 1,3-.1_ Cor, na ck I . ff C.8 . ,* L 8 14/..a, " L BA/, = 2 „2_ - 6 6 F. , ! [J F' 60" K C4 = 0. F�;ctinn J _ 0.0 _ . C . s. •DM >0 -2 1.1.7-,2%-. 0.15 • EL_ 4. 0F. C.B. If L 9A/ = 1285.13, rt.. = 1283.37, T/t = 1284 -54 - M 5 -13 31003 eipw ' 4wtowk • poOTA MEPA ciI. 92628-4875 • (714) 841.8777 a 7,/,,,ig Pateote tg, aft. .. ?,_ _ CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING Sl1SJECT SY DATE tos NO. SHUT OF 447 Item/ 44'4L Kra 1 I 4 2 1/R2 1 if 7w Q , 410 .46 4 S'- 62. t r-,,,_ LfLz..?) l - . , ; ,214.71 I Ic 6 f: Mir !I? - , 1. 1,'7 ) _._ ..... _ \ .'/l) :err /:, 0,7A ,,',/ yip. J -,` a; 0214- g l `s fi t.� �C 1283 -/o ,.....ii �` 2/4-9 / . o -S (0 7 -' )/ V• _. \ , ►. L -q /, (1' - y- OQ - 3•$O Foos Cts 0 . V 0-22: /a k f-ar - 2 7 ' 1 %e. /2-/ 6 - 0 T NG.L /29,2 -7F .5(4,, ( %�L2a 1077.4y 6 ) o_o • / AY,4 /LASZE Plr : _ (CC , A4 = r Z 4Eo�.,y 0•31 Qt'N4 Q = lD 7.14• cps K= 423 kcP , ‘.. irl 2F OF 72 'y V21 . A 28 .• 2 74 GCSE I/ f V . / sOEPTV, Y RCP V Cann �' 11 4-am C. 8 . 't 9 / 9/2_ (A c 60 3188•L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92828-4875 • (714) 641.8777 Il hiZe ge. ' Y CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING usact sr DATE 5 /g/ ►+o. SMUT of WV/ B4S /N ,ANAL Kra I 1 5 /J /� � 1 v i1.267-5,9 - . ( jnAIN) • o (2 F 4-49. ►i-Gc. /e6 %� - 83.83 �� .._....._._ = 82- �‘ ' /! . .; ....f .._ __•- ,:, r n 4 � 'A.I 1 46 >/.2 i4 .S1 . -- - -: : - -' --- - - --- ---- . 7— ---- - - -.= _ °.. ....._... N. ci 'C1 _/±� �)A i / 00. ' _'_.t. �.' . ' =o <'". _�- _ F101,,7 0i o,.' 's 410 - 4 C1 -6s -- 7. s4) - �' g� f s • r 0 00 Oa �:. .` , 1274' . - - X 07 3 7 , % ilc:� wr «u 1 _ .! o A. each te r� = 9/-6T- ct A' v),„- 9 AA r A 2 #A 3 j/. Q/4 — 1 0 -3S" , Fe! (01 c la' S) 7:c. I2' 3 - 83 " �= 1.66 " F: -. 2 -aV ly G.L. 2 7.S S (L ( 74/1 h • ( 1'9- / o6 ) z371- ,4{'Q /LASLE A' : - (CF AS) _ '' 4E02). H3-21 Na Q : ° 1, - 6 2 c/'S K. 1006 kV' 127-7r LF OP 42 ~ G,t '234 /2 1/2 ?t 4 O/ fr. . A _ (4. 62 ) �) 0 3 ./ USE Y .DEPT1/, f .. • . (,(4e 6•"' Pcp connecfit c_ 3_ l�. 3186-1 AIRY '!" x►wkµUE s Aoatt Menm, GAI.IFQRNIA 92620.4675 • (714) 641 -8777 1 g,:i„ hiaer 26temago Rix. Q::::. 1 ._„, CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING 1 TIC! 0 c. 3 8Y DATE 10B NO. SHEET OF 4 Q / A .9 l+�L &7 C.4 'Mu SriJ S Z .. P ' r- : adolt 1 - . 62 [9 w6.(i -L1 &sac. he -{- I 44- C (� . , c . R.10) 41 ; 'f4 + 25 •tlf . 044-fq. 4 r(c44")) 1- r. • , .145:2g-c ef-tiffvf- Far C - g * L w/ = / 2/3.51, 1461- a 1 93.19 .f4GL /C 0 I (4 - rte L •4t Tot- % Ro...4 11....4 s t196 -el., IF.-44. 6ewooi, 0.4 /. /4 - 1294- 05-- -- o -r — 12-9 3.19 • 2 . I 2 r. /2 ' 1 ' 0 (Ltriri'vT 4 r lo P 1 Fdv G . 3 . * L y = 17 -93.5 b, 1•1-Gt. _ /21 3.11 pi : 1216 cg- D- s— ts10• 14 .. - F t YiL1- A--;r37), . - . w t� s � � y al, Q: 112-:IL - s: Ali 2°!37,c1 .e g- _ , ;N- 4,� L_ 29.�Z a� F . c. Sfi - 4) 4. .k= 2/y a 4/4 _ ;ecDN2. "L c:$:s•g� /, isiZ� I 4. r T ST i ' z_ er.icto1osivo Z OLJ e.g. g A l , S 4 ig31i Ah 44J A/3 iq e,,c -Q : 14-1- ; 12- user EI II Q bu .�Et4-c.2Sv-f 7y.D2 •.-1 og. 361 •383.35 3 L (1� aw 4/0-91 GfS, L ;2.7.78 I 2r 3 r, f b out : /95-30 4-1638-01 /‘ — 23 14 i - ,_ 383 _Is CPS I 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626 -3428 • (714) 641 -8777 . . . , • • . . I )11 ,,, t • . hie g 2epeemeut., aft. . CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING . ... Su/Cy ley . , I DATE I TOO HO. I MEET O f C47' 1345/4/ • A 464 L Y. i a ' • . . - • • • , , • 1. I/ # ' Attar (..'..■ ' .. '" ( .7' - : - - ,. 0 : 11 / 2 -!. . '-l• . i 1. 1 , ......2...e ..... :, ..." ...... -... . •re• - peo A civil I V .._.-":. - ::77- - .....-------- c - '7 DrOif7 -.--....,-.......... ----- 1 .... '"--..". 7 . ...... • ____ ______._ _ ' .,... . . i L ..... • . , . . s . _ J / Q — - 7 - 0 7 FPS C.,6 0 . k7/ Y2-4 .. 6,Y 1.1 Ays 0.2. Z z . 12-2_-1 C $ (C. -. ( C V h. (/ ).2 a./7 if g4/LABLE Ar" it 4 1 ' 1 "" (CF ,/ F.5) = 2-. V t* 4Eo.b. 4 c W N4 Q . 2-` 2 - .2-2- C I'S ,f h'CP r 1F OP CP 1 F234 /.2 V2, d-= 4.q fr, " Y // . . lt . . I 3186-L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 926284875 • (714) 841-8777 i . . CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING 1 ... SUBJECT I ay I DATE 1100 NO. 1 M EET or c•47r# £4S/,Y AVAILYSIS . _ . ,,,• I.: f, il lc r II/ 12 v ,, ,, # 'All(7 SE >/.2 /J ,• SIZ , _ f.__ , (7 er, peoA l'it+w I - -- 1 T. --------. .5/orry7 0/0/.07 -*-- . ..... .. -.-----t- I .7 ,.. - r • • 1 I r _________________._ ... ya Cyd .• 5-2 4- FPS Cg r4a t. 43 . " 6- 7:C. 12 3 liG.1-. 127/. D S ( /0 4-it ( • (a,i ,2_,.. 4k4ll..4SLE 1, . 2. 33 . (cc 4 Fs) = 0 . 8-3 ..... ti /4 c.61 GIV Na 4 6 7 /.• 12-60 cPs g= /5T1- 9 , . Rco / S ir o 21 ' 4 ii rs4 /.2 of -r. : 76 U ..(. 3 u w SE Y I&7/, . I , ! . F ,.. I 3186-1 AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92826-4675 • (714) 841-8777 111 .._... I A - • .q..:. ..,:k.2 , . CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING I • ,... . „ . _ . . U SHEET O tITECT BY I I /011 NO. C.47C/7 134SY# 4//4L gra j DATE ve-2:93 . A - • el . c r -., -- . ----. ,)----- el - -: " il liasr It - 1 31, 1 •Q ' -" • --I. -- --..-Y, - --- - - -- -- - -- ...p - - -- --- • - - — ----•- -- i) 1 ,, ; J ..? • cl 14 -/#4- - 1- ' ,, 1......2.!.. ........... k r)/ ei _ Ale " pet7A /70/V i y 1 2.14 ei- . ._ i ..: ...-7......... ..______ -:- • ,,,,..e „N . ! ........... ---- ----;...:..;_c) ":::•::::........... I -- -4.1..... STU Oa : ---.„.....„ fr -.• 33 •-••-, /' .: V: Q 4,.f4 - . -..f 'i I f a 1 . i ,.....__. _.............................._......_._ .,_........................................... 1 ) ...,ga/V 1,,,, V ■-.. S 1" S 4 gctr . I , . Y- Q/4 - 10-47 Fps C8 0 4 WI ., Y24 / .. 1-7 0 /...0 /dui 1 2-04 TC .. 1253-1), 22/ I-46.4. 12-4 9- S ( 11 1.- ( • -- 7) 1 1-_:_..-- __1 1. 4y.4gAszt •r A 3 4- - ° . ( C , C I I A S ) = 2 . REO :D. /1 2.22. de ova Q x 62--2. c/-.S g . s2g 7 # VI Fr, n /2.65 zr oP 11 CP 1 1234 i 1 /..2,. • ,A : .S"-- 4-r . ILSE - g "- 11 /1 Y 2-- •r kt6L.- (D PL-06 b_s-f.s--,4- s2g. - 7 . fl 1 AR AIRViov***ili-1 4 0 riA MESA. OAL.WORNIA oapaa-4675 • (714) 841-8777 1 h g 26ieestia4t, EA_ ate. I 1 __r CIYIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUIIECT • c{ D roe NO. t$UT Ct WV/ S45 Av.& Kra 191,4 ' ; -Q 1 ,2 -3 _ 3ss-I 12 75%f • - -,. T -_ ._ -- 11 H . O UST M >12 '. q i S'1L 11 I 1J ` j ar it 1 _. - ._... ..... _. .q v/• p.e0A /'f',a• ' ; 'd 12 4 ,,..... s..., ,- I --, 1,.. CJ 1. i L y1(ci R. y. vfa .. 8 P . $ /.2. la /•` i.s - , T.C. 12`7 -.C4 2/• 4 i7 1146 SA -I (M14a ( --.7 �S 6" ,QVQ /L.46LE _ . 7.2! — (cf ./ fd5) = 5 . 7 f . REO.:0. 1/. 2 -- Q = ,21 •S7 cxs K= l am. 4 . k'CP 2 S. (06 zP OP c 1 ' G,e li r /2 1/2 ,/... , 4 d= FT, • A = 2 YJ r ,l /1 use 5. v PEA. CIVIL r � - ;� � F�F CI L ENGINEERING • LAND PLANNING • LAND SURVEYING SVS*CT I sr I DATE 1,OS NO. 1 [MEET or C47V6' 845'/N 4d (4L YJ /S IC r i v f.. ,.t', - !'�. , -r7'- . - 4 I W 'mar se > /,Z / +i SiL / ■ - l !. a e _ /'L t " %ow.__.._.I _!: . , i --- 1 (4t2 L * - - -+.--"' i l t : /1..11 ,• r 1-\ 6:k- 4 6 U 1, - \■:Ht „ 7 c1.:) , - : ; ; ,1 1- • j/ Q/Q as 2.9 3 FPJ C8 / 40 EY rc. (272 • 67•- 4m 0. 13 /AP' 0. 16 %) r dY,4ILABLE iy• At - 7 ' — (CF 4 A4 _ t , i y y REO.D. f' 041-00 Na Q a 5 -1q c/'S K= /0_5" h'CP cs•“ LF of (' ct- li r -T< /2 v s , .1,1 d = 7 .. Fr, A : i. 'SE , 6. 3; 0 v dEP17,/, I 3186-1 AIRWAY AVENUE • COSTA MESA, CALIFORNIA 82828 -4675 • (714) 841.8771 . Eli JIL . ?-,/,,,„ogate,,,,,,,t, ate. .• ,,.. .6.,...-il„N. .•....,,- ..... CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING i . ... ... SUBJECT IRY 1 DATE l i°6 NO. I PRET OF ' Ci rrai 45 4S/N ,i/mc Kra . . • • 0 I - C r ' r ,. l2136-E14 11/ 1 i I.- .....2 ,) --. if (:;' fr.. pe,,A /*ion: iv ,E-L.1288. • .......___ -:7.-- "0.- .5 ..ni 0/ rin FlOr ....- -....... 4 - , -, -- .1 .,.. . .., ir r.) . lei_ 2172 ,II: . • .0 1283- / ----1-- . . • • i290 ',;•3 12 8 (F V. Q/A al t'i ° F P S C..6 el Jr . /2 a ls 0-022, Z 12,4 I 11.64.128 f/ "v. 7emv) ' S (V • a y- -- ) 1 ofCALl_4■N___17 .461/441&E /v x ( i t ' . ° / " (C .1 21 / 1 D • i / ,./ A'CP• S . (ace 4F oP / " 1 C„t I I ri34 /,1 "Z. 1,,,,, a / 4.- .:.• . n; i • I 10 I U 7 SE - ! ti ti .../ 1/ .OEPIV , I . , I . [ : I 3186-1 AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92628-4875 • (714) 641-8777 I ir. .'' ) 3 g 26 Rota I. Ma= CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT i b I DATE I JOB NO. I SHEET 0/ C4RW £45 4 /41 i4L Ys /S L • . (ZS ' ill lc r • 4... .; °.•fs �•�ir _ .� ........ 4 M M Il A li r .GAG ›/.2 4:9 ti Z '1t7 fe, ..00A Clew v • L ;� - /2N1 • `{o �-».._ Dio�� ....... ....je I ,.... ----..,. i - s r. • . mss--. TJ;, L : ( '`p R� L - 16. j/. Q / da 4.4 . Fps c 0 .3� %z9 = o. rc. /Z5D ( ../.4 114- ,QYQ /LA,B &E Iv' _ v2 K A. (CA' •/ P.5) s / • 3 4E4?1�. II= o• S 3C� ,V4 Q ,. 11__( t CPS K , Ll RCP. '� . ,_ 1 F o f Z " C-1" ,I FB 4 /.2 ` j d = Fr, as 1Y ., PEPT7i. L., • • ,_.......,, ._.•, , / , -"ono .• a aka aafa IRV. a 0011 AS ISA • dowyr• 1 . . . AL r IIIIIIIIIIIIIP CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING . .. SUSPECT I BY I D re NO. I SHUT or corw £45/4/ 446ILYX/S . • . • _ • . 1 7 1 ... , t.t ' . 17' Ic F. • • ,....4..,:-..,•„„. , _.: I _.. ....._ . ,...,..._ _ 1:: .... 1111.57 1,6 12 . ../j ... I _ h 7..1 • ,1 ., 14 i! (7 _ ..F/Pm D/ oin -747 ----...„ 1 •-■,.?: rir: . L ,.-,... .... \,....•Itli ..._ I I . ... , . . _ y. 0/ .. 5 - 53 FPS CS ID .- Yi . .mb,4g r A-t % .1/ - 14 5 1 11 0 . rc. 12-C1 57 ( ( / 177 2 )..2 1144...1 s 1 410 /1.1115LE ?gr x .3. 5 7 ..-(c, 4 ) :.-.. z. 0-? Z: R.Ei.V . If! O. B9 cw,v4 Q- i. 17-37 CI'S K..- 2:24,2_, . I A' k'CP S 1 zr o 2 - Li at 7 r6 4 / "X ,v,t< d x: 4. o7 Fr. CE Z ,-/ 11 ../ E j/ DEP77/ , : 1 3186.1 AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92828-4875 • (714) 841-8777 1 . . . ../. (1--, A_ . h/ele g 470testezg..., gee. _ CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING . ... SUBJECT I ev I DATE r "3. I Ilit or con/ £4&W 44(ALY.rnst . .. . _ . . . . . . 0 ,,... ,.... -- -- II Ili ' # # letar ze >/.2 4; 4 S./Z / 124 -2 1 c .; • ,- ...-ey-t , ,...-.; -, I — -: 121 til.3 1/ 4 1 ...: '1 --.. fr.' a :rev. petm 0,.. , 11.. I ,.; 12-2-q -0 --, _..........._ ._............_____. .... Oro//7 . I .. ............_ .___.. ---._......., .... '---..........„. (7' -••.... o [ .1 .. ' -,....... . it, ,... -•- \ NI ... - i pa cy,4 — 2. 2e, Fey 2 is ,A. • 0 2-- 1/.6.1... S (9.4P2a ( L7 . 1 • io ) ;_-21°_,A•___17 . _ .41/.4/ZABLE fr al ..-C / 0. (CC 4 3. ..,..- RE0 2). 1 0./2- a N4 4 , 0 5 cps I? I I/2 / o f - - . - 10 fir A'a )' – - W ,LF OF /V Ctt II I - 13 4 / 1 / ..1 c,t, — .. - . . k -, 1.767 .- I...-- 1 .1/ usE A . S . Y ,OER 7 - 7./ , • . . . I 3186-L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92626-4875 • (714) 841-8777 PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LAND, LACRD, E OCEMA HYDRAULICS CRITERION) tt((ll(((((((((((((H (((((()))))) » )))} } »))))))))))))))))))))))) (C) Copyright 198E Advanced Engineering Software (ES] Especially prepar HALL & FOREMAN, INC. (<<<<<<<<<<<<<<<<<<<<<<<<< c<<<<<<<<<<<>>>>>>> >>>>>>>>>>>>>>>>>> >>>>>>>>>)))) * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * INDUSTRIAL AREA HYDRAULICS , C.8 # 19 CALCS AT 8155.73 FOOTHILL S.D * * 0 25 YR, AT CHERRY AND FOOTHILL X —ING * II * VENK I . N, JN 3810 -04, 12/18/87, DISK "VENKI #2 + * ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** NOTE: STEADY FLOW HYDRAULIC HEAD —LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 0.00 FLOWLINE ELEVATION = 1217.27 IV', PIPE DIAMETER(INCH) = 48.00 PIPE FLOW(CFS) = 98.99 ASSUMED DOWNSTREAM CONTROL HGL = 1225.510 1 Advanced Engineering Software [REM SERIAL No. A0483A REV. 2.2 RELEASE DATE:12 /17/82 <<(<(<(<<<<<<((<<<((((((<<<<(<<<<<<<<<>>>>>>> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > >> ____ _ = =___= = =_ = =_ = = =__= _____ PRESSURE FLOW PROCESS FROM NODE 0.00 TO NODE 15.00 IS CODE = 1 UPSTREAM NODE 15.00 ELEVATION = 1222.00 11 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 98.99 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 15.00 FEET MANNINGS N = :01300 11 SF= (0 /K) * *2 = ( t 98.99)/( HF =L *SF = ( 15.00)*( 98.99) / ( i436.431)) * *2 = .0047491 .0047491) = .071 NODE 15.00 : HGL= < 1225.581 > ;EGL= ( 1226. 545) : FLOWL I NE= < 1222. 000> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL I _ LOST PRESSURE HEAD USING = ING SOFFIT CONTROL .42 NODE 15.00 : HGL= ( 1226. 000) :EGL= ( 1226. 964) : FLOWL I NE= ( 1222.000) II CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HY 1 55.7 33.00 5.940 9.369 0.000 1.363 2 99.0 48.00 12.566 7.877 -- .964 3 0.0 0.00 0.000 0.000 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - ?..') 5 43.3===05 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USE6: DY=(02*V2 II 04*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N = .01300 II DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .01107 DOWNSTREAM FRICTION SLOPE = .00475 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00791 I/ JUNCTION LENGTH(FEET) = 3.33 FRICTION LOSS = .026 ENTRANCE LOSSES = .193 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) II JUNCTION LOSSES = .867+ 1.363- .964+( .026)+( .193) = 1.486 NODE 18.33 : HGL= < 1227.086>;EGL= < 1228.449);FLOWLINE= < 1222.100> I ===== ======== == ============================================== PRESSURE FLOW PROCESS FROM NODE 18.33 TO NODE 27.33 IS CODE = 1 UPSTREAM NODE 27.33 ELEVATION = 1222.19 II CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 55.65 CFS PIPE DIAMETER = 33.00 INCHES It PIPE LENGTH = 9.00 FEET MANNINGS N = .01300 SF=(0/K)**2 = (( 55.65)/( 52 .866))**2 = .0110723 HF=L*SF = ( 9.00)*( .01107p. ) = .100 NODE 27.33 : HGL= ( 1227.186);EGL= < 1228.549>;FLOWLINE= < 1222. 190> II ===== = = = == = = ======================================= END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM II II II II 1 1 II 1 1 . h/.10,2.,.., Rec. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING 5US*CT ler J t DAT( I Jos No. lout a 447 46457/V ANAL YS/S FU OQe C.8. sT. s 7#. 6 6 +6s -7'/. s.?>- gTh • + 6 6.02 ./ . .Q .S )2 1g -09 • R S 1. ........_.... V 1217-71 4t Z O J/. Q/4 .. 4 - 01 FP.1' cs Y14 = O-25- /.,2 �a9= 0.30 re., /222-7 12/7-7/ slc= ( ( 2 _)2 : ar s o.o ,41/,4 /L 4&E Ar' 7.6 I , (cc P4 REQ D. /( 0 .('M Q - 7 -nct cis K= ICs k'co 174.; zF OF ,a " cam FB �2 V2 / � ; f d= ... FT /- 767,0 1 , !.[$E Y DEP17i, 3186 -E 4114W 4W A1+e■Nc • COSTA MEQA. CALIFORNIA 92628 -4675 • (714) 641-8777 Page C -36 t M ' . ' a V O 3 C C ,75 -- J , rk- . O ',_ ' y � � a N . M 1 , N c i m 1 .. J tV . N I Gt'i c , Q V p c , co J • • V W I I u ~ cJ N • o Nom N .9 I o • I ea N `� L. a in �- v V N � C T 4. 0 0 I C 0 -- T s . Y.ao o 0 0 s m d S H c (..) v. a . W Q Q ' :t a a . I ,.c u gal to U W ct a ! l Q m _�.. LZ $ . 1. c c ZL c"✓ c = X — ' W I O N 0 a ..Y-'i=.^ c' PJ , h -4 `v V 1 1 ■ --Ak - 1 0 - 4C • Page G -36 �o -1-;:a2.--, N G (N l a I ). (- to , J W C O .aj U 0 Q - W I m I u p N N ■ • . U 0 M 111 or It. ill W (� ( y s c o I I d 1111 EA o u 0 L..) L 8 0 6 rei 11-. i V ar , • 3 C ' I- 7„). M y ■ 0 4, N. m d 1 i l l a Q a ° , tr 4 , 0 V G Q •, ° , 0 0 E a I . 0 � a I ` 111 ` ) ° L .___________________:. " � U 4i 1•11 VI -4 o Qa *<1 1 Im. U.' al i O —. m W _I u 4 F% =oj' 1 CC n. a u- • 3/7/►3if V A D,a3j t' 0 - I 1\1 1 r Page G-36 0 - . . ' • a ,-• • 0 • I 1 - t■ 0. . N 'a o 0 , c W c`l c I- Q M ° i 0 W I . i 4IC 4 U C3 .t.4 Od cn . , I • C..) I 0 ......, u . - (I■ 7. 41) tis v n ! eu 3 a I 111 «I O a 71 i c 0 1.. to c .. IN N . . P 0 0 _ 8 C77 _ " '4 a Cls ' m t-1 ,0 L 15 i ■9 --'. - 11: Co) 0 , I !I* i C „. .... 3 • ■.5 /••• 4 _ , 13 la 0 vt. a3 • i = a s N c o < . o 0 0 111 -J 1 cn • • i tr, 6) . ,-............ , . . . ' . (,) il I • C.) 4 Ck ' <I 1 1 i W .... In • . > ' Ili ' II - ,,,in2n. 0 cc o -...- s - usi- c. ,, . ,it, : • --... La et vs 71 A o = TrP • / - I W 0 '• e l" 41 / 7 _ / 439 I 1 0 Cn 0 a tj CC W _I u S„) CI. CI u- :10 1\* <1 _ . — 1 • f.,-, -.-:. . I , i • •_,- .., ....... c k -,,, ! 4 ' ' ■ 1 I t o_ l 'zit , i ! • I D-4 . . ! ' _ Page G-36 II Nil o 3 > !k ---.. : o • ci I cn i a ..... c n a. Q a I T 0 N � J �' W ' C Q o v -J u W u G N - II Cd • I V • M Z J V ~ v 1 w s c s C 5 C gR III C _ O O C N . U —IN V N .A V 1 r ^ .0 !- ' ; I 3 C o. m c 0 CS f to "v a 0 N � c ..4 g < . , : a N I . 1 '1-1 is 1 h IIII �- ( v J W m " C a il W N � n 1 u- tc ng L/ ' T5.--- \ V67 o/0 ar I ¢ m I • w 0 3 as ---,�- 0 W u ,44 _ ° S/ O 'p _,-s- _ _ C 1 i v 1 , Page G -36 !I, 111 cm � " a O M m N 2 J c]I , C 2 ---S) Q o O C i I J 1- ! 4 < ~ ' m � 1 V • 0 V V V ` .1p m I V s M � � I N V• ('7 O O a m I c a- I Ill .. o 0 ■ ry O - �+ t. ss M � m M O c I '` V O o ` ry , : i c 15 ci 3 0 0-- H FV O n' m d o N al p ` Q` ex u I N O E N 1 I I . III • • h . , 1 11 q sei Qf 1 i ).. ..t Q I J (-1 M 2 a t/ - ot= 0 or.t /y 're-v=476 O Q Co o CC c9 .- 9S /D V=s- 1 11" c m 3r7iv�/rd u ' Ai a��Hv 3 . < I cc cn o c .. , 1 i — id ! 0- 4C ` 5 Page G -36 :r o > c 'C-i i J 1 ° t . I N m c N A }N W h C ' Q U o O m M _ I I I J I- m v o = 0- ! o 1 II` 7. m 6s Q ` o E c 8 - • 5 g o 5. A I ; U 0 N'. � � v u to it o m o at u o a h ` o el Qi a .4 E <14 I .1 1 (;� 1� p ` 41 : .1 >- J � . D IV 4 a U ` a � J �, W m J 2 a • q O < O ? 'a ■ tal CC C ill U • 2 a ill O N ! ; C r • 3�nf/rp Ill t Airglt, III ; I 0 -4C Page G -31 t - - T c 0 j _;.1 , ... < Q N N H a c v N N a IA LO 2 v J H Q J U 0 Z _ U W 1 � Q ci- et 0 IA u Cr m co Q) CP Cr V •1 4 a ! • • ry� i N IA N V 2 I C \ I 1 Q c °� C a 4, 01 a� N 8 `� c � IA >. p O M 4•A it C C �n .6 n l * QO II ; .N . M o U u c 0 • t O Q 0 " v E 1 �' _ N C 1 1 a`� >- Z/5 � /b WI, '1 % t I VY 6 # � i 1 Z Zo„..,. µ- W H CO D 2 a o Q Co W CE a i 1 Cr 0 .... ‘ All A 0 um I II i /AI CO W z a - O — - s - , p = O — II ,' O _ v . d p O C / \\ cd 1 /9 b ' �' 1 /4 0 8 ' VV 8 I ke I 1 (J D-40 P Page G -36 a ry 1 Q a m n .° J I , T3 . O` C • , I: O 40 fv) ct J V m - V W u c " m N • • V 0 N r 3 o ' G ; 3 .. o v in n c "" . I N %0 3 1 - Q n Y. m C O pp . . . � H} g �Q m Ts u O a 0 O . ,00 Ea q H \ . V t., t ts._ . it • ' h W m � ' i • O Q O d oc . i --' a m v !- C m , O W 2. a C Z I. 3 m CC W O J u i ; _.-------aP- s. is .r+Ci ,' 1 r A `!' 391?1 f 0-4C I L..; --..... Page G-36 Z lk 0 d .."1---, MI Ca I N m • ilk. a . a , �k m l 8 J � W h 1.- C t•-• u o �- J i Jo V W . ' • c1! : . ' �, 0 • Z uW I , IMO in I 110 40 eill . a 6 . .� .6.• m \ E o 0 - o N h ! S V m N *a V O c o ; I c 0 • 3 H O a. m C p ,.0 Po o Y t G Q .tcj N 0 Pk ark U I p to <I i 4,► a r sst U O 2 "` 1 ` -4 W m ar 4 i • q O Q a W ! . Q m 0i Q � 1.- C m >, V 2 a 1.1 w ■ it 0 0 o - 0 G. Q I I 7' = ;b % 4 tar• p. 7 0 '0 =Ss ! i , 0- 4C 1 4441 , _ Page G -36 0 io c . . , c .,-„-,.st. I I k..,...:;,..... ci . 0 • M m n J N 1 los ry 0 j W i I Q V O `J' I C) W . ' V O - ,11.), r3 m m ( N c 1 • V 0 I T. z J . 1 ` m = ! •D • Y • 1 — co (9 3 s cS ci o . II do g O V N ry $ .` 8 4 O C3 O VI f ). O ry w Ti o 44) 1 •c 1- o N n A 3 u is w. °' C 0 8 g • m a ■. a pi 0 o " �, E • 1 <I i i -.471 d w i 0 k -vs U 1 I C W m `T' ■ II .v ti 0 2 a. p a p Q o t. .1 W a Z - 1 ; i z- - CC ( - 7 .._ kl4 -. la. S <ri 1 11 o N o O Vd ; c o =s .. 7s•z✓ =,J0 oD i I • 1 0 -4C a 41 Page C -36 c .9 0 3 > c ..•-• i C O .- iQ N d C I to a o O w J U m N U W I Q Q N V o - IT . .. c m b , C .+ O p v) u �t �. U --IN O i 4.• . M i V 0 ► V o .. E ` - . , _-� .c f '=` 3 a C 01 o t O Q Cj I o V O g I ;., N 1 ., i o L. ∎ 1 W m M 4 V It) 0 1 p q a d o f q o W CC 7 U. < : ‹I , x, W 2 a I -, c? 3 m 1 111 ° N 0 ° i t ,Sl _ __� ----�_ ' i O - 4C t i !Al ' .= Page G -36 O O C �Q . c . ' . ' ' . .,,,,- r ,. . a 6 = -' . L\ . - � o ∎9 m 41"; J l%) , • CV ai `1 V Q� o c , ✓ W I C • N /I m N U 0 I �_ ' Z I -J I s. 0 P. s , I o -„ o as 111 tY) o • N ct O U —kw a 0 C (� O 4 �g o 3 c F° t4 i ti v d m 0 n N. C O a d C t C Q < u Ng ! 0 ■■•■•■■ g ,.. <r! 1 (I 4� U 2 1 til l L W o ..q q O < a W tr a _ _ in V z a 0 Cn O o g"--9. C CC W J u i. _ , ,1 C. 13. 11 1 - - / ter,. CUfI►• OPENING (SUMP) • • Q1 = 3y.62-- 1 Given; (a) Discharge Q -a'< = 3'/• CFS . (b) Curb type '..141::-2" "D" 4" Rolled 6" Rolled . S ` /8 60 7.1-25,2 I Solution: • I 11 (depth at opening) = /2 inches P . 1 • h (height of opening) = inches • - teai ` 1I /h = !J- / /0 =I /.- 7- . 1 i . From Chart: 4 . Q /ft. of opening = ..2. •n S CFS i . • L required = 3` . 5 7 = • /0.73 ft. • 1 USE L= ` /z 1 ft. 3S, ct c,c"S , 7, ce L I -31- Qlef-D=lr re s Ity; c . B. 1 L2, • ING Interception ) CURB OPENING ( p , 1 Given: (a) discharge Q /NT = Al. 5 CFS 1 (b) street slope S = D. o 0/ 8" 1 / p . 1 (c) curb type "A -2" "D" 8 "�. IS ' OTT (d) half street width = ft. 1 . 1 Solution: Q /Sql= ) 9..SZ /( .06 qv )/Z= c2. /D•ig Therefore y=i (9'65- 1 II Q /L = o-(o- . L = 1�f =/ , ( r = 2:2— (L for total interception) TRY: L. 2.- it. • , L = s / =1 1 1 a/y = .33/ _ I I Q = . X = Pi. St CFS (Intercepted) Qc= - - _ -4— CFS(Carryover) 1 . 1 . I . I ___, -35- 4. `i- P7 C. I3. II L - 3 P.zs'_ . .,.0., Qroo .= 37,3 =p' CU1:r,' OPENING (SUMP) L -G ? D Q � L_Lt ey o ©ion 9.P., • . L - 2 < / O tto : i 1 9 9 L¢ o 3� Given: 4 ' I zs 2 , o �f J� ; 9.0� L8�'� (a) Discharge Q Z 1 = 33. 0- CFS c "A-2" "D" 4" Rolled 6" Rolled (b) Curb type �U � it 0v E.2 Solution: I II (depth at opening) _ /2 inches P • 1 h (height of opening) = 4 inches • H /h = / / ,-- ---- =1 /.)- j - I From Chart: Q/ft. of opening = • S CFS L required = .?_' . o2 / 2 .5. = 1/ ? ft. USE L= l /Z 1 ft. i . . • I -31- . I . .. _ . _ 4 j i `° x C B. 11 L - 4 0sr= 2o•7 Qroo — .?.C. vd C11111-3 OPENING ( Interception ) i Given: (a) discharge Q ' ,-r= )0.79 • I S _ 1 (b) street slope S = c. c % ` / 1 ,. fir , ,.••• .. • 1 • (c) curb type "A -2'1 1111 ;; .. /. , :;,,.. .... (d) half street width = Se ft. • 1 1 Solution: . • r 11 _ r'/..7",.. 1/ y =1 0.635 1 Q, S .0.�? /( 0. ) = /6....,6. _ Th1 relorc I Q /L = 0.3„.( I- = ,20 7� ;� s 3 = �• (L L total interception) _. 1 ci• a/y = • 33/,6,3c - 1 1�2_ 1 k Q _ c 3/ X .20.7? /C.�'3 CFS (Intercepted) Qc-= ;;o•?Y- /G. ?? = 2, ,gS CFS(Carryover) ..3 t cg � I 1 t ' _ X170 NEOHILL AVENVL Cc97A MI.b& C. P 37342 [ CIVILENOINZER1/.0 • V.HTIPV.NNINC • ": LA: k i ... --.- - . --- -- raw `:::' . ....� .. . .. i►. •,- a. . w.- : Ak., igii'FiiC+.Z+K".'2".�aWi ti�iFQtt'.sa2Ec7NP -ins' 1 3 . . Qty /JFtg- .;, Q = ?3.07 • • •c /o Qi,c•- 24/4 CUI113 OPENING ( Interception ) i Given: (a) discharge Q - 17 e CFS 1 (b) street slope S= o. 0IS6 , I I t i (c) curb type 11 = 2" HD,' p-4t-P 146 $ -A • (d) half street width = 3i ft. • II • ' 1 Solution: . III . Q/S ` _ /�. / ( o.c _ /z.. ( P ' Th',refore y- v - � Q /L = o. S7 L P� = 1 . o• S"dP = .o.7 4 C (L for total interception) TRY: _ L 1 J ft. • t • 1 /L. ' I1 I30.7,4.=j o.5 I_ / 1'1_, • 2/y = .33/ c.; = o.rr"1 i Q/ Q - o -7? • 1 Q GP I , = 0 . 7, X . /y .P . _ / 3.9 2.- CFS (Intercepted) 1 c 7.'?" l_7.9 = 3, gv CFS(Carryover) %� CB b ;' _ . 1 • • ,... .y -12,40' / / Apr j f� I f g 4 fi t •� ate. ' -` : +[ 3170 MORAtL AVENUE COSTA MEGA CA 11231111•3413 • tiaMatiV ' CMLtNOINEEIUNO • LANDPLANNINO • LASS $UW Y100 tee. -" C B. it L - k, • CUR13 'I' NI \� - O� .. C, ( Interception ) 0,2S'. Zo.a.l 0:41' AA e3. 3.93- .:4 _ ar:7 Given: (a) discharge Q - 14 /.? CFS /- s. 33 • V 1 (b) street slope S = o, 0 ISb 7/' (c) curb type 'I/1 -2" "D" 1p •c.,c /F Q (d) half street width = 39 ft. 1 • 1 Solution: Q /S / ' = 2�/3 /( v. o/r4 ) ' "x /93. / Therefore y-I o•,L(S 1 1 Q /L = 0 - 6.- 11 : : L = 2 - 4 . • /3 / O. GC, = z3 C (L for total interception) 1 7'l•Y: _ L !2 ' ft. - • I 1 . / L '/ - l-- / 3G.� = 1 0.33 1 . - G S a. / - .331 L = LL...s1 1 Ci o • S/ X 24 (:": _ /2.: CIF (Intercepted) I C7c= .. /3- 12.2 _ 11 . ?^y CFS(Carzyover) To G.�• #L - 7 • 1 I i. , I la Nee g ,,tet4,eat, a4.12. , I 1110 REMIT. L AVMNLIE COSTA u . CA SYMMS • IMISIPPI CIVIL ENOIH�MINO • LAND MANNING • LANDWRYI'NM / 4 4g 3 C. 13. 11 -7 t. 4 „AI r ' ,p, ' CUrr• OPENING (SUMP) 0M¢ ,' . G //.37 I Given: 41S -r Qi c = /1.374414z-0.21 _/ c- 2-if . C CFS CA 9A r _ 11.9z 14.3 1 o Qaoo = 4 f7 -2 (a) Discharge Q /�uT = CFS , -t 6.66-- (b) Curb type "A -2" "D" 4" Rolled 6" Rolled S3 -rry 1 _ •P C /P`cp // 1 Solution: 11 de th at opening) = /2 inches ( P P g 1 h (height of opening) = inches iir H /h = /z / to =I /.2- 1 • i From Chart: 1 - Q /ft. of opening = ,2.5L CFS • • L required = 2q, / a• 56- = 0 30.g" ft. ! USE L= ` q lft. cl ),� - 4 2.63.4 ,.iLL( ad I c 1 -31- C . 13. 11 L - 10 Ls = 2-2. s =- 4(oo cUPr' OPENING (SUMP) Given: (a) Discharge Q 2. = " !ZZ 2Z C FS (b) Curb type "A -2" "D" 4" Rolled 6" Rolled i 1 Solution: 11 (depth at opening) = 12_ inches h (height . ght of opening) ( 0 inches Il /h = / HO _f / 2 1 • From Chart: • ' Q/ft. of opening = 0 y r CFS L required = 22 Z / , . 9s = ft. USE L= f iS j ft. Ca fx = 2S-‘ C . • r‘ l t 1 —31— 1 . 0 .. CURB OPENING ( Intc:rcchtion ) ( Poo sc /9.6/ 1 Given: (a) discharge ( -?Zs — _ /L{• 3 CFS 1 (b) street slope S = 0 • 6 16y III 1 • (c) curb type "A -2" il , (d) half street width = 2 4 ft. I • Solution: • 1 Q/STI2� f( f' 3 /( , ol64 )+ /z- //sir Therefore y •l O•-q) l Q/ =D -L . 1. _ /(( B /0.c = 27.46 (L for total interception) i 7'IlX: _ L Zo ' ft. 1 1 1 L. .. 20 / a7. y4,--1 0.73 1 a . / = .33 / D.g, = 1 o.rq1 . 1 1 Q,= I `f• fc'3 X o . - /2.6 CFS (Intercepted) 1 Qc= /Y - /2. = 2,2Z— Ci.•' S(Cariyover) 4 C. —, Z II • ir,- i 111 „En ?I g PareeM4 gi AM. MO REDNQI AVENUE OOO M. TA P CA 0,410441111 • WIPENZEI ermeNOIN'_EMNO • tANDPUNNINO • UMDEUNVEMNS • Q ZS = 2°. 3D LIIL;;.:1,-:',X - C B . it L -17- Qz.. &&4.. a N2. -u = 022 CUR I-3 QId. t - L -rr= �v •Yl OPENING )�I L ( Interception ) 1 i - 2 0 - 30 Given: (a dischar L e ( _ _ ' -773 C,IS Q 2' 2i J 1 (b) street slope S = •0 / '12. '1' 1 • (c) curb type "A -2" "))" (d) half street width = • 2 4 ft. i 1 Solution: . • Q /S� / ' = 22.52/( 'o11f2. )171= _ 5 1Y Therefore y=1 0.66 1 Q R., = 61.6(4 1 - . L = Z /'7 / 0.6t-( _ ( L for total interception) �tion 3y r ) TRY: _ L(, ?... 2' ft. I.iL -- 2Z / 3'r =119.s i . 111 a. /y = .33/ b.65' = 1 0.r I1 1 1 • c, /GJ - Q • k O • • Q._ © ' ' X 22-52 - rn•0 CF S (I ntercepted) � _ I 1 Qc= 22.5'2 . - r 2 = q, 5'2- CFS(Carryover) 4v C.8. # L -i3 1 . • • i • � I • r I . ,, 1 Neg 41,. teemat, ax. . . 0*70 REWnLL AVENUE COSTA MWM CA WNF•N • • iTSVIE. GYILSNOth *_ERINO • LANO IMNN/N0 • UN000RY9 -, U . 1C 2 4• (2 C C. J3 . 1! L -13 i � 21241 CUrr' OPENING (SUMP) Q2s= /7.Y3 CPI �,� , aiw = 22.35 e 1 . J a? c 4,,n., mm/4.• i -a= 4 - g G iven: Qsr= / ae- .y L 1 (a) Discharge Q = ./.1..t CFS (b) Curb type "A-2" "D" 4" Rolled 6" Rolled 1 'C.F. .1' /F P &talw i I Solution: JJ (depth at opening) = /2- inches 1 h (height of opening) = Ip inches • . It s' Ii /h = 12 / /o = / • Z- 1 • From Chart: 1 - Q /ft. of opening = °2 ./f CFS L required = 2 1 - gs" / ,2 S = 7 4 4 ft. • 1 USE L= I (ft. i ' ' . 1 .• Ir • 1 -31- 7t. 73. 1 .• • .. . ii.. 72 • to C. B. # L- /4 . MY T. 7 - CURB OPENING ( Interception ) q ; •33 1 62 4•or c Fs Given: (a) discharge C� /06 = s. 19 • CFS Q,o , 5- i5 c c s 1 (b) street slope S = 0-.0/56 iii • 1 (c) curb type "A -2" - "D" (d) half street width = 3$' ft. .t 1 Solution: Q /S /z= e. t /( Q•0ls6 ) _ ! Therefore y= 0-39 1 Q /L = 0 -4 3 1 L = 5- /9 / 0:43 = /2- 07 !L for total interception) IP TRY: L 12 ft. • I L = / _ _ r i 1 a/y = .33/ -- I _ . 1 Q X = CFS (Intercepted) 1 Qc = ___ - _ CFS(Carryover) 1 1 .1.... 1 -35- T.e.: !2'3/ 1e_ C . B C. # L- /s - ,ego. e,,., /,1r :O.O2 .,- CURB OPENING ( Interception ) Qti s! -rlc 1 62,0,, _ ! -94 CPS Given: (a) discharge Q/00 = 1 •'94 CFS 1 (b) street slope S = p . D2/4 1 / 1 1 (c) curb type "A -2" - "I5" g" Gc,vb FQ4 !t' " 6.,..tt et -, 4 (d) half street width = 3S" ft. .1 1 Solution: Q /S /z = / -91 , - /( 0.02/4 )� /z = /3- 26 Therefore y=176- 28 1 Q /L = Q- 33 1 L = /-,4 /0-33 = 5 - 811 - •'T, for total interception) TRY: L 6 ft. I I /L = / = 1 a = . 3 3 -- ly I I si/Q =— I Qp = X = CFS (Intercepted) Qc= = CFS(Carryover) 1 1 I.; 1 1 -35- 1,= 50.33 IF . 49.33 L -i6 gZs C. B. I ````� CURB OPENING ( Interception ) 1Y� .k --..N , lN . . dischar e Q = 9 0s CFS 1 Given: (a ) � t_,,� - _- (b) street slope S = 0. ors-6 f/1 1 (c) curb type "A -2" ' D" (d) half street width = 38' ft. 1 Solution: Q /S /z = 1•0S /( 0•D /s 6 ) /z = 72.46 Therefore y= 0 " 47 l 1 Q /L = 0 . 1 L = vs" / 0 •ro = 18.1 'L for total interception) x TRY: L pg ft. L -v- / L /& -o/ I 2 - 1 = 0' y =- 1 a/ .33/ D _ •47 = 0 102 1 c Q = o-s' _ 1 Qp= 0.9 k -_j` 47 O _ ____ 4 :81_CFS (Int,n-.ceptcd) 1 Qc =Y , bs__— 21-1 _ ` F I' _CFS(Carr TO L -1e 1 1 I- t f,:_ 1 -35- T A = s4. 10 :--- c p,,,, = 23.97 cps - CURB OPENING ( Interception ) I . Given: (a) discharge Qa_- _ (r.6r CFS (b) street slope S = r n o S6 ' 1' ' 1 • (c) curb type "A -2" "D (d) half street width = 3 d ft. Solution: • Q /S'? : i$ - 6 $(-. /( o- 0084 ) 1/z _ 2D3 -S2 Therefore r =1 -6 'C 1 1 • lir;', T / ,' L = = 1 ��.� ^�! / C.�� c. 7 (L for total inter ccption) • 7 RY: _ I., = Z 2• ft. - r, P 0 k I i . ' /L. ZZ / �7 = o o a /y = . 33/;.(A - JO.17.f 1 0 /Q, = o -/'3 . Qp= lY 4 O X D •. �1 - r7 CFS (Intercepted) 1 _ - _ Qc= / c /)_27 / • 3/ CFS(Carryover) 4,, L - 2 I I y i . r. q A X y�. 3170 N£OHIll AVENUE COSTA 14E8 . CA 4enni-PIL at ++.••v�� ...- ...... '.^•'- �.�.••.a,w -...., .ae £Y *+.wr rvv.eawww ealier CiVIL!IMMURING • LAND PLANNING • lAVOki3w `nuto t ■, l� ,� C •o 4 rte L , . C.. if L — (c( . i , CURB OYI'Ni\'G ( Interception ) Given: (a) discharge Q7-c _ . 4.7 0-12 CFS 1 (b) street slope S = .001_ ' /' • 1 (c) curb type "A -2" "ll" (d) half street width = •3 ' ft. • • 1 Solution: • ( 4 IS = 4, ' /( ,z) 1/2 /01./2 Therefore y =I 0, S I Q /L = 0•'Sc • . J, _ 4.$g / o.cr = g' / (L for total interception) 1 TRY: _ L p . ' ft. . • Z - ./L. .. 4/ 8 = 1 "71 a. /y = . 33/O.55 = Jo 1 0_1Q _ D.' • . . Q,,= 4Y g8" X 6, � 3 = 4 .Os. CF S (Intercepted) QC= 4,88 - 1 = a . CFS(Carryover) - D // 1 . I. i • . ■ hfe Aw,ee —.444t, a ,,,, . . i If 10 REONIMI AVENUE COSTA WM: CA Wf4Mf0 % O CIYtLEN01k2EMN0 • WID NANNINO • SANDOimy iif0 _ (q , C. I3. 11 L r it Qz 1 "-tf CUIli OPENING (SUMP) Oc, z . 2._L____Lcjar- 1 9 z•3y I Given: (a) Discharge Q6 74-Q = 43 .3Y CFS , 1‘3 (b) Curb type "A -2" "D" 4" Rolled 6" Rolled 1� e ` v , Ici , 18 0,1 I Solution: 11 (depth at opening) • = /2-- inches I h (height of opening) = /0. inchcs U II /h = /2._ / / o = [ 1.2- From Chart: 1 Q /ft. of opening = 2- • q ?r - CFS L required = q 7 . 3 `I / 2 _c1 r = 17 .6 9 ft. • USE L= [ /‹ In. 1 1 . . -31- I .. ... r„- ._Y.^t ...- r- -s--, .:: _:-+ -. •.t7 -arr- vrs•nr.::..+r..r.. .: :•�7t �+•.... 4 . y C . ' . I , 2-0 111 ' CIfIt13 0l.'I:;i :'ING ( Intercchtion ) Given: (,a) di:;charl;e Q ' 3.3"1 (2F3 1 • (b) street slope S = i DOlfy ' 1 ' . ■ • 1 • (c) curb type_ ''A_2" 1■1)'' (cl) half street width = 17 ft. 1 1 Solution: s 3 . 5 `f /( , 00rLf ) /? 1 Q / = 31-, __._ •rhhre .' ? Ir Q /L - -_ 6 . 6 ( . J, - 3 . c / 0 .. 11 = /0 (L for total inter ccption) 1 ' 'I'llY: _ L ip ' ft. • I ./f_. '' / _ a. /y = .33/ - 1 i i P _ ( ' I ' — - 3.S`j Clr' (Inter coptc'(I) 1 (2C _ --{.— . C 1.•':;(C arryovei') 1 • - 1 ' ' M.' , 3170:01.4nl A : : f. lYb 'I t•rA. CA/'r•:1!'3 CIYIICN$I: 7.LIINO • UNDPUNI IUG • I. IIDi M7..••/XO ..1.1 ....:..ye?.rr .:C:1_+ r+ ►r/ 1 :.. _ .... • +• w7zaSter tr?r lenttarr' , tzrn "T.Ix=2:17,r..'•.....r•. reirrr- f1i '- •p• -C....-. -n "....r:0NM1 7, ■ 1 1 1 CHERRY AVENUE STORM DRAIN; 1 1 HYDRAULIC CALCULATIONS FOR 1 1 LATERAL "L" 1 (REF: LATERAL "C" OUT STRUCTURE) 1 1 1 ate 1110 ..gHLI AVENUE • COSTA MN& CA IMINI • 1 ?I 1414171 ' d111L IINSINUUQINO • LAND TANNING • LAND NMIIrnNS 1 J � 1 Discussion: This report contains hydraulic calculations p y for the ' proposed storm drains in the Cherry Avenue Industrial Area. The storm drain line "L" and its connecting lateral "C" ' • located along Cherry Ave. north of Miller Ave. designed for ' 25 -year frequency run -off, except at railroad crossing. At the crossing, the storm drains are designed to carry 1 the 100 -year flow. Catch basins, immediately upstream of the railroad allow the 100 -year run -off to enter the ' system. Then, downstream of the railroad, the excess flow above the 25 -year run -off is forced back out of the system and into the street. The Cherry Ave. street has been designed with drainage i easements to accommodate the excess of 25 -year, up to ' 100 -year frequency run -off from a drainage area of 523 acres located north of Baseline Ave. (See Hydrology Report). ' There are proposed inlet structures and outlet structures along lateral "C" north and south of railroad crossings. ' The beginning downstream HGL control for lateral "C" has ' been computed as 1273.70 nearby storm drain station 1 +85.30. This was based on the depth of the flow in Cherry ' Ave. with 100 -year frequency run -off . A hydraulic analysis was conducted for Line "C" between station 1 +85.30 IF and station 10 +10.77 assuming the 25 -year frequency flow in the storm drain with downstream HGL control as 1273.70. This 1 1 analysis revealed that the outlet structures proposed at ' station 10 +10.77 will discharge the excess flow above the 25 -year run -off back to the street (Cherry Ave.) as is 1 intended. Then, based on the computed HGL at station 10 +10.77, upstream portions of the lateral "C" were analyzed. The pipe and inlet structures between stations ' 10 +10.77 and 17 +27.73 have been designed for 100 -year frequency run -off . This conveys the 100 -year run -off 1 under the railroad. Upstream of station 17 +27.73, lateral "C" is designed for 25 -year frequency run -off . 1 Hydraulic calculations for the portion of storm drain line "L" located along Miller Ave. has been performed based on the downstream control HGL of 1273.70 at station 36 +00.50. This analysis has been conducted from station 36 +00.50 to 1 44 +50.00 assuming the 25 -year frequency run -off in the ' storm drain. It was further assumed that catch basins #2 and #3 will not function. It was found that at station 1 44 +50.00 the HGL is 1277.76 which is 2.36' higher than the top of curb. This assures that excess flow in the line will bubble out. The hydraulic calculations upstream of station 44 +50.00 assumes the 100 -year flow is the pipe. 1. The downstream control HGL at station 44 +50.00 is 1275.76 1 which is the maximum water surface elevation at drainage easement for Miller Ave. 1 S.D. line "L" was also analyzed between station 4 +20.24 and 1 1 } 22 +92.00 to find out how much additional flow can be I accommodated in the line without bubbling out through the catch basin #6, located nearby the junction of Meyer Canyon II Drive and Cherry Ave. The hydraulic analysis indicated that the maximum additional run -off in excess of 35.2 cfs 1 . will bubble out, beginning at catch basin #6 and then catch basins located upstream of station 22 +92.00. This assures that the downstream storm drain will not be overloaded more II than 35.2 cfs (35.2 cfs is neglible compared to the total system design). All run -off in excess of the 25 -year flow 1 will indeed drain along Cherry Ave. as is intended. 1 1 II 1 1 r 3810 -04 II 41,21 REPRT2 II 1 1 I ********************************************* ** ****** ****************** ***** PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE I (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** <<<< <<<<(<< <<<<<<<<((((((((((( <((<( <>>>>>)) >>)>>>>>>>>>>>>>)>)>>>>>)>>>)>) (C) Copyright 1982 Advanced Engineering Software CAES] II Especially prepared far: II HALL & FOREMAN, INC. << l< > > > > > > > > > > > > > > > > > > > > > > > > > > > > > >> II * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * INDUSTRIAL AREA LINE L HYDRAULICS (REF: BUBBLE OUT- LATERAL "C ") * • * Q 25 -100 YR FROM 412.75 TO 2187.83, Q 25 YR + 35.2 CFS * * VENKI . N, JN 3810 -04, 2/15/88, DISK "VENKI #1-2" * I ********************************************* * * * ** * * * * * * * * * * * * * * * * * * * * * * * * ** NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA 11 DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: 1r NODE NUMBER = 412.75 FLOWLINE ELEVATION = 1210.50 PIPE DIAMETER(INCH) = 108.00 PIPE FLOW(CFS) = 1223.70 ASSUMED DOWNSTREAM CONTROL HGL = 1219.710 ______ 1/ 111 ((<(<(<((((<((((((<(((((<(((((((((((<()))))))))))))))))))))))))))))))))))))) > > >) >) > >) > > > >> Advanced Engineering Software CAES] II SERIAL No. A0483A REV. 2.2 RELEASE DATE:12/17/82 <(<<<(<($<<(<<<<<<<<<<<<<<<<<<<<<<(<(<>)>)>)> >>>>> > > >>>>)>>> > >>)>>>>) >>)))>> 11 I PRESSURE FLOW PROCESS FROM NODE 412.75 TO NODE 420.25 IS CODE = 5 UPSTREAM NODE 420.25 ELEVATION = 1211.00 , 11 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV II 1 1001.8 102.00 56.745 17.655 _ 170 4.840 2 1223.7 108.00 63.617 19.235 5.745 3 221.9 54.00 15.904 13.952 60.000 - 4 0.0 0.00 0.000 0.000 0.000 - ir 5 0.0 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: II DY=(02*V2 Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM FRICTION SLOPE = .00873 II DOWNSTREAM FRICTION SLOPE = .00960 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00917 JUNCTION LENGTH(FEET) = 7.50 FRICTION LOSS = .069 I/ ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = 2.221+ 4.840- 5.745+( .069)+( 0.000) = 1.384 NODE 420.25 : HGL= < 1222. 000> ;EGL= < 1226. 839> ; FLOWL I NE= ( 1211.000> = = = I PRESSURE FLOW PROCESS FROM NODE 420.25 TO NODE 549.82 IS CODE = 3 UPSTREAM NODE 549.82 ELEVATION = 1212.44 II CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 1001.81 CFS PIPE DIAMETER = 102.00 INCHES PIPE LENGTH = 129.57 FEET MANNINGS N = .01300 CENTRAL ANGLE = 3.090 DEGREES II PRESSURE FLOW AREA = 56.745 SQUARE FEET FLOW VELOCITY = 17.65 FEET PER SECOND VELOCITY HEAD = 4.840 BEND COEFFICIENT(KB) = .0463 II HB =KB *(VELOCITY HEAD) = ( .046) *( 4.840) = .224 PIPE CONVEYANCE FACTOR = 10721.156 FRICTION SLOPE(SF) = .0087315 FRICTION LOSSES = L *SF = ( 129.57) *( .0087315) = 1.131 II NODE 549.82 : HGL= < 1223. 355) ;EGL= < 1228. 195> ; FLOWL I NE= < 1212.440> II PRESSURE FLOW PROCESS FROM NODE 549.82 TO NODE 956.05 IS CODE = 3 UPSTREAM NODE 956.05 ELEVATION = 1216.95 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): IF, PIPE FLOW = 1001.81 CFS PIPE DIAMETER = 102.00 INCHES ;; PIPE LENGTH = 402.23 FEET MANNINGS N = .01300 II CENTRAL ANGLE = 30.190 DEGREES PRESSURE FLOW AREA = 56.745 SQUARE FEET FLOW VELOCITY = 17.65 FEET PER SECOND VELOCITY HEAD = 4.840 BEND COEFFICIENT(KB) = .1448 II HB=KB *(VELOCITY HEAD) = ( .145) *( 4.840) = .701 PIPE CONVEYANCE FACTOR = 10721.156 FRICTION SLOPE(SF) = .0087315 FRICTION LOSSES = L *SF = ( 402.23) *( .0087315) = 3.512 II NODE 956.05 : HGL= < 1227. 568> ;EGL= < 12:32. 408) ; FLOWL I NE= < 1216.950> II PRESSURE FLOW PROCESS FROM NODE 956.05 TO NODE 1035.00 IS CODE = 3 UPSTREAM NODE 1035.00 ELEVATION = 1217.83 1 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 1001.81 CFS PIPE DIAMETER = 102.00 INCHES PIPE LENGTH = 78.95 FEET MANNINGS N = .01300 I CENTRAL ANGLE = 2.350 DEGREES PRESSURE FLOW AREA = 56.745 SQUARE FEET FLOW VELOCITY = 17.65 FEET PER SECOND II VELOCITY HEAD = 4.840 BEND COEFFICIENT(KB) = .0404 HB =KB *(VELOCITY HEAD) = ( .040) *( 4.840) = .196 PIPE CONVEYANCE FACTOR = 10721.156 FRICTION SLOPE(SF) = .0087315 IF FRICTION LOSSES = L *SF = ( 78.95) *( .0087315) = .689 NODE 1035.00 : HGL= < 1228. 453) ;EGL= < 1233. 293> : FLOWL I NE= < 1217. 830) II PRESSURE FLOW PROCESS FROM NODE 1035.00 TO NODE 1040.00 IS CODE = 5 UPSTREAM NODE 1040.00 ELEVATION = 1217.87 NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV II 1 988.1 102.00 56.745 17.413 _ 139 4.708 2 1001.8 102.00 56.745 17.655 4.840 3 13.7 24.00 3.142 4.358 60.000 - II 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(02*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) II UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00849 II DOWNSTREAM FRICTION SLOPE = .00873 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00861 JUNCTION LENGTH(FEET) = 5.00 FRICTION LOSS = .043 ENTRANCE LOSSES = 0.000 II MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = .115 MANHOLE LOSSES = .242 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) II JUNCTION LOSSES = .246+ 4.708- 4.840+( .043)+( 0.000) = .285 NODE 1040.00 : HGL= < 1228.869 >;EGL = < 1233.578 >;FLOWLINE = < 1217.870) II == = ________ = PRESSURE FLOW PROCESS FROM NODE 1040.00 TO NODE 1232.37 IS CODE = 3 UPSTREAM NODE 1232.37 ELEVATION = 1219.32 II CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 988.12 CFS PIPE DIAMETER = 102.00 INCHES PIPE LENGTH = 192.37 FEET MANNINGS N = .01300 11 CENTRAL ANGLE = 5.740 DEGREES ' PRESSURE FLOW AREA = 56.745 SQUARE FEET I FLOW VELOCITY = 17.41 FEET PER SECOND VELOCITY HEAD = 4.708 BEND COEFFICIENT(KB) = .0631 HB =KB *(VELOCITY HEAD) = ( .063) *( 4.708) = .297 PIPE CONVEYANCE FACTOR = 10721.156 FRICTION SLOPE(SF) = .0084945 II FRICTION LOSSES = L *SF = ( 192.37) *( .0084945) = 1.634 NODE 1232.37 : HGL= < 1230. 801 > ;EGL= < 1235. 509> ; FLOWL I NE= ( 1219. 320) II _ PRESSURE FLOW PROCESS FROM NODE 1232.37 TO NODE 1397.67 IS CODE = 3 II UPSTREAM NODE 1397.67 ELEVATION = 1222.43 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): II PIPE FLOW = 988.12 CFS PIPE DIAMETER = 102.00 INCHES PIPE LENGTH = 165.30 FEET MANNINGS N = .01300 CENTRAL ANGLE = 12.284 DEGREES PRESSURE FLOW AREA = 56.745 SQUARE FEET I FLOW VELOCITY = 17.41 FEET PER SECOND VELOCITY HEAD = 4.708 BEND COEFFICIENT(KB) = .0924 HB =KB *(VELOCITY HEAD) = ( .092) *( 4.708) = .435 II PIPE CONVEYANCE FACTOR = 10721.156 FRICTION SLOPE(SF) = .0084945 FRICTION LOSSES = L *SF = ( 165.30)*( .0084945) = 1.404 NODE 1397.67 : HGL= < 1232.640> ;EGL= < 1237. 348> ; FLOWL I NE= < 1222. 430> I PRESSURE FLOW PROCESS FROM NODE 1397.67 TO NODE 1402.34 IS CODE = 5 II UPSTREAM NODE 1402.34 ELEVATION = 1222.93 CALCULATE PRESSURE FLOW JUNCTION LOSSES: 2 988.1 102.00 56.745 17.413 -- 4.708 II 3 0.0 0.00 0.000 0.000 0.000 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =05 EQUALS BASIN INPUT = == II LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DV=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- ' Q4 *V4 *COS (DELTA4)) / ((A1 +A2) *16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 II UPSTREAM FRICTION SLOPE = .01174 DOWNSTREAM FRICTION SLOPE = .00849 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .01012 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .047 II ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = .005 MANHOLE LOSSES = .235 1 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = - 1.287+ 6.001- 4.708+( .047)+( 0.000) = .283 NODE 1402.34 : HGL= < 1231.630) ;EGL= < 1237. 631) ; FLOWL I NE= < 1222.930) 1 PRESSURE FLOW PROCESS FROM NODE 1402.34 TO NODE 1750.89 IS CODE = 3 UPSTREAM NODE 1750.89 ELEVATION = 1227.87 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): 1 PIPE FLOW = 988.12 CFS PIPE DIAMETER = 96.00 INCHES PIPE LENGTH = 348.55 FEET MANNINGS N = .01300 CENTRAL ANGLE = 25.902 DEGREES IF PRESSURE FLOW AREA = 50.266 SQUARE FEET FLOW VELOCITY = 19.66 FEET PER SECOND VELOCITY HEAD = 6.001 BEND COEFFICIENT(KB) = .1341 HB =KB *(VELOCITY HEAD) = ( .134) *( 6.001) = .805 1 PIPE CONVEYANCE FACTOR = 9120.764 FRICTION SLOPE(SF) = .0117370 FRICTION LOSSES = L *SF = ( 348.55) *( .0117370) = 4.091 NODE 1750.89 : HGL= < 1236. 526) ;EGL= < 1242. 527) ; FLOWL I NE= < 1227.870) r = = = 1 PRESSURE FLOW PROCESS FROM NODE 1750.89 TO NODE 1802.34 IS CODE = 3 UPSTREAM NODE 1802.34 ELEVATION = 1228.59 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): 1 PIPE FLOW = 988.12 CFS PIPE DIAMETER = 96.00 INCHES PIPE LENGTH = 51.45 FEET MANNINGS N = .01300 CENTRAL ANGLE = 32.754 DEGREES 1 PRESSURE FLOW AREA = 50.266 SQUARE FEET FLOW VELOCITY = 19.66 FEET PER SECOND VELOCITY HEAD = 6.001 BEND COEFFICIENT(KB) = .1508 11 HB=KB*(VELOCITY HEAD) = ( .151)*( 6.001) = .905 PIPE CONVEYANCE FACTOR = 9120.764 FRICTION SLOPE(SF) = .0117370 FRICTION LOSSES = L *SF = ( 51.45) *( .0117370) = .604 II NODE 1802.34 : HGL= < 1238. 035) ;EGL= < 1244. 036> ; FLOWL I NE= < 1228.590) 1 PRESSURE FLOW PROCESS FROM NODE 1802.34 TO NODE 1812.34 IS CODE = 5 ~ UPSTREAM NODE 1812.34 ELEVATION = 1228.75 1 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 904.4 96.00 50.266 17.992 6.366 5.026 4 0.0 0.00 0.000 0.000 0.000 - II 5 0. @ = ==05 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1) I Q4 *V4 *COS4DELTA4)) /(<A1 +A2) *16.1) i -xw�ti : UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00983 DOWNSTREAM FRICTION SLOPE = .01174 II AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .01078 JUNCTION LENGTH(FEET) = 10.00 FRICTION LOSS = .108 ENTRANCE LOSSES = 0.000 II JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = 1.726+ 5.026- 6.001+< .108)+4 0.000) = .859 NODE 1812.34 : HGL= < 1239. 869) ;EGL= ( 1244. 895) ; FLOWL I NE= < 1228. 750> 1 == == = = == = === = =_ = = === =_ =__= __ =__= ___ =_= = PRESSURE FLOW PROCESS FROM NODE 1812.34 TO NODE 1847.61 IS CODE = 3 II UPSTREAM NODE 1847.61 ELEVATION = 1229.03 CALCULATE - PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): II PIPE FLOW = 904.37 CFS RIPE DIAMETER = 96.00 INCHES PIPE LENGTH = 35.37 FEET MANNINGS N = .01300 CENTRAL ANGLE = 22.000 DEGREES PRESSURE FLOW AREA = 50.266 SQUARE FEET II FLOW VELOCITY = 17.99 FEET PER SECOND VELOCITY HEAD = 5.026 BEND COEFFICIENT((B) = .1236 HS =KB *(VELOCITY HEAD) = ( .124) *( 5.026) = .621 PIPE CONVEYANCE FACTOR = 9120.764 FRICTION SLOPE(SF> = .0098317 fi FRICTION LOSSES = L *SF = ( 35.37) *( .0098317) = .348 NODE 1847.61 : HGL= < 1240. 838) ;EGL= < 124 5.864) ; FLOWL I NE= < 1229.030) 1 _ =___ = PRESSURE FLOW PROCESS FROM NODE 1847.61 TO NODE 1847.61 IS CODE = 5 II UPSTREAM NODE 1847.61 ELEVATION = 1229.03 CALCULATE PRESSURE FLOW JUNCTION LOSSES: II NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 892.6 96.00 50.266 17.758 .955 4.897 2 904.4 96.00 50.266 17.992 -- 5.026 I 3 11.8 21.00 2 .405 4.893 90.000 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =Q5 EQUALS BASIN INPUT = == I LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(02*V2-01*V1*COS(DELTA1)-Q3*V3*COS(DELTA3) Q4 *V4 *COS(DELTA4)) /(<A1 +A2) *r6.1) II UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 II UPSTREAM FRICTION SLOPE = .00958 DOWNSTREAM FRICTION SLOPE = .00983 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00970 JUNCTION LENGTH(FEET) = 1.75 FRICTION LOSS = .017 I J ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = .131 MANHOLE LOSSES = . II JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = .261+ 4.897- 5.026+< .017)+< 0.000) = .268 NODE 1847.61 : HGL= < 1:41.236) ;EGL= < 1246. 132> ; FLOWL I NE= < i P Pq mw' ____ =________ __= = =x=== ______ = === =sc= =.- =_______ II PRESSURE FLOW PROCESS FROM NODE 1847.61 TO NODE 1893.85 IS CODE = 3 UPSTREAM NODE 1893.85 ELEVATION = 1229.40 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): II PIPE FLOW = 892.60 CFS PIPE DIAMETER = 96.00 INCHES PIPE LENGTH = 46.24 FEET MANNINGS N = .01300 `'='' CENTRAL ANGLE = 29.050 DEGREES PRESSURE FLOW AREA = 50.266 SQUARE FEET FLOW VELOCITY = 17.76 FEET PER SECOND VELOCITY HEAD = 4.897 BEND COEFFICIENT(KB) = .1420 II HB =KB *(VELOCITY HEAD) = ( .142) *( 4.897) = .695 PIPE CONVEYANCE FACTOR = 9120.764 FRICTION SLOPE(SF) = .0095775 FRICTION LOSSES = L *SF = ( 46.24) *( .0095775) = .443 II NODE 1893.85 : HGL= ( 1242. 374) ;EGL= ( 1247.271 ) ; FLOWL I NE= ( 1229.400) = = = == = = II PRESSURE FLOW PROCESS FROM NODE 1893.85 TO NODE 1960.38 IS CODE = 1 UPSTREAM NODE 1960.38 ELEVATION = 1229.93 II CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 892.60 CFS PIPE DIAMETER = 96.00 INCHES PIPE LENGTH = 66.53 FEET MANNINGS N = .01300 II SF= (Q/ K) * *2 = (( 892.60)/( 9120. 764 > ) * *2 = .0095775 HF =L *SF = ( 66.53)*( .0095775) = .637 NODE 1960.38 : HGL= ( 1243.011) ;EGL= ( 1247. 908) ; FLOWL I NE= ( 1229.930) 1 == = = = == = = == == ==== = = = == = = = = =__= PRESSURE FLOW PROCESS FROM NODE 1960.38 TO NODE 2114.64 IS CODE = 3 UPSTREAM NODE 2114.64 ELEVATION = 1231.16 L .. ; LO CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): II PIPE FLOW = 892.60 CFS PIPE DIAMETER = 96.00 INCHES PIPE LENGTH = 154.26 FEET MANNINGS N = .01300 CENTRAL ANGLE = 11.273 DEGREES PRESSURE FLOW AREA = 50.266 SQUARE FEET 11 FLOW VELOCITY = 17.76 FEET PER SECOND VELOCITY HEAD = 4.897 BEND COEFFICIENT(KB) = .0885 HB=KB*(VELOCITY HEAD) _ ( .088)*( 4.897) = .433 II PIPE CONVEYANCE FACTOR = 9120.764 FRICTION SLOPE(SF) -= .0095775 FRICTION LOSSES = L *SF = ( 154.26) *( .0095775) = 1.477 NODE 2114.64 : HGL= ( 1244. 922) ;EGL= ( 1249. 818) ; FLOWL I NE- < 1231. 160> II = = = = PRESSURE FLOW PROCESS FROM NODE 2114.64 TO NODE 2165.83 IS CODE = 1 II UPSTREAM NODE 2165.83 ELEVATION = 1231.57 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 892.6 0 CFS PIPE DIAMETER = 96.00 INCHES PIPE LENGTH = 51.19 FEET MANNINGS N = .01300 SF =(Q /K)* *2 = (( 892.60)/( 9120.764)) * *2 = .0095775 II HF =L *SF = ( 51.19)*( .0095775) = .490 NODE 2165.83 : HGL= < 1245.412) ;EGL= ( 1250. 309) ; FLOWLINE= < 1231.570) _ == = = =r == = = ___ ' PRESSURE FLOW PROCESS FROM NODE _2165.83 TO NODE 2187.83 IS CODE = 5 UPSTREAM NODE 2187.83 ELEVATION = 1232.27 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 3 115.9 51.00 14.186 8.173 18.775 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =05 EQUALS BASIN INPUT = == II LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .01023 II DOWNSTREAM FRICTION SLOPE = .00958 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00990 JUNCTION LENGTH(FEET) = 22.00 FRICTION LOSS = .218 II ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = 1.121+ 4.799- 4.897+< .218)+< 0.000) = 1.242 NODE 2187.83 : HGL= < 1246.751 >;EGL= < 1251.550 >;FLOWLINE= < 1232.270) END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM II • 1 1 1 1 1 1 1 1 1 II ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE II (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ,-.-:=,-.- ( ( < ( < ( < ( < ( < ( < ( < ( < < < < ( < ( ( < ( ( < < < ( < < ( < < ( < > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > (C) Copyright 1982 Advanced Engineering Software CAES] 1 Especially prepared for: HALL & FOREMAN, INC. <<(<<<((<((<<<<((<(<(<(<(<(<(<(<<<<<<<>>>>>>> >>>>>>> > >>> >> >>>>> > > >>>>>>>>>>> II * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * INDUSTRIAL AREA LINE L HYDRAULICS (REF:BUBBLE OUT LATERAL "C" ) * II * Q 25 -100YR FROM 2187.8 TO 3481.53, CONSTANT Q 25 -100 YR * * VENKI. N, JN 3810 -04, 2/15/88, DISK "VENKI #1 -1" * ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** I ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA I/ DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 2187.83 FLOWLINE ELEVATION = 1232.27 -~ PIPE DIAMETER (INCH) 90.00 PIPE FLOW (CFS) = - -- -- 776.65 `j- ASSUMED DOWNSTREAM CONTROL HGL = 1246.750 1 _ =_ = = =____ = = 1 <<<<<<<<<<<<<<<<<<< <((<<(<<<(<< <<<<<<0>>>>>>) >>>>>>>>>>>>>>>>>>>>>)>>}>)>)> > > > > > > > >> > > >>> Advanced Engineering Software CAES] I REV. 2.2 SERIAL No. A0483A RELEASE DATE:12 /17/82 II ( <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<(<<<<<)>>>>>> >>>)>>> >>>>> >>>>>>> > >> >>>> >>> >> 1 =__ = == = = = PRESSURE FLOW PROCESS FROM NODE 2187.83 TO NODE 2258.70 IS CODE = 3 UPSTREAM NODE 2258.70 ELEVATION = 1233.87 11 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 776.65 CFS PIPE DIAMETER = 90.00 INCHES II PIPE LENGTH = 70.87 FEET MANNINGS N = .01300 CENTRAL ANGLE = 45.120 DEGREES PRESSURE FLOW AREA = 44.179 SQUARE FEET FLOW VELOCITY = 17.58 FEET PER SECOND IF VELOCITY HEAD = 4.799 BEND COEFFICIENT(KB) = .1770 HB =KB *(VELOCITY HEAD) = ( .177) *( 4.799) = .849 PIPE CONVEYANCE FACTOR = 7678.797 FRICTION SLOPE(SF) = .0102297 II FRICTION LOSSES = L *SF = ( 70.87)*( .0102297) = . 72 5 NODE 2258.70 : HGL= < 1248. 324> ; EGL= < 12 53. 123> ; FLOWL I NE= < 1233.870> PRESSURE FLOW PROCESS FROM NODE 2258.70 TO NODE 2258.70 IS CODE = 5 II UPSTREAM NODE 2258.70 ELEVATION = 1233.87 CALCULATE PRESSURE FLOW JUNCTION LOSSES: I NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 776.7 90.00 776.7 7 90.00 44.179 17.580 0.000 4.799 2 44.179 17.580 7.580 -- 4.799 < `, - ) 3 0.0 21.00 2.405 0.000 74.600 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =Q5 EQUALS BASIN INPUT = == 11 LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4 *V44COS(DELTA4)) /((A1 +A2) *16.1) II UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .01023 II DOWNSTREAM FRICTION SLOPE = .01023 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .01023 JUNCTION LENGTH(FEET) = 1.50 FRICTION LOSS = .015 II ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = -.000 MANHOLE LOSSES = .240 II JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = -.000+ 4.799- 4.799+( .015)+( 0.000) = .255 NODE 2258.70 : HGL= < 1248. 580> ;EGL= < 1253. 379) ; FLOWL I NE= < 1233.870> II ========== ==s===== =a= === ==== ==== = =a==x == ==a== === a= ==a =a= = PRESSURE FLOW PROCESS FROM NODE 2258.70 TO NODE 2292.00 IS CODE = 3 IL UPSTREAM NODE 2292.00 ELEVATION = 1234.63 < ,• CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): II PIPE FLOW = PIPE LENGTH 776.65 CFS PIPE DIAMETER = 90.00 INCHES 33.30 FEET CENTRAL ANGLE = 21.200 DEGREES MANNINGS N = .01300 PRESSURE FLOW AREA = 44.179 SQUARE FEET II FLOW VELOCITY = 17.58 FEET PER SECOND VELOCITY HEAD = 4.799 BEND COEFFICIENT(KB) = .1213 HB =KB *(VELOCITY HEAD) = ( .121) *( 4.799) = .582 I/ PIPE CONVEYANCE FACTOR = 7678.797 FRICTION SLOPE(SF) = .0102297 FRICTION LOSSES = L *SF = ( 33.30) *( .0102297) = .341 NODE 2292.00 : HGL= < 1249. 503> ;EGL= < 1254. 302> ; FLOWL I NE= < 1234.630> === aaaaa ==a == = = = = =ram PRESSURE FLOW PROCESS FROM NODE 2292.00 TO NODE 2292.00 IS CODE = 5 11 UPSTREAM NODE 2292.00 ELEVATION = 1234.63 ' CALCULATE PRESSURE FLOW JUNCTION LOSSES: 11 NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 4 1 776.7 90.00 44.179 17.580 0.000 4.799 2 776.7 90.00 44.179 17.580 -- 4.799 II 3 0.0 33.00 5.940 0.000 7 8.500 4 0.0 0.00 0.000 0.000 0.000 5 0.0 = = =05 EQUALS BASIN INPUT = == II LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2 Q4 *V4 *COS(DELTA4) > /((A1 +A2) *16.1) II UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .01023 JUNCTION LENGTH(FEET) = 2.75 ENTRANCE LOSSES = 0.000 FRICTION LOSS = .028 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = -.000 MANHOLE LOSSES = .240 I/ JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = -.000+ 4.799- 4.799+( .028)+( 0.000) = .268 F2: NODE 2292.00 : HOL= < 1249.771);EGL= ( 1254.570);FLOWLINE= ( 1234.630) • • 1 1 1 1 1 1 1 1 1 • 1 1 1 II i * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ************** * * * ** * * * * * * * * * * * * * * *** * ** * * ** 11 PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE fra (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** II ) ? <<<<(((((<<(((((((((<<(<(((((<((((((<(>))))>> )) >) > >)) > > > >) > > > >) > > > >) > > > > >) >> (C) Copyright 198E Advanced Engineering Software EAES7 11 Especially prepared for: HALL & FOREMAN, INC. <<<<<<<((((<((<(((<<(((<(<<(<<<<<<<<<<>>>>>>> > > > > > > > > > > > > > >) > > > > > >) > > > > > > > >> * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * INDUSTRIAL AREA LINE L FROM STA 3600.5 TO 4450.00 * * Q 25 -100 YR, 100 YR CONTROL ON STREET Q 25 CONSTANT IN S.D * * VENKI. N, JN 3810 -04, 2/24/88, DISK " VENKI.N # 1 -1" * I ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA I DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 3600.50 FLOWLINE ELEVATION = 1254.89 PIPE DIAMETER(INCH> = 90.00 PIPE FLOW(CFS) = 504.13 ASSUMED DOWNSTREAM CONTROL HGL = 1273.700 AA.t s -The,b7P t 6utfer on EQAt' csg frillier ar,d Chuerry Atm 7/.771-70 - 12 7/. 17, Jjep Tt; 0 . ;Vow = I -3 I 1 W. 3 . t $ at?. = 72- 4 9 E 73 - 70 . Ugh 73.70 €3.4 c Kt' frt. <<<<<<<<<<<<<<<<<<<<<<<<<<<<(<<<<<<<<<>>)>)>) >>)>>)>>>>>>> >> >> >>> > >>)) >) >))) Advanced Engineering Software EAES7 SERIAL No. A0483A REV. 2.2 RELEASE DATE :12/ 17/82 <<<<<((<<<<<<<<<<<<<<<<<<<<<<(<<<<<<<(>>>>>>> >>> > >>>>>> >>> >> > >>>>> >>> > > >> >>> 11 PRESSURE FLOW PROCESS FROM NODE 3600.50 TO NODE 3638.89 IS CODE = 3 UPSTREAM NODE 3638.89 ELEVATION = 1255.26 I/ CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 504.13 CFS PIPE DIAMETER = 90.00 INCHES PIPE LENGTH = 38.39 FEET MANNINGS N = .01300 CENTRAL ANGLE = 16.100 DEGREES PRESSURE FLOW AREA = 44.179 SQUARE FEET FLOW VELOCITY = 11.41 FEET PER SECOND VELOCITY HEAD = 2.022 BEND COEFFICIENT(KB) = .1057 HB=KB*(VELOCITY HEAD) _ ( .106)*( 2.022) = .214 PIPE CONVEYANCE FACTOR = 7678.797 FRICTION SLOPE(SF) = .0043102 FRICTION LOSSES = L *SF = ( 38.39) *( .0043102) = .165 NODE 3638.89 : HGL= < 1274. 079) ; EGL= ( 1276. 101 ) ; FLOWL I NE= < 1255.260> i"RCamumm r Luw r•rcuut55 r Kur NUUM 648. 5W I D NODE 4021.17 IS CODE = 1 UPSTREAM NODE 4021.17 ELEVATION = 1258.93 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): ea PIPE FLOW = 504.13 CFS PIPE DIAMETER = 90.00 INCHES II PIPE LENGTH = 382.28 FEET MANNINGS N = .01300 SF =(0/K) * *2 = (( 504.13)/( 7678.797)) * *2 = .0043102 f HF =L *SF = ( 382.28)*( .0043102) = 1.648 1r , NODE 4021.17 : HGL= < 1275. 727) ;EGL= < 1277. 749> ; FLOWL I NE= < 1258.930> _________ = __= a=_ = = == = = = === = a = = = == II PRESSURE FLOW PROCESS FROM NODE 4021.17 TO NODE 4025.84 IS CODE = 5 UPSTREAM NODE 4025.84 ELEVATION = 1258.98 I CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 504.1 96.00 50.266 10.029 0.000 1.562 II 2 504.1 90.00 44.179 11.411 -- 2.022 3 0.0 0.00 0.000 0.000 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =05 EQUALS BASIN INPUT = == I LACFCD AND DCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- 1 Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = .01300 I DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00306 DOWNSTREAM FRICTION SLOPE = .00431 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00368 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .017 V '` ENTRANCE LOSSES = 0.000 E. MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES II MOMENTUM LOSSES = -.002 MANHOLE LOSSES = .101 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = .458+ 1.562- 2.022+( .017)+( 0.000) = .118 II NODE 4025.84 : HGL= < 1276. 305) ;EGL= < 1277.867) ; FLOWL I NE= < 1258.980> = =on =_= = = = = = = =_= == = = = = =_ = == I PRESSURE FLOW PROCESS FROM NODE 4025.65 TO NODE 4317.35 IS CODE = 1 UPSTREAM NODE 4317.35 ELEVATION = 1261.77 I CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 504.13 CFS PIPE DIAMETER = 96.00 INCHES PIPE LENGTH = 291.70 FEET MANNINGS N = .01300 11 SF= (Q / K) * *2 = (( 504.13)/( 9120. 764)) * *2 = .0030551 HF =L *SF = ( 291.70)*( .0030551) = .891 NODE 4317.35 : HGL= ( 12 77. 196> ;EGL= ( 1278. 758) ; FLOWL I NE= < 1261. 770> 1 = = = = PRESSURE FLOW PROCESS FROM NODE 4317.25 TO NODE 4317.35 IS CODE = 5 1 UPSTREAM NODE 4317.35 ELEVATION = 1261.77 CALCULATE PRESSURE FLOW JUNCTION LOSSES: IF NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 504.1 96. 00 50.266 10.029 0.000 1.562 5 2 C ' C 2 504.1 96.00 50.266 10.029 -- 1.562 3 0.0 0.00 0.000 0.000 0.000 - II 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =05 EQUALS BASIN INPUT = == 1 ur= luz*V - U1 *V1 *uus (UbL i H1) - L,t� �d * GUS (DELTA3) - Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) 4/1* II UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 II UPSTREAM FRICTION SLOPE = .00306 DOWNSTREAM FRICTION SLOPE = .00306 6Z AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00306 JUNCTION LENGTH(FEET) = 1.75 FRICTION LOSS = .005 ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = -.000 MANHOLE LOSSES = .078 II JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = -.000+ 1.562- 1.562+( .005)+( 0.000) _ .083 NODE 4317.35 : HGL= < 1277.280> ;EGL= < 1278. 842> ; FLOWL I NE= < 1261. 770> II _ = =_ =_ =____= = == = = = =_= = = = = == = II PRESSURE FLOW PROCESS FROM NODE 4317.35 TO NODE 4444.50 IS CODE = 1 UPSTREAM NODE 4444.50 ELEVATION = 1263.00 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): 11 PIPE FLOW = 504.13 CFS PIPE DIAMETER = 96.00 INCHES PIPE LENGTH = 127.15 FEET MANNINGS N = .01300 SF =(Q /K) * *2 = (( 504.13)/( 9120.764)) * *2 = .0030551 II HF =L *SF = ( 127.15)*( . 0030551) = . 388 NODE 4444.50 : HGL= < 1277.668> ;EGL= < 1279.230> ; FLOWL I NE= < 1263. 000> II == == = = =__ ________________ =__________ PRESSURE FLOW PROCESS FROM NODE 4444.50 TO NODE 4450.00 IS CODE = 5 UPSTREAM NODE 4450.00 ELEVATION = 1263.05 > `;;- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV I 1 504.1 96.00 50.266 10.029 0.000 1.562 2 504.1 96.00 50.266 10.029 1.562 3 0.0 30.00 4.909 0.000 0.000 - ' 4 0 .0 0.00 0.000 0.000 0.000 - 5 0.0 = = =Q5 EQUALS BASIN INPUT = == LACFCD "AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: II DV=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) II UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00306 11 DOWNSTREAM FRICTION SLOPE = .00306 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00306 JUNCTION LENGTH(FEET) = 5.50 FRICTION LOSS = .017 ENTRANCE LOSSES = 0.000 II MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = -.000 MANHOLE LOSSES = .078 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) 1 JUNCTION LOSSES = -.000+ 1.562- 1.562+( .017)+( 0.000) = .095 NODE 4450.00 : HGL= < 1277. 763) ;EGL= < 1279. 325> ; FLOWL I NE= < 1263. 050> ____ _ ir E ND OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM 1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ' PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) ' ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** >:.a' (((<<(<(<<(<(((<(((((<<(<((<(<<<<((<<<))))>)> >>>>>>>>>) > >) > > >))) >) >) > > > > >>>) (C) Copyright 1982 Advanced Ennineerinn Software EAES] Especially prepared for: HALL & FOREMAN, INC. II (((<((((((((((((((((((((((((((((((((<()))))>>>>>>>>>>>>>>>>>>>>>>>>>>))))))) > > > > > > >))) > > >> ' * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * INDUSTRIAL AREA LINE L STA 4450.00 TO 5049.83 * * Q 100 YR WITH R/W ELEV CONTROL II * VENKI. N, JN 3810 -04, 2/24/88 * ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ' ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 4450.00 FLOWLINE ELEVATION = 1263.05 IF PIPE DIAMETER(INCH) = 96.00 PIPE FLOW(CFS) = 621.15 ASSUMED DOWNSTREAM CONTROL HGL = 1275.760 T lc = 1 f27�- 30 6.* 1 "Ay_ c-44 +v-e r 1 am �Mv:s ?7P. sr. c j 4 t���) e L Con tkoQ - 74 ' <<<<<<<<(<<<<<((<<(<<<4<<<<(<<(<<<<<<<>>>>>>> >>>>> >> >>>>>>> > >>>)>>>>>> >> > >>> Advanced Engineering Software EAES] SERIAL No. AO483A ' REV. 2.2 RELEASE DATE:12 /17/82 <<<<<<< 4<4<<<<<<(<<<<<(((((<((<<<(<<<<>>>>>>> > > > > > >) > > > >) >)) >) > > > > > > > >) > > > >> PRESSURE FLOW PROCESS FROM NODE 4450.00 TO NODE 4877.67 IS CODE = 1 UPSTREAM NODE 4877.67 ELEVATION = 1264.94 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 621.15 CFS PIPE DIAMETER = 96.00 INCHES PIPE LENGTH = 427.67 FEET MANNINGS N = .01300 SF= (Q /K) * *2 = (( 621.15)/( 9120.764)) * *2 = .0046380 HF =L *SF = ( 427.67)*( .0046380) = 1.984 NODE 4877.67 : HGL= ( 1277. 744) ; EGL= < 1280. 115> ; FLOWL I NE= < 1264. 940> PRESSURE FLOW PROCESS FROM NODE 4877.67 TO NODE 4882.34 IS CODE = 2 II UPSTREAM NODE 4882.34 ELEVATION = 1264.96 rnl rt It oT Em c g1►QF P1 nw hrlAhi{ -!('ii F 1 npgFfi f 1 Ar =rn % . rmmnourm rLuw HKtH = .:iW. ibb bag& FtlT FLOW VELOCITY = 12.36 FEET PER SECOND 2 -1) I VELOCITY HEAD = 2.371 HMN = . 05* (VELOCITY HEAD) = .05*( 2.371) = .119 NODE 4882.34 : HGL= < 12 77. 862> ;EGL= < 1280.233> ; FLOWL I NE= < 1264.960) =rs a= == === = ==_______________== ===c= = === == = = =___ ___ ' PRESSURE FLOW PROCESS FROM NODE 4882.34 TO NODE 4909.74 IS CODE = 1 UPSTREAM NODE 4909.74 ELEVATION = 1265.07 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): II PIPE FLOW = 621.15 CFS PIPE DIAMETER = 96.00 INCHES PIPE LENGTH = 27.40 FEET MANNINGS N = .01300 SF= (Q /K) * *2 = (( 621.15)/( 9120.764)) * *2 = .0046380 II HF =L *SF = ( 27.40)*( .0046380) = .127 NODE 4909.74 : HGL= ( 1277. 989> ;EGL= < 1280. 360> ; FLOWL I NE= < 1265.070) I _______________________________ =_____________ ___ =_ =____________ =_ =__________ PRESSURE FLOW PROCESS FROM NODE 4909.74 TO NODE 5045.16 IS CODE = 3 UPSTREAM NODE 5045.16 ELEVATION = 1265.66 I CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 621.15 CFS PIPE DIAMETER = 96.00 INCHES II PIPE LENGTH = 135.42 FEET MANNINGS N = .01300 CENTRAL ANGLE = 59.430 DEGREES PRESSURE FLOW AREA = 50.266 SQUARE FEET II FLOW VELOCITY = 12.36 FEET PER SECOND VELOCITY HEAD = 2.371 BEND COEFFICIENT(KB) = .2032 HB=KB*(VELOCITY HEAD) = ( .203)*( 2.371) = .482 PIPE CONVEYANCE FACTOR = 9120.764 FRICTION SLOPE(SF) = .0046380 ti FRICTION LOSSES = L *SF = ( 135.42) *( .0046380) = .628 NODE 5045.16 : HGL= ( 1279. 099> ;EGL= < 1281. 470) : FLOWL I NE= ( 1265.660> - - -_ = = = = =.= == PRESSURE FLOW PROCESS FROM NODE 5045.16 TO NODE 5049.83 IS CODE = 5 II UPSTREAM NODE 5049.83 ELEVATION = 1267.43 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV II 1 583.3 75.00 30.680 19.013 0.000 5.613 2 621.1 96.00 50.266 12.356 356 2.371 3 37.8 36.00 7.069 5.348 90.000 - ' 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =05 EQUALS BASIN INPUT = == II LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DV =(Q2 *V -Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) I UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .01526 II DOWNSTREAM FRICTION SLOPE = .00464 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00995 JUNCTION LENGTH<FEET) = 4.67 FRICTION LOSS = .046 IF ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = -2.621+ 5.613- 2.371+< .046)+< 0.000) = .668 NODE 5049.83 : HGL= < 1276.52 5> ;EGL= < 1282 . 138> ; FLOWL I NE= < 1267.430> II END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM 1 1 1 CHERRY AVENUE STORM DRAIN 1 t HYDRAULIC CALCULATIONS 1 FOR 1 LATERAL "C" 1 1 (REF.: LINE "L" STORM DRAIN) 1 1 1 ?keg 2 age• 3170 IIEDNILL AVENUE • COSTA MESA. CAS • (11q 0414777 CIVIL ENGINEERING • LAND PLANNING • LAND $U*IYING 1 r 1 = 1 I *iF'IF***** *aF*1E*9E** *** IFIE ***iE9E9F lE****** 1t aF******9FdF*jF **df 1E*if ***iFdE**** ****iF***** * PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE v ' (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** '� J <<<<<<l<(<l<<<<<<<<<<<<l<l<l<<<<<<<(<<>)>>>>> > > > >)) >) > > > > > > > > > >) > > > > > > > > > > >> (C) Copyright 1982 Advanced Engineering Software CAES] II Especially prepared for: I HALL & FOREMAN, INC. <<<<<<<<<<<<<<<<<<<<<<<<<<<<(l<<<<<<(<>>>>>>> >>>>> >> >>>>>>>>>>> >>>>>>>> >> > >> II * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * INDUSTRIAL AREA S.D LATERAL C FROM LINE L ,LATERAL STA 185.3 TO 1010.77 * I * Q 25-100 YR WITH Q 100 ON STREET CONTROL AND 0 25 IN S.D * * VENKI.N, JN 3810 -04, 2/23/88, DISK "VENKI # 1 -1 " * ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** I ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA II DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 185.30 FLOWLINE ELEVATION = 1261.04 PIPE DIAMETER(INCH) = 45.00 II' PIPE FLOW(CFS) 149.62 ry`t ASSUMED DOWNSTREAM CONTROL HGL = 1273. 700 te BC�Cc4�� � ,•n� 1272 sl CS7• Sr4• .2-8L Q-9 -al Wel-vDES PoPt EP- er , hmi (l, Pla.0 Pr Val MI i'ilev s 1- i':, WGL Cbn?v..1 = 1273 -7a 1 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>> >>>>>>> >>> >>> > > > > > > > > > > > > > > > > > >' Advanced Engineering Software CAES] II SERIAL No. A0483A REV. 2.2 RELEASE DATE:12/17/82 1 ((<l<<<<<<<<<<<<<<<<<<<<<<<<<<<((<<<<<>>>>>>> > > > > > > > > > > > > > > > > > > > > > > > > > > > > >)> I == _ = =_= _s == == = =____ =c = =x =a= PRESSURE FLOW PROCESS FROM NODE 185.30 TO NODE 591.70 IS CODE = 1 UPSTREAM NODE 591.70 ELEVATION = 1267.49 II CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 149.62 CFS PIPE DIAMETER = 45.00 INCHES II PIPE LENGTH = 406.40 FEET MANNINGS N = .01300 SF =(Q /K) * *2 = (( 149.62)/( 1209.335)) * *2 = .0153069 HF =L *SF = ( 406.40)*( .0153069) = 6.221 NODE 591.70 : HGL= < 1279. 921 > ; EGL= < 1282. 770) ; FLOWL I NE= < 1267. 490> _______ __ ^__ = = = == == I PRESSURE FLOW PROCESS FROM NODE 591.70 TO NODE 596.37 IS CODE = 2 UPSTREAM NODE 596.37 ELEVATION = 1267.56 ._. __ ------ FLOW AREA = 11.045 SQUARE FEET I FLOW VELOCITY = 13.55 FEET PER SECOND VELOCITY HEAD = 2.850 (?) HMN = . 05* (VELOCITY HEAD) = .05*( 2.850) = . 142 ' NODE 596.37 : HGL= ( 1280. 063) ;EGL= ( 1282. 913) ; FLOWL I NE= ( 1267. 560) '''''..7„,i ========================_=============_==_======= ===== === = = = == ______ =__ =_ =_____= PRESSURE FLOW PROCESS FROM NODE 596.37 TO NODE 998.10 IS CODE = 1 UPSTREAM NODE 998.10 ELEVATION = 1273.94 I CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 149.62 CFS PIPE DIAMETER = 45.00 INCHES PIPE LENGTH = 401.73 FEET MANNINGS N = .01300 SF= (Q /K) * *2 = ( ( 149.62)/( 1209. 335)) * *2 = .0153069 II HF =L *SF = ( 401.73) *( .0153069) = 6.149 NODE 998.10 : HGL= ( 1286.212) ;EGL= ( 1289.062) ; FLOWL I NE= < 1273.940) PRESSURE FLOW PROCESS FROM NODE 998.10 TO NODE 1002.77 IS CODE = 5 II UPSTREAM NODE 1002.77 ELEVATION = 1274.01 CALCULATE PRESSURE FLOW JUNCTION LOSSES: I NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 149.6 51.00 149.6 45.00 14.186 10.547 0.000 1.727 2 11.045 13.547 -- 2.850 3 0.0 0.00 0.000 0.000 0.000 - ' 4 5 0.0 0.00 0.000 0.000 0.000 - 0.0 = = =Q5 EQUALS BASIN INPUT = == Ilk LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2 Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) II UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00785 I DOWNSTREAM FRICTION SLOPE = .01531 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .01158 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .054 II ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = -.017 MANHOLE LOSSES = .142 1 I JUNCTION LOSSES = DY +HVi -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = 1.105+ 1.727- 2.850+( .054)+( 0.000) = .197 NODE 1002.77 : HGL= ( 1287.531) ;EGL= ( 1289. 258> ; FLOWL I NE= ( 1274. 010) PRESSURE FLOW PROCESS FROM NODE 1002.77 TO NODE 1010.77 IS CODE = 1 II UPSTREAM NODE 1010.77 ELEVATION = 1274.09 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): II PIPE FLOW = 149.62 CFS PIPE DIAMETER = 51.00 INCHES PIPE LENGTH = 8.00 FEET MANNINGS N = .01300 SF= (Q /K) * *2 = (( 149.62)/( 1688. 477)) * *2 = .0078522 f"•. HF =L *SF = ( 8.00)*( .0078522) = .063 NODE 1010.77 : HGL= < 1 287.594) ;EGL= < 1289. 321 > ; FLOWL I NE= ( 1274.090) ______ ____ = ___ -__ END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM I i lla h g Poi/Amax, RIZ ,,,„, It ' . CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING ' SUBJECT BY DATE JOB NO. SHEET OF TN.DUSTR1AL S.1). I YA nk.; • N 1 L LATERAL -C, ZCT ANAL-VS(S JrRQ '1 10410 -77 7o /0+2'3 -77 ' i .,, P- IZe N : N N: N 7 J/) _______4 NI /O # j IN 1 0 Is- * / i'/ a i N 1 3 1 ■ 7UNCT /O N ANAL - k a d FROM /C) /0 - 77 To /04 20 • 27 ( lot sal nth ■ p) 7E i U PST/LE R r4 /49-62. -- 206 + I9 g -�-4 r 35_.2.4i l =R k, = 7677 1 `. b = o- 99 S4;_ o -DOZI 1 Aim RF{7N11_1 AVFNIIE • COSTA MESA_ CALIFORNIA Q ORDF.A4OR . 171 111 CAl_e7 '1; 1 v 1 ' Pox. ,-;.-„, Ir . . CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT I BY t DATE I JOB NO. I SHEET _ OF 1 PIPE 2 - P1PE 3 PI Pe 4 it - = 5, i - 1) 3 - 42" ,),4 _ 4. " 1 11t 9.62 � FS Q = = fb3• e r Q4, = C__ . ° = 11- 62 gm .? 2 Z. I -1�6 / �9•" . A : 9.62/�.tl' A,_ r. 9.62► 1 v 10-73 FPS V4 = f° -3t FPS 1 Vl _ i o -.SS FPS hv3 ` / -79 hv4 _ 1'67 h v,_ I P 9. ISo - `. I SA, . - oo 7 Co'.1 /t-o = - (es 30 QZ V2 — Q V + Q3 U3 Ca/S 30 -1 Ug (LYS3D b t" Q Y CA1+A) 2- Lem 1roved p y = 1' /to_SS' -- 3s2-- 49 )e 7 48 it-1oei3o 003.2sA10.73 4.9i. 62 A i 0 • &CD I 18 -+ 14- 0_5 C44• 19)A31•2 Toted Jef .ea/n = .t 1 4 h v, - /1 V. t (F..; cif en Jo.4) + LM. 4. J64) -f CQnt■A..�4 All) d-• 66+ .91 — 1 - 73 4- .oS + • al; I 146L AT SrA /0 -, 0 •`17 = 1287 -59 E6 = /2 87.59+ v : 128 --32 1 E6L. @ STA 1012o- 27 = 1289. 32- 4-0-o3 > 1289 - 3.5 HGl & s rA- IO4 2o• 2-7 = f289 -3s -o - 9S1 = /2 86 -36 1 3170 REDHILI AVFNIIF n1OTAA1r0A "A1 .rA IY...• _.__ 1 1 in Wae g Poofeeotait, ate. i i.., IIIIIIIIIIIIp CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING I SUBJECT I BY I DATE I JOB NO. I SHEET OF 1 70NCT70AI AN ALVDS' F20M S77 /0120.27 777 /O-f29. C 2,4 wont) 1 pl PE 1 Pt PE. 2 PI Ps 4 P►Pes - °10 r ' -i = 9.n " 1)3 -42 # J)4 s 4.1" - = 352- = (b 3. 1-1 04 9 -62 CfS '3 Q , - 555 36 S 0 i 49 Q3 I A I - - 44. 1 g . 4-r A - 44- I t,65. 4# A3 - ' 6 2 i y. ft JA 4 = 9.621 A 9 - qtr k - 76 77 k s ' 7Z.77 ' V 3 = JO.73 V 4 = I0 -3 S' 1 V/= 12 -s7 FPtd y _ 7•" - fp4 hv : 1- 79 I hy4 = 1- 66' hv,= 2 4.s hi 0 -99' I.,t. _ .. si at,. - 0 -0 o2► 1 3 S2. 4 g ,e 7- 4'g — sr-r- 36ac t3-. 7 +- 33o- 003 - Is�110 +73 4 62 x 10- 3.r� �� ., U -- La4. + 44. ►Q) 3 s -2. - I.63' _ • OS2 4- U-o02. To1'a.Q J 'uA�len �c�'S _. — t- 6 3 +2.4 43`3 t.C. • o ) ,�g•r —• 0 6 2 1 _ _ -06;0 1 £ GL AT S•rP /o- = 12 81. ? 6, 1 6L- AT S9P /0+ 29.77: 12 89.36 128 1- Ar .rA 10729.77 > 1289.36 -2.4� • 1 46•x# • 2 I 1 1 3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92626 -3428 • (714) 641 -8777 I ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE II (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** < <(<( ((<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>> >>>>>>>>> >>>>>>>>>>>>>>>>>>>>>> (C) Copyright 1982 Advanced Engineering Software SAES] Especially prepared far: HALL & FOREMAN, INC. <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>> >>>> >>>>> >>>>>>>>>>>>>>>>>>>>>> II * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * INDUSTRIAL AREA S.D LATERAL C FROM LINE L,LATERAL STA 1029.77 * 0 25 - 100 YR * VENKI.N, JN 3810 -04, 2/23/88, DISK "VENKI # 1 -1 ", FILE H * ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** II ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 1029.77 FLOWLINE ELEVATION = 1274.29 PIPE DIAMETER(INCH) = 90.00 PIPE FLOW(CFS) = 555.36 ASSUMED DOWNSTREAM CONTROL HGL = 1286.910 ________ =-4-=----= = = == = = = = == = = = == 1 < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > Advanced Engineering Software SAES] I REV. 2.2 SERIAL No. A0483A RELEASE DATE:12/17/82 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>> >>>>> >>> >> >>>>>>>>>>>>>>>>>>>>> II __ =__ =_ =_ =_= == = =_= ____ °_ PRESSURE FLOW PROCESS FROM NODE 1029.77 TO NODE 1037.77 IS CODE = 1 UPSTREAM NODE 1037.77 ELEVATION =' 1274.34 1 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 555.36 CFS PIPE DIAMETER = 90.00 INCHES PIPE LENGTH = 8.00 FEET MANNINGS N = .01300 SF= (0 / K) * *2 = ( ( 555.36)/( 7678. 797 )) * *2 = .0052307 HF=L*SF = ( 8.00)*( .0052307) = .042 NODE 1037.77 : HGL= ( 1286. 952) : EGL= < 1289. 406> ; FLOWL I NE= < 1274.340> = PRESSURE FLOW PROCESS FROM NODE 1037.77 TO NODE 1042.44 IS CODE = 5 UPSTREAM NODE 1042.44 ELEVATION = 1274.37 r'n1 ins 11 ATE" rance+ni 'rte. r•. � T. 1. InT T I`tL 1 555.4 96.00 50.266 11.049 0.000 1.895 II 2 555.4 90.00 44.179 12.571 -- 2.454 3 0.0 0.00 0.000 0.000 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - 11 5 0.0 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: l DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3) Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = .01300 II DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00371 DOWNSTREAM FRICTION SLOPE = .00523 II AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00447 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .021 ENTRANCE LOSSES = 0,000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES I MOMENTUM LOSSES = -.002 MANHOLE LOSSES = .123 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = .556+ 1.895- 2.454+( .021)+( 0.000) = .144 11 NODE 1 042.44 : HGL= ( 1287. 654) :EGL= ( 1289.549) ; FLOWL I NE= ( 1274. 370> == a================================== a========== = = = == = == == = == = =a= ==== = == = = = = = == PRESSURE FLOW PROCESS FROM NODE 1042.44 TO NODE 1297.75 IS CODE = 1 UPSTREAM NODE 1297.75 ELEVATION = 1276.12 1 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 555.36 CFS PIPE DIAMETER = 96.00 INCHES PIPE LENGTH = 255.33 FEET MANNINGS N = .01300 SF= (Q /K) * *2 = (( 555.36)/( 9120.764)) * *2 = .0037075 HF =L *SF = ( 255.33)*( .0037075) _ .947 NODE 1297.75 : HGL= < 1288.600> ;EGL= < 1290.496> : FLOWL I NE= < 1276. 120> II PRESSURE FLOW PROCESS FROM NODE 1297.75 TO NODE 1305.25 IS CODE = 5 I I UPSTREAM NODE 1305.25 ELEVATION = 1276.16 CALCULATE PRESSURE FLOW JUNCTION LOSSES: I/ NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 530.4 96.00 50.266 10.551 0.000 1.729 2 555.4 96.00 50.266 11.049 -- 1.895 II 3 1.5 18.00 1.767 .849 90.000 ` 4 23.5 30.00 4.909 4.787 45.000 5 0.0 = = =Q5 EQUALS BASIN INPUT = == I LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-03*V3*COS(DELTA3) Q4 *V4 *COS(DELTA4)) /((Al +A2) *16.1) II UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 I UPSTREAM FRICTION SLOPE = .00338 DOWNSTREAM FRICTION SLOPE = .00371 AVERAGED FRICTION SLOPE IN JUNCTION-ASSUMED AS .00354 JUNCTION LENGTH(FEET) = 7.50 FRICTION LOSS = .027 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = - DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = .284+ 1.729- 1.895+ ( .027)+( 0.000) = . 144 11 NODE 1305.25 : HGL= < 1288. 9 i 1 > ;EGL= < 1290. 640> ; FLOWL I NE= < 1276.160> UPSTREAM NODE 1709.73 ELEVATION = 1281.33 II CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 530.36 CFS PIPE DIAMETER = 96.00 INCHES I PIPE LENGTH = 404.48 FEET MANNINGS N = .01300 SF =(Q /K) * *2 = t( 530.36)/( 9120.764)) * *2 = .0033813 HF =L *SF = ( 404.48)*( .0033813) = 1.368 ii NODE 1709.73 : HGL= ( 1290.279) ;EGL= ( 1292.008) ; FLOWL I NE= ( 1281.330> II PRESSURE FLOW PROCESS FROM NODE 1709.73 TO NODE 1718.33 IS CODE = 5 UPSTREAM NODE 1718.33 ELEVATION = 1281.44 I/ CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 302.2 96.00 50.266 6.012 0.000 .561 1 2 530.4 96.00 50.266 10.551 -- 1.729 I 3 120.7 72.00 28.274 4.270 60.000 - 4 107.5 72.00 28.274 3.801 60.000 5 0.0 = ===Q5 EQUALS BASIN INPUT = == 11 LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(02*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3) II Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 II UPSTREAM FRICTION SLOPE = .00110 DOWNSTREAM FRICTION SLOPE = .00338 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00224 JUNCTION LENGTH(FEET) = 8.60 FRICTION LOSS = .019 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = 2.050+ .561- 1.729+( .019)+( 0.000) = .901 NODE 1718.33 : HGL= < 1292.348 >;EGL= ( 1292.909 >;FLOWLINE= ( 1281.440> PRESSURE FLOW PROCESS FROM NODE 1718.33 TO NODE 1718.93 IS CODE = 1 UPSTREAM NODE 1718.93 ELEVATION = 1281.45 I/ CALCULATE PRESSURE FLOW FRICTION LOSSEStLACFCD): PIPE FLOW = 302.18 CFS PIPE DIAMETER = 96.00 INCHES PIPE LENGTH = .60 FEET MANNINGS N = .01300 II SF =(Q /K) * *2 = (t 302. i8) /( 9120.764))**2 .0010977 HF =L *SF = ( .60) *( .0010977) = .001 NODE 1718.93 : HGL= ( 1292.349) ;EGL= ( 1292. 910) ; FLOWL I NE= ( 1281.450> II _ == = = = = = = = = = =___ =___ - - - -= = = = = __ II PRESSURE FLOW PROCESS FROM NODE 1718.93 TO NODE 1727.73 IS CODE = 5 UPSTREAM NODE 1727.73 ELEVATION = 1285.81 11 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA NV 1 74.0 45.00 11.045 6.702 0.000 .697 2 302.2 96.00 50.266 6.012 -- .561 3 120.7 72.00 28.274 4.269 60.000 - 4 107.5 72.00 28.274 3.801 60.000 - 5 0.0 = = =Q5 EQUALS BASIN INPUT = == 1 LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=( Q2* V2- Q1* V1 *COS(DELTA1)- 03 *V3 *COS(DELTA3)- UPSTREAM MANNINGS N = .01300 II DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00375 DOWNSTREAM FRICTION SLOPE = .00110 II AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00242 JUNCTION LENGTH(FEET) = 8.80 FRICTION LOSS = .021 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) i JUNCTION LOSSES = . 870+ . 697 - . 561+ ( . 021) + t 0 = 1 NODE 1727.73 : HGL= ( 1293.240) ;EGL= < 1293.937) ; FLOWL I NE= ( 1285.810) II === == == = = = = == = - =__ __ ________ =______ === =_= == == =_____ PRESSURE FLOW PROCESS FROM NODE 1727.73 TO NODE 2088.29 IS CODE = 1 UPSTREAM NODE 2088.29 ELEVATION = 1288.65 11 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 74.02 CFS PIPE DIAMETER = 45.00 INCHES II PIPE LENGTH = 360.56 FEET MANNINGS N = .01300 SF= tQ /K) * *2 (( 74.02)/( 1209.335)) * *2 = .0037463 HF =L *SF = ( 360.56)*( .0037463) = 1.351 I/ NODE 2088.29 : HGL= ( 1294.591 ) ;EGL= ( 1295.288) ; FLOWL I NE= ( 1288.650) = = = == = == =__ =--============ = = = ==______ = = = = == == = == = = = = =___ PRESSURE FLOW PROCESS FROM NODE 2088.29 TO NODE 2227.33 IS CODE = 3 UPSTREAM NODE 2227.33 ELEVATION = 1289.75 I CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 74.02 CFS PIPE DIAMETER = 45.00 INCHES PIPE LENGTH = 139.04 FEET MANNINGS N = .01300 CENTRAL ANGLE = 90.000 DEGREES PRESSURE FLOW AREA = 11.045 SQUARE FEET FLOW VELOCITY = 6.70 FEET PER SECOND II VELOCITY HEAD = .697 BEND COEFFICIENT(KB) = .2500 HB =KB *(VELOCITY HEAD) = ( .250) *( .697) = .174 PIPE CONVEYANCE FACTOR = 1209.335 FRICTION SLOPE(SF) = .0037463 FRICTION LOSSES = L *SF = ( 139.04)*( .0037463) = .521 II NODE 2227.33 : HGL= ( 1295.286) ;EGL= ( 1295.983) ; FLOWL I NE= ( 1289.750) I/ = =......=........============================== PRESSURE FLOW PROCESS FROM NODE 2227.33 TO NODE 2232.00 IS CODE = 5 UPSTREAM NODE 2232.00 ELEVATION = 1289.79 II CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 74.0 36.00 7.069 10.472 0.000 1.703 2 74.0 45.00 11.045 6.702 -- .697 3 0.0 0.00 0.000 0.000 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =05 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: 11 DY= (02 *V2 -Q 1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = .01300 IF DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .01232 DOWNSTREAM FRICTION SLOPE = .00375 II AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00803 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .038 ENTRANCE LOSSES = 0.000 _ _- ___. • ... -vr. - . v• •arvv NODE 2232.00 : HGL= < 1 294.366> ;EGL= < 1296.069) ; FLOWL I NE= < 1289.790> __ -_ =__ _ ________________________ END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM 1 = = = = == === == = = = ==== = = = =__= = =_= =_ = = = = = === === = = = = = = == = = = = = == 11 PRESSURE FLOW PROCESS FROM NODE 2227.33 TO NODE 2232.00 IS CODE = 5 UPSTREAM NODE 2232.00 ELEVATION = 1289.79 11 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 74.0 54.00 15.904 4.654 0.000 .336 2 74.0 45.00 11.045 6.702 -- .697 3 0.0 0.00 0.000 0.000 0.000 4 0.0 0.00 0.000 @ @@ 0.000 @ @0 0.000 5 0.0 = = =Q5 EQUALS BASSN INPUT = == I , LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- I 04 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 I/ UPSTREAM FRICTION SLOPE = .00142 DOWNSTREAM FRICTION SLOPE = .00375 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00258 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .012 ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = -.012 MANHOLE LOSSES = .035 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = .349+ .336- .697+( .012)+( 0.000) _ .047 NODE 2232.00 : HGL= ( 1295.694) ;EGL= ( 1296. 030> ; FLOWLINE= < 1289.790> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM I/ 1 1 1 11 1 1 1 1 CHERRY AVENUE STORM DRAIN 1 � FOOTHILL RCB 1 � STRUCTURA CALCS 1 (REF: L.A.C.F.C.D.) 1 j 1 1 1 i 1 d j: .,,,, , tt. ,,,,,, .. . . . . .., . ..,:. . . ... .: -,:-.. - - - u. I as • ! 1 1 { • Ili R : j I � I � 1 J a _ .4a•s_i.s.me..� 'E 111 ' 111 ha WW •+ . • . ! I.J L1 ito • r W J Iv � �I.+ m��O� {J N • 1 >> 'QS L ! `� t9 ' I ,, ! ! M ��. 6 m iti raw • a a 6s •mo /It I U W 9 •9 6 hX'Z • cr w ^ cusz a g t-4., • o+ a Dw ' ' � o « i ; ■ • M a o U !W NM N m a J'LL jr : ..m .e s !.r+.ri a P 719 I . O G � jV tUOa ILL W � � ¢ W Z 6is,.: h U O IZ ...c • r ! �' 6 am 1 K U 0 H ' �' U o° A �N HJM h '2" o6a ABBA!mmme66�m IJ ,• n , 6 0. Z'. ui i s s '� „ Bat. . ( a c o. 4 . +v . � a 10 ®! 0 w WaF ^!! M I/ n M ¢ '! N J!¢ { f tpI W w J • O W a ¢ o . J i ¢ > E . h h 6 > 1W pl..ti F- O Q m Z F ! I • d'Z 5-111111 II o w a n IN , ' • ✓ o f 1 a u s ¢w . M � Q r6n;n M w z6 k aN +iraa�.ia.ar . . . ui a tnaocunits w 0 .J. a.. 1/1 . au. d my m, 0 N S 9I.- H 0 ' ' i ' i O 4 a 0 0 e • Z ¢ N 2 U. O W O 6 J ¢ FO Q W M 2' I g !I ��� • Z ,Q W Q Ifs.+ o 0 Q CFO O F N �` - i I 1A 1- CO h 0(0 ".W QPi06a • 6 • Z '3Z -D W al. �+ MI .+ .+ ..3 7 1-t 0 w 9 L./ ...1 Y ! a ap(UU J0u .U.W(0I2U I- ••W 0, N ' 9 W wW Q N�+ U W � : I h J W a0 >1- WN ►. ' N: Z O a O 0,..... o a w Z W; Z Z. hal JI- O. a- ! A ! ! ( JO.* CI w 1 { I ! 1 . i , • uI ■ CU 9 . N m 1 • a � • r(17) _ ,. Ox ford Ox ford d Oxford Oxford Oxford . , 6 1 1 1 a � i I • _1 d x eNeolffenl� � I I I •. 1 ^ i � n i o ri a in r IC �iW «, m a ,o , W.. '4 � M M W J ee m • «81 • «pi Q i + 1 f W .r m , > _ * g yp± LL CC/ 1 .. CD W c x J O 1~i. YaW I- CL • U Q em®a6n 11111! f- CO 0 a; CD CO.> B ' Y F Y Z Z nnR «' U W ' . .- . -. N Z � m m a .o w .o � Q� O� aD O• aD T 1 . .. F LL ��N r � 1- w ac >N 0.1 CO WJ1 .:.: 1 0pp° m Z W MM 11 3 0 NM 1 41 61« •• 1, 2 u] O U ❑ , i a 0 WOW U. w j i m i I ❑ WO. n f I Z U [A z ❑ J Y N y, _ ¢ « JW47 CO ' . 1 a C Z 11111 O zo UJ W O xcn II- Z e ee eeee�e6eee4 J ••• een a I 0 OLL �''-' a ❑ ma : - 81 U • Z • o oi a c< i m ca al .:- at m z" w • >COa- .v. 1- 1 MaDNf p ❑ co. a .. E J cr W I I 1 ( T K 1 I .. ali O > 4 J O L ' m > w j mw i r ov a a 6 .4 m 4,Z wem 2 � Z mm a CO a a 1 N = AAggg � 2 0. W� 0 U O W C7 o O J U e K W 4ti dttt L ` w .000 e J J 2 LL. ' aN O.tt�0117► ii R I: 6; 6 e W O M 2 W CO -.1 1- : CO e a W N f0 c -. J O • 6 K O I • D+ > I e j p ❑ O a D O M O O W 1 I co i I �- W i 2,7; � 2e a3 1 u > as X ❑01 ._ - . 6a JKt[zaW tl W� e 001 1 J O o J l-WWW a1 z � I I m AI e ee nem w J w a Z X M W 0 a to a e CO .• e e ❑ CE ❑ N ° w 1.- I «J w a • FO 3 ZF-OOK W Wa «NM .+ « .r33 ❑ .. LO $r� ' ao 9 ., W . 3Z z Wz GOMODUU❑WWOMIXU i-0. -w w r 0 6 WtiW U w COI- Z0 Q O • e >0 .0 ¢ W x i W I OZ M O Z . ..Fa JFCiQ 1- 0 1 1 J. OU .• LT. 0 . i 1 . . 1 in 1 . 6 r- r CO • . . - As. - -.. 1 . .!. ,... ..,.4 .,... -4. • . . . • i ::,.. , . , . S ; • . . . , PM ..ri. , ,.=..' . . 4. ,. ' :::',. . , . • , a .... . i ,.. _ ..,.. ,.., . -.. orbrd• Oxford" Oxford' Oxford Oxfam/ , , _ *- 4 • -. -.. ".• -.... .-. ., .. .....,, , ■ , . , 1 ..,., . ,. . . • Nit , • I • 1 . , • Om , .. . . ;. ili. 1 ! . . 1 ! • ' . . , 1 MO . . I ' . alle i 1 . ■ . - • . ' zg g 2 to Am • -• . r- , ice-all cs , ..., memmosses000 see as- ....••••••..• Oi .... ' 000 , wi....z rWill .- • le z ,..6.... ca 22 In tt La .... . . • • . • • !. • • • . -I J • WJF .0.,.0.00,00, I- ( i et .... sin. i , i z •-• . m 4. 1 tw .1 - a 1 . M 1 e w xwm 3 .A 11164911 ; a 41 • L) ' a - sene000000000 61 G k0 G 0 •-• > 0 11-ZZ •••••••••••• ' d i . r" aixz 0 ea z 1- .. IT ON CO 0:1 01 171 0) 01 0:1 *I (ma * • 0.1 0 ••• •••. 01 G 00.-. , W mi ai • ci ' • .... • G AI. NZ..... 1- a, ai , ■ : d044.41d04A0164 - ,- � ›4 O w 1....m it R .... (U04 ,.. ..... I • .i. , � •-• 3 2 x o 0) 0 CI 01 W , A , . i u z a a u. , 00 wo.. J2 CD 111 . i I [ , 61C o Z 0 u G G 09 6 I OGGO . 1 , t 0 CO •-• -1 .t • W 0 x . .4 1.- 2..L. s00-000600,00.5 1 m.z •••••...,.,• m o NaM ..-. RCLU.. r.-f..1. 'g 1444,440 , .1 I, ' • > 0) a ••• :.... 01 J a O. 1 . J ( 0 WM a a .0 . ••• ' _, O. C.) = 0 . '•-• J WO .1.71 W Z W . i i. CO .... f- 1 F. ..gli 2, ... , (0 . • z o m 'E Pi" 2SSe . -. . J -.z G 1J. ..• av 444444c4440,Z4 • 1 4 :44444' i • iiii J =WS JI- .. tr • a IL 13. CO .-• ' 0) , 1 i M C91- 13 0 1- a, ■-• . 0 • Z I- . . NM 0 W 0 o cr L.) - ..,xw m z • ,- ,- (.3 > w . r- at .1",521Rzia .J 1- ED 41 W •-• IA 0 Z ' 1 • 4 ' 4 , If! I i r! .Q3 cissgr. ; a ol-oom t- . ..m..awwm Oi 1- lw 10;aia5o; •Cd • PPM z 3Z1 M .. w ... 4. 41 2 / - 1 - t.D ..°J MZ IZj a a Z 03 CO U (..) LL 03 CO X X L) Li. , •I•• W i •-. G W _anal nc om o 110 m 0w.,wam..., Li., .0.0>1-010 0 . cn i- N>.ocrw x z gg 1 m .....1.-a..,,ao 1- 0 . .!. m L., o w ir , • 00 7, i • , , • , 4. ' . , I 00 04 , • ... . . , !, • 00 • , i ' . all . . .. ffi Xeter 20temax., Rot. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT 1 BY I DATE 1 JOB NO. I SHEET OF 6110 ow of NM b 8 12' iro 11 4 8`lcA 2°4 PAY.e.AleA/T. _■111111111 S = 0.0020 0.0040 a /2 1 ro 0,22 '.6477Z2 la- 4 gni ST4EET C4PACITY citiAar tati ire 3186-L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92626-4675 • (714) 641-8777 wig ... CHERRY AVENUE STREET CAPACITY TABLE or a =26 b =10.5 c =1.5 d =13' w =51' ""DEPTH AREA P R W' ROAD W ' PKY . Q/S 1/2 iMrr(FT) (SF) (FT) (FT) (FT) (FT) '0.12 0.079 1.302 0.06 1.320 - -- 1.207 „ 0.130 2.084 0.062 2.080 - -- 2.02 0.20 0.266 3.388 0.078 3.347 - -- 4.83 ,,.,.,0.25 0.465 4.691 0.099 4.613 - -- 9.86 0.30 0.727 5.995 0.121 5.880 - -- 17.63 1 "0.35 1.053 7.299 0.144 7.147 - -- 28.695 0.40 1.442 8.602 0.168 8.413 - -- 43.425 " 1.615 9.124 0.177 8.920 - -- 50.438 000.44 1.799 9.645 0.187 9.427 - -- 58.181 0.46 1.992 10.167 0.196 9.933 - -- 66.53 0"0.48 2.193 10.688 0.205 10.440 - -- 75.54 610 0.50 2.410 11.210 0.215 10.947 - -- 85.64 0.52 2.634 11.731 0.225 11.453 - -- 96.35 ,,..0.53 2.750 11.992 0.229 11.707 - -- 102.01 0.54 2.869 12.495 0.230 12.210 - -- 106.695 4 '"0.56 3.124 13.502 0.231 13.217 - -- 116.58 0.58 3.398 14.509 0.234 14.223 - -- 127.84 3.692 15.515 0.238 15.230 - -- 140.38 firm . =61 3.847 16.019 0.24 15.733 - -- 147.18 O.62 4.007 16.522 0.242 16.237 - -- 154.3 N-0.63 4.172 17.025 0.245 16.740 - -- 161.77 60.64 4.342 17.529 0.248 17.243 - -- 169.58 0.65 4.517 18.032 0.250 17.747 - -- 177.74 .,,,,0.66 4.697 18.535 0.253 18.250 - -- 186.337 T. .0.67 4.882 19.039 0.256 18.753 - -- 195.207 6 0.68 5.075 19.539 0.26 19.253 0.5 204.58 0.69 5.277 20.039 0.263 19.753 1.0 214.68 0.70 5.489 20.539 0.267 20.253 1.5 225.01 rrr0.75 6.702 23.390 0.287 22.753 4.0 288.88 0.80 8.165 25.539 0.320 25.253 6.5 378.428 ""0.85 9.877 28.039 0.352 27.753 9.0 487.88 60 0.87 10.632 29.039 0.366 28.753 10.0 538.87 0.88 11.025 29.539 0.373 29.253 10.5 566.0 4 0,0.89 11.428 30.039 0.38 29.753 11.0 594.22 0.90 11.840 30.539 0.388 30.253 11.5 623.46 6" 0. 91 12.263 31.039 0.395 30.753 12.0 654.109 0.92 12.695 31.539 0.403 31.253 12.5 685.620 R/" 0.93 13.138 32.037 0.410 31.753 13.0 718.414 wr0.94 13.590 32.539 0.418 32.253 13.5 752.02 r mi Mg bil PM MILLER AVENUE STREtT CAPACITY TABLE imi a =22 b =6.5 c =1.5 d =6' w =36' "'DEPTH AREA P R W'ROAD W'PKY. Q/S 1/2 i (FT) (SF) (FT) (FT) (FT) (FT) ""0.11 0.072 1.401 0.051 1.317 - -- 0.99 0 , 0.15 0.145 2.454 0.059 2.330 - -- 2.177 0.20 0.294 3.772 0.078 3.597 - -- 5.31 0 ,.0.25 0.505 5.089 0.099 4.863 - -- 10.72 0.30 0.780 6.407 0.122 6.130 - -- 18.97 X 1.271 8.251 0.154 7.903 - -- 36.176 0.38 1.353 8.762 0.154 8.407 - -- 38.55 '"'0.40 1.531 9.783 0.157 9.413 - -- 44.045 100.42 1.729 10.804 0.16 10.420 - -- 50.46 0.44 1.948 11.826 0.165 11.427 - -- 57.990 0%0.46 2.186 12.847 0.170 12.433 - -- 66.498 6 . 0.48 2.445 13.868 0.176 13.440 - -- 76.158 0.50 2.724 14.890 0.183 14.447 - -- 86.965 ,..0.52 3.023 15.911 0.190 15.453 - -- 98.975 0.54 3.342 16.932 0.197 16.460 - -- 112.236 41 0.56 3.681 17.953 0.205 17.467 - -- 126.798 0.58 4.041 18.975 0.213 18.473 - -- 142.765 '"�� 60 4.420 19.996 0.221 19.480 - -- 160.080 'iai =::..62 4.820 21.017 0.229 20.487 - -- 178.906 `0.64 5.240 22.038 0.238 21.492 - -- 199.235 *0.66 5.679 23.060 0.246 22.500 - -- 221.042 T..0.67 5.907 23.570 0.251 23.00 - -- 232.612 0.68 6.142 24.571 0.25 23.50 0.50 241.34 0 .,0.69 6.387 25.571 0.250 24.00 1.0 250.952 0.70 6.642 26.571 0.250 24.50 1.5 261.108 6. 0.71 6.907 27.571 0.251 25.00 2.0 271.920 0.72 7.182 28.571 0.251 25.50 2.5 283.391 m. 0.73 7.467 29.572 0.252 26.00 3.0 295.38 600.74 7.762 30.572 0.254 26.50 3.5 308.320 0.75 8.067 31.572 0.256 27.00 4.0 321.795 "q0.76 8.382 32.572 0.257 27.50 4.5 335.952 * 0.77 8.707 33.572 0.259 28.00 5.0 350.798 0.78 9.042 34.573 0.261 28.50 5.5 366.17 R440.79 9.387 35.573 0.264 29.00 6.0 382.583 imw es r r r• ... trz Hi xter g t?itotemeut., ate. 4:;;:... '� 1111.111111. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING Jr '" SUBJECT BY DATE JO NO. SHEET OF /QO f, . STR.E Flow I Ve YLL' 6 �r ,4 I S elo --aa I / Z Po,e c HERlEX AVE iir Ora, ' 165,-C2ar _ - 6 1 5 - 476.09 ill ' r Sipe WEST f/Pt /4S• 06 20737 214- 50 14-4 ST • 72 S 3 Cil C Mnce " aubM.e oar) Bu bbG -bu t WO sm (P v,M -4) (FRe+ L -)4) - Tcr. kw c * I•iq z. d> i(o.w1 +o. q _o., ',,„ big ( f=v oyr+ j- -) c , f - It& Ta 64�a4.4, I T C..b r rce 72- 53 +2.5 7'2•S-3 t� l q e ' ar. . > Ck" ktaa o -r c ifs r -ccw ( fix 32r -kow Pte.*" FP tef PI_ UV) ►�niu�Q ►}CALF C r "'m k 3,617.33 (Z 1 •s 6", k r. 2 4 .6o .61 +`,r - 7 - 3 3' 2 87.53 FYI c: he.v k- d > 1- 3 2--1 pi 3- E-CU Top O f = (nLd Gr = 0 - 8 9 4- 0-0 iir (P rr` L -s) (PcFEr (Ross Cccrb+) , 1 -54 "' 13. 44 2 . 82- elog ( F,,ow, L -6) C FEo►n L -r() kfr I T■GA- d 1- 3 I "" - it 0 7i1i',.k. : 70- 53+7o•gs3 Ilr (FN 4v/4 %o-IJ 2 - (F-0R L- 7! (.IAc. 70.7/ r _t . ler 0'00 1 - d7 W. S. i tg o►- 72_ - . ( Ft t- /4 CFot- z -+e) TA•e ke1/4 c'k 4p, ..4 co k 72 - mill., toLYI., ' v a sil -* 2. S t ( I �ft,v A iii 357.0,1, 2.92. 22 o To fc.� C 0r6� / = 64 2 3,a r µ�I c�v 1 hr all !17n REDHILL AVENUE • COSTA MESA, CALIFORNIA 92626 -3428 • (714) 641 -8777 6 Xtet g potemak, ate. 111._ CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING P. SUBJECT BY DATE / JOB NO SHEET OF LB 00 4. -CUM VeN,e4 6/s 4- 7 3 gra Fog CAR. NE- GIE ST Cm -from 0j 41 tLve 4 6 C44. t.7k C-rb CV km --_am--Qet /51 CPS r futt 61' tr Aieu." ritelpt Vire :--- 7.4 4 711-.), 74. /lir W. S. aeWeAtbv•CP / - 6 4- - 6 7 +- 0- /2- 4- 0-2 4 c.p) (6 (6 PO) 75 • /9 lad 71 /7 vo A4c-ot (44 . %72. BNJ i(fl, wit+ - , vc f Itt fl P141 /At! dtvg r • cvs 1- 3 = /7/ I . 0071- fa* , 3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92626-3428 • (714) 641-8777 iii I.. aft. '— CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING Es 8 BY D lOB NO. SHEET OF D c ., a t OEM OF fog l k . S �.e . - 2 - g?- '� 3 S/ / z irk I K ,/sSh.a -6u LE�1A P- sfite-r-Ativi rr - g,,�,��,. : 1 45. De �S �- D. �f� /943# 9 nil 4r.6-- loo! 4►•0-4as - bi.9.7il=iciArl«s • 04 ST.g Eq 11 �7 1 /1.0/5- Qtr, —Q,� A Z�4•r2CPs, Iwo • I 'CAl2> eQe S O - 12- 12 30.‘f 14( , ( ° o,q4 0 -Cr (pu LL s'G, — k(�if+)= 3.53.8 Lt.-HALF s iiii p yE� cAlvyp�) Aa sq 2 47 2 . - - t. -2ss s, b, ONLY M2.1 J Ta4,4e1 R .4.1.A1 LIPJE ,„ M eIElL.. cot D. i 21. 3 2. 3 — -- b • 4 K 11 ii::. COY Atise a. Iy 2 0 731' / 1. (E57 5/r ) lq 363, z g,6j � .. J is m i'511' 357.0 � / Y��i( I' 27 room CPCP-gy OE iii (WES/ S/HE) / Z►i.kt> ( 1. It 1 / ,� 12g7' 2 3 2— 2 7 bit It 1.sio aye'26- 2.340 1 /, 2 v imi 7,/Prtn4 'PKW 1.0 24.03' i ( -7. O .( oo . PKw,j 1•12- 37.`41 .12940 314< 18 illiv.ij 4 w b i CA 11,v q q r1 ' o , 7 L1 „ tla ;ii Picw� 0. n. wq•1 3a? 0,c I• "Al 7n Qcnull 1 AVFNI IF • CC)STAMESA. CALIFORNIA 92626 -3428 • (714) 641 -8777 . um Or P ill filli hie g f?airee•Auzit, aft. ii ...„,.._ CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING air 1 SUBJECT TE 1 SHEET OF le M I L L BY DA f OE iL1 OF I jc)8 1?, — D • 2- "2_ ro 46% iR 1.03 [ — _____________ ______________. . _ die ... ! 0 .4 ... - -- _ A aLf - — ill ipm a 1 Imi a 1 -- 1611 i pm ' ii• 0 02.Z /IV I 6en 696 /060 /Ze,c) 1 ..., 23a 3Bz. 12.412 ....._ K _ • r. ,... its FP air 3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92626-3428 • (714) 641-8777 MIN IN M P at Xd s P0ireeMtaolp aft• CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING II. SUBJECT 1 BY A . sk.e.„ 1 DATE _ 11.4,4 — 1 JOB NO. I SHEET OF MIL L-6C AVE . 3tio apt I 2 0.. am aw ' .... • it 72-' 7 r 22' ift sma 4tjv sa i 1 -1-- 47 2 4/b 2V. 4 4 - ..01 .., 0.17 1 1 ..„,.... _.... ..6,- %.•,... ,.-741 pb- 1 • it.14( ------ Nil . c 0 :1141 .0 1 ( - ) .... Z No D.U• 4 ( ( ) I . ••• 2. ow C- O_Laj' ( C ) I. web-44 etArv..e.-tii , • . : (P) + (0 -1- 0.(vei + c< -1-- 2,-z- +0.2-7 -: ut z .ctLi .R R , A/ I .,.. bet AN,A1•` 6 • __, .0.2,1, (604) ( c. = 414 j kjr li, , .o sr..00vir- ...... Q A oficite;4 zzev. s.,\ P.% alli C(Fide. gre-14)Zi‘g 'S . n17n REDHILL AVENUE • COSTAMESA. CALIFORNIA 92626-3428 • (714) 641-8777 ffi Ale g patesate., aft. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING r ill SUBJECT I BY IDEPrt e_EN IN I DATE 2 JOB I SHEET OF 1. 110 -23 -S7 N° .6 . 04 aid k 0.2S 4 4. 41, 111 0.• . 0 10 0 20 /CO .200 e- m44/E ail ite.i44)Aifer; Sroa 57 tio‘ q17n 1:1Pnwii 1 AVF1\11 IF • rns MFRA CIA! IFCIPKIIA CioRon-QA ir-,• A% G. • • es•Vo is r ".' , X gpoleemetit, 7/4ij4m44t, ,111 . s,...._:. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING is a SUBJECT BY DATE JOB NO. SHEET OF Sr iiii �ac.TV I ,�N w. . 1 .2-23 -i? I 355/ NM lie - i F4 7 t - G' .24 .2G' G' 8' /B ' a f 8' d' ' t - 1 CF =017' l i � 2�a .2% .2% ill 0.2 i , dd" 0./3 '� .. t 0,25 — HALF S LL6 7 W VQL 0.1 ,Q,Qf� = s. 53 u, k 1. Jf,?4 X E s �! . aril WP = .22 -J:, It= WS e =.2439 s 53 s< 99,O7k . d14/ = 2/S 9/ Qs" km iii 6 4? foo - iiLF sr ef= cy x 0.07 v , 402. •= 3.5'9- IP 4,00 454 = B6q IN wP = J2. 7 - Q = . ;.4.6o - irr, ,9- = . a / 7 2 s7 F_ T c.fPACJry .5= O a 07 Q2S = /I. 32 CcS iii S/_ =0.0 ri 9 . Q /00 = 3o,49_cFS POO ill C4a V Ec /5 a7rREET ,.:.:. .1.;;,., w. p. 31 RR - AIRWAY AVENUE • COSTA MESA CALIFORNIA 92626-4675 • (714) 641 -8777 A. ill um '...• XI, g 2ofeemezigp, ate. ,,::::.:,., IIIIMINIP CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING iii SUBJECT 47- G4PdC /r6/ BY DATE JOB NO. SHEET OF eat" IP iii //5 "'" 30 2ci' 1.4 ' 361 /S we , /2 � a' 7 � ' 241 I IS ,' . - _ - - - 1 Pi OR 0. 1.2 o.G2 - _ _ iii 8 °cr d °� 2 % .2°4 BiF li . 0.2r /,141f Sr CJioo H4LF sr Q /oo IdL F ST Ar d73 4 .= Zd. A = 1.4/. `o " WP= i? G 7 WP = $5.17 KIP = i./'. C7 ,_.. R = .25'33 Q , 4 3'71 Q - 3 d pJ= ,Q./3 = . d a- i Q 2e2 = .5 f 1223 = , r+- r?-3 him p // I/4 Ll1E S. Q15" = 4, 73 x #99.07 ) , d L/ - �Pf.,34 Q roo (2 d0 _ 14. FrT x q,.0? k . Sl/ii _ 14.31 AM. Q/oo (4 — 14,G3 Y 99 .0 7 k . J , ), = G S. Sc„, ME Y5 C4AIVOW 1,4/1/5 Amp PEWS7VC WOE ROAD 3186 -L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92626 - 4675 • (71.41 aa1.P777 ilMil Pm hlate g 26uteeotelg., Rot. 1 , : ,...,;..r, ..: .„, Koi;: CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING !1r am SUBJECT BY DATE JOB NO. SHEET OF S7,.EET Ct4P4U7y I Ii5A/ W. I /1-2/ -8G .J.344 4111• Ire 41.11 1 { f } I.2 / P Y. 41A 2/ , 2d 14 ' ;; Id , 2/ / .� ►, - . � s TI 2 42' /2 /2 10 i �'ss s 7# y' .12 S 'a PM 02S Q1,20 Pk,.,:, . • a = ..e. 51 a = /5. 4 .2x•07 / .. WP = /a 3 W 2 = 45. ?F' WP , - - 5 5.i-7 go Q R , •2r4 4 = ..42/ .Q= , S12 Q - .4oi R23 ` • . Q %= ,G5/.3 iimg 4111. 0,26 !l= ad, 91 k.,.. o7X.aod • /.L.52 illi 41.. Q /oo f(= /5. .dose y .5.o7x. 54 G = /087 83 lir d 2 o l l W / / Q i m o ' / t = 2 . 0 7 X 99, o7X • 6 /8 75.72 ill. HEW/746E / 44)1/l i4Y iii iii 3186 -L AIRWAY AVENUE • COSTA MESA. CALIFORNIA 92626 - 4675 • (7 1 Al AA -Q777 PPR 11 r ltik ill hie g 20feestem ate. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING aim SUBJECT PEP77-/ Al Gt/770,2 I BY kff I DATE x _ 2347 1 JOB NO. der/ 1 SHEET OF ' =I i OR ail ' rai 1 ill , Fat Ili ............■•••".........,■■•_ ------ 0, t7 k. 4.1,. „................................ 1 4_ 0. s \•:.-.,,. ri k ill 4 Pr 0.25 um me II um 0 .do do 200 " ie ' getwE • •P• . xisivrioi P44kay 4,..;• i /fritryeie CANYaN D. REAStX7 RAZE ZO, : Ws 3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92626-3428 • (71 Al B41-R777 Pil 3 g 'C1 11111.1111. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT MEyE g. CANyo N D2► ✓E DATE NO SHEET OF 'BY k. W. s �3 s 7 jJOB 3 8'10 I o-8 — - 0, G pir k 0.4 0.2 Imo 0 �✓ Gc 110 lto 2do 300 3�0 V 4LIIE - MtYE2 CAN V /Y/ DQ /1 72 . r. lir es+ lil• 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626 - 3428 • 171 Al AA 1_n777 pm iis rim P!,;A, ill ?I g ?a/000RA, ate. ,..' '— CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING Au SUBJECT /1EYFe GQNYON 1w, . I BY iew 1 ( DATE 3 . � / � , 8 7 ( JOB N0.3810 I SHEET OF ill UN Ili i 0W 98 ili G 30 , /0 - , 4G , ' 6 / _ 23 . G� _ 18 . �3 ' _ _1_ 3 -30% 2. i J 0 4,-..:‘, air (a) CO (c) 1 -) r km Qz- a. a S. 90 Q /00 a, = d .1/ p1s a= 7. oG Q a. = /o. Sy top _ ?o47 wp» 30.3/ Al) s 21.95 cup = sS Q 3 ` .437 Q ii = • � ' ,0 3 = , 4, 1 r ,23 = . 4 c its k V4L /ES i s s, Q (A) 5, qo X 9 f . 07 ' . 4i7 = ,2.3.43 y o ,00F • ?3. 49 C4.1 Imo t5. P. it i 99. °7 v .445 = 33/ 49 y 0, cod% 34. 3/ crf — (c) 7 , oG k gq.o7 x .•t3S = 304..2s v 0, 06 4 • .24._. '7 C s 'J ( 10.59 ) 99, oy kl . 4.5Z = ,d7.41.22 k 0 . 0074 .d 0. 79. PO i. 40lev CANYOA/ Di4' /t/! r 0.,..., E cwtez y 455r 7?J, // Fo 'biro 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626 -3428 • /71 AI AAI -14777 ew. ?lied! g 20/e60024, ate. -- CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING ri ilnr SUBJECT MILLED d l/ENVE I BY eit DATE 1 J08 NO . , r1 SHEET OF 7s ' J� L 8 ' 22 ' _ 2.2' ,.• iiwr I _-a. F- I� Pico LIALF ST F i X 4,(2 a ,sis . 7 = 3S.17 >/ d'"'5 SC 99007 361 Go S HALF sre,ET .S= .7? . . lop oq ;e X 3C /. 6,0 = 15 S GFs rr s = p.6o2. Q /oo = GFS . oft irr tor 3170 REDHILL AVENUE • COSTAMESA. CALIFORNIA 92628 -349g • ,.+w' 0 SIP •• 1 --:\ in Wig/e!! g e?opte,00240t., Rite. '.. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING is P SUBJECT "Eyze CisA/vON daQ BY DATE JOB NO SHEET OF /21 57 ii fr G�' 30 30 /.' illi L8-' 12/ 22' 8/! erg illi % ` .8 ' G F � D. o. �6 it' 2% 0 o P . s, .1-41 I i . ai s #4J F Sr• ; a/oo #414, Sr .. � .. a, = 8.8625 a = S, s323 s 9 o � 'Ali) = 22 47 I o �3 wp = 35 , 7 • + � s1 R = • .244 k-e -- . 2, f. err R .2 / ' " .3 94 R Y _ . 4 03 Qss = s sI2sx gy'• 07X .3y • 2 /6". s o 1. 14.2ST 9 y.07, 1 1 . 43 353. ; go OW Qlr S = 0.0041 _ /O. 7: GAS 4/444" Sr m Qro o S = 0.00841 = 32. GGS A4 CA' Sr, AeftYJ 'f C4AIVOAI , fee iral to 3170 REDHILL AVENUE • COSTAMFSA_ CAI IFC Jie aoa3a_ow• - - -- .. - -- - - -- IM IIIa JA ' _- CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING ita r SUBJECT SY DATE JOB NO. SHEET OF iii �/z FLY 4VE (iwo. ic, I 2— 4 —f.7 3 s ?gm alt / 78' mit 42 - 12' 1 1G' /4' _ ?�'. _ /2 ' i - riff C RuD SCA LAN - P sc,A am ,fir / p II , l ii S401 1 I 3. Ak SZvp.E I^ / /A2 a s G CA lori , \ Ar - .4, d Pi . 1 r . . . . : • ■ 4 F AC / ra r. : .2 62 4P V I 410.:03 ,4 r r 4/00 NALg ST e = 7/ - 72- I.4F*L k 2`3 ' Imo top = 89.2 = a. X _— , o/$ Q = .7.9'9' IF* k- d. 91 k = 7I3.7? X gf.C7X.�.94 = 27e, S l ,>r 75P o ?. (-7'51.OP . O N K ( N A L F S 72 EE T Z Ihtd a4A } -) et u a- ` !-f4, 3qs t 00 p S ( MIL LE( f, 36 i'.. P w i • t 6 a " " E.2410/ -..= /. 5 , R, o.,oil 0. o.�6ar K. a ,X�'y� Xo.Kb2,1 4 33LI OeF 'VIL te VNL V, .011 ii Q ioo 1/4L ..Cr _@ LEFT TURN 5 = . o /sic :. Q = Sz 7 CpS en ill a _ SP. a p 11 .= ( 0 ;- S v 1 ` 7' o7 1C • 7 = 8 4770 , 31f. Wp 9 /. 17 u = 5;3 3 . 37 7 �-t ^ LEL; rcie v �- 40 ° , e- 3 Ji ? ?? / 3170 REDHILL AVENUE • COSTA MESA CAI I rlDMIA aecem_' A" - • -- -• - - . - - -- .w. I�Ir .s• 4111 in Watt g 20/e60e44, ate. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING iri SUBJECT cwEe.x. (J d yew() F I BY f DATE a I JOB NO je I SHEET OF 7 1 • • II✓ 0 Jo- 0r wr 0- /2 pot 0 CIO QO !20 l6' 200 poR l�QLOE CN!!R V .41/5N4,4: 7Z2 rc 3170 REDHILL AVENUE • cnSTA JuAFCO f AI !mow!, oIcne PA Will ow 4 -J gee. :,:,.•;;....1 • .t,..;,.: w, CIVIL. ENGINEERING • LAND PLANNING • LAND SURVEYING as 1M SUBJECT CHFQQ y 4 YE . 1BV DATE 1 J05 NO.. SHEET OF iii osi I `7 r /,'Oor QBOI�F 67/.28 —T - / ar A50 - — — . I•30 - iiii 1.2,9 - /•2o w al 1 \ 0 j I 0 -G7 ://„.... °.so r a 40 o Dap — ail '- 433 a 752 /ODo - .20o0 24 , „Woo 4.400 0 00 0000 k //4ti/ w wr w Iii CNE� V 4VE'„i .„„, • ii,--, hvcz , sea OF Pow, r r two 3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92626 -3428 • (7141 641 -8777 SIR iiI 1 '"' CIVIL ENGINEERING • LAND ILANNING • LAND SURVEYING in ?pi SUBJECT CHERRY .Q ve BY DATE JOB NO. SHEET OF god /0 I iiii /IDOr4BOVF ems i� - I.20 iilrt 1 _ _ _ 1 i i l i t` 0 .90 0 -G7 . 0.,50 . gioN it w 440 T i .ta a g o 0. /A a 752 1000 2000 238 300o 4O .. `000 60X K l%QLU 00 kr NM ilis ''eQRY ii/evez .... 10. /,/CL , £4C1( o,c POsiv Sr lie L......... 3170 RED AVENUE • COSTAMESA. CALIFORNIA 92626 - = • 17141 A414R777 3 r -` A , , ,' , - : . ' ;! : , _.. - ------ .._ D _ -- -- Z ..,-.6,k 2 1. 1- ( ) _ ( Z . {� o n. t y , o .� q _0. Z I ✓ 1 L 3 �� 4: P ‘2_. R. o 3� ,,6-8 PM ki ail i 1 L f n ( o . ) _ Li 3 3 / y / o,sy .o. ,6T: /._z �� � V r PIS Ili i iwr i I ow ! wig as 1i w 11 i.. i iir ;I 1 um 1 ' iiR► TABLE 2. Moment Strength M p ftbd or M /qbd of Rectangular Sections with Tension Reinforcement Only* le w .000 .001 .002 .003 .004 .005 .006 .007 .008 .009 "ft 0.0 0 .0010 .0020 .0030 .0040 .0050 .0060 .0070 .0080 .0090 0.01 .0099 .0109 .0119 .0129 .0139 .0149 .0159 .0168 .0178 .0188 • 0.02 .0197 .0207 .0217 .0226 .0236 .0246 .0256 .0266 .0275 .0285 mm 0.03 .0295 .0304 .0314 .0324 .0333 .0343 .0352 .0362 .0372 .0381 0.04 .0391 .0400 .0410 .0420 .0429 .0438 .0448 .0457 .0467 .0476 es 0.05 .0485 .0495 .0504 .0513 .0523 .0532 .0541 .0551 .0560 .0569 0.06 .0579 .0588 .0597 .0607 .0616 .0625 .0634 .0643 .0653 .0662 a . 0.07 .0671 .0680 .0689. .0699 .0708 .0717 .0726 .0735 .0744 .0753 0.08 .0762 .0771 .0780 .0789 .0798 .0807 .0816 .0825 .0834 .0843 4� 0.09 .0852 .0861 .0870 .0879 .0888 .0897 .0906 .0915 .0923 .0932 0.10 .0941 .0950 .0959 .0967 .0976 .0985 .0994 .1002 .1011 .1020 mm 0.11 .1029 .1037 .1046 .1055 .1063 .1072 .1081 .1089 .1098 .1106 0.12 .1115 .1124 .1133 .1141 .1149 .1158 .1166 .1175 .1183 .1192 40 0.13 .1200 .1209 .1217 .1226 .1234 .1243 .1251 .1259 .1268 .1276 0.14 .1284 .1293 .1301 .1309 .1318 .1326 .1334 .1342 .1351 .1359 mm 0.15 .1367 .1375 .1384 .1392 .1400 .1408 .1416 .1425 .1433 .1441 . 0.16 .1449 .1457 .1465 .1473 .1481 .1489 .1497 .1506 .1514 .1522 III 0.17 .1529 .1537 .1545 .1553 .1561 .1569 .1577 .1585 .1593 .1601 0.18 .1609 .1617 .1624 .1632 .1640 .1648 .1656 .1664 .1671 .1679 0.19 .1687 .1695 .1703 .1710 .1718 .1726 .1733 .1741 .1749 .1756 im 0.20 .1764 .1772 .1779 .1787 .1794 .1802 .1810 .1817 .1825 .1832 0.21 .1840 .1847 .1855 .1862 .1870 .1877 .1885 .1892 .1900 .1907 0.22 .1914 .1922 .1929 .1937 .1944 .1951 .1959 .1966 .1973 .1981 mm 0.23 .1988 .1995 .2002 .2010 .2017 .2024 .2031 .2039 .2046 .2053 0.24 .2060 .2067 .2075 .2082 .2089 .2096 .2103 .2110 .2117 .2124 * 0.25 .2131 .2138 .2145 .2152 .2159 .2166 .2173 .2180 .2187 .2194 0.26 .2201 .2208 .2215 .2222 .2229 .2236 .2243 .2249 .2256 .2263 mm 0.27 .2270 .2277 .2284 .2290 .2297 .2304 .2311 .2317 .2324 .2331 0.28 .2337 .2344 .2351 .2357 .2364 .2371 .2377 .2384 .2391 .2397 mw 0.29 .2404 .2410 .2417 .2423 .2430 .2437 .2443 .2450 .2456 .2463 0.30 .2469 .2475 .2482 .2488 .2495 .2501 .2508 .2514 .2520 .2527 mm 0.31 .2533 .2539 .2546 .2552 .2558 .2565 .2571 .2577 .2583 .2590 0.32 .2596 .2602 .2608 .2614 .2621 .2627 .2633 .2639 .2645 .2651 hill 0.33 .2657 .2664 .2670 .2676 .2682 .2688 .2694 .2700 .2706 .2712 0.34 .2718 .2724 .2730 .2736 .2742 .2748 .2754 .2760 .2766 .2771 0.35 .2777 .2783 .2789 .2795 .2801 .2807 .2812 .2818 .2824 .2830 0.36 .2835 .2841 .2847 .2853 .2858 .2864 .2870 .2875 .2881 .2887 or 0.37 .2892 .2898 .2904 .2909 .2915 .2920 .2926 .2931 .2937 .2943 0.38 .2948 .2954 .2959 .2965 .2970 .2975 .2981 .2986 .2992 .2997 as 0.39 .3003 .3008 .3013 .3019 .3024 .3029 .3035 .3040 .3045 .3051 Wr a. * M /f�bd = A a /2)f�bd = w (1 -0.59 w), where co = p f /f' and a = A /0.85f'b. rr Design: Using factored moment M enter table with M /cpqbd find w and am compute steel percentage p from p = wq/f mm m ; Investigation: Enter table with w from w = p f /q; find value of M /f?d r - and solve for nominal moment strength, M • m" 9 -7 ■ . 3.7 Practical Selection for Beam Sizes, Bar Sizes, and Bar Placement / 51 - = 0.0 t 11f� r -- 3.7 Practical Selection for Beam Sizes, Bar Sizes, and Bar Placement In the previous section the procedure and example for the design of rec- tangular sections in bending with tension reinforcement only have been )��) treated on the assumption that the design moment M„ = M „/¢ is already J known. This is rarely the case, however, because the design moment must 0 J " include the effect of the weight of the beam itself which has not yet been . • designed. In reality, then, the dead weight of the beam has to be assumed at the outset; a trial beam size is then obtained and may be readjusted if its effect on the design moment is significantly different from the assumed value. .,1 2- #10, The choice of the steel percentage p is very much dependent on the limitation of the deflection of the beam. Years of experience with the working stress method showcd that deflection problems were rarely encountered with in which having a steel reinforcement ratio p not more than one -half the hown in maximum permissible value. The use of this amount (one -half of 0.751 = 0.3751 may provide a suitable guide for the preliminary choice of the reinforcement ratio. For the selection of an integral number of bars to meet a total steel area • requirement, it is desirable to tabulate the combined area of several bars at a time. Table 3.7.1 gives bar areas for up to 10 bars of the different sires. Table 3.7.1 Total Areas for Various Numbers of Reinforcing Bars • UK 1 Nosniuu! -- -- Number of Burs _ Bur Diameier Weight Size' (in.) (Ib[%) 1 2 3 4 5 6 7 8 9 /0 4) 3 0.375 0.376 0.11 0.22 0.33 0.44 0.55 0.66 0.77 0.88 0.99 1.10 # 4 0.50) 0.668 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 ;!:-;'' h # 5 0.625 1.043 0.31 0.62 0.93 1.24 1.55 1.86 2.17 2.48 2.79 3.10 # 6 0.750 1.502 _ 0.44 0.88 1.32 1.76 2.20 2.64 3.08 3.52 3.96 4.40 • # 7 0.875 . 2.044 0.60_ 1.20 1.80 2.40 3.(X) 3.60 4.20 4.80 5.40 6.00 - # 8 1.000 2.670 0.79 1.58 2.37 3.16 3.95 4.74 5.53 6.32 7.11 7.90 *9 1.128 3.400 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 * 10 1.270 4.303 1.27 2.54. 3.81 5.08 6.35 7.62 8.89 10.16. 11.43 12.70 k # 11 1.410 5.313 1.56 3.12 • 4.68 6.24 7.80 9.36 10.92 12.48 14.04 15.60 # 14" 1.693 7.65 2.25 4.50 6.75 9.00 11.25 13.50 15.75 18.(X) 20.25 22.50 *18" 2.257 13.60 4.00 8.00 12.00 16.00 20.00 24.(x) 28.00 32.00 36.00 40.(X) i " *14 and # 18 bars are used primarily as column reinforcement and are rarely used in beams. For the placement of bars within the beam width, AC1 -7.6.1 specifies i' nforce- ; , the clearance needed between bars to permit proper concrete placement nailer in around them. This clearance is 1 in. or the nominal diameter of the bar, "'orktng ; whichever is greater. When two or more layers of bars are required, the ;sential • minimum clearance between layers is 1 in. (ACI- 7.6.2). Table 3.7.2 gives ,oject of 1 minimum beam widths for various numbers of equal -sized bars, computed in the manner described above. • ` µ: r ` t �.. ?11/4e.1 °It 9 ec. • CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT B Y DA TE JOB NO SHEET OF CNER Zy A\E S. b OLLAR nESiGA) L '^/E L C' 1 4+20•2-4 ( . i , /3 + 9 7.6 7 ' ;'SAC CD, Stru rJ Marvt , S ECT, °"/ cs, 7 Ta& 5 2) Act 31P -R3 3) pc A I'ZoTES Fob. rx, j . Q �,, �� S �/vv►� 3"" ' a� 44) Can Cr,�i�+9,. '�• C - / el T' cr.,/ E a.,'Jk P� aB( N-sr t z a r << Q EA .10 b � Le� t vC - V t v { l idre 1434,14 Ln t A na- t,.1 A k e Pfr.,rlai't CJ -SE2_ , Dyad W�� S f-v u crc.�a f v,tv �� c�-Q E. lcaa.o fi Hov1z. E r La.-,( -} LIN{ Lp S . ) 102 ('° c fcr : I - 2 V.r � �"'' c. Q .� • cry, 18 o C r,✓k 1 daC; L B. z 90 �--- -- Pi� 1 L j L pl• �C1T� r�i.�.. Mcn•u. A H= G - L.L p.. I S a p s -�. i J Po /S' ,tivf U '" _ (,th< N _ 8 • � Ir C � ws ` i , ` , 13. p c � ,y -u m� = (7 = I = 102-+ 17- 7 = 13 6 ))• 33 .mss •+n t - ^+ter. • •■• r- ..•.'- W-e -4 e.• -'+r. r r r.-r. -.ir.• r.. .. n.. _� n .r•� .'fi �l fl44 Iy ��.lr hize ,70ieeotaAt, CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT I BY I DATE I JOB NO. jSHEET OF H � J 3 c D • 750 � . l o Y „,, = o - , 1 /)04 : +o . 7 UA` - s ( Pic - �) C d = D -go (cN) Z W = Q . g© 13o- 6 ► -33 ) /?, 35 L-b-'/ f 2 7C / 02 +11/t0 A 0 , M .24 75 L./Xi / 1 �,•�,� CaYV „'NEA 14.6v / 0 A s6 - 7u C-” c- W F� � = S b.74s" 2.4 35 41 .Lh 1/4.1a 1\I *c 2;A* tT N L A� �,t/., V- , r if P, , 3 7 f.,,L vv ■x,' v At ;_ 8 s +(I 1 �! � toe / k iq-83 Lc d . 734'` �°✓•g� t j4f 7276Li,1 ....A . ∎14 • n. ff . r gym ^. rnrn ,1rnn /.A rnnRU+ nn+nr -..nn r ematJ CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT I BY I DATE I JOB NO. I SHEET 3 OF IA10 fry Pbc-s-ic•viz u t Nr S /JCS ( A 7-b rJ. Xo -(` 3 f V-- 22S`3 a 1C 2- y 62- 4 = S3o Ll� 1 �FF <, 12 C a4-( i k :...., 10 2 1 4 .4,_ a4 F� �.��v L� � � � A����, S - 7) Cr- ) + - Aft r'1'j� r t �1� _ Q - 2 921; s O + lB ? � x `� . "9,6 s 19, b`� . p. 2935,3: M0hr� #X Wes• �Bo�' - p - , -'1.3 35! t Ig- 2)x 4..9 6 TI-, - 4>< w ,..t 6, ( : — 10, 30 --u{ = D -O. 30u13 7/ L-v Civ2av vice = 0- so x i 3 5'3 2 6766 L-4,0 6) wa^' q 11 ( J_ PCfG) / Sry4ek 1 (F -) +M o 2 -3 1 -,, 7s6- ' `i- i1( = 8 65' 1.1,4 / c : citp) _ l = o- 0403 ' " — )4 • . && = 3 4 11 ' Lt, -r ire = c _. x 5 66 = 1 3 92 L{," :14 o- 079b ,e 7566 4..0 -th 602 - .(Jf - - C 7 7966 = 60 z -%,- Ci- S 0 - -7S66 _ .3 in t )0 CY1 24 y■ra1 / l ke_t,,,,v-! l (1..ACFcP1 / •,•_ -• •.•. -•-•3 04f t ,, ,r.t„'- ..n' s.rn1 )". +1 f Y !I A nn - q Anp .. /71 Al P, -0777 2oieei4tet4t, Rox. M- CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT I BY 1 DATE I JOB NO. I SHEET 4 OF n -33) '` 37 72$ ^� (734. - 31-) zA 19 �1 �< n �I = 11-33 X ,/S 2_0 /iF / = � .� Art M : 0 . 125 x 6 t 0 • )2 5o x 2374,(4-96 Q = � G 6� � s' ( j+ 1 / --4r� (5° �'� _ ,trt n d t2. � < 3 6,c) TA "'it ue O - s x 3561 + o. b a-7s x 23714 417, 44 . (bott'.) OK. = d.50 x356'3 + 3 26 L>'a cam) = O- 0623 .< 2374 /Q & Lbe me -"re i(►oma riF V6),6" + S 3/3.P = 24,62. tLLyd. C op}) Mo n 6ik = l0 303-- 3 4 !1 -- 3 . �� _ /0,020 ' Ll.6 ts''6 i tom- tvs _ 676 6 + /1392 * bs Cs o� C lop i ivr ani _ Are = 7/ 7 4_ 60 ?, ` 3_57- 6 _ .-�1 Z d7 _) sh.2A„ b76$ + 3 `783J- 14 8 _ I 0 6 . i I � „C zoo. JA: (ACT ?1a, 11.3.11) O( 1- +/ l 2_3 527 _ 17,2_ A Lov V-,., VU : /g ! = 21 , 3 94 0-Mr n 8s 0 0- 1 _ A er 3. 2.3 23 S27 ti p o f ni vn nr n•nr r nrr .. nlloTA :ran n. rrnlq +nn r71 Al 1; A1 .0777 ?1//a" 6146‘411441t0 Rte. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT I BY I DATE I JOB NO. I SHEET 5 OF Ca/Se 2 /p2 Lord dui w v ■n ►� / 2 S33 `LACFcj,.St -LId-_, S -70 225.E -1,•A. 62 . / ( t3 -f- Aff M o rf a* — 0- 23E31 >1 2 2_ 5 x 4 .g 2 ► z = 2648'44 (,S1'4) _ e Ma mer..r - - 0 ' 3 2 _ 2 - t - 3 > , 1 0 7 - = (0o 8 'L ►n,vwsr = arc = o• 3981 , 2253 ( ) = 8 97 A r c Th v w&r B 6 N^ � .. w ! )o ad I Z. O -0 .5-3x /3s32.t0 -o 7% <7s6b o,sx n 6 #1s>< >>, P JA 7k *u,$)-; Bono•- • Ti car 05'3x053� -r0 07/0475 o. )115.69 f -312r ,(2.37.4. a- 2343 >I 22-S 3 6.68" . fi Mc tt.4- . A I , e car, fr tv� tR rQ<<m �� VW�1 r ✓' r Cer (Esat e 1) F sbx �2t3 = /(2 }ref - = 1067411.2---7 j1 1 24 Gb 20, l 0 / LX./1 VY1 = 2 3, 648 > 1 - 4 0 d 23 S27 -4 / •+-rn nr_nui+ I nttc is r■neTn n 4r_c ^. nAi le nnn7F 4 nO „ r PA+ _!1�"» lift ?kers 2efeeotait, ate. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT I BY I DATE I JOB NO. I SHEET 6 OF f 'G Z R/4 /00 m AI - } ,Q "r m o n f _ �f - 6g L. -{- 2 6 4 e L6'. =2 331 '2..bvi m rronl - 10;,0 ) - 61 .-f - I or) g 1,037 rLba 9 ,,tre Momon F 3a Ale Mom1 _ ue — - 6 8d" L hn ( - ii "-.41') ih�JC�r — (min . -rte) _ 6 gerLin, (cost' (Sk2,2y kfvc ga 1 .-b 4 • - TL.v V, Art A 1 VVr J �l -.17 4� �' jam M'Q1� OY1C� l 3.s. ) . Q• X `- QE-F: 4) PAY 394, . , 1 -7 ) (,e 0-9"S 11 "3 ) I !� 1ii � / f 1 f t _ /• 7X 2_7 331 I T.P ; CYO , Y✓)CM TY� i%t f ac` l 4)17-3) (ct 3/9 9.2) /7 it M tk 1.7 x 2-7,V 33 1 x3- - - 7 7 r�2 (Gfl,�bct) p.� x 1 b d 0 -9 it 400 F (p : P( NeirEs 9 F C.J 3 41) � (i t 3 1 = Cv 0.5 W) p'7 W = n C 56 • n +7n ncn f`(SCTA AAPOA f`3t tronpl1 /4 Q9R9R -'?d91:1 /7141 641 -8777 21 1, hia,er 26ufeemetit, Rite. WNW CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT I BY I DATE I JOB NO. I SHEET ` OF ()-) 4 Y/e/ o- 05.6 A .- o �csb \ACT 3's r o ) oo 37 (�, gin, ' j 6g p Pte- ot "C c uule # /gyp 1. 1 o . 68' • i I+: Mo .,,07x1 -7..i " LA) _p_bOZ o.o o )5 to cts -r lNsr = °- s Aq. w • • !Kt 3 t4, /0.s. 2) Y 12. 2•t• o ,r.� ' 3 t P ' PpA h ,. o... ep � ► Y-w .� x o • z � 12 0.60 r, e t yam, .) VG h 8 O K:. Ro 0 « 4 6 8 L em �ir z� AvCA 4 12 /kr* dAd Ake 1.'1* c o +41'.96 S T 4 . / 4 - 4 ( N . ,U'r 0" I ►r , u rn Co Are ► - 9 - ° Local CO,v Sao L ` , a-Mt V r = 2 34 / r A' �� } v 0 t ifan ()/1-t / 9 -° GL4., 1 '3 e . 102 + 19 +J`9 = /40 it-67 IA/ 2 w 1 3c � w > 13 lC./ 117n DFn.n + nVFnn rnci nas"gA rAI IFnPW A QOR)R•14 2A • (7141 641 -8777 476 ate. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT I BY t DATE I JOB NO. I SHEET OF ee„ }-1 / 9_ ; 0-771 p , �. �, }� _ +O -7 / 4, = -+o- 7 Sc 7/7 t4-f' ► F f 5,,, s, rim s 2 C z o • S I� o g2x(3cx 011.61 2- 14-., s 18- Lb: ),r cy j i ) 277 ,t ► o8f I9i 19 „ moo 2- 4 90 7g 1-46 /cirs. • CAM rea N444 to..) cottle • +, - 63 -617 63-617 62- 4 _ 39 70 Lbws f . PI-4461 I N , Lb C Nb .A `"4- r „.d �4-e4 C/ /1 J i?..,„ n r01 Lc Na c k- vyva , L ;,rte E AV 1 Lb #j £ . F . P 3 7 P . o i4) 1✓1 a r m-e-A m 1 ',P 1 2 i 21. 17 ��� 6� 4- - 5G 2 !1/ / • l a fJ S. 5 62 r- _ ZS '417() cf WIi A\/FRII Ic w r'r sTA AAFCA (4I IFf1RMIIA g9R /R -149A a (7141 641 -8777 at ?keg 6/e,609,4,4t, Rte. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT I BY I DATE I JOB NO. I SHEET OF log 11 : S - 29 Fccy L. J'- .} -v -L. �o, _ (i AcFc1), s +,,u�t. 5 -17) + Ma maw - - 293s C /4- 234)x S-29 = 22,0 C8o7 -) 1 1 6 ,79 'ZIA MotrQ "(s rDC-) - p - rs3s ( /4s1 f7- 3� 2 = � /4,7)2) CsII — 7,376 1 O r a 3 x (.i Z) (B69 = 7$2 L1� p- os3 K(14., 752) C To I) = 7g-2 L„, , 73 7 ' S -y� = 11 4 L ( = p• 239'i' 9 7 �� c _ 0. cRoq 9078 --- 5 2-9 4,36S WA (s ice) llt. a-2S 0)4 x 9072- = 2210 L (1-61)) + A = o- 0796 x 4o 723 S i' L) , Uc - 0. 07.1 ti , 9D72 - PI 4-4/1% v-e 2. S 21.)7 9 X37 = 333 /°- 17 2 IA 1 - ►7x 333 = A_0.5 V12.. A-cb x Z? 2739 A64-I- qi 7n acne -+ii ► AVFMII IF • ��1�T� MESA- AI IFCIRNIA 026 -342A • • (7141 641 -8777 2alaeoteut, f CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT I BY I DATE I JOB NO. I SHEET to OF C S'1‘cl-e - F -� ( . 't M = O 12S x 4-oa 3 x S 2`] -1- O- 1 2S n 2732- S- Z4 = 4,4 8,4 ) —Arc in : o - tote - 273V 4., 792!LIB fly +- Arc ( } U = 0 -So X 4os t D- 6975 273v 3 c?0`3 C Co) = 4cS3 t- O. x2734_ = 2g 2 4 -pcie _ D- 0 62- 2 73 C C Y.3+ . !°11� 29 s Lk'' MoY {/3of --) _ 2-2904 "1 473— 7`3Z r _ m - £s;oe); 11,97 4 361 r^j c 11,06) ,t ,tt = 7 3 7, 2 7 o t o _ q64 6 L. Q`2 + 23 —2 2- — 13 77 61 v. " 1 ) s 73 76 1- 41-39 t 1-7 f /2, 0 17( '`°( AC131e !f_ 31. t' _ 2G,S'63 L V ( malt S_F) = 1.7x /2fo$S = 20,544 = 17% f' V ACTS /S,9 -2) 12, N y,- r■oL S v Fay cc #/h _0 - PCT 3/S, `j -3.1 -3 20, 5ct 6 /72. Lam• g17n RrI'Nn 1 AVFNI IF • RfSTA MESA. CAI..IFC PNIA 92626.1428 • {7141 641 -8777 (76leeio,44, ate. '1.111.11. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT I BY I DATE I JOB NO. I f + OF Ca/L Z B (-) M c31' = 0- 23 gs) ,t 2 S .-- 2 -1 • �9 = 3, 3 9-‘ 1 l � 6 2 dr � � /v — u< Mom : o- 090 c,2.1 S xe3 = 1,2 4- :�s6L /%vt r` — Art : o - 398- x 25•Zq C clot. BOO' )J 0�3 i= D- 6g'7s�2738, � s2 f o• a79zx907/kfio•sx -.,: o- bs3$ /4, > +°" 00 (0 .n ): V4 '7 tic ► 4 7s L + b = O79 6 x 9o 8 '�- p_ 40 S3 4- 0- I/ , e 27` 3 o o� 3 n _ o-.2-39/022,-; — 2.23S-j- 2 .as 2 = Co L(7 LJ / (4410 S hackv = .170 ?-r I24 4 GA4 -% 12 on 12 /33sv l U v 1. ,t /3' 3sU 2. 6 , 76o � 6. S 62 G64 f 31 9- 3.2 797 / L-4 126 etto T!l t7 w4iVV t T v v 1 u 4 . v i r t M 3170 RFDHII I AVFNUF • COSTA MESA. CALIFORNIA 92626 -3428 • (714) 641 -8777 hitzet 20leestag, ate. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT I BY I DATE I JOB NO. I SHEET OF v ws/►" f A b- 4 6 LLB ( Mr k At - G 47 L h') r c-1+' z) 3 h rcvc-e I2 O 8-6 f 12 G 1 3 C an( le Cot 4-1,/ C 0 7s o -4_( . 8T" x (I (,)(it > ' rt C / t MU x 3 2 7R`') x /L a = /9 ' /12 b d.Q Ao0 � d tL ACL 3 i�; ( NO S 5 �� \ ;'• a . OS"3 P ^ O, 0036 j� , O- 7 45• CI 7 47 C_ 3r Z S bZ -74 - � r V r1�"`� v S 5 / r C / ('. � O tt r k f k u I. '7.7e 13,069 0- 0 2 CD 2 -- efIC b A ,_0 -021 P= I.33›- 0- Gott, Q0k b a : 0-0019 s 1?. 0 - ©d ►g 1 � (ACT 31 is -- - 1 U)lrr " 4 l= v f ( L G.. f z, G! ( , e f•, L4,14 ` /a CIA-f 4 0 8 ' nnnTe . wt�n n n +, rrnnnnr nn.,�nn n enp • BUILDING CODE REQUIREMENTS 318-27 7.10.5.2 — Vertical spacing of ties shall not exceed 7.12.1.1 — Shrinkage and temperature reinforce - 16 longitudinal bar diameters, 48 tie bar or wire di- ment shall be provided in accordance with either Sec - • ameters, or least dimension of the compression mem- tion 7.12.2 or 7.12.3. ber. 7.12.2 — Deformed reinforcement conforming to Sec - 7.10.5.3 — Ties shall be arranged such that every tion 3.5.3 used for shrinkage and temperature rein - comer and alternate longitudinal bar shall have lateral forcement shall be provided in accordance with the support provided by the comer of a tie with an in- following: cluded angle of not more than 135 deg and no bar shall be farther than 6 in. clear on each side along 7.12.2.1 — Area of shrinkage and temperature re- the tie from such a laterally supported bar. Where inforcement shall provide at least the following ratios longitudinal bars are located around the perimeter of of reinforcement area to gross concrete area, but not a circle, a complete circular tie may be used. less than 0.0014: (a) 7.10.5.4 — Ties shall be located vertically not more Sh where Grade 40 or 50 de than 1/2 a tie spacing above the top of footing or slab deformeed d bars are used 0.0020 ..: in any story, and shall be spaced as provided herein (b) Slabs where Grade 60 de- to not more than 1/2 a tie spacing below the lowest formed bars or welded wire horizontal reinforcement in slab or drop panel above. fabric (smooth or deformed) are used 0.0018 i , 7.10.5.5 — Where beams or brackets frame from four A directions into a column, ties may be terminated not (c) Slabs where reinforcement W. I more than 3 in. below lowest reinforcement in shal- with yield stress exceed - lowest of such beams or brackets. ing 60,000 psi measured at a yield strain 0.0018 x 60,000 of 0.35 percent is used 7.11 — Lateral reinforcement for flexural f members Y � y � � 0 7.12.2.2 — Shrinkage and temperature reinforce 7 .11.1 — Compression reinforcement in beams shall ment shall be spaced not farther apart than five ti mes be enclosed by ties or stirrups satisfying the size and the slab thickness, nor 18 in. spacing limitations in Section 7.10.5 or by welded wire . , fabric of equivalent area. Such ties or stirrups shall 7,112,3 — At all sections where required, reinforce- be provided throughout the distance where compres- ment for shrinkage and temperature stresses shall sion reinforcement is required. develop the specified yield strength f in tension in i accordance with Chapter 12. 7.11.2 — Lateral reinforcement for flexural framing I members subject to stress reversals or to torsion at 7.12.3 — Prestressing tendons conforming to Section supports shall consist of closed ties, closed stirrups, 3.5.5 used for shrinkage and temperature reinforce - or spirals extending around the flexural reinforcement. ment shall be provided in accordance with the follow- ing: a� 7.11.3 — Closed ties or stirrups may be formed in one 7.12.3.1 — Tendons shall be proportioned to provide ,:- piece by overlapping standard stirrup or tie end hooks a minimum average compressive stress of 100 psi on around a longitudinal bar, or formed in one or two gross concrete area using effective prestress, after pieces lap spliced with a Class C splice (lap of 1.7ed), losses, in accordance with Section 18.6. or anchored in accordance with Section 12.13. 7.12.3.2 — Spacing of tendons shall not exceed 6 ft. 7.12 — Shrinkage and temperature rein- forcement 7.12.3.3 — When spacing of tendons exceeds 54 in., additional bonded shrinkage and temperature rein - k 7.12.1 — Reinforcement for shrinkage and tempera- forcement conforming to Section 7.12.2 shall be pro - ' ture stresses normal to flexural reinforcement shall be vided between the tendons at slab edges extending 0 provided in structural slabs where the flexural rein- from the slab edge for a distance equal to the tendon '• � ; forcement extends in one direction only. spacing. 318 -32 ACI STANDARD i i . • CHAPTER 9 — STRENGTH AND SERVICEABILITY, REQUIREMENTS 9.0 - Notation T = cumulative effects of temperature, creep, shrinkage, and differential settlement A = gross area of section, sq in. U = required strength to resist factored loads or 4 # 11 A, = area of nonprestressed tension reinforce- related internal moments and forces ment, sq in. w. = weight of concrete, lb per cu ft A; = area of compression reinforcement, sq in. W = wind load, or related internal moments and d' = distance from extreme compression fiber to forces centroid of compression reinforcement, in. y = distance from centroidal axis of gross sec - d, = distance from extreme tension fiber to cen- tion, neglecting reinforcement, to extreme fi- troid of tension reinforcement, in. ber in tension D = dead loads, or related internal moments and a = ratio of flexural stiffness of beam section to forces flexural stiffness of a width of slab bounded 1 E = load effects of earthquake, or related inter- laterally by centerline of adjacent panel (if nal moments and forces any) on each side of beam. See Chapter 13 E, = modulus of elasticity of concrete, psi. See a = average value of a for all beams on edges Section 8.5.1 of a panel f', = specified compressive strength of concrete, J3 = ratio of clear spans in long to short direction psi of two -way slabs 14 0 = square root of specified compressive strength p, = ratio of length of continuous edges to total of concrete, psi perimeter of a slab panel f = average splitting tensile strength of light - A = multiplier for additional long -time deflection II weight aggregate concrete, psi as defined in Section 9.5.2.5 f, = modulus of rupture of concrete, psi g = time- dependent factor for sustained load. See f,, = specified yield strength of nonprestressed Section 9.5.2.5 reinforcement, psi p' = reinforcement ratio for nonprestressed . F = loads due to weight and pressures of fluids compression reinforcement, A; /bd with well- defined densities and controllable 0 = strength reduction fPrtor. See Section 9.3 giii 4 maximum heights, or related internal mo- ments and forces 9.1 - General II 1 h = overall thickness of member, in. H = loads due to weight and pressure of soil, 9.1.1 — Structures and structural members shall be water in soil, or other materials, or related designed to have design strengths at all sections at internal moments and forces least equal to the required strengths calculated for the !„ = moment of inertia of cracked section trans- factored loads and forces in such combinations as are il formed to concrete stipulated in this code. iii 1, = effective moment of inertia for computation of deflection 9.1.2 — Members also shall meet all other require- g !g = moment of inertia of gross concrete section ments of this code to insure adequate performance at about centroidal axis, neglecting reinforce- service load levels. ment £ = span length of beam or one -way slab, as defined in Section 8.7; clear projection of 9.2 - Required strength cantilever, in. i = length of clear span in long direction of two- 9.2.1 — Required strength U to resist dead load D and way construction, measured face -to -face of live load L shall be at least equal to supports in slabs without beams and face - to -face of beams or other supports in other U = 1.4D ± 1.7L (9 -1) cases L = live loads, or related internal moments and 9.2.2 — If resistance to structural effects of a specified forces wind load W are included in design, the following M, = maximum moment in member at stage de- combinations of D, L, and W shall be investigated to flection is computed determine the greatest required strength U M = cracking moment. See Section 9.5.2.3 1 Pb = nominal axial load strength at balanced strain U = 0.75(1.4D + 1.7L + 1.7 W) (9 -2) 0 conditions. See Section 10.3.2 P„ = nominal axial load strength at given eccen- where load combinations shall include both full value tricity and zero value of L to determine the more severe P„ = factored axial load at given eccentricity __ OP„ condition, and BUILDING CODE REQUIREMENTS 318-33 U = 0.90 + 1.3W (9 -3) 9.3.2.2 - Axial Toad, and axial load with flexure. (For axial load with flexure, both axial but for any combination of D, L, and W, required load and moment nominal strength shall be f 0 strength U shall not be less than Eq. (9 -1). multiplied by appropriate single value of 0 ) 9.2.3 - If resistance to specified earthquake loads or (a) Axial tension, and axial tension with forces E are included in design, load combinations of flexure 0 90 Section 9.2.2 shall apply, except that 1.1E shall be substituted for W. (b) Axial compression, and axial compres- sion with flexure: 9.2.4 - If resistance to earth pressure H is included in Members with spiral reinforcement con - design, required strength U shall be at least equal to forming to Section 10.9.3 0 75 Other reinforced members 0 70 U = 1.40 + 1.7L + 1.7H (9-4) except that for low values of axial compression 4) may except that where D or L reduce the effect of H, 0.9D be increased in accordance with the following: shall be substituted for 1.4D and zero value of L shall be used to determine the greatest required strength For members in which f,, does not exceed 60,000 psi, U. For any combination of D, L, and H, required with symmetric reinforcement, and with (h - d - d,) /h strength U shall not be less than Eq. (9-1). not less than 0.70, 4, may be increased linearly to . 0.90 as 4)P„ decreases from 0.10f',A to zero. 9.2.5 resistance to loadings due to weight and For other reinforced members, 0 may be increased pressure of fluids with well- defined densities and con- linearly to 0.90 as 0P„ decreases from 0.10fdi or trollable maximum heights F is included in design, such 01 whichever is smaller, to zero. ` ` Loading shall have a load factor of 1.4, and be added to all loading combinations that include live load. 9.3.2.3 and torsion 0 85 9.2.6 - If resistance to impact effects is taken into ac- 9.3.2.4 - Bearing on concrete 0 count in design, such effects shall be included with (See also Section 18.13) 0 70 live load L. 9.2.7 structural effects T of differential set- 9.3,3 - Development lengths specified in Chapter 12 do not require a 0- factor. itiiiiii Nor tlement, creep, shrinkage, or temperature change may be significant in design, required strength U shall be 9.4 - D esign strength for reinforcement at least equal to Designs shall not be based on a yield strength of re- . U = 0.75(1.4D + 1.4 T + 1.7L) (9-5) inforcement f,, in excess of 80,000 psi, except for prestressing tendons. . but required strength U shall not be Tess than -1, 9.5 - Control of deflections U = 1.4(D + T) (9 -6) 9.5.1 - Reinforced concrete members subject to flex- Estimations of differential settlement, creep, shrink- ure shall be designed to have adequate stiffness to age, or temperature change shall be based on a re- limit deflections or any deformations that may ad- alistic assessment of such effects occurring in ser- versely affect strength or serviceability of a structure vice. at service loads. 9.3 - Design strength 9.5.2 - One - way construction (nonprestressed) 9.5.2.1 - Minimum thickness stipulated in Table 9.5(a) 9.3.1 Design strength provided by a member, its shall apply for one -way construction not supporting or connections to other members, and its cross sections, attached to partitions or other construction likely to be in terms of flexure, axial load, shear, and torsion, shall damaged by large deflections, unless computation of m be taken as the nominal strength calculated in ac- deflection indicates a lesser thickness may be used cordance with requirements and assumptions of this without adverse effects. �� • code, multiplied by a strength reduction factor ¢►. 9.5.2.2 - Where deflections are to be computed, 9.3.2 - Strength reduction factor 4) shall be as fol- deflections that occur immediately on application of lows: load shall be computed by usual methods or formulas for elastic deflections, considering effects of cracking Q 1 9 1 __ Pew' Ire% withni 0 a vial m n On and rninfnrnamPnt nn momhc+r c,tiffnpac 3ltl -38 A1..1 J I MIVIJAhU • 10.3.5.1 - For nonprestressed members with spiral 10.6 — Distribution of flexural reinforcement conforming to Section 7.10.4 or com- reinforcement in beams and posite members conforming to Section 10.14: one -way slabs oP n(max) = 0.856[0.85f - A + f „j (10 -1) 10.6.1 - This section prescribes rules for distribution irp of flexural reinforcement to control flexural cracking in 10.3.5.2 - For nonprestressed members with tie re- beams and in one -way slabs (slabs reinforced to re- inforcement conforming to Section 7.10.5: sist flexural stresses in only one direction). 6P „ = 0.804[0.85fgA - A + f (10 -2) 10.6.2- Distribution of flexural reinforcement in two - way slabs shall be as required by Section 13.4. 10.3.5.3 - For prestressed members, design axial load strength OP„ shall not be taken greater than 0.85 10.6.3 - Flexural tension reinforcement shall be well (for members with spiral reinforcement) or 0.80 (for distributed within maximum flexural tension zones of members with tie reinforcement) of the design axial a member cross section as required by Section 10.6.4. load strength at zero eccentricity OP,. 10.6.4 - When design yield strength f for tension re- 10.3.6 - Members subject to compressive axial load inforcement exceeds 40,000 psi, cross sections of shall be designed for the maximum moment that can maximum positive and negative moment shall be so I accompany the axial load. The factored axial load P. proportioned that the quantity z given by at given eccentricity shall not exceed that given in i Section 10.3.5. The maximum factored moment M„ z= f (10-4) shall be magnified for slenderness effects in accor- dance with Section 10.10. does not exceed 175 kips per in. for interior exposure • and 145 kips per in. for exterior exposure. Calculated 10.4 — Distance between lateral stress in reinforcement at service load f (kips per sq I supports of flexural members in.) shall be computed as the moment divided by the product of steel area and internal moment arm. In lieu 10.4.1- Spacing of lateral supports for a beam shall of such computations, f, may be taken as 60 percent r not exceed 50 times the least width b of compression of specified yield strength f . • flange or face. 10.4.2 - Effects of lateral eccentricity of Toad shall be 10.6.5 - Provisions of Section 10.6.4 may not be suf- taken into account in determining spacing of lateral ficient for structures subject to very aggressive ex- supports. posure or designed to be watertight. For such struc- d tures, special investigations and precautions are 10.5 — Minimum reinforcement of required. flexural members 10.6.6 - Where flanges of T -beam construction are in 10.5.1 - At any section of a flexural member, except tension, part of the flexural tension reinforcement shall be distributed over an effective flange width as de- as provided in Sections 10.5.2 and 10.5.3, where fined in Section 8.10, or a width I positive reinforcement is required by analysis, the ra- equal to 1 /10 the r, do span, whichever is smaller. If the effective flange width p provided shall not be less than that given by exceeds 1/10 the span, some longitudinal reinforce - 200 ment shall be provided in the outer portions of the Pmin = (10 -3) flange. f, 10.6.7 - If the depth of a web exceeds 3 ft, longitu- In T -beams and joists where the web is in tension, dinal reinforcement having a total area equal to at least the ratio p shall be computed for this purpose using 10 percent of the area of the flexural tension rein - width of web. forcement shall be placed near the side faces of the web and distributed in the zone of flexural tension with 10.5.2 - Alternatively, area of reinforcement provided a spacing not more than the web width, nor 12 in. at every section, positive or negative, shall be at least Such reinforcement may be included in strength corn- , I one -third greater than that required by analysis. putations only if a strain compatibility analysis is made to determine stresses in the individual bars or wires. ti - 10.5.3 - For structural slabs of uniform thickness, minimum area and maximum spacing of reinforce- 10.7 — Deep flexural members ment in the direction of the span shall be as required for shrinkage and temperature according to Section 10.7.1 - Flexural members with overall depth to clear 7.12. span ratios greater than 2/5 for continuous spans, or BUILDING CODE REQUIREMENTS 318-45 (a) support reaction, in direction of applied shear, N introduces compression into the end regions of V, = 2 \ 1 + " l ti cb,,,d (11 -4) member, and 2000A ft 0 (b) no concentrated load occurs between face of Quantity N" /A shall be expressed in psi. support and location of critical section defined in 11.3.1.3 — For members subject to significant axial Section 11.1.2.1 or 11.1.2.2. tension, shear reinforcement shall be designed to carry total shear. 11.1.2.1 — For nonprestressed members, sections located less than a distance d from face of support 11.3.1.4 — At sections where factored torsional mo- may be designed for the same shear V, as that com- ment T" exceeds cl, (0.5V I ,Ex 2 y), puted at a distance d. 2V,b„,d 11.1.2.2 — For prestressed members, sections lo- tic= (2.5C, 2 (11 -5) cated less than a distance h/2 from face of support V1 + T" 1 may be esigned for the same shear V„ as that com- V "/ puted at a distance h /2. 11.3.2 — Shear strength V, may be computed by the 11.1.3 — For deep flexural members, brackets and more detailed calculation of Section 11.3.2.1 through corbels, walls, and slabs and footings, the special 11.3.2.3. provisions of Section 11.8 through 11.11 shall apply. 11.3.2.1 For members subject to shear and flex- . • ure only, 11.2 -- Lightweight concrete . . d V 11.2.1 — Provisions for shear strength V, and tor- ti 1 + 2500P =' J b,,,d (11 -6) sional moment strength T, apply to normal weight M„ concrete. When lightweight aggregate concrete is used, , : - 0 one of the following modifications shall apply: but not greater than 3.5Vf,b,,,d. Quantity V„d /M„ shall t not be taken greater than 1.0 in computing V by Eq. ., 11.2.1.1- When 4, specified and concrete is pro (11 -6), where M„ is factored moment occurring. si- multaneously with V, at section considered. portioned in accordance with Section 4.2, provisions for V, and T shall be modified by substituting fa /6.7 11.3.2.2 — For members subject to axial compres- for VIL, but the value of f shall not exceed sion, Eq. (11-6) may be used to compute V, with M„ . : f substituted for M„ and V„d /M„ not then limited to 1.0, where 11.2.1.2 — When 4, is not specified, all values of tK affecting V T and M,, shall be multiplied by (4h — d) 0.75 for "all - lightweight" concrete, and 0.85 for "sand- Mm = M" - N" 8 (11 -7) lightweight" concrete. Linear interpolation may be used when partial sand replacement is used. However, V, shall not be taken greater than 1 11.3 -Shear strength provided by ji concrete for nonprestressed V = 3.5 f7b, d V1 + N " (11 -8) members 500A 1, 1.3.1 — Shear strength V, shall be computed by pro- Quantity N" /A shall be expressed in psi. When M visions of Section 11.3.1.1 through 11.3.1.4, unless a as computed by Eq. (11 -7) is negative, V, shall be is more detailed calculation is made in accordance with computed by Eq. (11 -8). Section 11.3.2. 11.3.2.3 — For members subject to significant axial 11.3.1.1 — For members subject to shear and flex- tension, 0 ure only, \ (11 -3) V� = 2 I 1 + 5 0 0 " I l�b„d ( 11 -9) V� - 2 V f�bWd A 1 11.3.1.2 - For members subject to axial compres- where N„ is negative for tension. Quantity N" /A shall 1 sion, be expressed in osi . • ri 394 / Chapter 13 Members in Compression and Bending 13.6 General Disc( or 1 — L' = 0.9D -t- 1.3 W (13.4.3) j -- �- The most severe situation among Eqs. (13.4.1) through (13.4.3) will control II // v the design. re—A, A z -- - 4 Traditionally, under most building codes. members subject to stresses ;o- 11 / produced by wind or earthquake forces combined with other loads ha e 1 i been proportioned in the working stress method for unit stresses 33," /a iii greater than those specified, provided that the section thus required is not less than that required for the combination of dead and live load. In strength design, the infrequent occurrence of the maximum wind load condition is h taken into account by the smaller overload factors when wind effects are p included. This reduced safety provision for the temporary effect of wind t i r or earthquake, or both, appears in ACI- Appendix B for the working stress method, and in ACI -9.2.2 and 9.2.3 for the strength method. Additionally, the possibility of undercapacity is accommodated by the 4 I_ requirement of ACI -9.3. For spirally reinforced columns ¢ = 0.75, and for NM tied columns 4) = 0.70, the difference being related partially to the reserve NW capacity to deform before failure which is exhibited by the spirally reinforced L column. The e lower undercapacity factors 4) for compression members arise from statistical variations in observed strength and are a rough indication that the strength variability to be expected in tied columns is slightly greater .,: 1 , I than in spiral columns and that the variability expected in columns is greater Cz = f A, C, = 0.65f� (Ay - si ts ) G than in beams. The difference in the behavior of tied and spirally reinforced Fig. 13.5.1 axially loaded columns is further accounted for by the use of a different A concentrically loaded column. maximum compression capacity as discussed in Sec. 13.11. For combined compression and bending, the 4) value may be variable and increase to 0.90 (for pure flexure) as the axial compression decreases .l 13.6 General Discussion on to zero. This variation of ¢ is treated later in Sec. 13.20. Combined Bending and Axic A structural member may be subjet. in many ways. on It is o lum n s. in re: 13.5 Concentrically Loaded Short Columns moments act on ali columns. These In accordance with Eq. (13.3.1) without the term representing the contri- floor loads on both exterior and tribution of the spiral, the maximum nominal ultimate capacity P on a such as crane loads in industrial bt concentrically loaded short column (Fist. 13.5.1) is in columns due to unbalanced flo, simplifying assumptions: ! P„ = 0.85f�(A„ — A„) + f.A (13.5.1) 1. The far ends of columns that a. where .4 is the gross area bli and A„ is the total longitudinal reinforcement considered fixed in continuity at (A + .4_). This equation is also in agreement with the rectangular stress - 2. Maximum bending in a column block assumptions of Sec. 3.4 where the entire cross section is subject to a cent span of the floor under con failure compressive strain of 0.003. 1t may also be expressed as axial forces from factored loads 3. The loading condition causing P = A „[0.85f:.(1 — p „) + J■.P„] (13.5.2) axial load shall also be consider' where p„ = A5f1A„. Concrete construction is usual) When the terms including P„ are combined, Eq. (13.5.2) becomes rigid frames and arches (Fig. 13.6 P„ = A„[0.85j; + p„1 l,. — 0.85lf ;1] (13.5.3) sections in the two structures shows iiiimilimilimumniiiiii. TABLE 2. Moment Strength M /cpqbd M /f?d of Rectangular Sections with Tension Reinforcement Only* w .000 .001 .002 .003 .004 .005 .006 .007 .008 .009 0.0 0 .0010 .0020 .0030 .0040 .0050 .0060 .0070 .0080 .0090 0.01 .0099 .0109 .0119 .0129 .0139 .0149 .0159 .0168 .0178 .0188 0.02 .0197 .0207 .0217 .0226 .0236 .0246 .0256 .0266 .0275 .0285 0.03 .0295 .0304 .0314 .0324 .0333 .0343 .0352 .0362 .0372 .0381 0.04 .0391 .0400 .0410 .0420 .0429 .0438 .0448 .0457 .0467 .0476 0.05 .0485 .0495 .0504 .0513 .0523 .0532 .0541 .0551 .0560 .0569 0.06 .0579 .0588 .0597 .0607 .0616 .0625 .0634 .0643 .0653 .0662 0.07 .0671 .0680 .0689 .0699 .0708 .0717 .0726 .0735 .0744 .0753 0.08 .0762 .0771 .0780 .0789 .0798 .0807 .0816 .0825 .0834 .0843 0.09 .0852 .0861 .0870 .0879 .0888 .0897 .0906 .0915 .0923 .0932 0.10 .0941 .0950 .0959 .0967 .0976 .0985 .0994 .1002 .1011 .1020 0.11 .1029 .1037 .1046 .1055 .1063 .1072 .1081 .1089 .1098 .1106 0.12 .1115 .1124 .1133 .1141 .1149 .1158 .1166 .1175 .1183 .1192 0.13 .1200 .1209 .1217 .1226 .1234 .1243 .1251 .1259 .1268 .1276 0.14 .1284 .1293 .1301 .1309 .1318 .1326 .1334 .1342 .1351 .1359 0.15 .1367 .1375 .1384 .1392 .1400 .1408 .1416 .1425 .1433 .1441 ' 0.16 .1449 .1457 .1465 .1473 .1481 .1489 .1497 .1506 .1514 .1522 0.17• .1529 .1537 .1545. .1553 .1561 .1569 .1577 .1585 .1593 :1601 0.18 .1609 .1617 .1624 .1632 .1640 ,.1648 .1656 .1664 .1671 .1679 0.19 .1687 .1695 .1703 .1710 .1718: .1726 .1733 .1741 .1749 .1756 0.20 .1764 .1772 .1779 .1787 .1794 .1802 .1810 .1817 .1825 .1832 0.21 .1840 .1847 .1855 .1862 .1870 .1877 .1885 .1892 .1900 .1907 0.22 .1914 .1922 .1929 .1937 .1944 .1951 .1959 .1966 .1973 .1981 0.23 .1988 .1995 .2002 .2010 .2017 .2024 .2031 .2039 .2046 .2053 0.24 , !'.2060 .2067 .2075 .2082 .2089 .2096 ,2103 ..2110 .2117 .2124 0.25' .2131 .2138 .2145 .2152 .2159 .2166 .2173 .2180 .2187 .2194 0.26 .2201 .2208 .2215 .2222 .2229 .2236 .2243 .2249 .2256 .2263 0.27 .2270 .227• .2284 .2290 .2297 .2304 .2311 .2317 .2324 .2331 0.28 .2337 .2344 .2351 .2357 .2364 .2371 .2377 .2384 .2391 .2397 0.29 .2404 .2410 .2417 .2423 .2430 .2437 .2443 .2450 .2456 .2463 0.30 .2469 .2475 .2482 .2488 .2495 .2501 .2508 .2514 .2520 .2527' 0.31 .2533 .2539 .2546 .2552 .2558 .2565 .2571 .2577 .2583 .2590 . 0.32 .2596 .2602 .2608 .2614 .2621 .2627 .2633 .2639 .2645 .2651 . 0.33 .2657 .2664 .2670 .2676 .2682 .2688 .2694 .2700 .2706 .2712 0.34 .2718 .2724 .2730 .2736 .2742 .2748 .2754 .2760 .2766 .2771 0.35 .2777 .2783 .2789 .2795 .2801 .2807 .2812 .2818 .2824 .2830 ' " 0.36 .2835 .2841 .2847 .2,53 .2858 .2864 .2870 .2875 .2881 .2887 0.37 .2892 .2898 .2904 .2909 .2915 .2920 .2926 .2931 .2937 .2943 0.38 .2948 .2954 .2959 .2965 .2970 .2975 .2981 .2986 .2992 .2997 0.39 .3003 .3008 .3013 .3019 .3024 .3029 .3035 .3040 .3045 .3051 • * M /fsbd * A a /2) w (1 -0.59 w), where w = p f /q and a = A /0.85fgb. Design: Using factored moment M enter table with M /cpfbd find w and compute steel percentage p from p = wTf Investigation: Enter table with w from w = p f /f; find value of M /Qbd and solve for nominal moment strength, M 9 -7 • COEFFICIENT Cn 1 0 1 2 = 4 f i 7 9 9 10 I 10 /10 9 f rfillyAHNIF l i ilfirrAril / /1 a 4' 7 MAE 7 6 A' /Ell 41 A 6 x s / 11111111114M. s . , H '' _„„ . 1 , .,,,,,:‘,.ii- ...,./10 g ,, , „d /7/A1 . No. /O. ----%al 11111 11.' - 3 : ,,,,,.." '-' -;*: , i , t 3 1F - 7. ;`eg` -----/. Al NI . A . Ks s all r 1 1 x. 0 0 1 2 3 4 S i 7 8 9 10 . COEFFICIENT C FIGURE 5. COMPUTATION DIAGRAM FOR PROJECTING CONDUITS 1 Los Angeles County Flood Control District S-2 i Los Angeles County Fluid :untrcl Jest ►.cr r. MOMENT, THRUST, AND SHEAR COEFFICIENTS FOR ELASTIC RINGS TYPICAL PIPE LOADINGS SEU be REFERENCE :ENGINEERING NEWS RECCRD, vCLUME 87 -192i PAGE 768 SIGN CONVENTICN MOMENT COEFFICIENT • W R +M = TENSION ON INSIDE FACE THRUST COEFFICIENT • W +N = COMPRESSION SHEAR CCEFFICIENT • W +V = SHEAR POSITIVE FOR LEFT SIDE W= TOTAL LOAD IN EACH CASE R = MEAN RADIUS OF RING w F" UNIFORM LOAD ON 180• TOP ill (cnuntretd y-000rt of Bottom 8 = 60' 9 = 90' 8 = 120 i 8 = 180' M N V MN V M I N 1 V M I N I V I M I N V TOP +.1495 -.0530 0 +.1435_ -0400 0 +1368 -0268 0 _1+.1304∎ -0132; 0 ( +.1250 0 0 SIDE . - .1535 +. 5000 +.0530-1465 +5000+0400-1401 +.5000 +.0268 - 1327' +.5000; +.0132 -.1250 +5000 0 BOTTOM +2935 +0530 5000 +.1885 +0400, 0 +.15721+0263 0 +.1376 ;0132] 0 j+ 0 0 !Q! )t't UNIFORM LOAD CN 90° TOP 6' 1Wi (enuatratd Sow Oast tearl 8 = 60' 6 = 90' 8 = 120' 9 = 180' M N V I M N V M! N jV *" `N 'V M N V TOP +1817 - .0262 0 +1757 -0132 0 +.16901 0 0 +.1627 +0136 C +.1572 +.0269 0 SIDE -1683 +5000 +0262-.1613 +5000 +.0132 -1549 +.5000 0 -.1475 ±5000 70136-.1398+5000 - 0269 ,BOTTOM.+3055 +02621.5000 +2005+.0132 0 +1690 0 0 +1496 -0136 0 +.1370 -0269 0 w. 0 LOADING DUE TO WEIGHT OF RING I1 Gocrok°M S,000rt at Bettem 9 = 60' 9 = 90' 8 = 120° 1 9 = 18 MN V MN V M N V MIN 1 V M N V TOP '4796 -0796 0 +0736 -0666 0 +0669 70534 0 +.0608,- .03891 0 X0551 70266 0 SIDE - 0909 +2500 +.0796 X0839 +. 2500 0667 -0775+ 2500 + 0536 -070 +2500 +0399-0624 +2500 -0267 BOTTOM +.2389 *.0796 1 +.1339 +0666 0 +1025 +0534 0 +.08291+0389 0 j +0704 !0266 0 w , LOADING DUE TO WATER; PIPE FULL, ZERO PRESSURE HEAD ON SOFFIT B III (t&tntrat$ Some at eettam 8 = 60' 9 = 90' 9 - 120° 8 = 180' M I N j V M N V M J V M N M N V TOP +.0796 -2389 0 +0736,-2257 0 +0669 -.2124 0 +.0606 -19911 0 +05511-1859 0 SIDE -0903`0680 +.0797 - 0838 -0680 +0667 - .0775 - .0680 +0532 -0701-.0680 . 0399 - 0624 - .0680 + _BOTTOM ±2389 -.3981 1.5000 +1337 741091 0 + 74243 0 +.0829 -437 0 +0704 -451 I ` 0 _ M' N I V Sea M N V TOP - 1250 0 --- E MIrA TO - 1042 +.3125 0 510E +.1250 0 0 UNIFORM LOAD TRIANGULAR LOAD S1DE !1250 0 - , BOTTOM _ -1250 S000 0 ON SIDES S ON SIDES BOTTOM 7+458, +.6875 0 Z£691 '3'31! a�i1N A.u0 OIB� T . _ Z v O OO- ' ON iHs •ON•aa 13N eor { < 131,0 # H M l t ,t, IQ 3303` G11 a Sn03Nv11306,1W 1 , ` ,Ott 2 ,1 :MOW . " � nW 1 31 W ∎ tI l NI &Da NOIS.AlY 113h 1 3'1ill$ ca NY1d N N'21a INNaLS 1N3Wladd3o SNaOM 01 en VIN}lOd11VO `VNVINOd d0 A 4 3tvO 6Z%9z '3' 3'W " t4V9o11 •D N Ho I O NaSIAa3dnS 3H1 a30N1 a3toycnrki 9NIA3ANIIS O•V1 • DNINNVId ONV1 • ONItl33N$ N3 lIA 3 dillinna we l►9ltlll • SZ9► VINNOl'J 1/531% II1/531% VLSOD • • 311N3AV 1111403N 6l it lee.2.92, o •216.) 1 1 5LN 1 7,7gro ..„ zo I - cY/0 - IN/O/' YV 70(7 5 a'6'7naY/J •s L W .7/.7 „9 g i'# (�c Z 'ON "(us 0123' j '17/7 0- /I /OOG) , .7/9 „g -g #----) .9/2„9. 75 # imor ei v i d' 10,(A.L) 7sd x'09 = '�f (76d p fr :/ „, 4114$1fliaWF W.Wos &lief 41 0 WW AVOIAag SI ssa .A, ;9 f /ssau4 II / x9I�ws 5 V sW /0 �INI�1P sW PPSk J s/ 6 � miii - 9 :0/ tVW ssa/ s/ 0 0/ saofd /a Ms ptm / P W' so/ PLC, bZ sadd y rai,wq .y wd arts t (7�p'd P �l � 1 .e 77k/ Wak�M a ■�1O v dii8V7 ab+t'L Jh N M y A , ! r A r b __ ” 0 J o b-o ' / 7 ' ' i f ' k 7 4-1 2ld377 sat • isms ••4,01•1 soi.as' Ius 4 0 1 0 saa(d amjM z atu) .2 „S � # span ra i M saw pwr7baJ:, yawl= N 7 • 5.310N• x!'19 rF lli a ��I „6/ 0:76 „90/ ' 1 ,� MINIM � � ,, _ � ' P RJ R� 7 1 t - 'any Prill 07 M �+�� 1 11 07 r e FM 07 tall . PilikilINII 7 ir 1 a' fIU ALBERT A. WEBB ASSOCIATES LLETWEj OF iroaa zio U EL CONSULTING ENGINEERS DATE W. O. NO. 3788 MCCRAY STREET, RIVERSIDE, CALIFORNIA 92506 86 -526 TELEPHONE 1714) 686 -1070 FILE NO. February 26, 1988 3544.29 ATTENTION TO City of Fontana Mr. Bob Porter RE: P.O. Box 518 Cherry Avenue Industrial Park Detention Basin Plans & Hydrology 1 Study Fontana, CA 92335 GENTLEMEN: WE ARE SENDING YOU El Attached ❑ Under separate cover via the following items: ❑ Shop drawings ❑ Prints ❑ Plans ❑ Samples ❑ Specifications • ❑ Copy of letter ❑ Change order ❑ • TRANSMITTED: Ori >.inal mvl<ir.s and two ((21 sets of prints of the above mentioned plans • Two !''.) _eL- of Li:: above mentioned study THESE ARE TRANSMITTED as checked below: ❑ For approval ❑ Approved as submitted ❑ Resubmit copies for approval ❑ For your use ❑ Approved as noted ❑ Submit copies for distribution ❑ As requested ❑ Returned for corrections ❑ Return corrected prints U For review and comment 0 ❑ FOR BIDS DUE 19 ❑ PRINTS RETURNED AFTER LOAN TO US REMARKS We believe these plans are ready for final review and signature by the City. • COPY TO 14c. Robert Schoenborn, City of Fontana Mr. Roger Hatch, West End Venture I \) Mr. John Hogan, Hall & Foreman 0 enclosures an not as noted, kindly notify us at once. Wa]t y F anz ALBERT A. WEBB ASSOCIATES LL IETTEM° QO F `0 Ql, CONSULTING ENGINEERS DATE W. O. NO. 3788 MCCRAV STREET, RIVERSIDE, CALIFORNIA 92508 86 -526 TELEPHONE (714) 666 -1070 February 2 9, 1988 FILE NO. ATTENTION TO City of Fontana Mr. Bob Porter RE: Cherry Avenue Industrial Storm Drain P.O. Rnx 518 Fontana, CA 92335 GENTLEMEN: WE ARE SENDING YOU kI Attached ❑ Under separate cover via the following items: ❑ Shop drawings ❑ Prints ❑ Plans ❑ Samples ❑ Specifications ❑ Copy of letter ❑ Change order ❑ TRANSMITTED: Original mylars, two (2) sets of prints and hydra111 r•a 1 cii1atiws for the referenced revised storm drain THESE ARE TRANSMITTED as checked below: ❑ For approval ❑ Approved as submitted ❑ Resubmit copies for approval ❑ For your use ❑ Approved as noted ❑ Submit copies for distribution ❑ As requested ❑ Returned for corrections ❑ Return corrected prints ❑ For review and comment ❑ ❑ FOR BIDS DUE 19 ❑ PRINTS RETURNED AFTER LOAN TO US REMARKS We believe these plans are ready for final review and signature by the City. COPY TO Mr. Robert Schoenborn, City of Fontana �_ \ Mr. Roger Hatch, West End Venture Mr. John Hogan, Hall & Foreman If enclosures are not as noted, kindly notify us at once. W anz WF /ca