Loading...
HomeMy WebLinkAboutPalmetto Master Drainage Area rA 1 1 1 MASTER HYDROLOGY STUDY 1 OF THE PALMETTO MASTER DRAINAGE AREA IN THE 1 CITY OF FONTANA, CALIFORNIA 1 1 1 BSI CONSULTANTS, INC. RECEIVED PREPARED FOR: KAISER PERMANENTE MEDICAL CENTER IN CONJUNCTION WITH THE CITY OF FONTANA JUL 2 6 1991 SUBMITTED TO: CITY OF FONTANA PUBLIC WORKS DEPARTMENT PLAN CHECK PREPARED BY: WAGNER PACIF INC. 201 E. YORBA LINDA BLVD. I PLACENTIA, CA 92670 (714) 993 -4500 Q Rpf ESS /pN i 4)'-- S LE Y q ` F4. 6' \ r a :! JULY1991 N1CLNISI 1 Wagner __ , .7, ,,,,,,,-,..,„, , .....,,,,...., Pacific - \‘, I N C O R P O R A T E D .._.„ CIVIL ENGINEERS ? SURVEYORS 1 • I a 18484 HIGHWAY 18, SUITE 285 ( APPLE VALLEY, CA 92307 (619)946-1775 , FAX(619)946-1781 -- July 25, 1991 Job No. 352 -05 -90 Mr. Blane Frandsen, Project Manager Mr. Steve Black, Project Engineer Wagner BSI Consultants, Inc. 685 E. Carnegie Drive, Suite 200 Pacific San Bernardino, CA 92008 INCORPORATED CIVIL ENGINEERS SUBJECT: Palmetto Master Drainage Area S U R V E Y O R S From Randall Avenue to the I -10 Channel Dear Sirs: We are pleased to resubmit this report for Kaiser Permanente Medical Center /Robert G. Hoskins, A.I.A. and the City of Fontana. We have reviewed and substantially complied with your comments. The localized flooding in Marygold can be relieved by extending a pipe in Marygold easterly from the existing storm drain in Sierra Avenue. This reduces the flood potential in Marygold and provides some additional capacity in the existing storm drain in Valley Boulevard. The data supporting this additional capacity is shown in the appendix under "Marygold Avenue Improvements." My response to your comments on the plan and report are marked in green. We are enclosing two sets of the report for your acceptance and approval on behalf of the City of Fontana, also enclosed are your last plan check comments. 1 Thank you for your attention to this, project. If you have any questions or require additional information, please do not hesitate to call this office. Very truly yours, GNER P IFIC, INC. Leonard A. 8 alley Project Engines LAB:pkw Enclosures 1 cc: Edgar Casasola Vance Furukawa Bob Hoskins Dave Hunt Felipe Molinos Pam Steele Andy Wheeler 201 EAST YORBA LINDA BLVD. k0 1 PLACENTIA, CA 92670 -3418 714 99311500 - FAX 714 993-6837 April 8 , 1991 Job No. 352 -05 -90 (Revised April 19, 1991) -- Wagner Mr. Steve Black Pacific il BSI Consultants, Inc. E. Carnegie Drive, Suite 200 CIVIL ENGINEERS San Bernardino, CA 92408 SURVEYORS li SUBJECT: Palmetto Master Drainage Area from Randall Avenue to the I -10 Channel Dear Mr. Black: We are pleased to resubmit this report for Kaiser Permanente Medical II Center /Robert G. Hoskins, AIA, and the City of Fontana. We have reviewed and substantially complied with your comments. Calculation sheets for R.O.W. storm flows, along with street flow capacities have been added. li In order to retain the 100 year flow within the street R.O.W., some pipes have been upsized. Additional catch basins and piping have also been added in order to keep the 10 year flows within the curb line. I have - responded to your I comments in the report and on the plan in green. Your review and comments on this report are appreciated. We are also enclosing your 3rd check comment set. If you have any questions, comments; or require additional information, please t. do not hesitate to contact this office. i Thank you for your attention to this project. k II Very truly yours, t WAGNER PACIFIC, INC. 1 1 Leonard A. Beasley 1 Project Manager Enclosure ` 1 cc: Edgar Casasola, Associate Engineer Felipe Molinos, Senior Engineering Services Ron Watson, Robert Hoskins David Hunt, Kaiser Permanente Sam Sunada, Kaiser Permanente II I: . II 201 EAST YORBA LINDA BLVD. ; PLACENTIA, CA 92670 -3418 714993-4500 r FAX 714 993 6837 January 10, 1991 Job No. 352 -05 -90 Mr. Edgar Casasola II Associate Engineer Wagner City of Fontana 8353 Sierra Avenue Pacific il Fontana, CA 92335 I N C O R P O R A T E D CIVIL ENGINEERS Subject: Palmetto Master Drainage Area S U R V E Y O R S from Randall Avenue to the I -10 Channel Dear Mr. Casasola: We are pleased to resubmit this report for Kaiser Permanente Medical Center /Robert G. Hoskins, AIA, and the City of Fontana. II Wagner Pacific, Inc. has obtained copies of the San Bernardino County Flood Control District (S.B.C.F.C.D.) Comprehensive Storm Drain Plan, Volumes 1 through 6, the BSI Hydrology Report along Sierra Avenue prepared for the Inland Empire Mall dated December 1989, and the Wagner- Stanford Hydrologic and Hydraulic 1 Analysis dated March 1985. Copies of all the computer input data were obtained for each report and the reports were cross - referenced, checked, reviewed and then used to establish the basic parameters of this study. II A field review of the drainage basin was conducted to confirm boundaries and existing conditions. The finding 'of this field review are reflected on the hydrology map with one exception. That one exception is the same as is noted II in the S.B.C.F.C.D. Comprehensive Storm Drain Plan and the Wagner- Stanford Hydrologic and Hydraulic Analysis; that all water north of Randall Avenue is to be intercepted at Randall Avenue and not contribute to the drainage basin being II studied. Your review and comments on this study are appreciated. Following the body of II the report is an appendix with supporting technical data and computer generated hydrology calculations. It you have any questions or require additional information, please do not 1 hesitate to contact this office. Sincerely, 1 WAGNER PACIFIC, INC. ► II Dana S. Halladay, P.E. Vice President I , 1 DSH:jlf Enclosure 1 cc: F. Molinos, Senior Engineering Services TABLE OF CONTENTS II DESCRIPTION PAGE LETTER OF TRANSMITTAL I. OBJECTIVE OF STUDY 1 II. BACKGROUND AND RESEARCH 1 III. LOCATION AND SITE CHARACTERISTICS 1 IV. PROCEDURE OF HYDROLOGIC ANALYSIS 2 V. ANALYSIS VI. BASIS OF COST ESTIMATE 3 VII. CONCLUSION 4 PIPING IMPROVEMENTS, EXHIBIT ''A 5 MASTER PLAN IMPROVEMENTS COST ESTIMATE 6 ADDITIONAL MASTER PLAN IMPROVEMENTS COST ESTIMATE 7 PRIVATE IMPROVEMENTS COST ESTIMATE 8 BASIS OF COST ESTIMATES, TABLE 6 -1 9 LIMITS OF STUDY 10 TECHNICAL DATA: LAND USE MAP SOIL GROUP MAP ISOHYETALS RAINFALL INTENSITY FORMS INLET LOCATION CALC'S STREET CAPACITIES TABULATED HYDROLOGIC DATA (10, 25 & 100 YEAR) APPENDIX: COMPUTER OUTPUT DATA MARYGOLD AVENUE IMPROVEMENTS OBJECTIVE OF STUDY: The purpose of this study is to evaluate the existing hydrologic conditions which are contributory to the Palmetto Drainage Basin as well as the Kaiser Permanente Medical Center. To present an efficient system of drainage facilities, that are to be part of a City Master Plan of Drainage conforming to local hydrologic and hydraulic design criteria and accommodating the existing and planned future development of the area. This report defines the drainage problems that exist surrounding the Palmetto Drainage Basin and Kaiser Permanente Medical Center, and determines solutions to those problems, as well as outline a comprehensive master plan of drainage for the City of Fontana to follow when constructing storm drain facilities in the area of the project study. II. BACKGROUND AND RESEARCH: 11 A hydrology report, prepared by James M. Montgomery (JMM) in 1988 for the San Bernardino County Flood Control District, was used for reference in this study. This report titled "Comprehensive Storm Drain Plan; Project 3 -3; Rialto Channel Drainage Area" represents a large complex watershed of approximately 26 square miles that is divided into 10 major sub - basins, denoted as lines "A" through "J ". Wagner Pacific's study involves a 1 portion of line "H ", the Palmetto Drain, hereinafter referred to as, Feeder Line "H -1 ". The computer model indicated by feeder line "H -1" is on a macroscopic scale, and the results are used for sizing the "H -1" line. The following study analyzes all of the drainage problems that occur within the "H -1" tributary area which includes Kaiser Permanente Medical Center's contributing portion. III. LOCATION & SITE CHARACTERISTICS: The "Palmetto Master Drainage Area" is located in the City of Fontana, County of San Bernardino, State of California. It is bounded on the north by Randall Avenue, on the south by Valley Boulevard, the west partially by Sierra Avenue, and on the east, mid -way between Palmetto Avenue and Tamarind Avenue. The area drains in a southerly direction with 1% - 2% slopes and confluences at the I -10 Channel located adjacent to and just northerly of the I -10 San Bernardino Freeway. The drainage area is nearly fully developed with residential and commercial properties, and includes approximately 301 acres. 1 IV. PROCEDURE OF HYDROLOGIC ANALYSIS: II Design discharges were modeled by use of the AES computer program "RATSB" (Rational Method, San Bernardino County) conforming to the procedures outlined in the "San Bernardino County Hydrology Manual" as expressed by II the equation: Q = CiA Where: II Q = Peak discharge in cubic feet per second (cfs) C = A runoff coefficient representing the ratio of runoff depth to rainfall depth (dimensionless) II i = The time - average rainfall intensity for a storm duration equal to the time of concentration (inches /.hour) __ A = Drainage Area (Acres) II The time of concentration along with the intensity- duration curves using a log -log slope of 0.6 are used to establish the rainfall intensity. II Tables in the hydrology manual were the basis of estimating runoff coefficients from land use and soil type information. The Rational Method was used for this study as recommended in the County's Hydrology Manual for areas less than one square mile. 1 V. ANALYSIS: This report includes analysis for three different storm frequencies, a 10, 25 and 100 year storm. Following is a brief summary for each storm event; II A) 10 Year Storm The 10 year storm analysis is used to determine the flowrate necessary to size the storm drain system shown on the hydrology map. II The hydrology program gives a computer specified pipe size. The computer pipe size is determined for non - pressure flow at approximately 75% capacity. It should be noted that the pipe sizes 1 determined from the analysis are preliminary. A more accurate sizing will be determined when a hydraulic study of the storm drain profile is completed. This study gives an accurate account of the amount 1 of storm runoff that can be expected to reach the various concentration points. B) 25 Year Storm 1 The 25 year storm analysis combines storm drain and street capacity flows. The difference between the 10 year and the 25 year peak 1 discharge is carried in the street. When flows exceed the street capacity, the storm drain in increased accordingly. The J.M.M. report indicated that a 25 year storm be used for all major II east -west lateral drains due to the flat slopes along these streets. The Palmetto Basin area requires 25 year storm drain laterals along San Bernardino Avenue and pipe sizing has been adjusted to accommodate these flows. II 2 C) 100 Year Storm The 100 year storm analysis is appropriate for regional flood control. The J.M.M. study indicated the only facilities in this area required to handle the 100 - year flows, is the -ex isting I -10 Channel. All excess flow above the 10 year storm must be conveyed within the street right -of -ways. The 100 year flow is also used for sump condition analysis. The results of the model runs for the 10, 25 and 100 year storms are tabulated in the attached Rational Study Tables. The computer output data for the above storms are included in the appendix. Pipe and inlet locations were determined by calculating the point where the street section is inadequate to convey the 10 year storm flow. A sump condition exists at San Bernardino Avenue and Kempster Avenue. The flows were collected and conveyed east to Palmetto Avenue. To correctly size this pipe elevations were input to direct grade to the east, although the street drains west to the above mentioned sump. Field information, basin delineation and other pertinent information required to compile this report was obtained by field observations, review of as -built plans, U.S.G.S. "Quad" sheets and input from the City of Fontana. VI. BASIS OF COST ESTIMATE Unit pricing for construction costs are based on the Engineering News Record (ENR), January 1986. Obtained from JMM report Table 6 -1, a 4.0% per year increase was used to obtain the current unit cost. Costs include contingencies of 15% for engineering and 5% for administrative costs. A copy of the ENR, January, 1986 is attached, along with Wagner Pacific, Inc. cost estimates. The costs were broken into three (3) separate systems: 1. Master Plan Improvements: the required storm system for the "Palmetto Drainage Area" conveying the 10 year storm. 2. Additional Master Plan Improvements: pick up flows in Valley Boulevard and connect private improvements to the master plan improvements. 3. Private Improvements: to collect flows from the "Kaiser Permanents Medical Center" and adjacent offsite flows, and convey them to a public storm drain system. _ The construction cost estimates for these improvements are attached. 11 3 1 VII. CONCLUSION This study of the Palmetto Drainage Area was prepared to determine the hydrologic conditions of the basin and to conceive a preliminary scheme for the design and construction of a storm drain system which will become part of the City of Fontana's Master Planned Storm Drainage Program. The results of the study indicate that a storm drain pipe system reaching from north of San Bernardino Avenue at Acacia Street, along San Bernardino Avenue, south on Palmetto Avenue, east on Valley Boulevard and then south to join the existing flood control channel north of the I -10 San Bernardino Freeway is feasible, and that such a system is capable of conveying a 10- year storm frequency flow rate which protecting local streets from flooding under 25 -year storm frequency conditions. The total length of pipe proposed for the system include 15,430 feet of public drains and 1,130 feet of private drains located on the Kaiser Medical Center site. The size of the public storm drains range from 18" at the upstream end of the system to 78" where the system discharges into the I -10 Channel. The private system consists of 18" and 30" pipes. The configurations of these systems are shown on Page 5 of this report and the hydrology map included at the end of this report. For purposes of cost estimating for this study, the storm drain improvements are separated into three categories, 1) Main Line Master Plan Improvements, 2) Additional Master Plan Improvements and, 3) Private Improvements. The total estimated costs are as follows: Master Plan Improvements $ 3,601,776.00 Additional Master Plan Improvements 165,504.00 TOTAL MASTER PLAN COSTS $ 3,767,280.00 Kaiser Permanents Private Improvements 146,352.00 TOTAL IMPROVEMENT COSTS $ 3,913,632.00 Itemized summaries of the individual cost estimates are attached. 1 1 1 1 4 1 1 . . I J . . . v .._ T) 11 ., ... I . 1 • . • .. li 0 0,24" . . D 42.1.11! C _ 1 -1AWTI -TORN E _ Q X.1 OLL 30 iqj Re Pi- i W /." 2 24 1 3 --C3 E °" 2 Qs 4.1 21 2," •. 1 3Co I n 33 4. • Q 2 71, 1 33 4S 48 ; 60 ! G= ai rte" ,�� ._ ---71 . SA N 7ERNAROINO Ave. a w 62 to Q 0. T 0 ---1 • 1 2 w � 1 W SE E MARY Got. 0 Y I 2 1 ,__ L � Ave. /.ypiovema Airs 1 4 �t M�.r RYC�OL A - 4D/x) o A R A 2 se' 5/.," X09' a • !t o 4. Q • 3 Co" P • c ` eC • 1 IMP2ove. = 4 I g O \ ,./1 I , 7 Z " 1 � . li KAISER A . = III PER MA W EMTE rr EXIST6 1 I,I d MEDICAL • % S. aRAll! . �t-30 B 1 I� 3 11 4J � N • G EUTER • - 8 j I g. 1 ALLEY bOUL. EY/ RD l I y p,ODTTIONAL I MPRONEMENT'5 4 1 .. M u s. ' 1 . a ,�[.. f O G UANN El_ A 1 - e. ...1 15 12.NA2.DINO FRWY J 4 111 Wagner Pacific PIPING IMPROVEMENTS 1 _ “ "CG•.N••11Y CITY OF FONT ANA _____I CIVII ENGINEfNf PROPOSED MASTER � p S U R V I V O R S PLAN IMPROVEMENTS - I 201BVCX28ALIAlABIVD - — EXHIBIT ' A" PI ACENIIA, CA 92670 -3418 714 993 4500 1 1 _ CITY OF FONTANA PALMETTO DRAINAGE AREA STORM DRAIN SYSTEM MASTER PLAN IMPROVEMENTS II 1 DESCRIPTION QUANTITY UNIT UNIT COST E %TENSION 18" R.C.P. 1060 L.F. $ 80.00 $ 84,800.00 1 24" R.C.P. 2230 L.F. 106.00 236,380.00 27" R.C.P. 1550 L.F. 111.00 172,050.00 II 30" R.C.P. 1200 L.F. 117.00 140,400.00 33" R.C.P. 1200 L.F. '125.00 150,000.00 II 36" R.C.P. 850 L.F. 130.00 110,500.00 39" R.C.P. 400 L.F. 138.00 55,200.00 1 48" R.C.P. 680 L.F. 155.00 105,400.00 51" R.C.P. 500 L.F. 163.00 81,500.00 60" R.C.P. 670 L.F. 182.00 121,940.00 1 66" R.C.P. 1190 L.F. 205.00 243,950.00 69" R.C.P. 400 L.F. 215.00 86,000.00 II 72" R.C.P. 1300 L.F. 227.00 295,100.00 78" R.C.P. 1785 L.F. 250.00 446,250.00 II Manholes 24 EA. 2,000.00 48,000.00 Inlets 52 EA. 2,500.00 130,000.00 I Paving Removal & 164,670 S.F. 3.00 494,010.00 Replacement Subtotal $3,001,480.00 II 20% Cont. 600,296.00 II Total $3,601,776.00 1 1 1 6 _ II 1 m V " CITY OF FONT PALMETTO D ' 4;1 AREA STORM D ex TEM ADDITIONAL MAS M a .i 1' ' OVEMENTS (Connecti.. Drain II on Valley Boule =rd We of Palmetto Avenue to Rai > =r $. -Site Drain) II DESCRIPTION QUANTITY UNIT UNIT COST EXTENSION II 18" R.C.P. 80 L.F. $ 80.00 $ 6,400.00 II 39" R.C.P. 510 L.F. 138.00 70,380.00 45" R.C.P. 175 L.F. 152.00 26,600.00 Manholes 1 EA. 2,000.00 2,000.00 II Inlets 2 EA. 2,500.00 5,000.00 Paving Removal & 9,180 S.F. 3.00 27,540.00 I Replacement Subtotal $ 137,920.00 II 20% Cont. 27,584.00 II Total $ 165,504.00 II II II 1 1 II 7 1 II CITY OF FONTANA PALMET'T'O DRAINAGE AREA STORM DRAIN SYSTEM KAISER PERMANENTE MEDICAL CENTER PRIVATE IMPROVEMENTS II 1 DESCRIPTION QUANTITY UNIT UNIT COST EXTENSION II 18" R.C.P. 650 L.F. $ 80.00 $ 52,000.00 30" R.C.P. 480 L.F. 117.00 56,160.00 II Manholes 1 EA. 2,000.00 2,000.00 Inlets 4 EA. 2,500.00 10,000.00 1 Paving Removal & 600 S.F. 3.00 1,800.00 II Replacement Subtotal $ 121,960.00 20% Cont. 24,392.00 Total $ 146,352.00 II II II 1 1 II 1 8 __ II l' 1 Basis of Cost Estimates TABLE 6 -1 1 REINFORCED CONCRETE PIPE COST (DOLLARS PER LINEAR FOOT - INSTALLED)" Depth To Subgrade - Feet Pipe Pipe Size Size In. 6 7 8 9 10 11 12 14 In. 1 24 88 91 92 94 97 99 100 104 24 27 92 94 97 99 10 102 105 108 27 1 30 97 99 102 104 107 108 110 115 30 33 104 105 108 110 112 115 116 121 33 36 108 110 112 115 116 119 121 126 36 I 39 115 118 119 123 , _, 123 127 129 134 39 42 123 123 126 129 131 134 135 140 42 45 126 129 132 135 137 140 143 147 45 I 48 129 135 137 140 143 145 148 153 48 51 134 137 140 145 147 159 153 161 51 1 54 142 145 150 151 156 158 169 54 57 148 151 156 159 162 167 177 57 60 151 159 162 167 170 175 185 60 I 63 167 172 175 182 185 194 63 66 175 180 185 191 194 204 66 69 183 191 194 201 204 213 69 72 199 206 210 215 225 72 75 217 221 226 234 75 78 229 234 239 248 78 81 245 250 2.53 263 81 84 263 268 271 277 81 I 87 , . . , 275 279 282 290 87 90 288 293 303 90 II 93 298 303 312 93 96 306 312 323 96 1 " Does not include permanent surfacing or resurfacing REF: Engineering News Record, January 1986 \P I from James M. Montgomery Report, 1988, 0 . Table 6 -1, with a 4.0% per year increase 9 Wagner 7 MIN il irw, Pacific 00 .. .0.- WI . ‘ r r ay.. {:r A}j'" •tabu 7. -::1------": AVE � • .` � ' !: ' . • . • : • : ... `FONZ A M•• � �� i , . i- a YMCA : - • 22• _J j ^e "" � i V . r tt ... l 27/r . � . ... . • 1 Fontana lh. .... •` Wel • E •' / _Vie_ ,.. I 1 — ete ass ::3; U[J .. • _ . • • • : _ P • a J •• • � • _ _____; ' , 1M I 1 ®�....; L i I. I • , • ■ PINE . I AVE 1 • � PI __ AVE • • • • 1 ti r2oo — ■�� v . ." 1 i • 1 8 I� • • lid 0. : AN !ALL 1• 1 ' ill= ..'. 13 , . 1 .10: .1W __.. : . s • :.. ,. :..•• ' • •�L.` ill � • • i,, JI ,• 1 � i • , '..: ; ...... r, • :-T �8 ii 11` Al" I . ; - ., .•a nr • ,,, t 1 ' 4 1 lora 1 1 1 Trailer • -- .- • . _ • . q: L Q �_ - ,. ,.,1,,,,_. :g at r ' ' - '6 " Uhl •• - -• !• • • • .. • 1 . -' 1:9 :1:. .. r..: ? ys �i �• - ® uD T 8• • . _Jl�a i. 1 i S I I a '• • • • rll5 • Trader C • j �•''i !� l : • • ff tss��... Park I� r i`e� a . ' 1. 1 • • ' • . • . , • W ell ! - . 1 0 1 1 II 1! 1 IF ■ • .•;: I. - _ II ♦ � , . ( < LAN ________ ii ---1 - -c • NI 0- • ... .. e � I • •A 1100 I dG• •�I •...... .. I _ - • • •`h` � . .... • • • • D. I 1 I .... �•... :: • 1089 r °9< • LIMITS 0 F , .1�, T railer _ II: Park J - - - -- - - - - - -- : r - - - - -- : W - - - STUD Y I0 i .y. P s „,, y 7L , • . ,_ .• i l. _- - -/ -_.: rl i , (r.• C 35 1 * ' � ' - r -.� 1 -_______,-,..._:_,.....: fig. _. ii 1 111. ` 61I lit I �1�1ll III All . l,a � .. -. _A • <<. I H e ! , ,III r= -_ ' W 1 . , - ..�_ 111 11111 I �� 1�11�I' • IIIIIIII �! a -r = --; �, I , it i il11 J ] iV IIIP 111111 f� iii�i l i .. I °1 ( . 111 : 1f ' 1 i { i liill D 1 i x-'71! • : I : c ..., 1'' 111 � rillll �•• r y I Pr ., L I , �, L i ; ..1. .— r • '! . ft 11 I .E..n . i r �' flli i ' i II . , 1 �I`iIiii w' _ h �i �. a'' ' 4 '':.1 u ' , 1111 I mti If �l'llllllo gragn ' I ' i'l�me 0 . 1 ii ' in this 1 ifi11III� 11 , i NI li I !. r ».:i..._1 , - . -,::'� o ' �N +f �3' ,i" ffli' F.t+t e •''° • r..i�211152N � IESSILB ill 1 Piti ummumramffinitoriiiiiimil i ;.. ,R3 «!>Ris? A.VV ioa pfix 0." '1 l . 'pa_ .i " i nilo1111•� miii - '_ - ' 1 1 1I 4 1 iiiihirli r �m imp 1 1 .... +� I ,I i . 4 C Illlllllllii:.lim 111 � I I11111I II ��I I 1111E11110i i i (` unl �--� --11111 111 I' , ...pp s ..._. „ 'Ill�i�r �II�I�III� 1 I Il it -- l li Fit. . I 1181 OM IIII !11 111II.r i1 " "iii l I1 J. • , I$ i 1 I ' ! I i ' 111111 ! I ( �� II' 1 6 , .` C � � ' „�. �r I � �� I�il ��l 4 ' i ���1 � : j I = r � j .,t,� � ` I I 1������� � �ttl I� � 1� v' i '1 1 I � i ll il! I �IIII l l i •' 91. i I I1r �Id.� I . . I , .-� 1 If ..:11.: 117tAii;4117110111111P.I11,111i1clils, 1. 7 r E I i , , I III P�Ihlhi „rr _ 11 ( i� I � �' f� I i f 1 111 1 I � � . �', i I i II� ;'r 111111 i 1 . � : I !i � , lil I�• a >4,.4 11111111 I II � .II.t.l� r I !!II . I Iliiiliili. I 1 tlll:tt �I �il �. � '!ii t' If' I .C!~,r:. r7r ill�'I�i �' , I 1 � {' 1�� .rr . I I I I 1 ; i!!.._....I I I I II ` .ti .111 i.i., r /liit A .i !l - 11 I � I 1 -N l I� (�� 11111111 1 III �III�III I �i'. '� .'. I � ; ( F . ii i 1111 "' l ll luulj I 1 i 1 !� 111 ,iii 1 li lI 11t I �iii��I�� � I I �1 Ili) 1111! Ilil '1111 !� Il;ii E ` 1 '10, .: i 11 i I 1 ,,VIII[ 11,:,iiiii ! I 9� f, i . I ,III • �II;.. , , i ! I 4 11 1 I ! :�� ihY 1 111 --. _. h I EI _ II � �; �� ; •: f i1 � l 0 1 ' II!! �I ,;:v...,., II '�!1 111 Il III ij 1 lill IIIII l l ! I 1 ! .. 1 . :_. ' j ill �i1 11 1 11 WI ii D.11 � .l i�. �� � I II J @li ,� � I w ► �,,, , ,I� I I IuIIIIi , I i I , r 1 l umi s` !! I � !b.1 1 ! _ �'i I (d11 1 1 1!..,,r. (��i�� I t �r. /II I 1 �. 1! i i : e �. : e= f I �� U :i I I; h 1 ; I I . _. : i, }. il i � �, , 1111111 'i =1 , I F es• , lam I I !I 11 (I I �'' 's23ta ,. 1 , " t. - e • _ - ,u I ' Iy- � 1 1111 (kI mm _ . + }:: .# ;:64 I -- ' l ^ (.N � l!•1 J 1 111 111 Sit 1111! II I S r C > ° : s Ns^: �; :::== ...r. �..,.. c 1 41: ,. . , . ,r - r..'1 41 !?I 1 i :1M � p 1 1 j .. �`ti • c .r s ti a - . t 1 •'. . �, --i:3+ �' wild I�Iir... f ill WIW ` I t. ' j !. ....:4 !-c • ...t, • 11 - ' . !!!!,,,,i,..iiiiipilivilliil o. ii.•I 1. 1 r. i ' i I 1 ,,,,„....,,„:„.7., s.b,Ai COMMERCIAL . (1.".4. INDUSTRIAL LIGHT INDUSTRIAL 1 1 ''':•'• ' 1 MOBIL HOMES 1- PARK 1 [011011n1111 LOW DENSITY RESIDENTIAL 1 1 MEDIUM DENSITY I a; RESIDENTIAL h 1'�'N' -' HIGH DENSITY RESIDENTIAL 1 1:: 3 SCHOOL OR PUBLIC 1 FUTURE LAND USE MAP ... .. . . . 0 a_ • . ,„„ ., . , , ' ' L I:' fi ,- 1 rz.. . 4. ..4 u • ,_, - • . .,«;• /Iv 14, . . L • , ..... 1.■:, 1 ' ' 17.. A. , 2 '1 i- •...4_. 1 J '''' I 1-'''' ii , ' .'::!. : ).' '7' • , \‘).-;-• 0 ‘17 . - ..' •-......, , :i... .s.'„ '...11.4 .Y ,IEI . : j . ,,; . ,, : • - •.,, . :h / 1 Y ' ' ',11 h i 4 I ii li., ''..1 r , . $. \ : 'l l ''4' r .,' .,' r ' 4) , i ` 1 1 • ' . '..., :- i 7 2 •"....:. • , ' -;.'.i. &. ..,,, , .-- ..,.., ..-- ' ., ',,' ' 4.J _ . - '''''',' i '... • ,,, ... ii, -,-2q. .4,. 1- , 1 ----Lt . i -1 . • '''.. ,',.- 7, - ,4_ - _ - ,' •:4. ;. • ..,•;• - 1) , ,, - * -- 6 l'h' r __••' .- ''', 'I\ , ' CK •):'-" ' ' ' - i: 'I, ! 1 . • ' .."="L--.- - ' ' . , - . .. • ' . ' • ,... .. , . ,/ 4: [_.. I ,. .,;•1:-: ; i ' • ',,, .4' - ..*- ..t :;; : 'Ju .1; .. ,, ,t • _11 . u CL 41 n . „, .. iii- 1 .,,... - g . ..'----. :,,c; .. 11,1d : ',4 -Ir. I - 1 :'..1,, ,, , i , • W 0 i,.. e ' , -... ,.,1 ! !' -"-- '' . '•• , k1' .••• • „-.,-, I ••••:1'''.'' - *, . • i•-•1 - ' , • 1 e _ '''' ' ' ' t '-' . n .4 •,• •• . • 1: . ... ' ,.' /..■ • Q CC u. , , .'f'• 1 - 4.. . : - /..,.. J• ; ,' ,, ..! I t -.. . ... ,. „ . , / , i ,,,,, .; ..,. J., - 1 , i•••• (-II-, _ ••,;,'.;,1••: -.31• 1 -1 • ".1- I :, • Ct 0:1 • / '''' . ./ ./'' • , • ..7 , .= . . " ,., ' . / \ ' -- 4 ',. ..'r,ri I' .. . 3, .', r 1 4 - . , ,.( \ - c • $ • • • ' • ', I • •64•..,- .1 • s 1. ,, - A - •. t . • ', ,IF:'', IT • : `. 0 I ',A, 1„ I ••• 4 A , e It ' • '' ,1 ...';'-'•.* --- ''',',;•.,,,•••••• r - 7 1" ,. . ...-1- .4 • f ;,' 1 ,. \ ■ I • . , . • , • . .• tt ., • ' A. -" , • • 0 I / - k. 1 ) .1 ' , ! , 14 i ', •,1 • ,•-• if 1,,,r._ I,„ ,--•:_„, ....,,-,.. -,•-",-,--:••• ' - .. • ,`-- -;,-- - ....- ..ci■ • , ,' A , 1. ' 4 .-r ';. -. '• • . .. - .P 2 ', • •f - '7` .d IT ;., . ,....4; -. i _ de ..• ' "•* ..• , t 4 ....I A .... r. c . 1••••• .,',. A . ' . .' r' •, * I 1:'',.;.'r: "- ..11,,, 1 r * I I, "-'• , *. , . r t r, ' li 1' - • - : , ■-•- 1 * . • .. (.,..,‘„, ,....... 1 , , ..., co .,.. , ,..„, ...-, ,,,,,,.... , ','''.1.',.;" 7 ,0 .•. . . 1 . - '" : -, ,.. :, ' ' ' - • , I 1 r:' ' I V •-•.' ' '- ■ rr ' '; ....: ' :';','' -- Ii ‘ . - : '4" 1■ '.... ' ; p i )• • .' '! !, 4 r • ' • •,',. `'-'< / , . ' • I- • -' .• *- ', k 1 . .`i; 's /..... . ,1 J p. • • . , 1r ! " .1 - A f E 1 I dit-{, ! ._.j4:1 :...,: . .._ 't i ' . — , . .. , i .. ,' • • 1 ---1 . ;, . - 4,---,...—.,.., _ .„..: i.,-IN •,., L.,: LILIL,j. PR , : ' 4 A . : . , I •,'. • ! r ,:„_,,,, . , ,,, . ,. (...) — X , t.„.. 1--4, ,.. ,,,, . , ,- . ..... , ..p ,, , . - .. ....,-. .--,, rtr-; -,-A ...•r."7- , -? , • . I • . 1 1 4 : F . : ' • - : '' i ;. ,' !. . • - , ' .• -.-i;- 1 ••1' t ' '' • • . . .. IF -7 / 0 • •• • • • 0 D !., ,, A , io,.,,..,.-- ,? ...., .. / .-.... ' . , I., •-•,„ 1 .‘• ,.- ''. ‘. ' i , ...., ,; ,•• —1 0 t...1 c ....- ..1t!.i. • . .• . •'•' . " ' " .' . 1 I ' '‘. • ... ' ,qt •••• ••• ' i % •• . •‘•:': i'‘• ' 1 V . V .'. ' • ''' 6 • ' 0 '••:•,, •• ' 017'4 ''' ' ' 4 4, , , il 4 , .::,, il ,.. 1 :' .:.. • •, ....,-,:,:, • •', i ..:. :,,. .•.•, ,‘ i ... - .1. - • --‘,•-., - • • --- e' .. :iL , ) / N._ '''k'111.7`i..:" )i cr . • . A .. , ..,. . ,.'t, ., • ., y ; - ,` • ./ .. , t , I f • ,1" - - i- - - IX t...;- ...:;, • 11.1:-1..-,.....k. is. ■• - 2 6•• • s." -• " \ \ I :•,:-, ,-), •• . ;I'' i it!`t..i. 7:1 I -;....- '' , ,,..:1. -,,..;2..., z ...,,:' ,... \\ ' 1,.... ,,,„,..' ,,, 1 , • ,., . ,.. . , 5 .< e- f : - V " 4 el .. >- „ •:•'•. ::: ; ",):••• , ( •', , • • ,- ,- "•,' •;1, V . 1, 8 k .- , • • ar ..... • ... ,1 .., ■ t, 4 r. .... '' - .4 '•.- •-.. `, -- - .44 0 r'r,r '. • • r .0 . -‘,.. s - 111) N: ' c 4 , , .... h ,....s: 1. 1,.., , H .c• . i , " . ilk ". ' I. : t ' 1 --- • ;I 1 '; • !' iv ' ' 1 ' I ,`'' ""'.' f :.-- . i : . t '' '' ' ‘' 4''I itl.7''';: e ,: ''''' '''''' " t ..-' I • .- • ' ; i ..,, ' :..e . / •1:.• .,.irs, ...;,', .. " 1 -q ‘' - ,': - • , i-v.. N'Y.,i'•'..."-' 1 '11 - • . ' ' ■ - ' ....NIL .: ‘• . 1 • /I • . - ' ' (r) •• Hil 14 . , . '••ti 0 , , ,'•.• -;'• :11' , -2 :1 , •t11, ;, 1, • , i ..."'''' , A . ■ '... - ri I.: t- ; - I -• ,-. ',.' k -- .:4 ..... r i \.., -, -7•1•3.,•=7-- , / ••• 1 5 I I't a. ` ' .• ' • ' a ' ^ , -•'' ..,"-: - ': , 11'..1, 't';', \ t)i'''t• ' ' ' • - *.: " . 4 ' - f •-\ • • 4 ••''''''' .. ir+' - , ., ", pf. .... . r I , ,',"--t;-144tti.-'7 -. - - ' ,' 1 ', 1 , „ . , . , . ,, , , 41 1 I ! • ,,,,,‘ . . , • ., c .-- . ...' 1, k 1 - et i.,- 4 .i t, 0 • '•' : ,74, .,,„. „. ,,,A,„'._;,:,.!.!!.:;;.._,,,•,.,::„.,,.,,,,,',.i.. 4 , • { . : ' :. : OM ',, • C4, ' , • • . • '',' . ... • . • ''. .''. V ' • 01 .. t iet.,it, 44 ;•,, ., i. ,,,, '`':, -),'• L •t• - =.,•;---- - ...; • 0 i• ' :' I A • ...:: • . -.,:i - .. !" ,,i•-,iit " •. • ' ;12.- ..! . -' -;_. ■... ,.... , . ,... •k....,.. i i ; , •. „ — •••-••,, :4, , •,.. y • ,. ' --, .... , I - ,... A I . ,..., .-' ;', , ■ iVP.TSI 7 : "v. : : : 'lc 4 ......• - • '..2.!: •• ....., t' ' .." - „ -- - - - - ,77 , 7 - 17.4.7.7:::, - • . -i, -.. ' ,' ' ' g ' , • - ,, ,-,-,....u.:* \'-''''.,"..,,, •-..,-',....9,.. • . :.., ' ' • f i 1 , ....T.:-. i H ..- ., ..... ,., , • .4 \ ■A ,Ne'''.;' d! ' .• ••''''''.••a•-• - .')•-'• * •.: -;,`• '! . , ,, . . , „- ,,. :,.: 4 ''). 7 ' l l, n s■ .. .,' ;`,$.'El - ,l I .*. /,‘,"7. ' * ' , 1' _...,,'' . .....',4,EA,,,• A' '-'7. - ' - ', ^; • - \ • l ' l .1l*-' . 1 ; „,.• b.. ,-..,., .•,.,,,,,, ,.,, ,...,..._,,,,,,, ,,,,,.....,,,„„, , • I Ir .... i i • ., 0 • r a-, , k: ... - I ;„ , : , : ' I , .. , , ''' I, •. ••' ' , • , • >. . . - ' ' r : ' '''-' ' ; I' r ' / , '' r i ' '‘ . - ''l - ..a.' ' ' , , ‘,„., L ,1 ., .. . : ' to • i ' l ''. '''` ' . '-", '''' ) i .' 41 A' ( t . i r 8 ' ,41 .5- IV t ' . t . .. , .f 44 • 1 ' • , % ' . L . 4 ' ., . 1 • ' ; \ 1 x : i ) '..,,., , , • , - , . , , .. • ..... . 1 , 7 , ...■ .., . ■ . . , 1 \ ', li •• 1 : • • , ,,...., ): 4 A ' , ':',. Ill ual' ! '' • 4: .' i ' 1-11 : '•.■ ' q '', 1 4T 4 1 !' / - , s7f - {ikrA:0! ; ? N‘ -.',..• = '? ....; • ,:, .• - , y, , ,4 , ,..,, ,.....: -, 1,•,,,t , :, ' '. •,,• • I I. • 1 T, ill • ii; CI ' ' g ie : :. ' ) '. . . ■, - - ,v, i rl •• ), .)-..)",`• - :. . -'),-; • .. ..)...i'l ...* P' '. ) • • .1. a • ,1 1 0)10+; i ''• . - \ 14 ' ' - r m. 11 St , , ,-• ,' ';', i .,-e,„ - .,- tc; s f l' . - "..1. ■.,..-,, ;-f r . ' 'I' ‘. , f '' \ . 'I:, .. - ‘ i - - il. 1 .- A ■-• - - - - ---- . ''‘''''''" -''''-'- " I. it • - i i , III .. - • ,, .4 , , 4 • .,,/ ' .4 '? ; - .1 L4t..e •, . 1 `._:::,•$' , ",;•-•1.)-"Ple--/ - • • '''' ' ••,• ."-;",' ' "r :', '". 4 ' ' - ''''''' ' - ') )'• i - ' \ - , r 1 ` §.. . 0 , . ,, • . i .i. . . ' I' 1 r . 7 .• f i r :' 1 ,: I"...,, ''•-',..) .,T , • ' 'II I, , • ! ' • I I • - . . , . , , *I I • 4....; 1 ,141. 1 4:, - ; At' . 4!, , :',e,k 'V `• !! .,, . ! .4 1: 4 . c ..4 ,1 :.,1-,-_ . . , ...... k ,', . t,- \ .44, ■ ',, 3 / 4 . '; !, ! „ ,.' ! '! .,%: 'IN, •!, !,. ..,. ! i ;I ,A. ! !,■p., .... • • AL: , .. . v it M V ' f • ' 7 - 1 4 ' It's. ' 4 .1 1 ;I. , ? 1 ,: - I I 4 '• . • -.V.,s, - ..-A0,•,4,4/?,.. . ‘I • s . ' I , ' K i I 1 , • i l i ' l . 2k ,, l' • I '' Jt.' 1- 1 1. I 4, r l' ii I :, CI „ yr . „ „ .1 , i i , . . „. .. . A , , . ' (.4 - :. 4, ,,,,> :,,,!,,A s . A , v"--,.. - ,1 , v ! , ,, ;,..; ;,.. f. :-. r-_, 1 :!.*. i. -..-. . • .44,., ,',! , i ' ' . . , 1 i I i ; . ' . ' ..-it' . ' - ^ • 1 ,?. ', II " ' ". 2 Ll* ,f )r: '?-;', q• t; ' 7 4? - 1). , ) , ":•"'' , ,I , '' '"^! • ' ) • ') - 1 11 II u iii S' i A • . .1 I '' ' i ' ' • - _e-3 - 11' ' 39;: i 4.4 :pv .,."!.., 41 1 , . . i ' • •. ,.. ' .- 1 -I A,- -- .s...:14. -- =. - Aw,r., r •'!, •-• ,, „ : - :- -- .1! .4 • 4 ) , • ih 1 - A ' tat$444 • 1 ' . .1 , . -,...7.1: , ------- 4 ,- • ..---- - ' kV f ' - r ' ..4r- ' ' ,Or' . ." '''f ; 4 i. . - . 4 -t r -f r44i l l ' r r : ' .. • „ - '.'' " — 1 1 ! ' r '' ., r . ‘:•/''. "" . . 1: *';'. 1 : -. 4;,'1 . 1 .1-', . " .., 4 .. ... .,, .--, 4 ,,,„,4-! ..,, . f'.4 /pi 1 ,(4, ....4: • "--4•'''''r r'il ii ' 'N' i 'Z.: '' . ' • '1 • ' ' . • ' ' 0 -: \ '4.7' \ • (4 ....•• 4 , A ' ''''•-'' ' ' •''' '•-•••;;C1' .:-;',- yr' ' ' ' ''.,; 4 .. . 1 1 ' - • • " • . , W 1 • I ' - ''''' " '' ',/'' f •t i k -2- . ,i '' ' ''''. Ai • ' '''' ':'-'4-' Q"P*-, .••.19,1:? t. •: '. \ ti 1 • Iii ,.„..-.,- ,,..., )4 I t,...c_71 ,;•/.1,1A,,.. ,. • - .,;; ,!, . • ,,' t , '; ' ../ -;'' ', .! ; j i i ' .' 1 . , • . • • 1 ! ea ' ! . 1 t:e - '!(-::) • 1!-,./ •I' at=f4r.4'.4, '''-' • ' ,;,. ".).• *-- !...: ..:, ----- .........,- ; ! ', 1 ; 1 ; , ' ' 1 . • 1 ' 1 - ) ■ • , :4, - ...4,.)._,;;;,,, , ,'; .; ,,,.1x,..4 , , , ,,..1! , _ ... .4 , 1., 4 ,,-., , ,i•- . :,..i .. k.,... ••44-,.:'4..; .,,• ,. ....:, - • ., i.... , • — -',.. - ' ••t; I 4 ! 1 ■ . --' t 0 .),./' r ' ;',P --‘ 4,{i4, ,-J- b- . ,..yr.:,..,......4- 4.7A- , • .. ., . - , - - i , - • -, 4 - - • ; '- ,'' I / ' ■ !, 1 , i f ..,•,,i .,., tip .•, V ",L1,• )t,:- L'i, '44t...ti• •.', •• ' ', ' ', - -- 1 ), )., I ; .„...,,,' ... : .- . ' pritI ..,,- 4.:..••',..,,i7 :-V - et,'•;„.•, ,- ...;', ,: ,".•', it,. ,„2.' la • • , 5 l / , i . • . l . • r . I . , i ' '4 ' 'r/...:',.‘:i:....ii:' V r', ‘.''' '. ' : .,', , 14 .!, '', ‘. '-)•••..,4,, .:4 •-....4, ;,,,;, 1%. •, ..• 4./ . ! ''' • U) . i, _ , c•aa•-•.- ,,„„_, ; „4,....• ,. \-•, • , f... , ,.1 1.1, ,i,r,.... NV: e-A , ,,,,,1 4 . . ,. 1 . A, *. • . a5 4 1, . !•.••••! !!' -,: , ,',',...-?•I'Llo.Z!,÷.••;1;,.,, ,'5?`;') x. .10 '' 1 ! : Y.. ''. 44 . .‘: ... ..,kt..y•'., , , , 1, •.,.. !. • - - • .i , ) ki, , ' -- ..-7 , v- , - ..•.,:. •;.' ;ie.:, , ' , $.. -, .; , •..--,1. , • , ,:elt: -• -‘ ........ .... •• .,..,,,. , i. , : -, ,,, ..,, • '..t, , 1 irr• - : r Z .I. ' 'i .s t r . ' lIVE ' ' ' 4 4. ,i4v,•-: , ' ..,;:.: • -1 ',.--,..,.. Vtpr . , ,,...; • :■,‘,..CZ., :.. ;4412', • '.. ' i! , ,, i . • , ' rr'-'- --..; - ; ii •-7,-,-' - -: 7 " : - - -.., _.. . , ,,, .., , . ,,,__.,.. , , , .. ,,. .:. , ,,,,..., „ ,.,,..„ 1. „,, WI 4 .. )0 ',V I 'Ph' } '' ' ' r ' i - " * , .`1, '4.7.r . ■ .--.'''', '!, Ai .7.. .-t,Th % - . ,.. 'CW , • ',,` t - , " 1 • .4 , ' • ... e r , . ' ■ ' i ' _ , 7 _ , " ., ',....' .; a . h cr . . .:! • f ,r ' a. , • '. . ..;=4/, ,..-- VC' L idi,' " -- 1 r : \ Ri .•_.% I ' .•!.• ' .. I.'', • : '; ' 4 .' -.' '4 • • l• ''' ' ' t ' ;;:i •••• • ' 1 :, .. V ' 4 1 • 'LP • * 1•••• ; 1, •• SI c " , ‘i Y I ' 4" 4 4 ... . ' - ' 4 '...• ''' •• .• 4 .• ' 4 ' • '' 14'• . ' I •. '' '• . ).4 ••• ' '''''r ' ) 4' , 4 •'• 4 , r . . ' ii ,,,,,,, • ,' .,,..-'(•,,,-> ';if .,..• "._ t - k: .• ,,;.;,....::•:!!.... -1 r ..:_.:., „,.:,. • 1. 0 ! ".' ' 1.' ''' ' ' ' .. - - , 1“' • . "I. • - ' ' .". '' • ,f;. '' .•:. ''`.C V', ,*- i'r"' ,J ,:.',V tit' !•,;I'4,, : j,; •, A - i ,, • •ir •.: '!II • • - ' • 1., ' 4 • . r ' 5 ti ■:- , - - - • .:, J\e„., ,,••••,.! :, „I ...-4. •• ... „.__.• ,, „ !:-..:...,..,, 4;;: - ..• t . --- ' .! • 1 -• .'" '' Pr r ': ' it 11 ' • 2 ti '''' p., 4 ,P- -'11...•: ` .. - 4--1:- • • - .. ' ' ' -. - i. :-. •,,,-• -t:,1-- .2 ,. 1 '.. ,k i „,., •: .....•. T .-.:), 0: - • , •-N1 • , Fp , . 1 A ., , ■ P • d ... .... ,.... ' ... I, 1... 1. - --- • .. . • , I i ii. , 1 . , e,1 • 11, --,--,!•;•-", -":„). •, • t• .- ,•ae . .71 8 ..„‘,.; - .-7,..k I • ' ; 4 '...cif 14 . "7 ... ic,!, : . - --.4'''' ' • i t • ,. • ! .• . ,, -, '! .„r, 1:-', ‘ , ...IT l' .17 1 I 'I; , i . • . !•„' '..1, • •• 1 ' )< , • ), '.., ;.; .. '1 i'' 1 . '; c :•,!, p%... 1\ i -,., • ., i A - v: -'• .. ,,.• 1 - - '''' - i. j cr re LI 4, r -si , ': d ; a, ....,-. 7 : '!-- : ''''-• ..'.-"‘.. i ''.,: ! ',", .....kiii-li : -'-i '' ' . v - !'.r . k -- ' ,. . - ' v • '''• . 4 : I , ' r ' I %Ma, .r ' . '' '. J r". . NT(' 114 ' ' • . I ! ,,, k f,A4kk • i . ' ,,..;‘' ..\;ii.. ..45d ' ','; 4,',.,T:, ,•'••‘ ` •■.,„. ' 1 1 ,, ',,,,' . 44,11:,i'I'.I7'..t4./1 • Z :'' 'A • . • ' I llgir......N1111 11 .*; '"' L I '''' • FF '•',:-.'''•!. , t A ,•,■.: '-j,"I"'•:: " 't'C't ...!' '' t".. ,i' , -I TI.,I z•!. • I, 1A r, ; ' ' I ' .I ' '41 ' ' 1 .-- 1,.. 1 ' ' ' '-' i , . .t‘, • '!!!, • ; '''t __,,' ' : -. !.,_ ,`;'_%••• :' -:', - 11 ' ,.....!e,,!...!' :-::,-.4..,:-. !..,..ii!! • 1,J1. } - r 4 ' i . !. ,. 0 4 . ! ' J, L , -..,.....,, , •,... •• . -,,. -, , - ..,. ,, ,', - - • ,.--..,1 .r . .... ' ,..... i'. .. W' 7 6 : ? :!' trr:r. I7J ': ' \ .::“: Li rr r ' 1 r .‹ '''‘ ' ' 7'.3 . 47X ' Z ' . , :::i 1 ); ■': 7., '...'. W" , / 1 1:, : .. ". ,' , . ' r 1 .,. • ' _ . IL: ' ' 1 L 9 I . 1 .1 : , . ■., . ' ' • 1: 14 _.i '''\, -5. , - • r ., I it .... ''.1::" i. I ': \- .'.. .., %ti?""'' •*. \ .k.i.;!:*:• :....:. - - -,.- . - rt.:',, ..',',:: ,. ..,,■;•:,. ' • 1, ' ., .. - , ,,, 'it . . i' ::•'").-•,• -:•."' , • i • -''' :, 'r ; , • ,,.: T- b. . ti i ,, ,1 , .."- 1 1:-...4...,- • :: - , -,.. ..%-,. t. „-; , : .-,....,1 ....-',1 :'.i. . ''t..::+.;: ' . I : ' , '' ..,, . , ' ... • . • !, - , . I -.--.; ‘ ,- I '1- '. ..--,,,- ' "` , ' ! • 'Le - •-') l ' -L!' !`" 4- t•ili . -• l -II .'• ... • • - ,, ,,.. , ; .7 7 4 • ...,,, -!... :7 . - 7 : • . '' i a 1 1,s4•''''n --'''':: • °-;-. •••%••••... ..'+:: .• •• , '''''''• - .?i• :., • -, '• '-. ''' Cis' • 1 - - • ' - - ' 1 - - '-! I 1 .. • .' ': 411 I • -4.--- ' 4 4;,t 1 ;A: '''''' , '.-■ A • ': -' ' -- \ '-' i .2./ •/- • '- ". 1 ' ' - r lIP.I..'•" . ,',1,. . ........, • , ft ,----,..;.,, • •-•: • "..',7-'. • .; 'f,• , • • -, - • -• . - - ,- -'."'•-'" ' ' I, • , • ;. ' , i4,\N4 ' I • . Tv - .4 .r -- 7..I.J; .a A ' _ , % 03 . ' "•,' l' ':' ; • • " • ...,: '.% ,,. . ' ii , ilviri:77 r• •, '...a ' ..„,2111g, I 3 d : ' ,, 1 ' 1 , ity , 4 '\ A, ,,. I N ... 4,,, N , ,... ;44 ,..w a itist 1 . ..” • 4. - '' • r --k.,- , , ,0_,. : . l i, • .131 11 ,,, f!■•;,...,..,, 1111 I 1 IIII 1 ;.. . , A i , i . ' -1 , - - 4 , -,... ' . , „,.,,,, L-- ..„, _a• ! ! A •-•." • , ,„ , .° , ., ! • • . 111111111•{J . • ', '); • . • ,. , • • . I, .. ,., , `If . 1 -• , ' )11!,11apt iS 1 ,i, ;..,.,. , . ....... ): .•.• 11, e. - . , : I . . ; 1 . x a d ) i ' ' , . ' rn _ .. \.1,, ci . , \ :.•■•• , .- . . ., ,., !:1:i": Ilk 1 . ,. A -'. •7..0.11. ) ' II . i ' fill:ill:K:111g I , , . . . , ‘, , . . • . . , , .. . , . . i , , , i : „, . -;• ...., 4- ., ... •• itc . .. III 111411611 1111.,,a1 1/41', • - • . 4 ,,,,,,101, bk.`,, ',1',1 • •• •••. ut.1.1. 1111 Millirlitire•. Al , • , X 1 -, - - l " ' •! •• II am- as 4. a, ' ''''. ' I-- ', •V 11 "11!autve ',V..: • 11/1 1 It al, ' • ' - ' ! ', - -,..., - • ••••••■• i 1 ..• ... • 8 ' . • '. ' " 4 ':4°) ' 4..4 -= .. '..4'72:. " ' '' 1 ' 1 1 1 1 .1 1" El ' l' • t I I. -• .141 lg 1.47 ...6 31t,.ii,,.:.. . • ., ,: -..- . ..... .. ....0 I , : • es.. „„ , . 0 -. • t. .. I :'" ... g , .-• -4.. ;•..-. •. ...4:•,i,...,. ..,,„.. ,... .„.., . .. . . , , . r • .. • - ..1' , •; IT'' .. 1 r ' 1 ill lartfill i IiiilliV • !e ," a, ••., , tli ill ,,...1 PI: 7. . r. ... it • ■- , it . . .. . - C ' 4 1 • f 4 I ili. l ' '' ■A 4 1 ,l • . ' 11 'II " , : l . f: ,-- , - .. • . 1 ---74 •: ,, , / / ,i. -," V-. '*--,,- . ,.., 4 ' r r r t -• 1 V ■ 'Filo', , . , • t r... , • .1 1111 11h1i111, ."•-• , . L ' ' 11 ' 4 . •I i ' ‘, ‘! •• 1, ' ' •••• ' . ' , •••111r '44; . ' ' 9 ' • :g ", 1 * '. ' . -, I!• 1 i le) :).: / o 1 1 • y j• •••• . ' ,, ' " • '; • , •■ , - -1 61 r._;• lyrr, , . 1 • ..,: • . k_: . • t i., - 7," -..--•'-- -' ' u t • -- i .., I, .•-•', -1„ l i -• t. — -,,, , . .....,,,,r ... • 1 , -..... / I ; I I '' •, . 7 --1--- •-•;`," "-¶' • '',,,,4. i. .1.'• 1 .." ... '3- • • ' , ea • ...9 iv ,i 'gni --. • -• o 1 - . „. i r) a,, , ,• • ) -psi). _. 1;4 a ,.... , .1„. , , • .i. z I x ' l• • . • ,,. ,I I . L ......... . . 1 ,.. ",' ..3' 4 • • , ,. ', ,.-... '"? .." .. P till ' i• ilt r-FW 7 : - i T.71,,,Ill'o :-!: ...: I c, . . • 1 * • '' • r .., •• I ''''' '• t ir 1, ' . • ,I - .10, • ! ',I ' -I ••• " i v hte 4 „' l• , • . .• ... ; .....- • , • - i , z " S' 1 w 1 - • ,t- „i - - ; -k-:-_ 1 ••,,44 : ' i k'.' 1 1 '' "i ! ' • -• , • ,- 1 1E1 = 11 II' qr.4.4• -;!', 1 . 1 , r. i i . ..,)-' : , • .,) I ) )1, Ie.' '• - '• 0 . . 4 ." i.,'.. . a PP. 1, L 1 sl • . - n8 S ' ) S t i. ''‘' ! I. \ .. • l - ", - €.:‘. ' ' 1 '. , ..N . , d ;' Y . ' ' ..e filliaLM:.:: . - 1 .1: 2 I \ . Ile, ,4 • , • ., -, ,... ,-., _ , ,.. .., 1 cla z ' - ` ,. • ' ' !t i - •-: , ; I • g • ,,„ ' '.3J. - ' I:, ' - - • ri. • 4 l' • `.'' i .. •••••••-* r ..',.• . r • -r ' 3 i ' ,.., .., . , • 4 . • '',..,'!:': ..'''.. '4! . ' '-: • ' - ,ti .. 4. -, ■ • r_ ••••• '.. ! ..,, -,; !•'• L.,....,..._.-.....-. , , tz. • •_, , 1 • r •• P '' '••• • J ; . ... ' • 1 ",•••••., --- - .b AEI r • 1 ,4,:;„...la ,, , ., ,: -"------ 1 '-'• 'i ' i -' ' . 'is'; .. 4. 1 . . _-• 3. I, ; -. Ingto •, Is . 'Is. .J if , ' ! ' I ..:'*!, ‘ ,„- -- l - ...,' ',..' 4 '. - ' - .C:: . ''' '"' , 1 / Aril A I * •'• 1 k * 1 .. .„:0 s ,Ii .„', - _. •*" . ' . ' ' 'i l. . l 73.: ). '4 . !„.i■: . " / AI'•'' - -, 616- -44, 61 . - + . i ' 1,* - c 4 ; 44 . = 5 „ • AV ' i; ... t 1 i • , , ' .1 ''' 4 • , ., .. 1 . . I ' ' . . . ,,,,.. .1 44 • . .4.4.11141 i . , • „ ..,., ■ . • , 1 ..• .. ' • `' - .., I i '' ' / . • ' ' :r r • ,. . r.„/•• . •. bk_,/ • h 1 ' 111fi, - - - • i , .C4i.' J'• „qi •1 1, • - v., 1 •:1. •.:1 I IL 11116e..1 c --. .,..„ 'f 1 ' 1 ' • ., , , d ' 4 r * . ..i''7d111:1. i JU _ 4 '11 - 111PAlitplii ' ' • , •••••••, , • . ,,, • f ' ' ,,, •• •,, $ • ,-- --. ?1 ..._ ma. 1 j, • .1 _bp 6:t. . ■ _.. , 4 .1 1 • , , I 1 , 1 .. • .,. ,._ • f * • ...1•4? w '11,, 1L ..tt ' , 1 , 4 • •' < - . . - ' .. i • ,' ti I. .,,, ., miete 11 , 1, • • 1 . , , , , A , •••• • . ,.,, li . ., -..., .. . , .,,,, .--t, 1 • 11 -a a - , ' l , - ,.., II ••-• . 1 ;,4; " t ,, :._,,. , .....i•- k - , .. - z : , , )' 1 - - ' 1 I > 1 ... , , , i , , , „ , M. ',. :777 .: .• . • ' -‘ ' . . 1 . : 1 I., 1 ■ ,„, • . ' ' Sr" . 1 r s , ?ris :'-. 1 1 1 • • • 4 i - :i 1 • 't . "!". .. , .• . 4 • •,,- T .„ , a , -O, Z .'1 i -1 A- ...• I ' '' .§ I II le 1' •'. • •. • . -, . - !...,.,,,....!!;! ...!•,.,'• • ' Ace" -'‘ -1'1 ki s . : 1171 1")° 41.':‘ li Z • :, .0 —.. , • • ' .' • - . '''' "" ' ' '` .1 t. . '' )-fil 1 '.:4 ' 1 I litit ..., 1. ,. e -: I , ■ .,. I , Ir A 11 • . ,,, . I r 1 $ ,, . _ . i • . .. i ; ..,.... • ' ' • ' • . - I i 44 .t - viq • .. , R .,,•,•...,•.. , -, -. ,, ,,-„, ,,........,...,.. ,... - ,-, ........ ..., 1, 0 '. 'I. 1 :1 • • 4' - - • - , ,,t , ' I'''. •• ■ i '. ' " • 4''''''''''" • 1 '-'• il ■ ' '` 1 e .: V 'il 111 1 1 • • " , , 11 • • . -. \ •••• • ' . , i!..• . '' -^/ A ' 4 4 y 0 3151111 0.11 ---. _. - 1: . i *' : '• 1 \ • ''''s- :L .; '...*. itt., i NI. wk. ea 111" 1 • 0 i !‘" !'•'' • I.-- i f4" • &bp „ , .. if! 4f . ■ •••• 4 ' ikl IA 1- .. ' ' ii fil4fi • . '--"*-:.: %. ./if.. 4 UIP1 I r • ' 0 1 • : , .,71:- . , 4 , I , •',. ':, L. :.. • ;‘,10,-. .41 a , 1 i!. ''•• /041 :".• , ke . , , ,, , ,Air , ,,,,,.,... 1 iq - r- - ......:A 1 ?poi - A,.. ----, I - ,..,...,A , ,",:t.;-,1.fiq al I ..... --.... : 't -.-.4.-■ '. 1' z' '' ?'' i 1 ,i4r# 'If (.z.;,; t-C-•*; .;...`' Ia -1 14 ita th • 't *' ..,''''.''''. 'l l air r t ,.. c.. , • --, • . . f - ij igili 1 t ' !I:7A .7: :: i „- irt 4 • ,• • 1 ' ' 'I/ ki• 4 ''' -,1 '‘:! ' iv ' '4/ , ., , . \ ,: '!•-• 1. ., ,•,_ „ , 4 ,- „,..4 i )• '. 11. / , ..-,y.. I. . A Ick •. t '' i r .,, ••••2' ' • rt : . ' :-•,,.• •,. . ` ' • . . •1. 3 , . Z ,,, J. k ,, - ,., , •s .1 ',„) '.• i ?.0. -:- . ' ' iml: . '.' • . 1 IX f rt ; ....--)..%,.;: .., t••• \4' P I. ■4. '.. -'' • . r • 1 , : r -•"' i4\\, / ..' '• libi -; . ...1.......,,,,... ,.:,..‘,,..,..... ‘,....,• , ,, ,-,...__.•, _ , , 4 / . :■■•■ • '' ' ,• • - , •;...k. ‘..` - e "••,, "-....- • ,<••-"•;. .s,' , 1 ' ,A '', r - • !...:•.- :l ri,.:4',L'''',11.1: ' 1,!,i ,',4 .. "., ..,,....• ' .. g lill V". „.! t's!, ..j II I I, ,.'" % • ! '../4!•!`r. 9. z ,_,,....cr h A' .1 •?." - !1.4 2 , '''-' :!.-- ---., Ik1' 1 4 >-- • i -7.! t .. . , 4 , 4 ., ..,,,, .,, (1) m . . , ,...„ 1 ,,.:;•,. „ ,•-ii.•,.,;,,. • , ••.I ...• c• .7'0 • CZ i i - i 14) . . z . `rs't;" a ..4 '' • • • • . ... ...Z I 4.1 1 1 Z ' I I II 1 1 -e • 1 4 ! . .4 ) /' i 1 • .1 ,.... s, k ,. "rel - X ''' N- t 8f-c. 4 9 N 1 - I -I- - .ii 4, ----- ---A - - . 7"-11- kr, ' --- .401, -.. -- - -I - -- 111 4 I , ,I-- , f • . 1 1 , . 0 . w -1 cl Ca ,,,.. -. ... i :. . T 0 _ 4.•,: r ,_._ L____I_ --4, IL I I 1 .1 ,_ • 1.4 : _. - - w • • 0 5 <3- w \ t\ k) , • / t v• . cr 0_, 2. I ac cr J • I I • I l , • - 1 1 IA 1 .,,, I - 4 is 1.... •-., • .., 1 v..._ I -- , , / • i , L. -:::_ __ z ,-rr Q CO CC )". V 4 t . c i - - - T - - - - • , .T ,,, jk ... - • , . `1, 1 j/ .:'r I ' 1- - --- i- .44- - 1/ -1 r - 1 0) -- '- t 1/45- ' -- - -- -- ,ft I . e i_ /I -.- 7 : • ... ! • 1 1 -:?'/A ..- i CO W X W 0.1 .1 Z •■I S !I 1 I 17 ZO j lTi •,1 2 ie it c J ...- , °,„ t F i 1 1 ! • 1 ' 1 1 Tz,'' I 1 g5.r. 1 P . 1 i_ .) ••• 1 , i 1 - t . =I ,--- 1 0 Z 0 < J o U 1 > 2 id N g 3) ' 1 - 1 - 1 - - - - I '',°*.‘ I I N , ) € I s,. ! , \- I , ! ‘•‘' ,,,i• - 1 ' I .'40 I • . i .1 I WU- \ i „ . - - I --- 1-- - t - 11 -, . : • ."-r: t - • -I - 1 c t--) r -!' ' - '1'''>1. ! :- 1 --''" 1 - w 1 I ---, '-' , . i _ ,,,,,A. ' ,1 ! A 1 . \ , ... 1 i - _ f -- , i . .0 ; 1 - ;, t- w cr r t• ___I .,\ . t _ %II = :3. , , i 1 silli 1 .1 1 . i i I _ i l l i dl ! Ti- - Tr i.,; 7.: 1 - 1: 0 .q. - ---1 -- '4 J - s 1,,,„ 4. ,__ . , , 1 .., . 1 1`_ Id • . 4' 1 ' ' - 7 Thiliklt.--a'o 11 1 .• -: I . , (..• , • , , ''. . I • I \ ' a - a: I Cn . ■ '4. 7 . \ ■ ,. - • 1 t . ) i ' . IP -- ., Z . . ' •-• =I La a ' - , - , Cr I i ■:,; *4 1 . ` ' - t i I I I , \ •' ' I , 411i i ! , I < . -1 ILI 1 3 ,_____ .., 1'' V I - I - --- -- - ' `. t - 1 - ( ! i .. .,... , • - --•, Ir - 'f ,./ : cr 1 . 0 i• 2 . . „..., 1 \ 0 11_ ''Ll 4 --/ ' ''q• 1 . 0 0 i t ■ LI I I I I 1 1 i• t_A%.6 L • I i t ".;L:, , : 4 , , ,i_ gill ow (..) ...,,,..."......... , , 4 D --I I I I 1 1 . 1 -MIN A ' 11 , , , , ,,,,,, A R -. , vi I 0 CI 1 4,„ - 1- _ _ , ., , _, - .k. , - I I- - '-- I - - ) I .. I ! . - 4,„_ i 1 ) ! - t-- ! ..„.. ,.. i - 1-- k . ..', ' '`.. „„ V) 14- L _ I i - _i_ , _ I -ct 1 i „,- I . \ - ,:4,-„ -. ,..,,,-.A t _ r , 1 . • - ,- , - , , -t - \ .... ,.. r.,.,:r i t ...-, I , 1 , A \ 1 1 1 ", pz1 1 I ift a • -4 ./ •s • / 1 -:-. j _ _ ( i N * N _ 1 _ )• . If, 1 , , I cr 1 1 `11 ilirlf 1 ,,,, ' I ‘- - ! 1. I ' - -- . `, , 81 e 1• I . ' 7 ! ' i .: 1 Cr W 1. # i t - •." 1 " ''''' ' •., i. . - • - ' i CO 1 * 0 i. ' I I .■ - 1 , ' '• 1 1 .11/ ,.„% , i ' . : \t" • • 1 ' . \ • I It .--‘ 1 1 ••/ 1 r° 1 . , ik 1- 1 : f .-- 1 ■ 1, , :i 1. : ■ tal 1 .% / " 7) , . 1 0 ) i 1 • • .0 1 ... . . ! ----, ct . \ . .....,- ,r ,1 • _ ' 1 . / , a - f . A , i 1 1 '-- ' '.' '11111■6ailli:iiiii al . 1. 1 ,, , 1 ! I )_ - i i I .t 1 1 , . t .-' \I : ! / , >-• 1 1 `1 I ..., . • it t o i ,,,,, ,, , , 1 ' , / . 1 • 1 I- ,. s I ! 1 l r -•,,, if...c.).41.04 „„, , • „ : ON 7 r 1 AN - .. 1 a ; 1 . ro ' i 1 ' I ■ 0 . 4 " ' • I ir It ' ..I - u . K.1,11* •., .'% 1 i i i ; cr ‘. -- r --- -- 1. - r li I- Iagat ..,_ r - I -. O t 0 ,,. ,.. _ *, , I MIN 1 C...) ,. . 1 ...'iyiNikt I ."11.1111126.1 Ak Vh. : I , I • - - I - 1 1 h. .1); ' RA! ..! , 0 _. . ,__, , , z .4c aliiiiiillr4 Mir ,i i 7 ... ,. . '17Itiel ilft4'17..,12. lifilitigvir P'-',. , • cc cz ‘.`. .-' 1 1 . yraffilii 1 1 , -rililir rilli 11 7 : ' v -4r.__I. , La \ -%,--,„,. a .-7 45. ..... - F .'. ) : POUSIFAIIII ,.. i tt 0 -- -- 1 1.4 \ ; ---- „ti f A i4- "1 • --. t'oi• • • • ... *eV. . • ' . tr 1 • - •• ..... • AI 1 (/) r . W 0 ■ ,,, oR tr) - t li) , / P.= ■7"; 1111 - : g . . i _J -,-- -- ' -- 1 - I \, -- h 1 ' k ' _1 ' 1 I - Y 'fr . ..,..:10 1 0 r.- I C 1 r .,- CD v' 0 . I I:1 I 1 r p' 1 --.:.1 . 1..m11111 Z 1 , :1 I VI" ,. 1 ?- I 1 , ,, ' Iror/Ir I _1 1111 - 111FrallP111111 ...... • . ---..--1,\-L-1 .-tz . - t-\--1 1 ,_ • ! gli•.-.4 -,-.4 r-- • I 1 .4111 , 44 " t CI) I . . 1 - 1 1 \ 1 I - .,.__ _I _.f _ i ,,, i ,/.! "c -I. i l' - • iti 1 ...11.1.• I , ,,,,,,,... : e 1 N h. 1 1 • I f ) 4 1? 1 I '-- - II 1 , 7 I - ta. . ...1... „,„.1 . •• 000000 .,4„ 000000000000 5 ..• . r T • "O. A -- .- 4111q41 „..., op ..• ..: . J'• ‘ . 1- - : - - --* ; ' ■ k, • , 4 _ ‘,k■,..•4_ -,__ ‘, 1 . 1 1 „.., 1 0,,j, , • I: aka Mb• - i , '''' - - - I 1 W : I141,47 .• ‘--4F1- -t ';'--- c')f ' . 0 - - .-. 111 ..d 'v 1111111F- - ! ' pp 411 • 4 0 . • M . I 1 - 1 2 1 1 . .. __ i 1_,. -.'. t• ‘t •, .. t ' . 1 L 9 'P or 0'0 0 I ■ ';' (4) 7. 1 " eil IX :V °!: / , , V : 1'1 , . i'■: . 3 '' a -:' --'- - -' ,-.,'") '`C Al .' • 6 ,,, .: . ._ .'. - ' •••.J ..., . . tioe. ill .'' • - t : (IC 1•7 t . i I / ' • '''%1 • . - 1 - li ;.- ' '• . - I - - i . _ ,....", I ,k , • • °00‘,4 ' ',"''' •-• °!! • • • . • AK.. , ..i i '_, ' 1 . ‘• ''' I c f . „ 1 1 ' . , 6 , - i ,._ , ...- •1 • . 1 A : .• i V V • 1 il li . ) I I Pi . ' ' ' '!'" '1 ' ''' ' i. ' I : i 1 1 /.11,1,,, 1 .- if .,,...,_,.g:,,,,..,_ , •..,......, . „.,. • .,,_ .„..,;. , ....,.. , ,, • . - • ; • ; 1 I k , ' It i i ••••/ ' ■ . kk - _ , .. 14".• IIIIPNI/IWAENEEILIEMO••-'.• ,\:• :,.' ; i! li g i , ), _:, ,.. 1 . . _ 1 r ' ■ -..\ ,. • if , 0 1 i _. 1 ,i. : -,• ., . f -•:.,.. 4. 3 ) , .,---• , 1 . al NU ., iii1 /AMIN, ill 31°4 SOa' . '.. • i j !RP z 1 - 1!PAIIIIINNI. ..Zilar .". T --.! 1 1 -7 "SM1111111 - ° IIIIIIN 1 .....„ wir ..• 1 •r-,...__ 1 , 1 -//, ••',. . 7-- aura will . 0 , .- . . t t ; + .. - I Ico 1 - m 1 - I - • I .- 1 1 . • I 1 _ qii: , - CO l i I I I I I i 1 I .1 ... r 1 . I ..4 • v. - -- I I. 01 • - - l - b „ b' - I - 1 . 1 1 _ _1 _ !_, - - PAT ----- • - 1 4:2 - ..- PI ••• • 1 1 II 1111 1 1 111111INVI ri 1,-N, v. 1 • .,..- :,. 1 - +--- z I / vt - - , .... z I z I I I I 1 ro -t - - - - -f - 1 ,, r. 1H - - 1 - -f- , , _ (11 • . t-- - i -- - .- i- I- 1 :- - I-- - u) 1 I : r 1 CM • 1- i - --1- :- 4 I- .1 I- A. t• 1' • 1 . „ , 1: [ y ' • .. .. rz '' y " ' 41 ' , 1 - -_ 1 ::f I I 1 z ' I 1 it I =1 1 1 f • ••. N i I I g Ei : I {�- I ! mo=o "� F- 1 • A " "' � — I , f 1 I I I i' '"� ,I p .... ( Z, ^� N r I� I I I \ �• -- 1' 'I� _ I_ I .- i- .. _ �\ \ ! _ I • e I - - I I:I • _ ° oc � .._ y i1 [ ! I - I I t — I Y ' J I� 0 a I /_I T .0 4 ? ,...1, • ( . � `� A / \ / ' • ' I - , . I P �= ' I 4 zr T- ,.' ! ) ,..i., _� I 1 I I i _. I :,. ____,„ • I' , r • r •,: W t" I 11 R I I •.• ,•,..,_.,, ! I ! ,r i �� I` I 1 :. ' . r : 1 / ' 1 /1 11‘ % •. IN ,I � ' ar / » � ' ', r i _.: 4 r1 .I `I • 1 I , I ' y .' 1 L I , • Z W 4 . 9 cr ► ', 1 d , I P 0 cc cr 11 1'ilifil .: __ . 1 li - . • 1 ; i t. , • a/ . . ' / I 4:. i: a .. o I " ..) S_ ,il , 1 .,. , I 1 1. litles 1 / ip W (n ' i . : la 10 .4 ' . . in Li Cr 1 I _ I 1 _ (i t • N I. I 1 Y ' I .' i �Y • 4, te r,• d;. • �J - ' / • + ,_.,,.. 'r� = o � ' I N I . I ( ' t :`: ' I •.• 1) i . i ll • 1, I l ip 0 I . . ‘,.. , , I I Cr - t y j I • 1 1- �_ i • , .A, .E 0 t . . : 0 lipirr .. i >6 4,44# I ._ I . . I i Z fr0 i4 a .� i1 Ise cr O • 'r Net li ki ' ` ,4, � 41■1110 MI •T 1 ligly i A J r: , +� � G ! 1 - x Z ,- 47 1 I 1,. 1 'i s ¢ °. .� I •,* I �i _ _ a r I W J I . �� I 1 j ' fit. � trg��i (n = CI 111 wm, cs_ ; AN601 • . 1 . r p � 0 •'� �� • In 1 1 - ' S I bt r t' ) I i lipttigNilltilitt,\ s ‘, + ,-- rim_ ..... , , , - EF JIM MI BEE . .�y�w. 1• N e w _.._,• V --1 _ i Alb, �� V r T 3 t 1— r - . Qt ' . I l l I. r F.,, ..,,, /1:j i ,... (1,. ii 1 i I. 1 ,,, • _. , , ii A s . A , , i ..!, , _ 1 ,„ It A - d i r le i . i .. • , _-111111, , t 0 • /� �� 3 ,r, ` , I 1 r].f+r' s A -',.'ii' '.: 1 tili : g.. 1 1:., ! , : 1. ,, ! 2 140 11. . V , ' - ' . . r....1 t oiliwzorissin.A.,-1111011:'‘?.!•-...\:::, . .' 1 1 10):- .;._. - , / '.4, . , itilill,!.. r'i hi i!. • . • _—... .....//1 LL„. Ilk. begiPlii !EP% 1:11,M111.11111111. .rifirloir.A.E.. . . _. ___ I I i ril ..41,...! . 1 . . A 11/4 " --4:1114.- % A . .6. , ... --...„, _ i l 1111111111111111Ev." F•• . , ... , _, ._, , I . . , 1 1 I 1 • . .. . ..1. , , .. IWO , ' f _ . _.. 1 I 51 ! m lith illPIOdirt I I I I i I i Eli 112111111 4 V : I • = I — . m i l l 1 1 / I ' z , , N 1 1I N i • ,. I I N :I ( - f v 1- 1 - - 1 -- -I- f-- - I - 1 1 i_ t ! - r I ,- i'- ! 1 • - 1- f•- 1 -1 ; - 4 - - - i 1- :. -- i - -. ' . 9.0 -- - INERNIMENIMMIIIMMERMINE ::;:•. MINNWIEll 8.0 IIIVII-■■■. . EIEII.■■ 1 6.0 ::: -��'' MIIIMMIll : ENNEIMMIIIIMEMIll mgm::::1:: :. ® ®s® ® ®EE®QM'® ® ®MMIIIS 3.0 MITIMOR ONM1 NIN ®® ®MOMM ii 1•110111011111.11 IMMINP 2= On UMW MINN. NNW 1.01■11. = IMMO 7= W Z....z.w'= = ==' i�ii'.�"'Y'.= =..... C_.'�'.,.-Y.«.......r'Ew''w.'C. = r'�.': C'�- _ _ � •�r Y-�=i� wi•� r�ii �� � .�«.in�ii '.�'.�li ��.�YYw�w ► ire�i"••• V p....�I W� MA. ■N.Y�MM ww�wwN..r.. MU.Y Mr_9 Z M lii�1Y.��rsN� �I�Yii�ns�w �.w w, M�ii �iiww�r.M.�..� i i�i.i rr.�.uSI ..w .wq r.r gill M.Y8��I�1 AW Yr��MN��N / \M. �`w =II YlOYMr. 1 I:1 r... tt 1.0 =1 = = le i l leaVELINERITEN, E ERFA IW Ilt a= = = .. .M..� r. .M.M MII.YI YM . m e,. .....�.� E 0. ..... ..�....NM.MM..w. ..tl1..�.........., /L j N/y - i .... A NY . N. M..... � a ss ��. YIY YIY .NY.yr. Y.r Y .... NI NM. M ..............1...11•. YW...�� 1 • u. .4 0.5 --M=S aEL------N : ) z — . =mmigtiiii.:-....-famm .1.__.__ ac o.a ' wn ....+- .rear3: -mss-- „ --:c� . > � �.......r. zz a M SS _-mss.. a a— r.----=1-. Ir ... .�- M. —a • a .M,.„.„. M�� = .. �.=:...• � .1. C 0.3 -.B. lithr:1;;M:"':"L” II•NN IMMOOMMIONI 1110.M11 IMMIINI MIMI IMA 'kite "lie.- .w. I :::::------- MENIMEMINMEN minalmallogo i:t.!;.---...§4.40fflgall 1 0.1 2 3 4 5 6 T 8 9 10 ism 20 30 40 50 60 70 80 90 STORM DURATION (MINUTES) 1 DESIGN STORM FREQUENCY = / YEARS ONE HOUR POINT RAINFALL = 0'95 INCHES 1 LOG -LOG SLOPE _ a• CP PROJECT LOCATION = CON T,g tilA 1 / A 1 1 SAN BERNARDINO COUNTY INTENSITY — DURATION . 1 - HYDROLOGY MANUAL _ — - CALC UL AT ION SHEET 1 D — 8 FIGURE D— 3 ... - =...... : :: :tits.. 1: .. M .=-. ' ..........-:' ::- _=ii.. :1 :i 9.0 . _ =:c :��M®MI� : - •_ .. "_ ..1 :: .. m 8.0 M ® ®®11® ®.. t ' - ® ® ®® 7.0 :.'1 i ii - : .'L: 1 ,•• ®11�®® 1 'E ;_ :7: ENIIIIIIIMOILEMIll 4.0 M ® ® �� I _ ® ®11®® 3.0 :_.. 1 - kl&M - g-..n i ntA 9 MMIW I MINEWIMM 1 5ii Ai NtigaignEffgn M V1 MS..- R MEN WY�IIrl O .�.ME M .M�.1 R4 4 .�.. - s�.w.r rlM y MM. �w�l ..... W.' �, �%N�N�� M.r l.� ..a.ifi�Yfwf. NISI .. �f .....i{.�µ.,, � M... V I..i/r..f a s.... E �....1�I1f.Mf. 14 • fits. lfy.. iff ..WNIH flNl.i.i IEE ..... �ff�f ■ ■r�f.11liff{�����Mf1.M r.ff 0��1� Mlf�ry_f__.fi .afM f. i�/ �rffMM /l .ffl..�1111Y _ u IMffw N/.fi t.1.lrff• /.n .U...Y 1..i `� =YMIM��� MI1 ~ N r � iriampram { m � �/ f M f i ui1 � 1O N1 NI . M N � 1N � 11 f1U /UM CM uu suNM�MM � ��p1fA1 1 1f11 Nm M �I i t : FA I° IA=M W z o.e Mi =� s ►- ►I EI MEEME .===Eft - EFMEMEN 0.7 E- ...4.-., ..r .Em E§ .........f....wc�i....w...N..w 444,4 �.s....mag . r .....U.l•MI./..f .iMM./W..M. ...q.iY..l 1.........NM. �r ...i. r. fir.i�..... . M �. i1 ..... ...........M J 0.6 1 _-s -_ g _ i ) :ii u=r== - .---r - - - -- -r=r� i�ir�..� t� M =..�w~r. x..g.. NV " NC � alg a E . ===•".••= =E = MMa = NS iii 5 2...E.LIMpinilliiMILBEM ... -.. .ttlgralali I 0., MOBRIffiffigilin....... Monmunewilik 'Imi nom we= 2 3 4 5 6 T 6 9 10 20 30 40 50 60 70 80 90 STORM DURATION (MINUTES) 1 DESIGN STORM FREQUENCY = 5 YEARS ONE HOUR POINT RAINFALL = /•- // - INCHES 1 LOG -LOG SLOPE = 0.6. PROJECT LOCATION = Co,VfAA/4 eft. SAN BERNARDINO CO INTENSITY - DURATION • - CURVES HYDROLOGY MANUAL CALCULATION SHEET 1 D FIGURE D- 3 rrr- - . 1 6.0 1 . :I: all® ®� ® �N®®�®®® ENIIIIIIMMIlinell 3 4.0 5.0 m ::::{:::. SINN ® � u®m ® ®� ®® MMINAMEMIEMINCESMEMENZIMIniffilliffintil ; -, . 'M-LM-*: 3.0 • f:_ - MM ®fIE W MlltHfgkj M ® ® ®WlM1 is cr ill ` 2.0 � w . _ Z g @NR fj��� wr m csLS M r. /Y M .r YY U.► M .. N =.w.�w�.w-r iseEmgcasE M.� =r Ea.. r e�~i.M.MY.�Nw VYI �M.M M.- Err . . M .. rr. II.MMYI �1 IA��Y .r�1..� w� MIN N� ..rw.. wr . ...M ��a����. w.. n... r�..�•.....�r ==.:—.—E=;=.::=:=— .. �rlrw ..ww wi...w .. ....�� M... I MMO. YMM �...........�- i.......�i.. ....I..I.w�w .....� .wr...wfi . .�i. I.N.N MMM.... ...a w�wM.M ,.. .E .Air w��.§ E INI. II.IN.r...1.1 MY ..... Y�MWN.fM melm .......w.MIO.r� ..Y MO M.� MINIS M ON MIN 11=E= MIM�M ~ � <1 : = 1/ / I � = D M I.1 Y NIU I iu 1 = v tMI /�fl � sw1 U U IUI Iss i e� UN M Urn lr Mli N�M MMM� Iw MSUUINu 1- :=CnuE.�ttE = E�IMUM Eamme IWI�nill i nj M r i uNN 1. ti�� �Mi111�it.111 itl�lrl.t 1 (7, 0.9 __ _ MME�MM MMME.P EIMINIMMIN W as U. 0.5 � _ '- z -- ura = um 1 Q: 0.4 t= +•-r -- -- r .,. = 0.3 tea. �..�••..' ""w........ . .............. lid M WINBIAte. : W...iffiLli KINIIMEM ''' 14 7 :-ZWAIROME 0.1 MIME Inglignesgusq .5a u N u ....ini.i iwl.,ii. =a lli 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 90 90 STORM - DURATION (MINUTES) 1 DESIGN STORM FREQUENCY =_i_.Q._g_s__ YEARS ONE HOUR POINT RAINFALL =_Lii_. INCHES 1 LOG —LOG SLOPE - `. - PROJECT LOCATION = F D , t / T A A ( A , c 4 • 1 SAN BERNARDINO COUNTY INTENSITY DURATION _ CURVES HYDROLOGY MANUAL CALCULATION SHEET 1 D- 8 FIGURE D- 3 . 1116. 411111111111111•111, 1 / - 3.5 _ _ 3.5 . . 1 3 .. _ 3 • i u) 2.5 2.5 `' U Z_ - - - . Z 2 2 iii CI Q 1.5 / / Z Q / / PR ill I I 1 .5 .5 1 0 0 2 5 10 25 50 100 RETURN PERIOD IN YEARS NOTE* I I. FOR INTERMEDIATE RETURN PERIOD PLOT IQr •VEAP AND 100 —YEAR ONE HOUR VALUES FRO1# Mgt ?S, THEN CONNECT POINTS AND READ,VALtIE; FOR Q SIRED RETURN PERIOD. FOR EXAMPLE CIVEN.10t'EAR ONE HOUR • 0.9S AND 100 —YEAR CNE HOUR •,1.60" , 2S=YEAR ON.' HOUR • 1.18 ". s, ,.. r. ... .. .w ..ice ... .i 1 REFERENCEsNOAA ATLAS 2. VOLUME Ir- CAI,.,973 RAINFALL DEPTH V I� US COUNTY U RETURN PERI KR SAN BERNARDINO 0 N.T RETU Qp HYDROLOGY MANUAL :. . ; PARTIAL DURATION. 9FRI.S 1 JOB PA6ME I7.v4/A-/. ,4/e6A 3.SZ - 05-9 0 WAGNER PACIFIC, INC. SHEET NO. OF 3 18484 Highway 18 Suite 285 G, ,4 . g . DATE 3 - 9/ APPLE VALLEY, CALIFORNIA 92307 CALCULATED BY (619) 946-1775 CHECKED BY DATE FAX (619) 946 -1781 -- . - 8CALE 5T £ A PAG,Ty ) ' 1 /NI. 2LT toe-471 5 1 i ` j ! I j I .......... ... i.........;.. ............. ............................ i........................ ......t....................... ......... ...... ...... ................... ...... ..... I ; . l... 1 i q I I i . : I ; 1 1 i Q i i , k rz ' O �!� Z ' 8 l ............................................. ..............................« 4 ...... I ........ j .... i , j �,k - — -1 i i 4 • /l r t !/ / i'J / ,Y ! / / / / ` ' / 1 /_ / l to /2. v ti / �Oo 1 t ti .` ° � l ........ , ... ..... ............................... ps .... o 4. ............ � ..... i � , i 614/ i j i i i ` ..' i 1 . , . I i • a L � :. A i y z i l i I i I i ; 1.4+ I . �j i L i ' 4.O! Q. — — 1- AxB. d.•Ef83 /. x • 'h A ........iii. .. .. .. ...: . ..................... j 1 /. ozz i .... j i i € . I { ,... 0.z983 i i i I 1 I . i t I , I i! i j I I I j ( { I t 1 1 j . II 1 ................................................................................ ............................... ;...... ......�......1...... i t . . i I I I I I i I T i I 3 � 1 i I I i . .. i i ; i I i i ..........._ , I : ...........:.....................................>.........................«.......... ............................... , .............. ........... .................,............. ;.... .... a p.............f I- ! 1 i i 1 I i I I i I I s i 1 I i I MONO 204-1 lac, Calm Alm mot. 352 - - 9 0 J OB P ALMETTO PRAIA -i. An % /4 WAGNER PACIFIC, INC. SHEET NO. OF 18484 Highway 18 Suite 285 APPLE VALLEY, CALIFORNIA 92307 CALCULATED BY A' g DATE I° L - / 3 ' 9 (619) 946 -1775 CHECKED BY DATE FAX (619) 946 -1781 ,.,,,, /,✓4.6r LodAT /o4l5 (/o Vic. flow) o aE 1,4 4 '. 4 ,1/10/41e/ /10,4 e iA I I 1 1 __ I. ' i i 1 f . ........... ......... .... ....... , i ! 2 . . t?. . . ......4 .... .,2 .. . . 1...._ $........ 1...,. -''; x-0 .............}...... .......1...13o. = 47• I ...... .77 „. =....54, 0 e.ir.. . ........•= ........ . . .....4 1.7........ ,1 ` ..... ' r:.... i..0 l. . ....... A: • .. d y T�✓..... .. Loti ..._A� I 1 ._ .;_ .._ ............... /2....._z...._0 . R 01 i .. .. ii 1.. . ... .......1 , ....... 1 i ...... X 17 . � .... fi ce ......... „ ............ .... : 1 16 l � per. ... ...., 1 .- .....................:....A. «.3....rv...3.. (....4........T. ; ..)! loci ........ • .... /.a: . .. ........... ,.. _ I I • i !.. i cd 4.. � �Q i I k .. = ii.4# 4 ; 2, t = ...ti+ .... j i Giz 1 1 y ... 1 __ 1,1 i , .4:0 0 2 f 8' � 3x , . o; ... ;ilo ... 70 .. , ... , �� : ............ ° .. ......... ................. ............. l7•� fir 1 ( I i i i ! 1 i ! �.._ 1 ....................................... i ............. {ZS,..5 ........ ..... ..... ... . /, 4 tz. .,T... ? ..Q. . 1 ._2..7 5 - ;,�' 1 7 * / ..... gt c. 's• j _....... • / / i � . t ; 2. .:- ....... / - .._ ? ' 1 1 I i a.GA 7-6 ll .... 1 1 .... i 1 1 1 i cl ` ! 1 i 1 1 1 Q.QE..........3. „..1.......l o . . . 3 2 ,........ 6 . M . 4 - +` o......4. ................_............-`.............. a.............................. ..... r 1 I i I I I i G .v,sl.... .... ...3. /:.. «.. ....... .... ........ .. ' . ............................... F .. � . Q . v{✓. ..... .... ....Z.., = / . / ic• 4. 5�T...... C- QpC..... 8 - .._- 0lv,o 1-.._3..50: d.... 9 {. iliii C ' eAe,r _ / o d j x p. 4,9 , - 1 . .... .5T cE )1 X i • - ... i 1 1 ! I .... 1 1 1 i 1 /_ CP cj. ..... .... f... . s,.._ > ........ / . ...4? .s. (. . _ ? .. .F.� .._ 0 o. ............. i . : e x, 1 G. !�. io + Z �o l 0 3 I v i 1 � � 1 j 1 1 1 1 1 0 3 ' .. D .... 5r. 1 1 G._.1'gP ,0- 4 , ....._ ; ..... .v 1900 ....... .• . ....... ..... ► ....... 2lXz ... =f6.: Fes• C ................... 4 el ' 1 i ,.. .. 1 , ........ / . Z...a.... C-1:5 . ._k...._ /7 _i0.... ..a. ( 1 5. r ....F...o C /IG 4 'Q l :. .. ...? 4 ! I 1 = : j ! GocA • i 1 i I i •i i.... 1 i I 1 ;. ..j i . ............ ................. .. G L ,. ; ... i /">j,,, .... j i 1 i j I C i, i o i { ...... 1 '......... ....... ! 1 I i I i i i I i : I 1 i I i I 1 ' 1 ! i 1 352- P.5- 90 1 JOB P ALMETTO F {-A/• A26/4 WAGNER PACIFIC, INC. SHEET NO. OF 3 18484 Highway 18 Suite 285 , , /2-45-90 APPLE VALLEY, CALIFORNIA 92307 CALCULATED BY /Q 3 DATE (619) 946 -1775 C HECKED BY DATE FAX (619) 946 -1781 ,., E A/Ler LO CATIOAA% 1 060 Y,e• 1 `c-eyw) I I Al oi6' 4 0. 4.0, � � ...�4ll Q.. ..�1. .. .... ..............................t f 1 1 1 L i , f i i ' 1 .tc . .pi.ut ! 4.. ._Z = ; e.,i. .. ..._ ... . ..... ... r- o.W....4 � ... . 1 ... 3 .... .15... $ ...._ 27...$ ..f' I 5 7 ....5-LQ e.C..... ....... /: v i � 'T A A a p . o E 3, i i ; C p , ct Ty.... = .......I { .,....Q . 9d . ... t O I = _.... .Y` f2: ... / . :. .... a s. ....... R & i z i S ; i 2 = 4 .' z ,......... . . <1 z. ... 44- E '...... ' r. . . .. .,• f . ..... 8.. - 1 4 . . .. E = , .eo . . .. «• ; ` t I 8 , j.-03.a. ' ' s. _ -f E an y +30 to 3 4.4 i . 1, .oCA.T .........4, /. e.T s..... „. , og,rit.. .... ....or.....Jot/ D. � 1 . .. ......v ... . .... I ..... ..... ...... ...... ......_....... ..... i •'7q . I • i a , , 1 , 1 , 1 i 1 i i i ( i „........... „ ... ...... .............. ........................ .............. ..........._._.... ..... .................. ........ ............ ..... ......' ......... .........a......... ..... ..... i , , i i I . , i { , /� - t 7.3a p � r r .......... ... A / / (.l..0r ............7,3 ....... ... . ........... Ir"I L . ”! G' TI.. Q.................... .................b............. ....................... f ........... ... . ............_ ` ............. �.. .... } .... .... i i TTTi i t i i . i 6r S o P.6. . .= ........ . - .. ,...e. /..._ • • ..........C.......'fa....... ! ' .. I I ' i ; : c .. PA c1r : - ' /4262i0,00 r /. p . ' i 6 : A. : ...... .... 1..x}.3 �.{.x........• �..... ... ..�r',� � � , ........... . .............................. _;...... r..r�......-. i .821.................. i , I i -- 08. Ca a:C >i 2;3 * ... des , i ` j I 1 : I . i , i • ... ............................ G.o.G A.7"...E...... .. i ......... ��..'.............G..... a .......e..o.4.......go 1 ? .!3.5...........1.............{ , i i i .... .... i ' i I � i ! 1 1 { A10. .6 lo ;...3 ......... •.....eMPSTe/ ..... v...... .. ; ...... � , ! i i i ! � i I .... � i i /� i i ' .... ... .. t .... .... ... ....'... ' ; L - , . i i i : i •••• s' '' '• i t ` I i /� i ! , .. Y� I ..... . IQp, AC / . r Y......._ l lol A ....v.._� . ...f 5 • ,' ..a ...s�...(.. ... .....�T,�L�r� x G = i .....iyL f i • .......... ........................... ........................... s ........... .. . ........................... ............. .......... ..... ..... ..... • i 4 ............. i . .. � ... t .. . 1 ..QG. rig / 4Ers &' ...... ......:!e,• ....... /o.8?rI 1 0 l..0 . :.4. .. . .. 3 II ; j ; 1 i 1 I i . i : , 1 1 i i 3! I f l H 1 i . Plum toci /taws) wt. clam w. mug. 1 _______ ,..___ _ ._ _____... ___ ____ _,..... . , . o 8 n a W o g Z 3 t F of `9 V . oO a0 o ^' 4. 11 1 v, 1 .0 -._. __ _ _._ _ _-._ _--_ -____- __- ---- — — __ — _ — _ — — — 1 1 Z -4i \ \ \ • \ \ \ \ \ \ IU S ti 1 .,,,. t 1.1) ti N.) 1 - kg - ) 4 g■ t` 0 0 Ni OP ‘/ ° ti 4 ' • di:- ' < kA U%` .i, N (' N N — N I I M M 1 1 O 1 I Ni' % - N 0 0 O 4 L — —�— _ A NM N o0 I I N I I N e 1 I I �� N M S I N i I 1 1l� yn M N N * _ �9 tv d 1J oo — o i V) 1 uv 4 N h N- M N N op tO N � . 3 i.) ap oQ 'A q (-- t. - M S 5 i ti 4 O N ON O t�n Z N N ti pp 4 ) p N oi m (S 00 N N * a `NJ 0 N N Q " N 0 .9 r` s N N 0 d- 0. S a 14N „ 4 9 M M N ti 3 4 ■ IV ti Ni °� M I N �Q I t0 U1 N N __ Q a r d; t• N ° o O N ∎∎ d: O M I A r O S O op 4 0 0 N M YN• 4 iA ,, 14 d . , v : NS < N r : � Ni N. � N N 1V N � � � N 1 L ols6N -NN,-N NN _N _ -- __ ___ _ _ Q� M W o M N V1 \9 J—, 00 rq N m co 0 . 5 �l N vM 9 N N 1 , 1 v N M d - rn N) M N O �; ..) -* o o �`°. ` N.< . p o o `o "— ci, 1 Q O � M � N N1 M J1 M tl- �n M S tq. � � �9 �9 g NI- S � 13, n +� � � 4,1 A O N N N N M N M t 0____ N p -4- M et p .....• ap 0 ■ - d' a ` N a o , I . .______...... _.________.... . ,. _ ._ NI vi --i- to 3 41. t cr I 1 1:11 -4 z *a '• k 1. 1 . N g ■ , .- .-;-.1 , _ _____ _ ____ _____. _ ____ ___ _ ____ _ 1 v, I 1=- ck 44 \ \ \ \ \ \ 1 , . .4i -- - I tv ii t4 o - k t• lli 14) ■i - ■: 4 IA ,i ,z: NI kil I 4 Nii. tis < <;. t; E 03 N, . k :... 4, N ■ *•. N 'n .--k A W •••- .... N) p■ '.;?... t f• ,.„.. 4 Z3 1■•• NI 0 ez -." ..-`: ■ \i- eh I I NI .." I _- 1 Z , . .. .. . 1 tx 1 " •4b :,. . , J _______ 1 „ I.. -TZ t4 t() Cl. ILI k n N 1 4■ i ' Y I 'z'a 11 ■ oi q k ..*: - N – I N: t■1 tl■ NI 1 IA ' "*.- tA --N.) .9 ,s )'' ".• N N tt) (%) 1 (n *•cs- NI- N . I`: In NI- kt\ ' ■4- NI clo3 tn %,A ot '` 51 , 41 w 0 . `' cizi. szN i N4 - .... c<; 1 .,. it: 1\ (3• tcS s3:- :. Z -4-.9..t. kg 'ff. -v. '. f‘ ,....0 .. - ki i - ■.f) \S' tyS' r..,, —A. .4.---*- k) t■ --- I A ...9 - ■ T 00 , 4 ? . . Q t a 4 3 N. . • . . . 1 1 _ . , ..... .... I 1,1) r.. kf) ta ...,z, ti■ ' iti- N) 0 tvl N f:: 1 ‘ Is4 Z KV I ck tk 0. '40 : % !I- IN tt) t■• .* t(1 .9 . t`• ___ _ ■,. ..9 .,. -... _ , _ t 0 00 1 tA . EA . 1 .. tv) ''.. til , ( . 1 I ..c. \5 4) 'A ef' Ni c■) 13 t\} V T 1- N N T- % —,— -- —g- ---:, -- KI"' — ---- ------ ---- 1- * :.) op I,A •ci- .. l' 4.3 ti) M ■. °0 o •5 " 1 : 1 kl3 • 0 -:. ■ %. 0 - • • • 0 -:- sc 13 k J; 1- ■ iY\ co Z. ts^ tIN (v ) tf ) 0._ ti - - • .: o I — . . MI kn i I NI (Y) N - ) to *I- cfN N kt M- `' t\3 141 1. ,.- -• • -.. c■ !$e c■ < ( N1 !■1 N ; kl ,IS 1 PR ii Iii „ :; - . 4-4 + -+ [SAN BERNARDINO COUNTY] STUDY NAME: CALCULATED BY: f A 8 CHECKED BY: 10.0-YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER / OF �8 [(c) 1983-1989 ADVANCED ENGINEERING SOFTWARE] CONCENTRATION AREA (ACRES) SOIL DEV. Tt Tc I Fm Fm 0 PATH SLOPE V HYDRAULICS POINT NUMBER SUBAREA SUM TYPE TYPE MIN. MIN. in /h (Avg) SUM (ft) ft /ft FPS. AND NOTES 1000 .0136 .. INITIAL SUBAREA 1.10 4.2 4.2 A 1 - -.- 11.4 2.60 .10 .097 9.5 2620 .0085 3.3 XOav= 16.lcfs 4.0ft- GUTTER XFALL= .02000 E FLOW TO PT.# 14.1 _ n =.0150 On= .4 1.20 9.6 13.8 A 1 - - -- 25.5 1.60 .10 .097 18.7 350 .0020 4.2 Hay= 18.7cfs n =.0130 Dn= 1.9 1.4 33.0' -PIPE E 2.30 13.8 - - - -, 26.9 1 ,,.,, 18,7 - - -- - - --- -- -- FOR CONFLUENCE 1: .. 900 .0133 .. INITIAL SUBAREA 2.10 10.0 10.0 A 7 - - -- 14.0 2.30 .49 .485 16.3 890 .0147 4.0 XOav= 23.2cfs I: 36.ft- STREET DEPTH= .55 ft. FLOW TO PT.X 3.6 FLOODWIDTH =14.6 2.20 10.2 20.2 A 7 - - -- 17.7 2.00 .49 .485 27.5 850 .0132 9.5 XOav= 27.5cfs II n =.0130 On= 1.5 1.5 27.0' -PIPE II 2.30 20.2 - - -- 19.2 1.90 27.5 - - -- - - - -- --- -.FOR CONFLUENCE 850 .0132 .. INITIAL SUBAREA 2.30 9.9 9.9 A 7 - - -- 13.7 2.32 .49 .485 16.4 II II XDEV. TYPES: 1 :Com,2= MH,3= Apt,4= Con,5 =SFR 11+ D /AC,6 =8- 100 /AC,7= 5 70 /AC, SOIL TYPE: USER = SPECIFIED X x8= 3- 4D/ AC, 9= 2O/ AC, 10= 10/ AC, 11= 0. 4D/ AC, 12= Sch ,13 =PK,14 =Ag,15 =PC,16 =AC,17 =DC RUNOFF COEFFICIENTX + -+ + -+ 1 . tell + -+ + -+ [SAN BERNARDINO COUNTY] STUDY NAME: CALCULATED BY: 6 A8 CHECKED BY: 10.0 YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER Z OF ! 8 [(c) 1983 -1989 ADVANCED ENGINEERING SOFTWARE] CONCENTRATION AREA (ACRES) SOIL DEV.; Tt Tc I Fm Fm 0 PATH SLOPE V HYDRAULICS POINT NUMBER SUBAREA SUM TYPE TYPE :MIN. MIN. in /h (Avg) SUM (ft) ft /ft FPS. AND NOTES CONFLUENCE PEAK FLOW RATE(CFS) = 56.7 ANALYSIS TIME OF CONCENTRATION(MIN.) = 19.2 LARGEST FOR POINT# AVERAGED Fm(IN /HR) _ .39 CONFLUENCE 2.30 EFFECTIVE AREA(ACRES) = 39.95 TOTAL AREA(ACRES) = 43.90 0= 56.7 0 Tc Fm Ae 56.71 19.16 .39 39.95 PR 49.00 26.05 .36 43.90 56.59 13.73 .40 31.43 680 .0025 5.4 *Day= 56.7cfs n =.0150 On= 3.1 2.1 48.0'-PIPE 3.30 MAIN - STREAM COPIED ONTO MEMORY BANK # 1 650 .0138 .. INITIAL SUBAREA 2.50 5.3 5.3 A 7 - - -- 12.2 2.49 .49 -.485 9.6 350 .0020 1.6 XOav= 9.9cfs 40.ft- STREET DEPTH= .60 ft. FLOW TO Pi.# 3.9 FLOODWIDTH =15.9 3.30 .5 5.8 A 7 - - -- 16.1 2.11 .49 .485 9.6 3.30 MEMORY BANK # 1 CONFLUENCED WITH MAIN - STREAM 0 Tc Fm Ae 66.18 16.10 .41 37.62 66.14 15.85 .41 37.15 64.37 21.28 .40 45.75 54.87 29.06 .38 49.70 -- -' '- -- 1 1 1 1 1 1 3.30 MAIN - STREAM COPIED ONTO MEMORY BANK # 2 1 1 1 1 1 1 XDEV. TYPES: 1 :Com,2= MH,3= Apt,4 =Con,5 =SFR 111 D /AC,6= 8-10D /AC,7= 5- 7D /AC, SOIL TYPE: USER = SPECIFIED X X8= 3- 4D/ AC, 9= 2D/ AC,1 0= 1D/ AC, 11= 0. 4D/ AC, 12= Sch ,13 =PK,14 =Ag,15= PC,16= AC,17 =DC RUNOFF COEFFICIENTX -+ + -+ [SAN BERNARDINO COUNTY] STUDY NAME: ; CALCULATED BY: 61113 CHECKED BY: 10.0 YEAR STORM RATIONAL METHOD STUDY ; PAGE NUMBERS OF/8 [(c) 1983 -1989 ADVANCED ENGINEERING SOFTWARE] CONCENTRATION AREA (ACRES) SOIL DEV. Tt Tc I Fm Fm 0 PATH SLOPE V HYDRAULICS POINT NUMBER SUBAREA SUM TYPE TYPE MIN. MIN. in /h (Avg) SUM (ft) ft /ft FPS. AND NOTES 1000 .0165 .. INITIAL SUBAREA 3.10 7.6 7.6 A 8 - - -- 14.8 2.22 .58 .582 11.2 _____ ____ ------ 1100 .0107 3.4 XOav= 16.0cfs 36.ft- STREET DEPTH= .52 ft. FLOW TO PTA 5.7 FL00DWIDTH =13.3 3.20 8.6 16.2 A 8 - - -- 20.6 1.82 .58 .582 18.1 40 .0050 5.9 X0av= 18.lcfs n =.0130 Dn= 1.6 .1 27.0' -PIPE 1: 3.50 MAINSTREAM COPIED ONTO MEMORY BANK $ 3 1000 .0152 .. INITIAL SUBAREA 4.10 6.9 6.9 A 8 - - -- 15.1 2.20 .58 .582 10.0 1: 450 .0064 2.5 NOav= 11.6cfs 36.ft-STREET DEPTH= .51 ft. FLOW TO PTA 3.0 FLOODWIDTH =12.7 4.20 2.5 9.4 A 8 - - -- 18.1 1.97 .58 .582 11.7 4.20 9.4 - - -- 18.1 1.97 11.7 FOR CONFLUENCE 1000 .0160 .. INITIAL SUBAREA 4.18 7.6 7.6 A 8 - - -- 14.9 2.21 .58 .582 11.1 150 .0147 3.7 XOav= 11.8cfs 36.ft STREET DEPTH= .45 ft. FLOW TO PT.# .7 FLOODWIDTH= 9.6 4.20 1.0 8.6 A 8 - - -- 15.6 2.15 .58 .582 12.1 XDEV. TYPES: 1= Com,2= MH,3= Apt,4 =Con,5 =SFR 11+ D /AC,6= 8- 10D /AC,7= 5- 70 /AC, SOIL TYPE: USER = SPECIFIED X x8= 3- 4D/ AC, 9= 2D/ AC, 10= 1D/ AC, 11= 0. 40/ AC, 12= Sch ,13 =PK,14= Ag,15= PC,16= AC,17 =DC RUNOFF COEFFICIENTX + -+ + -+ 1 , . 1 _ , _ _ r + -+ -- + -+ 1 1 + _ iiii [SAN BERNARDINO COUNTY] STUDY NAME: CALCULATED BY: GPI 8 CHECKED BY: 10.0 NEAR STORM RATIONAL METHOD STUDY PAGE NUMBER 4' OF 1 $ [(c) 1983 -1989 ADVANCED ENGINEERING SOFTWARE] CONCENTRATION AREA (ACRES) SOIL;DEV. Tt Tc I Fm Fm 0 PATH :SLOPE: V HYDRAULICS POINT NUMBER SUBAREA SUM TYPE :TYPE MIN. MIN. in /h (Avg) SUM (ft) :ft /ft :FPS. AND NOTES , I ii CONFLUENCE PEAK FLOW RATE(CFS) = 23.6 ANALYSIS TIME OF CONCENTRATION(MIN.) = 15.6 LARGEST FOR POINT# AVERAGED Fm(IN /HR) = .58 - CONFLUENCE 1: 4.20 EFFECTIVE AREA(ACRES) = 16.71 TOTAL AREA(ACRES) = 18.00 A= 23.6 0 Tc Fm Ae 22.46 18.12 .58 18.00 F ., 23.59 15.63 .58 16.71 F ' 630 .0141 9.2 XAav= 23.6cfs n =.0130 On= 1.5 i: 1.1 24.0' -PIPE 3.50 4.2 20.9 A 8 - - -- 16.8 2.06 .58 .582 27.8 ii 3.50 MEMORY BANK 1 3 CONFLUENCED WITH MAIN - STREAM 0 Tc Fm Ae 45.42 16.77 .58 34.04 44.21 19.27 .58 37.28 li 42.79 20.69 .58 38.40 850 .0108 9.9 10av= 45.4cfs II n =.0130 Dn= 2.0 1.4 33.0' -PIPE 3.30 5.3 39.3 A 8 - - -- 18.2 1.96 .58 .582 48.9 II 3.30 MEMORY BANK # 2 CONFLUENCED WITH MAIN - STREAM 0 Tc Fm Ae 114.34 18.20 .49 80.25 II 111.90 20.70 .49 87.43 109.08 22.13 .49 89.88 113.96 15.85 .49 71.41 II 114.12 16.10 .49 72.41 111.05 21.28 .49 88.78 90.28 29.06 .47 93.40 1 1 1 1 1 1 KDEV. TYPES: 1 =Com,2 =MH,3 =Apt,4= Con,5 =SFR 11+ D /AC,6 =8-100 /AC,7= 5- 7D /AC, SOIL TYPE: USER =SPECIFIED X X8= 3- 40/ AC, 9= 2D/ AC, 10= 10/ AC, 11= 0. 40/ AC, 12= Sch ,13 =PK,14 =Ag,15 =PC,16 =AC,17 =DC RUNOFF COEFFICIENTX II + -+ + -+ + -+ + -+ r [SAN BERNARDINO COUNTY] STUDY NAME: CALCULATED BY: 1 - 4 13 CHECKED BY: 10.0 -YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER5 [(c) 1983 -1989 ADVANCED ENGINEERING SOFTWARE] CONCENTRATION AREA (ACRES) SOIL DEV.; Tt Tc I Fm Fm 0 PATH :SLOPE: V HYDRAULICS POINT NUMBER SUBAREA; SUM TYPE :TYPE :MIN. MIN. in /h (Avg) SUM (ft);ft /ft;FPS. AND NOTES 1 1 7 3.30 MEMORY BANK 1 1 CLEARED id 1 3.30 MEMORY BANK 1 2 CLEARED 1 1 1 1 1 1 1 1 3.30 MEMORY BANK 1 3 CLEARED 440 .0041 8.8 X0av= 114.3cfs n =.0130 On= 3.2 .8 60.0' -PIPE 6.80 80.2 - - -- 19.0 1.91 114.3 - - -- -- - -- -- -- FOR CONFLUENCE 1000 .0117 .. INITIAL SUBAREA 6.80 6.4 6.4 A 8 - --- 15.9 2.13 .58 :582 8.9 6.80 74.4 - - -- 15.9 2.13 121.7 - - -- - - - -- - - -- FOR CONFLUENCE .. _ , 520 .0023 .. INITIAL SUBAREA 6.80 .8 .8 A 1 - - -- 12.5 2.46 .10 .097 1.7 XDEV. TYPES: 1 =Com,2=MH,3 =Apt,4 :Con,5 :SFR 11+ D /AC,6 =8- 10D /AC,7= 5- 70 /AC, SOIL TYPE: USER :SPECIFIED X X8= 3- 4D/ AC, 9= 20/ AC, 10= 1D/ AC, 11= 0. 4D/ AC, 12= Sch ,13 =PK,14 =Ag,15 =PC,16 =AC,17 =DC RUNOFF COEFFICIENTX + -+ + -+ 1 3 +_i + -+ [SAN BERNARDINO COUNTY] STUDY NAME: • CALCULATED BY: L4 B r " ! CHECKED BY: 10.0 -YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER (p OF f [(c) 1983 -1989 ADVANCED ENGINEERING SOFTWARE] CONCENTRATION AREA (ACRES) SOIL DEV. Tt Tc I Fm Fm 8 PATH :SLOPE: V HYDRAULICS POINT NUMBER SUBAREA SUM TYPE TYPE MIN. MIN. in /h (Avg) SUM (ft);ft /ft;FPS. AND NOTES CONFLUENCE PEAK FLOW RATE(CFS) = 124.0 ANALYSIS TIME OF CONCENTRATION(MIN.) = 16.9 LARGEST FOR P01NT# AVERAGED Fm(IN /HR) _ .50 CONFLUENCE 6.80 EFFECTIVE AREA(ACRES) = 79.61 TOTAL AREA(ACRES) = 100.60 0= 124.0 0 Tc Fm Ae 123.14 15.89 .50 75.22 123.93 16.69 .50 78.61 123.98 16.93 .50 79.61 123.30 19.03 .50 87.45 119.97 21.54 .49 94.63 118.94 22.12 .49 95.98 116.72 22.98 .49 97.08 96.29 29.94 .48 100.60 116.78 12.49 .50 59.29 230 .0048 9.5 )(Oav= 124.0cfs n =.0130 On= 3.2 .4 60.0' -PIPE 6.90 MAIN- STREAM COPIED ONTO MEMORY BANK-11 1 350 .0143 .. INITIAL SUBAREA 6.10 5.5 5.5 A 8 - --- 10.0 2.81 .58 .582 11.0 ' - - - -- 800 .0162 4.0 XOav= 15.4cfs 36.ft- STREET DEPTH= .49 ft. FLOW TO PT.# 3.5 FLOODWIDTH =11.4 6.20 5.6 11.1 A 8 - - -- 13.6 2.34 .58 .582 17.6 6.20 11.1 - --- 13.6 2.34 17.6 - - -- - - - -- ---- FOR CONFLUENCE XDEV. TYPES: 1= Com,2= MH,3= Apt,4= Con,S =SFR 11+ D /AC,6= 8- 10D /AC,7= 5- 7D /AC, SOIL TYPE: USER = SPECIFIED X X8= 3- 4D/ AC, 9= 2D/ AC, 10= 1D/ AC, 11= 0. 4D/ AC, 12= Sch ,13= PK,14= Ag,15 =PC,16= AC,17 =DC RUNOFF COEFFICIENTX 1 I + + -+ [SAN BERNARDINO COUNTY] STUDY NAME: CALCULATED BY: L ' B CHECKED BY: 10.0 YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER 7 OF / S [(c) 1983 -1989 ADVANCED ENGINEERING SOFTWARE] OR CONCENTRATION AREA (ACRES) SOIL DEV. Tt Tc I Fm Fm 0 PATH :SLOPE V HYDRAULICS POINT NUMBER SUBAREA SUM TYPE TYPE MIN. MIN. in /h (Avg) SUM (ft);ft /ft FPS. AND NOTES pm 1000 .0178 .. INITIAL SUBAREA 6.20 6.6 6.6 A 8 - - -- 14.6 2.24 .58 .582 9.8 1: CONFLUENCE PEAK FLOW RATE(GFS), 27.3 ANALYSIS TIME OF CONCENTRATION(MIN.) = 13.6 LARGEST FOR POINT! AVERAGED Fm(IN /HR) _ .58 CONFLUENCE 6.20 EFFECTIVE AREA(ACRES) = 17.23 TOTAL AREA(ACRES) = 17.70 0= 27.3 0 Tc Fm Ae 27.28 13.56 .58 17.23 26.40 14.62 .58 17.70 350 .0200 11.2 )(gay= 27.3cfs n =.0130 On= 1.2 IJ .5 30.0' -PIPE 6.40 5.2 22.4 A 8 - - -- 14.1 2.29 .58 .582 34.5 350 .0146 10.2 Rev= 34.5cfs 1: n =.0130 On= 1.8 6 27.0' -PIPE 6.50 22.4 - - -- 14.7 2.23 34.5 - - -- - - - -- - - -- FOR CONFLUENCE 1000 .0154 .. INITIAL SUBAREA 6.50 9.9 9.9 A 8 15.0 2.20 .58 .582 14.4 XDEV. TYPES: 1= Com,2= MH,3 =Apt,4= Con,5 =SFR 11+ D /AC,6= 8- 100 /AC,7= 5- 70 /AC, SOIL TYPE: USER = SPECIFIED X X8= 3- 4D/ AC, 9= 2D/ AC, 10= 10/ AC, 11= 0. 40/ AC, 12= Sch ,13= PK,14 =Ag,15 =PC,16= AC,17 =DC RUNOFF COEFFICIENTX II ii r"' + -+ + -+ hri 1: [SAN BERNARDINO COUNTY] STUDY NAME: CALCULATED BY: G A 8 1: CHECKED BY: 10.0 YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER S OF/8 [(c) 1983 -1989 ADVANCED ENGINEERING SOFTWARE] ii CONCENTRATION AREA (ACRES) SOIL;DEV. Tt Tc I Fm Fm 0 PATH :SLOPE: V HYDRAULICS POINT NUMBER SUBAREA SUM TYPE :TYPE MIN. MIN. in /h (Avg) SUM (ft) :ft /ft :FPS. AND NOTES , 1 1 li CONFLUENCE PEAK FLOW RATE(CFS) = 48.8 1 1 ANALYSIS TIME OF CONCENTRATION(MIN.) = 14.7 LARGEST FOR POINT# AVERAGED Fm(IN /HR) _ .58 CONFLUENCE I: 6.50 EFFECTIVE AREA(ACRES) = 32.07 TOTAL AREA(ACRES) = 32.80 0= 48.8 0 Tc Fm Ae 48.80 14.66 .58 32.07 PRI 47.09 15.72 .58 32.80 ill 48.41 15.05 .58 32.50 850 .0071 8.5 XOav= 48.8cfs n =.0130 On= 2.3 1.7 36.0' -PIPE 6.90 11.3 43.4 A 8 - - -- 16.3 2.10 .58 .582 59.1 i: 6.90 MEMORY BANK # 1 CONFLUENCED WITH MAIN-STREAM 0 Tc Fm Ae li 182.24 16.32 .53 118.68 182.06 16.71 .53 120.76 180.95 17.38 .53 123.89 173.28 12.90 .53 93.57 II 182.21 16.30 .53 118.53 181.56 17.09 .53 122.58 181.07 17.34 .53 123.69 II 175.09 19.44 .52 131.55 166.50 21.95 .52 138.73 164.38 22.53 .52 140.08 II 160.64 23.39 .52 141.18 130.49 30.37 .51 144.70 1 1 � 1 1 1 I 1 1 1 6.90 MEMORY BANK # 1 CLEARED II IDEV. TYPES: 1 =Com 2 =MH 3 =A t 4 =Con 5 =SFR 11+ D /AC,6= 8- 10D /AC,7 =5- 70 /AC, SOIL TYPE: USER = SPECIFIED X X8= 3- 4D/ AC, 9= 2D/ AC, 10= 1D/ AC, 11= 0. 4D/ AC, 12= Sch ,13= PK,14= Ag,15 =PC,16= AC,17 =DC " - - RUNOFF COEFFICIENTX li 4-+ + + II II (SAN BERNARDINO COUNTY] STUDY NAME: CALCULATED BY: 648 li CHECKED BY: 10.0 YEAR STORM RATIONAL METHOD STUDY _ PAGE NUMBER 9 OF/ 8 [(c) 1983 -1989 ADVANCED ENGINEERING SOFTWARE] I: CONCENTRATION AREA (ACRES) SOIL DEV. Tt Tc I Fm Fm 0 PATH SLOPE V HYDRAULICS POINT NUMBER SUBAREA SUM TYPE TYPE MIN. MIN. in /h (Avg) SUM (ft) ft /ft FPS. AND NOTES li 650 .0071 12.1 XOav= 182.2cfs n =.0130 Dn= 3.3 .9 66.0'-PIPE I: 7.60 MAIN - STREAM COPIED ONTO MEMORY BANK # 1 li .. 800 .0144 .. INITIAL SUBAREA 7.10 5.7 5.7 A 8 - --- 14.0 2.30 .58 .582 8.8 300 .0043 2.3 XOav= 12.3cfs li 36.ft- STREET DEPTH= .55 ft. FLOW TO PT.# 2.3 FLOODWIDTH =14.6 7.20 5.1 10.8 A 8 - - -- 16.3 2.10 .58 .582 14.7 II 800 .0016 4.7 XOav= 14.7cfs �_.. �, - - - .n= .0130 Dn= 2.0 2.8 24.0' -PIPE II 7.30 6.4 17.2 A 8 - --- 19.1 1.91 .58 .582 20.5 7.30 17.2 - - -- 19.1 1.91 20.5 FOR CONFLUENCE 800 .0118 .. INITIAL SUBAREA 7.05 4.8 4.8 A 8 - - -- 14.5 2.25 .58 .582 7.2 II 350 .0134 3.5 MOav= 8.6cfs 36.ft-STREET DEPTH= .41 ft. FLOW TO PT.# 1.8 FLOODWIDTH= 7.8 7.30 2.0 6.8 A 8 - --- 16.3 2.10 .58 .582 9.3 II II II XDEV. TYPES: 1= Com,2= MH,3= Apt,4= Con,5 =SFR 11+ D/AC,6= 8-100/AC,7= 5- 70 /AC, SOIL TYPE: USER = SPECIFIED X x8= 3- 4D/ AC, 9= 2D/ AC, 10= 1D/ AC, 11= 0. 4D/ AC, 12= Sch ,13= PK,14= Ag,15= PC,16= AC,17 =DC RUNOFF COEFFICIENTX II + -+ + -+ SAN BERNARDINO COUNTY :] ] ] STUDY NAME: CALCULATED BY: G I CHECKED BY: 10.0 YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER/0 OF ig [(c) 1983 -1909 ADVANCED ENGINEERING SOFTWARE] CONCENTRATION AREA (ACRES) SOIL DEV. Tt Tc 1 Fm Fm 0 PATH SLOPE: V HYDRAULICS POINT NUMBER SUBAREA SUM TYPE TYPE MIN. MIN. in /h (Avg) SUM (ft) ft /ft :FPS. AND NOTES 1 CONFLUENCE PEAK FLOW RATE(CFS) = 29.3 ANALYSIS TIME OF CONCENTRATION(MIN.) = 16.3 LARGEST FOR POINTM AVERAGED Fm(IN /HR) _ .58 CONFLUENCE 7.30 EFFECTIVE AREA(ACRES) = 21.48 TOTAL AREA(ACRES) = 24.00 A= 29.3 0 Tc Fm Ae 28.60 19.11 .58 24.00 1: 29.27 16.31 .58 21.48 280 .0182 9.3 XDav= 29.3cfs n =.0130 On= 2.0 1: .5 24.0' -PIPE 7.35 1.1 22.6 A 8 -- -- 16.8 2.06 .58 .582 30.0 520 .0152 10.2 KAav= 30.Ocfs n =.0130 On= 1.6 .9 27.0' -PIPE 7.40 8.7 31.3 A 8 - - -- 17.7 2.00 .58 .582 39.9 660 .0145 10.7 XAav= 39.9cfs n =.0130 Dn= 1.8 1.0 30.0' -PIPE 7.60 12.0 43.3 A 8 - --- 18.7 1.93 .58 .582 52.6 • 1 r ODEV. TYPES: 1= Com,2= MH,3= Apt,4= Con,5 =SFR 11+ D /AC,6= 8- 10D /AC,7= 5- 70 /AC, SOIL TYPE: USER = SPECIFIED X II X8= 3- 4D/ AC, 9= 20/ AC, 10= 1D/ AC, 11= 0. 40/ AC, 12= Sch ,13= PK,14= Ag,15= PC,16= AC,17 =DC RUNOFF COEFFICIENTX + + + -+ 11 II [SAN BERNARDINO COUNTY] STUDY NAME: CALCULATED BY: 0 CHECKED BY: 10.0 YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER 4( OF /g [(c) 1983 -1989 ADVANCED ENGINEERING SOFTWARE] 1: CONCENTRATION AREA (ACRES) SOIL DEV.; Tt Tc ; I Fm Fm 0 PATH :SLOPE V HYDRAULICS POINT NUMBER SUBAREA: SUM TYPE TYPE :MIN. MIN.;in /h (Avg) SUM (ft) :ft /ft FPS. AND NOTES : 1 1 1 I 1 0 1 1 7.60 MEMORY BANK $ 1 CONFLUENCED WITH MAINSTREAM 0 Tc Fm Ae 232.35 18.69 .54 168.70 220.65 21.45 .54 180.50 223.19 13.80 .54 125.54 234.13 17.19 .54 158.35 II 234.17 17.21 .54 158.54 . 234.17 17.60 .54 161.52 233.85 17.99 .54 164.23 233.46 18.23 .54 165.90 rig 233.36 18.28 .54 166.22 225.65 20.34 .54 176.34 213.07 22.86 .54 184.53 II 209.90 23.44 .54 185.88 204.67 24.31 .53 186.98 164.90 31.34 .53 190.50 II 540 .0094 14.3 XOav= 234.2cfs n =.0130 On= 3.6 .6 66.0" -PIPE II 11.10 158.5 - - -- 17.8 1.99 234.2 FOR CONFLUENCE 1 .. 670 .0146 .. INITIAL SUBAREA 11.10 8.7 8.7 A 8 - - -- 13.0 2.41 .58 .582 14.3 II 1 - r II XDEV. TYPES: 1= Com,2= MH,3= Apt,4= Con,5 =SFR 11+ D /AC,6 =8- 100 /AC,7= 5- 70 /AC, SOIL TYPE: USER = SPECIFIED X X3= 3- 40/ AC, 9= 2D/ AC, 10= 1D/ AC,1 1= 0. 40/ AC, 12= Sch ,13= PK,14= Ag,l5= PC,16= AC,17 =DC RUNOFF COEFFICIENTX li I- + -- + -+ 1 3 1 +-1 + -+ : - - . [SAN BERNARDINO COUNTY] � STUDY NAME: CALCULATED BY: 646 CHECKED BY: II 10.0 -YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER/Z OF /8 [(c) 1983 -1989 ADVANCED ENGINEERING SOFTWARE] CONCENTRATION AREA (ACRES) SOIL;DEV.; Tt Tc I Fm Fm 0 PATH :SLOPE: V HYDRAULICS POINT NUMBER SUBAREA SUM TYPE :TYPE :MIN. MIN. in /h (Avg) SUM (ft);ft /ft;FPS. AND NOTES ■ ■ I 1 CONFLUENCE PEAK FLOW RATE(CFS) = 245.2 ANALYSIS TIME OF CONCENTRATION(MIN.) = 17.8 LARGEST FOR POINT! AVERAGED Fm(IN /HR) _ .54 CONFLUENCE _ 11.10 EFFECTIVE AREA(ACRES) = 167.24 TOTAL AREA(ACRES) = 199.20 0= 245.2 0 Tc Fm Ae 236.29 14.44 .54 134.24 i: 245.14 17.82 .54 167.05 245.17 17.84 .54 167.24 244.97 18.23 .54 170.22 244.45 18.61 .54 172.93 I: 243.95 18.86 .54 174.60 243.82 18.91 .54 174.92 242.63 19.32 .54 177.40 ii 235.21 20.97 .54 185.04 229.78 22.08 .54 189.20 221.70 23.50 .54 193.23 li 218.34 24.09 .54 ' 194:50- " __ 212.83 24.95 .54 195.68 171.30 32.02 .53 199.20 232.24 12.95 .54 121.30 II 800 .0084 13.9 XOav= 245.2cfs n= .0110 Dn= 3.7 II 1.0 69.0" -PIPE 11.30 167.2 - - -- 18.8 1.92 245.2 - - -- - - - -- - - -- FOR CONFLUENCE II .. 980 .0052 .. INITIAL SUBAREA 11.15 4.3 4.3 A 8 - --- 18.5 1.94 .58 .582 5.3 II ---- 500 .0146 3.7 XOav= 9.5cfs 36.ft STREET DEPTH= .41 ft. FLOW TO PT.11 2.3 FLOODWIDTH= 7.8 II 11.30 7.7 12.0 A 8 - - -- 20.8 1.81 .58 .582 13.3 XDEV. TYPOS: 1= Com,2= MH,3 =Apt,4 =Con,5 =SFR 11+ D /AC,6 =8- 10D /AC,7- 5-7D /AC, SOIL TYPE: USER = SPECIFIED N X8= 3- 4D/ AC, 9= 2D/ AC, 10= 1D/ AC, 11= 0. 4D/ AC, 12= Sch ,13 =PK,14 =Ag,15 =PC,16 =AC,17 =DC RUNOFF COEFFICIENTX li + -+ +-+ 1 -+ + -+ [SAN BERNARDINO COUNTY] STUDY NAME: CALCULATED BY: 0; 8 CHECKED BY: 10.0 YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER 13 OF 18 [(c) 1903 -1989 'ADVANCEIY ENGINEERING SOFTWARE] CONCENTRATION AREA (ACRES) SOIL;DEV. Tt Tc I Fm Fm 0 PATH;SLOPE; V HYDRAULICS POINT NUMBER SUBAREA SUM TYPE :TYPE MIN. MIN. in /h (Avg) SUM (ft) :ft /ft;FPS. AND NOTES CONFLUENCE PEAK FLOW RATE(CFS) = 250.3 ANALYSIS TIME OF CONCENTRATION(MIN.) = 18.8 LARGEST FOR POINT# AVERAGED Fm(IN /HR) _ .55 CONFLUENCE 11.30 EFFECTIVE AREA(ACRES) = 178.07 TOTAL AREA(ACRES) = 211.20 0= 258.3 0 Tc Fm Ae 244.67 13.92 .55 129.32 248.96 15.41 .55 143.11 258.22 18.78 .55 177.86 258.26 18.80 .55 178.07 258.09 19.19 .55 181.27 257.61 19.58 .55 184.20 257.12 19.82 .55 186.01 257.00 19.87 .55 186.36 255.84 20.28 .55 189.08 247.87 21.94 .54 197.04 241.88 23.06 .54 201.20 233.16 24.48 .54 205.23 229.54 25.07 .54 206.58 223.68 25.94 .54 207.68 179.83 33.06 .53 211.20 253.39 20.84 .54 191.97 1 1 1 1 1 1 1 1 � 1 1 1 1 1 1 1 1 1 1 11.30 MAIN- STREAM COPIED ONTO MEMORY BANK # 2 1 340.0156 .. INITIAL SUBAREA 10.05 2.8 2.8 A 8 -- -- 9.7 2.85 .58 ..582, 5.7 , 940 .0109 3.2 #Oav= 11.2cfs 36.ft- STREET DEPTH= .46 ft. FLOW TO PTA 5.0 FLOOOWIDTH =10.2 10.10 7.3 10.1 A 8 - --- 14.7 2.23 .58 .502 15.0 XDEV. TYPES: 1= Com,2= MH,3= Apt,4= Con,S =SFR 11+ D /AC,6= 8- 10D /AC,7= 5-7D /AC, SOIL TYPE: USER = SPECIFIED M # 0= 3- 4D/ AC, 9= 20/ AC, 10= 1D/ AC, 11= 0. 4D/ AC, 12= Sch ,13= PK,14= Ag,15= PC,16= AC,17 =DC RUNOFF COEFFICIENTX + -+ + -+ II 1 4I 11 + - + + -+ dd :I [SAN BERNARDINO COUNTY] STUDY NAME: CALCULATED BY: GA 8 :: CHECKED BY: 10.0 YEAR STORM RATIONAL METHOD STUDY PAGE NUMBERf4_ OF /8 [(c) 1983-1989 ADVANCED ENGINEERING SOFTWARE] IIR CONCENTRATION AREA (ACRES) SOIL DEV. Tt Tc I Fm Fm 0 PATH SLOPE V HYDRAULICS ii POINT NUMBER SUBAREA SUM TYPE TYPE MIN. MIN. in /h (Avg) SUM (ft) ft /ft FPS. AND NOTES ll 50 .0100 7.4 X0av= 15.0cfs li n =.0130 Dn= 1.1 .1 -. - 30.0' -PIPE - 400 .0035 5.0 X0av= 15.0cfs !" n =.0130 On= 1.3 ii 1.3 39.0' -PIPE 10.30 12.0 22.1 A 8 - - -- 16.2 2.11 .58 .582 30.3 500 .0018 4.7 X0av= 30.3cfs -. -r n =.0130 On= 2.0 1.8 51.0' -PIPE I' 11.30 6.5 28.6 A 8 - - -- 18.0 1.98 .58 .582 35.9 iii 11.30 MEMORY BANK i 2 CONFLUENCED WITH MAIN-STREAM 0 Tc Fm Ae $1. 291.91 17.96 .55 198.00 ili 279.05 13.92 .55 151.49 284.01 15.41 .55 167.64 292.82 18.78 .55 206.46 292.82 18.80 .55 206.67 292.05 19.19 .55 209.87 290.99 19.58 .55 212.80 290.14 19.82 .55 214.61 289.95 19.87 .55 214.96 288.20 20.28 .55 217.68 II 284.98 20.84 .55 220.57 278.05 21.94 .55 225.64 270.74 23.06 .55 229.80 II 260.47 24.48 .55 233.83__ 256.26 25.07 .55 235.18 249.54 25.94 .54 236.28 200.16 33.06 .54 239.80 II 1 13 XXXXX 84.3 Way= 292.Ocfs „_ n =.0130 Dn= 1.1 .0 ; 72.0' -PIPE XDEV. TYPES: 1 =Com,2 =MH,3 =Apt,4 =Con,5 =SFR 11+ D /AC,6 =8- 10D /AC,7= 5- 7D /AC, SOIL TYPE: USER= SPECIFIED M k8= 3- 40/ AC, 9= 2O/ AC, 10= 1D/ AC, 11= 0. 4D/ AC, 12= Sch ,13 =PK,14 =Ag,15 =PC,16 =AC,17 =DC RUNOFF COEFFICIENTX I: + + + -+ i 0 Y 1 -+ -+ rR [SAN BERNARDINO COUNTY] STUDY NAME: CALCULATED BY: GA B CHECKED BY: 10.0 -YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER/5 [(c) 1983 -1989 ADVANCED ENGINEERING SOFTWARE] CONCENTRATION AREA (ACRES) SOIL DEV. Tt Tc I Fm Fm 0 PATH SLOPE V HYDRAULICS POINT NUMBER SUBAREA SUM TYPE TYPE MIN. MIN. in /h (Avg) SUM (ft) ft /ft FPS. AND NOTES :1 12.30 9.6 216.3 A 8 - - -- 18.8 1.92 .58 .552 292.8 12.30 MAIN- STREAM COPIED ONTO MEMORY BANK # 3 id 550 .0082 .. INITIAL SUBAREA - 12.25 1.9 1.9 A 1 - - -- 9.9 2.83 .10 .097 4.7 r ' - 600 .0125 6.0 X0av= 4.7cfs n =.0130 Dn= .7 1.7 18.0' -PIPE 12.45 1.9 - - -- 11.6 2.57 4.7 FOR CONFLUENCE 920 .0054 .. INITIAL SUBAREA 12.45 7.9 7.9 A 1 - - -- 13.2 2.38 .10 .097 16.2 12.45 7.9 - - -- 13.2 2.38 16.2 - - -- - - - -- ---- FOR CONFLUENCE 950 .0099 .. INITIAL SUBAREA 12.45 5.2 5.2 A 3 - - -- 12.7 2.44 .19 .194 10.5 CONFLUENCE PEAK FLOW RATE(CFS) = 30.9 ANALYSIS TIME OF CONCENTRATION(MIN.) = 12.7 LARGEST FOR POINT# AVERAGED Fm(IN /HR) _ .13 CONFLUENCE 12.45 EFFECTIVE AREA(ACRES) = 14.67 TOTAL AREA(ACRES) = 15.00 0= 30.9 0 Tc Fm Ae 30.28 11.58 .13 13.57 30.73 13.22 .13 15.00 30.88 12.66 .13 14.67 XDEV. TYPES: 1 =Com,2 =MH,3= Apt,4 =Con,5 =SFR 11+ D /AC,6 =8-100 /AC,7 =5- 70 /AC, SOIL TYPE: USER= SPECIFIED N X8= 3- 4D/ AC, 9= 2D/ AC, 10= 10/ AC, 11= 0. 4D/ AC, 12= Sch ,13 =PK,14 =Ag,15 =PC,16 =AC,17 =DC RUNOFF COEFFICIENTX + + + -+ MOW [SAN BERNARDINO STUDY NAME: CALCULATED BY: 411 $ CHECKED BY: 10.0 YCAR STORM RATIONAL METHOD STUDY PAGE NUMBER /4 OF 18 [(c) 1983 -1989 ADVANCED ENGINEERING SOFTWARE] r7 CONCENTRATION AREA (ACRES) SOIL;DEV. Tt Tc I Fm Fm 0 PATH SLOPE V HYDRAULICS id POINT NUMBER SUBAREA SUM TYPE :TYPE MIN. MIN. in /h (Avg) SUM (ft) ft /ft FPS. AND NOTES - -- - - -- ----------- - - -- - - - -- - - -- 480 .0071 7.6 X0av= 30.9cfs 1: n =.0130 Dn= 1.9 1.1 30.0' -PIPE 12.00 4.5 19.2 A 1 -- -- 13.7 2.33 .10 .123 38.0 510 .0027 5.6 X0av= 38.0cfs n =.0130 Dn= 2.5 1.5 39.0' -PIPE 12.20 9.0 27.1 A 1 - - -- 14.2 2.18 .10 .114 52.8 175 .0023 5.7 XOav= 52.Bcfs n =.0130 Dn= 3.0 .5 45.0' -PIPE rmi 12.30 MEMORY BANK 1 3 CONFLUENCED WITH MAIN-STREAM A Tc Fm Ae !!�"! 334.37 14.67 .49 196.21 ki 337.50 15.75 .49 209.40 338.67 16.31 .50 216.43 330.90 13.93 .49 186.79 336.58 15.41 .49 205.07 340.70 17.96 .50 236.10 340.23 18.79 .50 244.56 340.20 18.81 .50 244.77 338.82 19.19 .50 247.97 337.17 19.58 .50 250.90 335.96 19.82 .50 252.71 335.69 19.87 .50 253.06 _ 333.35 20.29 .50 255.78 329.35 20.84 .50 258.67 320.98 21.94 .50 263.74 312.32 23.06 .50 267.90 300.47 24.49 .50 271.93 295.65 25.07 .50 273.28 288.08 25.95 .50 274.38 233.07 33.06 .50 277.90 XDEV. TYPES: 1 =Com,2 =MH,3 =Apt,4 =Con,5 :SFR 11+ D /AC,6 =8-100 /AC,7 =5- 7D /AC, SOIL TYPE: USER= SPECIFIED X N0= 3- 4D/ AC, 9= 2D/ AC, 10= 1D/ AC, 11= 0. 4D/ AC, 12= Sch ,13 =PK,14 =Ag,15 =PC,16= AC,17 =DC RUNOFF COEFFICIENTX + -+ + -+ + + - -- + -+ [SAN BERNARO[NO COUNTY] STUDY NAME: CALCULATED BY: L A 9 CHECKED BY: 10.0 YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER (7 0r18 [(c) 1983 -1989 ADVANCED ENGINEERING SOFTWARE] CONCENTRATION AREA (ACRES) SOIL DEV. Tt Tc 1 ; Fm Fm 0 PATH SLOPE V HYDRAULICS POINT NUMBER SUBAREA SUM TYPE TYPE MIN. MIN. in /h; (Avg) SUM (ft) ft /ft FPS. AND NOTES 520 .0069 13.9 KOav= 340.7cfs n =.0130 Dn= 4.5 .6 78.0' -PIPE 12.60 12.4 248.5 A 1 - - -- 18.6 1.94 .10 .480 340.7 265 .0094 15.8 XOav= 340.7cfs n =.0130 On= 4.0 .3 78.0' -PIPE 12.90 11.0 259.5 A 1 -- -- 18.9 1.92 .10 .463 340.7 1000 .0100 16.1 X0av= 340.7cfs n =.0130 On= 3.9 1.0 78.0' -PIPE 13.00 259.5 - - -- 19.9 340.7 STREAM SUMMARY EFFECTIVE AREA(ACRES)= 259.50 TOTAL AREA(ACRES)= 301.30 PEAK FLOW RATE(CFS)= 340.70 TIME OF CONCENTRATION(MIN.)= 19.90 AVERAGED Fm(IN /HR)= .46 1 , , XDEV. TYPES: 1= Com,2= MH,3= Apt,4= Con,5 =SFR 11+ D /AC,6= 8- 10D /AC,7 =5- 7D /AC, SOIL TYPE: USER - SPECIFIED X X8= 3- 4D/ AC, 9= 2D/ AC, 10= 1D/ AC, 11= 0. 4D/ AC,1 2= Sch ,13= PK,14= Ag,15= PC,16= AC,17 =DC RUNOFF COEFFICIENTX + -+ + -+ WI [SAN BERNARDINO COUNTY] STUDY NAME: CALCULATED BY: GA 6 CHECKED BY: 10.0 YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER /8 OF /8 [(c) 1983 -1989 ADVANCED ENGINEERING SOFTWARE] 1: CONCENTRATION AREA (ACRES) SOIL;DEV.; Tt Tc I Fm Fm 0 PATH :SLOPE: V HYDRAULICS POINT NUMBER SUBAREA: SUM TYPE;TYPE;MIN. MIN. in /h (Avg) SUM (ft) :ft /ft;FPS. AND NOTES 1 1 1 PEAK FLOW RATE TABLE A Tc Fm Ae 336.99 16.61 .45 219.61 338.67 17.68 .45 232.80 339.60 18.25 .46 239.83 334.90 15.87 .45 210.19- " . 337.84 17.35 .45 228.47 !: 340.70 19.90 .46 259.50 340.23 20.72 .47 267.96 340.20 20.74 .47 268.17 338.82 21.13 .47 271.37 337.17 21.52 .47 274.30 -• 335.96 21.76 .47 276.11 335.69 21.81 .47 276.46 333.35 22.23 .47 279.18 329.35 22.79 .47 282.07 321.04 23.90 .47 287.14 312.92 25.03 .47 291.30 302.14 26.47 .47 295.33 297.70 27.07 .47 296.68 290.50 27.95 .47 297.78 239.44 35.17 .47 301.30 XDEV. TYPES: 1= Com,2= MH,3 =Apt,4 =Con,5 =SFR 11+ D /AC,6= 8- 10D /AC,7= 5- 70 /AC, SOIL TYPE: USER = SPECIFIED X X8= 3- 4D/ AC, 9= 2D/ AC, 10= 1D/ AC, 11= 0. 4D/ AC, 12= Sch ,13 =PK,14 =Ag,15 =PC,16 =AC,17 =DC RUNOFF COEFFICIENTX + -+ + -+ ..,11..0,.1. [SAN BERNARDINO COUNTY] STUDY NAME: CALCULATED BY: GA S CHECKED BY: 25.0-YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER / OF / 8 [(c) 1983-1989 ADVANCED ENGINEERING SOFTWARE] CONCENTRATION AREA (ACRES) SOIL DEV. Tt Tc I Fm Fm 0 PATH SLOPE V HYDRAULICS POINT NUMBER SUBAREA SUM TYPE TYPE MIN. MIN. in /h (Avg) SUM (ft) ft /ft FPS. AND NOTES 1000 .0136 .. INITIAL SUBAREA 1.10 4.2 4.2 A 1 11.4 3.00 .10 .097 11.0 2620 .0085 3.2 XQav= 18.8cfs 4.Oft- GUTTER T r XFALL= 02000 FLOW TO PT .1 13.3 n =.0150 On= .4 1.20 9.6 13.8 A 1 ---- 24.7 1.89 .10 .097 22.2 rm 350 .0020 4.3 XOav= 22.2cfs n =.0130 Dn= 2.2 1.4 33.0' -PIPE 2.30 13.8 - --- 26.0 1.83 22.2 - - -- - ---- - --- FOR CONFLUENCE 900 .0133 .. INITIAL SUBAREA 2.10 10.0 10.0 A 7 - -- 14.0 2.65 .49 .485 19.5 890 .0147 4.3 XOav= 27.9cfs 36.1t- STREET DEPTH= .58 ft. FLOW TO PT.I1 3.7 FLOODWIDTH =16.4 2.20 10.2 20.2 A 7 - - -- 17.7 2.30 .49 .485 33.1 850 .0132 9.7 gay= 33.lcfs n =.0130 On= 1.8 1.5 27.0' -PIPE _j_ 2.30 20.2 - - -- 19.1 2.20 33.1 FOR CONFLUENCE 850 .0132 .. INITIAL SUBAREA 2.30 9.9 9.9 A 7 - - --- 13.7 2.68 .49 .485 19.6 XDEV. TYPES: 1 =Com,2= MH,3= Apt,4= Con,5 =SFR 11+ D /AC,6= 8- 100 /AC,7 =5- 7D /AC, SOIL TYPE: USER = SPECIFIED X X8= 3- 4D/ AC, 9= 2D/ AC, 10= 1D/ AC, 11= 0. 4D/ AC, 12= Sch ,13 =PK,14 =Ag,15 =PC,16 =AC,17 =DC RUNOFF COEFFICIENTX 11 1 1 . 1 _ _, 1 1 +_+ ..4 [SAN BERNARDINO COUNTY] STUDY NAME: CALCULATED BY: 04 8 3 CHECKED BY: 25.0 YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER Z OF /23 [(c) 1983 -1989 ADVANCED ENGINEERING SOFTWARE] I; CONCENTRATION AREA (ACRES) SOIL :DEV. Tt Tc I Fm Fm 0 PATH :SLOPE: V HYDRAULICS POINT NUMBER SUBAREA; SUM TYPE :TYPE MIN. MIN. in /h (Avg) SUM (ft);ft /ft;FPS. AND NOTES 1 I li CONFLUENCE PEAK FLOW RATE(CFS) = 68.2 ANALYSIS TIME OF CONCENTRATION(MIN.) = 19.1 LARGEST FOR POINT# AVERAGED Fm(IN /HR) _ -- .39 - , - CONFLUENCE 2.30 EFFECTIVE AREA(ACRES) = 40.26 TOTAL AREA(ACRES) = 43.90 0= 68.2 0 Tc Fm Ae 68.20 19.14 .39 40.26 60.16 26.01 .36 43.90 67.56 13.73 .40 31.68 680 .0025 5.4 X0av= 68.2cfs 11 n =.0130 Dn= 4.0 10 - 2.1 48.0' -PIPE id 3.30 MAINSTREAM COPIED ONTO MEMORY BANK # 1 650 .0138 .. INITIAL SUBAREA E .. 2 .50 5.3 5.3 A 7 12.2 2.88 .49 .485 11.4 350 .0020 1.6 XOav= 11.9cfs 40.ft- STREET DEPTH= .63 ft. FLOW TO PT.# 3.1 FLOODWIDTH =17.4 3.30 .5 5.8 A 7 - - -- 16.0 2.45 .49 .485 11.4 3.30 MEMORY BANK # 1 CONFLUENCED WITH MAIN-STREAM 0 Tc Fm Ae 79.01 15.96 .41 38.08 II 78.90 15.57 .41 37.34. 77.37 21.23 .40 46.06 67.53 27.86 .38 49.70 --' -- 1 1 1 1 I 1 1 1 1 1 I 1 1 1 1 1 1 1 3.30 MAIN- STREAM COPIED ONTO MEMORY BANK # 2 XDEV. TYPES: 1= Com,2 =MH,3= Apt,4 =Con,5 =SFR 11+ D /AC,6 =8- 10D /AC,7= 5- 70 /AC, SOIL TYPE: USER = SPECIFIED X X8= 3- 4D/ AC, 9= 2D/ AC, 10= 10/ AC, 11= 0. 40/ AC, 12= Sch ,13= PK,14 =Ag,15= PC,16 =AC,17 =DC RUNOFF COEFFICIENTX [SAN BERNARDINO „COUNTY] STUDY NAME: CALCULATED BY: L /1 5 CHECKED BY: 25.0 YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER j OF /B [(c) 1983-1989 ADVANCED ENGINEERING SOFTWARE] CONCENTRATION AREA (ACRES) SOIL DEV. Tt Tc I Fm Fm 0 PATH SLOPE V HYDRAULICS POINT NUMBER SUBAREA SUM TYPE TYPE MIN. MIN. in /h (Avg) SUM (ft) ft /ft FPS. AND NOTES .. 1000 .0165 .. INITIAL SUBAREA 3.10 7.6 7.6 A 8 - - -- 14.8 2.56 .58 .582 13.5 rm 1100 .0107 3.5 x0av= 19.Scfs im 36.ft- STREET DEPTH= .55 ft. FLOW TO PT.# 5.4 FLOODWIDTH =14.6 PR 3.20 8.6 16.2 A 8 - - -- 20.2 2.13 .58 .582 22.5 40 .0050 5.7 x0av= 22.5cfs hi n =.0130 On= 2.3 .1 27.0' -PIPE 1: 3.50 MAIN STREAM COPIED ONTO MEMORY BANK # 3 1000 .0152 .. INITIAL SUBAREA 4.10 6.9 6.9 A 8 - - -- 15.1 2.53 .58 .582 12.1 450 .0064 2.5 XOav= 14.0cfs 36.ft-STREET DEPTH= .53 ft. FLOW TO PT.# 2.9 FLOODWIDTH =13.9 4.20 2.5 9.4 A 8 - - -- 17.9 2.28 .58 ,582 14.4 4.20 9.4 - - -- 17.9 2.28 14.4 FOR CONFLUENCE - 1000 .0160 .. INITIAL SUBAREA 4.18 7.6 7.6 A 8 -- -- 14.9 2.55 .58 .582 13.5 150 .0147 3.6 XOav= 14.3cfs 36.ft STREET DEPTH= .47 ft. FLOW TO PT.# .7 FLOODWIDTH =10.8 4.20 1.0 8.6 A 8 - - -- 15.6 2.48 .58 .582 14.7 xDEV. TYPES: 1= Com,2= MH,3 =Apt,4= Con,5 =SFR 11+ D /AC,6 =8- 100 /AC,7= 5- 7D /AC, SOIL TYPE: USER = SPECIFIED x x8= 3- 4D/ AC, 9= 2D/ AC, 10=1 D/ AC, 11= 0. 4D/ AC, 12= Sch ,13= PK,14= Ag,15= PC,16= AC,17 =DC RUNOFF COEFFICIENTx 1: + -+ + -+ II 1 [SAN BERNARDINO COUNTY] STUDY NAME: ; CALCULATED BY: Call 6 CHECKED BY: 25.0 YEAR STORM RATIONAL METHOD STUDY _� PAGE NUMBER ¢ OF /8 [(c) 1983 -1989 ADVANCED ENGINEERING SOFTWARE] II CONCENTRATION AREA (ACRES) SOIL;DEV. Tt Tc I Fm Fm 0 PATH :SLOPE: V HYDRAULICS POINT NUMBER SUBAREA; SUM TYPE :TYPE MIN. MIN. in /h (Avg) SUM (ft) :ft /ft;FPS. AND NOTES 1 1 CONFLUENCE PEAK FLOW RATE(CFS) = 28.7 ANALYSIS TIME OF CONCENTRATION(MIN.) = 15.6 LARGEST FOR POINT# AVERAGED Fm(IN /HR) = .58 CONFLUENCE I: 4.20 EFFECTIVE AREA(ACRES) = 16.77 TOTAL AREA(ACRES) = 18.00 0= 28.7 0 Tc Fm Ae 27.57 17.94 .58 18.00 28.71 15.60 .58 16.77 ki - 630 .0141 9.1 XOav= 28.7cfs n =.0130 On= 2.0 C 1.1 24.0' -PIPE 3.50 4.2 21.0 A 8 - - -- 16.7 2.38 .58 .582 33.9 3.50 MEMORY BANK 1 3 CONFLUENCED WITH MAIN- STREAM 0 Tc Fm Ae - , - - - 55.66 16.74 .58 34.32 II 54.56 19.14 .58 37.46 53.26 20.32 .58 38.40 850 .0108 9.4 X0av= 55.7cfs II 1 n =.0130 On= 2.8 1.5 33.0' -PIPE 3.30 5.3 39.6 A 8 - - -- 18.3 2.26 .58 .582 59.8 II 3.30 MEMORY BANK II 2 CONFLUENCED WITH MAIN-STREAM 0 Tc Fm Ae 138.15 18.26 .49 81.18 II 135.86 20.68 .49 87.99 133.20 21.90 .49 90.13 136.83 15.57 .49 71.12 II 137.26 15.96 .49 72.72 135.01 21.23 .49 89.24 113.63 27.86 .47 93.40 II XDEV. TYPES: 1- Com,2- MH,3- Apt,4- Con,5 -SFR 11+ D /AC,6= 8- 10D /AC,7= 5- 70 /AC, SOIL TYPE: USER = SPECIFIED X x8= 3- 40/ AC, 9= 2D/ AC, 10= 1D/ AC, 11= 0. 4D/ AC, 12= Sch ,13= PK,14= Ag,15= PC,16= AC,17 =DC RUNOFF COEFFICIENTX 1 + f + [SAN BERNARDINO COUNTY] STUDY NAME: CALCULATED 8Y: G# 1: CHECKED BY: 25.0 YEAR STORM RATIONAL METHOD STUDY PAGE'NOMBER 5 OF /B [(c) 1983 -1989 ADVANCED ENGINEERING SOFTWARE] CONCENTRATION AREA (ACRES) SOIL;DEV. Tt Tc I Fm Fm 0 PATH :SLOPE: V HYDRAULICS POINT NUMBER SUBAREA SUM TYPE :TYPE MIN. MIN. in /h (Avg) SUM (ft) :ft /ft :FPS. AND NOTES 3.30 MEMORY BANK # 1 CLEARED' 1 1 1 1 1 1 3.30 MEMORY BANK # 2 CLEARED 1 1 1 1 3.30 MEMORY BANK # 3 CLEARED 440 .0041 9.1 XOav: 138.1cfs n :.0130 On= 3.6 .8 60.0' -PIPE 6.80 81.2 - - -- 19.1 2.20 138.1 - - -- - -- -- -- -- FOR CONFLUENCE 1000 .0117 .. INITIAL SUBAREA 6.80 6.4 6.4 A 8 - - -- 15.9 2.46 .58 .582 10.8 6.80 75.4 - --- 15.9 2.46 146.6 - - -- -- --- - - -- FOR CONFLUENCE 520 .0023 .. INITIAL SUBAREA 6.80 .8 .8 A 1 - - -- 12.5 2.84 .10 .097 2.0 1 1 1 KDEV. TYPES: 1 =Com 2 =MH 3 =A t 4 =Con 5 =SFR 11+ D /AC,6 :8-100 /AC,7 =5- 7D /AC, SOIL TYPE: USER= SPECIFIED X x8= 3- 4D/ AC, 9= 2D/ AC, 10= 1D/ AC, 11= 0. 4D/ AC, 12= Sch ,13= PK,14= Ag,15= PC,16= AC,17 =DC RUNOFF COEFFICIENTX r+ + -+ [SAN BERNARDINO COUNTY] STUDY NAME: CALCULATED BY: 6.4 6 ii CHECKED BY: 25.0 YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER , OF /8 [(c) 1983-1989 ADVANCED ENGINEERING SOFTWARE] II CONCENTRATION AREA (ACRES) SOIL DEV. Tt Tc 1 Fm Fm 0 PATH;SLOPE; V HYDRAULICS POINT NUMBER SUBAREA SUM TYPE TYPE MIN. MIN. in /h (Avg) SUM (ft);ft /ft;FPS. AND NOTES 1 1 CONFLUENCE PEAK FLOW RATE(CFS) = 149.2 ■ ■ ANALYSIS TIME OF CONCENTRATION(MIN.) = 16.8 LARGEST FOR POINT# AVERAGED Fm(IN /HR) _ .49 CONFLUENCE 1: 6.80 EFFECTIVE AREA(ACRES) = 79.92 TOTAL AREA(ACRES) = 100.60 O= 149.2 0 Tc Fm Ae 148.31 15.89 .49 76.23 149.04 16.38 .49 70.32 149.25 16.77 .49 79.92 149.00 19.06 .49 88.38 145.72 21.49 .49 95.19 144.67 22.04 .49 96.44 142.62 22.71 .49 97.33 - 121.37 28.70 .48 100.60 139.69 12.49 .49 60.08 230 .0048 9.8 Haw= 149.2cfs n =.0130 On= 3.6 .4 60.0' -PIPE 6.90 MAIN - STREAM COPIED ONTO MEMORY BANK # 1 I .. 350 .0143 .. INITIAL SUBAREA 6.10 5.5 5.5 A 8 10.0 3.24 .58 .582 13.1 800 .0162 4.0 XOav= 18.5cfs I 36.ft- STREET DEPTH= .5l ft. FLOW TO PTA 3.4 FLOODWIDTH =12.7 6.20 5.6 11.1 A 8 - - -- 13.4 2.72 .58 .582 21.4 1 6.20 11.1 - - -- 13.4 2.72 21.4 - - -- - - - -- -- -- FOR CONFLUENCE XDEV. TYPES: 1= Com,2=M11,3= Apt,4 =Con,5 =SFR 11+ D /AC,6 =8- 100 /AC,7= 5- 70 /AC, SOIL TYPE: USER = SPECIFIED N # 8= 3- 4D/ AC, 9= 20/ AC, 10= 10/ AC, 11= 0. 4D/ AC, 12= Sch ,13= PK,14= Ag,15= PC,16= AC,17 =0C RUNOFF COEFFICIENTX 1 1 1 1 +_+ +_+ :: , _ , [SAN BERNARDINO COUNTY] STUDY NAME: CALCULATED BY: 4-.4 6 ii CHECKED BY: 25.0 YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER - 7 OF 16 [(c) 1983 -1989 ADVANCED ENGINEERING SOFTWARE] r ""! CONCENTRATION AREA (ACRES) SOIL :DEV. Tt Tc I Fm Fm 0 PATH SLOPE V HYDRAULICS ii POINT NUMBER SUBAREA SUM TYPE TYPE MIN. MIN. in /h (Avg) SUM (ft) ft /ft FPS. AND NOTES I: .. 1000 .0178 .. INITIAL SUBAREA 6.20 6.6 6.6 A 8 - - -- 14.6 2.58 .58 .582 11.9 1: CONFLUENCE PEAK FLOW RATE(CFS) = 33.0 ANALYSIS TIME OF CONCENTRATION(MIN.) = 13.4 LARGEST I: FOR POINTO AVERAGED Fm(IN /HR) _ .58 CONFLUENCE 6.20 EFFECTIVE AREA(ACRES) = 17.16 TOTAL AREA(ACRES) = 17.70 0= 33.0 0 Tc Fm Ae 33.01 13.41 .58 17.16 i: 31.88 14.62 .58 17.70 ' " -' 350 .0200 11.7 X0av= 33.Ocfs :: n =.0130 On= 1.4 .5 30.0' -PIPE 6.40 5.2 22.4 A 8 - - -- 13.9 2.66 .58 .582 41.8 li "'- 350 .0146 10.5 XOav= 41.8cfs n =.0130 On= 2.3 .6 27.0' -PIPE 6.50 22.4 - - -- 14.5 2.60 41.8 FOR CONFLUENCE 1000 .0154 .. INITIA(_ SUBAREA 6.50 9.9 9.9 A 8 - - -- 15.0 2.54 .58 .582 17.4 II II II XDEV. TYPES: 1 =Com 2 =MH 3 =A P t 4 =Con 5 =SFR 11+ D /AC 6 =8- 100 /AC 7 =5 -70 /AC SOIL TYPE: USER= SPECIFIED X X8= 3- 4D/ AC, 9= 2D/ AC, 10= 1D/ AC, 11= 0. 4D/ AC, 12= Sch ,13= PK,14= Ag,15 =PC,16= AC,17 =DC RUNOFF COEFFICIENT* li + -+ + -+ 1 _ . [SAN BERNARDINO COUNTY] STUDY NAME: CALCULATED BY: L 4 1 6 CHECKED BY: 25.0 YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER 8 OF / 8 [(c) 1983 -1989 ADVANCED ENGINEERING SOFTWARE] CONCENTRATION AREA (ACRES) SOIL;DEV.; Tt Tc I Fm Fm 0 PATH :SLOPE: V HYDRAULICS POINT NUMBER SUBAREA SUM TYPE :TYPE :MIN. MIN. in /h (Avg) SUM (ft);ft /ft;FPS. AND NOTES 1 1 1 1 CONFLUENCE PEAK FLOW RATE(CFS) = 59.1 ANALYSIS TIME OF CONCENTRATION(MIN.) = 14.5 LARGEST FOR POINT# AVERAGED Fm(IN /HR) = .58 CONFLUENCE 6.50 EFFECTIVE AREA(ACRES) = 31.87 TOTAL AREA(ACRES) = 32.80 0= 59.1 Ii 0 Tc Fm Ae 59.11 14.46 .58 31.87 r 57.04 15.69 .58 32.80 58.48 15.05 .58 32.51 - 850 .0071 8.4 XOav= 59,1cfs n =.0130 Dn= 3.0 1.7 36.0' -PIPE 6.90 11.3 43.2 A 8 - - -- 16.2 2.43 .58 .582 71.9 6.90 MEMORY BANK # 1 CONFLUENCED WITH MAIN - STREAM 0 Tc Fm Ae 219.88 16.16 .53 118.79 219.91 16.76 .53 122.09 218.30 17.45 .53 125.09 207.99 12.89 .53 94.52 219.99 16.29 .53 119.54 219.90 16.77 .53 122.14 219.06 17.16 .53 123.91 212.26 19.46 .52 132.48 203.09 21.89 .52 139.29 200.86 22.43 .52 140.54 197.42 23.11 .52 141.43 166.10 29.10 .51 144.70 '- -- 1 1 1 1 1 1 1 1 1 1 6.90 MEMORY BANK # 1 CLEARED TYPES: 1 =Com 2 =MH 3 =A t 4 =Con 5 =SFR 11+ D /AC 6= 8- 10D /AC XDEV. TYPE 7= 5- 7D /AC, SOIL TYPE: USER = SPECIFIED X P , , x8= 3- 4D/ AC, 9= 2D/ AC, 10=1 0/ AC, 11= 0. 40/ AC, 12= Sch ,13= PK,14= Ag,15= PC,16= AC,17 =DC RUNOFF COEFFICIENT* + -+ + -+ 1 [SAN BERNARDINO COUNTY ] STUDY NAME: CALCULATED BY: 6/q B CHECKED BY: 25.0 YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER 9 OF 18 [(c) 1983 -1989 ADVANCED ENGINEERING SOFTWARE] li CONCENTRATION AREA (ACRES) SOIL DEV. Tt Tc I Fm Fm 0 PATH SLOPE V HYDRAULICS POINT NUMBER SUBAREA SUM TYPE TYPE MIN. MIN. in /h (Avg) SUM (ft) ft /ft FPS. AND NOTES II 650 .0071 12.6 #0av= 220.0cfs n =.0130 On= 3.8 .9 66.0' -PIPE II 7.60 MAIN- STREAM COPIED ONTO MEMORY BANK -- - 1 , ii . 800 .0144 .. INITIAL SUBAREA 7.10 5.7 5.7 A 8 - - -- 14.0 2.66 .58 .582 10.6 1: _ 300 .0043 2.3 NOav= 14.9cfs 36.ft STREET DEPTH= .57 ft. FLOW TO PTA 2.2 FLOODWIDTH =15.8 7.20 5.1 10.8 A 8 - - -- 16.1 2.44 .58 .582 18.0 800 .0016 5.7 #Oav= 18.0cfs n =.0130 On= 2.0 2.3 24.0' -PIPE El 7.30 6.4 17.2 A 8 - - -- 18.5 2.25 .58 .582 25.8 7.30 17.2 - --- 18.5 2.25 25.8 FOR CONFLUENCE II .. 800 .0118 .. INITIAL SUBAREA 7.05 4.8 4.8 A 8 - - -- 14.5 2.59 .58 .582 8.7 II 350 .0134 3.4 #Aav =. 10.3cfs 36.ft STREET DEPTH= .44 ft. FLOW TO PT.# 1.7 FLOODWIDTH= 8.9 7.30 2.0 6.8 A 8 -- -- 16.3 2.42 .58 .582 11.3 II II II XDEV. TYPES: 1 =Com 2 =MH 3 =A t 4 =Con 5 =SFR 11+ D /AC 6 =8- lOD /AC 7 =5 -7D /AC SOIL TYPE: USER= SPECIFIED X N8= 3- 4D/ AC, 9= 2D/ AC, 10= 1D/ AC, 11= 0. 4D/ AC, 12= Sch ,13 =PK,14 =Ag,15 =PC,16 =AC,17 =DC RUNOFF COEFFICIENTX II +-I- . + -+ 1 f f -f [SAN BERNARDINO COUNTY] STUDY NAME: CALCULATED BY: LAB CHECKED 8Y: 25.0 YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER/6 OF 18 [(c) 1983 -1989 ADVANCED ENGINEERING SOFTWARE] CONCENTRATION AREA (ACRES) SOIL;DEV.; Tt Tc 1 Fm Fm 0 PATH :SLOPE: V HYDRAULICS POINT NUMBER SUBAREA SUM TYPE :TYPE;M1N. MIN. in /h (Avg) SUM (ft) :ft /ft :FPS. AND NOTES 1 1 1 CONFLUENCE PEAK FLOW RATE(CFS) = 36.4 ANALYSIS TIME OF CONCENTRATION(MIN.) = 16.3 LARGEST FOR POINT AVERAGED Fm(IN /HR) = .58 CONFLUENCE AP 7.30 EFFECTIVE AREA(ACRES) = 21.95 TOTAL AREA(ACRES) = 24.00 0= 36.4 0 Tc Fm Ae 35.94 18.45 .58 , 24.•00 , 36.38 16.26 .58 21.95 280 .0182 11.6 Hay= 36.4cfs n =.0130 On= 2.0 .4 24.0 " -PIPE 7.35 1.1 23.1 A 8 - - -- 16.7 2.39 .58 .582 37.5 520 .0152 11.9 )(Bay= 37.5cfs n =.0130 On= 2.0 .7 24.0' -PIPE 7.40 8.7 31.8 A 8 - - -- 17.4 2.33 .58 .582 49.9 660 .0145 12.5 QOav= 49.9cfs n =.0130 On= 2.3 .9 27.0' -PIPE 7.60 12.0 43.8 A 8 - - -- 18.3 2.26 .58 .582 66.1 XDEV. TYPES: 1 =Com 2 =MH 3 =A t 4= Con,5 =SFR 11+ D /AC 6= 8- 10D /AC 7= 5 -7D /AC SOIL TYPE: USER = SPECIFIED X X8= 3- 4D/ AC, 9= 2D/ AC, 10= 1D/ AC, 11= 0. 4D/ AC, 12= Sch ,13= PK,14= Ag,15= PC,16= AC,17 =DC RUNOFF COEFFICIENTX + -+ + -+ + -+ + -+ [SAN BERNARDINO COUNTY] STUDY NAME: CALCULATED BY: t 1 6 CHECKED BY: 25.0 YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER (/ OF 18 [(c) 1983 -1989 ADVANCED ENGINEERING SOFTWARE] ---- - CONCENTRATION AREA (ACRES) SOIL :DEV. Tt Tc 1 Fm Fm 0 PATH :SLOPE: V HYDRAULICS POINT NUMBER SUBAREA; SUM TYPE :TYPE MIN. MIN. in /h (Avg) SUM (ft) :ft /ft :FPS. AND NOTES 7.60 MEMORY BANK # 1 1 CONFLUENCED WITH MAIN - STREAM 0 Tc Fm pe 284.51 18.26 .54 168.63 274.49 20.50 .54 178.79 270.18 13.76 .54 127.48 285.04 17.02 .54 159.57 285.25 17.15 .54 160.62 285.53 17.62 .54 164.30 285.52 17.63 .54 164.37 284.97 18.02 .54 167.09 284.30 18.31 .54 168.88 275.41 20.32 .54 178.11 260.73 22.76 .54 185.09 257.35 23.31 .53 186.34 252.53 23.98 .53 187.23 211.25 30.01 .53 190.50 540 .0094 14.8 XOav= 285.5cfs n =.0130 Dn= 4.2 .6 66.0' -PIPE 11.10 164.3 - - -- 18.2 2.26 285.5 - - -- - -- -- - --- FOR CONFLUENCE 670 .0146 .. INITIAL SUBAREA 11.10 8.7 8.7 A 8 ---- 13.0 2.78 .58 .582 17.2 XDEV. TYPES: 1 =Com,2 =MH,3 =Apt,4 =Con,5 =SFR 11+ D /AC,6= 8- 10D /AC,7 =5- 7D /AC, SOIL TYPE: USER =SPECIFIED X x8= 3- 4D/ AC, 9= 2D/ AC, 10= 1D/ AC, 11= 0. 4D/ AC, 12= Sch ,13 =PK,14 =Ag,15 =PC,16 =AC,17 =DC RUNOFF COEFFICIENTX + -+ +H. r , II 10 + + +-+ PR hi [SAN BERNARDINO COUNTY] _ . ,, STUDY NAME: CALCULATED BY: Loge }>^± . 1 CHECKED BY: . . Eli 25.O-YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER /2 OF /8 [(c) 1983 -1989 ADVANCED ENGINEERING SOFTWARE] li CONCENTRATION AREA (ACRES) SOIL;DEV.; Tt Tc ; I ; Fm ; Fm 0 :PATH :SLOPE: V HYDRAULICS POINT NUMBER SUBAREA; SUM TYPE :TYPE :MIN. MIN :U fl /h;' " ;(Avg) SUM:(ft);ft /ft;FPS. AND NOTES 1 1 1 1 1 I 1 1 I 1 1 I 1 1 1 1 1 1 li 1 1 1 1 1 1 1 1 1 CONFLUENCE PEAK FLOW RATE(CFS) = 298.7 ANALYSIS TIME OF CONCENTRATION(MIN.) = 17.8 LARGEST FOR PO1NTO AVERAGED Fm(IN /HR) = .54 CONFLUENCE 11.10 EFFECTIVE AREA(ACRES) = 169.32 TOTAL AREA(ACRES) = 199.20 0= 298.7 hi 0 Tc Fm Ae 286.06 14.37 .54 136.18 I: 298.56 17.63 .54 168.27 298.69 17.76 .54 169.32 298.69 18.23 .54 173.00 298.68 18.24 .54 173.07 k1 1 1 297.90 18.63 .54 175.79 ii 297.30 18.87 .54 177.33 297.06 18.92 .54 177.58 0 287.16 20.93 .54 186.81 286.15 21.12 .54 187.49 271.43 23.38 .54 193.79 I: 267.84 23.92 .54 195.04 262.77 24.60 .54 195.93 219.66 30.65 .53 199.20 280.46 12.95 .54 123.59 800 .0084 14.3 MOav= 298.7cfs n =.0130 Dn= 4.3 II .9 69.0'-PIPE 11.30 169.3 - - -- 10.7 2.23 _. 298.7 - - -- - - - -- - - -- FOR CONFLUENCE II .. 980 .0052 .. INITIAL SUBAREA 11.15 4.3 4.3 A 8 - - -- 18.5 2.24 .58 .582 6.4 ' -- --- - 36.ft STREET _ _500 .0146 3.7 XUav= 11.6cfs DEPTH: .45 ft. FLOW TO PTJ$ 2.4 FLOODWIDTH= 9.6 II 11.30 7.7 12.0 A 8 - - -- 20.9 2.08 .58 .582 16.2 KDEV. TYPES: 1 =Com,2 =MH,3 =Apt,4= Con,5 =SFR 11+ D /AC,6 =8-100 /AC,7= 5- 7D /AC, SOIL TYPE: USER= SPECIFIED X X8= 3- 4D/ AC, 9= 2D/ AC, 10= 1D/ AC, 11= 0. 40/ AC, 12= Sch ,13= PK,14= Ag,15 =PC,16 =AC,17 =DC RUNOFF COEFFICIENTX + - + + -+ 1 1 1 II [SAN BERNARDINO COUNTY] STUDY NAME: CALCULATED BY: LA 3 II ... CHECKED BY: 25.0 YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER /3 OF /8 [(c) 1983 -1989 ADVANCED ENGINEERING SOFTWARE] li CONCENTRATION AREA (ACRES) SOIL :DEV.; Tt ; Tc I Fm Fm O PATH :SLOPE: V HYDRAULICS POINT NUMBER SUBAREA; SUM TYPE :TYPE :MIN.: MIN. in /h (Avg) SUM (ft) :ft /ft :FPS. AND NOTES 1 1 � � � 1 1 1 1 1 1 1 1 CONFLUENCE PEAK FLOW RATE(CFS) = 314.7 ANALYSIS TIME OF CONCENTRATION(MIN.) = 19.2 LARGEST FOR POINT# AVERAGED Fm(IN /HR) = .54 CONFLUENCE li 11.30 EFFECTIVE AREA(ACRES) = 184.00 TOTAL AREA(ACRES) = 211.20 0= 314.7 O Tc Fm Ae 295.40 13.89 .55 131.57 ii 301.33 15.31 .55 144.97 314.44 18.56 .55 178.92 314.59 18.69 .55 180.05 314.66 19.16 .54 184.00 i: 314.65 19.17 .54 184.07 313.94 19.56 .54 187.02 313.37 19.80 .54 188.70 II 313.14 19.85 .54 188.98 302.78 21.87 .54 198.81 301.66 22.05 .54 199.49 II 285.70 24.32 .54 205.79 281.83 24.87 .54 207.04 276.44 25.55 .54 207.93 230.93 31.64 .53 211.20. II 308.12 20.90 .54 194.39 1 1 1 11 1 .. t 1 1 1 1 . 1 -- I. 1 1 1 11.30 MAIN - STREAM COPIED ONTO MEMORY BANK # 2 340 .0156 INITIAL SUBAREA 10.05 2.8 2.8 A 8 - --- 9.7 3.29 .58 .582 6.8 940 .0109 3.4 nay= 13.5cfs I 36.ft-STREET DEPTH= .49 ft. FLOW TO PTA 4.8 FLOODWIDTH =11.4 10.10 7.3 10.1 A 8 - - -- 14.5 2.60 .58 .582 18.3 XDEV. TYPES: 1= Com,2= MH,3= Apt,4= Con,S =SFR 11+ D /AC,6= 8-100 /AC,1= 5- 7D /AC, SOIL TYPE: USER = SPECIFIED X X8= 3- 4D/ AC, 9= 2D/ AC, 10= 1D/ AC, 11= 0. 4D/ AC, 12= Sch ,13= PK,14= Ag,15= PC,16= AC,17 =DC RUNOFF COEFFICIENTX li + -+ + -+ [SAN BERNARDINO COUNTY] STUDY NAME: CALCULATED BY: 01 1 8 CHECKED BY: 25.0 YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER/40F /8 [(c) 1983 -1989 ADVANCED ENGINEERING SOFTWARE] CONCENTRATION AREA (ACRES) SOIL DEV. Tt Tc I Fm Fm 0 PATH SLOPE V HYDRAULICS POINT NUMBER SUBAREA SUM TYPE TYPE MIN. MIN. in /h (Avg) SUM (ft) ft /ft FPS. AND NOTES 50 .0100 7.8 nay= 18.3cfs n =.0130 On= 1.2 .1 30.0' -PIPE 400 .0035 5.3 QOav= 18.3cfs n =.0130 Dn= 1.4 1.3 39.0' -PIPE 10.30 12.0 22.1 A 8 - - -- 15.9 2.46 .58 .582 37.3 500 .0018 4.9 XOav= 37.3cfs n =.0130 On= 2.2 1.7 51.0' -PIPE 11.30 6.5 28.6 A 8 - - -- 17.6 2.31 .58 .582 44.5 11.30 MEMORY BANK 1 2 CONFLUENCED WITH MAIN- STREAM 0 Tc Fm Ae 355.03 17.57 .55 197.26 337.74 13.89 .55 154.17 344.60 15.31 .55 169.87 357.08 18.56 .55 207.52. 356.99 18.69 .55 208.65 356.21 19.16 .55 212.60 356.18 19.17 .55 212.61 354.78 19.56 .55 215.62 353.81 19.80 .55 217.30 353.49 19.85 .55 217.58 346.79 20.90 .55 222.99 340.01 21.87 .55 227.41 338.63 22.05 .55 228.09 319.71 24.32 .55 234.39 315.19 24.87 .54 235.64 309.01 25.55 .54 236.53 257.78 31.64 .54 239.80 1 13 XXXXX 89.4 Hay= 357.1cfs n =.0130 Dn= 1.2 .0 72.0' -PIPE XDEV. TYPES: 1 =Com,2 =MH,3 =Apt,4 =Con,5 =SFR 11+ D /AC,6 =8- 10D /AC,7 =5- 7D /AC, SOIL TYPE: USER= SPECIFIED X X8= 3- 4D/ AC, 9= 20/ AC, 10= 1D/ AC,1 1= 0. 4D/ AC, 12= Sch ,13 =PK,14 =Ag,15 =PC,16 =AC,17 =DC RUNOFF COEFFICIENTX + -+ + -+ 4 1 II + -+ . . , + -+ [SAN BERNARDINO COUNTY] STUDY NAME: CALCULATED BY: L A 6 1: • CHECKED BY: 2 5.0 YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER /s OF / 8 [(c) 1983-1989 ADVANCED ENGINEERING SOFTWARE] I: CONCENTRATION AREA (ACRES) SOIL DEV. Tt Tc I Fm Fm 0 PATH :SLOPE: V HYDRAULICS POINT NUMBER SUBAREA: SUM TYPE TYPE MIN. MIN. in /h (Avg) SUM (ft);ft /ft;FPS. AND NOTES 1 1 12.30 9.6: 217.1 A 8 -- -- 18.6 2.24 .58 .552 357.1 ; I: : 12.30 MAIN- STREAM COPIED ONTO MEMORY BANK # 3 .. 550 .0082 .. INITIAL SUBAREA PP 12.25 1.9 1.9 A 1 - --- 9.9 3.26 .10 .097 5.4 kJ 600 .0125 6.3 Hay= 5.4cfs n =.0130 Dn= .7 1.6 18.0' -PIPE Ai 12.45 1.9 - - -- 11.5 2.98 5.4 - - -- - - - -- - - -- FOR CONFLUENCE II .. 920 .0054 .. INITIAL SUBAREA 12.45 7.9 7.9 A 1 -- -- 13.2 2.7:4 .10 .097 18.8 12.45 7.9 - - -- 13.2 2.74 18.8 - - -- - - - -- - - -- FOR CONFLUENCE - 950 .0099 .. INITIAL SUBAREA 12.45 5.2 5.2 A 3 12.7 2.82 .19 .194 12.3 - - -- - -- -- -- -- - =-�. II CONFLUENCE PEAK FLOW RATE(CFS) = 35.9 ANALYSIS TIME OF CONCENTRATION(MIN.) = 12.7 LARGEST FOR POINT# AVERAGED Fm(IN /HR) = .13 CONFLUENCE 12.45 EFFECTIVE AREA(ACRES) = 14.67 TOTAL AREA(ACRES) = 15.00 A= 35.9 II A Tc Fm Ae 35.12 11.52 .13 13.51 35.71 13.22 .13 15.00 II 35.87 12.66 .13 14.67 II XDEV. TYPES: 1= Com,2 =MH,3= Apt,4= Con,5 =SFR 11+ D /AC,6 =8- 100 /AC,7= 5-70/AC, SOIL TYPE: USER = SPECIFIED X X8= 3- 40/ AC, 9= 20/ AC,1 0= 10/ AC, 11= 0. 4D/ AC, 12= Sch ,13= PK,14= Ag,15= PC,16= AC,17 =DC RUNOFF COEFFICIENTX + + + -+ , . „ , [SAN BERNARDINO COUNTY] STUDY NAME: CALCULATED BY: &A a CHECKED BY: 25.0 YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER /<p OF 18 [(c) 1983-1989 ADVANCED ENGINEERING SOFTWARE] CONCENTRATION AREA (ACRES) SOIL DEV. Tt Tc I Fm Fm A PATH SLOPE V HYDRAULICS POINT NUMBER SUBAREA SUM TYPE TYPE MIN. MIN. in /h (Avg) SUM (ft) ft /ft FPS. AND NOTES 480 .0071 7.3 Way= 35.9cfs n =.0130 Dn= 2.5 1.1 30.0' -PIPE 12.00 4.5 19.2 A 1 - - -- 13.8 2.68 .10 .123 44.1 [: 510 .0027 5.3 Ngav= 44.1cfs n =.0130 Dn= 3.3 1.6 39.0' -PIPE [: 12.20 9.0 27.0 A 1 -- -- 14.2 2.51 .10 .114 61.0 175 .0023 5.5 XOav= 61.0cfs n =.0130 Dn= 3.8 .5 45.0' -PIPE 12.30 MEMORY BANK 1 3 CONFLUENCED WITH MAIN - STREAM 0 Tc Fm Ae 403.01 14.78 .49 200.58 407.92 15.89 .49 214.65 409.92 16.47 .50 222.04 397.34 13.89 .49 189.16 405.43 15.31 .49 207.03 - 412.59 17.58 .50 235.36 412.69 18.56 .50 245.62 412.36 18.69 .50 246.75 410.71 19.16 .50 250.70 410.67 19.17 .50 250.77 408.56 19.57 .50 253.72 407.18 19.80 .50 255.40 406.78 19.85 .50 255.68 398.36 20.91 .50 261.09 390.13 21.87 .50 265.51 388.48 22.05 .50 266.19 366.54 24.32 .50 272.49 361.36 24.87 .50 273.74 354.39 25.55 .50 274.63 297.34 31.64 .50 277.90 1 1 1 1 1 1 XDEV. TYPES: 1= Com,2 =MH,3= Apt,4= Con,5 =SFR 11+ D /AC,6 =B- 100 /AC,7= 5- 70 /AC, SOIL TYPE: USER = SPECIFIED X X8= 3- 40/ AC, 9= 2D/ AC, 10= 1D/ AC, 11= 0. 4D/ AC, 12= Sch ,13= PK,14= Ag,15= PC,16= AC,17 =DC RUNOFF COEFFICIENTX X II [SAN BERNARDINO COUNTY] STUDY NAME: CALCULATED BY: 644 8 CHECKED BY: 25.0 YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER/7 OF /8 [(c) 1983 -1989 ADVANCED ENGINEERING SOFTWARE] CONCENTRATION AREA (ACRES) SOIL DEV. Tt Tc 1 Fm Fm 0 PATH SLOPE V HYDRAULICS POINT NUMBER SUBAREA SUM TYPE TYPE MIN. MIN. in /h (Avg) SUM (ft) ft /ft FPS. AND NOTES 520 .0069 14.2 XOav= 412.7cfs n =.0130 On= 5.3 .6 78.0' -PIPE 12.60 12.4 258.0 A 1 - - -- 19.2 2.20 .10 .482 412.7 265 .0094 16.4 XOav= 412.7cfs n =.0130 On= 4.6 .3 78.0' -PIPE 12.90 11.0 258.8 A 1 - - -- 18.5 2.18 .10 .463 415.2 1000 .0100 16.8 X0av= 415.2cfs n =.0130 On= 4.5 1.0 78.0'-PIPE 13.00 258.8 - - -- 19.5 415.2 - - -- -- - -- - - -- STREAM SUMMARY EFFECTIVE AREA(ACRES)= 258.76 TOTAL AREA(ACRES)= 301.30 PEAK FLOW RATE(CFS)= 415.23 TIME OF CONCENTRATION(MIN.)= 19.45 AVERAGED Fm(IN /HR)= ,46 - - XDEV. TYPOS: 1= Com,2= MH,3= Apt,4= Con,5 =SFR 11+ D /AC,6= 8-10D /AC,7= 5-7D /AC, SOIL TYPE: USER = SPECIFIED X X8= 3- 4D/ AC, 9= 2D/ AC, 10= 1D/ AC, 11= 0. 4D/ AC, 12= Sch ,13= PK,14= Ag,15= PC,16= AC,17 =DC RUNOFF COEFFICIENTX + -+ + -+ + - + + -+ [SAN BERNARDINO COUNTY] STUDY NAME: CALCULATED BY: L /a CHECKED BY: 25.0 YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER / 8 OF / 8 [(c) 1983 -1989 ADVANCED ENGINEERING SOFTWARE] CONCENTRATION AREA (ACRES) SOIL;DEV.; Tt Tc I Fm Fm A PATH :SLOPE; V HYDRAULICS POINT NUMBER SUBAREA; SUM TYPE :TYPE :MIN. MIN. in /h (Avg) SUM (ft);ft /ft;FPS. AND NOTES 1 PEAK FLOW RATE TABLE I 1 I, A Tc Fm Ae 408.52 16.65 .45 223.98 411.96 17.76 .46 238.05 4""" 413.58 18.35 .46 245.44 404.86 15.77 .45 212.56. 409.14 17.18 .45 230.43 415.23 19.45 .46 258.76 414.28 20.43 .47 269.02 413.86 20.56 .47 270.15 412.08 21.03 .47 274.10 r7 412.04 21.04 .47 274.17 410.06 21.44 .47 277.12 _ 408.77 21.68 .47 278.80 r" 408.40 21.73 .41 279.08 Yd 400.40 22.79 .47 284.49 392.87 23.76 .47 288.91 391.29 23.94 .47 289.59 370.92 26.23 .47 295.89 366.09 26.78 .47 297.14 359.54 27.47 .47 298.03 306.99 33.63 .47 301.30 1 XDEV. TYPES: 1= Com,2= MH,3= Apt,4= Con,5 =SFR 11+ D /AC,6= 8- 10D /AC,7 =5- 7D /AC, SOIL TYPE: USER =SPECIFIED X x8= 3- 40/ AC, 9= 20/ AC, 10= 1D/ AC, 11= 0. 4D/ AC, 12= Sch ,13= PK,14= Ag,15= PC,16= AC,17 =OC RUNOFF COEFFICIENTM 1: + -+ , + 7 + -+ 1 II t_+ + -+ [SAN BERNARDINO COUNTY] STUDY NAME: CALCULATED BY: GA 5. CHECKED BY: 100.0 -YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER ( OF /8 [(c) 1983 -1989 ADVANCED ENGINEERING SOFTWARE] CONCENTRATION AREA (ACRES) SOIL DEV. Tt Tc I • Fm Fm O PATH SLOPE V HYDRAULICS POINT NUMBER SUBAREA SUM TYPE TYPE MIN. MIN. in /h (Avg) SUM (ft) ft /ft FPS. AND NOTES 1000 .0136 .. INITIAL SUBAREA 1.10 4.2 4.2 A 1 - - 11.4 3.80 .10 .097 14.0 - - - -- - - -- ---- ----- ..T - - - -- 2620 .0085 3.5 XOav= 24.0cfs 4.0ft- GUTTER XFALL= .02000 „� FLOW TO PT.X 13.6 n =.0150 On= .5 1.20 9.6 13.8 A 1 - - -- 25.0 2.37 .10 .097 28.2 350 .0020 4.7 XOav= 28.2cfs n =.0130 Dn= 2.8 1.2 33.0' -PIPE 2.30 13.8 - - -- 26.2 2.30 28.2 FOR CONFLUENCE 900 .0133 .. INITIAL SUBAREA 2.10 10.0 10.0 A 7 14.0 3.35 .49 .485 25.8 890 .0147 5.0 XOav= 37.2cfs 36.ft- STREET DEPTH= .63 ft. FLOW TO PT.4 3.3 FLOODWIDTH =18.0 2.20 10.2 20.2 A 7 - - -- 17.3 2.95 .49 .485 44.8 850 .0132 11.3 XOav= 44.8cfs 1 1.3 n =.0130 On= 2.3 27.0' -PIPE 1 2.30 20.2 - - -- 18.6 2.83 44.8 - - -- - - --- - --- FOR CONFLUENCE .. 850 .0132 INITIAL SUBAREA 1 2.30 9.9 9.9 A 7 - - -- 13.7 3.39 .49 .485 25.9 1 1 XDEV. TYPES: 1 =Com,2= MH,3= Apt,4 =Con,S =SFR 111 0 /AC,6 =8- 100 /AC,7 =5- 70 /AC, SOIL TYPE: USER= SPECIFIED X X8= 3- 4D/ AC, 9= 2D/ AC, 10= 1D/ AC, 11= 0. 4D/ AC, 12= Sch ,13 =PK,14 =Ag,15 =PC,16 =AC,17 =DC RUNOFF COEFFICIENTX • + -+ + -+ r II [SAN BERNARDINO COUNTY] STUDY NAME: CALCULATED BY: LA 15 CHECKED BY: 100.0 YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER Z OF /8 [(c) 1983 -1989 ADVANCED ENGINEERING SOFTWARE] CONCENTRATION AREA (ACRES) SOIL;OEV.; Tt Tc ; 1 Fm Fm 0 PATH :SLOPE: V HYDRAULICS POINT NUMBER SUBAREA: SUM TYPE :TYPE :MIN. MIN. in /h (Avg) SUM (ft);ft /ft :FPS. AND NOTES : 1 1 1 1 1 CONFLUENCE PEAK FLOW RATE(CFS) = 90.5 ANALYSIS TIME OF CONCENTRATION(MIN.) = 18.6 LARGEST FOR POINTS AVERAGED Fm(IN /HR) _ .39 CONFLUENCE PR 2.30 EFFECTIVE AREA(ACRES) = 39.88 TOTAL AREA(ACRES) = 43.90 0= 90.5 imi 0 Tc Fm Ae 90.45 18.59 .39 39.88 r ,, 79.08 26.23 .36 43.90 iii 89.03 13.73 .40 32.05 680 .0025 7.2 QAav= 90.Scfs P" n =.0130 Dn= 4.0 ii 1.6 48.0' -PIPE ! 3.30 MAIN- STREAM COPIED ONTO MEMORY BANK Y 1 id .. 650 .0138 .. INITIAL SUBAREA 2 .50 5.3 5.3 A 1 -- - 12.2 3.64 .49 .485 15.0 1_ .0020 - 1.6 XOav= 15.6cfs II 40.ft- STREET DEPTH= .67 ft. FLOW TO PTA 3.5 , FL000WIDTH =19.6 3.30 .5 5.8 A 7 -- -- 15.7;3.13 .49 .485 15.0 3.30 MEMORY BANK 1 1 CONFLUENCED WITH MAIN - STREAM TT 0 Tc Fm Ae II 104.17 15.68 .41 38.41 II 103.97 15.33 .41 37.72 ' 103.00 20.16 .40 45.68 88.88 28.03 .38 49.70 II I 1 1 1 I 1 1 1 i 1 1 1 1 1 1 3.30 MAIN- STREAM COPIED ONTO MEMORY BANK t 2 XDEV. TYPES: 1= Com,2= MH,3= Apt,4= Con,S =SFR 11+ D /AC,6= 8- 10D /AC,7= 5- 70 /AC, SOIL TYPE: USER = SPECIFIED X K8= 3- 4D/ AC, 9= 2D/ AC, 10= 1D/ AC, 11= 0. 4D/ AC, 12= Sch ,13= PK,14= Ag,15= PC,16= AC,17 =DC RUNOFF COEFFICIENTX li + -+ +-+ . 1 1 [SAN BERNARDINO COUNTY] STUDY NAME: CALCULATED BY: G A 6 1: CHECKED BY: 100.0 YEAR STORM RATIONAL METHOD STUDY PAGE NUMBERS OF /8 [(c) 1983 -1989 ADVANCED ENGINEERING SOFTWARE] CONCENTRATION AREA (ACRES) SOIL DEV. Tt Tc I ; Fm Fm 0 PATH SLOPE V HYDRAULICS POINT NUMBER SUBAREA SUM TYPE TYPE MIN. MIN. in /h (Avg) SUM (ft) ft /ft FPS. AND NOTES 1000 .0165 .. INITIAL SUBAREA 3.10 7.6 7.6 A 8 - --- 14.8 3.24 .58 .582 18.2 F'! 1100 .0107 3.7 XAav= 26.4cfs 36.ft- STREET DEPTH= .60 ft. FLOW TO PT.1 5.1 FL00DWIDTH =17.1 r" 3.20 8.6 16.2 A 8 - - -- 19.9 2.71 .58 .582 31.1 40 .0050 7.8 XAav= 31.Icfs n =.0130 Dn= 2.3 .0 21.0' -PIPE 3.50 MAIN - STREAM COPIED ONTO MEMORY BANK 1 3 1000 .0t52 .. INITIAL SUBAREA 4.10 6.9 6.9 A 8 - - -- 15.1 3.21 .58 .582 16.3 450 .0064 2.7 )(Au= 18.9cfs 36.ft STREET DEPTH= .58 ft. FLOW 10 PT.! 2.7 FL00DWIDTH =16.4 4.20 2.5 9.4 A 8 - - -- 17.8 2 .58 .582 19.6 4.20 9.4 - - -- 17.8 2.90 19.6 - - -- -- - -- - - -- FOR CONFLUENCE 1000 .0160 .. INITIAL SUBAREA 4.18 7.6 7.6 A 8 - - -- 14.9 3.23 .5B .582 18.1 150 .0147 4.0 nay= 19.2cfs 36.ft STREET DEPTH= .52 ft. FLOW TO PT.{ .7 FL00DWIDTH =13.3 4.20 1.0 8.6 A 8 - - -- 15.6 3.14 .58 .582 19.8 A *DEV. TYPES: 1 =Com 2 =MN =A 4 =C = + _ _ USER= SPECIFIED ,_ ,3 pt, on,5 SFR 11 D /AC,6 8 tOD /AC,7 5 7D /AC, SOIL TYPE: USER SPECIFIED X X8= 3- 4D/ AC, 9= 2D/ AC, 10= 1D/ AC, 11= 0. 4D/ AC, 12= Sch ,13= PK,14= Ag,15= PC,16= AC,17 =DC RUNOFF COEFFICIENT* + - + + -+ di f -t [SAN BERNARDINO COUNTY] STUDY NAME: - . CALCULATED BY: 141 B p "" CHECKED BY: 1 100.0 -YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER ¢ OF /$ [(c) 1983 -1989 ADVANCED ENGINEERING SOFTWARE] CONCENTRATION AREA (ACRES) SOIL DEV.: Tt Tc I Fm Fm 0 PATH SLOPE V HYDRAULICS POINT NUMBER SUBAREA SUM TYPE TYPE :MIN. MIN. in /h (Avg) SUM (ft) ft /ft FPS. AND NOTES 11 CONFLUENCE PEAK FLOW RATE(CFS) = 38.8 ANALYSIS TIME OF CONCENTRATION(MIN.) = 15.6 LARGEST FOR POINTI AVERAGED Fm(IN /HR) _ .58 CONFLUENCE !Am! 4.20 EFFECTIVE AREA(ACRES) = 16.82 TOTAL AREA(ACRES) = 18.00 0= 38.8 0 Tc Fm Ae 37.57 17.81 .58 18.00 38.79 15.58 .58 16.82 630 .0141 12.3 x0av= 38.8cfs n =.0130 On 2.0 .9 24.0' -PIPE 3.50 4.2 21.0 A 8 - --- 16.4 3.05 .58 .582 46.6 3.50 MEMORY BANK 1< 3 CONFLUENCED WITH MAIN-STREAM 0 Tc Fm Ae 76.23 16.43 .58 34.35 75.29 18.69 .58 37.35 73.57 19.98 .58 38.40 850 .0108 12.8 XOav= 76.2cfs n =.0130 On= 2.8 1.1 33.0' -PIPE 3.30 5.3 39.6 A 8 - - -- 17.5 2.93 .58 .582 83.7 3.30 MEMORY BANK 1 2 CONFLUENCED WITH MAIN - STREAM `' 0 Tc Fm Ae 187.41 17.54 .49 81.07 185.25 19.81 .49 87.76 181.39 21.13 .49 89.87 184.85 15.33 .49 72.39 185.52 15.68 .49 73.85 184.58 20.16 .49 88.62 152.93 28.03 .47 93.40 XDEV. TYPES: 1 =Com,2= MH,3 =Apt,4= Con,S =SFR 11+ D /AC,6= 8- 10D /AC,7= 5- 70 /AC, SOIL TYPE: USER = SPECIFIED X x8= 3- 40/ AC, 9= 2D/ AC, 10= 1D/ AC, 11= 0. 4D/ AC, 12= Sch ,13 =PK,14 =Ag,15 =PC,16 =AC,17 =DC RUNOFF COEFFICIENTX + + + -+ [SAN BERNARDINO COUNTY] STUDY NAME: CALCULATED BY: L )4 13 CHECKED BY: 100.0 YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER C OF 18 [(c) 1983 -1989 ADVANCED ENGINEERING SOFTWARE] CONCENTRATION AREA (ACRES) SOIL;DEV. Tt Tc I Fm Fm 0 PATH :SLOPE: V HYDRAULICS POINT NUMBER SUBAREA; SUM TYPE :TYPE MIN. MIN. in /h (Avg) SUM (ft) :ft /ft :FPS. AND NOTES 3.30 MEMORY BANK # 1 CLEARED 1 1 1 1 1 1 1 1 1 1 3.30 MEMORY BANK # 2 CLEARED 1 1 1 1 1 1 1 1 1 1 „ 3.30 MEMORY BANK # 3 CLEARED 440 ,.0041. -9,5 K0av= 187.4cfs n =.0130 On= 5.0 .8 60.0' -PIPE 6.80 81.1 - - -- 18.3 2.85 187.4 FOR CONFLUENCE 1000 .. 000 .0117 INITIAL SUBAREA 6.80 6.4 6.4 A 8 - - -- 15.9 3.11 .58 .582 14.5 6.80 77.8 - - -- 15.9 3.11 198.7 - - -- - - - -- -- -- FOR CONFLUENCE .. 520 .0023 .. INITIAL SUBAREA 6.80 .8 .8 A 1 - - -- 12.5 3.59 .10 .097 2.5 1 1 XDEV. TYPES: 1= Com,2= MH,3 =Apt,4= Con,5 =SFR 11+ D /AC,6= 8- 10D /AC,7= 5- 7D /AC, SOIL TYPE: USER =SPECIFIED X M8= 3- 4D/ AC, 9= 2D/ AC, 10= 1D/ AC, 11= 0. 4D/ AC, 12= Sch ,13= PK,14= Ag,15= PC,16= AC,17 =DC RUNOFF COEFFICIENTX + -+ + -+ 1 . , . 1 1 , _, 1 1-1 1-1 [SAN BERNARDINO COUNTY] STUDY NAME: CALCULATED 8Y: -A 8 :: CHECKED BY: 100.0 YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER ( OF I8 [(c) 1983-1989 ADVANCED ENGINEERING SOFTWARE] I: CONCENTRATION AREA (ACRES) SOIL DEV.; Tt Tc I Fm Fm 0 PATH :SLOPE: V HYDRAULICS POINT NUMBER SUBAREA; SUM TYPE TYPE :MIN. MIN. in /h (Avg) SUM (ft) :ft /ft :FPS. AND NOTES : 1 1 1 ii CONFLUENCE PEAK FLOW RATE(CFS) = 202.5 ANALYSIS TIME OF CONCENTRATION(MIN.) = 18.3 LARGEST FOR POINT# AVERAGED Fm(IN /HR) _ .50 CONFLUENCE ii"! 6.80 EFFECTIVE AREA(ACRES) = 88.27 TOTAL AREA(ACRES) = ..100.60 _ 0= 202.5 i. Sri 0 Tc Fm Ae 200.84 15.89 .50 78.61 111! 201.39 16.11 .50 79.59 Ni 201.81 16.45 .50 81.05 202.49 18.30 .50 88.27 199.06 20.58 .49 94.96 ,_ :: 198.22 20.94 .49 95.82 194.56 21.92 .49 97.07 163.59 28.83 .48 100.60 i: 187.60 12.49 .49 61.95 230 .0048 10.3 XAav= 202.Scfs ii n =.0130 Dn= 5.0 .4 60.0' -PIPE 6.90 MAIN- STREAM COPIED ONTO MEMORY BANK # 1 11 350 .0143 .. INITIAL SUBAREA 6.10 5.5 5.5 A 8 10.0 4.09 .58 .582 17.4 800 .0162 4.2 XOav= 24.7cfs 36.ft- STREET DEPTH= .55 ft. II FLOW TO PT.# 3.1 FLOODWIDTH =14.6 6.20 5.6 11.1 A 8 - - -- 13.1 3.49 .58 .582 29.0 6.20 11.1 - - -- 13.1 3.49 29.0 FOR CONFLUENCE XDEV. TYPES: 1= Com,2= MH,3= Apt,4= Con,5 =SFR 11+ D /AC,6= 8-100/AC,7= 5- 7D /AC, SOIL TYPE: USER = SPECIFIED X R8= 3- 4D/ AC, 9= 2D/ AC, 10= 1D/ AC, 11= 0. 40/ AC, 12- Sch ,13- PK,14- Ag,15- PC,16- AC,17 -DC RUNOFF COEFFICIENTX ; I: 1-1- 1 1 _ _, 1 1 4 -+ -+ [SAN BERNARDINO COUNTY] STUDY NAME: CALCULATED BY: 1.4 B CHECKED BY: 100.0 YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER 7 OF i 8 [(c) 1983 -1989 ADVANCED ENGINEERING SOFTWARE] li CONCENTRATION AREA (ACRES) SOIL DEV. Tt Tc I Fm Fm 0 PATH :SLOPE V HYDRAULICS POINT NUMBER SUBAREA SUM TYPE TYPE MIN. MIN. in /h (Avg) SUM (ft);ft /ft FPS. AND NOTES , _ .... ii .. 1000 .0178 .. INITIAL SUBAREA 6.20 6.6 6.6 A 8 -- -- 14.6 3.27 .58 .582 15.9 :: CONFLUENCE PEAK FLOW RATE(CFS) = 44.5 ANALYSIS TIME OF CONCENTRATION(MIN.) = 13.1 LARGEST i: FOR POINT!' AVERAGED Fm(IN /HR)+= .58 CONFLUENCE 6.20 EFFECTIVE AREA(ACRES) = 17.02 TOTAL AREA(ACRES) = 17.70 0= 44.5 0 Tc Fm Ae 44.49 13.12 .58 17.02 :: 42.77 14.62 .58 17.70 350 .0200 12.5 X0av= 44.5cfs 1: n =.0130 On= 1.7 .5 30.0' -PIPE 6.40 5.2 22.2 A 8 - - -- 13.6 3.41 .58 .582 56.6 350 .0146 14.2 )(0av= 56.6cfs I:I n =.0130 On= 2.3 .4 27.0' -PIPE il 6.50 22.2 - - -- 14.0 3.35 56.6 FOR CONFLUENCE 1000 .0154 .. INITIAL SUBAREA 6.50 9.9 9.9 A 8 15.0 3.21 .58 .582 23.4 1 1 XDEV. TYPES: 1= Com,2= MH,3= Apt,4= Con,5 =SFR 11+ 0 /AC,6 =8- 100 /AC,7= 5- 70 /AC, SOIL TYPE: USER = SPECIFIED X 18= 3- 40/ AC, 9= 2D/ AC, 10= 10/ AC, 11= 0. 40/ AC, 12= Sch ,13= PK,14= Ag,15= PC,16= AC,17 =DC RUNOFF COEFFICIENTX d II II II + -+ + -+ II [SAN BERNARDINO COUNTY] STUDY NAME: CALCULATED BY: G id /5' II CHECKED BY: 100.0 YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER g OF tS [(c) 1983-1989 ADVANCED ENGINEERING SOFTWARE] II CONCENTRATION AREA (ACRES) SOIL :DEV.: Tt Tc I Fm Fm 0 PATHISLOPE: V HYDRAULICS POINT NUMBER SUBAREA: SUM TYPE:TYPE :MIN. MIN. in /h (Avg) SUM (ft) :ft /ft :FPS. AND NOTES : I I I I I I I 1 II CONFLUENCE I PEAK FLOW RATE(CFS) = 79.6 ANALYSIS TIME OF CONCENTRAT[ONOIN.) = 14.0 __ LARGEST FOR POINT* AVERAGED Fm(IN /HR) = .58 CONFLUENCE II 6.50 EFFECTIVE AREA(ACRES) = 31.44 TOTAL AREA(ACRES) = 32.80 0= 79.6 0 Tc Fm Ae 79.59 14.00 .58 31.44 II 76.96 15.52 .58 32.80 78.28 15.05 .58 32.59 850 .0071 11.3 XOav= 79.6cfs II n =.0130 Dn= 3.0 1.3 36.0' -PIPE 6.90 11.3 42.7 A 8 - - -- 15.3 3.18 .58 .582 100.1 - - -- --- -- - - -- ---- - - - - -r 6.90 MEMORY BANK * 1 CONFLUENCED WITH MAIN - STREAM 0 Tc Fm Ae 296.94 15.26 .53 116.34 298.75 16.32 .53 122.75 297.90 16.82 .53 125.11 283.17 12.89 .53 98.07 II 298.72 16.27 .53 122.44 298.61 16.49 .53 123.54 , 297.87 16.83 .53 125.15 II 291.31 18.68 .52 132.37 280.40 20.96 .52 139.06 278.49 21.32 .52 139.92 272.08 22.31 .52 141.17 226.06 29.21 .51 144.70 1 1 1 .t 1 1 1 1 - ,- -- I I 1 1 1 1 1 � II 6.90 MEMORY BANK * 1 CLEARED II XOEV. TYPES: 1= Com,2= MH,3= Apt,4= Con,5 =SFR 11+ 0 /AC,6 =8- 100 /AC 7= 5- 7D/AC, SOIL TYPE: USER = SPECIFIED X x8= 3- 4D/ AC, 9= 2D/ AC, 10= 1D/ AC, 11= 0. 4D/ AC, 12= Sch ,13= PK,14= Ag,15= PC,16= AC,17 =DC RUNOFF COEFFICIENT* . I: +-+ + -+ 3 + + -+ :: [SAN BERNARDINO COUNTY) STUDY NAME: -" CALCULATED (../4.6 CHECKED BY: 100.0 YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER 9 OF <8 [(c) 1983 -1989 ADVANCED ENGINEERING SOFTWARE] CONCENTRATION AREA (ACRES) SOIL DEV. Tt Tc 1 Fm Fm 0 PATH SLOPE V HYDRAULICS POINT NUMBER SUBAREA SUM TYPE TYPE MIN. MIN. in /h (Avg) SUM (ft) ft /ft FPS. AND NOTES 650 .0071 12.6 X0av= 298.Bcfs III n =.0130 Dn= 5.5 .9 66.0' -PIPE 1: 7.60 MAINSTREAM COPIED ONTO MEMORY BANK II 1 rm .. 800 .0144 .. INITIAL SUBAREA 7.10 5.7 5.7 A 8 - - -- 14.0 3.36 .58 .582 14.2 300 .0043 2.5 X0av= 20.0cfs 1: 36.ft- STREET DEPTH= .63 ft. FLOW TO PT. 2.1 FLODDWIDTH =18.0 7.20 5.1 10.8 A 8 - - -- 16.0 3.09 .58 .582 24.4 1: 800 .0016 7.8 X0av= 24.4cfs n =.0130 Dn= 2.0 1.7 24.0' -PIPE 7.30 6.4 17.2 A 8 -- -- 17.7 2.91 .58 .582 36.0 I: 7.30 17.2 - - -- 17.7 2.91 36.0 FOR CONFLUENCE II .. 800 .0118 .. INITIAL SUBAREA 7.05 4.8 4.8 A 8 - - -- 14.5 3.28 .58 .582 11.7 II 350 .0134 3.5 Watt= 13.9cfs 36.ft-STREET DEPTH= .49 ft. FLOW TO PT./ 1.7 FLOODWIDTH =11.4 7.30 2.0 6.8 A 8 - --- 16.2 3.07 .58 :582 15.2 II II _ _ . II XDEV. TYPES: 1 =Com,2 =MH,3 =Apt,4= Con,5 =SFR Ili D /AC,6 =8- 10D /AC,7 =5-7D /AC, SOIL TYPE: USER= SPECIFIED X X8= 3- 4D/ AC, 9= 2D/ AC, 10= 1D/ AC, 11= 0. 4D/ AC, 12= Sch ,13= PK,14 =Ag,15= PC,16 =AC,17 =DC RUNOFF COEFFICIENTX II + -+ + -+ 1 1 1 11 op +_+ . , _ _ , +-+ li [SAN BERNARDINO COUNTY] STUDY NAME: CALCULATED BY: GAS li CHECKED BY: 100.0 YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER/00F /8 [(c) 1983-1989 ADVANCED ENGINEERING SOFTWARE] CONCENTRATION AREA (ACRES) SOIL;DEV.; Tt Tc 1 Fm Fm 0 PATH :SLOPE: V HYDRAULICS POINT NUMBER SUBAREA: SUM TYPE :TYPE :MIN. MIN. in /h (Avg) SUM (ft);ft /ft;FPS. AND NOTES 1 1 1 1 1 1 1 I I CONFLUENCE PEAK FLOW RATE(CFS) = 50.4 ANALYSIS TIME OF CONCENTRATION(MIN.) = 16.2 LARGEST FOR POINT# AVERAGED Fm(IN /HR) _ .58 CONFLUENCE 7.30 EFFECTIVE AREA(ACRES) = 22.55 TOTAL AREA(ACRES) = 24.00 0= 50.4 0 Tc Fm Ae 50.25 17.74 .58 24.00 1: 50.41 16.24 .58 22.55 280 .0182 16.0 XOav= 50.4cfs n =.0130 Dn= 2.0 1: .3 24.0' -PIPE 7.35 1.1 23.6 A 8 - - -- 16.5 3.03 .58 .582 52.2 520 .0152 16.6 X0av= 52.2cfs li n =.0130 Dn= 2.0 .5 24.0' -PIPE 7.40 8.7 32.3 A 8 - - -- 17.1 2.98 .58 .582 69.7 i: 660 .0145 17.5 XOav= 69.7cfs n =.0130 Dn= 2.3 .6 27.0' -PIPE 7.60 12.0 44.3 A 8 - - -- 17.7 2.91 .58 .582 93.1 _ , 1 , , 1 , _ 1 XDEV. TYPES: 1= Com,2= MH,3= Apt,4= Con,5 =SFR 11+ D /AC,6= 8- 10D /AC,7= 5- 70 /AC, SOIL TYPE: USER = SPECIFIED X X8= 3- 4D/ AC, 9= 2D/ AC, 10= 1D/ AC, 11= 0. 40/ AC, 12= Sch ,13= PK,14 =Ag,15= PC,16= AC,17 =DC RUNOFF COEFFICIENTX 1 + f 4.-+ 0 1 [SAN BERNARDINO COUNTY] STUDY NAME: CALCULATED BY: . A 8 CHECKED BY: 100.0 YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER /1 OF /8 [(c) 1983 -1989 ADVANCED ENGINEERING SOFTWARE] rl CONCENTRATION AREA (ACRES) SOIL :DEV.: Tt .Tc I Fm Fm 0 PATH SLOPE; V HYDRAULICS POINT NUMBER SUBAREA SUM TYPE :TYPE :MIN. MIN. in /h (Avg) SUM (ft) ft /ft :FPS. AND NOTES 1 1 , 7.60 MEMORY BANK # 1 CONFLUENCED WITH MAIN- STREAM O Tc Fm Ae 390.97 17.68 .54 169.46 382.93 19.20 .54 176.77 370.37 13.80 .54 132.69 387.84 16.12 .54 156.78 391.06 17.13 .54 165.41 391.16 17.19 .54 165.85 391.24 17.35 .54 167.05 390.98 17.68 .54 169.45 390.94 17.69 .54 169.50 380.38 19.56 .54 178.17 362.11 21.88 .54 184.86 359.16 22.25 .54 185.72 350.00 23.25 .53 186.97 289.42 30.07 .53 190.50 540 .0094 16.5 XOav= 391.2cfs n =.0130 On= 5.5 .5 66.0' -PIPE 11.10 167.1 -- -- 17.9 2.89 391.2 FOR CONFLUENCE 1 670 .0146 .. INITIAL SUBAREA 11.10 0.7 8.7 A 8 - - -- 13.0 3.51 .58 .582 22.9 1 1 XDEV. TYPES: 1 =Com,2 =MH,3= Apt,4 =Con,5 =SFR 11+ D /AC,6 =8-- 10D /AC,7 =5- 70 /AC, SOIL TYPE: USER= SPECIFIED X z8= 3- 40/ AC, 9= 2D/ AC, 10= 1D/ AC, 11= 0. 4D/ AC, 12= Sch ,13 =PK,14 =Ag,15 =PC,16 =AC,17 =DC RUNOFF COEFFICIENT* 1 ++ + -+ rr II :I , _ _ , 1 1 RI + -+ + -+ ill ir ii [SAN BERNARDINO COUNTY] STUDY NAME: CALCULATED BY: GA 13 PI CHECKED BY: ii 100.0 -YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER /z OF /B [(c) 1983 -1989 ADVANCED ENGINEERING SOFTWARE] PR CONCENTRATION AREA (ACRES) SOIL :DEV.; Tt Tc I Fm Fm 0 PATH :SLOPE: V HYDRAULICS ii POINT NUMBER SUBAREA SUM TYPE :TYPE :MIN. MIN. in /h (Avg) SUM (ft);ft /ft;FPS. AND NOTES CONFLUENCE PEAK FLOW RATE(CFS) = 409.4 ANALYSIS TIME OF CONCENTRAT[ON(MIN.) = 17.7 LARGEST FOR POINTO AVERAGED Fm(IN /HR) _ .54 CONFLUENCE A 11.10 EFFECTIVE AREA(ACRES) = 174.55 TOTAL AREA(ACRES) = 199.20 0= 409.4 imi 0 Tc Fm Ae 391.64 14.38 .54 141.39 im 406.92 16.67 .54 165.48 III 409.33 17.68 .54 174.11 409.39 17.73 .54 174.55 409.34 17.89 .54 175.75 PP iii 408.82 18.23 .54 178.15 408.82 18.23 .54 178.16 408.78 18.24 .54 178.20 399.72 19.76 .54 185.47 396.94 20.12 .54 186.87 377.31 22.47 .54 193.56 PR 374.17 22.84 .54 194.42 li 364.51 23.86 .54 195.67 301.25 30.68 .53 199.20 _ _ 382.38 12.95 .54 128.21 800 .0084 15.8 X0av= 409.4cfs n =.0130 Dn= 5.8 II .8 69.0' -PIPE 11.30 174.6 - - -- 18.6 2.83 409.4 - - -- - - - -- - - -- FOR CONFLUENCE . 980 .0052 .. INITIAL SUBAREA 11.15 4.3 4.3 A 8 --- 18.5 2.03 .50 .502 8.7 II - 500 .0146 3.9 X0av= 15.9cfs 36.ft STREET DEPTH= .50 ft. FLOW TO PT.p 2.3 FLOODWIDTH =12.1 II 11.30 7.7 12.0 A 8 - - -= 20.8 2.64 .58 .582 22.2 XDEV. TYPES: 1= Com,2= MH,3= Apt,4= Con,5 =SFR 11+ D /AC,6= 8-10D /AC,7= 5- 70 /AC, SOIL TYPE: USER = SPECIFIED X X8= 3- 4D/ AC, 9= 2D/ AC, 10= 1D/ AC, 11= 0. 4D/ AC, 12= Sch ,13= PK,14= Ag,15= PC,16= AC,17 =DC RUNOFF COEFFICIENTX II + -+ + -+ 3 . „, 3 + -+ + -+ [SAN BERNARDINO COUNTY] STUDY NAME: CALCULATED BY:- CHECKED BY: 100.0 -YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER/30F/8 [(c) 1983-1989 ADVANCED ENGINEERING SOFTWARE] CONCENTRATION AREA (ACRES) SOIL DEV. Tt Tc I Fm Fm 0 PATH SLOPE; V HYDRAULICS # POINT NUMBER SUBAREA SUM TYPE TYPE MIN. MIN. in /h (Avg) SUM (ft) ft /ft :FPS. AND NOTES CONFLUENCE PEAK FLOW RATE(CFS) = 431.0 ANALYSIS TIME OF CONCENTRATION(MIN.) = 18.6 LARGEST FOR POINT# AVERAGED Fm(IN /FIR) _ .55 CONFLUENCE tit 11.30 EFFECTIVE AREA(ACRES) = 185.25 TOTAL AREA(ACRES) = 211.20 0= 431.0 0 Tc Fm Ae 402.42 13.86 .55 136.18 412.22 15.26 .55 150.18 r7 428.24 17.52 .55 175.57 bi 430.94 18.52 .55 184.78 431.02 18.58 .55 185.25 431.01 18.74 .55 186.54 430.59 19.07 .55 189.13 430.59 19.08 .55 189.14 430.55 19.08 .55 189.19 _ 421.89 20.62 .54 197.34 419.04 20.99 .54 198.87 397.64 23.39 .54 205.56 394.24 23.77 .54 206.42 383.91 24.81 .54 207.67 317.18 31.61 .53 211.20 420.31 20.84 .54 198.30 - -� I 1 1 11.30 MAIN- STREAM COPIED ONTO MEMORY BANK # 2 I 10.05 2.8 2.8 A 8 - - 9.7 4.17 .58 .582 9.0 340 .0156 .. INITIAL SUBAREA 940 .0109 3.6 XOav= 18.0cfs 36.ft- STREET DEPTH= .53 ft. FLOW TO PT.# 4.7 FLOODWIDTH :13.9 10.10 7.3 10.1 A 8 -- -- 14.4 3.29 .58 .582 24.7 XDEV. TYPES: 1 =Com,2= MH,3= Apt,4= Con,5 =SFR 11+ D /AC,6= 8-10D /AC,7= 5- 7D /AC, SOIL TYPE: USER = SPECIFIED X XO= 3 4D/ AC, 9= 2D/ AC, 10= 1D/ AC, 11= 0. 4D/ AC, 12= Sch ,13= PK,14= Ag,15 =PC,16= AC,17 =DC RUNOFF COEFFICIENTX 11 f _4 :1 [SAN BERNARDINO COUNTY] STUDY NAME: CALCULATED BY: G A 6 ,, CHECKED BY: 100.O-YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER /4f, OF is [(c) 1983 -1989 ADVANCED ENGINEERING SOFTWARE] CONCENTRATION AREA (ACRES) SOIL DEV. Tt Tc 1 Fm Fm 0 PATH SLOPE V HYDRAULICS POINT NUMBER SUBAREA SUM TYPE TYPE MIN. MIN. in /h (Avg) SUM (ft) ft /ft FPS. AND NOTES 50 .0100 8.4 X0av= 24.7cfs n =.0130 Dn= 1.4 .0 30.0' -PIPE 400 .0035 5.7 X0av= 24.7cfs n =.0130 On= 1.7 1.2 39.0' -PIPE 10.30 12.0 22.1 A 8 - - -- 15.7 3.f3 .58 - .582 50.7 500 .0018 5.3 XDav= 50.7cfs n :.0130 On= 2.7 1.6 51.0' -PIPE 11.30 6.5 28.6 A 8 - - -- 17.3 2.95 .58 .582 61.1 11.30 MEMORY BANK 2 CONFLUENCED WITH MAIN- STREAM 0 Tc Fm Ae 487.57 17.28 .55 201.39 460.04 13.86 .55 159.12 471.36 15.26 .55 175.45 488.67 17.52 .55 204.17 488.90 18.52 .55 213.38 488.85 18.58 .55 213.85 488.47 18.74 .55 215.14 487.29 19.07 .55 217.73 487.28 19.08 .55 217.74 487.22 19.08 .55 217.79 475.31 20.62 .55 225.94 473.29 20.84 .55 226.90 471.72 20.99 .55 227.47 446.08 23.39 .55 234.16 442.07 23.77 .55 235.02 430.13 24.81 .54 236.27 355.13 31.61 .54 239.80- - - .. 13 XXXXX 98.0 XOav= 488.9cfs n =.0130 Dn: 1.4 - .0 72.0' -PIPE XDEV. TYPES: 1= Com,2= MH,3 =Apt,4= Con,5 =SFR.11+ D /AC,6- 8- 10D /AC,7= 5 70LAC, SOIL TYPE: USER = SPECIFIED X X8= 3- 4D/ AC, 9= 2D/ AC, 10= 1D/ AC, 11= 0. 4D/ AC, 12= Sch ,13= PK,14= Ag,15= PC,16= AC,17 =DC RUNOFF COEFFICIENTX 1 1 2 1 +_.1. [SAN BERNARDINO COUNTY] STUDY NAME: CALCULATED BY: .- A .8 r CHECKED BY: ii 100.0 -YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER /„ SOF ( 8 [(c) 1983 -1989 ADVANCED ENGINEERING SOFTWARE] mw CONCENTRATION AREA (ACRES) ;SOIL DEV. Tt Tc I ; Fm Fm ; 0 PATH SLOPE V HYDRAULICS 1 POINT NUMBER SUBAREA SUM TYPE TYPE MIN. MIN. in /h; (Avg) SUM (ft) ft /ft FPS. AND NOTES id 12.30 9.6 223.0 A 8 - - -- 18.5 2.83 .58 .552 488.9 it 12.30 MAIN- STREAM COPIED ONTO MEMORY BANK # 3 FR .. 550 .0082 .. INITIAL SUBAREA PP 12.25 1.9 1.9 A 1 - - -- 9.9 4.12 .10 ,,097 6.9 t imi 600 .0125 6.6 XOav= 6.9cfs n =.0130 Dn= .9 1.5 18.0' -PIPE i: 12.45 1.9 - - -- 11.4 3.79 6.9 FOR CONFLUENCE .. � 920 .0054 .. INITIAL SUBAREA 12.45 7.9 7.9 A 1 - - -- 13.2 3.47 .10 .097 24.0 I: 12.45 7.9 -- -- 13.2 3.47 24.0 FOR CONFLUENCE 950 .0099 .. INITIAL SUBAREA 12.45 5.2 5.2 A 3 12.7 3.56 14 .194 15.8 II CONFLUENCE PEAK FLOW RATE(CFS) = 45.8 ANALYSIS TIME OF CONCENTRATION(MIN.) = 12.7 LARGEST FOR POINT# AVERAGED Fm(IN /HR) _ .13 CONFLUENCE 12.45 EFFECTIVE AREA(ACRES) = 14.67 TOTAL. AREA(ACRES) _ -.. 15.00 _ . -..- 0= 45.8 II 0 Tc Fm Ae 44.72 11.43 .13 13.42 45.59 13.22 .13 15.00 II 45.80 12.66 .13 14.67 XOEV. TYPES: 1 =Com,2 =MH,3 =Apt,4 =Con,5 =SFR 11+ D /AC,6 =8- 10D /AC,7= 5- 7D /AC, SOIL TYPE: USER= SPECIFIED X X8= 3- 4D/ AC, 9= 2D/ AC, 10= 1D/ AC, 11= 0. 40/ AC, 12= Sch ,13 =PK,14 =Ag,15= PC,16 =AC,17 =DC RUNOFF COEFFICIENT* + -+ + -+ + -+ + -+ [SAN BERNARDINO COUNTY] STUDY NAME: CALCULATED BY: Gil 6 CHECKED BY: 100.0 YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER/ OF ! g [(c) 1983 -1989 ADVANCED ENGINEERING SOFTWARE] CONCENTRATION AREA (ACRES) SOIL DEV. Tt Tc I Fm Fm 0 PATH SLOPE V HYDRAULICS POINT NUMBER SUBAREA SUM TYPE TYPE MIN. MIN. in /h (,Avg) SUM (ft) ft /ft FPS. ANO NOTES 480 .0071 9.3 XAav= 45.8cfs n =.0130 Dn= 2.5 .9 30.0' -PIPE 12.00 4.5 19.2 A 1 - --- 13.5 3.42 .10 ,023 56.9 r 510 .0027 6.9 XOav= 56.9cfs n =.0130 Dn= 3.3 1.2 39.0` -PIPE 12.20 9.0 26.9 A 1 - --- 13.6 3.25 .10 .114 80.0 175 .0023 7.2 XAav= 80.0cfs n =.0130 On= 3.8 .4 45.0' -PIPE 12.30 MEMORY BANK 1 3 CONFLUENCED WITH MAIN- STREAM A Tc Fm Ae 540.86 13.96 .49 196.76 549.96 15.17 .49 212.05 553.69 15.74 .50 219.71 539.87 13.86 .49 195.45 1: 550.61 15.27 .49 213.27 561.62 17.28 .50 239.49 562.07 17.53 .50 242.27 559.80 18.53 .50 251.48 559.62 18.58 .50 251.95 558.86 18.74 .50 253.24- . _ ... , _ 556.90 19.08 .50 255.83 . 556.89 19.08 .50 255.84 556.81 19.09 .50 255.89 541.60 20.62 .50 264.04 539.14 20.84 .50 265.00 537.28 21.00 .50. 265.57,, 501.33 23.39 .50 272.26 502.70 23.77 .50 273.12 489.15 24.81 .50 274.37 405.76 31.61 .50 277.90 1 11111111 II 1 XDEV. TYPES: 1= Com,2= MH,3= Apt,4= Con,5 =SFR 11+ D /AC,6 =8-10D /AC,7= 5- 70 /AC, SOIL TYPE: USER = SPECIFIED X X8= 3- 4D/ AC, 9= 2D/ AC, 10= 1D/ AC, 11= 0. 4D/ AC, 12= Sch ,13 =PK,14= Ag,15= PC,16= AC,17 =DC RUNOFF COEFFICIENTX t + -+ + + -+ [SAN BERNARDINO COUNTY] STUDY NAME: CALCULATED BY:- # $ CHECKED BY: 100.0 YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER/7 OF/8 [(c) 1983 -1989 ADVANCED ENGINEERING SOFTWARE] I; CONCENTRATION AREA (ACRES) SOIL DEV. Tt Tc 1 Fm Fm 0 PATH SLOPE V HYDRAULICS POINT NUMBER SUBAREA SUM TYPE TYPE MIN. MIN. in /h (Avg) SUM (ft) ft /ft FPS. AND NOTES - 520 .0069 16.9 )(gay= 562.1cfs n =.0130 Dn= 6.5 .5 78.0' -PIPE 12.60 12.4 254.7 A 1 -- -- 18.0 2.88 .10 .481 562.1 265 .0094 16.9 Way= 562.1cfs n =.0130 Dn= 6.5 .3 78.0' -PIPE 12.90 11.0 265.7 A 1 - - -- 18.3 2.85 .10 .465 571.3 1000 .0100 17.2 )(gay= 571.3cfs n =.0130 Dn= 6.5 1.0 78.0' -PIPE - - -- - - - -- -- 13.00 265.7 - - -- 19.3 571.3 STREAM SUMMARY EFFECTIVE AREA(ACRES)= 265.67 TOTAL AREA(ACRES)= 301.30 PEAK FLOW RATE(CFS)= 571.33 TIME OF CONCENTRATION(MIN.)= 19.27 AVERAGED Fm(IN /HR)= .47 .„ 1 XDEV. TYPES: 1= Com,2= MH,3 =Apt,4= Con,5 =SFR 11+ D /AC,6= 8- 100/AC,7= 5- 7D /AC, SOIL TYPE: USER = SPECIFIED M l( 8= 3- 4D/ AC, 9= 2D/ AC, 10= 10/ AC, 11= 0. 4D/ AC, 12= Sch ,13= PK,14= Ag,15= PC,16= AC,17 =DC RUNOFF COEFFICIENTX + -t + -+ 1 !1,1 11 f_i I [SAN BERNARDINO COUNTY-} -- -_ STUDY NAME: CALCULATED BY: L48 CHECKED BY: 100.0 YEAR STORM RATIONAL METHOD STUDY PAGE NUMBER /8OF / [(c) 1983 -1989 ADVANCED ENGINEERING SOFTWARE] CONCENTRATION AREA (ACRES) SOIL DEV.; Tt Tc I Fm Fm 8 PATH :SLOPE; V HYDRAULICS POINT NUMBER SUBAREA; SUM TYPE TYPE :MIN. MIN. in /h (Avg) SUM (ft);ft /ft;FPS. AND NOTES PEAK FLOW RATE TABLE 0 Tc Fm Ae 554.20 15.76 .45 220.16 560.33 16.94 .46 235.45 1: 563.84 17.51 .46 243.11 553.43 15.66 .45 218.85 560.70 17.04 .46 236.67 571.08 19.02 .46 262.89 571.33 19.27 .47 265.67 568.28 20.27 .47 274.88 568.08 20.33 .47 275.35 567.23 20.49 .47 276.64 565.34 20.83 .47 279.23 • - 565.33 20.84 .47 279.24 565.26 20.84 .47 279.29 550.23 22.43 .47 287.44 547.84 22.66 .47 288.40 546.05 22.82 .47 288.97 516.56 25.32 .47 295 :66'° w 512.01 25.71 .47 296.52 498.16 26.81 .47 297.77 422.41 33.48 .47 301.30 S XDEV. TYPES: 1= Com,2 =MH,3 =Apt ,4= Con,S =SFR 11+ D /AC,6= 8- 1OD /AC,7 =5- 70 /AC, SOIL TYPE: USER = SPECIFIED X x8= 3- 4D/ AC, 9= 2D/ AC, 10= 1D/ AC, 11= 0. 4D/ AC, 12= Sch ,13= PK,14= Ag,15= PC,16= AC,17 =DC RUNOFF COEFFICIENTX + -+ + -+ ��XXKKKKKXXK�XXKKKHXH*HxHKHKxx*xxxxV*x*xxxxKxxxxxxxxxxxxxx*xxxxxx*xxxKxxXxxx g� RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE �� m� (Referance: 1986 SAN BERNARDINO CO' HYDROLOGY CRITERION) (c) Copyright 1983-90 Advanced Engineering Software (aes) Ver. 5'88 Release Date: 1/16/91 Serial ft 9382 Analysis prepared by: �� �� WAGNER PACIFIC, INC 201 E. YORBA BLVO. ` ' '- PLACENTIA, CA 92670-3418 (714) 993-4500 FILE NAME: KAIS.DAT TIME/DATE OF STUDY: 13:57 4/18/199[ =======_ USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: - --XTIME-OF-CONCENTRATION MODELX-- USER SPECIFIED STORM EVENT(YEAR) = 10.00 �� SPECIFIED MINIMUM PIPE SIZE(INCH) = 18'00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .90 XUSER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALLX 1 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = '950 , ' 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.400 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 10.00 1-HOUR INTENSITY(INCH/HOUR) = .9595 SLOPE OF INTENSITY DURATION CURVE = .6000 KxXHKKxKXKxxXKHKKHXKXKxxXXXHKxxXHHXXxKXXKXXxXXKXXXXXXXHXXXXX*XXXXXXXXXXXXXXX FLOW PROCESS FROM NODE 1.00 TO NODE 1.10 IS CODE = 2 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<( DEVELOPMENT IS COMMERCIAL TC = KK[( LEN8TH*X 3.00)/(ELEVATION CHANGE MEX '20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 1000'00 UPSTREAM ELEVATION(FEET) = 94'20 II DOWNSTREAM ELEVATION(FEET) = 80'60 ELEVATION DIFFERENCE(FEET) = 13.60 - TC( MIN' ) = .304X [( 1000'00*X 3.00)/K '13'60 1lXX .20 = 11.381 I 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.602 . SOIL CLASSIFICATION IS A^ COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 I SUBAREA RUNOFF(CFS) = 9.47 TOTAL AREA(ACRES) = 4.20 PEAK FLOW RATE( CFS ) = 9.47 �� ��KXXXXKKXXXKXXXKKXKXKXXXXXXXXXXXXHxXKKKXXxxKXXXXXXXXXKKXXXXXXXXXXXXXKXXXXXXxX FLOW PROCESS FROM NODE 1 ' 10 TO NODE 1.20 IS CODE = 9 '--------------------- --------------------- >>>>>COMPUTE ^V" GUTTER FLOW TRAVEL TIME THRU SUBAREA<<<<< UPSTREAM NODE ELEVATION(FEET) = 80'60 DOWNSTREAM NODE ELEVATION(FEET) = 58'20 CHANNEL LENGTH THRU SUBAREA FEET = 2620.00 "V" GUT TER WIDTH(FEET) = 4.00 GUTTER HIKE(FEET) _ .100 PAVEMENT LIP(FEET) .040 MANNING'S N = .0150 PAVEMENT CROSSFALL( DECIMAL NOTATION) = .02000 MAXIMUM DEPTH(FEET) = .67 3 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.604 `_OIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 3 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 3.10 AVERAGE FLOW DEPTH(FEET) = . 4 1 FLOOD WIDTH(FEET) = 31.33 "V" GUTTER FLOW TRAVEL "T I ME(M I N .) = 14.09 TC(MIN.) = 25.47 SUBAREA AREA( ACRES) = 9.60 SUBAREA RUNOFF( CFS) = 13.02 EFFECTIVE AREA(ACRES) = 13.80 AVERAGED Fm(INCH/HR) = .10 TOTAL AREA(ACRES) = 13.80 PEAK FLOW RATE(CFS) = 18.72 END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = .43 FLOOD WIDTH(FEET) = 32.98 FLOW VELOC I TY(FEET /SEC .) = 3.27 DEPTHXVELOC I TY = 1.41 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XX FLOW PROCESS FROM NODE 1.20 TO NODE 2.30 IS CODE = 3 ) > > >>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA < < < << ) > >> >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) < < < << DEPTH OF FLOW IN 33.0 INCH PIPE IS 23.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 4.2 UPSTREAM NODE ELEVATION(FEET) = 58.20 DOWNSTREAM NODE ELEVATION(FEET) = 57.50 mi 1 FLOW LENGTH(FEET) = 350.00 MANNING'S N = .013 kw ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 P I PE-FLOW(CFS) = 18.72 TRAVEL TIME(MIN.) = 1.38 TC(MIN.) = 26.85 Ei XXXXXXXXxXXXMXXXX) X) EX XXXX XX XXXX XX XX3 EXX XX XXX) EX) EXXXX XXX X XXX)E)EX)E)EXXXXXXX)EX)E)E)EX)E FLOW PROCESS FROM NODE 2.30 TO NODE 2.30 IS CODE = 1 > > >) >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE < < < << s TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 26.05 RAINFALL INTENSITY(INCH /HR) = 1.55 AVERAGED Fm(INCH/HR) = .10 , _ . . LFFECTIVE STREAM AREA(ACRES) = 13.80 TOTAL STREAM AREA(ACRES) = 13.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 18.72 xxXxXX XXXXXXXxXXXXXXX) EXXXXXXXXXXXX, X) fXX) E, XXXXX) EXXXX3E) EXXXXXXX )EXXXX)EX)EX)EX)EX)EX)EX)E FLOW PROCESS FROM NODE 2.00 TO NODE 2.10 IS CODE = 2 ) > >> >RATIONAL METHOD INITIAL SUBAREA ANALYSIS< < <<< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE TC = KX [(LENGTHXX 3.00) /(ELEVATION CHANGE )] )EX .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 900.00 UPSTREAM ELEVATION(FEET) = 93.80 DOWNSTREAM ELEVATION(FEET) = 81.80 • 3 TRAVEL TIME(MIN.) = 1.50 TC(MIN.) = 19.16 KKHXKKXKHX*X*H*HXXKXKXXXXXHXX*XKXXxXXHKXXXXXXXXXXXXXXXXXXHXXXXXXXXXXXXXXXXXX FLOW PROCESS FROM NODE 2.30 TO NODE 2.30 IS CODE = l �� >>>>>D[SIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ======_-_ _ 3 TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 19.16 RAINFALL INTENSITY(INCH/HR) = 1.90 q A AVERAGED Fm(INCH/HR) = .49 al EFFECTIVE STREAM AREA(ACRES) = 20.20 TOTAL STREAM AREA(ACRES) = 20.20 r PEAK FLOW RATE(CFS AT CONFLUENCE = 27.51 ` ' 111 KKXKx*K*KKKXXXKXK*XKKXHKKKK*KKXXKX**KXXX*K*XXXXXXXX*XHXXXXXXXXXXXXXXXX*XXXXX - i FLOW PROCESS FROM NODE 2.40 TO NODE 2'30 IS CODE = 2 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5-7 DWELLINGS/ACRE TC = KX[(LENGTHXX 3.00)/(ELEVATION CHANGE )lXX .20 PR INITIAL SUBAREA FLOW-LENGTH(FEET) = 850.00 v` UPSTREAM ELEVATION(FEET) = 68 70 , . ' DOWNSTREAM ELEVATION(FEET) = 57.50 ELEVATION DIFFERENCE(FEET) = 11.20 TC( MIN' = '389x[( 850'00HX 3.00)/( 11.20)]) X .20 = 13.733 � 10 YEAR RAINFALL INTEN5ITY( INCH/|0UR ) = 2.324 SOIL CLASSIFICATION IS ^A^ RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = '4850 SUBAREA RUNOFF( CFS ) = 16.39 TOTAL AREA(ACRES) = 9.90 PEAK FLOW RATE(CFS) = 16.39 -- KKxxxXKXXKKKKKKKKKK*XKKKKKKXKKXKKXXKKHKKKKKXXXKKKKXXXXXXXKXXXXXXXXKXXXXXNXXK ql FLOW PROCESS FROM NODE 2.30 TO NODE 2.30 IS CODE = 1 N� > >> > ) DESIGNAT[ INDEPENDENT STREAM FOR CONFLUENCE<<<<< )>))>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES(<<<( I TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: I TIME OF CONCENTRATION(MIN.) = 13.73 ` ' RAINFALL INTENSITY�lNCH/HR� = 2'32 AVERAGED Fm(INCH/HR) = .49 EFFECTIVE STREAM AREA(ACRES) = 9'90 TOTAL STREAM AREA(ACRES) = 9.90 N� PEAK FLOW RATE(CFS) AT CONFLUENCE = 16.39 . - _~_ I RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS' K* PEAK FLOW RATE TABLE XK la �CFS) Tc(MIN.) Fm(INCH/HR) Ae(ACRES) � ` ' ` . ' ` ' ^ . \ 1 Q 56.71 19.16 .389 39.95 |� 2 49'00 26'85 .363 43'90 3 56'59 13.73 .398 31.43 g� . �� COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: 3 PEAK FLOW RATE(CFS) = 56.71 Tc(MIN.) = 19.162 [FFECTIVE AREA(ACRES) = 39.95 AVERAGED-Fm( INCH/HR ) = .39 TOTAL AREA(ACRES) = 43.90 3 xxHxx*x*xxKxKxxxxxHX*XXXXXX*KxxXXXxXxxXXXXXXxxxx*xxXXX*N*XXXXX*xX**H*XXx*xx* FLOW PROCESS FROM NODE 2.30 TO NODE 3.30 IS CODE = 3 > > > > > COMPUT[ PIPE-FLOW TRAVEL TIME THRU SUBAREA < ( < < < >>>>)U5ING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< a DEPTH OF FLOW IN 48'0 INCH PIPE IS 37.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC,) = 5.4 UPSTREAM NODE ELEVATION(FEET) = 57.50 DOWNSTREAM NODE ELEVATION(FEET) = 55.80 FLOW LENGTH(FEET) = 680 00 MANNING'S N = .015 in ESTIMATED PIPE DIAMETER(INCH) = 48'00 NUMBER OF PIPES = 1 C' PIPE-FLOW� CFS � = 56.71 . . TRAVEL TIME(MIN') = 2.12 TC(MIN.) = 21.28 KKXxxXKXKKKx*KXXXxXXxXxXXXKXXXXXXX*XKKXXXXXXHXXXXxXXH****XXXX**XXXXxxXXXXHf(x FLOW PROCESS FROM NODE 3.30 TO NODE 3.30 IS CODE = 10 '-'---------------- - >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<< ire ------ - ' -- hi KKXXXXXXXXH*KXHXHX*KKXKXXXXXXXXXX*H*XXXXXXH*H*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX FLOW PROCESS FROM NODE 2.45 TO NODE 2.50 IS CODE = 2 > > > > > RATIONAL METHOD INITIAL SUBAREA ANALYSIS < < < < < DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5-7 DWELLINGS/ACRE TC = KX[(LENGTHXX 3.00 )/(ELEVATION ELEVATION CHANGE 1lK� .20 ^` ' ` ^~ ' INITIAL SUBAREA FLOW-LENGTH(FEET) = 650.00 UPSTREAM ELEVATION(FEET) = 65,50 I DOWNSTREAM ELEVATION(FEET) = 56'50 EL[VATlON DIFFERENCE(FEET) = 9.00 TC(MIN.) = .389X[( 650'00XH 3.00)/( 9.00 )]*X '20 = 12.214 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.494 I COIL CLASSIFICATION IS ^A^ RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm( INCH/HR ) = .4850 SUBAREA RUNOFF(CFS) = 9.58 ` ' TOTAL AREA(ACRES) ) = 5.30 PEAK FLOW RATE(CFS) � = 9.58 ` , . KKKKX*XKxxxKKxxXKxKxxXxxxxKKxxxxxxxxxKxKxxHxxKxxxxxxxxxxHxxxxxx*xxxxxxxxxxxx • FLOW PROCESS FROM NODE 2.50 TO NODE 3.30 IS CODE = 6 --------------- - >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< -=-___ w� UPSTREAM ELEVATION(FEET) = 56.50 DOWNSTREAM ELEVATION(FEET) = 55'80 STREET LENGTH(FEET) = 350.00 CURB HEIGTH(INCHES) = 8. I STREET HALFWIOTH(FEET) = 20'00 DISTANCE FROM CROWN TO CROSSFALL GRRDEBREAK(FEET) = 12.00 TNTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = .2 XXTRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 9.95 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) � = '60 m� HALFSTREET FLOOD WIDTH(FEET) = 15.88 AVERAGE FLOW VELOCITY( F[ET/S[C..) = 1_50 PRODUCT OF DEPTH&VELOCITY = .90 STREET FLOW TRAVEL TIME( MIN' ) = 3.88 TC( MIN' ) = 16.10 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.113 SOIL CLASSIFICATION IS "A" RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA AREA(ACRES) = .50 SUBAREA RUNOFF(CFS) = .73 uJ EFFECTIVE AREA(ACRES) ) = 5.80 AVERAGED Fm(INCH/HR) 1 = .49 ^ ' , ' TOTAL AREA(ACRES) = 5.80 PEAK FLOW RATE(CFS) = 9.58 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH( FEET 1 = .58 HALFSTREET FLOOD WIDTH( FEET) � = 15.13 DEPTH( FEET) ` ' �= FLOW VELOCITY( FEET/SEC' ) = 1.56 OEPTHXVELOCITY = .90 XX*xxxx*xx*KKxxxKXKKXXHMXKXKXKX**XHXXXXK*XXHXXKXXXXXKXXXXXXXXXXXXXXXXXXXxxHX FLOW PROCESS FROM NODE 3.30 TO NODE, 3.30 IS CODE = 11 >>>>>CONFLUENCE MEMORY BANK 0 1 WITH THE MAIN-STREAM MEMORY<<<<< IN! XXX PEAK FLOW RATE TABLE KXX 0(CFS) To(MIN.) Fm(INCH/HR) Ae(ACRES) 1 66.18 16'10 .411 37.62 2 66.14 15'05 .411 37.15 3 64.37 9 1. 9 8 .401 45.75 4 54'07 29.06 .377 49.70 TOTAL AREA = 49'70 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 66.18 Tc(MIN.) = 16.095 rl EFFECTIVE AREA(ACRES) = 37.62 AVERAGED Fm(INCH/HR) = .41 TOTAL AREA(ACRES) = 49.70 KKxKxXxxxX*KXXxXXXxXXXXXXXXXXXXXXXXXXXXXXXXKXxxXHXHxXXX*XXXXXXXXXXXXXXxxxHKx w� FLOW PROCESS FROM NODE 3.30 TO NODE 3'30 IS CODE = 10 ' ------ --------- -- - i >>)>>MAINSTREAM MEMORY COPIEO ONTO MEMORY BANK # 2 << < << XKXXHKKXxHXxXKKXXXX*H*XXXHXXK*KKHX*X*XKKX**KXKXXXKK*XXXKXXXXXKXX***XXHXXXXXX FLOW PROCESS FROM NODE 3.00 TO NODE 3.10 IS CODE = 2 ------ - ---- 0� > > > > > RATIONAL METHOD INITIAL SUBAREA ANALYSIS { < < < ( DEVELOPMENT IS SINGLE FAMlLY' RESIDENTIAL -> 3-4 DWELLINGS/ACRE TC = KX[( LENGTHxx 3.00)/(ELEVATION CHANGE)]XX .20 N� INITIAL SUBAREA FLOW-LENGTH(FEET) = 1000.00 UPSTREAM ELEVATION(FEET) = 93.50 DOWNSTREAM ELEVATION(FEET) = 77'00 -- . - '- r ELEVATION DIFFERENCE(FEET) = 16.50 TC(M I N .) = .412X[( 1000 .00XX 3.00)/( 16.50)]x .20 = 14.839 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.219 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 3 SUBAREA RUNOFF(CFS) = 11.19 TOTAL AREA(ACRES) = 7.60 PEAK FLOW RATE(CFS) = 11.19 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX FLOW PROCESS FROM NODE 3.10 TO NODE 3.20 IS CODE = 6 >))>> COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA( << << UPSTREAM ELEVATION(FEET) = 77.00 DOWNSTREAM ELEVATION(FEET) = 65.20 STREET LENGTH(FEET) = 1100.00 CURB HE I GTH(I NCHES) = 6. STREET HALFW I DTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADF_BREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 iimi XXTRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 16.03 STREET FLOW MODEL RESULTS: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIDLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. ""' THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. �.i STREET FLOW DEPTH(FEET) = .52 HALFSTREET FLOOD WIDTH(FEET) = 13.31 �*+ AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.20 PRODUCT OF DEPTH &VELOCITY = 1.67 STREET FLOW TRAVEL T I ME(M I N .) = 5.74 TC(M I N .) = 20.58 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.824 SOIL CLASSIFICATION IS "A" RESIDENTIAL. -) 3 -4 DWELLINGS /ACRE SUBAREA -LOSS RATE, Fm(INCH /HR) = .5820 SUBAREA AREA( ACRES) = 0.60 SUBAREA RUNOFF( CFS) = 9.61 EFFECTIVE AREA(ACRES) = 16.20 AVERAGED Fm(INCH/HR) = .58 TOTAL AREA(ACRES) = 16.20 PEAK FLOW RATE(CFS) = 18.10 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .53 HALFSTREET FLOOD WIDTH(FEET) = 13.94 FLOW VELOCITY(FEET /SEC.) = 3.38 DEPTHXVELOCITY = 1.81 XXXXX XXXX) EXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX FLOW PROCESS FROM NODE 3.20 TO NODE 3.50 IS CODE = 3 >) >) )COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA < < < << > > >> >USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) << <<< DEPTH OF FLOW IN 27.0 INCH PIPE IS 19.5 INCHES PIPE-FLOW VELOC I TY(FEET /SEC .) = 5.9 UPSTREAM NODE ELEVATION(FEET) = 65.20 DOWNSTREAM NODE ELEVATION(FEET) = 65.00 FLOW LENGTH(FEET) = 40.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 27.00 - NUMBER OF PIPES = 1 PIPE - FLOW(CFS) , = 18.10 TRAVEL T I MC(M I N .) _ . 1 1 TC(M I N .) = 20.69 1 xxxxxxxxxxxXxxxX EXxXXXXXXXXXXXXxxxXXXxXXXXXxxXXXXXxXXXXXXxxxxxxxxxxxxxxxx * FLOW PROCESS FROM NODE 3.50 TO NODE 3.50 IS CODE = 10 > > > > >MAIN- STREAM MEMORY COPIED ONTO MEMORY BANK # 3 < < < << 3 XxxxxxxxXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXxxXXXXX>EXXXXXXXXXXXXX>EXXXXXXXX> XxXX FLOW PROCESS FROM NODE 4.00 TO NODE 4.10 IS CODE = 2 > > > > >RATIONAL METHOD INITIAL SUBAREA ANALYSIS < < < << DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3 -4 DWELLINGS /ACRE TC = KX [(LENGTHXX 3.00) /(ELEVATION CHANGE )] XX .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 1000.00 UPSTREAM ELEVATION( FEET) = 92.00 DOWNSTREAM ELEVATION(FEET) = 76.80 ELEVATION DIFFERENCE(FEET) = 15.20 TC(M I N .) = .412X[( 1000 .00XX 3.00)/( 15.20)]) X .20 = 15.084 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.197 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 FR SUBAREA RUNOFF(CFS) = 10.03 TOTAL AREA( ACRES) = 6.90 PEAK FLOW RATE(CFS) = 10.03 - XxXXXXX> xxxxxxxXXXX> EXX> EXXX> EXXXXXX> EXXX> EXXXXXX XXXXXX >EXXXXXXXXXXXX>EXXXXXXXXXXXX FLOW PROCESS FROM NODE 4.10 TO NODE - 4.20 IS CODE = 6 !�! > > >>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA( < < << UPSTREAM ELEVATION(FEET) = 76.80 DOWNSTREAM ELEVATION(FEET) = 73.90 STREET LENGTH(FEET) = 450.00 CURB HE TTH(I NCHES) = 6. STREET HALFW I DTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 I SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 XXTRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 11.59 STREET FLOW MODEL RESULTS: NOTE: STREET FLOW EXCEEDS TOP OF CURB. TFIE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) = .51 HALFSTREET FLOOD WIDTH(FEET) = 12.69 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.47 PRODUCT OF DEPTH &VELOCITY = 1.26 STREET FLOW TRAVEL T I ME(M I N .) = 3.03 TC(M I N .) . = 18,.12 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.968 01L CLA` =, SIFICATION IS "A" RESIDENTIAL - -3 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 Sl IE3AREA AREA(ACRES) = 2.50 SUBAREA RUNOFF(CFS) = 3.12 ' - EFFECTIVE AREA(ACRES) = 9.40 AVERAGED Fm(INCH/HR) = .58 TOTAL AREA(ACRES) = 9'40 PEAK FLOW RATE(CFS) = 11.73 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .51 HALFSTREET FLOOD WIDTH(FEET) = 12.69 FLOW VELOCITY( FEET/SEC . ) = 2.50 DEPTHXVELOCITY = 1.27 XKKKKMXXXXXXXKXXXXXHKXXHXHXXXXXXXXXXXX*HXK00000000000000000000000(XXXXXX*X*X FLOW PROCESS FROM NODE 4.20 TO NODE 4.20 IS CODE = 1 -__-_---___- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< • TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 18.12 RAINFALL INTENSITY(INCH/HR) = 1.97 AVERAGED Fm(INCH/HR) = .58 ` ' EFFECTIVE STREAM AREA(ACRES) = 9.40 TOTAL STREAM AREA(ACRES) = 9.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 11.73 XXHKXXKKXHKHKKKXKXKXXXKXXXXXXXXXXHXXKXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXK �� FLOW PROCESS FROM NODE 4.15 TO NODE 4.18 IS CODE = 2 �� -- - ---- -------------------------- ▪ >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< - DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3-4 DWELLINGS/ACRE TC = KXF/ LENGTHKX 3.00)/(ELEVATION CHANGE )lKX .20 /I " INITIAL SUBAREA FLOW-LENGTH(FEET1 = 1000.00 ` ' mm UPSTREAM ELEVATION(FEET) = 92.10 DOWNSTREAM ELEVATION(FEET) = 76'10 - '- - Pi ELEVATION DIFFERENCE(FEET) = 16.00 TC(MIN.) � - 412K [( 10�� ���� 3 �O �// 16 �� 1l �� .20 = 14 930 ` ' ' _ ' ' ' ' ` ' . ' 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.211 SOIL CLASSIFICATION IS "A" RESIDENTIAL-) 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .5820 SUBAREA RUNOFF( CFS ) = 11.14 TOTAL AREA(ACRES) = 7.60 PEAK FLOW RATE(CFS) = 11.14 XXKXXKXKKXXKH*KXHXXX*KXHXKKH*XXXHHHX**X*KXXXXXX*xXXXXK**HXXXXH*XXXXx*xxXxxxx FLOW PROCESS FROM NODE 4.18 TO NODE 4.20 IS CODE = 6 �� m� )>>>>COMPUT[ STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< _ I UPSTREAM ELEVATION(FEET) = 76.10 DOWNSTREAM ELEVATION(FEET) = 73'90 CTR[[T LENGTH(FEET) = 150'00 CURB HEIGTH( INCHES ) = 6. STREET 1 |ALFWlDTH( F[ET ) = 10.00 DISTANCE FROM CROWN TO CROSSFALL GRAOEBREAK(FEET1 = 10.00 ' INTERIOR STREET CROSSFALL(DECIMAL) =-- .020 ▪ OUTSIDE STREET CROSSFALL(DECIMAL) = .040 m� SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 XXTRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 11.85 STREET FLOW MODEL RESULTS: ' ' ' ~'� � � - STREET FLOW DEPTH(FEET) = .45 HALFSTREET FLOOD WIDTH(FEET) = 9.56 ' ~ - AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.59 PRODUCT OF OEPTH&VELOClTY = 1.61 I TIME( MIN.) TC(MIN.) STREET FLOW TRAVEL TIME�MIN.� = .70 MIN.� = 15.63 ` 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.151 COIL CLASSIFICATION IS "A" RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm( INCH/HR) = .5820 SUBAREA AREA(ACRES) 1'00 SUBAREA RUNOFF(CFS) = 1.41 EFFECTIVE AREA(ACRES) = 8'60 AVERAGED Fm(INCH/HR) = .58 TOTAL AREA(ACRES) = 0.60 PEAK FLOW RATE(CFS) 1 = 12.14 ` ' . ' END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .45 HALFSTREET FLOOD WIDTH(FEET) = 9.56 FLOW VELOCITY(FEET/SEC.) = 3.68 OEPTHXVELOCITY = 1.65 KKKKK*K*HXXXXHXXKXXX*KXXXXXKKXXXXXKX*XHXXXXXKXKXXXXKXHXXXXXxXXXXXXXXXXXXXXXX 0i FLOW PROCESS FROM NODE 4.20 TO NODE 4.20 IS CODE = 1 ----- >>>>>OESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< > >>> >ANO COMPUTE VARIOUS CONFLUENCED STREAM VALUES(<<<< TOTAL NUMBER OF STREAMS = 2 E CONFLUENCE VALUES USED FOR INDEPENDENT_ STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 15.63 RAINFALL INTENSITY(INCH/HR) = 2.15 E A AVERAGED Fm(INCH/HR) = .58 , [FFECTIVE ST�EAM AREA� ACRES \ = 8.60 ' TOTAL STREAM AREA(ACRES) = 8.60 --- -' PEAK FLOW RATE(CFS) AT CONFLUENCE = 12.14 mus RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS- KX PEAK FLOW RATE TABLE K* O(CFS) Tc(MIN.) Fm(INCH/HR) Ae(ACRES) 1 22 .46 18.12 .582 18.00 , � 23.59 15.63 .582 16,71 �w COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 23.59 Tc(MIN.) = 15.627 E EFFECTIVE AREA(ACRES) = 16.71 AVERAGED Fm(INCH/HR) = .58 TOTAL AREA(ACRES) = 18.00 XXxxKKHHXxx*xxXKXHKHKxXXXKX*XHXXXKXxXHXXKXHK*XXXHK*XXXXXXHXxXXXXHXXXXXXXXXKX FLOW PROCESS FROM NODE 4.20 TO NODE 3'50 IS CODE .= 3 I ----- > ) > > >COMPUT[ PIPE-FLOW TRAVEL TIME THRU SUOAREA<<<“ ' ' )>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<(<< I DEPTH OF FLOW IN 24'0 INCH PIPE IS 18'2 INCHES PIP[-FLOW VELOCITY(FEET/SEC.) = 9'2 I UPSTREAM NODE ELEVATION(FEET) = 73'90 ^ DOWNSTREAM NOD[ ELEVATION�FEET\ =' 5'00 ' FLOW LENGTH(FEET) = 630.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 24'00 NUMBER OF PIPES = 1 I ` PIP[-FLOW� CFS ) = 23'59 ' TRAVEL TIME(MIN.) = 1.14 TC(MIN.) = 16.77 �� ` ° � , ^ 1 KKKXKXXKXXKKxKxKxXKHKxKKxxxxxxxxxxxKKxxxxHxxxxxxxxxxxxxKxxxxHxKxxxHHxxxxxxKx [LOW PkOC[SC FROM NODE 4.20 TO NODE 3.50 IS .CODE = 8 �� 0� )>))>AODITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< - 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.062 1 SOIL CLASSIFICATION IS ^A^ . RESIDENTIAL-) 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = '5820 SUBAREA AREA(ACRES) = 4.20 SUBAREA RUNOFF(CFS) = 5.59 &� EFFECTIVE AREA(ACRES) = 20.91 �� AVERAGED Fm(INCH/HR) = .582 TOTAL AREA(ACRES) = 22.20 I PEAK FLOW RATE(CFS) = 27.85 TC( MIN ) = 16.77 XHxxKHKKKxx*KKxKKXXX**XxK*KXKKKXXKXKXXKKXXxX*xxHKxKXXXXxXXXXXxxxxXXxxXKXxxHx ~� FLOW PROCESS FROM NODE 3.50 TO NODE 3.50 IS CODE = 11 ` . - . >>>>>CONFLUENCE MEMORY BANK * 3 WITH THE MAIN-STREAM MEMORY<{<<( �� C KKX PEAK FLOW RATE TABLE XXX O( CFS ) Tc(MIN.) Fm(INCH/HR)' - Ae(ACRES ) 1 45.42 16'77 .582 34.04 E 2 44.21 19.27 .582 37.28 3 42'�9 2�.�� .582 38.40 , TOTAL AREA = 38.40 E COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 45.42 Tc(MIN.) = 16.766 EFFECTIVE AREA(ACRES) = 34.04 AVERAGED Fm(INCH/HR) = .58 TOTAL AREA(ACRES) = 38'40 %XXKKKxKxxXKKXKxXyXXKKKXXKXKKXXKKHHKKKKKXKHXKXxxKxKxXXXXXXXXXXXHxxxxKxxxxxKH E FLOW PROCEC3 FROM NODE 3.50 TO NODE 3.30 IS CODE = 3 >>>>>COMPUTE PIP[-FLOW TRAVEL TIME THRU SU8AREA<<<(( E )>>>>USING COMPUTER-ESTIMATED PIP[SIZE (NON-PRESSURE FLOW)<<<<< DEPTH OF FLOW IN 33.0 INCH PIPE IS 23.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC') = 9.9 I UPSTREAM NODE ELEVATION(FEET) = 65.00 - ~ - - - • . DOWNSTREAM NODE ELEVATION(FEET) = 55.80 I FLOW LENGTH(FEET) = 850'00 MANNING N = .U13 = ESTIMATED PIPE OIAMETER�INCH� = 33 0O NUMBER OF PIPES , ' PIPE-FLOW( CFS ) = 45.42 TRAVEL TIME(MIN.) = 1.43 TC(MIN.) = 18.20 II . . - : %�KXKHXxXxxxKXXKXXXXHXHKXHKXKXXXXXXXXXXXKHXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 1 FLOW PROCESS FROM NODE 3.50 TO NODE 3.30 IS CODE = 8 ''-- ------------- >>>>>AODITION OF SUBAREA TO MAINLINE PEAK FLOW((((( N� INTENSITY(INCH/HOUR) YEAR RAINFALL INTENSITY . � INCH/HOUR > = 1.963 �� ~~ SOlL CLASSIFICATION IS A . ' . RESIDENTIAL-) 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .5820 1 (3UOAR[A AREA(ACRES) = 5'30 SUBAREA RUNOFF(CFS) = 6.59 EFFECTIVE AREA(ACRES) = 39.34 AVERAGED Fm(INCH/HR) = .582 �� TOTAL AREA(ACRES) = 43.70 �� ~� PEAK FLOW RATE( CFS ) = 48-89 TC(MIN) = 18'20 xX*KxxKxxHxKXKxxxxxxKxxxxxxxx*xx*xxxK*xxxxxxxxxxxxxxxxxxxxx*xxxx*xx*xxxxxxxx �� FLOW PROCESS FROM NODE 3.30 TO NODE 3.30 IS CODE = 11 �� >) > > > CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<<{<< �� �� XXX PEAK FLOW RATE TABLE KX* O(CFC) Tc(MIN.) Fm(INCH/HRl- -Ae(ACRES) 1 114.34 18.20 .493 00.25 0� 2 1 1 1 -9O 20.70 .490 8� '43 3 109'08 22'13 .488 89'88 4 113.96 15.85 .493 71.41 5 114.12 16.10 .493 -- 72.41 6 111'05 21.28 '489 88'78 7 90.28 29.06 .473 93.40 TOTAL AREA = 93.40 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 114.34 Tc(MIN.) = 18.197 C [FF[CTIVE AREA(ACRES� 8�.25 AVERAGE� Fm� INCH�HR� = .49 ` ` ' TOTAL AREA(ACRES) = 93.40 KXXXxKKX*KxxxKKKKKKKXXKXKHKKXKK*XXK*XXKXXXX*KXXKXKKHXXXXXXXXXXHXXX3000000000K FLOW PROC[ss FROM NODE 3.30 TO NODE 3.30 IS CODE = 12 - --_-___ >>>>>CL[AR MEMORY BANK W 1 (<<< ------ - - ------------ XXXKXKxKKxxKXKXxxXKXKKMXKKKxKXKXKXXKKHHXKKKHHXXK*XKX*XH*XXxXKXXXX*XXXKxHxxxx FLOW PROCESS FROM NODE 3.30 TO NODE 3.30 IS CODE = 12 ' . - -- > > >}>CLEAR MEMORY BANK # 2 <<<<< KXXxxxxKKxHHKxX*H#xxxXxKKXXXXXXXXXXHXXXXKXXX#XXKXXXXXXXXX*XX*XKXXXXXXXXXXXXX I FLOW PROCESS FROM NODE 3.30 Nit=.' � 3.30 IS CODE .= 12 >>>>>CLEAR MEMORY BANK * 3 <<<<< xKKKKKKKKKXKKKKKHXXXXXM*KXXXXXKXHXKXXK*KKKH*KKXXXXXXXXXXXXXXXXXXXXKXXXXXXKXX FLOW PROCESS FROM NODE 3'30 TO NODE 6.80 IS CODE = 4 _ _ ___-_____- >>)>>COMPUT[ PIPE-FLOW TRAVEL TIME THRU SU8AREA<<<<< >>>>>USING USER-SPECIFIED PIPE3IZE<<<(< �===============_____= DEPTH OF FLOW IN 60.0 INCH PIPE IS 37.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8'8 �� . � UPSTREAM NODE ELEVATION(FEET) = 55'80 �� -- DOWNSTREAM NODE ELEVATION(FEET) = 54.00 FLOW LENGTH(FEET) = 440.00 MANNING'S N = .013 I ` GIVEN PIPE DIAMETER� INCH \ = 60 .0U NUMBER OF PIPES = ' PIPE-FLOW(CFS) = 114.34 TRAVEL TIME(MIN.) = .84 TC(MIN.) = 19.03 3 KXKxKKKKxxXxxKxxxx*xxxxxxxxH*Hxxxxx*xHxxxxxK*xxxxxxxxHxxx*xxKxxxxxxxxxxxxxxx FLOW PROCESS FROM NODE 6.00 TO NODE 6.80 IS CODE = 1 W� - -' -------------- - - �� >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< E TOTAL NUMB[R OF STREHMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 19.03 RAINFALL INTENSITY(INCH/HR) = 1.91 AVERAGED Fm( INCH/HR ) = .49 - -- - ' EFFECTIVE STREAM AREA(ACRES) = 80'25 TOTAL STREAM AREA(ACRES) = 93'40 ` E P[AK FLOW RATE� CFS ) A CONFLUENCE = 1 14 .34 RATE(CFS) KK*XKXKKXXXKK*XXXKHKXKKKXKKKXXXHKK**KKXKKXHXKXXHH*HXXXHXX*XXXXXX*XXXX*XXXXXK N� FLOW PROCESS FROM NODE 6.70 TO NODE 6.80 IS CODE = 2 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<(<(< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3-4 DWELLINGS/ACRE TC = KK [( L[NGTHKX 3.00)/(ELEVATION CHANGE )l XX .20 C INITIAL SU8AR[A FLOW-LENGTH(EET1 1000,00 ` ' UPSTREAM ELEVATION(FEET) = 66.00 DOWNSTREAM ELEVATION(FEET) = 54.30 ELEVATION DIFFERENCE(FEET) = 11.70 TC(MIN.) = .412%[( 1000 .00XX 3.00)/( 1 1,'70 )l XX .20 = 15.895 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.129 SOIL CLASSIFICATION IS ^A^ _ __ ^ RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS �ATE, Fm�INCH�HR� = '5820 ` SUBAREA RUNOFF(CFS) = 8.91 TOTAL AREA(ACRES) = 6.40 PEAK FLOW RATE(CFS) = 8.91 KKxKHxKKHxxxKxxxKxxxxxxxXKKxxxxxx)909(Nw(xxxx*xxxxxxxxxxxxxxxxx*xxxxxxxxxxx* I FLOW PROCESS FROM NODE 6.80 TO NODE 6.80 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<(<<< -- - -- �� TOTAL NUMBER OF STREAMS = 3 �� CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 15.89 I RAINFALL INTENSITY(INCH/HR) = 2.13 MVERAGED Fm( INCH/HR ) = .58 ' EFFECTIVE STREAM AREA(ACRES) = 6.40 I PEAK TOTAL STREAM AREA(ACRES) = 6'4O ` FLOW RATE� CFS ' � AT CONFLUENCE = 8 .91 li XxxKKKXxK*xKxxKKXXXXKKKXXXxK*KHKXK*XXXXXKXxKKXXXXXXXXXXXXXXXXXXXXKXHXKKXXX*�� FLOW PROCESS FROM NODE 6.60 TO NODE 6.80 IS CODE = 2 '--------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSlS<<<<{ �� 1 DEVELOPMENT IS COMMERCIAL I TC = KX[(LENOTHKK 3 �����ELEVATION CHNGE�l�X .2O ^` ' ' . '~ INITIAL SUBAREA FLOW-LENGTH(FEET) = 520.00 � UPSTREAM ELEVATION(FEET) = 55.50 I DOWNSTREAM [LEVATION(FEET) = 54.30 [LEVATION DIFFERENCE(FEET) = 1.20 _ TC(MIN.) = '304x[( 520'00X* 3.00)/( - . 1'20)]X* '20 = 12.492 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.460 I SUIL CLSSIFlCATION IS ^A^ COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 , SUBAREA RUNOFF(CFS) = 1.70 TOTAL AREA(ACRES) = .80 PEAK FLOW = 1.70 E KKKXHKKXKXXKKKKKKKKHHXXXK*XXKHXXxX*KXX*xxKX*K*XXX*XXXXXXXXXXXXX*XXXXXXX***HX FLOW PROCESS FROM NODE 6'80 TO NODE 6'80 IS CODE = 1 ,_-__-_- >>>>>D[SIONATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< Qn >>>)>AND COMPUTE VARIOUS CONFLUENCED STREAM VALU[S<<<<( 0 �===,====__,==__ _ _=-___ ______ ________ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: C TIME OF CONCENTRATION(MIN,) = 12.49 RAINFALL INTENCITY(INCH/HR) = 2.46 C ' AVERAGED Fm(INCH/HR) = .10 EFFECTIVE STREAM AREA(AC = .80 ` TOTAL STREAM AREA(ACRES) = .80 PEAK FLOW RAT[(CFS) AT CONFLUENCE = 1.70 Li RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. � KX PEAK FLOW RATE TABLE XX -- ' ' . ' '- 0/CFS1 TC(MIN.) Fm(INCH/HR) Ae(ACRES) 1 123.14 15.89 .497 75.22 0U 2 123.93 16'69 .496 78.61 �� 3 123.98 16.93 '496 79.61 �� 4 123.30 19.03 '496 87.45 C 5 119.97 21.54 .493 94.63 . 6 118.94 22.12 .492 95.98 7 116.72 22.98 .491 97.08 � 8 96.29 29.94 .477 100.60 �� ' I 9 116.70 12.49 .495 59.29 COMPUTED CONFLUENCE EST�MATES ARE AS FOLLOWS: � ` ^ Tc(MIN.) � I PEAK FLOW RATE�CFS� = 123.�8 To�MIN.� = 16.932 ' EFFECTIVE AREA(ACRES) = 79.61 AVERAGED Fm(INCH/HR) = .50 , • TOTAL AREA(ACRES) = 100'60 | II , xXXXKXXXKXXXXXXKXKXXKXKKXXX*XXXKHXX#KHHXHKXXXX#XKXKXXXXXXXXXXXXXXXXXXXXXXXKX I FLOW PROCESS FROM NODE 6.80 TO NODE 6.90 IS CODE = 4 � ------------- >>>>>COMPUT[ PIPE-FLOW TRAVEL TIME THRU SUBAREA((<<< >>>>>USING USER-SPECIFIED PIPESIZE<<<<< 0� m� DEPTH OF FLOW IN 60.0 INCH PIPE IS 37.9 INCHES , PIPE-FLOW V[LOCITY(FEET/SEC.) = 9.5 1 UPCTR[AM NODE ELEVATION(FEET) = 54.00 . DOWNSTREAM NODE ELEVATION(FEET) = 52.90 FLOW LENGTH(FEET) = 230.00 MANNING "S N = .013 • GIVEN PIP[ ' OIAM[TER(INCH� = 60.00 NUMBER OF PIPES = 1 DIAMETER( INCH) PIPE-FLOW(CFS) = 123.98 ' - TRAVEL TIME(MIN.) = .40 TC(MIN.) = 17.34 KKXKXXXXXxxX*xXxKKxKxXxxxKxXx*xXxXXXX#HXHXXXK**XXXXKxxXxxXxXxxxxX*XXHxHxMxXX IR FLOW PROCESS FROM NODE 6.90 TO NODE --- 6'90 IS CODE = 10 > > > > > MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK 0 1 < { < < < -- - KXXKxKXKXXKXKXX*XXKXXXKXKXXXXXXXX*XKKXXXXXHXXXXXXXKXXXXXXXXXXXXKXXXXKKXKK*X* FLOW PROCESS FROM NODE 6.00 TO NODE 6.10 IS CODE = 2. >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< --'--- DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3-4 DWELLINGS/ACRE TC KK [( LENGTHKX 3.00)/(ELEVATION CHANG[ )l KX .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 350.00 UPSTREAM ELEVATION(FEET) = 89.00 DOWNSTREAM ELEVATION(FEET) = 84 '00 ELEVATION DIFFERENCE(FEET) = 5.00 TC(M1N.) = .412X[( 350'00XX 3.00)/( .20 = 10.036 10 YEAR RAINFALL INTENSITY(INCH/HOUR) l = 2 .8�5 . ' SOIL CLASSIFICATION IS "A" RESIDENTIAL-) 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE - Fm(INCH/HR ) = .5820 SUBAREA RUNOFF( CFS = 11.01 ' TOTAL AREA(ACRES) = 5.50 PEAK FLOW RATE( CFS ) = 1 1 .01 C XXXXXKKKXXKKKKXXKWHXKKXXKKKXXXXXKKKXKXHKX�*K�KXXXXXXXXXXKXXKXXXXXXXXKHXHXXXX T FLOW PROCESS FROM NODE 6.10O -�� 6. IS CODE = 6 ' --' ----- - ------------------ ) } > > > COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA < < < < ( _ _ UPSTREAM ELEVATION(FEET) = 84'00 DOWNSTREAM ELEVATION(FEET) = 71'00 | C STREET LENGTH(FEET) = 800'00 CURB HEIGTH(INCHES) = 6. STREET HALFWlDTH( FEET ) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRAOEBREAK( FEET ) = 10.00 II INTERIOR STREET CROSSFALL(DECIMAL) = .020 • OUTSIDE STREET CROSSFALL(DECIMAL) = '040 1 �� SPECIFl[O NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 XKTRAV[L TIME COMPUTED USING MEAN FLOW(CFS) = 15.44 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .49 ||ALFCTREET FLOOD WIDTH(FEET) = 1 1 .44 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.70 N� PRODUCT OF DEPTH&VELOCITY = 1.83 STREET FLOW TRAVEL TIME(MIN.) = 3.53 TC(MIN.) = 13.56 10 YEAR RAINFALL INTENSITY(INCH/HOUR\ = 2'341 0� ` ' � SOIL CLASSIFICATION IS ^A^ RESIDENTIAL-) 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .5820 1 SUOAR[A AREA(ACRES) = 5.60 SUBAREA RUNOFF(CFS) = 8.87 EFFECTIVE AREA(ACRES) '= 11.10 AVERAGED Fm(INCH/HR) = .58 TOTAL AREA(ACRES) = 11.10 PEAK FLOW RATE(CFS) = • 17.58 I [ND OF SUOAREA STREET FLOW HYDRULICS: DEPTH(FEET) = '50 HALFSTREET FLOOD WIDTH(FEET) = 12.06 FLOW V[LOCITY(FEET/SEC.) = 4.01 DEPTH = 2.00 3 �KXHXXXXKXXxxKxHKKXKHKHxxxKxxxxxxxxxxxxKxxx*xxxx*xxxxx*xxxxKxxxxxxxx*xxxHxxx �� FLOW PROCESS FROM NODE 6'20 TO NODE 6.20 IS CODE = 1 �� >>>>>D[SIGNAT[ INDEPENDENT STREAM FOR CONFLUENCE<<<<< !I TOTAL NUMBER OF STREAMS = 2 " CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.56 RAINFALL INTENSITY(INCH/HR) = 2.34 ki AVERAGED Fm( [NCH/HR ) = .58 EFFECTIVE STREAM AREA(ACRES) = 11.10 mal TOTAL STREAM AREA(ACRES) = 11.10 PEAK FLOW RATE( CF� ) AT CONFLUENCE = 17.58 �� ` ' I XXXKKKKXXKHXKXXHXKXKXKKKXKKXXXXXXKXXXXXKXXXKHXXXHXXXXKXXXXXXXXXXXXXXXXXXXXXX FLOW PROCESS FROM NODE 6.15 TO NODE 6.20 IS CODE = 2 . )>>>>RATIONAL METHOD INITIAL SUBAREA ANALY3IS(<<<( DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3-4 DWELLINGS/ACRE TC = KX[(LENGTHXX 3.00)/(ELEVATION CHANGE MHK '20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 1000.00 UPSTREAM ELEVATION(FEET) = DOWNSTREAM ELEVATION(FEET) = 71.00 E ELEVATION DIFFERENCE(FEET) = 17.00 TC( MIN' ) = .412X[( 1000'00XX 3.00)/( 17'80 )lHX .20 = 14.615 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.239 E SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm( lNCH/HR) = .5820 SUBAREA RUNOFF(CFS) � = 9.84 / , . TOTAL AREA(ACRES) = 6.60 PEAK FLOW RATE(CFS) = 9.84 XXXxKXKXKXXxxHXKXXKXXXXXXXXXXXXXXXKHXKXKXXXHXXXXXXXXXXXXXXXXXXXXXXXXXKXXXXXX I FLOW PROCESS FROM NODE 6.20 TO NODE 6.20 IS CODE = 1 - ---_-_- _ >>>>>DESlGNAT[ INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< -- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: I TJME OF CONC[NTRATION(MIN.) = 14.62 RAINFALL INTENSITY(INCH/HR) = 2.24 AVERAGED Fm/INCH/HR) = .58 EFFECTIVE STREAM AREA(ACRES) = 6'60 N� TOTAL STREAM AREA(ACRES) = 6'60 [`[AK FLOW RAT[( CFS ) AT CONFLUENCE = 9.84 I RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. xx PEAK FLOW RATE TABLE XX - ' , , , O( CFS ) Tc( MIN' ) Fm( INCH/HR ) Ae( ACRES ) 1 27'20 13.56 '582 -- 17.23 I 2 26'40 14'62 .582 17.70 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 27.28 Tc(MIN.) = 13.565 1 EFFECTIVE AREA(ACRES) = 17.23 AVERAGED Fm(INCH/HR) = .58 TOTAL AREA(ACRES) = 17.70 ` �� KXxxXXXXXXKXXXXXXKKKXKKXXXKXXXXKKHKHKKHxKXKXKKHKXXHXKXXXXxxXXXXXXKXXXXXXHXXx gi FLOW PROCESS FROM NODE 8.20 TO NODE 6.40 IS CODE = 4 �� 0� >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SU8AREA< <<<< � >>)>>USING USER-SPECIFIED PIPESIZE<<<<< '--------- -- ��--- �� DEPTH OF FLOW IN 30.0 INCH PIPE IS 14.9 INCHES , PIPE-FLOW VELOCITY(FEET/SEC.) = 11.2 I UPSTREAM NODE ELEVATION(FEET) = 71.00 DOWNSTR[AM NOOE ELEVATION( FEET ' � 64.00 ` FLOW LENGTH(FEET) = 350'00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES =- 1 ' PIP['FLOW(CFS) = 27.28 al TRAVEL TIME( MIN' ) = .52 TC( MIN' ) = 14.09 &� XXXKXXxXXKxXKXXXxKXXXKKXxHXKXXXXXXKKHHXX#xHXXXXXXXXXKXXXXXXXXXXXXKXXXXXHXxXX "� FLOW PROCESS FROM NODE 6'20 TA NODE' 6.40 IS CODE = 8 -------'---- ' ---- - Q^ >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< �� =--==============_ 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.289 E SOIL CLASSIFICATION IS "A^ RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm( INCH/HR) = .5820 SUBAREA AREA(ACRES) = 5.20 SUBAREA RUNOFF(CFS) = 7.99 EFFECTIVE AREA(ACRES) = 22.43 c AVERAG[O Fm/ INCH/H� 1 = 582 Fm( INCH/HR) AREA(ACRES) = 22.90 PEAK FLOW RATE(CFS) = 34,45 ( T� MIN ) = 14.09 II �� ` ' XKXKXKXXHXX*KK*XXKXXKHXXXXXXKXXKXKXXKXKXXXXXXXXXXXXX*XXXX3E)EXX*XXXXX*XXXX*XXX I FLOW PROCESS FROM NODE 6.40 TO NODE 6.50 IS CODE = 3 . , -----______--_____ >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<(<<< �� >) >>>USING COMPUTER-ESTIMATED PIPESIZE ` � NON-PRESSURE FLOW \<<<< �� ' DEPTH OF FLOW IN 27.0 INCH PIPE IS 21.5 INCHES I PIPE-FLOW VELOCITY(FEET/SEC.) = 10.2 UPSTREAM NODE ELEVATION(FEET) = 64.00 , DOWNSTREAM NODE ELEVATION(FEET) = 58.90 I FLOW LENGTH(FEET) = 350.00 MANNING°3 N = .013 [STIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW/CFS\ = 34.45 TRAVEL TIM[( MIN . ) = .57 TC( MIN - )' = 14.66 xX:XXKXXKKXXXXXKXXKXKXXKXKHKXXHHXXXXKXKXXXXKKXXXKXXXXX*HXXXXXXKKHKXXHHXXXXXX 1 FLOW PROCEsC FROM NODE 6.50 TO NODE 6.50 IS CODE = 1 -_- -. )>>>>D[SIGNAT[ INDEPENDENT STREAM FOR CONFLUENCE<<<<< ' TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN-) = 14.66 RAINFALL INT[NSlTY(INCH/HR) = 2.23 AVERAGED Fm(INCH/HR) = .58 EFFECTIVE STREAM AREA(ACRES) = 22.43 TOTAL STREAM AREA(ACRES) = 22.90 u° PEAK FLOW RAT[(CFS) AT CONFLUENCE = 34.45 :1 KKXXXKXX*XKXXKH*KKHXXXXKXKXKHXXXXXXKKXXNKKXXXXXXXXXXKXXXXXKXXXXKKXXKXXXXXXHX FLOW PROCESS FROM NODE 6.45 TO NODE 6.50 IS CODE = 2 - - -------- ----- - )>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< -------- DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL 3. DWELLINGS/ACRE �� TC = KX E( L[NGTHKK 3 �O1/( ELEVATION �HAN�E \lXK .20 �� ' ' ` '~ INITIAL SUBAREA FLOW-LENGTH(FEET) = 1000'00 UPSTREAM ELEVATION(FEET) = 74.30 DOWNSTREAM ELEVATION(FEET) = 58.90 ELEVATION DIFFERENCE(FEET) = 15.40 TC( MIN' ) = .412X[( 1000'00XK 3.00 )/F' 15.401]HX '20 = 15.045 Po 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.200 SOIL CLASSIFICATION IS "A" m� R[SlDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .5820 SUBAREA RUNOFF(CFS) = 14.42 TOTAL AREA(ACRES) = 9.90 PEAK FLOW RATE(CFS) = 14.42 XxKKKKXKHXxHHKxxXXXXK*KHXXxKXKx**XXX*XK*HXXKXK*XHXXX**XXXXXXXKXXxxxxxxx*xxxX �� FLOW PROCESS FROM NODE 6'50 TO NODE 6.50 IS CODE = 1 -- - - -------- >>>>>DESIGNAT[ INDEPENDENT STREAM FOR CONFLUENCE<<<(< > > >> >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 , CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 15.05 RAINFALL INTENSITY(INCH/HR) = 2.20 AVERAGED Fm(INCH/HR) = .58 11 EFFECTIVE STREAM AREA(ACRES) = 9'90 TOTAL STREAM AREA(ACRES) = 9.90 PEAK FLOW RATE( CFS) AT CONFLUENCE = 14.42 ~� RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. I XX PEAK FLOW RATE TABLE XX 0(CFS) Tc(MIN.) Fm(INCH/HR) Ae(ACRES) 1 40.00 14.66 '582 - 32'�7 ' - I _ � 47 O9 15 72 582 32 8� ' 48'41 15.05 ,582 32.50 I C8MPUTED CUNFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RAT[( CFS) = 48.80 Tc( MIN-)'= -14'660 EFFECTIVE AREA(ACRES) = 32'07 AVERAGED Fm(INCH/HR) = '58 TOTAL AREA(ACRES) = 32.00 • ~ , `=°==~ I XKKXKXKXXXXXxXXKXxKxxKxHxxKKxx*KxxK*KxKKKKKKxxXKKKxxXx*KxxKHxKxxxKxXxxKKX*xx FLOW PROCESS FROM NODE 6.50 TO NODE 6.90 IS CODE = 4 • ' '---------- ----------- --- >>>>>COMPUT[ PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<(< al >>>>>USING USER-SPECIFIED PIPESIZE<<<<( -- ---- ---- - DEPTH OF FLOW IN 36.0 INCH PIPE IS 27.2 INCHES �� PIP[-�LOW V[LOCITY�FEET/SEC.� = 8.5 �� UPSTREAM NODE ELEVATION(FEET) = 50.90 DOWNSTREAM NODE ELEVATION(FEET) = 52.90 I FLOW LENGTH(FEET) = 850.00 MANNIWS N = ~01_ - '- . GIVEN PIPE DIAMETER( INCH) = 36.00 NUMBER OF PIPES = 1 , PIP[-FLOW(CFS) = 40'80 3 TRAVEL TIME(MIN.) = 1.66 TC(MIN.) = 16.32 XKKKXxxxxKKXxKKXXXKKHxxXXXXKHXXXKXK�����XXHXXXHKXXXXXXXXXXXXXXXXXXXXXXxxK** �� K FLOW PROCE FROM NODE 6.55 TO NODE 6.90 IS CODE = 8 �� >>>)>AOOITION OF SUBAREA TO MAINLINE PEAK FLOW<<<(< �� �� 10 YEAR RAINFALL INTENSITY( INCH/HOUR ) = 2.096 SOIL CLASSIFICATION IS ^A^ RESIDENTIAL-) 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .5820 E SUOAR[A AREA� ACR[S 1 = 11 3� SUBAREA RUNOFF/ CFS 1 = 15.39 AREA(ACRES) ' RUNOFF(CFS) EFFECTIVE AREA(ACRES) = 43.37 AVERAGED Fm(INCH/HR) = .582 E TOTAL AREA( ACRES ' � = 44.1O PEAK FLOW RATE( CFS) = 59'08 TC(MIN) = 16.32 XXKxKX*xK*H*xxxK*xxx*x*xxK*xxxxxxxHH*KxxxxxxHxxxxxxxxxxxxxxxxxxxxxHxx*xxxxHx i FLOW PROCECC FROM NODE 6'90 TO NOOE 6.9U IS COOE = 11 > ) > > > CONFLU[NCE MEMORY BANK 0 1 WITH THE MAIN-STREAM MEMORY < < < < < -------��� : xXK PEAK FLOW RATE TABLE XXx ' O(CFS) TC(MIN,) Fm(INCH/HR) Ae(ACRES) 1 102.24 16.32 '528 118'68 I � 102'06 16.71 .527 12�'76 3 100'95 17.38 .527 123.89 1 173'20 12.90 '527' 93.57 I � 1O2'21 16'3O '52O 1 tO'53 - (_ 1O1'56 17.09 '527 - ' 122.58 7 101.07 17.34 .527 123.69 0 175.09 19.44 .525 131.55 • 166-50 21.95 .521 138.73 10 164'30 22.53 .520 140.08 I 11 160'64 23.39 .519 - 141.18 12 130.49 30.37 .509 144.70 TOTAL AREA = 144.70 I COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CPS) = 182.24 Tc( MIN' ) = 16.321 EFFECTIVE AREA(ACRES) = 118.60 AVERAGED Fm(INCH/HR) = .53 TOTAL AREA(ACRES) = 144'70 ��XXXKXKXXKxxKKxxxKxHxKXXxKXKxKXHKxxHxxKxHxxxKKxxxXKxxKKxxxXxKKKHxxxxxKxxKxxxx �� FLOW PROCESS FROM NODE 6'90 TO NODE 6.90 IS CODE = 12 )>)>)CL[AR MEMORY BANK 41 1 <<<<< KKxK*x**KHKHxKKKKK*xxXHKXxxxxKxx*H*x*KH���*K����x���XK�XHX�����*��������KxK* - FLOW PROCESS FROM NODE 6.90 TO NODE 7.60 IS CODE = 4 I >>>>)COMPUTE PIPE-FLOW TRAVEL TIME THRU SU8AREA<<{<< >>>>>UCING USER-SPECIFIED PIPESIZE<<(<( ==--- DEPTH OF FLOW IN 66.0 INCH PIPE IS ,39'9 INCHES 11 PIPE-FLOW VELOCITY(FEET/SEC.) = 12.1 UPSTREAM NODE ELEVATION(FEET) = 5290 ' DOWNSTREAM NODE ELEVATION(FEET) = 48'30 I FLOW LENGT||(FEET� = 65O'00 MANNING N = .O13 LENGTH( FEET) GIVEN PIPE DIAMETER(INCH) = 66.00 NUMBER OF PIPES = 1 PIP['FLOW(CFS) = 182.24 TRAVEL TIME(MIN.) = '89 TC(MIN.) = 17.21 E XXxxXXXxXxxXXXX**KKKKxK*xHxx*KXXxxKxxxxKxx*Kxxxx#*K*KxxxxxxXxxXxxxxxxxxx*xxx FLOW PROCESS FROM NODE 7'60 TO NODE 7.60 IS CODE = 10 '- -- -- ------------ >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK ft 1 <<<<< xXXXXXxKKKKK�xKKX*��KK�KXXX%X�XKHKK�XHXX�Kxx*x�K����������XXXXX��KKXXXxxHxxx FLOW PROC[3C FRUM NO�E 7'�� TO NO�E 7'1O IS CODE = 2 ' --------' ---- - >>>>>RATIONAL METHOD INITIAL SUBAREA ANALY3IS<(<({ -=-===-========_-___- DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3-4 DWELLINGS/ACRE TC = KX[(LENGTHxX 3.00)/(ELEVATION CHANGE)lXX .20 I INITIAL SUBAREA FLOW-LENGTH(FEET) = 800.00 UPSTREAM ELEVATION(FEET) = 91'10 DOWNSTREAM ELEVATION(FEET) = 79.60 I ELEVATION DIFFERENCE(FEET) = 11.50 TC(MIN.) = '412K[( 800'00XX 3.00)/( 11'50)lXX .20 = 13'951 10 YEAR RAINFALL INTENSITY(INCH/HOUR|) = 2.302 SOIL CLASSIFICATION IS "A" N� RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .5820 , ' SUBAREA ' CFS RUNOFF/� = 8'83 RUNOFF TOTAL AREA(ACRES) = 5.70 PEAK FLOW RATE(CFS) = 8.83 �� _-- -- XKxKKKxxHKKKKKHKKKKxxKxxxKKKxxxxxKxxKKxHHXxxxKxKxXKKxxxxxxKXxxxxxKKxxxxxxxKx I FLOU PROCESS FROM NODE 7.10 TO NODE 7.20 IS CODE = 6 ---------- --------- ---- - >>:>>COMPUT[ CTR[ET FLOW TRAVEL TIME THRU SUBAREA<((<( ' ---------- ------- ------------- - - ------------= --- - 1 UPSTREAM ELEVATION(FEET) = 79.60 DOWNSTREAM ELEVATION(FEET) = 70'30 �� , ` ' STREET LENGTH(FEET) = 300.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 18.00 3 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 • 3 XXTRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 12.30 STREET FLOW MODEL RESULTS: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETA., IS NEGLECTED. STREET FLOW DEPTH(FEET) = .55 HALFSTREET FLOOD WIDTH(FEET) = 14.56 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.15 PRODUCT OF DEPTH &VELOCITY = 1.18 STREET FLOW TRAVEL T I ME(M I N .) = 2.32 TC(MIN.) = 16.27 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.099 Li SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 SUBAREA AREA( ACRES) = 5.10 SUBAREA RUNOFF( CFS) = 6.96 ri EFFECTIVE AREA(ACRES) = 10.80 AVERAGED Fm(INCH/HR) = .58 iii TOTAL AREA(ACRES) = 10.80 PEAK FLOW RATE(CFS) = 14.75 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .57 HALFSTREET FLOOD WIDTH(FEET) = 15.81 FLOW VELOCITY(FEET /SEC.) = 2.28 DEPTHXVELOCITY = 1.30 : xXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX FLOW PROCESS FROM NODE 7.20 TO NODE 7.30 IS CODE = 4 �� > > > > >COMPUTE PIPE- -FLOW TRAVEL TIME THRU SUBAREA < < <<< > > > >>LJSING USER - SPECIFIED PIPESIZE < < < << ASSUME FULL - FLOWING PIPELINE PIPE-FLOW VELOC I TY(FEET /SEC .) = 4.7 UPSTREAM NODE ELEVATION(FEET) = 78.30 DOWNSTREAM NODE ELEVATION(FEET) = - 77.00 j FLOW LENGTH(FEET) = 800.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 14.75 TRAVEL_ T I ME(M I N .) = 2.84 TC(MIN.) = 19.11 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX '3 XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX f_OW PROCESS FROM NODE 7.20 TO NODE 7.30 IS CODE = 8 > > >> >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW( << << 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.906 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 SUBAREA AREA(ACRES) = 6.40 SUBAREA RUNOFF(CFS) = 7.63 EFFECTIVE AREA(ACRES) = 17.20 AVERAGED Fm( INCH /HR) = .582 TOTAL AREA(ACRES) = 17.20 PEAK FLOW RATE(CFS) = 20.50 TC(MIN) = 19:11 K�KKXXxKXXxxKXKX�KK.HHHK*K*x*H.KKKxXxH.KKxKx*xKHxxKK*xK..��.���HKH�*H��K*.�K 00 FLOW PROCESS FROM NODE 7.30 TO NODE 7.30 IS COO = 1 �� - - -- >>>>>D[SIGNAT[ INDEPENDENT STREAM FOR CONFLUENCE(<(<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: Fl TIME OF CONCENTRATION(MIN.) = 19,11_ RAINFALL INTENSITY(INCH/HR) = 1.91 ` ' AVERAGED Fm(INCH/HR) = .58 EFFECTIVE STREAM AREA(ACRES) = 17.20 �� ` TOTAL STREAM AREA(ACRES) � = 17.20 �� ' �� PEAK FLOW RATE(CFS) AT CONFLUENCE = 20.50 : KKXxXKKXKKXXKXXXXXKKXKXHXHKXXKKK*XXXKXXXXXXXHMKXX*XXXXX*XXX*KX***XXXXXXHXKXK FLOW PROCESS FROM NODE 7.00 TO NODE 7.05 IS CODE = 2 ' - -'-------- ----------- -- ) > > ) > RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<< < < ml , ,-============- DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3-4 DWELLINGS/ACRE TC = KX [( LENGTHXX 3.00)/(ELEVATION CHANGE )l HX .20 0� INITIAL SUBAREA FLOW-LENGTH(FEET) = 800.00 UPSTREAM [L[VATION( FEET ) = 91.10 DOWNSTREAM ELEVATION(FEET) = 81'70 ELEVATION DIFFERENCE(FEET = 9.40 TC( MIN . ) = .412X[( 000'00HK 3.00)/( 9.40 )l XK .20 = 14.525 10 YEAR RAINFALL INTEN3ITY(INCH/HDUR) = 2.247 SOIL CLASSIFICATION IS "A^ RESIDENTIAL-) 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm( INCH/HR ) = .5820 SUBAREA RUNOFF(CFS) = 7.19 TOTAL AREA(ACRES) = 4.80 PEAK FLOW RATE(CFS) = 7.19 FLOW PROCESS FROM NODE 7.05 TO NODE 7.30 IS CODE = 6 - )))))COMPUTE STREET FLOW TRAVEL TIME THRU CUDAREA<(<{< UPSTREAM ELEVATION(FEET) = 81.70 DOWNSTREAM ELEVATION(FEET) = 77.00 STREET LENGTH(FEET) = 350.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIOTH(FEET) = 18'00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.0[) INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL� OECIMAL 1 = .040 al . ' SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 XXTRAV[L TIME COMPUTED USING MEAN FLOW( CFS ) = 0.56 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .41 |{�LFSTRE[T FLOOD WIDTH( FEET = 7.00 ` ' AV[RAG[ FLOW V[LUCITY(F[[T/C[C') = 3.26 PRODUCT OF DEPTH&VELOCITY = 1.33 I STREET FLOW TRAVEL TIME( MIN. ' � = 1 .79 TC� MIN.) = 1 ` ` ' 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.096 SOIL CLASSIFICATION IS "A" ' R[SlD[NTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .5820 �UU0R[A AREA(ACRES) = 2.00 SUBAREA RUNOFF(CFS) �= 2.73 I EF�[CTIV[ AREA/ACRES� = 6'8O AVERAGE� Fm(INCH/HR� = 58 ` ' ` ' ' TOTAL AREA(ACRES) = 6.80 PEAK FLOW RATE(CFS) = 9.27 END OF SUBAREA STREET FLOW HYDRAULICS:" DEPTH(FEET) = .41 HALFSTREET FLOOD WIDTH(FEET) = 7.80 FLOW V[LOCITY(FEET/SEC') = 3.53 OEPTHXVELOCITY = 1'44 ��XXXXKXK*X**KKK*HK*X*XXXXXXKX*XXXK*XXXKX*XX*XX*XX*X***XXX*XXXXXXX*XXXXK*X*XX �� FLOW PROCESS FROM NODE 7.30 TO NODE 7'30 IS CODE = 1 I >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<(< -- ------------ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 16.31 E RAINFALL INTENSITY(INCH/HR) = 2'10 ` A�[RAOD Fm�lNCH/HR\ = .58 ' EFFECTIVE STREAM AREA(ACRES) = 6.80 TOTAL STRCAM AREA(ACRES) = 6.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.27 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. XX PEAK FLOW RATE TABLE XX 0(CFS) To(MIN') Fm(INCH/HR) Ae(ACRES) C � 20'60 19.11 '502 24.00 2 29.27 16.31 '582 � 21.48 E COMPUT[D CONFLUENCE ESTIMATES ARE A�} FOLLOWS: PEAK FLOW RATE(CFS) = 29.27 TrJMIN;) = 16.313 EFFECTIVE AREA(ACRES) = 21.48 AVERAGED Fm(INCH/HR) = .58 TOTAL AREA(ACRES) = 24'00 xXxXXXXXXXXKKXXXKXXKXXHKXXXKXXXXXKXXXKKXKKKXKKXXkKXXXXXXHXXXXXHXXXXXXXKXXxHX FLOW PROCESS FROM NODE 7.30 TO NODE 7.35 IS CODE = 4 )>>>>COMPUT[ PIPE-FLOW TRAVEL TIME THRU SUBAREA<((<< >>>>>UCING USER-SPECIFIED PIPESIZE<<<<< ASSUME FULL-FLOWING PIPELINE PIP[ FLOW V[LOCITY(FEET/SEC.) = 9.3 UPSTREAM NODE ELEVATION(FEET 1 = ' 77'00 DOWNSTR[AM NODE ELEVATION(FEET) = 71.90 } FLOW LENGTH(FEET) = 280'00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = l N� P1P[ FLOW(CFS) = 29.27 TRAVEL TIME(MIN.) = .50 TC(MIN.) = 16.81 XXXXXXHxXKKxKXXKxKXKKKKKxHxXKKXxxKKxxKKKKxxxxxxKxKxxxKxxxxxxxxxxxKxxxxxxxHxx FLOW PROC[CC FROM NODE 7.30 TO NODE 7.35 IS CODE = 8 N� '-'------- --- ---- m� >>>>>ADDITION OF SUBAREA TO MAINLINE-PEAK FLOW<<<<< - -- 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.058 SOIL CLASSIFICATION IS "A" RESIDENTIAL 3 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .5820 �� SUBAREA AREA(ACRES) = 1'1� SUBAREA RUNOFF�CFS) = 1'46 �� ` ` . ~~ EFFECTIVE AREA(ACRES) = 22'58 AVERAGED Fm(INCH/HR) = .502 TOTAL AREA(ACRES) = 25'10 &� PEAK FLOW RATE(CFC) = 30'00 TC(MIN) = 16.81 xXXXXXXXxXXKXKHxKxXKXXx*xxxK*xx*KKKX*HKKXxKXH*xXXxXXXXXXXXXXXXXXXVXX*XxHxxx* FLOW PROC[Ss FROM NODE 7.35 TO NODE 7'40 IS CODE = 3 >>>>>COMPUT[ PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< (NON-PRESSURE FLOW) <<<<< COMPUTER-ESTIMATED PIPESIZE ` NON-PRESSURE FLOW OEPTH OF FLOW IN 27.0 INCH PIPE IS 18.8 INCHES PIP[-FLOW VELOCITY(FEET/SEC.) = 10.2 UPSTREAM NODE ELEVATION(FEET) = 71.90 ' �� DOWNSTREAM NODE ELEVATION(FEET) = 64.00 �� FLOW LENGTH(FEET) = 520'00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 30.00 TRAVEL TIM[(MIN') = '85 TC(MIN.) = 17.67 XXKXXKXxKHxKXXKKxxKKXXXXKXXXXXX*XXXXKXKXX*KHKXXHXKXX*XXXXXXXHXKXXxXX*XxxKxx* m� FLOW PROCESS FROM NODE 7.35 TO NODE 7'40 IS CODE = 8 ' ' ------------- >>>)>ADOITIDN OF SUBAREA TO MAINLINE PEAK. FLOW<<<(< - . -- ------ 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.998 E COIL CLASSIFICATION IS "A" 0 � RESIDENTIAL 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .5820 SUBAREA AREA(ACRES) = 8'70 SUBAREA RUNOFF(CFS) = 11.09 EFFECTIVE AREA(ACRES) = 31.29 - AV[RAG[D Fm/INCH/HR) = .582 Fm(INCH/HR) TOTAL AREA(ACRES) = 33.80 PEAK FLOW RATE(CFS) = 39.87 TC(MIN) = 17.67 XXKXXxKXX*KKXxKxKKXXXXXXXXXXXHXXKXKHXXKKXXXXXXHKXXXXXXXXXXXXXXXXHXXxxxKHxx*x 11 FLOW PROCESS FROM NODE 7.40 TO NODE 7'60 IS CODE = 3 >>>>>COMPUT[ PIP[-FLOW TRAVEL TIME THRU SUOAREA<<<({ W� >))>>USINO COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLO.1<<<<< ` �' DEPTH OF FLOW IN 30.0 INCH PIPE IS 21.2 INCHES I PIPE FLOW VELOCITY/FEET/SEC') = 10.7 UPSTREAM NODE ELEVATION(FEET) = 64'00 DOWNSTREAM NODE ELEVATION(FEET) = 54.40 - FLOW LENGTH(FEET) = 660.00 MANNING'S N = .013 I [�TIMATED PIPE DIAMETER� = 30'O0 NUMBER OF PIPES = ' PIPE-FLOW(CFC) = 39.87 _-- TRAVEL TIME(MIN.) = 1.03 TC(MIN.) = 18.69 xX:XXXKKxxXxKxXXXXXXXKKKXKXXXKKXXXXXHXKXXXXXKXXXXXKKXXXXXXXXXXXXXXXXXXXKXHXX FLOW PROCECS FROM NODE 7'40 TO NODE 7.60 IS CODE = 8 . 1 . . -` . _- 0� ____ , >>>>>AUDI7ION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< I 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.932 SOIL CLASSIFICATION IS ^A^ 1 R[SID[NTIAL-> 3'4 DWELLINGS/ACRE SUBAREA LOSS RATE, FWINCH/HR1 = .5820 SUBAREA AREA(ACRES) = 12.00 SUBAREA RUNOFF( CFS ) = 14.58 ' EFFECTIVE AREA(ACRES) = 43.28 AVERAGED Fm(INCH/HR) = .582 I TOTAL AR[A/A�RES) = 45.80 AREA( PEAK FLOW RATE(CFS) = 52'58 , TC(MIN) = 18.69 li KKxxKK*XKxXXxXxKXX*XKXXxK*XXKKKX*XKKVKXXHX*XXX*KXXHKX*XXXXXXXXXXXXXXXXKKxKKx FLOW PROCESS FROM NODE 7.60 TO NODE 7.60 IS CODE = 11 �� --------____---______ >>>>)CONFLU[NC[ MEMORY BANK U 1 WITH THE MAIN-STREAM MEMORY<<<<< ='===-==========___ il XXK PEAK FLOW RATE TABLE X*K , 0(CFS) Tc(MIN.) FWINCH/HR1 Ae(ACRES) 1 232 18.69 .541 168'70 �� � 220.65 21.45 .538 18�'5� 3 223.19 13.80 .541 125.54 4 17.19 .541 . 158.35 E � 234 ' 17 17 .21 .541 158 .54 6 234.17 17 '541; � - 161.52 7 2 33'05 17'99 '541 164'23 C 8 233 .46 18 .23 .54 1 165 .90 233 '�6 18 '28 .541 166.22 10 22 5.65 20.34 .539 176.34 r 11 213.07 22.86 .536 -184'53 i 1' 209 .90 23.44 .535 185.88 13 204.67 24.31 .535 186'98 14 164.90 31.34 .527 170'50 �� TOTAL AREA = 190.50 �� COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: 1 PEAK FLOW RAT[(CFS) = 234.17 Tc(MIN.) = 17.214 [FFECTIVE AREA(ACRES) = 158.54 AVERAGED Fm( INCH/HR ) = .54 TOTAL AREA(ACRES) = 190.50 I : XXXKKxKK*HxxxXKXxxKXxKXXKHxHHKXxXXXXXKXXXKKKXKxKKKKKKKKxXKHHXKXKXxKxxxxKHxHx I FLOW PROCESS FROM NODE 7.60 TO NODE 11.10 IS CODE = 4 -_ - - _ _- ) > > > > COMPUT[ PIPE-FLOW TRAVEL TIME THRU SUBAREA<(<<< )>>>>UCING USER-SPECIFIED PIPESIZE(<<<< �� N� DEPTH OF FLOW IN 66.0 INCH PIPE IS 42.9 INCHES = 14.3 PIPE-FLOW VELOCITY(FEET�SEC.� , ' UPSTREAM NOOE ELEVATION� FEET 1 = 4�48-.30 � ~ - - - . I DOWNSTR[AM NODE ELEVATION(FEET� = 4320 ELEVATION() FLOW LENGTH(FEET) = 540,00 MANNING'S N = .013 ' GIVEN PIP[ DIAMETER(INCH) = 66.00 NUMBER OF PIPES = 1 �� ` PIP[-FLOW� CFC ) = 234.17 �� ' �� TRAV[L TIME( MIN ' ) = -63 TC( MIN - ) = 17.84 -- E �XXXxKXKXKXKKKXH*KXXXKXXKK**XXKK*KXXVXXXXKXKXXXXXXHXXXXHXXXXXHXXXXXHXXXXXXXK FLOW PROCESS FROM NODE 11.10 TO NODE 11'10 IS .CODE = 1 >>>)>D[SlGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 0� CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 17.84 RAINFALL INTENSITY(INCH/HR) = 1.99 AVERAGED Fm( INCH/HR \ = .54 ` ' EFFECTIVE STREAM AREA(ACRES) = 158'54 TOTAL STREAM AREA(ACRES) = 190.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 234'17 XHXHH*K*XKXKxKXKXXKXXKKKXXK*H*K**XXXXXXXXXK*KXKHXXXKXXXXXXXXXXX*XXXXXXXKXX*X 0I FLOW PROCESS FROM NODE 11.05 TO NODE 11.10 IS CODE = 2 >>>>>RATlONAL METHOD INITIAL SUBAREA ANALYCIC<(<<( ���====�'�=======_ m� DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3-4 DWELLINGS/ACRE TC = KX [( LENGTHXX 3.00)/(ELEVATION CHANGE )] XX .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 670'0O 0� UPSTREAM ELEVATION(FEET) = 56.40 DOWNSTREAM ELEVATION(FEET) = 46,60 ELEVATION DIFFERENCE(FEET) = 9.80 N0 TC(MIN.) ) = .412X[( 6��'���X 3'O� \/� 9'8� �lX* '20 = 12.951 ^ ' ' ' ` '~ 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.407 SOIL CLASSIFICATION IS ^ --- -' 0W RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) � = .5820 ` ' SUBAREA RUNOFF(CFS) = 14.29 TOTAL AREA(ACRES) = 8'70 PEAK FLOW RATE(CFS) = 14.29 XXXKKKxXXxKKXxxHKxKKXXxKxxKK*xxxKxxKxxKKKxHx*xxxHxxxxxxKKxxxxxxxxKxxxKHxHHxx E FLOW PROC[SS FROM NOOE 11'1O TU NOD[ 11'1O IS CODE = 1 >>>>)DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<(<<< >>>>>ANO COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< N� TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: 01 TIME OF CONCENTRATION(MIN.) = 12.95 RAINFALL INTENSITY( INCH/HR ) = 2.41 = .58 AVERAGED Fm(lNCH/HD� � � EFFECTIVE STREAM AREA(ACRES) = 8.70 TOTAL STREAM AREA(ACRES) � = 8.70 ` ' PEAK FLOW RATE(CFS) AT CONFLUENCE = 14.29 ' -- . I RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. KX PEAK FLOW RATE TABLE XX ` N� g� CFS 1 To( MIN' 1 Fm� INCH/HR 1 Ae � �CRES ^ � m� ' T ` 1 236.29 14.44 ''544~ .'� � � 134.24 � 245.14 17.82 .544 167.05 I 3 245'17 17'84 '544 167.24 4 244.97 18.23 .543 170.22 5 244.45 18.61 .543 172.93 || H : 6 243.95 10.06 .543 174'6O I ' � � . I 7 243.02 18'91 .543 174.92 0 242.63 19.32 .543 177.40 • 1 9 235.21 20.97 .541 185'04 1O 229-78 22'O8 .540 189'20 , ] 1 221.70 23.50 .538 193.23 12 210'34 24.09 .530 194.58 iiii 13 212.83 24.95 .537 195.68 14 171.30 32'02 .529 199.20 15 232.24 12.95 .544 121.30 Ill COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: . PEAK FLOW RATE(CFS) = 245.17 Tc(MIN.) = 17.842 EFFECTIVE AREA(ACRES) = 167.24 AVERAGED Fm(INCH/HR) = .54 N� TOTAL AREA(ACRES) = 199.20 E xXXKXKKKK*XXKXKKXXKXX*XKKX*XXXX*XHKXKXHXKXXKKX*XXXXH&KXXXXX*X*XX*XKXXKX*X**K FLOW PROCESS FROM NODE 11.10 TO NODE 11.30 IS CODE = 4 - ------' '--------------- - ii > ) >> > COMPUT[ PIP[-FLOW TRAVEL TIME THRU SUBAREA<<<<( >>>>>USING USER-SPECIFIED PIPESIZE<<<L< . , _=_=='='_===___-_ DEPTH OF FLOW IN 69.0 INCH PIPE IS 44.5 INCHES 1 PIPE-FLOW VELOCITY(FEET/SEC') = 13.9 UPSTREAM NODE ELEVATION(FEET) = 43.20 E DOWNSTREAM NODE ELEVATION(FEET) = 36.50''- -' FLOW LENGTH(FEET) 800.0O MANNING"S N = .013 GIV[N PIPE DIAMETER(INCH) = 69.00 NUMBER OF PIPES = 1 PIP['FLOW(CFC) = 245.17 0� TRAVEL TIME(MIN.) = .96 TC(MIN.) = 18.80 �� ` . ' . ` ' �� XXXXKXxKKxKXKKxKXXXKXKXXXXXXXKXxXKKKKXKXXXXKXXXXXKxXXKXXXKXXXXXXXKHKXXXXKxKx iii FLOW PROCESS FROM NODE 11.30 TO NODE 11.30 IS CODE = 1 - - '-----'--------------------------- >>>>>DESIONAT[ INDEPENDENT STREAM FOR CONFLU[NCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: E TIME OF CONCENTRATION(MIN.) = 10.80 RAINFALL [NTENSITY( INCH/HR ) = 1 .92 AVERAGED Fm( INCH/||R ) = .54 . EFFECTIVE STREAM AREA(ACRES) = 167.24 Il TOTAL STREAM AREA(ACRES) = 199'20 ' PEAK FLOW RATE(CFS) AT CONFLUENCE = 245.17 - ' -- I XxxXKxxHXKKXXKKXK*xKKKXXKK*XxKxXKXXXHKHXXXxXXKXXxXXXXxXXXXXXXXHxX*XXXxX*xxK* FLOW PROCESS FROM NODE 11'20 TO NODE 11.15 IS CODE = 2 II -- ' --____ )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<< << , __=_==_==== �~ ======_______________�_��^-��____ I DEVELOPMENT l� SINGLE FAMILY RESIDENTIAL -> 3-4 DWELLINGS/ACRE C KX [/ L[NCT||KX 3 - ' ` '~ �O �/( [L[VATION CHAN�[ �l KX .2� ^` INITIAL SUBAREA FLOW-LENGTH(FEET) = 980'00 UPSTREAM ELEVATION(FEET) = 48.90 I OOUNSTR[AM [L[VATION( FEET ) = 43 '8O ` ' ELEVATION DIFFERENCE(FEET) = 5-10 TC(MIN') = '412XF( 980.00XX 3.00)/( 5.10)]XX .20 = 18.540 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.941 / ' 1 � . • , m� . ` ~ SOIL CLASSIFICATION IS ^A^ RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = '5820 �� RUNOFF(CFS) RUNUF��CFS1 = 5.26 �� ' �� TOTAL AREA(ACRES) = 4.30 PEAK FLOW RATE(CFS) = 5.26 xxXXXXX0x*xxKxxKKKK*xxHxHxxHHH*H**HxH*xx**xWxxxxxxxxxxxxxxx*xxxxx*XXX*XXXXX* FLOW PROCESS FROM NODE 11.15 TO NODE 11.30 IS CODE = 6 ----- ) > > > > COMPUT[ STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< 3 -- -------- UPSTREAM ELEVATION(FEET) = 42'80 DOWNSTREAM ELEVATION(FEET) = 36.50 3 STREET LENGTH(FEET) = 500'00 CURB HEIGTH(INCHES) = 6. STREET }|ALFWIDTH( FEET ) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = - .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 E SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 KXTRAV[L TIME COMPUTED USING MEAN - FLOW( EFS ) = 9.50 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .41 ||ALF3TREET FLOOD WIDTH(FEET) = 7.80 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.62 PRODUCT OF DEPTH&VELOCITY = 1 .48 STREET FLOW TRAVEL TIME( MlN' ) = 2'30 TC( MIN' ) = 20.84 B3 10 YEAR RAINFALL INTENSITY( INCH/HOUR = 1.810 ` ' COIL CLASSIFICATION IS ^A^ � 1 RECIDENTIAL> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .5020 SUBAREA AREA(ACRES) = 7.70 SUBAREA RUNOFF(CFS) = 8.51 Q� EFFECTIVE AREA(ACRES) = 12.00 AVERAGED Fm(INCH/HR) = .58 TOTAL AREA(ACRES) = 12.00 PEAK FLOW RATE(CFS) = 13.26 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH( FEET ) = .46 HALFSTREET FLOOD WIDTH( FEET) � = 10.19 DEPTH( FEET) ~ ` ' FLOW VELOCITY(FEET/SEC') = 3.74 OEPTHXVELOCITY = 1.72 xXXXXKXKKKKXXXXKKXKK**XXXHXXXXX**HXHKXXXXXKXXXXXXXXXXXXXXXX FLOW PROCESS FROM NODE 11.30 TO NODE 11.30 IS CODE= 1 N� > > > > ) OESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< { `===-==------=--- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT _2 ARE: TIME OF CONCENTRATION(MIN.) = 20.84 I RAINFALL INTENSITY(INCH/HR) = 1.81 AV[RAGEO Fm(INCH/HR) = .58 EFFECTIVE STREAM AREA(ACRES) = 12 '�U \ ! � ' . I TOTAL STREAM AREA(ACRES) = 12.00 P[AK FLOW RATE( CFS 1 AT CONFLUENCE = 13 '26 RATE( ' RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO ' 1 CONFLUENCE FORMULA USED FOR 2 STREAMS. � � xK PEAK FLOW RATE TABLE KX 0(CFC) To(MIN.) Fm(INCH/HR) Ae(ACRES) �� ~ ' .ammo. ~~ 1 244.67 13.92 .546 129.32 ' 2 248'96 15.41 .546 143.11 I 3 ')50.2 1O.7O '546 177'86 4 258'26 18.80 .546 178.07 . 5 250.09 19.19 .546 181.27 1 6 257.61 19.58 .545 184.20 7 257'12 19'82 '545 186'01 � 257'00 19.07 .545 186.36 9 255.84 20'28 .545 189.08 �� 10 247.07 21.94 .544 197.04 �� . 11 241'00 23.06 .542 201.20 12 233'16 24'40 .541 205.23 I 13 229.54 25.07 '540 - 206.50 14 223.68 25:94 '539 - 207.60 , 15 179.83 33.06 .532 211.20 II 16 253'39 20.84 .545 191.97 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 250.26 To( MIN. - 10.804 E [FF[CTIV[ AR[A( ACRES 1 = 178'�7 AyERAGEO Fm� INCH�HR� = .55 ' Fm(INCH/HR) TOTAL AREA(ACRES) = 211.20 �� ��XKXHXHKXKKKXXKXXXXXXXKXK*KXXKXKXKXXKXXXXKXKXXXXXXXXKKXXXXXXXKXXXKXXXKXXKXXXK FLOW mOC[s5 FROM NODE 11.30 TO NODE 11.30 IS CODE = 10 > >> >> MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK 0 2 <<<<< �� ��, --_,-,..- _ _ __,=, = _ _ _ _ _ _ _ _ __________ C xXXXXXXxxxxxxxxXXXXXXXXXxXXXXxXXXXXXXxXXXXXXXXXXXxX.XXXXXXXXXXXXXXXXXXXXXXXXX *XXXXXXX*XXKKX [LOW PROCESS FROM NODE 10.00 TO NODE 10.05 IS CODE = 2 - %� >> >> >RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< �� =�=======_____ _ _ _ _ _ _ DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3-4 DWELLINGS/ACRE �� TC � KK [( LENGTUXX 3.00 )/(ELEVATION ELEVATION C>|ANGE \l XK .20 �� ' ` CHANGE)]XX SUBAREA FLOW-LENGTH(FEET) = 340,00 _ , _ __ . . UPSTREAM ELEVATION(FEET) = 54.30 0� DOWNSTREAM ELEVATION(FEET) = 49.00 �� �� ELEVATION DIFFERENCE(FEET) = 5.30 � TC(MIN.) = .412X[( 340.00KX 3.00)/( 5.30)]XX .20 = 9.748 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.855 ^ ^ N� COIL CLASSIFICATION IS A ~~ ' ' `'�� - � RESIDENTIAL > 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm,INCH/HR 1 = .5820 ' SUBAREA RUNOFF(CFC1 = 5.�3 TOTAL AREA(ACRES) 2.80 PEAK FLOW RATE(CFS) = 5.73 ! , 11xxxxxXxXXXXXXxXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX . FLOW PROCESS FROM NODE 10'05 TO NODE 10'10 IS CODE = 6 / '-'----- -------- >>>>>COMPUT[ STREET FLOW TRAVEL TIME THRU SUBAREA<(<<< I UPSTREAM ELEVATION(FEET) = 49.00 DOWNSTREAM ELEVATION(FEET) = 38.80 STREET LENGTH(FEET) = 940-00 CURB HEIGTH( INCHES ) = 6. |{ STREET ALFWIDTH FEET � ' � = 18'00 0� � DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 3 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 KXTRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 11.17 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .46 HALFSTREET FLOOD WIDTH(FEET) = 10.19 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.15 PRODUCT OF OEPTH&VELOCITY = 1.45 STREET FLOW TRAVEL TIME(MIN.) = 4.97 - TC(MIN') = 14.72 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.229 3 �OIL CLASSIFICATION IS ^A^ RESIDENTIAL > 3 -4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = ,5820 SUBAREA AREA(ACRES) = 7.30 SUBAREA FAUNOFF( CFS ) = 10.82 EFFECTIVE AREA(ACRES) = 10.10 AVERAGED Fm(INCH/HR) = .58 TOTAL AREA(ACRES) = 10.10 PEAK FLOW RATE(CFS) = 14.97 END OF SUDAREA STREET FLOW HYDRAULICS: DEPTH( FEET) ) = .51 HALT FLOOD WIDTH( FEET) � = 12.69 ` ' ` ' FLOW VELOCITY(FEET/SEC.) = 3.19 DEPTHXVELOCITY = 1.63 ii XxKXHKXKKXXKKKXXXXXXKKVXXKKKXXVKKHxXKKXXKXKKXKXKXXXKKKXXXXXXXKXXKXKKKKXHXKxX FLOW PROCESS FROM NODE 10.10 TO NODE 10.11 IS CODE = 4 > >:> >COMPUTE PIPE-FLOW TRAVEL TIME THRU CUBAREA<<<(< >>>>>USING USER-SPECIFIED PIPESIZE<(<{< ------- - ------------ - - ----------- C O[PTH OF FLOW IN 30.0 INCH PIPE IC 12.9 INCH[S PIPE-FLOW VELOCITY(FEET/SEC.) = 7.4 UPSTREAM NODE ELEVATION(FEET) = 39.30 E DOWNSTREAM NODE ELEVATION(FEET) = 38.80 FLOW LENGTH(FEET) = 50.00 MANNING'S N = .013 GIVEN PIP[ DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 E PIP[ FLOW(Crs) = 14.97 -- ' - '- TRAV[L TIME/MIN.1 = .11 TC�MIN.\ = 14.83 TIME(MIN.) ` ' ��XXKKKXKKXXXKXKxKKxXXK***KKK*Kxx*KxxHxxKX*XXKxKKxKxxKxxxH*xxxxxx*xxxxxxxxx*xx �� FLOW PROCESS FROM NODE 10.11 TO NODE 10.30 IS CODE = 4 >>>)>COMPUTE PIPE-FLOW TRAVEL TIME THRU SU8AREA<<<(< 1111 >>>>>USINC USER-SPECIFIED PIPESIZE(<<<< DEPTH OF FLOW IN 39.0 INCH PIPE IS 15.2 INCHES |`lPE-FLOW VELOCITY(FEET/SEC.) 1 = 5.0 ` ' UPSTREAM NODE ELEVATION(FEET) = 30.00 DOWNSTREAM NODE ELEVATION(FEET) = 37.40 I |'LOW LENGTH(FEET) = 400.00 MANNING'S N = '013 hl VEN PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1 PIP['FLOW(CFS) = 14.97 TRAVEL TIME(MIN.) = 1.34 TC(MIN.) = 16.17 xXxXXXKXKHKKXXXxKXX*KXKK*XXKKKKXHKXXXKHXKH*XKKXKXXXXXKXXHXXXXXX*XKXX*XXHXXKx I FLOW PROCESS FROM NODE 10.20 TO NODE 10.30 IS CODE = 8 >>>>ADDITlON OF SUBAREA TO MAINLINE PEAK FLOW<<<<< �� - _-_-_ __ _ __ � . I 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.107 � SOIL CLASSIFICATION IS ^A^ ^ ' 1 Fm(INCH/HR) RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm�INCH/HR = '5820 �� ' �� SUDAR[A AREA(ACRES) = 12.00 SUBAREA RUNOFF( CFS ) = 16.47 EFFECTIVE AREA(ACRES) = 22.10 AVERAGED Fm(INCH/HR\ = .582 �� TOTAL AR[A( ACREC ) = 22.10 , - , � PEAK FLOW RAT[(CFC) = 30.33 TC(MIN) = 16.17 ' XXXXXXXXXXXXXXKXHXXXXXXXXKHKXKXKXXXXXXXXKH**X&XKXXXXXHXKXXXXKXXXXXXKKKX*XXXX 1 FLOW PROCESS FROM NODE 10'30 TO NODE 11.30 IS CODE = 4 �� �� >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<(<( E USER-SPECIFIED PIPESIZE<<(<< DEPTH OF FLOW IN 51.0 INCH PIPE IS 23.9 INCHES PIrE-FLOW VELOCITY(FEET/C[C') = 4.7 � UPSTREAM NODE ELEVATION(FEET) F = 37.40 �� DOWNSTREAM NODE ELEVATION(FEET) = 36.50 FLOW LENGTH(FEET) = 500.00 MANNING'S N = .013 L GIVEN PIPE DIAMETER(INCH) = 51.00 NUMBER OF PIPES = 1 i PIP[-FLOW( CFS ) = 30.33 TRAVEL TIM[(MIN.) = 1.79 TC(MIN.) = 17.96 KKHKKKKKKXKXKKKXKXKKKXKKXKXXHXXXXKXXXXKKKXKKXKXHXXXXKXXXXXXXKKXXXXXXXXXHXXXx rol FLOW PROCESS FROM NODE 11.25 TO NODE 11.30 IS CODE = 8 i� � )>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW(<<<< _ 10 YEAR RAINFALL INTENSITY/INCH/HOUR) = 1.970 C SOIL CLASSIFICATION IS "A" RESIDENTIAL-) 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, FW INCH/HR1 = .5820 SUBAREA AREA(ACRES) = 6'50 SUBAREA RUNOFF(CFS) = 8.17 �� [FF[CTIVE AREA() � 28.60 �� ` AVERAGED Fm( INCH/HR 1 = .582 ` ' ~''�� -- TOTAL AREA(ACRES) = 28.60 0� PEAK FLOW RAT[( CFS ' � = 35.94 �� ` �� TC(MIN) = 17.96 I XXKXKKXxXKKXXXKKXKKXXKKXXXXXHXXXXXKKXXXXXXXX*XXXXK*XKXXXXX**XXXX*XX*XKXXXXX* FLOW PROCESS FROM NODE 11'30 TO NODE 11.30 IS CODE = 11 1 - ----'------- --------- >>>>>CONFLU[NC[ MEMORY DANK U 2 WITH THE MAIN-STREAM MEMORY<<<(< _ I KKX PEAK FLOW RATE TABLE XHX Q( CFC ) Tc( MIN' ) FW INCH/>|R 1 Ae( ACRES ) . 1 291'91 17.96 .551 198.00 2 279.05 13.92 .552 151.49 I 3 2O4'�1 15'41 .551 167.64 4 292'02 18.78 .551 206.46 S 292'02 18'80 .551 206.67 I 6 292 '05 19 ' 19 -551 2O9 '87 7 29�'99 19.58 .550 212'80 � 290.14 19.82 .550 214.61 , 9 289'95 , 19'87 .550 214'96 1 ° , A, ' 1 10 200'20 20'28 .550 217.68 11 234'90 20.84 .549 - 220.57 I 12 270'05 2194 '540 ' 225'64 13 270'74 23.06 .547 229.80 ' 14 260'47 24.48 .546 233.83 III 15 256'26 25'07 '545 235.18 111 16 249.54 25.94 .545 236.28. � 17 200'16 33.06 .530 - 289.80 TOTAL AREA � 239.80 ~~ COMPUT[D CONFLUENCE ESTIMATES ARE AS FOLLOWS: ! PEAK FLOW RATE/CFS1 = 292.02 Tc(MIN.) = 18.804 1 EFFECTIVE AREA(ACRES) = 206.67 AVERAGED Fm(INCH/HR) = .55 TOTAL AREA(ACRES) = 239.80 . . i XXXXXXXXKxXK%XXXKXXXXXKXXXXXXXXKXKXXXXKKXXKKKXXKXKHXKXXXX%XXXXXXXXXKXXKKXXHX FLOW PROCESS FROM NODE 11.30 TO NODE 12.30 IS CODE = 4 E >>)>>COMPUT[ PIPE-FLOW TRAVEL TIME T>|RU SUOAREA<<(<< >>>>>USING USER-SPECIFIED PIPESIZ[<<<<< . �� -,'`'================_ E DEPTH OF FLOW IN 72.0 INCH PIPE IS 13.0 INCHES PIPE-FLOW V[LOCITY( FEET/SEC' ) = 04.3 ' U��TR[AM NODE ELEVATION/FEET) = 36'5O C DOWNSTREAM NODE ELEVATION(FEET) = 22'8� �LOW L[NGTH( FEET 1 = 13.�� MANNING N � ,� ` ' - - '- GIVEN PIP[ DIAMETER(INCH) = 72.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 292.82 C TRAVEL TIME/ MIN. \ = .0� TC( MIN. 1 = 18.81 ` ' ` ' XxXXXKK*XKXXXXKXxxKKKKKKXXXXXxK)K*KEKXXXKXXXX*KXKXXXxXXXKKXXxxXXKXxxx*xx hi [LOW PROCESS FROM NODE 11.30 TO NODE 12'30 IS CODE = 8 i '- --------------- --- - c >>)>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<(< ==�`�=========_ . 10 YEAR RAINFALL INTENSITY( INCH/HOUR ) = 1.925 , SOIL CLASSIFICATION IS "A^ RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .5820 0� SUBAREA AREA(ACRES) = 9.60 SUBAREA RUNOFF( CFS ) = 11.60 EFFECTIVE AREA(ACRES) = 216.27 AVERAGED Fm(INCH/HR) = .552 1 TOTAL AREA(ACRES) = 249.40 ' i PEAK FLOW RATE(CFS) � = 292.82 ! : | �� TC(MIN) = 18'1 | � /� �� � } :XxXxXK*XXKXXXKK*xxKM*xKxxxxKxxx*V*KHXxxxKxXxXKxKxxKKxxHxxxxxKxxxxxxKxxxxxxx 1 FLOW PROC[Cs FROM NODE 12.30 TO NODE 12'30 IS CODE = 10 >>>>>MAIN'STR[AM MEMORY COPIED ONTO MEMORY BANK # 3 <(<{< ------------ '----- - �� ` xKK*Kx*KxHKKXxXXKXKxxKxx.KxKxxHHHxxKxKK����..��.��.......����.��..x.H...xKxx N� N� FLOW PROC[CS FROM NODE 12.15 TO NODE 12.25 IS CODE = 2 >>>>)RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< , . . ' -^ DEVELOPMENT IS COMMERCIAL TC = KK [( L[NOTi{XX 3.00)/(ELEVATION CHANGF4 8X _20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 550.00 UPSTREAM ELEVATION(FEET) = 40.00 DOWNSTREAM ELEVATION(FEET) = 35.50 ELEVATION DIFFERENCE(FEET) = 4.50 TC(MIN.) = .304)<[( 550 'OOKX 3.00)/( 4 '50 )l xK '20 = 9.919 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.825 SOIL CLASSIFICATION I3 ^A^ lid COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 ` ' SUDAR[A RUNOFF(CFS) = 4'67 TOTAL AREA(ACRES) = 1.90 PEAK FLOW RATE/CFS1 = 4.67 XKXKKxx*KxKKKxKKxx*HKKXKKxHKxHKxxx*xxx*KxxXKx*x**xxK*x*xxxxxxxx*xxx**xxxHxK* ri FLOW PROCESS FROM NODE 12.25 TO NODE 12.45 IS CODE = 3 >}>>>COMPUT[ PIPE-FLOW TRAVEL TIME THRU SUBHREA<<<<< >>>>>USINC COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< 0� -=-�===�==------=----- -- - ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18'000 DEPTH OF FLOW IN 10.0 INCH PIPE IS - `8:1 INCHES ~ - '- LI PIPE-FLOW V[LOCITY(F[ET/SEC.) = 6.0 0i UPSTREAM NODE ELEVATION(FEET) = 35.50 DOWNSTREAM NODE ELEVATION(FEET) = 20.00 FLOW LENGTH(FEET) = 600.00 MANNING'S N = .013 1 ' ESTIMATED PIPE DIAMETER(INCH = 10.00 NUMBER OF PIPES = 1 ' PIP['FLOW(CFC) = 4.67 TRAVEL TIM[(MIN.) = 1.66 TC(MIN.) = 11.58 XXXXXXXXXXXHKXXXXXXXXXXXKX*KXHKXKKXXK*XXKXXKKXXXVHXXKXXXXHKXXXXXXXXHXXXXKXXX C FLOW PROCESS FROM NODE 12.45 TO NODE 12.45 IS CODE = 1 - ------_ -_- _ _ >>>>>OESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< =�===========__ TOTAL NUM8[R OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 11.58 �� RAINFALL INTENSITY � INCH/HR ) = 2.57 �� ' m� AV[RAGED Fm( INCH/HR ) = .10 EFFECTIVE STREAM AREA(ACRES) = 1.90 I TOTAL STREAM AREA(ACRES) = 1.90 P[AK FLOW RAT[/ CF3 1 AT CONFLUENCE = 4.67 I FLOW PROCESS FROM NODE 12.35 TO NODE 12.45 IS CODE = 2 >>}>)RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<(<< D[VELOPM[NT IS COMMERCIAL TC = KK[(L[NGTHKX 3.00)/(ELEVATION C>18NGE)lXK .20 0� INITIAL SUBAREA FLOW-LENGTH(FEET) = 920.00 ` ' � UPSTREAM ELEVATION(FEET) = 33 00 ^ ^ ' DOWNSTREAM ELEVATION(FEET) = 28.00 - I ` �L[VATION OIF�ERENCE� FEET ) = 5 'D() TC(MIN') = '304KF( 720'00XX 3'0O\/� 5'00)lXK .20 = 13.224 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.378 E SOIL CLASSIFICATION IS "A" ~~ COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA RUNOFF(CFS) = 16.21 �� TOTAL AREA(ACRES) = 7 9� PEAK FLOW RATE(CFS1 = 16.21 �� ` ' ' , ' KXXxXKXXXXXKXKKXKXKKxXXXXxXKKKXK*KKKXKXXKKXKXKXXXXKKXXXXXHHXXHXXXXXXXXHXXKXX �� FLOW mOCECC FROM NODE 12.45 TO NODE 12.45 IS CODE = 1 )>>>>O[SIONAT[ INDEPENDENT STREAM FOR CONFLUENCE{<<(( TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: 3 TIME OF CONCENTRATION(MIN.) = 13.22 RAINFALL INTENSITY(INCH/HR) = 2'30 AVERAGED Fm(INCH/HR) = .10 E EFFECTIVE STREAM AREA(ACRES) = 7.90 TOTAL STREAM AREA(ACRES) = 7.90 _ _ , _ PEAK FLOW RATE(CFS) AT CONFLUENCE = 16.21 xXx;xXXXKxxxxXXKKXKXXXxKx*KxKKxxH*xxKxXKKKxxKxxxxxx*Hxxxxxxxx*xxxxxxxxxxxxxx FLOW PROC[sC FROM NODE 12.55 TO NODE 12.45 IS CODE = 2 ^ >>>>)RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< DEVELOPMENT IS APARTMENTS TC KK[(L[NGT||XX 3.00)/(ELEVATION CHANGE)lXH .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 950.00 UPSTREAM ELEVATION(FEET) = 37.40 E DOWNSTREAM ELEVATION(EET) 28.0U ELEVATION( FEET) ELEVATION DIFFERENCE(FEET) = 9.40 TC(MIN.) = .324*[( 950'00XK 3.00)/( 9'40)lXH .20 = 12.663 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.440 SOIL CLASSIFICATION IS ^A^ APARTMENTS SUBAREA LOSS RATE, Fm(INCH/HR) = .1940 SUBAREA RUNOFF(CFS) = 10.51 TOTAL AREA(ACRES) = 5 2� PEAK FLOW RATE(CFS) = 10.51 ` ' ' ` ' ��KXKxXKXXXKXXHKKXXHKXXKXHXHXXXXKXXXXXHX*XXKXKXXXKKX*XXHXXKXHXKXXXXXXXXXXHXXXX �� �� FLOW PROCEss FROM NODE 12.45 TO NODE 12.45 IS CODE = 1 I )>>>>O[SICNAT[ INDEPENDENT STREAM FOR CONFLUENCE<<{(< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<(<<< I TOTAL NUMBER OF STREAMS = 3 CONFLUENC[ VALUES USED FOR INDEP[NOENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 12.66 RAINFALL INTENSITY(INCH/HR) = 2.44 I AVERAGED Fm(INCH/HR) = .19 [FF[CTIV[ STREAM AREA(ACRES) = 5.20 _ TOTAL STREAM AREA(ACRES) = 5.20 - 1 PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.51 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. XK PEAK FLOW RATE TABLE XX O(CFS) Tc(MIN.) Fm(INCH/HR) Ae(ACRES) I 1 30'20 11.50 .131 13.57 '_____-__' --__'_ . � � . 1 � 30.73 13.22 .131 15.00 ' � 30'08 12.66 .131 14.67 I COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: . ' PEAK FLOW RATE(CFS) = 30'08 Tc(MIN') = 12.663 VI EFFECTIVE AREA(ACRES) = 14.67 AVERAGED Fm(INCH/HR) = .13 M TOTAL AREA(ACRES) = 15.00 ��KXXKKXXXKXXKXKKKKXKKXKKXKHXXXXKXXKKKXXKXXXKKKXKXXXKHKXXKKKXXXXXXXXXXXXHKXXXX �� FLOW PROCESS FROM NODE 12.45 TO NODE 12.00 IS CODE = 3 / - -'-----'------- ----------------- ---- I >>>>>COMPUT[ PIP[-FLOW TRAVEL TIME THRU SUBARE<(<<( )> >> >USING COMPUTER-ESTIMATED PlPESIZE' ( NON-PRESSURE FIOW)<<<<< . I DEPTH OF FLOW IN 30.0 INCH PIPE IS 23.2 INCHES PIP[-FLOW V[LOCITY(FE[T/SEC' ) = 7.6 | UPSTREAM NODE ELEVATION(FEET) = 28,00 . / DOWNSTREAM NODE ELEVATION(FEET) = 24.60 E FLDW LENGTH(FEET) 4O0.0U MANNJN@'{� N = ,013 [CTIMAT[D PJP[ DIAMETER(INCH) = 30-00 NUMBER OF PIPES = 1 PIPE-FLOW(C�S) = 3�.88 TRAVEL TIM[(MIN,) = 1.05 TC(MIN.) = 13.72 E c XXXXKKXXXXXKKXXXKXHKKKXXXXXXXXHXKKKKXKHXKKXXKXXXXXXKXHXXXXXXXX*XXXXX*XXXXX*X FLOW PROCESS FROM NODE 12.45 TO NODE 12'00 IS CODE = 8 r >>>>>AOOITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ,�= '===========_-_- 0� 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.326 SOIL CLASSIcICATION IS "A ^ COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 N� SUBAREA AREA(ACRES) = 4.50 SUBAREA RUNOFF( CFS ) = 9.03 , EFFECTIVE AREA(ACRES) = 19.17 I , AVERAGED Fm(INCH/HR) = .123 TOTAL AREA(ACRES) = 19.50 ` ' P[AK FLOW RATE(CFS) = 37.99 ' TC(MIN) = 13.72 E ' XXXXXX*XKXKXXKXXXKXXKKKXKXKKKXXXXKKXXXXXXXKXHXXXKKKXKXXXXXXXXXXXXXXXXXXXXXXX I FLOW PROC[Cs FROM NODE 12'00 TO NODE 12.20 IS CODE = 3 -'--------------- --- - - )>>»COMPUT[ PIP['FLOW TRAVEL TIME THRU SUBAREA<<(<< � >>)>>UCING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<(<< I DEPTH OF FLOW IN 39.0 INCH PIPE IS 29.6. INCHES PIP[-FLDW V[LOCITY(FEET/SEC.) = 5:6 - I UPSTREAM NODE ELEVATION(FEET) = 24.60 D0WNSTR[AM NODE ELEVATION( FEET) = 23.20 ! FLOW LENGTH(FEET) = 510.00 MANNING'S N = .013 I ESTIMATED PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1 ` PIP[-FLOW�CFC1 = 37'97 ' TRAVEL TIM[(MIN.� = 1.51 TC(MIN.) = 15.23 i TIME( MIN.) ' ' t :xxXXXXXXKxXXXXXXXKXXXXXXxXXXKxxKXXKXxXXXXXXXKKXXKxKKKKXKHXKKKHxxKKKKKxxXXKX FLOW PROCESS FROM NODE 12.00 TO NODE 12.20 IS CODE = 8 E II , )))})ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<(<< =====____ ___======___ __- _______ II 10 Y[AR RAINFALL INTENSITY �INCH/HOUD1 = 2.184 ' �DIL CLA�SIFICATION IS "A" COMMERCIAL SUDAR[A LOSS RATE, Fm(INCH/HR) = .0970 1 SUBAREA AREA(ACRES) = 9.00 SUBAREA RUNOFF(CFS) = 16'91 [FF[CTIV[ AREA(ACRES) = 20.17 ' AVERAGED Fm/INCH/HR) = '115 I PEAK TOTAL AREA(ACRES) = 28.50 F LOW RTE � CFS \ = 52 '45 ' ) TC(MIN = 15.23 / ' xx PEAK FLOW RAT[ TADLE XX O( CFS ) Tc(MIN.) Fm( INCA/�/�'Y� Ae( ACRES ) 1 l 52.04 14.15 .114 27 '07 ' 2 51'00 15.79 .115 28.50 E 3 52.45 15.23 .115 20.17 NEW PEAK FLOW DATA ARE: PEAK FLOW RATE(CFS) = 52.84 Tc(MIN.) = 14.15 AVERAGED Fm(INCH/HR) = .11 EFFECTIVE AREA(ACRES) = 27.07 ' XXXXxXXKXKXKKXKXKXKXKXXKKXXXXXXKKXKXKKXKKKXXXHXXKXXXXXXXXXXXXXXXXXXKXXXXXXXX 1 FLOW PROCESS FROM NODE 12.20 TO NODE 12'30 IS CODE = 3 '--------------- ---- ' >))))COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA(<<<< >>>>>UCING COMPUTER-ESTIMATED PIPES= (NON-PRESSURE FLOW)<<(<< ' - DEPTH OF FLOW IN 45.0 INCH PIPE IS 35.5 INCHES ' PIP[-FLOW V[LOCITY(FEET/CEC') = 5.7 E UPSTR[AM NODE ELEVATION( FEET) 1 = 23.20 ` ' DOWNSTREAM NODE ELEVATION(FEET) = 22.80 FLOW LENGTH(FEET) = 175.00 MANNING 'S N = .013 i ESTIMATED PIPE DIAMETER(INCH) = 45.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFC) = 52.84 , TRAVEL TIME(MIN.) = .52 TC(MIN.) = 14.67 -- XXXXXXXXXKXXXXXXXKKKXXXXXXKXKXXKHKXKHXXKKXKKXXXXKKHKXXXKXXXXXXXXXXHKXKKKXXXX ' FLOW PROC[Cs FROM NODE 12.30 TO NODE 12.30 IS CODE = 11 N� ) > ) > > CONFLU[NC[ MEMORY BANK 4 3 WITH THE MAIN-STREAM MEMORY < < < < < �� I � XXK P[AK FLOW RATE TABLE xx* , O(CFS) Tc(MIN.) Fm(INCH/HR) Ae(ACRES) 1 334.37 14.67 .493 ~196'21 I � 337-50 15'75 '494 209.4U 328 ' 67 16'31 '495 216'43 � 4 330.90 13.93 .493 186.79 I , 336'50 15.41 .494 205'07 6 340.70 17.96 '500 236.10 � 7 340.23 10,79 .501 244.56 I n 340.20 10'81 .501 244.77 Y 338 'O2 19 ' 19 '502 247 '97 . 10 337'17 19.50 .502 250'90 11 335.96 19.02 .502 252.71 I 12 ` 335 '69 19.87 .502 2 53.06 ] J 333.35 20.2? '503 255.70 14 329.35 20.04 .503 258.67 1.. 320'70 21.94 .503 263.74 ^ _ ..- - . . ~~ l,= 212'3�` 23.06 .503 267.90 17 30O'�7 24.49 .502 271.93 11 1O 295.65 25.07 .502 273.28 19 200'00 25'95 '501 274'38 ! 20 223'07 33.06 .496 277'90 II TOTAL AREA = 277.90 | COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 340.70 Tc(MIN.) = 17.964 236.10 Fm(INCH/HR) a [F�[CTIV[ �R[A�AC�EC� = 23� 1� AVERAGED Fm/INCH/HR1 = '5O TOTAL AREA(ACRES) = 277.90 - II - - � KXX�KXXX��XXKXXKXXKXKKKkKHKKXHXXKKKHXXKXXKXXXHKXXKKXXXXXXXXXXXXXXXXKKXXKXKKX | FLOW rROC[Ss FROM NODE 12.30 TO NODE 12.60 IS CODE = 4 0I )>>>>COMPUT[ PIP[-FLOW TRAVEL TIME THRU SUBARE&(<<<( i >>>>>UCING USER-SPECIFIED PIPESIZE<<<<< ---------------- _===== �� DEPTH OF FLOW IN 78,0 INCH PIPE I3 53.9 INCHES �� PIP[ FLOW VELOCITY(F[ET/SEC') = 13.9 ' UPSTREAM NODE ELEVATION(FEET) = 22.80 I DOWNSTREAM NODE ELEVATION(FEET) = 19'20 FLOW LENGTH(FEET) = 520.00 MANNING'S N = .013 CIV[N PIPE DIAMETER(INCH) = 70.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 340'70 0U TRAVEL TIME(MIN.) = .62 TC(MIN.) = 10.59 E FLOW PROC[ss FROM NODE 12.30 TO NODE 12.60 IS CODE = 8 . 1 >>>)>ADOITIUN OF SUBAREA TO MAINLINE PEAK FLOW<(<<( ' 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.938 SOIL CLASSIFICATION IS ^A^ ` �� COMMERCIAL SUBAREA LOSS RATE, F��INCH/HR)'= .097()- - -- . �� ' SUBAREA AREA(ACRES) = 12.40 SUBAREA RUNOFF(CFS) = 20.55 EFFECTIVE AREA(ACRES) = 248.50 I ' AVERAG[� �m(INCH/HR� = .480 ` TOTAL AREA(ACRES) = 290'30 � PEAK FLOW RATE(CFS) = 340.70 [c/MIN) = 18-59 ' ..-_, -- , I xXXKXXxXXXx%KXXxXKKKKHXKXXXKX*MXHXXXXK*xxXXKXXXXX**KXXXXXXXXXX*XXXXXXXxxXxXK FLOW PRUC[CS FROM NOOE 12'60 TO NOOE 12'9U IS COOE = 4 ___ _________________ } >>>>>COMPUT[ PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<( >>>>>USING USER-SPECIFIED PIPE3lZE<<<<{ 1 �=====-------- - ----- ---- � DEPTH OF FLOW IN 78.0 INCH PIPE IS 48.3 INCHES I PIPE-FLOW VELOCITY(FEET/SEC.) = 15.8 UPSTR[AM NOOE ELEVATION(FEET) = 19'20 DOWNSTREAM NODE ELEVATION(FEET) = 16 70 � ` ' ' FLOW LENGTH(FEET) = 265'00 MANNING'S N = .013 I G}V[N PlP[ DIAMET[R(INCH1 = 78.00 NUMBER OF PIPES = . ' PIPE-FLOW(CF3) = 340.70 , [RAVEL TIM[/MIN.) = .28 TC(MIN.) = 18.07 1 ^ ~ 1 XXKXXXXHXX*NHKXxxx**XXX*XXXXXXX**K*XXKXHKxHXKxXXXXHXXKXXXXKXXXXKKHXKXXXK*KKK �� 0� FLOW PROCESS FROM NODE 12'60 TO NODE 12.90 IS CODE = 0 >)>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 1 �'. '' `�==�=======___-_ ______-_____--_ -______ _ _____ Y[AR RAINFALL INTENSITY(IN�H/HOUR> = 1.921 COIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RAT[, Fm(INC >|/HR) = .0970 I SUBAR[A AR[A�ACRES1 = 11'�� CUOAR[A �UNOFF(CF�) = 18.06 ' ` ' [['r[CTIVE AREA(ACRES) = 259'50 AVERAGED Fm(INCH/HR) = .463 TOTAL AREA(ACRES) = 301.30 I P[AK FLOW RATE( CFS ) = 340'70 TC(MIN) = 10.07 1 -' ' , - '- �XXKKXKXXXHxXXXXKxKXxKxx*xxKxxxxx*xxxX*xxK*xxxxxHxx*xxxxHxxxxxxxxxxxxxxxxxxx I FLOW PROC[CC FRUM NODE 12'90 TO NODE 13'00 IS CODE = 4 > > > > > COMPUT[ PIP[-FLOW TRAVEL TIME THRU SUBAREA<<<<{ >>>>>UCINO USER-SPECIFIED PIPESIZ[�<((< . _ ` .^ �� 1 O[PTH OF FLOW IN 78'0 INCH PIPE IS 47.4 INCHES PIPE FLOW V[LOCITY(F[ET/SEC.) = 16.1 C UPSTREAM NODE ELEVATION(FEET) = 16.70 DOWNSTREAM NODE ELEVATION(FET1 = 6.70 rLOW LENGTH(FEET) = 10OO 00 ' MANNING"S N = .013 GIVEN PIP[ DIAMETER(INCH) = 78'00 NUMBER OF PIPES = 1 � � PIPE FLOW( CFS \ = 340.70 �� ` ' TRAVEL TlME(MlN') = 1.03 TC(MIN.) = 19.90 -====================_-__ _ _ ____ ______ _- END OF STUDY SUMMARY: W� TOTAL AREA(ACRES) = 301.30 TC(MIN.) = 19.90 EFFECTIVE AREA(ACRES) = 259.50 AVERAGED Fm(INCH/HR)= .46 E PEAK FLOW RATE(CFS) = 340'70 XXH PEAK FLOW RATE TABLE XXX O(CFS) Tc(MIN.) Fm(INCH/HR) Ae(ACRES) 1 336'99 16.61 .450 219.61 r, 2 338'67 17.60 .454 232.80 �� �� 3 339.60 18'25 .456 239.83 4 334.90 15.87 .447 210.19 5 337'04 17.35 .453 220'47 1 6 340.70 19.90 '463 259'5� 7 340'22 20.72 .466 267.96 U 340'20 20.74 .466 268'17 I ��O 21.13 .467 271.37 1( , 327'17 21'52 .468 274'30 11 3�5 21.76 .468 276.11 12 335'69 21.81 '468 276.46 M 1J 22' .469 - 279'10 11 2��, 33 .7? .469 282.07 1^, 321.04 23'90 .470 207.14 Q� 1,', 312'92 25'03 .470 291.30 w� 1 7 302.14 26.47 .470 295.33 1; 297'70 27.07 .470 _296'68 I l9 290'5O 27'95 '469 297'78 _i1 239'44 35.17 .465 301.20 �� �� �� RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -90 Advanced Engineering Software (aes) Ver. 5.8B Release Date: 1/16/91 Serial # 9382 Analysis prepared by: 3 WAGNER PACIFIC, INC 201 E. YORBA LINDA BLVD. PLACENTIA, CA 92670 -3418 (714) 993 -4500 2 FILE NAME: KAIS25.DAT TIME /DATE OF STUDY: 13:53 4/18/1991 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: - -SET I ME -OF- CONCENTRATION MODEL)E -- USER SPECIFIED STORM EVENT(YEAR) = 25.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .90 XUSER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL3E 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = .950 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.400 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 25.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.1070 SLOPE OF INTENSITY DURATION CURVE = .6000 XXXXXXXX XxX XXXXXXX X* X> E> EX XXX XXXXXXXXXXXXX XXXXX> EX XX X XXXXXXX>E>E>EXXX>EXXXXXXXXXXXX FLOW PROCESS FROM NODE 1.00 TO NODE 1.10 IS CODE = 2 > > >> >RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<<<< DEVELOPMENT IS COMMERCIAL TC = KBE [(LENGTH)EX 3.00) /(ELEVATION CHANGE )] XX .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 1000.00 3 UPSTREAM ELEVATION(FEET) = 94.20 DOWNSTREAM ELEVATION(FEET) = 80.60 ELEVATION DIFFERENCE(FEET) = 13.60 TC(M I N .) = .304X[( 1000 .00x 3.00)/( 13.60 )] XX .20 =. 11.381 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.002 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA RUNOFF(CFS) = 10.98 TOTAL AREA(ACRES) = 4.20 PEAK FLOW RATE(CFS) = 10.98 FLOW PROCESS FROM NODE 1.10 TO NODE 1.20 IS CODE = 9 > > >> >COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA <<<<< UPSTREAM NODE ELEVATION(FEET) = 80.60 DOWNSTREAM NODE ELEVATION(FEET) = 58.20 LENGTH THRU SUBAREA FEET = 2620.00 CHANNEL LCN SUBAREA( FEET) "V" GUTTER WIDTH(FEET) = 4.00 GUTTER HIKE(FEET) = .100 3 PAVEMENT LIP(FEET) = .040 MANNING'S N = .0150 PAVEMENT CROSSFALL(DECIMAL NOTATION) = .02000 MAXIMUM DEPTH(FEET) = .67 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.888 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 ,fp TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 3.29 ` � AVERAGE FLOW DEPTH(FEET) = .43 FLOOD WIDTH(FEET) = 32.98 "V" GUTTER FLOW TRAVEL TIME(MIN.) = 13.27 TC(MIN.) = 24.65 SUBAREA AREA(ACRES) = 9.60 SUBAREA RUNOFF(CFS) = 15.47 EFFECTIVE AREA(ACRES) = 13.80 AVERAGED Fm(INCH/HR )" = ' .10 TOTAL AREA(ACRES) = 13.80 PEAK FLOW RATE(CFS) = 22.24 END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) _ .46 FLOOD WIDTH(FEET) = 36.30 FLOW VELOCITY(FEET /SEC.) = 3.24 DEPTHXVELOCITY = 1.50 xxxxxxxxxXXXXxXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX ail FLOW PROCESS FROM NODE 1.20 TO NODE 2.30 IS CODE = 4 > > >> >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA << < << i1Y1 > > >> )USING USER- SPECIFIED PIPESIZE< < < << •m DEPTH OF FLOW IN 33.0 INCH PIPE IS 26.8 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 4.3 UPSTREAM NODE ELEVATION(FEET) = 58.20 ▪ DOWNSTREAM NODE ELEVATION(FEET) = 57.50 FLOW LENGTH(FEET) = 350.00 MANNING'S N = .013 W GIVEN PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPE -FLOW(CFS) = 22.24 " TRAVEL TIME(MIN.) = 1.35 TC(MIN.) = 26.01 pin XXXXX:f XX XXX XXXXXXXXXXXXXXX XX XxXXXX XXXX XX XX* XXXX XX>ExXXXXXXWXXXXxXXXXXXxXX*XXX FLOW PROCESS FROM NODE 2.30 TO NODE 2.30 IS CODE = 1 > > > > >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE < < < << TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: 3 TIME OF CONCENTRATION(MIN.) = 26.01 RAINFALL INTENSITY(INCH /HR) = 1.83 AVERAGED Fm(INCH/HR) = .10 EFFECTIVE STREAM AREA(ACRES) = 13.80 TOTAL STREAM AREA(ACRES) = 13.80 - PEAK FLOW RATE(CFS) AT CONFLUENCE = 22.24 XXXXXXxXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX FLOW PROCESS FROM NODE 2.00 TO NODE _2.10 IS CODE = 2 >> > > >RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< < << DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE TC = KX[(LENGTHXX 3.00) /(ELEVATION CHANGE )] Xx .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 900.00 UPSTREAM ELEVATION(FEET) = 93.80 DOWNSTREAM ELEVATION(FEET) = 81.00 ELEVATION DIFFERENCE(FEET) = 12.00 TC(MIN.) = .389X[( 900 .00XX 3.00)/( 12.00)] 3E3E .20 = 14.017 25 YEAR RAINFALL INTENSITY( INCH /HOUR) = 2.649 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 z SUBAREA RUNOFF(CFS) = 19.47 TOTAL AREA( ACRES) = 10.00 PEAK FLOW RATE(CFS) = 19.47 3 xxxxxxxxxxxx3Exx3E3Ex3E3E3E3E3E3E3E3E3E3E3EXX3E3E3E3EX3E3E3E3EX3EX3E3EX3E3EX3EX3E3EXX3E X3EXXXX3EXX3E3E3E3EXXX3EX3EX FLOW PROCESS FROM NODE 2.10 TO NODE 2.20 IS CODE = 6 > > >> >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA < < < << UPSTREAM ELEVATION(FEET) = 81.80 DOWNSTREAM ELEVATION(FEET) = 68.70 STREET LENGTH(FEET) = 890.00 CURB HE I GTH(I NCHES) = 6. id STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 x XTRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 27.90 3 STREET FLOW MODEL RESULTS: NOTE: STREET FLOW EXCEEDS TOP. OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) = .58 HALFSTREET FLOOD WIDTH(FEET) = 16.44 - '" AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.06 PRODUCT OF DEPTH &VELOCITY = 2.37 STREET FLOW TRAVEL T I ME(M I N .) = 3.66 TC(MIN.) = 17.67 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.305 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 3 SUBAREA AREA(ACRES) = 10.20 SUBAREA RUNOFF(CFS) = 16.71 EFFECTIVE AREA(ACRES) = 20.20 AVERAGED Fm(I NCH /HR) = .49 TOTAL AREA(ACRES) = 20.20 PEAK FLOW RATE(CFS) = 33.09 3 [ND OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .61 HALFSTREET FLOOD WIDTH(FEET) = 17.69 F LOW VELOC I TY(FEET /SEC .) = 4.28 DEPTH3EVELOC I TY = 2.61 3 xxx3Exxxxx3Exxxxxxxxx3Ex3Ex3E3E3E3E3E3E3E3E3E# 3E3Ex3Exxx3Ex3E3E3E3EXXXX3E3E3E3E3E3E3E3E3E3E3E3E3E3E #3E3E3E#3E3E3E3EXXX FLOW PROCESS FROM NODE 2.20 TO NODE 2.30 IS CODE = 4 3 > > >>> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA < < < << > > >> >USING USER- SPECIFIED PIPESIZE < <<<< 3 DEPTH OF - FLOW IN 27.0 INCH PIPE IS 21.7 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 9.7 3 UPSTREAM NODE ELEVATION(FEET) = 68.70 DOWNSTREAM NODE ELEVATION(FEET) = 57.50 FLOW LENGTH(FEET) = 850.00 MANNING'S N = :013 GIVEN PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 33.09 TRAVEL TIME(MIN.) = 1.47 TC(MIN^1.= 3 XXXKXKKK*x*KKKXKKKXKXXXXXXXHXXxx*XxXKXXXXHKXXXHXXXXXKXxXXXXXX.MXXXXXXXX#XXXXX FLOW PROCESS FROM NODE 2.30 TO NODE 2.30 IS CODE = 1 T� ---------- >> )>>DESIGNATE INDEPENDENT STREAM _CONFLUENCE<<<{< =========___ TOTAL NUMBER OF STREAMS = 3 J� CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 19.14 RAINFALL INTENSITY(INCH/HR) = 2'20 AVERAGED Fm(INCH/HR) = .49 W� EFFECTIVE STREAM AREA(ACRES) = 20.20 TOTAL STREAM AREA(ACRES) = 20.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 33.09 XKHHKKH#*XxxXXXXXXXHKXXKXHXXXK*KHXX**XXXKXXXXXXXXXXHX*XXXXXXXXXXXXXKHXXXXXKX FLOW PROCESS FROM NODE 2.40 TO NODE 2.30 IS CODE = 2 >>>>>RATIUNAL METHOD INITIAL SUBAREA ANALYSIS<<<<< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5-7 DWELLINGS/ACRE TC = KK [( LENOTHKX 3.00)/(ELEVATION CHANGE )l KX .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 850'00 ` 0� UPSTREAM ELEVATION(FEET) = 68.70 �� . UOWNSTREAM ELEVATION(FEET) = 57.50 ELEVATION DIFFERENCE(FEET) = 11.20 TC( MIN.) ) = '389�[( 8�0'���� 3'�� 1/� 11 .2� \lXX .20 = 13.733 ` ' ' ` '~ 25 YEAR RAINFALL INTENSITY( INCH/HOUR ) = 2.682 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA RUNOFF( CFS ) = 19.57 TOTAL AREA(ACRES) = 9.90 PEAK FLOW RATE(CFS) = 19.57 XxKXKKKXK*KKXXXKXXXXXXKKXXXHXXXXXXXXXXKXKHXXXXKXXXHXXXXXXXXXXXXXXXXXXXXXKXXX FLOW PROCESS FROM NODE 2.30 TO NODE 2.30 IS CODE = 1 I >)> > >DESIGNATE INDEPENDENT STREAM FOR CONFLUENGE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES(<<<< I = - TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN') = 13.73 I RAINFALL lNTENSITY( NCH/HR 1 2 ' 68 ` ' AVERAGED Fm( INCH/HR ) = .49 EFFECTIVE STREAM AREA(ACRES) = 9'90 I TOTAL STREAM AREA(ACRES) = 9'90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 19.57 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. xx PEAK FLOW RATE TABLE XX / CFS ) To� MIN' 1 Fm( INCH/HR � Ae(ACRES) 1 �� 0(CFS) ' ` ' ` ' ` ' �� 1 68.20 19.14 .387 40.26 � 60'16 26.01 '363 43'90 E 3 67.56 13.73 .396 31'68 . ` 3 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: �� PEAK FLOW RATE(CFS) = 68.20 To(MIN.� = 19.138 �� , ' , ' �� EFFECTIVE AREA(ACRES) = 40.26, AVERAGED FmLINCH/HR) = .39 TOTAL AREA(ACRES) = 43.90 KwKKxxxXxXxxxx**XXxXXXXXmx)0000(xXxXxXXxHx)*00000000(*)000000000000000(x*xxmx* FLOW PROCESS FROM NODE 2'30 TO NODE 3'30 IS CODE = 4 I > > >>>COMPUT[ PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<(< >>>>)USING USER-SPECIFIED PIPESIZE<<<<< ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 5.4 UPSTREAM NODE ELEVATION(FEET) = 57'50 ` 0� DOWNSTREAM NODE ELEVATION(FEET) ' � = 55.80 �� FLOW LENGTH(FEET) = 680.00 MANNING"S N = .013 GIVEN PIPE DIAMETER(INCH) = 48.00 NUMBER OF PIPES = 1 I PIPE-FLOW( CF3 1 = 68.20 ` ' TRAVEL TlME( MIN' ) = 2.09 TC( MIN' ) = 21.23 XKXKXXXKXHX X.XK*XXKK*XHXXKX X.XXX X XXX XXHXKX MO( XHXX X )(XXX X )00000000000000000( FLOW PROCESS FROM NODE 3.30 TO NODE 3.30 IS CODE = 10 >> > >>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK 0 1 <<<<< C xKxKKXXX*HHXHK*XXXXHXXXXXXXKXXXXXXKXXXXXXXXXXXHXXXXXXXXXXX*XXXMXXXXXXXXXXXXX FLOW PROCESS FROM NODE 2.45 TO NODE _ 2'50 IS CODE = 2 0� -- - >> >> >RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _- I DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5-7 DWELLINGS/ACRE TC = �K[( LENGTHK� 3'�� ���ELEV�TION CHANGE �lX� ' 20 ' ` ^^ INITIAL SUBAREA FLOW-LENGTH(FEET) = 650:00' -' UPSTREAM ELEVATION(FEET) = 65.50 I DOWNSTREAM ELEVATION(FEET) = 56.50 ELEVATION DIFFERENCE(FEET) = 9.00 TC( MIN' ) = '389X[( 650'00)0( 3.00)/( 9.00 )lXX .20 = 12.214 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.877 N� SOIL CLASSIFICATION IS "A" RESIDENTIAL-) 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA RUNOFF(CFS) = 11.41 I TOTAL AREA( ACRES 1 = 5'30 PEAK FLOW R�TE� CFS � = 11 .41 AREA(ACRES) RATE(CFS) KXKKXKX*XXXXXXXKXXKXKXXXXX*KXHKXXXXXX*XXXXKKXXKKKXXXXXKXXXXXXXXXXXXXKXXXX*KX M FLOW PROCESS FROM NODE 2.50 TO NODE 3.30 IS CODE = 6 ------- - >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<(<<< 1 UPSTREAM ELEVATION(FEET) = 56.50 DOWNSTREAM ELEVATION(FEET) = 55.80 STREET LENGTH(FEET) = 350.00 CURD HEIGTH(INCHES) = 8. I STR[ET HALFWIDTH� FEET 1 = 2U'O� ` ' DISTANCE FROM CROWN TO CROSSFALL GQAOEBREAK(FEET) = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 XXTRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 11.85 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .63 HALFSTREET FLOOD WIDTH(FEET) = 17.38 AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.56 PRODUCT OF DEPTH &VELOCITY = .97 STREET FLOW TRAVEL T I ME(M I N .) = 3.75 TC(M I N .) = 15.96 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.450 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .4850 `:SUBAREA AREA(ACRES) = .50 SUBAREA RUNOFF(CFS) = .88 EFFECTIVE AREA(ACRES) = 5.80 AVERAGED Fm(INCH/HR) = .49 TOTAL AREA(ACRES) = 5.00 PEAK FLOW RATE(CFS) = 1 1 .41 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .61 HALFSTREET FLOOD WIDTH(FEET) = 16.63 FLOW VELOC I TY(FEET /SEC .) = 1.61 DEPTH)EVELOC I TY = .98 X3EXXX3EXxxxxxxxxxx *xxxxxxXxxXXXXXXXXXXXXXXXXXXXxxXXXXXxXXXXX EX>EXXXXXXXXxXxXxx FLOW PROCESS FROM NODE 3.30 TO NODE 3.30 IS CODE = 11 > > > >> CONFLUENCE MEMORY BANK # 1 WITH -THE MAIN - STREAM MEMORY < < < << XX>E PEAK FLOW RATE TABLE XXX Q(CFS) Tc(MIN.) Fm(INCH/HR) Ae(ACRES) 1 79.01 15.96 .409 38.08 78.90 15.57 .409 T 37.34 Gri 3 77.37 21.23 .399 46.06 4 67.53 27.86 .377 49.70 TOTAL AREA = 49.70 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 79.01 Tc(MIN.) = 15.963 EFFECTIVE AREA(ACRES) = 38.08 AVERAGED Fm( INCH /HR) = .41 TOTAL AREA(ACRES) = 49.70 I XXX) (XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXX .E.XXXXX3EXXXXXXXXXX XXXX XX** **XXX)EX FLOW PROCESS FROM NODE 3.30 TO NODE 3.30 IS CODE = 10 > > >> >MAIN- STREAM MEMORY COPIED ONTO MEMORY BANK # 2 < < < << XXXXXXXXXXXXXXXXXX E> EXXX> EXX> E> EX> f> EX> EX> EX> E> E> E> EX> E> E> E> E> E> E> E> E> fX> E> EX >EX>E>EX>fX>E>EX>E>EXXXXXXXXXX FLOW PROCESS FROM NODE 3.00 TO NODE. 3.1.0 IS CODE = 2 > > >> >RATIONAL METHOD INITIAL SUBAREA ANALYSIS < < < << DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3 -4 DWELLINGS /ACRE TC = KBE [(LENGTHX)E 3.00)/(ELEVATION CHANGE )] XX .20 INITIAL SUBAREA FLOW-LENGTH(FEET) ,=,_1000.00 000.00 UPSTREAM ELEVATION(FEET) = 93.50 1 DOWNSTREAM ELEVATION(FEET) = 77.00 3 ELEVATION DIFFERENCE(FEET) = 16.50 TC(MIN.) = .412X[( 1000.00>EX 3.00)/( 16 .50 )] .20 = 14.839 .839 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.560 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 !. SUBAREA RUNOFF(CFS) = 13.53 TOTAL AREA(ACRES) = 7.60 PEAK FLOW RATE(CFS) = 13.53 XxxXXXXx3EXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX>E *XXXXXXXXXXXXXXXM FLOW PROCESS FROM NODE 3.10 TO NODE 3.20 IS CODE = 6 > > > >> COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA < << << -- UPSTREAM ELEVATION(FEET) = 77.00 DOWNSTREAM ELEVATION(FEET) = 65.20 A STREET LENGTH(FEET) = 1100.00 CURB HE I GTH(I NCHES) = 6. STREET HALFW I DTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) =- .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING .RUNOFF = 2 XXTRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 19.53 STREET FLOW MODEL RESULTS: NOTE: STREET FLOW EXCEEDS TOP OF CURB. TFIE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) = .55 HALFSTREET FLOOD WIDTH(FEET) = 14.56 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.42 PRODUCT OF DEPTH &VELOCITY = 1.87 STREET FLOW TRAVEL T I ME(M I N .) = 5.36 TC(MIN.) = 20.20 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.127 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 SUBAREA AREA(ACRES) = 8.60 SUBAREA RUNOFF(CFS) = 11.96 EFFECTIVE AREA(ACRES) = 16.20 AVERAGED Fm( INCH /HR) = .58 TOTAL AREA(ACRES) = 16.20 PEAK FLOW RATE(CFS) = 99.53 I END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .57 HALFSTREET FLOOD WIDTH(FEET) = 15.81 FLOW VELOCITY(FEET/SEC.) = 3.48 DEPTHXVELOC I TY = 1.99 xxxxxxxxxxxXXXXXXXXxxXXXX )xXXX) XxXXXXXXXXXXXXXX E* XXXXXX FLOW PROCESS FROM NODE 3.20 TO NODE 3.50 IS CODE = 4 I >> >> )COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA < << << > > >> )USING USER - SPECIFIED PIPESIZE << < << 1 ASSUME FULL- FLOWING PIPELINE PIPE-FLOW VELOC I TY(FEET /SEC .) = 5.7 I UPSTREAM NODE ELEVATION(FEET) = 65.20 DOWNSTREAM NODE ELEVATION(FEET) = 65.00 FLOW LENGTH(FEET) = 40.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE -FLOW(CFS) = 22.53 TRAVEL TIME MIN . = .12 TC( ) = 20 . 32 3 XXXXX XXXXXX)( X)( XXX)( XXXX)( XXXXXX)( XXXXX XXXXX XXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX FLOW PROCESS FROM NODE 3.50 TO NODE 3.50 IS CODE = 10 > > >> )MAIN - STREAM MEMORY COPIED ONTO MEMORY BANK # 3 < < <<< )()( XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX FLOW PROCESS FROM NODE 4.00 TO NODE 4.10 IS CODE = 2 3 > > > > >RATIONAL METHOD INITIAL SUBAREA ANALYSIS < < <<< fin DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3 -4 DWELLINGS /ACRE TC = KX [(LENGTH)()( 3.00)/(ELEVATION CHANGE )] XX .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 1000.00 UPSTREAM ELEVATION(FEET) = 92.00 DOWNSTREAM ELEVATION(FEET) = 76.80 -- . ELEVATION DIFFERENCE(FEET) = 15.20 TC(MIN.) = .412X[( 1000 .00XX 3.00)/( 15 .20 )] XX .20 = 15.084 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.535 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3-4 DWELLINGS/ACRE SUBAREA EOSS RATE, Fm(INCH/HR) = .5820 SUBAREA RUNOFF(CFS) = 12.13 TOTAL AREA(ACRES) = 6.90 PEAK FLOW RATE(CFS) = 12.13 XXXXxX xXXXXXxxxXXXXXxxXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX FLOW PROCESS FROM NODE 4.10 TO NODE 4.20 IS CODE = 6 FR > > >> >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA < <<<< UPSTREAM ELEVATION(FEET) = 76.00 DOWNSTREAM ELEVATION(FEET) = 73.90 STREET LENGTH(FEET) = 450.00 CURB HE I GTH(I NCHES) = 6. STREET HALFW I DTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 I SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 )()(TRAVEL TIME COMPUTED USING MEAN FLOW(CFS)'' = - 14.05 STREET FLOW MODEL RESULTS: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH( FEET) = :53 HALFSTREET FLOOD WIDTH(FEET) = 13.94 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.62 = PRODUCT OF DEPTH &VELOCITY = 1.40 `STREET FLOW TRAVEL T I ME(M I N .) = 2.86 TC(MIN.) = 17.94 I 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.284 SOIL CLASSIFICATION IS "A" RESIDENTIAL--> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 SUBAREA AREA(ACRES) = 2.50 SUBAREA RUNOFF(CFS) = 3.83 " ~ . - EFFECTIVE AREA(ACRES) = 9'40 AVERAGED Fm(INCH/HR) = .58 TOTAL AREA(ACRES) = 9'40 PEAK FLOW RATE(CFS) = 14.40 ]� END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .55 HALFSTREET FLOOD WIDTH(FEET) = 14.56 FLOW VELOCITY(FEET/SEC.) = 2.52 DEPTHXVELOCITY = 1.38 *XX*KKXKXXXKKKKKKKXXXXKX*KxXXX**KXKXXxXXXXXXXXX*XXXXXX*XXXXX*XXXXXHXXXXXXXXX FLOW PROCESS FROM NODE 4'20 TO NODE 4.20 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<{<<< -- --- I TOTAL NUMOER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: | TIME OF CONCENTRATION(MIN.) = 17.94 I RAINFALL INTENSITY(INCH/HR) = 2'28' AVERAGED Fm(INCH/HR) = .58 EFFECTIVE STREAM AREA(ACRES) = 9.40 TOTAL STREAM AREA(ACRES) = 9.40 . . PEAK FLOW RAT[( CFS ) AT CONFLUENCE = 14.40 _-- -' E KKx*KKKHKK*XKK*K*KXX*KKX*XXXXXXXXXXXKXXXXXXXXXXKXXXX*XXXXXXXXXX*XXXXXXXXxXX* FLOW PROCESS FROM NODE 4.15 TO NODE 4.18 IS CODE = 2 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< -- DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3-4 DWELLINGS/ACRE TC = KX F( LENGTHXX 3.00)/(ELEVATION CHANGE )l XK .20 � ` ' INITIAL SUBAREA FLOW-LENGTH(FEET) \ = 1000.00 UPCTREAM ELEVATION(FEET) = 92.10 DOWNSTREAM ELEVATION(FEET) = 76'10 ELEVATION DIFFERENCE(FEET) = 16.00 TC( MIN ' ) = .412X[( 1O00 .00X* 3.00)/( 16 'O0 )l *X .20 = 14.930 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.550 I RESI SOIL CLASSIFICATION IS "A" DENTIAL > 3-4 DWELLING3/ACRE SUBAREA LOSS RATE , Fm� lNCH�HR 1 = .5820 _ Fm(INCH/HR) SUBAREA RUNOFF(CFS) = 13.46 TOTAL AREA(ACRES) = 7.60 PEAK FLOW RATE(CFS) = 13.46 - KKKxX*xK*KXXXKKKXXXXXXXKXHXXXXKXXXXXXXXXXXXHHHXXXXXXXXXXXXXXXXXKXXXKXX*XXxXX 1 FLOW PROCESS FROM NODE 4.18 TO NODE 4'20 IS CODE = 6 ---------------- >>)>>COMrUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< UPSTREAM ELEVATION(FEET) = 76.10 'DOWNSTREAM-ELEVATION(FEET) = 73.90 1 STR[[T LENGTH(FEET) = 150.00 CURB HEIGTH(INCHES) = 6. STREET |{ALFWIDTH( FEET ) = 18.00 I DISTANCE FROM CROWN TO CROSSFALL GRADEBREHK( FEET ) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 1 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 XXTRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 14.32 1 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .47 HALFSTREET FLOOD WIDTH(FEET) = 10.81 �� . -- AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.76 PRODUCT OF OEPTH&VELOCITY = 1.78 `� TIME(MIN.) ' ' ' . STREET FLOW TRAVEL TIME�MIN 1 = .67 TC�MIN.� = 15.60 �� �� 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.484 • SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = '5820 SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 1.71 EFFECTIVE AREA(ACRES) = 8.60 AVERAGED Fm(INCH/HR) = .58 J0 TOTAL AREA(ACRES) 1 = 8 '6� PEAK FLOW RATE(CFS) � = 14.73 ` ' . ' END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .49 HALFSTREET FLOOD WIDTH(FEET) = 11.44 FLOW VELOCITY(F[ET/SEC') = 3.60 OEPTHX = 1.75 • xKKKKKKKxxxxxKKHKXxxX&*xxxxxxxKxxx*xxxxxXxxxxxxxxxKxKxxxxxxxxxxxxxKxxxxxxxxx FLOW PROCESS FROM NODE 4.20 TO NODE 4 '�0 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE(<<<< > ) )> >ANO COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<( --_ - ---- TOTAL NUMBER OF STREAMS = 2 • CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE ▪ TIME OF CONCENTRATION(MIN.) = 15.60 RAINFALL INTENSITY(INCH/HR) = 2.48 AVERAGED Fm(INCH/HR) = .58 * EFFECTIVE STREAM AREA(ACRES) - 8 ' 60 �� ^ ' _ TOTAL STREAM AREA(ACRES) = 8.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 14,73 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. XX PEAK FLOW RATE TABLE XX Q(CFS) TC/MIN.\ Fm(INCH/HR) Ae(ACRES) pm 1 27.57 17.94 '582 10.00 2 28'71 15.60 .582-- 16.77 - COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 28.71 Tc(MIN.) = 15.596 EFFECTIVE AREA(ACRES) = 16.77 AVERAGED Fm(INCH/HR) = .58 TOTAL AREA(ACRES) = 18.00 „ _ xxxKXXxXHxxKxKx*xxxXXxHKHxxXXxxXXXxXXXXXxxx*xxKHxKXXXXXXXXXX*X*XXxxxxXxXXxKx |'LOW PROCESS FROM NODE 4.20 TO NODE 3.50 IS CODE = 4 w� ) > > >>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE<<<<< I ASSUME FULL-FLOWING PIPELINE PIP[-FLOW V[LOCITY(FEET/3EC') = 9.1 UPSTREAM NODE ELEVATION(FEET) = 73'9O ` I DOWNSTREAM NODE ELEVATION� FEET 1 = 65'00 ELEVATION(FEET) LENGTH(FEET) = 630'00 MANNING N = .013 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 28.71 TRAVEL TIME(MIN.) = 1.15 TC(MIN.) = 16.74 ^ ^ KXXKKXXKHxHHKXKKXXHKXXH*xXKKKH*XKXXXXXXXX&XKKxKHxKxXxXXXXXXHXXXXHX*XKXXxXKXH FLOW PROCEa; FROM NODE 4.20 TO NODE 3.50 IS CODE = 8 N� >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< -------'---- - - -- ------'---------- ------ - 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.381 di SOIL CLASSIFICATION IS ^A^ RESIDENTIAL-) 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR1 = .5820 SUBAREA AREA(ACRES) = 4.20 SUBAREA RUNOFF(CFS) = 6.80 Q� EFFECTIVE AREA(ACRES1 = 20.97 AREA(ACRES AVERAGED Fm(INCH/HR\ = .582 TOTAL AREA(ACRES) = 22'20 PEAK FLOW RATE(CFS) = 33.95 3 TC(MIN) = 16.74 - -- - ' xxKKxXxXKxxKMKKxxKKKxKXHHKXXXKXKKXKKxKXxKxxxxKxxKxHXKxxxHKxxxxxxWx*xxKxxxxxK FLOW PROCESS FROM NODE 3'50 TO NODE 3.50 IS CODE = 11 8N >>>>>CONFLUENCE MEMORY BANK 0 3 WITH THE MAIN-STREAM MEMORY<<<<< KXX PEAK FLOW RATE TABLE XXX 0( CFS ) To( MIN' ) Fm( INCH/HR \ Ae( ACRES ) 1 55.66 16.74 .582 34.32 2 54.56 19.14 .582 37.46 ' 3 53.26 2U 32 582 3B 40 . . . . TOTAL AREA = 38'40 �. COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 55.66 Tc(MIN.) = 16.744 EFFECTIVE AREA(ACRES) = 34.32 AVERAGED FWINCH/HR1 = .58 TOTAL AREA(ACRES) = 38.40 ��XXKHXK**KXKKKXXKXXKKKXKHKK*KKKHXKKXXXKHKXKX*XK**HXXKXXXXXHX�XXXXXKXXXHXKXX E FLOW PROCESS FROM NODE 3.50 TO NODE 3.30 IS CODE = 4 _-_-- -- _ >>>>}COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA{<<(< >>>>>USING USER-SPECIFIED PIPESIZEMT<" ASSUME FULL-FLOWING PIPELINE I PIPE-FLOW VELOCITY(FEET/SEC.) = g'4 ` UP�TREAM NODE ELEVATION� FEET 1 = 65'00 ' DOWNSTREAM NODE ELEVATION(FEET) = 55.80 FLOW LENGTH(FEET) = 850'00 MANNING'S N = .013 I ` GlVEN PIPE DIAMETER� INCH 1 = 33.00 NUM8ER OF PIPES = 1 PIPE-FLOW( CFS) = 55.66 TRAVEL TIME(MIN.) = 1.51 TC(MIN.) = 18.26 XKXXKHHxKKxKXxx*xH*XXKXXXXxxXx*X*XXHHXXKKXXXXXHXXXXXHXXXXHXXXXXXXXHXXXXXXXXX FLOW PROCESS FROM NODE 3.50 TO NODE 3.30 IS CODE = 8 0� --'------------- -- >>>>>AODITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2'260 I SOIL CLASSIFICATION IS "A" RESIDENTIAL-) 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, FWINCH/HR1 = .5820 SUBAREA AREA(ACRES) = 5.30 SUBAREA RUNOFF(CFS) = 8.01 � ~ ' 1 EFFECTIVE AREA(ACRES) = 39.62 AVERAGED Fm(INCH/HR) = .582 �� AREA( ACRES) TOTAL AREA�ACRES� = 43.70 - �� �� PEAK FLOW RATE( CFS ) = 59.85 • - . TC(MIN) = 10.26 xxXxKKxXKKXKXKXXKKKxxxx*K*Kxxxxx*xxxxxxxxxH�xxxxxxxxxxxxxxxxxxxxx*xxxxxxxxx* RR FLOW PROCESS FROM NODE 3.30 TO NODE - 3' - ' IS CODE = 11 30 ill _--- _---__ _ �� >>>>>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<<<<< --- --------- � �� ~~ KKK PEAK FLOW RAT[ TABLE KKK 0(CFS) Tc(MIN') Fm/INCH/HR) Ae(ACRES) 1 138'15 18.26 .491 81'10 iii 2 135'06 20.68 '489 07.99 3 133'20 21.90 .487 90'13 4 136.03 15.57 .491 71.12 � � 5 137.26 15.96 .491 72.72 �� 6 135.01 21.23 -408 89'24 7 113.63 27.86 .473 93'40 IC TOTAL AREA = 93.40 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: E ' PEAK FLOW RATE(CFS) = 130'15 Tc(MIN.) = 18.256 EFFECTIVE AREA( ACRES) ' � = 81.18 Fm(INCH/HR) AVER�GE� Fm� INCH�HR . � = .49 ` TOTAL AREA(ACRES) = 93.40 , _ __ E XXKKKKKKKxXXXXKXKXXKX#HHXxX*XXXXX*xXXXXXXHXx*XXXXXXxXXXXXXXXXXXXXXXXXXXXXXX# FLOW PROCESS FROM NODE 3.30 TO NODE 3'30 IS CODE = 12 E >>>>>CLEAR MEMORY BANK # 1 <{<<( . . _�� _ _________ ~~ KKxHKHxxH*xxHH**HHxxKxxHxxxxxxKHHxxx*x*xxxxxx*xxxxKxxKxxxxxxxxxxxxxxxxxxxxxx FLOW PROCESS FROM NODE 3.30 TO NODE 3.30 IS CODE = 12 �� -- _--__ 0� >>>>>CLEAR MEMORY BANK # 2 <<<<< 1 ---------- �KKXHxKKXxxKxXHHxxxHHK*xxx*xxxxxxxxxxxxxxxxxxxxxxxxxxHxxxxxxxxxmxxxxxxxxxxxx FLOW PROCESS FROM NODE 3'30 TO NODE 3.30 IS CODE = 12 I - - > >>>>CLEAR MEMORY BANK # 3 <<<<< ' 1 , KXKX*KKKK*KXxKKKKxHKKHxKxxxxH*xxHxxxHHxxxHxxHKK*xxxxKKxxxxxxxxxxxxxxxxxxxxxx I FLOW PROCES3 FROM NOOE 3'30 TO NOOE 6.OU IS CODE = 4 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<(<<< >>>>>USING USER-SPECIFIED PIPESIZE<<(<< I -' DEPTH OF FLOW IN 60.0 INCH PIPE IS 43.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 9'1 UPSTREAM NODE ELEVATION(FEET) = 55'8� 1 . ` ~ - ~ 3 DOWNSTREAM NODE ELEVATION(FEET) = 54.00 FLOW LENGTH(FEET) = 440.00 MANNING'S N = .013 !� GIVEN PIPE DIAMETER( INCH ' � = 60.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 138'15 - '- -- TRAVEL TIME(MIN.) = .01 TC(MIN.) = 19.06 3 KkxXKKKxxHHKxHxxxxKxxHxHxxxKxHHxxxxxXxxxKxHxxx*xxKxxKxxxxxxxxxxxxxKxxxHxxxxH �� FLOW PROCESS FROM NODE 6.80 TO NODE 6-80 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE(<<<< --------- TOTAL NUMD[R OF STREAMS = 3 @� CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 19.06 RAINFALL INTENSITY(INCH/HR) = 2.20 �� AVERAGED Fm( INCH/HR ) = .49 EFFECTIVE STREAM AREA(ACRES) = 81.18 TOTAL STREAM AREA(ACRES) = 93.40 PEAK FLOW RATE(CFS AT CONFLUENCE = 130.15 . KKKKHxKKHK**XKXXXXXXKKKXX*HXKXXXXXKKX*KXXHXXXXKXXXXKXXXXXXKXXXHXXXXXXXXXXXXX FLOW PROCESS FROM NODE 6.70 TO NODE 6'00 1, CODE = 2 -------- -- >>>>>RATlONAL METHOD INITIAL SUBAREA ANALYSIS<<<(< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3-4 DWELLINGS/ACRE TC = KX[(LENGTHXX 3'00)/(ELEVATION CHANGE1l�� .20 INITIAL SUBAREA FLOW-LENGTH(FEET) '= ' ' ' � ^.. � ' 00 -- UPSTREAM ELEVATION(FEET) = 66.00 DOWNSTREAM ELEVATION(FEET) = 54.30 ELEVATION DIFFERENCE(FEET) = 11.70 E TC(MIN') = '412X[( 1000.00XX 3.00)/( 11.70)l*X .20 = 15.895 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.456 SOIL CLASSIFICATION IS ^A^ 0� RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm( INCH/HR ) = .5820 SUBAREA RUNOFF(CFS) = 10.80 TOTAL AREA(ACRES) = 6.40 PEAK FLOW RATE(CFS) = 10.80 KKKXxKXKK*KXKKKKxKKX*XXXXxXHX*X*XXXXHXX*X*KXX**X*XXXXXXXXXXKXXXXXX*XxxXK*xxH I FLOW PROCESS FROM NODE 6.80 TO NODE 6'80 IS CODE = 1 --- ----- - >>>>>OESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<(( I TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 15.89 RAINFALL INTENSITY(INCH/HR) = 2.46 I AVERAGED Fm( lNCH/HR ) = .58 EFFECTIVE STREAM AREA(ACRES) = 6.40 I TOTAL STREAM AREA(ACRES) = 6.40 PEA% FLOW RATE(CFS) AT CONFLUENCE = 10.80 xKXXXXxHKHKKKxXxKXHX**HKX*XXKKH*XX#XXXKXXHXXXXXKXXXXXKXXXXHX*XHXXHxxxx*x*xHH FLOW PROCESS FROM NODE 6'60 TO NODE , 8'80 IS CODE = 2 ---'----------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<(<< . . ° 1 ======______=__ DEVELOPMENT IS COMMERCIAL 1 TC = KK[(LENGTHXX 3.00)/(ELEVATION CHANGE)lXH '20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 520.00 UPSTREAM ELEVATION(FEET) = 55.50 3 DOWNSTREAM ELEVATION(FEET) = 54.30 ELEVATION D1FFERENCE(FEET) = 1'2� TC(MIN.) = .304X[( 520'00XX 3.00)/( 1.20)]XX .20 = 12.492 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.838 I COIL CLASSIFICATION IS ^A^ COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA RUNOFF(CFS) = 1.97 : TOTAL AREA(ACRES) = .80 PEAK FLOW RATE(CFS) = 1.97 ' C KXK*HXKKXKXKKKxXX*KXKKKX*XHMXXHX**KXXXX*XHKXXXXX*KXXXXXKHXXXXXXXXXXXXXXXXXHH Q� FLOW PROC[SC FROM NODE 6.80 TO NODE 6.80 IS CODE = 1 ----------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< 0� > > > > > AND COMPUTE VARIOUS CONFLUENCED STREAM UALUES<<<(< N� TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM -3 ARE: I TIME OF CONCENTRATION(MIN.) = 12.49 RAINFALL INTENSITY(INCH/HR) = 2.84 I [FFE AVERAGED Fm(INCH/HR) = '1O ` CTIVE STREAM AREA� ACRES 1 = -8U ' TOTAL STREAM AREA(ACRES) = .80 rig PEAK FLOW RATE(CFS) AT CONFLUENCE = 1'97 L RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. E xX PEAK FLOW RATE TABLE H* Q(CFS) Tc(MIN.) Fm(INCH/HR) Ae(ACRES) 1 140'31 15.89 .495 76.23 r 2 149.04 16.30 .495 78.32 Iii 3 149.25 16.77 .495 79'92 4 149.00 19.06 .494 88.38 rm 5 145.72 21.49 .492 95.19 0i 6 144.67 22.04 .491 96.44 7 142.62 22.71 .490 97.33 I 8 121.37 28.70 .477 100.80 9 19'6� 12'49 '494 60'08 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: I PEAK FLOW RATE� CFS 1 = 149 25 To� MIN 1 = 16 772 ` ' ' ` ' ^ . EFFECTIVE AREA(ACRES) = 79.92 AVERAGED Fm(INCH/HR) = .49 TOTAL AREA(ACRES) = 100.60 1 XXKXxXX*xXKXXxKXXXxH*VXX*XXXXXKXXXHX*KXXKXXXXXXXXXXXX#XX*XXXXXXXXKXXXXXXXXXX I FLOW PROCESC FROM NODE 6'80 TO NODE 6'90 IS CODE = 4 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA(<<<< >>>>>USING USER-SPECIFIED PIPESIZE<<<<< __ I DEPTH OF FLOW IN 60.0 INCH PIPE IS 43.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 9.8 UPSTREAM NODE ELEVATION(FEET) = 54'O� I DOWNSTREAM NODE ELEVATION(FEET) � = 52.90 FLOW LENGTH(FEET) = 230.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 60.00 NUMBER OF PIPES = 1 ~~ PIPE-FLOW( CFC ) = 149.25 TRAVEL TIME(MIN.) = .39 TC(MIN.) = 17.16 KxXKXKx**XK*HxxxXXXX*XXx*XXXXXXXXKXXHxXXxXXXX#XXXXXXXXXXXXXXxXXXXXXXX&Xxx*xx I FLOW PROCESS FROM NOOE 6'90 TO NODE 6.g0 IS COOE = 10 >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<< ===---- . XKX*KXKXxKXXKKX*HXK*XXXXXXXKXV*KX*XKXXKXXXXH*XXXXXXX*XXXXKXXXXXXXXXXXXXXXXXH rol FLOW PROCESS FROM NODE 6'00 TO NODE 8'10 IS CODE = 2 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS(<<<< . . .. 0; DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3-4 DWELLINGS/ACRE �� TC = KX[(LENGTHXX 3.00)/(ELEVATION CHANGE )lXX .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 350.00 r UPSTREAM ELEVATION(FEET) = 89'00 DOWNSTREAM ELEVATION(FEET) = 84-00 ELEVATION DIFFERENCE(FEET) = 5.00 TC(MIN.) = .412X[( 350.00XX 3.00)/( 5.00)lXX '20 = 10.036 ' 25 YEAR RAINFALL INTENSITY(INCH/HOUR) \ = 3 237 SOIL CLASSIFICATION IS ^A^ RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .5820 SUBAREA RUNOFF( CFS ) = 13.14 TOTAL AREA(ACRES) 5.50 PEAK FLOW RATE( CFS ) = 13.14 C XXKKXXXKKxKXKXXXKXKXXXXXXXXXXXKXXXXXHXKXXXX*XXXXXXXXXXKXKHXXXXXXXKXXXXXXKXXK FLOW PROCESS FROM NODE 6'10 TO NODE 6'20 IS CODE = 6 -' ---- > > > > } COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREH < < < < ( UPSTREAM ELEVATION(FEET) = 84.00 DOWNSTREAM ELEVATION(FEET) = 71.00 F-, STREET LENGTH( FEET � = 8�U 0� CURB HEIGTH(INCHES) � = 6 �` ` ' . ` ^ 6. I I STREET HALFWIOTH/ FEET 1 = 18.00 I DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10'00 INTERIOR STREET CROSSFALL(DECIMAL) = '020 OUTSIDE STREET CROSSFALL(DECIMAL) =. .040 1 RUNOFF SPECIFIEO NUMBER OF HALFSTREETS CARRYING UNOFF = 2 �� XXTRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 18.53 STREET FLOW MODEL RESULTS: N� NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT N[GLIOLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. N� THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. - STREET FLOW DEPTH(FEET) = .51 HALFSTREET FLOOD WIDTH(FEET) = 12.69 ' AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.95 I PRODUCT OF DEPTH&VELOCITY = 2.01 STREET FLOW TRAVEL TIME(MIN.) = 3.30 TC(MIN.) = 13.41 � w 1 25 ' INTENSITY INCH/HOUR �� YEAR RAINFALL Nf - ALL ( ) = 2.720 SOIL CLASSIFICATION IS "A" 3 RLC I DENT I AL --> 3 -4 DWELL INGS /ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .5820 SUBAREA AREA(ACRES) = 5.60 SUBAREA RUNOFF( CFS) = 10.78 EFFECTIVE AREA(ACRES) = 11.10 AVERAGED Fm(INCH/HR) = .58 3 TOTAL AREA( ACRES) = 11.10 PEAK FLOW RATE( CFS) = 21 .36 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .53 HALFSTREET FLOOD WIDTH(FEET) = 13.94 FLOW VELOC I TY(FEET /SEC .) = 3.99 DEPTHXVELOC ITY ' _ _ 2 -.13 XXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX FLOW PROCESS FROM NODE 6.20 TO NODE 6.20 IS CODE = 1 > > >> )DESIGNATE INDEPENDENT STREAM "FOR"CONFLUENC;E < << << 1: TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.41 RAINFALL INTENSITY(INCH /HR) = 2.72 AVERAGED Fm(INCH/HR) = .58 EFFECTIVE STREAM AREA(ACRES) = 11.10 TOTAL STREAM AREA(ACRES) = 11.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 21.36 a x xxXX XXXXX> EXXXXXXXXXXXXXXXXXXXXXXX> EXXXXXXX> EXXXX >EXXXXXXXXXXxXXXxxX#XXXxXXxXX FLOW PROCESS FROM NODE 6.15 TO NODE 6.20 IS CODE = 2 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS. <<< << DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3 -4 DWELLINGS /ACRE TC = KX [(LENGTHXX 3.00)/(ELEVATION CHANGE )] XX .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 1000.00 UPSTREAM ELEVATION(FEET) = 88.80 DOWNSTREAM ELEVATION(FEET) = 71.00 ELEVATION DIFFERENCE(FEET) = 17.80 TC(M I N .) = .412X[( 1000 .00XX 3.00)/( 17 .80 )] XX .20 = 14.615 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.583 `SOIL CLASSIFICATION IS "A" �(( RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 SUBAREA RUNOFF(CFS) = 11.89 II TOTAL AREA(ACRES) = 6.60 PEAK FLOW RATE(CFS) = 11.89 x xxXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX II FLOW PROCESS FROM NODE 6.20 TO NODE 6.20 IS CODE = 1 > > >> >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE << <<< > > > > >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES < < < << TOTAL NUMBER OF STREAMS = 2 I CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 14.62 RAINFALL INTENSITY(INCH /HR) = 2.58 AVERAGED Fm( INCH /HR) = .58 EFFECTIVE STREAM AREA(ACRES) = 6.60 TOTAL STREAM AREA(ACRES) = 6.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 11.09 ^ . -- RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. m� XK PEAK FLOW RATE TABLE XX 0(CFS) Tc(MIN.) Fm(INCH/HR) e(ACRES)~ - -- 1 33.01 13.41 .502 17.16 3 2 31'08 14'62 '582 17.70 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: I ^P[AK FLOW RATE�CFS\ = 33'O1 Tr�MIN' = 3'411 EFFECTIVE AREA(ACRES) = 17'1x' �`=R�G'1 AVERAGED Fm(INCH/HR) = .58 TOTAL AREA(ACRES) = 17.70 KKXxKK*xxxKx*xxKKxKHxxxxxxxXxxxxxxxxxxxxHxxxxxxxxxxxxxxxxxxxxxxxxx*xxxxxx*xx FLOW PROCESS FROM NODE 6.20 TO NODE 8.40 IS CODE = 4 0� ---- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE<<<<< - DEPTH OF FLOW IN 30'0 INCH PIPE IS 16.7 INCHES PIP[-FLOW VELOCITY(FEET/3EC') = 11.7 UPSTREAM NODE ELEVATION(FEET) = 71'00 �' DOWNSTREAM NODE ELEVATION(FEET) = 64.00 FLOW LENGTH(FEET) = 350,00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 30'00 NUMBER OF PIPES = 1 PIP[-FLOW(CFS � = 33,01 TRAVEL TIME(MIN.) = .50 TC(MIN.) = 13.91 xK%XKKXXKXXXKXKxKXKXHXXHXXXXXXKXXXXXXXXXXXXXXHXXKXXXHXXXXXXXXXXXXXXXXXHXXXXX FLOW PROCESS FROM NODE 6.20 TO NODE 6.40 IS CODE = 8 �? - ------- -- �� > > >> >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW(<(<< 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.661 E COIL CLASSIFICATION I5 "A^ RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm( INCH/HR) = . .582O SUBAREA AREA(ACRES) = 5.20 SUBAREA NOFF(CFS) = 9.73 EFFECTIVE AREA(ACRES) = 22.36 N� AVERAGEO Fm(INCH/HR) = '582 TOTAL AREA(ACRES) = 22.90 PEAK FLOW RATE(CFS) = 41.83 I TC(MIN) = 13.91 xXKXKKXXXKxXXKXxXKxKxxxxXxXxKxxx**KxxxxxXxxxxxxHxx**xxxxxxKxxxx*xxKxxHHx*KKx FLOW PROCESS FROM NODE 6.40 TO NODE 6.50 IS CODE = 4 -- ---------- _ >>>>>COMPUT[ PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<(< > >>>>USING USER-SPECIFIED PIPESIZE((<<< | --�=-----====- ------ ASSUME FULL-FLOWING PIPELINE I PIPE FLOW VELOCITY� FEET/SEC ' 1 = 10 ' ' UPSTREAM NODE ELEVATION(FEET) = 64.00 DOWNSTREAM NODE ELEVATION(FEET) = 58.90 �� LENGTH( FEET) LENGTH� FEET 1 = 350'00 MANNING'S N = .013 �� ' �� GIVEN PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = l PIPE-FLOW/CFS1 = 41.83 1 TRAVEL TIME(MIN.) = .55 TC(MIN.) = 14.46 ^ ` . - ( �� XXXXKxXXKXx*KKK**KKKXHxx*xxxxHxxxxxH*xKxkxxxxKxxxxxxxx*xxxxxxxxxxxxxxxxxKxXH �� FLOW PROC[sS FROM NODE 6.50 TO NODE 6.50 IS CODE = 1 >>>>>OESIGNAT[ INDEPENDENT STREAM'FQR'C8NFLUENCE<<<{< ===-----========--- , TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN,) = 14.46 RAINFALL INTENSITY(INCH/HR) = 2.60 AVERAGED Fm(INCH/HR) = ' .58 I EFFECTIVE STREAM AREA(ACRES) = 22.36 TOTAL STREAM AREA(ACRES) = 22.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 41.83 KX*xKKxXKKKKXXxxKKKKxHHxxxxxxxxxxKxK*H*K*xxKxx*xxxxxxxxxxMxxxxxxxxxxxK*xxxxx FLOW PROCESS FROM NODE 6.45 TO NODE 6.50 IS CODE = 2 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3-4 DWELLINGS/ACRE TC = KX[(LENGTHXX 3.00)/(ELEVATION CHANGE)lXX .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 1000'00 UPSTREAM ELEVATION(FEET) = 74.30 1:1 DOWNSTREAM ELEVATION�FEET� = 58.90 ELEVATION DIFFERENCE(FEET) = 15'40 TC( MIN' ) = .412X[( 1000.O0XX 3.00)/( 15.40 )]*X .20 = 15.045 25 YEAR RAINFALL INTENSITY( INCH/HOUR ) = 2.539 ' SOIL CLASSIFICATION IS ^A^ R[SIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .5820 E SUBAREA RUNOFF(CFS) = 17.43 TOTAL AREA(ACRES) = 9.90 PEAK- FLOW- RATE( CFS ) = 17.43 KKKKKKKKKKKXKKKHXKxXHHXXXNHXXXXXXX*XXXXXKXXXXxX*XXXHXHXXXHHXKXXHXXXXXXXXXXKX �� FLOW PROCESS FROM NODE 6.50 TO NODE 6.50 IS CODE = 1 --------------- - > > > > > DESIGNATE INDEPENDENT STREAM FOR CON -~EN - - < < < < < >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< I TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: � -- TIME OF CONCENTRATION( MIN' ) = 15'05 RAINFALL INTENSITY(INCH/HR) = 2.54 0� AVERAGED Fm( lNCH/HR ) = .58 N� EFFECTIVE STREAM AREA(ACRES) = 9'90 TOTAL STREAM AREA(ACRES) = 9.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 17'43 I RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS' ' • XX PEAK FLOW RATE TABLE XX 0(CFS) Tc(MIN.) Fm(INCH/HR) Ae(ACRES) 1 �� 1 59.11 14.46 '582 31.87 ~~ .1, 57 -O4 15.69 '582 32.80 50'48 15.05 ,582__ 32.51 ` _ __ • 3 CUMPUT[O CONFLUENCE ESTIMATES ARE `AS^FOLLOWS: -- PEAK FLOW RAT[(CFS) = 59.11 Tc(MIN.) = 14.463 ?� EFFECTIVE AREA(ACRES) = 31 87 AVERAGED Fm(INCH/HR) = .58 �� , ' ' . ' =° TOTAL AREA(ACRES) = 32.80 111 xXxKHXXHX**XKXXXKXKXXXXXNXXXXXXXKHAXXHXKX*XXXXHXX*XX*XXXXXXXXXXXXKKXXXHXXXXX FLOW PROC[SS FROM NODE 6'50 TO NODE 6'90 IS CODE = 4 2 '-- --------- - - �� > >>>> COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<{<< )>>>>USING USER-SPECIFIED PIPESIZE<<<<< _ �� ASSUME FULL-FLOWING PIPELINE �� °� PIPE-FLOW VELOCITY( FEET/SEC. ) = 8.4 UPSTREAM NODE ELEVATION(FEET) = 58.90 ill DOWNSTREAM NODE ELEVATION(FEET) = 52'90 iii FLOW LENGTH(FEET) = 850.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 36'00 NUMBER OF PIPES = 1 rit PIPE-FLOW(CFs) = 59.11 TRAVEL TIM[�MIN ) = 1.69 TC(MIN.) = 16.16 �� ` ' ' ` ' XKXKxxKKKKKHx*XXXxHxXXXXXXKXHXX*XxXHXH�������������������XXXXWXHXXXXXXXXXXx 0� � FLOW PROCESS FROM NODE 6.55 TO NODE 6.90 IS CODE = 8 rit >>>>}AODJTION OF SUBAREA TO MAINLINE PEAK FLOW<<(<< ii 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.432 SOIL CLASSIFICATION IS "A" , R[SIDENTIAL ) 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm� INCH/HR� = .5820 �� ` ' �� SUDAR[A AREA(ACRES) = 11.30 SUBAREA RUNOFF( CFS ) = 18.82 EFFECTIVE AREA(ACRES) = 43.17 E AVERAGED Fm(INCH/HR) = .582 TOTAL AREA(ACRES) = 44.10 _ PEAK FLOW RATE(CFS) = 71.90 F IR TC(MIN) = 16'16 �� �� xK}(KxHxK*XXXHXXxXXHKXXXKXXXXXXXKxXXKKKXXXXXXXKXXXHKXXXXHXXXXXXXXXXXXXXXxXHxx OR i FLOW PROCESS FROM NODE 6.90 TO NODE 6.90 IS CODE = 11 >>>>>CONFLUENCE MEMORY BANK � 1 WITH THE MAIN-STREAM MEMORY<(<<< -- __=__ _ Q� - - �� XXX PEAK FLOW RATE TABLE *XK �� 0(CFS) To(MIN.) Fm(INCH/HR) Ae(ACRES) �� 1 219'00 16.16 .526 118.79 � 219.91 16.76 .526 122.09 3 210'30 17.45 .525 125.09 4 207.99 12.89 .526 94.52 1 5 219'99 16.29 .526 119.54 � 219'90 16.77 .526 122.14 I 7 219.06 17.16 .526 123.91 O 212'26 17.46 '523 132.48 _ . - -_ 9 203'09 21'89 .520 139.29 10 200'06 22.43 .519 140.54 0� 11 197.42 23.11 .519 141.43 �� 12 166.10 29.10 .509 144.70 TOTAL AREA = 144.70 �� . '`'�� _ �� COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 219.99 Tc(MIN.) = 16.286 EFFECTIVE AREA(ACRES) = 119.54 AVERAGED Fm(INCH/HR) = .53 TOTAL AREA(ACRES) = 144.70 KHXXHX**HKHKXKXXHHKHH*H*XX*XXXXXH#*XXKXXXX*XXXXXKHXXXuXXXXXXXXX FLOW PROCESS FROM NODE 8.90 TO NODE 6.90 IS CODE = 12 �� �� >>>>>CLEAR MEMORY BANK # 1 <<<<< °� _ ; KXKXKKXXKHXKKKKxxxxxxxHKHXXXXXXKxHxHXXxXXxXKXXxxxxMXXXXXXXXXXxXXXXKXKKXXXxxx FLOW PROCESS FROM NODE 6.90 TO NODE 7.60 IS CODE = 4 - -'------ - > > > > > COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA ( < < < < > > > > > USING USER-SPECIFIED PIPESIZE ( < < < < ------------ DEPTH OF FLOW IN 66.0 INCH PIPE IS 45.5 INCHES . PIPE-FLOW VELOCITY( FEET/SEC' ) = 12.6 UPSTREAM NODE ELEVATION(FEET) = 52.90 DOWNSTREAM NODE ELEVATION(FEET) = 48'30 �� FLOW LENGTH(FEET) = 650.00 MANNING `S N = .013 GIVEN PIPE DIAMETER(INCH) = 66.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 219.99 - Z TRAVEL TIME�MIN ) = .86 TC[MIN.� = 17.15 TIME( MIN.) ' TC( MIN.) E XXXXXKXXXXXXXXKKKXHXXXXKXKXX*HXKXXHHXXKHXXH*XXXKXXXXXXXXXXXHXXXXXXXXXKKXXXXX FLOW PROCESS FROM NODE 7.60 TO NODE - 7.60 IS CODE = 10 - ---------- - C >>>>>MAIN-3TREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<< XKKKxHKKHHxxxxxxxx*HKxHxx*xKKx*XKxKHKxxxxXKxxKxKXxxKxxxxxxxxxxxxxxxxxKxxxxxx FLOW PROCESS FROM NODE 7'00 TO NODE 7.10 IS CODE = 2 --- -------------- --------------- -- - >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<{<< _=�===_-___====-__ DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3-4 DWELLINGS/ACRE TC = KX [/ L[NGTHXH 3.00)/(ELEVATION CHANGE )lXX .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 000.00 UPSTREAM ELEVATION(FEET) = 91.10 DOWNSTREAM ELEVATION(FEET) = 79.60 I ELEVATION DIFFERENCE(FEET) = 11.50 TC( MIN' ) = .412X[( 800.00XX 3.00 )/( 11 .50 )lXK .20 = 13.951 25 YEAR RAINFALL INTENSITY(INCH/UOUR) = 2.656 I SOIL CLASSIFICATION IS "A" R[SIOENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, FmC 1N[H/MH ) = .5820 SUBAREA RUNOFF(CFS) = 10.64 TOTAL AREA(ACRES) = 5.70 PEAK FLOW RATE(CFS) = 10.64 XxXxKxHxKxK*KH*x*KxxK*xKHHK000K0K*0� �KK*X*XxK�KKxxxxx�xxKxxxHxxxKxxxxx*x I �'LOW PROCESS FROM NODE 7.10 Td -- � 7. - IS CODE = 6 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA(<<{{ 3 UPSTREAM EL_EVATION(FEET) = 79.60 DOWNSTREAM ELEVATION(FEET) = 78.30 STREET LENGTH(FEET) = 300.00 CURD HE I GTH(I NCHES) = 6. 3 STREET HALFW I DTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 3 XXTRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 14.88 STREET FLOW MODEL RESULTS: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) = .57 HALFSTREET FLOOD WIDTH(FEET) = 15.81 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.30 PRODUCT OF DEPTH &VELOCITY = 1.32 STREET FLOW TRAVEL T I ME(M I N .) = 2 .-17 - TC(M I N .) = 16.13 2 Y EA R RAINFALL INTENSITY(INCH /HOUR) = 2.435 CLASSIFICATION IS "A" RESIDENTIAL- -> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .5820 SUBAREA AREA(ACRES) = 5.10 SUBAREA ,RUN0_FFCCFS) = 8.51 EFFECTIVE AREA(ACRES) = 10.80 AVERAGED Fm(INCH/HR) = .58 TOTAL AREA(ACRES) = 10.80 PEAK FLOW RATE(CFS) = 18.01 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .61 HALFSTREET FLOOD WIDTH(FEET) = 17.69 FLOW VELOCITY(FEET /SEC.) = 2.33 DEPTH)VELOCITY = 1.42 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX FLOW PROCESS FROM NODE 7.20 TO NODE 7:30 IS CODE = 4 > > >> >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA<<<<< > > >> >USING USER- SPECIFIED PIPESIZE < << << ASSUME FULL-FLOWING PIPELINE P 1 PE -FLOW VELOC I TY(FEET /SEC .) = 5.7 UPSTREAM NODE ELEVATION(FEET) = 78.30 DOWNSTREAM NODE ELEVATION(FEET) = 77.00 FLOW LENGTH(FEET) = 000.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE - -FLOW(CFS) = 18.01 _ _ TRAVEL TIME(MIN.) = 2.33 TC(MIN.) = 18.45 • xxxxxxxxxxxxxxxxxxxxxxXXXXX EXxxXXXXxxxx>EXXXXXXXXXX EXXXXXXXXXXXXXXXXXXXXXXXx>E FLOW PROCESS FROM NODE 7.20 TO NODE 7.30 IS CODE = 8 > > >> >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW < < < << 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.246 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 SUBAREA AREA(ACRES) = 6.40 SUBAREA RUNOFF(CFS) = 9.59 EFFECTIVE AREA(ACRES) = 17.20 AVERAGED Fm(INCH/HR) = .582 ° - ~ TOTAL AREA(ACRES) = 17.20 PEAK FLOW RATE(CFS) = 25.76 �� TC(MIN) = 10'45 �� ` ' �� XXXKKXXKHKKKXXKXKx)000000000000X000000000*000H00000K000000000000000000000( FLOW PROCESS FROM NODE 7.30 TO NODE 7.30 IS CODE = 1 ----'-------- --- >>>>>OECIGNAT[ INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN') = 18.45 3 RAINFALL INTENSITY( INCH/HR ) = 2.25 AVERAGED Fm(INCH/HR) = .58 EFFECTIVE STREAM AREA(ACRES) = 17.20 �� TOTAL STREAM AREA(ACRES) = 17.20 -~ PEAK FLOW DAT[( CFS ) A CONFLUENCE = 25.76 KxXKKXKKXKKKXKXXK)0KK000H0000000*KK000KHHKK00000000000000000000000000K0( FLOW PROC[s3 FROM NODE 7.00 TO NODE ---7.05 IS CODE = 2 >>)>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _ _ -------- DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3-4 DWELLINGS/ACRE TC = KX [� LENGTHK� 3 �� 1�� ELEVATION CHANGE )P0( KX .20 � . ' ` '~ ' INITIAL SUBAREA FLOW-LENGTH(FEET) = 800'00 UPSTREAM ELEVATION(FEET) = 91.10 C ` UOWN�TR[AM ELEVATION� FEET ' � = 81 .70 ELEVATION DIFFERENCE(FEET) = 9.40 TC(MIN.) = ,412KF( 800'00)0( 3'0Q)/( 9'40)lKK .20 = 14.525 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.593 SOIL CLASSIFICATION IS ^A^ RESIDENTIAL-) 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .5820 SUBAREA RUNOFF(CFS) = 8.69 TOTAL AREA( ACRES) 1 = 4 '8O PEAK FLOW RATE(CFS) � = 8 69 , ' ` ' ' c; XxXXXXxKXKHKKXKKKKKXKKKKKKXXKKXKKHKXXKHXKKKKXXHXXXXKXXHXXXXXHXHKXXXXXXXXKXXX FLOW PROCESS FROM NODE 7.05 TO NODE 7.30 IS CODE = 6 >>>>)COMPUT[ STREET FLOW TRAVEL TIME THRU SUBAREA<<<{< UPSTREAM ELEVATION(FEET) = 81.70 DOWNSTREAM ELEVATION(FEET) = 77.00 STREET LENGTH(FEET) = 350.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIOTH( FEET ' � = 18'00 . -_ DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK/FEET1 = 10.00 I INTERIOR STREET CROSSFALL(DECIMAL) = '020 OUTSIDE STREET CROSSFALL(DECIMAL) = '040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 XKTRAV[L TIME COMPUTED USING MEAN FLOW( CFS ) = 10.35 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH( FEET) � = .44 ` ' HALFSTREET FLOOD WIDTH(FEET) = 0.94 AVERAGE FLOW VELOClTY(FEET/SEC') = 3.37 PRODUCT OF OEPTH&VELUCITY = 1.47 ~ . 3 STREET FLOW TRAVEL TIME(MIN.) = 1.73 TC(MIN.) = 16.26 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.423 3 SOlL CLASSIFICATION IS "A" , RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .5820 SUBAREA AREA(ACRES) = 2'00 SUBAREA RUNOFF(CFS) = 3.31 1 EFFECTIVE AREA(ACRES) = 6'80 AVERAGED Fm(INCH/HR) = .58 TOTAL AREA(ACRES) = 6.80 PEAK FLOW RATE(CFS) = 11.27 [NO OF SUBAREA STREET FLOW HYDRAULICS: �� DEPTH( FEET) � = .45 HALFSTREET FLOOD WIDTH( FEET) � = 9.56 �� ` ' ` ' FLOW VELOCITY(FEET/SEC') = 3.41 DEPTHXVELOClTY = 1.53 �� �� KKXKKKKXxX*KKHKKKKXxKXXXHKXXXXXXXXXH*XXXKHXXXXKXX**XK*XXXXXX*XNXXNXXX*XXXXXX FLOW PROCESS FROM NODE 7'30 TO NODE 7'30 IS CODE = 1 ow &i >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE((<<< w� > > > > > AND COMPUTE VARIOUS CONFLUENCED STREAM-VAHJES < M < E TOTAL NUM8ER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONC[NTRATION(MIN.) = 16.26 RAINFALL INTENSITY(INCH/HR) = 2.42 0� AVERAGED Fm(INCH/HR) = .58 EFFECTIVE STREAM AREA(ACRES) = 6-80 TOTAL STREAM AREA(ACRES) = 6.00 h� P[AK FLOW RAT[( CFS) AT CONFLUENCE = 11 .27 �� RATE( ' RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO E CONFLUENCE FORMULA USED FOR 2 STREAMS. �� �� XX PEAK FLOW RATE TABLE XX O/CFS\ Tc(MIN.) Fm(INCH/HR) Ae(ACRES) 0� 1 35'94 18.45 '502 24.00 2 36'30 16.26 .582 21.95 E COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: , PEAK FLOW RATE(CFS) = 36.38 TcCMIN') = 16'256 - EFFECTIVE AREA(ACRES) = 21.95 AVERAGED Fm(INCH/HR) = .58 TOTAL AREA(ACRES) = 24.00 I XKKKKKKKXHHKKXXXXKKXXKXKXXHHXXXKXXXXXHXXXXXXKXXXHXXXXXXXXXXXXXXHXXXXXXXXXXXM FLOW PROCESS FROM NODE 7.30 TO NODE 7.35 IS CODE = 4 -------- --- ------ ----- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< I > > > > USING USER-SPECIFIED PIPESIZE <<<<< ' -'-'------- ASSUME FULL-FLOWING PIPELINE PIPE-FLOW V[LOCITY(FEET/SEC') = 11.6 I UPCTR[AM NODE ELEVATION(FEET) = 77.00 DOWNSTREAM NODE ELEVATION(FEET) = 71.90 FLOW LENGTH(FEET) = 200'00 MANNING'S N = .013 I CIV[N PIPE DIAMETER�INCH� = 24'O0 NUMBER OF PIPES PIPE-FLOW(CFS) = 36'38 TRAVEL TIME(MIN.) = .40 TC(MIN.) = 16.66 XKXXXXXXXKXKKXKKXXKKXHKXKXXXXKXXKXHXXHXXXXXXXXXXKKXXKXKXXKXKKXXXHXXXXKXHXXXX FLOW PROCESS FROM NODE 7.30 TO NODE 7.35 IS CODE = 8 ' ----- - ------------- ------- >>>>}ADOITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< • 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.388 SOIL CLASSIFICATION IS "A" RESIDENTIAL-) 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .5820 SUBAREA AREA(ACRES) = 1.10 SUBAREA RUNOFF(CFS) = 1.79 EFFECTIVE AREA(ACRES) = 23.05 AVERAGED Fm(INC||/UR1 = .582 - - - TOTAL AREA(ACRES) = 25.10 PEAK FLOW RATE(CFS) = 37.47 TC(MIN) = 16.66 KKKxKxHKXXXKKXXKXxHXKKXxXXKKxXXXXKXXXHXxxXH*KXXXXKXXXXXKXXXKXXXXM*HXXXXXXXXK FLOW PROCESS FROM NODE 7.35 TO NODE 7'40 IS CODE = 4 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<( >>>>>UCING USER-SPECIFIED PIPESIZE<<<<< B] ======----------- - ------ ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 11.9 C UPSTREAM NODE ELEVATION(FEET) = 71.90 DOWNSTR[AM NODE ELEVATION(FEET) = 64.00 FLOW LENGTH(FEET) = 520.00 MANNING"S N = .013 GIVEN PIPE DIAMETER(INCH) = 24'00 NUMBER OF PIPES = 1 PIPE FLOW( CF� ) = 37.47 ' TRAVEL TIM[(MIN.) = .73 TC(MIN.) = 17.39 E KXKxXXxKxxKxXKXxKXKxK*xxxKKxxXHxxHxxVxxxK*xxK**xxxxxKxxxKxxxKx*xxxxxxxxxxxxx FLOW PROCESS FROM NODE 7.35 TO NODE 7.40 IS CODE = 8 ' ------- ----'- N� >>>>>AOOITION OF SUBAREA TO MAINLINE P[AK ' FLOW<(({( 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.328 0� SOIL CLASSIFICATION IS "A" N� RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, FW INCH/HR ) = '5820 SUBAREA AREA(ACRES) = 8.70 SU8AREA RUNOFF(CFS) = 13.67 EFFECTIVE AREA(ACRES) = 31.75 AVERAGED FW INCH/HR 1 = .582 TOTAL AREA(ACRES) = 33.80 PEAK FLOW RATE(CFS) = 49'89 TC�MIN1 = 17.39 TC(MIN I HXxXXKK*xKxxXXKHKx&xxHxxxHK#Hx***xHxxxKKxxxxxxxxxxx�xxxxxxixxxKxxxx�xxxxx*xK FLOW PROCESS FROM NODE 7.40 TO NODE 7.60 IS CODE = 4 -- '--- - -- -'------- I >>>>>COMPUT[ PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< ) > > > > USING USER-SPECIFIED PIPESIZE<(< << _ I ASSUME FULL-FLOWING PIPELINE ` PIPE-FLOW V[LOCITY� FEET/SEC. 1 = 12'5 ' UPSTREAM NODE ELEVATION(FEET) = 64'00 DOWNSTREAM NODE ELEVATION(FEET) = 54.40 FLOW LENGTH(FEET) = 660.00 MANNING "S N = .013 I GIVEN PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = PlPE-FLOW(CFS) = 49.89 TRAVEL TIME(MIN.) = .88 TC(MIN.) = 18.26 ~ - 1 I XX X XXKKKKKXKKKKK FLOW PROCESS FROM NODE 7.40 TO NODE 7'60 IS CODE = 8 ---------------- I )>>>>ADOITION OF SUBAREA TO MAINLINE-PEAK FLOW<<<<< 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.260 SOIL CLASSIFICATION IS ^A^ ` 1 I �[�IDENTIAL-> 3-4 DWELLING�/�CRE 5UBAREA LOSS RATE, Fm� INCH�HR = '5820 ' SUBAREA AREA(ACRES) = 12.00 SUBAREA RONOFFCCFS1 = 18.12 EFFECTIVE AREA(ACRES) = 43.75 I ` AVERAGED Fm� INCH/HR 1 = '582 ' TOTAL AREA(ACRES) = 45'80 PEAK FLOW RATE(CFS) = 66.08 TC(MIN) = 18.26 KX*KKXXKKxXxXKXKKHKXXKXXXXXKKxXKXXXXXKXKXXXXKXXXKXXXXX*XXxKXXXXXXXXxXXxXXHHK �� FLOW PROCESC FROM NODE 7.60 TO NODE 7.60 IS CODE = 11 N� >>>>}CONFLUENCE MEMORY BANK 4 1 WITH THE MAIN-STREAM MEMORY<<<<< 0� ' ====== - - - - - -- �� XXX PEAK FLOW RATE TABLE XKH 0(CFS) Tc(MIN,) Fm(INCH/HR) Ae(ACRES) L 1 204'51 10'26 '540 168'63 2 274.49 20.50 .538 178.79 J 278'1O 13.76 .540 127.48 or. 4 285'04 17'02 .541 159.57 1 ma r 283'25 17.15 '541 160'62 ` '- . 6 285-53 17.62 '540 164.30 7 285.52 17.63 .540 164.37 �� U 284.97 18'�2 .540 167.09 9 284.30 18.31 .540 168.88 10 275.41 20.32 .538 178.11 � , 11 26O ' 73 22 . 76 ' �3~ -~'� �� 185 . 69 12 257'35 23.31 .535 186.34 13 252'53 23.98 '534 187'23 E 14 ' 3U.O1 .527 190.5O TOTAL AREA = 190'50 I COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE( CFS ) = 285-53 To( MIN' ) = 17.618 EFFECTIVE AREA(ACRES) = 164.30 AVERAGED Fm(INCH/HR) = .54 ' ' �� TOTAL AREA(ACRES) = 190.50 . 11 �� XKKxxKXXKXXXxKxK*KXXHxxHxKXHXXXXxXXKXXXXKXXXXKHxXKXXXXHXXXHXXXX#XX*K#XK*xxxX I FLOW PROCESS FROM NODE 7.60 TO NODE 11.10 IS CODE = 4 >>))>COMPUT[ PIPE-FLOW TRAVEL TIME THRU SU88REA<{<<< >>>>>USING USER-SPECIFIED PIPESIZE<<<<< IN DEPTH OF FLOW IN 66.0 INCH PIP[ IS 50.0 INCHES PIP[-FLOW VELOCITY(FEET/SEC.) = 14'8 I ` UPCTR[AM NUDE ELEVATION� FEET 1 = 48.3U ' DOWNSTREAM NODE ELEVATION(FEET) = 43.20 FLOW LENGTH(FEET) = 540.00 MANNING'S N = .013 CAlV[N PIPE DIAMETER(INCH) = 66.00 NUMBER OF PIPES = 1 , ° m� PIPE FLOW( CFC ) = 285.53 TRAVEL TIME(MIN.) = .61 TC(MIN.)'= 18.23 xXXXXXKXXXX*KXXXKKKXHXKXXXKKKX*XXXXHXKHKXXxXXH**KXXXXKKXXXXXXXXXXXXXXXXXXXKX FLOW PROCESS FROM NODE 11'10 TO NODE 11.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 18.23 RAINFALL lNTENSITY(INCH/HR) = 2.26 I AVERAGED Fm( INCH/HR ) = .54 EFFECTIVE STREAM AREA(ACRES) = 164.30 TOTAL STREAM AREA(ACRES) = 190.50 PEAK FLOW RATE(CFS) 1 AT CONFLUENCE = 205.53 ` ' C XXKxKXXXKXXXXXXKKXKXXHXHXXKXxXKKKXHXXKXXKXHXXXXKXKXKXHXXXXXHXXXXXXKXKXXXXXXX |'LOW PROC[sC FROM NODE 11.05 TO NODE 1 1 . 10 IS CODE = 2 ----------' ---------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIC<<<<< m� =====----------- -- ------ DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3-4 DWELLINGS/ACRE TC = KK [( LENGTHKH 3.00)/(ELEVATION CHANGE )l HX .20 Q' INITIAL SUBAREA ' FLOW-LENGTH/FEET� = 670.00 - -- FLOW-LENGTH UPSTREAM ELEVATION(FEET) = 56.40 DOWNSTREAM ELEVATION(FEET) = 46.60 E ELEVATION DIFFERENCE(FEET) F = 9 ,O0 TC(MIN.) = '412K[( 670'00X* 3.00)/( 9.80)lXX .20 = 12.951 25 YEAR RAINFALL INTENSITY(INCi\/HOUR) = 2.778 SOIL CLASSIFICATION IS ^ ' RESIDENTIAL-) 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm( INCH/HR ) = .5820 SUBAREA RUNOFF(CFS) = 17.19 TOTAL AREA(ACRES) = 8.70 PEAK FLOW RATE(CFS) = 17.19 XXXKKK*KHKXXXKXKHKKXXXXXKKXKXXKHXXXHXXKXKXXXXXXXXKXXXXXXXXKXXXXXXXXXXHXXXXKX C FLOW PROCESS FROM NODE 11.10 TO NODE 11.10 IS CODE = 1 >>>>>DE3IGNATE INDEPENDENT STREAM FOR CONFLUENCE<(<<( >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES(<<<< N� �==------= - TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: I ` TIM OF CONCENTRATION� MIN ' 1 = 12 '95 ' RAINFALL INTENSITY(INCH/HR) = 2.78 AVERAGED Fm(INCH/HR) = .58 EFFECTIVE STREAM AREA(ACRES) =8.70 N� TOTAL STREAM AREA(ACRES) = 0.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 17.19 @� RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO 1 CONFLUENCE FORMULA USED FOR 2 STREAMS. I KK PEAK FLOW RATE TABLE XX 0( CF3 ) Tc( MIN ' ) Fm( INCH/HR ) Ae( ACRES ) 1 206.06 14.37 '543 136'18 - 290.56 17.63 .543 168.27 0� ' - _ � � 290'69 17.76 .543 169.32 4 290.67 18'23 .543 _173'00 �� -j 290'68 10.24 .542 173.07 �� 6 297.90 1O'63 .542 175.79 1 7 297.30 18.87 .542 177.33 8 297.06 18.92 .542 177.58 I 9 287'16 20.93 .540 186'81 � 10 286.15 21.12 .540 187.49 il 11 271.43 23.38 .538 193.79 12 267'84 23.92 '537 195'04 13 262.77 24.60 .536 195'93 14 219.66 30.65 .529 199.20 E 15 2U0'46 12.95 .543 123.59 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: E . FLOW RATE(CFS) = 298.69 Tc(MIN.) = 17.755 0� EFFECTIVE AREA(ACRES) = 169.32 AVERAGED Fm(INCH/HR) = .54 TOTAL AREA(ACRES) = 199.20 E . )0KXXXXXKXKXXXXHKKXKKXXKXXXXXKHKXXXXKX*X*XKXXXXK*XXXKKXXXXXKXMK*XXXXK*XXXHKXK FLOW PROCESS FROM NODE 11.10 TO NODE 11.30 IS CODE = 4 . -_ -_________--- -_ N� >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<(<< >>>>>USING USER-SPECIFIED PIPESIZE<<<<< ____ C DEPTH OF FLOW IN 69.0 INCH PIPE IS 51.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 14,3-- - ' � UPSTREAM NODE ELEVATION(FEET) = 43.20 E ` DOWN�TREAM NODE [LEVATION�FEET1 36.50 ' FLOW LENGTH(FEET) = 800.00 ELEVATION(FEET) N = '013 . GIVEN PIPE DIAMETER(INCH) = 69.00 NUMBER OF PIPES = 1 PIP[-FLOW/CFS\ = 298.69 E TRAVEL TIME(MIN.) = .93 TC(MIN.) = 18'69 � KXxHKKKKXKKxXKXXXXXK*xXXXXXXXXXXKXKX*XXXKXXXXXKXXXXXXHXXXXXXXXXXXXXHXWxxXXXX �� FLOW PROCESS FROM NODE .11'30 TO NODE 11.30 IS CODE = 1 _ -- E >>>>>D[IGNATE INOEPENDENT STREAM FOR TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: I TIME OF CONCENTRATION(MIN.) = 18'69 RAINFALL INTENSITY(INCH/HR) = 2.23 AVERAGED Fm(INCH/HR) = .54 I [FFECTIVE STREAM AREA�ACRES� = 169'32 TOTAL STREAM AREA(ACRES) = 199.20 i ' ' PEAK FLOW RATE(CF3) AT CONFLUENCE = 298.69 il ' xXKXHKKKKKXKKHKKXHXHXXXXXXXXXXXXXKKKKXKKXX*XXKKKXX*XKXXXXXXXXXXXXXXXXXXXXXKX I FLOW PROCESS FROM NODE 11'20 TO NODE 11.15 IS CODE = 2 - - --- ---- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS(((<( | _ ,==============_ - __ �� DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3-4 DWELLINGS/ACRE @� TC = KX[(LENGTHXX 3'00)/(ELEVATION CHANGE)DOE .20 i INITIAL SUBAREA FLOW-LENGTH(FEET) = 980'00 1 UPSTREAM ELEVATION(FEET) = 48.90 _-- -. DOWNSTREAM ELEVATION( FEET) = 43.80 ELEVATION DIFFERENCE (FEET) = 5.10 TC(MIN.) = .412X[( 980.00(X 3.00)/( 5.10 )] xx .20 = 18.540 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.240 SOIL CLASSIFICATION IS "A" 3 RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 SUBAREA RUNOFF(CFS) = 6.41 TOTAL AREA(ACRES) = 4.30 PEAK FLOW RATE(CFS) = 6.41 XXXXx XXXXXXXXXXXXXXXXXXXx XXXXXXXXXXX)( XXXXXx xxX xxxxxxx)XXXXX)()EXxxx)XXxxX)XXX) FLOW PROCESS FROM NODE 11.15 TO NODE 11.30 IS CODE = 6 )))>>COMPUTE STREET FLOW TRAVEL TIME THRU SUDAREA<<<<< UPSTREAM ELEVATION(FEET) = 43.00 DOWNSTREAM ELEVATION(FEET) = 36.50 STREET LENGTH(FEET) = 500.00 CURB HE I GTH( INCHES) = 6. STREET HALFWIDTH(FEET) = 18.00 _ DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 SPECIFIED NUMBER OF HALFSTREETS CARRY.I.NG RUNOFF= 2 xXTRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 11.64 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH( FEET) = .45 HALFSTREET FLOOD WIDTH(FEET) = 9.56 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.53 PRODUCT OF DEPTH &VELOCITY = 1.58 STREET FLOW TRAVEL T I ME(M I N .) = 2.36 TC(MIN.) = 20.90 16 25 YEAR RAINFALL I NTENS I TY(I NCH /HOUR) = 2.004 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .5820 SUBAREA AREA(ACRES) = 7.70 SUBAREA RUNOFF(CFS) = 10.41 EFFECTIVE AREA(ACRES) = 12.00 AVERAGED Fm(I NCH /HR) = .58 TOTAL AREA(ACRES) = 12.00 PEAK FLOW RATE(CFS) = 16.22 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = .50 HALFSTREET FLOOD WIDTH(FEET) = 12.06 FLOW VELOCITY(FEET /SEC.) = 3.70 DEPTH%VELOCITY = 1.84 xxXxXxxxxxXXXXxxxxxxxxxxxxxxxxxxxxxxXXXxXxxXXxxxxxxxx*x >Exxxxxxx>E>E>E>Exxxxxxxxx FLOW PROCESS FROM NODE 11.30 TO NODE 11.30 IS CODE = 1 > > >> >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >• > > >)AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< I TOTAL NUMDER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: I TIME OF CONCENTRAT I ON(M I N .) = 20.90- -- RAINFALL INTENSITY(INCH/HR) = 2.00 AVERAGED Fm( INCH /HR) = .50 EFFECTIVE STREAM AREA(ACRES) = 12.00 I TOTAL STREAM AREA(ACRES) = 12.00 PEAK FLOW RATE( CFS) AT CONFLUENCE = 16':22 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO ~ . ° 3 CONFLUENCE FORMULA USED FOR 2 STREAMS. , XX PEAK FLOW RATE TABLE XX �� O(CFS) Tc(MIN') Fm(INCH/HR) Ae(ACRES) 1 295'40 13,89 .546 131,57 II 301'33 15.31 .545 144.97 a 3 314.44 10'56 .545 178.92 A 314.59 18.69 .545 180'05 5 314.66 19.16 .545 184.00 �� � 314'65 19.17 .545 184.07 �� 7 312'94 19'56 '545 187'02 ' 8 313.37 19.00 '545 188.70 �� 9 313.14 19.05 .545 100.98 ` �� =° 10 302'78 21.87 .543 198.81 11 301.66 22.05 .543 '199.49 - - -- " r" 12 205.70 24.32 .540 205.79 i 13 281.03 24.87 .540 207.04 14 276.44 25.55 .539 207.93 15 230.93 31.64 .532 211.20 �[ 16 300.12 20.90 .544 194.39 �� _ COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 314.66 Tc(MIN.) = 19.157 iii EFFECTIVE AREA(ACRES) = 184'00 AVERAGED Fm(INCH/HR) = .54 TOTAL AREA(ACRES) = 211.20 oii KXKXxXxxxKxxKKXXKKHXKKXKXKKXKK*XKKXXKKXKKXXXXXKXXXXKXKHXHXXXXXXXXXXXXXXXXXXX FLOW PROCESS FROM NODE 11.30 TO NODE 11.30 IS CODE = 10 �� �� >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK 0 2 <<<<< r 6 KKXKHKHKKKKxKH*xHKKKxxKHHxKxK*KxxkKHKHxxxHKxx*xxxxxxxxxxxxxxxxxxxHxxxxxxxxxx �� FLOW PROCESS FROM NODE 10.00 TO NODE 10.05 IS CODE = 2 -- )>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS(<<(< E OEVELOPMENT IS SINGLE FAMILY RESIOENTIAL -> 3-4 OWELLINGS/ACRE TC = KX[(LENGTHXX 3.00)/(ELEVATION CHANGE )lHX .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 340.00 I UPSTREAM ELEVATION(FEET) = 54'30 DOWNSTREAM ELEVATION(FEET) = 49'00 ELEVATION DIFFERENCE(FEET) = 5.30 �� TC( MIN' ) = .412X[( 340.00XX 3.00)/( 5.30)]XX .20 = . 9.748 ` �� 25 YEAR RAINFALL INTENSITY� INCH/HOUR ' � = 3.294 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .5820 I SUBAREA RUNOFF(CFS) = 8'83 TOTAL AREA(ACRES) = 2.80 PEAK FLOW RATE(CFS) = 6.83 X�KHKKHXKXKK*KKXKHXKHXXXXHXXXXKKX*KXXKXKXXX��XHXXXXXXXHXXXXXXKXXXXHXXXXXXKXXX m� FLOW PROCESS FROM NODE 10.05 TO NODE 10'10 IS CODE = 6 -'--' ---------- - �� > >>>)COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA{<<<< �� =___ |' £TR[AM ELEVATION(FEET) = 49.00 DOWNSTREAM ELEVATION(FEET) = 38.80 TR[[T LENGTH(FEET) = 740'00 CURD HEIGTH( INCHES ) = 6. , CTR[[T ||ALFWIOTH(FEET) = 10.00 �� DISTANCE FROM CROWN TO CROSSFALL CRADE8REAK(FEET1 = 10.00 �� ` ' ~~ INTERIOR STREET CRD5SFALL( DECIMAL ) = .020 OUTSIDE STREET CROSSFALL(OECIMAL) = .040 3 SP[CIrI[D NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 KKTRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 13.48 STREET FLOW MODEL RESULTS: m� STREET FLOW DEPTH(FEET) = HALFSTREET FLOOD WIDTH(FEET) = 11.44 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.30 ' PRODUCT OF DEPTH&VELOCITY = 1.60 STREET FLOW TRAVEL TIME(MIN.) = 4.75 TC(MIN.) = 14.50 25 YEAR RAINFALL INTENSITY( INCH/HOUR)' = 2.595 SOIL CLASSIFICATION IS "A" RESIDENTIAL-) 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .5820 �� �UOAR[A AREA( ACRES 1 = 7.30 SUBAREA RUNOFF( CFS 1 = 13.23 �� ` ' , ' EFFECTIVE AREA(ACRES) = 10.10 AVERAGED Fm(INCH/HR) = .58 TOTAL AREA(ACRES) = 10.10 PEAK FLOW RATE(CFS) = 18.30 �� END OF SUBAREA STREET FLOW HYDRAULICS: �� °� DEPTH(FEET) = .53 HALFSTREET FLOOD WIDTH(FEET) = 13'94 FLOW V[LOCITY(FEET/SEC') = 3.42 DEPTHXVELOCITY = 1.83 KKXXxKXKKX*KKKHKXKXKXXXXHXXXXHX*H**XKH*X*K*XXXXXXXXXK*XHXXXXXXXXXH**XXXXXX*X img FLOW PROCESS FROM NODE 10.10 TO NODE 10.11 IS CODE = 4 / '-----�--------- - >>>>>COMPUT[ PlPE-FLOW TRAVEL TIME THRU SUBAREA<(<<< >}>>>USING USER-SPECIFIED PIPESIZE<<<<< -======_____ --- _ DEPT|| OF FLOW IN 30.0 INCH PIPE IS 14.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.8 UPSTREAM NODE ELEVATION(FEET) = 39-30 DOWNSTREAM NODE ELEVATION(FEET) = 38.80 FLOW LENGTH(FEET) = 50.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 0N PIPE-FLOW(CFS = 18.30 ' ~~ TRAVEL TIME(MIN.) = .11 TC(MIN.) = 14.61 XKXKKKKKXHXKKxKXHX*XXKXXX XXXXHXX XX XX*XKXHH00000000000(****XXX X***X*XX X X XXXHH* FLOW PROCESS FROM NODE 10'11 TO NODE - 10'30 IS CODE = 4 ----- - - -' ---- - > >> >> COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< > > >>>USING USER-SPECIFIED PlPESIZE<<<<( =----- - DEPTH OF FLOW IN 39.0 INCH PIPE IS 17'O_INcHE5 0� PIPE-FLOW VELOClTY( FEET/SEC. ) = 5.3 UPSTREAM NODE ELEVATION(FEET) = 38'80 DOWNSTREAM NODE ELEVATION(FEET) = 37.40 I FLOW LENGTH(FEET) = 400'00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 18.30 TRAVEL TIME(MIN.) 1 = 1 .27 TC(MIN.) � = 15'87 ` . ' ` ' xxXXXxXKXXXXxXXXKKKKKXXKHKXXXXKXXXXXXXXXXKHXXXKXKXXKXXXXXX**XXXKKK**xxKXXXKK FLOW PROCESS FROM NODE 10.20 TO NODE 10.30 IS CODE = 8 - -' - ---'----'-----'------'--------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW(<(<< �� 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.458 SOIL CLASSIFICATION IS "A^ I RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .5820 ' SUBAREA AREA(ACRES) = 12.00 SUBABEA RUNOFF�CF�1 � _-2O . EFFECTIVE AREA(ACRES) = 22'10 �� AVERAGED Fm(INCH/HR) = .582 �� ` ' TO1AL AREA(ACRES) = 22.10 PEAK FLOW RATE(CFS) = 37.32 �� �� TC( MlN ) = 15.07 ` ' ` . - _, _ P XXKXXXxXXXXXXKXXxXKXXxKHXXHKXKXxXxXXKKXXHXXKXxx*XXKxxxXXKxKHXXXxHXKxxx*XXXKx 1. iii FLOW PROCESS FROM NODE 10.30 TO NODE 11.30 IS CODE = 4 })>>>COMPUT[ PIP[-FLOW TRAVEL TIME THRU SUBAREA<<<<< > > ) > > USING USER-SPECIFIED PIPESIZE<<<<< m� ,_================__ DEPTH OF FLOW IN 51.0 INCH PIPE IS 27.0 INCHES PIP[ FLOW VELOCITY(FEET/SEC.) = 4.9 I UPSTREAM NODE ELEVATION(FEET) = 37'40 DOWNSTREAM NODE ELEVATION(FEET) = 36'50 FLOW LENGTH(FEET) = 500'00 MANNING N = .013 E GIV[N PIPE DIAMETER(INCH) = 51.00 NUMBER OF PIPES = 1 PIPE FLOW(CFS) = 37.32 TRAVEL TIME(MIN.) = 1.70 TC(MIN.) = 17.57 II KK*XXKxX*xxXxKxKxKHKxxKH*xxK*xxxxxx**xxxxx**xxxxxxKxK*xK*xxxxxxxxxxKxxxKxKxx E FLOW PROCESS FROM NODE 11.25 TO NODE 11.30 IS CODE = 8 - '--------- -------- - >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<(<(( E --- - --------------- -- ---------- ~5 YEAR �AINFALL INTEN3ITY� INCH/HOUR � = 2.313 25 INTENSITY(INCH/HOUR) SOIL CLASSIFICATION IS ^A" ' RESIDENTIAL 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .5820 i CU8AREA AREA� ACRES � = 6 5O SUBAREA RUNOFF� CFS � = 10.12 ` ' . ` . EFFECTIVE AREA(ACRES) = 28.60 � AVERAGED Fm(INCH/HR) = .582 TOTAL AREA(ACRES) = 28.60 ' I PEAK FLOW RATE(CFS) = 44'55 TC(MIN) = 17.57 I XXKKKKXKXXKKKXKKKKXKXXXXXXKXKXKXXXXXXXXHXXXXXXXXXXKKXXXXKXXXXX*XHXXXXXXXXXXX FLOW PROCESS FROM NODE 11.30 TO NODE 11.30 IS CODE = 11 I >>>>>CONFLUENC[ MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<<(<< ,====__--___-_ 0� XKX PEAK FLOW RATE TABLE XKX -- O( CFS ) TC( MIN. ) Fm(INCH/HR) Ae( ACRES ) 1-i- 355.03 17.57 .551 197.26 �� 3�7'74 13'89 .551 154.17 �� � 344.60 15'31 '551 167'07 1 057.00 18.56 .550 207'52 � 356'99 18.69 .550 200'65 . ~ � ~ � �� 6 2�6'21 19.16 .550 212.60 7 356-18 19.17 .550 212.67 • �� �� 8 354'78 19.56 '550 215.62 �� 7 353'81 19.80 .549 217.30 10 353.49 19'85 '549-- 217.50 ' - '' . 11 346-79 20'90 .549 222'99 il 12 340'01 21.87 '540 227.41 13 230'62 2 2.05 .548 228-09 14 319.71 24.32 .545 234.39 �� 15 315'19 24'87 '545 235'64 �� 16 309'01 25.55 '544~--, 236.53 17 '57.70 31.64 .538 239.80 3 TOTAL AREA = 239.80 , COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RAT[(CFS) = 357'08 Tc(MIN.) = 18'557 3 EFFECTIVE AREA(ACRES) = 207.52 AVERAGED FW INCH/HR 1 = .55 TOTAL AREA(ACRES) = 239.80 ~~ XKKKKKHXXXKKKKKKKK*XXXXXKXXXX*KXXXKH*XX*KKKKKXXKXXHKXXXXXXXXXKXX**XX*XXXXKX* FLOW PROCESS FROM NODE 11.30 TO NODE 12'30 IS CODE = 4 i > >>> >COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<(<<< � )>>)>USING USER-SPECIFIED PIPESIZE<<<<< -' --------------- -- -- -- ' -'--- -- - - DEPTH OF FLOW - IN 72.0 INCH PIPE IS 14.3 INCHES PTT[-FLOW VELOCITY(FEET/SEC.) = 89'4 UPSTREAM NODE ELEVATION(FEET) = 36.50 E DOWNSTR[AM NOOE EL[VATION([[T\ 22.80 ` ' . FLOW LENGTH(FEET) = 13.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 72.00 NUMBER OF PIPES = 1 PIP[-FLOW(CFS) = 357'00 iii TRAVEL TIM[(MIN.) = .00 TC(MIN.) = 18.56 �� XXXXXXXXXKKXXKXKXKXKKXXHXXXKKKKXKKKKXXXXHXXKXXKXXXXXXXXXXXXXHXXXXXXXXXHXXHXX �� FLOW PROCESS FROM NODE 11.30 TO NODE 12.30 IS CODE = 8 _ _ �� �� >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<(M - _ _ | 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.238 SOIL CLASSIFICATION IS ^A^ I RESIDENTIAL-) 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, FW INCH/HR 1 = .5820 . SUBAREA AREA(ACRES) = 9.60 SUBAREA RONOFFCCFS) = 14.31 EFFECTIVE AREA(ACRES) = 217.12 I AV[R AG[D Fm( INCH/HR ' � = '552 , TOTAL AREA(ACRES) = 249.40 . PEAK FLOW RATE(CFS) = 357.08 TC(MIN) = 18'56 / �xxxxKXxKXXKXXXKKXxKXXKXXKXKKXXKXKXXXXKKXKKXXKXKKXXXXXHKXXXKKHXXXXXXXXXXKXXK �� Flow PROCESS FROM NODE 12.30 TO NODE 12'30 IS CODE = 10 �� | ------- ---- ----------------- - >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 3 <<<<< -__-______-_ �� ;:xHXKKKx*X*KKXxxxKHKKxxxKKxKxxKxxHKxxKxxxxxxxxxxxxxxxxxxKxxxxxKxKx*xxxxxxxxH ' ^ , ~ 3 � FLOW P�OCESS FROM NODE 12.15 TO NODE 12.25 IS CODE = 2 ' _---___----_-_-__ - . ._-_, ._ �� >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<((<{ �� . -,---.,-==-========---- = DEVELOPMENT IS COMMERCIAL TC = KH[(L[NOTH*K 3'00)/(ELEVATION CHANGE)lKX .20 �� INITIAL SUBAREA FLOW-LENGTH(FEET) = 550.00 � UPSTREAM ELEVATION(FEET) = 40.00 DOWNSTREAM ELEVATION(FEET) = 35.50 �� [LEVATION DIFFERENCE(FEET) = 4'50 �� TC(MIN.) = .304X[( 550'00XX 3.00)/( 4.50)]X) '20 = 9.919 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.260 I SOIL CLACSIFICATION IS "A^ COMMERCIAL SUBAREA LOSS RATE, Fm( INCH/HR ) = .0970 SUBAREA RUNOFF(CFS) = 5.41 TOTAL AREA(ACRES) = 1.90 PEAK FLOW RATE(CFS) = 5.41 KKKK*XK*XHX*XXKHKXX*KKXKXX*KXXXXXXKKXXKXXXXXXKXXXXXXXXXXXKXXXXXXXXHKXXXXXXHX 3 FLOW PRO=S FROM NODE 12.25 TO NODE 12.45 IS CODE = 4 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<(<<( �� �� >>>>>USING USER-SPECIFIED PIPESIZE(<<<( DEPTH OF FLOW IN 10.0 INCH PIPE IS 8.0 INCHES PIPE-FLOW VELOCITY(FEET/5EC.1 = 6.3 �� UPSTREAM N0�[ [L�VATION(FEET � = 35.50 �� ` DOWNSTREAM NODE ELEVATION(FEET) = 28.00 FLOW LENGTH(FEET) = 600,00 MANNING N = .013 E GIVEN PIPE DIAMETER(INCH) I = 18'00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.41 - - TRAVEL TIME(MIN.) = 1.60 TC(MIN.) = 11.52 ' X*KKXHKK*XXxKXxKK*HKXXXXXKXKXXXXX*HKXKXKKKXXXX*XHXXXXXXXXXXXXXXXXXXXXXXXXXXX C FLOW PROCESS FROM NODE 12.45 TO NODE - 12'45 IS CODE = 1 >>>>>OESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< C TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: } TIME OF CONCENTRATION(MIN.) = 11.52 RAINFALL INTENSITY(INCH/HR) = 2'90 1 AVERAGED Fm( INCH/HR ) = .10 ' EFFECTIVE STREAM AREA(ACRES) = 1.90 TOTAL STREAM AREA(ACRES) = 1'90 . 0� PEAK FLOW RATE( CF3 ) AT CONFLUENCE = 5.41 �� , ' ! I X :XXXxXXXXKKKKXXKxXKXKKKXHKXXKXXKKXXKXXKXHXXX XXXXXHXXXXXXXXXXXXHXHXXKXXXXXXK FLOW PROCESS FROM NODE 12.35 TO NODE 12.45 IS CODE = 2 '- ----' - ----------------------------------- - )>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< I ==================_ _ -=_ • DEVELOPMENT I� COMMERCIAL ' TC = KX[( LENGTHHX 3.00)/(ELEVATION CHANGE )lKX '20 ` I [NlTIAL SUOAR[A FLOW-LENGTH� FE[T ' � = 92O'O0 UPSTREAM ELEVATION(FEET) = 33.00 DOWNSTREAM ELEVATION(FEET) = 28.00 |'L[VATION DIFFERENCE(FEET) = 5.00 . . ~.. -- TC(MIN.) = '304X[( 920'00XX 3'00)/( 5.00)lKX .20 = 13.224 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.743 I COIL CLAC3IFICATION IS ^A^ COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA RUNOFF(CFS) = 18.81 TOTAL AREA(ACRES) = 7'90 PEAK FLOW RATE(CFS) = 18.81 XXXHKXKK**KHKKKXKKKXKXHXXXKXXKXKHXXXXXXXKXKKXXHXXXXXKXXXXXXXXXXXKXXXXXXXKXXX FLOW PROCESS FROM NODE 12.45 TO NODE 12.45 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< I == TOTAL NUMBER OF STREAMS = 3 , CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.22 RAINFALL INTENSITY(INCH/HR) = 2.74 AVERAGED Fm(INCH/HR) = .10 E EFFECTIVE STREAM AREA(ACRES) = 7'90 -_- -' TOTAL CTREAM AREA(ACRES) 7.90 PEAK FLOW RAT[(CFS) AT CONFLUENCE = 18.81 KXXXXKXKHXXXXXXX*XXXXXHXXXKKKXXHXHKKXKXH*XXXKKKXXKXKXXXKXXXXXXXXXXXXXXXX**KK FLOW PROC[ss FROM NODE 12.55 TO NODE 12.45 IS CODE = 2 >>>}>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< DEVELOPMENT IS APARTMENTS h TC KX[(LENGTHXX 3.00 )/(ELEVATION ELEVATION CHANGE )lHX .20 ^` ' ` '~ INITIAL SUBAREA FLOW-LENGTH(FEET) = 950'00 UPSTREAM ELEVATION(FEET) = 37.40 C DOWNSTREAM ELEVATION(FEET) = 28.00 ELEVATION DIFFERENCE(FEET) = 9.40 TC(MIN.) = .324X[( 950-00XX 3.00)/( 9.40 )lXX .20 = 12.663 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2'815 c SOIL CLASSIFICATION IS "A, APARTMENTS SUBAREA LOSS RATE, Fm( INCH/HR ) = .1940 SUBAREA RUNOFF(CFS) = 12.27 - E TOTAL AREA( ACR[S ) = 5.2� PEAK FLOW RATE� CFS � = 12.27 ` ` ' KXXKXKXXKXXHXKXXKXXXXXXXXXXXKXKXXXXXXKKKHXXXXXXXKXXXKXXXXXXXXXXXXXXXKXXXX*XX FLOW PROCESS FROM NODE 12.45 TO NODE 12.45 IS CODE = 1 )>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< > > } > ) AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<(<<< TOTAL NUMBER OF STREAMS = 3 I CONFLUENCE VLUES USEO FOR INOEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 12.66 RAINFALL INTENSITY(INCH/HR) = 2.82 AVERAGED Fm(INCH/HR) = .19 EFFECTIVE STREAM AREA(ACRES) = 5.20 TOTAL STREAM AREA(ACRES) = 5,20 PEAK FLOW RAT[(CFS) AT CONFLUENCE = 12.27 m� RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. XX PEAK FLOW RATE TABLE KK 0(CFS) Tc(MIN.) Fm(lNCH/HR1 Ae(ACRES) 35.12 11.52 .131 13.51 13.22 '131 15.00 � 2 35O7 12.66 .131 14.67 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: = 12.663 PEAK FLOW RATE/CFS) = 35 87 Tc(MIN.) ` . ' ` '. EFFECTIVE AREA(ACRES) = 14.67 AVERAGED Fm�INCH/HR) = .13 I TOTA AREA(ACRES1 = 5.00 ` ' �� KKKKKKXHHHXXXXKXXKKKXKXXHXXXXXXKXXXXXXXXXXXXXXXXXXXXXXXXXXKXXXXXXXXKXXKXXXXX �� �� FLOW PROCESS FROM NODE 12.45 TO NODE 12.00 IS CODE = 4 i ---- ----- --------- I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<(<< >> > > >USING USER-SPECIFIED PIPESIZE<<<<\ | =====------------- ASSUME FULL FLOWING PIPELINE pIP[-FLOW V[LOCITY( FEET/�[C. � = 7.3 ` . UPSTREAM NOD[ ELEVATION(FEET) = 28.00 DOWNSTREAM NODE ELEVATION(FEET) = 24.60 I FLOW LENGTH(FEET) = 480.00 MANN N = 7013 GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFC) = 35.87 TRAVEL TIME(MIN.) = 1.09 TC(MIN.) = 13.76 xXXKKKKXxKKxXKKXXKXX*XHXXXXXXXHXXXXX*XXKXHXXXXXXXX*XXXXXXXXXXXXXXXXXXXXXXXXX N4 FLOW PROCESS FROM NODE 12.45 TO NODE 12.00 IS CODE = 8 >>>>>ADDITlON OF SUBAREA TO MAINLINE PEAK FLOW<<<<< E 25 YEAR RAINFALL INTENSITY( INCH/HOUR ) = 2.679 SOIL CLASSIFICATION IS ^A" E COMMERCIAL SUBAREA LOSS RATE, Fm(INCH�HR� = .0970 �U8AREA AREA( ACRES 1 = 4 -5� SUBA�EA RUNOFF( CFS ) = 1� .4� ` ' , ' EFFECTIVE AREA(ACRES) = 19.17 AVERAGED FWINCH/HR\ = .123 E , TOTAL AR[A� ACRES ) 19,5U ' PEAK FLOW RAT[( CFS) = 44.07 TC(MIN) = 13.76 ~~ XXX*XxXXXXXX*HXXK*xxxxxxxxxxxxxxxxxxxxxxxKxxxxxHxKxxxxH*� ��� ��� ��������W#K�x I FLOW PROCESC FROM NODE 12.00 TO NOOE 12.20 IS CODE = 4 > >> >>COMPUT[ PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE<<{(( I -� - _ ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 5.3 I UPSTREAM NODE ELEVATION(FEET) = 24'60 DOWNSTREAM NODE ELEVATION(FEET) = 23.20 FLOW LENGTH(FEET) = 510.00 MANNING'S N = .013 � . GIVEN PIPE DIAMETER(INCH) = 39.00 NUMBER OF-PIPES = 1 I ` P IP[-FLOW�CFs) = 44.07 ' TRAVEL TIME(MIN-) = 1.60 TC(MIN.) = 15.36 �� , ~ , I xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxx FLOW PROCESS FROM NODE 12.00 TO NODE 12.20 IS CODE = 8 I >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW{<<<< ==- - - 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.507 1 SOIL CLASSIFICATION IS "A" � COMMERCIAL SUBAREA LOSS RATE, Fm�INCH�HRl = .0970 � SUBAREA AREA(ACRES) = 9.00 SUBAREA RUNOFF(CFS) = 19.52 ' I ` 1 [FF�CTIVE AREA�ACRES = 28.17 AVERAGED Fm�IN ' H/HR� .115 ! TOTAL AREA(ACRES) = 20'50 1 PEAK FLOW RATE(CFS) = 60'65 TC(MIN) = 15.36 Kx PEAK FLOW RATE TABLE KX 0(CFS) Tc(MIN.) Fm�INCH/HR\ Ae(ACRES) 1 60'99 14.25 .114 27.01 n� _ 59.96 15.94 .115 28'50 3 60'65 15.36 .115 28.17 ri NEW PEAK FLOW OATA ARE: PEAK FLOW RATE(CFS) = 60.99 Tc( MIN ' ) = 14.25 AVERAGED FWINCH/HR) = .11 EFFECTIVE AREA(ACRES) = 27.01 xXKXKKKXXKKXKXXHHXKKxXxXXxXxH&xxKXK**HxxXxXXXXXXXXXXXxXXXXX*XxXxXXXXXXXXxxxx �� FLOW PROCESS FROM NODE 12'20 TO NODE 12.30 IS CODE = 4 - >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<{<< )>>>>USING USER-SPECIFIED PIPESIZEM<� - � �� ASCUME FULL-FLOWING PIPELINE PIP[-FLOW VELOCITY(FEET/SEC.) = 5.5 C UPSTR[AM NODE ELEVATION(FEET) = 23.2{) NU DOWNSTREAM NODE ELEVATION(FEET) = 22.80-- -' FLOW LENGTH(FEET) = 175.00 MANNING'S N = .013 GIVEN PIP[ DIAMETER(INCH) = 45.00 NUMBER OF PIPES = 1 NN PIPE-FLOW(CFS) CFC \ = 60.99 �� ' TRAVEL TIME(MIN.) = .53 TC(MIN.) = 14.78 E X%XXXXXXXXKKKXXXKKKKKxXKKXxKXKXkXXXKxXKxKXXXKxXXXxHXXXKXxXxXxxxxXxXxxxxxxKKx FLOW PROCESS FROM NODE 12.30 TO NODE 12.30 I3 CODE = 11 ' ' - -'--- -- - - > > >> >CONFLUENCE MEMORY BANK It WITH THE MAIN-STREAM MEMORY<<<<< 1 . 1 XKX PEAK FLOW RATE TABLE KxH �� m� O( CFS ) Tc( MIN ' ) FW INCH/HR ) Ae( ACRES ) ` 1 403.01 14'70 .493 200'58 I � 407.92 15'89 .495 214.65 � 409.92 16.47 .496 222.04 / 4 397.34 13.09 .494 109.16 I _J 405.43 15.31 .494 207.03 6 412'59 17.58 '499-- '235.3b 7 412.69 18.56 .501 245.62 ` O 412.36 18.69 '501 246.75 I 9 410-71 19'16 '502 250.7O 10 410'67 19.17 .502 250.77 : 11 408.56 19.57 .502 253.72 t 12 4O7'18 19'80 '50��~^�� 255'4Q ,' � . ~ 1 13 406'78 19.85 .502 255.68 14 398'26 20'91 .502 261.09 3 15 390'13 21.07 .503 265.51 16 388'40 22'05 .503 266'19 17 366.54 24.32 '502- 272.49 10 361.36 24'87 '501 273.74 a 19 354.39 25.55 '501 ` 274.63 20 297.34 31.64 .496 277.90 TOTAL AREA = 277'90 -- COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RAT[(CFS) = 412.69 Tc(MIN-\'= -18.560 I EFFECTIVE AREA(ACRES) = 245.62 AVERAGED Fm(INCH/HR) = .50 TOTAL AREA(ACRES) = 277.90 I XXXKKKKKXXXKKKKxKxXKXKXXHKXXXKXXKKKKKXKxXXKXXXKXXKKKXXXXXX-XXXHXKXXXXXKXXXXKX FLOW PROCESS FROM NODE 12.30 TO NODE 12.60 IS CODE = 4 '----'----- ------ - - 0� > ) > > > COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<(<<< �� >>>>)USING USER-SPECIFIED PIPESIZE<<(<< _______ 1 DEPTH OF FLOW IN 78.0 INCH PIPE IS 63.7 INCHES mP[-FLOW VELOCITY( FEET/3EC' ) = 14.2 UPSTREAM NODE ELEVATION(FEET) = 22.00 DOWNSTREAM NODE ELEVATION(FEET) = 19.20 �� N| LENGTH( FEET) L[N�TH�FEET\ = 520.00 MANNING'S N = .013 ' OIVEN PIPE DIAMETER(INCH) = 78.00 NUMBER OF PIPES = 1 PIPE FLOW(CFS) = 412.69 0� TRAVEL TIME( MIN.) ) = .61 TC(MIN.) ) = 19.17 �� ` ' , ' . - '- r XKxKXXXx*XHKKxKKHHKxK*x.���X��KK.H.��HK��KKKK..����K�.���.xxxx���HxxxKKxxXxx ii FLOW PROCECC FROM NODE 12.30 TO NODE 12'80 IS CODE = 8 ' , >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<( C 25 YEAR RAINFALL INTENSITY( INCH/HOUR) = 2.195 SOIL CLASSIFICATION IS ^A^ C COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA AREA(ACRES) � = 12.40 SUBAREA RUNOFF(CFS) � = 23.42 ` ' . . ' EFFECTIVE AREA(ACRES) = 258.02 � I AVERAGED Fm(INCH/HR) = . 482 ` ACRES . = ��9� ' 3� TOTAL AREA(ACRES) | !. , PEAK FLOW RATE(CFS) = 412.69 : TC(MIN) = 19.17 i ' ' - � i . ' XXXxxXKXKX*XKXX*XXXXXXHXXXXKXHX**XXXXXXX*XXxKXK*KxX*XHXXXXXXXxxxXxXXxxxXXxxx II FLOW PROCESS FROM NODE 12.60 TO NODE 12.90 IS CODE = 4 -- -- -- -- --- ----------- - � >>>>>COMPUT[ PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<{< 1 >>>>>USINO USER-SPECIFIED PIPESIZE<<<<< DEPTH O� FLOW IN 7O O INCH PIPE IS 55 5 INCHES � . . PIr[-FLOW VELOCITY/FEET/SEC') = 16.4 I UPSTREAM NODE ELEVATION� FEET \ = 19'20 ` ' DOWNSTREAM NODE ELEVATION(FEET) = 16.70 FLOW LENGTH(FEET) = 265.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 78.00 NUMBER OF PIPES = 1 ~ � � ~ 1 . PIP[-FLOW(CFC) = 412.69 al TRAVEL TIM[(MIN.) = .27 TC(MIN.) = 19.44 X*HxKH*xXKXXXX*KKKKXHxKXXKKXXXXXxX*XXXxXKHKX*X*XXXXXXXx*XXHXXXXXXXXXKXXXXXXX FLOW PROC[sC FROM NODE 12.60 TO NODE 12.90 IS CODE = 8 1 ---------------- ----- ----- , >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<(< ^ ---' ----- 11 ` 25 YEAR RAINFALL INTENSITY�INCH/HOUR� = 2.177 .- ' -- • ^ , SOIL CLASSIFICATION IS "A" , COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 I SUBAREA AREA(ACRES) = 11'00 SUBAREA RUNOFF(CFS) = 20.59 EFFECTIVE AREA(ACRES) = 269'02 � AVERAGED Fm(INCH/HR) = .466 TOTAL AREA(ACRES) = 3O1.30 ` ' ' -'�• - �� PEAK FLOW RATE�CFC� = 414.28 m� TC(MIN) = 19.44 ' xX PEAK FLOW RATE TABLE HH ri *� O�CFS) Tc(MIN.) Fm(INCH/HR) ���ACRES� �� ` ' ` ' ` ' Ae(ACRES) 1 408'52 15.66 .452 223.98 _ 411.96 16.77 .456 238.05 3 413'58 17.35 .458 245.44 �� 4 404'86 14.77 .450 212'56 5 409.74 16.19 .454 230.43 6 415.23 18.46 .463 258.76 0d 7 414'20 19.44 .466 269.02 . m� 0 413.06 19.57 .466 270.15 9 412.00 20'04 .467 274.10 E 10 412.04 20.05 .467 274.17 11 410'06 20.45 .468 277.12 12 400'77 20.68 .468 278'80 r 13 400'40 20.73 .468 279.08 6 14 400.40 21.79 .469 284.49 15 392.07 22.75 .470 288.91 1 16 391.29 22.94 .470 289.59 17 370.92 25.21 .470 295.89 10 366.09 25.76 .469 297.14 19 359'54 26.45 .469 298.03 E 2O 306.99 32.57 .465 301.30 NEW PEAK FLOW DATA ARE: . PEAK FLOW RATE(CFS) = 415.23 TC(MIN.) = 18.46 I AVERAGED Fm(INCH/HR) = .46 EFFECTIVE AREA(ACRES) = 258.76 i ^ KaXXXKKxXXKxXXXXKHKHKxKXxXXxKXXXXXK*K*XXXXXHKKKK*HxxxKxXXMKXXXXHXXxXKXKKXxXx I FLOW PROCESS FROM NODE 12.90 TO NODE 13'00 IS CODE = 4 1 )>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SU8AREA<<<<< _-- 1 >>>>>USING USER-SPECIFIED PIPESIZE(<<<< '=�====-------- . DEPTH OF FLOW IN 70.0 INCH PIPE IS 54.5 INCHES I PIPE-FLOW VELOCITY(FEET/SEC.) = 16'8 ` UPCTREAM NODE ELEVATION�FEET\ = 16'70 ' DOWNSTREAM NODE ELEVATION(FEET) = 6.70 ` ' FLOW LENGTH(FEET) = 1000,00 MANNING'S N = .013 I ` GIVEN PIP[ DIAM[TER�INCH1 = 7O'00 NUMBER OF PIPES = PIPE-FLOW ) = ' � 415.23 � TRAVEL TIME(MIN.) = .99 TC(MIN.) = 19.45 '��`======__-_-____ ==== 1 �� ✓ .y END OF STUDY SUMMARY: TOTAL AREA( ACRES) = 301 .30 TC( MIN . ) = 19.45 I EFFECTIVE AREA(ACRES) = 258.76 AVERAGED Fm(I NCH /HR )= .46 PEAK FLOW RATE(CFS) = 415.23 XXX PEAK FLOW RATE TABLE XXEX 3 0(CFS) Tc(M I N .) Fm(INCH/HR) Ae(ACRES) 1 400.52 16.65 .452 223.98 411.96 17.76 .456 238.05 413.50 18.35 .458 245.44 f 4 404.86 15.77 .450 212.56 5 409.74 17.10 .454 230.43 6 415.23 19.45 .463 258.76 7 414.20 20.43 .466 269.02 0 413.06 20.56 .466 270.15 9 412.00 21.03 .467 274.10 I 10 412.04 21.04 .467 274.17 11 410.06 21.44 .468 277.12 12 400.77 21.68 .468 278.80 I 13 403.40 21.73 .460 279.08 14 400.40 22.79 .469 284.49 15 392.07 23.76 .470 288.91 ' 16 391.29 23.94 .470. 209.59 I 17 370.92 26.23 .470 295.89 10 366.09 26.78 .469 297.14 19 059.54 27.47 .469 298.03 20 306.99 33.63 .465 301.30 END OF RATIONAL METHOD ANALYSIS 1 1 i 3 RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE ( Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -90 Advanced Engineering Software (aes) Ver. 5.8B Release Date: 1/16/91 Serial # 9382 Analysis prepared by: 3 WAGNER PACIFIC, INC -- 201 E. YORBA LINDA BLVD. PLACENTIA, CA 92670 -3418 3 (714) 993 -4500 FILE NAME: KAIS100.DAT TIME /DATE OF STUDY: 13:50 4/18/1991 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: P -- *TIME -OF- CONCENTRATION MODEL*- - USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .90 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10 -YEAR STORM 60- MINUTE I NTENS I TY(I NCH /HOUR) = .950 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.400 COMPUTED RAINFALL INTENSITY DATA: FP STORM EVENT = 100.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.4000 SLOPE OF INTENSITY DURATION CURVE = .6000 ***************************M**M************M* *********** * ********** % **** %*** FLOW PROCESS FROM NODE 1.00 TO NODE 1.10 IS CODE = 2 > > >> )RATIONAL METHOD INITIAL SUBAREA _ANALYSIS << <<< DEVELOPMENT IS COMMERCIAL TC = K *[(LENGTH** 3.00)/(ELEVATION CHANGE )] *M .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 1000.00 I UPSTREAM ELEVATION(FEET) = 94.20 DOWNSTREAM ELEVATION(FEET) = 80.60 ELEVATION DIFFERENCE(FEET) = 13.60 TC(M I N .) = .304X[( 1000 .00** 3.00)/( 13.60)]%X .20 = 11.381 I 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.796 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 I SUBAREA RUNOFF(CFS) = 13.98 TOTAL AREA(ACRES) = 4.20 PEAK FLOW RATE(CFS) = 13.98 Il xxxxxxxxxxxXxxxxxxxXXXXXXXxxXXXXXxxxxxxxxxxxxxXxxxxxxXxxXXXXXXXXXXXXXXXXXXXX FLOW PROCESS FROM NODE 1.10 TO NODE 1.20 IS CODE = 9 1 > > >> )COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA < < < << UPSTREAM NODE ELEVATION(FEET) = 80.60 DOWNSTREAM NODE ELEVATION(FEET) = 58.20 CHANNEL LENGTH THRU SUBAREA( FEET) = 2620 .00 "V" GUTTER WIDTH(FEET) = 4.00 GUTTER HIKE(FEET) .100 PAVEMENT LIP(FEET) = .040 MANNING'S N = .0150 PAVEMENT CROSSFALL(DECIMAL NOTATION) = .02000 MAXIMUM DEPTH(FEET) = .67 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.367 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 3.21 AVERAGE FLOW DEPTH(FEET) = .48 FLOOD WIDTH(FEET) = 37.95 "V" GUTTER FLOW TRAVEL TIME(MIN.) = 13.62 TC(MIN.) = 25.00 SUBAREA AREA(ACRES) = 9.60 SUBAREA RUNOFF(CFS) = 19.62 EFFECTIVE AREA(ACRES) = 13.80 AVERAGED Fm( INCH /HR) = .10 TOTAL AREA(ACRES) = 13.80 PEAK FLOW RATE(CFS) = 28.20 END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = .50 FLOOD WIDTH(FEET) = 39.61 FLOW VELOCITY(FEET /SEC.) = 3.47 - .DEPTHXVELOCITY = 1.72 3EXXXXXX 7TT7C77C77C7C7C7C 7C7C7C7C]7C 7C7C7C7C 7C7C7C7C 7C77C7C 7C 7C 7C7C 7C 77C FLOW PROCESS FROM NODE 1.20 TO NODE 2.30 IS CODE = 4 r > > >> )COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA < < < << > > > > >USING USER - SPECIFIED PIPESIZE< < < << ASSUME FULL - FLOWING PIPELINE PIPE -FLOW VELOCITY(FEET /SEC.) = 4.7 UPSTREAM NODE ELEVATION(FEET) = 58.20 DOWNSTREAM NODE ELEVATION(FEET) = 57.50 FLOW LENGTH(FEET) = 350.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPE -FLOW(CFS) = 28.20 TRAVEL TIME(MIN.) = 1.23 TC(MIN.) = 26.23 E xxx* *xxxx X* XX XX XXMXXX3EXXXXXxxxx xX* XXXX3MM 00M00XX >EXX00(>EX3XXXX * *X ** FLOW PROCESS FROM NODE 2.30 TO NODE 2.30 IS CODE = 1 > > >> )DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE < < < << TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: I TIME OF CONCENTRATION(MIN.) = 26.23 RAINFALL INTENSITY(INCH /HR) = 2.30 AVERAGED Fm(INCH /HR) = .10 EFFECTIVE STREAM AREA(ACRES) = 13.80 I TOTAL STREAM AREA(ACRES) = 13.80 PEAK FLOW RATE(CFS) AT CONFLUENCE ° =' '" 28.20 ,__ II xxxxxXXXXXX* Xxx. XXXXXXXXX XX XXXXXXXXXXXXXXXXXXX> EXXXXXXXX ****XXXXXXXX.*****XX>E>E FLOW PROCESS FROM NODE 2.00 TO NODE 2.10 IS CODE = 2 1 > > >> >RATIONAL METHOD INITIAL SUBAREA ANALYSIS < < < << DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE I TC = KX [(LENGTHXX 3.00) /(ELEVATION CHANGE )] XX .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 900.00 UPSTREAM ELEVATION(FEET) = 93.80 DOWNSTREAM ELEVATION(FEET) = 81.80 ELEVATION DIFFERENCE(FEET) = 12.00 _ ... TC(MIN.) = .389X[( 900.00** 3.00)/( 12.00)]** .20 = 14.017 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.350 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 ▪ SUBAREA RUNOFF(CFS) = 25.78 ▪ TOTAL AREA(ACRES) = 10.00 PEAK FLOW RATE(CFS) = 25.78 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.10 TO NODE 2.20 IS CODE = 6 > > >> >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA < < < << UPSTREAM ELEVATION(FEET) = 81.80 DOWNSTREAM ELEVATION(FEET) = 68.70 STREET LENGTH(FEET) = 890.00 CURB HE I GTH(I NCHES) = 6. STREET HALFW I DTH(FEET) = 18.00 in DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = - -- .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 37.17 m! ** *STREET FLOWING FULL * ** STREET FLOW MODEL RESULTS: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) = .63 HALFSTREET FLOOD WIDTH(FEET) = 18.00 Li AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.48 PRODUCT OF DEPTH &VELOCITY = 2.80 pm STREET FLOW TRAVEL T I ME(M I N .) = 3.31 TC(MIN.) = 17.33 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.949 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA AREA(ACRES) = 10.20 SUBAREA RUNOFF(CFS) = 22.62 EFFECTIVE AREA(ACRES) = 20.20 AVERAGED Fm(I NCH /HR) = .49 TOTAL AREA(ACRES) = 20.20 PEAK FLOW RATE(CFS) = 44.80 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .65 HALFSTREET FLOOD WIDTH(FEET) = 18.00 FLOW VELOCITY(FEET /SEC.) = 4.97 DEPTH *VELOCITY = 3.21 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * *XXXX E FLOW PROCESS FROM NODE 2.20 TO NODE 2.30 IS CODE = 4 > > >> >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA<<<<< > > >> )USING USER - SPECIFIED PIPESIZE < < < << ASSUME FULL - FLOWING PIPELINE PIPE -FLOW VELOC I TY(FEET /SEC .) = 1 1 .`3 1 UPSTREAM NODE ELEVATION(FEET) = 68.70 DOWNSTREAM NODE ELEVATION(FEET) = 57.50 FLOW LENGTH(FEET) = 850.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 mmily PIPE-FLOW(CFS) = 44.80 II TRAVEL TIME(MIN.) = 1.26 TC(MIN.) = 18.59 xxxxxxxxxxxxxxxxxxxxx.xxxx*xxx*xxxxxxxxxxxxxxxxm*,0000000000(xxxxmwxxxxxxxxxxx : FLOW PROCESS FROM NODE 2.30 TO NODE 2.30 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 18.59 I RAINFALL INTENSITY(INCH/HR) = 2.83 AVERAGED Fm(INCH/HR) = .49 EFFECTIVE STREAM AREA(ACRES) = 20.20 TOTAL STREAM AREA(ACRES) = 20.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 44.80 EXXX FLOW PROCESS FROM NODE 2.40 TO NODE 2.30 IS CODE = 2 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5-7 DWELLINGS/ACRE [ TO = Kx[(LENGTH)X 3.00)/(ELEVATION CHANGE)]XX .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 850.00 UPSTREAM ELEVATION(FEET) = 68.70 DOWNSTREAM ELEVATION(FEET) = 57.50 ELEVATION DIFFERENCE(FEET) = 11.20 TC(MIN.) = .389x[( 850.00xx 3.00)/( 11.20)]xx .20 = 13.733 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.391 r SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA RUNOFF(CFS) = 25.90 TOTAL AREA(ACRES) = 9.90 PEAK FLOW RATE(CFS) = 25.90 xxxxxxxxxxxxxxxxxxxxxxxxXXXXXxxxXxxxxxxxxxxxxxxxxxxxxxx*XxxxXXxxxxxxxxxxxxxx FLOW PROCESS FROM NODE 2.30 TO NODE 2.30 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< I >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: I TIME OF CONCENTRATION(MIN.) = 13.73 RAINFALL INTENSITY(INCH/HR) = 3.39 AVERAGED Fm( INCH/HR) = .49 II EFFECTIVE STREAM AREA(ACRES) = 9.90 TOTAL STREAM AREA(ACRES) = 9.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 25.90 II RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. 1 xx PEAK FLOW RATE TABLE xX Q(CFS) Tc(MIN.) Fm(INCH/HR) Ae(ACRES) 1 90.45 18.59 .390.. , 2 79.08 26.23 .363 43.90 3 89.03 13.73 .398 32.05 3 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 90.45 Tc(MIN.) = 18.588 EFFECTIVE AREA(ACRES) = 39.88 AVERAGED FWINCH/HR) = .39 TOTAL AREA(ACRES) = 43.90 xxx*xxxxx*xxxxxxxXXX*XXXXX.XXXx*XXXXXXXxxXx)000000(X.XXXXx)000(x)00000000(x*xxx*X FLOW PROCESS FROM NODE 2.30 TO NODE 3.30 IS CODE = 4 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE<<<<< ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 7.2 UPSTREAM NODE ELEVATION(FEET) = 57.50 DOWNSTREAM NODE ELEVATION(FEET) = FLOW LENGTH(FEET) = 680.00 MANNING'S N = .013 1 0 GIVEN PIPE DIAMETER(INCH) = 48.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 90.45 TRAVEL TIME(MIN.) = 1.57 TC(MIN.) = 20.16 xxxx*xxxx**x*xxxxxxxxXxxxxx*xxkx*xmwxxxxxxx*xxxxxxxxxxxx.xxxxx)oocxxx*xxxxxxxx FLOW PROCESS FROM NODE 3.30 TO NODE 3.30 IS CODE = 10 >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<< PR XXXXXXXXXXXXXXXXXXXX**XXXXXXXXXXXXXXXXXXXX*XXXXXXXXXXXXX)0000000000000000000( FLOW PROCESS FROM NODE 2.45 TO NODE 2.50 IS CODE = 2 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5-7 DWELLINGS/ACRE TC = KX[(LENGTHXX 3.00)/(ELEVATION CHANGE)]XX .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 650.00 UPSTREAM ELEVATION(FEET) = 65.50 DOWNSTREAM ELEVATION(FEET) = 56.50 ELEVATION DIFFERENCE(FEET) = 9.00 TC(MIN.) = .389X[( 650.00XX 3.00)/( 9.00)]XX .20 = 12.214 100 YEAR RAINFALL INTENSITY(INCH/HOOR) = 3.638 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA RUNOFF(CFS) = 15.04 TOTAL AREA(ACRES) = 5.30 PEAK FLOW RATE(CFS) = 15.04 li xxxxxxxxxxxxxxxxxxxxxXX*XXXXXXXXXXXXX)(XXXXXXXXXX)00000(*)000(XxXXXXXXXx*xxx*XX FLOW PROCESS FROM NODE 2.50 TO NODE 3.30 IS CODE = 6 11 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< UPSTREAM ELEVATION(FEET) = 56.50 DOWNSTREAM ELEVATION(FEET) = 55.80 1 STREET LENGTH(FEET) = 350.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 le OUTSIDE STREET CROSSFALL(DECIMAL) = .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 X)ETRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 15.64 STREET FLOW MODEL RESULTS: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) = .67 HALFSTREET FL000 WIDTH(FEET) = 19.63 AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.68 PRODUCT OF DEPTH &VELOCITY = 1.13 STREET FLOW TRAVEL T I ME(M I N .) = 3.46 TC(M I N .) =- 15 - .68 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.132 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA AREA(ACRES) _ .50 SUBAREA RUNOFF(CFS) = 1.19 EFFECTIVE AREA(ACRES) = 5.80 " AVERAGED Fm(TNCH /HR) = .49 TOTAL AREA(ACRES) = 5.80 PEAK FLOW RATE(CFS) = 15.04 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .67 HALFSTREET FLOOD WIDTH(FEET) = 19.63 FLOW VELOCITY(FEET /SEC.) = 1.62 DEPTHXVELOCITY = 1.09 3E3E3Ex3E3Exx3E3E3E3Ex3EX3EX3E3EXXXXX3E3E3EX3E3E3Ex3EXXXXXXXX3E3E3EXXXXXX3EX3EXXX3EX ***XXXXXXXXXXX3E3EXX C FLOW PROCESS FROM NODE 3.30 TO NODE 3.30 IS CODE = 11 > > >> >CONFLUENCE MEMORY BANK # 1 WITH THE MAIN - STREAM MEMORY < < < << 3EXE3E PEAK FLOW RATE TABLE M3 3E Q(CFS) Tc(MIN.) Fm(I NCH /HR) Ae(ACRES) 1 104.17 15.68 .410 38.41 2 103.97 15.33 .411 37.72 3 103.00 20.16 .402 45.68 4 88.88 28.03 .377 49.70 TOTAL AREA = 49.70 II COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 104.17 Tc(MIN.) = 15.676 EFFECTIVE AREA(ACRES) = 38.41 AVERAGED Fm( INCH /HR) = .41 TOTAL AREA(ACRES) = 49.70 3EXXX3EXXMXMX)EXX(3E3E3EM3 XXXXXXXX3EX3EXX X******X3E)E %x3E3E *X)EXMXX %XE3(3()EXXXM3EM3EX3Ex3E3EX)EX FLOW PROCESS FROM NODE 3.30 TO NODE : 3.30 IS CODE = 10 > > >> )MAIN- STREAM MEMORY COPIED ONTO MEMORY BANK # 2 < < < << xx3E3E3E3E3EX3E3EXXX3E3E3E3E3EXX3E3E3EXXXXXXXXX3EXXXX3E3EX3EXX3EX3E3E3EXXXXXXX3E3EXXXXXXXXXXXXXX3E3EXXX FLOW PROCESS FROM NODE 3.00 TO NODE 3.10 IS CODE = 2 > > >> >RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<<<< 3 DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3-4 DWELLINGS /ACRE TC = K)E [(LENGTHX)E 3.00)/(ELEVATION CHANGE )] )E)E .20 3 INITIAL SUBAREA FLOW - LENGTH(FEET) = 1000.00 UPSTREAM ELEVATION(FEET) = 93.50 DOWNSTREAM ELEVATION(FEET) = 77.00 ELEVATION DIFFERENCE(FEET) = 16.50 TC(MIN.) = .412x[( 1000 .00)E)E 3.00)/( 16 .50 )] XX .20 = 14.839 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.237 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 SUBAREA RUNOFF(CFS) = 18.16 TOTAL AREA(ACRES) = 7.60 PEAK FLOW RATE(CFS) = 18.16 3 X )EX X*)E)E *)E)E XX) X XXXX )E)EXXXXXX)E)E)E)E)E)E)E)E)EjE )E iEXMMX>EjEjEXX3XXXMXXXXX XXXXXMXXXX FLOW PROCESS FROM NODE 3.10 TO NODE 3.20 IS CODE = 6 >> > >> COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA < < <<< UPSTREAM ELEVATION(FEET) = 77.00 DOWNSTREAM ELEVATION(FEET) = 65.20 STREET LENGTH(FEET) = 1100.00 CURB HE I GTH(I NCHES) = 6. STREET HALFW I DTH(FEET) = 18.00 ir„, DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 )EXTRAVEL TIME COMPUTED USING MEAN:FLOW(CFS) = 26.44 STREET FLOW MODEL RESULTS: NOTE: STREET FLOW EXCEEDS TOP OF CURB. A THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC:, IS NEGLECTED. STREET FLOW DEPTH(FEET) = .60 HALFSTREET FLOOD WIDTH(FEET) = 17.06 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.63 PRODUCT OF DEPTH &VELOCITY = 2.17 r STREET FLOW TRAVEL T I ME(M I N .) = 5.06 TC(MIN.) = 19.90 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.715 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 SUBAREA AREA(ACRES) = 8.60 SUBAREA RUNOFF(CFS) = 16.51 EFFECTIVE AREA(ACRES) = 16.20 AVERAGED Fm(INCH/HR) = .58 TOTAL AREA(ACRES) = 16.20 PEAK FLOW RATE(CFS) = 31.10 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .63 HALFSTREET FLOOD WIDTH(FEET) = 18.00 3 FLOW VELOCITY(FEET/SEC.) = 3.75 DEPTH)EVELOC I TY = 2.34 xxx) Exx) Ex) E) Ex) E) Ex) EX) E) EX) E) E) E*) EXXX) E) E) EX) EXX) EX) EX) E) EXX) E) EX) EX) EX) E) EXX)EXXXXXXXXXXXXXX)EX)EXXX)E)E FLOW PROCESS FROM NODE 3.20 TO NODE 3.50 IS CODE = 4 >) > >> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA < < < << 3 > > >> >USING USER - SPECIFIED PIPESIZE < < < << ASSUME FULL - FLOWING PIPELINE M PIPE -FLOW VELOCITY(FEET/SEC.) = , 7,, $,,.. UPSTREAM NODE ELEVATION(FEET) = 65.20 DOWNSTREAM NODE ELEVATION(FEET) = 65.00 FLOW LENGTH(FEET) = 40.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE -FLOW(CFS) = 31.10 3 TRAVEL TIME(MIN.) _ .09 TC(MIN.) = 19.98 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX FLOW PROCESS FROM NODE 3.50 TO NODE 3.50 IS CODE = 10 > > >> >MAIN - STREAM MEMORY COPIED ONTO MEMORY BANK # 3 < < < << li xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxX**xxxxxxxxxxx FLOW PROCESS FROM NODE 4.00 TO NODE 4.10 IS CODE = 2 > > >> >RATIONAL METHOD INITIAL SUBAREA ANALYSIS < < < << DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3 -4 DWELLINGS /ACRE TC = KX [(LENGTHXX 3.00)/(ELEVATION CHANGE )] XX .20 A, INITIAL SUBAREA FLOW - LENGTH(FEET) = 1000.00 UPSTREAM ELEVATION(FEET) = 92.00 DOWNSTREAM ELEVATION(FEET) = 76.80 ELEVATION DIFFERENCE(FEET) = 15.20 TC(MIN.) = .412X[( 1000 .00XX 3.00)/( 15 .20 )] XX .20 = 15.084 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.206 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 SUBAREA RUNOFF(CFS) = 16.29 TOTAL AREA(ACRES) = 6.90 PEAK FLOW RATE(CFS) = 16.29 011 xxxxxxxxXxxxxxxxxxXXXXXXXXxxXXxxXXX** XxXXXxXxxXX XXXXXXXXXXXXXXXXXXXXXXXXXxXX FLOW PROCESS FROM NODE 4.10 TO NODE 4.20 IS CODE = 6 > > >> >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA < < < << UPSTREAM ELEVATION(FEET) = 76.80 DOWNSTREAM ELEVATION(FEET) = 73.90 STREET LENGTH(FEET) = 450.00 CURB HE I GTH(I NCHES) = 6. STREET HALFW I DTH(FEET) = 18.00 1 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 • OUTSIDE STREET CROSSFALL(DECIMAL) = .040 I SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 XXTRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 18.91 STREET FLOW MODEL RESULTS: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) = .58 HALFSTREET FLOOD WIDTH(FEET) = 16.44 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.75 PRODUCT OF DEPTH &VELOCITY = 1.61 STREET FLOW TRAVEL TIME(MIN.) = 2.73 TC(MIN.) = 17.81 3 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.901 -� SOIL CLASSIFICATION IS "A" RESIDENTIAL-) 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = '5820 SUBAREA AREA(ACRES) = 2.50 SUBAREA RUNOFF(CFS) = 5.22 ; EFFECTIVE AREA(ACRES) = 9.40 AVERAGED Fm(INCH/HR) = .58 TOTAL AREA(ACRES) = 9.40 PEAK FLOW RATE(CFS) = 19.62 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = '60 HALFSTREET FLOOD WIDTH(FEET) = 17.06 �� FLOW VELOCITY(FEET/SEC.) � = 2.69 �f�`TH�VELO�ITY = '1~�1 �� , ' �- KHHKKxKxxxxXHHX*XXxXXxxKXHXxXxxxxxxxX*x*#xxxxxxxxxxxxxxxxXxXXWXxxxxXxxx*XHXX N� FLOW PROCESS FROM NODE 4.20 TO NODE 4.20 IS CODE = 1 ----- > > >>>OESIGNATE INDEPENDENT STREAM. FOR. CONFLUENCE<M< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: Li TIME OF CONCENTRATION(MIN.) � = 17.81 I RAINFALL INTENSITY(INCH/HR) = 2.90 AVERAGED Fm(INCH/HR) = .58 P EFFECTIVE STREAM AREA(ACRES) = 9'40 &m TOTAL STREAM AREA(ACRES) = 9.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 19.62 -- KKK*KxXXxKXX*K*X*XXXXXXX***K*HXXX*XXX)000000000(*)00000000000(******3000000000( FLOW PROCESS FROM NODE 4.15 TO NODE 4.18 IS CODE = 2 N�--- - >> >)>RATIUNAL METHOD INITIAL SUBAREA ANHLYSIS<<<<< __ DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3-4 DWELLINGS/ACRE TC = KK[( LENGTHXX 3'00)/( ELEVATION CHANGE )]XX .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 1000'00 is. UPSTREAM ELEVATION(FEET) = 92.10 Li DOWNSTREAM ' ELEVATION �FEET� = 76.10 .1 ELEVATION DIFFERENCE(FEET) = 16'00 TC( MIN. ) = .412X[( 1000.00XX 3.00)/( 16.00 )lXX .20 = 14.930 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.225 SOIL CLASSIFICATION IS ^A^ RESIDENTIAL-) 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .5820 I TOTA SUBAREA RUNOFF(CFS) = 18.08 , L AREA� ACRES . � = �-60 PEA� FLOW RATE � CFS \ = 18.O8 RATE(CFS) l KK*x*xxKKxx*xXKXHXxKxxXXXxXxXXXXXXXHHXHXWKxXXXXxXXXXXXXXxXXXXXxXXxXXXXXXXXXX FLOW PROCESS FROM NODE 4.18 TO NODE 4.20 IS CODE = 6 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU-SUBAREA<(<<< UPSTREAM ELEVATION(FEET) = 76.10 DOWNSTREAM ELEVATION(FEET) = 73.90 STREET LENGTH(FEET) = 150.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH� FEET = 18.00 . ' DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 I INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 PIO SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 1 '°rlirrr 3 . ____ __ * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 19.23 STREET FLOW MODEL RESULTS: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION • THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. iii THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) = .52 HALFSTREET FLOOD WIDTH(FEET) = 13.31 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.83 PRODUCT OF DEPTH &VELOCITY = 2.00 STREET FLOW TRAVEL T I ME(M I N .) = .65 TC(M I N .) = 15.58 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.144 SOIL CLASSIFICATION IS "A" • RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .5820 i SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 2.31 EFFECTIVE AREA(ACRES) = 8.60 AVERAGED Fm(I NCH /HR) = .58 TOTAL AREA(ACRES) = 8.60 PEAK FLOW RATE(CFS) = 19.83 r END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .52 HALFSTREET FL00D W I DTH(FEET) .- A3-31 . FLOW VELOCITY(FEET /SEC.) = 3.95 DEPTH *VELOCITY = 2.07 iiill P,y FLOW PROCESS FROM NODE 4.20 TO NODE 4.20 IS CODE = 1 > > >> >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE < << << > > > > >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES < < < << F i ill TOTAL NUMBER OF STREAMS = 2 . CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE Pil TIME OF CONCENTRATION(MIN.) = 15.58 lig RAINFALL INTENSITY(INCH /HR) = 3.14 AVERAGED Fm( INCH /HR) = .58 EFFECTIVE STREAM AREA(ACRES) = 8.60 EA TOTAL STREAM AREA(ACRES) = 8.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 19.83 c RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. X* PEAK FLOW RATE TABLE XX Q(CFS) Tc(MIN.) Fm(I NCH /HR) Ae(ACRES) 1 37.57 17.81 .582 18.00 2 38.79 15.58 .582 16.82 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: • PEAK FLOW RATE(CFS) = 38.79 Tc(MIN.) = 15.582 I EFFECTIVE AREA(ACRES) = 16.82 AVERAGED Fm(I NCH /HR) = .58 TOTAL AREA(ACRES) = 18.00 * X*************** X***> EX*X XX** X**** X********** X *X * * *XX *X>E * *X * * *X *XXX *X *X *X *X* FLOW PROCESS FROM NODE 4.20 TO NODE -....3.50 IS CODE = 4 > > >> >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA << < << > > > >> USING USER - SPECIFIED PIPESIZE < << << ASSUME FULL - FLOWING PIPELINE - - . 1 RIPE-FLOW VELOCITY(FEET/SEC.) ^ = 12 3 UPSTREAM NODE ELEVATION(FEET) = 73.90 I DOWNSTREAM NODE ELEVATION(FEET) = 65.00 FLOW LENGTH(FEET) = 630'00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 I PIPE-FLOW(CFS) = 38.79 TRAVEL TIME(MIN.) = .85 TC(MIN.) = 16.43 KKxKxxxx**HxxxxxxK ����������� ����00 ��#�*xxxKKx*�H � ��������xxxxx*****xxxxxx*x �� FLOW PROCESS FROM NODE 4.20 TO NODE 3.50 IS CODE = 8 I >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW(<<<< _-_ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.045 SOIL CLASSIFICATION IS "A" ii RESlOENTIAL-} 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, fm(lNCH/HR ) = .5820 SUBAREA AREA(ACRES) = 4.20 SUBAREA RUNOFF( CFS ) = 9.31 EFFECTIVE AREA(ACRES) = 21.O2 ^ I AVERAGED Fm� INCH/HR 1 = .582 ' TOTAL AREA(ACRES) = 22.20 PEAK FLOW RATE(CFS) = 46.60 TC(MIN) = 16.43 ' ' - ' E x*xxHKxxKKxXHxKXXXKXXxXxXK*XXXXxHxHxxXxxKXXXXXXXXX*XXHXXXXXXXXXXXXXXXXXX*XXx FLOW PROCESS FROM NOOE 3.5O TO NODE 3.50 IS CODE = 11 >>>>>CONFLUENCE MEMORY BANK # 3 WITH THE MAIN-STREAM MEMORY<<<<< �� �� *x* PEAK FLOW RATE TABLE )00( O(CFS) Tc(MIN.) Fm(INCH/HR) Ae(ACRES) C 1 76.23 16.43 .582 34.35 2 75.29 18.69 .582 37.35 3 73.57 19.98 .582 38.40 0H TOTAL AREA = 38'40 �� COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: 1:1 PEAK FLOW RATE(CFS) = 76.23 Tc(MIN.) = 16.433 EFFECTIVE AREA( ACRES) = 34.35 AVERAGED Fm(INCH/HR) = .58 TOTAL AREA(ACRES) = 38.4[) �0 �� �� �HxxxKmxxx#xx�xxx&xxxx#xx�x*xxxx*H�xWxxxxxxxxx)00��xKxx*xxxmcxxxxxmmmxxxxx�� I FLOW PROCESS FROM NODE 3.5O TO NODE 3.3U IS CODE = 4 > > >>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA< <<<< >>>>>USING USER-SPECIFIED PIPESIZE<<<<< I - ASSUME FULL-FLOWING PIPELINE - PIPE-FLOW VELOCITY(FEET/SEC.) = 12.8 I UPSTREAM NODE ELEVATION(FEET) = 65.00 ` DOWNSTREHM NODE ELEVATION� FEET 1 = 55.80 ' FLOW LENGTH(FEET) = 850.00 MANNING'S N = '013 GIVEN PIPE DIAMETER(INCH) = 33.00 NUmpER OF PIPES = 1 N� PIPE-FLOW( CFS . � = 76.23 �� ` ~~ TRAVEL TIME(MIN.) = 1.10 TC(MIN.) = 17.54 I: 3 xxxxxxxXX)xXxx.X )(XXX>E. .>E.XX>E>E.X>E. >E..X>E..... > EX X ......XM..X>E*>E>E>E>EX.XM....) FLOW PROCESS FROM NODE 3.50 TO NODE 3.30 IS CODE = 8 id > > > > >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW < < < << 4 1111 100 YEAR RAINFALL I NTENS I TY(I NCH /HOUR) = 2.929 il SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 SUBAREA AREA(ACRES) = 5.30 SUBAREA RUNOFF(CFS) = 11.19 3 EFFECTIVE AREA(ACRES) = 39.65 AVERAGED Fm( INCH /HR) = .582 TOTAL AREA(ACRES) = 43.70 PEAK FLOW RATE(CFS) = 83.73 - .. TC(M I N) = 17.54 i FLOW PROCESS FROM NODE 3.30 TO NODE 3.30 IS CODE = 11 > > >> >CONFLUENCE MEMORY BANK # 2 WITH THE MAIN - STREAM MEMORY < < < << Pm r> , XXX PEAK FLOW RATE TABLE XXX II 0(CFS) Tc(MIN.) Fm(I NCH /HR) Ae(ACRES) , 1 187.41 17.54 .492 81.07 roil 2 185.25 19.81 .490 87.76 Ili 3 181.39 21.13 .488 89.87 4 184.85 15.33 .493 72.39 5 185.52 15.68 .493 73.85 6 184.58 20.16 .489 88.62 7 152.93 28.03 .473 93.40 TOTAL AREA = 93.40 E: COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 187.41 Tc(MIN.) = 17.537 EFFECTIVE AREA(ACRES) = 81.07 AVERAGED Fm(I NCH /HR) = .49 ° TOTAL AREA(ACRES) = 93.40 E xxxxxxxxxXxxxxxXxXXXXxXXXXXXXXXXXXXXXXXXXXXxxxXXXXXXXXXXXXXXXXXXXXxxxxxxXx** FLOW PROCESS FROM NODE 3.30 TO NODE 3.30 IS CODE = 12 > > >> >CLEAR MEMORY BANK # 1 < < < << FLOW PROCESS FROM NODE 3.30 TO NODE ' 3.30 IS CODE = 12 1 > > >> >CLEAR MEMORY BANK # 2 <<< << I x xxxXxxxXxxxxxxxxxxXxxxxXXXXxxxxxxxXXXxxxxxxXxxx***XxxxXxxXxXXxXXXxxxxxxxxxx FLOW PROCESS FROM NODE 3.30 TO NODE 3.30 IS CODE = 12 i >>>)>CLEAR MEMORY BANK # 3 < < < << hi r / w 3 XXX XMXX XXxXXXXXXx XXXXXXXXXXXXXxXXXXXX' " X) XXXXXXXXXXXXX XXXX0 M (XXX FLOW PROCESS FROM NODE 3.30 TO NODE 6.80 IS CODE = 4 > > >> >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA < < <<< > > >> >USING USER- SPECIFIED PIPESIZE<< <<< ASSUME FULL - FLOWING PIPELINE PIPE -FLOW VELOCITY(FEET /SEC.) = 9.5 3 UPSTREAM NODE ELEVATION(FEET) = 55.80 ' _ DOWNSTREAM NODE ELEVATION(FEET) = 54.00 FLOW LENGTH(FEET) = 440.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 60.00 NUMBER OF PIPES = 1 3 PIPE -FLOW(CFS) = 187.41 TRAVEL T I ME(M I N .) = .77 TC(M I N .) = 18.30 a xxxxxxx xxxxXXX*X XXXXXX XX> EX XX X** XXxxx* XXX XXX* X* )E>E>0000f>E>E>f>E>E>E>E>EXXXX. E>E>E>E *>f>EXXXX FLOW PROCESS FROM NODE 6.80 TO NODE 6.80 IS CODE = 1 > > >> >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE < << << TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 18.30 RAINFALL INTENSITY(INCH /HR) = 2.85 AVERAGED Fm( INCH /HR) = .49 EFFECTIVE STREAM AREA(ACRES) = 81.07 TOTAL STREAM AREA(ACRES) = 93.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 187.41 FLOW PROCESS FROM NODE 6.70 TO NODE 6.80 IS CODE = 2 > > >> >RATIONAL METHOD INITIAL SUBAREA ANALYSIS < < < << DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3 -4 DWELLINGS /ACRE TC = KX[(LENGTHXX 3.00) /(ELEVATION CHANGE )] XX .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 1000.00 UPSTREAM ELEVATION(FEET) = 66.00 DOWNSTREAM ELEVATION(FEET) = 54.30 ELEVATION DIFFERENCE(FEET) = 11.70 I TC(M I N .) = .412X[( 1000 .00) X 3.00)/( _ :11.70 )DOE >E>E . 20 = 15.895 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.106 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 I SUBAREA RUNOFF(CFS) = 14.54 TOTAL AREA(ACRES) = 6.40 PEAK FLOW RATE(- CFS) = 14.54 t xxXxXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*X*XXXXXXXXXXXXXXXXXXXXXXXX FLOW PROCESS FROM NODE 6.80 TO NODE 6.80 IS CODE = 1 > > >> >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE < < < << TOTAL NUMBER OF STREAMS = 3 I CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 15.89 RAINFALL INTENSITY(INCH/HR) = 3.11 AVERAGED Fm(INCH/HR) = .58 1 EFFECTIVE STREAM AREA ACRES = 6.40 TOTAL STREAM AREA(ACRES) = 6.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 14.54 ill FLOW PROCESS FROM NODE 6.60 TO NODE 6.80 IS CODE = 2 > > >> )RATIONAL METHOD INITIAL SUBAREA << < << DEVELOPMENT IS COMMERCIAL TC = KBE [(LENGTH>E>E 3.00) /(ELEVATION CHANGE )] XX .20 INITIAL SUBAREA FLOW- LENGTH(FEET) = 520.00 UPSTREAM ELEVATION(FEET) = 55.50 DOWNSTREAM ELEVATION(FEET) = 54.30 ELEVATION DIFFERENCE(FEET) = 1.20 II TC(M I N .) = .304x[( 520 .00XX 3.00)/( 1 .20 )] XX .20 = 12.492 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.590 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA RUNOFF(CFS) = 2.51 TOTAL AREA(ACRES) = .80 PEAK FLOW RATE(CFS) = 2.51 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx FLOW PROCESS FROM NODE 6.80 TO NODE 6.80 IS CODE = 1 > > >> >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE < << << ii > > > > >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES( < < << TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 12.49 RAINFALL INTENSITY(INCH /HR) = 3.59 AVERAGED Fm( INCH /HR) _ .10 ii EFFECTIVE STREAM AREA(ACRES) = .80 TOTAL STREAM AREA(ACRES) = .80 PEAK FLOW RATE(CFS) AT CONFLUENCE = _2.51 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. I XX PEAK FLOW RATE TABLE XX 0(CFS) Tc(MIN.) Fm(INCH/HR) 1e(ACRES) 1 200.84 15.89 .496 78.61 I 2 201.39 16.11 .496 79.59 3 201.81 16.45 .496 81.05 4 202.49 18.30 .495 88.27 5 199.06 20.58 .493 94.96 6 198.22 20.94 .492 95.82 194.56 21.92 .491 97.07 0 163.59 28.83 .477 100.60 I `7 187.60 12.49 .495 61.95 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 202.49 Tc(MIN.) = 18.305 1 EFFECTIVE AREA(ACRES) = 88.27 AVERAGED Fm(INCH/HR) = .50 TOTAL AREA(ACRES) = 100.60 I: 3 , ., _ ,, • xxxxXXxXXXXXXXXXXXXXXXXXXXXXXxXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX***XXXXX FLOW PROCESS FROM NODE 6.80 TO NODE 6.90 IS CODE = 4 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE<XM. _ IR iiii ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 10.3 UPSTREAM NODE ELEVATION(FEET) = 54.00 DOWNSTREAM NODE ELEVATION(FEET) = 52.90 FLOW LENGTH(FEET) = 230.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 60.00 NUMBER OF PIPES = 1 pm PIPE-FLOW(CFS) = 202.49 , • , ill TRAVEL TIME(MIN.) = .37 TC(MIN.) = 18.68 r iixxxxxxxxxXXXXXXxXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX FLOW PROCESS FROM NODE 6.90 TO NODE 6.90 IS CODE = 10 IP 1 >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK It 1 <<<<< • L xxXXXXXXXXXXxxXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX-XXXXXXXXXXXXXX FLOW PROCESS FROM NODE 6.00 TO NODE 6.10 IS CODE = 2 li >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3-4 DWELLINGS/ACRE cE : TC = KX[(LENGTHX) 3.00)/(ELEVATION CHANGE)]) X .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 350.00 UPSTREAM ELEVATION(FEET) = 89.00" r DOWNSTREAM ELEVATION(FEET) = 84.00 _. ELEVATION DIFFERENCE(FEET) = 5.00 TC(MIN.) = .412X[( 350.00XX 3.00)/( 5.00)]*X .20 = 10.036 fpq 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.093 i SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .5820 SUBAREA RUNOFF(CFS) = 17.38 OR , TOTAL AREA(ACRES) = 5.50 PEAK FLOW RATE(CFS) = 17.38 WxXXXxxxXxXXXXXxXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX il FLOW PROCESS FROM NODE 6.10 TO NODE 6.20 IS CODE = 6 I >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< UPSTREAM ELEVATION(FEET) = 84.00 DOWNSTREAM ELEVATION(FEET) = 71.00 , STREET LENGTH(FEET) = 800.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 I INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 a XXTRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 24.70 . STREET FLOW MODEL RESULTS: _ NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. 3 THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) = .55 HALFSTREET FLOOD WIDTH(FEET) = 14.56 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.32 PRODUCT OF DEPTH &VELOCITY = 2.37 STREET FLOW TRAVEL T I ME(M I N .) = 3.08 TC(MIN.) = 13.12 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.485 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 3 SUBAREA AREA(ACRES) = 5.60 SUBAREA RUNOFF(CFS) = 14.63 EFFECTIVE AREA(ACRES) = 11.10 AVERAGED Fm(INCH/HR) = .58 TOTAL AREA(ACRES) = 11.10 PEAK FLOW RATE(CFS) = 29.01 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .58 HALFSTREET FLOOD WIDTH(FEET) = 16.44 FLOW VELOCITY(FEET /SEC.) = 4.22 DEPTH>EVELOCITY = 2.47 xxxxxxxxx xxXXX>E>EXxxXXXXxXXxXXXXX Xx XXXXX> E> EXxXX> EX> E >E>E>EX>EXXXXXxXX *XXXMMXX>ExXXX FLOW PROCESS FROM NODE 6.20 TO NODE 6.20 IS CODE = 1 • > > >> >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE < < < << TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.12, RAINFALL INTENSITY(INCH /HR) = 3.49 AVERAGED Fm(INCH/HR) _ .58 EFFECTIVE STREAM AREA(ACRES) = 11.10 TOTAL STREAM AREA(ACRES) = 11.10 • PEAK FLOW RATE(CFS) AT CONFLUENCE = 29.01 xxxXX> EXXX> EX*> ExxxxxxXXXXX> EX> EX> EXxxxXxx >EX>EXXXX *XX>E>EXX>E0(x> XX- XXX>E>E>E>EXXX>EXxXx *>E *m FLOW PROCESS FROM NODE 6.15 TO NODE 6.20 IS CODE = 2 > > >> >RATIONAL METHOD INITIAL SUBAREA ANALYSIS < < < << DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3 -4 DWELLINGS /ACRE TC = KX[(LENGTHXX 3.00) /(ELEVATION CHANGE )DOE >EM .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 1000.00 UPSTREAM ELEVATION(FEET) = 88.80 DOWNSTREAM ELEVATION(FEET) = 71.00 ELEVATION DIFFERENCE(FEET) = 17.80 TC(MIN.) = .412)([( 1000 .00X>E 3.00)/( 17.80)])0( .20 = 14.615 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.267 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 SUBAREA RUNOFF(CFS) = 15.95 TOTAL AREA( ACRES) = 6.60 PEAK FLOW RATE( CFS) = 15.95 xXXXXX XxXXX XXXXxX XXXXXXXXX> EXXXXX XXX> EXXX XX> EX> EX> E> EX> E> EX> EX> EXX XX >E>EXX>E>EX>E>E>E>E>E>E>E>E>EXX FLOW PROCESS FROM NODE 6.20 TO NODE 6.20 IS CODE = 1 > > >> >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< > > > > >AND COMPUTE VARIOUS CONFLUENCED "'STREAM VALUES<<<<< - ` 3 TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 14.62 3 RAINFALL INTENSITY( INCH/HR ) = 3.27 AVERAGED Fm(INCH/HR) = .58 EFFECTIVE STREAM AREA(ACRES) = 6.60 iii TOTAL STREAM AREA(ACRES) = 6'60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 15.95 �� RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO �� ' CONFLUENCE FORMULA USED FOR 2 STREAMS. �K PEAK FLOW RATE TABLE �� @� E �� O� CF� 1 Tc(MIN.) � Fn1� INCH�HR � Ae(ACRES) � ' ' . . . . . ' . 1 44'49 13.12 .582 17.02 3 2 42.77 14.62 .582 17.70 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 44.49 Tc(MIN.) = 13.120 0� EFFECTIVE AREA(ACRES) � = 17.02 AVERAGED Fm(INCH/HR) \ = .58 �� . ' ^ . ~~ TOTAL AREA(ACRES) = 17.70 I x KXXXxXKKx*KKxXxxxxHKXXXXXX#XKHXXXXXXXXXXXXX#XXXXXXxxxxxxxXXXXXXXXNXXXXXXXXX FLOW PROCESS FROM NODE 6.20 TO NODE - 6.40 IS CODE = 4 C >>> >>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBeREA<<<<< >>>>)USING USER-SPECIFIED PIPESIZE<<(<< - E OEPTH OF FLOW lN 30.0 INCH PIPE IS 20.5.-INCHES PIPE-FLOW VELOCITY( FEET/SEC' ) = 12.5 UPSTREAM NODE ELEVATION(FEET) = 71.00 DOWNSTREAM NODE ELEVATION(FEET) = 64.00 ii FLOW LENGTH(FEET) = 350.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 44'49 ` ' ' TC(MIN.) TRAVEL TIME� MIN 1 = .47 TC� MIN' ' � = 13.59 1 XXK��****x***xx*w*w�x�xx XXXXXXXXXXXXxxXXKXXXXXXXxxXXXXXXXXXXXXxXXXHXXKHHXXx � ' FLOW PROCESS FROM NODE 6'20 TO NODE 6.40 IS CODE = 8 --- - I >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.413 SOIL CLASSIFICATION IS "A" I RESIDENTlAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm( INCH/HR ) = '582O SUBAREA AREA(ACRES) = 5.20 SUBAREA RUNOFF( CFS ) = 13.25 EFFECTIVE AREA(ACRES) = 22.22 ` I AVERAGED Fm(INCH/HR) = .582 -- ' ' ~ - -- � TOTAL AREA(ACRES) = 22.90 , PEAK FLOW RATE(CFS) = 56.63 , (MIN� = 13 59 ` ' ' { �� TC �� i KXKKK���K�KK��K�H���������K����������H�����K�K�������������������������K��� LOW PROCECS FROM NOOE 8.40 TO NOOE 6.50 IS COOE = 4 � � >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SU8AREA<<<<< �� >)>>)USING USER-SPECIFIEUSER-SPECIFIED PIPESlZE�<<<� | � �� � )/� �� �� 4 ASSUME FULL - FLOWING PIPELINE PIPE -FLOW VELOCITY(FEET /SEC.) = 14.2 UPSTREAM NODE ELEVATION(FEET) = 64.00 DOWNSTREAM NODE ELEVATION(FEET) = 58.90 FLOW LENGTH(FEET) = 350.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE -FLOW(CFS) = 56.63 TRAVEL T I ME(M I N .) = .41 TC(MIN.) = 14.00 3 FLOW PROCESS FROM NODE 6.50 TO NODE 6.50 IS CODE = 1 > > >> >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.00 RAINFALL INTENSITY(INCH /HR) = 3.35 AVERAGED Fm(INCH/HR) = .58 EFFECTIVE STREAM AREA(ACRES) = 22.22 TOTAL STREAM AREA(ACRES) = 22.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 56.63 E x xxx xxx )0000( X X X XX XX. X X XxX XXXXX xxX XXXXX X% X XXXXX X.XXXX.Xx XXXXX)EME X.X*XXX XX* *XX* XX>Ex > E> E> EX> E)E>E>EX>E*>E>E>E>EX*>E>EX>E>EX FLOW PROCESS FROM NODE 6.45 TO NODE 6.50 IS CODE = 2 .4 > > >> >RATIONAL METHOD INITIAL SUBAREA ANALYSIS << <<< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3 -4 DWELLINGS /ACRE TC = KX [(LENGTHXX 3.00)/(ELEVATION CHANGE )] )E>E .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 1000.00 UPSTREAM ELEVATION(FEET) = 74.30 DOWNSTREAM ELEVATION(FEET) = 58.90 ,# ELEVATION DIFFERENCE(FEET) = 15.40 TC(MIN.) = .412X[( 1000 .00>Ex 3.00)/( 15 .40 )] MX .20 = 15.045 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.211 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 SUBAREA RUNOFF(CFS) = 23.42 TOTAL AREA(ACRES) = 9.90 PEAK FLOW RATE(CFS) = 23.42 x3ExxxXxxxx-xxxXx>EX>Exxxxx E>E >E )000( xxXxx* - X E>E>ExxXXXX)00F00 (100(XXXXXXXXXXXXXXXXXX FLOW PROCESS FROM NODE 6.50 TO NODE 6.50 IS CODE = 1 > > >> >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE( <<<< > > > > >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES < < < << TOTAL NUMBER OF STREAMS = 2 "" I CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 15.05 RAINFALL INTENSITY(INCH /HR) = 3.21 AVERAGED Fm( INCH /HR) = .58 II EFFECTIVE STREAM AREA(ACRES) = 9.90 TOTAL STREAM AREA(ACRES) = 9.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 23.42 3 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. 3 XX PEAK FLOW RATE TABLE XX 0(CFS) Tc(MIN.) Fm(INCH/HR) Ae(ACRES) 1 79.59 14.00 .582 31.44 76.96 15.52 .582 32.80 3 78.28 15.05 .582 32.59 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 79.59 Tc(MIN.) = 13.997 EFFECTIVE AREA(ACRES) = 31.44 AVERAGED Fm(INCH/HR) = .58 TOTAL AREA(ACRES) = 32.80 XXXXxXXxXxxxXxXxxxxXXXXXXXxXxxXXXXXxXxXXxXXXXXXxXXXXXXXXXXX *MxXXXXXxXXXxXXXX FLOW PROCESS FROM NODE 6.50 TO NODE 6.90 IS CODE = 4 > > >> >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA < < < << > > >> >USING USER- SPECIFIED PIPESIZE< < < << _ ASSUME FULL - FLOWING PIPELINE r PIPE -FLOW VELOCITY(FEET /SEC.) = 11.3 Lik UPSTREAM NODE ELEVATION(FEET) = 58.90 DOWNSTREAM NODE ELEVATION(FEET) = 52.90 FLOW LENGTH(FEET) = 850.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 P I PE- -FLOW(CFS) = 79.59 TRAVEL T I ME(M I N .) = 1.26 TC(MIN.) = 15.26 XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX EXXXXXXXXX XXX X>EXXXX>EXXXXXX3E#>EXXX3EXXXXXX FLOW PROCESS FROM NODE 6.55 TO NODE 6.90 IS CODE = 8 > > >> >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW < < < << 1: 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.184 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 SUBAREA AREA(ACRES) = 11.30 SUBAREA..RUNOFF(CFS ) _ „26.46 . EFFECTIVE AREA(ACRES) = 42.74 AVERAGED Fm( INCH /HR) = .582 I TOTAL AREA(ACRES) = 44.10 PEAK FLOW RATE(CFS) = 100.08 TC(MIN) = 15.26 ' XXXXXXXXXxXX xXxXX3XX3X>4 XXXXXXXXXX> E* XXXXXXX> E> EXXXX )4XXX333433XX3#>E%>E****>E#x3E334X ; FLOW PROCESS FROM NODE 6.90 TO NODE 6.90 IS CODE = 11 II > > >> >CONFLUENCE MEMORY BANK # 1 WITH THE MAIN - STREAM MEMORY < < < << - XXX PEAK FLOW RATE TABLE XXX 0(CFS) Tc(MIN.) Fm(INCH/HR) Ae(ACRES) 1 296.94 15.26 .527 116.34 I 2 298.75 16.32 .527 122.75 3 297.90 16.82 .526 125.11 " 4 283.17 12.89 .527 98.07 5 298.72 16.27 .527 122.44 i 6 298.61 16.49 .527 123.54 7 297.87 16.83 .526 125.15 8 291.31 18.68 .524 132.37 9 280.40 20.96 .521 139.06 10 273.49 21.32 .520 139.92 11 272.08 22.31 .519 141.17 ii 12 226.06 29.21 .509 144.70 TOTAL AREA = 144.70 3 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: . PEAK FLOW RATE(CFS) = 298.75 Tc(M I N .) = 16.324 EFFECTIVE AREA(ACRES) = 122.75 AVERAGED Fm(I NCH /HR) = .53 7 TOTAL AREA(ACRES) = ' 144.70 iii MtxXXXXx) X) E) EXXXxXXx)(% XX) Ex>E>E)EXXXX- x)xlE3ExXX3ExXE)E X> 0EXM>fX XX X>E>EMlEXXXXXX>E>E>EX>EXMXXXXXX ii FLOW PROCESS FROM NODE 6.90 TO NODE 6.90 IS CODE = 12 r > > >> >CLEAR MEMORY BANK # 1 < << << iii r i FLOW PROCESS FROM NODE 6.90 TO NODE 7.60 IS CODE = 4 F' > > > > >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA < < < << ii > > >> >USING USER- SPECIFIED PIPESIZE < < < << ASSUME FULL - -FLOWING PIPELINE Pm w = PIPE --FLOW VELOC I TY(FEET /SEC .) = 12.6 Wi UPSTREAM NODE ELEVATION(FEET) = 52.90 DOWNSTREAM NODE ELEVATION(FEET) = 48.30 r FLOW LENGTH(FEET) = 650.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 66.00 NUMBER OF PIPES = 1 PIPE -FLOW(CFS) = 298.75 r ow TRAVEL TIME(MIN.) = .86 TC(MIN.) = 17.19 FLOW PROCESS FROM NODE 7.60 TO NODE 7.60 IS CODE = 10 err > > >> >MAIN - STREAM MEMORY COPIED ONTO MEMORY BANK # 1 < < < << ..,__ 3 . x xxxxxxx...xxxxxxxxxx..... ESE >ElE�E�E�E >ESE.�E>E�E>ESE.... E . �E.> E>E..xx>E>E>E>E>E>f...x>E>E>.xx 3 FLOW PROCESS FROM NODE 7.00 TO NODE 7.10 IS CODE = 2 > > >> >RATIONAL METHOD INITIAL SUBAREA ANALYSIS < < < << 3 DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3 -4 DWELLINGS /ACRE TC = K)E [(LENGTHXX 3.00) /(ELEVATION CHANGE )] XX .20 I INITIAL SUBAREA FLOW - LENGTH(FEET) = 800.00 UPSTREAM ELEVATION(FEET) = 91.10 DOWNSTREAM ELEVATION(FEET) = 79.60 ELEVATION DIFFERENCE(FEET) = 11.50 I TC(MIN.) = .412X[( 800 .00XX 3.00)/( 11.50)]X)( .20 = 13.951 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.359 SOIL CLASSIFICATION IS "A" Ill RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 iii i SUBAREA RUNOFF CFS = 14. ( ) 14.25 2 TOTAL AREA(ACRES) = 5.70 PEAK FLOW RATE(CFS) = 14.25 xXXX XxxX EXXXxxXXXXXXXXxXXXXXXXXXXXXxXXXXXXX >EXXXXXXXXXXXXXXXXXXXXXXXXXXXXX X FLOW PROCESS FROM NODE 7.10 TO NODE 7.20 IS CODE = 6 > > >> >COMPUTE STREET FLOW TRAVEL TIME THRU••SUBAREA< < < << UPSTREAM ELEVATION(FEET) = 79.60 DOWNSTREAM ELEVATION(FEET) = 78.30 STREET LENGTH(FEET) = 300.00 CURB HE I GTH(I NCHES) = 6. STREET HALFW I DTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 XXTRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 20.02 XXXSTREET FLOWING FULLXXX STREET FLOW MODEL RESULTS: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. ppm THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) = .63 HALFSTREET FLOOD WIDTH(FEET) = 18.00 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.41 `' PRODUCT OF DEPTH &VELOCITY = 1.51 aii STREET FLOW TRAVEL TIME(MIN.) = 2.07 TC(MIN.) = 16.02 100 YEAR RAINFALL I NTENS I TY(I NCH /HOUR) . =.. 3.091 , j SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 SUBAREA AREA(ACRES) = 5.10 SUBAREA RUNOFF(CFS) = 11.52 EFFECTIVE AREA(ACRES) = 10.80 AVERAGED Fm(INCH/HR) = .58 TOTAL AREA(ACRES) = 10.80 PEAK FLOW RATE(CFS) = 24.39 END OF SUBAREA STREET FLOW HYDRAULICS ;.,. DEPTH(FEET) = .67 HALFSTREET FLOOD WIDTH(FEET) = 18.00 FLOW VELOCITY(FEET /SEC.) = 2.51 DEPTHXVELOCITY = 1.67 XXXX XXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXMXXXXXXXXXXXX FLOW PROCESS FROM NODE 7.20 TO NODE 7.30 IS CODE = 4 > > >> >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA < < < << > > >> >USING USER - SPECIFIED PIPESIZE < << << ASSUME FULL - FLOWING PIPELINE PIPE -FLOW VELOCITY(FEET /SEC.) = 7.8 UPSTREAM NODE ELEVATION(FEET) = 78.30 I DOWNSTREAM NODE ELEVATION(FEET) = 77.00 FLOW LENGTH(FEET) = 800.00 MANNING'S N = .013 GIVEN P I P E DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE -FLOW(CFS) = 24.39 TRAVEL T I ME(M I N .) = 1.72 TC(MIN.) = 17.74 xxXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX - " 3 FLOW PROCESS FROM NODE 7.20 TO NODE 7'30 IS CODE = 8 �� - ------------- �� >>>>>ADOITION OF SUBAREA TO MAINLINE.PEAK FLOW<<<C< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2'908 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .5820 SUBAREA AREA(ACRES) = 6.40 SUBAREA RUNOFF(CFS) = 13.40 EFFECTIVE AREA(ACRES) = 17.20 �� AVERAGED Fm�INCH�HR� = .582 �� ` ^ ' TOTAL AREA(ACRES) = 17.20 PEAK FLOW RATE(CFS) = 36.01 3 TC(MIN) = 17.74 � KxxKXKK*Xx*xHxKXXXXXKXXXXXKXXxxXXXXKHXHXXKXXXX*XXHXXXXXXXXXXx*XXXXXXXXXXXXXX -~ FLOW PROCESS FROM NODE 7.30 TO NODE 7.30 IS CODE = 1 -'-------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 17.74 RAINFALL INTENSITY( INCH/HR ) = 2.91 AVERAGED FWINCH/HQ1 = .58 EFFECTIVE STREAM AREA(ACRES) = 1� 20 , ' ' TOTAL STREAM AREA(ACRES) = 17'20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 36.01 �� -- . ' ' ' • *xx**KxxKKHxK**Kx*HK*XK*KxXx*xxxHXx*K*HHHxKxx*XHXXKKXXXxxxXXXXXX#XXKX**XX*XX FLOW PROCESS FROM NODE 7.00 TO NODE 7.05 IS CODE = 2 &i ---------- �� > ) > > >RATIONAL METHOD INITIAL SUBAREA ANALYSIS<({<< I DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3-4 DWELLINGS/ACRE TC = KK [( LEN�THKK 3'0� 1/� ELEVATION CHANGE )lK� ^ 2O ^` ^ ^ '~ INITIAL SUBAREA FLOW-LENGTH(FEET) = 800'00 UPSTREAM ELEVATION(FEET) = 91.10 1 DOWNSTREAM ELEVATION(FEET) = 81.70 [L[VATION DIFFERENCE(FEET) = 9.40 TC(MIN.) = .412X[( 800'00XX 3.00)/( 9.40 )lXK .20 = 14.525 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.279 I SUIL CLASSIFICATION IS ^/\^ RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm/INCH/HR) = .5820 SUBAREA RUNOFF(CFS) = 11 65 . ' . I TOTAL AREA( ACRES � = 4.8� PEAK FLOW RATE� CF3 \ = 11 85 AREA(ACRES) RATE(CFS) ' Wxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx FLOW PROCESS FROM NODE 7.05 TO NODE 7-30 IS CODE = 6 --- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< ��=== ~~ UPSTREAM ELEVATION(FEET) = 81.70 DOWNSTREAM ELEVATION(FEET) = 77.00 STREET LENGTH(FEET) = 350'00 CURB HEIGTH(INCHES) = 6. HALFWIDTH(FEET) H�LFWIDTH� FEET 1 = 18.00 �� ' DICTANC[ FROM CROWN TO CROSSFALL GRAOEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 �� . �� OUTSIDE STREET CROSSFALL(DECIMAL) = .040 ' - �� `� SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 **TRAVEL TIME COMPUTED USING MEAN FLOW CF3 ) = 13.89 STREET FLOW MODEL RESULTS: �� STREET FLOW DEPTH(FEET) = .49 - ' - - ' HALFSTREET FLOOD WIDTH(FEET) = 11.44 N� AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.40 �� PRODUCT OF DEPTH&VELOCITY = 1 .65 - STREET FLOW TRAVEL TIME(MIN.) = 1.72 TC(MIN.) = 16.24 E 10 YEAR RAINFALL INTENSITY�INCH/HOUR\ = 3.066 SOIL CLASSIFICATION IS ^A . ^ ' RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = '5820 C SU8AREA AREA(ACRES) = 2.00 SUBAREA RUNUFF(CFS) = 4.47 EFFECTIVE AREA(ACRES) = 6'80 AVERAGED Fm(INCH/HR) = .58 TOTAL AREA(ACRES) = 6.80 PEAK FLOW RATE(CFS) = 15.20 END OF SUBAREA STREET FLOW HYDRAULICS: ^ ' DEPTH( FEET) \ = .5 WIDTH( FEET) 5� H�LF8TREET FLOOD WIOTH( FEET 1 = 12. ' ii FLOW VELOCITY(FEET/SEC.) = 3.47 DEPTHXVELOCITY = 1.73 HxXKXXXXHKXKXH*XXHXKXXXXX*X*XXXXXXXHXKX*XXXXKXXXXX*XXXXXXXXXXXXXXXXHXXXXXXX FLOW PROCESS FROM NODE 7.30 TO NODE 7.30 IS CODE = 1 �i- -- C > > > > > OESlGNATE INDEPENDENT STREAM FOR CONFLUENCE < < ~ � <' < '- . >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ------- I F TOTAL NUMBER OF STREAMC = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 1,6,24_ _ E RAINFALL INTENSITY(INCH/HR) = 3.07 AVERAGED Fm(INCH/HR) = .58 EFFECTIVE STREAM AREA(ACRES) = 6.80 li TOTAL STREAM AREA(ACRES) = 6.80 s ` PEAK FLOW RATE() � HT CONFLUENCE = 15.20 ' RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO � i CONFLUENCE FORMULA USED FOR 2 STREAMS. , . ! XX PEAK FLOW RATE TABLE XX O(CFS) Tc(MIN.) Fm�lNCH/HR) Ae(ACRES) , . I 1 50.25 17.74 .582 24.00 ^ 2 50.41 16.24 .582 22.55 ! . � ` I COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: . PEAK FLOW RATE(CFS) = 50.41 Tc(MIN.) = 16.242 EFFECTIVE AREA(ACRES) = 22.55 AVERAGED Fm(INCH/HR) = .58 � I TOTAL AREA(ACRES) = 24.00 . KXXXKXXKXKXKKXXXXXHKKXXHXHXXXXKKHKXXXXXXKXKXXXKXXXXKXXXXXXXXXXKXXXXXHXXXXXX I FLOW PROCESS FROM NODE 7.30 TO NODE 7.35 IS CODE = 4 , --------- -____ >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUDAREA<<<<{ I > > > > USING USER-SPECIFIEO PIPESIZE < < < < < _ . ASSUME FULL-FLOWING PIPELINE . PIPE-FLOW VELOCITY(FEET/SEC.) = 16,0 _ � 3 / • UPSTREAM NODE ELEVATION(FEET) = 77.00 DOWNSTREAM NODE ELEVATION(FEET) = 71'90 J ` ' FLOW LENGTH�FEET� = 280.00 MAmNlNG"S N = .O13 GIVEN PIPE DIAMETER(INCH) = 24.00 NUM*BER OF' PIPES = 1 PIPE-FLOW(CFS) = 50.41 TRAVEL TIME(MIN.) = . TC(MIN.) = 16.53 I KxKKKx*x*xxHKXXxxXXXXXXXKXKXxKxxxxHX*xKHXHxXXNxXXXXXXXXXXXXXXXXXXXXXXxXXKHX FLOW PROCESS FROM NODE 7'30 TO NODE 7.35 IS CODE = 8 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ��-- �� 100 YEAR RAINFALL lNTENSITY( INCH/HOUR ) = 3.034 SOIL CLASSIFICATION IS "A" gli RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .5820 W SUBAREA AREA(ACRES) = 1.10 SUBAREA RUNOFF(CFS) = 2.43 EFFECTIVE AREA(ACRES) = 23.65 AVERAGED Fm(INCH/HR) = .502 C , TOTAL AREA� ACRES 1 25 ' 1O ' PEAK FLOW RATE(CFS) = 52.18 TC(MIN) = 16.53 : . ' ' - KxxxxKK*XxXXXXKKKxXxxxXxKxXXKKHXKXXXXXKXXXXXXXXXX*XXKXXXXXXXXXX**XXXXxxXXxx* FLOW PROCESS FROM NODE 7.35 TO NODE 7.40 IS CODE = 4 � >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING ) > > USING USER-SPECIFIEO PIPESlZE �.�'�.(�{� _ E r - ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 16.6 • E UPSTREHM NODE ELEVATION(FEET) = 71.90 E DOWNSTREAM NODE ELEVATION(FEET) = 64.00 FLOW LENGTH(FEET) = 520.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 � ` �� PIPE-FLOW� CFS ) = 5� . 18 �� ' TRAVEL TIME(MIN.) = .52 TC(MIN.) = 17.05 . t KxKxKxKxxxxxxKxxxxx*xxxxxHXxxxxxKxxxxxxxxXXxX.XxXxxxxxxxXxxXK*XX*XXX)000o(xx* FLOW PROCESS FROM NODE 7.35 TO NODE 7'40 IS CODE = 8 1 ---- -'------ >>>>)ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 1 100 YEAR RAINFALL INTENSITY(lNCH/HOUR) = 2.978 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = '5820 SUBAREA AREA(ACRES) = 8'70 SUBAREA RUNOFF(CFS) = 18.76 . I EFFECTIVE AREA(ACRES) = 32.35 AVERAGEU Fm(INCH/HR) = .582 TOTAL AREA(ACRES) = 33.80 J PEAK FLOW RATE(CFS) = 69.75 TC� MlN � = 17 O5 TC(MIN) . 1 xXxx KXXKXKKXK*KXKKHXKXKX*XXXXXXHXXX*X*X**X X XKKXXXKXXXXHXXXXKXXXXXXX***XKX XX FLOW PROCESS FROM NODE 7'40 TO NODE 7'60 IS CODE = 4 ril --- - >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<(<< iiii -' -' �� >>>>>USING USER-SPECIFIED PIPESIZE<<<(( 3 ASSUME FULL-FLOWING PIPELINE PIPE'�FLOW VELOCITY( FEET/S[C-') = 17.5 UPSTREAM NODE ELEVATION(FEET) = 64'00 DOWNSTREAM NODE ELEVATION(FEET) = 54'40 iiii FLOW LENGTH(FEET) = 660'00 MANNING"S N = '013 GIVEN PIPE DIAMETER(INCH) = 27'00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 69.75 �� TRAVEL TIME( MIN.) \ = .63 TC� MIN' \ = 17.68 �� , ' , ' X*Kx*xxK**HX**xKxxK*xKXxXxXXxxxxxHxxXxXxxKxxxxKXxxxxxxxxHxx*xx*xxx*KHHx*xx* �� FLOW PROCESS FROM NODE 7'40 TO NODE 7.60 IS CODE = 8 >>>>>ADDITlON OF SUBAREA TO MAINLINE PEAK FLOW<<<<< it- :11 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.914 SOIL CLASSIFICATION IS ^A^ __ ` _ __ 11 �� , RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) ' � = '5820 �� ~~ SUBAREA AREA(ACRES) = 12.00 SUBAREA RUNOFF(CFS) = 25.19 EFFECTIVE AREA(ACRES) = 44.35 AVERAGED Fm(INCH/HR) = .582 �� TOTAL AREA(ACRES) = 45'80 PEAK FLOW RATE( CFS ) = 93'08 . . _. _ _ TC(MIN) = 17.68 KKH%KxxKKxHxXXXXXXXXXXXXXKXXXXXXXHXXXXHXXXXXXXXXXXHXXXXXXXXXXXXXXXXXX***H** Prq [. FLOW PROCESS FROM NODE 7.60 TO NODE 7'60 IS CODE = 11 ��- >>>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<<<<< • rr _- _- iii *** PEAK FLOW RATE TABLE XXX 0(CFS) Tc(MIN.) Fm(INCH/HR) Ae(ACRES) Pm 1" 1 390'97 17.68 .541 169.46 ai 2 382.93 19.20 .539 176.77 3 370.37 13.80 .541 132.69 4 387'84 16.12 .541 156.78 II 5 391.06 17.13 .541 165.41 6 391.16 17.19 .541 165.85 7 391.24 17.35 .541 167.05 �� 8 3 17.68 .541 169.45 �� 9 390'94 17.69 .541 169.50 , 10 380.38 19.56 .539 178.17 I 11 362.11 21.88 .536 184.86 . ' 12 359.16 22.25 .536 185.72 13 350'00 23.25 .535 186.97 I 14 289'42 30'07 .527 190.50 TOTAL AREA = 190'50 . I COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: . . PEAK FLOW RATE(CFS) 1 _ - 391 . Tc(MIN.) Tc/ MIN . ' � = 17.347 . EFFECTIVE AREA(ACRES) = 167.05 AVERAGED Fm(INCH/HR) = .54 le TOTAL AREA(ACRES) = 190'50 xHxHxK*HXxxKKXxXXXKXxXXXXXXKXXXXXKXXXXXXHXXXXXXHHKXXXXKX*XxXXXXXXXXxXxxxXxxx FLOW PROCESS FROM NODE 7.60 TO NODE 11.10 IS CODE = 4 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>)>USING USER-SPECIFIED PIPESIZE<<<<( _ ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY�FEET/SEC'1 = 16'5 , �� UPSTREAM NODE ELEVATION(FEET) = 48.30 �� ' DOWNSTREAM NODE ELEVATION(FEET) = 43'20 FLOW LENGTH(FEET) = 540.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH = 66.00 NUMBER OF PIPES = 1 PIPE-FLOW( CFS) = `' 391.24 TRAVEL TIME(MIN.) = .55 TC(MIN.) = 17.89 FLOW PROCESS FROM NODE 11.10 TO NODE 11.10 IS ]CODE = 1 N� ---------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< if TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = • C QAINFALL INTENSITY(INCH/HR) = 2.89 U� AVERAGED Fm( INCH/HR) = .54 EFFECTIVE STREAM AREA(ACRES) = 167.05 TOTAL STREAM AREA(ACRES) = 190.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 391 24 ` ' ~ E XHKHxKxXKXKKHHKxXxKKXXXXXXXXNXXXXXXX*X**X-X*XX*KHXKXx*XXXXXXXXXXXXXXXXXXXXXXX FLOW PROCESS FROM NODE 11.05 TO NODE 11.10 IS CODE = 2 __ _--_ >>>>}RATIONAL METHOD INITIAL SUBAREA ANALYSIS<(<<< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3-4 DWELLINGS/ACRE TC = KK[( LENGTH�� 3.00 )/(ELEVATION ELEVATlON CHANGE �l�X .20 �� ` ' INITIAL SUBAREA FLOW-LENGTH(FEET) = 670.00 �� UPSTREAM ELEVATION(FEET) = 56.40 DOWNSTREAM ELEVATION(FEET) = 46.60 : ELEVATION DIFFERENCE(FEET) = 9.80 TC(MIN.) = .412X[( 670'O0NX 3.00)/( 9'80 )lXX .20 = 12.951 100 YEAR RAINFALL INTEN�ITY(INCH/HOUR1 = 3'513 3 SOIL CLA5SIFICATION IS ^A^ ` RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm� INCH/HR 1 = 582� ' SUBAREA RUNOFF(CFS) = 22.95 TOTAL AREA(ACRES) = 8.70 PEAK FLOW RATE(CFS) = 22.95 KK*HK*xxKxKHxx*xXKXXxXxXXXXXKNNXXX*HNNNXXXXXN*XXXXXXXxXXXHXXNXXXXXXXXXXXXXxX II FLOW PROCESS FROM NODE 11.10 TO NODE - 11'10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< : >>>>>AND COMPUTE VARIOUS CONFLUENCEO STREAM VALUES<<(<< �� TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT 'STREAM - 2 ARE: I TIM[ OF CONCENTRATION( MIN.) l = 12.95 , ' RAINFALL INTENSITY(INCH/HR) = 3.51 AVERAGED Fm(INCH/HR) = .58 [FFECTIVE STREAM AREA(ACRES) = 0'70 �� � ` -- TOTAL STREAM AREA(ACRES) = 8.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 22'95 3 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. : Kx PEAK FLOW RATE TABLE XX Q(CFS) Tc(MIN.) Fm/INCH/HR) Ae(ACRES) 1 391.64 14.38 .544 141.39 i� 2 406.92 16.67 .544 165'48 di 3 409.33 17.68 .543 174.11 4 409.39 17.73 .543-' 174.55 , - -- 3 5 409'34 17.89 .543 175.75 6 408'82 18.23 .543 1�8.15 7 408'02 10.23 .543 178.16 RR 8 400'78 18.24 .543 178.20 � 9 399.72 19.76 .541 185.47 �� 10 396.94 20'12 '541 186'7g7 Pi 11 377.31 22.47 .538 193.56 hi 12 374.17 22.84 .538 194.42 21 13 364.51 23.86 .537 195.67 14 301.25 30.68 .529 199.20 15 382.38 12.95 .544 128.21 iiii COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 409.39 Tc(MIN.) = 17.732 N� EFFECTIVE AREA(ACRES) 1 = 174.55 AVERAGED Fm/ INCH�HR � = .54 �� , ' ` ' . TOTAL AREA(ACRES) = 199.20 PP ki wxXxxxxxK*Kx*XXKX#XKXXXXX*#XHHXXXXKX)0000000000000(XXXXXXXHXXXXXXXXXXXXXXXXXX FLOW PROCESS FROM NODE 11.10 TO NODE 11.30 IS CODE = 4 [ >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE<<<<< ----- - 0m ASSUME FULL-FLOWING PIPELINE �� PIP[-FLOW VELOCITY(FEET/SEC.) = 15'8 UPSTREAM NODE ELEVATION(FEET) = 43.20 C DOWNSTREAM NODE ELEVATION(FEET) = 36.50 FLOW LENGTH(FEET) = 800'00 MANNING"S N = .013 GIVEN PIPE DIAMETER(INCH) = 69'00 NUMBER OF PIPES = 1 I PIPE-FLOW�CFS1 = 409.39 TRAVEL TIME� MIN� = '85 TC� MIN' 1 = 18'5Q TIME( MIN.) TC(MIN.) t *HHxKKKHxKKxKHKxHxXxx*XXNxX#XKXXXXXxXXXH*MHXKXXXXX*XXXHKX*XXX#X#*XKXXXHXXxx FLOW PROCESS FROM NODE 11.30 TO NODE 11.30 IS CODE = 1 -- --'--- '-- - ----------- I F >>>>>DECIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 -''- -' I CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: , TIME OF CONCENTRATION�MIN.1 = 18.58 . RAINFALL INTENSITY(INCH/HR) = 2.83 AVERAGED Fm�INCH�HR1 = .54 I EFFECTIVE STREAM AREA(CRES ' � = 174'55 , TOTAL STREAM AREA(ACRES) = 199'20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 409.39 3 xxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx. xxxxxxxxxxxxxx xxxx.xx.xxxxxxxxxxxxxxxxxx.xx FLOW PROCESS FROM NODE 11.20 TO NODE 11.15 IS CODE = 2 > > > > >RATIONAL METHOD INITIAL SUBAREA ANALYSIS << < << DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 3 -4 DWELLINGS /ACRE TC = Kx [(LENGTHxx 3.00) /(ELEVATION CHANGE)])()( .20 INITIAL SUBAREA FLOW- LENGTH( FEET) = _980_00 - _ . 1 UPSTREAM ELEVATION(FEET) = 48.90 DOWNSTREAM ELEVATION(FEET) = 43.80 ELEVATION DIFFERENCE(FEET) = 5.10 _ TC(MIN.) = .412X[( 980 .00x)E 3.00)/( 5.10)]3 E)E .20 = 18.540 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.832 SOIL CLASSIFICATION IS "A" ,_ RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 SUBAREA RUNOFF(CFS) = 8.71 TOTAL AREA(ACRES) = 4.30 PEAK FLOW RATE(CFS) = 8.71 2 XXXX XXxxxxxxXXXMXXXXXXX)E>EXX X3MXXXXX)E FLOW PROCESS FROM NODE 11.15 TO NODE 11.30 IS CODE = 6 Tr bi >> >> )COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA << < << A UPSTREAM ELEVATION(FEET) = 43.80 DOWNSTREAM ELEVATION(FEET) = 36.50 STREET LENGTH(FEET) = 500.00 CURB HE I GTH(I NCHES) = 6. STREET HALFW I DTH(FEET) = 18.00 ii DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 • INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 XXTRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 15.86 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .50 HALFSTREET FLOOD WIDTH(FEET) = 12.06 r' AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.62 lig PRODUCT OF DEPTH &VELOCITY = 1.80 STREET FLOW TRAVEL T I ME(M I N .) = 2.30 TC(MIN.) = 20.84 100 YEAR RAINFALL INTENSITY(INCH /HOUR = 2.640 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 SUBAREA AREA(ACRES) = 7.70 SUBAREA RUNOFF(CFS) = 14.26 EFFECTIVE AREA(ACRES) = 12.00 AVERAGED Fm(INCH/HR) = .58 TOTAL AREA(ACRES) = 12.00 PEAK FLOW RATE(CFS) = 22.23 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .55 HALFSTREET FLOOD WIDTH(FEET) = 14.56 FLOW VELOC I TY(FEET /SEC .) = 3.89 DEPTH)EVELOC I TY = 2.13 ' xxxx xx) Ex) E) Ex) E) Exxx) EX) E) E )E)E)EX)E)Exxxx)E)Ex)Ex)fXXX)(X E f) EXX) Ex) Ex) E) E) Ex)Ex)EXx)E)EX)Exx)EXXX)E)EX)X) FLOW PROCESS FROM NODE 11.30 TO NODE 11.30 IS CODE = 1 iv )>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE < <<<< )) > > >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES< < < << iri ~ ` 3 TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: I TIME OF CONCENTRATION(MIN.) = 20'84 ` ' RAINFALL INTENSITY( INCH/HR ) = 2.64 AVERAGED FWINCH/HR) = .58 - - - -' EFFECTIVE STREAM AREA(ACRES) = 12'00 II TOTAL STREAM AREA(ACRES) = 12.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 29.23 I RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. - �� MX PEAK FLOW RATE TABLE XH �� �� O( CFS ) Tc(MIN.) FW INCH/HR 1 Ae( ACRES ) 1 402.42 13.86 .546 136.18 2 412.22 15.26 .546 150.18 I 3 42O'24 17.52 .546 175.57 4 430.94 18.52 .545 184.78 5 431'02 18.58 .545 185.25 �� 6 431.01 18.74 .545 186.54 �� 7 430'59 19.07 .545 189'13 8 430.59 19.08 .545 189.14 C 9 430.55 19.08 .545 189.19 10 421.89 20'62 .544 197.34 11 419.04 20.99 .543 198.87 11 12 397.64 23.39 .541 205.56 13 394.24 23.77 .540 206.42 14 383'91 24.81 .539 207.67 15 317.18 31.61 .532 211.20 F116 420.31 20.84 .544 198.30 Iii COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: r PEAK FLOW RATE(CFS) = 431'02 Tc(MIN.) = 18.578 �� EFFECTIVE AREA(ACRES) = 185.25 AVERAGED FW INCH/HR) = .55 TOTAL AREA(ACRES) = 211.20 q KK����XK��KKK#H�*K����K���KK����������XXKKXXXXXXXXXXXXKXXXXXXXXXKXXXXXXXXXX r �_ FLOW PROCESS FROM NODE 11.30 TO NODE - 11.30 IS CODE = 10 �� ~~ >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<(< . - ______-__ --------- 1 XXKx*x*x*XXHXKKKKKxxxxxXxxK*xHxHxxxx*xx** XXXKiiKHXX*#XXXXXXXXxxxxxKxxHHxx I FLOW PROCESS FROM NODE 10.00 TO NODE 10.05 IS CODE = 2 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<M I DEVELOPMENT IS SINGLE FAMILY RESIOENTIAL -> 3-4 DWELLINGS/ACRE TC = K*[( LENGTHKX 3.00)/(ELEVATION CHANGE )l*X .20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 340.00 . I UPSTREAM ELEVATION�FEET) = 54.30 DOWNSTREAM ELEVATION( FEET 1 = 49.00 ' ELEVATION DIFFERENCE(FEET) = 5.30 TC( MIN' ) = '412X[( 340'00XX 3.00)/( 5'30 )lKH '20 = 9'748 1 100 YEAR RAINFALL INTENSITY( INCH/HOUR ' � = 4.165 . COIL CLASSIFICATION IS "A" RESIDENTIAL-> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, FWINCH/HR) = '5820 ';UOAR[A RUNOFF(CFS) = 9.03 TOTAL AREA(ACRES) = 2.80 PEAK FLOW RATE(CFS) = 9.03 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXX FLOW PROCESS FROM NODE 10.05 TO NODE 10.10 IS CODE = 6 > > >> )COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA < << << - UPSTREAM ELEVATION(FEET) = 49.00 DOWNSTREAMELEVATION(FEET) = 38.80 STREET LENGTH(FEET) = 940.00 CURB HE I GTH(I NCHES) = 6. STREET HALFW I DTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 XXTRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 17.98 STREET FLOW MODEL RESULTS: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) = .53 HALFSTREET FLOOD WIDTH(FEET) = 13.94 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.36 PRODUCT OF DEPTH &VELOCITY = 1.80 r STREET FLOW TRAVEL T I ME(M I N .) = 4.67 TC(M I N .) = 14.42 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.294 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 SUBAREA AREA(ACRES) = 7.30 SUBAREA RUNOFF(CFS) = 17.82 EFFECTIVE AREA(ACRES) = 10.10 AVERAGED Fm(I NCH /HR) = .58 TOTAL AREA(ACRES) = 10.10 PEAK FLOW RATE(CFS) = 24.65 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .50 HALFSTREET FLOOD WIDTH(FEET) = 16.44 ri FLOW VELOCITY(FEET /SEC.) = 3.59 DEPTHXVELOCITY = 2.10 J xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx FLOW PROCESS FROM NODE 10.10 TO NODE 10.11 IS CODE = 4 > > >> >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA << < << > > > >> USING USER - SPECIFIED PIPESIZE< < < << DEPTH OF FLOW IN 30.0 INCH PIPE IS 17.3 INCHES PIPE FLOW VELOCITY(FEET /SEC.) = 8.4 I UPSTREAM NODE ELEVATION( FEET) = 39.30 DOWNSTREAM NODE ELEVATION(FEET) = 38.80 FLOW LENGTH(FEET) = 50.00 MANNING'S N = .013 I GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE -FLOW(CFS) = 24.65 TRAVEL T I ME(M I N . ) = .10 TC(M I N .) = 14.52 1 [XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX FLOW PROCESS FROM NODE 10.11 TO NODE 10.30 IS CODE = 4 !: > > >> >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA<<<<< > > > >> USING USER - SPECIFIED PIPESIZE < < < << DEPTH OF FLOW IN 39.0 INCH PIPE IS 20.2 INCHES PIPE-FLOW VELOC I TY(FEET /SEC .) = 5.7 UPSTREAM NODE ELEVATION(FEET) = 38.80 DOWNSTREAM NODE ELEVATION(FEET) = 37.40 FLOW LENGTH(FEET) = 400.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1 PIPE -FLOW(CFS) = 24.65 TRAVEL T I ME(M I N .) = 1.18 TC(MIN.) = 15.69 t xxxxxXXXxxXXXXxxXXXXXXXXXXxXXXX . XXXXXXXXXXXXXXXXXXXXXX*X.X.XXXXX**XXXXX*XXXXXX FLOW PROCESS FROM NODE 10.20 TO NODE 10.30 IS CODE = 8 > > >> >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW< < < << 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.131 El SOIL CLASSIFICATION IS "A" RESIDENTIAL-) 3 -4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(I NCH /HR) _ .5820 SUBAREA AREA( ACRES) = 12.00 SUBAREA RUNOFF( CFS) = 27.53 EFFECTIVE AREA(ACRES) = 22.10 AVERAGED Fm( INCH /HR) = .582 TOTAL AREA(ACRES) = 22.10 PEAK FLOW RATE(CFS) = 50.69 TC(MIN) = 15.69 PxxxxxxxxxxxXxxxxxxXXXXXxXXXXXXXxXXXXxxxXXXXXxxXXXxXXXXXXXXXxXXXXxx*XXXXxxXx ii FLOW PROCESS FROM NODE 10.30 TO NODE - 11.30 IS CODE = 4 > > >> >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA( << << > > >> >USING USER- SPECIFIED PIPESIZE < < < << DEPTH OF FLOW IN 51.0 INCH PIPE IS 32.8 L.NCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 5.3 UPSTREAM NODE ELEVATION(FEET) = 37.40 DOWNSTREAM NODE ELEVATION(FEET) = 36.50 FLOW LENGTH(FEET) = 500.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 51.00 NUMBER OF PIPES = 1 P I PE - FLOW(CFS) = 50.69 TRAVEL TIME(MIN.) = 1.59 TC(MIN.) = 17.28 xxxxxxx x xxxxxxxxxxxxxxxxxxxxxxxx) Exxxxxx) Exxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx l i FLOW PROCESS FROM NODE 11.25 TO NODE 11.30 IS CODE = 8 > > >> )ADDITION OF SUBAREA TO MAINLINE PEAK FLOW < < < << 1 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.955 SOIL CLASSIFICATION IS "A" RESIDENTIAL- --> 3 -4 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .5820 I SUBAREA AREA(ACRES) = 6.50 SUBAREA RUNOFF(CFS) = 13.88 . EFFECTIVE AREA(ACRES) = 28.60 AVERAGED Fm( INCH /HR) = .582 , - I TOTAL AREA(ACRES) = 28.60 PEAK FLOW RATE(CFS) = 61.08 TC(MIN) = 17.20 E ~ - _ 2 . .., , _ �� �� KKxx**K*xHKxxx*xxxxxxxxKxKxxHxxKxx*xxxxx*xxxxxxHxxKx*xx*x*x*xxxxxxHxxxxxxxN �� FLOW PROCESS FROM NODE 11.30 TO NODE 11.30 IS CODE = 11 �� '-__ . >>>>)CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<<<<{ `�~====-_____-- � �� �� XKH PEAK FLOW RATE TABLE XXX �� O(CFC) Tc(MIN.) Fm(INCH/HR) Ae(ACRES) ' . ' ° 00 1 487 57 1� 28 551 �� 1 ' 39 ~ - 460'04 13'86 .551 159.12 3 471.36 15.26 .551 175.45 �� 4 488.67 17.52 .551 204.17 �� m� 5 488.90 18.52 .550 213.38 6 488'85 18-58 .550 213.85 7 408.47 18.74 .550 215.14 �� 8 48� '29 1� 'O7 .550 217.73 9 487.28 19.08 .550 217.74 10 487.22 19.08 .550 217.79 E 11 475.31 20.62 .549 225.94 12 473.29 20.84 .548 226.90 13 471.72 20.99 '548 227.47 14 446.08 23.39 .546 234.16 iii 15 442.07 23.77 .545 235.02 16 430.13 24.81 .545 236.27 r i. 17 355.13 31.61 .538 239.80 mil ' ' TOTAL AREA = 239.80 ' COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: °` PEAK FLOW RATE( CFS ) = 488.90 Tc(MIN.) = 18.524 0. Nii EFFECTIVE AREA(ACRES) = 213.38 AVERAGED ERAG ED Fm( lNCH/HR ) = .55 TOTAL AREA(ACRES) = 239.80 _-- -- � �� *Kx*xxXXXXKxxXKXXK*HXXXXXKXxXXXXXXXXXHXXX*HXXXKXXXXXXXXXHXXXXX*XXKXXXXHxXXXx c FLOW PROCESS FROM NODE 11'30 TO NODE 12.30 IS CODE = 4 > >>> >COMPUT[ PIPE-FLOW TRAVEL TIME THRU SUBAREA<<((< >>}}>USlNG USER-SPECIFIED PIPESIZE<(<<( � �=_ N� DEPTH OF FLOW IN 72.0 INCH PIPE IS 16.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 98.0 UPSTREAM NODE ELEVATION(FEET) = 36.50 1 DOWNSTREAM NODE ELEVATION(FEET ) = 22'80 FLOW LENGTH(FEET) = 13.00 MANNING'S N = .013 I GIVEN PIPE DIAMETER(INCH) = 72.00 NUMBER OF PIPES = 1 , PIPE-FLOW�CFS) = 488.90 PIPE-FLOW(CFS) TRAVEL TIME(MIN') = .00 TC(MIN.) = 18.53 ^ • �� ��XXXXK*XxKxVKKHXKXXKXXHXHxXxXXKX*KXXXXXXHHXKXXHKxXXXXXXXXXXXXXXXXXXXXXXXXXXX FLOW PROCESS FROM NODE 11.30 TO NODE 12.30 IS CODE = 8 . ' 1 ) > > > > ADDITION OF SUBAREA TO MAINLINE PEAK FLOW < ( < ( < � . 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.834 ' �� :;01L CLASSIFICATION IS "A^ �� |:[SIDENTlAL'> 3-4 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .5820 , SUBAREA AREA(ACRES) = 9.60 SUBAREA RUNOFF( CFS ) = 19.45 �� [TF[CTIV[ AREA(ACRES) = 222'98 �� � � AVERAGED Fm(INCH/HR) = .552 TOTAL AREA(ACRES) = 249.40 [ 3 PEAK FLOW RATE(CFS) = 488'90 TC(MIN) = 18.53 :(K*****HxHxKXKHxHK*K*VHXXXxxKHxXHxKxKxKKxxxHK*XKXxXxxxXxXHxXxx**xxxXHXXXXXXX FLOW PROCESS FROM NODE 12'30 TO NODE 12.30 IS CODE = 10 --'-------------- --------- > > > > > MAlN-STREAM MEMORY COPIED ONTO MEMORY BANK # 3 <<<<< �& - ak*Hx*xHxKxxXxXXXKXKXxXxKxxxxxxxxHxKxxxxxKxxxxxxxxxKxxxxxxxxxxxxxxxxxxxxxxxx* FLOW PROCESS FROM NODE 12.15 TO NODE 12.25 IS CODE = 2 PC -__ >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS{<<{< DEVELOPMENT IS COMMERCIAL TC = KX F( LENGTHXK 3 .U� ��� ELEVATION CHAN�E 1l XX .20 I. 3.00) /(ELEVATION '~ INITIAL SUBAREA FLOW-LENGTH(FEET) = 550'00 UPSTREAM ELEVATION(FEET) = 40'00 DOWNSTREAM ELEVATION(FEET) = 35.50 ELEVATION DIFFERENCE(FEET) = 4.50 TC(MIN.) = '304X[( 550'00XX 3'00)/( _ - 4.5O)lXX .20 = 9.919 c � � 1O0 YEAR RAINFALL INTENSITY = 4.122 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA RUNOFF(CFS) = 6.88 IA TOTAL AREA(ACRES) = 1.90 PEAK FLOW-R�TE�CFS1 = 6.88 ` ^ ` ' XXxK*KxKXXxxKXHX*XXXHXXX*XXXKXXXXHHKKXXXXXXHXXXKXXXXHXKXXXXXXXXX*XKX*XXXXXX FLOW PROCESS FROM NODE 12.25 TO NODE 12.45 IS CODE = 4 -'---------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<(<< > > > > > USING USER-SPECIFIED PIPESIZE < ( < ( < DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.6 UPSTREAM NODE ELEVATION(FEET) = 35'50 DOWNSTREAM NODE ELEVATION(FEET) = 28.00 FLOW LENGTH(FEET) = 600.00 MANNING'S N = .013 I ` ^ GIVEN PIP[ DIAMETER(INCH) = 18.00 NUMBER OF PIPES = PIPE-FLOW( CFS ) = 6.88 fl TRAVEL TIME(MIN.) = 1.51 TC(MIN.) = 11.43 XxXK*XXXHXXKXKKXXXHXXXXHXXXXXXXXXXXKKXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX* 1 FLOW PROCESS FROM NODE 12.45 TO NODE 12.45 IS CODE .= 1 ----- - >>>>>DES%GNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< I TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 1143-' - � RAINFALL INTENSITY(INCH/HR) = 3.79 ^ ' AVERAGED Fm( INCH/HR ) = .10 EFFECTIVE STREAM AREA(ACRES) = 1.90 TOTAL STREAM AREA(ACRES) 1 = 1 .9� -- PEAK FLOW RATE(CFS) AT CONFLUENCE = 6'88 3 xKHx***HxxKHxxK*xxKxxKxXX*xxxxxXXxxxxKHxXKX����XXXXxxxXXXXXXXXxXXXXxXXXXHXXX FLOW PROCESS FROM NODE 12.35 TO NODE 12.45 IS CODE = 2 ~��--'---________-_ -__- �� )>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< DEVELOPMENT IS COMMERCIAL �� TC = KX[(LENGTHXX 3.00)/(ELEVATION CHANGE�l�� 20 �� ^` ^ . '^ ' INITIAL SUBAREA FLOW = 920.00 UPSTREAM ELEVATION(FEET) = 33.00 3 DOWNSTREAM ELEVATION(FEET) = 20'00 ELEVATION DIFFERENCE(FEET) = 5.00 TC(MIN.) = .304X[( 920.00HK 3.00)/( 5'00)lXX .20 = 13.224 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.469 - SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA RUNOFF(CFS) = 23.98 TOTAL AREA(ACRES) = � 90 PEAK FLOW RATE(CFS) = 23 98 ` ' - ` . ' ^ At<XXXXXXX*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX FLOW PROCESS FROM NODE 12.45 TO NODE 12.45 IS CODE = 1 ---- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< �� - TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: PiR d TIME OF CONCENTRATION(MIN.) � = 13.22 1111 RAINFALL INTENSITY(INCH/HR) 3.47 AVERAGED Fm(INCH/HR) = .10 r EFFECTIVE STREAM AREA(ACRES) = 7'90 TOTAL STREAM AREA(ACRES) = 7.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 23.98 AXXKKKXK*XXXXXK***KXKXXXXXKKXKKXHXKXXXXXKHXXXXXX*XKKXXXKXHHKHXXHHXXXXXXXXXXX FLOW PROCESS FROM NODE 12.55 TO NODE 12.45 IS CODE = 2 �J ---------------- - >>>�>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< 3 -- -- -------------- OEVELOPMENT IS APARTMENTS TC = KK[(L[NGTHKK 3.00)/(ELEVATION CHANGE)lxx '20 INITIAL SUBAREA FLOW-LENGTH(FEET) = 950.00 UPSTREAM ELEVATION(FEET) = 3�.4O DOWNSTREAM ELEVATION(FEET1 = 28.00 ELEVATION(FEET ELEVATION DIFFERENCE(FEET) = 9.40 TC(MIN.) = .324X[( 950.00xx 3'00)/( 9.40)lXx .20 = 12.663 I 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3'560 3OIL CLASSIFICATION IS ^A^ APARTMENTS SUBAREA LOSS RATE, Fm(INCH/HR) = .r940 3 SUBAREA RUNOFF(CFS) = 15.75 TOTAL AREA(ACRES) = 5.20 PEAK FLOW RATE(CFS) = 15.75 3 KxXXxKKXKHKHKXH*HXX*KXXXX*KXXKXXH*XXXXXXXXXXXXXXXXKXKXXXXXXXXXXX*X*XXXXXxXX FLOW PROCESS FROM NODE 12.45 TO NODE 12.45 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ?� TOTAL NUMBER OF STREAMS = 3 �� �� CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 12.66 RAINFALL INTENSITY(INCH/HR) = 3.56 AVERAGED FW INCH/HR) = .19 EFFECTIVE STREAM AREA(ACRES) = 5.20 TOTAL STREAM AREA(ACRES) = 5.20 �� PEAK FLOW RATE(CFS) � AT CONFLUENCE = 15 75 �� ` ' ' RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO 3 CONFLUENCE FORMULA USED FOR 3 STREAMS. XX PEAK FLOW RATE TABLE XX O(CFC) To(MIN') Fm(INCH/HR1 -Ae(ACRES) 1 44.72 11A3 .131 - 13.42 � 45.59 13.22 .131 15'00 3 45'80 12.66 .131 14.67 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 45.80 Tc(MIN�)'= 12.663 EFFECTIVE AREA(ACRES) = 14.67 AVERAGED Fm�INCH/HR) = .13 �� TOTAL AREA(ACRES) = 15.00 ��XXKKKKKxKKKXKK*HXXHX**XxXXXXXXXXXH*KKXKKXKKXXXXXXXXXXXXXXXXXXXXXXXXXXHXXXXX �� FLOW PROCESS FROM NODE 12.45 TO NODE 12'00 IS CODE = 4 -------------- - - img >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU 3U8AREA((<(< >>)>>U3lNO USER-SPECIFIED PIPESIZE<<<(< ASSUME FULL-FLOWING PIPELINE t PIPE-FLOW VELOCITY(FEET//SEC. ) = 9.3 UPSTREAM NODE ELEVATION(FEET) = 28.00 DOWNSTREAM NODE ELEVATION(FEET) = 24.60 FLOW LENGTH( FEET) ) = 400.00 M�NNING"S N = .013 , ' . GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 45'80 po tH TRAVEL TIME(MIN.) = .86 TC(MIN.) = 13.52 -- . ' XKXXHxxHXXKxx*XXXXKXXKXKXXK����������������������000(*����0���� � ����XxHxxH 0� H� FLOW PROCESS FROM NODE 12.45 TO NODE 12.00 IS CODE = 8 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< . -~ _- 100 YEAR RAINFALL INTENSITY/INCH/HOUR� = 3.423 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, FWlNCH/HR\ = .0970 SUBAREA AREA(ACRES) = 4.50 SUBAREA RUNOFF( CFS ) = 13.47 EFFECTIVE AREA(ACRES) = 19.17 I AVERAGED Fm�INCH/HR) = .123 TOTAL AREA(ACRES) A = 19.50 PEAK FLOW RATE(CFS) = 56.92 TC( MIN) = 13.52 ;(XXXXXXXKXHKXKKX%XKXKKHXXXXXKKKXXXXKXKXXXXXXXXXXHXXXXXXXXX*XXXXKXXXXXXHXXXKK FLOW PROCESS FROM NODE 12'00 TO NODE 12.20 IS CODE = 4 11 . ' ] > > >> >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA < < < << > > >> >USING USER- SPECIFIED PIPESIZE << < << ASSUME FULL - FLOWING PIPELINE PIPE --FLOW VELOC I TY(FEET /SEC .) = 6.9 id UPSTREAM NODE ELEVATION(FEET) = 24.60 DOWNSTREAM NODE ELEVATION(FEET) = 23.20 3 FLOW LENGTH(FEET) = 510.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 39.00 • NUMBER OF PIPES = 1 P I PE-FLOW(CFS) = 56.92 TRAVEL TIMC(MIN.) = 1 .24 TC(MIN. )- = - 14.76 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 0 1 FLOW PROCESS FROM NODE 12.00 TO NODE 12.20 IS CODE = 8 >>>>)ADDITION OF SUBAREA TO MAINLINE PEAK FLOW < << << iij 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.248 w SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 r SUBAREA AREA(ACRES) = 9.00 SUBAREA RUNOFF(CFS) = 25.52 iii EFFECTIVE AREA(ACRES) = 28.17 AVERAGED Fm( INCH /HR) = .115 Fil TOTAL AREA(ACRES) = 28.50 i PEAK FLOW RATE(CFS) = 79.41 TC(MIN) = 14.76 XX PEAK FLOW RATE TABLE xx iiii O(CFS) Tc(MIN.) Fm(I NCH /HR) Ae(ACRES) 1 80.05 13.55 .114 26.92 78.40 15.33 .115 28.50 '!" 3 79.41 14.76 .115 20.17 NEW PEAK FLOW DATA ARE: PEAK FLOW RATE(CFS) = 80.05 Tc(MIN.) = 13.55 p m AVERAGED Fm( INCH /HR) _ . 1 1 EFFECTIVE AREA( ACRES) = 26.92 iiii r oxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx el FLOW PROCESS FROM NODE 12.20 TO NODE 12.30 IS CODE = 4 > > >> >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA < < < << > > > > > US I NG USER - SPECIFIED P I PES T Z� <' ASSUME FULL- FLOWING PIPELINE ' PIPE -FLOW VELOCITY(FEET /SEC.) = 7.2 f, UPSTREAM NODE ELEVATION(FEET) = 23.20 i DOWNSTREAM NODE ELEVATION(FEET) = 22.80 FLOW LENGTH(FEET) = 175.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 45.00 NUMBER OF PIPES = 1 PIPE -FLOW(CFS) = 80.05 TRAVEL T I ME(M I N .) = .40 TC(MIN.) = 13.96 c Xxxxx xxxxxxXXXX XXxxxxxxxxxxxxxxxxxxXXxx >ExxXxx>E>ExXXXX x)f)Ex)E)EXXXXxxx)ExxxXX>Exx in FLOW PROCESS FROM NODE 12.30 TO NODE 12.30 IS CODE = 11 - -- . > > > >CONFLUENCE MEMORY BANK # 3 WITH THE MAIN - STREAM MEMORY < < <<< O iiii ` . � � � � ] KxK PEAK FLOW RATE TABLE XXX 0(CFS) Tc(MIN.) Fm(INCH/HR) Ae(ACRES) 1 540'86 13.96 .493 196.76 ill 2 549.96 15.17 .495 212'�5 3 553'69 15.74 .496 219.71 ri 4 539'87 13.86 '493' 195.45 iii 5 550'61 15.27 .495 _ 213.27 6 561.62 17.28 .500 - 239.49 7 562.07 17.53 .501 242.27 ] 8 559-80 18.53 .502 251.48 �� 9 559.62 18'5O .502 251.95 10 558.86 18.74 .502 253.24 11 556'90 19'08 .503 - 255.83 all 12 556'89 19.08 .503 255.84 13 556'01 19.09 .503 255.89 Pi 14 541.60 20.62 .503 264.04 '' 15 539.14 20.84 .503 265'�0 iii 16 537.20 21.00 .503 265.57 ri 17 507.33 23.39 .502 272'26 �i 10 502.70 23.77 .502 273.12 �� 19 409.15 24'81 .501 274.37 20 405'76 31.61 .496 277.90 II' TOTAL AREA = 277.90 iii COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 562.07 Tc(MIN.) = 17.526 C EFFECTIVE AREA(ACRES) = 242 2� AVERAGED Fm�INCH�HR1 = 50 iii ` . ' Fm(INCH/HR) . . TOTAL AREA(ACRES) = 277.90 :xXXKKHKKXXKKxxXxKxXXKXXXxXxxXHKXXXXX*xKXXXXX*KxKXKXxXxXXXXXXXXxXXXXXxxxxXXxx FLOW PROCESS FROM NODE 12.30 TO NODE 12.60 IS CODE = 4 ----------------- - - - 2 > > >>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<< << >>>>>USING USER-SPECIFIED PIPESIZE<<<<( ASSUME FULL-FLOWING PIPELINE MI PIPE-FLOW VELOCITY(FEET/SEC.) = 16.9 UPSTREAM NODE ELEVATION(FEET) = J' e - x: DOWNSTREAM NODE ELEVATION( FEET) 1 = 19.20 �� � . FLOW LENGTH(FEET) = 520.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 78.00 NUMBER OF PIPES = 1 PIPE-FLDW(CFS) = 562.07 @� TRAVEL TIME/ MIN' \ = .51 TC(MIN.) ) = 18.04 �� TIME( MIN.) . ' I XxxHxKKXXXKXKKKxxKKxXxx*xxx*x#XxxxHx**xK*HxxxxxxxHXxxKXXXXX*xxxxxxxx##x*H FLOW PROCESS FROM NODE 12'30 TO NODE 12'60 IS CODE = 8 . 11 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<(<<< , 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.079 SOIL CLASSIFICATION IS "A^ I ` COMMERCIAL SUBHREA LOSS RATE, Fm� INCH/HR 1 = .897O Fm(INCH/HR) SUBAREA AREA(ACRES) = 12.40 SUBAREA RUNOFF(CFS) = 31.05 EFFECTIVE AREA(ACRES) = 254.67 . I AVERAGED Fm(INCH/HR) = .481 I TOTAL AREA(ACRES) = 290.30 � PEAK FLOW RATE(CFS) = 562.07 : TC(MIN) = 18 04 ` ' . � all ° � � � . ` 3 :xxx FLOW PROCESS FROM NODE 12.60 TO NODE - 12'90 IS CODE = 4 _ >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU CUOAAEA(<<<< i ii >>>>>UCING USER-SPECIFIED PIPESIZE<{<<< ASSUME FULL PIPELINE ___ __ �� PIPE-FLOW VELOCITY(FEET/SEC.) = 16 9 �� , ' ' UPSTREAM NODE ELEVATION(FEET) = 19'20 DOWNSTREAM NODE ELEVATION(FEET) = 16.70 3 FLOW LENGTH(FEET) = 265'00 MANNING'S N = .013 OIVEN PIPE DIAMETER(INCH) = 78.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 562.07 TRAVEL TIME(MIN.) = .26 TC(MIN.) = 18.30 iiii KKxKXKXKxxxxxKHKKxKxKHHXxXKXxKXXxxXXKxKxKXXxXXXXKXHKXXXxXXXXXXXHxHXKXKXxxHX tO FLOW PROCESS FROM NODE 12.60 TO NODE 12.90 IS CODE = 8 iiii >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW(<(<< h �==--- iiii 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.855 SOIL CLASSIFICATION IS ^A^ FPI COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = '0970 � SUBAREA AREA(ACRES) = 11.00 SUBAREA RUNOFF( CFS ) = 27.30 - EFFECTIVE AREA(ACRES) = 265.67 AVERAGED Fm(INCH/HR) = .465 -- - ~ - -- �� TOTAL AREA(ACRES) = 301.30 �� ` ' ~~ P[AK FLOW RATE(CFS) = 571.33 TC(MIN) = 18.30 iii XxxKxKKKXxKKXKxxxxXxXxxxXXXxxXXXxxKXXxxxx*KXxxXxxXXXXX)00000000000(*xxX*xxxxx � r e FLOW PROCESS FROM NODE 12'90 TO NODE 13.00 IS CODE = 4 . �i-_ � �� >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<(< / >>>>>USING USER-SPECIFIED PIPESIZE<<<<< � rt / ` Ni ASSUME FULL-FLOWING PIPELINE i � PIPE-FLOW VELOCITY(FEET/SEC.) = 17.2 ' ' ` I . . ' UPSTREAM NOOE ELEVATION�FEET\ = 16 70 DOWNSTREAM NOOE ELEVATION/FEET� = 6'7� ` ' r FLOW LENGTH(FEET) = 1000.00 MANNING'S N = .013 I GIVEN PIPE DIAMETER(INCH) = 78.00 NUMBER OF PIPES = . 1 � PIPE-FLOW� CFS � = 5�1 33 , ' ' TRAVEL TIME(MIN.) = .97 TC(MIN.) = 19.27 . . 1 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 301.30 TC(MIN.) = 19.27 EFFECTIVE AREA(ACRES) = 265.67 AVERAGED Fm(INCH/HR)= .47 3 PEAK FLOW RATE(CFS) = 571.33 XKX PEAK FLOW RATE TABLE XXX . O( CFS ) Tc( MlN. ) Fm(INCH/HR) Ae( HCRES ) 1 554.20 15.76 .451 220.16 �� 2 560.33 16.94 .455 235.45 �� . 3 563.84 17.51 .457 243.11 4 553.43 15.66 .451 218.85 in 5 560.70 17 � 4 .456 236 87 . H ' ' ^ ^ um � . 3 _ ' -' 6 571'00 19.02 .464 262.89 7 571.33 19.27 .465 265.67 �� 8 568.28 20.27 .468 274.88 �� ~� 9 568.00 20.33 .468 275.35 10 567.23 20'49 .468 276.64 11 565.34 20.83 .469 279.23 ii 12 565.33 20.84 .469 279.24 13 565.26 20.84 .469 279.29 14 550.23 22.43 .470 287.44 �� 15 547.84 22.66 .470 288.40 �� 16 546.05 22'82 .470 288.97 17 516.56 25.32 '470 295.66 10 512.01 25.71 '470 296.52 i• 19 490'16 26.81 .469 297.77 2O 422.41 33.48 .465 301.30 I ==_____=__ END OF RATIONAL METHOD ANALYSIS 3 -_ . ' - - 3 . . , -- iii Pi : ; 3 1 �� �� 3 ' 1 _-. _ 1 ill MARYGOLD IMPROVEMENTS At the request of the City of Fontana and BSI, as Fontana's agent, we have reviewed two areas of localized flooding. Both areas are located between Sierra Avenue and Palmetto Avenue, on Marygold Avenue and Valley Boulevard. :1 Storm waters in Marygold are picked by an existing storm drain system within Marygold which turns southerly through Kaiser's property and extends to the Valley Boulevard storm drain, which drains westerly along Valley to Sierra, and finally in Sierra to the existing I -10 channel which carries the storm waters westerly to the San Sevine Flood Control Channel. MI The drainage problem at Marygold is caused by existing downstream pipes that are 'm at or near capacity which can result in localized flooding in front of Kaiser Permanente on Marygold Avenue and also on Valley Boulevard. Recently, Fontana constructed a storm drain system on Sierra Avenue from San Bernardino Avenue to Valley Boulevard and extended an additional line from Valley to the I -10 Channel, parallel to the existing Valley storm drain line along Sierra Avenue. Our recommendation is to pick up the flows in Marygold and convey them westerly to the existing Sierra Avenue storm drain line in a 36" R.C.P. This would !1e! relieve the possible flooding potential on Marygold and give some relief to the f storm drain line in Valley. Following is the location map, Exhibit "AA" and the hydraulic data for the existing Sierra line and proposed Marygold line. hi ii .rll� DI In j II 11 I I II SAN /3ERNARD/Alo r..... Ava. RI 1 ] ll pii f■ N Z 1 t■1 \ it C t I 4. ] :•••• 0 (:). kt 1 .. 1 1 , PeoPose.0 34 AT I i 5 = 0.2o% iiz 28 crs 0 4-0 q \ 0 L. L • .. i „.......... .... ....g ..... __...,... lk IT ] . 0\ til Magya-oe..o Ave. \* I 1 PRA/AMC 8,15114 : ' - .......1( goun/PAR Y 41 ( 11 .-. a KAlsox Pa , • t . ill cy Nicole4c C-rtz. , ■ ..Y.3\ it ■, ■.. : t 111 : . : L kit' ti% tj el : . N \--------1 43 • , <Zoe 81 c-rs \1/4 I e • "t 13 / Ili • . ? ' • : ' 9 . a/mg .6,45/14(Typ) . 4.- - dz--- --- 4z .• -- - ' 36,-..:, L ig i 4 .. - • :i ViotS\941/0.1.\ gto 11 . 54c-6 . u 1 Q10 , 8 itc IS qto = 7Zcis 1 i Ilzo 4" tl IN- A1ARY4010 AVE- . it 1A1 Pin, V 6744 twrs I v, t.. c , i ••• 141 ' : Qio - z ,ep c-05 I N • l il . A CT NI : • t i .' 11 112 I /z - b K° E ;! Recr cH4Az il LOCATION MAP 6x/577A/0 TRAP' CIMAIA/EG EXHIBIT "AA" 1 -/0 S'AA1 gERAMROMO F:e'e e Pim y il :1 F0515P PAGE 1 WATER SURFACE PROFILE LISTING EXISTING SIERRA AVE STORM DRAIN -. :: FROM EXISTING I -10 CHANNEL WEST FONTANA,CA STATION INVERT DEPTH W.S. 0 VEL VEL ENERGY SUPER CRITICAL HGT/ BASE/ ZL NO AVBPR ELEV OF FLOW ELEV HEAD GRD.EL. ELEV DEPTH DIA ID NO. PIER L /EI.EM SO SF AVE HF NORM DEPTH ZR 203.00 106.60 1.482 108.082 251.0 14.11 3.092 111.174 0.00 2.387 3.45 12.00 0.00 0 0.00 raj 25.00 0.00480 .012915 0.32 2.010 0.00 228.00 106.72 1.423 108.143 251.0 14.70 3.356 111.499 0.00 2.387 4.50 12.00 0.00 0 0.00 Ili 3.35 0.00491 .013847 0.05 1.995 0.00 231.35 106.74 1.415 108.151 251.0 14.78 3.394 111.545 0.00 2.387 4.50 12.00 0.00 0 0.00 26.91 0.00491 .015075 0.41 1.995 0.00 :: 258.26 106.87 1.349 108.218 251.0 15.51 3.734 111.952 0.00 2.387 4.50 12.00 0.00 0 0.00 :: 24.74 0.00491 .017466 0.43 1.995 0.00 283.00 106.99 1.286 108.276 251.0 16.26 4.107 112.383 0.00 2.387 4.50 12.00 0.00 0 0.00 !e JUNCT STR 0.01000 .013912 0.01 0.00 ii 284.00 107.00 3.555 110.555 145.0 12.29 2.344 112.899' 0.00 3.555 4.00 0.00 0.00 0 0.00 WALL EXIT 0.00 :1 284.00 107.00 3.556 110.556 145.0 12.28 2.343 112.899 0.00 3.555 4.00 0.00 0.00 0 0.00 41.50 0.00752 .008965 0.37 4.000 .0.00 325.50 107.31 3.829 111.141 145.0 11.71 2.130 113.271 0.00 3.555 4.00 0.00 0.00 0 0.00 55.85 0.00752 .009456 0.53 4.000 0.00 � I II 381.35 107.73 4.000 111.732 145.0 11.54 2.068 113.800 0.00 3.555 4.00 0.00 0.00 I O 0.00 122.15 0.00752 .010121 1.24 4.000 0.00 II 503.50 108.65 4.326 112.976 145.0 11.54 2.068 115.044 0.00 3.555 4.00 0.00 0.00 0 0.00 il JUNCT STR 0.06600 .010190 0.05 0.00 508.50 108.98 4.047 113.027 145.0 11.54 2.068 115.095 0.00 3.555 4.00 0.00 0.00 0 0.00 427.50 0.00751 .010190 4.36 4.000 0.00 :1 :1 . F0515P PAGE 2 WATER SURFACE PROFILE LISTING EXISTING SIERRA AVE STORM DRAIN FROM EXISTING I -10 CHANNEL WEST FONTANA,CA STATION INVERT DEPTH W.S. 0 VEL VEL ENERGY SUPER CRITICAL HGT/ BASE/ ZL NO AVBPR ELEV OF FLOW ELEV HEAD GRD.EL. ELEV DEPTH DIA ID NO. PIER L /ELEM SO SF AVE HF NORM DEPTH ZR 3 motxxxxx*****xx******xx*mix************************ummum*********xx******mx************************************m******** 936.00 112.19 5.194 117.384 145.0 11.54 2.068 119.452 0.00 3.555 4.00 0.00 0.00 0 0.00 JUNCT STR 0.05750 .010190 0.04 0.00 II 940.00 112.42 5.004 117.424 145.0 11.54 2.068 119.492 0.00 3.555 4.00 0.00 0.00 0 0.00 4.00 0.00750 .010190 0.04 4.000 0.00 944.00 112.45 5.015 117.465 145.0 11.54 2.068 119.533 0.00 3.555 4.00 0.00 0.00 0 0.00 JUNCT STR 0.08500 .012283 0.07 0.00 1: 950.00 112.96 3.972 116.932 145.0 13.13 2.676 119.608 0.00 3.496 2170.00 0.00 0 0.00 184.00 0.00663 .014376 2.65 3.750 0.00 li 1134.00 114.18 5.398 119.578 145.0 13.13 2.676 122.254 0.00 3.496 ` 5 0.00 0.00 0 0.00 JUNCT STR 0.07625 : 012530 0.10 0.00 1142.00 114.79 5.944 120.734 125.0 11.32 1.989 122.723• 0.00 3.348 " 0.00 0.00 0 0.00 i] 722.00 0.01240 .010684 7.71 2.856 0.00 1864.00 123.74 4.708 128.448 125.0 11.32 1.989 130.437 0.00 3.348 . 5 0.00 0.00 0 0.00 II JUNCT STR 0.03125 .014216 0.11 0.00 II 1872.00 123.99 4.227 128.217 110.0 13.26 2.730 130.947 0.00 3.084 3.25 0.00 0.00 '0 0.00 368.00 0.01481 .017748 6.53 3.250 0.00 1 2240.00 129.44 5.308 134.748 110.0 13.26 2.730 137.478 0.00 3.084 3.25 0.00 0.00 0 0.00 JUNCT STR 0.01500 .013806 0.11 0.00 1 2248.00 129.56 7.297 136.857 82.0 9.88 1.517 138.374 0.00 2.836 3.25 0.00 0.00 0 0.00 II 145.00 0.01476 .009863 1.43 2.233 0.00 2393.00 131.70 6.587 138.287 82.0 9.88 1.517 139.804 0.00 2.836 3.25 0.00 0.00 0 0.00 JUNCT STR 0.03125 .009977 0.08 0.00 Y i F0515P PAGE 3 WATER SURFACE PROFILE LISTING EXISTING SIERRA AVE STORM DRAIN 49 FROM EXISTING I -10 CHANNEL WEST FONTANA,CA 3 STATION INVERT DEPTH W.S. 0 VEL VEL ENERGY SUPER CRITICAL HGT/ BASE/ ZL NO AVBPR ELEV OF FLAW ELEV HEAD GRD.EL. ELEV DEPTH DIA ID NO. PIER L /ELEM SO SF AVE HF NORM DEPTH ZR 2401.00 131.95 6.869 138.819 67.0 9.48 1.395 140.214 0.00 2.616 3.00 0.00 0.00 0 0.00 520.00 0.01240 .010091 5.25 2.230 0.00 2921.00 138.40 5.666 144.066 67.0 9.48 1.395 145.461 0.00 2.616 3.00 0.00 0.00 0 0.00 JUNCT STR 0.03125 .010853 0.09 0.00 3 2929.00 138.65 5.874 144.524 57.0 9.60 1.430 145.954 0.00 2.447 2.75 0.00 0.00 0 0.00 769.60 0.01436 .011616 8.94 2.040 0.00 1111 3698.60 149.70 3.764 153.464 57.0 9.60 1.430 154.894 0.00 2.447 2.75 0.00 0.00 0 0.00 , Pm me :1 :1 PR F0515P PAGE 1 WATER SURFACE PROFILE LISTING PROPOSED MARYGOLD STORM DRAIN FROM SIERRA EAST FONTANA,CA 3 STATION INVERT DEPTH W.S. 0 VEL VEL ENERGY SUPER CRITICAL HGT/ BASE/ ZL NO AVBPR ELEV OF FLOW ELEV HEAD GRD.EL. ELEV DEPTH DIA ID NO. PIER L /ELEM SO SF AVE HF NORM DEPTH ZR 1000.00 129.44 5.310 134.750 28.0 3.96 0.244 134.994 0.00 1.712 3.00 0.00 0.00 0 0.00 3 9.65 0.00207 .001762 0.02 2.271 0.00 1009.65 129.46 5.307 134.767 28.0 3.96 0.244 135.011 0.00 1.712_ 3.00 0.00 0.00 0 0.00 94.25 0.00202 .001762 0.17 2.300 0.00 1103.90 129.65 5.323 134.973 28.0 3.96 0.244 135.217 0.00 1.712 3.00 0.00 0.00 0 0.00 755.00 0.00200 .001762 1.33 2.310 0.00 1858.90 131.16 5.143 136.303 28.0 3.96 0.244 136.547 0.00 1.712 3.00 0.00 0.00 0 0.00 1 2 F0515P PAGE 1 WATER SURFACE PROFILE LISTING EXISTING VALLEY & SIERRA STORM DRAIN :1 FROM 1 -10 CHANNEL FONTANA,CA 3 STATION INVERT DEPTH W.S. 0 VEL VEL ENERGY SUPER CRITICAL HGT/ BASE/ ZL NO AVBPR ELEV OF FLOW ELEV HEAD GRD.EL. ELEV DEPTH DIA ID NO. PIER L /ELEM SO SF AVE HF NORM DEPTH ZR 3 1000000(*********XX*******X******X*******XXX***KWOMMORM***X*MX**********************************100000000000MX************ 203.00 106.60 1.521 108.121 251.0 13.75 2.937 111.058 0.00 2.387 3.45 12.00 0.00 0 0.00 3 25.00 0.00480 .011888 0.30 ' - A - 2.010 0.00 3 228.00 106.72 1.463 108.183 251.0 14.29 3.172 111.355 0.00 2.387 4.50 12.00 0.00 0 0.00 0.08 0.00491 .012596 0.00 1.995 0.00 228.08 106.72 1.463 108.183 251.0 14.30 ' 3'.174 111.357 - 0.00 2.387 4.50 12.00 0.00 0 0.00 28.70 0.00491 .013598 0.39 1.995 0.00 256.78 106.86 1.395 108.256 251.0 15.00 3.492 111.748 0.00 2.387 4.50 12.00 0.00 0 0.00 26.22 0.00491 .015749 0.41 1.995 0.00 :] 283.00 106.99 1.330 108.320 251.0 15.73 3.841 112.161 0.00 2.387 4.50 12.00 0.00 0 0.00 JUNCT STR 0.01000 .014771 0.01 0.00 284.00 107.00 2.476 109.476 96.0 13.19 2.702 112.178• 0.00 3.022 3.50 0.00 0.00 0 0.00 PR WALL EXIT 0.00 284.00 107.00 2.475 109.475 96.0 13.20 2.705 112.180 0.00 3.022 3.50 0.00 0.00 0 0.00, 27.41 0.01296 .012604 0.35 2.451 0.00 3 311.41 107.36 2.482 109.837 96.0 13.16 2.688 112.525 0.00 3.022 3.50 0.00 0.00 0 0.00 121.98 0.01296 .011894 1.45 2.451 0.00 433.39 108.94 2.596 111.533 96.0 12.54 2.443 113.976 0.00 3.022 3.50 0.00 0.00 0 0.00 42.34 0.01296 .010666 0.45 2.451 0.00 1 475.73 109.48 2.721 112.206 96.0 11.96 :2.222 :114.428 0.00 3.022 3.50 0.00 0.00 0 0.00 18.86 0.01296 .009626 0.18 2.451 0.00 494.59 109.73 2.860 112.590 96.0 11.40 2.019 114.609 0.00 3.022 3.50 0.00 0.00 0 0.00. 3 5.41 0.01296 .008768 0.05 2.451 0.00 3 :I 2 F0515P PAGE 2 W ATER SURFACE PROFILE LISTING EXISTING VALLEY & SIERRA STORM DRAIN R FROM 1 -10 CHANNEL FONTANA,CA 3 STATION INVERT DEPTH W.S. 0 VEL VEL ENERGY SUPER CRITICAL HGT/ BASE/ ZL NO AVBPR ELEV OF FLOW ELEV HEAD GRD.EL. ELEV DEPTH DIA ID NO. PIER L /ELEM SO SF AVE HF NORM DEPTH ZR 1 mommummumum********************x*******xxx*****moomm********xx****WWWW****x*****************x*************** 500.00 109.80 3.022 112.822 96.0 10.87 1.835 114.657 0.00 3.022 3.50 0.00 0.00 0 0.00 JUNCT STR 0.04000 .005903 0.03 0.00 505.00 110.00 4.251 114.251 84.0 6.6B ..0.694 114.945 ...0.00 2.778 4.00 0.00 0.00 0 0.00 117.55 0.00555 .003397 0.40 2.668 0.00 :1 622.55 110.65 4.000 114.653 84.0 6.68 0.694 115.347 0.00 2.778 4.00 0.00 0.00 0 0.00 126.80 0.00555 .003183 0.40 2.668 0.00 li 749.35 111.36 3.629 114.986 84.0 7.01 0.763 115.749 0.00 2.778 4.00 0.00 0.00 0 0.00 :I 56.85 0.00555 .003096 0.18 2.668 0.00 806.20 111.67 3.413 115.086 84.0 7.35 0.840 115.926 0.00 2.778 4.00 0.00 0.00 0 0.00 1 39.78 0.00555 .003334 0.13 2.668 0.00 845.98 111.89 3.254 115.148 84.0 7.67 0.914 116.062' 0.00 2.778 4.00 0.00 0.00 0 0.00 li HYDRAULIC JUMP 0.00 845.98 111.89 2.368 114.262 84.0 10.84 1.825 116.087 0.00 2.778 4.00 0.00 0.00 0 0.00 3 19.23 0.00555 .008194 0.16 2.668 0.00 2 865.21 112.00 2.312 114.312 84.0 11.16 1.933 116.245 0.00 2.778 4.00 0.00 0.00 0 0.00 30.05 0.00555 .009057 0.27 2.668 0.00 895.26 112.17 2.224 114.391 84.0 11.70 2.126 116.517 0.00 2.778 4.00 0.00 0.00 0 0.00 27.32 0.00555 .010260 0.28 2.668 0.00 1 922.58 112.32 2.140 114.459 84.0 12.27 2.338 116.797 0.00 2.778 4.00 0.00 0.00 0 0.00 25.42 0.00555 .011633 - 0.30 -" 2.668 0.00 948.00 112.46 2.061 114.521 84.0 12.87 2.573 117.094 0.00 2.778 4.00 0.00 0.00 0 0.00 1 JUNCT STR 0.12500 .009551 0.04 0.00 3 3 3 F0515P PAGE 3 WATER SURFACE PROFILE LISTING ` EXISTING VALLEY b SIERRA STORM DRAIN 3 FROM I -10 CHANNEL FONTANA,CA 3 STATION INVERT DEPTH W.S. 0 VEL VEL ENERGY SUPER CRITICAL HGT/ BASE/ ZL NO AVBPR ELEV OF FLOW ELEV HEAD GRD.EL. ELEV DEPTH DIA ID NO. PIER L /ELEM SO , .SF AVE HF __ NORM DEPTH ZR 952.00 112.96 2.810 115.770 81.0 9.78 1.486 117.256 0.00 2.810 3.50 0.00 0.00 0 0.00 3 4.53 0.00292 .006440 0.03 3.500 0.00 I 956.53 112.97 2.961 115.934 81.0 9.33 1.351 117.285 0.00 2.810 3.50 0.00 0.00 ,0 0.00 19.64 0.00292 .005928 0.12 3.500 0.00 1 976.17 113.03 3.143 116.173 81.0 8.89 1.228 117.401 0.00 2.810 3.50 0.00 0.00 0 0.00 54.23 0.00292 .005724 0.31 3.500 0.00 1030.40 113.19 3.407 116.596 81.0 8.48 1.117 117.713 0.00 2.810 3.50 0.00 0.00 0 0.00 II 24.41 0.00292 .006062 0.15 3.500 0.00 II 1054.81 113.26 3.500 116.760 81.0 8.42 1.101 117.861 0.00 2.810 3.50 0.00 0.00 0 0.00 343.19 0.00292 .006436 2.21 3.500 0.00 1398.00 114.26 4.724 118.984 81.0 8.42 1.101 120.085' 0.00 2.810 3.50 0.00 0.00 0 0.00 JUNCT STR 0.01000 .005801 0.01 0.00 1400.00 114.28 5.178 119.458 72.0 7.48 0.870 120.328 0.00 2.658 3.50 0.00 0.00 0 0.00 563.00 0.00300 .005121 - 2.88 3.500 0.00 1963.00 115.97 6.371 122.341 72.0 7.48 0.870 123.211 0.00 2.658 3.50 0.00 0.00 0 0.00 JUNCT STR 0.12250 .005838 0.02 0.00 1967.00 116.46 6.374 122.834 54.0 7.64 0.906 123.740 0.00 2.387 3.00 0.00 0.00 0 0.00 408.00 0.00368 .006555 2.67 3.000 0.00 2375.00 117.96 7.549 125.509 54.0 7.64 0.906 126.415 0.00 2.387 3.00 0.00 0.00 0 0.00 JUNCT STR 0.12500 .011007 0.04 0.00 2379.00 118.46 6.484 124.944 51.0 10.39 1.676 126.620 0.00 2.312 2.50 0.00 0.00 0 0.00 609.00 0.00874 .015460 9.42 2.500 0.00 3