Loading...
HomeMy WebLinkAboutSummit Ave Storm Drain MPSD Line B PH II 1 , 1, , i ' SUMMIT AVENUE STORM DRAIN j 1 MPSD LINE B PHASE II (Segment 3) 1 DRAINAGE STUDY , 1 CITY OF FONTANA 1 June 12, 2002 I lilt II Reference 652 -1452 PREPARED BY: 1 Madole & Associates, Inc. 10601 Church Street, Suite 107 � 1 106 eet, Rancho Cucamonga, CA 91730 (909) 948 -1311 X Fax 948 -8464 Aaron T. Skeers Date R.C.E. 62183 Exp. 9/30/05 ON 40 CONTENTS ho e. SECTION TITLE rw� ❑ A DISCUSSION r* ❑ Vicinity Map ❑ Index Map .00 ❑ Q Q100 INTEGRATED RATIONAL METHOD/ UNIT HYDROGRAPH HYDROLOGY ❑ `B" System Iwo ❑ Existing `B" System (Rational Method Only) "ni ❑ H Q100 STORM DRAIN HYDRAULICS ,.., ❑ `B" System (final for Phase I only) o '" A 41EFERENCES & MAPS i ❑ Soils Map (from San Bernardino County Hydrology Manual) ❑ Isohyetal Maps (from San Bernardino County Hydrology Manual) . ❑ Street Cross - section Diagram Pi. ` ❑ Excerpts from Boyle's ultimate design study (San Sevaine) ❑ Excerpts from the City of Fontana MPSD �"' �❑ MPSD Line B Hydrology Map ism if . DISCUSSION m to The purpose of this drainage study is to determine the drainage facility requirements for the Master Plan Storm Drain (MPSD) Line B (also known as the Summit Avenue Storm Drain) for the City of Fontana. Specifically, the storm drain facilities will reach from a point half -way r�. between Mango Avenue and Sierra Avenue on Summit Avenue, then westerly on Summit Avenue past Citrus Avenue and Lytle Creek Road, to the future intersection of Summit Avenue, - Beech Avenue and East Frontage Road. The line will extend 'down East Frontage Road past San Sevaine Road and under Interstate 15 (I -15) with an outlet into the existing Hawker- Crawford Channel. The line is within the City of Fontana east of I -15, and in the City of Rancho "is Cucamonga west of Interstate 15, all in the County of San Bernardino, California. •r. This study is for the construction of Phase II (see Index Map) of the Summit Avenue Storm Drain improvements. The limits of Phase II are from east of the intersection of Summit Avenue, Beech t '" Avenue and East Frontage Road, east past the Lytle Creek Road, future Knox Avenue, to a point 0,04 east of the intersection with Citrus Avenue. This phase is scheduled to be completed along with Summit Avenue Widening for the same reach of improvements, tentatively set to begin construction in March 2003. While this study is only for the construction of Phase II, the hydrology calculations include the •" entire watershed, and the hydraulic calculations, while only final for Phases I and II, are included POO for the entire system. Phase IV will complete the line to the east (Sierra/Mango) and will be constructed concurrent .., with the Summit Avenue Street Widening project (construction start date undetermined). Phase III will finish the storm drain improvements, with the connection to the existing Hawker - Crawford Channel and the crossing of I -15 (start date not yet planned; see Index Map). Tributary Area �► The study area follows the MPSD for Line B (Hall & Foreman / Bill Mann & Associates), with approximate boundaries of Duncan Canyon Road (existing and projected) to the north, future Mango Avenue on the east, Summit Avenue to the south, and I -15 as the westerly limit. In .*00 addition, approximately 35 acres will be added to the MPSD study area due to a slightly different so alignment than was planned for in the MPSD. This area will be the commercial site at Summit Heights (plus 2 small parcels zoned commercial /office), adjacent to I -15, East Frontage Road, and south of Summit Avenue. An existing 10x5 reinforced - concrete box (RCB) culvert under I -15 at Summit Avenue will be utilized by picking up run -off from the area bounded by Lytle Creek Road, I -15, and Summit Avenue (approximate 140 acres). Existing run -off from this area already gets picked up in this system via an existing trapezoidal channel on the north side of Summit Avenue. Future -411' development in this area will likely remove the channel, and connect a storm drain system to the tit existing 10x5 RCB. Hydraulically, there would be extra capacity in the 10x5 RCB, so additional tributary area could be added to this system. Land use for run -off calculations follow City of Fontana Land Use Zoning Map, except that all 4110 residential zones have been modeled at 5 -7 dwelling units per acre versus the MPSD density of 3- 4 dwelling units per acre. This change was made to allow for flexibility in future development, however impact to downstream facilities from increased flows would need to be studied. Current „o capacity studies (e.g., Boyle) used 3 -4 units /acre, and the performance of impacted facilities from any discharge above the studied level would need to be verified. w• Peak Flow Determination The peak flow rate for the Summit Avenue Storm Drain is based on 100 -year rainfall intensities and calculations following the San Bernardino County Hydrology Manual. Peak flow rates were OW determined using an Integrated Rational Method / Unit Hydrograph Method Hydrology computer program by AES. This software switches the peak flow calculation from the Rational Method to + the Unit Hydrograph Method when the study area exceeds the County - maximum 640 acres. • Peak flow rates are shown on the hydrology map included at the back of this study. Note, again, that there are two independent analyses included. The main calculation is for the entire MPSD watershed, minus the area west of Lytle Creek Road, and plus the area south of Summit Avenue and west of approximately Beech Avenue. The second calculation is for the area west of Lytle "' Creek Road (tributary to the existing 10x5 RCB). w The Summit Avenue Storm Drain is sized using a water surface profile gradient computer program, WSPGW by CivilDesign. w «. upt .. -ad IC ill All m A O F� /Pip lei WA • �� F� �\., \`� D UNC w /' F�1 , C� Pill �� / z CYN. RD. z z F C AP / P . Q GAP Y > < 0 iit / W w Q z iat 4 4 / FTGE R M�%/��� ,ZP r ' (./-) / CI J D oh / U Z S IE A Z LAKES PARKWAY w ,.. V) a HIGHLAND AV NUE z m iii. ST. RTE 210 1 N w .. W m ON BASELINE AV NUE iii 0 NTS Si 4 MADOLE & ASSOCIATES, INC. MPSD B- PH II w 1( CONSULTING CUM ENGINEERS AND LAND PLANNERS • 10601 CHURCH STREET. SL,�E , R VICINITY MAP RANCHO HO CUCAMONGA, CA 9,730 0 i (909) 948 -1311 J:\ 652- 1452\storm \Drainage- Study - Vicinty- Index- Ph2.dwg, 06/11/2002 09:50:20 AM, ats U) clo 1-1 . t4 ,i...! = ■ ,.......... ,,,:,-,::::-4---7,7-.;,..,, i . 1 . , — ., ' si # .,,,,z-r---- . 0( ; - 11, .: 4'..4:,!'-.4w.% '‘.; . 4"' . , - 7 ,,..."' ` ". •:, 4 ,,-. .-..,,- „ , 4 ri- . itifili#,,„- 4 .‘ r7 " , '3 '...m,i re , , Cr) i . '.-,...?- - . -4... ' ' ,. " 'I 114 1...1 ... z - zt„,i;; , ‘i --'4""44.: ., '''' - ,i *+, ' \ ''N • ''. 4. ! *.'..-,,,' ,t 4 • ' ,4:0..- ' ' ,. 1 '''''',5, ,• !' ,f ' II ---1::,_ --,-- :.•' *-, ,,* , 1 - . '-..,,, t '7'; ' 1 , . ..- . Z 1 8 . R L• .,„:...... • ''ti.4. . •, .,-.4 - - . . , - ,....;-, _4, - „ ,..- 1- '-' „A ,,i,,,,....,,, , 4 , , , ,, -- 44.4i, „:- ' ' ' c'f N -""1.111 7, ,,3,,,..0i.-„,,,,... "..t.. - , ', -.' 4 ' -, ' l ' ' ' ,,„. .. '''', i ,:t*I' , iog --- - '''. 4' ' . ' - ' 1 ' 2 1* '‘''''' . 14::: '''„;'' ; ,,,, '' • . i , ,! ,g=3 zi y,, ,.•, 6 F, c l' '' --', ' ', . !' t 4 ' '''' ' - ■ ' ' ' ' I. ‘ I ' ( ' ' -'.. (1-1 7 &) , " 1 ‘ - -; ',`:-;*:':,-,,1■,.' . , - 4 11.-'-it;;,4,t - ''....'''' t , X .- '' ' c..) to 4 '. • 4,-..-- i ftl , k.s.,•.,- ' ,`' ,c !...%,:,.,. - ' ' ' ,,,, . , , . . - ' ' , t,k. = , , -4:4' ' 1 ' -4 '. ,. j„,.. . ,. N 2 Gg 2 0 1 4 41, * , 4 u ' 0 0 - a • ""`...,,,,,, , , „ - ' , 7, .e.. „ .*. ''. ----,; ::', . ....* '„ -- ` \-...,,...:' -, „.. is, I E ip ow 1 \ - - .i.7i--.''`..:.; ' - i - ' ;,. ,,...- ,,,. „r, 4 -,!>--4::: , . i : , , .,,,,c .,,,,,. , , - , . t' ! 1 '' ' ' , .4,-4 ' ' 4 .'''' "' ',' :' ' .',*., ,.1!.7-,;;:r,'+` _ . '‘" '+' ',: l'' '-,',:f.-3."'..-..•--i,Y. :.• - '-'' i '' * ' ..4-f:',..:.•:'-', ....-',.,, --,- , , '.'" 4 1;.-.!.:'-'t,„,, , .-... . f„, - i . 1 4 :,,,..il.:„., , - - - .,...:,,, , ,,, -,-,.., --....,„...-,...' - - .... 1,1,41 ;lit-. ,. , --,..,,,,,.......*; ..,.,......: -:„... -, ,.4 ., '', ',, ,':',''''..: ‘7: ., ., , : , r*; i t , ,,4 , ., —,..,-, • , ,, ,,,,,r....77T--.. r ...c..:1: , , i-Lt.;; i ..,,.;,...4„1.:::;.;,?„r..,.1.....1:4;_;;;,...,,.,,,,:tsi;,i..• :..k,i , _ .. ; '-" i --:" 1:; - - -4.-1::, ' f,,' ,i .' -,E.,., C i ft 1 i , ' , • N ' .; , P4 ' I ' z', ..i4•7•41,, ,; `je ''' ''''';'1""4‘111', 1" • '' 14 ..,121 4i''''i-!. '..' t .,, , . ,,'• -.1.-,11, , 4 -,- ''',.'!` --...'t, ..i:,...41!„,4*,„ '`, . ',,, , ; '.:""'-• -.,- - ,,-t.. 44A - IVI:t.'11.iflit .t 0 . 4 ---- ' ' - ! 1 ,„„' *7-iti:...' ''.' t' 1 ""; .-,, , v- -..' 1 -4 ' r ' IP' /' , ;. J,..,,. ;, * i ::- 1 -..;_ ,.,,-** - ' 1, .,,,,. 1 — 1 ' *. ,, - . ., os _ — 's 4....," ,' ,,,,,....;;,,.,,,,v:t.,, ..t, .,.:- L ' ..t , 2, 4-, „ - . „ .,;, k ' -",.-.° ' 2:,', :::''''v7-.'u..,1':it-',''' ' - ''''''?' " .; ` 7. - -.. i-''.' -, --- . ' -: li, l'' . '. ,r,Ilit'' '7.',-i1TIA ,-., ,t firty471 _ , ,:' ' 1 ,', =„1:-'74,' .-7:-''''SN ' 7. -' , -5*"*;44■''''', - '1' '...4 i :,',-.-- - 17 '''' . - 1.. kik:If:11'4+ '...1...''.'- - ''''' , ''-' ' 4 ''.4' -----'"-, i" ,;2-:, „•.,....! --t,,,-, 7,,,:: .: ';'-r,r, ' ;,, ''',: , , „1:,, .' '....'f141;'''"'"'1- I ; ; :- ''''''' t•'' * tt'' "L'i;', 4, ti; =11, it.: : '4`s.‘1 '', t,3'.',, ." - `"`'-':'''‘ .-- =.,' ''"''.k, ''` ' • ' I •*. it , ' ■ ' ' ; 4 . .. ''‘ . '"' "".' -'' : '.1 : '' ." ,,..:,...t.:^ ;;.,,, i , 4 ' '' , . ' - _ I ;',," * 4. i '!':1, l':',',:''. - _., . , , -- -.,,--*-; „. - l..7t.. s ;;;,;-0 r !*-::. 4; i ' '':; i Lid6416•44,4T . ' ,. ii, .., . % ,;041,1645,',, I '' L'',4,4'.1‘;;„ . ; .1 4 ,, ,4* ' + '1 ' ■44 i ' ', 't '' , ,,,. -- -..- , .4 ',,' 4:-.,'''.1,"Iffti;,,,;..44,41.,,i, „t t ..,, !!! 4 '' ''''1.i • '1:17.4.-.1."'-'•;41.. ' --' ,i. '' • Il ;, *'..,;,',11,' ',' '4. !--,'," ---,-",-' . , -,,,,,, ' ' 'r-;,7 , .#4r .'". ;' ''''''.'7''''''' , ,' !I : 4e ''':'', r%!':''*''' t * t ...: "=t-4 ,,'",,,,,,.., .,,,"::; ;;,Tt .7' - - j1 tr.," * .,444 .. ; '-' '', ''' • , :f,.• , • '' 1"' ':";.iy,,„4 4, _ 4,;.14 . ;‘'... ' ",,, ' . '.-v,,. _ :::i,:"'",-.' , tz, ,1 . $.„ ..,..,.,;:x-.7. ; * - - , -;,, ,,, ,,4 . '-o‘r''.:- ''" - - - ‘.i.:*,...,">4 7t,' '''':.'„...; • .4....':t'4'....1. , -,,,,-''' ' '''.' . ' t' k ,,; ' 4*" '' - .--,.'.--7. " - ,,,.., ,•,* "*.`-' / ! .„,,.i ''' 1 3 • ' C", *"•;.. , , 4. ,,;,,, /' 1, ,,,, , • ', ..',,r'. . , ' ,,' 44., ' ' :valoo''''' r . • 4,- --- .....1 1,,-.; -t, - J i t , „ ----:,..„„.;,,,,,. .; i ,..,.,t — Z . ,.;,...„- i :- . ::„..., ' '''''' '` ' - * • i —N. , '4 : , * :, . 4, , , : ' ,,.-° 'f1,, * ,■ 1"''''', r' 1 ' '4,..,; -.,,,:•-- . ,--,----- ., • - , .: ..,. ..., -,- :, .,,,„ - - — A.. , : °, .41 4, '1 , . sA. ‘' ' * '''' - ''' 1.. ,. 4 i ' --- , c, ; _ , ' . - - , I,: - -: ' "‘`.;;;;;., r; , — i# ,,„ -,, ;,, - , --;,-,--.,-- i, l,.. - - ,-. \ i .1..... . . , ..,, ',,,...;,.1-. ' -, - ,.., - i i ,--- -1 i .-. Nt 411, • ' el Pti '.', - ,4, 4, 1 4 / ,,, , • tr 4 = - 11 .,.• - - p.: J - .1' "...,,,,_$ - '5! _....4.........,,,,, I,- '"" ; .'• . .-**1;;;-.?4,, ' . ..4. ' „ ,... .... ., , . , '' :,--, ‘1.....t.,,,,7..*4,...,.1.----"z' ;4. ; .. :,..'t '''„., ,, — 1 i t '' \ ,,,„,. ',...„ . . • i . i g . , . 4 S4 .„,.1 , - 1 .,,-;'* . '''''',,,,,. . i...... ' 4 , ' --- -is t ii 4 ,,,,,,4,44,44,, „,, ,. , , t. A.' "4 - ‘ .' ;"." : ..4,,,,,,,1. ' - .. , : \.. ..„„,„.„..,,,,,,:,,, . n .,,„c ,..1.;I'4...--4. ' - ' : it-ilTi4;',4•101',/ik. "...1:i: ' - ;. , 4, , ,---* ' t',^7".. : 4„ I , 1,4,11 "C41:';‘,,,, ' '''' ," " ,' : ', . t jai :"'.17''' ',' i" ,1 , 4 . 4 it .. 11 '''',1,441; .' + '''''"' ,,\., '" .'''' t .„.„,vg,r,,,,,,4,- -,„:4,,44„':, . -Jt,4-il , , , - -,.., -11,14 ....,.,* -i„,ti,t', '''.• „,' ".- - ,, - " I ' 'IV ' SIAT ' '''..04)," 1 ' ''' \ r - * ''' '--: 14"' *4 4 ' , 1 '.i ,:*., • t"' „;. _ t ilitl.k14,- t,:t;, .144„. , . ' * 'r;?••''' ' ''''‘ . ‘ - ' 1 , ;.'. " '... 't'f'1.4.1-,-,.**,,•*.,:„,,,t ., ir-i icr,:,, It'...;" , '",.''' ; '. ...„,,,,, ' , ,, . ,„ ,,„° ', ,, . ,,,- - 7 -,e-4/4-,..-;,,,,,, ,..- -,,,,, , - ,. ..---.....,',,, ,c;,, . - ...,!:,-:;' ,-,-,',.,;-4,,,,,- ',,,..„'''',.-',- ':-..,-,:' -,-4....,--Aw4 '10, '' ''",,'"-, ... ,,, • ',•, '''', -',;--.''''' '"'--. '....';'-el.' • / v-- 4.:4.:1,'$1,,i4i" .t.f 4',.,,.. ''', ,: i -,7-4 i'4,4,,,,' -7.i ' ' -,„._......--. ' - ', : , '--, :. f 4 ',',„ie,-,-'5,,,' '''';','.;,,f,,,,f4;44i:'';,,,,,T,::7„.:,,,r;,,, ,,;-44.'" , ,''' ,a,.,,;,--''„ „i .. ;'• . re, - u ;* 1,- I '',-1-;,. , -i, f '. '.,'' *.,..,',...;,..:*-',.''-', ' 4-"I‘,.. '‘- .1 ";;I:,'',,,-P'q,',:';', , 24,*;,:i;;:,i):',;','-',,,',,,,:,=1;.;;;;..c),':111;parill.'4,4,,;.,',,,:,:„:'-::,.,,,vik-, , f, ; ,' l'i ,`"** t t ! ; A '''l ° 4 4 ' ' ,.. ' ,, 1, 't -. ' ' ',' ' ' ' -, -• 04-. . .- ,,, , ,,, , , ,,t-, ,,,,,, '',' -4", ',44 ,,,,-;., -,,:- ' :' ,,,--,-,,,, ' - • , 01, ;,„ ' -, -,,, , ;,,,,•-itt,„-,itc„.,1„, i „:‘,4; .'i„.7„,t„„, :41,11;j1•1,-, „..,-,,,,',;.','''"',,,:'''is."..., •1';'':;-4 :: - ' '.: ''' ti,Aiti/;;''''''i.ik,,t;* ,-,7,:ig';i1;:j jt 1, ;',,,,..t:,:j.,,„.3,„\!:.-,,,,,.... ,,,,,!,,„.4,4•11;;;, ,i;:i4.--„,,F.7;4-ty,, ,,,,t!,,;, 0 .f ..: .:*' ,.. 7,1‘14,-;.A , ''' ';, *-.;;,:'4.•;:4!'::;1.::;,•:-;:-.;,',j7i;::`,"!.',F,;:.,;;;i:',,!'"....-=•:',4•;',-,,,i,;,':;,,:: f ' '; A ..",4-- ''',- ,',,'''':7-..':-- i • .,''''..- „."..-",,,- •'t'-',i.f.,.,_:--1--%Ii.- ',--Srl:',:i4;-'"',711 ' i',,,,,:p:'',i --k,;.---;,„:4,',vil'.;,. -t ',' i = •,,:.,;-1,-e'wp•„_,,-‘,.,.. „,,,,,,,„•,..:,,,,,:it,..-, ,. ,:,,,,,,„,i,,,,,,,i,,,,,, i `41,,* _47, - .1;:;#. . -:c...#-,,,,,,,,,, ,•„,-:',' ,.-,, ,,,- : --':',,,,,, ,.—fr- i t . ,,..„„,,,.. • -, ,‘, .,,,,,...,-, ,d; '4' ; '.1.1 . ..:**k..,..4147,- ', ‘'''... 47•9 ' 4 . ''',, '7,4%-.,',`,„4-Z, ” ' .f.:..", ' ileyi, . - •:-,_'".Vi ' 1 1:T. lt,„ ' ., , , 4 f;‘,,,f ,4,41rie-,;;<,,, , i „.„;-;;;'"--. - " ..t' '.-1 T ..• ,"4.;.,:- .:*:4:$.,., —...,. ' ';''!"'-', ,- 't- Dot!: *II 1**1 q.„ 1----, - ‘... '-':--. 41:'•. '", ' ":":;, : ' .:- ', ',,,, z '. : s L ; i , ','', D44,/ i , ; 1,, ; ',, ,,* ,1.,„ ,} 1A..41!1"4;,•Ii, S,•111" , ; :I 14,.„rif's 1710p ;. ,,,,`,;' .:474 '':' '; . r177.., .1.,,,,, !„ 4 ;, , ,,(:, I .- - .- 3 ' --,,,," t. ylw 1,.:? kl 8 . 4 'l ' . - - ' - . ' • ' - , ii t4)."''' ''3!Itt,4H1f; i:.,::;:1';':'74.,,,:.:„.i '-'7!:,:':. .. &" ,. 4*- 7 ..j..,,,, :, :,,--: : t - - , ,, ity' !„.,3,",,' „j,,e: . „ ' . . _ . *it ",'„,, ,,. , ' , ' , . 1 , • ',,,,:: ”- `, ' ' ' ' ,,,, , A -..' ' ,,, , . ,''' , --* , -,...: ,, I , 4 .. , ,i, ' - , r.,,, -,-- , , , • ., .k4til .•.,-,k- -..,,,,...'t,t,. ,,, . -i-,it.N, - '4,.:i«,:74"4 -,..;-``' , .4+: - - ',.:.-' ' — ---` '1471114T174) ..:',..i,,,,' , „..,..,,,„,....,....,,...,„..„,..._,. . ,, ..„,. ___ ..,,,„... ...„,,,,,,f,,,.....0,,,,,.... i .7- ;,!;-, . +.„ .. , 1 .„....., ' ,,, -- „, i , t ,,,,,,, an „, 4- ,,-,,_+.--i., Ait.'.. ..,1,'- ;' ; ;,. -::.,,' . -", ' -.. ' ' 4 :■,-; - '4, :',1,- ';' , ', ''. j,• •,, ''''' '',.,, ',:`: 4,4. r„tijk," ''''' ; ,, N.- 4 + ,„r; ,ssMitV „,,....„,,k,,22.1-:',:,...--.,,,,,,,,,,,,,,,, , 4::',- - ,, L ,,-,.. : ., . ,, ,, , \ ,,,,,,:,-,,,, „„-, .- ,,,, 4 ,4-',E4 •,•:-..itr,,tirkj%4 ',,,i'.? ''''11‘4,;,„.:,', '14 :* ''....” ' 7 ,''''*,-,.'', -*'. ' : I *V44-"' ,..- *r., ' - '.'; ., , . 1 , 1 .' 4 -‘'-4 ,-.1,::`:;'''''' *'''', ".'•;.-----,' ' - ,-., J-...,,,_..........-,:,„„!..";-• '.1%--.*"...,,i„44 , i'," f'i'''...v-1'.45 At...,....',11.''1,114-ii,•,s, '11 ' 4,'- . '' : - -, - :.-,... I i ' ...., , ,,i ,: ,. , '4 dr ' . , ;Apt, -. ,Iti,c4;:l.., i1/4,.34,4 I., ;I:, 1 . ,-„,.. 4--,•, • ' , ,,' ' "'' ' 1 . \ - ' '1,•;:nif7.4:' ,''"-°-.* ; ;. ' , I . : " ''', :. '■ ' x 'AA .- ' A ob- ' ),1 1 . '-' - ' ' , l.,.- ,,,,., , # Id . „ „ ,., , Is „- . 4 4 ' • . Apt t ,#: 44' • ..., 1,, ,..-^;. ' ,, 14: , 4 ' 1 ' i., .....1 i • a i =7, .• ro . , : 'J -":ir k ' • i \ ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1251 Analysis prepared by: MADOLE & ASSOCIATES, INC. 10601 CHURCH STREET SUITE 107 RANCHO CUCAMONGA CA 91730 909.948.1311 FAX- 948.8464 madole @madolerc.com * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * SUMMIT AVENUE STORM DRAIN * Q100 FINAL HYDROLOGY * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: P: \652 - 1452 \Drainage \SMTAVE.DAT TIME /DATE OF STUDY: 10:06 05/07/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL*-- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 24.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = 0.6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.5600 *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD* *USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET - CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT - /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.020/0.020/0.020 0.67 1.50 0.0312 0.013 0.0150 2 44.0 22.0 0.020/0.020/0.020 0.67 1.50 0.0312 0.125 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER- SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED UNIT - HYDROGRAPH MODEL SELECTIONS /PARAMETERS: WATERSHED LAG = 0.80 * Tc USED "VALLEY UNDEVELOPED" S -GRAPH FOR DEVELOPMENTS OF 1 UNITS /ACRE AND LESS; AND "VALLEY DEVELOPED" S -GRAPH FOR DEVELOPMENTS OF 2 UNITS /ACRE AND MORE. SIERRA MADRE DEPTH -AREA FACTORS USED. AREA- AVERAGED DURATION RAINFALL(INCH) 5- MINUTES 0.58 30- MINUTES 1.18 1 -HOUR 1.56 06/11/02 Q -2 3 -HOUR 3.07 6 -HOUR 4.70 24 -HOUR 10.50 *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR UNIT HYDROGRAPH METHOD* ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 400.00 TO NODE 400.10 IS CODE = 21 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS«« < »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 1000.00 ELEVATION DATA: UPSTREAM(FEET) = 1811.50 DOWNSTREAM(FEET) = 1806.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 13.640 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.794 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 6.50 0.80 0.10 52 13.64 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 21.73 TOTAL AREA(ACRES) = 6.50 PEAK FLOW RATE(CFS) = 21.73 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 400.10 TO NODE 400.10 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 13.64 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.794 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.50 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 0.50 SUBAREA RUNOFF(CFS) = 1.67 EFFECTIVE AREA(ACRES) = 7.00 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 7.00 PEAK FLOW RATE(CFS) = 23.40 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 400.10 TO NODE 402.11 IS CODE = 62 »> »COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>( STREET TABLE SECTION # 2 USED) ««< UPSTREAM ELEVATION(FEET) = 1806.00 DOWNSTREAM ELEVATION(FEET) = 1797.00 STREET LENGTH(FEET) = 310.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 44.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 22.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0197 06/11/02 Q-3 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 24.21 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.53 HALFSTREET FLOOD WIDTH(FEET) = 20.12 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.81 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 3.07 STREET FLOW TRAVEL TIME(MIN.) = 0.89 Tc(MIN.) = 14.53 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.653 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.50 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 0.50 SUBAREA RUNOFF(CFS) = 1.61 EFFECTIVE AREA(ACRES) = 7.50 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 7.50 PEAK FLOW RATE(CFS) = 24.12 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.53 HALFSTREET FLOOD WIDTH(FEET) = 20.12 FLOW VELOCITY(FEET /SEC.) = 5.79 DEPTH *VELOCITY(FT *FT /SEC.) = 3.06 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 402.11 = 1310.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 402.11 TO NODE 402.11 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 14.53 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.653 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 7.20 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 7.20 SUBAREA RUNOFF(CFS) = 23.16 EFFECTIVE AREA(ACRES) = 14.70 AREA - AVERAGED Fm(INCH/HR) = 0.08 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 14.70 PEAK FLOW RATE(CFS) = 47.28 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 402.11 TO NODE 402.21 IS CODE = 62 »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«« < » »>( STREET TABLE SECTION # 2 USED) « «< UPSTREAM ELEVATION(FEET) = 1797.00 DOWNSTREAM ELEVATION(FEET) = 1777.00 STREET LENGTH(FEET) = 680.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 44.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 22.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0197 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 48.79 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.65 06/11/02 Q-4 HALFSTREET FLOOD WIDTH(FEET) = 26.34 AVERAGE FLOW VELOCITY(FEET /SEC.) = 6.91 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 4.52 STREET FLOW TRAVEL TIME(MIN.) = 1.64 Tc(MIN.) = 16.17 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.426 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 1.00 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 3.01 EFFECTIVE AREA(ACRES) = 15.70 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 15.70 PEAK FLOW RATE(CFS) = 47.29 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.65 HALFSTREET FLOOD WIDTH(FEET) = 26.00 FLOW VELOCITY(FEET /SEC.) = 6.88 DEPTH *VELOCITY(FT *FT /SEC.) = 4.44 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 402.21 = 1990.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 402.21 TO NODE 402.21 IS CODE = 81 »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« MAINLINE Tc(MIN) = 16.17 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.426 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 13.80 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 13.80 SUBAREA RUNOFF(CFS) = 41.57 EFFECTIVE AREA(ACRES) = 29.50 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 29.50 PEAK FLOW RATE(CFS) = 88.85 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 402.21 TO NODE 402.10 IS CODE = 41 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 1771.00 DOWNSTREAM(FEET) = 1760.00 FLOW LENGTH(FEET) = 320.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 23.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 18.65 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 88.85 PIPE TRAVEL TIME(MIN.) = 0.29 Tc(MIN.) = 16.45 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 402.10 = 2310.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 402.10 TO NODE 402.10 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«« < TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 16.45 RAINFALL INTENSITY(INCH/HR) = 3.39 AREA - AVERAGED Fm(INCH /HR) = 0.08 06/11/02 Q-5 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 29.50 TOTAL STREAM AREA(ACRES) = 29.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 88.85 FLOW PROCESS FROM NODE 401.00 TO NODE 401.10 IS CODE = 21 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 1000.00 ELEVATION DATA: UPSTREAM(FEET) = 1815.50 DOWNSTREAM(FEET) = 1804.10 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.789 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.141 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 6.70 0.80 0.10 52 11.79 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 24.49 TOTAL AREA(ACRES) = 6.70 PEAK FLOW RATE(CFS) = 24.49 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 401.10 TO NODE 401.12 IS CODE = 62 »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< » » >( STREET TABLE SECTION # 2 USED) ««< UPSTREAM ELEVATION(FEET) = 1804.10 DOWNSTREAM ELEVATION(FEET) = 1794.00 STREET LENGTH(FEET) = 870.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 44.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 22.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0197 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 44.83 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.73 HALFSTREET FLOOD WIDTH(FEET) = 33.74 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.74 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 3.48 STREET FLOW TRAVEL TIME(MIN.) = 3.06 Tc(MIN.) = 14.85 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.606 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 12.80 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 12.80 SUBAREA RUNOFF(CFS) = 40.62 EFFECTIVE AREA(ACRES) = 19.50 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 19.50 PEAK FLOW RATE(CFS) = 61.88 06/11/02 Q -6 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.81 HALFSTREET FLOOD WIDTH(FEET) = 41.30 FLOW VELOCITY(FEET /SEC.) = 5.03 DEPTH *VELOCITY(FT *FT /SEC.) = 4.07 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS, AND L = 870.0 FT WITH ELEVATION -DROP = 10.1 FT, IS 48.5 CFS, WHICH EXCEEDS THE TOP -OF -CURB STREET CAPACITY AT NODE 401.12 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 401.12 = 1870.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 401.12 TO NODE 401.12 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 14.85 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.606 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 1.00 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 3.17 EFFECTIVE AREA(ACRES) = 20.50 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA- AVERAGED Fp(INCH/HR) = 0.80 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 20.50 PEAK FLOW RATE(CFS) = 65.06 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 401.12 TO NODE 402.10 IS CODE = 62 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< » » >( STREET TABLE SECTION # 2 USED) ««< UPSTREAM ELEVATION(FEET) = 1794.00 DOWNSTREAM ELEVATION(FEET) = 1766.20 STREET LENGTH(FEET) = 960.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 44.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 22.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0197 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 67.25 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.72 HALFSTREET FLOOD WIDTH(FEET) = 32.53 AVERAGE FLOW VELOCITY(FEET /SEC.) = 7.42 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 5.36 STREET FLOW TRAVEL TIME(MIN.) = 2.16 Tc(MIN.) = 17.01 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.324 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 1.50 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 1.50 SUBAREA RUNOFF(CFS) = 4.38 EFFECTIVE AREA(ACRES) = 22.00 AREA - AVERAGED Fm(INCH/HR) = 0.08 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 22.00 PEAK FLOW RATE(CFS) = 65.06 06/11/02 Q-7 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.71 HALFSTREET FLOOD WIDTH(FEET) = 31.85 FLOW VELOCITY(FEET /SEC.) = 7.36 DEPTH *VELOCITY(FT *FT /SEC.) = 5.26 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 402.10 = 2830.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 402.10 TO NODE 402.10 IS CODE = 61 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 17.01 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.324 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 25.80 0.80 0.50 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA AREA(ACRES) = 25.80 SUBAREA RUNOFF(CFS) = 67.94 EFFECTIVE AREA(ACRES) = 47.80 AREA - AVERAGED Fm(INCH /HR) = 0.25 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.32 TOTAL AREA(ACRES) = 47.80 PEAK FLOW RATE(CFS) = 132.18 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 402.10 TO NODE 402.10 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 17.01 RAINFALL INTENSITY(INCH /HR) = 3.32 AREA - AVERAGED Fm(INCH /HR) = 0.25 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.32 EFFECTIVE STREAM AREA(ACRES) = 47.80 TOTAL STREAM AREA(ACRES) = 47.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 132.18 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 88.85 16.45 3.390 0.80( 0.08) 0.10 29.5 400.00 2 132.18 17.01 3.324 0.80( 0.25) 0.32 47.8 401.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 219.52 16.45 3.390 0.80( 0.18) 0.23 75.8 400.00 2 219.26 17.01 3.324 0.80( 0.19) 0.23 77.3 401.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 219.52 Tc(MIN.) = 16.45 EFFECTIVE AREA(ACRES) = 75.75 AREA - AVERAGED Fm(INCH/HR) = 0.18 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.23 TOTAL AREA(ACRES) = 77.30 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 402.10 = 2830.00 FEET. 06/11/02 Q-8 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 402.10 TO NODE 405.10 IS CODE = 31 »» >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » »>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 1760.00 DOWNSTREAM(FEET) = 1736.00 FLOW LENGTH(FEET) = 840.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 48.0 INCH PIPE IS 36.5 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 21.39 ESTIMATED PIPE DIAMETER(INCH) = 48.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 219.52 PIPE TRAVEL TIME(MIN.) = 0.65 Tc(MIN.) = 17.11 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 405.10 = 3670.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 405.10 TO NODE 405.10 IS CODE = 81 »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 17.11 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.312 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 1.30 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 1.30 SUBAREA RUNOFF(CFS) = 3.78 EFFECTIVE AREA(ACRES) = 77.05 AREA - AVERAGED Fm(INCH /HR) = 0.18 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.23 TOTAL AREA(ACRES) = 78.60 PEAK FLOW RATE(CFS) = 219.52 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE ************,:******************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 405.10 TO NODE 405.10 IS CODE = 81 »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 17.11 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.312 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 30.40 0.80 0.50 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA AREA(ACRES) = 30.40 SUBAREA RUNOFF(CFS) = 79.73 EFFECTIVE AREA(ACRES) = 107.45 AREA - AVERAGED Fm(INCH /HR) = 0.24 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.31 TOTAL AREA(ACRES) = 109.00 PEAK FLOW RATE(CFS) = 296.72 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 405.10 TO NODE 403.20 IS CODE = 31 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA«« < » »>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « « < ELEVATION DATA: UPSTREAM(FEET) = 1736.00 DOWNSTREAM(FEET) = 1733.50 FLOW LENGTH(FEET) = 185.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 63.0 INCH PIPE IS 46.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 17.53 06/11/02 Q -9 ESTIMATED PIPE DIAMETER(INCH) = 63.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 296.72 PIPE TRAVEL TIME(MIN.) = 0.18 Tc(MIN.) = 17.28 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 403.20 = 3855.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 403.20 TO NODE 403.20 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 17.28 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.292 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 28.30 0.80 0.10 52 COMMERCIAL A 2.00 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 30.30 SUBAREA RUNOFF(CFS) = 87.59 EFFECTIVE AREA(ACRES) = 137.75 AREA - AVERAGED Fm(INCH/HR) = 0.21 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.26 TOTAL AREA(ACRES) = 139.30 PEAK FLOW RATE(CFS) = 382.36 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 403.20 TO NODE 406.11 IS CODE = 31 »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » »>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 1733.50 DOWNSTREAM(FEET) = 1703.50 FLOW LENGTH(FEET) = 980.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 57.0 INCH PIPE IS 46.1 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 24.92 ESTIMATED PIPE DIAMETER(INCH) = 57.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 382.36 PIPE TRAVEL TIME(MIN.) = 0.66 Tc(MIN.) = 17.94 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 406.11 = 4835.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 406.11 TO NODE 406.11 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«« < MAINLINE Tc(MIN) = 17.94 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.219 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 3.30 0.80 0.10 52 RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 34.70 0.80 0.50 52 COMMERCIAL A 11.50 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.38 SUBAREA AREA(ACRES) = 49.50 SUBAREA RUNOFF(CFS) = 129.92 EFFECTIVE AREA(ACRES) = 187.25 AREA - AVERAGED Fm(INCH /HR) = 0.23 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.29 TOTAL AREA(ACRES) = 188.80 PEAK FLOW RATE(CFS) = 503.26 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 406.11 TO NODE 406.10 IS CODE = 31 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< 06/11/02 Q -10 » » >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) «« < ELEVATION DATA: UPSTREAM(FEET) = 1703.50 DOWNSTREAM(FEET) = 1693.00 FLOW LENGTH(FEET) = 350.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 66.0 INCH PIPE IS 48.4 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 26.96 ESTIMATED PIPE DIAMETER(INCH) = 66.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 503.26 PIPE TRAVEL TIME(MIN.) = 0.22 Tc(MIN.) = 18.16 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 406.10 = 5185.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 406.10 TO NODE 406.10 IS CODE = 81 »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 18.16 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.196 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "OPEN BRUSH" A 10.00 0.61 1.00 66 COMMERCIAL A 1.00 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.62 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.92 SUBAREA AREA(ACRES) = 11.00 SUBAREA RUNOFF(CFS) = 26.04 EFFECTIVE AREA(ACRES) = 198.25 AREA - AVERAGED Fm(INCH /HR) = 0.25 AREA- AVERAGED Fp(INCH /HR) = 0.77 AREA- AVERAGED Ap = 0.33 TOTAL AREA(ACRES) = 199.80 PEAK FLOW RATE(CFS) = 525.42 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 406.10 TO NODE 406.10 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE «<« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 18.16 RAINFALL INTENSITY(INCH /HR) = 3.20 AREA - AVERAGED Fm(INCH/HR) = 0.25 AREA- AVERAGED Fp(INCH /HR) = 0.77 AREA- AVERAGED Ap = 0.33 EFFECTIVE STREAM AREA(ACRES) = 198.25 TOTAL STREAM AREA(ACRES) = 199.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 525.42 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 406.20 TO NODE 406.30 IS CODE = 21 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 980.00 ELEVATION DATA: UPSTREAM(FEET) = 1809.00 DOWNSTREAM(FEET) = 1784.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 23.118 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.765 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) NATURAL FAIR COVER "OPEN BRUSH" A 7.50 0.61 1.00 66 23.12 06/11/02 Q -11 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.61 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 14.52 TOTAL AREA(ACRES) = 7.50 PEAK FLOW RATE(CFS) = 14.52 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 406.30 TO NODE 406.40 IS CODE = 52 » »>COMPUTE NATURAL VALLEY CHANNEL FLOW««< »» >TRAVELTIME THRU SUBAREA«« < ELEVATION DATA: UPSTREAM(FEET) = 1784.00 DOWNSTREAM(FEET) = 1728.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 1880.00 CHANNEL SLOPE = 0.0298 CHANNEL FLOW THRU SUBAREA(CFS) = 14.52 FLOW VELOCITY(FEET /SEC) = 4.75 (PER LACFCD /RCFC &WCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 6.60 Tc(MIN.) = 29.72 LONGEST FLOWPATH FROM NODE 406.20 TO NODE 406.40 = 2860.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 406.40 TO NODE 406.40 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 29.72 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.378 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "OPEN BRUSH" A 13.30 0.61 1.00 66 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.61 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 13.30 SUBAREA RUNOFF(CFS) = 21.12 EFFECTIVE AREA(ACRES) = 20.80 AREA - AVERAGED Fm(INCH/HR) = 0.61 AREA- AVERAGED Fp(INCH /HR) = 0.61 AREA- AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 20.80 PEAK FLOW RATE(CFS) = 33.02 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 406.40 TO NODE 406.10 IS CODE = 52 »»>COMPUTE NATURAL VALLEY CHANNEL FLOW«<« »»>TRAVELTIME THRU SUBAREA««< ELEVATION DATA: UPSTREAM(FEET) = 1728.00 DOWNSTREAM(FEET) = 1693.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 1720.00 CHANNEL SLOPE = 0.0203 CHANNEL FLOW THRU SUBAREA(CFS) = 33.02 FLOW VELOCITY(FEET /SEC) = 4.91 (PER LACFCD /RCFC &WCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 5.84 Tc(MIN.) = 35.56 LONGEST FLOWPATH FROM NODE 406.20 TO NODE 406.10 = 4580.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 406.10 TO NODE 406.10 IS CODE = 81 »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«« < MAINLINE Tc(MIN) = 35.56 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.135 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "OPEN BRUSH" A 11.40 0.61 1.00 66 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.61 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 06/11/02 Q -12 SUBAREA AREA(ACRES) = 11.40 SUBAREA RUNOFF(CFS) = 15.61 EFFECTIVE AREA(ACRES) = 32.20 AREA - AVERAGED Fm(INCH/HR) = 0.61 AREA- AVERAGED Fp(INCH /HR) = 0.61 AREA- AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 32.20 PEAK FLOW RATE(CFS) = 44.09 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 406.10 TO NODE 406.10 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES« «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 35.56 RAINFALL INTENSITY(INCH /HR) = 2.14 AREA - AVERAGED Fm(INCH /HR) = 0.61 AREA- AVERAGED Fp(INCH /HR) = 0.61 AREA- AVERAGED Ap = 1.00 EFFECTIVE STREAM AREA(ACRES) = 32.20 TOTAL STREAM AREA(ACRES) = 32.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 44.09 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 525.42 18.16 3.196 0.77( 0.25) 0.33 198.3 400.00 1 519.14 18.72 3.138 0.77( 0.25) 0.33 199.8 401.00 2 44.09 35.56 2.135 0.61( 0.61) 1.00 32.2 406.20 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 563.62 18.16 3.196 0.74( 0.28) 0.38 214.7 400.00 2 557.64 18.72 3.138 0.74( 0.28) 0.38 216.7 401.00 3 382.88 35.56 2.135 0.72( 0.30) 0.42 232.0 406.20 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 563.62 Tc(MIN.) = 18.16 EFFECTIVE AREA(ACRES) = 214.69 AREA - AVERAGED Fm(INCH /HR) = 0.28 AREA- AVERAGED Fp(INCH /HR) = 0.74 AREA- AVERAGED Ap = 0.38 TOTAL AREA(ACRES) = 232.00 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 406.10 = 5185.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 406.10 TO NODE 408.10 IS CODE = 31 »» > COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA<«« » »>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 1693.00 DOWNSTREAM(FEET) = 1651.00 FLOW LENGTH(FEET) = 1290.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 66.0 INCH PIPE IS 51.6 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 28.30 ESTIMATED PIPE DIAMETER(INCH) = 66.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 563.62 PIPE TRAVEL TIME(MIN.) = 0.76 Tc(MIN.) = 18.92 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 408.10 = 6475.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 408.10 TO NODE 408.10 IS CODE = 81 06/11/02 Q -13 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 18.92 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.118 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 52.20 0.80 0.10 52 COMMERCIAL A 1.90 0.80 0.10 52 COMMERCIAL A 2.00 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 56.10 SUBAREA RUNOFF(CFS) = 153.42 EFFECTIVE AREA(ACRES) = 270.79 AREA - AVERAGED Fm(INCH/HR) = 0.24 AREA - AVERAGED Fp(INCH /HR) = 0.74 AREA- AVERAGED Ap = 0.32 TOTAL AREA(ACRES) = 288.10 PEAK FLOW RATE(CFS) = 702.04 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 408.10 TO NODE 408.10 IS CODE = 81 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 18.92 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.118 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 1.40 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 1.40 SUBAREA RUNOFF(CFS) = 3.83 EFFECTIVE AREA(ACRES) = 272.19 AREA - AVERAGED Fm(INCH /HR) = 0.24 AREA - AVERAGED Fp(INCH /HR) = 0.74 AREA- AVERAGED Ap = 0.32 TOTAL AREA(ACRES) = 289.50 PEAK FLOW RATE(CFS) = 705.87 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 408.10 TO NODE 408.10 IS CODE = 81 »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 18.92 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.118 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 1.30 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 1.30 SUBAREA RUNOFF(CFS) = 3.56 EFFECTIVE AREA(ACRES) = 273.49 AREA - AVERAGED Fm(INCH /HR) = 0.24 AREA- AVERAGED Fp(INCH /HR) = 0.74 AREA - AVERAGED Ap = 0.32 TOTAL AREA(ACRES) = 290.80 PEAK FLOW RATE(CFS) = 709.43 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 408.10 TO NODE 409.11 IS CODE = 36 »»>COMPUTE BOX -FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER - ESTIMATED BOX SIZE (PRESSURE FLOW) « « < ELEVATION DATA: UPSTREAM(FEET) = 1651.00 DOWNSTREAM(FEET) = 1647.00 FLOW LENGTH(FEET) = 862.00 MANNING'S N = 0.014 *GIVEN BOX BASEWIDTH(FEET) = 9.00 ESTIMATED BOX HEIGHT(FEET) = 7.08 BOX -FLOW VELOCITY(FEET /SEC.) = 11.13 BOX - FLOW(CFS) = 709.43 06/11/02 Q -14 BOX -FLOW TRAVEL TIME(MIN.) = 1.29 Tc(MIN.) = 20.21 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 409.11 = 7337.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 409.11 TO NODE 409.11 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 20.21 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.997 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 22.40 0.80 0.50 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA AREA(ACRES) = 22.40 SUBAREA RUNOFF(CFS) = 52.40 EFFECTIVE AREA(ACRES) = 295.89 AREA - AVERAGED Fm(INCH/HR) = 0.25 AREA- AVERAGED Fp(INCH /HR) = 0.75 AREA- AVERAGED Ap = 0.33 TOTAL AREA(ACRES) = 313.20 PEAK FLOW RATE(CFS) = 732.01 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 409.11 TO NODE 409.11 IS CODE = 81 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«« < MAINLINE Tc(MIN) = 20.21 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.997 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.80 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 0.80 SUBAREA RUNOFF(CFS) = 2.10 EFFECTIVE AREA(ACRES) = 296.69 AREA - AVERAGED Fm(INCH/HR) = 0.25 AREA - AVERAGED Fp(INCH /HR) = 0.75 AREA- AVERAGED Ap = 0.33 TOTAL AREA(ACRES) = 314.00 PEAK FLOW RATE(CFS) = 734.11 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 409.11 TO NODE 409.11 IS CODE = 81 »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 20.21 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.997 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.80 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 0.80 SUBAREA RUNOFF(CFS) = 2.10 EFFECTIVE AREA(ACRES) = 297.49 AREA - AVERAGED Fm(INCH/HR) = 0.25 AREA- AVERAGED Fp(INCH /HR) = 0.75 AREA- AVERAGED Ap = 0.33 TOTAL AREA(ACRES) = 314.80 PEAK FLOW RATE(CFS) = 736.21 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 409.11 TO NODE 410.10 IS CODE = 36 »»>COMPUTE BOX -FLOW TRAVEL TIME THRU SUBAREA««< » »>USING COMPUTER - ESTIMATED BOX SIZE (PRESSURE FLOW) «« < 06/11/02 Q -15 ELEVATION DATA: UPSTREAM(FEET) = 1647.00 DOWNSTREAM(FEET) = 1643.00 FLOW LENGTH(FEET) = 825.00 MANNING'S N = 0.014 *GIVEN BOX BASEWIDTH(FEET) = 9.00 ESTIMATED BOX HEIGHT(FEET) = 7.17 BOX -FLOW VELOCITY(FEET /SEC.) = 11.41 BOX - FLOW(CFS) = 736.21 BOX -FLOW TRAVEL TIME(MIN.) = 1.20 Tc(MIN.) = 21.41 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 410.10 = 8162.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 410.10 TO NODE 410.10 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 21.41 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.895 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 25.70 0.80 0.50 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA AREA(ACRES) = 25.70 SUBAREA RUNOFF(CFS) = 57.75 EFFECTIVE AREA(ACRES) = 323.19 AREA - AVERAGED Fm(INCH /HR) = 0.26 AREA- AVERAGED Fp(INCH /HR) = 0.75 AREA- AVERAGED Ap = 0.34 TOTAL AREA(ACRES) = 340.50 PEAK FLOW RATE(CFS) = 766.56 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 410.10 TO NODE 410.10 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 21.41 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.895 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.80 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 0.80 SUBAREA RUNOFF(CFS) = 2.03 EFFECTIVE AREA(ACRES) = 323.99 AREA - AVERAGED Fm(INCH/HR) = 0.26 AREA- AVERAGED Fp(INCH /HR) = 0.75 AREA- AVERAGED Ap = 0.34 TOTAL AREA(ACRES) = 341.30 PEAK FLOW RATE(CFS) = 768.59 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 410.10 TO NODE 410.10 IS CODE = 81 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 21.41 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.895 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.80 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 0.80 SUBAREA RUNOFF(CFS) = 2.03 EFFECTIVE AREA(ACRES) = 324.79 AREA - AVERAGED Fm(INCH/HR) = 0.26 AREA- AVERAGED Fp(INCH /HR) = 0.75 AREA- AVERAGED Ap = 0.34 TOTAL AREA(ACRES) = 342.10 PEAK FLOW RATE(CFS) = 770.61 * * * * * ** .. ********************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 06/11/02 Q -16 FLOW PROCESS FROM NODE 410.10 TO NODE 411.10 IS CODE = 36 » » >COMPUTE BOX -FLOW TRAVEL TIME THRU SUBAREA« «< » » >USING COMPUTER - ESTIMATED BOX SIZE (PRESSURE FLOW)<«« ELEVATION DATA: UPSTREAM(FEET) = 1643.00 DOWNSTREAM(FEET) = 1639.00 FLOW LENGTH(FEET) = 862.00 MANNING'S N = 0.013 *GIVEN BOX BASEWIDTH(FEET) = 9.00 ESTIMATED BOX HEIGHT(FEET) = 7.13 BOX -FLOW VELOCITY(FEET /SEC.) = 12.01 BOX - FLOW(CFS) = 770.61 BOX -FLOW TRAVEL TIME(MIN.) = 1.20 Tc(MIN.) = 22.61 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 411.10 = 9024.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 411.10 TO NODE 411.10 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 22.61 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.802 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 25.30 0.80 0.50 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA AREA(ACRES) = 25.30 SUBAREA RUNOFF(CFS) = 54.74 EFFECTIVE AREA(ACRES) = 350.09 AREA - AVERAGED Fm(INCH/HR) = 0.27 AREA- AVERAGED Fp(INCH /HR) = 0.76 AREA- AVERAGED Ap = 0.35 TOTAL AREA(ACRES) = 367.40 PEAK FLOW RATE(CFS) = 798.19 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 411.10 TO NODE 411.10 IS CODE = 81 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 22.61 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.802 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.90 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 0.90 SUBAREA RUNOFF(CFS) = 2.21 EFFECTIVE AREA(ACRES) = 350.99 AREA - AVERAGED Fm(INCH/HR) = 0.27 AREA- AVERAGED Fp(INCH /HR) = 0.76 AREA- AVERAGED Ap = 0.35 TOTAL AREA(ACRES) = 368.30 PEAK FLOW RATE(CFS) = 800.40 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 411.10 TO NODE 411.10 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 22.61 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.802 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.90 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 0.90 SUBAREA RUNOFF(CFS) = 2.21 06/11/02 Q -17 EFFECTIVE AREA(ACRES) = 351.89 AREA - AVERAGED Fm(INCH/HR) = 0.27 AREA- AVERAGED Fp(INCH /HR) = 0.76 AREA- AVERAGED Ap = 0.35 TOTAL AREA(ACRES) = 369.20 PEAK FLOW RATE(CFS) = 802.60 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 411.10 TO NODE 411.10 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«« < TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 22.61 RAINFALL INTENSITY(INCH /HR) = 2.80 AREA - AVERAGED Fm(INCH /HR) = 0.27 AREA- AVERAGED Fp(INCH /HR) = 0.76 AREA- AVERAGED Ap = 0.35 EFFECTIVE STREAM AREA(ACRES) = 351.89 TOTAL STREAM AREA(ACRES) = 369.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 802.60 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 415.10 TO NODE 415.11 IS CODE = 21 >» »RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 1000.00 ELEVATION DATA: UPSTREAM(FEET) = 1754.00 DOWNSTREAM(FEET) = 1728.50 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.842 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.934 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 8.50 0.80 0.50 52 12.84 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA RUNOFF(CFS) = 27.05 TOTAL AREA(ACRES) = 8.50 PEAK FLOW RATE(CFS) = 27.05 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 415.11 TO NODE 415.21 IS CODE = 61 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« « » »>(STANDARD CURB SECTION USED)< «« UPSTREAM ELEVATION(FEET) = 1728.50 DOWNSTREAM ELEVATION(FEET) = 1700.00 STREET LENGTH(FEET) = 1230.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to - curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 42.67 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.55 06/11/02 Q -18 HALFSTREET FLOOD WIDTH(FEET) = 19.80 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.19 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.88 STREET FLOW TRAVEL TIME(MIN.) = 3.95 Tc(MIN.) = 16.79 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.349 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 8.00 0.80 0.50 52 NATURAL FAIR COVER "OPEN BRUSH" A 4.00 0.61 1.00 66 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.71 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.67 SUBAREA AREA(ACRES) = 12.00 SUBAREA RUNOFF(CFS) = 31.09 EFFECTIVE AREA(ACRES) = 20.50 AREA - AVERAGED Fm(INCH/HR) = 0.44 AREA- AVERAGED Fp(INCH /HR) = 0.74 AREA- AVERAGED Ap = 0.60 TOTAL AREA(ACRES) = 20.50 PEAK FLOW RATE(CFS) = 53.67 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.59 HALFSTREET FLOOD WIDTH(FEET) = 20.00 FLOW VELOCITY(FEET /SEC.) = 5.66 DEPTH * VELOCITY(FT*FT /SEC.) = 3.32 LONGEST FLOWPATH FROM NODE 415.10 TO NODE 415.21 = 2230.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 415.21 TO NODE 415.31 IS CODE = 61 ---------------------------------------------------------------------------- » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »» >(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 1700.00 DOWNSTREAM ELEVATION(FEET) = 1696.50 STREET LENGTH(FEET) = 400.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 76.15 ** *STREET FLOWING FULL * ** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.74 HALFSTREET FLOOD WIDTH(FEET) = 23.70 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.77 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 3.54 STREET FLOW TRAVEL TIME(MIN.) = 1.40 Tc(MIN.) = 18.19 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.192 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 15.10 0.80 0.50 52 NATURAL FAIR COVER "OPEN BRUSH" A 3.00 0.61 1.00 66 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.74 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.58 SUBAREA AREA(ACRES) = 18.10 SUBAREA RUNOFF(CFS) = 44.94 EFFECTIVE AREA(ACRES) = 38.60 AREA - AVERAGED Fm(INCH /HR) = 0.44 AREA- AVERAGED Fp(INCH /HR) = 0.74 AREA- AVERAGED Ap = 0.59 06/11/02 Q -19 TOTAL AREA(ACRES) = 38.60 PEAK FLOW RATE(CFS) = 95.72 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.80 HALFSTREET FLOOD WIDTH(FEET) = 26.45 FLOW VELOCITY(FEET /SEC.) = 5.12 DEPTH *VELOCITY(FT *FT /SEC.) = 4.07 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS, AND L = 400.0 FT WITH ELEVATION -DROP = 3.5 FT, IS 63.2 CFS, WHICH EXCEEDS THE TOP -OF -CURB STREET CAPACITY AT NODE 415.31 LONGEST FLOWPATH FROM NODE 415.10 TO NODE 415.31 = 2630.00 FEET. FLOW PROCESS FROM NODE 415.31 TO NODE 415.41 IS CODE = 61 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< » »>(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 1696.50 DOWNSTREAM ELEVATION(FEET) = 1695.50 STREET LENGTH(FEET) = 350.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 114.38 ** *STREET FLOWING FULL * ** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 1.02 HALFSTREET FLOOD WIDTH(FEET) = 37.68 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.45 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 3.52 STREET FLOW TRAVEL TIME(MIN.) = 1.69 Tc(MIN.) = 19.88 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.027 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 13.30 0.80 0.50 52 NATURAL FAIR COVER "OPEN BRUSH" A 2.70 0.61 1.00 66 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.74 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.58 SUBAREA AREA(ACRES) = 16.00 SUBAREA RUNOFF(CFS) = 37.33 EFFECTIVE AREA(ACRES) = 54.60 AREA - AVERAGED Fm(INCH/HR) = 0.44 AREA - AVERAGED Fp(INCH /HR) = 0.74 AREA- AVERAGED Ap = 0.59 TOTAL AREA(ACRES) = 54.60 PEAK FLOW RATE(CFS) = 127.29 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 1.06 HALFSTREET FLOOD WIDTH(FEET) = 39.63 FLOW VELOCITY(FEET /SEC.) = 3.52 DEPTH *VELOCITY(FT *FT /SEC.) = 3.73 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS, AND L = 350.0 FT WITH ELEVATION -DROP = 1.0 FT, IS 49.8 CFS, WHICH EXCEEDS THE TOP -OF -CURB STREET CAPACITY AT NODE 415.41 LONGEST FLOWPATH FROM NODE 415.10 TO NODE 415.41 = 2980.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 415.41 TO NODE 411.10 IS CODE = 41 »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< 06/11/02 Q -20 »»>USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 1689.50 DOWNSTREAM(FEET) = 1639.00 FLOW LENGTH(FEET) = 1318.00 MANNING'S N = 0.013 ASSUME FULL - FLOWING PIPELINE PIPE -FLOW VELOCITY(FEET /SEC.) = 18.01 PIPE FLOW VELOCITY = (TOTAL FLOW) /(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 127.29 PIPE TRAVEL TIME(MIN.) = 1.22 Tc(MIN.) = 21.10 LONGEST FLOWPATH FROM NODE 415.10 TO NODE 411.10 = 4298.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 411.10 TO NODE 411.10 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 21.10 RAINFALL INTENSITY(INCH /HR) = 2.92 AREA - AVERAGED Fm(INCH/HR) = 0.44 AREA- AVERAGED Fp(INCH /HR) = 0.74 AREA- AVERAGED Ap = 0.59 EFFECTIVE STREAM AREA(ACRES) = 54.60 TOTAL STREAM AREA(ACRES) = 54.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 127.29 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 802.60 22.61 2.802 0.76( 0.27) 0.35 351.9 400.00 1 793.84 23.18 2.760 0.76( 0.27) 0.35 353.9 401.00 1 562.38 40.50 1.975 0.74( 0.28) 0.38 369.2 406.20 2 127.29 21.10 2.921 0.74( 0.44) 0.59 54.6 415.10 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 911.36 21.10 2.921 0.75( 0.29) 0.39 383.0 415.10 2 923.81 22.61 2.802 0.75( 0.29) 0.39 406.5 400.00 3 912.91 23.18 2.760 0.75( 0.29) 0.39 408.5 401.00 4 641.21 40.50 1.975 0.74( 0.30) 0.41 423.8 406.20 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 923.81 Tc(MIN.) = 22.61 EFFECTIVE AREA(ACRES) = 406.49 AREA - AVERAGED Fm(INCH /HR) = 0.29 AREA- AVERAGED Fp(INCH /HR) = 0.75 AREA- AVERAGED Ap = 0.39 TOTAL AREA(ACRES) = 423.80 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 411.10 = 9024.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 411.10 TO NODE 416.10 IS CODE = 36 »»> COMPUTE BOX -FLOW TRAVEL TIME THRU SUBAREA< «« »» >USING COMPUTER - ESTIMATED BOX SIZE (PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 1639.00 DOWNSTREAM(FEET) = 1635.60 FLOW LENGTH(FEET) = 738.00 MANNING'S N = 0.013 *GIVEN BOX BASEWIDTH(FEET) = 10.00 ESTIMATED BOX HEIGHT(FEET) = 7.39 06/11/02 Q -21 BOX -FLOW VELOCITY(FEET /SEC.) = 12.50 BOX - FLOW(CFS) = 923.81 BOX -FLOW TRAVEL TIME(MIN.) = 0.98 Tc(MIN.) = 23.59 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 416.10 = 9762.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 416.10 TO NODE 416.10 IS CODE = 81 »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 23.59 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.731 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 20.70 0.80 0.50 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA AREA(ACRES) = 20.70 SUBAREA RUNOFF(CFS) = 43.47 EFFECTIVE AREA(ACRES) = 427.19 AREA - AVERAGED Fm(INCH /HR) = 0.30 AREA- AVERAGED Fp(INCH /HR) = 0.76 AREA- AVERAGED Ap = 0.39 TOTAL AREA(ACRES) = 444.50 PEAK FLOW RATE(CFS) = 936.44 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 416.10 TO NODE 416.10 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 23.59 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.731 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.75 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 0.75 SUBAREA RUNOFF(CFS) = 1.79 EFFECTIVE AREA(ACRES) = 427.94 AREA - AVERAGED Fm(INCH/HR) = 0.30 AREA- AVERAGED Fp(INCH /HR) = 0.76 AREA - AVERAGED Ap = 0.39 TOTAL AREA(ACRES) = 445.25 PEAK FLOW RATE(CFS) = 938.23 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 416.10 TO NODE 416.10 IS CODE = 81 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 23.59 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.731 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.75 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 0.75 SUBAREA RUNOFF(CFS) = 1.79 EFFECTIVE AREA(ACRES) = 428.69 AREA - AVERAGED Fm(INCH/HR) = 0.29 AREA- AVERAGED Fp(INCH /HR) = 0.76 AREA- AVERAGED Ap = 0.39 TOTAL AREA(ACRES) = 446.00 PEAK FLOW RATE(CFS) = 940.02 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 416.10 TO NODE 417.12 IS CODE = 36 »» >COMPUTE BOX -FLOW TRAVEL TIME THRU SUBAREA««< • 06/11/02 Q-22 »» >USING COMPUTER - ESTIMATED BOX SIZE (PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 1635.60 DOWNSTREAM(FEET) = 1630.50 FLOW LENGTH(FEET) = 1100.00 MANNING'S N = 0.013 *GIVEN BOX BASEWIDTH(FEET) = 10.00 ESTIMATED BOX HEIGHT(FEET) = 7.47 BOX -FLOW VELOCITY(FEET /SEC.) = 12.59 BOX - FLOW(CFS) = 940.02 BOX -FLOW TRAVEL TIME(MIN.) = 1.46 Tc(MIN.) = 25.05 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 417.12 = 10862.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 417.12 TO NODE 417.12 IS CODE = 81 »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 25.05 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.635 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 31.60 0.80 0.50 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA AREA(ACRES) = 31.60 SUBAREA RUNOFF(CFS) = 63.61 EFFECTIVE AREA(ACRES) = 460.29 AREA - AVERAGED Fm(INCH /HR) = 0.30 AREA- AVERAGED Fp(INCH /HR) = 0.76 AREA- AVERAGED Ap = 0.40 TOTAL AREA(ACRES) = 477.60 PEAK FLOW RATE(CFS) = 966.44 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 417.12 TO NODE 417.12 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 25.05 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.635 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 1.20 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 1.20 SUBAREA RUNOFF(CFS) = 2.76 EFFECTIVE AREA(ACRES) = 461.49 AREA - AVERAGED Fm(INCH/HR) = 0.30 AREA- AVERAGED Fp(INCH /HR) = 0.76 AREA- AVERAGED Ap = 0.40 TOTAL AREA(ACRES) = 478.80 PEAK FLOW RATE(CFS) = 969.20 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 417.12 TO NODE 417.12 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 25.05 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.635 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 1.10 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 1.10 SUBAREA RUNOFF(CFS) = 2.53 EFFECTIVE AREA(ACRES) = 462.59 AREA - AVERAGED Fm(INCH/HR) = 0.30 AREA- AVERAGED Fp(INCH /HR) = 0.76 AREA- AVERAGED Ap = 0.40 TOTAL AREA(ACRES) = 479.90 PEAK FLOW RATE(CFS) = 971.73 06/11/02 Q-23 FLOW PROCESS FROM NODE 417.12 TO NODE 417.10 IS CODE = 36 »» >COMPUTE BOX -FLOW TRAVEL TIME THRU SUBAREA« «< » »>USING COMPUTER - ESTIMATED BOX SIZE (PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 1630.50 DOWNSTREAM(FEET) = 1626.00 FLOW LENGTH(FEET) = 900.00 MANNING'S N = 0.013 *GIVEN BOX BASEWIDTH(FEET) = 10.00 ESTIMATED BOX HEIGHT(FEET) = 7.44 BOX -FLOW VELOCITY(FEET /SEC.) = 13.05 BOX - FLOW(CFS) = 971.73 BOX -FLOW TRAVEL TIME(MIN.) = 1.15 Tc(MIN.) = 26.20 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 417.10 = 11762.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 417.10 TO NODE 417.10 IS CODE = 81 »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 26.20 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.565 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 1.00 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 2.24 EFFECTIVE AREA(ACRES) = 463.59 AREA - AVERAGED Fm(INCH/HR) = 0.30 AREA- AVERAGED Fp(INCH /HR) = 0.76 AREA- AVERAGED Ap = 0.40 TOTAL AREA(ACRES) = 480.90 PEAK FLOW RATE(CFS) = 971.73 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 417.10 TO NODE 417.10 IS CODE = 81 »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 26.20 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.565 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 1.00 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 2.24 EFFECTIVE AREA(ACRES) = 464.59 AREA - AVERAGED Fm(INCH /HR) = 0.30 AREA- AVERAGED Fp(INCH /HR) = 0.76 AREA- AVERAGED Ap = 0.39 TOTAL AREA(ACRES) = 481.90 PEAK FLOW RATE(CFS) = 971.73 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 417.10 TO NODE 417.10 IS CODE = 10 » »>MAIN- STREAM MEMORY COPIED ONTO MEMORY BANK # 1 «« < ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 412.00 TO NODE 412.10 IS CODE = 21 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« 06/11/02 Q -24 INITIAL SUBAREA FLOW - LENGTH(FEET) = 870.00 ELEVATION DATA: UPSTREAM(FEET) = 1813.50 DOWNSTREAM(FEET) = 1801.50 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 13.735 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.779 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 9.50 0.80 0.50 52 13.73 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA RUNOFF(CFS) = 28.90 TOTAL AREA(ACRES) = 9.50 PEAK FLOW RATE(CFS) = 28.90 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 412.10 TO NODE 412.11 IS CODE = 31 »» >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< »» >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 1795.50 DOWNSTREAM(FEET) = 1784.00 FLOW LENGTH(FEET) = 350.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.1 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 13.86 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 28.90 PIPE TRAVEL TIME(MIN.) = 0.42 Tc(MIN.) = 14.16 LONGEST FLOWPATH FROM NODE 412.00 TO NODE 412.11 = 1220.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 412.11 TO NODE 412.11 IS CODE = 81 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 14.16 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.711 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 9.50 0.80 0.50 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA AREA(ACRES) = 9.50 SUBAREA RUNOFF(CFS) = 28.32 EFFECTIVE AREA(ACRES) = 19.00 AREA - AVERAGED Fm(INCH /HR) = 0.40 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 19.00 PEAK FLOW RATE(CFS) = 56.65 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 412.11 TO NODE 413.10 IS CODE = 31 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1784.00 DOWNSTREAM(FEET) = 1773.80 FLOW LENGTH(FEET) = 350.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 20.9 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 15.55 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 56.65 PIPE TRAVEL TIME(MIN.) = 0.38 Tc(MIN.) = 14.53 06/11/02 Q-25 LONGEST FLOWPATH FROM NODE 412.00 TO NODE 413.10 = 1570.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 413.10 TO NODE 413.10 IS CODE = 81 »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 14.53 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.653 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 9.50 0.80 0.50 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA AREA(ACRES) = 9.50 SUBAREA RUNOFF(CFS) = 27.83 EFFECTIVE AREA(ACRES) = 28.50 AREA - AVERAGED Fm(INCH/HR) = 0.40 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 28.50 PEAK FLOW RATE(CFS) = 83.49 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 413.10 TO NODE 414.10 IS CODE = 31 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< »» >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 1773.80 DOWNSTREAM(FEET) = 1742.00 FLOW LENGTH(FEET) = 1030.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 25.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 17.30 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 83.49 PIPE TRAVEL TIME(MIN.) = 0.99 Tc(MIN.) = 15.52 LONGEST FLOWPATH FROM NODE 412.00 TO NODE 414.10 = 2600.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 414.10 TO NODE 414.10 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « < MAINLINE Tc(MIN) = 15.52 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.511 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 22.80 0.80 0.50 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA AREA(ACRES) = 22.80 SUBAREA RUNOFF(CFS) = 63.88 EFFECTIVE AREA(ACRES) = 51.30 AREA - AVERAGED Fm(INCH /HR) = 0.40 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 51.30 PEAK FLOW RATE(CFS) = 143.73 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 414.10 TO NODE 418.10 IS CODE = 31 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » »>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 1742.00 DOWNSTREAM(FEET) = 1740.00 FLOW LENGTH(FEET) = 200.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 51.0 INCH PIPE IS 36.9 INCHES 06/11/02 Q-26 PIPE -FLOW VELOCITY(FEET /SEC.) = 13.07 ESTIMATED PIPE DIAMETER(INCH) = 51.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 143.73 PIPE TRAVEL TIME(MIN.) = 0.25 Tc(MIN.) = 15.78 LONGEST FLOWPATH FROM NODE 412.00 TO NODE 418.10 = 2800.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 418.10 TO NODE 418.10 IS CODE = 81 »» > ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 15.78 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.477 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 9.20 0.80 0.50 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA AREA(ACRES) = 9.20 SUBAREA RUNOFF(CFS) = 25.49 EFFECTIVE AREA(ACRES) = 60.50 AREA - AVERAGED Fm(INCH/HR) = 0.40 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 60.50 PEAK FLOW RATE(CFS) = 167.64 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 418.10 TO NODE 419.10 IS CODE = 31 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » »>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « « < ELEVATION DATA: UPSTREAM(FEET) = 1740.00 DOWNSTREAM(FEET) = 1738.00 FLOW LENGTH(FEET) = 220.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 54.0 INCH PIPE IS 40.7 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 13.03 ESTIMATED PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 167.64 PIPE TRAVEL TIME(MIN.) = 0.28 Tc(MIN.) = 16.06 LONGEST FLOWPATH FROM NODE 412.00 TO NODE 419.10 = 3020.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 419.10 TO NODE 419.10 IS CODE = 81 »> »ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 16.06 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.440 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 10.50 0.80 0.50 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA AREA(ACRES) = 10.50 SUBAREA RUNOFF(CFS) = 28.75 EFFECTIVE AREA(ACRES) = 71.00 AREA - AVERAGED Fm(INCH/HR) = 0.40 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 71.00 PEAK FLOW RATE(CFS) = 194.39 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 419.10 TO NODE 420.10 IS CODE = 31 »» >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) «« < 06/11/02 Q -27 ELEVATION DATA: UPSTREAM(FEET) = 1738.00 DOWNSTREAM(FEET) = 1734.00 FLOW LENGTH(FEET) = 450.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 57.0 INCH PIPE IS 43.6 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 13.38 ESTIMATED PIPE DIAMETER(INCH) = 57.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 194.39 PIPE TRAVEL TIME(MIN.) = 0.56 Tc(MIN.) = 16.62 LONGEST FLOWPATH FROM NODE 412.00 TO NODE 420.10 = 3470.00 FEET. FLOW PROCESS FROM NODE 420.10 TO NODE 420.10 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « < MAINLINE Tc(MIN) = 16.62 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.370 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 20.70 0.80 0.50 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA AREA(ACRES) = 20.70 SUBAREA RUNOFF(CFS) = 55.37 EFFECTIVE AREA(ACRES) = 91.70 AREA - AVERAGED Fm(INCH/HR) = 0.40 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 91.70 PEAK FLOW RATE(CFS) = 245.29 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 420.10 TO NODE 420.20 IS CODE = 31 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 1734.00 DOWNSTREAM(FEET) = 1729.50 FLOW LENGTH(FEET) = 500.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 63.0 INCH PIPE IS 46.5 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 14.33 ESTIMATED PIPE DIAMETER(INCH) = 63.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 245.29 PIPE TRAVEL TIME(MIN.) = 0.58 Tc(MIN.) = 17.20 LONGEST FLOWPATH FROM NODE 412.00 TO NODE 420.20 = 3970.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 420.20 TO NODE 420.20 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 17.20 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.301 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 23.00 0.80 0.50 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA AREA(ACRES) = 23.00 SUBAREA RUNOFF(CFS) = 60.10 EFFECTIVE AREA(ACRES) = 114.70 AREA - AVERAGED Fm(INCH/HR) = 0.40 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 114.70 PEAK FLOW RATE(CFS) = 299.70 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 06/11/02 Q -28 FLOW PROCESS FROM NODE 420.20 TO NODE 421.20 IS CODE = 31 »» >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« « < » »>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1729.50 DOWNSTREAM(FEET) = 1718.50 FLOW LENGTH(FEET) = 1304.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 66.0 INCH PIPE IS 53.9 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 14.42 ESTIMATED PIPE DIAMETER(INCH) = 66.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 299.70 PIPE TRAVEL TIME(MIN.) = 1.51 Tc(MIN.) = 18.71 LONGEST FLOWPATH FROM NODE 412.00 TO NODE 421.20 = 5274.00 FEET. FLOW PROCESS FROM NODE 421.20 TO NODE 421.20 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« MAINLINE Tc(MIN) = 18.71 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.139 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 4.80 0.80 0.10 52 RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 13.60 0.80 0.50 52 NATURAL FAIR COVER "OPEN BRUSH" A 5.70 0.61 1.00 66 COMMERCIAL A 0.80 0.80 0.10 52 RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 53.50 0.80 0.50 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.77 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.51 SUBAREA AREA(ACRES) = 78.40 SUBAREA RUNOFF(CFS) = 193.90 EFFECTIVE AREA(ACRES) = 193.10 AREA - AVERAGED Fm(INCH/HR) = 0.40 AREA- AVERAGED Fp(INCH /HR) = 0.79 AREA- AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 193.10 PEAK FLOW RATE(CFS) = 476.86 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 421.20 TO NODE 425.10 IS CODE = 31 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) «<« ELEVATION DATA: UPSTREAM(FEET) = 1718.50 DOWNSTREAM(FEET) = 1667.50 FLOW LENGTH(FEET) = 2000.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 66.0 INCH PIPE IS 49.5 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 24.94 ESTIMATED PIPE DIAMETER(INCH) = 66.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 476.86 PIPE TRAVEL TIME(MIN.) = 1.34 Tc(MIN.) = 20.04 LONGEST FLOWPATH FROM NODE 412.00 TO NODE 425.10 = 7274.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 425.10 TO NODE 425.10 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 20.04 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.012 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN 06/11/02 Q-29 COMMERCIAL A 4.80 0.80 0.10 52 RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 38.30 0.80 0.50 52 NATURAL FAIR COVER "OPEN BRUSH" A 8.20 0.61 1.00 66 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.74 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.54 SUBAREA AREA(ACRES) = 51.30 SUBAREA RUNOFF(CFS) = 120.46 EFFECTIVE AREA(ACRES) = 244.40 AREA - AVERAGED Fm(INCH/HR) = 0.40 AREA- AVERAGED Fp(INCH /HR) = 0.78 AREA- AVERAGED Ap = 0.51 TOTAL AREA(ACRES) = 244.40 PEAK FLOW RATE(CFS) = 575.19 ************************************,-******** * * * * * * * * * * * * * * * * * * * * * *. * * * * * * ** FLOW PROCESS FROM NODE 425.10 TO NODE 425.10 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 20.04 RAINFALL INTENSITY(INCH /HR) = 3.01 AREA - AVERAGED Fm(INCH/HR) = 0.40 AREA- AVERAGED Fp(INCH /HR) = 0.78 AREA - AVERAGED Ap = 0.51 EFFECTIVE STREAM AREA(ACRES) = 244.40 TOTAL STREAM AREA(ACRES) = 244.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 575.19 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 422.10 TO NODE 422.11 IS CODE = 21 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 860.00 ELEVATION DATA: UPSTREAM(FEET) = 1748.00 DOWNSTREAM(FEET) = 1729.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.442 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.009 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 6.90 0.80 0.50 52 12.44 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA RUNOFF(CFS) = 22.43 TOTAL AREA(ACRES) = 6.90 PEAK FLOW RATE(CFS) = 22.43 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 422.11 TO NODE 423.10 IS CODE = 31 »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< »»>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 1723.00 DOWNSTREAM(FEET) = 1687.50 FLOW LENGTH(FEET) = 1480.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 24.000 DEPTH OF FLOW IN 24.0 INCH PIPE IS 14.2 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 11.60 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 22.43 PIPE TRAVEL TIME(MIN.) = 2.13 Tc(MIN.) = 14.57 06/11/02 Q -30 LONGEST FLOWPATH FROM NODE 422.10 TO NODE 423.10 = 2340.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 423.10 TO NODE 423.10 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE TC(MIN) = 14.57 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.647 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "OPEN BRUSH" A 3.40 0.61 1.00 66 RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 9.40 0.80 0.50 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.72 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.63 SUBAREA AREA(ACRES) = 12.80 SUBAREA RUNOFF(CFS) = 36.77 EFFECTIVE AREA(ACRES) = 19.70 AREA - AVERAGED Fm(INCH /HR) = 0.44 AREA- AVERAGED Fp(INCH /HR) = 0.74 AREA- AVERAGED Ap = 0.59 TOTAL AREA(ACRES) = 19.70 PEAK FLOW RATE(CFS) = 56.95 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 423.10 TO NODE 423.20 IS CODE = 31 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« » >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 1687.50 DOWNSTREAM(FEET) = 1678.00 FLOW LENGTH(FEET) = 450.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 24.1 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 13.49 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 56.95 PIPE TRAVEL TIME(MIN.) = 0.56 Tc(MIN.) = 15.12 LONGEST FLOWPATH FROM NODE 422.10 TO NODE 423.20 = 2790.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 423.20 TO NODE 423.20 IS CODE = 81 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 15.12 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.566 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 20.00 0.80 0.50 52 NATURAL FAIR COVER "OPEN BRUSH" A 4.00 0.61 1.00 66 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.74 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.58 SUBAREA AREA(ACRES) = 24.00 SUBAREA RUNOFF(CFS) = 67.66 EFFECTIVE AREA(ACRES) = 43.70 AREA - AVERAGED Fm(INCH /HR) = 0.43 AREA- AVERAGED Fp(INCH /HR) = 0.74 AREA- AVERAGED Ap = 0.58 TOTAL AREA(ACRES) = 43.70 PEAK FLOW RATE(CFS) = 123.17 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 423.20 TO NODE 424.10 IS CODE = 31 »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< »»>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< 06/11/02 Q -31 ELEVATION DATA: UPSTREAM(FEET) = 1678.00 DOWNSTREAM(FEET) = 1676.00 FLOW LENGTH(FEET) = 500.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 57.0 INCH PIPE IS 41.5 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 8.91 ESTIMATED PIPE DIAMETER(INCH) = 57.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 123.17 PIPE TRAVEL TIME(MIN.) = 0.93 Tc(MIN.) = 16.06 LONGEST FLOWPATH FROM NODE 422.10 TO NODE 424.10 = 3290.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 424.10 TO NODE 424.10 IS CODE = 81 »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW «« < MAINLINE Tc(MIN) = 16.06 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.440 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 20.00 0.80 0.50 52 NATURAL FAIR COVER "OPEN BRUSH" A 4.00 0.61 1.00 66 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.74 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.58 SUBAREA AREA(ACRES) = 24.00 SUBAREA RUNOFF(CFS) = 64.93 EFFECTIVE AREA(ACRES) = 67.70 AREA - AVERAGED Fm(INCH /HR) = 0.43 AREA- AVERAGED Fp(INCH /HR) = 0.74 AREA- AVERAGED Ap = 0.58 TOTAL AREA(ACRES) = 67.70 PEAK FLOW RATE(CFS) = 183.14 ********************************************* * * * * * * * * ** * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 424.10 TO NODE 425.10 IS CODE = 31 »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » »>USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 1676.00 DOWNSTREAM(FEET) = 1667.50 FLOW LENGTH(FEET) = 1318.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 60.0 INCH PIPE IS 44.4 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 11.75 ESTIMATED PIPE DIAMETER(INCH) = 60.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 183.14 PIPE TRAVEL TIME(MIN.) = 1.87 Tc(MIN.) = 17.93 LONGEST FLOWPATH FROM NODE 422.10 TO NODE 425.10 = 4608.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 425.10 TO NODE 425.10 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 17.93 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.220 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 49.30 0.80 0.50 52 NATURAL FAIR COVER "OPEN BRUSH" A 10.00 0.61 1.00 66 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.74 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.58 SUBAREA AREA(ACRES) = 59.30 SUBAREA RUNOFF(CFS) = 148.67 EFFECTIVE AREA(ACRES) = 127.00 AREA - AVERAGED Fm(INCH/HR) = 0.43 06/11/02 Q -32 AREA- AVERAGED Fp(INCH /HR) = 0.74 AREA- AVERAGED Ap = 0.58 TOTAL AREA(ACRES) = 127.00 PEAK FLOW RATE(CFS) = 318.41 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 425.10 TO NODE 425.10 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 17.93 RAINFALL INTENSITY(INCH /HR) = 3.22 AREA - AVERAGED Fm(INCH/HR) = 0.43 AREA - AVERAGED Fp(INCH /HR) = 0.74 AREA- AVERAGED Ap = 0.58 EFFECTIVE STREAM AREA(ACRES) = 127.00 TOTAL STREAM AREA(ACRES) = 127.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 318.41 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 575.19 20.04 3.012 0.78( 0.40) 0.51 244.4 412.00 2 318.41 17.93 3.220 0.74( 0.43) 0.58 127.0 422.10 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 873.90 17.93 3.220 0.76( 0.41) 0.54 345.6 422.10 2 869.77 20.04 3.012 0.76( 0.41) 0.54 371.4 412.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 873.90 Tc(MIN.) = 17.93 EFFECTIVE AREA(ACRES) = 345.61 AREA - AVERAGED Fm(INCH /HR) = 0.41 AREA- AVERAGED Fp(INCH /HR) = 0.76 AREA- AVERAGED Ap = 0.54 TOTAL AREA(ACRES) = 371.40 LONGEST FLOWPATH FROM NODE 412.00 TO NODE 425.10 = 7274.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 425.10 TO NODE 417.10 IS CODE = 31 » » > COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « « < ELEVATION DATA: UPSTREAM(FEET) = 1667.50 DOWNSTREAM(FEET) = 1626.00 FLOW LENGTH(FEET) = 1300.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 78.0 INCH PIPE IS 61.1 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 31.33 ESTIMATED PIPE DIAMETER(INCH) = 78.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 873.90 PIPE TRAVEL TIME(MIN.) = 0.69 Tc(MIN.) = 18.62 LONGEST FLOWPATH FROM NODE 412.00 TO NODE 417.10 = 8574.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 417.10 TO NODE 417.10 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 18.62 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.148 06/11/02 Q -33 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 3.00 0.80 0.10 52 RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 15.10 0.80 0.50 52 COMMERCIAL A 9.10 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.32 SUBAREA AREA(ACRES) = 27.20 SUBAREA RUNOFF(CFS) = 70.78 EFFECTIVE AREA(ACRES) = 372.81 AREA - AVERAGED Fm(INCH/HR) = 0.40 AREA - AVERAGED Fp(INCH/HR) = 0.76 AREA- AVERAGED Ap = 0.52 TOTAL AREA(ACRES) = 398.60 PEAK FLOW RATE(CFS) = 922.20 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 417.10 TO NODE 417.10 IS CODE = 11 »» > CONFLUENCE MEMORY BANK # 1 WITH THE MAIN- STREAM MEMORY««< ** MAIN STREAM CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 922.20 18.62 3.148 0.76( 0.40) 0.52 372.8 422.10 2 915.45 20.74 2.951 0.77( 0.40) 0.52 398.6 412.00 LONGEST FLOWPATH FROM NODE 412.00 TO NODE 417.10 = 8574.00 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 960.99 24.70 2.657 0.76( 0.30) 0.40 441.1 415.10 2 971.73 26.20 2.565 0.76( 0.30) 0.39 464.6 400.00 3 960.90 26.78 2.531 0.76( 0.30) 0.39 466.6 401.00 4 686.21 44.48 1.867 0.75( 0.31) 0.41 481.9 406.20 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 417.10 = 11762.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 1797.63 18.62 3.148 0.76( 0.35) 0.46 705.3 422.10 2 1822.94 20.74 2.951 0.76( 0.35) 0.46 768.9 412.00 3 1770.98 24.70 2.657 0.76( 0.35) 0.46 839.7 415.10 4 1748.64 26.20 2.565 0.76( 0.35) 0.45 863.2 400.00 5 1725.71 26.78 2.531 0.76( 0.35) 0.45 865.2 401.00 6 1212.77 44.48 1.867 0.76( 0.35) 0.46 880.5 406.20 TOTAL AREA(ACRES) = 880.50 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 1822.94 Tc(MIN.) = 20.737 EFFECTIVE AREA(ACRES) = 768.92 AREA - AVERAGED Fm(INCH/HR) = 0.35 AREA- AVERAGED Fp(INCH /HR) = 0.76 AREA- AVERAGED Ap = 0.46 TOTAL AREA(ACRES) = 880.50 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 417.10 = 11762.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 417.10 TO NODE 417.10 IS CODE = 71 » »>PEAK FLOW RATE ESTIMATOR CHANGED TO UNIT - HYDROGRAPH METHOD««< »» >USING TIME -OF- CONCENTRATION OF LONGEST FLOWPATH«« < UNIT - HYDROGRAPH DATA: RAINFALL(INCH): 5M= 0.58;30M= 1.18;1H= 1.56;3H= 3.07;6H= 4.70;24H =10.50 S- GRAPH: VALLEY(DEV.)= 90.1o;VALLEY(UNDEV.) /DESERT= 9.9% MOUNTAIN= 0.0o;FOOTHILL= 0.0o;DESERT(UNDEV.)= 0.0% 06/11/02 Q -34 Tc(HR) = 0.45; LAG(HR) = 0.36; Fm(INCH /HR) = 0.35; Ybar = 0.27 USED SIERRA MADRE DEPTH -AREA CURVES WITH AMC III CONDITION. DEPTH -AREA FACTORS: 5M = 0.96; 30M = 0.96; 1HR = 0.96; 3HR = 0.99; 6HR = 1.00; 24HR= 1.00 UNIT - INTERVAL(MIN) = 2.50 TOTAL AREA(ACRES) = 880.50 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 417.10 = 11762.00 FEET. EQUIVALENT BASIN FACTOR APPROXIMATIONS: Lca /L= 0.3,n= .0298; Lca /L= 0.4,n= .0267; Lca /L= 0.5,r_= .0245;Lca /L =0.6,n =.0229 TIME OF PEAK FLOW(HR) = 16.42 RUNOFF VOLUME(AF) = 607.35 UNIT - HYDROGRAPH METHOD PEAK FLOW RATE(CFS) = 1813.20 RATIONAL METHOD PEAK FLOW RATE(CFS) = 1822.94 (UPSTREAM NODE PEAK FLOW RATE(CFS) = 1822.94) PEAK FLOW RATE(CFS) USED = 1822.94 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 417.10 TO NODE 417.10 IS CODE = 12 » » >CLEAR MEMORY BANK # 1 ««< ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 417.10 TO NODE 426.10 IS CODE = 36 » » >COMPUTE BOX -FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER - ESTIMATED BOX SIZE (PRESSURE FLOW) ««< ---------------------------------------------------------------------------- ELEVATION DATA: UPSTREAM(FEET) = 1626.00 DOWNSTREAM(FEET) = 1609.50 FLOW LENGTH(FEET) = 1320.00 MANNING'S N = 0.013 *GIVEN BOX BASEWIDTH(FEET) = 10.00 ESTIMATED BOX HEIGHT(FEET) = 8.43 BOX -FLOW VELOCITY(FEET /SEC.) = 21.63 BOX - FLOW(CFS) = 1822.94 BOX -FLOW TRAVEL TIME(MIN.) = 1.02 Tc(MIN.) = 27.80 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 426.10 = 13082.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 426.10 TO NODE 426.10 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 27.80 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.475 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 26.60 0.80 0.50 52 COMMERCIAL A 10.40 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.39 SUBAREA AREA(ACRES) = 37.00 UNIT - HYDROGRAPH DATA: RAINFALL(INCH): 5M= 0.58;30M= 1.18;1H= 1.56;3H= 3.07;6H= 4.70;24H =10.50 S- GRAPH: VALLEY(DEV.)= 90.5 %;VALLEY(UNDEV.) /DESERT= 9.5% MOUNTAIN= 0.0 %;FOOTHILL= 0.0 %;DESERT(UNDEV.)= 0.0% Tc(HR) = 0.46; LAG(HR) = 0.37; Fm(INCH /HR) = 0.35; Ybar = 0.28 USED SIERRA MADRE DEPTH -AREA CURVES WITH AMC III CONDITION. DEPTH -AREA FACTORS: 5M = 0.96; 30M = 0.96; 1HR = 0.96; 3HR = 0.99; 6HR = 1.00; 24HR= 1.00 UNIT - INTERVAL(MIN) = 2.50 TOTAL AREA(ACRES) = 917.50 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 426.10 = 13082.00 FEET. EQUIVALENT BASIN FACTOR APPROXIMATIONS: Lca /L= 0.3,n= .0284; Lca /L= 0.4,n= .0254; Lca /L= 0.5,n= .0234;Lca /L =0.6,n =.0218 TIME OF PEAK FLOW(HR) = 16.42 RUNOFF VOLUME(AF) = 637.24 UNIT - HYDROGRAPH PEAK FLOW RATE(CFS) = 1839.99 06/11/02 Q -35 TOTAL AREA(ACRES) = 917.50 PEAK FLOW RATE(CFS) = 1839.99 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 426.10 TO NODE 426.10 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 27.80 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.475 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 1.40 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 1.40 UNIT - HYDROGRAPH DATA: RAINFALL(INCH): 5M= 0.58;30M= 1.18;1H= 1.56;3H= 3.07;6H= 4.70;24H =10.50 S- GRAPH: VALLEY(DEV.)= 90.5 %;VALLEY(UNDEV.) /DESERT= 9.5% MOUNTAIN= 0.0 %;FOOTHILL= 0.0 %;DESERT(UNDEV.)= 0.00 Tc(HR) = 0.46; LAG(HR) = 0.37; Fm(INCH/HR) = 0.35; Ybar = 0.27 USED SIERRA MADRE DEPTH -AREA CURVES WITH AMC III CONDITION. DEPTH -AREA FACTORS: 5M = 0.96; 30M = 0.96; 1HR = 0.96; 3HR = 0.99; 6HR = 1.00; 24HR= 1.00 UNIT - INTERVAL(MIN) = 2.50 TOTAL AREA(ACRES) = 918.90 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 426.10 = 13082.00 FEET. EQUIVALENT BASIN FACTOR APPROXIMATIONS: Lca /L= 0.3,n= .0284; Lca /L= 0.4,n= .0254; Lca /L= 0.5,n= .0234;Lca /L =0.6,n =.0218 TIME OF PEAK FLOW(HR) = 16.42 RUNOFF VOLUME(AF) = 641.68 UNIT - HYDROGRAPH PEAK FLOW RATE(CFS) = 1845.03 TOTAL AREA(ACRES) = 918.90 PEAK FLOW RATE(CFS) = 1845.03 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 426.10 TO NODE 426.10 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«« < MAINLINE Tc(MIN) = 27.80 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.475 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 1.40 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 1.40 UNIT- HYDROGRAPH DATA: RAINFALL(INCH): 5M= 0.58;30M= 1.18;1H= 1.56;3H= 3.07;6H= 4.70;24H =10.50 S- GRAPH: VALLEY(DEV.)= 90.5 %;VALLEY(UNDEV.) /DESERT= 9.5% MOUNTAIN= 0.0 %;FOOTHILL= 0.0 %;DESERT(UNDEV.)= 0.0% Tc(HR) = 0.46; LAG(HR) = 0.37; Fm(INCH/HR) = 0.35; Ybar = 0.27 USED SIERRA MADRE DEPTH -AREA CURVES WITH AMC III CONDITION. DEPTH -AREA FACTORS: 5M = 0.96; 30M = 0.96; 1HR = 0.96; 3HR = 0.99; 6HR = 1.00; 24HR= 1.00 UNIT - INTERVAL(MIN) = 2.50 TOTAL AREA(ACRES) = 920.30 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 426.10 = 13082.00 FEET. EQUIVALENT BASIN FACTOR APPROXIMATIONS: Lca /L= 0.3,n= .0284; Lca /L= 0.4,n= .0254; Lca /L= 0.5,n= .0234;Lca /L =0.6,n =.0218 TIME OF PEAK FLOW(HR) = 16.42 RUNOFF VOLUME(AF) = 642.89 UNIT- HYDROGRAPH PEAK FLOW RATE(CFS) = 1848.08 TOTAL AREA(ACRES) = 920.30 PEAK FLOW RATE(CFS) = 1848.08 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 426.10 TO NODE 427.10 IS CODE = 36 06/11/02 Q -36 »» >COMPUTE BOX -FLOW TRAVEL TIME THRU SUBAREA« « < » » >USING COMPUTER - ESTIMATED BOX SIZE (PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 1609.50 DOWNSTREAM(FEET) = 1593.00 FLOW LENGTH(FEET) = 1320.00 MANNING'S N = 0.013 *GIVEN BOX BASEWIDTH(FEET) = 11.00 ESTIMATED BOX HEIGHT(FEET) = 7.79 BOX -FLOW VELOCITY(FEET /SEC.) = 21.58 BOX - FLOW(CFS) = 1848.08 BOX -FLOW TRAVEL TIME(MIN.) = 1.02 Tc(MIN.) = 28.82 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 427.10 = 14402.00 FEET. FLOW PROCESS FROM NODE 427.10 TO NODE 427.10 IS CODE = 81 »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«« < MAINLINE Tc(MIN) = 28.82 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.422 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 1.45 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 1.45 UNIT - HYDROGRAPH DATA: RAINFALL(INCH): 5M= 0.58;30M= 1.18;1H= 1.56;3H= 3.07;6H= 4.70;24H =10.50 S- GRAPH: VALLEY(DEV.)= 90.5 %;VALLEY(UNDEV.) /DESERT= 9.5% MOUNTAIN= 0.0 %;FOOTHILL= 0.0 %;DESERT(UNDEV.)= 0.0% Tc(HR) = 0.48; LAG(HR) = 0.38; Fm(INCH /HR) = 0.35; Ybar = 0.27 USED SIERRA MADRE DEPTH -AREA CURVES WITH AMC III CONDITION. DEPTH -AREA FACTORS: 5M = 0.96; 30M = 0.96; 1HR = 0.96; 3HR = 0.99; 6HR = 1.00; 24HR= 1.00 UNIT- INTERVAL(MIN) = 2.50 TOTAL AREA(ACRES) = 921.75 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 427.10 = 14402.00 FEET. EQUIVALENT BASIN FACTOR APPROXIMATIONS: Lca /L= 0.3,n= .0272; Lca /L= 0.4,n= .0244; Lca /L= 0.5,n= .0224;Lca /L =0.6,n =.0209 TIME OF PEAK FLOW(HR) = 16.42 RUNOFF VOLUME(AF) = 639.76 UNIT- HYDROGRAPH PEAK FLOW RATE(CFS) = 1821.73 TOTAL AREA(ACRES) = 921.75 PEAK FLOW RATE(CFS) = 1848.08 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 427.10 TO NODE 427.10 IS CODE = 81 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 28.82 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.422 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 1.45 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 1.45 UNIT - HYDROGRAPH DATA: RAINFALL(INCH): 5M= 0.58;30M= 1.18;1H= 1.56;3H= 3.07;6H= 4.70;24H =10.50 S- GRAPH: VALLEY(DEV.)= 90.6 %;VALLEY(UNDEV.) /DESERT= 9.4% MOUNTAIN= 0.0 %;FOOTHILL= 0.0 %;DESERT(UNDEV.)= 0.0% Tc(HR) = 0.48; LAG(HR) = 0.38; Fm(INCH /HR) = 0.35; Ybar = 0.27 USED SIERRA MADRE DEPTH -AREA CURVES WITH AMC III CONDITION. DEPTH -AREA FACTORS: 5M = 0.96; 30M = 0.96; 1HR = 0.96; 06/11/02 Q-37 3HR = 0.99; 6HR = 1.00; 24HR= 1.00 UNIT - INTERVAL(MIN) = 2.50 TOTAL AREA(ACRES) = 923.20 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 427.10 = 14402.00 FEET. EQUIVALENT BASIN FACTOR APPROXIMATIONS: Lca /L= 0.3,n= .0272; Lca /L= 0.4,n= .0244; Lca /L= 0.5,n= .0224;Lca /L =0.6,n =.0209 TIME OF PEAK FLOW(HR) = 16.42 RUNOFF VOLUME(AF) = 641.00 UNIT- HYDROGRAPH PEAK FLOW RATE(CFS) = 1824.84 TOTAL AREA(ACRES) = 923.20 PEAK FLOW RATE(CFS) = 1848.08 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 427.10 TO NODE 427.10 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: PEAK FLOW RATE(CFS) = 1848.08 Tc(MIN.) = 28.82 AREA - AVERAGED Fm(INCH /HR) = 0.35 Ybar = 0.27 TOTAL AREA(ACRES) = 923.20 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 430.10 TO NODE 430.11 IS CODE = 21 »» >RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 1000.00 ELEVATION DATA: UPSTREAM(FEET) = 1713.00 DOWNSTREAM(FEET) = 1686.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.696 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.961 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 4.80 0.80 0.50 52 12.70 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA RUNOFF(CFS) = 15.39 TOTAL AREA(ACRES) = 4.80 PEAK FLOW RATE(CFS) = 15.39 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 430.11 TO NODE 430.12 IS CODE = 61 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< > »» (STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 1686.00 DOWNSTREAM ELEVATION(FEET) = 1658.00 STREET LENGTH(FEET) = 1061.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 22.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 24.11 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: 06/11/02 Q-38 STREET FLOW DEPTH(FEET) = 0.46 HALFSTREET FLOOD WIDTH(FEET) = 15.32 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.75 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.21 STREET FLOW TRAVEL TIME(MIN.) = 3.72 Tc(MIN.) = 16.42 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.395 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 4.50 0.80 0.50 52 NATURAL FAIR COVER "OPEN BRUSH" A 2.10 0.61 1.00 66 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.71 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.66 SUBAREA AREA(ACRES) = 6.60 SUBAREA RUNOFF(CFS) = 17.39 EFFECTIVE AREA(ACRES) = 11.40 AREA - AVERAGED Fm(INCH /HR) = 0.44 AREA- AVERAGED Fp(INCH /HR) = 0.74 AREA- AVERAGED Ap = 0.59 TOTAL AREA(ACRES) = 11.40 PEAK FLOW RATE(CFS) = 30.34 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.49 HALFSTREET FLOOD WIDTH(FEET) = 16.80 FLOW VELOCITY(FEET /SEC.) = 5.03 DEPTH *VELOCITY(FT *FT /SEC.) = 2.49 LONGEST FLOWPATH FROM NODE 430.10 TO NODE 430.12 = 2061.00 FEET. ********************************************* * * * * * * * * * * ** * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 430.12 TO NODE 427.10 IS CODE = 61 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<«« »»>(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 1658.00 DOWNSTREAM ELEVATION(FEET) = 1610.00 STREET LENGTH(FEET) = 1827.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 22.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 73.99 ** *STREET FLOWING FULL * ** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.63 HALFSTREET FLOOD WIDTH(FEET) = 22.00 AVERAGE FLOW VELOCITY(FEET /SEC.) = 6.44 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 4.06 STREET FLOW TRAVEL TIME(MIN.) = 4.73 Tc(MIN.) = 21.14 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.917 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 38.30 0.80 0.50 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA AREA(ACRES) = 38.30 SUBAREA RUNOFF(CFS) = 86.83 EFFECTIVE AREA(ACRES) = 49.70 AREA - AVERAGED Fm(INCH /HR) = 0.41 AREA- AVERAGED Fp(INCH /HR) = 0.78 AREA- AVERAGED Ap = 0.52 TOTAL AREA(ACRES) = 49.70 PEAK FLOW RATE(CFS) = 112.26 06/11/02 Q -39 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.71 HALFSTREET FLOOD WIDTH(FEET) = 23.92 FLOW VELOCITY(FEET /SEC.) = 7.57 DEPTH *VELOCITY(FT *FT /SEC.) = 5.34 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS, AND L = 1827.0 FT WITH ELEVATION -DROP = 48.0 FT, IS 104.0 CFS, WHICH EXCEEDS THE TOP -OF -CURB STREET CAPACITY AT NODE 427.10 LONGEST FLOWPATH FROM NODE 430.10 TO NODE 427.10 = 3888.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 427.10 TO NODE 427.10 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES«« < TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 21.14 RAINFALL INTENSITY(INCH /HR) = 2.92 AREA - AVERAGED Fm(INCH /HR) = 0.41 AREA- AVERAGED Fp(INCH /HR) = 0.78 AREA- AVERAGED Ap = 0.52 EFFECTIVE STREAM AREA(ACRES) = 49.70 TOTAL STREAM AREA(ACRES) = 49.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 112.26 ** CONFLUENCE DATA ** STREAM Q Tc AREA HEADWATER NUMBER (CFS) (MIN.) (ACRES) NODE 1 1848.08 28.82 923.20 401.00 2 112.26 21.14 49.70 430.10 UNIT- HYDROGRAPH DATA: RAINFALL(INCH): 5M= 0.58;30M= 1.18;1H= 1.56;3H= 3.07;6H= 4.70;24H =10.50 S- GRAPH: VALLEY(DEV.)= 90.8 %;VALLEY(UNDEV.) /DESERT= 9.2% MOUNTAIN= 0.0 %;FOOTHILL= 0.0 %;DESERT(UNDEV.)= 0.0% Tc(HR) = 0.48; LAG(HR) = 0.38; Fm(INCH /HR) = 0.35; Ybar = 0.27 USED SIERRA MADRE DEPTH -AREA CURVES WITH AMC III CONDITION. DEPTH -AREA FACTORS: 5M = 0.96; 30M = 0.96; 1HR = 0.96; 3HR = 0.99; 6HR = 1.00; 24HR= 1.00 UNIT - INTERVAL(MIN) = 2.50 TOTAL AREA(ACRES) = 972.90 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 427.10 = 14402.00 FEET. EQUIVALENT BASIN FACTOR APPROXIMATIONS: Lca /L= 0.3,n= .0268; Lca /L= 0.4,n= .0240; Lca /L= 0.5,n= .0221;Lca /L =0.6,n =.0206 TIME OF PEAK FLOW(HR) = 16.42 RUNOFF VOLUME(AF) = 673.35 PEAK FLOW RATE(CFS) = 1916.58 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 427.10 TO NODE 428.10 IS CODE = 36 »» > COMPUTE BOX -FLOW TRAVEL TIME THRU SUBAREA«« < » » >USING COMPUTER - ESTIMATED BOX SIZE (PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 1593.00 DOWNSTREAM(FEET) = 1576.50 FLOW LENGTH(FEET) = 1310.00 MANNING'S N = 0.013 *GIVEN BOX BASEWIDTH(FEET) = 11.00 ESTIMATED BOX HEIGHT(FEET) = 7.97 BOX -FLOW VELOCITY(FEET /SEC.) = 21.86 BOX - FLOW(CFS) = 1916.58 BOX -FLOW TRAVEL TIME(MIN.) = 1.00 Tc(MIN.) = 29.82 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 428.10 = 15712.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 428.10 TO NODE 428.10 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 06/11/02 Q -40 MAINLINE Tc(MIN) = 29.82 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.373 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 1.30 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 1.30 UNIT - HYDROGRAPH DATA: RAINFALL(INCH): 5M= 0.58;30M= 1.18;1H= 1.56;3H= 3.07;6H= 4.70;24H =10.50 S- GRAPH: VALLEY(DEV.)= 90.8 %;VALLEY(UNDEV.) /DESERT= 9.2% MOUNTAIN= 0.0 %;FOOTHILL= 0.0 %;DESERT(UNDEV.)= 0.0% Tc(HR) = 0.50; LAG(HR) = 0.40; Fm(INCH/HR) = 0.35; Ybar = 0.27 USED SIERRA MADRE DEPTH -AREA CURVES WITH AMC III CONDITION. DEPTH -AREA FACTORS: 5M = 0.96; 30M = 0.96; 1HR = 0.96; 3HR = 0.99; 6HR = 1.00; 24HR= 1.00 UNIT - INTERVAL(MIN) = 2.50 TOTAL AREA(ACRES) = 974.20 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 428.10 = 15712.00 FEET. EQUIVALENT BASIN FACTOR APPROXIMATIONS: Lca /L= 0.3,n= .0263; Lca /L= 0.4,n= .0236; Lca /L= 0.5,n= .0217;Lca /L =0.6,n =.0202 TIME OF PEAK FLOW(HR) = 16.42 RUNOFF VOLUME(AF) = 681.26 UNIT - HYDROGRAPH PEAK FLOW RATE(CFS) = 1878.87 TOTAL AREA(ACRES) = 974.20 PEAK FLOW RATE(CFS) = 1916.58 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 428.10 TO NODE 428.10 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 29.82 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.373 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 1.30 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 1.30 UNIT - HYDROGRAPH DATA: RAINFALL(INCH): 5M= 0.58;30M= 1.18;1H= 1.56;3H= 3.07;6H= 4.70;24H =10.50 S- GRAPH: VALLEY(DEV.)= 90.8 %;VALLEY(UNDEV.) /DESERT= 9.2% MOUNTAIN= 0.0 %;FOOTHILL= 0.0 %;DESERT(UNDEV.)= 0.0% Tc(HR) = 0.50; LAG(HR) = 0.40; Fm(INCH /HR) = 0.35; Ybar = 0.27 USED SIERRA MADRE DEPTH -AREA CURVES WITH AMC III CONDITION. DEPTH - AREA FACTORS: 5M = 0.96; 30M = 0.96; 1HR = 0.96; 3HR = 0.99; 6HR = 1.00; 24HR= 1.00 UNIT - INTERVAL(MIN) = 2.50 TOTAL AREA(ACRES) = 975.50 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 428.10 = 15712.00 FEET. EQUIVALENT BASIN FACTOR APPROXIMATIONS: Lca /L= 0.3,n= .0263; Lca /L= 0.4,n= .0236; Lca /L= 0.5,n= .0217;Lca /L =0.6,n =.0202 TIME OF PEAK FLOW(HR) = 16.42 RUNOFF VOLUME(AF) = 682.39 UNIT - HYDROGRAPH PEAK FLOW RATE(CFS) = 1881.58 TOTAL AREA(ACRES) = 975.50 PEAK FLOW RATE(CFS) = 1916.58 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 428.10 TO NODE 428.10 IS CODE = 1 »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: 06/11/02 Q -41 PEAK FLOW RATE(CFS) = 1916.58 Tc(MIN.) = 29.82 AREA - AVERAGED Fm(INCH /HR) = 0.35 Ybar = 0.27 TOTAL AREA(ACRES) = 975.50 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 431.20 TO NODE 431.30 IS CODE = 21 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 1000.00 ELEVATION DATA: UPSTREAM(FEET) = 1701.00 DOWNSTREAM(FEET) = 1672.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.516 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.995 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 5.20 0.80 0.50 52 12.52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA RUNOFF(CFS) = 16.83 TOTAL AREA(ACRES) = 5.20 PEAK FLOW RATE(CFS) = 16.83 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 431.30 TO NODE 431.10 IS CODE = 31 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » »>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1666.00 DOWNSTREAM(FEET) = 1650.00 FLOW LENGTH(FEET) = 720.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 24.000 DEPTH OF FLOW IN 24.0 INCH PIPE IS 12.2 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 10.53 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 16.83 PIPE TRAVEL TIME(MIN.) = 1.14 Tc(MIN.) = 13.66 LONGEST FLOWPATH FROM NODE 431.20 TO NODE 431.10 = 1720.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 431.10 TO NODE 431.10 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 13.66 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.792 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 2.80 0.80 0.50 52 NATURAL FAIR COVER "OPEN BRUSH" A 2.30 0.61 1.00 66 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.68 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.73 SUBAREA AREA(ACRES) = 5.10 SUBAREA RUNOFF(CFS) = 15.13 EFFECTIVE AREA(ACRES) = 10.30 AREA - AVERAGED Fm(INCH /HR) = 0.45 AREA- AVERAGED Fp(INCH /HR) = 0.73 AREA- AVERAGED Ap = 0.61 TOTAL AREA(ACRES) = 10.30 PEAK FLOW RATE(CFS) = 31.01 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 06/11/02 Q -42 FLOW PROCESS FROM NODE 431.10 TO NODE 432.10 IS CODE = 31 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » »>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 1650.00 DOWNSTREAM(FEET) = 1632.00 FLOW LENGTH(FEET) = 1079.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 18.2 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 10.88 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 31.01 PIPE TRAVEL TIME(MIN.) = 1.65 Tc(MIN.) = 15.31 LONGEST FLOWPATH FROM NODE 431.20 TO NODE 432.10 = 2799.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 432.10 TO NODE 432.10 IS CODE = 81 »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 15.31 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.540 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 9.20 0.80 0.50 52 NATURAL FAIR COVER "OPEN BRUSH" A 7.40 0.61 1.00 66 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.68 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.72 SUBAREA AREA(ACRES) = 16.60 SUBAREA RUNOFF(CFS) = 45.51 EFFECTIVE AREA(ACRES) = 26.90 AREA - AVERAGED Fm(INCH/HR) = 0.48 AREA- AVERAGED Fp(INCH /HR) = 0.70 AREA- AVERAGED Ap = 0.68 TOTAL AREA(ACRES) = 26.90 PEAK FLOW RATE(CFS) = 74.19 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 432.10 TO NODE 428.10 IS CODE = 31 »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA<«« » » >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 1632.00 DOWNSTREAM(FEET) = 1576.50 FLOW LENGTH(FEET) = 1800.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 22.7 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 17.00 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 74.19 PIPE TRAVEL TIME(MIN.) = 1.76 Tc(MIN.) = 17.07 LONGEST FLOWPATH FROM NODE 431.20 TO NODE 428.10 = 4599.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 428.10 TO NODE 428.10 IS CODE = 81 »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 17.07 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.316 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 19.60 0.80 0.50 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 06/11/02 Q -43 SUBAREA AREA(ACRES) = 19.60 SUBAREA RUNOFF(CFS) = 51.48 EFFECTIVE AREA(ACRES) = 46.50 AREA - AVERAGED Fm(INCH /HR) = 0.44 AREA- AVERAGED Fp(INCH /HR) = 0.73 AREA- AVERAGED Ap = 0.60 TOTAL AREA(ACRES) = 46.50 PEAK FLOW RATE(CFS) = 120.24 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 428.10 TO NODE 428.10 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< »» >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 17.07 RAINFALL INTENSITY(INCH /HR) = 3.32 AREA - AVERAGED Fm(INCH/HR) = 0.44 AREA- AVERAGED Fp(INCH /HR) = 0.73 AREA- AVERAGED Ap = 0.60 EFFECTIVE STREAM AREA(ACRES) = 46.50 TOTAL STREAM AREA(ACRES) = 46.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 120.24 ** CONFLUENCE DATA ** STREAM Q Tc AREA HEADWATER NUMBER (CFS) (MIN.) (ACRES) NODE 1 1916.58 29.82 975.50 401.00 2 120.24 17.07 46.50 431.20 UNIT - HYDROGRAPH DATA: RAINFALL(INCH): 5M= 0.58;30M= 1.18;1H= 1.56;3H= 3.07;6H= 4.70;24H =10.50 S- GRAPH: VALLEY(DEV.)= 90.3 %;VALLEY(UNDEV.) /DESERT= 9.7% MOUNTAIN= 0.0 %;FOOTHILL= 0.0 %;DESERT(UNDEV.)= 0.0% Tc(HR) = 0.50; LAG(HR) = 0.40; Fm(INCH/HR) = 0.35; Ybar = 0.28 USED SIERRA MADRE DEPTH -AREA CURVES WITH AMC III CONDITION. DEPTH -AREA FACTORS: 5M = 0.95; 30M = 0.95; 1HR = 0.95; 3HR = 0.99; 6HR = 1.00; 24HR= 1.00 UNIT - INTERVAL(MIN) = 2.50 TOTAL AREA(ACRES) = 1022.00 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 428.10 = 15712.00 FEET. EQUIVALENT BASIN FACTOR APPROXIMATIONS: Lca /L= 0.3,n= .0263; Lca /L= 0.4,n= .0236; Lca /L= 0.5,n= .0217;Lca /L =0.6,n =.0202 TIME OF PEAK FLOW(HR) = 16.42 RUNOFF VOLUME(AF) = 712.22 PEAK FLOW RATE(CFS) = 1961.75 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 428.10 TO NODE 428.10 IS CODE = 10 »»>MAIN- STREAM MEMORY COPIED ONTO MEMORY BANK # 1 < « ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 442.00 TO NODE 442.10 IS CODE = 21 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 1000.00 ELEVATION DATA: UPSTREAM(FEET) = 1768.00 DOWNSTREAM(FEET) = 1752.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.017 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.313 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 7.70 0.80 0.10 52 11.02 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 06/11/02 Q-44 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 29.34 TOTAL AREA(ACRES) = 7.70 PEAK FLOW RATE(CFS) = 29.34 FLOW PROCESS FROM NODE 442.10 TO NODE 441.10 IS CODE = 31 »» >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 1744.00 DOWNSTREAM(FEET) = 1720.00 FLOW LENGTH(FEET) = 750.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.4 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 13.76 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 29.34 PIPE TRAVEL TIME(MIN.) = 0.91 Tc(MIN.) = 11.93 LONGEST FLOWPATH FROM NODE 442.00 TO NODE 441.10 = 1750.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 441.10 TO NODE 441.10 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 11.93 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.113 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 5.40 0.80 0.10 52 COMMERCIAL A 10.30 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 15.70 SUBAREA RUNOFF(CFS) = 56.99 EFFECTIVE AREA(ACRES) = 23.40 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 23.40 PEAK FLOW RATE(CFS) = 84.94 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 441.10 TO NODE 440.10 IS CODE = 31 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA«« < » » >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 1720.00 DOWNSTREAM(FEET) = 1685.00 FLOW LENGTH(FEET) = 1240.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 26.5 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 16.62 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 84.94 PIPE TRAVEL TIME(MIN.) = 1.24 Tc(MIN.) = 13.17 LONGEST FLOWPATH FROM NODE 442.00 TO NODE 440.10 = 2990.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 440.10 TO NODE 440.10 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 13.17 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.875 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 20.40 0.80 0.10 52 06/11/02 Q -45 COMMERCIAL A 3.70 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 24.10 SUBAREA RUNOFF(CFS) = 82.33 EFFECTIVE AREA(ACRES) = 47.50 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 47.50 PEAK FLOW RATE(CFS) = 162.26 FLOW PROCESS FROM NODE 440.10 TO NODE 439.10 IS CODE = 31 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< »» >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 1685.00 DOWNSTREAM(FEET) = 1658.00 FLOW LENGTH(FEET) = 930.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 42.0 INCH PIPE IS 33.4 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 19.79 ESTIMATED PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 162.26 PIPE TRAVEL TIME(MIN.) = 0.78 Tc(MIN.) = 13.95 LONGEST FLOWPATH FROM NODE 442.00 TO NODE 439.10 = 3920.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 439.10 TO NODE 439.10 IS CODE = 81 >» »ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 13.95 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.743 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 13.00 0.80 0.10 52 COMMERCIAL A 1.90 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 14.90 SUBAREA RUNOFF(CFS) = 49.13 EFFECTIVE AREA(ACRES) = 62.40 AREA - AVERAGED Fm(INCH/HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 62.40 PEAK FLOW RATE(CFS) = 205.74 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 439.10 TO NODE 434.10 IS CODE = 31 »» >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » »>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 1658.00 DOWNSTREAM(FEET) = 1642.00 FLOW LENGTH(FEET) = 900.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 51.0 INCH PIPE IS 39.2 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 17.58 ESTIMATED PIPE DIAMETER(INCH) = 51.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 205.74 PIPE TRAVEL TIME(MIN.) = 0.85 Tc(MIN.) = 14.81 LONGEST FLOWPATH FROM NODE 442.00 TO NODE 434.10 = 4820.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 434.10 TO NODE 434.10 IS CODE = 81 » »> ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 14.81 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.612 06/11/02 Q -46 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "OPEN BRUSH" A 10.70 0.61 1.00 66 RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 21.00 0.80 0.50 52 COMMERCIAL A 1.80 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.70 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.64 SUBAREA AREA(ACRES) = 33.50 SUBAREA RUNOFF(CFS) = 95.34 EFFECTIVE AREA(ACRES) = 95.90 AREA - AVERAGED Fm(INCH/HR) = 0.21 AREA- AVERAGED Fp(INCH /HR) = 0.73 AREA- AVERAGED Ap = 0.29 TOTAL AREA(ACRES) = 95.90 PEAK FLOW RATE(CFS) = 293.73 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 434.10 TO NODE 434.10 IS CODE = 1 »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.81 RAINFALL INTENSITY(INCH /HR) = 3.61 AREA - AVERAGED Fm(INCH /HR) = 0.21 AREA- AVERAGED Fp(INCH /HR) = 0.73 AREA- AVERAGED Ap = 0.29 EFFECTIVE STREAM AREA(ACRES) = 95.90 TOTAL STREAM AREA(ACRES) = 95.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 293.73 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 421.10 TO NODE 421.12 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 800.00 ELEVATION DATA: UPSTREAM(FEET) = 1776.50 DOWNSTREAM(FEET) = 1754.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 20.904 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.937 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) NATURAL FAIR COVER "OPEN BRUSH" A 6.70 0.61 1.00 66 20.90 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.61 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 14.01 TOTAL AREA(ACRES) = 6.70 PEAK FLOW RATE(CFS) = 14.01 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 421.12 TO NODE 438.10 IS CODE = 52 »»>COMPUTE NATURAL VALLEY CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA« «< ELEVATION DATA: UPSTREAM(FEET) = 1754.00 DOWNSTREAM(FEET) = 1745.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 310.00 CHANNEL SLOPE = 0.0290 CHANNEL FLOW THRU SUBAREA(CFS) = 14.01 FLOW VELOCITY(FEET /SEC) = 4.64 (PER LACFCD /RCFC &WCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.11 Tc(MIN.) = 22.02 06/11/02 Q -47 LONGEST FLOWPATH FROM NODE 421.10 TO NODE 438.10 = 1110.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 438.10 TO NODE 438.10 IS CODE = 81 »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 22.02 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.847 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "OPEN BRUSH" A 4.40 0.61 1.00 66 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.61 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 4.40 SUBAREA RUNOFF(CFS) = 8.84 EFFECTIVE AREA(ACRES) = 11.10 AREA - AVERAGED Fm(INCH/HR) = 0.61 AREA- AVERAGED Fp(INCH /HR) = 0.61 AREA- AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 11.10 PEAK FLOW RATE(CFS) = 22.31 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 438.10 TO NODE 437.10 IS CODE = 52 » > »COMPUTE NATURAL VALLEY CHANNEL FLOW««< »» >TRAVELTIME THRU SUBAREA««< ELEVATION DATA: UPSTREAM(FEET) = 1745.00 DOWNSTREAM(FEET) = 1728.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 330.00 CHANNEL SLOPE = 0.0515 CHANNEL FLOW THRU SUBAREA(CFS) = 22.31 FLOW VELOCITY(FEET /SEC) = 7.01 (PER LACFCD /RCFC &WCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 0.79 Tc(MIN.) = 22.80 LONGEST FLOWPATH FROM NODE 421.10 TO NODE 437.10 = 1440.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 437.10 TO NODE 437.10 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 22.80 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.788 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "OPEN BRUSH" A 9.50 0.61 1.00 66 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.61 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 9.50 SUBAREA RUNOFF(CFS) = 18.58 EFFECTIVE AREA(ACRES) = 20.60 AREA - AVERAGED Fm(INCH /HR) = 0.61 AREA- AVERAGED Fp(INCH /HR) = 0.61 AREA- AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 20.60 PEAK FLOW RATE(CFS) = 40.30 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 437.10 TO NODE 436.10 IS CODE = 52 »»> COMPUTE NATURAL VALLEY CHANNEL FLOW««< »» >TRAVELTIME THRU SUBAREA««< ELEVATION DATA: UPSTREAM(FEET) = 1728.00 DOWNSTREAM(FEET) = 1697.50 CHANNEL LENGTH THRU SUBAREA(FEET) = 1000.00 CHANNEL SLOPE = 0.0305 CHANNEL FLOW THRU SUBAREA(CFS) = 40.30 FLOW VELOCITY(FEET /SEC) = 6.35 (PER LACFCD /RCFC &WCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 2.62 Tc(MIN.) = 25.42 06/11/02 Q-48 LONGEST FLOWPATH FROM NODE 421.10 TO NODE 436.10 = 2440.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 436.10 TO NODE 436.10 IS CODE = 81 »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< MAINLINE Tc(MIN) = 25.42 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.611 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "OPEN BRUSH" A 3.70 0.61 1.00 66 RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 8.30 0.80 0.50 52 NATURAL FAIR COVER "OPEN BRUSH" A 6.60 0.61 1.00 66 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.67 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.78 SUBAREA AREA(ACRES) = 18.60 SUBAREA RUNOFF(CFS) = 35.05 EFFECTIVE AREA(ACRES) = 39.20 AREA - AVERAGED Fm(INCH/HR) = 0.57 AREA- AVERAGED Fp(INCH /HR) = 0.64 AREA- AVERAGED Ap = 0.89 TOTAL AREA(ACRES) = 39.20 PEAK FLOW RATE(CFS) = 72.08 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 436.10 TO NODE 435.10 IS CODE = 31 > »»COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) «« < ELEVATION DATA: UPSTREAM(FEET) = 1690.00 DOWNSTREAM(FEET) = 1666.00 FLOW LENGTH(FEET) = 1090.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 25.5 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 14.64 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 72.08 PIPE TRAVEL TIME(MIN.) = 1.24 Tc(MIN.) = 26.66 LONGEST FLOWPATH FROM NODE 421.10 TO NODE 435.10 = 3530.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 435.10 TO NODE 435.10 IS CODE = 81 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«« < MAINLINE Tc(MIN) = 26.66 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.538 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "OPEN BRUSH" A 7.70 0.61 1.00 66 RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 19.60 0.80 0.50 52 NATURAL FAIR COVER "OPEN BRUSH" A 1.70 0.61 1.00 66 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.71 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.66 SUBAREA AREA(ACRES) = 29.00 SUBAREA RUNOFF(CFS) = 54.02 EFFECTIVE AREA(ACRES) = 68.20 AREA - AVERAGED Fm(INCH/HR) = 0.53 AREA- AVERAGED Fp(INCH /HR) = 0.66 AREA- AVERAGED Ap = 0.80 TOTAL AREA(ACRES) = 68.20 PEAK FLOW RATE(CFS) = 123.51 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 06/11/02 Q -49 FLOW PROCESS FROM NODE 435.10 TO NODE 434.10 IS CODE = 31 »»> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««< »»>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) «<« ELEVATION DATA: UPSTREAM(FEET) = 1666.00 DOWNSTREAM(FEET) = 1642.00 FLOW LENGTH(FEET) = 1320.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 42.0 INCH PIPE IS 32.2 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 15.62 ESTIMATED PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 123.51 PIPE TRAVEL TIME(MIN.) = 1.41 Tc(MIN.) = 28.07 LONGEST FLOWPATH FROM NODE 421.10 TO NODE 434.10 = 4850.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 434.10 TO NODE 434.10 IS CODE = 1 »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 28.07 RAINFALL INTENSITY(INCH /HR) = 2.46 AREA - AVERAGED Fm(INCH/HR) = 0.53 AREA- AVERAGED Fp(INCH /HR) = 0.66 AREA- AVERAGED Ap = 0.80 EFFECTIVE STREAM AREA(ACRES) = 68.20 TOTAL STREAM AREA(ACRES) = 68.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 123.51 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(FYn) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 293.73 14.81 3.612 0.73( 0.21) 0.29 95.9 442.00 2 123.51 28.07 2.461 0.66( 0.53) 0.80 68.2 421.10 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 397.63 14.81 3.612 0.69( 0.30) 0.43 131.9 442.00 2 317.85 28.07 2.461 0.68( 0.34) 0.50 164.1 421.10 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 397.63 Tc(MIN.) = 14.81 EFFECTIVE AREA(ACRES) = 131.87 AREA - AVERAGED Fm(INCH/HR) = 0.30 AREA- AVERAGED Fp(INCH /HR) = 0.69 AREA- AVERAGED Ap = 0.43 TOTAL AREA(ACRES) = 164.10 LONGEST FLOWPATH FROM NODE 421.10 TO NODE 434.10 = 4850.00 FEET. ********************************************* * * * * * * * ** * ** * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 434.10 TO NODE 433.10 IS CODE = 31 »»> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » »>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) «« < ELEVATION DATA: UPSTREAM(FEET) = 1642.00 DOWNSTREAM(FEET) = 1601.00 FLOW LENGTH(FEET) = 1800.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 63.0 INCH PIPE IS 47.2 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 22.85 ESTIMATED PIPE DIAMETER(INCH) = 63.00 NUMBER OF PIPES = 1 06/11/02 Q -50 PIPE - FLOW(CFS) = 397.63 PIPE TRAVEL TIME(MIN.) = 1.31 Tc(MIN.) = 16.12 LONGEST FLOWPATH FROM NODE 421.10 TO NODE 433.10 = 6650.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 433.10 TO NODE 433.10 IS CODE = 81 »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « < MAINLINE Tc(MIN) = 16.12 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.433 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 33.70 0.80 0.50 52 COMMERCIAL A 3.70 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.46 SUBAREA AREA(ACRES) = 37.40 SUBAREA RUNOFF(CFS) = 103.20 EFFECTIVE AREA(ACRES) = 169.27 AREA - AVERAGED Fm(INCH/HR) = 0.31 AREA- AVERAGED Fp(INCH /HR) = 0.72 AREA- AVERAGED Ap = 0.43 TOTAL AREA(ACRES) = 201.50 PEAK FLOW RATE(CFS) = 475.54 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 433.10 TO NODE 428.10 IS CODE = 31 »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 1601.00 DOWNSTREAM(FEET) = 1576.50 FLOW LENGTH(FEET) = 800.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 63.0 INCH PIPE IS 48.5 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 26.57 ESTIMATED PIPE DIAMETER(INCH) = 63.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 475.54 PIPE TRAVEL TIME(MIN.) = 0.50 Tc(MIN.) = 16.62 LONGEST FLOWPATH FROM NODE 421.10 TO NODE 428.10 = 7450.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 428.10 TO NODE 428.10 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 16.62 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.370 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "OPEN BRUSH" A 38.20 0.61 1.00 66 COMMERCIAL A 1.80 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.61 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.96 SUBAREA AREA(ACRES) = 40.00 SUBAREA RUNOFF(CFS) = 100.08 EFFECTIVE AREA(ACRES) = 209.27 AREA - AVERAGED Fm(INCH/HR) = 0.36 AREA- AVERAGED Fp(INCH /HR) = 0.68 AREA- AVERAGED Ap = 0.53 TOTAL AREA(ACRES) = 241.50 PEAK FLOW RATE(CFS) = 566.09 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 428.10 TO NODE 428.10 IS CODE = 11 »»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN- STREAM MEMORY««< 06/11/02 Q -51 ** MAIN STREAM CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 566.09 16.62 3.370 0.68( 0.36) 0.53 209.3 442.00 2 429.99 30.01 2.364 0.68( 0.39) 0.57 241.5 421.10 LONGEST FLOWPATH FROM NODE 421.10 TO NODE 428.10 = 7450.00 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** PEAK FLOW RATE(CFS) = 1961.75 Tc(MIN.) = 29.82 AREA - AVERAGED Fm(INCH /HR) = 0.35 Ybar = 0.28 TOTAL AREA(ACRES) = 1022.00 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 428.10 = 15712.00 FEET. COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: UNIT - HYDROGRAPH DATA: RAINFALL(INCH): 5M= 0.58;30M= 1.18;1H= 1.56;3H= 3.07;6H= 4.70;24H =10.50 S- GRAPH: VALLEY(DEV.)= 85.1 %;VALLEY(UNDEV.) /DESERT= 14.9% MOUNTAIN= 0.0 %;FOOTHILL= 0.0 %;DESERT(UNDEV.)= 0.0% Tc(HR) = 0.50; LAG(HR) = 0.40; FYn(INCH /HR) = 0.36; Ybar = 0.28 USED SIERRA MADRE DEPTH -AREA CURVES WITH AMC III CONDITION. DEPTH -AREA FACTORS: 5M = 0.94; 30M = 0.94; 1HR = 0.94; 3HR = 0.99; 6HR = 1.00; 24HR= 1.00 UNIT - INTERVAL(MIN) = 2.50 TOTAL AREA(ACRES) = 1263.50 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 428.10 = 15712.00 FEET. EQUIVALENT BASIN FACTOR APPROXIMATIONS: Lca /L= 0.3,n= .0263; Lca /L= 0.4,n= .0236; Lca /L= 0.5,n= .0217;Lca /L =0.6,n =.0202 TIME OF PEAK FLOW(HR) = 16.42 RUNOFF VOLUME(AF) = 877.21 PEAK FLOW RATE(CFS) = 2374.15 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 428.10 TO NODE 428.10 IS CODE = 12 » »>CLEAR MEMORY BANK # 1 <<<<< ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 428.10 TO NODE 500.00 IS CODE = 36 »»>COMPUTE BOX -FLOW TRAVEL TIME THRU SUBAREA« «< » » >USING COMPUTER - ESTIMATED BOX SIZE (PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1576.50 DOWNSTREAM(FEET) = 1552.00 FLOW LENGTH(FEET) = 1505.00 MANNING'S N = 0.013 *GIVEN BOX BASEWIDTH(FEET) = 11.00 ESTIMATED BOX HEIGHT(FEET) = 8.48 BOX -FLOW VELOCITY(FEET /SEC.) = 25.45 BOX - FLOW(CFS) = 2374.15 BOX -FLOW TRAVEL TIME(MIN.) = 0.99 Tc(MIN.) = 30.80 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 500.00 = 17217.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 500.00 TO NODE 500.00 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 30.80 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.327 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 3.20 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 3.20 06/11/02 Q -52 UNIT - HYDROGRAPH DATA: RAINFALL(INCH): 5M= 0.58;30M= 1.18;1H= 1.56;3H= 3.07;6H= 4.70;24H =10.50 S- GRAPH: VALLEY(DEV.)= 85.1 %;VALLEY(UNDEV.) /DESERT= 14.9% MOUNTAIN= 0.0 %;FOOTHILL= 0.0 %;DESERT(UNDEV.)= 0.0% Tc(HR) = 0.51; LAG(HR) = 0.41; Fm(INCH/HR) = 0.36; Ybar = 0.28 USED SIERRA MADRE DEPTH -AREA CURVES WITH AMC III CONDITION. DEPTH -AREA FACTORS: 5M = 0.94; 30M = 0.94; 1HR = 0.94; 3HR = 0.99; 6HR = 1.00; 24HR= 1.00 UNIT - INTERVAL(MIN) = 5.00 TOTAL AREA(ACRES) = 1266.70 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 500.00 = 17217.00 FEET. EQUIVALENT BASIN FACTOR APPROXIMATIONS: Lca /L= 0.3,n= .0254; Lca /L= 0.4,n= .0227; Lca /L= 0.5,n= .0209;Lca /L =0.6,n =.0195 TIME OF PEAK FLOW(HR) = 16.50 RUNOFF VOLUME(AF) = 814.76 UNIT - HYDROGRAPH PEAK FLOW RATE(CFS) = 2267.41 TOTAL AREA(ACRES) = 1266.70 PEAK FLOW RATE(CFS) = 2374.15 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 500.00 TO NODE 500.10 IS CODE = 36 »»>COMPUTE BOX -FLOW TRAVEL TIME THRU SUBAREA««< » »>USING COMPUTER - ESTIMATED BOX SIZE (PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 1552.00 DOWNSTREAM(FEET) = 1540.00 FLOW LENGTH(FEET) = 546.00 MANNING'S N = 0.013 *GIVEN BOX BASEWIDTH(FEET) = 11.00 ESTIMATED BOX HEIGHT(FEET) = 7.61 BOX -FLOW VELOCITY(FEET /SEC.) = 28.36 BOX - FLOW(CFS) = 2374.15 BOX -FLOW TRAVEL TIME(MIN.) = 0.32 Tc(MIN.) = 31.12 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 500.10 = 17763.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 500.10 TO NODE 500.10 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 31.12 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.313 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 2.00 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 2.00 UNIT - HYDROGRAPH DATA: RAINFALL(INCH): 5M= 0.58;30M= 1.18;1H= 1.56;3H= 3.07;6H= 4.70;24H =10.50 S- GRAPH: VALLEY(DEV.)= 85.2 %;VALLEY(UNDEV.) /DESERT= 14.8° MOUNTAIN= 0.0 %;FOOTHILL= 0.0 %;DESERT(UNDEV.)= 0.0% Tc(HR) = 0.52; LAG(HR) = 0.41; Fm(INCH/HR) = 0.36; Ybar = 0.28 USED SIERRA MADRE DEPTH -AREA CURVES WITH AMC III CONDITION. DEPTH -AREA FACTORS: 5M = 0.94; 30M = 0.94; 1HR = 0.94; 3HR = 0.99; 6HR = 1.00; 24HR= 1.00 UNIT - INTERVAL(MIN) = 5.00 TOTAL AREA(ACRES) = 1268.70 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 500.10 = 17763.00 FEET. EQUIVALENT BASIN FACTOR APPROXIMATIONS: Lca /L= 0.3,n= .0251; Lca /L= 0.4,n= .0225; Lca /L= 0.5,n= .0207;Lca /L =0.6,n =.0193 TIME OF PEAK FLOW(HR) = 16.50 RUNOFF VOLUME(AF) = 816.39 UNIT - HYDROGRAPH PEAK FLOW RATE(CFS) = 2269.80 TOTAL AREA(ACRES) = 1268.70 PEAK FLOW RATE(CFS) = 2374.15 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 500.10 TO NODE 500.20 IS CODE = 36 06/11/02 Q -53 » » >COMPUTE BOX -FLOW TRAVEL TIME THRU SUBAREA« «< »»>USING COMPUTER - ESTIMATED BOX SIZE (PRESSURE FLOW) «<« ELEVATION DATA: UPSTREAM(FEET) = 1540.00 DOWNSTREAM(FEET) = 1536.50 FLOW LENGTH(FEET) = 151.00 MANNING'S N = 0.013 *GIVEN BOX BASEWIDTH(FEET) = 11.00 ESTIMATED BOX HEIGHT(FEET) = 7.47 BOX -FLOW VELOCITY(FEET /SEC.) = 28.91 BOX - FLOW(CFS) = 2374.15 BOX -FLOW TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 31.21 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 500.20 = 17914.00 FEET. FLOW PROCESS FROM NODE 500.20 TO NODE 500.20 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 31.21 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.309 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 1.50 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 1.50 UNIT - HYDROGRAPH DATA: RAINFALL(INCH): 5M= 0.58;30M= 1.18;1H= 1.56;3H= 3.07;6H= 4.70;24H =10.50 S- GRAPH: VALLEY(DEV.)= 85.2 %;VALLEY(UNDEV.) /DESERT= 14.8% MOUNTAIN= 0.0 %;FOOTHILL= 0.0 %;DESERT(UNDEV.)= 0.0% Tc(HR) = 0.52; LAG(HR) = 0.42; Fm(INCH/HR) = 0.36; Ybar = 0.28 USED SIERRA MADRE DEPTH -AREA CURVES WITH AMC III CONDITION. DEPTH -AREA FACTORS: 5M = 0.94; 30M = 0.94; 1HR = 0.94; 3HR = 0.99; 6HR = 1.00; 24HR= 1.00 UNIT - INTERVAL(MIN) = 5.00 TOTAL AREA(ACRES) = 1270.20 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 500.20 = 17914.00 FEET. EQUIVALENT BASIN FACTOR APPROXIMATIONS: Lca /L= 0.3,n= .0250; Lca /L= 0.4,n= .0224; Lca /L= 0.5,n= .0206;Lca /L =0.6,n =.0 TIME OF PEAK FLOW(HR) = 16.50 RUNOFF VOLUME(AF) = 817.61 UNIT - HYDROGRAPH PEAK FLOW RATE(CFS) = 2272.31 TOTAL AREA(ACRES) = 1270.20 PEAK FLOW RATE(CFS) = 2374.15 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 500.20 TO NODE 500.30 IS CODE = 36 » »>COMPUTE BOX -FLOW TRAVEL TIME THRU SUBAREA«« < »»>USING COMPUTER - ESTIMATED BOX SIZE (PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 1536.50 DOWNSTREAM(FEET) = 1509.30 FLOW LENGTH(FEET) = 1186.00 MANNING'S N = 0.013 *GIVEN BOX BASEWIDTH(FEET) = 11.00 ESTIMATED BOX HEIGHT(FEET) = 7.50 BOX -FLOW VELOCITY(FEET /SEC.) = 28.79 BOX - FLOW(CFS) = 2374.15 BOX -FLOW TRAVEL TIME(MIN.) = 0.69 Tc(MIN.) = 31.90 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 500.30 = 19100.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 500.30 TO NODE 500.30 IS CODE = 81 »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«« < MAINLINE Tc(MIN) = 31.90 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.279 06/11/02 Q -54 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 12.60 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 12.60 UNIT - HYDROGRAPH DATA: RAINFALL(INCH): 5M= 0.58;30M= 1.18;1H= 1.56;3H= 3.07;6H= 4.70;24H =10.50 S- GRAPH: VALLEY(DEV.)= 85.3 %;VALLEY(UNDEV.) /DESERT= 14.7% MOUNTAIN= 0.0 %;FOOTHILL= 0. 0 %;DESERT(UNDEV.)= 0.0% Tc(HR) = 0.53; LAG(HR) = 0.43; Fm(INCH/HR) = 0.36; Ybar = 0.27 USED SIERRA MADRE DEPTH -AREA CURVES WITH AMC III CONDITION. DEPTH -AREA FACTORS: 5M = 0.94; 30M = 0.94; 1HR = 0.94; 3HR = 0.99; 6HR = 1.00; 24HR= 1.00 UNIT - INTERVAL(MIN) = 5.00 TOTAL AREA(ACRES) = 1282.80 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 500.30 = 19100.00 FEET. EQUIVALENT BASIN FACTOR APPROXIMATIONS: Lca /L= 0.3,n= .0245; Lca /L= 0.4,n= .0220; Lca /L= 0.5,n= .0202;Lca /L =0.6,n =. 0188 TIME OF PEAK FLOW(HR) = 16.50 RUNOFF VOLUME(AF) = 827.48 UNIT - HYDROGRAPH PEAK FLOW RATE(CFS) = 2287.03 TOTAL AREA(ACRES) = 1282.80 PEAK FLOW RATE(CFS) = 2374.15 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 500.30 TO NODE 500.40 IS CODE = 36 » » >COMPUTE BOX -FLOW TRAVEL TIME THRU SUBAREA««< » »>USING COMPUTER - ESTIMATED BOX SIZE (PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 1509.30 DOWNSTREAM(FEET) = 1494.00 FLOW LENGTH(FEET) = 825.00 MANNING'S N = 0.013 *GIVEN BOX BASEWIDTH(FEET) = 11.00 ESTIMATED BOX HEIGHT(FEET) = 8.09 BOX -FLOW VELOCITY(FEET /SEC.) = 26.67 BOX - FLOW(CFS) = 2374.15 BOX -FLOW TRAVEL TIME(MIN.) = 0.52 Tc(MIN.) = 32.41 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 500.40 = 19925.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 500.40 TO NODE 500.40 IS CODE = 81 »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<« « MAINLINE Tc(MIN) = 32.41 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.257 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 16.60 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 16.60 UNIT - HYDROGRAPH DATA: RAINFALL(INCH): 5M= 0.58;30M= 1.18;1H= 1.56;3H= 3.07;6H= 4.70;24H =10.50 S- GRAPH: VALLEY(DEV.)= 85.5 %;VALLEY(UNDEV.) /DESERT= 14.5% MOUNTAIN= 0.0 %;FOOTHILL= 0.0 %;DESERT(UNDEV.)= 0.0% Tc(HR) = 0.54; LAG(HR) = 0.43; Fm(INCH/HR) = 0.35; Ybar = 0.27 USED SIERRA MADRE DEPTH -AREA CURVES WITH AMC III CONDITION. DEPTH -AREA FACTORS: 5M = 0.94; 30M = 0.94; 1HR = 0.94; 3HR = 0.99; 6HR = 1.00; 24HR= 1.00 UNIT- INTERVAL(MIN) = 5.00 TOTAL AREA(ACRES) = 1299.40 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 500.40 = 19925.00 FEET. EQUIVALENT BASIN FACTOR APPROXIMATIONS: Lca /L= 0.3,n= .0241; Lca /L= 0.4,n= .0216; Lca /L= 0.5,n= .0199;Lca /L =0.6,n =. 0185 06/11/02 Q -55 TIME OF PEAK FLOW(HR) = 16.50 RUNOFF VOLUME(AF) = 840.72 UNIT - HYDROGRAPH PEAK FLOW RATE(CFS) = 2304.61 TOTAL AREA(ACRES) = 1299.40 PEAK FLOW RATE(CFS) = 2374.15 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 500.40 TO NODE 500.50 IS CODE = 36 » »>COMPUTE BOX -FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER - ESTIMATED BOX SIZE (PRESSURE FLOW) « « < ELEVATION DATA: UPSTREAM(FEET) = 1494.00 DOWNSTREAM(FEET) = 1491.00 FLOW LENGTH(FEET) = 417.00 MANNING'S N = 0.013 *GIVEN BOX BASEWIDTH(FEET) = 12.00 ESTIMATED BOX HEIGHT(FEET) = 10.53 BOX -FLOW VELOCITY(FEET /SEC.) = 18.80 BOX - FLOW(CFS) = 2374.15 BOX -FLOW TRAVEL TIME(MIN.) = 0.37 Tc(MIN.) = 32.78 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 500.50 = 20342.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 500.50 TO NODE 500.50 IS CODE = 81 »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 32.78 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.242 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 4.50 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 4.50 UNIT - HYDROGRAPH DATA: RAINFALL(INCH): 5M= 0.58;30M= 1.18;1H= 1.56;3H= 3.07;6H= 4.70;24H =10.50 S- GRAPH: VALLEY(DEV.)= 85.6 %;VALLEY(UNDEV.) /DESERT= 14.4% MOUNTAIN= 0.0 %;FOOTHILL= 0.0 %;DESERT(UNDEV.)= 0.0% Tc(HR) = 0.55; LAG(HR) = 0.44; Fm(INCH/HR) = 0.35; Ybar = 0.27 USED SIERRA MADRE DEPTH -AREA CURVES WITH AMC III CONDITION. DEPTH -AREA FACTORS: 5M = 0.94; 30M = 0.94; 1HR = 0.94; 3HR = 0.99; 6HR = 1.00; 24HR= 1.00 UNIT - INTERVAL(MIN) = 5.00 TOTAL AREA(ACRES) = 1303.90 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 500.50 = 20342.00 FEET. EQUIVALENT BASIN FACTOR APPROXIMATIONS: Lca /L= 0.3,n= .0240; Lca /L= 0.4,n= .0215; Lca /L= 0.5,n= .0197;Lca /L =0.6,n =.0184 TIME OF PEAK FLOW(HR) = 16.50 RUNOFF VOLUME(AF) = 844.59 UNIT - HYDROGRAPH PEAK FLOW RATE(CFS) = 2301.26 TOTAL AREA(ACRES) = 1303.90 PEAK FLOW RATE(CFS) = 2374.15 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 500.50 TO NODE 500.60 IS CODE = 36 » » >COMPUTE BOX -FLOW TRAVEL TIME THRU SUBAREA«<« » »>USING COMPUTER - ESTIMATED BOX SIZE (PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 1491.00 DOWNSTREAM(FEET) = 1484.00 FLOW LENGTH(FEET) = 1191.00 MANNING'S N = 0.013 *GIVEN BOX BASEWIDTH(FEET) = 14.00 ESTIMATED BOX HEIGHT(FEET) = 9.80 BOX -FLOW VELOCITY(FEET /SEC.) = 17.30 BOX - FLOW(CFS) = 2374.15 BOX -FLOW TRAVEL TIME(MIN.) = 1.15 Tc(MIN.) = 33.93 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 500.60 = 21533.00 FEET. 06/11/02 Q -56 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 1303.90 TC(MIN.) = 33.93 AREA - AVERAGED Fm(INCH /HR)= 0.35 Ybar = 0.27 PEAK FLOW RATE(CFS) = 2374.15 END OF INTEGRATED RATIONAL /UNIT - HYDROGRAPH METHOD ANALYSIS 06/11/02 Q-57 EXISTING 10x5 RCB Q100 HYDROLOGY See Hydrology Map (left side) at rear of study 06/11/02 Q -58 *** ****************************************** * * * * * * * * * * * * * * * * * * * *w *w * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1251 Analysis prepared by: MADOLE & ASSOCIATES, INC. 10601 CHURCH STREET SUITE 107 RANCHO CUCAMONGA CA 91730 909.948.1311 FAX- 948.8464 madole @madolerc.com * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * SUMMIT AVE - 15FWY EXIST. BOX * Q -100 HYDROLOGY * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: P: \652 - 1452 \Drainage \SMTEXBOX.DAT TIME /DATE OF STUDY: 14:04 05/08/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL*-- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 24.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = 0.6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.5600 *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD* *USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET - CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT- /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.020/0.020/0.020 0.67 1.50 0.0312 0.125 0.0150 2 18.0 10.0 0.020/0.020/0.020 0.67 1.50 0.0312 0.125 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.24 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 8.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER - SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 444.00 TO NODE 444.10 IS CODE = 21 » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 1000.00 ELEVATION DATA: UPSTREAM(FEET) = 1618.00 DOWNSTREAM(FEET) = 1597.50 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 16.657 06/11/02 Q -59 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.366 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) PUBLIC PARK A 5.40 0.80 0.85 52 16.66 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.85 SUBAREA RUNOFF(CFS) = 13.07 TOTAL AREA(ACRES) = 5.40 PEAK FLOW RATE(CFS) = 13.07 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 444.10 TO NODE 444.20 IS CODE = 62 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< » »>( STREET TABLE SECTION # 2 USED) « «< UPSTREAM ELEVATION(FEET) = 1597.50 DOWNSTREAM ELEVATION(FEET) = 1580.00 STREET LENGTH(FEET) = 815.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0197 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 29.82 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.48 HALFSTREET FLOOD WIDTH(FEET) = 17.65 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.61 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.21 STREET FLOW TRAVEL TIME(MIN.) = 2.95 Tc(MIN.) = 19.60 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.052 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN PUBLIC PARK A 10.20 0.80 0.85 52 NATURAL FAIR COVER "OPEN BRUSH" A 5.30 0.61 1.00 66 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.73 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.90 SUBAREA AREA(ACRES) = 15.50 SUBAREA RUNOFF(CFS) = 33.44 EFFECTIVE AREA(ACRES) = 20.90 AREA - AVERAGED Fm(INCH /HR) = 0.66 AREA- AVERAGED Fp(INCH /HR) = 0.74 AREA- AVERAGED Ap = 0.89 TOTAL AREA(ACRES) = 20.90 PEAK FLOW RATE(CFS) = 44.99 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.53 HALFSTREET FLOOD WIDTH(FEET) = 18.00 FLOW VELOCITY(FEET /SEC.) = 5.38 DEPTH *VELOCITY(FT *FT /SEC.) = 2.86 LONGEST FLOWPATH FROM NODE 444.00 TO NODE 444.20 = 1815.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 444.20 TO NODE 444.30 IS CODE = 31 »» >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » »> USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 1574.00 DOWNSTREAM(FEET) = 1564.00 FLOW LENGTH(FEET) = 650.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 22.4 INCHES 06/11/02 Q -60 PIPE -FLOW VELOCITY(FEET /SEC.) = 11.44 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 44.99 PIPE TRAVEL TIME(MIN.) = 0.95 Tc(MIN.) = 20.55 LONGEST FLOWPATH FROM NODE 444.00 TO NODE 444.30 = 2465.00 FEET. FLOW PROCESS FROM NODE 444.30 TO NODE 444.30 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « < MAINLINE Tc(MIN) = 20.55 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.967 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 37.60 0.80 0.50 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA AREA(ACRES) = 37.60 SUBAREA RUNOFF(CFS) = 86.94 EFFECTIVE AREA(ACRES) = 58.50 AREA - AVERAGED Fm(INCH /HR) = 0.49 AREA - AVERAGED Fp(INCH /HR) = 0.77 AREA- AVERAGED Ap = 0.64 TOTAL AREA(ACRES) = 58.50 PEAK FLOW RATE(CFS) = 130.33 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 444.30 TO NODE 444.40 IS CODE = 31 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 1564.00 DOWNSTREAM(FEET) = 1528.00 FLOW LENGTH(FEET) = 1380.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 42.0 INCH PIPE IS 29.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 18.38 ESTIMATED PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 130.33 PIPE TRAVEL TIME(MIN.) = 1.25 Tc(MIN.) = 21.80 LONGEST FLOWPATH FROM NODE 444.00 TO NODE 444.40 = 3845.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 444.40 TO NODE 444.40 IS CODE = 81 »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 21.80 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.864 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "5 -7 DWELLINGS /ACRE" A 71.60 0.80 0.50 52 COMMERCIAL A 3.10 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.48 SUBAREA AREA(ACRES) = 74.70 SUBAREA RUNOFF(CFS) = 166.66 EFFECTIVE AREA(ACRES) = 133.20 AREA - AVERAGED Fm(INCH/HR) = 0.43 AREA- AVERAGED Fp(INCH /HR) = 0.78 AREA- AVERAGED Ap = 0.55 TOTAL AREA(ACRES) = 133.20 PEAK FLOW RATE(CFS) = 291.54 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 444.40 TO NODE 444.80 IS CODE = 36 » »>COMPUTE BOX -FLOW TRAVEL TIME THRU SUBAREA««< 06/11/02 Q -61 »» >USING COMPUTER - ESTIMATED BOX SIZE (PRESSURE FLOW) «« < ELEVATION DATA: UPSTREAM(FEET) = 1528.00 DOWNSTREAM(FEET) = 1522.00 FLOW LENGTH(FEET) = 450.00 MANNING'S N = 0.013 *GIVEN BOX BASEWIDTH(FEET) = 10.00 ESTIMATED BOX HEIGHT(FEET) = 2.35 BOX -FLOW VELOCITY(FEET /SEC.) = 12.43 BOX - FLOW(CFS) = 291.54 BOX -FLOW TRAVEL TIME(MIN.) = 0.60 Tc(MIN.) = 22.40 LONGEST FLOWPATH FROM NODE 444.00 TO NODE 444.80 = 4295.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 444.80 TO NODE 444.80 IS CODE = 81 »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 22.40 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.817 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 9.30 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 9.30 SUBAREA RUNOFF(CFS) = 22.91 EFFECTIVE AREA(ACRES) = 142.50 AREA - AVERAGED Fm(INCH/HR) = 0.41 AREA- AVERAGED Fp(INCH /HR) = 0.78 AREA- AVERAGED Ap = 0.52 TOTAL AREA(ACRES) = 142.50 PEAK FLOW RATE(CFS) = 308.88 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 444.80 TO NODE 444.90 IS CODE = 36 »»>COMPUTE BOX -FLOW TRAVEL TIME THRU SUBAREA««< »» >USING COMPUTER - ESTIMATED BOX SIZE (PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 1522.00 DOWNSTREAM(FEET) = 1519.10 FLOW LENGTH(FEET) = 330.00 MANNING'S N = 0.013 *GIVEN BOX BASEWIDTH(FEET) = 10.00 ESTIMATED BOX HEIGHT(FEET) = 2.79 BOX -FLOW VELOCITY(FEET /SEC.) = 11.07 BOX - FLOW(CFS) = 308.88 BOX -FLOW TRAVEL TIME(MIN.) = 0.50 Tc(MIN.) = 22.90 LONGEST FLOWPATH FROM NODE 444.00 TO NODE 444.90 = 4625.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 444.90 TO NODE 444.90 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 22.90 RAINFALL INTENSITY(INCH /HR) = 2.78 AREA - AVERAGED Fm(INCH/HR) = 0.41 AREA - AVERAGED Fp(INCH /HR) = 0.78 AREA - AVERAGED Ap = 0.52 EFFECTIVE STREAM AREA(ACRES) = 142.50 TOTAL STREAM AREA(ACRES) = 142.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 308.88 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 444.50 TO NODE 444.60 IS CODE = 21 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« 06/11/02 Q -62 INITIAL SUBAREA FLOW - LENGTH(FEET) = 1000.00 ELEVATION DATA: UPSTREAM(FEET) = 1734.00 DOWNSTREAM(FEET) = 1704.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.715 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.651 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 4.10 0.80 0.10 52 9.72 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 16.87 TOTAL AREA(ACRES) = 4.10 PEAK FLOW RATE(CFS) = 16.87 ********************************************* * * * * ** * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 444.60 TO NODE 444.90 IS CODE = 61 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«« < »»>(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 1704.00 DOWNSTREAM ELEVATION(FEET) = 1519.10 STREET LENGTH(FEET) = 6360.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 99.99 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 17.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 56.26 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.55 HALFSTREET FLOOD WIDTH(FEET) = 23.86 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.97 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 3.29 STREET FLOW TRAVEL TIME(MIN.) = 17.75 Tc(MIN.) = 27.47 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.493 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 35.20 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 35.20 SUBAREA RUNOFF(CFS) = 76.45 EFFECTIVE AREA(ACRES) = 39.30 AREA - AVERAGED Fm(INCH/HR) = 0.08 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 39.30 PEAK FLOW RATE(CFS) = 85.36 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.62 HALFSTREET FLOOD WIDTH(FEET) = 31.03 FLOW VELOCITY(FEET /SEC.) = 6.39 DEPTH *VELOCITY(FT *FT /SEC.) = 3.98 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS, AND L = 6360.0 FT WITH ELEVATION -DROP = 184.9 FT, IS 91.6 CFS, WHICH EXCEEDS THE TOP -OF -CURB STREET CAPACITY AT NODE 444.90 LONGEST FLOWPATH FROM NODE 444.50 TO NODE 444.90 = 7360.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 444.90 TO NODE 444.90 IS CODE = 1 06/11/02 Q -63 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE «« < » »>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES ««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 27.47 RAINFALL INTENSITY(INCH /HR) = 2.49 AREA - AVERAGED Fm(INCH/HR) = 0.08 AREA- AVERAGED Fp(INCH /HR) = 0.80 AREA- AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 39.30 TOTAL STREAM AREA(ACRES) = 39.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 85.36 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 308.88 22.90 2.780 0.78( 0.41) 0.52 142.5 444.00 2 85.36 27.47 2.493 0.80( 0.08) 0.10 39.3 444.50 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 388.52 22.90 2.780 0.78( 0.35) 0.44 175.3 444.00 2 356.80 27.47 2.493 0.78( 0.34) 0.43 181.8 444.50 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 388.52 Tc(MIN.) = 22.90 EFFECTIVE AREA(ACRES) = 175.26 AREA - AVERAGED Fm(INCH/HR) = 0.35 AREA- AVERAGED Fp(INCH /HR) = 0.78 AREA- AVERAGED Ap = 0.44 TOTAL AREA(ACRES) = 181.80 LONGEST FLOWPATH FROM NODE 444.50 TO NODE 444.90 = 7360.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 444.90 TO NODE 444.11 IS CODE = 36 »»> COMPUTE BOX -FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER - ESTIMATED BOX SIZE (PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1519.10 DOWNSTREAM(FEET) = 1515.70 FLOW LENGTH(FEET) = 395.00 MANNING'S N = 0.013 *GIVEN BOX BASEWIDTH(FEET) = 10.00 ESTIMATED BOX HEIGHT(FEET) = 3.27 BOX -FLOW VELOCITY(FEET /SEC.) = 11.88 BOX - FLOW(CFS) = 388.52 BOX -FLOW TRAVEL TIME(MIN.) = 0.55 Tc(MIN.) = 23.45 LONGEST FLOWPATH FROM NODE 444.50 TO NODE 444.11 = 7755.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 444.11 TO NODE 444.11 IS CODE = 81 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 23.45 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.741 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 12.20 0.80 0.10 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 12.20 SUBAREA RUNOFF(CFS) = 29.22 06/11/02 Q-64 EFFECTIVE AREA(ACRES) = 187.46 AREA - AVERAGED Fm(INCH/HR) = 0.33 AREA- AVERAGED Fp(INCH /HR) = 0.78 AREA- AVERAGED Ap = 0.42 TOTAL AREA(ACRES) = 194.00 PEAK FLOW RATE(CFS) = 406.77 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 444.11 TO NODE 444.12 IS CODE = 36 » » >COMPUTE BOX -FLOW TRAVEL TIME THRU SUBAREA« « < »» >USING COMPUTER - ESTIMATED BOX SIZE (PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 1515.70 DOWNSTREAM(FEET) = 1512.00 FLOW LENGTH(FEET) = 430.00 MANNING'S N = 0.013 *GIVEN BOX BASEWIDTH(FEET) = 10.00 ESTIMATED BOX HEIGHT(FEET) = 3.38 BOX -FLOW VELOCITY(FEET /SEC.) = 12.05 BOX - FLOW(CFS) = 406.77 BOX -FLOW TRAVEL TIME(MIN.) = 0.59 Tc(MIN.) = 24.05 LONGEST FLOWPATH FROM NODE 444.50 TO NODE 444.12 = 8185.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 194.00 TC(MIN.) = 24.05 EFFECTIVE AREA(ACRES) = 187.46 AREA - AVERAGED Fm(INCH/HR)= 0.33 AREA- AVERAGED Fp(INCH /HR) = 0.78 AREA- AVERAGED Ap = 0.42 PEAK FLOW RATE(CFS) = 406.77 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 406.77 24.05 2.700 0.78( 0.33) 0.42 187.5 444.00 2 373.81 28.65 2.431 0.78( 0.32) 0.41 194.0 444.50 END OF RATIONAL METHOD ANALYSIS 06/11/02 Q -65 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1251 Analysis prepared by: MADOLE & ASSOCIATES, INC. 10601 CHURCH STREET SUITE 107 RANCHO CUCAMONGA CA 91730 909.948.1311 FAX- 948.8464 madole @madolerc.com * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * SUMMIT AVENUE STORM DRAIN * CATCH BASIN HYDROLOGY * * Q100 - (BASINS LOCATED AT SUMPS, INTS, AND TO MAINTAIN DRY LANE) ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: P: \652- 1452 \Drainage \SMTAVECB.DAT TIME /DATE OF STUDY: 11:16 06/11/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL*-- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 24.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = 0.6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.5600 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* *USER- DEFINED STREET- SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET - CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT- /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 28.0 14.0 0.020/0.020/0.020 0.67 1.50 0.0312 0.167 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 8.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER- SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21 »»> RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 660.00 ELEVATION DATA: UPSTREAM(FEET) = 1663.50 DOWNSTREAM(FEET) = 1660.40 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.921 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.114 06/11/02 Q -CB -2 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 1.70 0.98 0.10 32 11.92 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 6.14 TOTAL AREA(ACRES) = 1.70 PEAK FLOW RATE(CFS) = 6.14 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.10 TO NODE 2.10 IS CODE = 21 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 630.00 ELEVATION DATA: UPSTREAM(FEET) = 1663.60 DOWNSTREAM(FEET) = 1660.40 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.520 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.199 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 1.60 0.98 0.10 32 11.52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 5.91 TOTAL AREA(ACRES) = 1.60 PEAK FLOW RATE(CFS) = 5.91 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 830.00 ELEVATION DATA: UPSTREAM(FEET) = 1665.60 DOWNSTREAM(FEET) = 1661.50 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.935 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.917 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 1.00 0.98 0.10 32 12.93 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 3.44 TOTAL AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) = 3.44 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3.00 TO NODE 4.10 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 830.00 ELEVATION DATA: UPSTREAM(FEET) = 1665.60 DOWNSTREAM(FEET) = 1661.50 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.935 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.917 SUBAREA Tc AND LOSS RATE DATA(AMC II): 06/11/02 Q -CB -3 DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 1.10 0.98 0.10 32 12.93 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 3.78 TOTAL AREA(ACRES) = 1.10 PEAK FLOW RATE(CFS) = 3.78 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 880.00 ELEVATION DATA: UPSTREAM(FEET) = 1661.50 DOWNSTREAM(FEET) = 1657.70 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 13.602 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.801 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 1.00 0.98 0.10 32 13.60 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 3.33 TOTAL AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) = 3.33 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 4.10 TO NODE 5.10 IS CODE = 21 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 880.00 ELEVATION DATA: UPSTREAM(FEET) = 1661.50 DOWNSTREAM(FEET) = 1657.70 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 13.602 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.801 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 1.20 0.98 0.10 32 13.60 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 4.00 TOTAL AREA(ACRES) = 1.20 PEAK FLOW RATE(CFS) = 4.00 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.00 TO NODE 7.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 880.00 ELEVATION DATA: UPSTREAM(FEET) = 1655.50 DOWNSTREAM(FEET) = 1650.70 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.981 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.909 SUBAREA Tc AND LOSS RATE DATA(AMC II): - - -- DEVELOPMENT -- TYPE / - - - - -- SCS SOIL AREA -- Fp - - -- -- Ap -- - - - -- SCS Tc 06/11/02 Q -CB-4 LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 1.00 0.98 0.10 32 12.98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 3.43 TOTAL AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) = 3.43 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.10 TO NODE 7.10 IS CODE = 21 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 880.00 ELEVATION DATA: UPSTREAM(FEET) = 1655.50 DOWNSTREAM(FEET) = 1650.70 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.981 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.909 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 1.20 0.98 0.10 32 12.98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 4.12 TOTAL AREA(ACRES) = 1.20 PEAK FLOW RATE(CFS) = 4.12 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 21 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 880.00 ELEVATION DATA: UPSTREAM(FEET) = 1650.70 DOWNSTREAM(FEET) = 1644.60 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.374 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.023 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 1.00 0.98 0.10 32 12.37 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 3.53 TOTAL AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) = 3.53 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 7.10 TO NODE 8.10 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 880.00 ELEVATION DATA: UPSTREAM(FEET) = 1650.70 DOWNSTREAM(FEET) = 1644.60 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.374 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.023 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc - -- LAND D -USE -- GROUP- -- (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) 06/11/02 Q -CB -5 COMMERCIAL A 1.20 0.98 0.10 32 12.37 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 4.24 TOTAL AREA(ACRES) = 1.20 PEAK FLOW RATE(CFS) = 4.24 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 21 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 730.00 ELEVATION DATA: UPSTREAM(FEET) = 1694.60 DOWNSTREAM(FEET) = 1639.10 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.293 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.250 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 1.00 0.98 0.10 32 11.29 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 3.74 TOTAL AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) = 3.74 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 8.10 TO NODE 9.10 IS CODE = 21 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 770.00 ELEVATION DATA: UPSTREAM(FEET) = 1644.60 DOWNSTREAM(FEET) = 1639.20 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.703 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.160 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 1.00 0.98 0.10 32 11.70 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 3.66 TOTAL AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) = 3.66 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = :1000.00 ELEVATION DATA: UPSTREAM(FEET) = 1640.70 DOWNSTREAM(FEET) = 1630.30 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.008 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.096 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL - A 1.20 0.98 - - -0.10- 32 12.01 06/11/02 Q -CB -6 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 4.32 TOTAL AREA(ACRES) = 1.20 PEAK FLOW RATE(CFS) = 4.32 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 62 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< » »>( STREET TABLE SECTION # 1 USED) ««< UPSTREAM ELEVATION(FEET) = 1630.30 DOWNSTREAM ELEVATION(FEET) = 1624.10 STREET LENGTH(FEET) = 600.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 28.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 14.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of- -Walk Flow Section = 0.0199 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.39 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.44 HALFSTREET FLOOD WIDTH(FEET) = 13.46 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.75 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.20 STREET FLOW TRAVEL TIME(MIN.) = 3.64 Tc(MIN.) = 15.65 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.494 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.70 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 0.70 SUBAREA RUNOFF(CFS) = 2.14 EFFECTIVE AREA(ACRES) = 1.90 AREA - AVERAGED Fm(INCH /HR) = 0.10 AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 1.90 PEAK FLOW RATE(CFS) = 5.81 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.45 HALFSTREET FLOOD WIDTH(FEET) = 13.95 FLOW VELOCITY(FEET /SEC.) = 2.77 DEPTH *VELOCITY(FT *FT /SEC.) = 1.24 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 12.00 = 1600.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 10.00 TO NODE 11.10 IS CODE = 21 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 1000.00 ELEVATION DATA: UPSTREAM(FEET) = 1640.70 DOWNSTREAM(FEET) = 1630.30 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.008 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.096 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL -- A 1.20 0.98 -- 0.10 32 12.01 06/11/02 Q -CB -7 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 4.32 TOTAL AREA(ACRES) = 1.20 PEAK FLOW RATE(CFS) = 4.32 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 11.10 TO NODE 12.10 IS CODE = 62 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< » » >( STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1630.30 DOWNSTREAM ELEVATION(FEET) = 1624.10 STREET LENGTH(FEET) = 600.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 28.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 14.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0199 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.39 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.44 HALFSTREET FLOOD WIDTH(FEET) = 13.46 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.75 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.20 STREET FLOW TRAVEL TIME(MIN.) = 3.64 Tc(MIN.) = 15.65 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.494 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.70 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 0.70 SUBAREA RUNOFF(CFS) = 2.14 EFFECTIVE AREA(ACRES) = 1.90 AREA - AVERAGED Fm(INCH/HR) = 0.10 AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 1.90 PEAK FLOW RATE(CFS) = 5.81 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.45 HALFSTREET FLOOD WIDTH(FEET) = 13.95 FLOW VELOCITY(FEET /SEC.) = 2.77 DEPTH *VELOCITY(FT *FT /SEC.) = 1.24 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 12.10 = 1600.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 950.00 ELEVATION DATA: UPSTREAM(FEET) = 1624.10 DOWNSTREAM(FEET) = 1611.50 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE))**0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.206 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.269 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) -- COMMERCIAL - - - -- - - A - 1.10 0.98 -- 0.10 32 11.21 06/11/02 Q -CB -8 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 4.13 TOTAL AREA(ACRES) = 1.10 PEAK FLOW RATE(CFS) = 4.13 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 12.10 TO NODE 13.10 IS CODE = 21 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 950.00 ELEVATION DATA: UPSTREAM(FEET) = 1624.10 DOWNSTREAM(FEET) = 1611.50 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.206 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.269 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 1.10 0.98 0.10 32 11.21 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 4.13 TOTAL AREA(ACRES) = 1.10 PEAK FLOW RATE(CFS) = 4.13 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 21 »» >RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 1000.00 ELEVATION DATA: UPSTREAM(FEET) = 1611.50 DOWNSTREAM(FEET) = 1598.50 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.484 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.207 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 1.20 0.98 0.10 32 11.48 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 4.44 TOTAL AREA(ACRES) = 1.20 PEAK FLOW RATE(CFS) = 4.44 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 14.00 TO NODE 15.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< » »> (STREET TABLE SECTION # 1 USED) ««< UPSTREAM ELEVATION(FEET) = 1598.50 DOWNSTREAM ELEVATION(FEET) = 1593.00 STREET LENGTH(FEET) = 310.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 28.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 14.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 - Manning's FRICTION FACTOR for Streetflow Section(curb -to - curb) = 0.0150 06/11/02 Q -CB -9 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0199 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.29 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.41 HALFSTREET FLOOD WIDTH(FEET) = 12.00 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.33 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.36 STREET FLOW TRAVEL TIME(MIN.) = 1.55 Tc(MIN.) = 13.03 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.899 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.50 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 0.50 SUBAREA RUNOFF(CFS) = 1.71 EFFECTIVE AREA(ACRES) = 1.70 AREA - AVERAGED Fm(INCH /HR) = 0.10 AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 1.70 PEAK FLOW RATE(CFS) = 5.82 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.42 HALFSTREET FLOOD WIDTH(FEET) = 12.49 FLOW VELOCITY(FEET /SEC.) = 3.40 DEPTH *VELOCITY(FT *FT /SEC.) = 1.42 LONGEST FLOWPATH FROM NODE 13.00 TO NODE 15.00 = 1310.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 13.10 TO NODE 13.50 IS CODE = 21 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 800.00 ELEVATION DATA: UPSTREAM(FEET) = 1611.50 DOWNSTREAM(FEET) = 1601.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.483 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.443 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 0.90 0.98 0.10 32 10.48 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 3.52 TOTAL AREA(ACRES) = 0.90 PEAK FLOW RATE(CFS) = 3.52 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 13.50 TO NODE 14.10 IS CODE = 21 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 340.00 ELEVATION DATA: UPSTREAM(FEET) = 1601.00 DOWNSTREAM(FEET) = 1596.50 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.432 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.462 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 0.40 0.98 0.10 32 7.43 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 06/11/02 Q -CB -10 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 1.93 TOTAL AREA(ACRES) = 0.40 PEAK FLOW RATE(CFS) = 1.93 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 14.10 TO NODE 15.10 IS CODE = 21 » » > RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 170.00 ELEVATION DATA: UPSTREAM(FEET) = 1596.50 DOWNSTREAM(FEET) = 1593.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.156 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 6.802 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 0.30 0.98 0.10 32 5.16 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 1.81 TOTAL AREA(ACRES) = 0.30 PEAK FLOW RATE(CFS) = 1.81 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 0.30 TC(MIN.) = 5.16 EFFECTIVE AREA(ACRES) = 0.30 AREA - AVERAGED Fm(INCH /HR)= 0.10 AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.10 PEAK FLOW RATE(CFS) = 1.81 END OF RATIONAL METHOD ANALYSIS 06/11/02 Q -CB -11 6/11/02 Summit Avenue Storm Drain - MPSD Line B 652 -1452 Street Flow Depth / Catch Basin Width Summary Flowby Catch Street 1 Sump Q From Total 1Max. Flow Use 1 Q To Location Basin' Slope 1 Depth 1 Q (C.0.) CB# Q D Criteria D* W** W Qin (C.O.) CB# n/s Sierra - Mango 1 0.004 0.46 1 6.0 0.0 6 0.46 Dry Ln 0.42 6 10 6 - s/s Sierra -Mango 2 0.004 0.46 16.0 0.0 6 0.46 Dry Ln 0.42 6 10 6 - n/s Tumberry I 3 0.004 - 13.4 0.0 3.4 0.46 Dry Ln 0.44 8 10 ' 3.4 - s/s Tumbeny 1 4 1 0.004 , - 1 3.8 0.0 3.8 i 0.46 Dry Ln 1 0.46 8.5 10 3.8 - n/s 1/3 Tum -Pine 5 0.004 - 1 3.3 1 0.0 3.3 0.46 Dry Ln 0.44 7.8 10 3.3 - s/s 1/3 Tum -Pine 1 6 0.004 - 1 4.0 1 0.0 4 0.46 Dry Ln 1 0.46 9 10 4 - n/s 2/3 Tum -Pine 7 0.004 - 1 3.3 1 0.0 3.3 0.46 Dry Ln 1 0.44 7.8 10 3.31 - s/s 2/3 Tum -Pine 8 0.004 1 - 1 4.0 1 0.0 1 4 I 0.46 Dry Ln 1 0.46 9 1 10 4 - n/s Pinehurst 9 0.004 - 1 3.4 I 0.0 13.4 0.46 1 Dry Ln 0.44 8 10 3.4 1 - s/s Pinehurst � 10 0.004 1 - 1 4.1 1 0.0 4.1 0.46 1 Dry Ln 0.46 9 1 10 4.1 1 - n/s Pine - Citrus 11 0.0087 1 - 3.5 0.0 3.5 0.46 Dry Ln 1 0.411 8.9 1 10 3.5 - s/s Pine - Citrus 1 12 0.0087 1 - , 4.2 ; 0.0 4.2 0.46 1 Dry Ln 1 0.421 10.4 14 4.2 - 1 n/s Citrus 13 0.0066 I - 3.7 0.0 3.7 0.46 Dry Ln 0.42 ' 9 10 3.7 - s/s Citrus 14 0.0066 I - 13.7 1 0.0 3.7 0.46 Dry Ln 1 0.42 9 I 10 3.7 1 - n/s Citrus -Knox 15 0.0104 1 - 1 5.8 1 0.0 5.8 0.46 ' Dry Ln 1 0.44 13.71 14 15.8 - s/s Citrus -Knox 16 0.0104 1 - 1 5.8 1 0.0 5.8 0.46 Dry Ln 1 0.44 13.7 14 5.8 1 - n/s Knox 17 0.0129 ! - 1 4.1 0.0 4.1 0.46 I Dry Ln 1 0.41. 10.41 14 4.1 - s/s Knox 1 18 0.01291 - 1 4.1 0.0 ! 4.1 0.46 I Dry Ln 1 0.41 10.4 ' 14 4.1 - n/s Lytle 1 19 0.012 ' - 5.8 0.0 5.8 0.46 ' Dry Ln ` 0.44 13.7 , 14 ' 5.8 1 - s/s Lytle, e/o school drive 20 1 0.012 - 3.5 0.0 I 3.5 ■ ! 0.46 I Dry Ln 0.391 9.4 : 10 1 3.5 - s/s Lytle, e/o bus bay 21 1 0.012 - 1.9 0.0 1 1 1.9 0.46 I Dry Ln 0.34', 5.9 ; 7 1.9 1 - s/s Lytle, at BCR 22 0.012 1.8 0.0 1.8 1 0.46 ' Dry Ln 1 0.32 1 6 4 1.4 0.4 s/ on I 1 - Lytle w/o Lytle flows p/u 1 1 1 1 ! 1 by prop. CB at 1 1 Beech Notes: See Index Map for Section and Catch Basin Locations * See AES output (Hele1) - Report D ** See AES output (Hele1) - Report W See Street Cross - section diagrams - Report R (following Report D) CB locations based upon Sump locations, intersections, and 1 dry lane each way CBs oversized due to uncertain ultimate buildout/drainage patterns. Report- calcs.xls 1 6/11/2002 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1251 Analysis prepared by: MADOLE & ASSOCIATES, INC. OF THE INLAND EMPIRE 10601 CHURCH STREET SUITE 107 RANCHO CUCAMONGA, CA 91730 909.948.1311 F948.8464 madole @madolerc.com TIME /DATE OF STUDY: 08:42 03/15/2002 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * SUMMIT AVE STORM DRAIN * CATCH BASIN SIZING * * CB # 1 (N /S SIERRA - MANGO) ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » »SUMP TYPE BASIN INPUT INFORMATION«« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 6.00 BASIN OPENING(FEET) = 0.83 DEPTH OF WATER(FEET) = 0.46 »»CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 6.23 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * SUMMIT AVE STORM DRAIN * * Q100 STREET FLOW DEPTH CALCS * * CB # 3 (N /S TURNBERRY) * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » »STREETFLOW MODEL INPUT INFORMATION«« CONSTANT STREET GRADE(FEET /FEET) = 0.004000 CONSTANT STREET FLOW(CFS) = 3.40 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF - WIDTH(FEET) = 28.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 14.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.67 CONSTANT SYMMETRICAL GUTTER - WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER - LIP(FEET) = 0.03000 CONSTANT SYMMETRICAL GUTTER - HIKE(FEET) = 0.17000 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: 06/11/02 D -2 STREET FLOW DEPTH(FEET) = 0.44 HALFSTREET FLOOD WIDTH(FEET) = 13.51 AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.72 PRODUCT OF DEPTH &VELOCITY = 0.76 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * CB 4 (S /S TURNBERRY) * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » » STREETFLOW MODEL INPUT INFORMATION«« CONSTANT STREET GRADE(FEET /FEET) = 0.004000 CONSTANT STREET FLOW(CFS) = 3.80 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF - WIDTH(FEET) = 28.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 14.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.67 CONSTANT SYMMETRICAL GUTTER - WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER - LIP(FEET) = 0.03000 CONSTANT SYMMETRICAL GUTTER - HIKE(FEET) = 0.17000 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = 0.46 HALFSTREET FLOOD WIDTH(FEET) = 14.34 AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.72 PRODUCT OF DEPTH &VELOCITY = 0.79 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * CB 5 (1/3 FROM TURNBERRY TO PINEHURST) * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** »» STREETFLOW MODEL INPUT INFORMATION«« CONSTANT STREET GRADE(FEET /FEET) = 0.004000 CONSTANT STREET FLOW(CFS) = 3.30 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF - WIDTH(FEET) = 28.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 14.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.67 CONSTANT SYMMETRICAL GUTTER - WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER - LIP(FEET) = 0.03000 CONSTANT SYMMETRICAL GUTTER - HIKE(FEET) = 0.17000 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = 0.44 HALFSTREET FLOOD WIDTH(FEET) = 13.51 AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.67 06/11/02 D -3 PRODUCT OF DEPTH &VELOCITY = 0.74 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * * CB 6 (S /S 1/3 TURNBERRY TO PINEHURST) ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * *. * * * * * * ** » »STREETFLOW MODEL INPUT INFORMATION«« CONSTANT STREET GRADE(FEET /FEET) = 0.004000 CONSTANT STREET FLOW(CFS) = 4.00 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF - WIDTH(FEET) = 28.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 14.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.67 CONSTANT SYMMETRICAL GUTTER - WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER - LIP(FEET) = 0.03000 CONSTANT SYMMETRICAL GUTTER - HIKE(FEET) = 0.17000 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = 0.46 HALFSTREET FLOOD WIDTH(FEET) = 14.34 AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.81 PRODUCT OF DEPTH &VELOCITY = 0.83 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * * * CB 7 (N /S 2/3 TURNBERRY TO PINEHURST) ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » » STREETFLOW MODEL INPUT INFORMATION«« CONSTANT STREET GRADE(FEET /FEET) = 0.004000 CONSTANT STREET FLOW(CFS) = 3.30 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF - WIDTH(FEET) = 28.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 14.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.67 CONSTANT SYMMETRICAL GUTTER - WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER - LIP(FEET) = 0.03000 CONSTANT SYMMETRICAL GUTTER- HIKE(FEET) = 0.17000 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = 0.44 HALFSTREET FLOOD WIDTH(FEET) = 13.51 AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.67 PRODUCT OF DEPTH &VELOCITY = 0.74 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** 06/11/02 D-4 * * * CB 8 (S /S 2/3 TURNBERRY TO PINEHURST) ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » » STREETFLOW MODEL INPUT INFORMATION«« CONSTANT STREET GRADE(FEET /FEET) = 0.004000 CONSTANT STREET FLOW(CFS) = 4.00 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF - WIDTH(FEET) = 28.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 14.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.67 CONSTANT SYMMETRICAL GUTTER - WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER - LIP(FEET) = 0.03000 CONSTANT SYMMETRICAL GUTTER - HIKE(FEET) = 0.17000 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = 0.46 HALFSTREET FLOOD WIDTH(FEET) = 14.34 AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.81 PRODUCT OF DEPTH &VELOCITY = 0.83 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * * * CB 9 (N /S PINEHURST) * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** »» STREETFLOW MODEL INPUT INFORMATION«« CONSTANT STREET GRADE(FEET /FEET) = 0.004000 CONSTANT STREET FLOW(CFS) = 3.40 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF - WIDTH(FEET) = 28.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 14.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.67 CONSTANT SYMMETRICAL GUTTER - WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER - LIP(FEET) = 0.03000 CONSTANT SYMMETRICAL GUTTER - HIKE(FEET) = 0.17000 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = 0.44 HALFSTREET FLOOD WIDTH(FEET) = 13.51 AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.72 PRODUCT OF DEPTH &VELOCITY = 0.76 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * * * CB 10 (S /S PINEHURST) * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 06/11/02 D -5 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » » STREETFLOW MODEL INPUT INFORMATION «« CONSTANT STREET GRADE(FEET /FEET) = 0.004000 CONSTANT STREET FLOW(CFS) = 4.10 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF - WIDTH(FEET) = 28.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 14.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.67 CONSTANT SYMMETRICAL GUTTER - WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER - LIP(FEET) = 0.03000 CONSTANT SYMMETRICAL GUTTER - HIKE(FEET) = 0.17000 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = 0.46 HALFSTREET FLOOD WIDTH(FEET) = 14.34 AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.86 PRODUCT OF DEPTH &VELOCITY = 0.85 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * CB 11 (N /S PINEHURST TO CITRUS) * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** »» STREETFLOW MODEL INPUT INFORMATION«« CONSTANT STREET GRADE(FEET /FEET) = 0.008700 CONSTANT STREET FLOW(CFS) = 3.50 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF - WIDTH(FEET) = 28.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 14.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.67 CONSTANT SYMMETRICAL GUTTER - WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER - LIP(FEET) = 0.03000 CONSTANT SYMMETRICAL GUTTER - HIKE(FEET) = 0.17000 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = 0.41 HALFSTREET FLOOD WIDTH(FEET) = 11.85 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.25 PRODUCT OF DEPTH &VELOCITY = 0.92 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * * * CB 12 (S /S PINEHURST TO CITRUS) * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » » STREETFLOW MODEL INPUT INFORMATION«« 06/11/02 D -6 CONSTANT STREET GRADE(FEET /FEET) = 0.008700 CONSTANT STREET FLOW(CFS) = 4.20 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF - WIDTH(FEET) = 28.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 14.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.67 CONSTANT SYMMETRICAL GUTTER - WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER - LIP(FEET) = 0.03000 CONSTANT SYMMETRICAL GUTTER - HIKE(FEET) = 0.17000 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = 0.42 HALFSTREET FLOOD WIDTH(FEET) = 12.68 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.39 PRODUCT OF DEPTH &VELOCITY = 1.01 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * CB 13 (N /S CITRUS) * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** »» STREETFLOW MODEL INPUT INFORMATION«« CONSTANT STREET GRADE(FEET /FEET) = 0.006600 CONSTANT STREET FLOW(CFS) = 3.70 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF - WIDTH(FEET) = 28.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 14.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.67 CONSTANT SYMMETRICAL GUTTER - WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER - LIP(FEET) = 0.03000 CONSTANT SYMMETRICAL GUTTER - HIKE(FEET) = 0.17000 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = 0.42 HALFSTREET FLOOD WIDTH(FEET) = 12.68 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.10 PRODUCT OF DEPTH &VELOCITY = 0.89 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * CB 14 (S /S CITRUS) * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** »» STREETFLOW MODEL INPUT INFORMATION«« 06/11/02 D-7 CONSTANT STREET GRADE(FEET /FEET) = 0.006600 CONSTANT STREET FLOW(CFS) = 3.70 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF - WIDTH(FEET) = 28.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 14.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.67 CONSTANT SYMMETRICAL GUTTER - WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER - LIP(FEET) = 0.03000 CONSTANT SYMMETRICAL GUTTER - HIKE(FEET) = 0.17000 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = 0.42 HALFSTREET FLOOD WIDTH(FEET) = 12.68 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.10 PRODUCT OF DEPTH &VELOCITY = 0.89 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * CB 15 (N /S CITRUS TO KNOX) * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** »» STREETFLOW MODEL INPUT INFORMATION«« CONSTANT STREET GRADE(FEET /FEET) = 0.010400 CONSTANT STREET FLOW(CFS) = 5.80 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF - WIDTH(FEET) = 28.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 14.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.67 CONSTANT SYMMETRICAL GUTTER- WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER - LIP(FEET) = 0.03000 CONSTANT SYMMETRICAL GUTTER - HIKE(FEET) = 0.17000 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = 0.44 HALFSTREET FLOOD WIDTH(FEET) = 13.51 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.94 PRODUCT OF DEPTH &VELOCITY = 1.29 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * CB 16 (S /S CITRUS TO KNOX) * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** »» STREETFLOW MODEL INPUT INFORMATION«« CONSTANT STREET GRADE(FEET /FEET) = 0.010400 CONSTANT STREET FLOW(CFS) = 5.80 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF - WIDTH(FEET) = 28.00 06/11/02 D-8 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 14.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.67 CONSTANT SYMMETRICAL GUTTER - WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER - LIP(FEET) = 0.03000 CONSTANT SYMMETRICAL GUTTER - HIKE(FEET) = 0.17000 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = 0.44 HALFSTREET FLOOD WIDTH(FEET) = 13.51 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.94 PRODUCT OF DEPTH &VELOCITY = 1.29 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * CB 17 (N /S KNOX) * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** »» STREETFLOW MODEL INPUT INFORMATION«« CONSTANT STREET GRADE(FEET /FEET) = 0.012900 CONSTANT STREET FLOW(CFS) = 4.10 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF - WIDTH(FEET) = 28.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 14.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.67 CONSTANT SYMMETRICAL GUTTER - WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER - LIP(FEET) = 0.03000 CONSTANT SYMMETRICAL GUTTER - HIKE(FEET) = 0.17000 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = 0.41 HALFSTREET FLOOD WIDTH(FEET) = 11.85 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.64 PRODUCT OF DEPTH &VELOCITY = 1.07 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * CB 18 (S /S KNOX) * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » »STREETFLOW MODEL INPUT INFORMATION« < CONSTANT STREET GRADE(FEET /FEET) = 0.012900 CONSTANT STREET FLOW(CFS) = 4.10 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF - WIDTH(FEET) = 28.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 14.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.67 06/11/02 D -9 CONSTANT SYMMETRICAL GUTTER - WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER - LIP(FEET) = 0.03000 CONSTANT SYMMETRICAL GUTTER - HIKE(FEET) = 0.17000 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = 0.41 HALFSTREET FLOOD WIDTH(FEET) = 11.85 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.64 PRODUCT OF DEPTH &VELOCITY = 1.07 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * * * CB 19 (N /S LYTLE) * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** »» STREETFLOW MODEL INPUT INFORMATION«« CONSTANT STREET GRADE(FEET /FEET) = 0.012000 CONSTANT STREET FLOW(CFS) = 5.80 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 28.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 14.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.67 CONSTANT SYMMETRICAL GUTTER - WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER - LIP(FEET) = 0.03000 CONSTANT SYMMETRICAL GUTTER - HIKE(FEET) = 0.17000 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = 0.44 HALFSTREET FLOOD WIDTH(FEET) = 13.51 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.94 PRODUCT OF DEPTH &VELOCITY = 1.29 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * * * CB 20 (S /S LYTLE, E/O SCHOOL DRIVE * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** »» STREETFLOW MODEL INPUT INFORMATION«« CONSTANT STREET GRADE(FEET /FEET) = 0.012000 CONSTANT STREET FLOW(CFS) = 3.50 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF - WIDTH(FEET) = 28.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 14.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.67 CONSTANT SYMMETRICAL GUTTER - WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER - LIP(FEET) = 0.03000 CONSTANT SYMMETRICAL GUTTER - HIKE(FEET) = 0.17000 06/11/02 D -10 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = 0.39 HALFSTREET FLOOD WIDTH(FEET) = 11.02 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.56 PRODUCT OF DEPTH &VELOCITY = 1.00 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * * * CB 21 (S /S LYTLE, E/O BUS BAY) * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » »STREETFLOW MODEL INPUT INFORMATION«« CONSTANT STREET GRADE(FEET /FEET) = 0.012000 CONSTANT STREET FLOW(CFS) = 1.90 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF - WIDTH(FEET) = 28.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 14.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.67 CONSTANT SYMMETRICAL GUTTER - WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER - LIP(FEET) = 0.03000 CONSTANT SYMMETRICAL GUTTER - HIKE(FEET) = 0.17000 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = 0.34 HALFSTREET FLOOD WIDTH(FEET) = 8.54 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.16 PRODUCT OF DEPTH &VELOCITY = 0.74 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * * * CB 22 (S /S LYTLE, AT BCR) * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » » STREETFLOW MODEL INPUT INFORMATION«« CONSTANT STREET GRADE(FEET /FEET) = 0.012000 CONSTANT STREET FLOW(CFS) = 1.80 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF - WIDTH(FEET) = 28.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 14.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.67 CONSTANT SYMMETRICAL GUTTER - WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER - LIP(FEET) = 0.03000 CONSTANT SYMMETRICAL GUTTER - HIKE(FEET) = 0.17000 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: 06/11/02 D -11 STREET FLOW DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) = 7.71 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.42 PRODUCT OF DEPTH &VELOCITY = 0.78 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * CB 3 (N /S TURNBERRY) ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » »FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 3.40 GUTTER FLOWDEPTH(FEET) = 0.44 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN WIDTH(FEET) = 8.00 »»CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 8.0 » »CALCULATED ESTIMATED INTERCEPTION(CFS) = 3.4 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * * * CB 4 (S /S TURNBERRY) * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » » FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 3.80 GUTTER FLOWDEPTH(FEET) = 0.46 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN WIDTH(FEET) = 8.00 » »CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 8.6 » »CALCULATED ESTIMATED INTERCEPTION(CFS) = 3.7 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * * * CB 5 (N /S 1/3 TURNBERRY TO PINEHURST) ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 06/11/02 D -12 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** »» FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 3.30 GUTTER FLOWDEPTH(FEET) = 0.44 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN WIDTH(FEET) = 7.00 » »CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 7.8 » »CALCULATED ESTIMATED INTERCEPTION(CFS) = 3.1 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * CB 6 (S /S 1/3 TURNBERRY TO PINEHURST) * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » » FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION<«< Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 4.00 GUTTER FLOWDEPTH(FEET) = 0.46 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN WIDTH(FEET) = 9.00 » »CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 9.0 »»CALCULATED ESTIMATED INTERCEPTION(CFS) = 4.0 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * * * CB 7 (N /S 2/3 TURNBERRY TO PINEHURST) * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** »» FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION« « Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 3.30 GUTTER FLOWDEPTH(FEET) = 0.44 BASIN LOCAL DEPRESSION(FEET) = 0.33 06/11/02 D -13 FLOWBY BASIN WIDTH(FEET) = 7.00 »»CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 7.8 »»CALCULATED ESTIMATED INTERCEPTION(CFS) = 3.1 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * CB 8 (S /S 2/3 TURNBERRY TO PINEHURST) * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** »» FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 4.00 GUTTER FLOWDEPTH(FEET) = 0.46 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN WIDTH(FEET) = 9.00 »»CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 9.0 » »CALCULATED ESTIMATED INTERCEPTION(CFS) = 4.0 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * * * CB 9 (N /S PINEHURST) * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** »» FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 3.40 GUTTER FLOWDEPTH(FEET) = 0.44 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN WIDTH(FEET) = 8.00 »»CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 8.0 »»CALCULATED ESTIMATED INTERCEPTION(CFS) = 3.4 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * CB 10 (S /S PINEHURST) * 06/11/02 D -14 ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » » FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 4.10 GUTTER FLOWDEPTH(FEET) = 0.46 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN WIDTH(FEET) = 9.00 » »CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 9.2 » »CALCULATED ESTIMATED INTERCEPTION(CFS) = 4.0 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * * * CB 11 (N /S PINEHURST TO CITRUS) * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** »» FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 3.50 GUTTER FLOWDEPTH(FEET) = 0.41 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN WIDTH(FEET) = 8.90 » »CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 8.9 »»CALCULATED ESTIMATED INTERCEPTION(CFS) = 3.5 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * * * CB 12 (S /S PINEHURST TO CITRUS) ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » » FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 4.20 06/11/02 D -15 GUTTER FLOWDEPTH(FEET) = 0.42 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN WIDTH(FEET) = 10.40 » »CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 10.4 » »CALCULATED ESTIMATED INTERCEPTION(CFS) = 4.2 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * * * CB 13 (N /S CITRUS) * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » »FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 3.70 GUTTER FLOWDEPTH(FEET) = 0.42 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN WIDTH(FEET) = 9.00 »»CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 9.2 »»CALCULATED ESTIMATED INTERCEPTION(CFS) = 3.7 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * * * CB 14 (S /S CITRUS) * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** »»FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 3.70 GUTTER FLOWDEPTH(FEET) = 0.42 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN WIDTH(FEET) = 9.00 » »CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 9.2 » »CALCULATED ESTIMATED INTERCEPTION(CFS) = 3.7 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * 06/11/02 D -16 * * * CB 15 (CITRUS TO KNOX) ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » » FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 5.80 GUTTER FLOWDEPTH(FEET) = 0.44 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN WIDTH(FEET) = 13.70 »»CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 13.7 » »CALCULATED ESTIMATED INTERCEPTION(CFS) = 5.8 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * * * CB 16 (S /S CITRUS TO KNOX) ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** »»FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 5.80 GUTTER FLOWDEPTH(FEET) = 0.44 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN WIDTH(FEET) = 13.70 »»CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 13.7 >»> CALCULATED ESTIMATED INTERCEPTION(CFS) = 5.8 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * * * CB 18 (N /S KNOX) ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** »» FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. 06/11/02 D -17 STREETFLOW(CFS) = 4.10 GUTTER FLOWDEPTH(FEET) = 0.41 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN WIDTH(FEET) = 10.00 » »CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 10.4 »»CALCULATED ESTIMATED INTERCEPTION(CFS) = 4.0 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * * * CB 18 (S /S KNOX) * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** »» FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 4.10 GUTTER FLOWDEPTH(FEET) = 0.41 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN WIDTH(FEET) = 10.00 » »CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 10.4 » »CALCULATED ESTIMATED INTERCEPTION(CFS) = 4.0 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * * * CB 19 (N /S LYTLE) * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** »» FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 5.80 GUTTER FLOWDEPTH(FEET) = 0.44 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN WIDTH(FEET) = 13.70 »»CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 13.7 »»CALCULATED ESTIMATED INTERCEPTION(CFS) = 5.8 06/11/02 D -18 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * CB 20 (S /S LYTLE, E/O SCHOOL DRIVE) ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** »» FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 3.50 GUTTER FLOWDEPTH(FEET) = 0.39 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN WIDTH(FEET) = 9.30 » »CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 9.39 »»CALCULATED ESTIMATED INTERCEPTION(CFS) = 3.5 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * * * CB 21 (S /S LYTLE, E/O BUS BAY) ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** »» FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 1.90 GUTTER FLOWDEPTH(FEET) = 0.34 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN WIDTH(FEET) = 5.80 »»CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 5.89 »»CALCULATED ESTIMATED INTERCEPTION(CFS) = 1.9 06/11/02 D -19 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * * CB 22 (S /S LYTLE, AT BCR) * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** »»FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 1.80 GUTTER FLOWDEPTH(FEET) = 0.32 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN WIDTH(FEET) = 4.00 »»CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 5.95 »»CALCULATED ESTIMATED INTERCEPTION(CFS) = 1.4 06/11/02 D -20 0 0 0 0 0 0 0 m 4-1 0 H N Z 0 Z Z Z 2 2 c, H <o Pt o Pt o o <O <o £ o < N 0 0 .. W 2 2 E E E E E E E r,.) (.7 — a a, w a a a, a, < a) w w o 0 0 0 0 0 0 C7 C7 (Do (Do (Do (Do (Do C7 0 U O tv >., a w < O 2 0 2 o Z o < 0 2 0 2 0 • E m N >+ O W W W W W W W 0 a 0 a o a o a o a o W 0 a 0 a o N W C 00 CDC La r 1)1 0 .40 U 0 U0 I s Z O 2 � • Z o � m • Z O (Do • 2 0 • 2Z • • v N N < N H lD U) CO CO CO CO co CO U) ✓ 0 0 O N 2 0 0 1/40 0 0 0 0 0 0 0 o 4 N H 0 H f� H 0 H lD H 0 H 0 H 0 H 0 rd 0 ❑ 0 ❑ , - I ❑ 0 ❑ l0 ❑ 0 ❑ O ❑ 0 ❑ �j O • ❑ W v (0 • g,-. ( • g H a ll. • v') a • O m _ W c' N l0 N 0) CO c' H 3 a C7 > 0 H cf) rn H — c' a ). 0 •2 c' o r1 H N E C H >1 O 2 -.1 H co Cu -- 4-I W H a) ❑ rn rn rn rn r) rn rn rn H H H H ,. ,--1 H , -I > 0 0 0 0 0 0 0 2 Z 0 20 Z O Z 0 Z 0 20 Z o Z O 1 W 0 O 0 O 0 0 0 (0 Fi 2 a, • • • 0 PO E. CIZ> O Z r.0 Z 0 E. G7 'H H H 0 H ❑ CO Z C a E U CO 0 0 0 0 0 0 0 3 a a C 0 0 H I 0 O 0 O 0 0 0 ra CO a a 0 00 O 000 C7 0 0 .0 0 r-C W N CC U) U U E a a FC a a H H 0 0 10 E O C , v) 14 CO Z W 0 O 0 0 0 0 0 0 W 1 0 W a s 0 0 0 0 0 0 0 0 a w 0 0 l< + * * * * * -1 4' N I Cu N 0 0 0 0 0 0 0 E 2 3 W E E E E E E E E E H H rd a U H U -1 U • 0 ,- I 0 , ' - 1 U H U rn 00') Urn w E N W W W W W W W W W W Ti 3 0 x ❑ U 1 U) U) U) u) U) U) U) cl) U) C7 Cu W E F1 4, + + x r r x + a U) ❑ O O o O 0 0 0 W E' a W E O E O E 0 E O E O E O E 0 E O E 0 a, O FC H 0 O O O 0 0 0 a (0 .5' a (00 (00 OC O aC 0 01(0 00 C, rn 0.' O c4 a) u) W 3 O 0 o O 0 0 0 H 0 3 H W c' W 0 W 40 (0 0 410 (0' W 40 W rr W 0 CO • • • w E ro a, > • > • > • > • > • > • > • > • (0 N ,- 1 H ,-I 0 0 N 0 CO 0 0 Z c' Z s 2! 20 Z O 2 rn 0 10 Z l0 2 0 3 4.1 HI a H HI Hi H ,-1H,- -1 CC a 1 OD Hm HI CO I CM H H H0) HI (7) H(3 E w n, W 0 a, c c c' c' c' c' c' c rn Pt E E 0 .F) 0 '-i H H .-1 H H ri H H 3 C CD D 0 0000000000000 U w 0) HH U. 0 ♦' 0+ 0 1' 0+ 0+ o 0+ 0 s o H 1 00 4 > D 1 cC 00 20 Z O ZO Z 0 0 20 Z ' 2 (0 -4 00000 W •C 4/ C 0 w 00 00 00 00 00 00 00 Ow 00 O a. a: H • H • 1-4 • H • H • H • H • H • H • O N 0) 0 l0 r") m co c' 0) 0) 0) 00 0 E rd °V 0 E 0) E r1 E 0 E. o E 0 E o E 0 E 40 E o , - 1 H U) H FJ CO 4 ,-- KC N ' O KC O KC 0 4 RC 0 < ," KC 0 CC F1 3 E E o E c' E-'40 E m E m E N E rn E c' E l0 W (4 0 4) 0 ,4 W U) H U) H U) H U) ,-1 co '-1 CO N U) N U) N CO N H x W O - .1 r1 W a 10 1n 10 In 40 10 In If) If) 3 a, E 0 0 0 O 0 0 0 E U) U) Cu E E 2 U) (0 O O O O 0 0 0 FC FC x 0 3 > 3 . 0 0 0 0 0 0 3 3 0 F F E E E E E E E E • E 0 4 Kt Kt 0 4 H KC Kt 4 R a, w ❑ x ❑ x ❑ x ❑ x ❑ 0 ❑ U) ❑ x ❑ 0 ❑ 0) H ro o m m 4) m 4) m 4) CO KC W Kt u) 4) U) p rn 01 m r"- w w w w w w� w C a 0 0 0 - 4 4 0 1 4 0 © 0 '-1 1 1 1 U) 0 a O 2 0 a O Ix O a O E 0 01 O a 0 . r 4 tl 2 4.4 U) (/4 Ul FC 4) KC FC RC 01 1 KC < • a, H H H ❑ U) (1) U) CO CO U) U) U) U) W H N rn H H H H H H H H H N 2 0, In x ›. r) c' r) (n c c' r) c' c' r) r) r) c 0 0 0 '-I N r) c' In l0 r m o) d' U E Z 2 Z w w w N E 2 Z 2 0 0 0 0 0 0 0 0 0 10 up '- -INrnc' Inlora)rno N rn H H H Z Z 2 Z 2 Z 2 Z Z l0 W 2 H H H H a a a (1) E E E E E E E E E C7 C7 C7 Z Z 2 Z 2 2 2 2 2 f'V a Z 2 Z w w w w w w w w w ❑ W H H H E E E E E E E E E O\ a O ❑ ❑ ❑ W W W W W W W W W • Kt 0 0 0 0 0 ❑ 4 KC 0 a a a a a a a a a — a 00 0000000000000 x x x w w w w w w w w w w o x x CC x x x x x x x x x x O o Z Z O M Z 2 2 2 Z Z Z 0 2 Z 2 Z a' o < o Kt 0 o 3 O g o 0 3 0 < o l< 0 3 0 0 Kt 0 3 0 0 0 < v' 0 cr 0 E E Z E E E E E E E E E E E 2 a a H a 04 04 w a a a H w a a a 0 0 o x W 0 0 0 0 0 0 0 x o o 0 o W o 0 o 0 0 w 0 CD CD o CD 0 CD o 0 0 CD 0 CD 0 CD o 2 0 C'I O CD 0 Ch o CD 0 C7 0 Z o Z 0 0 < Z O 20 Z o Z 0 2 O Z O 20 0 2 0 20 Z 0 Z0 r.>; • < • < • o W < • < • KC • < • < • < • < • M 0 < • a • < W • < • M • + ,n + 0 H c H rn Z 1 x 1 a a E4 w 0 w w w w w w w W 0 w w w w w O 4 0 a 0 O a 0 a 0 a 0 a 07 a 0 .1 04 a ■0 a 0 O a 0 4 o a 0 a (n a l0 O CD co U' 0 m 0 CD 0 (9 0 CD 0 (.7 m CD 0 CD 0 0 M cD O c O 0 O CD co CD 0 0 r 0 N O Z0 Z0 1 • Zo ZO 20 20 Zo Zv' 22 Zo I • ZO 20 ZO 220 20 • < • FC • a < • Ft • Ft • KC r• < • < • KC • < a < • < • < • < • < • W N H 1 W N > 1 1 2 2 V) U) H U) 0 U) U) U) U) 0) V) Cn H U) 0 U) Cn U) Cn o 0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0 <n 0 Ln 0 0 0 0 0 0 0 0 0 0 0 0 r o H co H co M M H 0 H 0 H 0 H 0 H 0 H 0 H In H 0 M 0 H 0 H 0 H 0 H a• H N • 0 F ❑ O F ❑ co + 1 co F • ❑ O F• (Y, ❑ 0 0 0 ❑ 0 ❑ .-4 r W 0 .-1 F• M {L L3' • R. 0 O + 1 O F 2 • F 0 co �0 O ❑ 04 CO N • a • W • N a W' O g 0 O a g O g ■0• W H 0 N N W d' r 0■ > L(7 W m co > Ln CD m Z HI 2 H H H 0 0 0 0 0 0 0 •O ' l H 0 0 + o + 0 M M O Q1 M M M M M M M M M M M M M M M M .-1 H H H CD H H H H H HI H H HI HI H HI 0 0 2 0 Z 0 Z o 2 20 20 Z0 20 Z0 20 20 20 2 0 2 0 2 O 2 0 Z H H • E E u) u) N 1-4 N H 1 0 a 1 0 a < 3 CI < 3 ❑ a + 4 ( < + ,H CD H U 1 N a• 1 LO o F. E E. • cn E. < cn 2 cO + + + a 3 £ + + + + 4 + + + a 4 + + + 3 £ + E E E W E E E E E H E E E E E E W f°1 M 0 M 0 M U M ■7 U M Urn Urn U m Urn U m Urn U m Urn U M U M Urn .1 W W Cs) W W W W W W W G] W W W W W 41 r�i 0) u) u) Cf) u) u) Cf) 04 C/) C/) cn v) cn co 1 + + + + + + + + + + + + + + + + O E O E co E co W E O E 0 E co E O E O E O E O E O E O E O E. O E O W cr, 0 aH am al0 a a 04 a<0 P4 CV a01 a r aN 2 aN 2 a1 a (40 ft , t. aCD a 0 W N W H W N H W M W LC) W O W a) W W H W M W Cr) W O W N W N W CO H • • W > • > • > • > • > • > • > • > • > • > • > • > • 04 CO Z H • Zr- • Z r- 0 2-1 Z rn 2 m Zoo 2 M Z e' Z <o Z ZO Z0 ZOO Z w 0 01 H 0 H O H O a H H H H H N H N H M H M H M H M H M H C H C' H Q' a Q' u) u) <0 a Ln 04 Ln In to Ln In Ln ul In In In 2 H H H H H H H H H H H H H H H H W W 0+ 0+ 0+ 0 U+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0 + 0 + 0+ 0+ 0 U+ 0 ZO 2O ZO < ZO Zm ZIn Z0 ZO Z04 Zo ZO Z Za1 Zc ZO < O 00 OH 0O W oo Ow ON OIn 00 O N 01n 01n 0M 0m ON 0 C 2 H H H a H • H • H • H • H • H • H • H • H • H • H • H • a 0 E 0 E 01 E ( x E co E rn E N E 0• H O E V0 E N E <n E <n E H E <0 E cV x O KC 0 < M FC Q U) < O < H FC Q' < r < 0 < N KG M FC M < <0 < N < M F( l0 U) l0 E m E N E N E d' E r EF co E co E M E M E a' E •' H cn E 04 E 0 E 0 N Cn N U) M CT) M a U) M U) M U) Q' Cn Q' U) Q' (1) q' Cn C U) o' V) a' U) Q U) In U) in a cn In en cn W Ln o) <n 4n Ln N N u) u) <0 u') W E E < Ft Z < 3 KC < F < < < < Z < FC F FC FC 3 E E 0 E E E E E E E E 0 E E E E E FC < H KC Kt FC KC FC FC Kt F-C H1 FC FC FC FC FC x x ❑ E❑ 0 2 0 0 0 0 0 H 0 0 0 0 x U U U U U U U U U U U U U U U U FC Cn FC (f) 2 U) FC U1 FC U1 <2 Kt cn FC U) FE4 cn FC [n 2 0) FC CO FC U) FC U) KC CO FC W— w— D— W� W'\ W W- W W— W— O'— W� W- W- W\ W PG 0 a 0 h 0 20 20 20 20 20 20 20 0404 a 0 a s a 0 a 0 a v) CI) v) u) m Cn u) u u) 0) u) 0) cn u) v) u) H H H H H H H H H H H H H H H H 0 H N M d' U) l0 r OD co, O H N M Q' 1n H H H ,y H H H H H H N N N N N N O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 Z Z Z 2 2 2 2 Z Z 2 Z Z Z Z E E E E E E E E E E E E E E E E Z Z Z 2 2 2 2 2 2 2 2 Z Z Z Z Z N W W W W W W W W W W W W W W W W £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ 0 W W W W W W W W W W W W W W W W a a a a a a a a a a a a a a a a w w w w w w w w w W f:) W W W W W 0 Z Z Z Z Z Z Z O Z Z Ln Z o Z Z Z z 0 z 0 < o £ 0 < 0 < 0 !:•14 o o r� 0 < O x o O £ o x o < £ v' 0 c' E F F E E E F F F Z F E F E 0 0 a a a a a H a a a H a a a 0 0 0 0 0 0 0 x 0 0 w 0 x 0 0 C7 o C7 0 W 0 0 o CD O CD 0 C7 0 a o C7 O (D o CD C7 0 0 0 (D 0 C7 0 CD 20 Z O Z O 20 20 20 20 0 20 2 0 r.0 2O o 2O 20 2 < • < • rt • < • < • KC • < • o RC • r1 • a rC • o rt • FC • rt r) • m • + Ln + N H v' H e 0 • 1 0 1 M a w w w w w w w o w w w w o w w w w a l0 a o a 0 w 0 a 0 a 0 a 0 w 0 a 0 0 a 0 a o a 0 a O 0 4 0 a 0 a 0 a CD Ln (D o C7 0 a o C9 o U o C9 o a o o o (D 0 o C9 o C9 o yr o C9 0 o C7 O (D 2(`') 20 20 (DO 20 20 Zo (Do 0 ZO 1 1 •ZO 0 20 20 20 I • 20 0 Z 20 20 2 a� < • a • Z • . a • < • a • a • a • a a • < • a • a . a < • a • a • a H w (4 > > Z Z co Cl co co co co to (0 co H U) O co co (n H En 0 co co U) o lD 0 0 0 0 0 0 0 o a o 0 o 0 o 0 0 0 0 0 0 o 0 o 0 0 0 0 0 0 0 a o 0 H Cr H O H 0 H 0 H 0 H 0 H 0 H 0 H 0 fr (\1 H 0 H 0 H 0 H 0 r) r) H 0 H 0 H 0 H ❑� Ln ❑ O ❑ O 0) ❑ O r• 0) ❑ o r ❑ 0 00 ❑ 0 0 o . I N ❑ 0) ❑ 0 ❑ 0 ❑ 0 + 1 Ls al ❑ O ❑ 0 ❑ • g t` a • 0 • 0) 0) • 0) • 0) • a Lf) 0) 0) 0) • a g rn g d. w w a) 1p > N > U) 2 2 H H H 0 0 0 0 0 0 Q Q' 0 0 0 0 0 0 + 0 + 0 M 0) r) Cr, 0 Ln a lD Cr (+) r) M r) r) r) (0 M co r) (,') (`') r) rn r) (`') H 4-4 r1 H ,-1 ,--1 ,-1 H ,-i ,-1 H r-1 (7 -4 H 4-1 H 20 2o 2o 2o 2 0 Z0 20 Z 0 20 Z O Z O Z O Z Z O Z O Z o 2 0 Z F U) N H N I 0 a 1 0 a 3 a a + C7 0 + H U ' I If) a I \O a n w a + + + 44 + + + + + + + Z Z + + + + + F E H E E F F E E E F E w E F E F F 1. U M Urn U m U N U N 04)4 001 0 M um U c n U m Um a U m 0m U r) U r) U w w w w H w ,-1 w H w H w w w w w w w w w w w Z U) (f) (f) CO (f) V) (f) co co (n Ul U) U) co U) U) U) 1 + + + + + + + + + + + + + + + + E 0 E 0 F O E o E o F 0 E 0 E 0 F 0 F o E o E o w E o F 0 E 0 F o E a o a r a (0 a c a m 2 a) a lfl a CO (z N a CO a 0 (z 0 a corn 0 2 0) o a o D: w 0) w l0 w lf) w a) w 0) w Ln w� w Q' w r w a) [4 ,-4 w r 1-4 w v' w In w Q) w r w > • > • > • > • > • > • > • > • > • > • > • > • w > • > • > • > • > 20 2•=r 2)-1 2 22 22 2r- 22 Z 0 Z 0 22 22 0 2k0 Z O 2 1/40 Z N 2 H U) H Ln H VD H O H 1p H l0 HI LC) H O H I` H C H ( - H co a. 1. rn H a) H a) H H H to 2 2 to to N to 2 N to 2 2 a Ln In Ln up H ,-1 4-1 H H '-1 rl H H H H H H H H 4-1 L4 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0 + 0+ 0 + O+ O 0+ O+ O + O+ o+ Z 4D Z ZO Z ZO Z Z0 ZO ZO ZO ZlD ZN r.0 20 20 2N Z(N Z O , n 00 00 00 00 00 00 00 00 00 0 c 0 0 w 0 0 0 0 0 o 0 0 0 H H H H H H H H H H H • H • a. H • 1 H • H • H Frt FN F F0 E'0 E'0 Fu) ELn Ec EN He HD) 2 FO H cr , Fm E F FC o FC N KC 0 < N KC H KC N FC U') KC 4 KC N 4 r) FC a) 4 L0 U) r) Ln FC Ln FC 1D 0 H FC F N F r) E 0- F r F a) F a) E Ln F U) F LD F LD F lD E <T F D) E rn H (3) E N F (/) Ln U) Ln crl Ln (f) to (n Ln Ul to (n l0 U) ■0 U) 4.0 V) lD U) lD (r) r 2 cn I` co r U) 4- (f) a) U) In Ln Ln Ln Ln Lf) Ln N Ln Ln to U) w to N Ln Ln E 0 0 FC FC rC KC H < < < KC H KC < 2 KC r.0 0) S < 2 r.0 < KC 0 F F F E F F F H E E E O E F F F O E E F E o < 0 H) 0 0 0 H r.0 0 H FC FC 0 rS 1"1 0) FC FC 0 ❑ M O Z ❑ U) (21 M O Z ❑ 0 ❑ U) ❑ 0 ❑ F Cl 0 ❑ 0 ❑ 0 ❑ F ❑ 0 ❑ 0 ❑ 0 ❑ U 0 2 U U U 2 U 0 U U U U U U U U) 0) Co Kt U) FC U) 0C U) 0 (n < (n < U) 0 (r) 0 (n RC (n < (n 0 U) 2 (/) < U) 0 0) 0 U) w� w� W� w — w'- 0 w- 0� w� w� w� 0� w� W w� O a 0 a s F a a 0 0 0 0 a F 0 M 0 h D a 0 a 0 a 0 h 0 a 0 a 0 (Z 0 a < a a a < a a < a a a a a < a m m (n CO m CO Ul m (n CO m (n (n (n m m H H H H H H H H H H H H H H H H l0 r m 0) O .-i N r) ,r to l0 r- co a) O , - 4 N N N N r) r) r) 0) (") (,) in r) r) r) C' v' O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 Z Z 2 2 2 2 2 Z 2 Z Z 2 2 E E H E E E F E E E F F F E E F 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Z 2 N w w W w w w w w w w w w w w w w O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C w w w W w w w w w w G] w w w w G] a a a a a a a a a a a a a a a a w w w w w w w w w w w w w w w w 0 x o x 0 D ... 2 0 0 0 0 0 0 2 Z 2 Lc o Z 2 o Z o Z 0 r - Z O 0 < o < o o o £ o o o < 0 o < o o < o <r 0 v' <r v c 0 E E E Z E E E E Z E H a a a H a a Fd a HI a H a o x o 0 o W 5 O o 5 o x o x W 0 o ao 070 00 U' o 0 a0 0 CDo a 0 CD a0 U' 0 a0 U' 0 0 o Zo Z0 Z0rt 0 Z0 Zo 0 Z0 0 Zo 0 r.0 ZO 0 rt • FG • FG • Cr.. 0 FC • r.0 • 0 rt • 0 < • 0 a FG • r • rn • r • rn • rn • . in i< O 4 ' 1.(1 * (n * (f) H vP H r) H <T H C H v' 5 1 X 1 Z I 5 1 2 1 a, a a a a O W W W W O W W W O W W O W W O W W 0 0 a0 a0 .-70 a0 oa0 a0 a0 oao a0 oa0 a0 o a0 4 0 yr 0 C? o CD o CD 0 W 0 yr o U 0 (Do 00 . 74000 C7 0 . T 0 0 0 00 m 0 C.90 CD 0 0 1 • Z o Z O Z O Z o 1 • Z 0 Z o Z 0 1 • Z 0 Z O 1 • Z 0 Z o I • Z 0 Z 0 a < . 4 . < . KC • a 1‹ • a • KC • a Kt • a • a a • a • ‘24 < • < • > > > > > H • 0) 0 0) (n U) H (n 0 () !n H (1) 0 [n H fn O (4) H U) 0 0 0 o 0 0 0 0 D o 0 0 O o 0 0 0 D O o 0 o D O o 0 0 0 0 o 0 0 0 O 0 r) O H 0 H 0 H 0 H 0 CO N H 0 H 0 H 0 in 0 H 0 H 0 C'l 0 H 0 H 0 r) un H 0 H 0 0 * 1 0 � 0 • 0 0 0 0 ❑ 0 * I N 0 < � 2 O r• r � O : 0 O * I O r 0 • r a 0 rt O * I • � a N a' 2 � t O * I r - r r P: 0 r� 0 • • a r x g • g • g CO [� a W • U: a (n a a O • W H W (V W r) W •T W v > ■0 > > > > 0 O H Z H 2 H Z H 2 H H, H H H H 0 0 0 0 0 0 0 0 0 0 0 0 O 0 0 v v yr c c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * H * N * r - * N . N (4 (() r) H M < M l0 ( C7 ON 0 LS) or) 0H 0 In ( H in rn M r) in M in M M in r) M rn rn .--1 .--1 •-1 .-i H 0 r-1 .-a .-■ < -1 r-1 '-1 < -1 H 0 H o Z o Z o Z o Z o 2 Z o 2 O Z o 2 0 Z 0 Z O 2 0 Z O Z Z O • H H E E. u) u) N H N N N N H 1 0 a 1 0 1 0 I 0 1 0 a KC 3❑ E. KC KC a 3 a a a a a a a * 0 0 * 4 4 4 C7 KC H 0 H H H H 0 I 0 a 1 CO 10 10 1 O) a KC CO E. E. E. E. a (n Z 1 a 4 4 4 3 Z 4 ' a '4 4 4, a 4 4 a 4 4 a 3 Z * (n E H E E W E E E E E. H E E W E (`") UN ON ON ON a 0H 0H 0H 0 ( 0h 0r 0(a 0( W H W H W H W H W W H W H W H W W W W W W 0 ( V) co O Cf) (n CO (n Cf) CO Cf) Cf) Cf) co 1 * * * * . . * . * * . . * O E O E O E O E O W E o E 0 E 0 E O E O E 0 E O E O W E o (n a O) a W ,-0 a d' CO 0 a CO N CO 0 CO 0 CO N CO r - a 0) a 0 a H a CO 10 rt U) W Cr W W CO W H H W o W 0 W r) r) 4] (n W (n W to W H W N . E > . > • > • > • 0) > • > • > • > • > • > • > • > • 2 > • N ON 00 Z(`') 0 T 0 00 Z r- 0H ZH ZL Z(o gas 2 c 0 2a' Ho H H H N H N H N CO H N H N H r) H M H M H CO H M H r) a H v' 0 W u0 0 0 0 a 0 0 t0 lD 0 00 ID 40 a ID H - H H H H H H H H H H H H H Z CO W 0 0)* 0 * 0. o . 0 0* 0 * 0. 0. 0 . 0. 0 . 0. 0 0. 0 0 a 0 o Z N 0 0 Z o KC 0 0 Z o 2 0 2 0 Z o Z o Z O 2 0 Kt Z O 0 0 0 0 0 0 0 0 o W 0 0 0 0 0 0 0 0 0 0 0 o 0 o O or [.• 0 0 • 0 H • H • H • H • a H • H • H • H • H H H H a H • (n E EO E0) Eo Eo 2 E(n E(n E E(T) E EM E 0) E. en o Em N a KC C (,t ■.0 FG r) < ■0 (n FG r - < 00 F H rt N ct H < N FG 0 FG (` 0) ft H N D E N E H E (n E u') E (n E (n E v' E c E (n E (n E H E H E H 0■ (n 0) (n 0 (n 0 (n 0 a V) O co 0 (n H co H v) N 0) N (n rl (1) c'n a co v (n r) (n Io 00 (o W 0 ID Lo ID ID ID ID up W to E E. a Z 4 < < < 3 2 RC < < 2 < < 2 at < Z KC 3 KC W 0 E E E E 0 H E E 0 E E 0 E E 0 E E 3 H r.0 FC KC rt H rt KC KC H 4) aC H rt rL 1. 4 RC E❑ 0 0 r x❑ E❑ 0 0 E❑ 0 E❑ 2 E❑ 0 3 U U U U 0 U U U U U 0 U U O 2 co Kt (n 4 0) KC (n 2 co 4) (n ) 0) 0 (n rt (n 2 (n rt CO Z (n FC 0) a D W W W\ D- W W D- W D- W D W W h D a D a 0 CO 0 1 7 D CO D CO 0 1 7 D a 0 0 D a D 0 D a D Pci a a a a a a a 4) 4) 4) a a a 0) O 0) m 0) (n (n (n (n U (n 0) m U m o ff H H H H H H H H H H H H H E N r) C' (n (0 t` (0 0) 0 H N in cr U v v v v v v v v u0 (n (n (f) in W 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 Z 2 2 Z 2 2 Z Z Z 2 U) E E E E H E E E E E E E E x 2 2 0 Z 2 2 Z 2 Z Z Z 2 Z N a W W W W W W W W W W W W W £ 0 0 0 0 0 0 W W W W W W W W W W W W W W a a a a a a a a a a a a a -. a W W W W W W W W W W W W (4 0 0 0 o o o z o £ o z o a c E E E E H a H a a a 2 o 2 o 0 0 w o w o a o z o 0 o z 0 M • M • + LI) + In H Q' H Q' a a o w w O w w w w o a o a o o a o a o W o a o a M crocDo 00 cro C90 (Do ao (Do Ow 1 • Zo 20 1 • Zo 20 WO Zo 20 a < • < • z a • < • Z 0 w w rn 1 z 2 H cn o cn H U) o cn cn cn cn 0 0 0 0 0 o a o 0 0 0 0 0 o 0 a) M O N O H O M O N O H O H O H O H O + 1 O❑ • r ❑ O+ 1 N❑ • r ❑ O ❑ o ❑ O r ❑ O r E t ' r z o a • cz • d • W O W cr. W an Cn a o > > 1/40 W CO Z Z H H H CO N 0 0 3 ,$) 0 o H 0 0 c v a 0 0 0 0 0 + e' + CO M Q' CO l0 4 < 01 CO 0 N M M M M M M M H H H H rl H H 2 0 2 0 2 0 z o 20 20 20 N N 1 0 1 O E F 4 4 a a + + H H 1 VD I E E 4 4 a a * F -, E * E + F + E + F + F + E VD 0 M 0 M O CO U M U M U M U M U M r•�r w H W r1 w H W H G] H W H W H W •H r+ cn U] cn U] U] U] U) U) + + 4 3 + + + H 0 F O F O F 0 F 0 F 0 F O F O 2 r 2 co 2 O 0.'i LO 0' o CL N W O X O W N W 0 W 0 W rn W r1 W H W CO W CO Z,r • 21- ZUn Zrl 2N • 2N • ZN • 2N • H Cr H Cr H C' H if) H Ln H 1n H In H to up 4..0 l0 t.0 r - i H <-1 •-1 H •--1 r-1 H + 0 + O+ O + O+ O+ O+ 0 0 Z o Z o Z o Z o Z O Z o Z m Z CO 00 00 00 00 0o 0M 0r- 01 1-4 • H H H • H • H • H • U] H • F CO E <n E. Cn F Ln E LO F m F 0(0 E 0 Q,' N g m Q' 61 Q, N a' N 4 In < 0 2 0 0 F HI F CO E CO E r E r F r Ern 0 E rn cn G' CO C' CO d' CO In CO In CO In U) to 3 CO 10 \0 l0 1p l0 l0 l0 l0 ❑ 40 2 < 0 w Z < FC Z r.0 aC H KC FC RC 5 FC O E E O E E E F H E E H g g H< < H< < < Z E ❑ Z ❑ F ❑ Z ❑ cn ❑ 2 ❑ 2 ❑ W ❑ 2 CO 0 CO Z cn < CO cn < CO < CO C CO 0- W- 0- w w— w- ). h 0 C4 0 h 0 CL 0 F 2 ( 0 (0 0 cn 0 U) U) U) cn v) co m U) H H H H H H H H Ln l0 n- co 0) 0 H N Ln l0 Cf) Ln Ln l0 l0 10 O 0 0 0 0 0 0 0 Z 2 Z 2 Z 2 Z Z z z z z z Z z z W W W Cr] W W W W N W W Z W W W Z Z O W W W W W W W W .--i VD 0 H + a .a + 0 0 0 0 0 0 0 0 0 ra + .c., U+ . Lr) * .0 (1, * + 3\ a)* N * 0 a+ X x X k X x X X X W N * 0 11 >, * 0 0 O 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 U` * Z a F* 1 0) I 0.'1 1 0: 1 W I CA 1 00 1 m 1 0) 1 m 41 C) 0 + * 0 0 O 0 0 0 0 0 0 O o 0 O 0 0 0 0 0 a) * a a+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E * N N •4 * * E1 -4 4 I 1 1 I i 1 1 I 1 * ▪ 4) • r1 * 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 N + $ Q ■•1 + O 0 O co 0 0 0 0 O 0 O O 0 0 0 0 0 0 O + • 21 4 o • o • O • 0 • o • o • o • O • o 0 + v H C4 * . N * co 1 * N N N N N N N N N 1 + ro 11 Xa * • 1-1 ri r-1 ri H ri ,-1 •-1 M -4 W 0 1 + I 1 1 I 1 I 1 I I + * \ F I + I I I 1 1 I I l0 + 4-1 C4 * 0 0 0 0 0 O 0 0 0 + 4 I + O M O M 0 M O M 0 M 0 M 0 M O M 0 M + tr z* 0 1 0 1 0 r 0 0 r 0 0 1 0 1 0 0) + 4r1 ro 41* • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 4-) * v •a * o • o • o • o • o • o • o • o • O ro + 0 0 1 * r-1 1 1--1 1 1-1 1 I-1 1 .-1 1 H 1 r-1 1 1-1 1 1--1 1 0 * + a I * 1 1 I I 1 1 1 I * 0 a+ * E' • 1ti 0* 0 M O M o •--I 0 l0 0 l0 0 0 o O o M o * 11 + 0 r1 0 r1 0 N 0 N O N 0 O 0 0 0 40 0 * 3 la + 0 •r1 11 + N al N al N al N CO N CO N 0 N 0 N '.0 N + .--1 "$ 0 * 1-1 r-1 1-1 1-1 ,--1 •-I ri r1 r r ri + Gt1 1 Z+ 1 1 I 1 I 1 1 1 + - 4 .--1 1 Z* 1 I 1 I I 1 1 + CO + 1 a) 0 in l0 a) •i Lf) * U 4 a) * o Cr 0 C' 0 lD 0 10 0 l0 0 r - 0 01 0 0 0 M + •.1 1) 1C7 • o O • 0 • 0 • 0 • 0 • 0 • 0 • 0 0 4, .1.) a C + • r -1 • r- • r- • r- • •-■ • ,-I • ,-1 • C * •.4 a) 0+ O 0 0 O 0 co 0 O 0 N + S - I 0 4-1 * 1-4 ri r-1 1-1 r-1 ri r-1 .-1 1-1 + U W+ 1 1 1 1 1 1 1 1 I + — + 1 .0 + 1 0 1 0 1 0 I C' 1 0 I in I in I •-1 1 c * 11 4 4) + 0 Ln 0 N 0) 0 0 )0 O l0 0 C' N r1 O 10 O l0 0 U' * a) a) a+ O • O • •--1 • O • O • (V • N • 0 • 0 l0 • Z + a r1 Q+ • m • a) • a) • N • N • N • N • ' C' H + C W + H 1O . - 1 E + v) W + U) * U) - I , 1 1 1 1 1 I 1 • H + — — — 0 a + • 1 * 1 1 1 1 1 1 1 1 •.1 + >. -3 + r N M M l0 CO Cr 0 Ln N N N o Ln M N Lf) Cr V1 W * IT W * M 1/40 04 OD N N Ln C' al OJ co •■ 0) M M C' r- r-1 11 a + 3-1 • W + a) H * (V - 0 X * r1 .-1 N r-1 C' Ln in N co ri a) ■ - • .-4 C' in 4 C.1 * C 11 + O O O O 0 0 0 r1 r1 to 0 * W C7 + in Ln in Ln Ln in Ln Ln In 2 0) C4 * i' .-1 ri r•1 •1 , r1 ,-1 r1 .-1 U N a + I + 1 I 1 I 1 1 1 H .-1 + V) W 17• r1 * I a) * 0 1 • 1 C' 1 11 Lf) 1 al 0 I M N 10 N 1 C' l0 1 0 M 1 N 0) 1 N W U (1) * .d 'J * Cr OD 0 0\ al al C' 0 in •■ in N LO C' 0) C' 10 Cr O 4 W C + r1 cc! 41 + • 0 O • O • r-1 • r-1 • •-1 r1 • r-1 • •-1 a •• Cs.i Z C * a) a) * co O 0) O 0) co 0 0 0 0 r-1 0 N 0 M 0 fM 0 H 41 a H ro * 'J X 4+ + • 11 • r1 • ,1 • 11 • ,-1 • r1 • a) 0 a ..Z + cn+ H CC) U -4 1 * 1 I 1 I 1 1 1 1 U E Q + — — — — — — — — — — — Q!, V] 'C} + I -4 N 1 M 1 r1 1 co I M I 0 1 l0 I if) 1 0 1 2 W a N + * N 11 M CJ 0 M in a) N E1 0 0 + ■•i O * . 41 3 H •1' '41 * a) a * M C' to tf) l0 r- co 0) 0) W r0 $ 1 3 * > C.• • N N N N N N N N N 0 •.4 (0 * * •• 2 11 + 1 4, 1 1 1 1 1 I 1 1 I CL. a) H 0 + U) (L 1.1 * + I 4 o 1 0 1 O O O O I O I O o l U) * 0 0 0 0 0 0 0 0 0 a) Q a) * + . . CT .k' + CO * C' C' C' C' C' Cr d' C' C' ro 0 3 * 0 (< + N N N N N N N N N X ro * U + M M M M M M M M M U 0 2 * + N N N N N N N N N ro F' 0 + * a (0 0 0+ I -4 1 1 1 1 1 1 1 1 I 4 r1 * W 1+ 1 * CO 1 N 1 N 1 C' 1 CO 1 N 1 M 1 l0 4 N 1 r0 0 a ) 0 * + 0 al H C' N C' N O l0 14 Z > * H * Q) CO OD r1 C' N M C' 0 0 0' * JJ (1) + N M C' 40 Ln N N N N L1 4.1: ro 3 + (0 r•1 * 0) 0) Q) a) 0) a) 0) 01 0 $ a ( 0 + W * C' C' C• Cr C' C' Cr C' In U) E1 3-1 ri + * H r1 11 1-1 1-1 4-1 I-1 r1 1-1 $ 1 - 1 a ) 4 - , • I * 1 I I I I 1 1 1 I • -I + 1] U) + I -4 M C 1 CT 1 N 1 ' 1 r1 N 1 1 OD 1 l0 1 N 1 / 0 + .0 + 0 a) r-1 C' 0 C' N 0 VD CV U) + -1 -- + N ri CO l0 l0 N 0) l0 l0 b) * a E + ro * 0) 41 + CO OD N N N N l0 l0 l0 ) * 0 — + •r1 + * 111 + * 1 1 1 1 1 1 1 14 + Q -4 1 + 0 1 M I 0 1 0 1 N I 0 I Ln 1 0 1 0 1 / * (1) * 0 Ln a) Ln 0 M 0 M N M 0 N a) N O M 0 N * 4 a + C' 10 10 l0 0 l0 Ln co co O] O C' M C' co Ln C' O Ln + 11 .7 0* • O • O • O • 0 • O • O • O • 1 • M C' * a) a) r1 + a' 0 Ln 0 N 0 N O N 0 0 0 O 0 0 0 in ra 11 + D r1 VI + a1 • CO • CO • OD • CO • rn • Cr, • 01 • CT) 0 1 * C W * C' Cr C' C' Cr C' Cr C' Cr N * H .0 * r1 1-1 11 r1 r1 11 1-1 11 ri Ln 4, I U+ 1 1 1 1 1 1 1 1 I l0 * / 4 1 + 0 1 N 0 1 M 0 1 0 0 1 0 0 1 0 0 1 (N/ 0 1 O] 0 10 0 1 1:4 * 0; + 0 N OD N 0 0 0 N N (n O If/ Lf) C' 0 0 0 E Ow * 0 E* 0 a) 0) 0 0 0 0 N N N 0 CO CO 11 0 0 0 U) N + •ri a) + * yJ ■1 * 0) a) co N •1 Cr) 0 0) 0) 0 0 M M l0 0 0 0 U) 0 W + ro W+ r1 a) 11 0 N N 0 M M l0 0 a) a) O) 0) O a) a * JJ \ * 0 ,-i N N C' Ln in N OO co a) M N ,-r H + U) r-7 * r1 ••• ,-1 r1 ri • 1 , i .-I N C+. + * N in Ln Ln in in Ln Ln in E' C N * CL .0 * 0 0 0 0 0 O O 0 0 '-4 * .0 -'9 U * In * JJ Dt * • 3� a)* Ni * ()) O. * X X X X X X X X X W N + 0 S-1 >, * O 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0 0 * Z 01 F * 1 C) 1 CO I C) I 0.l 1 01 1 CO I C) 1 01 1 CO ,r (0 * 10 * * O O O O O O O O O O O O O O O O 0 O 0) * a (0 4, O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • N N * 4, * E. + 1 # I 9 I 1 I I 1 1 I * * .I- • 1 '1 * 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 N * 3 ❑ r * 0 0 0 0 0 0 0 0 0 0 0 0 0 O 0 co 0 O 0 * • (0 Y 0 • 0 • O • 0 • o • O • 0 • 0 • 0 0 • a H Lu * . N * (n 1 * .1 H r1 H H H H H H • (0 YJ X * • '-1 H H H H 4-1 4-I 4-1 ('1 4' D7 O I # 1 1 1 I I 1 1 1 I * * E. 1 # 1 1 9 I 1 1 I 1 I ED * y) LN * 0 0 O 0 0 0 0 0 0 Y ,. 1 0 * 0 M 0 M 0 CO 0 61 O (0 O (') 0 01 0 CO 0 M 4 0 • Z* 0 • 0 '-1 0 H 0 .-I 0 '-I O '-I 0 r1 0 H o =--I • * ••• CO _ * • 0 • 0 • 0 • 0 • o • 0 • 0 • 0 • 0 l) Y a) -r1 + as • 0) • 0) • 01 • 0) • 01 • 0) • 0) • a) 01 * x ❑ I # 1 1 I 1 1 1 1 1 ❑ * — — — + 0, 1 * 1 1 I I 1 1 1 1 + o a* * E. .0 ❑* o to 0 0 0 0 0 H 0 0 0 0 0 0 0 0 LC) * 1 * 0 Cr 0 0 0 0 0 H 0 N 0 N 0 to O O ID # 3'0 + • 0 • i H • '1 CO .-1 01 '1 01 1-1 r 1-1 r H r H r H r1 In * 4H (0 0 * . 'i '-1 H '1 H H H H * L., 1 Z# 1 1 1 1 1 I 1 1 I Y 'i 1 Z* 1 1 1 I 1 1 1 1 I 4 ro * l0 C' 0 to r1 r C' CV * 0.0 (1) * 0 CO 0 CO 0 0 0 4-1 0 N 0 N 0 C' 0 N 0 l0 * - .JJ •6 -4 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 l0 0 * + C1, 6* • '-I • '-I • N • N • N • N • N • N * •ri (9) 0 • as 01 01 01 CO 01 Ol Ol N 0) * Y1 ❑ 1-4 * -I< 0 I (0 + I 1 1 1 1 I I 1 I * — — — * 1 ,C 4 1 r 1 CO 1 N 1 01 1 LO I to 1 In 9 1 l0 C' * 5-.1 'J 1) * 0 C' 0 N 0 =1 O 0- 0 lD 0 to O N O to 0 0) 0 (47 * a) a) CL 4 ' 0 • 0 • 0 • 0 • 0 • o • o • 0 01 o • 2 • CL H ❑ * • r • r • r • l0 • 10 • l0 • ED • to c H * 0 W * 10 '-1 E, + (n W * U) * 1 (n -4 I 1 1 1 1 I 1 1 I G H * O i39 -4 • 1 * 1 I 1 1 I 1 I 1 .'i * >1 H • r 9 .0 CO N to N 0 '-4 01 H 0 r CO In (') r 0 CO CO W + Q W * CI lD l0 0) N O to l0 ' to r O r r to O Lo OD a) H * a) '0 x * to ' - I r co (V 0 (') C' '-I to C' 01 CO CO M (') • (0 * C ).1 * 41 H '-1 N N N N 01 CO ED 0 * W C7 * N In to to to to to to to 2 0) a. * * '-1 H '-1 <i 'i H <-1 '1 H C7 N CL -4 I + 1 1 1 i 1 1 1 I I H1-1 + — — — (n W( H # 1 a) 4' r 1 (V to 1 •1 r 1 ED 0 1 O N 1 61 to 1 lD C' 1 CO 01 1 CO 0 1 to W 0 a) # 'O ,7 * 0) C' ED tf) N l0 r OD (") CO CO O to CO CO C' CO C' ❑ ,( W C * '1 (0 r-C * • '1 • 11 • '1 • H • '1 • N • N • N • N .a •• (0 Z C * (9) (1) * N 0 CO 0 C' O to O lD O l0 0 CO O 0 0 0 0 F1 i-1 1) H (tl * > x Lu # 41 • '1 • '1 • ' • 4-1 • 4-1 • '1 • N • N • a) o a ,C * U) * H U) 0 4 1 * I I 1 1 1 1 1 1 I U E ❑ * — — — — — — — — — — — a D: (n 'O • 1 * '-1 1 to 1 N 1 0 1 N 1 C' 1 to 1 C' 1 0) 1 00 1 Z W Da H 4, 4 0) l0 ('') 0 C' 01 to N (V M F 10 0 4 '1 U) + W $ '1 1: 4-1 * C W + OD 01 0 '1 N N C' l0 l0 (d .'(0 I 3 * > Ls1 * N N (') (') 01 CO (') (') CO C7 - .1 ro * * 11 2 11 * 1 * 1 1 1 1 I 1 I I 10 0) H 0 + — — — (n + 1 -4 O 1 0 1 0 1 0 1 0 1 O I 0 1 0 1 O 1 (n (0 1-1 * * 0 0 0 O 0 O 0 0 0 (I) ❑ a) * !. * Z (T X * U) * C' C' d' C' C' C' C' C' C' (0 1 3 * 0 0 * r r r r r r r r r x ro * 0 * (') CO (') 01 (') (') (') (') C) O 0 x * * N N N N N N N N N ro E' 0 * 131 (n 0 0* I * 1 I 1 1 I I I I I J-1 1 * <00 m a ' 1 CO I W r I 01 1 r to 1 r 1 ED Cr 0- (') r1 lJ Z '.9< * i•1 * 0) a) N m CO OD N H N 0' W Ft v= * N O > * 4-1 C * N CO C' C' r CO <-1 r) CO 1a < 0 3# ro '1 * 0 0 0 O o o '1 '1 9 ,3 10 3-1 0 * 3 W * 10 to to to to to In to to U) E1 f - 1 '--I * * H H H H '1 H 1 1 '1 3 H al W+ 1 4 1 1 I I 1 1 I 1 '1 * ,1] (n * 1 4 ‘D I O I CO I r 1 r 1 '1 1 ED 1 In 1 r 1 • Z * .L" * l0 r H CO to to C' to to a) (n * 1 * C' N '1 r ED to N 01 CO (7 4, a. E1 4, . (0 * a) L0, 4, r r r ED ED l0 l0 to to C * ❑ " •'1 # * ro 4 4 I 1 I 1 9 I 1 S-1 * ❑ 4, I * 0 1 O 1 (') 1 0 1 0 1 CO 1 '1 1 0 1 0 1 / * (1) * (') 0 0 ED l0 10 0) l0 H l0 61 l0 01 1D CO l0 01 N * 43 0, * to O r r H r O to N 01 N (') 0) (') '1 l0 N Ul En * 1) 0) O * • H • O • O • H • H • H • r1 • r • N C' 4 0) 1 1 CO H* 0t 1 O 0) O 0) 0 a 0 '1 0 N 0 0 Cl• • r N r 0 ' - 4 .0 '1 -4 Q Ol • O • 01 • O • O • 0 • O O o 1 * C W * a c C' c to In to to • to N * H .0 * H H H '1 H H H H H an 4, 1 0* 1 1 I 9 I 1 I I I l0 * — — — * I * 0 1 0 0 t(') O I ID 0 4 0 o I r 0 9 10 O I aD 0 I D: O 1 0 * .0 * O C' C' l0 0 a) O O O C' 10 l0 .--1 m 0 E. 0 0 D( * 0 4' 0 0 CO 0 01 0 0 0 0 0 0 0 '1 0) ,-1 (n 0 0 N * -'1 a) * O 4 +-I ,-1 4 1 r N 0 t0 l0 ' 0 O O O O OD 0 0 01 H N co W * (0 W* 0 <- 1 .-1 ED r N 0 0 0 CO 00 a) r l0 (') 0 C' to .--1 94 • L) \ • M '-1 C' C' r1 l0 N CO CO 11 O H N Z N ' — H * (n 1-4 * N N N N N N (') CO 0 (1) W * * Lc) N to to to to to a 1 'J to O r) + n, .0 * 0 0 0 0 0 0 0 0 0 ri ■ .0 -.i U + 1n * 1-' a * * 3 (1) -4 (V * V) 0* x X X x X X X X X C N * 0 11 a* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 () * 2 a H* 1 0 1 (4 1 CO I 0 I 0 1 CO 1 0 I 0 1 0 KC r) * 0 • * * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • * a a-4 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E * CO CO -.i * * H * 1 * I 1 I I I 1 I 1 I * * +- • 1 ,-4 * O 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 10 N * 3 ,-1 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * 15 * 0 • 0 • 0 • 0 • 0 • o • O • 0 • 0 o * v1-1 t4* ' N * V) 1 * r1 •-I .-1 ri rl .-1 •-1 r■ ,--• 1 * 10 L1 X * ,-1 r1 1--1 r1 .-1 r1 .-1 r1 Cr) * Oa 0 1 * 1 1 I I 1 1 1 1 I * 1 * H 1 * 1 1 I I 1 I 1 I 1 LID * JJ 44 * 0 0 0 0 0 0 0 0 0 * .0 1 r. * O r) 0 r) 0 r) 0 r) 0 r) 0 r) 0 r) O Cr) 0 r) 4. 0P • 2 4. 0 ,-I 0 r1 0 r1 0 , -4 0 r1 0 r1 0 , -1 0 •-1 0 •--1 (1) 4.,10 = + • 0 • 0 • 0 • 0 • 0 • 0 • 0 • O • 0 y * a) -,-1 * 0) • 0) • 0, • 0) • 0, • 0) • 01 • 0) • 0) It * x 0 1 * I 1 I I 1 I I 1 I ❑ * - - - * (1• 1 * I 1 1 1 1 1 I I I * 0 0* * H ,C ❑ * O to 0 111 0 a' 0 0 0 10 0 /- O 0 4.D 0 CD * +., * 0 co 0 00 0 CO 0 M 0 M 0 r) 0 0 r) O r) * 3'0 + 0 • Y1 * •-1 1n .-1 In .-1 Ln ■-■ lO •-■ tD 1--1 l0 '-1 ,--1 (.0 •-1 LD * , -I 3 0 * ■-1 .-1 .-1 ri ,-1 ,-1 .-1 ,-1 ,-1 * 4.1 1 2* 1 1 1 1 I I 1 1 I * * , 1 2* I 1 1 1 I 1 1 1 I * 10 * 0) r1 a' N O1 01 C a' * 0 .0 4) * 0 to 0 1n 0 r) O CO 0 N 0 N 0 I- O N O N * -01 +) 71 * 0 • 0 • 0 • 0 • 0 • 0 • 0 N 0 • 0 • +) 1 Z* • N • N • N • N • N • N • N • N * -.i 4) 0 * Ol O) O) 0) 0) 0) 0) N 01 0• * Y1 ❑ 11 * * U 1 Cn * I I 1 1 1 I 1 1 I * * 1 .0 * 1 0 1 (. I ,--1 I N 1 1` 1 N 1 1 to 1 •--1 a' * 4-) > JJ * 0 0 r) l0 0 a' f- 0) 40 0) 0 1n 0 1n O In 0 4D 0 U * 4) a) C1 * 0 11 • 0 • a' • a' • O • 0 N 0 • 0 2 - 1. C0 r1 ❑ 4 /0 • 1D • l0 • l0 • '.D • LD • LD • LD • a' H1 * 0 w * 4.0 .--1 H * Cr) W * V] ■ I (n * 1 1 1 1 1 1 I I 1 a 1-1 • O 14 * • 1 * 1 1 1 I 1 1 I I I -, * ?, ,--I • co lD a' 0) r) In 0) r- LD f-1 0- LD a' LD 0) co (- LD V) W * 0' W * a' 1n 0 O1 0 C` 0 Cr) ,-I 1n LD 0 I 0 r a' N 0 a) H * a) ' O x 41 t` 1n 1. N N a' 0- 0 N al 0) N N r1 > Gu * C 11 -4 ('4 c 1n 1n 1n 1n 1n 1n 4D LD 0 * W (.) * 1n 1n In In 1n In 1n In In 2 0) a. * 41 ,-1 ■--I •1 , - 1 , - 1 ,--I , - 1 • - 1 • - 1 U' N a • 1 * 1 1 I I 1 1 I 1 1 H r1 * CO 1s7 a ,- I * 1 4) * N 1 (0 1n 1 0- 0 1 N a' I 00 CD 1 '`0 a 1 a' r 1 r) 4.D 1 ,-I CO 1 OD W U a) * 15 > * , - I r) N r1 lD O r) 01 0 0) 0 a) CO 0) CO al 1n O ❑ FC 10 C * . - I 10 KC * • N • N • N • ,- I • ,--1 • ,-I • r1 • •-I • ,-1 1-a •• (0 Z C * a) a) * 0 0 0) 0 r 0 r 0 r 0 r 0 (0 0 '`D 0 l0 0 I-1 YI CG H 10 * > C W * N • •-1 • ,-1 • ,-1 • r1 • ,-4 • .-1 • ri • r1 > 0) O ,- .0 * Cn * H U) 0 * 1 * 1 1 1 1 1 4 1 1 I U ❑ * - - - - - - - - - - - • 04 C/) b * 1 * 0 1 -1 1 0- 1 N 1 I- 1 N 1 VD 1 l0 1 r I 1 2 W a 1-, 4 * 0 N 1 .0 a' ,-1 r1 (71 O) CO 3 r1 -1 * a) a - l0 In (c) r) r) M N N N ..... (0 3 1 3 * > 4+ • r) r) r) r) r) r) r) a) r) • 11 2 Y1 * 1 * 1 1 1 1 1 1 1 1 I IC a) 1-1 0 U) -4 1 * 0 I 0 1 0 1 0 I 0 1 0 1 0 I 0 1 0 1 U) 11 * * 0 O 0 0 0 O 0 0 0 a) ❑ a) * * 3 () .k -4 u) * a' a' a' a' <r a' a' c a' It 0 3 * 01 (x.1 4. f- 1- 1- I- C- N 0- 1- N -X 10 + U * (•1 r) r) r) r) (0 r) 1') r) 0 0 x * --- * N N N N N N N N N CO H O * a Cn 0 0 * 1 * 1 I 1 I I 1 1 1 1 +) .-1 * • W I* 1 * 1n 1 0 I 0 I 0) 1 [- I 1n I m 1 01 1 L0 1 (0 ❑ 0) 0 * * In O1 r) d' r r) lD N 0) 11 Z > * 11 * in I- a a' 0 k0 m m 4.D 01 1 RC .) * a) > * O > * +-/ a) * 1- Ln a' 1n 0 0 N N in 14 (.0 (0 3 * 10 ,"1 * r1 N r) r) a' a' a' a' a' 3 a 1-I 0 * 3 04 * 1n In 1n In 1n In 1n to 1n Cr) H 11 .-1 * * ,- 1 •-1 •-1 .-1 ■-I ,-■ '-4 , - • • - 1 3 1-1 a) Gu * 1 * I I I 1 1 1 1 1 1 X -r1 * .0 Z Cn * 1 * 1n 1 0 1 0 1 O) 1 f- I LD 1 CO 1 0• 1 LD 1 • 0 * 4 * O) M •--1 1n 0 ,-1 a' a' 0 a) Cr) + +) -- * a) •-1 a' a' N 1n 1n 1n LD tr) * 0 H * 10 * a) (0 -4 1n VD 10 10 10 40 \0 l0 '. C * 0 -- * •r1 * * 00 * 1 * 1 1 I 1 1 1 1 1 1 u * ❑ * 1 * 0 1 0 1 0 1 0 1 0 1 0 1 0 I 0 1 0 1 / * a) I. LD 0) VD 0) N 0 0) W C - O) N ( N O) al 0) C- N * +) 10 * r) to LD 1.0 O l0 0) O to 0 •--1 0 CO 0 ( O 0 0 1n * 1-1 > 0 * • N • N • N • N • N • N • 0 • N • N a' * Cl.) a) ,- 1 * •1 0 0) 0 OD 0 CO 0 (n 0 a' 0 LD N '.0 O 0) 0 •-1 * > , - I CO * 1-1 • ,-4 • N • N • r) • CO • r) 0 r) • CO 1 * C w * 1n Ln 1n In 1n Ln Ln • Ln 1n N * -1-1 4 * r1 .-1 r1 ,--1 .-1 r-1 •1 ' - 1 ,--1 1n * 1 U* 1 1 1 1 1 I I 1 I VD * / * 1 * 0 1 O) 0 1 ,-1 0 1 0 0 1 0 0 1 ,-1 0 I 0) 0 1 a 0 1 0 0 1 0 * G * 0 1 CO 1 1n 1n 0 0 0 CO co •--1 0 H 0 N N 1- a * 0 * O 00 OD in N N 1n 1n O N N N 1n U) in co Cel ul N -4 -r4 0) * C 4 +) r1 -4 0 01 0) N N I - al 0 0 40 VD N H Ln 0) 1n lD 0 44) 4/ 10 [.7 * 0 0-1 '-1 N a' r) 0 N O N (V 0 r) U r) N 1D 1n 14 i' +• \ * a' M 0- ('l 0 0 N M r) ri a' Z a' •i 1n .--1 1-1 * CO •-4 * r) 4'') a' a' c a' c 2 c c (0 * * In 1n In 1n 1n 1n 1n 0 0 In In O Cr 4 ' (1, .0* 0 0 0 0 0 0 0 0 0 1-1 * .0 -4 0 if In * 4, 01 * if - a) * ('1 * (n a* x x x X x x X X x CO N * 0 11 >. * 0 0 O 0 o 0 O 0 O 0 o 0 O 0 O 0 O 0 U • 2 (1 F * 10 I W 1 W I 40 1 P1 1 W 1 CO 1 0 I 07 if O. (0 - - O. * * 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • • '4 .- C4 4 ) , 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • * N N * -.1 * * E if I * I I 1 I 1 I I 1 1 * - - if }J • l , - 4 - 4 < 0 1 O 0 1 0 0 1 0 0 1 0 0 1 0 O 1 O 0 1 0 O 1 O O 1 O N * 3 0 .-I * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 if • 10 if 0 • 0 • 0 • 0 • o • O • O • O • O 0 * 0) H G If N if (n 1 * .-1 •-1 .-1 .--1 .1 .-1 .-I .H - 1 * (0 s-1 X * .-1 •-• .-( ,-1 .-1 .-1 .-1 •-• .--1 M * 0 0 I * 1 1 I 1 1 1 I I I * - 1 if "I"-- E 1 * 1 1 I I I 1 I I I VD if 4 W * 0 0 0 0 0 0 0 O 0 * ,C 1 7. * 0 CO 0 (') 0 01 0 (') O (') O M O M O M O f') * 0, • 2 * 0 .-1 0 .--1 0 .--1 0 rl 0 1-1 0 11 0 4-1 0 .--1 0 1-4 CU * -.1 ft _ * • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 1J * v -. if a, • a) • a, • 01 • 0) • a, • 01 • 0' • a, 0 * x 12 1 * 4 I 4 1 1 4 1 4 I CI * - - - * a 1 if 1 1 I I 1 1 1 1 I * 0 a* * E .0 C] * 0 1n o Cr o co 0 W o r o a) o rn o 0) o * 1) * 0 1n 0 .-I 0 1 0 .-4 0 •-1 0 l0 0 l0 0 lD 0 * 3'0 E * 0 '.1 4.1 if 1-1 l0 .-1 l0 1-1 1/40 r/ l0 r•1 l0 1-1 VD 1-1 l0 1--1 (.0 1-1 * .1 .v0 0 if ■-1 1-1 1-1 1-1 <-1 1-1 1-1 1-1 1'1 if 1 1 2* 1 I 1 1 I I 1 1 1 * if ri 1 2* 1 1 1 1 1 1 1 1 1 * 0 * 01 CO l0 01 CO e' W 1n * U .2 a) * 0 N 0 1-1 0 .--1 0 1--1 0 O' 0 0) 0 W 0 0- 0 CO if -H 1. '0 * 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 l0 i * -P a 0* • N • N • N • N • .-1 • ri • 1--1 • 1-1 • -.I * 41 0) 0 if 0) 0) 0' 0, a, a) 0) O) a) r• 0 if la 0 u * '0 if U 1 44 * 1 I 1 I I 1 1 1 I C if -- 0 - 0 * I .G .1, I ('1 I I CO I r I r I CO I O U I CI' .7 , if S-1 > yl if � 0 1 C' ('1 , 0 a> . CO CO 0 ri 0 N 0 C' 0 W 0 CO 0 U' * 0 0) a* d' • (0 • N • 1f) • 0 • O • O • O • O .-1 X 2 * a,1 0* • r • r • r • r • r • r • r • r CO • . 0 if C' H 4) 0 W 1-1 E * CO W if U) * 4 (n * 1 1 1 4 1 1 1 1 1 Y1 _ 0 0 0 ..4 * • 1 * 1 1 1 I 1 1 1 1 1 -.1 * ?..-1 if 01 0) N 41 (') 0 01 < 1 1n co N a) rl .-1 in M (n 01 a CO W * 0) W * 4") 1n a, 4C) C' co N co O 1n l0 40 N .-1 c') ( 1n N 0 0) H * 0) 7:1 x* M r O . N N 1.n 1n ri r (.1 a) .- 4 O • 4. * G 11 if LO r r r r r r r W 4-I l0 O * W U' * In 1n In Ln In In In to in 0 2 0) 40 * if 1-1 .-1 r, .-1 .-1 1-1 1-1 1-1 1-1 a) 4.7 N (• • 1 * 1 1 1 1 1 1 4 1 4 G H .--1 * U) W CO 1H if 1 (I) if C' 1 01 d' 1 CO CO I 1n (3) I 01 CO 1 0 W 1 01 CO 1 .-1 0 1 l0 .-1 I 1n .0 W U 0) • 'O 1 • d' CO 0) r r r Cr l0 0 In l0 C' O M Cr) ri CO r1 1-■ 2 FC W 0 * r1 rt FC * • .y • .-1 • .-1 • .-1 • .-1 • .1 • .--1 • .-1 • .'1 a F 7 •• Cu 2 G * a) a) * l0 O 1n O 41) O 1n O C' o (I O M O r1 O O O a) H 11 a. H (0 * > x 444 * .-4 • 1-1 • 1-1 • r1 • .-1 • .-1 • r1 • 11 • 1-1 • 'O • a) 0 4 .0 • CO H Aq U) 0 4) 1 * 1 1 1 1 1 1 1 1 1 0 U C] * - - - - - I - - - O O 40 (n ''0 - 4 1 * C C ' 1 ' 1 W I CO 1 .--1 1 a, 1 01 1 CO 1 a' I r--1 1 Z W 01 11 * * 1t) O co N .-1 l0 O l0 In W E. £ 0 * .-1 u) * • r1 KC V-1 If (I) 01 * N N .-1 rl 0 O' Cr r l0 1 10 3 1 3 * 'J W if M 01 (') ('1 (') (.4 N N N U' - 4 10 * - * U s1 2 s• * 1 * 1 1 1 1 1 1 1 1 1 2 H W 1) H U m * if I 0 1 0 I 0 0 I 0 0 I 0 I 0 I 2 CO 40 11 * if 0 0 0 0 0 0 0 0 0 40 0) 0 a) * .- 3 0 x if CO * c' a' v' a' Q C C Q C' 3 (o 4 3 * 01 41 if r r r r r r r r r x (0 * 0 * (`l M 1') (') f•') 4") (') 4') f') O 0 x * * N N N N N N N N N Id E1 0 if * W (n 0 0 * 4 * 1 1 4 1 1 1 1 4 I yl .-1 * E W 1* 4 * CO I 1n 1 0 1 W I CO 1 0 1 0 1 0 1 W 1 It 0 a) d if if a) r 1n 0 (0 C' (') ('') (h 11 2 7 * s• * co a) l0 r a, O) •-1 C' r at W FC al * 0) 0 O > if .0 a) * l0 C' to l0 0 .-1 Cr r 0' 11 f•C (0 3 if (0 1--1 * C' if) In 1n l0 l0 l0 l0 'CO • W 11 0 * 3 (.41 * 40 In In In In In In In In U) E 11 ■-1 * * rl 1-1 1-1 1-1 .-1 .-1 .- 4 1-1 .H • H (1) 41 if 1 if 1 1 1 I 1 1 1 1 I -.1 -I) .0 CO * 1 * CO 1 1n 4 (4 1 C' I CO 1 0 1 1f) 1 W I W 1 / 'J * .. if CO 01 r 01 l0 r 0) a' r 07 CO if 1- .--. * l0 r r co .-4 N • r .--1 0 if at E. * . ( 0 * a) W * U) l0 l0 l0 r r r r W C: * G )-- * ..1 if if (0 • 1 * 1 I 1 I 1 1 1 1 1 44 * Q * 1 * 0 1 0 1 0 1 C' 1 0 1 0 1 1n 1 M 1 0 1 / * 0 * (0 01 C' C' W 1n 1-1 1n 0 l0 r N 0) N 0'1 N la N * 1 a* N 0, N (V W N a) N CO N l0 CO 10 CO l0 CO 1n 0 1n * s1 . 0 * • rl • N • N • N • N • . 4 • .-1 • .-1 • 0) C' * a) a) .--1 If 0 0 W O CO 0 Cr 0 ('1 0 C' 0 lD 0 0) O .-1 r■ ,-i * rl U) * C1 • v' • C' • C' • 1n • 1n • 1f) • 1n • l0 O 1 * 0 W * In 1n In 41) LO In In LC) In N if H .4 * .-1 r1 .-1 r1 .-1 .-1 .-1 1-1 41 in * 1 0* 1 1 1 1 1 1 1 1 I 10 * / * 1 * 0 1 W 0 1 01 0 1 .-1 0 IN 0 1 .-1 0 1 ('1 0 1 CO 0 1 0' 01 (1: * C: * al C' 0 l0 0 l0 l0 a, (0 (') 0) l0 1n C' 0 a) O H LL if 0 5* W 01 N 1f) CO a) r r 1n an O 0 <-1 .-1 01 l0 0 CO N * - .1 a) * O III 1) 1-1 if .-1 C' l0 CO C' 0)) 0 N 4'1 W N .-1 0/ .--1 C' 1n O U) W * CO W* N 1-1 ('1 N l0 C' 1-1 r CO CO N 1-1 CO L. 0 0) 0 0 Z . r �] if 4 \ * l0 C' O o r• .-1 N CO . C' .--1 1n 1-1 r 1-1 if CO a * C' 1n In 1n LO 1n Ln LC/ LID 44 * * In 1n In 1n '1n 11 an .0 1n E-' O 8. kli Q 0 x 0. .A x o 0 0 0 0 0 .1 + .2 -.I U • 1r) + 14 0.1 + + 3 v + (V x 0) 0+ x x x x x x Z N + 0 (4 ?• x 0 0 0 0 0 0 O 0 O 0 0 0 U x Z 0., E x 1 Ca 1 0 1 (D 1 4 1 W 1 W 4 r) + - - 0. 1 + + O O 0 O O 0 0 0 0 0 0 O • Q) x ,-7 a+ 0 o 0 0 0 0 0 0 0 0 0 O E + 0 Ca x -.1 + + E + 1 x 1 I 1 1 I I + + 14 • 1 .-I + 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 N + Z .1 + 0 0 0 O 0 O o 0 0 0 0 0 0 x • fa x o • o • O • o • 0 0 o + a) H 4, + . N x u) 1 + N N N N N N I + a) u x + •1 11 ,1 11 •1 11 Cr) x Ca 0 1 x 1 1 1 1 1 1 x - - 1 +\ E 1 + 1 1 1 1 1 1 (0 + 44 Cu + o 0 0 0 o O x .0 I 0 x 0 01 0 01 0 01 0 M 0 01 0 01 + 0• • Z x 0 r1 0 .-I 0 .-I 0 1-1 0 • 0 • - 1 a) + •H (0 - x • 0 • 0 • O • 0 • 0 • 0 14 + a) --1 + a) • rn • a) • al • a) al (0 + X 1 + 1 1 1 1 1 I ❑ + - - + 0, 1 x 1 1 1 1 1 1 x 0 a, + x E .G ❑ + 0 0 0 0 0 0 0 0 0 0 0 0 x 1.) + 0 0 0 0 0 0 0 r1 0 M 0 r) x 3 E+ + 0 -.I 1.1 + N (0 N (0 N (0 N 01 N 01 N r) + .-1 3 0 + .-I .1 1-1 r1 .1 .-1 + 44 1 2 x 1 1 1 I 4 1 x - - - + •-I 1 Z+ 1 1 1 I 1 1 + ro + r1 1.o c r1 o rn + U .0 a) + 0 00 0 0 - 0 (0 0 1n o 0 o (0 + .,1N - ox o • 0 • 0 • 0 • 0 •+I 0 •4) + 44 al, Z x • • 1 • .1 • .•-1 • 1-1 • .1 •.-1 .a ..1 + -,.1 a) 0 + a) al a) a) a) 0) 0 x S-1 ❑ (4 + '0 + 0 1 G.1 + 1 1 1 1 1 C 1 C + 0 - - 0 x 1 .2 + 1 Q 1 ' 1 . 1LO 1 •' 1 1D U 1 1n U , Q' + S 'J 44 + 0 4--1 O 01 0 (0 0 0 0 .1 0 '.0 O U x a) a) a x O • o • o • 0 • o • X o • X • Z • 0' 0 • r • r • r • co • m o • m 0 a' H 4 P a) 4 A A • - 1 E + v7 W + CO x 1 u) + 1 1 1 1 1 4-1 1 4-1 Z H + 0 - - 0 o rl x • 1 x 1 1 1 1 1 I -.1 + 7, ,-1 x •-1 0 4-1 r CO (0 01 ,-I 10 Q' p, al r) a (a (s7 + p) W x 0 (0 (0 CO c7' 11) 0 0 0 0 0 0 0 0 )4 ■7 + Si • Cu x • -, • J.) Q) H + a) '0 0 + '-1 .-1 N 01 r) r) • G1 • a sa + m CO W W 0) (1 CO s1 (0 0 + W C7 + 0 111 0 1r) sr) (0 4.0 (0 2 a) CC + + .1 .i 4 ,-1 •1 a) •i a) U N W + 1 + 1 1 1 1 1 Z 1 Z H •-1 + - - - u) W 0 . + 1 a) + M I co 0) I co 0 1 to •■ 1 co d' 1 .-I .0 •■ 1 N .0 W C) a) + • 1 'J x al .-4 r1 O r1 0) Q' N •--1 0 44 r1 r 1) ❑ r w Z + .1 (tl Ka + .-1 .-t • 0 • o • O p, • o 0. ,7 •• 4, 2 C x a) a) + • 0 .-I 0 0 0 0) 0 0) 0 a) CO 0 a) H (4 0 H 00 x > 0 Cu + .-1 • r1 • .-1 • b • b H ( a U x 1 + 1 1 4 4 1 33 1 33 U e ❑ + - - - - - - o 0 (r) TS + 1 + N 1 r- 1 •-1 1 •1 1 (D 1 •1 r) 1 .-1 ..-, 1 Z W 0, l - 1 x x r 0 CO l0 N Cu •--I 4, E 0 0 + .1 U1 + .• Fa 4-1 + a) W + r r - )r1 a a' 1 CO 1 (0 3 1 3 +> Cu + N N N N N N CD -.1 (0 x -- x 0 (.7 S1 2 Si + 1 x 1 1 1 4 9 2 I Z a• a) H 0 + H - U) + 1 x 0 1 0 1 0 1 0 1 0 1 Z 0 1 2 CO (Y, 44 + + 0 0 0 0 0 Z 0 Z a.) ❑ a) x -_ 4 3 to x + CO x c c v' v' cr 3 •r' 3 (0 3 + 01 Cu + r r- r r r r .X GO b + 0 x 01 Cr) M 01 01 r1 U 0 X + + N N N N N N ro E 0 + x 0, CO 0 0+ 1 + 1 1 1 1 1 1 11 r1 x - - E W 1+ 1 + CO 1 0 1 •-1 1 al 1 •--I 1 0 1 N 5 a) a x + r r1 r1 N • 1 co O W < ., + a) •J y 0 N .1 l0 al r O > + 1) a) + al O N (`-) (0 C' 1-I fy' rtf 3 x TI E1 + (D r r r r r 3 0. tia o + 3 W + 0 0 u1 1n 0 0 u) E 11 r1 + + •1 •1 .1 •-1 ,--1 .1 3 4440.0-4' 1 x 1 1 I 1 I 1 A 0) ,1 + u) + 1 + m 4 m 4 C' 4 0l I 10 1 01 1 / 0 + ,Z x 01 0 (0 01 in 1r) a) CO + .o x •-• r) 4.0 0 1-1 N On + 0' x (0 + a) Cs, + r r r CO CO CO Z + ❑ - + -.1 + + (0 x 1 + I I 1 I I 1 S-1 4 - - ❑ + 1 + 0 1 r1 1 (0 1 0 1 1n 1 (0 1 / + a) + C' N N N (0 N 0l 0 '.0 O N 0 (V + l) 0, x al 0l 0l 0l V' a) 1r, 0 r 0 N 0 in + H 0' 0+ • , • , • •1 • O • 0 • 0 q' + a) a) .1 4 .-1 0 N 0 d' 0 (.0 •1 kr) 4 - 1 (0 .1 .i x 0' ri u) • (0 • (0 • (0 • (0 • (0 (0 1 1 1: Cd x '.0 kr, (.o 1r) to N N x H .0 + 1 1 • 11 •■ . (r1 + 1 U x 1 1 1 1 1 I (0 x - _ / + 1 x 0 1 (0 0 1 a) 0 1 G' 0 4 ('4 O I r 0 1 r x C: + 0 Ul (0 V1 N 07 0 1r) (0 0 (0 r1 0. + o E x 0 11 •-1 01 so V' 0 (0 (0 r r) (.0 CV -.1 v x 0 x 44 r1 + 0 . • 0 r1 CO 0 •--1 r/ C' (D rn • + b W x N 0 r m 10 (n 4-1 •■ •1 r a + 1.) \ x r r W 0l 01 a) 1 + CO a + N Ir) tr) (r) N 1r1 C0 4 + N 1r) N N 0 1f1 kr:), 0 .9 * a .c * 0 0 0 0 0 0 .--I 4 -.-1 0 * to * 0 * * S a)* 0) * m a* x x > x X x 44) N * 0 Y-1 >, * 0 0 O 0 O 0 O 0 O 0 O 0 0 * Z a H* 1 2 1 a 1 0. 1 2 1 a 1 co a • 4, * 0 0 0 0 0 0 0 0 0 0 0 0 a * a 0* 0 0 0 0 0 0 0 0 0 0 0 0 • * N N .H * * H * 1 * 1 1 1 1 1 I * - * A) • I HI * 0 1 0 0 1 0 0 10 0 I 0 0 1 0 0 I 0 N * 3❑ ' * 0 0 0 0 0 0 0 0 0 0 0 0 o * • ro* 0 0 0 0 • 0 • 0 0 4 a) 1-4 C. * • N * In 1 * N N N N N N 1 * ro S-1 X* ri H HI HI HI H M * co 0 1 * 1 1 1 1 1 I I * F 1 * 1 1 1 1 1 I 'D * 11 C. * 0 O 0 0 0 0 * .0 I '* 0 r1 0 r1 O r1 0 r1 0 M 0 r1 * 1T • 2* O .-4 O .-I O •-• O H O .--1 O ,-1 a , -4- -.1 ro _ * 0 • 0 • 0 • 0 • 0 • 0 .W * a) -.1 * on 01 on rn • rn • on ro * 2 0 I * 1 I 1 I 1 1 ❑ * - * a 1 * 1 I I 1 1 1 * 0 a* * E.0 ❑ * 0 0 0 0 0 0 0 0 0 0 0 0 * 4) 4' 0 0 0 0 0 0 0 0 0 0 0 0 * 3 b * 0 •.i SI * N 0l N 01 CV � 01 N 01 N 01 N 01 * H 3 0* r-) H .--I H.1 HI HI * 44 1 z* 1 1 1 1 1 I -1 ' - - * '.-I 1 z * 1 1 1 1 1 I * ro * 0 r r CO 0 N * 0 .2 a) * O M O M O V' O to O r O m * -Ti 1) '0 * 0 • 4) 0 • 4- 0 • 1) 0 • 0 • 0 * 1) a '0 * • •-4 -1-1 • .-1 ..{ • .--I --1 • r-I • H1 • H * -.-1 a) O 4' (71 0 01 c 01 0 a) 01 * N ❑ 11 * '0 '0 * 0 I Cu * 1 0 1 0 1 0 1 1 1 * 0 - - 0 - - 0 * I 4* 1 r 0 1 to 0 1 to 0 1 r 1 O 1 to C * 1) •,> 1) * O 01 O LO 0 N 0 OD 0 to 0 1-1 0 (...9 * a) a) a* 0 • 4 o •)( 0 • x o • o • 0 • 2 * a .-1 ❑* • m 0 • co 0 • W 0 • r • r • r c 1 * 0 1. * A A .0 . f~ * c/) C) * (n * 1 fn * 1 w 1 w 1 w I 1 1 O H * 0- - 0- - 0 O a * • I * I 1 1 I I I -rl >' Hi 4 , -I N a d' N a to ('l a m V' N l0 OD ID ro (.4 * 0 Cs] 4 1-1 r1 o C' to 0 0l L.CD 0 to r (h w .-■ 01 a) F-1 * a) • 2 * r r, r C' to t0 > C. * c l-I 4 OD 4-1 OD S-I OD S-I OD CO of lij 0 * 0) 0 * to ro to ro to ro to to to 2 on 2 * * .-I a) H a) H a) r1 .--1 .-i 0 N a * 1 * 1 c 1 0 1 0 1 1 1 F1 .-i * (1) W 01 H * 1 a) * to 1 .-1 2 r-1 1 01 2 r) I 0l .c N 1 .-I 0 1 V' CO 1 01 CO 0 a) * '0 > * to r JJ HI r- 4) 01 OD 4- OD 0 CO H OD N ❑ g w c * r■ ro g* • 0 a • o a • 0 a • r1 • ,--( • .-1 a•• Cu z C * a) a) * r O a) OO 0 a) OD 0 a) 01 0 0 0 .-1 0 1 S Ri 4. ro * > 4 w * • a • '0 • b • H • H > a)aa.0 * m* H CO 0 4' 1 * 1 3 1 3 1 3 1 1 1 U 0 ❑ * - - - 0 - 0 - 0 - - - CV c a' (n '0 * I * to 1 .-1 l0 1 H r 1 .-I V' 4 r 1 lD 1 1 2 W a 14 * * 0 Cu CO Cu 0) (. •-1 M lD ' H 40 0 * .-I (n * Z 3 HI FC 4-4 * a) a * N 1 N 1 r) 1 to LID r (0 3 I 3 * > C. * N N N N N N C'J 1 - J 2 1% * v 1 4 I Z Z I Z 1 2 1 I 1 a a) I-4 0 * 1--1 - - H - - H U) � * 1 4 ' 0 1 Z 0 I 2 0 1 Z 0 1 0 1 0 1 (n 0 11 * * 0 0: 0 Ix 0 (4 0 0 0 a) ❑ a) 4 - 4 4- 4 4 3 01 .S4 * (n * c' 3 V' 3 V' 3 V' c V' ro Z 3 * 0 41 4 r r- r r r r Y 2 ro * 0 * Cr) r) r1 r) r1 rl O 0 2 * "' * N N N N N N ro F 0 * w a CO 0 0 * 1 1 1 1 I 1 4- •--I * - - - - • W 1 * 1 * HI 1 HI 1 0 1 a' 1 CV I O 1 ro z (1) a 4' 4 ' LO N r1 l0 N 0 SI 2 > * 4-1 * to r1 O r 40 M 0 W 4- °. * a) > * O > * 4) a) * u to to v' C' C' u KC ro 3 * (0 •-1 * (-- r r r r- r 3 a u O * 3 (O * to to to to to to to H 11 .-I * * .•'I HI .-I .-1 1-1 H 3 H a) 44 * 1 * 1 1 1 1 1 I Z -.1 * .0 Z Cc) * 1 * 1-1 I to 4 N I CO I N 1 r1 1 • a * ,c * r to to l0 O to a) U) * 4-. - * 61 l0 N OD to .--1 0) 4' (D4 F ro * a) [=I * w W m r r r * ❑ * -.1 * * ro * 1 * 1 1 1 I 1 1 1 * ❑ * 1 * 0 I r 1 OD 1 O 1 0 1 r 1 / * a) * 61 r ■0 r r r 01 r N r V' 0- ('4 * 1) a * to r• l0 HI r .-I CO , 4 0 .-I .-4 1-1 LC) * S4 > O* • 0 • 0 • 0 • 0 • 0 • 0 Cr 4 a) () . * l0 0 l0 0 O 0 l0 0 r 0 r 0 .-1 * > H on * tD l0 l0 l0 • lD • lD 1 4' 0 W * to to to to to N N * H 4 * HI .-I H r1 .-I .--1 LC) * 1 0* 1 1 I 1 1 1 lD * / * I * 0 1 0 O 1 •--1 0 1 0 0 1 0 O 1, -I 0 1 V' * 0 * 0 r r V' H r) V' r1 r co to M a * 0 0 * O to to 01 to d' 61 V' r1 N tD N N -4 -.1 N 4 0 4 1) H * 0 to t1) to .-1 O .--I r) N tP) O l0 0 C11 * Ill W* N Cr lD LO M r 0 r r r to r .--I I -,] * 4.) • * 61 01 0 .-1 HI N H * CO 1-) * to to lD LLD 1D l0 44 * * to to to to to N 0 r * a .0 * 0 0 0 0 0 0 0 0 0 Hi * .G ••4 0 * 10 * .4 a * 4 3 '. 4) 4, N * N a* X X X X X X X X X W N ■ 0 I•+ >, * O 0 0 0 O 0 0 0 O 0 0 0 O 0 co 0 O 0 (.7 ' 2 a E* 1 W 1 4 1 40 1 W I W 1 0 I CQ 1 a) 1 W 4)4 r1 + a 1 * -4 O 0 0 o 0 0 O 0 0 0 o 0 0 0 0 0 0 0 a) * a cx * 0 0 o 0 0 0 0 0 0 0 0 0 0 0 o 0 o O E * N N -.i * • Er * I * 1 1 I I 4 1 I I 1 * * .1.1 • 1 r-I * 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 N * 3 0 Hi * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + • al * 0 • o • 0 • o • o • O • o • o • o 0 * a) H [0 * . N + (0 1 + N N N N 4-1 r-1 Hi ."1 .-I 1 + 10 Y-1 X * 4 Hi r1 r•1 r( 4-1 H Hi • i r) * O] 0 1 * 1 1 1 I 1 I I 1 I + 1 +\ F I + 1 I 1 1 1 1 1 1 I SO * 4--) 40 * 0 0 0 0 0 0 0 0 0 * ,c 1 * 0 Cr) 0 r1 0 ('1 0 M 0 Cr) 0 r) 0 rl O (''1 0 r) * CP • Z * 0 Hi 0 4-1 0 4•1 0 4-1 0 r-1 0 •--■ 0 4-1 0 4-1 0 Hi a) + .H co ( * • 0 • 0 • 0 • 0 • 0 • o • 0 • o • 0 4-4 * a) -HI * Ol • O) • 01 • Ol • O) • 0) • 40 • 01 • 0) (0 + 0 ) * 1 1 1 1 1 1 1 1 I ❑ + * a 1 * 1 1 1 1 I I I I I * 0 a* * E .0 ❑* 0 0 0 0 0 0 0 0 r1 0 r1 0 r1 0 r) 0 r1 * 1) * 0 0 0 0 0 0 0 0 40 0 40 0 40 0 40 0 40 * 3'0 6 * 0 -Hi (-4 * N 01 N a) N CN N r-1 r1 .-I r1 Hi r1 •-1 r) Hi r) * r-1 3 0 * 4-1 •--I .-I ,-1 ri ,-1 4-1 Hi Hi * [u I 2* 1 1 1 1 1 1 I 1 1 * — * H1 12* 1 1 1 1 1 1 1 1 1 -4 115 * l0 0 10 a) N O7 ' .--I * U .0 a) * 0 a) 0 4-4 O N 0 r) 0 4 0 • 0 0l 0 co 0 r * -ri J-) 'O * O • O • O • O c O • O • 0 • O • O * 4-1 Q. a * • Hi • N • N • N • N • ,-1 • •-I • H-1 * -H a) 0 * 01 Ol 01 01 N Cr) a) a) al a) * $i ❑ $i * * 0 1 ( * 1 1 1 1 I 1 I I 1 * * I .0 * 1 N 1 0 1 0 1 1 0 1 (o 1 co 1 M 1 O a' + $4 > 1) * O 00 0 4.0 0 N 0 Hi 0 r 0 CO 0 4-1 0 $0 0 al 0 0 * a) a) t,* 0 • o • o • 0 a1 0 • o • o • o • o . 2 * Cl, ri ❑ * • 0 • LO • 0 . . • SO • SO • r • r • r v' H * a W * 'n Hi F * 40 W * (1) * 1 (n * 1 I I I 1 1 I 1 I O H * O •-4 * • 1 * 1 I 1 1 1 1 1 1 I -H1 * >, Hi * (.0 N co 10 a' (N VD 01 01 to r1 1p O O a) q' C . - 1 1/) Cal * 0 40 * H1 4-1 N N 1n C' Cr, ri N 4-1 C' N r N m 4-1 0 4-1 1-) (7 * 94 • 40 + a) H + a) '0 0 * r Hi co Hi a) . 0 Hi Hi Hi Hi N • 40 + a 14 * 00 OD OD al a) 01 0) 0) 01 ■O 0 * W (.7 * N ir) Ln N 10 10 10 Ln 1n 2 a) 40 * * 4 , , 4 ,--1 Hi Hi •• • i 0 N a * 1 • 4 1 1 1 1 1 1 I I H .--1 * — — — (n (4) 40 ri • I a) * r 1 SO r 1 10 ,-1 1 OD a) 1 4-1 0 1 r al 1 N N 1 al 1n 1 r 01 1 N W 0 a) * •0 'J * O Q' r) lD OD OJ (/ 0) Hi r cr. l0 0 Q' r N sr) 4-1 ❑ FC W 0 • ri 10 FC * • ri • , • • • 4 • Hi • r•1 • •-1 • Hi • ,--1 4 •• [• 2 0 • a) a) * rl 0 Q' O 10 0 r 0 1D 0 in 0 C' 0 N 0 4-1 0 H S-1 O+ 1-1 (0 * > Z 40 * Hi • ri • ri • Hi • H1 • ,- 1 • Hi • 'H • ' 1 • a) o .] .0 4, (n 4, 4-4 4 U) 0 * 1 * 1 1 1 1 1 1 1 1 1 O E ❑ * — — _— — — — — — — — a a' U) 77 * I * •■ 1 r1 1 , 1 r 1 0 4 N 4 1n 4 to 4 N 1 M 1 Z W a 1-1 * * 0 C' 0) C N 40 0 l0 r) 3 r 1 4) '1-1 * a) 04 * al 0 Hi rl N Hi 0 CO r 10 3 1 3 * > 40 * N al r1 r1 al r) r) N N • (-4 Z 14 -4 1 * 1 1 I 1 1 1 1 1 I a a) H 0 * — — — O * 1 4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 (n 40 94 * * 0 0 0 0 0 0 0 0 0 a) ❑ a) * .- -4 3 40 x * (n * c' v' v' v' v' c v' a' a' 10 £ 3 * 0 40 * r r r r r r r r r x 40 10 * 0 -4 r1 r1 r) M al Cr) al r1 r) O 0 x * — * N N N N N N N N N (0 H o * * Cl, (0 0 0 * 4 * 1 1 1 1 4 I 1 1 1 yJ .•-1 * E W 4 * 1 * 10 1 r 1 rl 1 ri 1 N 1 r 1 N 1 N 1 l0 1 b O a) a* * rn 0 r) 0 CO 0 0- a' d' 41 Z 'J * H * 0 0) r 1n .- 1 0 10 -4 v' O 0 + 1) a) + c' r) c) al 1n 10 r Ol 0 la FC 10 3 (0 ri * r r r r r r r r m 3 a H O * 3 W * to 10 1n 1n N 1.n 1n 1n 1n U] E S-1 r 1 * * ri •i Hi ri , i Hi ,-i r•1 '--1 3 H (1) 40 * I * 1 1 1 1 1 1 I 4 1 -HI * — 11 Z U) * 1 * O 1 N 1 O 1 H1 1 N 1 r 1 N I N 1 0 1 / o * _0 * (N 0 0 '-i 0 d' co r1 0 a) U) * 1) ---- * OO 10 N Cr) r Q) Hi 11 a) 0' * 0 -' * (0 4 a) 40 4, 10 SO 10 11 l0 1O r r r ❑ * ❑ — * -Hi * * 10 * 1 * 1 1 1 I 1 1 1 1 1 $4 * ❑ * 1 * SO 1 v' 1 r1 1 0 1 0 1 0 1 0 1 0 1 1D 1 / * a) * 0 r o r r1 r (0 CO 0 $0 0 0) 0 ra 0 C' 0 N * i) a * N •-i C' ,-i In ,-1 10 0 Q' N Hi N a' N ■0 N 1n N 1(I • 9.1 0' 0 • • O • O • O • N • OD • CO • CO • co • co c' * a) a) Hi * r O r 0 r O r co co O 01 0 0 0 Hi 0 N 0 Hi * .7 ri U) * LO • ■0 • t0 • 1D 0 )O • 10 • r • 0 • r 1 * a 40 * 10 Ln 1n 1n • 1n Lc) 1n In 1n N * H .0 * Hi •i Hi Hi ,-1 Hi H1 4-4 4-1 10 * 10 i 1 1 1 1 1 I 4 1 I SO * — — — * 1 * 0 1 C' 0 1 v' 0 1 Ln 0 1 Z 0110 0/40 0 1 0 0 0 1 0 0 1 C' * (: * 01 CO r 00 110 Q' 0 E1 0 OD Cr, N Hi C' 10 Hi r r1 C14 * 0 * CO Q' r) H1 1n V' 0 an 0 N N N 1n 10 Hi d' to V' N * -H1 (1) * C • * y) H-1 4 10 l0 CO 1 N 1 0 01 0 (/) [0 40 r1 (O 01 r1 r1 Hi (0 01 (r] * 10 [4 * N r 0 r r r 1n 2 1O r •i OD •--1 0 •-1 Hi .--' I-] * 1) \ * Cr) v' Q' 1n 4 110 u7 1n p $.0 lD •.r H 4 (1) a * )O l0 10 SO 10 SO `O `0 l0 [ * * In in 1n 1n F 1n 1n 1n Ls 1n O m • 0 .0* 0 0 0 0 0 0 0 0 r1 * .0 .,1 0 * 1) a * * 3'- a) * N * u) a* X x X x X X X X (0 N * 0 11 0,* 0 0 O 0 0 0 0 0 0 0 0 0 O 0 0 0 (... ' . Z a F * I 00 1 0 1 CO 1 0 1 CO 1 CO ( 0 1 0 r.0 0) * 0 * * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * a a* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E * N N * - * * F * I * 1 1 1 1 1 I 1 1 * * 11 • I ' - I * 0 I 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 N 3❑ r1 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * • (d * 0 0 • 0 • 0 • 0 • 0 • 0 • 0 0 • C) H 0 * (V * 0 1 * 11 1-1 r1 ,•• ,--1 ri .-1 r1 I * (d 1-1 X * ri ri .•9 ,-1 r1 •--1 ,-I r1 M * 0 0 I * 1 I 1 1 1 I I 1 * 1 * F 1 * 1 1 I 1 1 1 1 I * JJ G1 * 0 0 0 0 0 0 O 0 *.0 1 * 0 r) 0 4') O r) 0 01 0 01 0 01 0 M O (0 -4 0' • Z - 4 0 .-1 0 .4 0 ,--1 0 •-I 0 , -1 0 •-1 0 r-1 0 r1 • * ••-I (d 0 * • 0 • 0 • 0 • 0 • 0 • 0 • O • O y., * a) •r1 * 0) rn • 6) • 0') • O) • 01 • 01 • 4 a) * Z I * 1 1 1 I 1 I I I ❑ * (a, 1 * I I 1 1 1 I I I * 0 a* * F .0 ❑ + O 0 a) O a) o a) 0 a) O O) O o1 O In * J - 1 * O 0 N O N 0 N 0 (V 0 N 0 if) O a) * 3 •o E* * 0 -rl 11 * ,-I ,-I ('1 ,--1 ('1 ,-1 (0 r1 (`') ,-I (0 ,-1 '.0 r1 if) * r1 3 0 * r1 .-1 r-1 .-I ri ,-1 •-1 '-1 * Cu 1 Z* 1 I 1 I I I I I * * •1 1 Z* I 1 1 1 1 1 I I * (d * L) ' r •1 r r) )D * U .0 a) * 0 6) 0 a' O ' 0 (N O ri O 0) 0 m 0 0) * -,1 1-) • O * 0 if) 1 0 • 0 • 0 • 0 • 0 • 0 • 0 -4 1 a Z * . • N • N • (V • N • rl • ,-I • .-1 * -,1 a) 0 * O) 1--1 Z 0) 0) 0) 0) a) 0) 0) * U I Z. * I C 4 1 1 I I I I * 0 * I .0 * I 0 1 0) I N 1 m I )D I u - ) 1 (f) 1 0 - - 4 11 'j 4--1 * 0 0) 0 r) 0 ' 0 '.0 0 0) 0 N 0 u1 O N 0 C7 * a) (1) a* O (N >C O • 0 • O • 0 • O • O • O • * a .4 ❑ * • 0 • in • u) • If) • to • ...0 • O • VD ' I * 0 Z * m •1 F * U) (4 * I I I I U) 4 I U) * I 4-4 I C I1 * 0 O .7 * • 1 * 1 I 1 I 1 I I 1 - * ?, r1 * cr r) a CO C' (V CO Cr) CO r rl CO lD Q' • r 0 v) (0 * CT (0 * ,--• r - 1 0 1n O ..0 r) Cr) N N (V C' .4 '.0 r) 0) .0 14 .a * 11 • Z * • 1J a) H * a) '0 0., * N (n u) to 1.0 l0 l0 0 l0 N 0- 4 * C 11 * 0) 1 0) a) 0) 0) 6) a) .--I O LCD 0 * (0 (') * u1 (d In 1n N (n in 4n LO Z 0) a' * * •1 a) •-1 ,-i •-• •-1 •-1 r■ • 1 C7 N a * I * 1 C I I 1 1 1 1 I c ( 0 C O - * 1 a) * d' 1 m .0 r1 I 0) m 1 l0 (‚4 1 ('.1 0) I N CO 1 d' 00 I r) ri 1 0 Z 0 a) * 0 0' * Ln (n - w (N O 0 0) '0 r N (n O in 0) r) 0 ('1 ❑ ,,, (0 0 * . (d KC 1, • r a • N • ,-1 • '- 11 • r-1 • r1 • .1 .7 •• (.-I 0 C 4' a) a) * 0 0 a) '.0 0 l0 0 a' 0 r) 0 N 0 0 0 N 0 I-1 1-I Z 1-1 (a * r' 0 W * .-1 • '0 4-1 • ,-1 • ,-1 • r1 • 1-1 • .-1 • r1 H ((0 r7 0 + 1 + 1 3 1 4 1 I 1 I 1 U E ❑ * - - - 0 - - - - •••••• • a' U) 'O 4 I -4 1n I .-I r m 1 I 1 0) 1 '.0 1 0 I 0 1 ,-I 1 - I Z Z a 3-1 -4 4. Cu (0 r LID N 0 1 L 0) VD OD F Z O * r1 U) * = 3 r-1 /CC 4-4 -4 a) a -4 '.0 1 N N 0 0) r 10 r (0 0 1 3 * 0 (y * (V ('1 (n (') N N N N U 1 0 1% - 1 - 1 , 1 4 1 2 4 1 1 1 4 1 I (' r1v * I * 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 CO � u * * 0 (z 0 0 0 0 0 0 0 a) ❑ a) * .-. * aC 3 b .0 * m * v 3 r r r r r r r (d Z 3 - 4 0 Z -4 -1 ,- N r1 ,1 r1 1-1 r-1 1-1 .0 0 (d * U * ('1 a) a) a) a) 0) 0) a) U 0 0 * * N ,-1 ,-I 1-1 ,-1 r1 .-1 4-1 rt) F 0 * Z U] 0 0* 1 * 1 I 1 1 1 1 1 1 1 .-1 * • (. a) 1 -4 1 * In 1 ' 1 U') 1 N I r1 I 0) I N 1 r I cO * 0 r ('") r 0o a) (n VD 11 Z D * s1 * '.0 4') (n (n a) (n 0) b W r.0 40 * CD 0' O 0' * 1 (1) * ,-1 0) on .-1 N Q' 1n d' s1 FC (0 3* (d r * m r r m m m m 6) 3 a 1J 0 • 3 (0 * 1n Ln N 1n N 1n In u') U) F S1 ,-1 * * ,-1 ,-I ,-1 -4 ,-1 .-1 ,-1 ,--1 3 ( - ( as (z * 1 * 1 1 I I 1 1 1 I - * .0 U1 * I * (n I C' 1 (n 1 a) I r 1 r 1 (N 1 r 1 / O * .0 * CO 0) •1 r in C' (n 1.0 (1) U) * l.4 . * N in a• tD 0) (NI an N 0' * a F * . (d * as 4., * m in (n 1n (n '.O )O LD O * ❑ ' * -'1 * * (d * I * 1 I I I I 1 1 1 1-1 * ❑ * I * 0 1 0 1 0 1 r) I u') 1 , 1 0 1 0 1 * a) * (V m O N O 0) 0 N O in 0 0 C' 0 N N • 1 O. 1, r1 to 0) N ,-4 N '.0 N 0 N ,--1 N •-■ N r (0 (f) * Y1 'J 0* • CV • CO • CO • CO • CO • m • .-1 • 1-1 Cr * (1) a) •1 * (`1 m M 0 Cl" 0 (n O r 0 m O a) 0 m 0 r1 * 0 , - 4 Cr) * r O r • r • r • r • r • r • m 1 * [ (0 * in In In (n 1n N In Ln (N * I-1 .0 * •--1 ,-1 ri r1 ,-I ,-I r■ r1 1n * 1 U* 1 1 1 1 I 1 1 1 , .0 * / * I * O 1 a' 0 1 ,--1 O 1 m O 1 1 0 0 I N 0 1 Q' 0 1 0) 0 1 a' * C * O F O 1-1 r1 m 0 Q' C' Q' a) r l0 u1 N ,-1 Z * 0 * 0 U) 0 r r ,--1 a) N r1 r m (n c (n O a' N * -,1 a) * O .) ,--1 * J-I -4 a' E N•-1 r) 0) N ).0 0) r) N •--1 C' d' 0) m (.0 * Id (0 * N U (0 M T 1 N ,--1 i0 r1 CO .i 0) r l0 '.0 r1 .0 * 4 � * 10 Z V0 ■0 )D ' '.D 10 r C' ,--1 ... H * U) .a * '.0 'J 1 .0 )..o 4 lD 1 LC) 4-'- 0> * * 1n r0 Ln (n 1n (n In (n Les O 01 * 0 ,- + 0 0 0 0 0 0 0 0 0 '-1 * .0 -.I U * ul + 1) a + + 3 v + N + 111 0* X X X X X k X x x W N * 0 SJ >4 * 0 0 O 0 O 0 O O O O O O O O O 0 O 0 0 * Z a, E. + 1 W 1 0) 1 0) ( W I W 1 W 1 a0 1 a I O < r1 * all • 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (1) + 14 x* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E * N N -.{ + * E * 1 * 1 1 I I I 1 1 I 1 + * J-- • r-I * 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 N + $❑ ' * 0 0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0 + ro* O • O • 0 • O • 0 • O • O • O • 0 0 + a) 1-1 44 * . N + V] 1 * - '1 '1 '1 '1 Q1 'i Q1 "'1 I 4' (0 S - 1 >a * r-1 'i •-I 4i 'i 'i .-I .-1 '1 (0 + aA 0 1 + 1 1 1 1 1 1 1 I 1 * 1 * � Ei * I I 1 1 1 1 1 1 1 t0 * 4-) 4) 4 . O 0 0 0 0 0 0 0 0 4, ,. 1 1 ' + 0 (` 0 (•1 0 CO 0 C1 O 01 0 1'1 0 , - O M 0 0 • + 01 • Z* 0 ' 1 1 0 1 0 '1 0 .--1 0 '1 O .--1 0 '1 0 .--1 0 11 CO * •.1 ro _* • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 1 + a) -.i * a1 • rn • a1 • 01 • 01 • al • a) • al • a1 ro + 0) 04 1 * 1 1 1 1 1 1 4 1 4 ❑ + + al. 1 + 1 1 1 1 1 1 1 1 1 * 0 a* + E•../4 ❑ * o I0 0 40 0 o (0 0 0 0 0 0 0 0 0 0 0 + y, * 0 a1 0 01 0 0 (- 0 v' 0 v' 0 v' 0 v' 0 v' * 3 •O + * 0 •. Si * 'i N '1 in H . - 1 to ,-I t0 1-1 tD rl t0 .1 1.0 .-1 t0 + .-1 0 0 + Q1 '1 Q1 11 .-1 .-1 '-1 .-1 Q1 + 44 1 Z* 1 1 1 I 1 1 I 1 I + - * , 4 1 Z+ 1 1 1 I 1 I 4 1 I * ro + 01 10 N 0 1/40 C' () N + U .0 (1) * 0 co 0 0- 0 ('') 0 co 0 m 0 I 0 l0 O In 0 v' * -'I 1- 'o * 0 • 0 • 0 10 0 • 0 • 0 • 0 • 0 • 0 * 1) a /4 * • '1 • ,-1 • Q Q1 • .-1 • '--I • ..-1 • '1 4 -.1 a) 0 * al 01 a1 '-i 01 01 a) a1 a) 01 * S-1 ❑ S-1 + + U 1 4-, + I 1 I I I I I I I * * 1 .0 + I N 1 v' 1 I M 1 VD 1 1 1 01 I N 1 CO Q * 1-1 'J 1) * 0 v' 0 1` 0 I� 0 Q. 0 v' 0 in 0 CO 0 N O N o U 4 a) a) a * 0 0 • 0 0 0 • 0 • 0 • 0 • 0 • 0 Z + a ' ❑ + • t0 • 1.0 • 1.0 • 1.0 • l0 • 1.0 • I` • N v' H * /4 G) * N • - 1 E. + (n W + U) * I (I) * 1 1 1 I I I 1 I 1 a H * O .7 * • I + 1 1 1 1 1 1 1 1 1 -.1 + >1 ,-I 4 CO N 01 'i O In W CO 1.0 CO In '•i 10 W v' '1 Li ' - I (0 W * b. W * N v lD C O O to •-■ (- 'i al to v' I N al ,-i In a) H * a) 10 x * a) N . . I•') M 0) to O v' ('') '1 N l0 'J au 4' /4 11 + 0 .-1 ,-I - 11 1-1 N N N 10 0 * W (7 * 10 O 1.0 10 VD l0 VD l0 1.0 2 01 fl * * .1 '1 '1 ,-I • - 1 • - I 'i 4 - 4 44 O N all * 1 + 1 1 1 1 1 1 1 1 I H ■ * - (n W W , - I * 1 a) + (' 1 to 0) 1 0 v' 1 M 0 1 N 0 1 a) l0 1 01 v' 1 I 0 1 (n v 1 l0 W U a) + 'O 'J + v N a, '1 v' 'i 10 N to , '1 0 N a1 v' m 10 I- ❑ F1; W Lv * 'i ro FC * • ,-1 • '1 • 'i • '1 • 'i • ,-1 • 0 • 0 • 0 4 •• G-■ Z C + a) a) + ' O o 0 Cr, 0 0 0 0 0 0 0 01 0 W 0 1 0 H SJ a4 F-1 R) * >. x Eu * .-I • 'i • .4 • 1-1 • ,-1 > (1) D 4 .0 * (f) * H U) 0 + 1 * 1 I 1 1 I I I 1 I U ❑ + - - - - - - - - - - - a p.' U) 0 + 1 * (•') 1 1.0 1 1 -0 1 M 1 ,-1 1 CO 1 al 1 l0 1 W 1 h 1 Z W a Si * * '1 00 1.0 '1 0 (n 0 - 1 N ■-I E. Z O * ,-1 (f) $ ,.-1 O4 V-; -, a) 0 - I , 1'- in v' VD t0 (n v' 4.1 N w (a ,3 I 3 * 4> E. * N N N N N N N N N U' -4 ro * - 1, 2 ( - I * 1 + 1 1 1 I 1 1 1 1 1 CL) a) 1-1 U * - - - (/) 4 1 4 0 1 0 1 0 1 0 1 O 1 0 1 O 1 0 1 0 1 (/) 1.1 * * 0 0 0 0 0 0 0 0 O CD ❑ (I) * -- * • 01 X * (1) * N 0 N CO 07 CO CO W W al X 3 + 0 au + '-1 Q1 .i Q. v' v' v' v' Q. -k m + 0 + 01 a1 01 co m m co m 0 U 0 0) + - * 'i 'i '-1 ,-1 .1 ■i .1 '1 '-1 all E• 0 * 0 4 (f) 0 0* I * 1 1 1 1 1 1 I 1 1 4- 'i * E W 1 * 1 * N 1 CO 1 I 1 0 1 0 1 v' 1 W 1 OD 1 v' 1 (a 0 a) 0 * * LC) 0 Ln CO 10 m 41 r1 'i S1 2 ,7 + S1 + CO in In 0l N I` N CO N 0 W < °r + a) ,7 * O >4 4, 1' a) * r- , i (+-) N ('-) co v' VD N N r(s, 1(J 3 * ro .i + al 0 0 0 0 0 '1 ,-1 1-1 • a S-1 0 * $ W * (11 LID l0 1/40 1/40 ■0 40 l0 10 (1) E• 41 'i * * '1 '1 ■1 '-I '1 .i .1 .1 .-1 • H 0 Cu * I * 1 I I I I 1 1 1 1 -4 + - A X m + I + 40 I co 1 N 1 0 1 0 I 1` 1 0 - 1 (`1 I 1.0 I / O * ,Z + N (`-) t0 M l0 O CO (V 0- a) V) + 11 * v' I' 0 v' v' In co N L0 0 * a H ro * a) 41 * lD (.0 0- 1.0 l0 lD l0 N 1 G + ❑ " * - 'I * * ro * 1 + I 1 I 1 1 I 1 1 I Si * ❑ * 1 * OD 1 01 I 0 1 0 1 0 1 CO 1 r1 I ul 1 m 1 / * a) * (N N 10 N 01 (n LID 0 v' 11 v' Cr v' '1 v' 1''1 v' N i, y) /4 * v' 1.0 If) tD Q. 0 to lD CO N N N (•1 N l0 N 01 N Lc) * 11 •j 0 * • ■■ • '1 • N • ,--1 • '1 • ,--1 • 'i • . • 'i v' * a) a) .-I * •-i O v' O 1.0 'i 1.0 0 10 0 N 0 0- 0 01 O 0 O 'i * 'j , - 1 (1) * al • 01 • Cr, 0 01 • CT • 0 • 0 • 0 • 'i I * G W + In L() N • to to l0 1/40 1.0 1D N * H .0 + 'i 11 '1 '-1 ,-( 'i '--I , - I 'i (n * 1 0* 1 1 4 1 1 1 1 1 1 t0 * - - - / * 1 * 0 1 CO 0 1 W 0 I aL' 0 1 0 0 I 1 0 I v' O I N 0 1 M 0 I M + 0 * M CO N r 0 E• 0 N N CO 11 v' 1n v' a) N . - i 'i a + 0 + v' a1 v' L1) 0 (1) 0 0 0 CO al I.1 N N v' h N 'i * -.I 0 * N * 1 ,-.1 ) ,-.1 4 r 1 (') ' 07 0 E. v' In al VD in N CO Q. N 1/40 a1 0 • * ro W * ( a) (•1 '1 In 0 (n ' 1/40 (• 0 'i '1 co o 0 0 l0 14 * 13 \ * VD 'i CO 1 01 Z a1 01 v' v' v' OD 'i 0 '1 'i .--1 H * (/) ■ * I r-- 2 I 0 m co a1 al G. * * (n In In ) 7 to v1 ul (f) u) to 0 0 x n, .c x 0 0 0 0 o 0 0 .-1 .-1 x .0 -'-) U x 40 x 1- a x x 3 -. a) x ( x 0) a, x X x X X x x X W N x O N >, x 0 0 0 0 O O O O O 0 O 0 O 0 (0 x 2 a F x I W 1 2 1 0 1 2 1 0 I a I CO FC ( ` - 1 1 - a x x O 0 0 0 0 0 0 0 0 0 0 0 0 0 • x a 2 x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E -1 N N x -H x x F x 1 x 1 1 I I 1 I I x x 1 ) • 1 r-I x 0 1 0 0 1 O 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 N x 2 .-1 x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x • (0 x 0 • 0 0 0 • 0 • 0 • 0 0 x a) I-I 2 1 N x In 1 x r . 1 N N N N I x 10 Sa X x .-I 1-1 ■-1 r-1 r1 .-1 r-1 (') x CO 0 1 x 1 1 1 I 1 I I x 1 x F 1 x 1 1 1 1 1 1 I 10 x 1- 40 x 0 0 O 0 0 0 0 x .0 1 x 0 Cr) 0 (n 0 (r1 0 1 0 I') 0 M 0 M x 0 • 2 x 0 r1 0 ,-I 0 .-1 0 .--I 0 .--1 0 1-1 0 r-1 • x -r1 (0 c x • 0 • 0 • 0 • 0 • 0 • 0 • 0 iJ x a) -rl x 0) • 0) • 0) 0) • 0) • 01 • 40 1a 4 , 2 0 1 x 1 I 1 1 1 I 1 ❑ x - - x 0, 1 x 1 1 I 1 1 1 I x 0 0, x 4 ' F.0 ❑ x O 0 0 10 0 0 0 0 0 0 0 0 0 x i) x 0 C' 0 10 0 0 10 0 lD 0 10 0 10 x 3 Ti x • x 0 -41 1-I x ,-1 10 r1 r- r-1 N 10 N 10 N 10 N 10 x r-I 3 0 x 1-1 .-1 r1 r-1 .-4 1-1 .-I x (1, 1 2 x 1 1 1 I I I 1 x - x .-1 1 2 1 1 I I I I I 1 x 10 x N (+1 I"- 10 1f) N x U .2 a) x 0 M 0 N 0 (`-) 1() 1n 1n in 1n v' 1n C' x -ri 1) '0 x 0 • 0 • 4-) 0 N i) 0) • 0) • 0) • 0) x 1) Q, 0 - r 4 • •-1 ...4 ..r1 • 41 • r 4 • ri • ri x •4- a) 0 x 0) 0) 0 0) .-I 0 W co m oo x N ❑ S4 x • 0 '0 x U 1 2 4 1 I 0 1 0 1 1 I 1 x 0 - - 0 1 .0 x I 0 I 0) U 1 U 1 0) 1 1D 1 0) 1 I" Tr x 1) 'J 1-) x 0 0) 0 (`-) 0 10 0 10 0 10 0 0) o 0 0 (D x a) (1) p, x 0 • 0 • X 0 co x 0 • 0 • 0 • 0 • x 0, r-1 ❑ x • r • m 0 • 0 t.0 • lD • s.0 • I' c I x 0 (4 x A co 4 , F x U) W x V) x 1 U) x 1 1 N 1 N 1 1 1 1 O H x 0- - 0 O 1.7 x • 1 x 1 1 1 1 1 1 I -H x >, 1-1 x 2 0) d' Q' 0, m .--I Q, O CO 0 CO 0) 0) (- 1n (1) W x 0) W x 10 N 0) 0 0 0) r-I 0 N 0 (") 10 (3) Cl. "I' r1 S-1 .-a x Y-4 • G, x • 1 • 1.1 0) (-1 x 0) '0 2 x (0 VD 10 0- ( 0 Q' Q' 14) r- 4 2 x C; 41 x N N S1 N S-1 N M M (0 VD 0 x 2 CD x 10 10 (0 10 (0 '.0 10 10 10 2 0) 2 x x 1-1 11 (1) ,-I (1) ,-1 ,--1 .1 r-I CD N a x 1 x 1 1 0 1 C 1 1 1 1 U) 2 07 , -1 * 1 0) x T 1 o - • - 1 1 (` 4 1- 1 1n .0 10 1 0- r 1 4-1 Q' 1 to r- 0) W U a) x 70 .7 x 0) 10 (") 10 1J N r- 1J r1 m 0 m c` I . - ■ 10 ❑ aC W 0 x ri (0 KC x • 0 • 0 ❑, • 0 2 • 0 • 0 • o • 0 •.a •• 2 2 C x 0) a) x 10 0 10 o a) 10 0 a) oo 0 0 0 0- 0 0- 0 ■-1 S1 2 1-1 (0 x > 2 2 x • "0 1-I • .Q CO U x 1 x 1 1 3 I 3 1 1 1 1 U E ❑ x - - - - 0 - 0 - - - - \O • 40 U) 'O x 1 x d' 1 10 1 .-1 O 1 .-4I N 1 0 1 C' 1 0) 1 1 2 2 a x x ,-1 ■-1 2 ,- 2 0) m r 10' E-, X 0 x r-♦ (n x 3 .-1 ICC 4--I x 0) a x .-1 0 1 0 1 N N ,--4 ' - I ro 3 1 3 x > Cu x N N N N N N N (7 1 - ) 2 1 v 1 x 1 x 1 1 Z 1 Z 1 1 1 I a a) I-4 0 x I-1 - - 1-1 (1) 1 x 0 1 0 1 2 0 l 2 0 1 0 1 0 1 0 1 U) S1 x x 0 0 40 O K. 0) 0) 0) 0) 0) ❑ a) x .. x FC r•C 3 40 x x CO x m aD 3 00 3 N N N N 1 0 s 3 x 0 2 x V' v' a' N N N N X' 40 x U x 00 CO CO CO CO CO CO O 0 2 x --- x r-I 1-1 r-I 4-1 .-I e-1 .-1 '0 F o x x a co 0 0 x 1 x 1 1 1 1 4 1 I 1 . x - - O W 1 x 1 x 10 1 •M 1 m 1 0- 1 0) 1 0- 1 1•) 1 (0 0 a) 0) x x r-1 r) 0 '-1 N v' 0 b 2 ) m + N y 0- 1D r r-1 N 1.0 M O > x 4-) 0) 4, 0) O O 0) N r CO S1 < (0 3 x (0 rl x ri N N .-1 N N N 3 a Y-1 0 3 W x 10 10 10 10 10 10 1D V) F S - 4 ' - 1 x x .-1 .-1 .-1 r-1 ,-1 .1 .-I 3 H a) Cu x 1 x 1 I 1 1 1 1 1 - .1 x .0 2 U) • 1 x 10 1 (0 1 m 1 r 1 N 1 (" 1 0) 1 / 40 x ,G x C' 1`i N N 10 CO 10 a) U) x i r-- x 0) (0 (0 10 10 0) O tr) x O F x . 10 x a) 40 x 0- OD CO 1D 1D 10 1 G x ❑ - x -r1 x x (0 x 1 x 1 1 1 1 1 1 1 1-1 x ❑ x 1 x .-1 1 0 1 0 1 0 1 CO 1 0 1 Q' I / x O) x I V' 0 (0 In 0) CO 10 00 10 CO CO 0) N x 4-) 0 x 1 N M co (r) M C' CO in W 10 CO N Co 1n x 11 D 0 x • ri • 0 • 0) • o • 0 • 0 • 0 C' x 0) 0) • x ri O N 0 N 0 N 0 to 0 0 0 r O ri x . r-1 V) x ri • ri rl O .-I • .-I • N • N 1 x 0 2 x 10 10 1D 10 10 (0 10 N x H 2 4 ' ■1 .-I ■-1 ■1 1-1 ,-1 1-1 40 x 1 U x I I 1 I I 1 I to x - - x 1 x 0 1 .-1 0 1 0 0 2 0 1 0 0 if` 0 1 0 0 v' x G x (` 1 01 N 00 0 F 0 1n 10 1.0 N '.0 m 1` a x 0 E x (*) (0 0 0) 0 U) 0 0) 01 0 0 4-1 r-! 0 N x .4- a) x O -4 1) . x (0 N 0) to 4) F o v 0 01 0) 0) 0) t (`-) W x (0 (z) x 1� Q' r-I N U C' Q' 0) 0- VD 1/40 ( 1D .r a x i) \ x .-1 N N Z N M to In •-1 N .41 .r H x CO 2 x 0) 0) 0) O 0) 0) O O 40 x x In N N I7 1n 1n 1) •D ■D C> • 4 ' a .0 * 0 0 0 0 0 0 .-1 .-1 * .0 -r1 U * 1n * .4. a * * 3 • 0 * N * y a* X X X X X X W N * 0 S, 0, * O 0 O 0 O 0 0 0 0 0 0 0 * 2 (L E* I CO I W I [A 1 CO 1 W I Pa CL * * 0 0 0 0 0 0 O 0 0 0 O O CP * ,. CC * 0 0 0 0 0 0 0 0 0 0 0 0 E * N N -r1 * * E * 1 * I 1 1 1 1 I * J.) • 1 .-1 * 0 I 0 0 I 0 0 1 0 0 1 O 0 1 0 0 1 0 N * 3 Ca 4 * 0 0 0 0 0 0 0 0 0 0 0 0 O * • it * O • O • O O O O O * 0 H Cs, * N * N I * N N N N N 0 1 * ro 4-1 X * r1 1-4 r-I 1-1 1--1 r-1 rl * c0 0 1 * 1 I 1 I 4 I * - - - 1 * 1 4 O \ * 1 1 1 1 1 1 lO 4 y) ( [ O 0 0 0 0 .1 r,' * O rl 0 r1 O •1 O (r1 O r1 0 r1 * 0 • Z 4 O r-1 O '-I O r-t O .-1 O 1-1 O 1-1 • • -I -r1 at _* • o • o • o • 0 • 0 • 0 (0 * C1~ Ca I * 1 1 1 1 1 1 o a a 4. * 1 1 I I I I * 0 a* * E .0 C] * 0 0 O 0 0 C' o d' O O .--I * 1) * O '.O O 40 O t0 O O O 91 * 3 •0 @ * 0 -.4 S-1 * N 4 9 N 40 N VP N 1/40 N O 1--1 * r1 3 0 * 1--1 1-4 r--I .-1 1-1 .-1 * to 1 Z* I 1 1 1 1 1 * r-4 1 Z* 1 I I I 1 I * (0 * r1 r) to r r1 * U .C~ 0) * 1n r1 to N 0') r-I to O 1n 0 Q' * -r1 JJ '0 * al • al • 91 • 1) 01 • .4) 91 O 1) lO * 1) a 2 * • ,-1 • r-1 ri -rl • r-4 -.1 • -,l *• -4 0 0* oo co co 2 CO 2 oo r-I 7 4.O * 4. ° 14 * T) • 0 '0 * U 1 4, * 1 1 1 C 1 C I C 1 * 0 - 0 - 0 - - * 1 ,1~ * I 1-1 1 C O 1 U 1 M 0 1 U 1 0' •' * 44 > 1.) * O v' O r 0 r-1 0 N O to o r o 0) * a) a) a* o o • o • x O • X o 0) x o • z I a r-1 ° • r • r • co o • 40 0 . 0 • 01 •' rl * 7 W * R .C2 00 A .-1 E * 0)) W * CO * 1 (0 * 1 1 1 1 41 I V-1 1 1 4-1 1 G' I-1 * 0 - 0 - 0 - O .7 * • 1 * I 1 1 1 1 I ..1 * >1 .--1 * 0 (r1 (r1 10 co ,--1 a 01 (1 a N Q' a r N 1n W * on W * ■.o 1n 4-4 (.4 r1 r-1 0 v' O 0 1n O 0 to O 1 .1 * 1) • co * • y) • y) a) I-I * a) '0 40* 40 r r r r r > to * 0 1-1 * r1 r1 r1 S1 r1 N (,) 11 r1 F O * W 0 * (0 lO V0 0 10 it lD IS 10 Z al W * * 1-1 .-1 r-1 (U .--1 0 1-1 a) ,--1 C7 N a * 1 * 4 1 4 0 1 0 1 C: 1 H r-I U ) W CIP , -1 * 1 a) * ( . 4 4 , - 4 ('11(0' 01)40.0 ( ' 4 1 (0 .0 0- 4 40 .0 r-1 I oo W U a) * '0 ' J * 1n 40 al In r1 0' or al 0' .0 CI' (.4 J-) co N C] < W 0 * r-1 (0 <* • O • o o a • o a • o a • 0 .7 • • L=4 2 40 4 a) . a � + ) * 0 1n O u o a) 0' 0 0 0' 0 0 r-1 0 H 0 m a U + 4 * 4 1 1 3 1 3 1 3 1 U E ° 4 - - - - - 0 - 0 - 0 - O CC U) '0 * 1 * 01 1 a' 1 ("1 1 r-1 0 I r-♦ r 1 -4 O I 1 Z W a, $1 * * 'Cr' 10 ',o to m w 0) to m E E 0 * .-I CO 3r4r•C w * 0 a * 0 01 0 1 r 4 VD ) 0 xi (0 3 I 3 * . to 4 N .-1 r-1 r-1 .--I r-1 c.4 4 -, (0 * -- * c4' (..D 0 4-1 2 Sa * 1 * 1 1 1 2 1 Z 1 2 1 CL 0) H U * H - - H - - H - - (/) 4 1 1 0 1 0 1 0 1 Z 0 1 2 0 1 2 0 1 C10 [L Y-I * * a1 a1 a1 40 a1 a a1 a r a) 0 0 * * r•C a r.0 3 0 ?C 4. (f) 4 N N N 3 N 3 N 3 r-1 Itl 3 * 01 Cs.1 4, N N N N N r .X (0 * 0 * m CO OP 00 CO ■ O 0 .x * -- * 1-1 r-1 1-1 1--1 1-1 (0 E 0 * * LL CO 0 0* 1 * 1 1 1 I I 1 4.) ri * - - - - - - O W I * I * Q' I N I N 1 N 1 .--1 1 t0 I (0 0 0 0 4' * OP o 01 r 1n (.0 S, 2 . * 14 * 0 N 01 10 o r 01 Wade)* a) 0 * O .7 * JJ a) * O rH ,- 4 N r1 in $, FC 0 3 * (0 .-1 * r1 ("1 r1 in r1 r1 3 a Sa 0* 3 W * (0 V0 Vo VP VD U) E $1 ri * * <-1 r-1 .-4 1-1 r-1 .-1 3 1.4 0 [H * 1 * I 1 1 1 1 1 •r1 .C1 U) * 1 * a' 1 lt) 1 10 I M I r-1 1 0' I / 'J * .0 * .-I r to r1 In 0' a) (/) * 1) * v' r r-1 to a1 r 0 4 ' a E * It * a) to * 0- 0- co w co O1 a * O - * •ri * * I0 * 1 * 1 1 1 1 I 1 14 * - - - - - - o * I * r-1 1 r 1 O I 91 1 0 1 O 1 4 0* r co (.1 oo C' r (0 r o N O N * 1) a * 10 OP •' CO m CO 0 CD r-✓ 0 0 OD to * 44 'J 0* • 0 • 0 • 0 • 0 • CO • N 0' * 0 0 ri * N 0 r1 0 (1 0 0' 0 0' N (0 ,-1 r-I * 'J r-1 (I) * N • N • N N N .--1 N 1 * G 41 * lO (0 l '.O lO lO N * H .4 * 1" r 1 r 1 r Li) * I U* 1 1 1 1 1 1 0 * - - - * I * 0 1 1n 0 I r-1 0 I 0 O 10 O I 40 0 4 al * 40 * to 1n • a1 O co co N O E 0 d' W * 0 E* N Co r-1 to 0 a1 a1 0 0 (.1) 0 a1 * -.4 0 * N * J-) ■-I * r to M '.0 o N N r O E1 to 1n 0 W * co W * 01 OD Co 0' r1 N 10 '.0 0 r .-r r ] * y) \ * r1 Q' in N In z In 4-1 4 ' 0) .a * 0 0 0 0 0 5 0 Cti * * VP 40 1/40 LID VD hp i0 C N * a .C* o O 0 0 0 0 0 .-I ,--I * ,.D -.i 0 * to * i) a * * g v * N * f!) a* X X X X X X W N * 0 1.4 >, * 0 0 0 0 0 0 0 0 0 0 O 0 0 C9 •• * 2 0, F* I W 10 1 Da I W I W I W I FC r) * - L4 * * O o 0 0 o 0 o o O o O o 0 a) * a Ca * 0 0 0 0 0 0 0 0 0 0 O 0 O E * N N Hi * FI * 1 * I 1 I I 1 I * * JJ • I .1 * 0 I 0 0 I 0 0 I 0 0 1 0 0 1 0 0 1 0 0 N * 3❑ ,- 1 * 0 O 0 O 0 O 0 0 0 0 O 0 O 0 * (0* 0 • o 0 0 • o • o • 0 0 * Q) H 14* N * V) 1 * O O O O O O O 1 * (0 1 X * .i 1 . . HI , HI r) * 0 0 1 * 1 1 I 4 1 1 * - I *>4 H * I 1 1 1 1 1 .D * .4.) -4 O 0 0 0 o 0 0 * 1 .0 * 0 ( O f'"1 0 M 0 (n 0 M 0 0 91 0 • 2* 0 .-I 0 0 co 0 0 .-I O '.-4 '--1 0 ,--I 0 1! * a) . * 01 • 01 01 01 • 01 • 01 • rn b - 0 , = 0 * 1 1 1 I 1 I ❑ * - - * a 1 * I 1 1 I I 1 * 0 a* * E. .40 ❑* 0 .-I 0 HI O ,--I 0 N 0 N O (V 0 * J. * 0 01 0 0) 0 O) 0 N 0 N 0 N 0 * 3'd * * 0 .I >•i * 0 H 0 HI 0 HI 0 .0 O .D 0 VD 0 * . 3 0 * . H .1 H . '--1 . * G, 12* 1 1 I I I I I .1 - * .-1 I Z* 1 I 1 1 1 1 1 * f0 * r) m r) to ,--I r- 4. U .r. a) * d' .D Q' .D C' 1- C' r ct' CO C' m Q. * i) a o * ..1 ••1 * •.4 v 0 * 40 .o 0 .o 0 .0 %.0 ■0 + ° 0 1 0 1 1 '0 1 • 0 1 4 4 I * 0 - 0 4) I .4 • 10 1 m U I CO U 1 N 1 to 1 al I cT * Sa > .i) * O 0 0 to 0 .i O O O 1/40 O N O 0 (.9 * N (1) a* 0 • 0 • X 0 • X 0 • 0 • 0 • 0 • 2 + 0H 0 * • 01 • CO 0 • CO 0 • m • r • r c H * 40 1 * A Al , H * m W * U) * 1 U) * I 1 4 - I I 4-1 I I I I G H 4 0 - - 0 o a * • I * 1 I I I 1 I I -.4 * >, H * 0) 0 al 0 0, 0 0 0., O r m r .D 0 .D (f) W * 01 W * to O to 0 0 .D O 0 (.0 .-I r '--I 01 'H 0 f•i a * 41 1L 4 • i) • 4--, a) H * a) ' 0 x* r r 1 - r 0 - r m > t. * G 3 - 1 * r) f7 i-I (•4 1-1 (*) Cr M M 4 0 0 * W 1.9 * .0 .0 N .D 00 •D 4.0 1.0 l0 2 01 SZ * * HI ,-I (1) .i (1) .i .i '--I •• U N 0 * 1 * 1 I 0 1 0 1 1 1 1 F-1 .-I * (n W CA H * 1 a) * Hi 1 0• an I .-i ,C 01 1 C' .A CO 1 N .1 1 m 1 .0 I N N 1 W U a) * '0 > * CO H Cl N 1) .-1 N 4.) N N N N r r) 0) ❑ f W C 4 .i b 4 4 • o • o a • 0 0, • 0 • 0 • 0 a •• 1, 2 C * a) a) * H 0 . - 1 O (1) N 0 O) N 0 N 0 N 0 N H • 40 H (0 * > x G, * • TS • 'O > a)oa.. * m* H,p m U * 1 * 1 1 3 1 3 1 1 1 I O E ❑ * - - - - 0 - 0 - - - - 40 0L m '0 * I * 0 1 N 1 .-I CO 1 .-i N I ,-1 I M 1 N 1 1 2 W 0 Si * -- • m r) G, m G, .1 r r) r ^ H X 0 * .I m * tt •I 3 ' 4-I * a) 04 * 0 .-I 1 .-1 1 N N ('4 ('4 (0 3 1 3 * > 4-) * ■■ ■-I ■-✓ ,-I ■-I ,-4 ,-I C9 ..I b * * C7 C9 S - 1 2 S - I * 1 * 1 1 2 I 2 I 1 1 I W (I) H U * H- - H m * 1 * 0 1 0 1 2 0 1 2 0 1 0 1 0 1 0 1 m 3-1 * * r- r 7: r- c4 r r- r r a) ❑ a) 4 * 4< 3 b .x 41 m * ' ,--I '0 H 3 •'i . . . 00 X 3 * 04, * r r r r r r (-- .44 M (0 * 0 * 01 01 01 01 01 01 0) U 0 x * - (0 E o * 114 V ) 0 0 4 , I 1 I 1 4 1 I i) HI * - • W 1 * 1 -4 .-I I (•4 1 r 1 ., I Ln 1 '--1 1 Q' 1 0 (0 a) 0 * * CO 0 0 N r o Q' S, Z > * S * (--- .D d' r) N N •■ 0 W FC e, * 0) > * O > * i) a) * to 40 tf1 N 10 41) to S-I ■,' (0 3 * (0 HI * r) (`4 r) M M r) r) 3 0.1 li 0 * 3 W * .0 .D .D .0 .D .0 .D m E. 14 '-I * * 4-1 .i .-1 .i .■ ■-1 .I 3 H a) 0* I * I 1 1 I 1 I 1 x -.i * - .0 40 m * 1 * O I O I ■-■ 1 '--I I r 1 ,-1 4 40 1 - O * .00 * 0 00 OD N Q' 0) m a) m * 4 -. 4 ' 0 to • - I 0 .D N O o * a F * . Id * 0) C. * 0) CO CO m r r r- * ❑ * •.i * * (0 * I * I 1 I 1 1 I 1 41 * - - ❑ * I * ,H 1 r) 1 .D 1 0 I r 1 0 1 01 I * al * 00 0 N O N 0 0 CO N m .i m to N * i) a * r 00 0 CO N CO (`•) d' .D C' 01 c' 0 Lo * Sd > 0 * • N • N • N • O • O • O cP * a) a) HI * .D .i r 4-4 r .i r 0 r O r 0 m ' - 1 * > • - I m* N • N N N • N • N • N 04 I * 0 W * 40 .D 4.0 .D .D .D .0 £ N * H .r. * . . -4 ' 4 ,H 1 .1 ,7 to * 1 U* 1 1 I 1 1 I I 0 .0 - 4 / * I * 0 1 r O 1 0 0 I Q' 0 I d' 0 1 Q' 0 I .D 0 1 0 * 40 * N 00 G' 0) M r O to to N CO LC) CO H L4 * 0 E* 01 0O m (4) C' 4.0 O N Ni 07 0 HI N a N * .,1 a) * • 4 O 4 4-- H ii ,--I CV .4 d' to m M op N .-1 (`4 W * a1 W m CO m CO .D In c) '--1 r) a' * 4 to Li to to .D r r ❑ * a J \ 4 H * m a 41 0 0 0 0 0 0 0 » \ O * * •0 .D .D ■0 O .D 40 2 O M * 0, .0 * 0 0 0 0 0 0 0 . . * .0 - . - 1 U • to * 4 a * * 3 (I) * N * (1) 0, * X X X X X X X W N * 0 11 >,* O 0 O 0 0 0 0 0 0 0 0 0 0 0 (_9 * 2 a E* 1 00 1 W 1 10 1 a 1 a 1 P7 1 (0 o M * - - - - a * * O o 0 O 0 0 0 0 0 0 O 0 0 0 C0 * a a' * 0 0 0 0 0 0 0 0 0 0 0 O O 0 E * N N •H * * E * 1 * 1 I 1 1 1 1 I * - - - * 43 • I ,-I 4 0 1 0 0 1 0 0 1 0 0 1 0 O 1 0 0 1 0 O 1 0 (V * 3 0 rl * 0 0 O 0 0 0 0 0 0 0 0 O O 0 0 * • (0 * 0 • 0 • O • 0 • 0 O 0 0 * a) H Cu * (V * If) 1 * 0 0 0 0 ,- 1 '.4 ' 1 * ro 41 X * 3 - 1 , - 1 rl ,-4 ,-4 ml m1 M * 10 0 I * 1 1 1 1 1 1 I * - - - - - I * E I * 1 1 1 1 1 1 1 40 * C:, * 0 0 0 0 0 0 0 4 .2 1 Z * 0 M 0 M 0 M 0 M 0 M 0 M 0 M 4 2 4 O r1 0 ml 0 .--I 0 m1 In r1 N ,--1 In ,--I 4) * •-4 ro _ * • O • 0 • 0 • 0 • 0 • O • o 1) * (1) - 'i * 04 • 04 • 04 • 01 • co W CO Ia 9 2 2 I * 1 1 1 1 1 1 1 ❑ * - - - * 0< I * I I 1 1 1 1 I * 0 0. * * E .0 ❑ * 0 CV 0 CV 0 N 0 0 0 0 0 0 0 * 1) * 0 N 0 CV 0 CV 0 0 10 O In o N * 3 - 0 E * 0 _, 3-1 * 0 10 0 '0 0 lD 0 '.4 N r-■ 1.0 r■ an * ,H 3 0 * , - 1 , - 4 ,-1 •-1 ,-1 ,-i 1-4 * W 1 Z* 1 I 1 1 1 1 1 * - - - * rl I Z* 1 1 1 1 1 1 1 * (0 * O O r- N L ,-1 * U .0 a) * 0' ■1 0 .-1 0 0 0• 0 0 0 0 '0 0 0- * •rl 4- '0 * <0 • 40 • Lc) • ,.0 0 ,-1 • 43 ,--♦ • 1) ,-4 • 1) * 4-1 0, a * • ■ • ,-1 • � .,9 .,4 .,4 * -4 N 0 * 40 10 \O 40 ,-4 ■0 '0 4 � 0 0 4 S-1 CI ).4 * U 1 40 * 1 1 I I 1 0 1 0 1 0 * _ - - 0 - - 0 - - 0 * 1 .0 * I N 1 N I M 1 1 N U I M U 1 to 0 0' * (..I '> 1) * 0 CV 0 CV 0 M 0 0' 0 0' 0 0 0 10 0 0 * a) a) 0. * 0 • 0 • 0 • 0 40 0 • X 0 • X 0 • X • Z * 0.' 0 * • <o • io • � . m 0 • m . 0 • r- 0 • a 1-I * 0 W .0 .-1 E * CO W U) * 1 CO * I 1 1 1 1 4 - I 1 w I 4-1 O r1 * 0- - 0- - 0 0 a * • 1 * I 1 1 I 1 1 I -.1 * >, .-1 * 1 01 1D O VD , - 1 r - ' - 1 0' N 0. I` N a 0 N 0 (4 W * 0 W * 0 0 '-1 Cr, 0 N N 0 M 0 0' ml 0 10 r-1 0 a) H * a) 'O 2 * N CV 0 <-4 r1 '--I ml . - 1 > W * 0 Sa * M 0' 0' 0' c' 14 T 1 0' f , .0 0 4 W (D * CO 10 lD co 10 CU 1D ro '0 ro Z 0) 10 * * 1-1 1-1 ,-1 '-1 .-1 a) , - .I (1.) '-i a) CD ("N a * 1 * 1 4 1 I 4 0 I C 1 G 1-1 r. * - - - - U) W CO r-I * 1 (I) * Cr) 1 CO 01 1 0- In 1 M N 4 10 0 I 10 .0 40 I OD .0 0' 1 0 .G W U a) * '0 > * r 0' 0- 0' '0 0' M .-1 10 .-1 11 1- .-1 1) 01 CV 1) ❑ aC W 0 * .-I ro KC * • o • o • 0 • O • 0 0, • 0 0, • 0 0. 1-1 • • 40 Z C * a) a) * C) 0 M 0 M 0 M 0 ,-1 0 a) .--1 0 a) 1-1 0 0) hi )1 a H 0 * > 2 40 * • b • • U • .0 • 001- .2 * U)* MI .0 U) 0 * 1 * 1 1 I 4 4 3 1 3 1 3 U 0 2 CD '0 * 1 * (V 1 (V 1 0 I M 1 to 1 r O - I 0' 1 r 0 - I 1D .--1 I 0- CT 1 2 W a u * * 1.0 10 M 10 <-I 40 10 40 r1 44 E Z O * , -1 v) * x 3 , F1; 4 * a) a * In In 1n 0' 0 1 o 1 ,-I 1 ro 3 1 3 * 4 40 * , r, ml ,--1 ' ml ,"1 O 1�-i Z 1- * v 1 * 1 1 1 1 1 2 1 2 1 Z a a) 4U * - - - - - U) 4 1 * 0 I 0 1 0 1 0 1 0 1 2 0 1 Z 0 1 2 U) 1' Sa * * I- 0- 0- I- 0 10 0 10 0 2 (1) ❑ a) * - * KC FC FC 3 0 • * Cr) * ,-I ,-1 ml .1 0 3 0 3 0 3 ro F, 3 * 0 40 * r- r- (- 0- 0' 0' 0' .Y 2 (0 * U * 01 0) 01 0) 0) 0) 0) U 0 2 * -- * ro E 0 * * O. U) 0 0* 1 * I 1 1 I I 1 1 1.1 , * - - - - 10 W I* 1 * 01 I 0 1 0 1 0' 1 0 1 I- 1 ,--1 1 (o 2 a) 0 * * r t` 0 0' 0 0 to ) 2 > * 1 * CV M 0 01 f - 1 - to 0) W FC a?i * a) > * O 4. 9 4 a) * 0' ,D 1 ( 0) 0) 0) S-1 gC ro 3 CO < * M M M M M M M 3 a 14 0* 3 W 9 1.0 10 40 40 to U) E F! .-i * 9 '-1 3-4 3-1 ,-I ,-1 ,--1 ,-i 3 H a) L. * I * 1 I 1 I 4 1 I X -'i * - .0 Z U) * 1 * 0 1 0 1 0' 1 0' 1 0 1 CO 1 (n 1 / o * .0 * N N M 0' N (V 1.0 (1) U) * 1) .-. * N CV M 10 •• 0 lD 01 * 01. E 4 ' ro * (1) 40 * 10 1D l0 10 m CO I- G * 0 -- -'9 * * (a * 1 * 1 1 1 1 1 1 1 u • - - - - ❑ * 1 * 0) 1 0 1 , I 0 1 0 1 OW 1 I` 1 ▪ • * a) * to co In CO r CO o N W 0 - CO 0 CO (V 4 1) aL * 0 0' ,--I 0' 0 0' M 0 M 0' 10 0' 0 a In • S-I '> 0* • 0 • 0 • 0 • If • 0 • 0 • 0 0' 9 0 (1) ,--1 * o 0 O 0 •--1 0 r-1 0 '-1 0 r-1 0 N 0 ' -I * 'J r-1 CO * CV • M • M • M o M M M 1 * 10 W 9 10 10 10 10 • 10 10 10 (V * 4 .10 * ,-1 .-1 .-4 .-4 ,-1 ri '-1 In 4' 1 U* 1 1 1 1 1 1 I 10 * - - - - ./ * 1 * 0 4 .-1 o I I- 0 1 W 0 4 10 0 1 0) 0 1 01 0 1 0) * C * M 0' CO M ,--1 CO 0 E 0 0) 0) In In ,--1 a * 0 * (V 0) 1--1 .-1 M 1D 0 (f) 0 0- r - sn M I- N * •.1 0 * p * 4 'E * M In 0) N r-1 r - 0) E M 0' r - CO 10 .-4 0 W * ro W * 0' M r Cr) I- 0• '-1 0 (V r 0) ■0 1D '0 ..a 4' 1) \ * I- 0' I--1 ml M 0' 2 0' 0' to .-. 1--1 * co ..) * O .-1 ml .-1 0 ,-1 ,-I ,--1 Cs, * 4 10 10 , D 10 h 10 10 1D V0 fv O m * 0 4 * 0 0 0 o O o 0 0 r1 .a * .0 -.4 0 * In * 4) 0) * + 3 N * (V * (() Q. * >C X X X X x X 2 N * 0 u >,* 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 CD * Z CL E* 1 2 I 2 1 I Ol I 0] 1 0] I D] 1 W a m C■ * * 0 0 0 0 0 0 0 0 0 0 0 0 0 o O a) * a a * 0 0 0 0 0 0 o 0 0 o 0 0 0 0 0 * N N -H * * E. + 1 * 1 1 I 1 1 1 1 I + + 1) • 1 rl * 0 1 0 0 1 0 0 1 O 1 0 0 1 0 0 1 0 0 1 0 0 1 0 N -4 3 0 .-I * 0 O 0 0 O 0 O O 0 O 0 0 0 O 0 0 * ro* O • o • O o • o • o • o • 0 o * a) 1-1 2 4, . N * (0 1 * •-I •-1 1-1 •--1 1--1 .1 .-1 • 1 1 * (0 4-I >a * .-1 r1 ,-i ri .-1 .-i .-i ri M * Da 0 1 * I 1 1 1 I 1 I I * 1 * Cr) 1. 1 * 1 1 1 1 1 1 1 1 4' 2 O 0 O 0 O O O 4' , . W * 0 ' 4-4 01 0 O M 0 Cl 0 C) O C) O Cl • 4 -) O + -.i ,9 _+ • 0 • o • o • 0 • o • O • o 70 * 2 0 1 * 1 1 1 1 1 1 1 I 0 4 - - - * 0. 1 * 1 1 1 I 1 I 1 1 * 0 a* + E. .0 0 * 0 0 0 0 0 0 o 0 o 0 0 0 0 0 * 1 * O to O N O O N 0 117 0 Lo O II O * 3'0 * * 0 4 0 4' . 10 .-1 Io .H -I I0 .-1 10 .-1 Lc) r1 LI) * 1-1 3 0 * •-1 -1 .-4 ,-1 .-1 .-1 41 •-1 * 2 1 2* 1 1 1 1 1 1 1 1 * - - - * rl I 2* I 1 1 1 4 1 1 1 * CO * l0 N r - 1n r + U 2 (1) * 0 (-• O 00 o 0 4-1 0 •-1 0 . 0 O 0 0 * -.1 11 'O * .-1 • v. • ,-i •-• • ,-1 • •--1 • r1 • - O * -I) 0 0 * • 1 • .-1 • •- 4 • •-1 * -.1 (1) 0 * 10 2 2 1.0 l0 LID t0 10 .-1 * 0-1 0 01 * * 0 1 Cu • I 1 I 1 I 1 1 I * ( 0 1 0 I v' I ,--1 1 * I .0 * 1 O 1 l0 I a, * 4.1 1) * O 01 0 01 0 0 In o In 0 Ln 0 W o co O (4) * (1) a) 0) * 0 • O • 0 O • O • 0 • 0 • O .-1 • 2 * 0, .i 0 * • 0 - • 10 • In • 10 • to • 4)) a' 1-1 * 0 2 •-1 F * CO W (0 * 1 CO * 1 1 1 1 1 I I I O H + O a * • 1 * 1 1 4.1 * >1 , --1 * M N 10 00 10 2 40 N •• 10 r N 01 N ,--1 +n W • Cr W * r .-1 O o 0 01 a' a' a' OD 0) 10 O 0- 0 a) 1 - 1 * a) 'd 2 * 1 ,-1 4-1 ,-1 4--1 M .1 a' 4!) In > E. * 40 S * a' a' a' a' a' a' a' a' 2 0 * W CD * 10 2 10 2 10 10 l0 ■0 Z 0) a. * * .-1 .--I .-1 .-1 .-1 . - 1 .1 , - 1 O N 2 * 1 * I I 1 I 4 - I 1 1 H ,--) 4, - - - U) 40 W r1 * 4 (I) 4 ( 1 (` Q. 1 l0 0 I In 1 CO In 1 C` 01 1 a' \0 1 01 ill 1 10 W U (1) * 'O > * . N Cl N 10 0) a' a' 10 a' 0) CO o N O FC 2 0 * • rd F0 * • o • 0 • 0 • 0 • 0 • 0 • 0 a•• [u Z 0 * (1) a) * N 0 N 0 N M 0 CO O 0) 0 01 0 CO 0 1-1 Y1 2 1 b * > 2 4 * > a) 0 a 2 * CO + H CO 0 • 1 * 1 1 1 1 1 I 1 I U E 0 4. - - - -1 - - - - - - Z 2 CO '0 * 1 + 4-4 1 co 1 0 1 Cl 1 ("4 1 N 1 0 1 .-1 1 N CD 1 Z 2 a 1-1 1' * f N 10 In 10 a" f O F £ 0 * , - 4 CO + x • , 4-) 4 a) W . •-1 N N a) to 10 a' C (0 3 I 3 * > 441 * • - 1 ( 1 • • r1 4-1 1 CD -.i (0 * i1 2 Y1 + 1 * 1 I 1 1 4 1 4 I Cr, a) 1-1 0 4 - - - (/] �f * 1 * 0 1 O 1 0 1 0 1 0 1 0 1 0 1 0 I (14 W S1 * * 0 O 0 O 0 0 0 0 W 0 a) * -- g 01 4) * (n * 0 0 o 0 0 0 0 0 (0 ,0 3 * 0 w * c a' a c a• c a' m . R. (0 * 0 * 01 0) 01 0) 0) 0) 0) a) U 0 x * (0 E. 0 * * 01 (.14001' 1 * 1 1 1 I 1 1 1 1 1) . + - RS W 1 * 1 * 0 01 1 � I . - 0 1 2 I 1 1 RS v a* -1, o LO LC) s1 2 � sa + l0 to a. N l0 ri N 2 0) W FC 47 * a) > O > * 1- (1) * 0l 0) 0) CO 0) . - 1 N N S1 4'C (0 3 * (0 . * Cl Cl Cl r) (4) c' c' c' $ a1 s1 0 + 3 40 * 2 2 1O 1O `O `O LC) 1D CO E. $1 '4 4, 4, .i 1-1 .-1 4-1 r1 .-1 •-1 •-1 $ 1-1 a) 2 * 1 * I 1 1 1 1 1 1 1 Z -.4 * - .0 Z 41) • 1 * 01 1 01 1 10 1 N 1 N 1 (h 1 C') 1 CO 1 / O * .0 * 0) 10 01 O 0 a' .-1 0) a) CO * 1- .--- * N 0) C` If) In In OD O to • 0) (0 * (1) 2 * N 10 l0 Io In In In 10 O * 0 " -.I * * O * I * 1 I 1 1 I 4 1 1 $4 * O * 1 * N I 0 1 In I In 1 0) 1 0) I 1.0 1 0 1 / * (I) * 0 CO 10 CO •-4 .i OD 10 CO .-1 OD In 00 (- N 4 1 21 * 0) a' N Cr 0 - 0) a' r1 a 2 a' a' a' LC) O I0 * 41 'J 0 * • O • 0 • 0 • 0 • 0 • O • 4)) Cr * 0) a) .-1 * N O N 0 N N 0 rn 0 Io O l0 O 10 0 •1 * > .-I U) * (•) • M • ( Or Cl • C • (•) • M • C") O I * G W * 10 l0 10 40 10 LD 10 10 10 N * H 2 * .-1 1-1 .- 40 1--1 . 4 1--1 4-1 1-1 (n * 1 0* 1 1 1 0 ) 1 I I 1 2 * - - - / + 1 * 0 I a) O 1 0 0 1 0 10 1 0 O 1 O O 1 2 0 1 0 O 1 a• * 2 * IN N 0) Cr. Cl H CO 0) N 10 OD c M t` O E. CL * 0 E* 0 co co 4") N a N to CO 10 a' 0 N I` 0 CO N * i v * • 2 0 * 1-) r co M r - * 1 N C < a' a) 4 N 0 a' 10 C') 0) E. 40 * (0 W* N 1f) m Cl 1 2 • 0 .1 O N I" 0) N • U . a 4 4 * 10 2 I - 0 C` (•) O 0 0) ■ a' to 2 •--. H + CO a* •-1 .-1 ri 91 r1 N N N N 0 2 * * ■0 ID 2 2 2 2 10 l0 10 1 'D 0 u) * a .o * 0 0 0 0 0 0 0 0 .-1 .i * ,c -r1 U * U * -{J OJ * * 3 \ a) * N * ()) a* X X X X X X X W N * 0 3•I >, * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CD * 2 2 E- * 1 4C 1 I G1 I CO 1 CA 1 01 1 0:1 I 4A r.>: cn 4 - 0) 1 * * 0 O o 0 0 0 0 0 0 O 0 0 O 0 0 Q.) * a a* O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E * N N -.1 E - 1 * 1 * 1 1 1 1 I 1 1 1 * - - * •J • I '-1 * 0 1 0 0 1 O 1 O O 1 O O 1 O O 1 O O 1 O O 1 O N * 3 0) .-1 * O 0 0 0 0 0 0 0 0 o 0 0 0 0 0 o * (0* O • O o • o • 0 • 0 • 0 • 0 o * a) 1-i 44 * N * to 1 * r1 1-1 .-I .-I 1-1 1-1 .-I .-I 1 * It 1-1 X * 4-1 .i 1-1 r-I r I 1-1 I-I .i r) * 4Q 0 1 * I I 1 1 I 1 1 1 * I * E- 1 * I 1 1 I I 1 1 1 * 11 (u * 0 0 0 0 0 0 0 0 * .G 1 * O U) 0 0 M O (`'1 O r O r) 0 r) 0 rl * 0 • 2 4 u) •--i u) I ri u) r u) ,--I In . u) . u) . a) 4 .r1 13 . * • 0 0 • 0 • 0 • O • O • 0 1) * a) - * CO • CO CO • CO • 00 • CO • CO • 00 It * x 0 1 * 1 1 1 1 1 1 1 1 ❑ * - - * a 1 * 1 1 I 1 1 1 1 1 * 0 a* 4' E-1 .0 ❑* o r) o o r) o r) O r) o r) o o cr * 4- * o c O o c o a' 0 cr o a' o o r- * 3 E * * 0 - .i 44 * • u) .i .i u) .4 u) .i u) ri u) .-1 •-1 a' * .-I 3 0 * , i .i ri •1 .i , i ri , i * Cs.1 1 2* 1 1 1 1 1 1 I I * * .i 1 2* 1 1 1 1 1 1 1 I * It * 1-1 r 1` LIP r- u) 9 ' 0 ) 0 r) 01 .-1 r) r r r ) r) O 0 a' up 4, -r 4 4 . a) 4' r i 1- 'd O • O O • • O O O • 0 0 O (0 • 1) * 1- a 0 * • .i • .i • .-I • .-I -.I * -rl a) 0 * .o 10 co r1 u 0 * >1❑ 41* T) * 0 1 Cu * 1 1 I 1 1 1 1 1 0 * - - - 0 * 1 .0 4 1 c' 1 1 r) 1 r) I Co I u) 1 1 a' U a' * YI '> 1) * O a) 0 0 a' 0 a' O a' 0 r- 0 r) O a) 0 C7 * a) a) a * O • O O • O • O • O • O O O • X • 2 4 a ,-1 ❑ * • 1/40 • to • u) • u) • u) • r - .0 0 a' H * W , i E. * En W * (/) * I (0 * 1 I 1 1 1 I I 1 w O H * - - - 0 o ra * • I 4' 1 I 1 1 1 1 1 1 -.1 * >, .i * 0 0 ri N CO 0 (`-) Cr' .-I a' al r1 0 ■0 0) a u) W * b W * CO <-1 (3) a) in in a' a) 1 VD 0 t` 0 OD 0 0 34 a * 1-I • W * • 4-1 Q.) 1--I * a) • 0 0) * u) u) u) ',0 4--1 r m op m • (0 * C 1-4 * a' a' a' a' a' c c e' u '.0 0 * W (.a * .0 '.0 '.0 '.0 to '.0 10 (o (a 2 a) C4 * 4' 1-1 .i .i ri •-4 •-1 •i .i a) U` N W * 1 * 1 1 1 I 1 1 I I C H , * C/) W CO .i * I a) * I 1 to '.0 1 N 1 00 Ni 1 4 - u) I a' N 1 0) r1 1 (v r1 1 N .0 W 0 a) * '0 '> * N (N a' 0 - a' r a' 4.0 a' r) r) O •-1 N ,-1 4..) ❑ < W C * .-I (0 <* • O • O • o • o • 0 • 0 • O a ,- • • Cv 2 0 * a) a) * N 0 N r) 0 r) 0 r) 0 r) 0 r) 0 .■ 0 a) 11 3• 2 ■■ (0 * > 2 W * • b • a,oa.0 * u) * H u) U * I * I 4 I I 1 1 1 4 3 U E ❑ * - - - - - - - - - - 0 C (Y, (n •o * 1 * 0 1 a) 1 r - 1 1'- 1 r) I r1 1 r) 4 r) 1 .1 • - r 1 2 W 4U 31 * * ri u) a' a' r) .D a) m (0 CV F 2 0 * .i U) * x 3 , -i < 4-1 .1 a) 4<. 4 N N u) up u) a' r) of 1 o 3 1 3 * > w * ■1 .i .i .i ,-4 •1 ■i CD .41 0 * - * (..D 3-1 2 1.1 * 1 4 1 I I I 1 1 I 1 Z 4■ a) 1-I U * - - - 11 * 1 4 0 I 0 1 0 1 0 1 0 1 0 1 0 1 0 1 2 U] u) 0) 1-1 * * CO CO CO 00 CO CO CO .0 2 a) ❑ a 1 3 b ?G * 4)) * r) r) r) r) CO rl r) 0 3 (p F 3 4 01 Cu 4 N N N Ni N N N h ..s4 0 * 0 * a) rn a) 0) a) a) a) r- U 0 2 O E 0 * a. U) o o* I 4, 4 1 4 1 1 1 1 I y1 .i * E w I* I * r) 1 0) 1 u) 1 r) 1 00 1 00 I W 1 to 1 rd 0 a) 0 * * (h c 0 00 CO N .i a' 31 2 > * 31 * u1 a' Ni (` N r1 10 tr W g * N '> 4 . o '> * 4.) a) * r) r) N N a' u) u) r- 14 < ro 3 * 0 ■i * a' a' a' a' a' v' a' a' 3 a, 1.4 0* 3 W * 40 MD V l0 V kip U) 4 - I4 r1 - * ,-1 .i ri ri .1 ■•1 .1 .-4 3 1-1 a) Cu * 1 * 1 1 1 1 1 1 1 I X -.1 * - .0 X U) * I * r) 1 N 1 r 1 1 1 a) 1 r 1 m I 3n 1 / 0 * .0 * a' f N N 1 a' N r) a) U) * 1-) -. * a, .0 a' a' a' r 0 Cr) o * 0 E1 * . O * 0) G. * .o '40 40 tr0 to N co r C * ❑ -- ..1 * * O * 1 • 1 1 1 I 1 1 1 1 1-1 * - ❑ * I * 0 1 CO 1 CO 1 '0 1 Q) I 1-I 1 0 1 0 I / * a) * 0 0 r r- W to 00 0 00 O CO a> I1 00 N * .W a * to c r r a' r) <r m a' 1n a' 1/40 O r- c u) * 31 4' 0* • o • o • o • o • o • u) • O a' * a) 0) ■i * 1/40 0 1/40 1/40 0 r N 0 0) 0 ON 0 0) 0 , i * '> .i U) * ('-) • (' 40 r) • (v) • r) • r) • ('-) 0 r) 1 * 0 G] * l0 (.0 (0 10 10 k0 <.0 1.0 • 10 N * 1--■ .0 * ri ri 0 .i ■■ <-1 .1 .-1 ■•i Li') * 1 0* 1 1 (- J 1 1 1 1 1 1 .0 * - - - * 1 * 0 1 1n 0 1 0 0 1 0 4 4. 0 010') 04(0' 0 4 0) 4 0 1 u) * C * O O .i H ,--1 a' up O .0 m to to 0 E+ 0 to Ca * 0 E * 0 1-4 rl a . to 1/40 CO a' 1) (V 1 0 U) 0 r) N 4 -.1 a) * p 0 .4 1-) ,--1 4 r) 01 N N 0 N N u) 0 1/40 N 0) H r) • - t 0 W * (0 W* N (') 40 104 .0 N CO 0 CO 1/40 a' N ' U h r- (-7 4 1) ". 4 u) to 0 u) ,--1 lD r) C) ,--1 ,--1 .-1 Z r1 •~■ H * U) r4 * N N >' N N N (In Cr O r) () * * .o .0 x •0 VD .0 l0 '.0 r) .0 0 ip * a .0 * 0 0 0 0 0 0 0 0 0 r-1 r• * .0 •ri 0 * u) * 11 04 * * 3 0 * (y * V) a * X X X X X X X X W N * 0 I41 >, * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ED * 2 W E* I CQ I W 1 W I 40 1 1 W 1 CO 1 W I cQ f.0 M * co 1 4 41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • • 4 .7 0* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • * N N * .,1 * * E-. * 1 * I I 1 I 1 1 I I I * - - - * 4- • 1 r-1 * 0 1 0 0 1 0 0 1 0 0 1 0 01 0 I 0 0 1 0 0 1 0 0 1 0 (N1 * 3❑ r-I * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 p 4 ro* 0 • 0 • O • o • O 0 • 0 • 0 • 0 N * CO r-I ,-4 r1 1-4 r1 .-I r-1 r-1 .1 1 * 0 YJ X * 1-1 1-1 r-1 '- 1-1 1-1 .-1 1-1 r1 ('') * (A 0 1 * 1 1 1 I 1 I 1 1 I * 1 * E 1 * 1 1 1 I 1 I 1 1 I L.0 * JJ G-1 * 0 0 0 0 0 0 0 0 0 * .0 1 Z * 0 M 0 ('l 0 0) 0 4<') 0 0 03 0 M 0 C) 0 M * 0, • 2 * to r-1 u) ,--1 to r1 u) r-1 to 4) r-1 to ri 4) r1 to • * -1-1 (0 . * • 0 0 • 0 • 0 • 0 O • 0 0 1.1 41 a) -1 11 X • CO • CO • m • CO CO 40 • W • of 0 * X❑ 1 * 1 1 1 1 1 1 1 1 1 ❑ 9 a I * I I 1 1 I 1 I I 1 * o a* * E .0 ❑ * 0 a' 0 a' 0 v' o a' 0 O a' 0 a' 0 a' 0 a' * 4.4 * 0 r o r o r 0 r 0 O r 0 r 0 r o r * 3'0 E * 0 .1-4 4-1 * 1-1 a' r- 1 a' ri a' r-1 a' r--1 1-1 C' r-I Cr ,--I Cr r-1 a' * '-1 3 0 * ■-1 1-1 ■-1 1-1 ,--1 1-1 1-1 r-1 1-1 * Cu I 2* 1 1 I 1 I 1 1 1 I * - - - * r-I I 2* 1 1 1 I 1 I 1 1 1 * (0 * 0) a' N a' co 0) CO CO * 0 .0 C * a' to a' 10 a' O a' 0- a' a' N a' N a' M a' a' * .1 JJ 'O * (`') co • op • (r) • f'') (') • 0) • r) • (') * J-' a * • r-1 • 1-1 1 r 1-1 i• .,3 a) 0 * to to to u) to to to 4') u) * [-1 ❑ Ya * * 0 1 G-1 * 1 1 I I 1 I 1 I I 9 - - - * I .0 * 1 r 1 r-) 1 CO 1 10 I 1 N I N I r-1 I .--1 a' * 4 > ai * O to O N 0 O O to O O to O u) O rn O r-1 o • O • 0 • co O • O • O • 0 • o 2 « a •--4 0 * O * • r • r • sip • `° • `r • c • a' • a' c r1 * 0 W * <-1 E * cn W * (n * 1 u) * I I I 1 I 1 1 I I O 1-1 * - - - O a * • 1 * 1 1 1 1 1 I 1 1 1 .-1 * >I ri * to 0) u) 0 u) 0 40 0 '.0 r-1 M a' 0 a' u1 co o V) W * 0' W * 0) 0 0 r-4 r-4 ■1 N ,1 (`4 a' 0 Cr 0) M r o f 4 a * s1 • 0 * a) H * a) 't7 0 * m 0) 0) 0) 0) O) 0) 0 r1 > W * 0 s1 * a' c a' a' c a' a' u) to VD 0 * W C7 * O 31) 10 '.0 10 4.0 3.0 30 3..0 2 0) d. * * ri 1-1 1-1 11 ,-1 r-1 r-1 r1 r1 C9 N 0 * 1 * I 1 I 1 1 I I 1 1 H r1 * - - - (n W X r - I * 1 0* M 1 a' '.0 1 VD ri 1 CO r 10 to 1 ('') 1 u) ro 1 0) r-1 1 r N 4 tip W 0 a) * 4 0 .7 * (''1 1-1 a' r1 10 r1 r N 0) r to r u) r1 10 to r- O r.0 0 0 * '1 ro K4 * • o • o • 0 • 0 • 0 • 0 • 0 0 ,-7 • • 44 2 C 4. a) a) * r-1 0 r1 0 .-1 0 r-1 0 11 CO 0 () 0 a' 0 a' 0 H s1 X 11 (0 * > X 40 * > 0 ❑ 1-7 .4' * cn * H p () 0 * I * 1 1 1 I I 1 1 1 1 U E ❑ * - - - - - - - - - - - N • 40 b 4 (n 1 * 10 1 r1 4 O) 1 W 1 0 1 O 4 , -1 I 10 I VD 1 N 2 40 D., s1 4. * N r v 10 N u) u) N o E £ 0 * ri (1) * th g ,-I ,,:t w * a) a 4 0) 0) 0 0 r 1 to to 0 r R) 3 1 3 * > [u * •1 ,--I ' ■i • 1 1 s1 2 11 * 1 * 1 1 1 1 1 I 4 1 I a, a) 11 0 * - - - (n * 1 * 0 I 0 1 0 1 0 1 0 I 0 1 0 1 0 1 0 1 (n -1 ' s1 * * 1 0 1.0 l0 3.0 3.0 10 l0 '.0 4.0 a) ❑ a) * 3 to x * (1) * 0 0 0 0 0 0 0 0 0 (0 £ 3 * 0 0 * r r r r r r r r r 44 '0 * 0 * r r r r r r r r r O 0 X (0 E 0 W CO 0 0 * 1 * 1 1 I 1 1 I 1 1 1 }J - CO 4 7 a) 1 M 1 * W 1 a' 1 O I a' 9 0 1 r 1 '.0 1 (V 1 r I * 1-1 CO a' CO r1 r 0 (n 1D 4.4 2 > * 1.1 * l0 to to a' a' 1p r (V u) to W FC 40 * a) '> o 4 * 1-) C) * r r r r r to to 10 10 4 KC CO 3 * .1 . * c c a' c a' c a' a' c •.3 04 1-1 0 * 3: W * 10 10 '.0 10 1D V0 10 1.0 30 (n E Y1 ri * I. ri • <-4 r r 1 ri 1 ri $ 9-3 1 * 1 I I I 1 1 1 I I .r1 11 - .0 (n 4, 1 * O I a' I CO 1 03 1 ('') 1 0 I 0 I CO 1 O I / O 1 .0 * 10 r-1 r to to N a) () * 1 * to N W to N to u) in ,1 0 4' a E 4 ' . 0 * a) 4, * r r 3.0 10 10 C a' a a' W41 ----- 41 .1 * * 0 * 1 * I 1 1 1 1 1 I 1 I Ya * - - - O * 1 * N 1 0 1 N I 10 1 r I r I 0) 1 a' 1 0 1 / * a) * In of r of 10 CO N o7 to to co W m N co '.0 of N * a * O a' (r) a' 30 a' 0) a' ,1 r-1 a' 1--1 a' O) a' a' a' to * ) > 0 4 • 0 • 0 • O • 0 • O • o • O • O a' 4 0 a 0) ) N - 9 , O 0 0 0 0 0 0 0 .1 0 r•' O • 0 N O Cr) '0' 1 * C W * <o LO 4.C. 4.0 4.0 N * H .0 * r •i •l ri •■ 5 r1 r-I r1 •-I tip * 10* I I 1 I 1 r 1 I 1 I VD * - - - * 1 * O I 0) O 1 to 0 1 o O 1 10 0 I 0 0 I N 0 Ito O I ,•1 0 In-4 + 0 * l0 0) to O lD O t.0 r a' 1-1 a' u) 0) a' (') N to 0) a, * 0 E * 1') 14-1 to OD ('") 0 1") r-1 to 0) . to ') In C) co a' in 10 0) (V N 4 -rl a) 4 � C 4 .44 •1 41 a' 10 0 0 r1 N 10 CO a' W a' 10 O ('") a' r1 N W 4' (0 [4 41 a' 10 r1 1/40 r to N a' r W r m u) ('") 1 a' - F 7 * JJ \ * N ('1 ('') a' a' ❑ a' a' 1-1 10 '-4 r ....• 1-1 * U) 4 * M M ( ('') 01 D41 M fr) (") 01 [44 * * '.0 10 30 1D '.0 40 10 10 1D 10 0 4- 4 • ,C • o o 0 o 0 0 0 0 ,--I ,H * .0 - • - I 0 * 0) * 4- a * • * 3� a) -4 W W W ('1 * (n 0.* X X X X X a a a W N * 0 1•) >, * 0 0 0 0 0 0 0 0 0 0 ra r. r. - r. - 0 * 2 a F* 1 0.1 I 4') 14 I W 14 I a 1 a 1 a aC r) * Orr * -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • * .a CC * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • * N N * -H * * F * 1 * 1 1 1 1 I 1 I I * * 1) • 1 r-1 * O 1 O O 1 O O 1 O O 1 O O 1 O 0 1 0 0 1 0 0 1 0 N * 30 ,- 4 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o * • fa * 0 • 0 • O • O • 0 0 • o • 0 0 * (I) 4 -I Cu * N * (0 1 * r-1 ,-I .-I - ,-I 1 * CO i-1 x * ri 1-1 H 1-1 1-1 01 * 0< 0 1 * 1 1 1 1 1 I 1 1 * 1 * \ E+ 1 * 1 1 1 1 1 1 1 1 VD * 41 w * 0 0 0 0 0 0 0 0 * 4 1 * 0 r) 0 CO 0 r) 0 01 0 r) 0 r) 0 r) 0 r) * 0 • Z * In ri 40 r-1 In ,--I 1)) • - 1 If) r•1 0 .-1 0 ,-1 0 r-1 a) * -H ro c* • 0 • 0 • O • 0 • 0 • 0 • 0 • o 4J * a) -r4 * CO • CO • OD • m • OD OD • CO • 00 (a * Z 1 * 1 1 1 1 1 1 I 1 ❑ 4 - - - * 0. 1 * 1 1 1 1 1 1 1 1 4 0 a * * E..0 ❑* 0 C 0 C' 0 V' 0 C' 0 10 0 tf) O r 0 * 1 * O r 0 r 0 r 0 r o 40 O 40 O OO 0 * ''o E* a * o -H 1-I * H C' r-1 Cr 1•1 V. H V' 1-1 0. 1f) O0 V' CO W * 1-1 3 0 * H .-4 1-1 1-1 H >, * W 1 2* 1 1 1 1 1 E. 1 1 I * - - - * .H 1 2* 1 1 1 I 1 H I 1 1 * (O * a) •--■ V' r a) o V' C * U .I~ a) * Cr U1 C' r V' co C' O) V' N C r1 0 r) co r) rn * - JJ 'O * r) r) • r1 • r) • CO L-1 4 00 • CO • CO * 1) 4 , 2 4 • r - 1 • ,I • 1-1 • r-1 • RI • ri * -H a) 0 * 1f) 1f) 10 1.0 1f) N 4 40 VD VD * 44 ❑ 1-4 * 0 4 U I W* 1 1 1 1 I C 1 1 1 * 1 .0 * 1 N 1 r) 1 10 I O) 1 •H I M 1 '.0 1 00 V' * 44 1) * O 01 0 r O <0 0 CO 0 V' 0 !b 0 (V 0 0) 0 (.7 * (1) a) 4,* O • 0 • O • O • O N a) 0 • 0 • 0 • Z * a ,--I ❑ * • CO • r1 • r) • (r) (`'1 l0 • r • r C' H 4 D W ,-I 4. • (n W * N (n * 1 (n 4 1 1 I I 1 .0 1 1 1 0 0 .7 * • 1 * 1 1 1 I 1 I I I -H * •• ,- I * 0) O 0) N ri 41) 40 0 40 C' 1 r1 C' 0- 0 r 0) (n W * b W 4 r r C' r N r 01 N r 0 r•1 01 C' 0 V' O H r] * 44 • 44 * • N a) H * a) 77 x * ,--I N r) in C' -r1 10 10 N r > (N * Cti 44 * 111 LC) <0 10 1f, fn 10 In 10 '.0 0 * W 0 * 10 40 l0 10 l0 >, 10 l0 '.0 2 D) a * * r 01 ri ri r 1 I ri 1 C7 N ( * 1 * 1 I 1 1 1 C I 1 1 H ,-1 -I - - (/) W Cq ,H * 1 a) * r 1 r r 1 0) H 1 V' 1-1 10 r 1 0 FC (r) 1 0) r 10 r) 1 01 W U (1) * 'O > * 0) OD C' 01 0 rI 10 r) N 0 0 1f) 40 '.0 01 40 ❑ 11) W 4 * H al KC * • o • o • . • ■1 • . C • 0 • o • o a .. 4+ 2 L: * a) a) * c O 10 O 40 0 10 0 r 0 0 a' 0 r) 0 CO 0 H 4 CY, H to * > x Cu * > a) o ,-7 .Ir * (n * 4 H U 1 -II 1 4 1 I 1 U I I 1 U E (n 4 ❑ * - - - - - - - C - - - M 7 C4 (n 'O * 4 * 0) 1 l0 1 CO 07 I V' 1 ' 1 D N 1 0 1 10 1 f'V 1 Z W a 1-I * * co 4- '.0 10 40 1 7 r r) 40 rr H X 0 4 ,--4 U) 9 ' S 3 ,-I r. 4-1 - 1‹ a) a -1 r CO D) 0 H 1 '0 In a' 10 3 1 3 * > Cu * ,-I r-1 1-1 N N ri 1-1 r-1 (.7 -H 1a * - * (7 u 2 S•1 * 1 * 1 I 1 1 1 Z 1 1 I CL, a) H U * I U) * 1 4, 0 1 0 1 0 1 O 1 0 1 2 0 I o 1 0 1 (n 40 1.1 * * ■0 '.0 10 l0 l0 r:4 N N N a) ❑ a) * - - - 4 • p) .k * (n * O 0 0 O 0 3 40 '0 O ro Z 3 * Od 4., * r r r r r r) r) r) x ra • 0 - r r r r r r r r o 0 x * .,.- * '0 E-' 0 * * a (n 0 0 * 1 * 1 1 1 1 1 1 1 I .4 rI * • W I* 4 * O) 4 r) 1 CO 1 0 4 r 4 1-0 4 ,-1 4 4.0 I it 47 0 01 * * ■-1 N O) 1f) op a) o r) 4-1 2 > * sa * CO 0 4 r) v' 0 0 ,-I O) W . T * a) > * o > * 1 a) * 10 0- r r r r1 1-1 C' 1 K, (0 3 * 10 r * C C' C' C' C' 4.0 1f) 11) 3 a H O * 3 W * 10 '.0 10 10 40 40 40 40 (n F S - 1 .--1 * * 1-1 ,-1 r•1 r•1 ,-I 4-1 H 1-1 3 4 1 * 1 I 1 1 I 1 1 I 4 H • [n * r � . I 4 I Cr I 0 I 1f1 I r I I 10 40 / 0 * 4 * .-1 C '.0 O) r) N 10 0- O V) * 4 --. * O) r 10 r) N N N O) '0 * (1) W * r) r) r) r) r) 10 r r G * ❑ -- * -H * 4 It * 1 * 1 I I I 1 I 1 1 44 * ❑ * 1 * 01 1 O) 1 r 1 '`D I 0 1 0 1 ' I O) I / * (1) * 0 W m CO 01 CO 1f) 0< 111 r 0< V' co In O N * 1) C), * 0) C' N V' VD C' 0) C' N 0 N `Cr 10 C' r-1 C' 1f) * Li > 0* • 0 • O • O • 0 • 1f) • O • 0 • 0 C' * a) a) r-1 * N 0 01 0 01 0 01 0 C' 0 V' 0 C' 0 40 0 1•1 * > r (n * V' • V' • C' • C' • V' O C' • V' • C' 1 4 C W * ,- 40 <.0 10 VD 10 )D k.0 N * H 4 * ri ri .-1 .-1 r-I 1' 1-1 4-4 111 * 1 0* 1 1 I 1 1 1 1 I 40 * / * 1 * 0 1 01 0 I CO 0 1 0 0 1C0 0 1C4 0 1 r) 0 4 N 0 1 a) * G * r) O V' (0 r1 N 1f) C' 0 F 0 l0 lD IT . 1n a * 0 5 * N 40 O7 Cr CO Cr) 40 01 0 (n O r) r1 10 O 0 N * -H a) -4 C 4 4 r.-1 * CO 0 00 N 1-1 1 0 r r 01 E r) r 0 41) 10 t( W * (0 W * r) W , i r a) 40 111 40 H 0 N 1f) 0O 01 4-1 ,-I ,-a * +) * CO 0) a) 0 r-1 Z 1-1 r-1 r1 1n - H * (n 4 * r) r) (r) c Q' 0 Q' °' `. G. * * 40 40 l0 '.0 10 17 40 414 '.0 0 (p ., a .0 * 0 0 0 0 0 O 0 11 1--4 * .0 -.1 0 * * 0 a CD * w w w w w w N * (n a * 0 0( O( a O, 01 W N * 0 7.1 r^1 * 1 - 1 H . 4 .1 H ,1 N .1 H . H 11 ( 4 2 (L E 4 1 0. 1 01 1 40 1 0) 1 a 1 04 1 FC ( * C14 1 4 4 0 0 0 0 0 0 0 0 O o 0 O O a) * a a* 0 o O o 0 o O o 0 0 O 0 0 E * N N * -H * * E. * I * I I 1 1 1 1 I * * 1) • 1 •1 * O 1 O O I co O I O 0 1 0 0 1 0 O 1 O O 4 N * 3 ❑ •. * 0 O O 0 0 0 O 0 0 0 0 0 O 0 * (O * O • 0 • 0 • 0 • 0 • O • 0 N * (/) 1 * 1 * (a 3-1 X * M * an 0 1 * 1 1 1 1 1 1 1 * 1 *\ E 1 * 1 1 4 I 1 1 4 up * J- (:<.1 * O 0 0 0 O 0 O * 4 I * 0 r'1 0 M 0 -1 0 (n O (n 0 (h 0 * 0 • Z 0 , 1 0 ■-1 0 r 1 1 0 . 0 1-1 0 0 • * •.1 17.1 _ * O • O • O • O • O • O 40 • y) * a) -H * CO • CO • CO • CO • CO • CO • OD N * Z 2 1 * 1 1 1 1 1 1 1 ° + a 1 * 1 1 1 1 1 1 1 * 0 a * * E+ .0 ❑ 0 0 0 0 0 0 0 0 0 0 0 * * * 0 0 0 0 0 0 o 0 0 0 0 * 3 'D * * 0 ..1 S1 * m Co m CO * .1 3 0 * * (u 1 2* 4 1 1 1 1 1 I * - - - * .-1 1 2* 1 1 1 1 1 1 1 * ra * 0 0 0 o * 0 .0 0.) * f•') 0 M 0 N 0 N 0 N 0 N 0 N * •.I 1) 'O * CO • 07 O N • (` 0 f • ) N • * 11 a '/) * * - -4 a) 0 * t0 t0 1.0 l0 t0 t0 t0 1. L1 ❑ S-1 * * U 1 41 * 1 I 1 I I 1 1 * * 1 .C, * 1 0 1 I t0 4 I C' 1 O 4 C' * 4 - I 'J Ll * 0 0 40 ('-4 O O 0 0 0 1-1 0 0 0 0 0 4. a) a) a* O 0 0 '. 0 • 0 .-i 0 • 0 • 0 2 4 a, El ❑* • co • rn • 0 C 1-1 * 0 w * CO 0 ,1 ,1 E. * CO W * 1-1 Ul * 1 (0 * 1 1 1 1 4 1 I O 11 * O a * • I * 1 1 4 4 1 1 I .1 * >1 .-1 * LC) C' ('1 M to O (n CO M M '.0 t0 M (0 W * (T W * to (') 0) 0 •-1 0 1-1 .-1 (") 0 (') CO CO 4 a * W • W * CD H * a) 'O x * (- N Q) 0 1f) N (.0 1.0 t0 VD 0 * W C7 * t0 tO t0 tO l0 t0 LID t0 t0 t0 t0 1.0 Z rn ) * * 11 1-1 1-1 1-1 11 1-1 .-1 C...D N 0+ * 1 * 1 1 1 4 1 4 1 H 41 * - - - (/] (r] CO . - 1 * 1 0 M 1 a' M 1 CO O) 1 0 0) 1 O O) 1 0 O) 1 0 O) 1 W U a) * 90 'J 4' CO t0 CO tO 0 l0 O '.0 0 t0 0 t0 0 ❑ FC W 0 * ■-1 (a 4--i * • 0 • 0 • 0 • 0 • 0 • 0 1.1 • • 44 Z C: * a) a) * Cr) 0 M 0 4') 0 (') 0 ('1 0 M 0 C•') 1-1 3-1 CG I-1 rd * 'J Sr (T. * • a) O ■-7 * U) * 11 U 4 I * 1 4 4 4 4 4 I U E CO ❑ * - - - - - - - - - • (z (1) 'p * 1 * In 1 10 1 1-1 1 1-1 1 . 1 .-1 1 .1 1 N 1 2 w a L1 -0, - 1 , tO t0 .■ .-1 .1 '♦ .1 E•Z0 *.1 C) .4 x CP • ra * 7 G. 4 4 (1) O( * C' cI' Cr .�-1 1-1 3 I 3 4 .1 ■-1 .1 _. (CS * -- * 11 2 t1 * 1 * 1 4 4 1 4 1 I 04 0 1-1 U * - - (1) * 1 4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 (/) 0) 4 - I * * N N C' C' C' Cr C' a) ❑ (I) * ^ * 3 b) x * (n * to t0 0) o) rn CT m ro 3 d 4. * (0 CO 0 0 0 0 0 O 0 0 * ro E. 0 * * 01 01) 0 0* 1 * 1 1 1 4 4 1 1 yl .1 b w a) 1 4, 4 - 4 1 , I (V 4 O) I '.0 1 (- 1 (•1 1 CO I * (v) 0 (f) In ("1 ■0 (`') 51 Z 4> * 3.4 * (V t0 0 0 N N (` 0. W FC * a) O > * yl 0 C' t0 (- N N N Cr) 3-1 0/ IV 3 * ra .i * (0 10 10 t0 t0 t0 t0 3 0( 3-1 0 * 3 W * t0 t0 t0 to '.0 l0 t0 (n E. S - 1 .1 * * 1-1 11 1-1 .-1 .1 1-1 .-1 3 H (1) Cu * 1 * 1 1 1 1 1 1 I . * - .0 V) * I * 0 1 N 1 O) 1 t0 1 I ('') 1 W 1 / O * .0 * O N (f) O) M C' (`') a) U) * 4) * 0 t0 0 O ,H .1 O) 40 4 a E 1 * ro * a) Fin * m (b Q) O O 0 0 * ❑ * 1-1 11 1-1 11 .4 * * (() * 1 * 4 1 4 1 4 1 1 1-1 * ❑ * I * .1 1 0 1 0 1 0 1 0 1 0 1 O 1 / * a) * CO W a0 0 CO ■0 0 (` N W 0 N * 1) a * N C' 01 0 0 C' 0) (- r1 d' .-1 C' W II/ * 11 'J 0 * • 0 • (n • O • C' • O • O C' * 0) a) .1 * t0 0 I` 0 CO 0 ,1 0 N 0 N 0 CV 1 * 11 * .7 r1 U) -k a' • C' 0 C' 0 � up C W * t0 t0 • t0 (V * M .0 * .1 1-1 .-1 ,-1 1-1 1-1 ri LO * 1 0* 1 1 1 1 1 1 I LID * - - - / * 1 * 0 1 C' 0 1 Z 0 1 0 0 1 0: O I (` 0 4 (0' 01 * [ * ) ('1 0 F 0 0 0 E. 0 Cr, 0 co au a * 0 E:, * 0 O\ 0 U) 0 0 0 U) 0 N M Cr N N * ..1 a) * . * 1) .1 * 11 (") In E O) t0 I) (n u) C' (T .-1 0 C w * (a W * ('1 t0 O) U O) N N 2 to 10 v' O - .7 * i) \ 1' to (') OD 2 Co CO 0 r•C N (� 11 0) 11 * U) a * C' Q' O Q' (n 0 to N (n E. * 4 t0 t0 1 7 t0 to E. t0 t0 t0 0 E >i< cn w U Z H i- Z � H a I< < E-1 i: W >—I H E--1 111 a M , H i 0 I< rriIH Z (f) rTl F-1 rTl I< M O ,s, ._- E-1 _- ., ._._ _ _______ _____••_______________ - • !,.‘....-„-,,,, ii.i- -...../..-7s-P.,,, y ) p \\.? J l'/i.' -,---;,,. . ,' • VW 11%-1.',' \ T 11..1 ' : 15 „.."41" AI_ L,t 1 :1;.fr ,';': '• ,:• it" • • • . -", , .. •-, oci •••••:-....- ••• 12" ,...., , .•, , .. • ..... y. , ,-,r•- , -,, .._. - • . , - M . g "--4' ,. • ..; IA ,, , ' . ',... i .... ' ."'•H• 4,1 . _,, i =L .,,;,-_-.-' ' A. • - - •• ---'. .-. . --.„... ..:. .. 1 ....,,i • „ 1 - .. , .,..,. -, • . ..! 1 ..,, , 1..,, ; .., :-- 1 :•*. , ..., , , . ..• ''..• sr• 1.141.1....lt : .1 ',..t t . ■ ,i I .It . -. < .- . . . ,_ •• -, # c. - -- ,.! .': t; ..- ,:,,- 4,` A1 7 , 2 • - ' ›-, xi• . • [ •-•.,•:;,•:. • , • ,-- - • l,- • ,•::" .. 1 ••.1,. 4 „ 'T. — . ' , • • 1 .... ...4 a_ •• --p .,,.1.- I‘' e ,- i ..L . ,, :. . .. . -.. -: _ -07 1. .. , • M w , _ J ,. , . ,., , _a --srtiAjlt,L.,.., • • , , -” ,.. ../. r. / •' ' .7 . . 1"•:.' , - s„:■ L t . ' la - ■ . e. - :.' , 0.- ,y• • il /: • -A.,',‘...• A_'' • 1 , ' • • t , - / 'ws • • 1 1 " 7 • 1 4 • -. . " 4 •4 • ' :-* X... ' • • / .... ,i'? ' ••""4 , ..' • - ,7 : 1 '" ti 4 ,, _ 4 , ` • ' .....-•• • . • ,, I l' ' ' • M C I i . . 0 .;: ., Tr, „ ., ....• 4 ,,/ , 3,.." ..,,,:;', .... - - B ri , . „"i • e a 'T;') ' A.. T ' •- lo' •• - " ' • " (--,- • •-•. F '.... ., • g . t• - " 4. 4 • k f • • - - • • . ,., "1 '. - -• -•• , 1 .1 • ; -!'.. • i. •-.,••■ 4 7" - _54,,,:i: • ' - I _ - (9 ' ' • ' ' / ' , ..• • ' , • - . 1 .; .,.gr , -,•••• .,, ,•,- 1 , ... k. . ,,, 7 . - , , .. 'k I.. -- ,. i , 1 t_ t . „„i ct 1 , ' • 1 , 4 !• ,. 1 ... • Lj L ;■•••,:. ).; II. '''.... r. >-.' ' ''‘ ./. / / 4 h ' • '-'" • ". 41 ' '... .• "- • ' ' .. - •'' . 1 , il . • ' -T- 7 • ''' . ' , . .:• . • ,' , 1 . --., •• 1...f.'. i;, .,.1 ;i' . 1 .:.;.,..e..; .. - „i \ 1 I ••• ' i , . -- 1 ■ .. ,IL •, ., " , - k,ft ....- t.' ..- - '' "1-: i • ." ' 4 " 1 . rt - 7- -... - :.„ -,-,-- ,... 4--ra :•,-Prf..4 - cn 1 . -,,-4 ,•-•-,:::. i T . i ', , • :•:- . .-.,:.-- . ‘ a i, ../_ ', ':, ' ....7':. '4'7.. ..ti'e ! . • -' 4 i,--1 . , ;-- 4 , . ii-t_ .,..' : ! .,.., , ,i., ,, -,-;,... ,,•,..,,.,„,;,,,,-:..._ if. it ,.• -r -. ii."./ a is ";,,00 . -- - tv- -, --t - - .,---. - .. - - • • ' c 7' - 4 ., .'•.: • •• !. I : 6 , •'. :...'4.1:I i 0 ..•, . '• ) Of 4 .,. 1,.. ,......,„ ....,•_VL,, • . ., . • ....1- I.• 1 14_ 1 , ef_. -. ...__ , , .:••'.; . T • , • . , .-.- .7,ii - • "; .. 7, - ,,, 1 . - ,,4 - 1. , „1 , 77 6.4E , 3 , _s v e I 7/. .:••,. : ,, i:: ) . , .. .. : ..: Ink 1 • i O P t W- i if■I' 1 • 1 ' • ' 5 ue Lil ..- i y:; ; ---- • — / --4 ,,,,.,..;,: •-. •,- ,• .: i./ . 7 . • ! 7 " : 4. ,, ,, - .4 " •F'•'•-• ..k.•-;.- -', ,,, - 4 -'•' - • 't ' - - ..• : , 4..,v,11 i r e.,.-., • ,• !.:•4•• i - P i ,,, . - L.' .1 - ' ••• L - ' , , 1....,. I ,t. . . .1 t . A a . • I , ' il . ' • I ' 1:' - . I. t 11 . '' ' $ 044 1 : . . • ' . '4'=: ' :;i • • ' 0 1 1 : : .---- ----• , t.- . • - 1 • •:. • ' ••• ''' - k kf 01 ',.-- , 7 ' 0 I- ,,, .,..1. '4...P.i . _ . ••:t- ,, ,;*•i .v..,,.4..r4r;,-1./.. -4,;.... -: , ‘. , . , , • ,,, gm-, . • m . 0 t (ii: ' ? /5>:‘,.. t....-":47,5/ ea.' ".1.t - ' 4 • ; •=4„-, ,'., • - j ,..... , t• it • •,- •\ • - L.% 1 " • ' 4 ,..7 ,,, ,4,‘ ,,,, .L.4 ....f.. ,-,,, ,, , ...r. ,•,......,:: ,, .. ,: Is , ... 14. • , it - 2. c . . , , ,.......4 _ , .. 1 - , , . . , .. . e ; e. 1 . Fit..,.4.! , i lwa _J 0 . al t'Yl'a-,1 r,"'•, -,•!.., • . '1.st ce • - .- . - - = t I, . .. .1- rA74,:r. '+' l''''' .1 0 -' • r' I i ' ' : ) ; • r 1 .' IL„--L'14. ,',• , i,„_„' •r • • • * *••-i7-1•01 , ' ,i . - : ' :::: 4 F 1 4 .• --i. :a•- iti - • L.-- .: ,. (f) s : . :, , • .. .,,....1.• • •,47...,•,... ,,,,,,,,•::44..,..,„•e.,, , „ .2:.:. , .••,..:::, r ; . . 1 .' • .• - -' : 4-.1' , • • ,i,.!11 11 41 1 .111 •-• . i:111".' 1. 1 Cr • , ',..I ; :t,...,.' ....", ":" , '. 1 , .'-..„1-1-14).: • . •• \ • -•-• v - e - . -,..,,, - -,, ••!.."1 .:.,.. -;-' '.: : 74 -1 . .,- .•: • , ,... - j .„, -.„. r " :... i •z,:" ' i.. '1, , • , ... .. (N . i • • - • :. . V , Cie it . .: '• ••." - -• ‘. ' • ' . • ' • !. ' ,, 4 . ; ';2 •; ,t. . . 1 . • - . . , r . ., V,. 0, 4 4• • ,..:V• • ' ..X.. re - rt,:t.,A..g„ rit . ' • -• ' IMIL`t 1 11-114 >. . :i�4. •,•" '1 1. (11,7'. i,l::)-." . !-..- ci-L, - .1,. ?,_ri- •,,p,.i p.., : ; . _•;;y•e;:. .... ?:.• -.,' • • 0 . ,.... _ ■ 1 ;4 .. i, ,.- ,. h ,....,, . ;,..,,-114.,1-i- 0 ,Irik ,%...... .01 . I. ,._,,,,.;, i ..,,,•:. 1 • ,.'. 4 ., 4,.' ;0 ' 2, ' •.• • -'_"•.•: 't 4 1f. , :•:.t... '7.. I. . ',,,.. - Ne w. •-"' ''' , kh % ; 114 : 0.... • - I ! , i h... 4•.'!■• 1 .'„', •-'• f' ire .• *1 r .i_, ,,,t-f-:::. z .,, i ei' • '; ..t1 • .. : At, ••,. j Y , ..- ..;' 1 i : • ' ' '•• ' i • : .c.• ., ,."'s . - ■ '• ' li • ' ' . ' . • . l' f;',.::, I A' • .-- . 4 % - "e ".. ' ''• 1 '`,', 1 7 : : ::- ` : ' : • ., '‘, ' \ I 1 4111' " • ' 1 1 ---,-.„.• ' . ... t • u , ,..e. a-i,.. ,, ,. , ,. •, -. . „,,,, . 1 , • 4 ,-= i • • r, lute , / k, , (A .., ,,), f „,-,. 7 4‘ ' • ' ,, , . kr. il i. ,.. ...4. ,, . -* , • - -. • - • .. • ::' 1 • 4 , ' .• i,,... N . .. ,. 4,...,. , . '' • ,. • • "- ii 1 2 •\ ' , li tib l i p ii 21 .. ''' ..... ...I .!e '* ' ' '-'... ' i'' /" r :t :'•',- 4 •1 Ad..' • •" . ,,,'' .'' ,,-sf.• ' - 4 A 4 1 . • ' ,'' .• 4 r '1 I ujj_ •‘.44 . 1 .14": • ,- kr, S.11 , . • I .r. . .i,,j',3,, 1 .... , , - , ...,........ r„. ...or- •• 4 ,:' • - •• "•.tr ,. s ,..:;• % I . , " i • " ‘. cz . I ......•:;,. .1 'i 4„ it-1. .. ...:47E' "c. 01 .. to I U: 1 1 f' ,..ii,...o.T..ye -,1 1 ...:k.V .1: • .-. „AY.:: . t :.lt.P.- . Y -). \ -*" .•••‘ 1 ' 'r . . 4.. " - ,. 5: ' • . ' tcytti&Ziti• 9 r lk :. •••*.•' :.: ' • , - ':: V :' ''7••'' : •P ":::),i, .,:-. .' •••.' - -- ' '.. 1; , t_ j • .. 1 " sb , 47 -....1 'r,> -47 r'.. *!... 'ie • ',. 7 e •.: ' 7- i!'.: 1 '-.," 0 ---.`‘.- - , ." i , ; ... .,-; ....?'”..• .:E.:, 0. e. '. . .1 ..• 7. 4 - 7 -::- ' : - .- 4 lw . e:77,1(.:3: 4 :It; ' -,.. : 1...44 . y.,:. , '•. , ..____ ..;, '''.' ' ' . i - 4 1 -- i • 1- 1 . ' p 1 . I I, '''''' : , I - r&, , 4 ;7 1 ,10- - .,, •-,„,,..,., ... -.,...... . . ... .,,,. :.- , .. ,. • ...„ •,.(... • , i. -, t• . 1 .1 1 • , ; • \ '.„ ' .,._ ."...; ' , '-''-, ,r -- ... 1 4 1 ; ', '.:L " ',. 1. 1....-" ; . 'I.I . //': I ' fig, e.flitre ,..., , .4... . ■vt4' 6,:..,,: 7".•:4 .., - .....‘ , . \ , , i -1••k-t. , '.. ,-,;,:-.4 ..4. I lt..k . ,,, ..........- „:. 4 1 . "- l'•rl ..."7 .•,.. .1 • 1 I . 1 ,',....,..,-- . p--,.:••••toN ..- : . J t.4.- ,..,4 . „: - 4 „ , .. \ . ,.. \ I-. I ', ,, ' i, 1 , r , f‘. ... ,...:,. i , . ,,,,..:,.,,,, ir I , IL, 3 ' i It ..pi---,,,:-..:,- A -,,,,..,,, ;-- ..,'.'," Itili "'',1 ,...., , .. - " , .;.'d. _IZ!,.4-..., .: -i.... •- - ‘ , 4 .\. , \ i . otir,,-,... 1, .... ,,,,,, A .1 • .! :.., . 0 70 , 1 a ,,,r.._-_,J41,4 .Wc2` k- .'L.:. or,Alv , ,:-.17 f- ,-,:::-_,-- --, `-- - . • '. ' - -,-- • • i ' • 44 -"•-••• ri -,-- - -- - .:,: *--- -- 1 II — .....vz, ',,,- • J:.' "1„ ' . ''r1-*A ... ,,-",. , ., \ :, -\ y -, , 1 1 , ( 1 . - 1 , .' : . : , 7 • .......... i . . . _ . .. • ' ' ' • - di 'V`I p l i ' • 1 I , 4: . . ; 0.44.44- ..tti 4+ 'I I, :114 . i 4 ;• i '! .1 : : . ; .V ■ . , . ' • 1 \ i ' 0 ' . • ' \ • j ; : ; . . \- R • , , 1: a : : 4 . ' . . ' ' • ; : . • 1 . 1 . : ' r ii t 8 oz !,,,,.„ , ,, 1 '..■ ..;, I 1 , 11L , I , • : .- I it 4 0 '',',,ci-st...F•V`;',-' ,-,,,•Ai'l•-'.?, 't ' ..L IHr VI' '''■ 4,4,1ir 5 .:. ; 01, ' ,-•. - Ir. , ..q. , . , , ‘ • : : • ' . i , , 1 1,.. , i ' .' • , , ; , .. ,I . , .. .. ... .. , , ' , ••■ i • 4, . .i, , km in ., „ ...... •-• '1111■ -'. - i - (14- • iti . , '-' - 1,1 t''' .• , : . . 'i ''',"i \ e „ 59443 . .. . .)131(IIKV4,:■,3:0',.,' :-.4 F4R' ' l i ”" v .,. :;, kuwz v i. ita.,,,) .4 .,., • •, . i ; ,..?, ., • - . ,. , 1 ) i " . , ,„„ i , ._ • ,,,, , , . , _,;.4..r4..... • . ..: , ; • ,. - f , . ; ,• , a . a ,.... ,.:.... ; ... , ...i i , 1. .../ ..,. I: \ i 1 • ,\ , :;. s 1 , ,„. ...41T ‘, V,7;', r. '., ., t ,,,,A,14,4N c ..-,.ivr,, - 4 ',,, ; . - t . 4 - ,, ,!,. , : ,,, - ,: :: . • - ' ' I h I . t4.4.4.L .4•• ' • ' 1 • • • • • • • - . 1 • \ I ) ' ' a • . : , i i.,-1 , -...v i i. , ..,,,,,,:-,- , c,... -t,t..-0 ..,,.... -,.,..4- $4,,,,I,,,,e, J,,",,• ._,, , .: • • : • , , 1. , . iv5 -_-_ f.,:,4„,0.7.b..-,t„,t- , ..i.f-1,','h44.A"' .4 fewk,.--.- 4: der.: • : . , •!_.,..._...- - • !,.... 1 i , i .1 4.... .... .,,..,:l.... ' ..,?..01:,.......4 . - I will - - ,l. , • , I , 1 I 1 i • . , , - - r ,...- ;rtr*:•04‘.f.,••'z'-`-'J a'• 41117-t '''' tt .1A if 7,4. TY `' '' '''1 ". ' '' , - -.'" ' - - • ). / • \ - ' -1• ' i 1 ' - ' . _ • _• - ; ..A.t i. 4 , ti t•VgeCR., elq; a •.0:0 ' '• 2i ? '• 1 • . '. • ', • I j ! e - - - i • • . - - i : t, 1 , - .1 .i 4 .1 - 1 '.. 1 0 :.- r - f ---t ilsi th Sik -- - 3 C4jx 't'pribitiir ' , : - .,. 4- • ' ' 1 - ' .. kl . ‘. ' ; 't 1 . ! i : 7 --,-• 1 4 r , . .. - - • . . t ‘ t t f ki , • I (a -Z.-.." ,.. 1,ii.,...vil,..,_, • ." ,.. 1 . ,: •,.,,,,. • ,_ .., . . ; , •• 1 ..• . .._.••••••• _ • i _ ; .. ._ ,r k - • : ) 4 F - ,,,,-r.t.'j'it 4 • 4 -'''4 ( :,:'':,1:1P Y ti ' 7 .. . "ii -F: ': I ,it:' !A ; ' ' .1 4.1 '4 t . 1 ' . . ..... ' I A , . • . . 0:4) ,i ..'•1 ,: - , - - v - -4 .,AFI` , ?=.1- 4 r:N-., ,,,,, "••-iV .,". . , . .,_,,, 1.. , • • /, . *4 /11 1 I < i• - ,!!„',C,try. ,,,,,,‘ . _ -.X.,;,,,..„,.:,1,,,;.4.4,:'•,,,t_;„:„ .,...,„ . . ,,,,, • _ . , L-.•.-7; 1 •1-;,.. - ' .:11--0 ,, I 4.,.: , ,... '... • , . • ! -..- ) r .„...u • .-/ , i: le . . .. _. _, i - t ;-:- . ......- , - , . ,.. ,,-,: ".E. izt. .3ti,...,, '*a> 1 p 1.4:,- . • j . la- '; % i - ' • . ' 1 44:Y. - ' ' • 1 ' li . '''':' , ' A 1 - ..f,•• - 'il. , , ..-., •er.1 zyil • • ,, • *4' ./-1 ' ' 'A i' ,•■ . i • -4 • t„t ' ' ••:',. , • •„: 1, c A _ ' 1:1'.1', '1 116 - ki ' i . '' u , ...r.f. .4. . ..„,..,-„,..... .,. . ,. ra .e. : 1 , 1::.. Pi,. , , . ,,, •,i- : . ' r., 11 :'.'-y-i i. -. -: 1, ---" ' • 11' -- § . ,......_ ' ..., " .:§.11.4.-cf, ,-7,,,,. -.• p=••5. •• „......- „/ ' -. „.,...•. - .zi, ..../.,A• 0 r PY . , .. :1 . „•,. lf • .... ,... • , .N.. t ' -, , 4 ,.•' 4 . 1 , ..7f ' F ,._,.. v v f r x‘?, ; ;• , -- - ''.• ".. 1;t• , 5i:,..:'• -0 . ; .. • " ..• • ' 4 A " : 4.' P ' ... 4 1 7 e . ' ' ' ; n ' tr 1 . 4' 41 1 1 1 .: 1‘ .1' , 1 ' ' ''l :t'' ' - • • ' ' "'• ' .: I f"' , AL,: k '. - C. 4 .,. , 14 L... , ' • ,i. -•• ,,.:' ' . ' i'L. ,' ,••••-f-qw"-.. r r ) :S L • .,.. •• "4 • 1 -' . ii• 0 '• . ' . i' , , ,..4,:", „* k ''' ''44.4411 1- , • - ' ' '' (.. cl I . 4 . . ', - ' :-- .4' . 4. •_,. .. , ,g,',4 ., ...,,,, ,.., 1.4 71,egel,' ' ''...:: '•-•.. : :' ' • • 4011 1 • H ' ' . • ' • k . ' ' 1i1 •1 . • \ 1 . gl.', :•''. . ` 1 5 31- : i.A. . .. . :. it . 1. , • ..A i I in i ' ';:°'.„1--iNf ••• •,. 4. - - - - • • . • 1.- 4•C • , _ •-• 1. .., • . . . ' r •-i s iA,:•• 'Tilt kit:4 ... ikev .. - . , .-•.• - , - . 6 ; , .t•,..- • • :, .,..1 .. 4 , ,, o . • ..'--. 11 '' A , ,.. rE , r iliv .... 1 . : .k.•,,,. , ,. . I / . ,..•• ,?! i,... r., t -v. . .,-.., • .-.,.„ . .1,1,--v::.....t.c....--•.‘N 4 i I'L •'` • A, ' - , i •'''/' ' '' ': ' " i i I • ;1 : t, f : '!-■ ' ‘ I'' "4 -. _ 4," en, 4 '1.?• ;1'.' • .H . F..4 ',), ,t.......ti• ••;";,.: 'ii 0 ' .D.'' 1,• •,• • IA 3 ......, I . . ti- Tu •' ' • , ,...7.. • ,T , . . 1 1 .. 0 • , -• - '-- , -:•-, • ' -••-•••••• ••••\ •-- •••••• . -1... • 4,.. t., 4 ''-'' ' - 1:.,.....A,- 1 • , 1, ..t. <, , • . ,,, , „i • ', .. •., -.. '1... i ...,,„--,...' : - .--. ,,.. . , • -,, o 8 ce cr 0 0 3 . . ,4' ''',",i .'...l i -. . 4 ' .; "el ' : ..."'"Je'f..' 1. 2:.- - -- ...;.s..1, - ;ilk .- .k - L.1 ,:. '..:.:.' ... :..' .'' 4 ... ''' . ' ' ' r -° In' " ' •-- . ' ' • k" --• -- -:" ''.-';,:,• ' ! 2ggg ..f-,:._. '' .... '4 'i'..' .. :..i'A t4 ;' 1-. ., ‘., ... .:' , ...,,z,, - ;f3.; ,..-, . - ,,, , ;". ''''.,.„{ . ,' ' .4,A9S1 \ 141.111 .' '247. a : V , "-,*. la '111J1 .: • ''' ' '.. .10 -. ,I : *- lc I' .-, el 4 ,1; i '' :. . ' i•O' , .. 4 1■4rAV , -, ..j ::1•...--tt.i - ',74.‘ • T.6 ;:'.1 , . _I - i '' -- ii 4.„ q -:. -;.- t.-- -.J.-. -:-. I . ,_ ..-,11 1- r -.. - y , • •. i.... i 1 3 ..- ...,:h.• - .0 ...A.... - •ft? 1: , , , ..P. : # 4, i41 , .., ' . S ,, .:0,-1 , .• / • '• . . • .... . 2 . 1\ L 4 A , O 1 ..des im• _ ,..,, •• - --t -1• f• :•••••,- ,I. (It '`' ' r '14- , ''. '1.1 .- ; ' • '• ';r-•:1 4 t- ';‘'' ' • CA 7 ? - • )1 > .r ; • - N ., , , - - 1 - I- 1 1 1 \i'.. ,, k I- '' = tf••• t• 7.1 nu ,.. .....,, . , A ,.. itr • A ii, 1 q•-j)- .1 Ord '—' ., . ., . ,='-.'.. 11 . - 44 , • 'r.,..Amp i t ',.1 ' ti i t 4, ,k ,S T* - i r t s1 -:. 1 - 1) A ' ' ' . :!' . 1!'',„1,V t6 ,`"!-- . :v4.'!;;;,,4,!: , ' • ••,-... t''' f_, t . ., J. I 1 il • _----__ ..--,. 1 . • • .: • •• t ' .. . -1,. . ' „,k,_• ,• ,'kr:,•.r.e.' 77e rh,e,"2 . ;••c • 1 7; 1• 7.0• • /Lth • A - . 4- -t• - 1 1 ,4,- -.1 '.•,t,141V , 13 ! 4 ' .. i . - : • • I S, (3- ; -, • : - :,.',27,A,-,..41,70:ti, • , ,..f„ ,-_,...•,..,..,, -_-_•,,.. le • • •,--•;-!••,•;-,; ;: - ..,21.,•;y1 4 ..4. .■!., .,.. -. .* ,,.. ' ' 1' ' - . ' -ell . 1 - - '- , • " • '-' --- . I lit !II It IV:: 3 Ell -?'''''..-....,..,. .' i. • 4. ..44. ',N.; .Vt - 11 --4 ; - • - ■ -1-- ': - .: --: --'.---. 2- '"' - : s411 :•- ' ' -- ! • -1 .*. , • V = ii.! ...,0 . i r.. ,,,-,..., , • , -il •.)--';, ;;....'.. 1 .•'•\,„ .1j; ' • k..1 ' •#• ''' , .•,,,, f , Ls •• -: : .;,••• - • 'ei• ' 1, •• -,. ' ' ., • I ! . ^ 6•'.' i . t,4".,/ A'••;,,',-:',„ ; • .• 1: .„,•:, 3 . y -. 1 .. .:-',•••. , 44 1 -•,. ,,- ,;.,1 , ...... - :...:, ••,•4i •,• .u - -,• ....•:',..";?..”! - ' ; • ! ‘::(C . 4 1 17 . i'''...- • ' ' -2;' '. - 7,.- •': : ,, 1 ■1 . 1- .' •- ..‘t . . i h. :"i'. I .'--....e.. ,.- .-:•••"•••„ -: • , .; •••••." ,, ••• IA -•;•-/ . • ..,-....:- • , . ; • ; ; i • • , [ _ •Ai il .. ' t - 1 1M , i: '. i 1 ' ,4 . ‘..,1 1 11: 1 ''IlV 7.7.14 i 01 il j i r • • t ' -)1 ; ...,' '; 4 ', . 0 , ' ' ... 1.- : ..i71:4''• 11 1 1 1 1 1 1 : 1 4 1 , : ...' ' ' i . ! . ! .11 --• • " • l':: .11 /19r1h4q.',17.ilwiti • L. 1 , • .,•,'• . •- ' • CO L , L • ' ' ••••)",- •••• •')"••• ' • I '1"L• e " - -..,• • ''.. la • ••• '" • "' .1 „ . - t.I .... . ip 't: ...,;*, 0',..::::',..;: Int al,' .T1111;1 11.1:Ifif 1 • .4.. ..,.-.,•;.,:: - • , .• . - Is ,..,• , c-,./.,,-. •,, • : ,., • 1, , , _____ ,.-' •, , " t• - . • 1 - - !i • • ' " '4 .. .. 1 . ' --% 4 . °. •'- -1-',*-;-,' L ., 4: .__,.13 17.,-. ...,' 1 • • . ?: ,„....... ' --....,..,_% . i:Als l'..4114,Fr • • ii ii.,.., Iiikt literil 1 1 1 .•, • . s._ - , .. • • . • •.,• -,., •-: • . •', •:-; 1.• ),.. -,,-.: - .....:•. -,•.; 1 . -... • ..•,•.: ,...• , i °••••• [ 11 --,—..„ drit Tiv. Aliiilmitil[1,,,::1:t-l' LI' ...,°.\ -. 1 . ,f..• ,i-kl ..),.. ...*/... v 4 I.: ',....-,- '.:_•.-4. ... .-,.. . '...,....., ' '....'ii ,ttikt•- : ' ..1 : f,, t, 1' ,s. • -, , -;,.. i ,. i ; • • f • '! , •: • ' -- .• ,,, ....' .... , - • , • + "; : ' :": • L - !! - -•-• - - `, - 7 == tut Th1111111.:..... ale r...... me... •--. i ..•.... .... 3 ' • • ' ' - ° I - • /,..z m , i ,i: ' ° .. ,-.a.15.j- -....- ...1,11 .. su ' th. )........ ii„.- •- ..?.?-1,vg,,„ 4 - Ti7i. I k a It,' kl 3.., 111 iVie .... , • .'; ' l' ,,. ,! . :I :.'; ,::.,...' .. , .i) • P t ''s - •,. • k A gl.i .::.., IR c ta;LIIJI: I II 11;112k . iv "... . 1,, „.„ 1 .• ' .1 '• loc -nu.. .7, ... „ ixit t L ilifin a • P ,, I ,.....f.,: . ... ... • : __:.:•__...,..._' 4 . g igfi'LLA T '--.',4,... • - . 1 - • .. ,,-..• -, •,-, • • ••. --- .• • - ' - ..• - • F ....litami...'1'.11‘/V i.40. _ 4 t '17:14L!! nii1111:11 ill ,:t." I ' •■•• / , . >- b,” In iil --- , . .. 1,111111L11111•11111,11'll eh • ,L ,,,.! 4, , • . . 1 ' , ...t, ' §P, 1 ' i 1 1 •161, .. • , .., I . 1 • 4 I I It ' Al li 4 1 ' .4...: 1,11 .. i . - ..,... , ty,,r..:i • . 1,•••••.., • , ", • •.........•..,_ t .,.....,.::., ..„ ...i.::, ', : . ., •', • • t. w ' r".• j . , 1 1 , ..•. e -, t • i " •,,,:. ",. . t _' • .- .. ,'• ,.' ce• 1 , z1 ' -•:, .. '1 . , - •,.. ,, , •••--54 . -..., ..-olf ! 1, !I 'I . 1 4-. 4 , i, , i , ,,, ...,.., „. ::, .,. .:..r.',... ,-''.--,t- - l I : ' It ..,-, .-,:: ',• ; • - •-.. i• i 1 ., "-,... . ,.., _ • . . .....- st. I I ,. , _ - ..•,:rik, 's / - „ . , (/ • t' - , , . • ' .., • k .. • . I k :Zea ',..4.-t u -1 ' •. '. ..."-, ,_ .'; - . '..: • '-' ,,._--7-, ' ■ Li; . 44,1 . 6; 71 1‘ ; , 4 I ' . .., ,'''' • ..,..14.„ f. J i Is I al il "AC r I 1 ..:''i• i . I. " 1711 ' • I 1 ; . 4 1 . 1 : L • \ L • :•!' ik;, • : • , . .. ' , .i'•,••• •-,•::".- - .Li‘-r: 1 "--7 - f":::: ' -,....:-.. 11 41 . - ,1-- 1- , i p .. twa,,,,,, , , , „...,. .•-' - . .7., ,„ "II .„„„i ' T ec -- • : ' ''f' ':" 31,1 -4 - -- ■'•- -.:,•"'•.- ' . ,i/: t•:.t ' ..±.:' ..._-_-_-_----.> .. ., _: i, i - t ., c ' .: .. ,. -. . i ,....„ . it.• • wir,..4. 4 . - i .., k , ., • _VIII/ tl !0.11, ■;1111,11I r,, 1 g.) 4 I 6 ! , T.! . . i , '-,.• .. : 1.43 I - --. \".. ".PY ' ‘ ' i "4 • t •,-,',." iialfiji% ii3==z-111 li I z z I 1 •• - • L • • . ' i - • ; 't I 2 ; , • .•'-• " • • 1 ...'• • - •-• - ' I :, • "••,• -1' - ., • -"'"•,". . . - ' A mv:it ' ei • 1 1 , ''' " • - 'ilii- I o • '' '. ' . "i- • . • ' ' j • •. 77:..el, ... '' 4, . -..': )1:.1r! - ',... i ;“ i .• ' ' . '7.: ,'..I ' :.!, i... ., . , . -3 S . i ). , ' I . ' A 111 !" • 41- I S 1 it 1,... 1-. .. -,,,,:..-•.:.: ..; , •.;.::, • .., . - • - ;. , , . ! .. • , • +,:,•: - :: .• , , I:. 1, •, ) - •••,- - * "'l .- f_o i , , , i, , - , , : -', • , INi.TrVA ,' A 1 " 1 : 1 . • • ' 1 '• '..., • 7 . • • .. . 4. f •ct 1 • .. I ' Mt h. . .... a u 4 „';' • ''',, , , - . . . 4 ..4,.' ,/, -•',......: --,--,!--- )2. -"- -. - - - ' ' ' . ' - .. ■, 1 -- * '-'( ' .' • ' ' ' • '.••• .1 ! , i , . il =iv - 7 it i • p ^-• A : r••• I ' E1424: 5 'r.: j , , ...4 ! • ,:•,1!,: •• • ; v . - , • •", . .-0 -, , .., - 11 .;:.: . :. •• - .4. - 1 • . • • • ,...f: .., 4 - • , • • ,, , ..i,•,-,, , ; ,,,,,. - '',. ,• , - = - ..* -• •-i -1 ;.• . .„ 1 . , - ••••. _,:.: • • ;• 2 , 1 ' ,? i , . • ' !;;"" , • • • 'Er \ . - I . L I P.1. - ,'' ; , ; ?: -- 1,; :. 6 1 ••: . 1 - •• • 1 -- ' 1-. ij 2- " "'"111 V - , . ;•.... •.".',* ', i : '' .. .. :-..' • ' :,- , . ; . . -.0 - '-''' , - I .r....= • --•- . . ' ... -*,--,-..., -3,, - i ...-: '-.:--- . ,-•,.... -:. • - ---•,- m; ,, , IV_ •„- ,...:',. -- A - 1 ',;-., • -.. 1 - '.,-. • -'' .• .• ::- ' - .1 ii' .s.... . ••''. '..., - • . -.. ' .' I' w zi.', ; ,- - :rit; I•••• .4 i .-..... lit : -.1*. )04 - 4 ....s. • I., ..,':.' • .-.. ..,...., , •':...,•;, 7. 'i \ --': -. ' 7. ' ' .. : :' : ' ' ll -4111, p. •. - : -•,---- ...,, :,,.. • i ,: 40. •"%-i,,,41.9., ' ; iriPl./11 i a i ., , • -' '', . - ''" • I' . t .i '.' , ' - • ---- .1 --.''''-‘'' 1 •-• .1. . • I iii ., -. - . t... .' !lb. ..-.-' ?Obi •■••• tr. - - • - s i '. •,-, , ., ,......4...,:•_.,......,... - . • . ___•.•____:. ' v, '' ' ' ' ;II • ''.---- li " ' ".. 1._:•_. A ■ . ! 1 ..., ?pl..' ..'... • . *.1 L : , 1 r •• . •••: ' ''''' I ''': •' .1 1-.. - •• • . - • 7:- • 177-: 7:* • .•/.,• 1 •%. '' 1 t. • 0; ,T.H 7•:,,A)i.i ii • -.A - 1191L-Ilik! .,,. f i ..,. , • • • • , , • , : ! • . ... • ,',.. - ' -• I' ': . '■ • • .' ' • • i •• • l ' . .. $ ,. , '' 'S ‘ -' I / '.: .t .. • " - • . :-'' 117 ‘ - t., ;,.•.,.;•,;.. •, , . , ,_ ; .• - ,...,... .,..,...:...„ i ,.. . .;;„ .4.: , 4 1, :•.,': , ., .,' Ai . . !..).:.• ' ' ..,,,;,: • '• .. 1 . .:*-1. 2 ' J .P.'■ . il...lipli i -`'i 1 ,f, .4 . 11114111 ' . 11 4. :. .,.;,., - .; I) h - ,.,..:' • ,: ' ' ; -, i.::', I,' ! = .:,, i' ..1•'.. . _ T -k ": k ,_. .,;.,, .:i1/ rfrA a i ie 1 --Eltglir - ."'-%x • ,. . PO aft ref 477. 1 ' • •- , . •••4.- . ."-• • '. : ' e . . ' -,,' . ..,..• ,,,,,,,,‘ 4 -' ., . • • kt il • • ''. 1 • ': 1- .. •:. It-‘ :/iN ' ...,... ' '717, 4...., ..01,.;•i f %, :: ' -.-':,' •i.. .:'' -.,': '.: ,.". .. • ••••• * 1 f • ':':: 1" -- *4: ‘7• - -": •‘`; ‘'.• ..1wit r - f P '''elewi-t rr ' • Z -:— "Ai , , .. . , . • , ,: c . , \ ,....,, • • . .-• , •.,1.,. ., .- - ; 77: : .. ,.,..., . - ....... : ; ,.., ,• , , A L...., .,,,,) 7 -:, J.... 1 - -,:.. ,- ,,.,, . -,-.: -1, - 7 - . 0-1,,,-,•ti'd! ;•-iirr"--",.! -zrk_rizre 1— ••1 , . , ... :-. ,., -..:, . . , ,,,.i 1 ,". •• . ',- .-, *- ., 3 S', .'" . ,i 1 :- ,':: 1. yt• " ' --/ ' • imorir .-.. " 7 7 LI . .. . , 7 , . ., . ' .- ' ,. I ."..■, , ■ " -, .` - -. ...:. % " •L' ,.' , - L .....• ' ' I' l', AI. ' .-`-` :' :.` . .' 'I.' ',” - ''' '.."-; --...:,- titcat4L.- •fl ii r 'i '16 ■•'. ...TN , dpg Cr ill Z ' '• . ' ' ' '' k •: - , - : • - • ••• , , • . - • . ••• 1 • - .• . r 1 -.7 • ;," :-. ... . . -, .-, 1.% . L li 1 , I.' ri 4. 0 ..? .„. Vaiii mu, • g i • , 1 • ' , i • "'... ,... • •••••••` ' •••• . ' • .. • .." A ' 4 V '! ' - 1'... 4 - • • - *- 1 - A '. ,ir A-- „ . -.; -I - , ■.• . , , 7 ..- , . -. - - - k.,.. - ......, - ,,, - , - ... 4 „ I . . . :, • .. . . . .t: viiiiircri. 1 J .,- ......_ '..,. 't 'm '' 1 1 lir '`L• .. '''.•••", . './.-. 4, miltrin.:11 n ---..: i ,' • • ' . .. -: : .17 • . . . ' ‘ ,- . 1 . .: ' . • . . I. :.; t.', ,',.... At .-, 4 .. '. •••." \ I ' ".. ''''... .0 . . "ill • • 1 Mel .. • g...0).• 0 •--.... • '•• ,.,.... •,-. • ,,ii ..- ..• • .;. i • • .," • . •,,,,„ .:. • 4-.p.•,,,, , •,, .,......... ,,,.,;„. -.2 . • 4 . 1 .• . • -.; • 1 . , ,,g z1-.,- • - A-. , A 41 #0 A vr,qi. 1.11 IIII. -- • • Y. , • -t-tir' - 1 -.•= Mr," : a ' .., ,r .:,.. a " 4 ',/, , ,t, 1.1 A HAIL - ------ , ' . ' • - t ----1 I -'-• . ' ; .. '; 7•-•-211 -7 - 4 4, ' ' - - - ' • 1" -. ' • A,S0aia'S.a4.„07-iff.IMIr& t> 4'4 I . st i 1 : •' /11 itifk6;ti :I; r■ i 4 5 * : . ' ' 6tr --iv 7 & ' 4 1 //4^il 1 1 1 1 ; fit h 1 .cir '. .. ..-lit ;7' . i' -`,:t. 41, '"r"%gikrFii; 1" ‘.2r; .'. * ' ' 4 '....-4.',..... 'NU., Or 111 Z -, I :16.,,• : '..... -.:-• ?:_t4,./. :_,.....11144,e4 '"si; - Illtig,_,'.a, 111 i LW ' •:_ '', , a : . 1 ite/ .' ..t., ....' '' 7,. ',,! '.: r i . 111 2: . 1,.. ri • --,: f$ I 1 .: - ...1,-,..t: ■ . , . ••• Cr < , g ,-- ; e . ,..,, P ia-,-. '. --,- • 161 1 ' 1// , 1 1 44 1 .1.A. ' f 1ij to.7/1 qui,L'Isatt ; • I' f ' - • . i• • • '• "' e ' 1 \ ‘li" - '''' W 0 i ' ' 4=Igil/fi " . 1 '; ‘• ', ' t 'ff•" '•-•-';,.isi .:‘ \ • ■ ,. 2 '.: -I I ' . ■ i? ..1 ,..1'','`,/fk I.: 7.*0, . ik,1!. ti V IIIIII '-'741t111 t .- li ". - , .' 11 . :,‘A'..y.,•,4..1 y ., 1 \ • iv, _._ ' i 1, '1!_ ',i•l''..) ' Z cn rC liNg ' j ,,11#11 4 . ., . ,' ..".W.: Ai 1 I u 2 7 7: ' 44' , ' ' - - ...4k r • 4.- _,•..,10,".... wlir ) , ..i.,2..;SN'. • - . ■ .4' iii.". . .- 1 (1) i . : • .. . a .--1 a , �s ` :i d ` —I-it it . , "w .� *-4 .. F � _ .y -. I j:':t. I I •' L . I I : -- • 4I ! T= o — — r - -- - • - • Is » � I I I lo -I--3 7.4_2,, \ I = „,,..1_. ...• I / 1 J. . •• a * ;— I■ + t - I ui p _ ,� I I I _ I it W in , . • �' ��� '� � I � art l i I , -- , ; -– � - � J �� • 7 _ .:,,_ .. . 1 1 m l > A 1 f e — - -- -,...,:-. : 1 -- - ._ - _I - _-_') ' , )! \-.' - 1 : ',..„.i - ,' - _,_ wjt _ k - - * vo... )11 I 4 _ . 1 ,lk I g -' ICI I 1 ` S �► �;rt ; �. : :, ; 1.,._ 17 1. 1. , • • .' .I m , I h -r r,, i ..” illivir,tr 1. ,, ,! ,... q " ,,.., . . "1 • 1- . tai • \ N'i ' .'• r. f 4 - ,c-- • :, : • - . . i_ - _ re I I ,• h. I i : I 1 1 1 1 '_' i�' Y • J a _ — _ _ rili 1" .41; PIM. I .... %LAI a .1'.:3 Ali \ Ali I i 114 1..1- J ■`: \ : 1 � — F ., i) . r � • N T I � � .• T I . 1 y� �` � � ' • w tr) 1 .1 (0. 1 1 )171: . , Ali . +�,— t ill ' . . ( - 7 1 1 ♦ I e I _ 7 � +�► Ir! I r yyr it - -i - s•sl• ipvfr + .JI,r `, _'' • - > g rn - U , Mimi y �� I ��w I a tit, 4 13 ,, I Ic I ^ ^ W ' - t '.'? - , , - f ; it, .- ••? � � Aul L I IE - 1,., a T ° O _. +�. I I, I' 1/111• o, .a 3 I N W It - ! -- f — - . — - r'7 4 . • ' 1 Pr; .•%.1---14111 irannowiliaii&,. iiii to z . j ._,..2._..,„,. „:„: • A 4 aiw Nr4k• . _L _ i - r ' 1 - - - ° f ---- I IL.il mitiPL ''` ...7-tkiNt ---- . i 0 i . I_ _ _, 1 �: 1 1 .� -"ill:6 liiiiii -4- 1— I t z tN._1 7.1 / 4 t 1. xe to: a '. ,. irmilwi -_--.2. 1 : I 4 , ' 7- /it?: `� 4iI , > ,T 3 ,cr_!..,, i ON illiiiiiii , .2 lid .2 . ' I - ' : 1 il ill 4 ■0/120 - A/ -, . N... %ix , , r I _Th..: _ ! .: .... I ' Teri& 1 ;1__.g,,,_ , A - __"y.t.:11 ' 1 •1 0. 161- 1 .,,p 1:-Li-pm � I - ma 1 � ' a I r i,.,o,,� f 11/1 , ' i _ .. Fii,,,,.(1, l \ + III ' .--.:511tv!iyarommt., muwiffas..1 .. 1 1 . - _ 4 1._ lam. I 1 T I • 1- 1 r --- I 1D 1 " -! - i p, , I I I - i I I I - Ala . I I I : gillm . -N.., v. 1 t- r j - - I- - I - 1- , - f - . - t - I 1 1 . - . _ Z 1 I N I 1 I • • ; r � `' 7 ► AM I— I I 1 I Z 1 I rn l \� 8 F. r g t -E- 1� —1— I - Z F .�yl a _ _ i I _ _ I it I I W I I A i s - T p , a•* 1- ;r t-- . .- ; P r �:. gii tu I i 1 T /1_ 4_ -- , _ i 14 t I I I1 I C � W W ; r os 1 1 = ; } _ -_ } �, y 11! ::.,,,, tif - - 1 �`_ I I I `��. , 1 ° , t (a - - ti„,, + _ , - -.,,� , T ; I , , I 15 x t t, I- �- • /1- t, 1 - - -_� -� - - 1 _ I of k ..i., a , a rtiti v 71;464 I; Pr!: 1 -rpir I 4 0-- -,- •-if - . ! _ --f-- n .. 1 1 I ,� y I 1 I I pirarri:1 " v. — ! rI -. I. -! , -IN I I 1 . 1 , 1 ,_ H - - t, . w 1 I I I 'F I I, ; __ •I- Q i � a I I I • !Ti: 1 1 , `I_ I 4 !f ' j 1 „! I . 1 iidl.d o=_ / j I 111Mingidmidat A w ii 'L — _L--_-1._ ' I ' �" i �), W N ce i j 1It I 15 . 1' T - i, 1 ii � T 1 - _ ; - - � . - ; _- _ v . - I I� -_ i t 1 7. 1 ;,, I i 'j • C . Y — I f 1 ..\ - ._ 1- 1_ ' --- ti � : 'II J 1 � - � I t � �, 1 I � , I � I.r� I I /pm >- ,- .1•,..):1 - 4 . -,_ -I ' -" ' g or - r - ", - 1 l'" I . " 21 I 4k. . ' 'h i •ilf T It _. r .y I t �N.wNSI ,1 Y I / �, 1 4 I I , � � is INF ....., Ipoka a d• �I 1 1- f -, l 1 ►, ,„„ I 1 IA 4 - 1 + 1 1 If Z p , 2 __.,- i _ :,. J.-. q - - - 1 1 , r r , d - v.� Q %�1 1 I- I - G I I •I\ ` x ' - 1 s A- f• W�r� 1 "' L 3 Q ' �,, -� - -- I ,'\ t .. • ' 1 ' -.`J !�M1lli� r % W i w Z CO it I. /y I ♦ 1y ' 1 - _ i'--1 _. ' , -- .-- -.. , let_ - - - 7 ... ' ___Iiiiirciakizer\ -fi I rt I �� >- in , _L __'. t _ I titti , 4 T , - i. _l__ 6, I � ` e . i , L. I ' _ v r � _,,� 1 - I 1 � - - ,„ 1 1 i - -, --, - - ,- . imainiam: ___ -�- J J - - ,_ / �y 1 f I f t- I 1 - i i : Y ' 1 1 11 1 - ..A.R IlW I■ i - t -- -- -- . -- V 1 . I I 1 � i , 4v �� =O� E�I� f Irliii ' I A ' —1— . i d,. ' , 4-- -4%; - 1 i I if i : 1 ' - -7 ' - ‘ ' li l ^ - i f �� - !A_ ■�1it I ° iI'I �� 1 1 .. J. I � t 1 I I � � -�!�. i 1- 1 1111111.1141 1 I - - — I I -- - i - I cc 1114 lti I__ N I I ' 1 1 N I co 1 N cv I I M I • ■ • Z ` ayf Z I I I •.� Z -- - g � M r fa { y am �� '� ‘' w;l'Gi` •� I I I I I {. I I H / I o • O i t CI a, ,,,,„_, , , , , -t _ 'I I „I I ` _ ` '^-L i 1 4.-°J ii_4_ i ,_ I _ 2 0 '4 � �I € 0 T — I ■ • t !iL 1!.' x kia_ I [v,,-- nl O ��-� ' �w l �� ri of ! s / i �.. is 1 ilia � itiarl 'ii►�. -1 — 4 4 1 r I I ,*•; -- i -W rz= W /VI ar I. I \ o 5 . I It. ! %) mo ti. ,--, - ... _ .!• 1 c _IlFillr . r f r 1 pl "I i It II CO i i ___ I I l k _. 1 ' I I ; ' 1 I I 1 I I l �. r Ful _ I 1 O I ' j ~ r �, 1 I •\ W _ ____ 2 , \ _ \-t ,,_ 1 ..-... 1 0 1 t f _ T ± k .. (:. ' ' !- - 1 cr ! --f 1 i f k 0 I .' . . -1 - %., - -. -- !! fi -- , al', 5 V" F . l - I _ I 1 1 3 i DJ �I I \ - } a s \ ®lea• � '� \' 1 - I l 1 1 I. , pm i ■ rt r> J j I fi I I 1,1 lihOr /® 1 i _14 _ ,...IFF R Z ..._ 2 4 / 1 : Aii ir, . 1 ; r -t 1 t ' a I 4, ii 1 . f I l C II IF ff • - � I II M I l r uli,....__,,,,,, d4,...1.7. -..1 : F y livalpai \ Z a II f I I I mom D I. - -- -I -- L 1 - , :,_ \ r; 1 2 s�o 1 3 a • i I- _ 4 o' \ 1 ;z� \ ' - :j ,. ► v.... 1���" T� r - Q I : ix 0 1- - s I` n:�' � ... - z r I r W p I : f , _ � - -- 1 � • ! .; . � � iii_ , ''� - - m J _ t i'• r _ __ (• I L__ _.._ i 1 M ior ,.... .) .... ,Alrime zmillia 7.47,0 4. ana ./q, 4 cl >- ......._ ,„ ,.. i. .7- , I 1- 3 I- I- - "� tit t r z , . � s Ti ,)_11 I I : itlikkli , ,, 'A 4 . _ \ 4 1 / '' . ;da it i....611 i Illiiiii '' '1 ?" 11 : ■ ililL\ Fori ____ I tk 1 4170 11rf _fec - -f- iiiligibv, III _I L .,4,211 I / 4 . NI 111111M11111 tow , ., ,, , _._ i _, .., 4 _. ,.- ,„. , ..,,,_. __- i „.„.. j ___I- 1 _ . I _ i l I i ff 4, .. .., ;,.. 4, ;,. /. 1 1 i I ' i ,;■• 0 114 ,- „. • ,., , . _ . - -/- a . _i AS _, _t__ i_ ._ ._. L_ j IG I d ' . iii or___, . , A I t. ,e/ "de k 1 01) ..- . I . A , . i , / lir _1 , ' ' 1 II M t i/ .M - . I 7 ' ( , a te' , jJI )L �,�� ®�� i fr Q 1 i - I - - /+ k. - - :i , : n _IN 1, ___........ILVILI.Ir■illiMelii74 - _.,I. 4-1W.14. Mori MINIMINIIIIIMMVIatrAi■mm • . i , , 1 lipir ii. 11 Nauss h i I Pill i 1 i i_ _ 4._ 1 _ irei\lb. 7, ,---, ..- 1 Aii. i Alibr.- -. li■ I I I I I h I T :": - --- 1 .-- _I _ L i!I t .. - fi _ _ L _ t iia Aid -a) :11 ` in iPN 1 1 I 1 1 - j-- 4 1-N t- -t_ 1 1 • 1 1 - 1- - t F- t • ! — - -- -- - }- i= 1 - I - -- I- + -- + -- +- ; -- -- 4 -- ■ T .ittt i ,. _tv),c, co ,,, . : ..:7 :',:-. qt i `-' ' " ' , ..:- .=,.., .. • :•-•:: .--.' {3 ,■:' 7 y ....„ : .,... , :: : ,,,,•1,,..,. ? ..., 7. 0 - t4 r - , 't . VII o g ., ., . ,,,„ , n , Q N 0 CO 0 V ;°` ' 1 =O/ • 6.9>' 1 5:d9 ggz s:v.700p' - - (3- WO WO . ft f i. AV - •., 2* N 9 e -` d bzly r s ! ,c Pk r <1 • ao. _la -,3 ■■ 0 1,09 e 4-1 . / pl Z1 Z 4 lia ( 3 ) ,...„.; wt,„ .:,.. ,.., 0 < N ..•••1/4.ft Q ? .. s .0 ' • 1 ���ii -`: • • 0/ — - z w : So 0 ' ; ; e d . m ,mss = -.5° . MI 11=Iffly . ..WS - 0 • h G� 1 0 1: t t. kl Ve"tt -. Q -IR J ... ; .1( , .-- . ,.► ,., Li), 4 !a. * : - "Is° . e g W Oriaa 4 -; ' O � _ oz ,. :, ili :.....„ 4. • ..„, : g A *4( '-,,3, Eig ma -Aroma \I■iit2d 3 0 c/ ,<, 4" t.. . 3 .4":2„.)--;„ 0/3.- v L . , 0 law :.7,10 • a. -7 - - -9. erE _ v tii O A - -4 a Nl � - ° p! I � C] ,' 4 :1 4 - , u - , � • ,.... ® CNI -4 4 ( % - ..M•91, • el) N %.3 1 lc:A . <4, - 0 • • 4 ti g N , g �1% 1:13C • , moo � H <1_, . 4 .: l• "AA' ' : s o ‘,„ ..,,. N �?1 � p �W N V _ ..t. , et -14 iff7 : " e) - alik . "\r st. _ viir f i IGF • 3 / \ + \ 5��'� !�/ _ 5.�.� Ole < ® a 1r S 0.4 w 'I, - . • • 1111111111111111 ',le s - li ‘ Zs- ...t ,.trl . (;) Q....) Q 4/Z . &lc, ! ._ - mum a iv. M ,)/6 43 "e 0 el N N e 1 ' * NV \ (20 < • ' • Pa. ,r, N' et / . ti 0 06 '^'. ( '1?-% u. 0 (4 6I %X l) " .*. ...... q) .1 Q ‘l ic 0 ...\.... Z .. c (9 0 -....e., ro .:5,1:.., .4.. I • .. .c . %** le . r4 V o J Pst . - - 6 . , o ��k ®J O ` ^ N o .., N Q - J t11� m �4 • X d o: t o • - lyRA N1��: �,�� N �N_ tj ®irk • 0 ...% 0 � ` X9 1 ` '4M � - c.i L ' t : 1 e ` Q Q SA q . •'ems • • . O. re% o. ...I. ". MSS • - •.-% 4 -3 ® cz • — ...7 c.,. --a- :-.... ..., i,- -;4,1). ,,,rt -c-t- . ..: .cv ...• " -..d.2 60C - , 5.,d2 ft ' ' N ce■ c • k . cri • ' �� r •,l► d . L.s . 371 Al 0 Qc •: k) U c ,„.„„N...134 lin V vs.. - < 6141) tilt (I) ` W f -� OV � f � �z J N ...21 11114 •7D' S or \ aQ0 0 �� z.s 3n� \ X 1/„ �,, dJi',,zt P Z 33 ty �► �� ®� F , . 7. !..... •. ' ,,,,,,, 0 (6„.„...s . = ` �� y OW T i v q.: 1 .. \1 -:. • • -.., L AI \ Q o '. . . \ : ) le- \ A la, ill • y x \ M tV V e - -- - �j N >�, r s' y — , s a - �i -�� ss�o� 4 o* 4. 3N NId/ - - -- - -- - -- z � 4 `' , , :. • .- q kI 4 214111111111 ,., ti,� �J I . .‘ ift iirort . I i 9zt_ ! • O • . 0 C 4fr 5 (1. isa. 0 1 Z 1 \■••• to. • 0 ` 11..Il. Z.. 1.. ..1T - �IIIIIII:'IIIIIII . T IIIIIIIIIIIIIIII - -0 2 JIIIIIII.:'1111111 t, Y• nii11111 .. 1 ' -iuu• al' t - ' ' ''.1' . ' ' , ' , [10E24 , - ii itili __.„ w A poi -7 1\70:')14.'4 • A Elli'L / � a :: it: a t o * . 4 4 , \I ii a t., r , a 4 1 4 ` 1 ' , ae 14 4, � r F. m ks p � � 1111, � � _ j � ; � J ;,�„ ® it. , - 11u.1111111111i1 1 V, i _ _ . = ..,111111111111111 !tom \� -- uuuuum II R = _ _ I IIIIIIIImui ti _ i, J 4 '. , 11111111 a - 111111111'11111 111111111'11111 c . 3 , " , ' \ I _ 111111111'r;lll rt 1111111111 1 11111111111111 ' � ' _ = '11111111' 11 11111" " - = . = 111111111.::11 1-- ' C _ iii u : '':; •�. �:,. _ - _ - _ – uu 11111 II i. Ililllllli�ll ,, ' , 'al .�" . - 11 `% \ - II���� • �� •�� /L1111111111.1 ._.�1 �1 111 111 _Iiil111iI1 ' �: ► , s! , .,� - ��1111111I1. 1111111- _ ■uI• r r . y == 12 1111111g111111111 — •��I v , '1 a =11'IIIGII1111111 --, Lim I F - - - - i s 1 -. 111111111111111111—'.. , \ I tr, _. w . W" 1 DAIIII . ,, \,.\ ' li wimui w 1- y - "V;WtYMW , Ttr,V,74 4 /!'4) I '. :. •'. C \ Ce \ It 1 ,...,vir,._s/..,,„,..4..,r.,..,..,w,i4,f7.„,,,L,,,, 1,,4. 1,i 0 iii ___.. __ _. __ ..,... item. ' At ' - 7 . 1-A% . '�'7 -c, ��`� y I` .ti s Y,, � . ). .. �� .S I 1 1 1111 � J • Ek t a . p ,, " 3 - �" ,,, ' a .I; - I ` 111 11,, a .: . .• \ ' V ; ulll •...,.....,,.. 11: ,:po, 444, . • , , -- I Ill ' - _ , _ y 'x k • I Ir� " -� bn IN v� y � r **Ark I� 4 4p rr , q.p, ..��in F „,,,,,,,,,,, v :- , . ,,.._ ,,.. 11.4,1 -,,,, h`.'+` f' ♦ s { , 4 ” `' t ��/ 1 - 1 ' ♦ r '' - �- z -e ,rl < •u+ lila ‘'•'''‘ U 1 s' L ys : �� �.; :— � i �I/1' 2 , °y.�, , p ,, ,a G � i11 1;•l •�� ,, �iq r nlnu�� - �H 9 e C Y h 45. . 11111111 \, �i, Ii ._ .. �� �,_- f 1 ^ Jt .. ' \\ �._. -,.�, '* r. t 'K ; p 1 I = .1 • fu r - e_ 1 t \ L15151.1.11t_x_ NM 1. �; v �� c v '' \ E : O ._ In • • E v so cry -, 4k U c - �. U a) _ _ a. 1) •O 70 `-' a) fn a) 5 • . D a) W c 0 c a) c E N p— - 0 O O O X L ,_ - • v) Q v E J� = o UU c c L_ c v v L _ Z ee,+� 1 I a c c— — o0 1� Qv W **cc a — ovv v —. c�;� a 'n a fn- EEE C v c c a)vL a _ +• ve `/ >> > U E O O C P N .- .V j o S o� u �aa) a) . oa aa a V i ��� v — i m v Y l7 _Ion MMM o o 000tY aC� DCGV) L - Z a) +, o v) c v = c co 03 0 ou --I = o 1.,_ Z a c v CO 0 3 a) ��v O — �Wa1nMMM oc n- DIY(f)13____ I I -= v 0 a) 0 4 3) O c - II I I I i l I I I I mm a o � I i l l l V) v) c a' a Y �c c� CO v reCCIXXc o .,Ic.)c�c�c)c.)� I I I aaaca 0 v , o _ ° c� C3� a, � c �. ,, �, Q) a) V u V p - , L , 'V — � O - o -a v v- . v'E o E _ - U U s -c � c.c -- s N N0 O ao' JL ) C Q/ w r� P ' +r U C U ,� U + r ► 1 U +• +• a+ , .- t` .-r a) U a) U Aluti W LL `::; j a ac Ina v�Ncv)vc c 1� _c L In a) . 110;0 ;11 LL oav28 0 avv a- ?:.t: u v)rx woze�ctcn =w1.,_c)v) 0Inawvcn 0 u ? a 0 in Itft4R *tIt 4t 4t It 4t 4t It i �I I I 1 I co _.._ I SIN 1.._1' I I I 1 1 . , , 1 ,. . w. cc .7) - . 0 0 g \ ,r. . , . • . • . , . . . •.. ... , . . 1•01.1 % 77 .............,. ... ....:..:_.:...,L,:,....;....... ._ _ •... - .. '' . 1 1 * 1 . • 1 1 . . ..- ... I / I . P. ' .. Q I (CO I . O 2 . 1 0 , lw' 1 - 1 co 0 a . 1 CO • 1 al •. 1 . c:) • I .• c 1 . I i co a I . 1 .0 .. . 4 - • .. . _ cal ° a r I • li , ' .1 E --- ' - • i --, - • -- - --21- - 020 0 i .„. ... .1, . . .. * 1 - „ ; • -.-_- z 6 [ • • a A IIII , OJ .. . . I 6 g • " 1 I . . ,... 0 ) . 1 , • n . . 11.. • ., ,,„ ... I . • , , 8 . _ 40 ' 1 . .0 . 1 0 • i 0 ' 1 co . co --8 ...- 11- W •,.. .. ' N I t t - . , 1 0 / 0 -1 1 . ,1 , .. , • . ....• .t.0 1 . r.) . , / 1 1 . i v.. J 0, in 41 .1, • _1 ..o 7 _ _ . _ _ '- 1 • 1 \ - 1- ... - .......... .. .... 7 , 1 . . - - 0.1 1 3 3 .1-gii In 1 1 . , - ... . „,, _ f O IO 1 4 "c4 i. • .6(.4 i ...s.... . p. . . .. I I CD co i 1 c . i - . I :•1 ca 1 & COL. Ali "•0 .,0 ' ;:i .: :41 II. ... 1 .....511:11111 . (111111 . S -. . 41...:. 1 4:17;11441CUCC:117. 7 \ID:;:111.13:1372:C41) 1 41114r ' . 0 . t , ' M ." 01 1 . 12 liti:-... t"*" """ am ... St .. . • 2: .. 1 ICJ lio. _1 • ■ ,_„ LT ...04.1. uia • Lu 1.. .:, "" • -rqz----8--,.- .:' , .,' („=" 0) . . < w • 1 ! ti N II t? ri ....to... ") • II 8 . .- N ............42.. .......ho WINS Nem ■■• • CO St I • . CO : p. - , , 4- --', ? - -0- u) in 4 . qr • `'' cc3 I • f t- . co i . . , N re) 1 04 -.1 N co a SL. 41 (0 ' .. ' ....■ .........Q■ ■••■ 1. 6..... ' - . - Q.. * "" iimi re au. • ... fn • . n n 4, a 2 N ..0 . • V ,e) n . . • . • IS • (u . ...... N . ig 40 • 0 • • M ' WO OM co • ot ..: ..........' .: si 41i ,, MN! gin. OM , . • • a I r. ....,, , . r) .. „ . p-. . ... '(13 • - . i • . , ' 0 i 0 1 .. .- . (1 1 ... re) , • 1 I . • 1 1 ,1 >1 . I • to 1 c j ousi. /---1 is • oe ., _ ce • ; ' . . . 1 I g •! .1 i a ..- A A 4I , A1 In. , 1. 0 ----- '77), .• . 7 - 4 • ,............... . •.. = - a." 4.1.. 3 11 I 1 ..' lei ., 0 • r. ci... .... F -"" • 7.-Ici ) a . i - .. cn 0 C ..''.. t - A co • • I 1 . , - _ , . . /4 .. 2 ,..,, •, .........., OM . , .., .. um . 1 . . NM MO 0 2 , a . el I , . :.,, ‘,,.,...:. ,.„ ..._ i ..„ • 1 • ,.. vs 1 ,,... t -, ..:.• : „I r i,...2 .. ..- ...,.,.. it) A in 12 - I ' • ----1,1*) __ . , 15 ,.. , .... i •• v.._ 1.,.. ....it... l• _, li p _,. . AI ...-- • AT • di i I • 0 4* 1 , ) , CI. 'In • 1 • r ) ' 0,._,.• .._ 0 a N. id In 41. • i .4 • ll\ t*i . i v. . v a ............. N....4k ...Q....... gl ien \... -- itri ' . 1 ... ' ',, ..i4 '.. ,s.1 A .1,. . • ■, N r• i • ' . . 0 .. • ... in . N) ili I ,•, u ‘ '• . . . . .. ' I I co . ... • cm 0 Yfl.',..i l•-• ' \ - - 5. ,_ : \ ‘ e • 1 0 1 • i - • ■ .., . .0!1 ‘'`.._.'... A • • . • • ■ _ lb, .... WM OM I "' '''.- i 6111 "M .411. pm , ,., .• , / : - 4 GINNIUmP ENO mi. 4.0.1.... aim . N.. 9 e. ; r.... .., _.„.... - -„., : ..,, 4 , Gm la) • 11 i 5---, I Mlle WM IMO Milk • . : g . . . 11101.r. was Mal ely MID ...!, git ... • In 00; i CO 1 1 0 1 I ... 0 • In. si to a0 • 0 § 1 . • 0 - r. 1 , ,,_\ : .,; .'" ,,. „ . 1 - 40 gl • , i ...b . ' .. '.• 14 : A 1 .., - .. - J.-- . . • pm • : • ... \ • . 9.) • g 0 . . III •■ „ , . 101.limpilim maim Airrilitiu...... 4 il . 4 B p WO di■ s f , . • . 1. t . . . -i-,- Apr S . • ,, .. . _ . • . , . - • - .. . • r• . 14IL it. . • eu 1 03 • , .1- mist -?r.• -.. . . •WIL •• • . . - ' r!),: I 4, co ,44,.. IL . o n ... 434 . N ...,,,.. ) . . - , i / ,. 1 MIMI VON• inwrb 6 Imo • * )1 P.) I •••• . Imo mu* ewe sob on. in■ ,1■41,..P.' . N.. • • t V , ■ 0 . t 0 i ./ . ' '. V) 1 1 f•-• .. : / in '' 0 . Z.'; I • •■■13. . 0 . 1 . M. OM 4 1 1 . 0 • •• p-. /: \11111 \ 71 . 4., •'t4 / i .. . . . 4 •4, '. • 1 .. 1 400 _ - -_,-. :L.:- I._:_• ._.L....4.-,., • ..!...:.___-.... _ , ... - :_j c.:4 _ , _ .....64 I --- ° - _ _....:_.:.:-.--....- .. 4 - - ,-j.■.- Cr4 1 . ° ■ 0 g 0 1 . • r. 0 ., 1C 1 - , N 1 I. • _ ' . . 1 ° ; "),' , , . . 0 . .. r•-• - 1 ' N - -z - ---.., A. 4 - .. 7 1" ••• ' • • 0 ' N 4 • , - o 41 1 • ■4 e A • 0 I '1111. Ic3 %•.;,. % 8, o r..?.‘.. • i N.,,, re. . to • • . . Nt • ., _ am almaml Imo Ma wp ,.. 44,, ' • 2' 1 . - t • • (0 (0 I ,... • N . 1 0 ' • . NI • N I •k : ; 4 1. , ..... t,....... am* 4•1110 ems Iii011 aim • alie ...., 0 .... r, 6 , .- : I cu 1 •- 8 0 . - • ‘ , . ' = , • ...% ' 40 ° , . f es, „: I / ._ • : .. i s .. ' r.7%....„„,..„....___. li i 1 2 . ...! , , \ ......00-01. z, 6 :. / - 5 1 I. 0 i . . . ...,,,,. ...., ............ - 1 rci I i r ... cn 4,. ' @..•; M \. - ° -• •,/,.., . , ..... • 1 i k ., ,,.. , •-• Et" I ,41 0 I c 1,4 n • . .. , . ,- 1. 6- .1 1 ". I f 4.... I 1 S . A . -..:: - 6 ,,,, i ; , \ . r: - 1 0.• 1 . 4. . .. : s ! i. 0 , • , •/IN :PI r) • , ., 0 at N I 0 . - I I 61 ‘ t‘k... Al-. • 101111111191146....m . ; NI b i; : 0,.. 4.. • .. Tr v... .... .1 • - .. I 1 1 R/W C/L R/W 1 72 C/L RCB 17' 16' 13' 14 13' 16' 8 ' WESTBOUND EASTBOUND 0 0 ±12' ; ,* z. PROPOSED SECTION - SUMMIT AVENUE RCB N.TS 1 1 1 1 MADOLE & ASSOCIATES, INC. MPSD LINE B 1 t CONSULTING CML ENGINEERS AND LAND PLANNERS 10601 CHURCH ' °' 0 GA , CA 9173 TYPICAL SECTION RANCHO CUCAMON (909) 948 -1311 J:\ 652- 1452\storm \Drainage- Study - Vicinty- Index- Ph2.dwg, 06/11/2002 09:54:32 AM, ats .****...*.....*.+.*.**************...*****.... .......*I..*********........... RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -94 Advanced Engineering Software (aes) Ver. 3.1B Release Date: 6/01/94 License ID 1395 • Analysis prepared by: � ILL / o ✓r 4- i 0 - L - 1s - ** DESCRIPTION OF STUDY **** ****** *** *** ********** * San Sevaine Channel Hydrology - Ultimate Conditions * * 100 -Year Retum Frequency * * Map #05 * FILE NAME: ss05.DAT TIME/DATE OF STUDY: 10:16 10/10/1994 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: — *TIME -OF- CONCENTRATION MODEL * — E _ USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 -. SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .95 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE = .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.5500 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* UNIT - HYDROGRAPH DATA: WATERSHED LAG = .80 * Tc VALLEY(DEVELOPED) S -GRAPH USED. PRECIPITATION DATA ENTERED ON SUBAREA BASIS. SIERRA MADRE DEPTH -AREA FACTORS USED. *ANTECEDENT MOISTURE CONDITION (AMC III) ASSUMED FOR UNIT HYDROGRAPH METHOD FLOW PROCESS FROM NODE 501.00 TO NODE 502.00 IS CODE = 2.1 4 thd r T TOTAL AREA(ACRES) = 990.33 PEAK FLOW RATE(CFS) = 1830.65 SUBAREA AREA - AVERAGED RAINFALL DEPTH(INCH): 5M = .57; 30M = 1.17; 1HR = 1.55; 4tR =Z.08; 6HR = 4.75; 24HR =10.99 FLOW PROCESS FROM NODE 518.00 TO NODE 518.00 IS CODE = 11 » »> CONFLUENCE MEMORY BANK* 1 WITH THE MAIN - STREAM MEMORY ««< ** MAIN STREAM CONFLUENCE DATA** PEAK FLOW RATE(CFS) = 1830.65 Tc(MIN) = 28.41 AREA- AVERAGED Fm(INCH /HR) = .43 Ybar = .33 TOTAL AREA(ACRES) = 990.33 LONGEST FLOWPATH FROM NODE 601.00 TO NODE 518.00 = 15398.50 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap. Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 664.23 15.87 3.443 .89( .52) .59 233.0 501.00 . 2 664.26 15.89 3.439 .89( .52) .59 233.3 507.00 3 627.40 18.40 3.150 .89( .53) .59 246.8 513.00 LONGEST FLOWPATH FROM NODE 501.00 TO NODE 518.00 = 7566.50 FEET. COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: << f � UNIT- HYDROGRAPH DATA: $ S� c� �e�YV, / RAINFALL(INCH): 5M= .57;30M= 1.16;1H= 1.54;3H= 2.99;6H= 4.56;24H=10.53 S- GRAPH: VALLEY (DEV.) = 100.0 %;VALLEY(UNDEV.) /DESERT= .0% - Po ,....r f MOUNTAIN= .0 %;FOOTHILL= .0% Tc(HR) = .47; LAG(HR) = .38; Fm(INCH /HR) = .42; Ybar = .32 , J 'f<e___) USED SIERRA MADRE DEPTH -AREA CURVES WITH AMC III CONDITION. . UNIT- INTERVAL(MIN) = 2.50 TOTAL AREA(ACRES) = 1237.18 LONGEST FLOWPATH FROM NODE 601.00 TO NODE 518.00 = 15398.50 FEET. TIME OF PEAK FLOW(HR) = 16.42 RUNOFF VOLUME(AF) = 756.09 PEAK FLOW RATE(CFS) = 2371.59 FLOW PROCESS FROM NODE 518.00 TO NODE 519.00 IS CODE = 5.1 /D JcS » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW « « < » »>TRAVELTIME THRU SUBAREA « «< UPSTREAM NODE ELEVATION = 100.00 DOWNSTREAM NODE ELEVATION = 39.19 CHANNEL LENGTH THRU SUBAREA(FEET) = 3777.30 CHANNEL SLOPE = .0161 CHANNEL BASE(FEET) = 10.00 "Z" FACTOR = .000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 30.00 CHANNEL FLOW THRU SUBAREA(CFS) = 2371.59 FLOW VELOCITY(FEET /SEC) = 27.18 FLOW DEPTH(FEET) = 8.73 Ed-r1 7' )G, TRAVEL TIME(MIN.) = 2.32 Tc(MIN.) = 30.73 lo, FLOW PROCESS FROM NODE 519.00 TO NODE 519.00 IS CODE = 8.1 in c.c.s" a.0 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< - �C..�► �p MAINLINE Tc(MIN) = 30.73 erode S (8) ` 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.316 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3-4 DWELLINGS /ACRE" B 1.55 .75 .60 56 RESIDENTIAL "3-4 DWELLINGS /ACRE" A 138.66 .98 .60 32 RESIDENTIAL "1 DWELLING /ACRE" A .57 .98 .80 32 NATURAL FAIR COVER "MEADOWS" A 8.18 .81 1.00 51 COMMERCIAL A .20 .98 .10 32 APARTMENTS A 2.17 .98 .20 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .96 C "' SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .62 UNIT - HYDROGRAPH DATA: RAINFALL(INCH): 5M= .57;30M= 1.16;1H= 1.54;3H= 3.00;6H= 4.58;24H =10.58 S- GRAPH: VALLEY (DEV.) = 100.0 %;VALLEY(UNDEV.) /DESERT= .0% MOUNTAIN= .0 %;FOOTHILL= .0% Tc(HR) = .51; LAG(HR) = .41; Fm(INCH /HR) = .44; Ybar = .34 USED SIERRA MADRE DEPTH -AREA CURVES WITH AMC III CONDITION. UNIT - INTERVAL(MIN) = 5.00 TOTAL AREA(ACRES) = 1388.51 LONGEST FLOWPATH FROM NODE 601.00 TO NODE 519.00 = 19175.80 FEET. TIME OF PEAK FLOW(HR) = 16.50 RUNOFF VOLUME(AF) = 736.82 TOTAL AREA(ACRES) = 1388.51 PEAK FLOW RATE(CFS) = 2371.59 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE SUBAREA AREA - AVERAGED RAINFALL DEPTH(INCH): 5M = .57; 30M = 1.17; 1 HR = 1.55; 3HR = 3.08; 6HR = 4.75; 24HR =11.00 .***«..,.*.....,.** *........,k.«......**i * ** w..t ** *****......*** t,*., ** *.nt* **** ** FLOW PROCESS FROM NODE 519.00 TO NODE 519.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «<