HomeMy WebLinkAboutWalnut Storm Drain EIE ALLARD ENGINEERING
civil engineering land surveying land planning
WALNUT STORM DRAIN
Cypress to Citrus
Preliminary
Hydrology & Hydraulic Report
April 1, 2004
Prepared For:
City of Fontana
8353 Sierra Ave.
Fontana, CA 92335
Phone: (909) 350 -7602
Fax: (909) 350 -6613
Prepared under the supervision of:
David 5. Hammer, P.E. ACE 43976 Exp. 06 -30 -05
8253 Sierra Avenue Fontana, CA 92335 (909) 356 -1815 * (909) 356 -1795
Rational Method
100 Year Storm Event
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
(Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983 -95 Advanced Engineering Software (aes)
Ver. 5.1A Release Date: 08/01/95 License ID 1400
Analysis prepared by:
ALLARD ENGINEERING, INC.
6101 CHERRY AVENUE
FONTANA, CALIFORNIA 92336
(909) 899 - 5011
* * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * **
* Walnut Storm Drain (Cypress to Citrus)
*
* *
* *
******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FILE NAME: WALNUTSD.DAT
TIME /DATE OF STUDY: 9:49 3/31/2004
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
-- *TIME -OF- CONCENTRATION MODEL*--
USER SPECIFIED STORM EVENT(YEAR) = 100.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .95
*USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN /HR) vs. LOG(Tc;MIN)) = .6000
USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.5500
*ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD*
*USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET - CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT- /PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
1 30.0 20.0 .018/ .018/ .020 .67 2.00 .03125 .1670 .01500
2 22.0 11.0 .020/ .020/ - -- .67 2.00 .03125 .1670 .01500
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1. Relative Flow -Depth = .24 FEET
as (Maximum Allowable Street Flow Depth) - (Top -of -Curb)
2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 10.00 TO NODE 12.00 IS CODE = 2.1
» »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «<
»USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA«
INITIAL SUBAREA FLOW - LENGTH(FEET) = 690.00
ELEVATION DATA: UPSTREAM(FEET) = 1517.50 DOWNSTREAM(FEET) = 1508.00
Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.787
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.601
SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.)
COMMERCIAL A 6.50 .98 .10 32 9.79
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA RUNOFF(CFS) = 26.34
TOTAL AREA(ACRES) = 6.50 PEAK FLOW RATE(CFS) = 26.34
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE - 11.00 TO NODE 12.00 IS CODE = 8.1
» »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «<
MAINLINE Tc(MIN) = 9.79
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.601
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL A .60 .98 .10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA AREA(ACRES) = .60 SUBAREA RUNOFF(CFS) = 2.43
EFFECTIVE AREA(ACRES) = 7.10 AREA- AVERAGED Fm(INCH /HR) = .10
AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .10
TOTAL AREA(ACRES) = 7.10 PEAK FLOW RATE(CFS) = 28.78
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 12.00 TO NODE 16.00 IS CODE = 3.1
» »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «<
» »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «<
ELEVATION DATA: UPSTREAM(FEET) = 1508.00 DOWNSTREAM(FEET) = 1462.40
FLOW LENGTH(FEET) = 1700.00 MANNING'S N = .013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 16.2 INCHES
PIPE -FLOW VELOCITY(FEET /SEC.) = 12.76
ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1
PIPE - FLOW(CFS) = 28.78
PIPE TRAVEL TIME(MIN.) = 2.22 Tc(MIN.) = 12.01
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 16.00 TO NODE 16.00 IS CODE = 1
» » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «<
TOTAL NUMBER OF STREAMS = 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) = 12.01
RAINFALL INTENSITY(INCH /HR) = 4.07
AREA- AVERAGED Fm(INCH /HR) = .10
AREA- AVERAGED Fp(INCH /HR) = .97
AREA- AVERAGED Ap = .10
EFFECTIVE STREAM AREA(ACRES) = 7.10
TOTAL STREAM AREA(ACRES) = 7.10
PEAK FLOW RATE(CFS) AT CONFLUENCE = 28.78
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 20.00 TO NODE 13.00 IS CODE = 2.1
» »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «<
»USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA«
INITIAL SUBAREA FLOW - LENGTH(FEET) = 400.00
ELEVATION DATA: UPSTREAM(FEET) = 1509.00 DOWNSTREAM(FEET) = 1497.00
Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.126
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.798
SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.)
RESIDENTIAL
"3 -4 DWELLINGS /ACRE" A 6.00 .98 .60 32 9.13
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60
SUBAREA RUNOFF(CFS) = 22.75
TOTAL AREA(ACRES) = 6.00 PEAK FLOW RATE(CFS) = 22.75
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 8.1
» »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «<
MAINLINE Tc(MIN) = 9.13
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.798
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL A .60 .98 .10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA AREA(ACRES) = .60 SUBAREA RUNOFF(CFS) = 2.54
EFFECTIVE AREA(ACRES) = 6.60 AREA- AVERAGED Fm(INCH /HR) = .54
AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .55
TOTAL AREA(ACRES) = 6.60 PEAK FLOW RATE(CFS) = 25.29
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 6.2
» »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «<
» »>( STREET TABLE SECTION # 2 USED) « «<
UPSTREAM ELEVATION(FEET) = 1497.00 DOWNSTREAM ELEVATION(FEET) = 1483.00
STREET LENGTH(FEET) = 650.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) = 22.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 11.00
INSIDE STREET CROSSFALL(DECIMAL) = .020
OUTSIDE STREET CROSSFALL(DECIMAL) = .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
* *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 26.94
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = .49
HALFSTREET FLOOD WIDTH(FEET) = 16.73
AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.51
PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.22
STREET FLOW TRAVEL TIME(MIN.) = 2.40 TC(MIN.) = 11.53
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.170
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL A .90 .98 .10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA AREA(ACRES) = .90 SUBAREA RUNOFF(CFS) = 3.30
EFFECTIVE AREA(ACRES) = 7.50 AREA - AVERAGED Fm(INCH/HR) = .49
AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .50
TOTAL AREA(ACRES) = 7.50 PEAK FLOW RATE(CFS) = 25.29
NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = .48 HALFSTREET FLOOD WIDTH(FEET) = 16.26
FLOW VELOCITY(FEET /SEC.) = 4.46 DEPTH *VELOCITY(FT *FT /SEC.) = 2.16
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 30.00 TO NODE 14.00 IS CODE = 8.1
» »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «<
MAINLINE TC(MIN) = 11.53
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.170
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
SCHOOL A 8.90 .98 .60 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60
SUBAREA AREA(ACRES) = 8.90 SUBAREA RUNOFF(CFS) = 28.72
EFFECTIVE AREA(ACRES) = 16.40 AREA- AVERAGED Fm(INCH /HR) = .54
AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .55
TOTAL AREA(ACRES) = 16.40 PEAK FLOW RATE(CFS) = 53.57
•
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 14.00 TO NODE 16.00 IS CODE = 6.2
» » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« « <
» » > (STREET TABLE SECTION #( 2 USED) « «<
UPSTREAM ELEVATION(FEET) = 1483.00 DOWNSTREAM ELEVATION(FEET) = 1462.40
STREET LENGTH(FEET) = 650.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) = 22.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 11.00
INSIDE STREET CROSSFALL(DECIMAL) = .020
OUTSIDE STREET CROSSFALL(DECIMAL) = .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
* *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 55.09
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = .57
HALFSTREET FLOOD WIDTH(FEET) = 20.63
AVERAGE FLOW VELOCITY(FEET /SEC.) = 6.19
PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 3.54
STREET FLOW TRAVEL TIME(MIN.) = 1.75 Tc(MIN.) = 13.28
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.831
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL A .90 .98 .10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA AREA(ACRES) = .90 SUBAREA RUNOFF(CFS) = 3.02
EFFECTIVE AREA(ACRES) = 17.30 AREA- AVERAGED Fm(INCH /HR) _ .52
AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .53
TOTAL AREA(ACRES) = 17.30 PEAK FLOW RATE(CFS) = 53.57
NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = .57 HALFSTREET FLOOD WIDTH(FEET) = 20.40
FLOW VELOCITY(FEET /SEC.) = 6.16 DEPTH *VELOCITY(FT *FT /SEC.) = 3.49
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 40.00 TO NODE 16.00 IS CODE = 8.1
» » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «<
MAINLINE Tc(MIN) = 13.28
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.831
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
RESIDENTIAL
"3 -4 DWELLINGS /ACRE" A 17.90 .98 .60 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60
SUBAREA AREA(ACRES) = 17.90 SUBAREA RUNOFF(CFS) = 52.30
EFFECTIVE AREA(ACRES) = 35.20 AREA- AVERAGED Fm(INCH /HR) = .55
AREA - AVERAGED Fp(INCH/HR) = .98 AREA- AVERAGED Ap = .57
TOTAL AREA(ACRES) = 35.20 PEAK FLOW RATE(CFS) = 103.89
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 16.00 TO NODE 16.00 IS CODE = 1
» »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «<
TOTAL NUMBER OF STREAMS = 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) = 13.28
RAINFALL INTENSITY(INCH /HR) = 3.83
AREA- AVERAGED Fm(INCH /HR) = .55
AREA- AVERAGED Fp(INCH /HR) = .98
AREA- AVERAGED Ap = .57
EFFECTIVE STREAM AREA(ACRES) = 35.20
TOTAL STREAM AREA(ACRES) = 35.20
PEAK FLOW RATE(CFS) AT CONFLUENCE = 103.89
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 15.00 TO NODE 16.00 IS CODE = 2.1
» »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «<
»USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA«
INITIAL SUBAREA FLOW - LENGTH(FEET) = 950.00
ELEVATION DATA: UPSTREAM(FEET) = 1466.00 DOWNSTREAM(FEET) = 1462.40
Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)) ** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 14.396
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.650
SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.)
COMMERCIAL A 1.30 .98 .10 32 14.40
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA RUNOFF(CFS) = 4.16
TOTAL AREA(ACRES) = 1.30 PEAK FLOW RATE(CFS) = 4.16
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 16.00 TO NODE 16.00 IS CODE = 1
» »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« « <
» »>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «<
TOTAL NUMBER OF STREAMS = 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
TIME OF CONCENTRATION(MIN.) = 14.40
RAINFALL INTENSITY(INCH /HR) = 3.65
AREA- AVERAGED Fm(INCH /HR) = .10
AREA- AVERAGED Fp(INCH /HR) = .98
AREA- AVERAGED Ap = .10
EFFECTIVE STREAM AREA(ACRES) = 1.30
TOTAL STREAM AREA(ACRES) = 1.30
PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.16
** CONFLUENCE DATA **
STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE
NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE
1 28.78 12.01 4.070 .97( .10) .10 7.10 10.00
2 103.89 13.28 3.831 .98( .55) .57 35.20 20.00
3 4.16 14.40 3.650 .98( .10) .10 1.30 15.00
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 3 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE
NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE
1 133.4 12.01 4.070 .975( .459) .47 40.0 10.00
2 135.0 13.28 3.831 .975( .465) .48 43.5 20.00
3 128.0 14.40 3.650 .975( .464) .48 43.6 15.00
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 134.97 Tc(MIN.) = 13.28
EFFECTIVE AREA(ACRES) = 43.50 AREA- AVERAGED Fm(INCH /HR) = .47
AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .48
TOTAL AREA(ACRES) = 43.60
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 16.00 TO NODE 42.00 IS CODE = 3.1
» »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «<
» »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «<
ELEVATION DATA: UPSTREAM(FEET) = 1462.40' DOWNSTREAM(FEET) = 1459.00
FLOW LENGTH(FEET) = 1300.00 MANNING'S N = .013
DEPTH OF FLOW IN 63.0 INCH PIPE IS 47.3 INCHES
PIPE -FLOW VELOCITY(FEET /SEC.) = 7.74
ESTIMATED PIPE DIAMETER(INCH) = 63.00 NUMBER OF PIPES = 1
PIPE - FLOW(CFS) = 134.97
PIPE TRAVEL TIME(MIN.) = 2.80 Tc(MIN.) = 16.08
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 42.00 TO NODE 42.00 IS CODE = 1
» »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «<
TOTAL NUMBER OF STREAMS = 5
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) = 16.08
RAINFALL INTENSITY(INCH /HR) = 3.42
AREA- AVERAGED Fm(INCH /HR) = .47
AREA- AVERAGED Fp(INCH /HR) = .97
AREA- AVERAGED Ap = .48
EFFECTIVE STREAM AREA(ACRES) = 43.50
TOTAL STREAM AREA(ACRES) = 43.60
....«a 11: F•3 `, r .,. .., .. - -.. . ! f .. .. .. 'YR1^° _'.4 ✓3++v..........- ....a.xMw .. _... .. .. - :....
•
PEAK FLOW RATE(CFS) AT CONFLUENCE = 134.97
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE .00 TO NODE 1.00 IS CODE = 2.1
» »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «<
»USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA«
INITIAL SUBAREA FLOW - LENGTH(FEET) = 810.00
ELEVATION DATA: UPSTREAM(FEET) = 1528.00 DOWNSTREAM(FEET) = 1517.00
Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.464
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.420
SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.)
COMMERCIAL A 7.30 .98 .10 32 10.46
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA RUNOFF(CFS) = 28.40
TOTAL AREA(ACRES) = 7.30 PEAK FLOW RATE(CFS) = 28.40
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 1.00 TO NODE 3.00 IS CODE = 6.1
» »> COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «<
» »>(STANDARD CURB SECTION USED) « «<
UPSTREAM ELEVATION(FEET) = 1517.00 DOWNSTREAM ELEVATION(FEET) = 1509.00
STREET LENGTH(FEET) = 650.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) = 40.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
INSIDE STREET CROSSFALL(DECIMAL) = .020
OUTSIDE STREET CROSSFALL(DECIMAL) = .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
* *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 40.31
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
NOTE: STREET FLOW EXCEEDS TOP OF CURB.
THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION
THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL.
THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED.
STREET FLOW DEPTH(FEET) = .73
HALFSTREET FLOOD WIDTH(FEET) = 28.68
AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.79
PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 3.51
STREET FLOW TRAVEL TIME(MIN.) = 2.26 Tc(MIN.) = 12.73
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.930
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL A 6.90 .98 .10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA AREA(ACRES) = 6.90 SUBAREA RUNOFF(CFS) = 23.80
EFFECTIVE AREA(ACRES) = 14.20 AREA - AVERAGED Fm(INCH /HR) = .10
AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .10
TOTAL AREA(ACRES) = 14.20 PEAK FLOW RATE(CFS) = 48.98
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = .78 HALFSTREET FLOOD WIDTH(FEET) = 30.91
FLOW VELOCITY(FEET /SEC.) = 5.03 DEPTH *VELOCITY(FT *FT /SEC.) = 3.90
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 8.1
» »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «<
MAINLINE Tc(MIN) = 12.73
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.930
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ -SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL A .70 .98 .10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA AREA(ACRES) = .70 SUBAREA RUNOFF(CFS) = 2.41
EFFECTIVE AREA(ACRES) = 14.90 AREA- AVERAGED Fm(INCH /HR) = .10
AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .10
TOTAL AREA(ACRES) = 14.90 PEAK FLOW RATE(CFS) = 51.40
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 3.00 TO NODE 42.00 IS CODE = 3.1
» »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «<
» »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «<
ELEVATION DATA: UPSTREAM(FEET) = 1509.00 DOWNSTREAM(FEET) = 1459.00
FLOW LENGTH(FEET) = 2200.00 MANNING'S N = .013
DEPTH OF FLOW IN 30.0 INCH PIPE IS 21.3 INCHES
PIPE -FLOW VELOCITY(FEET /SEC.) = 13.79
ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1
PIPE - FLOW(CFS) = 51.40
PIPE TRAVEL TIME(MIN.) = 2.66 Tc(MIN.) = 15.38
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 42.00 TO NODE 42.00 IS CODE = 1
» »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «<
TOTAL NUMBER OF STREAMS = 5
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) = 15.38
RAINFALL INTENSITY(INCH /HR) = 3.51
AREA- AVERAGED Fm(INCH /HR) = .10
AREA- AVERAGED Fp(INCH /HR) = .98
AREA- AVERAGED Ap = .10
EFFECTIVE STREAM AREA(ACRES) = 14.90
TOTAL STREAM AREA(ACRES) = 14.90
PEAK FLOW RATE(CFS) AT CONFLUENCE = 51.40
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 10.00 TO NODE 12.00 IS CODE = 2.1
» »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «<
»USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA«
INITIAL SUBAREA FLOW - LENGTH(FEET) = 1410.00
ELEVATION DATA: UPSTREAM(FEET) = 1525.00 DOWNSTREAM(FEET) = 1509.00
Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 13.539
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.787
SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.)
COMMERCIAL A 10.20 .98 .10 32 13.54
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA RUNOFF(CFS) = 33.87
TOTAL AREA(ACRES) = 10.20 PEAK FLOW RATE(CFS) = 33.87
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 3.00 TO NODE 12.00 IS CODE = 8.1
» »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «<
MAINLINE Tc(MIN) = 13.54
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.787
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL A .70 .98 .10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA AREA(ACRES) = .70 SUBAREA RUNOFF(CFS) = 2.32
EFFECTIVE AREA(ACRES) = 10.90 AREA- AVERAGED Fm(INCH /HR) = .10
AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .10
TOTAL AREA(ACRES) = 10.90 PEAK FLOW RATE(CFS) = 36.19
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 12.00 TO NODE 51.00 IS CODE = 6.2
» »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «<
» »>( STREET TABLE SECTION ## 2 USED) « «<
UPSTREAM ELEVATION(FEET) = 1509.00 DOWNSTREAM ELEVATION(FEET) = 1489.00
STREET LENGTH(FEET) = 460.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) = 22.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 11.00
INSIDE STREET CROSSFALL(DECIMAL) = .020
OUTSIDE STREET CROSSFALL(DECIMAL) = .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
* *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 37.29
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = .49
HALFSTREET FLOOD WIDTH(FEET) = 16.57
AVERAGE FLOW VELOCITY(FEET /SEC.) = 6.35
PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 3.11
STREET FLOW TRAVEL TIME(MIN.) = 1.21 Tc(MIN.) = 14.75
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.598
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL A .70 .98 .10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA AREA(ACRES) = .70 SUBAREA RUNOFF(CFS) = 2.21
EFFECTIVE AREA(ACRES) = 11.60 AREA- AVERAGED Fm(INCH /HR) = .10
AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .10
TOTAL AREA(ACRES) = 11.60 PEAK FLOW RATE(CFS) = 36.54
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = .49 HALFSTREET FLOOD WIDTH(FEET) = 16.41
FLOW VELOCITY(FEET /SEC.) = 6.34 DEPTH *VELOCITY(FT *FT /SEC.) = 3.08
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 20.00 TO NODE 51.00 IS CODE = 8.1
» »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «<
MAINLINE Tc(MIN) = 14.75
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.598
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
PUBLIC PARK A 12.90 .98 .85 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .85
SUBAREA AREA(ACRES) = 12.90 SUBAREA RUNOFF(CFS) = 32.15
EFFECTIVE AREA(ACRES) = 24.50 AREA- AVERAGED Fm(INCH /HR) = .48
AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .49
TOTAL AREA(ACRES) = 24.50 PEAK FLOW RATE(CFS) = 68.69
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 51.00 TO NODE 30.00 IS CODE = 6.2
» »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «<
» »>( STREET TABLE SECTION # 2 USED) « «<
UPSTREAM ELEVATION(FEET) = 1489.00 DOWNSTREAM ELEVATION(FEET) = 1482.00
STREET LENGTH(FEET) = 330.00 CURB HEIGHT(INCHES) = 8.0
•
STREET HALFWIDTH(FEET) = 22.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 11.00
INSIDE STREET CROSSFALL(DECIMAL) = .020
OUTSIDE STREET CROSSFALL(DECIMAL) = .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
* *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 69.45
** *STREET FLOWING FULL * **
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = .64
HALFSTREET FLOOD WIDTH(FEET) = 22.00
AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.88
PRODUCT OF DEPTH & VELOCITY(FT*FT /SEC.) = 3.75
STREET FLOW TRAVEL TIME(MIN.) = .93 TC(MIN.) = 15.68
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.467
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL - A .50 .98 .10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA AREA(ACRES) = .50 SUBAREA RUNOFF(CFS) = 1.52
EFFECTIVE AREA(ACRES) = 25.00 AREA- AVERAGED Fm(INCH /HR) _ .47
AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .49
TOTAL AREA(ACRES) = 25.00 PEAK FLOW RATE(CFS) = 68.69
NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = .64 HALFSTREET FLOOD WIDTH(FEET) = 22.00
FLOW VELOCITY(FEET /SEC.) = 5.85 DEPTH *VELOCITY(FT *FT /SEC.) = 3.72
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 22.00 TO NODE 30.00 IS CODE = 8.1
» »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «<
MAINLINE Tc(MIN) = 15.68
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.467
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL A 2.90 .98 .10 32
PUBLIC PARK A 6.60 .98 .85 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .62
SUBAREA AREA(ACRES) = 9.50 SUBAREA RUNOFF(CFS) = 24.47
EFFECTIVE AREA(ACRES) = 34.50 AREA- AVERAGED Fm(INCH /HR) = .51
AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .52
TOTAL AREA(ACRES) = 34.50 PEAK FLOW RATE(CFS) = 91.80
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 30.00 TO NODE 36.00 IS CODE = 6.2
» »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «<
» »>( STREET TABLE SECTION # 2 USED) « «<
UPSTREAM ELEVATION(FEET) = 1482.00 DOWNSTREAM ELEVATION(FEET) = 1472.00
STREET LENGTH(FEET) = 990.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) = 22.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 11.00
INSIDE STREET CROSSFALL(DECIMAL) = .020
OUTSIDE STREET CROSSFALL(DECIMAL) = .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
* *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 93.84
** *STREET FLOWING FULL * **
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
NOTE: STREET FLOW EXCEEDS TOP OF CURB.
THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION
THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL.
THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED.
STREET FLOW DEPTH(FEET) = .77
HALFSTREET FLOOD WIDTH(FEET) = 22.00
AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.31
PRODUCT OF DEPTH & VELOCITY(FT*FT /SEC.) = 4.10
STREET FLOW TRAVEL TIME(MIN.) = 3.11 Tc(MIN.) = 18.79
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.111
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL A 1.50 .98 .10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA AREA(ACRES) = 1.50 SUBAREA RUNOFF(CFS) = 4.07
EFFECTIVE AREA(ACRES) = 36.00 AREA- AVERAGED Fm(INCH /HR) = .49
AREA - AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .51
TOTAL AREA(ACRES) = 36.00 PEAK FLOW RATE(CFS) = 91.80
NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = .77 HALFSTREET FLOOD WIDTH(FEET) = 22.00
FLOW VELOCITY(FEET /SEC.) = 5.26 DEPTH *VELOCITY(FT *FT /SEC.) = 4.03
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 35.00 TO NODE 36.00 IS CODE = 8.1
» »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «<
MAINLINE Tc(MIN) = 18.79
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.111
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL A 5.70 .98 .10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA AREA(ACRES) = 5.70 SUBAREA RUNOFF(CFS) = 15.46
EFFECTIVE AREA(ACRES) = 41.70 AREA- AVERAGED Fm(INCH/HR) = .44
AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .45
TOTAL AREA(ACRES) = 41.70 PEAK FLOW RATE(CFS) = 100.27
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 36.00 TO NODE 42.00 IS CODE = 6.2
» »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «<
» »> (STREET TABLE SECTION ## 2 USED) « «<
UPSTREAM ELEVATION(FEET) = 1472.00 DOWNSTREAM ELEVATION(FEET) = 1459.00
STREET LENGTH(FEET) = 515.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) = 22.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 11.00
INSIDE STREET CROSSFALL(DECIMAL) = .020
OUTSIDE STREET CROSSFALL(DECIMAL) = .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
* *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 101.31
** *STREET FLOWING FULL * **
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
NOTE: STREET FLOW EXCEEDS TOP OF CURB.
THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION
THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL.
THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED.
STREET FLOW DEPTH(FEET) = .69
HALFSTREET FLOOD WIDTH(FEET) = 22.00
AVERAGE FLOW VELOCITY(FEET /SEC.) = 7.21
PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 4.97
STREET FLOW TRAVEL TIME(MIN.) = 1.19 Tc(MIN.) = 19.98
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.999
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL A .80 .98 .10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA AREA(ACRES) = .80 SUBAREA RUNOFF(CFS) = 2.09
EFFECTIVE AREA(ACRES) = 42.50 AREA- AVERAGED Fm(INCH /HR) = .43
AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .44
TOTAL AREA(ACRES) = 42.50 PEAK FLOW RATE(CFS) = 100.27
NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = .69 HALFSTREET FLOOD WIDTH(FEET) = 22.00
FLOW VELOCITY(FEET /SEC.) = 7.19 DEPTH *VELOCITY(FT *FT /SEC.) = 4.94
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 42.00 TO NODE 42.00 IS CODE = 1
» »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «<
TOTAL NUMBER OF STREAMS = 5
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
TIME OF CONCENTRATION(MIN.) = 19.98
RAINFALL INTENSITY(INCH /HR) = 3.00
AREA- AVERAGED Fm(INCH /HR) = .43
AREA- AVERAGED Fp(INCH /HR) = .97
AREA- AVERAGED Ap = .44
EFFECTIVE STREAM AREA(ACRES) = 42.50
TOTAL STREAM AREA(ACRES) = 42.50
PEAK FLOW RATE(CFS) AT CONFLUENCE = 100.27
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 40.00 TO NODE 41.00 IS CODE = 2.1
» »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «<
»USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA«
INITIAL SUBAREA FLOW - LENGTH(FEET) = 510.00
ELEVATION DATA: UPSTREAM(FEET) = 1485.00 DOWNSTREAM(FEET) = 1472.00
Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.667
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.327
SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.)
COMMERCIAL A 3.10 .98 .10 32 7.67
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) _ .97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA RUNOFF(CFS) = 14.59
TOTAL AREA(ACRES) = 3.10 PEAK FLOW RATE(CFS) = 14.59
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 41.00 TO NODE 42.00 IS CODE = 3.1
» »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «<
» »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «<
ELEVATION DATA: UPSTREAM(FEET) = 1472.00 DOWNSTREAM(FEET) = 1459.00
FLOW LENGTH(FEET) = 950.00 MANNING'S N = .013
DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.3 INCHES
PIPE -FLOW VELOCITY(FEET /SEC.) = 8.36
ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1
PIPE - FLOW(CFS) = 14.59
PIPE TRAVEL TIME(MIN.) = 1.89 Tc(MIN.) = 9.56
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 41.00 TO NODE 42.00 IS CODE = 8.1
» »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «<
MAINLINE Tc(MIN) = 9.56
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.666
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL A 15.00 .98 .10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA AREA(ACRES) = 15.00 SUBAREA RUNOFF(CFS) = 61.67
EFFECTIVE AREA(ACRES) = 18.10 AREA - AVERAGED Fm(INCH /HR) = .10
AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .10
TOTAL AREA(ACRES) = 18.10 PEAK FLOW RATE(CFS) = 74.42
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 42.00 TO NODE 42.00 IS CODE = 1
» »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «<
TOTAL NUMBER OF STREAMS = 5
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 4 ARE:
TIME OF CONCENTRATION(MIN.) = 9.56
RAINFALL INTENSITY(INCH /HR) = 4.67
AREA - AVERAGED Fm(INCH/HR) = .10
AREA- AVERAGED Fp(INCH /HR) = .98
AREA- AVERAGED Ap = .10
EFFECTIVE STREAM AREA(ACRES) = 18.10
TOTAL STREAM AREA(ACRES) = 18.10
PEAK FLOW RATE(CFS) AT CONFLUENCE = 74.42
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 40.00 TO NODE 41.00 IS CODE = 2.1
» »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «<
»USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA«
INITIAL SUBAREA FLOW - LENGTH(FEET) = 980.00
ELEVATION DATA: UPSTREAM(FEET) = 1485.00 DOWNSTREAM(FEET) = 1465.00
Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.409
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.434
SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.)
COMMERCIAL A 3.30 .98 .10 32 10.41
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA RUNOFF(CFS) = 12.88
TOTAL AREA(ACRES) = 3.30 PEAK FLOW RATE(CFS) = 12.88
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 41.00 TO NODE 42.00 IS CODE = 6.2
» »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «<
» »STREET TABLE SECTION # 2 USED) « «<
UPSTREAM ELEVATION(FEET) = 1465.00 DOWNSTREAM ELEVATION(FEET) = 1459.00
STREET LENGTH(FEET) = 1320.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) = 22.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 11.00
INSIDE STREET CROSSFALL(DECIMAL) = .020
OUTSIDE STREET CROSSFALL(DECIMAL) = .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
* *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 15.33
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = .52
HALFSTREET FLOOD WIDTH(FEET) = 18.21
AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.19
PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.14
STREET FLOW TRAVEL TIME(MIN.) = 10.06 Tc(MIN.) = 20.47
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.955
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL A 1.90 .98 .10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA AREA(ACRES) = 1.90 SUBAREA RUNOFF(CFS) = 4.89
EFFECTIVE AREA(ACRES) = 5.20 AREA- AVERAGED Fm(INCH /HR) = .10
AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .10
TOTAL AREA(ACRES) = 5.20 PEAK FLOW RATE(CFS) = 13.37
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = .50 HALFSTREET FLOOD WIDTH(FEET) = 17.27
FLOW VELOCITY(FEET /SEC.) = 2.11 DEPTH *VELOCITY(FT *FT /SEC.) = 1.06
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 42.00 TO NODE 42.00 IS CODE = 1
» »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «<
» »>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «<
TOTAL NUMBER OF STREAMS = 5
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 5 ARE:
TIME OF CONCENTRATION(MIN.) = 20.47
RAINFALL INTENSITY(INCH /HR) = 2.96
AREA- AVERAGED Fm(INCH /HR) = .10
AREA- AVERAGED Fp(INCH /HR) = .97
AREA- AVERAGED Ap = .10
EFFECTIVE STREAM AREA(ACRES) = 5.20
TOTAL STREAM AREA(ACRES) = 5.20
PEAK FLOW RATE(CFS) AT CONFLUENCE = 13.37
** CONFLUENCE DATA **
STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE
NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE
1 133.43 14.81 3.588 .98( .46) .47 40.01 10.00
1 134.97 16.08 3.416 .97( .47) .48 43.50 20.00
1 128.04 17.27 3.272 .98( .46) .48 43.60 15.00
2 51.40 15.38 3.507 .98( .10) .10 14.90 .00
3 100.27 19.98 2.999 .97( .43) .44 42.50 10.00
4 74.42 9.56 4.666 .98( .10) .10 18.10 40.00
•
5 13.37 20.47 2.955 .97( .10) .10 5.20 40.00
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 5 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE
NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE
1 322.2 9.56 4.666 .975( .310) .32 76.0 40.00
2 344.2 14.81 3.588 .975( .330) .34 107.7 10.00
3 345.6 15.38 3.507 .975( .332) .34 111.2 .00
4 345.1 16.08 3.416 .975( .337) .35 114.8 20.00
5 336.1 17.27 3.272 .975( .338) .35 117.7 15.00
6 320.1 19.98 2.999 .975( .341) .35 124.2 10.00
7 315.2 20.47 2.955 .975( .341) .35 124.3 40.00
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 345.60 Tc(MIN.) = 15.38
EFFECTIVE AREA(ACRES) = 111.24 AREA- AVERAGED Fm(INCH /HR) = .33
AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .34
TOTAL AREA(ACRES) = 124.30
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 42.00 TO NODE 106.00 IS CODE = 3.1
» » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «<
» » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «<
ELEVATION DATA: UPSTREAM(FEET) = 1459.00 DOWNSTREAM(FEET) = 1451.00
FLOW LENGTH(FEET) = 1400.00 MANNING'S N = .013
DEPTH OF FLOW IN 75.0 INCH PIPE IS 61.0 INCHES
PIPE -FLOW VELOCITY(FEET /SEC.) = 12.93
ESTIMATED PIPE DIAMETER(INCH) = 75.00 NUMBER OF PIPES = 1
PIPE - FLOW(CFS) = 345.60
PIPE TRAVEL TIME(MIN.) = 1.80 Tc(MIN.) = 17.19
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 10
» »>MAIN- STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««<
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 2.1
» »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «<
»USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA«
INITIAL SUBAREA FLOW - LENGTH(FEET) = 750.00
ELEVATION DATA: UPSTREAM(FEET) = 1519.00 DOWNSTREAM(FEET) = 1504.00
Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.391
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.716
SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.)
COMMERCIAL A 6.34 .98 .10 32 9.39
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA RUNOFF(CFS) = 26.36
TOTAL AREA(ACRES) = 6.34 PEAK FLOW RATE(CFS) = 26.36
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 4.1
» » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «<
» »>USING USER- SPECIFIED PIPESIZE (EXISTING ELEMENT) « «<
ELEVATION DATA: UPSTREAM(FEET) = 1496.50 DOWNSTREAM(FEET) = 1495.00
FLOW LENGTH(FEET) = 770.00 MANNING'S N = .013
DEPTH OF FLOW IN 48.0 INCH PIPE IS 21.9 INCHES
PIPE -FLOW VELOCITY(FEET /SEC.) = 4.72
GIVEN PIPE DIAMETER(INCH) = 48.00 NUMBER OF PIPES = 1
PIPE - FLOW(CFS) = 26.36
PIPE TRAVEL TIME(MIN.) = 2.72 Tc(MIN.) = 12.11
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 8.1
» »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «<
MAINLINE Tc(MIN) = 12.11
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.049
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL A 8.72 .98 .10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA AREA(ACRES) = 8.72 SUBAREA RUNOFF(CFS) = 31.01
EFFECTIVE AREA(ACRES) = 15.06 AREA- AVERAGED Fm(INCH /HR) = .10
AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .10
TOTAL AREA(ACRES) = 15.06 PEAK FLOW RATE(CFS) = 53.56
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 102.00 TO NODE 302.00 IS CODE = 4.1
» »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «<
» »>USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) « «<
ELEVATION DATA: UPSTREAM(FEET) = 1495.00 DOWNSTREAM(FEET) = 1480.00
FLOW LENGTH(FEET) = 600.00 MANNING'S N = .013
DEPTH OF FLOW IN 48.0 INCH PIPE IS 16.1 INCHES
PIPE -FLOW VELOCITY(FEET /SEC.) = 14.51
GIVEN PIPE DIAMETER(INCH) = 48.00 NUMBER OF PIPES = 1
PIPE - FLOW(CFS) = 53.56
PIPE TRAVEL TIME(MIN.) = .69 Tc(MIN.) = 12.80
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 302.00 TO NODE 302.00 IS CODE = 1
» » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) = 12.80
RAINFALL INTENSITY(INCH /HR) = 3.92
AREA- AVERAGED Fm(INCH /HR) = .10
AREA - AVERAGED Fp(INCH /HR) = .98
AREA- AVERAGED Ap = .10
EFFECTIVE STREAM AREA(ACRES) = 15.06
TOTAL STREAM AREA(ACRES) = 15.06
PEAK FLOW RATE(CFS) AT CONFLUENCE = 53.56
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 300.00 TO NODE 301.00 IS CODE = 2.1
» » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «<
»USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA«
INITIAL SUBAREA FLOW - LENGTH(FEET) = 900.00
ELEVATION DATA: UPSTREAM(FEET) = 1507.00 DOWNSTREAM(FEET) = 1489.00
Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 13.690
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.762
SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.)
RESIDENTIAL
"3 -4 DWELLINGS /ACRE" A 8.95 .98 .60 32 13.69
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60
SUBAREA RUNOFF(CFS) = 25.59
TOTAL AREA(ACRES) = 8.95 PEAK FLOW RATE(CFS) = 25.59
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 301.00 TO NODE 302.00 IS CODE = 5.1
» »>COMPUTE TRAPEZOIDAL CHANNEL FLOW« «<
» »>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « «<
ELEVATION DATA: UPSTREAM(FEET) = 1489.00 DOWNSTREAM(FEET) = 1487.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 700.00 CHANNEL SLOPE = .0029
CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = .000
MANNING'S FACTOR = .025 MAXIMUM DEPTH(FEET) = 1.00
CHANNEL FLOW THRU SUBAREA(CFS) = 25.59
FLOW VELOCITY(FEET /SEC) = 1.98 FLOW DEPTH(FEET) = .52
TRAVEL TIME(MIN.) = 5.88 Tc(MIN.) = 19.57
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 302.00 TO NODE 302.00 IS CODE = 8.1
» »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « <
MAINLINE Tc(MIN) = 19.57
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.036
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
RESIDENTIAL
"3 -4 DWELLINGS /ACRE" A 9.84 .98 .60 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60
SUBAREA AREA(ACRES) = 9.84 SUBAREA RUNOFF(CFS) = 21.70
EFFECTIVE AREA(ACRES) = 18.79 AREA - AVERAGED Fm(INCH/HR) = .59
AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60
TOTAL AREA(ACRES) = 18.79 PEAK FLOW RATE(CFS) = 41.44
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 302.00 TO NODE 302.00 IS CODE = 1
» »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «<
» » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) = 19.57
RAINFALL INTENSITY(INCH /HR) = 3.04
AREA- AVERAGED Fm(INCH /HR) = .59
AREA- AVERAGED Fp(INCH /HR) = .98
AREA- AVERAGED Ap = .60
EFFECTIVE STREAM AREA(ACRES) = 18.79
TOTAL STREAM AREA(ACRES) = 18.79
PEAK FLOW RATE(CFS) AT CONFLUENCE = 41.44
** CONFLUENCE DATA **
STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE
NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE
1 53.56 12.80 3.917 .98( .10) .10 15.06 100.00
2 41.44 19.57 3.036 .98( .59) .60 18.79 300.00
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE
NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE
1 90.4 12.80 3.917 .975( .317) .32 27.3 100.00
2 82.6 19.57 3.036 .975( .368) .38 33.9 300.00
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 90.41 Tc(MIN.) = 12.80
EFFECTIVE AREA(ACRES) = 27.35 AREA- AVERAGED Fm(INCH /HR) = .32
AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .32
TOTAL AREA(ACRES) = 33.85
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 302.00 TO NODE 103.00 IS CODE = 3.1
» »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «<
» » >USING COMPUTER- ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « « <
ELEVATION DATA: UPSTREAM(FEET) = 1480.00 DOWNSTREAM(FEET) = 1458.25
FLOW LENGTH(FEET) = 850.00 MANNING'S N = .013
DEPTH OF FLOW IN 36.0 INCH PIPE IS 26.0 INCHES
PIPE -FLOW VELOCITY(FEET /SEC.) = 16.57
ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1
PIPE - FLOW(CFS) = 90.41
PIPE TRAVEL TIME(MIN.) = .85 Tc(MIN.) = 13.65
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 8.1
» »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «<
MAINLINE Tc(MIN) = 13.65
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.768
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
RESIDENTIAL
"3 -4 DWELLINGS /ACRE" A 5.78 .98 .60 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60
SUBAREA AREA(ACRES) = 5.78 SUBAREA RUNOFF(CFS) = 16.56
EFFECTIVE AREA(ACRES) = 33.13 AREA- AVERAGED Fm(INCH /HR) = .36
AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .37
TOTAL AREA(ACRES) = 39.63 PEAK FLOW RATE(CFS) = 101.50
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 4.1
» »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «<
» »>USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) « «<
ELEVATION DATA: UPSTREAM(FEET) = 1458.25 DOWNSTREAM(FEET) = 1444.70
FLOW LENGTH(FEET) = 440.00 MANNING'S N = .013
DEPTH OF FLOW IN 48.0 INCH PIPE IS 21.5 INCHES
PIPE -FLOW VELOCITY(FEET /SEC.) = 18.62
GIVEN PIPE DIAMETER(INCH) = 48.00 NUMBER OF PIPES = 1
PIPE - FLOW(CFS) = 101.50
PIPE TRAVEL TIME(MIN.) = .39 Tc(MIN.) = 14.05
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 1
» »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) = 14.05
RAINFALL INTENSITY(INCH /HR) = 3.70
AREA- AVERAGED Fm(INCH /HR) = .36
AREA- AVERAGED Fp(INCH /HR) = .98
AREA- AVERAGED Ap = .37
EFFECTIVE STREAM AREA(ACRES) = 33.13
TOTAL STREAM AREA(ACRES) = 39.63
PEAK FLOW RATE(CFS) AT CONFLUENCE = 101.50
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 200.00 TO NODE 201.00 IS CODE = 2.1
» »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «<
»USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA«
INITIAL SUBAREA FLOW - LENGTH(FEET) = 900.00
ELEVATION DATA: UPSTREAM(FEET) = 1493.00 DOWNSTREAM(FEET) = 1475.00
Tc = K *((LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 13.690
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.762
SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.)
RESIDENTIAL
"3 -4 DWELLINGS /ACRE" A 9.59 .98 .60 32 13.69
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60
SUBAREA RUNOFF(CFS) = 27.42
TOTAL AREA(ACRES) = 9.59 PEAK FLOW RATE(CFS) = 27.42
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 6.1
» » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «<
» »>(STANDARD CURB SECTION USED) « «<
UPSTREAM ELEVATION(FEET) = 1475.00 DOWNSTREAM ELEVATION(FEET) = 1467.00
STREET LENGTH(FEET) = 510.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) = 30.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 25.00
INSIDE STREET CROSSFALL(DECIMAL) = .020
OUTSIDE STREET CROSSFALL(DECIMAL) = .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
* *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 44.97
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = .59
HALFSTREET FLOOD WIDTH(FEET) = 21.82
AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.54
PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.70
STREET FLOW TRAVEL TIME(MIN.) = 1.87 Tc(MIN.) = 15.56
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.483
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
RESIDENTIAL
"3 -4 DWELLINGS /ACRE" A 13.45 .98 .60 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60
SUBAREA AREA(ACRES) = 13.45 SUBAREA RUNOFF(CFS) = 35.08
EFFECTIVE AREA(ACRES) = 23.04 AREA- AVERAGED Fm(INCH /HR) = .59
AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .60
TOTAL AREA(ACRES) = 23.04 PEAK FLOW RATE(CFS) = 60.10
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = .65 HALFSTREET FLOOD WIDTH(FEET) = 24.45
FLOW VELOCITY(FEET /SEC.) = 4.87 DEPTH *VELOCITY(FT *FT /SEC.) = 3.15
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 202.00 TO NODE 104.00 IS CODE = 4.1
» »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« « <
» »>USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) « «<
ELEVATION DATA: UPSTREAM(FEET) = 1460.00 DOWNSTREAM(FEET) = 1444.70
FLOW LENGTH(FEET) = 430.00 MANNING'S N = .013
DEPTH OF FLOW IN 36.0 INCH PIPE IS 17.8 INCHES
PIPE -FLOW VELOCITY(FEET /SEC.) = 17.26
GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1
PIPE - FLOW(CFS) = 60.10
PIPE TRAVEL TIME(MIN.) = .42 Tc(MIN.) = 15.98
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 8.1
» » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «<
MAINLINE Tc(MIN) = 15.98
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.429
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
RESIDENTIAL
"3 -4 DWELLINGS /ACRE" A 15.00 .98 .60 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60
SUBAREA AREA(ACRES) = 15.00 SUBAREA RUNOFF(CFS) = 38.39
EFFECTIVE AREA(ACRES) = 38.04 AREA- AVERAGED Fm(INCH /HR) = .59
AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60
TOTAL AREA(ACRES) = 38.04 PEAK FLOW RATE(CFS) = 97.36
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 1
- 'wawa.- �.w «w+- n.. +r.m? -<5 .- .rx. -s.n.< �r -.r+n •. e...- x...x.Yw m.+5rv'rc » u4irMZm+aNVV.r wdnxauYew.c+...arm.uM.. ...v.wwwm.+mw -.w .x!"M'S
» »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «<
» » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) = 15.98
RAINFALL INTENSITY(INCH /HR) = 3.43
AREA- AVERAGED Fm(INCH /HR) = .59
AREA- AVERAGED Fp(INCH /HR) = .98
AREA- AVERAGED Ap = .60
EFFECTIVE STREAM AREA(ACRES) = 38.04
TOTAL STREAM AREA(ACRES) = 38.04
PEAK FLOW RATE(CFS) AT CONFLUENCE = 97.36
** CONFLUENCE DATA **
STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE
NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE
1 101.50 14.05 3.704 .98( .36) .37 33.13 100.00
1 91.24 20.84 2.923 .98( .40) .41 39.63 300.00
2 97.36 15.98 3.429 .98( .59) .60 38.04 200.00
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE
NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE
1 195.4 14.05 3.704 .975( .475) .49 66.6 100.00
2 171.3 20.84 2.923 .975( .490) .50 77.7 300.00
3 195.9 15.98 3.429 .975( .484) .50 73.0 200.00
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 195.94 Tc(MIN.) = 15.98
EFFECTIVE AREA(ACRES) = 73.01 AREA- AVERAGED Fm(INCH /HR) = .48
AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .50
TOTAL AREA(ACRES) = 77.67
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 104.00 TO NODE 105.00 IS CODE = 4.1
» »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «<
» » >USING USER- SPECIFIED PIPESIZE (EXISTING ELEMENT) « «<
ELEVATION DATA: UPSTREAM(FEET) = 1444.70 DOWNSTREAM(FEET) = 1438.27
FLOW LENGTH(FEET) = 250.00 MANNING'S N = .013
DEPTH OF FLOW IN 48.0 INCH PIPE IS 34.7 INCHES
PIPE -FLOW VELOCITY(FEET /SEC.) = 20.14
GIVEN PIPE DIAMETER(INCH) = 48.00 NUMBER OF PIPES = 1
PIPE - FLOW(CFS) = 195.94
PIPE TRAVEL TIME(MIN.) = .21 Tc(MIN.) = 16.18
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 8.1
» »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «<
MAINLINE Tc(MIN) = 16.18
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.402
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL A 1.31 .98 .10 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10
SUBAREA AREA(ACRES,) = 1.31 SUBAREA RUNOFF(CFS) = 3.90
EFFECTIVE AREA(ACRES) = 74.32 AREA- AVERAGED Fm(INCH /HR) = .48
AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .49
TOTAL AREA(ACRES) = 78.98 PEAK FLOW RATE(CFS) = 195.94
NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 105.00 TO NODE 106.00 IS CODE = 4.1
» »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «<
» »>USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) « «<
ELEVATION DATA: UPSTREAM(FEET) = 1438.27 DOWNSTREAM(FEET) = 1435.45
FLOW LENGTH(FEET) = 100.00 MANNING'S N = .013
DEPTH OF FLOW IN 48.0 INCH PIPE IS 33.5 INCHES
PIPE -FLOW VELOCITY(FEET /SEC.) = 20.93
GIVEN PIPE DIAMETER(INCH) = 48.00 NUMBER OF PIPES = 1
PIPE - FLOW(CFS) = 195.94
PIPE TRAVEL TIME(MIN.) = .08 Tc(MIN.) = 16.26
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 1
» »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) = 16.26
RAINFALL INTENSITY(INCH /HR) = 3.39
AREA- AVERAGED Fm(INCH /HR) = .48
AREA- AVERAGED Fp(INCH /HR) = .98
AREA- AVERAGED Ap = .49
EFFECTIVE STREAM AREA(ACRES) = 74.32
TOTAL STREAM AREA(ACRES) = 78.98
PEAK FLOW RATE(CFS) AT CONFLUENCE = 195.94
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 303.00 TO NODE 304.00 IS CODE = 2.1
» »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «<
»USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA«
INITIAL SUBAREA FLOW - LENGTH(FEET) = 700.00
ELEVATION DATA: UPSTREAM(FEET) = 1465.00 DOWNSTREAM(FEET) = 1455.00
Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 13.242
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.838
SUBAREA Tc AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.)
RESIDENTIAL
"3 -4 DWELLINGS /ACRE" A 4.89 .98 .60 32 13.24
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60
SUBAREA RUNOFF(CFS) = 14.31
TOTAL AREA(ACRES) = 4.89 PEAK FLOW RATE(CFS) = 14.31
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 304.00 TO NODE 106.00 IS CODE = 6.1
» »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «<
» »>(STANDARD CURB SECTION USED) « «<
UPSTREAM ELEVATION(FEET) = 1455.00 DOWNSTREAM ELEVATION(FEET) = 1451.00
STREET LENGTH(FEET) = 730.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) = 40.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 35.00
INSIDE STREET CROSSFALL(DECIMAL) = .020
OUTSIDE STREET CROSSFALL(DECIMAL) = .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
* *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 21.00
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
NOTE: STREET FLOW EXCEEDS TOP OF CURB.
THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION
THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL.
THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED.
STREET FLOW DEPTH(FEET) = .68
HALFSTREET FLOOD WIDTH(FEET) = 26.08
AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.00
PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.04
STREET FLOW TRAVEL TIME(MIN.) = 4.05 Tc(MIN.) = 17.29
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.270
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
RESIDENTIAL
"3 -4 DWELLINGS /ACRE" A 5.52 .98 .60 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60
SUBAREA AREA(ACRES) = 5.52 SUBAREA RUNOFF(CFS) = 13.34
EFFECTIVE AREA(ACRES) = 10.41 AREA- AVERAGED Fm(INCH /HR) = .59
AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .60
TOTAL AREA(ACRES) = 10.41 PEAK FLOW RATE(CFS) = 25.15
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = .72 HALFSTREET FLOOD WIDTH(FEET) = 28.01
r.
FLOW VELOCITY(FEET /SEC.) = 3.13 DEPTH *VELOCITY(FT *FT /SEC.) = 2.25
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 1
» » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« « <
» »>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) = 17.29
RAINFALL INTENSITY(INCH /HR) = 3.27
AREA- AVERAGED Fm(INCH /HR) = .59
AREA- AVERAGED Fp(INCH /HR) = .98
AREA- AVERAGED Ap = .60
EFFECTIVE STREAM AREA(ACRES) = 10.41
TOTAL STREAM AREA(ACRES) = 10.41
PEAK FLOW RATE(CFS) AT CONFLUENCE = 25.15
** CONFLUENCE DATA **
STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE
NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE
1 195.76 14.33 3.660 .98( .47) .48 67.88 100.00
1 172.12 21.14 2.899 .98( .48) .50 78.98 300.00
1 195.94 16.26 3.392 .98( .48) .49 74.32 200.00
2 25.15 17.29 3.270 .98( .59) .60 10.41 303.00
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE
NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE
1 219.6 14.33 3.660 .975( .481) .49 76.5 100.00
2 220.7 16.26 3.392 .975( .490) .50 84.1 200.00
3 193.8 21.14 2.899 .975( .496) .51 89.4 300.00
4 216.1 17.29 3.270 .975( .491) .50 85.7 303.00
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 220.68 Tc(MIN.) = 16.26
EFFECTIVE AREA(ACRES) = 84.11 AREA- AVERAGED Fm(INCH /HR) = .49
AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .50
TOTAL AREA(ACRES) = 89.39
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 11
» »> CONFLUENCE MEMORY BANK # 1 WITH THE MAIN- STREAM MEMORY« «<
** MAIN STREAM CONFLUENCE DATA **
STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE
NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE
1 219.63 14.33 3.660 .98( .48) .49 76.5 100.00
2 220.68 16.26 3.392 .98( .49) .50 84.1 200.00
3 216.06 17.29 3.270 .98( .49) .50 85.7 303.00
4 193.80 21.14 2.899 .98( .50) .51 89.4 300.00
** MEMORY BANK # 1 CONFLUENCE DATA **
STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE
NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE
1 322.17 11.37 4.204 .98( .31) .32 76.0 40.00
2 344.19 16.61 3.349 .98( .33) .34 107.7 10.00
3 345.60 17.19 3.281 .98( .33) .34 111.2 .00
4 345.07 17.88 3.205 .97( .34) .35 114.8 20.00
5 336.08 19.08 3.083. .97( .34) .35 117.7 15.00
6 320.08 21.79 2.846 .98( .34) .35 124.2 10.00
7 315.16 22.29 2.808 .98( .34) .35 124.3 40.00
** PEAK FLOW RATE TABLE **
STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE
NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE
1 554.2 14.33 3.660 .975( .393) .40 170.4 100.00
2 563.4 16.26 3.392 .975( .400) .41 189.7 200.00
3 561.6 17.29 3.270 .975( .402) .41 197.5 303.00
4 517.7 21.14 2.899 .975( .406) .42 212.0 300.00
5 526.3 11.37 4.204 .975( .386) .40 136.7 40.00
6 563.3 16.61 3.349 .975( .400) .41 192.4 10.00
7 562.1 17.19 3.281 .975( .401) .41 196.8 .00
8 557.7 17.88 3.205 .975( .403) .41 201.1 20.00
9 541.8 19.08 3.083 .975( .404) .41 205.2 15.00
10 509.6 21.79 2.846 .975( .406) .42 213.6 10.00
11 501.6 22.29 2.808 .975( .406) .42 213.7 40.00
TOTAL AREA(ACRES) = 213.69
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 563.40 Tc(MIN.) = 16.263
EFFECTIVE AREA(ACRES) = 189.71 AREA- AVERAGED Fm(INCH /HR) = .40
AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .41
TOTAL AREA(ACRES) = 213.69
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 106.00 TO NODE 107.00 IS CODE = 4.1
» »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «<
» »>USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) « «<
ELEVATION DATA: UPSTREAM(FEET) = 1435.45 DOWNSTREAM(FEET) = 1411.88
FLOW LENGTH(FEET) = 1250.00 MANNING'S N = .013
ASSUME FULL - FLOWING PIPELINE
PIPE -FLOW VELOCITY(FEET /SEC.) = 28.69
GIVEN PIPE DIAMETER(INCH) = 60.00 NUMBER OF PIPES = 1
PIPE - FLOW(CFS) = 563.40
PIPE TRAVEL TIME(MIN.) = .73 Tc(MIN.) = 16.99
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 107.00 TO NODE 107.00 IS CODE = 8.1
» »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «<
Of
MAINLINE Tc(MIN) = 16.99
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.305
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
RESIDENTIAL
"3 -4 DWELLINGS /ACRE" A 37.62 .98 .60 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60
SUBAREA AREA(ACRES) = 37.62 SUBAREA RUNOFF(CFS) = 92.08
EFFECTIVE AREA(ACRES) = 227.33 AREA- AVERAGED Fm(INCH /HR) = .43
AREA - AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .44
TOTAL AREA(ACRES) = 251.31 PEAK FLOW RATE(CFS) = 588.03
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 107.00 TO NODE 108.00 IS CODE = 4.1
» »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «<
» »>USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) « «<
ELEVATION DATA: UPSTREAM(FEET) = 1411.88 DOWNSTREAM(FEET) = 1398.00
FLOW LENGTH(FEET) = 650.00 MANNING'S N = .013
ASSUME FULL- FLOWING PIPELINE
PIPE -FLOW VELOCITY(FEET /SEC.) = 29.95
GIVEN PIPE DIAMETER(INCH) = 60.00 NUMBER OF PIPES = 1
PIPE - FLOW(CFS) = 588.03
PIPE TRAVEL TIME(MIN.) = .36 Tc(MIN.) = 17.35
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 8.1
» »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «<
MAINLINE Tc(MIN) = 17.35
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.263
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
RESIDENTIAL
"3 -4 DWELLINGS /ACRE" A 17.44 .98 .60 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .98
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60
SUBAREA AREA(ACRES) = 17.44 SUBAREA RUNOFF(CFS) = 42.03
EFFECTIVE AREA(ACRES) = 244.77 AREA- AVERAGED Fm(INCH /HR) = .44
AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .45
TOTAL AREA(ACRES) = 268.75 PEAK FLOW RATE(CFS) = 621.57
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 108.00 TO NODE 109.00 IS CODE = 4.1
» »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «<
» »>USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) « «<
ELEVATION DATA: UPSTREAM(FEET) = 1398.00 DOWNSTREAM(FEET) = 1385.92
FLOW LENGTH(FEET) = 630.00 MANNING'S N = .013
ASSUME FULL- FLOWING PIPELINE
PIPE -FLOW VELOCITY(FEET /SEC.) = 31.66
GIVEN PIPE DIAMETER(INCH) = 60.00 NUMBER OF PIPES = 1
PIPE - FLOW(CFS) = 621.57
PIPE TRAVEL TIME(MIN.) = .33 Tc(MIN.) = 17.68
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
FLOW PROCESS FROM NODE 109.00 TO NODE 109.00 IS CODE = 8.1
» »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «<
MAINLINE Tc(MIN) = 17.68
* 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.226
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN
COMMERCIAL A 8.34 .98 .10 32
PUBLIC PARK _ A 2.68 .98 .85 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .97
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .28
SUBAREA AREA(ACRES) = 11.02 SUBAREA RUNOFF(CFS) = 29.27
EFFECTIVE AREA(ACRES) = 255.79 AREA- AVERAGED Fm(INCH /HR) = .43
AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .45
TOTAL AREA(ACRES) = 279.77 PEAK FLOW RATE(CFS) = 642.72
** PEAK FLOW RATE TABLE **
STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE
NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE
1 643.6 15.77 3.456 .975( .432) .44 236.5 100.00
2 642.7 17.68 3.226 .975( .434) .45 255.8 200.00
3 636.4 18.72 3.118 .975( .435) .45 263.6 303.00
4 586.2 22.68 2.778 .975( .436) .45 278.1 300.00
5 633.3 12.86 3.905 .975( .434) .45 202.8 40.00
6 640.6 18.04 3.188 .975( .434) .45 258.5 10.00
7 637.3 18.62 3.128 .975( .435) .45 262.9 .00
8 630.8 19.32 3.059 .975( .436) .45 267.1 20.00
9 613.1 20.56 2.947 .975( .436) .45 271.2 15.00
10 577.3 23.36 2.730 .975( .436) .45 279.6 10.00
11 568.6 23.88 2.694 .975( .436) .45 279.8 40.00
NEW PEAK FLOW DATA ARE:
PEAK FLOW RATE(CFS) = 643.61 Tc(MIN.) = 15.77
AREA- AVERAGED Fm(INCH /HR) = .43 AREA- AVERAGED Fp(INCH /HR) = .98
AREA- AVERAGED Ap = .44 EFFECTIVE AREA(ACRES) = 236.49
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 279.77 TC(MIN.) = 15.77
EFFECTIVE AREA(ACRES) = 236.49 AREA- AVERAGED Fm(INCH/HR)= .43
AREA- AVERAGED Fp(INCH /HR) = .98 AREA- AVERAGED Ap = .44
PEAK FLOW RATE(CFS) = 643.61
** PEAK FLOW RATE TABLE **
STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE
NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE
1 633.3 12.86 3.905 .975( .434) .45 202.8 40.00
2 643.6 15.77 3.456 .975( .432) .44 236.5 100.00
3 642.7 17.68 3.226 .975( .434) .45 255.8 200.00
4 640.6 18.04 3.188 .975( .434) .45 258.5 10.00
5 637.3 18.62 3.128 .975( .435) .45 262.9 .00
6 636.4 18.72 3.118 .975( .435) .45 263.6 303.00
7 630.8 19.32 3.059 .975( .436) .45 267.1 20.00
8 613.1 20.56 2.947 .975( .436) .45 271.2 15.00
9 586.2 22.68 2.778 .975( .436) .45 278.1 300.00
10 577.3 23.36 2.730 .975( .436) .45 279.6 10.00
11 568.6 23.88 2.694 .975( .436) .45 279.8 40.00
END OF RATIONAL METHOD ANALYSIS
s •♦ 'tee a° r e t a.
WSPG
Citrus - Walnut
Storm Drain
4.
T1 Revised Citrus Storm Drain Line 0
T2
T3
SO 953.1501382.540 1 1391.221
R 1055.9201383.450 1 .013 .000 - 90.000
1
JX 1062.4301384.560 1 2 .013 11.290 1386.060 75.0
.000
R 1074.5301384.860 3 .013 .000 .000
0
JX 1080.5301385.030 3 2 .013 11.710 1386.360 45.0
.000
R 1194.3401388.356 3 .013 .000 .000
0
R 1265.0201390.290 3 .013 .000 45.000
0
R 1302.1901391.310 3 .013 .000 .000
0
R 1372.8701393.460 3 .013 .000 - 45.000
1
R 1636.8201397.419 3 - .013 .000 .000
0
JX 1642.8201397.509 3 2 .013 38.000 1398.910 45.0
.000
R 2302.6701409.310 3 .013 .000 .000
1
JX 2311.4901409.480 3 2 .013 19.360 1410.860 45.0
. 000
R 2329.8301409.833 3 .013 .000 .000
0
JX 2335.8301409.948 1 2 .013 66.400 1411.350 45.0
. 000
R 3574.6901434.680 1 .013 .000 .000
3
JX 3579.3501434.840 1 4 .013 197.000 1435.840 .0
90.000
R 3668.3501436.258 1 .013 .000 90.000
0
JX 3675.3501436.325 1 2 36.013 12.500 12.5001436.4001436.400 -40.0 40.0
.000
R 4994.3501448.782 5 .013 .000 .000
3
JX 5001.3501448.840 5 6 .013 165.960 1448.900 -40.0
.000
R 5017.3501449.000 4 .013 .000 .000
0
R 5079.3501449.620 4 .013 .000 .000
1
JX 5086.3501449.690 4 2 2.013 8.460 1.3501449.7001449.700 -40.0 40.0
.000
R 6317.3501455.420 4 .013 .000 .000
3
JX 6332.3501455.810 7 2 .013 2.960 1455.900 .0 -
30.000
R 6412.3501458.210 7 .013 .000 - 60.000
0
JX 6419.3501458.420 7 2 2.013 19.110 19.1101458.5001458.500 -40.0 40.0
.000
R 6439.3501459.020 7 .013 .000 .000
1
JX 6446.3501459.230 2 2 .013 37.400 1459.230 40.0
.000
R 8115.3501493.970 2 .013 .000 .000
0
JX 8122.3501494.010 2 2 .013 1.000 1464.100 -80.0
40.000
R 8142.3501494.110 2 .013 .000 .000
0
WE 8142.3501494.110 68 .500
SH 8142.0001494.110 32 1464.110
CD 1 4 1 .000 6.000 .000 .000 .000 .00
CD 2 4 1 .000 2.000 .000 .000 .000 .00
CD 3 4 1 .000 6.500 .000 .000 .000 .00
CD 4 4 1 .000 5.000 .000 .000 .000 .00
CD 5 4 1 .000 5.500 .000 .000 .000 .00
CD 6 4 1 .000 3.500 .000 .000 .000 .00
CD 7 4 1 .000 3.000 .000 .000 .000 .00
CD 8 4 1 .000 4.000 .000 .000 .000 .00
CD 9 4 1 .000 6.000 .000 .000 .000 .00
CD 10 4 1 .000 2.000 .000 .000 .000 .00
CD 11 4 1 .000 6.000 .000 .000 .000 .00
CD 12 4 1 .000 5.000 .000 .000 .000 .00
CD 14 4 1 .000 5.000 .000 .000 .000 .00
CD 16 4 1 .000 3.000 .000 .000 .000 .00
CD 17 4 1 .000 3.500 .000 .000 .000 .00
CD 18 4 1 .000 5.000 .000 .000 .000 .00
CD 19 4 1 .000 2.500 .000 .000 .000 .00
CD 20 4 1 .000 2.500 .000 .000 .000 .00
CD 21 4 1 .000 4.000 .000 .000 .000 .00
CD 22 4 1 .000 2.500 .000 .000 .000 .00
CD 23 4 1 .000 3.000 .000 .000 .000 .00
CD 25 4 1 .000 3.000 .000 .000 .000 .00
CD 26 4 1 .000 2.500 .000 .000 .000 .00
CD 27 4 1 .000 2.500 .000 .000 .000 .00
CD 28 4 1 .000 3.000 .000 .000 .000 .00
CD 29 4 1 .000 2.000 .000 .000 .000 .00
CD 30 4 1 .000 2.500 .000 .000 .000 .00
CD 32 4 1 .000 2.500 .000 .000 .000 .00
CD 34 4 1 .000 5.500 .000 .000 .000 .00
CD 35 4 1 .000 2.500 .000 .000 .000 .00
CD 36 4 1 .000 2.500 .000 .000 .000 .00
CD 37 4 1 .000 5.500 .000 .000 .000 .00
CD 38 4 1 .000 3.500 .000 .000 .000 .00
CD 39 4 1 .000 5.000 .000 .000 .000 .00
CD 40 4 1 .000 2.500 .000 .000 .000 .00
CD 41 4 1 .000 2.500 .000 .000 .000 .00
CD 42 4 1 .000 2.500 .000 .000 .000 .00
CD 43 4 1 .000 2.500 .000 .000 .000 .00
CD 44 4 1 .000 2.500 .000 .000 .000 .00
CD 45 4 1 .000 5.000 .000 .000 .000 .00
CD 47 4 1 .000 5.000 .000 .000 .000 .00
CD. 48 4 1 .000 2.000 .000 .000 .000 .00
CD 49 4 1 .000 3.000 .000 .000 .000 .00
CD 50 4 1 .000 2.500 .000 .000 .000 .00
CD 51 4 1 .000 2.500 .000 .000 .000 .00
CD 52 4 1 .000 3.000 .000 .000 .000 .00
CD 53 4 1 .000 3.000 .000 .000 .000 .00
CD 54 4 1 .000 3.000 .000 .000 .000 .00
CD 56 4 1 .000 5.000 .000 .000 .000 .00
CD 58 4 1 .000 2.500 .000 .000 .000 .00
CD 59 4 1 .000 2.500 .000 .000 .000 .00
CD 61 4 1 .000 2.000 .000 .000 .000 .00
CD 63 4 1 .000 2.500 .000 .000 .000 .00
CD 65 4 1 .000 2.000 .000 .000 .000 .00
CD 66 4 1 .000 2.000 .000 .000 .000 .00
CD 67 4 1 .000 2.500 .000 .000 .000 .00
CD 68 2 0 .000 3.500 14.000 .000 .000 .00
Q 19.500 .0
.1 # a C t 0 O 0 O 0 0 0 0 0
w # .4' -.1 U t .
N t$\ W t W >1 W W W W W W W
r t m # a a 0. a a a a a a
W u) # O S1 . -. t ,-4 H H H HI H 01 H ,-1 H '-1 H 1-1 H r1 H H H
4 Ch * Z a E 1 a , a 1 a 1 a I a I a 1 a I a I a
a
t # 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 # N N* 0 O O O O O O o O O O o O O O O o 0
•.i t #
E t t 1 1 1 1 1 1 1 I 1
it
t 4 1 H * 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
w t M q HI # 0 0 0 0 0 0 0 0 0 0 o O o 0 0 o O
o t • 1tl t O • o • O • o • o • o • o • o • O
O # W H W #
N # W 1 #
1 t ro 11 K #
N t CO 0 1 # 1 1 1 1 1 I I 1 1
t
I #\ E 1 # 1 1 1 1 1 1 1 1 1
V' # 11 W # 0 0 0 0 0 0 o 0 0
*,o 1 -# O m 0 m 0 M 0 M 0 M 0 M 0 M 0 m 0 m
t 01 • Z. # o .1 ,1 u .1 O l 10 4-1 A .1 . 1f1 r1 u1 I in ,-1 11 ri
0) # -.1 01 = t • O O • 0 • 0 • 0 • 0
1.1 t W •H1 # 1D • tD • t D • 1D • l D • 1D • 1 D 0 • tD 0 t0 0 • 01 * it
Z 1 t 1 I 1 1 1 1 1 1 1
i1 0, 1 11 1 1 1 1 ■ 1 1 1 I
# 0 p,t
t E A la # 0 0 0 0 to 0 0 m 0 N 0 U3 0 M 0 *1
* 3 b 44 0 0 0 0 N 0 0 01 0 0 0 0 0 ON 0 .1
t (f1 1 Z, # 1 1 1 1 1 1 1 1 I
t
# r-I 1 Z# 1 1 1 1 1 1 1 1 I
t O .0 W# r- o r- 0 0) O al 0 ID 0 10 0 ID 0 ID 0 t0 0
41 •r1 11 'O # m • m O .1 • H-1 0 ri • ri • ,-1 • -4 • 11
It 11 a 0 #
# -6-1 W 0 # 01 u) 10 t0 00 10 ID 10 t0
# W 0. S1 14
# 0 1 W# 1 1 1 1 1 1 1 1
t
# 1 A# 1 m 1 1 N 1 I O 1 t. 1 M I M 1 N
CO # N >, 1.1 # 0 10 0 d' 0 to 0 0 0 r 0 ON o m 0 M 0 N
0 C9 it W W a# 0 • 0 0) 0 • 0 *r 0 • 0 • 0 • 0 • 0
• Z # 0,-1 Z# • m • 01 • N • 0 • 0 • 0 • 0
, H * CO W W * N ,1 H H .1 .1 H .1
V) # 1 CO it 1 I 1 1 1 I 1 1 1
0 H #
0 4 # • 1 # 1 1 1 1 1 1 1 1 I
-.1 t >, .-I it t` t` M u) N m 0 01 1.0 01 1/40 01 u) N N 01 V' 0
m W # 01 W # N CO V ,1 N 4-1 01 0 .-1 u) t` 01 u1 u1 0 01 ,1 t`
1.1 .7 # 11 • Co t
W H t W •O ( t 01 N VI N N M H V• t0 t` 01 M
> W # F1 31 t al, O O O O O O O O
N 0 t W U' it m V' V' V' d' V' V' V' VI
Z m 0; # # .-I H1 ,1 .1 .1 .-1 H 01 H
0 M a t 1 t 1 1 1 1 1 1 1 1 1
H ri #
() ( i 7 11 1 W # 1 0 I ,-4 1n 1 0 - t1 1 u) V 1 M M 1 0 M 1 0 M I O 41 1 0 M 1 0
W C./ * 'O > # 0 M 0 N t0 V 10 U. V' V' V V V' V' V' V' VI V•
43 14' # ,-1 10 A ' . 3 • N • N • H-1 • r1 ,. ,-1 • • ,1 • H H (L * > M m 0 m 0 1n 0 1n 0 In 0 u1 0 1n 0 1.11 0 1n 0
H U) t 1 # 1 1 1 1 1 1 1 1 I
U # - - - - - - - - - - -
0 a' W # 1 # t0 1 IC) 1 10 1 1.0 1 0 1 0 1 0 1 0 1 0 1
I Z., &.1 * H - * N N 0 0 r N N r `
t
3 .1 Q 0 t W a t N N a1 co m m m m m
1d 0 * > r44 * N N Hi H H r4 H r4 HI
a w •ro * v 1 # 1 1 1 1 1 1 1 1 1
(n 14 # 1 # H 1 H 1 N I N I ,-1 I r1 1 ,-I 1 .1 I ,♦ 1
0) Ll # # ■D 10 M CO 10 t0 10 t0 l0
W t #
,3 IT E # U) # M CO N N 0 0 0 0 0
01 1-1 t Cc W # VI V1 M M N N N N N
U J 0 * U * 00 10 10 10 10 10 10 l0 10
of (1) # t
a # 1 t 1 1 1 1 1 1 1 1
m #
# 1 t r1 i ID I N 1 CO I 0) 1 M 1 O 1 H 1 O 1
f0 # # N m CO u1 N N N V' H
/I 14
t t W> # N CO 0 N r M .1 to r
O U t al W # ,-4 1D N r- t` o) ,-i ,1 CO
1a # 01 ,-1 # 01 01 0) 01 01 01 0 0 0
a 'O t $ W # CO M CO CO M M V' d' cN
W # # ,-1 ,1 H .1 r1 01 ,1 r1 .1
1n # 1 # 1 1 1 1 1 1 1 1 1
-11 #
$ > # 1 # I-I 1 0 1 CV 1 CO 1 01 1 m 1 0 1 .4 1 0 1
CO W t ,C, # m M N 01 01 10 M M N
a * a E * ID 0■ 41) M to 0) m M N
M # W N. t m N N N N 0 0 0 0
( # Q # r1 HI 1-I .1 ,1 1-1 .1 ,1
# #
# I t 1
1 1 1 1 1 1 1 1
.11 t
CO 11 1 # 0 1 0 1 0 1 0 1 0 1 10 1 0 1 0 1 0 1
10 # W # V' 01 to 1.0 CO 10 CO N in V 01 V1 m V' 10 0
0 # 11 a t In m V ul ul V CO CO 0 ON M t` N t` M 0 It 111
41 # 11 > 0# • 0 • 0 • N • CO • N • N • N • M • HI
- # W W HI # N 0 CO t` V' 0 V' N 1!) 0 CO 0 0 0 ,-I 0 CO 0
U t > HI 0) # CO • CO ,-1 CO • CO 0 CO • m • 01 • 0■ • 01
'0 t 0 W t M CO • CO M • M M M M M
W t H .0 # ,1 ,1 HI ,1 ,1 ,1 HI r1 .1
10 # 1 U t 1 1 1 1 1 1 1 1 1
•r1 t
> # 1 t 0 1 0 0 IM 0 1 0 0l ( . t ' 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
W # 0 t 11) t` N E M 0 M E M H V' m N t` 01 CO r 111
0: # - 0 W # ,-I N 01 0) V' ri 01 CO u) CO CO 10 0 r-I r1 10 m 01
# 11 ,--I t M N 111 E N N U. E 0 M U. O 10 t` N 0 N M
W # 11 W # 10 0 u) U tD ,1 N U m ,I 01 N 1.0 M 0 N t- 1.0
1a # 41 \# 01 ,1 0 0 0 Z Z 0 r1 r4 N M M N
H * CO ,-4 * ,-1 Z ,1 r1 � 7-, H H .1 H r1
N * W 4* 0 0 0 0 0 0 0 0 0
a * 4 - . 4 U * .
N * \ 0) * W W W W W W W W W
W u1 * O )4 T* ri H H H rl H ri H H H r1 H rl N r1 H I-4 H
* Z a E* I a 1 a ■ a ■ a ■ a 1 a I a 1 a I a
4 01 a
* * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
E * N N * 0 O O 0 0 O O O O O O o 0 0 O O 0 O
-ri * *
E # * 1 1 1 1 1 1
*
* 4.1 • 1 H* 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
a * 3 0 r4 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
O * y H Cu * 0 • 0 • O • O • O • o • O • O • O
N * W 4 *
1 * re 11 X *
N * (11 O I * I 1 1 I I I 1 1 I
x
I *\ E I * I I 1 1 I 1 1 1 I
a * al W * O O O O O M O O O O
* ,4 1 -* O co O m O m o m 0,-4 co M O co O M O m
* d) • 7. * In ri to H In H u) H In .•1 0 0 0 H 0 .4 0 r1
11 ) * •r1 CO =* • 0 • 0 • 0 • 0 • 0 0 • 0 • O
u * 41 -r1 * to • VD • 10 • to • tO to • t • t0 • t o
MI * ,'1 q 1 * I 1 1 4 1 I i 1 I
q *
it (1, 1 p, * I I I 4 1 1 I I I
* H ,4 q* 0 0 N 0 0 0 0 N N N r 01 r r- N
* L k 0 0 1n 0 0 (r1 0 In r 4 in H m r-1 ri .•1
* 3 'd E *
0 * 0 1 3 O `" In a in •
a u1 a 1n a
* W 1 Z # I 1 I I 1 1 1 1 I
k
k •--1 1 z* I 1 1 I 1 I I 4 I
* O ,4 0) * 10 0 00 O 00 O M O r) O 10 ri 1O r4 10 0 t0 CO
* 11 4.1 ,y * ri 0 0 0 0 0 0 t0 N 10 • N 10 • N 10
* •r1 01 0 * to to t0 t0 10 N In in u1
* H q 1i *
* (.1 1 W* 1 4 1 1 1 1 1 1 1
*
* I ,L, 4. I I t0 I I CO I CO 1 r I r I N I N
r1 * 11 > it * O 01 O 01 0 u1 0 O 0 a0 0 ri 0 •-1 O M O in
o (9 k y to p, * o m o • 0 in 0 • o • 0 • o • 0 • o
a r-1 * 0 W .* rn 0 co r - a • a • a • a •
rl F k U) W *
0] * I Cr) * I 1 4 1 4 I 1 I 1
4 H *
0 a * • 1 * 4 1 I I 4 I 1 I 1
.,i * >r r-1 * Cr 01 10 In u1 ri 01 ri 0 N 0 N N a r-1 1/40 CO
11 ,.7 • 0 W • W* CO 0 N .-1 10 H 01 N N CO H 01 a0 r In N 1n
. . . . . . . . . . . . . .
0) H * 0) 'd ,'i * N M CO rl 1-1 N N in r 0 co rn N ri
> W * 0 11 * ri H N N N N N H M a
N 0 • W 0 * a a a a a a a a a
Z O a * * r•1 ra 4-4 .-1 ri ri H r•1 ri
(9 M a x I * I 1 I 1 1 4 4 1 1
H r-4 iv
CO W * I 0) * M I N 0) 1 M 0) 4 01 r I In r I 0 10 0 1 ri CO I In a I t0
W U k 'd >* a M N N r r1 a r a N 0 r 0) 0 r (+1 1n
,Q Q' # r-1 ctl a' * rl rl ri r-I N • H • H • H H } . � w * w* •
In O a 0 a 0 a 0 a m 0 O 0 03 0 r 0
> 0)P * u1*
H CO * 1 * 1 I I I 1 1 I 4 I
U * — — — — — — — — — -1 —
0 a Q) * 1 * 0 4 to 4 1D I r 4 N I r I N I ri I u I
1 17, H 0 * N In In * , m 01 ON t0 10 CO r
3 r-1 4.4 * 0) a k 03 N N W 13 r1 M N H
U 3 4 > *Cl. iv ri .•1 r4 H N N N N
C14 •� * ... 1 # 1
I 1 1 I 1 I I I
CO 11 * 1 * r-1 I ri I r•I 1 In 4 1n I 111 4 ul 1 In 1 1/1 1
CO 0 * * t0 10 t0 N N a0 a0 a0 a0 •
40 0) E * (A * O N N M (n 10 t0 10 t0
CO Sd # 0 W * N co IA 10 10 0) 0) 0) 0)
U 0 0 11 .1, * 1D in In N u1 a a a a
CO CO
4 *
a iv # 1 I 1 1 1 I 1
CO *
41 1 * 0) I r) I ■i I M I In I N I 1D 1 r I 1.0 I
ro iv # 0 N 1O H N N N 10 H
14 4-1
* > * a a CO u N H N 10 01
Q0 U * 4.1 0 * r w 10 r r a 0) O a
11 * ro .-I * 0 0 ,-4 r1 ri ri ri CO (•1
0. b * 3 CO * a a a a a a a a a
0) * * r-1 1-1 1-1 H H 1-1 ri r-1 r1
M * 4 *
4 1 1 I I 1 I 1 1
•.-1 *
3 > * 1 * 0 , a 1 H 4 r) I (V 4 a 1 a 1 CO I 01 4
(A 0) • ,4 * 0) t0 in r1 ON N r- H H
3 qd In
* J F * 01 0) u1 o co r-I H r1
IX * w W * 0) 0 r ao r a a a a
1 IE E1 x q – # H * *
* 1 * 1 I I 4 1 1 1 1 I
1) *
CO * 1 * ON 1 0) 4 0 4 0 I M 1 co 1 N 1 01 4 r 1
O) * 01 * r1 O 01 r1 00 N M a 0 to 0 a 0 01 0
0 • y1 0, * a O In r CO CO a 01 00 N at O O O r) 0 r1 O
41 * 11 > 0 * • in • r-1 • 0) • r1 • at • N • N • (NI • N
-.1 * 0) (1) r * r 1 r O 01 ri at 0 01 H 01 O in O 10 0 0 0
0 * > -4 Cr) * 01 O 01 • O 0 O • O 0 0 • H • N • M
'd x 4 (43 * m • rn a • VI a • 1 a a a
0) * H ,0 * H H ri ri r I r-1 1-1 1-1 H
CO * 1 0* I 1
4 1 1 I I 1 I
ri
> x 1 * 0 I 0 4 0 4 0 0 1 a 0 1 0 0101 0 1 0 0, a a I 0) (1410
(1) * 0 * N E N u1 r E 0) a r1 E r) r O r r a N 0)
0; x 0 E * a0 Cr) m co l0 CO a r) O) (1) 10 10 ul 00 r1 N .-4 a
* -IA 0)
* 4.1 1-1 * 10 E N 01 N E r-1 00 01 F In co H in r- N 0 r-4
40 * ft W* M U a In 0 U ■•1 H N U CO LO 0) to u1 0 10 0
I-3 11 1.1 \ * 1.0 Z 10 10 rl Z 01 O1 g r) N In N H N M r )
H * CO 4* r-1 ,--4 N M N N M N N 01 r1
W k * 1- 4 17
M * 44 0. .0* 0 O O O O O O O O
N -1 a * 1 *
r- 44 co * 3\ 1(1)1� * W W W W W W W W W
01 U1 * 0 1i >. # r-I H rI 1-1 r1 H I-1 H H H 01 H rl H r•I H ri H
•• * Z a F* ■ a 1 a I a I a I a I a I a 1 0. I a
4 01 4
a • 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0) 4 I-7 [ti: * o O o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 * N N #
•r1 * *
E * 1 * 1 1 1 I 1 1 I I I
*
* 1) • 1 r-1 * 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
a * 3 A ,-I * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
O * • (114 0 •0 0 •0 0 •0 •0 •0 •0
o * 0 H W *
N 1. ml )4 D4 *
N * (n 0 , * 1 1 1 1 1 1 1 I I
*
1 *\ E 1 * 1 1 1 1 1 1 1 1 ■
a * 11 04 4 0 0 0 o O o o O o
* .0 1 -* 0 M 0 M O M 0 M 0 M O M 0 M 0 M 0 M
* (7) • Z * 0 ■• o H o r1 o Hi o rl o . (1) , 111 H 0 ri
4) * •ri of =* • o • O O • O • 0
1.) * O) .. 1. 1p • 1D • 1C 1 • (0 • 0 • 1 p 0 u 1 0 U 1 O u 1 o • 46 3 3 0 1 * 1 1 1 1 1 1 1 1 1
0) *
* (1. 1 4 1 1 1 1 1 1 1 1 1
* 0 01*
* E 4 01 * 01 r ON N 0 r ID 0 1-1 0 0 r 0 0 In
4
.ii 4 4 3 R, * a0 r{ a H 01 ri N 0 N 0 0 CO 0 0 N
0 * 0 -rl 3.1 * a a a a m a N 01 of N
* 1-1 3 0 *
* W 1 Ij,• * 1 1 1 1 1 1 1 1 1
it
* H 1 Z* 1 1 1 1 I 1 1 1 I
* b * U1 r 0) 0 0 0
4 0 A G) * ID 10 ID a (0 N 10 O m O M O O O O O 00 O
* /-1 .) 0 4 4. lD H 1O • r.1 (0 r U) 0 r • r 0 (0 • (0 O 01 •
* ••1 C) 0 * U) 1/1 131 1n r1 V' a a VI N
* 11 1a 11 *
* 0 1 a* 1 1 1 1 1 1 1 1 1
4
4 ,.4 4 1 a CO In
I 0) I CO CD 1 1 1 1 1 1
M * 11 > 1 1.1 * 0 r O 0) O N 0 O 0 r 0 co O r 0 N 0 ,-I
0 U' * G) W 0. * 0 • 0 • 0 • 0 0 0 • 0 N 0 • 0 V' 0
• Z 3 0. r1 01 * • a • a • 1/1 • 01 • CA • 0)
1. H F * u 1 ) W ((1 4 1D 1n ON 1n
Co * 1 (1) * 1 1 1 1 1 1 1 1 1
0 H 3
0 .1 * • 1 4 1 1 1 1 I 1 1 1 1
•••1 1 >, •-1 * I. OD 0 CO r CO ID V' (• 111 CO M a V. 01 M 1D (1
01 a * e * CO CO r 1 5-1 rl M 0 M V' N o r - 1 0) N 0 VI 0
0) H * 0) '( X * M a U) u> ID r CO CO r r
> W * 0 11 *1 V a V' a a V •1 in In
N 0 • Da 0 * V. a a V' a V' V' a a
Z CO (x 4 4 rl H rl r1 H rl r1 r1 H
H 01 a * I * 1 1 I 1 1 1 1 1 ■
U ) W * 1 0 * co 1 , - I r 1 0) N 1 r1 rl I U) U) I 0 1.31 I 1D CO I r 0)10) C O I N
W 0 * '0 >* ID V' O N U) N O CO r in r a O 10 O m a ri
0 ) * H b 4* '' • 1-4 • Hi O O O O O • O
•• W * 0) W * •
ID 0 ID 0 U1 0 U) 0 H 0 H 0 N 0 N 0 O
H 11 44 14
> 0 1 > M V) *
H C1) . 4 1 1 1 1 1 1 1 1 1 1 1
0 4 — — — — — — — — —
0 IX 0) * I 4 M 1 r 1 In 1 r 1 r♦ I r1 I r 1 N I In 1
1 Z E •• * r-I m 4 r r CO 01 ID 1D In In In
3 r-1 4 a * G) a 4 o O1 co r o o ri r in 1.
0 -.4 (0 3 * > W * N r1 r1 1-4 ,4 r1 H H
a 4 ro
0) 14 * 1 4 U1 I 1/1 1 In 1 1n 1 In 1 In 1 In 1 111 I 01 1
(1) n * 4 0) CO m 03 CO CO CO CO OD
W * 41 Z 01 M 1. (A * 1D ID 1D ID ON 0) a a 00
b • d W * 01 01 01 01 ON 01 N r O
Ad 0 * 0 * a a a a N N N N H
0 41 4 #
0 (4) * 4
04 1 1 * 1 1 1 1 1 1 1 1
m *
PS * 1 4 VI I 0) 1 r I a I M I CO 1 ON I r 1 10 I
*
4 l0 N UI a r M 1n 0 CO
11 4.) 4 34 * O) > 4
rI ID 10 M U) U) O N 01
O 0 * 11 W 4 r co 0) O a in 1D 1n ID
14 4 0 H 4 M CO CO a a V' a U) in
P4 . 0 • 3 w 4 a a V' a a a V' V' V1
11) * 1 ri ri r I H H r1 ,-I r1 .-1
D) 1 1 4 1 1 1 1 1 1 1 1 1
- rl 4
3 > * 1 4 H 1 0 I 1-1 1 0' 1 M 1 0 1 a 1 In 1 10 1
(1) 11) * ,4' 4 a 01 CD ID M CO M N a
3 0: * a E * r 0) N 10 r N r a H
Q: * 0) (L 3 a a U1 U1 0) 0) 01 1D CO
Id # 44 # 1 * 1 1 1 1 1 1 1 1 1
1.) 4
CO * 1 4 M 1 ON 1 111 1 0 1 0 1 CO 1 N 1 N 1 0 1
(0 * O) * N 0 M 0 r 0 CO a 01 U) N a CO a O
0 * 1.1 Q. * a 0 ID 0 M 0 I,D M CO 11) N ID M 0) r M CD O
4-) • 11 > 0 * • N • N • Cl • a • H • 0) • 0 • 10 • H
-'1 1 O) (I) H * N 0 M 0 V' 0 a M a 0 lD 0 10 0 CO 0 OD 0
0 1 > ri CO * M • M • M • M 0 M • M 0 M • a 0 a
'0 * 0 W * a a a a • a a • a a • a
0) 11 H A" * rl r1 H '-4 H rI H H 1-1
01 * I () * 1 1 1 1 1 1 I 1 I
-rl *
> * 1 # r1 1 01 0) 1 M N 1 CO 0 11 0 1 0 0 1 a 0 I 0 0 I LY 0 1 0
0) 1 0 * N N a OD M N ON E U) 0 In E In o u) E In 0
114 1 0 0* 10 01 U) CD a N 10 U) M O M co M 0 M (A M 0
* •H1 O) *
* )1 H * r-1 0 N 10 01 In a E 01 01 CO E 111 01 a E rl l0
W * 10 W* 11) 10 N (s1 U) r1 N U S co 10 0 N H 01 0 0 r1
a 41 1■ # V' U) Ul 111 Z In 10 Z I.0 M 0) Z 0
H 1 (A ,-7 * M M M M M M m ri a 0 In
Gn 1 1 rJ 1- 0 1-D
Ti. t a .0 t 0 O O O 0 O 0 O 0
✓ t .0- U t .
N t .1 a 3
3 ....• 0 t W W W W W W W W
r t 0) (� x
GI 1(1 t 0 Si >. 3 r1 H ri H ri H ri H r-I H .-1 H ri H 1-1 H '-I
t Z O. H x 1 a ■ a • a • a • 0. 1 a I a 1 a ■
a
• x t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 x N N t 0 00 00 0 0 0 0 0 0 0 0 0 O O O
- ri t t
F x #
•
4 I 1 1
4
t LJ • 1 r t 0 i 0 0 l 0 0 4 0 0 1 0 0 1 0 0 i 0 0 1 0 0 1 0 0 4
d' t $ 0 ri t o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
O t • 0) x o • O • o • o • O • O • O • o • O
O t G) H w x
N x 0) • 3
• x ro u >C t
N t 01 0 1 t 1 1 1 1 1 1 1
x
t\ F 1 x 1 1 1 1 1 I 1 I •
VI t j) w x o o O O o 0 0 0 0
4 .0 • - t O M O M 0 M 0 M O M O M O m O m O
x 01 • Z t O •-• o 4-I o H 0 H 0 H 0 H O H O 4-4 0
U) x .,i 0 = 4 • 0 • 0 • O • O • o • 0 • O • 0
iJ 4 W .•• x 1(1 • u1 • to • in • in • in • In • 1I1 • in
ft t'I' q I 3 I • 1 1 I 1 1 1 1 1
0 t
s 0 1 a #
4 1 i i 1 i i 1 i
t E• .q 0 t O In 0 0 r 0 r 0 r a r M r H r M
4 3 b 3 0 N 0 0 l0 0 ID ON ID 1(1 l0 ON ND N NO M 4.
0 4 0 •r1 t N N N N N m N M N V• N V'
t ri i 0 t
3 w 1 Z. I 1 1 I I 1 1
4
x .1 1 z t 1 1 1 1 1 4 I
t al 3 o o O r d' 01 in
t 0 A 0) t 00 O co O m O m O co m m V• m V' M In M
t .rl 1.1 '0 t 0) • ON 0 CO • m • CO • CO • CO • CO • CO
x aJ a 0 t
x •r1 0) 0 x N N N N N N N N N
t ii (a ).i it
x U 1 w t 1 I I 1 1 1
4 1 I
t
4 I ,c,' t i ri • 1 0 1 0 1 V' 1 N 1 in • in 1
M x ►i > 4- 0 0 O M O to O O O N 0 N 0 0 0 CO 0
0 U t W 0) ax 0 • o u1 0 • o • o • o • o • o • o
1. • H t W 0 s 00 r•-
r in • d' • V• • V. • M
ri H x (1) W t
CO # 0) t
• 1 4 1 • 1 1 1
O H t
0 1-7 4 • 1 t
1
•
4
4 • • I 1 I 1
- ri 4 >y r 3 0) rI N r♦ ON 01 N r ON 01 CO CO lD r M V' r
CO W 8 a1 W t V' . - lD 0 ID H ON H 0 0 ri 0 N 0 M 0 M
1.1 .7 it S4 • w t
0) FI x W 'a Z t 1 - r r H 00 01 0) ON ON 01
> w t 0 11 3 in to In to In In In In In
(NI 0 t W U 3 V' V' Ti. d' V' sP d' d• a
Z co a x 3 rl .-i •• rl •• .-I •i ri ri
U• M a 4 1 4 1 I I
4 1 1 1 4
H r-I t
1n W t 1 0) 4 00 4 r CO 1 ID 0 1 V' 0 1 M M 1 M CO 1 V• M 1 ND m 1 r r-I 1
W U t T) > x d• r-I w r1 w r-1 V' ri w r-1 w ri 1n .-i u1 rI ID
9 4 t ri co 4 t 0 0 0 0 0 0 0 0
H u w * w * O O O O O O O 0
> W t 1n t
H A V) 3 1 3
1
1 �
• 1 • 1 � 1
U E t — — _ — _ — _ — _ —
O a' I)) 4 1 4 In 4 in 1 1.11 1 In 1 0) t 111 1 N 1 rl 1 W i
1 Z 0 - t .. CO 4 In in 0 0 N In CO 1-1 N 3
: , Q' .7 x W a 3 In in in in in 10 in ID IO
• 1.4 -r1 3 1 4
1 1 1
4 1 1 1 1
CU (1) ro t
U) 14 t 1 3 ON 1 01 1 CO 1 CO 1 Do 1 CO 1 CO 1 CO 1 (0 1
m 0 t t co m o 0 0 0 0 o O
4) 4 t
• al E 4 co 4 f0 00 ON 01 01 01 ON 0) al
10 3 4
4. °I V 4 0 0 ON 01 0) ON m 0 ) m
O 1•I 4 3
40 (0 t t
a 4 1 4
4
1 1
4 1 I I 1
0) 3
b t 1 t w 1 IO i M 1 ID 4 CO i M i ri O 4 O 4
t t H d• ON N
1I1 M 0 M Ill lD
H 41 4 11 t 0 •• N in to N r l - r-
ill •r1 t W G. x
O U 4 IJ W t r r r- co 00 co W m 00
11 t ro 4 it In 1(1 U1 in in U1 U1 in in
0. b t W t w w w el. d' V' w a V
W t t ri 4-4 r1 H H •• r ■l H
W 4 1 4
1 1 1 i 1 1 i 1 i
.,i 3
.4 > 3 1 4 Cr 1 ID 1 d' 1 0 1 10 4 N 4 111 1 0 1 N I
0) W t 4 3 ri N O O M to V' in V'
• D: * W F # O in IO 0 1n N 0 OD r
Z t W W 3 m r r- in V' V' V' M M
3 0 .- 3
t t
t t
1 1 �
4
• • � 1 1
4,.1 3
U) t 4 3 O 1 0 1 0 I 4.0 1 N 1 VD I 1D i 0 i M 1
01 4 W t 0 0 N 01 N N r N r M r 00 r O r •-•
O t ♦J 0. x 0 0 ID 0 l0 V' In 1' r-I V. V. V' ■0 V' CO '' 0
11 3 )i > 0 t • ri • O • O • O • o • O • O • 0
-rl 4 W W •i t ON 0 ON ■ 01 O M 0 V' 0 V 0 V' o V' o in
O x > r• m t cp • '4 o d' • In • In • in • in • In • in a
'0 t 0 W 3 .0. V' • V' V• V. V. V' V' d' 6
W x H .0 t H .-1 ,-1 •-• •-i H H .-I
H
r/3 t • U t i i 1
•ri x •
> t 1 t 0 1 o o 1 04 0 I d• .4' 1 10 ri 1 CO OD 1 N 0 1 ri H i 01 0 1 (J
0) t 0 t in O in H in r N N in N r ,-i 01 r-1 O r-1 N Fi
IX t 0 0 t M 0 M (1) M 0 V' 0 V• d' CO CO ID 0 r N 0) a
t - ri W t •
t .ti • - • t r N 0) F ID V• 0 OD O0 r N M 01 ID in V' CO FC
(0 4 ro W t H ID r U 0 N H N M lO 0 11) in w 0 N N R:
,.a t IJ ■ t 0 0 Z 0 OD 01 ri 0 ri ■i N N 0
H t (1) 1.3 t In 1) • .D 111 In I0 ID lO ND IO >1
w x t 4 D x
.. -..: :.,.,,,..........,..,._.,... y., a, a ..r ,,,,., . ..
In 3 a U* 0 0 0 0 0 0 0 0 0
N # 3\ 0# W W W W 0) W W 01 k)
1 4 m k a a a a a a a a a
o #
ril t 0 1-1 ?I # r - 1 H r1 H H H .-1 H ••-I H .--I H H H .-1 H r1 H
(,9 3 Z 0. E# 1 a 1 a 1 a 1 a 1 0. 1 a 1 a 1 a 1 a
Q O\ #
a
8 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
E k N N k 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
•1 4 4
E 8 3 I
k
k J.) • I 1 k 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 i0
d' k 3 Q I - 1 k 0 0 0 0 0 0 0 o 0 o 0 0 0 0 0 0 0 0
O 4 • tO k O • O • 0 • 0 • o • 0 • O • O • 0
O 3 01 H W k
N # 0 1 #
1 # fd }1 X #
N k Q) O I k I 1 1 I 1 1 I I 1
3
■ #\ E I 4 I 1 1 1 • 1 1 1 •
<N # JJ W # 0 0 0 0 O 0 0 0 0
# .0 1 C# 0 co 0 m 0 m 0 m 0 m 0 m 0 m 0 m 0 M
4 0) • Z k 0 .-4 0 .--1 0 1 0 1 0 H 0 1 0 1 0 .-1 0 ,-1
0) k •rl It = k • 0 • 0 • 0 • 0 • 0 • 0 • 0 • O • 0
.1.) it (1) -1 4 (1) • In • ((1 • (4) • In • M • M • M • m
(0 4 .x Q 1 # I I I 1 1 • • • i
Q 4
# 0 1 P. 4 1 1 1 1
• • • • 1
3 0 ▪ 4+ Q 4 d. r N 1'- 0) N 40 n CO V' 01 r-I ON 0 01 CO 01
# J.) C}• # ON (0 0) 10 CO )0 O 10 CO In 0 d• 0 N 0 CO 0
le X 0 4 0 'd >4 # d N d' N d' N d• N d' N N N N N N 1 N
# [ • 1 3 t1 1 z # 1 I • I 1 1 • I 1 • 1
4
# 1 I 1 Z # 1 1 1 1 I 1 I • 1
# Id k 1- d' t` r-I m r 00 In
k ) .Ci G) k M N M CO m 0) M 1 m 4.0 1L 0) co N 10 In O M
# •.4 JJ 'd # CO • CO • O • CO • CO N CO • CO • CO • CO
4 N a d # • 1 • Id • r-1 • N • ri • 1 • 1 • 1
# •••1 (11 0# N (31 N N N N N N N N
4 Si Q H 11
# 0 1 k. k 1 1 1 1 1 1 1 • •
k
# I .0 # . 0 1 )0 • 01 1 N 1 1 0 I O1 • N • n
m it 4 •.>• J-1 # 0 r•1 0 0 0 0) 0 ON CO m O m O M 0 Lf1 0 10
0 C) # d) G) Wk 0 • 0 • 0 • 0 • 1 0 0 • 0 • 0 • 0
• d' Z # it 0 Q W k N • N • 1 • 1 r- 01 • N • N • N • N
1 E k CO W#
0) 4 I O# I 1 1 I 1 1 I • I •
r.. H 11
0 to 8 • 1 4
1
• 1 1 1 1 I I I
-rl k ?I rl 4 ON CO N H 03 M 1 10 10 •-I (0 1 r m 0 . - 1 0 d'
111 kl k 00 W 3 In r-I N m 0 m d• m r m r) N 0 u1 10 m ON r-1
)4 «7 k 11 • 0, #
(L) H # 0) 'd .T, 4 00 01 0 0 0 N m m M
• k1 k 0 14 k In In (0 10 (0 10 10 10 40
N 0 # W C9 # d' V. d' d' <M d' d' d1 d'
Z m 0: 4 4 1 1 1 1 1 rl rl 1 1
U m a k 1 k •
• 1
• • 1 1
• 1 •
H • k
U) CO 4 • O# 00 • 0 M • CO 01 1 0 03 1 CO CO I d' If) 1 O M 1 01 N 1 N In 1 m
W U # 'd D# d' 1 10 N 00 0' 1 In d' O N N 0) O In at N m
. Q 7 A' # H (0 µ' # • H • H • H • H • N • N • N • H • r1
k1 k d) N # N 0 N 0 N 0 M O M O a 0 m 0 m 0 (0 0
H 11 IZ # 17 'a". W #
.'� d) # U) #
H CO # 1 # 1 1 I ■ 1 1 . 1 1 I
U 4 — — — — — —1 — — — — —
d D 0) # 1 4 m 1 0 1 d' 1 0 1 0 1 d' • 1 • r - I NO 1
'Z(1)(0 k 4 40 0 10 (') O 01 ON 1 d'
3 1 4 a * W W 4 N M r ) w In (0 In u) w
al 3 *> w * 1 1 1-1 1 1 1 1 1 1
Ir •.'I 4 v 1 4 •
• •
• • I I • 1 • • •
Oa m 0 #
(n N 3 1 3 m 1 CO 1 CO 1 CO 1 CO 1 N I N 1 N 1 N 1
(1) Q 8 4 0 0 0 0 0 1 1 1 1
d) # 3
3 01 E 4 0 # 0) 0) ON ON ON (0 40 10 10
OS }1 # 0 ( # CO CO 01 01 ON 0) 0) 01 at
.) 0 # U 3
o 44 # #
it 0) 3 3
a 3 1 #
• 1
• • 1 1 1 1 • •
01 3
4 1 3 r 1 0) 1 N I N 1 O 1 0) • O • M 1 10 I
b # 3 1 d' O) M 0••• O d• N In
N J-I 4 1-4 8 1 1 1 N N 1 1 0 10
X71 •r1 # N 4
O U 4 4.4 0) 4 N N 0- N h 00 CO 0 o
14 4 Id 1 4 In In In In In an to (0 10
a .0 k $ W it d' d' d' d' d' d' d' d' d'
d) # 3 1 1 1 1 1 1 1 1 1
I)) 8 1 4
• •
• 1 •
• •
I 1 1 1
••• #
3 . k • it d' • 00 • If) • ■0 1 0 • 01 1 1 1 at 1 0 1
co d) k ,(0 3 0 to m 1 In 0) 0) 1 r-
3 0; # JJ r. 3 1 0 ON 0) 00 N M N 10
# PI k
IX * Q 01 [Li * N N 1 1 1 N N N N
) q (0 k
4
4 1 3
• 1 • 1
• • 1 1 • 1 I
♦J # — — —
(n 4 1 # M 1 1 1 h 1 10 I 0 • 0 1 ON 1 d' 1 10 1
(0 4 O) # 1 1• 0) (• O N 1 N N 1 O d' O O O 0 0
it y 0• k 0 d' 0 ee1 N •• M d' d' 0 00 0 S O I0 0 ON 0
k 1.1 >• 0 k • 0 • 0 • 0 • 0 • 10 • M • M • M • M
-.4 k 0 0 1# N 0 to 0 In O 10 0 111 N 01 O 10 0 N 0 1" 0
O k . 1 CO k In • In • In • In • I11 0 U1 • In • In • In
'0 it (0 W k d' d• d d' d' • d' d' V d'
(I) k FI 4 # 1 1 1 1 1 1 1 1 1
0) # 1 0#
• •
•
• • I
• • • •
-1 k
8 • # 0 1 1 1 1 s 01 1 01 N !CO 0 1 04 010' 0'I0' co 1 1 01 11
N 4 0 4 N M 111 10 1 d' 10 O In F In 0) d' 00 N 0. 01 In
p; 4 0 E # 00 1 - 10 10 In to O N M CO M N 10 1 10 0 00 d'
4 JJ 1 k 0) 10 1D d 1 M to N !` F N 1 M u1 co l0 d'
[s) 3 Id 41 k N 1 d N N N 0) N 1 U m m 10 N 1D 1 o
..] 4 J-I ..# N N N (4 M M M M ••
H 3 0) a 3 10 10 10 ID 10 a 10 l0 10 10
a 4 3 M
40 4 a .0 * 0 0 0 O O 0 0 0 0
N * 3\ 0) # W W W W W W W W
N 5 W * a a Cu a a a a a
W 1/) 5 O 14 * ri H H H .-1 H r-1 1-1 r-1 H H ri H ri H H H
* z a H# I a I 0. I a I a 1 I a I a I a I a
a
# 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
E) *El N# O O O O O O O O O O O O O O O O O
- r1 *
E1 * * 1 1 1 1 1 1 1 I 1
5
* IJ • H 5 0 I 0 0 I 0 0 1 0 0 1 0 0 I 0 1 0 0 1 0 0 1 0 0 1 0
d'
5Z Q r1 # O o 0 o O O 0 0 0 0 0 0 o O o 0 0
0 # • 10 3 o • o • o • o • o o • o • o • 0
0 * 0) N W *
N * 01 }l k *
N * 01 Q 1 # i I I 1 1 I 1 I I
*
I *\ Ei I * 1 4 4 1 1 1 1 1 I
I. * 11 W * o 0 0 o 0 0 o 0 o
4 • q 1 =* O M 0 M O M O M 0 0 m O M O m O M
5 01 • z* 0 ri 0 ri 0 ri 0 ri 0 0 ri 0 H 0 ri 0 ri
0) * •ri It =# • o • 0 • 0 • 0 • 0 • 0 • 0 • 0
J.) 5 0 -4-1 * M • M • M • N • N N • N • N • N
10 5 .'P. () 1 * 4 I 1 1 1 1 1 1 I
0 *
* a 1 3 1 1 1 1 1 1 1 1 I
* O a #
* El J." Q * m O o o O in 0 m 11) CO Ul 10 Ul •• 111
* 1J 3 ri 0 10 0 0 ri 0 0) H 0) .-I ON H ON H
•
* 3 ro 0 *
o 4 O •r1 * ri .-I H H H H ri H ri H ri
# HI 3 O *
# W 1 z# 1 1 1 I 1 1 1 1 I
#
* ri 1 z* 1 1 1 I 1 1 1 1 I
* U .C) 0) * m O 1D O 10 0 N O N N ON N ON N CO N N
* •rl 41 rd * m 0 V • V 0 10 • 10 10 • 1D • NO • 1D
* .L.) a O .4 • ri • ri • ri • H
* •r1 01 O# N r-1 N N ri r-1 H H H H
* 1l 0 N *
* V 4 W* 1 I 1 1 4 4 1 4 1
5
3 I • L. * 1 1 M 1 1 1 I I 111 1 1n I 01 I VI
M 5 14 > y1 * 0 m 0 t` o w 0 in O o .-1 0 ri 0 1-1 0 N
0 C) * 0) 0) 8, * o m o • 0 M 0 • o o • o • 0 • 0
• V1 I -1 -1 5 0 W 5
N an .� • r-1 H • H
H H * v) W #
cc) * 1 CO * 1 1 I I 1 4 1 4 4
O H 5
O 4.7 * • I 5 1 4 1 4 4 4 1 1 1
-ri 5 >, HI 5 V 01 0 In 0 10 Ill ON 1l) H VI In N N 11) N ID
0) W * 01 W 5 0 O N r-1 VI 0 V ri 10 CO In m 0 m in ON N
14 ■] 5 N • W *
0) H * 0) ro x * V in 1l) in N N. t` to M N IA Ill
> W * 0 )l * 10 10 10 10 10 10 N ON as 01
N 0 * W 0 * V1 d• al d' d' V V1 V1 d'
Z m IM * * ri r-1 rI . i ri H H H H
C) M a * 1 5 1 I I 4 1 1 1 4 4
H ri *
11) W 5 I 0)* 1.0 1 CO dl I U) V• I ON 10 I N 10 , N I CO r 1 10 0 I d' In I V•
W C) * ro >* 0) N 0 N O !` l0 CO 10 CO 0 CO 01 N N M In
C] Q * r-I ro Q* .1 O O 0 N • • H • • H ri
H H W # W* N O r-1 0 H 0 0 ri O H 0 ri 0 ri 0
H ,L) m 4 1 5 1
I I 4 4 1 1 1 1
o E * — — — — — — — — — — —
p C4 (1) 5 I 5 ON I ON I 01 I M 1 M 1 I` 4 C` 1 m 4 ON 1
I 'l. W 0 5 H. 5 N rl H in 1/) 01 O) d' 0)
S b 3 .] l * 1 > w 5 m m 1D to H H o m
C9 -r1 40 5 5
11 -4-1 5 1 *
1 1 I 4 4 1 1 1 1
a m of 5
(1) 1l 5 1 5 N I 0 1 0 I 0 1 al o, o 4 o 1 0 I
0) 0 1 5 H ON 0) in in in in in in
0)
3 0) E * m # 10 f` t` O O O o o O
SOi * 01 V * O) 111 111 N N N N N N
U 11 * ••• *
l0 01 5 5
a 5 1 #
1 I I 1 1 I 1 1 1
0) 5
E # 1 * T I V1 1 N 1 M 1 V• t H 1 N 1 (. 1 O I
10 5 * m to l/) ON m V m 10 r
1. .1.4 5
1 M 10 M
0 r-1 r 0) 01 V.
V U * >
* 1) 0) 3
ri V• sT V1 10 in rI M V'
11 * 10 ri 5 1D 10 10 10 10 40 01 ON ON
0. • * 3 W 5 d' .44 V1 w ep V1 V' V' V1
(1) 5 5 ri 1-1 ri ri ri H ri H HI
3 1 44 1 1 1 1 1 1 1 1 I
-ri *
.3 > 3 1 3 ON 1 d• 1 N I M 1 M 1 ON I ON 1 V. 1 N 1
CO (I) * .r+ 5 r M M 10 0) V. V' ON V•
3 aG * 11 � 5 m r - M in H rl H ri N
* a E+
M * 0) W * N in in in N H H ri H
0 5
5
*
5 1 3 1 1 1 1 1 1 1 I 1
li 3
CO 5 1 3 0 1 0 1 O 1 O 1 N 1 N 1 N I ( I N 1
0) 5 0) * r4 N 0 N M m ON ON m CO m r CO N a)
O * 11 a* N 0 V• 0 0 0 N 0 h O M 0 W 0 H 0
11 # Si > O* • 0 • M • O • N • N • CV • N • N
-r1 * 0) 0) H# CO M o 0 ON M 01 0 VI V 0 0 0 N 0 M 0
U * > r1 C0 * in 0 1l1 • in 0 in • 10 01 1D 0) 01 05
'0 * 0 W 5 V• • V. V' • d• d' £ v d• w w
0) iv H ,t; 5 H ri H H ri D ri ri ri ri
0) * I U* I 1 1
1 I t] 1 1 1 I
•r1 5
> * 1 * o 1 (Y. 0 1 0 0 1 D; o .co m 1 0 m 1 H as 1 N -0 1 0l 0 1 H
(I) 3 4 3 111 Ea 11) O 111 E+ 111 as V• H V' V• m M N V• I 0
D: 3 • 0 E * m CA M 0 c•) 0) M ri 1l) 4-.1 In 0 11) m V V• m 11) •
* 11 r1 * N E ON 0 al F 1D C` M 141 M r 0 N M ri V 10
W * l0 W * ri 0 .•1 N M U V I0 ri D� r1 N V• 0 V M h ri
4 * 1J - * V' Z V• V• z V• N I' p r-- N al r1 O 0
H 3 C/) .1 * 1D '.7 113 l0 NO lD >•1 10 r1 N CO CO
W 3 # 4 J 4.)
N 4 Q. .0 4 o O O O o O o o O
a 4 .(7 -r4 0 4 .
N 4 1.. N 4 W W W W W W W W W
N 4 m 4 a a a a a a a a a
r 11) 4 O 14 7r 4 ri H H H H H r4 H r1 H , -4 H 1-I H 1-4 H ,-1 H
4 Z a E 4 i s I a I a I a ■ a I a I a 1 a I a
O 'l 4
a 1
# 3 O O O O O O O o O o O O O o 0 0 0 0
41) E 4 .7 (Y 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0
t N N it
-r1 it 4
E•1 4 I 4 1 1 1 1 1 1 I 1 I
it — it .4.1 • 4 r1 3 0 1 0 0 4 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
a 4 $ Q ri 4 0 0 0 0 O o 0 O 0 o O O 0 0 o o O 0
O 4 • of 4 0 • o • 0 • o • o • o • 0 • 0 • o
o 4 ID H C1.4 4
( I It 10. Ii X #
N 4 R) O 1 4 I 1 1 1 1 1 1 1 1
4
1 4\ E-1 1 4 1 1 I 1 1 4 1 1 1
a 4 4-1 W 4 O 0 0 0 O O m O O O
4 ,0 1 - 3 0 m 0 m 0 m 0 (.1 0 m 0 1•i O m 0 m 0 m
4 01 • Z 4 O H O rl o H 0 ri O rl o O o ri 0 ri 0 ri
4) 4 -r4 b = * • 0 • O • 0 • O • o • o • o • o
yl 4 O) - r4 4 N • N • N • N • N • N N • N • N
CO 4 x Q I it I 1 1 I 1 I 1 I 1
Q 4 — — —
4 0 1 4 1 4 1 4 1 I 1 I 1
4 • E A Q 4 H Ill r- In N to 10 In W In ID N 0 CO 0 m 0
4 3 44 * 01 H CO r
OZI r4 I N r4 )O rl In NO 0 a 0 N 0
14 O 4 O -r1 � • rl H r1 rI ri 1-1 rl ri rI H ri H N r♦ N ri N
* w m 1 `Z * 1 4 4 1 4 4 4 4 I
4
4 r•1 1 r j-, 4 1 1 1 1 I 1 1 1 1
4 OS 4 CO 10 a m H O O O1 r
4 O F i t O) 4 N In N a N m N N N H N 0 m O O1 CO 01 r -
• 3 )O • )O • 1D • )O • ID • 10 • In • In • in
4 11 04 0 4 • ri • H • r4 • 1-1 • ri • H • ri
• •
4 � Q 14 4 r-4 ri ri H rl ri r4 1-4 4-1
4 0 4 W 4 1 4 4 4 4 4 4 4 1
4 — —
4 4 A 4 1 0) 1 1.n 1 rl 1 s 1 a 1 0 I 01 4 ( i 4-
m 4 Si > 1.1 it 0 N 0 CI 0 1 0 .4 0 41) r 0) o In O 10 0 t`
0 (7 4 O) O) p, 4 O • O • O • O • O • N • 0 • O • O • H r4 • H • ri • ri • ,..4 • r4 rl H
a H 4 r W Q 4
ri E 4 CO W 4
CO 4 I (o 4 1 I 1 1 1 1 1 4 1
O 4 - 4 4 — — —
0 a 4 • I 4 I I I 4 I I I 1 1
-r4 4 ›,-I 4 N a r4 00 ON «1 a N ID rl ('- N m 111 1-1 )O rl
CO
I 1 0 $ 0 W W * 1 r4 (+1 o m o a o a o a a o a ri 4 4 0
O) 1-I 4 O) • d X 4 10 )0 ID 10 )O 10 ID )O 10
> W 4 0 14 4 01 01 ON 01 01 01 ON 01 O)
N 0 4 W 0 4 a a a •41 a .y1 d1 a a
1 T,. m Z 4 4 ,-I rI rl ri ri r1 H ri 4-4
V m a 4 1 4 I I 1 1 1 4 1 I 1
H ri 4
0) al 4 1 O) 4 1.4 1 N CO 1 N 10 1 01 10 1 CO 10 1 CO h 1 m 1 In 111 1 0) m 1 )0
W > 4 C 4 •11 a m N N ri 0 0 01 01 m 00 OO t` N ID )0 )O
4 .--I O( Q 4 • H • H • ri • O O O o • O
• W 4 O) W 4 ri o r-4 o ri 0 rI 0 0 0 O 0
H E4 (0 4 > x. W 4
> W 1 P 4 (0 4
1-4 4 (I) 4 I 4 1 I 1 1 4 1 1 1 I
O 4 — — — — — — — — —
O C4 a 4 1 it m 1 CO 1 10 1 ID 1 h 1 0 1 01 1 411 1 m 1
1 Z 41 0 4 4 111 0 10 N 00 111 N 01 10
E. •rl 4 H co 4 '
'1 3 a * W 4 01 01 m CO N N N ID 40
0 -ri 44 4 3
}.4 ...4 4 I 4 1 I I I I 1 I 4 I
a O) b 4
(1) 1.4 4 1 4 0 1 0 1 0 I 0 I 0 1 0 1 0 1 0 1 0 1
(1) 0 4 4 I1) in to 411 4/) 111 411 111 41)
41) 4 4
g 01 E 4 CO 4 O O O O O 0 01 01 01
H H
x 1 4 QI U * N N N N N N ri
U 1) 4 4
40. U) 4 4
a 4 1 4 I 1 1 4 1
W 4
4 1 4 1(1 I N 1 m I O 1 0 1 a
4 P 1 ON 1 a 1
4 4 113 m N 0O O 01 01 O1 r
1.4 1-) 3 44 4 r- 0 N m 111 111 In 10 CO
01 .r4 4 v > 4 .
Q 0 4 IJ 0.) 4 a In 11) 4) V/ 4) 411 111 a
Ii 4 10. ri 4 01 ON 01 01 01 01 01 01 05
a b # 3 W 4 a a •1 a a a a a a
(1) 4 3 rl rl r4 ri H r4 r4 r4 ■1
CO 4 1 4 1 1 1 1 I I I I I
-1-4 4
1 S > 4 1 4 a 1 0 4 0 4 a 4 a 1 a 4 1 r4 1 01 4
0) O) 4 .q 4 01 In ri N a N CO N ID
S a' 4 ▪ a F * N m a a In 1n 1n 10 N
Ca 4 01 W 4 ri H rl rI H ri H ri H
4 Q 4
4 4
# I 4
4 I 1 4 1 1 1 4 1
L It — — —
(0 4 4 3 ri 1 N I CO 1 10 1 111 1 O 1 O 4 Ia 4 to I
O ) 4 (1) 4 N a o co ri CO 0 co In a s H 0 N 0 0 0
al 0 4 a 0 ID 0 m 0 01 0 01 0 01 r !1 r
o In O 1, 1/)
y 4 4 4.4 > O 4 • N • N • N • N • N • 41) • 0 • 0 • O
•r4 it 0) O) r-4 4 m O m 0 m 0 m O m O m O a O a O a O
O 4 > ri co 4 ON • 01 • ON • ON • 01 • 0) 0 O1 • ON • 01
•d 4 0 W 3 a a a a a a • a a a
O) 4 H ,44 4 1.4 H 1-4 ri 1 ri ri H ri
0) 4 1 0 4 1 I I 1 1 1 I 1 1
4 1 4 Hito (- 1 m O 1 01 01 4 a o l i o ) 01(0 0 1 )O 1D 1 01 44)1.4'
O) 4 0 3 S m O U) 1D -4 (' t` 41) 01 U) H 11) N S O CO )0
O; 4 O E: 4 m H to 111 O N N m )O 10 m co m 111 0 111 m 01
4 -r4 O) 4
4 IJ HI 4 H 0 H ID CO • N N a 4A f N m 111 11) r4
( # (0 W it 01 H 0 0 rl r-4 ri 0 N N r4 a
4 11 -. 4 O H H ri r4 r4 H H H
H 4 U) a 4 CO CO CO m m a o co 0D co
H fJ
W # #
m # 01 .0 # o o O
a # .4 -,-4 O #
N # 11 a #
# 3\ 11)#
n # m 0, #
0 ` 1.1 P F# I 0 1 I
O.
# # 0 0 0
W # r1 PS # 0 0 0
O # N N it
.I # it
H # #
#
# .1.4 • 1 ri # O I O I 0
VI # 3 CI ri # 0 0 0
o # • CO it 0 0 0
o # W H W it
N # co 1 # V1
I # 1d 14 S4 # ri
N * (� 0 1 # 1 1
#
# \ H 1 # 1
V' # a.l W # 0 0 0
# ,G 1 = # 0 0 0
# 01 • Z # 0 1!) in
W # •r1 111 r #
LI # W ••-I # co 1+) N
b it X Q 1 #
Q #
# p1 1 #
# 0 Q.
* 3'0 * N
0 0
0 # O -H 1 # ri a
# •-I 3 0 # ri
# W 1 •1. # 1 1 1
it
# ri 1 '1. 11 t I I
1 11 it #
# 0 .0 W # ON 01 0
it •r1 4.1 '0 it u) r) 1n
# 1) a 0 #
# HI W 0 # rl ri
# 14 0) s+#
1
1
# u 1 W #
#
# 1 0 # 1 1
1`) # 11 > u it 0 0 0
0 0 it W W 0. # 0 0 0
• rt. H * 0 W
ri F # 0) W #
0)) # 1 V) # 1 1 1
O H #
O 1.i # • 1 # 1 1
-.4 # >r HI # 10 10 0
► W 4 . w 7 * $. • . w * u,
W H # W •0 x# 10 r r-
> W # 0 11 it ON ON ON
Z m a * w 0 * .-I ..-I 1
O m W 41 1 # 1 1 I
H ri #
CO W # 1 W# m 1 O 1 l!) 1
41 q 4 # r1 10 * `O 0 N
►7 •• W p � # W W #
> W • J * > x y #
H 0) # 1 # 1 1 I
Cr) 0 # — — — — —
0
1 • Z 14 0 * 1 * 1 '-0 C 1 O 1
H •r1 # ri u) it
3 Idd X a * >w * ,
0 HI 0 # it
11 •rl # 1 # 1 1 I
at Cu (0 it
CO 1-1 it 1 # 0 1 0 1 0 1
()) 01 41 # (0 01 1n
W # #
3 01 * 01 * r - 4 H co cr)
H
.) 0 # 0 #
O J..) # #
m m # #
W * 1 # 1 1
in #
# 1 # ('1 1 O1 1 01 1
# # m 111 1n
sa
14 # 11 it CO .-1 r1
b1 -r1 # W > # .
0 * N .- * 0) m m
14
W # # 1-1 r1 r1
CO # 1 it 1 1
HI it
3 > # 1 # m 1 ON 1 01 1
CO • a * t * r o 0
# WH #
Ix it W W # ri M M
# 0 #
(0 # #
# 1 # 1 1
.0 #
CO # 1 it 0 1 0 1 0 1
W # W # rl ri H
41 * 1-4 > 0 * H H ri
•.i # CO W r1 # d' w d' W VI
U it > ri CO # 01 C) 0) 0 01
'0 it qw # w Z a Z w
W # H .0 it rl ri rl
0) # 1 0 # 1 1
-.i # E — H— —
> # 1 # 0 1 Z O IX 01
W # 0 # 1n W In W 0
M # 0 0# m m o
# -1i W #
# 1.7 rl # N 1-7 N .1 N
w # of w# •cr a VI 1
1-7 # 4.4 \ # rI 1( r1 Q H
H it CO ,-44 m 3 m 3 m
W # #